aboutsummaryrefslogtreecommitdiff
path: root/src/share/algebra
diff options
context:
space:
mode:
Diffstat (limited to 'src/share/algebra')
-rw-r--r--src/share/algebra/browse.daase3732
-rw-r--r--src/share/algebra/category.daase5905
-rw-r--r--src/share/algebra/compress.daase1934
-rw-r--r--src/share/algebra/interp.daase9776
-rw-r--r--src/share/algebra/operation.daase32554
5 files changed, 25992 insertions, 27909 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index cfbfe6c5..7a1a6ba4 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2242976 . 3428466484)
+(2242236 . 3428546878)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4265 . T) (-4264 . T) (-4050 . T))
+((-4270 . T) (-4269 . T) (-2303 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}.")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,23 +46,23 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4261 . T) (-4259 . T) (-4258 . T) ((-4266 "*") . T) (-4257 . T) (-4262 . T) (-4256 . T) (-4050 . T))
+((-4266 . T) (-4264 . T) (-4263 . T) ((-4271 "*") . T) (-4262 . T) (-4267 . T) (-4261 . T) (-2303 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
NIL
NIL
-(-31 R -1305)
+(-31 R -3358)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))))
+((|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))))
(-32 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4264)))
+((|HasAttribute| |#1| (QUOTE -4269)))
(-33)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
-((-4050 . T))
+((-2303 . T))
NIL
(-34)
((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}.")))
@@ -70,7 +70,7 @@ NIL
NIL
(-35 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4264 . T) (-4265 . T) (-4050 . T))
+((-4269 . T) (-4270 . T) (-2303 . T))
NIL
(-36 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
@@ -78,20 +78,20 @@ NIL
NIL
(-37 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
-((-4258 . T) (-4259 . T) (-4261 . T))
+((-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-38 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-39 -1305 UP UPUP -2874)
+(-39 -3358 UP UPUP -2872)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4257 |has| (-387 |#2|) (-343)) (-4262 |has| (-387 |#2|) (-343)) (-4256 |has| (-387 |#2|) (-343)) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| (-387 |#2|) (QUOTE (-138))) (|HasCategory| (-387 |#2|) (QUOTE (-140))) (|HasCategory| (-387 |#2|) (QUOTE (-329))) (-1463 (|HasCategory| (-387 |#2|) (QUOTE (-343))) (|HasCategory| (-387 |#2|) (QUOTE (-329)))) (|HasCategory| (-387 |#2|) (QUOTE (-343))) (|HasCategory| (-387 |#2|) (QUOTE (-348))) (-1463 (-12 (|HasCategory| (-387 |#2|) (QUOTE (-215))) (|HasCategory| (-387 |#2|) (QUOTE (-343)))) (|HasCategory| (-387 |#2|) (QUOTE (-329)))) (-1463 (-12 (|HasCategory| (-387 |#2|) (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| (-387 |#2|) (QUOTE (-343)))) (-12 (|HasCategory| (-387 |#2|) (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| (-387 |#2|) (QUOTE (-329))))) (|HasCategory| (-387 |#2|) (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| (-387 |#2|) (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| (-387 |#2|) (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-348))) (-1463 (|HasCategory| (-387 |#2|) (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| (-387 |#2|) (QUOTE (-343)))) (-12 (|HasCategory| (-387 |#2|) (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| (-387 |#2|) (QUOTE (-343)))) (-12 (|HasCategory| (-387 |#2|) (QUOTE (-215))) (|HasCategory| (-387 |#2|) (QUOTE (-343)))))
-(-40 R -1305)
+((-4262 |has| (-388 |#2|) (-344)) (-4267 |has| (-388 |#2|) (-344)) (-4261 |has| (-388 |#2|) (-344)) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| (-388 |#2|) (QUOTE (-138))) (|HasCategory| (-388 |#2|) (QUOTE (-140))) (|HasCategory| (-388 |#2|) (QUOTE (-331))) (-3810 (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (QUOTE (-331)))) (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (QUOTE (-349))) (-3810 (-12 (|HasCategory| (-388 |#2|) (QUOTE (-216))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (|HasCategory| (-388 |#2|) (QUOTE (-331)))) (-3810 (-12 (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| (-388 |#2|) (QUOTE (-331))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -841) (QUOTE (-1098)))))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349))) (-3810 (|HasCategory| (-388 |#2|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| (-388 |#2|) (QUOTE (-216))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))))
+(-40 R -3358)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -402) (|devaluate| |#1|)))))
(-41 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -99,48 +99,48 @@ NIL
(-42 R A)
((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,{}A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,{}a) = 0} and \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}x,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}b,{}x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,{}a,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,{}a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")))
NIL
-((|HasCategory| |#1| (QUOTE (-288))))
+((|HasCategory| |#1| (QUOTE (-289))))
(-43 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4261 |has| |#1| (-520)) (-4259 . T) (-4258 . T))
-((|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-520))))
+((-4266 |has| |#1| (-523)) (-4264 . T) (-4263 . T))
+((|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523))))
(-44 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4264 . T) (-4265 . T))
-((-1463 (-12 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-793))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -290) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2927) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1780) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -290) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2927) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1780) (|devaluate| |#2|))))))) (-1463 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-793))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -570) (QUOTE (-504)))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-1463 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-793))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1023)))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| (-528) (QUOTE (-793))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (-1463 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1023)))) (-1463 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802)))) (-12 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -290) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2927) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1780) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -569) (QUOTE (-802)))))
+((-4269 . T) (-4270 . T))
+((-3810 (-12 (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4139) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2131) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-795)))) (-12 (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4139) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2131) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027))))) (-3810 (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-795))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027)))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -572) (QUOTE (-505)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-3810 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-795))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027)))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| (-516) (QUOTE (-795))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027))) (-3810 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027)))) (-3810 (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805)))) (-12 (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4139) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2131) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027)))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -571) (QUOTE (-805)))))
(-45 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-520))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-343))))
+((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))))
(-46 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4258 . T) (-4259 . T) (-4261 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-47)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| $ (QUOTE (-981))) (|HasCategory| $ (LIST (QUOTE -972) (QUOTE (-528)))))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| $ (QUOTE (-984))) (|HasCategory| $ (LIST (QUOTE -975) (QUOTE (-516)))))
(-48)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
NIL
NIL
(-49 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4261 . T))
+((-4266 . T))
NIL
-(-50 S)
-((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
+(-50)
+((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}.")))
NIL
NIL
-(-51)
-((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}.")))
+(-51 S)
+((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
NIL
NIL
(-52 R M P)
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-53 |Base| R -1305)
+(-53 |Base| R -3358)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -150,144 +150,144 @@ NIL
NIL
(-55 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4264 . T) (-4265 . T) (-4050 . T))
+((-4269 . T) (-4270 . T) (-2303 . T))
NIL
-(-56 A B)
+(-56 S)
+((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
+((-4270 . T) (-4269 . T))
+((-3810 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (-3810 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-516) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-57 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
NIL
NIL
-(-57 S)
-((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4265 . T) (-4264 . T))
-((-1463 (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|))))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (-1463 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1023)))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| (-528) (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1023))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
(-58 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4264 . T) (-4265 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-59 -3814)
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-59 -3824)
+((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
+NIL
+NIL
+(-60 -3824)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-60 -3814)
+(-61 -3824)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-61 -3814)
+(-62 -3824)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -3814)
-((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
-NIL
-NIL
-(-63 -3814)
+(-63 -3824)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -3814)
+(-64 -3824)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -3814)
+(-65 -3824)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -3814)
+(-66 -3824)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-67 -3814)
+(-67 -3824)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-68 -3814)
+(-68 -3824)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -3814)
+(-69 -3824)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-70 -3814)
+(-70 -3824)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-71 -3814)
+(-71 -3824)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-72 -3814)
+(-72 -3824)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-73 |nameOne| |nameTwo| |nameThree|)
-((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
+(-73 -3824)
+((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
(-74 |nameOne| |nameTwo| |nameThree|)
-((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
+((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-75 -3814)
-((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
+(-75 |nameOne| |nameTwo| |nameThree|)
+((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-76 -3814)
-((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
+(-76 -3824)
+((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-77 -3814)
+(-77 -3824)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-78 -3814)
+(-78 -3824)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-79 -3814)
+(-79 -3824)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -3814)
+(-80 -3824)
+((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
+NIL
+NIL
+(-81 -3824)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -3814)
+(-82 -3824)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-82 -3814)
+(-83 -3824)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -3814)
+(-84 -3824)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -3814)
-((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
+(-85 -3824)
+((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-85 -3814)
+(-86 -3824)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -3814)
-((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
-NIL
-NIL
-(-87 -3814)
+(-87 -3824)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
(-88 R L)
((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op,{} m)} returns \\spad{[w,{} eq,{} lw,{} lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,{}...,{}A_n]} such that if \\spad{y = [y_1,{}...,{}y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',{}y_j'',{}...,{}y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op,{} m)} returns \\spad{[M,{}w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-343))))
+((|HasCategory| |#1| (QUOTE (-344))))
(-89 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4264 . T) (-4265 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
(-90 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -306,15 +306,15 @@ NIL
NIL
(-94)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4264 . T))
+((-4269 . T))
NIL
(-95)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4264 . T) ((-4266 "*") . T) (-4265 . T) (-4261 . T) (-4259 . T) (-4258 . T) (-4257 . T) (-4262 . T) (-4256 . T) (-4255 . T) (-4254 . T) (-4253 . T) (-4252 . T) (-4260 . T) (-4263 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4251 . T))
+((-4269 . T) ((-4271 "*") . T) (-4270 . T) (-4266 . T) (-4264 . T) (-4263 . T) (-4262 . T) (-4267 . T) (-4261 . T) (-4260 . T) (-4259 . T) (-4258 . T) (-4257 . T) (-4265 . T) (-4268 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4256 . T))
NIL
(-96 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4261 . T))
+((-4266 . T))
NIL
(-97 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}.")))
@@ -330,15 +330,15 @@ NIL
NIL
(-100 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4264 . T) (-4265 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
(-101 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4266 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4271 "*"))))
(-102)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4264 . T))
+((-4269 . T))
NIL
(-103 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -346,12 +346,12 @@ NIL
NIL
(-104 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4265 . T) (-4050 . T))
+((-4270 . T) (-2303 . T))
NIL
(-105)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| (-528) (QUOTE (-848))) (|HasCategory| (-528) (LIST (QUOTE -972) (QUOTE (-1095)))) (|HasCategory| (-528) (QUOTE (-138))) (|HasCategory| (-528) (QUOTE (-140))) (|HasCategory| (-528) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| (-528) (QUOTE (-957))) (|HasCategory| (-528) (QUOTE (-766))) (-1463 (|HasCategory| (-528) (QUOTE (-766))) (|HasCategory| (-528) (QUOTE (-793)))) (|HasCategory| (-528) (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| (-528) (QUOTE (-1071))) (|HasCategory| (-528) (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| (-528) (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| (-528) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-528) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| (-528) (QUOTE (-215))) (|HasCategory| (-528) (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| (-528) (LIST (QUOTE -489) (QUOTE (-1095)) (QUOTE (-528)))) (|HasCategory| (-528) (LIST (QUOTE -290) (QUOTE (-528)))) (|HasCategory| (-528) (LIST (QUOTE -267) (QUOTE (-528)) (QUOTE (-528)))) (|HasCategory| (-528) (QUOTE (-288))) (|HasCategory| (-528) (QUOTE (-513))) (|HasCategory| (-528) (QUOTE (-793))) (|HasCategory| (-528) (LIST (QUOTE -591) (QUOTE (-528)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-528) (QUOTE (-848)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-528) (QUOTE (-848)))) (|HasCategory| (-528) (QUOTE (-138)))))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| (-516) (QUOTE (-851))) (|HasCategory| (-516) (LIST (QUOTE -975) (QUOTE (-1098)))) (|HasCategory| (-516) (QUOTE (-138))) (|HasCategory| (-516) (QUOTE (-140))) (|HasCategory| (-516) (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-516) (QUOTE (-958))) (|HasCategory| (-516) (QUOTE (-768))) (-3810 (|HasCategory| (-516) (QUOTE (-768))) (|HasCategory| (-516) (QUOTE (-795)))) (|HasCategory| (-516) (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| (-516) (QUOTE (-1074))) (|HasCategory| (-516) (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| (-516) (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| (-516) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-516) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| (-516) (QUOTE (-216))) (|HasCategory| (-516) (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| (-516) (LIST (QUOTE -491) (QUOTE (-1098)) (QUOTE (-516)))) (|HasCategory| (-516) (LIST (QUOTE -291) (QUOTE (-516)))) (|HasCategory| (-516) (LIST (QUOTE -268) (QUOTE (-516)) (QUOTE (-516)))) (|HasCategory| (-516) (QUOTE (-289))) (|HasCategory| (-516) (QUOTE (-515))) (|HasCategory| (-516) (QUOTE (-795))) (|HasCategory| (-516) (LIST (QUOTE -593) (QUOTE (-516)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-516) (QUOTE (-851)))) (-3810 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-516) (QUOTE (-851)))) (|HasCategory| (-516) (QUOTE (-138)))))
(-106)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
@@ -362,43 +362,43 @@ NIL
NIL
(-108)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4265 . T) (-4264 . T))
-((-12 (|HasCategory| (-110) (QUOTE (-1023))) (|HasCategory| (-110) (LIST (QUOTE -290) (QUOTE (-110))))) (|HasCategory| (-110) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| (-110) (QUOTE (-793))) (|HasCategory| (-528) (QUOTE (-793))) (|HasCategory| (-110) (QUOTE (-1023))) (|HasCategory| (-110) (LIST (QUOTE -569) (QUOTE (-802)))))
+((-4270 . T) (-4269 . T))
+((-12 (|HasCategory| (-110) (QUOTE (-1027))) (|HasCategory| (-110) (LIST (QUOTE -291) (QUOTE (-110))))) (|HasCategory| (-110) (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-110) (QUOTE (-795))) (|HasCategory| (-516) (QUOTE (-795))) (|HasCategory| (-110) (QUOTE (-1027))) (|HasCategory| (-110) (LIST (QUOTE -571) (QUOTE (-805)))))
(-109 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4259 . T) (-4258 . T))
+((-4264 . T) (-4263 . T))
NIL
(-110)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (^ (($ $) "\\spad{^ n} returns the negation of \\spad{n}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
NIL
NIL
-(-111 A)
-((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise.")))
-NIL
-((|HasCategory| |#1| (QUOTE (-793))))
-(-112)
+(-111)
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}.")))
NIL
NIL
-(-113 -1305 UP)
+(-112 A)
+((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise.")))
+NIL
+((|HasCategory| |#1| (QUOTE (-795))))
+(-113 -3358 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-114 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-115 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| (-114 |#1|) (QUOTE (-848))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -972) (QUOTE (-1095)))) (|HasCategory| (-114 |#1|) (QUOTE (-138))) (|HasCategory| (-114 |#1|) (QUOTE (-140))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| (-114 |#1|) (QUOTE (-957))) (|HasCategory| (-114 |#1|) (QUOTE (-766))) (-1463 (|HasCategory| (-114 |#1|) (QUOTE (-766))) (|HasCategory| (-114 |#1|) (QUOTE (-793)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| (-114 |#1|) (QUOTE (-1071))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| (-114 |#1|) (QUOTE (-215))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -489) (QUOTE (-1095)) (LIST (QUOTE -114) (|devaluate| |#1|)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -290) (LIST (QUOTE -114) (|devaluate| |#1|)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -267) (LIST (QUOTE -114) (|devaluate| |#1|)) (LIST (QUOTE -114) (|devaluate| |#1|)))) (|HasCategory| (-114 |#1|) (QUOTE (-288))) (|HasCategory| (-114 |#1|) (QUOTE (-513))) (|HasCategory| (-114 |#1|) (QUOTE (-793))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-114 |#1|) (QUOTE (-848)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-114 |#1|) (QUOTE (-848)))) (|HasCategory| (-114 |#1|) (QUOTE (-138)))))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| (-114 |#1|) (QUOTE (-851))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -975) (QUOTE (-1098)))) (|HasCategory| (-114 |#1|) (QUOTE (-138))) (|HasCategory| (-114 |#1|) (QUOTE (-140))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-114 |#1|) (QUOTE (-958))) (|HasCategory| (-114 |#1|) (QUOTE (-768))) (-3810 (|HasCategory| (-114 |#1|) (QUOTE (-768))) (|HasCategory| (-114 |#1|) (QUOTE (-795)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| (-114 |#1|) (QUOTE (-1074))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| (-114 |#1|) (QUOTE (-216))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -491) (QUOTE (-1098)) (LIST (QUOTE -114) (|devaluate| |#1|)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -291) (LIST (QUOTE -114) (|devaluate| |#1|)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -268) (LIST (QUOTE -114) (|devaluate| |#1|)) (LIST (QUOTE -114) (|devaluate| |#1|)))) (|HasCategory| (-114 |#1|) (QUOTE (-289))) (|HasCategory| (-114 |#1|) (QUOTE (-515))) (|HasCategory| (-114 |#1|) (QUOTE (-795))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-114 |#1|) (QUOTE (-851)))) (-3810 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-114 |#1|) (QUOTE (-851)))) (|HasCategory| (-114 |#1|) (QUOTE (-138)))))
(-116 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4265)))
+((|HasAttribute| |#1| (QUOTE -4270)))
(-117 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
-((-4050 . T))
+((-2303 . T))
NIL
(-118 UP)
((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive.")))
@@ -406,15 +406,15 @@ NIL
NIL
(-119 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4264 . T) (-4265 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
(-120 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
NIL
(-121)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4265 . T) (-4264 . T) (-4050 . T))
+((-4270 . T) (-4269 . T) (-2303 . T))
NIL
(-122 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -422,24 +422,24 @@ NIL
NIL
(-123 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4264 . T) (-4265 . T) (-4050 . T))
+((-4269 . T) (-4270 . T) (-2303 . T))
NIL
(-124 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4264 . T) (-4265 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
(-125 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4264 . T) (-4265 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
(-126)
-((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes.")))
-((-4265 . T) (-4264 . T))
-((-1463 (-12 (|HasCategory| (-127) (QUOTE (-793))) (|HasCategory| (-127) (LIST (QUOTE -290) (QUOTE (-127))))) (-12 (|HasCategory| (-127) (QUOTE (-1023))) (|HasCategory| (-127) (LIST (QUOTE -290) (QUOTE (-127)))))) (-1463 (-12 (|HasCategory| (-127) (QUOTE (-1023))) (|HasCategory| (-127) (LIST (QUOTE -290) (QUOTE (-127))))) (|HasCategory| (-127) (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| (-127) (LIST (QUOTE -570) (QUOTE (-504)))) (-1463 (|HasCategory| (-127) (QUOTE (-793))) (|HasCategory| (-127) (QUOTE (-1023)))) (|HasCategory| (-127) (QUOTE (-793))) (|HasCategory| (-528) (QUOTE (-793))) (|HasCategory| (-127) (QUOTE (-1023))) (-12 (|HasCategory| (-127) (QUOTE (-1023))) (|HasCategory| (-127) (LIST (QUOTE -290) (QUOTE (-127))))) (|HasCategory| (-127) (LIST (QUOTE -569) (QUOTE (-802)))))
-(-127)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|coerce| (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} has the same effect as byte(\\spad{x}).")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
NIL
+(-127)
+((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes.")))
+((-4270 . T) (-4269 . T))
+((-3810 (-12 (|HasCategory| (-126) (QUOTE (-795))) (|HasCategory| (-126) (LIST (QUOTE -291) (QUOTE (-126))))) (-12 (|HasCategory| (-126) (QUOTE (-1027))) (|HasCategory| (-126) (LIST (QUOTE -291) (QUOTE (-126)))))) (-3810 (-12 (|HasCategory| (-126) (QUOTE (-1027))) (|HasCategory| (-126) (LIST (QUOTE -291) (QUOTE (-126))))) (|HasCategory| (-126) (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| (-126) (LIST (QUOTE -572) (QUOTE (-505)))) (-3810 (|HasCategory| (-126) (QUOTE (-795))) (|HasCategory| (-126) (QUOTE (-1027)))) (|HasCategory| (-126) (QUOTE (-795))) (|HasCategory| (-516) (QUOTE (-795))) (|HasCategory| (-126) (QUOTE (-1027))) (-12 (|HasCategory| (-126) (QUOTE (-1027))) (|HasCategory| (-126) (LIST (QUOTE -291) (QUOTE (-126))))) (|HasCategory| (-126) (LIST (QUOTE -571) (QUOTE (-805)))))
(-128)
((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")))
NIL
@@ -450,14 +450,14 @@ NIL
NIL
(-130)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")))
-(((-4266 "*") . T))
+(((-4271 "*") . T))
NIL
-(-131 |minix| -4174 S T$)
-((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
+(-131 |minix| -2879 R)
+((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
-(-132 |minix| -4174 R)
-((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
+(-132 |minix| -2879 S T$)
+((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
(-133)
@@ -466,8 +466,8 @@ NIL
NIL
(-134)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4264 . T) (-4254 . T) (-4265 . T))
-((-1463 (-12 (|HasCategory| (-137) (QUOTE (-348))) (|HasCategory| (-137) (LIST (QUOTE -290) (QUOTE (-137))))) (-12 (|HasCategory| (-137) (QUOTE (-1023))) (|HasCategory| (-137) (LIST (QUOTE -290) (QUOTE (-137)))))) (|HasCategory| (-137) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| (-137) (QUOTE (-348))) (|HasCategory| (-137) (QUOTE (-793))) (|HasCategory| (-137) (QUOTE (-1023))) (-12 (|HasCategory| (-137) (QUOTE (-1023))) (|HasCategory| (-137) (LIST (QUOTE -290) (QUOTE (-137))))) (|HasCategory| (-137) (LIST (QUOTE -569) (QUOTE (-802)))))
+((-4269 . T) (-4259 . T) (-4270 . T))
+((-3810 (-12 (|HasCategory| (-137) (QUOTE (-349))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137)))))) (|HasCategory| (-137) (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-137) (QUOTE (-349))) (|HasCategory| (-137) (QUOTE (-795))) (|HasCategory| (-137) (QUOTE (-1027))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (|HasCategory| (-137) (LIST (QUOTE -571) (QUOTE (-805)))))
(-135 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -482,7 +482,7 @@ NIL
NIL
(-138)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4261 . T))
+((-4266 . T))
NIL
(-139 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -490,9 +490,9 @@ NIL
NIL
(-140)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4261 . T))
+((-4266 . T))
NIL
-(-141 -1305 UP UPUP)
+(-141 -3358 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}.")))
NIL
NIL
@@ -503,14 +503,14 @@ NIL
(-143 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasAttribute| |#1| (QUOTE -4264)))
+((|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasAttribute| |#1| (QUOTE -4269)))
(-144 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
-((-4050 . T))
+((-2303 . T))
NIL
(-145 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4259 . T) (-4258 . T) (-4261 . T))
+((-4264 . T) (-4263 . T) (-4266 . T))
NIL
(-146)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -524,7 +524,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-149 R -1305)
+(-149 R -3358)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -551,23 +551,23 @@ NIL
(-155 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-957))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#2| (QUOTE (-343))) (|HasAttribute| |#2| (QUOTE -4260)) (|HasAttribute| |#2| (QUOTE -4263)) (|HasCategory| |#2| (QUOTE (-288))) (|HasCategory| |#2| (QUOTE (-520))) (|HasCategory| |#2| (QUOTE (-793))))
+((|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-941))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (QUOTE (-992))) (|HasCategory| |#2| (QUOTE (-958))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasAttribute| |#2| (QUOTE -4265)) (|HasAttribute| |#2| (QUOTE -4268)) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-795))))
(-156 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4257 -1463 (|has| |#1| (-520)) (-12 (|has| |#1| (-288)) (|has| |#1| (-848)))) (-4262 |has| |#1| (-343)) (-4256 |has| |#1| (-343)) (-4260 |has| |#1| (-6 -4260)) (-4263 |has| |#1| (-6 -4263)) (-4095 . T) (-4050 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4262 -3810 (|has| |#1| (-523)) (-12 (|has| |#1| (-289)) (|has| |#1| (-851)))) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4265 |has| |#1| (-6 -4265)) (-4268 |has| |#1| (-6 -4268)) (-1375 . T) (-2303 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-157 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
NIL
NIL
-(-158 R S)
+(-158 R)
+((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
+((-4262 -3810 (|has| |#1| (-523)) (-12 (|has| |#1| (-289)) (|has| |#1| (-851)))) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4265 |has| |#1| (-6 -4265)) (-4268 |has| |#1| (-6 -4268)) (-1375 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-331))) (-3810 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-1120)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516)))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1098)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-359))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-216))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-769)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-795)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-958))))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-851)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-344)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-851)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-851)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-851))))) (-3810 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-958))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (-3810 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-523)))) (-3810 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1098)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-769))) (|HasCategory| |#1| (QUOTE (-992))) (-12 (|HasCategory| |#1| (QUOTE (-992))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-515))) (-3810 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-851))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-344)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-216))) (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasAttribute| |#1| (QUOTE -4265)) (|HasAttribute| |#1| (QUOTE -4268)) (-12 (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (|HasCategory| |#1| (QUOTE (-138)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (|HasCategory| |#1| (QUOTE (-331)))))
+(-159 R S)
((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,{}u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}.")))
NIL
NIL
-(-159 R)
-((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4257 -1463 (|has| |#1| (-520)) (-12 (|has| |#1| (-288)) (|has| |#1| (-848)))) (-4262 |has| |#1| (-343)) (-4256 |has| |#1| (-343)) (-4260 |has| |#1| (-6 -4260)) (-4263 |has| |#1| (-6 -4263)) (-4095 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-329))) (-1463 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-329)))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-348))) (-1463 (-12 (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#1| (QUOTE (-329)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-329)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -489) (QUOTE (-1095)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-329)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-329)))) (-12 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-329)))) (-12 (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-329)))) (|HasCategory| |#1| (QUOTE (-215))) (-12 (|HasCategory| |#1| (QUOTE (-288))) (|HasCategory| |#1| (QUOTE (-329)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-329)))) (-12 (|HasCategory| |#1| (QUOTE (-329))) (|HasCategory| |#1| (LIST (QUOTE -267) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-329))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-329))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095))))) (-12 (|HasCategory| |#1| (QUOTE (-329))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-329))) (|HasCategory| |#1| (QUOTE (-520)))) (-12 (|HasCategory| |#1| (QUOTE (-329))) (|HasCategory| |#1| (QUOTE (-774)))) (-12 (|HasCategory| |#1| (QUOTE (-329))) (|HasCategory| |#1| (QUOTE (-793)))) (-12 (|HasCategory| |#1| (QUOTE (-329))) (|HasCategory| |#1| (QUOTE (-957)))) (-12 (|HasCategory| |#1| (QUOTE (-329))) (|HasCategory| |#1| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (QUOTE (-329))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504))))) (-12 (|HasCategory| |#1| (QUOTE (-329))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-329))) (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-359))))) (-12 (|HasCategory| |#1| (QUOTE (-329))) (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-329))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-288))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-343))) (-12 (|HasCategory| |#1| (QUOTE (-329))) (|HasCategory| |#1| (QUOTE (-848))))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-288))) (|HasCategory| |#1| (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-329))) (|HasCategory| |#1| (QUOTE (-848))))) (-1463 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-520)))) (-12 (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-957))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (-1463 (|HasCategory| |#1| (QUOTE (-288))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-329))) (|HasCategory| |#1| (QUOTE (-520)))) (-1463 (|HasCategory| |#1| (QUOTE (-288))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-329)))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| |#1| (LIST (QUOTE -489) (QUOTE (-1095)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -267) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-774))) (|HasCategory| |#1| (QUOTE (-989))) (-12 (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-513))) (-1463 (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-288))) (|HasCategory| |#1| (QUOTE (-848))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-288))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-343)))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-288))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-215))) (-12 (|HasCategory| |#1| (QUOTE (-288))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasAttribute| |#1| (QUOTE -4260)) (|HasAttribute| |#1| (QUOTE -4263)) (-12 (|HasCategory| |#1| (QUOTE (-215))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095))))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-288))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-138)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-288))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-329)))))
(-160 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -578,11 +578,11 @@ NIL
NIL
(-162)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+(((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-163 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4266 "*") . T) (-4257 . T) (-4262 . T) (-4256 . T) (-4258 . T) (-4259 . T) (-4261 . T))
+(((-4271 "*") . T) (-4262 . T) (-4267 . T) (-4261 . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-164)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -599,7 +599,7 @@ NIL
(-167 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-891 |#2|) (LIST (QUOTE -825) (|devaluate| |#1|))))
+((|HasCategory| (-887 |#2|) (LIST (QUOTE -827) (|devaluate| |#1|))))
(-168 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}")))
NIL
@@ -616,7 +616,7 @@ NIL
((|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain")) (|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments returns} the list of syntax objects for the arguments used to invoke the constructor.")) (|constructorName| (((|Symbol|) $) "\\spad{constructorName c} returns the name of the constructor")))
NIL
NIL
-(-172 R -1305)
+(-172 R -3358)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -716,4033 +716,4045 @@ NIL
((|constructor| (NIL "\\axiomType{d03fafAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routine D03FAF.")))
NIL
NIL
-(-197 S)
+(-197 N T$)
+((|constructor| (NIL "This domain provides for a fixed-sized homogeneous data buffer.")) (|setelt| ((|#2| $ (|NonNegativeInteger|) |#2|) "\\spad{setelt(b,{}i,{}x)} sets the \\spad{i}th entry of data buffer \\spad{`b'} to \\spad{`x'}. Indexing is 0-based.")) (|elt| ((|#2| $ (|NonNegativeInteger|)) "\\spad{elt(b,{}i)} returns the \\spad{i}th element in buffer \\spad{`b'}. Indexing is 0-based.")) (|new| (($) "\\spad{new()} returns a fresly allocated data buffer or length \\spad{N}.")))
+NIL
+NIL
+(-198 S)
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-198 -1305 UP UPUP R)
+(-199 -3358 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-199 -1305 FP)
+(-200 -3358 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
-(-200)
+(-201)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| (-528) (QUOTE (-848))) (|HasCategory| (-528) (LIST (QUOTE -972) (QUOTE (-1095)))) (|HasCategory| (-528) (QUOTE (-138))) (|HasCategory| (-528) (QUOTE (-140))) (|HasCategory| (-528) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| (-528) (QUOTE (-957))) (|HasCategory| (-528) (QUOTE (-766))) (-1463 (|HasCategory| (-528) (QUOTE (-766))) (|HasCategory| (-528) (QUOTE (-793)))) (|HasCategory| (-528) (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| (-528) (QUOTE (-1071))) (|HasCategory| (-528) (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| (-528) (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| (-528) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-528) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| (-528) (QUOTE (-215))) (|HasCategory| (-528) (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| (-528) (LIST (QUOTE -489) (QUOTE (-1095)) (QUOTE (-528)))) (|HasCategory| (-528) (LIST (QUOTE -290) (QUOTE (-528)))) (|HasCategory| (-528) (LIST (QUOTE -267) (QUOTE (-528)) (QUOTE (-528)))) (|HasCategory| (-528) (QUOTE (-288))) (|HasCategory| (-528) (QUOTE (-513))) (|HasCategory| (-528) (QUOTE (-793))) (|HasCategory| (-528) (LIST (QUOTE -591) (QUOTE (-528)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-528) (QUOTE (-848)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-528) (QUOTE (-848)))) (|HasCategory| (-528) (QUOTE (-138)))))
-(-201 R -1305)
-((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| (-516) (QUOTE (-851))) (|HasCategory| (-516) (LIST (QUOTE -975) (QUOTE (-1098)))) (|HasCategory| (-516) (QUOTE (-138))) (|HasCategory| (-516) (QUOTE (-140))) (|HasCategory| (-516) (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-516) (QUOTE (-958))) (|HasCategory| (-516) (QUOTE (-768))) (-3810 (|HasCategory| (-516) (QUOTE (-768))) (|HasCategory| (-516) (QUOTE (-795)))) (|HasCategory| (-516) (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| (-516) (QUOTE (-1074))) (|HasCategory| (-516) (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| (-516) (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| (-516) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-516) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| (-516) (QUOTE (-216))) (|HasCategory| (-516) (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| (-516) (LIST (QUOTE -491) (QUOTE (-1098)) (QUOTE (-516)))) (|HasCategory| (-516) (LIST (QUOTE -291) (QUOTE (-516)))) (|HasCategory| (-516) (LIST (QUOTE -268) (QUOTE (-516)) (QUOTE (-516)))) (|HasCategory| (-516) (QUOTE (-289))) (|HasCategory| (-516) (QUOTE (-515))) (|HasCategory| (-516) (QUOTE (-795))) (|HasCategory| (-516) (LIST (QUOTE -593) (QUOTE (-516)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-516) (QUOTE (-851)))) (-3810 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-516) (QUOTE (-851)))) (|HasCategory| (-516) (QUOTE (-138)))))
+(-202 R -3358)
+((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
-(-202 R)
-((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
+(-203 R)
+((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
-(-203 R1 R2)
+(-204 R1 R2)
((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,{}n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}")))
NIL
NIL
-(-204 S)
+(-205 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4264 . T) (-4265 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-205 |CoefRing| |listIndVar|)
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-206 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4261 . T))
+((-4266 . T))
NIL
-(-206 R -1305)
+(-207 R -3358)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
-(-207)
+(-208)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4083 . T) (-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4048 . T) (-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-208)
+(-209)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}")))
NIL
NIL
-(-209 R)
+(-210 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4264 . T) (-4265 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (QUOTE (-288))) (|HasCategory| |#1| (QUOTE (-520))) (|HasAttribute| |#1| (QUOTE (-4266 "*"))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-210 A S)
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-523))) (|HasAttribute| |#1| (QUOTE (-4271 "*"))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-211 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
-(-211 S)
+(-212 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4265 . T) (-4050 . T))
+((-4270 . T) (-2303 . T))
NIL
-(-212 S R)
+(-213 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (QUOTE (-215))))
-(-213 R)
+((|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#2| (QUOTE (-216))))
+(-214 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4261 . T))
+((-4266 . T))
NIL
-(-214 S)
+(-215 S)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
NIL
NIL
-(-215)
+(-216)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
-((-4261 . T))
+((-4266 . T))
NIL
-(-216 A S)
+(-217 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4264)))
-(-217 S)
+((|HasAttribute| |#1| (QUOTE -4269)))
+(-218 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4265 . T) (-4050 . T))
+((-4270 . T) (-2303 . T))
NIL
-(-218)
+(-219)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-219 S -4174 R)
+(-220 S -2879 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (QUOTE (-791))) (|HasAttribute| |#3| (QUOTE -4261)) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (QUOTE (-673))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-981))) (|HasCategory| |#3| (QUOTE (-1023))))
-(-220 -4174 R)
+((|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (QUOTE (-793))) (|HasAttribute| |#3| (QUOTE -4266)) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (QUOTE (-1027))))
+(-221 -2879 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4258 |has| |#2| (-981)) (-4259 |has| |#2| (-981)) (-4261 |has| |#2| (-6 -4261)) ((-4266 "*") |has| |#2| (-162)) (-4264 . T) (-4050 . T))
+((-4263 |has| |#2| (-984)) (-4264 |has| |#2| (-984)) (-4266 |has| |#2| (-6 -4266)) ((-4271 "*") |has| |#2| (-162)) (-4269 . T) (-2303 . T))
NIL
-(-221 -4174 A B)
+(-222 -2879 R)
+((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
+((-4263 |has| |#2| (-984)) (-4264 |has| |#2| (-984)) (-4266 |has| |#2| (-6 -4266)) ((-4271 "*") |has| |#2| (-162)) (-4269 . T))
+((-3810 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))))) (-3810 (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#2| (QUOTE (-344))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344)))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-741))) (-3810 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-793)))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-162))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-984)))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098)))) (-3810 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (-3810 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (-3810 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))))) (-3810 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516)))))) (|HasCategory| (-516) (QUOTE (-795))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-3810 (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasAttribute| |#2| (QUOTE -4266)) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-223 -2879 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-222 -4174 R)
-((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4258 |has| |#2| (-981)) (-4259 |has| |#2| (-981)) (-4261 |has| |#2| (-6 -4261)) ((-4266 "*") |has| |#2| (-162)) (-4264 . T))
-((-1463 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-673))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))))) (-1463 (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-1023)))) (-12 (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (QUOTE (-981)))) (-12 (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#2| (QUOTE (-343))) (-1463 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-981)))) (-1463 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-343)))) (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (QUOTE (-739))) (-1463 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-673))) (|HasCategory| |#2| (QUOTE (-162))) (-1463 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-981)))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (-1463 (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-673))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (QUOTE (-1023)))) (-1463 (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-981)))) (-1463 (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-981)))) (-1463 (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-981)))) (-1463 (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (QUOTE (-981)))) (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-162)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-215)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-343)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-348)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-673)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-739)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-791)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-981)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-1023))))) (-1463 (-12 (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-673))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528)))))) (|HasCategory| (-528) (QUOTE (-793))) (-12 (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (QUOTE (-981)))) (-12 (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-1463 (|HasCategory| |#2| (QUOTE (-981))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-1023)))) (|HasAttribute| |#2| (QUOTE -4261)) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-223)
+(-224)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
NIL
-(-224 S)
+(-225 S)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
NIL
NIL
-(-225)
+(-226)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4257 . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4262 . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-226 S)
+(-227 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
-((-4050 . T))
+((-2303 . T))
NIL
-(-227 S)
+(-228 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}")))
-((-4265 . T) (-4264 . T))
-((-1463 (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|))))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (-1463 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1023)))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| (-528) (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1023))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-228 M)
+((-4270 . T) (-4269 . T))
+((-3810 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (-3810 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-516) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-229 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
-(-229 |vl| R)
+(-230 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4266 "*") |has| |#2| (-162)) (-4257 |has| |#2| (-520)) (-4262 |has| |#2| (-6 -4262)) (-4259 . T) (-4258 . T) (-4261 . T))
-((|HasCategory| |#2| (QUOTE (-848))) (-1463 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-431))) (|HasCategory| |#2| (QUOTE (-520))) (|HasCategory| |#2| (QUOTE (-848)))) (-1463 (|HasCategory| |#2| (QUOTE (-431))) (|HasCategory| |#2| (QUOTE (-520))) (|HasCategory| |#2| (QUOTE (-848)))) (-1463 (|HasCategory| |#2| (QUOTE (-431))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-520))) (|HasCategory| |#2| (QUOTE (-162))) (-1463 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-520)))) (-12 (|HasCategory| (-804 |#1|) (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| |#2| (LIST (QUOTE -825) (QUOTE (-359))))) (-12 (|HasCategory| (-804 |#1|) (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -825) (QUOTE (-528))))) (-12 (|HasCategory| (-804 |#1|) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#2| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| (-804 |#1|) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528)))))) (-12 (|HasCategory| (-804 |#1|) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-504))))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-343))) (-1463 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528)))))) (|HasAttribute| |#2| (QUOTE -4262)) (|HasCategory| |#2| (QUOTE (-431))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-848)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-138)))))
-(-230)
+(((-4271 "*") |has| |#2| (-162)) (-4262 |has| |#2| (-523)) (-4267 |has| |#2| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#2| (QUOTE (-851))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-851)))) (-3810 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-851)))) (-3810 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-851)))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-523)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-359))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (QUOTE (-505))))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#2| (QUOTE (-344))) (-3810 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasAttribute| |#2| (QUOTE -4267)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (-3810 (-12 (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (|HasCategory| |#2| (QUOTE (-138)))))
+(-231)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")))
NIL
NIL
-(-231 |n| R M S)
+(-232 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4261 -1463 (-3287 (|has| |#4| (-981)) (|has| |#4| (-215))) (-3287 (|has| |#4| (-981)) (|has| |#4| (-839 (-1095)))) (|has| |#4| (-6 -4261)) (-3287 (|has| |#4| (-981)) (|has| |#4| (-591 (-528))))) (-4258 |has| |#4| (-981)) (-4259 |has| |#4| (-981)) ((-4266 "*") |has| |#4| (-162)) (-4264 . T))
-((-1463 (-12 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (LIST (QUOTE -290) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-215))) (|HasCategory| |#4| (LIST (QUOTE -290) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-343))) (|HasCategory| |#4| (LIST (QUOTE -290) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-348))) (|HasCategory| |#4| (LIST (QUOTE -290) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-673))) (|HasCategory| |#4| (LIST (QUOTE -290) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-739))) (|HasCategory| |#4| (LIST (QUOTE -290) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-791))) (|HasCategory| |#4| (LIST (QUOTE -290) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-981))) (|HasCategory| |#4| (LIST (QUOTE -290) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -290) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -290) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -290) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -839) (QUOTE (-1095)))))) (|HasCategory| |#4| (QUOTE (-343))) (-1463 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-343))) (|HasCategory| |#4| (QUOTE (-981)))) (-1463 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-343)))) (|HasCategory| |#4| (QUOTE (-981))) (|HasCategory| |#4| (QUOTE (-739))) (-1463 (|HasCategory| |#4| (QUOTE (-739))) (|HasCategory| |#4| (QUOTE (-791)))) (|HasCategory| |#4| (QUOTE (-791))) (|HasCategory| |#4| (QUOTE (-673))) (|HasCategory| |#4| (QUOTE (-162))) (-1463 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-981)))) (|HasCategory| |#4| (QUOTE (-348))) (|HasCategory| |#4| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#4| (LIST (QUOTE -839) (QUOTE (-1095)))) (-1463 (|HasCategory| |#4| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#4| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-215))) (|HasCategory| |#4| (QUOTE (-981)))) (|HasCategory| |#4| (QUOTE (-215))) (|HasCategory| |#4| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#4| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#4| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#4| (LIST (QUOTE -839) (QUOTE (-1095))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#4| (QUOTE (-162)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#4| (QUOTE (-215)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#4| (QUOTE (-343)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#4| (QUOTE (-348)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#4| (QUOTE (-673)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#4| (QUOTE (-739)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#4| (QUOTE (-791)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#4| (QUOTE (-981)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#4| (QUOTE (-1023))))) (-1463 (-12 (|HasCategory| |#4| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#4| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#4| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#4| (QUOTE (-215))) (|HasCategory| |#4| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#4| (QUOTE (-343))) (|HasCategory| |#4| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#4| (QUOTE (-348))) (|HasCategory| |#4| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#4| (QUOTE (-673))) (|HasCategory| |#4| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#4| (QUOTE (-739))) (|HasCategory| |#4| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#4| (QUOTE (-791))) (|HasCategory| |#4| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#4| (QUOTE (-981))) (|HasCategory| |#4| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -972) (QUOTE (-528)))))) (|HasCategory| (-528) (QUOTE (-793))) (-12 (|HasCategory| |#4| (QUOTE (-981))) (|HasCategory| |#4| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#4| (QUOTE (-981))) (|HasCategory| |#4| (LIST (QUOTE -839) (QUOTE (-1095))))) (-12 (|HasCategory| |#4| (QUOTE (-215))) (|HasCategory| |#4| (QUOTE (-981)))) (-1463 (-12 (|HasCategory| |#4| (QUOTE (-215))) (|HasCategory| |#4| (QUOTE (-981)))) (|HasCategory| |#4| (QUOTE (-673))) (-12 (|HasCategory| |#4| (QUOTE (-981))) (|HasCategory| |#4| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#4| (QUOTE (-981))) (|HasCategory| |#4| (LIST (QUOTE -839) (QUOTE (-1095)))))) (-1463 (|HasCategory| |#4| (QUOTE (-981))) (-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -972) (QUOTE (-528)))))) (-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#4| (QUOTE (-1023)))) (-1463 (|HasAttribute| |#4| (QUOTE -4261)) (-12 (|HasCategory| |#4| (QUOTE (-215))) (|HasCategory| |#4| (QUOTE (-981)))) (-12 (|HasCategory| |#4| (QUOTE (-981))) (|HasCategory| |#4| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#4| (QUOTE (-981))) (|HasCategory| |#4| (LIST (QUOTE -839) (QUOTE (-1095)))))) (|HasCategory| |#4| (QUOTE (-128))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -290) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-232 |n| R S)
+((-4266 -3810 (-3119 (|has| |#4| (-984)) (|has| |#4| (-216))) (-3119 (|has| |#4| (-984)) (|has| |#4| (-841 (-1098)))) (|has| |#4| (-6 -4266)) (-3119 (|has| |#4| (-984)) (|has| |#4| (-593 (-516))))) (-4263 |has| |#4| (-984)) (-4264 |has| |#4| (-984)) ((-4271 "*") |has| |#4| (-162)) (-4269 . T))
+((-3810 (-12 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-675))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-741))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-344))) (-3810 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (QUOTE (-984)))) (-3810 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-344)))) (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (QUOTE (-741))) (-3810 (|HasCategory| |#4| (QUOTE (-741))) (|HasCategory| |#4| (QUOTE (-793)))) (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (QUOTE (-675))) (|HasCategory| |#4| (QUOTE (-162))) (-3810 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-984)))) (|HasCategory| |#4| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1098)))) (-3810 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1098))))) (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#4| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#4| (QUOTE (-675))) (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#4| (QUOTE (-741))) (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))))) (-3810 (-12 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#4| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#4| (QUOTE (-675))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#4| (QUOTE (-741))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-516)))))) (|HasCategory| (-516) (QUOTE (-795))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-984)))) (-3810 (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-984)))) (|HasCategory| |#4| (QUOTE (-675)))) (-3810 (-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-516))))) (|HasCategory| |#4| (QUOTE (-984)))) (-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-3810 (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1098))))) (|HasAttribute| |#4| (QUOTE -4266)) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-984))))) (|HasCategory| |#4| (QUOTE (-128))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-233 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4261 -1463 (-3287 (|has| |#3| (-981)) (|has| |#3| (-215))) (-3287 (|has| |#3| (-981)) (|has| |#3| (-839 (-1095)))) (|has| |#3| (-6 -4261)) (-3287 (|has| |#3| (-981)) (|has| |#3| (-591 (-528))))) (-4258 |has| |#3| (-981)) (-4259 |has| |#3| (-981)) ((-4266 "*") |has| |#3| (-162)) (-4264 . T))
-((-1463 (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-215))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-673))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-981))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -839) (QUOTE (-1095)))))) (|HasCategory| |#3| (QUOTE (-343))) (-1463 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (QUOTE (-981)))) (-1463 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-343)))) (|HasCategory| |#3| (QUOTE (-981))) (|HasCategory| |#3| (QUOTE (-739))) (-1463 (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (QUOTE (-791)))) (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (QUOTE (-673))) (|HasCategory| |#3| (QUOTE (-162))) (-1463 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-981)))) (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#3| (LIST (QUOTE -839) (QUOTE (-1095)))) (-1463 (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#3| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-215))) (|HasCategory| |#3| (QUOTE (-981)))) (|HasCategory| |#3| (QUOTE (-215))) (|HasCategory| |#3| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (LIST (QUOTE -839) (QUOTE (-1095))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (QUOTE (-162)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (QUOTE (-215)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (QUOTE (-343)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (QUOTE (-348)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (QUOTE (-673)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (QUOTE (-739)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (QUOTE (-791)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (QUOTE (-981)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (QUOTE (-1023))))) (-1463 (-12 (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-215))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-673))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-981))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528)))))) (|HasCategory| (-528) (QUOTE (-793))) (-12 (|HasCategory| |#3| (QUOTE (-981))) (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-981))) (|HasCategory| |#3| (LIST (QUOTE -839) (QUOTE (-1095))))) (-12 (|HasCategory| |#3| (QUOTE (-215))) (|HasCategory| |#3| (QUOTE (-981)))) (-1463 (-12 (|HasCategory| |#3| (QUOTE (-215))) (|HasCategory| |#3| (QUOTE (-981)))) (|HasCategory| |#3| (QUOTE (-673))) (-12 (|HasCategory| |#3| (QUOTE (-981))) (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-981))) (|HasCategory| |#3| (LIST (QUOTE -839) (QUOTE (-1095)))))) (-1463 (|HasCategory| |#3| (QUOTE (-981))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528)))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (QUOTE (-1023)))) (-1463 (|HasAttribute| |#3| (QUOTE -4261)) (-12 (|HasCategory| |#3| (QUOTE (-215))) (|HasCategory| |#3| (QUOTE (-981)))) (-12 (|HasCategory| |#3| (QUOTE (-981))) (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-981))) (|HasCategory| |#3| (LIST (QUOTE -839) (QUOTE (-1095)))))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-233 A R S V E)
+((-4266 -3810 (-3119 (|has| |#3| (-984)) (|has| |#3| (-216))) (-3119 (|has| |#3| (-984)) (|has| |#3| (-841 (-1098)))) (|has| |#3| (-6 -4266)) (-3119 (|has| |#3| (-984)) (|has| |#3| (-593 (-516))))) (-4263 |has| |#3| (-984)) (-4264 |has| |#3| (-984)) ((-4271 "*") |has| |#3| (-162)) (-4269 . T))
+((-3810 (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-344))) (-3810 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-984)))) (-3810 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344)))) (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (QUOTE (-741))) (-3810 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (QUOTE (-793)))) (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (QUOTE (-162))) (-3810 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-984)))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1098)))) (-3810 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1098))))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))))) (-3810 (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516)))))) (|HasCategory| (-516) (QUOTE (-795))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (-3810 (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (|HasCategory| |#3| (QUOTE (-675)))) (-3810 (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (|HasCategory| |#3| (QUOTE (-984)))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-3810 (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1098))))) (|HasAttribute| |#3| (QUOTE -4266)) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984))))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-234 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
-((|HasCategory| |#2| (QUOTE (-215))))
-(-234 R S V E)
+((|HasCategory| |#2| (QUOTE (-216))))
+(-235 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4262 |has| |#1| (-6 -4262)) (-4259 . T) (-4258 . T) (-4261 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
NIL
-(-235 S)
+(-236 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4264 . T) (-4265 . T) (-4050 . T))
+((-4269 . T) (-4270 . T) (-2303 . T))
+NIL
+(-237 |Ex|)
+((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
NIL
-(-236)
+NIL
+(-238)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
NIL
NIL
-(-237 R |Ex|)
+(-239 R |Ex|)
((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched.")))
NIL
NIL
-(-238)
+(-240)
((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")))
NIL
NIL
-(-239 R)
+(-241 R)
((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}.")))
NIL
NIL
-(-240 |Ex|)
-((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
+(-242)
+((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}.")))
NIL
NIL
-(-241)
-((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}.")))
+(-243)
+((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}.")))
NIL
NIL
-(-242)
+(-244)
((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned.")))
NIL
NIL
-(-243 S)
+(-245 S)
((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command.")))
NIL
NIL
-(-244)
-((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}.")))
-NIL
-NIL
-(-245 R S V)
+(-246 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4262 |has| |#1| (-6 -4262)) (-4259 . T) (-4258 . T) (-4261 . T))
-((|HasCategory| |#1| (QUOTE (-848))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-162))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| |#3| (LIST (QUOTE -825) (QUOTE (-359))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#3| (LIST (QUOTE -825) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#3| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#3| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#3| (LIST (QUOTE -570) (QUOTE (-504))))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-215))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#1| (QUOTE (-343))) (-1463 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528)))))) (|HasAttribute| |#1| (QUOTE -4262)) (|HasCategory| |#1| (QUOTE (-431))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-138)))))
-(-246 A S)
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-851))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-851)))) (-3810 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-851)))) (-3810 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-359))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#3| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| |#3| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#3| (LIST (QUOTE -572) (QUOTE (-505))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#1| (QUOTE (-344))) (-3810 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(-247 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
NIL
-(-247 S)
+(-248 S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
NIL
-(-248)
+(-249)
((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,{}n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,{}n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,{}b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}.")))
NIL
NIL
-(-249)
+(-250)
((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-250)
+(-251)
((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-251)
+(-252)
((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-252)
+(-253)
((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-253)
+(-254)
((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-254)
+(-255)
((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-255)
+(-256)
((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-256)
+(-257)
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-257 R -1305)
+(-258 R -3358)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-258 R -1305)
+(-259 R -3358)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
-(-259 |Coef| UTS ULS)
+(-260 |Coef| UTS ULS)
((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}")))
NIL
-((|HasCategory| |#1| (QUOTE (-343))))
-(-260 |Coef| ULS UPXS EFULS)
+((|HasCategory| |#1| (QUOTE (-344))))
+(-261 |Coef| ULS UPXS EFULS)
((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}")))
NIL
-((|HasCategory| |#1| (QUOTE (-343))))
-(-261)
+((|HasCategory| |#1| (QUOTE (-344))))
+(-262)
((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Symbol|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Symbol|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|ConstructorCall|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter.")))
NIL
NIL
-(-262 A S)
+(-263 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-1023))))
-(-263 S)
+((|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))))
+(-264 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4265 . T) (-4050 . T))
+((-4270 . T) (-2303 . T))
NIL
-(-264 S)
+(-265 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
NIL
NIL
-(-265)
+(-266)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
NIL
NIL
-(-266 |Coef| UTS)
+(-267 |Coef| UTS)
((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,{}c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,{}k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,{}k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,{}k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}")))
NIL
NIL
-(-267 S |Index|)
+(-268 S |Index|)
((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to \\spad{I}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,{}i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}.")))
NIL
NIL
-(-268 S |Dom| |Im|)
+(-269 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4265)))
-(-269 |Dom| |Im|)
+((|HasAttribute| |#1| (QUOTE -4270)))
+(-270 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-270 S R |Mod| -2110 -1356 |exactQuo|)
+(-271 S R |Mod| -2092 -3792 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-271)
+(-272)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4257 . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4262 . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-272)
+(-273)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
NIL
NIL
-(-273 R)
+(-274 R)
((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable.")))
NIL
NIL
-(-274 S R)
+(-275 S)
+((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
+((-4266 -3810 (|has| |#1| (-984)) (|has| |#1| (-453))) (-4263 |has| |#1| (-984)) (-4264 |has| |#1| (-984)))
+((|HasCategory| |#1| (QUOTE (-344))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-984)))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098)))) (-3810 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098))))) (-3810 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098))))) (-3810 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098))))) (-3810 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-675)))) (|HasCategory| |#1| (QUOTE (-453))) (-3810 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (QUOTE (-1038))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098))))) (-3810 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#1| (QUOTE (-1038)))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1098)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-280))) (-3810 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-453)))) (-3810 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-675)))) (-3810 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-984)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#1| (QUOTE (-1038))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))))
+(-276 S R)
((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}")))
NIL
NIL
-(-275 S)
-((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4261 -1463 (|has| |#1| (-981)) (|has| |#1| (-452))) (-4258 |has| |#1| (-981)) (-4259 |has| |#1| (-981)))
-((|HasCategory| |#1| (QUOTE (-343))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-981)))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-981))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (-1463 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#1| (QUOTE (-981)))) (-1463 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-981)))) (-1463 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-981)))) (-1463 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-673)))) (|HasCategory| |#1| (QUOTE (-452))) (-1463 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-673))) (|HasCategory| |#1| (QUOTE (-981))) (|HasCategory| |#1| (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-1023)))) (-1463 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-673))) (|HasCategory| |#1| (QUOTE (-1035)))) (|HasCategory| |#1| (LIST (QUOTE -489) (QUOTE (-1095)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-283))) (-1463 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-452)))) (-1463 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-673)))) (-1463 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-981)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-673))) (|HasCategory| |#1| (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))))
-(-276 |Key| |Entry|)
+(-277 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4264 . T) (-4265 . T))
-((-12 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -290) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2927) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1780) (|devaluate| |#2|)))))) (-1463 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1023)))) (-1463 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -570) (QUOTE (-504)))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-1023))) (-1463 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -569) (QUOTE (-802)))))
-(-277)
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4139) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2131) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027)))) (-3810 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027)))) (-3810 (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027)))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -572) (QUOTE (-505)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))) (-3810 (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -571) (QUOTE (-805)))))
+(-278)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-278 -1305 S)
-((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
+(-279 S)
+((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
+((|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (QUOTE (-984))))
+(-280)
+((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-(-279 E -1305)
-((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
+(-281 -3358 S)
+((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
-(-280 A B)
-((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]")))
+NIL
+(-282 E -3358)
+((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
NIL
-(-281)
+(-283)
((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}")))
NIL
NIL
-(-282 S)
-((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
+(-284 A B)
+((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-981))))
-(-283)
-((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
+NIL
+(-285)
+((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}")))
NIL
NIL
-(-284 R1)
+(-286 R1)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}")))
NIL
NIL
-(-285 R1 R2)
+(-287 R1 R2)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}")))
NIL
NIL
-(-286)
-((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}")))
-NIL
-NIL
-(-287 S)
+(-288 S)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
NIL
NIL
-(-288)
+(-289)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-289 S R)
+(-290 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-290 R)
+(-291 R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-291 -1305)
+(-292 -3358)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
-(-292)
+(-293)
((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}.")))
NIL
NIL
-(-293 R FE |var| |cen|)
+(-294 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (QUOTE (-848))) (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (LIST (QUOTE -972) (QUOTE (-1095)))) (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (QUOTE (-140))) (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (QUOTE (-957))) (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (QUOTE (-766))) (-1463 (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (QUOTE (-766))) (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (QUOTE (-793)))) (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (QUOTE (-1071))) (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (QUOTE (-215))) (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (LIST (QUOTE -489) (QUOTE (-1095)) (LIST (QUOTE -1163) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (LIST (QUOTE -290) (LIST (QUOTE -1163) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (LIST (QUOTE -267) (LIST (QUOTE -1163) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1163) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (QUOTE (-288))) (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (QUOTE (-513))) (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (QUOTE (-793))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (QUOTE (-848))) (|HasCategory| $ (QUOTE (-138)))) (-1463 (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (QUOTE (-138))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3| |#4|) (QUOTE (-848))) (|HasCategory| $ (QUOTE (-138))))))
-(-294 R S)
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-851))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (LIST (QUOTE -975) (QUOTE (-1098)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-140))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-958))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-768))) (-3810 (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-768))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-795)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-1074))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-216))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (LIST (QUOTE -491) (QUOTE (-1098)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (LIST (QUOTE -291) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (LIST (QUOTE -268) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-289))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-515))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-795))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-851)))) (-3810 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-851)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-138)))))
+(-295 R)
+((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
+((-4266 -3810 (-3119 (|has| |#1| (-984)) (|has| |#1| (-593 (-516)))) (-12 (|has| |#1| (-523)) (-3810 (-3119 (|has| |#1| (-984)) (|has| |#1| (-593 (-516)))) (|has| |#1| (-984)) (|has| |#1| (-453)))) (|has| |#1| (-984)) (|has| |#1| (-453))) (-4264 |has| |#1| (-162)) (-4263 |has| |#1| (-162)) ((-4271 "*") |has| |#1| (-523)) (-4262 |has| |#1| (-523)) (-4267 |has| |#1| (-523)) (-4261 |has| |#1| (-523)))
+((-3810 (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasCategory| |#1| (QUOTE (-523))) (-3810 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-984)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-516)))) (-3810 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-1038)))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516))))) (-3810 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-516))))) (-3810 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-516))))) (-3810 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523)))) (-3810 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-523)))) (-3810 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-516))))) (-3810 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-1038)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-21)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1038)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-25)))) (-3810 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-984)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1038))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| $ (QUOTE (-984))) (|HasCategory| $ (LIST (QUOTE -975) (QUOTE (-516)))))
+(-296 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
NIL
-(-295 R FE)
+(-297 R FE)
((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series.")))
NIL
NIL
-(-296 R)
-((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4261 -1463 (-3287 (|has| |#1| (-981)) (|has| |#1| (-591 (-528)))) (-12 (|has| |#1| (-520)) (-1463 (-3287 (|has| |#1| (-981)) (|has| |#1| (-591 (-528)))) (|has| |#1| (-981)) (|has| |#1| (-452)))) (|has| |#1| (-981)) (|has| |#1| (-452))) (-4259 |has| |#1| (-162)) (-4258 |has| |#1| (-162)) ((-4266 "*") |has| |#1| (-520)) (-4257 |has| |#1| (-520)) (-4262 |has| |#1| (-520)) (-4256 |has| |#1| (-520)))
-((-1463 (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))))) (|HasCategory| |#1| (QUOTE (-520))) (-1463 (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-981)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-981))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-528)))) (-1463 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-1035)))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528))))) (-1463 (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-981)))) (-1463 (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-981)))) (-1463 (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-981)))) (-12 (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-520)))) (-1463 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-520)))) (-1463 (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-520)))) (-12 (|HasCategory| |#1| (QUOTE (-981))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-528))))) (-1463 (|HasCategory| |#1| (QUOTE (-981))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528))))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-981))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-1035)))) (-1463 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-981))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-528)))))) (-1463 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-981))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-1035)))) (-1463 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-981))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-528)))))) (-1463 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-981)))) (-1463 (-12 (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-520)))) (-12 (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1035))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| $ (QUOTE (-981))) (|HasCategory| $ (LIST (QUOTE -972) (QUOTE (-528)))))
-(-297 R -1305)
+(-298 R -3358)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}.")))
NIL
NIL
-(-298)
+(-299)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}.")))
NIL
NIL
-(-299 FE |var| |cen|)
+(-300 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4262 |has| |#1| (-343)) (-4256 |has| |#1| (-343)) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-162))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -387) (QUOTE (-528))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -387) (QUOTE (-528))) (|devaluate| |#1|)))) (|HasCategory| (-387 (-528)) (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-343))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-520)))) (-1463 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-520)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -387) (QUOTE (-528)))))) (|HasSignature| |#1| (LIST (QUOTE -2222) (LIST (|devaluate| |#1|) (QUOTE (-1095)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -387) (QUOTE (-528)))))) (-1463 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-897))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasSignature| |#1| (LIST (QUOTE -1923) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1095))))) (|HasSignature| |#1| (LIST (QUOTE -2565) (LIST (LIST (QUOTE -595) (QUOTE (-1095))) (|devaluate| |#1|)))))))
-(-300 M)
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-516))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-516))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-516)) (QUOTE (-1038))) (|HasCategory| |#1| (QUOTE (-344))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-3810 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasSignature| |#1| (LIST (QUOTE -4233) (LIST (|devaluate| |#1|) (QUOTE (-1098)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-516)))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-901))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasSignature| |#1| (LIST (QUOTE -4091) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1098))))) (|HasSignature| |#1| (LIST (QUOTE -3347) (LIST (LIST (QUOTE -594) (QUOTE (-1098))) (|devaluate| |#1|)))))))
+(-301 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
NIL
-(-301 E OV R P)
+(-302 E OV R P)
((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,{}i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly,{} lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly,{} lvar,{} lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}.")))
NIL
NIL
-(-302 S)
+(-303 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4259 . T) (-4258 . T))
-((|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| (-528) (QUOTE (-738))))
-(-303 S E)
+((-4264 . T) (-4263 . T))
+((|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-516) (QUOTE (-740))))
+(-304 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
NIL
-(-304 S)
+(-305 S)
((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative.")))
NIL
-((|HasCategory| (-717) (QUOTE (-738))))
-(-305 S R E)
+((|HasCategory| (-719) (QUOTE (-740))))
+(-306 S R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
NIL
-((|HasCategory| |#2| (QUOTE (-431))) (|HasCategory| |#2| (QUOTE (-520))) (|HasCategory| |#2| (QUOTE (-162))))
-(-306 R E)
+((|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))))
+(-307 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4258 . T) (-4259 . T) (-4261 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-307 S)
+(-308 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4265 . T) (-4264 . T))
-((-1463 (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|))))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (-1463 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1023)))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| (-528) (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1023))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-308 S -1305)
+((-4270 . T) (-4269 . T))
+((-3810 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (-3810 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-516) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-309 S -3358)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
-((|HasCategory| |#2| (QUOTE (-348))))
-(-309 -1305)
+((|HasCategory| |#2| (QUOTE (-349))))
+(-310 -3358)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-310)
+(-311)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm.")))
NIL
NIL
-(-311 E)
+(-312 E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series")))
NIL
NIL
-(-312)
+(-313)
((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}")))
NIL
NIL
-(-313 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+(-314 -3358 UP UPUP R)
+((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
+NIL
+NIL
+(-315 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}")))
NIL
NIL
-(-314 S -1305 UP UPUP R)
+(-316 S -3358 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-315 -1305 UP UPUP R)
+(-317 -3358 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-316 -1305 UP UPUP R)
-((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
-NIL
-NIL
-(-317 S R)
+(-318 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -489) (QUOTE (-1095)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -267) (|devaluate| |#2|) (|devaluate| |#2|))))
-(-318 R)
+((|HasCategory| |#2| (LIST (QUOTE -491) (QUOTE (-1098)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -268) (|devaluate| |#2|) (|devaluate| |#2|))))
+(-319 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
-(-319 |basicSymbols| |subscriptedSymbols| R)
+(-320 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-359)))) (|HasCategory| $ (QUOTE (-981))) (|HasCategory| $ (LIST (QUOTE -972) (QUOTE (-528)))))
-(-320 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
-((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
-NIL
-NIL
-(-321 S -1305 UP UPUP)
+((-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-359)))) (|HasCategory| $ (QUOTE (-984))) (|HasCategory| $ (LIST (QUOTE -975) (QUOTE (-516)))))
+(-321 |p| |n|)
+((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-3810 (|HasCategory| (-847 |#1|) (QUOTE (-138))) (|HasCategory| (-847 |#1|) (QUOTE (-349)))) (|HasCategory| (-847 |#1|) (QUOTE (-140))) (|HasCategory| (-847 |#1|) (QUOTE (-349))) (|HasCategory| (-847 |#1|) (QUOTE (-138))))
+(-322 S -3358 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
-((|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-343))))
-(-322 -1305 UP UPUP)
+((|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-344))))
+(-323 -3358 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4257 |has| (-387 |#2|) (-343)) (-4262 |has| (-387 |#2|) (-343)) (-4256 |has| (-387 |#2|) (-343)) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4262 |has| (-388 |#2|) (-344)) (-4267 |has| (-388 |#2|) (-344)) (-4261 |has| (-388 |#2|) (-344)) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+NIL
+(-324 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
+NIL
NIL
-(-323 |p| |extdeg|)
+(-325 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((-1463 (|HasCategory| (-849 |#1|) (QUOTE (-138))) (|HasCategory| (-849 |#1|) (QUOTE (-348)))) (|HasCategory| (-849 |#1|) (QUOTE (-140))) (|HasCategory| (-849 |#1|) (QUOTE (-348))) (|HasCategory| (-849 |#1|) (QUOTE (-138))))
-(-324 GF |defpol|)
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-3810 (|HasCategory| (-847 |#1|) (QUOTE (-138))) (|HasCategory| (-847 |#1|) (QUOTE (-349)))) (|HasCategory| (-847 |#1|) (QUOTE (-140))) (|HasCategory| (-847 |#1|) (QUOTE (-349))) (|HasCategory| (-847 |#1|) (QUOTE (-138))))
+(-326 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((-1463 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-138))))
-(-325 GF |extdeg|)
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-3810 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
+(-327 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((-1463 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-138))))
-(-326 GF)
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-3810 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
+(-328 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
NIL
-(-327 F1 GF F2)
+(-329 F1 GF F2)
((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.")))
NIL
NIL
-(-328 S)
+(-330 S)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
NIL
NIL
-(-329)
+(-331)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-330 R UP -1305)
+(-332 R UP -3358)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-331 |p| |extdeg|)
+(-333 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((-1463 (|HasCategory| (-849 |#1|) (QUOTE (-138))) (|HasCategory| (-849 |#1|) (QUOTE (-348)))) (|HasCategory| (-849 |#1|) (QUOTE (-140))) (|HasCategory| (-849 |#1|) (QUOTE (-348))) (|HasCategory| (-849 |#1|) (QUOTE (-138))))
-(-332 GF |uni|)
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-3810 (|HasCategory| (-847 |#1|) (QUOTE (-138))) (|HasCategory| (-847 |#1|) (QUOTE (-349)))) (|HasCategory| (-847 |#1|) (QUOTE (-140))) (|HasCategory| (-847 |#1|) (QUOTE (-349))) (|HasCategory| (-847 |#1|) (QUOTE (-138))))
+(-334 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((-1463 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-138))))
-(-333 GF |extdeg|)
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-3810 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
+(-335 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((-1463 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-138))))
-(-334 |p| |n|)
-((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((-1463 (|HasCategory| (-849 |#1|) (QUOTE (-138))) (|HasCategory| (-849 |#1|) (QUOTE (-348)))) (|HasCategory| (-849 |#1|) (QUOTE (-140))) (|HasCategory| (-849 |#1|) (QUOTE (-348))) (|HasCategory| (-849 |#1|) (QUOTE (-138))))
-(-335 GF |defpol|)
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-3810 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
+(-336 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((-1463 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-138))))
-(-336 -1305 GF)
-((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
-NIL
-NIL
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-3810 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
(-337 GF)
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-338 -1305 FP FPP)
+(-338 -3358 GF)
+((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
+NIL
+NIL
+(-339 -3358 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-339 GF |n|)
+(-340 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((-1463 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-138))))
-(-340 R |ls|)
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-3810 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
+(-341 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
-(-341 S)
+(-342 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4261 . T))
+((-4266 . T))
NIL
-(-342 S)
+(-343 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
NIL
NIL
-(-343)
+(-344)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-NIL
-(-344 |Name| S)
-((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
-NIL
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-345 S)
((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
NIL
NIL
-(-346 S R)
+(-346 |Name| S)
+((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
+NIL
+NIL
+(-347 S R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-520))))
-(-347 R)
+((|HasCategory| |#2| (QUOTE (-523))))
+(-348 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4261 |has| |#1| (-520)) (-4259 . T) (-4258 . T))
+((-4266 |has| |#1| (-523)) (-4264 . T) (-4263 . T))
NIL
-(-348)
+(-349)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
NIL
NIL
-(-349 S R UP)
+(-350 S R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
NIL
-((|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-343))))
-(-350 R UP)
+((|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-344))))
+(-351 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4258 . T) (-4259 . T) (-4261 . T))
-NIL
-(-351 S A R B)
-((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
-NIL
+((-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-352 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4265)) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-1023))))
+((|HasAttribute| |#1| (QUOTE -4270)) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))))
(-353 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4264 . T) (-4050 . T))
+((-4269 . T) (-2303 . T))
+NIL
+(-354 S A R B)
+((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
+NIL
NIL
-(-354 |VarSet| R)
+(-355 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4259 . T) (-4258 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4264 . T) (-4263 . T))
NIL
-(-355 S V)
+(-356 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
NIL
NIL
-(-356 S R)
+(-357 S R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))))
-(-357 R)
+((|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))))
+(-358 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4261 . T))
-NIL
-(-358 |Par|)
-((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
-NIL
+((-4266 . T))
NIL
(-359)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4247 . T) (-4255 . T) (-4083 . T) (-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4252 . T) (-4260 . T) (-4048 . T) (-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-360 |Par|)
+((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
+NIL
+NIL
+(-361 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
NIL
NIL
-(-361 R S)
+(-362 R S)
+((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
+((-4264 . T) (-4263 . T))
+((|HasCategory| |#1| (QUOTE (-162))))
+(-363 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4259 . T) (-4258 . T))
+((-4264 . T) (-4263 . T))
((|HasCategory| |#1| (QUOTE (-162))))
-(-362 R |Basis|)
-((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4259 . T) (-4258 . T))
-NIL
-(-363)
+(-364)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-4050 . T))
+((-2303 . T))
NIL
-(-364)
+(-365 R |Basis|)
+((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
+((-4264 . T) (-4263 . T))
+NIL
+(-366)
((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-4050 . T))
+((-2303 . T))
NIL
-(-365 R S)
-((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4259 . T) (-4258 . T))
-((|HasCategory| |#1| (QUOTE (-162))))
-(-366 S)
+(-367 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
-((|HasCategory| |#1| (QUOTE (-793))))
-(-367)
+((|HasCategory| |#1| (QUOTE (-795))))
+(-368)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-368)
+(-369)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
NIL
NIL
-(-369)
+(-370)
((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,{}pref,{}e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,{}n,{}e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used.")) (|coerce| (((|String|) $) "\\spad{coerce(fn)} produces a string for a file name according to operating system-dependent conventions.") (($ (|String|)) "\\spad{coerce(s)} converts a string to a file name according to operating system-dependent conventions.")))
NIL
NIL
-(-370 |n| |class| R)
+(-371 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4259 . T) (-4258 . T))
+((-4264 . T) (-4263 . T))
NIL
-(-371)
+(-372)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-372 -1305 UP UPUP R)
+(-373 -3358 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
-(-373 S)
-((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format.")))
-NIL
-NIL
(-374)
((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format.")))
NIL
NIL
-(-375)
-((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
-((-4050 . T))
+(-375 S)
+((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format.")))
+NIL
NIL
(-376)
-((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-4050 . T))
+((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
+NIL
NIL
(-377)
-((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
+((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
+((-2303 . T))
NIL
+(-378)
+((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
+((-2303 . T))
NIL
-(-378 -3814 |returnType| -3728 |symbols|)
+(-379 -3824 |returnType| -1418 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-379 -1305 UP)
+(-380 -3358 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
-(-380 R)
+(-381 R)
((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers).")))
-((-4050 . T))
+((-2303 . T))
NIL
-(-381 S)
+(-382 S)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
NIL
NIL
-(-382)
+(-383)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-383 S)
+(-384 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4247)) (|HasAttribute| |#1| (QUOTE -4255)))
-(-384)
+((|HasAttribute| |#1| (QUOTE -4252)) (|HasAttribute| |#1| (QUOTE -4260)))
+(-385)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-4083 . T) (-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4048 . T) (-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-385 R S)
+(-386 R)
+((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1098)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -291) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -268) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#1| (QUOTE (-1138))) (-3810 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-1138)))) (|HasCategory| |#1| (QUOTE (-958))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1098)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-432))))
+(-387 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
NIL
NIL
-(-386 A B)
+(-388 S)
+((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
+((-4256 -12 (|has| |#1| (-6 -4267)) (|has| |#1| (-432)) (|has| |#1| (-6 -4256))) (-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-1098)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-769)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505))))) (|HasCategory| |#1| (QUOTE (-958))) (|HasCategory| |#1| (QUOTE (-768))) (-3810 (|HasCategory| |#1| (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-795)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-769)))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-1074))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-769)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-769)))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516)))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-769)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1098)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-769)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-515))) (-12 (|HasAttribute| |#1| (QUOTE -4256)) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-516)))) (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(-389 A B)
((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
NIL
NIL
-(-387 S)
-((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4251 -12 (|has| |#1| (-6 -4262)) (|has| |#1| (-431)) (|has| |#1| (-6 -4251))) (-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-1095)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-774)))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504))))) (|HasCategory| |#1| (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-766))) (-1463 (|HasCategory| |#1| (QUOTE (-766))) (|HasCategory| |#1| (QUOTE (-793)))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-774)))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-1071))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-774)))) (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (-1463 (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-774))))) (-1463 (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-528)))) (-12 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-774))))) (|HasCategory| |#1| (QUOTE (-215))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#1| (LIST (QUOTE -489) (QUOTE (-1095)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -267) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-774)))) (|HasCategory| |#1| (QUOTE (-288))) (|HasCategory| |#1| (QUOTE (-513))) (-12 (|HasAttribute| |#1| (QUOTE -4262)) (|HasAttribute| |#1| (QUOTE -4251)) (|HasCategory| |#1| (QUOTE (-431)))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-528)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-138)))))
-(-388 S R UP)
+(-390 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
-(-389 R UP)
+(-391 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4258 . T) (-4259 . T) (-4261 . T))
+((-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-390 A S)
+(-392 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528)))))
-(-391 S)
+((|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516)))))
+(-393 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
NIL
-(-392 R1 F1 U1 A1 R2 F2 U2 A2)
-((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
+(-394 R -3358 UP A)
+((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
+((-4266 . T))
NIL
+(-395 R1 F1 U1 A1 R2 F2 U2 A2)
+((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
NIL
-(-393 R -1305 UP A)
-((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
-((-4261 . T))
NIL
-(-394 R -1305 UP A |ibasis|)
+(-396 R -3358 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")))
NIL
-((|HasCategory| |#4| (LIST (QUOTE -972) (|devaluate| |#2|))))
-(-395 AR R AS S)
+((|HasCategory| |#4| (LIST (QUOTE -975) (|devaluate| |#2|))))
+(-397 AR R AS S)
((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
NIL
-(-396 S R)
+(-398 S R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-343))))
-(-397 R)
+((|HasCategory| |#2| (QUOTE (-344))))
+(-399 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4261 |has| |#1| (-520)) (-4259 . T) (-4258 . T))
+((-4266 |has| |#1| (-523)) (-4264 . T) (-4263 . T))
NIL
-(-398 R)
-((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#1| (LIST (QUOTE -489) (QUOTE (-1095)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -290) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -267) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#1| (QUOTE (-1135))) (-1463 (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-957))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -489) (QUOTE (-1095)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -267) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-215))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-431))))
-(-399 R)
+(-400 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}.")))
NIL
NIL
-(-400 R FE |x| |cen|)
-((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
+(-401 S R)
+((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
+((|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-1038))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-505)))))
+(-402 R)
+((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
+((-4266 -3810 (|has| |#1| (-984)) (|has| |#1| (-453))) (-4264 |has| |#1| (-162)) (-4263 |has| |#1| (-162)) ((-4271 "*") |has| |#1| (-523)) (-4262 |has| |#1| (-523)) (-4267 |has| |#1| (-523)) (-4261 |has| |#1| (-523)) (-2303 . T))
NIL
-(-401 R A S B)
+(-403 R A S B)
((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
NIL
NIL
-(-402 R FE |Expon| UPS TRAN |x|)
-((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'")))
+(-404 R FE |x| |cen|)
+((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
NIL
NIL
-(-403 S A R B)
-((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
+(-405 R FE |Expon| UPS TRAN |x|)
+((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'")))
NIL
NIL
-(-404 A S)
+(-406 A S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-348))))
-(-405 S)
+((|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-349))))
+(-407 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4264 . T) (-4254 . T) (-4265 . T) (-4050 . T))
+((-4269 . T) (-4259 . T) (-4270 . T) (-2303 . T))
+NIL
+(-408 S A R B)
+((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
NIL
-(-406 R -1305)
+NIL
+(-409 R -3358)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
-(-407 R E)
+(-410 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4251 -12 (|has| |#1| (-6 -4251)) (|has| |#2| (-6 -4251))) (-4258 . T) (-4259 . T) (-4261 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4251)) (|HasAttribute| |#2| (QUOTE -4251))))
-(-408 R -1305)
+((-4256 -12 (|has| |#1| (-6 -4256)) (|has| |#2| (-6 -4256))) (-4263 . T) (-4264 . T) (-4266 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4256)) (|HasAttribute| |#2| (QUOTE -4256))))
+(-411 R -3358)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
-(-409 S R)
-((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-NIL
-((|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-520))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-1035))) (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-504)))))
-(-410 R)
-((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4261 -1463 (|has| |#1| (-981)) (|has| |#1| (-452))) (-4259 |has| |#1| (-162)) (-4258 |has| |#1| (-162)) ((-4266 "*") |has| |#1| (-520)) (-4257 |has| |#1| (-520)) (-4262 |has| |#1| (-520)) (-4256 |has| |#1| (-520)) (-4050 . T))
-NIL
-(-411 R -1305)
+(-412 R -3358)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-412 R -1305)
+(-413 R -3358)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-413 R -1305)
+(-414 R -3358)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
-(-414)
+(-415)
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-415 R -1305 UP)
+(-416 R -3358 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-47)))))
-(-416)
-((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
+((|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-47)))))
+(-417)
+((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}")))
NIL
NIL
-(-417)
-((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}")))
+(-418)
+((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
NIL
NIL
-(-418 |f|)
+(-419 |f|)
((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-419)
+(-420)
((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-4050 . T))
+((-2303 . T))
NIL
-(-420)
+(-421)
((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-4050 . T))
+((-2303 . T))
NIL
-(-421 UP)
+(-422 UP)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-422 R UP -1305)
+(-423 R UP -3358)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
-(-423 R UP)
+(-424 R UP)
((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,{}f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,{}f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,{}c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,{}c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1).")))
NIL
NIL
-(-424 R)
+(-425 R)
((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation.")))
NIL
-((|HasCategory| |#1| (QUOTE (-384))))
-(-425)
+((|HasCategory| |#1| (QUOTE (-385))))
+(-426)
((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(\\spad{zi})} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(\\spad{zi})} produces the complete factorization of the complex integer \\spad{zi}.")))
NIL
NIL
-(-426 |Dom| |Expon| |VarSet| |Dpol|)
+(-427 |Dom| |Expon| |VarSet| |Dpol|)
+((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
+NIL
+((|HasCategory| |#1| (QUOTE (-344))))
+(-428 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")))
NIL
NIL
-(-427 |Dom| |Expon| |VarSet| |Dpol|)
+(-429 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}.")))
NIL
NIL
-(-428 |Dom| |Expon| |VarSet| |Dpol|)
+(-430 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented")))
NIL
NIL
-(-429 |Dom| |Expon| |VarSet| |Dpol|)
-((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
-NIL
-((|HasCategory| |#1| (QUOTE (-343))))
-(-430 S)
+(-431 S)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-431)
+(-432)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-432 R |n| |ls| |gamma|)
+(-433 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4261 |has| (-387 (-891 |#1|)) (-520)) (-4259 . T) (-4258 . T))
-((|HasCategory| (-387 (-891 |#1|)) (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| (-387 (-891 |#1|)) (QUOTE (-520))))
-(-433 |vl| R E)
+((-4266 |has| (-388 (-887 |#1|)) (-523)) (-4264 . T) (-4263 . T))
+((|HasCategory| (-388 (-887 |#1|)) (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| (-388 (-887 |#1|)) (QUOTE (-523))))
+(-434 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4266 "*") |has| |#2| (-162)) (-4257 |has| |#2| (-520)) (-4262 |has| |#2| (-6 -4262)) (-4259 . T) (-4258 . T) (-4261 . T))
-((|HasCategory| |#2| (QUOTE (-848))) (-1463 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-431))) (|HasCategory| |#2| (QUOTE (-520))) (|HasCategory| |#2| (QUOTE (-848)))) (-1463 (|HasCategory| |#2| (QUOTE (-431))) (|HasCategory| |#2| (QUOTE (-520))) (|HasCategory| |#2| (QUOTE (-848)))) (-1463 (|HasCategory| |#2| (QUOTE (-431))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-520))) (|HasCategory| |#2| (QUOTE (-162))) (-1463 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-520)))) (-12 (|HasCategory| (-804 |#1|) (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| |#2| (LIST (QUOTE -825) (QUOTE (-359))))) (-12 (|HasCategory| (-804 |#1|) (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -825) (QUOTE (-528))))) (-12 (|HasCategory| (-804 |#1|) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#2| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| (-804 |#1|) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528)))))) (-12 (|HasCategory| (-804 |#1|) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-504))))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-343))) (-1463 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528)))))) (|HasAttribute| |#2| (QUOTE -4262)) (|HasCategory| |#2| (QUOTE (-431))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-848)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-138)))))
-(-434 R BP)
+(((-4271 "*") |has| |#2| (-162)) (-4262 |has| |#2| (-523)) (-4267 |has| |#2| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#2| (QUOTE (-851))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-851)))) (-3810 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-851)))) (-3810 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-851)))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-523)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-359))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (QUOTE (-505))))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#2| (QUOTE (-344))) (-3810 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasAttribute| |#2| (QUOTE -4267)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (-3810 (-12 (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (|HasCategory| |#2| (QUOTE (-138)))))
+(-435 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
NIL
-(-435 OV E S R P)
+(-436 OV E S R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-436 E OV R P)
+(-437 E OV R P)
((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}")))
NIL
NIL
-(-437 R)
+(-438 R)
((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}")))
NIL
NIL
-(-438 R FE)
+(-439 R FE)
((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),{}n,{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(a(n),{}n,{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n=n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")))
NIL
NIL
-(-439 RP TP)
+(-440 RP TP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,{}pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,{}lfact,{}prime,{}bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,{}lfacts,{}prime,{}bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done .")))
NIL
NIL
-(-440 |vl| R IS E |ff| P)
+(-441 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4259 . T) (-4258 . T))
+((-4264 . T) (-4263 . T))
NIL
-(-441 E V R P Q)
+(-442 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
NIL
NIL
-(-442 R E |VarSet| P)
+(-443 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4265 . T) (-4264 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -290) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#4| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-443 S R E)
+((-4270 . T) (-4269 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#4| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-444 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-444 R E)
+(-445 R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-445)
+(-446)
((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,{}n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,{}n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect.")))
NIL
NIL
-(-446)
+(-447)
((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done.")))
NIL
NIL
-(-447)
+(-448)
((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,{}lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(\\spad{gi})} returns the indicated graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(\\spad{gi},{}pt,{}pal)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(\\spad{gi},{}pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{\\spad{gi}},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}pt,{}pal1,{}pal2,{}ps)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(\\spad{gi},{}pt)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}lp,{}pal1,{}pal2,{}p)} sets the components of the graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{\\spad{gi}} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(\\spad{gi},{}lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{\\spad{gi}}.") (((|List| (|Float|)) $) "\\spad{units(\\spad{gi})} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(\\spad{gi},{}lr)} modifies the list of ranges for the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{\\spad{gi}}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(\\spad{gi})} returns the list of ranges of the point components from the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(\\spad{gi})} returns the process ID of the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(\\spad{gi})} returns the list of lists of points which compose the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp,{}lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(\\spad{gi})} takes the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{\\spad{gi}} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport.")))
NIL
NIL
-(-448 S R E)
+(-449 S R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-449 R E)
+(-450 R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-450 |lv| -1305 R)
+(-451 |lv| -3358 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
-(-451 S)
+(-452 S)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
NIL
NIL
-(-452)
+(-453)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4261 . T))
+((-4266 . T))
NIL
-(-453 |Coef| |var| |cen|)
+(-454 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4262 |has| |#1| (-343)) (-4256 |has| |#1| (-343)) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-162))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -387) (QUOTE (-528))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -387) (QUOTE (-528))) (|devaluate| |#1|)))) (|HasCategory| (-387 (-528)) (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-343))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-520)))) (-1463 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-520)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -387) (QUOTE (-528)))))) (|HasSignature| |#1| (LIST (QUOTE -2222) (LIST (|devaluate| |#1|) (QUOTE (-1095)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -387) (QUOTE (-528)))))) (-1463 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-897))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasSignature| |#1| (LIST (QUOTE -1923) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1095))))) (|HasSignature| |#1| (LIST (QUOTE -2565) (LIST (LIST (QUOTE -595) (QUOTE (-1095))) (|devaluate| |#1|)))))))
-(-454 |Key| |Entry| |Tbl| |dent|)
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-516))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-516))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-516)) (QUOTE (-1038))) (|HasCategory| |#1| (QUOTE (-344))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-3810 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasSignature| |#1| (LIST (QUOTE -4233) (LIST (|devaluate| |#1|) (QUOTE (-1098)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-516)))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-901))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasSignature| |#1| (LIST (QUOTE -4091) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1098))))) (|HasSignature| |#1| (LIST (QUOTE -3347) (LIST (LIST (QUOTE -594) (QUOTE (-1098))) (|devaluate| |#1|)))))))
+(-455 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4265 . T))
-((-12 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -290) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2927) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1780) (|devaluate| |#2|)))))) (-1463 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1023)))) (-1463 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -570) (QUOTE (-504)))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-793))) (-1463 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -569) (QUOTE (-802)))))
-(-455 R E V P)
+((-4270 . T))
+((-12 (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4139) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2131) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027)))) (-3810 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027)))) (-3810 (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027)))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -572) (QUOTE (-505)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-795))) (-3810 (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -571) (QUOTE (-805)))))
+(-456 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4265 . T) (-4264 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -290) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#4| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-456)
+((-4270 . T) (-4269 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-457)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-457 |Key| |Entry| |hashfn|)
+(-458 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4264 . T) (-4265 . T))
-((-12 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -290) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2927) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1780) (|devaluate| |#2|)))))) (-1463 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1023)))) (-1463 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -570) (QUOTE (-504)))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-1023))) (-1463 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -569) (QUOTE (-802)))))
-(-458)
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4139) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2131) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027)))) (-3810 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027)))) (-3810 (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027)))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -572) (QUOTE (-505)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))) (-3810 (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -571) (QUOTE (-805)))))
+(-459)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
-(-459 |vl| R)
+(-460 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4266 "*") |has| |#2| (-162)) (-4257 |has| |#2| (-520)) (-4262 |has| |#2| (-6 -4262)) (-4259 . T) (-4258 . T) (-4261 . T))
-((|HasCategory| |#2| (QUOTE (-848))) (-1463 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-431))) (|HasCategory| |#2| (QUOTE (-520))) (|HasCategory| |#2| (QUOTE (-848)))) (-1463 (|HasCategory| |#2| (QUOTE (-431))) (|HasCategory| |#2| (QUOTE (-520))) (|HasCategory| |#2| (QUOTE (-848)))) (-1463 (|HasCategory| |#2| (QUOTE (-431))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-520))) (|HasCategory| |#2| (QUOTE (-162))) (-1463 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-520)))) (-12 (|HasCategory| (-804 |#1|) (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| |#2| (LIST (QUOTE -825) (QUOTE (-359))))) (-12 (|HasCategory| (-804 |#1|) (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -825) (QUOTE (-528))))) (-12 (|HasCategory| (-804 |#1|) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#2| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| (-804 |#1|) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528)))))) (-12 (|HasCategory| (-804 |#1|) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-504))))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-343))) (-1463 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528)))))) (|HasAttribute| |#2| (QUOTE -4262)) (|HasCategory| |#2| (QUOTE (-431))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-848)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-138)))))
-(-460 -4174 S)
+(((-4271 "*") |has| |#2| (-162)) (-4262 |has| |#2| (-523)) (-4267 |has| |#2| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#2| (QUOTE (-851))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-851)))) (-3810 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-851)))) (-3810 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-851)))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-523)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-359))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (QUOTE (-505))))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#2| (QUOTE (-344))) (-3810 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasAttribute| |#2| (QUOTE -4267)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (-3810 (-12 (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (|HasCategory| |#2| (QUOTE (-138)))))
+(-461 -2879 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4258 |has| |#2| (-981)) (-4259 |has| |#2| (-981)) (-4261 |has| |#2| (-6 -4261)) ((-4266 "*") |has| |#2| (-162)) (-4264 . T))
-((-1463 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-673))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))))) (-1463 (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-1023)))) (-12 (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (QUOTE (-981)))) (-12 (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#2| (QUOTE (-343))) (-1463 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-981)))) (-1463 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-343)))) (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (QUOTE (-739))) (-1463 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-673))) (|HasCategory| |#2| (QUOTE (-162))) (-1463 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-981)))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (-1463 (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-673))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (QUOTE (-1023)))) (-1463 (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-981)))) (-1463 (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-981)))) (-1463 (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-981)))) (-1463 (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (QUOTE (-981)))) (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-162)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-215)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-343)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-348)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-673)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-739)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-791)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-981)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-1023))))) (-1463 (-12 (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-673))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528)))))) (|HasCategory| (-528) (QUOTE (-793))) (-12 (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (QUOTE (-981)))) (-12 (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-1463 (|HasCategory| |#2| (QUOTE (-981))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-1023)))) (|HasAttribute| |#2| (QUOTE -4261)) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-461)
+((-4263 |has| |#2| (-984)) (-4264 |has| |#2| (-984)) (-4266 |has| |#2| (-6 -4266)) ((-4271 "*") |has| |#2| (-162)) (-4269 . T))
+((-3810 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))))) (-3810 (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#2| (QUOTE (-344))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344)))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-741))) (-3810 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-793)))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-162))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-984)))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098)))) (-3810 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (-3810 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (-3810 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))))) (-3810 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516)))))) (|HasCategory| (-516) (QUOTE (-795))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-3810 (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasAttribute| |#2| (QUOTE -4266)) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-462)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Symbol|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|List| (|Symbol|))) "\\spad{headAst [f,{}x1,{}..,{}xn]} constructs a function definition header.")))
NIL
NIL
-(-462 S)
+(-463 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4264 . T) (-4265 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-463 -1305 UP UPUP R)
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-464 -3358 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
-(-464 BP)
+(-465 BP)
((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,{}..,{}ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,{}..,{}fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,{}..,{}fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,{}..,{}fk])} = \\spad{gcd} of the polynomials \\spad{fi}.")))
NIL
NIL
-(-465)
+(-466)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| (-528) (QUOTE (-848))) (|HasCategory| (-528) (LIST (QUOTE -972) (QUOTE (-1095)))) (|HasCategory| (-528) (QUOTE (-138))) (|HasCategory| (-528) (QUOTE (-140))) (|HasCategory| (-528) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| (-528) (QUOTE (-957))) (|HasCategory| (-528) (QUOTE (-766))) (-1463 (|HasCategory| (-528) (QUOTE (-766))) (|HasCategory| (-528) (QUOTE (-793)))) (|HasCategory| (-528) (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| (-528) (QUOTE (-1071))) (|HasCategory| (-528) (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| (-528) (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| (-528) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-528) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| (-528) (QUOTE (-215))) (|HasCategory| (-528) (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| (-528) (LIST (QUOTE -489) (QUOTE (-1095)) (QUOTE (-528)))) (|HasCategory| (-528) (LIST (QUOTE -290) (QUOTE (-528)))) (|HasCategory| (-528) (LIST (QUOTE -267) (QUOTE (-528)) (QUOTE (-528)))) (|HasCategory| (-528) (QUOTE (-288))) (|HasCategory| (-528) (QUOTE (-513))) (|HasCategory| (-528) (QUOTE (-793))) (|HasCategory| (-528) (LIST (QUOTE -591) (QUOTE (-528)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-528) (QUOTE (-848)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-528) (QUOTE (-848)))) (|HasCategory| (-528) (QUOTE (-138)))))
-(-466 A S)
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| (-516) (QUOTE (-851))) (|HasCategory| (-516) (LIST (QUOTE -975) (QUOTE (-1098)))) (|HasCategory| (-516) (QUOTE (-138))) (|HasCategory| (-516) (QUOTE (-140))) (|HasCategory| (-516) (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-516) (QUOTE (-958))) (|HasCategory| (-516) (QUOTE (-768))) (-3810 (|HasCategory| (-516) (QUOTE (-768))) (|HasCategory| (-516) (QUOTE (-795)))) (|HasCategory| (-516) (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| (-516) (QUOTE (-1074))) (|HasCategory| (-516) (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| (-516) (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| (-516) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-516) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| (-516) (QUOTE (-216))) (|HasCategory| (-516) (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| (-516) (LIST (QUOTE -491) (QUOTE (-1098)) (QUOTE (-516)))) (|HasCategory| (-516) (LIST (QUOTE -291) (QUOTE (-516)))) (|HasCategory| (-516) (LIST (QUOTE -268) (QUOTE (-516)) (QUOTE (-516)))) (|HasCategory| (-516) (QUOTE (-289))) (|HasCategory| (-516) (QUOTE (-515))) (|HasCategory| (-516) (QUOTE (-795))) (|HasCategory| (-516) (LIST (QUOTE -593) (QUOTE (-516)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-516) (QUOTE (-851)))) (-3810 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-516) (QUOTE (-851)))) (|HasCategory| (-516) (QUOTE (-138)))))
+(-467 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4264)) (|HasAttribute| |#1| (QUOTE -4265)) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-467 S)
+((|HasAttribute| |#1| (QUOTE -4269)) (|HasAttribute| |#1| (QUOTE -4270)) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-468 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
-((-4050 . T))
+((-2303 . T))
NIL
-(-468 S)
+(-469)
+((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}.")))
+NIL
+NIL
+(-470 S)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-469)
+(-471)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-470 -1305 UP |AlExt| |AlPol|)
+(-472 -3358 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
-(-471)
+(-473)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| $ (QUOTE (-981))) (|HasCategory| $ (LIST (QUOTE -972) (QUOTE (-528)))))
-(-472 S |mn|)
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| $ (QUOTE (-984))) (|HasCategory| $ (LIST (QUOTE -975) (QUOTE (-516)))))
+(-474 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4265 . T) (-4264 . T))
-((-1463 (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|))))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (-1463 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1023)))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| (-528) (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1023))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-473 R |mnRow| |mnCol|)
+((-4270 . T) (-4269 . T))
+((-3810 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (-3810 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-516) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-475 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4264 . T) (-4265 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-474 K R UP)
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-476 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented")))
NIL
NIL
-(-475 R UP -1305)
+(-477 R UP -3358)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-476 |mn|)
+(-478 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4265 . T) (-4264 . T))
-((-12 (|HasCategory| (-110) (QUOTE (-1023))) (|HasCategory| (-110) (LIST (QUOTE -290) (QUOTE (-110))))) (|HasCategory| (-110) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| (-110) (QUOTE (-793))) (|HasCategory| (-528) (QUOTE (-793))) (|HasCategory| (-110) (QUOTE (-1023))) (|HasCategory| (-110) (LIST (QUOTE -569) (QUOTE (-802)))))
-(-477 K R UP L)
+((-4270 . T) (-4269 . T))
+((-12 (|HasCategory| (-110) (QUOTE (-1027))) (|HasCategory| (-110) (LIST (QUOTE -291) (QUOTE (-110))))) (|HasCategory| (-110) (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-110) (QUOTE (-795))) (|HasCategory| (-516) (QUOTE (-795))) (|HasCategory| (-110) (QUOTE (-1027))) (|HasCategory| (-110) (LIST (QUOTE -571) (QUOTE (-805)))))
+(-479 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
NIL
-(-478)
+(-480)
((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,{}s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}.")))
NIL
NIL
-(-479 R Q A B)
+(-481 R Q A B)
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-480 -1305 |Expon| |VarSet| |DPoly|)
+(-482 -3358 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -570) (QUOTE (-1095)))))
-(-481 |vl| |nv|)
+((|HasCategory| |#3| (LIST (QUOTE -572) (QUOTE (-1098)))))
+(-483 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
NIL
-(-482 A S)
+(-484 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-483 A S)
+(-485 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored.")))
NIL
NIL
-(-484 A S)
+(-486 A S)
((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}.")))
NIL
NIL
-(-485 A S)
-((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
+(-487 A S)
+((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
NIL
NIL
-(-486 A S)
-((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
+(-488 A S)
+((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-487 A S)
-((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
+(-489 A S)
+((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-488 S A B)
+(-490 S A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-489 A B)
+(-491 A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-490 S E |un|)
+(-492 S E |un|)
((|constructor| (NIL "Internal implementation of a free abelian monoid.")))
NIL
-((|HasCategory| |#2| (QUOTE (-738))))
-(-491 S |mn|)
+((|HasCategory| |#2| (QUOTE (-740))))
+(-493 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4265 . T) (-4264 . T))
-((-1463 (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|))))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (-1463 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1023)))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| (-528) (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1023))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-492 |p| |n|)
+((-4270 . T) (-4269 . T))
+((-3810 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (-3810 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-516) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-494 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((-1463 (|HasCategory| (-541 |#1|) (QUOTE (-138))) (|HasCategory| (-541 |#1|) (QUOTE (-348)))) (|HasCategory| (-541 |#1|) (QUOTE (-140))) (|HasCategory| (-541 |#1|) (QUOTE (-348))) (|HasCategory| (-541 |#1|) (QUOTE (-138))))
-(-493 R |mnRow| |mnCol| |Row| |Col|)
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-3810 (|HasCategory| (-543 |#1|) (QUOTE (-138))) (|HasCategory| (-543 |#1|) (QUOTE (-349)))) (|HasCategory| (-543 |#1|) (QUOTE (-140))) (|HasCategory| (-543 |#1|) (QUOTE (-349))) (|HasCategory| (-543 |#1|) (QUOTE (-138))))
+(-495 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4264 . T) (-4265 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-494 S |mn|)
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-496 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4265 . T) (-4264 . T))
-((-1463 (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|))))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (-1463 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1023)))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| (-528) (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1023))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-495 R |Row| |Col| M)
+((-4270 . T) (-4269 . T))
+((-3810 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (-3810 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-516) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-497 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4265)))
-(-496 R |Row| |Col| M QF |Row2| |Col2| M2)
+((|HasAttribute| |#3| (QUOTE -4270)))
+(-498 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4265)))
-(-497 R |mnRow| |mnCol|)
+((|HasAttribute| |#7| (QUOTE -4270)))
+(-499 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4264 . T) (-4265 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (QUOTE (-288))) (|HasCategory| |#1| (QUOTE (-520))) (|HasAttribute| |#1| (QUOTE (-4266 "*"))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-498 GF)
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-523))) (|HasAttribute| |#1| (QUOTE (-4271 "*"))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-500 GF)
((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}.")))
NIL
NIL
-(-499 R)
+(-501 R)
((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}.")))
NIL
NIL
-(-500 |Varset|)
+(-502 |Varset|)
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-501 K -1305 |Par|)
+(-503 K -3358 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
-(-502)
+(-504)
((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity.")))
NIL
NIL
-(-503 R)
-((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
+(-505)
+((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
NIL
NIL
-(-504)
-((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
+(-506 R)
+((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
NIL
NIL
-(-505 |Coef| UTS)
+(-507 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-506 K -1305 |Par|)
+(-508 K -3358 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
-(-507 R BP |pMod| |nextMod|)
+(-509 R BP |pMod| |nextMod|)
((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,{}p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,{}f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods.")))
NIL
NIL
-(-508 OV E R P)
+(-510 OV E R P)
((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}.")))
NIL
NIL
-(-509 K UP |Coef| UTS)
+(-511 K UP |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-510 |Coef| UTS)
+(-512 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-511 R UP)
-((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented")))
+(-513 R UP)
+((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented")))
NIL
NIL
-(-512 S)
+(-514 S)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
NIL
NIL
-(-513)
+(-515)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4262 . T) (-4263 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4267 . T) (-4268 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-514 |Key| |Entry| |addDom|)
+(-516)
+((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
+((-4251 . T) (-4257 . T) (-4261 . T) (-4256 . T) (-4267 . T) (-4268 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+NIL
+(-517 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4264 . T) (-4265 . T))
-((-12 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -290) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2927) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1780) (|devaluate| |#2|)))))) (-1463 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1023)))) (-1463 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -570) (QUOTE (-504)))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-1023))) (-1463 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -569) (QUOTE (-802)))))
-(-515 R -1305)
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4139) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2131) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027)))) (-3810 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027)))) (-3810 (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027)))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -572) (QUOTE (-505)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))) (-3810 (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -571) (QUOTE (-805)))))
+(-518 R -3358)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-516 R0 -1305 UP UPUP R)
+(-519 R0 -3358 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
-(-517)
+(-520)
((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})")))
NIL
NIL
-(-518 R)
+(-521 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-4083 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4048 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-519 S)
+(-522 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
NIL
NIL
-(-520)
+(-523)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-521 R -1305)
-((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
+(-524 R -3358)
+((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
-(-522 I)
+(-525 I)
((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}")))
NIL
NIL
-(-523)
-((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
+(-526)
+((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-524 R -1305 L)
-((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
+(-527 R -3358 L)
+((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -605) (|devaluate| |#2|))))
-(-525)
+((|HasCategory| |#3| (LIST (QUOTE -609) (|devaluate| |#2|))))
+(-528)
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-526 -1305 UP UPUP R)
+(-529 -3358 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-527 -1305 UP)
+(-530 -3358 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
-(-528)
-((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
-((-4246 . T) (-4252 . T) (-4256 . T) (-4251 . T) (-4262 . T) (-4263 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-NIL
-(-529)
+(-531)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-530 R -1305 L)
-((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
+(-532 R -3358 L)
+((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -605) (|devaluate| |#2|))))
-(-531 R -1305)
+((|HasCategory| |#3| (LIST (QUOTE -609) (|devaluate| |#2|))))
+(-533 R -3358)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-1059)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-581)))))
-(-532 -1305 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| |#2| (QUOTE (-584)))))
+(-534 -3358 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
-(-533 S)
+(-535 S)
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-534 -1305)
+(-536 -3358)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
-(-535 R)
+(-537 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-4083 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4048 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-536)
+(-538)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-537 R -1305)
+(-539 R -3358)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-265))) (|HasCategory| |#2| (QUOTE (-581))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-1095))))) (-12 (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#2| (QUOTE (-265)))) (|HasCategory| |#1| (QUOTE (-520))))
-(-538 -1305 UP)
-((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
+((-12 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| |#2| (QUOTE (-266))) (|HasCategory| |#2| (QUOTE (-584))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1098))))) (-12 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-266)))) (|HasCategory| |#1| (QUOTE (-523))))
+(-540 -3358 UP)
+((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-539 R -1305)
+(-541 R -3358)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
-(-540 |p| |unBalanced?|)
+(-542 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-541 |p|)
+(-543 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| $ (QUOTE (-140))) (|HasCategory| $ (QUOTE (-138))) (|HasCategory| $ (QUOTE (-348))))
-(-542)
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| $ (QUOTE (-140))) (|HasCategory| $ (QUOTE (-138))) (|HasCategory| $ (QUOTE (-349))))
+(-544)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-543 R -1305)
-((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
+(-545 -3358)
+((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
+((-4264 . T) (-4263 . T))
+((|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-1098)))))
+(-546 E -3358)
+((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
NIL
NIL
-(-544 E -1305)
-((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
+(-547 R -3358)
+((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-545 -1305)
-((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4259 . T) (-4258 . T))
-((|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-1095)))))
-(-546 I)
+(-548 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
NIL
-(-547 GF)
+(-549 GF)
((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field.")))
NIL
NIL
-(-548 R)
+(-550 R)
((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
((|HasCategory| |#1| (QUOTE (-140))))
-(-549)
+(-551)
((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,{}2,{}...,{}n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,{}3,{}3,{}1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em \\spad{pi}} in the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented.")))
NIL
NIL
-(-550 R E V P TS)
+(-552 R E V P TS)
((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial.")))
NIL
NIL
-(-551 |mn|)
+(-553 |mn|)
((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
-((-4265 . T) (-4264 . T))
-((-1463 (-12 (|HasCategory| (-137) (QUOTE (-793))) (|HasCategory| (-137) (LIST (QUOTE -290) (QUOTE (-137))))) (-12 (|HasCategory| (-137) (QUOTE (-1023))) (|HasCategory| (-137) (LIST (QUOTE -290) (QUOTE (-137)))))) (-1463 (|HasCategory| (-137) (LIST (QUOTE -569) (QUOTE (-802)))) (-12 (|HasCategory| (-137) (QUOTE (-1023))) (|HasCategory| (-137) (LIST (QUOTE -290) (QUOTE (-137)))))) (|HasCategory| (-137) (LIST (QUOTE -570) (QUOTE (-504)))) (-1463 (|HasCategory| (-137) (QUOTE (-793))) (|HasCategory| (-137) (QUOTE (-1023)))) (|HasCategory| (-137) (QUOTE (-793))) (|HasCategory| (-528) (QUOTE (-793))) (|HasCategory| (-137) (QUOTE (-1023))) (-12 (|HasCategory| (-137) (QUOTE (-1023))) (|HasCategory| (-137) (LIST (QUOTE -290) (QUOTE (-137))))) (|HasCategory| (-137) (LIST (QUOTE -569) (QUOTE (-802)))))
-(-552 E V R P)
+((-4270 . T) (-4269 . T))
+((-3810 (-12 (|HasCategory| (-137) (QUOTE (-795))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137)))))) (-3810 (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (|HasCategory| (-137) (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| (-137) (LIST (QUOTE -572) (QUOTE (-505)))) (-3810 (|HasCategory| (-137) (QUOTE (-795))) (|HasCategory| (-137) (QUOTE (-1027)))) (|HasCategory| (-137) (QUOTE (-795))) (|HasCategory| (-516) (QUOTE (-795))) (|HasCategory| (-137) (QUOTE (-1027))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (|HasCategory| (-137) (LIST (QUOTE -571) (QUOTE (-805)))))
+(-554 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
-(-553 |Coef|)
+(-555 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-520))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-528)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-528)) (|devaluate| |#1|)))) (|HasCategory| (-528) (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-343))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-528))))) (|HasSignature| |#1| (LIST (QUOTE -2222) (LIST (|devaluate| |#1|) (QUOTE (-1095)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-528))))))
-(-554 |Coef|)
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-523))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-516)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-516)) (|devaluate| |#1|)))) (|HasCategory| (-516) (QUOTE (-1038))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-516))))) (|HasSignature| |#1| (LIST (QUOTE -4233) (LIST (|devaluate| |#1|) (QUOTE (-1098)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-516))))))
+(-556 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-((-4259 |has| |#1| (-520)) (-4258 |has| |#1| (-520)) ((-4266 "*") |has| |#1| (-520)) (-4257 |has| |#1| (-520)) (-4261 . T))
-((|HasCategory| |#1| (QUOTE (-520))))
-(-555 A B)
+((-4264 |has| |#1| (-523)) (-4263 |has| |#1| (-523)) ((-4271 "*") |has| |#1| (-523)) (-4262 |has| |#1| (-523)) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-523))))
+(-557 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-556 A B C)
+(-558 A B C)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented")))
NIL
NIL
-(-557 R -1305 FG)
+(-559 R -3358 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
-(-558 S)
+(-560 S)
((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}.")))
NIL
NIL
-(-559 R |mn|)
+(-561 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4265 . T) (-4264 . T))
-((-1463 (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|))))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (-1463 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1023)))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| (-528) (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-673))) (|HasCategory| |#1| (QUOTE (-981))) (-12 (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-981)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-560 S |Index| |Entry|)
+((-4270 . T) (-4269 . T))
+((-3810 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (-3810 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-516) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#1| (QUOTE (-984))) (-12 (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-984)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-562 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4265)) (|HasCategory| |#2| (QUOTE (-793))) (|HasAttribute| |#1| (QUOTE -4264)) (|HasCategory| |#3| (QUOTE (-1023))))
-(-561 |Index| |Entry|)
+((|HasAttribute| |#1| (QUOTE -4270)) (|HasCategory| |#2| (QUOTE (-795))) (|HasAttribute| |#1| (QUOTE -4269)) (|HasCategory| |#3| (QUOTE (-1027))))
+(-563 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
-((-4050 . T))
+((-2303 . T))
NIL
-(-562)
+(-564)
((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")) (|coerce| (($ (|Byte|)) "\\spad{coerce(x)} the numerical byte value into a \\spad{JVM} bytecode.")))
NIL
NIL
-(-563 R A)
+(-565 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4261 -1463 (-3287 (|has| |#2| (-347 |#1|)) (|has| |#1| (-520))) (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-520)))) (-4259 . T) (-4258 . T))
-((-1463 (|HasCategory| |#2| (LIST (QUOTE -347) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -397) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -397) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -397) (|devaluate| |#1|)))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#2| (LIST (QUOTE -347) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#2| (LIST (QUOTE -397) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -347) (|devaluate| |#1|))))
-(-564 |Entry|)
+((-4266 -3810 (-3119 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-523)))) (-4264 . T) (-4263 . T))
+((-3810 (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -399) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -399) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -399) (|devaluate| |#1|)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#2| (LIST (QUOTE -399) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|))))
+(-566 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4264 . T) (-4265 . T))
-((-12 (|HasCategory| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (LIST (QUOTE -290) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2927) (QUOTE (-1078))) (LIST (QUOTE |:|) (QUOTE -1780) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (LIST (QUOTE -570) (QUOTE (-504)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| (-1078) (QUOTE (-793))) (|HasCategory| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (LIST (QUOTE -569) (QUOTE (-802)))))
-(-565 S |Key| |Entry|)
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4139) (QUOTE (-1081))) (LIST (QUOTE |:|) (QUOTE -2131) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (QUOTE (-1027)))) (|HasCategory| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (LIST (QUOTE -572) (QUOTE (-505)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| (-1081) (QUOTE (-795))) (|HasCategory| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (LIST (QUOTE -571) (QUOTE (-805)))))
+(-567 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
-(-566 |Key| |Entry|)
+(-568 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4265 . T) (-4050 . T))
+((-4270 . T) (-2303 . T))
NIL
-(-567 R S)
-((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
+(-569 S)
+((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op.")))
NIL
+((|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))))
+(-570 R S)
+((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
NIL
-(-568 S)
-((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))))
-(-569 S)
+(-571 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-570 S)
+(-572 S)
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-571 -1305 UP)
+(-573 -3358 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
-(-572 S R)
+(-574 A R S)
+((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
+((-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-793))))
+(-575 S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
NIL
NIL
-(-573 R)
+(-576 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4261 . T))
+((-4266 . T))
NIL
-(-574 A R S)
-((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#1| (QUOTE (-791))))
-(-575 R -1305)
+(-577 R -3358)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform.")))
NIL
NIL
-(-576 R UP)
+(-578 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4259 . T) (-4258 . T) ((-4266 "*") . T) (-4257 . T) (-4261 . T))
-((|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))))
-(-577 R E V P TS ST)
+((-4264 . T) (-4263 . T) ((-4271 "*") . T) (-4262 . T) (-4266 . T))
+((|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))))
+(-579 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
NIL
-(-578 OV E Z P)
+(-580 OV E Z P)
((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation.")))
NIL
NIL
-(-579 |VarSet| R |Order|)
+(-581 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4261 . T))
+((-4266 . T))
NIL
-(-580 R |ls|)
+(-582 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
NIL
NIL
-(-581)
-((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
+(-583 R -3358)
+((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-582 R -1305)
-((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
+(-584)
+((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-583 |lv| -1305)
+(-585 |lv| -3358)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
-(-584)
+(-586)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4265 . T))
-((-12 (|HasCategory| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (LIST (QUOTE -290) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2927) (QUOTE (-1078))) (LIST (QUOTE |:|) (QUOTE -1780) (QUOTE (-51))))))) (-1463 (|HasCategory| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (QUOTE (-1023))) (|HasCategory| (-51) (QUOTE (-1023)))) (-1463 (|HasCategory| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| (-51) (QUOTE (-1023))) (|HasCategory| (-51) (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (LIST (QUOTE -570) (QUOTE (-504)))) (-12 (|HasCategory| (-51) (QUOTE (-1023))) (|HasCategory| (-51) (LIST (QUOTE -290) (QUOTE (-51))))) (|HasCategory| (-1078) (QUOTE (-793))) (-1463 (|HasCategory| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| (-51) (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| (-51) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| (-51) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (LIST (QUOTE -569) (QUOTE (-802)))))
-(-585 S R)
+((-4270 . T))
+((-12 (|HasCategory| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4139) (QUOTE (-1081))) (LIST (QUOTE |:|) (QUOTE -2131) (QUOTE (-50)))))) (|HasCategory| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (QUOTE (-1027)))) (-3810 (|HasCategory| (-50) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (QUOTE (-1027)))) (-3810 (|HasCategory| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-50) (QUOTE (-1027))) (|HasCategory| (-50) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (QUOTE (-1027)))) (|HasCategory| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (LIST (QUOTE -572) (QUOTE (-505)))) (-12 (|HasCategory| (-50) (QUOTE (-1027))) (|HasCategory| (-50) (LIST (QUOTE -291) (QUOTE (-50))))) (|HasCategory| (-1081) (QUOTE (-795))) (-3810 (|HasCategory| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-50) (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| (-50) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-50) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (LIST (QUOTE -571) (QUOTE (-805)))))
+(-587 R A)
+((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
+((-4266 -3810 (-3119 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-523)))) (-4264 . T) (-4263 . T))
+((-3810 (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -399) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -399) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -399) (|devaluate| |#1|)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#2| (LIST (QUOTE -399) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|))))
+(-588 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-343))))
-(-586 R)
+((|HasCategory| |#2| (QUOTE (-344))))
+(-589 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4259 . T) (-4258 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4264 . T) (-4263 . T))
NIL
-(-587 R A)
-((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4261 -1463 (-3287 (|has| |#2| (-347 |#1|)) (|has| |#1| (-520))) (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-520)))) (-4259 . T) (-4258 . T))
-((-1463 (|HasCategory| |#2| (LIST (QUOTE -347) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -397) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -397) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -397) (|devaluate| |#1|)))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#2| (LIST (QUOTE -347) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#2| (LIST (QUOTE -397) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -347) (|devaluate| |#1|))))
-(-588 R FE)
-((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
+(-590 R FE)
+((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
NIL
NIL
-(-589 R)
-((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
+(-591 R)
+((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
NIL
NIL
-(-590 S R)
+(-592 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-3617 (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-343))))
-(-591 R)
+((-3595 (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-344))))
+(-593 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4261 . T))
+((-4266 . T))
NIL
-(-592 A B)
-((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
+(-594 S)
+((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
+((-4270 . T) (-4269 . T))
+((-3810 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (-3810 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-769))) (|HasCategory| (-516) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-595 A B)
+((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}.")))
NIL
NIL
-(-593 A B)
-((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}.")))
+(-596 A B)
+((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
NIL
NIL
-(-594 A B C)
+(-597 A B C)
((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}.")))
NIL
NIL
-(-595 S)
-((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
-((-4265 . T) (-4264 . T))
-((-1463 (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|))))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (-1463 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1023)))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-774))) (|HasCategory| (-528) (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1023))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-596 S)
+(-598 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4264 . T) (-4265 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-597 R)
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-599 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
NIL
-(-598 S E |un|)
+(-600 S E |un|)
((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n}).")))
NIL
NIL
-(-599 A S)
+(-601 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4265)))
-(-600 S)
+((|HasAttribute| |#1| (QUOTE -4270)))
+(-602 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
-((-4050 . T))
+((-2303 . T))
NIL
-(-601 R -1305 L)
+(-603 M R S)
+((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
+((-4264 . T) (-4263 . T))
+((|HasCategory| |#1| (QUOTE (-739))))
+(-604 R -3358 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-602 A)
+(-605 A -2682)
+((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
+((-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-344))))
+(-606 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-343))))
-(-603 A M)
+((-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-344))))
+(-607 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-343))))
-(-604 S A)
+((-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-344))))
+(-608 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-343))))
-(-605 A)
+((|HasCategory| |#2| (QUOTE (-344))))
+(-609 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4258 . T) (-4259 . T) (-4261 . T))
+((-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-606 -1305 UP)
+(-610 -3358 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-607 A -3495)
-((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-343))))
-(-608 A L)
+(-611 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-609 S)
+(-612 S)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-610)
+(-613)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-611 M R S)
-((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4259 . T) (-4258 . T))
-((|HasCategory| |#1| (QUOTE (-737))))
-(-612 R)
+(-614 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists.")))
NIL
NIL
-(-613 |VarSet| R)
+(-615 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4259 . T) (-4258 . T))
-((|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-162))))
-(-614 A S)
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4264 . T) (-4263 . T))
+((|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-162))))
+(-616 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
NIL
NIL
-(-615 S)
+(-617 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4265 . T) (-4264 . T) (-4050 . T))
+((-4270 . T) (-4269 . T) (-2303 . T))
NIL
-(-616 -1305)
-((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
+(-618 -3358 |Row| |Col| M)
+((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-617 -1305 |Row| |Col| M)
-((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
+(-619 -3358)
+((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-618 R E OV P)
+(-620 R E OV P)
((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}.")))
NIL
NIL
-(-619 |n| R)
+(-621 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4261 . T) (-4264 . T) (-4258 . T) (-4259 . T))
-((|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (QUOTE (-215))) (|HasAttribute| |#2| (QUOTE (-4266 "*"))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528)))) (-1463 (-12 (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))))) (|HasCategory| |#2| (QUOTE (-288))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-520))) (-1463 (|HasAttribute| |#2| (QUOTE (-4266 "*"))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (QUOTE (-215)))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| |#2| (QUOTE (-162))))
-(-620 |VarSet|)
+((-4266 . T) (-4269 . T) (-4263 . T) (-4264 . T))
+((|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasAttribute| |#2| (QUOTE (-4271 #1="*"))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516)))) (-3810 (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098)))))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-523))) (-3810 (|HasAttribute| |#2| (QUOTE (-4271 #1#))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| |#2| (QUOTE (-162))))
+(-622 |VarSet|)
((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
NIL
-(-621 A S)
+(-623 A S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-622 S)
+(-624 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
-((-4050 . T))
+((-2303 . T))
NIL
-(-623 R)
+(-625 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms")))
NIL
-((-1463 (-12 (|HasCategory| |#1| (QUOTE (-981))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (QUOTE (-981))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-624 |VarSet|)
+((-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (QUOTE (-984))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-626 |VarSet|)
((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
NIL
-(-625 A)
+(-627 A)
((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}.")))
NIL
NIL
-(-626 A C)
+(-628 A C)
((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument.")))
NIL
NIL
-(-627 A B C)
+(-629 A B C)
((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}.")))
NIL
NIL
-(-628 A)
+(-630 A)
((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}")))
NIL
NIL
-(-629 A C)
+(-631 A C)
((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}")))
NIL
NIL
-(-630 A B C)
+(-632 A B C)
((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}")))
NIL
NIL
-(-631 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
-((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
-NIL
-NIL
-(-632 S R |Row| |Col|)
+(-633 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4266 "*"))) (|HasCategory| |#2| (QUOTE (-288))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-520))))
-(-633 R |Row| |Col|)
+((|HasAttribute| |#2| (QUOTE (-4271 "*"))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-523))))
+(-634 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4264 . T) (-4265 . T) (-4050 . T))
+((-4269 . T) (-4270 . T) (-2303 . T))
+NIL
+(-635 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
+NIL
NIL
-(-634 R |Row| |Col| M)
+(-636 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
NIL
-((|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-288))) (|HasCategory| |#1| (QUOTE (-520))))
-(-635 R)
+((|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-523))))
+(-637 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4264 . T) (-4265 . T))
-((-1463 (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#1| (QUOTE (-288))) (|HasCategory| |#1| (QUOTE (-520))) (|HasAttribute| |#1| (QUOTE (-4266 "*"))) (|HasCategory| |#1| (QUOTE (-343))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-636 R)
+((-4269 . T) (-4270 . T))
+((-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-523))) (|HasAttribute| |#1| (QUOTE (-4271 "*"))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-638 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
-(-637 T$)
+(-639 T$)
((|constructor| (NIL "This domain implements the notion of optional vallue,{} where a computation may fail to produce expected value.")) (|nothing| (($) "represents failure.")) (|autoCoerce| ((|#1| $) "same as above but implicitly called by the compiler.")) (|coerce| ((|#1| $) "x::T tries to extract the value of \\spad{T} from the computation \\spad{x}. Produces a runtime error when the computation fails.") (($ |#1|) "x::T injects the value \\spad{x} into \\%.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} evaluates \\spad{true} if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")))
NIL
NIL
-(-638 S -1305 FLAF FLAS)
+(-640 S -3358 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
-(-639 R Q)
+(-641 R Q)
((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}.")))
NIL
NIL
-(-640)
+(-642)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4257 . T) (-4262 |has| (-645) (-343)) (-4256 |has| (-645) (-343)) (-4095 . T) (-4263 |has| (-645) (-6 -4263)) (-4260 |has| (-645) (-6 -4260)) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| (-645) (QUOTE (-140))) (|HasCategory| (-645) (QUOTE (-138))) (|HasCategory| (-645) (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| (-645) (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| (-645) (QUOTE (-348))) (|HasCategory| (-645) (QUOTE (-343))) (|HasCategory| (-645) (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| (-645) (QUOTE (-215))) (-1463 (|HasCategory| (-645) (QUOTE (-343))) (|HasCategory| (-645) (QUOTE (-329)))) (|HasCategory| (-645) (QUOTE (-329))) (|HasCategory| (-645) (LIST (QUOTE -267) (QUOTE (-645)) (QUOTE (-645)))) (|HasCategory| (-645) (LIST (QUOTE -290) (QUOTE (-645)))) (|HasCategory| (-645) (LIST (QUOTE -489) (QUOTE (-1095)) (QUOTE (-645)))) (|HasCategory| (-645) (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| (-645) (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| (-645) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| (-645) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (-1463 (|HasCategory| (-645) (QUOTE (-288))) (|HasCategory| (-645) (QUOTE (-343))) (|HasCategory| (-645) (QUOTE (-329)))) (|HasCategory| (-645) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| (-645) (QUOTE (-957))) (|HasCategory| (-645) (QUOTE (-1117))) (-12 (|HasCategory| (-645) (QUOTE (-938))) (|HasCategory| (-645) (QUOTE (-1117)))) (-1463 (-12 (|HasCategory| (-645) (QUOTE (-288))) (|HasCategory| (-645) (QUOTE (-848)))) (|HasCategory| (-645) (QUOTE (-343))) (-12 (|HasCategory| (-645) (QUOTE (-329))) (|HasCategory| (-645) (QUOTE (-848))))) (-1463 (-12 (|HasCategory| (-645) (QUOTE (-288))) (|HasCategory| (-645) (QUOTE (-848)))) (-12 (|HasCategory| (-645) (QUOTE (-343))) (|HasCategory| (-645) (QUOTE (-848)))) (-12 (|HasCategory| (-645) (QUOTE (-329))) (|HasCategory| (-645) (QUOTE (-848))))) (|HasCategory| (-645) (QUOTE (-513))) (-12 (|HasCategory| (-645) (QUOTE (-989))) (|HasCategory| (-645) (QUOTE (-1117)))) (|HasCategory| (-645) (QUOTE (-989))) (-1463 (|HasCategory| (-645) (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| (-645) (QUOTE (-343)))) (|HasCategory| (-645) (QUOTE (-288))) (|HasCategory| (-645) (QUOTE (-848))) (-1463 (-12 (|HasCategory| (-645) (QUOTE (-288))) (|HasCategory| (-645) (QUOTE (-848)))) (|HasCategory| (-645) (QUOTE (-343)))) (-1463 (-12 (|HasCategory| (-645) (QUOTE (-288))) (|HasCategory| (-645) (QUOTE (-848)))) (|HasCategory| (-645) (QUOTE (-520)))) (-12 (|HasCategory| (-645) (QUOTE (-215))) (|HasCategory| (-645) (QUOTE (-343)))) (-12 (|HasCategory| (-645) (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| (-645) (QUOTE (-343)))) (|HasCategory| (-645) (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| (-645) (QUOTE (-793))) (|HasCategory| (-645) (QUOTE (-520))) (|HasAttribute| (-645) (QUOTE -4263)) (|HasAttribute| (-645) (QUOTE -4260)) (-12 (|HasCategory| (-645) (QUOTE (-288))) (|HasCategory| (-645) (QUOTE (-848)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-645) (QUOTE (-288))) (|HasCategory| (-645) (QUOTE (-848)))) (|HasCategory| (-645) (QUOTE (-138)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-645) (QUOTE (-288))) (|HasCategory| (-645) (QUOTE (-848)))) (|HasCategory| (-645) (QUOTE (-329)))))
-(-641 S)
+((-4262 . T) (-4267 |has| (-647) (-344)) (-4261 |has| (-647) (-344)) (-1375 . T) (-4268 |has| (-647) (-6 -4268)) (-4265 |has| (-647) (-6 -4265)) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| (-647) (QUOTE (-140))) (|HasCategory| (-647) (QUOTE (-138))) (|HasCategory| (-647) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| (-647) (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| (-647) (QUOTE (-349))) (|HasCategory| (-647) (QUOTE (-344))) (|HasCategory| (-647) (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| (-647) (QUOTE (-216))) (-3810 (|HasCategory| (-647) (QUOTE (-344))) (|HasCategory| (-647) (QUOTE (-331)))) (|HasCategory| (-647) (QUOTE (-331))) (|HasCategory| (-647) (LIST (QUOTE -268) (QUOTE (-647)) (QUOTE (-647)))) (|HasCategory| (-647) (LIST (QUOTE -291) (QUOTE (-647)))) (|HasCategory| (-647) (LIST (QUOTE -491) (QUOTE (-1098)) (QUOTE (-647)))) (|HasCategory| (-647) (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| (-647) (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| (-647) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| (-647) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (-3810 (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-344))) (|HasCategory| (-647) (QUOTE (-331)))) (|HasCategory| (-647) (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-647) (QUOTE (-958))) (|HasCategory| (-647) (QUOTE (-1120))) (-12 (|HasCategory| (-647) (QUOTE (-941))) (|HasCategory| (-647) (QUOTE (-1120)))) (-3810 (-12 (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-851)))) (-12 (|HasCategory| (-647) (QUOTE (-331))) (|HasCategory| (-647) (QUOTE (-851)))) (|HasCategory| (-647) (QUOTE (-344)))) (-3810 (-12 (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-851)))) (-12 (|HasCategory| (-647) (QUOTE (-344))) (|HasCategory| (-647) (QUOTE (-851)))) (-12 (|HasCategory| (-647) (QUOTE (-331))) (|HasCategory| (-647) (QUOTE (-851))))) (|HasCategory| (-647) (QUOTE (-515))) (-12 (|HasCategory| (-647) (QUOTE (-992))) (|HasCategory| (-647) (QUOTE (-1120)))) (|HasCategory| (-647) (QUOTE (-992))) (-3810 (|HasCategory| (-647) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| (-647) (QUOTE (-344)))) (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-851))) (-3810 (-12 (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-851)))) (|HasCategory| (-647) (QUOTE (-344)))) (-3810 (-12 (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-851)))) (|HasCategory| (-647) (QUOTE (-523)))) (-12 (|HasCategory| (-647) (QUOTE (-216))) (|HasCategory| (-647) (QUOTE (-344)))) (-12 (|HasCategory| (-647) (QUOTE (-344))) (|HasCategory| (-647) (LIST (QUOTE -841) (QUOTE (-1098))))) (|HasCategory| (-647) (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| (-647) (QUOTE (-795))) (|HasCategory| (-647) (QUOTE (-523))) (|HasAttribute| (-647) (QUOTE -4268)) (|HasAttribute| (-647) (QUOTE -4265)) (-12 (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-851)))) (-3810 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-851)))) (|HasCategory| (-647) (QUOTE (-138)))) (-3810 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-851)))) (|HasCategory| (-647) (QUOTE (-331)))))
+(-643 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4265 . T) (-4050 . T))
+((-4270 . T) (-2303 . T))
NIL
-(-642 U)
+(-644 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
NIL
NIL
-(-643)
-((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
+(-645)
+((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
NIL
NIL
-(-644 OV E -1305 PG)
+(-646 OV E -3358 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
-(-645)
+(-647)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-4083 . T) (-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4048 . T) (-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-646 R)
+(-648 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
NIL
NIL
-(-647)
+(-649)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4263 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4268 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-648 S D1 D2 I)
+(-650 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
NIL
NIL
-(-649 S)
+(-651 S)
((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s} viewed as an element of \\%.")))
NIL
NIL
-(-650 S)
+(-652 S)
((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}.")))
NIL
NIL
-(-651 S)
+(-653 S)
((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}.")))
NIL
NIL
-(-652 S T$)
+(-654 S T$)
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-653 S -3245 I)
+(-655 S -2932 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
-(-654 E OV R P)
+(-656 E OV R P)
((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented")))
NIL
NIL
-(-655 R)
+(-657 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4258 . T) (-4259 . T) (-4261 . T))
+((-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-656 R1 UP1 UPUP1 R2 UP2 UPUP2)
+(-658 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
NIL
NIL
-(-657)
+(-659)
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-658 R |Mod| -2110 -1356 |exactQuo|)
+(-660 R |Mod| -2092 -3792 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-659 R |Rep|)
+(-661 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4260 |has| |#1| (-343)) (-4262 |has| |#1| (-6 -4262)) (-4259 . T) (-4258 . T) (-4261 . T))
-((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-162))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520)))) (-12 (|HasCategory| (-1008) (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-359))))) (-12 (|HasCategory| (-1008) (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-528))))) (-12 (|HasCategory| (-1008) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| (-1008) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528)))))) (-12 (|HasCategory| (-1008) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504))))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-329))) (-1463 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528)))))) (|HasCategory| |#1| (QUOTE (-215))) (|HasAttribute| |#1| (QUOTE -4262)) (|HasCategory| |#1| (QUOTE (-431))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-138)))))
-(-660 IS E |ff|)
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4265 |has| |#1| (-344)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| (-1011) (LIST (QUOTE -827) (QUOTE (-359))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| (-1011) (LIST (QUOTE -827) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-1011) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| (-1011) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-1011) (LIST (QUOTE -572) (QUOTE (-505))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-851)))) (-3810 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-851)))) (-3810 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-331))) (-3810 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(-662 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
-(-661 R M)
+(-663 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4259 |has| |#1| (-162)) (-4258 |has| |#1| (-162)) (-4261 . T))
+((-4264 |has| |#1| (-162)) (-4263 |has| |#1| (-162)) (-4266 . T))
((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))))
-(-662 R |Mod| -2110 -1356 |exactQuo|)
+(-664 R |Mod| -2092 -3792 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4261 . T))
+((-4266 . T))
NIL
-(-663 S R)
+(-665 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
NIL
NIL
-(-664 R)
+(-666 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4259 . T) (-4258 . T))
+((-4264 . T) (-4263 . T))
NIL
-(-665 -1305)
+(-667 -3358)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}.")))
-((-4261 . T))
+((-4266 . T))
NIL
-(-666 S)
+(-668 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-667)
+(-669)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-668 S)
+(-670 S)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-669)
+(-671)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-670 S R UP)
+(-672 S R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
NIL
-((|HasCategory| |#2| (QUOTE (-329))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-348))))
-(-671 R UP)
+((|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-349))))
+(-673 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4257 |has| |#1| (-343)) (-4262 |has| |#1| (-343)) (-4256 |has| |#1| (-343)) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4262 |has| |#1| (-344)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-672 S)
+(-674 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-673)
+(-675)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-674 -1305 UP)
+(-676 -3358 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-675 |VarSet| E1 E2 R S PR PS)
+(-677 |VarSet| E1 E2 R S PR PS)
((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented")))
NIL
NIL
-(-676 |Vars1| |Vars2| E1 E2 R PR1 PR2)
+(-678 |Vars1| |Vars2| E1 E2 R PR1 PR2)
((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-677 E OV R PPR)
+(-679 E OV R PPR)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-678 |vl| R)
+(-680 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4266 "*") |has| |#2| (-162)) (-4257 |has| |#2| (-520)) (-4262 |has| |#2| (-6 -4262)) (-4259 . T) (-4258 . T) (-4261 . T))
-((|HasCategory| |#2| (QUOTE (-848))) (-1463 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-431))) (|HasCategory| |#2| (QUOTE (-520))) (|HasCategory| |#2| (QUOTE (-848)))) (-1463 (|HasCategory| |#2| (QUOTE (-431))) (|HasCategory| |#2| (QUOTE (-520))) (|HasCategory| |#2| (QUOTE (-848)))) (-1463 (|HasCategory| |#2| (QUOTE (-431))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-520))) (|HasCategory| |#2| (QUOTE (-162))) (-1463 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-520)))) (-12 (|HasCategory| (-804 |#1|) (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| |#2| (LIST (QUOTE -825) (QUOTE (-359))))) (-12 (|HasCategory| (-804 |#1|) (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -825) (QUOTE (-528))))) (-12 (|HasCategory| (-804 |#1|) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#2| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| (-804 |#1|) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528)))))) (-12 (|HasCategory| (-804 |#1|) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-504))))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-343))) (-1463 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528)))))) (|HasAttribute| |#2| (QUOTE -4262)) (|HasCategory| |#2| (QUOTE (-431))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-848)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-138)))))
-(-679 E OV R PRF)
+(((-4271 "*") |has| |#2| (-162)) (-4262 |has| |#2| (-523)) (-4267 |has| |#2| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#2| (QUOTE (-851))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-851)))) (-3810 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-851)))) (-3810 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-851)))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-523)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-359))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (QUOTE (-505))))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#2| (QUOTE (-344))) (-3810 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasAttribute| |#2| (QUOTE -4267)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (-3810 (-12 (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (|HasCategory| |#2| (QUOTE (-138)))))
+(-681 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-680 E OV R P)
+(-682 E OV R P)
((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}.")))
NIL
NIL
-(-681 R S M)
+(-683 R S M)
((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}.")))
NIL
NIL
-(-682 R M)
+(-684 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4259 |has| |#1| (-162)) (-4258 |has| |#1| (-162)) (-4261 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-793))))
-(-683 S)
+((-4264 |has| |#1| (-162)) (-4263 |has| |#1| (-162)) (-4266 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-795))))
+(-685 S)
+((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
+((-4269 . T) (-4259 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-686 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4254 . T) (-4265 . T) (-4050 . T))
+((-4259 . T) (-4270 . T) (-2303 . T))
NIL
-(-684 S)
-((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4264 . T) (-4254 . T) (-4265 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-685)
+(-687)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
NIL
-(-686 S)
+(-688 S)
((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}.")))
NIL
NIL
-(-687 |Coef| |Var|)
+(-689 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4259 . T) (-4258 . T) (-4261 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4264 . T) (-4263 . T) (-4266 . T))
NIL
-(-688 OV E R P)
+(-690 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
NIL
NIL
-(-689 E OV R P)
+(-691 E OV R P)
((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}.")))
NIL
NIL
-(-690 S R)
+(-692 S R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
NIL
NIL
-(-691 R)
+(-693 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4259 . T) (-4258 . T))
+((-4264 . T) (-4263 . T))
NIL
-(-692)
+(-694)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
NIL
NIL
-(-693)
+(-695)
((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}.")))
NIL
NIL
-(-694)
+(-696)
((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}.")))
NIL
NIL
-(-695)
+(-697)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}.")))
NIL
NIL
-(-696)
+(-698)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}.")))
NIL
NIL
-(-697)
+(-699)
((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}.")))
NIL
NIL
-(-698)
+(-700)
((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}.")))
NIL
NIL
-(-699)
+(-701)
((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}.")))
NIL
NIL
-(-700)
+(-702)
((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}.")))
NIL
NIL
-(-701)
+(-703)
((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}.")))
NIL
NIL
-(-702)
+(-704)
((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}.")))
NIL
NIL
-(-703)
+(-705)
((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}.")))
NIL
NIL
-(-704)
+(-706)
((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}.")))
NIL
NIL
-(-705)
+(-707)
((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}.")))
NIL
NIL
-(-706)
+(-708)
((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}")))
NIL
NIL
-(-707 S)
+(-709 S)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-708)
+(-710)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-709 S)
+(-711 S)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-710)
+(-712)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-711 |Par|)
+(-713 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-712 -1305)
+(-714 -3358)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-713 P -1305)
+(-715 P -3358)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
-(-714 UP -1305)
+(-716 UP -3358)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
-(-715)
+(-717)
((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-716 R)
+(-718 R)
((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-717)
+(-719)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4266 "*") . T))
+(((-4271 "*") . T))
NIL
-(-718 R -1305)
+(-720 R -3358)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
-(-719 S)
-((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
+(-721)
+((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
NIL
NIL
-(-720)
-((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
+(-722 S)
+((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
NIL
NIL
-(-721 R |PolR| E |PolE|)
+(-723 R |PolR| E |PolE|)
((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}.")))
NIL
NIL
-(-722 R E V P TS)
+(-724 R E V P TS)
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-723 -1305 |ExtF| |SUEx| |ExtP| |n|)
+(-725 -3358 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
-(-724 BP E OV R P)
+(-726 BP E OV R P)
((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented")))
NIL
NIL
-(-725 |Par|)
+(-727 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable.")))
NIL
NIL
-(-726 R |VarSet|)
+(-728 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4262 |has| |#1| (-6 -4262)) (-4259 . T) (-4258 . T) (-4261 . T))
-((|HasCategory| |#1| (QUOTE (-848))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-162))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| |#2| (LIST (QUOTE -825) (QUOTE (-359))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -825) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#2| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-504))))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-1095))))) (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-1095)))) (|HasCategory| |#1| (QUOTE (-343))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-1095))))) (-1463 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-1095)))) (-3617 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-1095)))))) (-1463 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-1095)))) (-3617 (|HasCategory| |#1| (QUOTE (-513)))) (-3617 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-1095)))) (-3617 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-528))))) (-3617 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-1095)))) (-3617 (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-528))))))) (-1463 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528)))))) (|HasAttribute| |#1| (QUOTE -4262)) (|HasCategory| |#1| (QUOTE (-431))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-138)))))
-(-727 R S)
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-851))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-851)))) (-3810 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-851)))) (-3810 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-359))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-505))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1098))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1098)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1098))))) (-3810 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1098)))) (-3595 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1098)))))) (-3810 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1098)))) (-3595 (|HasCategory| |#1| (QUOTE (-515)))) (-3595 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1098)))) (-3595 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-516))))) (-3595 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1098)))) (-3595 (|HasCategory| |#1| (LIST (QUOTE -931) (QUOTE (-516))))))) (-3810 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(-729 R)
+((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4265 |has| |#1| (-344)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| (-1011) (LIST (QUOTE -827) (QUOTE (-359))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| (-1011) (LIST (QUOTE -827) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-1011) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| (-1011) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-1011) (LIST (QUOTE -572) (QUOTE (-505))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-851)))) (-3810 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-851)))) (-3810 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098)))) (-3810 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(-730 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-728 R)
-((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4260 |has| |#1| (-343)) (-4262 |has| |#1| (-6 -4262)) (-4259 . T) (-4258 . T) (-4261 . T))
-((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-162))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520)))) (-12 (|HasCategory| (-1008) (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-359))))) (-12 (|HasCategory| (-1008) (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-528))))) (-12 (|HasCategory| (-1008) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| (-1008) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528)))))) (-12 (|HasCategory| (-1008) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504))))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (-1463 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528)))))) (|HasCategory| |#1| (QUOTE (-215))) (|HasAttribute| |#1| (QUOTE -4262)) (|HasCategory| |#1| (QUOTE (-431))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-138)))))
-(-729 R)
+(-731 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))))
-(-730 R E V P)
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))))
+(-732 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4265 . T) (-4264 . T) (-4050 . T))
+((-4270 . T) (-4269 . T) (-2303 . T))
NIL
-(-731 S)
+(-733 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-793)))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-981))) (|HasCategory| |#1| (QUOTE (-162))))
-(-732)
+((-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-795)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (QUOTE (-162))))
+(-734)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
NIL
-(-733)
+(-735)
((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-734)
+(-736)
((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}.")))
NIL
NIL
-(-735)
+(-737)
((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")))
NIL
NIL
-(-736 |Curve|)
+(-738 |Curve|)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}.")))
NIL
NIL
-(-737)
+(-739)
((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-738)
+(-740)
((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-739)
+(-741)
((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted.")))
NIL
NIL
-(-740)
+(-742)
((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}")))
NIL
NIL
-(-741)
-((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
-NIL
-NIL
-(-742 S R)
+(-743 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-348))))
-(-743 R)
+((|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-992))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-349))))
+(-744 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4258 . T) (-4259 . T) (-4261 . T))
+((-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-744 -1463 R OS S)
-((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
+(-745)
+((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-745 R)
+(-746 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -489) (QUOTE (-1095)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -267) (|devaluate| |#1|) (|devaluate| |#1|))) (-1463 (|HasCategory| (-935 |#1|) (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528)))))) (-1463 (|HasCategory| (-935 |#1|) (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| (-935 |#1|) (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| (-935 |#1|) (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))))
-(-746)
+((-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1098)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (-3810 (|HasCategory| (-935 |#1|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-3810 (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| (-935 |#1|) (LIST (QUOTE -975) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-992))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-935 |#1|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| (-935 |#1|) (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))))
+(-747 -3810 R OS S)
+((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
+NIL
+NIL
+(-748)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-747 R -1305 L)
+(-749 R -3358 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-748 R -1305)
-((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
+(-750 R -3358)
+((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
-(-749)
+(-751)
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-750 R -1305)
+(-752 R -3358)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
-(-751)
+(-753)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-752 -1305 UP UPUP R)
+(-754 -3358 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-753 -1305 UP L LQ)
+(-755 -3358 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
-(-754)
+(-756)
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-755 -1305 UP L LQ)
+(-757 -3358 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-756 -1305 UP)
-((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
+(-758 -3358 UP)
+((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-757 -1305 L UP A LO)
+(-759 -3358 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-758 -1305 UP)
+(-760 -3358 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-759 -1305 LO)
+(-761 -3358 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-760 -1305 LODO)
+(-762 -3358 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.")))
NIL
NIL
-(-761 -4174 S |f|)
+(-763 -2879 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4258 |has| |#2| (-981)) (-4259 |has| |#2| (-981)) (-4261 |has| |#2| (-6 -4261)) ((-4266 "*") |has| |#2| (-162)) (-4264 . T))
-((-1463 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-673))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))))) (-1463 (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-1023)))) (-12 (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (QUOTE (-981)))) (-12 (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#2| (QUOTE (-343))) (-1463 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-981)))) (-1463 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-343)))) (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (QUOTE (-739))) (-1463 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-673))) (|HasCategory| |#2| (QUOTE (-162))) (-1463 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-981)))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (-1463 (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-673))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (QUOTE (-1023)))) (-1463 (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-981)))) (-1463 (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-981)))) (-1463 (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-981)))) (-1463 (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (QUOTE (-981)))) (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-162)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-215)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-343)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-348)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-673)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-739)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-791)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-981)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-1023))))) (-1463 (-12 (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-673))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-791))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528)))))) (|HasCategory| (-528) (QUOTE (-793))) (-12 (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (QUOTE (-981)))) (-12 (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-1463 (|HasCategory| |#2| (QUOTE (-981))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-1023)))) (|HasAttribute| |#2| (QUOTE -4261)) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-762 R)
+((-4263 |has| |#2| (-984)) (-4264 |has| |#2| (-984)) (-4266 |has| |#2| (-6 -4266)) ((-4271 "*") |has| |#2| (-162)) (-4269 . T))
+((-3810 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))))) (-3810 (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#2| (QUOTE (-344))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344)))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-741))) (-3810 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-793)))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-162))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-984)))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098)))) (-3810 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (-3810 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (-3810 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))))) (-3810 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516)))))) (|HasCategory| (-516) (QUOTE (-795))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-3810 (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasAttribute| |#2| (QUOTE -4266)) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-764 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4262 |has| |#1| (-6 -4262)) (-4259 . T) (-4258 . T) (-4261 . T))
-((|HasCategory| |#1| (QUOTE (-848))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-162))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520)))) (-12 (|HasCategory| (-764 (-1095)) (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-359))))) (-12 (|HasCategory| (-764 (-1095)) (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-528))))) (-12 (|HasCategory| (-764 (-1095)) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| (-764 (-1095)) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528)))))) (-12 (|HasCategory| (-764 (-1095)) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504))))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-215))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#1| (QUOTE (-343))) (-1463 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528)))))) (|HasAttribute| |#1| (QUOTE -4262)) (|HasCategory| |#1| (QUOTE (-431))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-138)))))
-(-763 |Kernels| R |var|)
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-851))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-851)))) (-3810 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-851)))) (-3810 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| (-766 (-1098)) (LIST (QUOTE -827) (QUOTE (-359))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| (-766 (-1098)) (LIST (QUOTE -827) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-766 (-1098)) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| (-766 (-1098)) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-766 (-1098)) (LIST (QUOTE -572) (QUOTE (-505))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#1| (QUOTE (-344))) (-3810 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(-765 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring.")))
-(((-4266 "*") |has| |#2| (-343)) (-4257 |has| |#2| (-343)) (-4262 |has| |#2| (-343)) (-4256 |has| |#2| (-343)) (-4261 . T) (-4259 . T) (-4258 . T))
-((|HasCategory| |#2| (QUOTE (-343))))
-(-764 S)
+(((-4271 "*") |has| |#2| (-344)) (-4262 |has| |#2| (-344)) (-4267 |has| |#2| (-344)) (-4261 |has| |#2| (-344)) (-4266 . T) (-4264 . T) (-4263 . T))
+((|HasCategory| |#2| (QUOTE (-344))))
+(-766 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
NIL
NIL
-(-765 S)
+(-767 S)
((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
NIL
-(-766)
+(-768)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+NIL
+(-769)
+((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
+NIL
NIL
-(-767)
+(-770)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
NIL
NIL
-(-768)
+(-771)
((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
NIL
NIL
-(-769)
+(-772)
((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
NIL
NIL
-(-770)
-((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
+(-773)
+((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents.")))
NIL
NIL
-(-771)
-((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents.")))
+(-774)
+((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
NIL
NIL
-(-772 R)
+(-775 R)
((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath.")))
NIL
NIL
-(-773 P R)
+(-776 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-215))))
-(-774)
-((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
-NIL
-NIL
-(-775)
+((-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-216))))
+(-777)
((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM.")))
NIL
NIL
-(-776 S)
+(-778 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4264 . T) (-4254 . T) (-4265 . T) (-4050 . T))
+((-4269 . T) (-4259 . T) (-4270 . T) (-2303 . T))
NIL
-(-777)
+(-779)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
NIL
NIL
-(-778 R S)
+(-780 R)
+((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
+((-4266 |has| |#1| (-793)))
+((|HasCategory| |#1| (QUOTE (-793))) (-3810 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-793)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (QUOTE (-515))) (-3810 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-21))))
+(-781 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
-(-779 R)
-((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4261 |has| |#1| (-791)))
-((|HasCategory| |#1| (QUOTE (-791))) (-1463 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-791)))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-513))) (-1463 (|HasCategory| |#1| (QUOTE (-791))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-21))))
-(-780 R)
+(-782 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4259 |has| |#1| (-162)) (-4258 |has| |#1| (-162)) (-4261 . T))
+((-4264 |has| |#1| (-162)) (-4263 |has| |#1| (-162)) (-4266 . T))
((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))))
-(-781)
+(-783)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
NIL
NIL
-(-782)
+(-784)
((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-783)
+(-785)
((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")))
NIL
NIL
-(-784)
+(-786)
((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-785 R S)
+(-787 R)
+((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
+((-4266 |has| |#1| (-793)))
+((|HasCategory| |#1| (QUOTE (-793))) (-3810 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-793)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (QUOTE (-515))) (-3810 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-21))))
+(-788 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
NIL
-(-786 R)
-((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4261 |has| |#1| (-791)))
-((|HasCategory| |#1| (QUOTE (-791))) (-1463 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-791)))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-513))) (-1463 (|HasCategory| |#1| (QUOTE (-791))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-21))))
-(-787)
+(-789)
((|constructor| (NIL "Ordered finite sets.")))
NIL
NIL
-(-788 -4174 S)
+(-790 -2879 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
-(-789)
+(-791)
((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline")))
NIL
NIL
-(-790 S)
+(-792 S)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
NIL
NIL
-(-791)
+(-793)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4261 . T))
+((-4266 . T))
NIL
-(-792 S)
+(-794 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-793)
+(-795)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-794 S R)
+(-796 S R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
NIL
-((|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-431))) (|HasCategory| |#2| (QUOTE (-520))) (|HasCategory| |#2| (QUOTE (-162))))
-(-795 R)
+((|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))))
+(-797 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4258 . T) (-4259 . T) (-4261 . T))
+((-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-796 R C)
+(-798 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
-((|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-520))))
-(-797 R |sigma| -4133)
+((|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523))))
+(-799 R |sigma| -3515)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-343))))
-(-798 |x| R |sigma| -4133)
+((-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-344))))
+(-800 |x| R |sigma| -3515)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial.")))
-((-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-520))) (|HasCategory| |#2| (QUOTE (-431))) (|HasCategory| |#2| (QUOTE (-343))))
-(-799 R)
+((-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-344))))
+(-801 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))))
-(-800)
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))))
+(-802)
((|constructor| (NIL "Semigroups with compatible ordering.")))
NIL
NIL
-(-801)
+(-803)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
-(-802)
-((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
+(-804)
+((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
-(-803)
-((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
+(-805)
+((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
-(-804 |VariableList|)
+(-806 |VariableList|)
((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed")))
NIL
NIL
-(-805 R |vl| |wl| |wtlevel|)
+(-807 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights")))
-((-4259 |has| |#1| (-162)) (-4258 |has| |#1| (-162)) (-4261 . T))
-((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-343))))
-(-806 R PS UP)
+((-4264 |has| |#1| (-162)) (-4263 |has| |#1| (-162)) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))))
+(-808 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-807 R |x| |pt|)
+(-809 R |x| |pt|)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-808 |p|)
-((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-NIL
-(-809 |p|)
+(-810 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-810 |p|)
+(-811 |p|)
+((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+NIL
+(-812 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| (-809 |#1|) (QUOTE (-848))) (|HasCategory| (-809 |#1|) (LIST (QUOTE -972) (QUOTE (-1095)))) (|HasCategory| (-809 |#1|) (QUOTE (-138))) (|HasCategory| (-809 |#1|) (QUOTE (-140))) (|HasCategory| (-809 |#1|) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| (-809 |#1|) (QUOTE (-957))) (|HasCategory| (-809 |#1|) (QUOTE (-766))) (-1463 (|HasCategory| (-809 |#1|) (QUOTE (-766))) (|HasCategory| (-809 |#1|) (QUOTE (-793)))) (|HasCategory| (-809 |#1|) (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| (-809 |#1|) (QUOTE (-1071))) (|HasCategory| (-809 |#1|) (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| (-809 |#1|) (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| (-809 |#1|) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-809 |#1|) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| (-809 |#1|) (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| (-809 |#1|) (QUOTE (-215))) (|HasCategory| (-809 |#1|) (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| (-809 |#1|) (LIST (QUOTE -489) (QUOTE (-1095)) (LIST (QUOTE -809) (|devaluate| |#1|)))) (|HasCategory| (-809 |#1|) (LIST (QUOTE -290) (LIST (QUOTE -809) (|devaluate| |#1|)))) (|HasCategory| (-809 |#1|) (LIST (QUOTE -267) (LIST (QUOTE -809) (|devaluate| |#1|)) (LIST (QUOTE -809) (|devaluate| |#1|)))) (|HasCategory| (-809 |#1|) (QUOTE (-288))) (|HasCategory| (-809 |#1|) (QUOTE (-513))) (|HasCategory| (-809 |#1|) (QUOTE (-793))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-809 |#1|) (QUOTE (-848)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-809 |#1|) (QUOTE (-848)))) (|HasCategory| (-809 |#1|) (QUOTE (-138)))))
-(-811 |p| PADIC)
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| (-810 |#1|) (QUOTE (-851))) (|HasCategory| (-810 |#1|) (LIST (QUOTE -975) (QUOTE (-1098)))) (|HasCategory| (-810 |#1|) (QUOTE (-138))) (|HasCategory| (-810 |#1|) (QUOTE (-140))) (|HasCategory| (-810 |#1|) (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-810 |#1|) (QUOTE (-958))) (|HasCategory| (-810 |#1|) (QUOTE (-768))) (-3810 (|HasCategory| (-810 |#1|) (QUOTE (-768))) (|HasCategory| (-810 |#1|) (QUOTE (-795)))) (|HasCategory| (-810 |#1|) (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| (-810 |#1|) (QUOTE (-1074))) (|HasCategory| (-810 |#1|) (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| (-810 |#1|) (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| (-810 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-810 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| (-810 |#1|) (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| (-810 |#1|) (QUOTE (-216))) (|HasCategory| (-810 |#1|) (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| (-810 |#1|) (LIST (QUOTE -491) (QUOTE (-1098)) (LIST (QUOTE -810) (|devaluate| |#1|)))) (|HasCategory| (-810 |#1|) (LIST (QUOTE -291) (LIST (QUOTE -810) (|devaluate| |#1|)))) (|HasCategory| (-810 |#1|) (LIST (QUOTE -268) (LIST (QUOTE -810) (|devaluate| |#1|)) (LIST (QUOTE -810) (|devaluate| |#1|)))) (|HasCategory| (-810 |#1|) (QUOTE (-289))) (|HasCategory| (-810 |#1|) (QUOTE (-515))) (|HasCategory| (-810 |#1|) (QUOTE (-795))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-810 |#1|) (QUOTE (-851)))) (-3810 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-810 |#1|) (QUOTE (-851)))) (|HasCategory| (-810 |#1|) (QUOTE (-138)))))
+(-813 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-1095)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#2| (QUOTE (-957))) (|HasCategory| |#2| (QUOTE (-766))) (-1463 (|HasCategory| |#2| (QUOTE (-766))) (|HasCategory| |#2| (QUOTE (-793)))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| |#2| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#2| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (LIST (QUOTE -489) (QUOTE (-1095)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -267) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-288))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-793))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-848)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-138)))))
-(-812 S T$)
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1098)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#2| (QUOTE (-958))) (|HasCategory| |#2| (QUOTE (-768))) (-3810 (|HasCategory| |#2| (QUOTE (-768))) (|HasCategory| |#2| (QUOTE (-795)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#2| (LIST (QUOTE -491) (QUOTE (-1098)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -268) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-795))) (-12 (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (-3810 (-12 (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (|HasCategory| |#2| (QUOTE (-138)))))
+(-814 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1023)))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1023)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802))))))
-(-813)
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-3810 (-12 (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805))))))
+(-815)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
NIL
-(-814)
+(-816)
((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.")))
NIL
NIL
-(-815 CF1 CF2)
+(-817 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-816 |ComponentFunction|)
+(-818 |ComponentFunction|)
((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}.")))
NIL
NIL
-(-817 CF1 CF2)
+(-819 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-818 |ComponentFunction|)
+(-820 |ComponentFunction|)
((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-819)
+(-821)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result.")))
NIL
NIL
-(-820 CF1 CF2)
+(-822 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-821 |ComponentFunction|)
+(-823 |ComponentFunction|)
((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-822)
+(-824)
((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}")))
NIL
NIL
-(-823 R)
+(-825 R)
((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself.")))
NIL
NIL
-(-824 R S L)
+(-826 R S L)
((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-825 S)
+(-827 S)
((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches.")))
NIL
NIL
-(-826 |Base| |Subject| |Pat|)
+(-828 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-3617 (|HasCategory| |#2| (QUOTE (-981)))) (-3617 (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-1095)))))) (-12 (|HasCategory| |#2| (QUOTE (-981))) (-3617 (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-1095)))))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-1095)))))
-(-827 R A B)
+((-12 (-3595 (|HasCategory| |#2| (QUOTE (-984)))) (-3595 (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1098)))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (-3595 (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1098)))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1098)))))
+(-829 R S)
+((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
+NIL
+NIL
+(-830 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
NIL
-(-828 R S)
-((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
+(-831 R)
+((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
NIL
NIL
-(-829 R -3245)
+(-832 R -2932)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-830 R S)
+(-833 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-831 R)
-((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
-NIL
-NIL
-(-832 |VarSet|)
+(-834 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
NIL
NIL
-(-833 UP R)
+(-835 UP R)
((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented")))
NIL
NIL
-(-834)
+(-836)
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-835 UP -1305)
+(-837 UP -3358)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
-(-836)
+(-838)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}")))
NIL
NIL
-(-837)
+(-839)
((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-838 A S)
+(-840 A S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-839 S)
+(-841 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4261 . T))
+((-4266 . T))
NIL
-(-840 S)
+(-842 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-841 |n| R)
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-843 S)
+((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
+((-4266 . T))
+((-3810 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-795)))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-795))))
+(-844 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-842 S)
+(-845 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4261 . T))
+((-4266 . T))
NIL
-(-843 S)
+(-846 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-844 S)
-((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4261 . T))
-((-1463 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-793)))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-793))))
-(-845 R E |VarSet| S)
+(-847 |p|)
+((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| $ (QUOTE (-140))) (|HasCategory| $ (QUOTE (-138))) (|HasCategory| $ (QUOTE (-349))))
+(-848 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-846 R S)
+(-849 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-847 S)
+(-850 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-138))))
-(-848)
+(-851)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-849 |p|)
-((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| $ (QUOTE (-140))) (|HasCategory| $ (QUOTE (-138))) (|HasCategory| $ (QUOTE (-348))))
-(-850 R0 -1305 UP UPUP R)
+(-852 R0 -3358 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-851 UP UPUP R)
+(-853 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-852 UP UPUP)
+(-854 UP UPUP)
((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}")))
NIL
NIL
-(-853 R)
+(-855 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-854 R)
+(-856 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
NIL
NIL
-(-855 E OV R P)
+(-857 E OV R P)
((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-856)
+(-858)
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}.")))
NIL
NIL
-(-857 -1305)
+(-859 -3358)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-858 R)
+(-860)
+((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
+(((-4271 "*") . T))
+NIL
+(-861 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-859)
+(-862)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+NIL
+(-863 |xx| -3358)
+((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
NIL
-(-860)
-((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4266 "*") . T))
NIL
-(-861 -1305 P)
+(-864 -3358 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
NIL
NIL
-(-862 |xx| -1305)
-((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
+(-865 R |Var| |Expon| GR)
+((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-863 R |Var| |Expon| GR)
-((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
+(-866)
+((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}.")))
NIL
NIL
-(-864 S)
+(-867 S)
((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-865)
+(-868)
((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
-(-866)
-((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}.")))
-NIL
-NIL
-(-867)
+(-869)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-868 R -1305)
-((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
+(-870)
+((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-869)
-((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}.")))
+(-871 R -3358)
+((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-870 S A B)
+(-872 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-871 S R -1305)
+(-873 S R -3358)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-872 I)
+(-874 I)
((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-873 S E)
+(-875 S E)
((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-874 S R L)
+(-876 S R L)
((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-875 S E V R P)
+(-877 S E V R P)
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -825) (|devaluate| |#1|))))
-(-876 R -1305 -3245)
-((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
+((|HasCategory| |#3| (LIST (QUOTE -827) (|devaluate| |#1|))))
+(-878 -2932)
+((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-877 -3245)
-((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
+(-879 R -3358 -2932)
+((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-878 S R Q)
+(-880 S R Q)
((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-879 S)
+(-881 S)
((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion).")))
NIL
NIL
-(-880 S R P)
+(-882 S R P)
((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}.")))
NIL
NIL
-(-881)
+(-883)
((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}.")))
NIL
NIL
-(-882 R)
+(-884 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4265 . T) (-4264 . T))
-((-1463 (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|))))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (-1463 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1023)))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| (-528) (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-673))) (|HasCategory| |#1| (QUOTE (-981))) (-12 (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-981)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-883 |lv| R)
+((-4270 . T) (-4269 . T))
+((-3810 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (-3810 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-516) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#1| (QUOTE (-984))) (-12 (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-984)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-885 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
NIL
-(-884 |TheField| |ThePols|)
+(-886 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
-((|HasCategory| |#1| (QUOTE (-791))))
-(-885 R S)
+((|HasCategory| |#1| (QUOTE (-793))))
+(-887 R)
+((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-851))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-851)))) (-3810 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-851)))) (-3810 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| (-1098) (LIST (QUOTE -827) (QUOTE (-359))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| (-1098) (LIST (QUOTE -827) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-1098) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| (-1098) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-1098) (LIST (QUOTE -572) (QUOTE (-505))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-344))) (-3810 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(-888 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-886 |x| R)
+(-889 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-887 S R E |VarSet|)
+(-890 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-848))) (|HasAttribute| |#2| (QUOTE -4262)) (|HasCategory| |#2| (QUOTE (-431))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#4| (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| |#2| (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| |#4| (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#4| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#2| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#4| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#4| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#2| (QUOTE (-793))))
-(-888 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-851))) (|HasAttribute| |#2| (QUOTE -4267)) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#4| (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| |#4| (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| |#4| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#4| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#2| (QUOTE (-795))))
+(-891 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4262 |has| |#1| (-6 -4262)) (-4259 . T) (-4258 . T) (-4261 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
NIL
-(-889 E V R P -1305)
+(-892 E V R P -3358)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-890 E |Vars| R P S)
+(-893 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-891 R)
-((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4262 |has| |#1| (-6 -4262)) (-4259 . T) (-4258 . T) (-4261 . T))
-((|HasCategory| |#1| (QUOTE (-848))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-162))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520)))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-359))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-528))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528)))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504))))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-343))) (-1463 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528)))))) (|HasAttribute| |#1| (QUOTE -4262)) (|HasCategory| |#1| (QUOTE (-431))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-138)))))
-(-892 E V R P -1305)
+(-894 E V R P -3358)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
-((|HasCategory| |#3| (QUOTE (-431))))
-(-893)
+((|HasCategory| |#3| (QUOTE (-432))))
+(-895)
+((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}.")))
+NIL
+NIL
+(-896)
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-894 R L)
+(-897 R E)
+((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4267 |has| |#1| (-6 -4267)) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-523))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-128)))) (-3810 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasAttribute| |#1| (QUOTE -4267)))
+(-898 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}.")))
NIL
NIL
-(-895 A B)
+(-899 S)
+((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
+((-4270 . T) (-4269 . T))
+((-3810 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (-3810 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-516) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-900 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
NIL
NIL
-(-896 S)
-((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4265 . T) (-4264 . T))
-((-1463 (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|))))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (-1463 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1023)))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| (-528) (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1023))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-897)
+(-901)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-898 -1305)
+(-902 -3358)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-899 I)
+(-903 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-900)
+(-904)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-901 R E)
-((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4262 |has| |#1| (-6 -4262)) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-520))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-431))) (-12 (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#2| (QUOTE (-128)))) (-1463 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528)))))) (|HasAttribute| |#1| (QUOTE -4262)))
-(-902 A B)
+(-905 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented")))
-((-4261 -12 (|has| |#2| (-452)) (|has| |#1| (-452))))
-((-1463 (-12 (|HasCategory| |#1| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-739)))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793))))) (-12 (|HasCategory| |#1| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-739)))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-739))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-739))))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-452)))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-452)))) (-12 (|HasCategory| |#1| (QUOTE (-673))) (|HasCategory| |#2| (QUOTE (-673))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-348)))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-452)))) (-12 (|HasCategory| |#1| (QUOTE (-673))) (|HasCategory| |#2| (QUOTE (-673)))) (-12 (|HasCategory| |#1| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-739))))) (-12 (|HasCategory| |#1| (QUOTE (-673))) (|HasCategory| |#2| (QUOTE (-673)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793)))))
-(-903)
+((-4266 -12 (|has| |#2| (-453)) (|has| |#1| (-453))))
+((-3810 (-12 (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-795))))) (-12 (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-741)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-453)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-453)))) (-12 (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-675))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-349)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-453)))) (-12 (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-675))))) (-12 (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-675)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-795)))))
+(-906)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
NIL
-(-904 T$)
+(-907 T$)
((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the variable name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-905)
+((|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-908)
((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}.")))
NIL
NIL
-(-906 S)
+(-909 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4264 . T) (-4265 . T) (-4050 . T))
+((-4269 . T) (-4270 . T) (-2303 . T))
NIL
-(-907 R |polR|)
+(-910 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
-((|HasCategory| |#1| (QUOTE (-431))))
-(-908)
+((|HasCategory| |#1| (QUOTE (-432))))
+(-911)
((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|coerce| (((|List| (|Integer|)) $) "\\spad{coerce(p)} coerces a partition into a list of integers")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition")))
NIL
NIL
-(-909 S |Coef| |Expon| |Var|)
+(-912 S |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
NIL
NIL
-(-910 |Coef| |Expon| |Var|)
+(-913 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4258 . T) (-4259 . T) (-4261 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-911)
+(-914)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-912 S R E |VarSet| P)
+(-915 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
-((|HasCategory| |#2| (QUOTE (-520))))
-(-913 R E |VarSet| P)
+((|HasCategory| |#2| (QUOTE (-523))))
+(-916 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4264 . T) (-4050 . T))
+((-4269 . T) (-2303 . T))
NIL
-(-914 R E V P)
+(-917 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-288)))) (|HasCategory| |#1| (QUOTE (-431))))
-(-915 K)
+((-12 (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-289)))) (|HasCategory| |#1| (QUOTE (-432))))
+(-918 K)
((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation.")))
NIL
NIL
-(-916 |VarSet| E RC P)
+(-919 |VarSet| E RC P)
((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
-(-917 R)
+(-920 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4265 . T) (-4264 . T) (-4050 . T))
+((-4270 . T) (-4269 . T) (-2303 . T))
NIL
-(-918 R1 R2)
+(-921 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented")))
NIL
NIL
-(-919 R)
+(-922 R)
((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
NIL
NIL
-(-920 K)
+(-923 K)
((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
-(-921 R E OV PPR)
+(-924 R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-922 K R UP -1305)
+(-925 K R UP -3358)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-923 |vl| |nv|)
-((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
+(-926 R |Var| |Expon| |Dpoly|)
+((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
+((-12 (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-289)))))
+(-927 |vl| |nv|)
+((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
-(-924 R |Var| |Expon| |Dpoly|)
-((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-288)))))
-(-925 R E V P TS)
+(-928 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-926)
+(-929)
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation.")))
NIL
NIL
-(-927 A B R S)
-((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
-NIL
-NIL
-(-928 A S)
+(-930 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-288))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-1095)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#2| (QUOTE (-957))) (|HasCategory| |#2| (QUOTE (-766))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-1071))))
-(-929 S)
+((|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1098)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#2| (QUOTE (-958))) (|HasCategory| |#2| (QUOTE (-768))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#2| (QUOTE (-1074))))
+(-931 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-4050 . T) (-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-2303 . T) (-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-930 |n| K)
+(-932 A B R S)
+((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
+NIL
+NIL
+(-933 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
NIL
-(-931 S)
+(-934 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4264 . T) (-4265 . T) (-4050 . T))
+((-4269 . T) (-4270 . T) (-2303 . T))
NIL
-(-932 S R)
+(-935 R)
+((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
+((-4262 |has| |#1| (-272)) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#1| (QUOTE (-344))) (-3810 (|HasCategory| |#1| (QUOTE (-272))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-272))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1098)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (QUOTE (-992))) (|HasCategory| |#1| (QUOTE (-515))) (-3810 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))))
+(-936 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-271))))
-(-933 R)
+((|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-992))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-272))))
+(-937 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4257 |has| |#1| (-271)) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4262 |has| |#1| (-272)) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-934 QR R QS S)
+(-938 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-935 R)
-((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4257 |has| |#1| (-271)) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#1| (QUOTE (-343))) (-1463 (|HasCategory| |#1| (QUOTE (-271))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-271))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -489) (QUOTE (-1095)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -267) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-215))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-513))) (-1463 (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-343)))))
-(-936 S)
+(-939 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4264 . T) (-4265 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-937 S)
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-940 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-938)
+(-941)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-939 -1305 UP UPUP |radicnd| |n|)
+(-942 -3358 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4257 |has| (-387 |#2|) (-343)) (-4262 |has| (-387 |#2|) (-343)) (-4256 |has| (-387 |#2|) (-343)) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| (-387 |#2|) (QUOTE (-138))) (|HasCategory| (-387 |#2|) (QUOTE (-140))) (|HasCategory| (-387 |#2|) (QUOTE (-329))) (-1463 (|HasCategory| (-387 |#2|) (QUOTE (-343))) (|HasCategory| (-387 |#2|) (QUOTE (-329)))) (|HasCategory| (-387 |#2|) (QUOTE (-343))) (|HasCategory| (-387 |#2|) (QUOTE (-348))) (-1463 (-12 (|HasCategory| (-387 |#2|) (QUOTE (-215))) (|HasCategory| (-387 |#2|) (QUOTE (-343)))) (|HasCategory| (-387 |#2|) (QUOTE (-329)))) (-1463 (-12 (|HasCategory| (-387 |#2|) (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| (-387 |#2|) (QUOTE (-343)))) (-12 (|HasCategory| (-387 |#2|) (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| (-387 |#2|) (QUOTE (-329))))) (|HasCategory| (-387 |#2|) (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| (-387 |#2|) (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| (-387 |#2|) (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-348))) (-1463 (|HasCategory| (-387 |#2|) (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| (-387 |#2|) (QUOTE (-343)))) (-12 (|HasCategory| (-387 |#2|) (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| (-387 |#2|) (QUOTE (-343)))) (-12 (|HasCategory| (-387 |#2|) (QUOTE (-215))) (|HasCategory| (-387 |#2|) (QUOTE (-343)))))
-(-940 |bb|)
+((-4262 |has| (-388 |#2|) (-344)) (-4267 |has| (-388 |#2|) (-344)) (-4261 |has| (-388 |#2|) (-344)) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| (-388 |#2|) (QUOTE (-138))) (|HasCategory| (-388 |#2|) (QUOTE (-140))) (|HasCategory| (-388 |#2|) (QUOTE (-331))) (-3810 (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (QUOTE (-331)))) (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (QUOTE (-349))) (-3810 (-12 (|HasCategory| (-388 |#2|) (QUOTE (-216))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (|HasCategory| (-388 |#2|) (QUOTE (-331)))) (-3810 (-12 (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| (-388 |#2|) (QUOTE (-331))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -841) (QUOTE (-1098)))))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349))) (-3810 (|HasCategory| (-388 |#2|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| (-388 |#2|) (QUOTE (-216))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))))
+(-943 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| (-528) (QUOTE (-848))) (|HasCategory| (-528) (LIST (QUOTE -972) (QUOTE (-1095)))) (|HasCategory| (-528) (QUOTE (-138))) (|HasCategory| (-528) (QUOTE (-140))) (|HasCategory| (-528) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| (-528) (QUOTE (-957))) (|HasCategory| (-528) (QUOTE (-766))) (-1463 (|HasCategory| (-528) (QUOTE (-766))) (|HasCategory| (-528) (QUOTE (-793)))) (|HasCategory| (-528) (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| (-528) (QUOTE (-1071))) (|HasCategory| (-528) (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| (-528) (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| (-528) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-528) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| (-528) (QUOTE (-215))) (|HasCategory| (-528) (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| (-528) (LIST (QUOTE -489) (QUOTE (-1095)) (QUOTE (-528)))) (|HasCategory| (-528) (LIST (QUOTE -290) (QUOTE (-528)))) (|HasCategory| (-528) (LIST (QUOTE -267) (QUOTE (-528)) (QUOTE (-528)))) (|HasCategory| (-528) (QUOTE (-288))) (|HasCategory| (-528) (QUOTE (-513))) (|HasCategory| (-528) (QUOTE (-793))) (|HasCategory| (-528) (LIST (QUOTE -591) (QUOTE (-528)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-528) (QUOTE (-848)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-528) (QUOTE (-848)))) (|HasCategory| (-528) (QUOTE (-138)))))
-(-941)
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| (-516) (QUOTE (-851))) (|HasCategory| (-516) (LIST (QUOTE -975) (QUOTE (-1098)))) (|HasCategory| (-516) (QUOTE (-138))) (|HasCategory| (-516) (QUOTE (-140))) (|HasCategory| (-516) (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-516) (QUOTE (-958))) (|HasCategory| (-516) (QUOTE (-768))) (-3810 (|HasCategory| (-516) (QUOTE (-768))) (|HasCategory| (-516) (QUOTE (-795)))) (|HasCategory| (-516) (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| (-516) (QUOTE (-1074))) (|HasCategory| (-516) (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| (-516) (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| (-516) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-516) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| (-516) (QUOTE (-216))) (|HasCategory| (-516) (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| (-516) (LIST (QUOTE -491) (QUOTE (-1098)) (QUOTE (-516)))) (|HasCategory| (-516) (LIST (QUOTE -291) (QUOTE (-516)))) (|HasCategory| (-516) (LIST (QUOTE -268) (QUOTE (-516)) (QUOTE (-516)))) (|HasCategory| (-516) (QUOTE (-289))) (|HasCategory| (-516) (QUOTE (-515))) (|HasCategory| (-516) (QUOTE (-795))) (|HasCategory| (-516) (LIST (QUOTE -593) (QUOTE (-516)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-516) (QUOTE (-851)))) (-3810 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-516) (QUOTE (-851)))) (|HasCategory| (-516) (QUOTE (-138)))))
+(-944)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
NIL
-(-942)
+(-945)
((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size().")))
NIL
NIL
-(-943 RP)
+(-946 RP)
((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers.")))
NIL
NIL
-(-944 S)
+(-947 S)
((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number.")))
NIL
NIL
-(-945 A S)
+(-948 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4265)) (|HasCategory| |#2| (QUOTE (-1023))))
-(-946 S)
+((|HasAttribute| |#1| (QUOTE -4270)) (|HasCategory| |#2| (QUOTE (-1027))))
+(-949 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
-((-4050 . T))
+((-2303 . T))
NIL
-(-947 S)
+(-950 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
-(-948)
+(-951)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4257 . T) (-4262 . T) (-4256 . T) (-4259 . T) (-4258 . T) ((-4266 "*") . T) (-4261 . T))
+((-4262 . T) (-4267 . T) (-4261 . T) (-4264 . T) (-4263 . T) ((-4271 "*") . T) (-4266 . T))
NIL
-(-949 R -1305)
+(-952 R -3358)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-950 R -1305)
+(-953 R -3358)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-951 -1305 UP)
+(-954 -3358 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-952 -1305 UP)
+(-955 -3358 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
-(-953 S)
+(-956 S)
((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-954 F1 UP UPUP R F2)
+(-957 F1 UP UPUP R F2)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented")))
NIL
NIL
-(-955 |Pol|)
-((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
+(-958)
+((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
-(-956 |Pol|)
-((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
+(-959 |Pol|)
+((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-957)
-((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
+(-960 |Pol|)
+((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-958)
+(-961)
((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}.")))
NIL
NIL
-(-959 |TheField|)
+(-962 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4257 . T) (-4262 . T) (-4256 . T) (-4259 . T) (-4258 . T) ((-4266 "*") . T) (-4261 . T))
-((-1463 (|HasCategory| (-387 (-528)) (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| (-387 (-528)) (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| (-387 (-528)) (LIST (QUOTE -972) (QUOTE (-528)))))
-(-960 -1305 L)
+((-4262 . T) (-4267 . T) (-4261 . T) (-4264 . T) (-4263 . T) ((-4271 "*") . T) (-4266 . T))
+((-3810 (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| (-388 (-516)) (LIST (QUOTE -975) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| (-388 (-516)) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| (-388 (-516)) (LIST (QUOTE -975) (QUOTE (-516)))))
+(-963 -3358 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
-(-961 S)
+(-964 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1023))))
-(-962 R E V P)
+((|HasCategory| |#1| (QUOTE (-1027))))
+(-965 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4265 . T) (-4264 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -290) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#4| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-963 R)
+((-4270 . T) (-4269 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-966)
+((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
+NIL
+NIL
+(-967 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4266 "*"))))
-(-964 R)
+((|HasAttribute| |#1| (QUOTE (-4271 "*"))))
+(-968 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-288))))
-(-965 S)
+((-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-289))))
+(-969 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-966)
-((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
-NIL
-NIL
-(-967 S)
+(-970 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-968 S)
+(-971 S)
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-969 -1305 |Expon| |VarSet| |FPol| |LFPol|)
+(-972 -3358 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+(((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-970)
+(-973)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4264 . T) (-4265 . T))
-((-12 (|HasCategory| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (LIST (QUOTE -290) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2927) (QUOTE (-1095))) (LIST (QUOTE |:|) (QUOTE -1780) (QUOTE (-51))))))) (-1463 (|HasCategory| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (QUOTE (-1023))) (|HasCategory| (-51) (QUOTE (-1023)))) (-1463 (|HasCategory| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| (-51) (QUOTE (-1023))) (|HasCategory| (-51) (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (LIST (QUOTE -570) (QUOTE (-504)))) (-12 (|HasCategory| (-51) (QUOTE (-1023))) (|HasCategory| (-51) (LIST (QUOTE -290) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (QUOTE (-1023))) (|HasCategory| (-1095) (QUOTE (-793))) (|HasCategory| (-51) (QUOTE (-1023))) (-1463 (|HasCategory| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| (-51) (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| (-51) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (LIST (QUOTE -569) (QUOTE (-802)))))
-(-971 A S)
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4139) (QUOTE (-1098))) (LIST (QUOTE |:|) (QUOTE -2131) (QUOTE (-50)))))) (|HasCategory| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (QUOTE (-1027)))) (-3810 (|HasCategory| (-50) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (QUOTE (-1027)))) (-3810 (|HasCategory| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-50) (QUOTE (-1027))) (|HasCategory| (-50) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (QUOTE (-1027)))) (|HasCategory| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (LIST (QUOTE -572) (QUOTE (-505)))) (-12 (|HasCategory| (-50) (QUOTE (-1027))) (|HasCategory| (-50) (LIST (QUOTE -291) (QUOTE (-50))))) (|HasCategory| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (QUOTE (-1027))) (|HasCategory| (-1098) (QUOTE (-795))) (|HasCategory| (-50) (QUOTE (-1027))) (-3810 (|HasCategory| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-50) (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| (-50) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (LIST (QUOTE -571) (QUOTE (-805)))))
+(-974 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%.")))
NIL
NIL
-(-972 S)
+(-975 S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#1|) "\\spad{coerce(a)} transforms a into an element of \\%.")))
NIL
NIL
-(-973 Q R)
+(-976 Q R)
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-974)
+(-977 R)
+((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
+NIL
+NIL
+(-978)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-975 UP)
+(-979 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-976 R)
+(-980 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
-(-977 R)
-((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
-NIL
-NIL
-(-978 R |ls|)
+(-981 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4265 . T) (-4264 . T))
-((-12 (|HasCategory| (-726 |#1| (-804 |#2|)) (QUOTE (-1023))) (|HasCategory| (-726 |#1| (-804 |#2|)) (LIST (QUOTE -290) (LIST (QUOTE -726) (|devaluate| |#1|) (LIST (QUOTE -804) (|devaluate| |#2|)))))) (|HasCategory| (-726 |#1| (-804 |#2|)) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| (-726 |#1| (-804 |#2|)) (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| (-804 |#2|) (QUOTE (-348))) (|HasCategory| (-726 |#1| (-804 |#2|)) (LIST (QUOTE -569) (QUOTE (-802)))))
-(-979)
+((-4270 . T) (-4269 . T))
+((-12 (|HasCategory| (-728 |#1| (-806 |#2|)) (QUOTE (-1027))) (|HasCategory| (-728 |#1| (-806 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -728) (|devaluate| |#1|) (LIST (QUOTE -806) (|devaluate| |#2|)))))) (|HasCategory| (-728 |#1| (-806 |#2|)) (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-728 |#1| (-806 |#2|)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| (-806 |#2|) (QUOTE (-349))) (|HasCategory| (-728 |#1| (-806 |#2|)) (LIST (QUOTE -571) (QUOTE (-805)))))
+(-982)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-980 S)
+(-983 S)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
NIL
NIL
-(-981)
+(-984)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4261 . T))
+((-4266 . T))
NIL
-(-982 S |m| |n| R |Row| |Col|)
+(-985 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
-((|HasCategory| |#4| (QUOTE (-288))) (|HasCategory| |#4| (QUOTE (-343))) (|HasCategory| |#4| (QUOTE (-520))) (|HasCategory| |#4| (QUOTE (-162))))
-(-983 |m| |n| R |Row| |Col|)
+((|HasCategory| |#4| (QUOTE (-289))) (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (QUOTE (-523))) (|HasCategory| |#4| (QUOTE (-162))))
+(-986 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4264 . T) (-4050 . T) (-4259 . T) (-4258 . T))
+((-4269 . T) (-2303 . T) (-4264 . T) (-4263 . T))
NIL
-(-984 |m| |n| R)
+(-987 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4264 . T) (-4259 . T) (-4258 . T))
-((-1463 (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -570) (QUOTE (-504)))) (-1463 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-343)))) (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (QUOTE (-288))) (|HasCategory| |#3| (QUOTE (-520))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -569) (QUOTE (-802)))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))))
-(-985 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((-4269 . T) (-4264 . T) (-4263 . T))
+((-3810 (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -572) (QUOTE (-505)))) (-3810 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344)))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (QUOTE (-289))) (|HasCategory| |#3| (QUOTE (-523))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -571) (QUOTE (-805)))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))))
+(-988 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-986 R)
+(-989 R)
((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
NIL
-(-987)
+(-990)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")))
NIL
NIL
-(-988 S)
+(-991 S)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
NIL
-(-989)
+(-992)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-990 |TheField| |ThePolDom|)
+(-993 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
NIL
NIL
-(-991)
+(-994)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4252 . T) (-4256 . T) (-4251 . T) (-4262 . T) (-4263 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4257 . T) (-4261 . T) (-4256 . T) (-4267 . T) (-4268 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-992)
+(-995)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4264 . T) (-4265 . T))
-((-12 (|HasCategory| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (LIST (QUOTE -290) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2927) (QUOTE (-1095))) (LIST (QUOTE |:|) (QUOTE -1780) (QUOTE (-51))))))) (-1463 (|HasCategory| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (QUOTE (-1023))) (|HasCategory| (-51) (QUOTE (-1023)))) (-1463 (|HasCategory| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| (-51) (QUOTE (-1023))) (|HasCategory| (-51) (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (LIST (QUOTE -570) (QUOTE (-504)))) (-12 (|HasCategory| (-51) (QUOTE (-1023))) (|HasCategory| (-51) (LIST (QUOTE -290) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (QUOTE (-1023))) (|HasCategory| (-1095) (QUOTE (-793))) (|HasCategory| (-51) (QUOTE (-1023))) (-1463 (|HasCategory| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| (-51) (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| (-51) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (LIST (QUOTE -569) (QUOTE (-802)))))
-(-993 S R E V)
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4139) (QUOTE (-1098))) (LIST (QUOTE |:|) (QUOTE -2131) (QUOTE (-50)))))) (|HasCategory| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (QUOTE (-1027)))) (-3810 (|HasCategory| (-50) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (QUOTE (-1027)))) (-3810 (|HasCategory| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-50) (QUOTE (-1027))) (|HasCategory| (-50) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (QUOTE (-1027)))) (|HasCategory| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (LIST (QUOTE -572) (QUOTE (-505)))) (-12 (|HasCategory| (-50) (QUOTE (-1027))) (|HasCategory| (-50) (LIST (QUOTE -291) (QUOTE (-50))))) (|HasCategory| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (QUOTE (-1027))) (|HasCategory| (-1098) (QUOTE (-795))) (|HasCategory| (-50) (QUOTE (-1027))) (-3810 (|HasCategory| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-50) (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| (-50) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (LIST (QUOTE -571) (QUOTE (-805)))))
+(-996 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-431))) (|HasCategory| |#2| (QUOTE (-520))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#4| (LIST (QUOTE -570) (QUOTE (-1095)))))
-(-994 R E V)
+((|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -931) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-1098)))))
+(-997 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4262 |has| |#1| (-6 -4262)) (-4259 . T) (-4258 . T) (-4261 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
NIL
-(-995 S |TheField| |ThePols|)
+(-998 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-996 |TheField| |ThePols|)
+(-999 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-997 R E V P TS)
+(-1000 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-998 S R E V P)
+(-1001 S R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-999 R E V P)
+(-1002 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4265 . T) (-4264 . T) (-4050 . T))
+((-4270 . T) (-4269 . T) (-2303 . T))
NIL
-(-1000 R E V P TS)
+(-1003 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1001 |f|)
-((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
+(-1004 |Base| R -3358)
+((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1002 |Base| R -1305)
-((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
+(-1005 |f|)
+((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1003 |Base| R -1305)
+(-1006 |Base| R -3358)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}.")))
NIL
NIL
-(-1004 R |ls|)
+(-1007 R |ls|)
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-1005 UP SAE UPA)
+(-1008 R UP M)
+((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
+((-4262 |has| |#1| (-344)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-331))) (-3810 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-331)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098)))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098))))) (-3810 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))))
+(-1009 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1006 R UP M)
-((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4257 |has| |#1| (-343)) (-4262 |has| |#1| (-343)) (-4256 |has| |#1| (-343)) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-329))) (-1463 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-329)))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-348))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-215))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-329)))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095))))) (-12 (|HasCategory| |#1| (QUOTE (-329))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095))))) (-1463 (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-215))) (|HasCategory| |#1| (QUOTE (-343)))))
-(-1007 UP SAE UPA)
+(-1010 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1008)
+(-1011)
((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable")))
NIL
NIL
-(-1009 S)
+(-1012 S)
((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache.")))
NIL
NIL
-(-1010)
+(-1013)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `failed'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope.")))
NIL
NIL
-(-1011 R)
+(-1014 R)
((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}")))
NIL
NIL
-(-1012 R)
+(-1015 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4262 |has| |#1| (-6 -4262)) (-4259 . T) (-4258 . T) (-4261 . T))
-((|HasCategory| |#1| (QUOTE (-848))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-162))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520)))) (-12 (|HasCategory| (-1013 (-1095)) (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-359))))) (-12 (|HasCategory| (-1013 (-1095)) (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-528))))) (-12 (|HasCategory| (-1013 (-1095)) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| (-1013 (-1095)) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528)))))) (-12 (|HasCategory| (-1013 (-1095)) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504))))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-215))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#1| (QUOTE (-343))) (-1463 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528)))))) (|HasAttribute| |#1| (QUOTE -4262)) (|HasCategory| |#1| (QUOTE (-431))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-138)))))
-(-1013 S)
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-851))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-851)))) (-3810 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-851)))) (-3810 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| (-1016 (-1098)) (LIST (QUOTE -827) (QUOTE (-359))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| (-1016 (-1098)) (LIST (QUOTE -827) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-1016 (-1098)) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| (-1016 (-1098)) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-1016 (-1098)) (LIST (QUOTE -572) (QUOTE (-505))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#1| (QUOTE (-344))) (-3810 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(-1016 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1014 R S)
+(-1017 S)
+((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
+NIL
+((|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1027))))
+(-1018 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-791))))
-(-1015 R S)
-((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
+((|HasCategory| |#1| (QUOTE (-793))))
+(-1019 S)
+((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form.")))
NIL
+((|HasCategory| |#1| (QUOTE (-1027))))
+(-1020 R S)
+((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
-(-1016 S)
-((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1023))))
-(-1017 S)
+(-1021 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
-((-4050 . T))
-NIL
-(-1018 S)
-((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
+((-2303 . T))
NIL
-((|HasCategory| |#1| (QUOTE (-791))) (|HasCategory| |#1| (QUOTE (-1023))))
-(-1019 S L)
+(-1022 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}.")))
-((-4050 . T))
+((-2303 . T))
NIL
-(-1020 A S)
+(-1023 S)
+((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
+((-4269 . T) (-4259 . T) (-4270 . T))
+((-3810 (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-795))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-1024 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1021 S)
+(-1025 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4254 . T) (-4050 . T))
+((-4259 . T) (-2303 . T))
NIL
-(-1022 S)
+(-1026 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1023)
+(-1027)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1024 |m| |n|)
-((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
+(-1028 |m| |n|)
+((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1025 S)
-((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
-((-4264 . T) (-4254 . T) (-4265 . T))
-((-1463 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-793))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-1026 |Str| |Sym| |Int| |Flt| |Expr|)
-((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
+(-1029)
+((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1027)
-((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
+(-1030 |Str| |Sym| |Int| |Flt| |Expr|)
+((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
NIL
-(-1028 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1031 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types.")))
NIL
NIL
-(-1029 R FS)
+(-1032 R FS)
((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program.")))
NIL
NIL
-(-1030 R E V P TS)
+(-1033 R E V P TS)
((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1031 R E V P TS)
+(-1034 R E V P TS)
((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1032 R E V P)
+(-1035 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4265 . T) (-4264 . T) (-4050 . T))
+((-4270 . T) (-4269 . T) (-2303 . T))
NIL
-(-1033)
+(-1036)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
-(-1034 S)
+(-1037 S)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1035)
+(-1038)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1036 |dimtot| |dim1| S)
+(-1039 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4258 |has| |#3| (-981)) (-4259 |has| |#3| (-981)) (-4261 |has| |#3| (-6 -4261)) ((-4266 "*") |has| |#3| (-162)) (-4264 . T))
-((-1463 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-215))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-673))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-981))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -839) (QUOTE (-1095)))))) (-1463 (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (QUOTE (-1023)))) (-12 (|HasCategory| |#3| (QUOTE (-215))) (|HasCategory| |#3| (QUOTE (-981)))) (-12 (|HasCategory| |#3| (QUOTE (-981))) (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-981))) (|HasCategory| |#3| (LIST (QUOTE -839) (QUOTE (-1095))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (|HasCategory| |#3| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#3| (QUOTE (-343))) (-1463 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (QUOTE (-981)))) (-1463 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-343)))) (|HasCategory| |#3| (QUOTE (-981))) (|HasCategory| |#3| (QUOTE (-739))) (-1463 (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (QUOTE (-791)))) (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (QUOTE (-673))) (|HasCategory| |#3| (QUOTE (-162))) (-1463 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-981)))) (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#3| (LIST (QUOTE -839) (QUOTE (-1095)))) (-1463 (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#3| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-215))) (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (QUOTE (-673))) (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (QUOTE (-981))) (|HasCategory| |#3| (QUOTE (-1023)))) (-1463 (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#3| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-215))) (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (QUOTE (-981)))) (-1463 (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#3| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-215))) (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (QUOTE (-981)))) (-1463 (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#3| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-215))) (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (QUOTE (-981)))) (-1463 (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#3| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-215))) (|HasCategory| |#3| (QUOTE (-981)))) (|HasCategory| |#3| (QUOTE (-215))) (|HasCategory| |#3| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (LIST (QUOTE -839) (QUOTE (-1095))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (QUOTE (-128)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (QUOTE (-162)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (QUOTE (-215)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (QUOTE (-343)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (QUOTE (-348)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (QUOTE (-673)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (QUOTE (-739)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (QUOTE (-791)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (QUOTE (-981)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (QUOTE (-1023))))) (-1463 (-12 (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-215))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-673))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-791))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-981))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528)))))) (|HasCategory| (-528) (QUOTE (-793))) (-12 (|HasCategory| |#3| (QUOTE (-981))) (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#3| (QUOTE (-215))) (|HasCategory| |#3| (QUOTE (-981)))) (-12 (|HasCategory| |#3| (QUOTE (-981))) (|HasCategory| |#3| (LIST (QUOTE -839) (QUOTE (-1095))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528))))) (-1463 (|HasCategory| |#3| (QUOTE (-981))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -972) (QUOTE (-528)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#3| (QUOTE (-1023)))) (|HasAttribute| |#3| (QUOTE -4261)) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -290) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-1037 R |x|)
+((-4263 |has| |#3| (-984)) (-4264 |has| |#3| (-984)) (-4266 |has| |#3| (-6 -4266)) ((-4271 "*") |has| |#3| (-162)) (-4269 . T))
+((-3810 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))))) (-3810 (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (|HasCategory| |#3| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#3| (QUOTE (-344))) (-3810 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-984)))) (-3810 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344)))) (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (QUOTE (-741))) (-3810 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (QUOTE (-793)))) (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (QUOTE (-162))) (-3810 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-984)))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1098)))) (-3810 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1098))))) (-3810 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1098))))) (-3810 (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1098))))) (-3810 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1098))))) (-3810 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1098))))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))))) (-3810 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516)))))) (|HasCategory| (-516) (QUOTE (-795))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (-3810 (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-516))))) (|HasCategory| |#3| (QUOTE (-984)))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasAttribute| |#3| (QUOTE -4266)) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-1040 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
-((|HasCategory| |#1| (QUOTE (-431))))
-(-1038 R -1305)
-((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
+((|HasCategory| |#1| (QUOTE (-432))))
+(-1041)
+((|constructor| (NIL "This is the datatype for operation signatures as used by the compiler and the interpreter. See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|ConstructorCall|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|ConstructorCall|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")))
NIL
NIL
-(-1039 R)
-((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
+(-1042 R -3358)
+((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1040)
-((|constructor| (NIL "This is the datatype for operation signatures as used by the compiler and the interpreter. See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|ConstructorCall|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|ConstructorCall|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")))
+(-1043 R)
+((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1041)
+(-1044)
((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}")))
NIL
NIL
-(-1042)
+(-1045)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4252 . T) (-4256 . T) (-4251 . T) (-4262 . T) (-4263 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4257 . T) (-4261 . T) (-4256 . T) (-4267 . T) (-4268 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-1043 S)
+(-1046 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4264 . T) (-4265 . T) (-4050 . T))
+((-4269 . T) (-4270 . T) (-2303 . T))
NIL
-(-1044 S |ndim| R |Row| |Col|)
+(-1047 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-343))) (|HasAttribute| |#3| (QUOTE (-4266 "*"))) (|HasCategory| |#3| (QUOTE (-162))))
-(-1045 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (-344))) (|HasAttribute| |#3| (QUOTE (-4271 "*"))) (|HasCategory| |#3| (QUOTE (-162))))
+(-1048 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-4050 . T) (-4264 . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-2303 . T) (-4269 . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-1046 R |Row| |Col| M)
+(-1049 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1047 R |VarSet|)
+(-1050 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4262 |has| |#1| (-6 -4262)) (-4259 . T) (-4258 . T) (-4261 . T))
-((|HasCategory| |#1| (QUOTE (-848))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-162))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| |#2| (LIST (QUOTE -825) (QUOTE (-359))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -825) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#2| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-504))))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-343))) (-1463 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528)))))) (|HasAttribute| |#1| (QUOTE -4262)) (|HasCategory| |#1| (QUOTE (-431))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-138)))))
-(-1048 |Coef| |Var| SMP)
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-851))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-851)))) (-3810 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-851)))) (-3810 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-359))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-505))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-344))) (-3810 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(-1051 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4259 . T) (-4258 . T) (-4261 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-343))))
-(-1049 R E V P)
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-344))))
+(-1052 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4265 . T) (-4264 . T) (-4050 . T))
+((-4270 . T) (-4269 . T) (-2303 . T))
NIL
-(-1050 UP -1305)
+(-1053 UP -3358)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1051 R)
+(-1054 R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1052 R)
+(-1055 R)
((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1053 R)
+(-1056 R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1054 S A)
+(-1057 S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented")))
NIL
-((|HasCategory| |#1| (QUOTE (-793))))
-(-1055 R)
+((|HasCategory| |#1| (QUOTE (-795))))
+(-1058 R)
((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
-(-1056 R)
+(-1059 R)
((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1057)
+(-1060)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
-(-1058)
+(-1061)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1059)
+(-1062)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1060 V C)
+(-1063 V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1061 V C)
+(-1064 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4264 . T) (-4265 . T))
-((-12 (|HasCategory| (-1060 |#1| |#2|) (LIST (QUOTE -290) (LIST (QUOTE -1060) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1060 |#1| |#2|) (QUOTE (-1023)))) (|HasCategory| (-1060 |#1| |#2|) (QUOTE (-1023))) (-1463 (|HasCategory| (-1060 |#1| |#2|) (LIST (QUOTE -569) (QUOTE (-802)))) (-12 (|HasCategory| (-1060 |#1| |#2|) (LIST (QUOTE -290) (LIST (QUOTE -1060) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1060 |#1| |#2|) (QUOTE (-1023))))) (|HasCategory| (-1060 |#1| |#2|) (LIST (QUOTE -569) (QUOTE (-802)))))
-(-1062 |ndim| R)
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| (-1063 |#1| |#2|) (LIST (QUOTE -291) (LIST (QUOTE -1063) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1063 |#1| |#2|) (QUOTE (-1027)))) (|HasCategory| (-1063 |#1| |#2|) (QUOTE (-1027))) (-3810 (-12 (|HasCategory| (-1063 |#1| |#2|) (LIST (QUOTE -291) (LIST (QUOTE -1063) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1063 |#1| |#2|) (QUOTE (-1027)))) (|HasCategory| (-1063 |#1| |#2|) (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| (-1063 |#1| |#2|) (LIST (QUOTE -571) (QUOTE (-805)))))
+(-1065 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")))
-((-4261 . T) (-4253 |has| |#2| (-6 (-4266 "*"))) (-4264 . T) (-4258 . T) (-4259 . T))
-((|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (QUOTE (-215))) (|HasAttribute| |#2| (QUOTE (-4266 "*"))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528)))) (-1463 (-12 (|HasCategory| |#2| (QUOTE (-215))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))))) (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#2| (QUOTE (-288))) (|HasCategory| |#2| (QUOTE (-520))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-343))) (-1463 (|HasAttribute| |#2| (QUOTE (-4266 "*"))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#2| (QUOTE (-215)))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| |#2| (QUOTE (-162))))
-(-1063 S)
+((-4266 . T) (-4258 |has| |#2| (-6 (-4271 "*"))) (-4269 . T) (-4263 . T) (-4264 . T))
+((|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasAttribute| |#2| (QUOTE (-4271 "*"))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516)))) (-3810 (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098)))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-344))) (-3810 (|HasAttribute| |#2| (QUOTE (-4271 "*"))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| |#2| (QUOTE (-162))))
+(-1066 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1064)
+(-1067)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4265 . T) (-4264 . T) (-4050 . T))
+((-4270 . T) (-4269 . T) (-2303 . T))
NIL
-(-1065 R E V P TS)
+(-1068 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1066 R E V P)
+(-1069 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4265 . T) (-4264 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -290) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#4| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-1067 S)
+((-4270 . T) (-4269 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-1070 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4264 . T) (-4265 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-1068 A S)
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-1071 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1069 S)
+(-1072 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
-((-4050 . T))
+((-2303 . T))
NIL
-(-1070 |Key| |Ent| |dent|)
+(-1073 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4265 . T))
-((-12 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -290) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2927) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1780) (|devaluate| |#2|)))))) (-1463 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1023)))) (-1463 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -570) (QUOTE (-504)))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-793))) (-1463 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -569) (QUOTE (-802)))))
-(-1071)
+((-4270 . T))
+((-12 (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4139) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2131) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027)))) (-3810 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027)))) (-3810 (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027)))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -572) (QUOTE (-505)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-795))) (-3810 (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -571) (QUOTE (-805)))))
+(-1074)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1072 |Coef|)
+(-1075 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1073 S)
+(-1076 S)
+((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
+((-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-516) (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-1077 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}.")))
NIL
NIL
-(-1074 A B)
+(-1078 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-1075 A B C)
+(-1079 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}.")))
NIL
NIL
-(-1076 S)
-((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4265 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| (-528) (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-1077)
+(-1080)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4265 . T) (-4264 . T) (-4050 . T))
+((-4270 . T) (-4269 . T) (-2303 . T))
NIL
-(-1078)
+(-1081)
NIL
-((-4265 . T) (-4264 . T))
-((-1463 (-12 (|HasCategory| (-137) (QUOTE (-793))) (|HasCategory| (-137) (LIST (QUOTE -290) (QUOTE (-137))))) (-12 (|HasCategory| (-137) (QUOTE (-1023))) (|HasCategory| (-137) (LIST (QUOTE -290) (QUOTE (-137)))))) (|HasCategory| (-137) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| (-137) (QUOTE (-793))) (|HasCategory| (-528) (QUOTE (-793))) (|HasCategory| (-137) (QUOTE (-1023))) (-12 (|HasCategory| (-137) (QUOTE (-1023))) (|HasCategory| (-137) (LIST (QUOTE -290) (QUOTE (-137))))) (|HasCategory| (-137) (LIST (QUOTE -569) (QUOTE (-802)))))
-(-1079 |Entry|)
+((-4270 . T) (-4269 . T))
+((-3810 (-12 (|HasCategory| (-137) (QUOTE (-795))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137)))))) (|HasCategory| (-137) (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-137) (QUOTE (-795))) (|HasCategory| (-516) (QUOTE (-795))) (|HasCategory| (-137) (QUOTE (-1027))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (|HasCategory| (-137) (LIST (QUOTE -571) (QUOTE (-805)))))
+(-1082 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4264 . T) (-4265 . T))
-((-12 (|HasCategory| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (LIST (QUOTE -290) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2927) (QUOTE (-1078))) (LIST (QUOTE |:|) (QUOTE -1780) (|devaluate| |#1|)))))) (-1463 (|HasCategory| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1023)))) (-1463 (|HasCategory| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (LIST (QUOTE -570) (QUOTE (-504)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (QUOTE (-1023))) (|HasCategory| (-1078) (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1023))) (-1463 (|HasCategory| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (LIST (QUOTE -569) (QUOTE (-802)))))
-(-1080 A)
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4139) (QUOTE (-1081))) (LIST (QUOTE |:|) (QUOTE -2131) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (QUOTE (-1027)))) (-3810 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (QUOTE (-1027)))) (-3810 (|HasCategory| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (QUOTE (-1027)))) (|HasCategory| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (LIST (QUOTE -572) (QUOTE (-505)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (QUOTE (-1027))) (|HasCategory| (-1081) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-3810 (|HasCategory| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (LIST (QUOTE -571) (QUOTE (-805)))))
+(-1083 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}")))
NIL
-((|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))))
-(-1081 |Coef|)
-((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
+((|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))))
+(-1084 |Coef|)
+((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1082 |Coef|)
-((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
+(-1085 |Coef|)
+((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1083 R UP)
+(-1086 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-288))))
-(-1084 |n| R)
+((|HasCategory| |#1| (QUOTE (-289))))
+(-1087 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1085 S1 S2)
+(-1088 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}")))
NIL
NIL
-(-1086 |Coef| |var| |cen|)
+(-1089 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4266 "*") -1463 (-3287 (|has| |#1| (-343)) (|has| (-1093 |#1| |#2| |#3|) (-766))) (|has| |#1| (-162)) (-3287 (|has| |#1| (-343)) (|has| (-1093 |#1| |#2| |#3|) (-848)))) (-4257 -1463 (-3287 (|has| |#1| (-343)) (|has| (-1093 |#1| |#2| |#3|) (-766))) (|has| |#1| (-520)) (-3287 (|has| |#1| (-343)) (|has| (-1093 |#1| |#2| |#3|) (-848)))) (-4262 |has| |#1| (-343)) (-4256 |has| |#1| (-343)) (-4258 . T) (-4259 . T) (-4261 . T))
-((-1463 (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-766))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-1071))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (LIST (QUOTE -267) (LIST (QUOTE -1093) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1093) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (LIST (QUOTE -290) (LIST (QUOTE -1093) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (LIST (QUOTE -489) (QUOTE (-1095)) (LIST (QUOTE -1093) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (LIST (QUOTE -972) (QUOTE (-1095)))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528)))))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-162))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520)))) (-1463 (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-138)))) (-1463 (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-140)))) (-1463 (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-528)) (|devaluate| |#1|)))))) (-1463 (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-215))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-528)) (|devaluate| |#1|))))) (|HasCategory| (-528) (QUOTE (-1035))) (-1463 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-343))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (LIST (QUOTE -972) (QUOTE (-1095)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-343)))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-520)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-766))) (|HasCategory| |#1| (QUOTE (-343)))) (-1463 (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-766))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-343))))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-1071))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (LIST (QUOTE -267) (LIST (QUOTE -1093) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1093) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (LIST (QUOTE -290) (LIST (QUOTE -1093) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (LIST (QUOTE -489) (QUOTE (-1095)) (LIST (QUOTE -1093) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-528))))) (|HasSignature| |#1| (LIST (QUOTE -2222) (LIST (|devaluate| |#1|) (QUOTE (-1095)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-528))))) (-1463 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-897))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasSignature| |#1| (LIST (QUOTE -1923) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1095))))) (|HasSignature| |#1| (LIST (QUOTE -2565) (LIST (LIST (QUOTE -595) (QUOTE (-1095))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-288))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-138))) (-1463 (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-766))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-520)))) (-1463 (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528)))))) (-1463 (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-766))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-162)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-343)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1093 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-138)))))
-(-1087 R -1305)
+(((-4271 "*") -3810 (-3119 (|has| |#1| (-344)) (|has| (-1096 |#1| |#2| |#3|) (-768))) (|has| |#1| (-162)) (-3119 (|has| |#1| (-344)) (|has| (-1096 |#1| |#2| |#3|) (-851)))) (-4262 -3810 (-3119 (|has| |#1| (-344)) (|has| (-1096 |#1| |#2| |#3|) (-768))) (|has| |#1| (-523)) (-3119 (|has| |#1| (-344)) (|has| (-1096 |#1| |#2| |#3|) (-851)))) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
+((-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-768)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-851)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (LIST (QUOTE -572) (QUOTE (-505))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (LIST (QUOTE -268) (LIST (QUOTE -1096) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1096) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (LIST (QUOTE -291) (LIST (QUOTE -1096) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (LIST (QUOTE -491) (QUOTE (-1098)) (LIST (QUOTE -1096) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-359))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-1098))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-795)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-958)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-1074)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-138)))) (|HasCategory| |#1| (QUOTE (-138)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-140)))) (|HasCategory| |#1| (QUOTE (-140)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-516)) (|devaluate| |#1|)))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-216)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-516)) (|devaluate| |#1|))))) (|HasCategory| (-516) (QUOTE (-1038))) (-3810 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-851)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-1098))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (LIST (QUOTE -572) (QUOTE (-505))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-958)))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-768)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-768)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-795))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-1074)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (LIST (QUOTE -268) (LIST (QUOTE -1096) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1096) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (LIST (QUOTE -291) (LIST (QUOTE -1096) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (LIST (QUOTE -491) (QUOTE (-1098)) (LIST (QUOTE -1096) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-359))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-516))))) (|HasSignature| |#1| (LIST (QUOTE -4233) (LIST (|devaluate| |#1|) (QUOTE (-1098)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-516))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-901))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasSignature| |#1| (LIST (QUOTE -4091) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1098))))) (|HasSignature| |#1| (LIST (QUOTE -3347) (LIST (LIST (QUOTE -594) (QUOTE (-1098))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-289)))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-138))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-768)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-523)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516)))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-768)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-162)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-795)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-851)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-138)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1096 |#1| |#2| |#3|) (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(-1090 R -3358)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1088 R)
+(-1091 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1089 R S)
+(-1092 R)
+((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4265 |has| |#1| (-344)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| (-1011) (LIST (QUOTE -827) (QUOTE (-359))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| (-1011) (LIST (QUOTE -827) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-1011) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| (-1011) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-1011) (LIST (QUOTE -572) (QUOTE (-505))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-851)))) (-3810 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-851)))) (-3810 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098)))) (-3810 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(-1093 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1090 E OV R P)
+(-1094 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1091 R)
-((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4260 |has| |#1| (-343)) (-4262 |has| |#1| (-6 -4262)) (-4259 . T) (-4258 . T) (-4261 . T))
-((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-162))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520)))) (-12 (|HasCategory| (-1008) (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-359))))) (-12 (|HasCategory| (-1008) (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -825) (QUOTE (-528))))) (-12 (|HasCategory| (-1008) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| (-1008) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528)))))) (-12 (|HasCategory| (-1008) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504))))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-431))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (-1463 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528)))))) (|HasCategory| |#1| (QUOTE (-215))) (|HasAttribute| |#1| (QUOTE -4262)) (|HasCategory| |#1| (QUOTE (-431))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-848)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-138)))))
-(-1092 |Coef| |var| |cen|)
+(-1095 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4262 |has| |#1| (-343)) (-4256 |has| |#1| (-343)) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-162))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -387) (QUOTE (-528))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -387) (QUOTE (-528))) (|devaluate| |#1|)))) (|HasCategory| (-387 (-528)) (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-343))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-520)))) (-1463 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-520)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -387) (QUOTE (-528)))))) (|HasSignature| |#1| (LIST (QUOTE -2222) (LIST (|devaluate| |#1|) (QUOTE (-1095)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -387) (QUOTE (-528)))))) (-1463 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-897))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasSignature| |#1| (LIST (QUOTE -1923) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1095))))) (|HasSignature| |#1| (LIST (QUOTE -2565) (LIST (LIST (QUOTE -595) (QUOTE (-1095))) (|devaluate| |#1|)))))))
-(-1093 |Coef| |var| |cen|)
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-516))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-516))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-516)) (QUOTE (-1038))) (|HasCategory| |#1| (QUOTE (-344))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-3810 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasSignature| |#1| (LIST (QUOTE -4233) (LIST (|devaluate| |#1|) (QUOTE (-1098)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-516)))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-901))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasSignature| |#1| (LIST (QUOTE -4091) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1098))))) (|HasSignature| |#1| (LIST (QUOTE -3347) (LIST (LIST (QUOTE -594) (QUOTE (-1098))) (|devaluate| |#1|)))))))
+(-1096 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-520))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-717)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-717)) (|devaluate| |#1|)))) (|HasCategory| (-717) (QUOTE (-1035))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-717))))) (|HasSignature| |#1| (LIST (QUOTE -2222) (LIST (|devaluate| |#1|) (QUOTE (-1095)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-717))))) (|HasCategory| |#1| (QUOTE (-343))) (-1463 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-897))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasSignature| |#1| (LIST (QUOTE -1923) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1095))))) (|HasSignature| |#1| (LIST (QUOTE -2565) (LIST (LIST (QUOTE -595) (QUOTE (-1095))) (|devaluate| |#1|)))))))
-(-1094)
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-523))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-719)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-719)) (|devaluate| |#1|)))) (|HasCategory| (-719) (QUOTE (-1038))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-719))))) (|HasSignature| |#1| (LIST (QUOTE -4233) (LIST (|devaluate| |#1|) (QUOTE (-1098)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-719))))) (|HasCategory| |#1| (QUOTE (-344))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-901))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasSignature| |#1| (LIST (QUOTE -4091) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1098))))) (|HasSignature| |#1| (LIST (QUOTE -3347) (LIST (LIST (QUOTE -594) (QUOTE (-1098))) (|devaluate| |#1|)))))))
+(-1097)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
NIL
-(-1095)
+(-1098)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts the string \\spad{s} to a symbol.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1096 R)
+(-1099 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}.")))
NIL
NIL
-(-1097 R)
+(-1100 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4262 |has| |#1| (-6 -4262)) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-520))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-431))) (-12 (|HasCategory| (-908) (QUOTE (-128))) (|HasCategory| |#1| (QUOTE (-520)))) (-1463 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528)))))) (|HasAttribute| |#1| (QUOTE -4262)))
-(-1098)
-((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4267 |has| |#1| (-6 -4267)) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-523))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| (-911) (QUOTE (-128)))) (-3810 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasAttribute| |#1| (QUOTE -4267)))
+(-1101)
+((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1099)
+(-1102)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1100)
+(-1103)
((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} building complete representation of Spad programs as objects of a term algebra built from ground terms of type integers,{} foats,{} symbols,{} and strings. This domain differs from InputForm in that it represents any entity in a Spad program,{} not just expressions. Related Constructors: Boolean,{} Integer,{} Float,{} Symbol,{} String,{} SExpression. See Also: SExpression,{} SetCategory. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} if \\spad{`x'} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (($ (|String|)) "\\spad{coerce(s)} injects the string value \\spad{`s'} into the syntax domain") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (($ (|Symbol|)) "\\spad{coerce(s)} injects the symbol \\spad{`s'} into the Syntax domain.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (($ (|DoubleFloat|)) "\\spad{coerce(f)} injects the float value \\spad{`f'} into the Syntax domain") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}") (($ (|Integer|)) "\\spad{coerce(i)} injects the integer value `i' into the Syntax domain.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1101 R)
+(-1104 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1102)
+(-1105)
((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension()} returns a string representation of a filename extension for native modules.")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform()} returns a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system.")))
NIL
NIL
-(-1103 S)
+(-1106 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1104 S)
+(-1107 |Key| |Entry|)
+((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4139) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2131) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027)))) (-3810 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027)))) (-3810 (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027)))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -572) (QUOTE (-505)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))) (-3810 (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-805)))) (|HasCategory| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (LIST (QUOTE -571) (QUOTE (-805)))))
+(-1108 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1105 |Key| |Entry|)
-((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4264 . T) (-4265 . T))
-((-12 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -290) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2927) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1780) (|devaluate| |#2|)))))) (-1463 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1023)))) (-1463 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -570) (QUOTE (-504)))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-1023))) (-1463 (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#2| (LIST (QUOTE -569) (QUOTE (-802)))) (|HasCategory| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (LIST (QUOTE -569) (QUOTE (-802)))))
-(-1106 R)
+(-1109 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1107 S |Key| |Entry|)
+(-1110 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
NIL
NIL
-(-1108 |Key| |Entry|)
+(-1111 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4265 . T) (-4050 . T))
+((-4270 . T) (-2303 . T))
NIL
-(-1109 |Key| |Entry|)
+(-1112 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1110)
+(-1113)
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1111 S)
-((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
+(-1114)
+((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format.")))
NIL
NIL
-(-1112)
-((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format.")))
+(-1115 S)
+((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1113)
+(-1116)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1114 R)
+(-1117 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1115)
+(-1118)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1116 S)
+(-1119 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1117)
+(-1120)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1118 S)
+(-1121 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4265 . T) (-4264 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1023))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-1119 S)
+((-4270 . T) (-4269 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-1122 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1120)
+(-1123)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1121 R -1305)
+(-1124 R -3358)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1122 R |Row| |Col| M)
+(-1125 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1123 R -1305)
+(-1126 R -3358)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -570) (LIST (QUOTE -831) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -825) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -570) (LIST (QUOTE -831) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -825) (|devaluate| |#1|)))))
-(-1124 S R E V P)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -831) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -827) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -831) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -827) (|devaluate| |#1|)))))
+(-1127 |Coef|)
+((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-344))))
+(-1128 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
-((|HasCategory| |#4| (QUOTE (-348))))
-(-1125 R E V P)
+((|HasCategory| |#4| (QUOTE (-349))))
+(-1129 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4265 . T) (-4264 . T) (-4050 . T))
+((-4270 . T) (-4269 . T) (-2303 . T))
NIL
-(-1126 |Coef|)
-((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4259 . T) (-4258 . T) (-4261 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-343))))
-(-1127 |Curve|)
+(-1130 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1128)
+(-1131)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1129 S)
+(-1132 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a")))
NIL
-((|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-1130 -1305)
+((|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-1133 -3358)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1131)
+(-1134)
((|constructor| (NIL "The fundamental Type.")))
-((-4050 . T))
+((-2303 . T))
NIL
-(-1132 S)
+(-1135 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
NIL
-((|HasCategory| |#1| (QUOTE (-793))))
-(-1133)
+((|HasCategory| |#1| (QUOTE (-795))))
+(-1136)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1134 S)
+(-1137 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1135)
+(-1138)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-1136 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1139 |Coef| |var| |cen|)
+((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
+(((-4271 "*") -3810 (-3119 (|has| |#1| (-344)) (|has| (-1169 |#1| |#2| |#3|) (-768))) (|has| |#1| (-162)) (-3119 (|has| |#1| (-344)) (|has| (-1169 |#1| |#2| |#3|) (-851)))) (-4262 -3810 (-3119 (|has| |#1| (-344)) (|has| (-1169 |#1| |#2| |#3|) (-768))) (|has| |#1| (-523)) (-3119 (|has| |#1| (-344)) (|has| (-1169 |#1| |#2| |#3|) (-851)))) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
+((-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-851)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -572) (QUOTE (-505))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -268) (LIST (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -291) (LIST (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -491) (QUOTE (-1098)) (LIST (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-359))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-1098))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-768)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-795)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-958)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-1074)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-138)))) (|HasCategory| |#1| (QUOTE (-138)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-140)))) (|HasCategory| |#1| (QUOTE (-140)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-516)) (|devaluate| |#1|)))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-216)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-516)) (|devaluate| |#1|))))) (|HasCategory| (-516) (QUOTE (-1038))) (-3810 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-851)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-1098))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -572) (QUOTE (-505))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-958)))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-768)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-768)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-795))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-1074)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -268) (LIST (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -291) (LIST (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -491) (QUOTE (-1098)) (LIST (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-359))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-516))))) (|HasSignature| |#1| (LIST (QUOTE -4233) (LIST (|devaluate| |#1|) (QUOTE (-1098)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-516))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-901))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasSignature| |#1| (LIST (QUOTE -4091) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1098))))) (|HasSignature| |#1| (LIST (QUOTE -3347) (LIST (LIST (QUOTE -594) (QUOTE (-1098))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-289)))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-138))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-851)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-768)))) (|HasCategory| |#1| (QUOTE (-523)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516)))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-851)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-768)))) (|HasCategory| |#1| (QUOTE (-162)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-795)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-851)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-138)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(-1140 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1137 |Coef|)
+(-1141 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4262 |has| |#1| (-343)) (-4256 |has| |#1| (-343)) (-4258 . T) (-4259 . T) (-4261 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-1138 S |Coef| UTS)
+(-1142 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-343))))
-(-1139 |Coef| UTS)
+((|HasCategory| |#2| (QUOTE (-344))))
+(-1143 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4262 |has| |#1| (-343)) (-4256 |has| |#1| (-343)) (-4050 |has| |#1| (-343)) (-4258 . T) (-4259 . T) (-4261 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-2303 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-1140 |Coef| UTS)
+(-1144 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4262 |has| |#1| (-343)) (-4256 |has| |#1| (-343)) (-4258 . T) (-4259 . T) (-4261 . T))
-((-1463 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -267) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -489) (QUOTE (-1095)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-766)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-957)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-504))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-1095)))))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-162))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520)))) (-1463 (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-138))))) (-1463 (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-140))))) (-1463 (-12 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-528)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-215)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-528)) (|devaluate| |#1|))))) (|HasCategory| (-528) (QUOTE (-1035))) (-1463 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-343))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-1095))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-504))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-957)))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-520)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-766)))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-766)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-793))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -267) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -489) (QUOTE (-1095)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528)))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -825) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -825) (QUOTE (-359))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-528))))) (|HasSignature| |#1| (LIST (QUOTE -2222) (LIST (|devaluate| |#1|) (QUOTE (-1095)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-528))))) (-1463 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-897))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasSignature| |#1| (LIST (QUOTE -1923) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1095))))) (|HasSignature| |#1| (LIST (QUOTE -2565) (LIST (LIST (QUOTE -595) (QUOTE (-1095))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-793)))) (|HasCategory| |#2| (QUOTE (-848))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-513)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-288)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-848)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-138))))))
-(-1141 |Coef| |var| |cen|)
-((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4266 "*") -1463 (-3287 (|has| |#1| (-343)) (|has| (-1169 |#1| |#2| |#3|) (-766))) (|has| |#1| (-162)) (-3287 (|has| |#1| (-343)) (|has| (-1169 |#1| |#2| |#3|) (-848)))) (-4257 -1463 (-3287 (|has| |#1| (-343)) (|has| (-1169 |#1| |#2| |#3|) (-766))) (|has| |#1| (-520)) (-3287 (|has| |#1| (-343)) (|has| (-1169 |#1| |#2| |#3|) (-848)))) (-4262 |has| |#1| (-343)) (-4256 |has| |#1| (-343)) (-4258 . T) (-4259 . T) (-4261 . T))
-((-1463 (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-766))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-1071))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -267) (LIST (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -290) (LIST (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -489) (QUOTE (-1095)) (LIST (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -972) (QUOTE (-1095)))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528)))))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-162))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520)))) (-1463 (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-138)))) (-1463 (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-140)))) (-1463 (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-528)) (|devaluate| |#1|)))))) (-1463 (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-215))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-528)) (|devaluate| |#1|))))) (|HasCategory| (-528) (QUOTE (-1035))) (-1463 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-343))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -972) (QUOTE (-1095)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-957))) (|HasCategory| |#1| (QUOTE (-343)))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-520)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-766))) (|HasCategory| |#1| (QUOTE (-343)))) (-1463 (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-766))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-343))))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-1071))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -267) (LIST (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -290) (LIST (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -489) (QUOTE (-1095)) (LIST (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-528))))) (|HasSignature| |#1| (LIST (QUOTE -2222) (LIST (|devaluate| |#1|) (QUOTE (-1095)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-528))))) (-1463 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-897))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasSignature| |#1| (LIST (QUOTE -1923) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1095))))) (|HasSignature| |#1| (LIST (QUOTE -2565) (LIST (LIST (QUOTE -595) (QUOTE (-1095))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-288))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-138))) (-1463 (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-766))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-520)))) (-1463 (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528)))))) (-1463 (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-766))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-162)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-343)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-138)))))
-(-1142 ZP)
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
+((-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-851)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-505))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -268) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -491) (QUOTE (-1098)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1098))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-768)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-795)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-958)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-1074)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-3810 (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-138))))) (-3810 (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-140))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-516)) (|devaluate| |#1|)))))) (-3810 (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-516)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-216))))) (|HasCategory| (-516) (QUOTE (-1038))) (-3810 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-851)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1098))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-505))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-958)))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-768)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-768)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-795))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -268) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -491) (QUOTE (-1098)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-359))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-516))))) (|HasSignature| |#1| (LIST (QUOTE -4233) (LIST (|devaluate| |#1|) (QUOTE (-1098)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-516))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-901))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasSignature| |#1| (LIST (QUOTE -4091) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1098))))) (|HasSignature| |#1| (LIST (QUOTE -3347) (LIST (LIST (QUOTE -594) (QUOTE (-1098))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-795)))) (|HasCategory| |#2| (QUOTE (-851))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-289)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-138))))))
+(-1145 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1143 R S)
-((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
-NIL
-((|HasCategory| |#1| (QUOTE (-791))))
-(-1144 S)
+(-1146 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
-((|HasCategory| |#1| (QUOTE (-791))) (|HasCategory| |#1| (QUOTE (-1023))))
-(-1145 |x| R |y| S)
+((|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1027))))
+(-1147 R S)
+((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
+NIL
+((|HasCategory| |#1| (QUOTE (-793))))
+(-1148 |x| R)
+((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial.")))
+(((-4271 "*") |has| |#2| (-162)) (-4262 |has| |#2| (-523)) (-4265 |has| |#2| (-344)) (-4267 |has| |#2| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-523)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-359)))) (|HasCategory| (-1011) (LIST (QUOTE -827) (QUOTE (-359))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-516)))) (|HasCategory| (-1011) (LIST (QUOTE -827) (QUOTE (-516))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| (-1011) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516))))) (|HasCategory| (-1011) (LIST (QUOTE -572) (LIST (QUOTE -831) (QUOTE (-516)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| (-1011) (LIST (QUOTE -572) (QUOTE (-505))))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-516)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (-3810 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-851)))) (-3810 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-851)))) (-3810 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-851)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098)))) (-3810 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasCategory| |#2| (QUOTE (-216))) (|HasAttribute| |#2| (QUOTE -4267)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (-3810 (-12 (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| $ (QUOTE (-138)))) (|HasCategory| |#2| (QUOTE (-138)))))
+(-1149 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1146 R Q UP)
+(-1150 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1147 R UP)
+(-1151 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1148 R UP)
+(-1152 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1149 R U)
+(-1153 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1150 |x| R)
-((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial.")))
-(((-4266 "*") |has| |#2| (-162)) (-4257 |has| |#2| (-520)) (-4260 |has| |#2| (-343)) (-4262 |has| |#2| (-6 -4262)) (-4259 . T) (-4258 . T) (-4261 . T))
-((|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-520))) (|HasCategory| |#2| (QUOTE (-162))) (-1463 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-520)))) (-12 (|HasCategory| (-1008) (LIST (QUOTE -825) (QUOTE (-359)))) (|HasCategory| |#2| (LIST (QUOTE -825) (QUOTE (-359))))) (-12 (|HasCategory| (-1008) (LIST (QUOTE -825) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -825) (QUOTE (-528))))) (-12 (|HasCategory| (-1008) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359))))) (|HasCategory| |#2| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-359)))))) (-12 (|HasCategory| (-1008) (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -570) (LIST (QUOTE -831) (QUOTE (-528)))))) (-12 (|HasCategory| (-1008) (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#2| (LIST (QUOTE -570) (QUOTE (-504))))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (-1463 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-431))) (|HasCategory| |#2| (QUOTE (-520))) (|HasCategory| |#2| (QUOTE (-848)))) (-1463 (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-431))) (|HasCategory| |#2| (QUOTE (-520))) (|HasCategory| |#2| (QUOTE (-848)))) (-1463 (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-431))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (-1463 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528)))))) (|HasCategory| |#2| (QUOTE (-215))) (|HasAttribute| |#2| (QUOTE -4262)) (|HasCategory| |#2| (QUOTE (-431))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-848)))) (-1463 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-138)))))
-(-1151 R PR S PS)
-((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
-NIL
-NIL
-(-1152 S R)
+(-1154 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-431))) (|HasCategory| |#2| (QUOTE (-520))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-1071))))
-(-1153 R)
+((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-1074))))
+(-1155 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4260 |has| |#1| (-343)) (-4262 |has| |#1| (-6 -4262)) (-4259 . T) (-4258 . T) (-4261 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4265 |has| |#1| (-344)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+NIL
+(-1156 R PR S PS)
+((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
-(-1154 S |Coef| |Expon|)
+NIL
+(-1157 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1035))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2222) (LIST (|devaluate| |#2|) (QUOTE (-1095))))))
-(-1155 |Coef| |Expon|)
+((|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1038))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4233) (LIST (|devaluate| |#2|) (QUOTE (-1098))))))
+(-1158 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4258 . T) (-4259 . T) (-4261 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-1156 RC P)
-((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
+(-1159 RC P)
+((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1157 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1160 |Coef| |var| |cen|)
+((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-516))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-516))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-516)) (QUOTE (-1038))) (|HasCategory| |#1| (QUOTE (-344))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-3810 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasSignature| |#1| (LIST (QUOTE -4233) (LIST (|devaluate| |#1|) (QUOTE (-1098)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-516)))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-901))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasSignature| |#1| (LIST (QUOTE -4091) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1098))))) (|HasSignature| |#1| (LIST (QUOTE -3347) (LIST (LIST (QUOTE -594) (QUOTE (-1098))) (|devaluate| |#1|)))))))
+(-1161 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1158 |Coef|)
+(-1162 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4262 |has| |#1| (-343)) (-4256 |has| |#1| (-343)) (-4258 . T) (-4259 . T) (-4261 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-1159 S |Coef| ULS)
+(-1163 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1160 |Coef| ULS)
+(-1164 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4262 |has| |#1| (-343)) (-4256 |has| |#1| (-343)) (-4258 . T) (-4259 . T) (-4261 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-1161 |Coef| ULS)
+(-1165 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4262 |has| |#1| (-343)) (-4256 |has| |#1| (-343)) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-162))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -387) (QUOTE (-528))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -387) (QUOTE (-528))) (|devaluate| |#1|)))) (|HasCategory| (-387 (-528)) (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-343))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-520)))) (-1463 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-520)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -387) (QUOTE (-528)))))) (|HasSignature| |#1| (LIST (QUOTE -2222) (LIST (|devaluate| |#1|) (QUOTE (-1095)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -387) (QUOTE (-528)))))) (-1463 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-897))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasSignature| |#1| (LIST (QUOTE -1923) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1095))))) (|HasSignature| |#1| (LIST (QUOTE -2565) (LIST (LIST (QUOTE -595) (QUOTE (-1095))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))))
-(-1162 |Coef| |var| |cen|)
-((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4262 |has| |#1| (-343)) (-4256 |has| |#1| (-343)) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#1| (QUOTE (-162))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -387) (QUOTE (-528))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -387) (QUOTE (-528))) (|devaluate| |#1|)))) (|HasCategory| (-387 (-528)) (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-343))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-520)))) (-1463 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-520)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -387) (QUOTE (-528)))))) (|HasSignature| |#1| (LIST (QUOTE -2222) (LIST (|devaluate| |#1|) (QUOTE (-1095)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -387) (QUOTE (-528)))))) (-1463 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-897))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasSignature| |#1| (LIST (QUOTE -1923) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1095))))) (|HasSignature| |#1| (LIST (QUOTE -2565) (LIST (LIST (QUOTE -595) (QUOTE (-1095))) (|devaluate| |#1|)))))))
-(-1163 R FE |var| |cen|)
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-516))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-516))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-516)) (QUOTE (-1038))) (|HasCategory| |#1| (QUOTE (-344))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-3810 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasSignature| |#1| (LIST (QUOTE -4233) (LIST (|devaluate| |#1|) (QUOTE (-1098)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-516)))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-901))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasSignature| |#1| (LIST (QUOTE -4091) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1098))))) (|HasSignature| |#1| (LIST (QUOTE -3347) (LIST (LIST (QUOTE -594) (QUOTE (-1098))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))))
+(-1166 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}.")))
-(((-4266 "*") |has| (-1162 |#2| |#3| |#4|) (-162)) (-4257 |has| (-1162 |#2| |#3| |#4|) (-520)) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| (-1162 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-140))) (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-162))) (|HasCategory| (-1162 |#2| |#3| |#4|) (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| (-1162 |#2| |#3| |#4|) (LIST (QUOTE -972) (QUOTE (-528)))) (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-343))) (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-431))) (-1463 (|HasCategory| (-1162 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| (-1162 |#2| |#3| |#4|) (LIST (QUOTE -972) (LIST (QUOTE -387) (QUOTE (-528)))))) (|HasCategory| (-1162 |#2| |#3| |#4|) (QUOTE (-520))))
-(-1164 A S)
+(((-4271 "*") |has| (-1160 |#2| |#3| |#4|) (-162)) (-4262 |has| (-1160 |#2| |#3| |#4|) (-523)) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| (-1160 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-140))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-162))) (|HasCategory| (-1160 |#2| |#3| |#4|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| (-1160 |#2| |#3| |#4|) (LIST (QUOTE -975) (QUOTE (-516)))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-344))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-432))) (-3810 (|HasCategory| (-1160 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| (-1160 |#2| |#3| |#4|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-516)))))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-523))))
+(-1167 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4265)))
-(-1165 S)
+((|HasAttribute| |#1| (QUOTE -4270)))
+(-1168 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
-((-4050 . T))
+((-2303 . T))
NIL
-(-1166 |Coef1| |Coef2| UTS1 UTS2)
+(-1169 |Coef| |var| |cen|)
+((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (QUOTE (-523))) (-3810 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1098)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-719)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-719)) (|devaluate| |#1|)))) (|HasCategory| (-719) (QUOTE (-1038))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-719))))) (|HasSignature| |#1| (LIST (QUOTE -4233) (LIST (|devaluate| |#1|) (QUOTE (-1098)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-719))))) (|HasCategory| |#1| (QUOTE (-344))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-901))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-516))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasSignature| |#1| (LIST (QUOTE -4091) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1098))))) (|HasSignature| |#1| (LIST (QUOTE -3347) (LIST (LIST (QUOTE -594) (QUOTE (-1098))) (|devaluate| |#1|)))))))
+(-1170 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1167 S |Coef|)
+(-1171 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-897))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasSignature| |#2| (LIST (QUOTE -2565) (LIST (LIST (QUOTE -595) (QUOTE (-1095))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1923) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1095))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-343))))
-(-1168 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-516)))) (|HasCategory| |#2| (QUOTE (-901))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasSignature| |#2| (LIST (QUOTE -3347) (LIST (LIST (QUOTE -594) (QUOTE (-1098))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4091) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1098))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasCategory| |#2| (QUOTE (-344))))
+(-1172 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4258 . T) (-4259 . T) (-4261 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-523)) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-1169 |Coef| |var| |cen|)
-((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4266 "*") |has| |#1| (-162)) (-4257 |has| |#1| (-520)) (-4258 . T) (-4259 . T) (-4261 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-520))) (-1463 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-1095)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-717)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-717)) (|devaluate| |#1|)))) (|HasCategory| (-717) (QUOTE (-1035))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-717))))) (|HasSignature| |#1| (LIST (QUOTE -2222) (LIST (|devaluate| |#1|) (QUOTE (-1095)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-717))))) (|HasCategory| |#1| (QUOTE (-343))) (-1463 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-897))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasSignature| |#1| (LIST (QUOTE -1923) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1095))))) (|HasSignature| |#1| (LIST (QUOTE -2565) (LIST (LIST (QUOTE -595) (QUOTE (-1095))) (|devaluate| |#1|)))))))
-(-1170 |Coef| UTS)
+(-1173 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1171 -1305 UP L UTS)
+(-1174 -3358 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
-((|HasCategory| |#1| (QUOTE (-520))))
-(-1172)
+((|HasCategory| |#1| (QUOTE (-523))))
+(-1175)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
-((-4050 . T))
+((-2303 . T))
NIL
-(-1173 |sym|)
+(-1176 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1174 S R)
+(-1177 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
-((|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (QUOTE (-673))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1175 R)
+((|HasCategory| |#2| (QUOTE (-941))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
+(-1178 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4265 . T) (-4264 . T) (-4050 . T))
+((-4270 . T) (-4269 . T) (-2303 . T))
NIL
-(-1176 A B)
+(-1179 R)
+((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
+((-4270 . T) (-4269 . T))
+((-3810 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-3810 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-505)))) (-3810 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-516) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#1| (QUOTE (-984))) (-12 (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-984)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-1180 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1177 R)
-((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4265 . T) (-4264 . T))
-((-1463 (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|))))) (-1463 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802))))) (|HasCategory| |#1| (LIST (QUOTE -570) (QUOTE (-504)))) (-1463 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1023)))) (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| (-528) (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-673))) (|HasCategory| |#1| (QUOTE (-981))) (-12 (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-981)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-1178)
+(-1181)
+((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
+NIL
+NIL
+(-1182)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1179)
+(-1183)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1180)
+(-1184)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1181)
-((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
-NIL
-NIL
-(-1182)
+(-1185)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1183 A S)
+(-1186 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1184 S)
+(-1187 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4259 . T) (-4258 . T))
+((-4264 . T) (-4263 . T))
NIL
-(-1185 R)
+(-1188 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1186 K R UP -1305)
+(-1189 K R UP -3358)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-1187 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1190 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights")))
-((-4259 |has| |#1| (-162)) (-4258 |has| |#1| (-162)) (-4261 . T))
-((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-343))))
-(-1188 R E V P)
+((-4264 |has| |#1| (-162)) (-4263 |has| |#1| (-162)) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))))
+(-1191 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4265 . T) (-4264 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -290) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -570) (QUOTE (-504)))) (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-520))) (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#4| (LIST (QUOTE -569) (QUOTE (-802)))))
-(-1189 R)
+((-4270 . T) (-4269 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-505)))) (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -571) (QUOTE (-805)))))
+(-1192 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}.")))
-((-4258 . T) (-4259 . T) (-4261 . T))
+((-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-1190 |vl| R)
+(-1193 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4261 . T) (-4257 |has| |#2| (-6 -4257)) (-4259 . T) (-4258 . T))
-((|HasCategory| |#2| (QUOTE (-162))) (|HasAttribute| |#2| (QUOTE -4257)))
-(-1191 R |VarSet| XPOLY)
+((-4266 . T) (-4262 |has| |#2| (-6 -4262)) (-4264 . T) (-4263 . T))
+((|HasCategory| |#2| (QUOTE (-162))) (|HasAttribute| |#2| (QUOTE -4262)))
+(-1194 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1192 |vl| R)
-((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4257 |has| |#2| (-6 -4257)) (-4259 . T) (-4258 . T) (-4261 . T))
-NIL
-(-1193 S -1305)
+(-1195 S -3358)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))))
-(-1194 -1305)
+((|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))))
+(-1196 -3358)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4256 . T) (-4262 . T) (-4257 . T) ((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+NIL
+(-1197 |vl| R)
+((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
+((-4262 |has| |#2| (-6 -4262)) (-4264 . T) (-4263 . T) (-4266 . T))
NIL
-(-1195 |VarSet| R)
+(-1198 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4257 |has| |#2| (-6 -4257)) (-4259 . T) (-4258 . T) (-4261 . T))
-((|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -664) (LIST (QUOTE -387) (QUOTE (-528))))) (|HasAttribute| |#2| (QUOTE -4257)))
-(-1196 |vl| R)
+((-4262 |has| |#2| (-6 -4262)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -666) (LIST (QUOTE -388) (QUOTE (-516))))) (|HasAttribute| |#2| (QUOTE -4262)))
+(-1199 R)
+((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
+((-4262 |has| |#1| (-6 -4262)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-162))) (|HasAttribute| |#1| (QUOTE -4262)))
+(-1200 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4257 |has| |#2| (-6 -4257)) (-4259 . T) (-4258 . T) (-4261 . T))
+((-4262 |has| |#2| (-6 -4262)) (-4264 . T) (-4263 . T) (-4266 . T))
NIL
-(-1197 R)
-((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4257 |has| |#1| (-6 -4257)) (-4259 . T) (-4258 . T) (-4261 . T))
-((|HasCategory| |#1| (QUOTE (-162))) (|HasAttribute| |#1| (QUOTE -4257)))
-(-1198 R E)
+(-1201 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4261 . T) (-4262 |has| |#1| (-6 -4262)) (-4257 |has| |#1| (-6 -4257)) (-4259 . T) (-4258 . T))
-((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-343))) (|HasAttribute| |#1| (QUOTE -4261)) (|HasAttribute| |#1| (QUOTE -4262)) (|HasAttribute| |#1| (QUOTE -4257)))
-(-1199 |VarSet| R)
+((-4266 . T) (-4267 |has| |#1| (-6 -4267)) (-4262 |has| |#1| (-6 -4262)) (-4264 . T) (-4263 . T))
+((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasAttribute| |#1| (QUOTE -4266)) (|HasAttribute| |#1| (QUOTE -4267)) (|HasAttribute| |#1| (QUOTE -4262)))
+(-1202 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4257 |has| |#2| (-6 -4257)) (-4259 . T) (-4258 . T) (-4261 . T))
-((|HasCategory| |#2| (QUOTE (-162))) (|HasAttribute| |#2| (QUOTE -4257)))
-(-1200 A)
+((-4262 |has| |#2| (-6 -4262)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#2| (QUOTE (-162))) (|HasAttribute| |#2| (QUOTE -4262)))
+(-1203 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1201 R |ls| |ls2|)
+(-1204 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1202 R)
+(-1205 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1203 |p|)
+(-1206 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4266 "*") . T) (-4258 . T) (-4259 . T) (-4261 . T))
+(((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
NIL
NIL
@@ -4760,4 +4772,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2242956 2242961 2242966 2242971) (-2 NIL 2242936 2242941 2242946 2242951) (-1 NIL 2242916 2242921 2242926 2242931) (0 NIL 2242896 2242901 2242906 2242911) (-1203 "ZMOD.spad" 2242705 2242718 2242834 2242891) (-1202 "ZLINDEP.spad" 2241749 2241760 2242695 2242700) (-1201 "ZDSOLVE.spad" 2231598 2231620 2241739 2241744) (-1200 "YSTREAM.spad" 2231091 2231102 2231588 2231593) (-1199 "XRPOLY.spad" 2230311 2230331 2230947 2231016) (-1198 "XPR.spad" 2228040 2228053 2230029 2230128) (-1197 "XPOLY.spad" 2227595 2227606 2227896 2227965) (-1196 "XPOLYC.spad" 2226912 2226928 2227521 2227590) (-1195 "XPBWPOLY.spad" 2225349 2225369 2226692 2226761) (-1194 "XF.spad" 2223810 2223825 2225251 2225344) (-1193 "XF.spad" 2222251 2222268 2223694 2223699) (-1192 "XFALG.spad" 2219275 2219291 2222177 2222246) (-1191 "XEXPPKG.spad" 2218526 2218552 2219265 2219270) (-1190 "XDPOLY.spad" 2218140 2218156 2218382 2218451) (-1189 "XALG.spad" 2217738 2217749 2218096 2218135) (-1188 "WUTSET.spad" 2213577 2213594 2217384 2217411) (-1187 "WP.spad" 2212591 2212635 2213435 2213502) (-1186 "WFFINTBS.spad" 2210154 2210176 2212581 2212586) (-1185 "WEIER.spad" 2208368 2208379 2210144 2210149) (-1184 "VSPACE.spad" 2208041 2208052 2208336 2208363) (-1183 "VSPACE.spad" 2207734 2207747 2208031 2208036) (-1182 "VOID.spad" 2207324 2207333 2207724 2207729) (-1181 "VIEW.spad" 2204946 2204955 2207314 2207319) (-1180 "VIEWDEF.spad" 2200143 2200152 2204936 2204941) (-1179 "VIEW3D.spad" 2183978 2183987 2200133 2200138) (-1178 "VIEW2D.spad" 2171715 2171724 2183968 2183973) (-1177 "VECTOR.spad" 2170392 2170403 2170643 2170670) (-1176 "VECTOR2.spad" 2169019 2169032 2170382 2170387) (-1175 "VECTCAT.spad" 2166907 2166918 2168975 2169014) (-1174 "VECTCAT.spad" 2164616 2164629 2166686 2166691) (-1173 "VARIABLE.spad" 2164396 2164411 2164606 2164611) (-1172 "UTYPE.spad" 2164030 2164039 2164376 2164391) (-1171 "UTSODETL.spad" 2163323 2163347 2163986 2163991) (-1170 "UTSODE.spad" 2161511 2161531 2163313 2163318) (-1169 "UTS.spad" 2156300 2156328 2159978 2160075) (-1168 "UTSCAT.spad" 2153751 2153767 2156198 2156295) (-1167 "UTSCAT.spad" 2150846 2150864 2153295 2153300) (-1166 "UTS2.spad" 2150439 2150474 2150836 2150841) (-1165 "URAGG.spad" 2145061 2145072 2150419 2150434) (-1164 "URAGG.spad" 2139657 2139670 2145017 2145022) (-1163 "UPXSSING.spad" 2137303 2137329 2138741 2138874) (-1162 "UPXS.spad" 2134330 2134358 2135435 2135584) (-1161 "UPXSCONS.spad" 2132087 2132107 2132462 2132611) (-1160 "UPXSCCA.spad" 2130545 2130565 2131933 2132082) (-1159 "UPXSCCA.spad" 2129145 2129167 2130535 2130540) (-1158 "UPXSCAT.spad" 2127726 2127742 2128991 2129140) (-1157 "UPXS2.spad" 2127267 2127320 2127716 2127721) (-1156 "UPSQFREE.spad" 2125679 2125693 2127257 2127262) (-1155 "UPSCAT.spad" 2123272 2123296 2125577 2125674) (-1154 "UPSCAT.spad" 2120571 2120597 2122878 2122883) (-1153 "UPOLYC.spad" 2115549 2115560 2120413 2120566) (-1152 "UPOLYC.spad" 2110419 2110432 2115285 2115290) (-1151 "UPOLYC2.spad" 2109888 2109907 2110409 2110414) (-1150 "UP.spad" 2106933 2106948 2107441 2107594) (-1149 "UPMP.spad" 2105823 2105836 2106923 2106928) (-1148 "UPDIVP.spad" 2105386 2105400 2105813 2105818) (-1147 "UPDECOMP.spad" 2103623 2103637 2105376 2105381) (-1146 "UPCDEN.spad" 2102830 2102846 2103613 2103618) (-1145 "UP2.spad" 2102192 2102213 2102820 2102825) (-1144 "UNISEG.spad" 2101545 2101556 2102111 2102116) (-1143 "UNISEG2.spad" 2101038 2101051 2101501 2101506) (-1142 "UNIFACT.spad" 2100139 2100151 2101028 2101033) (-1141 "ULS.spad" 2090698 2090726 2091791 2092220) (-1140 "ULSCONS.spad" 2084741 2084761 2085113 2085262) (-1139 "ULSCCAT.spad" 2082338 2082358 2084561 2084736) (-1138 "ULSCCAT.spad" 2080069 2080091 2082294 2082299) (-1137 "ULSCAT.spad" 2078285 2078301 2079915 2080064) (-1136 "ULS2.spad" 2077797 2077850 2078275 2078280) (-1135 "UFD.spad" 2076862 2076871 2077723 2077792) (-1134 "UFD.spad" 2075989 2076000 2076852 2076857) (-1133 "UDVO.spad" 2074836 2074845 2075979 2075984) (-1132 "UDPO.spad" 2072263 2072274 2074792 2074797) (-1131 "TYPE.spad" 2072185 2072194 2072243 2072258) (-1130 "TWOFACT.spad" 2070835 2070850 2072175 2072180) (-1129 "TUPLE.spad" 2070221 2070232 2070734 2070739) (-1128 "TUBETOOL.spad" 2067058 2067067 2070211 2070216) (-1127 "TUBE.spad" 2065699 2065716 2067048 2067053) (-1126 "TS.spad" 2064288 2064304 2065264 2065361) (-1125 "TSETCAT.spad" 2051403 2051420 2064244 2064283) (-1124 "TSETCAT.spad" 2038516 2038535 2051359 2051364) (-1123 "TRMANIP.spad" 2032882 2032899 2038222 2038227) (-1122 "TRIMAT.spad" 2031841 2031866 2032872 2032877) (-1121 "TRIGMNIP.spad" 2030358 2030375 2031831 2031836) (-1120 "TRIGCAT.spad" 2029870 2029879 2030348 2030353) (-1119 "TRIGCAT.spad" 2029380 2029391 2029860 2029865) (-1118 "TREE.spad" 2027951 2027962 2028987 2029014) (-1117 "TRANFUN.spad" 2027782 2027791 2027941 2027946) (-1116 "TRANFUN.spad" 2027611 2027622 2027772 2027777) (-1115 "TOPSP.spad" 2027285 2027294 2027601 2027606) (-1114 "TOOLSIGN.spad" 2026948 2026959 2027275 2027280) (-1113 "TEXTFILE.spad" 2025505 2025514 2026938 2026943) (-1112 "TEX.spad" 2022522 2022531 2025495 2025500) (-1111 "TEX1.spad" 2022078 2022089 2022512 2022517) (-1110 "TEMUTL.spad" 2021633 2021642 2022068 2022073) (-1109 "TBCMPPK.spad" 2019726 2019749 2021623 2021628) (-1108 "TBAGG.spad" 2018750 2018773 2019694 2019721) (-1107 "TBAGG.spad" 2017794 2017819 2018740 2018745) (-1106 "TANEXP.spad" 2017170 2017181 2017784 2017789) (-1105 "TABLE.spad" 2015581 2015604 2015851 2015878) (-1104 "TABLEAU.spad" 2015062 2015073 2015571 2015576) (-1103 "TABLBUMP.spad" 2011845 2011856 2015052 2015057) (-1102 "SYSTEM.spad" 2011119 2011128 2011835 2011840) (-1101 "SYSSOLP.spad" 2008592 2008603 2011109 2011114) (-1100 "SYNTAX.spad" 2004784 2004793 2008582 2008587) (-1099 "SYMTAB.spad" 2002840 2002849 2004774 2004779) (-1098 "SYMS.spad" 1998825 1998834 2002830 2002835) (-1097 "SYMPOLY.spad" 1997835 1997846 1997917 1998044) (-1096 "SYMFUNC.spad" 1997310 1997321 1997825 1997830) (-1095 "SYMBOL.spad" 1994646 1994655 1997300 1997305) (-1094 "SWITCH.spad" 1991403 1991412 1994636 1994641) (-1093 "SUTS.spad" 1988302 1988330 1989870 1989967) (-1092 "SUPXS.spad" 1985316 1985344 1986434 1986583) (-1091 "SUP.spad" 1982088 1982099 1982869 1983022) (-1090 "SUPFRACF.spad" 1981193 1981211 1982078 1982083) (-1089 "SUP2.spad" 1980583 1980596 1981183 1981188) (-1088 "SUMRF.spad" 1979549 1979560 1980573 1980578) (-1087 "SUMFS.spad" 1979182 1979199 1979539 1979544) (-1086 "SULS.spad" 1969728 1969756 1970834 1971263) (-1085 "SUCH.spad" 1969408 1969423 1969718 1969723) (-1084 "SUBSPACE.spad" 1961415 1961430 1969398 1969403) (-1083 "SUBRESP.spad" 1960575 1960589 1961371 1961376) (-1082 "STTF.spad" 1956674 1956690 1960565 1960570) (-1081 "STTFNC.spad" 1953142 1953158 1956664 1956669) (-1080 "STTAYLOR.spad" 1945540 1945551 1953023 1953028) (-1079 "STRTBL.spad" 1944045 1944062 1944194 1944221) (-1078 "STRING.spad" 1943454 1943463 1943468 1943495) (-1077 "STRICAT.spad" 1943230 1943239 1943410 1943449) (-1076 "STREAM.spad" 1939998 1940009 1942755 1942770) (-1075 "STREAM3.spad" 1939543 1939558 1939988 1939993) (-1074 "STREAM2.spad" 1938611 1938624 1939533 1939538) (-1073 "STREAM1.spad" 1938315 1938326 1938601 1938606) (-1072 "STINPROD.spad" 1937221 1937237 1938305 1938310) (-1071 "STEP.spad" 1936422 1936431 1937211 1937216) (-1070 "STBL.spad" 1934948 1934976 1935115 1935130) (-1069 "STAGG.spad" 1934013 1934024 1934928 1934943) (-1068 "STAGG.spad" 1933086 1933099 1934003 1934008) (-1067 "STACK.spad" 1932437 1932448 1932693 1932720) (-1066 "SREGSET.spad" 1930141 1930158 1932083 1932110) (-1065 "SRDCMPK.spad" 1928686 1928706 1930131 1930136) (-1064 "SRAGG.spad" 1923771 1923780 1928642 1928681) (-1063 "SRAGG.spad" 1918888 1918899 1923761 1923766) (-1062 "SQMATRIX.spad" 1916514 1916532 1917422 1917509) (-1061 "SPLTREE.spad" 1911066 1911079 1915950 1915977) (-1060 "SPLNODE.spad" 1907654 1907667 1911056 1911061) (-1059 "SPFCAT.spad" 1906431 1906440 1907644 1907649) (-1058 "SPECOUT.spad" 1904981 1904990 1906421 1906426) (-1057 "spad-parser.spad" 1904446 1904455 1904971 1904976) (-1056 "SPACEC.spad" 1888459 1888470 1904436 1904441) (-1055 "SPACE3.spad" 1888235 1888246 1888449 1888454) (-1054 "SORTPAK.spad" 1887780 1887793 1888191 1888196) (-1053 "SOLVETRA.spad" 1885537 1885548 1887770 1887775) (-1052 "SOLVESER.spad" 1884057 1884068 1885527 1885532) (-1051 "SOLVERAD.spad" 1880067 1880078 1884047 1884052) (-1050 "SOLVEFOR.spad" 1878487 1878505 1880057 1880062) (-1049 "SNTSCAT.spad" 1878075 1878092 1878443 1878482) (-1048 "SMTS.spad" 1876335 1876361 1877640 1877737) (-1047 "SMP.spad" 1873777 1873797 1874167 1874294) (-1046 "SMITH.spad" 1872620 1872645 1873767 1873772) (-1045 "SMATCAT.spad" 1870718 1870748 1872552 1872615) (-1044 "SMATCAT.spad" 1868760 1868792 1870596 1870601) (-1043 "SKAGG.spad" 1867709 1867720 1868716 1868755) (-1042 "SINT.spad" 1866017 1866026 1867575 1867704) (-1041 "SIMPAN.spad" 1865745 1865754 1866007 1866012) (-1040 "SIG.spad" 1865342 1865351 1865735 1865740) (-1039 "SIGNRF.spad" 1864450 1864461 1865332 1865337) (-1038 "SIGNEF.spad" 1863719 1863736 1864440 1864445) (-1037 "SHP.spad" 1861637 1861652 1863675 1863680) (-1036 "SHDP.spad" 1852673 1852700 1853182 1853311) (-1035 "SGROUP.spad" 1852139 1852148 1852663 1852668) (-1034 "SGROUP.spad" 1851603 1851614 1852129 1852134) (-1033 "SGCF.spad" 1844484 1844493 1851593 1851598) (-1032 "SFRTCAT.spad" 1843400 1843417 1844440 1844479) (-1031 "SFRGCD.spad" 1842463 1842483 1843390 1843395) (-1030 "SFQCMPK.spad" 1837100 1837120 1842453 1842458) (-1029 "SFORT.spad" 1836535 1836549 1837090 1837095) (-1028 "SEXOF.spad" 1836378 1836418 1836525 1836530) (-1027 "SEX.spad" 1836270 1836279 1836368 1836373) (-1026 "SEXCAT.spad" 1833374 1833414 1836260 1836265) (-1025 "SET.spad" 1831674 1831685 1832795 1832834) (-1024 "SETMN.spad" 1830108 1830125 1831664 1831669) (-1023 "SETCAT.spad" 1829593 1829602 1830098 1830103) (-1022 "SETCAT.spad" 1829076 1829087 1829583 1829588) (-1021 "SETAGG.spad" 1825585 1825596 1829044 1829071) (-1020 "SETAGG.spad" 1822114 1822127 1825575 1825580) (-1019 "SEGXCAT.spad" 1821226 1821239 1822094 1822109) (-1018 "SEG.spad" 1821039 1821050 1821145 1821150) (-1017 "SEGCAT.spad" 1819858 1819869 1821019 1821034) (-1016 "SEGBIND.spad" 1818930 1818941 1819813 1819818) (-1015 "SEGBIND2.spad" 1818626 1818639 1818920 1818925) (-1014 "SEG2.spad" 1818051 1818064 1818582 1818587) (-1013 "SDVAR.spad" 1817327 1817338 1818041 1818046) (-1012 "SDPOL.spad" 1814720 1814731 1815011 1815138) (-1011 "SCPKG.spad" 1812799 1812810 1814710 1814715) (-1010 "SCOPE.spad" 1811944 1811953 1812789 1812794) (-1009 "SCACHE.spad" 1810626 1810637 1811934 1811939) (-1008 "SAOS.spad" 1810498 1810507 1810616 1810621) (-1007 "SAERFFC.spad" 1810211 1810231 1810488 1810493) (-1006 "SAE.spad" 1808389 1808405 1809000 1809135) (-1005 "SAEFACT.spad" 1808090 1808110 1808379 1808384) (-1004 "RURPK.spad" 1805731 1805747 1808080 1808085) (-1003 "RULESET.spad" 1805172 1805196 1805721 1805726) (-1002 "RULE.spad" 1803376 1803400 1805162 1805167) (-1001 "RULECOLD.spad" 1803228 1803241 1803366 1803371) (-1000 "RSETGCD.spad" 1799606 1799626 1803218 1803223) (-999 "RSETCAT.spad" 1789379 1789395 1799562 1799601) (-998 "RSETCAT.spad" 1779184 1779202 1789369 1789374) (-997 "RSDCMPK.spad" 1777637 1777656 1779174 1779179) (-996 "RRCC.spad" 1776022 1776051 1777627 1777632) (-995 "RRCC.spad" 1774405 1774436 1776012 1776017) (-994 "RPOLCAT.spad" 1753766 1753780 1774273 1774400) (-993 "RPOLCAT.spad" 1732842 1732858 1753351 1753356) (-992 "ROUTINE.spad" 1728706 1728714 1731489 1731516) (-991 "ROMAN.spad" 1727939 1727947 1728572 1728701) (-990 "ROIRC.spad" 1727020 1727051 1727929 1727934) (-989 "RNS.spad" 1725924 1725932 1726922 1727015) (-988 "RNS.spad" 1724914 1724924 1725914 1725919) (-987 "RNG.spad" 1724650 1724658 1724904 1724909) (-986 "RMODULE.spad" 1724289 1724299 1724640 1724645) (-985 "RMCAT2.spad" 1723698 1723754 1724279 1724284) (-984 "RMATRIX.spad" 1722378 1722396 1722865 1722904) (-983 "RMATCAT.spad" 1717900 1717930 1722322 1722373) (-982 "RMATCAT.spad" 1713324 1713356 1717748 1717753) (-981 "RING.spad" 1712682 1712690 1713304 1713319) (-980 "RING.spad" 1712048 1712058 1712672 1712677) (-979 "RIDIST.spad" 1711433 1711441 1712038 1712043) (-978 "RGCHAIN.spad" 1710013 1710028 1710918 1710945) (-977 "RF.spad" 1707628 1707638 1710003 1710008) (-976 "RFFACTOR.spad" 1707091 1707101 1707618 1707623) (-975 "RFFACT.spad" 1706827 1706838 1707081 1707086) (-974 "RFDIST.spad" 1705816 1705824 1706817 1706822) (-973 "RETSOL.spad" 1705234 1705246 1705806 1705811) (-972 "RETRACT.spad" 1704584 1704594 1705224 1705229) (-971 "RETRACT.spad" 1703932 1703944 1704574 1704579) (-970 "RESULT.spad" 1701993 1702001 1702579 1702606) (-969 "RESRING.spad" 1701341 1701387 1701931 1701988) (-968 "RESLATC.spad" 1700666 1700676 1701331 1701336) (-967 "REPSQ.spad" 1700396 1700406 1700656 1700661) (-966 "REP.spad" 1697949 1697957 1700386 1700391) (-965 "REPDB.spad" 1697655 1697665 1697939 1697944) (-964 "REP2.spad" 1687228 1687238 1697497 1697502) (-963 "REP1.spad" 1681219 1681229 1687178 1687183) (-962 "REGSET.spad" 1679017 1679033 1680865 1680892) (-961 "REF.spad" 1678347 1678357 1678972 1678977) (-960 "REDORDER.spad" 1677524 1677540 1678337 1678342) (-959 "RECLOS.spad" 1676314 1676333 1677017 1677110) (-958 "REALSOLV.spad" 1675447 1675455 1676304 1676309) (-957 "REAL.spad" 1675320 1675328 1675437 1675442) (-956 "REAL0Q.spad" 1672603 1672617 1675310 1675315) (-955 "REAL0.spad" 1669432 1669446 1672593 1672598) (-954 "RDIV.spad" 1669084 1669108 1669422 1669427) (-953 "RDIST.spad" 1668648 1668658 1669074 1669079) (-952 "RDETRS.spad" 1667445 1667462 1668638 1668643) (-951 "RDETR.spad" 1665553 1665570 1667435 1667440) (-950 "RDEEFS.spad" 1664627 1664643 1665543 1665548) (-949 "RDEEF.spad" 1663624 1663640 1664617 1664622) (-948 "RCFIELD.spad" 1660811 1660819 1663526 1663619) (-947 "RCFIELD.spad" 1658084 1658094 1660801 1660806) (-946 "RCAGG.spad" 1655987 1655997 1658064 1658079) (-945 "RCAGG.spad" 1653827 1653839 1655906 1655911) (-944 "RATRET.spad" 1653188 1653198 1653817 1653822) (-943 "RATFACT.spad" 1652881 1652892 1653178 1653183) (-942 "RANDSRC.spad" 1652201 1652209 1652871 1652876) (-941 "RADUTIL.spad" 1651956 1651964 1652191 1652196) (-940 "RADIX.spad" 1648749 1648762 1650426 1650519) (-939 "RADFF.spad" 1647166 1647202 1647284 1647440) (-938 "RADCAT.spad" 1646760 1646768 1647156 1647161) (-937 "RADCAT.spad" 1646352 1646362 1646750 1646755) (-936 "QUEUE.spad" 1645695 1645705 1645959 1645986) (-935 "QUAT.spad" 1644281 1644291 1644623 1644688) (-934 "QUATCT2.spad" 1643900 1643918 1644271 1644276) (-933 "QUATCAT.spad" 1642065 1642075 1643830 1643895) (-932 "QUATCAT.spad" 1639982 1639994 1641749 1641754) (-931 "QUAGG.spad" 1638796 1638806 1639938 1639977) (-930 "QFORM.spad" 1638259 1638273 1638786 1638791) (-929 "QFCAT.spad" 1636950 1636960 1638149 1638254) (-928 "QFCAT.spad" 1635247 1635259 1636448 1636453) (-927 "QFCAT2.spad" 1634938 1634954 1635237 1635242) (-926 "QEQUAT.spad" 1634495 1634503 1634928 1634933) (-925 "QCMPACK.spad" 1629242 1629261 1634485 1634490) (-924 "QALGSET.spad" 1625317 1625349 1629156 1629161) (-923 "QALGSET2.spad" 1623313 1623331 1625307 1625312) (-922 "PWFFINTB.spad" 1620623 1620644 1623303 1623308) (-921 "PUSHVAR.spad" 1619952 1619971 1620613 1620618) (-920 "PTRANFN.spad" 1616078 1616088 1619942 1619947) (-919 "PTPACK.spad" 1613166 1613176 1616068 1616073) (-918 "PTFUNC2.spad" 1612987 1613001 1613156 1613161) (-917 "PTCAT.spad" 1612069 1612079 1612943 1612982) (-916 "PSQFR.spad" 1611376 1611400 1612059 1612064) (-915 "PSEUDLIN.spad" 1610234 1610244 1611366 1611371) (-914 "PSETPK.spad" 1595667 1595683 1610112 1610117) (-913 "PSETCAT.spad" 1589575 1589598 1595635 1595662) (-912 "PSETCAT.spad" 1583469 1583494 1589531 1589536) (-911 "PSCURVE.spad" 1582452 1582460 1583459 1583464) (-910 "PSCAT.spad" 1581219 1581248 1582350 1582447) (-909 "PSCAT.spad" 1580076 1580107 1581209 1581214) (-908 "PRTITION.spad" 1578919 1578927 1580066 1580071) (-907 "PRS.spad" 1568481 1568498 1578875 1578880) (-906 "PRQAGG.spad" 1567900 1567910 1568437 1568476) (-905 "PROPLOG.spad" 1567303 1567311 1567890 1567895) (-904 "PROPFRML.spad" 1565167 1565178 1567239 1567244) (-903 "PROPERTY.spad" 1564661 1564669 1565157 1565162) (-902 "PRODUCT.spad" 1562341 1562353 1562627 1562682) (-901 "PR.spad" 1560730 1560742 1561435 1561562) (-900 "PRINT.spad" 1560482 1560490 1560720 1560725) (-899 "PRIMES.spad" 1558733 1558743 1560472 1560477) (-898 "PRIMELT.spad" 1556714 1556728 1558723 1558728) (-897 "PRIMCAT.spad" 1556337 1556345 1556704 1556709) (-896 "PRIMARR.spad" 1555342 1555352 1555520 1555547) (-895 "PRIMARR2.spad" 1554065 1554077 1555332 1555337) (-894 "PREASSOC.spad" 1553437 1553449 1554055 1554060) (-893 "PPCURVE.spad" 1552574 1552582 1553427 1553432) (-892 "POLYROOT.spad" 1551346 1551368 1552530 1552535) (-891 "POLY.spad" 1548646 1548656 1549163 1549290) (-890 "POLYLIFT.spad" 1547907 1547930 1548636 1548641) (-889 "POLYCATQ.spad" 1546009 1546031 1547897 1547902) (-888 "POLYCAT.spad" 1539415 1539436 1545877 1546004) (-887 "POLYCAT.spad" 1532123 1532146 1538587 1538592) (-886 "POLY2UP.spad" 1531571 1531585 1532113 1532118) (-885 "POLY2.spad" 1531166 1531178 1531561 1531566) (-884 "POLUTIL.spad" 1530107 1530136 1531122 1531127) (-883 "POLTOPOL.spad" 1528855 1528870 1530097 1530102) (-882 "POINT.spad" 1527696 1527706 1527783 1527810) (-881 "PNTHEORY.spad" 1524362 1524370 1527686 1527691) (-880 "PMTOOLS.spad" 1523119 1523133 1524352 1524357) (-879 "PMSYM.spad" 1522664 1522674 1523109 1523114) (-878 "PMQFCAT.spad" 1522251 1522265 1522654 1522659) (-877 "PMPRED.spad" 1521720 1521734 1522241 1522246) (-876 "PMPREDFS.spad" 1521164 1521186 1521710 1521715) (-875 "PMPLCAT.spad" 1520234 1520252 1521096 1521101) (-874 "PMLSAGG.spad" 1519815 1519829 1520224 1520229) (-873 "PMKERNEL.spad" 1519382 1519394 1519805 1519810) (-872 "PMINS.spad" 1518958 1518968 1519372 1519377) (-871 "PMFS.spad" 1518531 1518549 1518948 1518953) (-870 "PMDOWN.spad" 1517817 1517831 1518521 1518526) (-869 "PMASS.spad" 1516829 1516837 1517807 1517812) (-868 "PMASSFS.spad" 1515798 1515814 1516819 1516824) (-867 "PLOTTOOL.spad" 1515578 1515586 1515788 1515793) (-866 "PLOT.spad" 1510409 1510417 1515568 1515573) (-865 "PLOT3D.spad" 1506829 1506837 1510399 1510404) (-864 "PLOT1.spad" 1505970 1505980 1506819 1506824) (-863 "PLEQN.spad" 1493186 1493213 1505960 1505965) (-862 "PINTERP.spad" 1492802 1492821 1493176 1493181) (-861 "PINTERPA.spad" 1492584 1492600 1492792 1492797) (-860 "PI.spad" 1492191 1492199 1492558 1492579) (-859 "PID.spad" 1491147 1491155 1492117 1492186) (-858 "PICOERCE.spad" 1490804 1490814 1491137 1491142) (-857 "PGROEB.spad" 1489401 1489415 1490794 1490799) (-856 "PGE.spad" 1480654 1480662 1489391 1489396) (-855 "PGCD.spad" 1479536 1479553 1480644 1480649) (-854 "PFRPAC.spad" 1478679 1478689 1479526 1479531) (-853 "PFR.spad" 1475336 1475346 1478581 1478674) (-852 "PFOTOOLS.spad" 1474594 1474610 1475326 1475331) (-851 "PFOQ.spad" 1473964 1473982 1474584 1474589) (-850 "PFO.spad" 1473383 1473410 1473954 1473959) (-849 "PF.spad" 1472957 1472969 1473188 1473281) (-848 "PFECAT.spad" 1470623 1470631 1472883 1472952) (-847 "PFECAT.spad" 1468317 1468327 1470579 1470584) (-846 "PFBRU.spad" 1466187 1466199 1468307 1468312) (-845 "PFBR.spad" 1463725 1463748 1466177 1466182) (-844 "PERM.spad" 1459406 1459416 1463555 1463570) (-843 "PERMGRP.spad" 1454142 1454152 1459396 1459401) (-842 "PERMCAT.spad" 1452694 1452704 1454122 1454137) (-841 "PERMAN.spad" 1451226 1451240 1452684 1452689) (-840 "PENDTREE.spad" 1450499 1450509 1450855 1450860) (-839 "PDRING.spad" 1448990 1449000 1450479 1450494) (-838 "PDRING.spad" 1447489 1447501 1448980 1448985) (-837 "PDEPROB.spad" 1446446 1446454 1447479 1447484) (-836 "PDEPACK.spad" 1440448 1440456 1446436 1446441) (-835 "PDECOMP.spad" 1439910 1439927 1440438 1440443) (-834 "PDECAT.spad" 1438264 1438272 1439900 1439905) (-833 "PCOMP.spad" 1438115 1438128 1438254 1438259) (-832 "PBWLB.spad" 1436697 1436714 1438105 1438110) (-831 "PATTERN.spad" 1431128 1431138 1436687 1436692) (-830 "PATTERN2.spad" 1430864 1430876 1431118 1431123) (-829 "PATTERN1.spad" 1429166 1429182 1430854 1430859) (-828 "PATRES.spad" 1426713 1426725 1429156 1429161) (-827 "PATRES2.spad" 1426375 1426389 1426703 1426708) (-826 "PATMATCH.spad" 1424537 1424568 1426088 1426093) (-825 "PATMAB.spad" 1423962 1423972 1424527 1424532) (-824 "PATLRES.spad" 1423046 1423060 1423952 1423957) (-823 "PATAB.spad" 1422810 1422820 1423036 1423041) (-822 "PARTPERM.spad" 1420172 1420180 1422800 1422805) (-821 "PARSURF.spad" 1419600 1419628 1420162 1420167) (-820 "PARSU2.spad" 1419395 1419411 1419590 1419595) (-819 "script-parser.spad" 1418915 1418923 1419385 1419390) (-818 "PARSCURV.spad" 1418343 1418371 1418905 1418910) (-817 "PARSC2.spad" 1418132 1418148 1418333 1418338) (-816 "PARPCURV.spad" 1417590 1417618 1418122 1418127) (-815 "PARPC2.spad" 1417379 1417395 1417580 1417585) (-814 "PAN2EXPR.spad" 1416791 1416799 1417369 1417374) (-813 "PALETTE.spad" 1415761 1415769 1416781 1416786) (-812 "PAIR.spad" 1414744 1414757 1415349 1415354) (-811 "PADICRC.spad" 1412077 1412095 1413252 1413345) (-810 "PADICRAT.spad" 1410095 1410107 1410316 1410409) (-809 "PADIC.spad" 1409790 1409802 1410021 1410090) (-808 "PADICCT.spad" 1408331 1408343 1409716 1409785) (-807 "PADEPAC.spad" 1407010 1407029 1408321 1408326) (-806 "PADE.spad" 1405750 1405766 1407000 1407005) (-805 "OWP.spad" 1404734 1404764 1405608 1405675) (-804 "OVAR.spad" 1404515 1404538 1404724 1404729) (-803 "OUT.spad" 1403599 1403607 1404505 1404510) (-802 "OUTFORM.spad" 1393013 1393021 1403589 1403594) (-801 "OSI.spad" 1392488 1392496 1393003 1393008) (-800 "OSGROUP.spad" 1392406 1392414 1392478 1392483) (-799 "ORTHPOL.spad" 1390867 1390877 1392323 1392328) (-798 "OREUP.spad" 1390227 1390255 1390549 1390588) (-797 "ORESUP.spad" 1389528 1389552 1389909 1389948) (-796 "OREPCTO.spad" 1387347 1387359 1389448 1389453) (-795 "OREPCAT.spad" 1381404 1381414 1387303 1387342) (-794 "OREPCAT.spad" 1375351 1375363 1381252 1381257) (-793 "ORDSET.spad" 1374517 1374525 1375341 1375346) (-792 "ORDSET.spad" 1373681 1373691 1374507 1374512) (-791 "ORDRING.spad" 1373071 1373079 1373661 1373676) (-790 "ORDRING.spad" 1372469 1372479 1373061 1373066) (-789 "ORDMON.spad" 1372324 1372332 1372459 1372464) (-788 "ORDFUNS.spad" 1371450 1371466 1372314 1372319) (-787 "ORDFIN.spad" 1371384 1371392 1371440 1371445) (-786 "ORDCOMP.spad" 1369852 1369862 1370934 1370963) (-785 "ORDCOMP2.spad" 1369137 1369149 1369842 1369847) (-784 "OPTPROB.spad" 1367717 1367725 1369127 1369132) (-783 "OPTPACK.spad" 1360102 1360110 1367707 1367712) (-782 "OPTCAT.spad" 1357777 1357785 1360092 1360097) (-781 "OPQUERY.spad" 1357326 1357334 1357767 1357772) (-780 "OP.spad" 1357068 1357078 1357148 1357215) (-779 "ONECOMP.spad" 1355816 1355826 1356618 1356647) (-778 "ONECOMP2.spad" 1355234 1355246 1355806 1355811) (-777 "OMSERVER.spad" 1354236 1354244 1355224 1355229) (-776 "OMSAGG.spad" 1354012 1354022 1354180 1354231) (-775 "OMPKG.spad" 1352624 1352632 1354002 1354007) (-774 "OM.spad" 1351589 1351597 1352614 1352619) (-773 "OMLO.spad" 1351014 1351026 1351475 1351514) (-772 "OMEXPR.spad" 1350848 1350858 1351004 1351009) (-771 "OMERR.spad" 1350391 1350399 1350838 1350843) (-770 "OMERRK.spad" 1349425 1349433 1350381 1350386) (-769 "OMENC.spad" 1348769 1348777 1349415 1349420) (-768 "OMDEV.spad" 1343058 1343066 1348759 1348764) (-767 "OMCONN.spad" 1342467 1342475 1343048 1343053) (-766 "OINTDOM.spad" 1342230 1342238 1342393 1342462) (-765 "OFMONOID.spad" 1338417 1338427 1342220 1342225) (-764 "ODVAR.spad" 1337678 1337688 1338407 1338412) (-763 "ODR.spad" 1337126 1337152 1337490 1337639) (-762 "ODPOL.spad" 1334475 1334485 1334815 1334942) (-761 "ODP.spad" 1325647 1325667 1326020 1326149) (-760 "ODETOOLS.spad" 1324230 1324249 1325637 1325642) (-759 "ODESYS.spad" 1321880 1321897 1324220 1324225) (-758 "ODERTRIC.spad" 1317821 1317838 1321837 1321842) (-757 "ODERED.spad" 1317208 1317232 1317811 1317816) (-756 "ODERAT.spad" 1314759 1314776 1317198 1317203) (-755 "ODEPRRIC.spad" 1311650 1311672 1314749 1314754) (-754 "ODEPROB.spad" 1310849 1310857 1311640 1311645) (-753 "ODEPRIM.spad" 1308123 1308145 1310839 1310844) (-752 "ODEPAL.spad" 1307499 1307523 1308113 1308118) (-751 "ODEPACK.spad" 1294101 1294109 1307489 1307494) (-750 "ODEINT.spad" 1293532 1293548 1294091 1294096) (-749 "ODEIFTBL.spad" 1290927 1290935 1293522 1293527) (-748 "ODEEF.spad" 1286294 1286310 1290917 1290922) (-747 "ODECONST.spad" 1285813 1285831 1286284 1286289) (-746 "ODECAT.spad" 1284409 1284417 1285803 1285808) (-745 "OCT.spad" 1282556 1282566 1283272 1283311) (-744 "OCTCT2.spad" 1282200 1282221 1282546 1282551) (-743 "OC.spad" 1279974 1279984 1282156 1282195) (-742 "OC.spad" 1277474 1277486 1279658 1279663) (-741 "OCAMON.spad" 1277322 1277330 1277464 1277469) (-740 "OASGP.spad" 1277137 1277145 1277312 1277317) (-739 "OAMONS.spad" 1276657 1276665 1277127 1277132) (-738 "OAMON.spad" 1276518 1276526 1276647 1276652) (-737 "OAGROUP.spad" 1276380 1276388 1276508 1276513) (-736 "NUMTUBE.spad" 1275967 1275983 1276370 1276375) (-735 "NUMQUAD.spad" 1263829 1263837 1275957 1275962) (-734 "NUMODE.spad" 1254965 1254973 1263819 1263824) (-733 "NUMINT.spad" 1252523 1252531 1254955 1254960) (-732 "NUMFMT.spad" 1251363 1251371 1252513 1252518) (-731 "NUMERIC.spad" 1243436 1243446 1251169 1251174) (-730 "NTSCAT.spad" 1241926 1241942 1243392 1243431) (-729 "NTPOLFN.spad" 1241471 1241481 1241843 1241848) (-728 "NSUP.spad" 1234484 1234494 1239024 1239177) (-727 "NSUP2.spad" 1233876 1233888 1234474 1234479) (-726 "NSMP.spad" 1230075 1230094 1230383 1230510) (-725 "NREP.spad" 1228447 1228461 1230065 1230070) (-724 "NPCOEF.spad" 1227693 1227713 1228437 1228442) (-723 "NORMRETR.spad" 1227291 1227330 1227683 1227688) (-722 "NORMPK.spad" 1225193 1225212 1227281 1227286) (-721 "NORMMA.spad" 1224881 1224907 1225183 1225188) (-720 "NONE.spad" 1224622 1224630 1224871 1224876) (-719 "NONE1.spad" 1224298 1224308 1224612 1224617) (-718 "NODE1.spad" 1223767 1223783 1224288 1224293) (-717 "NNI.spad" 1222654 1222662 1223741 1223762) (-716 "NLINSOL.spad" 1221276 1221286 1222644 1222649) (-715 "NIPROB.spad" 1219759 1219767 1221266 1221271) (-714 "NFINTBAS.spad" 1217219 1217236 1219749 1219754) (-713 "NCODIV.spad" 1215417 1215433 1217209 1217214) (-712 "NCNTFRAC.spad" 1215059 1215073 1215407 1215412) (-711 "NCEP.spad" 1213219 1213233 1215049 1215054) (-710 "NASRING.spad" 1212815 1212823 1213209 1213214) (-709 "NASRING.spad" 1212409 1212419 1212805 1212810) (-708 "NARNG.spad" 1211753 1211761 1212399 1212404) (-707 "NARNG.spad" 1211095 1211105 1211743 1211748) (-706 "NAGSP.spad" 1210168 1210176 1211085 1211090) (-705 "NAGS.spad" 1199693 1199701 1210158 1210163) (-704 "NAGF07.spad" 1198086 1198094 1199683 1199688) (-703 "NAGF04.spad" 1192318 1192326 1198076 1198081) (-702 "NAGF02.spad" 1186127 1186135 1192308 1192313) (-701 "NAGF01.spad" 1181730 1181738 1186117 1186122) (-700 "NAGE04.spad" 1175190 1175198 1181720 1181725) (-699 "NAGE02.spad" 1165532 1165540 1175180 1175185) (-698 "NAGE01.spad" 1161416 1161424 1165522 1165527) (-697 "NAGD03.spad" 1159336 1159344 1161406 1161411) (-696 "NAGD02.spad" 1151867 1151875 1159326 1159331) (-695 "NAGD01.spad" 1145980 1145988 1151857 1151862) (-694 "NAGC06.spad" 1141767 1141775 1145970 1145975) (-693 "NAGC05.spad" 1140236 1140244 1141757 1141762) (-692 "NAGC02.spad" 1139491 1139499 1140226 1140231) (-691 "NAALG.spad" 1139026 1139036 1139459 1139486) (-690 "NAALG.spad" 1138581 1138593 1139016 1139021) (-689 "MULTSQFR.spad" 1135539 1135556 1138571 1138576) (-688 "MULTFACT.spad" 1134922 1134939 1135529 1135534) (-687 "MTSCAT.spad" 1132956 1132977 1134820 1134917) (-686 "MTHING.spad" 1132613 1132623 1132946 1132951) (-685 "MSYSCMD.spad" 1132047 1132055 1132603 1132608) (-684 "MSET.spad" 1129989 1129999 1131753 1131792) (-683 "MSETAGG.spad" 1129822 1129832 1129945 1129984) (-682 "MRING.spad" 1126793 1126805 1129530 1129597) (-681 "MRF2.spad" 1126361 1126375 1126783 1126788) (-680 "MRATFAC.spad" 1125907 1125924 1126351 1126356) (-679 "MPRFF.spad" 1123937 1123956 1125897 1125902) (-678 "MPOLY.spad" 1121375 1121390 1121734 1121861) (-677 "MPCPF.spad" 1120639 1120658 1121365 1121370) (-676 "MPC3.spad" 1120454 1120494 1120629 1120634) (-675 "MPC2.spad" 1120096 1120129 1120444 1120449) (-674 "MONOTOOL.spad" 1118431 1118448 1120086 1120091) (-673 "MONOID.spad" 1117605 1117613 1118421 1118426) (-672 "MONOID.spad" 1116777 1116787 1117595 1117600) (-671 "MONOGEN.spad" 1115523 1115536 1116637 1116772) (-670 "MONOGEN.spad" 1114291 1114306 1115407 1115412) (-669 "MONADWU.spad" 1112305 1112313 1114281 1114286) (-668 "MONADWU.spad" 1110317 1110327 1112295 1112300) (-667 "MONAD.spad" 1109461 1109469 1110307 1110312) (-666 "MONAD.spad" 1108603 1108613 1109451 1109456) (-665 "MOEBIUS.spad" 1107289 1107303 1108583 1108598) (-664 "MODULE.spad" 1107159 1107169 1107257 1107284) (-663 "MODULE.spad" 1107049 1107061 1107149 1107154) (-662 "MODRING.spad" 1106380 1106419 1107029 1107044) (-661 "MODOP.spad" 1105039 1105051 1106202 1106269) (-660 "MODMONOM.spad" 1104571 1104589 1105029 1105034) (-659 "MODMON.spad" 1101276 1101292 1102052 1102205) (-658 "MODFIELD.spad" 1100634 1100673 1101178 1101271) (-657 "MMLFORM.spad" 1099494 1099502 1100624 1100629) (-656 "MMAP.spad" 1099234 1099268 1099484 1099489) (-655 "MLO.spad" 1097661 1097671 1099190 1099229) (-654 "MLIFT.spad" 1096233 1096250 1097651 1097656) (-653 "MKUCFUNC.spad" 1095766 1095784 1096223 1096228) (-652 "MKRECORD.spad" 1095368 1095381 1095756 1095761) (-651 "MKFUNC.spad" 1094749 1094759 1095358 1095363) (-650 "MKFLCFN.spad" 1093705 1093715 1094739 1094744) (-649 "MKCHSET.spad" 1093481 1093491 1093695 1093700) (-648 "MKBCFUNC.spad" 1092966 1092984 1093471 1093476) (-647 "MINT.spad" 1092405 1092413 1092868 1092961) (-646 "MHROWRED.spad" 1090906 1090916 1092395 1092400) (-645 "MFLOAT.spad" 1089351 1089359 1090796 1090901) (-644 "MFINFACT.spad" 1088751 1088773 1089341 1089346) (-643 "MESH.spad" 1086483 1086491 1088741 1088746) (-642 "MDDFACT.spad" 1084676 1084686 1086473 1086478) (-641 "MDAGG.spad" 1083951 1083961 1084644 1084671) (-640 "MCMPLX.spad" 1079931 1079939 1080545 1080746) (-639 "MCDEN.spad" 1079139 1079151 1079921 1079926) (-638 "MCALCFN.spad" 1076241 1076267 1079129 1079134) (-637 "MAYBE.spad" 1075490 1075501 1076231 1076236) (-636 "MATSTOR.spad" 1072766 1072776 1075480 1075485) (-635 "MATRIX.spad" 1071470 1071480 1071954 1071981) (-634 "MATLIN.spad" 1068796 1068820 1071354 1071359) (-633 "MATCAT.spad" 1060369 1060391 1068752 1068791) (-632 "MATCAT.spad" 1051826 1051850 1060211 1060216) (-631 "MATCAT2.spad" 1051094 1051142 1051816 1051821) (-630 "MAPPKG3.spad" 1049993 1050007 1051084 1051089) (-629 "MAPPKG2.spad" 1049327 1049339 1049983 1049988) (-628 "MAPPKG1.spad" 1048145 1048155 1049317 1049322) (-627 "MAPHACK3.spad" 1047953 1047967 1048135 1048140) (-626 "MAPHACK2.spad" 1047718 1047730 1047943 1047948) (-625 "MAPHACK1.spad" 1047348 1047358 1047708 1047713) (-624 "MAGMA.spad" 1045138 1045155 1047338 1047343) (-623 "M3D.spad" 1042836 1042846 1044518 1044523) (-622 "LZSTAGG.spad" 1040054 1040064 1042816 1042831) (-621 "LZSTAGG.spad" 1037280 1037292 1040044 1040049) (-620 "LWORD.spad" 1033985 1034002 1037270 1037275) (-619 "LSQM.spad" 1032213 1032227 1032611 1032662) (-618 "LSPP.spad" 1031746 1031763 1032203 1032208) (-617 "LSMP.spad" 1030586 1030614 1031736 1031741) (-616 "LSMP1.spad" 1028390 1028404 1030576 1030581) (-615 "LSAGG.spad" 1028047 1028057 1028346 1028385) (-614 "LSAGG.spad" 1027736 1027748 1028037 1028042) (-613 "LPOLY.spad" 1026690 1026709 1027592 1027661) (-612 "LPEFRAC.spad" 1025947 1025957 1026680 1026685) (-611 "LO.spad" 1025348 1025362 1025881 1025908) (-610 "LOGIC.spad" 1024950 1024958 1025338 1025343) (-609 "LOGIC.spad" 1024550 1024560 1024940 1024945) (-608 "LODOOPS.spad" 1023468 1023480 1024540 1024545) (-607 "LODO.spad" 1022854 1022870 1023150 1023189) (-606 "LODOF.spad" 1021898 1021915 1022811 1022816) (-605 "LODOCAT.spad" 1020556 1020566 1021854 1021893) (-604 "LODOCAT.spad" 1019212 1019224 1020512 1020517) (-603 "LODO2.spad" 1018487 1018499 1018894 1018933) (-602 "LODO1.spad" 1017889 1017899 1018169 1018208) (-601 "LODEEF.spad" 1016661 1016679 1017879 1017884) (-600 "LNAGG.spad" 1012453 1012463 1016641 1016656) (-599 "LNAGG.spad" 1008219 1008231 1012409 1012414) (-598 "LMOPS.spad" 1004955 1004972 1008209 1008214) (-597 "LMODULE.spad" 1004597 1004607 1004945 1004950) (-596 "LMDICT.spad" 1003880 1003890 1004148 1004175) (-595 "LIST.spad" 1001598 1001608 1003027 1003054) (-594 "LIST3.spad" 1000889 1000903 1001588 1001593) (-593 "LIST2.spad" 999529 999541 1000879 1000884) (-592 "LIST2MAP.spad" 996406 996418 999519 999524) (-591 "LINEXP.spad" 995838 995848 996386 996401) (-590 "LINDEP.spad" 994615 994627 995750 995755) (-589 "LIMITRF.spad" 992529 992539 994605 994610) (-588 "LIMITPS.spad" 991412 991425 992519 992524) (-587 "LIE.spad" 989426 989438 990702 990847) (-586 "LIECAT.spad" 988902 988912 989352 989421) (-585 "LIECAT.spad" 988406 988418 988858 988863) (-584 "LIB.spad" 986454 986462 987065 987080) (-583 "LGROBP.spad" 983807 983826 986444 986449) (-582 "LF.spad" 982726 982742 983797 983802) (-581 "LFCAT.spad" 981745 981753 982716 982721) (-580 "LEXTRIPK.spad" 977248 977263 981735 981740) (-579 "LEXP.spad" 975251 975278 977228 977243) (-578 "LEADCDET.spad" 973635 973652 975241 975246) (-577 "LAZM3PK.spad" 972339 972361 973625 973630) (-576 "LAUPOL.spad" 971030 971043 971934 972003) (-575 "LAPLACE.spad" 970603 970619 971020 971025) (-574 "LA.spad" 970043 970057 970525 970564) (-573 "LALG.spad" 969819 969829 970023 970038) (-572 "LALG.spad" 969603 969615 969809 969814) (-571 "KOVACIC.spad" 968316 968333 969593 969598) (-570 "KONVERT.spad" 968038 968048 968306 968311) (-569 "KOERCE.spad" 967775 967785 968028 968033) (-568 "KERNEL.spad" 966310 966320 967559 967564) (-567 "KERNEL2.spad" 966013 966025 966300 966305) (-566 "KDAGG.spad" 965104 965126 965981 966008) (-565 "KDAGG.spad" 964215 964239 965094 965099) (-564 "KAFILE.spad" 963178 963194 963413 963440) (-563 "JORDAN.spad" 961005 961017 962468 962613) (-562 "JAVACODE.spad" 960771 960779 960995 961000) (-561 "IXAGG.spad" 958884 958908 960751 960766) (-560 "IXAGG.spad" 956862 956888 958731 958736) (-559 "IVECTOR.spad" 955635 955650 955790 955817) (-558 "ITUPLE.spad" 954780 954790 955625 955630) (-557 "ITRIGMNP.spad" 953591 953610 954770 954775) (-556 "ITFUN3.spad" 953085 953099 953581 953586) (-555 "ITFUN2.spad" 952815 952827 953075 953080) (-554 "ITAYLOR.spad" 950607 950622 952651 952776) (-553 "ISUPS.spad" 943018 943033 949581 949678) (-552 "ISUMP.spad" 942515 942531 943008 943013) (-551 "ISTRING.spad" 941518 941531 941684 941711) (-550 "IRURPK.spad" 940231 940250 941508 941513) (-549 "IRSN.spad" 938191 938199 940221 940226) (-548 "IRRF2F.spad" 936666 936676 938147 938152) (-547 "IRREDFFX.spad" 936267 936278 936656 936661) (-546 "IROOT.spad" 934598 934608 936257 936262) (-545 "IR.spad" 932388 932402 934454 934481) (-544 "IR2.spad" 931408 931424 932378 932383) (-543 "IR2F.spad" 930608 930624 931398 931403) (-542 "IPRNTPK.spad" 930368 930376 930598 930603) (-541 "IPF.spad" 929933 929945 930173 930266) (-540 "IPADIC.spad" 929694 929720 929859 929928) (-539 "INVLAPLA.spad" 929339 929355 929684 929689) (-538 "INTTR.spad" 922585 922602 929329 929334) (-537 "INTTOOLS.spad" 920297 920313 922160 922165) (-536 "INTSLPE.spad" 919603 919611 920287 920292) (-535 "INTRVL.spad" 919169 919179 919517 919598) (-534 "INTRF.spad" 917533 917547 919159 919164) (-533 "INTRET.spad" 916965 916975 917523 917528) (-532 "INTRAT.spad" 915640 915657 916955 916960) (-531 "INTPM.spad" 914003 914019 915283 915288) (-530 "INTPAF.spad" 911771 911789 913935 913940) (-529 "INTPACK.spad" 902081 902089 911761 911766) (-528 "INT.spad" 901442 901450 901935 902076) (-527 "INTHERTR.spad" 900708 900725 901432 901437) (-526 "INTHERAL.spad" 900374 900398 900698 900703) (-525 "INTHEORY.spad" 896787 896795 900364 900369) (-524 "INTG0.spad" 890250 890268 896719 896724) (-523 "INTFTBL.spad" 884279 884287 890240 890245) (-522 "INTFACT.spad" 883338 883348 884269 884274) (-521 "INTEF.spad" 881653 881669 883328 883333) (-520 "INTDOM.spad" 880268 880276 881579 881648) (-519 "INTDOM.spad" 878945 878955 880258 880263) (-518 "INTCAT.spad" 877198 877208 878859 878940) (-517 "INTBIT.spad" 876701 876709 877188 877193) (-516 "INTALG.spad" 875883 875910 876691 876696) (-515 "INTAF.spad" 875375 875391 875873 875878) (-514 "INTABL.spad" 873893 873924 874056 874083) (-513 "INS.spad" 871289 871297 873795 873888) (-512 "INS.spad" 868771 868781 871279 871284) (-511 "INPSIGN.spad" 868205 868218 868761 868766) (-510 "INPRODPF.spad" 867271 867290 868195 868200) (-509 "INPRODFF.spad" 866329 866353 867261 867266) (-508 "INNMFACT.spad" 865300 865317 866319 866324) (-507 "INMODGCD.spad" 864784 864814 865290 865295) (-506 "INFSP.spad" 863069 863091 864774 864779) (-505 "INFPROD0.spad" 862119 862138 863059 863064) (-504 "INFORM.spad" 859387 859395 862109 862114) (-503 "INFORM1.spad" 859012 859022 859377 859382) (-502 "INFINITY.spad" 858564 858572 859002 859007) (-501 "INEP.spad" 857096 857118 858554 858559) (-500 "INDE.spad" 856825 856842 857086 857091) (-499 "INCRMAPS.spad" 856246 856256 856815 856820) (-498 "INBFF.spad" 852016 852027 856236 856241) (-497 "IMATRIX.spad" 850961 850987 851473 851500) (-496 "IMATQF.spad" 850055 850099 850917 850922) (-495 "IMATLIN.spad" 848660 848684 850011 850016) (-494 "ILIST.spad" 847316 847331 847843 847870) (-493 "IIARRAY2.spad" 846704 846742 846923 846950) (-492 "IFF.spad" 846114 846130 846385 846478) (-491 "IFARRAY.spad" 843601 843616 845297 845324) (-490 "IFAMON.spad" 843463 843480 843557 843562) (-489 "IEVALAB.spad" 842852 842864 843453 843458) (-488 "IEVALAB.spad" 842239 842253 842842 842847) (-487 "IDPO.spad" 842037 842049 842229 842234) (-486 "IDPOAMS.spad" 841793 841805 842027 842032) (-485 "IDPOAM.spad" 841513 841525 841783 841788) (-484 "IDPC.spad" 840447 840459 841503 841508) (-483 "IDPAM.spad" 840192 840204 840437 840442) (-482 "IDPAG.spad" 839939 839951 840182 840187) (-481 "IDECOMP.spad" 837176 837194 839929 839934) (-480 "IDEAL.spad" 832099 832138 837111 837116) (-479 "ICDEN.spad" 831250 831266 832089 832094) (-478 "ICARD.spad" 830439 830447 831240 831245) (-477 "IBPTOOLS.spad" 829032 829049 830429 830434) (-476 "IBITS.spad" 828231 828244 828668 828695) (-475 "IBATOOL.spad" 825106 825125 828221 828226) (-474 "IBACHIN.spad" 823593 823608 825096 825101) (-473 "IARRAY2.spad" 822581 822607 823200 823227) (-472 "IARRAY1.spad" 821626 821641 821764 821791) (-471 "IAN.spad" 819841 819849 821444 821537) (-470 "IALGFACT.spad" 819442 819475 819831 819836) (-469 "HYPCAT.spad" 818866 818874 819432 819437) (-468 "HYPCAT.spad" 818288 818298 818856 818861) (-467 "HOAGG.spad" 815546 815556 818268 818283) (-466 "HOAGG.spad" 812589 812601 815313 815318) (-465 "HEXADEC.spad" 810461 810469 811059 811152) (-464 "HEUGCD.spad" 809476 809487 810451 810456) (-463 "HELLFDIV.spad" 809066 809090 809466 809471) (-462 "HEAP.spad" 808458 808468 808673 808700) (-461 "HEADAST.spad" 808017 808025 808448 808453) (-460 "HDP.spad" 799185 799201 799562 799691) (-459 "HDMP.spad" 796364 796379 796982 797109) (-458 "HB.spad" 794601 794609 796354 796359) (-457 "HASHTBL.spad" 793071 793102 793282 793309) (-456 "HACKPI.spad" 792554 792562 792973 793066) (-455 "GTSET.spad" 791493 791509 792200 792227) (-454 "GSTBL.spad" 790012 790047 790186 790201) (-453 "GSERIES.spad" 787179 787206 788144 788293) (-452 "GROUP.spad" 786353 786361 787159 787174) (-451 "GROUP.spad" 785535 785545 786343 786348) (-450 "GROEBSOL.spad" 784023 784044 785525 785530) (-449 "GRMOD.spad" 782594 782606 784013 784018) (-448 "GRMOD.spad" 781163 781177 782584 782589) (-447 "GRIMAGE.spad" 773768 773776 781153 781158) (-446 "GRDEF.spad" 772147 772155 773758 773763) (-445 "GRAY.spad" 770606 770614 772137 772142) (-444 "GRALG.spad" 769653 769665 770596 770601) (-443 "GRALG.spad" 768698 768712 769643 769648) (-442 "GPOLSET.spad" 768152 768175 768380 768407) (-441 "GOSPER.spad" 767417 767435 768142 768147) (-440 "GMODPOL.spad" 766555 766582 767385 767412) (-439 "GHENSEL.spad" 765624 765638 766545 766550) (-438 "GENUPS.spad" 761725 761738 765614 765619) (-437 "GENUFACT.spad" 761302 761312 761715 761720) (-436 "GENPGCD.spad" 760886 760903 761292 761297) (-435 "GENMFACT.spad" 760338 760357 760876 760881) (-434 "GENEEZ.spad" 758277 758290 760328 760333) (-433 "GDMP.spad" 755298 755315 756074 756201) (-432 "GCNAALG.spad" 749193 749220 755092 755159) (-431 "GCDDOM.spad" 748365 748373 749119 749188) (-430 "GCDDOM.spad" 747599 747609 748355 748360) (-429 "GB.spad" 745117 745155 747555 747560) (-428 "GBINTERN.spad" 741137 741175 745107 745112) (-427 "GBF.spad" 736894 736932 741127 741132) (-426 "GBEUCLID.spad" 734768 734806 736884 736889) (-425 "GAUSSFAC.spad" 734065 734073 734758 734763) (-424 "GALUTIL.spad" 732387 732397 734021 734026) (-423 "GALPOLYU.spad" 730833 730846 732377 732382) (-422 "GALFACTU.spad" 728998 729017 730823 730828) (-421 "GALFACT.spad" 719131 719142 728988 728993) (-420 "FVFUN.spad" 716144 716152 719111 719126) (-419 "FVC.spad" 715186 715194 716124 716139) (-418 "FUNCTION.spad" 715035 715047 715176 715181) (-417 "FT.spad" 713247 713255 715025 715030) (-416 "FTEM.spad" 712410 712418 713237 713242) (-415 "FSUPFACT.spad" 711311 711330 712347 712352) (-414 "FST.spad" 709397 709405 711301 711306) (-413 "FSRED.spad" 708875 708891 709387 709392) (-412 "FSPRMELT.spad" 707699 707715 708832 708837) (-411 "FSPECF.spad" 705776 705792 707689 707694) (-410 "FS.spad" 699827 699837 705540 705771) (-409 "FS.spad" 693669 693681 699384 699389) (-408 "FSINT.spad" 693327 693343 693659 693664) (-407 "FSERIES.spad" 692514 692526 693147 693246) (-406 "FSCINT.spad" 691827 691843 692504 692509) (-405 "FSAGG.spad" 690932 690942 691771 691822) (-404 "FSAGG.spad" 690011 690023 690852 690857) (-403 "FSAGG2.spad" 688710 688726 690001 690006) (-402 "FS2UPS.spad" 683099 683133 688700 688705) (-401 "FS2.spad" 682744 682760 683089 683094) (-400 "FS2EXPXP.spad" 681867 681890 682734 682739) (-399 "FRUTIL.spad" 680809 680819 681857 681862) (-398 "FR.spad" 674506 674516 679836 679905) (-397 "FRNAALG.spad" 669593 669603 674448 674501) (-396 "FRNAALG.spad" 664692 664704 669549 669554) (-395 "FRNAAF2.spad" 664146 664164 664682 664687) (-394 "FRMOD.spad" 663541 663571 664078 664083) (-393 "FRIDEAL.spad" 662736 662757 663521 663536) (-392 "FRIDEAL2.spad" 662338 662370 662726 662731) (-391 "FRETRCT.spad" 661849 661859 662328 662333) (-390 "FRETRCT.spad" 661228 661240 661709 661714) (-389 "FRAMALG.spad" 659556 659569 661184 661223) (-388 "FRAMALG.spad" 657916 657931 659546 659551) (-387 "FRAC.spad" 655019 655029 655422 655595) (-386 "FRAC2.spad" 654622 654634 655009 655014) (-385 "FR2.spad" 653956 653968 654612 654617) (-384 "FPS.spad" 650765 650773 653846 653951) (-383 "FPS.spad" 647602 647612 650685 650690) (-382 "FPC.spad" 646644 646652 647504 647597) (-381 "FPC.spad" 645772 645782 646634 646639) (-380 "FPATMAB.spad" 645524 645534 645752 645767) (-379 "FPARFRAC.spad" 643997 644014 645514 645519) (-378 "FORTRAN.spad" 642503 642546 643987 643992) (-377 "FORT.spad" 641432 641440 642493 642498) (-376 "FORTFN.spad" 638592 638600 641412 641427) (-375 "FORTCAT.spad" 638266 638274 638572 638587) (-374 "FORMULA.spad" 635604 635612 638256 638261) (-373 "FORMULA1.spad" 635083 635093 635594 635599) (-372 "FORDER.spad" 634774 634798 635073 635078) (-371 "FOP.spad" 633975 633983 634764 634769) (-370 "FNLA.spad" 633399 633421 633943 633970) (-369 "FNCAT.spad" 631727 631735 633389 633394) (-368 "FNAME.spad" 631619 631627 631717 631722) (-367 "FMTC.spad" 631417 631425 631545 631614) (-366 "FMONOID.spad" 628472 628482 631373 631378) (-365 "FM.spad" 628167 628179 628406 628433) (-364 "FMFUN.spad" 625187 625195 628147 628162) (-363 "FMC.spad" 624229 624237 625167 625182) (-362 "FMCAT.spad" 621883 621901 624197 624224) (-361 "FM1.spad" 621240 621252 621817 621844) (-360 "FLOATRP.spad" 618961 618975 621230 621235) (-359 "FLOAT.spad" 612125 612133 618827 618956) (-358 "FLOATCP.spad" 609542 609556 612115 612120) (-357 "FLINEXP.spad" 609254 609264 609522 609537) (-356 "FLINEXP.spad" 608920 608932 609190 609195) (-355 "FLASORT.spad" 608240 608252 608910 608915) (-354 "FLALG.spad" 605886 605905 608166 608235) (-353 "FLAGG.spad" 602892 602902 605854 605881) (-352 "FLAGG.spad" 599811 599823 602775 602780) (-351 "FLAGG2.spad" 598492 598508 599801 599806) (-350 "FINRALG.spad" 596521 596534 598448 598487) (-349 "FINRALG.spad" 594476 594491 596405 596410) (-348 "FINITE.spad" 593628 593636 594466 594471) (-347 "FINAALG.spad" 582609 582619 593570 593623) (-346 "FINAALG.spad" 571602 571614 582565 582570) (-345 "FILE.spad" 571185 571195 571592 571597) (-344 "FILECAT.spad" 569703 569720 571175 571180) (-343 "FIELD.spad" 569109 569117 569605 569698) (-342 "FIELD.spad" 568601 568611 569099 569104) (-341 "FGROUP.spad" 567210 567220 568581 568596) (-340 "FGLMICPK.spad" 565997 566012 567200 567205) (-339 "FFX.spad" 565372 565387 565713 565806) (-338 "FFSLPE.spad" 564861 564882 565362 565367) (-337 "FFPOLY.spad" 556113 556124 564851 564856) (-336 "FFPOLY2.spad" 555173 555190 556103 556108) (-335 "FFP.spad" 554570 554590 554889 554982) (-334 "FF.spad" 554018 554034 554251 554344) (-333 "FFNBX.spad" 552530 552550 553734 553827) (-332 "FFNBP.spad" 551043 551060 552246 552339) (-331 "FFNB.spad" 549508 549529 550724 550817) (-330 "FFINTBAS.spad" 546922 546941 549498 549503) (-329 "FFIELDC.spad" 544497 544505 546824 546917) (-328 "FFIELDC.spad" 542158 542168 544487 544492) (-327 "FFHOM.spad" 540906 540923 542148 542153) (-326 "FFF.spad" 538341 538352 540896 540901) (-325 "FFCGX.spad" 537188 537208 538057 538150) (-324 "FFCGP.spad" 536077 536097 536904 536997) (-323 "FFCG.spad" 534869 534890 535758 535851) (-322 "FFCAT.spad" 527770 527792 534708 534864) (-321 "FFCAT.spad" 520750 520774 527690 527695) (-320 "FFCAT2.spad" 520495 520535 520740 520745) (-319 "FEXPR.spad" 512208 512254 520255 520294) (-318 "FEVALAB.spad" 511914 511924 512198 512203) (-317 "FEVALAB.spad" 511405 511417 511691 511696) (-316 "FDIV.spad" 510847 510871 511395 511400) (-315 "FDIVCAT.spad" 508889 508913 510837 510842) (-314 "FDIVCAT.spad" 506929 506955 508879 508884) (-313 "FDIV2.spad" 506583 506623 506919 506924) (-312 "FCPAK1.spad" 505136 505144 506573 506578) (-311 "FCOMP.spad" 504515 504525 505126 505131) (-310 "FC.spad" 494340 494348 504505 504510) (-309 "FAXF.spad" 487275 487289 494242 494335) (-308 "FAXF.spad" 480262 480278 487231 487236) (-307 "FARRAY.spad" 478408 478418 479445 479472) (-306 "FAMR.spad" 476528 476540 478306 478403) (-305 "FAMR.spad" 474632 474646 476412 476417) (-304 "FAMONOID.spad" 474282 474292 474586 474591) (-303 "FAMONC.spad" 472504 472516 474272 474277) (-302 "FAGROUP.spad" 472110 472120 472400 472427) (-301 "FACUTIL.spad" 470306 470323 472100 472105) (-300 "FACTFUNC.spad" 469482 469492 470296 470301) (-299 "EXPUPXS.spad" 466315 466338 467614 467763) (-298 "EXPRTUBE.spad" 463543 463551 466305 466310) (-297 "EXPRODE.spad" 460415 460431 463533 463538) (-296 "EXPR.spad" 455717 455727 456431 456834) (-295 "EXPR2UPS.spad" 451809 451822 455707 455712) (-294 "EXPR2.spad" 451512 451524 451799 451804) (-293 "EXPEXPAN.spad" 448453 448478 449087 449180) (-292 "EXIT.spad" 448124 448132 448443 448448) (-291 "EVALCYC.spad" 447582 447596 448114 448119) (-290 "EVALAB.spad" 447146 447156 447572 447577) (-289 "EVALAB.spad" 446708 446720 447136 447141) (-288 "EUCDOM.spad" 444250 444258 446634 446703) (-287 "EUCDOM.spad" 441854 441864 444240 444245) (-286 "ESTOOLS.spad" 433694 433702 441844 441849) (-285 "ESTOOLS2.spad" 433295 433309 433684 433689) (-284 "ESTOOLS1.spad" 432980 432991 433285 433290) (-283 "ES.spad" 425527 425535 432970 432975) (-282 "ES.spad" 417982 417992 425427 425432) (-281 "ESCONT.spad" 414755 414763 417972 417977) (-280 "ESCONT1.spad" 414504 414516 414745 414750) (-279 "ES2.spad" 413999 414015 414494 414499) (-278 "ES1.spad" 413565 413581 413989 413994) (-277 "ERROR.spad" 410886 410894 413555 413560) (-276 "EQTBL.spad" 409358 409380 409567 409594) (-275 "EQ.spad" 404242 404252 407041 407150) (-274 "EQ2.spad" 403958 403970 404232 404237) (-273 "EP.spad" 400272 400282 403948 403953) (-272 "ENV.spad" 398974 398982 400262 400267) (-271 "ENTIRER.spad" 398642 398650 398918 398969) (-270 "EMR.spad" 397843 397884 398568 398637) (-269 "ELTAGG.spad" 396083 396102 397833 397838) (-268 "ELTAGG.spad" 394287 394308 396039 396044) (-267 "ELTAB.spad" 393734 393752 394277 394282) (-266 "ELFUTS.spad" 393113 393132 393724 393729) (-265 "ELEMFUN.spad" 392802 392810 393103 393108) (-264 "ELEMFUN.spad" 392489 392499 392792 392797) (-263 "ELAGG.spad" 390420 390430 392457 392484) (-262 "ELAGG.spad" 388300 388312 390339 390344) (-261 "ELABEXPR.spad" 387231 387239 388290 388295) (-260 "EFUPXS.spad" 384007 384037 387187 387192) (-259 "EFULS.spad" 380843 380866 383963 383968) (-258 "EFSTRUC.spad" 378798 378814 380833 380838) (-257 "EF.spad" 373564 373580 378788 378793) (-256 "EAB.spad" 371840 371848 373554 373559) (-255 "E04UCFA.spad" 371376 371384 371830 371835) (-254 "E04NAFA.spad" 370953 370961 371366 371371) (-253 "E04MBFA.spad" 370533 370541 370943 370948) (-252 "E04JAFA.spad" 370069 370077 370523 370528) (-251 "E04GCFA.spad" 369605 369613 370059 370064) (-250 "E04FDFA.spad" 369141 369149 369595 369600) (-249 "E04DGFA.spad" 368677 368685 369131 369136) (-248 "E04AGNT.spad" 364519 364527 368667 368672) (-247 "DVARCAT.spad" 361204 361214 364509 364514) (-246 "DVARCAT.spad" 357887 357899 361194 361199) (-245 "DSMP.spad" 355321 355335 355626 355753) (-244 "DROPT.spad" 349266 349274 355311 355316) (-243 "DROPT1.spad" 348929 348939 349256 349261) (-242 "DROPT0.spad" 343756 343764 348919 348924) (-241 "DRAWPT.spad" 341911 341919 343746 343751) (-240 "DRAW.spad" 334511 334524 341901 341906) (-239 "DRAWHACK.spad" 333819 333829 334501 334506) (-238 "DRAWCX.spad" 331261 331269 333809 333814) (-237 "DRAWCURV.spad" 330798 330813 331251 331256) (-236 "DRAWCFUN.spad" 319970 319978 330788 330793) (-235 "DQAGG.spad" 318126 318136 319926 319965) (-234 "DPOLCAT.spad" 313467 313483 317994 318121) (-233 "DPOLCAT.spad" 308894 308912 313423 313428) (-232 "DPMO.spad" 302244 302260 302382 302678) (-231 "DPMM.spad" 295607 295625 295732 296028) (-230 "DOMAIN.spad" 294878 294886 295597 295602) (-229 "DMP.spad" 292103 292118 292675 292802) (-228 "DLP.spad" 291451 291461 292093 292098) (-227 "DLIST.spad" 289863 289873 290634 290661) (-226 "DLAGG.spad" 288264 288274 289843 289858) (-225 "DIVRING.spad" 287711 287719 288208 288259) (-224 "DIVRING.spad" 287202 287212 287701 287706) (-223 "DISPLAY.spad" 285382 285390 287192 287197) (-222 "DIRPROD.spad" 276287 276303 276927 277056) (-221 "DIRPROD2.spad" 275095 275113 276277 276282) (-220 "DIRPCAT.spad" 274027 274043 274949 275090) (-219 "DIRPCAT.spad" 272699 272717 273623 273628) (-218 "DIOSP.spad" 271524 271532 272689 272694) (-217 "DIOPS.spad" 270496 270506 271492 271519) (-216 "DIOPS.spad" 269454 269466 270452 270457) (-215 "DIFRING.spad" 268746 268754 269434 269449) (-214 "DIFRING.spad" 268046 268056 268736 268741) (-213 "DIFEXT.spad" 267205 267215 268026 268041) (-212 "DIFEXT.spad" 266281 266293 267104 267109) (-211 "DIAGG.spad" 265899 265909 266249 266276) (-210 "DIAGG.spad" 265537 265549 265889 265894) (-209 "DHMATRIX.spad" 263841 263851 264994 265021) (-208 "DFSFUN.spad" 257249 257257 263831 263836) (-207 "DFLOAT.spad" 253772 253780 257139 257244) (-206 "DFINTTLS.spad" 251981 251997 253762 253767) (-205 "DERHAM.spad" 249891 249923 251961 251976) (-204 "DEQUEUE.spad" 249209 249219 249498 249525) (-203 "DEGRED.spad" 248824 248838 249199 249204) (-202 "DEFINTRF.spad" 246349 246359 248814 248819) (-201 "DEFINTEF.spad" 244845 244861 246339 246344) (-200 "DECIMAL.spad" 242729 242737 243315 243408) (-199 "DDFACT.spad" 240528 240545 242719 242724) (-198 "DBLRESP.spad" 240126 240150 240518 240523) (-197 "DBASE.spad" 238698 238708 240116 240121) (-196 "D03FAFA.spad" 238526 238534 238688 238693) (-195 "D03EEFA.spad" 238346 238354 238516 238521) (-194 "D03AGNT.spad" 237426 237434 238336 238341) (-193 "D02EJFA.spad" 236888 236896 237416 237421) (-192 "D02CJFA.spad" 236366 236374 236878 236883) (-191 "D02BHFA.spad" 235856 235864 236356 236361) (-190 "D02BBFA.spad" 235346 235354 235846 235851) (-189 "D02AGNT.spad" 230150 230158 235336 235341) (-188 "D01WGTS.spad" 228469 228477 230140 230145) (-187 "D01TRNS.spad" 228446 228454 228459 228464) (-186 "D01GBFA.spad" 227968 227976 228436 228441) (-185 "D01FCFA.spad" 227490 227498 227958 227963) (-184 "D01ASFA.spad" 226958 226966 227480 227485) (-183 "D01AQFA.spad" 226404 226412 226948 226953) (-182 "D01APFA.spad" 225828 225836 226394 226399) (-181 "D01ANFA.spad" 225322 225330 225818 225823) (-180 "D01AMFA.spad" 224832 224840 225312 225317) (-179 "D01ALFA.spad" 224372 224380 224822 224827) (-178 "D01AKFA.spad" 223898 223906 224362 224367) (-177 "D01AJFA.spad" 223421 223429 223888 223893) (-176 "D01AGNT.spad" 219480 219488 223411 223416) (-175 "CYCLOTOM.spad" 218986 218994 219470 219475) (-174 "CYCLES.spad" 215818 215826 218976 218981) (-173 "CVMP.spad" 215235 215245 215808 215813) (-172 "CTRIGMNP.spad" 213725 213741 215225 215230) (-171 "CTORCALL.spad" 213313 213321 213715 213720) (-170 "CSTTOOLS.spad" 212556 212569 213303 213308) (-169 "CRFP.spad" 206260 206273 212546 212551) (-168 "CRAPACK.spad" 205303 205313 206250 206255) (-167 "CPMATCH.spad" 204803 204818 205228 205233) (-166 "CPIMA.spad" 204508 204527 204793 204798) (-165 "COORDSYS.spad" 199401 199411 204498 204503) (-164 "CONTOUR.spad" 198803 198811 199391 199396) (-163 "CONTFRAC.spad" 194415 194425 198705 198798) (-162 "COMRING.spad" 194089 194097 194353 194410) (-161 "COMPPROP.spad" 193603 193611 194079 194084) (-160 "COMPLPAT.spad" 193370 193385 193593 193598) (-159 "COMPLEX.spad" 187403 187413 187647 187908) (-158 "COMPLEX2.spad" 187116 187128 187393 187398) (-157 "COMPFACT.spad" 186718 186732 187106 187111) (-156 "COMPCAT.spad" 184774 184784 186440 186713) (-155 "COMPCAT.spad" 182537 182549 184205 184210) (-154 "COMMUPC.spad" 182283 182301 182527 182532) (-153 "COMMONOP.spad" 181816 181824 182273 182278) (-152 "COMM.spad" 181625 181633 181806 181811) (-151 "COMBOPC.spad" 180530 180538 181615 181620) (-150 "COMBINAT.spad" 179275 179285 180520 180525) (-149 "COMBF.spad" 176643 176659 179265 179270) (-148 "COLOR.spad" 175480 175488 176633 176638) (-147 "CMPLXRT.spad" 175189 175206 175470 175475) (-146 "CLIP.spad" 171281 171289 175179 175184) (-145 "CLIF.spad" 169920 169936 171237 171276) (-144 "CLAGG.spad" 166395 166405 169900 169915) (-143 "CLAGG.spad" 162751 162763 166258 166263) (-142 "CINTSLPE.spad" 162076 162089 162741 162746) (-141 "CHVAR.spad" 160154 160176 162066 162071) (-140 "CHARZ.spad" 160069 160077 160134 160149) (-139 "CHARPOL.spad" 159577 159587 160059 160064) (-138 "CHARNZ.spad" 159330 159338 159557 159572) (-137 "CHAR.spad" 157198 157206 159320 159325) (-136 "CFCAT.spad" 156514 156522 157188 157193) (-135 "CDEN.spad" 155672 155686 156504 156509) (-134 "CCLASS.spad" 153821 153829 155083 155122) (-133 "CATEGORY.spad" 153600 153608 153811 153816) (-132 "CARTEN.spad" 148703 148727 153590 153595) (-131 "CARTEN2.spad" 148089 148116 148693 148698) (-130 "CARD.spad" 145378 145386 148063 148084) (-129 "CACHSET.spad" 145000 145008 145368 145373) (-128 "CABMON.spad" 144553 144561 144990 144995) (-127 "BYTE.spad" 143947 143955 144543 144548) (-126 "BYTEARY.spad" 143022 143030 143116 143143) (-125 "BTREE.spad" 142091 142101 142629 142656) (-124 "BTOURN.spad" 141094 141104 141698 141725) (-123 "BTCAT.spad" 140470 140480 141050 141089) (-122 "BTCAT.spad" 139878 139890 140460 140465) (-121 "BTAGG.spad" 138894 138902 139834 139873) (-120 "BTAGG.spad" 137942 137952 138884 138889) (-119 "BSTREE.spad" 136677 136687 137549 137576) (-118 "BRILL.spad" 134872 134883 136667 136672) (-117 "BRAGG.spad" 133786 133796 134852 134867) (-116 "BRAGG.spad" 132674 132686 133742 133747) (-115 "BPADICRT.spad" 130658 130670 130913 131006) (-114 "BPADIC.spad" 130322 130334 130584 130653) (-113 "BOUNDZRO.spad" 129978 129995 130312 130317) (-112 "BOP.spad" 125442 125450 129968 129973) (-111 "BOP1.spad" 122828 122838 125398 125403) (-110 "BOOLEAN.spad" 122091 122099 122818 122823) (-109 "BMODULE.spad" 121803 121815 122059 122086) (-108 "BITS.spad" 121222 121230 121439 121466) (-107 "BINFILE.spad" 120565 120573 121212 121217) (-106 "BINDING.spad" 119984 119992 120555 120560) (-105 "BINARY.spad" 117877 117885 118454 118547) (-104 "BGAGG.spad" 117062 117072 117845 117872) (-103 "BGAGG.spad" 116267 116279 117052 117057) (-102 "BFUNCT.spad" 115831 115839 116247 116262) (-101 "BEZOUT.spad" 114965 114992 115781 115786) (-100 "BBTREE.spad" 111784 111794 114572 114599) (-99 "BASTYPE.spad" 111457 111464 111774 111779) (-98 "BASTYPE.spad" 111128 111137 111447 111452) (-97 "BALFACT.spad" 110568 110580 111118 111123) (-96 "AUTOMOR.spad" 110015 110024 110548 110563) (-95 "ATTREG.spad" 106734 106741 109767 110010) (-94 "ATTRBUT.spad" 102757 102764 106714 106729) (-93 "ATRIG.spad" 102227 102234 102747 102752) (-92 "ATRIG.spad" 101695 101704 102217 102222) (-91 "ASTCAT.spad" 101599 101606 101685 101690) (-90 "ASTCAT.spad" 101501 101510 101589 101594) (-89 "ASTACK.spad" 100834 100843 101108 101135) (-88 "ASSOCEQ.spad" 99634 99645 100790 100795) (-87 "ASP9.spad" 98715 98728 99624 99629) (-86 "ASP8.spad" 97758 97771 98705 98710) (-85 "ASP80.spad" 97080 97093 97748 97753) (-84 "ASP7.spad" 96240 96253 97070 97075) (-83 "ASP78.spad" 95691 95704 96230 96235) (-82 "ASP77.spad" 95060 95073 95681 95686) (-81 "ASP74.spad" 94152 94165 95050 95055) (-80 "ASP73.spad" 93423 93436 94142 94147) (-79 "ASP6.spad" 92055 92068 93413 93418) (-78 "ASP55.spad" 90564 90577 92045 92050) (-77 "ASP50.spad" 88381 88394 90554 90559) (-76 "ASP4.spad" 87676 87689 88371 88376) (-75 "ASP49.spad" 86675 86688 87666 87671) (-74 "ASP42.spad" 85082 85121 86665 86670) (-73 "ASP41.spad" 83661 83700 85072 85077) (-72 "ASP35.spad" 82649 82662 83651 83656) (-71 "ASP34.spad" 81950 81963 82639 82644) (-70 "ASP33.spad" 81510 81523 81940 81945) (-69 "ASP31.spad" 80650 80663 81500 81505) (-68 "ASP30.spad" 79542 79555 80640 80645) (-67 "ASP29.spad" 79008 79021 79532 79537) (-66 "ASP28.spad" 70281 70294 78998 79003) (-65 "ASP27.spad" 69178 69191 70271 70276) (-64 "ASP24.spad" 68265 68278 69168 69173) (-63 "ASP20.spad" 67481 67494 68255 68260) (-62 "ASP1.spad" 66862 66875 67471 67476) (-61 "ASP19.spad" 61548 61561 66852 66857) (-60 "ASP12.spad" 60962 60975 61538 61543) (-59 "ASP10.spad" 60233 60246 60952 60957) (-58 "ARRAY2.spad" 59593 59602 59840 59867) (-57 "ARRAY1.spad" 58428 58437 58776 58803) (-56 "ARRAY12.spad" 57097 57108 58418 58423) (-55 "ARR2CAT.spad" 52747 52768 57053 57092) (-54 "ARR2CAT.spad" 48429 48452 52737 52742) (-53 "APPRULE.spad" 47673 47695 48419 48424) (-52 "APPLYORE.spad" 47288 47301 47663 47668) (-51 "ANY.spad" 45630 45637 47278 47283) (-50 "ANY1.spad" 44701 44710 45620 45625) (-49 "ANTISYM.spad" 43140 43156 44681 44696) (-48 "ANON.spad" 42837 42844 43130 43135) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2242216 2242221 2242226 2242231) (-2 NIL 2242196 2242201 2242206 2242211) (-1 NIL 2242176 2242181 2242186 2242191) (0 NIL 2242156 2242161 2242166 2242171) (-1206 "ZMOD.spad" 2241965 2241978 2242094 2242151) (-1205 "ZLINDEP.spad" 2241009 2241020 2241955 2241960) (-1204 "ZDSOLVE.spad" 2230858 2230880 2240999 2241004) (-1203 "YSTREAM.spad" 2230351 2230362 2230848 2230853) (-1202 "XRPOLY.spad" 2229571 2229591 2230207 2230276) (-1201 "XPR.spad" 2227300 2227313 2229289 2229388) (-1200 "XPOLYC.spad" 2226617 2226633 2227226 2227295) (-1199 "XPOLY.spad" 2226172 2226183 2226473 2226542) (-1198 "XPBWPOLY.spad" 2224609 2224629 2225952 2226021) (-1197 "XFALG.spad" 2221633 2221649 2224535 2224604) (-1196 "XF.spad" 2220094 2220109 2221535 2221628) (-1195 "XF.spad" 2218535 2218552 2219978 2219983) (-1194 "XEXPPKG.spad" 2217786 2217812 2218525 2218530) (-1193 "XDPOLY.spad" 2217400 2217416 2217642 2217711) (-1192 "XALG.spad" 2216998 2217009 2217356 2217395) (-1191 "WUTSET.spad" 2212837 2212854 2216644 2216671) (-1190 "WP.spad" 2211851 2211895 2212695 2212762) (-1189 "WFFINTBS.spad" 2209414 2209436 2211841 2211846) (-1188 "WEIER.spad" 2207628 2207639 2209404 2209409) (-1187 "VSPACE.spad" 2207301 2207312 2207596 2207623) (-1186 "VSPACE.spad" 2206994 2207007 2207291 2207296) (-1185 "VOID.spad" 2206584 2206593 2206984 2206989) (-1184 "VIEWDEF.spad" 2201781 2201790 2206574 2206579) (-1183 "VIEW3D.spad" 2185616 2185625 2201771 2201776) (-1182 "VIEW2D.spad" 2173353 2173362 2185606 2185611) (-1181 "VIEW.spad" 2170975 2170984 2173343 2173348) (-1180 "VECTOR2.spad" 2169602 2169615 2170965 2170970) (-1179 "VECTOR.spad" 2168279 2168290 2168530 2168557) (-1178 "VECTCAT.spad" 2166167 2166178 2168235 2168274) (-1177 "VECTCAT.spad" 2163876 2163889 2165946 2165951) (-1176 "VARIABLE.spad" 2163656 2163671 2163866 2163871) (-1175 "UTYPE.spad" 2163290 2163299 2163636 2163651) (-1174 "UTSODETL.spad" 2162583 2162607 2163246 2163251) (-1173 "UTSODE.spad" 2160771 2160791 2162573 2162578) (-1172 "UTSCAT.spad" 2158222 2158238 2160669 2160766) (-1171 "UTSCAT.spad" 2155317 2155335 2157766 2157771) (-1170 "UTS2.spad" 2154910 2154945 2155307 2155312) (-1169 "UTS.spad" 2149699 2149727 2153377 2153474) (-1168 "URAGG.spad" 2144321 2144332 2149679 2149694) (-1167 "URAGG.spad" 2138917 2138930 2144277 2144282) (-1166 "UPXSSING.spad" 2136563 2136589 2138001 2138134) (-1165 "UPXSCONS.spad" 2134320 2134340 2134695 2134844) (-1164 "UPXSCCA.spad" 2132778 2132798 2134166 2134315) (-1163 "UPXSCCA.spad" 2131378 2131400 2132768 2132773) (-1162 "UPXSCAT.spad" 2129959 2129975 2131224 2131373) (-1161 "UPXS2.spad" 2129500 2129553 2129949 2129954) (-1160 "UPXS.spad" 2126527 2126555 2127632 2127781) (-1159 "UPSQFREE.spad" 2124940 2124954 2126517 2126522) (-1158 "UPSCAT.spad" 2122533 2122557 2124838 2124935) (-1157 "UPSCAT.spad" 2119832 2119858 2122139 2122144) (-1156 "UPOLYC2.spad" 2119301 2119320 2119822 2119827) (-1155 "UPOLYC.spad" 2114279 2114290 2119143 2119296) (-1154 "UPOLYC.spad" 2109149 2109162 2114015 2114020) (-1153 "UPMP.spad" 2108039 2108052 2109139 2109144) (-1152 "UPDIVP.spad" 2107602 2107616 2108029 2108034) (-1151 "UPDECOMP.spad" 2105839 2105853 2107592 2107597) (-1150 "UPCDEN.spad" 2105046 2105062 2105829 2105834) (-1149 "UP2.spad" 2104408 2104429 2105036 2105041) (-1148 "UP.spad" 2101453 2101468 2101961 2102114) (-1147 "UNISEG2.spad" 2100946 2100959 2101409 2101414) (-1146 "UNISEG.spad" 2100299 2100310 2100865 2100870) (-1145 "UNIFACT.spad" 2099400 2099412 2100289 2100294) (-1144 "ULSCONS.spad" 2093443 2093463 2093815 2093964) (-1143 "ULSCCAT.spad" 2091040 2091060 2093263 2093438) (-1142 "ULSCCAT.spad" 2088771 2088793 2090996 2091001) (-1141 "ULSCAT.spad" 2086987 2087003 2088617 2088766) (-1140 "ULS2.spad" 2086499 2086552 2086977 2086982) (-1139 "ULS.spad" 2077058 2077086 2078151 2078580) (-1138 "UFD.spad" 2076123 2076132 2076984 2077053) (-1137 "UFD.spad" 2075250 2075261 2076113 2076118) (-1136 "UDVO.spad" 2074097 2074106 2075240 2075245) (-1135 "UDPO.spad" 2071524 2071535 2074053 2074058) (-1134 "TYPE.spad" 2071446 2071455 2071504 2071519) (-1133 "TWOFACT.spad" 2070096 2070111 2071436 2071441) (-1132 "TUPLE.spad" 2069482 2069493 2069995 2070000) (-1131 "TUBETOOL.spad" 2066319 2066328 2069472 2069477) (-1130 "TUBE.spad" 2064960 2064977 2066309 2066314) (-1129 "TSETCAT.spad" 2052075 2052092 2064916 2064955) (-1128 "TSETCAT.spad" 2039188 2039207 2052031 2052036) (-1127 "TS.spad" 2037777 2037793 2038753 2038850) (-1126 "TRMANIP.spad" 2032143 2032160 2037483 2037488) (-1125 "TRIMAT.spad" 2031102 2031127 2032133 2032138) (-1124 "TRIGMNIP.spad" 2029619 2029636 2031092 2031097) (-1123 "TRIGCAT.spad" 2029131 2029140 2029609 2029614) (-1122 "TRIGCAT.spad" 2028641 2028652 2029121 2029126) (-1121 "TREE.spad" 2027212 2027223 2028248 2028275) (-1120 "TRANFUN.spad" 2027043 2027052 2027202 2027207) (-1119 "TRANFUN.spad" 2026872 2026883 2027033 2027038) (-1118 "TOPSP.spad" 2026546 2026555 2026862 2026867) (-1117 "TOOLSIGN.spad" 2026209 2026220 2026536 2026541) (-1116 "TEXTFILE.spad" 2024766 2024775 2026199 2026204) (-1115 "TEX1.spad" 2024322 2024333 2024756 2024761) (-1114 "TEX.spad" 2021339 2021348 2024312 2024317) (-1113 "TEMUTL.spad" 2020894 2020903 2021329 2021334) (-1112 "TBCMPPK.spad" 2018987 2019010 2020884 2020889) (-1111 "TBAGG.spad" 2018011 2018034 2018955 2018982) (-1110 "TBAGG.spad" 2017055 2017080 2018001 2018006) (-1109 "TANEXP.spad" 2016431 2016442 2017045 2017050) (-1108 "TABLEAU.spad" 2015912 2015923 2016421 2016426) (-1107 "TABLE.spad" 2014323 2014346 2014593 2014620) (-1106 "TABLBUMP.spad" 2011106 2011117 2014313 2014318) (-1105 "SYSTEM.spad" 2010380 2010389 2011096 2011101) (-1104 "SYSSOLP.spad" 2007853 2007864 2010370 2010375) (-1103 "SYNTAX.spad" 2004045 2004054 2007843 2007848) (-1102 "SYMTAB.spad" 2002101 2002110 2004035 2004040) (-1101 "SYMS.spad" 1998092 1998101 2002091 2002096) (-1100 "SYMPOLY.spad" 1997102 1997113 1997184 1997311) (-1099 "SYMFUNC.spad" 1996577 1996588 1997092 1997097) (-1098 "SYMBOL.spad" 1993913 1993922 1996567 1996572) (-1097 "SWITCH.spad" 1990670 1990679 1993903 1993908) (-1096 "SUTS.spad" 1987569 1987597 1989137 1989234) (-1095 "SUPXS.spad" 1984583 1984611 1985701 1985850) (-1094 "SUPFRACF.spad" 1983688 1983706 1984573 1984578) (-1093 "SUP2.spad" 1983078 1983091 1983678 1983683) (-1092 "SUP.spad" 1979850 1979861 1980631 1980784) (-1091 "SUMRF.spad" 1978816 1978827 1979840 1979845) (-1090 "SUMFS.spad" 1978449 1978466 1978806 1978811) (-1089 "SULS.spad" 1968995 1969023 1970101 1970530) (-1088 "SUCH.spad" 1968675 1968690 1968985 1968990) (-1087 "SUBSPACE.spad" 1960682 1960697 1968665 1968670) (-1086 "SUBRESP.spad" 1959842 1959856 1960638 1960643) (-1085 "STTFNC.spad" 1956310 1956326 1959832 1959837) (-1084 "STTF.spad" 1952409 1952425 1956300 1956305) (-1083 "STTAYLOR.spad" 1944807 1944818 1952290 1952295) (-1082 "STRTBL.spad" 1943312 1943329 1943461 1943488) (-1081 "STRING.spad" 1942721 1942730 1942735 1942762) (-1080 "STRICAT.spad" 1942497 1942506 1942677 1942716) (-1079 "STREAM3.spad" 1942042 1942057 1942487 1942492) (-1078 "STREAM2.spad" 1941110 1941123 1942032 1942037) (-1077 "STREAM1.spad" 1940814 1940825 1941100 1941105) (-1076 "STREAM.spad" 1937582 1937593 1940339 1940354) (-1075 "STINPROD.spad" 1936488 1936504 1937572 1937577) (-1074 "STEP.spad" 1935689 1935698 1936478 1936483) (-1073 "STBL.spad" 1934215 1934243 1934382 1934397) (-1072 "STAGG.spad" 1933280 1933291 1934195 1934210) (-1071 "STAGG.spad" 1932353 1932366 1933270 1933275) (-1070 "STACK.spad" 1931704 1931715 1931960 1931987) (-1069 "SREGSET.spad" 1929408 1929425 1931350 1931377) (-1068 "SRDCMPK.spad" 1927953 1927973 1929398 1929403) (-1067 "SRAGG.spad" 1923038 1923047 1927909 1927948) (-1066 "SRAGG.spad" 1918155 1918166 1923028 1923033) (-1065 "SQMATRIX.spad" 1915781 1915799 1916689 1916776) (-1064 "SPLTREE.spad" 1910333 1910346 1915217 1915244) (-1063 "SPLNODE.spad" 1906921 1906934 1910323 1910328) (-1062 "SPFCAT.spad" 1905698 1905707 1906911 1906916) (-1061 "SPECOUT.spad" 1904248 1904257 1905688 1905693) (-1060 "spad-parser.spad" 1903713 1903722 1904238 1904243) (-1059 "SPACEC.spad" 1887726 1887737 1903703 1903708) (-1058 "SPACE3.spad" 1887502 1887513 1887716 1887721) (-1057 "SORTPAK.spad" 1887047 1887060 1887458 1887463) (-1056 "SOLVETRA.spad" 1884804 1884815 1887037 1887042) (-1055 "SOLVESER.spad" 1883324 1883335 1884794 1884799) (-1054 "SOLVERAD.spad" 1879334 1879345 1883314 1883319) (-1053 "SOLVEFOR.spad" 1877754 1877772 1879324 1879329) (-1052 "SNTSCAT.spad" 1877342 1877359 1877710 1877749) (-1051 "SMTS.spad" 1875602 1875628 1876907 1877004) (-1050 "SMP.spad" 1873044 1873064 1873434 1873561) (-1049 "SMITH.spad" 1871887 1871912 1873034 1873039) (-1048 "SMATCAT.spad" 1869985 1870015 1871819 1871882) (-1047 "SMATCAT.spad" 1868027 1868059 1869863 1869868) (-1046 "SKAGG.spad" 1866976 1866987 1867983 1868022) (-1045 "SINT.spad" 1865284 1865293 1866842 1866971) (-1044 "SIMPAN.spad" 1865012 1865021 1865274 1865279) (-1043 "SIGNRF.spad" 1864127 1864138 1865002 1865007) (-1042 "SIGNEF.spad" 1863403 1863420 1864117 1864122) (-1041 "SIG.spad" 1863000 1863009 1863393 1863398) (-1040 "SHP.spad" 1860918 1860933 1862956 1862961) (-1039 "SHDP.spad" 1851954 1851981 1852463 1852592) (-1038 "SGROUP.spad" 1851420 1851429 1851944 1851949) (-1037 "SGROUP.spad" 1850884 1850895 1851410 1851415) (-1036 "SGCF.spad" 1843765 1843774 1850874 1850879) (-1035 "SFRTCAT.spad" 1842681 1842698 1843721 1843760) (-1034 "SFRGCD.spad" 1841744 1841764 1842671 1842676) (-1033 "SFQCMPK.spad" 1836381 1836401 1841734 1841739) (-1032 "SFORT.spad" 1835816 1835830 1836371 1836376) (-1031 "SEXOF.spad" 1835659 1835699 1835806 1835811) (-1030 "SEXCAT.spad" 1832763 1832803 1835649 1835654) (-1029 "SEX.spad" 1832655 1832664 1832753 1832758) (-1028 "SETMN.spad" 1831091 1831108 1832645 1832650) (-1027 "SETCAT.spad" 1830576 1830585 1831081 1831086) (-1026 "SETCAT.spad" 1830059 1830070 1830566 1830571) (-1025 "SETAGG.spad" 1826568 1826579 1830027 1830054) (-1024 "SETAGG.spad" 1823097 1823110 1826558 1826563) (-1023 "SET.spad" 1821397 1821408 1822518 1822557) (-1022 "SEGXCAT.spad" 1820509 1820522 1821377 1821392) (-1021 "SEGCAT.spad" 1819328 1819339 1820489 1820504) (-1020 "SEGBIND2.spad" 1819024 1819037 1819318 1819323) (-1019 "SEGBIND.spad" 1818096 1818107 1818979 1818984) (-1018 "SEG2.spad" 1817521 1817534 1818052 1818057) (-1017 "SEG.spad" 1817334 1817345 1817440 1817445) (-1016 "SDVAR.spad" 1816610 1816621 1817324 1817329) (-1015 "SDPOL.spad" 1814003 1814014 1814294 1814421) (-1014 "SCPKG.spad" 1812082 1812093 1813993 1813998) (-1013 "SCOPE.spad" 1811227 1811236 1812072 1812077) (-1012 "SCACHE.spad" 1809909 1809920 1811217 1811222) (-1011 "SAOS.spad" 1809781 1809790 1809899 1809904) (-1010 "SAERFFC.spad" 1809494 1809514 1809771 1809776) (-1009 "SAEFACT.spad" 1809195 1809215 1809484 1809489) (-1008 "SAE.spad" 1807373 1807389 1807984 1808119) (-1007 "RURPK.spad" 1805014 1805030 1807363 1807368) (-1006 "RULESET.spad" 1804455 1804479 1805004 1805009) (-1005 "RULECOLD.spad" 1804307 1804320 1804445 1804450) (-1004 "RULE.spad" 1802511 1802535 1804297 1804302) (-1003 "RSETGCD.spad" 1798889 1798909 1802501 1802506) (-1002 "RSETCAT.spad" 1788661 1788678 1798845 1798884) (-1001 "RSETCAT.spad" 1778465 1778484 1788651 1788656) (-1000 "RSDCMPK.spad" 1776917 1776937 1778455 1778460) (-999 "RRCC.spad" 1775302 1775331 1776907 1776912) (-998 "RRCC.spad" 1773685 1773716 1775292 1775297) (-997 "RPOLCAT.spad" 1753046 1753060 1773553 1773680) (-996 "RPOLCAT.spad" 1732122 1732138 1752631 1752636) (-995 "ROUTINE.spad" 1727986 1727994 1730769 1730796) (-994 "ROMAN.spad" 1727219 1727227 1727852 1727981) (-993 "ROIRC.spad" 1726300 1726331 1727209 1727214) (-992 "RNS.spad" 1725204 1725212 1726202 1726295) (-991 "RNS.spad" 1724194 1724204 1725194 1725199) (-990 "RNG.spad" 1723930 1723938 1724184 1724189) (-989 "RMODULE.spad" 1723569 1723579 1723920 1723925) (-988 "RMCAT2.spad" 1722978 1723034 1723559 1723564) (-987 "RMATRIX.spad" 1721658 1721676 1722145 1722184) (-986 "RMATCAT.spad" 1717180 1717210 1721602 1721653) (-985 "RMATCAT.spad" 1712604 1712636 1717028 1717033) (-984 "RING.spad" 1711962 1711970 1712584 1712599) (-983 "RING.spad" 1711328 1711338 1711952 1711957) (-982 "RIDIST.spad" 1710713 1710721 1711318 1711323) (-981 "RGCHAIN.spad" 1709293 1709308 1710198 1710225) (-980 "RFFACTOR.spad" 1708756 1708766 1709283 1709288) (-979 "RFFACT.spad" 1708492 1708503 1708746 1708751) (-978 "RFDIST.spad" 1707481 1707489 1708482 1708487) (-977 "RF.spad" 1705096 1705106 1707471 1707476) (-976 "RETSOL.spad" 1704514 1704526 1705086 1705091) (-975 "RETRACT.spad" 1703864 1703874 1704504 1704509) (-974 "RETRACT.spad" 1703212 1703224 1703854 1703859) (-973 "RESULT.spad" 1701273 1701281 1701859 1701886) (-972 "RESRING.spad" 1700621 1700667 1701211 1701268) (-971 "RESLATC.spad" 1699946 1699956 1700611 1700616) (-970 "REPSQ.spad" 1699676 1699686 1699936 1699941) (-969 "REPDB.spad" 1699382 1699392 1699666 1699671) (-968 "REP2.spad" 1688955 1688965 1699224 1699229) (-967 "REP1.spad" 1682946 1682956 1688905 1688910) (-966 "REP.spad" 1680499 1680507 1682936 1682941) (-965 "REGSET.spad" 1678297 1678313 1680145 1680172) (-964 "REF.spad" 1677627 1677637 1678252 1678257) (-963 "REDORDER.spad" 1676804 1676820 1677617 1677622) (-962 "RECLOS.spad" 1675594 1675613 1676297 1676390) (-961 "REALSOLV.spad" 1674727 1674735 1675584 1675589) (-960 "REAL0Q.spad" 1672010 1672024 1674717 1674722) (-959 "REAL0.spad" 1668839 1668853 1672000 1672005) (-958 "REAL.spad" 1668712 1668720 1668829 1668834) (-957 "RDIV.spad" 1668364 1668388 1668702 1668707) (-956 "RDIST.spad" 1667928 1667938 1668354 1668359) (-955 "RDETRS.spad" 1666725 1666742 1667918 1667923) (-954 "RDETR.spad" 1664833 1664850 1666715 1666720) (-953 "RDEEFS.spad" 1663907 1663923 1664823 1664828) (-952 "RDEEF.spad" 1662904 1662920 1663897 1663902) (-951 "RCFIELD.spad" 1660091 1660099 1662806 1662899) (-950 "RCFIELD.spad" 1657364 1657374 1660081 1660086) (-949 "RCAGG.spad" 1655267 1655277 1657344 1657359) (-948 "RCAGG.spad" 1653107 1653119 1655186 1655191) (-947 "RATRET.spad" 1652468 1652478 1653097 1653102) (-946 "RATFACT.spad" 1652161 1652172 1652458 1652463) (-945 "RANDSRC.spad" 1651481 1651489 1652151 1652156) (-944 "RADUTIL.spad" 1651236 1651244 1651471 1651476) (-943 "RADIX.spad" 1648029 1648042 1649706 1649799) (-942 "RADFF.spad" 1646446 1646482 1646564 1646720) (-941 "RADCAT.spad" 1646040 1646048 1646436 1646441) (-940 "RADCAT.spad" 1645632 1645642 1646030 1646035) (-939 "QUEUE.spad" 1644975 1644985 1645239 1645266) (-938 "QUATCT2.spad" 1644594 1644612 1644965 1644970) (-937 "QUATCAT.spad" 1642759 1642769 1644524 1644589) (-936 "QUATCAT.spad" 1640676 1640688 1642443 1642448) (-935 "QUAT.spad" 1639262 1639272 1639604 1639669) (-934 "QUAGG.spad" 1638076 1638086 1639218 1639257) (-933 "QFORM.spad" 1637539 1637553 1638066 1638071) (-932 "QFCAT2.spad" 1637230 1637246 1637529 1637534) (-931 "QFCAT.spad" 1635921 1635931 1637120 1637225) (-930 "QFCAT.spad" 1634218 1634230 1635419 1635424) (-929 "QEQUAT.spad" 1633775 1633783 1634208 1634213) (-928 "QCMPACK.spad" 1628522 1628541 1633765 1633770) (-927 "QALGSET2.spad" 1626518 1626536 1628512 1628517) (-926 "QALGSET.spad" 1622595 1622627 1626432 1626437) (-925 "PWFFINTB.spad" 1619905 1619926 1622585 1622590) (-924 "PUSHVAR.spad" 1619234 1619253 1619895 1619900) (-923 "PTRANFN.spad" 1615360 1615370 1619224 1619229) (-922 "PTPACK.spad" 1612448 1612458 1615350 1615355) (-921 "PTFUNC2.spad" 1612269 1612283 1612438 1612443) (-920 "PTCAT.spad" 1611351 1611361 1612225 1612264) (-919 "PSQFR.spad" 1610658 1610682 1611341 1611346) (-918 "PSEUDLIN.spad" 1609516 1609526 1610648 1610653) (-917 "PSETPK.spad" 1594949 1594965 1609394 1609399) (-916 "PSETCAT.spad" 1588857 1588880 1594917 1594944) (-915 "PSETCAT.spad" 1582751 1582776 1588813 1588818) (-914 "PSCURVE.spad" 1581734 1581742 1582741 1582746) (-913 "PSCAT.spad" 1580501 1580530 1581632 1581729) (-912 "PSCAT.spad" 1579358 1579389 1580491 1580496) (-911 "PRTITION.spad" 1578201 1578209 1579348 1579353) (-910 "PRS.spad" 1567763 1567780 1578157 1578162) (-909 "PRQAGG.spad" 1567182 1567192 1567719 1567758) (-908 "PROPLOG.spad" 1566585 1566593 1567172 1567177) (-907 "PROPFRML.spad" 1564449 1564460 1566521 1566526) (-906 "PROPERTY.spad" 1563943 1563951 1564439 1564444) (-905 "PRODUCT.spad" 1561623 1561635 1561909 1561964) (-904 "PRINT.spad" 1561375 1561383 1561613 1561618) (-903 "PRIMES.spad" 1559626 1559636 1561365 1561370) (-902 "PRIMELT.spad" 1557607 1557621 1559616 1559621) (-901 "PRIMCAT.spad" 1557230 1557238 1557597 1557602) (-900 "PRIMARR2.spad" 1555953 1555965 1557220 1557225) (-899 "PRIMARR.spad" 1554958 1554968 1555136 1555163) (-898 "PREASSOC.spad" 1554330 1554342 1554948 1554953) (-897 "PR.spad" 1552719 1552731 1553424 1553551) (-896 "PPCURVE.spad" 1551856 1551864 1552709 1552714) (-895 "PORTNUM.spad" 1551631 1551639 1551846 1551851) (-894 "POLYROOT.spad" 1550403 1550425 1551587 1551592) (-893 "POLYLIFT.spad" 1549664 1549687 1550393 1550398) (-892 "POLYCATQ.spad" 1547766 1547788 1549654 1549659) (-891 "POLYCAT.spad" 1541172 1541193 1547634 1547761) (-890 "POLYCAT.spad" 1533880 1533903 1540344 1540349) (-889 "POLY2UP.spad" 1533328 1533342 1533870 1533875) (-888 "POLY2.spad" 1532923 1532935 1533318 1533323) (-887 "POLY.spad" 1530223 1530233 1530740 1530867) (-886 "POLUTIL.spad" 1529164 1529193 1530179 1530184) (-885 "POLTOPOL.spad" 1527912 1527927 1529154 1529159) (-884 "POINT.spad" 1526753 1526763 1526840 1526867) (-883 "PNTHEORY.spad" 1523419 1523427 1526743 1526748) (-882 "PMTOOLS.spad" 1522176 1522190 1523409 1523414) (-881 "PMSYM.spad" 1521721 1521731 1522166 1522171) (-880 "PMQFCAT.spad" 1521308 1521322 1521711 1521716) (-879 "PMPREDFS.spad" 1520752 1520774 1521298 1521303) (-878 "PMPRED.spad" 1520221 1520235 1520742 1520747) (-877 "PMPLCAT.spad" 1519291 1519309 1520153 1520158) (-876 "PMLSAGG.spad" 1518872 1518886 1519281 1519286) (-875 "PMKERNEL.spad" 1518439 1518451 1518862 1518867) (-874 "PMINS.spad" 1518015 1518025 1518429 1518434) (-873 "PMFS.spad" 1517588 1517606 1518005 1518010) (-872 "PMDOWN.spad" 1516874 1516888 1517578 1517583) (-871 "PMASSFS.spad" 1515843 1515859 1516864 1516869) (-870 "PMASS.spad" 1514855 1514863 1515833 1515838) (-869 "PLOTTOOL.spad" 1514635 1514643 1514845 1514850) (-868 "PLOT3D.spad" 1511055 1511063 1514625 1514630) (-867 "PLOT1.spad" 1510196 1510206 1511045 1511050) (-866 "PLOT.spad" 1505027 1505035 1510186 1510191) (-865 "PLEQN.spad" 1492243 1492270 1505017 1505022) (-864 "PINTERPA.spad" 1492025 1492041 1492233 1492238) (-863 "PINTERP.spad" 1491641 1491660 1492015 1492020) (-862 "PID.spad" 1490597 1490605 1491567 1491636) (-861 "PICOERCE.spad" 1490254 1490264 1490587 1490592) (-860 "PI.spad" 1489861 1489869 1490228 1490249) (-859 "PGROEB.spad" 1488458 1488472 1489851 1489856) (-858 "PGE.spad" 1479711 1479719 1488448 1488453) (-857 "PGCD.spad" 1478593 1478610 1479701 1479706) (-856 "PFRPAC.spad" 1477736 1477746 1478583 1478588) (-855 "PFR.spad" 1474393 1474403 1477638 1477731) (-854 "PFOTOOLS.spad" 1473651 1473667 1474383 1474388) (-853 "PFOQ.spad" 1473021 1473039 1473641 1473646) (-852 "PFO.spad" 1472440 1472467 1473011 1473016) (-851 "PFECAT.spad" 1470106 1470114 1472366 1472435) (-850 "PFECAT.spad" 1467800 1467810 1470062 1470067) (-849 "PFBRU.spad" 1465670 1465682 1467790 1467795) (-848 "PFBR.spad" 1463208 1463231 1465660 1465665) (-847 "PF.spad" 1462782 1462794 1463013 1463106) (-846 "PERMGRP.spad" 1457518 1457528 1462772 1462777) (-845 "PERMCAT.spad" 1456070 1456080 1457498 1457513) (-844 "PERMAN.spad" 1454602 1454616 1456060 1456065) (-843 "PERM.spad" 1450283 1450293 1454432 1454447) (-842 "PENDTREE.spad" 1449556 1449566 1449912 1449917) (-841 "PDRING.spad" 1448047 1448057 1449536 1449551) (-840 "PDRING.spad" 1446546 1446558 1448037 1448042) (-839 "PDEPROB.spad" 1445503 1445511 1446536 1446541) (-838 "PDEPACK.spad" 1439505 1439513 1445493 1445498) (-837 "PDECOMP.spad" 1438967 1438984 1439495 1439500) (-836 "PDECAT.spad" 1437321 1437329 1438957 1438962) (-835 "PCOMP.spad" 1437172 1437185 1437311 1437316) (-834 "PBWLB.spad" 1435754 1435771 1437162 1437167) (-833 "PATTERN2.spad" 1435490 1435502 1435744 1435749) (-832 "PATTERN1.spad" 1433792 1433808 1435480 1435485) (-831 "PATTERN.spad" 1428223 1428233 1433782 1433787) (-830 "PATRES2.spad" 1427885 1427899 1428213 1428218) (-829 "PATRES.spad" 1425432 1425444 1427875 1427880) (-828 "PATMATCH.spad" 1423594 1423625 1425145 1425150) (-827 "PATMAB.spad" 1423019 1423029 1423584 1423589) (-826 "PATLRES.spad" 1422103 1422117 1423009 1423014) (-825 "PATAB.spad" 1421867 1421877 1422093 1422098) (-824 "PARTPERM.spad" 1419229 1419237 1421857 1421862) (-823 "PARSURF.spad" 1418657 1418685 1419219 1419224) (-822 "PARSU2.spad" 1418452 1418468 1418647 1418652) (-821 "script-parser.spad" 1417972 1417980 1418442 1418447) (-820 "PARSCURV.spad" 1417400 1417428 1417962 1417967) (-819 "PARSC2.spad" 1417189 1417205 1417390 1417395) (-818 "PARPCURV.spad" 1416647 1416675 1417179 1417184) (-817 "PARPC2.spad" 1416436 1416452 1416637 1416642) (-816 "PAN2EXPR.spad" 1415848 1415856 1416426 1416431) (-815 "PALETTE.spad" 1414818 1414826 1415838 1415843) (-814 "PAIR.spad" 1413801 1413814 1414406 1414411) (-813 "PADICRC.spad" 1411134 1411152 1412309 1412402) (-812 "PADICRAT.spad" 1409152 1409164 1409373 1409466) (-811 "PADICCT.spad" 1407693 1407705 1409078 1409147) (-810 "PADIC.spad" 1407388 1407400 1407619 1407688) (-809 "PADEPAC.spad" 1406067 1406086 1407378 1407383) (-808 "PADE.spad" 1404807 1404823 1406057 1406062) (-807 "OWP.spad" 1403791 1403821 1404665 1404732) (-806 "OVAR.spad" 1403572 1403595 1403781 1403786) (-805 "OUTFORM.spad" 1392986 1392994 1403562 1403567) (-804 "OUT.spad" 1392070 1392078 1392976 1392981) (-803 "OSI.spad" 1391545 1391553 1392060 1392065) (-802 "OSGROUP.spad" 1391463 1391471 1391535 1391540) (-801 "ORTHPOL.spad" 1389924 1389934 1391380 1391385) (-800 "OREUP.spad" 1389284 1389312 1389606 1389645) (-799 "ORESUP.spad" 1388585 1388609 1388966 1389005) (-798 "OREPCTO.spad" 1386404 1386416 1388505 1388510) (-797 "OREPCAT.spad" 1380461 1380471 1386360 1386399) (-796 "OREPCAT.spad" 1374408 1374420 1380309 1380314) (-795 "ORDSET.spad" 1373574 1373582 1374398 1374403) (-794 "ORDSET.spad" 1372738 1372748 1373564 1373569) (-793 "ORDRING.spad" 1372128 1372136 1372718 1372733) (-792 "ORDRING.spad" 1371526 1371536 1372118 1372123) (-791 "ORDMON.spad" 1371381 1371389 1371516 1371521) (-790 "ORDFUNS.spad" 1370507 1370523 1371371 1371376) (-789 "ORDFIN.spad" 1370441 1370449 1370497 1370502) (-788 "ORDCOMP2.spad" 1369726 1369738 1370431 1370436) (-787 "ORDCOMP.spad" 1368194 1368204 1369276 1369305) (-786 "OPTPROB.spad" 1366774 1366782 1368184 1368189) (-785 "OPTPACK.spad" 1359159 1359167 1366764 1366769) (-784 "OPTCAT.spad" 1356834 1356842 1359149 1359154) (-783 "OPQUERY.spad" 1356383 1356391 1356824 1356829) (-782 "OP.spad" 1356125 1356135 1356205 1356272) (-781 "ONECOMP2.spad" 1355543 1355555 1356115 1356120) (-780 "ONECOMP.spad" 1354291 1354301 1355093 1355122) (-779 "OMSERVER.spad" 1353293 1353301 1354281 1354286) (-778 "OMSAGG.spad" 1353069 1353079 1353237 1353288) (-777 "OMPKG.spad" 1351681 1351689 1353059 1353064) (-776 "OMLO.spad" 1351106 1351118 1351567 1351606) (-775 "OMEXPR.spad" 1350940 1350950 1351096 1351101) (-774 "OMERRK.spad" 1349974 1349982 1350930 1350935) (-773 "OMERR.spad" 1349517 1349525 1349964 1349969) (-772 "OMENC.spad" 1348861 1348869 1349507 1349512) (-771 "OMDEV.spad" 1343150 1343158 1348851 1348856) (-770 "OMCONN.spad" 1342559 1342567 1343140 1343145) (-769 "OM.spad" 1341524 1341532 1342549 1342554) (-768 "OINTDOM.spad" 1341287 1341295 1341450 1341519) (-767 "OFMONOID.spad" 1337474 1337484 1341277 1341282) (-766 "ODVAR.spad" 1336735 1336745 1337464 1337469) (-765 "ODR.spad" 1336183 1336209 1336547 1336696) (-764 "ODPOL.spad" 1333532 1333542 1333872 1333999) (-763 "ODP.spad" 1324704 1324724 1325077 1325206) (-762 "ODETOOLS.spad" 1323287 1323306 1324694 1324699) (-761 "ODESYS.spad" 1320937 1320954 1323277 1323282) (-760 "ODERTRIC.spad" 1316878 1316895 1320894 1320899) (-759 "ODERED.spad" 1316265 1316289 1316868 1316873) (-758 "ODERAT.spad" 1313818 1313835 1316255 1316260) (-757 "ODEPRRIC.spad" 1310709 1310731 1313808 1313813) (-756 "ODEPROB.spad" 1309908 1309916 1310699 1310704) (-755 "ODEPRIM.spad" 1307182 1307204 1309898 1309903) (-754 "ODEPAL.spad" 1306558 1306582 1307172 1307177) (-753 "ODEPACK.spad" 1293160 1293168 1306548 1306553) (-752 "ODEINT.spad" 1292591 1292607 1293150 1293155) (-751 "ODEIFTBL.spad" 1289986 1289994 1292581 1292586) (-750 "ODEEF.spad" 1285357 1285373 1289976 1289981) (-749 "ODECONST.spad" 1284876 1284894 1285347 1285352) (-748 "ODECAT.spad" 1283472 1283480 1284866 1284871) (-747 "OCTCT2.spad" 1283116 1283137 1283462 1283467) (-746 "OCT.spad" 1281263 1281273 1281979 1282018) (-745 "OCAMON.spad" 1281111 1281119 1281253 1281258) (-744 "OC.spad" 1278885 1278895 1281067 1281106) (-743 "OC.spad" 1276385 1276397 1278569 1278574) (-742 "OASGP.spad" 1276200 1276208 1276375 1276380) (-741 "OAMONS.spad" 1275720 1275728 1276190 1276195) (-740 "OAMON.spad" 1275581 1275589 1275710 1275715) (-739 "OAGROUP.spad" 1275443 1275451 1275571 1275576) (-738 "NUMTUBE.spad" 1275030 1275046 1275433 1275438) (-737 "NUMQUAD.spad" 1262892 1262900 1275020 1275025) (-736 "NUMODE.spad" 1254028 1254036 1262882 1262887) (-735 "NUMINT.spad" 1251586 1251594 1254018 1254023) (-734 "NUMFMT.spad" 1250426 1250434 1251576 1251581) (-733 "NUMERIC.spad" 1242499 1242509 1250232 1250237) (-732 "NTSCAT.spad" 1240989 1241005 1242455 1242494) (-731 "NTPOLFN.spad" 1240534 1240544 1240906 1240911) (-730 "NSUP2.spad" 1239926 1239938 1240524 1240529) (-729 "NSUP.spad" 1232939 1232949 1237479 1237632) (-728 "NSMP.spad" 1229138 1229157 1229446 1229573) (-727 "NREP.spad" 1227510 1227524 1229128 1229133) (-726 "NPCOEF.spad" 1226756 1226776 1227500 1227505) (-725 "NORMRETR.spad" 1226354 1226393 1226746 1226751) (-724 "NORMPK.spad" 1224256 1224275 1226344 1226349) (-723 "NORMMA.spad" 1223944 1223970 1224246 1224251) (-722 "NONE1.spad" 1223620 1223630 1223934 1223939) (-721 "NONE.spad" 1223361 1223369 1223610 1223615) (-720 "NODE1.spad" 1222830 1222846 1223351 1223356) (-719 "NNI.spad" 1221717 1221725 1222804 1222825) (-718 "NLINSOL.spad" 1220339 1220349 1221707 1221712) (-717 "NIPROB.spad" 1218822 1218830 1220329 1220334) (-716 "NFINTBAS.spad" 1216282 1216299 1218812 1218817) (-715 "NCODIV.spad" 1214480 1214496 1216272 1216277) (-714 "NCNTFRAC.spad" 1214122 1214136 1214470 1214475) (-713 "NCEP.spad" 1212282 1212296 1214112 1214117) (-712 "NASRING.spad" 1211878 1211886 1212272 1212277) (-711 "NASRING.spad" 1211472 1211482 1211868 1211873) (-710 "NARNG.spad" 1210816 1210824 1211462 1211467) (-709 "NARNG.spad" 1210158 1210168 1210806 1210811) (-708 "NAGSP.spad" 1209231 1209239 1210148 1210153) (-707 "NAGS.spad" 1198756 1198764 1209221 1209226) (-706 "NAGF07.spad" 1197149 1197157 1198746 1198751) (-705 "NAGF04.spad" 1191381 1191389 1197139 1197144) (-704 "NAGF02.spad" 1185190 1185198 1191371 1191376) (-703 "NAGF01.spad" 1180793 1180801 1185180 1185185) (-702 "NAGE04.spad" 1174253 1174261 1180783 1180788) (-701 "NAGE02.spad" 1164595 1164603 1174243 1174248) (-700 "NAGE01.spad" 1160479 1160487 1164585 1164590) (-699 "NAGD03.spad" 1158399 1158407 1160469 1160474) (-698 "NAGD02.spad" 1150930 1150938 1158389 1158394) (-697 "NAGD01.spad" 1145043 1145051 1150920 1150925) (-696 "NAGC06.spad" 1140830 1140838 1145033 1145038) (-695 "NAGC05.spad" 1139299 1139307 1140820 1140825) (-694 "NAGC02.spad" 1138554 1138562 1139289 1139294) (-693 "NAALG.spad" 1138089 1138099 1138522 1138549) (-692 "NAALG.spad" 1137644 1137656 1138079 1138084) (-691 "MULTSQFR.spad" 1134602 1134619 1137634 1137639) (-690 "MULTFACT.spad" 1133985 1134002 1134592 1134597) (-689 "MTSCAT.spad" 1132019 1132040 1133883 1133980) (-688 "MTHING.spad" 1131676 1131686 1132009 1132014) (-687 "MSYSCMD.spad" 1131110 1131118 1131666 1131671) (-686 "MSETAGG.spad" 1130943 1130953 1131066 1131105) (-685 "MSET.spad" 1128885 1128895 1130649 1130688) (-684 "MRING.spad" 1125856 1125868 1128593 1128660) (-683 "MRF2.spad" 1125424 1125438 1125846 1125851) (-682 "MRATFAC.spad" 1124970 1124987 1125414 1125419) (-681 "MPRFF.spad" 1123000 1123019 1124960 1124965) (-680 "MPOLY.spad" 1120438 1120453 1120797 1120924) (-679 "MPCPF.spad" 1119702 1119721 1120428 1120433) (-678 "MPC3.spad" 1119517 1119557 1119692 1119697) (-677 "MPC2.spad" 1119159 1119192 1119507 1119512) (-676 "MONOTOOL.spad" 1117494 1117511 1119149 1119154) (-675 "MONOID.spad" 1116668 1116676 1117484 1117489) (-674 "MONOID.spad" 1115840 1115850 1116658 1116663) (-673 "MONOGEN.spad" 1114586 1114599 1115700 1115835) (-672 "MONOGEN.spad" 1113354 1113369 1114470 1114475) (-671 "MONADWU.spad" 1111368 1111376 1113344 1113349) (-670 "MONADWU.spad" 1109380 1109390 1111358 1111363) (-669 "MONAD.spad" 1108524 1108532 1109370 1109375) (-668 "MONAD.spad" 1107666 1107676 1108514 1108519) (-667 "MOEBIUS.spad" 1106352 1106366 1107646 1107661) (-666 "MODULE.spad" 1106222 1106232 1106320 1106347) (-665 "MODULE.spad" 1106112 1106124 1106212 1106217) (-664 "MODRING.spad" 1105443 1105482 1106092 1106107) (-663 "MODOP.spad" 1104102 1104114 1105265 1105332) (-662 "MODMONOM.spad" 1103634 1103652 1104092 1104097) (-661 "MODMON.spad" 1100339 1100355 1101115 1101268) (-660 "MODFIELD.spad" 1099697 1099736 1100241 1100334) (-659 "MMLFORM.spad" 1098557 1098565 1099687 1099692) (-658 "MMAP.spad" 1098297 1098331 1098547 1098552) (-657 "MLO.spad" 1096724 1096734 1098253 1098292) (-656 "MLIFT.spad" 1095296 1095313 1096714 1096719) (-655 "MKUCFUNC.spad" 1094829 1094847 1095286 1095291) (-654 "MKRECORD.spad" 1094431 1094444 1094819 1094824) (-653 "MKFUNC.spad" 1093812 1093822 1094421 1094426) (-652 "MKFLCFN.spad" 1092768 1092778 1093802 1093807) (-651 "MKCHSET.spad" 1092544 1092554 1092758 1092763) (-650 "MKBCFUNC.spad" 1092029 1092047 1092534 1092539) (-649 "MINT.spad" 1091468 1091476 1091931 1092024) (-648 "MHROWRED.spad" 1089969 1089979 1091458 1091463) (-647 "MFLOAT.spad" 1088414 1088422 1089859 1089964) (-646 "MFINFACT.spad" 1087814 1087836 1088404 1088409) (-645 "MESH.spad" 1085551 1085559 1087804 1087809) (-644 "MDDFACT.spad" 1083744 1083754 1085541 1085546) (-643 "MDAGG.spad" 1083019 1083029 1083712 1083739) (-642 "MCMPLX.spad" 1078999 1079007 1079613 1079814) (-641 "MCDEN.spad" 1078207 1078219 1078989 1078994) (-640 "MCALCFN.spad" 1075309 1075335 1078197 1078202) (-639 "MAYBE.spad" 1074558 1074569 1075299 1075304) (-638 "MATSTOR.spad" 1071834 1071844 1074548 1074553) (-637 "MATRIX.spad" 1070538 1070548 1071022 1071049) (-636 "MATLIN.spad" 1067864 1067888 1070422 1070427) (-635 "MATCAT2.spad" 1067132 1067180 1067854 1067859) (-634 "MATCAT.spad" 1058705 1058727 1067088 1067127) (-633 "MATCAT.spad" 1050162 1050186 1058547 1058552) (-632 "MAPPKG3.spad" 1049061 1049075 1050152 1050157) (-631 "MAPPKG2.spad" 1048395 1048407 1049051 1049056) (-630 "MAPPKG1.spad" 1047213 1047223 1048385 1048390) (-629 "MAPHACK3.spad" 1047021 1047035 1047203 1047208) (-628 "MAPHACK2.spad" 1046786 1046798 1047011 1047016) (-627 "MAPHACK1.spad" 1046416 1046426 1046776 1046781) (-626 "MAGMA.spad" 1044206 1044223 1046406 1046411) (-625 "M3D.spad" 1041904 1041914 1043586 1043591) (-624 "LZSTAGG.spad" 1039122 1039132 1041884 1041899) (-623 "LZSTAGG.spad" 1036348 1036360 1039112 1039117) (-622 "LWORD.spad" 1033053 1033070 1036338 1036343) (-621 "LSQM.spad" 1031278 1031292 1031676 1031727) (-620 "LSPP.spad" 1030811 1030828 1031268 1031273) (-619 "LSMP1.spad" 1028632 1028646 1030801 1030806) (-618 "LSMP.spad" 1027479 1027507 1028622 1028627) (-617 "LSAGG.spad" 1027136 1027146 1027435 1027474) (-616 "LSAGG.spad" 1026825 1026837 1027126 1027131) (-615 "LPOLY.spad" 1025779 1025798 1026681 1026750) (-614 "LPEFRAC.spad" 1025036 1025046 1025769 1025774) (-613 "LOGIC.spad" 1024638 1024646 1025026 1025031) (-612 "LOGIC.spad" 1024238 1024248 1024628 1024633) (-611 "LODOOPS.spad" 1023156 1023168 1024228 1024233) (-610 "LODOF.spad" 1022200 1022217 1023113 1023118) (-609 "LODOCAT.spad" 1020858 1020868 1022156 1022195) (-608 "LODOCAT.spad" 1019514 1019526 1020814 1020819) (-607 "LODO2.spad" 1018789 1018801 1019196 1019235) (-606 "LODO1.spad" 1018191 1018201 1018471 1018510) (-605 "LODO.spad" 1017577 1017593 1017873 1017912) (-604 "LODEEF.spad" 1016349 1016367 1017567 1017572) (-603 "LO.spad" 1015750 1015764 1016283 1016310) (-602 "LNAGG.spad" 1011542 1011552 1015730 1015745) (-601 "LNAGG.spad" 1007308 1007320 1011498 1011503) (-600 "LMOPS.spad" 1004044 1004061 1007298 1007303) (-599 "LMODULE.spad" 1003686 1003696 1004034 1004039) (-598 "LMDICT.spad" 1002969 1002979 1003237 1003264) (-597 "LIST3.spad" 1002260 1002274 1002959 1002964) (-596 "LIST2MAP.spad" 999137 999149 1002250 1002255) (-595 "LIST2.spad" 997777 997789 999127 999132) (-594 "LIST.spad" 995495 995505 996924 996951) (-593 "LINEXP.spad" 994927 994937 995475 995490) (-592 "LINDEP.spad" 993704 993716 994839 994844) (-591 "LIMITRF.spad" 991637 991647 993694 993699) (-590 "LIMITPS.spad" 990527 990540 991627 991632) (-589 "LIECAT.spad" 990003 990013 990453 990522) (-588 "LIECAT.spad" 989507 989519 989959 989964) (-587 "LIE.spad" 987521 987533 988797 988942) (-586 "LIB.spad" 985569 985577 986180 986195) (-585 "LGROBP.spad" 982922 982941 985559 985564) (-584 "LFCAT.spad" 981941 981949 982912 982917) (-583 "LF.spad" 980860 980876 981931 981936) (-582 "LEXTRIPK.spad" 976363 976378 980850 980855) (-581 "LEXP.spad" 974366 974393 976343 976358) (-580 "LEADCDET.spad" 972750 972767 974356 974361) (-579 "LAZM3PK.spad" 971454 971476 972740 972745) (-578 "LAUPOL.spad" 970145 970158 971049 971118) (-577 "LAPLACE.spad" 969718 969734 970135 970140) (-576 "LALG.spad" 969494 969504 969698 969713) (-575 "LALG.spad" 969278 969290 969484 969489) (-574 "LA.spad" 968718 968732 969200 969239) (-573 "KOVACIC.spad" 967431 967448 968708 968713) (-572 "KONVERT.spad" 967153 967163 967421 967426) (-571 "KOERCE.spad" 966890 966900 967143 967148) (-570 "KERNEL2.spad" 966593 966605 966880 966885) (-569 "KERNEL.spad" 965128 965138 966377 966382) (-568 "KDAGG.spad" 964219 964241 965096 965123) (-567 "KDAGG.spad" 963330 963354 964209 964214) (-566 "KAFILE.spad" 962293 962309 962528 962555) (-565 "JORDAN.spad" 960120 960132 961583 961728) (-564 "JAVACODE.spad" 959886 959894 960110 960115) (-563 "IXAGG.spad" 957999 958023 959866 959881) (-562 "IXAGG.spad" 955977 956003 957846 957851) (-561 "IVECTOR.spad" 954750 954765 954905 954932) (-560 "ITUPLE.spad" 953895 953905 954740 954745) (-559 "ITRIGMNP.spad" 952706 952725 953885 953890) (-558 "ITFUN3.spad" 952200 952214 952696 952701) (-557 "ITFUN2.spad" 951930 951942 952190 952195) (-556 "ITAYLOR.spad" 949722 949737 951766 951891) (-555 "ISUPS.spad" 942133 942148 948696 948793) (-554 "ISUMP.spad" 941630 941646 942123 942128) (-553 "ISTRING.spad" 940633 940646 940799 940826) (-552 "IRURPK.spad" 939346 939365 940623 940628) (-551 "IRSN.spad" 937306 937314 939336 939341) (-550 "IRRF2F.spad" 935781 935791 937262 937267) (-549 "IRREDFFX.spad" 935382 935393 935771 935776) (-548 "IROOT.spad" 933713 933723 935372 935377) (-547 "IR2F.spad" 932913 932929 933703 933708) (-546 "IR2.spad" 931933 931949 932903 932908) (-545 "IR.spad" 929723 929737 931789 931816) (-544 "IPRNTPK.spad" 929483 929491 929713 929718) (-543 "IPF.spad" 929048 929060 929288 929381) (-542 "IPADIC.spad" 928809 928835 928974 929043) (-541 "INVLAPLA.spad" 928454 928470 928799 928804) (-540 "INTTR.spad" 921712 921729 928444 928449) (-539 "INTTOOLS.spad" 919424 919440 921287 921292) (-538 "INTSLPE.spad" 918730 918738 919414 919419) (-537 "INTRVL.spad" 918296 918306 918644 918725) (-536 "INTRF.spad" 916660 916674 918286 918291) (-535 "INTRET.spad" 916092 916102 916650 916655) (-534 "INTRAT.spad" 914767 914784 916082 916087) (-533 "INTPM.spad" 913130 913146 914410 914415) (-532 "INTPAF.spad" 910905 910923 913062 913067) (-531 "INTPACK.spad" 901215 901223 910895 910900) (-530 "INTHERTR.spad" 900481 900498 901205 901210) (-529 "INTHERAL.spad" 900147 900171 900471 900476) (-528 "INTHEORY.spad" 896560 896568 900137 900142) (-527 "INTG0.spad" 890041 890059 896492 896497) (-526 "INTFTBL.spad" 885495 885503 890031 890036) (-525 "INTFACT.spad" 884554 884564 885485 885490) (-524 "INTEF.spad" 882871 882887 884544 884549) (-523 "INTDOM.spad" 881486 881494 882797 882866) (-522 "INTDOM.spad" 880163 880173 881476 881481) (-521 "INTCAT.spad" 878416 878426 880077 880158) (-520 "INTBIT.spad" 877919 877927 878406 878411) (-519 "INTALG.spad" 877101 877128 877909 877914) (-518 "INTAF.spad" 876593 876609 877091 877096) (-517 "INTABL.spad" 875111 875142 875274 875301) (-516 "INT.spad" 874472 874480 874965 875106) (-515 "INS.spad" 871868 871876 874374 874467) (-514 "INS.spad" 869350 869360 871858 871863) (-513 "INPSIGN.spad" 868806 868819 869340 869345) (-512 "INPRODPF.spad" 867872 867891 868796 868801) (-511 "INPRODFF.spad" 866930 866954 867862 867867) (-510 "INNMFACT.spad" 865901 865918 866920 866925) (-509 "INMODGCD.spad" 865385 865415 865891 865896) (-508 "INFSP.spad" 863670 863692 865375 865380) (-507 "INFPROD0.spad" 862720 862739 863660 863665) (-506 "INFORM1.spad" 862345 862355 862710 862715) (-505 "INFORM.spad" 859613 859621 862335 862340) (-504 "INFINITY.spad" 859165 859173 859603 859608) (-503 "INEP.spad" 857697 857719 859155 859160) (-502 "INDE.spad" 857426 857443 857687 857692) (-501 "INCRMAPS.spad" 856847 856857 857416 857421) (-500 "INBFF.spad" 852617 852628 856837 856842) (-499 "IMATRIX.spad" 851562 851588 852074 852101) (-498 "IMATQF.spad" 850656 850700 851518 851523) (-497 "IMATLIN.spad" 849261 849285 850612 850617) (-496 "ILIST.spad" 847917 847932 848444 848471) (-495 "IIARRAY2.spad" 847305 847343 847524 847551) (-494 "IFF.spad" 846715 846731 846986 847079) (-493 "IFARRAY.spad" 844202 844217 845898 845925) (-492 "IFAMON.spad" 844064 844081 844158 844163) (-491 "IEVALAB.spad" 843453 843465 844054 844059) (-490 "IEVALAB.spad" 842840 842854 843443 843448) (-489 "IDPOAMS.spad" 842596 842608 842830 842835) (-488 "IDPOAM.spad" 842316 842328 842586 842591) (-487 "IDPO.spad" 842114 842126 842306 842311) (-486 "IDPC.spad" 841048 841060 842104 842109) (-485 "IDPAM.spad" 840793 840805 841038 841043) (-484 "IDPAG.spad" 840540 840552 840783 840788) (-483 "IDECOMP.spad" 837777 837795 840530 840535) (-482 "IDEAL.spad" 832700 832739 837712 837717) (-481 "ICDEN.spad" 831851 831867 832690 832695) (-480 "ICARD.spad" 831040 831048 831841 831846) (-479 "IBPTOOLS.spad" 829633 829650 831030 831035) (-478 "IBITS.spad" 828832 828845 829269 829296) (-477 "IBATOOL.spad" 825707 825726 828822 828827) (-476 "IBACHIN.spad" 824194 824209 825697 825702) (-475 "IARRAY2.spad" 823182 823208 823801 823828) (-474 "IARRAY1.spad" 822227 822242 822365 822392) (-473 "IAN.spad" 820442 820450 822045 822138) (-472 "IALGFACT.spad" 820043 820076 820432 820437) (-471 "HYPCAT.spad" 819467 819475 820033 820038) (-470 "HYPCAT.spad" 818889 818899 819457 819462) (-469 "HOSTNAME.spad" 818697 818705 818879 818884) (-468 "HOAGG.spad" 815955 815965 818677 818692) (-467 "HOAGG.spad" 812998 813010 815722 815727) (-466 "HEXADEC.spad" 810870 810878 811468 811561) (-465 "HEUGCD.spad" 809885 809896 810860 810865) (-464 "HELLFDIV.spad" 809475 809499 809875 809880) (-463 "HEAP.spad" 808867 808877 809082 809109) (-462 "HEADAST.spad" 808426 808434 808857 808862) (-461 "HDP.spad" 799594 799610 799971 800100) (-460 "HDMP.spad" 796773 796788 797391 797518) (-459 "HB.spad" 795010 795018 796763 796768) (-458 "HASHTBL.spad" 793480 793511 793691 793718) (-457 "HACKPI.spad" 792963 792971 793382 793475) (-456 "GTSET.spad" 791902 791918 792609 792636) (-455 "GSTBL.spad" 790421 790456 790595 790610) (-454 "GSERIES.spad" 787588 787615 788553 788702) (-453 "GROUP.spad" 786762 786770 787568 787583) (-452 "GROUP.spad" 785944 785954 786752 786757) (-451 "GROEBSOL.spad" 784432 784453 785934 785939) (-450 "GRMOD.spad" 783003 783015 784422 784427) (-449 "GRMOD.spad" 781572 781586 782993 782998) (-448 "GRIMAGE.spad" 774177 774185 781562 781567) (-447 "GRDEF.spad" 772556 772564 774167 774172) (-446 "GRAY.spad" 771015 771023 772546 772551) (-445 "GRALG.spad" 770062 770074 771005 771010) (-444 "GRALG.spad" 769107 769121 770052 770057) (-443 "GPOLSET.spad" 768561 768584 768789 768816) (-442 "GOSPER.spad" 767826 767844 768551 768556) (-441 "GMODPOL.spad" 766964 766991 767794 767821) (-440 "GHENSEL.spad" 766033 766047 766954 766959) (-439 "GENUPS.spad" 762134 762147 766023 766028) (-438 "GENUFACT.spad" 761711 761721 762124 762129) (-437 "GENPGCD.spad" 761295 761312 761701 761706) (-436 "GENMFACT.spad" 760747 760766 761285 761290) (-435 "GENEEZ.spad" 758686 758699 760737 760742) (-434 "GDMP.spad" 755707 755724 756483 756610) (-433 "GCNAALG.spad" 749602 749629 755501 755568) (-432 "GCDDOM.spad" 748774 748782 749528 749597) (-431 "GCDDOM.spad" 748008 748018 748764 748769) (-430 "GBINTERN.spad" 744028 744066 747998 748003) (-429 "GBF.spad" 739785 739823 744018 744023) (-428 "GBEUCLID.spad" 737659 737697 739775 739780) (-427 "GB.spad" 735177 735215 737615 737620) (-426 "GAUSSFAC.spad" 734474 734482 735167 735172) (-425 "GALUTIL.spad" 732796 732806 734430 734435) (-424 "GALPOLYU.spad" 731242 731255 732786 732791) (-423 "GALFACTU.spad" 729407 729426 731232 731237) (-422 "GALFACT.spad" 719540 719551 729397 729402) (-421 "FVFUN.spad" 716553 716561 719520 719535) (-420 "FVC.spad" 715595 715603 716533 716548) (-419 "FUNCTION.spad" 715444 715456 715585 715590) (-418 "FTEM.spad" 714607 714615 715434 715439) (-417 "FT.spad" 712822 712830 714597 714602) (-416 "FSUPFACT.spad" 711723 711742 712759 712764) (-415 "FST.spad" 709809 709817 711713 711718) (-414 "FSRED.spad" 709287 709303 709799 709804) (-413 "FSPRMELT.spad" 708111 708127 709244 709249) (-412 "FSPECF.spad" 706188 706204 708101 708106) (-411 "FSINT.spad" 705846 705862 706178 706183) (-410 "FSERIES.spad" 705033 705045 705666 705765) (-409 "FSCINT.spad" 704346 704362 705023 705028) (-408 "FSAGG2.spad" 703045 703061 704336 704341) (-407 "FSAGG.spad" 702150 702160 702989 703040) (-406 "FSAGG.spad" 701229 701241 702070 702075) (-405 "FS2UPS.spad" 695618 695652 701219 701224) (-404 "FS2EXPXP.spad" 694741 694764 695608 695613) (-403 "FS2.spad" 694386 694402 694731 694736) (-402 "FS.spad" 688437 688447 694150 694381) (-401 "FS.spad" 682279 682291 687994 687999) (-400 "FRUTIL.spad" 681221 681231 682269 682274) (-399 "FRNAALG.spad" 676308 676318 681163 681216) (-398 "FRNAALG.spad" 671407 671419 676264 676269) (-397 "FRNAAF2.spad" 670861 670879 671397 671402) (-396 "FRMOD.spad" 670256 670286 670793 670798) (-395 "FRIDEAL2.spad" 669858 669890 670246 670251) (-394 "FRIDEAL.spad" 669053 669074 669838 669853) (-393 "FRETRCT.spad" 668564 668574 669043 669048) (-392 "FRETRCT.spad" 667943 667955 668424 668429) (-391 "FRAMALG.spad" 666271 666284 667899 667938) (-390 "FRAMALG.spad" 664631 664646 666261 666266) (-389 "FRAC2.spad" 664234 664246 664621 664626) (-388 "FRAC.spad" 661337 661347 661740 661913) (-387 "FR2.spad" 660671 660683 661327 661332) (-386 "FR.spad" 654395 654405 659698 659767) (-385 "FPS.spad" 651204 651212 654285 654390) (-384 "FPS.spad" 648041 648051 651124 651129) (-383 "FPC.spad" 647083 647091 647943 648036) (-382 "FPC.spad" 646211 646221 647073 647078) (-381 "FPATMAB.spad" 645963 645973 646191 646206) (-380 "FPARFRAC.spad" 644436 644453 645953 645958) (-379 "FORTRAN.spad" 642942 642985 644426 644431) (-378 "FORTFN.spad" 640102 640110 642922 642937) (-377 "FORTCAT.spad" 639776 639784 640082 640097) (-376 "FORT.spad" 638705 638713 639766 639771) (-375 "FORMULA1.spad" 638184 638194 638695 638700) (-374 "FORMULA.spad" 635522 635530 638174 638179) (-373 "FORDER.spad" 635213 635237 635512 635517) (-372 "FOP.spad" 634414 634422 635203 635208) (-371 "FNLA.spad" 633838 633860 634382 634409) (-370 "FNCAT.spad" 632166 632174 633828 633833) (-369 "FNAME.spad" 632058 632066 632156 632161) (-368 "FMTC.spad" 631856 631864 631984 632053) (-367 "FMONOID.spad" 628911 628921 631812 631817) (-366 "FMFUN.spad" 625931 625939 628891 628906) (-365 "FMCAT.spad" 623585 623603 625899 625926) (-364 "FMC.spad" 622627 622635 623565 623580) (-363 "FM1.spad" 621984 621996 622561 622588) (-362 "FM.spad" 621679 621691 621918 621945) (-361 "FLOATRP.spad" 619400 619414 621669 621674) (-360 "FLOATCP.spad" 616817 616831 619390 619395) (-359 "FLOAT.spad" 609981 609989 616683 616812) (-358 "FLINEXP.spad" 609693 609703 609961 609976) (-357 "FLINEXP.spad" 609359 609371 609629 609634) (-356 "FLASORT.spad" 608679 608691 609349 609354) (-355 "FLALG.spad" 606325 606344 608605 608674) (-354 "FLAGG2.spad" 605006 605022 606315 606320) (-353 "FLAGG.spad" 602012 602022 604974 605001) (-352 "FLAGG.spad" 598931 598943 601895 601900) (-351 "FINRALG.spad" 596960 596973 598887 598926) (-350 "FINRALG.spad" 594915 594930 596844 596849) (-349 "FINITE.spad" 594067 594075 594905 594910) (-348 "FINAALG.spad" 583048 583058 594009 594062) (-347 "FINAALG.spad" 572041 572053 583004 583009) (-346 "FILECAT.spad" 570559 570576 572031 572036) (-345 "FILE.spad" 570142 570152 570549 570554) (-344 "FIELD.spad" 569548 569556 570044 570137) (-343 "FIELD.spad" 569040 569050 569538 569543) (-342 "FGROUP.spad" 567649 567659 569020 569035) (-341 "FGLMICPK.spad" 566436 566451 567639 567644) (-340 "FFX.spad" 565811 565826 566152 566245) (-339 "FFSLPE.spad" 565300 565321 565801 565806) (-338 "FFPOLY2.spad" 564360 564377 565290 565295) (-337 "FFPOLY.spad" 555612 555623 564350 564355) (-336 "FFP.spad" 555009 555029 555328 555421) (-335 "FFNBX.spad" 553521 553541 554725 554818) (-334 "FFNBP.spad" 552034 552051 553237 553330) (-333 "FFNB.spad" 550499 550520 551715 551808) (-332 "FFINTBAS.spad" 547913 547932 550489 550494) (-331 "FFIELDC.spad" 545488 545496 547815 547908) (-330 "FFIELDC.spad" 543149 543159 545478 545483) (-329 "FFHOM.spad" 541897 541914 543139 543144) (-328 "FFF.spad" 539332 539343 541887 541892) (-327 "FFCGX.spad" 538179 538199 539048 539141) (-326 "FFCGP.spad" 537068 537088 537895 537988) (-325 "FFCG.spad" 535860 535881 536749 536842) (-324 "FFCAT2.spad" 535605 535645 535850 535855) (-323 "FFCAT.spad" 528506 528528 535444 535600) (-322 "FFCAT.spad" 521486 521510 528426 528431) (-321 "FF.spad" 520934 520950 521167 521260) (-320 "FEXPR.spad" 512647 512693 520694 520733) (-319 "FEVALAB.spad" 512353 512363 512637 512642) (-318 "FEVALAB.spad" 511844 511856 512130 512135) (-317 "FDIVCAT.spad" 509886 509910 511834 511839) (-316 "FDIVCAT.spad" 507926 507952 509876 509881) (-315 "FDIV2.spad" 507580 507620 507916 507921) (-314 "FDIV.spad" 507022 507046 507570 507575) (-313 "FCPAK1.spad" 505575 505583 507012 507017) (-312 "FCOMP.spad" 504954 504964 505565 505570) (-311 "FC.spad" 494779 494787 504944 504949) (-310 "FAXF.spad" 487714 487728 494681 494774) (-309 "FAXF.spad" 480701 480717 487670 487675) (-308 "FARRAY.spad" 478847 478857 479884 479911) (-307 "FAMR.spad" 476967 476979 478745 478842) (-306 "FAMR.spad" 475071 475085 476851 476856) (-305 "FAMONOID.spad" 474721 474731 475025 475030) (-304 "FAMONC.spad" 472943 472955 474711 474716) (-303 "FAGROUP.spad" 472549 472559 472839 472866) (-302 "FACUTIL.spad" 470745 470762 472539 472544) (-301 "FACTFUNC.spad" 469921 469931 470735 470740) (-300 "EXPUPXS.spad" 466754 466777 468053 468202) (-299 "EXPRTUBE.spad" 463982 463990 466744 466749) (-298 "EXPRODE.spad" 460854 460870 463972 463977) (-297 "EXPR2UPS.spad" 456946 456959 460844 460849) (-296 "EXPR2.spad" 456649 456661 456936 456941) (-295 "EXPR.spad" 451951 451961 452665 453068) (-294 "EXPEXPAN.spad" 448892 448917 449526 449619) (-293 "EXIT.spad" 448563 448571 448882 448887) (-292 "EVALCYC.spad" 448021 448035 448553 448558) (-291 "EVALAB.spad" 447585 447595 448011 448016) (-290 "EVALAB.spad" 447147 447159 447575 447580) (-289 "EUCDOM.spad" 444689 444697 447073 447142) (-288 "EUCDOM.spad" 442293 442303 444679 444684) (-287 "ESTOOLS2.spad" 441894 441908 442283 442288) (-286 "ESTOOLS1.spad" 441579 441590 441884 441889) (-285 "ESTOOLS.spad" 433419 433427 441569 441574) (-284 "ESCONT1.spad" 433168 433180 433409 433414) (-283 "ESCONT.spad" 429941 429949 433158 433163) (-282 "ES2.spad" 429436 429452 429931 429936) (-281 "ES1.spad" 429002 429018 429426 429431) (-280 "ES.spad" 421549 421557 428992 428997) (-279 "ES.spad" 414004 414014 421449 421454) (-278 "ERROR.spad" 411325 411333 413994 413999) (-277 "EQTBL.spad" 409797 409819 410006 410033) (-276 "EQ2.spad" 409513 409525 409787 409792) (-275 "EQ.spad" 404397 404407 407196 407305) (-274 "EP.spad" 400711 400721 404387 404392) (-273 "ENV.spad" 399413 399421 400701 400706) (-272 "ENTIRER.spad" 399081 399089 399357 399408) (-271 "EMR.spad" 398282 398323 399007 399076) (-270 "ELTAGG.spad" 396522 396541 398272 398277) (-269 "ELTAGG.spad" 394726 394747 396478 396483) (-268 "ELTAB.spad" 394173 394191 394716 394721) (-267 "ELFUTS.spad" 393552 393571 394163 394168) (-266 "ELEMFUN.spad" 393241 393249 393542 393547) (-265 "ELEMFUN.spad" 392928 392938 393231 393236) (-264 "ELAGG.spad" 390859 390869 392896 392923) (-263 "ELAGG.spad" 388739 388751 390778 390783) (-262 "ELABEXPR.spad" 387670 387678 388729 388734) (-261 "EFUPXS.spad" 384446 384476 387626 387631) (-260 "EFULS.spad" 381282 381305 384402 384407) (-259 "EFSTRUC.spad" 379237 379253 381272 381277) (-258 "EF.spad" 374003 374019 379227 379232) (-257 "EAB.spad" 372279 372287 373993 373998) (-256 "E04UCFA.spad" 371815 371823 372269 372274) (-255 "E04NAFA.spad" 371392 371400 371805 371810) (-254 "E04MBFA.spad" 370972 370980 371382 371387) (-253 "E04JAFA.spad" 370508 370516 370962 370967) (-252 "E04GCFA.spad" 370044 370052 370498 370503) (-251 "E04FDFA.spad" 369580 369588 370034 370039) (-250 "E04DGFA.spad" 369116 369124 369570 369575) (-249 "E04AGNT.spad" 364958 364966 369106 369111) (-248 "DVARCAT.spad" 361643 361653 364948 364953) (-247 "DVARCAT.spad" 358326 358338 361633 361638) (-246 "DSMP.spad" 355760 355774 356065 356192) (-245 "DROPT1.spad" 355423 355433 355750 355755) (-244 "DROPT0.spad" 350250 350258 355413 355418) (-243 "DROPT.spad" 344195 344203 350240 350245) (-242 "DRAWPT.spad" 342350 342358 344185 344190) (-241 "DRAWHACK.spad" 341658 341668 342340 342345) (-240 "DRAWCX.spad" 339100 339108 341648 341653) (-239 "DRAWCURV.spad" 338637 338652 339090 339095) (-238 "DRAWCFUN.spad" 327809 327817 338627 338632) (-237 "DRAW.spad" 320409 320422 327799 327804) (-236 "DQAGG.spad" 318565 318575 320365 320404) (-235 "DPOLCAT.spad" 313906 313922 318433 318560) (-234 "DPOLCAT.spad" 309333 309351 313862 313867) (-233 "DPMO.spad" 302683 302699 302821 303117) (-232 "DPMM.spad" 296046 296064 296171 296467) (-231 "DOMAIN.spad" 295317 295325 296036 296041) (-230 "DMP.spad" 292542 292557 293114 293241) (-229 "DLP.spad" 291890 291900 292532 292537) (-228 "DLIST.spad" 290302 290312 291073 291100) (-227 "DLAGG.spad" 288703 288713 290282 290297) (-226 "DIVRING.spad" 288150 288158 288647 288698) (-225 "DIVRING.spad" 287641 287651 288140 288145) (-224 "DISPLAY.spad" 285821 285829 287631 287636) (-223 "DIRPROD2.spad" 284629 284647 285811 285816) (-222 "DIRPROD.spad" 275534 275550 276174 276303) (-221 "DIRPCAT.spad" 274466 274482 275388 275529) (-220 "DIRPCAT.spad" 273138 273156 274062 274067) (-219 "DIOSP.spad" 271963 271971 273128 273133) (-218 "DIOPS.spad" 270935 270945 271931 271958) (-217 "DIOPS.spad" 269893 269905 270891 270896) (-216 "DIFRING.spad" 269185 269193 269873 269888) (-215 "DIFRING.spad" 268485 268495 269175 269180) (-214 "DIFEXT.spad" 267644 267654 268465 268480) (-213 "DIFEXT.spad" 266720 266732 267543 267548) (-212 "DIAGG.spad" 266338 266348 266688 266715) (-211 "DIAGG.spad" 265976 265988 266328 266333) (-210 "DHMATRIX.spad" 264280 264290 265433 265460) (-209 "DFSFUN.spad" 257688 257696 264270 264275) (-208 "DFLOAT.spad" 254211 254219 257578 257683) (-207 "DFINTTLS.spad" 252420 252436 254201 254206) (-206 "DERHAM.spad" 250330 250362 252400 252415) (-205 "DEQUEUE.spad" 249648 249658 249937 249964) (-204 "DEGRED.spad" 249263 249277 249638 249643) (-203 "DEFINTRF.spad" 246833 246843 249253 249258) (-202 "DEFINTEF.spad" 245357 245373 246823 246828) (-201 "DECIMAL.spad" 243241 243249 243827 243920) (-200 "DDFACT.spad" 241040 241057 243231 243236) (-199 "DBLRESP.spad" 240638 240662 241030 241035) (-198 "DBASE.spad" 239210 239220 240628 240633) (-197 "DATABUF.spad" 238698 238711 239200 239205) (-196 "D03FAFA.spad" 238526 238534 238688 238693) (-195 "D03EEFA.spad" 238346 238354 238516 238521) (-194 "D03AGNT.spad" 237426 237434 238336 238341) (-193 "D02EJFA.spad" 236888 236896 237416 237421) (-192 "D02CJFA.spad" 236366 236374 236878 236883) (-191 "D02BHFA.spad" 235856 235864 236356 236361) (-190 "D02BBFA.spad" 235346 235354 235846 235851) (-189 "D02AGNT.spad" 230150 230158 235336 235341) (-188 "D01WGTS.spad" 228469 228477 230140 230145) (-187 "D01TRNS.spad" 228446 228454 228459 228464) (-186 "D01GBFA.spad" 227968 227976 228436 228441) (-185 "D01FCFA.spad" 227490 227498 227958 227963) (-184 "D01ASFA.spad" 226958 226966 227480 227485) (-183 "D01AQFA.spad" 226404 226412 226948 226953) (-182 "D01APFA.spad" 225828 225836 226394 226399) (-181 "D01ANFA.spad" 225322 225330 225818 225823) (-180 "D01AMFA.spad" 224832 224840 225312 225317) (-179 "D01ALFA.spad" 224372 224380 224822 224827) (-178 "D01AKFA.spad" 223898 223906 224362 224367) (-177 "D01AJFA.spad" 223421 223429 223888 223893) (-176 "D01AGNT.spad" 219480 219488 223411 223416) (-175 "CYCLOTOM.spad" 218986 218994 219470 219475) (-174 "CYCLES.spad" 215818 215826 218976 218981) (-173 "CVMP.spad" 215235 215245 215808 215813) (-172 "CTRIGMNP.spad" 213725 213741 215225 215230) (-171 "CTORCALL.spad" 213313 213321 213715 213720) (-170 "CSTTOOLS.spad" 212556 212569 213303 213308) (-169 "CRFP.spad" 206260 206273 212546 212551) (-168 "CRAPACK.spad" 205303 205313 206250 206255) (-167 "CPMATCH.spad" 204803 204818 205228 205233) (-166 "CPIMA.spad" 204508 204527 204793 204798) (-165 "COORDSYS.spad" 199401 199411 204498 204503) (-164 "CONTOUR.spad" 198803 198811 199391 199396) (-163 "CONTFRAC.spad" 194415 194425 198705 198798) (-162 "COMRING.spad" 194089 194097 194353 194410) (-161 "COMPPROP.spad" 193603 193611 194079 194084) (-160 "COMPLPAT.spad" 193370 193385 193593 193598) (-159 "COMPLEX2.spad" 193083 193095 193360 193365) (-158 "COMPLEX.spad" 187116 187126 187360 187621) (-157 "COMPFACT.spad" 186718 186732 187106 187111) (-156 "COMPCAT.spad" 184774 184784 186440 186713) (-155 "COMPCAT.spad" 182537 182549 184205 184210) (-154 "COMMUPC.spad" 182283 182301 182527 182532) (-153 "COMMONOP.spad" 181816 181824 182273 182278) (-152 "COMM.spad" 181625 181633 181806 181811) (-151 "COMBOPC.spad" 180530 180538 181615 181620) (-150 "COMBINAT.spad" 179275 179285 180520 180525) (-149 "COMBF.spad" 176643 176659 179265 179270) (-148 "COLOR.spad" 175480 175488 176633 176638) (-147 "CMPLXRT.spad" 175189 175206 175470 175475) (-146 "CLIP.spad" 171281 171289 175179 175184) (-145 "CLIF.spad" 169920 169936 171237 171276) (-144 "CLAGG.spad" 166395 166405 169900 169915) (-143 "CLAGG.spad" 162751 162763 166258 166263) (-142 "CINTSLPE.spad" 162076 162089 162741 162746) (-141 "CHVAR.spad" 160154 160176 162066 162071) (-140 "CHARZ.spad" 160069 160077 160134 160149) (-139 "CHARPOL.spad" 159577 159587 160059 160064) (-138 "CHARNZ.spad" 159330 159338 159557 159572) (-137 "CHAR.spad" 157198 157206 159320 159325) (-136 "CFCAT.spad" 156514 156522 157188 157193) (-135 "CDEN.spad" 155672 155686 156504 156509) (-134 "CCLASS.spad" 153821 153829 155083 155122) (-133 "CATEGORY.spad" 153600 153608 153811 153816) (-132 "CARTEN2.spad" 152986 153013 153590 153595) (-131 "CARTEN.spad" 148089 148113 152976 152981) (-130 "CARD.spad" 145378 145386 148063 148084) (-129 "CACHSET.spad" 145000 145008 145368 145373) (-128 "CABMON.spad" 144553 144561 144990 144995) (-127 "BYTEARY.spad" 143628 143636 143722 143749) (-126 "BYTE.spad" 143022 143030 143618 143623) (-125 "BTREE.spad" 142091 142101 142629 142656) (-124 "BTOURN.spad" 141094 141104 141698 141725) (-123 "BTCAT.spad" 140470 140480 141050 141089) (-122 "BTCAT.spad" 139878 139890 140460 140465) (-121 "BTAGG.spad" 138894 138902 139834 139873) (-120 "BTAGG.spad" 137942 137952 138884 138889) (-119 "BSTREE.spad" 136677 136687 137549 137576) (-118 "BRILL.spad" 134872 134883 136667 136672) (-117 "BRAGG.spad" 133786 133796 134852 134867) (-116 "BRAGG.spad" 132674 132686 133742 133747) (-115 "BPADICRT.spad" 130658 130670 130913 131006) (-114 "BPADIC.spad" 130322 130334 130584 130653) (-113 "BOUNDZRO.spad" 129978 129995 130312 130317) (-112 "BOP1.spad" 127364 127374 129934 129939) (-111 "BOP.spad" 122828 122836 127354 127359) (-110 "BOOLEAN.spad" 122091 122099 122818 122823) (-109 "BMODULE.spad" 121803 121815 122059 122086) (-108 "BITS.spad" 121222 121230 121439 121466) (-107 "BINFILE.spad" 120565 120573 121212 121217) (-106 "BINDING.spad" 119984 119992 120555 120560) (-105 "BINARY.spad" 117877 117885 118454 118547) (-104 "BGAGG.spad" 117062 117072 117845 117872) (-103 "BGAGG.spad" 116267 116279 117052 117057) (-102 "BFUNCT.spad" 115831 115839 116247 116262) (-101 "BEZOUT.spad" 114965 114992 115781 115786) (-100 "BBTREE.spad" 111784 111794 114572 114599) (-99 "BASTYPE.spad" 111457 111464 111774 111779) (-98 "BASTYPE.spad" 111128 111137 111447 111452) (-97 "BALFACT.spad" 110568 110580 111118 111123) (-96 "AUTOMOR.spad" 110015 110024 110548 110563) (-95 "ATTREG.spad" 106734 106741 109767 110010) (-94 "ATTRBUT.spad" 102757 102764 106714 106729) (-93 "ATRIG.spad" 102227 102234 102747 102752) (-92 "ATRIG.spad" 101695 101704 102217 102222) (-91 "ASTCAT.spad" 101599 101606 101685 101690) (-90 "ASTCAT.spad" 101501 101510 101589 101594) (-89 "ASTACK.spad" 100834 100843 101108 101135) (-88 "ASSOCEQ.spad" 99634 99645 100790 100795) (-87 "ASP9.spad" 98715 98728 99624 99629) (-86 "ASP80.spad" 98037 98050 98705 98710) (-85 "ASP8.spad" 97080 97093 98027 98032) (-84 "ASP78.spad" 96531 96544 97070 97075) (-83 "ASP77.spad" 95900 95913 96521 96526) (-82 "ASP74.spad" 94992 95005 95890 95895) (-81 "ASP73.spad" 94263 94276 94982 94987) (-80 "ASP7.spad" 93423 93436 94253 94258) (-79 "ASP6.spad" 92055 92068 93413 93418) (-78 "ASP55.spad" 90564 90577 92045 92050) (-77 "ASP50.spad" 88381 88394 90554 90559) (-76 "ASP49.spad" 87380 87393 88371 88376) (-75 "ASP42.spad" 85787 85826 87370 87375) (-74 "ASP41.spad" 84366 84405 85777 85782) (-73 "ASP4.spad" 83661 83674 84356 84361) (-72 "ASP35.spad" 82649 82662 83651 83656) (-71 "ASP34.spad" 81950 81963 82639 82644) (-70 "ASP33.spad" 81510 81523 81940 81945) (-69 "ASP31.spad" 80650 80663 81500 81505) (-68 "ASP30.spad" 79542 79555 80640 80645) (-67 "ASP29.spad" 79008 79021 79532 79537) (-66 "ASP28.spad" 70281 70294 78998 79003) (-65 "ASP27.spad" 69178 69191 70271 70276) (-64 "ASP24.spad" 68265 68278 69168 69173) (-63 "ASP20.spad" 67481 67494 68255 68260) (-62 "ASP19.spad" 62167 62180 67471 67476) (-61 "ASP12.spad" 61581 61594 62157 62162) (-60 "ASP10.spad" 60852 60865 61571 61576) (-59 "ASP1.spad" 60233 60246 60842 60847) (-58 "ARRAY2.spad" 59593 59602 59840 59867) (-57 "ARRAY12.spad" 58262 58273 59583 59588) (-56 "ARRAY1.spad" 57097 57106 57445 57472) (-55 "ARR2CAT.spad" 52747 52768 57053 57092) (-54 "ARR2CAT.spad" 48429 48452 52737 52742) (-53 "APPRULE.spad" 47673 47695 48419 48424) (-52 "APPLYORE.spad" 47288 47301 47663 47668) (-51 "ANY1.spad" 46359 46368 47278 47283) (-50 "ANY.spad" 44701 44708 46349 46354) (-49 "ANTISYM.spad" 43140 43156 44681 44696) (-48 "ANON.spad" 42837 42844 43130 43135) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index 7df4e35e..06b9f38c 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,3225 +1,3228 @@
-(143347 . 3428466489)
-(((|#2| |#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))) ((#0=(-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) #0#) |has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))))
-(((|#2| |#2|) . T))
-((((-528)) . T))
-((($ $) -1463 (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848))) ((|#2| |#2|) . T) ((#0=(-387 (-528)) #0#) |has| |#2| (-37 (-387 (-528)))))
-((($) . T))
-(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-(((|#2|) . T))
-((($) -1463 (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848))) ((|#2|) . T) (((-387 (-528))) |has| |#2| (-37 (-387 (-528)))))
-(|has| |#1| (-848))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((($) . T) (((-387 (-528))) . T))
-((($) . T))
-((($) . T))
-(((|#2| |#2|) . T))
-((((-137)) . T))
-((((-504)) . T) (((-1078)) . T) (((-207)) . T) (((-359)) . T) (((-831 (-359))) . T))
-(((|#1|) . T))
-((((-207)) . T) (((-802)) . T))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#1|) . T))
-(-1463 (|has| |#1| (-21)) (|has| |#1| (-791)))
-((($ $) . T) ((#0=(-387 (-528)) #0#) -1463 (|has| |#1| (-343)) (|has| |#1| (-329))) ((|#1| |#1|) . T))
-(-1463 (|has| |#1| (-766)) (|has| |#1| (-793)))
-((((-387 (-528))) |has| |#1| (-972 (-387 (-528)))) (((-528)) |has| |#1| (-972 (-528))) ((|#1|) . T))
-((((-802)) . T))
-((((-802)) . T))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-520)))
-(|has| |#1| (-791))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
+(143455 . 3428546883)
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-388 |#2|) |#3|) . T))
+((((-388 (-516))) |has| #1=(-388 |#2|) (-975 (-388 (-516)))) (((-516)) |has| #1# (-975 (-516))) ((#1#) . T))
+((((-388 |#2|)) . T))
+((((-516)) |has| #1=(-388 |#2|) (-593 (-516))) ((#1#) . T))
+((((-388 |#2|)) . T))
+((((-388 |#2|) |#3|) . T))
+(|has| (-388 |#2|) (-140))
+((((-388 |#2|) |#3|) . T))
+(|has| (-388 |#2|) (-138))
+((((-388 |#2|)) . T) (((-388 (-516))) . T) (($) . T))
+((((-388 |#2|)) . T) (((-388 (-516))) . T) (($) . T))
+(|has| (-388 |#2|) (-216))
+((((-1098)) |has| (-388 |#2|) (-841 (-1098))))
+((((-388 |#2|)) . T))
+(((|#3|) . T))
+(((#1=(-388 |#2|) #1#) . T) ((#2=(-388 (-516)) #2#) . T) (($ $) . T))
+((((-388 |#2|)) . T) (((-388 (-516))) . T) (($) . T))
+((((-805)) . T))
+((((-388 |#2|)) . T) (((-388 (-516))) . T) (($) . T))
(((|#1| |#2| |#3|) . T))
-(((|#4|) . T))
-((($) . T) (((-387 (-528))) -1463 (|has| |#1| (-343)) (|has| |#1| (-329))) ((|#1|) . T))
-((((-802)) . T))
-((((-802)) |has| |#1| (-1023)))
-(((|#1|) . T) ((|#2|) . T))
-(((|#1|) . T) (((-528)) |has| |#1| (-972 (-528))) (((-387 (-528))) |has| |#1| (-972 (-387 (-528)))))
-(-1463 (|has| |#2| (-162)) (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848)))
-(-1463 (|has| |#1| (-162)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-(((|#2| (-460 (-2138 |#1|) (-717))) . T))
-(((|#1| (-500 (-1095))) . T))
-(((#0=(-809 |#1|) #0#) . T) ((#1=(-387 (-528)) #1#) . T) (($ $) . T))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-(|has| |#4| (-348))
-(|has| |#3| (-348))
-(((|#1|) . T))
-((((-809 |#1|)) . T) (((-387 (-528))) . T) (($) . T))
-(((|#1| |#2|) . T))
-((($) . T))
-(|has| |#1| (-138))
-(|has| |#1| (-140))
-(|has| |#1| (-520))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-520)))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-520)))
-((($) . T))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-793)) (|has| |#1| (-1023))))
-((((-504)) |has| |#1| (-570 (-504))))
-((($) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((|#1|) . T))
-((($) . T))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-((((-802)) . T))
-((((-802)) . T))
-((((-387 (-528))) . T) (($) . T))
-((((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-343)) (($) . T) ((|#1|) . T))
-((((-802)) . T))
-((((-802)) . T))
-(((|#1|) . T))
-((((-802)) . T))
-(((|#1|) . T) (((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) (($) . T))
-(((|#1|) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) (($) . T))
-(-1463 (|has| |#1| (-793)) (|has| |#1| (-1023)))
-(((|#1| |#2|) . T))
-((((-802)) . T))
(((|#1|) . T))
-(((#0=(-387 (-528)) #0#) |has| |#2| (-37 (-387 (-528)))) ((|#2| |#2|) . T) (($ $) -1463 (|has| |#2| (-162)) (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848))))
(((|#1|) . T))
-((((-387 (-528))) |has| |#2| (-37 (-387 (-528)))) ((|#2|) |has| |#2| (-162)) (($) -1463 (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848))))
-((($) -1463 (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-162)) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-(((|#1|) . T) (((-387 (-528))) . T) (($) . T))
-(((|#1|) . T) (((-387 (-528))) . T) (($) . T))
-(((|#1|) . T) (((-387 (-528))) . T) (($) . T))
-(((#0=(-387 (-528)) #0#) |has| |#1| (-37 (-387 (-528)))) ((|#1| |#1|) . T) (($ $) -1463 (|has| |#1| (-162)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))))
-((($ $) . T))
-(((|#2|) . T))
-((((-387 (-528))) |has| |#2| (-37 (-387 (-528)))) ((|#2|) . T) (($) -1463 (|has| |#2| (-162)) (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848))))
-((((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((|#1|) . T) (($) -1463 (|has| |#1| (-162)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))))
-((($) . T))
-(|has| |#1| (-348))
+((((-1065 |#2| |#1|)) . T) ((|#1|) . T))
+((((-805)) . T))
(((|#1|) . T))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-((((-802)) . T))
-((((-802)) . T))
-(((|#1| |#2|) . T))
-(-1463 (|has| |#1| (-21)) (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-839 (-1095))) (|has| |#1| (-981)))
-(-1463 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-839 (-1095))) (|has| |#1| (-981)))
(((|#1| |#1|) . T))
-(|has| |#1| (-520))
-(((|#2| |#2|) -12 (|has| |#1| (-343)) (|has| |#2| (-290 |#2|))) (((-1095) |#2|) -12 (|has| |#1| (-343)) (|has| |#2| (-489 (-1095) |#2|))))
-((((-387 |#2|)) . T) (((-387 (-528))) . T) (($) . T))
-(-1463 (|has| |#1| (-21)) (|has| |#1| (-791)))
-((($ $) . T) ((#0=(-387 (-528)) #0#) . T))
-(-1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-520)))
-(-1463 (|has| |#1| (-793)) (|has| |#1| (-1023)))
-(|has| |#1| (-1023))
-(-1463 (|has| |#1| (-793)) (|has| |#1| (-1023)))
-(|has| |#1| (-1023))
-(-1463 (|has| |#1| (-793)) (|has| |#1| (-1023)))
-(|has| |#1| (-791))
-((($) . T) (((-387 (-528))) . T))
-(((|#1|) . T))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-329)))
-(-1463 (|has| |#4| (-739)) (|has| |#4| (-791)))
-(-1463 (|has| |#4| (-739)) (|has| |#4| (-791)))
-(-1463 (|has| |#3| (-739)) (|has| |#3| (-791)))
-(-1463 (|has| |#3| (-739)) (|has| |#3| (-791)))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+((((-805)) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
(((|#1| |#2|) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-1023))
-(|has| |#1| (-1023))
-(((|#1| (-1095) (-1013 (-1095)) (-500 (-1013 (-1095)))) . T))
-((((-528) |#1|) . T))
-((((-528)) . T))
-((((-528)) . T))
-((((-849 |#1|)) . T))
-(((|#1| (-500 |#2|)) . T))
-((((-528)) . T))
-((((-528)) . T))
-(((|#1|) . T))
-(-1463 (|has| |#2| (-162)) (|has| |#2| (-673)) (|has| |#2| (-791)) (|has| |#2| (-981)))
-(((|#1| (-717)) . T))
-(|has| |#2| (-739))
-(-1463 (|has| |#2| (-739)) (|has| |#2| (-791)))
-(|has| |#2| (-791))
-(((|#1| |#2| |#3| |#4|) . T))
+((((-516) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T) ((|#1| |#2|) . T))
+((((-516) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T) ((|#1| |#2|) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T) ((|#2|) . T))
+(((#1=(-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) #1#) |has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) |has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) ((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
+((((-516) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-1078) |#1|) . T))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-1023))))
-(((|#1|) . T))
-(((|#3| (-717)) . T))
-(|has| |#1| (-140))
-(|has| |#1| (-138))
-(-1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-520)))
-(-1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-520)))
-(|has| |#1| (-1023))
-((((-387 (-528))) . T) (((-528)) . T))
-((((-1095) |#2|) |has| |#2| (-489 (-1095) |#2|)) ((|#2| |#2|) |has| |#2| (-290 |#2|)))
-((((-387 (-528))) . T) (((-528)) . T))
+((((-158 (-359))) . T) (((-208)) . T) (((-359)) . T))
+((((-388 (-516))) . T) (((-516)) . T))
+((($) . T) (((-388 (-516))) . T))
+((($) . T) (((-388 (-516))) . T))
+((($) . T) (((-388 (-516))) . T))
+((((-388 (-516))) . T) (($) . T))
+(((#1=(-388 (-516)) #1#) . T) (($ $) . T))
+((($) . T))
+((($ $) . T) (((-569 $) $) . T))
+((((-805)) . T))
+((((-388 (-516))) . T) (((-516)) . T) (((-569 $)) . T))
+((((-805)) . T))
+(((|#1|) . T))
+((((-805)) . T))
(((|#1|) . T) (($) . T))
-((((-528)) . T))
-((((-528)) . T))
-((($) -1463 (|has| |#1| (-343)) (|has| |#1| (-520))) (((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) ((|#1|) |has| |#1| (-162)))
-((((-528)) . T))
-((((-528)) . T))
-(((#0=(-645) (-1091 #0#)) . T))
-((((-387 (-528))) . T) (($) . T))
-(((|#1|) . T) (((-387 (-528))) . T) (($) . T))
-((((-528) |#1|) . T))
-((($) . T) (((-528)) . T) (((-387 (-528))) . T))
-(((|#1|) . T))
-(|has| |#2| (-343))
(((|#1|) . T))
-(((|#1| |#2|) . T))
-((((-802)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-((((-1078) |#1|) . T))
-(((|#3| |#3|) . T))
-((((-802)) . T))
-((((-802)) . T))
+((((-805)) . T))
+(((|#1|) . T))
+(|has| |#1| (-795))
+(((|#1|) . T))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(-3810 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-3810 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(((|#1|) . T))
+((((-505)) |has| |#1| (-572 (-505))))
+((((-516) |#1|) . T))
+((((-516) |#1|) . T))
+((((-516) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1027))
+(|has| |#1| (-1027))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-1027))))
+(((|#1| (-56 |#1|) (-56 |#1|)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+(((|#1|) . T))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(|has| |#1| (-1027))
+(|has| |#1| (-1027))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-805)) . T))
(((|#1| |#1|) . T))
-(((#0=(-387 (-528)) #0#) |has| |#1| (-37 (-387 (-528)))) ((|#1| |#1|) . T) (($ $) -1463 (|has| |#1| (-162)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))))
-((($ $) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1| |#1|) . T) ((#0=(-387 (-528)) #0#) |has| |#1| (-37 (-387 (-528)))))
-(((|#1|) . T))
-((((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((|#1|) . T) (($) -1463 (|has| |#1| (-162)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))))
-((($) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1|) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-((($) -1463 (|has| |#2| (-162)) (|has| |#2| (-791)) (|has| |#2| (-981))) ((|#2|) -1463 (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-981))))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-528) |#1|) . T))
-((((-159 (-207))) |has| |#1| (-957)) (((-159 (-359))) |has| |#1| (-957)) (((-504)) |has| |#1| (-570 (-504))) (((-1091 |#1|)) . T) (((-831 (-528))) |has| |#1| (-570 (-831 (-528)))) (((-831 (-359))) |has| |#1| (-570 (-831 (-359)))))
-((((-802)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#1|) . T))
-(-1463 (|has| |#1| (-21)) (|has| |#1| (-791)))
-(-1463 (|has| |#1| (-21)) (|has| |#1| (-791)))
-((((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) (($) -1463 (|has| |#1| (-343)) (|has| |#1| (-520))) ((|#2|) |has| |#1| (-343)) ((|#1|) |has| |#1| (-162)))
-(((|#1|) |has| |#1| (-162)) (((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) (($) -1463 (|has| |#1| (-343)) (|has| |#1| (-520))))
-(|has| |#1| (-343))
-(-12 (|has| |#4| (-215)) (|has| |#4| (-981)))
-(-12 (|has| |#3| (-215)) (|has| |#3| (-981)))
-(-1463 (|has| |#4| (-162)) (|has| |#4| (-791)) (|has| |#4| (-981)))
-(-1463 (|has| |#3| (-162)) (|has| |#3| (-791)) (|has| |#3| (-981)))
-((((-802)) . T))
-(((|#1|) . T))
-((((-387 (-528))) |has| |#1| (-972 (-387 (-528)))) (((-528)) |has| |#1| (-972 (-528))) ((|#1|) . T))
-(((|#1|) . T) (((-528)) |has| |#1| (-591 (-528))))
-(((|#2|) . T) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) . T))
-(|has| |#1| (-520))
-(|has| |#1| (-520))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(-1463 (|has| |#1| (-793)) (|has| |#1| (-1023)))
-(((|#1|) . T))
-(|has| |#1| (-520))
-(|has| |#1| (-520))
-(|has| |#1| (-520))
-((((-645)) . T))
-(((|#1|) . T))
-(-12 (|has| |#1| (-938)) (|has| |#1| (-1117)))
-(((|#2|) . T) (($) . T) (((-387 (-528))) . T))
-(-12 (|has| |#1| (-1023)) (|has| |#2| (-1023)))
-((($) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((|#1|) . T))
-((((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) (((-1093 |#1| |#2| |#3|)) |has| |#1| (-343)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) (($) . T))
-(((|#1|) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) (($) . T))
-(((|#3| |#3|) -1463 (|has| |#3| (-162)) (|has| |#3| (-343)) (|has| |#3| (-981))) (($ $) |has| |#3| (-162)))
-(((|#4| |#4|) -1463 (|has| |#4| (-162)) (|has| |#4| (-343)) (|has| |#4| (-981))) (($ $) |has| |#4| (-162)))
-(((|#1|) . T))
-(((|#2|) . T))
-((((-504)) |has| |#2| (-570 (-504))) (((-831 (-359))) |has| |#2| (-570 (-831 (-359)))) (((-831 (-528))) |has| |#2| (-570 (-831 (-528)))))
-((((-802)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-802)) . T))
-((((-504)) |has| |#1| (-570 (-504))) (((-831 (-359))) |has| |#1| (-570 (-831 (-359)))) (((-831 (-528))) |has| |#1| (-570 (-831 (-528)))))
-((((-802)) . T))
-(((|#3|) -1463 (|has| |#3| (-162)) (|has| |#3| (-343)) (|has| |#3| (-981))) (($) |has| |#3| (-162)))
-(((|#4|) -1463 (|has| |#4| (-162)) (|has| |#4| (-343)) (|has| |#4| (-981))) (($) |has| |#4| (-162)))
-((((-802)) . T))
-((((-504)) . T) (((-528)) . T) (((-831 (-528))) . T) (((-359)) . T) (((-207)) . T))
-(((|#1|) . T) (((-528)) |has| |#1| (-972 (-528))) (((-387 (-528))) |has| |#1| (-972 (-387 (-528)))))
-((($) . T) (((-387 (-528))) |has| |#2| (-37 (-387 (-528)))) ((|#2|) . T))
-((((-387 $) (-387 $)) |has| |#2| (-520)) (($ $) . T) ((|#2| |#2|) . T))
-((((-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))) . T))
-(((|#1|) . T))
-(|has| |#2| (-848))
-((((-1078) (-51)) . T))
-((((-528)) |has| #0=(-387 |#2|) (-591 (-528))) ((#0#) . T))
-((((-504)) . T) (((-207)) . T) (((-359)) . T) (((-831 (-359))) . T))
-((((-802)) . T))
-(-1463 (|has| |#1| (-21)) (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-839 (-1095))) (|has| |#1| (-981)))
-(((|#1|) |has| |#1| (-162)))
-(((|#1| $) |has| |#1| (-267 |#1| |#1|)))
-((((-802)) . T))
-((((-802)) . T))
-((((-387 (-528))) . T) (($) . T))
-((((-387 (-528))) . T) (($) . T))
-((((-802)) . T))
-(|has| |#1| (-793))
-(|has| |#1| (-1023))
-(((|#1|) . T))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-793)) (|has| |#1| (-1023))))
-((((-504)) |has| |#1| (-570 (-504))))
-((((-127)) . T))
-((((-387 (-528))) |has| |#2| (-37 (-387 (-528)))) ((|#2|) |has| |#2| (-162)) (($) -1463 (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848))))
-((((-127)) . T))
-((($) -1463 (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-162)) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-((($) -1463 (|has| |#1| (-343)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-162)) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-(|has| |#1| (-215))
-((($) -1463 (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-162)) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-(((|#1| (-500 (-764 (-1095)))) . T))
-(((|#1| (-908)) . T))
-(((#0=(-809 |#1|) $) |has| #0# (-267 #0# #0#)))
-((((-528) |#4|) . T))
-((((-528) |#3|) . T))
-(((|#1|) . T))
-(((|#2| |#2|) . T))
-(|has| |#1| (-1071))
-((((-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) . T))
-(|has| (-1163 |#1| |#2| |#3| |#4|) (-138))
-(|has| (-1163 |#1| |#2| |#3| |#4|) (-140))
-(|has| |#1| (-138))
-(|has| |#1| (-140))
-(((|#1|) |has| |#1| (-162)))
-((((-1095)) -12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981))))
-(((|#2|) . T))
-(|has| |#1| (-1023))
-((((-1078) |#1|) . T))
-(((|#1|) . T))
-(((|#2|) . T) (((-528)) |has| |#2| (-591 (-528))))
-(|has| |#2| (-348))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-((($) . T) ((|#1|) . T))
-(((|#2|) |has| |#2| (-981)))
-((((-802)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))) ((#0=(-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) #0#) |has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))))
-(((|#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((#0=(-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) #0#) |has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-290 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)))))
-((((-528) |#1|) . T))
-((((-802)) . T))
-((((-504)) -12 (|has| |#1| (-570 (-504))) (|has| |#2| (-570 (-504)))) (((-831 (-359))) -12 (|has| |#1| (-570 (-831 (-359)))) (|has| |#2| (-570 (-831 (-359))))) (((-831 (-528))) -12 (|has| |#1| (-570 (-831 (-528)))) (|has| |#2| (-570 (-831 (-528))))))
-((((-802)) . T))
-((((-802)) . T))
+((((-805)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1027))
+(|has| |#1| (-1027))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-1027))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-516)) . T))
+((((-516)) . T) (($) . T) (((-388 (-516))) . T))
+((($) . T) (((-516)) . T) (((-388 (-516))) . T))
+((((-516)) . T) (($) . T) (((-388 (-516))) . T))
+((((-516)) . T) (((-388 (-516))) . T) (($) . T))
+(((#1=(-516) #1#) . T) ((#2=(-388 (-516)) #2#) . T) (($ $) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-505)) . T) (((-831 (-516))) . T) (((-359)) . T) (((-208)) . T))
+((((-388 (-516))) . T) (((-516)) . T))
+((((-516)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-369) (-1045)) . T))
+((((-110)) . T))
+((((-110)) . T))
+((((-516) (-110)) . T))
+((((-516) (-110)) . T))
+((((-516) (-110)) . T))
+((((-505)) . T))
+((((-110)) . T))
+((((-805)) . T))
+((((-110)) . T))
+((((-110)) . T))
+((((-505)) . T))
+((((-805)) . T))
+((((-805)) . T))
((($) . T))
-((($ $) -1463 (|has| |#1| (-162)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1| |#1|) . T) ((#0=(-387 (-528)) #0#) |has| |#1| (-37 (-387 (-528)))))
+((((-805)) . T))
((($) . T))
+((($ $) . T))
((($) . T))
((($) . T))
-((($) -1463 (|has| |#1| (-162)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1|) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-((((-802)) . T))
-((((-802)) . T))
-(|has| (-1162 |#2| |#3| |#4|) (-140))
-(|has| (-1162 |#2| |#3| |#4|) (-138))
-(((|#2|) |has| |#2| (-1023)) (((-528)) -12 (|has| |#2| (-972 (-528))) (|has| |#2| (-1023))) (((-387 (-528))) -12 (|has| |#2| (-972 (-387 (-528)))) (|has| |#2| (-1023))))
(((|#1|) . T))
-(|has| |#1| (-1023))
-((((-802)) . T))
+((((-805)) . T))
+((((-114 |#1|)) . T))
+((((-114 |#1|)) . T) (($) . T) (((-388 (-516))) . T))
+((($) . T) (((-114 |#1|)) . T) (((-388 (-516))) . T))
+((((-114 |#1|)) . T) (($) . T) (((-388 (-516))) . T))
+((((-114 |#1|)) . T) (((-388 (-516))) . T) (($) . T))
+(((#1=(-114 |#1|) #1#) . T) ((#2=(-388 (-516)) #2#) . T) (($ $) . T))
+((((-114 |#1|)) . T))
+((((-1098) #1=(-114 |#1|)) |has| #1# (-491 (-1098) #1#)) ((#1# #1#) |has| #1# (-291 #1#)))
+(((#1=(-114 |#1|)) |has| #1# (-291 #1#)))
+(((#1=(-114 |#1|) $) |has| #1# (-268 #1# #1#)))
+((((-114 |#1|)) . T))
+((((-114 |#1|)) . T))
+((((-114 |#1|)) . T))
+((((-114 |#1|)) . T))
+((((-114 |#1|)) . T))
+((((-114 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-1463 (|has| |#1| (-21)) (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-839 (-1095))) (|has| |#1| (-981)))
+(|has| |#1| (-1027))
+(|has| |#1| (-1027))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-1027))))
(((|#1|) . T))
-((((-528) |#1|) . T))
-(((|#2|) |has| |#2| (-162)))
-(((|#1|) |has| |#1| (-162)))
(((|#1|) . T))
-(-1463 (|has| |#1| (-21)) (|has| |#1| (-791)))
-((((-802)) |has| |#1| (-1023)))
-(-1463 (|has| |#1| (-452)) (|has| |#1| (-673)) (|has| |#1| (-839 (-1095))) (|has| |#1| (-981)) (|has| |#1| (-1035)))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-329)))
-((((-849 |#1|)) . T))
-((((-387 |#2|) |#3|) . T))
-(|has| |#1| (-15 * (|#1| (-528) |#1|)))
-((((-387 (-528))) . T) (($) . T))
-(|has| |#1| (-793))
-(((|#1|) . T) (($) . T))
-((((-387 (-528))) . T) (($) . T))
-((((-802)) . T))
-(((|#1|) . T))
-((((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-520)))
-(|has| |#1| (-343))
-(-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-215)) (|has| |#1| (-343))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))
-(|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|)))
-(|has| |#1| (-343))
-((((-528)) . T))
-(|has| |#1| (-15 * (|#1| (-717) |#1|)))
-((((-1062 |#2| (-387 (-891 |#1|)))) . T) (((-387 (-891 |#1|))) . T))
-((($) . T))
-(((|#1|) |has| |#1| (-162)) (($) . T))
-(((|#1|) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) (($) . T))
-(((|#1|) . T))
-((((-528) |#1|) . T))
-(((|#2|) . T))
-(-1463 (|has| |#2| (-343)) (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848)))
-(-1463 (|has| |#2| (-739)) (|has| |#2| (-791)))
-(-1463 (|has| |#2| (-739)) (|has| |#2| (-791)))
-(((|#1|) . T))
-((((-1095)) -12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981))))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(-12 (|has| |#1| (-343)) (|has| |#2| (-766)))
-(-1463 (|has| |#1| (-288)) (|has| |#1| (-343)) (|has| |#1| (-329)) (|has| |#1| (-520)))
-(((#0=(-387 (-528)) #0#) |has| |#1| (-37 (-387 (-528)))) ((|#1| |#1|) . T) (($ $) -1463 (|has| |#1| (-162)) (|has| |#1| (-520))))
-((($ $) |has| |#1| (-520)))
-(((#0=(-645) (-1091 #0#)) . T))
-((((-802)) . T))
-((((-802)) . T) (((-1177 |#4|)) . T))
-((((-802)) . T) (((-1177 |#3|)) . T))
-((((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((|#1|) . T) (($) -1463 (|has| |#1| (-162)) (|has| |#1| (-520))))
-((($) |has| |#1| (-520)))
-((((-802)) . T))
-((($) . T))
-((($ $) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-520))) ((#0=(-387 (-528)) #0#) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) ((#1=(-1169 |#1| |#2| |#3|) #1#) |has| |#1| (-343)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-520))) ((#0=(-387 (-528)) #0#) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))))
-((($ $) -1463 (|has| |#1| (-162)) (|has| |#1| (-520))) ((|#1| |#1|) . T) ((#0=(-387 (-528)) #0#) |has| |#1| (-37 (-387 (-528)))))
-((($) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-520))) (((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-343)) ((|#1|) . T))
-(((|#1|) . T) (($) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-520))) (((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))))
-(((|#3|) |has| |#3| (-981)))
-((($) -1463 (|has| |#1| (-162)) (|has| |#1| (-520))) ((|#1|) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-(|has| |#1| (-1023))
-(((|#2| (-765 |#1|)) . T))
-(((|#1|) . T))
-(|has| |#1| (-343))
-((((-387 $) (-387 $)) |has| |#1| (-520)) (($ $) . T) ((|#1| |#1|) . T))
-(((#0=(-1008) |#2|) . T) ((#0# $) . T) (($ $) . T))
-((((-849 |#1|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1027))
+(|has| |#1| (-1027))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-1027))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1027))
+(|has| |#1| (-1027))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-1027))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-719)) . T) (((-805)) . T))
+((((-126)) . T))
+((((-126)) . T))
+((((-805)) . T))
+((((-126)) . T))
+((((-516) (-126)) . T))
+((((-516) (-126)) . T))
+((((-516) (-126)) . T))
+((((-126)) . T))
+((((-126)) . T))
+((((-719)) . T))
+((((-805)) . T))
+((((-516) (-719)) . T) ((|#3| (-719)) . T))
+((((-805)) . T))
+(((|#3|) . T))
+(((|#3| (-719)) . T))
+((((-805)) . T))
+((((-137)) . T))
+((((-137)) . T))
+((((-137)) . T))
+((((-137)) . T))
+((((-137)) . T))
((((-137)) . T))
((((-137)) . T))
-(((|#3|) |has| |#3| (-1023)) (((-528)) -12 (|has| |#3| (-972 (-528))) (|has| |#3| (-1023))) (((-387 (-528))) -12 (|has| |#3| (-972 (-387 (-528)))) (|has| |#3| (-1023))))
-((((-802)) . T))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-(((|#1|) . T))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-793)) (|has| |#1| (-1023))))
-((((-504)) |has| |#1| (-570 (-504))))
-((((-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) . T))
-(|has| |#1| (-343))
-(-1463 (|has| |#1| (-21)) (|has| |#1| (-791)))
-((((-1095) |#1|) |has| |#1| (-489 (-1095) |#1|)) ((|#1| |#1|) |has| |#1| (-290 |#1|)))
-(|has| |#2| (-766))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-791))
-(-1463 (|has| |#1| (-793)) (|has| |#1| (-1023)))
-((((-802)) . T))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-((((-504)) |has| |#1| (-570 (-504))))
+((((-594 (-137))) . T) (((-1081)) . T))
+((((-805)) . T))
+((((-805)) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+(((|#2|) . T) (($) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+(|has| |#1| (-769))
+(-3810 (|has| |#1| (-138)) (|has| |#1| (-331)))
+((((-805)) . T))
+(|has| |#1| (-140))
+(((|#1|) . T))
+((((-1098)) |has| |#1| (-841 (-1098))))
+(-3810 (|has| |#1| (-216)) (|has| |#1| (-331)))
+(-3810 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-331)))
+(-3810 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-331)))
+(-3810 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-331)) (|has| |#1| (-523)))
+(-3810 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-331)) (|has| |#1| (-523)))
+(-3810 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-331)))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-331)))
+(-3810 (-12 (|has| |#1| (-289)) (|has| |#1| (-851))) (|has| |#1| (-344)) (|has| |#1| (-331)))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-331)))
+(((|#1|) . T))
+((((-1098) |#1|) |has| |#1| (-491 (-1098) |#1|)) ((|#1| |#1|) |has| |#1| (-291 |#1|)))
+(((|#1|) |has| |#1| (-291 |#1|)))
+(((|#1| $) |has| |#1| (-268 |#1| |#1|)))
+(((|#1|) . T))
+(((|#1|) . T) (((-516)) |has| |#1| (-593 (-516))))
+(((|#1|) . T))
+((((-516)) |has| |#1| (-827 (-516))) (((-359)) |has| |#1| (-827 (-359))))
+(((|#1|) . T))
+(((|#1|) . T) (((-516)) |has| |#1| (-975 (-516))) (((-388 (-516))) |has| |#1| (-975 (-388 (-516)))))
+(((|#1| (-1092 |#1|)) . T))
+(((|#1| (-1092 |#1|)) . T))
+((($) -3810 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-331)) (|has| |#1| (-523))) (((-388 (-516))) -3810 (|has| |#1| (-344)) (|has| |#1| (-331))) ((|#1|) . T))
+((($) . T) (((-388 (-516))) -3810 (|has| |#1| (-344)) (|has| |#1| (-331))) ((|#1|) . T))
+((($) . T) (((-388 (-516))) -3810 (|has| |#1| (-344)) (|has| |#1| (-331))) ((|#1|) . T))
+((($ $) . T) ((#1=(-388 (-516)) #1#) -3810 (|has| |#1| (-344)) (|has| |#1| (-331))) ((|#1| |#1|) . T))
+((($) -3810 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-331)) (|has| |#1| (-523))) (((-388 (-516))) -3810 (|has| |#1| (-344)) (|has| |#1| (-331))) ((|#1|) . T))
+(((|#1| (-1092 |#1|)) . T))
+(|has| |#1| (-331))
+(|has| |#1| (-331))
+(|has| |#1| (-331))
+(-3810 (|has| |#1| (-349)) (|has| |#1| (-331)))
+(|has| |#1| (-795))
+(((|#1|) . T))
+((((-158 (-208))) |has| |#1| . #1=((-958))) (((-158 (-359))) |has| |#1| . #1#) (((-505)) |has| |#1| (-572 (-505))) (((-1092 |#1|)) . T) (((-831 (-516))) |has| |#1| (-572 (-831 (-516)))) (((-831 (-359))) |has| |#1| (-572 (-831 (-359)))))
+(-12 (|has| |#1| (-289)) (|has| |#1| (-851)))
+(-12 (|has| |#1| (-941)) (|has| |#1| (-1120)))
+(|has| |#1| (-1120))
+(|has| |#1| (-1120))
+(|has| |#1| (-1120))
+(|has| |#1| (-1120))
+(|has| |#1| (-1120))
+(|has| |#1| (-1120))
+(((|#1|) . T))
+((((-805)) . T))
+((((-388 (-516))) . T) (($) . T) (((-388 |#1|)) . T) ((|#1|) . T))
+((((-805)) . T))
+((($) . T) (((-388 (-516))) . T) (((-388 |#1|)) . T) ((|#1|) . T))
+((($ $) . T) ((#1=(-388 (-516)) #1#) . T) ((#2=(-388 |#1|) #2#) . T) ((|#1| |#1|) . T))
+((((-388 (-516))) . T) (((-388 |#1|)) . T) ((|#1|) . T) (($) . T))
+((((-388 (-516))) . T) (($) . T) (((-388 |#1|)) . T) ((|#1|) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-516)) . T))
+((((-516)) . T) (($) . T) (((-388 (-516))) . T))
+((($) . T) (((-516)) . T) (((-388 (-516))) . T))
+((((-516)) . T) (($) . T) (((-388 (-516))) . T))
+((((-516)) . T) (((-388 (-516))) . T) (($) . T))
+(((#1=(-516) #1#) . T) ((#2=(-388 (-516)) #2#) . T) (($ $) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-505)) . T) (((-831 (-516))) . T) (((-359)) . T) (((-208)) . T))
+((((-388 (-516))) . T) (((-516)) . T))
+((((-516)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1027))
+(|has| |#1| (-1027))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-1027))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-295 |#1|)) . T))
+((((-805)) . T))
+((((-295 |#1|)) . T) (($) . T))
+((((-295 |#1|)) . T))
+((((-516)) . T) (((-388 (-516))) . T))
+((((-359)) . T))
+((($) . T) (((-388 (-516))) . T))
+((($ $) . T) ((#1=(-388 (-516)) #1#) . T))
+((((-388 (-516))) . T) (($) . T))
+((((-388 (-516))) . T) (($) . T))
+((((-505)) . T) (((-208)) . T) (((-359)) . T) (((-831 (-359))) . T))
+((((-805)) . T))
+((((-388 (-516))) . T) (($) . T))
+(((|#1| (-1179 |#1|) (-1179 |#1|)) . T))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(|has| |#1| (-1027))
+(|has| |#1| (-1027))
+(((|#1|) . T))
+(((|#1| (-1179 |#1|) (-1179 |#1|)) . T))
+(-3810 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-3810 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027)))
+(-3810 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027)))
+(((|#2|) |has| |#2| (-162)))
+(-3810 (|has| |#2| (-162)) (|has| |#2| (-675)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-3810 (|has| |#2| (-162)) (|has| |#2| (-675)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-3810 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-3810 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-3810 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-3810 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-3810 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+((($) -3810 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984))) ((|#2|) -3810 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))))
+(((|#2|) -3810 (|has| |#2| (-162)) (|has| |#2| (-344))))
+((((-805)) -3810 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-571 (-805))) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027))) (((-1179 |#2|)) . T))
+(|has| |#2| (-162))
+(((|#2|) -3810 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))) (($) |has| |#2| (-162)))
+(((|#2| |#2|) -3810 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))) (($ $) |has| |#2| (-162)))
+(((|#2|) |has| |#2| (-984)))
+((((-1098)) -12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984))))
+(-12 (|has| |#2| (-216)) (|has| |#2| (-984)))
+(|has| |#2| (-349))
+(((|#2|) |has| |#2| (-984)))
+(((|#2|) |has| |#2| (-984)) (((-516)) -12 (|has| |#2| (-593 (-516))) (|has| |#2| (-984))))
+(((|#2|) |has| |#2| (-1027)))
+(((|#2|) |has| |#2| (-1027)) (((-516)) -12 (|has| |#2| (-975 (-516))) (|has| |#2| (-1027))) (((-388 (-516))) -12 (|has| |#2| (-975 (-388 (-516)))) (|has| |#2| (-1027))))
+((((-516) |#2|) . T))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
+(((|#2|) . T))
+((((-516) |#2|) . T))
+((((-516) |#2|) . T))
+(|has| |#2| (-741))
+(-3810 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(-3810 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(-3810 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(-3810 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(|has| |#2| (-793))
+(|has| |#2| (-793))
+(((|#2|) |has| |#2| (-344)))
(((|#1| |#2|) . T))
-((((-1095)) -12 (|has| |#1| (-343)) (|has| |#1| (-839 (-1095)))))
-((((-1078) |#1|) . T))
-(((|#1| |#2| |#3| (-500 |#3|)) . T))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-(|has| |#1| (-348))
-(|has| |#1| (-348))
-(|has| |#1| (-348))
-((((-802)) . T))
-(((|#1|) . T))
-(-1463 (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848)))
-(|has| |#1| (-348))
-(-1463 (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-((((-528)) . T))
-((((-528)) . T))
-(-1463 (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848)))
-((((-802)) . T))
-((((-802)) . T))
-(-12 (|has| |#2| (-215)) (|has| |#2| (-981)))
-((((-1095) #0=(-809 |#1|)) |has| #0# (-489 (-1095) #0#)) ((#0# #0#) |has| #0# (-290 #0#)))
-(((|#1|) . T))
-((((-528) |#4|) . T))
-((((-528) |#3|) . T))
-(((|#1|) . T) (((-528)) |has| |#1| (-591 (-528))))
-(-1463 (|has| |#2| (-162)) (|has| |#2| (-791)) (|has| |#2| (-981)))
-((((-1163 |#1| |#2| |#3| |#4|)) . T))
-((((-387 (-528))) . T) (((-528)) . T))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-1023))))
-(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
(((|#1|) . T))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(-3810 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-3810 (|has| |#1| (-795)) (|has| |#1| (-1027)))
(((|#1|) . T))
-((($) . T) (((-528)) . T) (((-387 (-528))) . T))
-((((-528)) . T))
-((((-528)) . T))
-((($) . T) (((-528)) . T) (((-387 (-528))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-387 (-528)) #0#) . T))
+((((-505)) |has| |#1| (-572 (-505))))
+((((-516) |#1|) . T))
+((((-516) |#1|) . T))
+((((-516) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
+(|has| |#1| (-795))
(((|#1|) . T))
-(((#0=(-528) #0#) . T) ((#1=(-387 (-528)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-528)) |has| |#1| (-972 (-528))) (((-387 (-528))) |has| |#1| (-972 (-387 (-528)))))
-(((|#1|) . T) (($) . T) (((-387 (-528))) . T))
-(((|#1|) |has| |#1| (-520)))
-((((-528) |#4|) . T))
-((((-528) |#3|) . T))
-((((-802)) . T))
-((((-528)) . T) (((-387 (-528))) . T) (($) . T))
-((((-802)) . T))
-((((-528) |#1|) . T))
(((|#1|) . T))
-((($ $) . T) ((#0=(-804 |#1|) $) . T) ((#0# |#2|) . T))
-((($) . T))
-((($ $) . T) ((#0=(-1095) $) . T) ((#0# |#1|) . T))
-(((|#2|) |has| |#2| (-162)))
-((($) -1463 (|has| |#2| (-343)) (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848))) ((|#2|) |has| |#2| (-162)) (((-387 (-528))) |has| |#2| (-37 (-387 (-528)))))
-(((|#2| |#2|) -1463 (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-981))) (($ $) |has| |#2| (-162)))
-((((-137)) . T))
(((|#1|) . T))
-(-12 (|has| |#1| (-348)) (|has| |#2| (-348)))
-((((-802)) . T))
-(((|#2|) -1463 (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-981))) (($) |has| |#2| (-162)))
(((|#1|) . T))
-((((-802)) . T))
-(|has| |#1| (-1023))
-(|has| $ (-140))
-((((-528) |#1|) . T))
-((($) -1463 (|has| |#1| (-288)) (|has| |#1| (-343)) (|has| |#1| (-329)) (|has| |#1| (-520))) (((-387 (-528))) -1463 (|has| |#1| (-343)) (|has| |#1| (-329))) ((|#1|) . T))
-((((-1095)) -12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095)))))
-(|has| |#1| (-343))
-(-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-215)) (|has| |#1| (-343))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))
-(|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|)))
-(|has| |#1| (-343))
-(|has| |#1| (-15 * (|#1| (-717) |#1|)))
-(((|#1|) . T))
-(-1463 (|has| |#1| (-793)) (|has| |#1| (-1023)))
-((((-802)) . T))
-((((-528) (-127)) . T))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(-1463 (|has| |#2| (-162)) (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848)))
-(((|#2| (-500 (-804 |#1|))) . T))
-((((-802)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#1|) . T))
-(-1463 (|has| |#1| (-162)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-(-1463 (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-((((-541 |#1|)) . T))
+((((-505)) |has| |#2| (-572 (-505))) (((-831 (-359))) |has| |#2| (-572 (-831 (-359)))) (((-831 (-516))) |has| |#2| (-572 (-831 (-516)))))
((($) . T))
-(((|#1|) . T) (($) . T))
-((((-528)) |has| |#1| (-591 (-528))) ((|#1|) . T))
+(((|#2| (-222 (-4232 |#1|) (-719))) . T))
+(((|#2|) . T))
+((((-805)) . T))
+((($) . T) (((-388 (-516))) |has| |#2| (-37 (-388 (-516)))) ((|#2|) . T))
+(|has| |#2| (-138))
+(|has| |#2| (-140))
+(-3810 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851)))
+((((-388 (-516))) |has| |#2| (-37 (-388 (-516)))) ((|#2|) . T) (($) -3810 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851))))
+(((#1=(-388 (-516)) #1#) |has| |#2| (-37 (-388 (-516)))) ((|#2| |#2|) . T) (($ $) -3810 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851))))
+(-3810 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851)))
+(-3810 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851)))
+((((-388 (-516))) |has| |#2| (-37 (-388 (-516)))) ((|#2|) |has| |#2| (-162)) (($) -3810 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851))))
+((((-388 (-516))) |has| |#2| (-37 (-388 (-516)))) ((|#2|) |has| |#2| (-162)) (($) -3810 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851))))
+(((|#2| (-222 (-4232 |#1|) (-719))) . T))
+(((|#2|) . T))
+(((|#2|) . T) (((-516)) |has| |#2| (-593 (-516))))
+(-3810 (|has| |#2| (-432)) (|has| |#2| (-851)))
+((($ $) . T) ((#1=(-806 |#1|) $) . T) ((#1# |#2|) . T))
+(|has| |#2| (-795))
+((((-806 |#1|)) . T))
+(|has| |#2| (-851))
+(|has| |#2| (-851))
+((((-388 (-516))) |has| |#2| (-975 (-388 (-516)))) (((-516)) |has| |#2| (-975 (-516))) ((|#2|) . T) (((-806 |#1|)) . T))
+(((|#2| (-222 (-4232 |#1|) (-719)) (-806 |#1|)) . T))
+((((-805)) . T))
+(((|#4|) |has| |#4| (-162)))
+(-3810 (|has| |#4| (-162)) (|has| |#4| (-675)) (|has| |#4| (-793)) (|has| |#4| (-984)))
+(-3810 (|has| |#4| (-162)) (|has| |#4| (-675)) (|has| |#4| (-793)) (|has| |#4| (-984)))
+(-3810 (|has| |#4| (-162)) (|has| |#4| (-793)) (|has| |#4| (-984)))
+(-3810 (|has| |#4| (-162)) (|has| |#4| (-793)) (|has| |#4| (-984)))
+(((|#3|) . T) ((|#2|) . T) (($) -3810 (|has| |#4| (-162)) (|has| |#4| (-793)) (|has| |#4| (-984))) ((|#4|) -3810 (|has| |#4| (-162)) (|has| |#4| (-344)) (|has| |#4| (-984))))
+(((|#4|) -3810 (|has| |#4| (-162)) (|has| |#4| (-344))))
+((((-805)) . T) (((-1179 |#4|)) . T))
+(|has| |#4| (-162))
+(((|#4|) -3810 (|has| |#4| (-162)) (|has| |#4| (-344)) (|has| |#4| (-984))) (($) |has| |#4| (-162)))
+(((|#4| |#4|) -3810 (|has| |#4| (-162)) (|has| |#4| (-344)) (|has| |#4| (-984))) (($ $) |has| |#4| (-162)))
+(((|#4|) |has| |#4| (-984)))
+((((-1098)) -12 (|has| |#4| (-841 (-1098))) (|has| |#4| (-984))))
+(-12 (|has| |#4| (-216)) (|has| |#4| (-984)))
+(|has| |#4| (-349))
+(((|#4|) |has| |#4| (-984)))
+(((|#4|) |has| |#4| (-984)) (((-516)) -12 (|has| |#4| (-593 (-516))) (|has| |#4| (-984))))
+(((|#4|) |has| |#4| (-1027)))
+(((|#4|) |has| |#4| (-1027)) (((-516)) -12 (|has| |#4| (-975 (-516))) (|has| |#4| (-1027))) (((-388 (-516))) -12 (|has| |#4| (-975 (-388 (-516)))) (|has| |#4| (-1027))))
+((((-516) |#4|) . T))
+(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
+(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
(((|#4|) . T))
+((((-516) |#4|) . T))
+((((-516) |#4|) . T))
+(|has| |#4| (-741))
+(-3810 (|has| |#4| (-741)) (|has| |#4| (-793)))
+(-3810 (|has| |#4| (-741)) (|has| |#4| (-793)))
+(-3810 (|has| |#4| (-741)) (|has| |#4| (-793)))
+(-3810 (|has| |#4| (-741)) (|has| |#4| (-793)))
+(|has| |#4| (-793))
+(|has| |#4| (-793))
+(((|#4|) |has| |#4| (-344)))
+(((|#1| |#4|) . T))
+(((|#3|) |has| |#3| (-162)))
+(-3810 (|has| |#3| (-162)) (|has| |#3| (-675)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+(-3810 (|has| |#3| (-162)) (|has| |#3| (-675)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+(-3810 (|has| |#3| (-162)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+(-3810 (|has| |#3| (-162)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+(((|#2|) . T) (($) -3810 (|has| |#3| (-162)) (|has| |#3| (-793)) (|has| |#3| (-984))) ((|#3|) -3810 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-984))))
+(((|#3|) -3810 (|has| |#3| (-162)) (|has| |#3| (-344))))
+((((-805)) . T) (((-1179 |#3|)) . T))
+(|has| |#3| (-162))
+(((|#3|) -3810 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-984))) (($) |has| |#3| (-162)))
+(((|#3| |#3|) -3810 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-984))) (($ $) |has| |#3| (-162)))
+(((|#3|) |has| |#3| (-984)))
+((((-1098)) -12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984))))
+(-12 (|has| |#3| (-216)) (|has| |#3| (-984)))
+(|has| |#3| (-349))
+(((|#3|) |has| |#3| (-984)))
+(((|#3|) |has| |#3| (-984)) (((-516)) -12 (|has| |#3| (-593 (-516))) (|has| |#3| (-984))))
+(((|#3|) |has| |#3| (-1027)))
+(((|#3|) |has| |#3| (-1027)) (((-516)) -12 (|has| |#3| (-975 (-516))) (|has| |#3| (-1027))) (((-388 (-516))) -12 (|has| |#3| (-975 (-388 (-516)))) (|has| |#3| (-1027))))
+((((-516) |#3|) . T))
+(((|#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))
+(((|#3| |#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))
(((|#3|) . T))
-((((-809 |#1|)) . T) (($) . T) (((-387 (-528))) . T))
-((((-1095)) -12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981))))
-(((|#1|) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-528) |#2|) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-(((|#1| |#2| |#3| |#4| |#5|) . T))
-(((#0=(-387 (-528)) #0#) |has| |#1| (-37 (-387 (-528)))) ((|#1| |#1|) . T) (($ $) -1463 (|has| |#1| (-162)) (|has| |#1| (-520))))
-((($ $) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-520))) ((#0=(-387 (-528)) #0#) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) ((#1=(-1093 |#1| |#2| |#3|) #1#) |has| |#1| (-343)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-520))) ((#0=(-387 (-528)) #0#) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))))
-((($ $) -1463 (|has| |#1| (-162)) (|has| |#1| (-520))) ((|#1| |#1|) . T) ((#0=(-387 (-528)) #0#) |has| |#1| (-37 (-387 (-528)))))
-(((|#2|) |has| |#2| (-981)))
-(|has| |#1| (-1023))
-((((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((|#1|) . T) (($) -1463 (|has| |#1| (-162)) (|has| |#1| (-520))))
-((($) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-520))) (((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) (((-1093 |#1| |#2| |#3|)) |has| |#1| (-343)) ((|#1|) . T))
-(((|#1|) . T) (($) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-520))) (((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))))
-((($) -1463 (|has| |#1| (-162)) (|has| |#1| (-520))) ((|#1|) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-(((|#1|) |has| |#1| (-162)) (($) . T))
-(((|#1|) . T))
-(((#0=(-387 (-528)) #0#) |has| |#2| (-37 (-387 (-528)))) ((|#2| |#2|) . T) (($ $) -1463 (|has| |#2| (-162)) (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848))))
-((((-802)) . T))
-((((-387 (-528))) |has| |#2| (-37 (-387 (-528)))) ((|#2|) |has| |#2| (-162)) (($) -1463 (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848))))
-((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((|#1|) |has| |#1| (-162)) (($) -1463 (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))))
-(((#0=(-1008) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((((-387 (-528))) |has| |#2| (-37 (-387 (-528)))) ((|#2|) . T) (($) -1463 (|has| |#2| (-162)) (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848))))
-((($) . T))
-(((|#1|) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) (($) . T))
-(-1463 (|has| |#1| (-793)) (|has| |#1| (-1023)))
-(((|#2|) |has| |#1| (-343)))
-(((|#1|) . T))
-(((|#2|) |has| |#2| (-1023)) (((-528)) -12 (|has| |#2| (-972 (-528))) (|has| |#2| (-1023))) (((-387 (-528))) -12 (|has| |#2| (-972 (-387 (-528)))) (|has| |#2| (-1023))))
-((((-528) |#1|) . T))
-((((-802)) . T))
-((((-387 |#2|) |#3|) . T))
-(((|#1| (-387 (-528))) . T))
-((((-387 (-528))) . T) (($) . T))
-((((-387 (-528))) . T) (($) . T))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-138))
+((((-516) |#3|) . T))
+((((-516) |#3|) . T))
+(|has| |#3| (-741))
+(-3810 (|has| |#3| (-741)) (|has| |#3| (-793)))
+(-3810 (|has| |#3| (-741)) (|has| |#3| (-793)))
+(-3810 (|has| |#3| (-741)) (|has| |#3| (-793)))
+(-3810 (|has| |#3| (-741)) (|has| |#3| (-793)))
+(|has| |#3| (-793))
+(|has| |#3| (-793))
+(((|#3|) |has| |#3| (-344)))
+(((|#1| |#3|) . T))
+((((-805)) . T))
+(((|#1|) . T))
+((((-805)) . T))
+(|has| |#1| (-216))
+((($) . T))
+(((|#1| (-502 |#3|) |#3|) . T))
+(|has| |#1| (-851))
+(|has| |#1| (-851))
+((((-516)) -12 (|has| |#1| (-827 (-516))) (|has| |#3| (-827 (-516)))) (((-359)) -12 (|has| |#1| (-827 (-359))) (|has| |#3| (-827 (-359)))))
+((((-1098)) |has| |#1| (-841 (-1098))) ((|#3|) . T))
+(|has| |#1| (-795))
+((($ $) . T) ((|#2| $) |has| |#1| . #1=((-216))) ((|#2| |#1|) |has| |#1| . #1#) ((|#3| |#1|) . T) ((|#3| $) . T))
+(-3810 (|has| |#1| (-432)) (|has| |#1| (-851)))
+((((-516)) |has| |#1| (-593 (-516))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-502 |#3|)) . T))
+(-3810 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
+(-3810 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
+(-3810 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
(|has| |#1| (-140))
-((((-387 (-528))) |has| |#2| (-37 (-387 (-528)))) ((|#2|) |has| |#2| (-162)) (($) -1463 (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848))))
-((($) -1463 (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-162)) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-((((-387 (-528))) . T) (($) . T))
-((((-387 (-528))) . T) (($) . T))
-((((-387 (-528))) . T) (($) . T))
-(((|#2| |#3| (-804 |#1|)) . T))
-((((-1095)) |has| |#2| (-839 (-1095))))
-(((|#1|) . T))
-(((|#1| (-500 |#2|) |#2|) . T))
-(((|#1| (-717) (-1008)) . T))
-((((-387 (-528))) |has| |#2| (-343)) (($) . T))
-(((|#1| (-500 (-1013 (-1095))) (-1013 (-1095))) . T))
-(-1463 (|has| |#1| (-162)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-(-1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-(((|#1|) . T))
-(-1463 (|has| |#2| (-162)) (|has| |#2| (-673)) (|has| |#2| (-791)) (|has| |#2| (-981)))
-(|has| |#2| (-739))
-(-1463 (|has| |#2| (-739)) (|has| |#2| (-791)))
-(|has| |#1| (-348))
-(|has| |#1| (-348))
-(|has| |#1| (-348))
-(|has| |#2| (-791))
-((((-832 |#1|)) . T) (((-765 |#1|)) . T))
-((((-765 (-1095))) . T))
-(((|#1|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-595 (-528))) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-504)) . T) (((-831 (-528))) . T) (((-359)) . T) (((-207)) . T))
-(|has| |#1| (-215))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-((($ $) . T))
-(((|#1| |#1|) . T))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-((((-1169 |#1| |#2| |#3|) $) -12 (|has| (-1169 |#1| |#2| |#3|) (-267 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|))) (|has| |#1| (-343))) (($ $) . T))
-((($ $) . T))
-((($ $) . T))
-(((|#1|) . T))
-((((-1060 |#1| |#2|)) |has| (-1060 |#1| |#2|) (-290 (-1060 |#1| |#2|))))
-(((|#4| |#4|) -12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))))
-(((|#2|) . T) (((-528)) |has| |#2| (-972 (-528))) (((-387 (-528))) |has| |#2| (-972 (-387 (-528)))))
-(((|#3| |#3|) -12 (|has| |#3| (-290 |#3|)) (|has| |#3| (-1023))))
-(((|#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) |has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))))
-(((|#1|) . T))
-(((|#1| |#2|) . T))
+(|has| |#1| (-138))
+((($) -3810 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1|) |has| |#1| (-162)) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($) . T) ((|#1|) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($) -3810 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1|) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($ $) -3810 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1| |#1|) . T) ((#1=(-388 (-516)) #1#) |has| |#1| (-37 (-388 (-516)))))
+((($) -3810 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1|) |has| |#1| (-162)) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+(((|#1|) . T))
+(((|#1| (-502 |#3|)) . T))
+((((-831 (-516))) -12 (|has| |#1| (-572 (-831 (-516)))) (|has| |#3| (-572 (-831 (-516))))) (((-831 (-359))) -12 (|has| |#1| (-572 (-831 (-359)))) (|has| |#3| (-572 (-831 (-359))))) (((-505)) -12 (|has| |#1| (-572 (-505))) (|has| |#3| (-572 (-505)))))
+((((-1050 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-516)) |has| |#1| (-975 (-516))) (((-388 (-516))) |has| |#1| (-975 (-388 (-516)))) ((|#2|) . T))
+(((|#1| |#2| |#3| (-502 |#3|)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+(((|#3|) . T))
+(((|#3|) . T))
+((((-805)) . T))
((($) . T))
((($) . T))
-(((|#2|) . T))
-(((|#3|) . T))
-(-1463 (|has| |#1| (-793)) (|has| |#1| (-1023)))
-(((|#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) |has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))))
-(((|#2|) . T))
-((((-802)) -1463 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-569 (-802))) (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-348)) (|has| |#2| (-673)) (|has| |#2| (-739)) (|has| |#2| (-791)) (|has| |#2| (-981)) (|has| |#2| (-1023))) (((-1177 |#2|)) . T))
-(((|#1|) |has| |#1| (-162)))
-((((-528)) . T))
-((((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((|#1|) |has| |#1| (-162)) (($) -1463 (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))))
-((($) -1463 (|has| |#1| (-343)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-162)) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-((((-528) (-137)) . T))
-((($) -1463 (|has| |#2| (-162)) (|has| |#2| (-791)) (|has| |#2| (-981))) ((|#2|) -1463 (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-981))))
-(-1463 (|has| |#1| (-21)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-520)) (|has| |#1| (-981)))
-(((|#1|) . T))
-(-1463 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-520)) (|has| |#1| (-981)))
-(((|#2|) |has| |#1| (-343)))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#1| |#1|) . T) (($ $) . T))
-((($) -1463 (|has| |#1| (-343)) (|has| |#1| (-520))) (((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) ((|#1|) |has| |#1| (-162)))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#1| (-500 #0=(-1095)) #0#) . T))
-(((|#1|) . T) (($) . T))
-(|has| |#4| (-162))
-(|has| |#3| (-162))
-(((#0=(-387 (-891 |#1|)) #0#) . T))
-(-1463 (|has| |#1| (-793)) (|has| |#1| (-1023)))
-(|has| |#1| (-1023))
-(-1463 (|has| |#1| (-793)) (|has| |#1| (-1023)))
-(|has| |#1| (-1023))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-793)) (|has| |#1| (-1023))))
-((((-504)) |has| |#1| (-570 (-504))))
-(-1463 (|has| |#1| (-793)) (|has| |#1| (-1023)))
-(((|#1| |#1|) |has| |#1| (-162)))
-((($ $) -1463 (|has| |#1| (-162)) (|has| |#1| (-520))) ((|#1| |#1|) . T) ((#0=(-387 (-528)) #0#) |has| |#1| (-37 (-387 (-528)))))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#1|) . T))
-((((-387 (-891 |#1|))) . T))
-((((-528) (-127)) . T))
-(((|#1|) |has| |#1| (-162)))
-((((-127)) . T))
-((($) -1463 (|has| |#1| (-162)) (|has| |#1| (-520))) ((|#1|) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-(-1463 (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-((((-802)) . T))
-((((-1163 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-981)) (((-528)) -12 (|has| |#1| (-591 (-528))) (|has| |#1| (-981))))
+((((-805)) . T))
+((($) . T))
+((($ $) . T))
+((($) . T))
+((((-805)) . T))
+(((|#1|) |has| |#1| (-344)))
+((((-1098)) |has| |#1| (-841 (-1098))))
+(((|#1|) -3810 (|has| |#1| (-162)) (|has| |#1| (-344))))
+(((|#1|) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-984))))
+(((|#1| |#1|) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-984))))
+(((|#1|) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-984))) (($) -3810 (|has| |#1| (-841 (-1098))) (|has| |#1| (-984))))
+(-3810 (|has| |#1| (-841 (-1098))) (|has| |#1| (-984)))
+(-3810 (|has| |#1| (-841 (-1098))) (|has| |#1| (-984)))
+(|has| |#1| (-453))
+(-3810 (|has| |#1| (-453)) (|has| |#1| (-675)) (|has| |#1| (-841 (-1098))) (|has| |#1| (-984)))
+(-3810 (|has| |#1| (-453)) (|has| |#1| (-675)) (|has| |#1| (-841 (-1098))) (|has| |#1| (-984)) (|has| |#1| (-1038)))
+(-3810 (|has| |#1| (-21)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-841 (-1098))) (|has| |#1| (-984)))
+(-3810 (|has| |#1| (-21)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-841 (-1098))) (|has| |#1| (-984)))
+(-3810 (|has| |#1| (-21)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-841 (-1098))) (|has| |#1| (-984)))
+(-3810 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-841 (-1098))) (|has| |#1| (-984)))
+(-3810 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-453)) (|has| |#1| (-675)) (|has| |#1| (-841 (-1098))) (|has| |#1| (-984)) (|has| |#1| (-1038)) (|has| |#1| (-1027)))
+((((-110)) |has| |#1| (-1027)) (((-805)) -3810 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-453)) (|has| |#1| (-675)) (|has| |#1| (-841 (-1098))) (|has| |#1| (-984)) (|has| |#1| (-1038)) (|has| |#1| (-1027))))
+(-3810 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-453)) (|has| |#1| (-675)) (|has| |#1| (-841 (-1098))) (|has| |#1| (-984)) (|has| |#1| (-1038)) (|has| |#1| (-1027)))
+((((-1098) |#1|) |has| |#1| (-491 (-1098) |#1|)))
(((|#1| |#2|) . T))
-(-1463 (|has| |#3| (-162)) (|has| |#3| (-673)) (|has| |#3| (-791)) (|has| |#3| (-981)))
-(|has| |#3| (-739))
-(-1463 (|has| |#3| (-739)) (|has| |#3| (-791)))
-(|has| |#3| (-791))
-((((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) (($) -1463 (|has| |#1| (-343)) (|has| |#1| (-520))) ((|#2|) |has| |#1| (-343)) ((|#1|) |has| |#1| (-162)))
-(((|#1|) |has| |#1| (-162)) (((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) (($) -1463 (|has| |#1| (-343)) (|has| |#1| (-520))))
-(((|#2|) . T))
-((((-528) (-127)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-528) |#2|) . T))
-(((|#1| (-1076 |#1|)) |has| |#1| (-791)))
-(|has| |#1| (-1023))
-(((|#1|) . T))
-(-12 (|has| |#1| (-343)) (|has| |#2| (-1071)))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(|has| |#1| (-1023))
-(((|#2|) . T))
-((((-504)) |has| |#2| (-570 (-504))) (((-831 (-359))) |has| |#2| (-570 (-831 (-359)))) (((-831 (-528))) |has| |#2| (-570 (-831 (-528)))))
-(((|#4|) -1463 (|has| |#4| (-162)) (|has| |#4| (-343))))
-(((|#3|) -1463 (|has| |#3| (-162)) (|has| |#3| (-343))))
-((((-802)) . T))
-(((|#1|) . T))
-(-1463 (|has| |#2| (-431)) (|has| |#2| (-848)))
-(-1463 (|has| |#1| (-431)) (|has| |#1| (-848)))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-431)) (|has| |#1| (-848)))
-((($ $) . T) ((#0=(-1095) $) |has| |#1| (-215)) ((#0# |#1|) |has| |#1| (-215)) ((#1=(-764 (-1095)) |#1|) . T) ((#1# $) . T))
-(-1463 (|has| |#1| (-431)) (|has| |#1| (-848)))
-((((-528) |#2|) . T))
-((((-802)) . T))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-((($) -1463 (|has| |#3| (-162)) (|has| |#3| (-791)) (|has| |#3| (-981))) ((|#3|) -1463 (|has| |#3| (-162)) (|has| |#3| (-343)) (|has| |#3| (-981))))
-((((-528) |#1|) . T))
-(|has| (-387 |#2|) (-140))
-(|has| (-387 |#2|) (-138))
-(((|#2|) -12 (|has| |#1| (-343)) (|has| |#2| (-290 |#2|))))
-(|has| |#1| (-37 (-387 (-528))))
-(((|#1|) . T))
-(((|#2|) . T) (($) . T) (((-387 (-528))) . T))
-((((-802)) . T))
-(|has| |#1| (-520))
-(|has| |#1| (-520))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-((((-802)) . T))
-((((-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) . T))
-(|has| |#1| (-37 (-387 (-528))))
-((((-368) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) . T))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#2| (-1071))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-520)))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-520)))
-(((|#1|) . T))
-((((-368) (-1078)) . T))
-(|has| |#1| (-520))
-((((-114 |#1|)) . T))
-((((-127)) . T))
-((((-528) |#1|) . T))
-(-1463 (|has| |#1| (-162)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-(((|#2|) . T))
-((((-802)) . T))
-((((-765 |#1|)) . T))
-(((|#2|) |has| |#2| (-162)))
-((((-1095) (-51)) . T))
-(((|#1|) . T))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-520))
-(((|#1|) |has| |#1| (-162)))
-((((-802)) . T))
-((((-504)) |has| |#1| (-570 (-504))))
-(-1463 (|has| |#1| (-793)) (|has| |#1| (-1023)))
-(((|#2|) |has| |#2| (-290 |#2|)))
-(((#0=(-528) #0#) . T) ((#1=(-387 (-528)) #1#) . T) (($ $) . T))
-(((|#1|) . T))
-(((|#1| (-1091 |#1|)) . T))
-(|has| $ (-140))
-(((|#2|) . T))
-(((#0=(-528) #0#) . T) ((#1=(-387 (-528)) #1#) . T) (($ $) . T))
-((($) . T) (((-528)) . T) (((-387 (-528))) . T))
-(|has| |#2| (-348))
-(-1463 (|has| |#1| (-793)) (|has| |#1| (-1023)))
-(((|#1|) . T) (((-387 (-528))) . T) (($) . T))
-(((|#1|) . T) (((-387 (-528))) . T) (($) . T))
-(((|#1|) . T) (((-387 (-528))) . T) (($) . T))
-((((-528)) . T) (((-387 (-528))) . T) (($) . T))
+((((-805)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-528)) . T) (((-387 (-528))) . T) (($) . T))
-((((-1093 |#1| |#2| |#3|) $) -12 (|has| (-1093 |#1| |#2| |#3|) (-267 (-1093 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3|))) (|has| |#1| (-343))) (($ $) . T))
-((((-802)) . T))
-((((-802)) . T))
-((($) . T) (((-387 (-528))) -1463 (|has| |#1| (-343)) (|has| |#1| (-329))) ((|#1|) . T))
-((((-504)) |has| |#1| (-570 (-504))))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-1023))))
-((($ $) . T))
+(((|#1| |#2|) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((#1=(-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) #1#) |has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) |has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+(((|#1| |#2|) . T))
+((((-805)) . T))
+((((-805)) . T))
+(|has| (-1166 |#1| |#2| |#3| |#4|) (-138))
+(|has| (-1166 |#1| |#2| |#3| |#4|) (-140))
+((((-1166 |#1| |#2| |#3| |#4|)) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-388 (-516))) . T))
+((($) . T) (((-1166 |#1| |#2| |#3| |#4|)) . T) (((-388 (-516))) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-388 (-516))) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T) (((-388 (-516))) . T) (($) . T))
+(((#1=(-1166 |#1| |#2| |#3| |#4|) #1#) . T) ((#2=(-388 (-516)) #2#) . T) (($ $) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T))
+((((-1098) #1=(-1166 |#1| |#2| |#3| |#4|)) |has| #1# (-491 (-1098) #1#)) ((#1# #1#) |has| #1# (-291 #1#)))
+(((#1=(-1166 |#1| |#2| |#3| |#4|)) |has| #1# (-291 #1#)))
+(((#1=(-1166 |#1| |#2| |#3| |#4|) $) |has| #1# (-268 #1# #1#)))
+((((-1166 |#1| |#2| |#3| |#4|)) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T))
+((((-1160 |#2| |#3| |#4|)) . T) (((-1166 |#1| |#2| |#3| |#4|)) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(((|#1|) |has| |#1| (-523)))
+(-3810 (|has| |#1| (-21)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-523)) (|has| |#1| (-984)))
+(-3810 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-523)) (|has| |#1| (-984)))
+((((-805)) . T))
+(-3810 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-523)) (|has| |#1| (-984)))
+(-3810 (|has| |#1| (-21)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-523)) (|has| |#1| (-984)))
+(-3810 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-453)) (|has| |#1| (-523)) (|has| |#1| (-984)) (|has| |#1| (-1038)))
+(-3810 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-453)) (|has| |#1| (-523)) (|has| |#1| (-984)) (|has| |#1| (-1038)))
+(-3810 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-523)) (|has| |#1| (-984)))
+(-3810 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-523)) (|has| |#1| (-984)))
+(|has| |#1| (-138))
+(|has| |#1| (-140))
+((((-569 $) $) . T) (($ $) . T))
+((($) . T))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-523)) (((-388 (-516))) |has| |#1| (-523)))
+((($) -3810 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-523)) (|has| |#1| (-984))) ((|#1|) |has| |#1| (-162)) (((-388 (-516))) |has| |#1| (-523)))
+(((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-523)) (((-388 (-516))) |has| |#1| (-523)))
+(|has| |#1| (-523))
+(((|#1|) |has| |#1| (-162)) (((-388 (-516))) |has| |#1| (-523)) (($) |has| |#1| (-523)))
+(((|#1| |#1|) |has| |#1| (-162)) ((#1=(-388 (-516)) #1#) |has| |#1| (-523)) (($ $) |has| |#1| (-523)))
+(|has| |#1| (-523))
+(((|#1|) |has| |#1| (-984)))
+(((|#1|) |has| |#1| (-984)) (((-516)) -12 (|has| |#1| (-593 (-516))) (|has| |#1| (-984))))
+(((|#1|) . T))
+((((-516)) |has| |#1| (-827 (-516))) (((-359)) |has| |#1| (-827 (-359))))
+(((|#1|) . T))
+(|has| |#1| (-453))
+((((-1098)) |has| |#1| (-984)))
+(((|#1|) . T))
+((((-505)) |has| |#1| (-572 (-505))) (((-831 (-516))) |has| |#1| (-572 (-831 (-516)))) (((-831 (-359))) |has| |#1| (-572 (-831 (-359)))))
+((((-47)) -12 (|has| |#1| (-523)) (|has| |#1| (-975 (-516)))) (((-569 $)) . T) ((|#1|) . T) (((-516)) |has| |#1| (-975 (-516))) (((-388 (-516))) -3810 (-12 (|has| |#1| (-523)) (|has| |#1| (-975 (-516)))) (|has| |#1| (-975 (-388 (-516))))) (((-388 (-887 |#1|))) |has| |#1| (-523)) (((-887 |#1|)) |has| |#1| (-984)) (((-1098)) . T))
+(((|#1|) . T))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-523)))
+(-3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523)))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+((((-805)) . T))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-523)))
+(|has| |#1| (-344))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(((|#1| (-388 (-516))) . T))
+(((|#1| (-388 (-516))) . T))
+(|has| |#1| (-140))
+(|has| |#1| (-138))
+((($) -3810 (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) ((|#1|) |has| |#1| (-162)))
+((($) . T) (((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) ((|#1|) . T))
+((((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) (($) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((|#1|) . T))
+(((#1=(-388 (-516)) #1#) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) (($ $) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((|#1| |#1|) . T))
+((($) -3810 (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) ((|#1|) |has| |#1| (-162)))
+(((|#1| (-388 (-516)) (-1011)) . T))
+((((-1098)) -12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))))
((($ $) . T))
-((((-802)) . T))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((#0=(-1169 |#1| |#2| |#3|) #0#) -12 (|has| (-1169 |#1| |#2| |#3|) (-290 (-1169 |#1| |#2| |#3|))) (|has| |#1| (-343))) (((-1095) #0#) -12 (|has| (-1169 |#1| |#2| |#3|) (-489 (-1095) (-1169 |#1| |#2| |#3|))) (|has| |#1| (-343))))
-(-12 (|has| |#1| (-1023)) (|has| |#2| (-1023)))
+(|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))
(((|#1|) . T))
+(|has| |#1| (-795))
(((|#1|) . T))
+(((|#1| (-516)) . T))
+(((#1=(-516) #1#) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-805)) . T))
+((((-805)) . T))
(((|#1|) . T))
-((($) -1463 (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-162)) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-((((-387 (-528))) . T) (((-528)) . T))
-((((-528) (-137)) . T))
-((((-137)) . T))
+(((|#1| (-719)) . T))
(((|#1|) . T))
-(-1463 (|has| |#1| (-21)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-520)) (|has| |#1| (-981)))
-((((-110)) . T))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-((((-110)) . T))
(((|#1|) . T))
-((((-504)) |has| |#1| (-570 (-504))) (((-207)) . #0=(|has| |#1| (-957))) (((-359)) . #0#))
-((((-802)) . T))
-(|has| |#1| (-766))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-(|has| |#1| (-793))
-(-1463 (|has| |#1| (-162)) (|has| |#1| (-520)))
-(|has| |#1| (-520))
-(|has| |#1| (-848))
-(((|#1|) . T))
-(|has| |#1| (-1023))
-((((-802)) . T))
-(-1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-520)))
-(-1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-520)))
-(-1463 (|has| |#1| (-162)) (|has| |#1| (-520)))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-(((|#1| (-1177 |#1|) (-1177 |#1|)) . T))
-((((-528) (-137)) . T))
-((($) . T))
-(-1463 (|has| |#4| (-162)) (|has| |#4| (-791)) (|has| |#4| (-981)))
-(-1463 (|has| |#3| (-162)) (|has| |#3| (-791)) (|has| |#3| (-981)))
-((((-802)) . T))
-(|has| |#1| (-1023))
-(((|#1| (-908)) . T))
-(((|#1| |#1|) . T))
-((($) . T))
-(-1463 (|has| |#2| (-739)) (|has| |#2| (-791)))
-(-1463 (|has| |#2| (-739)) (|has| |#2| (-791)))
-(-12 (|has| |#1| (-452)) (|has| |#2| (-452)))
-(-1463 (|has| |#2| (-162)) (|has| |#2| (-673)) (|has| |#2| (-791)) (|has| |#2| (-981)))
-(-1463 (-12 (|has| |#1| (-452)) (|has| |#2| (-452))) (-12 (|has| |#1| (-673)) (|has| |#2| (-673))))
+(|has| |#1| (-795))
(((|#1|) . T))
-(|has| |#2| (-739))
-(-1463 (|has| |#2| (-739)) (|has| |#2| (-791)))
-(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(|has| |#2| (-791))
-(-12 (|has| |#1| (-739)) (|has| |#2| (-739)))
-(-12 (|has| |#1| (-739)) (|has| |#2| (-739)))
-(((|#1| |#2|) . T))
-(((|#2|) |has| |#2| (-162)))
-(((|#1|) |has| |#1| (-162)))
-((((-802)) . T))
-(|has| |#1| (-329))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-387 (-528))) . T) (($) . T))
-((($) . T) (((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) ((|#1|) . T))
-(|has| |#1| (-774))
-((((-387 (-528))) |has| |#1| (-972 (-387 (-528)))) (((-528)) |has| |#1| (-972 (-528))) ((|#1|) . T))
-(|has| |#1| (-1023))
-(((|#1| $) |has| |#1| (-267 |#1| |#1|)))
-((((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-520)))
-((($) |has| |#1| (-520)))
-(((|#4|) |has| |#4| (-1023)))
-(((|#3|) |has| |#3| (-1023)))
-(|has| |#3| (-348))
-(((|#1|) . T) (((-802)) . T))
-((((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) (($) -1463 (|has| |#1| (-343)) (|has| |#1| (-520))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-343)) ((|#1|) |has| |#1| (-162)))
-(((|#1|) |has| |#1| (-162)) (((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) (($) -1463 (|has| |#1| (-343)) (|has| |#1| (-520))))
-((((-802)) . T))
-((($) |has| |#1| (-520)) ((|#1|) |has| |#1| (-162)) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-(((|#2|) . T))
-(((|#1| |#1|) |has| |#1| (-162)))
-(((|#1| |#2|) . T))
-(|has| |#2| (-343))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(-3810 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-3810 (|has| |#1| (-795)) (|has| |#1| (-1027)))
(((|#1|) . T))
-(((|#1|) |has| |#1| (-162)))
-((((-387 (-528))) . T) (((-528)) . T))
-((($ $) -1463 (|has| |#1| (-162)) (|has| |#1| (-520))) ((|#1| |#1|) . T) ((#0=(-387 (-528)) #0#) |has| |#1| (-37 (-387 (-528)))))
-((($) -1463 (|has| |#1| (-162)) (|has| |#1| (-520))) ((|#1|) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-(((|#2| |#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))
-((((-137)) . T))
+((((-505)) |has| |#1| (-572 (-505))))
+((((-516) |#1|) . T))
+((((-516) |#1|) . T))
+((((-516) |#1|) . T))
(((|#1|) . T))
-((((-137)) . T))
-((($) -1463 (|has| |#2| (-162)) (|has| |#2| (-791)) (|has| |#2| (-981))) ((|#2|) -1463 (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-981))))
-((((-137)) . T))
-(((|#1| |#2| |#3|) . T))
-(-1463 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-520)) (|has| |#1| (-981)))
+(((|#1|) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-1098)) . T))
+(((|#3|) . T))
+(((|#3|) . T))
+(((|#3| |#3|) . T))
+(((|#3|) . T) (($) . T))
+(((|#3|) . T))
+((($) . T))
+((($ $) . T) (((-569 $) $) . T))
+((((-805)) . T))
+(((|#3|) . T) (((-569 $)) . T))
+((((-847 |#1|)) . T))
+((((-847 |#1|)) . T))
+((((-847 |#1|)) . T))
+((((-847 |#1|)) . T) (($) . T) (((-388 (-516))) . T))
+(((#1=(-847 |#1|) #1#) . T) (($ $) . T) ((#2=(-388 (-516)) #2#) . T))
+((((-388 (-516))) . T) (($) . T))
+((((-847 |#1|)) . T) (((-388 (-516))) . T) (($) . T))
+((((-805)) . T))
+((((-847 |#1|)) . T) (((-388 (-516))) . T) (($) . T))
(|has| $ (-140))
+((((-847 |#1|)) . T))
+((((-847 |#1|)) . T))
+((((-847 |#1|)) . T))
+((((-847 |#1|)) . T))
+((((-847 |#1|)) . T) (($) . T) (((-388 (-516))) . T))
+(((#1=(-847 |#1|) #1#) . T) (($ $) . T) ((#2=(-388 (-516)) #2#) . T))
+((((-388 (-516))) . T) (($) . T))
+((((-847 |#1|)) . T) (((-388 (-516))) . T) (($) . T))
+((((-805)) . T))
+((((-847 |#1|)) . T) (((-388 (-516))) . T) (($) . T))
(|has| $ (-140))
-(|has| |#1| (-1023))
-((((-802)) . T))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(-1463 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-452)) (|has| |#1| (-520)) (|has| |#1| (-981)) (|has| |#1| (-1035)))
-((($ $) |has| |#1| (-267 $ $)) ((|#1| $) |has| |#1| (-267 |#1| |#1|)))
-(((|#1| (-387 (-528))) . T))
-(((|#1|) . T))
-((((-1095)) . T))
-(|has| |#1| (-520))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-520)))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-520)))
-(|has| |#1| (-520))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-((((-802)) . T))
-(|has| |#2| (-138))
-(|has| |#2| (-140))
-(((|#2|) . T) (($) . T))
-(|has| |#1| (-140))
-(|has| |#1| (-138))
-(|has| |#4| (-791))
-(((|#2| (-222 (-2138 |#1|) (-717)) (-804 |#1|)) . T))
-(|has| |#3| (-791))
-(((|#1| (-500 |#3|) |#3|) . T))
+((((-847 |#1|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(-3810 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-3810 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(((|#1|) . T) (($) . T) (((-388 (-516))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-388 (-516)) #1#) . T))
+((((-388 (-516))) . T) (($) . T))
+(((|#1|) . T) (((-388 (-516))) . T) (($) . T))
+((((-805)) . T))
+(((|#1|) . T) (((-388 (-516))) . T) (($) . T))
(|has| |#1| (-140))
-(|has| |#1| (-138))
-(((#0=(-387 (-528)) #0#) |has| |#2| (-343)) (($ $) . T))
-((((-809 |#1|)) . T))
+(|has| |#1| (-349))
+(|has| |#1| (-349))
+(|has| |#1| (-349))
+(|has| |#1| (-349))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(-3810 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-3810 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(((|#1|) . T) (($) . T) (((-388 (-516))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-388 (-516)) #1#) . T))
+((((-388 (-516))) . T) (($) . T))
+(((|#1|) . T) (((-388 (-516))) . T) (($) . T))
+((((-805)) . T))
+(((|#1|) . T) (((-388 (-516))) . T) (($) . T))
(|has| |#1| (-140))
-(|has| |#1| (-348))
-(|has| |#1| (-348))
-(|has| |#1| (-348))
-(|has| |#1| (-138))
-((((-387 (-528))) |has| |#2| (-343)) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(-1463 (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848)))
-(-1463 (|has| |#1| (-329)) (|has| |#1| (-348)))
-((((-1062 |#2| |#1|)) . T) ((|#1|) . T))
-(|has| |#2| (-162))
-(((|#1| |#2|) . T))
-(-12 (|has| |#2| (-215)) (|has| |#2| (-981)))
-(((|#2|) . T) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-(-1463 (|has| |#3| (-739)) (|has| |#3| (-791)))
-(-1463 (|has| |#3| (-739)) (|has| |#3| (-791)))
-((((-802)) . T))
+(|has| |#1| (-349))
+(|has| |#1| (-349))
+(|has| |#1| (-349))
+(|has| |#1| (-349))
+(((|#1|) . T))
+((((-847 |#1|)) . T))
+((((-847 |#1|)) . T))
+((((-847 |#1|)) . T))
+((((-847 |#1|)) . T) (($) . T) (((-388 (-516))) . T))
+(((#1=(-847 |#1|) #1#) . T) (($ $) . T) ((#2=(-388 (-516)) #2#) . T))
+((((-388 (-516))) . T) (($) . T))
+((((-847 |#1|)) . T) (((-388 (-516))) . T) (($) . T))
+((((-805)) . T))
+((((-847 |#1|)) . T) (((-388 (-516))) . T) (($) . T))
+(|has| $ (-140))
+((((-847 |#1|)) . T))
(((|#1|) . T))
-(((|#2|) . T) (($) . T))
-(((|#1|) . T) (($) . T))
-((((-645)) . T))
-(-1463 (|has| |#2| (-162)) (|has| |#2| (-791)) (|has| |#2| (-981)))
-(|has| |#1| (-520))
(((|#1|) . T))
(((|#1|) . T))
+(-3810 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-3810 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(((|#1|) . T) (($) . T) (((-388 (-516))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-388 (-516)) #1#) . T))
+((((-388 (-516))) . T) (($) . T))
+(((|#1|) . T) (((-388 (-516))) . T) (($) . T))
+((((-805)) . T))
+(((|#1|) . T) (((-388 (-516))) . T) (($) . T))
+(|has| |#1| (-140))
+(|has| |#1| (-349))
+(|has| |#1| (-349))
+(|has| |#1| (-349))
+(|has| |#1| (-349))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1095) (-51)) . T))
-((((-802)) . T))
-((((-504)) . T) (((-831 (-528))) . T) (((-359)) . T) (((-207)) . T))
+(-3810 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-3810 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(((|#1|) . T) (($) . T) (((-388 (-516))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-388 (-516)) #1#) . T))
+((((-388 (-516))) . T) (($) . T))
+(((|#1|) . T) (((-388 (-516))) . T) (($) . T))
+((((-805)) . T))
+(((|#1|) . T) (((-388 (-516))) . T) (($) . T))
+(|has| |#1| (-140))
+(|has| |#1| (-349))
+(|has| |#1| (-349))
+(|has| |#1| (-349))
+(|has| |#1| (-349))
(((|#1|) . T))
-((((-802)) . T))
-((((-504)) . T) (((-831 (-528))) . T) (((-359)) . T) (((-207)) . T))
-(((|#1| (-528)) . T))
-((((-802)) . T))
-((((-802)) . T))
-(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-387 (-528))) . T))
-(((|#3|) . T) (((-568 $)) . T))
-(((|#1| |#2|) . T))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-((($ $) . T) ((|#2| $) . T))
-(((|#1|) . T) (((-387 (-528))) . T) (($) . T))
-(((#0=(-1093 |#1| |#2| |#3|) #0#) -12 (|has| (-1093 |#1| |#2| |#3|) (-290 (-1093 |#1| |#2| |#3|))) (|has| |#1| (-343))) (((-1095) #0#) -12 (|has| (-1093 |#1| |#2| |#3|) (-489 (-1095) (-1093 |#1| |#2| |#3|))) (|has| |#1| (-343))))
-((((-528)) . T) (($) . T) (((-387 (-528))) . T))
-((((-802)) . T))
-((((-802)) . T))
-(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) |has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) (((-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) |has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-290 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)))))
-((((-802)) . T))
(((|#1|) . T))
-(((|#3| |#3|) . T))
+(-3810 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-3810 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(((|#1|) . T) (($) . T) (((-388 (-516))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-388 (-516)) #1#) . T))
+((((-388 (-516))) . T) (($) . T))
+(((|#1|) . T) (((-388 (-516))) . T) (($) . T))
+((((-805)) . T))
+(((|#1|) . T) (((-388 (-516))) . T) (($) . T))
+(|has| |#1| (-140))
+(|has| |#1| (-349))
+(|has| |#1| (-349))
+(|has| |#1| (-349))
+(|has| |#1| (-349))
(((|#1|) . T))
-((($) . T) ((|#2|) . T))
-((((-1095) (-51)) . T))
-(((|#3|) . T))
-((($ $) . T) ((#0=(-804 |#1|) $) . T) ((#0# |#2|) . T))
-(|has| |#1| (-774))
-(|has| |#1| (-1023))
-(((|#2| |#2|) -1463 (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-981))) (($ $) |has| |#2| (-162)))
-(((|#2|) -1463 (|has| |#2| (-162)) (|has| |#2| (-343))))
-((((-528) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -1463 (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-981))) (($) |has| |#2| (-162)))
-((((-717)) . T))
-((((-528)) . T))
-(|has| |#1| (-520))
-((((-802)) . T))
-(((|#1| (-387 (-528)) (-1008)) . T))
-(|has| |#1| (-138))
(((|#1|) . T))
-(|has| |#1| (-520))
-((((-528)) . T))
-((((-114 |#1|)) . T))
(((|#1|) . T))
+(((|#1|) . T))
+(-3810 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-3810 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(((|#1|) . T) (($) . T) (((-388 (-516))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-388 (-516)) #1#) . T))
+((((-388 (-516))) . T) (($) . T))
+(((|#1|) . T) (((-388 (-516))) . T) (($) . T))
+((((-805)) . T))
+(((|#1|) . T) (((-388 (-516))) . T) (($) . T))
(|has| |#1| (-140))
-(-1463 (|has| |#1| (-162)) (|has| |#1| (-520)))
-(-1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-520)))
-(-1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-520)))
-(-1463 (|has| |#1| (-162)) (|has| |#1| (-520)))
-((((-831 (-528))) . T) (((-831 (-359))) . T) (((-504)) . T) (((-1095)) . T))
-((((-802)) . T))
-(-1463 (|has| |#1| (-793)) (|has| |#1| (-1023)))
-((($) . T))
-((((-802)) . T))
-(-1463 (|has| |#2| (-162)) (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848)))
-(((|#2|) |has| |#2| (-162)))
-((($) -1463 (|has| |#2| (-343)) (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848))) ((|#2|) |has| |#2| (-162)) (((-387 (-528))) |has| |#2| (-37 (-387 (-528)))))
-((((-809 |#1|)) . T))
-(-1463 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-348)) (|has| |#2| (-673)) (|has| |#2| (-739)) (|has| |#2| (-791)) (|has| |#2| (-981)) (|has| |#2| (-1023)))
-(-12 (|has| |#3| (-215)) (|has| |#3| (-981)))
-(|has| |#2| (-1071))
-(((#0=(-51)) . T) (((-2 (|:| -2927 (-1095)) (|:| -1780 #0#))) . T))
-(((|#1| |#2|) . T))
-(-1463 (|has| |#3| (-162)) (|has| |#3| (-791)) (|has| |#3| (-981)))
-(((|#1| (-528) (-1008)) . T))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#1| (-387 (-528)) (-1008)) . T))
-((($) -1463 (|has| |#1| (-288)) (|has| |#1| (-343)) (|has| |#1| (-329)) (|has| |#1| (-520))) (((-387 (-528))) -1463 (|has| |#1| (-343)) (|has| |#1| (-329))) ((|#1|) . T))
-((((-528) |#2|) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#2|) . T))
-(|has| |#2| (-348))
-(-12 (|has| |#1| (-348)) (|has| |#2| (-348)))
-((((-802)) . T))
-((((-1095) |#1|) |has| |#1| (-489 (-1095) |#1|)) ((|#1| |#1|) |has| |#1| (-290 |#1|)))
-(-1463 (|has| |#1| (-138)) (|has| |#1| (-348)))
-(-1463 (|has| |#1| (-138)) (|has| |#1| (-348)))
-(-1463 (|has| |#1| (-138)) (|has| |#1| (-348)))
-(((|#1|) . T))
-((((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-520)))
-((((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) (($) -1463 (|has| |#1| (-343)) (|has| |#1| (-520))) (((-1093 |#1| |#2| |#3|)) |has| |#1| (-343)) ((|#1|) |has| |#1| (-162)))
-(((|#1|) |has| |#1| (-162)) (((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) (($) -1463 (|has| |#1| (-343)) (|has| |#1| (-520))))
-((($) |has| |#1| (-520)) ((|#1|) |has| |#1| (-162)) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-((((-802)) . T))
-(|has| |#1| (-329))
-(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))) ((#0=(-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) #0#) |has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))))
-(|has| |#1| (-520))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-((((-802)) . T))
-(((|#1| |#2|) . T))
-(-1463 (|has| |#2| (-431)) (|has| |#2| (-848)))
-(-1463 (|has| |#1| (-793)) (|has| |#1| (-1023)))
-(-1463 (|has| |#1| (-431)) (|has| |#1| (-848)))
-((((-387 (-528))) . T) (((-528)) . T))
-((((-528)) . T))
-((((-387 (-528))) |has| |#2| (-37 (-387 (-528)))) ((|#2|) |has| |#2| (-162)) (($) -1463 (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848))))
-((($) . T))
-((((-802)) . T))
-(((|#1|) . T))
-((((-809 |#1|)) . T) (($) . T) (((-387 (-528))) . T))
-((((-802)) . T))
-(((|#3| |#3|) -1463 (|has| |#3| (-162)) (|has| |#3| (-343)) (|has| |#3| (-981))) (($ $) |has| |#3| (-162)))
-(|has| |#1| (-957))
-((((-802)) . T))
-(((|#3|) -1463 (|has| |#3| (-162)) (|has| |#3| (-343)) (|has| |#3| (-981))) (($) |has| |#3| (-162)))
-((((-528) (-110)) . T))
-(((|#1|) |has| |#1| (-290 |#1|)))
-(|has| |#1| (-348))
-(|has| |#1| (-348))
-(|has| |#1| (-348))
-((((-1095) $) |has| |#1| (-489 (-1095) $)) (($ $) |has| |#1| (-290 $)) ((|#1| |#1|) |has| |#1| (-290 |#1|)) (((-1095) |#1|) |has| |#1| (-489 (-1095) |#1|)))
-((((-1095)) |has| |#1| (-839 (-1095))))
-(-1463 (-12 (|has| |#1| (-215)) (|has| |#1| (-343))) (|has| |#1| (-329)))
-((((-368) (-1042)) . T))
-(((|#1| |#4|) . T))
-(((|#1| |#3|) . T))
-((((-368) |#1|) . T))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-329)))
-(|has| |#1| (-1023))
-((((-802)) . T))
-((((-802)) . T))
-((((-849 |#1|)) . T))
-((((-387 (-528))) |has| |#2| (-37 (-387 (-528)))) ((|#2|) |has| |#2| (-162)) (($) -1463 (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848))))
-((((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((|#1|) |has| |#1| (-162)) (($) -1463 (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))))
+(|has| |#1| (-349))
+(|has| |#1| (-349))
+(|has| |#1| (-349))
+(|has| |#1| (-349))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-369) |#1|) . T))
+((((-516)) . T) (((-388 (-516))) . T))
+((((-359)) . T))
+((($) . T) (((-388 (-516))) . T))
+((($ $) . T) ((#1=(-388 (-516)) #1#) . T))
+((((-388 (-516))) . T) (($) . T))
+((((-388 (-516))) . T) (($) . T))
+((((-505)) . T) (((-1081)) . T) (((-208)) . T) (((-359)) . T) (((-831 (-359))) . T))
+((((-208)) . T) (((-805)) . T))
+((((-388 (-516))) . T) (($) . T))
+(((|#1|) |has| |#1| (-162)))
(((|#1| |#2|) . T))
-((($) . T))
+(((|#1|) . T))
+((((-805)) . T))
+(((|#1|) . T))
+(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
-(((#0=(-809 |#1|)) |has| #0# (-290 #0#)))
-(((|#1| |#2|) . T))
-(-1463 (|has| |#2| (-739)) (|has| |#2| (-791)))
-(-1463 (|has| |#2| (-739)) (|has| |#2| (-791)))
-(-12 (|has| |#1| (-739)) (|has| |#2| (-739)))
(((|#1|) . T))
-(-12 (|has| |#1| (-739)) (|has| |#2| (-739)))
-(-1463 (|has| |#2| (-162)) (|has| |#2| (-791)) (|has| |#2| (-981)))
-(((|#2|) . T) (($) . T))
-(((|#2|) . T) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-(|has| |#1| (-1117))
-(((#0=(-528) #0#) . T) ((#1=(-387 (-528)) #1#) . T) (($ $) . T))
-((((-387 (-528))) . T) (($) . T))
-(((|#4|) |has| |#4| (-981)))
-(((|#3|) |has| |#3| (-981)))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-387 (-528)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-387 (-528)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-387 (-528)) #0#) . T))
-(|has| |#1| (-343))
-((((-528)) . T) (((-387 (-528))) . T) (($) . T))
-((($ $) . T) ((#0=(-387 (-528)) #0#) -1463 (|has| |#1| (-343)) (|has| |#1| (-329))) ((|#1| |#1|) . T))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-1023))))
-(((|#1|) . T) (($) . T) (((-387 (-528))) . T))
-((((-802)) . T))
-((((-802)) . T))
-(((|#1|) . T) (($) . T) (((-387 (-528))) . T))
-(((|#1|) . T) (($) . T) (((-387 (-528))) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-528) |#3|) . T))
-((((-802)) . T))
-((((-504)) |has| |#3| (-570 (-504))))
-((((-635 |#3|)) . T) (((-802)) . T))
-(((|#1| |#2|) . T))
-(|has| |#1| (-791))
-(|has| |#1| (-791))
-((($) . T) (((-387 (-528))) -1463 (|has| |#1| (-343)) (|has| |#1| (-329))) ((|#1|) . T))
-(-1463 (|has| |#1| (-162)) (|has| |#1| (-520)))
-(((#0=(-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) #0#) |has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-290 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))))))
-((($) . T))
-(|has| |#2| (-793))
-((($) . T))
-(((|#2|) |has| |#2| (-1023)))
-((((-802)) -1463 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-569 (-802))) (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-348)) (|has| |#2| (-673)) (|has| |#2| (-739)) (|has| |#2| (-791)) (|has| |#2| (-981)) (|has| |#2| (-1023))) (((-1177 |#2|)) . T))
-(|has| |#1| (-793))
-(|has| |#1| (-793))
-((((-1078) (-51)) . T))
-(|has| |#1| (-793))
-((((-802)) . T))
-((((-528)) |has| #0=(-387 |#2|) (-591 (-528))) ((#0#) . T))
-((((-528) (-137)) . T))
-((((-528) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T) ((|#1| |#2|) . T))
-((((-387 (-528))) . T) (($) . T))
-(((|#1|) . T))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-((((-802)) . T))
-((((-849 |#1|)) . T))
-(|has| |#1| (-343))
-(|has| |#1| (-343))
-(|has| |#1| (-343))
-(|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|)))
-(|has| |#1| (-791))
-(|has| |#1| (-343))
-(|has| |#1| (-791))
-(((|#1|) . T) (($) . T))
-(|has| |#1| (-791))
-((((-1095)) |has| |#1| (-839 (-1095))))
-(((|#1| (-1095)) . T))
-(((|#1| (-1177 |#1|) (-1177 |#1|)) . T))
-(((|#1| |#2|) . T))
-((($ $) . T))
-(|has| |#1| (-1023))
-(((|#1| (-1095) (-764 (-1095)) (-500 (-764 (-1095)))) . T))
-((((-387 (-891 |#1|))) . T))
-((((-504)) . T))
-((((-802)) . T))
-((($) . T))
-(((|#2|) . T) (($) . T))
+((((-805)) . T))
+(((|#1|) . T))
(((|#1|) |has| |#1| (-162)))
-((((-528) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) . T))
+(((|#1| |#2|) . T))
+(|has| |#1| (-795))
(((|#1|) . T))
-((($) |has| |#1| (-520)) ((|#1|) |has| |#1| (-162)) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
+((((-805)) . T))
+((((-805)) . T))
(((|#3|) . T))
-(((|#1|) |has| |#1| (-162)))
-((((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((|#1|) |has| |#1| (-162)) (($) -1463 (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))))
-((($) -1463 (|has| |#1| (-343)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-162)) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-504)) |has| |#1| (-570 (-504))) (((-831 (-359))) |has| |#1| (-570 (-831 (-359)))) (((-831 (-528))) |has| |#1| (-570 (-831 (-528)))))
-((((-802)) . T))
-(((|#2|) . T) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-(|has| |#2| (-791))
-(-12 (|has| |#2| (-215)) (|has| |#2| (-981)))
-(|has| |#1| (-520))
-(|has| |#1| (-1071))
-((((-1078) |#1|) . T))
-(-1463 (|has| |#2| (-162)) (|has| |#2| (-791)) (|has| |#2| (-981)))
-(((#0=(-387 (-528)) #0#) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) (($ $) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-520))) ((|#1| |#1|) . T))
-((((-387 (-528))) |has| |#1| (-972 (-528))) (((-528)) |has| |#1| (-972 (-528))) (((-1095)) |has| |#1| (-972 (-1095))) ((|#1|) . T))
-((((-528) |#2|) . T))
-((((-387 (-528))) |has| |#1| (-972 (-387 (-528)))) (((-528)) |has| |#1| (-972 (-528))) ((|#1|) . T))
-((((-528)) |has| |#1| (-825 (-528))) (((-359)) |has| |#1| (-825 (-359))))
-((((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) (($) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-520))) ((|#1|) . T))
-(((|#1|) . T))
-((((-595 |#4|)) . T) (((-802)) . T))
-((((-504)) |has| |#4| (-570 (-504))))
-((((-504)) |has| |#4| (-570 (-504))))
-((((-802)) . T) (((-595 |#4|)) . T))
-((($) |has| |#1| (-791)))
-(((|#1|) . T))
-((((-595 |#4|)) . T) (((-802)) . T))
-((((-504)) |has| |#4| (-570 (-504))))
-(((|#1|) . T))
-(((|#2|) . T))
-((((-1095)) |has| (-387 |#2|) (-839 (-1095))))
-(((|#2| |#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))) ((#0=(-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) #0#) |has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))))
-((($) . T))
-((($) . T))
-(((|#2|) . T))
-((((-802)) -1463 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-569 (-802))) (|has| |#3| (-162)) (|has| |#3| (-343)) (|has| |#3| (-348)) (|has| |#3| (-673)) (|has| |#3| (-739)) (|has| |#3| (-791)) (|has| |#3| (-981)) (|has| |#3| (-1023))) (((-1177 |#3|)) . T))
-((((-528) |#2|) . T))
-(-1463 (|has| |#1| (-793)) (|has| |#1| (-1023)))
-(((|#2| |#2|) -1463 (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-981))) (($ $) |has| |#2| (-162)))
-((((-802)) . T))
-((((-802)) . T))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T) ((|#2|) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-1078) (-1095) (-528) (-207) (-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-((((-802)) . T))
-((((-528) (-110)) . T))
-(((|#1|) . T))
-((((-802)) . T))
-((((-110)) . T))
-((((-110)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-110)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-((((-802)) . T))
-((((-504)) |has| |#1| (-570 (-504))))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-1023))))
-(((|#2|) -1463 (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-981))) (($) |has| |#2| (-162)))
-(|has| $ (-140))
-((((-387 |#2|)) . T))
-((((-387 (-528))) |has| #0=(-387 |#2|) (-972 (-387 (-528)))) (((-528)) |has| #0# (-972 (-528))) ((#0#) . T))
-(((|#2| |#2|) . T))
-(((|#4|) |has| |#4| (-162)))
-(|has| |#2| (-138))
-(|has| |#2| (-140))
-(((|#3|) |has| |#3| (-162)))
-(|has| |#1| (-140))
+(((|#3|) . T))
+((((-805)) . T))
+(((|#3|) . T))
+(((|#3| |#3|) . T))
+(((|#3|) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-388 |#2|)) . T))
+((((-805)) . T))
+(|has| |#1| (-1138))
+((((-505)) |has| |#1| (-572 (-505))) (((-208)) . #1=(|has| |#1| (-958))) (((-359)) . #1#))
+(|has| |#1| (-958))
+(-3810 (|has| |#1| (-432)) (|has| |#1| (-1138)))
+((((-388 (-516))) |has| |#1| (-975 (-388 (-516)))) (((-516)) |has| |#1| (-975 (-516))) ((|#1|) . T))
+(((|#1|) . T))
+((($ $) |has| |#1| (-268 $ $)) ((|#1| $) |has| |#1| (-268 |#1| |#1|)))
+((($) |has| |#1| (-291 $)) ((|#1|) |has| |#1| (-291 |#1|)))
+((((-1098) $) |has| |#1| (-491 (-1098) $)) (($ $) |has| |#1| (-291 $)) ((|#1| |#1|) |has| |#1| (-291 |#1|)) (((-1098) |#1|) |has| |#1| (-491 (-1098) |#1|)))
+(((|#1|) . T))
+(|has| |#1| (-216))
+((((-1098)) |has| |#1| (-841 (-1098))))
+(((|#1|) . T))
+(((|#1|) . T) (($) . T))
+(((|#1| |#1|) . T) (($ $) . T))
+(((|#1|) . T) (($) . T))
+((((-805)) . T))
+(((|#1|) . T) (($) . T))
+(((|#1|) . T) (($) . T))
+(-12 (|has| |#1| (-515)) (|has| |#1| (-769)))
+((((-805)) . T))
(|has| |#1| (-138))
-(-1463 (|has| |#1| (-138)) (|has| |#1| (-348)))
-(|has| |#1| (-140))
-(-1463 (|has| |#1| (-138)) (|has| |#1| (-348)))
-(|has| |#1| (-140))
-(-1463 (|has| |#1| (-138)) (|has| |#1| (-348)))
(|has| |#1| (-140))
(((|#1|) . T))
-(((|#2|) . T))
-(|has| |#2| (-215))
-((((-1095) (-51)) . T))
-((((-802)) . T))
-(((|#1| |#1|) . T))
-((((-1095)) |has| |#2| (-839 (-1095))))
-((((-528) (-110)) . T))
-(|has| |#1| (-520))
-(((|#2|) . T))
-(((|#2|) . T))
+((((-1098)) |has| |#1| (-841 (-1098))))
+(|has| |#1| (-216))
+(((|#1|) . T) (($) . T) (((-388 (-516))) . T))
+((($) . T) ((|#1|) . T) (((-388 (-516))) . T))
+(((|#1|) . T) (($) . T) (((-388 (-516))) . T))
+(((|#1|) . T) (((-388 (-516))) . T) (($) . T))
+(((|#1| |#1|) . T) ((#1=(-388 (-516)) #1#) . T) (($ $) . T))
+(((|#1|) . T))
+((((-1098) |#1|) |has| |#1| (-491 (-1098) |#1|)) ((|#1| |#1|) |has| |#1| (-291 |#1|)))
+(((|#1|) |has| |#1| (-291 |#1|)))
+(((|#1| $) |has| |#1| (-268 |#1| |#1|)))
+(((|#1|) . T))
+(((|#1|) . T) (((-516)) |has| |#1| (-593 (-516))))
+(((|#1|) . T))
+((((-516)) |has| |#1| (-827 (-516))) (((-359)) |has| |#1| (-827 (-359))))
+(|has| |#1| (-768))
+(|has| |#1| (-768))
+(|has| |#1| (-768))
+(-3810 (|has| |#1| (-768)) (|has| |#1| (-795)))
+(|has| |#1| (-768))
+(|has| |#1| (-768))
+(|has| |#1| (-768))
+(((|#1|) . T))
+(|has| |#1| (-851))
+(|has| |#1| (-958))
+((((-505)) |has| |#1| (-572 (-505))) (((-831 (-516))) |has| |#1| (-572 (-831 (-516)))) (((-831 (-359))) |has| |#1| (-572 (-831 (-359)))) (((-359)) . #1=(|has| |#1| (-958))) (((-208)) . #1#))
+((((-388 (-516))) |has| |#1| . #1=((-975 (-516)))) (((-516)) |has| |#1| . #1#) (((-1098)) |has| |#1| (-975 (-1098))) ((|#1|) . T))
+(|has| |#1| (-1074))
+(((|#1|) . T))
+((((-805)) . T))
+((((-805)) . T))
+(((|#1|) . T))
+((((-805)) . T))
(((|#1|) . T))
-(((|#2| |#2|) . T))
(((|#1| |#1|) . T))
+(((|#1|) . T) (($) . T))
(((|#1|) . T))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(((|#3|) . T))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(((|#1|) . T))
-((((-802)) . T))
-((((-504)) . T) (((-831 (-528))) . T) (((-359)) . T) (((-207)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-935 |#1|)) . T) ((|#1|) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-((((-387 (-528))) . T) (((-387 |#1|)) . T) ((|#1|) . T) (($) . T))
-(((|#1| (-1091 |#1|)) . T))
-((((-528)) . T) (($) . T) (((-387 (-528))) . T))
-(((|#3|) . T) (($) . T))
-(|has| |#1| (-793))
-(((|#2|) . T))
-((((-528)) . T) (($) . T) (((-387 (-528))) . T))
-((((-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) . T))
-((((-528) |#2|) . T))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-1023))))
-(((|#2|) . T))
-((((-528) |#3|) . T))
-(((|#2|) . T))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-((((-1169 |#1| |#2| |#3|)) |has| |#1| (-343)))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-((((-802)) . T))
-(|has| |#1| (-1023))
-(((|#4|) -12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))))
-(((|#3|) -12 (|has| |#3| (-290 |#3|)) (|has| |#3| (-1023))))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-369) (-1081)) . T))
+((((-805)) . T))
+((((-388 (-887 |#1|))) . T))
+((((-388 (-887 |#1|))) . T))
+((((-1065 |#2| (-388 (-887 |#1|)))) . T) (((-388 (-887 |#1|))) . T))
+((((-805)) . T))
+((((-388 (-887 |#1|))) . T))
+(((#1=(-388 (-887 |#1|)) #1#) . T))
+((((-388 (-887 |#1|))) . T))
+((((-388 (-887 |#1|))) . T))
+((((-505)) |has| |#2| (-572 (-505))) (((-831 (-359))) |has| |#2| (-572 (-831 (-359)))) (((-831 (-516))) |has| |#2| (-572 (-831 (-516)))))
+((($) . T))
+(((|#2| |#3|) . T))
(((|#2|) . T))
-(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))) ((#0=(-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) #0#) |has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))))
-(((|#2| |#2|) . T))
-(|has| |#2| (-343))
-(((|#2|) . T) (((-528)) |has| |#2| (-972 (-528))) (((-387 (-528))) |has| |#2| (-972 (-387 (-528)))))
+((((-805)) . T))
+((($) . T) (((-388 (-516))) |has| |#2| (-37 (-388 (-516)))) ((|#2|) . T))
+(|has| |#2| (-138))
+(|has| |#2| (-140))
+(-3810 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851)))
+((((-388 (-516))) |has| |#2| (-37 (-388 (-516)))) ((|#2|) . T) (($) -3810 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851))))
+(((#1=(-388 (-516)) #1#) |has| |#2| (-37 (-388 (-516)))) ((|#2| |#2|) . T) (($ $) -3810 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851))))
+(-3810 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851)))
+(-3810 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851)))
+((((-388 (-516))) |has| |#2| (-37 (-388 (-516)))) ((|#2|) |has| |#2| (-162)) (($) -3810 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851))))
+((((-388 (-516))) |has| |#2| (-37 (-388 (-516)))) ((|#2|) |has| |#2| (-162)) (($) -3810 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851))))
+(((|#2| |#3|) . T))
(((|#2|) . T))
-((((-1078) (-51)) . T))
-(((|#2|) |has| |#2| (-162)))
-((((-528) |#3|) . T))
-((((-528) (-137)) . T))
-((((-137)) . T))
-((((-802)) . T))
-((((-110)) . T))
+(((|#2|) . T) (((-516)) |has| |#2| (-593 (-516))))
+(-3810 (|has| |#2| (-432)) (|has| |#2| (-851)))
+((($ $) . T) ((#1=(-806 |#1|) $) . T) ((#1# |#2|) . T))
+(|has| |#2| (-795))
+((((-806 |#1|)) . T))
+(|has| |#2| (-851))
+(|has| |#2| (-851))
+((((-388 (-516))) |has| |#2| (-975 (-388 (-516)))) (((-516)) |has| |#2| (-975 (-516))) ((|#2|) . T) (((-806 |#1|)) . T))
+(((|#2| |#3| (-806 |#1|)) . T))
+(((|#2| |#2|) . T) ((|#6| |#6|) . T))
+(((|#2|) . T) ((|#6|) . T))
+((((-805)) . T))
+(((|#2|) . T) ((|#6|) . T))
+(((|#2|) . T) ((|#6|) . T))
+(((|#4|) . T))
+((((-594 |#4|)) . T) (((-805)) . T))
+(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
+(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
+(((|#4|) . T))
+((((-505)) |has| |#4| (-572 (-505))))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-805)) . T))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-523)))
+(-3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523)))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+((((-805)) . T))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-523)))
+(|has| |#1| (-344))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(((|#1| (-388 (-516))) . T))
+(((|#1| (-388 (-516))) . T))
(|has| |#1| (-140))
-(((|#1|) . T))
(|has| |#1| (-138))
-((($) . T))
-(|has| |#1| (-520))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-((($) . T))
-(((|#1|) . T))
-(((|#2|) . T) (((-528)) |has| |#2| (-591 (-528))))
-((((-802)) . T))
-((((-528)) |has| |#1| (-591 (-528))) ((|#1|) . T))
-((((-528)) |has| |#1| (-591 (-528))) ((|#1|) . T))
-((((-528)) |has| |#1| (-591 (-528))) ((|#1|) . T))
-((((-1078) (-51)) . T))
+((($) -3810 (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) ((|#1|) |has| |#1| (-162)))
+((($) . T) (((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) ((|#1|) . T))
+((((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) (($) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((|#1|) . T))
+(((#1=(-388 (-516)) #1#) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) (($ $) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((|#1| |#1|) . T))
+((($) -3810 (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) ((|#1|) |has| |#1| (-162)))
+(((|#1| (-388 (-516)) (-1011)) . T))
+((((-1098)) -12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))))
+((($ $) . T))
+(|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
(((|#1| |#2|) . T))
-((((-528) (-137)) . T))
-(((#0=(-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) #0#) |has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))
-((($) -1463 (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-162)) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-(|has| |#1| (-793))
-(((|#2| (-717) (-1008)) . T))
+((((-805)) . T))
(((|#1| |#2|) . T))
-(-1463 (|has| |#1| (-162)) (|has| |#1| (-520)))
-(|has| |#1| (-737))
-(((|#1|) |has| |#1| (-162)))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((#1=(-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) #1#) |has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) |has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-505)) |has| |#4| (-572 (-505))))
(((|#4|) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
+(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
(((|#4|) . T))
+((((-805)) . T) (((-594 |#4|)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-505)) . T) (((-388 (-1092 (-516)))) . T) (((-208)) . T) (((-359)) . T))
+((((-388 (-516))) . T) (((-516)) . T))
+((((-359)) . T) (((-208)) . T) (((-805)) . T))
+((($) . T) (((-388 (-516))) . T))
+((($ $) . T) ((#1=(-388 (-516)) #1#) . T))
+((((-388 (-516))) . T) (($) . T))
+((((-388 (-516))) . T) (($) . T))
+((((-388 (-516))) . T) (($) . T))
(((|#1| |#2|) . T))
-(-1463 (|has| |#1| (-140)) (-12 (|has| |#1| (-343)) (|has| |#2| (-140))))
-(-1463 (|has| |#1| (-138)) (-12 (|has| |#1| (-343)) (|has| |#2| (-138))))
-(((|#4|) . T))
-(|has| |#1| (-138))
-((((-1078) |#1|) . T))
-(|has| |#1| (-140))
-(((|#1|) . T))
-((((-528)) . T))
-((((-802)) . T))
+((((-805)) . T))
(((|#1| |#2|) . T))
-((((-802)) . T))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#3|) . T))
-((((-1169 |#1| |#2| |#3|)) |has| |#1| (-343)))
-(-1463 (|has| |#1| (-793)) (|has| |#1| (-1023)))
-(((|#1|) . T))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-1023))))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-1023))) (((-896 |#1|)) . T))
-(|has| |#1| (-791))
-(|has| |#1| (-791))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(|has| |#2| (-343))
-(((|#1|) |has| |#1| (-162)))
-(((|#2|) |has| |#2| (-981)))
-((((-1078) |#1|) . T))
-(((|#3| |#3|) -12 (|has| |#3| (-290 |#3|)) (|has| |#3| (-1023))))
-(((|#2| (-832 |#1|)) . T))
-((($) . T))
-((((-368) (-1078)) . T))
-((($) |has| |#1| (-520)) ((|#1|) |has| |#1| (-162)) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-((((-802)) -1463 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-569 (-802))) (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-348)) (|has| |#2| (-673)) (|has| |#2| (-739)) (|has| |#2| (-791)) (|has| |#2| (-981)) (|has| |#2| (-1023))) (((-1177 |#2|)) . T))
-(((#0=(-51)) . T) (((-2 (|:| -2927 (-1078)) (|:| -1780 #0#))) . T))
-(((|#1|) . T))
-((((-802)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))
-((((-137)) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((#1=(-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) #1#) |has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) |has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+(((|#1| |#2|) . T))
+((((-505)) |has| |#2| (-572 (-505))) (((-831 (-359))) |has| |#2| (-572 (-831 (-359)))) (((-831 (-516))) |has| |#2| (-572 (-831 (-516)))))
+((($) . T))
+(((|#2| (-461 (-4232 |#1|) (-719))) . T))
+(((|#2|) . T))
+((((-805)) . T))
+((($) . T) (((-388 (-516))) |has| |#2| (-37 (-388 (-516)))) ((|#2|) . T))
(|has| |#2| (-138))
(|has| |#2| (-140))
-(|has| |#1| (-452))
-(-1463 (|has| |#1| (-452)) (|has| |#1| (-673)) (|has| |#1| (-839 (-1095))) (|has| |#1| (-981)))
-(|has| |#1| (-343))
-((((-802)) . T))
-(|has| |#1| (-37 (-387 (-528))))
-((((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-520)))
-((($) |has| |#1| (-520)))
-(|has| |#1| (-791))
-(|has| |#1| (-791))
-((((-802)) . T))
-((((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) (($) -1463 (|has| |#1| (-343)) (|has| |#1| (-520))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-343)) ((|#1|) |has| |#1| (-162)))
-(((|#1|) |has| |#1| (-162)) (((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) (($) -1463 (|has| |#1| (-343)) (|has| |#1| (-520))))
-((($) |has| |#1| (-520)) ((|#1|) |has| |#1| (-162)) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
+(-3810 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851)))
+((((-388 (-516))) |has| |#2| (-37 (-388 (-516)))) ((|#2|) . T) (($) -3810 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851))))
+(((#1=(-388 (-516)) #1#) |has| |#2| (-37 (-388 (-516)))) ((|#2| |#2|) . T) (($ $) -3810 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851))))
+(-3810 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851)))
+(-3810 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851)))
+((((-388 (-516))) |has| |#2| (-37 (-388 (-516)))) ((|#2|) |has| |#2| (-162)) (($) -3810 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851))))
+((((-388 (-516))) |has| |#2| (-37 (-388 (-516)))) ((|#2|) |has| |#2| (-162)) (($) -3810 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851))))
+(((|#2| (-461 (-4232 |#1|) (-719))) . T))
+(((|#2|) . T))
+(((|#2|) . T) (((-516)) |has| |#2| (-593 (-516))))
+(-3810 (|has| |#2| (-432)) (|has| |#2| (-851)))
+((($ $) . T) ((#1=(-806 |#1|) $) . T) ((#1# |#2|) . T))
+(|has| |#2| (-795))
+((((-806 |#1|)) . T))
+(|has| |#2| (-851))
+(|has| |#2| (-851))
+((((-388 (-516))) |has| |#2| (-975 (-388 (-516)))) (((-516)) |has| |#2| (-975 (-516))) ((|#2|) . T) (((-806 |#1|)) . T))
+(((|#2| (-461 (-4232 |#1|) (-719)) (-806 |#1|)) . T))
+(-3810 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-3810 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027)))
+(-3810 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027)))
+(((|#2|) |has| |#2| (-162)))
+(-3810 (|has| |#2| (-162)) (|has| |#2| (-675)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-3810 (|has| |#2| (-162)) (|has| |#2| (-675)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-3810 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-3810 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-3810 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-3810 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-3810 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+((($) -3810 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984))) ((|#2|) -3810 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))))
+(((|#2|) -3810 (|has| |#2| (-162)) (|has| |#2| (-344))))
+((((-805)) -3810 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-571 (-805))) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027))) (((-1179 |#2|)) . T))
+(|has| |#2| (-162))
+(((|#2|) -3810 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))) (($) |has| |#2| (-162)))
+(((|#2| |#2|) -3810 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))) (($ $) |has| |#2| (-162)))
+(((|#2|) |has| |#2| (-984)))
+((((-1098)) -12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984))))
+(-12 (|has| |#2| (-216)) (|has| |#2| (-984)))
+(|has| |#2| (-349))
+(((|#2|) |has| |#2| (-984)))
+(((|#2|) |has| |#2| (-984)) (((-516)) -12 (|has| |#2| (-593 (-516))) (|has| |#2| (-984))))
+(((|#2|) |has| |#2| (-1027)))
+(((|#2|) |has| |#2| (-1027)) (((-516)) -12 (|has| |#2| (-975 (-516))) (|has| |#2| (-1027))) (((-388 (-516))) -12 (|has| |#2| (-975 (-388 (-516)))) (|has| |#2| (-1027))))
+((((-516) |#2|) . T))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
+(((|#2|) . T))
+((((-516) |#2|) . T))
+((((-516) |#2|) . T))
+(|has| |#2| (-741))
+(-3810 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(-3810 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(-3810 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(-3810 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(|has| |#2| (-793))
+(|has| |#2| (-793))
+(((|#2|) |has| |#2| (-344)))
(((|#1| |#2|) . T))
-((((-1095)) |has| |#1| (-839 (-1095))))
-((((-849 |#1|)) . T) (((-387 (-528))) . T) (($) . T))
-((((-802)) . T))
-((((-802)) . T))
-(|has| |#1| (-1023))
-(((|#2| (-460 (-2138 |#1|) (-717)) (-804 |#1|)) . T))
-((((-387 (-528))) . #0=(|has| |#2| (-343))) (($) . #0#))
-(((|#1| (-500 (-1095)) (-1095)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-802)) . T))
-((((-802)) . T))
-(((|#3|) . T))
-(((|#3|) . T))
+((((-1103)) . T) (((-805)) . T))
(((|#1|) . T))
-(((|#1| |#1|) . T))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(|has| |#1| (-1027))
+(|has| |#1| (-1027))
(((|#1|) . T))
-(|has| |#2| (-162))
-(((|#2| |#2|) . T))
-(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
-(|has| |#1| (-138))
-(|has| |#1| (-140))
+((((-805)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-805)) . T))
+((((-516)) . T))
+((((-516)) . T) (($) . T) (((-388 (-516))) . T))
+((($) . T) (((-516)) . T) (((-388 (-516))) . T))
+((((-516)) . T) (($) . T) (((-388 (-516))) . T))
+((((-516)) . T) (((-388 (-516))) . T) (($) . T))
+(((#1=(-516) #1#) . T) ((#2=(-388 (-516)) #2#) . T) (($ $) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-505)) . T) (((-831 (-516))) . T) (((-359)) . T) (((-208)) . T))
+((((-388 (-516))) . T) (((-516)) . T))
+((((-516)) . T))
+((((-1081)) . T) (((-805)) . T))
+((((-158 (-359))) . T) (((-208)) . T) (((-359)) . T))
+((((-388 (-516))) . T) (((-516)) . T))
+((($) . T) (((-388 (-516))) . T))
+((($) . T) (((-388 (-516))) . T))
+((($) . T) (((-388 (-516))) . T))
+((((-388 (-516))) . T) (($) . T))
+(((#1=(-388 (-516)) #1#) . T) (($ $) . T))
+((($) . T))
+((($ $) . T) (((-569 $) $) . T))
+((((-805)) . T))
+((((-388 (-516))) . T) (((-516)) . T) (((-569 $)) . T))
+(((|#1|) . T))
+(|has| |#1| (-795))
+(((|#1|) . T))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(-3810 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-3810 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(((|#1|) . T))
+((((-505)) |has| |#1| (-572 (-505))))
+((((-516) |#1|) . T))
+((((-516) |#1|) . T))
+((((-516) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1027))
+(|has| |#1| (-1027))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-1027))))
+(((|#1| (-474 |#1| |#3|) (-474 |#1| |#2|)) . T))
+((((-110)) . T))
+((((-110)) . T))
+((((-516) (-110)) . T))
+((((-516) (-110)) . T))
+((((-516) (-110)) . T))
+((((-505)) . T))
+((((-110)) . T))
+((((-805)) . T))
+((((-110)) . T))
+((((-110)) . T))
+((((-805)) . T))
+((((-805)) . T))
+(((|#1| |#2|) . T))
+((((-805)) . T))
+(((|#1| |#2|) . T))
+((((-805)) . T))
+((((-805)) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+((((-805)) . T))
+(((|#1| |#2|) . T))
+((((-805)) . T))
+((((-805)) . T))
(((|#1|) . T))
-(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) . T))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-((((-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) . T))
-((((-1093 |#1| |#2| |#3|)) |has| |#1| (-343)))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-((((-1095) (-51)) . T))
-((($ $) . T))
-(((|#1| (-528)) . T))
-((((-849 |#1|)) . T))
-(((|#1|) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-981))) (($) -1463 (|has| |#1| (-839 (-1095))) (|has| |#1| (-981))))
-(((|#1|) . T) (((-528)) |has| |#1| (-972 (-528))) (((-387 (-528))) |has| |#1| (-972 (-387 (-528)))))
-(|has| |#1| (-793))
-(|has| |#1| (-793))
-((((-528) |#2|) . T))
-((((-528)) . T))
-((((-1169 |#1| |#2| |#3|)) -12 (|has| (-1169 |#1| |#2| |#3|) (-290 (-1169 |#1| |#2| |#3|))) (|has| |#1| (-343))))
-(|has| |#1| (-793))
-((((-635 |#2|)) . T) (((-802)) . T))
(((|#1| |#2|) . T))
-((((-387 (-891 |#1|))) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))))
-(((|#4| |#4|) -12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))))
-(((|#1|) |has| |#1| (-162)))
-(((|#4| |#4|) -12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))))
-(((|#3|) -1463 (|has| |#3| (-162)) (|has| |#3| (-343))))
-(|has| |#2| (-793))
-(|has| |#1| (-793))
-(-1463 (|has| |#2| (-343)) (|has| |#2| (-431)) (|has| |#2| (-848)))
-((($ $) . T) ((#0=(-387 (-528)) #0#) . T))
-((((-528) |#2|) . T))
-(((|#2|) -1463 (|has| |#2| (-162)) (|has| |#2| (-343))))
-(|has| |#1| (-329))
-(((|#3| |#3|) -12 (|has| |#3| (-290 |#3|)) (|has| |#3| (-1023))))
-((($) . T) (((-387 (-528))) . T))
-((((-528) (-110)) . T))
-(|has| |#1| (-766))
-(|has| |#1| (-766))
-(((|#1|) . T))
-(-1463 (|has| |#1| (-288)) (|has| |#1| (-343)) (|has| |#1| (-329)))
-(|has| |#1| (-791))
-(|has| |#1| (-791))
-(|has| |#1| (-791))
-(((|#1|) . T) (((-387 (-528))) . T) (($) . T))
-(|has| |#1| (-37 (-387 (-528))))
-((((-528)) . T) (($) . T) (((-387 (-528))) . T))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-329)))
-(|has| |#1| (-37 (-387 (-528))))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-((((-1095)) |has| |#1| (-839 (-1095))) (((-1008)) . T))
-(((|#1|) . T))
-(|has| |#1| (-791))
-(((#0=(-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) #0#) |has| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-290 (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))))))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(|has| |#1| (-1023))
(((|#1|) . T))
-(((|#2| |#2|) . T))
(((|#1|) . T))
-(((|#1| |#2| |#3| (-222 |#2| |#3|) (-222 |#1| |#3|)) . T))
+(|has| |#1| (-795))
(((|#1|) . T))
-(((|#3| |#3|) . T))
-(((|#2|) . T))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(-3810 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-3810 (|has| |#1| (-795)) (|has| |#1| (-1027)))
(((|#1|) . T))
-(((|#1| (-500 |#2|) |#2|) . T))
-((((-802)) . T))
-((((-717)) . T) (((-802)) . T))
-(((|#1| (-717) (-1008)) . T))
-(((|#3|) . T))
+((((-505)) |has| |#1| (-572 (-505))))
+((((-516) |#1|) . T))
+((((-516) |#1|) . T))
+((((-516) |#1|) . T))
(((|#1|) . T))
-((((-137)) . T))
-(((|#2|) |has| |#2| (-162)))
-(-1463 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-348)) (|has| |#2| (-673)) (|has| |#2| (-739)) (|has| |#2| (-791)) (|has| |#2| (-981)) (|has| |#2| (-1023)))
(((|#1|) . T))
-(|has| |#1| (-138))
-(|has| |#1| (-140))
-(|has| |#3| (-162))
-(((|#4|) |has| |#4| (-343)))
-(((|#3|) |has| |#3| (-343)))
+((((-543 |#1|)) . T))
+((((-543 |#1|)) . T))
+((((-543 |#1|)) . T))
+((((-543 |#1|)) . T) (($) . T) (((-388 (-516))) . T))
+(((#1=(-543 |#1|) #1#) . T) (($ $) . T) ((#2=(-388 (-516)) #2#) . T))
+((((-388 (-516))) . T) (($) . T))
+((((-543 |#1|)) . T) (((-388 (-516))) . T) (($) . T))
+((((-805)) . T))
+((((-543 |#1|)) . T) (((-388 (-516))) . T) (($) . T))
+(|has| $ (-140))
+((((-543 |#1|)) . T))
(((|#1|) . T))
-(((|#2|) |has| |#1| (-343)))
-((((-802)) . T))
-(((|#2|) . T))
-(((|#1| (-1091 |#1|)) . T))
-((((-1008)) . T) ((|#1|) . T) (((-528)) |has| |#1| (-972 (-528))) (((-387 (-528))) |has| |#1| (-972 (-387 (-528)))))
-((($) . T) ((|#1|) . T) (((-387 (-528))) . T))
-(((|#2|) . T))
-((((-1093 |#1| |#2| |#3|)) |has| |#1| (-343)))
-((($) |has| |#1| (-791)))
-(|has| |#1| (-848))
-((((-802)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
+(|has| |#1| (-1027))
+(|has| |#1| (-1027))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-1027))))
+(((|#1| |#4| |#5|) . T))
(((|#1|) . T))
-(((|#1| |#2|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((#0=(-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) #0#) |has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-290 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)))))
-(-1463 (|has| |#2| (-431)) (|has| |#2| (-848)))
-(-1463 (|has| |#1| (-431)) (|has| |#1| (-848)))
-(((|#1|) . T) (($) . T))
-(((|#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))
-(((|#1| |#2|) . T))
(((|#1|) . T))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(-3810 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-3810 (|has| |#1| (-795)) (|has| |#1| (-1027)))
(((|#1|) . T))
+((((-505)) |has| |#1| (-572 (-505))))
+((((-516) |#1|) . T))
+((((-516) |#1|) . T))
+((((-516) |#1|) . T))
(((|#1|) . T))
-(((|#3|) -1463 (|has| |#3| (-162)) (|has| |#3| (-343))))
-(|has| |#1| (-793))
-(|has| |#1| (-520))
-((((-541 |#1|)) . T))
+(((|#1|) . T))
+(|has| |#1| (-795))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-561 |#1| |#3|) (-561 |#1| |#2|)) . T))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(|has| |#1| (-1027))
+(|has| |#1| (-1027))
+(((|#1|) . T))
+(((|#1| (-561 |#1| |#3|) (-561 |#1| |#2|)) . T))
+((((-719) |#1|) . T))
+((((-805)) . T))
+((((-1029)) . T))
+((((-805)) . T))
+((((-1081) (-1098) (-516) (-208) (-805)) . T))
((($) . T))
-(((|#2|) . T))
-(-1463 (-12 (|has| |#1| (-343)) (|has| |#2| (-766))) (-12 (|has| |#1| (-343)) (|has| |#2| (-793))))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-520)))
-((((-849 |#1|)) . T))
-(((|#1| (-472 |#1| |#3|) (-472 |#1| |#2|)) . T))
-(((|#1| |#4| |#5|) . T))
-(((|#1| (-717)) . T))
-((((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-520)))
-((((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) (($) -1463 (|has| |#1| (-343)) (|has| |#1| (-520))) (((-1093 |#1| |#2| |#3|)) |has| |#1| (-343)) ((|#1|) |has| |#1| (-162)))
-(((|#1|) |has| |#1| (-162)) (((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) (($) -1463 (|has| |#1| (-343)) (|has| |#1| (-520))))
-((($) |has| |#1| (-520)) ((|#1|) |has| |#1| (-162)) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-((((-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) . T))
-((((-387 |#2|)) . T) (((-387 (-528))) . T) (($) . T))
-((((-620 |#1|)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-504)) . T))
-((((-802)) . T))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-((((-802)) . T))
-((((-387 (-528))) |has| |#2| (-37 (-387 (-528)))) ((|#2|) |has| |#2| (-162)) (($) -1463 (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848))))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-(((|#2|) . T))
-(-1463 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-343)) (|has| |#3| (-348)) (|has| |#3| (-673)) (|has| |#3| (-739)) (|has| |#3| (-791)) (|has| |#3| (-981)) (|has| |#3| (-1023)))
-(-1463 (|has| |#2| (-162)) (|has| |#2| (-791)) (|has| |#2| (-981)))
-((((-387 (-528))) |has| |#1| (-972 (-387 (-528)))) (((-528)) |has| |#1| (-972 (-528))) ((|#1|) . T))
-(|has| |#1| (-1117))
-(|has| |#1| (-1117))
-(-1463 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-348)) (|has| |#2| (-673)) (|has| |#2| (-739)) (|has| |#2| (-791)) (|has| |#2| (-981)) (|has| |#2| (-1023)))
-(|has| |#1| (-1117))
-(|has| |#1| (-1117))
-(((|#3| |#3|) . T))
-(((|#1|) . T) (((-387 (-528))) . T) (($) . T))
-((($ $) . T) ((#0=(-387 (-528)) #0#) . T) ((#1=(-387 |#1|) #1#) . T) ((|#1| |#1|) . T))
-((((-528)) . T) (($) . T) (((-387 (-528))) . T))
-(((|#3|) . T))
-((($) . T) (((-387 (-528))) . T) (((-387 |#1|)) . T) ((|#1|) . T))
-(((|#1|) . T) (((-387 (-528))) . T) (($) . T))
-(((|#1|) . T) (((-387 (-528))) . T) (($) . T))
-((((-1078) (-51)) . T))
-(|has| |#1| (-1023))
-(-1463 (|has| |#2| (-766)) (|has| |#2| (-793)))
-(((|#1|) . T))
-((($) -1463 (|has| |#1| (-343)) (|has| |#1| (-329))) (((-387 (-528))) -1463 (|has| |#1| (-343)) (|has| |#1| (-329))) ((|#1|) . T))
-(((|#1|) |has| |#1| (-162)) (($) . T))
+((((-805)) . T))
((($) . T))
-((((-1093 |#1| |#2| |#3|)) -12 (|has| (-1093 |#1| |#2| |#3|) (-290 (-1093 |#1| |#2| |#3|))) (|has| |#1| (-343))))
-((((-802)) . T))
-(-1463 (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848)))
-((($) . T))
-(-1463 (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-((((-802)) . T))
-(-1463 (|has| |#1| (-431)) (|has| |#1| (-848)))
-(|has| |#2| (-848))
-(|has| |#1| (-343))
-(((|#2|) |has| |#2| (-1023)))
-(-1463 (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-((($) . T) ((|#2|) . T))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-431)) (|has| |#1| (-848)))
-(|has| |#1| (-848))
-((((-504)) . T) (((-387 (-1091 (-528)))) . T) (((-207)) . T) (((-359)) . T))
-((((-359)) . T) (((-207)) . T) (((-802)) . T))
-(|has| |#1| (-848))
-(|has| |#1| (-848))
-(-1463 (|has| |#1| (-793)) (|has| |#1| (-1023)))
-(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))
((($ $) . T))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
+((($) . T))
+((($) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-1081)) . T) (((-505)) . T) (((-516)) . T) (((-831 (-516))) . T) (((-359)) . T) (((-208)) . T))
+((((-516)) . T))
+(((|#1| |#2|) . T))
+((((-805)) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((#1=(-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) #1#) |has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) |has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+(((|#1| |#2|) . T))
+((($) . T))
((($ $) . T))
-((((-528) (-110)) . T))
((($) . T))
+((((-805)) . T))
+((($) . T))
+((($) . T))
+((((-516)) . T))
(((|#1|) . T))
-((((-528)) . T))
-((((-110)) . T))
-(-1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-520)))
-(|has| |#1| (-37 (-387 (-528))))
-(((|#1| (-528)) . T))
((($) . T))
-(((|#2|) . T) (((-528)) |has| |#2| (-591 (-528))))
-((((-528)) |has| |#1| (-591 (-528))) ((|#1|) . T))
+((((-805)) . T))
+((($) . T))
+((($ $) . T))
+((($) . T))
+((($) . T))
(((|#1|) . T))
-((((-528)) . T))
-(((|#1| |#2|) . T))
-((((-1095)) |has| |#1| (-981)))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
+((((-516)) . T))
+((($) . T))
+((($) . T))
+((($) . T))
+(|has| $ (-140))
+((($) . T))
+((((-805)) . T))
+((($) . T) (((-388 (-516))) . T))
+((($) . T) (((-388 (-516))) . T))
+((($ $) . T) ((#1=(-388 (-516)) #1#) . T))
+((((-388 (-516))) . T) (($) . T))
+((((-388 (-516))) . T) (($) . T))
+(((|#1|) . T))
+(((#1=(-388 (-516)) #1#) . T))
+((((-388 (-516))) . T))
+((((-805)) . T))
+((((-388 (-516))) . T))
+((((-388 (-516))) . T))
+((((-137)) . T))
+((((-137)) . T))
+((((-516) (-137)) . T))
+((((-516) (-137)) . T))
+((((-516) (-137)) . T))
+((((-137)) . T))
+((((-805)) . T))
+((((-137)) . T))
+((((-137)) . T))
+(|has| |#1| (-15 * (|#1| (-516) |#1|)))
+((((-805)) . T))
+((($ $) . T))
+((((-1098)) -12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))))
+(((|#1| (-516) (-1011)) . T))
+((($) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((|#1|) . T))
+(|has| |#1| (-138))
+(|has| |#1| (-140))
+(-3810 (|has| |#1| (-162)) (|has| |#1| (-523)))
+((((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((|#1|) . T) (($) -3810 (|has| |#1| (-162)) (|has| |#1| (-523))))
+(((#1=(-388 (-516)) #1#) |has| |#1| (-37 (-388 (-516)))) ((|#1| |#1|) . T) (($ $) -3810 (|has| |#1| (-162)) (|has| |#1| (-523))))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+((((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-523)))
+((((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-523)))
+(((|#1| (-516)) . T))
+(((|#1| (-516)) . T))
+((($) |has| |#1| (-523)))
+((($ $) |has| |#1| (-523)))
+((($) |has| |#1| (-523)))
+((($) |has| |#1| (-523)))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+((($) . T))
+((((-805)) . T))
+((((-805)) . T))
(((|#1|) . T))
-((((-802)) . T))
-(((|#1| (-528)) . T))
-(((|#1| (-1169 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
-(((|#1| (-387 (-528))) . T))
-(((|#1| (-1141 |#1| |#2| |#3|)) . T))
-(((|#1| (-717)) . T))
+((((-516) |#1|) . T))
+((((-516) |#1|) . T))
+((((-516) |#1|) . T))
+((((-505)) |has| |#1| (-572 (-505))))
(((|#1|) . T))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-((((-802)) . T))
-(|has| |#1| (-1023))
-((((-1078) |#1|) . T))
-((($) . T))
-(|has| |#2| (-140))
-(|has| |#2| (-138))
-(((|#1| (-500 (-764 (-1095))) (-764 (-1095))) . T))
-((((-802)) . T))
-((((-1163 |#1| |#2| |#3| |#4|)) . T))
-((((-1163 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-981)))
-((((-528) (-110)) . T))
-((((-802)) |has| |#1| (-1023)))
-(|has| |#2| (-162))
-((((-528)) . T))
-(|has| |#2| (-791))
+(-3810 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-3810 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
(((|#1|) . T))
-((((-528)) . T))
-((((-802)) . T))
-(-1463 (|has| |#1| (-138)) (|has| |#1| (-329)))
-(|has| |#1| (-140))
-((((-802)) . T))
-(((|#3|) . T))
-(-1463 (|has| |#3| (-162)) (|has| |#3| (-791)) (|has| |#3| (-981)))
-((((-802)) . T))
-((((-1162 |#2| |#3| |#4|)) . T) (((-1163 |#1| |#2| |#3| |#4|)) . T))
-((((-802)) . T))
-((((-47)) -12 (|has| |#1| (-520)) (|has| |#1| (-972 (-528)))) (((-568 $)) . T) ((|#1|) . T) (((-528)) |has| |#1| (-972 (-528))) (((-387 (-528))) -1463 (-12 (|has| |#1| (-520)) (|has| |#1| (-972 (-528)))) (|has| |#1| (-972 (-387 (-528))))) (((-387 (-891 |#1|))) |has| |#1| (-520)) (((-891 |#1|)) |has| |#1| (-981)) (((-1095)) . T))
-(((|#1|) . T) (($) . T))
-(((|#1| (-717)) . T))
-((($) -1463 (|has| |#1| (-343)) (|has| |#1| (-520))) (((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) ((|#1|) |has| |#1| (-162)))
-(((|#1|) |has| |#1| (-290 |#1|)))
-((((-1163 |#1| |#2| |#3| |#4|)) . T))
-((((-528)) |has| |#1| (-825 (-528))) (((-359)) |has| |#1| (-825 (-359))))
+(|has| |#1| (-795))
(((|#1|) . T))
-(|has| |#1| (-520))
(((|#1|) . T))
-((((-802)) . T))
-(((|#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) |has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))))
-(((|#1|) |has| |#1| (-162)))
-((($) |has| |#1| (-520)) ((|#1|) |has| |#1| (-162)) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#2| |#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))
+((((-126)) . T) (((-805)) . T))
+(((|#1|) -3810 (|has| |#2| (-348 |#1|)) (|has| |#2| (-399 |#1|))))
+(((|#1|) |has| |#2| (-399 |#1|)))
(((|#1|) . T))
-(((|#3|) |has| |#3| (-1023)))
-(((|#2|) -1463 (|has| |#2| (-162)) (|has| |#2| (-343))))
-((((-1162 |#2| |#3| |#4|)) . T))
-((((-110)) . T))
-(|has| |#1| (-766))
-(|has| |#1| (-766))
-(((|#1| (-528) (-1008)) . T))
-((($) |has| |#1| (-290 $)) ((|#1|) |has| |#1| (-290 |#1|)))
-(|has| |#1| (-791))
-(|has| |#1| (-791))
-(((|#1| (-528) (-1008)) . T))
-(-1463 (|has| |#1| (-839 (-1095))) (|has| |#1| (-981)))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-(((|#1| (-387 (-528)) (-1008)) . T))
-(((|#1| (-717) (-1008)) . T))
+(((|#1|) . T))
+(((|#2|) . T) (((-805)) . T))
+(((|#1|) . T))
+(((|#1| |#1|) . T))
+(((|#1|) . T))
+((((-1081) |#1|) . T))
+((((-1081) |#1|) . T))
+((((-1081) |#1|) . T))
+((((-1081) |#1|) . T))
+((((-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) . T))
+((((-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) . T))
+(((|#1|) . T) (((-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((#1=(-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) #1#) |has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-291 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) (((-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) |has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-291 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)))))
+((((-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) . T))
+((((-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) . T))
+((((-1081) |#1|) . T))
+((((-805)) . T))
+((((-369) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) . T))
+((((-505)) |has| |#1| (-572 (-505))) (((-831 (-359))) |has| |#1| (-572 (-831 (-359)))) (((-831 (-516))) |has| |#1| (-572 (-831 (-516)))))
+(((|#1|) . T))
+((((-805)) . T))
(|has| |#1| (-793))
-(((#0=(-849 |#1|) #0#) . T) (($ $) . T) ((#1=(-387 (-528)) #1#) . T))
-(|has| |#2| (-138))
-(|has| |#2| (-140))
+(|has| |#1| (-793))
+(|has| |#1| (-793))
+(|has| |#1| (-793))
+(|has| |#1| (-793))
+(|has| |#1| (-793))
+(((|#2|) . T))
+((((-805)) . T))
+(((|#2|) . T))
+(((|#2| |#2|) . T))
+(((|#2|) . T) (($) . T))
(((|#2|) . T))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
(|has| |#1| (-138))
(|has| |#1| (-140))
-(|has| |#1| (-1023))
-((((-849 |#1|)) . T) (($) . T) (((-387 (-528))) . T))
-(|has| |#1| (-1023))
+(((|#2|) . T) (((-388 (-516))) |has| |#1| (-975 (-388 (-516)))) (((-516)) |has| |#1| (-975 (-516))) ((|#1|) . T))
+(((|#1|) . T))
+((((-388 |#2|)) . T))
+((($) . T))
+((($ $) . T))
+((($) . T))
+((($) . T))
+(|has| |#2| (-216))
+((($) . T))
+((((-805)) . T))
+((((-1098)) |has| |#2| (-841 (-1098))))
+(((|#2|) . T))
+((((-805)) . T))
+((((-1081) (-50)) . T))
+((((-805)) . T))
+((((-1081) (-50)) . T))
+((((-1081) (-50)) . T))
+((((-1081) (-50)) . T))
+((((-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))) . T))
+((((-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))) . T))
+(((#1=(-50)) . T) (((-2 (|:| -4139 (-1081)) (|:| -2131 #1#))) . T))
+(((#1=(-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) #1#) |has| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-291 (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))))))
+((((-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))) |has| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-291 (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))))))
+((((-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))) . T))
+((((-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))) . T))
+((((-1081) (-50)) . T))
+(((|#1|) -3810 (|has| |#2| (-348 |#1|)) (|has| |#2| (-399 |#1|))))
+(((|#1|) |has| |#2| (-399 |#1|)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#2|) . T) (((-805)) . T))
(((|#1|) . T))
-(|has| |#1| (-1023))
-((((-528)) -12 (|has| |#1| (-343)) (|has| |#2| (-591 (-528)))) ((|#2|) |has| |#1| (-343)))
-(-1463 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-348)) (|has| |#2| (-673)) (|has| |#2| (-739)) (|has| |#2| (-791)) (|has| |#2| (-981)) (|has| |#2| (-1023)))
-(((|#2|) |has| |#2| (-162)))
-(((|#1|) |has| |#1| (-162)))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-((((-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) . T))
-((((-802)) . T))
-(|has| |#3| (-791))
-((((-802)) . T))
-((((-1162 |#2| |#3| |#4|) (-299 |#2| |#3| |#4|)) . T))
-((((-802)) . T))
-(((|#1| |#1|) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-981))))
-(((|#1|) . T))
-((((-528)) . T))
-((((-528)) . T))
-(((|#1|) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-981))))
-(((|#2|) |has| |#2| (-343)))
-((($) . T) ((|#1|) . T) (((-387 (-528))) |has| |#1| (-343)))
-(|has| |#1| (-793))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-(((|#2|) . T))
-((((-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) |has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-290 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))))))
-(-1463 (|has| |#1| (-431)) (|has| |#1| (-848)))
-(((|#2|) . T) (((-528)) |has| |#2| (-591 (-528))))
-((((-802)) . T))
-((((-802)) . T))
-((((-504)) . T) (((-528)) . T) (((-831 (-528))) . T) (((-359)) . T) (((-207)) . T))
-((((-802)) . T))
-(|has| |#1| (-37 (-387 (-528))))
-((((-528)) . T) (($) . T) (((-387 (-528))) . T))
-((((-528)) . T) (($) . T) (((-387 (-528))) . T))
-(|has| |#1| (-215))
-(((|#1|) . T))
-(((|#1| (-528)) . T))
-(|has| |#1| (-791))
-(((|#1| (-1093 |#1| |#2| |#3|)) . T))
-(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
+(|has| |#1| (-769))
(((|#1|) . T))
-(((|#1| (-387 (-528))) . T))
-(((|#1| (-1086 |#1| |#2| |#3|)) . T))
-(((|#1| (-717)) . T))
(((|#1|) . T))
-(((|#1| |#1| |#2| (-222 |#1| |#2|) (-222 |#1| |#2|)) . T))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(-3810 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-3810 (|has| |#1| (-795)) (|has| |#1| (-1027)))
(((|#1|) . T))
+((((-505)) |has| |#1| (-572 (-505))))
+((((-516) |#1|) . T))
+((((-516) |#1|) . T))
+((((-516) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-795))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-505)) |has| |#1| (-572 (-505))))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1027))
+(|has| |#1| (-1027))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-1027))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-805)) . T))
+(|has| |#1| (-739))
+(|has| |#1| (-739))
+(|has| |#1| (-739))
+(|has| |#1| (-739))
+(|has| |#1| (-739))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+((((-805)) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+(((|#1| |#1|) . T))
+(((|#1|) . T))
+((((-388 (-516))) |has| |#1| (-975 (-388 (-516)))) (((-516)) |has| |#1| (-975 (-516))) ((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-138))
-(|has| |#1| (-140))
-(|has| |#1| (-140))
-(|has| |#1| (-138))
-(((|#1| |#2|) . T))
-((((-127)) . T))
-((((-137)) . T))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(((|#1|) . T))
-(-1463 (|has| |#2| (-162)) (|has| |#2| (-791)) (|has| |#2| (-981)))
-(((|#1| |#1|) . T) ((#0=(-387 (-528)) #0#) . T) (($ $) . T))
-((((-802)) . T))
-(((|#1|) . T) (((-387 (-528))) . T) (($) . T))
-((($) . T) ((|#1|) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-1023))))
-(|has| |#1| (-343))
-(|has| |#1| (-343))
-(|has| (-387 |#2|) (-215))
-(|has| |#1| (-848))
-(((|#2|) |has| |#2| (-981)))
-(((|#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) |has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))))
-(|has| |#1| (-343))
(((|#1|) |has| |#1| (-162)))
+((((-805)) . T))
+(((|#1|) . T))
(((|#1| |#1|) . T))
-((((-809 |#1|)) . T))
-((((-802)) . T))
+(((|#1|) . T) (($) . T))
+(((|#1|) |has| |#1| (-162)))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1023)))
-(|has| |#2| (-793))
+(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-387 (-528))) . T) (((-528)) . T) (((-568 $)) . T))
+((((-388 (-516))) |has| |#1| (-975 (-388 (-516)))) (((-516)) |has| |#1| (-975 (-516))) ((|#1|) . T))
(((|#1|) . T))
-((((-802)) . T))
-((($) . T))
-(|has| |#1| (-793))
-((((-802)) . T))
-(((|#1| (-500 |#2|) |#2|) . T))
-(((|#1| (-528) (-1008)) . T))
-((((-849 |#1|)) . T))
-((((-802)) . T))
-(((|#1| |#2|) . T))
+(((|#1|) |has| |#1| (-162)))
+((((-805)) . T))
(((|#1|) . T))
-(((|#1| (-387 (-528)) (-1008)) . T))
-(((|#1| (-717) (-1008)) . T))
-(((#0=(-387 |#2|) #0#) . T) ((#1=(-387 (-528)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-528)) -1463 (|has| (-387 (-528)) (-972 (-528))) (|has| |#1| (-972 (-528)))) (((-387 (-528))) . T))
-(((|#1| (-559 |#1| |#3|) (-559 |#1| |#2|)) . T))
+(((|#1| |#1|) . T))
+(((|#1|) . T) (($) . T))
(((|#1|) |has| |#1| (-162)))
(((|#1|) . T))
+(((|#2| |#2|) . T) ((|#1| |#1|) . T))
(((|#1|) . T))
+((((-388 (-516))) |has| |#1| (-975 (-388 (-516)))) (((-516)) |has| |#1| (-975 (-516))) ((|#1|) . T))
(((|#1|) . T))
-((((-387 |#2|)) . T) (((-387 (-528))) . T) (($) . T))
-(|has| |#2| (-215))
-(((|#2| (-500 (-804 |#1|)) (-804 |#1|)) . T))
-((((-802)) . T))
-((($) |has| |#1| (-520)) ((|#1|) |has| |#1| (-162)) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-((((-802)) . T))
-(((|#1| |#3|) . T))
-((((-802)) . T))
(((|#1|) |has| |#1| (-162)))
-((((-645)) . T))
-((((-645)) . T))
-(((|#2|) |has| |#2| (-162)))
-(|has| |#2| (-791))
-((((-110)) |has| |#1| (-1023)) (((-802)) -1463 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-452)) (|has| |#1| (-673)) (|has| |#1| (-839 (-1095))) (|has| |#1| (-981)) (|has| |#1| (-1035)) (|has| |#1| (-1023))))
+((((-805)) . T))
+(((|#1|) . T))
+(((|#1| |#1|) . T))
(((|#1|) . T) (($) . T))
-(((|#1| |#2|) . T))
-((((-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))) . T))
-((((-802)) . T))
-((((-528) |#1|) . T))
-((((-645)) . T) (((-387 (-528))) . T) (((-528)) . T))
-(((|#1| |#1|) |has| |#1| (-162)))
-(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) |has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))))
-((((-359)) . T))
-((((-645)) . T))
-((((-387 (-528))) . #0=(|has| |#2| (-343))) (($) . #0#))
(((|#1|) |has| |#1| (-162)))
-((((-387 (-891 |#1|))) . T))
+(((|#1|) . T))
+((((-622 |#1|)) . T))
+(((|#2| (-622 |#1|)) . T))
+(((|#2|) . T))
(((|#2| |#2|) . T))
-(-1463 (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848)))
-(-1463 (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
(((|#2|) . T))
-(|has| |#2| (-793))
-(((|#3|) |has| |#3| (-981)))
-(|has| |#2| (-848))
-(|has| |#1| (-848))
-(|has| |#1| (-343))
-(|has| |#1| (-793))
-((((-1095)) |has| |#2| (-839 (-1095))))
-((((-802)) . T))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-((((-387 (-528))) . T) (($) . T))
-(|has| |#1| (-452))
-(|has| |#1| (-348))
-(|has| |#1| (-348))
-(|has| |#1| (-348))
-(|has| |#1| (-343))
-(-1463 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-452)) (|has| |#1| (-520)) (|has| |#1| (-981)) (|has| |#1| (-1035)))
-(|has| |#1| (-37 (-387 (-528))))
-((((-114 |#1|)) . T))
-((((-114 |#1|)) . T))
-(|has| |#1| (-329))
-((((-137)) . T))
-(|has| |#1| (-37 (-387 (-528))))
-((($) . T))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(((|#2|) . T) (((-802)) . T))
-(((|#2|) . T) (((-802)) . T))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-793))
-((((-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) . T))
+((((-805)) . T))
+(((|#2|) . T))
+(((|#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-140))
-(|has| |#1| (-138))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) |has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) ((|#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))
(((|#2|) . T))
-(((|#3|) . T))
-((((-114 |#1|)) . T))
-(|has| |#1| (-348))
-(|has| |#1| (-793))
-(((|#2|) . T) (((-387 (-528))) |has| |#1| (-972 (-387 (-528)))) (((-528)) |has| |#1| (-972 (-528))) ((|#1|) . T))
-((((-114 |#1|)) . T))
-(((|#2|) |has| |#2| (-162)))
+(((|#2|) . T))
+(((|#2|) . T))
+(((|#2|) |has| |#2| (-6 (-4271 "*"))))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+((((-637 |#2|)) . T) (((-805)) . T))
+((($) . T) ((|#2|) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+((((-1098)) |has| |#2| (-841 (-1098))))
+(|has| |#2| (-216))
+(((|#2|) . T))
+(((|#2|) . T) (((-516)) |has| |#2| (-593 (-516))))
+(((|#2|) . T))
+(((|#2|) . T) (((-516)) |has| |#2| (-975 (-516))) (((-388 (-516))) |has| |#2| (-975 (-388 (-516)))))
+(((|#1| |#1| |#2| (-222 |#1| |#2|) (-222 |#1| |#2|)) . T))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
+(((|#2|) . T))
+(((|#1| |#2| (-222 |#1| |#2|) (-222 |#1| |#2|)) . T))
(((|#1|) . T))
-((((-528)) . T))
-(|has| |#1| (-343))
-(|has| |#1| (-343))
-((((-802)) . T))
-((((-802)) . T))
-((((-504)) |has| |#1| (-570 (-504))) (((-831 (-528))) |has| |#1| (-570 (-831 (-528)))) (((-831 (-359))) |has| |#1| (-570 (-831 (-359)))) (((-359)) . #0=(|has| |#1| (-957))) (((-207)) . #0#))
-(((|#1|) |has| |#1| (-343)))
-((((-802)) . T))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-((($ $) . T) (((-568 $) $) . T))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-520)))
-((($) . T) (((-1163 |#1| |#2| |#3| |#4|)) . T) (((-387 (-528))) . T))
-((($) -1463 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-520)) (|has| |#1| (-981))) ((|#1|) |has| |#1| (-162)) (((-387 (-528))) |has| |#1| (-520)))
-(|has| |#1| (-343))
-(|has| |#1| (-343))
-(|has| |#1| (-343))
-((((-359)) . T) (((-528)) . T) (((-387 (-528))) . T))
-((((-595 (-726 |#1| (-804 |#2|)))) . T) (((-802)) . T))
-((((-504)) |has| (-726 |#1| (-804 |#2|)) (-570 (-504))))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
+((((-805)) . T))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(|has| |#1| (-1027))
+(|has| |#1| (-1027))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-805)) . T))
+((((-505)) |has| |#1| (-572 (-505))))
+(((|#1| (-1179 |#1|) (-1179 |#1|)) . T))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(|has| |#1| (-1027))
+(|has| |#1| (-1027))
+(((|#1|) . T))
+(((|#1| (-1179 |#1|) (-1179 |#1|)) . T))
+((((-805)) . T))
+((((-647)) . T))
+((((-647)) . T))
+((((-647)) . T))
+((((-647)) . T))
+((((-647)) . T))
((((-359)) . T))
-(((|#3|) -12 (|has| |#3| (-290 |#3|)) (|has| |#3| (-1023))))
-((((-802)) . T))
-(-1463 (|has| |#2| (-431)) (|has| |#2| (-848)))
-(((|#1|) . T))
-(|has| |#1| (-793))
-(|has| |#1| (-793))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-1023))))
-((((-504)) |has| |#1| (-570 (-504))))
-(((|#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))
-(|has| |#1| (-1023))
-((((-802)) . T))
-((((-387 (-528))) . T) (((-528)) . T) (((-568 $)) . T))
-(|has| |#1| (-138))
-(|has| |#1| (-140))
-((((-528)) . T))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-520)))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-520)))
-(((#0=(-1162 |#2| |#3| |#4|)) . T) (((-387 (-528))) |has| #0# (-37 (-387 (-528)))) (($) . T))
-((((-528)) . T))
-(|has| |#1| (-343))
-(-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-140)) (|has| |#1| (-343))) (|has| |#1| (-140)))
-(-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-138)) (|has| |#1| (-343))) (|has| |#1| (-138)))
-(|has| |#1| (-343))
-(|has| |#1| (-138))
-(|has| |#1| (-140))
+((((-647)) . T))
+(((#1=(-647) (-1092 #1#)) . T))
+(((#1=(-647) (-1092 #1#)) . T))
+(((#1=(-647) (-1092 #1#)) . T))
+((((-647)) . T))
+((((-158 (-208))) . T) (((-158 (-359))) . T) (((-1092 (-647))) . T) (((-831 (-359))) . T))
+((((-647)) . T))
+((((-388 (-516))) . T) (((-647)) . T) (($) . T))
+((((-388 (-516))) . T) (((-647)) . T) (($) . T))
+((((-805)) . T))
+((((-388 (-516))) . T) (((-647)) . T) (($) . T))
+(((#1=(-388 (-516)) #1#) . T) ((#2=(-647) #2#) . T) (($ $) . T))
+((((-388 (-516))) . T) (((-647)) . T) (($) . T))
+((((-647)) . T) (((-388 (-516))) . T) (((-516)) . T))
+((((-359)) . T) (((-516)) . T) (((-388 (-516))) . T))
+((((-359)) . T))
+((($) . T) (((-388 (-516))) . T))
+((($ $) . T) ((#1=(-388 (-516)) #1#) . T))
+((((-388 (-516))) . T) (($) . T))
+((((-388 (-516))) . T) (($) . T))
+((((-208)) . T) (((-359)) . T) (((-831 (-359))) . T))
+((((-805)) . T))
+((((-388 (-516))) . T) (($) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-505)) . T) (((-516)) . T) (((-831 (-516))) . T) (((-359)) . T) (((-208)) . T))
+((($) . T))
+((($) . T))
+((((-805)) . T))
+((($) . T))
+((($ $) . T))
+((($) . T))
+((((-516)) . T))
+(((|#1|) . T) (((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((($) . T) (((-388 (-516))) . T))
+((($ $) . T) ((#1=(-388 (-516)) #1#) . T))
+((((-388 (-516))) . T) (($) . T))
+((((-388 (-516))) . T) (($) . T))
+((((-388 (-516))) . T) (($) . T))
+(|has| |#1| (-349))
+(((|#1|) . T))
+((((-805)) . T))
+((((-388 $) (-388 $)) |has| |#1| (-523)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#1| (-344))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-851)))
+(-3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
+(|has| |#1| (-344))
+(((|#1| (-719) (-1011)) . T))
+(|has| |#1| (-851))
+(|has| |#1| (-851))
+((((-1098)) |has| |#1| (-841 (-1098))) (((-1011)) . T))
+(|has| |#1| (-795))
+((((-516)) |has| |#1| (-593 (-516))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-719)) . T))
(|has| |#1| (-140))
(|has| |#1| (-138))
-(|has| |#1| (-215))
-(|has| |#1| (-343))
-(((|#3|) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-528)) |has| |#2| (-591 (-528))) ((|#2|) . T))
-(((|#2|) . T))
-(|has| |#1| (-1023))
-(((|#1| |#2|) . T))
-(((|#1|) . T) (((-528)) |has| |#1| (-591 (-528))))
-(((|#3|) |has| |#3| (-162)))
-(-1463 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-348)) (|has| |#2| (-673)) (|has| |#2| (-739)) (|has| |#2| (-791)) (|has| |#2| (-981)) (|has| |#2| (-1023)))
-((((-528)) . T))
-(((|#1| $) |has| |#1| (-267 |#1| |#1|)))
-((((-387 (-528))) . T) (($) . T) (((-387 |#1|)) . T) ((|#1|) . T))
-((((-802)) . T))
-(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -1463 (|has| |#1| (-271)) (|has| |#1| (-343))) ((#0=(-387 (-528)) #0#) |has| |#1| (-343)))
-((((-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) . T))
-((($) . T))
-((((-528) |#1|) . T))
-((((-1095)) |has| (-387 |#2|) (-839 (-1095))))
-(((|#1|) . T) (($) -1463 (|has| |#1| (-271)) (|has| |#1| (-343))) (((-387 (-528))) |has| |#1| (-343)))
-((((-504)) |has| |#2| (-570 (-504))))
-((((-635 |#2|)) . T) (((-802)) . T))
-(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))))
-(((|#4|) -12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))))
-((((-809 |#1|)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(-1463 (|has| |#4| (-739)) (|has| |#4| (-791)))
-(-1463 (|has| |#3| (-739)) (|has| |#3| (-791)))
-((((-802)) . T))
-((((-802)) . T))
-(((|#4|) -12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))))
-(((|#2|) |has| |#2| (-981)))
-(((|#1|) . T))
-((((-387 |#2|)) . T))
-(((|#1|) . T))
-(((|#3|) -12 (|has| |#3| (-290 |#3|)) (|has| |#3| (-1023))))
-((((-528) |#1|) . T))
-(((|#1|) . T))
-((($) . T))
-((((-528)) . T) (($) . T) (((-387 (-528))) . T))
-((((-387 (-528))) . T) (($) . T))
-((((-387 (-528))) . T) (($) . T))
-((((-387 (-528))) . T) (($) . T))
-(-1463 (|has| |#1| (-431)) (|has| |#1| (-1135)))
-((($) . T))
-((((-387 (-528))) |has| #0=(-387 |#2|) (-972 (-387 (-528)))) (((-528)) |has| #0# (-972 (-528))) ((#0#) . T))
-(((|#2|) . T) (((-528)) |has| |#2| (-591 (-528))))
-(((|#1| (-717)) . T))
-(|has| |#1| (-793))
-(((|#1|) . T) (((-528)) |has| |#1| (-591 (-528))))
-((($) -1463 (|has| |#1| (-343)) (|has| |#1| (-329))) (((-387 (-528))) -1463 (|has| |#1| (-343)) (|has| |#1| (-329))) ((|#1|) . T))
-((((-528)) . T))
-(|has| |#1| (-37 (-387 (-528))))
-((((-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))) |has| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-290 (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))))))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(|has| |#1| (-791))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-348))
-(|has| |#1| (-348))
-(|has| |#1| (-348))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-329))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(((|#1| |#2|) . T))
-((((-137)) . T))
-((((-726 |#1| (-804 |#2|))) . T))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-1023))))
-(|has| |#1| (-1117))
-(((|#1|) . T))
-(-1463 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-343)) (|has| |#3| (-348)) (|has| |#3| (-673)) (|has| |#3| (-739)) (|has| |#3| (-791)) (|has| |#3| (-981)) (|has| |#3| (-1023)))
-((((-1095) |#1|) |has| |#1| (-489 (-1095) |#1|)))
-(((|#2|) . T))
-((($ $) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1| |#1|) . T) ((#0=(-387 (-528)) #0#) |has| |#1| (-37 (-387 (-528)))))
-((($) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1|) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-((((-849 |#1|)) . T))
-((($) . T))
-((((-387 (-891 |#1|))) . T))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-((((-504)) |has| |#4| (-570 (-504))))
-((((-802)) . T) (((-595 |#4|)) . T))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-(((|#1|) . T))
-(|has| |#1| (-791))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) (((-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) |has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-290 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)))))
-(|has| |#1| (-1023))
-(|has| |#1| (-343))
-(|has| |#1| (-793))
-(((|#1|) . T))
+((($) -3810 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1|) |has| |#1| (-162)) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($) . T) ((|#1|) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1|) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($ $) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1| |#1|) . T) ((#1=(-388 (-516)) #1#) |has| |#1| (-37 (-388 (-516)))))
+((($) -3810 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1|) |has| |#1| (-162)) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
(((|#1|) . T))
+((((-1011)) . T) ((|#1|) . T) (((-516)) |has| |#1| (-975 (-516))) (((-388 (-516))) |has| |#1| (-975 (-388 (-516)))))
+(((|#1| (-719)) . T))
+(((#1=(-1011) |#1|) . T) ((#1# $) . T) (($ $) . T))
+((($) . T))
+(|has| |#1| (-1074))
(((|#1|) . T))
-((($) . T) (((-387 (-528))) . T))
-((($) -1463 (|has| |#1| (-343)) (|has| |#1| (-520))) (((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) ((|#1|) |has| |#1| (-162)))
-(|has| |#1| (-138))
-(|has| |#1| (-140))
-(-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-140)) (|has| |#1| (-343))) (|has| |#1| (-140)))
-(-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-138)) (|has| |#1| (-343))) (|has| |#1| (-138)))
+((((-805)) . T))
+(((|#1|) |has| |#1| (-162)))
+(((|#1|) |has| |#1| (-162)))
+(((|#1| |#1|) |has| |#1| (-162)))
+(((|#1|) |has| |#1| (-162)))
(|has| |#1| (-138))
(|has| |#1| (-140))
-(|has| |#1| (-140))
-(|has| |#1| (-138))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-1023))))
-((((-1169 |#1| |#2| |#3|)) |has| |#1| (-343)))
-(|has| |#1| (-791))
-(((|#1| |#2|) . T))
-(((|#1|) . T) (((-528)) |has| |#1| (-591 (-528))))
-((((-528)) |has| |#1| (-591 (-528))) ((|#1|) . T))
-((((-849 |#1|)) . T) (((-387 (-528))) . T) (($) . T))
-(|has| |#1| (-1023))
-(((|#1|) . T) (($) . T) (((-387 (-528))) . T) (((-528)) . T))
+(((|#2| |#2|) . T))
+((((-111)) . T) ((|#1|) . T))
+(((|#1|) |has| |#1| (-162)) (($) . T))
+((((-805)) . T))
+((($) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-505)) |has| |#2| (-572 (-505))) (((-831 (-359))) |has| |#2| (-572 (-831 (-359)))) (((-831 (-516))) |has| |#2| (-572 (-831 (-516)))))
+((($) . T))
+(((|#2| (-502 (-806 |#1|))) . T))
+(((|#2|) . T))
+((((-805)) . T))
+((($) . T) (((-388 (-516))) |has| |#2| (-37 (-388 (-516)))) ((|#2|) . T))
(|has| |#2| (-138))
(|has| |#2| (-140))
-((((-849 |#1|)) . T) (((-387 (-528))) . T) (($) . T))
-(|has| |#1| (-1023))
-(((|#2|) |has| |#2| (-162)))
-(((|#2|) . T))
-(((|#1| |#1|) . T))
-(((|#3|) |has| |#3| (-343)))
-((((-387 |#2|)) . T))
-((((-802)) . T))
-(((|#1|) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-504)) |has| |#1| (-570 (-504))))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-((((-1095) |#1|) |has| |#1| (-489 (-1095) |#1|)) ((|#1| |#1|) |has| |#1| (-290 |#1|)))
-(((|#1|) -1463 (|has| |#1| (-162)) (|has| |#1| (-343))))
-((((-296 |#1|)) . T))
-(((|#2|) |has| |#2| (-343)))
-(((|#2|) . T))
-((((-387 (-528))) . T) (((-645)) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((#0=(-726 |#1| (-804 |#2|)) #0#) |has| (-726 |#1| (-804 |#2|)) (-290 (-726 |#1| (-804 |#2|)))))
-((((-804 |#1|)) . T))
-(((|#2|) |has| |#2| (-162)))
+(-3810 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851)))
+((((-388 (-516))) |has| |#2| (-37 (-388 (-516)))) ((|#2|) . T) (($) -3810 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851))))
+(((#1=(-388 (-516)) #1#) |has| |#2| (-37 (-388 (-516)))) ((|#2| |#2|) . T) (($ $) -3810 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851))))
+(-3810 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851)))
+(-3810 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851)))
+((((-388 (-516))) |has| |#2| (-37 (-388 (-516)))) ((|#2|) |has| |#2| (-162)) (($) -3810 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851))))
+((((-388 (-516))) |has| |#2| (-37 (-388 (-516)))) ((|#2|) |has| |#2| (-162)) (($) -3810 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851))))
+(((|#2| (-502 (-806 |#1|))) . T))
+(((|#2|) . T))
+(((|#2|) . T) (((-516)) |has| |#2| (-593 (-516))))
+(-3810 (|has| |#2| (-432)) (|has| |#2| (-851)))
+((($ $) . T) ((#1=(-806 |#1|) $) . T) ((#1# |#2|) . T))
+(|has| |#2| (-795))
+((((-806 |#1|)) . T))
+(|has| |#2| (-851))
+(|has| |#2| (-851))
+((((-388 (-516))) |has| |#2| (-975 (-388 (-516)))) (((-516)) |has| |#2| (-975 (-516))) ((|#2|) . T) (((-806 |#1|)) . T))
+(((|#2| (-502 (-806 |#1|)) (-806 |#1|)) . T))
+(-12 (|has| |#1| (-349)) (|has| |#2| (-349)))
+(((|#1|) |has| |#1| (-162)))
+(((|#1|) |has| |#1| (-162)))
+(((|#1| |#1|) |has| |#1| (-162)))
(((|#1|) |has| |#1| (-162)))
-(((|#2|) . T))
-((((-1095)) |has| |#1| (-839 (-1095))) (((-1008)) . T))
-((((-1095)) |has| |#1| (-839 (-1095))) (((-1013 (-1095))) . T))
-(((|#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(|has| |#1| (-37 (-387 (-528))))
-(((|#4|) |has| |#4| (-981)) (((-528)) -12 (|has| |#4| (-591 (-528))) (|has| |#4| (-981))))
-(((|#3|) |has| |#3| (-981)) (((-528)) -12 (|has| |#3| (-591 (-528))) (|has| |#3| (-981))))
(|has| |#1| (-138))
(|has| |#1| (-140))
-((($ $) . T))
-(-1463 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-452)) (|has| |#1| (-673)) (|has| |#1| (-839 (-1095))) (|has| |#1| (-981)) (|has| |#1| (-1035)) (|has| |#1| (-1023)))
-(|has| |#1| (-520))
-(((|#2|) . T))
-((((-528)) . T))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
+(((|#1|) . T) ((|#2|) . T))
+(((|#1|) |has| |#1| (-162)) (($) . T))
+((((-805)) . T))
(((|#1|) . T))
-(-1463 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-520)) (|has| |#1| (-981)))
-((((-541 |#1|)) . T))
-((($) . T))
-(((|#1| (-57 |#1|) (-57 |#1|)) . T))
(((|#1|) . T))
+((((-805)) . T))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
(((|#1|) . T))
-((($) . T))
(((|#1|) . T))
-((((-802)) . T))
-(((|#2|) |has| |#2| (-6 (-4266 "*"))))
+((((-505)) |has| |#1| (-572 (-505))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+(((|#1| (-502 |#2|) |#2|) . T))
+(|has| |#1| (-851))
+(|has| |#1| (-851))
+((((-516)) -12 (|has| |#1| (-827 (-516))) (|has| |#2| (-827 (-516)))) (((-359)) -12 (|has| |#1| (-827 (-359))) (|has| |#2| (-827 (-359)))))
+(((|#2|) . T))
+(|has| |#1| (-795))
+(-3810 (|has| |#1| (-432)) (|has| |#1| (-851)))
+((((-516)) |has| |#1| (-593 (-516))) ((|#1|) . T))
(((|#1|) . T))
-((((-387 (-528))) |has| |#2| (-972 (-387 (-528)))) (((-528)) |has| |#2| (-972 (-528))) ((|#2|) . T) (((-804 |#1|)) . T))
-((($) . T) (((-114 |#1|)) . T) (((-387 (-528))) . T))
-((((-1047 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-528)) |has| |#1| (-972 (-528))) (((-387 (-528))) |has| |#1| (-972 (-387 (-528)))))
-((((-1091 |#1|)) . T) (((-1008)) . T) ((|#1|) . T) (((-528)) |has| |#1| (-972 (-528))) (((-387 (-528))) |has| |#1| (-972 (-387 (-528)))))
-((((-1047 |#1| (-1095))) . T) (((-1013 (-1095))) . T) ((|#1|) . T) (((-528)) |has| |#1| (-972 (-528))) (((-387 (-528))) |has| |#1| (-972 (-387 (-528)))) (((-1095)) . T))
-(|has| |#1| (-1023))
-((($) . T))
-(|has| |#1| (-1023))
-((((-528)) -12 (|has| |#1| (-825 (-528))) (|has| |#2| (-825 (-528)))) (((-359)) -12 (|has| |#1| (-825 (-359))) (|has| |#2| (-825 (-359)))))
-(((|#1| |#2|) . T))
-((((-1095) |#1|) . T))
-(((|#4|) . T))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-329)))
-((((-1095) (-51)) . T))
-((((-1162 |#2| |#3| |#4|) (-299 |#2| |#3| |#4|)) . T))
-((((-387 (-528))) |has| |#1| (-972 (-387 (-528)))) (((-528)) |has| |#1| (-972 (-528))) ((|#1|) . T))
-((((-802)) . T))
-(-1463 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-348)) (|has| |#2| (-673)) (|has| |#2| (-739)) (|has| |#2| (-791)) (|has| |#2| (-981)) (|has| |#2| (-1023)))
-(((#0=(-1163 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-387 (-528)) #1#) . T) (($ $) . T))
-(((|#1| |#1|) |has| |#1| (-162)) ((#0=(-387 (-528)) #0#) |has| |#1| (-520)) (($ $) |has| |#1| (-520)))
-(((|#1|) . T) (($) . T) (((-387 (-528))) . T))
-(((|#1| $) |has| |#1| (-267 |#1| |#1|)))
-((((-1163 |#1| |#2| |#3| |#4|)) . T) (((-387 (-528))) . T) (($) . T))
-(((|#1|) |has| |#1| (-162)) (((-387 (-528))) |has| |#1| (-520)) (($) |has| |#1| (-520)))
-(|has| |#1| (-343))
-(|has| |#1| (-138))
+(((|#1| (-502 |#2|)) . T))
+(-3810 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
+(-3810 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
+(-3810 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
(|has| |#1| (-140))
+(|has| |#1| (-138))
+((($) -3810 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1|) |has| |#1| (-162)) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((((-1050 |#1| |#2|)) . T) (((-887 |#1|)) |has| |#2| (-572 (-1098))) (((-805)) . T))
+((($) -3810 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1|) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($ $) -3810 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1| |#1|) . T) ((#1=(-388 (-516)) #1#) |has| |#1| (-37 (-388 (-516)))))
+(((|#1|) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) (($) . T))
+((($) -3810 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1|) |has| |#1| (-162)) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+(((|#1|) . T))
+((((-1050 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-516)) |has| |#1| (-975 (-516))) (((-388 (-516))) |has| |#1| (-975 (-388 (-516)))))
+(((|#1| (-502 |#2|)) . T))
+(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
+((($) . T))
+((((-887 |#1|)) |has| |#2| (-572 (-1098))) (((-1081)) -12 (|has| |#1| (-975 (-516))) (|has| |#2| (-572 (-1098)))) (((-831 (-516))) -12 (|has| |#1| (-572 (-831 (-516)))) (|has| |#2| (-572 (-831 (-516))))) (((-831 (-359))) -12 (|has| |#1| (-572 (-831 (-359)))) (|has| |#2| (-572 (-831 (-359))))) (((-505)) -12 (|has| |#1| (-572 (-505))) (|has| |#2| (-572 (-505)))))
+(((|#1| (-502 |#2|) |#2|) . T))
+(((|#1|) . T))
+((((-1092 |#1|)) . T) (((-805)) . T))
+((((-388 $) (-388 $)) |has| |#1| (-523)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#1| (-344))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-851)))
+(-3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
+(|has| |#1| (-344))
+(((|#1| (-719) (-1011)) . T))
+(|has| |#1| (-851))
+(|has| |#1| (-851))
+((((-1098)) |has| |#1| (-841 (-1098))) (((-1011)) . T))
+(|has| |#1| (-795))
+((((-516)) |has| |#1| (-593 (-516))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-719)) . T))
(|has| |#1| (-140))
(|has| |#1| (-138))
-((((-387 (-528))) . T) (($) . T))
-(((|#3|) |has| |#3| (-343)))
-(((|#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))
-((((-1095)) . T))
+((($) -3810 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1|) |has| |#1| (-162)) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($) . T) ((|#1|) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1|) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($ $) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1| |#1|) . T) ((#1=(-388 (-516)) #1#) |has| |#1| (-37 (-388 (-516)))))
+((($) -3810 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1|) |has| |#1| (-162)) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))
-(((|#2| |#3|) . T))
-(-1463 (|has| |#2| (-343)) (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848)))
-(((|#1| (-500 |#2|)) . T))
-(((|#1| (-717)) . T))
-(((|#1| (-500 (-1013 (-1095)))) . T))
-(((|#1|) |has| |#1| (-162)))
-(((|#1|) . T))
-(|has| |#2| (-848))
-(-1463 (|has| |#2| (-739)) (|has| |#2| (-791)))
-((((-802)) . T))
-((($ $) . T) ((#0=(-1162 |#2| |#3| |#4|) #0#) . T) ((#1=(-387 (-528)) #1#) |has| #0# (-37 (-387 (-528)))))
-((((-849 |#1|)) . T))
-(-12 (|has| |#1| (-343)) (|has| |#2| (-766)))
-((($) . T) (((-387 (-528))) . T))
-((($) . T))
+((((-1092 |#1|)) . T) (((-1011)) . T) ((|#1|) . T) (((-516)) |has| |#1| (-975 (-516))) (((-388 (-516))) |has| |#1| (-975 (-388 (-516)))))
+(((|#1| (-719)) . T))
+(((#1=(-1011) |#1|) . T) ((#1# $) . T) (($ $) . T))
((($) . T))
-(|has| |#1| (-343))
-(-1463 (|has| |#1| (-288)) (|has| |#1| (-343)) (|has| |#1| (-329)) (|has| |#1| (-520)))
-(|has| |#1| (-343))
-((($) . T) ((#0=(-1162 |#2| |#3| |#4|)) . T) (((-387 (-528))) |has| #0# (-37 (-387 (-528)))))
-(((|#1| |#2|) . T))
-((((-1093 |#1| |#2| |#3|)) |has| |#1| (-343)))
-(-1463 (-12 (|has| |#1| (-288)) (|has| |#1| (-848))) (|has| |#1| (-343)) (|has| |#1| (-329)))
-(-1463 (|has| |#1| (-839 (-1095))) (|has| |#1| (-981)))
-((((-528)) |has| |#1| (-591 (-528))) ((|#1|) . T))
-(((|#1| |#2|) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-110)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-387 |#2|)) . T) (((-387 (-528))) . T) (($) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| (-500 (-804 |#2|)) (-804 |#2|) (-726 |#1| (-804 |#2|))) . T))
-(|has| |#2| (-343))
-(|has| |#1| (-793))
-(((|#1|) . T))
-(((|#1|) . T))
+(|has| |#1| (-1074))
(((|#1|) . T))
-((((-802)) . T))
-(|has| |#1| (-1023))
-(((|#4|) . T))
-(((|#4|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-((((-387 $) (-387 $)) |has| |#1| (-520)) (($ $) . T) ((|#1| |#1|) . T))
-(|has| |#2| (-766))
-(((|#4|) . T))
-((($) . T))
-((($ $) . T))
-((($) . T))
-((((-802)) . T))
-(((|#1| (-500 (-1095))) . T))
-(((|#1|) |has| |#1| (-162)))
-((((-802)) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))))
-(((|#2|) -1463 (|has| |#2| (-6 (-4266 "*"))) (|has| |#2| (-162))))
-(-1463 (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848)))
-(-1463 (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-(|has| |#2| (-793))
-(|has| |#2| (-848))
-(|has| |#1| (-848))
-(((|#2|) |has| |#2| (-162)))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-((((-1169 |#1| |#2| |#3|)) |has| |#1| (-343)))
-((((-802)) . T))
-((((-802)) . T))
-((((-504)) . T) (((-528)) . T) (((-831 (-528))) . T) (((-359)) . T) (((-207)) . T))
-(((|#1| |#2|) . T))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-((((-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))) . T))
(((|#1|) . T))
-((((-802)) . T))
-(((|#1| |#2|) . T))
-(((|#1| (-387 (-528))) . T))
+(((|#1| |#1|) . T))
(((|#1|) . T))
-(-1463 (|has| |#1| (-271)) (|has| |#1| (-343)))
-((((-137)) . T))
-((((-387 |#2|)) . T) (((-387 (-528))) . T) (($) . T))
-(|has| |#1| (-791))
-((((-802)) . T))
-((((-802)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#1| |#1| |#2| (-222 |#1| |#2|) (-222 |#1| |#2|)) . T))
+((((-805)) . T))
+((($) . T) ((|#1|) . T))
(((|#1|) . T))
+(|has| |#1| (-138))
+(|has| |#1| (-140))
+((((-505)) |has| |#1| (-572 (-505))))
+(|has| |#1| (-349))
(((|#1|) . T))
+((((-1098) |#1|) |has| |#1| (-491 (-1098) |#1|)) ((|#1| |#1|) |has| |#1| (-291 |#1|)))
+(((|#1|) |has| |#1| (-291 |#1|)))
+(((|#1| $) |has| |#1| (-268 |#1| |#1|)))
+((((-935 |#1|)) . T) ((|#1|) . T))
+((((-935 |#1|)) . T) ((|#1|) . T) (((-516)) -3810 (|has| |#1| (-975 (-516))) (|has| (-935 |#1|) (-975 (-516)))) (((-388 (-516))) -3810 (|has| |#1| (-975 (-388 (-516)))) (|has| (-935 |#1|) (-975 (-388 (-516))))))
+(|has| |#1| (-795))
(((|#1|) . T))
+((((-805)) . T))
+(-3810 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-3810 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027)))
+(-3810 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027)))
+(((|#2|) |has| |#2| (-162)))
+(-3810 (|has| |#2| (-162)) (|has| |#2| (-675)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-3810 (|has| |#2| (-162)) (|has| |#2| (-675)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-3810 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-3810 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-3810 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-3810 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-3810 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+((($) -3810 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984))) ((|#2|) -3810 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))))
+(((|#2|) -3810 (|has| |#2| (-162)) (|has| |#2| (-344))))
+((((-805)) -3810 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-571 (-805))) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027))) (((-1179 |#2|)) . T))
+(|has| |#2| (-162))
+(((|#2|) -3810 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))) (($) |has| |#2| (-162)))
+(((|#2| |#2|) -3810 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))) (($ $) |has| |#2| (-162)))
+(((|#2|) |has| |#2| (-984)))
+((((-1098)) -12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984))))
+(-12 (|has| |#2| (-216)) (|has| |#2| (-984)))
+(|has| |#2| (-349))
+(((|#2|) |has| |#2| (-984)))
+(((|#2|) |has| |#2| (-984)) (((-516)) -12 (|has| |#2| (-593 (-516))) (|has| |#2| (-984))))
+(((|#2|) |has| |#2| (-1027)))
+(((|#2|) |has| |#2| (-1027)) (((-516)) -12 (|has| |#2| (-975 (-516))) (|has| |#2| (-1027))) (((-388 (-516))) -12 (|has| |#2| (-975 (-388 (-516)))) (|has| |#2| (-1027))))
+((((-516) |#2|) . T))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
+(((|#2|) . T))
+((((-516) |#2|) . T))
+((((-516) |#2|) . T))
+(|has| |#2| (-741))
+(-3810 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(-3810 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(-3810 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(-3810 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(|has| |#2| (-793))
+(|has| |#2| (-793))
+(((|#2|) |has| |#2| (-344)))
(((|#1| |#2|) . T))
-((((-387 (-528))) . T) (($) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-(((|#2| |#2|) . T) ((|#1| |#1|) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-504)) |has| |#1| (-570 (-504))) (((-831 (-528))) |has| |#1| (-570 (-831 (-528)))) (((-831 (-359))) |has| |#1| (-570 (-831 (-359)))))
-((((-1095) (-51)) . T))
-(((|#2|) . T))
(((|#1|) . T))
-(((|#1|) . T))
-((((-595 (-137))) . T) (((-1078)) . T))
-((((-802)) . T))
-((((-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) . T))
-((((-1095) |#1|) |has| |#1| (-489 (-1095) |#1|)) ((|#1| |#1|) |has| |#1| (-290 |#1|)))
-(|has| |#1| (-793))
-((((-802)) . T))
-((((-504)) |has| |#1| (-570 (-504))))
-((((-802)) . T))
-(((|#2|) |has| |#2| (-343)))
-((((-802)) . T))
-((((-504)) |has| |#4| (-570 (-504))))
-((((-802)) . T) (((-595 |#4|)) . T))
-(((|#2|) . T))
-((((-849 |#1|)) . T) (((-387 (-528))) . T) (($) . T))
-(-1463 (|has| |#4| (-162)) (|has| |#4| (-673)) (|has| |#4| (-791)) (|has| |#4| (-981)))
-(-1463 (|has| |#3| (-162)) (|has| |#3| (-673)) (|has| |#3| (-791)) (|has| |#3| (-981)))
-((((-1095) (-51)) . T))
-(-1463 (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(-1463 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-739)) (|has| |#2| (-791)) (|has| |#2| (-981)))
-(-1463 (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-791)) (|has| |#2| (-981)))
-(|has| |#1| (-848))
-(|has| |#1| (-848))
-(((|#2|) . T))
-(((|#1|) . T))
-((((-802)) . T))
-((((-528)) . T))
-(((#0=(-387 (-528)) #0#) . T) (($ $) . T))
-((((-387 (-528))) . T) (($) . T))
-(((|#1| (-387 (-528)) (-1008)) . T))
-(|has| |#1| (-1023))
-(|has| |#1| (-520))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-(|has| |#1| (-766))
-(((#0=(-849 |#1|) #0#) . T) (($ $) . T) ((#1=(-387 (-528)) #1#) . T))
-((((-387 |#2|)) . T))
-(|has| |#1| (-791))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-1023))))
-(((|#1| |#1|) . T) ((#0=(-387 (-528)) #0#) . T) ((#1=(-528) #1#) . T) (($ $) . T))
-((((-849 |#1|)) . T) (($) . T) (((-387 (-528))) . T))
-(((|#2|) |has| |#2| (-981)) (((-528)) -12 (|has| |#2| (-591 (-528))) (|has| |#2| (-981))))
-(((|#1|) . T) (((-387 (-528))) . T) (((-528)) . T) (($) . T))
-(((|#1| |#2| |#3| |#4|) . T))
+((((-805)) . T))
+(|has| |#1| (-216))
+((($) . T))
+(((|#1| (-502 (-766 (-1098))) (-766 (-1098))) . T))
+(|has| |#1| (-851))
+(|has| |#1| (-851))
+((((-1098)) |has| |#1| (-841 (-1098))) (((-766 (-1098))) . T))
+(|has| |#1| (-795))
+((($ $) . T) ((#1=(-1098) $) |has| |#1| . #2=((-216))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-766 (-1098)) |#1|) . T) ((#3# $) . T))
+(-3810 (|has| |#1| (-432)) (|has| |#1| (-851)))
+((((-516)) |has| |#1| (-593 (-516))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-502 (-766 (-1098)))) . T))
+(-3810 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
+(-3810 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
+(-3810 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
(|has| |#1| (-140))
(|has| |#1| (-138))
+((($) -3810 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1|) |has| |#1| (-162)) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($) . T) ((|#1|) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($) -3810 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1|) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($ $) -3810 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1| |#1|) . T) ((#1=(-388 (-516)) #1#) |has| |#1| (-37 (-388 (-516)))))
+((($) -3810 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1|) |has| |#1| (-162)) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+(((|#1|) . T))
+(((|#1| (-502 (-766 (-1098)))) . T))
+((((-1050 |#1| (-1098))) . T) (((-766 (-1098))) . T) ((|#1|) . T) (((-516)) |has| |#1| (-975 (-516))) (((-388 (-516))) |has| |#1| (-975 (-388 (-516)))) (((-1098)) . T))
+(((|#1| (-1098) (-766 (-1098)) (-502 (-766 (-1098)))) . T))
+(|has| |#2| (-344))
+(|has| |#2| (-344))
+(|has| |#2| (-344))
+(|has| |#2| (-344))
+((((-388 (-516))) . #1=(|has| |#2| (-344))) (($) . #1#))
+((((-388 (-516))) . #1=(|has| |#2| (-344))) (($) . #1#))
+(|has| |#2| (-344))
+(|has| |#2| (-344))
+(|has| |#2| (-344))
+(|has| |#2| (-344))
+(|has| |#2| (-344))
+((((-388 (-516))) |has| |#2| (-344)) (($) . T))
+((((-805)) . T))
+((((-388 (-516))) |has| |#2| (-344)) (($) . T))
+(((#1=(-388 (-516)) #1#) |has| |#2| (-344)) (($ $) . T))
+((((-805)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+(|has| |#1| (-216))
+(((|#2|) |has| |#2| (-162)))
+(((|#2| |#2|) . T))
(((|#2|) . T))
-((((-802)) . T))
-(-1463 (|has| |#1| (-138)) (|has| |#1| (-348)))
-(-1463 (|has| |#1| (-138)) (|has| |#1| (-348)))
-(-1463 (|has| |#1| (-138)) (|has| |#1| (-348)))
-((((-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) . T))
-(((#0=(-51)) . T) (((-2 (|:| -2927 (-1095)) (|:| -1780 #0#))) . T))
-(|has| |#1| (-329))
-((((-528)) . T))
-((((-802)) . T))
-(((#0=(-1163 |#1| |#2| |#3| |#4|) $) |has| #0# (-267 #0# #0#)))
-(|has| |#1| (-343))
-(((#0=(-1008) |#1|) . T) ((#0# $) . T) (($ $) . T))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-329)))
-(((#0=(-387 (-528)) #0#) . T) ((#1=(-645) #1#) . T) (($ $) . T))
-((((-296 |#1|)) . T) (($) . T))
-(((|#1|) . T) (((-387 (-528))) |has| |#1| (-343)))
-(|has| |#1| (-1023))
-(((|#1|) . T))
-(((|#1|) -1463 (|has| |#2| (-347 |#1|)) (|has| |#2| (-397 |#1|))))
-(((|#1|) -1463 (|has| |#2| (-347 |#1|)) (|has| |#2| (-397 |#1|))))
-(((|#2|) . T))
-((((-387 (-528))) . T) (((-645)) . T) (($) . T))
-(((|#3| |#3|) . T))
-(|has| |#2| (-215))
-((((-804 |#1|)) . T))
-((((-1095)) |has| |#1| (-839 (-1095))) ((|#3|) . T))
-(-12 (|has| |#1| (-343)) (|has| |#2| (-957)))
-((((-1093 |#1| |#2| |#3|)) |has| |#1| (-343)))
-((((-802)) . T))
-(|has| |#1| (-343))
-(|has| |#1| (-343))
-((((-387 (-528))) . T) (($) . T) (((-387 |#1|)) . T) ((|#1|) . T))
-((((-528)) . T))
-(|has| |#1| (-1023))
-(((|#3|) . T))
+((((-805)) . T))
+((($) . T) ((|#2|) . T))
+(((|#2|) |has| |#2| (-162)))
(((|#2|) . T))
+(|has| |#1| (-793))
+(|has| |#1| (-793))
+(|has| |#1| (-793))
+(|has| |#1| (-793))
+(|has| |#1| (-793))
+(|has| |#1| (-793))
+(|has| |#1| (-793))
+(|has| |#1| (-793))
+(|has| |#1| (-793))
+((($) |has| |#1| (-793)))
+(|has| |#1| (-793))
+(-3810 (|has| |#1| (-21)) (|has| |#1| (-793)))
+(-3810 (|has| |#1| (-21)) (|has| |#1| (-793)))
+(-3810 (|has| |#1| (-21)) (|has| |#1| (-793)))
+(-3810 (|has| |#1| (-21)) (|has| |#1| (-793)))
+((((-388 (-516))) |has| |#1| (-975 (-388 (-516)))) (((-516)) |has| |#1| (-975 (-516))) ((|#1|) . T))
(((|#1|) . T))
-((((-528)) . T))
-(-1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-(((|#2|) . T) (((-528)) |has| |#2| (-591 (-528))))
-(((|#1| |#2|) . T))
-((($) . T))
-((((-541 |#1|)) . T) (((-387 (-528))) . T) (($) . T))
-((($) . T) (((-387 (-528))) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(((|#1|) . T) (($) . T))
-(((|#1| (-1177 |#1|) (-1177 |#1|)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-((((-802)) . T))
-((((-802)) . T))
-(((#0=(-114 |#1|) #0#) . T) ((#1=(-387 (-528)) #1#) . T) (($ $) . T))
-((((-387 (-528))) |has| |#2| (-972 (-387 (-528)))) (((-528)) |has| |#2| (-972 (-528))) ((|#2|) . T) (((-804 |#1|)) . T))
-((((-1047 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-528)) |has| |#1| (-972 (-528))) (((-387 (-528))) |has| |#1| (-972 (-387 (-528)))) ((|#2|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((($ $) . T))
-((((-620 |#1|)) . T))
-((($) . T) (((-387 (-528))) |has| |#2| (-37 (-387 (-528)))) ((|#2|) . T))
-((((-114 |#1|)) . T) (((-387 (-528))) . T) (($) . T))
-((((-528)) -12 (|has| |#1| (-825 (-528))) (|has| |#3| (-825 (-528)))) (((-359)) -12 (|has| |#1| (-825 (-359))) (|has| |#3| (-825 (-359)))))
-(((|#2|) . T) ((|#6|) . T))
-(((|#1|) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) (($) . T))
-((((-137)) . T))
-((($) . T))
-((($) . T) ((|#1|) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-((($) . T) ((|#1|) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-(((|#1|) . T))
-(|has| |#2| (-848))
-(|has| |#1| (-848))
-(|has| |#1| (-848))
-(((|#4|) . T))
-(|has| |#2| (-957))
-((($) . T))
-(|has| |#1| (-848))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-((($) . T))
-(((|#2|) . T))
+((((-805)) . T))
+(((|#1|) |has| |#1| (-162)))
+(((|#1|) |has| |#1| (-162)))
+(((|#1| |#1|) |has| |#1| (-162)))
+(((|#1|) |has| |#1| (-162)))
+(|has| |#1| (-138))
+(|has| |#1| (-140))
+(((|#1| |#1|) . T))
+((((-111)) . T) ((|#1|) . T))
+(((|#1|) |has| |#1| (-162)) (($) . T))
+((((-805)) . T))
+((((-805)) . T))
+(|has| |#1| (-793))
+(|has| |#1| (-793))
+(|has| |#1| (-793))
+(|has| |#1| (-793))
+(|has| |#1| (-793))
+(|has| |#1| (-793))
+(|has| |#1| (-793))
+(|has| |#1| (-793))
+(|has| |#1| (-793))
+((($) |has| |#1| (-793)))
+(|has| |#1| (-793))
+(-3810 (|has| |#1| (-21)) (|has| |#1| (-793)))
+(-3810 (|has| |#1| (-21)) (|has| |#1| (-793)))
+(-3810 (|has| |#1| (-21)) (|has| |#1| (-793)))
+(-3810 (|has| |#1| (-21)) (|has| |#1| (-793)))
+((((-388 (-516))) |has| |#1| (-975 (-388 (-516)))) (((-516)) |has| |#1| (-975 (-516))) ((|#1|) . T))
(((|#1|) . T))
-(((|#1|) . T) (($) . T))
-((($) . T))
-(|has| |#1| (-343))
-((((-849 |#1|)) . T))
-((($) -1463 (|has| |#1| (-343)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-162)) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-((($ $) . T) ((#0=(-387 (-528)) #0#) . T))
-(-1463 (|has| |#1| (-348)) (|has| |#1| (-793)))
-(((|#1|) . T))
-((((-802)) . T))
-((((-1095)) -12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095)))))
-((((-387 |#2|) |#3|) . T))
-((($) . T) (((-387 (-528))) . T))
-((((-717) |#1|) . T))
-(((|#2| (-222 (-2138 |#1|) (-717))) . T))
-(((|#1| (-500 |#3|)) . T))
-((((-387 (-528))) . T))
-(-1463 (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-((((-802)) . T))
-(((#0=(-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) #0#) |has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-290 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))))))
-(|has| |#1| (-848))
-(|has| |#2| (-343))
-(-1463 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-739)) (|has| |#2| (-791)) (|has| |#2| (-981)))
-((((-159 (-359))) . T) (((-207)) . T) (((-359)) . T))
-((((-802)) . T))
-(((|#1|) . T))
-((((-359)) . T) (((-528)) . T))
-(((#0=(-387 (-528)) #0#) . T) (($ $) . T))
-((($ $) . T))
-((($ $) . T))
+((((-805)) . T))
+(((|#1|) |has| |#1| (-162)))
(((|#1| |#1|) . T))
-((((-802)) . T))
-(|has| |#1| (-520))
-((((-387 (-528))) . T) (($) . T))
-((($) . T))
-((($) . T))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(-1463 (|has| |#1| (-288)) (|has| |#1| (-343)) (|has| |#1| (-329)))
-(|has| |#1| (-37 (-387 (-528))))
-(-12 (|has| |#1| (-513)) (|has| |#1| (-774)))
-((((-802)) . T))
-((((-1095)) -1463 (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095)))) (-12 (|has| |#1| (-343)) (|has| |#2| (-839 (-1095))))))
-(|has| |#1| (-343))
-((((-1095)) -12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095)))))
-(|has| |#1| (-343))
-((((-387 (-528))) . T) (($) . T))
-((($) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((|#1|) . T))
-((((-528) |#1|) . T))
-(((|#1|) . T))
-(((|#2|) |has| |#1| (-343)))
-(((|#2|) |has| |#1| (-343)))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
(((|#1|) . T))
+((((-805)) . T))
+((($) . T) ((|#1|) . T))
(((|#1|) |has| |#1| (-162)))
(((|#1|) . T))
-(((|#2|) . T) (((-1095)) -12 (|has| |#1| (-343)) (|has| |#2| (-972 (-1095)))) (((-528)) -12 (|has| |#1| (-343)) (|has| |#2| (-972 (-528)))) (((-387 (-528))) -12 (|has| |#1| (-343)) (|has| |#2| (-972 (-528)))))
-(((|#2|) . T))
-((((-1095) #0=(-1163 |#1| |#2| |#3| |#4|)) |has| #0# (-489 (-1095) #0#)) ((#0# #0#) |has| #0# (-290 #0#)))
-((((-568 $) $) . T) (($ $) . T))
-((((-159 (-207))) . T) (((-159 (-359))) . T) (((-1091 (-645))) . T) (((-831 (-359))) . T))
-((((-802)) . T))
-(|has| |#1| (-520))
-(|has| |#1| (-520))
-(|has| (-387 |#2|) (-215))
-(((|#1| (-387 (-528))) . T))
-((($ $) . T))
-((((-1095)) |has| |#2| (-839 (-1095))))
-((($) . T))
-((((-802)) . T))
-((((-387 (-528))) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#2|) |has| |#1| (-343)))
-((((-802)) . T))
-((((-359)) -12 (|has| |#1| (-343)) (|has| |#2| (-825 (-359)))) (((-528)) -12 (|has| |#1| (-343)) (|has| |#2| (-825 (-528)))))
-(|has| |#1| (-343))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-520)))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(|has| |#1| (-343))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-520)))
-(|has| |#1| (-343))
-(|has| |#1| (-520))
-(((|#4| |#4|) -12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))))
-(((|#3|) . T))
+(((|#1|) . T) (((-516)) |has| |#1| (-975 (-516))) (((-388 (-516))) |has| |#1| (-975 (-388 (-516)))))
(((|#1|) . T))
-(-1463 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-739)) (|has| |#2| (-791)) (|has| |#2| (-981)))
-(((|#2|) . T))
+(((|#2|) |has| |#2| (-162)))
+(((|#2| |#2|) . T))
(((|#2|) . T))
-(-1463 (|has| |#2| (-162)) (|has| |#2| (-673)) (|has| |#2| (-791)) (|has| |#2| (-981)))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-((((-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) . T))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-(|has| |#1| (-37 (-387 (-528))))
-(((|#1| |#2|) . T))
-(|has| |#1| (-37 (-387 (-528))))
-(-1463 (|has| |#1| (-138)) (|has| |#1| (-348)))
-(|has| |#1| (-140))
-((((-1078) |#1|) . T))
-(-1463 (|has| |#1| (-138)) (|has| |#1| (-348)))
-(|has| |#1| (-140))
-(-1463 (|has| |#1| (-138)) (|has| |#1| (-348)))
-(|has| |#1| (-140))
-((((-541 |#1|)) . T))
-((($) . T))
-((((-387 |#2|)) . T))
-(|has| |#1| (-520))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(-1463 (|has| |#1| (-138)) (|has| |#1| (-329)))
-(|has| |#1| (-140))
-((((-802)) . T))
-((($) . T))
-((((-387 (-528))) |has| |#2| (-972 (-528))) (((-528)) |has| |#2| (-972 (-528))) (((-1095)) |has| |#2| (-972 (-1095))) ((|#2|) . T))
-(((#0=(-387 |#2|) #0#) . T) ((#1=(-387 (-528)) #1#) . T) (($ $) . T))
-((((-1060 |#1| |#2|)) . T))
-(((|#1| (-528)) . T))
-(((|#1| (-387 (-528))) . T))
-((((-528)) |has| |#2| (-825 (-528))) (((-359)) |has| |#2| (-825 (-359))))
+((((-805)) . T))
+((($) . T) ((|#2|) . T))
+(((|#2|) |has| |#2| (-162)))
(((|#2|) . T))
-((((-387 |#2|)) . T) (((-387 (-528))) . T) (($) . T))
-((((-110)) . T))
-(((|#1| |#2| (-222 |#1| |#2|) (-222 |#1| |#2|)) . T))
+(((|#2|) . T) (((-516)) |has| |#2| (-975 (-516))) (((-388 (-516))) |has| |#2| (-975 (-388 (-516)))))
(((|#2|) . T))
-((((-802)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-((((-1095) (-51)) . T))
-((((-387 |#2|)) . T))
-((((-802)) . T))
-(((|#1|) . T))
-(|has| |#1| (-1023))
-(|has| |#1| (-737))
-(|has| |#1| (-737))
-((((-504)) |has| |#1| (-570 (-504))))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-793)) (|has| |#1| (-1023))))
-((((-112)) . T) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-207)) . T) (((-359)) . T) (((-831 (-359))) . T))
-((((-802)) . T))
-((((-1163 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-387 (-528))) . T))
-(((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-520)) (((-387 (-528))) |has| |#1| (-520)))
-((((-802)) . T))
-((((-802)) . T))
-(((|#2|) . T))
-((((-802)) . T))
-(((#0=(-849 |#1|) #0#) . T) (($ $) . T) ((#1=(-387 (-528)) #1#) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-849 |#1|)) . T) (($) . T) (((-387 (-528))) . T))
-(|has| |#1| (-343))
-(((|#2|) . T))
-((((-528)) . T))
-((((-802)) . T))
-((((-528)) . T))
-(-1463 (|has| |#2| (-739)) (|has| |#2| (-791)))
-((((-159 (-359))) . T) (((-207)) . T) (((-359)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-1078)) . T) (((-504)) . T) (((-528)) . T) (((-831 (-528))) . T) (((-359)) . T) (((-207)) . T))
-((((-802)) . T))
-(|has| |#1| (-140))
-(|has| |#1| (-138))
-((($) . T) ((#0=(-1162 |#2| |#3| |#4|)) |has| #0# (-162)) (((-387 (-528))) |has| #0# (-37 (-387 (-528)))))
-(((|#1|) . T) (($) . T) (((-387 (-528))) . T))
-(|has| |#1| (-343))
-(|has| |#1| (-343))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-1023))))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-1023))))
-(-1463 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-452)) (|has| |#1| (-673)) (|has| |#1| (-839 (-1095))) (|has| |#1| (-981)) (|has| |#1| (-1035)) (|has| |#1| (-1023)))
-(|has| |#1| (-1071))
-((((-528) |#1|) . T))
-(((|#1|) . T))
-(((#0=(-114 |#1|) $) |has| #0# (-267 #0# #0#)))
+((((-805)) . T))
+((((-805)) . T))
+((((-831 (-516))) . T) (((-831 (-359))) . T) (((-505)) . T) (((-1098)) . T))
+((((-805)) . T))
(((|#1|) |has| |#1| (-162)))
+(((|#1|) |has| |#1| (-162)))
+(((|#1| |#1|) |has| |#1| (-162)))
+(((|#1|) |has| |#1| (-162)))
+(((|#1|) |has| |#1| (-162)) (($) . T))
+((((-805)) . T))
+((($) . T))
+((((-805)) . T))
+((($) . T))
+((($ $) . T))
+((($) . T))
+((($) . T))
(((|#1|) . T))
-((((-112)) . T) ((|#1|) . T))
-((((-802)) . T))
-(((|#1| |#2|) . T))
-((((-1095) |#1|) . T))
-(((|#1|) |has| |#1| (-290 |#1|)))
-((((-528) |#1|) . T))
-(((|#1|) . T))
-((((-528)) . T) (((-387 (-528))) . T))
+((((-805)) . T))
+((((-810 |#1|)) . T))
+((((-810 |#1|)) . T) (($) . T) (((-388 (-516))) . T))
+((($) . T) (((-810 |#1|)) . T) (((-388 (-516))) . T))
+((((-810 |#1|)) . T) (($) . T) (((-388 (-516))) . T))
+((((-810 |#1|)) . T) (((-388 (-516))) . T) (($) . T))
+(((#1=(-810 |#1|) #1#) . T) ((#2=(-388 (-516)) #2#) . T) (($ $) . T))
+((((-810 |#1|)) . T))
+((((-1098) #1=(-810 |#1|)) |has| #1# (-491 (-1098) #1#)) ((#1# #1#) |has| #1# (-291 #1#)))
+(((#1=(-810 |#1|)) |has| #1# (-291 #1#)))
+(((#1=(-810 |#1|) $) |has| #1# (-268 #1# #1#)))
+((((-810 |#1|)) . T))
+((((-810 |#1|)) . T))
+((((-810 |#1|)) . T))
+((((-810 |#1|)) . T))
+((((-810 |#1|)) . T))
+((((-810 |#1|)) . T))
+((((-805)) . T))
+(|has| |#2| (-138))
+(|has| |#2| (-140))
+(((|#2|) . T))
+((((-1098)) |has| |#2| (-841 (-1098))))
+(|has| |#2| (-216))
+(((|#2|) . T) (($) . T) (((-388 (-516))) . T))
+((($) . T) ((|#2|) . T) (((-388 (-516))) . T))
+(((|#2|) . T) (($) . T) (((-388 (-516))) . T))
+(((|#2|) . T) (((-388 (-516))) . T) (($) . T))
+(((|#2| |#2|) . T) ((#1=(-388 (-516)) #1#) . T) (($ $) . T))
+(((|#2|) . T))
+((((-1098) |#2|) |has| |#2| (-491 (-1098) |#2|)) ((|#2| |#2|) |has| |#2| (-291 |#2|)))
+(((|#2|) |has| |#2| (-291 |#2|)))
+(((|#2| $) |has| |#2| (-268 |#2| |#2|)))
+(((|#2|) . T))
+(((|#2|) . T) (((-516)) |has| |#2| (-593 (-516))))
+(((|#2|) . T))
+((((-516)) |has| |#2| (-827 (-516))) (((-359)) |has| |#2| (-827 (-359))))
+(|has| |#2| (-768))
+(|has| |#2| (-768))
+(|has| |#2| (-768))
+(-3810 (|has| |#2| (-768)) (|has| |#2| (-795)))
+(|has| |#2| (-768))
+(|has| |#2| (-768))
+(|has| |#2| (-768))
+(((|#2|) . T))
+(|has| |#2| (-851))
+(|has| |#2| (-958))
+((((-505)) |has| |#2| (-572 (-505))) (((-831 (-516))) |has| |#2| (-572 (-831 (-516)))) (((-831 (-359))) |has| |#2| (-572 (-831 (-359)))) (((-359)) . #1=(|has| |#2| (-958))) (((-208)) . #1#))
+((((-388 (-516))) |has| |#2| . #1=((-975 (-516)))) (((-516)) |has| |#2| . #1#) (((-1098)) |has| |#2| (-975 (-1098))) ((|#2|) . T))
+(|has| |#2| (-1074))
+(((|#2|) . T))
+(-12 (|has| |#1| (-1027)) (|has| |#2| (-1027)))
+(-12 (|has| |#1| (-1027)) (|has| |#2| (-1027)))
+((((-805)) -3810 (-12 (|has| |#1| (-571 (-805))) (|has| |#2| (-571 (-805)))) (-12 (|has| |#1| (-1027)) (|has| |#2| (-1027)))))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-1098)) . T) ((|#1|) . T))
+((((-805)) . T))
+((((-622 |#1|)) . T))
+((((-805)) . T))
+((((-805)) . T))
+(((|#1|) . T))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(|has| |#1| (-1027))
+(|has| |#1| (-1027))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-805)) . T))
+(-3810 (|has| |#1| (-349)) (|has| |#1| (-795)))
+(((|#1|) . T))
+((((-805)) . T))
+((((-516)) . T))
+((($) . T))
+((($) . T))
+((($) . T))
+(|has| $ (-140))
+((($) . T))
+((((-805)) . T))
+((($) . T) (((-388 (-516))) . T))
+((($) . T) (((-388 (-516))) . T))
+((($ $) . T) ((#1=(-388 (-516)) #1#) . T))
+((((-388 (-516))) . T) (($) . T))
+((((-388 (-516))) . T) (($) . T))
+((((-805)) . T))
+(((|#1|) . T) (($) . T) (((-388 (-516))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#1=(-388 (-516)) #1#) . T))
+(((|#1|) . T) (((-388 (-516))) . T) (($) . T))
+(((|#1|) . T) (((-388 (-516))) . T) (($) . T))
+(((|#1|) . T) (((-388 (-516))) . T) (($) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
(((|#1|) . T))
-(|has| |#1| (-520))
-((((-387 |#2|)) . T) (((-387 (-528))) . T) (($) . T))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-520)))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-520)))
-((((-359)) . T))
(((|#1|) . T))
+(|has| |#1| (-795))
(((|#1|) . T))
-(|has| |#1| (-343))
-(|has| |#1| (-343))
-(|has| |#1| (-520))
-(|has| |#1| (-1023))
-((((-726 |#1| (-804 |#2|))) |has| (-726 |#1| (-804 |#2|)) (-290 (-726 |#1| (-804 |#2|)))))
-(-1463 (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848)))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(-3810 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-3810 (|has| |#1| (-795)) (|has| |#1| (-1027)))
(((|#1|) . T))
-(((|#2| |#3|) . T))
-(|has| |#2| (-848))
+((((-505)) |has| |#1| (-572 (-505))))
+((((-516) |#1|) . T))
+((((-516) |#1|) . T))
+((((-516) |#1|) . T))
(((|#1|) . T))
-(((|#1| (-500 |#2|)) . T))
-(((|#1| (-717)) . T))
-(|has| |#1| (-215))
-(((|#1| (-500 (-1013 (-1095)))) . T))
-(|has| |#2| (-343))
-((((-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-((((-802)) . T))
-((((-802)) . T))
-(-1463 (|has| |#3| (-739)) (|has| |#3| (-791)))
-((((-802)) . T))
-((((-802)) . T))
(((|#1|) . T))
-((($ $) . T) (((-568 $) $) . T))
+((((-505)) |has| |#1| (-572 (-505))) (((-831 (-359))) |has| |#1| (-572 (-831 (-359)))) (((-831 (-516))) |has| |#1| (-572 (-831 (-516)))))
+((($) . T))
+(((|#1| (-502 (-1098))) . T))
(((|#1|) . T))
-((((-528)) . T))
-(((|#3|) . T))
-((((-802)) . T))
-(-1463 (|has| |#1| (-288)) (|has| |#1| (-343)) (|has| |#1| (-329)))
-(-1463 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-520)) (|has| |#1| (-981)))
-(((#0=(-541 |#1|) #0#) . T) (($ $) . T) ((#1=(-387 (-528)) #1#) . T))
-((($ $) . T) ((#0=(-387 (-528)) #0#) . T))
-(((|#1|) |has| |#1| (-162)))
-(((|#1| (-1177 |#1|) (-1177 |#1|)) . T))
-((((-541 |#1|)) . T) (($) . T) (((-387 (-528))) . T))
-((($) . T) (((-387 (-528))) . T))
-((($) . T) (((-387 (-528))) . T))
-(((|#2|) |has| |#2| (-6 (-4266 "*"))))
+((((-805)) . T))
+((($) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((|#1|) . T))
+(|has| |#1| (-138))
+(|has| |#1| (-140))
+(-3810 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
+((((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((|#1|) . T) (($) -3810 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))))
+(((#1=(-388 (-516)) #1#) |has| |#1| (-37 (-388 (-516)))) ((|#1| |#1|) . T) (($ $) -3810 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))))
+(-3810 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
+(-3810 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
+((((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((|#1|) |has| |#1| (-162)) (($) -3810 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))))
+((((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((|#1|) |has| |#1| (-162)) (($) -3810 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))))
+(((|#1| (-502 (-1098))) . T))
+(((|#1|) . T))
+(((|#1|) . T) (((-516)) |has| |#1| (-593 (-516))))
+(-3810 (|has| |#1| (-432)) (|has| |#1| (-851)))
+((($ $) . T) ((#1=(-1098) $) . T) ((#1# |#1|) . T))
+(|has| |#1| (-795))
+((((-1098)) . T))
+((((-359)) |has| |#1| (-827 (-359))) (((-516)) |has| |#1| (-827 (-516))))
+(|has| |#1| (-851))
+(|has| |#1| (-851))
+((((-388 (-516))) |has| |#1| (-975 (-388 (-516)))) (((-516)) |has| |#1| (-975 (-516))) ((|#1|) . T) (((-1098)) . T))
+(((|#1| (-502 (-1098)) (-1098)) . T))
+((((-1045)) . T) (((-805)) . T))
+(((|#1| |#2|) . T))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(-3810 (|has| |#1| (-162)) (|has| |#1| (-523)))
+(|has| |#1| (-140))
+(|has| |#1| (-138))
+((($) |has| |#1| (-523)) ((|#1|) |has| |#1| (-162)) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((((-805)) . T))
+((($) -3810 (|has| |#1| (-162)) (|has| |#1| (-523))) ((|#1|) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($ $) -3810 (|has| |#1| (-162)) (|has| |#1| (-523))) ((|#1| |#1|) . T) ((#1=(-388 (-516)) #1#) |has| |#1| (-37 (-388 (-516)))))
+(((|#1|) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) (($) . T))
+((($) |has| |#1| (-523)) ((|#1|) |has| |#1| (-162)) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+(((|#1|) . T))
+(((|#1|) . T) (((-516)) |has| |#1| (-975 (-516))) (((-388 (-516))) |has| |#1| (-975 (-388 (-516)))))
+(((|#1| |#2|) . T))
(((|#1|) . T))
+(|has| |#1| (-795))
(((|#1|) . T))
-((((-802)) |has| |#1| (-569 (-802))))
-((((-275 |#3|)) . T))
-(((#0=(-387 (-528)) #0#) |has| |#2| (-37 (-387 (-528)))) ((|#2| |#2|) . T) (($ $) -1463 (|has| |#2| (-162)) (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848))))
-(((|#2| |#2|) . T) ((|#6| |#6|) . T))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(-3810 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-3810 (|has| |#1| (-795)) (|has| |#1| (-1027)))
(((|#1|) . T))
-((($) . T) (((-387 (-528))) |has| |#2| (-37 (-387 (-528)))) ((|#2|) . T))
-((($) . T) ((|#1|) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-(((|#1|) . T) (((-387 (-528))) . T) (($) . T))
-(((|#1|) . T) (((-387 (-528))) . T) (($) . T))
-(((|#1|) . T) (((-387 (-528))) . T) (($) . T))
-((($ $) -1463 (|has| |#1| (-162)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1| |#1|) . T) ((#0=(-387 (-528)) #0#) |has| |#1| (-37 (-387 (-528)))))
-((($ $) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1| |#1|) . T) ((#0=(-387 (-528)) #0#) |has| |#1| (-37 (-387 (-528)))))
-(((|#2|) . T))
-((((-387 (-528))) |has| |#2| (-37 (-387 (-528)))) ((|#2|) . T) (($) -1463 (|has| |#2| (-162)) (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848))))
-(((|#2|) . T) ((|#6|) . T))
-((($ $) -1463 (|has| |#1| (-162)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1| |#1|) . T) ((#0=(-387 (-528)) #0#) |has| |#1| (-37 (-387 (-528)))))
-((((-802)) . T))
-((($) -1463 (|has| |#1| (-162)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1|) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-((($) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1|) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-(|has| |#2| (-848))
-(|has| |#1| (-848))
-((($) -1463 (|has| |#1| (-162)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1|) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
+((((-505)) |has| |#1| (-572 (-505))))
+((((-516) |#1|) . T))
+((((-516) |#1|) . T))
+((((-516) |#1|) . T))
(((|#1|) . T))
-((((-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) . T))
(((|#1|) . T))
+(-12 (|has| |#1| (-741)) (|has| |#2| (-741)))
+(-12 (|has| |#1| (-741)) (|has| |#2| (-741)))
+(-3810 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795))))
+(-12 (|has| |#1| (-741)) (|has| |#2| (-741)))
+(-12 (|has| |#1| (-741)) (|has| |#2| (-741)))
+(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
+(-12 (|has| |#1| (-453)) (|has| |#2| (-453)))
+(-3810 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741))))
+(-3810 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741))))
+(-3810 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741))))
+(-3810 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675))))
+(-3810 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675))))
+(-12 (|has| |#1| (-349)) (|has| |#2| (-349)))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) |has| |#1| (-571 (-805))))
+((((-594 (-516))) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
+(|has| |#1| (-138))
+(|has| |#1| (-140))
+((((-505)) |has| |#1| (-572 (-505))))
+(((|#1|) . T))
+((((-1098)) |has| |#1| (-841 (-1098))))
+(|has| |#1| (-216))
+(|has| |#1| (-344))
+(-3810 (|has| |#1| (-272)) (|has| |#1| (-344)))
+(((|#1|) . T) (((-388 (-516))) |has| |#1| (-344)))
+((($) . T) ((|#1|) . T) (((-388 (-516))) |has| |#1| (-344)))
+(((|#1|) . T) (($) -3810 (|has| |#1| (-272)) (|has| |#1| (-344))) (((-388 (-516))) |has| |#1| (-344)))
+(((|#1| |#1|) . T) (($ $) -3810 (|has| |#1| (-272)) (|has| |#1| (-344))) ((#1=(-388 (-516)) #1#) |has| |#1| (-344)))
+(((|#1|) . T) (((-388 (-516))) |has| |#1| (-344)))
+(((|#1|) . T))
+((((-1098) |#1|) |has| |#1| (-491 (-1098) |#1|)) ((|#1| |#1|) |has| |#1| (-291 |#1|)))
+(((|#1|) |has| |#1| (-291 |#1|)))
+(((|#1| $) |has| |#1| (-268 |#1| |#1|)))
+(((|#1|) . T))
+(((|#1|) . T) (((-516)) |has| |#1| (-593 (-516))))
+(((|#1|) . T))
+(((|#1|) . T) (((-516)) |has| |#1| (-975 (-516))) (((-388 (-516))) |has| |#1| (-975 (-388 (-516)))))
+(|has| |#1| (-795))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(|has| |#1| (-1027))
+(|has| |#1| (-1027))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-388 |#2|) |#3|) . T))
+((((-388 (-516))) |has| #1=(-388 |#2|) (-975 (-388 (-516)))) (((-516)) |has| #1# (-975 (-516))) ((#1#) . T))
+((((-388 |#2|)) . T))
+((((-516)) |has| #1=(-388 |#2|) (-593 (-516))) ((#1#) . T))
+((((-388 |#2|)) . T))
+((((-388 |#2|) |#3|) . T))
+(|has| (-388 |#2|) (-140))
+((((-388 |#2|) |#3|) . T))
+(|has| (-388 |#2|) (-138))
+((((-388 |#2|)) . T) (((-388 (-516))) . T) (($) . T))
+((((-388 |#2|)) . T) (((-388 (-516))) . T) (($) . T))
+(|has| (-388 |#2|) (-216))
+((((-1098)) |has| (-388 |#2|) (-841 (-1098))))
+((((-388 |#2|)) . T))
+(((|#3|) . T))
+(((#1=(-388 |#2|) #1#) . T) ((#2=(-388 (-516)) #2#) . T) (($ $) . T))
+((((-388 |#2|)) . T) (((-388 (-516))) . T) (($) . T))
+((((-805)) . T))
+((((-388 |#2|)) . T) (((-388 (-516))) . T) (($) . T))
+(((|#1| |#2| |#3|) . T))
+((((-805)) . T))
+((((-516)) . T))
+((((-516)) . T) (($) . T) (((-388 (-516))) . T))
+((($) . T) (((-516)) . T) (((-388 (-516))) . T))
+((((-516)) . T) (($) . T) (((-388 (-516))) . T))
+((((-516)) . T) (((-388 (-516))) . T) (($) . T))
+(((#1=(-516) #1#) . T) ((#2=(-388 (-516)) #2#) . T) (($ $) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-505)) . T) (((-831 (-516))) . T) (((-359)) . T) (((-208)) . T))
+((((-388 (-516))) . T) (((-516)) . T))
+((((-516)) . T))
+((((-805)) . T))
+(((|#1|) . T) (($) . T) (((-388 (-516))) . T) (((-516)) . T))
+(((|#1|) . T) (((-388 (-516))) . T) (((-516)) . T) (($) . T))
+(((|#1| |#1|) . T) ((#1=(-388 (-516)) #1#) . T) ((#2=(-516) #2#) . T) (($ $) . T))
+(((|#1|) . T) (((-388 (-516))) . T) (((-516)) . T) (($) . T))
+(((|#1|) . T) (((-388 (-516))) . T) (((-516)) . T) (($) . T))
+(((|#1|) . T) (((-388 (-516))) . T))
+(((|#1|) . T) (((-516)) -3810 (|has| |#1| (-975 (-516))) (|has| (-388 (-516)) (-975 (-516)))) (((-388 (-516))) . T))
+(|has| |#1| (-1027))
+((((-805)) |has| |#1| (-1027)))
+(|has| |#1| (-1027))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#4|) . T))
+((((-594 |#4|)) . T) (((-805)) . T))
+(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
+(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
+(((|#4|) . T))
+((((-505)) |has| |#4| (-572 (-505))))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
-(((|#1| |#1|) . T))
(((|#1|) . T))
+(((|#1| |#1|) . T) (($ $) . T))
+(((|#1|) . T) (($) . T))
+((((-805)) . T))
+(((|#1|) . T) (($) . T))
+((((-1098) (-50)) . T))
+((((-805)) . T))
+((((-1098) (-50)) . T))
+((((-1098) (-50)) . T))
+((((-1098) (-50)) . T))
+((((-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) . T))
+((((-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) . T))
+(((#1=(-50)) . T) (((-2 (|:| -4139 (-1098)) (|:| -2131 #1#))) . T))
+(((#1=(-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) #1#) |has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-291 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))))))
+((((-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) |has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-291 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))))))
+((((-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) . T))
+((((-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) . T))
+((((-1098) (-50)) . T))
+(((|#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|))) . T))
+((((-728 |#1| (-806 |#2|))) . T))
+((((-594 (-728 |#1| (-806 |#2|)))) . T) (((-805)) . T))
+((((-728 |#1| (-806 |#2|))) |has| (-728 |#1| (-806 |#2|)) (-291 (-728 |#1| (-806 |#2|)))))
+(((#1=(-728 |#1| (-806 |#2|)) #1#) |has| (-728 |#1| (-806 |#2|)) (-291 (-728 |#1| (-806 |#2|)))))
+((((-728 |#1| (-806 |#2|))) . T))
+((((-505)) |has| (-728 |#1| (-806 |#2|)) (-572 (-505))))
+(((|#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|))) . T))
+(((|#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|))) . T))
+((((-505)) |has| |#3| (-572 (-505))))
+(((|#3|) |has| |#3| (-344)))
+(((|#3| |#3|) . T))
+(((|#3|) . T))
+((((-637 |#3|)) . T) (((-805)) . T))
+(((|#3|) . T))
+(((|#3|) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))
+(((|#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))
+(((|#3|) -3810 (|has| |#3| (-162)) (|has| |#3| (-344))))
+(((|#1| |#2| |#3| (-222 |#2| |#3|) (-222 |#1| |#3|)) . T))
+((((-805)) . T))
+(((|#1| |#2|) . T))
+((($) . T))
+((((-805)) . T))
+((($) . T))
+((($ $) . T))
+((($) . T))
+((($) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-505)) . T) (((-516)) . T) (((-831 (-516))) . T) (((-359)) . T) (((-208)) . T))
+((((-516)) . T))
+((((-1098) (-50)) . T))
+((((-805)) . T))
+((((-1098) (-50)) . T))
+((((-1098) (-50)) . T))
+((((-1098) (-50)) . T))
+((((-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) . T))
+((((-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) . T))
+(((#1=(-50)) . T) (((-2 (|:| -4139 (-1098)) (|:| -2131 #1#))) . T))
+(((#1=(-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) #1#) |has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-291 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))))))
+((((-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) |has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-291 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))))))
+((((-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) . T))
+((((-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) . T))
+((((-1098) (-50)) . T))
+((((-275 |#3|)) . T))
+(((|#3| |#3|) . T))
+((((-805)) . T))
+((((-805)) . T))
+(((|#3| |#3|) . T))
+((((-805)) . T))
+((((-805)) . T))
+(((|#2|) . T))
+(((|#1|) |has| |#1| (-344)))
+((((-1098)) -12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1098)))))
+(-3810 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-331)))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-331)))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-331)))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-331)))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-331)))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-331)))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-331)))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-331)))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-331)))
+(-3810 (|has| |#1| (-349)) (|has| |#1| (-331)))
+(|has| |#1| (-331))
+(|has| |#1| (-331))
+(-3810 (|has| |#1| (-138)) (|has| |#1| (-331)))
+(|has| |#1| (-331))
+(((|#1| |#2|) . T))
+((($) -3810 (|has| |#1| (-344)) (|has| |#1| (-331))) (((-388 (-516))) -3810 (|has| |#1| (-344)) (|has| |#1| (-331))) ((|#1|) . T))
+((($ $) . T) ((#1=(-388 (-516)) #1#) -3810 (|has| |#1| (-344)) (|has| |#1| (-331))) ((|#1| |#1|) . T))
+((($) . T) (((-388 (-516))) -3810 (|has| |#1| (-344)) (|has| |#1| (-331))) ((|#1|) . T))
+((($) . T) (((-388 (-516))) -3810 (|has| |#1| (-344)) (|has| |#1| (-331))) ((|#1|) . T))
+((($) -3810 (|has| |#1| (-344)) (|has| |#1| (-331))) (((-388 (-516))) -3810 (|has| |#1| (-344)) (|has| |#1| (-331))) ((|#1|) . T))
+(|has| |#1| (-140))
+(((|#1| |#2|) . T))
(((|#1|) . T))
-(|has| |#1| (-1023))
-(((|#1|) . T))
-((((-1095)) . T) ((|#1|) . T))
-((((-802)) . T))
-((((-802)) . T))
-(((|#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))
-(((#0=(-387 (-528)) #0#) . T))
-((((-387 (-528))) . T))
-(-1463 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-739)) (|has| |#2| (-791)) (|has| |#2| (-981)))
-(((|#1|) . T))
-(((|#1|) . T))
-(-1463 (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-791)) (|has| |#2| (-981)))
-((((-504)) . T))
-((((-802)) . T))
-((((-1095)) |has| |#2| (-839 (-1095))) (((-1008)) . T))
-((((-1162 |#2| |#3| |#4|)) . T))
-((((-849 |#1|)) . T))
-((($) . T) (((-387 (-528))) . T))
-(-12 (|has| |#1| (-343)) (|has| |#2| (-766)))
-(-12 (|has| |#1| (-343)) (|has| |#2| (-766)))
-((((-802)) . T))
-(|has| |#1| (-1135))
-(((|#2|) . T))
-((($ $) . T) ((#0=(-387 (-528)) #0#) . T))
-((((-1095)) |has| |#1| (-839 (-1095))))
-((((-849 |#1|)) . T) (((-387 (-528))) . T) (($) . T))
-((($) . T) (((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) ((|#1|) . T))
-(((#0=(-387 (-528)) #0#) |has| |#1| (-37 (-387 (-528)))) ((|#1| |#1|) . T) (($ $) -1463 (|has| |#1| (-162)) (|has| |#1| (-520))))
-((($) . T) (((-387 (-528))) . T))
-(((|#1|) . T) (((-387 (-528))) . T) (((-528)) . T) (($) . T))
-(((|#2|) |has| |#2| (-981)) (((-528)) -12 (|has| |#2| (-591 (-528))) (|has| |#2| (-981))))
-((((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((|#1|) . T) (($) -1463 (|has| |#1| (-162)) (|has| |#1| (-520))))
-(|has| |#1| (-520))
-(((|#1|) |has| |#1| (-343)))
-((((-528)) . T))
-(|has| |#1| (-737))
-(|has| |#1| (-737))
-((((-1095) #0=(-114 |#1|)) |has| #0# (-489 (-1095) #0#)) ((#0# #0#) |has| #0# (-290 #0#)))
-(((|#2|) . T) (((-528)) |has| |#2| (-972 (-528))) (((-387 (-528))) |has| |#2| (-972 (-387 (-528)))))
-((((-1008)) . T) ((|#2|) . T) (((-528)) |has| |#2| (-972 (-528))) (((-387 (-528))) |has| |#2| (-972 (-387 (-528)))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-528) (-717)) . T) ((|#3| (-717)) . T))
+(((|#1|) . T) (((-516)) |has| |#1| (-593 (-516))))
(((|#1|) . T))
+(((|#1|) . T) (((-516)) |has| |#1| (-975 (-516))) (((-388 (-516))) |has| |#1| (-975 (-388 (-516)))))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-((((-802)) . T))
-(|has| |#2| (-766))
-(|has| |#2| (-766))
-((((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) ((|#2|) |has| |#1| (-343)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#1|) . T) (((-528)) |has| |#1| (-972 (-528))) (((-387 (-528))) |has| |#1| (-972 (-387 (-528)))))
-((((-528)) |has| |#1| (-825 (-528))) (((-359)) |has| |#1| (-825 (-359))))
+((((-805)) . T))
+((((-805)) . T))
+(((|#1|) . T))
+((((-805)) . T))
+(|has| |#1| (-216))
+((($) . T))
+(((|#1| (-502 (-1016 (-1098))) (-1016 (-1098))) . T))
+(|has| |#1| (-851))
+(|has| |#1| (-851))
+((((-1098)) |has| |#1| (-841 (-1098))) (((-1016 (-1098))) . T))
+(|has| |#1| (-795))
+((($ $) . T) ((#1=(-1098) $) |has| |#1| . #2=((-216))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-1016 (-1098)) |#1|) . T) ((#3# $) . T))
+(-3810 (|has| |#1| (-432)) (|has| |#1| (-851)))
+((((-516)) |has| |#1| (-593 (-516))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-502 (-1016 (-1098)))) . T))
+(-3810 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
+(-3810 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
+(-3810 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
+(|has| |#1| (-140))
+(|has| |#1| (-138))
+((($) -3810 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1|) |has| |#1| (-162)) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($) . T) ((|#1|) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($) -3810 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1|) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($ $) -3810 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1| |#1|) . T) ((#1=(-388 (-516)) #1#) |has| |#1| (-37 (-388 (-516)))))
+((($) -3810 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1|) |has| |#1| (-162)) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
(((|#1|) . T))
-((((-809 |#1|)) . T))
-((((-809 |#1|)) . T))
-(-12 (|has| |#1| (-343)) (|has| |#2| (-848)))
-((((-387 (-528))) . T) (((-645)) . T) (($) . T))
-(|has| |#1| (-343))
-(|has| |#1| (-343))
+(((|#1| (-502 (-1016 (-1098)))) . T))
+((((-1050 |#1| (-1098))) . T) (((-1016 (-1098))) . T) ((|#1|) . T) (((-516)) |has| |#1| (-975 (-516))) (((-388 (-516))) |has| |#1| (-975 (-388 (-516)))) (((-1098)) . T))
+(((|#1| (-1098) (-1016 (-1098)) (-502 (-1016 (-1098)))) . T))
+((((-805)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))))
-(|has| |#1| (-343))
-(((|#2|) . T))
+(((|#1| (-594 |#1|)) |has| |#1| (-793)))
+(|has| |#1| (-1027))
+((((-805)) |has| |#1| (-1027)))
+(|has| |#1| (-1027))
(((|#1|) . T))
+(|has| |#1| (-1027))
+((((-805)) |has| |#1| (-1027)))
+(|has| |#1| (-1027))
(((|#1|) . T))
(((|#1|) . T))
+((((-805)) . T))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
(((|#1|) . T))
-((((-804 |#1|)) . T))
(((|#1|) . T))
+((((-505)) |has| |#1| (-572 (-505))))
(((|#1|) . T))
-(((|#2| (-717)) . T))
-((((-1095)) . T))
-((((-809 |#1|)) . T))
-(-1463 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-343)) (|has| |#3| (-739)) (|has| |#3| (-791)) (|has| |#3| (-981)))
-(-1463 (|has| |#3| (-162)) (|has| |#3| (-343)) (|has| |#3| (-791)) (|has| |#3| (-981)))
-((((-802)) . T))
+(|has| |#1| (-349))
(((|#1|) . T))
-(-1463 (|has| |#2| (-739)) (|has| |#2| (-791)))
-(-1463 (-12 (|has| |#1| (-739)) (|has| |#2| (-739))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793))))
-((((-809 |#1|)) . T))
(((|#1|) . T))
-(|has| |#1| (-348))
-(|has| |#1| (-348))
-(|has| |#1| (-348))
-((($ $) . T) (((-568 $) $) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-1081) (-1098) (-516) (-208) (-805)) . T))
+((((-805)) . T))
+(((|#1| |#2| |#3| |#4| |#5|) . T))
+((((-805)) . T))
+(-3810 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-741)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+(-3810 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-349)) (|has| |#3| (-675)) (|has| |#3| (-741)) (|has| |#3| (-793)) (|has| |#3| (-984)) (|has| |#3| (-1027)))
+(-3810 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-349)) (|has| |#3| (-675)) (|has| |#3| (-741)) (|has| |#3| (-793)) (|has| |#3| (-984)) (|has| |#3| (-1027)))
+(((|#3|) |has| |#3| (-162)))
+(-3810 (|has| |#3| (-162)) (|has| |#3| (-675)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+(-3810 (|has| |#3| (-162)) (|has| |#3| (-675)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+(-3810 (|has| |#3| (-162)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+(-3810 (|has| |#3| (-162)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+(-3810 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+(-3810 (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-741)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+(-3810 (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-741)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+((($) -3810 (|has| |#3| (-162)) (|has| |#3| (-793)) (|has| |#3| (-984))) ((|#3|) -3810 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-984))))
+(((|#3|) -3810 (|has| |#3| (-162)) (|has| |#3| (-344))))
+((((-805)) -3810 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-571 (-805))) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-349)) (|has| |#3| (-675)) (|has| |#3| (-741)) (|has| |#3| (-793)) (|has| |#3| (-984)) (|has| |#3| (-1027))) (((-1179 |#3|)) . T))
+(|has| |#3| (-162))
+(((|#3|) -3810 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-984))) (($) |has| |#3| (-162)))
+(((|#3| |#3|) -3810 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-984))) (($ $) |has| |#3| (-162)))
+(((|#3|) |has| |#3| (-984)))
+((((-1098)) -12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984))))
+(-12 (|has| |#3| (-216)) (|has| |#3| (-984)))
+(|has| |#3| (-349))
+(((|#3|) |has| |#3| (-984)))
+(((|#3|) |has| |#3| (-984)) (((-516)) -12 (|has| |#3| (-593 (-516))) (|has| |#3| (-984))))
+(((|#3|) |has| |#3| (-1027)))
+(((|#3|) |has| |#3| (-1027)) (((-516)) -12 (|has| |#3| (-975 (-516))) (|has| |#3| (-1027))) (((-388 (-516))) -12 (|has| |#3| (-975 (-388 (-516)))) (|has| |#3| (-1027))))
+((((-516) |#3|) . T))
+(((|#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))
+(((|#3| |#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))
+(((|#3|) . T))
+((((-516) |#3|) . T))
+((((-516) |#3|) . T))
+(|has| |#3| (-741))
+(-3810 (|has| |#3| (-741)) (|has| |#3| (-793)))
+(-3810 (|has| |#3| (-741)) (|has| |#3| (-793)))
+(-3810 (|has| |#3| (-741)) (|has| |#3| (-793)))
+(-3810 (|has| |#3| (-741)) (|has| |#3| (-793)))
+(|has| |#3| (-793))
+(|has| |#3| (-793))
+(((|#3|) |has| |#3| (-344)))
+(((|#1| |#3|) . T))
+((((-805)) . T))
((($) . T))
-((((-802)) . T))
-((((-528)) . T))
-(((|#2|) . T))
-((((-802)) . T))
-(((|#1|) . T) (((-387 (-528))) |has| |#1| (-343)))
-((((-802)) . T))
-(((|#1|) . T))
-((((-802)) . T))
-((($) . T) ((|#2|) . T) (((-387 (-528))) . T))
-(|has| |#1| (-1023))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#1|) . T))
-(((|#1|) . T))
+((((-805)) . T))
+((($) . T))
+((($ $) . T))
+((($) . T))
+((($) . T))
+((((-516)) . T))
+((((-516)) . T))
+((((-505)) . T) (((-516)) . T) (((-831 (-516))) . T) (((-359)) . T) (((-208)) . T))
+((((-516)) . T))
+((((-505)) -12 (|has| |#1| (-572 (-505))) (|has| |#2| (-572 (-505)))) (((-831 (-359))) -12 (|has| |#1| (-572 (-831 (-359)))) (|has| |#2| (-572 (-831 (-359))))) (((-831 (-516))) -12 (|has| |#1| (-572 (-831 (-516)))) (|has| |#2| (-572 (-831 (-516))))))
+((($) . T))
+(((|#1| (-502 |#2|)) . T))
(((|#1|) . T))
-((((-802)) . T))
-(|has| |#2| (-848))
-((((-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) . T))
-((((-504)) |has| |#2| (-570 (-504))) (((-831 (-359))) |has| |#2| (-570 (-831 (-359)))) (((-831 (-528))) |has| |#2| (-570 (-831 (-528)))))
-((((-802)) . T))
-((((-802)) . T))
-(((|#3|) |has| |#3| (-981)) (((-528)) -12 (|has| |#3| (-591 (-528))) (|has| |#3| (-981))))
-((((-1047 |#1| |#2|)) . T) (((-891 |#1|)) |has| |#2| (-570 (-1095))) (((-802)) . T))
-((((-891 |#1|)) |has| |#2| (-570 (-1095))) (((-1078)) -12 (|has| |#1| (-972 (-528))) (|has| |#2| (-570 (-1095)))) (((-831 (-528))) -12 (|has| |#1| (-570 (-831 (-528)))) (|has| |#2| (-570 (-831 (-528))))) (((-831 (-359))) -12 (|has| |#1| (-570 (-831 (-359)))) (|has| |#2| (-570 (-831 (-359))))) (((-504)) -12 (|has| |#1| (-570 (-504))) (|has| |#2| (-570 (-504)))))
-((((-1091 |#1|)) . T) (((-802)) . T))
-((((-802)) . T))
-((((-387 (-528))) |has| |#2| (-972 (-387 (-528)))) (((-528)) |has| |#2| (-972 (-528))) ((|#2|) . T) (((-804 |#1|)) . T))
-((((-114 |#1|)) . T) (($) . T) (((-387 (-528))) . T))
-((((-387 (-528))) |has| |#1| (-972 (-387 (-528)))) (((-528)) |has| |#1| (-972 (-528))) ((|#1|) . T) (((-1095)) . T))
-((((-802)) . T))
-((((-528)) . T))
+((((-805)) . T))
+((($) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((|#1|) . T))
+(|has| |#1| (-138))
+(|has| |#1| (-140))
+(-3810 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
+((((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((|#1|) . T) (($) -3810 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))))
+(((#1=(-388 (-516)) #1#) |has| |#1| (-37 (-388 (-516)))) ((|#1| |#1|) . T) (($ $) -3810 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))))
+(-3810 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
+(-3810 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
+((((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((|#1|) |has| |#1| (-162)) (($) -3810 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))))
+((((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((|#1|) |has| |#1| (-162)) (($) -3810 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))))
+(((|#1| (-502 |#2|)) . T))
+(((|#1|) . T))
+(((|#1|) . T) (((-516)) |has| |#1| (-593 (-516))))
+(-3810 (|has| |#1| (-432)) (|has| |#1| (-851)))
+((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
+(|has| |#1| (-795))
+(((|#2|) . T))
+((((-359)) -12 (|has| |#1| (-827 (-359))) (|has| |#2| (-827 (-359)))) (((-516)) -12 (|has| |#1| (-827 (-516))) (|has| |#2| (-827 (-516)))))
+(|has| |#1| (-851))
+(|has| |#1| (-851))
+((((-388 (-516))) |has| |#1| (-975 (-388 (-516)))) (((-516)) |has| |#1| (-975 (-516))) ((|#1|) . T) ((|#2|) . T))
+(((|#1| (-502 |#2|) |#2|) . T))
((($) . T))
-((((-359)) |has| |#1| (-825 (-359))) (((-528)) |has| |#1| (-825 (-528))))
-((((-528)) . T))
+((($ $) . T) ((|#2| $) . T))
+(((|#2|) . T))
+((((-805)) . T))
+(((|#1| (-502 |#2|) |#2|) . T))
+((($) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((|#1|) . T))
+(|has| |#1| (-138))
+(|has| |#1| (-140))
+(-3810 (|has| |#1| (-162)) (|has| |#1| (-523)))
+((((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((|#1|) . T) (($) -3810 (|has| |#1| (-162)) (|has| |#1| (-523))))
+(((#1=(-388 (-516)) #1#) |has| |#1| (-37 (-388 (-516)))) ((|#1| |#1|) . T) (($ $) -3810 (|has| |#1| (-162)) (|has| |#1| (-523))))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+((((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-523)))
+((((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-523)))
+(((|#1| (-502 |#2|)) . T))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(((|#1| |#2|) . T))
+((((-805)) . T))
+(((|#1|) . T))
+((((-805)) . T))
+((((-1063 |#1| |#2|)) . T))
+(((#1=(-1063 |#1| |#2|) #1#) |has| (-1063 |#1| |#2|) (-291 (-1063 |#1| |#2|))))
+((((-1063 |#1| |#2|)) |has| (-1063 |#1| |#2|) (-291 (-1063 |#1| |#2|))))
+((((-805)) . T))
+((((-1063 |#1| |#2|)) . T))
+((((-505)) |has| |#2| (-572 (-505))))
+(((|#2|) |has| |#2| (-6 (-4271 "*"))))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+((((-637 |#2|)) . T) (((-805)) . T))
+((($) . T) ((|#2|) . T))
+(((|#2|) -3810 (|has| |#2| (-6 (-4271 "*"))) (|has| |#2| (-162))))
+(((|#2|) . T))
+((((-1098)) |has| |#2| (-841 (-1098))))
+(|has| |#2| (-216))
+(((|#2|) . T))
+(((|#2|) . T) (((-516)) |has| |#2| (-593 (-516))))
+(((|#2|) . T))
+(((|#2|) . T) (((-516)) |has| |#2| (-975 (-516))) (((-388 (-516))) |has| |#2| (-975 (-388 (-516)))))
+(((|#1| |#1| |#2| (-222 |#1| |#2|) (-222 |#1| |#2|)) . T))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
+(((|#2|) . T))
+(((|#1| |#2| (-222 |#1| |#2|) (-222 |#1| |#2|)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-505)) |has| |#4| (-572 (-505))))
+(((|#4|) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
+(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
+(((|#4|) . T))
+((((-805)) . T) (((-594 |#4|)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
-((((-802)) . T))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(|has| |#1| (-1027))
+(|has| |#1| (-1027))
(((|#1|) . T))
-((((-802)) . T))
-(((|#1|) |has| |#1| (-162)) (($) . T))
-((((-528)) . T) (((-387 (-528))) . T))
-(((|#1|) |has| |#1| (-290 |#1|)))
-((((-802)) . T))
-((((-359)) . T))
(((|#1|) . T))
+(((|#1| |#2|) . T))
+((((-805)) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+(((|#1| |#2|) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((#1=(-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) #1#) |has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) |has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+(((|#1| |#2|) . T))
(((|#1|) . T))
-((((-802)) . T))
-((((-387 (-528))) . T) (($) . T))
-((((-387 |#2|) |#3|) . T))
(((|#1|) . T))
-(|has| |#1| (-1023))
-(((|#2| (-460 (-2138 |#1|) (-717))) . T))
-((((-528) |#1|) . T))
-(((|#2| |#2|) . T))
-(((|#1| (-500 (-1095))) . T))
-(-1463 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-739)) (|has| |#2| (-791)) (|has| |#2| (-981)))
-((((-528)) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-((((-1095)) |has| |#1| (-839 (-1095))) (((-1008)) . T))
-(((|#1|) . T) (((-528)) |has| |#1| (-591 (-528))))
-(|has| |#1| (-520))
-((($) . T) (((-387 (-528))) . T))
-((($) . T))
-((($) . T))
-(-1463 (|has| |#1| (-793)) (|has| |#1| (-1023)))
(((|#1|) . T))
-((($) -1463 (|has| |#1| (-343)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-162)) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-((((-802)) . T))
-((((-137)) . T))
-(((|#1|) . T) (((-387 (-528))) . T))
(((|#1|) . T))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(|has| |#1| (-1027))
+(|has| |#1| (-1027))
(((|#1|) . T))
-((((-802)) . T))
+((((-505)) |has| |#1| (-572 (-505))))
+((((-516) |#1|) . T))
+((((-516) |#1|) . T))
+((((-516) |#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1071))
-(((|#1| (-500 (-804 |#2|)) (-804 |#2|) (-726 |#1| (-804 |#2|))) . T))
(((|#1|) . T))
-((((-387 $) (-387 $)) |has| |#1| (-520)) (($ $) . T) ((|#1| |#1|) . T))
-(((|#1|) . T) (((-528)) |has| |#1| (-972 (-528))) (((-387 (-528))) |has| |#1| (-972 (-387 (-528)))))
-((((-802)) . T))
-((((-387 (-528))) |has| |#1| (-972 (-387 (-528)))) (((-528)) |has| |#1| (-972 (-528))) ((|#1|) . T) ((|#2|) . T))
-((((-1008)) . T) ((|#1|) . T) (((-528)) |has| |#1| (-972 (-528))) (((-387 (-528))) |has| |#1| (-972 (-387 (-528)))))
-((((-359)) -12 (|has| |#1| (-825 (-359))) (|has| |#2| (-825 (-359)))) (((-528)) -12 (|has| |#1| (-825 (-528))) (|has| |#2| (-825 (-528)))))
-((((-1163 |#1| |#2| |#3| |#4|)) . T))
-((((-528) |#1|) . T))
-(((|#1| |#1|) . T))
-((($) . T) ((|#2|) . T))
-(((|#1|) |has| |#1| (-162)) (($) . T))
-((($) . T))
-((((-645)) . T))
-((((-726 |#1| (-804 |#2|))) . T))
-((($) . T))
-((((-387 (-528))) . T) (($) . T))
-(|has| |#1| (-1023))
-(|has| |#1| (-1023))
-(|has| |#2| (-343))
-(|has| |#1| (-343))
-(|has| |#1| (-343))
-(|has| |#1| (-37 (-387 (-528))))
-((((-528)) . T))
-((((-1095)) -12 (|has| |#4| (-839 (-1095))) (|has| |#4| (-981))))
-((((-1095)) -12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981))))
-(((|#1|) . T))
-(|has| |#1| (-215))
-(((|#1| (-500 |#3|)) . T))
-(|has| |#1| (-348))
-(((|#2| (-222 (-2138 |#1|) (-717))) . T))
-(|has| |#1| (-348))
-(|has| |#1| (-348))
-(((|#1|) . T) (($) . T))
-(((|#1| (-500 |#2|)) . T))
-(-1463 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-739)) (|has| |#2| (-791)) (|has| |#2| (-981)))
-(((|#1| (-717)) . T))
-(|has| |#1| (-520))
-(-1463 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-739)) (|has| |#2| (-791)) (|has| |#2| (-981)))
-(-1463 (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-791)) (|has| |#2| (-981)))
-(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
-((((-802)) . T))
-(-1463 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739))))
-(-1463 (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-343)) (|has| |#3| (-739)) (|has| |#3| (-791)) (|has| |#3| (-981)))
-(-1463 (|has| |#2| (-162)) (|has| |#2| (-673)) (|has| |#2| (-791)) (|has| |#2| (-981)))
-(((|#1|) |has| |#1| (-162)))
-(((|#4|) |has| |#4| (-981)))
-(((|#3|) |has| |#3| (-981)))
-(-12 (|has| |#1| (-343)) (|has| |#2| (-766)))
-(-12 (|has| |#1| (-343)) (|has| |#2| (-766)))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-793)) (|has| |#1| (-1023))))
-((((-504)) |has| |#1| (-570 (-504))))
-((((-387 |#2|)) . T) (((-387 (-528))) . T) (($) . T))
-((($ $) . T) ((#0=(-387 (-528)) #0#) . T))
-((((-802)) . T))
-((($) . T) (((-387 (-528))) . T))
-(((|#1|) . T))
-(((|#4|) |has| |#4| (-1023)) (((-528)) -12 (|has| |#4| (-972 (-528))) (|has| |#4| (-1023))) (((-387 (-528))) -12 (|has| |#4| (-972 (-387 (-528)))) (|has| |#4| (-1023))))
-(((|#3|) |has| |#3| (-1023)) (((-528)) -12 (|has| |#3| (-972 (-528))) (|has| |#3| (-1023))) (((-387 (-528))) -12 (|has| |#3| (-972 (-387 (-528)))) (|has| |#3| (-1023))))
-(|has| |#2| (-343))
-(((|#2|) |has| |#2| (-981)) (((-528)) -12 (|has| |#2| (-591 (-528))) (|has| |#2| (-981))))
-(((|#1|) . T))
-(|has| |#2| (-343))
-(((#0=(-387 (-528)) #0#) |has| |#2| (-37 (-387 (-528)))) ((|#2| |#2|) . T) (($ $) -1463 (|has| |#2| (-162)) (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848))))
-((($ $) -1463 (|has| |#1| (-162)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1| |#1|) . T) ((#0=(-387 (-528)) #0#) |has| |#1| (-37 (-387 (-528)))))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-387 (-528)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-387 (-528)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-387 (-528)) #0#) . T))
-(((|#2| |#2|) . T))
-((((-387 (-528))) |has| |#2| (-37 (-387 (-528)))) ((|#2|) . T) (($) -1463 (|has| |#2| (-162)) (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848))))
-((($) -1463 (|has| |#1| (-162)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1|) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-(((|#1|) . T) (($) . T) (((-387 (-528))) . T))
-(((|#1|) . T) (($) . T) (((-387 (-528))) . T))
-(((|#1|) . T) (($) . T) (((-387 (-528))) . T))
-(((|#2|) . T))
-((($) . T))
-((((-802)) |has| |#1| (-1023)))
-((((-1163 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#2| (-766))
-(|has| |#2| (-766))
-(|has| |#1| (-343))
-(|has| |#1| (-343))
-(|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|)))
-(|has| |#1| (-343))
-(((|#1|) |has| |#2| (-397 |#1|)))
-(((|#1|) |has| |#2| (-397 |#1|)))
-((((-849 |#1|)) . T) (((-387 (-528))) . T) (($) . T))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-793)) (|has| |#1| (-1023))))
-((((-504)) |has| |#1| (-570 (-504))))
-((((-802)) . T))
-((((-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) |has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-290 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))))))
-(-1463 (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848)))
-((((-528) |#1|) . T))
-((((-528) |#1|) . T))
-((((-528) |#1|) . T))
-(-1463 (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-((((-528) |#1|) . T))
-(((|#1|) . T))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-(-1463 (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-((((-1095)) |has| |#1| (-839 (-1095))) (((-764 (-1095))) . T))
-(-1463 (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-343)) (|has| |#3| (-739)) (|has| |#3| (-791)) (|has| |#3| (-981)))
-((((-765 |#1|)) . T))
-(((|#1| |#2|) . T))
-((((-802)) . T))
-(-1463 (|has| |#3| (-162)) (|has| |#3| (-673)) (|has| |#3| (-791)) (|has| |#3| (-981)))
-(((|#1| |#2|) . T))
-(|has| |#1| (-37 (-387 (-528))))
-((((-802)) . T))
-((((-1163 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-387 (-528))) . T))
-(((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-520)) (((-387 (-528))) |has| |#1| (-520)))
-(((|#2|) . T) (((-528)) |has| |#2| (-591 (-528))))
-(|has| |#1| (-343))
-(-1463 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (-12 (|has| |#1| (-343)) (|has| |#2| (-215))))
-(|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|)))
-(|has| |#1| (-343))
-(((|#1|) . T))
-(((#0=(-387 (-528)) #0#) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) (($ $) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-520))) ((|#1| |#1|) . T))
-((((-528) |#1|) . T))
-((((-296 |#1|)) . T))
-(((#0=(-645) (-1091 #0#)) . T))
-((((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) (($) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-520))) ((|#1|) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(|has| |#1| (-791))
-((($ $) . T) ((#0=(-804 |#1|) $) . T) ((#0# |#2|) . T))
-((((-1047 |#1| (-1095))) . T) (((-764 (-1095))) . T) ((|#1|) . T) (((-528)) |has| |#1| (-972 (-528))) (((-387 (-528))) |has| |#1| (-972 (-387 (-528)))) (((-1095)) . T))
-((($) . T))
-(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
-(((#0=(-1008) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((($ $) . T) ((#0=(-1095) $) |has| |#1| (-215)) ((#0# |#1|) |has| |#1| (-215)) ((#1=(-1013 (-1095)) |#1|) . T) ((#1# $) . T))
-((($) . T) ((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-387 (-528))) |has| |#2| (-37 (-387 (-528)))))
-(|has| |#2| (-848))
-((($) . T) ((#0=(-1162 |#2| |#3| |#4|)) |has| #0# (-162)) (((-387 (-528))) |has| #0# (-37 (-387 (-528)))))
-((((-528) |#1|) . T))
-(((#0=(-1163 |#1| |#2| |#3| |#4|)) |has| #0# (-290 #0#)))
-((($) . T))
+((((-805)) . T))
+((((-137)) . T))
+((((-137)) . T))
+((((-137)) . T))
+((((-516) (-137)) . T))
+((((-516) (-137)) . T))
+((((-516) (-137)) . T))
+((((-137)) . T))
+((((-137)) . T))
+((((-1081) |#1|) . T))
+((((-805)) . T))
+((((-1081) |#1|) . T))
+((((-1081) |#1|) . T))
+((((-1081) |#1|) . T))
+((((-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) . T))
+((((-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) . T))
+(((|#1|) . T) (((-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((#1=(-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) #1#) |has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-291 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) (((-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) |has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-291 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)))))
+((((-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) . T))
+((((-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) . T))
+((((-1081) |#1|) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-1096 |#1| |#2| |#3|)) |has| |#1| (-344)))
+((((-1096 |#1| |#2| |#3|)) . T))
+((((-1096 |#1| |#2| |#3|)) |has| |#1| (-344)))
+(|has| |#1| (-344))
+((((-1096 |#1| |#2| |#3|)) |has| |#1| (-344)))
+((((-1096 |#1| |#2| |#3|)) |has| |#1| (-344)))
+((((-1096 |#1| |#2| |#3|)) |has| |#1| (-344)))
+((((-1096 |#1| |#2| |#3|)) -12 (|has| |#1| (-344)) (|has| (-1096 |#1| |#2| |#3|) (-291 (-1096 |#1| |#2| |#3|)))))
+(((#1=(-1096 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-344)) (|has| (-1096 |#1| |#2| |#3|) (-291 (-1096 |#1| |#2| |#3|)))) (((-1098) #1#) -12 (|has| |#1| (-344)) (|has| (-1096 |#1| |#2| |#3|) (-491 (-1098) (-1096 |#1| |#2| |#3|)))))
+((((-1096 |#1| |#2| |#3|)) |has| |#1| (-344)))
+(|has| |#1| (-344))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-523)))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+(-3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523)))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-523)))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+(-3810 (-12 (|has| |#1| (-344)) (|has| (-1096 |#1| |#2| |#3|) (-216))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))
+((((-1098)) -3810 (-12 (|has| |#1| (-344)) (|has| (-1096 |#1| |#2| |#3|) (-841 (-1098)))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))))
+((((-1096 |#1| |#2| |#3|)) |has| |#1| (-344)))
+(-3810 (|has| |#1| (-140)) (-12 (|has| |#1| (-344)) (|has| (-1096 |#1| |#2| |#3|) (-140))))
+(-3810 (|has| |#1| (-138)) (-12 (|has| |#1| (-344)) (|has| (-1096 |#1| |#2| |#3|) (-138))))
+((((-805)) . T))
+(((|#1|) . T))
+((((-1096 |#1| |#2| |#3|) $) -12 (|has| |#1| (-344)) (|has| (-1096 |#1| |#2| |#3|) (-268 (-1096 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3|)))) (($ $) . T))
+(((|#1| (-516) (-1011)) . T))
+((((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) (($) -3810 (|has| |#1| (-344)) (|has| |#1| (-523))) (((-1096 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
+((($ $) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((#1=(-388 (-516)) #1#) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) ((#2=(-1096 |#1| |#2| |#3|) #2#) |has| |#1| (-344)) ((|#1| |#1|) . T))
+((($) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) (((-1096 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) . T))
+((((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) (((-1096 |#1| |#2| |#3|)) |has| |#1| (-344)) (($) . T) ((|#1|) . T))
+((((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) (($) -3810 (|has| |#1| (-344)) (|has| |#1| (-523))) (((-1096 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
+(((|#1| (-516)) . T))
+(((|#1| (-516)) . T))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(((|#1| (-1096 |#1| |#2| |#3|)) . T))
+(((|#1|) . T))
+((((-805)) . T))
+((((-388 $) (-388 $)) |has| |#1| (-523)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#1| (-344))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-851)))
+(-3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851)))
+(|has| |#1| (-344))
+(((|#1| (-719) (-1011)) . T))
+(|has| |#1| (-851))
+(|has| |#1| (-851))
+((((-1098)) |has| |#1| (-841 (-1098))) (((-1011)) . T))
+(|has| |#1| (-795))
+((((-516)) |has| |#1| (-593 (-516))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-719)) . T))
+(|has| |#1| (-140))
+(|has| |#1| (-138))
+((($) -3810 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1|) |has| |#1| (-162)) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($) . T) ((|#1|) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1|) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($ $) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1| |#1|) . T) ((#1=(-388 (-516)) #1#) |has| |#1| (-37 (-388 (-516)))))
+((($) -3810 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-851))) ((|#1|) |has| |#1| (-162)) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
(((|#1|) . T))
-((($ $) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-520))) ((#0=(-387 (-528)) #0#) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) ((|#2| |#2|) |has| |#1| (-343)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-520))) ((#0=(-387 (-528)) #0#) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))))
-(|has| |#2| (-215))
-(|has| $ (-140))
-((((-802)) . T))
-((($) . T) (((-387 (-528))) -1463 (|has| |#1| (-343)) (|has| |#1| (-329))) ((|#1|) . T))
-((((-802)) . T))
-(|has| |#1| (-791))
-((((-1095)) -12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095)))))
-((((-387 |#2|) |#3|) . T))
-(((|#1|) . T))
-((((-802)) . T))
-(((|#2| (-620 |#1|)) . T))
-(-12 (|has| |#1| (-288)) (|has| |#1| (-848)))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#4|) . T))
-(|has| |#1| (-520))
-((($) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-520))) (((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))) ((|#2|) |has| |#1| (-343)) ((|#1|) . T))
-((((-1095)) -1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095))))))
-(((|#1|) . T) (($) -1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-520))) (((-387 (-528))) -1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-343))))
-((((-1095)) -12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095)))))
-((((-1095)) -12 (|has| |#1| (-15 * (|#1| (-717) |#1|))) (|has| |#1| (-839 (-1095)))))
-(((|#4|) -12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))))
-((((-528) |#1|) . T))
-(-1463 (|has| |#2| (-162)) (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848)))
-(((|#1|) . T))
-(((|#1| (-500 (-764 (-1095)))) . T))
-(-1463 (|has| |#1| (-162)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-(-1463 (|has| |#1| (-162)) (|has| |#1| (-343)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-(((|#1|) . T))
-(-1463 (|has| |#1| (-162)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-(((|#1|) . T))
-(-1463 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-739)) (|has| |#2| (-791)) (|has| |#2| (-981)))
-(-1463 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739))))
-((((-1169 |#1| |#2| |#3|)) |has| |#1| (-343)))
-((($) . T) (((-809 |#1|)) . T) (((-387 (-528))) . T))
-((((-1169 |#1| |#2| |#3|)) |has| |#1| (-343)))
-(|has| |#1| (-520))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-387 |#2|)) . T))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-329)))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-793)) (|has| |#1| (-1023))))
-((((-504)) |has| |#1| (-570 (-504))))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-1023))))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-793)) (|has| |#1| (-1023))))
-((((-504)) |has| |#1| (-570 (-504))))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-793)) (|has| |#1| (-1023))))
-((((-504)) |has| |#1| (-570 (-504))))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-1023))))
-(((|#1|) . T))
-(((|#2| |#2|) . T) ((#0=(-387 (-528)) #0#) . T) (($ $) . T))
-((((-528)) . T))
-((((-802)) . T))
-(((|#2|) . T) (((-387 (-528))) . T) (($) . T))
-((((-541 |#1|)) . T) (((-387 (-528))) . T) (($) . T))
-((((-802)) . T))
-((((-387 (-528))) . T) (($) . T))
-((((-528) |#1|) . T))
-((((-802)) . T))
-((($ $) . T) (((-1095) $) . T))
-((((-1169 |#1| |#2| |#3|)) . T))
-((((-1169 |#1| |#2| |#3|)) . T) (((-1141 |#1| |#2| |#3|)) . T))
-(((|#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#1| (-500 (-804 |#2|)) (-804 |#2|) (-726 |#1| (-804 |#2|))) . T))
-((((-504)) |has| |#2| (-570 (-504))) (((-831 (-359))) |has| |#2| (-570 (-831 (-359)))) (((-831 (-528))) |has| |#2| (-570 (-831 (-528)))))
-((((-802)) . T))
-((((-802)) . T))
-((((-831 (-528))) -12 (|has| |#1| (-570 (-831 (-528)))) (|has| |#3| (-570 (-831 (-528))))) (((-831 (-359))) -12 (|has| |#1| (-570 (-831 (-359)))) (|has| |#3| (-570 (-831 (-359))))) (((-504)) -12 (|has| |#1| (-570 (-504))) (|has| |#3| (-570 (-504)))))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-(((|#1| |#2| (-222 |#1| |#2|) (-222 |#1| |#2|)) . T))
-((((-802)) . T))
-((((-1169 |#1| |#2| |#3|)) |has| |#1| (-343)))
-((((-1095)) . T) (((-802)) . T))
-(|has| |#1| (-343))
-((((-387 (-528))) |has| |#2| (-37 (-387 (-528)))) ((|#2|) |has| |#2| (-162)) (($) -1463 (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848))))
-(((|#2|) . T) ((|#6|) . T))
-((($) . T) (((-387 (-528))) |has| |#2| (-37 (-387 (-528)))) ((|#2|) . T))
-((($) -1463 (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-162)) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-((((-1027)) . T))
-((((-802)) . T))
-((($) -1463 (|has| |#1| (-343)) (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-162)) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-((($) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((|#1|) . T))
+((((-1011)) . T) ((|#1|) . T) (((-516)) |has| |#1| (-975 (-516))) (((-388 (-516))) |has| |#1| (-975 (-388 (-516)))))
+(((|#1| (-719)) . T))
+(((#1=(-1011) |#1|) . T) ((#1# $) . T) (($ $) . T))
((($) . T))
-((($) -1463 (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848))) ((|#1|) |has| |#1| (-162)) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-(|has| |#2| (-848))
-(|has| |#1| (-848))
+(|has| |#1| (-1074))
(((|#1|) . T))
+((((-1096 |#1| |#2| |#3|)) . T) (((-1089 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
-(((|#1| |#1|) |has| |#1| (-162)))
-((((-645)) . T))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-1023))))
-(((|#1|) |has| |#1| (-162)))
-(((|#1|) |has| |#1| (-162)))
-((((-387 (-528))) . T) (($) . T))
-(((|#1| (-528)) . T))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-329)))
-(|has| |#1| (-343))
-(|has| |#1| (-343))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-329)))
-(-1463 (|has| |#1| (-162)) (|has| |#1| (-520)))
-(((|#1| (-528)) . T))
-(((|#1| (-387 (-528))) . T))
-(((|#1| (-717)) . T))
-((((-387 (-528))) . T))
-(((|#1| (-500 |#2|) |#2|) . T))
-((((-528) |#1|) . T))
-((((-528) |#1|) . T))
-(|has| |#1| (-1023))
-((((-528) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-831 (-359))) . T) (((-831 (-528))) . T) (((-1095)) . T) (((-504)) . T))
-(((|#1|) . T))
-((((-802)) . T))
-(-1463 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-343)) (|has| |#2| (-739)) (|has| |#2| (-791)) (|has| |#2| (-981)))
-(-1463 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739))))
-((((-528)) . T))
-((((-528)) . T))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-(((|#1| |#2|) . T))
-(((|#1|) . T))
-(-1463 (|has| |#2| (-162)) (|has| |#2| (-673)) (|has| |#2| (-791)) (|has| |#2| (-981)))
-((((-1095)) -12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981))))
-(-1463 (-12 (|has| |#1| (-452)) (|has| |#2| (-452))) (-12 (|has| |#1| (-673)) (|has| |#2| (-673))))
+(|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))
+((($ $) . T))
+((((-1098)) -12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))))
+(((|#1| (-388 (-516)) (-1011)) . T))
(|has| |#1| (-138))
(|has| |#1| (-140))
-(|has| |#1| (-343))
+(((|#1| (-388 (-516))) . T))
+(((|#1| (-388 (-516))) . T))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-344))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-523)))
+((((-805)) . T))
+(((|#1|) . T) (($) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))))
+(((|#1| |#1|) . T) (($ $) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((#1=(-388 (-516)) #1#) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))))
+(((|#1|) . T) (((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) (($) . T))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+(((|#1|) |has| |#1| (-162)) (((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) (($) -3810 (|has| |#1| (-344)) (|has| |#1| (-523))))
+(((|#1|) |has| |#1| (-162)) (((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) (($) -3810 (|has| |#1| (-344)) (|has| |#1| (-523))))
+(-3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523)))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-523)))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+(((|#1| (-1089 |#1| |#2| |#3|)) . T))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(((|#1| (-719)) . T))
+(((|#1| (-719)) . T))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(-3810 (|has| |#1| (-162)) (|has| |#1| (-523)))
+(|has| |#1| (-140))
+(|has| |#1| (-138))
+((($) |has| |#1| (-523)) ((|#1|) |has| |#1| (-162)) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($) -3810 (|has| |#1| (-162)) (|has| |#1| (-523))) ((|#1|) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($ $) -3810 (|has| |#1| (-162)) (|has| |#1| (-523))) ((|#1| |#1|) . T) ((#1=(-388 (-516)) #1#) |has| |#1| (-37 (-388 (-516)))))
+((($) |has| |#1| (-523)) ((|#1|) |has| |#1| (-162)) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+(((|#1| (-719) (-1011)) . T))
+((((-1098)) -12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|)))))
+((($ $) . T))
+((((-805)) . T))
+(((|#1|) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) (($) . T))
+(|has| |#1| (-15 * (|#1| (-719) |#1|)))
+(((|#1|) . T))
+((((-805)) . T))
+((((-359)) . T) (((-516)) . T))
+((((-831 (-359))) . T) (((-831 (-516))) . T) (((-1098)) . T) (((-505)) . T))
+((((-805)) . T))
+(((|#1| (-911)) . T))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(-3810 (|has| |#1| (-162)) (|has| |#1| (-523)))
+(|has| |#1| (-140))
+(|has| |#1| (-138))
+((($) |has| |#1| (-523)) ((|#1|) |has| |#1| (-162)) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((((-805)) . T))
+((($) -3810 (|has| |#1| (-162)) (|has| |#1| (-523))) ((|#1|) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($ $) -3810 (|has| |#1| (-162)) (|has| |#1| (-523))) ((|#1| |#1|) . T) ((#1=(-388 (-516)) #1#) |has| |#1| (-37 (-388 (-516)))))
+(((|#1|) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) (($) . T))
+((($) |has| |#1| (-523)) ((|#1|) |has| |#1| (-162)) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+(((|#1|) . T))
+(((|#1|) . T) (((-516)) |has| |#1| (-975 (-516))) (((-388 (-516))) |has| |#1| (-975 (-388 (-516)))))
+(((|#1| (-911)) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-805)) . T))
(((|#1| |#2|) . T))
+((((-805)) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-215))
-((((-802)) . T))
-(((|#1| (-717) (-1008)) . T))
-((((-528) |#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-((((-528) |#1|) . T))
-((((-528) |#1|) . T))
-((((-114 |#1|)) . T))
-((((-387 (-528))) . T) (((-528)) . T))
-(((|#2|) |has| |#2| (-981)))
-((((-387 (-528))) . T) (($) . T))
-(((|#2|) . T))
-((((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-520)))
-((((-528)) . T))
-((((-528)) . T))
-((((-1078) (-1095) (-528) (-207) (-802)) . T))
-(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-(-1463 (|has| |#1| (-329)) (|has| |#1| (-348)))
(((|#1| |#2|) . T))
-((($) . T) ((|#1|) . T))
-((((-802)) . T))
-((($) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-387 (-528))) |has| |#1| (-37 (-387 (-528)))))
-(((|#2|) |has| |#2| (-1023)) (((-528)) -12 (|has| |#2| (-972 (-528))) (|has| |#2| (-1023))) (((-387 (-528))) -12 (|has| |#2| (-972 (-387 (-528)))) (|has| |#2| (-1023))))
-((((-504)) |has| |#1| (-570 (-504))))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-793)) (|has| |#1| (-1023))))
-((($) . T) (((-387 (-528))) . T))
-(|has| |#1| (-848))
-(|has| |#1| (-848))
-((((-207)) -12 (|has| |#1| (-343)) (|has| |#2| (-957))) (((-359)) -12 (|has| |#1| (-343)) (|has| |#2| (-957))) (((-831 (-359))) -12 (|has| |#1| (-343)) (|has| |#2| (-570 (-831 (-359))))) (((-831 (-528))) -12 (|has| |#1| (-343)) (|has| |#2| (-570 (-831 (-528))))) (((-504)) -12 (|has| |#1| (-343)) (|has| |#2| (-570 (-504)))))
-((((-802)) . T))
-((((-802)) . T))
-(((|#2| |#2|) . T))
-(((|#1| |#1|) |has| |#1| (-162)))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-520)))
-(-1463 (|has| |#1| (-21)) (|has| |#1| (-791)))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((#1=(-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) #1#) |has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) |has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+((((-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T))
+(((|#1| |#2|) . T))
+((((-805)) . T))
+((((-805)) . T))
+((((-369) (-1081)) . T))
+(((|#1|) . T))
+(|has| |#1| (-1027))
+(|has| |#1| (-1027))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-1027))))
+(((|#1|) . T))
+((($) . T))
+((($ $) . T) (((-1098) $) . T))
+((((-1098)) . T))
+((((-805)) . T))
+(((|#1| (-502 #1=(-1098)) #1#) . T))
+((($) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((|#1|) . T))
+(|has| |#1| (-138))
+(|has| |#1| (-140))
+(-3810 (|has| |#1| (-162)) (|has| |#1| (-523)))
+((((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((|#1|) . T) (($) -3810 (|has| |#1| (-162)) (|has| |#1| (-523))))
+(((#1=(-388 (-516)) #1#) |has| |#1| (-37 (-388 (-516)))) ((|#1| |#1|) . T) (($ $) -3810 (|has| |#1| (-162)) (|has| |#1| (-523))))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+((((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-523)))
+((((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-523)))
+(((|#1| (-502 (-1098))) . T))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(((|#1| (-1098)) . T))
+(|has| |#1| (-1027))
+(|has| |#1| (-1027))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-1027))) (((-899 |#1|)) . T))
+((((-1169 |#1| |#2| |#3|)) |has| |#1| (-344)))
+((((-1169 |#1| |#2| |#3|)) . T))
+((((-1169 |#1| |#2| |#3|)) |has| |#1| (-344)))
+(|has| |#1| (-344))
+((((-1169 |#1| |#2| |#3|)) |has| |#1| (-344)))
+((((-1169 |#1| |#2| |#3|)) |has| |#1| (-344)))
+((((-1169 |#1| |#2| |#3|)) |has| |#1| (-344)))
+((((-1169 |#1| |#2| |#3|)) -12 (|has| |#1| (-344)) (|has| (-1169 |#1| |#2| |#3|) (-291 (-1169 |#1| |#2| |#3|)))))
+(((#1=(-1169 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-344)) (|has| (-1169 |#1| |#2| |#3|) (-291 (-1169 |#1| |#2| |#3|)))) (((-1098) #1#) -12 (|has| |#1| (-344)) (|has| (-1169 |#1| |#2| |#3|) (-491 (-1098) (-1169 |#1| |#2| |#3|)))))
+((((-1169 |#1| |#2| |#3|)) |has| |#1| (-344)))
+(|has| |#1| (-344))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-523)))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+(-3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523)))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-523)))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+(-3810 (-12 (|has| |#1| (-344)) (|has| (-1169 |#1| |#2| |#3|) (-216))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))
+((((-1098)) -3810 (-12 (|has| |#1| (-344)) (|has| (-1169 |#1| |#2| |#3|) (-841 (-1098)))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))))
+((((-1169 |#1| |#2| |#3|)) |has| |#1| (-344)))
+(-3810 (|has| |#1| (-140)) (-12 (|has| |#1| (-344)) (|has| (-1169 |#1| |#2| |#3|) (-140))))
+(-3810 (|has| |#1| (-138)) (-12 (|has| |#1| (-344)) (|has| (-1169 |#1| |#2| |#3|) (-138))))
+((((-805)) . T))
+(((|#1|) . T))
+((((-1169 |#1| |#2| |#3|) $) -12 (|has| |#1| (-344)) (|has| (-1169 |#1| |#2| |#3|) (-268 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)))) (($ $) . T))
+(((|#1| (-516) (-1011)) . T))
+((((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) (($) -3810 (|has| |#1| (-344)) (|has| |#1| (-523))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
+((($ $) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((#1=(-388 (-516)) #1#) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) ((#2=(-1169 |#1| |#2| |#3|) #2#) |has| |#1| (-344)) ((|#1| |#1|) . T))
+((($) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) . T))
+((((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-344)) (($) . T) ((|#1|) . T))
+((((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) (($) -3810 (|has| |#1| (-344)) (|has| |#1| (-523))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
+(((|#1| (-516)) . T))
+(((|#1| (-516)) . T))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(((|#1| (-1169 |#1| |#2| |#3|)) . T))
+(((|#2|) |has| |#1| (-344)))
+(-12 (|has| |#1| (-344)) (|has| |#2| (-1074)))
+(((|#2|) . T) (((-1098)) -12 (|has| |#1| (-344)) (|has| |#2| (-975 (-1098)))) (((-516)) -12 (|has| |#1| (-344)) (|has| |#2| (-975 (-516)))) (((-388 (-516))) -12 (|has| |#1| (-344)) (|has| |#2| (-975 (-516)))))
+(-12 (|has| |#1| (-344)) (|has| |#2| (-958)))
+(-12 (|has| |#1| (-344)) (|has| |#2| (-851)))
+(((|#2|) |has| |#1| (-344)))
+(-12 (|has| |#1| (-344)) (|has| |#2| (-768)))
+(-12 (|has| |#1| (-344)) (|has| |#2| (-768)))
+(-12 (|has| |#1| (-344)) (|has| |#2| (-768)))
+(-3810 (-12 (|has| |#1| (-344)) (|has| |#2| (-768))) (-12 (|has| |#1| (-344)) (|has| |#2| (-795))))
+(-12 (|has| |#1| (-344)) (|has| |#2| (-768)))
+(-12 (|has| |#1| (-344)) (|has| |#2| (-768)))
+(-12 (|has| |#1| (-344)) (|has| |#2| (-768)))
+((((-359)) -12 (|has| |#1| (-344)) (|has| |#2| (-827 (-359)))) (((-516)) -12 (|has| |#1| (-344)) (|has| |#2| (-827 (-516)))))
+(|has| |#1| (-344))
+(((|#2|) |has| |#1| (-344)))
+((((-516)) -12 (|has| |#1| (-344)) (|has| |#2| (-593 (-516)))) ((|#2|) |has| |#1| (-344)))
+(((|#2|) |has| |#1| (-344)))
+(((|#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-291 |#2|))))
+(((|#2| |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-291 |#2|))) (((-1098) |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-491 (-1098) |#2|))))
+(((|#2|) |has| |#1| (-344)))
+(|has| |#1| (-344))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-523)))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+(-3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523)))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-523)))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+(-3810 (-12 (|has| |#1| (-344)) (|has| |#2| (-216))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))
+((((-1098)) -3810 (-12 (|has| |#1| (-344)) (|has| |#2| (-841 (-1098)))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))))
+(((|#2|) |has| |#1| (-344)))
+((((-208)) -12 (|has| |#1| (-344)) (|has| |#2| (-958))) (((-359)) -12 (|has| |#1| (-344)) (|has| |#2| (-958))) (((-831 (-359))) -12 (|has| |#1| (-344)) (|has| |#2| (-572 (-831 (-359))))) (((-831 (-516))) -12 (|has| |#1| (-344)) (|has| |#2| (-572 (-831 (-516))))) (((-505)) -12 (|has| |#1| (-344)) (|has| |#2| (-572 (-505)))))
+(-3810 (|has| |#1| (-140)) (-12 (|has| |#1| (-344)) (|has| |#2| (-140))))
+(-3810 (|has| |#1| (-138)) (-12 (|has| |#1| (-344)) (|has| |#2| (-138))))
+((((-805)) . T))
+(((|#1|) . T))
+(((|#2| $) -12 (|has| |#1| (-344)) (|has| |#2| (-268 |#2| |#2|))) (($ $) . T))
+(((|#1| (-516) (-1011)) . T))
+((((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) (($) -3810 (|has| |#1| (-344)) (|has| |#1| (-523))) ((|#2|) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
+((($ $) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((#1=(-388 (-516)) #1#) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) ((|#2| |#2|) |has| |#1| (-344)) ((|#1| |#1|) . T))
+((($) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) ((|#2|) |has| |#1| (-344)) ((|#1|) . T))
+((((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) ((|#2|) |has| |#1| (-344)) (($) . T) ((|#1|) . T))
+((((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) (($) -3810 (|has| |#1| (-344)) (|has| |#1| (-523))) ((|#2|) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
+(((|#1| (-516)) . T))
+(((|#1| (-516)) . T))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(((|#1| |#2|) . T))
+(((|#1| (-1076 |#1|)) |has| |#1| (-793)))
+(|has| |#1| (-1027))
+((((-805)) |has| |#1| (-1027)))
+(|has| |#1| (-1027))
+(((|#1|) . T))
+(((|#2|) . T))
+((((-805)) . T))
+((((-388 $) (-388 $)) |has| |#2| (-523)) (($ $) . T) ((|#2| |#2|) . T))
+(|has| |#2| (-344))
+(-3810 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-851)))
+(-3810 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851)))
+(-3810 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851)))
+(-3810 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851)))
+(|has| |#2| (-344))
+(((|#2| (-719) (-1011)) . T))
+(|has| |#2| (-851))
+(|has| |#2| (-851))
+((((-1098)) |has| |#2| (-841 (-1098))) (((-1011)) . T))
+(|has| |#2| (-795))
+((((-516)) |has| |#2| (-593 (-516))) ((|#2|) . T))
+(((|#2|) . T))
+(((|#2| (-719)) . T))
+(|has| |#2| (-140))
+(|has| |#2| (-138))
+((($) -3810 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851))) ((|#2|) |has| |#2| (-162)) (((-388 (-516))) |has| |#2| (-37 (-388 (-516)))))
+((($) . T) ((|#2|) . T) (((-388 (-516))) |has| |#2| (-37 (-388 (-516)))))
+((($) -3810 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851))) ((|#2|) . T) (((-388 (-516))) |has| |#2| (-37 (-388 (-516)))))
+((($ $) -3810 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851))) ((|#2| |#2|) . T) ((#1=(-388 (-516)) #1#) |has| |#2| (-37 (-388 (-516)))))
+((($) -3810 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-851))) ((|#2|) |has| |#2| (-162)) (((-388 (-516))) |has| |#2| (-37 (-388 (-516)))))
(((|#2|) . T))
-(-1463 (|has| |#1| (-21)) (|has| |#1| (-791)))
-(((|#1|) |has| |#1| (-162)))
+((((-1011)) . T) ((|#2|) . T) (((-516)) |has| |#2| (-975 (-516))) (((-388 (-516))) |has| |#2| (-975 (-388 (-516)))))
+(((|#2| (-719)) . T))
+(((#1=(-1011) |#2|) . T) ((#1# $) . T) (($ $) . T))
+((($) . T))
+(|has| |#2| (-1074))
+(((|#2|) . T))
+((((-1169 |#1| |#2| |#3|)) . T) (((-1139 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
+(|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))
+((($ $) . T))
+((((-1098)) -12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))))
+(((|#1| (-388 (-516)) (-1011)) . T))
+(|has| |#1| (-138))
+(|has| |#1| (-140))
+(((|#1| (-388 (-516))) . T))
+(((|#1| (-388 (-516))) . T))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-344))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-523)))
+((((-805)) . T))
+(((|#1|) . T) (($) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))))
+(((|#1| |#1|) . T) (($ $) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((#1=(-388 (-516)) #1#) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))))
+(((|#1|) . T) (((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) (($) . T))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+(((|#1|) |has| |#1| (-162)) (((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) (($) -3810 (|has| |#1| (-344)) (|has| |#1| (-523))))
+(((|#1|) |has| |#1| (-162)) (((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) (($) -3810 (|has| |#1| (-344)) (|has| |#1| (-523))))
+(-3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523)))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-523)))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+(((|#1| (-1139 |#1| |#2| |#3|)) . T))
+(((|#2|) . T))
+(((|#1|) . T))
+(|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))
+((($ $) . T))
+((((-1098)) -12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))))
+(((|#1| (-388 (-516)) (-1011)) . T))
+(|has| |#1| (-138))
+(|has| |#1| (-140))
+(((|#1| (-388 (-516))) . T))
+(((|#1| (-388 (-516))) . T))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-344))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-523)))
+((((-805)) . T))
+(((|#1|) . T) (($) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))))
+(((|#1| |#1|) . T) (($ $) -3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((#1=(-388 (-516)) #1#) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))))
+(((|#1|) . T) (((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) (($) . T))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+(((|#1|) |has| |#1| (-162)) (((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) (($) -3810 (|has| |#1| (-344)) (|has| |#1| (-523))))
+(((|#1|) |has| |#1| (-162)) (((-388 (-516))) -3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-344))) (($) -3810 (|has| |#1| (-344)) (|has| |#1| (-523))))
+(-3810 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523)))
+(-3810 (|has| |#1| (-344)) (|has| |#1| (-523)))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+(|has| |#1| (-344))
+(((|#1| |#2|) . T))
+((((-1160 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) . T))
+(|has| (-1160 |#2| |#3| |#4|) (-140))
+(|has| (-1160 |#2| |#3| |#4|) (-138))
+((($) . T) ((#1=(-1160 |#2| |#3| |#4|)) |has| #1# (-162)) (((-388 (-516))) |has| #1# (-37 (-388 (-516)))))
+((((-805)) . T))
+((($) . T) ((#1=(-1160 |#2| |#3| |#4|)) . T) (((-388 (-516))) |has| #1# (-37 (-388 (-516)))))
+((($ $) . T) ((#1=(-1160 |#2| |#3| |#4|) #1#) . T) ((#2=(-388 (-516)) #2#) |has| #1# (-37 (-388 (-516)))))
+(((#1=(-1160 |#2| |#3| |#4|)) . T) (((-388 (-516))) |has| #1# (-37 (-388 (-516)))) (($) . T))
+((($) . T) ((#1=(-1160 |#2| |#3| |#4|)) |has| #1# (-162)) (((-388 (-516))) |has| #1# (-37 (-388 (-516)))))
+((((-1160 |#2| |#3| |#4|)) . T))
+((((-1160 |#2| |#3| |#4|)) . T))
+((((-1160 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) . T))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(|has| |#1| (-37 (-388 (-516))))
+(((|#1| (-719)) . T))
+(((|#1| (-719)) . T))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(-3810 (|has| |#1| (-162)) (|has| |#1| (-523)))
+(|has| |#1| (-140))
+(|has| |#1| (-138))
+((($) |has| |#1| (-523)) ((|#1|) |has| |#1| (-162)) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($) -3810 (|has| |#1| (-162)) (|has| |#1| (-523))) ((|#1|) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+((($ $) -3810 (|has| |#1| (-162)) (|has| |#1| (-523))) ((|#1| |#1|) . T) ((#1=(-388 (-516)) #1#) |has| |#1| (-37 (-388 (-516)))))
+((($) |has| |#1| (-523)) ((|#1|) |has| |#1| (-162)) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))))
+(((|#1| (-719) (-1011)) . T))
+((((-1098)) -12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|)))))
+((($ $) . T))
+((((-805)) . T))
+(((|#1|) . T) (((-388 (-516))) |has| |#1| (-37 (-388 (-516)))) (($) . T))
+(|has| |#1| (-15 * (|#1| (-719) |#1|)))
(((|#1|) . T))
-((((-802)) -1463 (-12 (|has| |#1| (-569 (-802))) (|has| |#2| (-569 (-802)))) (-12 (|has| |#1| (-1023)) (|has| |#2| (-1023)))))
-((((-387 |#2|) |#3|) . T))
-((((-387 (-528))) . T) (($) . T))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-343))
-((($ $) . T) ((#0=(-387 (-528)) #0#) . T))
-(|has| (-387 |#2|) (-140))
-(|has| (-387 |#2|) (-138))
-((((-645)) . T))
-(((|#1|) . T) (((-387 (-528))) . T) (((-528)) . T) (($) . T))
-(((#0=(-528) #0#) . T))
-((($) . T) (((-387 (-528))) . T))
-(-1463 (|has| |#4| (-162)) (|has| |#4| (-673)) (|has| |#4| (-791)) (|has| |#4| (-981)))
-(-1463 (|has| |#3| (-162)) (|has| |#3| (-673)) (|has| |#3| (-791)) (|has| |#3| (-981)))
-(|has| |#4| (-739))
-(-1463 (|has| |#4| (-739)) (|has| |#4| (-791)))
-(|has| |#4| (-791))
-(|has| |#3| (-739))
-(-1463 (|has| |#3| (-739)) (|has| |#3| (-791)))
-(|has| |#3| (-791))
-((((-528)) . T))
-(((|#2|) . T))
-((((-1095)) -1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095))))))
-((((-1095)) -12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095)))))
-((((-1095)) -12 (|has| |#1| (-15 * (|#1| (-717) |#1|))) (|has| |#1| (-839 (-1095)))))
-(((|#1| |#1|) . T) (($ $) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
+((((-1098)) . T) (((-805)) . T))
(((|#1|) . T))
(((|#1|) . T))
+((((-516) |#1|) . T))
+((((-516) |#1|) . T))
+((((-516) |#1|) . T))
+((((-505)) |has| |#1| (-572 (-505))))
(((|#1|) . T))
+(-3810 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-3810 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+((((-805)) -3810 (|has| |#1| (-571 (-805))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
(((|#1|) . T))
-(((|#1|) . T) (($) . T))
+(|has| |#1| (-795))
(((|#1|) . T))
-((((-804 |#1|)) . T))
-((((-1093 |#1| |#2| |#3|)) |has| |#1| (-343)))
-((((-1060 |#1| |#2|)) . T))
-((((-1093 |#1| |#2| |#3|)) |has| |#1| (-343)))
-(((|#2|) . T) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-((((-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) . T))
-((($) . T))
-(|has| |#1| (-957))
-(((|#2|) . T) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-((((-802)) . T))
-((((-504)) |has| |#2| (-570 (-504))) (((-831 (-528))) |has| |#2| (-570 (-831 (-528)))) (((-831 (-359))) |has| |#2| (-570 (-831 (-359)))) (((-359)) . #0=(|has| |#2| (-957))) (((-207)) . #0#))
-((((-1095) (-51)) . T))
-(|has| |#1| (-37 (-387 (-528))))
-(|has| |#1| (-37 (-387 (-528))))
-(((|#2|) . T))
-((($ $) . T))
-((((-387 (-528))) . T) (((-645)) . T) (($) . T))
-((((-1093 |#1| |#2| |#3|)) . T))
-((((-1093 |#1| |#2| |#3|)) . T) (((-1086 |#1| |#2| |#3|)) . T))
-((((-802)) . T))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-1023))))
-((((-528) |#1|) . T))
-((((-1093 |#1| |#2| |#3|)) |has| |#1| (-343)))
-(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
+((((-805)) . T))
+((((-805)) . T))
+(((|#1|) |has| |#1| (-162)))
+(((|#1|) |has| |#1| (-162)))
+(((|#1| |#1|) |has| |#1| (-162)))
+(((|#1|) |has| |#1| (-162)))
+(((|#1|) |has| |#1| (-162)) (($) . T))
+((((-805)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+((((-505)) |has| |#4| (-572 (-505))))
+(((|#4|) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
+(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
+(((|#4|) . T))
+((((-805)) . T) (((-594 |#4|)) . T))
+(((|#1| |#2| |#3| |#4|) . T))
+(((|#1| |#2|) . T))
+(((|#2|) |has| |#2| (-162)))
(((|#2|) . T))
-(|has| |#2| (-343))
-(((|#3|) . T) ((|#2|) . T) (($) -1463 (|has| |#4| (-162)) (|has| |#4| (-791)) (|has| |#4| (-981))) ((|#4|) -1463 (|has| |#4| (-162)) (|has| |#4| (-343)) (|has| |#4| (-981))))
-(((|#2|) . T) (($) -1463 (|has| |#3| (-162)) (|has| |#3| (-791)) (|has| |#3| (-981))) ((|#3|) -1463 (|has| |#3| (-162)) (|has| |#3| (-343)) (|has| |#3| (-981))))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-343))
-((((-114 |#1|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-387 (-528))) |has| |#2| (-972 (-387 (-528)))) (((-528)) |has| |#2| (-972 (-528))) ((|#2|) . T) (((-804 |#1|)) . T))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-(((|#1|) . T))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-1023))))
-((((-127)) . T) (((-802)) . T))
-((((-528) |#1|) . T))
+(((|#1| |#2|) . T))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+((((-805)) . T))
+((($) . T) ((|#2|) . T))
+(((|#2|) |has| |#2| (-162)))
+((((-767 |#1|)) . T))
+(((|#2| (-767 |#1|)) . T))
+(((|#2| (-834 |#1|)) . T))
+(((|#1| |#2|) . T))
+(((|#2|) |has| |#2| (-162)))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+(((|#2|) |has| |#2| (-162)))
+(((|#2|) . T))
+(((|#2|) . T) (($) . T))
+((((-805)) . T))
+((((-834 |#1|)) . T) (((-767 |#1|)) . T))
+(((|#1| |#2|) . T))
+((((-1098) |#1|) . T))
+(((|#1|) |has| |#1| (-162)))
+(((|#1| |#1|) . T))
(((|#1|) . T))
+(((|#1|) |has| |#1| (-162)))
(((|#1|) . T))
+(((|#1|) . T) (($) . T))
+((((-805)) . T))
+((((-767 (-1098))) . T))
+((((-1098) |#1|) . T))
+(((|#2|) . T))
+(((|#1| |#2|) . T))
+(((|#1|) |has| |#1| (-162)))
+(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#2| $) -12 (|has| |#1| (-343)) (|has| |#2| (-267 |#2| |#2|))) (($ $) . T))
-((($ $) . T))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-431)) (|has| |#1| (-848)))
-(-1463 (|has| |#1| (-793)) (|has| |#1| (-1023)))
-((((-802)) . T))
-((((-802)) . T))
-((((-802)) . T))
-(((|#1| (-500 |#2|)) . T))
-((((-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) . T))
-(((|#1| (-528)) . T))
-(((|#1| (-387 (-528))) . T))
-(((|#1| (-717)) . T))
-((((-1100)) . T) (((-802)) . T))
-((((-114 |#1|)) . T) (($) . T) (((-387 (-528))) . T))
-(-1463 (|has| |#2| (-431)) (|has| |#2| (-520)) (|has| |#2| (-848)))
-(-1463 (|has| |#1| (-431)) (|has| |#1| (-520)) (|has| |#1| (-848)))
-((($) . T))
-(((|#2| (-500 (-804 |#1|))) . T))
-((((-528) |#1|) . T))
-(((|#2|) . T))
-(((|#2| (-717)) . T))
-((((-802)) -1463 (|has| |#1| (-569 (-802))) (|has| |#1| (-1023))))
+(((|#1|) |has| |#1| (-162)))
(((|#1|) . T))
+(((|#1|) . T) (($) . T))
+((((-805)) . T))
(((|#1| |#2|) . T))
-((((-1078) |#1|) . T))
-((((-387 |#2|)) . T))
-((((-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T))
-(|has| |#1| (-520))
-(|has| |#1| (-520))
-((($) . T) ((|#2|) . T))
-(((|#1|) . T))
+(((|#2|) |has| |#2| (-162)))
+(((|#2| |#2|) . T))
+(((|#2|) . T))
+(((|#2|) |has| |#2| (-162)))
+(((|#2|) . T))
+(((|#2|) . T) (($) . T))
+((((-805)) . T))
+((((-767 |#1|)) . T))
(((|#1| |#2|) . T))
-(((|#2| $) |has| |#2| (-267 |#2| |#2|)))
-(((|#1| (-595 |#1|)) |has| |#1| (-791)))
-(-1463 (|has| |#1| (-215)) (|has| |#1| (-329)))
-(-1463 (|has| |#1| (-343)) (|has| |#1| (-329)))
-(|has| |#1| (-1023))
-(((|#1|) . T))
-((((-387 (-528))) . T) (($) . T))
-((((-935 |#1|)) . T) ((|#1|) . T) (((-528)) -1463 (|has| (-935 |#1|) (-972 (-528))) (|has| |#1| (-972 (-528)))) (((-387 (-528))) -1463 (|has| (-935 |#1|) (-972 (-387 (-528)))) (|has| |#1| (-972 (-387 (-528))))))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-((((-1095)) |has| |#1| (-839 (-1095))))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))
-(((|#1| (-559 |#1| |#3|) (-559 |#1| |#2|)) . T))
-(((|#1|) . T))
-(((|#1| |#2| |#3| |#4|) . T))
-(((#0=(-1060 |#1| |#2|) #0#) |has| (-1060 |#1| |#2|) (-290 (-1060 |#1| |#2|))))
-(((|#2| |#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))) ((#0=(-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) #0#) |has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))))
-(((#0=(-114 |#1|)) |has| #0# (-290 #0#)))
-(-1463 (|has| |#1| (-793)) (|has| |#1| (-1023)))
+((((-516)) . T))
((($ $) . T))
-((($ $) . T) ((#0=(-804 |#1|) $) . T) ((#0# |#2|) . T))
-((($ $) . T) ((|#2| $) |has| |#1| (-215)) ((|#2| |#1|) |has| |#1| (-215)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(((-611 . -1023) T) ((-245 . -489) 143238) ((-229 . -489) 143181) ((-535 . -109) 143166) ((-500 . -23) T) ((-227 . -1023) 143116) ((-115 . -290) 143073) ((-457 . -489) 142865) ((-640 . -99) T) ((-1061 . -489) 142784) ((-370 . -128) T) ((-1188 . -913) 142753) ((-559 . -467) 142737) ((-574 . -128) T) ((-765 . -789) T) ((-497 . -55) 142687) ((-57 . -489) 142620) ((-493 . -489) 142553) ((-398 . -839) 142512) ((-159 . -981) T) ((-491 . -489) 142445) ((-473 . -489) 142378) ((-472 . -489) 142311) ((-745 . -972) 142098) ((-645 . -37) 142063) ((-323 . -329) T) ((-1018 . -1017) 142047) ((-1018 . -1023) 142025) ((-159 . -225) 141976) ((-159 . -215) 141927) ((-1018 . -1019) 141885) ((-811 . -267) 141843) ((-207 . -741) T) ((-207 . -738) T) ((-640 . -265) NIL) ((-1070 . -1108) 141822) ((-387 . -929) 141806) ((-647 . -21) T) ((-647 . -25) T) ((-1190 . -597) 141780) ((-296 . -151) 141759) ((-296 . -136) 141738) ((-1070 . -104) 141688) ((-130 . -25) T) ((-39 . -213) 141665) ((-114 . -21) T) ((-114 . -25) T) ((-564 . -269) 141641) ((-454 . -269) 141620) ((-1150 . -981) T) ((-798 . -981) T) ((-745 . -318) 141604) ((-115 . -1071) NIL) ((-89 . -569) 141536) ((-456 . -128) T) ((-551 . -1131) T) ((-1150 . -306) 141513) ((-535 . -981) T) ((-1150 . -215) T) ((-611 . -664) 141497) ((-896 . -269) 141474) ((-58 . -33) T) ((-991 . -741) T) ((-991 . -738) T) ((-762 . -673) T) ((-678 . -46) 141439) ((-576 . -37) 141426) ((-335 . -271) T) ((-332 . -271) T) ((-324 . -271) T) ((-245 . -271) 141357) ((-229 . -271) 141288) ((-959 . -99) T) ((-393 . -673) T) ((-115 . -37) 141233) ((-393 . -452) T) ((-461 . -569) 141199) ((-334 . -99) T) ((-1126 . -987) T) ((-658 . -987) T) ((-1093 . -46) 141176) ((-1092 . -46) 141146) ((-1086 . -46) 141123) ((-970 . -144) 141069) ((-849 . -271) T) ((-1048 . -46) 141041) ((-640 . -290) NIL) ((-490 . -569) 141023) ((-485 . -569) 141005) ((-483 . -569) 140987) ((-307 . -1023) 140937) ((-659 . -431) 140868) ((-47 . -99) T) ((-1161 . -267) 140853) ((-1140 . -267) 140773) ((-595 . -615) 140757) ((-595 . -600) 140741) ((-319 . -21) T) ((-319 . -25) T) ((-39 . -329) NIL) ((-163 . -21) T) ((-163 . -25) T) ((-595 . -353) 140725) ((-559 . -267) 140702) ((-562 . -569) 140669) ((-368 . -99) T) ((-1042 . -136) T) ((-124 . -569) 140601) ((-813 . -1023) T) ((-607 . -391) 140585) ((-661 . -569) 140567) ((-152 . -569) 140549) ((-148 . -569) 140531) ((-1190 . -673) T) ((-1025 . -33) T) ((-810 . -741) NIL) ((-810 . -738) NIL) ((-801 . -793) T) ((-678 . -825) NIL) ((-1199 . -128) T) ((-361 . -128) T) ((-843 . -99) T) ((-678 . -972) 140409) ((-500 . -128) T) ((-1012 . -391) 140393) ((-936 . -467) 140377) ((-115 . -380) 140354) ((-1086 . -1131) 140333) ((-728 . -391) 140317) ((-726 . -391) 140301) ((-882 . -33) T) ((-640 . -1071) NIL) ((-232 . -597) 140138) ((-231 . -597) 139962) ((-763 . -859) 139941) ((-433 . -391) 139925) ((-559 . -19) 139909) ((-1066 . -1125) 139878) ((-1086 . -825) NIL) ((-1086 . -823) 139830) ((-559 . -561) 139807) ((-1118 . -569) 139739) ((-1094 . -569) 139721) ((-60 . -375) T) ((-1092 . -972) 139656) ((-1086 . -972) 139622) ((-640 . -37) 139572) ((-453 . -267) 139557) ((-678 . -357) 139541) ((-607 . -987) T) ((-1161 . -938) 139507) ((-1140 . -938) 139473) ((-992 . -1108) 139448) ((-811 . -570) 139256) ((-811 . -569) 139238) ((-1105 . -467) 139175) ((-398 . -957) 139154) ((-47 . -290) 139141) ((-992 . -104) 139087) ((-457 . -467) 139024) ((-494 . -1131) T) ((-1086 . -318) 138976) ((-1061 . -467) 138947) ((-1086 . -357) 138899) ((-1012 . -987) T) ((-417 . -99) T) ((-171 . -1023) T) ((-232 . -33) T) ((-231 . -33) T) ((-728 . -987) T) ((-726 . -987) T) ((-678 . -839) 138876) ((-433 . -987) T) ((-57 . -467) 138860) ((-969 . -986) 138834) ((-493 . -467) 138818) ((-491 . -467) 138802) ((-473 . -467) 138786) ((-472 . -467) 138770) ((-227 . -489) 138703) ((-969 . -109) 138670) ((-1093 . -839) 138583) ((-619 . -1035) T) ((-1092 . -839) 138489) ((-1086 . -839) 138322) ((-1048 . -839) 138306) ((-334 . -1071) T) ((-302 . -986) 138288) ((-232 . -737) 138267) ((-232 . -740) 138218) ((-232 . -739) 138197) ((-231 . -737) 138176) ((-231 . -740) 138127) ((-231 . -739) 138106) ((-49 . -987) T) ((-232 . -673) 138017) ((-231 . -673) 137928) ((-1126 . -1023) T) ((-619 . -23) T) ((-541 . -987) T) ((-492 . -987) T) ((-359 . -986) 137893) ((-302 . -109) 137868) ((-71 . -363) T) ((-71 . -375) T) ((-959 . -37) 137805) ((-640 . -380) 137787) ((-96 . -99) T) ((-658 . -1023) T) ((-939 . -138) 137759) ((-939 . -140) 137731) ((-359 . -109) 137687) ((-299 . -1135) 137666) ((-453 . -938) 137632) ((-334 . -37) 137597) ((-39 . -350) 137569) ((-812 . -569) 137441) ((-125 . -123) 137425) ((-119 . -123) 137409) ((-780 . -986) 137379) ((-779 . -21) 137331) ((-773 . -986) 137315) ((-779 . -25) 137267) ((-299 . -520) 137218) ((-528 . -774) T) ((-222 . -1131) T) ((-780 . -109) 137183) ((-773 . -109) 137162) ((-1161 . -569) 137144) ((-1140 . -569) 137126) ((-1140 . -570) 136799) ((-1091 . -848) 136778) ((-1047 . -848) 136757) ((-47 . -37) 136722) ((-1197 . -1035) T) ((-559 . -569) 136634) ((-559 . -570) 136595) ((-1195 . -1035) T) ((-222 . -972) 136424) ((-1091 . -597) 136349) ((-1047 . -597) 136274) ((-665 . -569) 136256) ((-797 . -597) 136230) ((-1197 . -23) T) ((-1195 . -23) T) ((-969 . -981) T) ((-1105 . -267) 136209) ((-159 . -348) 136160) ((-940 . -1131) T) ((-43 . -23) T) ((-457 . -267) 136139) ((-545 . -1023) T) ((-1066 . -1032) 136108) ((-1027 . -1026) 136060) ((-126 . -1131) T) ((-370 . -21) T) ((-370 . -25) T) ((-145 . -1035) T) ((-1203 . -99) T) ((-940 . -823) 136042) ((-940 . -825) 136024) ((-1126 . -664) 135921) ((-576 . -213) 135905) ((-574 . -21) T) ((-270 . -520) T) ((-574 . -25) T) ((-1112 . -1023) T) ((-658 . -664) 135870) ((-222 . -357) 135840) ((-940 . -972) 135800) ((-359 . -981) T) ((-205 . -987) T) ((-115 . -213) 135777) ((-57 . -267) 135754) ((-145 . -23) T) ((-491 . -267) 135731) ((-307 . -489) 135664) ((-472 . -267) 135641) ((-359 . -225) T) ((-359 . -215) T) ((-780 . -981) T) ((-773 . -981) T) ((-659 . -888) 135610) ((-647 . -793) T) ((-453 . -569) 135592) ((-773 . -215) 135571) ((-130 . -793) T) ((-607 . -1023) T) ((-1105 . -561) 135550) ((-514 . -1108) 135529) ((-316 . -1023) T) ((-299 . -343) 135508) ((-387 . -140) 135487) ((-387 . -138) 135466) ((-902 . -1035) 135365) ((-222 . -839) 135298) ((-761 . -1035) 135209) ((-603 . -795) 135193) ((-457 . -561) 135172) ((-514 . -104) 135122) ((-940 . -357) 135104) ((-940 . -318) 135086) ((-94 . -1023) T) ((-902 . -23) 134897) ((-456 . -21) T) ((-456 . -25) T) ((-761 . -23) 134768) ((-1095 . -569) 134750) ((-57 . -19) 134734) ((-1095 . -570) 134656) ((-1091 . -673) T) ((-1047 . -673) T) ((-491 . -19) 134640) ((-472 . -19) 134624) ((-57 . -561) 134601) ((-1012 . -1023) T) ((-840 . -99) 134579) ((-797 . -673) T) ((-728 . -1023) T) ((-491 . -561) 134556) ((-472 . -561) 134533) ((-726 . -1023) T) ((-726 . -994) 134500) ((-440 . -1023) T) ((-433 . -1023) T) ((-545 . -664) 134475) ((-598 . -1023) T) ((-940 . -839) NIL) ((-1169 . -46) 134452) ((-579 . -1035) T) ((-619 . -128) T) ((-1163 . -99) T) ((-1162 . -46) 134422) ((-1141 . -46) 134399) ((-1126 . -162) 134350) ((-1006 . -1135) 134301) ((-256 . -1023) T) ((-83 . -420) T) ((-83 . -375) T) ((-1092 . -288) 134280) ((-1086 . -288) 134259) ((-49 . -1023) T) ((-1006 . -520) 134210) ((-658 . -162) T) ((-553 . -46) 134187) ((-207 . -597) 134152) ((-541 . -1023) T) ((-492 . -1023) T) ((-339 . -1135) T) ((-333 . -1135) T) ((-325 . -1135) T) ((-465 . -766) T) ((-465 . -859) T) ((-299 . -1035) T) ((-105 . -1135) T) ((-319 . -793) T) ((-200 . -859) T) ((-200 . -766) T) ((-661 . -986) 134122) ((-339 . -520) T) ((-333 . -520) T) ((-325 . -520) T) ((-105 . -520) T) ((-607 . -664) 134092) ((-1086 . -957) NIL) ((-299 . -23) T) ((-65 . -1131) T) ((-936 . -569) 134024) ((-640 . -213) 134006) ((-661 . -109) 133971) ((-595 . -33) T) ((-227 . -467) 133955) ((-1025 . -1021) 133939) ((-161 . -1023) T) ((-891 . -848) 133918) ((-459 . -848) 133897) ((-1199 . -21) T) ((-1199 . -25) T) ((-1197 . -128) T) ((-1195 . -128) T) ((-1012 . -664) 133746) ((-991 . -597) 133733) ((-891 . -597) 133658) ((-728 . -664) 133487) ((-504 . -569) 133469) ((-504 . -570) 133450) ((-726 . -664) 133299) ((-1188 . -99) T) ((-1003 . -99) T) ((-361 . -25) T) ((-361 . -21) T) ((-459 . -597) 133224) ((-440 . -664) 133195) ((-433 . -664) 133044) ((-924 . -99) T) ((-684 . -99) T) ((-1203 . -1071) T) ((-500 . -25) T) ((-1141 . -1131) 133023) ((-1173 . -569) 132989) ((-1141 . -825) NIL) ((-1141 . -823) 132941) ((-134 . -99) T) ((-43 . -128) T) ((-1105 . -570) NIL) ((-1105 . -569) 132923) ((-1062 . -1045) 132868) ((-323 . -987) T) ((-613 . -569) 132850) ((-270 . -1035) T) ((-335 . -569) 132832) ((-332 . -569) 132814) ((-324 . -569) 132796) ((-245 . -570) 132544) ((-245 . -569) 132526) ((-229 . -569) 132508) ((-229 . -570) 132369) ((-978 . -1125) 132298) ((-840 . -290) 132236) ((-1162 . -972) 132171) ((-1141 . -972) 132137) ((-1126 . -489) 132104) ((-1061 . -569) 132086) ((-765 . -800) T) ((-765 . -673) T) ((-559 . -269) 132063) ((-541 . -664) 132028) ((-457 . -570) NIL) ((-457 . -569) 132010) ((-492 . -664) 131955) ((-296 . -99) T) ((-293 . -99) T) ((-270 . -23) T) ((-145 . -128) T) ((-366 . -673) T) ((-811 . -986) 131907) ((-849 . -569) 131889) ((-849 . -570) 131871) ((-811 . -109) 131809) ((-132 . -99) T) ((-112 . -99) T) ((-659 . -1153) 131793) ((-661 . -981) T) ((-640 . -329) NIL) ((-493 . -569) 131725) ((-359 . -741) T) ((-205 . -1023) T) ((-359 . -738) T) ((-207 . -740) T) ((-207 . -737) T) ((-57 . -570) 131686) ((-57 . -569) 131598) ((-207 . -673) T) ((-491 . -570) 131559) ((-491 . -569) 131471) ((-473 . -569) 131403) ((-472 . -570) 131364) ((-472 . -569) 131276) ((-1006 . -343) 131227) ((-39 . -391) 131204) ((-75 . -1131) T) ((-810 . -848) NIL) ((-339 . -309) 131188) ((-339 . -343) T) ((-333 . -309) 131172) ((-333 . -343) T) ((-325 . -309) 131156) ((-325 . -343) T) ((-296 . -265) 131135) ((-105 . -343) T) ((-68 . -1131) T) ((-1141 . -318) 131087) ((-810 . -597) 131032) ((-1141 . -357) 130984) ((-902 . -128) 130839) ((-761 . -128) 130710) ((-896 . -600) 130694) ((-1012 . -162) 130605) ((-896 . -353) 130589) ((-991 . -740) T) ((-991 . -737) T) ((-728 . -162) 130480) ((-726 . -162) 130391) ((-762 . -46) 130353) ((-991 . -673) T) ((-307 . -467) 130337) ((-891 . -673) T) ((-433 . -162) 130248) ((-227 . -267) 130225) ((-459 . -673) T) ((-1188 . -290) 130163) ((-1169 . -839) 130076) ((-1162 . -839) 129982) ((-1161 . -986) 129817) ((-1141 . -839) 129650) ((-1140 . -986) 129458) ((-1126 . -271) 129437) ((-1066 . -144) 129421) ((-1042 . -99) T) ((-1001 . -99) T) ((-866 . -893) T) ((-73 . -1131) T) ((-684 . -290) 129359) ((-159 . -848) 129312) ((-613 . -362) 129284) ((-30 . -893) T) ((-1 . -569) 129266) ((-1040 . -1023) T) ((-1006 . -23) T) ((-49 . -573) 129250) ((-1006 . -1035) T) ((-939 . -389) 129222) ((-553 . -839) 129135) ((-418 . -99) T) ((-134 . -290) NIL) ((-811 . -981) T) ((-779 . -793) 129114) ((-79 . -1131) T) ((-658 . -271) T) ((-39 . -987) T) ((-541 . -162) T) ((-492 . -162) T) ((-486 . -569) 129096) ((-159 . -597) 129006) ((-482 . -569) 128988) ((-331 . -140) 128970) ((-331 . -138) T) ((-339 . -1035) T) ((-333 . -1035) T) ((-325 . -1035) T) ((-940 . -288) T) ((-853 . -288) T) ((-811 . -225) T) ((-105 . -1035) T) ((-811 . -215) 128949) ((-1161 . -109) 128770) ((-1140 . -109) 128559) ((-227 . -1165) 128543) ((-528 . -791) T) ((-339 . -23) T) ((-334 . -329) T) ((-296 . -290) 128530) ((-293 . -290) 128471) ((-333 . -23) T) ((-299 . -128) T) ((-325 . -23) T) ((-940 . -957) T) ((-105 . -23) T) ((-227 . -561) 128448) ((-1163 . -37) 128340) ((-1150 . -848) 128319) ((-110 . -1023) T) ((-970 . -99) T) ((-1150 . -597) 128244) ((-810 . -740) NIL) ((-798 . -597) 128218) ((-810 . -737) NIL) ((-762 . -825) NIL) ((-810 . -673) T) ((-1012 . -489) 128091) ((-728 . -489) 128038) ((-726 . -489) 127990) ((-535 . -597) 127977) ((-762 . -972) 127807) ((-433 . -489) 127750) ((-368 . -369) T) ((-58 . -1131) T) ((-574 . -793) 127729) ((-476 . -610) T) ((-1066 . -913) 127698) ((-939 . -431) T) ((-645 . -791) T) ((-485 . -738) T) ((-453 . -986) 127533) ((-323 . -1023) T) ((-293 . -1071) NIL) ((-270 . -128) T) ((-374 . -1023) T) ((-640 . -350) 127500) ((-809 . -987) T) ((-205 . -573) 127477) ((-307 . -267) 127454) ((-453 . -109) 127275) ((-1161 . -981) T) ((-1140 . -981) T) ((-762 . -357) 127259) ((-159 . -673) T) ((-603 . -99) T) ((-1161 . -225) 127238) ((-1161 . -215) 127190) ((-1140 . -215) 127095) ((-1140 . -225) 127074) ((-939 . -382) NIL) ((-619 . -591) 127022) ((-296 . -37) 126932) ((-293 . -37) 126861) ((-67 . -569) 126843) ((-299 . -469) 126809) ((-1105 . -269) 126788) ((-1036 . -1035) 126699) ((-81 . -1131) T) ((-59 . -569) 126681) ((-457 . -269) 126660) ((-1190 . -972) 126637) ((-1084 . -1023) T) ((-1036 . -23) 126508) ((-762 . -839) 126444) ((-1150 . -673) T) ((-1025 . -1131) T) ((-1012 . -271) 126375) ((-832 . -99) T) ((-728 . -271) 126286) ((-307 . -19) 126270) ((-57 . -269) 126247) ((-726 . -271) 126178) ((-798 . -673) T) ((-115 . -791) NIL) ((-491 . -269) 126155) ((-307 . -561) 126132) ((-472 . -269) 126109) ((-433 . -271) 126040) ((-970 . -290) 125891) ((-535 . -673) T) ((-611 . -569) 125873) ((-227 . -570) 125834) ((-227 . -569) 125746) ((-1067 . -33) T) ((-882 . -1131) T) ((-323 . -664) 125691) ((-619 . -25) T) ((-619 . -21) T) ((-453 . -981) T) ((-587 . -397) 125656) ((-563 . -397) 125621) ((-1042 . -1071) T) ((-541 . -271) T) ((-492 . -271) T) ((-1162 . -288) 125600) ((-453 . -215) 125552) ((-453 . -225) 125531) ((-1141 . -288) 125510) ((-1006 . -128) T) ((-811 . -741) 125489) ((-137 . -99) T) ((-39 . -1023) T) ((-811 . -738) 125468) ((-595 . -946) 125452) ((-540 . -987) T) ((-528 . -987) T) ((-471 . -987) T) ((-387 . -431) T) ((-339 . -128) T) ((-296 . -380) 125436) ((-293 . -380) 125397) ((-333 . -128) T) ((-325 . -128) T) ((-1141 . -957) NIL) ((-1100 . -1023) T) ((-1018 . -569) 125364) ((-105 . -128) T) ((-1042 . -37) 125351) ((-860 . -1023) T) ((-717 . -1023) T) ((-620 . -1023) T) ((-647 . -140) T) ((-114 . -140) T) ((-1197 . -21) T) ((-1197 . -25) T) ((-1195 . -21) T) ((-1195 . -25) T) ((-613 . -986) 125335) ((-500 . -793) T) ((-476 . -793) T) ((-335 . -986) 125287) ((-332 . -986) 125239) ((-324 . -986) 125191) ((-232 . -1131) T) ((-231 . -1131) T) ((-245 . -986) 125034) ((-229 . -986) 124877) ((-613 . -109) 124856) ((-335 . -109) 124794) ((-332 . -109) 124732) ((-324 . -109) 124670) ((-245 . -109) 124499) ((-229 . -109) 124328) ((-763 . -1135) 124307) ((-576 . -391) 124291) ((-43 . -21) T) ((-43 . -25) T) ((-761 . -591) 124199) ((-763 . -520) 124178) ((-232 . -972) 124007) ((-231 . -972) 123836) ((-124 . -117) 123820) ((-849 . -986) 123785) ((-645 . -987) T) ((-659 . -99) T) ((-323 . -162) T) ((-145 . -21) T) ((-145 . -25) T) ((-86 . -569) 123767) ((-849 . -109) 123723) ((-39 . -664) 123668) ((-809 . -1023) T) ((-307 . -570) 123629) ((-307 . -569) 123541) ((-1140 . -738) 123494) ((-1140 . -741) 123447) ((-232 . -357) 123417) ((-231 . -357) 123387) ((-603 . -37) 123357) ((-564 . -33) T) ((-460 . -1035) 123268) ((-454 . -33) T) ((-1036 . -128) 123139) ((-902 . -25) 122950) ((-813 . -569) 122932) ((-902 . -21) 122887) ((-761 . -21) 122798) ((-761 . -25) 122650) ((-576 . -987) T) ((-1097 . -520) 122629) ((-1091 . -46) 122606) ((-335 . -981) T) ((-332 . -981) T) ((-460 . -23) 122477) ((-324 . -981) T) ((-229 . -981) T) ((-245 . -981) T) ((-1047 . -46) 122449) ((-115 . -987) T) ((-969 . -597) 122423) ((-896 . -33) T) ((-335 . -215) 122402) ((-335 . -225) T) ((-332 . -215) 122381) ((-332 . -225) T) ((-229 . -306) 122338) ((-324 . -215) 122317) ((-324 . -225) T) ((-245 . -306) 122289) ((-245 . -215) 122268) ((-1076 . -144) 122252) ((-232 . -839) 122185) ((-231 . -839) 122118) ((-1008 . -793) T) ((-1144 . -1131) T) ((-394 . -1035) T) ((-984 . -23) T) ((-849 . -981) T) ((-302 . -597) 122100) ((-959 . -791) T) ((-1126 . -938) 122066) ((-1092 . -859) 122045) ((-1086 . -859) 122024) ((-849 . -225) T) ((-763 . -343) 122003) ((-365 . -23) T) ((-125 . -1023) 121981) ((-119 . -1023) 121959) ((-849 . -215) T) ((-1086 . -766) NIL) ((-359 . -597) 121924) ((-809 . -664) 121911) ((-978 . -144) 121876) ((-39 . -162) T) ((-640 . -391) 121858) ((-659 . -290) 121845) ((-780 . -597) 121805) ((-773 . -597) 121779) ((-299 . -25) T) ((-299 . -21) T) ((-607 . -267) 121758) ((-540 . -1023) T) ((-528 . -1023) T) ((-471 . -1023) T) ((-227 . -269) 121735) ((-293 . -213) 121696) ((-1091 . -825) NIL) ((-1047 . -825) 121555) ((-127 . -793) T) ((-1091 . -972) 121437) ((-1047 . -972) 121322) ((-171 . -569) 121304) ((-797 . -972) 121202) ((-728 . -267) 121129) ((-763 . -1035) T) ((-969 . -673) T) ((-559 . -600) 121113) ((-978 . -913) 121042) ((-935 . -99) T) ((-763 . -23) T) ((-659 . -1071) 121020) ((-640 . -987) T) ((-559 . -353) 121004) ((-331 . -431) T) ((-323 . -271) T) ((-1178 . -1023) T) ((-230 . -1023) T) ((-379 . -99) T) ((-270 . -21) T) ((-270 . -25) T) ((-341 . -673) T) ((-657 . -1023) T) ((-645 . -1023) T) ((-341 . -452) T) ((-1126 . -569) 120986) ((-1091 . -357) 120970) ((-1047 . -357) 120954) ((-959 . -391) 120916) ((-134 . -211) 120898) ((-359 . -740) T) ((-359 . -737) T) ((-809 . -162) T) ((-359 . -673) T) ((-658 . -569) 120880) ((-659 . -37) 120709) ((-1177 . -1175) 120693) ((-331 . -382) T) ((-1177 . -1023) 120643) ((-540 . -664) 120630) ((-528 . -664) 120617) ((-471 . -664) 120582) ((-296 . -581) 120561) ((-780 . -673) T) ((-773 . -673) T) ((-595 . -1131) T) ((-1006 . -591) 120509) ((-1091 . -839) 120452) ((-1047 . -839) 120436) ((-611 . -986) 120420) ((-105 . -591) 120402) ((-460 . -128) 120273) ((-1097 . -1035) T) ((-891 . -46) 120242) ((-576 . -1023) T) ((-611 . -109) 120221) ((-307 . -269) 120198) ((-459 . -46) 120155) ((-1097 . -23) T) ((-115 . -1023) T) ((-100 . -99) 120133) ((-1187 . -1035) T) ((-984 . -128) T) ((-959 . -987) T) ((-765 . -972) 120117) ((-939 . -671) 120089) ((-1187 . -23) T) ((-645 . -664) 120054) ((-545 . -569) 120036) ((-366 . -972) 120020) ((-334 . -987) T) ((-365 . -128) T) ((-304 . -972) 120004) ((-207 . -825) 119986) ((-940 . -859) T) ((-89 . -33) T) ((-940 . -766) T) ((-853 . -859) T) ((-465 . -1135) T) ((-1112 . -569) 119968) ((-1028 . -1023) T) ((-200 . -1135) T) ((-935 . -290) 119933) ((-207 . -972) 119893) ((-39 . -271) T) ((-1006 . -21) T) ((-1006 . -25) T) ((-1042 . -774) T) ((-465 . -520) T) ((-339 . -25) T) ((-200 . -520) T) ((-339 . -21) T) ((-333 . -25) T) ((-333 . -21) T) ((-661 . -597) 119853) ((-325 . -25) T) ((-325 . -21) T) ((-105 . -25) T) ((-105 . -21) T) ((-47 . -987) T) ((-540 . -162) T) ((-528 . -162) T) ((-471 . -162) T) ((-607 . -569) 119835) ((-684 . -683) 119819) ((-316 . -569) 119801) ((-66 . -363) T) ((-66 . -375) T) ((-1025 . -104) 119785) ((-991 . -825) 119767) ((-891 . -825) 119692) ((-602 . -1035) T) ((-576 . -664) 119679) ((-459 . -825) NIL) ((-1066 . -99) T) ((-991 . -972) 119661) ((-94 . -569) 119643) ((-456 . -140) T) ((-891 . -972) 119525) ((-115 . -664) 119470) ((-602 . -23) T) ((-459 . -972) 119348) ((-1012 . -570) NIL) ((-1012 . -569) 119330) ((-728 . -570) NIL) ((-728 . -569) 119291) ((-726 . -570) 118926) ((-726 . -569) 118840) ((-1036 . -591) 118748) ((-440 . -569) 118730) ((-433 . -569) 118712) ((-433 . -570) 118573) ((-970 . -211) 118519) ((-124 . -33) T) ((-763 . -128) T) ((-811 . -848) 118498) ((-598 . -569) 118480) ((-335 . -1194) 118464) ((-332 . -1194) 118448) ((-324 . -1194) 118432) ((-125 . -489) 118365) ((-119 . -489) 118298) ((-486 . -738) T) ((-486 . -741) T) ((-485 . -740) T) ((-100 . -290) 118236) ((-204 . -99) 118214) ((-640 . -1023) T) ((-645 . -162) T) ((-811 . -597) 118166) ((-63 . -364) T) ((-256 . -569) 118148) ((-63 . -375) T) ((-891 . -357) 118132) ((-809 . -271) T) ((-49 . -569) 118114) ((-935 . -37) 118062) ((-541 . -569) 118044) ((-459 . -357) 118028) ((-541 . -570) 118010) ((-492 . -569) 117992) ((-849 . -1194) 117979) ((-810 . -1131) T) ((-647 . -431) T) ((-471 . -489) 117945) ((-465 . -343) T) ((-335 . -348) 117924) ((-332 . -348) 117903) ((-324 . -348) 117882) ((-200 . -343) T) ((-661 . -673) T) ((-114 . -431) T) ((-1198 . -1189) 117866) ((-810 . -823) 117843) ((-810 . -825) NIL) ((-902 . -793) 117742) ((-761 . -793) 117693) ((-603 . -605) 117677) ((-1118 . -33) T) ((-161 . -569) 117659) ((-1036 . -21) 117570) ((-1036 . -25) 117422) ((-810 . -972) 117399) ((-891 . -839) 117380) ((-1150 . -46) 117357) ((-849 . -348) T) ((-57 . -600) 117341) ((-491 . -600) 117325) ((-459 . -839) 117302) ((-69 . -420) T) ((-69 . -375) T) ((-472 . -600) 117286) ((-57 . -353) 117270) ((-576 . -162) T) ((-491 . -353) 117254) ((-472 . -353) 117238) ((-773 . -655) 117222) ((-1091 . -288) 117201) ((-1097 . -128) T) ((-115 . -162) T) ((-1066 . -290) 117139) ((-159 . -1131) T) ((-587 . -691) 117123) ((-563 . -691) 117107) ((-1187 . -128) T) ((-1162 . -859) 117086) ((-1141 . -859) 117065) ((-1141 . -766) NIL) ((-640 . -664) 117015) ((-1140 . -848) 116968) ((-959 . -1023) T) ((-810 . -357) 116945) ((-810 . -318) 116922) ((-844 . -1035) T) ((-159 . -823) 116906) ((-159 . -825) 116831) ((-465 . -1035) T) ((-334 . -1023) T) ((-200 . -1035) T) ((-74 . -420) T) ((-74 . -375) T) ((-159 . -972) 116729) ((-299 . -793) T) ((-1177 . -489) 116662) ((-1161 . -597) 116559) ((-1140 . -597) 116429) ((-811 . -740) 116408) ((-811 . -737) 116387) ((-811 . -673) T) ((-465 . -23) T) ((-205 . -569) 116369) ((-163 . -431) T) ((-204 . -290) 116307) ((-84 . -420) T) ((-84 . -375) T) ((-200 . -23) T) ((-1199 . -1192) 116286) ((-540 . -271) T) ((-528 . -271) T) ((-624 . -972) 116270) ((-471 . -271) T) ((-132 . -449) 116225) ((-47 . -1023) T) ((-659 . -213) 116209) ((-810 . -839) NIL) ((-1150 . -825) NIL) ((-828 . -99) T) ((-824 . -99) T) ((-368 . -1023) T) ((-159 . -357) 116193) ((-159 . -318) 116177) ((-1150 . -972) 116059) ((-798 . -972) 115957) ((-1062 . -99) T) ((-602 . -128) T) ((-115 . -489) 115865) ((-611 . -738) 115844) ((-611 . -741) 115823) ((-535 . -972) 115805) ((-275 . -1184) 115775) ((-805 . -99) T) ((-901 . -520) 115754) ((-1126 . -986) 115637) ((-460 . -591) 115545) ((-843 . -1023) T) ((-959 . -664) 115482) ((-658 . -986) 115447) ((-559 . -33) T) ((-1067 . -1131) T) ((-1126 . -109) 115316) ((-453 . -597) 115213) ((-334 . -664) 115158) ((-159 . -839) 115117) ((-645 . -271) T) ((-640 . -162) T) ((-658 . -109) 115073) ((-1203 . -987) T) ((-1150 . -357) 115057) ((-398 . -1135) 115035) ((-1040 . -569) 115017) ((-293 . -791) NIL) ((-398 . -520) T) ((-207 . -288) T) ((-1140 . -737) 114970) ((-1140 . -740) 114923) ((-1161 . -673) T) ((-1140 . -673) T) ((-47 . -664) 114888) ((-207 . -957) T) ((-331 . -1184) 114865) ((-1163 . -391) 114831) ((-665 . -673) T) ((-1150 . -839) 114774) ((-110 . -569) 114756) ((-110 . -570) 114738) ((-665 . -452) T) ((-460 . -21) 114649) ((-125 . -467) 114633) ((-119 . -467) 114617) ((-460 . -25) 114469) ((-576 . -271) T) ((-545 . -986) 114444) ((-417 . -1023) T) ((-991 . -288) T) ((-115 . -271) T) ((-1027 . -99) T) ((-939 . -99) T) ((-545 . -109) 114412) ((-1062 . -290) 114350) ((-1126 . -981) T) ((-991 . -957) T) ((-64 . -1131) T) ((-984 . -25) T) ((-984 . -21) T) ((-658 . -981) T) ((-365 . -21) T) ((-365 . -25) T) ((-640 . -489) NIL) ((-959 . -162) T) ((-658 . -225) T) ((-991 . -513) T) ((-478 . -99) T) ((-334 . -162) T) ((-323 . -569) 114332) ((-374 . -569) 114314) ((-453 . -673) T) ((-1042 . -791) T) ((-831 . -972) 114282) ((-105 . -793) T) ((-607 . -986) 114266) ((-465 . -128) T) ((-1163 . -987) T) ((-200 . -128) T) ((-1076 . -99) 114244) ((-96 . -1023) T) ((-227 . -615) 114228) ((-227 . -600) 114212) ((-607 . -109) 114191) ((-296 . -391) 114175) ((-227 . -353) 114159) ((-1079 . -217) 114106) ((-935 . -213) 114090) ((-72 . -1131) T) ((-47 . -162) T) ((-647 . -367) T) ((-647 . -136) T) ((-1198 . -99) T) ((-1012 . -986) 113933) ((-245 . -848) 113912) ((-229 . -848) 113891) ((-728 . -986) 113714) ((-726 . -986) 113557) ((-564 . -1131) T) ((-1084 . -569) 113539) ((-1012 . -109) 113368) ((-978 . -99) T) ((-454 . -1131) T) ((-440 . -986) 113339) ((-433 . -986) 113182) ((-613 . -597) 113166) ((-810 . -288) T) ((-728 . -109) 112975) ((-726 . -109) 112804) ((-335 . -597) 112756) ((-332 . -597) 112708) ((-324 . -597) 112660) ((-245 . -597) 112585) ((-229 . -597) 112510) ((-1078 . -793) T) ((-1013 . -972) 112494) ((-440 . -109) 112455) ((-433 . -109) 112284) ((-1002 . -972) 112261) ((-936 . -33) T) ((-904 . -569) 112222) ((-896 . -1131) T) ((-124 . -946) 112206) ((-901 . -1035) T) ((-810 . -957) NIL) ((-682 . -1035) T) ((-662 . -1035) T) ((-1177 . -467) 112190) ((-1062 . -37) 112150) ((-901 . -23) T) ((-786 . -99) T) ((-763 . -21) T) ((-763 . -25) T) ((-682 . -23) T) ((-662 . -23) T) ((-108 . -610) T) ((-849 . -597) 112115) ((-541 . -986) 112080) ((-492 . -986) 112025) ((-209 . -55) 111983) ((-432 . -23) T) ((-387 . -99) T) ((-244 . -99) T) ((-640 . -271) T) ((-805 . -37) 111953) ((-541 . -109) 111909) ((-492 . -109) 111838) ((-398 . -1035) T) ((-296 . -987) 111729) ((-293 . -987) T) ((-607 . -981) T) ((-1203 . -1023) T) ((-159 . -288) 111660) ((-398 . -23) T) ((-39 . -569) 111642) ((-39 . -570) 111626) ((-105 . -929) 111608) ((-114 . -808) 111592) ((-47 . -489) 111558) ((-1118 . -946) 111542) ((-1100 . -569) 111524) ((-1105 . -33) T) ((-860 . -569) 111506) ((-1036 . -793) 111457) ((-717 . -569) 111439) ((-620 . -569) 111421) ((-1076 . -290) 111359) ((-457 . -33) T) ((-1016 . -1131) T) ((-456 . -431) T) ((-1012 . -981) T) ((-1061 . -33) T) ((-728 . -981) T) ((-726 . -981) T) ((-596 . -217) 111343) ((-584 . -217) 111289) ((-1150 . -288) 111268) ((-1012 . -306) 111229) ((-433 . -981) T) ((-1097 . -21) T) ((-1012 . -215) 111208) ((-728 . -306) 111185) ((-728 . -215) T) ((-726 . -306) 111157) ((-307 . -600) 111141) ((-678 . -1135) 111120) ((-1097 . -25) T) ((-57 . -33) T) ((-493 . -33) T) ((-491 . -33) T) ((-433 . -306) 111099) ((-307 . -353) 111083) ((-473 . -33) T) ((-472 . -33) T) ((-939 . -1071) NIL) ((-587 . -99) T) ((-563 . -99) T) ((-678 . -520) 111014) ((-335 . -673) T) ((-332 . -673) T) ((-324 . -673) T) ((-245 . -673) T) ((-229 . -673) T) ((-978 . -290) 110922) ((-840 . -1023) 110900) ((-49 . -981) T) ((-1187 . -21) T) ((-1187 . -25) T) ((-1093 . -520) 110879) ((-1092 . -1135) 110858) ((-541 . -981) T) ((-492 . -981) T) ((-1086 . -1135) 110837) ((-341 . -972) 110821) ((-302 . -972) 110805) ((-959 . -271) T) ((-359 . -825) 110787) ((-1092 . -520) 110738) ((-1086 . -520) 110689) ((-939 . -37) 110634) ((-745 . -1035) T) ((-849 . -673) T) ((-541 . -225) T) ((-541 . -215) T) ((-492 . -215) T) ((-492 . -225) T) ((-1048 . -520) 110613) ((-334 . -271) T) ((-596 . -641) 110597) ((-359 . -972) 110557) ((-1042 . -987) T) ((-100 . -123) 110541) ((-745 . -23) T) ((-1177 . -267) 110518) ((-387 . -290) 110483) ((-1197 . -1192) 110459) ((-1195 . -1192) 110438) ((-1163 . -1023) T) ((-809 . -569) 110420) ((-780 . -972) 110389) ((-187 . -733) T) ((-186 . -733) T) ((-185 . -733) T) ((-184 . -733) T) ((-183 . -733) T) ((-182 . -733) T) ((-181 . -733) T) ((-180 . -733) T) ((-179 . -733) T) ((-178 . -733) T) ((-471 . -938) T) ((-255 . -782) T) ((-254 . -782) T) ((-253 . -782) T) ((-252 . -782) T) ((-47 . -271) T) ((-251 . -782) T) ((-250 . -782) T) ((-249 . -782) T) ((-177 . -733) T) ((-568 . -793) T) ((-603 . -391) 110373) ((-108 . -793) T) ((-602 . -21) T) ((-602 . -25) T) ((-1198 . -37) 110343) ((-115 . -267) 110294) ((-1177 . -19) 110278) ((-1177 . -561) 110255) ((-1188 . -1023) T) ((-1003 . -1023) T) ((-924 . -1023) T) ((-901 . -128) T) ((-684 . -1023) T) ((-682 . -128) T) ((-662 . -128) T) ((-486 . -739) T) ((-387 . -1071) 110233) ((-432 . -128) T) ((-486 . -740) T) ((-205 . -981) T) ((-275 . -99) 110016) ((-134 . -1023) T) ((-645 . -938) T) ((-89 . -1131) T) ((-125 . -569) 109948) ((-119 . -569) 109880) ((-1203 . -162) T) ((-1092 . -343) 109859) ((-1086 . -343) 109838) ((-296 . -1023) T) ((-398 . -128) T) ((-293 . -1023) T) ((-387 . -37) 109790) ((-1055 . -99) T) ((-1163 . -664) 109682) ((-603 . -987) T) ((-299 . -138) 109661) ((-299 . -140) 109640) ((-132 . -1023) T) ((-112 . -1023) T) ((-801 . -99) T) ((-540 . -569) 109622) ((-528 . -570) 109521) ((-528 . -569) 109503) ((-471 . -569) 109485) ((-471 . -570) 109430) ((-463 . -23) T) ((-460 . -793) 109381) ((-465 . -591) 109363) ((-903 . -569) 109345) ((-200 . -591) 109327) ((-207 . -384) T) ((-611 . -597) 109311) ((-1091 . -859) 109290) ((-678 . -1035) T) ((-331 . -99) T) ((-764 . -793) T) ((-678 . -23) T) ((-323 . -986) 109235) ((-1078 . -1077) T) ((-1067 . -104) 109219) ((-1093 . -1035) T) ((-1092 . -1035) T) ((-490 . -972) 109203) ((-1086 . -1035) T) ((-1048 . -1035) T) ((-323 . -109) 109132) ((-940 . -1135) T) ((-124 . -1131) T) ((-853 . -1135) T) ((-640 . -267) NIL) ((-1178 . -569) 109114) ((-1093 . -23) T) ((-1092 . -23) T) ((-1086 . -23) T) ((-940 . -520) T) ((-1062 . -213) 109098) ((-853 . -520) T) ((-1048 . -23) T) ((-230 . -569) 109080) ((-1001 . -1023) T) ((-745 . -128) T) ((-657 . -569) 109062) ((-296 . -664) 108972) ((-293 . -664) 108901) ((-645 . -569) 108883) ((-645 . -570) 108828) ((-387 . -380) 108812) ((-418 . -1023) T) ((-465 . -25) T) ((-465 . -21) T) ((-1042 . -1023) T) ((-200 . -25) T) ((-200 . -21) T) ((-659 . -391) 108796) ((-661 . -972) 108765) ((-1177 . -569) 108677) ((-1177 . -570) 108638) ((-1163 . -162) T) ((-227 . -33) T) ((-865 . -911) T) ((-1118 . -1131) T) ((-611 . -737) 108617) ((-611 . -740) 108596) ((-378 . -375) T) ((-497 . -99) 108574) ((-970 . -1023) T) ((-204 . -931) 108558) ((-480 . -99) T) ((-576 . -569) 108540) ((-44 . -793) NIL) ((-576 . -570) 108517) ((-970 . -566) 108492) ((-840 . -489) 108425) ((-323 . -981) T) ((-115 . -570) NIL) ((-115 . -569) 108407) ((-811 . -1131) T) ((-619 . -397) 108391) ((-619 . -1045) 108336) ((-476 . -144) 108318) ((-323 . -215) T) ((-323 . -225) T) ((-39 . -986) 108263) ((-811 . -823) 108247) ((-811 . -825) 108172) ((-659 . -987) T) ((-640 . -938) NIL) ((-3 . |UnionCategory|) T) ((-1161 . -46) 108142) ((-1140 . -46) 108119) ((-1061 . -946) 108090) ((-207 . -859) T) ((-39 . -109) 108019) ((-811 . -972) 107886) ((-1042 . -664) 107873) ((-1028 . -569) 107855) ((-1006 . -140) 107834) ((-1006 . -138) 107785) ((-940 . -343) T) ((-299 . -1120) 107751) ((-359 . -288) T) ((-299 . -1117) 107717) ((-296 . -162) 107696) ((-293 . -162) T) ((-939 . -213) 107673) ((-853 . -343) T) ((-541 . -1194) 107660) ((-492 . -1194) 107637) ((-339 . -140) 107616) ((-339 . -138) 107567) ((-333 . -140) 107546) ((-333 . -138) 107497) ((-564 . -1108) 107473) ((-325 . -140) 107452) ((-325 . -138) 107403) ((-299 . -34) 107369) ((-454 . -1108) 107348) ((0 . |EnumerationCategory|) T) ((-299 . -93) 107314) ((-359 . -957) T) ((-105 . -140) T) ((-105 . -138) NIL) ((-44 . -217) 107264) ((-603 . -1023) T) ((-564 . -104) 107211) ((-463 . -128) T) ((-454 . -104) 107161) ((-222 . -1035) 107072) ((-811 . -357) 107056) ((-811 . -318) 107040) ((-222 . -23) 106911) ((-991 . -859) T) ((-991 . -766) T) ((-541 . -348) T) ((-492 . -348) T) ((-331 . -1071) T) ((-307 . -33) T) ((-43 . -397) 106895) ((-812 . -1131) T) ((-370 . -691) 106879) ((-1188 . -489) 106812) ((-678 . -128) T) ((-1169 . -520) 106791) ((-1162 . -1135) 106770) ((-1162 . -520) 106721) ((-1141 . -1135) 106700) ((-684 . -489) 106633) ((-1141 . -520) 106584) ((-1140 . -1131) 106563) ((-832 . -1023) T) ((-137 . -787) T) ((-1140 . -825) 106436) ((-637 . -569) 106418) ((-1140 . -823) 106388) ((-497 . -290) 106326) ((-1093 . -128) T) ((-134 . -489) NIL) ((-1092 . -128) T) ((-1086 . -128) T) ((-1048 . -128) T) ((-959 . -938) T) ((-331 . -37) 106291) ((-940 . -1035) T) ((-853 . -1035) T) ((-80 . -569) 106273) ((-39 . -981) T) ((-809 . -986) 106260) ((-940 . -23) T) ((-811 . -839) 106219) ((-647 . -99) T) ((-939 . -329) NIL) ((-559 . -1131) T) ((-908 . -23) T) ((-853 . -23) T) ((-809 . -109) 106204) ((-407 . -1035) T) ((-453 . -46) 106174) ((-130 . -99) T) ((-39 . -215) 106146) ((-39 . -225) T) ((-114 . -99) T) ((-554 . -520) 106125) ((-553 . -520) 106104) ((-640 . -569) 106086) ((-640 . -570) 105994) ((-296 . -489) 105960) ((-293 . -489) 105852) ((-1161 . -972) 105836) ((-1140 . -972) 105625) ((-935 . -391) 105609) ((-407 . -23) T) ((-1042 . -162) T) ((-1163 . -271) T) ((-603 . -664) 105579) ((-137 . -1023) T) ((-47 . -938) T) ((-387 . -213) 105563) ((-276 . -217) 105513) ((-810 . -859) T) ((-810 . -766) NIL) ((-804 . -793) T) ((-1140 . -318) 105483) ((-1140 . -357) 105453) ((-204 . -1043) 105437) ((-1177 . -269) 105414) ((-1126 . -597) 105339) ((-901 . -21) T) ((-901 . -25) T) ((-682 . -21) T) ((-682 . -25) T) ((-662 . -21) T) ((-662 . -25) T) ((-658 . -597) 105304) ((-432 . -21) T) ((-432 . -25) T) ((-319 . -99) T) ((-163 . -99) T) ((-935 . -987) T) ((-809 . -981) T) ((-720 . -99) T) ((-1162 . -343) 105283) ((-1161 . -839) 105189) ((-1141 . -343) 105168) ((-1140 . -839) 105019) ((-959 . -569) 105001) ((-387 . -774) 104954) ((-1093 . -469) 104920) ((-159 . -859) 104851) ((-1092 . -469) 104817) ((-1086 . -469) 104783) ((-659 . -1023) T) ((-1048 . -469) 104749) ((-540 . -986) 104736) ((-528 . -986) 104723) ((-471 . -986) 104688) ((-296 . -271) 104667) ((-293 . -271) T) ((-334 . -569) 104649) ((-398 . -25) T) ((-398 . -21) T) ((-96 . -267) 104628) ((-540 . -109) 104613) ((-528 . -109) 104598) ((-471 . -109) 104554) ((-1095 . -825) 104521) ((-840 . -467) 104505) ((-47 . -569) 104487) ((-47 . -570) 104432) ((-222 . -128) 104303) ((-1150 . -859) 104282) ((-762 . -1135) 104261) ((-970 . -489) 104105) ((-368 . -569) 104087) ((-762 . -520) 104018) ((-545 . -597) 103993) ((-245 . -46) 103965) ((-229 . -46) 103922) ((-500 . -484) 103899) ((-936 . -1131) T) ((-645 . -986) 103864) ((-1169 . -1035) T) ((-1162 . -1035) T) ((-1141 . -1035) T) ((-939 . -350) 103836) ((-110 . -348) T) ((-453 . -839) 103742) ((-1169 . -23) T) ((-1162 . -23) T) ((-843 . -569) 103724) ((-89 . -104) 103708) ((-1126 . -673) T) ((-844 . -793) 103659) ((-647 . -1071) T) ((-645 . -109) 103615) ((-1141 . -23) T) ((-554 . -1035) T) ((-553 . -1035) T) ((-659 . -664) 103444) ((-658 . -673) T) ((-1042 . -271) T) ((-940 . -128) T) ((-465 . -793) T) ((-908 . -128) T) ((-853 . -128) T) ((-745 . -25) T) ((-200 . -793) T) ((-745 . -21) T) ((-540 . -981) T) ((-528 . -981) T) ((-471 . -981) T) ((-554 . -23) T) ((-323 . -1194) 103421) ((-299 . -431) 103400) ((-319 . -290) 103387) ((-553 . -23) T) ((-407 . -128) T) ((-607 . -597) 103361) ((-227 . -946) 103345) ((-811 . -288) T) ((-1199 . -1189) 103329) ((-647 . -37) 103316) ((-528 . -215) T) ((-471 . -225) T) ((-471 . -215) T) ((-717 . -738) T) ((-717 . -741) T) ((-1070 . -217) 103266) ((-1012 . -848) 103245) ((-114 . -37) 103232) ((-193 . -746) T) ((-192 . -746) T) ((-191 . -746) T) ((-190 . -746) T) ((-811 . -957) 103211) ((-1188 . -467) 103195) ((-728 . -848) 103174) ((-726 . -848) 103153) ((-1105 . -1131) T) ((-433 . -848) 103132) ((-684 . -467) 103116) ((-1012 . -597) 103041) ((-728 . -597) 102966) ((-576 . -986) 102953) ((-457 . -1131) T) ((-323 . -348) T) ((-134 . -467) 102935) ((-726 . -597) 102860) ((-1061 . -1131) T) ((-440 . -597) 102831) ((-245 . -825) 102690) ((-229 . -825) NIL) ((-115 . -986) 102635) ((-433 . -597) 102560) ((-613 . -972) 102537) ((-576 . -109) 102522) ((-335 . -972) 102506) ((-332 . -972) 102490) ((-324 . -972) 102474) ((-245 . -972) 102320) ((-229 . -972) 102198) ((-115 . -109) 102127) ((-57 . -1131) T) ((-493 . -1131) T) ((-491 . -1131) T) ((-473 . -1131) T) ((-472 . -1131) T) ((-417 . -569) 102109) ((-414 . -569) 102091) ((-3 . -99) T) ((-962 . -1125) 102060) ((-779 . -99) T) ((-635 . -55) 102018) ((-645 . -981) T) ((-49 . -597) 101992) ((-270 . -431) T) ((-455 . -1125) 101961) ((0 . -99) T) ((-541 . -597) 101926) ((-492 . -597) 101871) ((-48 . -99) T) ((-849 . -972) 101858) ((-645 . -225) T) ((-1006 . -389) 101837) ((-678 . -591) 101785) ((-935 . -1023) T) ((-659 . -162) 101676) ((-465 . -929) 101658) ((-245 . -357) 101642) ((-229 . -357) 101626) ((-379 . -1023) T) ((-319 . -37) 101610) ((-961 . -99) 101588) ((-200 . -929) 101570) ((-163 . -37) 101502) ((-1161 . -288) 101481) ((-1140 . -288) 101460) ((-607 . -673) T) ((-96 . -569) 101442) ((-1086 . -591) 101394) ((-463 . -25) T) ((-463 . -21) T) ((-1140 . -957) 101347) ((-576 . -981) T) ((-359 . -384) T) ((-370 . -99) T) ((-245 . -839) 101293) ((-229 . -839) 101270) ((-115 . -981) T) ((-762 . -1035) T) ((-1012 . -673) T) ((-576 . -215) 101249) ((-574 . -99) T) ((-728 . -673) T) ((-726 . -673) T) ((-393 . -1035) T) ((-115 . -225) T) ((-39 . -348) NIL) ((-115 . -215) NIL) ((-433 . -673) T) ((-762 . -23) T) ((-678 . -25) T) ((-678 . -21) T) ((-649 . -793) T) ((-1003 . -267) 101228) ((-76 . -376) T) ((-76 . -375) T) ((-640 . -986) 101178) ((-1169 . -128) T) ((-1162 . -128) T) ((-1141 . -128) T) ((-1062 . -391) 101162) ((-587 . -347) 101094) ((-563 . -347) 101026) ((-1076 . -1069) 101010) ((-100 . -1023) 100988) ((-1093 . -25) T) ((-1093 . -21) T) ((-1092 . -21) T) ((-935 . -664) 100936) ((-205 . -597) 100903) ((-640 . -109) 100837) ((-49 . -673) T) ((-1092 . -25) T) ((-331 . -329) T) ((-1086 . -21) T) ((-1006 . -431) 100788) ((-1086 . -25) T) ((-659 . -489) 100735) ((-541 . -673) T) ((-492 . -673) T) ((-1048 . -21) T) ((-1048 . -25) T) ((-554 . -128) T) ((-553 . -128) T) ((-339 . -431) T) ((-333 . -431) T) ((-325 . -431) T) ((-453 . -288) 100714) ((-293 . -267) 100649) ((-105 . -431) T) ((-77 . -420) T) ((-77 . -375) T) ((-456 . -99) T) ((-1203 . -569) 100631) ((-1203 . -570) 100613) ((-1006 . -382) 100592) ((-970 . -467) 100523) ((-528 . -741) T) ((-528 . -738) T) ((-992 . -217) 100469) ((-339 . -382) 100420) ((-333 . -382) 100371) ((-325 . -382) 100322) ((-1190 . -1035) T) ((-1190 . -23) T) ((-1179 . -99) T) ((-164 . -569) 100304) ((-1062 . -987) T) ((-619 . -691) 100288) ((-1097 . -138) 100267) ((-1097 . -140) 100246) ((-1066 . -1023) T) ((-1066 . -999) 100215) ((-67 . -1131) T) ((-959 . -986) 100152) ((-805 . -987) T) ((-222 . -591) 100060) ((-640 . -981) T) ((-334 . -986) 100005) ((-59 . -1131) T) ((-959 . -109) 99921) ((-840 . -569) 99853) ((-640 . -225) T) ((-640 . -215) NIL) ((-786 . -791) 99832) ((-645 . -741) T) ((-645 . -738) T) ((-939 . -391) 99809) ((-334 . -109) 99738) ((-359 . -859) T) ((-387 . -791) 99717) ((-659 . -271) 99628) ((-205 . -673) T) ((-1169 . -469) 99594) ((-1162 . -469) 99560) ((-1141 . -469) 99526) ((-296 . -938) 99505) ((-204 . -1023) 99483) ((-299 . -910) 99445) ((-102 . -99) T) ((-47 . -986) 99410) ((-1199 . -99) T) ((-361 . -99) T) ((-47 . -109) 99366) ((-940 . -591) 99348) ((-1163 . -569) 99330) ((-500 . -99) T) ((-476 . -99) T) ((-1055 . -1056) 99314) ((-145 . -1184) 99298) ((-227 . -1131) T) ((-1091 . -1135) 99277) ((-1047 . -1135) 99256) ((-222 . -21) 99167) ((-222 . -25) 99019) ((-125 . -117) 99003) ((-119 . -117) 98987) ((-43 . -691) 98971) ((-1091 . -520) 98882) ((-1047 . -520) 98813) ((-970 . -267) 98788) ((-762 . -128) T) ((-115 . -741) NIL) ((-115 . -738) NIL) ((-335 . -288) T) ((-332 . -288) T) ((-324 . -288) T) ((-1018 . -1131) T) ((-232 . -1035) 98699) ((-231 . -1035) 98610) ((-959 . -981) T) ((-939 . -987) T) ((-323 . -597) 98555) ((-574 . -37) 98539) ((-1188 . -569) 98501) ((-1188 . -570) 98462) ((-1003 . -569) 98444) ((-959 . -225) T) ((-334 . -981) T) ((-761 . -1184) 98414) ((-232 . -23) T) ((-231 . -23) T) ((-924 . -569) 98396) ((-684 . -570) 98357) ((-684 . -569) 98339) ((-745 . -793) 98318) ((-935 . -489) 98230) ((-334 . -215) T) ((-334 . -225) T) ((-1079 . -144) 98177) ((-940 . -25) T) ((-134 . -569) 98159) ((-134 . -570) 98118) ((-849 . -288) T) ((-940 . -21) T) ((-908 . -25) T) ((-853 . -21) T) ((-853 . -25) T) ((-407 . -21) T) ((-407 . -25) T) ((-786 . -391) 98102) ((-47 . -981) T) ((-1197 . -1189) 98086) ((-1195 . -1189) 98070) ((-970 . -561) 98045) ((-296 . -570) 97906) ((-296 . -569) 97888) ((-293 . -570) NIL) ((-293 . -569) 97870) ((-47 . -225) T) ((-47 . -215) T) ((-603 . -267) 97831) ((-514 . -217) 97781) ((-132 . -569) 97763) ((-112 . -569) 97745) ((-456 . -37) 97710) ((-1199 . -1196) 97689) ((-1190 . -128) T) ((-1198 . -987) T) ((-1008 . -99) T) ((-86 . -1131) T) ((-476 . -290) NIL) ((-936 . -104) 97673) ((-828 . -1023) T) ((-824 . -1023) T) ((-1177 . -600) 97657) ((-1177 . -353) 97641) ((-307 . -1131) T) ((-551 . -793) T) ((-1062 . -1023) T) ((-1062 . -983) 97581) ((-100 . -489) 97514) ((-866 . -569) 97496) ((-323 . -673) T) ((-30 . -569) 97478) ((-805 . -1023) T) ((-786 . -987) 97457) ((-39 . -597) 97402) ((-207 . -1135) T) ((-387 . -987) T) ((-1078 . -144) 97384) ((-935 . -271) 97335) ((-207 . -520) T) ((-299 . -1158) 97319) ((-299 . -1155) 97289) ((-1105 . -1108) 97268) ((-1001 . -569) 97250) ((-596 . -144) 97234) ((-584 . -144) 97180) ((-1105 . -104) 97130) ((-457 . -1108) 97109) ((-465 . -140) T) ((-465 . -138) NIL) ((-1042 . -570) 97024) ((-418 . -569) 97006) ((-200 . -140) T) ((-200 . -138) NIL) ((-1042 . -569) 96988) ((-127 . -99) T) ((-51 . -99) T) ((-1141 . -591) 96940) ((-457 . -104) 96890) ((-930 . -23) T) ((-1199 . -37) 96860) ((-1091 . -1035) T) ((-1047 . -1035) T) ((-991 . -1135) T) ((-797 . -1035) T) ((-891 . -1135) 96839) ((-459 . -1135) 96818) ((-678 . -793) 96797) ((-991 . -520) T) ((-891 . -520) 96728) ((-1091 . -23) T) ((-1047 . -23) T) ((-797 . -23) T) ((-459 . -520) 96659) ((-1062 . -664) 96591) ((-1066 . -489) 96524) ((-970 . -570) NIL) ((-970 . -569) 96506) ((-805 . -664) 96476) ((-1126 . -46) 96445) ((-231 . -128) T) ((-232 . -128) T) ((-1027 . -1023) T) ((-939 . -1023) T) ((-60 . -569) 96427) ((-1086 . -793) NIL) ((-959 . -738) T) ((-959 . -741) T) ((-1203 . -986) 96414) ((-1203 . -109) 96399) ((-809 . -597) 96386) ((-1169 . -25) T) ((-1169 . -21) T) ((-1162 . -21) T) ((-1162 . -25) T) ((-1141 . -21) T) ((-1141 . -25) T) ((-962 . -144) 96370) ((-811 . -766) 96349) ((-811 . -859) T) ((-659 . -267) 96276) ((-554 . -21) T) ((-554 . -25) T) ((-553 . -21) T) ((-39 . -673) T) ((-204 . -489) 96209) ((-553 . -25) T) ((-455 . -144) 96193) ((-442 . -144) 96177) ((-860 . -740) T) ((-860 . -673) T) ((-717 . -739) T) ((-717 . -740) T) ((-478 . -1023) T) ((-717 . -673) T) ((-207 . -343) T) ((-1076 . -1023) 96155) ((-810 . -1135) T) ((-603 . -569) 96137) ((-810 . -520) T) ((-640 . -348) NIL) ((-339 . -1184) 96121) ((-619 . -99) T) ((-333 . -1184) 96105) ((-325 . -1184) 96089) ((-1198 . -1023) T) ((-494 . -793) 96068) ((-763 . -431) 96047) ((-978 . -1023) T) ((-978 . -999) 95976) ((-962 . -913) 95945) ((-765 . -1035) T) ((-939 . -664) 95890) ((-366 . -1035) T) ((-455 . -913) 95859) ((-442 . -913) 95828) ((-108 . -144) 95810) ((-71 . -569) 95792) ((-832 . -569) 95774) ((-1006 . -671) 95753) ((-1203 . -981) T) ((-762 . -591) 95701) ((-275 . -987) 95644) ((-159 . -1135) 95549) ((-207 . -1035) T) ((-304 . -23) T) ((-1086 . -929) 95501) ((-786 . -1023) T) ((-1048 . -687) 95480) ((-1163 . -986) 95385) ((-1161 . -859) 95364) ((-809 . -673) T) ((-159 . -520) 95275) ((-1140 . -859) 95254) ((-540 . -597) 95241) ((-387 . -1023) T) ((-528 . -597) 95228) ((-244 . -1023) T) ((-471 . -597) 95193) ((-207 . -23) T) ((-1140 . -766) 95146) ((-1197 . -99) T) ((-334 . -1194) 95123) ((-1195 . -99) T) ((-1163 . -109) 95015) ((-137 . -569) 94997) ((-930 . -128) T) ((-43 . -99) T) ((-222 . -793) 94948) ((-1150 . -1135) 94927) ((-100 . -467) 94911) ((-1198 . -664) 94881) ((-1012 . -46) 94842) ((-991 . -1035) T) ((-891 . -1035) T) ((-125 . -33) T) ((-119 . -33) T) ((-728 . -46) 94819) ((-726 . -46) 94791) ((-1150 . -520) 94702) ((-334 . -348) T) ((-459 . -1035) T) ((-1091 . -128) T) ((-1047 . -128) T) ((-433 . -46) 94681) ((-810 . -343) T) ((-797 . -128) T) ((-145 . -99) T) ((-991 . -23) T) ((-891 . -23) T) ((-535 . -520) T) ((-762 . -25) T) ((-762 . -21) T) ((-1062 . -489) 94614) ((-545 . -972) 94598) ((-459 . -23) T) ((-331 . -987) T) ((-1126 . -839) 94579) ((-619 . -290) 94517) ((-1036 . -1184) 94487) ((-645 . -597) 94452) ((-939 . -162) T) ((-901 . -138) 94431) ((-587 . -1023) T) ((-563 . -1023) T) ((-901 . -140) 94410) ((-940 . -793) T) ((-682 . -140) 94389) ((-682 . -138) 94368) ((-908 . -793) T) ((-453 . -859) 94347) ((-296 . -986) 94257) ((-293 . -986) 94186) ((-935 . -267) 94144) ((-387 . -664) 94096) ((-126 . -793) T) ((-647 . -791) T) ((-1163 . -981) T) ((-296 . -109) 93992) ((-293 . -109) 93905) ((-902 . -99) T) ((-761 . -99) 93696) ((-659 . -570) NIL) ((-659 . -569) 93678) ((-607 . -972) 93576) ((-1163 . -306) 93520) ((-970 . -269) 93495) ((-540 . -673) T) ((-528 . -740) T) ((-159 . -343) 93446) ((-528 . -737) T) ((-528 . -673) T) ((-471 . -673) T) ((-1066 . -467) 93430) ((-1012 . -825) NIL) ((-810 . -1035) T) ((-115 . -848) NIL) ((-1197 . -1196) 93406) ((-1195 . -1196) 93385) ((-728 . -825) NIL) ((-726 . -825) 93244) ((-1190 . -25) T) ((-1190 . -21) T) ((-1129 . -99) 93222) ((-1029 . -375) T) ((-576 . -597) 93209) ((-433 . -825) NIL) ((-623 . -99) 93187) ((-1012 . -972) 93016) ((-810 . -23) T) ((-728 . -972) 92877) ((-726 . -972) 92736) ((-115 . -597) 92681) ((-433 . -972) 92559) ((-598 . -972) 92543) ((-579 . -99) T) ((-204 . -467) 92527) ((-1177 . -33) T) ((-587 . -664) 92511) ((-563 . -664) 92495) ((-619 . -37) 92455) ((-299 . -99) T) ((-83 . -569) 92437) ((-49 . -972) 92421) ((-1042 . -986) 92408) ((-1012 . -357) 92392) ((-728 . -357) 92376) ((-58 . -55) 92338) ((-645 . -740) T) ((-645 . -737) T) ((-541 . -972) 92325) ((-492 . -972) 92302) ((-645 . -673) T) ((-304 . -128) T) ((-296 . -981) 92193) ((-293 . -981) T) ((-159 . -1035) T) ((-726 . -357) 92177) ((-44 . -144) 92127) ((-940 . -929) 92109) ((-433 . -357) 92093) ((-387 . -162) T) ((-296 . -225) 92072) ((-293 . -225) T) ((-293 . -215) NIL) ((-275 . -1023) 91855) ((-207 . -128) T) ((-1042 . -109) 91840) ((-159 . -23) T) ((-745 . -140) 91819) ((-745 . -138) 91798) ((-232 . -591) 91706) ((-231 . -591) 91614) ((-299 . -265) 91580) ((-1076 . -489) 91513) ((-1055 . -1023) T) ((-207 . -989) T) ((-761 . -290) 91451) ((-1012 . -839) 91386) ((-728 . -839) 91329) ((-726 . -839) 91313) ((-1197 . -37) 91283) ((-1195 . -37) 91253) ((-1150 . -1035) T) ((-798 . -1035) T) ((-433 . -839) 91230) ((-801 . -1023) T) ((-1150 . -23) T) ((-535 . -1035) T) ((-798 . -23) T) ((-576 . -673) T) ((-335 . -859) T) ((-332 . -859) T) ((-270 . -99) T) ((-324 . -859) T) ((-991 . -128) T) ((-891 . -128) T) ((-115 . -740) NIL) ((-115 . -737) NIL) ((-115 . -673) T) ((-640 . -848) NIL) ((-978 . -489) 91131) ((-459 . -128) T) ((-535 . -23) T) ((-623 . -290) 91069) ((-587 . -708) T) ((-563 . -708) T) ((-1141 . -793) NIL) ((-939 . -271) T) ((-232 . -21) T) ((-640 . -597) 91019) ((-331 . -1023) T) ((-232 . -25) T) ((-231 . -21) T) ((-231 . -25) T) ((-145 . -37) 91003) ((-2 . -99) T) ((-849 . -859) T) ((-460 . -1184) 90973) ((-205 . -972) 90950) ((-1042 . -981) T) ((-658 . -288) T) ((-275 . -664) 90892) ((-647 . -987) T) ((-465 . -431) T) ((-387 . -489) 90804) ((-200 . -431) T) ((-1042 . -215) T) ((-276 . -144) 90754) ((-935 . -570) 90715) ((-935 . -569) 90697) ((-926 . -569) 90679) ((-114 . -987) T) ((-603 . -986) 90663) ((-207 . -469) T) ((-379 . -569) 90645) ((-379 . -570) 90622) ((-984 . -1184) 90592) ((-603 . -109) 90571) ((-1062 . -467) 90555) ((-761 . -37) 90525) ((-61 . -420) T) ((-61 . -375) T) ((-1079 . -99) T) ((-810 . -128) T) ((-462 . -99) 90503) ((-1203 . -348) T) ((-1006 . -99) T) ((-990 . -99) T) ((-331 . -664) 90448) ((-678 . -140) 90427) ((-678 . -138) 90406) ((-959 . -597) 90343) ((-497 . -1023) 90321) ((-339 . -99) T) ((-333 . -99) T) ((-325 . -99) T) ((-105 . -99) T) ((-480 . -1023) T) ((-334 . -597) 90266) ((-1091 . -591) 90214) ((-1047 . -591) 90162) ((-365 . -484) 90141) ((-779 . -791) 90120) ((-359 . -1135) T) ((-640 . -673) T) ((-319 . -987) T) ((-1141 . -929) 90072) ((-163 . -987) T) ((-100 . -569) 90004) ((-1093 . -138) 89983) ((-1093 . -140) 89962) ((-359 . -520) T) ((-1092 . -140) 89941) ((-1092 . -138) 89920) ((-1086 . -138) 89827) ((-387 . -271) T) ((-1086 . -140) 89734) ((-1048 . -140) 89713) ((-1048 . -138) 89692) ((-299 . -37) 89533) ((-159 . -128) T) ((-293 . -741) NIL) ((-293 . -738) NIL) ((-603 . -981) T) ((-47 . -597) 89498) ((-930 . -21) T) ((-125 . -946) 89482) ((-119 . -946) 89466) ((-930 . -25) T) ((-840 . -117) 89450) ((-1078 . -99) T) ((-762 . -793) 89429) ((-1150 . -128) T) ((-1091 . -25) T) ((-1091 . -21) T) ((-798 . -128) T) ((-1047 . -25) T) ((-1047 . -21) T) ((-797 . -25) T) ((-797 . -21) T) ((-728 . -288) 89408) ((-596 . -99) 89386) ((-584 . -99) T) ((-1079 . -290) 89181) ((-535 . -128) T) ((-574 . -791) 89160) ((-1076 . -467) 89144) ((-1070 . -144) 89094) ((-1066 . -569) 89056) ((-1066 . -570) 89017) ((-959 . -737) T) ((-959 . -740) T) ((-959 . -673) T) ((-462 . -290) 88955) ((-432 . -397) 88925) ((-331 . -162) T) ((-270 . -37) 88912) ((-255 . -99) T) ((-254 . -99) T) ((-253 . -99) T) ((-252 . -99) T) ((-251 . -99) T) ((-250 . -99) T) ((-249 . -99) T) ((-323 . -972) 88889) ((-196 . -99) T) ((-195 . -99) T) ((-193 . -99) T) ((-192 . -99) T) ((-191 . -99) T) ((-190 . -99) T) ((-187 . -99) T) ((-186 . -99) T) ((-659 . -986) 88712) ((-185 . -99) T) ((-184 . -99) T) ((-183 . -99) T) ((-182 . -99) T) ((-181 . -99) T) ((-180 . -99) T) ((-179 . -99) T) ((-178 . -99) T) ((-177 . -99) T) ((-334 . -673) T) ((-659 . -109) 88521) ((-619 . -213) 88505) ((-541 . -288) T) ((-492 . -288) T) ((-275 . -489) 88454) ((-105 . -290) NIL) ((-70 . -375) T) ((-1036 . -99) 88245) ((-779 . -391) 88229) ((-1042 . -741) T) ((-1042 . -738) T) ((-647 . -1023) T) ((-359 . -343) T) ((-159 . -469) 88207) ((-204 . -569) 88139) ((-130 . -1023) T) ((-114 . -1023) T) ((-47 . -673) T) ((-978 . -467) 88104) ((-134 . -405) 88086) ((-134 . -348) T) ((-962 . -99) T) ((-487 . -484) 88065) ((-455 . -99) T) ((-442 . -99) T) ((-969 . -1035) T) ((-1093 . -34) 88031) ((-1093 . -93) 87997) ((-1093 . -1120) 87963) ((-1093 . -1117) 87929) ((-1078 . -290) NIL) ((-87 . -376) T) ((-87 . -375) T) ((-1006 . -1071) 87908) ((-1092 . -1117) 87874) ((-1092 . -1120) 87840) ((-969 . -23) T) ((-1092 . -93) 87806) ((-535 . -469) T) ((-1092 . -34) 87772) ((-1086 . -1117) 87738) ((-1086 . -1120) 87704) ((-1086 . -93) 87670) ((-341 . -1035) T) ((-339 . -1071) 87649) ((-333 . -1071) 87628) ((-325 . -1071) 87607) ((-1086 . -34) 87573) ((-1048 . -34) 87539) ((-1048 . -93) 87505) ((-105 . -1071) T) ((-1048 . -1120) 87471) ((-779 . -987) 87450) ((-596 . -290) 87388) ((-584 . -290) 87239) ((-1048 . -1117) 87205) ((-659 . -981) T) ((-991 . -591) 87187) ((-1006 . -37) 87055) ((-891 . -591) 87003) ((-940 . -140) T) ((-940 . -138) NIL) ((-359 . -1035) T) ((-304 . -25) T) ((-302 . -23) T) ((-882 . -793) 86982) ((-659 . -306) 86959) ((-459 . -591) 86907) ((-39 . -972) 86797) ((-647 . -664) 86784) ((-659 . -215) T) ((-319 . -1023) T) ((-163 . -1023) T) ((-311 . -793) T) ((-398 . -431) 86734) ((-359 . -23) T) ((-339 . -37) 86699) ((-333 . -37) 86664) ((-325 . -37) 86629) ((-78 . -420) T) ((-78 . -375) T) ((-207 . -25) T) ((-207 . -21) T) ((-780 . -1035) T) ((-105 . -37) 86579) ((-773 . -1035) T) ((-720 . -1023) T) ((-114 . -664) 86566) ((-620 . -972) 86550) ((-568 . -99) T) ((-780 . -23) T) ((-773 . -23) T) ((-1076 . -267) 86527) ((-1036 . -290) 86465) ((-1025 . -217) 86449) ((-62 . -376) T) ((-62 . -375) T) ((-108 . -99) T) ((-39 . -357) 86426) ((-602 . -795) 86410) ((-991 . -21) T) ((-991 . -25) T) ((-761 . -213) 86380) ((-891 . -25) T) ((-891 . -21) T) ((-574 . -987) T) ((-459 . -25) T) ((-459 . -21) T) ((-962 . -290) 86318) ((-828 . -569) 86300) ((-824 . -569) 86282) ((-232 . -793) 86233) ((-231 . -793) 86184) ((-497 . -489) 86117) ((-810 . -591) 86094) ((-455 . -290) 86032) ((-442 . -290) 85970) ((-331 . -271) T) ((-1076 . -1165) 85954) ((-1062 . -569) 85916) ((-1062 . -570) 85877) ((-1060 . -99) T) ((-935 . -986) 85773) ((-39 . -839) 85725) ((-1076 . -561) 85702) ((-1203 . -597) 85689) ((-992 . -144) 85635) ((-811 . -1135) T) ((-935 . -109) 85517) ((-319 . -664) 85501) ((-805 . -569) 85483) ((-163 . -664) 85415) ((-387 . -267) 85373) ((-811 . -520) T) ((-105 . -380) 85355) ((-82 . -364) T) ((-82 . -375) T) ((-647 . -162) T) ((-96 . -673) T) ((-460 . -99) 85146) ((-96 . -452) T) ((-114 . -162) T) ((-1036 . -37) 85116) ((-159 . -591) 85064) ((-984 . -99) T) ((-810 . -25) T) ((-761 . -220) 85043) ((-810 . -21) T) ((-764 . -99) T) ((-394 . -99) T) ((-365 . -99) T) ((-108 . -290) NIL) ((-209 . -99) 85021) ((-125 . -1131) T) ((-119 . -1131) T) ((-969 . -128) T) ((-619 . -347) 85005) ((-935 . -981) T) ((-1150 . -591) 84953) ((-1027 . -569) 84935) ((-939 . -569) 84917) ((-490 . -23) T) ((-485 . -23) T) ((-323 . -288) T) ((-483 . -23) T) ((-302 . -128) T) ((-3 . -1023) T) ((-939 . -570) 84901) ((-935 . -225) 84880) ((-935 . -215) 84859) ((-1203 . -673) T) ((-1169 . -138) 84838) ((-779 . -1023) T) ((-1169 . -140) 84817) ((-1162 . -140) 84796) ((-1162 . -138) 84775) ((-1161 . -1135) 84754) ((-1141 . -138) 84661) ((-1141 . -140) 84568) ((-1140 . -1135) 84547) ((-359 . -128) T) ((-528 . -825) 84529) ((0 . -1023) T) ((-163 . -162) T) ((-159 . -21) T) ((-159 . -25) T) ((-48 . -1023) T) ((-1163 . -597) 84434) ((-1161 . -520) 84385) ((-661 . -1035) T) ((-1140 . -520) 84336) ((-528 . -972) 84318) ((-553 . -140) 84297) ((-553 . -138) 84276) ((-471 . -972) 84219) ((-85 . -364) T) ((-85 . -375) T) ((-811 . -343) T) ((-780 . -128) T) ((-773 . -128) T) ((-661 . -23) T) ((-478 . -569) 84201) ((-1199 . -987) T) ((-359 . -989) T) ((-961 . -1023) 84179) ((-840 . -33) T) ((-460 . -290) 84117) ((-1076 . -570) 84078) ((-1076 . -569) 84010) ((-1091 . -793) 83989) ((-44 . -99) T) ((-1047 . -793) 83968) ((-763 . -99) T) ((-1150 . -25) T) ((-1150 . -21) T) ((-798 . -25) T) ((-43 . -347) 83952) ((-798 . -21) T) ((-678 . -431) 83903) ((-1198 . -569) 83885) ((-535 . -25) T) ((-535 . -21) T) ((-370 . -1023) T) ((-984 . -290) 83823) ((-574 . -1023) T) ((-645 . -825) 83805) ((-1177 . -1131) T) ((-209 . -290) 83743) ((-137 . -348) T) ((-978 . -570) 83685) ((-978 . -569) 83628) ((-293 . -848) NIL) ((-645 . -972) 83573) ((-658 . -859) T) ((-453 . -1135) 83552) ((-1092 . -431) 83531) ((-1086 . -431) 83510) ((-310 . -99) T) ((-811 . -1035) T) ((-296 . -597) 83332) ((-293 . -597) 83261) ((-453 . -520) 83212) ((-319 . -489) 83178) ((-514 . -144) 83128) ((-39 . -288) T) ((-786 . -569) 83110) ((-647 . -271) T) ((-811 . -23) T) ((-359 . -469) T) ((-1006 . -213) 83080) ((-487 . -99) T) ((-387 . -570) 82888) ((-387 . -569) 82870) ((-244 . -569) 82852) ((-114 . -271) T) ((-1163 . -673) T) ((-1161 . -343) 82831) ((-1140 . -343) 82810) ((-1188 . -33) T) ((-115 . -1131) T) ((-105 . -213) 82792) ((-1097 . -99) T) ((-456 . -1023) T) ((-497 . -467) 82776) ((-684 . -33) T) ((-460 . -37) 82746) ((-134 . -33) T) ((-115 . -823) 82723) ((-115 . -825) NIL) ((-576 . -972) 82608) ((-595 . -793) 82587) ((-1187 . -99) T) ((-276 . -99) T) ((-659 . -348) 82566) ((-115 . -972) 82543) ((-370 . -664) 82527) ((-574 . -664) 82511) ((-44 . -290) 82315) ((-762 . -138) 82294) ((-762 . -140) 82273) ((-1198 . -362) 82252) ((-765 . -793) T) ((-1179 . -1023) T) ((-1079 . -211) 82199) ((-366 . -793) 82178) ((-1169 . -1120) 82144) ((-1169 . -1117) 82110) ((-1162 . -1117) 82076) ((-490 . -128) T) ((-1162 . -1120) 82042) ((-1141 . -1117) 82008) ((-1141 . -1120) 81974) ((-1169 . -34) 81940) ((-1169 . -93) 81906) ((-587 . -569) 81875) ((-563 . -569) 81844) ((-207 . -793) T) ((-1162 . -93) 81810) ((-1162 . -34) 81776) ((-1161 . -1035) T) ((-1042 . -597) 81763) ((-1141 . -93) 81729) ((-1140 . -1035) T) ((-551 . -144) 81711) ((-1006 . -329) 81690) ((-115 . -357) 81667) ((-115 . -318) 81644) ((-163 . -271) T) ((-1141 . -34) 81610) ((-809 . -288) T) ((-293 . -740) NIL) ((-293 . -737) NIL) ((-296 . -673) 81460) ((-293 . -673) T) ((-453 . -343) 81439) ((-339 . -329) 81418) ((-333 . -329) 81397) ((-325 . -329) 81376) ((-296 . -452) 81355) ((-1161 . -23) T) ((-1140 . -23) T) ((-665 . -1035) T) ((-661 . -128) T) ((-602 . -99) T) ((-456 . -664) 81320) ((-44 . -263) 81270) ((-102 . -1023) T) ((-66 . -569) 81252) ((-804 . -99) T) ((-576 . -839) 81211) ((-1199 . -1023) T) ((-361 . -1023) T) ((-80 . -1131) T) ((-991 . -793) T) ((-891 . -793) 81190) ((-115 . -839) NIL) ((-728 . -859) 81169) ((-660 . -793) T) ((-500 . -1023) T) ((-476 . -1023) T) ((-335 . -1135) T) ((-332 . -1135) T) ((-324 . -1135) T) ((-245 . -1135) 81148) ((-229 . -1135) 81127) ((-1036 . -213) 81097) ((-459 . -793) 81076) ((-1062 . -986) 81060) ((-370 . -708) T) ((-1078 . -774) T) ((-640 . -1131) T) ((-335 . -520) T) ((-332 . -520) T) ((-324 . -520) T) ((-245 . -520) 80991) ((-229 . -520) 80922) ((-1062 . -109) 80901) ((-432 . -691) 80871) ((-805 . -986) 80841) ((-763 . -37) 80783) ((-640 . -823) 80765) ((-640 . -825) 80747) ((-276 . -290) 80551) ((-849 . -1135) T) ((-619 . -391) 80535) ((-805 . -109) 80500) ((-640 . -972) 80445) ((-940 . -431) T) ((-849 . -520) T) ((-541 . -859) T) ((-453 . -1035) T) ((-492 . -859) T) ((-1076 . -269) 80422) ((-853 . -431) T) ((-63 . -569) 80404) ((-584 . -211) 80350) ((-453 . -23) T) ((-1042 . -740) T) ((-811 . -128) T) ((-1042 . -737) T) ((-1190 . -1192) 80329) ((-1042 . -673) T) ((-603 . -597) 80303) ((-275 . -569) 80045) ((-970 . -33) T) ((-761 . -791) 80024) ((-540 . -288) T) ((-528 . -288) T) ((-471 . -288) T) ((-1199 . -664) 79994) ((-640 . -357) 79976) ((-640 . -318) 79958) ((-456 . -162) T) ((-361 . -664) 79928) ((-810 . -793) NIL) ((-528 . -957) T) ((-471 . -957) T) ((-1055 . -569) 79910) ((-1036 . -220) 79889) ((-197 . -99) T) ((-1070 . -99) T) ((-69 . -569) 79871) ((-1062 . -981) T) ((-1097 . -37) 79768) ((-801 . -569) 79750) ((-528 . -513) T) ((-619 . -987) T) ((-678 . -888) 79703) ((-1062 . -215) 79682) ((-1008 . -1023) T) ((-969 . -25) T) ((-969 . -21) T) ((-939 . -986) 79627) ((-844 . -99) T) ((-805 . -981) T) ((-640 . -839) NIL) ((-335 . -309) 79611) ((-335 . -343) T) ((-332 . -309) 79595) ((-332 . -343) T) ((-324 . -309) 79579) ((-324 . -343) T) ((-465 . -99) T) ((-1187 . -37) 79549) ((-497 . -633) 79499) ((-200 . -99) T) ((-959 . -972) 79381) ((-939 . -109) 79310) ((-1093 . -910) 79279) ((-1092 . -910) 79241) ((-494 . -144) 79225) ((-1006 . -350) 79204) ((-331 . -569) 79186) ((-302 . -21) T) ((-334 . -972) 79163) ((-302 . -25) T) ((-1086 . -910) 79132) ((-1048 . -910) 79099) ((-74 . -569) 79081) ((-645 . -288) T) ((-159 . -793) 79060) ((-849 . -343) T) ((-359 . -25) T) ((-359 . -21) T) ((-849 . -309) 79047) ((-84 . -569) 79029) ((-645 . -957) T) ((-624 . -793) T) ((-1161 . -128) T) ((-1140 . -128) T) ((-840 . -946) 79013) ((-780 . -21) T) ((-47 . -972) 78956) ((-780 . -25) T) ((-773 . -25) T) ((-773 . -21) T) ((-1197 . -987) T) ((-1195 . -987) T) ((-603 . -673) T) ((-1198 . -986) 78940) ((-1150 . -793) 78919) ((-761 . -391) 78888) ((-100 . -117) 78872) ((-127 . -1023) T) ((-51 . -1023) T) ((-865 . -569) 78854) ((-810 . -929) 78831) ((-769 . -99) T) ((-1198 . -109) 78810) ((-602 . -37) 78780) ((-535 . -793) T) ((-335 . -1035) T) ((-332 . -1035) T) ((-324 . -1035) T) ((-245 . -1035) T) ((-229 . -1035) T) ((-576 . -288) 78759) ((-1070 . -290) 78563) ((-613 . -23) T) ((-460 . -213) 78533) ((-145 . -987) T) ((-335 . -23) T) ((-332 . -23) T) ((-324 . -23) T) ((-115 . -288) T) ((-245 . -23) T) ((-229 . -23) T) ((-939 . -981) T) ((-659 . -848) 78512) ((-939 . -215) 78484) ((-939 . -225) T) ((-115 . -957) NIL) ((-849 . -1035) T) ((-1162 . -431) 78463) ((-1141 . -431) 78442) ((-497 . -569) 78374) ((-659 . -597) 78299) ((-387 . -986) 78251) ((-480 . -569) 78233) ((-849 . -23) T) ((-465 . -290) NIL) ((-453 . -128) T) ((-200 . -290) NIL) ((-387 . -109) 78171) ((-761 . -987) 78102) ((-684 . -1021) 78086) ((-1161 . -469) 78052) ((-1140 . -469) 78018) ((-456 . -271) T) ((-134 . -1021) 78000) ((-126 . -144) 77982) ((-1198 . -981) T) ((-992 . -99) T) ((-476 . -489) NIL) ((-649 . -99) T) ((-460 . -220) 77961) ((-1091 . -138) 77940) ((-1091 . -140) 77919) ((-1047 . -140) 77898) ((-1047 . -138) 77877) ((-587 . -986) 77861) ((-563 . -986) 77845) ((-619 . -1023) T) ((-619 . -983) 77785) ((-1093 . -1168) 77769) ((-1093 . -1155) 77746) ((-465 . -1071) T) ((-1092 . -1160) 77707) ((-1092 . -1155) 77677) ((-1092 . -1158) 77661) ((-200 . -1071) T) ((-323 . -859) T) ((-764 . -247) 77645) ((-587 . -109) 77624) ((-563 . -109) 77603) ((-1086 . -1139) 77564) ((-786 . -981) 77543) ((-1086 . -1155) 77520) ((-490 . -25) T) ((-471 . -283) T) ((-486 . -23) T) ((-485 . -25) T) ((-483 . -25) T) ((-482 . -23) T) ((-1086 . -1137) 77504) ((-387 . -981) T) ((-299 . -987) T) ((-640 . -288) T) ((-105 . -791) T) ((-387 . -225) T) ((-387 . -215) 77483) ((-659 . -673) T) ((-465 . -37) 77433) ((-200 . -37) 77383) ((-453 . -469) 77349) ((-1078 . -1064) T) ((-1024 . -99) T) ((-647 . -569) 77331) ((-647 . -570) 77246) ((-661 . -21) T) ((-661 . -25) T) ((-130 . -569) 77228) ((-114 . -569) 77210) ((-148 . -25) T) ((-1197 . -1023) T) ((-811 . -591) 77158) ((-1195 . -1023) T) ((-901 . -99) T) ((-682 . -99) T) ((-662 . -99) T) ((-432 . -99) T) ((-762 . -431) 77109) ((-43 . -1023) T) ((-1013 . -793) T) ((-613 . -128) T) ((-992 . -290) 76960) ((-619 . -664) 76944) ((-270 . -987) T) ((-335 . -128) T) ((-332 . -128) T) ((-324 . -128) T) ((-245 . -128) T) ((-229 . -128) T) ((-398 . -99) T) ((-145 . -1023) T) ((-44 . -211) 76894) ((-896 . -793) 76873) ((-935 . -597) 76811) ((-222 . -1184) 76781) ((-959 . -288) T) ((-275 . -986) 76703) ((-849 . -128) T) ((-39 . -859) T) ((-465 . -380) 76685) ((-334 . -288) T) ((-200 . -380) 76667) ((-1006 . -391) 76651) ((-275 . -109) 76568) ((-811 . -25) T) ((-811 . -21) T) ((-319 . -569) 76550) ((-1163 . -46) 76494) ((-207 . -140) T) ((-163 . -569) 76476) ((-1036 . -791) 76455) ((-720 . -569) 76437) ((-564 . -217) 76384) ((-454 . -217) 76334) ((-1197 . -664) 76304) ((-47 . -288) T) ((-1195 . -664) 76274) ((-902 . -1023) T) ((-761 . -1023) 76065) ((-292 . -99) T) ((-840 . -1131) T) ((-47 . -957) T) ((-1140 . -591) 75973) ((-635 . -99) 75951) ((-43 . -664) 75935) ((-514 . -99) T) ((-65 . -363) T) ((-65 . -375) T) ((-611 . -23) T) ((-619 . -708) T) ((-1129 . -1023) 75913) ((-331 . -986) 75858) ((-623 . -1023) 75836) ((-991 . -140) T) ((-891 . -140) 75815) ((-891 . -138) 75794) ((-745 . -99) T) ((-145 . -664) 75778) ((-459 . -140) 75757) ((-459 . -138) 75736) ((-331 . -109) 75665) ((-1006 . -987) T) ((-302 . -793) 75644) ((-1169 . -910) 75613) ((-579 . -1023) T) ((-1162 . -910) 75575) ((-486 . -128) T) ((-482 . -128) T) ((-276 . -211) 75525) ((-339 . -987) T) ((-333 . -987) T) ((-325 . -987) T) ((-275 . -981) 75468) ((-1141 . -910) 75437) ((-359 . -793) T) ((-105 . -987) T) ((-935 . -673) T) ((-809 . -859) T) ((-786 . -741) 75416) ((-786 . -738) 75395) ((-398 . -290) 75334) ((-447 . -99) T) ((-553 . -910) 75303) ((-299 . -1023) T) ((-387 . -741) 75282) ((-387 . -738) 75261) ((-476 . -467) 75243) ((-1163 . -972) 75209) ((-1161 . -21) T) ((-1161 . -25) T) ((-1140 . -21) T) ((-1140 . -25) T) ((-761 . -664) 75151) ((-645 . -384) T) ((-1188 . -1131) T) ((-1036 . -391) 75120) ((-939 . -348) NIL) ((-100 . -33) T) ((-684 . -1131) T) ((-43 . -708) T) ((-551 . -99) T) ((-75 . -376) T) ((-75 . -375) T) ((-602 . -605) 75104) ((-134 . -1131) T) ((-810 . -140) T) ((-810 . -138) NIL) ((-331 . -981) T) ((-68 . -363) T) ((-68 . -375) T) ((-1085 . -99) T) ((-619 . -489) 75037) ((-635 . -290) 74975) ((-901 . -37) 74872) ((-682 . -37) 74842) ((-514 . -290) 74646) ((-296 . -1131) T) ((-331 . -215) T) ((-331 . -225) T) ((-293 . -1131) T) ((-270 . -1023) T) ((-1099 . -569) 74628) ((-658 . -1135) T) ((-1076 . -600) 74612) ((-1126 . -520) 74591) ((-658 . -520) T) ((-296 . -823) 74575) ((-296 . -825) 74500) ((-293 . -823) 74461) ((-293 . -825) NIL) ((-745 . -290) 74426) ((-299 . -664) 74267) ((-304 . -303) 74244) ((-463 . -99) T) ((-453 . -25) T) ((-453 . -21) T) ((-398 . -37) 74218) ((-296 . -972) 73886) ((-207 . -1117) T) ((-207 . -1120) T) ((-3 . -569) 73868) ((-293 . -972) 73798) ((-2 . -1023) T) ((-2 . |RecordCategory|) T) ((-779 . -569) 73780) ((-1036 . -987) 73711) ((-540 . -859) T) ((-528 . -766) T) ((-528 . -859) T) ((-471 . -859) T) ((-132 . -972) 73695) ((-207 . -93) T) ((-73 . -420) T) ((-73 . -375) T) ((0 . -569) 73677) ((-159 . -140) 73656) ((-159 . -138) 73607) ((-207 . -34) T) ((-48 . -569) 73589) ((-456 . -987) T) ((-465 . -213) 73571) ((-462 . -906) 73555) ((-460 . -791) 73534) ((-200 . -213) 73516) ((-79 . -420) T) ((-79 . -375) T) ((-1066 . -33) T) ((-761 . -162) 73495) ((-678 . -99) T) ((-961 . -569) 73462) ((-476 . -267) 73437) ((-296 . -357) 73407) ((-293 . -357) 73368) ((-293 . -318) 73329) ((-1010 . -569) 73311) ((-762 . -888) 73258) ((-611 . -128) T) ((-1150 . -138) 73237) ((-1150 . -140) 73216) ((-1093 . -99) T) ((-1092 . -99) T) ((-1086 . -99) T) ((-1079 . -1023) T) ((-1048 . -99) T) ((-204 . -33) T) ((-270 . -664) 73203) ((-1079 . -566) 73179) ((-551 . -290) NIL) ((-462 . -1023) 73157) ((-370 . -569) 73139) ((-485 . -793) T) ((-1070 . -211) 73089) ((-1169 . -1168) 73073) ((-1169 . -1155) 73050) ((-1162 . -1160) 73011) ((-1162 . -1155) 72981) ((-1162 . -1158) 72965) ((-1141 . -1139) 72926) ((-1141 . -1155) 72903) ((-574 . -569) 72885) ((-1141 . -1137) 72869) ((-645 . -859) T) ((-1093 . -265) 72835) ((-1092 . -265) 72801) ((-1086 . -265) 72767) ((-1006 . -1023) T) ((-990 . -1023) T) ((-47 . -283) T) ((-296 . -839) 72734) ((-293 . -839) NIL) ((-990 . -996) 72713) ((-1042 . -825) 72695) ((-745 . -37) 72679) ((-245 . -591) 72627) ((-229 . -591) 72575) ((-647 . -986) 72562) ((-553 . -1155) 72539) ((-1048 . -265) 72505) ((-299 . -162) 72436) ((-339 . -1023) T) ((-333 . -1023) T) ((-325 . -1023) T) ((-476 . -19) 72418) ((-1042 . -972) 72400) ((-1025 . -144) 72384) ((-105 . -1023) T) ((-114 . -986) 72371) ((-658 . -343) T) ((-476 . -561) 72346) ((-647 . -109) 72331) ((-416 . -99) T) ((-44 . -1069) 72281) ((-114 . -109) 72266) ((-587 . -667) T) ((-563 . -667) T) ((-761 . -489) 72199) ((-970 . -1131) T) ((-882 . -144) 72183) ((-494 . -99) 72133) ((-1012 . -1135) 72112) ((-728 . -1135) 72091) ((-456 . -569) 72043) ((-60 . -1131) T) ((-456 . -570) 71965) ((-726 . -1135) 71944) ((-1091 . -431) 71875) ((-1078 . -1023) T) ((-1062 . -597) 71849) ((-1012 . -520) 71780) ((-460 . -391) 71749) ((-576 . -859) 71728) ((-433 . -1135) 71707) ((-1047 . -431) 71658) ((-378 . -569) 71640) ((-623 . -489) 71573) ((-728 . -520) 71484) ((-726 . -520) 71415) ((-678 . -290) 71402) ((-613 . -25) T) ((-613 . -21) T) ((-433 . -520) 71333) ((-115 . -859) T) ((-115 . -766) NIL) ((-335 . -25) T) ((-335 . -21) T) ((-332 . -25) T) ((-332 . -21) T) ((-324 . -25) T) ((-324 . -21) T) ((-245 . -25) T) ((-245 . -21) T) ((-81 . -364) T) ((-81 . -375) T) ((-229 . -25) T) ((-229 . -21) T) ((-1179 . -569) 71315) ((-1126 . -1035) T) ((-1126 . -23) T) ((-1086 . -290) 71200) ((-1048 . -290) 71187) ((-805 . -597) 71147) ((-1006 . -664) 71015) ((-882 . -917) 70999) ((-270 . -162) T) ((-849 . -21) T) ((-849 . -25) T) ((-811 . -793) 70950) ((-658 . -1035) T) ((-658 . -23) T) ((-596 . -1023) 70928) ((-584 . -566) 70903) ((-584 . -1023) T) ((-541 . -1135) T) ((-492 . -1135) T) ((-541 . -520) T) ((-492 . -520) T) ((-339 . -664) 70855) ((-333 . -664) 70807) ((-163 . -986) 70739) ((-319 . -986) 70723) ((-105 . -664) 70673) ((-163 . -109) 70584) ((-325 . -664) 70536) ((-319 . -109) 70515) ((-255 . -1023) T) ((-254 . -1023) T) ((-253 . -1023) T) ((-252 . -1023) T) ((-647 . -981) T) ((-251 . -1023) T) ((-250 . -1023) T) ((-249 . -1023) T) ((-196 . -1023) T) ((-195 . -1023) T) ((-193 . -1023) T) ((-159 . -1120) 70493) ((-159 . -1117) 70471) ((-192 . -1023) T) ((-191 . -1023) T) ((-114 . -981) T) ((-190 . -1023) T) ((-187 . -1023) T) ((-647 . -215) T) ((-186 . -1023) T) ((-185 . -1023) T) ((-184 . -1023) T) ((-183 . -1023) T) ((-182 . -1023) T) ((-181 . -1023) T) ((-180 . -1023) T) ((-179 . -1023) T) ((-178 . -1023) T) ((-177 . -1023) T) ((-222 . -99) 70262) ((-159 . -34) 70240) ((-159 . -93) 70218) ((-603 . -972) 70116) ((-460 . -987) 70047) ((-1036 . -1023) 69838) ((-1062 . -33) T) ((-619 . -467) 69822) ((-71 . -1131) T) ((-102 . -569) 69804) ((-1199 . -569) 69786) ((-361 . -569) 69768) ((-535 . -1120) T) ((-535 . -1117) T) ((-678 . -37) 69617) ((-500 . -569) 69599) ((-494 . -290) 69537) ((-476 . -569) 69519) ((-476 . -570) 69501) ((-1086 . -1071) NIL) ((-962 . -999) 69470) ((-962 . -1023) T) ((-940 . -99) T) ((-908 . -99) T) ((-853 . -99) T) ((-832 . -972) 69447) ((-1062 . -673) T) ((-939 . -597) 69392) ((-455 . -1023) T) ((-442 . -1023) T) ((-545 . -23) T) ((-535 . -34) T) ((-535 . -93) T) ((-407 . -99) T) ((-992 . -211) 69338) ((-126 . -99) T) ((-1093 . -37) 69235) ((-805 . -673) T) ((-640 . -859) T) ((-486 . -25) T) ((-482 . -21) T) ((-482 . -25) T) ((-1092 . -37) 69076) ((-319 . -981) T) ((-1086 . -37) 68872) ((-1006 . -162) T) ((-163 . -981) T) ((-1048 . -37) 68769) ((-659 . -46) 68746) ((-339 . -162) T) ((-333 . -162) T) ((-493 . -55) 68720) ((-473 . -55) 68670) ((-331 . -1194) 68647) ((-207 . -431) T) ((-299 . -271) 68598) ((-325 . -162) T) ((-163 . -225) T) ((-1140 . -793) 68497) ((-105 . -162) T) ((-811 . -929) 68481) ((-607 . -1035) T) ((-541 . -343) T) ((-541 . -309) 68468) ((-492 . -309) 68445) ((-492 . -343) T) ((-296 . -288) 68424) ((-293 . -288) T) ((-559 . -793) 68403) ((-1036 . -664) 68345) ((-494 . -263) 68329) ((-607 . -23) T) ((-398 . -213) 68313) ((-293 . -957) NIL) ((-316 . -23) T) ((-100 . -946) 68297) ((-44 . -35) 68276) ((-568 . -1023) T) ((-331 . -348) T) ((-471 . -27) T) ((-222 . -290) 68214) ((-1012 . -1035) T) ((-1198 . -597) 68188) ((-728 . -1035) T) ((-726 . -1035) T) ((-433 . -1035) T) ((-991 . -431) T) ((-891 . -431) 68139) ((-108 . -1023) T) ((-1012 . -23) T) ((-763 . -987) T) ((-728 . -23) T) ((-726 . -23) T) ((-459 . -431) 68090) ((-1079 . -489) 67873) ((-361 . -362) 67852) ((-1097 . -391) 67836) ((-440 . -23) T) ((-433 . -23) T) ((-462 . -489) 67769) ((-270 . -271) T) ((-1008 . -569) 67751) ((-387 . -848) 67730) ((-49 . -1035) T) ((-959 . -859) T) ((-939 . -673) T) ((-659 . -825) NIL) ((-541 . -1035) T) ((-492 . -1035) T) ((-786 . -597) 67703) ((-1126 . -128) T) ((-1086 . -380) 67655) ((-940 . -290) NIL) ((-761 . -467) 67639) ((-334 . -859) T) ((-1076 . -33) T) ((-387 . -597) 67591) ((-49 . -23) T) ((-658 . -128) T) ((-659 . -972) 67473) ((-541 . -23) T) ((-105 . -489) NIL) ((-492 . -23) T) ((-159 . -389) 67444) ((-126 . -290) NIL) ((-1060 . -1023) T) ((-1190 . -1189) 67428) ((-647 . -741) T) ((-647 . -738) T) ((-1042 . -288) T) ((-359 . -140) T) ((-261 . -569) 67410) ((-1140 . -929) 67380) ((-47 . -859) T) ((-623 . -467) 67364) ((-232 . -1184) 67334) ((-231 . -1184) 67304) ((-1095 . -793) T) ((-1036 . -162) 67283) ((-1042 . -957) T) ((-978 . -33) T) ((-780 . -140) 67262) ((-780 . -138) 67241) ((-684 . -104) 67225) ((-568 . -129) T) ((-460 . -1023) 67016) ((-1097 . -987) T) ((-810 . -431) T) ((-83 . -1131) T) ((-222 . -37) 66986) ((-134 . -104) 66968) ((-659 . -357) 66952) ((-1042 . -513) T) ((-370 . -986) 66936) ((-1198 . -673) T) ((-1091 . -888) 66905) ((-127 . -569) 66872) ((-51 . -569) 66854) ((-1047 . -888) 66821) ((-602 . -391) 66805) ((-1187 . -987) T) ((-574 . -986) 66789) ((-611 . -25) T) ((-611 . -21) T) ((-1078 . -489) NIL) ((-1169 . -99) T) ((-1162 . -99) T) ((-370 . -109) 66768) ((-204 . -235) 66752) ((-1141 . -99) T) ((-984 . -1023) T) ((-940 . -1071) T) ((-984 . -983) 66692) ((-764 . -1023) T) ((-323 . -1135) T) ((-587 . -597) 66676) ((-574 . -109) 66655) ((-563 . -597) 66639) ((-554 . -99) T) ((-545 . -128) T) ((-553 . -99) T) ((-394 . -1023) T) ((-365 . -1023) T) ((-209 . -1023) 66617) ((-596 . -489) 66550) ((-584 . -489) 66394) ((-779 . -981) 66373) ((-595 . -144) 66357) ((-323 . -520) T) ((-659 . -839) 66300) ((-514 . -211) 66250) ((-1169 . -265) 66216) ((-1006 . -271) 66167) ((-465 . -791) T) ((-205 . -1035) T) ((-1162 . -265) 66133) ((-1141 . -265) 66099) ((-940 . -37) 66049) ((-200 . -791) T) ((-1126 . -469) 66015) ((-853 . -37) 65967) ((-786 . -740) 65946) ((-786 . -737) 65925) ((-786 . -673) 65904) ((-339 . -271) T) ((-333 . -271) T) ((-325 . -271) T) ((-159 . -431) 65835) ((-407 . -37) 65819) ((-105 . -271) T) ((-205 . -23) T) ((-387 . -740) 65798) ((-387 . -737) 65777) ((-387 . -673) T) ((-476 . -269) 65752) ((-456 . -986) 65717) ((-607 . -128) T) ((-1036 . -489) 65650) ((-316 . -128) T) ((-159 . -382) 65629) ((-460 . -664) 65571) ((-761 . -267) 65548) ((-456 . -109) 65504) ((-602 . -987) T) ((-1150 . -431) 65435) ((-1012 . -128) T) ((-245 . -793) 65414) ((-229 . -793) 65393) ((-728 . -128) T) ((-726 . -128) T) ((-535 . -431) T) ((-984 . -664) 65335) ((-574 . -981) T) ((-962 . -489) 65268) ((-440 . -128) T) ((-433 . -128) T) ((-44 . -1023) T) ((-365 . -664) 65238) ((-763 . -1023) T) ((-455 . -489) 65171) ((-442 . -489) 65104) ((-432 . -347) 65074) ((-44 . -566) 65053) ((-296 . -283) T) ((-619 . -569) 65015) ((-57 . -793) 64994) ((-1141 . -290) 64879) ((-940 . -380) 64861) ((-761 . -561) 64838) ((-491 . -793) 64817) ((-472 . -793) 64796) ((-39 . -1135) T) ((-935 . -972) 64694) ((-49 . -128) T) ((-541 . -128) T) ((-492 . -128) T) ((-275 . -597) 64556) ((-323 . -309) 64533) ((-323 . -343) T) ((-302 . -303) 64510) ((-299 . -267) 64495) ((-39 . -520) T) ((-359 . -1117) T) ((-359 . -1120) T) ((-970 . -1108) 64470) ((-1105 . -217) 64420) ((-1086 . -213) 64372) ((-310 . -1023) T) ((-359 . -93) T) ((-359 . -34) T) ((-970 . -104) 64318) ((-456 . -981) T) ((-457 . -217) 64268) ((-1079 . -467) 64202) ((-1199 . -986) 64186) ((-361 . -986) 64170) ((-456 . -225) T) ((-762 . -99) T) ((-661 . -140) 64149) ((-661 . -138) 64128) ((-462 . -467) 64112) ((-463 . -315) 64081) ((-1199 . -109) 64060) ((-487 . -1023) T) ((-460 . -162) 64039) ((-935 . -357) 64023) ((-393 . -99) T) ((-361 . -109) 64002) ((-935 . -318) 63986) ((-260 . -920) 63970) ((-259 . -920) 63954) ((-1197 . -569) 63936) ((-1195 . -569) 63918) ((-108 . -489) NIL) ((-1091 . -1153) 63902) ((-797 . -795) 63886) ((-1097 . -1023) T) ((-100 . -1131) T) ((-891 . -888) 63847) ((-763 . -664) 63789) ((-1141 . -1071) NIL) ((-459 . -888) 63734) ((-991 . -136) T) ((-58 . -99) 63712) ((-43 . -569) 63694) ((-76 . -569) 63676) ((-331 . -597) 63621) ((-1187 . -1023) T) ((-486 . -793) T) ((-323 . -1035) T) ((-276 . -1023) T) ((-935 . -839) 63580) ((-276 . -566) 63559) ((-1169 . -37) 63456) ((-1162 . -37) 63297) ((-465 . -987) T) ((-1141 . -37) 63093) ((-200 . -987) T) ((-323 . -23) T) ((-145 . -569) 63075) ((-779 . -741) 63054) ((-779 . -738) 63033) ((-554 . -37) 63006) ((-553 . -37) 62903) ((-809 . -520) T) ((-205 . -128) T) ((-299 . -938) 62869) ((-77 . -569) 62851) ((-659 . -288) 62830) ((-275 . -673) 62733) ((-770 . -99) T) ((-804 . -787) T) ((-275 . -452) 62712) ((-1190 . -99) T) ((-39 . -343) T) ((-811 . -140) 62691) ((-811 . -138) 62670) ((-1078 . -467) 62652) ((-1199 . -981) T) ((-460 . -489) 62585) ((-1066 . -1131) T) ((-902 . -569) 62567) ((-596 . -467) 62551) ((-584 . -467) 62482) ((-761 . -569) 62214) ((-47 . -27) T) ((-1097 . -664) 62111) ((-602 . -1023) T) ((-416 . -344) 62085) ((-1025 . -99) T) ((-762 . -290) 62072) ((-804 . -1023) T) ((-1195 . -362) 62044) ((-984 . -489) 61977) ((-1079 . -267) 61953) ((-222 . -213) 61923) ((-1187 . -664) 61893) ((-763 . -162) 61872) ((-209 . -489) 61805) ((-574 . -741) 61784) ((-574 . -738) 61763) ((-1129 . -569) 61675) ((-204 . -1131) T) ((-623 . -569) 61607) ((-1076 . -946) 61591) ((-331 . -673) T) ((-882 . -99) 61541) ((-1141 . -380) 61493) ((-1036 . -467) 61477) ((-58 . -290) 61415) ((-311 . -99) T) ((-1126 . -21) T) ((-1126 . -25) T) ((-39 . -1035) T) ((-658 . -21) T) ((-579 . -569) 61397) ((-490 . -303) 61376) ((-658 . -25) T) ((-105 . -267) NIL) ((-860 . -1035) T) ((-39 . -23) T) ((-717 . -1035) T) ((-528 . -1135) T) ((-471 . -1135) T) ((-299 . -569) 61358) ((-940 . -213) 61340) ((-159 . -156) 61324) ((-540 . -520) T) ((-528 . -520) T) ((-471 . -520) T) ((-717 . -23) T) ((-1161 . -140) 61303) ((-1079 . -561) 61279) ((-1161 . -138) 61258) ((-962 . -467) 61242) ((-1140 . -138) 61167) ((-1140 . -140) 61092) ((-1190 . -1196) 61071) ((-455 . -467) 61055) ((-442 . -467) 61039) ((-497 . -33) T) ((-602 . -664) 61009) ((-110 . -905) T) ((-611 . -793) 60988) ((-1097 . -162) 60939) ((-345 . -99) T) ((-222 . -220) 60918) ((-232 . -99) T) ((-231 . -99) T) ((-1150 . -888) 60887) ((-107 . -99) T) ((-227 . -793) 60866) ((-762 . -37) 60715) ((-44 . -489) 60507) ((-1078 . -267) 60482) ((-197 . -1023) T) ((-1070 . -1023) T) ((-1070 . -566) 60461) ((-545 . -25) T) ((-545 . -21) T) ((-1025 . -290) 60399) ((-901 . -391) 60383) ((-645 . -1135) T) ((-584 . -267) 60358) ((-1012 . -591) 60306) ((-728 . -591) 60254) ((-726 . -591) 60202) ((-323 . -128) T) ((-270 . -569) 60184) ((-645 . -520) T) ((-844 . -1023) T) ((-809 . -1035) T) ((-433 . -591) 60132) ((-844 . -842) 60116) ((-359 . -431) T) ((-465 . -1023) T) ((-647 . -597) 60103) ((-882 . -290) 60041) ((-200 . -1023) T) ((-296 . -859) 60020) ((-293 . -859) T) ((-293 . -766) NIL) ((-370 . -667) T) ((-809 . -23) T) ((-114 . -597) 60007) ((-453 . -138) 59986) ((-398 . -391) 59970) ((-453 . -140) 59949) ((-108 . -467) 59931) ((-2 . -569) 59913) ((-1078 . -19) 59895) ((-1078 . -561) 59870) ((-607 . -21) T) ((-607 . -25) T) ((-551 . -1064) T) ((-1036 . -267) 59847) ((-316 . -25) T) ((-316 . -21) T) ((-471 . -343) T) ((-1190 . -37) 59817) ((-1062 . -1131) T) ((-584 . -561) 59792) ((-1012 . -25) T) ((-1012 . -21) T) ((-500 . -738) T) ((-500 . -741) T) ((-115 . -1135) T) ((-901 . -987) T) ((-576 . -520) T) ((-682 . -987) T) ((-662 . -987) T) ((-728 . -25) T) ((-728 . -21) T) ((-726 . -21) T) ((-726 . -25) T) ((-619 . -986) 59776) ((-440 . -25) T) ((-115 . -520) T) ((-440 . -21) T) ((-433 . -25) T) ((-433 . -21) T) ((-1062 . -972) 59674) ((-763 . -271) 59653) ((-769 . -1023) T) ((-904 . -905) T) ((-619 . -109) 59632) ((-276 . -489) 59424) ((-1197 . -986) 59408) ((-1195 . -986) 59392) ((-232 . -290) 59330) ((-231 . -290) 59268) ((-1144 . -99) 59246) ((-1079 . -570) NIL) ((-1079 . -569) 59228) ((-1161 . -1117) 59194) ((-1161 . -1120) 59160) ((-1141 . -213) 59112) ((-1140 . -1117) 59078) ((-1140 . -1120) 59044) ((-1062 . -357) 59028) ((-1042 . -766) T) ((-1042 . -859) T) ((-1036 . -561) 59005) ((-1006 . -570) 58989) ((-462 . -569) 58921) ((-761 . -269) 58898) ((-564 . -144) 58845) ((-398 . -987) T) ((-465 . -664) 58795) ((-460 . -467) 58779) ((-307 . -793) 58758) ((-319 . -597) 58732) ((-49 . -21) T) ((-49 . -25) T) ((-200 . -664) 58682) ((-159 . -671) 58653) ((-163 . -597) 58585) ((-541 . -21) T) ((-541 . -25) T) ((-492 . -25) T) ((-492 . -21) T) ((-454 . -144) 58535) ((-1006 . -569) 58517) ((-990 . -569) 58499) ((-930 . -99) T) ((-802 . -99) T) ((-745 . -391) 58463) ((-39 . -128) T) ((-645 . -343) T) ((-196 . -834) T) ((-647 . -740) T) ((-647 . -737) T) ((-540 . -1035) T) ((-528 . -1035) T) ((-471 . -1035) T) ((-647 . -673) T) ((-339 . -569) 58445) ((-333 . -569) 58427) ((-325 . -569) 58409) ((-64 . -376) T) ((-64 . -375) T) ((-105 . -570) 58339) ((-105 . -569) 58321) ((-195 . -834) T) ((-896 . -144) 58305) ((-1161 . -93) 58271) ((-717 . -128) T) ((-130 . -673) T) ((-114 . -673) T) ((-1161 . -34) 58237) ((-984 . -467) 58221) ((-540 . -23) T) ((-528 . -23) T) ((-471 . -23) T) ((-1140 . -93) 58187) ((-1140 . -34) 58153) ((-1091 . -99) T) ((-1047 . -99) T) ((-797 . -99) T) ((-209 . -467) 58137) ((-1197 . -109) 58116) ((-1195 . -109) 58095) ((-43 . -986) 58079) ((-1150 . -1153) 58063) ((-798 . -795) 58047) ((-1097 . -271) 58026) ((-108 . -267) 58001) ((-1062 . -839) 57960) ((-43 . -109) 57939) ((-619 . -981) T) ((-1100 . -1172) T) ((-1078 . -570) NIL) ((-1078 . -569) 57921) ((-992 . -566) 57896) ((-992 . -1023) T) ((-72 . -420) T) ((-72 . -375) T) ((-619 . -215) 57875) ((-145 . -986) 57859) ((-535 . -518) 57843) ((-335 . -140) 57822) ((-335 . -138) 57773) ((-332 . -140) 57752) ((-649 . -1023) T) ((-332 . -138) 57703) ((-324 . -140) 57682) ((-324 . -138) 57633) ((-245 . -138) 57612) ((-245 . -140) 57591) ((-232 . -37) 57561) ((-229 . -140) 57540) ((-115 . -343) T) ((-229 . -138) 57519) ((-231 . -37) 57489) ((-145 . -109) 57468) ((-939 . -972) 57358) ((-1086 . -791) NIL) ((-640 . -1135) T) ((-745 . -987) T) ((-645 . -1035) T) ((-1197 . -981) T) ((-1195 . -981) T) ((-1076 . -1131) T) ((-939 . -357) 57335) ((-849 . -138) T) ((-849 . -140) 57317) ((-809 . -128) T) ((-761 . -986) 57215) ((-640 . -520) T) ((-645 . -23) T) ((-596 . -569) 57147) ((-596 . -570) 57108) ((-584 . -570) NIL) ((-584 . -569) 57090) ((-465 . -162) T) ((-205 . -21) T) ((-200 . -162) T) ((-205 . -25) T) ((-453 . -1120) 57056) ((-453 . -1117) 57022) ((-255 . -569) 57004) ((-254 . -569) 56986) ((-253 . -569) 56968) ((-252 . -569) 56950) ((-251 . -569) 56932) ((-476 . -600) 56914) ((-250 . -569) 56896) ((-319 . -673) T) ((-249 . -569) 56878) ((-108 . -19) 56860) ((-163 . -673) T) ((-476 . -353) 56842) ((-196 . -569) 56824) ((-494 . -1069) 56808) ((-476 . -121) T) ((-108 . -561) 56783) ((-195 . -569) 56765) ((-453 . -34) 56731) ((-453 . -93) 56697) ((-193 . -569) 56679) ((-192 . -569) 56661) ((-191 . -569) 56643) ((-190 . -569) 56625) ((-187 . -569) 56607) ((-186 . -569) 56589) ((-185 . -569) 56571) ((-184 . -569) 56553) ((-183 . -569) 56535) ((-182 . -569) 56517) ((-181 . -569) 56499) ((-504 . -1026) 56451) ((-180 . -569) 56433) ((-179 . -569) 56415) ((-44 . -467) 56352) ((-178 . -569) 56334) ((-177 . -569) 56316) ((-761 . -109) 56207) ((-595 . -99) 56157) ((-460 . -267) 56134) ((-1036 . -569) 55866) ((-1024 . -1023) T) ((-978 . -1131) T) ((-576 . -1035) T) ((-1198 . -972) 55850) ((-1091 . -290) 55837) ((-1047 . -290) 55824) ((-115 . -1035) T) ((-765 . -99) T) ((-576 . -23) T) ((-1070 . -489) 55616) ((-366 . -99) T) ((-304 . -99) T) ((-939 . -839) 55568) ((-901 . -1023) T) ((-145 . -981) T) ((-115 . -23) T) ((-678 . -391) 55552) ((-682 . -1023) T) ((-662 . -1023) T) ((-649 . -129) T) ((-432 . -1023) T) ((-296 . -410) 55536) ((-387 . -1131) T) ((-962 . -570) 55497) ((-959 . -1135) T) ((-207 . -99) T) ((-962 . -569) 55459) ((-762 . -213) 55443) ((-959 . -520) T) ((-779 . -597) 55416) ((-334 . -1135) T) ((-455 . -569) 55378) ((-455 . -570) 55339) ((-442 . -570) 55300) ((-442 . -569) 55262) ((-387 . -823) 55246) ((-299 . -986) 55081) ((-387 . -825) 55006) ((-786 . -972) 54904) ((-465 . -489) NIL) ((-460 . -561) 54881) ((-334 . -520) T) ((-200 . -489) NIL) ((-811 . -431) T) ((-398 . -1023) T) ((-387 . -972) 54748) ((-299 . -109) 54569) ((-640 . -343) T) ((-207 . -265) T) ((-47 . -1135) T) ((-761 . -981) 54500) ((-540 . -128) T) ((-528 . -128) T) ((-471 . -128) T) ((-47 . -520) T) ((-1079 . -269) 54476) ((-1091 . -1071) 54454) ((-296 . -27) 54433) ((-991 . -99) T) ((-761 . -215) 54386) ((-222 . -791) 54365) ((-891 . -99) T) ((-660 . -99) T) ((-276 . -467) 54302) ((-459 . -99) T) ((-678 . -987) T) ((-568 . -569) 54284) ((-568 . -570) 54145) ((-387 . -357) 54129) ((-387 . -318) 54113) ((-1091 . -37) 53942) ((-1047 . -37) 53791) ((-797 . -37) 53761) ((-370 . -597) 53745) ((-595 . -290) 53683) ((-901 . -664) 53580) ((-204 . -104) 53564) ((-44 . -267) 53489) ((-682 . -664) 53459) ((-574 . -597) 53433) ((-292 . -1023) T) ((-270 . -986) 53420) ((-108 . -569) 53402) ((-108 . -570) 53384) ((-432 . -664) 53354) ((-762 . -234) 53293) ((-635 . -1023) 53271) ((-514 . -1023) T) ((-1093 . -987) T) ((-1092 . -987) T) ((-270 . -109) 53256) ((-1086 . -987) T) ((-1048 . -987) T) ((-514 . -566) 53235) ((-940 . -791) T) ((-209 . -633) 53193) ((-640 . -1035) T) ((-1126 . -687) 53169) ((-299 . -981) T) ((-323 . -25) T) ((-323 . -21) T) ((-387 . -839) 53128) ((-66 . -1131) T) ((-779 . -740) 53107) ((-398 . -664) 53081) ((-745 . -1023) T) ((-779 . -737) 53060) ((-645 . -128) T) ((-659 . -859) 53039) ((-640 . -23) T) ((-465 . -271) T) ((-779 . -673) 53018) ((-299 . -215) 52970) ((-299 . -225) 52949) ((-200 . -271) T) ((-959 . -343) T) ((-1161 . -431) 52928) ((-1140 . -431) 52907) ((-334 . -309) 52884) ((-334 . -343) T) ((-1060 . -569) 52866) ((-44 . -1165) 52816) ((-810 . -99) T) ((-595 . -263) 52800) ((-645 . -989) T) ((-456 . -597) 52765) ((-447 . -1023) T) ((-44 . -561) 52690) ((-1078 . -269) 52665) ((-39 . -591) 52604) ((-47 . -343) T) ((-1029 . -569) 52586) ((-1012 . -793) 52565) ((-584 . -269) 52540) ((-728 . -793) 52519) ((-726 . -793) 52498) ((-460 . -569) 52230) ((-222 . -391) 52199) ((-891 . -290) 52186) ((-433 . -793) 52165) ((-63 . -1131) T) ((-576 . -128) T) ((-459 . -290) 52152) ((-992 . -489) 51996) ((-270 . -981) T) ((-115 . -128) T) ((-432 . -708) T) ((-901 . -162) 51947) ((-1006 . -986) 51857) ((-574 . -740) 51836) ((-551 . -1023) T) ((-574 . -737) 51815) ((-574 . -673) T) ((-276 . -267) 51794) ((-275 . -1131) T) ((-984 . -569) 51756) ((-984 . -570) 51717) ((-959 . -1035) T) ((-159 . -99) T) ((-256 . -793) T) ((-1085 . -1023) T) ((-764 . -569) 51699) ((-1036 . -269) 51676) ((-1025 . -211) 51660) ((-939 . -288) T) ((-745 . -664) 51644) ((-339 . -986) 51596) ((-334 . -1035) T) ((-333 . -986) 51548) ((-394 . -569) 51530) ((-365 . -569) 51512) ((-325 . -986) 51464) ((-209 . -569) 51396) ((-1006 . -109) 51292) ((-959 . -23) T) ((-105 . -986) 51242) ((-837 . -99) T) ((-784 . -99) T) ((-754 . -99) T) ((-715 . -99) T) ((-624 . -99) T) ((-453 . -431) 51221) ((-398 . -162) T) ((-339 . -109) 51159) ((-333 . -109) 51097) ((-325 . -109) 51035) ((-232 . -213) 51005) ((-231 . -213) 50975) ((-334 . -23) T) ((-69 . -1131) T) ((-207 . -37) 50940) ((-105 . -109) 50874) ((-39 . -25) T) ((-39 . -21) T) ((-619 . -667) T) ((-159 . -265) 50852) ((-47 . -1035) T) ((-860 . -25) T) ((-717 . -25) T) ((-1070 . -467) 50789) ((-463 . -1023) T) ((-1199 . -597) 50763) ((-1150 . -99) T) ((-798 . -99) T) ((-222 . -987) 50694) ((-991 . -1071) T) ((-902 . -738) 50647) ((-361 . -597) 50631) ((-47 . -23) T) ((-902 . -741) 50584) ((-761 . -741) 50535) ((-761 . -738) 50486) ((-276 . -561) 50465) ((-456 . -673) T) ((-535 . -99) T) ((-810 . -290) 50422) ((-602 . -267) 50401) ((-110 . -610) T) ((-74 . -1131) T) ((-991 . -37) 50388) ((-613 . -354) 50367) ((-891 . -37) 50216) ((-678 . -1023) T) ((-459 . -37) 50065) ((-84 . -1131) T) ((-535 . -265) T) ((-1141 . -791) NIL) ((-1093 . -1023) T) ((-1092 . -1023) T) ((-1086 . -1023) T) ((-331 . -972) 50042) ((-1006 . -981) T) ((-940 . -987) T) ((-44 . -569) 50024) ((-44 . -570) NIL) ((-853 . -987) T) ((-763 . -569) 50006) ((-1067 . -99) 49984) ((-1006 . -225) 49935) ((-407 . -987) T) ((-339 . -981) T) ((-333 . -981) T) ((-345 . -344) 49912) ((-325 . -981) T) ((-232 . -220) 49891) ((-231 . -220) 49870) ((-107 . -344) 49844) ((-1006 . -215) 49769) ((-1048 . -1023) T) ((-275 . -839) 49728) ((-105 . -981) T) ((-640 . -128) T) ((-398 . -489) 49570) ((-339 . -215) 49549) ((-339 . -225) T) ((-43 . -667) T) ((-333 . -215) 49528) ((-333 . -225) T) ((-325 . -215) 49507) ((-325 . -225) T) ((-159 . -290) 49472) ((-105 . -225) T) ((-105 . -215) T) ((-299 . -738) T) ((-809 . -21) T) ((-809 . -25) T) ((-387 . -288) T) ((-476 . -33) T) ((-108 . -269) 49447) ((-1036 . -986) 49345) ((-810 . -1071) NIL) ((-310 . -569) 49327) ((-387 . -957) 49306) ((-1036 . -109) 49197) ((-637 . -1172) T) ((-416 . -1023) T) ((-1199 . -673) T) ((-61 . -569) 49179) ((-810 . -37) 49124) ((-497 . -1131) T) ((-559 . -144) 49108) ((-487 . -569) 49090) ((-1150 . -290) 49077) ((-678 . -664) 48926) ((-500 . -739) T) ((-500 . -740) T) ((-528 . -591) 48908) ((-471 . -591) 48868) ((-335 . -431) T) ((-332 . -431) T) ((-324 . -431) T) ((-245 . -431) 48819) ((-494 . -1023) 48769) ((-229 . -431) 48720) ((-1070 . -267) 48699) ((-1097 . -569) 48681) ((-635 . -489) 48614) ((-901 . -271) 48593) ((-514 . -489) 48385) ((-1091 . -213) 48369) ((-159 . -1071) 48348) ((-1187 . -569) 48330) ((-1093 . -664) 48227) ((-1092 . -664) 48068) ((-831 . -99) T) ((-1086 . -664) 47864) ((-1048 . -664) 47761) ((-1076 . -622) 47745) ((-335 . -382) 47696) ((-332 . -382) 47647) ((-324 . -382) 47598) ((-959 . -128) T) ((-745 . -489) 47510) ((-276 . -570) NIL) ((-276 . -569) 47492) ((-849 . -431) T) ((-902 . -348) 47445) ((-761 . -348) 47424) ((-485 . -484) 47403) ((-483 . -484) 47382) ((-465 . -267) NIL) ((-460 . -269) 47359) ((-398 . -271) T) ((-334 . -128) T) ((-200 . -267) NIL) ((-640 . -469) NIL) ((-96 . -1035) T) ((-159 . -37) 47187) ((-1161 . -910) 47149) ((-1067 . -290) 47087) ((-1140 . -910) 47056) ((-849 . -382) T) ((-1036 . -981) 46987) ((-1163 . -520) T) ((-1070 . -561) 46966) ((-110 . -793) T) ((-992 . -467) 46897) ((-540 . -21) T) ((-540 . -25) T) ((-528 . -21) T) ((-528 . -25) T) ((-471 . -25) T) ((-471 . -21) T) ((-1150 . -1071) 46875) ((-1036 . -215) 46828) ((-47 . -128) T) ((-1113 . -99) T) ((-222 . -1023) 46619) ((-810 . -380) 46596) ((-1013 . -99) T) ((-1002 . -99) T) ((-564 . -99) T) ((-454 . -99) T) ((-1150 . -37) 46425) ((-798 . -37) 46395) ((-678 . -162) 46306) ((-602 . -569) 46288) ((-535 . -37) 46275) ((-896 . -99) 46225) ((-804 . -569) 46207) ((-804 . -570) 46129) ((-551 . -489) NIL) ((-1169 . -987) T) ((-1162 . -987) T) ((-1141 . -987) T) ((-554 . -987) T) ((-553 . -987) T) ((-1203 . -1035) T) ((-1093 . -162) 46080) ((-1092 . -162) 46011) ((-1086 . -162) 45942) ((-1048 . -162) 45893) ((-940 . -1023) T) ((-908 . -1023) T) ((-853 . -1023) T) ((-1126 . -140) 45872) ((-745 . -743) 45856) ((-645 . -25) T) ((-645 . -21) T) ((-115 . -591) 45833) ((-647 . -825) 45815) ((-407 . -1023) T) ((-296 . -1135) 45794) ((-293 . -1135) T) ((-159 . -380) 45778) ((-1126 . -138) 45757) ((-453 . -910) 45719) ((-126 . -1023) T) ((-70 . -569) 45701) ((-105 . -741) T) ((-105 . -738) T) ((-296 . -520) 45680) ((-647 . -972) 45662) ((-293 . -520) T) ((-1203 . -23) T) ((-130 . -972) 45644) ((-460 . -986) 45542) ((-44 . -269) 45467) ((-222 . -664) 45409) ((-460 . -109) 45300) ((-1016 . -99) 45278) ((-969 . -99) T) ((-595 . -774) 45257) ((-678 . -489) 45200) ((-984 . -986) 45184) ((-576 . -21) T) ((-576 . -25) T) ((-992 . -267) 45159) ((-341 . -99) T) ((-302 . -99) T) ((-619 . -597) 45133) ((-365 . -986) 45117) ((-984 . -109) 45096) ((-762 . -391) 45080) ((-115 . -25) T) ((-87 . -569) 45062) ((-115 . -21) T) ((-564 . -290) 44857) ((-454 . -290) 44661) ((-1070 . -570) NIL) ((-365 . -109) 44640) ((-359 . -99) T) ((-197 . -569) 44622) ((-1070 . -569) 44604) ((-940 . -664) 44554) ((-1086 . -489) 44323) ((-853 . -664) 44275) ((-1048 . -489) 44245) ((-331 . -288) T) ((-1105 . -144) 44195) ((-896 . -290) 44133) ((-780 . -99) T) ((-407 . -664) 44117) ((-207 . -774) T) ((-773 . -99) T) ((-771 . -99) T) ((-457 . -144) 44067) ((-1161 . -1160) 44046) ((-1042 . -1135) T) ((-319 . -972) 44013) ((-1161 . -1155) 43983) ((-1161 . -1158) 43967) ((-1140 . -1139) 43946) ((-78 . -569) 43928) ((-844 . -569) 43910) ((-1140 . -1155) 43887) ((-1042 . -520) T) ((-860 . -793) T) ((-465 . -570) 43817) ((-465 . -569) 43799) ((-717 . -793) T) ((-359 . -265) T) ((-620 . -793) T) ((-1140 . -1137) 43783) ((-1163 . -1035) T) ((-200 . -570) 43713) ((-200 . -569) 43695) ((-992 . -561) 43670) ((-57 . -144) 43654) ((-491 . -144) 43638) ((-472 . -144) 43622) ((-339 . -1194) 43606) ((-333 . -1194) 43590) ((-325 . -1194) 43574) ((-296 . -343) 43553) ((-293 . -343) T) ((-460 . -981) 43484) ((-640 . -591) 43466) ((-1197 . -597) 43440) ((-1195 . -597) 43414) ((-1163 . -23) T) ((-635 . -467) 43398) ((-62 . -569) 43380) ((-1036 . -741) 43331) ((-1036 . -738) 43282) ((-514 . -467) 43219) ((-619 . -33) T) ((-460 . -215) 43172) ((-276 . -269) 43151) ((-222 . -162) 43130) ((-762 . -987) T) ((-43 . -597) 43088) ((-1006 . -348) 43039) ((-678 . -271) 42970) ((-494 . -489) 42903) ((-763 . -986) 42854) ((-1012 . -138) 42833) ((-339 . -348) 42812) ((-333 . -348) 42791) ((-325 . -348) 42770) ((-1012 . -140) 42749) ((-810 . -213) 42726) ((-763 . -109) 42668) ((-728 . -138) 42647) ((-728 . -140) 42626) ((-245 . -888) 42593) ((-232 . -791) 42572) ((-229 . -888) 42517) ((-231 . -791) 42496) ((-726 . -138) 42475) ((-726 . -140) 42454) ((-145 . -597) 42428) ((-433 . -140) 42407) ((-433 . -138) 42386) ((-619 . -673) T) ((-769 . -569) 42368) ((-1169 . -1023) T) ((-1162 . -1023) T) ((-1141 . -1023) T) ((-1126 . -1120) 42334) ((-1126 . -1117) 42300) ((-1093 . -271) 42279) ((-1092 . -271) 42230) ((-1086 . -271) 42181) ((-1048 . -271) 42160) ((-319 . -839) 42141) ((-940 . -162) T) ((-853 . -162) T) ((-554 . -1023) T) ((-553 . -1023) T) ((-640 . -21) T) ((-640 . -25) T) ((-453 . -1158) 42125) ((-453 . -1155) 42095) ((-398 . -267) 42023) ((-296 . -1035) 41873) ((-293 . -1035) T) ((-1126 . -34) 41839) ((-1126 . -93) 41805) ((-82 . -569) 41787) ((-89 . -99) 41765) ((-1203 . -128) T) ((-541 . -138) T) ((-541 . -140) 41747) ((-492 . -140) 41729) ((-492 . -138) T) ((-296 . -23) 41582) ((-39 . -322) 41556) ((-293 . -23) T) ((-1078 . -600) 41538) ((-761 . -597) 41388) ((-1190 . -987) T) ((-1078 . -353) 41370) ((-159 . -213) 41354) ((-551 . -467) 41336) ((-222 . -489) 41269) ((-461 . -99) T) ((-1197 . -673) T) ((-1195 . -673) T) ((-1097 . -986) 41152) ((-1097 . -109) 41021) ((-763 . -981) T) ((-490 . -99) T) ((-47 . -591) 40981) ((-485 . -99) T) ((-483 . -99) T) ((-1187 . -986) 40951) ((-969 . -37) 40935) ((-763 . -215) T) ((-763 . -225) 40914) ((-514 . -267) 40893) ((-1187 . -109) 40858) ((-1150 . -213) 40842) ((-1169 . -664) 40739) ((-992 . -570) NIL) ((-992 . -569) 40721) ((-1162 . -664) 40562) ((-1141 . -664) 40358) ((-939 . -859) T) ((-649 . -569) 40327) ((-145 . -673) T) ((-1036 . -348) 40306) ((-940 . -489) NIL) ((-232 . -391) 40275) ((-231 . -391) 40244) ((-959 . -25) T) ((-959 . -21) T) ((-554 . -664) 40217) ((-553 . -664) 40114) ((-745 . -267) 40072) ((-124 . -99) 40050) ((-779 . -972) 39948) ((-159 . -774) 39927) ((-299 . -597) 39824) ((-761 . -33) T) ((-661 . -99) T) ((-1042 . -1035) T) ((-126 . -489) NIL) ((-961 . -1131) T) ((-359 . -37) 39789) ((-334 . -25) T) ((-334 . -21) T) ((-152 . -99) T) ((-148 . -99) T) ((-335 . -1184) 39773) ((-332 . -1184) 39757) ((-324 . -1184) 39741) ((-159 . -329) 39720) ((-528 . -793) T) ((-471 . -793) T) ((-1042 . -23) T) ((-85 . -569) 39702) ((-647 . -288) T) ((-780 . -37) 39672) ((-773 . -37) 39642) ((-1163 . -128) T) ((-1070 . -269) 39621) ((-902 . -739) 39574) ((-902 . -740) 39527) ((-761 . -737) 39506) ((-114 . -288) T) ((-89 . -290) 39444) ((-623 . -33) T) ((-514 . -561) 39423) ((-47 . -25) T) ((-47 . -21) T) ((-761 . -740) 39374) ((-761 . -739) 39353) ((-647 . -957) T) ((-602 . -986) 39337) ((-902 . -673) 39236) ((-761 . -673) 39147) ((-902 . -452) 39100) ((-460 . -741) 39051) ((-460 . -738) 39002) ((-849 . -1184) 38989) ((-1097 . -981) T) ((-602 . -109) 38968) ((-1097 . -306) 38945) ((-1118 . -99) 38923) ((-1024 . -569) 38905) ((-647 . -513) T) ((-762 . -1023) T) ((-1187 . -981) T) ((-393 . -1023) T) ((-232 . -987) 38836) ((-231 . -987) 38767) ((-270 . -597) 38754) ((-551 . -267) 38729) ((-635 . -633) 38687) ((-901 . -569) 38669) ((-811 . -99) T) ((-682 . -569) 38651) ((-662 . -569) 38633) ((-1169 . -162) 38584) ((-1162 . -162) 38515) ((-1141 . -162) 38446) ((-645 . -793) T) ((-940 . -271) T) ((-432 . -569) 38428) ((-579 . -673) T) ((-58 . -1023) 38406) ((-227 . -144) 38390) ((-853 . -271) T) ((-959 . -948) T) ((-579 . -452) T) ((-659 . -1135) 38369) ((-554 . -162) 38348) ((-553 . -162) 38299) ((-1177 . -793) 38278) ((-659 . -520) 38189) ((-387 . -859) T) ((-387 . -766) 38168) ((-299 . -740) T) ((-299 . -673) T) ((-398 . -569) 38150) ((-398 . -570) 38058) ((-595 . -1069) 38042) ((-108 . -600) 38024) ((-124 . -290) 37962) ((-108 . -353) 37944) ((-163 . -288) T) ((-378 . -1131) T) ((-296 . -128) 37816) ((-293 . -128) T) ((-67 . -375) T) ((-108 . -121) T) ((-494 . -467) 37800) ((-603 . -1035) T) ((-551 . -19) 37782) ((-59 . -420) T) ((-59 . -375) T) ((-770 . -1023) T) ((-551 . -561) 37757) ((-456 . -972) 37717) ((-602 . -981) T) ((-603 . -23) T) ((-1190 . -1023) T) ((-762 . -664) 37566) ((-115 . -793) NIL) ((-1091 . -391) 37550) ((-1047 . -391) 37534) ((-797 . -391) 37518) ((-812 . -99) 37469) ((-1161 . -99) T) ((-1141 . -489) 37238) ((-1118 . -290) 37176) ((-292 . -569) 37158) ((-1140 . -99) T) ((-1025 . -1023) T) ((-1093 . -267) 37143) ((-1092 . -267) 37128) ((-270 . -673) T) ((-105 . -848) NIL) ((-635 . -569) 37060) ((-635 . -570) 37021) ((-1006 . -597) 36931) ((-558 . -569) 36913) ((-514 . -570) NIL) ((-514 . -569) 36895) ((-1086 . -267) 36743) ((-465 . -986) 36693) ((-658 . -431) T) ((-486 . -484) 36672) ((-482 . -484) 36651) ((-200 . -986) 36601) ((-339 . -597) 36553) ((-333 . -597) 36505) ((-207 . -791) T) ((-325 . -597) 36457) ((-559 . -99) 36407) ((-460 . -348) 36386) ((-105 . -597) 36336) ((-465 . -109) 36270) ((-222 . -467) 36254) ((-323 . -140) 36236) ((-323 . -138) T) ((-159 . -350) 36207) ((-882 . -1175) 36191) ((-200 . -109) 36125) ((-811 . -290) 36090) ((-882 . -1023) 36040) ((-745 . -570) 36001) ((-745 . -569) 35983) ((-665 . -99) T) ((-311 . -1023) T) ((-1042 . -128) T) ((-661 . -37) 35953) ((-296 . -469) 35932) ((-476 . -1131) T) ((-1161 . -265) 35898) ((-1140 . -265) 35864) ((-307 . -144) 35848) ((-992 . -269) 35823) ((-1190 . -664) 35793) ((-1079 . -33) T) ((-1199 . -972) 35770) ((-447 . -569) 35752) ((-462 . -33) T) ((-361 . -972) 35736) ((-1091 . -987) T) ((-1047 . -987) T) ((-797 . -987) T) ((-991 . -791) T) ((-762 . -162) 35647) ((-494 . -267) 35624) ((-126 . -467) 35606) ((-115 . -929) 35583) ((-1169 . -271) 35562) ((-1113 . -344) 35536) ((-1013 . -247) 35520) ((-453 . -99) T) ((-345 . -1023) T) ((-232 . -1023) T) ((-231 . -1023) T) ((-1162 . -271) 35471) ((-107 . -1023) T) ((-1141 . -271) 35422) ((-811 . -1071) 35400) ((-1093 . -938) 35366) ((-564 . -344) 35306) ((-1092 . -938) 35272) ((-564 . -211) 35219) ((-551 . -569) 35201) ((-551 . -570) NIL) ((-640 . -793) T) ((-454 . -211) 35151) ((-465 . -981) T) ((-1086 . -938) 35117) ((-86 . -419) T) ((-86 . -375) T) ((-200 . -981) T) ((-1048 . -938) 35083) ((-1006 . -673) T) ((-659 . -1035) T) ((-554 . -271) 35062) ((-553 . -271) 35041) ((-465 . -225) T) ((-465 . -215) T) ((-200 . -225) T) ((-200 . -215) T) ((-1085 . -569) 35023) ((-811 . -37) 34975) ((-339 . -673) T) ((-333 . -673) T) ((-325 . -673) T) ((-105 . -740) T) ((-105 . -737) T) ((-494 . -1165) 34959) ((-105 . -673) T) ((-659 . -23) T) ((-1203 . -25) T) ((-453 . -265) 34925) ((-1203 . -21) T) ((-1140 . -290) 34864) ((-1095 . -99) T) ((-39 . -138) 34836) ((-39 . -140) 34808) ((-494 . -561) 34785) ((-1036 . -597) 34635) ((-559 . -290) 34573) ((-44 . -600) 34523) ((-44 . -615) 34473) ((-44 . -353) 34423) ((-1078 . -33) T) ((-810 . -791) NIL) ((-603 . -128) T) ((-463 . -569) 34405) ((-222 . -267) 34382) ((-596 . -33) T) ((-584 . -33) T) ((-1012 . -431) 34333) ((-762 . -489) 34207) ((-728 . -431) 34138) ((-726 . -431) 34089) ((-433 . -431) 34040) ((-891 . -391) 34024) ((-678 . -569) 34006) ((-232 . -664) 33948) ((-231 . -664) 33890) ((-678 . -570) 33751) ((-459 . -391) 33735) ((-319 . -283) T) ((-331 . -859) T) ((-936 . -99) 33713) ((-959 . -793) T) ((-58 . -489) 33646) ((-1140 . -1071) 33598) ((-940 . -267) NIL) ((-207 . -987) T) ((-359 . -774) T) ((-1036 . -33) T) ((-1144 . -1017) 33582) ((-541 . -431) T) ((-492 . -431) T) ((-1144 . -1023) 33560) ((-1144 . -1019) 33517) ((-222 . -561) 33494) ((-1093 . -569) 33476) ((-1092 . -569) 33458) ((-1086 . -569) 33440) ((-1086 . -570) NIL) ((-1048 . -569) 33422) ((-126 . -267) 33397) ((-811 . -380) 33381) ((-504 . -99) T) ((-1161 . -37) 33222) ((-1140 . -37) 33036) ((-809 . -140) T) ((-541 . -382) T) ((-47 . -793) T) ((-492 . -382) T) ((-1163 . -21) T) ((-1163 . -25) T) ((-1036 . -737) 33015) ((-1036 . -740) 32966) ((-1036 . -739) 32945) ((-930 . -1023) T) ((-962 . -33) T) ((-802 . -1023) T) ((-1173 . -99) T) ((-1036 . -673) 32856) ((-613 . -99) T) ((-514 . -269) 32835) ((-1105 . -99) T) ((-455 . -33) T) ((-442 . -33) T) ((-335 . -99) T) ((-332 . -99) T) ((-324 . -99) T) ((-245 . -99) T) ((-229 . -99) T) ((-456 . -288) T) ((-991 . -987) T) ((-891 . -987) T) ((-296 . -591) 32743) ((-293 . -591) 32704) ((-459 . -987) T) ((-457 . -99) T) ((-416 . -569) 32686) ((-1091 . -1023) T) ((-1047 . -1023) T) ((-797 . -1023) T) ((-1061 . -99) T) ((-762 . -271) 32617) ((-901 . -986) 32500) ((-456 . -957) T) ((-126 . -19) 32482) ((-682 . -986) 32452) ((-126 . -561) 32427) ((-432 . -986) 32397) ((-1067 . -1043) 32381) ((-1025 . -489) 32314) ((-901 . -109) 32183) ((-849 . -99) T) ((-682 . -109) 32148) ((-57 . -99) 32098) ((-494 . -570) 32059) ((-494 . -569) 31971) ((-493 . -99) 31949) ((-491 . -99) 31899) ((-473 . -99) 31877) ((-472 . -99) 31827) ((-432 . -109) 31790) ((-232 . -162) 31769) ((-231 . -162) 31748) ((-398 . -986) 31722) ((-1126 . -910) 31684) ((-935 . -1035) T) ((-882 . -489) 31617) ((-465 . -741) T) ((-453 . -37) 31458) ((-398 . -109) 31425) ((-465 . -738) T) ((-936 . -290) 31363) ((-200 . -741) T) ((-200 . -738) T) ((-935 . -23) T) ((-659 . -128) T) ((-1140 . -380) 31333) ((-296 . -25) 31186) ((-159 . -391) 31170) ((-296 . -21) 31042) ((-293 . -25) T) ((-293 . -21) T) ((-804 . -348) T) ((-108 . -33) T) ((-460 . -597) 30892) ((-810 . -987) T) ((-551 . -269) 30867) ((-540 . -140) T) ((-528 . -140) T) ((-471 . -140) T) ((-1091 . -664) 30696) ((-1047 . -664) 30545) ((-1042 . -591) 30527) ((-797 . -664) 30497) ((-619 . -1131) T) ((-1 . -99) T) ((-222 . -569) 30229) ((-1150 . -391) 30213) ((-1105 . -290) 30017) ((-901 . -981) T) ((-682 . -981) T) ((-662 . -981) T) ((-595 . -1023) 29967) ((-984 . -597) 29951) ((-798 . -391) 29935) ((-486 . -99) T) ((-482 . -99) T) ((-229 . -290) 29922) ((-245 . -290) 29909) ((-901 . -306) 29888) ((-365 . -597) 29872) ((-457 . -290) 29676) ((-232 . -489) 29609) ((-619 . -972) 29507) ((-231 . -489) 29440) ((-1061 . -290) 29366) ((-765 . -1023) T) ((-745 . -986) 29350) ((-1169 . -267) 29335) ((-1162 . -267) 29320) ((-1141 . -267) 29168) ((-366 . -1023) T) ((-304 . -1023) T) ((-398 . -981) T) ((-159 . -987) T) ((-57 . -290) 29106) ((-745 . -109) 29085) ((-553 . -267) 29070) ((-493 . -290) 29008) ((-491 . -290) 28946) ((-473 . -290) 28884) ((-472 . -290) 28822) ((-398 . -215) 28801) ((-460 . -33) T) ((-940 . -570) 28731) ((-207 . -1023) T) ((-940 . -569) 28713) ((-908 . -569) 28695) ((-908 . -570) 28670) ((-853 . -569) 28652) ((-645 . -140) T) ((-647 . -859) T) ((-647 . -766) T) ((-407 . -569) 28634) ((-1042 . -21) T) ((-126 . -570) NIL) ((-126 . -569) 28616) ((-1042 . -25) T) ((-619 . -357) 28600) ((-114 . -859) T) ((-811 . -213) 28584) ((-76 . -1131) T) ((-124 . -123) 28568) ((-984 . -33) T) ((-1197 . -972) 28542) ((-1195 . -972) 28499) ((-1150 . -987) T) ((-798 . -987) T) ((-460 . -737) 28478) ((-335 . -1071) 28457) ((-332 . -1071) 28436) ((-324 . -1071) 28415) ((-460 . -740) 28366) ((-460 . -739) 28345) ((-209 . -33) T) ((-460 . -673) 28256) ((-58 . -467) 28240) ((-535 . -987) T) ((-1091 . -162) 28131) ((-1047 . -162) 28042) ((-991 . -1023) T) ((-1012 . -888) 27987) ((-891 . -1023) T) ((-763 . -597) 27938) ((-728 . -888) 27907) ((-660 . -1023) T) ((-726 . -888) 27874) ((-491 . -263) 27858) ((-619 . -839) 27817) ((-459 . -1023) T) ((-433 . -888) 27784) ((-77 . -1131) T) ((-335 . -37) 27749) ((-332 . -37) 27714) ((-324 . -37) 27679) ((-245 . -37) 27528) ((-229 . -37) 27377) ((-849 . -1071) T) ((-576 . -140) 27356) ((-576 . -138) 27335) ((-115 . -140) T) ((-115 . -138) NIL) ((-394 . -673) T) ((-745 . -981) T) ((-323 . -431) T) ((-1169 . -938) 27301) ((-1162 . -938) 27267) ((-1141 . -938) 27233) ((-849 . -37) 27198) ((-207 . -664) 27163) ((-299 . -46) 27133) ((-39 . -389) 27105) ((-133 . -569) 27087) ((-935 . -128) T) ((-761 . -1131) T) ((-163 . -859) T) ((-323 . -382) T) ((-494 . -269) 27064) ((-44 . -33) T) ((-761 . -972) 26893) ((-611 . -99) T) ((-603 . -21) T) ((-603 . -25) T) ((-1025 . -467) 26877) ((-1140 . -213) 26847) ((-623 . -1131) T) ((-227 . -99) 26797) ((-810 . -1023) T) ((-1097 . -597) 26722) ((-991 . -664) 26709) ((-678 . -986) 26552) ((-1091 . -489) 26499) ((-891 . -664) 26348) ((-1047 . -489) 26300) ((-459 . -664) 26149) ((-65 . -569) 26131) ((-678 . -109) 25960) ((-882 . -467) 25944) ((-1187 . -597) 25904) ((-763 . -673) T) ((-1093 . -986) 25787) ((-1092 . -986) 25622) ((-1086 . -986) 25412) ((-1048 . -986) 25295) ((-939 . -1135) T) ((-1018 . -99) 25273) ((-761 . -357) 25243) ((-939 . -520) T) ((-1093 . -109) 25112) ((-1092 . -109) 24933) ((-1086 . -109) 24702) ((-1048 . -109) 24571) ((-1028 . -1026) 24535) ((-359 . -791) T) ((-1169 . -569) 24517) ((-1162 . -569) 24499) ((-1141 . -569) 24481) ((-1141 . -570) NIL) ((-222 . -269) 24458) ((-39 . -431) T) ((-207 . -162) T) ((-159 . -1023) T) ((-640 . -140) T) ((-640 . -138) NIL) ((-554 . -569) 24440) ((-553 . -569) 24422) ((-837 . -1023) T) ((-784 . -1023) T) ((-754 . -1023) T) ((-715 . -1023) T) ((-607 . -795) 24406) ((-624 . -1023) T) ((-761 . -839) 24339) ((-39 . -382) NIL) ((-1042 . -610) T) ((-810 . -664) 24284) ((-232 . -467) 24268) ((-231 . -467) 24252) ((-659 . -591) 24200) ((-602 . -597) 24174) ((-276 . -33) T) ((-678 . -981) T) ((-541 . -1184) 24161) ((-492 . -1184) 24138) ((-1150 . -1023) T) ((-1091 . -271) 24049) ((-1047 . -271) 23980) ((-991 . -162) T) ((-798 . -1023) T) ((-891 . -162) 23891) ((-728 . -1153) 23875) ((-595 . -489) 23808) ((-75 . -569) 23790) ((-678 . -306) 23755) ((-1097 . -673) T) ((-535 . -1023) T) ((-459 . -162) 23666) ((-227 . -290) 23604) ((-126 . -269) 23579) ((-1062 . -1035) T) ((-68 . -569) 23561) ((-1187 . -673) T) ((-1093 . -981) T) ((-1092 . -981) T) ((-307 . -99) 23511) ((-1086 . -981) T) ((-1062 . -23) T) ((-1048 . -981) T) ((-89 . -1043) 23495) ((-805 . -1035) T) ((-1093 . -215) 23454) ((-1092 . -225) 23433) ((-1092 . -215) 23385) ((-1086 . -215) 23272) ((-1086 . -225) 23251) ((-299 . -839) 23157) ((-805 . -23) T) ((-159 . -664) 22985) ((-387 . -1135) T) ((-1024 . -348) T) ((-959 . -140) T) ((-939 . -343) T) ((-809 . -431) T) ((-882 . -267) 22962) ((-296 . -793) T) ((-293 . -793) NIL) ((-813 . -99) T) ((-659 . -25) T) ((-387 . -520) T) ((-659 . -21) T) ((-334 . -140) 22944) ((-334 . -138) T) ((-1067 . -1023) 22922) ((-432 . -667) T) ((-73 . -569) 22904) ((-112 . -793) T) ((-227 . -263) 22888) ((-222 . -986) 22786) ((-79 . -569) 22768) ((-682 . -348) 22721) ((-1095 . -774) T) ((-684 . -217) 22705) ((-1079 . -1131) T) ((-134 . -217) 22687) ((-222 . -109) 22578) ((-1150 . -664) 22407) ((-47 . -140) T) ((-810 . -162) T) ((-798 . -664) 22377) ((-462 . -1131) T) ((-891 . -489) 22324) ((-602 . -673) T) ((-535 . -664) 22311) ((-969 . -987) T) ((-459 . -489) 22254) ((-882 . -19) 22238) ((-882 . -561) 22215) ((-762 . -570) NIL) ((-762 . -569) 22197) ((-940 . -986) 22147) ((-393 . -569) 22129) ((-232 . -267) 22106) ((-231 . -267) 22083) ((-465 . -848) NIL) ((-296 . -29) 22053) ((-105 . -1131) T) ((-939 . -1035) T) ((-200 . -848) NIL) ((-853 . -986) 22005) ((-1006 . -972) 21903) ((-940 . -109) 21837) ((-245 . -213) 21821) ((-684 . -641) 21805) ((-407 . -986) 21789) ((-359 . -987) T) ((-939 . -23) T) ((-853 . -109) 21727) ((-640 . -1120) NIL) ((-465 . -597) 21677) ((-105 . -823) 21659) ((-105 . -825) 21641) ((-640 . -1117) NIL) ((-200 . -597) 21591) ((-339 . -972) 21575) ((-333 . -972) 21559) ((-307 . -290) 21497) ((-325 . -972) 21481) ((-207 . -271) T) ((-407 . -109) 21460) ((-58 . -569) 21392) ((-159 . -162) T) ((-1042 . -793) T) ((-105 . -972) 21352) ((-831 . -1023) T) ((-780 . -987) T) ((-773 . -987) T) ((-640 . -34) NIL) ((-640 . -93) NIL) ((-293 . -929) 21313) ((-171 . -99) T) ((-540 . -431) T) ((-528 . -431) T) ((-471 . -431) T) ((-387 . -343) T) ((-222 . -981) 21244) ((-1070 . -33) T) ((-456 . -859) T) ((-935 . -591) 21192) ((-232 . -561) 21169) ((-231 . -561) 21146) ((-1006 . -357) 21130) ((-810 . -489) 21038) ((-222 . -215) 20991) ((-1078 . -1131) T) ((-770 . -569) 20973) ((-1198 . -1035) T) ((-1190 . -569) 20955) ((-1150 . -162) 20846) ((-105 . -357) 20828) ((-105 . -318) 20810) ((-991 . -271) T) ((-891 . -271) 20741) ((-745 . -348) 20720) ((-596 . -1131) T) ((-584 . -1131) T) ((-459 . -271) 20651) ((-535 . -162) T) ((-307 . -263) 20635) ((-1198 . -23) T) ((-1126 . -99) T) ((-1113 . -1023) T) ((-1013 . -1023) T) ((-1002 . -1023) T) ((-81 . -569) 20617) ((-658 . -99) T) ((-335 . -329) 20596) ((-564 . -1023) T) ((-332 . -329) 20575) ((-324 . -329) 20554) ((-454 . -1023) T) ((-1105 . -211) 20504) ((-245 . -234) 20466) ((-1062 . -128) T) ((-564 . -566) 20442) ((-1006 . -839) 20375) ((-940 . -981) T) ((-853 . -981) T) ((-454 . -566) 20354) ((-1086 . -738) NIL) ((-1086 . -741) NIL) ((-1025 . -570) 20315) ((-457 . -211) 20265) ((-1025 . -569) 20247) ((-940 . -225) T) ((-940 . -215) T) ((-407 . -981) T) ((-896 . -1023) 20197) ((-853 . -225) T) ((-805 . -128) T) ((-645 . -431) T) ((-786 . -1035) 20176) ((-105 . -839) NIL) ((-1126 . -265) 20142) ((-811 . -791) 20121) ((-1036 . -1131) T) ((-844 . -673) T) ((-159 . -489) 20033) ((-935 . -25) T) ((-844 . -452) T) ((-387 . -1035) T) ((-465 . -740) T) ((-465 . -737) T) ((-849 . -329) T) ((-465 . -673) T) ((-200 . -740) T) ((-200 . -737) T) ((-935 . -21) T) ((-200 . -673) T) ((-786 . -23) 19985) ((-299 . -288) 19964) ((-970 . -217) 19910) ((-387 . -23) T) ((-882 . -570) 19871) ((-882 . -569) 19783) ((-595 . -467) 19767) ((-44 . -946) 19717) ((-311 . -569) 19699) ((-1036 . -972) 19528) ((-551 . -600) 19510) ((-551 . -353) 19492) ((-323 . -1184) 19469) ((-962 . -1131) T) ((-810 . -271) T) ((-1150 . -489) 19416) ((-455 . -1131) T) ((-442 . -1131) T) ((-545 . -99) T) ((-1091 . -267) 19343) ((-576 . -431) 19322) ((-936 . -931) 19306) ((-1190 . -362) 19278) ((-115 . -431) T) ((-1112 . -99) T) ((-1016 . -1023) 19256) ((-969 . -1023) T) ((-832 . -793) T) ((-331 . -1135) T) ((-1169 . -986) 19139) ((-1036 . -357) 19109) ((-1162 . -986) 18944) ((-1141 . -986) 18734) ((-1169 . -109) 18603) ((-1162 . -109) 18424) ((-1141 . -109) 18193) ((-1126 . -290) 18180) ((-331 . -520) T) ((-345 . -569) 18162) ((-270 . -288) T) ((-554 . -986) 18135) ((-553 . -986) 18018) ((-341 . -1023) T) ((-302 . -1023) T) ((-232 . -569) 17979) ((-231 . -569) 17940) ((-939 . -128) T) ((-107 . -569) 17922) ((-587 . -23) T) ((-640 . -389) 17889) ((-563 . -23) T) ((-607 . -99) T) ((-554 . -109) 17860) ((-553 . -109) 17729) ((-359 . -1023) T) ((-316 . -99) T) ((-159 . -271) 17640) ((-1140 . -791) 17593) ((-661 . -987) T) ((-1067 . -489) 17526) ((-1036 . -839) 17459) ((-780 . -1023) T) ((-773 . -1023) T) ((-771 . -1023) T) ((-94 . -99) T) ((-137 . -793) T) ((-568 . -823) 17443) ((-108 . -1131) T) ((-1012 . -99) T) ((-992 . -33) T) ((-728 . -99) T) ((-726 . -99) T) ((-440 . -99) T) ((-433 . -99) T) ((-222 . -741) 17394) ((-222 . -738) 17345) ((-598 . -99) T) ((-1150 . -271) 17256) ((-613 . -586) 17240) ((-595 . -267) 17217) ((-969 . -664) 17201) ((-535 . -271) T) ((-901 . -597) 17126) ((-1198 . -128) T) ((-682 . -597) 17086) ((-662 . -597) 17073) ((-256 . -99) T) ((-432 . -597) 17003) ((-49 . -99) T) ((-541 . -99) T) ((-492 . -99) T) ((-1169 . -981) T) ((-1162 . -981) T) ((-1141 . -981) T) ((-1169 . -215) 16962) ((-302 . -664) 16944) ((-1162 . -225) 16923) ((-1162 . -215) 16875) ((-1141 . -215) 16762) ((-1141 . -225) 16741) ((-1126 . -37) 16638) ((-940 . -741) T) ((-554 . -981) T) ((-553 . -981) T) ((-940 . -738) T) ((-908 . -741) T) ((-908 . -738) T) ((-811 . -987) T) ((-809 . -808) 16622) ((-106 . -569) 16604) ((-640 . -431) T) ((-359 . -664) 16569) ((-398 . -597) 16543) ((-659 . -793) 16522) ((-658 . -37) 16487) ((-553 . -215) 16446) ((-39 . -671) 16418) ((-331 . -309) 16395) ((-331 . -343) T) ((-1006 . -288) 16346) ((-275 . -1035) 16228) ((-1029 . -1131) T) ((-161 . -99) T) ((-1144 . -569) 16195) ((-786 . -128) 16147) ((-595 . -1165) 16131) ((-780 . -664) 16101) ((-773 . -664) 16071) ((-460 . -1131) T) ((-339 . -288) T) ((-333 . -288) T) ((-325 . -288) T) ((-595 . -561) 16048) ((-387 . -128) T) ((-494 . -615) 16032) ((-105 . -288) T) ((-275 . -23) 15916) ((-494 . -600) 15900) ((-640 . -382) NIL) ((-494 . -353) 15884) ((-272 . -569) 15866) ((-89 . -1023) 15844) ((-105 . -957) T) ((-528 . -136) T) ((-1177 . -144) 15828) ((-460 . -972) 15657) ((-1163 . -138) 15618) ((-1163 . -140) 15579) ((-984 . -1131) T) ((-930 . -569) 15561) ((-802 . -569) 15543) ((-762 . -986) 15386) ((-1012 . -290) 15373) ((-209 . -1131) T) ((-728 . -290) 15360) ((-726 . -290) 15347) ((-762 . -109) 15176) ((-1091 . -570) NIL) ((-433 . -290) 15163) ((-461 . -1023) T) ((-1091 . -569) 15145) ((-1047 . -569) 15127) ((-1047 . -570) 14875) ((-969 . -162) T) ((-797 . -569) 14857) ((-882 . -269) 14834) ((-564 . -489) 14617) ((-764 . -972) 14601) ((-454 . -489) 14393) ((-901 . -673) T) ((-682 . -673) T) ((-662 . -673) T) ((-331 . -1035) T) ((-1098 . -569) 14375) ((-205 . -99) T) ((-460 . -357) 14345) ((-490 . -1023) T) ((-485 . -1023) T) ((-483 . -1023) T) ((-745 . -597) 14319) ((-959 . -431) T) ((-896 . -489) 14252) ((-331 . -23) T) ((-587 . -128) T) ((-563 . -128) T) ((-334 . -431) T) ((-222 . -348) 14231) ((-359 . -162) T) ((-1161 . -987) T) ((-1140 . -987) T) ((-207 . -938) T) ((-645 . -367) T) ((-398 . -673) T) ((-647 . -1135) T) ((-1062 . -591) 14179) ((-540 . -808) 14163) ((-1079 . -1108) 14139) ((-647 . -520) T) ((-124 . -1023) 14117) ((-1190 . -986) 14101) ((-661 . -1023) T) ((-460 . -839) 14034) ((-607 . -37) 14004) ((-334 . -382) T) ((-296 . -140) 13983) ((-296 . -138) 13962) ((-114 . -520) T) ((-293 . -140) 13918) ((-293 . -138) 13874) ((-47 . -431) T) ((-152 . -1023) T) ((-148 . -1023) T) ((-1079 . -104) 13821) ((-728 . -1071) 13799) ((-635 . -33) T) ((-1190 . -109) 13778) ((-514 . -33) T) ((-462 . -104) 13762) ((-232 . -269) 13739) ((-231 . -269) 13716) ((-810 . -267) 13667) ((-44 . -1131) T) ((-762 . -981) T) ((-1097 . -46) 13644) ((-762 . -306) 13606) ((-1012 . -37) 13455) ((-762 . -215) 13434) ((-728 . -37) 13263) ((-726 . -37) 13112) ((-126 . -600) 13094) ((-433 . -37) 12943) ((-126 . -353) 12925) ((-1040 . -99) T) ((-595 . -570) 12886) ((-595 . -569) 12798) ((-541 . -1071) T) ((-492 . -1071) T) ((-1067 . -467) 12782) ((-1118 . -1023) 12760) ((-1062 . -25) T) ((-1062 . -21) T) ((-453 . -987) T) ((-1141 . -738) NIL) ((-1141 . -741) NIL) ((-935 . -793) 12739) ((-765 . -569) 12721) ((-805 . -21) T) ((-805 . -25) T) ((-745 . -673) T) ((-163 . -1135) T) ((-541 . -37) 12686) ((-492 . -37) 12651) ((-366 . -569) 12633) ((-304 . -569) 12615) ((-159 . -267) 12573) ((-61 . -1131) T) ((-110 . -99) T) ((-811 . -1023) T) ((-163 . -520) T) ((-661 . -664) 12543) ((-275 . -128) 12427) ((-207 . -569) 12409) ((-207 . -570) 12339) ((-939 . -591) 12278) ((-1190 . -981) T) ((-1042 . -140) T) ((-584 . -1108) 12253) ((-678 . -848) 12232) ((-551 . -33) T) ((-596 . -104) 12216) ((-584 . -104) 12162) ((-1150 . -267) 12089) ((-678 . -597) 12014) ((-276 . -1131) T) ((-1097 . -972) 11912) ((-1086 . -848) NIL) ((-991 . -570) 11827) ((-991 . -569) 11809) ((-323 . -99) T) ((-231 . -986) 11707) ((-232 . -986) 11605) ((-374 . -99) T) ((-891 . -569) 11587) ((-891 . -570) 11448) ((-660 . -569) 11430) ((-1188 . -1125) 11399) ((-459 . -569) 11381) ((-459 . -570) 11242) ((-229 . -391) 11226) ((-245 . -391) 11210) ((-231 . -109) 11101) ((-232 . -109) 10992) ((-1093 . -597) 10917) ((-1092 . -597) 10814) ((-1086 . -597) 10666) ((-1048 . -597) 10591) ((-331 . -128) T) ((-80 . -420) T) ((-80 . -375) T) ((-939 . -25) T) ((-939 . -21) T) ((-812 . -1023) 10542) ((-811 . -664) 10494) ((-359 . -271) T) ((-159 . -938) 10446) ((-640 . -367) T) ((-935 . -933) 10430) ((-647 . -1035) T) ((-640 . -156) 10412) ((-1161 . -1023) T) ((-1140 . -1023) T) ((-296 . -1117) 10391) ((-296 . -1120) 10370) ((-1084 . -99) T) ((-296 . -897) 10349) ((-130 . -1035) T) ((-114 . -1035) T) ((-559 . -1175) 10333) ((-647 . -23) T) ((-559 . -1023) 10283) ((-89 . -489) 10216) ((-163 . -343) T) ((-296 . -93) 10195) ((-296 . -34) 10174) ((-564 . -467) 10108) ((-130 . -23) T) ((-114 . -23) T) ((-665 . -1023) T) ((-454 . -467) 10045) ((-387 . -591) 9993) ((-602 . -972) 9891) ((-896 . -467) 9875) ((-335 . -987) T) ((-332 . -987) T) ((-324 . -987) T) ((-245 . -987) T) ((-229 . -987) T) ((-810 . -570) NIL) ((-810 . -569) 9857) ((-1198 . -21) T) ((-535 . -938) T) ((-678 . -673) T) ((-1198 . -25) T) ((-232 . -981) 9788) ((-231 . -981) 9719) ((-70 . -1131) T) ((-232 . -215) 9672) ((-231 . -215) 9625) ((-39 . -99) T) ((-849 . -987) T) ((-1100 . -99) T) ((-1093 . -673) T) ((-1092 . -673) T) ((-1086 . -673) T) ((-1086 . -737) NIL) ((-1086 . -740) NIL) ((-860 . -99) T) ((-1048 . -673) T) ((-717 . -99) T) ((-620 . -99) T) ((-453 . -1023) T) ((-319 . -1035) T) ((-163 . -1035) T) ((-299 . -859) 9604) ((-1161 . -664) 9445) ((-811 . -162) T) ((-1140 . -664) 9259) ((-786 . -21) 9211) ((-786 . -25) 9163) ((-227 . -1069) 9147) ((-124 . -489) 9080) ((-387 . -25) T) ((-387 . -21) T) ((-319 . -23) T) ((-159 . -569) 9062) ((-159 . -570) 8830) ((-163 . -23) T) ((-595 . -269) 8807) ((-494 . -33) T) ((-837 . -569) 8789) ((-87 . -1131) T) ((-784 . -569) 8771) ((-754 . -569) 8753) ((-715 . -569) 8735) ((-624 . -569) 8717) ((-222 . -597) 8567) ((-1095 . -1023) T) ((-1091 . -986) 8390) ((-1070 . -1131) T) ((-1047 . -986) 8233) ((-797 . -986) 8217) ((-1091 . -109) 8026) ((-1047 . -109) 7855) ((-797 . -109) 7834) ((-1150 . -570) NIL) ((-1150 . -569) 7816) ((-323 . -1071) T) ((-798 . -569) 7798) ((-1002 . -267) 7777) ((-78 . -1131) T) ((-940 . -848) NIL) ((-564 . -267) 7753) ((-1118 . -489) 7686) ((-465 . -1131) T) ((-535 . -569) 7668) ((-454 . -267) 7647) ((-200 . -1131) T) ((-1012 . -213) 7631) ((-270 . -859) T) ((-763 . -288) 7610) ((-809 . -99) T) ((-728 . -213) 7594) ((-940 . -597) 7544) ((-896 . -267) 7521) ((-853 . -597) 7473) ((-587 . -21) T) ((-587 . -25) T) ((-563 . -21) T) ((-323 . -37) 7438) ((-640 . -671) 7405) ((-465 . -823) 7387) ((-465 . -825) 7369) ((-453 . -664) 7210) ((-200 . -823) 7192) ((-62 . -1131) T) ((-200 . -825) 7174) ((-563 . -25) T) ((-407 . -597) 7148) ((-465 . -972) 7108) ((-811 . -489) 7020) ((-200 . -972) 6980) ((-222 . -33) T) ((-936 . -1023) 6958) ((-1161 . -162) 6889) ((-1140 . -162) 6820) ((-659 . -138) 6799) ((-659 . -140) 6778) ((-647 . -128) T) ((-132 . -444) 6755) ((-607 . -605) 6739) ((-1067 . -569) 6671) ((-114 . -128) T) ((-456 . -1135) T) ((-564 . -561) 6647) ((-454 . -561) 6626) ((-316 . -315) 6595) ((-504 . -1023) T) ((-456 . -520) T) ((-1091 . -981) T) ((-1047 . -981) T) ((-797 . -981) T) ((-222 . -737) 6574) ((-222 . -740) 6525) ((-222 . -739) 6504) ((-1091 . -306) 6481) ((-222 . -673) 6392) ((-896 . -19) 6376) ((-465 . -357) 6358) ((-465 . -318) 6340) ((-1047 . -306) 6312) ((-334 . -1184) 6289) ((-200 . -357) 6271) ((-200 . -318) 6253) ((-896 . -561) 6230) ((-1091 . -215) T) ((-613 . -1023) T) ((-1173 . -1023) T) ((-1105 . -1023) T) ((-1012 . -234) 6167) ((-335 . -1023) T) ((-332 . -1023) T) ((-324 . -1023) T) ((-245 . -1023) T) ((-229 . -1023) T) ((-82 . -1131) T) ((-125 . -99) 6145) ((-119 . -99) 6123) ((-126 . -33) T) ((-1105 . -566) 6102) ((-457 . -1023) T) ((-1061 . -1023) T) ((-457 . -566) 6081) ((-232 . -741) 6032) ((-232 . -738) 5983) ((-231 . -741) 5934) ((-39 . -1071) NIL) ((-231 . -738) 5885) ((-1006 . -859) 5836) ((-940 . -740) T) ((-940 . -737) T) ((-940 . -673) T) ((-908 . -740) T) ((-853 . -673) T) ((-89 . -467) 5820) ((-465 . -839) NIL) ((-849 . -1023) T) ((-207 . -986) 5785) ((-811 . -271) T) ((-200 . -839) NIL) ((-779 . -1035) 5764) ((-57 . -1023) 5714) ((-493 . -1023) 5692) ((-491 . -1023) 5642) ((-473 . -1023) 5620) ((-472 . -1023) 5570) ((-540 . -99) T) ((-528 . -99) T) ((-471 . -99) T) ((-453 . -162) 5501) ((-339 . -859) T) ((-333 . -859) T) ((-325 . -859) T) ((-207 . -109) 5457) ((-779 . -23) 5409) ((-407 . -673) T) ((-105 . -859) T) ((-39 . -37) 5354) ((-105 . -766) T) ((-541 . -329) T) ((-492 . -329) T) ((-1140 . -489) 5214) ((-296 . -431) 5193) ((-293 . -431) T) ((-780 . -267) 5172) ((-319 . -128) T) ((-163 . -128) T) ((-275 . -25) 5037) ((-275 . -21) 4921) ((-44 . -1108) 4900) ((-64 . -569) 4882) ((-831 . -569) 4864) ((-559 . -489) 4797) ((-44 . -104) 4747) ((-1025 . -405) 4731) ((-1025 . -348) 4710) ((-992 . -1131) T) ((-991 . -986) 4697) ((-891 . -986) 4540) ((-459 . -986) 4383) ((-613 . -664) 4367) ((-991 . -109) 4352) ((-891 . -109) 4181) ((-456 . -343) T) ((-335 . -664) 4133) ((-332 . -664) 4085) ((-324 . -664) 4037) ((-245 . -664) 3886) ((-229 . -664) 3735) ((-882 . -600) 3719) ((-459 . -109) 3548) ((-1178 . -99) T) ((-882 . -353) 3532) ((-230 . -99) T) ((-1141 . -848) NIL) ((-72 . -569) 3514) ((-901 . -46) 3493) ((-574 . -1035) T) ((-1 . -1023) T) ((-657 . -99) T) ((-645 . -99) T) ((-1177 . -99) 3443) ((-1169 . -597) 3368) ((-1162 . -597) 3265) ((-1113 . -569) 3247) ((-124 . -467) 3231) ((-461 . -91) T) ((-1013 . -569) 3213) ((-370 . -23) T) ((-1002 . -569) 3195) ((-85 . -1131) T) ((-1141 . -597) 3047) ((-849 . -664) 3012) ((-574 . -23) T) ((-564 . -569) 2994) ((-564 . -570) NIL) ((-454 . -570) NIL) ((-454 . -569) 2976) ((-486 . -1023) T) ((-482 . -1023) T) ((-331 . -25) T) ((-331 . -21) T) ((-125 . -290) 2914) ((-119 . -290) 2852) ((-554 . -597) 2839) ((-207 . -981) T) ((-553 . -597) 2764) ((-359 . -938) T) ((-207 . -225) T) ((-207 . -215) T) ((-896 . -570) 2725) ((-896 . -569) 2637) ((-809 . -37) 2624) ((-1161 . -271) 2575) ((-1140 . -271) 2526) ((-1042 . -431) T) ((-478 . -793) T) ((-296 . -1059) 2505) ((-935 . -140) 2484) ((-935 . -138) 2463) ((-471 . -290) 2450) ((-276 . -1108) 2429) ((-456 . -1035) T) ((-810 . -986) 2374) ((-576 . -99) T) ((-1118 . -467) 2358) ((-232 . -348) 2337) ((-231 . -348) 2316) ((-276 . -104) 2266) ((-991 . -981) T) ((-115 . -99) T) ((-891 . -981) T) ((-810 . -109) 2195) ((-456 . -23) T) ((-459 . -981) T) ((-991 . -215) T) ((-891 . -306) 2164) ((-459 . -306) 2121) ((-335 . -162) T) ((-332 . -162) T) ((-324 . -162) T) ((-245 . -162) 2032) ((-229 . -162) 1943) ((-901 . -972) 1841) ((-682 . -972) 1812) ((-1028 . -99) T) ((-1016 . -569) 1779) ((-969 . -569) 1761) ((-1169 . -673) T) ((-1162 . -673) T) ((-1141 . -737) NIL) ((-159 . -986) 1671) ((-1141 . -740) NIL) ((-849 . -162) T) ((-1141 . -673) T) ((-1188 . -144) 1655) ((-939 . -322) 1629) ((-936 . -489) 1562) ((-786 . -793) 1541) ((-528 . -1071) T) ((-453 . -271) 1492) ((-554 . -673) T) ((-341 . -569) 1474) ((-302 . -569) 1456) ((-398 . -972) 1354) ((-553 . -673) T) ((-387 . -793) 1305) ((-159 . -109) 1201) ((-779 . -128) 1153) ((-684 . -144) 1137) ((-1177 . -290) 1075) ((-465 . -288) T) ((-359 . -569) 1042) ((-494 . -946) 1026) ((-359 . -570) 940) ((-200 . -288) T) ((-134 . -144) 922) ((-661 . -267) 901) ((-465 . -957) T) ((-540 . -37) 888) ((-528 . -37) 875) ((-471 . -37) 840) ((-200 . -957) T) ((-810 . -981) T) ((-780 . -569) 822) ((-773 . -569) 804) ((-771 . -569) 786) ((-762 . -848) 765) ((-1199 . -1035) T) ((-1150 . -986) 588) ((-798 . -986) 572) ((-810 . -225) T) ((-810 . -215) NIL) ((-635 . -1131) T) ((-1199 . -23) T) ((-762 . -597) 497) ((-514 . -1131) T) ((-398 . -318) 481) ((-535 . -986) 468) ((-1150 . -109) 277) ((-647 . -591) 259) ((-798 . -109) 238) ((-361 . -23) T) ((-1105 . -489) 30)) \ No newline at end of file
+((($) . T))
+((((-805)) . T))
+((($) . T))
+(((-1206 . -162) T) ((-1206 . -675) T) ((-1206 . -1038) T) ((-1206 . -990) T) ((-1206 . -984) T) ((-1206 . -599) 143442) ((-1206 . -128) T) ((-1206 . -25) T) ((-1206 . -99) T) ((-1206 . -571) 143424) ((-1206 . -1027) T) ((-1206 . -23) T) ((-1206 . -21) T) ((-1206 . -989) 143411) ((-1206 . -109) 143396) ((-1206 . -349) T) ((-1206 . -572) 143378) ((-1206 . -1074) T) ((-1202 . -1200) 143357) ((-1202 . -975) 143334) ((-1202 . -984) T) ((-1202 . -990) T) ((-1202 . -1038) T) ((-1202 . -675) T) ((-1202 . -21) T) ((-1202 . -23) T) ((-1202 . -1027) T) ((-1202 . -571) 143316) ((-1202 . -99) T) ((-1202 . -25) T) ((-1202 . -128) T) ((-1202 . -599) 143290) ((-1202 . -1192) 143274) ((-1202 . -666) 143244) ((-1202 . -989) 143228) ((-1202 . -109) 143207) ((-1202 . -37) 143177) ((-1202 . -1197) 143156) ((-1201 . -984) T) ((-1201 . -990) T) ((-1201 . -1038) T) ((-1201 . -675) T) ((-1201 . -21) T) ((-1201 . -23) T) ((-1201 . -1027) T) ((-1201 . -571) 143138) ((-1201 . -99) T) ((-1201 . -25) T) ((-1201 . -128) T) ((-1201 . -599) 143112) ((-1201 . -1192) 143096) ((-1201 . -666) 143066) ((-1201 . -989) 143050) ((-1201 . -109) 143029) ((-1201 . -37) 142999) ((-1201 . -365) 142978) ((-1201 . -975) 142962) ((-1199 . -1200) 142938) ((-1199 . -975) 142912) ((-1199 . -984) T) ((-1199 . -990) T) ((-1199 . -1038) T) ((-1199 . -675) T) ((-1199 . -21) T) ((-1199 . -23) T) ((-1199 . -1027) T) ((-1199 . -571) 142894) ((-1199 . -99) T) ((-1199 . -25) T) ((-1199 . -128) T) ((-1199 . -599) 142868) ((-1199 . -1192) 142852) ((-1199 . -666) 142822) ((-1199 . -989) 142806) ((-1199 . -109) 142785) ((-1199 . -37) 142755) ((-1199 . -1197) 142731) ((-1198 . -1200) 142710) ((-1198 . -975) 142667) ((-1198 . -984) T) ((-1198 . -990) T) ((-1198 . -1038) T) ((-1198 . -675) T) ((-1198 . -21) T) ((-1198 . -23) T) ((-1198 . -1027) T) ((-1198 . -571) 142649) ((-1198 . -99) T) ((-1198 . -25) T) ((-1198 . -128) T) ((-1198 . -599) 142623) ((-1198 . -1192) 142607) ((-1198 . -666) 142577) ((-1198 . -989) 142561) ((-1198 . -109) 142540) ((-1198 . -37) 142510) ((-1198 . -1197) 142489) ((-1198 . -365) 142461) ((-1193 . -365) 142433) ((-1193 . -975) 142410) ((-1193 . -666) 142380) ((-1193 . -599) 142354) ((-1193 . -128) T) ((-1193 . -25) T) ((-1193 . -99) T) ((-1193 . -571) 142336) ((-1193 . -1027) T) ((-1193 . -23) T) ((-1193 . -21) T) ((-1193 . -989) 142320) ((-1193 . -109) 142299) ((-1193 . -1200) 142278) ((-1193 . -984) T) ((-1193 . -990) T) ((-1193 . -1038) T) ((-1193 . -675) T) ((-1193 . -1192) 142262) ((-1193 . -37) 142232) ((-1193 . -1197) 142211) ((-1191 . -1129) 142180) ((-1191 . -571) 142142) ((-1191 . -144) 142126) ((-1191 . -33) T) ((-1191 . -1134) T) ((-1191 . -291) 142064) ((-1191 . -491) 141997) ((-1191 . -1027) T) ((-1191 . -99) T) ((-1191 . -468) 141981) ((-1191 . -572) 141942) ((-1191 . -916) 141911) ((-1190 . -984) T) ((-1190 . -990) T) ((-1190 . -1038) T) ((-1190 . -675) T) ((-1190 . -21) T) ((-1190 . -23) T) ((-1190 . -1027) T) ((-1190 . -571) 141893) ((-1190 . -99) T) ((-1190 . -25) T) ((-1190 . -128) T) ((-1190 . -599) 141853) ((-1190 . -37) 141823) ((-1190 . -109) 141788) ((-1190 . -989) 141758) ((-1190 . -666) 141728) ((-1183 . -1027) T) ((-1183 . -571) 141710) ((-1183 . -99) T) ((-1182 . -1027) T) ((-1182 . -571) 141692) ((-1182 . -99) T) ((-1179 . -1178) 141676) ((-1179 . -353) 141660) ((-1179 . -795) 141639) ((-1179 . -144) 141623) ((-1179 . -33) T) ((-1179 . -1134) T) ((-1179 . -571) 141535) ((-1179 . -291) 141473) ((-1179 . -491) 141406) ((-1179 . -1027) 141356) ((-1179 . -99) 141306) ((-1179 . -468) 141290) ((-1179 . -572) 141251) ((-1179 . -563) 141228) ((-1179 . -268) 141205) ((-1179 . -270) 141182) ((-1179 . -602) 141166) ((-1179 . -19) 141150) ((-1176 . -1027) T) ((-1176 . -571) 141116) ((-1176 . -99) T) ((-1169 . -1172) 141100) ((-1169 . -216) 141059) ((-1169 . -599) 140984) ((-1169 . -128) T) ((-1169 . -25) T) ((-1169 . -99) T) ((-1169 . -571) 140966) ((-1169 . -1027) T) ((-1169 . -23) T) ((-1169 . -21) T) ((-1169 . -675) T) ((-1169 . -1038) T) ((-1169 . -990) T) ((-1169 . -984) T) ((-1169 . -268) 140951) ((-1169 . -841) 140864) ((-1169 . -913) 140833) ((-1169 . -37) 140730) ((-1169 . -109) 140599) ((-1169 . -989) 140482) ((-1169 . -666) 140379) ((-1169 . -138) 140358) ((-1169 . -140) 140337) ((-1169 . -162) 140288) ((-1169 . -523) 140267) ((-1169 . -272) 140246) ((-1169 . -46) 140223) ((-1169 . -1158) 140200) ((-1169 . -34) 140166) ((-1169 . -93) 140132) ((-1169 . -266) 140098) ((-1169 . -471) 140064) ((-1169 . -1123) 140030) ((-1169 . -1120) 139996) ((-1169 . -941) 139962) ((-1166 . -307) 139906) ((-1166 . -975) 139872) ((-1166 . -393) 139838) ((-1166 . -37) 139730) ((-1166 . -599) 139635) ((-1166 . -675) T) ((-1166 . -1038) T) ((-1166 . -990) T) ((-1166 . -984) T) ((-1166 . -109) 139527) ((-1166 . -989) 139432) ((-1166 . -21) T) ((-1166 . -23) T) ((-1166 . -1027) T) ((-1166 . -571) 139414) ((-1166 . -99) T) ((-1166 . -25) T) ((-1166 . -128) T) ((-1166 . -666) 139306) ((-1166 . -138) 139267) ((-1166 . -140) 139228) ((-1166 . -162) T) ((-1166 . -523) T) ((-1166 . -272) T) ((-1166 . -46) 139172) ((-1165 . -1164) 139151) ((-1165 . -344) 139130) ((-1165 . -1138) 139109) ((-1165 . -862) 139088) ((-1165 . -523) 139039) ((-1165 . -162) 138970) ((-1165 . -666) 138811) ((-1165 . -37) 138652) ((-1165 . -432) 138631) ((-1165 . -289) 138610) ((-1165 . -599) 138507) ((-1165 . -675) T) ((-1165 . -1038) T) ((-1165 . -990) T) ((-1165 . -984) T) ((-1165 . -109) 138328) ((-1165 . -989) 138163) ((-1165 . -21) T) ((-1165 . -23) T) ((-1165 . -1027) T) ((-1165 . -571) 138145) ((-1165 . -99) T) ((-1165 . -25) T) ((-1165 . -128) T) ((-1165 . -272) 138096) ((-1165 . -226) 138075) ((-1165 . -941) 138041) ((-1165 . -1120) 138007) ((-1165 . -1123) 137973) ((-1165 . -471) 137939) ((-1165 . -266) 137905) ((-1165 . -93) 137871) ((-1165 . -34) 137837) ((-1165 . -1158) 137807) ((-1165 . -46) 137777) ((-1165 . -140) 137756) ((-1165 . -138) 137735) ((-1165 . -913) 137697) ((-1165 . -841) 137603) ((-1165 . -268) 137588) ((-1165 . -216) 137540) ((-1165 . -1162) 137524) ((-1165 . -975) 137508) ((-1160 . -1164) 137469) ((-1160 . -344) 137448) ((-1160 . -1138) 137427) ((-1160 . -862) 137406) ((-1160 . -523) 137357) ((-1160 . -162) 137288) ((-1160 . -666) 137129) ((-1160 . -37) 136970) ((-1160 . -432) 136949) ((-1160 . -289) 136928) ((-1160 . -599) 136825) ((-1160 . -675) T) ((-1160 . -1038) T) ((-1160 . -990) T) ((-1160 . -984) T) ((-1160 . -109) 136646) ((-1160 . -989) 136481) ((-1160 . -21) T) ((-1160 . -23) T) ((-1160 . -1027) T) ((-1160 . -571) 136463) ((-1160 . -99) T) ((-1160 . -25) T) ((-1160 . -128) T) ((-1160 . -272) 136414) ((-1160 . -226) 136393) ((-1160 . -941) 136359) ((-1160 . -1120) 136325) ((-1160 . -1123) 136291) ((-1160 . -471) 136257) ((-1160 . -266) 136223) ((-1160 . -93) 136189) ((-1160 . -34) 136155) ((-1160 . -1158) 136125) ((-1160 . -46) 136095) ((-1160 . -140) 136074) ((-1160 . -138) 136053) ((-1160 . -913) 136015) ((-1160 . -841) 135921) ((-1160 . -268) 135906) ((-1160 . -216) 135858) ((-1160 . -1162) 135842) ((-1160 . -975) 135777) ((-1148 . -1155) 135761) ((-1148 . -1074) 135739) ((-1148 . -572) NIL) ((-1148 . -291) 135726) ((-1148 . -491) 135673) ((-1148 . -307) 135650) ((-1148 . -975) 135532) ((-1148 . -393) 135516) ((-1148 . -37) 135345) ((-1148 . -109) 135154) ((-1148 . -989) 134977) ((-1148 . -599) 134902) ((-1148 . -666) 134731) ((-1148 . -138) 134710) ((-1148 . -140) 134689) ((-1148 . -46) 134666) ((-1148 . -358) 134650) ((-1148 . -593) 134598) ((-1148 . -795) 134577) ((-1148 . -841) 134520) ((-1148 . -827) NIL) ((-1148 . -851) 134499) ((-1148 . -1138) 134478) ((-1148 . -891) 134447) ((-1148 . -862) 134426) ((-1148 . -523) 134337) ((-1148 . -272) 134248) ((-1148 . -162) 134139) ((-1148 . -432) 134070) ((-1148 . -289) 134049) ((-1148 . -268) 133976) ((-1148 . -216) T) ((-1148 . -128) T) ((-1148 . -25) T) ((-1148 . -99) T) ((-1148 . -571) 133958) ((-1148 . -1027) T) ((-1148 . -23) T) ((-1148 . -21) T) ((-1148 . -675) T) ((-1148 . -1038) T) ((-1148 . -990) T) ((-1148 . -984) T) ((-1148 . -214) 133942) ((-1146 . -1021) 133926) ((-1146 . -1134) T) ((-1146 . -1027) 133904) ((-1146 . -571) 133871) ((-1146 . -99) 133849) ((-1146 . -1022) 133806) ((-1144 . -1143) 133785) ((-1144 . -941) 133751) ((-1144 . -1120) 133717) ((-1144 . -1123) 133683) ((-1144 . -471) 133649) ((-1144 . -266) 133615) ((-1144 . -93) 133581) ((-1144 . -34) 133547) ((-1144 . -1158) 133524) ((-1144 . -46) 133501) ((-1144 . -666) 133315) ((-1144 . -599) 133185) ((-1144 . -989) 132993) ((-1144 . -109) 132782) ((-1144 . -37) 132596) ((-1144 . -913) 132565) ((-1144 . -268) 132485) ((-1144 . -1141) 132469) ((-1144 . -675) T) ((-1144 . -1038) T) ((-1144 . -990) T) ((-1144 . -984) T) ((-1144 . -21) T) ((-1144 . -23) T) ((-1144 . -1027) T) ((-1144 . -571) 132451) ((-1144 . -99) T) ((-1144 . -25) T) ((-1144 . -128) T) ((-1144 . -138) 132376) ((-1144 . -140) 132301) ((-1144 . -572) 131974) ((-1144 . -214) 131944) ((-1144 . -841) 131795) ((-1144 . -216) 131700) ((-1144 . -344) 131679) ((-1144 . -1138) 131658) ((-1144 . -862) 131637) ((-1144 . -523) 131588) ((-1144 . -162) 131519) ((-1144 . -432) 131498) ((-1144 . -289) 131477) ((-1144 . -272) 131428) ((-1144 . -226) 131407) ((-1144 . -319) 131377) ((-1144 . -491) 131237) ((-1144 . -291) 131176) ((-1144 . -358) 131146) ((-1144 . -593) 131054) ((-1144 . -381) 131024) ((-1144 . -1134) 131003) ((-1144 . -827) 130876) ((-1144 . -768) 130829) ((-1144 . -739) 130782) ((-1144 . -740) 130735) ((-1144 . -795) 130634) ((-1144 . -742) 130587) ((-1144 . -745) 130540) ((-1144 . -793) 130493) ((-1144 . -825) 130463) ((-1144 . -851) 130416) ((-1144 . -958) 130369) ((-1144 . -975) 130158) ((-1144 . -1074) 130110) ((-1144 . -931) 130080) ((-1139 . -1143) 130041) ((-1139 . -941) 130007) ((-1139 . -1120) 129973) ((-1139 . -1123) 129939) ((-1139 . -471) 129905) ((-1139 . -266) 129871) ((-1139 . -93) 129837) ((-1139 . -34) 129803) ((-1139 . -1158) 129780) ((-1139 . -46) 129757) ((-1139 . -666) 129553) ((-1139 . -599) 129405) ((-1139 . -989) 129195) ((-1139 . -109) 128964) ((-1139 . -37) 128760) ((-1139 . -913) 128729) ((-1139 . -268) 128577) ((-1139 . -1141) 128561) ((-1139 . -675) T) ((-1139 . -1038) T) ((-1139 . -990) T) ((-1139 . -984) T) ((-1139 . -21) T) ((-1139 . -23) T) ((-1139 . -1027) T) ((-1139 . -571) 128543) ((-1139 . -99) T) ((-1139 . -25) T) ((-1139 . -128) T) ((-1139 . -138) 128450) ((-1139 . -140) 128357) ((-1139 . -572) NIL) ((-1139 . -214) 128309) ((-1139 . -841) 128142) ((-1139 . -216) 128029) ((-1139 . -344) 128008) ((-1139 . -1138) 127987) ((-1139 . -862) 127966) ((-1139 . -523) 127917) ((-1139 . -162) 127848) ((-1139 . -432) 127827) ((-1139 . -289) 127806) ((-1139 . -272) 127757) ((-1139 . -226) 127736) ((-1139 . -319) 127688) ((-1139 . -491) 127457) ((-1139 . -291) 127342) ((-1139 . -358) 127294) ((-1139 . -593) 127246) ((-1139 . -381) 127198) ((-1139 . -1134) 127177) ((-1139 . -827) NIL) ((-1139 . -768) NIL) ((-1139 . -739) NIL) ((-1139 . -740) NIL) ((-1139 . -795) NIL) ((-1139 . -742) NIL) ((-1139 . -745) NIL) ((-1139 . -793) NIL) ((-1139 . -825) 127129) ((-1139 . -851) NIL) ((-1139 . -958) NIL) ((-1139 . -975) 127095) ((-1139 . -1074) NIL) ((-1139 . -931) 127047) ((-1132 . -571) 126959) ((-1132 . -1027) 126937) ((-1132 . -99) 126915) ((-1127 . -689) 126891) ((-1127 . -34) 126857) ((-1127 . -93) 126823) ((-1127 . -266) 126789) ((-1127 . -471) 126755) ((-1127 . -1123) 126721) ((-1127 . -1120) 126687) ((-1127 . -941) 126653) ((-1127 . -46) 126622) ((-1127 . -37) 126519) ((-1127 . -666) 126416) ((-1127 . -272) 126395) ((-1127 . -523) 126374) ((-1127 . -109) 126243) ((-1127 . -989) 126126) ((-1127 . -162) 126077) ((-1127 . -140) 126056) ((-1127 . -138) 126035) ((-1127 . -599) 125960) ((-1127 . -913) 125922) ((-1127 . -984) T) ((-1127 . -990) T) ((-1127 . -1038) T) ((-1127 . -675) T) ((-1127 . -21) T) ((-1127 . -23) T) ((-1127 . -1027) T) ((-1127 . -571) 125904) ((-1127 . -99) T) ((-1127 . -25) T) ((-1127 . -128) T) ((-1127 . -841) 125885) ((-1127 . -491) 125852) ((-1127 . -291) 125839) ((-1121 . -949) 125823) ((-1121 . -33) T) ((-1121 . -1134) T) ((-1121 . -571) 125755) ((-1121 . -291) 125693) ((-1121 . -491) 125626) ((-1121 . -1027) 125604) ((-1121 . -99) 125582) ((-1121 . -468) 125566) ((-1116 . -346) 125540) ((-1116 . -99) T) ((-1116 . -571) 125522) ((-1116 . -1027) T) ((-1114 . -1027) T) ((-1114 . -571) 125504) ((-1114 . -99) T) ((-1107 . -1111) 125483) ((-1107 . -212) 125433) ((-1107 . -104) 125383) ((-1107 . -291) 125187) ((-1107 . -491) 124979) ((-1107 . -468) 124916) ((-1107 . -144) 124866) ((-1107 . -572) NIL) ((-1107 . -218) 124816) ((-1107 . -568) 124795) ((-1107 . -270) 124774) ((-1107 . -268) 124753) ((-1107 . -99) T) ((-1107 . -1027) T) ((-1107 . -571) 124735) ((-1107 . -1134) T) ((-1107 . -33) T) ((-1107 . -563) 124714) ((-1103 . -1175) T) ((-1103 . -1027) T) ((-1103 . -571) 124696) ((-1103 . -99) T) ((-1102 . -571) 124678) ((-1101 . -571) 124660) ((-1100 . -307) 124637) ((-1100 . -975) 124535) ((-1100 . -393) 124519) ((-1100 . -37) 124416) ((-1100 . -599) 124341) ((-1100 . -675) T) ((-1100 . -1038) T) ((-1100 . -990) T) ((-1100 . -984) T) ((-1100 . -109) 124210) ((-1100 . -989) 124093) ((-1100 . -21) T) ((-1100 . -23) T) ((-1100 . -1027) T) ((-1100 . -571) 124075) ((-1100 . -99) T) ((-1100 . -25) T) ((-1100 . -128) T) ((-1100 . -666) 123972) ((-1100 . -138) 123951) ((-1100 . -140) 123930) ((-1100 . -162) 123881) ((-1100 . -523) 123860) ((-1100 . -272) 123839) ((-1100 . -46) 123816) ((-1098 . -795) T) ((-1098 . -99) T) ((-1098 . -571) 123798) ((-1098 . -1027) T) ((-1098 . -572) 123720) ((-1098 . -769) T) ((-1098 . -827) 123687) ((-1097 . -571) 123669) ((-1096 . -1172) 123653) ((-1096 . -216) 123612) ((-1096 . -599) 123537) ((-1096 . -128) T) ((-1096 . -25) T) ((-1096 . -99) T) ((-1096 . -571) 123519) ((-1096 . -1027) T) ((-1096 . -23) T) ((-1096 . -21) T) ((-1096 . -675) T) ((-1096 . -1038) T) ((-1096 . -990) T) ((-1096 . -984) T) ((-1096 . -268) 123504) ((-1096 . -841) 123417) ((-1096 . -913) 123386) ((-1096 . -37) 123283) ((-1096 . -109) 123152) ((-1096 . -989) 123035) ((-1096 . -666) 122932) ((-1096 . -138) 122911) ((-1096 . -140) 122890) ((-1096 . -162) 122841) ((-1096 . -523) 122820) ((-1096 . -272) 122799) ((-1096 . -46) 122776) ((-1096 . -1158) 122753) ((-1096 . -34) 122719) ((-1096 . -93) 122685) ((-1096 . -266) 122651) ((-1096 . -471) 122617) ((-1096 . -1123) 122583) ((-1096 . -1120) 122549) ((-1096 . -941) 122515) ((-1095 . -1164) 122476) ((-1095 . -344) 122455) ((-1095 . -1138) 122434) ((-1095 . -862) 122413) ((-1095 . -523) 122364) ((-1095 . -162) 122295) ((-1095 . -666) 122136) ((-1095 . -37) 121977) ((-1095 . -432) 121956) ((-1095 . -289) 121935) ((-1095 . -599) 121832) ((-1095 . -675) T) ((-1095 . -1038) T) ((-1095 . -990) T) ((-1095 . -984) T) ((-1095 . -109) 121653) ((-1095 . -989) 121488) ((-1095 . -21) T) ((-1095 . -23) T) ((-1095 . -1027) T) ((-1095 . -571) 121470) ((-1095 . -99) T) ((-1095 . -25) T) ((-1095 . -128) T) ((-1095 . -272) 121421) ((-1095 . -226) 121400) ((-1095 . -941) 121366) ((-1095 . -1120) 121332) ((-1095 . -1123) 121298) ((-1095 . -471) 121264) ((-1095 . -266) 121230) ((-1095 . -93) 121196) ((-1095 . -34) 121162) ((-1095 . -1158) 121132) ((-1095 . -46) 121102) ((-1095 . -140) 121081) ((-1095 . -138) 121060) ((-1095 . -913) 121022) ((-1095 . -841) 120928) ((-1095 . -268) 120913) ((-1095 . -216) 120865) ((-1095 . -1162) 120849) ((-1095 . -975) 120784) ((-1092 . -1155) 120768) ((-1092 . -1074) 120746) ((-1092 . -572) NIL) ((-1092 . -291) 120733) ((-1092 . -491) 120680) ((-1092 . -307) 120657) ((-1092 . -975) 120539) ((-1092 . -393) 120523) ((-1092 . -37) 120352) ((-1092 . -109) 120161) ((-1092 . -989) 119984) ((-1092 . -599) 119909) ((-1092 . -666) 119738) ((-1092 . -138) 119717) ((-1092 . -140) 119696) ((-1092 . -46) 119673) ((-1092 . -358) 119657) ((-1092 . -593) 119605) ((-1092 . -795) 119584) ((-1092 . -841) 119527) ((-1092 . -827) NIL) ((-1092 . -851) 119506) ((-1092 . -1138) 119485) ((-1092 . -891) 119454) ((-1092 . -862) 119433) ((-1092 . -523) 119344) ((-1092 . -272) 119255) ((-1092 . -162) 119146) ((-1092 . -432) 119077) ((-1092 . -289) 119056) ((-1092 . -268) 118983) ((-1092 . -216) T) ((-1092 . -128) T) ((-1092 . -25) T) ((-1092 . -99) T) ((-1092 . -571) 118965) ((-1092 . -1027) T) ((-1092 . -23) T) ((-1092 . -21) T) ((-1092 . -675) T) ((-1092 . -1038) T) ((-1092 . -990) T) ((-1092 . -984) T) ((-1092 . -214) 118949) ((-1089 . -1143) 118910) ((-1089 . -941) 118876) ((-1089 . -1120) 118842) ((-1089 . -1123) 118808) ((-1089 . -471) 118774) ((-1089 . -266) 118740) ((-1089 . -93) 118706) ((-1089 . -34) 118672) ((-1089 . -1158) 118649) ((-1089 . -46) 118626) ((-1089 . -666) 118422) ((-1089 . -599) 118274) ((-1089 . -989) 118064) ((-1089 . -109) 117833) ((-1089 . -37) 117629) ((-1089 . -913) 117598) ((-1089 . -268) 117446) ((-1089 . -1141) 117430) ((-1089 . -675) T) ((-1089 . -1038) T) ((-1089 . -990) T) ((-1089 . -984) T) ((-1089 . -21) T) ((-1089 . -23) T) ((-1089 . -1027) T) ((-1089 . -571) 117412) ((-1089 . -99) T) ((-1089 . -25) T) ((-1089 . -128) T) ((-1089 . -138) 117319) ((-1089 . -140) 117226) ((-1089 . -572) NIL) ((-1089 . -214) 117178) ((-1089 . -841) 117011) ((-1089 . -216) 116898) ((-1089 . -344) 116877) ((-1089 . -1138) 116856) ((-1089 . -862) 116835) ((-1089 . -523) 116786) ((-1089 . -162) 116717) ((-1089 . -432) 116696) ((-1089 . -289) 116675) ((-1089 . -272) 116626) ((-1089 . -226) 116605) ((-1089 . -319) 116557) ((-1089 . -491) 116326) ((-1089 . -291) 116211) ((-1089 . -358) 116163) ((-1089 . -593) 116115) ((-1089 . -381) 116067) ((-1089 . -1134) 116046) ((-1089 . -827) NIL) ((-1089 . -768) NIL) ((-1089 . -739) NIL) ((-1089 . -740) NIL) ((-1089 . -795) NIL) ((-1089 . -742) NIL) ((-1089 . -745) NIL) ((-1089 . -793) NIL) ((-1089 . -825) 115998) ((-1089 . -851) NIL) ((-1089 . -958) NIL) ((-1089 . -975) 115964) ((-1089 . -1074) NIL) ((-1089 . -931) 115916) ((-1088 . -1027) T) ((-1088 . -571) 115898) ((-1088 . -99) T) ((-1087 . -1027) T) ((-1087 . -571) 115880) ((-1087 . -99) T) ((-1082 . -1111) 115856) ((-1082 . -212) 115803) ((-1082 . -104) 115750) ((-1082 . -291) 115545) ((-1082 . -491) 115328) ((-1082 . -468) 115262) ((-1082 . -144) 115209) ((-1082 . -572) NIL) ((-1082 . -218) 115156) ((-1082 . -568) 115132) ((-1082 . -270) 115108) ((-1082 . -268) 115084) ((-1082 . -99) T) ((-1082 . -1027) T) ((-1082 . -571) 115066) ((-1082 . -1134) T) ((-1082 . -33) T) ((-1082 . -563) 115042) ((-1081 . -1080) T) ((-1081 . -19) 115024) ((-1081 . -602) 115006) ((-1081 . -270) 114981) ((-1081 . -268) 114956) ((-1081 . -563) 114931) ((-1081 . -572) NIL) ((-1081 . -468) 114913) ((-1081 . -491) NIL) ((-1081 . -291) NIL) ((-1081 . -1134) T) ((-1081 . -33) T) ((-1081 . -144) 114895) ((-1081 . -795) T) ((-1081 . -353) 114877) ((-1081 . -1067) T) ((-1081 . -99) T) ((-1081 . -571) 114859) ((-1081 . -1027) T) ((-1081 . -769) T) ((-1076 . -624) 114843) ((-1076 . -602) 114827) ((-1076 . -270) 114804) ((-1076 . -268) 114781) ((-1076 . -563) 114758) ((-1076 . -572) 114719) ((-1076 . -468) 114703) ((-1076 . -99) 114681) ((-1076 . -1027) 114659) ((-1076 . -491) 114592) ((-1076 . -291) 114530) ((-1076 . -571) 114462) ((-1076 . -1134) T) ((-1076 . -33) T) ((-1076 . -144) 114446) ((-1076 . -1168) 114430) ((-1076 . -949) 114414) ((-1076 . -1072) 114398) ((-1073 . -1111) 114377) ((-1073 . -212) 114327) ((-1073 . -104) 114277) ((-1073 . -291) 114081) ((-1073 . -491) 113873) ((-1073 . -468) 113810) ((-1073 . -144) 113760) ((-1073 . -572) NIL) ((-1073 . -218) 113710) ((-1073 . -568) 113689) ((-1073 . -270) 113668) ((-1073 . -268) 113647) ((-1073 . -99) T) ((-1073 . -1027) T) ((-1073 . -571) 113629) ((-1073 . -1134) T) ((-1073 . -33) T) ((-1073 . -563) 113608) ((-1070 . -1046) 113592) ((-1070 . -468) 113576) ((-1070 . -99) 113554) ((-1070 . -1027) 113532) ((-1070 . -491) 113465) ((-1070 . -291) 113403) ((-1070 . -571) 113335) ((-1070 . -1134) T) ((-1070 . -33) T) ((-1070 . -104) 113319) ((-1069 . -1035) 113288) ((-1069 . -1129) 113257) ((-1069 . -571) 113219) ((-1069 . -144) 113203) ((-1069 . -33) T) ((-1069 . -1134) T) ((-1069 . -291) 113141) ((-1069 . -491) 113074) ((-1069 . -1027) T) ((-1069 . -99) T) ((-1069 . -468) 113058) ((-1069 . -572) 113019) ((-1069 . -916) 112988) ((-1069 . -1002) 112957) ((-1065 . -1048) 112902) ((-1065 . -468) 112886) ((-1065 . -491) 112819) ((-1065 . -291) 112757) ((-1065 . -1134) T) ((-1065 . -33) T) ((-1065 . -986) 112697) ((-1065 . -975) 112595) ((-1065 . -393) 112579) ((-1065 . -593) 112527) ((-1065 . -358) 112511) ((-1065 . -216) 112490) ((-1065 . -841) 112449) ((-1065 . -214) 112433) ((-1065 . -666) 112365) ((-1065 . -599) 112339) ((-1065 . -128) T) ((-1065 . -25) T) ((-1065 . -99) T) ((-1065 . -571) 112301) ((-1065 . -1027) T) ((-1065 . -23) T) ((-1065 . -21) T) ((-1065 . -989) 112285) ((-1065 . -109) 112264) ((-1065 . -984) T) ((-1065 . -990) T) ((-1065 . -1038) T) ((-1065 . -675) T) ((-1065 . -37) 112224) ((-1065 . -572) 112185) ((-1064 . -949) 112156) ((-1064 . -33) T) ((-1064 . -1134) T) ((-1064 . -571) 112138) ((-1064 . -291) 112064) ((-1064 . -491) 111983) ((-1064 . -1027) T) ((-1064 . -99) T) ((-1064 . -468) 111954) ((-1063 . -1027) T) ((-1063 . -571) 111936) ((-1063 . -99) T) ((-1058 . -1059) 111920) ((-1058 . -99) T) ((-1058 . -571) 111902) ((-1058 . -1027) T) ((-1051 . -689) 111881) ((-1051 . -34) 111847) ((-1051 . -93) 111813) ((-1051 . -266) 111779) ((-1051 . -471) 111745) ((-1051 . -1123) 111711) ((-1051 . -1120) 111677) ((-1051 . -941) 111643) ((-1051 . -46) 111615) ((-1051 . -37) 111512) ((-1051 . -666) 111409) ((-1051 . -272) 111388) ((-1051 . -523) 111367) ((-1051 . -109) 111236) ((-1051 . -989) 111119) ((-1051 . -162) 111070) ((-1051 . -140) 111049) ((-1051 . -138) 111028) ((-1051 . -599) 110953) ((-1051 . -913) 110920) ((-1051 . -984) T) ((-1051 . -990) T) ((-1051 . -1038) T) ((-1051 . -675) T) ((-1051 . -21) T) ((-1051 . -23) T) ((-1051 . -1027) T) ((-1051 . -571) 110902) ((-1051 . -99) T) ((-1051 . -25) T) ((-1051 . -128) T) ((-1051 . -841) 110886) ((-1051 . -491) 110856) ((-1051 . -291) 110843) ((-1050 . -891) 110810) ((-1050 . -975) 110695) ((-1050 . -1138) 110674) ((-1050 . -851) 110653) ((-1050 . -827) 110512) ((-1050 . -841) 110496) ((-1050 . -795) 110475) ((-1050 . -491) 110427) ((-1050 . -432) 110378) ((-1050 . -593) 110326) ((-1050 . -358) 110310) ((-1050 . -46) 110282) ((-1050 . -37) 110131) ((-1050 . -666) 109980) ((-1050 . -272) 109911) ((-1050 . -523) 109842) ((-1050 . -109) 109671) ((-1050 . -989) 109514) ((-1050 . -162) 109425) ((-1050 . -140) 109404) ((-1050 . -138) 109383) ((-1050 . -599) 109308) ((-1050 . -128) T) ((-1050 . -25) T) ((-1050 . -99) T) ((-1050 . -571) 109290) ((-1050 . -1027) T) ((-1050 . -23) T) ((-1050 . -21) T) ((-1050 . -984) T) ((-1050 . -990) T) ((-1050 . -1038) T) ((-1050 . -675) T) ((-1050 . -393) 109274) ((-1050 . -307) 109246) ((-1050 . -291) 109233) ((-1050 . -572) 108981) ((-1045 . -515) T) ((-1045 . -1138) T) ((-1045 . -1074) T) ((-1045 . -975) 108963) ((-1045 . -572) 108878) ((-1045 . -958) T) ((-1045 . -827) 108860) ((-1045 . -793) T) ((-1045 . -745) T) ((-1045 . -742) T) ((-1045 . -795) T) ((-1045 . -740) T) ((-1045 . -739) T) ((-1045 . -768) T) ((-1045 . -593) 108842) ((-1045 . -862) T) ((-1045 . -523) T) ((-1045 . -272) T) ((-1045 . -162) T) ((-1045 . -666) 108829) ((-1045 . -989) 108816) ((-1045 . -109) 108801) ((-1045 . -37) 108788) ((-1045 . -432) T) ((-1045 . -289) T) ((-1045 . -216) T) ((-1045 . -136) T) ((-1045 . -984) T) ((-1045 . -990) T) ((-1045 . -1038) T) ((-1045 . -675) T) ((-1045 . -21) T) ((-1045 . -23) T) ((-1045 . -1027) T) ((-1045 . -571) 108770) ((-1045 . -99) T) ((-1045 . -25) T) ((-1045 . -128) T) ((-1045 . -599) 108757) ((-1045 . -140) T) ((-1045 . -613) T) ((-1045 . -769) T) ((-1041 . -1027) T) ((-1041 . -571) 108739) ((-1041 . -99) T) ((-1039 . -221) 108718) ((-1039 . -1187) 108688) ((-1039 . -739) 108667) ((-1039 . -793) 108646) ((-1039 . -745) 108597) ((-1039 . -742) 108548) ((-1039 . -795) 108499) ((-1039 . -740) 108450) ((-1039 . -741) 108429) ((-1039 . -270) 108406) ((-1039 . -268) 108383) ((-1039 . -468) 108367) ((-1039 . -491) 108300) ((-1039 . -291) 108238) ((-1039 . -1134) T) ((-1039 . -33) T) ((-1039 . -563) 108215) ((-1039 . -975) 108044) ((-1039 . -393) 108013) ((-1039 . -593) 107921) ((-1039 . -358) 107891) ((-1039 . -349) 107870) ((-1039 . -216) 107823) ((-1039 . -841) 107756) ((-1039 . -214) 107726) ((-1039 . -109) 107617) ((-1039 . -989) 107515) ((-1039 . -162) 107494) ((-1039 . -571) 107226) ((-1039 . -666) 107168) ((-1039 . -599) 107018) ((-1039 . -128) 106889) ((-1039 . -23) 106760) ((-1039 . -21) 106671) ((-1039 . -984) 106602) ((-1039 . -990) 106533) ((-1039 . -1038) 106444) ((-1039 . -675) 106355) ((-1039 . -37) 106325) ((-1039 . -1027) 106116) ((-1039 . -99) 105907) ((-1039 . -25) 105759) ((-1032 . -377) T) ((-1032 . -1134) T) ((-1032 . -571) 105741) ((-1031 . -1030) 105705) ((-1031 . -99) T) ((-1031 . -571) 105687) ((-1031 . -1027) T) ((-1029 . -1030) 105639) ((-1029 . -99) T) ((-1029 . -571) 105621) ((-1029 . -1027) T) ((-1028 . -349) T) ((-1028 . -99) T) ((-1028 . -571) 105603) ((-1028 . -1027) T) ((-1023 . -407) 105587) ((-1023 . -1025) 105571) ((-1023 . -349) 105550) ((-1023 . -218) 105534) ((-1023 . -572) 105495) ((-1023 . -144) 105479) ((-1023 . -468) 105463) ((-1023 . -99) T) ((-1023 . -1027) T) ((-1023 . -491) 105396) ((-1023 . -291) 105334) ((-1023 . -571) 105316) ((-1023 . -1134) T) ((-1023 . -33) T) ((-1023 . -104) 105300) ((-1023 . -212) 105284) ((-1019 . -1134) T) ((-1019 . -1027) 105262) ((-1019 . -571) 105229) ((-1019 . -99) 105207) ((-1017 . -1021) 105191) ((-1017 . -1134) T) ((-1017 . -1027) 105169) ((-1017 . -571) 105136) ((-1017 . -99) 105114) ((-1017 . -1022) 105072) ((-1016 . -248) 105056) ((-1016 . -975) 105040) ((-1016 . -1027) T) ((-1016 . -571) 105022) ((-1016 . -99) T) ((-1016 . -795) T) ((-1015 . -235) 104959) ((-1015 . -975) 104788) ((-1015 . -572) NIL) ((-1015 . -307) 104749) ((-1015 . -393) 104733) ((-1015 . -37) 104582) ((-1015 . -109) 104411) ((-1015 . -989) 104254) ((-1015 . -599) 104179) ((-1015 . -666) 104028) ((-1015 . -138) 104007) ((-1015 . -140) 103986) ((-1015 . -162) 103897) ((-1015 . -523) 103828) ((-1015 . -272) 103759) ((-1015 . -46) 103720) ((-1015 . -358) 103704) ((-1015 . -593) 103652) ((-1015 . -432) 103603) ((-1015 . -491) 103470) ((-1015 . -795) 103449) ((-1015 . -841) 103384) ((-1015 . -827) NIL) ((-1015 . -851) 103363) ((-1015 . -1138) 103342) ((-1015 . -891) 103287) ((-1015 . -291) 103274) ((-1015 . -216) 103253) ((-1015 . -128) T) ((-1015 . -25) T) ((-1015 . -99) T) ((-1015 . -571) 103235) ((-1015 . -1027) T) ((-1015 . -23) T) ((-1015 . -21) T) ((-1015 . -675) T) ((-1015 . -1038) T) ((-1015 . -990) T) ((-1015 . -984) T) ((-1015 . -214) 103219) ((-1013 . -571) 103201) ((-1011 . -795) T) ((-1011 . -99) T) ((-1011 . -571) 103183) ((-1011 . -1027) T) ((-1008 . -673) 103162) ((-1008 . -975) 103060) ((-1008 . -393) 103044) ((-1008 . -593) 102992) ((-1008 . -358) 102976) ((-1008 . -351) 102955) ((-1008 . -140) 102934) ((-1008 . -666) 102802) ((-1008 . -599) 102712) ((-1008 . -989) 102622) ((-1008 . -109) 102518) ((-1008 . -37) 102386) ((-1008 . -391) 102365) ((-1008 . -383) 102344) ((-1008 . -138) 102295) ((-1008 . -1074) 102274) ((-1008 . -331) 102253) ((-1008 . -349) 102204) ((-1008 . -226) 102155) ((-1008 . -272) 102106) ((-1008 . -289) 102057) ((-1008 . -432) 102008) ((-1008 . -523) 101959) ((-1008 . -862) 101910) ((-1008 . -1138) 101861) ((-1008 . -344) 101812) ((-1008 . -216) 101737) ((-1008 . -841) 101670) ((-1008 . -214) 101640) ((-1008 . -572) 101624) ((-1008 . -21) T) ((-1008 . -23) T) ((-1008 . -1027) T) ((-1008 . -571) 101606) ((-1008 . -99) T) ((-1008 . -25) T) ((-1008 . -128) T) ((-1008 . -984) T) ((-1008 . -990) T) ((-1008 . -1038) T) ((-1008 . -675) T) ((-1008 . -162) T) ((-1006 . -1027) T) ((-1006 . -571) 101588) ((-1006 . -99) T) ((-1006 . -268) 101567) ((-1005 . -1027) T) ((-1005 . -571) 101549) ((-1005 . -99) T) ((-1004 . -1027) T) ((-1004 . -571) 101531) ((-1004 . -99) T) ((-1004 . -268) 101510) ((-1004 . -975) 101487) ((-995 . -1111) 101462) ((-995 . -212) 101408) ((-995 . -104) 101354) ((-995 . -291) 101205) ((-995 . -491) 101049) ((-995 . -468) 100980) ((-995 . -144) 100926) ((-995 . -572) NIL) ((-995 . -218) 100872) ((-995 . -568) 100847) ((-995 . -270) 100822) ((-995 . -268) 100797) ((-995 . -99) T) ((-995 . -1027) T) ((-995 . -571) 100779) ((-995 . -1134) T) ((-995 . -33) T) ((-995 . -563) 100754) ((-994 . -515) T) ((-994 . -1138) T) ((-994 . -1074) T) ((-994 . -975) 100736) ((-994 . -572) 100651) ((-994 . -958) T) ((-994 . -827) 100633) ((-994 . -793) T) ((-994 . -745) T) ((-994 . -742) T) ((-994 . -795) T) ((-994 . -740) T) ((-994 . -739) T) ((-994 . -768) T) ((-994 . -593) 100615) ((-994 . -862) T) ((-994 . -523) T) ((-994 . -272) T) ((-994 . -162) T) ((-994 . -666) 100602) ((-994 . -989) 100589) ((-994 . -109) 100574) ((-994 . -37) 100561) ((-994 . -432) T) ((-994 . -289) T) ((-994 . -216) T) ((-994 . -136) T) ((-994 . -984) T) ((-994 . -990) T) ((-994 . -1038) T) ((-994 . -675) T) ((-994 . -21) T) ((-994 . -23) T) ((-994 . -1027) T) ((-994 . -571) 100543) ((-994 . -99) T) ((-994 . -25) T) ((-994 . -128) T) ((-994 . -599) 100530) ((-994 . -140) T) ((-993 . -999) 100509) ((-993 . -99) T) ((-993 . -571) 100491) ((-993 . -1027) T) ((-987 . -986) 100431) ((-987 . -666) 100373) ((-987 . -33) T) ((-987 . -1134) T) ((-987 . -291) 100311) ((-987 . -491) 100244) ((-987 . -468) 100228) ((-987 . -599) 100212) ((-987 . -128) T) ((-987 . -25) T) ((-987 . -99) T) ((-987 . -571) 100174) ((-987 . -1027) T) ((-987 . -23) T) ((-987 . -21) T) ((-987 . -989) 100158) ((-987 . -109) 100137) ((-987 . -1187) 100107) ((-987 . -572) 100068) ((-981 . -1002) 99997) ((-981 . -916) 99926) ((-981 . -572) 99868) ((-981 . -468) 99833) ((-981 . -99) T) ((-981 . -1027) T) ((-981 . -491) 99734) ((-981 . -291) 99642) ((-981 . -571) 99585) ((-981 . -1134) T) ((-981 . -33) T) ((-981 . -144) 99550) ((-981 . -1129) 99479) ((-973 . -1111) 99454) ((-973 . -212) 99400) ((-973 . -104) 99346) ((-973 . -291) 99197) ((-973 . -491) 99041) ((-973 . -468) 98972) ((-973 . -144) 98918) ((-973 . -572) NIL) ((-973 . -218) 98864) ((-973 . -568) 98839) ((-973 . -270) 98814) ((-973 . -268) 98789) ((-973 . -99) T) ((-973 . -1027) T) ((-973 . -571) 98771) ((-973 . -1134) T) ((-973 . -33) T) ((-973 . -563) 98746) ((-972 . -162) T) ((-972 . -675) T) ((-972 . -1038) T) ((-972 . -990) T) ((-972 . -984) T) ((-972 . -599) 98720) ((-972 . -128) T) ((-972 . -25) T) ((-972 . -99) T) ((-972 . -571) 98702) ((-972 . -1027) T) ((-972 . -23) T) ((-972 . -21) T) ((-972 . -989) 98676) ((-972 . -109) 98643) ((-972 . -37) 98627) ((-972 . -666) 98611) ((-965 . -1002) 98580) ((-965 . -916) 98549) ((-965 . -572) 98510) ((-965 . -468) 98494) ((-965 . -99) T) ((-965 . -1027) T) ((-965 . -491) 98427) ((-965 . -291) 98365) ((-965 . -571) 98327) ((-965 . -1134) T) ((-965 . -33) T) ((-965 . -144) 98311) ((-965 . -1129) 98280) ((-964 . -1134) T) ((-964 . -1027) 98258) ((-964 . -571) 98225) ((-964 . -99) 98203) ((-962 . -951) T) ((-962 . -941) T) ((-962 . -739) T) ((-962 . -740) T) ((-962 . -795) T) ((-962 . -742) T) ((-962 . -745) T) ((-962 . -793) T) ((-962 . -975) 98085) ((-962 . -393) 98047) ((-962 . -226) T) ((-962 . -272) T) ((-962 . -289) T) ((-962 . -432) T) ((-962 . -37) 97984) ((-962 . -666) 97921) ((-962 . -523) T) ((-962 . -862) T) ((-962 . -1138) T) ((-962 . -344) T) ((-962 . -109) 97837) ((-962 . -989) 97774) ((-962 . -162) T) ((-962 . -140) T) ((-962 . -599) 97711) ((-962 . -128) T) ((-962 . -25) T) ((-962 . -99) T) ((-962 . -571) 97693) ((-962 . -1027) T) ((-962 . -23) T) ((-962 . -21) T) ((-962 . -984) T) ((-962 . -990) T) ((-962 . -1038) T) ((-962 . -675) T) ((-943 . -931) 97675) ((-943 . -1074) T) ((-943 . -975) 97635) ((-943 . -572) 97565) ((-943 . -958) T) ((-943 . -851) NIL) ((-943 . -825) 97547) ((-943 . -793) T) ((-943 . -745) T) ((-943 . -742) T) ((-943 . -795) T) ((-943 . -740) T) ((-943 . -739) T) ((-943 . -768) T) ((-943 . -827) 97529) ((-943 . -1134) T) ((-943 . -381) 97511) ((-943 . -593) 97493) ((-943 . -358) 97475) ((-943 . -268) NIL) ((-943 . -291) NIL) ((-943 . -491) NIL) ((-943 . -319) 97457) ((-943 . -226) T) ((-943 . -109) 97391) ((-943 . -989) 97341) ((-943 . -272) T) ((-943 . -666) 97291) ((-943 . -599) 97241) ((-943 . -37) 97191) ((-943 . -289) T) ((-943 . -432) T) ((-943 . -162) T) ((-943 . -523) T) ((-943 . -862) T) ((-943 . -1138) T) ((-943 . -344) T) ((-943 . -216) T) ((-943 . -841) NIL) ((-943 . -214) 97173) ((-943 . -140) T) ((-943 . -138) NIL) ((-943 . -128) T) ((-943 . -25) T) ((-943 . -99) T) ((-943 . -571) 97155) ((-943 . -1027) T) ((-943 . -23) T) ((-943 . -21) T) ((-943 . -984) T) ((-943 . -990) T) ((-943 . -1038) T) ((-943 . -675) T) ((-942 . -323) 97129) ((-942 . -162) T) ((-942 . -675) T) ((-942 . -1038) T) ((-942 . -990) T) ((-942 . -984) T) ((-942 . -599) 97074) ((-942 . -128) T) ((-942 . -25) T) ((-942 . -99) T) ((-942 . -571) 97056) ((-942 . -1027) T) ((-942 . -23) T) ((-942 . -21) T) ((-942 . -989) 97001) ((-942 . -109) 96930) ((-942 . -572) 96914) ((-942 . -214) 96891) ((-942 . -841) 96843) ((-942 . -216) 96815) ((-942 . -344) T) ((-942 . -1138) T) ((-942 . -862) T) ((-942 . -523) T) ((-942 . -666) 96760) ((-942 . -37) 96705) ((-942 . -432) T) ((-942 . -289) T) ((-942 . -272) T) ((-942 . -226) T) ((-942 . -349) NIL) ((-942 . -331) NIL) ((-942 . -1074) NIL) ((-942 . -138) 96677) ((-942 . -383) NIL) ((-942 . -391) 96649) ((-942 . -140) 96621) ((-942 . -351) 96593) ((-942 . -358) 96570) ((-942 . -593) 96509) ((-942 . -393) 96486) ((-942 . -975) 96376) ((-942 . -673) 96348) ((-939 . -934) 96332) ((-939 . -468) 96316) ((-939 . -99) 96294) ((-939 . -1027) 96272) ((-939 . -491) 96205) ((-939 . -291) 96143) ((-939 . -571) 96075) ((-939 . -1134) T) ((-939 . -33) T) ((-939 . -104) 96059) ((-935 . -937) 96043) ((-935 . -795) 96022) ((-935 . -975) 95920) ((-935 . -393) 95904) ((-935 . -593) 95852) ((-935 . -358) 95836) ((-935 . -268) 95794) ((-935 . -291) 95759) ((-935 . -491) 95671) ((-935 . -319) 95655) ((-935 . -37) 95603) ((-935 . -109) 95485) ((-935 . -989) 95381) ((-935 . -599) 95319) ((-935 . -666) 95267) ((-935 . -272) 95218) ((-935 . -226) 95197) ((-935 . -216) 95176) ((-935 . -841) 95135) ((-935 . -214) 95119) ((-935 . -572) 95080) ((-935 . -140) 95059) ((-935 . -138) 95038) ((-935 . -128) T) ((-935 . -25) T) ((-935 . -99) T) ((-935 . -571) 95020) ((-935 . -1027) T) ((-935 . -23) T) ((-935 . -21) T) ((-935 . -984) T) ((-935 . -990) T) ((-935 . -1038) T) ((-935 . -675) T) ((-933 . -21) T) ((-933 . -23) T) ((-933 . -1027) T) ((-933 . -571) 95002) ((-933 . -99) T) ((-933 . -25) T) ((-933 . -128) T) ((-929 . -571) 94984) ((-926 . -1027) T) ((-926 . -571) 94966) ((-926 . -99) T) ((-911 . -745) T) ((-911 . -742) T) ((-911 . -795) T) ((-911 . -740) T) ((-911 . -23) T) ((-911 . -1027) T) ((-911 . -571) 94948) ((-911 . -99) T) ((-911 . -25) T) ((-911 . -128) T) ((-911 . -572) 94923) ((-907 . -908) T) ((-907 . -571) 94884) ((-906 . -571) 94866) ((-905 . -1027) T) ((-905 . -571) 94848) ((-905 . -99) T) ((-905 . -349) 94801) ((-905 . -675) 94700) ((-905 . -1038) 94599) ((-905 . -23) 94410) ((-905 . -25) 94221) ((-905 . -128) 94076) ((-905 . -453) 94029) ((-905 . -21) 93984) ((-905 . -741) 93937) ((-905 . -740) 93890) ((-905 . -795) 93789) ((-905 . -742) 93742) ((-905 . -745) 93695) ((-899 . -19) 93679) ((-899 . -602) 93663) ((-899 . -270) 93640) ((-899 . -268) 93617) ((-899 . -563) 93594) ((-899 . -572) 93555) ((-899 . -468) 93539) ((-899 . -99) 93489) ((-899 . -1027) 93439) ((-899 . -491) 93372) ((-899 . -291) 93310) ((-899 . -571) 93222) ((-899 . -1134) T) ((-899 . -33) T) ((-899 . -144) 93206) ((-899 . -795) 93185) ((-899 . -353) 93169) ((-897 . -307) 93148) ((-897 . -975) 93046) ((-897 . -393) 93030) ((-897 . -37) 92927) ((-897 . -599) 92852) ((-897 . -675) T) ((-897 . -1038) T) ((-897 . -990) T) ((-897 . -984) T) ((-897 . -109) 92721) ((-897 . -989) 92604) ((-897 . -21) T) ((-897 . -23) T) ((-897 . -1027) T) ((-897 . -571) 92586) ((-897 . -99) T) ((-897 . -25) T) ((-897 . -128) T) ((-897 . -666) 92483) ((-897 . -138) 92462) ((-897 . -140) 92441) ((-897 . -162) 92392) ((-897 . -523) 92371) ((-897 . -272) 92350) ((-897 . -46) 92329) ((-895 . -1027) T) ((-895 . -571) 92295) ((-895 . -99) T) ((-887 . -891) 92256) ((-887 . -975) 92138) ((-887 . -1138) 92117) ((-887 . -851) 92096) ((-887 . -827) 92021) ((-887 . -841) 92002) ((-887 . -795) 91981) ((-887 . -491) 91928) ((-887 . -432) 91879) ((-887 . -593) 91827) ((-887 . -358) 91811) ((-887 . -46) 91780) ((-887 . -37) 91629) ((-887 . -666) 91478) ((-887 . -272) 91409) ((-887 . -523) 91340) ((-887 . -109) 91169) ((-887 . -989) 91012) ((-887 . -162) 90923) ((-887 . -140) 90902) ((-887 . -138) 90881) ((-887 . -599) 90806) ((-887 . -128) T) ((-887 . -25) T) ((-887 . -99) T) ((-887 . -571) 90788) ((-887 . -1027) T) ((-887 . -23) T) ((-887 . -21) T) ((-887 . -984) T) ((-887 . -990) T) ((-887 . -1038) T) ((-887 . -675) T) ((-887 . -393) 90772) ((-887 . -307) 90741) ((-887 . -291) 90728) ((-887 . -572) 90589) ((-884 . -920) 90573) ((-884 . -19) 90557) ((-884 . -602) 90541) ((-884 . -270) 90518) ((-884 . -268) 90495) ((-884 . -563) 90472) ((-884 . -572) 90433) ((-884 . -468) 90417) ((-884 . -99) 90367) ((-884 . -1027) 90317) ((-884 . -491) 90250) ((-884 . -291) 90188) ((-884 . -571) 90100) ((-884 . -1134) T) ((-884 . -33) T) ((-884 . -144) 90084) ((-884 . -795) 90063) ((-884 . -353) 90047) ((-884 . -1178) 90031) ((-868 . -914) T) ((-868 . -571) 90013) ((-866 . -896) T) ((-866 . -571) 89995) ((-860 . -742) T) ((-860 . -795) T) ((-860 . -1027) T) ((-860 . -571) 89977) ((-860 . -99) T) ((-860 . -25) T) ((-860 . -675) T) ((-860 . -1038) T) ((-855 . -344) T) ((-855 . -1138) T) ((-855 . -862) T) ((-855 . -523) T) ((-855 . -162) T) ((-855 . -666) 89929) ((-855 . -37) 89881) ((-855 . -432) T) ((-855 . -289) T) ((-855 . -599) 89833) ((-855 . -675) T) ((-855 . -1038) T) ((-855 . -990) T) ((-855 . -984) T) ((-855 . -109) 89771) ((-855 . -989) 89723) ((-855 . -21) T) ((-855 . -23) T) ((-855 . -1027) T) ((-855 . -571) 89705) ((-855 . -99) T) ((-855 . -25) T) ((-855 . -128) T) ((-855 . -272) T) ((-855 . -226) T) ((-847 . -331) T) ((-847 . -1074) T) ((-847 . -349) T) ((-847 . -138) T) ((-847 . -344) T) ((-847 . -1138) T) ((-847 . -862) T) ((-847 . -523) T) ((-847 . -162) T) ((-847 . -666) 89670) ((-847 . -37) 89635) ((-847 . -432) T) ((-847 . -289) T) ((-847 . -109) 89591) ((-847 . -989) 89556) ((-847 . -599) 89521) ((-847 . -272) T) ((-847 . -226) T) ((-847 . -383) T) ((-847 . -984) T) ((-847 . -990) T) ((-847 . -1038) T) ((-847 . -675) T) ((-847 . -21) T) ((-847 . -23) T) ((-847 . -1027) T) ((-847 . -571) 89503) ((-847 . -99) T) ((-847 . -25) T) ((-847 . -128) T) ((-847 . -216) T) ((-847 . -310) 89490) ((-847 . -140) 89472) ((-847 . -975) 89459) ((-847 . -1187) 89446) ((-847 . -1196) 89433) ((-847 . -572) 89415) ((-846 . -1027) T) ((-846 . -571) 89397) ((-846 . -99) T) ((-843 . -845) 89381) ((-843 . -795) 89332) ((-843 . -675) T) ((-843 . -1027) T) ((-843 . -571) 89314) ((-843 . -99) T) ((-843 . -1038) T) ((-843 . -453) T) ((-842 . -117) 89298) ((-842 . -468) 89282) ((-842 . -99) 89260) ((-842 . -1027) 89238) ((-842 . -491) 89171) ((-842 . -291) 89109) ((-842 . -571) 89041) ((-842 . -1134) T) ((-842 . -33) T) ((-842 . -949) 89025) ((-839 . -1027) T) ((-839 . -571) 89007) ((-839 . -99) T) ((-834 . -795) T) ((-834 . -99) T) ((-834 . -571) 88989) ((-834 . -1027) T) ((-834 . -975) 88966) ((-831 . -1027) T) ((-831 . -571) 88948) ((-831 . -99) T) ((-831 . -975) 88916) ((-829 . -1027) T) ((-829 . -571) 88898) ((-829 . -99) T) ((-826 . -1027) T) ((-826 . -571) 88880) ((-826 . -99) T) ((-815 . -1027) T) ((-815 . -571) 88862) ((-815 . -99) T) ((-814 . -1134) T) ((-814 . -571) 88734) ((-814 . -1027) 88685) ((-814 . -99) 88636) ((-813 . -931) 88620) ((-813 . -1074) 88598) ((-813 . -975) 88466) ((-813 . -572) 88274) ((-813 . -958) 88253) ((-813 . -851) 88232) ((-813 . -825) 88216) ((-813 . -793) 88195) ((-813 . -745) 88174) ((-813 . -742) 88153) ((-813 . -795) 88104) ((-813 . -740) 88083) ((-813 . -739) 88062) ((-813 . -768) 88041) ((-813 . -827) 87966) ((-813 . -1134) T) ((-813 . -381) 87950) ((-813 . -593) 87898) ((-813 . -358) 87882) ((-813 . -268) 87840) ((-813 . -291) 87805) ((-813 . -491) 87717) ((-813 . -319) 87701) ((-813 . -226) T) ((-813 . -109) 87639) ((-813 . -989) 87591) ((-813 . -272) T) ((-813 . -666) 87543) ((-813 . -599) 87495) ((-813 . -37) 87447) ((-813 . -289) T) ((-813 . -432) T) ((-813 . -162) T) ((-813 . -523) T) ((-813 . -862) T) ((-813 . -1138) T) ((-813 . -344) T) ((-813 . -216) 87426) ((-813 . -841) 87385) ((-813 . -214) 87369) ((-813 . -140) 87348) ((-813 . -138) 87327) ((-813 . -128) T) ((-813 . -25) T) ((-813 . -99) T) ((-813 . -571) 87309) ((-813 . -1027) T) ((-813 . -23) T) ((-813 . -21) T) ((-813 . -984) T) ((-813 . -990) T) ((-813 . -1038) T) ((-813 . -675) T) ((-812 . -931) 87286) ((-812 . -1074) NIL) ((-812 . -975) 87263) ((-812 . -572) NIL) ((-812 . -958) NIL) ((-812 . -851) NIL) ((-812 . -825) 87240) ((-812 . -793) NIL) ((-812 . -745) NIL) ((-812 . -742) NIL) ((-812 . -795) NIL) ((-812 . -740) NIL) ((-812 . -739) NIL) ((-812 . -768) NIL) ((-812 . -827) NIL) ((-812 . -1134) T) ((-812 . -381) 87217) ((-812 . -593) 87194) ((-812 . -358) 87171) ((-812 . -268) 87122) ((-812 . -291) 87079) ((-812 . -491) 86987) ((-812 . -319) 86964) ((-812 . -226) T) ((-812 . -109) 86893) ((-812 . -989) 86838) ((-812 . -272) T) ((-812 . -666) 86783) ((-812 . -599) 86728) ((-812 . -37) 86673) ((-812 . -289) T) ((-812 . -432) T) ((-812 . -162) T) ((-812 . -523) T) ((-812 . -862) T) ((-812 . -1138) T) ((-812 . -344) T) ((-812 . -216) NIL) ((-812 . -841) NIL) ((-812 . -214) 86650) ((-812 . -140) T) ((-812 . -138) NIL) ((-812 . -128) T) ((-812 . -25) T) ((-812 . -99) T) ((-812 . -571) 86632) ((-812 . -1027) T) ((-812 . -23) T) ((-812 . -21) T) ((-812 . -984) T) ((-812 . -990) T) ((-812 . -1038) T) ((-812 . -675) T) ((-810 . -811) 86616) ((-810 . -862) T) ((-810 . -523) T) ((-810 . -272) T) ((-810 . -162) T) ((-810 . -666) 86603) ((-810 . -989) 86590) ((-810 . -109) 86575) ((-810 . -37) 86562) ((-810 . -432) T) ((-810 . -289) T) ((-810 . -984) T) ((-810 . -990) T) ((-810 . -1038) T) ((-810 . -675) T) ((-810 . -21) T) ((-810 . -23) T) ((-810 . -1027) T) ((-810 . -571) 86544) ((-810 . -99) T) ((-810 . -25) T) ((-810 . -128) T) ((-810 . -599) 86531) ((-810 . -140) T) ((-807 . -984) T) ((-807 . -990) T) ((-807 . -1038) T) ((-807 . -675) T) ((-807 . -21) T) ((-807 . -23) T) ((-807 . -1027) T) ((-807 . -571) 86513) ((-807 . -99) T) ((-807 . -25) T) ((-807 . -128) T) ((-807 . -599) 86473) ((-807 . -37) 86443) ((-807 . -109) 86408) ((-807 . -989) 86378) ((-807 . -666) 86348) ((-806 . -789) T) ((-806 . -795) T) ((-806 . -1027) T) ((-806 . -571) 86330) ((-806 . -99) T) ((-806 . -349) T) ((-806 . -572) 86252) ((-805 . -1027) T) ((-805 . -571) 86234) ((-805 . -99) T) ((-803 . -795) T) ((-803 . -99) T) ((-803 . -571) 86216) ((-803 . -1027) T) ((-800 . -797) 86200) ((-800 . -975) 86098) ((-800 . -393) 86082) ((-800 . -666) 86052) ((-800 . -599) 86026) ((-800 . -128) T) ((-800 . -25) T) ((-800 . -99) T) ((-800 . -571) 86008) ((-800 . -1027) T) ((-800 . -23) T) ((-800 . -21) T) ((-800 . -989) 85992) ((-800 . -109) 85971) ((-800 . -984) T) ((-800 . -990) T) ((-800 . -1038) T) ((-800 . -675) T) ((-800 . -37) 85941) ((-799 . -797) 85925) ((-799 . -975) 85823) ((-799 . -393) 85807) ((-799 . -666) 85777) ((-799 . -599) 85751) ((-799 . -128) T) ((-799 . -25) T) ((-799 . -99) T) ((-799 . -571) 85733) ((-799 . -1027) T) ((-799 . -23) T) ((-799 . -21) T) ((-799 . -989) 85717) ((-799 . -109) 85696) ((-799 . -984) T) ((-799 . -990) T) ((-799 . -1038) T) ((-799 . -675) T) ((-799 . -37) 85666) ((-787 . -1027) T) ((-787 . -571) 85648) ((-787 . -99) T) ((-787 . -393) 85632) ((-787 . -975) 85530) ((-787 . -21) 85482) ((-787 . -23) 85434) ((-787 . -25) 85386) ((-787 . -128) 85338) ((-787 . -793) 85317) ((-787 . -599) 85290) ((-787 . -990) 85269) ((-787 . -984) 85248) ((-787 . -745) 85227) ((-787 . -742) 85206) ((-787 . -795) 85185) ((-787 . -740) 85164) ((-787 . -739) 85143) ((-787 . -1038) 85122) ((-787 . -675) 85101) ((-786 . -1027) T) ((-786 . -571) 85083) ((-786 . -99) T) ((-782 . -984) T) ((-782 . -990) T) ((-782 . -1038) T) ((-782 . -675) T) ((-782 . -21) T) ((-782 . -23) T) ((-782 . -1027) T) ((-782 . -571) 85065) ((-782 . -99) T) ((-782 . -25) T) ((-782 . -128) T) ((-782 . -599) 85025) ((-782 . -975) 84994) ((-782 . -268) 84973) ((-782 . -140) 84952) ((-782 . -138) 84931) ((-782 . -37) 84901) ((-782 . -109) 84866) ((-782 . -989) 84836) ((-782 . -666) 84806) ((-780 . -1027) T) ((-780 . -571) 84788) ((-780 . -99) T) ((-780 . -393) 84772) ((-780 . -975) 84670) ((-780 . -21) 84622) ((-780 . -23) 84574) ((-780 . -25) 84526) ((-780 . -128) 84478) ((-780 . -793) 84457) ((-780 . -599) 84430) ((-780 . -990) 84409) ((-780 . -984) 84388) ((-780 . -745) 84367) ((-780 . -742) 84346) ((-780 . -795) 84325) ((-780 . -740) 84304) ((-780 . -739) 84283) ((-780 . -1038) 84262) ((-780 . -675) 84241) ((-776 . -657) 84225) ((-776 . -666) 84195) ((-776 . -599) 84169) ((-776 . -128) T) ((-776 . -25) T) ((-776 . -99) T) ((-776 . -571) 84151) ((-776 . -1027) T) ((-776 . -23) T) ((-776 . -21) T) ((-776 . -989) 84135) ((-776 . -109) 84114) ((-776 . -984) T) ((-776 . -990) T) ((-776 . -1038) T) ((-776 . -675) T) ((-776 . -37) 84084) ((-776 . -216) 84063) ((-774 . -1027) T) ((-774 . -571) 84045) ((-774 . -99) T) ((-773 . -1027) T) ((-773 . -571) 84027) ((-773 . -99) T) ((-772 . -1027) T) ((-772 . -571) 84009) ((-772 . -99) T) ((-767 . -791) T) ((-767 . -795) T) ((-767 . -802) T) ((-767 . -1038) T) ((-767 . -99) T) ((-767 . -571) 83991) ((-767 . -1027) T) ((-767 . -675) T) ((-767 . -975) 83975) ((-766 . -248) 83959) ((-766 . -975) 83943) ((-766 . -1027) T) ((-766 . -571) 83925) ((-766 . -99) T) ((-766 . -795) T) ((-765 . -109) 83867) ((-765 . -989) 83818) ((-765 . -21) T) ((-765 . -23) T) ((-765 . -1027) T) ((-765 . -571) 83800) ((-765 . -99) T) ((-765 . -25) T) ((-765 . -128) T) ((-765 . -599) 83751) ((-765 . -216) T) ((-765 . -675) T) ((-765 . -1038) T) ((-765 . -990) T) ((-765 . -984) T) ((-765 . -344) 83730) ((-765 . -1138) 83709) ((-765 . -862) 83688) ((-765 . -523) 83667) ((-765 . -162) 83646) ((-765 . -666) 83588) ((-765 . -37) 83530) ((-765 . -432) 83509) ((-765 . -289) 83488) ((-765 . -272) 83467) ((-765 . -226) 83446) ((-764 . -235) 83385) ((-764 . -975) 83215) ((-764 . -572) NIL) ((-764 . -307) 83177) ((-764 . -393) 83161) ((-764 . -37) 83010) ((-764 . -109) 82839) ((-764 . -989) 82682) ((-764 . -599) 82607) ((-764 . -666) 82456) ((-764 . -138) 82435) ((-764 . -140) 82414) ((-764 . -162) 82325) ((-764 . -523) 82256) ((-764 . -272) 82187) ((-764 . -46) 82149) ((-764 . -358) 82133) ((-764 . -593) 82081) ((-764 . -432) 82032) ((-764 . -491) 81900) ((-764 . -795) 81879) ((-764 . -841) 81815) ((-764 . -827) NIL) ((-764 . -851) 81794) ((-764 . -1138) 81773) ((-764 . -891) 81720) ((-764 . -291) 81707) ((-764 . -216) 81686) ((-764 . -128) T) ((-764 . -25) T) ((-764 . -99) T) ((-764 . -571) 81668) ((-764 . -1027) T) ((-764 . -23) T) ((-764 . -21) T) ((-764 . -675) T) ((-764 . -1038) T) ((-764 . -990) T) ((-764 . -984) T) ((-764 . -214) 81652) ((-763 . -221) 81631) ((-763 . -1187) 81601) ((-763 . -739) 81580) ((-763 . -793) 81559) ((-763 . -745) 81510) ((-763 . -742) 81461) ((-763 . -795) 81412) ((-763 . -740) 81363) ((-763 . -741) 81342) ((-763 . -270) 81319) ((-763 . -268) 81296) ((-763 . -468) 81280) ((-763 . -491) 81213) ((-763 . -291) 81151) ((-763 . -1134) T) ((-763 . -33) T) ((-763 . -563) 81128) ((-763 . -975) 80957) ((-763 . -393) 80926) ((-763 . -593) 80834) ((-763 . -358) 80804) ((-763 . -349) 80783) ((-763 . -216) 80736) ((-763 . -841) 80669) ((-763 . -214) 80639) ((-763 . -109) 80530) ((-763 . -989) 80428) ((-763 . -162) 80407) ((-763 . -571) 80139) ((-763 . -666) 80081) ((-763 . -599) 79931) ((-763 . -128) 79802) ((-763 . -23) 79673) ((-763 . -21) 79584) ((-763 . -984) 79515) ((-763 . -990) 79446) ((-763 . -1038) 79357) ((-763 . -675) 79268) ((-763 . -37) 79238) ((-763 . -1027) 79029) ((-763 . -99) 78820) ((-763 . -25) 78672) ((-756 . -1027) T) ((-756 . -571) 78654) ((-756 . -99) T) ((-746 . -744) 78638) ((-746 . -795) 78617) ((-746 . -975) 78404) ((-746 . -393) 78368) ((-746 . -268) 78326) ((-746 . -291) 78291) ((-746 . -491) 78203) ((-746 . -319) 78187) ((-746 . -349) 78166) ((-746 . -572) 78127) ((-746 . -140) 78106) ((-746 . -138) 78085) ((-746 . -666) 78069) ((-746 . -599) 78043) ((-746 . -128) T) ((-746 . -25) T) ((-746 . -99) T) ((-746 . -571) 78025) ((-746 . -1027) T) ((-746 . -23) T) ((-746 . -21) T) ((-746 . -989) 78009) ((-746 . -109) 77988) ((-746 . -984) T) ((-746 . -990) T) ((-746 . -1038) T) ((-746 . -675) T) ((-746 . -37) 77972) ((-729 . -1155) 77956) ((-729 . -1074) 77934) ((-729 . -572) NIL) ((-729 . -291) 77921) ((-729 . -491) 77868) ((-729 . -307) 77845) ((-729 . -975) 77706) ((-729 . -393) 77690) ((-729 . -37) 77519) ((-729 . -109) 77328) ((-729 . -989) 77151) ((-729 . -599) 77076) ((-729 . -666) 76905) ((-729 . -138) 76884) ((-729 . -140) 76863) ((-729 . -46) 76840) ((-729 . -358) 76824) ((-729 . -593) 76772) ((-729 . -795) 76751) ((-729 . -841) 76694) ((-729 . -827) NIL) ((-729 . -851) 76673) ((-729 . -1138) 76652) ((-729 . -891) 76621) ((-729 . -862) 76600) ((-729 . -523) 76511) ((-729 . -272) 76422) ((-729 . -162) 76313) ((-729 . -432) 76244) ((-729 . -289) 76223) ((-729 . -268) 76150) ((-729 . -216) T) ((-729 . -128) T) ((-729 . -25) T) ((-729 . -99) T) ((-729 . -571) 76111) ((-729 . -1027) T) ((-729 . -23) T) ((-729 . -21) T) ((-729 . -675) T) ((-729 . -1038) T) ((-729 . -990) T) ((-729 . -984) T) ((-729 . -214) 76095) ((-728 . -997) 76062) ((-728 . -572) 75697) ((-728 . -291) 75684) ((-728 . -491) 75636) ((-728 . -307) 75608) ((-728 . -975) 75467) ((-728 . -393) 75451) ((-728 . -37) 75300) ((-728 . -599) 75225) ((-728 . -675) T) ((-728 . -1038) T) ((-728 . -990) T) ((-728 . -984) T) ((-728 . -109) 75054) ((-728 . -989) 74897) ((-728 . -21) T) ((-728 . -23) T) ((-728 . -1027) T) ((-728 . -571) 74811) ((-728 . -99) T) ((-728 . -25) T) ((-728 . -128) T) ((-728 . -666) 74660) ((-728 . -138) 74639) ((-728 . -140) 74618) ((-728 . -162) 74529) ((-728 . -523) 74460) ((-728 . -272) 74391) ((-728 . -46) 74363) ((-728 . -358) 74347) ((-728 . -593) 74295) ((-728 . -432) 74246) ((-728 . -795) 74225) ((-728 . -841) 74209) ((-728 . -827) 74068) ((-728 . -851) 74047) ((-728 . -1138) 74026) ((-728 . -891) 73993) ((-721 . -1027) T) ((-721 . -571) 73975) ((-721 . -99) T) ((-719 . -741) T) ((-719 . -128) T) ((-719 . -25) T) ((-719 . -99) T) ((-719 . -571) 73957) ((-719 . -1027) T) ((-719 . -23) T) ((-719 . -740) T) ((-719 . -795) T) ((-719 . -742) T) ((-719 . -745) T) ((-719 . -675) T) ((-719 . -1038) T) ((-717 . -1027) T) ((-717 . -571) 73939) ((-717 . -99) T) ((-685 . -686) 73923) ((-685 . -1025) 73907) ((-685 . -218) 73891) ((-685 . -572) 73852) ((-685 . -144) 73836) ((-685 . -468) 73820) ((-685 . -99) T) ((-685 . -1027) T) ((-685 . -491) 73753) ((-685 . -291) 73691) ((-685 . -571) 73673) ((-685 . -1134) T) ((-685 . -33) T) ((-685 . -104) 73657) ((-685 . -643) 73641) ((-684 . -984) T) ((-684 . -990) T) ((-684 . -1038) T) ((-684 . -675) T) ((-684 . -21) T) ((-684 . -23) T) ((-684 . -1027) T) ((-684 . -571) 73623) ((-684 . -99) T) ((-684 . -25) T) ((-684 . -128) T) ((-684 . -599) 73583) ((-684 . -975) 73554) ((-684 . -140) 73533) ((-684 . -138) 73512) ((-684 . -37) 73482) ((-684 . -109) 73447) ((-684 . -989) 73417) ((-684 . -666) 73387) ((-684 . -349) 73340) ((-680 . -891) 73293) ((-680 . -975) 73171) ((-680 . -1138) 73150) ((-680 . -851) 73129) ((-680 . -827) NIL) ((-680 . -841) 73106) ((-680 . -795) 73085) ((-680 . -491) 73028) ((-680 . -432) 72979) ((-680 . -593) 72927) ((-680 . -358) 72911) ((-680 . -46) 72876) ((-680 . -37) 72725) ((-680 . -666) 72574) ((-680 . -272) 72505) ((-680 . -523) 72436) ((-680 . -109) 72265) ((-680 . -989) 72108) ((-680 . -162) 72019) ((-680 . -140) 71998) ((-680 . -138) 71977) ((-680 . -599) 71902) ((-680 . -128) T) ((-680 . -25) T) ((-680 . -99) T) ((-680 . -571) 71884) ((-680 . -1027) T) ((-680 . -23) T) ((-680 . -21) T) ((-680 . -984) T) ((-680 . -990) T) ((-680 . -1038) T) ((-680 . -675) T) ((-680 . -393) 71868) ((-680 . -307) 71833) ((-680 . -291) 71820) ((-680 . -572) 71681) ((-667 . -453) T) ((-667 . -1038) T) ((-667 . -99) T) ((-667 . -571) 71663) ((-667 . -1027) T) ((-667 . -675) T) ((-664 . -984) T) ((-664 . -990) T) ((-664 . -1038) T) ((-664 . -675) T) ((-664 . -21) T) ((-664 . -23) T) ((-664 . -1027) T) ((-664 . -571) 71645) ((-664 . -99) T) ((-664 . -25) T) ((-664 . -128) T) ((-664 . -599) 71632) ((-663 . -984) T) ((-663 . -990) T) ((-663 . -1038) T) ((-663 . -675) T) ((-663 . -21) T) ((-663 . -23) T) ((-663 . -1027) T) ((-663 . -571) 71614) ((-663 . -99) T) ((-663 . -25) T) ((-663 . -128) T) ((-663 . -599) 71574) ((-663 . -975) 71543) ((-663 . -268) 71522) ((-663 . -140) 71501) ((-663 . -138) 71480) ((-663 . -37) 71450) ((-663 . -109) 71415) ((-663 . -989) 71385) ((-663 . -666) 71355) ((-662 . -795) T) ((-662 . -99) T) ((-662 . -571) 71337) ((-662 . -1027) T) ((-661 . -1155) 71321) ((-661 . -1074) 71299) ((-661 . -572) NIL) ((-661 . -291) 71286) ((-661 . -491) 71233) ((-661 . -307) 71210) ((-661 . -975) 71092) ((-661 . -393) 71076) ((-661 . -37) 70905) ((-661 . -109) 70714) ((-661 . -989) 70537) ((-661 . -599) 70462) ((-661 . -666) 70291) ((-661 . -138) 70270) ((-661 . -140) 70249) ((-661 . -46) 70226) ((-661 . -358) 70210) ((-661 . -593) 70158) ((-661 . -795) 70137) ((-661 . -841) 70080) ((-661 . -827) NIL) ((-661 . -851) 70059) ((-661 . -1138) 70038) ((-661 . -891) 70007) ((-661 . -862) 69986) ((-661 . -523) 69897) ((-661 . -272) 69808) ((-661 . -162) 69699) ((-661 . -432) 69630) ((-661 . -289) 69609) ((-661 . -268) 69536) ((-661 . -216) T) ((-661 . -128) T) ((-661 . -25) T) ((-661 . -99) T) ((-661 . -571) 69518) ((-661 . -1027) T) ((-661 . -23) T) ((-661 . -21) T) ((-661 . -675) T) ((-661 . -1038) T) ((-661 . -990) T) ((-661 . -984) T) ((-661 . -214) 69502) ((-661 . -349) 69481) ((-660 . -344) T) ((-660 . -1138) T) ((-660 . -862) T) ((-660 . -523) T) ((-660 . -162) T) ((-660 . -666) 69446) ((-660 . -37) 69411) ((-660 . -432) T) ((-660 . -289) T) ((-660 . -599) 69376) ((-660 . -675) T) ((-660 . -1038) T) ((-660 . -990) T) ((-660 . -984) T) ((-660 . -109) 69332) ((-660 . -989) 69297) ((-660 . -21) T) ((-660 . -23) T) ((-660 . -1027) T) ((-660 . -571) 69279) ((-660 . -99) T) ((-660 . -25) T) ((-660 . -128) T) ((-660 . -272) T) ((-660 . -226) T) ((-659 . -1027) T) ((-659 . -571) 69261) ((-659 . -99) T) ((-651 . -129) T) ((-651 . -1027) T) ((-651 . -571) 69230) ((-651 . -99) T) ((-651 . -795) T) ((-649 . -368) T) ((-649 . -975) 69212) ((-649 . -795) T) ((-649 . -37) 69199) ((-649 . -675) T) ((-649 . -1038) T) ((-649 . -990) T) ((-649 . -984) T) ((-649 . -109) 69184) ((-649 . -989) 69171) ((-649 . -21) T) ((-649 . -23) T) ((-649 . -1027) T) ((-649 . -571) 69153) ((-649 . -99) T) ((-649 . -25) T) ((-649 . -128) T) ((-649 . -599) 69140) ((-649 . -666) 69127) ((-649 . -162) T) ((-649 . -272) T) ((-649 . -523) T) ((-649 . -515) T) ((-649 . -1138) T) ((-649 . -1074) T) ((-649 . -572) 69042) ((-649 . -958) T) ((-649 . -827) 69024) ((-649 . -793) T) ((-649 . -745) T) ((-649 . -742) T) ((-649 . -740) T) ((-649 . -739) T) ((-649 . -768) T) ((-649 . -593) 69006) ((-649 . -862) T) ((-649 . -432) T) ((-649 . -289) T) ((-649 . -216) T) ((-649 . -136) T) ((-649 . -140) T) ((-647 . -385) T) ((-647 . -140) T) ((-647 . -599) 68971) ((-647 . -128) T) ((-647 . -25) T) ((-647 . -99) T) ((-647 . -571) 68953) ((-647 . -1027) T) ((-647 . -23) T) ((-647 . -21) T) ((-647 . -675) T) ((-647 . -1038) T) ((-647 . -990) T) ((-647 . -984) T) ((-647 . -572) 68898) ((-647 . -344) T) ((-647 . -1138) T) ((-647 . -862) T) ((-647 . -523) T) ((-647 . -162) T) ((-647 . -666) 68863) ((-647 . -37) 68828) ((-647 . -432) T) ((-647 . -289) T) ((-647 . -109) 68784) ((-647 . -989) 68749) ((-647 . -272) T) ((-647 . -226) T) ((-647 . -793) T) ((-647 . -745) T) ((-647 . -742) T) ((-647 . -795) T) ((-647 . -740) T) ((-647 . -739) T) ((-647 . -827) 68731) ((-647 . -941) T) ((-647 . -958) T) ((-647 . -975) 68676) ((-647 . -992) T) ((-647 . -368) T) ((-642 . -368) T) ((-642 . -975) 68621) ((-642 . -795) T) ((-642 . -37) 68571) ((-642 . -675) T) ((-642 . -1038) T) ((-642 . -990) T) ((-642 . -984) T) ((-642 . -109) 68505) ((-642 . -989) 68455) ((-642 . -21) T) ((-642 . -23) T) ((-642 . -1027) T) ((-642 . -571) 68437) ((-642 . -99) T) ((-642 . -25) T) ((-642 . -128) T) ((-642 . -599) 68387) ((-642 . -666) 68337) ((-642 . -162) T) ((-642 . -272) T) ((-642 . -523) T) ((-642 . -156) 68319) ((-642 . -34) NIL) ((-642 . -93) NIL) ((-642 . -266) NIL) ((-642 . -471) NIL) ((-642 . -1123) NIL) ((-642 . -1120) NIL) ((-642 . -941) NIL) ((-642 . -851) NIL) ((-642 . -572) 68227) ((-642 . -825) 68209) ((-642 . -349) NIL) ((-642 . -331) NIL) ((-642 . -1074) NIL) ((-642 . -383) NIL) ((-642 . -391) 68176) ((-642 . -351) 68143) ((-642 . -673) 68110) ((-642 . -393) 68092) ((-642 . -827) 68074) ((-642 . -1134) T) ((-642 . -381) 68056) ((-642 . -593) 68038) ((-642 . -358) 68020) ((-642 . -268) NIL) ((-642 . -291) NIL) ((-642 . -491) NIL) ((-642 . -319) 68002) ((-642 . -226) T) ((-642 . -1138) T) ((-642 . -344) T) ((-642 . -862) T) ((-642 . -432) T) ((-642 . -289) T) ((-642 . -216) NIL) ((-642 . -841) NIL) ((-642 . -214) 67984) ((-642 . -140) T) ((-642 . -138) NIL) ((-639 . -1175) T) ((-639 . -571) 67966) ((-637 . -634) 67924) ((-637 . -468) 67908) ((-637 . -99) 67886) ((-637 . -1027) 67864) ((-637 . -491) 67797) ((-637 . -291) 67735) ((-637 . -571) 67667) ((-637 . -1134) T) ((-637 . -33) T) ((-637 . -55) 67625) ((-637 . -572) 67586) ((-626 . -795) T) ((-626 . -99) T) ((-626 . -571) 67568) ((-626 . -1027) T) ((-626 . -975) 67552) ((-625 . -468) 67536) ((-625 . -99) 67514) ((-625 . -1027) 67492) ((-625 . -491) 67425) ((-625 . -291) 67363) ((-625 . -571) 67295) ((-625 . -1134) T) ((-625 . -33) T) ((-622 . -795) T) ((-622 . -99) T) ((-622 . -571) 67277) ((-622 . -1027) T) ((-622 . -975) 67261) ((-621 . -1048) 67206) ((-621 . -468) 67190) ((-621 . -491) 67123) ((-621 . -291) 67061) ((-621 . -1134) T) ((-621 . -33) T) ((-621 . -986) 67001) ((-621 . -975) 66899) ((-621 . -393) 66883) ((-621 . -593) 66831) ((-621 . -358) 66815) ((-621 . -216) 66794) ((-621 . -841) 66753) ((-621 . -214) 66737) ((-621 . -666) 66721) ((-621 . -599) 66695) ((-621 . -128) T) ((-621 . -25) T) ((-621 . -99) T) ((-621 . -571) 66657) ((-621 . -1027) T) ((-621 . -23) T) ((-621 . -21) T) ((-621 . -989) 66641) ((-621 . -109) 66620) ((-621 . -984) T) ((-621 . -990) T) ((-621 . -1038) T) ((-621 . -675) T) ((-621 . -37) 66580) ((-621 . -399) 66564) ((-621 . -693) 66548) ((-621 . -669) T) ((-621 . -710) T) ((-621 . -348) 66532) ((-615 . -355) 66511) ((-615 . -666) 66495) ((-615 . -599) 66479) ((-615 . -128) T) ((-615 . -25) T) ((-615 . -99) T) ((-615 . -571) 66461) ((-615 . -1027) T) ((-615 . -23) T) ((-615 . -21) T) ((-615 . -989) 66445) ((-615 . -109) 66424) ((-615 . -589) 66408) ((-615 . -365) 66380) ((-615 . -975) 66357) ((-607 . -609) 66341) ((-607 . -37) 66311) ((-607 . -599) 66285) ((-607 . -675) T) ((-607 . -1038) T) ((-607 . -990) T) ((-607 . -984) T) ((-607 . -109) 66264) ((-607 . -989) 66248) ((-607 . -21) T) ((-607 . -23) T) ((-607 . -1027) T) ((-607 . -571) 66230) ((-607 . -99) T) ((-607 . -25) T) ((-607 . -128) T) ((-607 . -666) 66200) ((-607 . -393) 66184) ((-607 . -975) 66082) ((-607 . -797) 66066) ((-607 . -268) 66027) ((-606 . -609) 66011) ((-606 . -37) 65981) ((-606 . -599) 65955) ((-606 . -675) T) ((-606 . -1038) T) ((-606 . -990) T) ((-606 . -984) T) ((-606 . -109) 65934) ((-606 . -989) 65918) ((-606 . -21) T) ((-606 . -23) T) ((-606 . -1027) T) ((-606 . -571) 65900) ((-606 . -99) T) ((-606 . -25) T) ((-606 . -128) T) ((-606 . -666) 65870) ((-606 . -393) 65854) ((-606 . -975) 65752) ((-606 . -797) 65736) ((-606 . -268) 65715) ((-605 . -609) 65699) ((-605 . -37) 65669) ((-605 . -599) 65643) ((-605 . -675) T) ((-605 . -1038) T) ((-605 . -990) T) ((-605 . -984) T) ((-605 . -109) 65622) ((-605 . -989) 65606) ((-605 . -21) T) ((-605 . -23) T) ((-605 . -1027) T) ((-605 . -571) 65588) ((-605 . -99) T) ((-605 . -25) T) ((-605 . -128) T) ((-605 . -666) 65558) ((-605 . -393) 65542) ((-605 . -975) 65440) ((-605 . -797) 65424) ((-605 . -268) 65403) ((-603 . -666) 65387) ((-603 . -599) 65371) ((-603 . -128) T) ((-603 . -25) T) ((-603 . -99) T) ((-603 . -571) 65353) ((-603 . -1027) T) ((-603 . -23) T) ((-603 . -21) T) ((-603 . -989) 65337) ((-603 . -109) 65316) ((-603 . -739) 65295) ((-603 . -740) 65274) ((-603 . -795) 65253) ((-603 . -742) 65232) ((-603 . -745) 65211) ((-600 . -1027) T) ((-600 . -571) 65193) ((-600 . -99) T) ((-600 . -975) 65177) ((-598 . -643) 65161) ((-598 . -104) 65145) ((-598 . -33) T) ((-598 . -1134) T) ((-598 . -571) 65077) ((-598 . -291) 65015) ((-598 . -491) 64948) ((-598 . -1027) 64926) ((-598 . -99) 64904) ((-598 . -468) 64888) ((-598 . -144) 64872) ((-598 . -572) 64833) ((-598 . -218) 64817) ((-594 . -617) 64801) ((-594 . -1168) 64785) ((-594 . -949) 64769) ((-594 . -1072) 64753) ((-594 . -795) 64732) ((-594 . -353) 64716) ((-594 . -602) 64700) ((-594 . -270) 64677) ((-594 . -268) 64654) ((-594 . -563) 64631) ((-594 . -572) 64592) ((-594 . -468) 64576) ((-594 . -99) 64526) ((-594 . -1027) 64476) ((-594 . -491) 64409) ((-594 . -291) 64347) ((-594 . -571) 64259) ((-594 . -1134) T) ((-594 . -33) T) ((-594 . -144) 64243) ((-594 . -264) 64227) ((-594 . -769) 64206) ((-587 . -693) 64190) ((-587 . -669) T) ((-587 . -710) T) ((-587 . -109) 64169) ((-587 . -989) 64153) ((-587 . -21) T) ((-587 . -23) T) ((-587 . -1027) T) ((-587 . -571) 64122) ((-587 . -99) T) ((-587 . -25) T) ((-587 . -128) T) ((-587 . -599) 64106) ((-587 . -666) 64090) ((-587 . -399) 64055) ((-587 . -348) 63987) ((-586 . -1111) 63962) ((-586 . -212) 63908) ((-586 . -104) 63854) ((-586 . -291) 63705) ((-586 . -491) 63549) ((-586 . -468) 63480) ((-586 . -144) 63426) ((-586 . -572) NIL) ((-586 . -218) 63372) ((-586 . -568) 63347) ((-586 . -270) 63322) ((-586 . -268) 63297) ((-586 . -99) T) ((-586 . -1027) T) ((-586 . -571) 63279) ((-586 . -1134) T) ((-586 . -33) T) ((-586 . -563) 63254) ((-581 . -453) T) ((-581 . -1038) T) ((-581 . -99) T) ((-581 . -571) 63236) ((-581 . -1027) T) ((-581 . -675) T) ((-578 . -214) 63220) ((-578 . -841) 63179) ((-578 . -984) T) ((-578 . -990) T) ((-578 . -1038) T) ((-578 . -675) T) ((-578 . -21) T) ((-578 . -23) T) ((-578 . -1027) T) ((-578 . -571) 63161) ((-578 . -99) T) ((-578 . -25) T) ((-578 . -128) T) ((-578 . -599) 63148) ((-578 . -216) 63127) ((-578 . -523) T) ((-578 . -272) T) ((-578 . -162) T) ((-578 . -666) 63114) ((-578 . -989) 63101) ((-578 . -109) 63086) ((-578 . -37) 63073) ((-578 . -572) 63050) ((-578 . -393) 63034) ((-578 . -975) 62919) ((-578 . -140) 62898) ((-578 . -138) 62877) ((-578 . -289) 62856) ((-578 . -432) 62835) ((-578 . -862) 62814) ((-574 . -37) 62798) ((-574 . -599) 62772) ((-574 . -675) T) ((-574 . -1038) T) ((-574 . -990) T) ((-574 . -984) T) ((-574 . -109) 62751) ((-574 . -989) 62735) ((-574 . -21) T) ((-574 . -23) T) ((-574 . -1027) T) ((-574 . -571) 62717) ((-574 . -99) T) ((-574 . -25) T) ((-574 . -128) T) ((-574 . -666) 62701) ((-574 . -793) 62680) ((-574 . -745) 62659) ((-574 . -742) 62638) ((-574 . -795) 62617) ((-574 . -740) 62596) ((-574 . -739) 62575) ((-569 . -129) T) ((-569 . -1027) T) ((-569 . -571) 62557) ((-569 . -99) T) ((-569 . -795) T) ((-569 . -825) 62541) ((-569 . -572) 62402) ((-566 . -346) 62342) ((-566 . -99) T) ((-566 . -571) 62324) ((-566 . -1027) T) ((-566 . -1111) 62300) ((-566 . -212) 62247) ((-566 . -104) 62194) ((-566 . -291) 61989) ((-566 . -491) 61772) ((-566 . -468) 61706) ((-566 . -144) 61653) ((-566 . -572) NIL) ((-566 . -218) 61600) ((-566 . -568) 61576) ((-566 . -270) 61552) ((-566 . -268) 61528) ((-566 . -1134) T) ((-566 . -33) T) ((-566 . -563) 61504) ((-565 . -693) 61488) ((-565 . -669) T) ((-565 . -710) T) ((-565 . -109) 61467) ((-565 . -989) 61451) ((-565 . -21) T) ((-565 . -23) T) ((-565 . -1027) T) ((-565 . -571) 61420) ((-565 . -99) T) ((-565 . -25) T) ((-565 . -128) T) ((-565 . -599) 61404) ((-565 . -666) 61388) ((-565 . -399) 61353) ((-565 . -348) 61285) ((-564 . -571) 61252) ((-561 . -1178) 61236) ((-561 . -353) 61220) ((-561 . -795) 61199) ((-561 . -144) 61183) ((-561 . -33) T) ((-561 . -1134) T) ((-561 . -571) 61095) ((-561 . -291) 61033) ((-561 . -491) 60966) ((-561 . -1027) 60916) ((-561 . -99) 60866) ((-561 . -468) 60850) ((-561 . -572) 60811) ((-561 . -563) 60788) ((-561 . -268) 60765) ((-561 . -270) 60742) ((-561 . -602) 60726) ((-561 . -19) 60710) ((-560 . -571) 60692) ((-556 . -984) T) ((-556 . -990) T) ((-556 . -1038) T) ((-556 . -675) T) ((-556 . -21) T) ((-556 . -23) T) ((-556 . -1027) T) ((-556 . -571) 60674) ((-556 . -99) T) ((-556 . -25) T) ((-556 . -128) T) ((-556 . -599) 60661) ((-556 . -523) 60640) ((-556 . -272) 60619) ((-556 . -162) 60598) ((-556 . -666) 60571) ((-556 . -989) 60544) ((-556 . -109) 60515) ((-556 . -37) 60488) ((-555 . -1158) 60465) ((-555 . -46) 60442) ((-555 . -37) 60339) ((-555 . -666) 60236) ((-555 . -272) 60215) ((-555 . -523) 60194) ((-555 . -109) 60063) ((-555 . -989) 59946) ((-555 . -162) 59897) ((-555 . -140) 59876) ((-555 . -138) 59855) ((-555 . -599) 59780) ((-555 . -913) 59749) ((-555 . -841) 59662) ((-555 . -268) 59647) ((-555 . -984) T) ((-555 . -990) T) ((-555 . -1038) T) ((-555 . -675) T) ((-555 . -21) T) ((-555 . -23) T) ((-555 . -1027) T) ((-555 . -571) 59629) ((-555 . -99) T) ((-555 . -25) T) ((-555 . -128) T) ((-555 . -216) 59588) ((-553 . -1067) T) ((-553 . -353) 59570) ((-553 . -795) T) ((-553 . -144) 59552) ((-553 . -33) T) ((-553 . -1134) T) ((-553 . -571) 59534) ((-553 . -291) NIL) ((-553 . -491) NIL) ((-553 . -1027) T) ((-553 . -99) T) ((-553 . -468) 59516) ((-553 . -572) NIL) ((-553 . -563) 59491) ((-553 . -268) 59466) ((-553 . -270) 59441) ((-553 . -602) 59423) ((-553 . -19) 59405) ((-545 . -666) 59380) ((-545 . -599) 59355) ((-545 . -128) T) ((-545 . -25) T) ((-545 . -99) T) ((-545 . -571) 59337) ((-545 . -1027) T) ((-545 . -23) T) ((-545 . -21) T) ((-545 . -989) 59312) ((-545 . -109) 59280) ((-545 . -975) 59264) ((-543 . -331) T) ((-543 . -1074) T) ((-543 . -349) T) ((-543 . -138) T) ((-543 . -344) T) ((-543 . -1138) T) ((-543 . -862) T) ((-543 . -523) T) ((-543 . -162) T) ((-543 . -666) 59229) ((-543 . -37) 59194) ((-543 . -432) T) ((-543 . -289) T) ((-543 . -109) 59150) ((-543 . -989) 59115) ((-543 . -599) 59080) ((-543 . -272) T) ((-543 . -226) T) ((-543 . -383) T) ((-543 . -984) T) ((-543 . -990) T) ((-543 . -1038) T) ((-543 . -675) T) ((-543 . -21) T) ((-543 . -23) T) ((-543 . -1027) T) ((-543 . -571) 59062) ((-543 . -99) T) ((-543 . -25) T) ((-543 . -128) T) ((-543 . -216) T) ((-543 . -310) 59049) ((-543 . -140) 59031) ((-543 . -975) 59018) ((-543 . -1187) 59005) ((-543 . -1196) 58992) ((-543 . -572) 58974) ((-542 . -811) 58958) ((-542 . -862) T) ((-542 . -523) T) ((-542 . -272) T) ((-542 . -162) T) ((-542 . -666) 58945) ((-542 . -989) 58932) ((-542 . -109) 58917) ((-542 . -37) 58904) ((-542 . -432) T) ((-542 . -289) T) ((-542 . -984) T) ((-542 . -990) T) ((-542 . -1038) T) ((-542 . -675) T) ((-542 . -21) T) ((-542 . -23) T) ((-542 . -1027) T) ((-542 . -571) 58886) ((-542 . -99) T) ((-542 . -25) T) ((-542 . -128) T) ((-542 . -599) 58873) ((-542 . -140) T) ((-537 . -521) 58857) ((-537 . -34) T) ((-537 . -93) T) ((-537 . -266) T) ((-537 . -471) T) ((-537 . -1123) T) ((-537 . -1120) T) ((-537 . -975) 58839) ((-537 . -941) T) ((-537 . -795) T) ((-537 . -523) T) ((-537 . -272) T) ((-537 . -162) T) ((-537 . -666) 58826) ((-537 . -599) 58813) ((-537 . -128) T) ((-537 . -25) T) ((-537 . -99) T) ((-537 . -571) 58795) ((-537 . -1027) T) ((-537 . -23) T) ((-537 . -21) T) ((-537 . -989) 58782) ((-537 . -109) 58767) ((-537 . -984) T) ((-537 . -990) T) ((-537 . -1038) T) ((-537 . -675) T) ((-537 . -37) 58754) ((-537 . -432) T) ((-517 . -1111) 58733) ((-517 . -212) 58683) ((-517 . -104) 58633) ((-517 . -291) 58437) ((-517 . -491) 58229) ((-517 . -468) 58166) ((-517 . -144) 58116) ((-517 . -572) NIL) ((-517 . -218) 58066) ((-517 . -568) 58045) ((-517 . -270) 58024) ((-517 . -268) 58003) ((-517 . -99) T) ((-517 . -1027) T) ((-517 . -571) 57985) ((-517 . -1134) T) ((-517 . -33) T) ((-517 . -563) 57964) ((-516 . -515) T) ((-516 . -1138) T) ((-516 . -1074) T) ((-516 . -975) 57946) ((-516 . -572) 57845) ((-516 . -958) T) ((-516 . -827) 57827) ((-516 . -793) T) ((-516 . -745) T) ((-516 . -742) T) ((-516 . -795) T) ((-516 . -740) T) ((-516 . -739) T) ((-516 . -768) T) ((-516 . -593) 57809) ((-516 . -862) T) ((-516 . -523) T) ((-516 . -272) T) ((-516 . -162) T) ((-516 . -666) 57796) ((-516 . -989) 57783) ((-516 . -109) 57768) ((-516 . -37) 57755) ((-516 . -432) T) ((-516 . -289) T) ((-516 . -216) T) ((-516 . -136) T) ((-516 . -984) T) ((-516 . -990) T) ((-516 . -1038) T) ((-516 . -675) T) ((-516 . -21) T) ((-516 . -23) T) ((-516 . -1027) T) ((-516 . -571) 57737) ((-516 . -99) T) ((-516 . -25) T) ((-516 . -128) T) ((-516 . -599) 57724) ((-516 . -140) T) ((-516 . -769) T) ((-505 . -1030) 57676) ((-505 . -99) T) ((-505 . -571) 57658) ((-505 . -1027) T) ((-505 . -572) 57639) ((-502 . -741) T) ((-502 . -128) T) ((-502 . -25) T) ((-502 . -99) T) ((-502 . -571) 57621) ((-502 . -1027) T) ((-502 . -23) T) ((-502 . -740) T) ((-502 . -795) T) ((-502 . -742) T) ((-502 . -745) T) ((-502 . -486) 57598) ((-499 . -634) 57548) ((-499 . -468) 57532) ((-499 . -99) 57510) ((-499 . -1027) 57488) ((-499 . -491) 57421) ((-499 . -291) 57359) ((-499 . -571) 57291) ((-499 . -1134) T) ((-499 . -33) T) ((-499 . -55) 57241) ((-496 . -617) 57225) ((-496 . -1168) 57209) ((-496 . -949) 57193) ((-496 . -1072) 57177) ((-496 . -795) 57156) ((-496 . -353) 57140) ((-496 . -602) 57124) ((-496 . -270) 57101) ((-496 . -268) 57078) ((-496 . -563) 57055) ((-496 . -572) 57016) ((-496 . -468) 57000) ((-496 . -99) 56950) ((-496 . -1027) 56900) ((-496 . -491) 56833) ((-496 . -291) 56771) ((-496 . -571) 56683) ((-496 . -1134) T) ((-496 . -33) T) ((-496 . -144) 56667) ((-496 . -264) 56651) ((-495 . -55) 56625) ((-495 . -33) T) ((-495 . -1134) T) ((-495 . -571) 56557) ((-495 . -291) 56495) ((-495 . -491) 56428) ((-495 . -1027) 56406) ((-495 . -99) 56384) ((-495 . -468) 56368) ((-494 . -310) 56345) ((-494 . -216) T) ((-494 . -349) T) ((-494 . -1074) T) ((-494 . -331) T) ((-494 . -140) 56327) ((-494 . -599) 56272) ((-494 . -128) T) ((-494 . -25) T) ((-494 . -99) T) ((-494 . -571) 56254) ((-494 . -1027) T) ((-494 . -23) T) ((-494 . -21) T) ((-494 . -675) T) ((-494 . -1038) T) ((-494 . -990) T) ((-494 . -984) T) ((-494 . -344) T) ((-494 . -1138) T) ((-494 . -862) T) ((-494 . -523) T) ((-494 . -162) T) ((-494 . -666) 56199) ((-494 . -37) 56164) ((-494 . -432) T) ((-494 . -289) T) ((-494 . -109) 56093) ((-494 . -989) 56038) ((-494 . -272) T) ((-494 . -226) T) ((-494 . -383) T) ((-494 . -138) T) ((-494 . -975) 56015) ((-494 . -1187) 55992) ((-494 . -1196) 55969) ((-493 . -19) 55953) ((-493 . -602) 55937) ((-493 . -270) 55914) ((-493 . -268) 55891) ((-493 . -563) 55868) ((-493 . -572) 55829) ((-493 . -468) 55813) ((-493 . -99) 55763) ((-493 . -1027) 55713) ((-493 . -491) 55646) ((-493 . -291) 55584) ((-493 . -571) 55496) ((-493 . -1134) T) ((-493 . -33) T) ((-493 . -144) 55480) ((-493 . -795) 55459) ((-493 . -353) 55443) ((-493 . -264) 55427) ((-492 . -304) 55406) ((-492 . -975) 55390) ((-492 . -23) T) ((-492 . -1027) T) ((-492 . -571) 55372) ((-492 . -99) T) ((-492 . -25) T) ((-492 . -128) T) ((-489 . -741) T) ((-489 . -128) T) ((-489 . -25) T) ((-489 . -99) T) ((-489 . -571) 55354) ((-489 . -1027) T) ((-489 . -23) T) ((-489 . -740) T) ((-489 . -795) T) ((-489 . -742) T) ((-489 . -745) T) ((-489 . -486) 55333) ((-488 . -740) T) ((-488 . -795) T) ((-488 . -742) T) ((-488 . -25) T) ((-488 . -99) T) ((-488 . -571) 55315) ((-488 . -1027) T) ((-488 . -23) T) ((-488 . -486) 55294) ((-487 . -486) 55273) ((-487 . -99) T) ((-487 . -571) 55255) ((-487 . -1027) T) ((-485 . -23) T) ((-485 . -1027) T) ((-485 . -571) 55237) ((-485 . -99) T) ((-485 . -25) T) ((-485 . -486) 55216) ((-484 . -21) T) ((-484 . -23) T) ((-484 . -1027) T) ((-484 . -571) 55198) ((-484 . -99) T) ((-484 . -25) T) ((-484 . -128) T) ((-484 . -486) 55177) ((-482 . -1027) T) ((-482 . -571) 55159) ((-482 . -99) T) ((-480 . -795) T) ((-480 . -99) T) ((-480 . -571) 55141) ((-480 . -1027) T) ((-478 . -121) T) ((-478 . -353) 55123) ((-478 . -795) T) ((-478 . -144) 55105) ((-478 . -33) T) ((-478 . -1134) T) ((-478 . -571) 55087) ((-478 . -291) NIL) ((-478 . -491) NIL) ((-478 . -1027) T) ((-478 . -468) 55069) ((-478 . -572) 55051) ((-478 . -563) 55026) ((-478 . -268) 55001) ((-478 . -270) 54976) ((-478 . -602) 54958) ((-478 . -19) 54940) ((-478 . -99) T) ((-478 . -613) T) ((-475 . -55) 54890) ((-475 . -33) T) ((-475 . -1134) T) ((-475 . -571) 54822) ((-475 . -291) 54760) ((-475 . -491) 54693) ((-475 . -1027) 54671) ((-475 . -99) 54649) ((-475 . -468) 54633) ((-474 . -19) 54617) ((-474 . -602) 54601) ((-474 . -270) 54578) ((-474 . -268) 54555) ((-474 . -563) 54532) ((-474 . -572) 54493) ((-474 . -468) 54477) ((-474 . -99) 54427) ((-474 . -1027) 54377) ((-474 . -491) 54310) ((-474 . -291) 54248) ((-474 . -571) 54160) ((-474 . -1134) T) ((-474 . -33) T) ((-474 . -144) 54144) ((-474 . -795) 54123) ((-474 . -353) 54107) ((-473 . -280) T) ((-473 . -975) 54050) ((-473 . -1027) T) ((-473 . -571) 54032) ((-473 . -99) T) ((-473 . -795) T) ((-473 . -491) 53998) ((-473 . -291) 53985) ((-473 . -27) T) ((-473 . -941) T) ((-473 . -226) T) ((-473 . -109) 53941) ((-473 . -989) 53906) ((-473 . -272) T) ((-473 . -666) 53871) ((-473 . -599) 53836) ((-473 . -128) T) ((-473 . -25) T) ((-473 . -23) T) ((-473 . -21) T) ((-473 . -984) T) ((-473 . -990) T) ((-473 . -1038) T) ((-473 . -675) T) ((-473 . -37) 53801) ((-473 . -289) T) ((-473 . -432) T) ((-473 . -162) T) ((-473 . -523) T) ((-473 . -862) T) ((-473 . -1138) T) ((-473 . -344) T) ((-473 . -593) 53761) ((-473 . -958) T) ((-473 . -572) 53706) ((-473 . -140) T) ((-473 . -216) T) ((-469 . -1027) T) ((-469 . -571) 53672) ((-469 . -99) T) ((-466 . -931) 53654) ((-466 . -1074) T) ((-466 . -975) 53614) ((-466 . -572) 53544) ((-466 . -958) T) ((-466 . -851) NIL) ((-466 . -825) 53526) ((-466 . -793) T) ((-466 . -745) T) ((-466 . -742) T) ((-466 . -795) T) ((-466 . -740) T) ((-466 . -739) T) ((-466 . -768) T) ((-466 . -827) 53508) ((-466 . -1134) T) ((-466 . -381) 53490) ((-466 . -593) 53472) ((-466 . -358) 53454) ((-466 . -268) NIL) ((-466 . -291) NIL) ((-466 . -491) NIL) ((-466 . -319) 53436) ((-466 . -226) T) ((-466 . -109) 53370) ((-466 . -989) 53320) ((-466 . -272) T) ((-466 . -666) 53270) ((-466 . -599) 53220) ((-466 . -37) 53170) ((-466 . -289) T) ((-466 . -432) T) ((-466 . -162) T) ((-466 . -523) T) ((-466 . -862) T) ((-466 . -1138) T) ((-466 . -344) T) ((-466 . -216) T) ((-466 . -841) NIL) ((-466 . -214) 53152) ((-466 . -140) T) ((-466 . -138) NIL) ((-466 . -128) T) ((-466 . -25) T) ((-466 . -99) T) ((-466 . -571) 53134) ((-466 . -1027) T) ((-466 . -23) T) ((-466 . -21) T) ((-466 . -984) T) ((-466 . -990) T) ((-466 . -1038) T) ((-466 . -675) T) ((-464 . -317) 53103) ((-464 . -128) T) ((-464 . -25) T) ((-464 . -99) T) ((-464 . -571) 53085) ((-464 . -1027) T) ((-464 . -23) T) ((-464 . -21) T) ((-463 . -909) 53069) ((-463 . -468) 53053) ((-463 . -99) 53031) ((-463 . -1027) 53009) ((-463 . -491) 52942) ((-463 . -291) 52880) ((-463 . -571) 52812) ((-463 . -1134) T) ((-463 . -33) T) ((-463 . -104) 52796) ((-462 . -91) T) ((-462 . -99) T) ((-462 . -571) 52762) ((-462 . -1027) T) ((-461 . -221) 52741) ((-461 . -1187) 52711) ((-461 . -739) 52690) ((-461 . -793) 52669) ((-461 . -745) 52620) ((-461 . -742) 52571) ((-461 . -795) 52522) ((-461 . -740) 52473) ((-461 . -741) 52452) ((-461 . -270) 52429) ((-461 . -268) 52406) ((-461 . -468) 52390) ((-461 . -491) 52323) ((-461 . -291) 52261) ((-461 . -1134) T) ((-461 . -33) T) ((-461 . -563) 52238) ((-461 . -975) 52067) ((-461 . -393) 52036) ((-461 . -593) 51944) ((-461 . -358) 51914) ((-461 . -349) 51893) ((-461 . -216) 51846) ((-461 . -841) 51779) ((-461 . -214) 51749) ((-461 . -109) 51640) ((-461 . -989) 51538) ((-461 . -162) 51517) ((-461 . -571) 51249) ((-461 . -666) 51191) ((-461 . -599) 51041) ((-461 . -128) 50912) ((-461 . -23) 50783) ((-461 . -21) 50694) ((-461 . -984) 50625) ((-461 . -990) 50556) ((-461 . -1038) 50467) ((-461 . -675) 50378) ((-461 . -37) 50348) ((-461 . -1027) 50139) ((-461 . -99) 49930) ((-461 . -25) 49782) ((-460 . -891) 49727) ((-460 . -975) 49605) ((-460 . -1138) 49584) ((-460 . -851) 49563) ((-460 . -827) NIL) ((-460 . -841) 49540) ((-460 . -795) 49519) ((-460 . -491) 49462) ((-460 . -432) 49413) ((-460 . -593) 49361) ((-460 . -358) 49345) ((-460 . -46) 49302) ((-460 . -37) 49151) ((-460 . -666) 49000) ((-460 . -272) 48931) ((-460 . -523) 48862) ((-460 . -109) 48691) ((-460 . -989) 48534) ((-460 . -162) 48445) ((-460 . -140) 48424) ((-460 . -138) 48403) ((-460 . -599) 48328) ((-460 . -128) T) ((-460 . -25) T) ((-460 . -99) T) ((-460 . -571) 48310) ((-460 . -1027) T) ((-460 . -23) T) ((-460 . -21) T) ((-460 . -984) T) ((-460 . -990) T) ((-460 . -1038) T) ((-460 . -675) T) ((-460 . -393) 48294) ((-460 . -307) 48251) ((-460 . -291) 48238) ((-460 . -572) 48099) ((-458 . -1111) 48078) ((-458 . -212) 48028) ((-458 . -104) 47978) ((-458 . -291) 47782) ((-458 . -491) 47574) ((-458 . -468) 47511) ((-458 . -144) 47461) ((-458 . -572) NIL) ((-458 . -218) 47411) ((-458 . -568) 47390) ((-458 . -270) 47369) ((-458 . -268) 47348) ((-458 . -99) T) ((-458 . -1027) T) ((-458 . -571) 47330) ((-458 . -1134) T) ((-458 . -33) T) ((-458 . -563) 47309) ((-457 . -344) T) ((-457 . -1138) T) ((-457 . -862) T) ((-457 . -523) T) ((-457 . -162) T) ((-457 . -666) 47274) ((-457 . -37) 47239) ((-457 . -432) T) ((-457 . -289) T) ((-457 . -599) 47204) ((-457 . -675) T) ((-457 . -1038) T) ((-457 . -990) T) ((-457 . -984) T) ((-457 . -109) 47160) ((-457 . -989) 47125) ((-457 . -21) T) ((-457 . -23) T) ((-457 . -1027) T) ((-457 . -571) 47077) ((-457 . -99) T) ((-457 . -25) T) ((-457 . -128) T) ((-457 . -272) T) ((-457 . -226) T) ((-457 . -140) T) ((-457 . -975) 47037) ((-457 . -958) T) ((-457 . -572) 46959) ((-456 . -1129) 46928) ((-456 . -571) 46890) ((-456 . -144) 46874) ((-456 . -33) T) ((-456 . -1134) T) ((-456 . -291) 46812) ((-456 . -491) 46745) ((-456 . -1027) T) ((-456 . -99) T) ((-456 . -468) 46729) ((-456 . -572) 46690) ((-456 . -916) 46659) ((-455 . -1111) 46638) ((-455 . -212) 46588) ((-455 . -104) 46538) ((-455 . -291) 46342) ((-455 . -491) 46134) ((-455 . -468) 46071) ((-455 . -144) 46021) ((-455 . -572) NIL) ((-455 . -218) 45971) ((-455 . -568) 45950) ((-455 . -270) 45929) ((-455 . -268) 45908) ((-455 . -99) T) ((-455 . -1027) T) ((-455 . -571) 45890) ((-455 . -1134) T) ((-455 . -33) T) ((-455 . -563) 45869) ((-454 . -1162) 45853) ((-454 . -216) 45805) ((-454 . -268) 45790) ((-454 . -841) 45696) ((-454 . -913) 45658) ((-454 . -37) 45499) ((-454 . -109) 45320) ((-454 . -989) 45155) ((-454 . -599) 45052) ((-454 . -666) 44893) ((-454 . -138) 44872) ((-454 . -140) 44851) ((-454 . -46) 44821) ((-454 . -1158) 44791) ((-454 . -34) 44757) ((-454 . -93) 44723) ((-454 . -266) 44689) ((-454 . -471) 44655) ((-454 . -1123) 44621) ((-454 . -1120) 44587) ((-454 . -941) 44553) ((-454 . -226) 44532) ((-454 . -272) 44483) ((-454 . -128) T) ((-454 . -25) T) ((-454 . -99) T) ((-454 . -571) 44465) ((-454 . -1027) T) ((-454 . -23) T) ((-454 . -21) T) ((-454 . -984) T) ((-454 . -990) T) ((-454 . -1038) T) ((-454 . -675) T) ((-454 . -289) 44444) ((-454 . -432) 44423) ((-454 . -162) 44354) ((-454 . -523) 44305) ((-454 . -862) 44284) ((-454 . -1138) 44263) ((-454 . -344) 44242) ((-448 . -1027) T) ((-448 . -571) 44224) ((-448 . -99) T) ((-443 . -916) 44193) ((-443 . -572) 44154) ((-443 . -468) 44138) ((-443 . -99) T) ((-443 . -1027) T) ((-443 . -491) 44071) ((-443 . -291) 44009) ((-443 . -571) 43971) ((-443 . -1134) T) ((-443 . -33) T) ((-443 . -144) 43955) ((-441 . -666) 43926) ((-441 . -599) 43897) ((-441 . -128) T) ((-441 . -25) T) ((-441 . -99) T) ((-441 . -571) 43879) ((-441 . -1027) T) ((-441 . -23) T) ((-441 . -21) T) ((-441 . -989) 43850) ((-441 . -109) 43811) ((-434 . -891) 43778) ((-434 . -975) 43656) ((-434 . -1138) 43635) ((-434 . -851) 43614) ((-434 . -827) NIL) ((-434 . -841) 43591) ((-434 . -795) 43570) ((-434 . -491) 43513) ((-434 . -432) 43464) ((-434 . -593) 43412) ((-434 . -358) 43396) ((-434 . -46) 43375) ((-434 . -37) 43224) ((-434 . -666) 43073) ((-434 . -272) 43004) ((-434 . -523) 42935) ((-434 . -109) 42764) ((-434 . -989) 42607) ((-434 . -162) 42518) ((-434 . -140) 42497) ((-434 . -138) 42476) ((-434 . -599) 42401) ((-434 . -128) T) ((-434 . -25) T) ((-434 . -99) T) ((-434 . -571) 42383) ((-434 . -1027) T) ((-434 . -23) T) ((-434 . -21) T) ((-434 . -984) T) ((-434 . -990) T) ((-434 . -1038) T) ((-434 . -675) T) ((-434 . -393) 42367) ((-434 . -307) 42346) ((-434 . -291) 42333) ((-434 . -572) 42194) ((-433 . -399) 42164) ((-433 . -693) 42134) ((-433 . -669) T) ((-433 . -710) T) ((-433 . -109) 42097) ((-433 . -989) 42067) ((-433 . -21) T) ((-433 . -23) T) ((-433 . -1027) T) ((-433 . -571) 42049) ((-433 . -99) T) ((-433 . -25) T) ((-433 . -128) T) ((-433 . -599) 41979) ((-433 . -666) 41949) ((-433 . -348) 41919) ((-419 . -1027) T) ((-419 . -571) 41901) ((-419 . -99) T) ((-418 . -346) 41875) ((-418 . -99) T) ((-418 . -571) 41857) ((-418 . -1027) T) ((-417 . -1027) T) ((-417 . -571) 41839) ((-417 . -99) T) ((-415 . -571) 41821) ((-410 . -37) 41805) ((-410 . -599) 41779) ((-410 . -675) T) ((-410 . -1038) T) ((-410 . -990) T) ((-410 . -984) T) ((-410 . -109) 41758) ((-410 . -989) 41742) ((-410 . -21) T) ((-410 . -23) T) ((-410 . -1027) T) ((-410 . -571) 41724) ((-410 . -99) T) ((-410 . -25) T) ((-410 . -128) T) ((-410 . -666) 41708) ((-396 . -675) T) ((-396 . -1027) T) ((-396 . -571) 41690) ((-396 . -99) T) ((-396 . -1038) T) ((-394 . -453) T) ((-394 . -1038) T) ((-394 . -99) T) ((-394 . -571) 41672) ((-394 . -1027) T) ((-394 . -675) T) ((-388 . -931) 41656) ((-388 . -1074) 41634) ((-388 . -975) 41502) ((-388 . -572) 41310) ((-388 . -958) 41289) ((-388 . -851) 41268) ((-388 . -825) 41252) ((-388 . -793) 41231) ((-388 . -745) 41210) ((-388 . -742) 41189) ((-388 . -795) 41140) ((-388 . -740) 41119) ((-388 . -739) 41098) ((-388 . -768) 41077) ((-388 . -827) 41002) ((-388 . -1134) T) ((-388 . -381) 40986) ((-388 . -593) 40934) ((-388 . -358) 40918) ((-388 . -268) 40876) ((-388 . -291) 40841) ((-388 . -491) 40753) ((-388 . -319) 40737) ((-388 . -226) T) ((-388 . -109) 40675) ((-388 . -989) 40627) ((-388 . -272) T) ((-388 . -666) 40579) ((-388 . -599) 40531) ((-388 . -37) 40483) ((-388 . -289) T) ((-388 . -432) T) ((-388 . -162) T) ((-388 . -523) T) ((-388 . -862) T) ((-388 . -1138) T) ((-388 . -344) T) ((-388 . -216) 40462) ((-388 . -841) 40421) ((-388 . -214) 40405) ((-388 . -140) 40384) ((-388 . -138) 40363) ((-388 . -128) T) ((-388 . -25) T) ((-388 . -99) T) ((-388 . -571) 40345) ((-388 . -1027) T) ((-388 . -23) T) ((-388 . -21) T) ((-388 . -984) T) ((-388 . -990) T) ((-388 . -1038) T) ((-388 . -675) T) ((-388 . -769) 40298) ((-386 . -523) T) ((-386 . -272) T) ((-386 . -162) T) ((-386 . -666) 40272) ((-386 . -599) 40246) ((-386 . -128) T) ((-386 . -25) T) ((-386 . -99) T) ((-386 . -571) 40228) ((-386 . -1027) T) ((-386 . -23) T) ((-386 . -21) T) ((-386 . -989) 40202) ((-386 . -109) 40169) ((-386 . -984) T) ((-386 . -990) T) ((-386 . -1038) T) ((-386 . -675) T) ((-386 . -37) 40143) ((-386 . -214) 40127) ((-386 . -841) 40086) ((-386 . -216) 40065) ((-386 . -319) 40049) ((-386 . -491) 39891) ((-386 . -291) 39830) ((-386 . -268) 39758) ((-386 . -393) 39742) ((-386 . -975) 39640) ((-386 . -432) 39590) ((-386 . -958) 39569) ((-386 . -572) 39477) ((-386 . -1138) 39455) ((-380 . -1027) T) ((-380 . -571) 39437) ((-380 . -99) T) ((-380 . -572) 39414) ((-379 . -377) T) ((-379 . -1134) T) ((-379 . -571) 39396) ((-374 . -1027) T) ((-374 . -571) 39378) ((-374 . -99) T) ((-371 . -693) 39362) ((-371 . -669) T) ((-371 . -710) T) ((-371 . -109) 39341) ((-371 . -989) 39325) ((-371 . -21) T) ((-371 . -23) T) ((-371 . -1027) T) ((-371 . -571) 39307) ((-371 . -99) T) ((-371 . -25) T) ((-371 . -128) T) ((-371 . -599) 39291) ((-371 . -666) 39275) ((-369 . -370) T) ((-369 . -99) T) ((-369 . -571) 39257) ((-369 . -1027) T) ((-367 . -675) T) ((-367 . -1027) T) ((-367 . -571) 39239) ((-367 . -99) T) ((-367 . -1038) T) ((-367 . -975) 39223) ((-367 . -795) 39202) ((-363 . -365) 39181) ((-363 . -975) 39165) ((-363 . -666) 39135) ((-363 . -599) 39119) ((-363 . -128) T) ((-363 . -25) T) ((-363 . -99) T) ((-363 . -571) 39101) ((-363 . -1027) T) ((-363 . -23) T) ((-363 . -21) T) ((-363 . -989) 39085) ((-363 . -109) 39064) ((-362 . -109) 39043) ((-362 . -989) 39027) ((-362 . -21) T) ((-362 . -23) T) ((-362 . -1027) T) ((-362 . -571) 39009) ((-362 . -99) T) ((-362 . -25) T) ((-362 . -128) T) ((-362 . -599) 38993) ((-362 . -486) 38972) ((-362 . -666) 38942) ((-359 . -385) T) ((-359 . -140) T) ((-359 . -599) 38907) ((-359 . -128) T) ((-359 . -25) T) ((-359 . -99) T) ((-359 . -571) 38874) ((-359 . -1027) T) ((-359 . -23) T) ((-359 . -21) T) ((-359 . -675) T) ((-359 . -1038) T) ((-359 . -990) T) ((-359 . -984) T) ((-359 . -572) 38788) ((-359 . -344) T) ((-359 . -1138) T) ((-359 . -862) T) ((-359 . -523) T) ((-359 . -162) T) ((-359 . -666) 38753) ((-359 . -37) 38718) ((-359 . -432) T) ((-359 . -289) T) ((-359 . -109) 38674) ((-359 . -989) 38639) ((-359 . -272) T) ((-359 . -226) T) ((-359 . -793) T) ((-359 . -745) T) ((-359 . -742) T) ((-359 . -795) T) ((-359 . -740) T) ((-359 . -739) T) ((-359 . -827) 38621) ((-359 . -941) T) ((-359 . -958) T) ((-359 . -975) 38581) ((-359 . -992) T) ((-359 . -216) T) ((-359 . -769) T) ((-359 . -1120) T) ((-359 . -1123) T) ((-359 . -471) T) ((-359 . -266) T) ((-359 . -93) T) ((-359 . -34) T) ((-345 . -346) 38558) ((-345 . -99) T) ((-345 . -571) 38540) ((-345 . -1027) T) ((-342 . -453) T) ((-342 . -1038) T) ((-342 . -99) T) ((-342 . -571) 38522) ((-342 . -1027) T) ((-342 . -675) T) ((-342 . -975) 38506) ((-340 . -310) 38490) ((-340 . -216) 38469) ((-340 . -349) 38448) ((-340 . -1074) 38427) ((-340 . -331) 38406) ((-340 . -140) 38385) ((-340 . -599) 38337) ((-340 . -128) T) ((-340 . -25) T) ((-340 . -99) T) ((-340 . -571) 38319) ((-340 . -1027) T) ((-340 . -23) T) ((-340 . -21) T) ((-340 . -675) T) ((-340 . -1038) T) ((-340 . -990) T) ((-340 . -984) T) ((-340 . -344) T) ((-340 . -1138) T) ((-340 . -862) T) ((-340 . -523) T) ((-340 . -162) T) ((-340 . -666) 38271) ((-340 . -37) 38236) ((-340 . -432) T) ((-340 . -289) T) ((-340 . -109) 38174) ((-340 . -989) 38126) ((-340 . -272) T) ((-340 . -226) T) ((-340 . -383) 38077) ((-340 . -138) 38028) ((-340 . -975) 38012) ((-340 . -1187) 37996) ((-340 . -1196) 37980) ((-336 . -310) 37964) ((-336 . -216) 37943) ((-336 . -349) 37922) ((-336 . -1074) 37901) ((-336 . -331) 37880) ((-336 . -140) 37859) ((-336 . -599) 37811) ((-336 . -128) T) ((-336 . -25) T) ((-336 . -99) T) ((-336 . -571) 37793) ((-336 . -1027) T) ((-336 . -23) T) ((-336 . -21) T) ((-336 . -675) T) ((-336 . -1038) T) ((-336 . -990) T) ((-336 . -984) T) ((-336 . -344) T) ((-336 . -1138) T) ((-336 . -862) T) ((-336 . -523) T) ((-336 . -162) T) ((-336 . -666) 37745) ((-336 . -37) 37710) ((-336 . -432) T) ((-336 . -289) T) ((-336 . -109) 37648) ((-336 . -989) 37600) ((-336 . -272) T) ((-336 . -226) T) ((-336 . -383) 37551) ((-336 . -138) 37502) ((-336 . -975) 37486) ((-336 . -1187) 37470) ((-336 . -1196) 37454) ((-335 . -310) 37438) ((-335 . -216) 37417) ((-335 . -349) 37396) ((-335 . -1074) 37375) ((-335 . -331) 37354) ((-335 . -140) 37333) ((-335 . -599) 37285) ((-335 . -128) T) ((-335 . -25) T) ((-335 . -99) T) ((-335 . -571) 37267) ((-335 . -1027) T) ((-335 . -23) T) ((-335 . -21) T) ((-335 . -675) T) ((-335 . -1038) T) ((-335 . -990) T) ((-335 . -984) T) ((-335 . -344) T) ((-335 . -1138) T) ((-335 . -862) T) ((-335 . -523) T) ((-335 . -162) T) ((-335 . -666) 37219) ((-335 . -37) 37184) ((-335 . -432) T) ((-335 . -289) T) ((-335 . -109) 37122) ((-335 . -989) 37074) ((-335 . -272) T) ((-335 . -226) T) ((-335 . -383) 37025) ((-335 . -138) 36976) ((-335 . -975) 36960) ((-335 . -1187) 36944) ((-335 . -1196) 36928) ((-334 . -310) 36912) ((-334 . -216) 36891) ((-334 . -349) 36870) ((-334 . -1074) 36849) ((-334 . -331) 36828) ((-334 . -140) 36807) ((-334 . -599) 36759) ((-334 . -128) T) ((-334 . -25) T) ((-334 . -99) T) ((-334 . -571) 36741) ((-334 . -1027) T) ((-334 . -23) T) ((-334 . -21) T) ((-334 . -675) T) ((-334 . -1038) T) ((-334 . -990) T) ((-334 . -984) T) ((-334 . -344) T) ((-334 . -1138) T) ((-334 . -862) T) ((-334 . -523) T) ((-334 . -162) T) ((-334 . -666) 36693) ((-334 . -37) 36658) ((-334 . -432) T) ((-334 . -289) T) ((-334 . -109) 36596) ((-334 . -989) 36548) ((-334 . -272) T) ((-334 . -226) T) ((-334 . -383) 36499) ((-334 . -138) 36450) ((-334 . -975) 36434) ((-334 . -1187) 36418) ((-334 . -1196) 36402) ((-333 . -310) 36379) ((-333 . -216) T) ((-333 . -349) T) ((-333 . -1074) T) ((-333 . -331) T) ((-333 . -140) 36361) ((-333 . -599) 36306) ((-333 . -128) T) ((-333 . -25) T) ((-333 . -99) T) ((-333 . -571) 36288) ((-333 . -1027) T) ((-333 . -23) T) ((-333 . -21) T) ((-333 . -675) T) ((-333 . -1038) T) ((-333 . -990) T) ((-333 . -984) T) ((-333 . -344) T) ((-333 . -1138) T) ((-333 . -862) T) ((-333 . -523) T) ((-333 . -162) T) ((-333 . -666) 36233) ((-333 . -37) 36198) ((-333 . -432) T) ((-333 . -289) T) ((-333 . -109) 36127) ((-333 . -989) 36072) ((-333 . -272) T) ((-333 . -226) T) ((-333 . -383) T) ((-333 . -138) T) ((-333 . -975) 36049) ((-333 . -1187) 36026) ((-333 . -1196) 36003) ((-327 . -310) 35987) ((-327 . -216) 35966) ((-327 . -349) 35945) ((-327 . -1074) 35924) ((-327 . -331) 35903) ((-327 . -140) 35882) ((-327 . -599) 35834) ((-327 . -128) T) ((-327 . -25) T) ((-327 . -99) T) ((-327 . -571) 35816) ((-327 . -1027) T) ((-327 . -23) T) ((-327 . -21) T) ((-327 . -675) T) ((-327 . -1038) T) ((-327 . -990) T) ((-327 . -984) T) ((-327 . -344) T) ((-327 . -1138) T) ((-327 . -862) T) ((-327 . -523) T) ((-327 . -162) T) ((-327 . -666) 35768) ((-327 . -37) 35733) ((-327 . -432) T) ((-327 . -289) T) ((-327 . -109) 35671) ((-327 . -989) 35623) ((-327 . -272) T) ((-327 . -226) T) ((-327 . -383) 35574) ((-327 . -138) 35525) ((-327 . -975) 35509) ((-327 . -1187) 35493) ((-327 . -1196) 35477) ((-326 . -310) 35461) ((-326 . -216) 35440) ((-326 . -349) 35419) ((-326 . -1074) 35398) ((-326 . -331) 35377) ((-326 . -140) 35356) ((-326 . -599) 35308) ((-326 . -128) T) ((-326 . -25) T) ((-326 . -99) T) ((-326 . -571) 35290) ((-326 . -1027) T) ((-326 . -23) T) ((-326 . -21) T) ((-326 . -675) T) ((-326 . -1038) T) ((-326 . -990) T) ((-326 . -984) T) ((-326 . -344) T) ((-326 . -1138) T) ((-326 . -862) T) ((-326 . -523) T) ((-326 . -162) T) ((-326 . -666) 35242) ((-326 . -37) 35207) ((-326 . -432) T) ((-326 . -289) T) ((-326 . -109) 35145) ((-326 . -989) 35097) ((-326 . -272) T) ((-326 . -226) T) ((-326 . -383) 35048) ((-326 . -138) 34999) ((-326 . -975) 34983) ((-326 . -1187) 34967) ((-326 . -1196) 34951) ((-325 . -310) 34928) ((-325 . -216) T) ((-325 . -349) T) ((-325 . -1074) T) ((-325 . -331) T) ((-325 . -140) 34910) ((-325 . -599) 34855) ((-325 . -128) T) ((-325 . -25) T) ((-325 . -99) T) ((-325 . -571) 34837) ((-325 . -1027) T) ((-325 . -23) T) ((-325 . -21) T) ((-325 . -675) T) ((-325 . -1038) T) ((-325 . -990) T) ((-325 . -984) T) ((-325 . -344) T) ((-325 . -1138) T) ((-325 . -862) T) ((-325 . -523) T) ((-325 . -162) T) ((-325 . -666) 34782) ((-325 . -37) 34747) ((-325 . -432) T) ((-325 . -289) T) ((-325 . -109) 34676) ((-325 . -989) 34621) ((-325 . -272) T) ((-325 . -226) T) ((-325 . -383) T) ((-325 . -138) T) ((-325 . -975) 34598) ((-325 . -1187) 34575) ((-325 . -1196) 34552) ((-321 . -310) 34529) ((-321 . -216) T) ((-321 . -349) T) ((-321 . -1074) T) ((-321 . -331) T) ((-321 . -140) 34511) ((-321 . -599) 34456) ((-321 . -128) T) ((-321 . -25) T) ((-321 . -99) T) ((-321 . -571) 34438) ((-321 . -1027) T) ((-321 . -23) T) ((-321 . -21) T) ((-321 . -675) T) ((-321 . -1038) T) ((-321 . -990) T) ((-321 . -984) T) ((-321 . -344) T) ((-321 . -1138) T) ((-321 . -862) T) ((-321 . -523) T) ((-321 . -162) T) ((-321 . -666) 34383) ((-321 . -37) 34348) ((-321 . -432) T) ((-321 . -289) T) ((-321 . -109) 34277) ((-321 . -989) 34222) ((-321 . -272) T) ((-321 . -226) T) ((-321 . -383) T) ((-321 . -138) T) ((-321 . -975) 34199) ((-321 . -1187) 34176) ((-321 . -1196) 34153) ((-320 . -280) T) ((-320 . -975) 34120) ((-320 . -1027) T) ((-320 . -571) 34102) ((-320 . -99) T) ((-320 . -795) T) ((-320 . -491) 34068) ((-320 . -291) 34055) ((-320 . -37) 34039) ((-320 . -599) 34013) ((-320 . -675) T) ((-320 . -1038) T) ((-320 . -990) T) ((-320 . -984) T) ((-320 . -109) 33992) ((-320 . -989) 33976) ((-320 . -21) T) ((-320 . -23) T) ((-320 . -25) T) ((-320 . -128) T) ((-320 . -666) 33960) ((-320 . -841) 33941) ((-314 . -317) 33910) ((-314 . -128) T) ((-314 . -25) T) ((-314 . -99) T) ((-314 . -571) 33892) ((-314 . -1027) T) ((-314 . -23) T) ((-314 . -21) T) ((-312 . -795) T) ((-312 . -99) T) ((-312 . -571) 33874) ((-312 . -1027) T) ((-311 . -1027) T) ((-311 . -571) 33856) ((-311 . -99) T) ((-308 . -19) 33840) ((-308 . -602) 33824) ((-308 . -270) 33801) ((-308 . -268) 33778) ((-308 . -563) 33755) ((-308 . -572) 33716) ((-308 . -468) 33700) ((-308 . -99) 33650) ((-308 . -1027) 33600) ((-308 . -491) 33533) ((-308 . -291) 33471) ((-308 . -571) 33383) ((-308 . -1134) T) ((-308 . -33) T) ((-308 . -144) 33367) ((-308 . -795) 33346) ((-308 . -353) 33330) ((-308 . -264) 33314) ((-305 . -304) 33291) ((-305 . -975) 33275) ((-305 . -23) T) ((-305 . -1027) T) ((-305 . -571) 33257) ((-305 . -99) T) ((-305 . -25) T) ((-305 . -128) T) ((-303 . -21) T) ((-303 . -23) T) ((-303 . -1027) T) ((-303 . -571) 33239) ((-303 . -99) T) ((-303 . -25) T) ((-303 . -128) T) ((-303 . -666) 33221) ((-303 . -599) 33203) ((-303 . -989) 33185) ((-303 . -109) 33160) ((-303 . -304) 33137) ((-303 . -975) 33121) ((-303 . -795) 33100) ((-300 . -1162) 33084) ((-300 . -216) 33036) ((-300 . -268) 33021) ((-300 . -841) 32927) ((-300 . -913) 32889) ((-300 . -37) 32730) ((-300 . -109) 32551) ((-300 . -989) 32386) ((-300 . -599) 32283) ((-300 . -666) 32124) ((-300 . -138) 32103) ((-300 . -140) 32082) ((-300 . -46) 32052) ((-300 . -1158) 32022) ((-300 . -34) 31988) ((-300 . -93) 31954) ((-300 . -266) 31920) ((-300 . -471) 31886) ((-300 . -1123) 31852) ((-300 . -1120) 31818) ((-300 . -941) 31784) ((-300 . -226) 31763) ((-300 . -272) 31714) ((-300 . -128) T) ((-300 . -25) T) ((-300 . -99) T) ((-300 . -571) 31696) ((-300 . -1027) T) ((-300 . -23) T) ((-300 . -21) T) ((-300 . -984) T) ((-300 . -990) T) ((-300 . -1038) T) ((-300 . -675) T) ((-300 . -289) 31675) ((-300 . -432) 31654) ((-300 . -162) 31585) ((-300 . -523) 31536) ((-300 . -862) 31515) ((-300 . -1138) 31494) ((-300 . -344) 31473) ((-300 . -740) T) ((-300 . -795) T) ((-300 . -742) T) ((-295 . -402) 31457) ((-295 . -975) 31125) ((-295 . -572) 30986) ((-295 . -825) 30970) ((-295 . -841) 30937) ((-295 . -453) 30916) ((-295 . -393) 30900) ((-295 . -827) 30825) ((-295 . -1134) T) ((-295 . -381) 30809) ((-295 . -593) 30717) ((-295 . -358) 30687) ((-295 . -226) 30666) ((-295 . -109) 30562) ((-295 . -989) 30472) ((-295 . -272) 30451) ((-295 . -666) 30361) ((-295 . -599) 30183) ((-295 . -37) 30093) ((-295 . -289) 30072) ((-295 . -432) 30051) ((-295 . -162) 30030) ((-295 . -523) 30009) ((-295 . -862) 29988) ((-295 . -1138) 29967) ((-295 . -344) 29946) ((-295 . -291) 29933) ((-295 . -491) 29899) ((-295 . -795) T) ((-295 . -280) T) ((-295 . -140) 29878) ((-295 . -138) 29857) ((-295 . -984) 29748) ((-295 . -990) 29639) ((-295 . -1038) 29489) ((-295 . -675) 29339) ((-295 . -128) 29211) ((-295 . -25) 29064) ((-295 . -99) T) ((-295 . -571) 29046) ((-295 . -1027) T) ((-295 . -23) 28899) ((-295 . -21) 28771) ((-295 . -29) 28741) ((-295 . -941) 28720) ((-295 . -27) 28699) ((-295 . -1120) 28678) ((-295 . -1123) 28657) ((-295 . -471) 28636) ((-295 . -266) 28615) ((-295 . -93) 28594) ((-295 . -34) 28573) ((-295 . -151) 28552) ((-295 . -136) 28531) ((-295 . -584) 28510) ((-295 . -901) 28489) ((-295 . -1062) 28468) ((-294 . -931) 28429) ((-294 . -1074) NIL) ((-294 . -975) 28359) ((-294 . -572) NIL) ((-294 . -958) NIL) ((-294 . -851) NIL) ((-294 . -825) 28320) ((-294 . -793) NIL) ((-294 . -745) NIL) ((-294 . -742) NIL) ((-294 . -795) NIL) ((-294 . -740) NIL) ((-294 . -739) NIL) ((-294 . -768) NIL) ((-294 . -827) NIL) ((-294 . -1134) T) ((-294 . -381) 28281) ((-294 . -593) 28242) ((-294 . -358) 28203) ((-294 . -268) 28138) ((-294 . -291) 28079) ((-294 . -491) 27971) ((-294 . -319) 27932) ((-294 . -226) T) ((-294 . -109) 27845) ((-294 . -989) 27774) ((-294 . -272) T) ((-294 . -666) 27703) ((-294 . -599) 27632) ((-294 . -37) 27561) ((-294 . -289) T) ((-294 . -432) T) ((-294 . -162) T) ((-294 . -523) T) ((-294 . -862) T) ((-294 . -1138) T) ((-294 . -344) T) ((-294 . -216) NIL) ((-294 . -841) NIL) ((-294 . -214) 27522) ((-294 . -140) 27478) ((-294 . -138) 27434) ((-294 . -128) T) ((-294 . -25) T) ((-294 . -99) T) ((-294 . -571) 27416) ((-294 . -1027) T) ((-294 . -23) T) ((-294 . -21) T) ((-294 . -984) T) ((-294 . -990) T) ((-294 . -1038) T) ((-294 . -675) T) ((-293 . -1027) T) ((-293 . -571) 27398) ((-293 . -99) T) ((-277 . -1111) 27377) ((-277 . -212) 27327) ((-277 . -104) 27277) ((-277 . -291) 27081) ((-277 . -491) 26873) ((-277 . -468) 26810) ((-277 . -144) 26760) ((-277 . -572) NIL) ((-277 . -218) 26710) ((-277 . -568) 26689) ((-277 . -270) 26668) ((-277 . -268) 26647) ((-277 . -99) T) ((-277 . -1027) T) ((-277 . -571) 26629) ((-277 . -1134) T) ((-277 . -33) T) ((-277 . -563) 26608) ((-275 . -1134) T) ((-275 . -491) 26557) ((-275 . -1027) 26340) ((-275 . -571) 26082) ((-275 . -99) 25865) ((-275 . -25) 25730) ((-275 . -21) 25614) ((-275 . -23) 25498) ((-275 . -128) 25382) ((-275 . -1038) 25264) ((-275 . -675) 25167) ((-275 . -453) 25146) ((-275 . -984) 25089) ((-275 . -990) 25032) ((-275 . -599) 24894) ((-275 . -109) 24811) ((-275 . -989) 24733) ((-275 . -666) 24675) ((-275 . -841) 24634) ((-275 . -1187) 24604) ((-273 . -571) 24586) ((-271 . -289) T) ((-271 . -432) T) ((-271 . -37) 24573) ((-271 . -675) T) ((-271 . -1038) T) ((-271 . -990) T) ((-271 . -984) T) ((-271 . -109) 24558) ((-271 . -989) 24545) ((-271 . -21) T) ((-271 . -23) T) ((-271 . -1027) T) ((-271 . -571) 24527) ((-271 . -99) T) ((-271 . -25) T) ((-271 . -128) T) ((-271 . -599) 24514) ((-271 . -666) 24501) ((-271 . -162) T) ((-271 . -272) T) ((-271 . -523) T) ((-271 . -862) T) ((-262 . -571) 24483) ((-261 . -923) 24467) ((-260 . -923) 24451) ((-257 . -795) T) ((-257 . -99) T) ((-257 . -571) 24433) ((-257 . -1027) T) ((-256 . -784) T) ((-256 . -99) T) ((-256 . -571) 24415) ((-256 . -1027) T) ((-255 . -784) T) ((-255 . -99) T) ((-255 . -571) 24397) ((-255 . -1027) T) ((-254 . -784) T) ((-254 . -99) T) ((-254 . -571) 24379) ((-254 . -1027) T) ((-253 . -784) T) ((-253 . -99) T) ((-253 . -571) 24361) ((-253 . -1027) T) ((-252 . -784) T) ((-252 . -99) T) ((-252 . -571) 24343) ((-252 . -1027) T) ((-251 . -784) T) ((-251 . -99) T) ((-251 . -571) 24325) ((-251 . -1027) T) ((-250 . -784) T) ((-250 . -99) T) ((-250 . -571) 24307) ((-250 . -1027) T) ((-246 . -235) 24269) ((-246 . -975) 24115) ((-246 . -572) 23863) ((-246 . -307) 23835) ((-246 . -393) 23819) ((-246 . -37) 23668) ((-246 . -109) 23497) ((-246 . -989) 23340) ((-246 . -599) 23265) ((-246 . -666) 23114) ((-246 . -138) 23093) ((-246 . -140) 23072) ((-246 . -162) 22983) ((-246 . -523) 22914) ((-246 . -272) 22845) ((-246 . -46) 22817) ((-246 . -358) 22801) ((-246 . -593) 22749) ((-246 . -432) 22700) ((-246 . -491) 22585) ((-246 . -795) 22564) ((-246 . -841) 22510) ((-246 . -827) 22369) ((-246 . -851) 22348) ((-246 . -1138) 22327) ((-246 . -891) 22294) ((-246 . -291) 22281) ((-246 . -216) 22260) ((-246 . -128) T) ((-246 . -25) T) ((-246 . -99) T) ((-246 . -571) 22242) ((-246 . -1027) T) ((-246 . -23) T) ((-246 . -21) T) ((-246 . -675) T) ((-246 . -1038) T) ((-246 . -990) T) ((-246 . -984) T) ((-246 . -214) 22226) ((-243 . -1027) T) ((-243 . -571) 22208) ((-243 . -99) T) ((-233 . -221) 22187) ((-233 . -1187) 22157) ((-233 . -739) 22136) ((-233 . -793) 22115) ((-233 . -745) 22066) ((-233 . -742) 22017) ((-233 . -795) 21968) ((-233 . -740) 21919) ((-233 . -741) 21898) ((-233 . -270) 21875) ((-233 . -268) 21852) ((-233 . -468) 21836) ((-233 . -491) 21769) ((-233 . -291) 21707) ((-233 . -1134) T) ((-233 . -33) T) ((-233 . -563) 21684) ((-233 . -975) 21513) ((-233 . -393) 21482) ((-233 . -593) 21390) ((-233 . -358) 21360) ((-233 . -349) 21339) ((-233 . -216) 21292) ((-233 . -841) 21225) ((-233 . -214) 21195) ((-233 . -109) 21086) ((-233 . -989) 20984) ((-233 . -162) 20963) ((-233 . -571) 20924) ((-233 . -666) 20866) ((-233 . -599) 20703) ((-233 . -128) T) ((-233 . -23) T) ((-233 . -21) T) ((-233 . -984) 20634) ((-233 . -990) 20565) ((-233 . -1038) 20476) ((-233 . -675) 20387) ((-233 . -37) 20357) ((-233 . -1027) T) ((-233 . -99) T) ((-233 . -25) T) ((-232 . -221) 20336) ((-232 . -1187) 20306) ((-232 . -739) 20285) ((-232 . -793) 20264) ((-232 . -745) 20215) ((-232 . -742) 20166) ((-232 . -795) 20117) ((-232 . -740) 20068) ((-232 . -741) 20047) ((-232 . -270) 20024) ((-232 . -268) 20001) ((-232 . -468) 19985) ((-232 . -491) 19918) ((-232 . -291) 19856) ((-232 . -1134) T) ((-232 . -33) T) ((-232 . -563) 19833) ((-232 . -975) 19662) ((-232 . -393) 19631) ((-232 . -593) 19539) ((-232 . -358) 19509) ((-232 . -349) 19488) ((-232 . -216) 19441) ((-232 . -841) 19374) ((-232 . -214) 19344) ((-232 . -109) 19235) ((-232 . -989) 19133) ((-232 . -162) 19112) ((-232 . -571) 19073) ((-232 . -666) 19015) ((-232 . -599) 18839) ((-232 . -128) T) ((-232 . -23) T) ((-232 . -21) T) ((-232 . -984) 18770) ((-232 . -990) 18701) ((-232 . -1038) 18612) ((-232 . -675) 18523) ((-232 . -37) 18493) ((-232 . -1027) T) ((-232 . -99) T) ((-232 . -25) T) ((-231 . -1027) T) ((-231 . -571) 18475) ((-231 . -99) T) ((-230 . -891) 18420) ((-230 . -975) 18298) ((-230 . -1138) 18277) ((-230 . -851) 18256) ((-230 . -827) NIL) ((-230 . -841) 18233) ((-230 . -795) 18212) ((-230 . -491) 18155) ((-230 . -432) 18106) ((-230 . -593) 18054) ((-230 . -358) 18038) ((-230 . -46) 17995) ((-230 . -37) 17844) ((-230 . -666) 17693) ((-230 . -272) 17624) ((-230 . -523) 17555) ((-230 . -109) 17384) ((-230 . -989) 17227) ((-230 . -162) 17138) ((-230 . -140) 17117) ((-230 . -138) 17096) ((-230 . -599) 17021) ((-230 . -128) T) ((-230 . -25) T) ((-230 . -99) T) ((-230 . -571) 17003) ((-230 . -1027) T) ((-230 . -23) T) ((-230 . -21) T) ((-230 . -984) T) ((-230 . -990) T) ((-230 . -1038) T) ((-230 . -675) T) ((-230 . -393) 16987) ((-230 . -307) 16944) ((-230 . -291) 16931) ((-230 . -572) 16792) ((-228 . -617) 16776) ((-228 . -1168) 16760) ((-228 . -949) 16744) ((-228 . -1072) 16728) ((-228 . -795) 16707) ((-228 . -353) 16691) ((-228 . -602) 16675) ((-228 . -270) 16652) ((-228 . -268) 16629) ((-228 . -563) 16606) ((-228 . -572) 16567) ((-228 . -468) 16551) ((-228 . -99) 16501) ((-228 . -1027) 16451) ((-228 . -491) 16384) ((-228 . -291) 16322) ((-228 . -571) 16234) ((-228 . -1134) T) ((-228 . -33) T) ((-228 . -144) 16218) ((-228 . -264) 16202) ((-222 . -221) 16181) ((-222 . -1187) 16151) ((-222 . -739) 16130) ((-222 . -793) 16109) ((-222 . -745) 16060) ((-222 . -742) 16011) ((-222 . -795) 15962) ((-222 . -740) 15913) ((-222 . -741) 15892) ((-222 . -270) 15869) ((-222 . -268) 15846) ((-222 . -468) 15830) ((-222 . -491) 15763) ((-222 . -291) 15701) ((-222 . -1134) T) ((-222 . -33) T) ((-222 . -563) 15678) ((-222 . -975) 15507) ((-222 . -393) 15476) ((-222 . -593) 15384) ((-222 . -358) 15354) ((-222 . -349) 15333) ((-222 . -216) 15286) ((-222 . -841) 15219) ((-222 . -214) 15189) ((-222 . -109) 15080) ((-222 . -989) 14978) ((-222 . -162) 14957) ((-222 . -571) 14689) ((-222 . -666) 14631) ((-222 . -599) 14481) ((-222 . -128) 14352) ((-222 . -23) 14223) ((-222 . -21) 14134) ((-222 . -984) 14065) ((-222 . -990) 13996) ((-222 . -1038) 13907) ((-222 . -675) 13818) ((-222 . -37) 13788) ((-222 . -1027) 13579) ((-222 . -99) 13370) ((-222 . -25) 13222) ((-210 . -634) 13180) ((-210 . -468) 13164) ((-210 . -99) 13142) ((-210 . -1027) 13120) ((-210 . -491) 13053) ((-210 . -291) 12991) ((-210 . -571) 12923) ((-210 . -1134) T) ((-210 . -33) T) ((-210 . -55) 12881) ((-208 . -385) T) ((-208 . -140) T) ((-208 . -599) 12846) ((-208 . -128) T) ((-208 . -25) T) ((-208 . -99) T) ((-208 . -571) 12828) ((-208 . -1027) T) ((-208 . -23) T) ((-208 . -21) T) ((-208 . -675) T) ((-208 . -1038) T) ((-208 . -990) T) ((-208 . -984) T) ((-208 . -572) 12758) ((-208 . -344) T) ((-208 . -1138) T) ((-208 . -862) T) ((-208 . -523) T) ((-208 . -162) T) ((-208 . -666) 12723) ((-208 . -37) 12688) ((-208 . -432) T) ((-208 . -289) T) ((-208 . -109) 12644) ((-208 . -989) 12609) ((-208 . -272) T) ((-208 . -226) T) ((-208 . -793) T) ((-208 . -745) T) ((-208 . -742) T) ((-208 . -795) T) ((-208 . -740) T) ((-208 . -739) T) ((-208 . -827) 12591) ((-208 . -941) T) ((-208 . -958) T) ((-208 . -975) 12551) ((-208 . -992) T) ((-208 . -216) T) ((-208 . -769) T) ((-208 . -1120) T) ((-208 . -1123) T) ((-208 . -471) T) ((-208 . -266) T) ((-208 . -93) T) ((-208 . -34) T) ((-206 . -576) 12528) ((-206 . -599) 12495) ((-206 . -675) T) ((-206 . -1038) T) ((-206 . -990) T) ((-206 . -984) T) ((-206 . -21) T) ((-206 . -23) T) ((-206 . -1027) T) ((-206 . -571) 12477) ((-206 . -99) T) ((-206 . -25) T) ((-206 . -128) T) ((-206 . -975) 12454) ((-205 . -236) 12438) ((-205 . -1046) 12422) ((-205 . -104) 12406) ((-205 . -33) T) ((-205 . -1134) T) ((-205 . -571) 12338) ((-205 . -291) 12276) ((-205 . -491) 12209) ((-205 . -1027) 12187) ((-205 . -99) 12165) ((-205 . -468) 12149) ((-205 . -934) 12133) ((-201 . -931) 12115) ((-201 . -1074) T) ((-201 . -975) 12075) ((-201 . -572) 12005) ((-201 . -958) T) ((-201 . -851) NIL) ((-201 . -825) 11987) ((-201 . -793) T) ((-201 . -745) T) ((-201 . -742) T) ((-201 . -795) T) ((-201 . -740) T) ((-201 . -739) T) ((-201 . -768) T) ((-201 . -827) 11969) ((-201 . -1134) T) ((-201 . -381) 11951) ((-201 . -593) 11933) ((-201 . -358) 11915) ((-201 . -268) NIL) ((-201 . -291) NIL) ((-201 . -491) NIL) ((-201 . -319) 11897) ((-201 . -226) T) ((-201 . -109) 11831) ((-201 . -989) 11781) ((-201 . -272) T) ((-201 . -666) 11731) ((-201 . -599) 11681) ((-201 . -37) 11631) ((-201 . -289) T) ((-201 . -432) T) ((-201 . -162) T) ((-201 . -523) T) ((-201 . -862) T) ((-201 . -1138) T) ((-201 . -344) T) ((-201 . -216) T) ((-201 . -841) NIL) ((-201 . -214) 11613) ((-201 . -140) T) ((-201 . -138) NIL) ((-201 . -128) T) ((-201 . -25) T) ((-201 . -99) T) ((-201 . -571) 11595) ((-201 . -1027) T) ((-201 . -23) T) ((-201 . -21) T) ((-201 . -984) T) ((-201 . -990) T) ((-201 . -1038) T) ((-201 . -675) T) ((-198 . -1027) T) ((-198 . -571) 11577) ((-198 . -99) T) ((-197 . -1027) T) ((-197 . -571) 11559) ((-197 . -99) T) ((-196 . -836) T) ((-196 . -99) T) ((-196 . -571) 11541) ((-196 . -1027) T) ((-195 . -836) T) ((-195 . -99) T) ((-195 . -571) 11523) ((-195 . -1027) T) ((-193 . -748) T) ((-193 . -99) T) ((-193 . -571) 11505) ((-193 . -1027) T) ((-192 . -748) T) ((-192 . -99) T) ((-192 . -571) 11487) ((-192 . -1027) T) ((-191 . -748) T) ((-191 . -99) T) ((-191 . -571) 11469) ((-191 . -1027) T) ((-190 . -748) T) ((-190 . -99) T) ((-190 . -571) 11451) ((-190 . -1027) T) ((-187 . -735) T) ((-187 . -99) T) ((-187 . -571) 11433) ((-187 . -1027) T) ((-186 . -735) T) ((-186 . -99) T) ((-186 . -571) 11415) ((-186 . -1027) T) ((-185 . -735) T) ((-185 . -99) T) ((-185 . -571) 11397) ((-185 . -1027) T) ((-184 . -735) T) ((-184 . -99) T) ((-184 . -571) 11379) ((-184 . -1027) T) ((-183 . -735) T) ((-183 . -99) T) ((-183 . -571) 11361) ((-183 . -1027) T) ((-182 . -735) T) ((-182 . -99) T) ((-182 . -571) 11343) ((-182 . -1027) T) ((-181 . -735) T) ((-181 . -99) T) ((-181 . -571) 11325) ((-181 . -1027) T) ((-180 . -735) T) ((-180 . -99) T) ((-180 . -571) 11307) ((-180 . -1027) T) ((-179 . -735) T) ((-179 . -99) T) ((-179 . -571) 11289) ((-179 . -1027) T) ((-178 . -735) T) ((-178 . -99) T) ((-178 . -571) 11271) ((-178 . -1027) T) ((-177 . -735) T) ((-177 . -99) T) ((-177 . -571) 11253) ((-177 . -1027) T) ((-171 . -1027) T) ((-171 . -571) 11235) ((-171 . -99) T) ((-164 . -571) 11217) ((-163 . -37) 11149) ((-163 . -599) 11081) ((-163 . -675) T) ((-163 . -1038) T) ((-163 . -990) T) ((-163 . -984) T) ((-163 . -109) 10992) ((-163 . -989) 10924) ((-163 . -21) T) ((-163 . -23) T) ((-163 . -1027) T) ((-163 . -571) 10906) ((-163 . -99) T) ((-163 . -25) T) ((-163 . -128) T) ((-163 . -666) 10838) ((-163 . -344) T) ((-163 . -1138) T) ((-163 . -862) T) ((-163 . -523) T) ((-163 . -162) T) ((-163 . -432) T) ((-163 . -289) T) ((-163 . -272) T) ((-163 . -226) T) ((-161 . -1027) T) ((-161 . -571) 10820) ((-161 . -99) T) ((-158 . -156) 10804) ((-158 . -34) 10782) ((-158 . -93) 10760) ((-158 . -266) 10738) ((-158 . -471) 10716) ((-158 . -1123) 10694) ((-158 . -1120) 10672) ((-158 . -941) 10624) ((-158 . -851) 10577) ((-158 . -572) 10339) ((-158 . -825) 10323) ((-158 . -795) 10302) ((-158 . -349) 10253) ((-158 . -331) 10232) ((-158 . -1074) 10211) ((-158 . -383) 10190) ((-158 . -391) 10161) ((-158 . -37) 9989) ((-158 . -109) 9885) ((-158 . -989) 9795) ((-158 . -599) 9705) ((-158 . -666) 9533) ((-158 . -351) 9504) ((-158 . -673) 9475) ((-158 . -975) 9373) ((-158 . -393) 9357) ((-158 . -827) 9282) ((-158 . -1134) T) ((-158 . -381) 9266) ((-158 . -593) 9214) ((-158 . -358) 9198) ((-158 . -268) 9156) ((-158 . -291) 9121) ((-158 . -491) 9033) ((-158 . -319) 9017) ((-158 . -226) 8968) ((-158 . -1138) 8873) ((-158 . -344) 8824) ((-158 . -862) 8755) ((-158 . -523) 8666) ((-158 . -272) 8577) ((-158 . -432) 8508) ((-158 . -289) 8439) ((-158 . -216) 8390) ((-158 . -841) 8349) ((-158 . -214) 8333) ((-158 . -162) T) ((-158 . -140) 8312) ((-158 . -984) T) ((-158 . -990) T) ((-158 . -1038) T) ((-158 . -675) T) ((-158 . -21) T) ((-158 . -23) T) ((-158 . -1027) T) ((-158 . -571) 8294) ((-158 . -99) T) ((-158 . -25) T) ((-158 . -128) T) ((-158 . -138) 8245) ((-158 . -769) 8224) ((-152 . -1027) T) ((-152 . -571) 8206) ((-152 . -99) T) ((-148 . -25) T) ((-148 . -99) T) ((-148 . -571) 8188) ((-148 . -1027) T) ((-145 . -984) T) ((-145 . -990) T) ((-145 . -1038) T) ((-145 . -675) T) ((-145 . -21) T) ((-145 . -23) T) ((-145 . -1027) T) ((-145 . -571) 8170) ((-145 . -99) T) ((-145 . -25) T) ((-145 . -128) T) ((-145 . -599) 8144) ((-145 . -37) 8128) ((-145 . -109) 8107) ((-145 . -989) 8091) ((-145 . -666) 8075) ((-145 . -1187) 8059) ((-137 . -789) T) ((-137 . -795) T) ((-137 . -1027) T) ((-137 . -571) 8041) ((-137 . -99) T) ((-137 . -349) T) ((-134 . -1027) T) ((-134 . -571) 8023) ((-134 . -99) T) ((-134 . -572) 7982) ((-134 . -407) 7964) ((-134 . -1025) 7946) ((-134 . -349) T) ((-134 . -218) 7928) ((-134 . -144) 7910) ((-134 . -468) 7892) ((-134 . -491) NIL) ((-134 . -291) NIL) ((-134 . -1134) T) ((-134 . -33) T) ((-134 . -104) 7874) ((-134 . -212) 7856) ((-133 . -571) 7838) ((-131 . -445) 7815) ((-131 . -975) 7799) ((-131 . -1027) T) ((-131 . -571) 7781) ((-131 . -99) T) ((-131 . -450) 7736) ((-130 . -795) T) ((-130 . -99) T) ((-130 . -571) 7718) ((-130 . -1027) T) ((-130 . -23) T) ((-130 . -25) T) ((-130 . -675) T) ((-130 . -1038) T) ((-130 . -975) 7700) ((-127 . -19) 7682) ((-127 . -602) 7664) ((-127 . -270) 7639) ((-127 . -268) 7614) ((-127 . -563) 7589) ((-127 . -572) NIL) ((-127 . -468) 7571) ((-127 . -99) T) ((-127 . -1027) T) ((-127 . -491) NIL) ((-127 . -291) NIL) ((-127 . -571) 7553) ((-127 . -1134) T) ((-127 . -33) T) ((-127 . -144) 7535) ((-127 . -795) T) ((-127 . -353) 7517) ((-126 . -795) T) ((-126 . -99) T) ((-126 . -571) 7484) ((-126 . -1027) T) ((-125 . -123) 7468) ((-125 . -949) 7452) ((-125 . -33) T) ((-125 . -1134) T) ((-125 . -571) 7384) ((-125 . -291) 7322) ((-125 . -491) 7255) ((-125 . -1027) 7233) ((-125 . -99) 7211) ((-125 . -468) 7195) ((-125 . -117) 7179) ((-124 . -123) 7163) ((-124 . -949) 7147) ((-124 . -33) T) ((-124 . -1134) T) ((-124 . -571) 7079) ((-124 . -291) 7017) ((-124 . -491) 6950) ((-124 . -1027) 6928) ((-124 . -99) 6906) ((-124 . -468) 6890) ((-124 . -117) 6874) ((-119 . -123) 6858) ((-119 . -949) 6842) ((-119 . -33) T) ((-119 . -1134) T) ((-119 . -571) 6774) ((-119 . -291) 6712) ((-119 . -491) 6645) ((-119 . -1027) 6623) ((-119 . -99) 6601) ((-119 . -468) 6585) ((-119 . -117) 6569) ((-115 . -931) 6546) ((-115 . -1074) NIL) ((-115 . -975) 6523) ((-115 . -572) NIL) ((-115 . -958) NIL) ((-115 . -851) NIL) ((-115 . -825) 6500) ((-115 . -793) NIL) ((-115 . -745) NIL) ((-115 . -742) NIL) ((-115 . -795) NIL) ((-115 . -740) NIL) ((-115 . -739) NIL) ((-115 . -768) NIL) ((-115 . -827) NIL) ((-115 . -1134) T) ((-115 . -381) 6477) ((-115 . -593) 6454) ((-115 . -358) 6431) ((-115 . -268) 6382) ((-115 . -291) 6339) ((-115 . -491) 6247) ((-115 . -319) 6224) ((-115 . -226) T) ((-115 . -109) 6153) ((-115 . -989) 6098) ((-115 . -272) T) ((-115 . -666) 6043) ((-115 . -599) 5988) ((-115 . -37) 5933) ((-115 . -289) T) ((-115 . -432) T) ((-115 . -162) T) ((-115 . -523) T) ((-115 . -862) T) ((-115 . -1138) T) ((-115 . -344) T) ((-115 . -216) NIL) ((-115 . -841) NIL) ((-115 . -214) 5910) ((-115 . -140) T) ((-115 . -138) NIL) ((-115 . -128) T) ((-115 . -25) T) ((-115 . -99) T) ((-115 . -571) 5892) ((-115 . -1027) T) ((-115 . -23) T) ((-115 . -21) T) ((-115 . -984) T) ((-115 . -990) T) ((-115 . -1038) T) ((-115 . -675) T) ((-114 . -811) 5876) ((-114 . -862) T) ((-114 . -523) T) ((-114 . -272) T) ((-114 . -162) T) ((-114 . -666) 5863) ((-114 . -989) 5850) ((-114 . -109) 5835) ((-114 . -37) 5822) ((-114 . -432) T) ((-114 . -289) T) ((-114 . -984) T) ((-114 . -990) T) ((-114 . -1038) T) ((-114 . -675) T) ((-114 . -21) T) ((-114 . -23) T) ((-114 . -1027) T) ((-114 . -571) 5804) ((-114 . -99) T) ((-114 . -25) T) ((-114 . -128) T) ((-114 . -599) 5791) ((-114 . -140) T) ((-111 . -795) T) ((-111 . -99) T) ((-111 . -571) 5773) ((-111 . -1027) T) ((-110 . -795) T) ((-110 . -99) T) ((-110 . -571) 5755) ((-110 . -1027) T) ((-110 . -349) T) ((-110 . -613) T) ((-110 . -908) T) ((-110 . -572) 5737) ((-108 . -121) T) ((-108 . -353) 5719) ((-108 . -795) T) ((-108 . -144) 5701) ((-108 . -33) T) ((-108 . -1134) T) ((-108 . -571) 5683) ((-108 . -291) NIL) ((-108 . -491) NIL) ((-108 . -1027) T) ((-108 . -468) 5665) ((-108 . -572) 5647) ((-108 . -563) 5622) ((-108 . -268) 5597) ((-108 . -270) 5572) ((-108 . -602) 5554) ((-108 . -19) 5536) ((-108 . -99) T) ((-108 . -613) T) ((-107 . -346) 5510) ((-107 . -99) T) ((-107 . -571) 5492) ((-107 . -1027) T) ((-106 . -571) 5474) ((-105 . -931) 5456) ((-105 . -1074) T) ((-105 . -975) 5416) ((-105 . -572) 5346) ((-105 . -958) T) ((-105 . -851) NIL) ((-105 . -825) 5328) ((-105 . -793) T) ((-105 . -745) T) ((-105 . -742) T) ((-105 . -795) T) ((-105 . -740) T) ((-105 . -739) T) ((-105 . -768) T) ((-105 . -827) 5310) ((-105 . -1134) T) ((-105 . -381) 5292) ((-105 . -593) 5274) ((-105 . -358) 5256) ((-105 . -268) NIL) ((-105 . -291) NIL) ((-105 . -491) NIL) ((-105 . -319) 5238) ((-105 . -226) T) ((-105 . -109) 5172) ((-105 . -989) 5122) ((-105 . -272) T) ((-105 . -666) 5072) ((-105 . -599) 5022) ((-105 . -37) 4972) ((-105 . -289) T) ((-105 . -432) T) ((-105 . -162) T) ((-105 . -523) T) ((-105 . -862) T) ((-105 . -1138) T) ((-105 . -344) T) ((-105 . -216) T) ((-105 . -841) NIL) ((-105 . -214) 4954) ((-105 . -140) T) ((-105 . -138) NIL) ((-105 . -128) T) ((-105 . -25) T) ((-105 . -99) T) ((-105 . -571) 4936) ((-105 . -1027) T) ((-105 . -23) T) ((-105 . -21) T) ((-105 . -984) T) ((-105 . -990) T) ((-105 . -1038) T) ((-105 . -675) T) ((-102 . -1027) T) ((-102 . -571) 4918) ((-102 . -99) T) ((-100 . -123) 4902) ((-100 . -949) 4886) ((-100 . -33) T) ((-100 . -1134) T) ((-100 . -571) 4818) ((-100 . -291) 4756) ((-100 . -491) 4689) ((-100 . -1027) 4667) ((-100 . -99) 4645) ((-100 . -468) 4629) ((-100 . -117) 4613) ((-96 . -453) T) ((-96 . -1038) T) ((-96 . -99) T) ((-96 . -571) 4595) ((-96 . -1027) T) ((-96 . -675) T) ((-96 . -268) 4574) ((-94 . -1027) T) ((-94 . -571) 4556) ((-94 . -99) T) ((-89 . -1046) 4540) ((-89 . -468) 4524) ((-89 . -99) 4502) ((-89 . -1027) 4480) ((-89 . -491) 4413) ((-89 . -291) 4351) ((-89 . -571) 4283) ((-89 . -1134) T) ((-89 . -33) T) ((-89 . -104) 4267) ((-87 . -378) T) ((-87 . -571) 4249) ((-87 . -1134) T) ((-87 . -377) T) ((-86 . -366) T) ((-86 . -571) 4231) ((-86 . -1134) T) ((-86 . -377) T) ((-85 . -420) T) ((-85 . -571) 4213) ((-85 . -1134) T) ((-85 . -377) T) ((-84 . -421) T) ((-84 . -571) 4195) ((-84 . -1134) T) ((-84 . -377) T) ((-83 . -366) T) ((-83 . -571) 4177) ((-83 . -1134) T) ((-83 . -377) T) ((-82 . -366) T) ((-82 . -571) 4159) ((-82 . -1134) T) ((-82 . -377) T) ((-81 . -421) T) ((-81 . -571) 4141) ((-81 . -1134) T) ((-81 . -377) T) ((-80 . -421) T) ((-80 . -571) 4123) ((-80 . -1134) T) ((-80 . -377) T) ((-79 . -421) T) ((-79 . -571) 4105) ((-79 . -1134) T) ((-79 . -377) T) ((-78 . -421) T) ((-78 . -571) 4087) ((-78 . -1134) T) ((-78 . -377) T) ((-77 . -421) T) ((-77 . -571) 4069) ((-77 . -1134) T) ((-77 . -377) T) ((-76 . -378) T) ((-76 . -571) 4051) ((-76 . -1134) T) ((-76 . -377) T) ((-75 . -421) T) ((-75 . -571) 4033) ((-75 . -1134) T) ((-75 . -377) T) ((-74 . -421) T) ((-74 . -571) 4015) ((-74 . -1134) T) ((-74 . -377) T) ((-73 . -378) T) ((-73 . -571) 3997) ((-73 . -1134) T) ((-73 . -377) T) ((-72 . -421) T) ((-72 . -571) 3979) ((-72 . -1134) T) ((-72 . -377) T) ((-71 . -364) T) ((-71 . -571) 3961) ((-71 . -1134) T) ((-71 . -377) T) ((-70 . -377) T) ((-70 . -1134) T) ((-70 . -571) 3943) ((-69 . -421) T) ((-69 . -571) 3925) ((-69 . -1134) T) ((-69 . -377) T) ((-68 . -364) T) ((-68 . -571) 3907) ((-68 . -1134) T) ((-68 . -377) T) ((-67 . -377) T) ((-67 . -1134) T) ((-67 . -571) 3889) ((-66 . -364) T) ((-66 . -571) 3871) ((-66 . -1134) T) ((-66 . -377) T) ((-65 . -364) T) ((-65 . -571) 3853) ((-65 . -1134) T) ((-65 . -377) T) ((-64 . -378) T) ((-64 . -571) 3835) ((-64 . -1134) T) ((-64 . -377) T) ((-63 . -366) T) ((-63 . -571) 3817) ((-63 . -1134) T) ((-63 . -377) T) ((-62 . -421) T) ((-62 . -571) 3799) ((-62 . -1134) T) ((-62 . -377) T) ((-61 . -377) T) ((-61 . -1134) T) ((-61 . -571) 3781) ((-60 . -421) T) ((-60 . -571) 3763) ((-60 . -1134) T) ((-60 . -377) T) ((-59 . -378) T) ((-59 . -571) 3745) ((-59 . -1134) T) ((-59 . -377) T) ((-58 . -55) 3707) ((-58 . -33) T) ((-58 . -1134) T) ((-58 . -571) 3639) ((-58 . -291) 3577) ((-58 . -491) 3510) ((-58 . -1027) 3488) ((-58 . -99) 3466) ((-58 . -468) 3450) ((-56 . -19) 3434) ((-56 . -602) 3418) ((-56 . -270) 3395) ((-56 . -268) 3372) ((-56 . -563) 3349) ((-56 . -572) 3310) ((-56 . -468) 3294) ((-56 . -99) 3244) ((-56 . -1027) 3194) ((-56 . -491) 3127) ((-56 . -291) 3065) ((-56 . -571) 2977) ((-56 . -1134) T) ((-56 . -33) T) ((-56 . -144) 2961) ((-56 . -795) 2940) ((-56 . -353) 2924) ((-50 . -1027) T) ((-50 . -571) 2906) ((-50 . -99) T) ((-49 . -576) 2890) ((-49 . -599) 2864) ((-49 . -675) T) ((-49 . -1038) T) ((-49 . -990) T) ((-49 . -984) T) ((-49 . -21) T) ((-49 . -23) T) ((-49 . -1027) T) ((-49 . -571) 2846) ((-49 . -99) T) ((-49 . -25) T) ((-49 . -128) T) ((-49 . -975) 2830) ((-48 . -1027) T) ((-48 . -571) 2812) ((-48 . -99) T) ((-47 . -280) T) ((-47 . -975) 2755) ((-47 . -1027) T) ((-47 . -571) 2737) ((-47 . -99) T) ((-47 . -795) T) ((-47 . -491) 2703) ((-47 . -291) 2690) ((-47 . -27) T) ((-47 . -941) T) ((-47 . -226) T) ((-47 . -109) 2646) ((-47 . -989) 2611) ((-47 . -272) T) ((-47 . -666) 2576) ((-47 . -599) 2541) ((-47 . -128) T) ((-47 . -25) T) ((-47 . -23) T) ((-47 . -21) T) ((-47 . -984) T) ((-47 . -990) T) ((-47 . -1038) T) ((-47 . -675) T) ((-47 . -37) 2506) ((-47 . -289) T) ((-47 . -432) T) ((-47 . -162) T) ((-47 . -523) T) ((-47 . -862) T) ((-47 . -1138) T) ((-47 . -344) T) ((-47 . -593) 2466) ((-47 . -958) T) ((-47 . -572) 2411) ((-47 . -140) T) ((-47 . -216) T) ((-44 . -35) 2390) ((-44 . -563) 2315) ((-44 . -291) 2119) ((-44 . -491) 1911) ((-44 . -468) 1848) ((-44 . -268) 1773) ((-44 . -270) 1698) ((-44 . -568) 1677) ((-44 . -218) 1627) ((-44 . -104) 1577) ((-44 . -212) 1527) ((-44 . -1111) 1506) ((-44 . -264) 1456) ((-44 . -144) 1406) ((-44 . -33) T) ((-44 . -1134) T) ((-44 . -571) 1388) ((-44 . -1027) T) ((-44 . -99) T) ((-44 . -572) NIL) ((-44 . -602) 1338) ((-44 . -353) 1288) ((-44 . -795) NIL) ((-44 . -1072) 1238) ((-44 . -949) 1188) ((-44 . -1168) 1138) ((-44 . -617) 1088) ((-43 . -399) 1072) ((-43 . -693) 1056) ((-43 . -669) T) ((-43 . -710) T) ((-43 . -109) 1035) ((-43 . -989) 1019) ((-43 . -21) T) ((-43 . -23) T) ((-43 . -1027) T) ((-43 . -571) 1001) ((-43 . -99) T) ((-43 . -25) T) ((-43 . -128) T) ((-43 . -599) 959) ((-43 . -666) 943) ((-43 . -348) 927) ((-39 . -323) 901) ((-39 . -162) T) ((-39 . -675) T) ((-39 . -1038) T) ((-39 . -990) T) ((-39 . -984) T) ((-39 . -599) 846) ((-39 . -128) T) ((-39 . -25) T) ((-39 . -99) T) ((-39 . -571) 828) ((-39 . -1027) T) ((-39 . -23) T) ((-39 . -21) T) ((-39 . -989) 773) ((-39 . -109) 702) ((-39 . -572) 686) ((-39 . -214) 663) ((-39 . -841) 615) ((-39 . -216) 587) ((-39 . -344) T) ((-39 . -1138) T) ((-39 . -862) T) ((-39 . -523) T) ((-39 . -666) 532) ((-39 . -37) 477) ((-39 . -432) T) ((-39 . -289) T) ((-39 . -272) T) ((-39 . -226) T) ((-39 . -349) NIL) ((-39 . -331) NIL) ((-39 . -1074) NIL) ((-39 . -138) 449) ((-39 . -383) NIL) ((-39 . -391) 421) ((-39 . -140) 393) ((-39 . -351) 365) ((-39 . -358) 342) ((-39 . -593) 281) ((-39 . -393) 258) ((-39 . -975) 148) ((-39 . -673) 120) ((-30 . -896) T) ((-30 . -571) 102) ((0 . |EnumerationCategory|) T) ((0 . -571) 84) ((0 . -1027) T) ((0 . -99) T) ((-1 . -1027) T) ((-1 . -571) 66) ((-1 . -99) T) ((-2 . |RecordCategory|) T) ((-2 . -571) 48) ((-2 . -1027) T) ((-2 . -99) T) ((-3 . |UnionCategory|) T) ((-3 . -571) 30) ((-3 . -1027) T) ((-3 . -99) T)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index a212e0f5..e6d36145 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,1110 +1,978 @@
-(30 . 3428466482)
-(4267 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+(30 . 3428546876)
+(4272 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
- |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
- |AbelianMonoid&| |AbelianMonoid| |AbelianSemiGroup&|
- |AbelianSemiGroup| |AlgebraicallyClosedField&|
- |AlgebraicallyClosedField| |AlgebraicallyClosedFunctionSpace&|
- |AlgebraicallyClosedFunctionSpace| |PlaneAlgebraicCurvePlot|
- |AlgebraicFunction| |Aggregate&| |Aggregate|
+ |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&|
+ |AbelianMonoid| |AbelianSemiGroup&| |AbelianSemiGroup|
+ |AlgebraicallyClosedField&| |AlgebraicallyClosedField|
+ |AlgebraicallyClosedFunctionSpace&| |AlgebraicallyClosedFunctionSpace|
+ |PlaneAlgebraicCurvePlot| |AlgebraicFunction| |Aggregate&| |Aggregate|
|ArcHyperbolicFunctionCategory| |AssociationListAggregate| |Algebra&|
- |Algebra| |AlgFactor| |AlgebraicFunctionField|
- |AlgebraicManipulations| |AlgebraicMultFact| |AlgebraPackage|
- |AlgebraGivenByStructuralConstants| |AssociationList|
- |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber|
- |AnonymousFunction| |AntiSymm| |AnyFunctions1| |Any|
- |ApplyUnivariateSkewPolynomial| |ApplyRules|
- |TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory|
- |OneDimensionalArrayFunctions2| |OneDimensionalArray|
- |TwoDimensionalArray| |Asp10| |Asp12| |Asp19| |Asp1| |Asp20| |Asp24|
- |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35|
- |Asp41| |Asp42| |Asp49| |Asp4| |Asp50| |Asp55| |Asp6| |Asp73| |Asp74|
- |Asp77| |Asp78| |Asp7| |Asp80| |Asp8| |Asp9| |AssociatedEquations|
+ |Algebra| |AlgFactor| |AlgebraicFunctionField| |AlgebraicManipulations|
+ |AlgebraicMultFact| |AlgebraPackage| |AlgebraGivenByStructuralConstants|
+ |AssociationList| |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber|
+ |AnonymousFunction| |AntiSymm| |Any| |AnyFunctions1|
+ |ApplyUnivariateSkewPolynomial| |ApplyRules| |TwoDimensionalArrayCategory&|
+ |TwoDimensionalArrayCategory| |OneDimensionalArray|
+ |OneDimensionalArrayFunctions2| |TwoDimensionalArray| |Asp1| |Asp10| |Asp12|
+ |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33|
+ |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55| |Asp6| |Asp7|
+ |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9| |AssociatedEquations|
|ArrayStack| |AbstractSyntaxCategory&| |AbstractSyntaxCategory|
|ArcTrigonometricFunctionCategory&| |ArcTrigonometricFunctionCategory|
- |AttributeButtons| |AttributeRegistry| |Automorphism|
- |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree|
- |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate|
- |BinaryExpansion| |Binding| |BinaryFile| |Bits| |BiModule| |Boolean|
- |BasicOperatorFunctions1| |BasicOperator| |BoundIntegerRoots|
- |BalancedPAdicInteger| |BalancedPAdicRational|
- |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate|
- |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate|
- |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament|
- |BinaryTree| |ByteArray| |Byte| |CancellationAbelianMonoid|
- |CachableSet| |CardinalNumber| |CartesianTensorFunctions2|
- |CartesianTensor| |Category| |CharacterClass| |CommonDenominator|
+ |AttributeButtons| |AttributeRegistry| |Automorphism| |BalancedFactorisation|
+ |BasicType&| |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions|
+ |BagAggregate&| |BagAggregate| |BinaryExpansion| |Binding| |BinaryFile| |Bits|
+ |BiModule| |Boolean| |BasicOperator| |BasicOperatorFunctions1|
+ |BoundIntegerRoots| |BalancedPAdicInteger| |BalancedPAdicRational|
+ |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| |BrillhartTests|
+ |BinarySearchTree| |BitAggregate&| |BitAggregate| |BinaryTreeCategory&|
+ |BinaryTreeCategory| |BinaryTournament| |BinaryTree| |Byte| |ByteArray|
+ |CancellationAbelianMonoid| |CachableSet| |CardinalNumber| |CartesianTensor|
+ |CartesianTensorFunctions2| |Category| |CharacterClass| |CommonDenominator|
|CombinatorialFunctionCategory| |Character| |CharacteristicNonZero|
- |CharacteristicPolynomialPackage| |CharacteristicZero|
- |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation|
- |Collection&| |Collection| |CliffordAlgebra|
- |TwoDimensionalPlotClipping| |ComplexRootPackage| |Color|
+ |CharacteristicPolynomialPackage| |CharacteristicZero| |ChangeOfVariable|
+ |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| |Collection|
+ |CliffordAlgebra| |TwoDimensionalPlotClipping| |ComplexRootPackage| |Color|
|CombinatorialFunction| |IntegerCombinatoricFunctions|
|CombinatorialOpsCategory| |Commutator| |CommonOperators|
- |CommuteUnivariatePolynomialCategory| |ComplexCategory&|
- |ComplexCategory| |ComplexFactorization| |ComplexFunctions2| |Complex|
- |ComplexPattern| |SubSpaceComponentProperty| |CommutativeRing|
- |ContinuedFraction| |Contour| |CoordinateSystems|
- |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch|
- |CRApackage| |ComplexRootFindingPackage| |CyclicStreamTools|
- |ConstructorCall| |ComplexTrigonometricManipulations|
- |CoerceVectorMatrixPackage| |CycleIndicators|
- |CyclotomicPolynomialPackage| |d01AgentsPackage| |d01ajfAnnaType|
- |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType|
- |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType|
- |d01gbfAnnaType| |d01TransformFunctionType| |d01WeightsPackage|
- |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType|
- |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |d03fafAnnaType|
- |Database| |DoubleResultantPackage| |DistinctDegreeFactorize|
- |DecimalExpansion| |ElementaryFunctionDefiniteIntegration|
- |RationalFunctionDefiniteIntegration| |DegreeReductionPackage|
- |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat|
- |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&|
- |Dictionary| |DifferentialExtension&| |DifferentialExtension|
+ |CommuteUnivariatePolynomialCategory| |ComplexCategory&| |ComplexCategory|
+ |ComplexFactorization| |Complex| |ComplexFunctions2| |ComplexPattern|
+ |SubSpaceComponentProperty| |CommutativeRing| |ContinuedFraction| |Contour|
+ |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra|
+ |ComplexPatternMatch| |CRApackage| |ComplexRootFindingPackage|
+ |CyclicStreamTools| |ConstructorCall| |ComplexTrigonometricManipulations|
+ |CoerceVectorMatrixPackage| |CycleIndicators| |CyclotomicPolynomialPackage|
+ |d01AgentsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType|
+ |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType|
+ |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType|
+ |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType|
+ |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType|
+ |d03fafAnnaType| |DataBuffer| |Database| |DoubleResultantPackage|
+ |DistinctDegreeFactorize| |DecimalExpansion|
+ |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration|
+ |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools|
+ |DoubleFloat| |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix|
+ |Dictionary&| |Dictionary| |DifferentialExtension&| |DifferentialExtension|
|DifferentialRing&| |DifferentialRing| |DictionaryOperations&|
- |DictionaryOperations| |DiophantineSolutionPackage|
- |DirectProductCategory&| |DirectProductCategory|
- |DirectProductFunctions2| |DirectProduct| |DisplayPackage|
- |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList|
- |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial|
+ |DictionaryOperations| |DiophantineSolutionPackage| |DirectProductCategory&|
+ |DirectProductCategory| |DirectProduct| |DirectProductFunctions2|
+ |DisplayPackage| |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate|
+ |DataList| |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial|
|Domain| |DirectProductMatrixModule| |DirectProductModule|
|DifferentialPolynomialCategory&| |DifferentialPolynomialCategory|
- |DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions|
- |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex|
- |DrawNumericHack| |TopLevelDrawFunctions|
- |TopLevelDrawFunctionsForPoints| |DrawOptionFunctions0|
- |DrawOptionFunctions1| |DrawOption|
- |DifferentialSparseMultivariatePolynomial|
+ |DequeueAggregate| |TopLevelDrawFunctions|
+ |TopLevelDrawFunctionsForCompiledFunctions|
+ |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| |DrawNumericHack|
+ |TopLevelDrawFunctionsForPoints| |DrawOption| |DrawOptionFunctions0|
+ |DrawOptionFunctions1| |DifferentialSparseMultivariatePolynomial|
|DifferentialVariableCategory&| |DifferentialVariableCategory|
|e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType|
|e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|
- |ExtAlgBasis| |ElementaryFunction|
- |ElementaryFunctionStructurePackage|
+ |ExtAlgBasis| |ElementaryFunction| |ElementaryFunctionStructurePackage|
|ElementaryFunctionsUnivariateLaurentSeries|
|ElementaryFunctionsUnivariatePuiseuxSeries| |ElaboratedExpression|
|ExtensibleLinearAggregate&| |ExtensibleLinearAggregate|
|ElementaryFunctionCategory&| |ElementaryFunctionCategory|
- |EllipticFunctionsUnivariateTaylorSeries| |Eltable|
- |EltableAggregate&| |EltableAggregate| |EuclideanModularRing|
- |EntireRing| |Environment| |EigenPackage| |EquationFunctions2|
- |Equation| |EqTable| |ErrorFunctions| |ExpressionSpaceFunctions1|
- |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage1|
- |ExpertSystemContinuityPackage| |ExpressionSpace&| |ExpressionSpace|
- |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2|
- |ExpertSystemToolsPackage| |EuclideanDomain&| |EuclideanDomain|
- |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit|
- |ExponentialExpansion| |ExpressionFunctions2|
- |ExpressionToUnivariatePowerSeries| |Expression|
- |ExpressionSpaceODESolver| |ExpressionTubePlot|
- |ExponentialOfUnivariatePuiseuxSeries| |FactoredFunctions|
- |FactoringUtilities| |FreeAbelianGroup| |FreeAbelianMonoidCategory|
- |FreeAbelianMonoid| |FiniteAbelianMonoidRing&|
- |FiniteAbelianMonoidRing| |FlexibleArray|
- |FiniteAlgebraicExtensionField&| |FiniteAlgebraicExtensionField|
- |FortranCode| |FourierComponent| |FortranCodePackage1|
- |FiniteDivisorFunctions2| |FiniteDivisorCategory&|
- |FiniteDivisorCategory| |FiniteDivisor| |FullyEvalableOver&|
- |FullyEvalableOver| |FortranExpression|
- |FunctionFieldCategoryFunctions2| |FunctionFieldCategory&|
- |FunctionFieldCategory| |FiniteFieldCyclicGroup|
- |FiniteFieldCyclicGroupExtensionByPolynomial|
+ |EllipticFunctionsUnivariateTaylorSeries| |Eltable| |EltableAggregate&|
+ |EltableAggregate| |EuclideanModularRing| |EntireRing| |Environment|
+ |EigenPackage| |Equation| |EquationFunctions2| |EqTable| |ErrorFunctions|
+ |ExpressionSpace&| |ExpressionSpace| |ExpressionSpaceFunctions1|
+ |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage|
+ |ExpertSystemContinuityPackage1| |ExpertSystemToolsPackage|
+ |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |EuclideanDomain&|
+ |EuclideanDomain| |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit|
+ |ExponentialExpansion| |Expression| |ExpressionFunctions2|
+ |ExpressionToUnivariatePowerSeries| |ExpressionSpaceODESolver|
+ |ExpressionTubePlot| |ExponentialOfUnivariatePuiseuxSeries|
+ |FactoredFunctions| |FactoringUtilities| |FreeAbelianGroup|
+ |FreeAbelianMonoidCategory| |FreeAbelianMonoid| |FiniteAbelianMonoidRing&|
+ |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&|
+ |FiniteAlgebraicExtensionField| |FortranCode| |FourierComponent|
+ |FortranCodePackage1| |FiniteDivisor| |FiniteDivisorFunctions2|
+ |FiniteDivisorCategory&| |FiniteDivisorCategory| |FullyEvalableOver&|
+ |FullyEvalableOver| |FortranExpression| |FiniteField| |FunctionFieldCategory&|
+ |FunctionFieldCategory| |FunctionFieldCategoryFunctions2|
+ |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtensionByPolynomial|
|FiniteFieldCyclicGroupExtension| |FiniteFieldFunctions|
- |FiniteFieldHomomorphisms| |FiniteFieldCategory&|
- |FiniteFieldCategory| |FunctionFieldIntegralBasis|
- |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtensionByPolynomial|
- |FiniteFieldNormalBasisExtension| |FiniteField|
- |FiniteFieldExtensionByPolynomial| |FiniteFieldPolynomialPackage2|
- |FiniteFieldPolynomialPackage|
+ |FiniteFieldHomomorphisms| |FiniteFieldCategory&| |FiniteFieldCategory|
+ |FunctionFieldIntegralBasis| |FiniteFieldNormalBasis|
+ |FiniteFieldNormalBasisExtensionByPolynomial|
+ |FiniteFieldNormalBasisExtension| |FiniteFieldExtensionByPolynomial|
+ |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2|
|FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldExtension|
- |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |FileCategory| |File|
- |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra|
- |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra|
- |FiniteLinearAggregateFunctions2| |FiniteLinearAggregate&|
- |FiniteLinearAggregate| |FreeLieAlgebra| |FiniteLinearAggregateSort|
- |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver|
- |FloatingComplexPackage| |Float| |FloatingRealPackage| |FreeModule1|
- |FreeModuleCat| |FortranMatrixCategory|
- |FortranMatrixFunctionCategory| |FreeModule| |FreeMonoid|
- |FortranMachineTypeCategory| |FileName| |FileNameCategory|
- |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite|
- |ScriptFormulaFormat1| |ScriptFormulaFormat| |FortranProgramCategory|
- |FortranFunctionCategory| |FortranPackage| |FortranProgram|
- |FullPartialFractionExpansion| |FullyPatternMatchable|
- |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic|
- |FloatingPointSystem&| |FloatingPointSystem| |FactoredFunctions2|
- |FractionFunctions2| |Fraction| |FramedAlgebra&| |FramedAlgebra|
- |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdealFunctions2|
- |FractionalIdeal| |FramedModule|
+ |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |File| |FileCategory|
+ |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| |Finite|
+ |FiniteRankAlgebra&| |FiniteRankAlgebra| |FiniteLinearAggregate&|
+ |FiniteLinearAggregate| |FiniteLinearAggregateFunctions2| |FreeLieAlgebra|
+ |FiniteLinearAggregateSort| |FullyLinearlyExplicitRingOver&|
+ |FullyLinearlyExplicitRingOver| |Float| |FloatingComplexPackage|
+ |FloatingRealPackage| |FreeModule| |FreeModule1| |FortranMatrixCategory|
+ |FreeModuleCat| |FortranMatrixFunctionCategory| |FreeMonoid|
+ |FortranMachineTypeCategory| |FileName| |FileNameCategory| |FreeNilpotentLie|
+ |FortranOutputStackPackage| |FindOrderFinite| |ScriptFormulaFormat|
+ |ScriptFormulaFormat1| |FortranPackage| |FortranProgramCategory|
+ |FortranFunctionCategory| |FortranProgram| |FullPartialFractionExpansion|
+ |FullyPatternMatchable| |FieldOfPrimeCharacteristic&|
+ |FieldOfPrimeCharacteristic| |FloatingPointSystem&| |FloatingPointSystem|
+ |Factored| |FactoredFunctions2| |Fraction| |FractionFunctions2|
+ |FramedAlgebra&| |FramedAlgebra| |FullyRetractableTo&| |FullyRetractableTo|
+ |FractionalIdeal| |FractionalIdealFunctions2| |FramedModule|
|FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&|
- |FramedNonAssociativeAlgebra| |Factored| |FactoredFunctionUtilities|
- |FunctionSpaceToExponentialExpansion| |FunctionSpaceFunctions2|
- |FunctionSpaceToUnivariatePowerSeries| |FiniteSetAggregateFunctions2|
- |FiniteSetAggregate&| |FiniteSetAggregate|
- |FunctionSpaceComplexIntegration| |FourierSeries|
- |FunctionSpaceIntegration| |FunctionSpace&| |FunctionSpace|
+ |FramedNonAssociativeAlgebra| |FactoredFunctionUtilities| |FunctionSpace&|
+ |FunctionSpace| |FunctionSpaceFunctions2|
+ |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries|
+ |FiniteSetAggregate&| |FiniteSetAggregate| |FiniteSetAggregateFunctions2|
+ |FunctionSpaceComplexIntegration| |FourierSeries| |FunctionSpaceIntegration|
|FunctionalSpecialFunction| |FunctionSpacePrimitiveElement|
|FunctionSpaceReduce| |FortranScalarType|
- |FunctionSpaceUnivariatePolynomialFactor| |FortranTemplate|
- |FortranType| |FunctionCalled| |FortranVectorCategory|
- |FortranVectorFunctionCategory| |GaloisGroupFactorizer|
- |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities|
- |GaloisGroupUtilities| |GaussianFactorizationPackage|
+ |FunctionSpaceUnivariatePolynomialFactor| |FortranType| |FortranTemplate|
+ |FunctionCalled| |FortranVectorCategory| |FortranVectorFunctionCategory|
+ |GaloisGroupFactorizer| |GaloisGroupFactorizationUtilities|
+ |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities|
+ |GaussianFactorizationPackage| |GroebnerPackage|
|EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage|
- |GroebnerInternalPackage| |GroebnerPackage| |GcdDomain&| |GcdDomain|
- |GenericNonAssociativeAlgebra|
- |GeneralDistributedMultivariatePolynomial| |GenExEuclid|
- |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage|
+ |GroebnerInternalPackage| |GcdDomain&| |GcdDomain|
+ |GenericNonAssociativeAlgebra| |GeneralDistributedMultivariatePolynomial|
+ |GenExEuclid| |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage|
|GenUFactorize| |GenerateUnivariatePowerSeries| |GeneralHenselPackage|
- |GeneralModulePolynomial| |GosperSummationMethod|
- |GeneralPolynomialSet| |GradedAlgebra&| |GradedAlgebra| |GrayCode|
- |GraphicsDefaults| |GraphImage| |GradedModule&| |GradedModule|
- |GroebnerSolve| |Group&| |Group| |GeneralUnivariatePowerSeries|
- |GeneralSparseTable| |GeneralTriangularSet| |Pi| |HashTable|
- |HallBasis| |HomogeneousDistributedMultivariatePolynomial|
- |HomogeneousDirectProduct| |HeadAst| |Heap|
- |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion|
- |HomogeneousAggregate&| |HomogeneousAggregate|
- |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory|
+ |GeneralModulePolynomial| |GosperSummationMethod| |GeneralPolynomialSet|
+ |GradedAlgebra&| |GradedAlgebra| |GrayCode| |GraphicsDefaults| |GraphImage|
+ |GradedModule&| |GradedModule| |GroebnerSolve| |Group&| |Group|
+ |GeneralUnivariatePowerSeries| |GeneralSparseTable| |GeneralTriangularSet|
+ |Pi| |HashTable| |HallBasis| |HomogeneousDistributedMultivariatePolynomial|
+ |HomogeneousDirectProduct| |HeadAst| |Heap| |HyperellipticFiniteDivisor|
+ |HeuGcd| |HexadecimalExpansion| |HomogeneousAggregate&| |HomogeneousAggregate|
+ |Hostname| |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory|
|InnerAlgFactor| |InnerAlgebraicNumber| |IndexedOneDimensionalArray|
|IndexedTwoDimensionalArray| |ChineseRemainderToolsForIntegralBases|
- |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools|
- |IndexCard| |InnerCommonDenominator| |PolynomialIdeals|
- |IdealDecompositionPackage| |IndexedDirectProductAbelianGroup|
- |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory|
+ |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| |IndexCard|
+ |InnerCommonDenominator| |PolynomialIdeals| |IdealDecompositionPackage|
+ |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid|
+ |IndexedDirectProductCategory| |IndexedDirectProductObject|
|IndexedDirectProductOrderedAbelianMonoid|
- |IndexedDirectProductOrderedAbelianMonoidSup|
- |IndexedDirectProductObject| |InnerEvalable&| |InnerEvalable|
+ |IndexedDirectProductOrderedAbelianMonoidSup| |InnerEvalable&| |InnerEvalable|
|InnerFreeAbelianMonoid| |IndexedFlexibleArray| |InnerFiniteField|
|InnerIndexedTwoDimensionalArray| |IndexedList|
- |InnerMatrixLinearAlgebraFunctions|
- |InnerMatrixQuotientFieldFunctions| |IndexedMatrix|
- |InnerNormalBasisFieldFunctions| |IncrementingMaps| |IndexedExponents|
- |InnerNumericEigenPackage| |Infinity| |InputFormFunctions1|
- |InputForm| |InfiniteProductCharacteristicZero|
+ |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions|
+ |IndexedMatrix| |InnerNormalBasisFieldFunctions| |IncrementingMaps|
+ |IndexedExponents| |InnerNumericEigenPackage| |Infinity| |InputForm|
+ |InputFormFunctions1| |InfiniteProductCharacteristicZero|
|InnerNumericFloatSolvePackage| |InnerModularGcd| |InnerMultFact|
- |InfiniteProductFiniteField| |InfiniteProductPrimeField|
- |InnerPolySign| |IntegerNumberSystem&| |IntegerNumberSystem|
- |InnerTable| |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits|
- |IntervalCategory| |IntegralDomain&| |IntegralDomain|
- |ElementaryIntegration| |IntegerFactorizationPackage|
- |IntegrationFunctionsTable| |GenusZeroIntegration|
- |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration|
- |TranscendentalHermiteIntegration| |Integer|
+ |InfiniteProductFiniteField| |InfiniteProductPrimeField| |InnerPolySign|
+ |IntegerNumberSystem&| |IntegerNumberSystem| |Integer| |InnerTable|
+ |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| |IntervalCategory|
+ |IntegralDomain&| |IntegralDomain| |ElementaryIntegration|
+ |IntegerFactorizationPackage| |IntegrationFunctionsTable|
+ |GenusZeroIntegration| |IntegerNumberTheoryFunctions|
+ |AlgebraicHermiteIntegration| |TranscendentalHermiteIntegration|
|AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration|
|PatternMatchIntegration| |RationalIntegration| |IntegerRetractions|
|RationalFunctionIntegration| |Interval|
|IntegerSolveLinearPolynomialEquation| |IntegrationTools|
- |TranscendentalIntegration| |InverseLaplaceTransform|
- |InnerPAdicInteger| |InnerPrimeField| |InternalPrintPackage|
- |IntegrationResultToFunction| |IntegrationResultFunctions2|
- |IntegrationResult| |IntegerRoots| |IrredPolyOverFiniteField|
- |IntegrationResultRFToFunction| |IrrRepSymNatPackage|
- |InternalRationalUnivariateRepresentationPackage| |IndexedString|
- |InnerPolySum| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries|
- |InfiniteTupleFunctions2| |InfiniteTupleFunctions3|
+ |TranscendentalIntegration| |InverseLaplaceTransform| |InnerPAdicInteger|
+ |InnerPrimeField| |InternalPrintPackage| |IntegrationResult|
+ |IntegrationResultFunctions2| |IntegrationResultToFunction| |IntegerRoots|
+ |IrredPolyOverFiniteField| |IntegrationResultRFToFunction|
+ |IrrRepSymNatPackage| |InternalRationalUnivariateRepresentationPackage|
+ |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries|
+ |InnerTaylorSeries| |InfiniteTupleFunctions2| |InfiniteTupleFunctions3|
|InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector|
|IndexedAggregate&| |IndexedAggregate| |JavaBytecode|
|AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&|
- |KeyedDictionary| |KernelFunctions2| |Kernel| |CoercibleTo|
- |ConvertibleTo| |Kovacic| |LeftAlgebra&| |LeftAlgebra| |LocalAlgebra|
- |LaplaceTransform| |LaurentPolynomial| |LazardSetSolvingPackage|
- |LeadingCoefDetermination| |LieExponentials| |LexTriangularPackage|
- |LiouvillianFunctionCategory| |LiouvillianFunction|
- |LinGroebnerPackage| |Library| |LieAlgebra&| |LieAlgebra|
- |AssociatedLieAlgebra| |PowerSeriesLimitPackage|
- |RationalFunctionLimitPackage| |LinearDependence|
- |LinearlyExplicitRingOver| |ListToMap| |ListFunctions2|
- |ListFunctions3| |List| |ListMultiDictionary| |LeftModule|
- |ListMonoidOps| |LinearAggregate&| |LinearAggregate|
- |ElementaryFunctionLODESolver| |LinearOrdinaryDifferentialOperator1|
- |LinearOrdinaryDifferentialOperator2|
+ |KeyedDictionary| |Kernel| |KernelFunctions2| |CoercibleTo| |ConvertibleTo|
+ |Kovacic| |LocalAlgebra| |LeftAlgebra&| |LeftAlgebra| |LaplaceTransform|
+ |LaurentPolynomial| |LazardSetSolvingPackage| |LeadingCoefDetermination|
+ |LieExponentials| |LexTriangularPackage| |LiouvillianFunction|
+ |LiouvillianFunctionCategory| |LinGroebnerPackage| |Library|
+ |AssociatedLieAlgebra| |LieAlgebra&| |LieAlgebra| |PowerSeriesLimitPackage|
+ |RationalFunctionLimitPackage| |LinearDependence| |LinearlyExplicitRingOver|
+ |List| |ListFunctions2| |ListToMap| |ListFunctions3| |ListMultiDictionary|
+ |LeftModule| |ListMonoidOps| |LinearAggregate&| |LinearAggregate| |Localize|
+ |ElementaryFunctionLODESolver| |LinearOrdinaryDifferentialOperator|
+ |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2|
|LinearOrdinaryDifferentialOperatorCategory&|
|LinearOrdinaryDifferentialOperatorCategory|
|LinearOrdinaryDifferentialOperatorFactorizer|
- |LinearOrdinaryDifferentialOperator|
- |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |Localize|
+ |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic|
|LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&|
- |ListAggregate| |LinearSystemMatrixPackage1|
- |LinearSystemMatrixPackage| |LinearSystemPolynomialPackage|
- |LieSquareMatrix| |LyndonWord| |LazyStreamAggregate&|
- |LazyStreamAggregate| |ThreeDimensionalMatrix| |Magma|
+ |ListAggregate| |LinearSystemMatrixPackage| |LinearSystemMatrixPackage1|
+ |LinearSystemPolynomialPackage| |LieSquareMatrix| |LyndonWord|
+ |LazyStreamAggregate&| |LazyStreamAggregate| |ThreeDimensionalMatrix| |Magma|
|MappingPackageInternalHacks1| |MappingPackageInternalHacks2|
|MappingPackageInternalHacks3| |MappingPackage1| |MappingPackage2|
- |MappingPackage3| |MatrixCategoryFunctions2| |MatrixCategory&|
- |MatrixCategory| |MatrixLinearAlgebraFunctions| |Matrix|
- |StorageEfficientMatrixOperations| |Maybe|
- |MultiVariableCalculusFunctions| |MatrixCommonDenominator|
- |MachineComplex| |MultiDictionary| |ModularDistinctDegreeFactorizer|
- |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize|
- |MachineFloat| |ModularHermitianRowReduction| |MachineInteger|
- |MakeBinaryCompiledFunction| |MakeCachableSet|
+ |MappingPackage3| |MatrixCategory&| |MatrixCategory|
+ |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions| |Matrix|
+ |StorageEfficientMatrixOperations| |Maybe| |MultiVariableCalculusFunctions|
+ |MatrixCommonDenominator| |MachineComplex| |MultiDictionary|
+ |ModularDistinctDegreeFactorizer| |MeshCreationRoutinesForThreeDimensions|
+ |MultFiniteFactorize| |MachineFloat| |ModularHermitianRowReduction|
+ |MachineInteger| |MakeBinaryCompiledFunction| |MakeCachableSet|
|MakeFloatCompiledFunction| |MakeFunction| |MakeRecord|
- |MakeUnaryCompiledFunction| |MultivariateLifting|
- |MonogenicLinearOperator| |MultipleMap| |MathMLFormat| |ModularField|
- |ModMonic| |ModuleMonomial| |ModuleOperator| |ModularRing| |Module&|
- |Module| |MoebiusTransform| |Monad&| |Monad| |MonadWithUnit&|
- |MonadWithUnit| |MonogenicAlgebra&| |MonogenicAlgebra| |Monoid&|
- |Monoid| |MonomialExtensionTools| |MPolyCatFunctions2|
- |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MultivariatePolynomial|
- |MPolyCatRationalFunctionFactorizer| |MRationalFactorize|
- |MonoidRingFunctions2| |MonoidRing| |MultisetAggregate| |Multiset|
- |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory|
- |MultivariateFactorize| |MultivariateSquareFree|
- |NonAssociativeAlgebra&| |NonAssociativeAlgebra|
+ |MakeUnaryCompiledFunction| |MultivariateLifting| |MonogenicLinearOperator|
+ |MultipleMap| |MathMLFormat| |ModularField| |ModMonic| |ModuleMonomial|
+ |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| |Monad&|
+ |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&|
+ |MonogenicAlgebra| |Monoid&| |Monoid| |MonomialExtensionTools|
+ |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer|
+ |MultivariatePolynomial| |MPolyCatRationalFunctionFactorizer|
+ |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| |Multiset|
+ |MultisetAggregate| |MoreSystemCommands| |MergeThing|
+ |MultivariateTaylorSeriesCategory| |MultivariateFactorize|
+ |MultivariateSquareFree| |NonAssociativeAlgebra&| |NonAssociativeAlgebra|
|NagPolynomialRootsPackage| |NagRootFindingPackage|
|NagSeriesSummationPackage| |NagIntegrationPackage|
|NagOrdinaryDifferentialEquationsPackage|
|NagPartialDifferentialEquationsPackage| |NagInterpolationPackage|
- |NagFittingPackage| |NagOptimisationPackage|
- |NagMatrixOperationsPackage| |NagEigenPackage|
- |NagLinearEquationSolvingPackage| |NagLapack|
- |NagSpecialFunctionsPackage| |NAGLinkSupportPackage|
- |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&|
- |NonAssociativeRing| |NumericComplexEigenPackage|
- |NumericContinuedFraction| |NonCommutativeOperatorDivision|
- |NumberFieldIntegralBasis| |NumericalIntegrationProblem|
- |NonLinearSolvePackage| |NonNegativeInteger|
- |NonLinearFirstOrderODESolver| |NoneFunctions1| |None|
- |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage|
- |NPCoef| |NumericRealEigenPackage| |NewSparseMultivariatePolynomial|
- |NewSparseUnivariatePolynomialFunctions2|
- |NewSparseUnivariatePolynomial| |NumberTheoreticPolynomialFunctions|
- |NormalizedTriangularSetCategory| |Numeric| |NumberFormats|
- |NumericalIntegrationCategory|
+ |NagFittingPackage| |NagOptimisationPackage| |NagMatrixOperationsPackage|
+ |NagEigenPackage| |NagLinearEquationSolvingPackage| |NagLapack|
+ |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| |NonAssociativeRng&|
+ |NonAssociativeRng| |NonAssociativeRing&| |NonAssociativeRing|
+ |NumericComplexEigenPackage| |NumericContinuedFraction|
+ |NonCommutativeOperatorDivision| |NumberFieldIntegralBasis|
+ |NumericalIntegrationProblem| |NonLinearSolvePackage| |NonNegativeInteger|
+ |NonLinearFirstOrderODESolver| |None| |NoneFunctions1|
+ |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| |NPCoef|
+ |NumericRealEigenPackage| |NewSparseMultivariatePolynomial|
+ |NewSparseUnivariatePolynomial| |NewSparseUnivariatePolynomialFunctions2|
+ |NumberTheoreticPolynomialFunctions| |NormalizedTriangularSetCategory|
+ |Numeric| |NumberFormats| |NumericalIntegrationCategory|
|NumericalOrdinaryDifferentialEquations| |NumericalQuadrature|
|NumericTubePlot| |OrderedAbelianGroup| |OrderedAbelianMonoid|
- |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup|
- |OrderedCancellationAbelianMonoid| |OctonionCategory&|
- |OctonionCategory| |OctonionCategoryFunctions2| |Octonion|
- |OrdinaryDifferentialEquationsSolverCategory| |ConstantLODE|
- |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable|
- |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage|
- |PureAlgebraicLODE| |PrimitiveRatDE| |NumericalODEProblem|
- |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| |RationalRicDE|
- |SystemODESolver| |ODETools| |OrderedDirectProduct|
- |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing|
- |OrderlyDifferentialVariable| |OrderedFreeMonoid|
- |OrderedIntegralDomain| |OpenMathConnection| |OpenMathDevice|
- |OpenMathEncoding| |OpenMathErrorKind| |OpenMathError|
- |ExpressionToOpenMath| |OppositeMonogenicLinearOperator| |OpenMath|
- |OpenMathPackage| |OrderedMultisetAggregate| |OpenMathServerPackage|
- |OnePointCompletionFunctions2| |OnePointCompletion| |Operator|
- |OperationsQuery| |NumericalOptimizationCategory|
+ |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| |OctonionCategory&|
+ |OctonionCategory| |OrderedCancellationAbelianMonoid| |Octonion|
+ |OctonionCategoryFunctions2| |OrdinaryDifferentialEquationsSolverCategory|
+ |ConstantLODE| |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable|
+ |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage| |PureAlgebraicLODE|
+ |PrimitiveRatDE| |NumericalODEProblem| |PrimitiveRatRicDE| |RationalLODE|
+ |ReduceLODE| |RationalRicDE| |SystemODESolver| |ODETools|
+ |OrderedDirectProduct| |OrderlyDifferentialPolynomial|
+ |OrdinaryDifferentialRing| |OrderlyDifferentialVariable| |OrderedFreeMonoid|
+ |OrderedIntegralDomain| |OpenMath| |OpenMathConnection| |OpenMathDevice|
+ |OpenMathEncoding| |OpenMathError| |OpenMathErrorKind| |ExpressionToOpenMath|
+ |OppositeMonogenicLinearOperator| |OpenMathPackage| |OrderedMultisetAggregate|
+ |OpenMathServerPackage| |OnePointCompletion| |OnePointCompletionFunctions2|
+ |Operator| |OperationsQuery| |NumericalOptimizationCategory|
|AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem|
- |OrderedCompletionFunctions2| |OrderedCompletion| |OrderedFinite|
- |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing|
- |OrderedSet&| |OrderedSet| |UnivariateSkewPolynomialCategory&|
- |UnivariateSkewPolynomialCategory|
- |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial|
- |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions|
- |OrderedSemiGroup| |OrdSetInts| |OutputForm| |OutputPackage|
- |OrderedVariableList| |OrdinaryWeightedPolynomials| |PadeApproximants|
- |PadeApproximantPackage| |PAdicIntegerCategory| |PAdicInteger|
- |PAdicRational| |PAdicRationalConstructor| |Pair| |Palette|
- |PolynomialAN2Expression| |ParametricPlaneCurveFunctions2|
- |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2|
- |ParametricSpaceCurve| |Parser| |ParametricSurfaceFunctions2|
- |ParametricSurface| |PartitionsAndPermutations| |Patternable|
- |PatternMatchListResult| |PatternMatchable| |PatternMatch|
- |PatternMatchResultFunctions2| |PatternMatchResult|
- |PatternFunctions1| |PatternFunctions2| |Pattern|
- |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition|
- |PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition|
- |AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem|
- |PartialDifferentialRing&| |PartialDifferentialRing| |PendantTree|
- |Permanent| |PermutationCategory| |PermutationGroup| |Permutation|
- |PolynomialFactorizationByRecursion|
+ |OrderedCompletion| |OrderedCompletionFunctions2| |OrderedFinite|
+ |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| |OrderedSet&|
+ |OrderedSet| |UnivariateSkewPolynomialCategory&|
+ |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps|
+ |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial|
+ |OrthogonalPolynomialFunctions| |OrderedSemiGroup| |OrdSetInts|
+ |OutputPackage| |OutputForm| |OrderedVariableList|
+ |OrdinaryWeightedPolynomials| |PadeApproximants| |PadeApproximantPackage|
+ |PAdicInteger| |PAdicIntegerCategory| |PAdicRational|
+ |PAdicRationalConstructor| |Pair| |Palette| |PolynomialAN2Expression|
+ |ParametricPlaneCurveFunctions2| |ParametricPlaneCurve|
+ |ParametricSpaceCurveFunctions2| |ParametricSpaceCurve| |Parser|
+ |ParametricSurfaceFunctions2| |ParametricSurface| |PartitionsAndPermutations|
+ |Patternable| |PatternMatchListResult| |PatternMatchable| |PatternMatch|
+ |PatternMatchResult| |PatternMatchResultFunctions2| |Pattern|
+ |PatternFunctions1| |PatternFunctions2| |PoincareBirkhoffWittLyndonBasis|
+ |PolynomialComposition| |PartialDifferentialEquationsSolverCategory|
+ |PolynomialDecomposition| |AnnaPartialDifferentialEquationPackage|
+ |NumericalPDEProblem| |PartialDifferentialRing&| |PartialDifferentialRing|
+ |PendantTree| |Permutation| |Permanent| |PermutationCategory|
+ |PermutationGroup| |PrimeField| |PolynomialFactorizationByRecursion|
|PolynomialFactorizationByRecursionUnivariate|
|PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit|
- |PrimeField| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational|
- |PointsOfFiniteOrderTools| |PartialFraction| |PartialFractionPackage|
- |PolynomialGcdPackage| |PermutationGroupExamples| |PolyGroebner|
- |PiCoercions| |PrincipalIdealDomain| |PositiveInteger|
- |PolynomialInterpolationAlgorithms| |PolynomialInterpolation|
- |ParametricLinearEquations| |PlotFunctions1| |Plot3D| |Plot|
- |PlotTools| |FunctionSpaceAssertions| |PatternMatchAssertions|
- |PatternMatchPushDown| |PatternMatchFunctionSpace|
+ |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools|
+ |PartialFraction| |PartialFractionPackage| |PolynomialGcdPackage|
+ |PermutationGroupExamples| |PolyGroebner| |PositiveInteger| |PiCoercions|
+ |PrincipalIdealDomain| |PolynomialInterpolation|
+ |PolynomialInterpolationAlgorithms| |ParametricLinearEquations| |Plot|
+ |PlotFunctions1| |Plot3D| |PlotTools| |PatternMatchAssertions|
+ |FunctionSpaceAssertions| |PatternMatchPushDown| |PatternMatchFunctionSpace|
|PatternMatchIntegerNumberSystem| |PatternMatchKernel|
|PatternMatchListAggregate| |PatternMatchPolynomialCategory|
- |FunctionSpaceAttachPredicates| |AttachPredicates|
- |PatternMatchQuotientFieldCategory| |PatternMatchSymbol|
- |PatternMatchTools| |PolynomialNumberTheoryFunctions| |Point|
- |PolToPol| |RealPolynomialUtilitiesPackage| |PolynomialFunctions2|
- |PolynomialToUnivariatePolynomial| |PolynomialCategory&|
- |PolynomialCategory| |PolynomialCategoryQuotientFunctions|
- |PolynomialCategoryLifting| |Polynomial| |PolynomialRoots|
- |PlottablePlaneCurveCategory| |PrecomputedAssociatedEquations|
- |PrimitiveArrayFunctions2| |PrimitiveArray|
+ |AttachPredicates| |FunctionSpaceAttachPredicates|
+ |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| |PatternMatchTools|
+ |PolynomialNumberTheoryFunctions| |Point| |PolToPol|
+ |RealPolynomialUtilitiesPackage| |Polynomial| |PolynomialFunctions2|
+ |PolynomialToUnivariatePolynomial| |PolynomialCategory&| |PolynomialCategory|
+ |PolynomialCategoryQuotientFunctions| |PolynomialCategoryLifting|
+ |PolynomialRoots| |PortNumber| |PlottablePlaneCurveCategory| |PolynomialRing|
+ |PrecomputedAssociatedEquations| |PrimitiveArray| |PrimitiveArrayFunctions2|
|PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage|
- |PrintPackage| |PolynomialRing| |Product| |Property|
- |PropositionalFormula| |PropositionalLogic| |PriorityQueueAggregate|
- |PseudoRemainderSequence| |Partition| |PowerSeriesCategory&|
- |PowerSeriesCategory| |PlottableSpaceCurveCategory|
- |PolynomialSetCategory&| |PolynomialSetCategory|
+ |PrintPackage| |Product| |Property| |PropositionalFormula|
+ |PropositionalLogic| |PriorityQueueAggregate| |PseudoRemainderSequence|
+ |Partition| |PowerSeriesCategory&| |PowerSeriesCategory|
+ |PlottableSpaceCurveCategory| |PolynomialSetCategory&| |PolynomialSetCategory|
|PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm|
- |PolynomialSquareFree| |PointCategory| |PointFunctions2|
- |PointPackage| |PartialTranscendentalFunctions| |PushVariables|
- |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet2|
- |QuasiAlgebraicSet| |QuasiComponentPackage| |QueryEquation|
- |QuotientFieldCategoryFunctions2| |QuotientFieldCategory&|
- |QuotientFieldCategory| |QuadraticForm| |QueueAggregate|
- |QuaternionCategory&| |QuaternionCategory|
- |QuaternionCategoryFunctions2| |Quaternion| |Queue| |RadicalCategory&|
- |RadicalCategory| |RadicalFunctionField| |RadixExpansion|
- |RadixUtilities| |RandomNumberSource| |RationalFactorize|
- |RationalRetractions| |RecursiveAggregate&| |RecursiveAggregate|
- |RealClosedField&| |RealClosedField| |ElementaryRischDE|
+ |PolynomialSquareFree| |PointCategory| |PointFunctions2| |PointPackage|
+ |PartialTranscendentalFunctions| |PushVariables|
+ |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet| |QuasiAlgebraicSet2|
+ |QuasiComponentPackage| |QueryEquation| |QuotientFieldCategory&|
+ |QuotientFieldCategory| |QuotientFieldCategoryFunctions2| |QuadraticForm|
+ |QueueAggregate| |Quaternion| |QuaternionCategory&| |QuaternionCategory|
+ |QuaternionCategoryFunctions2| |Queue| |RadicalCategory&| |RadicalCategory|
+ |RadicalFunctionField| |RadixExpansion| |RadixUtilities| |RandomNumberSource|
+ |RationalFactorize| |RationalRetractions| |RecursiveAggregate&|
+ |RecursiveAggregate| |RealClosedField&| |RealClosedField| |ElementaryRischDE|
|ElementaryRischDESystem| |TranscendentalRischDE|
|TranscendentalRischDESystem| |RandomDistributions| |ReducedDivisor|
- |RealZeroPackage| |RealZeroPackageQ| |RealConstant| |RealSolvePackage|
+ |RealConstant| |RealZeroPackage| |RealZeroPackageQ| |RealSolvePackage|
|RealClosure| |ReductionOfOrder| |Reference| |RegularTriangularSet|
- |RepresentationPackage1| |RepresentationPackage2| |RepeatedDoubling|
- |RadicalEigenPackage| |RepeatedSquaring| |ResolveLatticeCompletion|
- |ResidueRing| |Result| |RetractableTo&| |RetractableTo|
- |RetractSolvePackage| |RandomFloatDistributions|
- |RationalFunctionFactor| |RationalFunctionFactorizer|
- |RationalFunction| |RegularChain| |RandomIntegerDistributions| |Ring&|
- |Ring| |RectangularMatrixCategory&| |RectangularMatrixCategory|
- |RectangularMatrix| |RectangularMatrixCategoryFunctions2|
- |RightModule| |Rng| |RealNumberSystem&| |RealNumberSystem|
- |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable|
- |RecursivePolynomialCategory&| |RecursivePolynomialCategory|
- |RealRootCharacterizationCategory&| |RealRootCharacterizationCategory|
- |RegularSetDecompositionPackage| |RegularTriangularSetCategory&|
- |RegularTriangularSetCategory| |RegularTriangularSetGcdPackage|
- |RuleCalled| |RewriteRule| |Ruleset|
- |RationalUnivariateRepresentationPackage|
- |SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension|
- |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet| |SortedCache|
- |Scope| |StructuralConstantsPackage|
- |SequentialDifferentialPolynomial| |SequentialDifferentialVariable|
- |SegmentFunctions2| |SegmentBindingFunctions2| |SegmentBinding|
- |SegmentCategory| |Segment| |SegmentExpansionCategory| |SetAggregate&|
+ |RadicalEigenPackage| |RepresentationPackage1| |RepresentationPackage2|
+ |RepeatedDoubling| |RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing|
+ |Result| |RetractableTo&| |RetractableTo| |RetractSolvePackage|
+ |RationalFunction| |RandomFloatDistributions| |RationalFunctionFactor|
+ |RationalFunctionFactorizer| |RegularChain| |RandomIntegerDistributions|
+ |Ring&| |Ring| |RectangularMatrixCategory&| |RectangularMatrixCategory|
+ |RectangularMatrix| |RectangularMatrixCategoryFunctions2| |RightModule| |Rng|
+ |RealNumberSystem&| |RealNumberSystem| |RightOpenIntervalRootCharacterization|
+ |RomanNumeral| |RoutinesTable| |RecursivePolynomialCategory&|
+ |RecursivePolynomialCategory| |RealRootCharacterizationCategory&|
+ |RealRootCharacterizationCategory| |RegularSetDecompositionPackage|
+ |RegularTriangularSetCategory&| |RegularTriangularSetCategory|
+ |RegularTriangularSetGcdPackage| |RewriteRule| |RuleCalled| |Ruleset|
+ |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtension|
+ |SimpleAlgebraicExtensionAlgFactor| |SAERationalFunctionAlgFactor|
+ |SingletonAsOrderedSet| |SortedCache| |Scope| |StructuralConstantsPackage|
+ |SequentialDifferentialPolynomial| |SequentialDifferentialVariable| |Segment|
+ |SegmentFunctions2| |SegmentBinding| |SegmentBindingFunctions2|
+ |SegmentCategory| |SegmentExpansionCategory| |Set| |SetAggregate&|
|SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN|
- |Set| |SExpressionCategory| |SExpression| |SExpressionOf|
- |SimpleFortranProgram| |SquareFreeQuasiComponentPackage|
- |SquareFreeRegularTriangularSetGcdPackage|
- |SquareFreeRegularTriangularSetCategory|
- |SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup|
- |SplitHomogeneousDirectProduct| |SturmHabichtPackage|
- |ElementaryFunctionSign| |RationalFunctionSign| |Signature|
- |SimplifyAlgebraicNumberConvertPackage| |SingleInteger|
- |StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory|
- |SmithNormalForm| |SparseMultivariatePolynomial|
- |SparseMultivariateTaylorSeries|
- |SquareFreeNormalizedTriangularSetCategory|
- |PolynomialSolveByFormulas| |RadicalSolvePackage|
- |TransSolvePackageService| |TransSolvePackage| |SortPackage|
- |ThreeSpace| |ThreeSpaceCategory| |SpadParser| |SpecialOutputPackage|
- |SpecialFunctionCategory| |SplittingNode| |SplittingTree|
- |SquareMatrix| |StringAggregate&| |StringAggregate|
- |SquareFreeRegularSetDecompositionPackage|
- |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&|
- |StreamAggregate| |SparseTable| |StepThrough| |StreamInfiniteProduct|
- |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |Stream|
- |StringCategory| |String| |StringTable| |StreamTaylorSeriesOperations|
- |StreamTranscendentalFunctionsNonCommutative|
- |StreamTranscendentalFunctions| |SubResultantPackage| |SubSpace|
+ |SExpression| |SExpressionCategory| |SExpressionOf| |SimpleFortranProgram|
+ |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage|
+ |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions|
+ |SemiGroup&| |SemiGroup| |SplitHomogeneousDirectProduct| |SturmHabichtPackage|
+ |Signature| |ElementaryFunctionSign| |RationalFunctionSign|
+ |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| |StackAggregate|
+ |SquareMatrixCategory&| |SquareMatrixCategory| |SmithNormalForm|
+ |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries|
+ |SquareFreeNormalizedTriangularSetCategory| |PolynomialSolveByFormulas|
+ |RadicalSolvePackage| |TransSolvePackageService| |TransSolvePackage|
+ |SortPackage| |ThreeSpace| |ThreeSpaceCategory| |SpadParser|
+ |SpecialOutputPackage| |SpecialFunctionCategory| |SplittingNode|
+ |SplittingTree| |SquareMatrix| |StringAggregate&| |StringAggregate|
+ |SquareFreeRegularSetDecompositionPackage| |SquareFreeRegularTriangularSet|
+ |Stack| |StreamAggregate&| |StreamAggregate| |SparseTable| |StepThrough|
+ |StreamInfiniteProduct| |Stream| |StreamFunctions1| |StreamFunctions2|
+ |StreamFunctions3| |StringCategory| |String| |StringTable|
+ |StreamTaylorSeriesOperations| |StreamTranscendentalFunctions|
+ |StreamTranscendentalFunctionsNonCommutative| |SubResultantPackage| |SubSpace|
|SuchThat| |SparseUnivariateLaurentSeries| |FunctionSpaceSum|
- |RationalFunctionSum| |SparseUnivariatePolynomialFunctions2|
- |SupFractionFactorizer| |SparseUnivariatePolynomial|
- |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries|
- |Switch| |Symbol| |SymmetricFunctions| |SymmetricPolynomial|
- |TheSymbolTable| |SymbolTable| |Syntax| |SystemSolvePackage| |System|
- |TableauxBumpers| |Tableau| |Table| |TangentExpansions|
- |TableAggregate&| |TableAggregate| |TabulatedComputationPackage|
- |TemplateUtilities| |TexFormat1| |TexFormat| |TextFile| |ToolsForSign|
- |TopLevelThreeSpace| |TranscendentalFunctionCategory&|
- |TranscendentalFunctionCategory| |Tree|
+ |RationalFunctionSum| |SparseUnivariatePolynomial|
+ |SparseUnivariatePolynomialFunctions2| |SupFractionFactorizer|
+ |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries| |Switch|
+ |Symbol| |SymmetricFunctions| |SymmetricPolynomial| |TheSymbolTable|
+ |SymbolTable| |Syntax| |SystemSolvePackage| |System| |TableauxBumpers| |Table|
+ |Tableau| |TangentExpansions| |TableAggregate&| |TableAggregate|
+ |TabulatedComputationPackage| |TemplateUtilities| |TexFormat| |TexFormat1|
+ |TextFile| |ToolsForSign| |TopLevelThreeSpace|
+ |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| |Tree|
|TrigonometricFunctionCategory&| |TrigonometricFunctionCategory|
|TrigonometricManipulations| |TriangularMatrixOperations|
- |TranscendentalManipulations| |TriangularSetCategory&|
- |TriangularSetCategory| |TaylorSeries| |TubePlot| |TubePlotTools|
- |Tuple| |TwoFactorize| |Type| |UserDefinedPartialOrdering|
- |UserDefinedVariableOrdering| |UniqueFactorizationDomain&|
- |UniqueFactorizationDomain| |UnivariateLaurentSeriesFunctions2|
+ |TranscendentalManipulations| |TaylorSeries| |TriangularSetCategory&|
+ |TriangularSetCategory| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize|
+ |Type| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering|
+ |UniqueFactorizationDomain&| |UniqueFactorizationDomain|
+ |UnivariateLaurentSeries| |UnivariateLaurentSeriesFunctions2|
|UnivariateLaurentSeriesCategory|
|UnivariateLaurentSeriesConstructorCategory&|
|UnivariateLaurentSeriesConstructorCategory|
- |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeries|
- |UnivariateFactorize| |UniversalSegmentFunctions2| |UniversalSegment|
- |UnivariatePolynomialFunctions2|
- |UnivariatePolynomialCommonDenominator|
+ |UnivariateLaurentSeriesConstructor| |UnivariateFactorize| |UniversalSegment|
+ |UniversalSegmentFunctions2| |UnivariatePolynomial|
+ |UnivariatePolynomialFunctions2| |UnivariatePolynomialCommonDenominator|
|UnivariatePolynomialDecompositionPackage|
|UnivariatePolynomialDivisionPackage|
- |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomial|
- |UnivariatePolynomialCategoryFunctions2|
- |UnivariatePolynomialCategory&| |UnivariatePolynomialCategory|
+ |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomialCategory&|
+ |UnivariatePolynomialCategory| |UnivariatePolynomialCategoryFunctions2|
|UnivariatePowerSeriesCategory&| |UnivariatePowerSeriesCategory|
- |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeriesFunctions2|
- |UnivariatePuiseuxSeriesCategory|
+ |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeries|
+ |UnivariatePuiseuxSeriesFunctions2| |UnivariatePuiseuxSeriesCategory|
|UnivariatePuiseuxSeriesConstructorCategory&|
|UnivariatePuiseuxSeriesConstructorCategory|
- |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeries|
- |UnivariatePuiseuxSeriesWithExponentialSingularity|
- |UnaryRecursiveAggregate&| |UnaryRecursiveAggregate|
+ |UnivariatePuiseuxSeriesConstructor|
+ |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnaryRecursiveAggregate&|
+ |UnaryRecursiveAggregate| |UnivariateTaylorSeries|
|UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesCategory&|
- |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeries|
- |UnivariateTaylorSeriesODESolver| |UTSodetools| |UnionType| |Variable|
- |VectorCategory&| |VectorCategory| |VectorFunctions2| |Vector|
- |TwoDimensionalViewport| |ThreeDimensionalViewport|
- |ViewDefaultsPackage| |ViewportPackage| |Void| |VectorSpace&|
- |VectorSpace| |WeierstrassPreparation|
- |WildFunctionFieldIntegralBasis| |WeightedPolynomials|
- |WuWenTsunTriangularSet| |XAlgebra| |XDistributedPolynomial|
- |XExponentialPackage| |XFreeAlgebra| |ExtensionField&|
- |ExtensionField| |XPBWPolynomial| |XPolynomialsCat| |XPolynomial|
- |XPolynomialRing| |XRecursivePolynomial|
+ |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeriesODESolver|
+ |UTSodetools| |UnionType| |Variable| |VectorCategory&| |VectorCategory|
+ |Vector| |VectorFunctions2| |ViewportPackage| |TwoDimensionalViewport|
+ |ThreeDimensionalViewport| |ViewDefaultsPackage| |Void| |VectorSpace&|
+ |VectorSpace| |WeierstrassPreparation| |WildFunctionFieldIntegralBasis|
+ |WeightedPolynomials| |WuWenTsunTriangularSet| |XAlgebra|
+ |XDistributedPolynomial| |XExponentialPackage| |ExtensionField&|
+ |ExtensionField| |XFreeAlgebra| |XPBWPolynomial| |XPolynomial|
+ |XPolynomialsCat| |XPolynomialRing| |XRecursivePolynomial|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
- |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
- |Record| |Union| |decompose| |removeSuperfluousQuasiComponents|
- |generalSqFr| |resetVariableOrder| |edf2fi| |groebgen| |dflist|
- |title| |unitNormalize| |resultantReduitEuclidean| |atoms|
- |fortranInteger| |weierstrass| |bumptab| |radix| |nextSubsetGray|
- |numberOfMonomials| |imaginary| |polyPart| |constantToUnaryFunction|
- |rule| |associatedEquations| |rootOf| |setStatus!| |squareFreePart|
- |mightHaveRoots| |duplicates?| |possiblyNewVariety?| |reducedQPowers|
- |lyndonIfCan| |permutationRepresentation| |precision|
- |SturmHabichtMultiple| |balancedBinaryTree| |topFortranOutputStack|
- |numberOfHues| |e| |SturmHabichtCoefficients| |e01bhf|
- |LagrangeInterpolation| |repeatUntilLoop| |corrPoly| |bezoutMatrix|
- |sqfree| |extendedSubResultantGcd| |expressIdealMember| |subTriSet?|
- |tubePointsDefault| |OMwrite| |rdHack1| |chvar| |goodPoint|
- |makeYoungTableau| |generator| |gderiv| |showAllElements|
- |mapExponents| |appendPoint| |mr| |Is| |maxColIndex| |integerBound|
- |extractBottom!| |multiEuclidean| |goto| |reverseLex|
- |zeroDimensional?| |sparsityIF| |oddintegers| |nthCoef|
- |sturmVariationsOf| |palglimint| |rightLcm| |isPlus|
- |expenseOfEvaluation| |univcase| |functionIsFracPolynomial?| |getlo|
- |changeBase| |ScanRoman| |controlPanel| |sort| |mkcomm|
- |simplifyPower| |removeRoughlyRedundantFactorsInPols| |midpoints|
- |pmintegrate| |branchIfCan| |subscript| |one?| |writeLine!| |Lazard|
- |hypergeometric0F1| |lfunc| |jacobiIdentity?| |show| |selectfirst| F
- |hconcat| |invertibleElseSplit?| |OMencodingSGML| |geometric|
- |zeroDim?| |semiResultantEuclideannaif| |recip| |node?| |deref|
- |addMatch| |subset?| |exists?|
- |rewriteSetByReducingWithParticularGenerators| |formula| |axes|
- |solveLinearPolynomialEquationByFractions| |imagj| |trace|
- |univariatePolynomialsGcds| |internalAugment|
- |integralDerivationMatrix| |setFormula!| |hexDigit| |notOperand|
- |upperCase| |dn| |fill!| |mapGen| |clearTable!| |complex?|
- |OMencodingUnknown| |sumOfKthPowerDivisors| |random| |GospersMethod|
- |untab| |irreducibleFactor| |lo| |leftGcd| |saturate| |wholeRadix|
- |fortranCarriageReturn| |integerIfCan| |overset?| |brillhartTrials|
- |e02agf| |incr| |indicialEquations| |d01akf| |simplifyExp|
- |subResultantGcd| |merge| |coth2tanh| |nrows| |zero?| |anticoord| |hi|
- |totalLex| |point| |equality| |trigs| |any| |genericLeftTraceForm|
- |cAsin| |operation| |ncols| |cCot| |discriminant| |c06gcf| |width|
- |integral| |lazyGintegrate| |toroidal| |unmakeSUP| |HermiteIntegrate|
- |laurentRep| |radicalEigenvalues| |setleaves!| |putColorInfo|
- |multiple?| |bat| |computePowers| |boundOfCauchy| |rotatey|
- |sechIfCan| |extract!| |safeFloor| |zag| |numberOfFactors| |cSinh|
- |quoByVar| |plusInfinity| |series| |lhs| |RemainderList| |basis|
- |makeCrit| |OMParseError?| |getMultiplicationMatrix|
- |squareFreeLexTriangular| |limit| |extractProperty| |minusInfinity|
- |rhs| |balancedFactorisation| |parent| |basicSet| |lift|
- |problemPoints| |generalizedInverse| |product| |curryLeft| |rk4|
- |RittWuCompare| |ffactor| |permutationGroup| |domainOf| |reduce|
- |f07adf| |bubbleSort!| |discriminantEuclidean| |factorFraction|
- |iisin| |antisymmetric?| |clearTheFTable| |lifting| |getCode|
- |double?| |optional| |schema| |nthFractionalTerm| |min| |e02bcf|
- |OMlistCDs| |sn| |subresultantSequence| |explicitlyFinite?|
- |localUnquote| |diophantineSystem| |swap!| |coordinate| |And|
- |rightFactorIfCan| NOT |shrinkable| |Nul| |sumSquares| |matrixGcd|
- |OMputFloat| |node| |identity| |iitanh| |critMTonD1| |numeric|
- |relativeApprox| |var1StepsDefault| |associative?| |Or| OR
- |linearPolynomials| |eigenvalues| |integers| |makeTerm|
- |viewSizeDefault| |createNormalElement| |radical| |frst| |inf| |cycle|
- |rroot| |Not| AND |setProperties| |vedf2vef| |weight| |type| |makeSin|
- |high| |coerceListOfPairs| |sncndn| |integer?| |setEmpty!|
- |fortranTypeOf| |genericRightDiscriminant| |s17acf|
- |algebraicVariables| |box| |nodeOf?| |numberOfVariables|
- |internalLastSubResultant| |conditionP| |pointData| |ratpart| |s18acf|
- |generate| |byte| |callForm?| |cTan| |inR?| |regime| |pi| |simplify|
- GF2FG |presuper| |selectFiniteRoutines| |subNodeOf?| |paraboloidal|
- |divide| |top| |terms| |trueEqual| |viewWriteAvailable| |infinity|
- |dihedralGroup| |bezoutDiscriminant| |resize| |multMonom|
- |mapMatrixIfCan| |incrementBy| |computeInt| |continue|
- |symmetricProduct| |semiResultantEuclidean1| |cAcoth| |times!| |cSec|
- |s18def| |userOrdered?| |computeCycleLength| |acscIfCan| |expand|
- |variationOfParameters| |ScanArabic| |upperCase!|
- |rightFactorCandidate| |numFunEvals3D| |d01aqf| |numericalIntegration|
- |leftExtendedGcd| |selectPDERoutines| |subResultantChain|
- |filterWhile| |mainKernel| |setLabelValue| |OMreceive| |maxPoints3D|
- |primitivePart| |kernel| |matrix| |semiResultantEuclidean2| |cons|
- |f2df| |cExp| |iiacsch| |monomialIntegrate| |filterUntil|
- |innerSolve1| |s17def| |stoseSquareFreePart| |e01sef| |surface| |draw|
- |level| |coshIfCan| |s01eaf| |conjugates| F2FG |lquo| |select|
- |digit?| |mulmod| |validExponential| |diagonal| |stirling1|
- |viewPosDefault| |degreeSubResultant| |toseInvertibleSet| |sequences|
- |result| |length| |recoverAfterFail| |monic?| * |doubleDisc| |d03faf|
- |OMgetEndBVar| |asinhIfCan| |removeZero| |functionIsOscillatory|
- |subscriptedVariables| |innerint| |equation| |scripts| |localReal?|
- |airyBi| |plus!| |s17dcf| |lastSubResultantEuclidean| |mindegTerm|
- |bringDown| |s19adf| |resultant| |e01bgf| |optpair| |mix|
- |univariatePolynomials| |inHallBasis?| |evaluate| |reify| |se2rfi|
- |splitSquarefree| |tan2cot| |makeObject| |content|
- |antisymmetricTensors| |mapSolve| |lazy?| |autoReduced?|
- |lfextendedint| |getStream| |seed| |scalarMatrix| |invmod| |cot2tan|
- |escape| |source| |groebSolve| |innerSolve| |rootRadius|
- |compiledFunction| |f01rdf| |lazyVariations| |monomRDEsys|
- |fintegrate| |d02cjf| |purelyTranscendental?| |coef| |intcompBasis|
- |dAndcExp| |makeop| |finiteBasis| |sturmSequence| |makeRecord|
- |perfectSqrt| |d02raf| |rootNormalize| |solve| |quadratic?|
- |someBasis| |showTheRoutinesTable| |cTanh|
- |semiDegreeSubResultantEuclidean| |setCondition!|
- |rewriteSetWithReduction| |subspace| |LiePoly| |symbolTableOf|
- |chiSquare1| |showRegion| |term?| |eulerE| |inverse| |dequeue|
- |factorSquareFree| |fi2df| |perfectNthPower?| |composites| |binding|
- |in?| |lprop| |green| |fractionFreeGauss!| |cCoth|
- |trailingCoefficient| |primlimintfrac| |realZeros| |bright|
- |usingTable?| |cyclePartition| |karatsubaOnce| |att2Result| |target|
- |infix| |Lazard2| |roughUnitIdeal?| |nodes| |dec|
- |stosePrepareSubResAlgo| |setProperty!| |startTable!| |shellSort|
- |chiSquare| |complexRoots| |froot| |components| |withPredicates|
- |reducedDiscriminant| |checkPrecision| |front| |delete!| |d01gaf|
- |partitions| |makeResult| |prinpolINFO| |maxIndex|
- |stoseInvertibleSetreg| |modularFactor| |direction| |perspective|
- |llprop| |lex| |changeNameToObjf| |degreeSubResultantEuclidean|
- |mainMonomials| |qPot| |OMunhandledSymbol| |iFTable| |triangSolve|
- |property| |setLegalFortranSourceExtensions| |halfExtendedResultant2|
- |monicRightDivide| |rationalPoints| |stronglyReduce|
- |fortranCompilerName| |conditionsForIdempotents| |setStatus|
- |wordInGenerators| |imagJ| |find| |impliesOperands| |max| |quartic|
- |unitCanonical| |numberOfComputedEntries| |twoFactor| |polygamma|
- |linearDependenceOverZ| |drawComplexVectorField| |makeGraphImage|
- |delete| |tanIfCan| |f01brf| |create3Space| |integralCoordinates|
- |OMUnknownCD?| |rightOne| |permutation| |cPower| |iicot| |genus|
- |units| |read!| |s15adf| |prime| |randomLC| |mvar| |tan2trig|
- |ridHack1| |typeLists| |eisensteinIrreducible?| |sumOfDivisors|
- |semiSubResultantGcdEuclidean1| |primitivePart!| |ceiling|
- |radicalRoots| |multiplyExponents| |lowerCase?| |slex| |s17akf| |abs|
- |setProperties!| |cAsinh| |setButtonValue| |resultantEuclideannaif|
- |entry| |truncate| |whileLoop| |gcdPrimitive| |uniform01| |forLoop|
- |factorset| |halfExtendedSubResultantGcd1| |bottom!|
- |lineColorDefault| |halfExtendedResultant1| |viewThetaDefault|
- |unvectorise| |rationalIfCan| |insertRoot!| |lieAlgebra?| |getOrder|
- |prindINFO| |mapUnivariate| |li| |middle| |e04mbf| |getMeasure|
- |s17ahf| |list?| |cyclotomicDecomposition| |code| |noLinearFactor?|
- |reorder| |nullSpace| |clearCache| |unit?| |collect| |nthFlag|
- |palgextint0| |rightGcd| |OMgetSymbol| |magnitude| |every?|
- |patternMatchTimes| |recolor| |euclideanNormalForm| |minPoly|
- |monicRightFactorIfCan| |singularAtInfinity?| |taylorRep| |build|
- |headRemainder| |OMconnOutDevice| |setprevious!| |transform|
- |numberOfDivisors| |s13adf| |iiGamma| |mainForm| |output| |select!|
- |normalize| |logIfCan| |OMgetFloat| |queue| |positiveRemainder|
- |f01qef| |OMputEndBVar| |calcRanges| |symmetricSquare| |setErrorBound|
- UP2UTS |previous| |polCase| |OMgetEndObject| |linear| |setRealSteps|
- |divisor| |LazardQuotient| |fmecg| |d03eef| |arrayStack|
- |createPrimitiveNormalPoly| |s21bbf| |lowerPolynomial| |f04atf|
- |log10| |hasTopPredicate?| |polygon?| |viewport2D| |bivariate?|
- |match?| |leadingTerm| |makeMulti| |lieAdmissible?| |bitand|
- |polynomial| |lambert| |cAsec| |supRittWu?| |e02bdf| |nullity|
- |tanintegrate| |reopen!| |e04naf| |prevPrime| |movedPoints| |bitior|
- |center| |sinIfCan| |divideExponents| |e04fdf| |toseLastSubResultant|
- |ricDsolve| |s17agf| |rewriteIdealWithRemainder| |space| |iprint|
- |bitTruth| |leftRecip| |s14baf| |shanksDiscLogAlgorithm|
- |getIdentifier| |maxPoints| |pole?| |fractRadix|
- |cyclotomicFactorization| |showSummary| |lflimitedint|
- |setMinPoints3D| |headReduced?| |antiAssociative?| |s19aaf|
- |doubleComplex?| |OMgetEndError| |nthRootIfCan| |changeName| |digits|
- |startPolynomial| |f01qdf| |printStatement| |qfactor| |interpolate|
- |shiftLeft| |showAttributes| |graphStates| |option| |integrate|
- |roughBase?| |mindeg| |rowEch| |reduced?| |yCoord| |elRow2!|
- |OMgetObject| |closed?| |chebyshevT| |normalizedDivide| |nthr|
- |tryFunctionalDecomposition?| |hermite| |OMreadStr| |comp| |e02bbf|
- |chebyshevU| |selectSumOfSquaresRoutines| |maxrow| |prepareDecompose|
- |modifyPoint| |represents| |positiveSolve| |removeCoshSq| |leftTrace|
- |constDsolve| |insert!| |showArrayValues| |curveColor| |prefix|
- |iteratedInitials| |inverseIntegralMatrix| |isPower| |oddlambert|
- |cLog| |arity| |primextendedint| |acothIfCan| |shallowCopy|
- |cRationalPower| |test| |df2ef| |moebius| |simpson|
- |createIrreduciblePoly| |sylvesterSequence|
- |stiffnessAndStabilityOfODEIF| |generalTwoFactor| |empty?| |mathieu11|
- |insertionSort!| |exponential1| |alphabetic?| |gethi| |besselI|
- |characteristicSet| |region| |generalPosition| |bumptab1| |optional?|
- |createPrimitiveElement| |zeroSetSplit| |lazyPquo| |symmetric?|
- |prepareSubResAlgo| |strongGenerators| |leadingBasisTerm|
- |leftDiscriminant| |taylorQuoByVar| |mathieu22| BY |decomposeFunc|
- |exprHasAlgebraicWeight| |binomThmExpt| |solid?| |ocf2ocdf| |nothing|
- |headReduce| |external?| |OMgetBind| |minPol| |makeFloatFunction|
- |quotientByP| |elem?| |jacobi| |e02dff| |term| |totalGroebner|
- |evenlambert| |iisech| |abelianGroup| |primPartElseUnitCanonical|
- |central?| |OMgetString| |e02daf| |clipBoolean| |charpol|
- |resultantReduit| |maxdeg| |tail| |compound?| |tubePoints| |nlde|
- |messagePrint| |complexNumericIfCan| |more?| |e01daf|
- |LyndonWordsList1| |pattern| |setright!| |alternatingGroup| |meatAxe|
- |expr| |basisOfLeftAnnihilator| |setImagSteps| |rischDEsys|
- |rightExactQuotient| |generalizedEigenvectors| |belong?| |child|
- |jordanAlgebra?| |push| |polyred| |basisOfCentroid| |thetaCoord|
- |outputAsScript| |npcoef| |numberOfCycles| |sec2cos| |divisorCascade|
- |cond| |fortranLiteral| |predicate| |lcm| |removeConstantTerm|
- |write!| |intPatternMatch| |rightNorm| |listOfLists| |palgLODE|
- |expandTrigProducts| |irreducibleRepresentation| |setPoly| |supersub|
- |diag| |pushNewContour| |message| |changeThreshhold| |rootKerSimp|
- |OMencodingBinary| |setvalue!| |finiteBound| |selectODEIVPRoutines|
- |append| |invertibleSet| |integralBasisAtInfinity|
- |monicCompleteDecompose| |linear?| |nullary?| |solveid| |indices|
- |inRadical?| |trunc| |swapColumns!| |gcd| |patternVariable|
- |integralLastSubResultant| |mirror| |curve?| |primintfldpoly|
- |randnum| |false| |rightMult| |log| |insertBottom!|
- |halfExtendedSubResultantGcd2| |spherical| |imagi|
- |leftRankPolynomial| |scanOneDimSubspaces| |charClass| |rubiksGroup|
- |df2fi| |resetBadValues| |compile| |isList| |reduction| |entry?|
- |fixedDivisor| |fortranComplex| |powerSum| |reduceBasisAtInfinity|
- |pToDmp| |ran| |equiv| |normalizeIfCan| |reducedSystem| |quatern|
- |flagFactor| |var1Steps| |prime?| |listYoungTableaus| |birth|
- |initiallyReduced?| |startTableInvSet!| |split| |mapUp!| |setValue!|
- |palgLODE0| |cyclicEqual?| |parameters| |linGenPos| |simpsono|
- |readLineIfCan!| |#| |var2Steps| |linSolve| |readLine!| |unitNormal|
- |linearAssociatedLog| |OMsupportsCD?| |ListOfTerms| |powmod| |empty|
- |s17dhf| |pile| |neglist| |makeSUP| |squareFreePolynomial| |setfirst!|
- |returnType!| |f04mcf| |internalSubQuasiComponent?| |rowEchelonLocal|
- |zoom| |replaceKthElement| |leftScalarTimes!| |singular?|
- |numericIfCan| |mat| |bag| |elliptic| |decreasePrecision| |padecf|
- |expint| |wreath| |normInvertible?| |selectPolynomials| |s21bcf|
- |goodnessOfFit| |showTheSymbolTable| |groebner| |d02gaf| |deepCopy|
- |d01amf| |kroneckerDelta| |getRef| |rCoord| |gcdcofactprim|
- |difference| |aLinear| |cycleTail| = |sincos| |accuracyIF|
- |nextPartition| |algebraic?| |f01maf| |const| |whatInfinity| |makeFR|
- |monomial?| |graphImage| |binaryTournament| |partition| |UP2ifCan|
- |float?| |indiceSubResultant| |rightUnits| |numericalOptimization|
- |basisOfRightAnnihilator| |iiabs| |linears| ~= < |extensionDegree|
- |atrapezoidal| |numberOfChildren| |round| |sizeLess?| |tracePowMod|
- |selectMultiDimensionalRoutines| |c06gsf| |root?|
- |oneDimensionalArray| |style| > |doubleResultant| |coerce| |edf2efi|
- |showTheIFTable| |addiag| |rombergo| |reduceLODE| |pointColor|
- |d01gbf| |scopes| |listexp| <= |construct| |partialFraction|
- |pushdown| |LiePolyIfCan| |initial| |symbolIfCan| |extractTop!|
- |gramschmidt| |newLine| |tanQ| |interval| >= |algSplitSimple|
- |harmonic| |asecIfCan| |implies?| |quasiMonicPolynomials| |e04ycf|
- |digamma| |d02gbf| |fixedPoints| |close| |diagonalProduct|
- |readIfCan!| |e02gaf| |lllp| |makeprod| |plotPolar|
- |monicDecomposeIfCan| |setPosition| |c06ekf| |submod|
- |particularSolution| |fortranLiteralLine| |lazyResidueClass| |tableau|
- |nextSublist| |countRealRoots| |maxint| |lastSubResultant| |display|
- |setOfMinN| + |edf2ef| |integralAtInfinity?| |badNum|
- |createLowComplexityNormalBasis| |remove| |selectOptimizationRoutines|
- |cot2trig| |modularGcd| |rename!| |divideIfCan| -
- |generalInfiniteProduct| |ODESolve| |resetNew| |compactFraction|
- |edf2df| |extension| |hex| |laplace| |normal01| /
- |numberOfPrimitivePoly| |rangePascalTriangle| |returnTypeOf| |square?|
- |last| |leadingExponent| |characteristicSerie| |linearAssociatedOrder|
- |nextLatticePermutation| |BumInSepFFE| |algebraicSort| |solid|
- |prinshINFO| |assoc| |clipSurface| |basisOfRightNucleus| |vertConcat|
- |deepExpand| |c06fuf| |tower| |has?| |brillhartIrreducible?|
- |computeBasis| |internalSubPolSet?| |sayLength| |OMgetEndAttr|
- |printStats!| |dimensionsOf| |pseudoRemainder| |input|
- |ramifiedAtInfinity?| |cSin| |moebiusMu| |OMgetAttr| |heapSort|
- |divideIfCan!| |infieldIntegrate| |initializeGroupForWordProblem|
- |currentSubProgram| |library| |linearMatrix|
- |tableForDiscreteLogarithm| |normalElement| |symFunc| |is?|
- |resultantEuclidean| |leftFactorIfCan| |beauzamyBound|
- |solveLinearlyOverQ| |s20acf| |genericRightNorm|
- |derivationCoordinates| |randomR| |atanIfCan| |eigenvector|
- |symmetricDifference| |trapezoidalo| |moreAlgebraic?| ~
- |continuedFraction| |cyclicParents| |removeRedundantFactorsInContents|
- |tab1| |constructorName| |solveLinearPolynomialEquationByRecursion|
- |monicModulo| |initTable!| |laguerre| |setTex!| |complexNumeric|
- |complexForm| |tRange| |blue| |elliptic?| |denominators| |say|
- |pointPlot| |log2| |toseSquareFreePart| |primitiveMonomials|
- |evaluateInverse| |open| |critB| |cylindrical| |setelt| |iidprod|
- |checkRur| |nary?| |createZechTable| |relerror| |lagrange| |reductum|
- |laguerreL| |kernels| |primlimitedint| |obj| |HenselLift|
- |factorPolynomial| |xCoord| |tubeRadius| |omError| |low|
- |internalIntegrate| |e02def| |extendedEuclidean| |univariate|
- |principalIdeal| |fixedPointExquo| |commutator| |copy| |cache|
- |member?| |retract| |numberOfComposites| |iicsc| |sech2cosh|
- |representationType| |triangular?| |parabolic| |variable?| |setOrder|
- |firstDenom| |removeRoughlyRedundantFactorsInContents| |rightRank|
- |showTypeInOutput| |useEisensteinCriterion?| |hessian|
- |factorsOfDegree| |/\\| |f04jgf| |orbit| |constantKernel| |linearPart|
- |musserTrials| |morphism| |btwFact| |copy!| |Vectorise| |d01alf| |\\/|
- |factor| |cyclotomic| |dmpToHdmp| |autoCoerce| |unexpand| |factor1|
- |complexElementary| |position!| |unit| |setMinPoints| |reset| |repSq|
- |probablyZeroDim?| |sqrt| |plenaryPower| |numberOfFractionalTerms|
- |f02agf| |cschIfCan| |aQuadratic| |knownInfBasis|
- |rootOfIrreduciblePoly| |elRow1!| |coHeight| |integralRepresents|
- |real| |iiasech| |meshFun2Var| |internalInfRittWu?| |outputForm|
- |rightMinimalPolynomial| |lazyPseudoDivide| |horizConcat| |write|
- |separateFactors| |vconcat| |reverse!| |imag| |listLoops| |cCsch|
- |addMatchRestricted| |stop| |iiexp| |currentScope| |save| |leftUnits|
- |totolex| |orOperands| |directProduct| |permanent| |traceMatrix|
- |nextPrimitivePoly| |delay| |subresultantVector| |chineseRemainder|
- |lowerCase| |nthFactor| |fixPredicate| |selectNonFiniteRoutines|
- |hash| |lexTriangular| |screenResolution3D| |ratDenom|
- |removeRoughlyRedundantFactorsInPol| |second| |exprToXXP| |iibinom|
- |stiffnessAndStabilityFactor| |nextsousResultant2| |distFact|
- |semiResultantReduitEuclidean| |count| |destruct| |comment|
- |elColumn2!| |OMgetAtp| |ParCond| |third| |unparse| |exQuo|
- |characteristicPolynomial| |e02adf| |extractIndex| |clearDenominator|
- |createRandomElement| |localAbs| |pToHdmp| |gbasis| |subPolSet?|
- |subHeight| |quotedOperators| |duplicates| |graphs| |bipolar|
- |subMatrix| |numberOfComponents| |palgRDE| |getConstant| |inrootof|
- |UpTriBddDenomInv| |f02bjf| |remainder| |lazyPremWithDefault|
- |quasiRegular| |e01sff| |postfix| |setColumn!|
- |ScanFloatIgnoreSpacesIfCan| |standardBasisOfCyclicSubmodule|
- |orthonormalBasis| |toseInvertible?| |integralMatrixAtInfinity|
- |monomial| |changeMeasure| |mainCharacterization| |eyeDistance|
- |createThreeSpace| |reindex| |viewPhiDefault| |clipWithRanges|
- |mapBivariate| |multivariate| |crushedSet| |mkPrim|
- |groebnerFactorize| |denomLODE| |unitVector| |cycleElt| |exponent|
- |variables| |expIfCan| |minColIndex| |f04axf| |resultantnaif| |iicos|
- |updatF| |constantCoefficientRicDE| |f04mbf| |sinhIfCan|
- |defineProperty| |degreePartition| |hclf| |leaf?| |raisePolynomial|
- |odd?| |normal?| |search| |readable?| |roughSubIdeal?| |c05nbf|
- |tanNa| |mapDown!| |bindings| |eq| |leastPower| |rightRankPolynomial|
- |univariatePolynomial| |zeroMatrix| |incrementKthElement|
- |clearTheIFTable| |light| |iter| |outputAsTex| |s14aaf| |generators|
- |s15aef| |KrullNumber| |OMputEndAttr| |members| |alphanumeric?|
- |tanhIfCan| |s13acf| |bit?| |hspace| |rotatez| |getProperty| |taylor|
- |atom?| |rowEchelon| |leftUnit| |f02akf| |increase| |s14abf| |or|
- |superscript| |leadingIndex| |LyndonWordsList| |laurent| |setlast!|
- |octon| |skewSFunction| |ParCondList| |explicitEntries?|
- |basisOfLeftNucloid| |numerators| |safetyMargin| |puiseux|
- |alphabetic| |bandedHessian| |c05adf| |constant| |OMReadError?|
- |cAcot| |binaryFunction| |sortConstraints| |pointSizeDefault| |tanAn|
- |commutative?| |toScale| |semiIndiceSubResultantEuclidean|
- |shiftRight| |infinityNorm| |errorKind| |collectUpper| |rquo|
- |meshPar2Var| |inv| |realEigenvectors| |nextIrreduciblePoly|
- |backOldPos| |exp| |e02dcf| |failed?| |sts2stst| |reflect| |traverse|
- |ground?| |mainMonomial| |fTable| |contractSolve| |erf|
- |purelyAlgebraic?| |separateDegrees| |firstUncouplingMatrix|
- |OMconnInDevice| |rightTrim| |getZechTable| |coerceImages|
- |generalizedContinuumHypothesisAssumed| |ground| |monomRDE| |c05pbf|
- |largest| |copies| |iicoth| |minimumExponent| |leftTrim|
- |rightAlternative?| |redPo| |setProperty| |leadingMonomial|
- |OMputAttr| |child?| |colorDef| ^ |cap| |sPol| |d02kef| |status|
- |internalZeroSetSplit| |makeViewport3D| |leadingCoefficient|
- |Frobenius| |numberOfIrreduciblePoly| |dilog| |s18adf| |measure|
- |color| |hue| |squareFree| |limitedint| |assign| |cCosh|
- |perfectSquare?| |commonDenominator| |normalDenom| |sin| SEGMENT
- |drawCurves| |PollardSmallFactor| |f02aaf| |commaSeparate|
- |createGenericMatrix| |next| |htrigs| |coord| |setsubMatrix!|
- |mergeDifference| |cos| |properties| |approximants| |tree| |OMgetBVar|
- |removeRedundantFactorsInPols| |trapezoidal| |externalList|
- |leftCharacteristicPolynomial| |combineFeatureCompatibility|
- |medialSet| |tan| |removeZeroes| |ptree| |modTree| |insertMatch|
- |legendreP| |translate| |qelt| |pack!| |stoseInvertibleSet| |separant|
- |e04gcf| |call| |powers| |cot| |viewDeltaYDefault|
- |numberOfOperations| |ef2edf| |getPickedPoints|
- |wordsForStrongGenerators| |addPoint2| |genericRightMinimalPolynomial|
- |sinhcosh| |cyclicGroup| |list| |refine| |sec| |completeEval|
- |varselect| |plot| |xRange| |rischNormalize| |OMreadFile|
- |rootProduct| |binary| |factorSFBRlcUnit| |car| |constantIfCan| |csc|
- |kovacic| |setMaxPoints3D| |graphCurves| |yRange| |f02aef|
- |quasiMonic?| |f02adf| |acosIfCan| |cdr| |factors| |asin|
- |zeroSetSplitIntoTriangularSystems| |principal?| |leadingSupport|
- |isOp| |zRange| |primeFrobenius| |ref| |complement| |cyclicSubmodule|
- |setDifference| |uniform| |nthRoot| |acos| |char| |leftOne| |map!|
- |f01bsf| |SturmHabichtSequence| |besselY| |seriesSolve| |universe|
- |ord| |evenInfiniteProduct| |specialTrigs| |setIntersection|
- |OMputError| |atan| |qsetelt!| |listRepresentation| |solveRetract|
- |airyAi| |sample| |realRoots| |bitCoef| |subst| |makeSketch| |debug3D|
- |setUnion| |myDegree| |expextendedint| |acot| |deepestInitial|
- |ellipticCylindrical| |genericLeftMinimalPolynomial|
- |leastAffineMultiple| |d01bbf| |basisOfMiddleNucleus| |integralMatrix|
- |removeDuplicates!| |apply| |selectAndPolynomials| |asec|
- |pmComplexintegrate| |nonLinearPart| |moduloP| |relationsIdeal|
- |f02xef| |pow| |checkForZero| |pushup| |completeHermite| |acsc|
- |andOperands| |mainCoefficients| |float| |viewWriteDefault|
- |diagonal?| |modifyPointData| |void| |noncommutativeJordanAlgebra?|
- |interpretString| |size| |leftRemainder| |stoseInvertibleSetsqfreg|
- |sinh| |bombieriNorm| |entries| |acoshIfCan| |OMputAtp| |getBadValues|
- |limitedIntegrate| |partialQuotients| |hostPlatform|
- |dimensionOfIrreducibleRepresentation| |cosh| |getButtonValue|
- |lyndon?| |nsqfree| |s21bdf| |modulus| |loadNativeModule|
- |argumentList!| |palgint0| |imagk| |OMcloseConn| |tanh| |substring?|
- |weakBiRank| |d03edf| |cycles| |setScreenResolution| |stopTable!|
- |clearFortranOutputStack| |f02wef| |figureUnits| |first| |finite?|
- |coth| |coefChoose| |changeVar| |mesh| |expintegrate|
- |companionBlocks| |objects| |uncouplingMatrices| |f04arf| |addmod|
- |rest| |d02bhf| |sech| |suffix?| |leftTraceMatrix| |pade|
- |dominantTerm| |c06ecf| |mdeg| |base| |substitute| |s17aef| |minus!|
- |lowerCase!| |primitiveElement| |csch| |newTypeLists|
- |functionIsContinuousAtEndPoints| |e01bef| |e04ucf| |getOperator|
- |removeDuplicates| |stopMusserTrials| |floor| |setAdaptive3D| |key|
- |asinh| |csch2sinh| |prefix?| |range| |curry| |c06fpf| |decimal|
- |degree| |bat1| |rootBound| |besselK| |radicalEigenvector| |acosh|
- |null| |rationalApproximation| |phiCoord| |transcendentalDecompose| GE
- |leftRank| |qroot| |cartesian| |measure2Result| |shift| |filename|
- |minPoints| |atanh| |localIntegralBasis| |case| |e02aef| |f07fdf|
- |compose| GT |nthExponent| |mesh?| |lfextlimint| |meshPar1Var| |not?|
- |weighted| |aQuartic| |acoth| |complexEigenvalues| |Zero| |implies| LE
- |move| |changeWeightLevel| |digit| |cosIfCan| |setAttributeButtonStep|
- |identitySquareMatrix| |nextNormalPrimitivePoly| |parse|
- |stoseInternalLastSubResultant| |asech| |One| |bitLength| |ddFact|
- |seriesToOutputForm| LT |logGamma| |mapUnivariateIfCan| |extractIfCan|
- |UnVectorise| |biRank| |OMsupportsSymbol?| |xor| |pair?| |mathieu23|
- |head| |errorInfo| |cycleRagits| |gcdprim| |label| |retractIfCan|
- |generalizedEigenvector| |nativeModuleExtension| |badValues|
- |multiple| |ravel| |infix?| |rationalPoint?| |reverse|
- |factorsOfCyclicGroupSize| |wrregime| |nor|
- |numberOfImproperPartitions| |parametersOf| |parabolicCylindrical|
- |applyQuote| |dimension| |realSolve| |mask| |extendedint|
- |maximumExponent| |f02ajf| |reshape| |isTimes| |prem| |denomRicDE|
- |linearlyDependent?| |triangularSystems| |mkIntegral| |makeEq| |numer|
- |f02fjf| |cAsech| |latex| |torsion?| |viewDeltaXDefault| |numerator|
- |fortran| |qinterval| |polynomialZeros| |stoseInvertible?| |denom|
- |elt| |rename| |redPol| |ideal| |antiCommutative?| |dimensions|
- |contains?| |exp1| |generalLambert| |ruleset| |nil?|
- |leviCivitaSymbol| |c02aff| |algDsolve| |critBonD| |legendre|
- |symbolTable| |identification| |complexLimit| |iiacosh|
- |groebnerIdeal| |radPoly| |minRowIndex| |prologue| |qqq|
- |nextNormalPoly| |showTheFTable| |useNagFunctions| |generic|
- |normalForm| |aCubic| |jordanAdmissible?| |compBound|
- |fortranLinkerArgs| |update| |s19acf| |epilogue|
- |pushFortranOutputStack| |OMUnknownSymbol?| |suchThat| |deepestTail|
- |split!| |mpsode| |iicsch| |An| |zCoord| |certainlySubVariety?| |rank|
- |complexZeros| |normalized?| |popFortranOutputStack| |singularitiesOf|
- |mantissa| |divergence| |OMputObject| |cAcsch| |rational|
- |primeFactor| |OMmakeConn| |prefixRagits| |mainValue| |subCase?|
- |outputAsFortran| |map| |rightTraceMatrix| |index| |complexExpand|
- |shufflein| |cotIfCan| |approxNthRoot| |retractable?| |Ci| |repeating|
- |s17aff| |upperCase?| |fullPartialFraction| |quote| |iicosh|
- |trace2PowMod| |complexEigenvectors| |xn| |cosSinInfo| |s17dgf|
- |commutativeEquality| |bandedJacobian| |OMgetEndBind|
- |showIntensityFunctions| |minrank| |palgintegrate| |conjug| |coleman|
- |iExquo| |pair| |coerceL| |real?| |genericRightTraceForm|
- |inverseIntegralMatrixAtInfinity| |position| |mapdiv| |c06eaf|
- |mathieu24| |increasePrecision| |midpoint| |rootSimp| |argscript|
- |inGroundField?| |d02ejf| |OMlistSymbols| |lists| |solve1| |pdct|
- |adjoint| |convert| |quoted?| |summation| |e02ahf| |padicFraction|
- |function| |numFunEvals| |hitherPlane| |createMultiplicationTable|
- |bernoulliB| |lifting1| |determinant| |Beta| |roughEqualIdeals?|
- |basisOfCenter| |rspace| |multiplyCoefficients| |getGraph| |interpret|
- |rk4a| |e02baf| |flexible?| |cyclic?| |imagI| |open?| |stFuncN|
- |subtractIfCan| |dioSolve| |dihedral| |ode| |tablePow| |frobenius|
- |setleft!| |exprToUPS| |condition| |clearTheSymbolTable|
- |bipolarCylindrical| |ldf2lst| |outlineRender| |symmetricTensors|
- |rootSplit| |nextColeman| |singleFactorBound| |zeroDimPrime?|
- |wholeRagits| |critMonD1| |lookup| |iilog| |expintfldpoly| |cyclic|
- |script| |algintegrate| |algebraicCoefficients?| |binarySearchTree|
- |partialDenominators| |testModulus| |rightRemainder| |multinomial|
- |youngGroup| |lfinfieldint| |flexibleArray| |coefficient|
- |pleskenSplit| |mainPrimitivePart| |imagK| |vector| |primextintfrac|
- |OMgetInteger| |computeCycleEntry| |maxRowIndex| |keys|
- |rangeIsFinite| |explogs2trigs| |headAst| |shade| |extendedIntegrate|
- |logpart| |cAcos| |redpps| |debug| |differentiate|
- |sizePascalTriangle| |bsolve| |maxrank| |tex| |lSpaceBasis| |distance|
- |schwerpunkt| |overlabel| |OMclose| D |df2mf| |complexIntegrate|
- |noKaratsuba| |f01mcf| |close!| |symmetricRemainder| |rk4qc|
- |nextsubResultant2| |expt| |triangulate| |SFunction| |lintgcd|
- |showScalarValues| |lfintegrate| |algebraicOf|
- |factorSquareFreePolynomial| |revert| |quadraticForm| |s13aaf|
- |enterInCache| |closedCurve| |printingInfo?| |dfRange| |OMputSymbol|
- |fractionPart| |primes| |pdf2df| |stopTableGcd!| |true| |monicDivide|
- |zeroVector| |getCurve| |makeCos| |c06ebf| |cos2sec|
- |rightRegularRepresentation| |or?| |stopTableInvSet!| |printHeader|
- |convergents| |testDim| |and| |mainVariable| |brace| |primaryDecomp|
- |pseudoDivide| |pol| |leftQuotient| |fullDisplay| |complementaryBasis|
- |nextItem| |norm| |leaves| |pointLists| |fixedPoint| |jacobian|
- |crest| |pascalTriangle| |ScanFloatIgnoreSpaces| |cosh2sech| |rotate|
- |setrest!| |secIfCan| |univariateSolve| |rarrow| |collectQuasiMonic|
- |rationalPower| |setelt!| |fprindINFO| |viewport3D| |super|
- |gcdcofact| |deriv| |factorGroebnerBasis| |laurentIfCan|
- |lazyEvaluate| |sqfrFactor| |indicialEquationAtInfinity| |sub| |Aleph|
- |rightDiscriminant| |value| |tanh2trigh| |fortranDoubleComplex|
- |graphState| |OMputEndBind| |print| |root| |radicalSolve| |trim|
- |subQuasiComponent?| |factorByRecursion| |removeCosSq| |critT|
- |lazyPrem| |bits| |parts| |repeating?| |setClipValue|
- |reduceByQuasiMonic| |invertible?| |pushucoef| |coefficients|
- |returns| |allRootsOf| |transpose| |isExpt| |rootPower| |f04qaf|
- |SturmHabicht| |setVariableOrder| |pointColorPalette| |less?| |e02bef|
- |unrankImproperPartitions0| |fillPascalTriangle| |completeHensel|
- |cup| |asechIfCan| |semiDiscriminantEuclidean| |fractRagits| |e02zaf|
- |merge!| |createNormalPoly| |transcendenceDegree| |adaptive3D?|
- |s17adf| |f02aff| |curve| |leftExactQuotient| |f04maf| |poisson|
- |showFortranOutputStack| |permutations| |d01ajf| |setPredicates|
- |genericLeftNorm| |modularGcdPrimitive| |bumprow| |fglmIfCan|
- |isAbsolutelyIrreducible?| |option?| |getExplanations|
- |mainSquareFreePart| |subResultantGcdEuclidean| |FormatArabic|
- |lazyIrreducibleFactors| |number?| |generateIrredPoly|
- |padicallyExpand| |leftZero| |intersect| |karatsuba|
- |lazyPseudoRemainder| |concat| |cCos| |lazyPseudoQuotient| |rightUnit|
- |sizeMultiplication| |alternative?| |constantOperator| |acschIfCan|
- |clip| |setchildren!| |palglimint0| |completeEchelonBasis|
- |consnewpol| |exprToGenUPS| |routines| |elementary| |vark|
- |simplifyLog| |dark| |s20adf| |internal?| |elements|
- |LyndonCoordinates| |slash| |OMgetEndAtp| |scripted?| |double|
- |diagonals| |multisect| |fortranCharacter| |Hausdorff| |id|
- |getVariableOrder| |swapRows!| |inconsistent?| |s21baf|
- |initiallyReduce| |cSech| |unrankImproperPartitions1| |janko2| |hasHi|
- |f02abf| |nthExpon| |po| |sylvesterMatrix| |roman| |atanhIfCan|
- |PDESolve| |iifact| |homogeneous?| |table| |any?| |iiacoth| |getMatch|
- |monomialIntPoly| |transcendent?| |radicalEigenvectors|
- |splitConstant| |ode2| |f04faf| |zero| |kmax| |new| |LazardQuotient2|
- |rectangularMatrix| |tab| |iiasec| |OMgetError| |ipow| |c02agf|
- |branchPointAtInfinity?| |null?| |mainVariable?| |complexSolve|
- |credPol| |lepol| |baseRDE| |exquo| |viewZoomDefault|
- |selectOrPolynomials| |aromberg| |perfectNthRoot| |csubst|
- |currentEnv| |matrixDimensions| |e01baf| |div| |bernoulli|
- |minPoints3D| |setAdaptive| |quotient| |closedCurve?| |scalarTypeOf|
- |printTypes| |LyndonBasis| |diff| |overbar| |argumentListOf| |quo|
- |minimumDegree| |discreteLog| |declare!| |prinb| |iroot| |iitan|
- |iipow| |drawComplex| |quasiAlgebraicSet| |makeUnit| |dmp2rfi|
- |binaryTree| |primintegrate| |stoseInvertible?sqfreg| |endSubProgram|
- |decrease| |nonSingularModel| |mainDefiningPolynomial| |separate|
- |ptFunc| |rem| |ratDsolve| |adaptive?| |minimize| |bivariateSLPEBR|
- |endOfFile?| |OMgetApp| |simpleBounds?| |branchPoint?| |reducedForm|
- |twist| |minIndex| |viewDefaults| |coerceP| |component| |complete|
- |size?| |numberOfNormalPoly| |minimalPolynomial| |physicalLength|
- |cycleEntry| |pquo| |topPredicate| |mkAnswer| |closeComponent|
- |explimitedint| |module| |d01apf| |iisqrt2| |groebner?|
- |leftMinimalPolynomial| |gcdPolynomial| |internalIntegrate0|
- |rightRecip| |differentialVariables| |drawToScale| |e02ddf|
- |highCommonTerms| |OMopenFile| |mainVariables| |OMgetType|
- |sumOfSquares| |s17ajf| |left| |OMputVariable| |totalDifferential|
- |rewriteIdealWithQuasiMonicGenerators| |monicLeftDivide| |over|
- |cAcsc| |fibonacci| |critpOrder| |ode1| |right| |nextPrime|
- |aspFilename| |OMencodingXML| |insertTop!| |generic?| |even?|
- |concat!| |axesColorDefault| |distribute| |removeSinSq| |iiperm|
- |lexGroebner| |redmat| |associatorDependence| |heap| |overlap|
- |OMputApp| |cAcosh| |extendedResultant| |acsch|
- |setScreenResolution3D| |notelem| |outputMeasure| |palginfieldint|
- |collectUnder| |wholePart| |s18aff| |splitDenominator| |tValues|
- |bivariatePolynomials| |gradient| |e02akf| |sign| |hMonic|
- |antiCommutator| |sorted?| |Ei| |and?| |nonQsign| |minGbasis| |c06fqf|
- |lexico| |acotIfCan| |leastMonomial| |not| |firstNumer| |romberg|
- |clipParametric| |doubleFloatFormat| |sup|
- |createMultiplicationMatrix| |OMgetEndApp| |argument| |int| |bracket|
- |segment| |lighting| |prolateSpheroidal| |quickSort| |listBranches|
- |getGoodPrime| |dequeue!| |completeSmith| |countable?| |OMputString|
- |lllip| |supDimElseRittWu?| |linearAssociatedExp| |coth2trigh|
- |varList| |rules| |exponentialOrder| |intChoose| |symmetricGroup|
- |upDateBranches| |getDatabase| |oddInfiniteProduct| |rational?|
- |iidsum| |normalizeAtInfinity| |factorOfDegree| |critM|
- |restorePrecision| |fortranDouble| |positive?| |polar| |block|
- |infieldint| |lyndon| |definingEquations| |OMputBind| |infRittWu?|
- |ramified?| |logical?| |splitLinear| |addBadValue| |genericPosition|
- |f04adf| |d01fcf| |setClosed| |rischDE| |multiEuclideanTree| |dot|
- |BasicMethod| |mapExpon| |deleteProperty!| |d01anf| |f07aef| |pastel|
- |symbol| |henselFact| |createLowComplexityTable| |screenResolution|
- |getProperties| |coercePreimagesImages| |resetAttributeButtons|
- |order| |rightScalarTimes!| |possiblyInfinite?| |socf2socdf|
- |rightPower| |getOperands| |vectorise| |systemSizeIF| |integral?|
- |expenseOfEvaluationIF| |s18dcf| |areEquivalent?| |integer|
- |nilFactor| |rst| |partialNumerators| FG2F |power!|
- |semiLastSubResultantEuclidean| |f01rcf| |binomial| |negative?|
- |rightExtendedGcd| |push!| |cardinality| |genericLeftDiscriminant|
- |inc| |shiftRoots| |drawStyle| |scan| |findCycle| |algint| |scale|
- |quasiRegular?| |wronskianMatrix| |newSubProgram| |swap| |signAround|
- |Si| |arguments| |tanh2coth| |cAtanh| |tube| |zerosOf|
- |powerAssociative?| |idealSimplify| |explicitlyEmpty?| |normDeriv2|
- |monomials| |e01bff| |OMopenString| |extend| |packageCall|
- |characteristic| |hyperelliptic| |eq?| |removeRedundantFactors|
- |extractClosed| |loopPoints| |operator| |charthRoot| |B1solve|
- |diagonalMatrix| |extractPoint| |absolutelyIrreducible?| |scaleRoots|
- |tubeRadiusDefault| |virtualDegree| |bezoutResultant| |leftDivide|
- |stronglyReduced?| |ignore?| |copyInto!| |e01saf| |plus|
- |squareFreePrim| |iiacsc| |exactQuotient!| |f01qcf| |infLex?| **
- |back| |eigenMatrix| |startTableGcd!| |extractSplittingLeaf| |s19abf|
- |expandLog| |linearlyDependentOverZ?| |cAtan| |curryRight|
- |makeSeries| |bfEntry| |c06frf| |showAll?| |idealiser| |OMputEndApp|
- |subNode?| |OMsetEncoding| |contours| |totalfract| |dmpToP| EQ
- |selectIntegrationRoutines| |iiasinh| |setref|
- |rewriteIdealWithHeadRemainder| |points| |stack| |exptMod|
- |generalizedContinuumHypothesisAssumed?| |palgint|
- |stoseLastSubResultant| |times| |df2st| |mathieu12|
- |pointColorDefault| |trigs2explogs| |c06gbf| |iisinh|
- |curveColorPalette| |useEisensteinCriterion| |polarCoordinates| |top!|
- |trivialIdeal?| |children| |name| |rur| |inverseColeman| |error|
- |Gamma| |outputSpacing| |asinIfCan| |cycleSplit!| |body|
- |iflist2Result| |opeval| |enqueue!| |exponents| |invertIfCan| |assert|
- |addPointLast| |karatsubaDivide| |outputFixed| |check| |optimize|
- |irreducibleFactors| |squareMatrix| |clikeUniv| |updateStatus!|
- |setnext!| |tanSum| |interReduce| |monom| |leadingCoefficientRicDE|
- |rightDivide| |hasPredicate?| |comparison| |safeCeiling|
- |regularRepresentation| |basisOfLeftNucleus| |constantRight| |connect|
- |factorSquareFreeByRecursion| |superHeight|
- |unprotectedRemoveRedundantFactors| |hasSolution?| LODO2FUN |contract|
- |genericLeftTrace| |factorList| |exactQuotient| |parametric?| |point?|
- |setPrologue!| |sort!| |hdmpToDmp| |oblateSpheroidal| |arg1|
- |leftRegularRepresentation| |pushdterm| |euclideanGroebner| |cubic|
- |iiacos| |common| |normFactors| |printInfo!| |realEigenvalues|
- |ReduceOrder| |string?| |lp| |arg2| |sh| |iisec| |integralBasis|
- |d02bbf| |presub| |complexNormalize| |squareTop| |cycleLength|
- |f01ref| UTS2UP |OMgetVariable| |prod| |multiset| |rotatex|
- |printCode| |zeroOf| |hexDigit?| |linkToFortran| |setRow!|
- |applyRules| |dictionary| |shuffle| |algebraicDecompose| |approxSqrt|
- |conditions| |subSet| |power| |sum| |OMread| |splitNodeOf!|
- |firstSubsetGray| |optAttributes| |extendIfCan| |rightTrace|
- |selectsecond| |variable| |csc2sin| |match| |factorial|
- |showClipRegion| |pushuconst| |polygon|
- |rightCharacteristicPolynomial| |initials| |var2StepsDefault| |pdf2ef|
- |putGraph| |f02awf| |outputList| |objectOf| |operators|
- |outputGeneral| |fortranReal| |asimpson| |inspect| |mainContent|
- |recur| |polyRicDE| |palgRDE0| |insert| |cCsc| |unitsColorDefault|
- |increment| |semiSubResultantGcdEuclidean2| |hcrf| |iiatanh| |column|
- |freeOf?| |preprocess| |flatten| |besselJ| |alternating| |ldf2vmf|
- |rootsOf| |eigenvectors| |innerEigenvectors| |t| |symmetricPower|
- |taylorIfCan| |fracPart| |setFieldInfo| |rdregime| |torsionIfCan|
- |enumerate| |leftPower| |currentCategoryFrame| |index?| |stirling2|
- |e02ajf| |linearDependence| |stFunc1| |reciprocalPolynomial| |depth|
- |euclideanSize| |getMultiplicationTable| |normalizedAssociate|
- |indiceSubResultantEuclidean| |droot| |iomode| |indicialEquation|
- |leftFactor| |univariate?| |intermediateResultsIF| |cothIfCan| |sin?|
- |hdmpToP| |useSingleFactorBound| |failed| |replace| |mapmult|
- |graeffe| |remove!| |factorAndSplit| |laplacian| |rowEchLocal|
- |normalDeriv| |cross| |minordet| |hasoln| |irreducible?| |leftNorm|
- |OMsend| |setEpilogue!| |categoryFrame| |clipPointsDefault| |e04dgf|
- |expPot| |equiv?| |createPrimitivePoly| |setTopPredicate| |anfactor|
- |ranges| |enterPointData| |rationalFunction| |eval| |tubePlot|
- |associates?| |isQuotient| |leader| |doublyTransitive?|
- |createNormalPrimitivePoly| |coerceS| |eulerPhi| |structuralConstants|
- |key?| |iiatan| |yCoordinates| |conical| |iCompose| |rootPoly|
- |associatedSystem| |exprex| |e04jaf| |cyclicCopy| |cn|
- |definingInequation| |processTemplate| |OMputEndError| |moduleSum|
- |powern| |makingStats?| |mapCoef| |totalDegree| |writable?|
- |removeSuperfluousCases| |exprHasWeightCosWXorSinWX| |red| |pomopo!|
- |zeroSquareMatrix| |quasiComponent| |nil| |setMaxPoints|
- |quadraticNorm| |augment| |basisOfCommutingElements| |weights|
- |useSingleFactorBound?| |op| |leftLcm| |alphanumeric| |leftMult|
- |outerProduct| |divisors| |systemCommand| |predicates| |sin2csc|
- |shallowExpand| |directory| |startStats!| |reducedContinuedFraction|
- |element?| |isobaric?| |minset| |height| |intensity| |adaptive|
- |symbol?| |deleteRoutine!| |removeSinhSq| |leadingIdeal| |OMputEndAtp|
- |tensorProduct| |infiniteProduct| |approximate| |OMputInteger| Y
- |primitive?| |primPartElseUnitCanonical!| |solveLinear| |listOfMonoms|
- |definingPolynomial| |viewpoint| |directSum| |s18aef| |datalist|
- |complex| |physicalLength!| |conjugate| |nullary| |normal| |singRicDE|
- |printInfo| |compdegd| |associator| |imagE| |f04asf| |composite|
- |typeList| |FormatRoman| |baseRDEsys| |palgextint| |OMputBVar|
- |OMconnectTCP| |pop!| |exteriorDifferential| |listConjugateBases|
- |basisOfNucleus| |unaryFunction| |denominator| |constantLeft| |iiacot|
- |OMputEndObject| |f2st| |union| |normalise| |smith|
- |tryFunctionalDecomposition| |ksec|
- |removeIrreducibleRedundantFactors| |bfKeys| |paren| |distdfact|
- |rightZero| |delta| |LowTriBddDenomInv| |nand| |roughBasicSet|
- |psolve| |ratPoly| |zeroDimPrimary?| |inverseLaplace| |identityMatrix|
- |fortranLogical| |outputArgs| |infinite?| |orbits| |iisqrt3| |euler|
- |polyRDE| |exprHasLogarithmicWeights| |declare| |OMbindTCP| |OMserve|
- |genericRightTrace| |rk4f| |radicalOfLeftTraceForm| |realElementary|
- |options| |stoseIntegralLastSubResultant|
- |solveLinearPolynomialEquation| |derivative| |makeVariable|
- |character?| |pureLex| |hermiteH| |f07fef| |sinh2csch|
- |constantOpIfCan| |d01asf| |rootDirectory| |subResultantsChain|
- |nextPrimitiveNormalPoly| |addPoint| |create| |dim| |doubleRank|
- |getSyntaxFormsFromFile| |isMult| |reseed| |colorFunction| |c06gqf|
- |patternMatch| |satisfy?| |sdf2lst| |purelyAlgebraicLeadingMonomial?|
- |s17dlf| |yellow| |mergeFactors| |updatD| |f02axf| |semicolonSeparate|
- |limitPlus| |lastSubResultantElseSplit| |string| |leftAlternative?|
- |cfirst| |wordInStrongGenerators| |init| |countRealRootsMultiple|
- |dom| |makeViewport2D| |unary?| |rotate!| |row| |findBinding|
- |removeSquaresIfCan| |solveInField| |cyclicEntries|
- |basisOfRightNucloid| |newReduc| |internalDecompose| |lambda|
- |stFunc2| |outputFloating| |quadratic| |e01sbf| |f02bbf| |constant?|
- |stoseInvertible?reg| |lazyIntegrate| |equivOperands|
- |radicalSimplify| |iiasin| |matrixConcat3D| |stripCommentsAndBlanks|
- |chainSubResultants| |expandPower| |pr2dmp| |choosemon|
- |blankSeparate| |vspace| |squareFreeFactors| |rightQuotient|
- |pseudoQuotient| |unravel| |invmultisect| RF2UTS |set| |exponential|
- |factorials| |idealiserMatrix| |cscIfCan| |part?| |coordinates|
- |buildSyntax| |nil| |infinite| |arbitraryExponent| |approximate|
+ |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| |Record|
+ |Union| |zeroOf| |rootsOf| |makeSketch| |inrootof| |droot| |iroot| |size?|
+ |eq?| |assoc| |doublyTransitive?| |knownInfBasis| |rootSplit| |ratDenom|
+ |ratPoly| |rootPower| |rootProduct| |rootSimp| |rootKerSimp| |leftRank|
+ |rightRank| |doubleRank| |weakBiRank| |biRank| |basisOfCommutingElements|
+ |basisOfLeftAnnihilator| |basisOfRightAnnihilator| |basisOfLeftNucleus|
+ |basisOfRightNucleus| |basisOfMiddleNucleus| |basisOfNucleus| |basisOfCenter|
+ |basisOfLeftNucloid| |basisOfRightNucloid| |basisOfCentroid|
+ |radicalOfLeftTraceForm| |body| |showTypeInOutput| |obj| |dom| |objectOf|
+ |domainOf| |any| |applyRules| |localUnquote| |setColumn!| |setRow!|
+ |oneDimensionalArray| |associatedSystem| |uncouplingMatrices|
+ |associatedEquations| |arrayStack| |setButtonValue| |setAttributeButtonStep|
+ |resetAttributeButtons| |getButtonValue| |decrease| |increase| |morphism|
+ |balancedFactorisation| |mapDown!| |mapUp!| |setleaves!| |balancedBinaryTree|
+ |sylvesterMatrix| |bezoutMatrix| |bezoutResultant| |bezoutDiscriminant|
+ |bfEntry| |bfKeys| |inspect| |extract!| |bag| |binding| |position!| |test|
+ |false| |true| |setProperties| |setProperty| |deleteProperty!| |has?| |input|
+ |comparison| |equality| |nary?| |unary?| |nullary?| |arity| |properties|
+ |derivative| |constantOperator| |constantOpIfCan| |integerBound| |setright!|
+ |setleft!| |brillhartIrreducible?| |brillhartTrials| |noLinearFactor?|
+ |insertRoot!| |binarySearchTree| |nor| |nand| |node| |binaryTournament|
+ |binaryTree| |bitior| |bitand| |byte| |subtractIfCan| |setPosition|
+ |generalizedContinuumHypothesisAssumed|
+ |generalizedContinuumHypothesisAssumed?| |countable?| |Aleph| |unravel|
+ |ravel| |leviCivitaSymbol| |kroneckerDelta| |reindex| |alphanumeric|
+ |alphabetic| |hexDigit| |digit| |charClass| |alphanumeric?| |lowerCase?|
+ |upperCase?| |alphabetic?| |hexDigit?| |digit?| |escape| |char| |ord|
+ |mkIntegral| |radPoly| |rootPoly| |goodPoint| |chvar| |removeDuplicates|
+ |find| |e| |clipParametric| |clipWithRanges| |numberOfHues| |blue| |green|
+ |yellow| |red| |iifact| |iibinom| |iiperm| |iipow| |iidsum| |iidprod| |ipow|
+ |factorial| |multinomial| |permutation| |stirling1| |stirling2| |summation|
+ |factorials| |mkcomm| |polarCoordinates| |complex| |imaginary| |solid|
+ |solid?| |denominators| |numerators| |convergents| |approximants|
+ |reducedForm| |partialQuotients| |partialDenominators| |partialNumerators|
+ |reducedContinuedFraction| |push| |bindings| |cartesian| |polar| |cylindrical|
+ |spherical| |parabolic| |parabolicCylindrical| |paraboloidal|
+ |ellipticCylindrical| |prolateSpheroidal| |oblateSpheroidal| |bipolar|
+ |bipolarCylindrical| |toroidal| |conical| |modTree| |multiEuclideanTree|
+ |complexZeros| |divisorCascade| |graeffe| |pleskenSplit|
+ |reciprocalPolynomial| |rootRadius| |schwerpunkt| |setErrorBound|
+ |startPolynomial| |cycleElt| |computeCycleLength| |computeCycleEntry|
+ |arguments| |constructorName| |coerceP| |powerSum| |elementary| |alternating|
+ |cyclic| |dihedral| |cap| |cup| |wreath| |SFunction| |skewSFunction|
+ |cyclotomicDecomposition| |cyclotomicFactorization| |rangeIsFinite|
+ |functionIsContinuousAtEndPoints| |functionIsOscillatory| |changeName|
+ |exprHasWeightCosWXorSinWX| |exprHasAlgebraicWeight|
+ |exprHasLogarithmicWeights| |combineFeatureCompatibility| |sparsityIF|
+ |stiffnessAndStabilityFactor| |stiffnessAndStabilityOfODEIF| |systemSizeIF|
+ |expenseOfEvaluationIF| |accuracyIF| |intermediateResultsIF|
+ |subscriptedVariables| |central?| |elliptic?| |doubleResultant| |distdfact|
+ |separateDegrees| |trace2PowMod| |tracePowMod| |irreducible?| |decimal|
+ |innerint| |exteriorDifferential| |totalDifferential| |homogeneous?|
+ |leadingBasisTerm| |ignore?| |computeInt| |checkForZero| |doubleFloatFormat|
+ |logGamma| |hypergeometric0F1| |rotatez| |rotatey| |rotatex| |identity|
+ |dictionary| |dioSolve| |directProduct| |newLine| |copies| |say| |sayLength|
+ |setnext!| |setprevious!| |next| |previous| |datalist|
+ |shanksDiscLogAlgorithm| |showSummary| |reflect| |reify| |separant| |initial|
+ |leader| |isobaric?| |weights| |differentialVariables| |extractBottom!|
+ |extractTop!| |insertBottom!| |insertTop!| |bottom!| |top!| |dequeue|
+ |makeObject| |recolor| |drawComplex| |drawComplexVectorField| |setRealSteps|
+ |setImagSteps| |setClipValue| |draw| |option?| |range| |colorFunction|
+ |curveColor| |pointColor| |clip| |clipBoolean| |style| |toScale|
+ |pointColorPalette| |curveColorPalette| |var1Steps| |var2Steps| |space|
+ |tubePoints| |tubeRadius| |option| |weight| |makeVariable| |finiteBound|
+ |sortConstraints| |sumOfSquares| |splitLinear| |simpleBounds?| |linearMatrix|
+ |linearPart| |nonLinearPart| |quadratic?| |changeNameToObjf| |optAttributes|
+ |Nul| |exponents| |iisqrt2| |iisqrt3| |iiexp| |iilog| |iisin| |iicos| |iitan|
+ |iicot| |iisec| |iicsc| |iiasin| |iiacos| |iiatan| |iiacot| |iiasec| |iiacsc|
+ |iisinh| |iicosh| |iitanh| |iicoth| |iisech| |iicsch| |iiasinh| |iiacosh|
+ |iiatanh| |iiacoth| |iiasech| |iiacsch| |specialTrigs| |localReal?|
+ |rischNormalize| |realElementary| |validExponential| |rootNormalize| |tanQ|
+ |callForm?| |getIdentifier| |getConstant| |type| |select!| |delete!| |sn| |cn|
+ |dn| |sncndn| |qsetelt!| |categoryFrame| |currentEnv| |setProperties!|
+ |getProperties| |setProperty!| |getProperty| |scopes| |eigenvalues|
+ |eigenvector| |generalizedEigenvector| |generalizedEigenvectors|
+ |eigenvectors| |factorAndSplit| |rightOne| |leftOne| |rightZero| |leftZero|
+ |swap| |error| |minPoly| |freeOf?| |operators| |tower| |kernels| |mainKernel|
+ |distribute| |subst| |functionIsFracPolynomial?| |problemPoints| |zerosOf|
+ |singularitiesOf| |polynomialZeros| |f2df| |ef2edf| |ocf2ocdf| |socf2socdf|
+ |df2fi| |edf2fi| |edf2df| |expenseOfEvaluation| |numberOfOperations| |edf2efi|
+ |dfRange| |dflist| |df2mf| |ldf2vmf| |edf2ef| |vedf2vef| |df2st| |f2st|
+ |ldf2lst| |sdf2lst| |getlo| |gethi| |outputMeasure| |measure2Result|
+ |att2Result| |iflist2Result| |pdf2ef| |pdf2df| |df2ef| |fi2df| |mat| |neglist|
+ |multiEuclidean| |extendedEuclidean| |euclideanSize| |sizeLess?|
+ |simplifyPower| |number?| |seriesSolve| |constantToUnaryFunction| |tubePlot|
+ |exponentialOrder| |completeEval| |lowerPolynomial| |raisePolynomial|
+ |normalDeriv| |ran| |highCommonTerms| |mapCoef| |nthCoef| |binomThmExpt|
+ |pomopo!| |mapExponents| |linearAssociatedLog| |linearAssociatedOrder|
+ |linearAssociatedExp| |createNormalElement| |setLabelValue| |getCode|
+ |printCode| |code| |operation| |common| |printStatement| |save| |stop| |block|
+ |cond| |returns| |call| |comment| |continue| |goto| |repeatUntilLoop|
+ |whileLoop| |forLoop| |sin?| |zeroVector| |zeroSquareMatrix|
+ |identitySquareMatrix| |lSpaceBasis| |finiteBasis| |principal?| |divisor|
+ |useNagFunctions| |rationalPoints| |nonSingularModel| |algSplitSimple|
+ |hyperelliptic| |elliptic| |integralDerivationMatrix| |integralRepresents|
+ |integralCoordinates| |yCoordinates| |inverseIntegralMatrixAtInfinity|
+ |integralMatrixAtInfinity| |inverseIntegralMatrix| |integralMatrix|
+ |reduceBasisAtInfinity| |normalizeAtInfinity| |complementaryBasis| |integral?|
+ |integralAtInfinity?| |integralBasisAtInfinity| |ramified?|
+ |ramifiedAtInfinity?| |singular?| |singularAtInfinity?| |branchPoint?|
+ |branchPointAtInfinity?| |rationalPoint?| |absolutelyIrreducible?| |genus|
+ |getZechTable| |createZechTable| |createMultiplicationTable|
+ |createMultiplicationMatrix| |createLowComplexityTable|
+ |createLowComplexityNormalBasis| |representationType| |createPrimitiveElement|
+ |tableForDiscreteLogarithm| |factorsOfCyclicGroupSize| |sizeMultiplication|
+ |getMultiplicationMatrix| |getMultiplicationTable| |primitive?|
+ |numberOfIrreduciblePoly| |numberOfPrimitivePoly| |numberOfNormalPoly|
+ |createIrreduciblePoly| |createPrimitivePoly| |createNormalPoly|
+ |createNormalPrimitivePoly| |createPrimitiveNormalPoly| |nextIrreduciblePoly|
+ |nextPrimitivePoly| |nextNormalPoly| |nextNormalPrimitivePoly|
+ |nextPrimitiveNormalPoly| |leastAffineMultiple| |reducedQPowers|
+ |rootOfIrreduciblePoly| |write!| |read!| |iomode| |close!| |reopen!| |open|
+ |rightUnit| |leftUnit| |rightMinimalPolynomial| |leftMinimalPolynomial|
+ |associatorDependence| |lieAlgebra?| |jordanAlgebra?|
+ |noncommutativeJordanAlgebra?| |jordanAdmissible?| |lieAdmissible?|
+ |jacobiIdentity?| |powerAssociative?| |alternative?| |flexible?|
+ |rightAlternative?| |leftAlternative?| |antiAssociative?| |associative?|
+ |antiCommutative?| |commutative?| |rightCharacteristicPolynomial|
+ |leftCharacteristicPolynomial| |rightNorm| |leftNorm| |rightTrace| |leftTrace|
+ |someBasis| |sort!| |copyInto!| |sorted?| |LiePoly| |quickSort| |heapSort|
+ |shellSort| |outputSpacing| |outputGeneral| |outputFixed| |outputFloating|
+ |exp1| |log10| |log2| |rationalApproximation| |relerror| |complexSolve|
+ |complexRoots| |realRoots| |leadingTerm| |writable?| |readable?| |exists?|
+ |extension| |directory| |filename| |shallowExpand| |deepExpand|
+ |clearFortranOutputStack| |showFortranOutputStack| |popFortranOutputStack|
+ |pushFortranOutputStack| |topFortranOutputStack| |setFormula!| |formula|
+ |linkToFortran| |setLegalFortranSourceExtensions| |fracPart| |polyPart|
+ |fullPartialFraction| |primeFrobenius| |discreteLog| |decreasePrecision|
+ |increasePrecision| |bits| |unitNormalize| |unit| |flagFactor| |sqfrFactor|
+ |primeFactor| |nthFlag| |nthExponent| |irreducibleFactor| |nilFactor|
+ |regularRepresentation| |traceMatrix| |randomLC| |minimize| |module|
+ |rightRegularRepresentation| |leftRegularRepresentation| |rightTraceMatrix|
+ |leftTraceMatrix| |rightDiscriminant| |leftDiscriminant| |represents|
+ |mergeFactors| |isMult| |applyQuote| |ground| |ground?| |exprToXXP|
+ |exprToUPS| |exprToGenUPS| |localAbs| |universe| |complement| |cardinality|
+ |internalIntegrate0| |makeCos| |makeSin| |iiGamma| |iiabs| |bringDown|
+ |newReduc| |logical?| |character?| |doubleComplex?| |complex?| |double?|
+ |ffactor| |qfactor| |UP2ifCan| |anfactor| |fortranCharacter|
+ |fortranDoubleComplex| |fortranComplex| |fortranLogical| |fortranInteger|
+ |fortranDouble| |fortranReal| |external?| |scalarTypeOf|
+ |fortranCarriageReturn| |fortranLiteral| |fortranLiteralLine|
+ |processTemplate| |makeFR| |musserTrials| |stopMusserTrials| |numberOfFactors|
+ |modularFactor| |useSingleFactorBound?| |useSingleFactorBound|
+ |useEisensteinCriterion?| |useEisensteinCriterion| |eisensteinIrreducible?|
+ |tryFunctionalDecomposition?| |tryFunctionalDecomposition| |btwFact|
+ |beauzamyBound| |bombieriNorm| |rootBound| |singleFactorBound| |quadraticNorm|
+ |infinityNorm| |scaleRoots| |shiftRoots| |degreePartition| |factorOfDegree|
+ |factorsOfDegree| |pascalTriangle| |rangePascalTriangle| |sizePascalTriangle|
+ |fillPascalTriangle| |safeCeiling| |safeFloor| |safetyMargin| |sumSquares|
+ |euclideanNormalForm| |euclideanGroebner| |factorGroebnerBasis|
+ |groebnerFactorize| |credPol| |redPol| |gbasis| |critT| |critM| |critB|
+ |critBonD| |critMTonD1| |critMonD1| |redPo| |hMonic| |updatF| |sPol| |updatD|
+ |minGbasis| |lepol| |prinshINFO| |prindINFO| |fprindINFO| |prinpolINFO|
+ |prinb| |critpOrder| |makeCrit| |virtualDegree| |lcm|
+ |conditionsForIdempotents| |genericRightDiscriminant| |genericRightTraceForm|
+ |genericLeftDiscriminant| |genericLeftTraceForm| |genericRightNorm|
+ |genericRightTrace| |genericRightMinimalPolynomial| |rightRankPolynomial|
+ |genericLeftNorm| |genericLeftTrace| |genericLeftMinimalPolynomial|
+ |leftRankPolynomial| |generic| |rightUnits| |leftUnits| |compBound| |tablePow|
+ |solveid| |testModulus| |HenselLift| |completeHensel| |multMonom| |build|
+ |leadingIndex| |leadingExponent| |GospersMethod| |nextSubsetGray|
+ |firstSubsetGray| |clipPointsDefault| |drawToScale| |adaptive| |figureUnits|
+ |putColorInfo| |appendPoint| |component| |ranges| |pointLists|
+ |makeGraphImage| |graphImage| |groebSolve| |testDim| |genericPosition| |lfunc|
+ |inHallBasis?| |reorder| |parameters| |headAst| |heap| |gcdprim| |gcdcofact|
+ |gcdcofactprim| |lintgcd| |hex| |parts| |count| |every?| |any?| |map!| |host|
+ |trueEqual| |factorList| |listConjugateBases| |matrixGcd| |divideIfCan!|
+ |leastPower| |idealiser| |idealiserMatrix| |moduleSum| |mapUnivariate|
+ |mapUnivariateIfCan| |mapMatrixIfCan| |mapBivariate| |fullDisplay|
+ |relationsIdeal| |saturate| |groebner?| |groebnerIdeal| |ideal| |leadingIdeal|
+ |backOldPos| |generalPosition| |quotient| |zeroDim?| |inRadical?| |in?|
+ |element?| |zeroDimPrime?| |zeroDimPrimary?| |radical| |primaryDecomp|
+ |contract| |leadingSupport| |shrinkable| |physicalLength!| |physicalLength|
+ |flexibleArray| |generalizedInverse| |setFieldInfo| |pol| |xn| |dAndcExp|
+ |repSq| |expPot| |qPot| |lookup| |normal?| |basis| |normalElement|
+ |minimalPolynomial| |increment| |incrementBy| |charpol| |solve1|
+ |innerEigenvectors| |compile| |declare| |unparse| |flatten| |lambda| |binary|
+ |packageCall| |interpret| |innerSolve1| |innerSolve| |makeEq|
+ |modularGcdPrimitive| |modularGcd| |reduction| |signAround| |invmod| |powmod|
+ |mulmod| |submod| |addmod| |mask| |dec| |inc| |symmetricRemainder|
+ |positiveRemainder| |bit?| |algint| |algintegrate| |palgintegrate|
+ |palginfieldint| |bitLength| |bitCoef| |bitTruth| |contains?| |inf|
+ |qinterval| |interval| |unit?| |associates?| |unitCanonical| |unitNormal|
+ |lfextendedint| |lflimitedint| |lfinfieldint| |lfintegrate| |lfextlimint|
+ |BasicMethod| |PollardSmallFactor| |showTheFTable| |clearTheFTable| |fTable|
+ |showAttributes| |entry| |palgint0| |palgextint0| |palglimint0| |palgRDE0|
+ |palgLODE0| |chineseRemainder| |divisors| |eulerPhi| |fibonacci| |harmonic|
+ |jacobi| |moebiusMu| |numberOfDivisors| |sumOfDivisors|
+ |sumOfKthPowerDivisors| |HermiteIntegrate| |palgint| |palgextint| |palglimint|
+ |palgRDE| |palgLODE| |splitConstant| |pmComplexintegrate| |pmintegrate|
+ |infieldint| |extendedint| |limitedint| |integerIfCan| |internalIntegrate|
+ |infieldIntegrate| |limitedIntegrate| |extendedIntegrate| |varselect| |kmax|
+ |ksec| |vark| |removeConstantTerm| |mkPrim| |intPatternMatch| |primintegrate|
+ |expintegrate| |tanintegrate| |primextendedint| |expextendedint|
+ |primlimitedint| |explimitedint| |primextintfrac| |primlimintfrac|
+ |primintfldpoly| |expintfldpoly| |monomialIntegrate| |monomialIntPoly|
+ |inverseLaplace| |iprint| |elem?| |notelem| |logpart| |ratpart| |mkAnswer|
+ |perfectNthPower?| |perfectNthRoot| |approxNthRoot| |perfectSquare?|
+ |perfectSqrt| |approxSqrt| |generateIrredPoly| |complexExpand|
+ |complexIntegrate| |dimensionOfIrreducibleRepresentation|
+ |irreducibleRepresentation| |checkRur| |cAcsch| |cAsech| |cAcoth| |cAtanh|
+ |cAcosh| |cAsinh| |cCsch| |cSech| |cCoth| |cTanh| |cCosh| |cSinh| |cAcsc|
+ |cAsec| |cAcot| |cAtan| |cAcos| |cAsin| |cCsc| |cSec| |cCot| |cTan| |cCos|
+ |cSin| |cLog| |cExp| |cRationalPower| |cPower| |seriesToOutputForm| |iCompose|
+ |taylorQuoByVar| |iExquo| |getStream| |getRef| |makeSeries| GF2FG FG2F F2FG
+ |explogs2trigs| |trigs2explogs| |swap!| |fill!| |minIndex| |maxIndex| |entry?|
+ |indices| |index?| |entries| |search| |key?| |symbolIfCan| |kernel| |argument|
+ |constantKernel| |constantIfCan| |kovacic| |laplace| |trailingCoefficient|
+ |normalizeIfCan| |polCase| |distFact| |identification| |LyndonCoordinates|
+ |LyndonBasis| |zeroDimensional?| |fglmIfCan| |groebner| |lexTriangular|
+ |squareFreeLexTriangular| |belong?| |operator| |erf| |dilog| |li| |Ci| |Si|
+ |Ei| |linGenPos| |groebgen| |totolex| |minPol| |computeBasis| |coord|
+ |anticoord| |intcompBasis| |choosemon| |transform| |pack!| |library|
+ |complexLimit| |limit| |linearlyDependent?| |linearDependence| |solveLinear|
+ |reducedSystem| |setDifference| |setIntersection| |setUnion| |append| |null|
+ |nil| |substitute| |duplicates?| |mapGen| |mapExpon| |commutativeEquality|
+ |leftMult| |rightMult| |makeUnit| |reverse!| |reverse| |makeMulti| |makeTerm|
+ |listOfMonoms| |insert| |delete| |symmetricSquare| |factor1|
+ |symmetricProduct| |symmetricPower| |directSum|
+ |solveLinearPolynomialEquationByFractions| |hasSolution?| |linSolve|
+ |LyndonWordsList| |LyndonWordsList1| |lyndonIfCan| |lyndon| |lyndon?|
+ |numberOfComputedEntries| |rst| |frst| |lazyEvaluate| |lazy?|
+ |explicitlyEmpty?| |explicitEntries?| |matrixDimensions| |matrixConcat3D|
+ |setelt!| |plus| |identityMatrix| |zeroMatrix| |iter| |arg1| |arg2| |comp|
+ |nullary| |fixedPoint| |id| |recur| |const| |curry| |diag| |curryRight|
+ |curryLeft| |constantRight| |constantLeft| |twist| |setsubMatrix!| |subMatrix|
+ |swapColumns!| |swapRows!| |vertConcat| |horizConcat| |squareTop| |elRow1!|
+ |elRow2!| |elColumn2!| |fractionFreeGauss!| |invertIfCan| |copy!| |plus!|
+ |minus!| |leftScalarTimes!| |rightScalarTimes!| |times!| |power!| |nothing|
+ |gradient| |divergence| |laplacian| |hessian| |bandedHessian| |jacobian|
+ |bandedJacobian| |duplicates| |removeDuplicates!| |linears| |ddFact|
+ |separateFactors| |exptMod| |meshPar2Var| |meshFun2Var| |meshPar1Var| |ptFunc|
+ |minimumExponent| |maximumExponent| |precision| |mantissa| |rowEch|
+ |rowEchLocal| |rowEchelonLocal| |normalizedDivide| |maxint| |binaryFunction|
+ |makeFloatFunction| |function| |makeRecord| |unaryFunction| |compiledFunction|
+ |corrPoly| |lifting| |lifting1| |exprex| |coerceL| |coerceS| |frobenius|
+ |computePowers| |pow| |An| |UnVectorise| |Vectorise| |setPoly| |index|
+ |exponent| |exQuo| |moebius| |rightRecip| |leftRecip| |leftPower| |rightPower|
+ |derivationCoordinates| |generator| |one?| |splitSquarefree| |normalDenom|
+ |reshape| |totalfract| |pushdterm| |pushucoef| |pushuconst|
+ |numberOfMonomials| |members| |multiset| |systemCommand| |mergeDifference|
+ |squareFreePrim| |compdegd| |univcase| |consnewpol| |nsqfree| |intChoose|
+ |coefChoose| |myDegree| |normDeriv2| |plenaryPower| |c02aff| |c02agf| |c05adf|
+ |c05nbf| |c05pbf| |c06eaf| |c06ebf| |c06ecf| |c06ekf| |c06fpf| |c06fqf|
+ |c06frf| |c06fuf| |c06gbf| |c06gcf| |c06gqf| |c06gsf| |d01ajf| |d01akf|
+ |d01alf| |d01amf| |d01anf| |d01apf| |d01aqf| |d01asf| |d01bbf| |d01fcf|
+ |d01gaf| |d01gbf| |d02bbf| |d02bhf| |d02cjf| |d02ejf| |d02gaf| |d02gbf|
+ |d02kef| |d02raf| |d03edf| |d03eef| |d03faf| |e01baf| |e01bef| |e01bff|
+ |e01bgf| |e01bhf| |e01daf| |e01saf| |e01sbf| |e01sef| |e01sff| |e02adf|
+ |e02aef| |e02agf| |e02ahf| |e02ajf| |e02akf| |e02baf| |e02bbf| |e02bcf|
+ |e02bdf| |e02bef| |e02daf| |e02dcf| |e02ddf| |e02def| |e02dff| |e02gaf|
+ |e02zaf| |e04dgf| |e04fdf| |e04gcf| |e04jaf| |e04mbf| |e04naf| |e04ucf|
+ |e04ycf| |f01brf| |f01bsf| |f01maf| |f01mcf| |f01qcf| |f01qdf| |f01qef|
+ |f01rcf| |f01rdf| |f01ref| |f02aaf| |f02abf| |f02adf| |f02aef| |f02aff|
+ |f02agf| |f02ajf| |f02akf| |f02awf| |f02axf| |f02bbf| |f02bjf| |f02fjf|
+ |f02wef| |f02xef| |f04adf| |f04arf| |f04asf| |f04atf| |f04axf| |f04faf|
+ |f04jgf| |f04maf| |f04mbf| |f04mcf| |f04qaf| |f07adf| |f07aef| |f07fdf|
+ |f07fef| |s01eaf| |s13aaf| |s13acf| |s13adf| |s14aaf| |s14abf| |s14baf|
+ |s15adf| |s15aef| |s17acf| |s17adf| |s17aef| |s17aff| |s17agf| |s17ahf|
+ |s17ajf| |s17akf| |s17dcf| |s17def| |s17dgf| |s17dhf| |s17dlf| |s18acf|
+ |s18adf| |s18aef| |s18aff| |s18dcf| |s18def| |s19aaf| |s19abf| |s19acf|
+ |s19adf| |s20acf| |s20adf| |s21baf| |s21bbf| |s21bcf| |s21bdf|
+ |fortranCompilerName| |fortranLinkerArgs| |aspFilename| |dimensionsOf|
+ |checkPrecision| |restorePrecision| |antiCommutator| |commutator| |associator|
+ |complexEigenvalues| |complexEigenvectors| |shift| |normalizedAssociate|
+ |normalize| |outputArgs| |normInvertible?| |normFactors| |npcoef| |listexp|
+ |characteristicPolynomial| |realEigenvalues| |realEigenvectors|
+ |halfExtendedResultant2| |halfExtendedResultant1| |extendedResultant|
+ |subResultantsChain| |lazyPseudoQuotient| |lazyPseudoRemainder| |bernoulliB|
+ |eulerE| |numeric| |complexNumeric| |numericIfCan| |complexNumericIfCan|
+ |FormatArabic| |ScanArabic| |FormatRoman| |ScanRoman| |ScanFloatIgnoreSpaces|
+ |ScanFloatIgnoreSpacesIfCan| |numericalIntegration| |rk4| |rk4a| |rk4qc|
+ |rk4f| |aromberg| |asimpson| |atrapezoidal| |romberg| |simpson| |trapezoidal|
+ |rombergo| |simpsono| |trapezoidalo| |sup| |inv| |imagE| |imagk| |imagj|
+ |imagi| |octon| |ODESolve| |constDsolve| |showTheIFTable| |clearTheIFTable|
+ |keys| |iFTable| |showIntensityFunctions| |expint| |diff| |algDsolve|
+ |denomLODE| |indicialEquations| |indicialEquation| |denomRicDE|
+ |leadingCoefficientRicDE| |constantCoefficientRicDE| |changeVar| |ratDsolve|
+ |indicialEquationAtInfinity| |reduceLODE| |singRicDE| |polyRicDE| |ricDsolve|
+ |triangulate| |solveInField| |wronskianMatrix| |variationOfParameters|
+ |factors| |nthFactor| |nthExpon| |overlap| |hcrf| |hclf| |lexico| |OMmakeConn|
+ |OMcloseConn| |OMconnInDevice| |OMconnOutDevice| |OMconnectTCP| |OMbindTCP|
+ |OMopenFile| |OMopenString| |OMclose| |OMsetEncoding| |OMputApp| |OMputAtp|
+ |OMputAttr| |OMputBind| |OMputBVar| |OMputError| |OMputObject| |OMputEndApp|
+ |OMputEndAtp| |OMputEndAttr| |OMputEndBind| |OMputEndBVar| |OMputEndError|
+ |OMputEndObject| |OMputInteger| |OMputFloat| |OMputVariable| |OMputString|
+ |OMputSymbol| |OMgetApp| |OMgetAtp| |OMgetAttr| |OMgetBind| |OMgetBVar|
+ |OMgetError| |OMgetObject| |OMgetEndApp| |OMgetEndAtp| |OMgetEndAttr|
+ |OMgetEndBind| |OMgetEndBVar| |OMgetEndError| |OMgetEndObject| |OMgetInteger|
+ |OMgetFloat| |OMgetVariable| |OMgetString| |OMgetSymbol| |OMgetType|
+ |OMencodingBinary| |OMencodingSGML| |OMencodingXML| |OMencodingUnknown|
+ |omError| |errorInfo| |errorKind| |OMReadError?| |OMUnknownSymbol?|
+ |OMUnknownCD?| |OMParseError?| |OMwrite| |po| |op| |OMread| |OMreadFile|
+ |OMreadStr| |OMlistCDs| |OMlistSymbols| |OMsupportsCD?| |OMsupportsSymbol?|
+ |OMunhandledSymbol| |OMreceive| |OMsend| |OMserve| |infinity| |makeop|
+ |opeval| |evaluateInverse| |evaluate| |conjug| |adjoint| |getDatabase|
+ |numericalOptimization| |optimize| |goodnessOfFit| |whatInfinity| |infinite?|
+ |finite?| |minusInfinity| |plusInfinity| |pureLex| |totalLex| |reverseLex|
+ |leftLcm| |rightExtendedGcd| |rightGcd| |rightExactQuotient| |rightRemainder|
+ |rightQuotient| |rightLcm| |leftExtendedGcd| |leftGcd| |leftExactQuotient|
+ |leftRemainder| |leftQuotient| |times| |apply| |monicLeftDivide|
+ |monicRightDivide| |leftDivide| |rightDivide| |hermiteH| |laguerreL|
+ |legendreP| |outputList| |quo| |rem| |div| >= > ~= |blankSeparate|
+ |semicolonSeparate| |commaSeparate| |pile| |paren| |bracket| |prod|
+ |overlabel| |overbar| |prime| |quote| |supersub| |presuper| |presub| |super|
+ |sub| |rarrow| |assign| |slash| |over| |zag| |box| |label| |infix?| |postfix|
+ |infix| |prefix| |vconcat| |hconcat| |rspace| |vspace| |hspace| |superHeight|
+ |subHeight| |height| |width| |messagePrint| |message| |padecf| |pade| |root|
+ |quotientByP| |moduloP| |modulus| |digits| |continuedFraction| |pair| |light|
+ |pastel| |bright| |dim| |dark| |getSyntaxFormsFromFile| |surface| |coordinate|
+ |partitions| |conjugates| |shuffle| |shufflein| |sequences| |permutations|
+ |lists| |atoms| |makeResult| |is?| |Is| |addMatchRestricted| |insertMatch|
+ |addMatch| |getMatch| |failed| |failed?| |optpair| |getBadValues|
+ |resetBadValues| |hasTopPredicate?| |topPredicate| |setTopPredicate|
+ |patternVariable| |withPredicates| |setPredicates| |predicates|
+ |hasPredicate?| |optional?| |multiple?| |generic?| |quoted?| |inR?| |isList|
+ |isQuotient| |isOp| |Zero| |predicate| |satisfy?| |addBadValue| |badValues|
+ |retractable?| |ListOfTerms| |One| |PDESolve| |leftFactor|
+ |rightFactorCandidate| |measure| D |ptree| |coerceImages| |fixedPoints| |odd?|
+ |even?| |numberOfCycles| |cyclePartition| |coerceListOfPairs|
+ |coercePreimagesImages| |listRepresentation| |permanent| |cycles| |cycle|
+ |initializeGroupForWordProblem| <= < |movedPoints| |wordInGenerators|
+ |wordInStrongGenerators| |orbits| |orbit| |permutationGroup|
+ |wordsForStrongGenerators| |strongGenerators| |base| |generators|
+ |bivariateSLPEBR| |solveLinearPolynomialEquationByRecursion|
+ |factorByRecursion| |factorSquareFreeByRecursion| |randomR| |factorSFBRlcUnit|
+ |charthRoot| |conditionP| |solveLinearPolynomialEquation|
+ |factorSquareFreePolynomial| |factorPolynomial| |squareFreePolynomial|
+ |gcdPolynomial| |torsion?| |torsionIfCan| |getGoodPrime| |badNum| |mix|
+ |doubleDisc| |polyred| |padicFraction| |padicallyExpand|
+ |numberOfFractionalTerms| |nthFractionalTerm| |firstNumer| |firstDenom|
+ |compactFraction| |partialFraction| |gcdPrimitive| |symmetricGroup|
+ |alternatingGroup| |abelianGroup| |cyclicGroup| |dihedralGroup| |mathieu11|
+ |mathieu12| |mathieu22| |mathieu23| |mathieu24| |janko2| |rubiksGroup|
+ |youngGroup| |lexGroebner| |totalGroebner| |expressIdealMember|
+ |principalIdeal| |interpolate| |LagrangeInterpolation| |psolve| |wrregime|
+ |rdregime| |bsolve| |dmp2rfi| |se2rfi| |pr2dmp| |hasoln| |ParCondList|
+ |redpps| |B1solve| |factorset| |maxrank| |minrank| |minset| |nextSublist|
+ |overset?| |ParCond| |redmat| |regime| |sqfree| |inconsistent?| |debug|
+ |numFunEvals| |setAdaptive| |adaptive?| |setScreenResolution|
+ |screenResolution| |setMaxPoints| |maxPoints| |setMinPoints| |minPoints|
+ |parametric?| |plotPolar| |debug3D| |numFunEvals3D| |setAdaptive3D|
+ |adaptive3D?| |setScreenResolution3D| |screenResolution3D| |setMaxPoints3D|
+ |maxPoints3D| |setMinPoints3D| |minPoints3D| |tValues| |tRange| |plot|
+ |pointPlot| |calcRanges| |assert| |optional| |multiple| |fixPredicate|
+ |patternMatch| |patternMatchTimes| |bernoulli| |chebyshevT| |chebyshevU|
+ |cyclotomic| |euler| |fixedDivisor| |laguerre| |legendre| |dmpToHdmp|
+ |hdmpToDmp| |pToHdmp| |hdmpToP| |dmpToP| |pToDmp| |sylvesterSequence|
+ |sturmSequence| |boundOfCauchy| |sturmVariationsOf| |lazyVariations| |content|
+ |primitiveMonomials| |totalDegree| |minimumDegree| |monomials| |isPlus|
+ |isTimes| |isExpt| |isPower| |rroot| |qroot| |froot| |nthr| |port|
+ |firstUncouplingMatrix| |integral| |primitiveElement| |nextPrime| |prevPrime|
+ |primes| |print| |selectsecond| |selectfirst| |makeprod| |property|
+ |equivOperands| |equiv?| |impliesOperands| |implies?| |orOperands| |or?|
+ |andOperands| |and?| |notOperand| |not?| |variable?| |term| |term?| |and| |or|
+ |implies| |equiv| |merge!| |resultantEuclidean| |semiResultantEuclidean2|
+ |semiResultantEuclidean1| |indiceSubResultant| |indiceSubResultantEuclidean|
+ |semiIndiceSubResultantEuclidean| |degreeSubResultant|
+ |degreeSubResultantEuclidean| |semiDegreeSubResultantEuclidean|
+ |lastSubResultantEuclidean| |semiLastSubResultantEuclidean|
+ |subResultantGcdEuclidean| |semiSubResultantGcdEuclidean2|
+ |semiSubResultantGcdEuclidean1| |discriminantEuclidean|
+ |semiDiscriminantEuclidean| |chainSubResultants| |schema| |resultantReduit|
+ |resultantReduitEuclidean| |semiResultantReduitEuclidean| |divide| |Lazard|
+ |Lazard2| |nextsousResultant2| |resultantnaif| |resultantEuclideannaif|
+ |semiResultantEuclideannaif| |pdct| |powers| |partition| |complete| |pole?|
+ |monomial| |leadingMonomial| |zRange| |yRange| |xRange| |listBranches|
+ |triangular?| |rewriteIdealWithRemainder| |rewriteIdealWithHeadRemainder|
+ |remainder| |headRemainder| |roughUnitIdeal?| |roughEqualIdeals?|
+ |roughSubIdeal?| |roughBase?| |trivialIdeal?| |sort| |collectUpper| |collect|
+ |collectUnder| |mainVariable?| |mainVariables| |removeSquaresIfCan|
+ |unprotectedRemoveRedundantFactors| |removeRedundantFactors|
+ |certainlySubVariety?| |possiblyNewVariety?| |probablyZeroDim?|
+ |selectPolynomials| |selectOrPolynomials| |selectAndPolynomials|
+ |quasiMonicPolynomials| |univariate?| |univariatePolynomials| |linear?|
+ |linearPolynomials| |bivariate?| |bivariatePolynomials|
+ |removeRoughlyRedundantFactorsInPols| |removeRoughlyRedundantFactorsInPol|
+ |interReduce| |roughBasicSet| |crushedSet|
+ |rewriteSetByReducingWithParticularGenerators|
+ |rewriteIdealWithQuasiMonicGenerators| |squareFreeFactors|
+ |univariatePolynomialsGcds| |removeRoughlyRedundantFactorsInContents|
+ |removeRedundantFactorsInContents| |removeRedundantFactorsInPols|
+ |irreducibleFactors| |lazyIrreducibleFactors|
+ |removeIrreducibleRedundantFactors| |normalForm| |changeBase|
+ |companionBlocks| |xCoord| |yCoord| |zCoord| |rCoord| |thetaCoord| |phiCoord|
+ |color| |hue| |shade| |nthRootIfCan| |expIfCan| |logIfCan| |sinIfCan|
+ |cosIfCan| |tanIfCan| |cotIfCan| |secIfCan| |cscIfCan| |asinIfCan| |acosIfCan|
+ |atanIfCan| |acotIfCan| |asecIfCan| |acscIfCan| |sinhIfCan| |coshIfCan|
+ |tanhIfCan| |cothIfCan| |sechIfCan| |cschIfCan| |asinhIfCan| |acoshIfCan|
+ |atanhIfCan| |acothIfCan| |asechIfCan| |acschIfCan| |pushdown| |pushup|
+ |reducedDiscriminant| |idealSimplify| |definingInequation| |definingEquations|
+ |setStatus| |quasiAlgebraicSet| |radicalSimplify| |random| |denominator|
+ |numerator| |denom| |numer| |quadraticForm| |back| |front| |rotate!|
+ |dequeue!| |enqueue!| |quatern| |imagK| |imagJ| |imagI| |conjugate| |queue|
+ |nthRoot| |fractRadix| |wholeRadix| |cycleRagits| |prefixRagits| |fractRagits|
+ |wholeRagits| |radix| |randnum| |reseed| |seed| |rational| |rational?|
+ |rationalIfCan| |setvalue!| |setchildren!| |node?| |child?| |distance|
+ |leaves| |nodes| |rename| |rename!| |mainValue| |mainDefiningPolynomial|
+ |mainForm| |sqrt| |rischDE| |rischDEsys| |monomRDE| |baseRDE| |polyRDE|
+ |monomRDEsys| |baseRDEsys| |weighted| |rdHack1| |midpoint| |midpoints|
+ |realZeros| |mainCharacterization| |algebraicOf| |ReduceOrder| = |setref|
+ |deref| |ref| |radicalEigenvectors| |radicalEigenvector| |radicalEigenvalues|
+ |eigenMatrix| |normalise| |gramschmidt| |orthonormalBasis|
+ |antisymmetricTensors| |createGenericMatrix| |symmetricTensors|
+ |tensorProduct| |permutationRepresentation| |completeEchelonBasis|
+ |createRandomElement| |cyclicSubmodule| |standardBasisOfCyclicSubmodule|
+ |areEquivalent?| |isAbsolutelyIrreducible?| |meatAxe| |scanOneDimSubspaces|
+ |double| |expt| |lift| |showArrayValues| |showScalarValues| |solveRetract|
+ |variables| |mainVariable| |univariate| |multivariate| |uniform01| |normal01|
+ |exponential1| |chiSquare1| |normal| |exponential| |chiSquare| F |t|
+ |factorFraction| |uniform| |binomial| |poisson| |geometric| |ridHack1|
+ |nullSpace| |nullity| |rank| |rowEchelon| |column| |row| |qelt| |ncols|
+ |nrows| |maxColIndex| |minColIndex| |maxRowIndex| |minRowIndex|
+ |antisymmetric?| |symmetric?| |diagonal?| |square?| |matrix|
+ |rectangularMatrix| |characteristic| |round| |fractionPart| |wholePart|
+ |floor| |ceiling| |norm| |mightHaveRoots| |refine| |middle| |size| |right|
+ |left| |roman| |recoverAfterFail| |showTheRoutinesTable| |deleteRoutine!|
+ |getExplanations| |getMeasure| |changeMeasure| |changeThreshhold|
+ |selectMultiDimensionalRoutines| |selectNonFiniteRoutines|
+ |selectSumOfSquaresRoutines| |selectFiniteRoutines| |selectODEIVPRoutines|
+ |selectPDERoutines| |selectOptimizationRoutines| |selectIntegrationRoutines|
+ |routines| |mainSquareFreePart| |mainPrimitivePart| |mainContent|
+ |primitivePart!| |gcd| |nextsubResultant2| |LazardQuotient2| |LazardQuotient|
+ |subResultantChain| |halfExtendedSubResultantGcd2|
+ |halfExtendedSubResultantGcd1| |extendedSubResultantGcd| |exactQuotient!|
+ |exactQuotient| |primPartElseUnitCanonical!| |primPartElseUnitCanonical|
+ |retract| |retractIfCan| |lazyResidueClass| |monicModulo| |lazyPseudoDivide|
+ |lazyPremWithDefault| |lazyPquo| |lazyPrem| |pquo| |prem| |supRittWu?|
+ |RittWuCompare| |mainMonomials| |mainCoefficients| |leastMonomial|
+ |mainMonomial| |quasiMonic?| |monic?| |leadingCoefficient| |deepestInitial|
+ |iteratedInitials| |deepestTail| |head| |mdeg| |mvar| |relativeApprox|
+ |rootOf| |allRootsOf| |definingPolynomial| |positive?| |negative?| |zero?|
+ |augment| |lastSubResultant| |lastSubResultantElseSplit| |invertibleSet|
+ |invertible?| |invertibleElseSplit?| |purelyAlgebraicLeadingMonomial?|
+ |algebraicCoefficients?| |purelyTranscendental?| |purelyAlgebraic?|
+ |prepareSubResAlgo| |internalLastSubResultant| |integralLastSubResultant|
+ |toseLastSubResultant| |toseInvertible?| |toseInvertibleSet|
+ |toseSquareFreePart| |quotedOperators| |pattern| |suchThat| |rule| |rules|
+ |ruleset| |rur| |create| |clearCache| |cache| |enterInCache|
+ |currentCategoryFrame| |currentScope| |pushNewContour| |findBinding|
+ |contours| |structuralConstants| |coordinates| |equation| |incr| |high| |low|
+ |hi| |lo| BY |union| |subset?| |symmetricDifference| |difference| |intersect|
+ |set| |brace| |part?| |latex| |hash| |delta| |member?| |enumerate| |setOfMinN|
+ |elements| |replaceKthElement| |incrementKthElement| |cdr| |car| |expr|
+ |float| |integer| |symbol| |destruct| |float?| |integer?| |symbol?| |string?|
+ |list?| |pair?| |atom?| |null?| |eq| |fortran| |startTable!| |stopTable!|
+ |supDimElseRittWu?| |algebraicSort| |moreAlgebraic?| |subTriSet?| |subPolSet?|
+ |internalSubPolSet?| |internalInfRittWu?| |internalSubQuasiComponent?|
+ |subQuasiComponent?| |removeSuperfluousQuasiComponents| |subCase?|
+ |removeSuperfluousCases| |prepareDecompose| |branchIfCan| |startTableGcd!|
+ |stopTableGcd!| |startTableInvSet!| |stopTableInvSet!|
+ |stosePrepareSubResAlgo| |stoseInternalLastSubResultant|
+ |stoseIntegralLastSubResultant| |stoseLastSubResultant|
+ |stoseInvertible?sqfreg| |stoseInvertibleSetsqfreg| |stoseInvertible?reg|
+ |stoseInvertibleSetreg| |stoseInvertible?| |stoseInvertibleSet|
+ |stoseSquareFreePart| |coleman| |inverseColeman| |listYoungTableaus|
+ |makeYoungTableau| |nextColeman| |nextLatticePermutation| |nextPartition|
+ |numberOfImproperPartitions| |subSet| |unrankImproperPartitions0|
+ |unrankImproperPartitions1| ^ |subresultantSequence| |SturmHabichtSequence|
+ |SturmHabichtCoefficients| |SturmHabicht| |countRealRoots|
+ |SturmHabichtMultiple| |countRealRootsMultiple| |source| |target| |Or| |And|
+ |Not| |xor| |not| |min| |max| ~ |/\\| |\\/| |depth| |top| |pop!| |push!|
+ |minordet| |determinant| |diagonalProduct| |trace| |diagonal| |diagonalMatrix|
+ |scalarMatrix| |hermite| |completeHermite| |smith| |completeSmith|
+ |diophantineSystem| |csubst| |particularSolution| |mapSolve| |linear|
+ |quadratic| |cubic| |quartic| |aLinear| |aQuadratic| |aCubic| |aQuartic|
+ |radicalSolve| |radicalRoots| |contractSolve| |decomposeFunc| |unvectorise|
+ |bubbleSort!| |insertionSort!| |check| |objects| |lprop| |llprop| |lllp|
+ |lllip| |lp| |mesh?| |mesh| |polygon?| |polygon| |closedCurve?| |closedCurve|
+ |curve?| |curve| |point?| |enterPointData| |composites| |components|
+ |numberOfComposites| |numberOfComponents| |create3Space| |parse|
+ |outputAsFortran| |outputAsScript| |outputAsTex| |abs| |Beta| |digamma|
+ |polygamma| |Gamma| |besselJ| |besselY| |besselI| |besselK| |airyAi| |airyBi|
+ |subNode?| |infLex?| |setEmpty!| |setStatus!| |setCondition!| |setValue!|
+ |copy| |status| |condition| |value| |empty?| |splitNodeOf!| |remove!| |remove|
+ |subNodeOf?| |nodeOf?| |result| |conditions| |updateStatus!|
+ |extractSplittingLeaf| |squareMatrix| |transpose| |rightTrim| |leftTrim|
+ |trim| |split| |position| |replace| |match?| |match| |substring?| |suffix?|
+ |prefix?| |upperCase!| |upperCase| |lowerCase!| |lowerCase| |KrullNumber|
+ |numberOfVariables| |algebraicDecompose| |transcendentalDecompose|
+ |internalDecompose| |decompose| |upDateBranches| |printInfo| |preprocess|
+ |internalZeroSetSplit| |internalAugment| |stack| |possiblyInfinite?|
+ |explicitlyFinite?| |nextItem| |init| |infiniteProduct| |evenInfiniteProduct|
+ |oddInfiniteProduct| |generalInfiniteProduct| |filterUntil| |filterWhile|
+ |generate| |showAll?| |showAllElements| |output| |cons| |delay| |findCycle|
+ |repeating?| |repeating| |exquo| |recip| |integers| |oddintegers| |int|
+ |mapmult| |deriv| |gderiv| |compose| |addiag| |lazyIntegrate| |nlde| |powern|
+ |mapdiv| |lazyGintegrate| |power| |sincos| |sinhcosh| |asin| |acos| |atan|
+ |acot| |asec| |acsc| |sinh| |cosh| |tanh| |coth| |sech| |csch| |asinh| |acosh|
+ |atanh| |acoth| |asech| |acsch| |subresultantVector| |primitivePart|
+ |pointData| |parent| |level| |extractProperty| |extractClosed| |extractIndex|
+ |extractPoint| |traverse| |defineProperty| |closeComponent| |modifyPoint|
+ |addPointLast| |addPoint2| |addPoint| |merge| |deepCopy| |shallowCopy|
+ |numberOfChildren| |children| |child| |birth| |internal?| |root?| |leaf?|
+ |rhs| |lhs| |construct| |sum| |outputForm| NOT AND EQ OR GE LE GT LT |sample|
+ |list| |string| |argscript| |superscript| |subscript| |script| |scripts|
+ |scripted?| |name| |resetNew| |symFunc| |symbolTableOf| |argumentListOf|
+ |returnTypeOf| |printHeader| |returnType!| |argumentList!| |endSubProgram|
+ |currentSubProgram| |newSubProgram| |clearTheSymbolTable| |showTheSymbolTable|
+ |symbolTable| |printTypes| |newTypeLists| |typeLists| |externalList|
+ |typeList| |parametersOf| |fortranTypeOf| |declare!| |empty| |case|
+ |compound?| |getOperands| |getOperator| |nil?| |buildSyntax| |autoCoerce|
+ |solve| |triangularSystems| |rootDirectory| |hostPlatform|
+ |nativeModuleExtension| |loadNativeModule| |bumprow| |bumptab| |bumptab1|
+ |untab| |bat1| |bat| |tab1| |tab| |lex| |slex| |inverse| |maxrow| |mr|
+ |tableau| |listOfLists| |tanSum| |tanAn| |tanNa| |table| |initTable!|
+ |printInfo!| |startStats!| |printStats!| |clearTable!| |usingTable?|
+ |printingInfo?| |makingStats?| |extractIfCan| |insert!| |interpretString|
+ |stripCommentsAndBlanks| |setPrologue!| |setTex!| |setEpilogue!| |prologue|
+ |new| |tex| |epilogue| |display| |endOfFile?| |readIfCan!| |readLineIfCan!|
+ |readLine!| |writeLine!| |sign| |nonQsign| |direction| |createThreeSpace| |pi|
+ |cyclicParents| |cyclicEqual?| |cyclicEntries| |cyclicCopy| |tree| |cyclic?|
+ |cos| |cot| |csc| |sec| |sin| |tan| |complexNormalize| |complexElementary|
+ |trigs| |real| |imag| |real?| |complexForm| |UpTriBddDenomInv|
+ |LowTriBddDenomInv| |simplify| |htrigs| |simplifyExp| |simplifyLog|
+ |expandPower| |expandLog| |cos2sec| |cosh2sech| |cot2trig| |coth2trigh|
+ |csc2sin| |csch2sinh| |sec2cos| |sech2cosh| |sin2csc| |sinh2csch| |tan2trig|
+ |tanh2trigh| |tan2cot| |tanh2coth| |cot2tan| |coth2tanh| |removeCosSq|
+ |removeSinSq| |removeCoshSq| |removeSinhSq| |expandTrigProducts| |fintegrate|
+ |coefficient| |coHeight| |extendIfCan| |algebraicVariables|
+ |zeroSetSplitIntoTriangularSystems| |zeroSetSplit| |reduceByQuasiMonic|
+ |collectQuasiMonic| |removeZero| |initiallyReduce| |headReduce|
+ |stronglyReduce| |rewriteSetWithReduction| |autoReduced?| |initiallyReduced?|
+ |headReduced?| |stronglyReduced?| |reduced?| |normalized?| |quasiComponent|
+ |initials| |basicSet| |infRittWu?| |getCurve| |listLoops| |closed?| |open?|
+ |setClosed| |tube| |point| |unitVector| |cosSinInfo| |loopPoints| |select|
+ |generalTwoFactor| |generalSqFr| |twoFactor| |setOrder| |getOrder| |less?|
+ |userOrdered?| |largest| |more?| |setVariableOrder| |getVariableOrder|
+ |resetVariableOrder| |prime?| |rationalFunction| |taylorIfCan| |taylor|
+ |removeZeroes| |taylorRep| |factor| |factorSquareFree| |henselFact| |hasHi|
+ |segment| SEGMENT |fmecg| |commonDenominator| |clearDenominator|
+ |splitDenominator| |monicRightFactorIfCan| |rightFactorIfCan|
+ |leftFactorIfCan| |monicDecomposeIfCan| |monicCompleteDecompose| |divideIfCan|
+ |noKaratsuba| |karatsubaOnce| |karatsuba| |separate| |pseudoDivide|
+ |pseudoQuotient| |composite| |subResultantGcd| |resultant| |discriminant|
+ |pseudoRemainder| |shiftLeft| |shiftRight| |karatsubaDivide| |monicDivide|
+ |divideExponents| |unmakeSUP| |makeSUP| |vectorise| |eval| |extend|
+ |approximate| |truncate| |order| |center| |terms| |squareFreePart|
+ |BumInSepFFE| |multiplyExponents| |laurentIfCan| |laurent| |laurentRep|
+ |rationalPower| |puiseux| |dominantTerm| |limitPlus| |split!| |setlast!|
+ |setrest!| |setelt| |setfirst!| |cycleSplit!| |concat!| |cycleTail|
+ |cycleLength| |cycleEntry| |third| |second| |tail| |last| |rest| |elt| |first|
+ |concat| |invmultisect| |multisect| |revert| |generalLambert| |evenlambert|
+ |oddlambert| |lambert| |lagrange| |differentiate| |univariatePolynomial|
+ |integrate| ** |polynomial| |multiplyCoefficients| |quoByVar| |coefficients|
+ |series| |stFunc1| |stFunc2| |stFuncN| |fixedPointExquo| |ode1| |ode2| |ode|
+ |mpsode| UP2UTS UTS2UP LODO2FUN RF2UTS |variable| |magnitude| |length| |cross|
+ |outerProduct| |dot| - |zero| + |vector| |scan| |reduce| |graphCurves|
+ |drawCurves| |update| |show| |scale| |connect| |region| |points| |units|
+ |getGraph| |putGraph| |graphs| |graphStates| |graphState| |makeViewport2D|
+ |viewport2D| |getPickedPoints| |key| |close| |write| |colorDef| |reset|
+ |intensity| |lighting| |clipSurface| |showClipRegion| |showRegion|
+ |hitherPlane| |eyeDistance| |perspective| |translate| |zoom| |rotate|
+ |drawStyle| |outlineRender| |diagonals| |axes| |controlPanel| |viewpoint|
+ |dimensions| |title| |resize| |move| |options| |modifyPointData| |subspace|
+ |makeViewport3D| |viewport3D| |viewDeltaYDefault| |viewDeltaXDefault|
+ |viewZoomDefault| |viewPhiDefault| |viewThetaDefault| |pointColorDefault|
+ |lineColorDefault| |axesColorDefault| |unitsColorDefault| |pointSizeDefault|
+ |viewPosDefault| |viewSizeDefault| |viewDefaults| |viewWriteDefault|
+ |viewWriteAvailable| |var1StepsDefault| |var2StepsDefault| |tubePointsDefault|
+ |tubeRadiusDefault| |void| |dimension| |crest| |cfirst| |sts2stst| |clikeUniv|
+ |weierstrass| |qqq| |integralBasis| |localIntegralBasis| |changeWeightLevel|
+ |characteristicSerie| |characteristicSet| |medialSet| |Hausdorff| |Frobenius|
+ |transcendenceDegree| |extensionDegree| |inGroundField?| |transcendent?|
+ |algebraic?| |varList| |sh| |mirror| |monomial?| |monom| |rquo| |lquo|
+ |mindegTerm| |log| |exp| |product| |LiePolyIfCan| |trunc| |degree| /
+ |quasiRegular| |quasiRegular?| |constant| |constant?| |coef| |mindeg| |maxdeg|
+ |#| |coerce| |map| |reductum| * |RemainderList| |unexpand| |expand| Y
+ |triangSolve| |univariateSolve| |realSolve| |positiveSolve| |squareFree|
+ |convert| |linearlyDependentOverZ?| |linearDependenceOverZ|
+ |solveLinearlyOverQ| |nil| |infinite| |arbitraryExponent| |approximate|
|complex| |shallowMutable| |canonical| |noetherian| |central|
- |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed|
- |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation|
- |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation|
- |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file
+ |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors|
+ |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown|
+ |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate|
+ |shallowlyMutable| |commutative|) \ No newline at end of file
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index 073fd8ba..83180246 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,4946 +1,4958 @@
-(3150691 . 3428466504)
-((-3608 (((-110) (-1 (-110) |#2| |#2|) $) 63) (((-110) $) NIL)) (-3863 (($ (-1 (-110) |#2| |#2|) $) 18) (($ $) NIL)) (-2381 ((|#2| $ (-528) |#2|) NIL) ((|#2| $ (-1144 (-528)) |#2|) 34)) (-2472 (($ $) 59)) (-1422 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-3140 (((-528) (-1 (-110) |#2|) $) 22) (((-528) |#2| $) NIL) (((-528) |#2| $ (-528)) 73)) (-3342 (((-595 |#2|) $) 13)) (-1356 (($ (-1 (-110) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2800 (($ (-1 |#2| |#2|) $) 29)) (-3106 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-3939 (($ |#2| $ (-528)) NIL) (($ $ $ (-528)) 50)) (-1734 (((-3 |#2| "failed") (-1 (-110) |#2|) $) 24)) (-1818 (((-110) (-1 (-110) |#2|) $) 21)) (-3043 ((|#2| $ (-528) |#2|) NIL) ((|#2| $ (-528)) NIL) (($ $ (-1144 (-528))) 49)) (-1745 (($ $ (-528)) 56) (($ $ (-1144 (-528))) 55)) (-2507 (((-717) (-1 (-110) |#2|) $) 26) (((-717) |#2| $) NIL)) (-3761 (($ $ $ (-528)) 52)) (-2406 (($ $) 51)) (-2233 (($ (-595 |#2|)) 53)) (-3400 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-595 $)) 62)) (-2222 (((-802) $) 69)) (-3451 (((-110) (-1 (-110) |#2|) $) 20)) (-2186 (((-110) $ $) 72)) (-2208 (((-110) $ $) 75)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -2186 ((-110) |#1| |#1|)) (-15 -2222 ((-802) |#1|)) (-15 -2208 ((-110) |#1| |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -3863 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -2472 (|#1| |#1|)) (-15 -3761 (|#1| |#1| |#1| (-528))) (-15 -3608 ((-110) |#1|)) (-15 -1356 (|#1| |#1| |#1|)) (-15 -3140 ((-528) |#2| |#1| (-528))) (-15 -3140 ((-528) |#2| |#1|)) (-15 -3140 ((-528) (-1 (-110) |#2|) |#1|)) (-15 -3608 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -1356 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2381 (|#2| |#1| (-1144 (-528)) |#2|)) (-15 -3939 (|#1| |#1| |#1| (-528))) (-15 -3939 (|#1| |#2| |#1| (-528))) (-15 -1745 (|#1| |#1| (-1144 (-528)))) (-15 -1745 (|#1| |#1| (-528))) (-15 -3043 (|#1| |#1| (-1144 (-528)))) (-15 -3106 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3400 (|#1| (-595 |#1|))) (-15 -3400 (|#1| |#1| |#1|)) (-15 -3400 (|#1| |#2| |#1|)) (-15 -3400 (|#1| |#1| |#2|)) (-15 -2233 (|#1| (-595 |#2|))) (-15 -1734 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -1422 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1422 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1422 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3043 (|#2| |#1| (-528))) (-15 -3043 (|#2| |#1| (-528) |#2|)) (-15 -2381 (|#2| |#1| (-528) |#2|)) (-15 -2507 ((-717) |#2| |#1|)) (-15 -3342 ((-595 |#2|) |#1|)) (-15 -2507 ((-717) (-1 (-110) |#2|) |#1|)) (-15 -1818 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3451 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2800 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3106 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2406 (|#1| |#1|))) (-19 |#2|) (-1131)) (T -18))
+(3142202 . 3428546897)
+((-1798 (((-110) (-1 (-110) |#2| |#2|) $) 63) (((-110) $) NIL)) (-1796 (($ (-1 (-110) |#2| |#2|) $) 18) (($ $) NIL)) (-4066 ((|#2| $ (-516) |#2|) NIL) ((|#2| $ (-1146 (-516)) |#2|) 34)) (-2312 (($ $) 59)) (-4121 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-3698 (((-516) (-1 (-110) |#2|) $) 22) (((-516) |#2| $) NIL) (((-516) |#2| $ (-516)) 73)) (-2018 (((-594 |#2|) $) 13)) (-3792 (($ (-1 (-110) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2022 (($ (-1 |#2| |#2|) $) 29)) (-4234 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2317 (($ |#2| $ (-516)) NIL) (($ $ $ (-516)) 50)) (-1350 (((-3 |#2| "failed") (-1 (-110) |#2|) $) 24)) (-2020 (((-110) (-1 (-110) |#2|) $) 21)) (-4078 ((|#2| $ (-516) |#2|) NIL) ((|#2| $ (-516)) NIL) (($ $ (-1146 (-516))) 49)) (-2318 (($ $ (-516)) 56) (($ $ (-1146 (-516))) 55)) (-2019 (((-719) (-1 (-110) |#2|) $) 26) (((-719) |#2| $) NIL)) (-1797 (($ $ $ (-516)) 52)) (-3678 (($ $) 51)) (-3804 (($ (-594 |#2|)) 53)) (-4080 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-594 $)) 62)) (-4233 (((-805) $) 69)) (-2021 (((-110) (-1 (-110) |#2|) $) 20)) (-3317 (((-110) $ $) 72)) (-2948 (((-110) $ $) 75)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -3317 ((-110) |#1| |#1|)) (-15 -4233 ((-805) |#1|)) (-15 -2948 ((-110) |#1| |#1|)) (-15 -1796 (|#1| |#1|)) (-15 -1796 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -2312 (|#1| |#1|)) (-15 -1797 (|#1| |#1| |#1| (-516))) (-15 -1798 ((-110) |#1|)) (-15 -3792 (|#1| |#1| |#1|)) (-15 -3698 ((-516) |#2| |#1| (-516))) (-15 -3698 ((-516) |#2| |#1|)) (-15 -3698 ((-516) (-1 (-110) |#2|) |#1|)) (-15 -1798 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -3792 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -4066 (|#2| |#1| (-1146 (-516)) |#2|)) (-15 -2317 (|#1| |#1| |#1| (-516))) (-15 -2317 (|#1| |#2| |#1| (-516))) (-15 -2318 (|#1| |#1| (-1146 (-516)))) (-15 -2318 (|#1| |#1| (-516))) (-15 -4078 (|#1| |#1| (-1146 (-516)))) (-15 -4234 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4080 (|#1| (-594 |#1|))) (-15 -4080 (|#1| |#1| |#1|)) (-15 -4080 (|#1| |#2| |#1|)) (-15 -4080 (|#1| |#1| |#2|)) (-15 -3804 (|#1| (-594 |#2|))) (-15 -1350 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -4121 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4121 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4121 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4078 (|#2| |#1| (-516))) (-15 -4078 (|#2| |#1| (-516) |#2|)) (-15 -4066 (|#2| |#1| (-516) |#2|)) (-15 -2019 ((-719) |#2| |#1|)) (-15 -2018 ((-594 |#2|) |#1|)) (-15 -2019 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -2020 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2021 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2022 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4234 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3678 (|#1| |#1|))) (-19 |#2|) (-1134)) (T -18))
NIL
-(-10 -8 (-15 -2186 ((-110) |#1| |#1|)) (-15 -2222 ((-802) |#1|)) (-15 -2208 ((-110) |#1| |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -3863 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -2472 (|#1| |#1|)) (-15 -3761 (|#1| |#1| |#1| (-528))) (-15 -3608 ((-110) |#1|)) (-15 -1356 (|#1| |#1| |#1|)) (-15 -3140 ((-528) |#2| |#1| (-528))) (-15 -3140 ((-528) |#2| |#1|)) (-15 -3140 ((-528) (-1 (-110) |#2|) |#1|)) (-15 -3608 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -1356 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2381 (|#2| |#1| (-1144 (-528)) |#2|)) (-15 -3939 (|#1| |#1| |#1| (-528))) (-15 -3939 (|#1| |#2| |#1| (-528))) (-15 -1745 (|#1| |#1| (-1144 (-528)))) (-15 -1745 (|#1| |#1| (-528))) (-15 -3043 (|#1| |#1| (-1144 (-528)))) (-15 -3106 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3400 (|#1| (-595 |#1|))) (-15 -3400 (|#1| |#1| |#1|)) (-15 -3400 (|#1| |#2| |#1|)) (-15 -3400 (|#1| |#1| |#2|)) (-15 -2233 (|#1| (-595 |#2|))) (-15 -1734 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -1422 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1422 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1422 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3043 (|#2| |#1| (-528))) (-15 -3043 (|#2| |#1| (-528) |#2|)) (-15 -2381 (|#2| |#1| (-528) |#2|)) (-15 -2507 ((-717) |#2| |#1|)) (-15 -3342 ((-595 |#2|) |#1|)) (-15 -2507 ((-717) (-1 (-110) |#2|) |#1|)) (-15 -1818 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3451 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2800 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3106 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2406 (|#1| |#1|)))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-1444 (((-1182) $ (-528) (-528)) 40 (|has| $ (-6 -4265)))) (-3608 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-793)))) (-3863 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4265))) (($ $) 88 (-12 (|has| |#1| (-793)) (|has| $ (-6 -4265))))) (-1289 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-793)))) (-3535 (((-110) $ (-717)) 8)) (-2381 ((|#1| $ (-528) |#1|) 52 (|has| $ (-6 -4265))) ((|#1| $ (-1144 (-528)) |#1|) 58 (|has| $ (-6 -4265)))) (-1573 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4264)))) (-2816 (($) 7 T CONST)) (-2472 (($ $) 90 (|has| $ (-6 -4265)))) (-3009 (($ $) 100)) (-2923 (($ $) 78 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2280 (($ |#1| $) 77 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4264)))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4264)))) (-2812 ((|#1| $ (-528) |#1|) 53 (|has| $ (-6 -4265)))) (-2742 ((|#1| $ (-528)) 51)) (-3140 (((-528) (-1 (-110) |#1|) $) 97) (((-528) |#1| $) 96 (|has| |#1| (-1023))) (((-528) |#1| $ (-528)) 95 (|has| |#1| (-1023)))) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-3462 (($ (-717) |#1|) 69)) (-2029 (((-110) $ (-717)) 9)) (-3530 (((-528) $) 43 (|has| (-528) (-793)))) (-1436 (($ $ $) 87 (|has| |#1| (-793)))) (-1356 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-793)))) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-1709 (((-528) $) 44 (|has| (-528) (-793)))) (-1736 (($ $ $) 86 (|has| |#1| (-793)))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3358 (((-110) $ (-717)) 10)) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-3939 (($ |#1| $ (-528)) 60) (($ $ $ (-528)) 59)) (-2084 (((-595 (-528)) $) 46)) (-3966 (((-110) (-528) $) 47)) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-2890 ((|#1| $) 42 (|has| (-528) (-793)))) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-1332 (($ $ |#1|) 41 (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-2111 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2861 (((-595 |#1|) $) 48)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3043 ((|#1| $ (-528) |#1|) 50) ((|#1| $ (-528)) 49) (($ $ (-1144 (-528))) 63)) (-1745 (($ $ (-528)) 62) (($ $ (-1144 (-528))) 61)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-3761 (($ $ $ (-528)) 91 (|has| $ (-6 -4265)))) (-2406 (($ $) 13)) (-3155 (((-504) $) 79 (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) 70)) (-3400 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-595 $)) 65)) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2244 (((-110) $ $) 84 (|has| |#1| (-793)))) (-2220 (((-110) $ $) 83 (|has| |#1| (-793)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2232 (((-110) $ $) 85 (|has| |#1| (-793)))) (-2208 (((-110) $ $) 82 (|has| |#1| (-793)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-19 |#1|) (-133) (-1131)) (T -19))
+(-10 -8 (-15 -3317 ((-110) |#1| |#1|)) (-15 -4233 ((-805) |#1|)) (-15 -2948 ((-110) |#1| |#1|)) (-15 -1796 (|#1| |#1|)) (-15 -1796 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -2312 (|#1| |#1|)) (-15 -1797 (|#1| |#1| |#1| (-516))) (-15 -1798 ((-110) |#1|)) (-15 -3792 (|#1| |#1| |#1|)) (-15 -3698 ((-516) |#2| |#1| (-516))) (-15 -3698 ((-516) |#2| |#1|)) (-15 -3698 ((-516) (-1 (-110) |#2|) |#1|)) (-15 -1798 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -3792 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -4066 (|#2| |#1| (-1146 (-516)) |#2|)) (-15 -2317 (|#1| |#1| |#1| (-516))) (-15 -2317 (|#1| |#2| |#1| (-516))) (-15 -2318 (|#1| |#1| (-1146 (-516)))) (-15 -2318 (|#1| |#1| (-516))) (-15 -4078 (|#1| |#1| (-1146 (-516)))) (-15 -4234 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4080 (|#1| (-594 |#1|))) (-15 -4080 (|#1| |#1| |#1|)) (-15 -4080 (|#1| |#2| |#1|)) (-15 -4080 (|#1| |#1| |#2|)) (-15 -3804 (|#1| (-594 |#2|))) (-15 -1350 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -4121 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4121 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4121 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4078 (|#2| |#1| (-516))) (-15 -4078 (|#2| |#1| (-516) |#2|)) (-15 -4066 (|#2| |#1| (-516) |#2|)) (-15 -2019 ((-719) |#2| |#1|)) (-15 -2018 ((-594 |#2|) |#1|)) (-15 -2019 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -2020 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2021 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2022 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4234 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3678 (|#1| |#1|)))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-2243 (((-1185) $ (-516) (-516)) 40 (|has| $ (-6 -4270)))) (-1798 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-795)))) (-1796 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4270))) (($ $) 88 (-12 (|has| |#1| (-795)) (|has| $ (-6 -4270))))) (-3173 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-795)))) (-1217 (((-110) $ (-719)) 8)) (-4066 ((|#1| $ (-516) |#1|) 52 (|has| $ (-6 -4270))) ((|#1| $ (-1146 (-516)) |#1|) 58 (|has| $ (-6 -4270)))) (-3992 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4269)))) (-3815 (($) 7 T CONST)) (-2312 (($ $) 90 (|has| $ (-6 -4270)))) (-2313 (($ $) 100)) (-1349 (($ $) 78 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3685 (($ |#1| $) 77 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4269)))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4269)))) (-1587 ((|#1| $ (-516) |#1|) 53 (|has| $ (-6 -4270)))) (-3372 ((|#1| $ (-516)) 51)) (-3698 (((-516) (-1 (-110) |#1|) $) 97) (((-516) |#1| $) 96 (|has| |#1| (-1027))) (((-516) |#1| $ (-516)) 95 (|has| |#1| (-1027)))) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-3896 (($ (-719) |#1|) 69)) (-4001 (((-110) $ (-719)) 9)) (-2245 (((-516) $) 43 (|has| (-516) (-795)))) (-3596 (($ $ $) 87 (|has| |#1| (-795)))) (-3792 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-795)))) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2246 (((-516) $) 44 (|has| (-516) (-795)))) (-3597 (($ $ $) 86 (|has| |#1| (-795)))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3998 (((-110) $ (-719)) 10)) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-2317 (($ |#1| $ (-516)) 60) (($ $ $ (-516)) 59)) (-2248 (((-594 (-516)) $) 46)) (-2249 (((-110) (-516) $) 47)) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-4079 ((|#1| $) 42 (|has| (-516) (-795)))) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-2244 (($ $ |#1|) 41 (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-2247 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2250 (((-594 |#1|) $) 48)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-4078 ((|#1| $ (-516) |#1|) 50) ((|#1| $ (-516)) 49) (($ $ (-1146 (-516))) 63)) (-2318 (($ $ (-516)) 62) (($ $ (-1146 (-516))) 61)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1797 (($ $ $ (-516)) 91 (|has| $ (-6 -4270)))) (-3678 (($ $) 13)) (-4246 (((-505) $) 79 (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) 70)) (-4080 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-594 $)) 65)) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2826 (((-110) $ $) 84 (|has| |#1| (-795)))) (-2827 (((-110) $ $) 83 (|has| |#1| (-795)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2947 (((-110) $ $) 85 (|has| |#1| (-795)))) (-2948 (((-110) $ $) 82 (|has| |#1| (-795)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-19 |#1|) (-133) (-1134)) (T -19))
NIL
-(-13 (-353 |t#1|) (-10 -7 (-6 -4265)))
-(((-33) . T) ((-99) -1463 (|has| |#1| (-1023)) (|has| |#1| (-793))) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-793)) (|has| |#1| (-569 (-802)))) ((-144 |#1|) . T) ((-570 (-504)) |has| |#1| (-570 (-504))) ((-267 #0=(-528) |#1|) . T) ((-269 #0# |#1|) . T) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-353 |#1|) . T) ((-467 |#1|) . T) ((-561 #0# |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-600 |#1|) . T) ((-793) |has| |#1| (-793)) ((-1023) -1463 (|has| |#1| (-1023)) (|has| |#1| (-793))) ((-1131) . T))
-((-3181 (((-3 $ "failed") $ $) 12)) (-2286 (($ $) NIL) (($ $ $) 9)) (* (($ (-860) $) NIL) (($ (-717) $) 16) (($ (-528) $) 21)))
-(((-20 |#1|) (-10 -8 (-15 * (|#1| (-528) |#1|)) (-15 -2286 (|#1| |#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 -3181 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-717) |#1|)) (-15 * (|#1| (-860) |#1|))) (-21)) (T -20))
+(-13 (-353 |t#1|) (-10 -7 (-6 -4270)))
+(((-33) . T) ((-99) -3810 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-795)) (|has| |#1| (-571 (-805)))) ((-144 |#1|) . T) ((-572 (-505)) |has| |#1| (-572 (-505))) ((-268 #1=(-516) |#1|) . T) ((-270 #1# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-353 |#1|) . T) ((-468 |#1|) . T) ((-563 #1# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-795) |has| |#1| (-795)) ((-1027) -3810 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-1134) . T))
+((-1319 (((-3 $ "failed") $ $) 12)) (-4116 (($ $) NIL) (($ $ $) 9)) (* (($ (-860) $) NIL) (($ (-719) $) 16) (($ (-516) $) 21)))
+(((-20 |#1|) (-10 -8 (-15 * (|#1| (-516) |#1|)) (-15 -4116 (|#1| |#1| |#1|)) (-15 -4116 (|#1| |#1|)) (-15 -1319 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-860) |#1|))) (-21)) (T -20))
NIL
-(-10 -8 (-15 * (|#1| (-528) |#1|)) (-15 -2286 (|#1| |#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 -3181 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-717) |#1|)) (-15 * (|#1| (-860) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2969 (($) 18 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20)))
+(-10 -8 (-15 * (|#1| (-516) |#1|)) (-15 -4116 (|#1| |#1| |#1|)) (-15 -4116 (|#1| |#1|)) (-15 -1319 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-860) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-2920 (($) 18 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20)))
(((-21) (-133)) (T -21))
-((-2286 (*1 *1 *1) (-4 *1 (-21))) (-2286 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-528)))))
-(-13 (-128) (-10 -8 (-15 -2286 ($ $)) (-15 -2286 ($ $ $)) (-15 * ($ (-528) $))))
-(((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-569 (-802)) . T) ((-1023) . T))
-((-1359 (((-110) $) 10)) (-2816 (($) 15)) (* (($ (-860) $) 14) (($ (-717) $) 18)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-717) |#1|)) (-15 -1359 ((-110) |#1|)) (-15 -2816 (|#1|)) (-15 * (|#1| (-860) |#1|))) (-23)) (T -22))
-NIL
-(-10 -8 (-15 * (|#1| (-717) |#1|)) (-15 -1359 ((-110) |#1|)) (-15 -2816 (|#1|)) (-15 * (|#1| (-860) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2816 (($) 17 T CONST)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2969 (($) 18 T CONST)) (-2186 (((-110) $ $) 6)) (-2275 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-717) $) 15)))
+((-4116 (*1 *1 *1) (-4 *1 (-21))) (-4116 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-516)))))
+(-13 (-128) (-10 -8 (-15 -4116 ($ $)) (-15 -4116 ($ $ $)) (-15 * ($ (-516) $))))
+(((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-805)) . T) ((-1027) . T))
+((-3462 (((-110) $) 10)) (-3815 (($) 15)) (* (($ (-860) $) 14) (($ (-719) $) 18)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-719) |#1|)) (-15 -3462 ((-110) |#1|)) (-15 -3815 (|#1|)) (-15 * (|#1| (-860) |#1|))) (-23)) (T -22))
+NIL
+(-10 -8 (-15 * (|#1| (-719) |#1|)) (-15 -3462 ((-110) |#1|)) (-15 -3815 (|#1|)) (-15 * (|#1| (-860) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-3815 (($) 17 T CONST)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-2920 (($) 18 T CONST)) (-3317 (((-110) $ $) 6)) (-4118 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-719) $) 15)))
(((-23) (-133)) (T -23))
-((-2969 (*1 *1) (-4 *1 (-23))) (-2816 (*1 *1) (-4 *1 (-23))) (-1359 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-110)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-717)))))
-(-13 (-25) (-10 -8 (-15 (-2969) ($) -2636) (-15 -2816 ($) -2636) (-15 -1359 ((-110) $)) (-15 * ($ (-717) $))))
-(((-25) . T) ((-99) . T) ((-569 (-802)) . T) ((-1023) . T))
+((-2920 (*1 *1) (-4 *1 (-23))) (-3815 (*1 *1) (-4 *1 (-23))) (-3462 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-110)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-719)))))
+(-13 (-25) (-10 -8 (-15 (-2920) ($) -4227) (-15 -3815 ($) -4227) (-15 -3462 ((-110) $)) (-15 * ($ (-719) $))))
+(((-25) . T) ((-99) . T) ((-571 (-805)) . T) ((-1027) . T))
((* (($ (-860) $) 10)))
(((-24 |#1|) (-10 -8 (-15 * (|#1| (-860) |#1|))) (-25)) (T -24))
NIL
(-10 -8 (-15 * (|#1| (-860) |#1|)))
-((-2207 (((-110) $ $) 7)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2186 (((-110) $ $) 6)) (-2275 (($ $ $) 14)) (* (($ (-860) $) 13)))
+((-2828 (((-110) $ $) 7)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-3317 (((-110) $ $) 6)) (-4118 (($ $ $) 14)) (* (($ (-860) $) 13)))
(((-25) (-133)) (T -25))
-((-2275 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-860)))))
-(-13 (-1023) (-10 -8 (-15 -2275 ($ $ $)) (-15 * ($ (-860) $))))
-(((-99) . T) ((-569 (-802)) . T) ((-1023) . T))
-((-3732 (((-595 $) (-891 $)) 29) (((-595 $) (-1091 $)) 16) (((-595 $) (-1091 $) (-1095)) 20)) (-3895 (($ (-891 $)) 27) (($ (-1091 $)) 11) (($ (-1091 $) (-1095)) 54)) (-3953 (((-595 $) (-891 $)) 30) (((-595 $) (-1091 $)) 18) (((-595 $) (-1091 $) (-1095)) 19)) (-1230 (($ (-891 $)) 28) (($ (-1091 $)) 13) (($ (-1091 $) (-1095)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -3732 ((-595 |#1|) (-1091 |#1|) (-1095))) (-15 -3732 ((-595 |#1|) (-1091 |#1|))) (-15 -3732 ((-595 |#1|) (-891 |#1|))) (-15 -3895 (|#1| (-1091 |#1|) (-1095))) (-15 -3895 (|#1| (-1091 |#1|))) (-15 -3895 (|#1| (-891 |#1|))) (-15 -3953 ((-595 |#1|) (-1091 |#1|) (-1095))) (-15 -3953 ((-595 |#1|) (-1091 |#1|))) (-15 -3953 ((-595 |#1|) (-891 |#1|))) (-15 -1230 (|#1| (-1091 |#1|) (-1095))) (-15 -1230 (|#1| (-1091 |#1|))) (-15 -1230 (|#1| (-891 |#1|)))) (-27)) (T -26))
-NIL
-(-10 -8 (-15 -3732 ((-595 |#1|) (-1091 |#1|) (-1095))) (-15 -3732 ((-595 |#1|) (-1091 |#1|))) (-15 -3732 ((-595 |#1|) (-891 |#1|))) (-15 -3895 (|#1| (-1091 |#1|) (-1095))) (-15 -3895 (|#1| (-1091 |#1|))) (-15 -3895 (|#1| (-891 |#1|))) (-15 -3953 ((-595 |#1|) (-1091 |#1|) (-1095))) (-15 -3953 ((-595 |#1|) (-1091 |#1|))) (-15 -3953 ((-595 |#1|) (-891 |#1|))) (-15 -1230 (|#1| (-1091 |#1|) (-1095))) (-15 -1230 (|#1| (-1091 |#1|))) (-15 -1230 (|#1| (-891 |#1|))))
-((-2207 (((-110) $ $) 7)) (-3732 (((-595 $) (-891 $)) 80) (((-595 $) (-1091 $)) 79) (((-595 $) (-1091 $) (-1095)) 78)) (-3895 (($ (-891 $)) 83) (($ (-1091 $)) 82) (($ (-1091 $) (-1095)) 81)) (-1359 (((-110) $) 16)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 41)) (-1738 (($ $) 40)) (-1811 (((-110) $) 38)) (-3181 (((-3 $ "failed") $ $) 19)) (-1232 (($ $) 73)) (-2705 (((-398 $) $) 72)) (-2450 (($ $) 92)) (-2213 (((-110) $ $) 59)) (-2816 (($) 17 T CONST)) (-3953 (((-595 $) (-891 $)) 86) (((-595 $) (-1091 $)) 85) (((-595 $) (-1091 $) (-1095)) 84)) (-1230 (($ (-891 $)) 89) (($ (-1091 $)) 88) (($ (-1091 $) (-1095)) 87)) (-3519 (($ $ $) 55)) (-1312 (((-3 $ "failed") $) 34)) (-3498 (($ $ $) 56)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 51)) (-2124 (((-110) $) 71)) (-1297 (((-110) $) 31)) (-2796 (($ $ (-528)) 91)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) 52)) (-2057 (($ $ $) 46) (($ (-595 $)) 45)) (-3034 (((-1078) $) 9)) (-2652 (($ $) 70)) (-2495 (((-1042) $) 10)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 44)) (-2088 (($ $ $) 48) (($ (-595 $)) 47)) (-2437 (((-398 $) $) 74)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3477 (((-3 $ "failed") $ $) 42)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 50)) (-3973 (((-717) $) 58)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 57)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ $) 43) (($ (-387 (-528))) 65)) (-3742 (((-717)) 29)) (-4016 (((-110) $ $) 39)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33) (($ $ (-528)) 69)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2296 (($ $ $) 64)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32) (($ $ (-528)) 68) (($ $ (-387 (-528))) 90)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ (-387 (-528))) 67) (($ (-387 (-528)) $) 66)))
+((-4118 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-860)))))
+(-13 (-1027) (-10 -8 (-15 -4118 ($ $ $)) (-15 * ($ (-860) $))))
+(((-99) . T) ((-571 (-805)) . T) ((-1027) . T))
+((-1617 (((-594 $) (-887 $)) 29) (((-594 $) (-1092 $)) 16) (((-594 $) (-1092 $) (-1098)) 20)) (-1211 (($ (-887 $)) 27) (($ (-1092 $)) 11) (($ (-1092 $) (-1098)) 54)) (-1212 (((-594 $) (-887 $)) 30) (((-594 $) (-1092 $)) 18) (((-594 $) (-1092 $) (-1098)) 19)) (-3457 (($ (-887 $)) 28) (($ (-1092 $)) 13) (($ (-1092 $) (-1098)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -1617 ((-594 |#1|) (-1092 |#1|) (-1098))) (-15 -1617 ((-594 |#1|) (-1092 |#1|))) (-15 -1617 ((-594 |#1|) (-887 |#1|))) (-15 -1211 (|#1| (-1092 |#1|) (-1098))) (-15 -1211 (|#1| (-1092 |#1|))) (-15 -1211 (|#1| (-887 |#1|))) (-15 -1212 ((-594 |#1|) (-1092 |#1|) (-1098))) (-15 -1212 ((-594 |#1|) (-1092 |#1|))) (-15 -1212 ((-594 |#1|) (-887 |#1|))) (-15 -3457 (|#1| (-1092 |#1|) (-1098))) (-15 -3457 (|#1| (-1092 |#1|))) (-15 -3457 (|#1| (-887 |#1|)))) (-27)) (T -26))
+NIL
+(-10 -8 (-15 -1617 ((-594 |#1|) (-1092 |#1|) (-1098))) (-15 -1617 ((-594 |#1|) (-1092 |#1|))) (-15 -1617 ((-594 |#1|) (-887 |#1|))) (-15 -1211 (|#1| (-1092 |#1|) (-1098))) (-15 -1211 (|#1| (-1092 |#1|))) (-15 -1211 (|#1| (-887 |#1|))) (-15 -1212 ((-594 |#1|) (-1092 |#1|) (-1098))) (-15 -1212 ((-594 |#1|) (-1092 |#1|))) (-15 -1212 ((-594 |#1|) (-887 |#1|))) (-15 -3457 (|#1| (-1092 |#1|) (-1098))) (-15 -3457 (|#1| (-1092 |#1|))) (-15 -3457 (|#1| (-887 |#1|))))
+((-2828 (((-110) $ $) 7)) (-1617 (((-594 $) (-887 $)) 80) (((-594 $) (-1092 $)) 79) (((-594 $) (-1092 $) (-1098)) 78)) (-1211 (($ (-887 $)) 83) (($ (-1092 $)) 82) (($ (-1092 $) (-1098)) 81)) (-3462 (((-110) $) 16)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 41)) (-2118 (($ $) 40)) (-2116 (((-110) $) 38)) (-1319 (((-3 $ "failed") $ $) 19)) (-4053 (($ $) 73)) (-4245 (((-386 $) $) 72)) (-3301 (($ $) 92)) (-1655 (((-110) $ $) 59)) (-3815 (($) 17 T CONST)) (-1212 (((-594 $) (-887 $)) 86) (((-594 $) (-1092 $)) 85) (((-594 $) (-1092 $) (-1098)) 84)) (-3457 (($ (-887 $)) 89) (($ (-1092 $)) 88) (($ (-1092 $) (-1098)) 87)) (-2824 (($ $ $) 55)) (-3741 (((-3 $ "failed") $) 34)) (-2823 (($ $ $) 56)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 51)) (-4005 (((-110) $) 71)) (-2436 (((-110) $) 31)) (-3275 (($ $ (-516)) 91)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) 52)) (-1963 (($ $ $) 46) (($ (-594 $)) 45)) (-3513 (((-1081) $) 9)) (-2668 (($ $) 70)) (-3514 (((-1045) $) 10)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 44)) (-3419 (($ $ $) 48) (($ (-594 $)) 47)) (-4011 (((-386 $) $) 74)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 53)) (-3740 (((-3 $ "failed") $ $) 42)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 50)) (-1654 (((-719) $) 58)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 57)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ $) 43) (($ (-388 (-516))) 65)) (-3385 (((-719)) 29)) (-2117 (((-110) $ $) 39)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33) (($ $ (-516)) 69)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4224 (($ $ $) 64)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32) (($ $ (-516)) 68) (($ $ (-388 (-516))) 90)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ (-388 (-516))) 67) (($ (-388 (-516)) $) 66)))
(((-27) (-133)) (T -27))
-((-1230 (*1 *1 *2) (-12 (-5 *2 (-891 *1)) (-4 *1 (-27)))) (-1230 (*1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-27)))) (-1230 (*1 *1 *2 *3) (-12 (-5 *2 (-1091 *1)) (-5 *3 (-1095)) (-4 *1 (-27)))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-891 *1)) (-4 *1 (-27)) (-5 *2 (-595 *1)))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-1091 *1)) (-4 *1 (-27)) (-5 *2 (-595 *1)))) (-3953 (*1 *2 *3 *4) (-12 (-5 *3 (-1091 *1)) (-5 *4 (-1095)) (-4 *1 (-27)) (-5 *2 (-595 *1)))) (-3895 (*1 *1 *2) (-12 (-5 *2 (-891 *1)) (-4 *1 (-27)))) (-3895 (*1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-27)))) (-3895 (*1 *1 *2 *3) (-12 (-5 *2 (-1091 *1)) (-5 *3 (-1095)) (-4 *1 (-27)))) (-3732 (*1 *2 *3) (-12 (-5 *3 (-891 *1)) (-4 *1 (-27)) (-5 *2 (-595 *1)))) (-3732 (*1 *2 *3) (-12 (-5 *3 (-1091 *1)) (-4 *1 (-27)) (-5 *2 (-595 *1)))) (-3732 (*1 *2 *3 *4) (-12 (-5 *3 (-1091 *1)) (-5 *4 (-1095)) (-4 *1 (-27)) (-5 *2 (-595 *1)))))
-(-13 (-343) (-938) (-10 -8 (-15 -1230 ($ (-891 $))) (-15 -1230 ($ (-1091 $))) (-15 -1230 ($ (-1091 $) (-1095))) (-15 -3953 ((-595 $) (-891 $))) (-15 -3953 ((-595 $) (-1091 $))) (-15 -3953 ((-595 $) (-1091 $) (-1095))) (-15 -3895 ($ (-891 $))) (-15 -3895 ($ (-1091 $))) (-15 -3895 ($ (-1091 $) (-1095))) (-15 -3732 ((-595 $) (-891 $))) (-15 -3732 ((-595 $) (-1091 $))) (-15 -3732 ((-595 $) (-1091 $) (-1095)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-387 (-528))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-569 (-802)) . T) ((-162) . T) ((-225) . T) ((-271) . T) ((-288) . T) ((-343) . T) ((-431) . T) ((-520) . T) ((-597 #0#) . T) ((-597 $) . T) ((-664 #0#) . T) ((-664 $) . T) ((-673) . T) ((-859) . T) ((-938) . T) ((-986 #0#) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1135) . T))
-((-3732 (((-595 $) (-891 $)) NIL) (((-595 $) (-1091 $)) NIL) (((-595 $) (-1091 $) (-1095)) 50) (((-595 $) $) 19) (((-595 $) $ (-1095)) 41)) (-3895 (($ (-891 $)) NIL) (($ (-1091 $)) NIL) (($ (-1091 $) (-1095)) 52) (($ $) 17) (($ $ (-1095)) 37)) (-3953 (((-595 $) (-891 $)) NIL) (((-595 $) (-1091 $)) NIL) (((-595 $) (-1091 $) (-1095)) 48) (((-595 $) $) 15) (((-595 $) $ (-1095)) 43)) (-1230 (($ (-891 $)) NIL) (($ (-1091 $)) NIL) (($ (-1091 $) (-1095)) NIL) (($ $) 12) (($ $ (-1095)) 39)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -3732 ((-595 |#1|) |#1| (-1095))) (-15 -3895 (|#1| |#1| (-1095))) (-15 -3732 ((-595 |#1|) |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -3953 ((-595 |#1|) |#1| (-1095))) (-15 -1230 (|#1| |#1| (-1095))) (-15 -3953 ((-595 |#1|) |#1|)) (-15 -1230 (|#1| |#1|)) (-15 -3732 ((-595 |#1|) (-1091 |#1|) (-1095))) (-15 -3732 ((-595 |#1|) (-1091 |#1|))) (-15 -3732 ((-595 |#1|) (-891 |#1|))) (-15 -3895 (|#1| (-1091 |#1|) (-1095))) (-15 -3895 (|#1| (-1091 |#1|))) (-15 -3895 (|#1| (-891 |#1|))) (-15 -3953 ((-595 |#1|) (-1091 |#1|) (-1095))) (-15 -3953 ((-595 |#1|) (-1091 |#1|))) (-15 -3953 ((-595 |#1|) (-891 |#1|))) (-15 -1230 (|#1| (-1091 |#1|) (-1095))) (-15 -1230 (|#1| (-1091 |#1|))) (-15 -1230 (|#1| (-891 |#1|)))) (-29 |#2|) (-13 (-793) (-520))) (T -28))
-NIL
-(-10 -8 (-15 -3732 ((-595 |#1|) |#1| (-1095))) (-15 -3895 (|#1| |#1| (-1095))) (-15 -3732 ((-595 |#1|) |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -3953 ((-595 |#1|) |#1| (-1095))) (-15 -1230 (|#1| |#1| (-1095))) (-15 -3953 ((-595 |#1|) |#1|)) (-15 -1230 (|#1| |#1|)) (-15 -3732 ((-595 |#1|) (-1091 |#1|) (-1095))) (-15 -3732 ((-595 |#1|) (-1091 |#1|))) (-15 -3732 ((-595 |#1|) (-891 |#1|))) (-15 -3895 (|#1| (-1091 |#1|) (-1095))) (-15 -3895 (|#1| (-1091 |#1|))) (-15 -3895 (|#1| (-891 |#1|))) (-15 -3953 ((-595 |#1|) (-1091 |#1|) (-1095))) (-15 -3953 ((-595 |#1|) (-1091 |#1|))) (-15 -3953 ((-595 |#1|) (-891 |#1|))) (-15 -1230 (|#1| (-1091 |#1|) (-1095))) (-15 -1230 (|#1| (-1091 |#1|))) (-15 -1230 (|#1| (-891 |#1|))))
-((-2207 (((-110) $ $) 7)) (-3732 (((-595 $) (-891 $)) 80) (((-595 $) (-1091 $)) 79) (((-595 $) (-1091 $) (-1095)) 78) (((-595 $) $) 126) (((-595 $) $ (-1095)) 124)) (-3895 (($ (-891 $)) 83) (($ (-1091 $)) 82) (($ (-1091 $) (-1095)) 81) (($ $) 127) (($ $ (-1095)) 125)) (-1359 (((-110) $) 16)) (-2565 (((-595 (-1095)) $) 201)) (-2402 (((-387 (-1091 $)) $ (-568 $)) 233 (|has| |#1| (-520)))) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 41)) (-1738 (($ $) 40)) (-1811 (((-110) $) 38)) (-2316 (((-595 (-568 $)) $) 164)) (-3181 (((-3 $ "failed") $ $) 19)) (-2819 (($ $ (-595 (-568 $)) (-595 $)) 154) (($ $ (-595 (-275 $))) 153) (($ $ (-275 $)) 152)) (-1232 (($ $) 73)) (-2705 (((-398 $) $) 72)) (-2450 (($ $) 92)) (-2213 (((-110) $ $) 59)) (-2816 (($) 17 T CONST)) (-3953 (((-595 $) (-891 $)) 86) (((-595 $) (-1091 $)) 85) (((-595 $) (-1091 $) (-1095)) 84) (((-595 $) $) 130) (((-595 $) $ (-1095)) 128)) (-1230 (($ (-891 $)) 89) (($ (-1091 $)) 88) (($ (-1091 $) (-1095)) 87) (($ $) 131) (($ $ (-1095)) 129)) (-3001 (((-3 (-891 |#1|) "failed") $) 251 (|has| |#1| (-981))) (((-3 (-387 (-891 |#1|)) "failed") $) 235 (|has| |#1| (-520))) (((-3 |#1| "failed") $) 197) (((-3 (-528) "failed") $) 195 (|has| |#1| (-972 (-528)))) (((-3 (-1095) "failed") $) 188) (((-3 (-568 $) "failed") $) 139) (((-3 (-387 (-528)) "failed") $) 123 (-1463 (-12 (|has| |#1| (-972 (-528))) (|has| |#1| (-520))) (|has| |#1| (-972 (-387 (-528))))))) (-2409 (((-891 |#1|) $) 252 (|has| |#1| (-981))) (((-387 (-891 |#1|)) $) 236 (|has| |#1| (-520))) ((|#1| $) 198) (((-528) $) 194 (|has| |#1| (-972 (-528)))) (((-1095) $) 189) (((-568 $) $) 140) (((-387 (-528)) $) 122 (-1463 (-12 (|has| |#1| (-972 (-528))) (|has| |#1| (-520))) (|has| |#1| (-972 (-387 (-528))))))) (-3519 (($ $ $) 55)) (-2120 (((-635 |#1|) (-635 $)) 241 (|has| |#1| (-981))) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) 240 (|has| |#1| (-981))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) 121 (-1463 (-3287 (|has| |#1| (-981)) (|has| |#1| (-591 (-528)))) (-3287 (|has| |#1| (-591 (-528))) (|has| |#1| (-981))))) (((-635 (-528)) (-635 $)) 120 (-1463 (-3287 (|has| |#1| (-981)) (|has| |#1| (-591 (-528)))) (-3287 (|has| |#1| (-591 (-528))) (|has| |#1| (-981)))))) (-1312 (((-3 $ "failed") $) 34)) (-3498 (($ $ $) 56)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 51)) (-2124 (((-110) $) 71)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) 193 (|has| |#1| (-825 (-359)))) (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) 192 (|has| |#1| (-825 (-528))))) (-4130 (($ (-595 $)) 158) (($ $) 157)) (-3930 (((-595 (-112)) $) 165)) (-3748 (((-112) (-112)) 166)) (-1297 (((-110) $) 31)) (-2580 (((-110) $) 186 (|has| $ (-972 (-528))))) (-3037 (($ $) 218 (|has| |#1| (-981)))) (-3031 (((-1047 |#1| (-568 $)) $) 217 (|has| |#1| (-981)))) (-2796 (($ $ (-528)) 91)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) 52)) (-1822 (((-1091 $) (-568 $)) 183 (|has| $ (-981)))) (-1436 (($ $ $) 137)) (-1736 (($ $ $) 136)) (-3106 (($ (-1 $ $) (-568 $)) 172)) (-1547 (((-3 (-568 $) "failed") $) 162)) (-2057 (($ $ $) 46) (($ (-595 $)) 45)) (-3034 (((-1078) $) 9)) (-2390 (((-595 (-568 $)) $) 163)) (-1552 (($ (-112) (-595 $)) 171) (($ (-112) $) 170)) (-3024 (((-3 (-595 $) "failed") $) 212 (|has| |#1| (-1035)))) (-1956 (((-3 (-2 (|:| |val| $) (|:| -2564 (-528))) "failed") $) 221 (|has| |#1| (-981)))) (-1281 (((-3 (-595 $) "failed") $) 214 (|has| |#1| (-25)))) (-4177 (((-3 (-2 (|:| -1641 (-528)) (|:| |var| (-568 $))) "failed") $) 215 (|has| |#1| (-25)))) (-3352 (((-3 (-2 (|:| |var| (-568 $)) (|:| -2564 (-528))) "failed") $ (-1095)) 220 (|has| |#1| (-981))) (((-3 (-2 (|:| |var| (-568 $)) (|:| -2564 (-528))) "failed") $ (-112)) 219 (|has| |#1| (-981))) (((-3 (-2 (|:| |var| (-568 $)) (|:| -2564 (-528))) "failed") $) 213 (|has| |#1| (-1035)))) (-2341 (((-110) $ (-1095)) 169) (((-110) $ (-112)) 168)) (-2652 (($ $) 70)) (-4073 (((-717) $) 161)) (-2495 (((-1042) $) 10)) (-2662 (((-110) $) 199)) (-2675 ((|#1| $) 200)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 44)) (-2088 (($ $ $) 48) (($ (-595 $)) 47)) (-3947 (((-110) $ (-1095)) 174) (((-110) $ $) 173)) (-2437 (((-398 $) $) 74)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3477 (((-3 $ "failed") $ $) 42)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 50)) (-3578 (((-110) $) 185 (|has| $ (-972 (-528))))) (-4014 (($ $ (-1095) (-717) (-1 $ $)) 225 (|has| |#1| (-981))) (($ $ (-1095) (-717) (-1 $ (-595 $))) 224 (|has| |#1| (-981))) (($ $ (-595 (-1095)) (-595 (-717)) (-595 (-1 $ (-595 $)))) 223 (|has| |#1| (-981))) (($ $ (-595 (-1095)) (-595 (-717)) (-595 (-1 $ $))) 222 (|has| |#1| (-981))) (($ $ (-595 (-112)) (-595 $) (-1095)) 211 (|has| |#1| (-570 (-504)))) (($ $ (-112) $ (-1095)) 210 (|has| |#1| (-570 (-504)))) (($ $) 209 (|has| |#1| (-570 (-504)))) (($ $ (-595 (-1095))) 208 (|has| |#1| (-570 (-504)))) (($ $ (-1095)) 207 (|has| |#1| (-570 (-504)))) (($ $ (-112) (-1 $ $)) 182) (($ $ (-112) (-1 $ (-595 $))) 181) (($ $ (-595 (-112)) (-595 (-1 $ (-595 $)))) 180) (($ $ (-595 (-112)) (-595 (-1 $ $))) 179) (($ $ (-1095) (-1 $ $)) 178) (($ $ (-1095) (-1 $ (-595 $))) 177) (($ $ (-595 (-1095)) (-595 (-1 $ (-595 $)))) 176) (($ $ (-595 (-1095)) (-595 (-1 $ $))) 175) (($ $ (-595 $) (-595 $)) 146) (($ $ $ $) 145) (($ $ (-275 $)) 144) (($ $ (-595 (-275 $))) 143) (($ $ (-595 (-568 $)) (-595 $)) 142) (($ $ (-568 $) $) 141)) (-3973 (((-717) $) 58)) (-3043 (($ (-112) (-595 $)) 151) (($ (-112) $ $ $ $) 150) (($ (-112) $ $ $) 149) (($ (-112) $ $) 148) (($ (-112) $) 147)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 57)) (-3581 (($ $ $) 160) (($ $) 159)) (-3235 (($ $ (-1095)) 249 (|has| |#1| (-981))) (($ $ (-595 (-1095))) 248 (|has| |#1| (-981))) (($ $ (-1095) (-717)) 247 (|has| |#1| (-981))) (($ $ (-595 (-1095)) (-595 (-717))) 246 (|has| |#1| (-981)))) (-4118 (($ $) 228 (|has| |#1| (-520)))) (-3042 (((-1047 |#1| (-568 $)) $) 227 (|has| |#1| (-520)))) (-4090 (($ $) 184 (|has| $ (-981)))) (-3155 (((-504) $) 255 (|has| |#1| (-570 (-504)))) (($ (-398 $)) 226 (|has| |#1| (-520))) (((-831 (-359)) $) 191 (|has| |#1| (-570 (-831 (-359))))) (((-831 (-528)) $) 190 (|has| |#1| (-570 (-831 (-528)))))) (-4097 (($ $ $) 254 (|has| |#1| (-452)))) (-2405 (($ $ $) 253 (|has| |#1| (-452)))) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ $) 43) (($ (-387 (-528))) 65) (($ (-891 |#1|)) 250 (|has| |#1| (-981))) (($ (-387 (-891 |#1|))) 234 (|has| |#1| (-520))) (($ (-387 (-891 (-387 |#1|)))) 232 (|has| |#1| (-520))) (($ (-891 (-387 |#1|))) 231 (|has| |#1| (-520))) (($ (-387 |#1|)) 230 (|has| |#1| (-520))) (($ (-1047 |#1| (-568 $))) 216 (|has| |#1| (-981))) (($ |#1|) 196) (($ (-1095)) 187) (($ (-568 $)) 138)) (-3749 (((-3 $ "failed") $) 239 (|has| |#1| (-138)))) (-3742 (((-717)) 29)) (-1491 (($ (-595 $)) 156) (($ $) 155)) (-2042 (((-110) (-112)) 167)) (-4016 (((-110) $ $) 39)) (-3016 (($ (-1095) (-595 $)) 206) (($ (-1095) $ $ $ $) 205) (($ (-1095) $ $ $) 204) (($ (-1095) $ $) 203) (($ (-1095) $) 202)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33) (($ $ (-528)) 69)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-3245 (($ $ (-1095)) 245 (|has| |#1| (-981))) (($ $ (-595 (-1095))) 244 (|has| |#1| (-981))) (($ $ (-1095) (-717)) 243 (|has| |#1| (-981))) (($ $ (-595 (-1095)) (-595 (-717))) 242 (|has| |#1| (-981)))) (-2244 (((-110) $ $) 134)) (-2220 (((-110) $ $) 133)) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 135)) (-2208 (((-110) $ $) 132)) (-2296 (($ $ $) 64) (($ (-1047 |#1| (-568 $)) (-1047 |#1| (-568 $))) 229 (|has| |#1| (-520)))) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32) (($ $ (-528)) 68) (($ $ (-387 (-528))) 90)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ (-387 (-528))) 67) (($ (-387 (-528)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-162))) (($ |#1| $) 237 (|has| |#1| (-162)))))
-(((-29 |#1|) (-133) (-13 (-793) (-520))) (T -29))
-((-1230 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-793) (-520))))) (-3953 (*1 *2 *1) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *2 (-595 *1)) (-4 *1 (-29 *3)))) (-1230 (*1 *1 *1 *2) (-12 (-5 *2 (-1095)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-793) (-520))))) (-3953 (*1 *2 *1 *3) (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-793) (-520))) (-5 *2 (-595 *1)) (-4 *1 (-29 *4)))) (-3895 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-793) (-520))))) (-3732 (*1 *2 *1) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *2 (-595 *1)) (-4 *1 (-29 *3)))) (-3895 (*1 *1 *1 *2) (-12 (-5 *2 (-1095)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-793) (-520))))) (-3732 (*1 *2 *1 *3) (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-793) (-520))) (-5 *2 (-595 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-410 |t#1|) (-10 -8 (-15 -1230 ($ $)) (-15 -3953 ((-595 $) $)) (-15 -1230 ($ $ (-1095))) (-15 -3953 ((-595 $) $ (-1095))) (-15 -3895 ($ $)) (-15 -3732 ((-595 $) $)) (-15 -3895 ($ $ (-1095))) (-15 -3732 ((-595 $) $ (-1095)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-387 (-528))) . T) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) . T) ((-27) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 |#1| |#1|) |has| |#1| (-162)) ((-109 $ $) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-569 (-802)) . T) ((-162) . T) ((-570 (-504)) |has| |#1| (-570 (-504))) ((-570 (-831 (-359))) |has| |#1| (-570 (-831 (-359)))) ((-570 (-831 (-528))) |has| |#1| (-570 (-831 (-528)))) ((-225) . T) ((-271) . T) ((-288) . T) ((-290 $) . T) ((-283) . T) ((-343) . T) ((-357 |#1|) |has| |#1| (-981)) ((-380 |#1|) . T) ((-391 |#1|) . T) ((-410 |#1|) . T) ((-431) . T) ((-452) |has| |#1| (-452)) ((-489 (-568 $) $) . T) ((-489 $ $) . T) ((-520) . T) ((-597 #0#) . T) ((-597 |#1|) |has| |#1| (-162)) ((-597 $) . T) ((-591 (-528)) -12 (|has| |#1| (-591 (-528))) (|has| |#1| (-981))) ((-591 |#1|) |has| |#1| (-981)) ((-664 #0#) . T) ((-664 |#1|) |has| |#1| (-162)) ((-664 $) . T) ((-673) . T) ((-793) . T) ((-839 (-1095)) |has| |#1| (-981)) ((-825 (-359)) |has| |#1| (-825 (-359))) ((-825 (-528)) |has| |#1| (-825 (-528))) ((-823 |#1|) . T) ((-859) . T) ((-938) . T) ((-972 (-387 (-528))) -1463 (|has| |#1| (-972 (-387 (-528)))) (-12 (|has| |#1| (-520)) (|has| |#1| (-972 (-528))))) ((-972 (-387 (-891 |#1|))) |has| |#1| (-520)) ((-972 (-528)) |has| |#1| (-972 (-528))) ((-972 (-568 $)) . T) ((-972 (-891 |#1|)) |has| |#1| (-981)) ((-972 (-1095)) . T) ((-972 |#1|) . T) ((-986 #0#) . T) ((-986 |#1|) |has| |#1| (-162)) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1131) . T) ((-1135) . T))
-((-2777 (((-1018 (-207)) $) NIL)) (-2765 (((-1018 (-207)) $) NIL)) (-2760 (($ $ (-207)) 123)) (-2820 (($ (-891 (-528)) (-1095) (-1095) (-1018 (-387 (-528))) (-1018 (-387 (-528)))) 85)) (-3632 (((-595 (-595 (-882 (-207)))) $) 135)) (-2222 (((-802) $) 147)))
-(((-30) (-13 (-893) (-10 -8 (-15 -2820 ($ (-891 (-528)) (-1095) (-1095) (-1018 (-387 (-528))) (-1018 (-387 (-528))))) (-15 -2760 ($ $ (-207)))))) (T -30))
-((-2820 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-891 (-528))) (-5 *3 (-1095)) (-5 *4 (-1018 (-387 (-528)))) (-5 *1 (-30)))) (-2760 (*1 *1 *1 *2) (-12 (-5 *2 (-207)) (-5 *1 (-30)))))
-(-13 (-893) (-10 -8 (-15 -2820 ($ (-891 (-528)) (-1095) (-1095) (-1018 (-387 (-528))) (-1018 (-387 (-528))))) (-15 -2760 ($ $ (-207)))))
-((-1230 ((|#2| (-1091 |#2|) (-1095)) 43)) (-3748 (((-112) (-112)) 56)) (-1822 (((-1091 |#2|) (-568 |#2|)) 133 (|has| |#1| (-972 (-528))))) (-3503 ((|#2| |#1| (-528)) 122 (|has| |#1| (-972 (-528))))) (-2534 ((|#2| (-1091 |#2|) |#2|) 30)) (-3977 (((-802) (-595 |#2|)) 85)) (-4090 ((|#2| |#2|) 129 (|has| |#1| (-972 (-528))))) (-2042 (((-110) (-112)) 18)) (** ((|#2| |#2| (-387 (-528))) 96 (|has| |#1| (-972 (-528))))))
-(((-31 |#1| |#2|) (-10 -7 (-15 -1230 (|#2| (-1091 |#2|) (-1095))) (-15 -3748 ((-112) (-112))) (-15 -2042 ((-110) (-112))) (-15 -2534 (|#2| (-1091 |#2|) |#2|)) (-15 -3977 ((-802) (-595 |#2|))) (IF (|has| |#1| (-972 (-528))) (PROGN (-15 ** (|#2| |#2| (-387 (-528)))) (-15 -1822 ((-1091 |#2|) (-568 |#2|))) (-15 -4090 (|#2| |#2|)) (-15 -3503 (|#2| |#1| (-528)))) |%noBranch|)) (-13 (-793) (-520)) (-410 |#1|)) (T -31))
-((-3503 (*1 *2 *3 *4) (-12 (-5 *4 (-528)) (-4 *2 (-410 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-972 *4)) (-4 *3 (-13 (-793) (-520))))) (-4090 (*1 *2 *2) (-12 (-4 *3 (-972 (-528))) (-4 *3 (-13 (-793) (-520))) (-5 *1 (-31 *3 *2)) (-4 *2 (-410 *3)))) (-1822 (*1 *2 *3) (-12 (-5 *3 (-568 *5)) (-4 *5 (-410 *4)) (-4 *4 (-972 (-528))) (-4 *4 (-13 (-793) (-520))) (-5 *2 (-1091 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-387 (-528))) (-4 *4 (-972 (-528))) (-4 *4 (-13 (-793) (-520))) (-5 *1 (-31 *4 *2)) (-4 *2 (-410 *4)))) (-3977 (*1 *2 *3) (-12 (-5 *3 (-595 *5)) (-4 *5 (-410 *4)) (-4 *4 (-13 (-793) (-520))) (-5 *2 (-802)) (-5 *1 (-31 *4 *5)))) (-2534 (*1 *2 *3 *2) (-12 (-5 *3 (-1091 *2)) (-4 *2 (-410 *4)) (-4 *4 (-13 (-793) (-520))) (-5 *1 (-31 *4 *2)))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-793) (-520))) (-5 *2 (-110)) (-5 *1 (-31 *4 *5)) (-4 *5 (-410 *4)))) (-3748 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-793) (-520))) (-5 *1 (-31 *3 *4)) (-4 *4 (-410 *3)))) (-1230 (*1 *2 *3 *4) (-12 (-5 *3 (-1091 *2)) (-5 *4 (-1095)) (-4 *2 (-410 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-793) (-520))))))
-(-10 -7 (-15 -1230 (|#2| (-1091 |#2|) (-1095))) (-15 -3748 ((-112) (-112))) (-15 -2042 ((-110) (-112))) (-15 -2534 (|#2| (-1091 |#2|) |#2|)) (-15 -3977 ((-802) (-595 |#2|))) (IF (|has| |#1| (-972 (-528))) (PROGN (-15 ** (|#2| |#2| (-387 (-528)))) (-15 -1822 ((-1091 |#2|) (-568 |#2|))) (-15 -4090 (|#2| |#2|)) (-15 -3503 (|#2| |#1| (-528)))) |%noBranch|))
-((-3535 (((-110) $ (-717)) 16)) (-2816 (($) 10)) (-2029 (((-110) $ (-717)) 15)) (-3358 (((-110) $ (-717)) 14)) (-3744 (((-110) $ $) 8)) (-1972 (((-110) $) 13)))
-(((-32 |#1|) (-10 -8 (-15 -2816 (|#1|)) (-15 -3535 ((-110) |#1| (-717))) (-15 -2029 ((-110) |#1| (-717))) (-15 -3358 ((-110) |#1| (-717))) (-15 -1972 ((-110) |#1|)) (-15 -3744 ((-110) |#1| |#1|))) (-33)) (T -32))
-NIL
-(-10 -8 (-15 -2816 (|#1|)) (-15 -3535 ((-110) |#1| (-717))) (-15 -2029 ((-110) |#1| (-717))) (-15 -3358 ((-110) |#1| (-717))) (-15 -1972 ((-110) |#1|)) (-15 -3744 ((-110) |#1| |#1|)))
-((-3535 (((-110) $ (-717)) 8)) (-2816 (($) 7 T CONST)) (-2029 (((-110) $ (-717)) 9)) (-3358 (((-110) $ (-717)) 10)) (-3744 (((-110) $ $) 14)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-2406 (($ $) 13)) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
+((-3457 (*1 *1 *2) (-12 (-5 *2 (-887 *1)) (-4 *1 (-27)))) (-3457 (*1 *1 *2) (-12 (-5 *2 (-1092 *1)) (-4 *1 (-27)))) (-3457 (*1 *1 *2 *3) (-12 (-5 *2 (-1092 *1)) (-5 *3 (-1098)) (-4 *1 (-27)))) (-1212 (*1 *2 *3) (-12 (-5 *3 (-887 *1)) (-4 *1 (-27)) (-5 *2 (-594 *1)))) (-1212 (*1 *2 *3) (-12 (-5 *3 (-1092 *1)) (-4 *1 (-27)) (-5 *2 (-594 *1)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1092 *1)) (-5 *4 (-1098)) (-4 *1 (-27)) (-5 *2 (-594 *1)))) (-1211 (*1 *1 *2) (-12 (-5 *2 (-887 *1)) (-4 *1 (-27)))) (-1211 (*1 *1 *2) (-12 (-5 *2 (-1092 *1)) (-4 *1 (-27)))) (-1211 (*1 *1 *2 *3) (-12 (-5 *2 (-1092 *1)) (-5 *3 (-1098)) (-4 *1 (-27)))) (-1617 (*1 *2 *3) (-12 (-5 *3 (-887 *1)) (-4 *1 (-27)) (-5 *2 (-594 *1)))) (-1617 (*1 *2 *3) (-12 (-5 *3 (-1092 *1)) (-4 *1 (-27)) (-5 *2 (-594 *1)))) (-1617 (*1 *2 *3 *4) (-12 (-5 *3 (-1092 *1)) (-5 *4 (-1098)) (-4 *1 (-27)) (-5 *2 (-594 *1)))))
+(-13 (-344) (-941) (-10 -8 (-15 -3457 ($ (-887 $))) (-15 -3457 ($ (-1092 $))) (-15 -3457 ($ (-1092 $) (-1098))) (-15 -1212 ((-594 $) (-887 $))) (-15 -1212 ((-594 $) (-1092 $))) (-15 -1212 ((-594 $) (-1092 $) (-1098))) (-15 -1211 ($ (-887 $))) (-15 -1211 ($ (-1092 $))) (-15 -1211 ($ (-1092 $) (-1098))) (-15 -1617 ((-594 $) (-887 $))) (-15 -1617 ((-594 $) (-1092 $))) (-15 -1617 ((-594 $) (-1092 $) (-1098)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-388 (-516))) . T) ((-37 $) . T) ((-99) . T) ((-109 #1# #1#) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-805)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-432) . T) ((-523) . T) ((-599 #1#) . T) ((-599 $) . T) ((-666 #1#) . T) ((-666 $) . T) ((-675) . T) ((-862) . T) ((-941) . T) ((-989 #1#) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1138) . T))
+((-1617 (((-594 $) (-887 $)) NIL) (((-594 $) (-1092 $)) NIL) (((-594 $) (-1092 $) (-1098)) 50) (((-594 $) $) 19) (((-594 $) $ (-1098)) 41)) (-1211 (($ (-887 $)) NIL) (($ (-1092 $)) NIL) (($ (-1092 $) (-1098)) 52) (($ $) 17) (($ $ (-1098)) 37)) (-1212 (((-594 $) (-887 $)) NIL) (((-594 $) (-1092 $)) NIL) (((-594 $) (-1092 $) (-1098)) 48) (((-594 $) $) 15) (((-594 $) $ (-1098)) 43)) (-3457 (($ (-887 $)) NIL) (($ (-1092 $)) NIL) (($ (-1092 $) (-1098)) NIL) (($ $) 12) (($ $ (-1098)) 39)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -1617 ((-594 |#1|) |#1| (-1098))) (-15 -1211 (|#1| |#1| (-1098))) (-15 -1617 ((-594 |#1|) |#1|)) (-15 -1211 (|#1| |#1|)) (-15 -1212 ((-594 |#1|) |#1| (-1098))) (-15 -3457 (|#1| |#1| (-1098))) (-15 -1212 ((-594 |#1|) |#1|)) (-15 -3457 (|#1| |#1|)) (-15 -1617 ((-594 |#1|) (-1092 |#1|) (-1098))) (-15 -1617 ((-594 |#1|) (-1092 |#1|))) (-15 -1617 ((-594 |#1|) (-887 |#1|))) (-15 -1211 (|#1| (-1092 |#1|) (-1098))) (-15 -1211 (|#1| (-1092 |#1|))) (-15 -1211 (|#1| (-887 |#1|))) (-15 -1212 ((-594 |#1|) (-1092 |#1|) (-1098))) (-15 -1212 ((-594 |#1|) (-1092 |#1|))) (-15 -1212 ((-594 |#1|) (-887 |#1|))) (-15 -3457 (|#1| (-1092 |#1|) (-1098))) (-15 -3457 (|#1| (-1092 |#1|))) (-15 -3457 (|#1| (-887 |#1|)))) (-29 |#2|) (-13 (-795) (-523))) (T -28))
+NIL
+(-10 -8 (-15 -1617 ((-594 |#1|) |#1| (-1098))) (-15 -1211 (|#1| |#1| (-1098))) (-15 -1617 ((-594 |#1|) |#1|)) (-15 -1211 (|#1| |#1|)) (-15 -1212 ((-594 |#1|) |#1| (-1098))) (-15 -3457 (|#1| |#1| (-1098))) (-15 -1212 ((-594 |#1|) |#1|)) (-15 -3457 (|#1| |#1|)) (-15 -1617 ((-594 |#1|) (-1092 |#1|) (-1098))) (-15 -1617 ((-594 |#1|) (-1092 |#1|))) (-15 -1617 ((-594 |#1|) (-887 |#1|))) (-15 -1211 (|#1| (-1092 |#1|) (-1098))) (-15 -1211 (|#1| (-1092 |#1|))) (-15 -1211 (|#1| (-887 |#1|))) (-15 -1212 ((-594 |#1|) (-1092 |#1|) (-1098))) (-15 -1212 ((-594 |#1|) (-1092 |#1|))) (-15 -1212 ((-594 |#1|) (-887 |#1|))) (-15 -3457 (|#1| (-1092 |#1|) (-1098))) (-15 -3457 (|#1| (-1092 |#1|))) (-15 -3457 (|#1| (-887 |#1|))))
+((-2828 (((-110) $ $) 7)) (-1617 (((-594 $) (-887 $)) 80) (((-594 $) (-1092 $)) 79) (((-594 $) (-1092 $) (-1098)) 78) (((-594 $) $) 126) (((-594 $) $ (-1098)) 124)) (-1211 (($ (-887 $)) 83) (($ (-1092 $)) 82) (($ (-1092 $) (-1098)) 81) (($ $) 127) (($ $ (-1098)) 125)) (-3462 (((-110) $) 16)) (-3347 (((-594 (-1098)) $) 201)) (-3349 (((-388 (-1092 $)) $ (-569 $)) 233 (|has| |#1| (-523)))) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 41)) (-2118 (($ $) 40)) (-2116 (((-110) $) 38)) (-1610 (((-594 (-569 $)) $) 164)) (-1319 (((-3 $ "failed") $ $) 19)) (-1614 (($ $ (-594 (-569 $)) (-594 $)) 154) (($ $ (-594 (-275 $))) 153) (($ $ (-275 $)) 152)) (-4053 (($ $) 73)) (-4245 (((-386 $) $) 72)) (-3301 (($ $) 92)) (-1655 (((-110) $ $) 59)) (-3815 (($) 17 T CONST)) (-1212 (((-594 $) (-887 $)) 86) (((-594 $) (-1092 $)) 85) (((-594 $) (-1092 $) (-1098)) 84) (((-594 $) $) 130) (((-594 $) $ (-1098)) 128)) (-3457 (($ (-887 $)) 89) (($ (-1092 $)) 88) (($ (-1092 $) (-1098)) 87) (($ $) 131) (($ $ (-1098)) 129)) (-3432 (((-3 (-887 |#1|) #1="failed") $) 251 (|has| |#1| (-984))) (((-3 (-388 (-887 |#1|)) #1#) $) 235 (|has| |#1| (-523))) (((-3 |#1| #1#) $) 197) (((-3 (-516) #1#) $) 195 (|has| |#1| (-975 (-516)))) (((-3 (-1098) #1#) $) 188) (((-3 (-569 $) #1#) $) 139) (((-3 (-388 (-516)) #1#) $) 123 (-3810 (-12 (|has| |#1| (-975 (-516))) (|has| |#1| (-523))) (|has| |#1| (-975 (-388 (-516))))))) (-3431 (((-887 |#1|) $) 252 (|has| |#1| (-984))) (((-388 (-887 |#1|)) $) 236 (|has| |#1| (-523))) ((|#1| $) 198) (((-516) $) 194 (|has| |#1| (-975 (-516)))) (((-1098) $) 189) (((-569 $) $) 140) (((-388 (-516)) $) 122 (-3810 (-12 (|has| |#1| (-975 (-516))) (|has| |#1| (-523))) (|has| |#1| (-975 (-388 (-516))))))) (-2824 (($ $ $) 55)) (-2297 (((-637 |#1|) (-637 $)) 241 (|has| |#1| (-984))) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) 240 (|has| |#1| (-984))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) 121 (-3810 (-3119 (|has| |#1| (-984)) (|has| |#1| (-593 (-516)))) (-3119 (|has| |#1| (-593 (-516))) (|has| |#1| (-984))))) (((-637 (-516)) (-637 $)) 120 (-3810 (-3119 (|has| |#1| (-984)) (|has| |#1| (-593 (-516)))) (-3119 (|has| |#1| (-593 (-516))) (|has| |#1| (-984)))))) (-3741 (((-3 $ "failed") $) 34)) (-2823 (($ $ $) 56)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 51)) (-4005 (((-110) $) 71)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) 193 (|has| |#1| (-827 (-359)))) (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) 192 (|has| |#1| (-827 (-516))))) (-2833 (($ (-594 $)) 158) (($ $) 157)) (-1609 (((-594 (-111)) $) 165)) (-2273 (((-111) (-111)) 166)) (-2436 (((-110) $) 31)) (-2936 (((-110) $) 186 (|has| $ (-975 (-516))))) (-3260 (($ $) 218 (|has| |#1| (-984)))) (-3262 (((-1050 |#1| (-569 $)) $) 217 (|has| |#1| (-984)))) (-3275 (($ $ (-516)) 91)) (-1652 (((-3 (-594 $) #2="failed") (-594 $) $) 52)) (-1607 (((-1092 $) (-569 $)) 183 (|has| $ (-984)))) (-3596 (($ $ $) 137)) (-3597 (($ $ $) 136)) (-4234 (($ (-1 $ $) (-569 $)) 172)) (-1612 (((-3 (-569 $) "failed") $) 162)) (-1963 (($ $ $) 46) (($ (-594 $)) 45)) (-3513 (((-1081) $) 9)) (-1611 (((-594 (-569 $)) $) 163)) (-2254 (($ (-111) (-594 $)) 171) (($ (-111) $) 170)) (-3087 (((-3 (-594 $) #3="failed") $) 212 (|has| |#1| (-1038)))) (-3089 (((-3 (-2 (|:| |val| $) (|:| -2427 (-516))) #3#) $) 221 (|has| |#1| (-984)))) (-3086 (((-3 (-594 $) #3#) $) 214 (|has| |#1| (-25)))) (-1863 (((-3 (-2 (|:| -4229 (-516)) (|:| |var| (-569 $))) #3#) $) 215 (|has| |#1| (-25)))) (-3088 (((-3 (-2 (|:| |var| (-569 $)) (|:| -2427 (-516))) #3#) $ (-1098)) 220 (|has| |#1| (-984))) (((-3 (-2 (|:| |var| (-569 $)) (|:| -2427 (-516))) #3#) $ (-111)) 219 (|has| |#1| (-984))) (((-3 (-2 (|:| |var| (-569 $)) (|:| -2427 (-516))) #3#) $) 213 (|has| |#1| (-1038)))) (-2893 (((-110) $ (-1098)) 169) (((-110) $ (-111)) 168)) (-2668 (($ $) 70)) (-2863 (((-719) $) 161)) (-3514 (((-1045) $) 10)) (-1866 (((-110) $) 199)) (-1865 ((|#1| $) 200)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 44)) (-3419 (($ $ $) 48) (($ (-594 $)) 47)) (-1608 (((-110) $ (-1098)) 174) (((-110) $ $) 173)) (-4011 (((-386 $) $) 74)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 53)) (-3740 (((-3 $ "failed") $ $) 42)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 50)) (-2937 (((-110) $) 185 (|has| $ (-975 (-516))))) (-4046 (($ $ (-1098) (-719) (-1 $ $)) 225 (|has| |#1| (-984))) (($ $ (-1098) (-719) (-1 $ (-594 $))) 224 (|has| |#1| (-984))) (($ $ (-594 (-1098)) (-594 (-719)) (-594 (-1 $ (-594 $)))) 223 (|has| |#1| (-984))) (($ $ (-594 (-1098)) (-594 (-719)) (-594 (-1 $ $))) 222 (|has| |#1| (-984))) (($ $ (-594 (-111)) (-594 $) (-1098)) 211 (|has| |#1| (-572 (-505)))) (($ $ (-111) $ (-1098)) 210 (|has| |#1| (-572 (-505)))) (($ $) 209 (|has| |#1| (-572 (-505)))) (($ $ (-594 (-1098))) 208 (|has| |#1| (-572 (-505)))) (($ $ (-1098)) 207 (|has| |#1| (-572 (-505)))) (($ $ (-111) (-1 $ $)) 182) (($ $ (-111) (-1 $ (-594 $))) 181) (($ $ (-594 (-111)) (-594 (-1 $ (-594 $)))) 180) (($ $ (-594 (-111)) (-594 (-1 $ $))) 179) (($ $ (-1098) (-1 $ $)) 178) (($ $ (-1098) (-1 $ (-594 $))) 177) (($ $ (-594 (-1098)) (-594 (-1 $ (-594 $)))) 176) (($ $ (-594 (-1098)) (-594 (-1 $ $))) 175) (($ $ (-594 $) (-594 $)) 146) (($ $ $ $) 145) (($ $ (-275 $)) 144) (($ $ (-594 (-275 $))) 143) (($ $ (-594 (-569 $)) (-594 $)) 142) (($ $ (-569 $) $) 141)) (-1654 (((-719) $) 58)) (-4078 (($ (-111) (-594 $)) 151) (($ (-111) $ $ $ $) 150) (($ (-111) $ $ $) 149) (($ (-111) $ $) 148) (($ (-111) $) 147)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 57)) (-1613 (($ $ $) 160) (($ $) 159)) (-4089 (($ $ (-1098)) 249 (|has| |#1| (-984))) (($ $ (-594 (-1098))) 248 (|has| |#1| (-984))) (($ $ (-1098) (-719)) 247 (|has| |#1| (-984))) (($ $ (-594 (-1098)) (-594 (-719))) 246 (|has| |#1| (-984)))) (-3259 (($ $) 228 (|has| |#1| (-523)))) (-3261 (((-1050 |#1| (-569 $)) $) 227 (|has| |#1| (-523)))) (-3459 (($ $) 184 (|has| $ (-984)))) (-4246 (((-505) $) 255 (|has| |#1| (-572 (-505)))) (($ (-386 $)) 226 (|has| |#1| (-523))) (((-831 (-359)) $) 191 (|has| |#1| (-572 (-831 (-359))))) (((-831 (-516)) $) 190 (|has| |#1| (-572 (-831 (-516)))))) (-3273 (($ $ $) 254 (|has| |#1| (-453)))) (-2620 (($ $ $) 253 (|has| |#1| (-453)))) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ $) 43) (($ (-388 (-516))) 65) (($ (-887 |#1|)) 250 (|has| |#1| (-984))) (($ (-388 (-887 |#1|))) 234 (|has| |#1| (-523))) (($ (-388 (-887 (-388 |#1|)))) 232 (|has| |#1| (-523))) (($ (-887 (-388 |#1|))) 231 (|has| |#1| (-523))) (($ (-388 |#1|)) 230 (|has| |#1| (-523))) (($ (-1050 |#1| (-569 $))) 216 (|has| |#1| (-984))) (($ |#1|) 196) (($ (-1098)) 187) (($ (-569 $)) 138)) (-2965 (((-3 $ "failed") $) 239 (|has| |#1| (-138)))) (-3385 (((-719)) 29)) (-2850 (($ (-594 $)) 156) (($ $) 155)) (-2272 (((-110) (-111)) 167)) (-2117 (((-110) $ $) 39)) (-1864 (($ (-1098) (-594 $)) 206) (($ (-1098) $ $ $ $) 205) (($ (-1098) $ $ $) 204) (($ (-1098) $ $) 203) (($ (-1098) $) 202)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33) (($ $ (-516)) 69)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2932 (($ $ (-1098)) 245 (|has| |#1| (-984))) (($ $ (-594 (-1098))) 244 (|has| |#1| (-984))) (($ $ (-1098) (-719)) 243 (|has| |#1| (-984))) (($ $ (-594 (-1098)) (-594 (-719))) 242 (|has| |#1| (-984)))) (-2826 (((-110) $ $) 134)) (-2827 (((-110) $ $) 133)) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 135)) (-2948 (((-110) $ $) 132)) (-4224 (($ $ $) 64) (($ (-1050 |#1| (-569 $)) (-1050 |#1| (-569 $))) 229 (|has| |#1| (-523)))) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32) (($ $ (-516)) 68) (($ $ (-388 (-516))) 90)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ (-388 (-516))) 67) (($ (-388 (-516)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-162))) (($ |#1| $) 237 (|has| |#1| (-162)))))
+(((-29 |#1|) (-133) (-13 (-795) (-523))) (T -29))
+((-3457 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-795) (-523))))) (-1212 (*1 *2 *1) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *2 (-594 *1)) (-4 *1 (-29 *3)))) (-3457 (*1 *1 *1 *2) (-12 (-5 *2 (-1098)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-795) (-523))))) (-1212 (*1 *2 *1 *3) (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-795) (-523))) (-5 *2 (-594 *1)) (-4 *1 (-29 *4)))) (-1211 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-795) (-523))))) (-1617 (*1 *2 *1) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *2 (-594 *1)) (-4 *1 (-29 *3)))) (-1211 (*1 *1 *1 *2) (-12 (-5 *2 (-1098)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-795) (-523))))) (-1617 (*1 *2 *1 *3) (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-795) (-523))) (-5 *2 (-594 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-402 |t#1|) (-10 -8 (-15 -3457 ($ $)) (-15 -1212 ((-594 $) $)) (-15 -3457 ($ $ (-1098))) (-15 -1212 ((-594 $) $ (-1098))) (-15 -1211 ($ $)) (-15 -1617 ((-594 $) $)) (-15 -1211 ($ $ (-1098))) (-15 -1617 ((-594 $) $ (-1098)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-388 (-516))) . T) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) . T) ((-27) . T) ((-99) . T) ((-109 #1# #1#) . T) ((-109 |#1| |#1|) |has| |#1| (-162)) ((-109 $ $) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-805)) . T) ((-162) . T) ((-572 (-505)) |has| |#1| (-572 (-505))) ((-572 (-831 (-359))) |has| |#1| (-572 (-831 (-359)))) ((-572 (-831 (-516))) |has| |#1| (-572 (-831 (-516)))) ((-226) . T) ((-272) . T) ((-289) . T) ((-291 $) . T) ((-280) . T) ((-344) . T) ((-358 |#1|) |has| |#1| (-984)) ((-381 |#1|) . T) ((-393 |#1|) . T) ((-402 |#1|) . T) ((-432) . T) ((-453) |has| |#1| (-453)) ((-491 (-569 $) $) . T) ((-491 $ $) . T) ((-523) . T) ((-599 #1#) . T) ((-599 |#1|) |has| |#1| (-162)) ((-599 $) . T) ((-593 (-516)) -12 (|has| |#1| (-593 (-516))) (|has| |#1| (-984))) ((-593 |#1|) |has| |#1| (-984)) ((-666 #1#) . T) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) . T) ((-675) . T) ((-795) . T) ((-841 (-1098)) |has| |#1| (-984)) ((-827 (-359)) |has| |#1| (-827 (-359))) ((-827 (-516)) |has| |#1| (-827 (-516))) ((-825 |#1|) . T) ((-862) . T) ((-941) . T) ((-975 (-388 (-516))) -3810 (|has| |#1| (-975 (-388 (-516)))) (-12 (|has| |#1| (-523)) (|has| |#1| (-975 (-516))))) ((-975 (-388 (-887 |#1|))) |has| |#1| (-523)) ((-975 (-516)) |has| |#1| (-975 (-516))) ((-975 (-569 $)) . T) ((-975 (-887 |#1|)) |has| |#1| (-984)) ((-975 (-1098)) . T) ((-975 |#1|) . T) ((-989 #1#) . T) ((-989 |#1|) |has| |#1| (-162)) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1134) . T) ((-1138) . T))
+((-3160 (((-1017 (-208)) $) NIL)) (-3161 (((-1017 (-208)) $) NIL)) (-3393 (($ $ (-208)) 123)) (-1213 (($ (-887 (-516)) (-1098) (-1098) (-1017 (-388 (-516))) (-1017 (-388 (-516)))) 85)) (-3162 (((-594 (-594 (-884 (-208)))) $) 135)) (-4233 (((-805) $) 147)))
+(((-30) (-13 (-896) (-10 -8 (-15 -1213 ($ (-887 (-516)) (-1098) (-1098) (-1017 (-388 (-516))) (-1017 (-388 (-516))))) (-15 -3393 ($ $ (-208)))))) (T -30))
+((-1213 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-887 (-516))) (-5 *3 (-1098)) (-5 *4 (-1017 (-388 (-516)))) (-5 *1 (-30)))) (-3393 (*1 *1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-30)))))
+(-13 (-896) (-10 -8 (-15 -1213 ($ (-887 (-516)) (-1098) (-1098) (-1017 (-388 (-516))) (-1017 (-388 (-516))))) (-15 -3393 ($ $ (-208)))))
+((-3457 ((|#2| (-1092 |#2|) (-1098)) 43)) (-2273 (((-111) (-111)) 56)) (-1607 (((-1092 |#2|) (-569 |#2|)) 133 (|has| |#1| (-975 (-516))))) (-1216 ((|#2| |#1| (-516)) 122 (|has| |#1| (-975 (-516))))) (-1214 ((|#2| (-1092 |#2|) |#2|) 30)) (-1215 (((-805) (-594 |#2|)) 85)) (-3459 ((|#2| |#2|) 129 (|has| |#1| (-975 (-516))))) (-2272 (((-110) (-111)) 18)) (** ((|#2| |#2| (-388 (-516))) 96 (|has| |#1| (-975 (-516))))))
+(((-31 |#1| |#2|) (-10 -7 (-15 -3457 (|#2| (-1092 |#2|) (-1098))) (-15 -2273 ((-111) (-111))) (-15 -2272 ((-110) (-111))) (-15 -1214 (|#2| (-1092 |#2|) |#2|)) (-15 -1215 ((-805) (-594 |#2|))) (IF (|has| |#1| (-975 (-516))) (PROGN (-15 ** (|#2| |#2| (-388 (-516)))) (-15 -1607 ((-1092 |#2|) (-569 |#2|))) (-15 -3459 (|#2| |#2|)) (-15 -1216 (|#2| |#1| (-516)))) |%noBranch|)) (-13 (-795) (-523)) (-402 |#1|)) (T -31))
+((-1216 (*1 *2 *3 *4) (-12 (-5 *4 (-516)) (-4 *2 (-402 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-975 *4)) (-4 *3 (-13 (-795) (-523))))) (-3459 (*1 *2 *2) (-12 (-4 *3 (-975 (-516))) (-4 *3 (-13 (-795) (-523))) (-5 *1 (-31 *3 *2)) (-4 *2 (-402 *3)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-569 *5)) (-4 *5 (-402 *4)) (-4 *4 (-975 (-516))) (-4 *4 (-13 (-795) (-523))) (-5 *2 (-1092 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-388 (-516))) (-4 *4 (-975 (-516))) (-4 *4 (-13 (-795) (-523))) (-5 *1 (-31 *4 *2)) (-4 *2 (-402 *4)))) (-1215 (*1 *2 *3) (-12 (-5 *3 (-594 *5)) (-4 *5 (-402 *4)) (-4 *4 (-13 (-795) (-523))) (-5 *2 (-805)) (-5 *1 (-31 *4 *5)))) (-1214 (*1 *2 *3 *2) (-12 (-5 *3 (-1092 *2)) (-4 *2 (-402 *4)) (-4 *4 (-13 (-795) (-523))) (-5 *1 (-31 *4 *2)))) (-2272 (*1 *2 *3) (-12 (-5 *3 (-111)) (-4 *4 (-13 (-795) (-523))) (-5 *2 (-110)) (-5 *1 (-31 *4 *5)) (-4 *5 (-402 *4)))) (-2273 (*1 *2 *2) (-12 (-5 *2 (-111)) (-4 *3 (-13 (-795) (-523))) (-5 *1 (-31 *3 *4)) (-4 *4 (-402 *3)))) (-3457 (*1 *2 *3 *4) (-12 (-5 *3 (-1092 *2)) (-5 *4 (-1098)) (-4 *2 (-402 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-795) (-523))))))
+(-10 -7 (-15 -3457 (|#2| (-1092 |#2|) (-1098))) (-15 -2273 ((-111) (-111))) (-15 -2272 ((-110) (-111))) (-15 -1214 (|#2| (-1092 |#2|) |#2|)) (-15 -1215 ((-805) (-594 |#2|))) (IF (|has| |#1| (-975 (-516))) (PROGN (-15 ** (|#2| |#2| (-388 (-516)))) (-15 -1607 ((-1092 |#2|) (-569 |#2|))) (-15 -3459 (|#2| |#2|)) (-15 -1216 (|#2| |#1| (-516)))) |%noBranch|))
+((-1217 (((-110) $ (-719)) 16)) (-3815 (($) 10)) (-4001 (((-110) $ (-719)) 15)) (-3998 (((-110) $ (-719)) 14)) (-1218 (((-110) $ $) 8)) (-3682 (((-110) $) 13)))
+(((-32 |#1|) (-10 -8 (-15 -3815 (|#1|)) (-15 -1217 ((-110) |#1| (-719))) (-15 -4001 ((-110) |#1| (-719))) (-15 -3998 ((-110) |#1| (-719))) (-15 -3682 ((-110) |#1|)) (-15 -1218 ((-110) |#1| |#1|))) (-33)) (T -32))
+NIL
+(-10 -8 (-15 -3815 (|#1|)) (-15 -1217 ((-110) |#1| (-719))) (-15 -4001 ((-110) |#1| (-719))) (-15 -3998 ((-110) |#1| (-719))) (-15 -3682 ((-110) |#1|)) (-15 -1218 ((-110) |#1| |#1|)))
+((-1217 (((-110) $ (-719)) 8)) (-3815 (($) 7 T CONST)) (-4001 (((-110) $ (-719)) 9)) (-3998 (((-110) $ (-719)) 10)) (-1218 (((-110) $ $) 14)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-3678 (($ $) 13)) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-33) (-133)) (T -33))
-((-3744 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110)))) (-2406 (*1 *1 *1) (-4 *1 (-33))) (-2147 (*1 *1) (-4 *1 (-33))) (-1972 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110)))) (-3358 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-717)) (-5 *2 (-110)))) (-2029 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-717)) (-5 *2 (-110)))) (-3535 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-717)) (-5 *2 (-110)))) (-2816 (*1 *1) (-4 *1 (-33))) (-2138 (*1 *2 *1) (-12 (|has| *1 (-6 -4264)) (-4 *1 (-33)) (-5 *2 (-717)))))
-(-13 (-1131) (-10 -8 (-15 -3744 ((-110) $ $)) (-15 -2406 ($ $)) (-15 -2147 ($)) (-15 -1972 ((-110) $)) (-15 -3358 ((-110) $ (-717))) (-15 -2029 ((-110) $ (-717))) (-15 -3535 ((-110) $ (-717))) (-15 -2816 ($) -2636) (IF (|has| $ (-6 -4264)) (-15 -2138 ((-717) $)) |%noBranch|)))
-(((-1131) . T))
-((-2953 (($ $) 11)) (-2928 (($ $) 10)) (-2981 (($ $) 9)) (-3592 (($ $) 8)) (-2967 (($ $) 7)) (-2940 (($ $) 6)))
+((-1218 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110)))) (-3678 (*1 *1 *1) (-4 *1 (-33))) (-3847 (*1 *1) (-4 *1 (-33))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110)))) (-3998 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-719)) (-5 *2 (-110)))) (-4001 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-719)) (-5 *2 (-110)))) (-1217 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-719)) (-5 *2 (-110)))) (-3815 (*1 *1) (-4 *1 (-33))) (-4232 (*1 *2 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-33)) (-5 *2 (-719)))))
+(-13 (-1134) (-10 -8 (-15 -1218 ((-110) $ $)) (-15 -3678 ($ $)) (-15 -3847 ($)) (-15 -3682 ((-110) $)) (-15 -3998 ((-110) $ (-719))) (-15 -4001 ((-110) $ (-719))) (-15 -1217 ((-110) $ (-719))) (-15 -3815 ($) -4227) (IF (|has| $ (-6 -4269)) (-15 -4232 ((-719) $)) |%noBranch|)))
+(((-1134) . T))
+((-3772 (($ $) 11)) (-3770 (($ $) 10)) (-3774 (($ $) 9)) (-3775 (($ $) 8)) (-3773 (($ $) 7)) (-3771 (($ $) 6)))
(((-34) (-133)) (T -34))
-((-2953 (*1 *1 *1) (-4 *1 (-34))) (-2928 (*1 *1 *1) (-4 *1 (-34))) (-2981 (*1 *1 *1) (-4 *1 (-34))) (-3592 (*1 *1 *1) (-4 *1 (-34))) (-2967 (*1 *1 *1) (-4 *1 (-34))) (-2940 (*1 *1 *1) (-4 *1 (-34))))
-(-13 (-10 -8 (-15 -2940 ($ $)) (-15 -2967 ($ $)) (-15 -3592 ($ $)) (-15 -2981 ($ $)) (-15 -2928 ($ $)) (-15 -2953 ($ $))))
-((-2207 (((-110) $ $) 19 (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))))) (-3327 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 125)) (-2513 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 148)) (-2023 (($ $) 146)) (-3450 (($) 72) (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) 71)) (-1444 (((-1182) $ |#1| |#1|) 99 (|has| $ (-6 -4265))) (((-1182) $ (-528) (-528)) 178 (|has| $ (-6 -4265)))) (-3084 (($ $ (-528)) 159 (|has| $ (-6 -4265)))) (-3608 (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 209) (((-110) $) 203 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793)))) (-3863 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 200 (|has| $ (-6 -4265))) (($ $) 199 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793)) (|has| $ (-6 -4265))))) (-1289 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793)))) (-3535 (((-110) $ (-717)) 8)) (-2074 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 134 (|has| $ (-6 -4265)))) (-3307 (($ $ $) 155 (|has| $ (-6 -4265)))) (-2624 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 157 (|has| $ (-6 -4265)))) (-2153 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 153 (|has| $ (-6 -4265)))) (-2381 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ (-528) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 189 (|has| $ (-6 -4265))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ (-1144 (-528)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 160 (|has| $ (-6 -4265))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ "last" (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 158 (|has| $ (-6 -4265))) (($ $ "rest" $) 156 (|has| $ (-6 -4265))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ "first" (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 154 (|has| $ (-6 -4265))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ "value" (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 133 (|has| $ (-6 -4265)))) (-3409 (($ $ (-595 $)) 132 (|has| $ (-6 -4265)))) (-1836 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 45 (|has| $ (-6 -4264))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 216)) (-1573 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 55 (|has| $ (-6 -4264))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 175 (|has| $ (-6 -4264)))) (-2500 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 147)) (-2582 (((-3 |#2| "failed") |#1| $) 61)) (-2816 (($) 7 T CONST)) (-2472 (($ $) 201 (|has| $ (-6 -4265)))) (-3009 (($ $) 211)) (-2902 (($ $ (-717)) 142) (($ $) 140)) (-2833 (($ $) 214 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (-2923 (($ $) 58 (-1463 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| $ (-6 -4264))) (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| $ (-6 -4264)))))) (-3991 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 47 (|has| $ (-6 -4264))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 46 (|has| $ (-6 -4264))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 220) (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 215 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (-2280 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 54 (|has| $ (-6 -4264))) (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 174 (|has| $ (-6 -4264)))) (-1422 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 56 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| $ (-6 -4264)))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 53 (|has| $ (-6 -4264))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 52 (|has| $ (-6 -4264))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 176 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| $ (-6 -4264)))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 173 (|has| $ (-6 -4264))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 172 (|has| $ (-6 -4264)))) (-2812 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4265))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ (-528) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 190 (|has| $ (-6 -4265)))) (-2742 ((|#2| $ |#1|) 88) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ (-528)) 188)) (-3691 (((-110) $) 192)) (-3140 (((-528) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 208) (((-528) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 207 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))) (((-528) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ (-528)) 206 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (-3342 (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 30 (|has| $ (-6 -4264))) (((-595 |#2|) $) 79 (|has| $ (-6 -4264))) (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 114 (|has| $ (-6 -4264)))) (-1690 (((-595 $) $) 123)) (-1313 (((-110) $ $) 131 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (-3462 (($ (-717) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 169)) (-2029 (((-110) $ (-717)) 9)) (-3530 ((|#1| $) 96 (|has| |#1| (-793))) (((-528) $) 180 (|has| (-528) (-793)))) (-1436 (($ $ $) 198 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793)))) (-3368 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793)))) (-1356 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793)))) (-2604 (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 29 (|has| $ (-6 -4264))) (((-595 |#2|) $) 80 (|has| $ (-6 -4264))) (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 115 (|has| $ (-6 -4264)))) (-2408 (((-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| $ (-6 -4264)))) (((-110) |#2| $) 82 (-12 (|has| |#2| (-1023)) (|has| $ (-6 -4264)))) (((-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| $ (-6 -4264))))) (-1709 ((|#1| $) 95 (|has| |#1| (-793))) (((-528) $) 181 (|has| (-528) (-793)))) (-1736 (($ $ $) 197 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793)))) (-2800 (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 34 (|has| $ (-6 -4265))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4265))) (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 110 (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 109)) (-2759 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 225)) (-3358 (((-110) $ (-717)) 10)) (-3298 (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 128)) (-2578 (((-110) $) 124)) (-3034 (((-1078) $) 22 (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))))) (-2301 (($ $ (-717)) 145) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 143)) (-3225 (((-595 |#1|) $) 63)) (-4024 (((-110) |#1| $) 64)) (-3934 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 39)) (-1950 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 40) (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ (-528)) 219) (($ $ $ (-528)) 218)) (-3939 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ (-528)) 162) (($ $ $ (-528)) 161)) (-2084 (((-595 |#1|) $) 93) (((-595 (-528)) $) 183)) (-3966 (((-110) |#1| $) 92) (((-110) (-528) $) 184)) (-2495 (((-1042) $) 21 (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))))) (-2890 ((|#2| $) 97 (|has| |#1| (-793))) (($ $ (-717)) 139) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 137)) (-1734 (((-3 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) "failed") (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 51) (((-3 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) "failed") (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 171)) (-1332 (($ $ |#2|) 98 (|has| $ (-6 -4265))) (($ $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 179 (|has| $ (-6 -4265)))) (-1390 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 41)) (-1441 (((-110) $) 191)) (-1818 (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 32 (|has| $ (-6 -4264))) (((-110) (-1 (-110) |#2|) $) 77 (|has| $ (-6 -4264))) (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 112 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))))) 26 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-275 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) 25 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 24 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) 23 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-595 |#2|) (-595 |#2|)) 86 (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-275 |#2|)) 84 (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-595 (-275 |#2|))) 83 (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) 121 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 120 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-275 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) 119 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-595 (-275 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))))) 118 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))))) (-3744 (((-110) $ $) 14)) (-2111 (((-110) |#2| $) 94 (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023)))) (((-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 182 (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))))) (-2861 (((-595 |#2|) $) 91) (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 185)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3043 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ (-528) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 187) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ (-528)) 186) (($ $ (-1144 (-528))) 165) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ "first") 138) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ "value") 126)) (-3241 (((-528) $ $) 129)) (-3900 (($) 49) (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) 48)) (-1704 (($ $ (-528)) 222) (($ $ (-1144 (-528))) 221)) (-1745 (($ $ (-528)) 164) (($ $ (-1144 (-528))) 163)) (-3177 (((-110) $) 127)) (-2185 (($ $) 151)) (-3821 (($ $) 152 (|has| $ (-6 -4265)))) (-3887 (((-717) $) 150)) (-3539 (($ $) 149)) (-2507 (((-717) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 31 (|has| $ (-6 -4264))) (((-717) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| $ (-6 -4264)))) (((-717) |#2| $) 81 (-12 (|has| |#2| (-1023)) (|has| $ (-6 -4264)))) (((-717) (-1 (-110) |#2|) $) 78 (|has| $ (-6 -4264))) (((-717) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| $ (-6 -4264)))) (((-717) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 113 (|has| $ (-6 -4264)))) (-3761 (($ $ $ (-528)) 202 (|has| $ (-6 -4265)))) (-2406 (($ $) 13)) (-3155 (((-504) $) 59 (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-570 (-504))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-570 (-504)))))) (-2233 (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) 50) (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) 170)) (-3579 (($ $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 224) (($ $ $) 223)) (-3400 (($ $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 168) (($ (-595 $)) 167) (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 136) (($ $ $) 135)) (-2222 (((-802) $) 18 (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-569 (-802))) (|has| |#2| (-569 (-802))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-569 (-802)))))) (-3813 (((-595 $) $) 122)) (-2688 (((-110) $ $) 130 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (-2164 (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) 42)) (-2310 (((-3 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) "failed") |#1| $) 108)) (-3451 (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 33 (|has| $ (-6 -4264))) (((-110) (-1 (-110) |#2|) $) 76 (|has| $ (-6 -4264))) (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 111 (|has| $ (-6 -4264)))) (-2244 (((-110) $ $) 195 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793)))) (-2220 (((-110) $ $) 194 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793)))) (-2186 (((-110) $ $) 20 (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))))) (-2232 (((-110) $ $) 196 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793)))) (-2208 (((-110) $ $) 193 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-35 |#1| |#2|) (-133) (-1023) (-1023)) (T -35))
-((-2310 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-5 *2 (-2 (|:| -2927 *3) (|:| -1780 *4))))))
-(-13 (-1108 |t#1| |t#2|) (-615 (-2 (|:| -2927 |t#1|) (|:| -1780 |t#2|))) (-10 -8 (-15 -2310 ((-3 (-2 (|:| -2927 |t#1|) (|:| -1780 |t#2|)) "failed") |t#1| $))))
-(((-33) . T) ((-104 #0=(-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T) ((-99) -1463 (|has| |#2| (-1023)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793))) ((-569 (-802)) -1463 (|has| |#2| (-1023)) (|has| |#2| (-569 (-802))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-569 (-802)))) ((-144 #1=(-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T) ((-570 (-504)) |has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-570 (-504))) ((-211 #0#) . T) ((-217 #0#) . T) ((-267 #2=(-528) #1#) . T) ((-267 |#1| |#2|) . T) ((-269 #2# #1#) . T) ((-269 |#1| |#2|) . T) ((-290 #1#) -12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))) ((-290 |#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))) ((-263 #1#) . T) ((-353 #1#) . T) ((-467 #1#) . T) ((-467 |#2|) . T) ((-561 #2# #1#) . T) ((-561 |#1| |#2|) . T) ((-489 #1# #1#) -12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))) ((-489 |#2| |#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))) ((-566 |#1| |#2|) . T) ((-600 #1#) . T) ((-615 #1#) . T) ((-793) |has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793)) ((-946 #1#) . T) ((-1023) -1463 (|has| |#2| (-1023)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793))) ((-1069 #1#) . T) ((-1108 |#1| |#2|) . T) ((-1131) . T) ((-1165 #1#) . T))
-((-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ |#2|) 10)))
-(((-36 |#1| |#2|) (-10 -8 (-15 -2222 (|#1| |#2|)) (-15 -2222 (|#1| (-528))) (-15 -2222 ((-802) |#1|))) (-37 |#2|) (-162)) (T -36))
-NIL
-(-10 -8 (-15 -2222 (|#1| |#2|)) (-15 -2222 (|#1| (-528))) (-15 -2222 ((-802) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-1312 (((-3 $ "failed") $) 34)) (-1297 (((-110) $) 31)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ |#1|) 37)) (-3742 (((-717)) 29)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+((-3772 (*1 *1 *1) (-4 *1 (-34))) (-3770 (*1 *1 *1) (-4 *1 (-34))) (-3774 (*1 *1 *1) (-4 *1 (-34))) (-3775 (*1 *1 *1) (-4 *1 (-34))) (-3773 (*1 *1 *1) (-4 *1 (-34))) (-3771 (*1 *1 *1) (-4 *1 (-34))))
+(-13 (-10 -8 (-15 -3771 ($ $)) (-15 -3773 ($ $)) (-15 -3775 ($ $)) (-15 -3774 ($ $)) (-15 -3770 ($ $)) (-15 -3772 ($ $))))
+((-2828 (((-110) $ $) 19 (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))))) (-3681 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 125)) (-4073 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 148)) (-4075 (($ $) 146)) (-3879 (($) 72) (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) 71)) (-2243 (((-1185) $ |#1| |#1|) 99 (|has| $ (-6 -4270))) (((-1185) $ (-516) (-516)) 178 (|has| $ (-6 -4270)))) (-4063 (($ $ (-516)) 159 (|has| $ (-6 -4270)))) (-1798 (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 209) (((-110) $) 203 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)))) (-1796 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 200 (|has| $ (-6 -4270))) (($ $) 199 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)) (|has| $ (-6 -4270))))) (-3173 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)))) (-1217 (((-110) $ (-719)) 8)) (-3289 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 134 (|has| $ (-6 -4270)))) (-4065 (($ $ $) 155 (|has| $ (-6 -4270)))) (-4064 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 157 (|has| $ (-6 -4270)))) (-4067 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 153 (|has| $ (-6 -4270)))) (-4066 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ (-516) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 189 (|has| $ (-6 -4270))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ (-1146 (-516)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 160 (|has| $ (-6 -4270))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ #1="last" (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 158 (|has| $ (-6 -4270))) (($ $ #2="rest" $) 156 (|has| $ (-6 -4270))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ #3="first" (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 154 (|has| $ (-6 -4270))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ #4="value" (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 133 (|has| $ (-6 -4270)))) (-3290 (($ $ (-594 $)) 132 (|has| $ (-6 -4270)))) (-1581 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 45 (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 216)) (-3992 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 55 (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 175 (|has| $ (-6 -4269)))) (-4074 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 147)) (-2251 (((-3 |#2| #5="failed") |#1| $) 61)) (-3815 (($) 7 T CONST)) (-2312 (($ $) 201 (|has| $ (-6 -4270)))) (-2313 (($ $) 211)) (-4077 (($ $ (-719)) 142) (($ $) 140)) (-2389 (($ $) 214 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (-1349 (($ $) 58 (-3810 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| $ (-6 -4269))) (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| $ (-6 -4269)))))) (-3684 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 46 (|has| $ (-6 -4269))) (((-3 |#2| #5#) |#1| $) 62) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 220) (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 215 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (-3685 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 54 (|has| $ (-6 -4269))) (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 177 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 174 (|has| $ (-6 -4269)))) (-4121 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 56 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 53 (|has| $ (-6 -4269))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 52 (|has| $ (-6 -4269))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 176 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 173 (|has| $ (-6 -4269))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 172 (|has| $ (-6 -4269)))) (-1587 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4270))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ (-516) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 190 (|has| $ (-6 -4270)))) (-3372 ((|#2| $ |#1|) 88) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ (-516)) 188)) (-3721 (((-110) $) 192)) (-3698 (((-516) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 208) (((-516) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 207 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))) (((-516) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ (-516)) 206 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (-2018 (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 30 (|has| $ (-6 -4269))) (((-594 |#2|) $) 79 (|has| $ (-6 -4269))) (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 114 (|has| $ (-6 -4269)))) (-3295 (((-594 $) $) 123)) (-3291 (((-110) $ $) 131 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (-3896 (($ (-719) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 169)) (-4001 (((-110) $ (-719)) 9)) (-2245 ((|#1| $) 96 (|has| |#1| (-795))) (((-516) $) 180 (|has| (-516) (-795)))) (-3596 (($ $ $) 198 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)))) (-3123 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)))) (-3792 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)))) (-2445 (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 29 (|has| $ (-6 -4269))) (((-594 |#2|) $) 80 (|has| $ (-6 -4269))) (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 115 (|has| $ (-6 -4269)))) (-3516 (((-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-110) |#2| $) 82 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269)))) (((-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 117 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| $ (-6 -4269))))) (-2246 ((|#1| $) 95 (|has| |#1| (-795))) (((-516) $) 181 (|has| (-516) (-795)))) (-3597 (($ $ $) 197 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)))) (-2022 (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 34 (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4270))) (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 110 (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 109)) (-3816 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 225)) (-3998 (((-110) $ (-719)) 10)) (-3294 (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 128)) (-3801 (((-110) $) 124)) (-3513 (((-1081) $) 22 (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))))) (-4076 (($ $ (-719)) 145) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 143)) (-2678 (((-594 |#1|) $) 63)) (-2252 (((-110) |#1| $) 64)) (-1280 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 39)) (-3889 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 40) (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ (-516)) 219) (($ $ $ (-516)) 218)) (-2317 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ (-516)) 162) (($ $ $ (-516)) 161)) (-2248 (((-594 |#1|) $) 93) (((-594 (-516)) $) 183)) (-2249 (((-110) |#1| $) 92) (((-110) (-516) $) 184)) (-3514 (((-1045) $) 21 (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))))) (-4079 ((|#2| $) 97 (|has| |#1| (-795))) (($ $ (-719)) 139) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 137)) (-1350 (((-3 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) #6="failed") (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 51) (((-3 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) #6#) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 171)) (-2244 (($ $ |#2|) 98 (|has| $ (-6 -4270))) (($ $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 179 (|has| $ (-6 -4270)))) (-1281 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 41)) (-3722 (((-110) $) 191)) (-2020 (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 32 (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) 77 (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 112 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))))) 26 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-275 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) 25 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 24 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) 23 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-594 |#2|) (-594 |#2|)) 86 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-275 |#2|)) 84 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-594 (-275 |#2|))) 83 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) 121 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 120 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-275 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) 119 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-594 (-275 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))))) 118 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))))) (-1218 (((-110) $ $) 14)) (-2247 (((-110) |#2| $) 94 (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 182 (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))))) (-2250 (((-594 |#2|) $) 91) (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 185)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-4078 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ (-516) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 187) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ (-516)) 186) (($ $ (-1146 (-516))) 165) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ #1#) 144) (($ $ #2#) 141) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ #3#) 138) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ #4#) 126)) (-3293 (((-516) $ $) 129)) (-1473 (($) 49) (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) 48)) (-1582 (($ $ (-516)) 222) (($ $ (-1146 (-516))) 221)) (-2318 (($ $ (-516)) 164) (($ $ (-1146 (-516))) 163)) (-3915 (((-110) $) 127)) (-4070 (($ $) 151)) (-4068 (($ $) 152 (|has| $ (-6 -4270)))) (-4071 (((-719) $) 150)) (-4072 (($ $) 149)) (-2019 (((-719) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 31 (|has| $ (-6 -4269))) (((-719) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-719) |#2| $) 81 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#2|) $) 78 (|has| $ (-6 -4269))) (((-719) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 116 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 113 (|has| $ (-6 -4269)))) (-1797 (($ $ $ (-516)) 202 (|has| $ (-6 -4270)))) (-3678 (($ $) 13)) (-4246 (((-505) $) 59 (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-572 (-505))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-572 (-505)))))) (-3804 (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) 50) (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) 170)) (-4069 (($ $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 224) (($ $ $) 223)) (-4080 (($ $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 168) (($ (-594 $)) 167) (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 136) (($ $ $) 135)) (-4233 (((-805) $) 18 (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-571 (-805))) (|has| |#2| (-571 (-805))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-571 (-805)))))) (-3796 (((-594 $) $) 122)) (-3292 (((-110) $ $) 130 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (-1282 (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) 42)) (-1219 (((-3 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) "failed") |#1| $) 108)) (-2021 (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 33 (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) 76 (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 111 (|has| $ (-6 -4269)))) (-2826 (((-110) $ $) 195 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)))) (-2827 (((-110) $ $) 194 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)))) (-3317 (((-110) $ $) 20 (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))))) (-2947 (((-110) $ $) 196 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)))) (-2948 (((-110) $ $) 193 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-35 |#1| |#2|) (-133) (-1027) (-1027)) (T -35))
+((-1219 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-5 *2 (-2 (|:| -4139 *3) (|:| -2131 *4))))))
+(-13 (-1111 |t#1| |t#2|) (-617 (-2 (|:| -4139 |t#1|) (|:| -2131 |t#2|))) (-10 -8 (-15 -1219 ((-3 (-2 (|:| -4139 |t#1|) (|:| -2131 |t#2|)) "failed") |t#1| $))))
+(((-33) . T) ((-104 #1=(-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T) ((-99) -3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)) (|has| |#2| (-1027))) ((-571 (-805)) -3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-571 (-805))) (|has| |#2| (-1027)) (|has| |#2| (-571 (-805)))) ((-144 #2=(-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T) ((-572 (-505)) |has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-572 (-505))) ((-212 #1#) . T) ((-218 #1#) . T) ((-268 #3=(-516) #2#) . T) ((-268 |#1| |#2|) . T) ((-270 #3# #2#) . T) ((-270 |#1| |#2|) . T) ((-291 #2#) -12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-264 #2#) . T) ((-353 #2#) . T) ((-468 #2#) . T) ((-468 |#2|) . T) ((-563 #3# #2#) . T) ((-563 |#1| |#2|) . T) ((-491 #2# #2#) -12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))) ((-491 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-568 |#1| |#2|) . T) ((-602 #2#) . T) ((-617 #2#) . T) ((-795) |has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)) ((-949 #2#) . T) ((-1027) -3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)) (|has| |#2| (-1027))) ((-1072 #2#) . T) ((-1111 |#1| |#2|) . T) ((-1134) . T) ((-1168 #2#) . T))
+((-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ |#2|) 10)))
+(((-36 |#1| |#2|) (-10 -8 (-15 -4233 (|#1| |#2|)) (-15 -4233 (|#1| (-516))) (-15 -4233 ((-805) |#1|))) (-37 |#2|) (-162)) (T -36))
+NIL
+(-10 -8 (-15 -4233 (|#1| |#2|)) (-15 -4233 (|#1| (-516))) (-15 -4233 ((-805) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3741 (((-3 $ "failed") $) 34)) (-2436 (((-110) $) 31)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ |#1|) 37)) (-3385 (((-719)) 29)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
(((-37 |#1|) (-133) (-162)) (T -37))
-((-2222 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-162)))))
-(-13 (-981) (-664 |t#1|) (-10 -8 (-15 -2222 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-569 (-802)) . T) ((-597 |#1|) . T) ((-597 $) . T) ((-664 |#1|) . T) ((-673) . T) ((-986 |#1|) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-2129 (((-398 |#1|) |#1|) 41)) (-2437 (((-398 |#1|) |#1|) 30) (((-398 |#1|) |#1| (-595 (-47))) 33)) (-4019 (((-110) |#1|) 56)))
-(((-38 |#1|) (-10 -7 (-15 -2437 ((-398 |#1|) |#1| (-595 (-47)))) (-15 -2437 ((-398 |#1|) |#1|)) (-15 -2129 ((-398 |#1|) |#1|)) (-15 -4019 ((-110) |#1|))) (-1153 (-47))) (T -38))
-((-4019 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-38 *3)) (-4 *3 (-1153 (-47))))) (-2129 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1153 (-47))))) (-2437 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1153 (-47))))) (-2437 (*1 *2 *3 *4) (-12 (-5 *4 (-595 (-47))) (-5 *2 (-398 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1153 (-47))))))
-(-10 -7 (-15 -2437 ((-398 |#1|) |#1| (-595 (-47)))) (-15 -2437 ((-398 |#1|) |#1|)) (-15 -2129 ((-398 |#1|) |#1|)) (-15 -4019 ((-110) |#1|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-4026 (((-2 (|:| |num| (-1177 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| (-387 |#2|) (-343)))) (-1738 (($ $) NIL (|has| (-387 |#2|) (-343)))) (-1811 (((-110) $) NIL (|has| (-387 |#2|) (-343)))) (-2486 (((-635 (-387 |#2|)) (-1177 $)) NIL) (((-635 (-387 |#2|))) NIL)) (-1323 (((-387 |#2|) $) NIL)) (-2338 (((-1105 (-860) (-717)) (-528)) NIL (|has| (-387 |#2|) (-329)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL (|has| (-387 |#2|) (-343)))) (-2705 (((-398 $) $) NIL (|has| (-387 |#2|) (-343)))) (-2213 (((-110) $ $) NIL (|has| (-387 |#2|) (-343)))) (-2856 (((-717)) NIL (|has| (-387 |#2|) (-348)))) (-1824 (((-110)) NIL)) (-2161 (((-110) |#1|) NIL) (((-110) |#2|) NIL)) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-528) "failed") $) NIL (|has| (-387 |#2|) (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| (-387 |#2|) (-972 (-387 (-528))))) (((-3 (-387 |#2|) "failed") $) NIL)) (-2409 (((-528) $) NIL (|has| (-387 |#2|) (-972 (-528)))) (((-387 (-528)) $) NIL (|has| (-387 |#2|) (-972 (-387 (-528))))) (((-387 |#2|) $) NIL)) (-1945 (($ (-1177 (-387 |#2|)) (-1177 $)) NIL) (($ (-1177 (-387 |#2|))) 57) (($ (-1177 |#2|) |#2|) 125)) (-2413 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-387 |#2|) (-329)))) (-3519 (($ $ $) NIL (|has| (-387 |#2|) (-343)))) (-3847 (((-635 (-387 |#2|)) $ (-1177 $)) NIL) (((-635 (-387 |#2|)) $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| (-387 |#2|) (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| (-387 |#2|) (-591 (-528)))) (((-2 (|:| -2163 (-635 (-387 |#2|))) (|:| |vec| (-1177 (-387 |#2|)))) (-635 $) (-1177 $)) NIL) (((-635 (-387 |#2|)) (-635 $)) NIL)) (-2115 (((-1177 $) (-1177 $)) NIL)) (-1422 (($ |#3|) NIL) (((-3 $ "failed") (-387 |#3|)) NIL (|has| (-387 |#2|) (-343)))) (-1312 (((-3 $ "failed") $) NIL)) (-1727 (((-595 (-595 |#1|))) NIL (|has| |#1| (-348)))) (-3008 (((-110) |#1| |#1|) NIL)) (-3090 (((-860)) NIL)) (-1338 (($) NIL (|has| (-387 |#2|) (-348)))) (-2327 (((-110)) NIL)) (-3665 (((-110) |#1|) NIL) (((-110) |#2|) NIL)) (-3498 (($ $ $) NIL (|has| (-387 |#2|) (-343)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL (|has| (-387 |#2|) (-343)))) (-1551 (($ $) NIL)) (-2916 (($) NIL (|has| (-387 |#2|) (-329)))) (-4086 (((-110) $) NIL (|has| (-387 |#2|) (-329)))) (-2790 (($ $ (-717)) NIL (|has| (-387 |#2|) (-329))) (($ $) NIL (|has| (-387 |#2|) (-329)))) (-2124 (((-110) $) NIL (|has| (-387 |#2|) (-343)))) (-3689 (((-860) $) NIL (|has| (-387 |#2|) (-329))) (((-779 (-860)) $) NIL (|has| (-387 |#2|) (-329)))) (-1297 (((-110) $) NIL)) (-2531 (((-717)) NIL)) (-3652 (((-1177 $) (-1177 $)) 102)) (-3297 (((-387 |#2|) $) NIL)) (-3515 (((-595 (-891 |#1|)) (-1095)) NIL (|has| |#1| (-343)))) (-3296 (((-3 $ "failed") $) NIL (|has| (-387 |#2|) (-329)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| (-387 |#2|) (-343)))) (-3537 ((|#3| $) NIL (|has| (-387 |#2|) (-343)))) (-3201 (((-860) $) NIL (|has| (-387 |#2|) (-348)))) (-1412 ((|#3| $) NIL)) (-2057 (($ (-595 $)) NIL (|has| (-387 |#2|) (-343))) (($ $ $) NIL (|has| (-387 |#2|) (-343)))) (-3034 (((-1078) $) NIL)) (-2456 (((-1182) (-717)) 79)) (-3139 (((-635 (-387 |#2|))) 51)) (-1955 (((-635 (-387 |#2|))) 44)) (-2652 (($ $) NIL (|has| (-387 |#2|) (-343)))) (-2460 (($ (-1177 |#2|) |#2|) 126)) (-2547 (((-635 (-387 |#2|))) 45)) (-2832 (((-635 (-387 |#2|))) 43)) (-1326 (((-2 (|:| |num| (-635 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1749 (((-2 (|:| |num| (-1177 |#2|)) (|:| |den| |#2|)) $) 64)) (-2079 (((-1177 $)) 42)) (-3882 (((-1177 $)) 41)) (-2277 (((-110) $) NIL)) (-3697 (((-110) $) NIL) (((-110) $ |#1|) NIL) (((-110) $ |#2|) NIL)) (-4197 (($) NIL (|has| (-387 |#2|) (-329)) CONST)) (-3108 (($ (-860)) NIL (|has| (-387 |#2|) (-348)))) (-3743 (((-3 |#2| "failed")) NIL)) (-2495 (((-1042) $) NIL)) (-1755 (((-717)) NIL)) (-1261 (($) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| (-387 |#2|) (-343)))) (-2088 (($ (-595 $)) NIL (|has| (-387 |#2|) (-343))) (($ $ $) NIL (|has| (-387 |#2|) (-343)))) (-3010 (((-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528))))) NIL (|has| (-387 |#2|) (-329)))) (-2437 (((-398 $) $) NIL (|has| (-387 |#2|) (-343)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-387 |#2|) (-343))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| (-387 |#2|) (-343)))) (-3477 (((-3 $ "failed") $ $) NIL (|has| (-387 |#2|) (-343)))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| (-387 |#2|) (-343)))) (-3973 (((-717) $) NIL (|has| (-387 |#2|) (-343)))) (-3043 ((|#1| $ |#1| |#1|) NIL)) (-2165 (((-3 |#2| "failed")) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| (-387 |#2|) (-343)))) (-1372 (((-387 |#2|) (-1177 $)) NIL) (((-387 |#2|)) 39)) (-3500 (((-717) $) NIL (|has| (-387 |#2|) (-329))) (((-3 (-717) "failed") $ $) NIL (|has| (-387 |#2|) (-329)))) (-3235 (($ $ (-1 (-387 |#2|) (-387 |#2|)) (-717)) NIL (|has| (-387 |#2|) (-343))) (($ $ (-1 (-387 |#2|) (-387 |#2|))) NIL (|has| (-387 |#2|) (-343))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095))))) (($ $ (-1095) (-717)) NIL (-12 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095))))) (($ $ (-595 (-1095))) NIL (-12 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095))))) (($ $ (-1095)) NIL (-12 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095))))) (($ $ (-717)) NIL (-1463 (-12 (|has| (-387 |#2|) (-215)) (|has| (-387 |#2|) (-343))) (|has| (-387 |#2|) (-329)))) (($ $) NIL (-1463 (-12 (|has| (-387 |#2|) (-215)) (|has| (-387 |#2|) (-343))) (|has| (-387 |#2|) (-329))))) (-2348 (((-635 (-387 |#2|)) (-1177 $) (-1 (-387 |#2|) (-387 |#2|))) NIL (|has| (-387 |#2|) (-343)))) (-4090 ((|#3|) 50)) (-1984 (($) NIL (|has| (-387 |#2|) (-329)))) (-4243 (((-1177 (-387 |#2|)) $ (-1177 $)) NIL) (((-635 (-387 |#2|)) (-1177 $) (-1177 $)) NIL) (((-1177 (-387 |#2|)) $) 58) (((-635 (-387 |#2|)) (-1177 $)) 103)) (-3155 (((-1177 (-387 |#2|)) $) NIL) (($ (-1177 (-387 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (|has| (-387 |#2|) (-329)))) (-3295 (((-1177 $) (-1177 $)) NIL)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ (-387 |#2|)) NIL) (($ (-387 (-528))) NIL (-1463 (|has| (-387 |#2|) (-972 (-387 (-528)))) (|has| (-387 |#2|) (-343)))) (($ $) NIL (|has| (-387 |#2|) (-343)))) (-3749 (($ $) NIL (|has| (-387 |#2|) (-329))) (((-3 $ "failed") $) NIL (|has| (-387 |#2|) (-138)))) (-2516 ((|#3| $) NIL)) (-3742 (((-717)) NIL)) (-3470 (((-110)) 37)) (-3527 (((-110) |#1|) 49) (((-110) |#2|) 132)) (-1400 (((-1177 $)) 93)) (-4016 (((-110) $ $) NIL (|has| (-387 |#2|) (-343)))) (-2245 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3753 (((-110)) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| (-387 |#2|) (-343)))) (-2969 (($) 16 T CONST)) (-2982 (($) 26 T CONST)) (-3245 (($ $ (-1 (-387 |#2|) (-387 |#2|)) (-717)) NIL (|has| (-387 |#2|) (-343))) (($ $ (-1 (-387 |#2|) (-387 |#2|))) NIL (|has| (-387 |#2|) (-343))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095))))) (($ $ (-1095) (-717)) NIL (-12 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095))))) (($ $ (-595 (-1095))) NIL (-12 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095))))) (($ $ (-1095)) NIL (-12 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095))))) (($ $ (-717)) NIL (-1463 (-12 (|has| (-387 |#2|) (-215)) (|has| (-387 |#2|) (-343))) (|has| (-387 |#2|) (-329)))) (($ $) NIL (-1463 (-12 (|has| (-387 |#2|) (-215)) (|has| (-387 |#2|) (-343))) (|has| (-387 |#2|) (-329))))) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ $) NIL (|has| (-387 |#2|) (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| (-387 |#2|) (-343)))) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 |#2|)) NIL) (($ (-387 |#2|) $) NIL) (($ (-387 (-528)) $) NIL (|has| (-387 |#2|) (-343))) (($ $ (-387 (-528))) NIL (|has| (-387 |#2|) (-343)))))
-(((-39 |#1| |#2| |#3| |#4|) (-13 (-322 |#1| |#2| |#3|) (-10 -7 (-15 -2456 ((-1182) (-717))))) (-343) (-1153 |#1|) (-1153 (-387 |#2|)) |#3|) (T -39))
-((-2456 (*1 *2 *3) (-12 (-5 *3 (-717)) (-4 *4 (-343)) (-4 *5 (-1153 *4)) (-5 *2 (-1182)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1153 (-387 *5))) (-14 *7 *6))))
-(-13 (-322 |#1| |#2| |#3|) (-10 -7 (-15 -2456 ((-1182) (-717)))))
-((-3195 ((|#2| |#2|) 48)) (-3146 ((|#2| |#2|) 120 (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-431)) (|has| |#1| (-793)) (|has| |#1| (-972 (-528)))))) (-2768 ((|#2| |#2|) 87 (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-431)) (|has| |#1| (-793)) (|has| |#1| (-972 (-528)))))) (-3353 ((|#2| |#2|) 88 (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-431)) (|has| |#1| (-793)) (|has| |#1| (-972 (-528)))))) (-2072 ((|#2| (-112) |#2| (-717)) 116 (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-431)) (|has| |#1| (-793)) (|has| |#1| (-972 (-528)))))) (-4138 (((-1091 |#2|) |#2|) 45)) (-2498 ((|#2| |#2| (-595 (-568 |#2|))) 18) ((|#2| |#2| (-595 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
-(((-40 |#1| |#2|) (-10 -7 (-15 -3195 (|#2| |#2|)) (-15 -2498 (|#2| |#2|)) (-15 -2498 (|#2| |#2| |#2|)) (-15 -2498 (|#2| |#2| (-595 |#2|))) (-15 -2498 (|#2| |#2| (-595 (-568 |#2|)))) (-15 -4138 ((-1091 |#2|) |#2|)) (IF (|has| |#1| (-793)) (IF (|has| |#1| (-431)) (IF (|has| |#1| (-972 (-528))) (IF (|has| |#2| (-410 |#1|)) (PROGN (-15 -3353 (|#2| |#2|)) (-15 -2768 (|#2| |#2|)) (-15 -3146 (|#2| |#2|)) (-15 -2072 (|#2| (-112) |#2| (-717)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-520) (-13 (-343) (-283) (-10 -8 (-15 -3031 ((-1047 |#1| (-568 $)) $)) (-15 -3042 ((-1047 |#1| (-568 $)) $)) (-15 -2222 ($ (-1047 |#1| (-568 $))))))) (T -40))
-((-2072 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-112)) (-5 *4 (-717)) (-4 *5 (-431)) (-4 *5 (-793)) (-4 *5 (-972 (-528))) (-4 *5 (-520)) (-5 *1 (-40 *5 *2)) (-4 *2 (-410 *5)) (-4 *2 (-13 (-343) (-283) (-10 -8 (-15 -3031 ((-1047 *5 (-568 $)) $)) (-15 -3042 ((-1047 *5 (-568 $)) $)) (-15 -2222 ($ (-1047 *5 (-568 $))))))))) (-3146 (*1 *2 *2) (-12 (-4 *3 (-431)) (-4 *3 (-793)) (-4 *3 (-972 (-528))) (-4 *3 (-520)) (-5 *1 (-40 *3 *2)) (-4 *2 (-410 *3)) (-4 *2 (-13 (-343) (-283) (-10 -8 (-15 -3031 ((-1047 *3 (-568 $)) $)) (-15 -3042 ((-1047 *3 (-568 $)) $)) (-15 -2222 ($ (-1047 *3 (-568 $))))))))) (-2768 (*1 *2 *2) (-12 (-4 *3 (-431)) (-4 *3 (-793)) (-4 *3 (-972 (-528))) (-4 *3 (-520)) (-5 *1 (-40 *3 *2)) (-4 *2 (-410 *3)) (-4 *2 (-13 (-343) (-283) (-10 -8 (-15 -3031 ((-1047 *3 (-568 $)) $)) (-15 -3042 ((-1047 *3 (-568 $)) $)) (-15 -2222 ($ (-1047 *3 (-568 $))))))))) (-3353 (*1 *2 *2) (-12 (-4 *3 (-431)) (-4 *3 (-793)) (-4 *3 (-972 (-528))) (-4 *3 (-520)) (-5 *1 (-40 *3 *2)) (-4 *2 (-410 *3)) (-4 *2 (-13 (-343) (-283) (-10 -8 (-15 -3031 ((-1047 *3 (-568 $)) $)) (-15 -3042 ((-1047 *3 (-568 $)) $)) (-15 -2222 ($ (-1047 *3 (-568 $))))))))) (-4138 (*1 *2 *3) (-12 (-4 *4 (-520)) (-5 *2 (-1091 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-343) (-283) (-10 -8 (-15 -3031 ((-1047 *4 (-568 $)) $)) (-15 -3042 ((-1047 *4 (-568 $)) $)) (-15 -2222 ($ (-1047 *4 (-568 $))))))))) (-2498 (*1 *2 *2 *3) (-12 (-5 *3 (-595 (-568 *2))) (-4 *2 (-13 (-343) (-283) (-10 -8 (-15 -3031 ((-1047 *4 (-568 $)) $)) (-15 -3042 ((-1047 *4 (-568 $)) $)) (-15 -2222 ($ (-1047 *4 (-568 $))))))) (-4 *4 (-520)) (-5 *1 (-40 *4 *2)))) (-2498 (*1 *2 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-13 (-343) (-283) (-10 -8 (-15 -3031 ((-1047 *4 (-568 $)) $)) (-15 -3042 ((-1047 *4 (-568 $)) $)) (-15 -2222 ($ (-1047 *4 (-568 $))))))) (-4 *4 (-520)) (-5 *1 (-40 *4 *2)))) (-2498 (*1 *2 *2 *2) (-12 (-4 *3 (-520)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-343) (-283) (-10 -8 (-15 -3031 ((-1047 *3 (-568 $)) $)) (-15 -3042 ((-1047 *3 (-568 $)) $)) (-15 -2222 ($ (-1047 *3 (-568 $))))))))) (-2498 (*1 *2 *2) (-12 (-4 *3 (-520)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-343) (-283) (-10 -8 (-15 -3031 ((-1047 *3 (-568 $)) $)) (-15 -3042 ((-1047 *3 (-568 $)) $)) (-15 -2222 ($ (-1047 *3 (-568 $))))))))) (-3195 (*1 *2 *2) (-12 (-4 *3 (-520)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-343) (-283) (-10 -8 (-15 -3031 ((-1047 *3 (-568 $)) $)) (-15 -3042 ((-1047 *3 (-568 $)) $)) (-15 -2222 ($ (-1047 *3 (-568 $))))))))))
-(-10 -7 (-15 -3195 (|#2| |#2|)) (-15 -2498 (|#2| |#2|)) (-15 -2498 (|#2| |#2| |#2|)) (-15 -2498 (|#2| |#2| (-595 |#2|))) (-15 -2498 (|#2| |#2| (-595 (-568 |#2|)))) (-15 -4138 ((-1091 |#2|) |#2|)) (IF (|has| |#1| (-793)) (IF (|has| |#1| (-431)) (IF (|has| |#1| (-972 (-528))) (IF (|has| |#2| (-410 |#1|)) (PROGN (-15 -3353 (|#2| |#2|)) (-15 -2768 (|#2| |#2|)) (-15 -3146 (|#2| |#2|)) (-15 -2072 (|#2| (-112) |#2| (-717)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-2437 (((-398 (-1091 |#3|)) (-1091 |#3|) (-595 (-47))) 23) (((-398 |#3|) |#3| (-595 (-47))) 19)))
-(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -2437 ((-398 |#3|) |#3| (-595 (-47)))) (-15 -2437 ((-398 (-1091 |#3|)) (-1091 |#3|) (-595 (-47))))) (-793) (-739) (-888 (-47) |#2| |#1|)) (T -41))
-((-2437 (*1 *2 *3 *4) (-12 (-5 *4 (-595 (-47))) (-4 *5 (-793)) (-4 *6 (-739)) (-4 *7 (-888 (-47) *6 *5)) (-5 *2 (-398 (-1091 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1091 *7)))) (-2437 (*1 *2 *3 *4) (-12 (-5 *4 (-595 (-47))) (-4 *5 (-793)) (-4 *6 (-739)) (-5 *2 (-398 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-888 (-47) *6 *5)))))
-(-10 -7 (-15 -2437 ((-398 |#3|) |#3| (-595 (-47)))) (-15 -2437 ((-398 (-1091 |#3|)) (-1091 |#3|) (-595 (-47)))))
-((-2882 (((-717) |#2|) 65)) (-2420 (((-717) |#2|) 68)) (-4155 (((-595 |#2|)) 33)) (-2946 (((-717) |#2|) 67)) (-4175 (((-717) |#2|) 64)) (-2991 (((-717) |#2|) 66)) (-4208 (((-595 (-635 |#1|))) 60)) (-2312 (((-595 |#2|)) 55)) (-2204 (((-595 |#2|) |#2|) 43)) (-4116 (((-595 |#2|)) 57)) (-2831 (((-595 |#2|)) 56)) (-2629 (((-595 (-635 |#1|))) 48)) (-3848 (((-595 |#2|)) 54)) (-2037 (((-595 |#2|) |#2|) 42)) (-4054 (((-595 |#2|)) 50)) (-2047 (((-595 (-635 |#1|))) 61)) (-3169 (((-595 |#2|)) 59)) (-1400 (((-1177 |#2|) (-1177 |#2|)) 84 (|has| |#1| (-288)))))
-(((-42 |#1| |#2|) (-10 -7 (-15 -2946 ((-717) |#2|)) (-15 -2420 ((-717) |#2|)) (-15 -4175 ((-717) |#2|)) (-15 -2882 ((-717) |#2|)) (-15 -2991 ((-717) |#2|)) (-15 -4054 ((-595 |#2|))) (-15 -2037 ((-595 |#2|) |#2|)) (-15 -2204 ((-595 |#2|) |#2|)) (-15 -3848 ((-595 |#2|))) (-15 -2312 ((-595 |#2|))) (-15 -2831 ((-595 |#2|))) (-15 -4116 ((-595 |#2|))) (-15 -3169 ((-595 |#2|))) (-15 -2629 ((-595 (-635 |#1|)))) (-15 -4208 ((-595 (-635 |#1|)))) (-15 -2047 ((-595 (-635 |#1|)))) (-15 -4155 ((-595 |#2|))) (IF (|has| |#1| (-288)) (-15 -1400 ((-1177 |#2|) (-1177 |#2|))) |%noBranch|)) (-520) (-397 |#1|)) (T -42))
-((-1400 (*1 *2 *2) (-12 (-5 *2 (-1177 *4)) (-4 *4 (-397 *3)) (-4 *3 (-288)) (-4 *3 (-520)) (-5 *1 (-42 *3 *4)))) (-4155 (*1 *2) (-12 (-4 *3 (-520)) (-5 *2 (-595 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-397 *3)))) (-2047 (*1 *2) (-12 (-4 *3 (-520)) (-5 *2 (-595 (-635 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-397 *3)))) (-4208 (*1 *2) (-12 (-4 *3 (-520)) (-5 *2 (-595 (-635 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-397 *3)))) (-2629 (*1 *2) (-12 (-4 *3 (-520)) (-5 *2 (-595 (-635 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-397 *3)))) (-3169 (*1 *2) (-12 (-4 *3 (-520)) (-5 *2 (-595 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-397 *3)))) (-4116 (*1 *2) (-12 (-4 *3 (-520)) (-5 *2 (-595 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-397 *3)))) (-2831 (*1 *2) (-12 (-4 *3 (-520)) (-5 *2 (-595 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-397 *3)))) (-2312 (*1 *2) (-12 (-4 *3 (-520)) (-5 *2 (-595 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-397 *3)))) (-3848 (*1 *2) (-12 (-4 *3 (-520)) (-5 *2 (-595 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-397 *3)))) (-2204 (*1 *2 *3) (-12 (-4 *4 (-520)) (-5 *2 (-595 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-397 *4)))) (-2037 (*1 *2 *3) (-12 (-4 *4 (-520)) (-5 *2 (-595 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-397 *4)))) (-4054 (*1 *2) (-12 (-4 *3 (-520)) (-5 *2 (-595 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-397 *3)))) (-2991 (*1 *2 *3) (-12 (-4 *4 (-520)) (-5 *2 (-717)) (-5 *1 (-42 *4 *3)) (-4 *3 (-397 *4)))) (-2882 (*1 *2 *3) (-12 (-4 *4 (-520)) (-5 *2 (-717)) (-5 *1 (-42 *4 *3)) (-4 *3 (-397 *4)))) (-4175 (*1 *2 *3) (-12 (-4 *4 (-520)) (-5 *2 (-717)) (-5 *1 (-42 *4 *3)) (-4 *3 (-397 *4)))) (-2420 (*1 *2 *3) (-12 (-4 *4 (-520)) (-5 *2 (-717)) (-5 *1 (-42 *4 *3)) (-4 *3 (-397 *4)))) (-2946 (*1 *2 *3) (-12 (-4 *4 (-520)) (-5 *2 (-717)) (-5 *1 (-42 *4 *3)) (-4 *3 (-397 *4)))))
-(-10 -7 (-15 -2946 ((-717) |#2|)) (-15 -2420 ((-717) |#2|)) (-15 -4175 ((-717) |#2|)) (-15 -2882 ((-717) |#2|)) (-15 -2991 ((-717) |#2|)) (-15 -4054 ((-595 |#2|))) (-15 -2037 ((-595 |#2|) |#2|)) (-15 -2204 ((-595 |#2|) |#2|)) (-15 -3848 ((-595 |#2|))) (-15 -2312 ((-595 |#2|))) (-15 -2831 ((-595 |#2|))) (-15 -4116 ((-595 |#2|))) (-15 -3169 ((-595 |#2|))) (-15 -2629 ((-595 (-635 |#1|)))) (-15 -4208 ((-595 (-635 |#1|)))) (-15 -2047 ((-595 (-635 |#1|)))) (-15 -4155 ((-595 |#2|))) (IF (|has| |#1| (-288)) (-15 -1400 ((-1177 |#2|) (-1177 |#2|))) |%noBranch|))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2445 (((-3 $ "failed")) NIL (|has| |#1| (-520)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-4023 (((-1177 (-635 |#1|)) (-1177 $)) NIL) (((-1177 (-635 |#1|))) 24)) (-1653 (((-1177 $)) 51)) (-2816 (($) NIL T CONST)) (-2202 (((-3 (-2 (|:| |particular| $) (|:| -1400 (-595 $))) "failed")) NIL (|has| |#1| (-520)))) (-3403 (((-3 $ "failed")) NIL (|has| |#1| (-520)))) (-3107 (((-635 |#1|) (-1177 $)) NIL) (((-635 |#1|)) NIL)) (-3913 ((|#1| $) NIL)) (-3281 (((-635 |#1|) $ (-1177 $)) NIL) (((-635 |#1|) $) NIL)) (-3552 (((-3 $ "failed") $) NIL (|has| |#1| (-520)))) (-2591 (((-1091 (-891 |#1|))) NIL (|has| |#1| (-343)))) (-3693 (($ $ (-860)) NIL)) (-2061 ((|#1| $) NIL)) (-2466 (((-1091 |#1|) $) NIL (|has| |#1| (-520)))) (-3326 ((|#1| (-1177 $)) NIL) ((|#1|) NIL)) (-3922 (((-1091 |#1|) $) NIL)) (-2683 (((-110)) 87)) (-1945 (($ (-1177 |#1|) (-1177 $)) NIL) (($ (-1177 |#1|)) NIL)) (-1312 (((-3 $ "failed") $) 14 (|has| |#1| (-520)))) (-3090 (((-860)) 52)) (-3733 (((-110)) NIL)) (-2451 (($ $ (-860)) NIL)) (-2854 (((-110)) NIL)) (-1795 (((-110)) NIL)) (-1870 (((-110)) 89)) (-2481 (((-3 (-2 (|:| |particular| $) (|:| -1400 (-595 $))) "failed")) NIL (|has| |#1| (-520)))) (-2615 (((-3 $ "failed")) NIL (|has| |#1| (-520)))) (-2906 (((-635 |#1|) (-1177 $)) NIL) (((-635 |#1|)) NIL)) (-1948 ((|#1| $) NIL)) (-3867 (((-635 |#1|) $ (-1177 $)) NIL) (((-635 |#1|) $) NIL)) (-1895 (((-3 $ "failed") $) NIL (|has| |#1| (-520)))) (-2102 (((-1091 (-891 |#1|))) NIL (|has| |#1| (-343)))) (-3964 (($ $ (-860)) NIL)) (-4000 ((|#1| $) NIL)) (-3549 (((-1091 |#1|) $) NIL (|has| |#1| (-520)))) (-1991 ((|#1| (-1177 $)) NIL) ((|#1|) NIL)) (-2732 (((-1091 |#1|) $) NIL)) (-4194 (((-110)) 86)) (-3034 (((-1078) $) NIL)) (-2044 (((-110)) 93)) (-3074 (((-110)) 92)) (-1302 (((-110)) 94)) (-2495 (((-1042) $) NIL)) (-3176 (((-110)) 88)) (-3043 ((|#1| $ (-528)) 54)) (-4243 (((-1177 |#1|) $ (-1177 $)) 48) (((-635 |#1|) (-1177 $) (-1177 $)) NIL) (((-1177 |#1|) $) 28) (((-635 |#1|) (-1177 $)) NIL)) (-3155 (((-1177 |#1|) $) NIL) (($ (-1177 |#1|)) NIL)) (-1730 (((-595 (-891 |#1|)) (-1177 $)) NIL) (((-595 (-891 |#1|))) NIL)) (-2405 (($ $ $) NIL)) (-2643 (((-110)) 84)) (-2222 (((-802) $) 69) (($ (-1177 |#1|)) 22)) (-1400 (((-1177 $)) 45)) (-3586 (((-595 (-1177 |#1|))) NIL (|has| |#1| (-520)))) (-4103 (($ $ $ $) NIL)) (-1461 (((-110)) 82)) (-2834 (($ (-635 |#1|) $) 18)) (-3607 (($ $ $) NIL)) (-3047 (((-110)) 85)) (-1907 (((-110)) 83)) (-3405 (((-110)) 81)) (-2969 (($) NIL T CONST)) (-2186 (((-110) $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1062 |#2| |#1|) $) 19)))
-(((-43 |#1| |#2| |#3| |#4|) (-13 (-397 |#1|) (-597 (-1062 |#2| |#1|)) (-10 -8 (-15 -2222 ($ (-1177 |#1|))))) (-343) (-860) (-595 (-1095)) (-1177 (-635 |#1|))) (T -43))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-343)) (-14 *6 (-1177 (-635 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-860)) (-14 *5 (-595 (-1095))))))
-(-13 (-397 |#1|) (-597 (-1062 |#2| |#1|)) (-10 -8 (-15 -2222 ($ (-1177 |#1|)))))
-((-2207 (((-110) $ $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-3327 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL)) (-2513 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL)) (-2023 (($ $) NIL)) (-3450 (($) NIL) (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-1444 (((-1182) $ |#1| |#1|) NIL (|has| $ (-6 -4265))) (((-1182) $ (-528) (-528)) NIL (|has| $ (-6 -4265)))) (-3084 (($ $ (-528)) NIL (|has| $ (-6 -4265)))) (-3608 (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL) (((-110) $) NIL (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793)))) (-3863 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4265))) (($ $) NIL (-12 (|has| $ (-6 -4265)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793))))) (-1289 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793)))) (-3535 (((-110) $ (-717)) NIL)) (-2074 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (|has| $ (-6 -4265)))) (-3307 (($ $ $) 27 (|has| $ (-6 -4265)))) (-2624 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (|has| $ (-6 -4265)))) (-2153 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 29 (|has| $ (-6 -4265)))) (-2381 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ (-528) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (|has| $ (-6 -4265))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ (-1144 (-528)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (|has| $ (-6 -4265))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ "last" (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (|has| $ (-6 -4265))) (($ $ "rest" $) NIL (|has| $ (-6 -4265))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ "first" (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (|has| $ (-6 -4265))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ "value" (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (|has| $ (-6 -4265)))) (-3409 (($ $ (-595 $)) NIL (|has| $ (-6 -4265)))) (-1836 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL)) (-1573 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-2500 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL)) (-2582 (((-3 |#2| "failed") |#1| $) 37)) (-2816 (($) NIL T CONST)) (-2472 (($ $) NIL (|has| $ (-6 -4265)))) (-3009 (($ $) NIL)) (-2902 (($ $ (-717)) NIL) (($ $) 24)) (-2833 (($ $) NIL (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))))) (-3991 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (|has| $ (-6 -4264))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL) (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (-2280 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-1422 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (|has| $ (-6 -4264))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (|has| $ (-6 -4264))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-2812 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4265))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ (-528) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (|has| $ (-6 -4265)))) (-2742 ((|#2| $ |#1|) NIL) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ (-528)) NIL)) (-3691 (((-110) $) NIL)) (-3140 (((-528) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL) (((-528) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))) (((-528) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ (-528)) NIL (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (-3342 (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 18 (|has| $ (-6 -4264))) (((-595 |#2|) $) NIL (|has| $ (-6 -4264))) (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 18 (|has| $ (-6 -4264)))) (-1690 (((-595 $) $) NIL)) (-1313 (((-110) $ $) NIL (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (-3462 (($ (-717) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL)) (-2029 (((-110) $ (-717)) NIL)) (-3530 ((|#1| $) NIL (|has| |#1| (-793))) (((-528) $) 32 (|has| (-528) (-793)))) (-1436 (($ $ $) NIL (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793)))) (-3368 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793)))) (-1356 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793)))) (-2604 (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-595 |#2|) $) NIL (|has| $ (-6 -4264))) (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023)))) (((-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))))) (-1709 ((|#1| $) NIL (|has| |#1| (-793))) (((-528) $) 34 (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793)))) (-2800 (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4265))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4265))) (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL)) (-2759 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3298 (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL)) (-2578 (((-110) $) NIL)) (-3034 (((-1078) $) 42 (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-2301 (($ $ (-717)) NIL) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL)) (-3225 (((-595 |#1|) $) 20)) (-4024 (((-110) |#1| $) NIL)) (-3934 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL)) (-1950 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL) (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ (-528)) NIL) (($ $ $ (-528)) NIL)) (-3939 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ (-528)) NIL) (($ $ $ (-528)) NIL)) (-2084 (((-595 |#1|) $) NIL) (((-595 (-528)) $) NIL)) (-3966 (((-110) |#1| $) NIL) (((-110) (-528) $) NIL)) (-2495 (((-1042) $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-2890 ((|#2| $) NIL (|has| |#1| (-793))) (($ $ (-717)) NIL) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 23)) (-1734 (((-3 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) "failed") (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL) (((-3 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) "failed") (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL)) (-1332 (($ $ |#2|) NIL (|has| $ (-6 -4265))) (($ $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (|has| $ (-6 -4265)))) (-1390 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL)) (-1441 (((-110) $) NIL)) (-1818 (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-275 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-595 |#2|) (-595 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-595 (-275 |#2|))) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-275 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-595 (-275 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023)))) (((-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))))) (-2861 (((-595 |#2|) $) NIL) (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 17)) (-1972 (((-110) $) 16)) (-2147 (($) 13)) (-3043 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ (-528) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ (-528)) NIL) (($ $ (-1144 (-528))) NIL) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ "first") NIL) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $ "value") NIL)) (-3241 (((-528) $ $) NIL)) (-3900 (($) 12) (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-1704 (($ $ (-528)) NIL) (($ $ (-1144 (-528))) NIL)) (-1745 (($ $ (-528)) NIL) (($ $ (-1144 (-528))) NIL)) (-3177 (((-110) $) NIL)) (-2185 (($ $) NIL)) (-3821 (($ $) NIL (|has| $ (-6 -4265)))) (-3887 (((-717) $) NIL)) (-3539 (($ $) NIL)) (-2507 (((-717) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-717) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (((-717) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023)))) (((-717) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264))) (((-717) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (((-717) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-3761 (($ $ $ (-528)) NIL (|has| $ (-6 -4265)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) NIL (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-570 (-504))))) (-2233 (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL) (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-3579 (($ $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL) (($ $ $) NIL)) (-3400 (($ $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL) (($ (-595 $)) NIL) (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 25) (($ $ $) NIL)) (-2222 (((-802) $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-569 (-802))) (|has| |#2| (-569 (-802)))))) (-3813 (((-595 $) $) NIL)) (-2688 (((-110) $ $) NIL (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (-2164 (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-2310 (((-3 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) "failed") |#1| $) 44)) (-3451 (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-2244 (((-110) $ $) NIL (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793)))) (-2220 (((-110) $ $) NIL (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793)))) (-2186 (((-110) $ $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-2232 (((-110) $ $) NIL (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793)))) (-2208 (((-110) $ $) NIL (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-793)))) (-2138 (((-717) $) 22 (|has| $ (-6 -4264)))))
-(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1023) (-1023)) (T -44))
+((-4233 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-162)))))
+(-13 (-984) (-666 |t#1|) (-10 -8 (-15 -4233 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-805)) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 |#1|) . T) ((-675) . T) ((-989 |#1|) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-3697 (((-386 |#1|) |#1|) 41)) (-4011 (((-386 |#1|) |#1|) 30) (((-386 |#1|) |#1| (-594 (-47))) 33)) (-1220 (((-110) |#1|) 56)))
+(((-38 |#1|) (-10 -7 (-15 -4011 ((-386 |#1|) |#1| (-594 (-47)))) (-15 -4011 ((-386 |#1|) |#1|)) (-15 -3697 ((-386 |#1|) |#1|)) (-15 -1220 ((-110) |#1|))) (-1155 (-47))) (T -38))
+((-1220 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-38 *3)) (-4 *3 (-1155 (-47))))) (-3697 (*1 *2 *3) (-12 (-5 *2 (-386 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1155 (-47))))) (-4011 (*1 *2 *3) (-12 (-5 *2 (-386 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1155 (-47))))) (-4011 (*1 *2 *3 *4) (-12 (-5 *4 (-594 (-47))) (-5 *2 (-386 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1155 (-47))))))
+(-10 -7 (-15 -4011 ((-386 |#1|) |#1| (-594 (-47)))) (-15 -4011 ((-386 |#1|) |#1|)) (-15 -3697 ((-386 |#1|) |#1|)) (-15 -1220 ((-110) |#1|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1713 (((-2 (|:| |num| (-1179 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| (-388 |#2|) (-344)))) (-2118 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-2116 (((-110) $) NIL (|has| (-388 |#2|) (-344)))) (-1851 (((-637 (-388 |#2|)) (-1179 $)) NIL) (((-637 (-388 |#2|))) NIL)) (-3608 (((-388 |#2|) $) NIL)) (-1741 (((-1107 (-860) (-719)) (-516)) NIL (|has| (-388 |#2|) (-331)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-4245 (((-386 $) $) NIL (|has| (-388 |#2|) (-344)))) (-1655 (((-110) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3395 (((-719)) NIL (|has| (-388 |#2|) (-349)))) (-1727 (((-110)) NIL)) (-1726 (((-110) |#1|) NIL) (((-110) |#2|) NIL)) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-516) #1="failed") $) NIL (|has| (-388 |#2|) (-975 (-516)))) (((-3 (-388 (-516)) #1#) $) NIL (|has| (-388 |#2|) (-975 (-388 (-516))))) (((-3 (-388 |#2|) #1#) $) NIL)) (-3431 (((-516) $) NIL (|has| (-388 |#2|) (-975 (-516)))) (((-388 (-516)) $) NIL (|has| (-388 |#2|) (-975 (-388 (-516))))) (((-388 |#2|) $) NIL)) (-1861 (($ (-1179 (-388 |#2|)) (-1179 $)) NIL) (($ (-1179 (-388 |#2|))) 57) (($ (-1179 |#2|) |#2|) 125)) (-1739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-388 |#2|) (-331)))) (-2824 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-1850 (((-637 (-388 |#2|)) $ (-1179 $)) NIL) (((-637 (-388 |#2|)) $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| (-388 |#2|) (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| (-388 |#2|) (-593 (-516)))) (((-2 (|:| -1650 (-637 (-388 |#2|))) (|:| |vec| (-1179 (-388 |#2|)))) (-637 $) (-1179 $)) NIL) (((-637 (-388 |#2|)) (-637 $)) NIL)) (-1718 (((-1179 $) (-1179 $)) NIL)) (-4121 (($ |#3|) NIL) (((-3 $ "failed") (-388 |#3|)) NIL (|has| (-388 |#2|) (-344)))) (-3741 (((-3 $ "failed") $) NIL)) (-1705 (((-594 (-594 |#1|))) NIL (|has| |#1| (-349)))) (-1730 (((-110) |#1| |#1|) NIL)) (-3368 (((-860)) NIL)) (-3258 (($) NIL (|has| (-388 |#2|) (-349)))) (-1725 (((-110)) NIL)) (-1724 (((-110) |#1|) NIL) (((-110) |#2|) NIL)) (-2823 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL (|has| (-388 |#2|) (-344)))) (-3777 (($ $) NIL)) (-3097 (($) NIL (|has| (-388 |#2|) (-331)))) (-1746 (((-110) $) NIL (|has| (-388 |#2|) (-331)))) (-1836 (($ $ (-719)) NIL (|has| (-388 |#2|) (-331))) (($ $) NIL (|has| (-388 |#2|) (-331)))) (-4005 (((-110) $) NIL (|has| (-388 |#2|) (-344)))) (-4050 (((-860) $) NIL (|has| (-388 |#2|) (-331))) (((-780 (-860)) $) NIL (|has| (-388 |#2|) (-331)))) (-2436 (((-110) $) NIL)) (-3655 (((-719)) NIL)) (-1719 (((-1179 $) (-1179 $)) 102)) (-3391 (((-388 |#2|) $) NIL)) (-1706 (((-594 (-887 |#1|)) (-1098)) NIL (|has| |#1| (-344)))) (-3723 (((-3 $ "failed") $) NIL (|has| (-388 |#2|) (-331)))) (-1652 (((-3 (-594 $) #2="failed") (-594 $) $) NIL (|has| (-388 |#2|) (-344)))) (-2073 ((|#3| $) NIL (|has| (-388 |#2|) (-344)))) (-2069 (((-860) $) NIL (|has| (-388 |#2|) (-349)))) (-3343 ((|#3| $) NIL)) (-1963 (($ (-594 $)) NIL (|has| (-388 |#2|) (-344))) (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-3513 (((-1081) $) NIL)) (-1221 (((-1185) (-719)) 79)) (-1714 (((-637 (-388 |#2|))) 51)) (-1716 (((-637 (-388 |#2|))) 44)) (-2668 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-1711 (($ (-1179 |#2|) |#2|) 126)) (-1715 (((-637 (-388 |#2|))) 45)) (-1717 (((-637 (-388 |#2|))) 43)) (-1710 (((-2 (|:| |num| (-637 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1712 (((-2 (|:| |num| (-1179 |#2|)) (|:| |den| |#2|)) $) 64)) (-1723 (((-1179 $)) 42)) (-4197 (((-1179 $)) 41)) (-1722 (((-110) $) NIL)) (-1721 (((-110) $) NIL) (((-110) $ |#1|) NIL) (((-110) $ |#2|) NIL)) (-3724 (($) NIL (|has| (-388 |#2|) (-331)) CONST)) (-2426 (($ (-860)) NIL (|has| (-388 |#2|) (-349)))) (-1708 (((-3 |#2| #3="failed")) NIL)) (-3514 (((-1045) $) NIL)) (-1732 (((-719)) NIL)) (-2435 (($) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| (-388 |#2|) (-344)))) (-3419 (($ (-594 $)) NIL (|has| (-388 |#2|) (-344))) (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-1742 (((-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516))))) NIL (|has| (-388 |#2|) (-331)))) (-4011 (((-386 $) $) NIL (|has| (-388 |#2|) (-344)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-388 |#2|) (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3740 (((-3 $ "failed") $ $) NIL (|has| (-388 |#2|) (-344)))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL (|has| (-388 |#2|) (-344)))) (-1654 (((-719) $) NIL (|has| (-388 |#2|) (-344)))) (-4078 ((|#1| $ |#1| |#1|) NIL)) (-1709 (((-3 |#2| #3#)) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| (-388 |#2|) (-344)))) (-4036 (((-388 |#2|) (-1179 $)) NIL) (((-388 |#2|)) 39)) (-1837 (((-719) $) NIL (|has| (-388 |#2|) (-331))) (((-3 (-719) "failed") $ $) NIL (|has| (-388 |#2|) (-331)))) (-4089 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-719)) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098))))) (($ $ (-1098) (-719)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098))))) (($ $ (-594 (-1098))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098))))) (($ $ (-1098)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098))))) (($ $ (-719)) NIL (-3810 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-331)))) (($ $) NIL (-3810 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-331))))) (-2434 (((-637 (-388 |#2|)) (-1179 $) (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344)))) (-3459 ((|#3|) 50)) (-1740 (($) NIL (|has| (-388 |#2|) (-331)))) (-3497 (((-1179 (-388 |#2|)) $ (-1179 $)) NIL) (((-637 (-388 |#2|)) (-1179 $) (-1179 $)) NIL) (((-1179 (-388 |#2|)) $) 58) (((-637 (-388 |#2|)) (-1179 $)) 103)) (-4246 (((-1179 (-388 |#2|)) $) NIL) (($ (-1179 (-388 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2966 (((-3 (-1179 $) "failed") (-637 $)) NIL (|has| (-388 |#2|) (-331)))) (-1720 (((-1179 $) (-1179 $)) NIL)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ (-388 |#2|)) NIL) (($ (-388 (-516))) NIL (-3810 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-975 (-388 (-516)))))) (($ $) NIL (|has| (-388 |#2|) (-344)))) (-2965 (($ $) NIL (|has| (-388 |#2|) (-331))) (((-3 $ "failed") $) NIL (|has| (-388 |#2|) (-138)))) (-2632 ((|#3| $) NIL)) (-3385 (((-719)) NIL)) (-1729 (((-110)) 37)) (-1728 (((-110) |#1|) 49) (((-110) |#2|) 132)) (-2071 (((-1179 $)) 93)) (-2117 (((-110) $ $) NIL (|has| (-388 |#2|) (-344)))) (-1707 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1731 (((-110)) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| (-388 |#2|) (-344)))) (-2920 (($) 16 T CONST)) (-2927 (($) 26 T CONST)) (-2932 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-719)) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098))))) (($ $ (-1098) (-719)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098))))) (($ $ (-594 (-1098))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098))))) (($ $ (-1098)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098))))) (($ $ (-719)) NIL (-3810 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-331)))) (($ $) NIL (-3810 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-331))))) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| (-388 |#2|) (-344)))) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 |#2|)) NIL) (($ (-388 |#2|) $) NIL) (($ (-388 (-516)) $) NIL (|has| (-388 |#2|) (-344))) (($ $ (-388 (-516))) NIL (|has| (-388 |#2|) (-344)))))
+(((-39 |#1| |#2| |#3| |#4|) (-13 (-323 |#1| |#2| |#3|) (-10 -7 (-15 -1221 ((-1185) (-719))))) (-344) (-1155 |#1|) (-1155 (-388 |#2|)) |#3|) (T -39))
+((-1221 (*1 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-344)) (-4 *5 (-1155 *4)) (-5 *2 (-1185)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1155 (-388 *5))) (-14 *7 *6))))
+(-13 (-323 |#1| |#2| |#3|) (-10 -7 (-15 -1221 ((-1185) (-719)))))
+((-1222 ((|#2| |#2|) 48)) (-1227 ((|#2| |#2|) 120 (-12 (|has| |#2| (-402 |#1|)) (|has| |#1| (-432)) (|has| |#1| (-795)) (|has| |#1| (-975 (-516)))))) (-1226 ((|#2| |#2|) 87 (-12 (|has| |#2| (-402 |#1|)) (|has| |#1| (-432)) (|has| |#1| (-795)) (|has| |#1| (-975 (-516)))))) (-1225 ((|#2| |#2|) 88 (-12 (|has| |#2| (-402 |#1|)) (|has| |#1| (-432)) (|has| |#1| (-795)) (|has| |#1| (-975 (-516)))))) (-1228 ((|#2| (-111) |#2| (-719)) 116 (-12 (|has| |#2| (-402 |#1|)) (|has| |#1| (-432)) (|has| |#1| (-795)) (|has| |#1| (-975 (-516)))))) (-1224 (((-1092 |#2|) |#2|) 45)) (-1223 ((|#2| |#2| (-594 (-569 |#2|))) 18) ((|#2| |#2| (-594 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
+(((-40 |#1| |#2|) (-10 -7 (-15 -1222 (|#2| |#2|)) (-15 -1223 (|#2| |#2|)) (-15 -1223 (|#2| |#2| |#2|)) (-15 -1223 (|#2| |#2| (-594 |#2|))) (-15 -1223 (|#2| |#2| (-594 (-569 |#2|)))) (-15 -1224 ((-1092 |#2|) |#2|)) (IF (|has| |#1| (-795)) (IF (|has| |#1| (-432)) (IF (|has| |#1| (-975 (-516))) (IF (|has| |#2| (-402 |#1|)) (PROGN (-15 -1225 (|#2| |#2|)) (-15 -1226 (|#2| |#2|)) (-15 -1227 (|#2| |#2|)) (-15 -1228 (|#2| (-111) |#2| (-719)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-523) (-13 (-344) (-280) (-10 -8 (-15 -3262 ((-1050 |#1| (-569 $)) $)) (-15 -3261 ((-1050 |#1| (-569 $)) $)) (-15 -4233 ($ (-1050 |#1| (-569 $))))))) (T -40))
+((-1228 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-111)) (-5 *4 (-719)) (-4 *5 (-432)) (-4 *5 (-795)) (-4 *5 (-975 (-516))) (-4 *5 (-523)) (-5 *1 (-40 *5 *2)) (-4 *2 (-402 *5)) (-4 *2 (-13 (-344) (-280) (-10 -8 (-15 -3262 ((-1050 *5 (-569 $)) $)) (-15 -3261 ((-1050 *5 (-569 $)) $)) (-15 -4233 ($ (-1050 *5 (-569 $))))))))) (-1227 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *3 (-795)) (-4 *3 (-975 (-516))) (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) (-4 *2 (-402 *3)) (-4 *2 (-13 (-344) (-280) (-10 -8 (-15 -3262 ((-1050 *3 (-569 $)) $)) (-15 -3261 ((-1050 *3 (-569 $)) $)) (-15 -4233 ($ (-1050 *3 (-569 $))))))))) (-1226 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *3 (-795)) (-4 *3 (-975 (-516))) (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) (-4 *2 (-402 *3)) (-4 *2 (-13 (-344) (-280) (-10 -8 (-15 -3262 ((-1050 *3 (-569 $)) $)) (-15 -3261 ((-1050 *3 (-569 $)) $)) (-15 -4233 ($ (-1050 *3 (-569 $))))))))) (-1225 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *3 (-795)) (-4 *3 (-975 (-516))) (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) (-4 *2 (-402 *3)) (-4 *2 (-13 (-344) (-280) (-10 -8 (-15 -3262 ((-1050 *3 (-569 $)) $)) (-15 -3261 ((-1050 *3 (-569 $)) $)) (-15 -4233 ($ (-1050 *3 (-569 $))))))))) (-1224 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-1092 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-344) (-280) (-10 -8 (-15 -3262 ((-1050 *4 (-569 $)) $)) (-15 -3261 ((-1050 *4 (-569 $)) $)) (-15 -4233 ($ (-1050 *4 (-569 $))))))))) (-1223 (*1 *2 *2 *3) (-12 (-5 *3 (-594 (-569 *2))) (-4 *2 (-13 (-344) (-280) (-10 -8 (-15 -3262 ((-1050 *4 (-569 $)) $)) (-15 -3261 ((-1050 *4 (-569 $)) $)) (-15 -4233 ($ (-1050 *4 (-569 $))))))) (-4 *4 (-523)) (-5 *1 (-40 *4 *2)))) (-1223 (*1 *2 *2 *3) (-12 (-5 *3 (-594 *2)) (-4 *2 (-13 (-344) (-280) (-10 -8 (-15 -3262 ((-1050 *4 (-569 $)) $)) (-15 -3261 ((-1050 *4 (-569 $)) $)) (-15 -4233 ($ (-1050 *4 (-569 $))))))) (-4 *4 (-523)) (-5 *1 (-40 *4 *2)))) (-1223 (*1 *2 *2 *2) (-12 (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-344) (-280) (-10 -8 (-15 -3262 ((-1050 *3 (-569 $)) $)) (-15 -3261 ((-1050 *3 (-569 $)) $)) (-15 -4233 ($ (-1050 *3 (-569 $))))))))) (-1223 (*1 *2 *2) (-12 (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-344) (-280) (-10 -8 (-15 -3262 ((-1050 *3 (-569 $)) $)) (-15 -3261 ((-1050 *3 (-569 $)) $)) (-15 -4233 ($ (-1050 *3 (-569 $))))))))) (-1222 (*1 *2 *2) (-12 (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-344) (-280) (-10 -8 (-15 -3262 ((-1050 *3 (-569 $)) $)) (-15 -3261 ((-1050 *3 (-569 $)) $)) (-15 -4233 ($ (-1050 *3 (-569 $))))))))))
+(-10 -7 (-15 -1222 (|#2| |#2|)) (-15 -1223 (|#2| |#2|)) (-15 -1223 (|#2| |#2| |#2|)) (-15 -1223 (|#2| |#2| (-594 |#2|))) (-15 -1223 (|#2| |#2| (-594 (-569 |#2|)))) (-15 -1224 ((-1092 |#2|) |#2|)) (IF (|has| |#1| (-795)) (IF (|has| |#1| (-432)) (IF (|has| |#1| (-975 (-516))) (IF (|has| |#2| (-402 |#1|)) (PROGN (-15 -1225 (|#2| |#2|)) (-15 -1226 (|#2| |#2|)) (-15 -1227 (|#2| |#2|)) (-15 -1228 (|#2| (-111) |#2| (-719)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-4011 (((-386 (-1092 |#3|)) (-1092 |#3|) (-594 (-47))) 23) (((-386 |#3|) |#3| (-594 (-47))) 19)))
+(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -4011 ((-386 |#3|) |#3| (-594 (-47)))) (-15 -4011 ((-386 (-1092 |#3|)) (-1092 |#3|) (-594 (-47))))) (-795) (-741) (-891 (-47) |#2| |#1|)) (T -41))
+((-4011 (*1 *2 *3 *4) (-12 (-5 *4 (-594 (-47))) (-4 *5 (-795)) (-4 *6 (-741)) (-4 *7 (-891 (-47) *6 *5)) (-5 *2 (-386 (-1092 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1092 *7)))) (-4011 (*1 *2 *3 *4) (-12 (-5 *4 (-594 (-47))) (-4 *5 (-795)) (-4 *6 (-741)) (-5 *2 (-386 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-891 (-47) *6 *5)))))
+(-10 -7 (-15 -4011 ((-386 |#3|) |#3| (-594 (-47)))) (-15 -4011 ((-386 (-1092 |#3|)) (-1092 |#3|) (-594 (-47)))))
+((-1232 (((-719) |#2|) 65)) (-1230 (((-719) |#2|) 68)) (-1245 (((-594 |#2|)) 33)) (-1229 (((-719) |#2|) 67)) (-1231 (((-719) |#2|) 64)) (-1233 (((-719) |#2|) 66)) (-1243 (((-594 (-637 |#1|))) 60)) (-1238 (((-594 |#2|)) 55)) (-1236 (((-594 |#2|) |#2|) 43)) (-1240 (((-594 |#2|)) 57)) (-1239 (((-594 |#2|)) 56)) (-1242 (((-594 (-637 |#1|))) 48)) (-1237 (((-594 |#2|)) 54)) (-1235 (((-594 |#2|) |#2|) 42)) (-1234 (((-594 |#2|)) 50)) (-1244 (((-594 (-637 |#1|))) 61)) (-1241 (((-594 |#2|)) 59)) (-2071 (((-1179 |#2|) (-1179 |#2|)) 84 (|has| |#1| (-289)))))
+(((-42 |#1| |#2|) (-10 -7 (-15 -1229 ((-719) |#2|)) (-15 -1230 ((-719) |#2|)) (-15 -1231 ((-719) |#2|)) (-15 -1232 ((-719) |#2|)) (-15 -1233 ((-719) |#2|)) (-15 -1234 ((-594 |#2|))) (-15 -1235 ((-594 |#2|) |#2|)) (-15 -1236 ((-594 |#2|) |#2|)) (-15 -1237 ((-594 |#2|))) (-15 -1238 ((-594 |#2|))) (-15 -1239 ((-594 |#2|))) (-15 -1240 ((-594 |#2|))) (-15 -1241 ((-594 |#2|))) (-15 -1242 ((-594 (-637 |#1|)))) (-15 -1243 ((-594 (-637 |#1|)))) (-15 -1244 ((-594 (-637 |#1|)))) (-15 -1245 ((-594 |#2|))) (IF (|has| |#1| (-289)) (-15 -2071 ((-1179 |#2|) (-1179 |#2|))) |%noBranch|)) (-523) (-399 |#1|)) (T -42))
+((-2071 (*1 *2 *2) (-12 (-5 *2 (-1179 *4)) (-4 *4 (-399 *3)) (-4 *3 (-289)) (-4 *3 (-523)) (-5 *1 (-42 *3 *4)))) (-1245 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-594 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-399 *3)))) (-1244 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-594 (-637 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-399 *3)))) (-1243 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-594 (-637 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-399 *3)))) (-1242 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-594 (-637 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-399 *3)))) (-1241 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-594 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-399 *3)))) (-1240 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-594 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-399 *3)))) (-1239 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-594 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-399 *3)))) (-1238 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-594 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-399 *3)))) (-1237 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-594 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-399 *3)))) (-1236 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-594 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-399 *4)))) (-1235 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-594 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-399 *4)))) (-1234 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-594 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-399 *3)))) (-1233 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-399 *4)))) (-1232 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-399 *4)))) (-1231 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-399 *4)))) (-1230 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-399 *4)))) (-1229 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-399 *4)))))
+(-10 -7 (-15 -1229 ((-719) |#2|)) (-15 -1230 ((-719) |#2|)) (-15 -1231 ((-719) |#2|)) (-15 -1232 ((-719) |#2|)) (-15 -1233 ((-719) |#2|)) (-15 -1234 ((-594 |#2|))) (-15 -1235 ((-594 |#2|) |#2|)) (-15 -1236 ((-594 |#2|) |#2|)) (-15 -1237 ((-594 |#2|))) (-15 -1238 ((-594 |#2|))) (-15 -1239 ((-594 |#2|))) (-15 -1240 ((-594 |#2|))) (-15 -1241 ((-594 |#2|))) (-15 -1242 ((-594 (-637 |#1|)))) (-15 -1243 ((-594 (-637 |#1|)))) (-15 -1244 ((-594 (-637 |#1|)))) (-15 -1245 ((-594 |#2|))) (IF (|has| |#1| (-289)) (-15 -2071 ((-1179 |#2|) (-1179 |#2|))) |%noBranch|))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1842 (((-3 $ #1="failed")) NIL (|has| |#1| (-523)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-3496 (((-1179 (-637 |#1|)) (-1179 $)) NIL) (((-1179 (-637 |#1|))) 24)) (-1795 (((-1179 $)) 51)) (-3815 (($) NIL T CONST)) (-1978 (((-3 (-2 (|:| |particular| $) (|:| -2071 (-594 $))) #1#)) NIL (|has| |#1| (-523)))) (-1769 (((-3 $ #1#)) NIL (|has| |#1| (-523)))) (-1857 (((-637 |#1|) (-1179 $)) NIL) (((-637 |#1|)) NIL)) (-1793 ((|#1| $) NIL)) (-1855 (((-637 |#1|) $ (-1179 $)) NIL) (((-637 |#1|) $) NIL)) (-2430 (((-3 $ #1#) $) NIL (|has| |#1| (-523)))) (-1972 (((-1092 (-887 |#1|))) NIL (|has| |#1| (-344)))) (-2433 (($ $ (-860)) NIL)) (-1791 ((|#1| $) NIL)) (-1771 (((-1092 |#1|) $) NIL (|has| |#1| (-523)))) (-1859 ((|#1| (-1179 $)) NIL) ((|#1|) NIL)) (-1789 (((-1092 |#1|) $) NIL)) (-1783 (((-110)) 87)) (-1861 (($ (-1179 |#1|) (-1179 $)) NIL) (($ (-1179 |#1|)) NIL)) (-3741 (((-3 $ #1#) $) 14 (|has| |#1| (-523)))) (-3368 (((-860)) 52)) (-1780 (((-110)) NIL)) (-2458 (($ $ (-860)) NIL)) (-1776 (((-110)) NIL)) (-1774 (((-110)) NIL)) (-1778 (((-110)) 89)) (-1979 (((-3 (-2 (|:| |particular| $) (|:| -2071 (-594 $))) #1#)) NIL (|has| |#1| (-523)))) (-1770 (((-3 $ #1#)) NIL (|has| |#1| (-523)))) (-1858 (((-637 |#1|) (-1179 $)) NIL) (((-637 |#1|)) NIL)) (-1794 ((|#1| $) NIL)) (-1856 (((-637 |#1|) $ (-1179 $)) NIL) (((-637 |#1|) $) NIL)) (-2431 (((-3 $ #1#) $) NIL (|has| |#1| (-523)))) (-1976 (((-1092 (-887 |#1|))) NIL (|has| |#1| (-344)))) (-2432 (($ $ (-860)) NIL)) (-1792 ((|#1| $) NIL)) (-1772 (((-1092 |#1|) $) NIL (|has| |#1| (-523)))) (-1860 ((|#1| (-1179 $)) NIL) ((|#1|) NIL)) (-1790 (((-1092 |#1|) $) NIL)) (-1784 (((-110)) 86)) (-3513 (((-1081) $) NIL)) (-1775 (((-110)) 93)) (-1777 (((-110)) 92)) (-1779 (((-110)) 94)) (-3514 (((-1045) $) NIL)) (-1782 (((-110)) 88)) (-4078 ((|#1| $ (-516)) 54)) (-3497 (((-1179 |#1|) $ (-1179 $)) 48) (((-637 |#1|) (-1179 $) (-1179 $)) NIL) (((-1179 |#1|) $) 28) (((-637 |#1|) (-1179 $)) NIL)) (-4246 (((-1179 |#1|) $) NIL) (($ (-1179 |#1|)) NIL)) (-1964 (((-594 (-887 |#1|)) (-1179 $)) NIL) (((-594 (-887 |#1|))) NIL)) (-2620 (($ $ $) NIL)) (-1788 (((-110)) 84)) (-4233 (((-805) $) 69) (($ (-1179 |#1|)) 22)) (-2071 (((-1179 $)) 45)) (-1773 (((-594 (-1179 |#1|))) NIL (|has| |#1| (-523)))) (-2621 (($ $ $ $) NIL)) (-1786 (((-110)) 82)) (-2814 (($ (-637 |#1|) $) 18)) (-2619 (($ $ $) NIL)) (-1787 (((-110)) 85)) (-1785 (((-110)) 83)) (-1781 (((-110)) 81)) (-2920 (($) NIL T CONST)) (-3317 (((-110) $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1065 |#2| |#1|) $) 19)))
+(((-43 |#1| |#2| |#3| |#4|) (-13 (-399 |#1|) (-599 (-1065 |#2| |#1|)) (-10 -8 (-15 -4233 ($ (-1179 |#1|))))) (-344) (-860) (-594 (-1098)) (-1179 (-637 |#1|))) (T -43))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-344)) (-14 *6 (-1179 (-637 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-860)) (-14 *5 (-594 (-1098))))))
+(-13 (-399 |#1|) (-599 (-1065 |#2| |#1|)) (-10 -8 (-15 -4233 ($ (-1179 |#1|)))))
+((-2828 (((-110) $ $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3681 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL)) (-4073 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL)) (-4075 (($ $) NIL)) (-3879 (($) NIL) (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-2243 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -4270))) (((-1185) $ (-516) (-516)) NIL (|has| $ (-6 -4270)))) (-4063 (($ $ (-516)) NIL (|has| $ (-6 -4270)))) (-1798 (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL) (((-110) $) NIL (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)))) (-1796 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795))))) (-3173 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)))) (-1217 (((-110) $ (-719)) NIL)) (-3289 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (|has| $ (-6 -4270)))) (-4065 (($ $ $) 27 (|has| $ (-6 -4270)))) (-4064 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (|has| $ (-6 -4270)))) (-4067 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 29 (|has| $ (-6 -4270)))) (-4066 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ (-516) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (|has| $ (-6 -4270))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ (-1146 (-516)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (|has| $ (-6 -4270))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ #1="last" (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (|has| $ (-6 -4270))) (($ $ #2="rest" $) NIL (|has| $ (-6 -4270))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ #3="first" (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (|has| $ (-6 -4270))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ #4="value" (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (|has| $ (-6 -4270)))) (-3290 (($ $ (-594 $)) NIL (|has| $ (-6 -4270)))) (-1581 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL)) (-3992 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-4074 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL)) (-2251 (((-3 |#2| #5="failed") |#1| $) 37)) (-3815 (($) NIL T CONST)) (-2312 (($ $) NIL (|has| $ (-6 -4270)))) (-2313 (($ $) NIL)) (-4077 (($ $ (-719)) NIL) (($ $) 24)) (-2389 (($ $) NIL (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))))) (-3684 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-3 |#2| #5#) |#1| $) 48) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL) (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (-3685 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-4121 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-1587 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4270))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ (-516) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (|has| $ (-6 -4270)))) (-3372 ((|#2| $ |#1|) NIL) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ (-516)) NIL)) (-3721 (((-110) $) NIL)) (-3698 (((-516) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL) (((-516) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))) (((-516) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ (-516)) NIL (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (-2018 (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 18 (|has| $ (-6 -4269))) (((-594 |#2|) $) NIL (|has| $ (-6 -4269))) (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 18 (|has| $ (-6 -4269)))) (-3295 (((-594 $) $) NIL)) (-3291 (((-110) $ $) NIL (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (-3896 (($ (-719) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL)) (-4001 (((-110) $ (-719)) NIL)) (-2245 ((|#1| $) NIL (|has| |#1| (-795))) (((-516) $) 32 (|has| (-516) (-795)))) (-3596 (($ $ $) NIL (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)))) (-3123 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)))) (-3792 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)))) (-2445 (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-594 |#2|) $) NIL (|has| $ (-6 -4269))) (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))))) (-2246 ((|#1| $) NIL (|has| |#1| (-795))) (((-516) $) 34 (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)))) (-2022 (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL)) (-3816 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3294 (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL)) (-3801 (((-110) $) NIL)) (-3513 (((-1081) $) 42 (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-4076 (($ $ (-719)) NIL) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL)) (-2678 (((-594 |#1|) $) 20)) (-2252 (((-110) |#1| $) NIL)) (-1280 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL)) (-3889 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL) (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ (-516)) NIL) (($ $ $ (-516)) NIL)) (-2317 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ (-516)) NIL) (($ $ $ (-516)) NIL)) (-2248 (((-594 |#1|) $) NIL) (((-594 (-516)) $) NIL)) (-2249 (((-110) |#1| $) NIL) (((-110) (-516) $) NIL)) (-3514 (((-1045) $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-4079 ((|#2| $) NIL (|has| |#1| (-795))) (($ $ (-719)) NIL) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 23)) (-1350 (((-3 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) #6="failed") (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL) (((-3 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) #6#) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL)) (-2244 (($ $ |#2|) NIL (|has| $ (-6 -4270))) (($ $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (|has| $ (-6 -4270)))) (-1281 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL)) (-3722 (((-110) $) NIL)) (-2020 (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-275 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-594 |#2|) (-594 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-594 (-275 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-275 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-594 (-275 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))))) (-2250 (((-594 |#2|) $) NIL) (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 17)) (-3682 (((-110) $) 16)) (-3847 (($) 13)) (-4078 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ (-516) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ (-516)) NIL) (($ $ (-1146 (-516))) NIL) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ #1#) NIL) (($ $ #2#) NIL) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ #3#) NIL) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $ #4#) NIL)) (-3293 (((-516) $ $) NIL)) (-1473 (($) 12) (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-1582 (($ $ (-516)) NIL) (($ $ (-1146 (-516))) NIL)) (-2318 (($ $ (-516)) NIL) (($ $ (-1146 (-516))) NIL)) (-3915 (((-110) $) NIL)) (-4070 (($ $) NIL)) (-4068 (($ $) NIL (|has| $ (-6 -4270)))) (-4071 (((-719) $) NIL)) (-4072 (($ $) NIL)) (-2019 (((-719) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (((-719) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-1797 (($ $ $ (-516)) NIL (|has| $ (-6 -4270)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) NIL (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-572 (-505))))) (-3804 (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL) (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-4069 (($ $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL) (($ $ $) NIL)) (-4080 (($ $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL) (($ (-594 $)) NIL) (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 25) (($ $ $) NIL)) (-4233 (((-805) $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-571 (-805))) (|has| |#2| (-571 (-805)))))) (-3796 (((-594 $) $) NIL)) (-3292 (((-110) $ $) NIL (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (-1282 (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-1219 (((-3 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) "failed") |#1| $) 44)) (-2021 (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2826 (((-110) $ $) NIL (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)))) (-2827 (((-110) $ $) NIL (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)))) (-3317 (((-110) $ $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2947 (((-110) $ $) NIL (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)))) (-2948 (((-110) $ $) NIL (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-795)))) (-4232 (((-719) $) 22 (|has| $ (-6 -4269)))))
+(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1027) (-1027)) (T -44))
NIL
(-35 |#1| |#2|)
-((-2195 (((-110) $) 12)) (-3106 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-387 (-528)) $) 25) (($ $ (-387 (-528))) NIL)))
-(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-387 (-528)))) (-15 * (|#1| (-387 (-528)) |#1|)) (-15 -2195 ((-110) |#1|)) (-15 -3106 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-528) |#1|)) (-15 * (|#1| (-717) |#1|)) (-15 * (|#1| (-860) |#1|))) (-46 |#2| |#3|) (-981) (-738)) (T -45))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-387 (-528)))) (-15 * (|#1| (-387 (-528)) |#1|)) (-15 -2195 ((-110) |#1|)) (-15 -3106 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-528) |#1|)) (-15 * (|#1| (-717) |#1|)) (-15 * (|#1| (-860) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 51 (|has| |#1| (-520)))) (-1738 (($ $) 52 (|has| |#1| (-520)))) (-1811 (((-110) $) 54 (|has| |#1| (-520)))) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-2388 (($ $) 60)) (-1312 (((-3 $ "failed") $) 34)) (-1297 (((-110) $) 31)) (-2195 (((-110) $) 62)) (-2548 (($ |#1| |#2|) 61)) (-3106 (($ (-1 |#1| |#1|) $) 63)) (-2686 (($ $) 65)) (-2697 ((|#1| $) 66)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-3477 (((-3 $ "failed") $ $) 50 (|has| |#1| (-520)))) (-2935 ((|#2| $) 64)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ (-387 (-528))) 57 (|has| |#1| (-37 (-387 (-528))))) (($ $) 49 (|has| |#1| (-520))) (($ |#1|) 47 (|has| |#1| (-162)))) (-3216 ((|#1| $ |#2|) 59)) (-3749 (((-3 $ "failed") $) 48 (|has| |#1| (-138)))) (-3742 (((-717)) 29)) (-4016 (((-110) $ $) 53 (|has| |#1| (-520)))) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2296 (($ $ |#1|) 58 (|has| |#1| (-343)))) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-387 (-528)) $) 56 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) 55 (|has| |#1| (-37 (-387 (-528)))))))
-(((-46 |#1| |#2|) (-133) (-981) (-738)) (T -46))
-((-2697 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-738)) (-4 *2 (-981)))) (-2686 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-981)) (-4 *3 (-738)))) (-2935 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-981)) (-4 *2 (-738)))) (-3106 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-981)) (-4 *4 (-738)))) (-2195 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-981)) (-4 *4 (-738)) (-5 *2 (-110)))) (-2548 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-981)) (-4 *3 (-738)))) (-2388 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-981)) (-4 *3 (-738)))) (-3216 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-738)) (-4 *2 (-981)))) (-2296 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-981)) (-4 *3 (-738)) (-4 *2 (-343)))))
-(-13 (-981) (-109 |t#1| |t#1|) (-10 -8 (-15 -2697 (|t#1| $)) (-15 -2686 ($ $)) (-15 -2935 (|t#2| $)) (-15 -3106 ($ (-1 |t#1| |t#1|) $)) (-15 -2195 ((-110) $)) (-15 -2548 ($ |t#1| |t#2|)) (-15 -2388 ($ $)) (-15 -3216 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-343)) (-15 -2296 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-162)) (PROGN (-6 (-162)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-520)) (-6 (-520)) |%noBranch|) (IF (|has| |t#1| (-37 (-387 (-528)))) (-6 (-37 (-387 (-528)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-520)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-387 (-528)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1463 (|has| |#1| (-520)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-569 (-802)) . T) ((-162) -1463 (|has| |#1| (-520)) (|has| |#1| (-162))) ((-271) |has| |#1| (-520)) ((-520) |has| |#1| (-520)) ((-597 #0#) |has| |#1| (-37 (-387 (-528)))) ((-597 |#1|) . T) ((-597 $) . T) ((-664 #0#) |has| |#1| (-37 (-387 (-528)))) ((-664 |#1|) |has| |#1| (-162)) ((-664 $) |has| |#1| (-520)) ((-673) . T) ((-986 #0#) |has| |#1| (-37 (-387 (-528)))) ((-986 |#1|) . T) ((-986 $) -1463 (|has| |#1| (-520)) (|has| |#1| (-162))) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-2207 (((-110) $ $) NIL)) (-3732 (((-595 $) (-1091 $) (-1095)) NIL) (((-595 $) (-1091 $)) NIL) (((-595 $) (-891 $)) NIL)) (-3895 (($ (-1091 $) (-1095)) NIL) (($ (-1091 $)) NIL) (($ (-891 $)) NIL)) (-1359 (((-110) $) 11)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-2316 (((-595 (-568 $)) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2819 (($ $ (-275 $)) NIL) (($ $ (-595 (-275 $))) NIL) (($ $ (-595 (-568 $)) (-595 $)) NIL)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-2450 (($ $) NIL)) (-2213 (((-110) $ $) NIL)) (-2816 (($) NIL T CONST)) (-3953 (((-595 $) (-1091 $) (-1095)) NIL) (((-595 $) (-1091 $)) NIL) (((-595 $) (-891 $)) NIL)) (-1230 (($ (-1091 $) (-1095)) NIL) (($ (-1091 $)) NIL) (($ (-891 $)) NIL)) (-3001 (((-3 (-568 $) "failed") $) NIL) (((-3 (-528) "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL)) (-2409 (((-568 $) $) NIL) (((-528) $) NIL) (((-387 (-528)) $) NIL)) (-3519 (($ $ $) NIL)) (-2120 (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL) (((-635 (-528)) (-635 $)) NIL) (((-2 (|:| -2163 (-635 (-387 (-528)))) (|:| |vec| (-1177 (-387 (-528))))) (-635 $) (-1177 $)) NIL) (((-635 (-387 (-528))) (-635 $)) NIL)) (-1422 (($ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2124 (((-110) $) NIL)) (-4130 (($ $) NIL) (($ (-595 $)) NIL)) (-3930 (((-595 (-112)) $) NIL)) (-3748 (((-112) (-112)) NIL)) (-1297 (((-110) $) 14)) (-2580 (((-110) $) NIL (|has| $ (-972 (-528))))) (-3031 (((-1047 (-528) (-568 $)) $) NIL)) (-2796 (($ $ (-528)) NIL)) (-3297 (((-1091 $) (-1091 $) (-568 $)) NIL) (((-1091 $) (-1091 $) (-595 (-568 $))) NIL) (($ $ (-568 $)) NIL) (($ $ (-595 (-568 $))) NIL)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-1822 (((-1091 $) (-568 $)) NIL (|has| $ (-981)))) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3106 (($ (-1 $ $) (-568 $)) NIL)) (-1547 (((-3 (-568 $) "failed") $) NIL)) (-2057 (($ (-595 $)) NIL) (($ $ $) NIL)) (-3034 (((-1078) $) NIL)) (-2390 (((-595 (-568 $)) $) NIL)) (-1552 (($ (-112) $) NIL) (($ (-112) (-595 $)) NIL)) (-2341 (((-110) $ (-112)) NIL) (((-110) $ (-1095)) NIL)) (-2652 (($ $) NIL)) (-4073 (((-717) $) NIL)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ (-595 $)) NIL) (($ $ $) NIL)) (-3947 (((-110) $ $) NIL) (((-110) $ (-1095)) NIL)) (-2437 (((-398 $) $) NIL)) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3578 (((-110) $) NIL (|has| $ (-972 (-528))))) (-4014 (($ $ (-568 $) $) NIL) (($ $ (-595 (-568 $)) (-595 $)) NIL) (($ $ (-595 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL) (($ $ (-595 (-1095)) (-595 (-1 $ $))) NIL) (($ $ (-595 (-1095)) (-595 (-1 $ (-595 $)))) NIL) (($ $ (-1095) (-1 $ (-595 $))) NIL) (($ $ (-1095) (-1 $ $)) NIL) (($ $ (-595 (-112)) (-595 (-1 $ $))) NIL) (($ $ (-595 (-112)) (-595 (-1 $ (-595 $)))) NIL) (($ $ (-112) (-1 $ (-595 $))) NIL) (($ $ (-112) (-1 $ $)) NIL)) (-3973 (((-717) $) NIL)) (-3043 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-595 $)) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3581 (($ $) NIL) (($ $ $) NIL)) (-3235 (($ $ (-717)) NIL) (($ $) NIL)) (-3042 (((-1047 (-528) (-568 $)) $) NIL)) (-4090 (($ $) NIL (|has| $ (-981)))) (-3155 (((-359) $) NIL) (((-207) $) NIL) (((-159 (-359)) $) NIL)) (-2222 (((-802) $) NIL) (($ (-568 $)) NIL) (($ (-387 (-528))) NIL) (($ $) NIL) (($ (-528)) NIL) (($ (-1047 (-528) (-568 $))) NIL)) (-3742 (((-717)) NIL)) (-1491 (($ $) NIL) (($ (-595 $)) NIL)) (-2042 (((-110) (-112)) NIL)) (-4016 (((-110) $ $) NIL)) (-2690 (($ $ (-528)) NIL) (($ $ (-717)) NIL) (($ $ (-860)) NIL)) (-2969 (($) 7 T CONST)) (-2982 (($) 12 T CONST)) (-3245 (($ $ (-717)) NIL) (($ $) NIL)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 16)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) NIL)) (-2296 (($ $ $) NIL)) (-2286 (($ $ $) 15) (($ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-387 (-528))) NIL) (($ $ (-528)) NIL) (($ $ (-717)) NIL) (($ $ (-860)) NIL)) (* (($ (-387 (-528)) $) NIL) (($ $ (-387 (-528))) NIL) (($ $ $) NIL) (($ (-528) $) NIL) (($ (-717) $) NIL) (($ (-860) $) NIL)))
-(((-47) (-13 (-283) (-27) (-972 (-528)) (-972 (-387 (-528))) (-591 (-528)) (-957) (-591 (-387 (-528))) (-140) (-570 (-159 (-359))) (-215) (-10 -8 (-15 -2222 ($ (-1047 (-528) (-568 $)))) (-15 -3031 ((-1047 (-528) (-568 $)) $)) (-15 -3042 ((-1047 (-528) (-568 $)) $)) (-15 -1422 ($ $)) (-15 -3297 ((-1091 $) (-1091 $) (-568 $))) (-15 -3297 ((-1091 $) (-1091 $) (-595 (-568 $)))) (-15 -3297 ($ $ (-568 $))) (-15 -3297 ($ $ (-595 (-568 $))))))) (T -47))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1047 (-528) (-568 (-47)))) (-5 *1 (-47)))) (-3031 (*1 *2 *1) (-12 (-5 *2 (-1047 (-528) (-568 (-47)))) (-5 *1 (-47)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-1047 (-528) (-568 (-47)))) (-5 *1 (-47)))) (-1422 (*1 *1 *1) (-5 *1 (-47))) (-3297 (*1 *2 *2 *3) (-12 (-5 *2 (-1091 (-47))) (-5 *3 (-568 (-47))) (-5 *1 (-47)))) (-3297 (*1 *2 *2 *3) (-12 (-5 *2 (-1091 (-47))) (-5 *3 (-595 (-568 (-47)))) (-5 *1 (-47)))) (-3297 (*1 *1 *1 *2) (-12 (-5 *2 (-568 (-47))) (-5 *1 (-47)))) (-3297 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-568 (-47)))) (-5 *1 (-47)))))
-(-13 (-283) (-27) (-972 (-528)) (-972 (-387 (-528))) (-591 (-528)) (-957) (-591 (-387 (-528))) (-140) (-570 (-159 (-359))) (-215) (-10 -8 (-15 -2222 ($ (-1047 (-528) (-568 $)))) (-15 -3031 ((-1047 (-528) (-568 $)) $)) (-15 -3042 ((-1047 (-528) (-568 $)) $)) (-15 -1422 ($ $)) (-15 -3297 ((-1091 $) (-1091 $) (-568 $))) (-15 -3297 ((-1091 $) (-1091 $) (-595 (-568 $)))) (-15 -3297 ($ $ (-568 $))) (-15 -3297 ($ $ (-595 (-568 $))))))
-((-2207 (((-110) $ $) NIL)) (-2134 (((-595 (-1095)) $) 17)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 7)) (-3822 (((-1100) $) 18)) (-2186 (((-110) $ $) NIL)))
-(((-48) (-13 (-1023) (-10 -8 (-15 -2134 ((-595 (-1095)) $)) (-15 -3822 ((-1100) $))))) (T -48))
-((-2134 (*1 *2 *1) (-12 (-5 *2 (-595 (-1095))) (-5 *1 (-48)))) (-3822 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-48)))))
-(-13 (-1023) (-10 -8 (-15 -2134 ((-595 (-1095)) $)) (-15 -3822 ((-1100) $))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 61)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-3113 (((-110) $) 20)) (-3001 (((-3 |#1| "failed") $) 23)) (-2409 ((|#1| $) 24)) (-2388 (($ $) 28)) (-1312 (((-3 $ "failed") $) NIL)) (-1297 (((-110) $) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-2697 ((|#1| $) 21)) (-1990 (($ $) 50)) (-3034 (((-1078) $) NIL)) (-3449 (((-110) $) 30)) (-2495 (((-1042) $) NIL)) (-1261 (($ (-717)) 48)) (-2656 (($ (-595 (-528))) 49)) (-2935 (((-717) $) 31)) (-2222 (((-802) $) 64) (($ (-528)) 45) (($ |#1|) 43)) (-3216 ((|#1| $ $) 19)) (-3742 (((-717)) 47)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 32 T CONST)) (-2982 (($) 14 T CONST)) (-2186 (((-110) $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) 40)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
-(((-49 |#1| |#2|) (-13 (-573 |#1|) (-972 |#1|) (-10 -8 (-15 -2697 (|#1| $)) (-15 -1990 ($ $)) (-15 -2388 ($ $)) (-15 -3216 (|#1| $ $)) (-15 -1261 ($ (-717))) (-15 -2656 ($ (-595 (-528)))) (-15 -3449 ((-110) $)) (-15 -3113 ((-110) $)) (-15 -2935 ((-717) $)) (-15 -3106 ($ (-1 |#1| |#1|) $)))) (-981) (-595 (-1095))) (T -49))
-((-2697 (*1 *2 *1) (-12 (-4 *2 (-981)) (-5 *1 (-49 *2 *3)) (-14 *3 (-595 (-1095))))) (-1990 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-981)) (-14 *3 (-595 (-1095))))) (-2388 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-981)) (-14 *3 (-595 (-1095))))) (-3216 (*1 *2 *1 *1) (-12 (-4 *2 (-981)) (-5 *1 (-49 *2 *3)) (-14 *3 (-595 (-1095))))) (-1261 (*1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-49 *3 *4)) (-4 *3 (-981)) (-14 *4 (-595 (-1095))))) (-2656 (*1 *1 *2) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-49 *3 *4)) (-4 *3 (-981)) (-14 *4 (-595 (-1095))))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-981)) (-14 *4 (-595 (-1095))))) (-3113 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-981)) (-14 *4 (-595 (-1095))))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-49 *3 *4)) (-4 *3 (-981)) (-14 *4 (-595 (-1095))))) (-3106 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-981)) (-5 *1 (-49 *3 *4)) (-14 *4 (-595 (-1095))))))
-(-13 (-573 |#1|) (-972 |#1|) (-10 -8 (-15 -2697 (|#1| $)) (-15 -1990 ($ $)) (-15 -2388 ($ $)) (-15 -3216 (|#1| $ $)) (-15 -1261 ($ (-717))) (-15 -2656 ($ (-595 (-528)))) (-15 -3449 ((-110) $)) (-15 -3113 ((-110) $)) (-15 -2935 ((-717) $)) (-15 -3106 ($ (-1 |#1| |#1|) $))))
-((-3113 (((-110) (-51)) 13)) (-3001 (((-3 |#1| "failed") (-51)) 21)) (-2409 ((|#1| (-51)) 22)) (-2222 (((-51) |#1|) 18)))
-(((-50 |#1|) (-10 -7 (-15 -2222 ((-51) |#1|)) (-15 -3001 ((-3 |#1| "failed") (-51))) (-15 -3113 ((-110) (-51))) (-15 -2409 (|#1| (-51)))) (-1131)) (T -50))
-((-2409 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1131)))) (-3113 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-110)) (-5 *1 (-50 *4)) (-4 *4 (-1131)))) (-3001 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1131)))) (-2222 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1131)))))
-(-10 -7 (-15 -2222 ((-51) |#1|)) (-15 -3001 ((-3 |#1| "failed") (-51))) (-15 -3113 ((-110) (-51))) (-15 -2409 (|#1| (-51))))
-((-2207 (((-110) $ $) NIL)) (-2421 (((-1078) (-110)) 25)) (-3929 (((-802) $) 24)) (-2392 (((-720) $) 12)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-1421 (((-802) $) 16)) (-4199 (((-1027) $) 14)) (-2222 (((-802) $) 32)) (-1366 (($ (-1027) (-720)) 33)) (-2186 (((-110) $ $) 18)))
-(((-51) (-13 (-1023) (-10 -8 (-15 -1366 ($ (-1027) (-720))) (-15 -1421 ((-802) $)) (-15 -3929 ((-802) $)) (-15 -4199 ((-1027) $)) (-15 -2392 ((-720) $)) (-15 -2421 ((-1078) (-110)))))) (T -51))
-((-1366 (*1 *1 *2 *3) (-12 (-5 *2 (-1027)) (-5 *3 (-720)) (-5 *1 (-51)))) (-1421 (*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-51)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-51)))) (-4199 (*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-51)))) (-2392 (*1 *2 *1) (-12 (-5 *2 (-720)) (-5 *1 (-51)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-1078)) (-5 *1 (-51)))))
-(-13 (-1023) (-10 -8 (-15 -1366 ($ (-1027) (-720))) (-15 -1421 ((-802) $)) (-15 -3929 ((-802) $)) (-15 -4199 ((-1027) $)) (-15 -2392 ((-720) $)) (-15 -2421 ((-1078) (-110)))))
-((-2834 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
-(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -2834 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-981) (-597 |#1|) (-795 |#1|)) (T -52))
-((-2834 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-597 *5)) (-4 *5 (-981)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-795 *5)))))
-(-10 -7 (-15 -2834 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-1442 ((|#3| |#3| (-595 (-1095))) 35)) (-3899 ((|#3| (-595 (-1002 |#1| |#2| |#3|)) |#3| (-860)) 22) ((|#3| (-595 (-1002 |#1| |#2| |#3|)) |#3|) 20)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3899 (|#3| (-595 (-1002 |#1| |#2| |#3|)) |#3|)) (-15 -3899 (|#3| (-595 (-1002 |#1| |#2| |#3|)) |#3| (-860))) (-15 -1442 (|#3| |#3| (-595 (-1095))))) (-1023) (-13 (-981) (-825 |#1|) (-793) (-570 (-831 |#1|))) (-13 (-410 |#2|) (-825 |#1|) (-570 (-831 |#1|)))) (T -53))
-((-1442 (*1 *2 *2 *3) (-12 (-5 *3 (-595 (-1095))) (-4 *4 (-1023)) (-4 *5 (-13 (-981) (-825 *4) (-793) (-570 (-831 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-410 *5) (-825 *4) (-570 (-831 *4)))))) (-3899 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-595 (-1002 *5 *6 *2))) (-5 *4 (-860)) (-4 *5 (-1023)) (-4 *6 (-13 (-981) (-825 *5) (-793) (-570 (-831 *5)))) (-4 *2 (-13 (-410 *6) (-825 *5) (-570 (-831 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-3899 (*1 *2 *3 *2) (-12 (-5 *3 (-595 (-1002 *4 *5 *2))) (-4 *4 (-1023)) (-4 *5 (-13 (-981) (-825 *4) (-793) (-570 (-831 *4)))) (-4 *2 (-13 (-410 *5) (-825 *4) (-570 (-831 *4)))) (-5 *1 (-53 *4 *5 *2)))))
-(-10 -7 (-15 -3899 (|#3| (-595 (-1002 |#1| |#2| |#3|)) |#3|)) (-15 -3899 (|#3| (-595 (-1002 |#1| |#2| |#3|)) |#3| (-860))) (-15 -1442 (|#3| |#3| (-595 (-1095)))))
-((-3535 (((-110) $ (-717)) 23)) (-3898 (($ $ (-528) |#3|) 46)) (-2542 (($ $ (-528) |#4|) 50)) (-4203 ((|#3| $ (-528)) 59)) (-3342 (((-595 |#2|) $) 30)) (-2029 (((-110) $ (-717)) 25)) (-2408 (((-110) |#2| $) 54)) (-2800 (($ (-1 |#2| |#2|) $) 37)) (-3106 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-3358 (((-110) $ (-717)) 24)) (-1332 (($ $ |#2|) 34)) (-1818 (((-110) (-1 (-110) |#2|) $) 19)) (-3043 ((|#2| $ (-528) (-528)) NIL) ((|#2| $ (-528) (-528) |#2|) 27)) (-2507 (((-717) (-1 (-110) |#2|) $) 28) (((-717) |#2| $) 56)) (-2406 (($ $) 33)) (-3946 ((|#4| $ (-528)) 62)) (-2222 (((-802) $) 68)) (-3451 (((-110) (-1 (-110) |#2|) $) 18)) (-2186 (((-110) $ $) 53)) (-2138 (((-717) $) 26)))
-(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2222 ((-802) |#1|)) (-15 -3106 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3106 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2800 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2542 (|#1| |#1| (-528) |#4|)) (-15 -3898 (|#1| |#1| (-528) |#3|)) (-15 -3342 ((-595 |#2|) |#1|)) (-15 -3946 (|#4| |#1| (-528))) (-15 -4203 (|#3| |#1| (-528))) (-15 -3043 (|#2| |#1| (-528) (-528) |#2|)) (-15 -3043 (|#2| |#1| (-528) (-528))) (-15 -1332 (|#1| |#1| |#2|)) (-15 -2186 ((-110) |#1| |#1|)) (-15 -2408 ((-110) |#2| |#1|)) (-15 -2507 ((-717) |#2| |#1|)) (-15 -2507 ((-717) (-1 (-110) |#2|) |#1|)) (-15 -1818 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3451 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3106 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2138 ((-717) |#1|)) (-15 -3535 ((-110) |#1| (-717))) (-15 -2029 ((-110) |#1| (-717))) (-15 -3358 ((-110) |#1| (-717))) (-15 -2406 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1131) (-353 |#2|) (-353 |#2|)) (T -54))
-NIL
-(-10 -8 (-15 -2222 ((-802) |#1|)) (-15 -3106 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3106 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2800 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2542 (|#1| |#1| (-528) |#4|)) (-15 -3898 (|#1| |#1| (-528) |#3|)) (-15 -3342 ((-595 |#2|) |#1|)) (-15 -3946 (|#4| |#1| (-528))) (-15 -4203 (|#3| |#1| (-528))) (-15 -3043 (|#2| |#1| (-528) (-528) |#2|)) (-15 -3043 (|#2| |#1| (-528) (-528))) (-15 -1332 (|#1| |#1| |#2|)) (-15 -2186 ((-110) |#1| |#1|)) (-15 -2408 ((-110) |#2| |#1|)) (-15 -2507 ((-717) |#2| |#1|)) (-15 -2507 ((-717) (-1 (-110) |#2|) |#1|)) (-15 -1818 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3451 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3106 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2138 ((-717) |#1|)) (-15 -3535 ((-110) |#1| (-717))) (-15 -2029 ((-110) |#1| (-717))) (-15 -3358 ((-110) |#1| (-717))) (-15 -2406 (|#1| |#1|)))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-3535 (((-110) $ (-717)) 8)) (-2381 ((|#1| $ (-528) (-528) |#1|) 44)) (-3898 (($ $ (-528) |#2|) 42)) (-2542 (($ $ (-528) |#3|) 41)) (-2816 (($) 7 T CONST)) (-4203 ((|#2| $ (-528)) 46)) (-2812 ((|#1| $ (-528) (-528) |#1|) 43)) (-2742 ((|#1| $ (-528) (-528)) 48)) (-3342 (((-595 |#1|) $) 30)) (-1358 (((-717) $) 51)) (-3462 (($ (-717) (-717) |#1|) 57)) (-1370 (((-717) $) 50)) (-2029 (((-110) $ (-717)) 9)) (-3065 (((-528) $) 55)) (-2567 (((-528) $) 53)) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-3224 (((-528) $) 54)) (-1268 (((-528) $) 52)) (-2800 (($ (-1 |#1| |#1|) $) 34)) (-3106 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3358 (((-110) $ (-717)) 10)) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-1332 (($ $ |#1|) 56)) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3043 ((|#1| $ (-528) (-528)) 49) ((|#1| $ (-528) (-528) |#1|) 47)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-3946 ((|#3| $ (-528)) 45)) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-55 |#1| |#2| |#3|) (-133) (-1131) (-353 |t#1|) (-353 |t#1|)) (T -55))
-((-3106 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-3462 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-717)) (-4 *3 (-1131)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-1332 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)))) (-3065 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-528)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-528)))) (-2567 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-528)))) (-1268 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-528)))) (-1358 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-717)))) (-1370 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-717)))) (-3043 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-528)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-353 *2)) (-4 *5 (-353 *2)) (-4 *2 (-1131)))) (-2742 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-528)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-353 *2)) (-4 *5 (-353 *2)) (-4 *2 (-1131)))) (-3043 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-528)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1131)) (-4 *4 (-353 *2)) (-4 *5 (-353 *2)))) (-4203 (*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1131)) (-4 *5 (-353 *4)) (-4 *2 (-353 *4)))) (-3946 (*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1131)) (-4 *5 (-353 *4)) (-4 *2 (-353 *4)))) (-3342 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-595 *3)))) (-2381 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-528)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1131)) (-4 *4 (-353 *2)) (-4 *5 (-353 *2)))) (-2812 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-528)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1131)) (-4 *4 (-353 *2)) (-4 *5 (-353 *2)))) (-3898 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-528)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1131)) (-4 *3 (-353 *4)) (-4 *5 (-353 *4)))) (-2542 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-528)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1131)) (-4 *5 (-353 *4)) (-4 *3 (-353 *4)))) (-2800 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-3106 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-3106 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))))
-(-13 (-467 |t#1|) (-10 -8 (-6 -4265) (-6 -4264) (-15 -3462 ($ (-717) (-717) |t#1|)) (-15 -1332 ($ $ |t#1|)) (-15 -3065 ((-528) $)) (-15 -3224 ((-528) $)) (-15 -2567 ((-528) $)) (-15 -1268 ((-528) $)) (-15 -1358 ((-717) $)) (-15 -1370 ((-717) $)) (-15 -3043 (|t#1| $ (-528) (-528))) (-15 -2742 (|t#1| $ (-528) (-528))) (-15 -3043 (|t#1| $ (-528) (-528) |t#1|)) (-15 -4203 (|t#2| $ (-528))) (-15 -3946 (|t#3| $ (-528))) (-15 -3342 ((-595 |t#1|) $)) (-15 -2381 (|t#1| $ (-528) (-528) |t#1|)) (-15 -2812 (|t#1| $ (-528) (-528) |t#1|)) (-15 -3898 ($ $ (-528) |t#2|)) (-15 -2542 ($ $ (-528) |t#3|)) (-15 -3106 ($ (-1 |t#1| |t#1|) $)) (-15 -2800 ($ (-1 |t#1| |t#1|) $)) (-15 -3106 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3106 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-33) . T) ((-99) |has| |#1| (-1023)) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-569 (-802)))) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-467 |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-1023) |has| |#1| (-1023)) ((-1131) . T))
-((-3718 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-1422 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-3106 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13)))
-(((-56 |#1| |#2|) (-10 -7 (-15 -3718 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1422 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3106 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1131) (-1131)) (T -56))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-1422 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) (-5 *1 (-56 *5 *2)))) (-3718 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1131)) (-4 *5 (-1131)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))))
-(-10 -7 (-15 -3718 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1422 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3106 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|))))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-1444 (((-1182) $ (-528) (-528)) NIL (|has| $ (-6 -4265)))) (-3608 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-793)))) (-3863 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4265))) (($ $) NIL (-12 (|has| $ (-6 -4265)) (|has| |#1| (-793))))) (-1289 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-793)))) (-3535 (((-110) $ (-717)) NIL)) (-2381 ((|#1| $ (-528) |#1|) 11 (|has| $ (-6 -4265))) ((|#1| $ (-1144 (-528)) |#1|) NIL (|has| $ (-6 -4265)))) (-1573 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2816 (($) NIL T CONST)) (-2472 (($ $) NIL (|has| $ (-6 -4265)))) (-3009 (($ $) NIL)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2280 (($ |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4264)))) (-2812 ((|#1| $ (-528) |#1|) NIL (|has| $ (-6 -4265)))) (-2742 ((|#1| $ (-528)) NIL)) (-3140 (((-528) (-1 (-110) |#1|) $) NIL) (((-528) |#1| $) NIL (|has| |#1| (-1023))) (((-528) |#1| $ (-528)) NIL (|has| |#1| (-1023)))) (-3342 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2218 (($ (-595 |#1|)) 13) (($ (-717) |#1|) 14)) (-3462 (($ (-717) |#1|) 9)) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-528) $) NIL (|has| (-528) (-793)))) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-1356 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-793)))) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-1709 (((-528) $) NIL (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-2800 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-3939 (($ |#1| $ (-528)) NIL) (($ $ $ (-528)) NIL)) (-2084 (((-595 (-528)) $) NIL)) (-3966 (((-110) (-528) $) NIL)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-2890 ((|#1| $) NIL (|has| (-528) (-793)))) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1332 (($ $ |#1|) NIL (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2861 (((-595 |#1|) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) 7)) (-3043 ((|#1| $ (-528) |#1|) NIL) ((|#1| $ (-528)) NIL) (($ $ (-1144 (-528))) NIL)) (-1745 (($ $ (-528)) NIL) (($ $ (-1144 (-528))) NIL)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3761 (($ $ $ (-528)) NIL (|has| $ (-6 -4265)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) NIL (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) NIL)) (-3400 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-595 $)) NIL)) (-2222 (((-802) $) NIL (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2218 ($ (-595 |#1|))) (-15 -2218 ($ (-717) |#1|)))) (-1131)) (T -57))
-((-2218 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1131)) (-5 *1 (-57 *3)))) (-2218 (*1 *1 *2 *3) (-12 (-5 *2 (-717)) (-5 *1 (-57 *3)) (-4 *3 (-1131)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -2218 ($ (-595 |#1|))) (-15 -2218 ($ (-717) |#1|))))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3535 (((-110) $ (-717)) NIL)) (-2381 ((|#1| $ (-528) (-528) |#1|) NIL)) (-3898 (($ $ (-528) (-57 |#1|)) NIL)) (-2542 (($ $ (-528) (-57 |#1|)) NIL)) (-2816 (($) NIL T CONST)) (-4203 (((-57 |#1|) $ (-528)) NIL)) (-2812 ((|#1| $ (-528) (-528) |#1|) NIL)) (-2742 ((|#1| $ (-528) (-528)) NIL)) (-3342 (((-595 |#1|) $) NIL)) (-1358 (((-717) $) NIL)) (-3462 (($ (-717) (-717) |#1|) NIL)) (-1370 (((-717) $) NIL)) (-2029 (((-110) $ (-717)) NIL)) (-3065 (((-528) $) NIL)) (-2567 (((-528) $) NIL)) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3224 (((-528) $) NIL)) (-1268 (((-528) $) NIL)) (-2800 (($ (-1 |#1| |#1|) $) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-1332 (($ $ |#1|) NIL)) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#1| $ (-528) (-528)) NIL) ((|#1| $ (-528) (-528) |#1|) NIL)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2406 (($ $) NIL)) (-3946 (((-57 |#1|) $ (-528)) NIL)) (-2222 (((-802) $) NIL (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4265))) (-1131)) (T -58))
-NIL
-(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4265)))
-((-3001 (((-3 $ "failed") (-1177 (-296 (-359)))) 74) (((-3 $ "failed") (-1177 (-296 (-528)))) 63) (((-3 $ "failed") (-1177 (-891 (-359)))) 94) (((-3 $ "failed") (-1177 (-891 (-528)))) 84) (((-3 $ "failed") (-1177 (-387 (-891 (-359))))) 52) (((-3 $ "failed") (-1177 (-387 (-891 (-528))))) 39)) (-2409 (($ (-1177 (-296 (-359)))) 70) (($ (-1177 (-296 (-528)))) 59) (($ (-1177 (-891 (-359)))) 90) (($ (-1177 (-891 (-528)))) 80) (($ (-1177 (-387 (-891 (-359))))) 48) (($ (-1177 (-387 (-891 (-528))))) 32)) (-3105 (((-1182) $) 120)) (-2222 (((-802) $) 113) (($ (-595 (-310))) 103) (($ (-310)) 97) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 101) (($ (-1177 (-319 (-2233 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2233) (-645)))) 31)))
-(((-59 |#1|) (-13 (-420) (-10 -8 (-15 -2222 ($ (-1177 (-319 (-2233 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2233) (-645))))))) (-1095)) (T -59))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1177 (-319 (-2233 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2233) (-645)))) (-5 *1 (-59 *3)) (-14 *3 (-1095)))))
-(-13 (-420) (-10 -8 (-15 -2222 ($ (-1177 (-319 (-2233 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2233) (-645)))))))
-((-3105 (((-1182) $) 53) (((-1182)) 54)) (-2222 (((-802) $) 50)))
-(((-60 |#1|) (-13 (-375) (-10 -7 (-15 -3105 ((-1182))))) (-1095)) (T -60))
-((-3105 (*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-60 *3)) (-14 *3 (-1095)))))
-(-13 (-375) (-10 -7 (-15 -3105 ((-1182)))))
-((-3001 (((-3 $ "failed") (-1177 (-296 (-359)))) 144) (((-3 $ "failed") (-1177 (-296 (-528)))) 134) (((-3 $ "failed") (-1177 (-891 (-359)))) 164) (((-3 $ "failed") (-1177 (-891 (-528)))) 154) (((-3 $ "failed") (-1177 (-387 (-891 (-359))))) 123) (((-3 $ "failed") (-1177 (-387 (-891 (-528))))) 111)) (-2409 (($ (-1177 (-296 (-359)))) 140) (($ (-1177 (-296 (-528)))) 130) (($ (-1177 (-891 (-359)))) 160) (($ (-1177 (-891 (-528)))) 150) (($ (-1177 (-387 (-891 (-359))))) 119) (($ (-1177 (-387 (-891 (-528))))) 104)) (-3105 (((-1182) $) 97)) (-2222 (((-802) $) 91) (($ (-595 (-310))) 29) (($ (-310)) 34) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 32) (($ (-1177 (-319 (-2233) (-2233 (QUOTE XC)) (-645)))) 89)))
-(((-61 |#1|) (-13 (-420) (-10 -8 (-15 -2222 ($ (-1177 (-319 (-2233) (-2233 (QUOTE XC)) (-645))))))) (-1095)) (T -61))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1177 (-319 (-2233) (-2233 (QUOTE XC)) (-645)))) (-5 *1 (-61 *3)) (-14 *3 (-1095)))))
-(-13 (-420) (-10 -8 (-15 -2222 ($ (-1177 (-319 (-2233) (-2233 (QUOTE XC)) (-645)))))))
-((-3001 (((-3 $ "failed") (-296 (-359))) 41) (((-3 $ "failed") (-296 (-528))) 46) (((-3 $ "failed") (-891 (-359))) 50) (((-3 $ "failed") (-891 (-528))) 54) (((-3 $ "failed") (-387 (-891 (-359)))) 36) (((-3 $ "failed") (-387 (-891 (-528)))) 29)) (-2409 (($ (-296 (-359))) 39) (($ (-296 (-528))) 44) (($ (-891 (-359))) 48) (($ (-891 (-528))) 52) (($ (-387 (-891 (-359)))) 34) (($ (-387 (-891 (-528)))) 26)) (-3105 (((-1182) $) 76)) (-2222 (((-802) $) 69) (($ (-595 (-310))) 61) (($ (-310)) 66) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 64) (($ (-319 (-2233 (QUOTE X)) (-2233) (-645))) 25)))
-(((-62 |#1|) (-13 (-376) (-10 -8 (-15 -2222 ($ (-319 (-2233 (QUOTE X)) (-2233) (-645)))))) (-1095)) (T -62))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-319 (-2233 (QUOTE X)) (-2233) (-645))) (-5 *1 (-62 *3)) (-14 *3 (-1095)))))
-(-13 (-376) (-10 -8 (-15 -2222 ($ (-319 (-2233 (QUOTE X)) (-2233) (-645))))))
-((-3001 (((-3 $ "failed") (-635 (-296 (-359)))) 109) (((-3 $ "failed") (-635 (-296 (-528)))) 97) (((-3 $ "failed") (-635 (-891 (-359)))) 131) (((-3 $ "failed") (-635 (-891 (-528)))) 120) (((-3 $ "failed") (-635 (-387 (-891 (-359))))) 85) (((-3 $ "failed") (-635 (-387 (-891 (-528))))) 71)) (-2409 (($ (-635 (-296 (-359)))) 105) (($ (-635 (-296 (-528)))) 93) (($ (-635 (-891 (-359)))) 127) (($ (-635 (-891 (-528)))) 116) (($ (-635 (-387 (-891 (-359))))) 81) (($ (-635 (-387 (-891 (-528))))) 64)) (-3105 (((-1182) $) 139)) (-2222 (((-802) $) 133) (($ (-595 (-310))) 28) (($ (-310)) 33) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 31) (($ (-635 (-319 (-2233) (-2233 (QUOTE X) (QUOTE HESS)) (-645)))) 54)))
-(((-63 |#1|) (-13 (-364) (-10 -8 (-15 -2222 ($ (-635 (-319 (-2233) (-2233 (QUOTE X) (QUOTE HESS)) (-645))))))) (-1095)) (T -63))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-635 (-319 (-2233) (-2233 (QUOTE X) (QUOTE HESS)) (-645)))) (-5 *1 (-63 *3)) (-14 *3 (-1095)))))
-(-13 (-364) (-10 -8 (-15 -2222 ($ (-635 (-319 (-2233) (-2233 (QUOTE X) (QUOTE HESS)) (-645)))))))
-((-3001 (((-3 $ "failed") (-296 (-359))) 59) (((-3 $ "failed") (-296 (-528))) 64) (((-3 $ "failed") (-891 (-359))) 68) (((-3 $ "failed") (-891 (-528))) 72) (((-3 $ "failed") (-387 (-891 (-359)))) 54) (((-3 $ "failed") (-387 (-891 (-528)))) 47)) (-2409 (($ (-296 (-359))) 57) (($ (-296 (-528))) 62) (($ (-891 (-359))) 66) (($ (-891 (-528))) 70) (($ (-387 (-891 (-359)))) 52) (($ (-387 (-891 (-528)))) 44)) (-3105 (((-1182) $) 81)) (-2222 (((-802) $) 75) (($ (-595 (-310))) 28) (($ (-310)) 33) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 31) (($ (-319 (-2233) (-2233 (QUOTE XC)) (-645))) 39)))
-(((-64 |#1|) (-13 (-376) (-10 -8 (-15 -2222 ($ (-319 (-2233) (-2233 (QUOTE XC)) (-645)))))) (-1095)) (T -64))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-319 (-2233) (-2233 (QUOTE XC)) (-645))) (-5 *1 (-64 *3)) (-14 *3 (-1095)))))
-(-13 (-376) (-10 -8 (-15 -2222 ($ (-319 (-2233) (-2233 (QUOTE XC)) (-645))))))
-((-3105 (((-1182) $) 63)) (-2222 (((-802) $) 57) (($ (-635 (-645))) 49) (($ (-595 (-310))) 48) (($ (-310)) 55) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 53)))
-(((-65 |#1|) (-363) (-1095)) (T -65))
-NIL
-(-363)
-((-3105 (((-1182) $) 64)) (-2222 (((-802) $) 58) (($ (-635 (-645))) 50) (($ (-595 (-310))) 49) (($ (-310)) 52) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 55)))
-(((-66 |#1|) (-363) (-1095)) (T -66))
-NIL
-(-363)
-((-3105 (((-1182) $) NIL) (((-1182)) 32)) (-2222 (((-802) $) NIL)))
-(((-67 |#1|) (-13 (-375) (-10 -7 (-15 -3105 ((-1182))))) (-1095)) (T -67))
-((-3105 (*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-67 *3)) (-14 *3 (-1095)))))
-(-13 (-375) (-10 -7 (-15 -3105 ((-1182)))))
-((-3105 (((-1182) $) 73)) (-2222 (((-802) $) 67) (($ (-635 (-645))) 59) (($ (-595 (-310))) 61) (($ (-310)) 64) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 58)))
-(((-68 |#1|) (-363) (-1095)) (T -68))
-NIL
-(-363)
-((-3001 (((-3 $ "failed") (-1177 (-296 (-359)))) 103) (((-3 $ "failed") (-1177 (-296 (-528)))) 92) (((-3 $ "failed") (-1177 (-891 (-359)))) 123) (((-3 $ "failed") (-1177 (-891 (-528)))) 113) (((-3 $ "failed") (-1177 (-387 (-891 (-359))))) 81) (((-3 $ "failed") (-1177 (-387 (-891 (-528))))) 68)) (-2409 (($ (-1177 (-296 (-359)))) 99) (($ (-1177 (-296 (-528)))) 88) (($ (-1177 (-891 (-359)))) 119) (($ (-1177 (-891 (-528)))) 109) (($ (-1177 (-387 (-891 (-359))))) 77) (($ (-1177 (-387 (-891 (-528))))) 61)) (-3105 (((-1182) $) 136)) (-2222 (((-802) $) 130) (($ (-595 (-310))) 125) (($ (-310)) 128) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 53) (($ (-1177 (-319 (-2233 (QUOTE X)) (-2233 (QUOTE -4085)) (-645)))) 54)))
-(((-69 |#1|) (-13 (-420) (-10 -8 (-15 -2222 ($ (-1177 (-319 (-2233 (QUOTE X)) (-2233 (QUOTE -4085)) (-645))))))) (-1095)) (T -69))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1177 (-319 (-2233 (QUOTE X)) (-2233 (QUOTE -4085)) (-645)))) (-5 *1 (-69 *3)) (-14 *3 (-1095)))))
-(-13 (-420) (-10 -8 (-15 -2222 ($ (-1177 (-319 (-2233 (QUOTE X)) (-2233 (QUOTE -4085)) (-645)))))))
-((-3105 (((-1182) $) 32) (((-1182)) 31)) (-2222 (((-802) $) 35)))
-(((-70 |#1|) (-13 (-375) (-10 -7 (-15 -3105 ((-1182))))) (-1095)) (T -70))
-((-3105 (*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-70 *3)) (-14 *3 (-1095)))))
-(-13 (-375) (-10 -7 (-15 -3105 ((-1182)))))
-((-3105 (((-1182) $) 63)) (-2222 (((-802) $) 57) (($ (-635 (-645))) 49) (($ (-595 (-310))) 51) (($ (-310)) 54) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 48)))
-(((-71 |#1|) (-363) (-1095)) (T -71))
-NIL
-(-363)
-((-3001 (((-3 $ "failed") (-1177 (-296 (-359)))) 125) (((-3 $ "failed") (-1177 (-296 (-528)))) 115) (((-3 $ "failed") (-1177 (-891 (-359)))) 145) (((-3 $ "failed") (-1177 (-891 (-528)))) 135) (((-3 $ "failed") (-1177 (-387 (-891 (-359))))) 105) (((-3 $ "failed") (-1177 (-387 (-891 (-528))))) 93)) (-2409 (($ (-1177 (-296 (-359)))) 121) (($ (-1177 (-296 (-528)))) 111) (($ (-1177 (-891 (-359)))) 141) (($ (-1177 (-891 (-528)))) 131) (($ (-1177 (-387 (-891 (-359))))) 101) (($ (-1177 (-387 (-891 (-528))))) 86)) (-3105 (((-1182) $) 78)) (-2222 (((-802) $) 27) (($ (-595 (-310))) 68) (($ (-310)) 64) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 71) (($ (-1177 (-319 (-2233) (-2233 (QUOTE X)) (-645)))) 65)))
-(((-72 |#1|) (-13 (-420) (-10 -8 (-15 -2222 ($ (-1177 (-319 (-2233) (-2233 (QUOTE X)) (-645))))))) (-1095)) (T -72))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1177 (-319 (-2233) (-2233 (QUOTE X)) (-645)))) (-5 *1 (-72 *3)) (-14 *3 (-1095)))))
-(-13 (-420) (-10 -8 (-15 -2222 ($ (-1177 (-319 (-2233) (-2233 (QUOTE X)) (-645)))))))
-((-3001 (((-3 $ "failed") (-1177 (-296 (-359)))) 130) (((-3 $ "failed") (-1177 (-296 (-528)))) 119) (((-3 $ "failed") (-1177 (-891 (-359)))) 150) (((-3 $ "failed") (-1177 (-891 (-528)))) 140) (((-3 $ "failed") (-1177 (-387 (-891 (-359))))) 108) (((-3 $ "failed") (-1177 (-387 (-891 (-528))))) 95)) (-2409 (($ (-1177 (-296 (-359)))) 126) (($ (-1177 (-296 (-528)))) 115) (($ (-1177 (-891 (-359)))) 146) (($ (-1177 (-891 (-528)))) 136) (($ (-1177 (-387 (-891 (-359))))) 104) (($ (-1177 (-387 (-891 (-528))))) 88)) (-3105 (((-1182) $) 79)) (-2222 (((-802) $) 71) (($ (-595 (-310))) NIL) (($ (-310)) NIL) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) NIL) (($ (-1177 (-319 (-2233 (QUOTE X) (QUOTE EPS)) (-2233 (QUOTE -4085)) (-645)))) 66)))
-(((-73 |#1| |#2| |#3|) (-13 (-420) (-10 -8 (-15 -2222 ($ (-1177 (-319 (-2233 (QUOTE X) (QUOTE EPS)) (-2233 (QUOTE -4085)) (-645))))))) (-1095) (-1095) (-1095)) (T -73))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1177 (-319 (-2233 (QUOTE X) (QUOTE EPS)) (-2233 (QUOTE -4085)) (-645)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1095)) (-14 *4 (-1095)) (-14 *5 (-1095)))))
-(-13 (-420) (-10 -8 (-15 -2222 ($ (-1177 (-319 (-2233 (QUOTE X) (QUOTE EPS)) (-2233 (QUOTE -4085)) (-645)))))))
-((-3001 (((-3 $ "failed") (-1177 (-296 (-359)))) 134) (((-3 $ "failed") (-1177 (-296 (-528)))) 123) (((-3 $ "failed") (-1177 (-891 (-359)))) 154) (((-3 $ "failed") (-1177 (-891 (-528)))) 144) (((-3 $ "failed") (-1177 (-387 (-891 (-359))))) 112) (((-3 $ "failed") (-1177 (-387 (-891 (-528))))) 99)) (-2409 (($ (-1177 (-296 (-359)))) 130) (($ (-1177 (-296 (-528)))) 119) (($ (-1177 (-891 (-359)))) 150) (($ (-1177 (-891 (-528)))) 140) (($ (-1177 (-387 (-891 (-359))))) 108) (($ (-1177 (-387 (-891 (-528))))) 92)) (-3105 (((-1182) $) 83)) (-2222 (((-802) $) 75) (($ (-595 (-310))) NIL) (($ (-310)) NIL) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) NIL) (($ (-1177 (-319 (-2233 (QUOTE EPS)) (-2233 (QUOTE YA) (QUOTE YB)) (-645)))) 70)))
-(((-74 |#1| |#2| |#3|) (-13 (-420) (-10 -8 (-15 -2222 ($ (-1177 (-319 (-2233 (QUOTE EPS)) (-2233 (QUOTE YA) (QUOTE YB)) (-645))))))) (-1095) (-1095) (-1095)) (T -74))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1177 (-319 (-2233 (QUOTE EPS)) (-2233 (QUOTE YA) (QUOTE YB)) (-645)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1095)) (-14 *4 (-1095)) (-14 *5 (-1095)))))
-(-13 (-420) (-10 -8 (-15 -2222 ($ (-1177 (-319 (-2233 (QUOTE EPS)) (-2233 (QUOTE YA) (QUOTE YB)) (-645)))))))
-((-3001 (((-3 $ "failed") (-296 (-359))) 82) (((-3 $ "failed") (-296 (-528))) 87) (((-3 $ "failed") (-891 (-359))) 91) (((-3 $ "failed") (-891 (-528))) 95) (((-3 $ "failed") (-387 (-891 (-359)))) 77) (((-3 $ "failed") (-387 (-891 (-528)))) 70)) (-2409 (($ (-296 (-359))) 80) (($ (-296 (-528))) 85) (($ (-891 (-359))) 89) (($ (-891 (-528))) 93) (($ (-387 (-891 (-359)))) 75) (($ (-387 (-891 (-528)))) 67)) (-3105 (((-1182) $) 62)) (-2222 (((-802) $) 50) (($ (-595 (-310))) 46) (($ (-310)) 56) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 54) (($ (-319 (-2233) (-2233 (QUOTE X)) (-645))) 47)))
-(((-75 |#1|) (-13 (-376) (-10 -8 (-15 -2222 ($ (-319 (-2233) (-2233 (QUOTE X)) (-645)))))) (-1095)) (T -75))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-319 (-2233) (-2233 (QUOTE X)) (-645))) (-5 *1 (-75 *3)) (-14 *3 (-1095)))))
-(-13 (-376) (-10 -8 (-15 -2222 ($ (-319 (-2233) (-2233 (QUOTE X)) (-645))))))
-((-3001 (((-3 $ "failed") (-296 (-359))) 46) (((-3 $ "failed") (-296 (-528))) 51) (((-3 $ "failed") (-891 (-359))) 55) (((-3 $ "failed") (-891 (-528))) 59) (((-3 $ "failed") (-387 (-891 (-359)))) 41) (((-3 $ "failed") (-387 (-891 (-528)))) 34)) (-2409 (($ (-296 (-359))) 44) (($ (-296 (-528))) 49) (($ (-891 (-359))) 53) (($ (-891 (-528))) 57) (($ (-387 (-891 (-359)))) 39) (($ (-387 (-891 (-528)))) 31)) (-3105 (((-1182) $) 80)) (-2222 (((-802) $) 74) (($ (-595 (-310))) 66) (($ (-310)) 71) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 69) (($ (-319 (-2233) (-2233 (QUOTE X)) (-645))) 30)))
-(((-76 |#1|) (-13 (-376) (-10 -8 (-15 -2222 ($ (-319 (-2233) (-2233 (QUOTE X)) (-645)))))) (-1095)) (T -76))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-319 (-2233) (-2233 (QUOTE X)) (-645))) (-5 *1 (-76 *3)) (-14 *3 (-1095)))))
-(-13 (-376) (-10 -8 (-15 -2222 ($ (-319 (-2233) (-2233 (QUOTE X)) (-645))))))
-((-3001 (((-3 $ "failed") (-1177 (-296 (-359)))) 89) (((-3 $ "failed") (-1177 (-296 (-528)))) 78) (((-3 $ "failed") (-1177 (-891 (-359)))) 109) (((-3 $ "failed") (-1177 (-891 (-528)))) 99) (((-3 $ "failed") (-1177 (-387 (-891 (-359))))) 67) (((-3 $ "failed") (-1177 (-387 (-891 (-528))))) 54)) (-2409 (($ (-1177 (-296 (-359)))) 85) (($ (-1177 (-296 (-528)))) 74) (($ (-1177 (-891 (-359)))) 105) (($ (-1177 (-891 (-528)))) 95) (($ (-1177 (-387 (-891 (-359))))) 63) (($ (-1177 (-387 (-891 (-528))))) 47)) (-3105 (((-1182) $) 125)) (-2222 (((-802) $) 119) (($ (-595 (-310))) 112) (($ (-310)) 37) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 115) (($ (-1177 (-319 (-2233) (-2233 (QUOTE XC)) (-645)))) 38)))
-(((-77 |#1|) (-13 (-420) (-10 -8 (-15 -2222 ($ (-1177 (-319 (-2233) (-2233 (QUOTE XC)) (-645))))))) (-1095)) (T -77))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1177 (-319 (-2233) (-2233 (QUOTE XC)) (-645)))) (-5 *1 (-77 *3)) (-14 *3 (-1095)))))
-(-13 (-420) (-10 -8 (-15 -2222 ($ (-1177 (-319 (-2233) (-2233 (QUOTE XC)) (-645)))))))
-((-3001 (((-3 $ "failed") (-1177 (-296 (-359)))) 142) (((-3 $ "failed") (-1177 (-296 (-528)))) 132) (((-3 $ "failed") (-1177 (-891 (-359)))) 162) (((-3 $ "failed") (-1177 (-891 (-528)))) 152) (((-3 $ "failed") (-1177 (-387 (-891 (-359))))) 122) (((-3 $ "failed") (-1177 (-387 (-891 (-528))))) 110)) (-2409 (($ (-1177 (-296 (-359)))) 138) (($ (-1177 (-296 (-528)))) 128) (($ (-1177 (-891 (-359)))) 158) (($ (-1177 (-891 (-528)))) 148) (($ (-1177 (-387 (-891 (-359))))) 118) (($ (-1177 (-387 (-891 (-528))))) 103)) (-3105 (((-1182) $) 96)) (-2222 (((-802) $) 90) (($ (-595 (-310))) 81) (($ (-310)) 88) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 86) (($ (-1177 (-319 (-2233) (-2233 (QUOTE X)) (-645)))) 82)))
-(((-78 |#1|) (-13 (-420) (-10 -8 (-15 -2222 ($ (-1177 (-319 (-2233) (-2233 (QUOTE X)) (-645))))))) (-1095)) (T -78))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1177 (-319 (-2233) (-2233 (QUOTE X)) (-645)))) (-5 *1 (-78 *3)) (-14 *3 (-1095)))))
-(-13 (-420) (-10 -8 (-15 -2222 ($ (-1177 (-319 (-2233) (-2233 (QUOTE X)) (-645)))))))
-((-3001 (((-3 $ "failed") (-1177 (-296 (-359)))) 78) (((-3 $ "failed") (-1177 (-296 (-528)))) 67) (((-3 $ "failed") (-1177 (-891 (-359)))) 98) (((-3 $ "failed") (-1177 (-891 (-528)))) 88) (((-3 $ "failed") (-1177 (-387 (-891 (-359))))) 56) (((-3 $ "failed") (-1177 (-387 (-891 (-528))))) 43)) (-2409 (($ (-1177 (-296 (-359)))) 74) (($ (-1177 (-296 (-528)))) 63) (($ (-1177 (-891 (-359)))) 94) (($ (-1177 (-891 (-528)))) 84) (($ (-1177 (-387 (-891 (-359))))) 52) (($ (-1177 (-387 (-891 (-528))))) 36)) (-3105 (((-1182) $) 124)) (-2222 (((-802) $) 118) (($ (-595 (-310))) 109) (($ (-310)) 115) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 113) (($ (-1177 (-319 (-2233) (-2233 (QUOTE X)) (-645)))) 35)))
-(((-79 |#1|) (-13 (-420) (-10 -8 (-15 -2222 ($ (-1177 (-319 (-2233) (-2233 (QUOTE X)) (-645))))))) (-1095)) (T -79))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1177 (-319 (-2233) (-2233 (QUOTE X)) (-645)))) (-5 *1 (-79 *3)) (-14 *3 (-1095)))))
-(-13 (-420) (-10 -8 (-15 -2222 ($ (-1177 (-319 (-2233) (-2233 (QUOTE X)) (-645)))))))
-((-3001 (((-3 $ "failed") (-1177 (-296 (-359)))) 95) (((-3 $ "failed") (-1177 (-296 (-528)))) 84) (((-3 $ "failed") (-1177 (-891 (-359)))) 115) (((-3 $ "failed") (-1177 (-891 (-528)))) 105) (((-3 $ "failed") (-1177 (-387 (-891 (-359))))) 73) (((-3 $ "failed") (-1177 (-387 (-891 (-528))))) 60)) (-2409 (($ (-1177 (-296 (-359)))) 91) (($ (-1177 (-296 (-528)))) 80) (($ (-1177 (-891 (-359)))) 111) (($ (-1177 (-891 (-528)))) 101) (($ (-1177 (-387 (-891 (-359))))) 69) (($ (-1177 (-387 (-891 (-528))))) 53)) (-3105 (((-1182) $) 45)) (-2222 (((-802) $) 39) (($ (-595 (-310))) 29) (($ (-310)) 32) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 35) (($ (-1177 (-319 (-2233 (QUOTE X) (QUOTE -4085)) (-2233) (-645)))) 30)))
-(((-80 |#1|) (-13 (-420) (-10 -8 (-15 -2222 ($ (-1177 (-319 (-2233 (QUOTE X) (QUOTE -4085)) (-2233) (-645))))))) (-1095)) (T -80))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1177 (-319 (-2233 (QUOTE X) (QUOTE -4085)) (-2233) (-645)))) (-5 *1 (-80 *3)) (-14 *3 (-1095)))))
-(-13 (-420) (-10 -8 (-15 -2222 ($ (-1177 (-319 (-2233 (QUOTE X) (QUOTE -4085)) (-2233) (-645)))))))
-((-3001 (((-3 $ "failed") (-635 (-296 (-359)))) 115) (((-3 $ "failed") (-635 (-296 (-528)))) 104) (((-3 $ "failed") (-635 (-891 (-359)))) 137) (((-3 $ "failed") (-635 (-891 (-528)))) 126) (((-3 $ "failed") (-635 (-387 (-891 (-359))))) 93) (((-3 $ "failed") (-635 (-387 (-891 (-528))))) 80)) (-2409 (($ (-635 (-296 (-359)))) 111) (($ (-635 (-296 (-528)))) 100) (($ (-635 (-891 (-359)))) 133) (($ (-635 (-891 (-528)))) 122) (($ (-635 (-387 (-891 (-359))))) 89) (($ (-635 (-387 (-891 (-528))))) 73)) (-3105 (((-1182) $) 63)) (-2222 (((-802) $) 50) (($ (-595 (-310))) 57) (($ (-310)) 46) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 55) (($ (-635 (-319 (-2233 (QUOTE X) (QUOTE -4085)) (-2233) (-645)))) 47)))
-(((-81 |#1|) (-13 (-364) (-10 -8 (-15 -2222 ($ (-635 (-319 (-2233 (QUOTE X) (QUOTE -4085)) (-2233) (-645))))))) (-1095)) (T -81))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-635 (-319 (-2233 (QUOTE X) (QUOTE -4085)) (-2233) (-645)))) (-5 *1 (-81 *3)) (-14 *3 (-1095)))))
-(-13 (-364) (-10 -8 (-15 -2222 ($ (-635 (-319 (-2233 (QUOTE X) (QUOTE -4085)) (-2233) (-645)))))))
-((-3001 (((-3 $ "failed") (-635 (-296 (-359)))) 112) (((-3 $ "failed") (-635 (-296 (-528)))) 100) (((-3 $ "failed") (-635 (-891 (-359)))) 134) (((-3 $ "failed") (-635 (-891 (-528)))) 123) (((-3 $ "failed") (-635 (-387 (-891 (-359))))) 88) (((-3 $ "failed") (-635 (-387 (-891 (-528))))) 74)) (-2409 (($ (-635 (-296 (-359)))) 108) (($ (-635 (-296 (-528)))) 96) (($ (-635 (-891 (-359)))) 130) (($ (-635 (-891 (-528)))) 119) (($ (-635 (-387 (-891 (-359))))) 84) (($ (-635 (-387 (-891 (-528))))) 67)) (-3105 (((-1182) $) 59)) (-2222 (((-802) $) 53) (($ (-595 (-310))) 47) (($ (-310)) 50) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 44) (($ (-635 (-319 (-2233 (QUOTE X)) (-2233) (-645)))) 45)))
-(((-82 |#1|) (-13 (-364) (-10 -8 (-15 -2222 ($ (-635 (-319 (-2233 (QUOTE X)) (-2233) (-645))))))) (-1095)) (T -82))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-635 (-319 (-2233 (QUOTE X)) (-2233) (-645)))) (-5 *1 (-82 *3)) (-14 *3 (-1095)))))
-(-13 (-364) (-10 -8 (-15 -2222 ($ (-635 (-319 (-2233 (QUOTE X)) (-2233) (-645)))))))
-((-3001 (((-3 $ "failed") (-1177 (-296 (-359)))) 104) (((-3 $ "failed") (-1177 (-296 (-528)))) 93) (((-3 $ "failed") (-1177 (-891 (-359)))) 124) (((-3 $ "failed") (-1177 (-891 (-528)))) 114) (((-3 $ "failed") (-1177 (-387 (-891 (-359))))) 82) (((-3 $ "failed") (-1177 (-387 (-891 (-528))))) 69)) (-2409 (($ (-1177 (-296 (-359)))) 100) (($ (-1177 (-296 (-528)))) 89) (($ (-1177 (-891 (-359)))) 120) (($ (-1177 (-891 (-528)))) 110) (($ (-1177 (-387 (-891 (-359))))) 78) (($ (-1177 (-387 (-891 (-528))))) 62)) (-3105 (((-1182) $) 46)) (-2222 (((-802) $) 40) (($ (-595 (-310))) 49) (($ (-310)) 36) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 52) (($ (-1177 (-319 (-2233 (QUOTE X)) (-2233) (-645)))) 37)))
-(((-83 |#1|) (-13 (-420) (-10 -8 (-15 -2222 ($ (-1177 (-319 (-2233 (QUOTE X)) (-2233) (-645))))))) (-1095)) (T -83))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1177 (-319 (-2233 (QUOTE X)) (-2233) (-645)))) (-5 *1 (-83 *3)) (-14 *3 (-1095)))))
-(-13 (-420) (-10 -8 (-15 -2222 ($ (-1177 (-319 (-2233 (QUOTE X)) (-2233) (-645)))))))
-((-3001 (((-3 $ "failed") (-1177 (-296 (-359)))) 79) (((-3 $ "failed") (-1177 (-296 (-528)))) 68) (((-3 $ "failed") (-1177 (-891 (-359)))) 99) (((-3 $ "failed") (-1177 (-891 (-528)))) 89) (((-3 $ "failed") (-1177 (-387 (-891 (-359))))) 57) (((-3 $ "failed") (-1177 (-387 (-891 (-528))))) 44)) (-2409 (($ (-1177 (-296 (-359)))) 75) (($ (-1177 (-296 (-528)))) 64) (($ (-1177 (-891 (-359)))) 95) (($ (-1177 (-891 (-528)))) 85) (($ (-1177 (-387 (-891 (-359))))) 53) (($ (-1177 (-387 (-891 (-528))))) 37)) (-3105 (((-1182) $) 125)) (-2222 (((-802) $) 119) (($ (-595 (-310))) 110) (($ (-310)) 116) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 114) (($ (-1177 (-319 (-2233 (QUOTE X)) (-2233 (QUOTE -4085)) (-645)))) 36)))
-(((-84 |#1|) (-13 (-420) (-10 -8 (-15 -2222 ($ (-1177 (-319 (-2233 (QUOTE X)) (-2233 (QUOTE -4085)) (-645))))))) (-1095)) (T -84))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1177 (-319 (-2233 (QUOTE X)) (-2233 (QUOTE -4085)) (-645)))) (-5 *1 (-84 *3)) (-14 *3 (-1095)))))
-(-13 (-420) (-10 -8 (-15 -2222 ($ (-1177 (-319 (-2233 (QUOTE X)) (-2233 (QUOTE -4085)) (-645)))))))
-((-3001 (((-3 $ "failed") (-635 (-296 (-359)))) 113) (((-3 $ "failed") (-635 (-296 (-528)))) 101) (((-3 $ "failed") (-635 (-891 (-359)))) 135) (((-3 $ "failed") (-635 (-891 (-528)))) 124) (((-3 $ "failed") (-635 (-387 (-891 (-359))))) 89) (((-3 $ "failed") (-635 (-387 (-891 (-528))))) 75)) (-2409 (($ (-635 (-296 (-359)))) 109) (($ (-635 (-296 (-528)))) 97) (($ (-635 (-891 (-359)))) 131) (($ (-635 (-891 (-528)))) 120) (($ (-635 (-387 (-891 (-359))))) 85) (($ (-635 (-387 (-891 (-528))))) 68)) (-3105 (((-1182) $) 59)) (-2222 (((-802) $) 53) (($ (-595 (-310))) 43) (($ (-310)) 50) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 48) (($ (-635 (-319 (-2233 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2233) (-645)))) 44)))
-(((-85 |#1|) (-13 (-364) (-10 -8 (-15 -2222 ($ (-635 (-319 (-2233 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2233) (-645))))))) (-1095)) (T -85))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-635 (-319 (-2233 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2233) (-645)))) (-5 *1 (-85 *3)) (-14 *3 (-1095)))))
-(-13 (-364) (-10 -8 (-15 -2222 ($ (-635 (-319 (-2233 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2233) (-645)))))))
-((-3105 (((-1182) $) 44)) (-2222 (((-802) $) 38) (($ (-1177 (-645))) 92) (($ (-595 (-310))) 30) (($ (-310)) 35) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 33)))
-(((-86 |#1|) (-419) (-1095)) (T -86))
-NIL
-(-419)
-((-3001 (((-3 $ "failed") (-296 (-359))) 47) (((-3 $ "failed") (-296 (-528))) 52) (((-3 $ "failed") (-891 (-359))) 56) (((-3 $ "failed") (-891 (-528))) 60) (((-3 $ "failed") (-387 (-891 (-359)))) 42) (((-3 $ "failed") (-387 (-891 (-528)))) 35)) (-2409 (($ (-296 (-359))) 45) (($ (-296 (-528))) 50) (($ (-891 (-359))) 54) (($ (-891 (-528))) 58) (($ (-387 (-891 (-359)))) 40) (($ (-387 (-891 (-528)))) 32)) (-3105 (((-1182) $) 90)) (-2222 (((-802) $) 84) (($ (-595 (-310))) 78) (($ (-310)) 81) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 76) (($ (-319 (-2233 (QUOTE X)) (-2233 (QUOTE -4085)) (-645))) 31)))
-(((-87 |#1|) (-13 (-376) (-10 -8 (-15 -2222 ($ (-319 (-2233 (QUOTE X)) (-2233 (QUOTE -4085)) (-645)))))) (-1095)) (T -87))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-319 (-2233 (QUOTE X)) (-2233 (QUOTE -4085)) (-645))) (-5 *1 (-87 *3)) (-14 *3 (-1095)))))
-(-13 (-376) (-10 -8 (-15 -2222 ($ (-319 (-2233 (QUOTE X)) (-2233 (QUOTE -4085)) (-645))))))
-((-2899 (((-1177 (-635 |#1|)) (-635 |#1|)) 54)) (-4030 (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 (-595 (-860))))) |#2| (-860)) 44)) (-1229 (((-2 (|:| |minor| (-595 (-860))) (|:| -2589 |#2|) (|:| |minors| (-595 (-595 (-860)))) (|:| |ops| (-595 |#2|))) |#2| (-860)) 65 (|has| |#1| (-343)))))
-(((-88 |#1| |#2|) (-10 -7 (-15 -4030 ((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 (-595 (-860))))) |#2| (-860))) (-15 -2899 ((-1177 (-635 |#1|)) (-635 |#1|))) (IF (|has| |#1| (-343)) (-15 -1229 ((-2 (|:| |minor| (-595 (-860))) (|:| -2589 |#2|) (|:| |minors| (-595 (-595 (-860)))) (|:| |ops| (-595 |#2|))) |#2| (-860))) |%noBranch|)) (-520) (-605 |#1|)) (T -88))
-((-1229 (*1 *2 *3 *4) (-12 (-4 *5 (-343)) (-4 *5 (-520)) (-5 *2 (-2 (|:| |minor| (-595 (-860))) (|:| -2589 *3) (|:| |minors| (-595 (-595 (-860)))) (|:| |ops| (-595 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-860)) (-4 *3 (-605 *5)))) (-2899 (*1 *2 *3) (-12 (-4 *4 (-520)) (-5 *2 (-1177 (-635 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-635 *4)) (-4 *5 (-605 *4)))) (-4030 (*1 *2 *3 *4) (-12 (-4 *5 (-520)) (-5 *2 (-2 (|:| -2163 (-635 *5)) (|:| |vec| (-1177 (-595 (-860)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-860)) (-4 *3 (-605 *5)))))
-(-10 -7 (-15 -4030 ((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 (-595 (-860))))) |#2| (-860))) (-15 -2899 ((-1177 (-635 |#1|)) (-635 |#1|))) (IF (|has| |#1| (-343)) (-15 -1229 ((-2 (|:| |minor| (-595 (-860))) (|:| -2589 |#2|) (|:| |minors| (-595 (-595 (-860)))) (|:| |ops| (-595 |#2|))) |#2| (-860))) |%noBranch|))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-1513 ((|#1| $) 35)) (-3535 (((-110) $ (-717)) NIL)) (-2816 (($) NIL T CONST)) (-3712 ((|#1| |#1| $) 30)) (-4113 ((|#1| $) 28)) (-3342 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) NIL)) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2800 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-3934 ((|#1| $) NIL)) (-1950 (($ |#1| $) 31)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-1390 ((|#1| $) 29)) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) 16)) (-2147 (($) 39)) (-3972 (((-717) $) 26)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2406 (($ $) 15)) (-2222 (((-802) $) 25 (|has| |#1| (-569 (-802))))) (-2164 (($ (-595 |#1|)) NIL)) (-1857 (($ (-595 |#1|)) 37)) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 13 (|has| |#1| (-1023)))) (-2138 (((-717) $) 10 (|has| $ (-6 -4264)))))
-(((-89 |#1|) (-13 (-1043 |#1|) (-10 -8 (-15 -1857 ($ (-595 |#1|))))) (-1023)) (T -89))
-((-1857 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1023)) (-5 *1 (-89 *3)))))
-(-13 (-1043 |#1|) (-10 -8 (-15 -1857 ($ (-595 |#1|)))))
-((-2222 (((-802) $) 12) (((-1100) $) 8)))
-(((-90 |#1|) (-10 -8 (-15 -2222 ((-1100) |#1|)) (-15 -2222 ((-802) |#1|))) (-91)) (T -90))
-NIL
-(-10 -8 (-15 -2222 ((-1100) |#1|)) (-15 -2222 ((-802) |#1|)))
-((-2207 (((-110) $ $) 7)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11) (((-1100) $) 14)) (-2186 (((-110) $ $) 6)))
+((-4213 (((-110) $) 12)) (-4234 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-388 (-516)) $) 25) (($ $ (-388 (-516))) NIL)))
+(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-388 (-516)))) (-15 * (|#1| (-388 (-516)) |#1|)) (-15 -4213 ((-110) |#1|)) (-15 -4234 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-516) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-860) |#1|))) (-46 |#2| |#3|) (-984) (-740)) (T -45))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-388 (-516)))) (-15 * (|#1| (-388 (-516)) |#1|)) (-15 -4213 ((-110) |#1|)) (-15 -4234 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-516) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-860) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 51 (|has| |#1| (-523)))) (-2118 (($ $) 52 (|has| |#1| (-523)))) (-2116 (((-110) $) 54 (|has| |#1| (-523)))) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-4235 (($ $) 60)) (-3741 (((-3 $ "failed") $) 34)) (-2436 (((-110) $) 31)) (-4213 (((-110) $) 62)) (-3157 (($ |#1| |#2|) 61)) (-4234 (($ (-1 |#1| |#1|) $) 63)) (-3158 (($ $) 65)) (-3449 ((|#1| $) 66)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-3740 (((-3 $ "failed") $ $) 50 (|has| |#1| (-523)))) (-4223 ((|#2| $) 64)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ (-388 (-516))) 57 (|has| |#1| (-37 (-388 (-516))))) (($ $) 49 (|has| |#1| (-523))) (($ |#1|) 47 (|has| |#1| (-162)))) (-3959 ((|#1| $ |#2|) 59)) (-2965 (((-3 $ "failed") $) 48 (|has| |#1| (-138)))) (-3385 (((-719)) 29)) (-2117 (((-110) $ $) 53 (|has| |#1| (-523)))) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4224 (($ $ |#1|) 58 (|has| |#1| (-344)))) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-388 (-516)) $) 56 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) 55 (|has| |#1| (-37 (-388 (-516)))))))
+(((-46 |#1| |#2|) (-133) (-984) (-740)) (T -46))
+((-3449 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)))) (-3158 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)))) (-4223 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-4234 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)))) (-4213 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-110)))) (-3157 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)))) (-4235 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)))) (-3959 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)))) (-4224 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)) (-4 *2 (-344)))))
+(-13 (-984) (-109 |t#1| |t#1|) (-10 -8 (-15 -3449 (|t#1| $)) (-15 -3158 ($ $)) (-15 -4223 (|t#2| $)) (-15 -4234 ($ (-1 |t#1| |t#1|) $)) (-15 -4213 ((-110) $)) (-15 -3157 ($ |t#1| |t#2|)) (-15 -4235 ($ $)) (-15 -3959 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-344)) (-15 -4224 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-162)) (PROGN (-6 (-162)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-523)) (-6 (-523)) |%noBranch|) (IF (|has| |t#1| (-37 (-388 (-516)))) (-6 (-37 (-388 (-516)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-523)) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-388 (-516)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -3810 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-805)) . T) ((-162) -3810 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-272) |has| |#1| (-523)) ((-523) |has| |#1| (-523)) ((-599 #1#) |has| |#1| (-37 (-388 (-516)))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #1#) |has| |#1| (-37 (-388 (-516)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-523)) ((-675) . T) ((-989 #1#) |has| |#1| (-37 (-388 (-516)))) ((-989 |#1|) . T) ((-989 $) -3810 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-2828 (((-110) $ $) NIL)) (-1617 (((-594 $) (-1092 $) (-1098)) NIL) (((-594 $) (-1092 $)) NIL) (((-594 $) (-887 $)) NIL)) (-1211 (($ (-1092 $) (-1098)) NIL) (($ (-1092 $)) NIL) (($ (-887 $)) NIL)) (-3462 (((-110) $) 11)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-1610 (((-594 (-569 $)) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-1614 (($ $ (-275 $)) NIL) (($ $ (-594 (-275 $))) NIL) (($ $ (-594 (-569 $)) (-594 $)) NIL)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-3301 (($ $) NIL)) (-1655 (((-110) $ $) NIL)) (-3815 (($) NIL T CONST)) (-1212 (((-594 $) (-1092 $) (-1098)) NIL) (((-594 $) (-1092 $)) NIL) (((-594 $) (-887 $)) NIL)) (-3457 (($ (-1092 $) (-1098)) NIL) (($ (-1092 $)) NIL) (($ (-887 $)) NIL)) (-3432 (((-3 (-569 $) #1="failed") $) NIL) (((-3 (-516) #1#) $) NIL) (((-3 (-388 (-516)) #1#) $) NIL)) (-3431 (((-569 $) $) NIL) (((-516) $) NIL) (((-388 (-516)) $) NIL)) (-2824 (($ $ $) NIL)) (-2297 (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL) (((-637 (-516)) (-637 $)) NIL) (((-2 (|:| -1650 (-637 (-388 (-516)))) (|:| |vec| (-1179 (-388 (-516))))) (-637 $) (-1179 $)) NIL) (((-637 (-388 (-516))) (-637 $)) NIL)) (-4121 (($ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4005 (((-110) $) NIL)) (-2833 (($ $) NIL) (($ (-594 $)) NIL)) (-1609 (((-594 (-111)) $) NIL)) (-2273 (((-111) (-111)) NIL)) (-2436 (((-110) $) 14)) (-2936 (((-110) $) NIL (|has| $ (-975 (-516))))) (-3262 (((-1050 (-516) (-569 $)) $) NIL)) (-3275 (($ $ (-516)) NIL)) (-3391 (((-1092 $) (-1092 $) (-569 $)) NIL) (((-1092 $) (-1092 $) (-594 (-569 $))) NIL) (($ $ (-569 $)) NIL) (($ $ (-594 (-569 $))) NIL)) (-1652 (((-3 (-594 $) #2="failed") (-594 $) $) NIL)) (-1607 (((-1092 $) (-569 $)) NIL (|has| $ (-984)))) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-4234 (($ (-1 $ $) (-569 $)) NIL)) (-1612 (((-3 (-569 $) "failed") $) NIL)) (-1963 (($ (-594 $)) NIL) (($ $ $) NIL)) (-3513 (((-1081) $) NIL)) (-1611 (((-594 (-569 $)) $) NIL)) (-2254 (($ (-111) $) NIL) (($ (-111) (-594 $)) NIL)) (-2893 (((-110) $ (-111)) NIL) (((-110) $ (-1098)) NIL)) (-2668 (($ $) NIL)) (-2863 (((-719) $) NIL)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ (-594 $)) NIL) (($ $ $) NIL)) (-1608 (((-110) $ $) NIL) (((-110) $ (-1098)) NIL)) (-4011 (((-386 $) $) NIL)) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-2937 (((-110) $) NIL (|has| $ (-975 (-516))))) (-4046 (($ $ (-569 $) $) NIL) (($ $ (-594 (-569 $)) (-594 $)) NIL) (($ $ (-594 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL) (($ $ (-594 (-1098)) (-594 (-1 $ $))) NIL) (($ $ (-594 (-1098)) (-594 (-1 $ (-594 $)))) NIL) (($ $ (-1098) (-1 $ (-594 $))) NIL) (($ $ (-1098) (-1 $ $)) NIL) (($ $ (-594 (-111)) (-594 (-1 $ $))) NIL) (($ $ (-594 (-111)) (-594 (-1 $ (-594 $)))) NIL) (($ $ (-111) (-1 $ (-594 $))) NIL) (($ $ (-111) (-1 $ $)) NIL)) (-1654 (((-719) $) NIL)) (-4078 (($ (-111) $) NIL) (($ (-111) $ $) NIL) (($ (-111) $ $ $) NIL) (($ (-111) $ $ $ $) NIL) (($ (-111) (-594 $)) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-1613 (($ $) NIL) (($ $ $) NIL)) (-4089 (($ $ (-719)) NIL) (($ $) NIL)) (-3261 (((-1050 (-516) (-569 $)) $) NIL)) (-3459 (($ $) NIL (|has| $ (-984)))) (-4246 (((-359) $) NIL) (((-208) $) NIL) (((-158 (-359)) $) NIL)) (-4233 (((-805) $) NIL) (($ (-569 $)) NIL) (($ (-388 (-516))) NIL) (($ $) NIL) (($ (-516)) NIL) (($ (-1050 (-516) (-569 $))) NIL)) (-3385 (((-719)) NIL)) (-2850 (($ $) NIL) (($ (-594 $)) NIL)) (-2272 (((-110) (-111)) NIL)) (-2117 (((-110) $ $) NIL)) (-3581 (($ $ (-516)) NIL) (($ $ (-719)) NIL) (($ $ (-860)) NIL)) (-2920 (($) 7 T CONST)) (-2927 (($) 12 T CONST)) (-2932 (($ $ (-719)) NIL) (($ $) NIL)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 16)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) NIL)) (-4224 (($ $ $) NIL)) (-4116 (($ $ $) 15) (($ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-388 (-516))) NIL) (($ $ (-516)) NIL) (($ $ (-719)) NIL) (($ $ (-860)) NIL)) (* (($ (-388 (-516)) $) NIL) (($ $ (-388 (-516))) NIL) (($ $ $) NIL) (($ (-516) $) NIL) (($ (-719) $) NIL) (($ (-860) $) NIL)))
+(((-47) (-13 (-280) (-27) (-975 (-516)) (-975 (-388 (-516))) (-593 (-516)) (-958) (-593 (-388 (-516))) (-140) (-572 (-158 (-359))) (-216) (-10 -8 (-15 -4233 ($ (-1050 (-516) (-569 $)))) (-15 -3262 ((-1050 (-516) (-569 $)) $)) (-15 -3261 ((-1050 (-516) (-569 $)) $)) (-15 -4121 ($ $)) (-15 -3391 ((-1092 $) (-1092 $) (-569 $))) (-15 -3391 ((-1092 $) (-1092 $) (-594 (-569 $)))) (-15 -3391 ($ $ (-569 $))) (-15 -3391 ($ $ (-594 (-569 $))))))) (T -47))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1050 (-516) (-569 (-47)))) (-5 *1 (-47)))) (-3262 (*1 *2 *1) (-12 (-5 *2 (-1050 (-516) (-569 (-47)))) (-5 *1 (-47)))) (-3261 (*1 *2 *1) (-12 (-5 *2 (-1050 (-516) (-569 (-47)))) (-5 *1 (-47)))) (-4121 (*1 *1 *1) (-5 *1 (-47))) (-3391 (*1 *2 *2 *3) (-12 (-5 *2 (-1092 (-47))) (-5 *3 (-569 (-47))) (-5 *1 (-47)))) (-3391 (*1 *2 *2 *3) (-12 (-5 *2 (-1092 (-47))) (-5 *3 (-594 (-569 (-47)))) (-5 *1 (-47)))) (-3391 (*1 *1 *1 *2) (-12 (-5 *2 (-569 (-47))) (-5 *1 (-47)))) (-3391 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-569 (-47)))) (-5 *1 (-47)))))
+(-13 (-280) (-27) (-975 (-516)) (-975 (-388 (-516))) (-593 (-516)) (-958) (-593 (-388 (-516))) (-140) (-572 (-158 (-359))) (-216) (-10 -8 (-15 -4233 ($ (-1050 (-516) (-569 $)))) (-15 -3262 ((-1050 (-516) (-569 $)) $)) (-15 -3261 ((-1050 (-516) (-569 $)) $)) (-15 -4121 ($ $)) (-15 -3391 ((-1092 $) (-1092 $) (-569 $))) (-15 -3391 ((-1092 $) (-1092 $) (-594 (-569 $)))) (-15 -3391 ($ $ (-569 $))) (-15 -3391 ($ $ (-594 (-569 $))))))
+((-2828 (((-110) $ $) NIL)) (-2010 (((-594 (-1098)) $) 17)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 7)) (-1246 (((-1103) $) 18)) (-3317 (((-110) $ $) NIL)))
+(((-48) (-13 (-1027) (-10 -8 (-15 -2010 ((-594 (-1098)) $)) (-15 -1246 ((-1103) $))))) (T -48))
+((-2010 (*1 *2 *1) (-12 (-5 *2 (-594 (-1098))) (-5 *1 (-48)))) (-1246 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-48)))))
+(-13 (-1027) (-10 -8 (-15 -2010 ((-594 (-1098)) $)) (-15 -1246 ((-1103) $))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 61)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-2925 (((-110) $) 20)) (-3432 (((-3 |#1| "failed") $) 23)) (-3431 ((|#1| $) 24)) (-4235 (($ $) 28)) (-3741 (((-3 $ "failed") $) NIL)) (-2436 (((-110) $) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-3449 ((|#1| $) 21)) (-1462 (($ $) 50)) (-3513 (((-1081) $) NIL)) (-1461 (((-110) $) 30)) (-3514 (((-1045) $) NIL)) (-2435 (($ (-719)) 48)) (-4219 (($ (-594 (-516))) 49)) (-4223 (((-719) $) 31)) (-4233 (((-805) $) 64) (($ (-516)) 45) (($ |#1|) 43)) (-3959 ((|#1| $ $) 19)) (-3385 (((-719)) 47)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 32 T CONST)) (-2927 (($) 14 T CONST)) (-3317 (((-110) $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) 40)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
+(((-49 |#1| |#2|) (-13 (-576 |#1|) (-975 |#1|) (-10 -8 (-15 -3449 (|#1| $)) (-15 -1462 ($ $)) (-15 -4235 ($ $)) (-15 -3959 (|#1| $ $)) (-15 -2435 ($ (-719))) (-15 -4219 ($ (-594 (-516)))) (-15 -1461 ((-110) $)) (-15 -2925 ((-110) $)) (-15 -4223 ((-719) $)) (-15 -4234 ($ (-1 |#1| |#1|) $)))) (-984) (-594 (-1098))) (T -49))
+((-3449 (*1 *2 *1) (-12 (-4 *2 (-984)) (-5 *1 (-49 *2 *3)) (-14 *3 (-594 (-1098))))) (-1462 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-984)) (-14 *3 (-594 (-1098))))) (-4235 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-984)) (-14 *3 (-594 (-1098))))) (-3959 (*1 *2 *1 *1) (-12 (-4 *2 (-984)) (-5 *1 (-49 *2 *3)) (-14 *3 (-594 (-1098))))) (-2435 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984)) (-14 *4 (-594 (-1098))))) (-4219 (*1 *1 *2) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-49 *3 *4)) (-4 *3 (-984)) (-14 *4 (-594 (-1098))))) (-1461 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984)) (-14 *4 (-594 (-1098))))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984)) (-14 *4 (-594 (-1098))))) (-4223 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984)) (-14 *4 (-594 (-1098))))) (-4234 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-49 *3 *4)) (-14 *4 (-594 (-1098))))))
+(-13 (-576 |#1|) (-975 |#1|) (-10 -8 (-15 -3449 (|#1| $)) (-15 -1462 ($ $)) (-15 -4235 ($ $)) (-15 -3959 (|#1| $ $)) (-15 -2435 ($ (-719))) (-15 -4219 ($ (-594 (-516)))) (-15 -1461 ((-110) $)) (-15 -2925 ((-110) $)) (-15 -4223 ((-719) $)) (-15 -4234 ($ (-1 |#1| |#1|) $))))
+((-2828 (((-110) $ $) NIL)) (-1247 (((-1081) (-110)) 25)) (-1250 (((-805) $) 24)) (-1248 (((-721) $) 12)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-1251 (((-805) $) 16)) (-1249 (((-1029) $) 14)) (-4233 (((-805) $) 32)) (-1252 (($ (-1029) (-721)) 33)) (-3317 (((-110) $ $) 18)))
+(((-50) (-13 (-1027) (-10 -8 (-15 -1252 ($ (-1029) (-721))) (-15 -1251 ((-805) $)) (-15 -1250 ((-805) $)) (-15 -1249 ((-1029) $)) (-15 -1248 ((-721) $)) (-15 -1247 ((-1081) (-110)))))) (T -50))
+((-1252 (*1 *1 *2 *3) (-12 (-5 *2 (-1029)) (-5 *3 (-721)) (-5 *1 (-50)))) (-1251 (*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-50)))) (-1250 (*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-50)))) (-1249 (*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-50)))) (-1248 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-50)))) (-1247 (*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-1081)) (-5 *1 (-50)))))
+(-13 (-1027) (-10 -8 (-15 -1252 ($ (-1029) (-721))) (-15 -1251 ((-805) $)) (-15 -1250 ((-805) $)) (-15 -1249 ((-1029) $)) (-15 -1248 ((-721) $)) (-15 -1247 ((-1081) (-110)))))
+((-2925 (((-110) (-50)) 13)) (-3432 (((-3 |#1| "failed") (-50)) 21)) (-3431 ((|#1| (-50)) 22)) (-4233 (((-50) |#1|) 18)))
+(((-51 |#1|) (-10 -7 (-15 -4233 ((-50) |#1|)) (-15 -3432 ((-3 |#1| "failed") (-50))) (-15 -2925 ((-110) (-50))) (-15 -3431 (|#1| (-50)))) (-1134)) (T -51))
+((-3431 (*1 *2 *3) (-12 (-5 *3 (-50)) (-5 *1 (-51 *2)) (-4 *2 (-1134)))) (-2925 (*1 *2 *3) (-12 (-5 *3 (-50)) (-5 *2 (-110)) (-5 *1 (-51 *4)) (-4 *4 (-1134)))) (-3432 (*1 *2 *3) (|partial| -12 (-5 *3 (-50)) (-5 *1 (-51 *2)) (-4 *2 (-1134)))) (-4233 (*1 *2 *3) (-12 (-5 *2 (-50)) (-5 *1 (-51 *3)) (-4 *3 (-1134)))))
+(-10 -7 (-15 -4233 ((-50) |#1|)) (-15 -3432 ((-3 |#1| "failed") (-50))) (-15 -2925 ((-110) (-50))) (-15 -3431 (|#1| (-50))))
+((-2814 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
+(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -2814 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-984) (-599 |#1|) (-797 |#1|)) (T -52))
+((-2814 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-599 *5)) (-4 *5 (-984)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-797 *5)))))
+(-10 -7 (-15 -2814 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-1254 ((|#3| |#3| (-594 (-1098))) 35)) (-1253 ((|#3| (-594 (-1004 |#1| |#2| |#3|)) |#3| (-860)) 22) ((|#3| (-594 (-1004 |#1| |#2| |#3|)) |#3|) 20)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1253 (|#3| (-594 (-1004 |#1| |#2| |#3|)) |#3|)) (-15 -1253 (|#3| (-594 (-1004 |#1| |#2| |#3|)) |#3| (-860))) (-15 -1254 (|#3| |#3| (-594 (-1098))))) (-1027) (-13 (-984) (-827 |#1|) (-795) (-572 (-831 |#1|))) (-13 (-402 |#2|) (-827 |#1|) (-572 (-831 |#1|)))) (T -53))
+((-1254 (*1 *2 *2 *3) (-12 (-5 *3 (-594 (-1098))) (-4 *4 (-1027)) (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-831 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-402 *5) (-827 *4) (-572 (-831 *4)))))) (-1253 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-594 (-1004 *5 *6 *2))) (-5 *4 (-860)) (-4 *5 (-1027)) (-4 *6 (-13 (-984) (-827 *5) (-795) (-572 (-831 *5)))) (-4 *2 (-13 (-402 *6) (-827 *5) (-572 (-831 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-1253 (*1 *2 *3 *2) (-12 (-5 *3 (-594 (-1004 *4 *5 *2))) (-4 *4 (-1027)) (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-831 *4)))) (-4 *2 (-13 (-402 *5) (-827 *4) (-572 (-831 *4)))) (-5 *1 (-53 *4 *5 *2)))))
+(-10 -7 (-15 -1253 (|#3| (-594 (-1004 |#1| |#2| |#3|)) |#3|)) (-15 -1253 (|#3| (-594 (-1004 |#1| |#2| |#3|)) |#3| (-860))) (-15 -1254 (|#3| |#3| (-594 (-1098)))))
+((-1217 (((-110) $ (-719)) 23)) (-1256 (($ $ (-516) |#3|) 46)) (-1255 (($ $ (-516) |#4|) 50)) (-3371 ((|#3| $ (-516)) 59)) (-2018 (((-594 |#2|) $) 30)) (-4001 (((-110) $ (-719)) 25)) (-3516 (((-110) |#2| $) 54)) (-2022 (($ (-1 |#2| |#2|) $) 37)) (-4234 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-3998 (((-110) $ (-719)) 24)) (-2244 (($ $ |#2|) 34)) (-2020 (((-110) (-1 (-110) |#2|) $) 19)) (-4078 ((|#2| $ (-516) (-516)) NIL) ((|#2| $ (-516) (-516) |#2|) 27)) (-2019 (((-719) (-1 (-110) |#2|) $) 28) (((-719) |#2| $) 56)) (-3678 (($ $) 33)) (-3370 ((|#4| $ (-516)) 62)) (-4233 (((-805) $) 68)) (-2021 (((-110) (-1 (-110) |#2|) $) 18)) (-3317 (((-110) $ $) 53)) (-4232 (((-719) $) 26)))
+(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4233 ((-805) |#1|)) (-15 -4234 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4234 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2022 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1255 (|#1| |#1| (-516) |#4|)) (-15 -1256 (|#1| |#1| (-516) |#3|)) (-15 -2018 ((-594 |#2|) |#1|)) (-15 -3370 (|#4| |#1| (-516))) (-15 -3371 (|#3| |#1| (-516))) (-15 -4078 (|#2| |#1| (-516) (-516) |#2|)) (-15 -4078 (|#2| |#1| (-516) (-516))) (-15 -2244 (|#1| |#1| |#2|)) (-15 -3317 ((-110) |#1| |#1|)) (-15 -3516 ((-110) |#2| |#1|)) (-15 -2019 ((-719) |#2| |#1|)) (-15 -2019 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -2020 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2021 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -4234 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4232 ((-719) |#1|)) (-15 -1217 ((-110) |#1| (-719))) (-15 -4001 ((-110) |#1| (-719))) (-15 -3998 ((-110) |#1| (-719))) (-15 -3678 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1134) (-353 |#2|) (-353 |#2|)) (T -54))
+NIL
+(-10 -8 (-15 -4233 ((-805) |#1|)) (-15 -4234 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4234 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2022 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1255 (|#1| |#1| (-516) |#4|)) (-15 -1256 (|#1| |#1| (-516) |#3|)) (-15 -2018 ((-594 |#2|) |#1|)) (-15 -3370 (|#4| |#1| (-516))) (-15 -3371 (|#3| |#1| (-516))) (-15 -4078 (|#2| |#1| (-516) (-516) |#2|)) (-15 -4078 (|#2| |#1| (-516) (-516))) (-15 -2244 (|#1| |#1| |#2|)) (-15 -3317 ((-110) |#1| |#1|)) (-15 -3516 ((-110) |#2| |#1|)) (-15 -2019 ((-719) |#2| |#1|)) (-15 -2019 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -2020 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2021 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -4234 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4232 ((-719) |#1|)) (-15 -1217 ((-110) |#1| (-719))) (-15 -4001 ((-110) |#1| (-719))) (-15 -3998 ((-110) |#1| (-719))) (-15 -3678 (|#1| |#1|)))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1217 (((-110) $ (-719)) 8)) (-4066 ((|#1| $ (-516) (-516) |#1|) 44)) (-1256 (($ $ (-516) |#2|) 42)) (-1255 (($ $ (-516) |#3|) 41)) (-3815 (($) 7 T CONST)) (-3371 ((|#2| $ (-516)) 46)) (-1587 ((|#1| $ (-516) (-516) |#1|) 43)) (-3372 ((|#1| $ (-516) (-516)) 48)) (-2018 (((-594 |#1|) $) 30)) (-3374 (((-719) $) 51)) (-3896 (($ (-719) (-719) |#1|) 57)) (-3373 (((-719) $) 50)) (-4001 (((-110) $ (-719)) 9)) (-3378 (((-516) $) 55)) (-3376 (((-516) $) 53)) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3377 (((-516) $) 54)) (-3375 (((-516) $) 52)) (-2022 (($ (-1 |#1| |#1|) $) 34)) (-4234 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3998 (((-110) $ (-719)) 10)) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-2244 (($ $ |#1|) 56)) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-4078 ((|#1| $ (-516) (-516)) 49) ((|#1| $ (-516) (-516) |#1|) 47)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-3370 ((|#3| $ (-516)) 45)) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-55 |#1| |#2| |#3|) (-133) (-1134) (-353 |t#1|) (-353 |t#1|)) (T -55))
+((-4234 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-3896 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-719)) (-4 *3 (-1134)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-2244 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1134)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)))) (-3378 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-516)))) (-3377 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-516)))) (-3376 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-516)))) (-3375 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-516)))) (-3374 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-719)))) (-3373 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-719)))) (-4078 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-516)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-353 *2)) (-4 *5 (-353 *2)) (-4 *2 (-1134)))) (-3372 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-516)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-353 *2)) (-4 *5 (-353 *2)) (-4 *2 (-1134)))) (-4078 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-516)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1134)) (-4 *4 (-353 *2)) (-4 *5 (-353 *2)))) (-3371 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1134)) (-4 *5 (-353 *4)) (-4 *2 (-353 *4)))) (-3370 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1134)) (-4 *5 (-353 *4)) (-4 *2 (-353 *4)))) (-2018 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-594 *3)))) (-4066 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-516)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1134)) (-4 *4 (-353 *2)) (-4 *5 (-353 *2)))) (-1587 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-516)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1134)) (-4 *4 (-353 *2)) (-4 *5 (-353 *2)))) (-1256 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-516)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-353 *4)) (-4 *5 (-353 *4)))) (-1255 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-516)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1134)) (-4 *5 (-353 *4)) (-4 *3 (-353 *4)))) (-2022 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-4234 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-4234 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))))
+(-13 (-468 |t#1|) (-10 -8 (-6 -4270) (-6 -4269) (-15 -3896 ($ (-719) (-719) |t#1|)) (-15 -2244 ($ $ |t#1|)) (-15 -3378 ((-516) $)) (-15 -3377 ((-516) $)) (-15 -3376 ((-516) $)) (-15 -3375 ((-516) $)) (-15 -3374 ((-719) $)) (-15 -3373 ((-719) $)) (-15 -4078 (|t#1| $ (-516) (-516))) (-15 -3372 (|t#1| $ (-516) (-516))) (-15 -4078 (|t#1| $ (-516) (-516) |t#1|)) (-15 -3371 (|t#2| $ (-516))) (-15 -3370 (|t#3| $ (-516))) (-15 -2018 ((-594 |t#1|) $)) (-15 -4066 (|t#1| $ (-516) (-516) |t#1|)) (-15 -1587 (|t#1| $ (-516) (-516) |t#1|)) (-15 -1256 ($ $ (-516) |t#2|)) (-15 -1255 ($ $ (-516) |t#3|)) (-15 -4234 ($ (-1 |t#1| |t#1|) $)) (-15 -2022 ($ (-1 |t#1| |t#1|) $)) (-15 -4234 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4234 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-571 (-805)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1134) . T))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2243 (((-1185) $ (-516) (-516)) NIL (|has| $ (-6 -4270)))) (-1798 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-1796 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795))))) (-3173 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-1217 (((-110) $ (-719)) NIL)) (-4066 ((|#1| $ (-516) |#1|) 11 (|has| $ (-6 -4270))) ((|#1| $ (-1146 (-516)) |#1|) NIL (|has| $ (-6 -4270)))) (-3992 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3815 (($) NIL T CONST)) (-2312 (($ $) NIL (|has| $ (-6 -4270)))) (-2313 (($ $) NIL)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3685 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-1587 ((|#1| $ (-516) |#1|) NIL (|has| $ (-6 -4270)))) (-3372 ((|#1| $ (-516)) NIL)) (-3698 (((-516) (-1 (-110) |#1|) $) NIL) (((-516) |#1| $) NIL (|has| |#1| (-1027))) (((-516) |#1| $ (-516)) NIL (|has| |#1| (-1027)))) (-2018 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-1257 (($ (-594 |#1|)) 13) (($ (-719) |#1|) 14)) (-3896 (($ (-719) |#1|) 9)) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-516) $) NIL (|has| (-516) (-795)))) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3792 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2246 (((-516) $) NIL (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-2022 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-2317 (($ |#1| $ (-516)) NIL) (($ $ $ (-516)) NIL)) (-2248 (((-594 (-516)) $) NIL)) (-2249 (((-110) (-516) $) NIL)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-4079 ((|#1| $) NIL (|has| (-516) (-795)))) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-2244 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2250 (((-594 |#1|) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) 7)) (-4078 ((|#1| $ (-516) |#1|) NIL) ((|#1| $ (-516)) NIL) (($ $ (-1146 (-516))) NIL)) (-2318 (($ $ (-516)) NIL) (($ $ (-1146 (-516))) NIL)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1797 (($ $ $ (-516)) NIL (|has| $ (-6 -4270)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) NIL (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) NIL)) (-4080 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-594 $)) NIL)) (-4233 (((-805) $) NIL (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#1| (-795)))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-56 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1257 ($ (-594 |#1|))) (-15 -1257 ($ (-719) |#1|)))) (-1134)) (T -56))
+((-1257 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1134)) (-5 *1 (-56 *3)))) (-1257 (*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *1 (-56 *3)) (-4 *3 (-1134)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -1257 ($ (-594 |#1|))) (-15 -1257 ($ (-719) |#1|))))
+((-4120 (((-56 |#2|) (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|) 16)) (-4121 ((|#2| (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|) 18)) (-4234 (((-56 |#2|) (-1 |#2| |#1|) (-56 |#1|)) 13)))
+(((-57 |#1| |#2|) (-10 -7 (-15 -4120 ((-56 |#2|) (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|)) (-15 -4121 (|#2| (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|)) (-15 -4234 ((-56 |#2|) (-1 |#2| |#1|) (-56 |#1|)))) (-1134) (-1134)) (T -57))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-56 *5)) (-4 *5 (-1134)) (-4 *6 (-1134)) (-5 *2 (-56 *6)) (-5 *1 (-57 *5 *6)))) (-4121 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-56 *5)) (-4 *5 (-1134)) (-4 *2 (-1134)) (-5 *1 (-57 *5 *2)))) (-4120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-56 *6)) (-4 *6 (-1134)) (-4 *5 (-1134)) (-5 *2 (-56 *5)) (-5 *1 (-57 *6 *5)))))
+(-10 -7 (-15 -4120 ((-56 |#2|) (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|)) (-15 -4121 (|#2| (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|)) (-15 -4234 ((-56 |#2|) (-1 |#2| |#1|) (-56 |#1|))))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1217 (((-110) $ (-719)) NIL)) (-4066 ((|#1| $ (-516) (-516) |#1|) NIL)) (-1256 (($ $ (-516) (-56 |#1|)) NIL)) (-1255 (($ $ (-516) (-56 |#1|)) NIL)) (-3815 (($) NIL T CONST)) (-3371 (((-56 |#1|) $ (-516)) NIL)) (-1587 ((|#1| $ (-516) (-516) |#1|) NIL)) (-3372 ((|#1| $ (-516) (-516)) NIL)) (-2018 (((-594 |#1|) $) NIL)) (-3374 (((-719) $) NIL)) (-3896 (($ (-719) (-719) |#1|) NIL)) (-3373 (((-719) $) NIL)) (-4001 (((-110) $ (-719)) NIL)) (-3378 (((-516) $) NIL)) (-3376 (((-516) $) NIL)) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3377 (((-516) $) NIL)) (-3375 (((-516) $) NIL)) (-2022 (($ (-1 |#1| |#1|) $) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-2244 (($ $ |#1|) NIL)) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#1| $ (-516) (-516)) NIL) ((|#1| $ (-516) (-516) |#1|) NIL)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3678 (($ $) NIL)) (-3370 (((-56 |#1|) $ (-516)) NIL)) (-4233 (((-805) $) NIL (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-58 |#1|) (-13 (-55 |#1| (-56 |#1|) (-56 |#1|)) (-10 -7 (-6 -4270))) (-1134)) (T -58))
+NIL
+(-13 (-55 |#1| (-56 |#1|) (-56 |#1|)) (-10 -7 (-6 -4270)))
+((-3432 (((-3 $ #1="failed") (-295 (-359))) 41) (((-3 $ #1#) (-295 (-516))) 46) (((-3 $ #1#) (-887 (-359))) 50) (((-3 $ #1#) (-887 (-516))) 54) (((-3 $ #1#) (-388 (-887 (-359)))) 36) (((-3 $ #1#) (-388 (-887 (-516)))) 29)) (-3431 (($ (-295 (-359))) 39) (($ (-295 (-516))) 44) (($ (-887 (-359))) 48) (($ (-887 (-516))) 52) (($ (-388 (-887 (-359)))) 34) (($ (-388 (-887 (-516)))) 26)) (-3658 (((-1185) $) 76)) (-4233 (((-805) $) 69) (($ (-594 (-311))) 61) (($ (-311)) 66) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 64) (($ (-320 (-3804 (QUOTE X)) (-3804) (-647))) 25)))
+(((-59 |#1|) (-13 (-378) (-10 -8 (-15 -4233 ($ (-320 (-3804 (QUOTE X)) (-3804) (-647)))))) (-1098)) (T -59))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-320 (-3804 (QUOTE X)) (-3804) (-647))) (-5 *1 (-59 *3)) (-14 *3 (-1098)))))
+(-13 (-378) (-10 -8 (-15 -4233 ($ (-320 (-3804 (QUOTE X)) (-3804) (-647))))))
+((-3432 (((-3 $ #1="failed") (-1179 (-295 (-359)))) 74) (((-3 $ #1#) (-1179 (-295 (-516)))) 63) (((-3 $ #1#) (-1179 (-887 (-359)))) 94) (((-3 $ #1#) (-1179 (-887 (-516)))) 84) (((-3 $ #1#) (-1179 (-388 (-887 (-359))))) 52) (((-3 $ #1#) (-1179 (-388 (-887 (-516))))) 39)) (-3431 (($ (-1179 (-295 (-359)))) 70) (($ (-1179 (-295 (-516)))) 59) (($ (-1179 (-887 (-359)))) 90) (($ (-1179 (-887 (-516)))) 80) (($ (-1179 (-388 (-887 (-359))))) 48) (($ (-1179 (-388 (-887 (-516))))) 32)) (-3658 (((-1185) $) 120)) (-4233 (((-805) $) 113) (($ (-594 (-311))) 103) (($ (-311)) 97) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 101) (($ (-1179 (-320 (-3804 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3804) (-647)))) 31)))
+(((-60 |#1|) (-13 (-421) (-10 -8 (-15 -4233 ($ (-1179 (-320 (-3804 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3804) (-647))))))) (-1098)) (T -60))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1179 (-320 (-3804 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3804) (-647)))) (-5 *1 (-60 *3)) (-14 *3 (-1098)))))
+(-13 (-421) (-10 -8 (-15 -4233 ($ (-1179 (-320 (-3804 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3804) (-647)))))))
+((-3658 (((-1185) $) 53) (((-1185)) 54)) (-4233 (((-805) $) 50)))
+(((-61 |#1|) (-13 (-377) (-10 -7 (-15 -3658 ((-1185))))) (-1098)) (T -61))
+((-3658 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-61 *3)) (-14 *3 (-1098)))))
+(-13 (-377) (-10 -7 (-15 -3658 ((-1185)))))
+((-3432 (((-3 $ #1="failed") (-1179 (-295 (-359)))) 144) (((-3 $ #1#) (-1179 (-295 (-516)))) 134) (((-3 $ #1#) (-1179 (-887 (-359)))) 164) (((-3 $ #1#) (-1179 (-887 (-516)))) 154) (((-3 $ #1#) (-1179 (-388 (-887 (-359))))) 123) (((-3 $ #1#) (-1179 (-388 (-887 (-516))))) 111)) (-3431 (($ (-1179 (-295 (-359)))) 140) (($ (-1179 (-295 (-516)))) 130) (($ (-1179 (-887 (-359)))) 160) (($ (-1179 (-887 (-516)))) 150) (($ (-1179 (-388 (-887 (-359))))) 119) (($ (-1179 (-388 (-887 (-516))))) 104)) (-3658 (((-1185) $) 97)) (-4233 (((-805) $) 91) (($ (-594 (-311))) 29) (($ (-311)) 34) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 32) (($ (-1179 (-320 (-3804) (-3804 (QUOTE XC)) (-647)))) 89)))
+(((-62 |#1|) (-13 (-421) (-10 -8 (-15 -4233 ($ (-1179 (-320 (-3804) (-3804 (QUOTE XC)) (-647))))))) (-1098)) (T -62))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1179 (-320 (-3804) (-3804 (QUOTE XC)) (-647)))) (-5 *1 (-62 *3)) (-14 *3 (-1098)))))
+(-13 (-421) (-10 -8 (-15 -4233 ($ (-1179 (-320 (-3804) (-3804 (QUOTE XC)) (-647)))))))
+((-3432 (((-3 $ #1="failed") (-637 (-295 (-359)))) 109) (((-3 $ #1#) (-637 (-295 (-516)))) 97) (((-3 $ #1#) (-637 (-887 (-359)))) 131) (((-3 $ #1#) (-637 (-887 (-516)))) 120) (((-3 $ #1#) (-637 (-388 (-887 (-359))))) 85) (((-3 $ #1#) (-637 (-388 (-887 (-516))))) 71)) (-3431 (($ (-637 (-295 (-359)))) 105) (($ (-637 (-295 (-516)))) 93) (($ (-637 (-887 (-359)))) 127) (($ (-637 (-887 (-516)))) 116) (($ (-637 (-388 (-887 (-359))))) 81) (($ (-637 (-388 (-887 (-516))))) 64)) (-3658 (((-1185) $) 139)) (-4233 (((-805) $) 133) (($ (-594 (-311))) 28) (($ (-311)) 33) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 31) (($ (-637 (-320 (-3804) (-3804 (QUOTE X) (QUOTE HESS)) (-647)))) 54)))
+(((-63 |#1|) (-13 (-366) (-10 -8 (-15 -4233 ($ (-637 (-320 (-3804) (-3804 (QUOTE X) (QUOTE HESS)) (-647))))))) (-1098)) (T -63))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-637 (-320 (-3804) (-3804 (QUOTE X) (QUOTE HESS)) (-647)))) (-5 *1 (-63 *3)) (-14 *3 (-1098)))))
+(-13 (-366) (-10 -8 (-15 -4233 ($ (-637 (-320 (-3804) (-3804 (QUOTE X) (QUOTE HESS)) (-647)))))))
+((-3432 (((-3 $ #1="failed") (-295 (-359))) 59) (((-3 $ #1#) (-295 (-516))) 64) (((-3 $ #1#) (-887 (-359))) 68) (((-3 $ #1#) (-887 (-516))) 72) (((-3 $ #1#) (-388 (-887 (-359)))) 54) (((-3 $ #1#) (-388 (-887 (-516)))) 47)) (-3431 (($ (-295 (-359))) 57) (($ (-295 (-516))) 62) (($ (-887 (-359))) 66) (($ (-887 (-516))) 70) (($ (-388 (-887 (-359)))) 52) (($ (-388 (-887 (-516)))) 44)) (-3658 (((-1185) $) 81)) (-4233 (((-805) $) 75) (($ (-594 (-311))) 28) (($ (-311)) 33) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 31) (($ (-320 (-3804) (-3804 (QUOTE XC)) (-647))) 39)))
+(((-64 |#1|) (-13 (-378) (-10 -8 (-15 -4233 ($ (-320 (-3804) (-3804 (QUOTE XC)) (-647)))))) (-1098)) (T -64))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-320 (-3804) (-3804 (QUOTE XC)) (-647))) (-5 *1 (-64 *3)) (-14 *3 (-1098)))))
+(-13 (-378) (-10 -8 (-15 -4233 ($ (-320 (-3804) (-3804 (QUOTE XC)) (-647))))))
+((-3658 (((-1185) $) 63)) (-4233 (((-805) $) 57) (($ (-637 (-647))) 49) (($ (-594 (-311))) 48) (($ (-311)) 55) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 53)))
+(((-65 |#1|) (-364) (-1098)) (T -65))
+NIL
+(-364)
+((-3658 (((-1185) $) 64)) (-4233 (((-805) $) 58) (($ (-637 (-647))) 50) (($ (-594 (-311))) 49) (($ (-311)) 52) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 55)))
+(((-66 |#1|) (-364) (-1098)) (T -66))
+NIL
+(-364)
+((-3658 (((-1185) $) NIL) (((-1185)) 32)) (-4233 (((-805) $) NIL)))
+(((-67 |#1|) (-13 (-377) (-10 -7 (-15 -3658 ((-1185))))) (-1098)) (T -67))
+((-3658 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-67 *3)) (-14 *3 (-1098)))))
+(-13 (-377) (-10 -7 (-15 -3658 ((-1185)))))
+((-3658 (((-1185) $) 73)) (-4233 (((-805) $) 67) (($ (-637 (-647))) 59) (($ (-594 (-311))) 61) (($ (-311)) 64) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 58)))
+(((-68 |#1|) (-364) (-1098)) (T -68))
+NIL
+(-364)
+((-3432 (((-3 $ #1="failed") (-1179 (-295 (-359)))) 103) (((-3 $ #1#) (-1179 (-295 (-516)))) 92) (((-3 $ #1#) (-1179 (-887 (-359)))) 123) (((-3 $ #1#) (-1179 (-887 (-516)))) 113) (((-3 $ #1#) (-1179 (-388 (-887 (-359))))) 81) (((-3 $ #1#) (-1179 (-388 (-887 (-516))))) 68)) (-3431 (($ (-1179 (-295 (-359)))) 99) (($ (-1179 (-295 (-516)))) 88) (($ (-1179 (-887 (-359)))) 119) (($ (-1179 (-887 (-516)))) 109) (($ (-1179 (-388 (-887 (-359))))) 77) (($ (-1179 (-388 (-887 (-516))))) 61)) (-3658 (((-1185) $) 136)) (-4233 (((-805) $) 130) (($ (-594 (-311))) 125) (($ (-311)) 128) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 53) (($ (-1179 (-320 (-3804 (QUOTE X)) (-3804 (QUOTE -4240)) (-647)))) 54)))
+(((-69 |#1|) (-13 (-421) (-10 -8 (-15 -4233 ($ (-1179 (-320 (-3804 (QUOTE X)) (-3804 (QUOTE -4240)) (-647))))))) (-1098)) (T -69))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1179 (-320 (-3804 (QUOTE X)) (-3804 (QUOTE -4240)) (-647)))) (-5 *1 (-69 *3)) (-14 *3 (-1098)))))
+(-13 (-421) (-10 -8 (-15 -4233 ($ (-1179 (-320 (-3804 (QUOTE X)) (-3804 (QUOTE -4240)) (-647)))))))
+((-3658 (((-1185) $) 32) (((-1185)) 31)) (-4233 (((-805) $) 35)))
+(((-70 |#1|) (-13 (-377) (-10 -7 (-15 -3658 ((-1185))))) (-1098)) (T -70))
+((-3658 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-70 *3)) (-14 *3 (-1098)))))
+(-13 (-377) (-10 -7 (-15 -3658 ((-1185)))))
+((-3658 (((-1185) $) 63)) (-4233 (((-805) $) 57) (($ (-637 (-647))) 49) (($ (-594 (-311))) 51) (($ (-311)) 54) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 48)))
+(((-71 |#1|) (-364) (-1098)) (T -71))
+NIL
+(-364)
+((-3432 (((-3 $ #1="failed") (-1179 (-295 (-359)))) 125) (((-3 $ #1#) (-1179 (-295 (-516)))) 115) (((-3 $ #1#) (-1179 (-887 (-359)))) 145) (((-3 $ #1#) (-1179 (-887 (-516)))) 135) (((-3 $ #1#) (-1179 (-388 (-887 (-359))))) 105) (((-3 $ #1#) (-1179 (-388 (-887 (-516))))) 93)) (-3431 (($ (-1179 (-295 (-359)))) 121) (($ (-1179 (-295 (-516)))) 111) (($ (-1179 (-887 (-359)))) 141) (($ (-1179 (-887 (-516)))) 131) (($ (-1179 (-388 (-887 (-359))))) 101) (($ (-1179 (-388 (-887 (-516))))) 86)) (-3658 (((-1185) $) 78)) (-4233 (((-805) $) 27) (($ (-594 (-311))) 68) (($ (-311)) 64) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 71) (($ (-1179 (-320 (-3804) (-3804 (QUOTE X)) (-647)))) 65)))
+(((-72 |#1|) (-13 (-421) (-10 -8 (-15 -4233 ($ (-1179 (-320 (-3804) (-3804 (QUOTE X)) (-647))))))) (-1098)) (T -72))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1179 (-320 (-3804) (-3804 (QUOTE X)) (-647)))) (-5 *1 (-72 *3)) (-14 *3 (-1098)))))
+(-13 (-421) (-10 -8 (-15 -4233 ($ (-1179 (-320 (-3804) (-3804 (QUOTE X)) (-647)))))))
+((-3432 (((-3 $ #1="failed") (-295 (-359))) 46) (((-3 $ #1#) (-295 (-516))) 51) (((-3 $ #1#) (-887 (-359))) 55) (((-3 $ #1#) (-887 (-516))) 59) (((-3 $ #1#) (-388 (-887 (-359)))) 41) (((-3 $ #1#) (-388 (-887 (-516)))) 34)) (-3431 (($ (-295 (-359))) 44) (($ (-295 (-516))) 49) (($ (-887 (-359))) 53) (($ (-887 (-516))) 57) (($ (-388 (-887 (-359)))) 39) (($ (-388 (-887 (-516)))) 31)) (-3658 (((-1185) $) 80)) (-4233 (((-805) $) 74) (($ (-594 (-311))) 66) (($ (-311)) 71) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 69) (($ (-320 (-3804) (-3804 (QUOTE X)) (-647))) 30)))
+(((-73 |#1|) (-13 (-378) (-10 -8 (-15 -4233 ($ (-320 (-3804) (-3804 (QUOTE X)) (-647)))))) (-1098)) (T -73))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-320 (-3804) (-3804 (QUOTE X)) (-647))) (-5 *1 (-73 *3)) (-14 *3 (-1098)))))
+(-13 (-378) (-10 -8 (-15 -4233 ($ (-320 (-3804) (-3804 (QUOTE X)) (-647))))))
+((-3432 (((-3 $ #1="failed") (-1179 (-295 (-359)))) 130) (((-3 $ #1#) (-1179 (-295 (-516)))) 119) (((-3 $ #1#) (-1179 (-887 (-359)))) 150) (((-3 $ #1#) (-1179 (-887 (-516)))) 140) (((-3 $ #1#) (-1179 (-388 (-887 (-359))))) 108) (((-3 $ #1#) (-1179 (-388 (-887 (-516))))) 95)) (-3431 (($ (-1179 (-295 (-359)))) 126) (($ (-1179 (-295 (-516)))) 115) (($ (-1179 (-887 (-359)))) 146) (($ (-1179 (-887 (-516)))) 136) (($ (-1179 (-388 (-887 (-359))))) 104) (($ (-1179 (-388 (-887 (-516))))) 88)) (-3658 (((-1185) $) 79)) (-4233 (((-805) $) 71) (($ (-594 (-311))) NIL) (($ (-311)) NIL) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) NIL) (($ (-1179 (-320 (-3804 (QUOTE X) (QUOTE EPS)) (-3804 (QUOTE -4240)) (-647)))) 66)))
+(((-74 |#1| |#2| |#3|) (-13 (-421) (-10 -8 (-15 -4233 ($ (-1179 (-320 (-3804 (QUOTE X) (QUOTE EPS)) (-3804 (QUOTE -4240)) (-647))))))) (-1098) (-1098) (-1098)) (T -74))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1179 (-320 (-3804 (QUOTE X) (QUOTE EPS)) (-3804 (QUOTE -4240)) (-647)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1098)) (-14 *4 (-1098)) (-14 *5 (-1098)))))
+(-13 (-421) (-10 -8 (-15 -4233 ($ (-1179 (-320 (-3804 (QUOTE X) (QUOTE EPS)) (-3804 (QUOTE -4240)) (-647)))))))
+((-3432 (((-3 $ #1="failed") (-1179 (-295 (-359)))) 134) (((-3 $ #1#) (-1179 (-295 (-516)))) 123) (((-3 $ #1#) (-1179 (-887 (-359)))) 154) (((-3 $ #1#) (-1179 (-887 (-516)))) 144) (((-3 $ #1#) (-1179 (-388 (-887 (-359))))) 112) (((-3 $ #1#) (-1179 (-388 (-887 (-516))))) 99)) (-3431 (($ (-1179 (-295 (-359)))) 130) (($ (-1179 (-295 (-516)))) 119) (($ (-1179 (-887 (-359)))) 150) (($ (-1179 (-887 (-516)))) 140) (($ (-1179 (-388 (-887 (-359))))) 108) (($ (-1179 (-388 (-887 (-516))))) 92)) (-3658 (((-1185) $) 83)) (-4233 (((-805) $) 75) (($ (-594 (-311))) NIL) (($ (-311)) NIL) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) NIL) (($ (-1179 (-320 (-3804 (QUOTE EPS)) (-3804 (QUOTE YA) (QUOTE YB)) (-647)))) 70)))
+(((-75 |#1| |#2| |#3|) (-13 (-421) (-10 -8 (-15 -4233 ($ (-1179 (-320 (-3804 (QUOTE EPS)) (-3804 (QUOTE YA) (QUOTE YB)) (-647))))))) (-1098) (-1098) (-1098)) (T -75))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1179 (-320 (-3804 (QUOTE EPS)) (-3804 (QUOTE YA) (QUOTE YB)) (-647)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1098)) (-14 *4 (-1098)) (-14 *5 (-1098)))))
+(-13 (-421) (-10 -8 (-15 -4233 ($ (-1179 (-320 (-3804 (QUOTE EPS)) (-3804 (QUOTE YA) (QUOTE YB)) (-647)))))))
+((-3432 (((-3 $ #1="failed") (-295 (-359))) 82) (((-3 $ #1#) (-295 (-516))) 87) (((-3 $ #1#) (-887 (-359))) 91) (((-3 $ #1#) (-887 (-516))) 95) (((-3 $ #1#) (-388 (-887 (-359)))) 77) (((-3 $ #1#) (-388 (-887 (-516)))) 70)) (-3431 (($ (-295 (-359))) 80) (($ (-295 (-516))) 85) (($ (-887 (-359))) 89) (($ (-887 (-516))) 93) (($ (-388 (-887 (-359)))) 75) (($ (-388 (-887 (-516)))) 67)) (-3658 (((-1185) $) 62)) (-4233 (((-805) $) 50) (($ (-594 (-311))) 46) (($ (-311)) 56) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 54) (($ (-320 (-3804) (-3804 (QUOTE X)) (-647))) 47)))
+(((-76 |#1|) (-13 (-378) (-10 -8 (-15 -4233 ($ (-320 (-3804) (-3804 (QUOTE X)) (-647)))))) (-1098)) (T -76))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-320 (-3804) (-3804 (QUOTE X)) (-647))) (-5 *1 (-76 *3)) (-14 *3 (-1098)))))
+(-13 (-378) (-10 -8 (-15 -4233 ($ (-320 (-3804) (-3804 (QUOTE X)) (-647))))))
+((-3432 (((-3 $ #1="failed") (-1179 (-295 (-359)))) 89) (((-3 $ #1#) (-1179 (-295 (-516)))) 78) (((-3 $ #1#) (-1179 (-887 (-359)))) 109) (((-3 $ #1#) (-1179 (-887 (-516)))) 99) (((-3 $ #1#) (-1179 (-388 (-887 (-359))))) 67) (((-3 $ #1#) (-1179 (-388 (-887 (-516))))) 54)) (-3431 (($ (-1179 (-295 (-359)))) 85) (($ (-1179 (-295 (-516)))) 74) (($ (-1179 (-887 (-359)))) 105) (($ (-1179 (-887 (-516)))) 95) (($ (-1179 (-388 (-887 (-359))))) 63) (($ (-1179 (-388 (-887 (-516))))) 47)) (-3658 (((-1185) $) 125)) (-4233 (((-805) $) 119) (($ (-594 (-311))) 112) (($ (-311)) 37) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 115) (($ (-1179 (-320 (-3804) (-3804 (QUOTE XC)) (-647)))) 38)))
+(((-77 |#1|) (-13 (-421) (-10 -8 (-15 -4233 ($ (-1179 (-320 (-3804) (-3804 (QUOTE XC)) (-647))))))) (-1098)) (T -77))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1179 (-320 (-3804) (-3804 (QUOTE XC)) (-647)))) (-5 *1 (-77 *3)) (-14 *3 (-1098)))))
+(-13 (-421) (-10 -8 (-15 -4233 ($ (-1179 (-320 (-3804) (-3804 (QUOTE XC)) (-647)))))))
+((-3432 (((-3 $ #1="failed") (-1179 (-295 (-359)))) 142) (((-3 $ #1#) (-1179 (-295 (-516)))) 132) (((-3 $ #1#) (-1179 (-887 (-359)))) 162) (((-3 $ #1#) (-1179 (-887 (-516)))) 152) (((-3 $ #1#) (-1179 (-388 (-887 (-359))))) 122) (((-3 $ #1#) (-1179 (-388 (-887 (-516))))) 110)) (-3431 (($ (-1179 (-295 (-359)))) 138) (($ (-1179 (-295 (-516)))) 128) (($ (-1179 (-887 (-359)))) 158) (($ (-1179 (-887 (-516)))) 148) (($ (-1179 (-388 (-887 (-359))))) 118) (($ (-1179 (-388 (-887 (-516))))) 103)) (-3658 (((-1185) $) 96)) (-4233 (((-805) $) 90) (($ (-594 (-311))) 81) (($ (-311)) 88) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 86) (($ (-1179 (-320 (-3804) (-3804 (QUOTE X)) (-647)))) 82)))
+(((-78 |#1|) (-13 (-421) (-10 -8 (-15 -4233 ($ (-1179 (-320 (-3804) (-3804 (QUOTE X)) (-647))))))) (-1098)) (T -78))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1179 (-320 (-3804) (-3804 (QUOTE X)) (-647)))) (-5 *1 (-78 *3)) (-14 *3 (-1098)))))
+(-13 (-421) (-10 -8 (-15 -4233 ($ (-1179 (-320 (-3804) (-3804 (QUOTE X)) (-647)))))))
+((-3432 (((-3 $ #1="failed") (-1179 (-295 (-359)))) 78) (((-3 $ #1#) (-1179 (-295 (-516)))) 67) (((-3 $ #1#) (-1179 (-887 (-359)))) 98) (((-3 $ #1#) (-1179 (-887 (-516)))) 88) (((-3 $ #1#) (-1179 (-388 (-887 (-359))))) 56) (((-3 $ #1#) (-1179 (-388 (-887 (-516))))) 43)) (-3431 (($ (-1179 (-295 (-359)))) 74) (($ (-1179 (-295 (-516)))) 63) (($ (-1179 (-887 (-359)))) 94) (($ (-1179 (-887 (-516)))) 84) (($ (-1179 (-388 (-887 (-359))))) 52) (($ (-1179 (-388 (-887 (-516))))) 36)) (-3658 (((-1185) $) 124)) (-4233 (((-805) $) 118) (($ (-594 (-311))) 109) (($ (-311)) 115) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 113) (($ (-1179 (-320 (-3804) (-3804 (QUOTE X)) (-647)))) 35)))
+(((-79 |#1|) (-13 (-421) (-10 -8 (-15 -4233 ($ (-1179 (-320 (-3804) (-3804 (QUOTE X)) (-647))))))) (-1098)) (T -79))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1179 (-320 (-3804) (-3804 (QUOTE X)) (-647)))) (-5 *1 (-79 *3)) (-14 *3 (-1098)))))
+(-13 (-421) (-10 -8 (-15 -4233 ($ (-1179 (-320 (-3804) (-3804 (QUOTE X)) (-647)))))))
+((-3432 (((-3 $ #1="failed") (-1179 (-295 (-359)))) 79) (((-3 $ #1#) (-1179 (-295 (-516)))) 68) (((-3 $ #1#) (-1179 (-887 (-359)))) 99) (((-3 $ #1#) (-1179 (-887 (-516)))) 89) (((-3 $ #1#) (-1179 (-388 (-887 (-359))))) 57) (((-3 $ #1#) (-1179 (-388 (-887 (-516))))) 44)) (-3431 (($ (-1179 (-295 (-359)))) 75) (($ (-1179 (-295 (-516)))) 64) (($ (-1179 (-887 (-359)))) 95) (($ (-1179 (-887 (-516)))) 85) (($ (-1179 (-388 (-887 (-359))))) 53) (($ (-1179 (-388 (-887 (-516))))) 37)) (-3658 (((-1185) $) 125)) (-4233 (((-805) $) 119) (($ (-594 (-311))) 110) (($ (-311)) 116) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 114) (($ (-1179 (-320 (-3804 (QUOTE X)) (-3804 (QUOTE -4240)) (-647)))) 36)))
+(((-80 |#1|) (-13 (-421) (-10 -8 (-15 -4233 ($ (-1179 (-320 (-3804 (QUOTE X)) (-3804 (QUOTE -4240)) (-647))))))) (-1098)) (T -80))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1179 (-320 (-3804 (QUOTE X)) (-3804 (QUOTE -4240)) (-647)))) (-5 *1 (-80 *3)) (-14 *3 (-1098)))))
+(-13 (-421) (-10 -8 (-15 -4233 ($ (-1179 (-320 (-3804 (QUOTE X)) (-3804 (QUOTE -4240)) (-647)))))))
+((-3432 (((-3 $ #1="failed") (-1179 (-295 (-359)))) 95) (((-3 $ #1#) (-1179 (-295 (-516)))) 84) (((-3 $ #1#) (-1179 (-887 (-359)))) 115) (((-3 $ #1#) (-1179 (-887 (-516)))) 105) (((-3 $ #1#) (-1179 (-388 (-887 (-359))))) 73) (((-3 $ #1#) (-1179 (-388 (-887 (-516))))) 60)) (-3431 (($ (-1179 (-295 (-359)))) 91) (($ (-1179 (-295 (-516)))) 80) (($ (-1179 (-887 (-359)))) 111) (($ (-1179 (-887 (-516)))) 101) (($ (-1179 (-388 (-887 (-359))))) 69) (($ (-1179 (-388 (-887 (-516))))) 53)) (-3658 (((-1185) $) 45)) (-4233 (((-805) $) 39) (($ (-594 (-311))) 29) (($ (-311)) 32) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 35) (($ (-1179 (-320 (-3804 (QUOTE X) (QUOTE -4240)) (-3804) (-647)))) 30)))
+(((-81 |#1|) (-13 (-421) (-10 -8 (-15 -4233 ($ (-1179 (-320 (-3804 (QUOTE X) (QUOTE -4240)) (-3804) (-647))))))) (-1098)) (T -81))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1179 (-320 (-3804 (QUOTE X) (QUOTE -4240)) (-3804) (-647)))) (-5 *1 (-81 *3)) (-14 *3 (-1098)))))
+(-13 (-421) (-10 -8 (-15 -4233 ($ (-1179 (-320 (-3804 (QUOTE X) (QUOTE -4240)) (-3804) (-647)))))))
+((-3432 (((-3 $ #1="failed") (-637 (-295 (-359)))) 115) (((-3 $ #1#) (-637 (-295 (-516)))) 104) (((-3 $ #1#) (-637 (-887 (-359)))) 137) (((-3 $ #1#) (-637 (-887 (-516)))) 126) (((-3 $ #1#) (-637 (-388 (-887 (-359))))) 93) (((-3 $ #1#) (-637 (-388 (-887 (-516))))) 80)) (-3431 (($ (-637 (-295 (-359)))) 111) (($ (-637 (-295 (-516)))) 100) (($ (-637 (-887 (-359)))) 133) (($ (-637 (-887 (-516)))) 122) (($ (-637 (-388 (-887 (-359))))) 89) (($ (-637 (-388 (-887 (-516))))) 73)) (-3658 (((-1185) $) 63)) (-4233 (((-805) $) 50) (($ (-594 (-311))) 57) (($ (-311)) 46) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 55) (($ (-637 (-320 (-3804 (QUOTE X) (QUOTE -4240)) (-3804) (-647)))) 47)))
+(((-82 |#1|) (-13 (-366) (-10 -8 (-15 -4233 ($ (-637 (-320 (-3804 (QUOTE X) (QUOTE -4240)) (-3804) (-647))))))) (-1098)) (T -82))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-637 (-320 (-3804 (QUOTE X) (QUOTE -4240)) (-3804) (-647)))) (-5 *1 (-82 *3)) (-14 *3 (-1098)))))
+(-13 (-366) (-10 -8 (-15 -4233 ($ (-637 (-320 (-3804 (QUOTE X) (QUOTE -4240)) (-3804) (-647)))))))
+((-3432 (((-3 $ #1="failed") (-637 (-295 (-359)))) 112) (((-3 $ #1#) (-637 (-295 (-516)))) 100) (((-3 $ #1#) (-637 (-887 (-359)))) 134) (((-3 $ #1#) (-637 (-887 (-516)))) 123) (((-3 $ #1#) (-637 (-388 (-887 (-359))))) 88) (((-3 $ #1#) (-637 (-388 (-887 (-516))))) 74)) (-3431 (($ (-637 (-295 (-359)))) 108) (($ (-637 (-295 (-516)))) 96) (($ (-637 (-887 (-359)))) 130) (($ (-637 (-887 (-516)))) 119) (($ (-637 (-388 (-887 (-359))))) 84) (($ (-637 (-388 (-887 (-516))))) 67)) (-3658 (((-1185) $) 59)) (-4233 (((-805) $) 53) (($ (-594 (-311))) 47) (($ (-311)) 50) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 44) (($ (-637 (-320 (-3804 (QUOTE X)) (-3804) (-647)))) 45)))
+(((-83 |#1|) (-13 (-366) (-10 -8 (-15 -4233 ($ (-637 (-320 (-3804 (QUOTE X)) (-3804) (-647))))))) (-1098)) (T -83))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-637 (-320 (-3804 (QUOTE X)) (-3804) (-647)))) (-5 *1 (-83 *3)) (-14 *3 (-1098)))))
+(-13 (-366) (-10 -8 (-15 -4233 ($ (-637 (-320 (-3804 (QUOTE X)) (-3804) (-647)))))))
+((-3432 (((-3 $ #1="failed") (-1179 (-295 (-359)))) 104) (((-3 $ #1#) (-1179 (-295 (-516)))) 93) (((-3 $ #1#) (-1179 (-887 (-359)))) 124) (((-3 $ #1#) (-1179 (-887 (-516)))) 114) (((-3 $ #1#) (-1179 (-388 (-887 (-359))))) 82) (((-3 $ #1#) (-1179 (-388 (-887 (-516))))) 69)) (-3431 (($ (-1179 (-295 (-359)))) 100) (($ (-1179 (-295 (-516)))) 89) (($ (-1179 (-887 (-359)))) 120) (($ (-1179 (-887 (-516)))) 110) (($ (-1179 (-388 (-887 (-359))))) 78) (($ (-1179 (-388 (-887 (-516))))) 62)) (-3658 (((-1185) $) 46)) (-4233 (((-805) $) 40) (($ (-594 (-311))) 49) (($ (-311)) 36) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 52) (($ (-1179 (-320 (-3804 (QUOTE X)) (-3804) (-647)))) 37)))
+(((-84 |#1|) (-13 (-421) (-10 -8 (-15 -4233 ($ (-1179 (-320 (-3804 (QUOTE X)) (-3804) (-647))))))) (-1098)) (T -84))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1179 (-320 (-3804 (QUOTE X)) (-3804) (-647)))) (-5 *1 (-84 *3)) (-14 *3 (-1098)))))
+(-13 (-421) (-10 -8 (-15 -4233 ($ (-1179 (-320 (-3804 (QUOTE X)) (-3804) (-647)))))))
+((-3658 (((-1185) $) 44)) (-4233 (((-805) $) 38) (($ (-1179 (-647))) 92) (($ (-594 (-311))) 30) (($ (-311)) 35) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 33)))
+(((-85 |#1|) (-420) (-1098)) (T -85))
+NIL
+(-420)
+((-3432 (((-3 $ #1="failed") (-637 (-295 (-359)))) 113) (((-3 $ #1#) (-637 (-295 (-516)))) 101) (((-3 $ #1#) (-637 (-887 (-359)))) 135) (((-3 $ #1#) (-637 (-887 (-516)))) 124) (((-3 $ #1#) (-637 (-388 (-887 (-359))))) 89) (((-3 $ #1#) (-637 (-388 (-887 (-516))))) 75)) (-3431 (($ (-637 (-295 (-359)))) 109) (($ (-637 (-295 (-516)))) 97) (($ (-637 (-887 (-359)))) 131) (($ (-637 (-887 (-516)))) 120) (($ (-637 (-388 (-887 (-359))))) 85) (($ (-637 (-388 (-887 (-516))))) 68)) (-3658 (((-1185) $) 59)) (-4233 (((-805) $) 53) (($ (-594 (-311))) 43) (($ (-311)) 50) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 48) (($ (-637 (-320 (-3804 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3804) (-647)))) 44)))
+(((-86 |#1|) (-13 (-366) (-10 -8 (-15 -4233 ($ (-637 (-320 (-3804 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3804) (-647))))))) (-1098)) (T -86))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-637 (-320 (-3804 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3804) (-647)))) (-5 *1 (-86 *3)) (-14 *3 (-1098)))))
+(-13 (-366) (-10 -8 (-15 -4233 ($ (-637 (-320 (-3804 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3804) (-647)))))))
+((-3432 (((-3 $ #1="failed") (-295 (-359))) 47) (((-3 $ #1#) (-295 (-516))) 52) (((-3 $ #1#) (-887 (-359))) 56) (((-3 $ #1#) (-887 (-516))) 60) (((-3 $ #1#) (-388 (-887 (-359)))) 42) (((-3 $ #1#) (-388 (-887 (-516)))) 35)) (-3431 (($ (-295 (-359))) 45) (($ (-295 (-516))) 50) (($ (-887 (-359))) 54) (($ (-887 (-516))) 58) (($ (-388 (-887 (-359)))) 40) (($ (-388 (-887 (-516)))) 32)) (-3658 (((-1185) $) 90)) (-4233 (((-805) $) 84) (($ (-594 (-311))) 78) (($ (-311)) 81) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 76) (($ (-320 (-3804 (QUOTE X)) (-3804 (QUOTE -4240)) (-647))) 31)))
+(((-87 |#1|) (-13 (-378) (-10 -8 (-15 -4233 ($ (-320 (-3804 (QUOTE X)) (-3804 (QUOTE -4240)) (-647)))))) (-1098)) (T -87))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-320 (-3804 (QUOTE X)) (-3804 (QUOTE -4240)) (-647))) (-5 *1 (-87 *3)) (-14 *3 (-1098)))))
+(-13 (-378) (-10 -8 (-15 -4233 ($ (-320 (-3804 (QUOTE X)) (-3804 (QUOTE -4240)) (-647))))))
+((-1259 (((-1179 (-637 |#1|)) (-637 |#1|)) 54)) (-1258 (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 (-594 (-860))))) |#2| (-860)) 44)) (-1260 (((-2 (|:| |minor| (-594 (-860))) (|:| -3537 |#2|) (|:| |minors| (-594 (-594 (-860)))) (|:| |ops| (-594 |#2|))) |#2| (-860)) 65 (|has| |#1| (-344)))))
+(((-88 |#1| |#2|) (-10 -7 (-15 -1258 ((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 (-594 (-860))))) |#2| (-860))) (-15 -1259 ((-1179 (-637 |#1|)) (-637 |#1|))) (IF (|has| |#1| (-344)) (-15 -1260 ((-2 (|:| |minor| (-594 (-860))) (|:| -3537 |#2|) (|:| |minors| (-594 (-594 (-860)))) (|:| |ops| (-594 |#2|))) |#2| (-860))) |%noBranch|)) (-523) (-609 |#1|)) (T -88))
+((-1260 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *5 (-523)) (-5 *2 (-2 (|:| |minor| (-594 (-860))) (|:| -3537 *3) (|:| |minors| (-594 (-594 (-860)))) (|:| |ops| (-594 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-860)) (-4 *3 (-609 *5)))) (-1259 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-1179 (-637 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-637 *4)) (-4 *5 (-609 *4)))) (-1258 (*1 *2 *3 *4) (-12 (-4 *5 (-523)) (-5 *2 (-2 (|:| -1650 (-637 *5)) (|:| |vec| (-1179 (-594 (-860)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-860)) (-4 *3 (-609 *5)))))
+(-10 -7 (-15 -1258 ((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 (-594 (-860))))) |#2| (-860))) (-15 -1259 ((-1179 (-637 |#1|)) (-637 |#1|))) (IF (|has| |#1| (-344)) (-15 -1260 ((-2 (|:| |minor| (-594 (-860))) (|:| -3537 |#2|) (|:| |minors| (-594 (-594 (-860)))) (|:| |ops| (-594 |#2|))) |#2| (-860))) |%noBranch|))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3602 ((|#1| $) 35)) (-1217 (((-110) $ (-719)) NIL)) (-3815 (($) NIL T CONST)) (-3604 ((|#1| |#1| $) 30)) (-3603 ((|#1| $) 28)) (-2018 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) NIL)) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2022 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-1280 ((|#1| $) NIL)) (-3889 (($ |#1| $) 31)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-1281 ((|#1| $) 29)) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) 16)) (-3847 (($) 39)) (-3601 (((-719) $) 26)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3678 (($ $) 15)) (-4233 (((-805) $) 25 (|has| |#1| (-571 (-805))))) (-1282 (($ (-594 |#1|)) NIL)) (-1261 (($ (-594 |#1|)) 37)) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 13 (|has| |#1| (-1027)))) (-4232 (((-719) $) 10 (|has| $ (-6 -4269)))))
+(((-89 |#1|) (-13 (-1046 |#1|) (-10 -8 (-15 -1261 ($ (-594 |#1|))))) (-1027)) (T -89))
+((-1261 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1027)) (-5 *1 (-89 *3)))))
+(-13 (-1046 |#1|) (-10 -8 (-15 -1261 ($ (-594 |#1|)))))
+((-4233 (((-805) $) 12) (((-1103) $) 8)))
+(((-90 |#1|) (-10 -8 (-15 -4233 ((-1103) |#1|)) (-15 -4233 ((-805) |#1|))) (-91)) (T -90))
+NIL
+(-10 -8 (-15 -4233 ((-1103) |#1|)) (-15 -4233 ((-805) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11) (((-1103) $) 14)) (-3317 (((-110) $ $) 6)))
(((-91) (-133)) (T -91))
NIL
-(-13 (-1023) (-569 (-1100)))
-(((-99) . T) ((-569 (-802)) . T) ((-569 (-1100)) . T) ((-1023) . T))
-((-2836 (($ $) 10)) (-2846 (($ $) 12)))
-(((-92 |#1|) (-10 -8 (-15 -2846 (|#1| |#1|)) (-15 -2836 (|#1| |#1|))) (-93)) (T -92))
+(-13 (-1027) (-571 (-1103)))
+(((-99) . T) ((-571 (-805)) . T) ((-571 (-1103)) . T) ((-1027) . T))
+((-3762 (($ $) 10)) (-3763 (($ $) 12)))
+(((-92 |#1|) (-10 -8 (-15 -3763 (|#1| |#1|)) (-15 -3762 (|#1| |#1|))) (-93)) (T -92))
NIL
-(-10 -8 (-15 -2846 (|#1| |#1|)) (-15 -2836 (|#1| |#1|)))
-((-2811 (($ $) 11)) (-2784 (($ $) 10)) (-2836 (($ $) 9)) (-2846 (($ $) 8)) (-2825 (($ $) 7)) (-2797 (($ $) 6)))
+(-10 -8 (-15 -3763 (|#1| |#1|)) (-15 -3762 (|#1| |#1|)))
+((-3760 (($ $) 11)) (-3758 (($ $) 10)) (-3762 (($ $) 9)) (-3763 (($ $) 8)) (-3761 (($ $) 7)) (-3759 (($ $) 6)))
(((-93) (-133)) (T -93))
-((-2811 (*1 *1 *1) (-4 *1 (-93))) (-2784 (*1 *1 *1) (-4 *1 (-93))) (-2836 (*1 *1 *1) (-4 *1 (-93))) (-2846 (*1 *1 *1) (-4 *1 (-93))) (-2825 (*1 *1 *1) (-4 *1 (-93))) (-2797 (*1 *1 *1) (-4 *1 (-93))))
-(-13 (-10 -8 (-15 -2797 ($ $)) (-15 -2825 ($ $)) (-15 -2846 ($ $)) (-15 -2836 ($ $)) (-15 -2784 ($ $)) (-15 -2811 ($ $))))
-((-2207 (((-110) $ $) NIL)) (-1778 (((-359) (-1078) (-359)) 42) (((-359) (-1078) (-1078) (-359)) 41)) (-2976 (((-359) (-359)) 33)) (-3688 (((-1182)) 36)) (-3034 (((-1078) $) NIL)) (-2617 (((-359) (-1078) (-1078)) 46) (((-359) (-1078)) 48)) (-2495 (((-1042) $) NIL)) (-2870 (((-359) (-1078) (-1078)) 47)) (-3514 (((-359) (-1078) (-1078)) 49) (((-359) (-1078)) 50)) (-2222 (((-802) $) NIL)) (-2186 (((-110) $ $) NIL)))
-(((-94) (-13 (-1023) (-10 -7 (-15 -2617 ((-359) (-1078) (-1078))) (-15 -2617 ((-359) (-1078))) (-15 -3514 ((-359) (-1078) (-1078))) (-15 -3514 ((-359) (-1078))) (-15 -2870 ((-359) (-1078) (-1078))) (-15 -3688 ((-1182))) (-15 -2976 ((-359) (-359))) (-15 -1778 ((-359) (-1078) (-359))) (-15 -1778 ((-359) (-1078) (-1078) (-359))) (-6 -4264)))) (T -94))
-((-2617 (*1 *2 *3 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-359)) (-5 *1 (-94)))) (-2617 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-359)) (-5 *1 (-94)))) (-3514 (*1 *2 *3 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-359)) (-5 *1 (-94)))) (-3514 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-359)) (-5 *1 (-94)))) (-2870 (*1 *2 *3 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-359)) (-5 *1 (-94)))) (-3688 (*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-94)))) (-2976 (*1 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-94)))) (-1778 (*1 *2 *3 *2) (-12 (-5 *2 (-359)) (-5 *3 (-1078)) (-5 *1 (-94)))) (-1778 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-359)) (-5 *3 (-1078)) (-5 *1 (-94)))))
-(-13 (-1023) (-10 -7 (-15 -2617 ((-359) (-1078) (-1078))) (-15 -2617 ((-359) (-1078))) (-15 -3514 ((-359) (-1078) (-1078))) (-15 -3514 ((-359) (-1078))) (-15 -2870 ((-359) (-1078) (-1078))) (-15 -3688 ((-1182))) (-15 -2976 ((-359) (-359))) (-15 -1778 ((-359) (-1078) (-359))) (-15 -1778 ((-359) (-1078) (-1078) (-359))) (-6 -4264)))
+((-3760 (*1 *1 *1) (-4 *1 (-93))) (-3758 (*1 *1 *1) (-4 *1 (-93))) (-3762 (*1 *1 *1) (-4 *1 (-93))) (-3763 (*1 *1 *1) (-4 *1 (-93))) (-3761 (*1 *1 *1) (-4 *1 (-93))) (-3759 (*1 *1 *1) (-4 *1 (-93))))
+(-13 (-10 -8 (-15 -3759 ($ $)) (-15 -3761 ($ $)) (-15 -3763 ($ $)) (-15 -3762 ($ $)) (-15 -3758 ($ $)) (-15 -3760 ($ $))))
+((-2828 (((-110) $ $) NIL)) (-1262 (((-359) (-1081) (-359)) 42) (((-359) (-1081) (-1081) (-359)) 41)) (-1263 (((-359) (-359)) 33)) (-1264 (((-1185)) 36)) (-3513 (((-1081) $) NIL)) (-1267 (((-359) (-1081) (-1081)) 46) (((-359) (-1081)) 48)) (-3514 (((-1045) $) NIL)) (-1265 (((-359) (-1081) (-1081)) 47)) (-1266 (((-359) (-1081) (-1081)) 49) (((-359) (-1081)) 50)) (-4233 (((-805) $) NIL)) (-3317 (((-110) $ $) NIL)))
+(((-94) (-13 (-1027) (-10 -7 (-15 -1267 ((-359) (-1081) (-1081))) (-15 -1267 ((-359) (-1081))) (-15 -1266 ((-359) (-1081) (-1081))) (-15 -1266 ((-359) (-1081))) (-15 -1265 ((-359) (-1081) (-1081))) (-15 -1264 ((-1185))) (-15 -1263 ((-359) (-359))) (-15 -1262 ((-359) (-1081) (-359))) (-15 -1262 ((-359) (-1081) (-1081) (-359))) (-6 -4269)))) (T -94))
+((-1267 (*1 *2 *3 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-359)) (-5 *1 (-94)))) (-1267 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-359)) (-5 *1 (-94)))) (-1266 (*1 *2 *3 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-359)) (-5 *1 (-94)))) (-1266 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-359)) (-5 *1 (-94)))) (-1265 (*1 *2 *3 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-359)) (-5 *1 (-94)))) (-1264 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-94)))) (-1263 (*1 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-94)))) (-1262 (*1 *2 *3 *2) (-12 (-5 *2 (-359)) (-5 *3 (-1081)) (-5 *1 (-94)))) (-1262 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-359)) (-5 *3 (-1081)) (-5 *1 (-94)))))
+(-13 (-1027) (-10 -7 (-15 -1267 ((-359) (-1081) (-1081))) (-15 -1267 ((-359) (-1081))) (-15 -1266 ((-359) (-1081) (-1081))) (-15 -1266 ((-359) (-1081))) (-15 -1265 ((-359) (-1081) (-1081))) (-15 -1264 ((-1185))) (-15 -1263 ((-359) (-359))) (-15 -1262 ((-359) (-1081) (-359))) (-15 -1262 ((-359) (-1081) (-1081) (-359))) (-6 -4269)))
NIL
(((-95) (-133)) (T -95))
NIL
-(-13 (-10 -7 (-6 -4264) (-6 (-4266 "*")) (-6 -4265) (-6 -4261) (-6 -4259) (-6 -4258) (-6 -4257) (-6 -4262) (-6 -4256) (-6 -4255) (-6 -4254) (-6 -4253) (-6 -4252) (-6 -4260) (-6 -4263) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4251)))
-((-2207 (((-110) $ $) NIL)) (-2816 (($) NIL T CONST)) (-1312 (((-3 $ "failed") $) NIL)) (-1297 (((-110) $) NIL)) (-2431 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-528))) 22)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) 14)) (-2495 (((-1042) $) NIL)) (-3043 ((|#1| $ |#1|) 11)) (-4097 (($ $ $) NIL)) (-2405 (($ $ $) NIL)) (-2222 (((-802) $) 20)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2982 (($) 8 T CONST)) (-2186 (((-110) $ $) 10)) (-2296 (($ $ $) NIL)) (** (($ $ (-860)) 28) (($ $ (-717)) NIL) (($ $ (-528)) 16)) (* (($ $ $) 29)))
-(((-96 |#1|) (-13 (-452) (-267 |#1| |#1|) (-10 -8 (-15 -2431 ($ (-1 |#1| |#1|))) (-15 -2431 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2431 ($ (-1 |#1| |#1| (-528)))))) (-981)) (T -96))
-((-2431 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-981)) (-5 *1 (-96 *3)))) (-2431 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-981)) (-5 *1 (-96 *3)))) (-2431 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-528))) (-4 *3 (-981)) (-5 *1 (-96 *3)))))
-(-13 (-452) (-267 |#1| |#1|) (-10 -8 (-15 -2431 ($ (-1 |#1| |#1|))) (-15 -2431 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2431 ($ (-1 |#1| |#1| (-528))))))
-((-1409 (((-398 |#2|) |#2| (-595 |#2|)) 10) (((-398 |#2|) |#2| |#2|) 11)))
-(((-97 |#1| |#2|) (-10 -7 (-15 -1409 ((-398 |#2|) |#2| |#2|)) (-15 -1409 ((-398 |#2|) |#2| (-595 |#2|)))) (-13 (-431) (-140)) (-1153 |#1|)) (T -97))
-((-1409 (*1 *2 *3 *4) (-12 (-5 *4 (-595 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-13 (-431) (-140))) (-5 *2 (-398 *3)) (-5 *1 (-97 *5 *3)))) (-1409 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-431) (-140))) (-5 *2 (-398 *3)) (-5 *1 (-97 *4 *3)) (-4 *3 (-1153 *4)))))
-(-10 -7 (-15 -1409 ((-398 |#2|) |#2| |#2|)) (-15 -1409 ((-398 |#2|) |#2| (-595 |#2|))))
-((-2207 (((-110) $ $) 10)))
-(((-98 |#1|) (-10 -8 (-15 -2207 ((-110) |#1| |#1|))) (-99)) (T -98))
-NIL
-(-10 -8 (-15 -2207 ((-110) |#1| |#1|)))
-((-2207 (((-110) $ $) 7)) (-2186 (((-110) $ $) 6)))
+(-13 (-10 -7 (-6 -4269) (-6 (-4271 "*")) (-6 -4270) (-6 -4266) (-6 -4264) (-6 -4263) (-6 -4262) (-6 -4267) (-6 -4261) (-6 -4260) (-6 -4259) (-6 -4258) (-6 -4257) (-6 -4265) (-6 -4268) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4256)))
+((-2828 (((-110) $ $) NIL)) (-3815 (($) NIL T CONST)) (-3741 (((-3 $ "failed") $) NIL)) (-2436 (((-110) $) NIL)) (-1268 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-516))) 22)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) 14)) (-3514 (((-1045) $) NIL)) (-4078 ((|#1| $ |#1|) 11)) (-3273 (($ $ $) NIL)) (-2620 (($ $ $) NIL)) (-4233 (((-805) $) 20)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2927 (($) 8 T CONST)) (-3317 (((-110) $ $) 10)) (-4224 (($ $ $) NIL)) (** (($ $ (-860)) 28) (($ $ (-719)) NIL) (($ $ (-516)) 16)) (* (($ $ $) 29)))
+(((-96 |#1|) (-13 (-453) (-268 |#1| |#1|) (-10 -8 (-15 -1268 ($ (-1 |#1| |#1|))) (-15 -1268 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1268 ($ (-1 |#1| |#1| (-516)))))) (-984)) (T -96))
+((-1268 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-96 *3)))) (-1268 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-96 *3)))) (-1268 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-516))) (-4 *3 (-984)) (-5 *1 (-96 *3)))))
+(-13 (-453) (-268 |#1| |#1|) (-10 -8 (-15 -1268 ($ (-1 |#1| |#1|))) (-15 -1268 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1268 ($ (-1 |#1| |#1| (-516))))))
+((-1269 (((-386 |#2|) |#2| (-594 |#2|)) 10) (((-386 |#2|) |#2| |#2|) 11)))
+(((-97 |#1| |#2|) (-10 -7 (-15 -1269 ((-386 |#2|) |#2| |#2|)) (-15 -1269 ((-386 |#2|) |#2| (-594 |#2|)))) (-13 (-432) (-140)) (-1155 |#1|)) (T -97))
+((-1269 (*1 *2 *3 *4) (-12 (-5 *4 (-594 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-13 (-432) (-140))) (-5 *2 (-386 *3)) (-5 *1 (-97 *5 *3)))) (-1269 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-432) (-140))) (-5 *2 (-386 *3)) (-5 *1 (-97 *4 *3)) (-4 *3 (-1155 *4)))))
+(-10 -7 (-15 -1269 ((-386 |#2|) |#2| |#2|)) (-15 -1269 ((-386 |#2|) |#2| (-594 |#2|))))
+((-2828 (((-110) $ $) 10)))
+(((-98 |#1|) (-10 -8 (-15 -2828 ((-110) |#1| |#1|))) (-99)) (T -98))
+NIL
+(-10 -8 (-15 -2828 ((-110) |#1| |#1|)))
+((-2828 (((-110) $ $) 7)) (-3317 (((-110) $ $) 6)))
(((-99) (-133)) (T -99))
-((-2207 (*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110)))) (-2186 (*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110)))))
-(-13 (-10 -8 (-15 -2186 ((-110) $ $)) (-15 -2207 ((-110) $ $))))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3327 ((|#1| $) NIL)) (-3535 (((-110) $ (-717)) NIL)) (-2074 ((|#1| $ |#1|) 13 (|has| $ (-6 -4265)))) (-2033 (($ $ $) NIL (|has| $ (-6 -4265)))) (-3187 (($ $ $) NIL (|has| $ (-6 -4265)))) (-1382 (($ $ (-595 |#1|)) 15)) (-2381 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4265))) (($ $ "left" $) NIL (|has| $ (-6 -4265))) (($ $ "right" $) NIL (|has| $ (-6 -4265)))) (-3409 (($ $ (-595 $)) NIL (|has| $ (-6 -4265)))) (-2816 (($) NIL T CONST)) (-3572 (($ $) 11)) (-3342 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-1690 (((-595 $) $) NIL)) (-1313 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-1454 (($ $ |#1| $) 17)) (-2029 (((-110) $ (-717)) NIL)) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2130 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-2587 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-595 |#1|) |#1| |#1| |#1|)) 35)) (-2800 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3562 (($ $) 10)) (-3298 (((-595 |#1|) $) NIL)) (-2578 (((-110) $) 12)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) 9)) (-2147 (($) 16)) (-3043 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3241 (((-528) $ $) NIL)) (-3177 (((-110) $) NIL)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2406 (($ $) NIL)) (-2222 (((-802) $) NIL (|has| |#1| (-569 (-802))))) (-3813 (((-595 $) $) NIL)) (-2688 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-1241 (($ (-717) |#1|) 19)) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-100 |#1|) (-13 (-123 |#1|) (-10 -8 (-6 -4264) (-6 -4265) (-15 -1241 ($ (-717) |#1|)) (-15 -1382 ($ $ (-595 |#1|))) (-15 -2130 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2130 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2587 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2587 ($ $ |#1| (-1 (-595 |#1|) |#1| |#1| |#1|))))) (-1023)) (T -100))
-((-1241 (*1 *1 *2 *3) (-12 (-5 *2 (-717)) (-5 *1 (-100 *3)) (-4 *3 (-1023)))) (-1382 (*1 *1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1023)) (-5 *1 (-100 *3)))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-100 *2)) (-4 *2 (-1023)))) (-2130 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-100 *3)))) (-2587 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1023)) (-5 *1 (-100 *2)))) (-2587 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-595 *2) *2 *2 *2)) (-4 *2 (-1023)) (-5 *1 (-100 *2)))))
-(-13 (-123 |#1|) (-10 -8 (-6 -4264) (-6 -4265) (-15 -1241 ($ (-717) |#1|)) (-15 -1382 ($ $ (-595 |#1|))) (-15 -2130 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2130 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2587 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2587 ($ $ |#1| (-1 (-595 |#1|) |#1| |#1| |#1|)))))
-((-3444 ((|#3| |#2| |#2|) 29)) (-3757 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4266 "*"))))) (-1250 ((|#3| |#2| |#2|) 30)) (-1519 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4266 "*"))))))
-(((-101 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3444 (|#3| |#2| |#2|)) (-15 -1250 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4266 "*"))) (PROGN (-15 -3757 (|#1| |#2| |#2|)) (-15 -1519 (|#1| |#2|))) |%noBranch|)) (-981) (-1153 |#1|) (-633 |#1| |#4| |#5|) (-353 |#1|) (-353 |#1|)) (T -101))
-((-1519 (*1 *2 *3) (-12 (|has| *2 (-6 (-4266 "*"))) (-4 *5 (-353 *2)) (-4 *6 (-353 *2)) (-4 *2 (-981)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1153 *2)) (-4 *4 (-633 *2 *5 *6)))) (-3757 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4266 "*"))) (-4 *5 (-353 *2)) (-4 *6 (-353 *2)) (-4 *2 (-981)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1153 *2)) (-4 *4 (-633 *2 *5 *6)))) (-1250 (*1 *2 *3 *3) (-12 (-4 *4 (-981)) (-4 *2 (-633 *4 *5 *6)) (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1153 *4)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)))) (-3444 (*1 *2 *3 *3) (-12 (-4 *4 (-981)) (-4 *2 (-633 *4 *5 *6)) (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1153 *4)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)))))
-(-10 -7 (-15 -3444 (|#3| |#2| |#2|)) (-15 -1250 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4266 "*"))) (PROGN (-15 -3757 (|#1| |#2| |#2|)) (-15 -1519 (|#1| |#2|))) |%noBranch|))
-((-2207 (((-110) $ $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-4129 (((-595 (-1095))) 33)) (-3780 (((-2 (|:| |zeros| (-1076 (-207))) (|:| |ones| (-1076 (-207))) (|:| |singularities| (-1076 (-207)))) (-1095)) 35)) (-2186 (((-110) $ $) NIL)))
-(((-102) (-13 (-1023) (-10 -7 (-15 -4129 ((-595 (-1095)))) (-15 -3780 ((-2 (|:| |zeros| (-1076 (-207))) (|:| |ones| (-1076 (-207))) (|:| |singularities| (-1076 (-207)))) (-1095))) (-6 -4264)))) (T -102))
-((-4129 (*1 *2) (-12 (-5 *2 (-595 (-1095))) (-5 *1 (-102)))) (-3780 (*1 *2 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-2 (|:| |zeros| (-1076 (-207))) (|:| |ones| (-1076 (-207))) (|:| |singularities| (-1076 (-207))))) (-5 *1 (-102)))))
-(-13 (-1023) (-10 -7 (-15 -4129 ((-595 (-1095)))) (-15 -3780 ((-2 (|:| |zeros| (-1076 (-207))) (|:| |ones| (-1076 (-207))) (|:| |singularities| (-1076 (-207)))) (-1095))) (-6 -4264)))
-((-2164 (($ (-595 |#2|)) 11)))
-(((-103 |#1| |#2|) (-10 -8 (-15 -2164 (|#1| (-595 |#2|)))) (-104 |#2|) (-1131)) (T -103))
-NIL
-(-10 -8 (-15 -2164 (|#1| (-595 |#2|))))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-3535 (((-110) $ (-717)) 8)) (-2816 (($) 7 T CONST)) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) 9)) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35)) (-3358 (((-110) $ (-717)) 10)) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-3934 ((|#1| $) 39)) (-1950 (($ |#1| $) 40)) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-1390 ((|#1| $) 41)) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-2164 (($ (-595 |#1|)) 42)) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-104 |#1|) (-133) (-1131)) (T -104))
-((-2164 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1131)) (-4 *1 (-104 *3)))) (-1390 (*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1131)))) (-1950 (*1 *1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1131)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1131)))))
-(-13 (-467 |t#1|) (-10 -8 (-6 -4265) (-15 -2164 ($ (-595 |t#1|))) (-15 -1390 (|t#1| $)) (-15 -1950 ($ |t#1| $)) (-15 -3934 (|t#1| $))))
-(((-33) . T) ((-99) |has| |#1| (-1023)) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-569 (-802)))) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-467 |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-1023) |has| |#1| (-1023)) ((-1131) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3598 (((-528) $) NIL (|has| (-528) (-288)))) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (|has| (-528) (-848)))) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (|has| (-528) (-848)))) (-2213 (((-110) $ $) NIL)) (-3605 (((-528) $) NIL (|has| (-528) (-766)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-528) "failed") $) NIL) (((-3 (-1095) "failed") $) NIL (|has| (-528) (-972 (-1095)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| (-528) (-972 (-528)))) (((-3 (-528) "failed") $) NIL (|has| (-528) (-972 (-528))))) (-2409 (((-528) $) NIL) (((-1095) $) NIL (|has| (-528) (-972 (-1095)))) (((-387 (-528)) $) NIL (|has| (-528) (-972 (-528)))) (((-528) $) NIL (|has| (-528) (-972 (-528))))) (-3519 (($ $ $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| (-528) (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| (-528) (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL) (((-635 (-528)) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1338 (($) NIL (|has| (-528) (-513)))) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2124 (((-110) $) NIL)) (-3657 (((-110) $) NIL (|has| (-528) (-766)))) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (|has| (-528) (-825 (-528)))) (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (|has| (-528) (-825 (-359))))) (-1297 (((-110) $) NIL)) (-3037 (($ $) NIL)) (-3031 (((-528) $) NIL)) (-3296 (((-3 $ "failed") $) NIL (|has| (-528) (-1071)))) (-3710 (((-110) $) NIL (|has| (-528) (-766)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-1436 (($ $ $) NIL (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (|has| (-528) (-793)))) (-3106 (($ (-1 (-528) (-528)) $) NIL)) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL)) (-4197 (($) NIL (|has| (-528) (-1071)) CONST)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3270 (($ $) NIL (|has| (-528) (-288))) (((-387 (-528)) $) NIL)) (-2925 (((-528) $) NIL (|has| (-528) (-513)))) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (|has| (-528) (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (|has| (-528) (-848)))) (-2437 (((-398 $) $) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-4014 (($ $ (-595 (-528)) (-595 (-528))) NIL (|has| (-528) (-290 (-528)))) (($ $ (-528) (-528)) NIL (|has| (-528) (-290 (-528)))) (($ $ (-275 (-528))) NIL (|has| (-528) (-290 (-528)))) (($ $ (-595 (-275 (-528)))) NIL (|has| (-528) (-290 (-528)))) (($ $ (-595 (-1095)) (-595 (-528))) NIL (|has| (-528) (-489 (-1095) (-528)))) (($ $ (-1095) (-528)) NIL (|has| (-528) (-489 (-1095) (-528))))) (-3973 (((-717) $) NIL)) (-3043 (($ $ (-528)) NIL (|has| (-528) (-267 (-528) (-528))))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3235 (($ $) NIL (|has| (-528) (-215))) (($ $ (-717)) NIL (|has| (-528) (-215))) (($ $ (-1095)) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-1 (-528) (-528)) (-717)) NIL) (($ $ (-1 (-528) (-528))) NIL)) (-4118 (($ $) NIL)) (-3042 (((-528) $) NIL)) (-3155 (((-831 (-528)) $) NIL (|has| (-528) (-570 (-831 (-528))))) (((-831 (-359)) $) NIL (|has| (-528) (-570 (-831 (-359))))) (((-504) $) NIL (|has| (-528) (-570 (-504)))) (((-359) $) NIL (|has| (-528) (-957))) (((-207) $) NIL (|has| (-528) (-957)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| (-528) (-848))))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ $) NIL) (($ (-387 (-528))) 8) (($ (-528)) NIL) (($ (-1095)) NIL (|has| (-528) (-972 (-1095)))) (((-387 (-528)) $) NIL) (((-940 2) $) 10)) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| (-528) (-848))) (|has| (-528) (-138))))) (-3742 (((-717)) NIL)) (-1769 (((-528) $) NIL (|has| (-528) (-513)))) (-2769 (($ (-387 (-528))) 9)) (-4016 (((-110) $ $) NIL)) (-1775 (($ $) NIL (|has| (-528) (-766)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($ $) NIL (|has| (-528) (-215))) (($ $ (-717)) NIL (|has| (-528) (-215))) (($ $ (-1095)) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-1 (-528) (-528)) (-717)) NIL) (($ $ (-1 (-528) (-528))) NIL)) (-2244 (((-110) $ $) NIL (|has| (-528) (-793)))) (-2220 (((-110) $ $) NIL (|has| (-528) (-793)))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (|has| (-528) (-793)))) (-2208 (((-110) $ $) NIL (|has| (-528) (-793)))) (-2296 (($ $ $) NIL) (($ (-528) (-528)) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL) (($ (-528) $) NIL) (($ $ (-528)) NIL)))
-(((-105) (-13 (-929 (-528)) (-10 -8 (-15 -2222 ((-387 (-528)) $)) (-15 -2222 ((-940 2) $)) (-15 -3270 ((-387 (-528)) $)) (-15 -2769 ($ (-387 (-528))))))) (T -105))
-((-2222 (*1 *2 *1) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-105)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-940 2)) (-5 *1 (-105)))) (-3270 (*1 *2 *1) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-105)))) (-2769 (*1 *1 *2) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-105)))))
-(-13 (-929 (-528)) (-10 -8 (-15 -2222 ((-387 (-528)) $)) (-15 -2222 ((-940 2) $)) (-15 -3270 ((-387 (-528)) $)) (-15 -2769 ($ (-387 (-528))))))
-((-2725 (((-595 (-903)) $) 14)) (-3814 (((-1095) $) 10)) (-2222 (((-802) $) 23)) (-1672 (($ (-1095) (-595 (-903))) 15)))
-(((-106) (-13 (-569 (-802)) (-10 -8 (-15 -3814 ((-1095) $)) (-15 -2725 ((-595 (-903)) $)) (-15 -1672 ($ (-1095) (-595 (-903))))))) (T -106))
-((-3814 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-106)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-595 (-903))) (-5 *1 (-106)))) (-1672 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-595 (-903))) (-5 *1 (-106)))))
-(-13 (-569 (-802)) (-10 -8 (-15 -3814 ((-1095) $)) (-15 -2725 ((-595 (-903)) $)) (-15 -1672 ($ (-1095) (-595 (-903))))))
-((-2207 (((-110) $ $) NIL)) (-2059 (((-1042) $ (-1042)) 24)) (-1879 (($ $ (-1078)) 17)) (-2256 (((-3 (-1042) "failed") $) 23)) (-1757 (((-1042) $) 21)) (-2444 (((-1042) $ (-1042)) 26)) (-3140 (((-1042) $) 25)) (-2378 (($ (-368)) NIL) (($ (-368) (-1078)) 16)) (-3814 (((-368) $) NIL)) (-3034 (((-1078) $) NIL)) (-3978 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-3250 (($ $) 18)) (-2186 (((-110) $ $) NIL)))
-(((-107) (-13 (-344 (-368) (-1042)) (-10 -8 (-15 -2256 ((-3 (-1042) "failed") $)) (-15 -3140 ((-1042) $)) (-15 -2444 ((-1042) $ (-1042)))))) (T -107))
-((-2256 (*1 *2 *1) (|partial| -12 (-5 *2 (-1042)) (-5 *1 (-107)))) (-3140 (*1 *2 *1) (-12 (-5 *2 (-1042)) (-5 *1 (-107)))) (-2444 (*1 *2 *1 *2) (-12 (-5 *2 (-1042)) (-5 *1 (-107)))))
-(-13 (-344 (-368) (-1042)) (-10 -8 (-15 -2256 ((-3 (-1042) "failed") $)) (-15 -3140 ((-1042) $)) (-15 -2444 ((-1042) $ (-1042)))))
-((-2207 (((-110) $ $) NIL)) (-2355 (($ $) NIL)) (-2993 (($ $ $) NIL)) (-1444 (((-1182) $ (-528) (-528)) NIL (|has| $ (-6 -4265)))) (-3608 (((-110) $) NIL (|has| (-110) (-793))) (((-110) (-1 (-110) (-110) (-110)) $) NIL)) (-3863 (($ $) NIL (-12 (|has| $ (-6 -4265)) (|has| (-110) (-793)))) (($ (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4265)))) (-1289 (($ $) NIL (|has| (-110) (-793))) (($ (-1 (-110) (-110) (-110)) $) NIL)) (-3535 (((-110) $ (-717)) NIL)) (-2381 (((-110) $ (-1144 (-528)) (-110)) NIL (|has| $ (-6 -4265))) (((-110) $ (-528) (-110)) NIL (|has| $ (-6 -4265)))) (-1573 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4264)))) (-2816 (($) NIL T CONST)) (-2472 (($ $) NIL (|has| $ (-6 -4265)))) (-3009 (($ $) NIL)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-110) (-1023))))) (-2280 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4264))) (($ (-110) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-110) (-1023))))) (-1422 (((-110) (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) (-110) (-110)) $ (-110)) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) (-110) (-110)) $ (-110) (-110)) NIL (-12 (|has| $ (-6 -4264)) (|has| (-110) (-1023))))) (-2812 (((-110) $ (-528) (-110)) NIL (|has| $ (-6 -4265)))) (-2742 (((-110) $ (-528)) NIL)) (-3140 (((-528) (-110) $ (-528)) NIL (|has| (-110) (-1023))) (((-528) (-110) $) NIL (|has| (-110) (-1023))) (((-528) (-1 (-110) (-110)) $) NIL)) (-3342 (((-595 (-110)) $) NIL (|has| $ (-6 -4264)))) (-2619 (($ $ $) NIL)) (-3617 (($ $) NIL)) (-3012 (($ $ $) NIL)) (-3462 (($ (-717) (-110)) 8)) (-4135 (($ $ $) NIL)) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-528) $) NIL (|has| (-528) (-793)))) (-1436 (($ $ $) NIL)) (-1356 (($ $ $) NIL (|has| (-110) (-793))) (($ (-1 (-110) (-110) (-110)) $ $) NIL)) (-2604 (((-595 (-110)) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-110) (-1023))))) (-1709 (((-528) $) NIL (|has| (-528) (-793)))) (-1736 (($ $ $) NIL)) (-2800 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-110) (-110) (-110)) $ $) NIL) (($ (-1 (-110) (-110)) $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL)) (-3939 (($ $ $ (-528)) NIL) (($ (-110) $ (-528)) NIL)) (-2084 (((-595 (-528)) $) NIL)) (-3966 (((-110) (-528) $) NIL)) (-2495 (((-1042) $) NIL)) (-2890 (((-110) $) NIL (|has| (-528) (-793)))) (-1734 (((-3 (-110) "failed") (-1 (-110) (-110)) $) NIL)) (-1332 (($ $ (-110)) NIL (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-110)) (-595 (-110))) NIL (-12 (|has| (-110) (-290 (-110))) (|has| (-110) (-1023)))) (($ $ (-110) (-110)) NIL (-12 (|has| (-110) (-290 (-110))) (|has| (-110) (-1023)))) (($ $ (-275 (-110))) NIL (-12 (|has| (-110) (-290 (-110))) (|has| (-110) (-1023)))) (($ $ (-595 (-275 (-110)))) NIL (-12 (|has| (-110) (-290 (-110))) (|has| (-110) (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-110) (-1023))))) (-2861 (((-595 (-110)) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 (($ $ (-1144 (-528))) NIL) (((-110) $ (-528)) NIL) (((-110) $ (-528) (-110)) NIL)) (-1745 (($ $ (-1144 (-528))) NIL) (($ $ (-528)) NIL)) (-2507 (((-717) (-110) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-110) (-1023)))) (((-717) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4264)))) (-3761 (($ $ $ (-528)) NIL (|has| $ (-6 -4265)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) NIL (|has| (-110) (-570 (-504))))) (-2233 (($ (-595 (-110))) NIL)) (-3400 (($ (-595 $)) NIL) (($ $ $) NIL) (($ (-110) $) NIL) (($ $ (-110)) NIL)) (-2222 (((-802) $) NIL)) (-3341 (($ (-717) (-110)) 9)) (-3451 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4264)))) (-3287 (($ $ $) NIL)) (-2690 (($ $) NIL)) (-2436 (($ $ $) NIL)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) NIL)) (-2425 (($ $ $) NIL)) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-108) (-13 (-121) (-10 -8 (-15 -3341 ($ (-717) (-110)))))) (T -108))
-((-3341 (*1 *1 *2 *3) (-12 (-5 *2 (-717)) (-5 *3 (-110)) (-5 *1 (-108)))))
-(-13 (-121) (-10 -8 (-15 -3341 ($ (-717) (-110)))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2969 (($) 18 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
-(((-109 |#1| |#2|) (-133) (-981) (-981)) (T -109))
-NIL
-(-13 (-597 |t#1|) (-986 |t#2|) (-10 -7 (-6 -4259) (-6 -4258)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-569 (-802)) . T) ((-597 |#1|) . T) ((-986 |#2|) . T) ((-1023) . T))
-((-2207 (((-110) $ $) NIL)) (-2355 (($ $) 11)) (-2993 (($ $ $) 16)) (-3274 (($) 7 T CONST)) (-1964 (($ $) 6)) (-2856 (((-717)) 25)) (-1338 (($) 31)) (-2619 (($ $ $) 14)) (-3617 (($ $) 9)) (-3012 (($ $ $) 17)) (-4135 (($ $ $) 18)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3201 (((-860) $) 30)) (-3034 (((-1078) $) NIL)) (-3108 (($ (-860)) 29)) (-2970 (($ $ $) 21)) (-2495 (((-1042) $) NIL)) (-2095 (($) 8 T CONST)) (-2118 (($ $ $) 22)) (-3155 (((-504) $) 37)) (-2222 (((-802) $) 40)) (-3287 (($ $ $) 12)) (-2690 (($ $) 10)) (-2436 (($ $ $) 15)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 20)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 23)) (-2425 (($ $ $) 13)))
-(((-110) (-13 (-793) (-348) (-610) (-905) (-570 (-504)) (-10 -8 (-15 -3274 ($) -2636) (-15 -2095 ($) -2636) (-15 -2690 ($ $)) (-15 -2993 ($ $ $)) (-15 -4135 ($ $ $)) (-15 -3012 ($ $ $)) (-15 -1964 ($ $))))) (T -110))
-((-3274 (*1 *1) (-5 *1 (-110))) (-2095 (*1 *1) (-5 *1 (-110))) (-2690 (*1 *1 *1) (-5 *1 (-110))) (-2993 (*1 *1 *1 *1) (-5 *1 (-110))) (-4135 (*1 *1 *1 *1) (-5 *1 (-110))) (-3012 (*1 *1 *1 *1) (-5 *1 (-110))) (-1964 (*1 *1 *1) (-5 *1 (-110))))
-(-13 (-793) (-348) (-610) (-905) (-570 (-504)) (-10 -8 (-15 -3274 ($) -2636) (-15 -2095 ($) -2636) (-15 -2690 ($ $)) (-15 -2993 ($ $ $)) (-15 -4135 ($ $ $)) (-15 -3012 ($ $ $)) (-15 -1964 ($ $))))
-((-1612 (((-3 (-1 |#1| (-595 |#1|)) "failed") (-112)) 19) (((-112) (-112) (-1 |#1| |#1|)) 13) (((-112) (-112) (-1 |#1| (-595 |#1|))) 11) (((-3 |#1| "failed") (-112) (-595 |#1|)) 21)) (-4160 (((-3 (-595 (-1 |#1| (-595 |#1|))) "failed") (-112)) 25) (((-112) (-112) (-1 |#1| |#1|)) 30) (((-112) (-112) (-595 (-1 |#1| (-595 |#1|)))) 26)) (-3406 (((-112) |#1|) 56 (|has| |#1| (-793)))) (-4167 (((-3 |#1| "failed") (-112)) 50 (|has| |#1| (-793)))))
-(((-111 |#1|) (-10 -7 (-15 -1612 ((-3 |#1| "failed") (-112) (-595 |#1|))) (-15 -1612 ((-112) (-112) (-1 |#1| (-595 |#1|)))) (-15 -1612 ((-112) (-112) (-1 |#1| |#1|))) (-15 -1612 ((-3 (-1 |#1| (-595 |#1|)) "failed") (-112))) (-15 -4160 ((-112) (-112) (-595 (-1 |#1| (-595 |#1|))))) (-15 -4160 ((-112) (-112) (-1 |#1| |#1|))) (-15 -4160 ((-3 (-595 (-1 |#1| (-595 |#1|))) "failed") (-112))) (IF (|has| |#1| (-793)) (PROGN (-15 -3406 ((-112) |#1|)) (-15 -4167 ((-3 |#1| "failed") (-112)))) |%noBranch|)) (-1023)) (T -111))
-((-4167 (*1 *2 *3) (|partial| -12 (-5 *3 (-112)) (-4 *2 (-1023)) (-4 *2 (-793)) (-5 *1 (-111 *2)))) (-3406 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-111 *3)) (-4 *3 (-793)) (-4 *3 (-1023)))) (-4160 (*1 *2 *3) (|partial| -12 (-5 *3 (-112)) (-5 *2 (-595 (-1 *4 (-595 *4)))) (-5 *1 (-111 *4)) (-4 *4 (-1023)))) (-4160 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1023)) (-5 *1 (-111 *4)))) (-4160 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-595 (-1 *4 (-595 *4)))) (-4 *4 (-1023)) (-5 *1 (-111 *4)))) (-1612 (*1 *2 *3) (|partial| -12 (-5 *3 (-112)) (-5 *2 (-1 *4 (-595 *4))) (-5 *1 (-111 *4)) (-4 *4 (-1023)))) (-1612 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1023)) (-5 *1 (-111 *4)))) (-1612 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 (-595 *4))) (-4 *4 (-1023)) (-5 *1 (-111 *4)))) (-1612 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-112)) (-5 *4 (-595 *2)) (-5 *1 (-111 *2)) (-4 *2 (-1023)))))
-(-10 -7 (-15 -1612 ((-3 |#1| "failed") (-112) (-595 |#1|))) (-15 -1612 ((-112) (-112) (-1 |#1| (-595 |#1|)))) (-15 -1612 ((-112) (-112) (-1 |#1| |#1|))) (-15 -1612 ((-3 (-1 |#1| (-595 |#1|)) "failed") (-112))) (-15 -4160 ((-112) (-112) (-595 (-1 |#1| (-595 |#1|))))) (-15 -4160 ((-112) (-112) (-1 |#1| |#1|))) (-15 -4160 ((-3 (-595 (-1 |#1| (-595 |#1|))) "failed") (-112))) (IF (|has| |#1| (-793)) (PROGN (-15 -3406 ((-112) |#1|)) (-15 -4167 ((-3 |#1| "failed") (-112)))) |%noBranch|))
-((-2207 (((-110) $ $) NIL)) (-1479 (((-717) $) 72) (($ $ (-717)) 30)) (-4201 (((-110) $) 32)) (-2685 (($ $ (-1078) (-720)) 26)) (-1477 (($ $ (-44 (-1078) (-720))) 15)) (-1723 (((-3 (-720) "failed") $ (-1078)) 25)) (-2725 (((-44 (-1078) (-720)) $) 14)) (-3748 (($ (-1095)) 17) (($ (-1095) (-717)) 22)) (-2082 (((-110) $) 31)) (-2384 (((-110) $) 33)) (-3814 (((-1095) $) 8)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3034 (((-1078) $) NIL)) (-2341 (((-110) $ (-1095)) 10)) (-2326 (($ $ (-1 (-504) (-595 (-504)))) 52) (((-3 (-1 (-504) (-595 (-504))) "failed") $) 56)) (-2495 (((-1042) $) NIL)) (-2317 (((-110) $ (-1078)) 29)) (-1364 (($ $ (-1 (-110) $ $)) 35)) (-2273 (((-3 (-1 (-802) (-595 (-802))) "failed") $) 54) (($ $ (-1 (-802) (-595 (-802)))) 41) (($ $ (-1 (-802) (-802))) 43)) (-3678 (($ $ (-1078)) 45)) (-2406 (($ $) 63)) (-3845 (($ $ (-1 (-110) $ $)) 36)) (-2222 (((-802) $) 48)) (-3828 (($ $ (-1078)) 27)) (-1959 (((-3 (-717) "failed") $) 58)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 71)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 79)))
-(((-112) (-13 (-793) (-10 -8 (-15 -3814 ((-1095) $)) (-15 -2725 ((-44 (-1078) (-720)) $)) (-15 -2406 ($ $)) (-15 -3748 ($ (-1095))) (-15 -3748 ($ (-1095) (-717))) (-15 -1959 ((-3 (-717) "failed") $)) (-15 -2082 ((-110) $)) (-15 -4201 ((-110) $)) (-15 -2384 ((-110) $)) (-15 -1479 ((-717) $)) (-15 -1479 ($ $ (-717))) (-15 -1364 ($ $ (-1 (-110) $ $))) (-15 -3845 ($ $ (-1 (-110) $ $))) (-15 -2273 ((-3 (-1 (-802) (-595 (-802))) "failed") $)) (-15 -2273 ($ $ (-1 (-802) (-595 (-802))))) (-15 -2273 ($ $ (-1 (-802) (-802)))) (-15 -2326 ($ $ (-1 (-504) (-595 (-504))))) (-15 -2326 ((-3 (-1 (-504) (-595 (-504))) "failed") $)) (-15 -2341 ((-110) $ (-1095))) (-15 -2317 ((-110) $ (-1078))) (-15 -3828 ($ $ (-1078))) (-15 -3678 ($ $ (-1078))) (-15 -1723 ((-3 (-720) "failed") $ (-1078))) (-15 -2685 ($ $ (-1078) (-720))) (-15 -1477 ($ $ (-44 (-1078) (-720))))))) (T -112))
-((-3814 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-112)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-44 (-1078) (-720))) (-5 *1 (-112)))) (-2406 (*1 *1 *1) (-5 *1 (-112))) (-3748 (*1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-112)))) (-3748 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-717)) (-5 *1 (-112)))) (-1959 (*1 *2 *1) (|partial| -12 (-5 *2 (-717)) (-5 *1 (-112)))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))) (-4201 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))) (-2384 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-112)))) (-1479 (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-112)))) (-1364 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-112) (-112))) (-5 *1 (-112)))) (-3845 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-112) (-112))) (-5 *1 (-112)))) (-2273 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-802) (-595 (-802)))) (-5 *1 (-112)))) (-2273 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-802) (-595 (-802)))) (-5 *1 (-112)))) (-2273 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-802) (-802))) (-5 *1 (-112)))) (-2326 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-504) (-595 (-504)))) (-5 *1 (-112)))) (-2326 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-504) (-595 (-504)))) (-5 *1 (-112)))) (-2341 (*1 *2 *1 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-110)) (-5 *1 (-112)))) (-2317 (*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-110)) (-5 *1 (-112)))) (-3828 (*1 *1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-112)))) (-3678 (*1 *1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-112)))) (-1723 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1078)) (-5 *2 (-720)) (-5 *1 (-112)))) (-2685 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1078)) (-5 *3 (-720)) (-5 *1 (-112)))) (-1477 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1078) (-720))) (-5 *1 (-112)))))
-(-13 (-793) (-10 -8 (-15 -3814 ((-1095) $)) (-15 -2725 ((-44 (-1078) (-720)) $)) (-15 -2406 ($ $)) (-15 -3748 ($ (-1095))) (-15 -3748 ($ (-1095) (-717))) (-15 -1959 ((-3 (-717) "failed") $)) (-15 -2082 ((-110) $)) (-15 -4201 ((-110) $)) (-15 -2384 ((-110) $)) (-15 -1479 ((-717) $)) (-15 -1479 ($ $ (-717))) (-15 -1364 ($ $ (-1 (-110) $ $))) (-15 -3845 ($ $ (-1 (-110) $ $))) (-15 -2273 ((-3 (-1 (-802) (-595 (-802))) "failed") $)) (-15 -2273 ($ $ (-1 (-802) (-595 (-802))))) (-15 -2273 ($ $ (-1 (-802) (-802)))) (-15 -2326 ($ $ (-1 (-504) (-595 (-504))))) (-15 -2326 ((-3 (-1 (-504) (-595 (-504))) "failed") $)) (-15 -2341 ((-110) $ (-1095))) (-15 -2317 ((-110) $ (-1078))) (-15 -3828 ($ $ (-1078))) (-15 -3678 ($ $ (-1078))) (-15 -1723 ((-3 (-720) "failed") $ (-1078))) (-15 -2685 ($ $ (-1078) (-720))) (-15 -1477 ($ $ (-44 (-1078) (-720))))))
-((-1269 (((-528) |#2|) 37)))
-(((-113 |#1| |#2|) (-10 -7 (-15 -1269 ((-528) |#2|))) (-13 (-343) (-972 (-387 (-528)))) (-1153 |#1|)) (T -113))
-((-1269 (*1 *2 *3) (-12 (-4 *4 (-13 (-343) (-972 (-387 *2)))) (-5 *2 (-528)) (-5 *1 (-113 *4 *3)) (-4 *3 (-1153 *4)))))
-(-10 -7 (-15 -1269 ((-528) |#2|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2450 (($ $ (-528)) NIL)) (-2213 (((-110) $ $) NIL)) (-2816 (($) NIL T CONST)) (-3333 (($ (-1091 (-528)) (-528)) NIL)) (-3519 (($ $ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-2006 (($ $) NIL)) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-3689 (((-717) $) NIL)) (-1297 (((-110) $) NIL)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-2874 (((-528)) NIL)) (-2839 (((-528) $) NIL)) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3740 (($ $ (-528)) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-1913 (((-1076 (-528)) $) NIL)) (-3534 (($ $) NIL)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ $) NIL)) (-3742 (((-717)) NIL)) (-4016 (((-110) $ $) NIL)) (-4083 (((-528) $ (-528)) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-2186 (((-110) $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL)))
-(((-114 |#1|) (-808 |#1|) (-528)) (T -114))
-NIL
-(-808 |#1|)
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3598 (((-114 |#1|) $) NIL (|has| (-114 |#1|) (-288)))) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (|has| (-114 |#1|) (-848)))) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (|has| (-114 |#1|) (-848)))) (-2213 (((-110) $ $) NIL)) (-3605 (((-528) $) NIL (|has| (-114 |#1|) (-766)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-114 |#1|) "failed") $) NIL) (((-3 (-1095) "failed") $) NIL (|has| (-114 |#1|) (-972 (-1095)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| (-114 |#1|) (-972 (-528)))) (((-3 (-528) "failed") $) NIL (|has| (-114 |#1|) (-972 (-528))))) (-2409 (((-114 |#1|) $) NIL) (((-1095) $) NIL (|has| (-114 |#1|) (-972 (-1095)))) (((-387 (-528)) $) NIL (|has| (-114 |#1|) (-972 (-528)))) (((-528) $) NIL (|has| (-114 |#1|) (-972 (-528))))) (-2736 (($ $) NIL) (($ (-528) $) NIL)) (-3519 (($ $ $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| (-114 |#1|) (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| (-114 |#1|) (-591 (-528)))) (((-2 (|:| -2163 (-635 (-114 |#1|))) (|:| |vec| (-1177 (-114 |#1|)))) (-635 $) (-1177 $)) NIL) (((-635 (-114 |#1|)) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1338 (($) NIL (|has| (-114 |#1|) (-513)))) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2124 (((-110) $) NIL)) (-3657 (((-110) $) NIL (|has| (-114 |#1|) (-766)))) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (|has| (-114 |#1|) (-825 (-528)))) (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (|has| (-114 |#1|) (-825 (-359))))) (-1297 (((-110) $) NIL)) (-3037 (($ $) NIL)) (-3031 (((-114 |#1|) $) NIL)) (-3296 (((-3 $ "failed") $) NIL (|has| (-114 |#1|) (-1071)))) (-3710 (((-110) $) NIL (|has| (-114 |#1|) (-766)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-1436 (($ $ $) NIL (|has| (-114 |#1|) (-793)))) (-1736 (($ $ $) NIL (|has| (-114 |#1|) (-793)))) (-3106 (($ (-1 (-114 |#1|) (-114 |#1|)) $) NIL)) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL)) (-4197 (($) NIL (|has| (-114 |#1|) (-1071)) CONST)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3270 (($ $) NIL (|has| (-114 |#1|) (-288)))) (-2925 (((-114 |#1|) $) NIL (|has| (-114 |#1|) (-513)))) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (|has| (-114 |#1|) (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (|has| (-114 |#1|) (-848)))) (-2437 (((-398 $) $) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-4014 (($ $ (-595 (-114 |#1|)) (-595 (-114 |#1|))) NIL (|has| (-114 |#1|) (-290 (-114 |#1|)))) (($ $ (-114 |#1|) (-114 |#1|)) NIL (|has| (-114 |#1|) (-290 (-114 |#1|)))) (($ $ (-275 (-114 |#1|))) NIL (|has| (-114 |#1|) (-290 (-114 |#1|)))) (($ $ (-595 (-275 (-114 |#1|)))) NIL (|has| (-114 |#1|) (-290 (-114 |#1|)))) (($ $ (-595 (-1095)) (-595 (-114 |#1|))) NIL (|has| (-114 |#1|) (-489 (-1095) (-114 |#1|)))) (($ $ (-1095) (-114 |#1|)) NIL (|has| (-114 |#1|) (-489 (-1095) (-114 |#1|))))) (-3973 (((-717) $) NIL)) (-3043 (($ $ (-114 |#1|)) NIL (|has| (-114 |#1|) (-267 (-114 |#1|) (-114 |#1|))))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3235 (($ $) NIL (|has| (-114 |#1|) (-215))) (($ $ (-717)) NIL (|has| (-114 |#1|) (-215))) (($ $ (-1095)) NIL (|has| (-114 |#1|) (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| (-114 |#1|) (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| (-114 |#1|) (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| (-114 |#1|) (-839 (-1095)))) (($ $ (-1 (-114 |#1|) (-114 |#1|)) (-717)) NIL) (($ $ (-1 (-114 |#1|) (-114 |#1|))) NIL)) (-4118 (($ $) NIL)) (-3042 (((-114 |#1|) $) NIL)) (-3155 (((-831 (-528)) $) NIL (|has| (-114 |#1|) (-570 (-831 (-528))))) (((-831 (-359)) $) NIL (|has| (-114 |#1|) (-570 (-831 (-359))))) (((-504) $) NIL (|has| (-114 |#1|) (-570 (-504)))) (((-359) $) NIL (|has| (-114 |#1|) (-957))) (((-207) $) NIL (|has| (-114 |#1|) (-957)))) (-2356 (((-163 (-387 (-528))) $) NIL)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| (-114 |#1|) (-848))))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ $) NIL) (($ (-387 (-528))) NIL) (($ (-114 |#1|)) NIL) (($ (-1095)) NIL (|has| (-114 |#1|) (-972 (-1095))))) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| (-114 |#1|) (-848))) (|has| (-114 |#1|) (-138))))) (-3742 (((-717)) NIL)) (-1769 (((-114 |#1|) $) NIL (|has| (-114 |#1|) (-513)))) (-4016 (((-110) $ $) NIL)) (-4083 (((-387 (-528)) $ (-528)) NIL)) (-1775 (($ $) NIL (|has| (-114 |#1|) (-766)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($ $) NIL (|has| (-114 |#1|) (-215))) (($ $ (-717)) NIL (|has| (-114 |#1|) (-215))) (($ $ (-1095)) NIL (|has| (-114 |#1|) (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| (-114 |#1|) (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| (-114 |#1|) (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| (-114 |#1|) (-839 (-1095)))) (($ $ (-1 (-114 |#1|) (-114 |#1|)) (-717)) NIL) (($ $ (-1 (-114 |#1|) (-114 |#1|))) NIL)) (-2244 (((-110) $ $) NIL (|has| (-114 |#1|) (-793)))) (-2220 (((-110) $ $) NIL (|has| (-114 |#1|) (-793)))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (|has| (-114 |#1|) (-793)))) (-2208 (((-110) $ $) NIL (|has| (-114 |#1|) (-793)))) (-2296 (($ $ $) NIL) (($ (-114 |#1|) (-114 |#1|)) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL) (($ (-114 |#1|) $) NIL) (($ $ (-114 |#1|)) NIL)))
-(((-115 |#1|) (-13 (-929 (-114 |#1|)) (-10 -8 (-15 -4083 ((-387 (-528)) $ (-528))) (-15 -2356 ((-163 (-387 (-528))) $)) (-15 -2736 ($ $)) (-15 -2736 ($ (-528) $)))) (-528)) (T -115))
-((-4083 (*1 *2 *1 *3) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-115 *4)) (-14 *4 *3) (-5 *3 (-528)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-163 (-387 (-528)))) (-5 *1 (-115 *3)) (-14 *3 (-528)))) (-2736 (*1 *1 *1) (-12 (-5 *1 (-115 *2)) (-14 *2 (-528)))) (-2736 (*1 *1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-115 *3)) (-14 *3 *2))))
-(-13 (-929 (-114 |#1|)) (-10 -8 (-15 -4083 ((-387 (-528)) $ (-528))) (-15 -2356 ((-163 (-387 (-528))) $)) (-15 -2736 ($ $)) (-15 -2736 ($ (-528) $))))
-((-2381 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-1690 (((-595 $) $) 27)) (-1313 (((-110) $ $) 32)) (-2408 (((-110) |#2| $) 36)) (-3298 (((-595 |#2|) $) 22)) (-2578 (((-110) $) 16)) (-3043 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3177 (((-110) $) 45)) (-2222 (((-802) $) 41)) (-3813 (((-595 $) $) 28)) (-2186 (((-110) $ $) 34)) (-2138 (((-717) $) 43)))
-(((-116 |#1| |#2|) (-10 -8 (-15 -2222 ((-802) |#1|)) (-15 -2381 (|#1| |#1| "right" |#1|)) (-15 -2381 (|#1| |#1| "left" |#1|)) (-15 -3043 (|#1| |#1| "right")) (-15 -3043 (|#1| |#1| "left")) (-15 -2381 (|#2| |#1| "value" |#2|)) (-15 -1313 ((-110) |#1| |#1|)) (-15 -3298 ((-595 |#2|) |#1|)) (-15 -3177 ((-110) |#1|)) (-15 -3043 (|#2| |#1| "value")) (-15 -2578 ((-110) |#1|)) (-15 -1690 ((-595 |#1|) |#1|)) (-15 -3813 ((-595 |#1|) |#1|)) (-15 -2186 ((-110) |#1| |#1|)) (-15 -2408 ((-110) |#2| |#1|)) (-15 -2138 ((-717) |#1|))) (-117 |#2|) (-1131)) (T -116))
-NIL
-(-10 -8 (-15 -2222 ((-802) |#1|)) (-15 -2381 (|#1| |#1| "right" |#1|)) (-15 -2381 (|#1| |#1| "left" |#1|)) (-15 -3043 (|#1| |#1| "right")) (-15 -3043 (|#1| |#1| "left")) (-15 -2381 (|#2| |#1| "value" |#2|)) (-15 -1313 ((-110) |#1| |#1|)) (-15 -3298 ((-595 |#2|) |#1|)) (-15 -3177 ((-110) |#1|)) (-15 -3043 (|#2| |#1| "value")) (-15 -2578 ((-110) |#1|)) (-15 -1690 ((-595 |#1|) |#1|)) (-15 -3813 ((-595 |#1|) |#1|)) (-15 -2186 ((-110) |#1| |#1|)) (-15 -2408 ((-110) |#2| |#1|)) (-15 -2138 ((-717) |#1|)))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-3327 ((|#1| $) 48)) (-3535 (((-110) $ (-717)) 8)) (-2074 ((|#1| $ |#1|) 39 (|has| $ (-6 -4265)))) (-2033 (($ $ $) 52 (|has| $ (-6 -4265)))) (-3187 (($ $ $) 54 (|has| $ (-6 -4265)))) (-2381 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4265))) (($ $ "left" $) 55 (|has| $ (-6 -4265))) (($ $ "right" $) 53 (|has| $ (-6 -4265)))) (-3409 (($ $ (-595 $)) 41 (|has| $ (-6 -4265)))) (-2816 (($) 7 T CONST)) (-3572 (($ $) 57)) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-1690 (((-595 $) $) 50)) (-1313 (((-110) $ $) 42 (|has| |#1| (-1023)))) (-2029 (((-110) $ (-717)) 9)) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35)) (-3358 (((-110) $ (-717)) 10)) (-3562 (($ $) 59)) (-3298 (((-595 |#1|) $) 45)) (-2578 (((-110) $) 49)) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3043 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3241 (((-528) $ $) 44)) (-3177 (((-110) $) 46)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-3813 (((-595 $) $) 51)) (-2688 (((-110) $ $) 43 (|has| |#1| (-1023)))) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-117 |#1|) (-133) (-1131)) (T -117))
-((-3562 (*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1131)))) (-3043 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-117 *3)) (-4 *3 (-1131)))) (-3572 (*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1131)))) (-3043 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-117 *3)) (-4 *3 (-1131)))) (-2381 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4265)) (-4 *1 (-117 *3)) (-4 *3 (-1131)))) (-3187 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4265)) (-4 *1 (-117 *2)) (-4 *2 (-1131)))) (-2381 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4265)) (-4 *1 (-117 *3)) (-4 *3 (-1131)))) (-2033 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4265)) (-4 *1 (-117 *2)) (-4 *2 (-1131)))))
-(-13 (-946 |t#1|) (-10 -8 (-15 -3562 ($ $)) (-15 -3043 ($ $ "left")) (-15 -3572 ($ $)) (-15 -3043 ($ $ "right")) (IF (|has| $ (-6 -4265)) (PROGN (-15 -2381 ($ $ "left" $)) (-15 -3187 ($ $ $)) (-15 -2381 ($ $ "right" $)) (-15 -2033 ($ $ $))) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1023)) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-569 (-802)))) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-467 |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-946 |#1|) . T) ((-1023) |has| |#1| (-1023)) ((-1131) . T))
-((-1807 (((-110) |#1|) 24)) (-1349 (((-717) (-717)) 23) (((-717)) 22)) (-2318 (((-110) |#1| (-110)) 25) (((-110) |#1|) 26)))
-(((-118 |#1|) (-10 -7 (-15 -2318 ((-110) |#1|)) (-15 -2318 ((-110) |#1| (-110))) (-15 -1349 ((-717))) (-15 -1349 ((-717) (-717))) (-15 -1807 ((-110) |#1|))) (-1153 (-528))) (T -118))
-((-1807 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1153 (-528))))) (-1349 (*1 *2 *2) (-12 (-5 *2 (-717)) (-5 *1 (-118 *3)) (-4 *3 (-1153 (-528))))) (-1349 (*1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-118 *3)) (-4 *3 (-1153 (-528))))) (-2318 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1153 (-528))))) (-2318 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1153 (-528))))))
-(-10 -7 (-15 -2318 ((-110) |#1|)) (-15 -2318 ((-110) |#1| (-110))) (-15 -1349 ((-717))) (-15 -1349 ((-717) (-717))) (-15 -1807 ((-110) |#1|)))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3327 ((|#1| $) 15)) (-2129 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-3535 (((-110) $ (-717)) NIL)) (-2074 ((|#1| $ |#1|) NIL (|has| $ (-6 -4265)))) (-2033 (($ $ $) 18 (|has| $ (-6 -4265)))) (-3187 (($ $ $) 20 (|has| $ (-6 -4265)))) (-2381 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4265))) (($ $ "left" $) NIL (|has| $ (-6 -4265))) (($ $ "right" $) NIL (|has| $ (-6 -4265)))) (-3409 (($ $ (-595 $)) NIL (|has| $ (-6 -4265)))) (-2816 (($) NIL T CONST)) (-3572 (($ $) 17)) (-3342 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-1690 (((-595 $) $) NIL)) (-1313 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-1454 (($ $ |#1| $) 23)) (-2029 (((-110) $ (-717)) NIL)) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2800 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3562 (($ $) 19)) (-3298 (((-595 |#1|) $) NIL)) (-2578 (((-110) $) NIL)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-1794 (($ |#1| $) 24)) (-1950 (($ |#1| $) 10)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) 14)) (-2147 (($) 8)) (-3043 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3241 (((-528) $ $) NIL)) (-3177 (((-110) $) NIL)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2406 (($ $) NIL)) (-2222 (((-802) $) NIL (|has| |#1| (-569 (-802))))) (-3813 (((-595 $) $) NIL)) (-2688 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3208 (($ (-595 |#1|)) 12)) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-119 |#1|) (-13 (-123 |#1|) (-10 -8 (-6 -4265) (-6 -4264) (-15 -3208 ($ (-595 |#1|))) (-15 -1950 ($ |#1| $)) (-15 -1794 ($ |#1| $)) (-15 -2129 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-793)) (T -119))
-((-3208 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-793)) (-5 *1 (-119 *3)))) (-1950 (*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-793)))) (-1794 (*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-793)))) (-2129 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-119 *3)) (|:| |greater| (-119 *3)))) (-5 *1 (-119 *3)) (-4 *3 (-793)))))
-(-13 (-123 |#1|) (-10 -8 (-6 -4265) (-6 -4264) (-15 -3208 ($ (-595 |#1|))) (-15 -1950 ($ |#1| $)) (-15 -1794 ($ |#1| $)) (-15 -2129 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-2355 (($ $) 14)) (-3617 (($ $) 11)) (-3012 (($ $ $) 24)) (-4135 (($ $ $) 22)) (-2690 (($ $) 12)) (-2436 (($ $ $) 20)) (-2425 (($ $ $) 18)))
-(((-120 |#1|) (-10 -8 (-15 -3012 (|#1| |#1| |#1|)) (-15 -4135 (|#1| |#1| |#1|)) (-15 -2690 (|#1| |#1|)) (-15 -3617 (|#1| |#1|)) (-15 -2355 (|#1| |#1|)) (-15 -2425 (|#1| |#1| |#1|)) (-15 -2436 (|#1| |#1| |#1|))) (-121)) (T -120))
-NIL
-(-10 -8 (-15 -3012 (|#1| |#1| |#1|)) (-15 -4135 (|#1| |#1| |#1|)) (-15 -2690 (|#1| |#1|)) (-15 -3617 (|#1| |#1|)) (-15 -2355 (|#1| |#1|)) (-15 -2425 (|#1| |#1| |#1|)) (-15 -2436 (|#1| |#1| |#1|)))
-((-2207 (((-110) $ $) 7)) (-2355 (($ $) 104)) (-2993 (($ $ $) 25)) (-1444 (((-1182) $ (-528) (-528)) 67 (|has| $ (-6 -4265)))) (-3608 (((-110) $) 99 (|has| (-110) (-793))) (((-110) (-1 (-110) (-110) (-110)) $) 93)) (-3863 (($ $) 103 (-12 (|has| (-110) (-793)) (|has| $ (-6 -4265)))) (($ (-1 (-110) (-110) (-110)) $) 102 (|has| $ (-6 -4265)))) (-1289 (($ $) 98 (|has| (-110) (-793))) (($ (-1 (-110) (-110) (-110)) $) 92)) (-3535 (((-110) $ (-717)) 38)) (-2381 (((-110) $ (-1144 (-528)) (-110)) 89 (|has| $ (-6 -4265))) (((-110) $ (-528) (-110)) 55 (|has| $ (-6 -4265)))) (-1573 (($ (-1 (-110) (-110)) $) 72 (|has| $ (-6 -4264)))) (-2816 (($) 39 T CONST)) (-2472 (($ $) 101 (|has| $ (-6 -4265)))) (-3009 (($ $) 91)) (-2923 (($ $) 69 (-12 (|has| (-110) (-1023)) (|has| $ (-6 -4264))))) (-2280 (($ (-1 (-110) (-110)) $) 73 (|has| $ (-6 -4264))) (($ (-110) $) 70 (-12 (|has| (-110) (-1023)) (|has| $ (-6 -4264))))) (-1422 (((-110) (-1 (-110) (-110) (-110)) $) 75 (|has| $ (-6 -4264))) (((-110) (-1 (-110) (-110) (-110)) $ (-110)) 74 (|has| $ (-6 -4264))) (((-110) (-1 (-110) (-110) (-110)) $ (-110) (-110)) 71 (-12 (|has| (-110) (-1023)) (|has| $ (-6 -4264))))) (-2812 (((-110) $ (-528) (-110)) 54 (|has| $ (-6 -4265)))) (-2742 (((-110) $ (-528)) 56)) (-3140 (((-528) (-110) $ (-528)) 96 (|has| (-110) (-1023))) (((-528) (-110) $) 95 (|has| (-110) (-1023))) (((-528) (-1 (-110) (-110)) $) 94)) (-3342 (((-595 (-110)) $) 46 (|has| $ (-6 -4264)))) (-2619 (($ $ $) 26)) (-3617 (($ $) 31)) (-3012 (($ $ $) 28)) (-3462 (($ (-717) (-110)) 78)) (-4135 (($ $ $) 29)) (-2029 (((-110) $ (-717)) 37)) (-3530 (((-528) $) 64 (|has| (-528) (-793)))) (-1436 (($ $ $) 13)) (-1356 (($ $ $) 97 (|has| (-110) (-793))) (($ (-1 (-110) (-110) (-110)) $ $) 90)) (-2604 (((-595 (-110)) $) 47 (|has| $ (-6 -4264)))) (-2408 (((-110) (-110) $) 49 (-12 (|has| (-110) (-1023)) (|has| $ (-6 -4264))))) (-1709 (((-528) $) 63 (|has| (-528) (-793)))) (-1736 (($ $ $) 14)) (-2800 (($ (-1 (-110) (-110)) $) 42 (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-110) (-110) (-110)) $ $) 83) (($ (-1 (-110) (-110)) $) 41)) (-3358 (((-110) $ (-717)) 36)) (-3034 (((-1078) $) 9)) (-3939 (($ $ $ (-528)) 88) (($ (-110) $ (-528)) 87)) (-2084 (((-595 (-528)) $) 61)) (-3966 (((-110) (-528) $) 60)) (-2495 (((-1042) $) 10)) (-2890 (((-110) $) 65 (|has| (-528) (-793)))) (-1734 (((-3 (-110) "failed") (-1 (-110) (-110)) $) 76)) (-1332 (($ $ (-110)) 66 (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) (-110)) $) 44 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-110)) (-595 (-110))) 53 (-12 (|has| (-110) (-290 (-110))) (|has| (-110) (-1023)))) (($ $ (-110) (-110)) 52 (-12 (|has| (-110) (-290 (-110))) (|has| (-110) (-1023)))) (($ $ (-275 (-110))) 51 (-12 (|has| (-110) (-290 (-110))) (|has| (-110) (-1023)))) (($ $ (-595 (-275 (-110)))) 50 (-12 (|has| (-110) (-290 (-110))) (|has| (-110) (-1023))))) (-3744 (((-110) $ $) 32)) (-2111 (((-110) (-110) $) 62 (-12 (|has| $ (-6 -4264)) (|has| (-110) (-1023))))) (-2861 (((-595 (-110)) $) 59)) (-1972 (((-110) $) 35)) (-2147 (($) 34)) (-3043 (($ $ (-1144 (-528))) 84) (((-110) $ (-528)) 58) (((-110) $ (-528) (-110)) 57)) (-1745 (($ $ (-1144 (-528))) 86) (($ $ (-528)) 85)) (-2507 (((-717) (-110) $) 48 (-12 (|has| (-110) (-1023)) (|has| $ (-6 -4264)))) (((-717) (-1 (-110) (-110)) $) 45 (|has| $ (-6 -4264)))) (-3761 (($ $ $ (-528)) 100 (|has| $ (-6 -4265)))) (-2406 (($ $) 33)) (-3155 (((-504) $) 68 (|has| (-110) (-570 (-504))))) (-2233 (($ (-595 (-110))) 77)) (-3400 (($ (-595 $)) 82) (($ $ $) 81) (($ (-110) $) 80) (($ $ (-110)) 79)) (-2222 (((-802) $) 11)) (-3451 (((-110) (-1 (-110) (-110)) $) 43 (|has| $ (-6 -4264)))) (-3287 (($ $ $) 27)) (-2690 (($ $) 30)) (-2436 (($ $ $) 106)) (-2244 (((-110) $ $) 16)) (-2220 (((-110) $ $) 17)) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 15)) (-2208 (((-110) $ $) 18)) (-2425 (($ $ $) 105)) (-2138 (((-717) $) 40 (|has| $ (-6 -4264)))))
+((-2828 (*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110)))) (-3317 (*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110)))))
+(-13 (-10 -8 (-15 -3317 ((-110) $ $)) (-15 -2828 ((-110) $ $))))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3681 ((|#1| $) NIL)) (-1217 (((-110) $ (-719)) NIL)) (-3289 ((|#1| $ |#1|) 13 (|has| $ (-6 -4270)))) (-1304 (($ $ $) NIL (|has| $ (-6 -4270)))) (-1305 (($ $ $) NIL (|has| $ (-6 -4270)))) (-1272 (($ $ (-594 |#1|)) 15)) (-4066 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4270))) (($ $ #2="left" $) NIL (|has| $ (-6 -4270))) (($ $ #3="right" $) NIL (|has| $ (-6 -4270)))) (-3290 (($ $ (-594 $)) NIL (|has| $ (-6 -4270)))) (-3815 (($) NIL T CONST)) (-3396 (($ $) 11)) (-2018 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3295 (((-594 $) $) NIL)) (-3291 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1313 (($ $ |#1| $) 17)) (-4001 (((-110) $ (-719)) NIL)) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1271 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1270 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-594 |#1|) |#1| |#1| |#1|)) 35)) (-2022 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3397 (($ $) 10)) (-3294 (((-594 |#1|) $) NIL)) (-3801 (((-110) $) 12)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) 9)) (-3847 (($) 16)) (-4078 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3293 (((-516) $ $) NIL)) (-3915 (((-110) $) NIL)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3678 (($ $) NIL)) (-4233 (((-805) $) NIL (|has| |#1| (-571 (-805))))) (-3796 (((-594 $) $) NIL)) (-3292 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1273 (($ (-719) |#1|) 19)) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-100 |#1|) (-13 (-123 |#1|) (-10 -8 (-6 -4269) (-6 -4270) (-15 -1273 ($ (-719) |#1|)) (-15 -1272 ($ $ (-594 |#1|))) (-15 -1271 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1271 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1270 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1270 ($ $ |#1| (-1 (-594 |#1|) |#1| |#1| |#1|))))) (-1027)) (T -100))
+((-1273 (*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *1 (-100 *3)) (-4 *3 (-1027)))) (-1272 (*1 *1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1027)) (-5 *1 (-100 *3)))) (-1271 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-100 *2)) (-4 *2 (-1027)))) (-1271 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-100 *3)))) (-1270 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1027)) (-5 *1 (-100 *2)))) (-1270 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-594 *2) *2 *2 *2)) (-4 *2 (-1027)) (-5 *1 (-100 *2)))))
+(-13 (-123 |#1|) (-10 -8 (-6 -4269) (-6 -4270) (-15 -1273 ($ (-719) |#1|)) (-15 -1272 ($ $ (-594 |#1|))) (-15 -1271 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1271 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1270 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1270 ($ $ |#1| (-1 (-594 |#1|) |#1| |#1| |#1|)))))
+((-1274 ((|#3| |#2| |#2|) 29)) (-1276 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4271 #1="*"))))) (-1275 ((|#3| |#2| |#2|) 30)) (-1277 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4271 #1#))))))
+(((-101 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1274 (|#3| |#2| |#2|)) (-15 -1275 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4271 "*"))) (PROGN (-15 -1276 (|#1| |#2| |#2|)) (-15 -1277 (|#1| |#2|))) |%noBranch|)) (-984) (-1155 |#1|) (-634 |#1| |#4| |#5|) (-353 |#1|) (-353 |#1|)) (T -101))
+((-1277 (*1 *2 *3) (-12 (|has| *2 (-6 (-4271 #1="*"))) (-4 *5 (-353 *2)) (-4 *6 (-353 *2)) (-4 *2 (-984)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1155 *2)) (-4 *4 (-634 *2 *5 *6)))) (-1276 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4271 #1#))) (-4 *5 (-353 *2)) (-4 *6 (-353 *2)) (-4 *2 (-984)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1155 *2)) (-4 *4 (-634 *2 *5 *6)))) (-1275 (*1 *2 *3 *3) (-12 (-4 *4 (-984)) (-4 *2 (-634 *4 *5 *6)) (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1155 *4)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)))) (-1274 (*1 *2 *3 *3) (-12 (-4 *4 (-984)) (-4 *2 (-634 *4 *5 *6)) (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1155 *4)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)))))
+(-10 -7 (-15 -1274 (|#3| |#2| |#2|)) (-15 -1275 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4271 "*"))) (PROGN (-15 -1276 (|#1| |#2| |#2|)) (-15 -1277 (|#1| |#2|))) |%noBranch|))
+((-2828 (((-110) $ $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-1279 (((-594 (-1098))) 33)) (-1278 (((-2 (|:| |zeros| (-1076 (-208))) (|:| |ones| (-1076 (-208))) (|:| |singularities| (-1076 (-208)))) (-1098)) 35)) (-3317 (((-110) $ $) NIL)))
+(((-102) (-13 (-1027) (-10 -7 (-15 -1279 ((-594 (-1098)))) (-15 -1278 ((-2 (|:| |zeros| (-1076 (-208))) (|:| |ones| (-1076 (-208))) (|:| |singularities| (-1076 (-208)))) (-1098))) (-6 -4269)))) (T -102))
+((-1279 (*1 *2) (-12 (-5 *2 (-594 (-1098))) (-5 *1 (-102)))) (-1278 (*1 *2 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-2 (|:| |zeros| (-1076 (-208))) (|:| |ones| (-1076 (-208))) (|:| |singularities| (-1076 (-208))))) (-5 *1 (-102)))))
+(-13 (-1027) (-10 -7 (-15 -1279 ((-594 (-1098)))) (-15 -1278 ((-2 (|:| |zeros| (-1076 (-208))) (|:| |ones| (-1076 (-208))) (|:| |singularities| (-1076 (-208)))) (-1098))) (-6 -4269)))
+((-1282 (($ (-594 |#2|)) 11)))
+(((-103 |#1| |#2|) (-10 -8 (-15 -1282 (|#1| (-594 |#2|)))) (-104 |#2|) (-1134)) (T -103))
+NIL
+(-10 -8 (-15 -1282 (|#1| (-594 |#2|))))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1217 (((-110) $ (-719)) 8)) (-3815 (($) 7 T CONST)) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) 9)) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35)) (-3998 (((-110) $ (-719)) 10)) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-1280 ((|#1| $) 39)) (-3889 (($ |#1| $) 40)) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-1281 ((|#1| $) 41)) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-1282 (($ (-594 |#1|)) 42)) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-104 |#1|) (-133) (-1134)) (T -104))
+((-1282 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1134)) (-4 *1 (-104 *3)))) (-1281 (*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1134)))) (-3889 (*1 *1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1134)))) (-1280 (*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1134)))))
+(-13 (-468 |t#1|) (-10 -8 (-6 -4270) (-15 -1282 ($ (-594 |t#1|))) (-15 -1281 (|t#1| $)) (-15 -3889 ($ |t#1| $)) (-15 -1280 (|t#1| $))))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-571 (-805)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1134) . T))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3388 (((-516) $) NIL (|has| (-516) (-289)))) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (|has| (-516) (-851)))) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (|has| (-516) (-851)))) (-1655 (((-110) $ $) NIL)) (-3905 (((-516) $) NIL (|has| (-516) (-768)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-516) #2="failed") $) NIL) (((-3 (-1098) #2#) $) NIL (|has| (-516) (-975 (-1098)))) (((-3 (-388 (-516)) #2#) $) NIL (|has| (-516) (-975 (-516)))) (((-3 (-516) #2#) $) NIL (|has| (-516) (-975 (-516))))) (-3431 (((-516) $) NIL) (((-1098) $) NIL (|has| (-516) (-975 (-1098)))) (((-388 (-516)) $) NIL (|has| (-516) (-975 (-516)))) (((-516) $) NIL (|has| (-516) (-975 (-516))))) (-2824 (($ $ $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| (-516) (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| (-516) (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL) (((-637 (-516)) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3258 (($) NIL (|has| (-516) (-515)))) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4005 (((-110) $) NIL)) (-3460 (((-110) $) NIL (|has| (-516) (-768)))) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (|has| (-516) (-827 (-516)))) (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (|has| (-516) (-827 (-359))))) (-2436 (((-110) $) NIL)) (-3260 (($ $) NIL)) (-3262 (((-516) $) NIL)) (-3723 (((-3 $ "failed") $) NIL (|has| (-516) (-1074)))) (-3461 (((-110) $) NIL (|has| (-516) (-768)))) (-1652 (((-3 (-594 $) #3="failed") (-594 $) $) NIL)) (-3596 (($ $ $) NIL (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (|has| (-516) (-795)))) (-4234 (($ (-1 (-516) (-516)) $) NIL)) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL)) (-3724 (($) NIL (|has| (-516) (-1074)) CONST)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3387 (($ $) NIL (|has| (-516) (-289))) (((-388 (-516)) $) NIL)) (-3389 (((-516) $) NIL (|has| (-516) (-515)))) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (|has| (-516) (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (|has| (-516) (-851)))) (-4011 (((-386 $) $) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-4046 (($ $ (-594 (-516)) (-594 (-516))) NIL (|has| (-516) (-291 (-516)))) (($ $ (-516) (-516)) NIL (|has| (-516) (-291 (-516)))) (($ $ (-275 (-516))) NIL (|has| (-516) (-291 (-516)))) (($ $ (-594 (-275 (-516)))) NIL (|has| (-516) (-291 (-516)))) (($ $ (-594 (-1098)) (-594 (-516))) NIL (|has| (-516) (-491 (-1098) (-516)))) (($ $ (-1098) (-516)) NIL (|has| (-516) (-491 (-1098) (-516))))) (-1654 (((-719) $) NIL)) (-4078 (($ $ (-516)) NIL (|has| (-516) (-268 (-516) (-516))))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-4089 (($ $) NIL (|has| (-516) (-216))) (($ $ (-719)) NIL (|has| (-516) (-216))) (($ $ (-1098)) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-1 (-516) (-516)) (-719)) NIL) (($ $ (-1 (-516) (-516))) NIL)) (-3259 (($ $) NIL)) (-3261 (((-516) $) NIL)) (-4246 (((-831 (-516)) $) NIL (|has| (-516) (-572 (-831 (-516))))) (((-831 (-359)) $) NIL (|has| (-516) (-572 (-831 (-359))))) (((-505) $) NIL (|has| (-516) (-572 (-505)))) (((-359) $) NIL (|has| (-516) (-958))) (((-208) $) NIL (|has| (-516) (-958)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-516) (-851))))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ $) NIL) (($ (-388 (-516))) 8) (($ (-516)) NIL) (($ (-1098)) NIL (|has| (-516) (-975 (-1098)))) (((-388 (-516)) $) NIL) (((-943 2) $) 10)) (-2965 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| $ (-138)) (|has| (-516) (-851))) (|has| (-516) (-138))))) (-3385 (((-719)) NIL)) (-3390 (((-516) $) NIL (|has| (-516) (-515)))) (-2084 (($ (-388 (-516))) 9)) (-2117 (((-110) $ $) NIL)) (-3661 (($ $) NIL (|has| (-516) (-768)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($ $) NIL (|has| (-516) (-216))) (($ $ (-719)) NIL (|has| (-516) (-216))) (($ $ (-1098)) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-1 (-516) (-516)) (-719)) NIL) (($ $ (-1 (-516) (-516))) NIL)) (-2826 (((-110) $ $) NIL (|has| (-516) (-795)))) (-2827 (((-110) $ $) NIL (|has| (-516) (-795)))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (|has| (-516) (-795)))) (-2948 (((-110) $ $) NIL (|has| (-516) (-795)))) (-4224 (($ $ $) NIL) (($ (-516) (-516)) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL) (($ (-516) $) NIL) (($ $ (-516)) NIL)))
+(((-105) (-13 (-931 (-516)) (-10 -8 (-15 -4233 ((-388 (-516)) $)) (-15 -4233 ((-943 2) $)) (-15 -3387 ((-388 (-516)) $)) (-15 -2084 ($ (-388 (-516))))))) (T -105))
+((-4233 (*1 *2 *1) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-105)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-943 2)) (-5 *1 (-105)))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-105)))) (-2084 (*1 *1 *2) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-105)))))
+(-13 (-931 (-516)) (-10 -8 (-15 -4233 ((-388 (-516)) $)) (-15 -4233 ((-943 2) $)) (-15 -3387 ((-388 (-516)) $)) (-15 -2084 ($ (-388 (-516))))))
+((-1299 (((-594 (-906)) $) 14)) (-3824 (((-1098) $) 10)) (-4233 (((-805) $) 23)) (-1283 (($ (-1098) (-594 (-906))) 15)))
+(((-106) (-13 (-571 (-805)) (-10 -8 (-15 -3824 ((-1098) $)) (-15 -1299 ((-594 (-906)) $)) (-15 -1283 ($ (-1098) (-594 (-906))))))) (T -106))
+((-3824 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-106)))) (-1299 (*1 *2 *1) (-12 (-5 *2 (-594 (-906))) (-5 *1 (-106)))) (-1283 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-594 (-906))) (-5 *1 (-106)))))
+(-13 (-571 (-805)) (-10 -8 (-15 -3824 ((-1098) $)) (-15 -1299 ((-594 (-906)) $)) (-15 -1283 ($ (-1098) (-594 (-906))))))
+((-2828 (((-110) $ $) NIL)) (-1763 (((-1045) $ (-1045)) 24)) (-1767 (($ $ (-1081)) 17)) (-3901 (((-3 (-1045) "failed") $) 23)) (-1764 (((-1045) $) 21)) (-1284 (((-1045) $ (-1045)) 26)) (-3698 (((-1045) $) 25)) (-1768 (($ (-369)) NIL) (($ (-369) (-1081)) 16)) (-3824 (((-369) $) NIL)) (-3513 (((-1081) $) NIL)) (-1765 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-1766 (($ $) 18)) (-3317 (((-110) $ $) NIL)))
+(((-107) (-13 (-346 (-369) (-1045)) (-10 -8 (-15 -3901 ((-3 (-1045) "failed") $)) (-15 -3698 ((-1045) $)) (-15 -1284 ((-1045) $ (-1045)))))) (T -107))
+((-3901 (*1 *2 *1) (|partial| -12 (-5 *2 (-1045)) (-5 *1 (-107)))) (-3698 (*1 *2 *1) (-12 (-5 *2 (-1045)) (-5 *1 (-107)))) (-1284 (*1 *2 *1 *2) (-12 (-5 *2 (-1045)) (-5 *1 (-107)))))
+(-13 (-346 (-369) (-1045)) (-10 -8 (-15 -3901 ((-3 (-1045) "failed") $)) (-15 -3698 ((-1045) $)) (-15 -1284 ((-1045) $ (-1045)))))
+((-2828 (((-110) $ $) NIL)) (-3598 (($ $) NIL)) (-3594 (($ $ $) NIL)) (-2243 (((-1185) $ (-516) (-516)) NIL (|has| $ (-6 -4270)))) (-1798 (((-110) $) NIL (|has| (-110) (-795))) (((-110) (-1 (-110) (-110) (-110)) $) NIL)) (-1796 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-110) (-795)))) (($ (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4270)))) (-3173 (($ $) NIL (|has| (-110) (-795))) (($ (-1 (-110) (-110) (-110)) $) NIL)) (-1217 (((-110) $ (-719)) NIL)) (-4066 (((-110) $ (-1146 (-516)) (-110)) NIL (|has| $ (-6 -4270))) (((-110) $ (-516) (-110)) NIL (|has| $ (-6 -4270)))) (-3992 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269)))) (-3815 (($) NIL T CONST)) (-2312 (($ $) NIL (|has| $ (-6 -4270)))) (-2313 (($ $) NIL)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-3685 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269))) (($ (-110) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-4121 (((-110) (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-110) (-110)) $ (-110)) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-110) (-110)) $ (-110) (-110)) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-1587 (((-110) $ (-516) (-110)) NIL (|has| $ (-6 -4270)))) (-3372 (((-110) $ (-516)) NIL)) (-3698 (((-516) (-110) $ (-516)) NIL (|has| (-110) (-1027))) (((-516) (-110) $) NIL (|has| (-110) (-1027))) (((-516) (-1 (-110) (-110)) $) NIL)) (-2018 (((-594 (-110)) $) NIL (|has| $ (-6 -4269)))) (-3120 (($ $ $) NIL)) (-3595 (($ $) NIL)) (-1311 (($ $ $) NIL)) (-3896 (($ (-719) (-110)) 8)) (-1312 (($ $ $) NIL)) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-516) $) NIL (|has| (-516) (-795)))) (-3596 (($ $ $) NIL)) (-3792 (($ $ $) NIL (|has| (-110) (-795))) (($ (-1 (-110) (-110) (-110)) $ $) NIL)) (-2445 (((-594 (-110)) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-2246 (((-516) $) NIL (|has| (-516) (-795)))) (-3597 (($ $ $) NIL)) (-2022 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-110) (-110) (-110)) $ $) NIL) (($ (-1 (-110) (-110)) $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL)) (-2317 (($ $ $ (-516)) NIL) (($ (-110) $ (-516)) NIL)) (-2248 (((-594 (-516)) $) NIL)) (-2249 (((-110) (-516) $) NIL)) (-3514 (((-1045) $) NIL)) (-4079 (((-110) $) NIL (|has| (-516) (-795)))) (-1350 (((-3 (-110) "failed") (-1 (-110) (-110)) $) NIL)) (-2244 (($ $ (-110)) NIL (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-110)) (-594 (-110))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-110) (-110)) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-275 (-110))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-594 (-275 (-110)))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-2250 (((-594 (-110)) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 (($ $ (-1146 (-516))) NIL) (((-110) $ (-516)) NIL) (((-110) $ (-516) (-110)) NIL)) (-2318 (($ $ (-1146 (-516))) NIL) (($ $ (-516)) NIL)) (-2019 (((-719) (-110) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027)))) (((-719) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269)))) (-1797 (($ $ $ (-516)) NIL (|has| $ (-6 -4270)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) NIL (|has| (-110) (-572 (-505))))) (-3804 (($ (-594 (-110))) NIL)) (-4080 (($ (-594 $)) NIL) (($ $ $) NIL) (($ (-110) $) NIL) (($ $ (-110)) NIL)) (-4233 (((-805) $) NIL)) (-1840 (($ (-719) (-110)) 9)) (-2021 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269)))) (-3119 (($ $ $) NIL)) (-3581 (($ $) NIL)) (-3600 (($ $ $) NIL)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) NIL)) (-3599 (($ $ $) NIL)) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-108) (-13 (-121) (-10 -8 (-15 -1840 ($ (-719) (-110)))))) (T -108))
+((-1840 (*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *3 (-110)) (-5 *1 (-108)))))
+(-13 (-121) (-10 -8 (-15 -1840 ($ (-719) (-110)))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-2920 (($) 18 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
+(((-109 |#1| |#2|) (-133) (-984) (-984)) (T -109))
+NIL
+(-13 (-599 |t#1|) (-989 |t#2|) (-10 -7 (-6 -4264) (-6 -4263)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-805)) . T) ((-599 |#1|) . T) ((-989 |#2|) . T) ((-1027) . T))
+((-2828 (((-110) $ $) NIL)) (-3598 (($ $) 11)) (-3594 (($ $ $) 16)) (-1287 (($) 7 T CONST)) (-1285 (($ $) 6)) (-3395 (((-719)) 25)) (-3258 (($) 31)) (-3120 (($ $ $) 14)) (-3595 (($ $) 9)) (-1311 (($ $ $) 17)) (-1312 (($ $ $) 18)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-2069 (((-860) $) 30)) (-3513 (((-1081) $) NIL)) (-2426 (($ (-860)) 29)) (-3121 (($ $ $) 21)) (-3514 (((-1045) $) NIL)) (-1286 (($) 8 T CONST)) (-3122 (($ $ $) 22)) (-4246 (((-505) $) 37)) (-4233 (((-805) $) 40)) (-3119 (($ $ $) 12)) (-3581 (($ $) 10)) (-3600 (($ $ $) 15)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 20)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 23)) (-3599 (($ $ $) 13)))
+(((-110) (-13 (-795) (-349) (-613) (-908) (-572 (-505)) (-10 -8 (-15 -1287 ($) -4227) (-15 -1286 ($) -4227) (-15 -3581 ($ $)) (-15 -3594 ($ $ $)) (-15 -1312 ($ $ $)) (-15 -1311 ($ $ $)) (-15 -1285 ($ $))))) (T -110))
+((-1287 (*1 *1) (-5 *1 (-110))) (-1286 (*1 *1) (-5 *1 (-110))) (-3581 (*1 *1 *1) (-5 *1 (-110))) (-3594 (*1 *1 *1 *1) (-5 *1 (-110))) (-1312 (*1 *1 *1 *1) (-5 *1 (-110))) (-1311 (*1 *1 *1 *1) (-5 *1 (-110))) (-1285 (*1 *1 *1) (-5 *1 (-110))))
+(-13 (-795) (-349) (-613) (-908) (-572 (-505)) (-10 -8 (-15 -1287 ($) -4227) (-15 -1286 ($) -4227) (-15 -3581 ($ $)) (-15 -3594 ($ $ $)) (-15 -1312 ($ $ $)) (-15 -1311 ($ $ $)) (-15 -1285 ($ $))))
+((-2828 (((-110) $ $) NIL)) (-1527 (((-719) $) 72) (($ $ (-719)) 30)) (-1296 (((-110) $) 32)) (-1289 (($ $ (-1081) (-721)) 26)) (-1288 (($ $ (-44 (-1081) (-721))) 15)) (-3105 (((-3 (-721) "failed") $ (-1081)) 25)) (-1299 (((-44 (-1081) (-721)) $) 14)) (-2273 (($ (-1098)) 17) (($ (-1098) (-719)) 22)) (-1297 (((-110) $) 31)) (-1295 (((-110) $) 33)) (-3824 (((-1098) $) 8)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-3513 (((-1081) $) NIL)) (-2893 (((-110) $ (-1098)) 10)) (-1292 (($ $ (-1 (-505) (-594 (-505)))) 52) (((-3 (-1 (-505) (-594 (-505))) "failed") $) 56)) (-3514 (((-1045) $) NIL)) (-1291 (((-110) $ (-1081)) 29)) (-1294 (($ $ (-1 (-110) $ $)) 35)) (-3899 (((-3 (-1 (-805) (-594 (-805))) "failed") $) 54) (($ $ (-1 (-805) (-594 (-805)))) 41) (($ $ (-1 (-805) (-805))) 43)) (-1290 (($ $ (-1081)) 45)) (-3678 (($ $) 63)) (-1293 (($ $ (-1 (-110) $ $)) 36)) (-4233 (((-805) $) 48)) (-3056 (($ $ (-1081)) 27)) (-1298 (((-3 (-719) "failed") $) 58)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 71)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 79)))
+(((-111) (-13 (-795) (-10 -8 (-15 -3824 ((-1098) $)) (-15 -1299 ((-44 (-1081) (-721)) $)) (-15 -3678 ($ $)) (-15 -2273 ($ (-1098))) (-15 -2273 ($ (-1098) (-719))) (-15 -1298 ((-3 (-719) "failed") $)) (-15 -1297 ((-110) $)) (-15 -1296 ((-110) $)) (-15 -1295 ((-110) $)) (-15 -1527 ((-719) $)) (-15 -1527 ($ $ (-719))) (-15 -1294 ($ $ (-1 (-110) $ $))) (-15 -1293 ($ $ (-1 (-110) $ $))) (-15 -3899 ((-3 (-1 (-805) (-594 (-805))) "failed") $)) (-15 -3899 ($ $ (-1 (-805) (-594 (-805))))) (-15 -3899 ($ $ (-1 (-805) (-805)))) (-15 -1292 ($ $ (-1 (-505) (-594 (-505))))) (-15 -1292 ((-3 (-1 (-505) (-594 (-505))) "failed") $)) (-15 -2893 ((-110) $ (-1098))) (-15 -1291 ((-110) $ (-1081))) (-15 -3056 ($ $ (-1081))) (-15 -1290 ($ $ (-1081))) (-15 -3105 ((-3 (-721) "failed") $ (-1081))) (-15 -1289 ($ $ (-1081) (-721))) (-15 -1288 ($ $ (-44 (-1081) (-721))))))) (T -111))
+((-3824 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-111)))) (-1299 (*1 *2 *1) (-12 (-5 *2 (-44 (-1081) (-721))) (-5 *1 (-111)))) (-3678 (*1 *1 *1) (-5 *1 (-111))) (-2273 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-111)))) (-2273 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-719)) (-5 *1 (-111)))) (-1298 (*1 *2 *1) (|partial| -12 (-5 *2 (-719)) (-5 *1 (-111)))) (-1297 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-111)))) (-1296 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-111)))) (-1295 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-111)))) (-1527 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-111)))) (-1527 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-111)))) (-1294 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-111) (-111))) (-5 *1 (-111)))) (-1293 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-111) (-111))) (-5 *1 (-111)))) (-3899 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-805) (-594 (-805)))) (-5 *1 (-111)))) (-3899 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-805) (-594 (-805)))) (-5 *1 (-111)))) (-3899 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-805) (-805))) (-5 *1 (-111)))) (-1292 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-505) (-594 (-505)))) (-5 *1 (-111)))) (-1292 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-505) (-594 (-505)))) (-5 *1 (-111)))) (-2893 (*1 *2 *1 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-110)) (-5 *1 (-111)))) (-1291 (*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-110)) (-5 *1 (-111)))) (-3056 (*1 *1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-111)))) (-1290 (*1 *1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-111)))) (-3105 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1081)) (-5 *2 (-721)) (-5 *1 (-111)))) (-1289 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1081)) (-5 *3 (-721)) (-5 *1 (-111)))) (-1288 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1081) (-721))) (-5 *1 (-111)))))
+(-13 (-795) (-10 -8 (-15 -3824 ((-1098) $)) (-15 -1299 ((-44 (-1081) (-721)) $)) (-15 -3678 ($ $)) (-15 -2273 ($ (-1098))) (-15 -2273 ($ (-1098) (-719))) (-15 -1298 ((-3 (-719) "failed") $)) (-15 -1297 ((-110) $)) (-15 -1296 ((-110) $)) (-15 -1295 ((-110) $)) (-15 -1527 ((-719) $)) (-15 -1527 ($ $ (-719))) (-15 -1294 ($ $ (-1 (-110) $ $))) (-15 -1293 ($ $ (-1 (-110) $ $))) (-15 -3899 ((-3 (-1 (-805) (-594 (-805))) "failed") $)) (-15 -3899 ($ $ (-1 (-805) (-594 (-805))))) (-15 -3899 ($ $ (-1 (-805) (-805)))) (-15 -1292 ($ $ (-1 (-505) (-594 (-505))))) (-15 -1292 ((-3 (-1 (-505) (-594 (-505))) "failed") $)) (-15 -2893 ((-110) $ (-1098))) (-15 -1291 ((-110) $ (-1081))) (-15 -3056 ($ $ (-1081))) (-15 -1290 ($ $ (-1081))) (-15 -3105 ((-3 (-721) "failed") $ (-1081))) (-15 -1289 ($ $ (-1081) (-721))) (-15 -1288 ($ $ (-44 (-1081) (-721))))))
+((-2786 (((-3 (-1 |#1| (-594 |#1|)) "failed") (-111)) 19) (((-111) (-111) (-1 |#1| |#1|)) 13) (((-111) (-111) (-1 |#1| (-594 |#1|))) 11) (((-3 |#1| "failed") (-111) (-594 |#1|)) 21)) (-1300 (((-3 (-594 (-1 |#1| (-594 |#1|))) "failed") (-111)) 25) (((-111) (-111) (-1 |#1| |#1|)) 30) (((-111) (-111) (-594 (-1 |#1| (-594 |#1|)))) 26)) (-1301 (((-111) |#1|) 56 (|has| |#1| (-795)))) (-1302 (((-3 |#1| "failed") (-111)) 50 (|has| |#1| (-795)))))
+(((-112 |#1|) (-10 -7 (-15 -2786 ((-3 |#1| "failed") (-111) (-594 |#1|))) (-15 -2786 ((-111) (-111) (-1 |#1| (-594 |#1|)))) (-15 -2786 ((-111) (-111) (-1 |#1| |#1|))) (-15 -2786 ((-3 (-1 |#1| (-594 |#1|)) "failed") (-111))) (-15 -1300 ((-111) (-111) (-594 (-1 |#1| (-594 |#1|))))) (-15 -1300 ((-111) (-111) (-1 |#1| |#1|))) (-15 -1300 ((-3 (-594 (-1 |#1| (-594 |#1|))) "failed") (-111))) (IF (|has| |#1| (-795)) (PROGN (-15 -1301 ((-111) |#1|)) (-15 -1302 ((-3 |#1| "failed") (-111)))) |%noBranch|)) (-1027)) (T -112))
+((-1302 (*1 *2 *3) (|partial| -12 (-5 *3 (-111)) (-4 *2 (-1027)) (-4 *2 (-795)) (-5 *1 (-112 *2)))) (-1301 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-112 *3)) (-4 *3 (-795)) (-4 *3 (-1027)))) (-1300 (*1 *2 *3) (|partial| -12 (-5 *3 (-111)) (-5 *2 (-594 (-1 *4 (-594 *4)))) (-5 *1 (-112 *4)) (-4 *4 (-1027)))) (-1300 (*1 *2 *2 *3) (-12 (-5 *2 (-111)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1027)) (-5 *1 (-112 *4)))) (-1300 (*1 *2 *2 *3) (-12 (-5 *2 (-111)) (-5 *3 (-594 (-1 *4 (-594 *4)))) (-4 *4 (-1027)) (-5 *1 (-112 *4)))) (-2786 (*1 *2 *3) (|partial| -12 (-5 *3 (-111)) (-5 *2 (-1 *4 (-594 *4))) (-5 *1 (-112 *4)) (-4 *4 (-1027)))) (-2786 (*1 *2 *2 *3) (-12 (-5 *2 (-111)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1027)) (-5 *1 (-112 *4)))) (-2786 (*1 *2 *2 *3) (-12 (-5 *2 (-111)) (-5 *3 (-1 *4 (-594 *4))) (-4 *4 (-1027)) (-5 *1 (-112 *4)))) (-2786 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-111)) (-5 *4 (-594 *2)) (-5 *1 (-112 *2)) (-4 *2 (-1027)))))
+(-10 -7 (-15 -2786 ((-3 |#1| "failed") (-111) (-594 |#1|))) (-15 -2786 ((-111) (-111) (-1 |#1| (-594 |#1|)))) (-15 -2786 ((-111) (-111) (-1 |#1| |#1|))) (-15 -2786 ((-3 (-1 |#1| (-594 |#1|)) "failed") (-111))) (-15 -1300 ((-111) (-111) (-594 (-1 |#1| (-594 |#1|))))) (-15 -1300 ((-111) (-111) (-1 |#1| |#1|))) (-15 -1300 ((-3 (-594 (-1 |#1| (-594 |#1|))) "failed") (-111))) (IF (|has| |#1| (-795)) (PROGN (-15 -1301 ((-111) |#1|)) (-15 -1302 ((-3 |#1| "failed") (-111)))) |%noBranch|))
+((-1303 (((-516) |#2|) 37)))
+(((-113 |#1| |#2|) (-10 -7 (-15 -1303 ((-516) |#2|))) (-13 (-344) (-975 (-388 (-516)))) (-1155 |#1|)) (T -113))
+((-1303 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-975 (-388 *2)))) (-5 *2 (-516)) (-5 *1 (-113 *4 *3)) (-4 *3 (-1155 *4)))))
+(-10 -7 (-15 -1303 ((-516) |#2|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3301 (($ $ (-516)) NIL)) (-1655 (((-110) $ $) NIL)) (-3815 (($) NIL T CONST)) (-2869 (($ (-1092 (-516)) (-516)) NIL)) (-2824 (($ $ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-2870 (($ $) NIL)) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4050 (((-719) $) NIL)) (-2436 (((-110) $) NIL)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL)) (-2872 (((-516)) NIL)) (-2871 (((-516) $) NIL)) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4047 (($ $ (-516)) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-2873 (((-1076 (-516)) $) NIL)) (-3155 (($ $) NIL)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ $) NIL)) (-3385 (((-719)) NIL)) (-2117 (((-110) $ $) NIL)) (-4048 (((-516) $ (-516)) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-3317 (((-110) $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL)))
+(((-114 |#1|) (-811 |#1|) (-516)) (T -114))
+NIL
+(-811 |#1|)
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3388 (((-114 |#1|) $) NIL (|has| (-114 |#1|) (-289)))) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (|has| (-114 |#1|) (-851)))) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (|has| (-114 |#1|) (-851)))) (-1655 (((-110) $ $) NIL)) (-3905 (((-516) $) NIL (|has| (-114 |#1|) (-768)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-114 |#1|) #2="failed") $) NIL) (((-3 (-1098) #2#) $) NIL (|has| (-114 |#1|) (-975 (-1098)))) (((-3 (-388 (-516)) #2#) $) NIL (|has| (-114 |#1|) (-975 (-516)))) (((-3 (-516) #2#) $) NIL (|has| (-114 |#1|) (-975 (-516))))) (-3431 (((-114 |#1|) $) NIL) (((-1098) $) NIL (|has| (-114 |#1|) (-975 (-1098)))) (((-388 (-516)) $) NIL (|has| (-114 |#1|) (-975 (-516)))) (((-516) $) NIL (|has| (-114 |#1|) (-975 (-516))))) (-4009 (($ $) NIL) (($ (-516) $) NIL)) (-2824 (($ $ $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| (-114 |#1|) (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| (-114 |#1|) (-593 (-516)))) (((-2 (|:| -1650 (-637 (-114 |#1|))) (|:| |vec| (-1179 (-114 |#1|)))) (-637 $) (-1179 $)) NIL) (((-637 (-114 |#1|)) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3258 (($) NIL (|has| (-114 |#1|) (-515)))) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4005 (((-110) $) NIL)) (-3460 (((-110) $) NIL (|has| (-114 |#1|) (-768)))) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (|has| (-114 |#1|) (-827 (-516)))) (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (|has| (-114 |#1|) (-827 (-359))))) (-2436 (((-110) $) NIL)) (-3260 (($ $) NIL)) (-3262 (((-114 |#1|) $) NIL)) (-3723 (((-3 $ "failed") $) NIL (|has| (-114 |#1|) (-1074)))) (-3461 (((-110) $) NIL (|has| (-114 |#1|) (-768)))) (-1652 (((-3 (-594 $) #3="failed") (-594 $) $) NIL)) (-3596 (($ $ $) NIL (|has| (-114 |#1|) (-795)))) (-3597 (($ $ $) NIL (|has| (-114 |#1|) (-795)))) (-4234 (($ (-1 (-114 |#1|) (-114 |#1|)) $) NIL)) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL)) (-3724 (($) NIL (|has| (-114 |#1|) (-1074)) CONST)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3387 (($ $) NIL (|has| (-114 |#1|) (-289)))) (-3389 (((-114 |#1|) $) NIL (|has| (-114 |#1|) (-515)))) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (|has| (-114 |#1|) (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (|has| (-114 |#1|) (-851)))) (-4011 (((-386 $) $) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-4046 (($ $ (-594 (-114 |#1|)) (-594 (-114 |#1|))) NIL (|has| (-114 |#1|) (-291 (-114 |#1|)))) (($ $ (-114 |#1|) (-114 |#1|)) NIL (|has| (-114 |#1|) (-291 (-114 |#1|)))) (($ $ (-275 (-114 |#1|))) NIL (|has| (-114 |#1|) (-291 (-114 |#1|)))) (($ $ (-594 (-275 (-114 |#1|)))) NIL (|has| (-114 |#1|) (-291 (-114 |#1|)))) (($ $ (-594 (-1098)) (-594 (-114 |#1|))) NIL (|has| (-114 |#1|) (-491 (-1098) (-114 |#1|)))) (($ $ (-1098) (-114 |#1|)) NIL (|has| (-114 |#1|) (-491 (-1098) (-114 |#1|))))) (-1654 (((-719) $) NIL)) (-4078 (($ $ (-114 |#1|)) NIL (|has| (-114 |#1|) (-268 (-114 |#1|) (-114 |#1|))))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-4089 (($ $) NIL (|has| (-114 |#1|) (-216))) (($ $ (-719)) NIL (|has| (-114 |#1|) (-216))) (($ $ (-1098)) NIL (|has| (-114 |#1|) (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| (-114 |#1|) (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| (-114 |#1|) (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| (-114 |#1|) (-841 (-1098)))) (($ $ (-1 (-114 |#1|) (-114 |#1|)) (-719)) NIL) (($ $ (-1 (-114 |#1|) (-114 |#1|))) NIL)) (-3259 (($ $) NIL)) (-3261 (((-114 |#1|) $) NIL)) (-4246 (((-831 (-516)) $) NIL (|has| (-114 |#1|) (-572 (-831 (-516))))) (((-831 (-359)) $) NIL (|has| (-114 |#1|) (-572 (-831 (-359))))) (((-505) $) NIL (|has| (-114 |#1|) (-572 (-505)))) (((-359) $) NIL (|has| (-114 |#1|) (-958))) (((-208) $) NIL (|has| (-114 |#1|) (-958)))) (-2874 (((-163 (-388 (-516))) $) NIL)) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-114 |#1|) (-851))))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ $) NIL) (($ (-388 (-516))) NIL) (($ (-114 |#1|)) NIL) (($ (-1098)) NIL (|has| (-114 |#1|) (-975 (-1098))))) (-2965 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| $ (-138)) (|has| (-114 |#1|) (-851))) (|has| (-114 |#1|) (-138))))) (-3385 (((-719)) NIL)) (-3390 (((-114 |#1|) $) NIL (|has| (-114 |#1|) (-515)))) (-2117 (((-110) $ $) NIL)) (-4048 (((-388 (-516)) $ (-516)) NIL)) (-3661 (($ $) NIL (|has| (-114 |#1|) (-768)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($ $) NIL (|has| (-114 |#1|) (-216))) (($ $ (-719)) NIL (|has| (-114 |#1|) (-216))) (($ $ (-1098)) NIL (|has| (-114 |#1|) (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| (-114 |#1|) (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| (-114 |#1|) (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| (-114 |#1|) (-841 (-1098)))) (($ $ (-1 (-114 |#1|) (-114 |#1|)) (-719)) NIL) (($ $ (-1 (-114 |#1|) (-114 |#1|))) NIL)) (-2826 (((-110) $ $) NIL (|has| (-114 |#1|) (-795)))) (-2827 (((-110) $ $) NIL (|has| (-114 |#1|) (-795)))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (|has| (-114 |#1|) (-795)))) (-2948 (((-110) $ $) NIL (|has| (-114 |#1|) (-795)))) (-4224 (($ $ $) NIL) (($ (-114 |#1|) (-114 |#1|)) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL) (($ (-114 |#1|) $) NIL) (($ $ (-114 |#1|)) NIL)))
+(((-115 |#1|) (-13 (-931 (-114 |#1|)) (-10 -8 (-15 -4048 ((-388 (-516)) $ (-516))) (-15 -2874 ((-163 (-388 (-516))) $)) (-15 -4009 ($ $)) (-15 -4009 ($ (-516) $)))) (-516)) (T -115))
+((-4048 (*1 *2 *1 *3) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-115 *4)) (-14 *4 *3) (-5 *3 (-516)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-163 (-388 (-516)))) (-5 *1 (-115 *3)) (-14 *3 (-516)))) (-4009 (*1 *1 *1) (-12 (-5 *1 (-115 *2)) (-14 *2 (-516)))) (-4009 (*1 *1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-115 *3)) (-14 *3 *2))))
+(-13 (-931 (-114 |#1|)) (-10 -8 (-15 -4048 ((-388 (-516)) $ (-516))) (-15 -2874 ((-163 (-388 (-516))) $)) (-15 -4009 ($ $)) (-15 -4009 ($ (-516) $))))
+((-4066 ((|#2| $ #1="value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-3295 (((-594 $) $) 27)) (-3291 (((-110) $ $) 32)) (-3516 (((-110) |#2| $) 36)) (-3294 (((-594 |#2|) $) 22)) (-3801 (((-110) $) 16)) (-4078 ((|#2| $ #1#) NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3915 (((-110) $) 45)) (-4233 (((-805) $) 41)) (-3796 (((-594 $) $) 28)) (-3317 (((-110) $ $) 34)) (-4232 (((-719) $) 43)))
+(((-116 |#1| |#2|) (-10 -8 (-15 -4233 ((-805) |#1|)) (-15 -4066 (|#1| |#1| "right" |#1|)) (-15 -4066 (|#1| |#1| "left" |#1|)) (-15 -4078 (|#1| |#1| "right")) (-15 -4078 (|#1| |#1| "left")) (-15 -4066 (|#2| |#1| #1="value" |#2|)) (-15 -3291 ((-110) |#1| |#1|)) (-15 -3294 ((-594 |#2|) |#1|)) (-15 -3915 ((-110) |#1|)) (-15 -4078 (|#2| |#1| #1#)) (-15 -3801 ((-110) |#1|)) (-15 -3295 ((-594 |#1|) |#1|)) (-15 -3796 ((-594 |#1|) |#1|)) (-15 -3317 ((-110) |#1| |#1|)) (-15 -3516 ((-110) |#2| |#1|)) (-15 -4232 ((-719) |#1|))) (-117 |#2|) (-1134)) (T -116))
+NIL
+(-10 -8 (-15 -4233 ((-805) |#1|)) (-15 -4066 (|#1| |#1| "right" |#1|)) (-15 -4066 (|#1| |#1| "left" |#1|)) (-15 -4078 (|#1| |#1| "right")) (-15 -4078 (|#1| |#1| "left")) (-15 -4066 (|#2| |#1| #1="value" |#2|)) (-15 -3291 ((-110) |#1| |#1|)) (-15 -3294 ((-594 |#2|) |#1|)) (-15 -3915 ((-110) |#1|)) (-15 -4078 (|#2| |#1| #1#)) (-15 -3801 ((-110) |#1|)) (-15 -3295 ((-594 |#1|) |#1|)) (-15 -3796 ((-594 |#1|) |#1|)) (-15 -3317 ((-110) |#1| |#1|)) (-15 -3516 ((-110) |#2| |#1|)) (-15 -4232 ((-719) |#1|)))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3681 ((|#1| $) 48)) (-1217 (((-110) $ (-719)) 8)) (-3289 ((|#1| $ |#1|) 39 (|has| $ (-6 -4270)))) (-1304 (($ $ $) 52 (|has| $ (-6 -4270)))) (-1305 (($ $ $) 54 (|has| $ (-6 -4270)))) (-4066 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4270))) (($ $ "left" $) 55 (|has| $ (-6 -4270))) (($ $ "right" $) 53 (|has| $ (-6 -4270)))) (-3290 (($ $ (-594 $)) 41 (|has| $ (-6 -4270)))) (-3815 (($) 7 T CONST)) (-3396 (($ $) 57)) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-3295 (((-594 $) $) 50)) (-3291 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-4001 (((-110) $ (-719)) 9)) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35)) (-3998 (((-110) $ (-719)) 10)) (-3397 (($ $) 59)) (-3294 (((-594 |#1|) $) 45)) (-3801 (((-110) $) 49)) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-4078 ((|#1| $ #1#) 47) (($ $ "left") 58) (($ $ "right") 56)) (-3293 (((-516) $ $) 44)) (-3915 (((-110) $) 46)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-3796 (((-594 $) $) 51)) (-3292 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-117 |#1|) (-133) (-1134)) (T -117))
+((-3397 (*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1134)))) (-4078 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-117 *3)) (-4 *3 (-1134)))) (-3396 (*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1134)))) (-4078 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-117 *3)) (-4 *3 (-1134)))) (-4066 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4270)) (-4 *1 (-117 *3)) (-4 *3 (-1134)))) (-1305 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-117 *2)) (-4 *2 (-1134)))) (-4066 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4270)) (-4 *1 (-117 *3)) (-4 *3 (-1134)))) (-1304 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-117 *2)) (-4 *2 (-1134)))))
+(-13 (-949 |t#1|) (-10 -8 (-15 -3397 ($ $)) (-15 -4078 ($ $ "left")) (-15 -3396 ($ $)) (-15 -4078 ($ $ "right")) (IF (|has| $ (-6 -4270)) (PROGN (-15 -4066 ($ $ "left" $)) (-15 -1305 ($ $ $)) (-15 -4066 ($ $ "right" $)) (-15 -1304 ($ $ $))) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-571 (-805)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-949 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1134) . T))
+((-1308 (((-110) |#1|) 24)) (-1307 (((-719) (-719)) 23) (((-719)) 22)) (-1306 (((-110) |#1| (-110)) 25) (((-110) |#1|) 26)))
+(((-118 |#1|) (-10 -7 (-15 -1306 ((-110) |#1|)) (-15 -1306 ((-110) |#1| (-110))) (-15 -1307 ((-719))) (-15 -1307 ((-719) (-719))) (-15 -1308 ((-110) |#1|))) (-1155 (-516))) (T -118))
+((-1308 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1155 (-516))))) (-1307 (*1 *2 *2) (-12 (-5 *2 (-719)) (-5 *1 (-118 *3)) (-4 *3 (-1155 (-516))))) (-1307 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-118 *3)) (-4 *3 (-1155 (-516))))) (-1306 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1155 (-516))))) (-1306 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1155 (-516))))))
+(-10 -7 (-15 -1306 ((-110) |#1|)) (-15 -1306 ((-110) |#1| (-110))) (-15 -1307 ((-719))) (-15 -1307 ((-719) (-719))) (-15 -1308 ((-110) |#1|)))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3681 ((|#1| $) 15)) (-3697 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-1217 (((-110) $ (-719)) NIL)) (-3289 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-1304 (($ $ $) 18 (|has| $ (-6 -4270)))) (-1305 (($ $ $) 20 (|has| $ (-6 -4270)))) (-4066 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4270))) (($ $ #2="left" $) NIL (|has| $ (-6 -4270))) (($ $ #3="right" $) NIL (|has| $ (-6 -4270)))) (-3290 (($ $ (-594 $)) NIL (|has| $ (-6 -4270)))) (-3815 (($) NIL T CONST)) (-3396 (($ $) 17)) (-2018 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3295 (((-594 $) $) NIL)) (-3291 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1313 (($ $ |#1| $) 23)) (-4001 (((-110) $ (-719)) NIL)) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2022 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3397 (($ $) 19)) (-3294 (((-594 |#1|) $) NIL)) (-3801 (((-110) $) NIL)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-1309 (($ |#1| $) 24)) (-3889 (($ |#1| $) 10)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) 14)) (-3847 (($) 8)) (-4078 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3293 (((-516) $ $) NIL)) (-3915 (((-110) $) NIL)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3678 (($ $) NIL)) (-4233 (((-805) $) NIL (|has| |#1| (-571 (-805))))) (-3796 (((-594 $) $) NIL)) (-3292 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1310 (($ (-594 |#1|)) 12)) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-119 |#1|) (-13 (-123 |#1|) (-10 -8 (-6 -4270) (-6 -4269) (-15 -1310 ($ (-594 |#1|))) (-15 -3889 ($ |#1| $)) (-15 -1309 ($ |#1| $)) (-15 -3697 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-795)) (T -119))
+((-1310 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-795)) (-5 *1 (-119 *3)))) (-3889 (*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-795)))) (-1309 (*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-795)))) (-3697 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-119 *3)) (|:| |greater| (-119 *3)))) (-5 *1 (-119 *3)) (-4 *3 (-795)))))
+(-13 (-123 |#1|) (-10 -8 (-6 -4270) (-6 -4269) (-15 -1310 ($ (-594 |#1|))) (-15 -3889 ($ |#1| $)) (-15 -1309 ($ |#1| $)) (-15 -3697 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-3598 (($ $) 14)) (-3595 (($ $) 11)) (-1311 (($ $ $) 24)) (-1312 (($ $ $) 22)) (-3581 (($ $) 12)) (-3600 (($ $ $) 20)) (-3599 (($ $ $) 18)))
+(((-120 |#1|) (-10 -8 (-15 -1311 (|#1| |#1| |#1|)) (-15 -1312 (|#1| |#1| |#1|)) (-15 -3581 (|#1| |#1|)) (-15 -3595 (|#1| |#1|)) (-15 -3598 (|#1| |#1|)) (-15 -3599 (|#1| |#1| |#1|)) (-15 -3600 (|#1| |#1| |#1|))) (-121)) (T -120))
+NIL
+(-10 -8 (-15 -1311 (|#1| |#1| |#1|)) (-15 -1312 (|#1| |#1| |#1|)) (-15 -3581 (|#1| |#1|)) (-15 -3595 (|#1| |#1|)) (-15 -3598 (|#1| |#1|)) (-15 -3599 (|#1| |#1| |#1|)) (-15 -3600 (|#1| |#1| |#1|)))
+((-2828 (((-110) $ $) 7)) (-3598 (($ $) 104)) (-3594 (($ $ $) 25)) (-2243 (((-1185) $ (-516) (-516)) 67 (|has| $ (-6 -4270)))) (-1798 (((-110) $) 99 (|has| (-110) (-795))) (((-110) (-1 (-110) (-110) (-110)) $) 93)) (-1796 (($ $) 103 (-12 (|has| (-110) (-795)) (|has| $ (-6 -4270)))) (($ (-1 (-110) (-110) (-110)) $) 102 (|has| $ (-6 -4270)))) (-3173 (($ $) 98 (|has| (-110) (-795))) (($ (-1 (-110) (-110) (-110)) $) 92)) (-1217 (((-110) $ (-719)) 38)) (-4066 (((-110) $ (-1146 (-516)) (-110)) 89 (|has| $ (-6 -4270))) (((-110) $ (-516) (-110)) 55 (|has| $ (-6 -4270)))) (-3992 (($ (-1 (-110) (-110)) $) 72 (|has| $ (-6 -4269)))) (-3815 (($) 39 T CONST)) (-2312 (($ $) 101 (|has| $ (-6 -4270)))) (-2313 (($ $) 91)) (-1349 (($ $) 69 (-12 (|has| (-110) (-1027)) (|has| $ (-6 -4269))))) (-3685 (($ (-1 (-110) (-110)) $) 73 (|has| $ (-6 -4269))) (($ (-110) $) 70 (-12 (|has| (-110) (-1027)) (|has| $ (-6 -4269))))) (-4121 (((-110) (-1 (-110) (-110) (-110)) $) 75 (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-110) (-110)) $ (-110)) 74 (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-110) (-110)) $ (-110) (-110)) 71 (-12 (|has| (-110) (-1027)) (|has| $ (-6 -4269))))) (-1587 (((-110) $ (-516) (-110)) 54 (|has| $ (-6 -4270)))) (-3372 (((-110) $ (-516)) 56)) (-3698 (((-516) (-110) $ (-516)) 96 (|has| (-110) (-1027))) (((-516) (-110) $) 95 (|has| (-110) (-1027))) (((-516) (-1 (-110) (-110)) $) 94)) (-2018 (((-594 (-110)) $) 46 (|has| $ (-6 -4269)))) (-3120 (($ $ $) 26)) (-3595 (($ $) 31)) (-1311 (($ $ $) 28)) (-3896 (($ (-719) (-110)) 78)) (-1312 (($ $ $) 29)) (-4001 (((-110) $ (-719)) 37)) (-2245 (((-516) $) 64 (|has| (-516) (-795)))) (-3596 (($ $ $) 13)) (-3792 (($ $ $) 97 (|has| (-110) (-795))) (($ (-1 (-110) (-110) (-110)) $ $) 90)) (-2445 (((-594 (-110)) $) 47 (|has| $ (-6 -4269)))) (-3516 (((-110) (-110) $) 49 (-12 (|has| (-110) (-1027)) (|has| $ (-6 -4269))))) (-2246 (((-516) $) 63 (|has| (-516) (-795)))) (-3597 (($ $ $) 14)) (-2022 (($ (-1 (-110) (-110)) $) 42 (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-110) (-110) (-110)) $ $) 83) (($ (-1 (-110) (-110)) $) 41)) (-3998 (((-110) $ (-719)) 36)) (-3513 (((-1081) $) 9)) (-2317 (($ $ $ (-516)) 88) (($ (-110) $ (-516)) 87)) (-2248 (((-594 (-516)) $) 61)) (-2249 (((-110) (-516) $) 60)) (-3514 (((-1045) $) 10)) (-4079 (((-110) $) 65 (|has| (-516) (-795)))) (-1350 (((-3 (-110) "failed") (-1 (-110) (-110)) $) 76)) (-2244 (($ $ (-110)) 66 (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) (-110)) $) 44 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-110)) (-594 (-110))) 53 (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-110) (-110)) 52 (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-275 (-110))) 51 (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-594 (-275 (-110)))) 50 (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027))))) (-1218 (((-110) $ $) 32)) (-2247 (((-110) (-110) $) 62 (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-2250 (((-594 (-110)) $) 59)) (-3682 (((-110) $) 35)) (-3847 (($) 34)) (-4078 (($ $ (-1146 (-516))) 84) (((-110) $ (-516)) 58) (((-110) $ (-516) (-110)) 57)) (-2318 (($ $ (-1146 (-516))) 86) (($ $ (-516)) 85)) (-2019 (((-719) (-110) $) 48 (-12 (|has| (-110) (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) (-110)) $) 45 (|has| $ (-6 -4269)))) (-1797 (($ $ $ (-516)) 100 (|has| $ (-6 -4270)))) (-3678 (($ $) 33)) (-4246 (((-505) $) 68 (|has| (-110) (-572 (-505))))) (-3804 (($ (-594 (-110))) 77)) (-4080 (($ (-594 $)) 82) (($ $ $) 81) (($ (-110) $) 80) (($ $ (-110)) 79)) (-4233 (((-805) $) 11)) (-2021 (((-110) (-1 (-110) (-110)) $) 43 (|has| $ (-6 -4269)))) (-3119 (($ $ $) 27)) (-3581 (($ $) 30)) (-3600 (($ $ $) 106)) (-2826 (((-110) $ $) 16)) (-2827 (((-110) $ $) 17)) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 15)) (-2948 (((-110) $ $) 18)) (-3599 (($ $ $) 105)) (-4232 (((-719) $) 40 (|has| $ (-6 -4269)))))
(((-121) (-133)) (T -121))
-((-3617 (*1 *1 *1) (-4 *1 (-121))) (-2690 (*1 *1 *1) (-4 *1 (-121))) (-4135 (*1 *1 *1 *1) (-4 *1 (-121))) (-3012 (*1 *1 *1 *1) (-4 *1 (-121))) (-3287 (*1 *1 *1 *1) (-4 *1 (-121))) (-2619 (*1 *1 *1 *1) (-4 *1 (-121))) (-2993 (*1 *1 *1 *1) (-4 *1 (-121))))
-(-13 (-793) (-610) (-19 (-110)) (-10 -8 (-15 -3617 ($ $)) (-15 -2690 ($ $)) (-15 -4135 ($ $ $)) (-15 -3012 ($ $ $)) (-15 -3287 ($ $ $)) (-15 -2619 ($ $ $)) (-15 -2993 ($ $ $))))
-(((-33) . T) ((-99) . T) ((-569 (-802)) . T) ((-144 #0=(-110)) . T) ((-570 (-504)) |has| (-110) (-570 (-504))) ((-267 #1=(-528) #0#) . T) ((-269 #1# #0#) . T) ((-290 #0#) -12 (|has| (-110) (-290 (-110))) (|has| (-110) (-1023))) ((-353 #0#) . T) ((-467 #0#) . T) ((-561 #1# #0#) . T) ((-489 #0# #0#) -12 (|has| (-110) (-290 (-110))) (|has| (-110) (-1023))) ((-600 #0#) . T) ((-610) . T) ((-19 #0#) . T) ((-793) . T) ((-1023) . T) ((-1131) . T))
-((-2800 (($ (-1 |#2| |#2|) $) 22)) (-2406 (($ $) 16)) (-2138 (((-717) $) 24)))
-(((-122 |#1| |#2|) (-10 -8 (-15 -2800 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2138 ((-717) |#1|)) (-15 -2406 (|#1| |#1|))) (-123 |#2|) (-1023)) (T -122))
-NIL
-(-10 -8 (-15 -2800 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2138 ((-717) |#1|)) (-15 -2406 (|#1| |#1|)))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-3327 ((|#1| $) 48)) (-3535 (((-110) $ (-717)) 8)) (-2074 ((|#1| $ |#1|) 39 (|has| $ (-6 -4265)))) (-2033 (($ $ $) 52 (|has| $ (-6 -4265)))) (-3187 (($ $ $) 54 (|has| $ (-6 -4265)))) (-2381 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4265))) (($ $ "left" $) 55 (|has| $ (-6 -4265))) (($ $ "right" $) 53 (|has| $ (-6 -4265)))) (-3409 (($ $ (-595 $)) 41 (|has| $ (-6 -4265)))) (-2816 (($) 7 T CONST)) (-3572 (($ $) 57)) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-1690 (((-595 $) $) 50)) (-1313 (((-110) $ $) 42 (|has| |#1| (-1023)))) (-1454 (($ $ |#1| $) 60)) (-2029 (((-110) $ (-717)) 9)) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35)) (-3358 (((-110) $ (-717)) 10)) (-3562 (($ $) 59)) (-3298 (((-595 |#1|) $) 45)) (-2578 (((-110) $) 49)) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3043 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3241 (((-528) $ $) 44)) (-3177 (((-110) $) 46)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-3813 (((-595 $) $) 51)) (-2688 (((-110) $ $) 43 (|has| |#1| (-1023)))) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-123 |#1|) (-133) (-1023)) (T -123))
-((-1454 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-123 *2)) (-4 *2 (-1023)))))
-(-13 (-117 |t#1|) (-10 -8 (-6 -4265) (-6 -4264) (-15 -1454 ($ $ |t#1| $))))
-(((-33) . T) ((-99) |has| |#1| (-1023)) ((-117 |#1|) . T) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-569 (-802)))) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-467 |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-946 |#1|) . T) ((-1023) |has| |#1| (-1023)) ((-1131) . T))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3327 ((|#1| $) 15)) (-3535 (((-110) $ (-717)) NIL)) (-2074 ((|#1| $ |#1|) 19 (|has| $ (-6 -4265)))) (-2033 (($ $ $) 20 (|has| $ (-6 -4265)))) (-3187 (($ $ $) 18 (|has| $ (-6 -4265)))) (-2381 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4265))) (($ $ "left" $) NIL (|has| $ (-6 -4265))) (($ $ "right" $) NIL (|has| $ (-6 -4265)))) (-3409 (($ $ (-595 $)) NIL (|has| $ (-6 -4265)))) (-2816 (($) NIL T CONST)) (-3572 (($ $) 21)) (-3342 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-1690 (((-595 $) $) NIL)) (-1313 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-1454 (($ $ |#1| $) NIL)) (-2029 (((-110) $ (-717)) NIL)) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2800 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3562 (($ $) NIL)) (-3298 (((-595 |#1|) $) NIL)) (-2578 (((-110) $) NIL)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-1950 (($ |#1| $) 10)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) 14)) (-2147 (($) 8)) (-3043 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3241 (((-528) $ $) NIL)) (-3177 (((-110) $) NIL)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2406 (($ $) 17)) (-2222 (((-802) $) NIL (|has| |#1| (-569 (-802))))) (-3813 (((-595 $) $) NIL)) (-2688 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2197 (($ (-595 |#1|)) 12)) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-124 |#1|) (-13 (-123 |#1|) (-10 -8 (-6 -4265) (-15 -2197 ($ (-595 |#1|))) (-15 -1950 ($ |#1| $)))) (-793)) (T -124))
-((-2197 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-793)) (-5 *1 (-124 *3)))) (-1950 (*1 *1 *2 *1) (-12 (-5 *1 (-124 *2)) (-4 *2 (-793)))))
-(-13 (-123 |#1|) (-10 -8 (-6 -4265) (-15 -2197 ($ (-595 |#1|))) (-15 -1950 ($ |#1| $))))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3327 ((|#1| $) 24)) (-3535 (((-110) $ (-717)) NIL)) (-2074 ((|#1| $ |#1|) 26 (|has| $ (-6 -4265)))) (-2033 (($ $ $) 30 (|has| $ (-6 -4265)))) (-3187 (($ $ $) 28 (|has| $ (-6 -4265)))) (-2381 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4265))) (($ $ "left" $) NIL (|has| $ (-6 -4265))) (($ $ "right" $) NIL (|has| $ (-6 -4265)))) (-3409 (($ $ (-595 $)) NIL (|has| $ (-6 -4265)))) (-2816 (($) NIL T CONST)) (-3572 (($ $) 20)) (-3342 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-1690 (((-595 $) $) NIL)) (-1313 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-1454 (($ $ |#1| $) 15)) (-2029 (((-110) $ (-717)) NIL)) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2800 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3562 (($ $) 19)) (-3298 (((-595 |#1|) $) NIL)) (-2578 (((-110) $) 21)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) 18)) (-2147 (($) 11)) (-3043 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3241 (((-528) $ $) NIL)) (-3177 (((-110) $) NIL)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2406 (($ $) NIL)) (-2222 (((-802) $) NIL (|has| |#1| (-569 (-802))))) (-3813 (((-595 $) $) NIL)) (-2688 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3510 (($ |#1|) 17) (($ $ |#1| $) 16)) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 10 (|has| |#1| (-1023)))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-125 |#1|) (-13 (-123 |#1|) (-10 -8 (-15 -3510 ($ |#1|)) (-15 -3510 ($ $ |#1| $)))) (-1023)) (T -125))
-((-3510 (*1 *1 *2) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1023)))) (-3510 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1023)))))
-(-13 (-123 |#1|) (-10 -8 (-15 -3510 ($ |#1|)) (-15 -3510 ($ $ |#1| $))))
-((-2207 (((-110) $ $) NIL (|has| (-127) (-1023)))) (-1444 (((-1182) $ (-528) (-528)) NIL (|has| $ (-6 -4265)))) (-3608 (((-110) (-1 (-110) (-127) (-127)) $) NIL) (((-110) $) NIL (|has| (-127) (-793)))) (-3863 (($ (-1 (-110) (-127) (-127)) $) NIL (|has| $ (-6 -4265))) (($ $) NIL (-12 (|has| $ (-6 -4265)) (|has| (-127) (-793))))) (-1289 (($ (-1 (-110) (-127) (-127)) $) NIL) (($ $) NIL (|has| (-127) (-793)))) (-3535 (((-110) $ (-717)) NIL)) (-2381 (((-127) $ (-528) (-127)) NIL (|has| $ (-6 -4265))) (((-127) $ (-1144 (-528)) (-127)) NIL (|has| $ (-6 -4265)))) (-1573 (($ (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4264)))) (-2816 (($) NIL T CONST)) (-2472 (($ $) NIL (|has| $ (-6 -4265)))) (-3009 (($ $) NIL)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-127) (-1023))))) (-2280 (($ (-127) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-127) (-1023)))) (($ (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4264)))) (-1422 (((-127) (-1 (-127) (-127) (-127)) $ (-127) (-127)) NIL (-12 (|has| $ (-6 -4264)) (|has| (-127) (-1023)))) (((-127) (-1 (-127) (-127) (-127)) $ (-127)) NIL (|has| $ (-6 -4264))) (((-127) (-1 (-127) (-127) (-127)) $) NIL (|has| $ (-6 -4264)))) (-2812 (((-127) $ (-528) (-127)) NIL (|has| $ (-6 -4265)))) (-2742 (((-127) $ (-528)) NIL)) (-3140 (((-528) (-1 (-110) (-127)) $) NIL) (((-528) (-127) $) NIL (|has| (-127) (-1023))) (((-528) (-127) $ (-528)) NIL (|has| (-127) (-1023)))) (-3342 (((-595 (-127)) $) NIL (|has| $ (-6 -4264)))) (-3462 (($ (-717) (-127)) NIL)) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-528) $) NIL (|has| (-528) (-793)))) (-1436 (($ $ $) NIL (|has| (-127) (-793)))) (-1356 (($ (-1 (-110) (-127) (-127)) $ $) NIL) (($ $ $) NIL (|has| (-127) (-793)))) (-2604 (((-595 (-127)) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) (-127) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-127) (-1023))))) (-1709 (((-528) $) NIL (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (|has| (-127) (-793)))) (-2800 (($ (-1 (-127) (-127)) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-127) (-127)) $) NIL) (($ (-1 (-127) (-127) (-127)) $ $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (|has| (-127) (-1023)))) (-3939 (($ (-127) $ (-528)) NIL) (($ $ $ (-528)) NIL)) (-2084 (((-595 (-528)) $) NIL)) (-3966 (((-110) (-528) $) NIL)) (-2495 (((-1042) $) NIL (|has| (-127) (-1023)))) (-2890 (((-127) $) NIL (|has| (-528) (-793)))) (-1734 (((-3 (-127) "failed") (-1 (-110) (-127)) $) NIL)) (-1332 (($ $ (-127)) NIL (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 (-127)))) NIL (-12 (|has| (-127) (-290 (-127))) (|has| (-127) (-1023)))) (($ $ (-275 (-127))) NIL (-12 (|has| (-127) (-290 (-127))) (|has| (-127) (-1023)))) (($ $ (-127) (-127)) NIL (-12 (|has| (-127) (-290 (-127))) (|has| (-127) (-1023)))) (($ $ (-595 (-127)) (-595 (-127))) NIL (-12 (|has| (-127) (-290 (-127))) (|has| (-127) (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) (-127) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-127) (-1023))))) (-2861 (((-595 (-127)) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 (((-127) $ (-528) (-127)) NIL) (((-127) $ (-528)) NIL) (($ $ (-1144 (-528))) NIL)) (-1745 (($ $ (-528)) NIL) (($ $ (-1144 (-528))) NIL)) (-2507 (((-717) (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4264))) (((-717) (-127) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-127) (-1023))))) (-3761 (($ $ $ (-528)) NIL (|has| $ (-6 -4265)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) NIL (|has| (-127) (-570 (-504))))) (-2233 (($ (-595 (-127))) NIL)) (-3400 (($ $ (-127)) NIL) (($ (-127) $) NIL) (($ $ $) NIL) (($ (-595 $)) NIL)) (-2222 (((-802) $) NIL (|has| (-127) (-569 (-802))))) (-3451 (((-110) (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4264)))) (-2244 (((-110) $ $) NIL (|has| (-127) (-793)))) (-2220 (((-110) $ $) NIL (|has| (-127) (-793)))) (-2186 (((-110) $ $) NIL (|has| (-127) (-1023)))) (-2232 (((-110) $ $) NIL (|has| (-127) (-793)))) (-2208 (((-110) $ $) NIL (|has| (-127) (-793)))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-126) (-19 (-127))) (T -126))
-NIL
-(-19 (-127))
-((-2207 (((-110) $ $) NIL)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 12) (((-717) $) 9) (($ (-717)) 8)) (-1500 (($ (-717)) 7)) (-1883 (($ $ $) 16)) (-1871 (($ $ $) 15)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 14)))
-(((-127) (-13 (-793) (-569 (-717)) (-10 -8 (-15 -1500 ($ (-717))) (-15 -2222 ($ (-717))) (-15 -1871 ($ $ $)) (-15 -1883 ($ $ $))))) (T -127))
-((-1500 (*1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-127)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-127)))) (-1871 (*1 *1 *1 *1) (-5 *1 (-127))) (-1883 (*1 *1 *1 *1) (-5 *1 (-127))))
-(-13 (-793) (-569 (-717)) (-10 -8 (-15 -1500 ($ (-717))) (-15 -2222 ($ (-717))) (-15 -1871 ($ $ $)) (-15 -1883 ($ $ $))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2969 (($) 18 T CONST)) (-2186 (((-110) $ $) 6)) (-2275 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-717) $) 15)))
+((-3595 (*1 *1 *1) (-4 *1 (-121))) (-3581 (*1 *1 *1) (-4 *1 (-121))) (-1312 (*1 *1 *1 *1) (-4 *1 (-121))) (-1311 (*1 *1 *1 *1) (-4 *1 (-121))) (-3119 (*1 *1 *1 *1) (-4 *1 (-121))) (-3120 (*1 *1 *1 *1) (-4 *1 (-121))) (-3594 (*1 *1 *1 *1) (-4 *1 (-121))))
+(-13 (-795) (-613) (-19 (-110)) (-10 -8 (-15 -3595 ($ $)) (-15 -3581 ($ $)) (-15 -1312 ($ $ $)) (-15 -1311 ($ $ $)) (-15 -3119 ($ $ $)) (-15 -3120 ($ $ $)) (-15 -3594 ($ $ $))))
+(((-33) . T) ((-99) . T) ((-571 (-805)) . T) ((-144 #1=(-110)) . T) ((-572 (-505)) |has| (-110) (-572 (-505))) ((-268 #2=(-516) #1#) . T) ((-270 #2# #1#) . T) ((-291 #1#) -12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027))) ((-353 #1#) . T) ((-468 #1#) . T) ((-563 #2# #1#) . T) ((-491 #1# #1#) -12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027))) ((-602 #1#) . T) ((-613) . T) ((-19 #1#) . T) ((-795) . T) ((-1027) . T) ((-1134) . T))
+((-2022 (($ (-1 |#2| |#2|) $) 22)) (-3678 (($ $) 16)) (-4232 (((-719) $) 24)))
+(((-122 |#1| |#2|) (-10 -8 (-15 -2022 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4232 ((-719) |#1|)) (-15 -3678 (|#1| |#1|))) (-123 |#2|) (-1027)) (T -122))
+NIL
+(-10 -8 (-15 -2022 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4232 ((-719) |#1|)) (-15 -3678 (|#1| |#1|)))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3681 ((|#1| $) 48)) (-1217 (((-110) $ (-719)) 8)) (-3289 ((|#1| $ |#1|) 39 (|has| $ (-6 -4270)))) (-1304 (($ $ $) 52 (|has| $ (-6 -4270)))) (-1305 (($ $ $) 54 (|has| $ (-6 -4270)))) (-4066 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4270))) (($ $ #2="left" $) 55 (|has| $ (-6 -4270))) (($ $ #3="right" $) 53 (|has| $ (-6 -4270)))) (-3290 (($ $ (-594 $)) 41 (|has| $ (-6 -4270)))) (-3815 (($) 7 T CONST)) (-3396 (($ $) 57)) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-3295 (((-594 $) $) 50)) (-3291 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-1313 (($ $ |#1| $) 60)) (-4001 (((-110) $ (-719)) 9)) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35)) (-3998 (((-110) $ (-719)) 10)) (-3397 (($ $) 59)) (-3294 (((-594 |#1|) $) 45)) (-3801 (((-110) $) 49)) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-4078 ((|#1| $ #1#) 47) (($ $ #2#) 58) (($ $ #3#) 56)) (-3293 (((-516) $ $) 44)) (-3915 (((-110) $) 46)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-3796 (((-594 $) $) 51)) (-3292 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-123 |#1|) (-133) (-1027)) (T -123))
+((-1313 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-123 *2)) (-4 *2 (-1027)))))
+(-13 (-117 |t#1|) (-10 -8 (-6 -4270) (-6 -4269) (-15 -1313 ($ $ |t#1| $))))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-117 |#1|) . T) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-571 (-805)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-949 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1134) . T))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3681 ((|#1| $) 15)) (-1217 (((-110) $ (-719)) NIL)) (-3289 ((|#1| $ |#1|) 19 (|has| $ (-6 -4270)))) (-1304 (($ $ $) 20 (|has| $ (-6 -4270)))) (-1305 (($ $ $) 18 (|has| $ (-6 -4270)))) (-4066 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4270))) (($ $ #2="left" $) NIL (|has| $ (-6 -4270))) (($ $ #3="right" $) NIL (|has| $ (-6 -4270)))) (-3290 (($ $ (-594 $)) NIL (|has| $ (-6 -4270)))) (-3815 (($) NIL T CONST)) (-3396 (($ $) 21)) (-2018 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3295 (((-594 $) $) NIL)) (-3291 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1313 (($ $ |#1| $) NIL)) (-4001 (((-110) $ (-719)) NIL)) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2022 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3397 (($ $) NIL)) (-3294 (((-594 |#1|) $) NIL)) (-3801 (((-110) $) NIL)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-3889 (($ |#1| $) 10)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) 14)) (-3847 (($) 8)) (-4078 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3293 (((-516) $ $) NIL)) (-3915 (((-110) $) NIL)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3678 (($ $) 17)) (-4233 (((-805) $) NIL (|has| |#1| (-571 (-805))))) (-3796 (((-594 $) $) NIL)) (-3292 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1314 (($ (-594 |#1|)) 12)) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-124 |#1|) (-13 (-123 |#1|) (-10 -8 (-6 -4270) (-15 -1314 ($ (-594 |#1|))) (-15 -3889 ($ |#1| $)))) (-795)) (T -124))
+((-1314 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-795)) (-5 *1 (-124 *3)))) (-3889 (*1 *1 *2 *1) (-12 (-5 *1 (-124 *2)) (-4 *2 (-795)))))
+(-13 (-123 |#1|) (-10 -8 (-6 -4270) (-15 -1314 ($ (-594 |#1|))) (-15 -3889 ($ |#1| $))))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3681 ((|#1| $) 24)) (-1217 (((-110) $ (-719)) NIL)) (-3289 ((|#1| $ |#1|) 26 (|has| $ (-6 -4270)))) (-1304 (($ $ $) 30 (|has| $ (-6 -4270)))) (-1305 (($ $ $) 28 (|has| $ (-6 -4270)))) (-4066 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4270))) (($ $ #2="left" $) NIL (|has| $ (-6 -4270))) (($ $ #3="right" $) NIL (|has| $ (-6 -4270)))) (-3290 (($ $ (-594 $)) NIL (|has| $ (-6 -4270)))) (-3815 (($) NIL T CONST)) (-3396 (($ $) 20)) (-2018 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3295 (((-594 $) $) NIL)) (-3291 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1313 (($ $ |#1| $) 15)) (-4001 (((-110) $ (-719)) NIL)) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2022 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3397 (($ $) 19)) (-3294 (((-594 |#1|) $) NIL)) (-3801 (((-110) $) 21)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) 18)) (-3847 (($) 11)) (-4078 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3293 (((-516) $ $) NIL)) (-3915 (((-110) $) NIL)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3678 (($ $) NIL)) (-4233 (((-805) $) NIL (|has| |#1| (-571 (-805))))) (-3796 (((-594 $) $) NIL)) (-3292 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1315 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 10 (|has| |#1| (-1027)))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-125 |#1|) (-13 (-123 |#1|) (-10 -8 (-15 -1315 ($ |#1|)) (-15 -1315 ($ $ |#1| $)))) (-1027)) (T -125))
+((-1315 (*1 *1 *2) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1027)))) (-1315 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1027)))))
+(-13 (-123 |#1|) (-10 -8 (-15 -1315 ($ |#1|)) (-15 -1315 ($ $ |#1| $))))
+((-2828 (((-110) $ $) NIL)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 12) (((-719) $) 9) (($ (-719)) 8)) (-1318 (($ (-719)) 7)) (-1316 (($ $ $) 16)) (-1317 (($ $ $) 15)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 14)))
+(((-126) (-13 (-795) (-571 (-719)) (-10 -8 (-15 -1318 ($ (-719))) (-15 -4233 ($ (-719))) (-15 -1317 ($ $ $)) (-15 -1316 ($ $ $))))) (T -126))
+((-1318 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-126)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-126)))) (-1317 (*1 *1 *1 *1) (-5 *1 (-126))) (-1316 (*1 *1 *1 *1) (-5 *1 (-126))))
+(-13 (-795) (-571 (-719)) (-10 -8 (-15 -1318 ($ (-719))) (-15 -4233 ($ (-719))) (-15 -1317 ($ $ $)) (-15 -1316 ($ $ $))))
+((-2828 (((-110) $ $) NIL (|has| (-126) (-1027)))) (-2243 (((-1185) $ (-516) (-516)) NIL (|has| $ (-6 -4270)))) (-1798 (((-110) (-1 (-110) (-126) (-126)) $) NIL) (((-110) $) NIL (|has| (-126) (-795)))) (-1796 (($ (-1 (-110) (-126) (-126)) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-126) (-795))))) (-3173 (($ (-1 (-110) (-126) (-126)) $) NIL) (($ $) NIL (|has| (-126) (-795)))) (-1217 (((-110) $ (-719)) NIL)) (-4066 (((-126) $ (-516) (-126)) NIL (|has| $ (-6 -4270))) (((-126) $ (-1146 (-516)) (-126)) NIL (|has| $ (-6 -4270)))) (-3992 (($ (-1 (-110) (-126)) $) NIL (|has| $ (-6 -4269)))) (-3815 (($) NIL T CONST)) (-2312 (($ $) NIL (|has| $ (-6 -4270)))) (-2313 (($ $) NIL)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-126) (-1027))))) (-3685 (($ (-126) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-126) (-1027)))) (($ (-1 (-110) (-126)) $) NIL (|has| $ (-6 -4269)))) (-4121 (((-126) (-1 (-126) (-126) (-126)) $ (-126) (-126)) NIL (-12 (|has| $ (-6 -4269)) (|has| (-126) (-1027)))) (((-126) (-1 (-126) (-126) (-126)) $ (-126)) NIL (|has| $ (-6 -4269))) (((-126) (-1 (-126) (-126) (-126)) $) NIL (|has| $ (-6 -4269)))) (-1587 (((-126) $ (-516) (-126)) NIL (|has| $ (-6 -4270)))) (-3372 (((-126) $ (-516)) NIL)) (-3698 (((-516) (-1 (-110) (-126)) $) NIL) (((-516) (-126) $) NIL (|has| (-126) (-1027))) (((-516) (-126) $ (-516)) NIL (|has| (-126) (-1027)))) (-2018 (((-594 (-126)) $) NIL (|has| $ (-6 -4269)))) (-3896 (($ (-719) (-126)) NIL)) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-516) $) NIL (|has| (-516) (-795)))) (-3596 (($ $ $) NIL (|has| (-126) (-795)))) (-3792 (($ (-1 (-110) (-126) (-126)) $ $) NIL) (($ $ $) NIL (|has| (-126) (-795)))) (-2445 (((-594 (-126)) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) (-126) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-126) (-1027))))) (-2246 (((-516) $) NIL (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (|has| (-126) (-795)))) (-2022 (($ (-1 (-126) (-126)) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-126) (-126)) $) NIL) (($ (-1 (-126) (-126) (-126)) $ $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (|has| (-126) (-1027)))) (-2317 (($ (-126) $ (-516)) NIL) (($ $ $ (-516)) NIL)) (-2248 (((-594 (-516)) $) NIL)) (-2249 (((-110) (-516) $) NIL)) (-3514 (((-1045) $) NIL (|has| (-126) (-1027)))) (-4079 (((-126) $) NIL (|has| (-516) (-795)))) (-1350 (((-3 (-126) "failed") (-1 (-110) (-126)) $) NIL)) (-2244 (($ $ (-126)) NIL (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) (-126)) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 (-126)))) NIL (-12 (|has| (-126) (-291 (-126))) (|has| (-126) (-1027)))) (($ $ (-275 (-126))) NIL (-12 (|has| (-126) (-291 (-126))) (|has| (-126) (-1027)))) (($ $ (-126) (-126)) NIL (-12 (|has| (-126) (-291 (-126))) (|has| (-126) (-1027)))) (($ $ (-594 (-126)) (-594 (-126))) NIL (-12 (|has| (-126) (-291 (-126))) (|has| (-126) (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) (-126) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-126) (-1027))))) (-2250 (((-594 (-126)) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 (((-126) $ (-516) (-126)) NIL) (((-126) $ (-516)) NIL) (($ $ (-1146 (-516))) NIL)) (-2318 (($ $ (-516)) NIL) (($ $ (-1146 (-516))) NIL)) (-2019 (((-719) (-1 (-110) (-126)) $) NIL (|has| $ (-6 -4269))) (((-719) (-126) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-126) (-1027))))) (-1797 (($ $ $ (-516)) NIL (|has| $ (-6 -4270)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) NIL (|has| (-126) (-572 (-505))))) (-3804 (($ (-594 (-126))) NIL)) (-4080 (($ $ (-126)) NIL) (($ (-126) $) NIL) (($ $ $) NIL) (($ (-594 $)) NIL)) (-4233 (((-805) $) NIL (|has| (-126) (-571 (-805))))) (-2021 (((-110) (-1 (-110) (-126)) $) NIL (|has| $ (-6 -4269)))) (-2826 (((-110) $ $) NIL (|has| (-126) (-795)))) (-2827 (((-110) $ $) NIL (|has| (-126) (-795)))) (-3317 (((-110) $ $) NIL (|has| (-126) (-1027)))) (-2947 (((-110) $ $) NIL (|has| (-126) (-795)))) (-2948 (((-110) $ $) NIL (|has| (-126) (-795)))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-127) (-19 (-126))) (T -127))
+NIL
+(-19 (-126))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-2920 (($) 18 T CONST)) (-3317 (((-110) $ $) 6)) (-4118 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-719) $) 15)))
(((-128) (-133)) (T -128))
-((-3181 (*1 *1 *1 *1) (|partial| -4 *1 (-128))))
-(-13 (-23) (-10 -8 (-15 -3181 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-99) . T) ((-569 (-802)) . T) ((-1023) . T))
-((-2207 (((-110) $ $) 7)) (-2262 (((-1182) $ (-717)) 19)) (-3140 (((-717) $) 20)) (-1436 (($ $ $) 13)) (-1736 (($ $ $) 14)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2244 (((-110) $ $) 16)) (-2220 (((-110) $ $) 17)) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 15)) (-2208 (((-110) $ $) 18)))
+((-1319 (*1 *1 *1 *1) (|partial| -4 *1 (-128))))
+(-13 (-23) (-10 -8 (-15 -1319 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-99) . T) ((-571 (-805)) . T) ((-1027) . T))
+((-2828 (((-110) $ $) 7)) (-1320 (((-1185) $ (-719)) 19)) (-3698 (((-719) $) 20)) (-3596 (($ $ $) 13)) (-3597 (($ $ $) 14)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-2826 (((-110) $ $) 16)) (-2827 (((-110) $ $) 17)) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 15)) (-2948 (((-110) $ $) 18)))
(((-129) (-133)) (T -129))
-((-3140 (*1 *2 *1) (-12 (-4 *1 (-129)) (-5 *2 (-717)))) (-2262 (*1 *2 *1 *3) (-12 (-4 *1 (-129)) (-5 *3 (-717)) (-5 *2 (-1182)))))
-(-13 (-793) (-10 -8 (-15 -3140 ((-717) $)) (-15 -2262 ((-1182) $ (-717)))))
-(((-99) . T) ((-569 (-802)) . T) ((-793) . T) ((-1023) . T))
-((-2207 (((-110) $ $) 34)) (-1359 (((-110) $) NIL)) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-717) "failed") $) 40)) (-2409 (((-717) $) 38)) (-1312 (((-3 $ "failed") $) NIL)) (-1297 (((-110) $) NIL)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) 27)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3798 (((-110)) 41)) (-2674 (((-110) (-110)) 43)) (-2891 (((-110) $) 24)) (-3636 (((-110) $) 37)) (-2222 (((-802) $) 22) (($ (-717)) 14)) (-2690 (($ $ (-717)) NIL) (($ $ (-860)) NIL)) (-2969 (($) 12 T CONST)) (-2982 (($) 11 T CONST)) (-3325 (($ (-717)) 15)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 25)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 26)) (-2286 (((-3 $ "failed") $ $) 30)) (-2275 (($ $ $) 28)) (** (($ $ (-717)) NIL) (($ $ (-860)) NIL) (($ $ $) 36)) (* (($ (-717) $) 33) (($ (-860) $) NIL) (($ $ $) 31)))
-(((-130) (-13 (-793) (-23) (-673) (-972 (-717)) (-10 -8 (-6 (-4266 "*")) (-15 -2286 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3325 ($ (-717))) (-15 -2891 ((-110) $)) (-15 -3636 ((-110) $)) (-15 -3798 ((-110))) (-15 -2674 ((-110) (-110)))))) (T -130))
-((-2286 (*1 *1 *1 *1) (|partial| -5 *1 (-130))) (** (*1 *1 *1 *1) (-5 *1 (-130))) (-3325 (*1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-130)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130)))) (-3636 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130)))) (-3798 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))) (-2674 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))))
-(-13 (-793) (-23) (-673) (-972 (-717)) (-10 -8 (-6 (-4266 "*")) (-15 -2286 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3325 ($ (-717))) (-15 -2891 ((-110) $)) (-15 -3636 ((-110) $)) (-15 -3798 ((-110))) (-15 -2674 ((-110) (-110)))))
-((-3023 (((-132 |#1| |#2| |#4|) (-595 |#4|) (-132 |#1| |#2| |#3|)) 14)) (-3106 (((-132 |#1| |#2| |#4|) (-1 |#4| |#3|) (-132 |#1| |#2| |#3|)) 18)))
-(((-131 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3023 ((-132 |#1| |#2| |#4|) (-595 |#4|) (-132 |#1| |#2| |#3|))) (-15 -3106 ((-132 |#1| |#2| |#4|) (-1 |#4| |#3|) (-132 |#1| |#2| |#3|)))) (-528) (-717) (-162) (-162)) (T -131))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-528)) (-14 *6 (-717)) (-4 *7 (-162)) (-4 *8 (-162)) (-5 *2 (-132 *5 *6 *8)) (-5 *1 (-131 *5 *6 *7 *8)))) (-3023 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *8)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-528)) (-14 *6 (-717)) (-4 *7 (-162)) (-4 *8 (-162)) (-5 *2 (-132 *5 *6 *8)) (-5 *1 (-131 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3023 ((-132 |#1| |#2| |#4|) (-595 |#4|) (-132 |#1| |#2| |#3|))) (-15 -3106 ((-132 |#1| |#2| |#4|) (-1 |#4| |#3|) (-132 |#1| |#2| |#3|))))
-((-2207 (((-110) $ $) NIL)) (-4234 (($ (-595 |#3|)) 40)) (-3351 (($ $) 99) (($ $ (-528) (-528)) 98)) (-2816 (($) 17)) (-3001 (((-3 |#3| "failed") $) 60)) (-2409 ((|#3| $) NIL)) (-2553 (($ $ (-595 (-528))) 100)) (-3006 (((-595 |#3|) $) 36)) (-3090 (((-717) $) 44)) (-1415 (($ $ $) 93)) (-3054 (($) 43)) (-3034 (((-1078) $) NIL)) (-2179 (($) 16)) (-2495 (((-1042) $) NIL)) (-3043 ((|#3| $) 46) ((|#3| $ (-528)) 47) ((|#3| $ (-528) (-528)) 48) ((|#3| $ (-528) (-528) (-528)) 49) ((|#3| $ (-528) (-528) (-528) (-528)) 50) ((|#3| $ (-595 (-528))) 52)) (-2935 (((-717) $) 45)) (-3856 (($ $ (-528) $ (-528)) 94) (($ $ (-528) (-528)) 96)) (-2222 (((-802) $) 67) (($ |#3|) 68) (($ (-222 |#2| |#3|)) 75) (($ (-1062 |#2| |#3|)) 78) (($ (-595 |#3|)) 53) (($ (-595 $)) 58)) (-2969 (($) 69 T CONST)) (-2982 (($) 70 T CONST)) (-2186 (((-110) $ $) 80)) (-2286 (($ $) 86) (($ $ $) 84)) (-2275 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-528)) 89) (($ (-528) $) 88) (($ $ $) 95)))
-(((-132 |#1| |#2| |#3|) (-13 (-444 |#3| (-717)) (-449 (-528) (-717)) (-10 -8 (-15 -2222 ($ (-222 |#2| |#3|))) (-15 -2222 ($ (-1062 |#2| |#3|))) (-15 -2222 ($ (-595 |#3|))) (-15 -2222 ($ (-595 $))) (-15 -3090 ((-717) $)) (-15 -3043 (|#3| $)) (-15 -3043 (|#3| $ (-528))) (-15 -3043 (|#3| $ (-528) (-528))) (-15 -3043 (|#3| $ (-528) (-528) (-528))) (-15 -3043 (|#3| $ (-528) (-528) (-528) (-528))) (-15 -3043 (|#3| $ (-595 (-528)))) (-15 -1415 ($ $ $)) (-15 * ($ $ $)) (-15 -3856 ($ $ (-528) $ (-528))) (-15 -3856 ($ $ (-528) (-528))) (-15 -3351 ($ $)) (-15 -3351 ($ $ (-528) (-528))) (-15 -2553 ($ $ (-595 (-528)))) (-15 -2179 ($)) (-15 -3054 ($)) (-15 -3006 ((-595 |#3|) $)) (-15 -4234 ($ (-595 |#3|))) (-15 -2816 ($)))) (-528) (-717) (-162)) (T -132))
-((-1415 (*1 *1 *1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-528)) (-14 *3 (-717)) (-4 *4 (-162)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-222 *4 *5)) (-14 *4 (-717)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-528)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-1062 *4 *5)) (-14 *4 (-717)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-528)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-595 *5)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-528)) (-14 *4 (-717)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-595 (-132 *3 *4 *5))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-528)) (-14 *4 (-717)) (-4 *5 (-162)))) (-3090 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-528)) (-14 *4 *2) (-4 *5 (-162)))) (-3043 (*1 *2 *1) (-12 (-4 *2 (-162)) (-5 *1 (-132 *3 *4 *2)) (-14 *3 (-528)) (-14 *4 (-717)))) (-3043 (*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-717)))) (-3043 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-528)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-717)))) (-3043 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-528)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-717)))) (-3043 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-528)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-717)))) (-3043 (*1 *2 *1 *3) (-12 (-5 *3 (-595 (-528))) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 (-528)) (-14 *5 (-717)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-528)) (-14 *3 (-717)) (-4 *4 (-162)))) (-3856 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-717)) (-4 *5 (-162)))) (-3856 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-717)) (-4 *5 (-162)))) (-3351 (*1 *1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-528)) (-14 *3 (-717)) (-4 *4 (-162)))) (-3351 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-717)) (-4 *5 (-162)))) (-2553 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-528)) (-14 *4 (-717)) (-4 *5 (-162)))) (-2179 (*1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-528)) (-14 *3 (-717)) (-4 *4 (-162)))) (-3054 (*1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-528)) (-14 *3 (-717)) (-4 *4 (-162)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-595 *5)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-528)) (-14 *4 (-717)) (-4 *5 (-162)))) (-4234 (*1 *1 *2) (-12 (-5 *2 (-595 *5)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-528)) (-14 *4 (-717)))) (-2816 (*1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-528)) (-14 *3 (-717)) (-4 *4 (-162)))))
-(-13 (-444 |#3| (-717)) (-449 (-528) (-717)) (-10 -8 (-15 -2222 ($ (-222 |#2| |#3|))) (-15 -2222 ($ (-1062 |#2| |#3|))) (-15 -2222 ($ (-595 |#3|))) (-15 -2222 ($ (-595 $))) (-15 -3090 ((-717) $)) (-15 -3043 (|#3| $)) (-15 -3043 (|#3| $ (-528))) (-15 -3043 (|#3| $ (-528) (-528))) (-15 -3043 (|#3| $ (-528) (-528) (-528))) (-15 -3043 (|#3| $ (-528) (-528) (-528) (-528))) (-15 -3043 (|#3| $ (-595 (-528)))) (-15 -1415 ($ $ $)) (-15 * ($ $ $)) (-15 -3856 ($ $ (-528) $ (-528))) (-15 -3856 ($ $ (-528) (-528))) (-15 -3351 ($ $)) (-15 -3351 ($ $ (-528) (-528))) (-15 -2553 ($ $ (-595 (-528)))) (-15 -2179 ($)) (-15 -3054 ($)) (-15 -3006 ((-595 |#3|) $)) (-15 -4234 ($ (-595 |#3|))) (-15 -2816 ($))))
-((-2222 (((-802) $) 7)))
-(((-133) (-569 (-802))) (T -133))
-NIL
-(-569 (-802))
-((-2207 (((-110) $ $) NIL)) (-1330 (($) 15 T CONST)) (-2805 (($) NIL (|has| (-137) (-348)))) (-4123 (($ $ $) 17) (($ $ (-137)) NIL) (($ (-137) $) NIL)) (-2352 (($ $ $) NIL)) (-1316 (((-110) $ $) NIL)) (-3535 (((-110) $ (-717)) NIL)) (-2856 (((-717)) NIL (|has| (-137) (-348)))) (-4237 (($) NIL) (($ (-595 (-137))) NIL)) (-1836 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4264)))) (-1573 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4264)))) (-2816 (($) NIL T CONST)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-137) (-1023))))) (-3991 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4264))) (($ (-137) $) 51 (|has| $ (-6 -4264)))) (-2280 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4264))) (($ (-137) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-137) (-1023))))) (-1422 (((-137) (-1 (-137) (-137) (-137)) $) NIL (|has| $ (-6 -4264))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) NIL (|has| $ (-6 -4264))) (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) NIL (-12 (|has| $ (-6 -4264)) (|has| (-137) (-1023))))) (-1338 (($) NIL (|has| (-137) (-348)))) (-3342 (((-595 (-137)) $) 60 (|has| $ (-6 -4264)))) (-4242 (((-110) $ $) NIL)) (-2029 (((-110) $ (-717)) NIL)) (-1436 (((-137) $) NIL (|has| (-137) (-793)))) (-2604 (((-595 (-137)) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) (-137) $) 26 (-12 (|has| $ (-6 -4264)) (|has| (-137) (-1023))))) (-1736 (((-137) $) NIL (|has| (-137) (-793)))) (-2800 (($ (-1 (-137) (-137)) $) 59 (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-137) (-137)) $) 55)) (-2491 (($) 16 T CONST)) (-3201 (((-860) $) NIL (|has| (-137) (-348)))) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL)) (-3397 (($ $ $) 29)) (-3934 (((-137) $) 52)) (-1950 (($ (-137) $) 50)) (-3108 (($ (-860)) NIL (|has| (-137) (-348)))) (-1328 (($) 14 T CONST)) (-2495 (((-1042) $) NIL)) (-1734 (((-3 (-137) "failed") (-1 (-110) (-137)) $) NIL)) (-1390 (((-137) $) 53)) (-1818 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-137)) (-595 (-137))) NIL (-12 (|has| (-137) (-290 (-137))) (|has| (-137) (-1023)))) (($ $ (-137) (-137)) NIL (-12 (|has| (-137) (-290 (-137))) (|has| (-137) (-1023)))) (($ $ (-275 (-137))) NIL (-12 (|has| (-137) (-290 (-137))) (|has| (-137) (-1023)))) (($ $ (-595 (-275 (-137)))) NIL (-12 (|has| (-137) (-290 (-137))) (|has| (-137) (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) 48)) (-2974 (($) 13 T CONST)) (-2183 (($ $ $) 31) (($ $ (-137)) NIL)) (-3900 (($ (-595 (-137))) NIL) (($) NIL)) (-2507 (((-717) (-137) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-137) (-1023)))) (((-717) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4264)))) (-2406 (($ $) NIL)) (-3155 (((-1078) $) 36) (((-504) $) NIL (|has| (-137) (-570 (-504)))) (((-595 (-137)) $) 34)) (-2233 (($ (-595 (-137))) NIL)) (-2792 (($ $) 32 (|has| (-137) (-348)))) (-2222 (((-802) $) 46)) (-2104 (($ (-1078)) 12) (($ (-595 (-137))) 43)) (-3713 (((-717) $) NIL)) (-3289 (($) 49) (($ (-595 (-137))) NIL)) (-2164 (($ (-595 (-137))) NIL)) (-3451 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4264)))) (-4059 (($) 19 T CONST)) (-2633 (($) 18 T CONST)) (-2186 (((-110) $ $) 22)) (-2138 (((-717) $) 47 (|has| $ (-6 -4264)))))
-(((-134) (-13 (-1023) (-570 (-1078)) (-405 (-137)) (-570 (-595 (-137))) (-10 -8 (-15 -2104 ($ (-1078))) (-15 -2104 ($ (-595 (-137)))) (-15 -2974 ($) -2636) (-15 -1328 ($) -2636) (-15 -1330 ($) -2636) (-15 -2491 ($) -2636) (-15 -2633 ($) -2636) (-15 -4059 ($) -2636)))) (T -134))
-((-2104 (*1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-134)))) (-2104 (*1 *1 *2) (-12 (-5 *2 (-595 (-137))) (-5 *1 (-134)))) (-2974 (*1 *1) (-5 *1 (-134))) (-1328 (*1 *1) (-5 *1 (-134))) (-1330 (*1 *1) (-5 *1 (-134))) (-2491 (*1 *1) (-5 *1 (-134))) (-2633 (*1 *1) (-5 *1 (-134))) (-4059 (*1 *1) (-5 *1 (-134))))
-(-13 (-1023) (-570 (-1078)) (-405 (-137)) (-570 (-595 (-137))) (-10 -8 (-15 -2104 ($ (-1078))) (-15 -2104 ($ (-595 (-137)))) (-15 -2974 ($) -2636) (-15 -1328 ($) -2636) (-15 -1330 ($) -2636) (-15 -2491 ($) -2636) (-15 -2633 ($) -2636) (-15 -4059 ($) -2636)))
-((-3600 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2710 ((|#1| |#3|) 9)) (-2519 ((|#3| |#3|) 15)))
-(((-135 |#1| |#2| |#3|) (-10 -7 (-15 -2710 (|#1| |#3|)) (-15 -2519 (|#3| |#3|)) (-15 -3600 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-520) (-929 |#1|) (-353 |#2|)) (T -135))
-((-3600 (*1 *2 *3) (-12 (-4 *4 (-520)) (-4 *5 (-929 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-353 *5)))) (-2519 (*1 *2 *2) (-12 (-4 *3 (-520)) (-4 *4 (-929 *3)) (-5 *1 (-135 *3 *4 *2)) (-4 *2 (-353 *4)))) (-2710 (*1 *2 *3) (-12 (-4 *4 (-929 *2)) (-4 *2 (-520)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-353 *4)))))
-(-10 -7 (-15 -2710 (|#1| |#3|)) (-15 -2519 (|#3| |#3|)) (-15 -3600 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-1752 (($ $ $) 8)) (-3918 (($ $) 7)) (-3709 (($ $ $) 6)))
+((-3698 (*1 *2 *1) (-12 (-4 *1 (-129)) (-5 *2 (-719)))) (-1320 (*1 *2 *1 *3) (-12 (-4 *1 (-129)) (-5 *3 (-719)) (-5 *2 (-1185)))))
+(-13 (-795) (-10 -8 (-15 -3698 ((-719) $)) (-15 -1320 ((-1185) $ (-719)))))
+(((-99) . T) ((-571 (-805)) . T) ((-795) . T) ((-1027) . T))
+((-2828 (((-110) $ $) 34)) (-3462 (((-110) $) NIL)) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-719) "failed") $) 40)) (-3431 (((-719) $) 38)) (-3741 (((-3 $ "failed") $) NIL)) (-2436 (((-110) $) NIL)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) 27)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-1322 (((-110)) 41)) (-1321 (((-110) (-110)) 43)) (-2795 (((-110) $) 24)) (-1323 (((-110) $) 37)) (-4233 (((-805) $) 22) (($ (-719)) 14)) (-3581 (($ $ (-719)) NIL) (($ $ (-860)) NIL)) (-2920 (($) 12 T CONST)) (-2927 (($) 11 T CONST)) (-1324 (($ (-719)) 15)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 25)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 26)) (-4116 (((-3 $ "failed") $ $) 30)) (-4118 (($ $ $) 28)) (** (($ $ (-719)) NIL) (($ $ (-860)) NIL) (($ $ $) 36)) (* (($ (-719) $) 33) (($ (-860) $) NIL) (($ $ $) 31)))
+(((-130) (-13 (-795) (-23) (-675) (-975 (-719)) (-10 -8 (-6 (-4271 "*")) (-15 -4116 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1324 ($ (-719))) (-15 -2795 ((-110) $)) (-15 -1323 ((-110) $)) (-15 -1322 ((-110))) (-15 -1321 ((-110) (-110)))))) (T -130))
+((-4116 (*1 *1 *1 *1) (|partial| -5 *1 (-130))) (** (*1 *1 *1 *1) (-5 *1 (-130))) (-1324 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-130)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130)))) (-1322 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))) (-1321 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))))
+(-13 (-795) (-23) (-675) (-975 (-719)) (-10 -8 (-6 (-4271 "*")) (-15 -4116 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1324 ($ (-719))) (-15 -2795 ((-110) $)) (-15 -1323 ((-110) $)) (-15 -1322 ((-110))) (-15 -1321 ((-110) (-110)))))
+((-2828 (((-110) $ $) NIL)) (-1325 (($ (-594 |#3|)) 40)) (-3693 (($ $) 99) (($ $ (-516) (-516)) 98)) (-3815 (($) 17)) (-3432 (((-3 |#3| "failed") $) 60)) (-3431 ((|#3| $) NIL)) (-1329 (($ $ (-594 (-516))) 100)) (-1326 (((-594 |#3|) $) 36)) (-3368 (((-719) $) 44)) (-4220 (($ $ $) 93)) (-1327 (($) 43)) (-3513 (((-1081) $) NIL)) (-1328 (($) 16)) (-3514 (((-1045) $) NIL)) (-4078 ((|#3| $) 46) ((|#3| $ (-516)) 47) ((|#3| $ (-516) (-516)) 48) ((|#3| $ (-516) (-516) (-516)) 49) ((|#3| $ (-516) (-516) (-516) (-516)) 50) ((|#3| $ (-594 (-516))) 52)) (-4223 (((-719) $) 45)) (-2055 (($ $ (-516) $ (-516)) 94) (($ $ (-516) (-516)) 96)) (-4233 (((-805) $) 67) (($ |#3|) 68) (($ (-222 |#2| |#3|)) 75) (($ (-1065 |#2| |#3|)) 78) (($ (-594 |#3|)) 53) (($ (-594 $)) 58)) (-2920 (($) 69 T CONST)) (-2927 (($) 70 T CONST)) (-3317 (((-110) $ $) 80)) (-4116 (($ $) 86) (($ $ $) 84)) (-4118 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-516)) 89) (($ (-516) $) 88) (($ $ $) 95)))
+(((-131 |#1| |#2| |#3|) (-13 (-445 |#3| (-719)) (-450 (-516) (-719)) (-10 -8 (-15 -4233 ($ (-222 |#2| |#3|))) (-15 -4233 ($ (-1065 |#2| |#3|))) (-15 -4233 ($ (-594 |#3|))) (-15 -4233 ($ (-594 $))) (-15 -3368 ((-719) $)) (-15 -4078 (|#3| $)) (-15 -4078 (|#3| $ (-516))) (-15 -4078 (|#3| $ (-516) (-516))) (-15 -4078 (|#3| $ (-516) (-516) (-516))) (-15 -4078 (|#3| $ (-516) (-516) (-516) (-516))) (-15 -4078 (|#3| $ (-594 (-516)))) (-15 -4220 ($ $ $)) (-15 * ($ $ $)) (-15 -2055 ($ $ (-516) $ (-516))) (-15 -2055 ($ $ (-516) (-516))) (-15 -3693 ($ $)) (-15 -3693 ($ $ (-516) (-516))) (-15 -1329 ($ $ (-594 (-516)))) (-15 -1328 ($)) (-15 -1327 ($)) (-15 -1326 ((-594 |#3|) $)) (-15 -1325 ($ (-594 |#3|))) (-15 -3815 ($)))) (-516) (-719) (-162)) (T -131))
+((-4220 (*1 *1 *1 *1) (-12 (-5 *1 (-131 *2 *3 *4)) (-14 *2 (-516)) (-14 *3 (-719)) (-4 *4 (-162)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-222 *4 *5)) (-14 *4 (-719)) (-4 *5 (-162)) (-5 *1 (-131 *3 *4 *5)) (-14 *3 (-516)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-1065 *4 *5)) (-14 *4 (-719)) (-4 *5 (-162)) (-5 *1 (-131 *3 *4 *5)) (-14 *3 (-516)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-594 *5)) (-4 *5 (-162)) (-5 *1 (-131 *3 *4 *5)) (-14 *3 (-516)) (-14 *4 (-719)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-594 (-131 *3 *4 *5))) (-5 *1 (-131 *3 *4 *5)) (-14 *3 (-516)) (-14 *4 (-719)) (-4 *5 (-162)))) (-3368 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-131 *3 *4 *5)) (-14 *3 (-516)) (-14 *4 *2) (-4 *5 (-162)))) (-4078 (*1 *2 *1) (-12 (-4 *2 (-162)) (-5 *1 (-131 *3 *4 *2)) (-14 *3 (-516)) (-14 *4 (-719)))) (-4078 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-4 *2 (-162)) (-5 *1 (-131 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-719)))) (-4078 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-516)) (-4 *2 (-162)) (-5 *1 (-131 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-719)))) (-4078 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-516)) (-4 *2 (-162)) (-5 *1 (-131 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-719)))) (-4078 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-516)) (-4 *2 (-162)) (-5 *1 (-131 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-719)))) (-4078 (*1 *2 *1 *3) (-12 (-5 *3 (-594 (-516))) (-4 *2 (-162)) (-5 *1 (-131 *4 *5 *2)) (-14 *4 (-516)) (-14 *5 (-719)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-131 *2 *3 *4)) (-14 *2 (-516)) (-14 *3 (-719)) (-4 *4 (-162)))) (-2055 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-131 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-719)) (-4 *5 (-162)))) (-2055 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-131 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-719)) (-4 *5 (-162)))) (-3693 (*1 *1 *1) (-12 (-5 *1 (-131 *2 *3 *4)) (-14 *2 (-516)) (-14 *3 (-719)) (-4 *4 (-162)))) (-3693 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-131 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-719)) (-4 *5 (-162)))) (-1329 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-131 *3 *4 *5)) (-14 *3 (-516)) (-14 *4 (-719)) (-4 *5 (-162)))) (-1328 (*1 *1) (-12 (-5 *1 (-131 *2 *3 *4)) (-14 *2 (-516)) (-14 *3 (-719)) (-4 *4 (-162)))) (-1327 (*1 *1) (-12 (-5 *1 (-131 *2 *3 *4)) (-14 *2 (-516)) (-14 *3 (-719)) (-4 *4 (-162)))) (-1326 (*1 *2 *1) (-12 (-5 *2 (-594 *5)) (-5 *1 (-131 *3 *4 *5)) (-14 *3 (-516)) (-14 *4 (-719)) (-4 *5 (-162)))) (-1325 (*1 *1 *2) (-12 (-5 *2 (-594 *5)) (-4 *5 (-162)) (-5 *1 (-131 *3 *4 *5)) (-14 *3 (-516)) (-14 *4 (-719)))) (-3815 (*1 *1) (-12 (-5 *1 (-131 *2 *3 *4)) (-14 *2 (-516)) (-14 *3 (-719)) (-4 *4 (-162)))))
+(-13 (-445 |#3| (-719)) (-450 (-516) (-719)) (-10 -8 (-15 -4233 ($ (-222 |#2| |#3|))) (-15 -4233 ($ (-1065 |#2| |#3|))) (-15 -4233 ($ (-594 |#3|))) (-15 -4233 ($ (-594 $))) (-15 -3368 ((-719) $)) (-15 -4078 (|#3| $)) (-15 -4078 (|#3| $ (-516))) (-15 -4078 (|#3| $ (-516) (-516))) (-15 -4078 (|#3| $ (-516) (-516) (-516))) (-15 -4078 (|#3| $ (-516) (-516) (-516) (-516))) (-15 -4078 (|#3| $ (-594 (-516)))) (-15 -4220 ($ $ $)) (-15 * ($ $ $)) (-15 -2055 ($ $ (-516) $ (-516))) (-15 -2055 ($ $ (-516) (-516))) (-15 -3693 ($ $)) (-15 -3693 ($ $ (-516) (-516))) (-15 -1329 ($ $ (-594 (-516)))) (-15 -1328 ($)) (-15 -1327 ($)) (-15 -1326 ((-594 |#3|) $)) (-15 -1325 ($ (-594 |#3|))) (-15 -3815 ($))))
+((-2439 (((-131 |#1| |#2| |#4|) (-594 |#4|) (-131 |#1| |#2| |#3|)) 14)) (-4234 (((-131 |#1| |#2| |#4|) (-1 |#4| |#3|) (-131 |#1| |#2| |#3|)) 18)))
+(((-132 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2439 ((-131 |#1| |#2| |#4|) (-594 |#4|) (-131 |#1| |#2| |#3|))) (-15 -4234 ((-131 |#1| |#2| |#4|) (-1 |#4| |#3|) (-131 |#1| |#2| |#3|)))) (-516) (-719) (-162) (-162)) (T -132))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-131 *5 *6 *7)) (-14 *5 (-516)) (-14 *6 (-719)) (-4 *7 (-162)) (-4 *8 (-162)) (-5 *2 (-131 *5 *6 *8)) (-5 *1 (-132 *5 *6 *7 *8)))) (-2439 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *8)) (-5 *4 (-131 *5 *6 *7)) (-14 *5 (-516)) (-14 *6 (-719)) (-4 *7 (-162)) (-4 *8 (-162)) (-5 *2 (-131 *5 *6 *8)) (-5 *1 (-132 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2439 ((-131 |#1| |#2| |#4|) (-594 |#4|) (-131 |#1| |#2| |#3|))) (-15 -4234 ((-131 |#1| |#2| |#4|) (-1 |#4| |#3|) (-131 |#1| |#2| |#3|))))
+((-4233 (((-805) $) 7)))
+(((-133) (-571 (-805))) (T -133))
+NIL
+(-571 (-805))
+((-2828 (((-110) $ $) NIL)) (-3706 (($) 15 T CONST)) (-1871 (($) NIL (|has| (-137) (-349)))) (-3505 (($ $ $) 17) (($ $ (-137)) NIL) (($ (-137) $) NIL)) (-3507 (($ $ $) NIL)) (-3506 (((-110) $ $) NIL)) (-1217 (((-110) $ (-719)) NIL)) (-3395 (((-719)) NIL (|has| (-137) (-349)))) (-3510 (($) NIL) (($ (-594 (-137))) NIL)) (-1581 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-3992 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-3815 (($) NIL T CONST)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-3684 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269))) (($ (-137) $) 51 (|has| $ (-6 -4269)))) (-3685 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269))) (($ (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-4121 (((-137) (-1 (-137) (-137) (-137)) $) NIL (|has| $ (-6 -4269))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) NIL (|has| $ (-6 -4269))) (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-3258 (($) NIL (|has| (-137) (-349)))) (-2018 (((-594 (-137)) $) 60 (|has| $ (-6 -4269)))) (-3512 (((-110) $ $) NIL)) (-4001 (((-110) $ (-719)) NIL)) (-3596 (((-137) $) NIL (|has| (-137) (-795)))) (-2445 (((-594 (-137)) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) (-137) $) 26 (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-3597 (((-137) $) NIL (|has| (-137) (-795)))) (-2022 (($ (-1 (-137) (-137)) $) 59 (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-137) (-137)) $) 55)) (-3708 (($) 16 T CONST)) (-2069 (((-860) $) NIL (|has| (-137) (-349)))) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL)) (-3509 (($ $ $) 29)) (-1280 (((-137) $) 52)) (-3889 (($ (-137) $) 50)) (-2426 (($ (-860)) NIL (|has| (-137) (-349)))) (-1332 (($) 14 T CONST)) (-3514 (((-1045) $) NIL)) (-1350 (((-3 (-137) "failed") (-1 (-110) (-137)) $) NIL)) (-1281 (((-137) $) 53)) (-2020 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-137)) (-594 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-137) (-137)) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-275 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-594 (-275 (-137)))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) 48)) (-1333 (($) 13 T CONST)) (-3508 (($ $ $) 31) (($ $ (-137)) NIL)) (-1473 (($ (-594 (-137))) NIL) (($) NIL)) (-2019 (((-719) (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027)))) (((-719) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-3678 (($ $) NIL)) (-4246 (((-1081) $) 36) (((-505) $) NIL (|has| (-137) (-572 (-505)))) (((-594 (-137)) $) 34)) (-3804 (($ (-594 (-137))) NIL)) (-1872 (($ $) 32 (|has| (-137) (-349)))) (-4233 (((-805) $) 46)) (-1334 (($ (-1081)) 12) (($ (-594 (-137))) 43)) (-1873 (((-719) $) NIL)) (-3511 (($) 49) (($ (-594 (-137))) NIL)) (-1282 (($ (-594 (-137))) NIL)) (-2021 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-1330 (($) 19 T CONST)) (-1331 (($) 18 T CONST)) (-3317 (((-110) $ $) 22)) (-4232 (((-719) $) 47 (|has| $ (-6 -4269)))))
+(((-134) (-13 (-1027) (-572 (-1081)) (-407 (-137)) (-572 (-594 (-137))) (-10 -8 (-15 -1334 ($ (-1081))) (-15 -1334 ($ (-594 (-137)))) (-15 -1333 ($) -4227) (-15 -1332 ($) -4227) (-15 -3706 ($) -4227) (-15 -3708 ($) -4227) (-15 -1331 ($) -4227) (-15 -1330 ($) -4227)))) (T -134))
+((-1334 (*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-134)))) (-1334 (*1 *1 *2) (-12 (-5 *2 (-594 (-137))) (-5 *1 (-134)))) (-1333 (*1 *1) (-5 *1 (-134))) (-1332 (*1 *1) (-5 *1 (-134))) (-3706 (*1 *1) (-5 *1 (-134))) (-3708 (*1 *1) (-5 *1 (-134))) (-1331 (*1 *1) (-5 *1 (-134))) (-1330 (*1 *1) (-5 *1 (-134))))
+(-13 (-1027) (-572 (-1081)) (-407 (-137)) (-572 (-594 (-137))) (-10 -8 (-15 -1334 ($ (-1081))) (-15 -1334 ($ (-594 (-137)))) (-15 -1333 ($) -4227) (-15 -1332 ($) -4227) (-15 -3706 ($) -4227) (-15 -3708 ($) -4227) (-15 -1331 ($) -4227) (-15 -1330 ($) -4227)))
+((-4020 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4018 ((|#1| |#3|) 9)) (-4019 ((|#3| |#3|) 15)))
+(((-135 |#1| |#2| |#3|) (-10 -7 (-15 -4018 (|#1| |#3|)) (-15 -4019 (|#3| |#3|)) (-15 -4020 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-523) (-931 |#1|) (-353 |#2|)) (T -135))
+((-4020 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-931 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-353 *5)))) (-4019 (*1 *2 *2) (-12 (-4 *3 (-523)) (-4 *4 (-931 *3)) (-5 *1 (-135 *3 *4 *2)) (-4 *2 (-353 *4)))) (-4018 (*1 *2 *3) (-12 (-4 *4 (-931 *2)) (-4 *2 (-523)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-353 *4)))))
+(-10 -7 (-15 -4018 (|#1| |#3|)) (-15 -4019 (|#3| |#3|)) (-15 -4020 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-1368 (($ $ $) 8)) (-1366 (($ $) 7)) (-3362 (($ $ $) 6)))
(((-136) (-133)) (T -136))
-((-1752 (*1 *1 *1 *1) (-4 *1 (-136))) (-3918 (*1 *1 *1) (-4 *1 (-136))) (-3709 (*1 *1 *1 *1) (-4 *1 (-136))))
-(-13 (-10 -8 (-15 -3709 ($ $ $)) (-15 -3918 ($ $)) (-15 -1752 ($ $ $))))
-((-2207 (((-110) $ $) NIL)) (-3117 (((-110) $) 30)) (-1330 (($ $) 43)) (-1892 (($) 17)) (-2856 (((-717)) 10)) (-1338 (($) 16)) (-3119 (($) 18)) (-2806 (((-717) $) 14)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-1772 (((-110) $) 32)) (-2491 (($ $) 44)) (-3201 (((-860) $) 15)) (-3034 (((-1078) $) 38)) (-3108 (($ (-860)) 13)) (-3896 (((-110) $) 28)) (-2495 (((-1042) $) NIL)) (-1629 (($) 19)) (-1574 (((-110) $) 26)) (-2222 (((-802) $) 21)) (-2798 (($ (-717)) 11) (($ (-1078)) 42)) (-2605 (((-110) $) 36)) (-1976 (((-110) $) 34)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 7)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 8)))
-(((-137) (-13 (-787) (-10 -8 (-15 -2806 ((-717) $)) (-15 -2798 ($ (-717))) (-15 -2798 ($ (-1078))) (-15 -1892 ($)) (-15 -3119 ($)) (-15 -1629 ($)) (-15 -1330 ($ $)) (-15 -2491 ($ $)) (-15 -1574 ((-110) $)) (-15 -3896 ((-110) $)) (-15 -1976 ((-110) $)) (-15 -3117 ((-110) $)) (-15 -1772 ((-110) $)) (-15 -2605 ((-110) $))))) (T -137))
-((-2806 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-137)))) (-2798 (*1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-137)))) (-2798 (*1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-137)))) (-1892 (*1 *1) (-5 *1 (-137))) (-3119 (*1 *1) (-5 *1 (-137))) (-1629 (*1 *1) (-5 *1 (-137))) (-1330 (*1 *1 *1) (-5 *1 (-137))) (-2491 (*1 *1 *1) (-5 *1 (-137))) (-1574 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-3896 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-1976 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-3117 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-1772 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
-(-13 (-787) (-10 -8 (-15 -2806 ((-717) $)) (-15 -2798 ($ (-717))) (-15 -2798 ($ (-1078))) (-15 -1892 ($)) (-15 -3119 ($)) (-15 -1629 ($)) (-15 -1330 ($ $)) (-15 -2491 ($ $)) (-15 -1574 ((-110) $)) (-15 -3896 ((-110) $)) (-15 -1976 ((-110) $)) (-15 -3117 ((-110) $)) (-15 -1772 ((-110) $)) (-15 -2605 ((-110) $))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-1312 (((-3 $ "failed") $) 34)) (-1297 (((-110) $) 31)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11) (($ (-528)) 28)) (-3749 (((-3 $ "failed") $) 35)) (-3742 (((-717)) 29)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24)))
+((-1368 (*1 *1 *1 *1) (-4 *1 (-136))) (-1366 (*1 *1 *1) (-4 *1 (-136))) (-3362 (*1 *1 *1 *1) (-4 *1 (-136))))
+(-13 (-10 -8 (-15 -3362 ($ $ $)) (-15 -1366 ($ $)) (-15 -1368 ($ $ $))))
+((-2828 (((-110) $ $) NIL)) (-1337 (((-110) $) 30)) (-3706 (($ $) 43)) (-1523 (($) 17)) (-3395 (((-719)) 10)) (-3258 (($) 16)) (-2839 (($) 18)) (-1343 (((-719) $) 14)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-1336 (((-110) $) 32)) (-3708 (($ $) 44)) (-2069 (((-860) $) 15)) (-3513 (((-1081) $) 38)) (-2426 (($ (-860)) 13)) (-1339 (((-110) $) 28)) (-3514 (((-1045) $) NIL)) (-1341 (($) 19)) (-1340 (((-110) $) 26)) (-4233 (((-805) $) 21)) (-1342 (($ (-719)) 11) (($ (-1081)) 42)) (-1335 (((-110) $) 36)) (-1338 (((-110) $) 34)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 7)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 8)))
+(((-137) (-13 (-789) (-10 -8 (-15 -1343 ((-719) $)) (-15 -1342 ($ (-719))) (-15 -1342 ($ (-1081))) (-15 -1523 ($)) (-15 -2839 ($)) (-15 -1341 ($)) (-15 -3706 ($ $)) (-15 -3708 ($ $)) (-15 -1340 ((-110) $)) (-15 -1339 ((-110) $)) (-15 -1338 ((-110) $)) (-15 -1337 ((-110) $)) (-15 -1336 ((-110) $)) (-15 -1335 ((-110) $))))) (T -137))
+((-1343 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-137)))) (-1342 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-137)))) (-1342 (*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-137)))) (-1523 (*1 *1) (-5 *1 (-137))) (-2839 (*1 *1) (-5 *1 (-137))) (-1341 (*1 *1) (-5 *1 (-137))) (-3706 (*1 *1 *1) (-5 *1 (-137))) (-3708 (*1 *1 *1) (-5 *1 (-137))) (-1340 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-1339 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-1338 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-1335 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
+(-13 (-789) (-10 -8 (-15 -1343 ((-719) $)) (-15 -1342 ($ (-719))) (-15 -1342 ($ (-1081))) (-15 -1523 ($)) (-15 -2839 ($)) (-15 -1341 ($)) (-15 -3706 ($ $)) (-15 -3708 ($ $)) (-15 -1340 ((-110) $)) (-15 -1339 ((-110) $)) (-15 -1338 ((-110) $)) (-15 -1337 ((-110) $)) (-15 -1336 ((-110) $)) (-15 -1335 ((-110) $))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3741 (((-3 $ "failed") $) 34)) (-2436 (((-110) $) 31)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11) (($ (-516)) 28)) (-2965 (((-3 $ "failed") $) 35)) (-3385 (((-719)) 29)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24)))
(((-138) (-133)) (T -138))
-((-3749 (*1 *1 *1) (|partial| -4 *1 (-138))))
-(-13 (-981) (-10 -8 (-15 -3749 ((-3 $ "failed") $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-569 (-802)) . T) ((-597 $) . T) ((-673) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-2516 ((|#1| (-635 |#1|) |#1|) 19)))
-(((-139 |#1|) (-10 -7 (-15 -2516 (|#1| (-635 |#1|) |#1|))) (-162)) (T -139))
-((-2516 (*1 *2 *3 *2) (-12 (-5 *3 (-635 *2)) (-4 *2 (-162)) (-5 *1 (-139 *2)))))
-(-10 -7 (-15 -2516 (|#1| (-635 |#1|) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-1312 (((-3 $ "failed") $) 34)) (-1297 (((-110) $) 31)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11) (($ (-528)) 28)) (-3742 (((-717)) 29)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24)))
+((-2965 (*1 *1 *1) (|partial| -4 *1 (-138))))
+(-13 (-984) (-10 -8 (-15 -2965 ((-3 $ "failed") $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-805)) . T) ((-599 $) . T) ((-675) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-2632 ((|#1| (-637 |#1|) |#1|) 19)))
+(((-139 |#1|) (-10 -7 (-15 -2632 (|#1| (-637 |#1|) |#1|))) (-162)) (T -139))
+((-2632 (*1 *2 *3 *2) (-12 (-5 *3 (-637 *2)) (-4 *2 (-162)) (-5 *1 (-139 *2)))))
+(-10 -7 (-15 -2632 (|#1| (-637 |#1|) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3741 (((-3 $ "failed") $) 34)) (-2436 (((-110) $) 31)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11) (($ (-516)) 28)) (-3385 (((-719)) 29)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24)))
(((-140) (-133)) (T -140))
NIL
-(-13 (-981))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-569 (-802)) . T) ((-597 $) . T) ((-673) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-4029 (((-2 (|:| -2564 (-717)) (|:| -1641 (-387 |#2|)) (|:| |radicand| |#2|)) (-387 |#2|) (-717)) 70)) (-3064 (((-3 (-2 (|:| |radicand| (-387 |#2|)) (|:| |deg| (-717))) "failed") |#3|) 52)) (-3029 (((-2 (|:| -1641 (-387 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-1259 ((|#1| |#3| |#3|) 40)) (-4014 ((|#3| |#3| (-387 |#2|) (-387 |#2|)) 19)) (-1258 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-387 |#2|)) (|:| |c2| (-387 |#2|)) (|:| |deg| (-717))) |#3| |#3|) 49)))
-(((-141 |#1| |#2| |#3|) (-10 -7 (-15 -3029 ((-2 (|:| -1641 (-387 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3064 ((-3 (-2 (|:| |radicand| (-387 |#2|)) (|:| |deg| (-717))) "failed") |#3|)) (-15 -4029 ((-2 (|:| -2564 (-717)) (|:| -1641 (-387 |#2|)) (|:| |radicand| |#2|)) (-387 |#2|) (-717))) (-15 -1259 (|#1| |#3| |#3|)) (-15 -4014 (|#3| |#3| (-387 |#2|) (-387 |#2|))) (-15 -1258 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-387 |#2|)) (|:| |c2| (-387 |#2|)) (|:| |deg| (-717))) |#3| |#3|))) (-1135) (-1153 |#1|) (-1153 (-387 |#2|))) (T -141))
-((-1258 (*1 *2 *3 *3) (-12 (-4 *4 (-1135)) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-387 *5)) (|:| |c2| (-387 *5)) (|:| |deg| (-717)))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1153 (-387 *5))))) (-4014 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-387 *5)) (-4 *4 (-1135)) (-4 *5 (-1153 *4)) (-5 *1 (-141 *4 *5 *2)) (-4 *2 (-1153 *3)))) (-1259 (*1 *2 *3 *3) (-12 (-4 *4 (-1153 *2)) (-4 *2 (-1135)) (-5 *1 (-141 *2 *4 *3)) (-4 *3 (-1153 (-387 *4))))) (-4029 (*1 *2 *3 *4) (-12 (-5 *3 (-387 *6)) (-4 *5 (-1135)) (-4 *6 (-1153 *5)) (-5 *2 (-2 (|:| -2564 (-717)) (|:| -1641 *3) (|:| |radicand| *6))) (-5 *1 (-141 *5 *6 *7)) (-5 *4 (-717)) (-4 *7 (-1153 *3)))) (-3064 (*1 *2 *3) (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| |radicand| (-387 *5)) (|:| |deg| (-717)))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1153 (-387 *5))))) (-3029 (*1 *2 *3) (-12 (-4 *4 (-1135)) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| -1641 (-387 *5)) (|:| |poly| *3))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1153 (-387 *5))))))
-(-10 -7 (-15 -3029 ((-2 (|:| -1641 (-387 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3064 ((-3 (-2 (|:| |radicand| (-387 |#2|)) (|:| |deg| (-717))) "failed") |#3|)) (-15 -4029 ((-2 (|:| -2564 (-717)) (|:| -1641 (-387 |#2|)) (|:| |radicand| |#2|)) (-387 |#2|) (-717))) (-15 -1259 (|#1| |#3| |#3|)) (-15 -4014 (|#3| |#3| (-387 |#2|) (-387 |#2|))) (-15 -1258 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-387 |#2|)) (|:| |c2| (-387 |#2|)) (|:| |deg| (-717))) |#3| |#3|)))
-((-4159 (((-3 (-595 (-1091 |#2|)) "failed") (-595 (-1091 |#2|)) (-1091 |#2|)) 32)))
-(((-142 |#1| |#2|) (-10 -7 (-15 -4159 ((-3 (-595 (-1091 |#2|)) "failed") (-595 (-1091 |#2|)) (-1091 |#2|)))) (-513) (-156 |#1|)) (T -142))
-((-4159 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-595 (-1091 *5))) (-5 *3 (-1091 *5)) (-4 *5 (-156 *4)) (-4 *4 (-513)) (-5 *1 (-142 *4 *5)))))
-(-10 -7 (-15 -4159 ((-3 (-595 (-1091 |#2|)) "failed") (-595 (-1091 |#2|)) (-1091 |#2|))))
-((-1573 (($ (-1 (-110) |#2|) $) 29)) (-2923 (($ $) 36)) (-2280 (($ (-1 (-110) |#2|) $) 27) (($ |#2| $) 32)) (-1422 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1734 (((-3 |#2| "failed") (-1 (-110) |#2|) $) 19)) (-1818 (((-110) (-1 (-110) |#2|) $) 16)) (-2507 (((-717) (-1 (-110) |#2|) $) 14) (((-717) |#2| $) NIL)) (-3451 (((-110) (-1 (-110) |#2|) $) 15)) (-2138 (((-717) $) 11)))
-(((-143 |#1| |#2|) (-10 -8 (-15 -2923 (|#1| |#1|)) (-15 -2280 (|#1| |#2| |#1|)) (-15 -1422 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1573 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2280 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1422 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1422 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1734 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -2507 ((-717) |#2| |#1|)) (-15 -2507 ((-717) (-1 (-110) |#2|) |#1|)) (-15 -1818 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3451 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2138 ((-717) |#1|))) (-144 |#2|) (-1131)) (T -143))
-NIL
-(-10 -8 (-15 -2923 (|#1| |#1|)) (-15 -2280 (|#1| |#2| |#1|)) (-15 -1422 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1573 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2280 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1422 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1422 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1734 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -2507 ((-717) |#2| |#1|)) (-15 -2507 ((-717) (-1 (-110) |#2|) |#1|)) (-15 -1818 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3451 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2138 ((-717) |#1|)))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-3535 (((-110) $ (-717)) 8)) (-1573 (($ (-1 (-110) |#1|) $) 44 (|has| $ (-6 -4264)))) (-2816 (($) 7 T CONST)) (-2923 (($ $) 41 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2280 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4264))) (($ |#1| $) 42 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) 9)) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35)) (-3358 (((-110) $ (-717)) 10)) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 48)) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-3155 (((-504) $) 40 (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) 49)) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-144 |#1|) (-133) (-1131)) (T -144))
-((-2233 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1131)) (-4 *1 (-144 *3)))) (-1734 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-110) *2)) (-4 *1 (-144 *2)) (-4 *2 (-1131)))) (-1422 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4264)) (-4 *1 (-144 *2)) (-4 *2 (-1131)))) (-1422 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4264)) (-4 *1 (-144 *2)) (-4 *2 (-1131)))) (-2280 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4264)) (-4 *1 (-144 *3)) (-4 *3 (-1131)))) (-1573 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4264)) (-4 *1 (-144 *3)) (-4 *3 (-1131)))) (-1422 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1023)) (|has| *1 (-6 -4264)) (-4 *1 (-144 *2)) (-4 *2 (-1131)))) (-2280 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4264)) (-4 *1 (-144 *2)) (-4 *2 (-1131)) (-4 *2 (-1023)))) (-2923 (*1 *1 *1) (-12 (|has| *1 (-6 -4264)) (-4 *1 (-144 *2)) (-4 *2 (-1131)) (-4 *2 (-1023)))))
-(-13 (-467 |t#1|) (-10 -8 (-15 -2233 ($ (-595 |t#1|))) (-15 -1734 ((-3 |t#1| "failed") (-1 (-110) |t#1|) $)) (IF (|has| $ (-6 -4264)) (PROGN (-15 -1422 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -1422 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2280 ($ (-1 (-110) |t#1|) $)) (-15 -1573 ($ (-1 (-110) |t#1|) $)) (IF (|has| |t#1| (-1023)) (PROGN (-15 -1422 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2280 ($ |t#1| $)) (-15 -2923 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-570 (-504))) (-6 (-570 (-504))) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1023)) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-569 (-802)))) ((-570 (-504)) |has| |#1| (-570 (-504))) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-467 |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-1023) |has| |#1| (-1023)) ((-1131) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-1312 (((-3 $ "failed") $) 86)) (-1297 (((-110) $) NIL)) (-2548 (($ |#2| (-595 (-860))) 56)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-1244 (($ (-860)) 47)) (-3017 (((-130)) 23)) (-2222 (((-802) $) 69) (($ (-528)) 45) (($ |#2|) 46)) (-3216 ((|#2| $ (-595 (-860))) 59)) (-3742 (((-717)) 20)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 40 T CONST)) (-2982 (($) 43 T CONST)) (-2186 (((-110) $ $) 26)) (-2296 (($ $ |#2|) NIL)) (-2286 (($ $) 34) (($ $ $) 32)) (-2275 (($ $ $) 30)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL)))
-(((-145 |#1| |#2| |#3|) (-13 (-981) (-37 |#2|) (-1184 |#2|) (-10 -8 (-15 -1244 ($ (-860))) (-15 -2548 ($ |#2| (-595 (-860)))) (-15 -3216 (|#2| $ (-595 (-860)))) (-15 -1312 ((-3 $ "failed") $)))) (-860) (-343) (-930 |#1| |#2|)) (T -145))
-((-1312 (*1 *1 *1) (|partial| -12 (-5 *1 (-145 *2 *3 *4)) (-14 *2 (-860)) (-4 *3 (-343)) (-14 *4 (-930 *2 *3)))) (-1244 (*1 *1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-145 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-343)) (-14 *5 (-930 *3 *4)))) (-2548 (*1 *1 *2 *3) (-12 (-5 *3 (-595 (-860))) (-5 *1 (-145 *4 *2 *5)) (-14 *4 (-860)) (-4 *2 (-343)) (-14 *5 (-930 *4 *2)))) (-3216 (*1 *2 *1 *3) (-12 (-5 *3 (-595 (-860))) (-4 *2 (-343)) (-5 *1 (-145 *4 *2 *5)) (-14 *4 (-860)) (-14 *5 (-930 *4 *2)))))
-(-13 (-981) (-37 |#2|) (-1184 |#2|) (-10 -8 (-15 -1244 ($ (-860))) (-15 -2548 ($ |#2| (-595 (-860)))) (-15 -3216 (|#2| $ (-595 (-860)))) (-15 -1312 ((-3 $ "failed") $))))
-((-2555 (((-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))) (-595 (-595 (-882 (-207)))) (-207) (-207) (-207) (-207)) 38)) (-3620 (((-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))) (-866) (-387 (-528)) (-387 (-528))) 63) (((-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))) (-866)) 64)) (-3408 (((-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))) (-595 (-595 (-882 (-207))))) 67) (((-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))) (-595 (-882 (-207)))) 66) (((-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))) (-866) (-387 (-528)) (-387 (-528))) 58) (((-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))) (-866)) 59)))
-(((-146) (-10 -7 (-15 -3408 ((-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))) (-866))) (-15 -3408 ((-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))) (-866) (-387 (-528)) (-387 (-528)))) (-15 -3620 ((-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))) (-866))) (-15 -3620 ((-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))) (-866) (-387 (-528)) (-387 (-528)))) (-15 -2555 ((-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))) (-595 (-595 (-882 (-207)))) (-207) (-207) (-207) (-207))) (-15 -3408 ((-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))) (-595 (-882 (-207))))) (-15 -3408 ((-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))) (-595 (-595 (-882 (-207)))))))) (T -146))
-((-3408 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207))))) (-5 *1 (-146)) (-5 *3 (-595 (-595 (-882 (-207))))))) (-3408 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207))))) (-5 *1 (-146)) (-5 *3 (-595 (-882 (-207)))))) (-2555 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-207)) (-5 *2 (-2 (|:| |brans| (-595 (-595 (-882 *4)))) (|:| |xValues| (-1018 *4)) (|:| |yValues| (-1018 *4)))) (-5 *1 (-146)) (-5 *3 (-595 (-595 (-882 *4)))))) (-3620 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-866)) (-5 *4 (-387 (-528))) (-5 *2 (-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207))))) (-5 *1 (-146)))) (-3620 (*1 *2 *3) (-12 (-5 *3 (-866)) (-5 *2 (-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207))))) (-5 *1 (-146)))) (-3408 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-866)) (-5 *4 (-387 (-528))) (-5 *2 (-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207))))) (-5 *1 (-146)))) (-3408 (*1 *2 *3) (-12 (-5 *3 (-866)) (-5 *2 (-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207))))) (-5 *1 (-146)))))
-(-10 -7 (-15 -3408 ((-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))) (-866))) (-15 -3408 ((-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))) (-866) (-387 (-528)) (-387 (-528)))) (-15 -3620 ((-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))) (-866))) (-15 -3620 ((-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))) (-866) (-387 (-528)) (-387 (-528)))) (-15 -2555 ((-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))) (-595 (-595 (-882 (-207)))) (-207) (-207) (-207) (-207))) (-15 -3408 ((-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))) (-595 (-882 (-207))))) (-15 -3408 ((-2 (|:| |brans| (-595 (-595 (-882 (-207))))) (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))) (-595 (-595 (-882 (-207)))))))
-((-3091 (((-595 (-159 |#2|)) |#1| |#2|) 45)))
-(((-147 |#1| |#2|) (-10 -7 (-15 -3091 ((-595 (-159 |#2|)) |#1| |#2|))) (-1153 (-159 (-528))) (-13 (-343) (-791))) (T -147))
-((-3091 (*1 *2 *3 *4) (-12 (-5 *2 (-595 (-159 *4))) (-5 *1 (-147 *3 *4)) (-4 *3 (-1153 (-159 (-528)))) (-4 *4 (-13 (-343) (-791))))))
-(-10 -7 (-15 -3091 ((-595 (-159 |#2|)) |#1| |#2|)))
-((-2207 (((-110) $ $) NIL)) (-4186 (($) 16)) (-4046 (($) 15)) (-1243 (((-860)) 23)) (-3034 (((-1078) $) NIL)) (-2704 (((-528) $) 20)) (-2495 (((-1042) $) NIL)) (-1675 (($) 17)) (-2703 (($ (-528)) 24)) (-2222 (((-802) $) 30)) (-2369 (($) 18)) (-2186 (((-110) $ $) 14)) (-2275 (($ $ $) 13)) (* (($ (-860) $) 22) (($ (-207) $) 8)))
-(((-148) (-13 (-25) (-10 -8 (-15 * ($ (-860) $)) (-15 * ($ (-207) $)) (-15 -2275 ($ $ $)) (-15 -4046 ($)) (-15 -4186 ($)) (-15 -1675 ($)) (-15 -2369 ($)) (-15 -2704 ((-528) $)) (-15 -1243 ((-860))) (-15 -2703 ($ (-528)))))) (T -148))
-((-2275 (*1 *1 *1 *1) (-5 *1 (-148))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-148)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-207)) (-5 *1 (-148)))) (-4046 (*1 *1) (-5 *1 (-148))) (-4186 (*1 *1) (-5 *1 (-148))) (-1675 (*1 *1) (-5 *1 (-148))) (-2369 (*1 *1) (-5 *1 (-148))) (-2704 (*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-148)))) (-1243 (*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-148)))) (-2703 (*1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-148)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-860) $)) (-15 * ($ (-207) $)) (-15 -2275 ($ $ $)) (-15 -4046 ($)) (-15 -4186 ($)) (-15 -1675 ($)) (-15 -2369 ($)) (-15 -2704 ((-528) $)) (-15 -1243 ((-860))) (-15 -2703 ($ (-528)))))
-((-3157 ((|#2| |#2| (-1016 |#2|)) 88) ((|#2| |#2| (-1095)) 68)) (-1415 ((|#2| |#2| (-1016 |#2|)) 87) ((|#2| |#2| (-1095)) 67)) (-1752 ((|#2| |#2| |#2|) 27)) (-3748 (((-112) (-112)) 99)) (-3468 ((|#2| (-595 |#2|)) 117)) (-3505 ((|#2| (-595 |#2|)) 135)) (-3583 ((|#2| (-595 |#2|)) 125)) (-3448 ((|#2| |#2|) 123)) (-3651 ((|#2| (-595 |#2|)) 111)) (-2382 ((|#2| (-595 |#2|)) 112)) (-2502 ((|#2| (-595 |#2|)) 133)) (-4239 ((|#2| |#2| (-1095)) 56) ((|#2| |#2|) 55)) (-3918 ((|#2| |#2|) 23)) (-3709 ((|#2| |#2| |#2|) 26)) (-2042 (((-110) (-112)) 49)) (** ((|#2| |#2| |#2|) 41)))
-(((-149 |#1| |#2|) (-10 -7 (-15 -2042 ((-110) (-112))) (-15 -3748 ((-112) (-112))) (-15 ** (|#2| |#2| |#2|)) (-15 -3709 (|#2| |#2| |#2|)) (-15 -1752 (|#2| |#2| |#2|)) (-15 -3918 (|#2| |#2|)) (-15 -4239 (|#2| |#2|)) (-15 -4239 (|#2| |#2| (-1095))) (-15 -3157 (|#2| |#2| (-1095))) (-15 -3157 (|#2| |#2| (-1016 |#2|))) (-15 -1415 (|#2| |#2| (-1095))) (-15 -1415 (|#2| |#2| (-1016 |#2|))) (-15 -3448 (|#2| |#2|)) (-15 -2502 (|#2| (-595 |#2|))) (-15 -3583 (|#2| (-595 |#2|))) (-15 -3505 (|#2| (-595 |#2|))) (-15 -3651 (|#2| (-595 |#2|))) (-15 -2382 (|#2| (-595 |#2|))) (-15 -3468 (|#2| (-595 |#2|)))) (-13 (-793) (-520)) (-410 |#1|)) (T -149))
-((-3468 (*1 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-410 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-793) (-520))))) (-2382 (*1 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-410 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-793) (-520))))) (-3651 (*1 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-410 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-793) (-520))))) (-3505 (*1 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-410 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-793) (-520))))) (-3583 (*1 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-410 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-793) (-520))))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-410 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-793) (-520))))) (-3448 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-149 *3 *2)) (-4 *2 (-410 *3)))) (-1415 (*1 *2 *2 *3) (-12 (-5 *3 (-1016 *2)) (-4 *2 (-410 *4)) (-4 *4 (-13 (-793) (-520))) (-5 *1 (-149 *4 *2)))) (-1415 (*1 *2 *2 *3) (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-793) (-520))) (-5 *1 (-149 *4 *2)) (-4 *2 (-410 *4)))) (-3157 (*1 *2 *2 *3) (-12 (-5 *3 (-1016 *2)) (-4 *2 (-410 *4)) (-4 *4 (-13 (-793) (-520))) (-5 *1 (-149 *4 *2)))) (-3157 (*1 *2 *2 *3) (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-793) (-520))) (-5 *1 (-149 *4 *2)) (-4 *2 (-410 *4)))) (-4239 (*1 *2 *2 *3) (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-793) (-520))) (-5 *1 (-149 *4 *2)) (-4 *2 (-410 *4)))) (-4239 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-149 *3 *2)) (-4 *2 (-410 *3)))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-149 *3 *2)) (-4 *2 (-410 *3)))) (-1752 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-149 *3 *2)) (-4 *2 (-410 *3)))) (-3709 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-149 *3 *2)) (-4 *2 (-410 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-149 *3 *2)) (-4 *2 (-410 *3)))) (-3748 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-793) (-520))) (-5 *1 (-149 *3 *4)) (-4 *4 (-410 *3)))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-793) (-520))) (-5 *2 (-110)) (-5 *1 (-149 *4 *5)) (-4 *5 (-410 *4)))))
-(-10 -7 (-15 -2042 ((-110) (-112))) (-15 -3748 ((-112) (-112))) (-15 ** (|#2| |#2| |#2|)) (-15 -3709 (|#2| |#2| |#2|)) (-15 -1752 (|#2| |#2| |#2|)) (-15 -3918 (|#2| |#2|)) (-15 -4239 (|#2| |#2|)) (-15 -4239 (|#2| |#2| (-1095))) (-15 -3157 (|#2| |#2| (-1095))) (-15 -3157 (|#2| |#2| (-1016 |#2|))) (-15 -1415 (|#2| |#2| (-1095))) (-15 -1415 (|#2| |#2| (-1016 |#2|))) (-15 -3448 (|#2| |#2|)) (-15 -2502 (|#2| (-595 |#2|))) (-15 -3583 (|#2| (-595 |#2|))) (-15 -3505 (|#2| (-595 |#2|))) (-15 -3651 (|#2| (-595 |#2|))) (-15 -2382 (|#2| (-595 |#2|))) (-15 -3468 (|#2| (-595 |#2|))))
-((-3967 ((|#1| |#1| |#1|) 53)) (-1578 ((|#1| |#1| |#1|) 50)) (-1752 ((|#1| |#1| |#1|) 44)) (-2198 ((|#1| |#1|) 35)) (-3212 ((|#1| |#1| (-595 |#1|)) 43)) (-3918 ((|#1| |#1|) 37)) (-3709 ((|#1| |#1| |#1|) 40)))
-(((-150 |#1|) (-10 -7 (-15 -3709 (|#1| |#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3212 (|#1| |#1| (-595 |#1|))) (-15 -2198 (|#1| |#1|)) (-15 -1752 (|#1| |#1| |#1|)) (-15 -1578 (|#1| |#1| |#1|)) (-15 -3967 (|#1| |#1| |#1|))) (-513)) (T -150))
-((-3967 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-513)))) (-1578 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-513)))) (-1752 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-513)))) (-2198 (*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-513)))) (-3212 (*1 *2 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-513)) (-5 *1 (-150 *2)))) (-3918 (*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-513)))) (-3709 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-513)))))
-(-10 -7 (-15 -3709 (|#1| |#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3212 (|#1| |#1| (-595 |#1|))) (-15 -2198 (|#1| |#1|)) (-15 -1752 (|#1| |#1| |#1|)) (-15 -1578 (|#1| |#1| |#1|)) (-15 -3967 (|#1| |#1| |#1|)))
-((-3157 (($ $ (-1095)) 12) (($ $ (-1016 $)) 11)) (-1415 (($ $ (-1095)) 10) (($ $ (-1016 $)) 9)) (-1752 (($ $ $) 8)) (-4239 (($ $) 14) (($ $ (-1095)) 13)) (-3918 (($ $) 7)) (-3709 (($ $ $) 6)))
+(-13 (-984))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-805)) . T) ((-599 $) . T) ((-675) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-1346 (((-2 (|:| -2427 (-719)) (|:| -4229 (-388 |#2|)) (|:| |radicand| |#2|)) (-388 |#2|) (-719)) 70)) (-1345 (((-3 (-2 (|:| |radicand| (-388 |#2|)) (|:| |deg| (-719))) "failed") |#3|) 52)) (-1344 (((-2 (|:| -4229 (-388 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-1347 ((|#1| |#3| |#3|) 40)) (-4046 ((|#3| |#3| (-388 |#2|) (-388 |#2|)) 19)) (-1348 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| |deg| (-719))) |#3| |#3|) 49)))
+(((-141 |#1| |#2| |#3|) (-10 -7 (-15 -1344 ((-2 (|:| -4229 (-388 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1345 ((-3 (-2 (|:| |radicand| (-388 |#2|)) (|:| |deg| (-719))) "failed") |#3|)) (-15 -1346 ((-2 (|:| -2427 (-719)) (|:| -4229 (-388 |#2|)) (|:| |radicand| |#2|)) (-388 |#2|) (-719))) (-15 -1347 (|#1| |#3| |#3|)) (-15 -4046 (|#3| |#3| (-388 |#2|) (-388 |#2|))) (-15 -1348 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| |deg| (-719))) |#3| |#3|))) (-1138) (-1155 |#1|) (-1155 (-388 |#2|))) (T -141))
+((-1348 (*1 *2 *3 *3) (-12 (-4 *4 (-1138)) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-388 *5)) (|:| |c2| (-388 *5)) (|:| |deg| (-719)))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1155 (-388 *5))))) (-4046 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-388 *5)) (-4 *4 (-1138)) (-4 *5 (-1155 *4)) (-5 *1 (-141 *4 *5 *2)) (-4 *2 (-1155 *3)))) (-1347 (*1 *2 *3 *3) (-12 (-4 *4 (-1155 *2)) (-4 *2 (-1138)) (-5 *1 (-141 *2 *4 *3)) (-4 *3 (-1155 (-388 *4))))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-388 *6)) (-4 *5 (-1138)) (-4 *6 (-1155 *5)) (-5 *2 (-2 (|:| -2427 (-719)) (|:| -4229 *3) (|:| |radicand| *6))) (-5 *1 (-141 *5 *6 *7)) (-5 *4 (-719)) (-4 *7 (-1155 *3)))) (-1345 (*1 *2 *3) (|partial| -12 (-4 *4 (-1138)) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| |radicand| (-388 *5)) (|:| |deg| (-719)))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1155 (-388 *5))))) (-1344 (*1 *2 *3) (-12 (-4 *4 (-1138)) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| -4229 (-388 *5)) (|:| |poly| *3))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1155 (-388 *5))))))
+(-10 -7 (-15 -1344 ((-2 (|:| -4229 (-388 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1345 ((-3 (-2 (|:| |radicand| (-388 |#2|)) (|:| |deg| (-719))) "failed") |#3|)) (-15 -1346 ((-2 (|:| -2427 (-719)) (|:| -4229 (-388 |#2|)) (|:| |radicand| |#2|)) (-388 |#2|) (-719))) (-15 -1347 (|#1| |#3| |#3|)) (-15 -4046 (|#3| |#3| (-388 |#2|) (-388 |#2|))) (-15 -1348 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| |deg| (-719))) |#3| |#3|)))
+((-2967 (((-3 (-594 (-1092 |#2|)) "failed") (-594 (-1092 |#2|)) (-1092 |#2|)) 32)))
+(((-142 |#1| |#2|) (-10 -7 (-15 -2967 ((-3 (-594 (-1092 |#2|)) "failed") (-594 (-1092 |#2|)) (-1092 |#2|)))) (-515) (-156 |#1|)) (T -142))
+((-2967 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-594 (-1092 *5))) (-5 *3 (-1092 *5)) (-4 *5 (-156 *4)) (-4 *4 (-515)) (-5 *1 (-142 *4 *5)))))
+(-10 -7 (-15 -2967 ((-3 (-594 (-1092 |#2|)) "failed") (-594 (-1092 |#2|)) (-1092 |#2|))))
+((-3992 (($ (-1 (-110) |#2|) $) 29)) (-1349 (($ $) 36)) (-3685 (($ (-1 (-110) |#2|) $) 27) (($ |#2| $) 32)) (-4121 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1350 (((-3 |#2| "failed") (-1 (-110) |#2|) $) 19)) (-2020 (((-110) (-1 (-110) |#2|) $) 16)) (-2019 (((-719) (-1 (-110) |#2|) $) 14) (((-719) |#2| $) NIL)) (-2021 (((-110) (-1 (-110) |#2|) $) 15)) (-4232 (((-719) $) 11)))
+(((-143 |#1| |#2|) (-10 -8 (-15 -1349 (|#1| |#1|)) (-15 -3685 (|#1| |#2| |#1|)) (-15 -4121 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3992 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3685 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -4121 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4121 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1350 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -2019 ((-719) |#2| |#1|)) (-15 -2019 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -2020 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2021 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -4232 ((-719) |#1|))) (-144 |#2|) (-1134)) (T -143))
+NIL
+(-10 -8 (-15 -1349 (|#1| |#1|)) (-15 -3685 (|#1| |#2| |#1|)) (-15 -4121 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3992 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3685 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -4121 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4121 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1350 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -2019 ((-719) |#2| |#1|)) (-15 -2019 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -2020 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2021 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -4232 ((-719) |#1|)))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1217 (((-110) $ (-719)) 8)) (-3992 (($ (-1 (-110) |#1|) $) 44 (|has| $ (-6 -4269)))) (-3815 (($) 7 T CONST)) (-1349 (($ $) 41 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3685 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4269))) (($ |#1| $) 42 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) 9)) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35)) (-3998 (((-110) $ (-719)) 10)) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 48)) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4246 (((-505) $) 40 (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) 49)) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-144 |#1|) (-133) (-1134)) (T -144))
+((-3804 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1134)) (-4 *1 (-144 *3)))) (-1350 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-110) *2)) (-4 *1 (-144 *2)) (-4 *2 (-1134)))) (-4121 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *2)) (-4 *2 (-1134)))) (-4121 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *2)) (-4 *2 (-1134)))) (-3685 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *3)) (-4 *3 (-1134)))) (-3992 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *3)) (-4 *3 (-1134)))) (-4121 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1027)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *2)) (-4 *2 (-1134)))) (-3685 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-144 *2)) (-4 *2 (-1134)) (-4 *2 (-1027)))) (-1349 (*1 *1 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-144 *2)) (-4 *2 (-1134)) (-4 *2 (-1027)))))
+(-13 (-468 |t#1|) (-10 -8 (-15 -3804 ($ (-594 |t#1|))) (-15 -1350 ((-3 |t#1| "failed") (-1 (-110) |t#1|) $)) (IF (|has| $ (-6 -4269)) (PROGN (-15 -4121 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -4121 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3685 ($ (-1 (-110) |t#1|) $)) (-15 -3992 ($ (-1 (-110) |t#1|) $)) (IF (|has| |t#1| (-1027)) (PROGN (-15 -4121 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3685 ($ |t#1| $)) (-15 -1349 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-572 (-505))) (-6 (-572 (-505))) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-571 (-805)))) ((-572 (-505)) |has| |#1| (-572 (-505))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1134) . T))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-3741 (((-3 $ "failed") $) 86)) (-2436 (((-110) $) NIL)) (-3157 (($ |#2| (-594 (-860))) 56)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-1351 (($ (-860)) 47)) (-4190 (((-130)) 23)) (-4233 (((-805) $) 69) (($ (-516)) 45) (($ |#2|) 46)) (-3959 ((|#2| $ (-594 (-860))) 59)) (-3385 (((-719)) 20)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 40 T CONST)) (-2927 (($) 43 T CONST)) (-3317 (((-110) $ $) 26)) (-4224 (($ $ |#2|) NIL)) (-4116 (($ $) 34) (($ $ $) 32)) (-4118 (($ $ $) 30)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL)))
+(((-145 |#1| |#2| |#3|) (-13 (-984) (-37 |#2|) (-1187 |#2|) (-10 -8 (-15 -1351 ($ (-860))) (-15 -3157 ($ |#2| (-594 (-860)))) (-15 -3959 (|#2| $ (-594 (-860)))) (-15 -3741 ((-3 $ "failed") $)))) (-860) (-344) (-933 |#1| |#2|)) (T -145))
+((-3741 (*1 *1 *1) (|partial| -12 (-5 *1 (-145 *2 *3 *4)) (-14 *2 (-860)) (-4 *3 (-344)) (-14 *4 (-933 *2 *3)))) (-1351 (*1 *1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-145 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-344)) (-14 *5 (-933 *3 *4)))) (-3157 (*1 *1 *2 *3) (-12 (-5 *3 (-594 (-860))) (-5 *1 (-145 *4 *2 *5)) (-14 *4 (-860)) (-4 *2 (-344)) (-14 *5 (-933 *4 *2)))) (-3959 (*1 *2 *1 *3) (-12 (-5 *3 (-594 (-860))) (-4 *2 (-344)) (-5 *1 (-145 *4 *2 *5)) (-14 *4 (-860)) (-14 *5 (-933 *4 *2)))))
+(-13 (-984) (-37 |#2|) (-1187 |#2|) (-10 -8 (-15 -1351 ($ (-860))) (-15 -3157 ($ |#2| (-594 (-860)))) (-15 -3959 (|#2| $ (-594 (-860)))) (-15 -3741 ((-3 $ "failed") $))))
+((-1353 (((-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))) (-594 (-594 (-884 (-208)))) (-208) (-208) (-208) (-208)) 38)) (-1352 (((-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))) (-866) (-388 (-516)) (-388 (-516))) 63) (((-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))) (-866)) 64)) (-1515 (((-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))) (-594 (-594 (-884 (-208))))) 67) (((-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))) (-594 (-884 (-208)))) 66) (((-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))) (-866) (-388 (-516)) (-388 (-516))) 58) (((-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))) (-866)) 59)))
+(((-146) (-10 -7 (-15 -1515 ((-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))) (-866))) (-15 -1515 ((-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))) (-866) (-388 (-516)) (-388 (-516)))) (-15 -1352 ((-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))) (-866))) (-15 -1352 ((-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))) (-866) (-388 (-516)) (-388 (-516)))) (-15 -1353 ((-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))) (-594 (-594 (-884 (-208)))) (-208) (-208) (-208) (-208))) (-15 -1515 ((-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))) (-594 (-884 (-208))))) (-15 -1515 ((-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))) (-594 (-594 (-884 (-208)))))))) (T -146))
+((-1515 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208))))) (-5 *1 (-146)) (-5 *3 (-594 (-594 (-884 (-208))))))) (-1515 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208))))) (-5 *1 (-146)) (-5 *3 (-594 (-884 (-208)))))) (-1353 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-208)) (-5 *2 (-2 (|:| |brans| (-594 (-594 (-884 *4)))) (|:| |xValues| (-1017 *4)) (|:| |yValues| (-1017 *4)))) (-5 *1 (-146)) (-5 *3 (-594 (-594 (-884 *4)))))) (-1352 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-866)) (-5 *4 (-388 (-516))) (-5 *2 (-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208))))) (-5 *1 (-146)))) (-1352 (*1 *2 *3) (-12 (-5 *3 (-866)) (-5 *2 (-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208))))) (-5 *1 (-146)))) (-1515 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-866)) (-5 *4 (-388 (-516))) (-5 *2 (-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208))))) (-5 *1 (-146)))) (-1515 (*1 *2 *3) (-12 (-5 *3 (-866)) (-5 *2 (-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208))))) (-5 *1 (-146)))))
+(-10 -7 (-15 -1515 ((-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))) (-866))) (-15 -1515 ((-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))) (-866) (-388 (-516)) (-388 (-516)))) (-15 -1352 ((-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))) (-866))) (-15 -1352 ((-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))) (-866) (-388 (-516)) (-388 (-516)))) (-15 -1353 ((-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))) (-594 (-594 (-884 (-208)))) (-208) (-208) (-208) (-208))) (-15 -1515 ((-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))) (-594 (-884 (-208))))) (-15 -1515 ((-2 (|:| |brans| (-594 (-594 (-884 (-208))))) (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))) (-594 (-594 (-884 (-208)))))))
+((-1406 (((-594 (-158 |#2|)) |#1| |#2|) 45)))
+(((-147 |#1| |#2|) (-10 -7 (-15 -1406 ((-594 (-158 |#2|)) |#1| |#2|))) (-1155 (-158 (-516))) (-13 (-344) (-793))) (T -147))
+((-1406 (*1 *2 *3 *4) (-12 (-5 *2 (-594 (-158 *4))) (-5 *1 (-147 *3 *4)) (-4 *3 (-1155 (-158 (-516)))) (-4 *4 (-13 (-344) (-793))))))
+(-10 -7 (-15 -1406 ((-594 (-158 |#2|)) |#1| |#2|)))
+((-2828 (((-110) $ $) NIL)) (-1357 (($) 16)) (-1358 (($) 15)) (-1354 (((-860)) 23)) (-3513 (((-1081) $) NIL)) (-3220 (((-516) $) 20)) (-3514 (((-1045) $) NIL)) (-1356 (($) 17)) (-3219 (($ (-516)) 24)) (-4233 (((-805) $) 30)) (-1355 (($) 18)) (-3317 (((-110) $ $) 14)) (-4118 (($ $ $) 13)) (* (($ (-860) $) 22) (($ (-208) $) 8)))
+(((-148) (-13 (-25) (-10 -8 (-15 * ($ (-860) $)) (-15 * ($ (-208) $)) (-15 -4118 ($ $ $)) (-15 -1358 ($)) (-15 -1357 ($)) (-15 -1356 ($)) (-15 -1355 ($)) (-15 -3220 ((-516) $)) (-15 -1354 ((-860))) (-15 -3219 ($ (-516)))))) (T -148))
+((-4118 (*1 *1 *1 *1) (-5 *1 (-148))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-148)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-148)))) (-1358 (*1 *1) (-5 *1 (-148))) (-1357 (*1 *1) (-5 *1 (-148))) (-1356 (*1 *1) (-5 *1 (-148))) (-1355 (*1 *1) (-5 *1 (-148))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-148)))) (-1354 (*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-148)))) (-3219 (*1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-148)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-860) $)) (-15 * ($ (-208) $)) (-15 -4118 ($ $ $)) (-15 -1358 ($)) (-15 -1357 ($)) (-15 -1356 ($)) (-15 -1355 ($)) (-15 -3220 ((-516) $)) (-15 -1354 ((-860))) (-15 -3219 ($ (-516)))))
+((-1371 ((|#2| |#2| (-1019 |#2|)) 88) ((|#2| |#2| (-1098)) 68)) (-4220 ((|#2| |#2| (-1019 |#2|)) 87) ((|#2| |#2| (-1098)) 67)) (-1368 ((|#2| |#2| |#2|) 27)) (-2273 (((-111) (-111)) 99)) (-1365 ((|#2| (-594 |#2|)) 117)) (-1362 ((|#2| (-594 |#2|)) 135)) (-1361 ((|#2| (-594 |#2|)) 125)) (-1359 ((|#2| |#2|) 123)) (-1363 ((|#2| (-594 |#2|)) 111)) (-1364 ((|#2| (-594 |#2|)) 112)) (-1360 ((|#2| (-594 |#2|)) 133)) (-1372 ((|#2| |#2| (-1098)) 56) ((|#2| |#2|) 55)) (-1366 ((|#2| |#2|) 23)) (-3362 ((|#2| |#2| |#2|) 26)) (-2272 (((-110) (-111)) 49)) (** ((|#2| |#2| |#2|) 41)))
+(((-149 |#1| |#2|) (-10 -7 (-15 -2272 ((-110) (-111))) (-15 -2273 ((-111) (-111))) (-15 ** (|#2| |#2| |#2|)) (-15 -3362 (|#2| |#2| |#2|)) (-15 -1368 (|#2| |#2| |#2|)) (-15 -1366 (|#2| |#2|)) (-15 -1372 (|#2| |#2|)) (-15 -1372 (|#2| |#2| (-1098))) (-15 -1371 (|#2| |#2| (-1098))) (-15 -1371 (|#2| |#2| (-1019 |#2|))) (-15 -4220 (|#2| |#2| (-1098))) (-15 -4220 (|#2| |#2| (-1019 |#2|))) (-15 -1359 (|#2| |#2|)) (-15 -1360 (|#2| (-594 |#2|))) (-15 -1361 (|#2| (-594 |#2|))) (-15 -1362 (|#2| (-594 |#2|))) (-15 -1363 (|#2| (-594 |#2|))) (-15 -1364 (|#2| (-594 |#2|))) (-15 -1365 (|#2| (-594 |#2|)))) (-13 (-795) (-523)) (-402 |#1|)) (T -149))
+((-1365 (*1 *2 *3) (-12 (-5 *3 (-594 *2)) (-4 *2 (-402 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-795) (-523))))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-594 *2)) (-4 *2 (-402 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-795) (-523))))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-594 *2)) (-4 *2 (-402 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-795) (-523))))) (-1362 (*1 *2 *3) (-12 (-5 *3 (-594 *2)) (-4 *2 (-402 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-795) (-523))))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-594 *2)) (-4 *2 (-402 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-795) (-523))))) (-1360 (*1 *2 *3) (-12 (-5 *3 (-594 *2)) (-4 *2 (-402 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-795) (-523))))) (-1359 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-149 *3 *2)) (-4 *2 (-402 *3)))) (-4220 (*1 *2 *2 *3) (-12 (-5 *3 (-1019 *2)) (-4 *2 (-402 *4)) (-4 *4 (-13 (-795) (-523))) (-5 *1 (-149 *4 *2)))) (-4220 (*1 *2 *2 *3) (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-795) (-523))) (-5 *1 (-149 *4 *2)) (-4 *2 (-402 *4)))) (-1371 (*1 *2 *2 *3) (-12 (-5 *3 (-1019 *2)) (-4 *2 (-402 *4)) (-4 *4 (-13 (-795) (-523))) (-5 *1 (-149 *4 *2)))) (-1371 (*1 *2 *2 *3) (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-795) (-523))) (-5 *1 (-149 *4 *2)) (-4 *2 (-402 *4)))) (-1372 (*1 *2 *2 *3) (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-795) (-523))) (-5 *1 (-149 *4 *2)) (-4 *2 (-402 *4)))) (-1372 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-149 *3 *2)) (-4 *2 (-402 *3)))) (-1366 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-149 *3 *2)) (-4 *2 (-402 *3)))) (-1368 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-149 *3 *2)) (-4 *2 (-402 *3)))) (-3362 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-149 *3 *2)) (-4 *2 (-402 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-149 *3 *2)) (-4 *2 (-402 *3)))) (-2273 (*1 *2 *2) (-12 (-5 *2 (-111)) (-4 *3 (-13 (-795) (-523))) (-5 *1 (-149 *3 *4)) (-4 *4 (-402 *3)))) (-2272 (*1 *2 *3) (-12 (-5 *3 (-111)) (-4 *4 (-13 (-795) (-523))) (-5 *2 (-110)) (-5 *1 (-149 *4 *5)) (-4 *5 (-402 *4)))))
+(-10 -7 (-15 -2272 ((-110) (-111))) (-15 -2273 ((-111) (-111))) (-15 ** (|#2| |#2| |#2|)) (-15 -3362 (|#2| |#2| |#2|)) (-15 -1368 (|#2| |#2| |#2|)) (-15 -1366 (|#2| |#2|)) (-15 -1372 (|#2| |#2|)) (-15 -1372 (|#2| |#2| (-1098))) (-15 -1371 (|#2| |#2| (-1098))) (-15 -1371 (|#2| |#2| (-1019 |#2|))) (-15 -4220 (|#2| |#2| (-1098))) (-15 -4220 (|#2| |#2| (-1019 |#2|))) (-15 -1359 (|#2| |#2|)) (-15 -1360 (|#2| (-594 |#2|))) (-15 -1361 (|#2| (-594 |#2|))) (-15 -1362 (|#2| (-594 |#2|))) (-15 -1363 (|#2| (-594 |#2|))) (-15 -1364 (|#2| (-594 |#2|))) (-15 -1365 (|#2| (-594 |#2|))))
+((-1370 ((|#1| |#1| |#1|) 53)) (-1369 ((|#1| |#1| |#1|) 50)) (-1368 ((|#1| |#1| |#1|) 44)) (-3154 ((|#1| |#1|) 35)) (-1367 ((|#1| |#1| (-594 |#1|)) 43)) (-1366 ((|#1| |#1|) 37)) (-3362 ((|#1| |#1| |#1|) 40)))
+(((-150 |#1|) (-10 -7 (-15 -3362 (|#1| |#1| |#1|)) (-15 -1366 (|#1| |#1|)) (-15 -1367 (|#1| |#1| (-594 |#1|))) (-15 -3154 (|#1| |#1|)) (-15 -1368 (|#1| |#1| |#1|)) (-15 -1369 (|#1| |#1| |#1|)) (-15 -1370 (|#1| |#1| |#1|))) (-515)) (T -150))
+((-1370 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))) (-1369 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))) (-1368 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))) (-3154 (*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))) (-1367 (*1 *2 *2 *3) (-12 (-5 *3 (-594 *2)) (-4 *2 (-515)) (-5 *1 (-150 *2)))) (-1366 (*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))) (-3362 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))))
+(-10 -7 (-15 -3362 (|#1| |#1| |#1|)) (-15 -1366 (|#1| |#1|)) (-15 -1367 (|#1| |#1| (-594 |#1|))) (-15 -3154 (|#1| |#1|)) (-15 -1368 (|#1| |#1| |#1|)) (-15 -1369 (|#1| |#1| |#1|)) (-15 -1370 (|#1| |#1| |#1|)))
+((-1371 (($ $ (-1098)) 12) (($ $ (-1019 $)) 11)) (-4220 (($ $ (-1098)) 10) (($ $ (-1019 $)) 9)) (-1368 (($ $ $) 8)) (-1372 (($ $) 14) (($ $ (-1098)) 13)) (-1366 (($ $) 7)) (-3362 (($ $ $) 6)))
(((-151) (-133)) (T -151))
-((-4239 (*1 *1 *1) (-4 *1 (-151))) (-4239 (*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1095)))) (-3157 (*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1095)))) (-3157 (*1 *1 *1 *2) (-12 (-5 *2 (-1016 *1)) (-4 *1 (-151)))) (-1415 (*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1095)))) (-1415 (*1 *1 *1 *2) (-12 (-5 *2 (-1016 *1)) (-4 *1 (-151)))))
-(-13 (-136) (-10 -8 (-15 -4239 ($ $)) (-15 -4239 ($ $ (-1095))) (-15 -3157 ($ $ (-1095))) (-15 -3157 ($ $ (-1016 $))) (-15 -1415 ($ $ (-1095))) (-15 -1415 ($ $ (-1016 $)))))
+((-1372 (*1 *1 *1) (-4 *1 (-151))) (-1372 (*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1098)))) (-1371 (*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1098)))) (-1371 (*1 *1 *1 *2) (-12 (-5 *2 (-1019 *1)) (-4 *1 (-151)))) (-4220 (*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1098)))) (-4220 (*1 *1 *1 *2) (-12 (-5 *2 (-1019 *1)) (-4 *1 (-151)))))
+(-13 (-136) (-10 -8 (-15 -1372 ($ $)) (-15 -1372 ($ $ (-1098))) (-15 -1371 ($ $ (-1098))) (-15 -1371 ($ $ (-1019 $))) (-15 -4220 ($ $ (-1098))) (-15 -4220 ($ $ (-1019 $)))))
(((-136) . T))
-((-2207 (((-110) $ $) NIL)) (-1290 (($ (-528)) 13) (($ $ $) 14)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 17)) (-2186 (((-110) $ $) 9)))
-(((-152) (-13 (-1023) (-10 -8 (-15 -1290 ($ (-528))) (-15 -1290 ($ $ $))))) (T -152))
-((-1290 (*1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-152)))) (-1290 (*1 *1 *1 *1) (-5 *1 (-152))))
-(-13 (-1023) (-10 -8 (-15 -1290 ($ (-528))) (-15 -1290 ($ $ $))))
-((-3748 (((-112) (-1095)) 97)))
-(((-153) (-10 -7 (-15 -3748 ((-112) (-1095))))) (T -153))
-((-3748 (*1 *2 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-112)) (-5 *1 (-153)))))
-(-10 -7 (-15 -3748 ((-112) (-1095))))
-((-3725 ((|#3| |#3|) 19)))
-(((-154 |#1| |#2| |#3|) (-10 -7 (-15 -3725 (|#3| |#3|))) (-981) (-1153 |#1|) (-1153 |#2|)) (T -154))
-((-3725 (*1 *2 *2) (-12 (-4 *3 (-981)) (-4 *4 (-1153 *3)) (-5 *1 (-154 *3 *4 *2)) (-4 *2 (-1153 *4)))))
-(-10 -7 (-15 -3725 (|#3| |#3|)))
-((-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 217)) (-1323 ((|#2| $) 96)) (-2880 (($ $) 245)) (-2735 (($ $) 239)) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) 40)) (-2859 (($ $) 243)) (-2712 (($ $) 237)) (-3001 (((-3 (-528) "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-2409 (((-528) $) NIL) (((-387 (-528)) $) NIL) ((|#2| $) 139)) (-3519 (($ $ $) 222)) (-2120 (((-635 (-528)) (-635 $)) NIL) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL) (((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 $) (-1177 $)) 155) (((-635 |#2|) (-635 $)) 149)) (-1422 (($ (-1091 |#2|)) 119) (((-3 $ "failed") (-387 (-1091 |#2|))) NIL)) (-1312 (((-3 $ "failed") $) 209)) (-1793 (((-3 (-387 (-528)) "failed") $) 199)) (-3650 (((-110) $) 194)) (-3099 (((-387 (-528)) $) 197)) (-3090 (((-860)) 89)) (-3498 (($ $ $) 224)) (-3810 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-1505 (($) 234)) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) 186) (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) 191)) (-3297 ((|#2| $) 94)) (-3537 (((-1091 |#2|) $) 121)) (-3106 (($ (-1 |#2| |#2|) $) 102)) (-2097 (($ $) 236)) (-1412 (((-1091 |#2|) $) 120)) (-2652 (($ $) 202)) (-1225 (($) 97)) (-3261 (((-398 (-1091 $)) (-1091 $)) 88)) (-2394 (((-398 (-1091 $)) (-1091 $)) 57)) (-3477 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-2656 (($ $) 235)) (-3973 (((-717) $) 219)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 229)) (-1372 ((|#2| (-1177 $)) NIL) ((|#2|) 91)) (-3235 (($ $ (-1 |#2| |#2|) (-717)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-595 (-1095)) (-595 (-717))) NIL) (($ $ (-1095) (-717)) NIL) (($ $ (-595 (-1095))) NIL) (($ $ (-1095)) NIL) (($ $ (-717)) NIL) (($ $) NIL)) (-4090 (((-1091 |#2|)) 114)) (-2869 (($ $) 244)) (-2724 (($ $) 238)) (-4243 (((-1177 |#2|) $ (-1177 $)) 128) (((-635 |#2|) (-1177 $) (-1177 $)) NIL) (((-1177 |#2|) $) 110) (((-635 |#2|) (-1177 $)) NIL)) (-3155 (((-1177 |#2|) $) NIL) (($ (-1177 |#2|)) NIL) (((-1091 |#2|) $) NIL) (($ (-1091 |#2|)) NIL) (((-831 (-528)) $) 177) (((-831 (-359)) $) 181) (((-159 (-359)) $) 167) (((-159 (-207)) $) 162) (((-504) $) 173)) (-4097 (($ $) 98)) (-2222 (((-802) $) 138) (($ (-528)) NIL) (($ |#2|) NIL) (($ (-387 (-528))) NIL) (($ $) NIL)) (-2516 (((-1091 |#2|) $) 23)) (-3742 (((-717)) 100)) (-2953 (($ $) 248)) (-2811 (($ $) 242)) (-2928 (($ $) 246)) (-2784 (($ $) 240)) (-3625 ((|#2| $) 233)) (-2940 (($ $) 247)) (-2797 (($ $) 241)) (-1775 (($ $) 157)) (-2186 (((-110) $ $) 104)) (-2208 (((-110) $ $) 193)) (-2286 (($ $) 106) (($ $ $) NIL)) (-2275 (($ $ $) 105)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-387 (-528))) 267) (($ $ $) NIL) (($ $ (-528)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-387 (-528)) $) NIL) (($ $ (-387 (-528))) NIL)))
-(((-155 |#1| |#2|) (-10 -8 (-15 -3235 (|#1| |#1|)) (-15 -3235 (|#1| |#1| (-717))) (-15 -2222 (|#1| |#1|)) (-15 -3477 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2142 ((-2 (|:| -2445 |#1|) (|:| -4251 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3235 (|#1| |#1| (-1095))) (-15 -3235 (|#1| |#1| (-595 (-1095)))) (-15 -3235 (|#1| |#1| (-1095) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)) (-595 (-717)))) (-15 -3973 ((-717) |#1|)) (-15 -1512 ((-2 (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1|)) (-15 -3498 (|#1| |#1| |#1|)) (-15 -3519 (|#1| |#1| |#1|)) (-15 -2652 (|#1| |#1|)) (-15 ** (|#1| |#1| (-528))) (-15 * (|#1| |#1| (-387 (-528)))) (-15 * (|#1| (-387 (-528)) |#1|)) (-15 -2222 (|#1| (-387 (-528)))) (-15 -2208 ((-110) |#1| |#1|)) (-15 -3155 ((-504) |#1|)) (-15 -3155 ((-159 (-207)) |#1|)) (-15 -3155 ((-159 (-359)) |#1|)) (-15 -2735 (|#1| |#1|)) (-15 -2712 (|#1| |#1|)) (-15 -2724 (|#1| |#1|)) (-15 -2797 (|#1| |#1|)) (-15 -2784 (|#1| |#1|)) (-15 -2811 (|#1| |#1|)) (-15 -2869 (|#1| |#1|)) (-15 -2859 (|#1| |#1|)) (-15 -2880 (|#1| |#1|)) (-15 -2940 (|#1| |#1|)) (-15 -2928 (|#1| |#1|)) (-15 -2953 (|#1| |#1|)) (-15 -2097 (|#1| |#1|)) (-15 -2656 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1505 (|#1|)) (-15 ** (|#1| |#1| (-387 (-528)))) (-15 -2394 ((-398 (-1091 |#1|)) (-1091 |#1|))) (-15 -3261 ((-398 (-1091 |#1|)) (-1091 |#1|))) (-15 -4159 ((-3 (-595 (-1091 |#1|)) "failed") (-595 (-1091 |#1|)) (-1091 |#1|))) (-15 -1793 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -3099 ((-387 (-528)) |#1|)) (-15 -3650 ((-110) |#1|)) (-15 -3810 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3625 (|#2| |#1|)) (-15 -1775 (|#1| |#1|)) (-15 -3477 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4097 (|#1| |#1|)) (-15 -1225 (|#1|)) (-15 -3155 ((-831 (-359)) |#1|)) (-15 -3155 ((-831 (-528)) |#1|)) (-15 -4181 ((-828 (-359) |#1|) |#1| (-831 (-359)) (-828 (-359) |#1|))) (-15 -4181 ((-828 (-528) |#1|) |#1| (-831 (-528)) (-828 (-528) |#1|))) (-15 -3106 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|) (-717))) (-15 -1422 ((-3 |#1| "failed") (-387 (-1091 |#2|)))) (-15 -1412 ((-1091 |#2|) |#1|)) (-15 -3155 (|#1| (-1091 |#2|))) (-15 -1422 (|#1| (-1091 |#2|))) (-15 -4090 ((-1091 |#2|))) (-15 -2120 ((-635 |#2|) (-635 |#1|))) (-15 -2120 ((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 |#1|) (-1177 |#1|))) (-15 -2120 ((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 |#1|) (-1177 |#1|))) (-15 -2120 ((-635 (-528)) (-635 |#1|))) (-15 -2409 (|#2| |#1|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -2409 ((-387 (-528)) |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -2409 ((-528) |#1|)) (-15 -3155 ((-1091 |#2|) |#1|)) (-15 -1372 (|#2|)) (-15 -3155 (|#1| (-1177 |#2|))) (-15 -3155 ((-1177 |#2|) |#1|)) (-15 -4243 ((-635 |#2|) (-1177 |#1|))) (-15 -4243 ((-1177 |#2|) |#1|)) (-15 -3537 ((-1091 |#2|) |#1|)) (-15 -2516 ((-1091 |#2|) |#1|)) (-15 -1372 (|#2| (-1177 |#1|))) (-15 -4243 ((-635 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -4243 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -3297 (|#2| |#1|)) (-15 -1323 (|#2| |#1|)) (-15 -3090 ((-860))) (-15 -2222 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2222 (|#1| (-528))) (-15 -3742 ((-717))) (-15 ** (|#1| |#1| (-717))) (-15 -1312 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-860))) (-15 * (|#1| (-528) |#1|)) (-15 -2286 (|#1| |#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 * (|#1| (-717) |#1|)) (-15 * (|#1| (-860) |#1|)) (-15 -2275 (|#1| |#1| |#1|)) (-15 -2222 ((-802) |#1|)) (-15 -2186 ((-110) |#1| |#1|))) (-156 |#2|) (-162)) (T -155))
-((-3742 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-717)) (-5 *1 (-155 *3 *4)) (-4 *3 (-156 *4)))) (-3090 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-860)) (-5 *1 (-155 *3 *4)) (-4 *3 (-156 *4)))) (-1372 (*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-155 *3 *2)) (-4 *3 (-156 *2)))) (-4090 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1091 *4)) (-5 *1 (-155 *3 *4)) (-4 *3 (-156 *4)))))
-(-10 -8 (-15 -3235 (|#1| |#1|)) (-15 -3235 (|#1| |#1| (-717))) (-15 -2222 (|#1| |#1|)) (-15 -3477 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2142 ((-2 (|:| -2445 |#1|) (|:| -4251 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3235 (|#1| |#1| (-1095))) (-15 -3235 (|#1| |#1| (-595 (-1095)))) (-15 -3235 (|#1| |#1| (-1095) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)) (-595 (-717)))) (-15 -3973 ((-717) |#1|)) (-15 -1512 ((-2 (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1|)) (-15 -3498 (|#1| |#1| |#1|)) (-15 -3519 (|#1| |#1| |#1|)) (-15 -2652 (|#1| |#1|)) (-15 ** (|#1| |#1| (-528))) (-15 * (|#1| |#1| (-387 (-528)))) (-15 * (|#1| (-387 (-528)) |#1|)) (-15 -2222 (|#1| (-387 (-528)))) (-15 -2208 ((-110) |#1| |#1|)) (-15 -3155 ((-504) |#1|)) (-15 -3155 ((-159 (-207)) |#1|)) (-15 -3155 ((-159 (-359)) |#1|)) (-15 -2735 (|#1| |#1|)) (-15 -2712 (|#1| |#1|)) (-15 -2724 (|#1| |#1|)) (-15 -2797 (|#1| |#1|)) (-15 -2784 (|#1| |#1|)) (-15 -2811 (|#1| |#1|)) (-15 -2869 (|#1| |#1|)) (-15 -2859 (|#1| |#1|)) (-15 -2880 (|#1| |#1|)) (-15 -2940 (|#1| |#1|)) (-15 -2928 (|#1| |#1|)) (-15 -2953 (|#1| |#1|)) (-15 -2097 (|#1| |#1|)) (-15 -2656 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1505 (|#1|)) (-15 ** (|#1| |#1| (-387 (-528)))) (-15 -2394 ((-398 (-1091 |#1|)) (-1091 |#1|))) (-15 -3261 ((-398 (-1091 |#1|)) (-1091 |#1|))) (-15 -4159 ((-3 (-595 (-1091 |#1|)) "failed") (-595 (-1091 |#1|)) (-1091 |#1|))) (-15 -1793 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -3099 ((-387 (-528)) |#1|)) (-15 -3650 ((-110) |#1|)) (-15 -3810 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3625 (|#2| |#1|)) (-15 -1775 (|#1| |#1|)) (-15 -3477 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4097 (|#1| |#1|)) (-15 -1225 (|#1|)) (-15 -3155 ((-831 (-359)) |#1|)) (-15 -3155 ((-831 (-528)) |#1|)) (-15 -4181 ((-828 (-359) |#1|) |#1| (-831 (-359)) (-828 (-359) |#1|))) (-15 -4181 ((-828 (-528) |#1|) |#1| (-831 (-528)) (-828 (-528) |#1|))) (-15 -3106 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|) (-717))) (-15 -1422 ((-3 |#1| "failed") (-387 (-1091 |#2|)))) (-15 -1412 ((-1091 |#2|) |#1|)) (-15 -3155 (|#1| (-1091 |#2|))) (-15 -1422 (|#1| (-1091 |#2|))) (-15 -4090 ((-1091 |#2|))) (-15 -2120 ((-635 |#2|) (-635 |#1|))) (-15 -2120 ((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 |#1|) (-1177 |#1|))) (-15 -2120 ((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 |#1|) (-1177 |#1|))) (-15 -2120 ((-635 (-528)) (-635 |#1|))) (-15 -2409 (|#2| |#1|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -2409 ((-387 (-528)) |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -2409 ((-528) |#1|)) (-15 -3155 ((-1091 |#2|) |#1|)) (-15 -1372 (|#2|)) (-15 -3155 (|#1| (-1177 |#2|))) (-15 -3155 ((-1177 |#2|) |#1|)) (-15 -4243 ((-635 |#2|) (-1177 |#1|))) (-15 -4243 ((-1177 |#2|) |#1|)) (-15 -3537 ((-1091 |#2|) |#1|)) (-15 -2516 ((-1091 |#2|) |#1|)) (-15 -1372 (|#2| (-1177 |#1|))) (-15 -4243 ((-635 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -4243 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -3297 (|#2| |#1|)) (-15 -1323 (|#2| |#1|)) (-15 -3090 ((-860))) (-15 -2222 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2222 (|#1| (-528))) (-15 -3742 ((-717))) (-15 ** (|#1| |#1| (-717))) (-15 -1312 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-860))) (-15 * (|#1| (-528) |#1|)) (-15 -2286 (|#1| |#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 * (|#1| (-717) |#1|)) (-15 * (|#1| (-860) |#1|)) (-15 -2275 (|#1| |#1| |#1|)) (-15 -2222 ((-802) |#1|)) (-15 -2186 ((-110) |#1| |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 93 (-1463 (|has| |#1| (-520)) (-12 (|has| |#1| (-288)) (|has| |#1| (-848)))))) (-1738 (($ $) 94 (-1463 (|has| |#1| (-520)) (-12 (|has| |#1| (-288)) (|has| |#1| (-848)))))) (-1811 (((-110) $) 96 (-1463 (|has| |#1| (-520)) (-12 (|has| |#1| (-288)) (|has| |#1| (-848)))))) (-2486 (((-635 |#1|) (-1177 $)) 46) (((-635 |#1|)) 61)) (-1323 ((|#1| $) 52)) (-2880 (($ $) 228 (|has| |#1| (-1117)))) (-2735 (($ $) 211 (|has| |#1| (-1117)))) (-2338 (((-1105 (-860) (-717)) (-528)) 147 (|has| |#1| (-329)))) (-3181 (((-3 $ "failed") $ $) 19)) (-2152 (((-398 (-1091 $)) (-1091 $)) 242 (-12 (|has| |#1| (-288)) (|has| |#1| (-848))))) (-1232 (($ $) 113 (-1463 (-12 (|has| |#1| (-288)) (|has| |#1| (-848))) (|has| |#1| (-343))))) (-2705 (((-398 $) $) 114 (-1463 (-12 (|has| |#1| (-288)) (|has| |#1| (-848))) (|has| |#1| (-343))))) (-2450 (($ $) 241 (-12 (|has| |#1| (-938)) (|has| |#1| (-1117))))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) 245 (-12 (|has| |#1| (-288)) (|has| |#1| (-848))))) (-2213 (((-110) $ $) 104 (|has| |#1| (-288)))) (-2856 (((-717)) 87 (|has| |#1| (-348)))) (-2859 (($ $) 227 (|has| |#1| (-1117)))) (-2712 (($ $) 212 (|has| |#1| (-1117)))) (-2904 (($ $) 226 (|has| |#1| (-1117)))) (-2761 (($ $) 213 (|has| |#1| (-1117)))) (-2816 (($) 17 T CONST)) (-3001 (((-3 (-528) "failed") $) 169 (|has| |#1| (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) 167 (|has| |#1| (-972 (-387 (-528))))) (((-3 |#1| "failed") $) 166)) (-2409 (((-528) $) 170 (|has| |#1| (-972 (-528)))) (((-387 (-528)) $) 168 (|has| |#1| (-972 (-387 (-528))))) ((|#1| $) 165)) (-1945 (($ (-1177 |#1|) (-1177 $)) 48) (($ (-1177 |#1|)) 64)) (-2413 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-329)))) (-3519 (($ $ $) 108 (|has| |#1| (-288)))) (-3847 (((-635 |#1|) $ (-1177 $)) 53) (((-635 |#1|) $) 59)) (-2120 (((-635 (-528)) (-635 $)) 164 (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) 163 (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) 162) (((-635 |#1|) (-635 $)) 161)) (-1422 (($ (-1091 |#1|)) 158) (((-3 $ "failed") (-387 (-1091 |#1|))) 155 (|has| |#1| (-343)))) (-1312 (((-3 $ "failed") $) 34)) (-2461 ((|#1| $) 253)) (-1793 (((-3 (-387 (-528)) "failed") $) 246 (|has| |#1| (-513)))) (-3650 (((-110) $) 248 (|has| |#1| (-513)))) (-3099 (((-387 (-528)) $) 247 (|has| |#1| (-513)))) (-3090 (((-860)) 54)) (-1338 (($) 90 (|has| |#1| (-348)))) (-3498 (($ $ $) 107 (|has| |#1| (-288)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 102 (|has| |#1| (-288)))) (-2916 (($) 149 (|has| |#1| (-329)))) (-4086 (((-110) $) 150 (|has| |#1| (-329)))) (-2790 (($ $ (-717)) 141 (|has| |#1| (-329))) (($ $) 140 (|has| |#1| (-329)))) (-2124 (((-110) $) 115 (-1463 (-12 (|has| |#1| (-288)) (|has| |#1| (-848))) (|has| |#1| (-343))))) (-3810 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-989)) (|has| |#1| (-1117))))) (-1505 (($) 238 (|has| |#1| (-1117)))) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) 261 (|has| |#1| (-825 (-528)))) (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) 260 (|has| |#1| (-825 (-359))))) (-3689 (((-860) $) 152 (|has| |#1| (-329))) (((-779 (-860)) $) 138 (|has| |#1| (-329)))) (-1297 (((-110) $) 31)) (-2796 (($ $ (-528)) 240 (-12 (|has| |#1| (-938)) (|has| |#1| (-1117))))) (-3297 ((|#1| $) 51)) (-3296 (((-3 $ "failed") $) 142 (|has| |#1| (-329)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) 111 (|has| |#1| (-288)))) (-3537 (((-1091 |#1|) $) 44 (|has| |#1| (-343)))) (-1436 (($ $ $) 207 (|has| |#1| (-793)))) (-1736 (($ $ $) 206 (|has| |#1| (-793)))) (-3106 (($ (-1 |#1| |#1|) $) 262)) (-3201 (((-860) $) 89 (|has| |#1| (-348)))) (-2097 (($ $) 235 (|has| |#1| (-1117)))) (-1412 (((-1091 |#1|) $) 156)) (-2057 (($ (-595 $)) 100 (-1463 (|has| |#1| (-288)) (-12 (|has| |#1| (-288)) (|has| |#1| (-848))))) (($ $ $) 99 (-1463 (|has| |#1| (-288)) (-12 (|has| |#1| (-288)) (|has| |#1| (-848)))))) (-3034 (((-1078) $) 9)) (-2652 (($ $) 116 (|has| |#1| (-343)))) (-4197 (($) 143 (|has| |#1| (-329)) CONST)) (-3108 (($ (-860)) 88 (|has| |#1| (-348)))) (-1225 (($) 257)) (-2473 ((|#1| $) 254)) (-2495 (((-1042) $) 10)) (-1261 (($) 160)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 101 (-1463 (|has| |#1| (-288)) (-12 (|has| |#1| (-288)) (|has| |#1| (-848)))))) (-2088 (($ (-595 $)) 98 (-1463 (|has| |#1| (-288)) (-12 (|has| |#1| (-288)) (|has| |#1| (-848))))) (($ $ $) 97 (-1463 (|has| |#1| (-288)) (-12 (|has| |#1| (-288)) (|has| |#1| (-848)))))) (-3010 (((-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528))))) 146 (|has| |#1| (-329)))) (-3261 (((-398 (-1091 $)) (-1091 $)) 244 (-12 (|has| |#1| (-288)) (|has| |#1| (-848))))) (-2394 (((-398 (-1091 $)) (-1091 $)) 243 (-12 (|has| |#1| (-288)) (|has| |#1| (-848))))) (-2437 (((-398 $) $) 112 (-1463 (-12 (|has| |#1| (-288)) (|has| |#1| (-848))) (|has| |#1| (-343))))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-288))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 109 (|has| |#1| (-288)))) (-3477 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-520))) (((-3 $ "failed") $ $) 92 (-1463 (|has| |#1| (-520)) (-12 (|has| |#1| (-288)) (|has| |#1| (-848)))))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 103 (|has| |#1| (-288)))) (-2656 (($ $) 236 (|has| |#1| (-1117)))) (-4014 (($ $ (-595 |#1|) (-595 |#1|)) 268 (|has| |#1| (-290 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-290 |#1|))) (($ $ (-275 |#1|)) 266 (|has| |#1| (-290 |#1|))) (($ $ (-595 (-275 |#1|))) 265 (|has| |#1| (-290 |#1|))) (($ $ (-595 (-1095)) (-595 |#1|)) 264 (|has| |#1| (-489 (-1095) |#1|))) (($ $ (-1095) |#1|) 263 (|has| |#1| (-489 (-1095) |#1|)))) (-3973 (((-717) $) 105 (|has| |#1| (-288)))) (-3043 (($ $ |#1|) 269 (|has| |#1| (-267 |#1| |#1|)))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 106 (|has| |#1| (-288)))) (-1372 ((|#1| (-1177 $)) 47) ((|#1|) 60)) (-3500 (((-717) $) 151 (|has| |#1| (-329))) (((-3 (-717) "failed") $ $) 139 (|has| |#1| (-329)))) (-3235 (($ $ (-1 |#1| |#1|) (-717)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-595 (-1095)) (-595 (-717))) 130 (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) 131 (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) 132 (|has| |#1| (-839 (-1095)))) (($ $ (-1095)) 133 (|has| |#1| (-839 (-1095)))) (($ $ (-717)) 135 (-1463 (-3287 (|has| |#1| (-343)) (|has| |#1| (-215))) (|has| |#1| (-215)) (-3287 (|has| |#1| (-215)) (|has| |#1| (-343))))) (($ $) 137 (-1463 (-3287 (|has| |#1| (-343)) (|has| |#1| (-215))) (|has| |#1| (-215)) (-3287 (|has| |#1| (-215)) (|has| |#1| (-343)))))) (-2348 (((-635 |#1|) (-1177 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-343)))) (-4090 (((-1091 |#1|)) 159)) (-2917 (($ $) 225 (|has| |#1| (-1117)))) (-2773 (($ $) 214 (|has| |#1| (-1117)))) (-1984 (($) 148 (|has| |#1| (-329)))) (-2892 (($ $) 224 (|has| |#1| (-1117)))) (-2749 (($ $) 215 (|has| |#1| (-1117)))) (-2869 (($ $) 223 (|has| |#1| (-1117)))) (-2724 (($ $) 216 (|has| |#1| (-1117)))) (-4243 (((-1177 |#1|) $ (-1177 $)) 50) (((-635 |#1|) (-1177 $) (-1177 $)) 49) (((-1177 |#1|) $) 66) (((-635 |#1|) (-1177 $)) 65)) (-3155 (((-1177 |#1|) $) 63) (($ (-1177 |#1|)) 62) (((-1091 |#1|) $) 171) (($ (-1091 |#1|)) 157) (((-831 (-528)) $) 259 (|has| |#1| (-570 (-831 (-528))))) (((-831 (-359)) $) 258 (|has| |#1| (-570 (-831 (-359))))) (((-159 (-359)) $) 210 (|has| |#1| (-957))) (((-159 (-207)) $) 209 (|has| |#1| (-957))) (((-504) $) 208 (|has| |#1| (-570 (-504))))) (-4097 (($ $) 256)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) 145 (-1463 (-3287 (|has| $ (-138)) (-12 (|has| |#1| (-288)) (|has| |#1| (-848)))) (|has| |#1| (-329))))) (-4095 (($ |#1| |#1|) 255)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ |#1|) 37) (($ (-387 (-528))) 86 (-1463 (|has| |#1| (-343)) (|has| |#1| (-972 (-387 (-528)))))) (($ $) 91 (-1463 (|has| |#1| (-520)) (-12 (|has| |#1| (-288)) (|has| |#1| (-848)))))) (-3749 (($ $) 144 (|has| |#1| (-329))) (((-3 $ "failed") $) 43 (-1463 (-3287 (|has| $ (-138)) (-12 (|has| |#1| (-288)) (|has| |#1| (-848)))) (|has| |#1| (-138))))) (-2516 (((-1091 |#1|) $) 45)) (-3742 (((-717)) 29)) (-1400 (((-1177 $)) 67)) (-2953 (($ $) 234 (|has| |#1| (-1117)))) (-2811 (($ $) 222 (|has| |#1| (-1117)))) (-4016 (((-110) $ $) 95 (-1463 (|has| |#1| (-520)) (-12 (|has| |#1| (-288)) (|has| |#1| (-848)))))) (-2928 (($ $) 233 (|has| |#1| (-1117)))) (-2784 (($ $) 221 (|has| |#1| (-1117)))) (-2981 (($ $) 232 (|has| |#1| (-1117)))) (-2836 (($ $) 220 (|has| |#1| (-1117)))) (-3625 ((|#1| $) 250 (|has| |#1| (-1117)))) (-3592 (($ $) 231 (|has| |#1| (-1117)))) (-2846 (($ $) 219 (|has| |#1| (-1117)))) (-2967 (($ $) 230 (|has| |#1| (-1117)))) (-2825 (($ $) 218 (|has| |#1| (-1117)))) (-2940 (($ $) 229 (|has| |#1| (-1117)))) (-2797 (($ $) 217 (|has| |#1| (-1117)))) (-1775 (($ $) 251 (|has| |#1| (-989)))) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33) (($ $ (-528)) 117 (|has| |#1| (-343)))) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-3245 (($ $ (-1 |#1| |#1|) (-717)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-595 (-1095)) (-595 (-717))) 126 (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) 127 (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) 128 (|has| |#1| (-839 (-1095)))) (($ $ (-1095)) 129 (|has| |#1| (-839 (-1095)))) (($ $ (-717)) 134 (-1463 (-3287 (|has| |#1| (-343)) (|has| |#1| (-215))) (|has| |#1| (-215)) (-3287 (|has| |#1| (-215)) (|has| |#1| (-343))))) (($ $) 136 (-1463 (-3287 (|has| |#1| (-343)) (|has| |#1| (-215))) (|has| |#1| (-215)) (-3287 (|has| |#1| (-215)) (|has| |#1| (-343)))))) (-2244 (((-110) $ $) 204 (|has| |#1| (-793)))) (-2220 (((-110) $ $) 203 (|has| |#1| (-793)))) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 205 (|has| |#1| (-793)))) (-2208 (((-110) $ $) 202 (|has| |#1| (-793)))) (-2296 (($ $ $) 121 (|has| |#1| (-343)))) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32) (($ $ (-387 (-528))) 239 (-12 (|has| |#1| (-938)) (|has| |#1| (-1117)))) (($ $ $) 237 (|has| |#1| (-1117))) (($ $ (-528)) 118 (|has| |#1| (-343)))) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-387 (-528)) $) 120 (|has| |#1| (-343))) (($ $ (-387 (-528))) 119 (|has| |#1| (-343)))))
+((-2828 (((-110) $ $) NIL)) (-1373 (($ (-516)) 13) (($ $ $) 14)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 17)) (-3317 (((-110) $ $) 9)))
+(((-152) (-13 (-1027) (-10 -8 (-15 -1373 ($ (-516))) (-15 -1373 ($ $ $))))) (T -152))
+((-1373 (*1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-152)))) (-1373 (*1 *1 *1 *1) (-5 *1 (-152))))
+(-13 (-1027) (-10 -8 (-15 -1373 ($ (-516))) (-15 -1373 ($ $ $))))
+((-2273 (((-111) (-1098)) 97)))
+(((-153) (-10 -7 (-15 -2273 ((-111) (-1098))))) (T -153))
+((-2273 (*1 *2 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-111)) (-5 *1 (-153)))))
+(-10 -7 (-15 -2273 ((-111) (-1098))))
+((-1605 ((|#3| |#3|) 19)))
+(((-154 |#1| |#2| |#3|) (-10 -7 (-15 -1605 (|#3| |#3|))) (-984) (-1155 |#1|) (-1155 |#2|)) (T -154))
+((-1605 (*1 *2 *2) (-12 (-4 *3 (-984)) (-4 *4 (-1155 *3)) (-5 *1 (-154 *3 *4 *2)) (-4 *2 (-1155 *4)))))
+(-10 -7 (-15 -1605 (|#3| |#3|)))
+((-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 217)) (-3608 ((|#2| $) 96)) (-3766 (($ $) 245)) (-3921 (($ $) 239)) (-2967 (((-3 (-594 (-1092 $)) "failed") (-594 (-1092 $)) (-1092 $)) 40)) (-3764 (($ $) 243)) (-3920 (($ $) 237)) (-3432 (((-3 (-516) #1="failed") $) NIL) (((-3 (-388 (-516)) #1#) $) NIL) (((-3 |#2| #1#) $) 141)) (-3431 (((-516) $) NIL) (((-388 (-516)) $) NIL) ((|#2| $) 139)) (-2824 (($ $ $) 222)) (-2297 (((-637 (-516)) (-637 $)) NIL) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL) (((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 $) (-1179 $)) 155) (((-637 |#2|) (-637 $)) 149)) (-4121 (($ (-1092 |#2|)) 119) (((-3 $ "failed") (-388 (-1092 |#2|))) NIL)) (-3741 (((-3 $ "failed") $) 209)) (-3288 (((-3 (-388 (-516)) "failed") $) 199)) (-3287 (((-110) $) 194)) (-3286 (((-388 (-516)) $) 197)) (-3368 (((-860)) 89)) (-2823 (($ $ $) 224)) (-1374 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-3909 (($) 234)) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) 186) (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) 191)) (-3391 ((|#2| $) 94)) (-2073 (((-1092 |#2|) $) 121)) (-4234 (($ (-1 |#2| |#2|) $) 102)) (-4218 (($ $) 236)) (-3343 (((-1092 |#2|) $) 120)) (-2668 (($ $) 202)) (-1376 (($) 97)) (-2968 (((-386 (-1092 $)) (-1092 $)) 88)) (-2969 (((-386 (-1092 $)) (-1092 $)) 57)) (-3740 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-4219 (($ $) 235)) (-1654 (((-719) $) 219)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 229)) (-4036 ((|#2| (-1179 $)) NIL) ((|#2|) 91)) (-4089 (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-594 (-1098)) (-594 (-719))) NIL) (($ $ (-1098) (-719)) NIL) (($ $ (-594 (-1098))) NIL) (($ $ (-1098)) NIL) (($ $ (-719)) NIL) (($ $) NIL)) (-3459 (((-1092 |#2|)) 114)) (-3765 (($ $) 244)) (-3916 (($ $) 238)) (-3497 (((-1179 |#2|) $ (-1179 $)) 128) (((-637 |#2|) (-1179 $) (-1179 $)) NIL) (((-1179 |#2|) $) 110) (((-637 |#2|) (-1179 $)) NIL)) (-4246 (((-1179 |#2|) $) NIL) (($ (-1179 |#2|)) NIL) (((-1092 |#2|) $) NIL) (($ (-1092 |#2|)) NIL) (((-831 (-516)) $) 177) (((-831 (-359)) $) 181) (((-158 (-359)) $) 167) (((-158 (-208)) $) 162) (((-505) $) 173)) (-3273 (($ $) 98)) (-4233 (((-805) $) 138) (($ (-516)) NIL) (($ |#2|) NIL) (($ (-388 (-516))) NIL) (($ $) NIL)) (-2632 (((-1092 |#2|) $) 23)) (-3385 (((-719)) 100)) (-3772 (($ $) 248)) (-3760 (($ $) 242)) (-3770 (($ $) 246)) (-3758 (($ $) 240)) (-2255 ((|#2| $) 233)) (-3771 (($ $) 247)) (-3759 (($ $) 241)) (-3661 (($ $) 157)) (-3317 (((-110) $ $) 104)) (-2948 (((-110) $ $) 193)) (-4116 (($ $) 106) (($ $ $) NIL)) (-4118 (($ $ $) 105)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-388 (-516))) 267) (($ $ $) NIL) (($ $ (-516)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-388 (-516)) $) NIL) (($ $ (-388 (-516))) NIL)))
+(((-155 |#1| |#2|) (-10 -8 (-15 -4089 (|#1| |#1|)) (-15 -4089 (|#1| |#1| (-719))) (-15 -4233 (|#1| |#1|)) (-15 -3740 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2119 ((-2 (|:| -1842 |#1|) (|:| -4256 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4089 (|#1| |#1| (-1098))) (-15 -4089 (|#1| |#1| (-594 (-1098)))) (-15 -4089 (|#1| |#1| (-1098) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)) (-594 (-719)))) (-15 -1654 ((-719) |#1|)) (-15 -3145 ((-2 (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1|)) (-15 -2823 (|#1| |#1| |#1|)) (-15 -2824 (|#1| |#1| |#1|)) (-15 -2668 (|#1| |#1|)) (-15 ** (|#1| |#1| (-516))) (-15 * (|#1| |#1| (-388 (-516)))) (-15 * (|#1| (-388 (-516)) |#1|)) (-15 -4233 (|#1| (-388 (-516)))) (-15 -2948 ((-110) |#1| |#1|)) (-15 -4246 ((-505) |#1|)) (-15 -4246 ((-158 (-208)) |#1|)) (-15 -4246 ((-158 (-359)) |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -3758 (|#1| |#1|)) (-15 -3760 (|#1| |#1|)) (-15 -3765 (|#1| |#1|)) (-15 -3764 (|#1| |#1|)) (-15 -3766 (|#1| |#1|)) (-15 -3771 (|#1| |#1|)) (-15 -3770 (|#1| |#1|)) (-15 -3772 (|#1| |#1|)) (-15 -4218 (|#1| |#1|)) (-15 -4219 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3909 (|#1|)) (-15 ** (|#1| |#1| (-388 (-516)))) (-15 -2969 ((-386 (-1092 |#1|)) (-1092 |#1|))) (-15 -2968 ((-386 (-1092 |#1|)) (-1092 |#1|))) (-15 -2967 ((-3 (-594 (-1092 |#1|)) "failed") (-594 (-1092 |#1|)) (-1092 |#1|))) (-15 -3288 ((-3 (-388 (-516)) "failed") |#1|)) (-15 -3286 ((-388 (-516)) |#1|)) (-15 -3287 ((-110) |#1|)) (-15 -1374 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2255 (|#2| |#1|)) (-15 -3661 (|#1| |#1|)) (-15 -3740 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3273 (|#1| |#1|)) (-15 -1376 (|#1|)) (-15 -4246 ((-831 (-359)) |#1|)) (-15 -4246 ((-831 (-516)) |#1|)) (-15 -3060 ((-829 (-359) |#1|) |#1| (-831 (-359)) (-829 (-359) |#1|))) (-15 -3060 ((-829 (-516) |#1|) |#1| (-831 (-516)) (-829 (-516) |#1|))) (-15 -4234 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -4121 ((-3 |#1| "failed") (-388 (-1092 |#2|)))) (-15 -3343 ((-1092 |#2|) |#1|)) (-15 -4246 (|#1| (-1092 |#2|))) (-15 -4121 (|#1| (-1092 |#2|))) (-15 -3459 ((-1092 |#2|))) (-15 -2297 ((-637 |#2|) (-637 |#1|))) (-15 -2297 ((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 |#1|) (-1179 |#1|))) (-15 -2297 ((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 |#1|) (-1179 |#1|))) (-15 -2297 ((-637 (-516)) (-637 |#1|))) (-15 -3431 (|#2| |#1|)) (-15 -3432 ((-3 |#2| #1="failed") |#1|)) (-15 -3432 ((-3 (-388 (-516)) #1#) |#1|)) (-15 -3431 ((-388 (-516)) |#1|)) (-15 -3432 ((-3 (-516) #1#) |#1|)) (-15 -3431 ((-516) |#1|)) (-15 -4246 ((-1092 |#2|) |#1|)) (-15 -4036 (|#2|)) (-15 -4246 (|#1| (-1179 |#2|))) (-15 -4246 ((-1179 |#2|) |#1|)) (-15 -3497 ((-637 |#2|) (-1179 |#1|))) (-15 -3497 ((-1179 |#2|) |#1|)) (-15 -2073 ((-1092 |#2|) |#1|)) (-15 -2632 ((-1092 |#2|) |#1|)) (-15 -4036 (|#2| (-1179 |#1|))) (-15 -3497 ((-637 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3497 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -3391 (|#2| |#1|)) (-15 -3608 (|#2| |#1|)) (-15 -3368 ((-860))) (-15 -4233 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4233 (|#1| (-516))) (-15 -3385 ((-719))) (-15 ** (|#1| |#1| (-719))) (-15 -3741 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-860))) (-15 * (|#1| (-516) |#1|)) (-15 -4116 (|#1| |#1| |#1|)) (-15 -4116 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-860) |#1|)) (-15 -4118 (|#1| |#1| |#1|)) (-15 -4233 ((-805) |#1|)) (-15 -3317 ((-110) |#1| |#1|))) (-156 |#2|) (-162)) (T -155))
+((-3385 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-719)) (-5 *1 (-155 *3 *4)) (-4 *3 (-156 *4)))) (-3368 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-860)) (-5 *1 (-155 *3 *4)) (-4 *3 (-156 *4)))) (-4036 (*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-155 *3 *2)) (-4 *3 (-156 *2)))) (-3459 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1092 *4)) (-5 *1 (-155 *3 *4)) (-4 *3 (-156 *4)))))
+(-10 -8 (-15 -4089 (|#1| |#1|)) (-15 -4089 (|#1| |#1| (-719))) (-15 -4233 (|#1| |#1|)) (-15 -3740 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2119 ((-2 (|:| -1842 |#1|) (|:| -4256 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4089 (|#1| |#1| (-1098))) (-15 -4089 (|#1| |#1| (-594 (-1098)))) (-15 -4089 (|#1| |#1| (-1098) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)) (-594 (-719)))) (-15 -1654 ((-719) |#1|)) (-15 -3145 ((-2 (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1|)) (-15 -2823 (|#1| |#1| |#1|)) (-15 -2824 (|#1| |#1| |#1|)) (-15 -2668 (|#1| |#1|)) (-15 ** (|#1| |#1| (-516))) (-15 * (|#1| |#1| (-388 (-516)))) (-15 * (|#1| (-388 (-516)) |#1|)) (-15 -4233 (|#1| (-388 (-516)))) (-15 -2948 ((-110) |#1| |#1|)) (-15 -4246 ((-505) |#1|)) (-15 -4246 ((-158 (-208)) |#1|)) (-15 -4246 ((-158 (-359)) |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -3758 (|#1| |#1|)) (-15 -3760 (|#1| |#1|)) (-15 -3765 (|#1| |#1|)) (-15 -3764 (|#1| |#1|)) (-15 -3766 (|#1| |#1|)) (-15 -3771 (|#1| |#1|)) (-15 -3770 (|#1| |#1|)) (-15 -3772 (|#1| |#1|)) (-15 -4218 (|#1| |#1|)) (-15 -4219 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3909 (|#1|)) (-15 ** (|#1| |#1| (-388 (-516)))) (-15 -2969 ((-386 (-1092 |#1|)) (-1092 |#1|))) (-15 -2968 ((-386 (-1092 |#1|)) (-1092 |#1|))) (-15 -2967 ((-3 (-594 (-1092 |#1|)) "failed") (-594 (-1092 |#1|)) (-1092 |#1|))) (-15 -3288 ((-3 (-388 (-516)) "failed") |#1|)) (-15 -3286 ((-388 (-516)) |#1|)) (-15 -3287 ((-110) |#1|)) (-15 -1374 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2255 (|#2| |#1|)) (-15 -3661 (|#1| |#1|)) (-15 -3740 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3273 (|#1| |#1|)) (-15 -1376 (|#1|)) (-15 -4246 ((-831 (-359)) |#1|)) (-15 -4246 ((-831 (-516)) |#1|)) (-15 -3060 ((-829 (-359) |#1|) |#1| (-831 (-359)) (-829 (-359) |#1|))) (-15 -3060 ((-829 (-516) |#1|) |#1| (-831 (-516)) (-829 (-516) |#1|))) (-15 -4234 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -4121 ((-3 |#1| "failed") (-388 (-1092 |#2|)))) (-15 -3343 ((-1092 |#2|) |#1|)) (-15 -4246 (|#1| (-1092 |#2|))) (-15 -4121 (|#1| (-1092 |#2|))) (-15 -3459 ((-1092 |#2|))) (-15 -2297 ((-637 |#2|) (-637 |#1|))) (-15 -2297 ((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 |#1|) (-1179 |#1|))) (-15 -2297 ((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 |#1|) (-1179 |#1|))) (-15 -2297 ((-637 (-516)) (-637 |#1|))) (-15 -3431 (|#2| |#1|)) (-15 -3432 ((-3 |#2| #1="failed") |#1|)) (-15 -3432 ((-3 (-388 (-516)) #1#) |#1|)) (-15 -3431 ((-388 (-516)) |#1|)) (-15 -3432 ((-3 (-516) #1#) |#1|)) (-15 -3431 ((-516) |#1|)) (-15 -4246 ((-1092 |#2|) |#1|)) (-15 -4036 (|#2|)) (-15 -4246 (|#1| (-1179 |#2|))) (-15 -4246 ((-1179 |#2|) |#1|)) (-15 -3497 ((-637 |#2|) (-1179 |#1|))) (-15 -3497 ((-1179 |#2|) |#1|)) (-15 -2073 ((-1092 |#2|) |#1|)) (-15 -2632 ((-1092 |#2|) |#1|)) (-15 -4036 (|#2| (-1179 |#1|))) (-15 -3497 ((-637 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3497 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -3391 (|#2| |#1|)) (-15 -3608 (|#2| |#1|)) (-15 -3368 ((-860))) (-15 -4233 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4233 (|#1| (-516))) (-15 -3385 ((-719))) (-15 ** (|#1| |#1| (-719))) (-15 -3741 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-860))) (-15 * (|#1| (-516) |#1|)) (-15 -4116 (|#1| |#1| |#1|)) (-15 -4116 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-860) |#1|)) (-15 -4118 (|#1| |#1| |#1|)) (-15 -4233 ((-805) |#1|)) (-15 -3317 ((-110) |#1| |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 93 (-3810 (|has| |#1| (-523)) (-12 (|has| |#1| (-289)) (|has| |#1| (-851)))))) (-2118 (($ $) 94 (-3810 (|has| |#1| (-523)) (-12 (|has| |#1| (-289)) (|has| |#1| (-851)))))) (-2116 (((-110) $) 96 (-3810 (|has| |#1| (-523)) (-12 (|has| |#1| (-289)) (|has| |#1| (-851)))))) (-1851 (((-637 |#1|) (-1179 $)) 46) (((-637 |#1|)) 61)) (-3608 ((|#1| $) 52)) (-3766 (($ $) 228 (|has| |#1| (-1120)))) (-3921 (($ $) 211 (|has| |#1| (-1120)))) (-1741 (((-1107 (-860) (-719)) (-516)) 147 (|has| |#1| (-331)))) (-1319 (((-3 $ "failed") $ $) 19)) (-2970 (((-386 (-1092 $)) (-1092 $)) 242 (-12 (|has| |#1| (-289)) (|has| |#1| (-851))))) (-4053 (($ $) 113 (-3810 (-12 (|has| |#1| (-289)) (|has| |#1| (-851))) (|has| |#1| (-344))))) (-4245 (((-386 $) $) 114 (-3810 (-12 (|has| |#1| (-289)) (|has| |#1| (-851))) (|has| |#1| (-344))))) (-3301 (($ $) 241 (-12 (|has| |#1| (-941)) (|has| |#1| (-1120))))) (-2967 (((-3 (-594 (-1092 $)) "failed") (-594 (-1092 $)) (-1092 $)) 245 (-12 (|has| |#1| (-289)) (|has| |#1| (-851))))) (-1655 (((-110) $ $) 104 (|has| |#1| (-289)))) (-3395 (((-719)) 87 (|has| |#1| (-349)))) (-3764 (($ $) 227 (|has| |#1| (-1120)))) (-3920 (($ $) 212 (|has| |#1| (-1120)))) (-3768 (($ $) 226 (|has| |#1| (-1120)))) (-3919 (($ $) 213 (|has| |#1| (-1120)))) (-3815 (($) 17 T CONST)) (-3432 (((-3 (-516) #1="failed") $) 169 (|has| |#1| (-975 (-516)))) (((-3 (-388 (-516)) #1#) $) 167 (|has| |#1| (-975 (-388 (-516))))) (((-3 |#1| #1#) $) 166)) (-3431 (((-516) $) 170 (|has| |#1| (-975 (-516)))) (((-388 (-516)) $) 168 (|has| |#1| (-975 (-388 (-516))))) ((|#1| $) 165)) (-1861 (($ (-1179 |#1|) (-1179 $)) 48) (($ (-1179 |#1|)) 64)) (-1739 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-331)))) (-2824 (($ $ $) 108 (|has| |#1| (-289)))) (-1850 (((-637 |#1|) $ (-1179 $)) 53) (((-637 |#1|) $) 59)) (-2297 (((-637 (-516)) (-637 $)) 164 (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) 163 (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) 162) (((-637 |#1|) (-637 $)) 161)) (-4121 (($ (-1092 |#1|)) 158) (((-3 $ "failed") (-388 (-1092 |#1|))) 155 (|has| |#1| (-344)))) (-3741 (((-3 $ "failed") $) 34)) (-3925 ((|#1| $) 253)) (-3288 (((-3 (-388 (-516)) "failed") $) 246 (|has| |#1| (-515)))) (-3287 (((-110) $) 248 (|has| |#1| (-515)))) (-3286 (((-388 (-516)) $) 247 (|has| |#1| (-515)))) (-3368 (((-860)) 54)) (-3258 (($) 90 (|has| |#1| (-349)))) (-2823 (($ $ $) 107 (|has| |#1| (-289)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 102 (|has| |#1| (-289)))) (-3097 (($) 149 (|has| |#1| (-331)))) (-1746 (((-110) $) 150 (|has| |#1| (-331)))) (-1836 (($ $ (-719)) 141 (|has| |#1| (-331))) (($ $) 140 (|has| |#1| (-331)))) (-4005 (((-110) $) 115 (-3810 (-12 (|has| |#1| (-289)) (|has| |#1| (-851))) (|has| |#1| (-344))))) (-1374 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-992)) (|has| |#1| (-1120))))) (-3909 (($) 238 (|has| |#1| (-1120)))) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) 261 (|has| |#1| (-827 (-516)))) (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) 260 (|has| |#1| (-827 (-359))))) (-4050 (((-860) $) 152 (|has| |#1| (-331))) (((-780 (-860)) $) 138 (|has| |#1| (-331)))) (-2436 (((-110) $) 31)) (-3275 (($ $ (-516)) 240 (-12 (|has| |#1| (-941)) (|has| |#1| (-1120))))) (-3391 ((|#1| $) 51)) (-3723 (((-3 $ "failed") $) 142 (|has| |#1| (-331)))) (-1652 (((-3 (-594 $) #2="failed") (-594 $) $) 111 (|has| |#1| (-289)))) (-2073 (((-1092 |#1|) $) 44 (|has| |#1| (-344)))) (-3596 (($ $ $) 207 (|has| |#1| (-795)))) (-3597 (($ $ $) 206 (|has| |#1| (-795)))) (-4234 (($ (-1 |#1| |#1|) $) 262)) (-2069 (((-860) $) 89 (|has| |#1| (-349)))) (-4218 (($ $) 235 (|has| |#1| (-1120)))) (-3343 (((-1092 |#1|) $) 156)) (-1963 (($ (-594 $)) 100 (-3810 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-851))))) (($ $ $) 99 (-3810 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-851)))))) (-3513 (((-1081) $) 9)) (-2668 (($ $) 116 (|has| |#1| (-344)))) (-3724 (($) 143 (|has| |#1| (-331)) CONST)) (-2426 (($ (-860)) 88 (|has| |#1| (-349)))) (-1376 (($) 257)) (-3926 ((|#1| $) 254)) (-3514 (((-1045) $) 10)) (-2435 (($) 160)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 101 (-3810 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-851)))))) (-3419 (($ (-594 $)) 98 (-3810 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-851))))) (($ $ $) 97 (-3810 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-851)))))) (-1742 (((-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516))))) 146 (|has| |#1| (-331)))) (-2968 (((-386 (-1092 $)) (-1092 $)) 244 (-12 (|has| |#1| (-289)) (|has| |#1| (-851))))) (-2969 (((-386 (-1092 $)) (-1092 $)) 243 (-12 (|has| |#1| (-289)) (|has| |#1| (-851))))) (-4011 (((-386 $) $) 112 (-3810 (-12 (|has| |#1| (-289)) (|has| |#1| (-851))) (|has| |#1| (-344))))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 110 (|has| |#1| (-289))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 109 (|has| |#1| (-289)))) (-3740 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-523))) (((-3 $ "failed") $ $) 92 (-3810 (|has| |#1| (-523)) (-12 (|has| |#1| (-289)) (|has| |#1| (-851)))))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 103 (|has| |#1| (-289)))) (-4219 (($ $) 236 (|has| |#1| (-1120)))) (-4046 (($ $ (-594 |#1|) (-594 |#1|)) 268 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-291 |#1|))) (($ $ (-275 |#1|)) 266 (|has| |#1| (-291 |#1|))) (($ $ (-594 (-275 |#1|))) 265 (|has| |#1| (-291 |#1|))) (($ $ (-594 (-1098)) (-594 |#1|)) 264 (|has| |#1| (-491 (-1098) |#1|))) (($ $ (-1098) |#1|) 263 (|has| |#1| (-491 (-1098) |#1|)))) (-1654 (((-719) $) 105 (|has| |#1| (-289)))) (-4078 (($ $ |#1|) 269 (|has| |#1| (-268 |#1| |#1|)))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 106 (|has| |#1| (-289)))) (-4036 ((|#1| (-1179 $)) 47) ((|#1|) 60)) (-1837 (((-719) $) 151 (|has| |#1| (-331))) (((-3 (-719) "failed") $ $) 139 (|has| |#1| (-331)))) (-4089 (($ $ (-1 |#1| |#1|) (-719)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-594 (-1098)) (-594 (-719))) 130 (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) 131 (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) 132 (|has| |#1| (-841 (-1098)))) (($ $ (-1098)) 133 (|has| |#1| (-841 (-1098)))) (($ $ (-719)) 135 (-3810 (-3119 (|has| |#1| (-344)) (|has| |#1| (-216))) (|has| |#1| (-216)) (-3119 (|has| |#1| (-216)) (|has| |#1| (-344))))) (($ $) 137 (-3810 (-3119 (|has| |#1| (-344)) (|has| |#1| (-216))) (|has| |#1| (-216)) (-3119 (|has| |#1| (-216)) (|has| |#1| (-344)))))) (-2434 (((-637 |#1|) (-1179 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-344)))) (-3459 (((-1092 |#1|)) 159)) (-3769 (($ $) 225 (|has| |#1| (-1120)))) (-3918 (($ $) 214 (|has| |#1| (-1120)))) (-1740 (($) 148 (|has| |#1| (-331)))) (-3767 (($ $) 224 (|has| |#1| (-1120)))) (-3917 (($ $) 215 (|has| |#1| (-1120)))) (-3765 (($ $) 223 (|has| |#1| (-1120)))) (-3916 (($ $) 216 (|has| |#1| (-1120)))) (-3497 (((-1179 |#1|) $ (-1179 $)) 50) (((-637 |#1|) (-1179 $) (-1179 $)) 49) (((-1179 |#1|) $) 66) (((-637 |#1|) (-1179 $)) 65)) (-4246 (((-1179 |#1|) $) 63) (($ (-1179 |#1|)) 62) (((-1092 |#1|) $) 171) (($ (-1092 |#1|)) 157) (((-831 (-516)) $) 259 (|has| |#1| (-572 (-831 (-516))))) (((-831 (-359)) $) 258 (|has| |#1| (-572 (-831 (-359))))) (((-158 (-359)) $) 210 (|has| |#1| (-958))) (((-158 (-208)) $) 209 (|has| |#1| (-958))) (((-505) $) 208 (|has| |#1| (-572 (-505))))) (-3273 (($ $) 256)) (-2966 (((-3 (-1179 $) "failed") (-637 $)) 145 (-3810 (-3119 (|has| $ (-138)) (-12 (|has| |#1| (-289)) (|has| |#1| (-851)))) (|has| |#1| (-331))))) (-1375 (($ |#1| |#1|) 255)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ |#1|) 37) (($ (-388 (-516))) 86 (-3810 (|has| |#1| (-344)) (|has| |#1| (-975 (-388 (-516)))))) (($ $) 91 (-3810 (|has| |#1| (-523)) (-12 (|has| |#1| (-289)) (|has| |#1| (-851)))))) (-2965 (($ $) 144 (|has| |#1| (-331))) (((-3 $ "failed") $) 43 (-3810 (-3119 (|has| $ (-138)) (-12 (|has| |#1| (-289)) (|has| |#1| (-851)))) (|has| |#1| (-138))))) (-2632 (((-1092 |#1|) $) 45)) (-3385 (((-719)) 29)) (-2071 (((-1179 $)) 67)) (-3772 (($ $) 234 (|has| |#1| (-1120)))) (-3760 (($ $) 222 (|has| |#1| (-1120)))) (-2117 (((-110) $ $) 95 (-3810 (|has| |#1| (-523)) (-12 (|has| |#1| (-289)) (|has| |#1| (-851)))))) (-3770 (($ $) 233 (|has| |#1| (-1120)))) (-3758 (($ $) 221 (|has| |#1| (-1120)))) (-3774 (($ $) 232 (|has| |#1| (-1120)))) (-3762 (($ $) 220 (|has| |#1| (-1120)))) (-2255 ((|#1| $) 250 (|has| |#1| (-1120)))) (-3775 (($ $) 231 (|has| |#1| (-1120)))) (-3763 (($ $) 219 (|has| |#1| (-1120)))) (-3773 (($ $) 230 (|has| |#1| (-1120)))) (-3761 (($ $) 218 (|has| |#1| (-1120)))) (-3771 (($ $) 229 (|has| |#1| (-1120)))) (-3759 (($ $) 217 (|has| |#1| (-1120)))) (-3661 (($ $) 251 (|has| |#1| (-992)))) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33) (($ $ (-516)) 117 (|has| |#1| (-344)))) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2932 (($ $ (-1 |#1| |#1|) (-719)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-594 (-1098)) (-594 (-719))) 126 (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) 127 (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) 128 (|has| |#1| (-841 (-1098)))) (($ $ (-1098)) 129 (|has| |#1| (-841 (-1098)))) (($ $ (-719)) 134 (-3810 (-3119 (|has| |#1| (-344)) (|has| |#1| (-216))) (|has| |#1| (-216)) (-3119 (|has| |#1| (-216)) (|has| |#1| (-344))))) (($ $) 136 (-3810 (-3119 (|has| |#1| (-344)) (|has| |#1| (-216))) (|has| |#1| (-216)) (-3119 (|has| |#1| (-216)) (|has| |#1| (-344)))))) (-2826 (((-110) $ $) 204 (|has| |#1| (-795)))) (-2827 (((-110) $ $) 203 (|has| |#1| (-795)))) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 205 (|has| |#1| (-795)))) (-2948 (((-110) $ $) 202 (|has| |#1| (-795)))) (-4224 (($ $ $) 121 (|has| |#1| (-344)))) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32) (($ $ (-388 (-516))) 239 (-12 (|has| |#1| (-941)) (|has| |#1| (-1120)))) (($ $ $) 237 (|has| |#1| (-1120))) (($ $ (-516)) 118 (|has| |#1| (-344)))) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-388 (-516)) $) 120 (|has| |#1| (-344))) (($ $ (-388 (-516))) 119 (|has| |#1| (-344)))))
(((-156 |#1|) (-133) (-162)) (T -156))
-((-3297 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-1225 (*1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-4097 (*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-4095 (*1 *1 *2 *2) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-2473 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-2461 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-3477 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-520)))) (-1775 (*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-989)))) (-3625 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-1117)))) (-3810 (*1 *2 *1) (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-989)) (-4 *3 (-1117)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3650 (*1 *2 *1) (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-513)) (-5 *2 (-110)))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-513)) (-5 *2 (-387 (-528))))) (-1793 (*1 *2 *1) (|partial| -12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-513)) (-5 *2 (-387 (-528))))))
-(-13 (-671 |t#1| (-1091 |t#1|)) (-391 |t#1|) (-213 |t#1|) (-318 |t#1|) (-380 |t#1|) (-823 |t#1|) (-357 |t#1|) (-162) (-10 -8 (-6 -4095) (-15 -1225 ($)) (-15 -4097 ($ $)) (-15 -4095 ($ |t#1| |t#1|)) (-15 -2473 (|t#1| $)) (-15 -2461 (|t#1| $)) (-15 -3297 (|t#1| $)) (IF (|has| |t#1| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |t#1| (-520)) (PROGN (-6 (-520)) (-15 -3477 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-288)) (-6 (-288)) |%noBranch|) (IF (|has| |t#1| (-6 -4263)) (-6 -4263) |%noBranch|) (IF (|has| |t#1| (-6 -4260)) (-6 -4260) |%noBranch|) (IF (|has| |t#1| (-343)) (-6 (-343)) |%noBranch|) (IF (|has| |t#1| (-570 (-504))) (-6 (-570 (-504))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-957)) (PROGN (-6 (-570 (-159 (-207)))) (-6 (-570 (-159 (-359))))) |%noBranch|) (IF (|has| |t#1| (-989)) (-15 -1775 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1117)) (PROGN (-6 (-1117)) (-15 -3625 (|t#1| $)) (IF (|has| |t#1| (-938)) (-6 (-938)) |%noBranch|) (IF (|has| |t#1| (-989)) (-15 -3810 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-513)) (PROGN (-15 -3650 ((-110) $)) (-15 -3099 ((-387 (-528)) $)) (-15 -1793 ((-3 (-387 (-528)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-848)) (IF (|has| |t#1| (-288)) (-6 (-848)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-387 (-528))) -1463 (|has| |#1| (-329)) (|has| |#1| (-343))) ((-37 |#1|) . T) ((-37 $) -1463 (|has| |#1| (-520)) (|has| |#1| (-329)) (|has| |#1| (-343)) (|has| |#1| (-288))) ((-34) |has| |#1| (-1117)) ((-93) |has| |#1| (-1117)) ((-99) . T) ((-109 #0# #0#) -1463 (|has| |#1| (-329)) (|has| |#1| (-343))) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1463 (|has| |#1| (-329)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-569 (-802)) . T) ((-162) . T) ((-570 (-159 (-207))) |has| |#1| (-957)) ((-570 (-159 (-359))) |has| |#1| (-957)) ((-570 (-504)) |has| |#1| (-570 (-504))) ((-570 (-831 (-359))) |has| |#1| (-570 (-831 (-359)))) ((-570 (-831 (-528))) |has| |#1| (-570 (-831 (-528)))) ((-570 #1=(-1091 |#1|)) . T) ((-213 |#1|) . T) ((-215) -1463 (|has| |#1| (-329)) (|has| |#1| (-215))) ((-225) -1463 (|has| |#1| (-329)) (|has| |#1| (-343))) ((-265) |has| |#1| (-1117)) ((-267 |#1| $) |has| |#1| (-267 |#1| |#1|)) ((-271) -1463 (|has| |#1| (-520)) (|has| |#1| (-329)) (|has| |#1| (-343)) (|has| |#1| (-288))) ((-288) -1463 (|has| |#1| (-329)) (|has| |#1| (-343)) (|has| |#1| (-288))) ((-290 |#1|) |has| |#1| (-290 |#1|)) ((-343) -1463 (|has| |#1| (-329)) (|has| |#1| (-343))) ((-382) |has| |#1| (-329)) ((-348) -1463 (|has| |#1| (-348)) (|has| |#1| (-329))) ((-329) |has| |#1| (-329)) ((-350 |#1| #1#) . T) ((-389 |#1| #1#) . T) ((-318 |#1|) . T) ((-357 |#1|) . T) ((-380 |#1|) . T) ((-391 |#1|) . T) ((-431) -1463 (|has| |#1| (-329)) (|has| |#1| (-343)) (|has| |#1| (-288))) ((-469) |has| |#1| (-1117)) ((-489 (-1095) |#1|) |has| |#1| (-489 (-1095) |#1|)) ((-489 |#1| |#1|) |has| |#1| (-290 |#1|)) ((-520) -1463 (|has| |#1| (-520)) (|has| |#1| (-329)) (|has| |#1| (-343)) (|has| |#1| (-288))) ((-597 #0#) -1463 (|has| |#1| (-329)) (|has| |#1| (-343))) ((-597 |#1|) . T) ((-597 $) . T) ((-591 (-528)) |has| |#1| (-591 (-528))) ((-591 |#1|) . T) ((-664 #0#) -1463 (|has| |#1| (-329)) (|has| |#1| (-343))) ((-664 |#1|) . T) ((-664 $) -1463 (|has| |#1| (-520)) (|has| |#1| (-329)) (|has| |#1| (-343)) (|has| |#1| (-288))) ((-671 |#1| #1#) . T) ((-673) . T) ((-793) |has| |#1| (-793)) ((-839 (-1095)) |has| |#1| (-839 (-1095))) ((-825 (-359)) |has| |#1| (-825 (-359))) ((-825 (-528)) |has| |#1| (-825 (-528))) ((-823 |#1|) . T) ((-848) -12 (|has| |#1| (-288)) (|has| |#1| (-848))) ((-859) -1463 (|has| |#1| (-329)) (|has| |#1| (-343)) (|has| |#1| (-288))) ((-938) -12 (|has| |#1| (-938)) (|has| |#1| (-1117))) ((-972 (-387 (-528))) |has| |#1| (-972 (-387 (-528)))) ((-972 (-528)) |has| |#1| (-972 (-528))) ((-972 |#1|) . T) ((-986 #0#) -1463 (|has| |#1| (-329)) (|has| |#1| (-343))) ((-986 |#1|) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1071) |has| |#1| (-329)) ((-1117) |has| |#1| (-1117)) ((-1120) |has| |#1| (-1117)) ((-1131) . T) ((-1135) -1463 (|has| |#1| (-329)) (|has| |#1| (-343)) (-12 (|has| |#1| (-288)) (|has| |#1| (-848)))))
-((-2437 (((-398 |#2|) |#2|) 63)))
-(((-157 |#1| |#2|) (-10 -7 (-15 -2437 ((-398 |#2|) |#2|))) (-288) (-1153 (-159 |#1|))) (T -157))
-((-2437 (*1 *2 *3) (-12 (-4 *4 (-288)) (-5 *2 (-398 *3)) (-5 *1 (-157 *4 *3)) (-4 *3 (-1153 (-159 *4))))))
-(-10 -7 (-15 -2437 ((-398 |#2|) |#2|)))
-((-3106 (((-159 |#2|) (-1 |#2| |#1|) (-159 |#1|)) 14)))
-(((-158 |#1| |#2|) (-10 -7 (-15 -3106 ((-159 |#2|) (-1 |#2| |#1|) (-159 |#1|)))) (-162) (-162)) (T -158))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-159 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-5 *2 (-159 *6)) (-5 *1 (-158 *5 *6)))))
-(-10 -7 (-15 -3106 ((-159 |#2|) (-1 |#2| |#1|) (-159 |#1|))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 33)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (-1463 (-12 (|has| |#1| (-288)) (|has| |#1| (-848))) (|has| |#1| (-520))))) (-1738 (($ $) NIL (-1463 (-12 (|has| |#1| (-288)) (|has| |#1| (-848))) (|has| |#1| (-520))))) (-1811 (((-110) $) NIL (-1463 (-12 (|has| |#1| (-288)) (|has| |#1| (-848))) (|has| |#1| (-520))))) (-2486 (((-635 |#1|) (-1177 $)) NIL) (((-635 |#1|)) NIL)) (-1323 ((|#1| $) NIL)) (-2880 (($ $) NIL (|has| |#1| (-1117)))) (-2735 (($ $) NIL (|has| |#1| (-1117)))) (-2338 (((-1105 (-860) (-717)) (-528)) NIL (|has| |#1| (-329)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (-12 (|has| |#1| (-288)) (|has| |#1| (-848))))) (-1232 (($ $) NIL (-1463 (-12 (|has| |#1| (-288)) (|has| |#1| (-848))) (|has| |#1| (-343))))) (-2705 (((-398 $) $) NIL (-1463 (-12 (|has| |#1| (-288)) (|has| |#1| (-848))) (|has| |#1| (-343))))) (-2450 (($ $) NIL (-12 (|has| |#1| (-938)) (|has| |#1| (-1117))))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (-12 (|has| |#1| (-288)) (|has| |#1| (-848))))) (-2213 (((-110) $ $) NIL (|has| |#1| (-288)))) (-2856 (((-717)) NIL (|has| |#1| (-348)))) (-2859 (($ $) NIL (|has| |#1| (-1117)))) (-2712 (($ $) NIL (|has| |#1| (-1117)))) (-2904 (($ $) NIL (|has| |#1| (-1117)))) (-2761 (($ $) NIL (|has| |#1| (-1117)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-528) "failed") $) NIL (|has| |#1| (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-3 |#1| "failed") $) NIL)) (-2409 (((-528) $) NIL (|has| |#1| (-972 (-528)))) (((-387 (-528)) $) NIL (|has| |#1| (-972 (-387 (-528))))) ((|#1| $) NIL)) (-1945 (($ (-1177 |#1|) (-1177 $)) NIL) (($ (-1177 |#1|)) NIL)) (-2413 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-329)))) (-3519 (($ $ $) NIL (|has| |#1| (-288)))) (-3847 (((-635 |#1|) $ (-1177 $)) NIL) (((-635 |#1|) $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) NIL) (((-635 |#1|) (-635 $)) NIL)) (-1422 (($ (-1091 |#1|)) NIL) (((-3 $ "failed") (-387 (-1091 |#1|))) NIL (|has| |#1| (-343)))) (-1312 (((-3 $ "failed") $) NIL)) (-2461 ((|#1| $) 13)) (-1793 (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-513)))) (-3650 (((-110) $) NIL (|has| |#1| (-513)))) (-3099 (((-387 (-528)) $) NIL (|has| |#1| (-513)))) (-3090 (((-860)) NIL)) (-1338 (($) NIL (|has| |#1| (-348)))) (-3498 (($ $ $) NIL (|has| |#1| (-288)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL (|has| |#1| (-288)))) (-2916 (($) NIL (|has| |#1| (-329)))) (-4086 (((-110) $) NIL (|has| |#1| (-329)))) (-2790 (($ $ (-717)) NIL (|has| |#1| (-329))) (($ $) NIL (|has| |#1| (-329)))) (-2124 (((-110) $) NIL (-1463 (-12 (|has| |#1| (-288)) (|has| |#1| (-848))) (|has| |#1| (-343))))) (-3810 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-989)) (|has| |#1| (-1117))))) (-1505 (($) NIL (|has| |#1| (-1117)))) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (|has| |#1| (-825 (-528)))) (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (|has| |#1| (-825 (-359))))) (-3689 (((-860) $) NIL (|has| |#1| (-329))) (((-779 (-860)) $) NIL (|has| |#1| (-329)))) (-1297 (((-110) $) 35)) (-2796 (($ $ (-528)) NIL (-12 (|has| |#1| (-938)) (|has| |#1| (-1117))))) (-3297 ((|#1| $) 46)) (-3296 (((-3 $ "failed") $) NIL (|has| |#1| (-329)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-288)))) (-3537 (((-1091 |#1|) $) NIL (|has| |#1| (-343)))) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-3201 (((-860) $) NIL (|has| |#1| (-348)))) (-2097 (($ $) NIL (|has| |#1| (-1117)))) (-1412 (((-1091 |#1|) $) NIL)) (-2057 (($ (-595 $)) NIL (|has| |#1| (-288))) (($ $ $) NIL (|has| |#1| (-288)))) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL (|has| |#1| (-343)))) (-4197 (($) NIL (|has| |#1| (-329)) CONST)) (-3108 (($ (-860)) NIL (|has| |#1| (-348)))) (-1225 (($) NIL)) (-2473 ((|#1| $) 15)) (-2495 (((-1042) $) NIL)) (-1261 (($) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#1| (-288)))) (-2088 (($ (-595 $)) NIL (|has| |#1| (-288))) (($ $ $) NIL (|has| |#1| (-288)))) (-3010 (((-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528))))) NIL (|has| |#1| (-329)))) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (-12 (|has| |#1| (-288)) (|has| |#1| (-848))))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (-12 (|has| |#1| (-288)) (|has| |#1| (-848))))) (-2437 (((-398 $) $) NIL (-1463 (-12 (|has| |#1| (-288)) (|has| |#1| (-848))) (|has| |#1| (-343))))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-288))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#1| (-288)))) (-3477 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-520))) (((-3 $ "failed") $ $) 47 (-1463 (-12 (|has| |#1| (-288)) (|has| |#1| (-848))) (|has| |#1| (-520))))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-288)))) (-2656 (($ $) NIL (|has| |#1| (-1117)))) (-4014 (($ $ (-595 |#1|) (-595 |#1|)) NIL (|has| |#1| (-290 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-290 |#1|))) (($ $ (-275 |#1|)) NIL (|has| |#1| (-290 |#1|))) (($ $ (-595 (-275 |#1|))) NIL (|has| |#1| (-290 |#1|))) (($ $ (-595 (-1095)) (-595 |#1|)) NIL (|has| |#1| (-489 (-1095) |#1|))) (($ $ (-1095) |#1|) NIL (|has| |#1| (-489 (-1095) |#1|)))) (-3973 (((-717) $) NIL (|has| |#1| (-288)))) (-3043 (($ $ |#1|) NIL (|has| |#1| (-267 |#1| |#1|)))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-288)))) (-1372 ((|#1| (-1177 $)) NIL) ((|#1|) NIL)) (-3500 (((-717) $) NIL (|has| |#1| (-329))) (((-3 (-717) "failed") $ $) NIL (|has| |#1| (-329)))) (-3235 (($ $ (-1 |#1| |#1|) (-717)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-717)) NIL (|has| |#1| (-215))) (($ $) NIL (|has| |#1| (-215)))) (-2348 (((-635 |#1|) (-1177 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-343)))) (-4090 (((-1091 |#1|)) NIL)) (-2917 (($ $) NIL (|has| |#1| (-1117)))) (-2773 (($ $) NIL (|has| |#1| (-1117)))) (-1984 (($) NIL (|has| |#1| (-329)))) (-2892 (($ $) NIL (|has| |#1| (-1117)))) (-2749 (($ $) NIL (|has| |#1| (-1117)))) (-2869 (($ $) NIL (|has| |#1| (-1117)))) (-2724 (($ $) NIL (|has| |#1| (-1117)))) (-4243 (((-1177 |#1|) $ (-1177 $)) NIL) (((-635 |#1|) (-1177 $) (-1177 $)) NIL) (((-1177 |#1|) $) NIL) (((-635 |#1|) (-1177 $)) NIL)) (-3155 (((-1177 |#1|) $) NIL) (($ (-1177 |#1|)) NIL) (((-1091 |#1|) $) NIL) (($ (-1091 |#1|)) NIL) (((-831 (-528)) $) NIL (|has| |#1| (-570 (-831 (-528))))) (((-831 (-359)) $) NIL (|has| |#1| (-570 (-831 (-359))))) (((-159 (-359)) $) NIL (|has| |#1| (-957))) (((-159 (-207)) $) NIL (|has| |#1| (-957))) (((-504) $) NIL (|has| |#1| (-570 (-504))))) (-4097 (($ $) 45)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-1463 (-12 (|has| $ (-138)) (|has| |#1| (-288)) (|has| |#1| (-848))) (|has| |#1| (-329))))) (-4095 (($ |#1| |#1|) 37)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ |#1|) 36) (($ (-387 (-528))) NIL (-1463 (|has| |#1| (-343)) (|has| |#1| (-972 (-387 (-528)))))) (($ $) NIL (-1463 (-12 (|has| |#1| (-288)) (|has| |#1| (-848))) (|has| |#1| (-520))))) (-3749 (($ $) NIL (|has| |#1| (-329))) (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| |#1| (-288)) (|has| |#1| (-848))) (|has| |#1| (-138))))) (-2516 (((-1091 |#1|) $) NIL)) (-3742 (((-717)) NIL)) (-1400 (((-1177 $)) NIL)) (-2953 (($ $) NIL (|has| |#1| (-1117)))) (-2811 (($ $) NIL (|has| |#1| (-1117)))) (-4016 (((-110) $ $) NIL (-1463 (-12 (|has| |#1| (-288)) (|has| |#1| (-848))) (|has| |#1| (-520))))) (-2928 (($ $) NIL (|has| |#1| (-1117)))) (-2784 (($ $) NIL (|has| |#1| (-1117)))) (-2981 (($ $) NIL (|has| |#1| (-1117)))) (-2836 (($ $) NIL (|has| |#1| (-1117)))) (-3625 ((|#1| $) NIL (|has| |#1| (-1117)))) (-3592 (($ $) NIL (|has| |#1| (-1117)))) (-2846 (($ $) NIL (|has| |#1| (-1117)))) (-2967 (($ $) NIL (|has| |#1| (-1117)))) (-2825 (($ $) NIL (|has| |#1| (-1117)))) (-2940 (($ $) NIL (|has| |#1| (-1117)))) (-2797 (($ $) NIL (|has| |#1| (-1117)))) (-1775 (($ $) NIL (|has| |#1| (-989)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| |#1| (-343)))) (-2969 (($) 28 T CONST)) (-2982 (($) 30 T CONST)) (-1256 (((-1078) $) 23 (|has| |#1| (-774))) (((-1078) $ (-110)) 25 (|has| |#1| (-774))) (((-1182) (-768) $) 26 (|has| |#1| (-774))) (((-1182) (-768) $ (-110)) 27 (|has| |#1| (-774)))) (-3245 (($ $ (-1 |#1| |#1|) (-717)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-717)) NIL (|has| |#1| (-215))) (($ $) NIL (|has| |#1| (-215)))) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2296 (($ $ $) NIL (|has| |#1| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) 39)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-387 (-528))) NIL (-12 (|has| |#1| (-938)) (|has| |#1| (-1117)))) (($ $ $) NIL (|has| |#1| (-1117))) (($ $ (-528)) NIL (|has| |#1| (-343)))) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-387 (-528)) $) NIL (|has| |#1| (-343))) (($ $ (-387 (-528))) NIL (|has| |#1| (-343)))))
-(((-159 |#1|) (-13 (-156 |#1|) (-10 -7 (IF (|has| |#1| (-774)) (-6 (-774)) |%noBranch|))) (-162)) (T -159))
-NIL
-(-13 (-156 |#1|) (-10 -7 (IF (|has| |#1| (-774)) (-6 (-774)) |%noBranch|)))
-((-3155 (((-831 |#1|) |#3|) 22)))
-(((-160 |#1| |#2| |#3|) (-10 -7 (-15 -3155 ((-831 |#1|) |#3|))) (-1023) (-13 (-570 (-831 |#1|)) (-162)) (-156 |#2|)) (T -160))
-((-3155 (*1 *2 *3) (-12 (-4 *5 (-13 (-570 *2) (-162))) (-5 *2 (-831 *4)) (-5 *1 (-160 *4 *5 *3)) (-4 *4 (-1023)) (-4 *3 (-156 *5)))))
-(-10 -7 (-15 -3155 ((-831 |#1|) |#3|)))
-((-2207 (((-110) $ $) NIL)) (-1998 (((-110) $) 9)) (-2308 (((-110) $ (-110)) 11)) (-3462 (($) 12)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2406 (($ $) 13)) (-2222 (((-802) $) 17)) (-1931 (((-110) $) 8)) (-2254 (((-110) $ (-110)) 10)) (-2186 (((-110) $ $) NIL)))
-(((-161) (-13 (-1023) (-10 -8 (-15 -3462 ($)) (-15 -1931 ((-110) $)) (-15 -1998 ((-110) $)) (-15 -2254 ((-110) $ (-110))) (-15 -2308 ((-110) $ (-110))) (-15 -2406 ($ $))))) (T -161))
-((-3462 (*1 *1) (-5 *1 (-161))) (-1931 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-1998 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-2254 (*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-2308 (*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-2406 (*1 *1 *1) (-5 *1 (-161))))
-(-13 (-1023) (-10 -8 (-15 -3462 ($)) (-15 -1931 ((-110) $)) (-15 -1998 ((-110) $)) (-15 -2254 ((-110) $ (-110))) (-15 -2308 ((-110) $ (-110))) (-15 -2406 ($ $))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-1312 (((-3 $ "failed") $) 34)) (-1297 (((-110) $) 31)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11) (($ (-528)) 28)) (-3742 (((-717)) 29)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24)))
+((-3391 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-1376 (*1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-3273 (*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-1375 (*1 *1 *2 *2) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-3926 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-3925 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-3740 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-523)))) (-3661 (*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-992)))) (-2255 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-1120)))) (-1374 (*1 *2 *1) (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-992)) (-4 *3 (-1120)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3287 (*1 *2 *1) (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-110)))) (-3286 (*1 *2 *1) (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-516))))) (-3288 (*1 *2 *1) (|partial| -12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-516))))))
+(-13 (-673 |t#1| (-1092 |t#1|)) (-393 |t#1|) (-214 |t#1|) (-319 |t#1|) (-381 |t#1|) (-825 |t#1|) (-358 |t#1|) (-162) (-10 -8 (-6 -1375) (-15 -1376 ($)) (-15 -3273 ($ $)) (-15 -1375 ($ |t#1| |t#1|)) (-15 -3926 (|t#1| $)) (-15 -3925 (|t#1| $)) (-15 -3391 (|t#1| $)) (IF (|has| |t#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#1| (-523)) (PROGN (-6 (-523)) (-15 -3740 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-289)) (-6 (-289)) |%noBranch|) (IF (|has| |t#1| (-6 -4268)) (-6 -4268) |%noBranch|) (IF (|has| |t#1| (-6 -4265)) (-6 -4265) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|) (IF (|has| |t#1| (-572 (-505))) (-6 (-572 (-505))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-958)) (PROGN (-6 (-572 (-158 (-208)))) (-6 (-572 (-158 (-359))))) |%noBranch|) (IF (|has| |t#1| (-992)) (-15 -3661 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1120)) (PROGN (-6 (-1120)) (-15 -2255 (|t#1| $)) (IF (|has| |t#1| (-941)) (-6 (-941)) |%noBranch|) (IF (|has| |t#1| (-992)) (-15 -1374 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -3287 ((-110) $)) (-15 -3286 ((-388 (-516)) $)) (-15 -3288 ((-3 (-388 (-516)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-851)) (IF (|has| |t#1| (-289)) (-6 (-851)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-388 (-516))) -3810 (|has| |#1| (-331)) (|has| |#1| (-344))) ((-37 |#1|) . T) ((-37 $) -3810 (|has| |#1| (-523)) (|has| |#1| (-331)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-34) |has| |#1| (-1120)) ((-93) |has| |#1| (-1120)) ((-99) . T) ((-109 #1# #1#) -3810 (|has| |#1| (-331)) (|has| |#1| (-344))) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -3810 (|has| |#1| (-331)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-571 (-805)) . T) ((-162) . T) ((-572 (-158 (-208))) |has| |#1| (-958)) ((-572 (-158 (-359))) |has| |#1| (-958)) ((-572 (-505)) |has| |#1| (-572 (-505))) ((-572 (-831 (-359))) |has| |#1| (-572 (-831 (-359)))) ((-572 (-831 (-516))) |has| |#1| (-572 (-831 (-516)))) ((-572 #2=(-1092 |#1|)) . T) ((-214 |#1|) . T) ((-216) -3810 (|has| |#1| (-331)) (|has| |#1| (-216))) ((-226) -3810 (|has| |#1| (-331)) (|has| |#1| (-344))) ((-266) |has| |#1| (-1120)) ((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-272) -3810 (|has| |#1| (-523)) (|has| |#1| (-331)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-289) -3810 (|has| |#1| (-331)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-344) -3810 (|has| |#1| (-331)) (|has| |#1| (-344))) ((-383) |has| |#1| (-331)) ((-349) -3810 (|has| |#1| (-331)) (|has| |#1| (-349))) ((-331) |has| |#1| (-331)) ((-351 |#1| #2#) . T) ((-391 |#1| #2#) . T) ((-319 |#1|) . T) ((-358 |#1|) . T) ((-381 |#1|) . T) ((-393 |#1|) . T) ((-432) -3810 (|has| |#1| (-331)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-471) |has| |#1| (-1120)) ((-491 (-1098) |#1|) |has| |#1| (-491 (-1098) |#1|)) ((-491 |#1| |#1|) |has| |#1| (-291 |#1|)) ((-523) -3810 (|has| |#1| (-523)) (|has| |#1| (-331)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-599 #1#) -3810 (|has| |#1| (-331)) (|has| |#1| (-344))) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-516)) |has| |#1| (-593 (-516))) ((-593 |#1|) . T) ((-666 #1#) -3810 (|has| |#1| (-331)) (|has| |#1| (-344))) ((-666 |#1|) . T) ((-666 $) -3810 (|has| |#1| (-523)) (|has| |#1| (-331)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-673 |#1| #2#) . T) ((-675) . T) ((-795) |has| |#1| (-795)) ((-841 (-1098)) |has| |#1| (-841 (-1098))) ((-827 (-359)) |has| |#1| (-827 (-359))) ((-827 (-516)) |has| |#1| (-827 (-516))) ((-825 |#1|) . T) ((-851) -12 (|has| |#1| (-289)) (|has| |#1| (-851))) ((-862) -3810 (|has| |#1| (-331)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-941) -12 (|has| |#1| (-941)) (|has| |#1| (-1120))) ((-975 (-388 (-516))) |has| |#1| (-975 (-388 (-516)))) ((-975 (-516)) |has| |#1| (-975 (-516))) ((-975 |#1|) . T) ((-989 #1#) -3810 (|has| |#1| (-331)) (|has| |#1| (-344))) ((-989 |#1|) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1074) |has| |#1| (-331)) ((-1120) |has| |#1| (-1120)) ((-1123) |has| |#1| (-1120)) ((-1134) . T) ((-1138) -3810 (|has| |#1| (-331)) (|has| |#1| (-344)) (-12 (|has| |#1| (-289)) (|has| |#1| (-851)))))
+((-4011 (((-386 |#2|) |#2|) 63)))
+(((-157 |#1| |#2|) (-10 -7 (-15 -4011 ((-386 |#2|) |#2|))) (-289) (-1155 (-158 |#1|))) (T -157))
+((-4011 (*1 *2 *3) (-12 (-4 *4 (-289)) (-5 *2 (-386 *3)) (-5 *1 (-157 *4 *3)) (-4 *3 (-1155 (-158 *4))))))
+(-10 -7 (-15 -4011 ((-386 |#2|) |#2|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 33)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (-3810 (-12 (|has| |#1| (-289)) (|has| |#1| (-851))) (|has| |#1| (-523))))) (-2118 (($ $) NIL (-3810 (-12 (|has| |#1| (-289)) (|has| |#1| (-851))) (|has| |#1| (-523))))) (-2116 (((-110) $) NIL (-3810 (-12 (|has| |#1| (-289)) (|has| |#1| (-851))) (|has| |#1| (-523))))) (-1851 (((-637 |#1|) (-1179 $)) NIL) (((-637 |#1|)) NIL)) (-3608 ((|#1| $) NIL)) (-3766 (($ $) NIL (|has| |#1| (-1120)))) (-3921 (($ $) NIL (|has| |#1| (-1120)))) (-1741 (((-1107 (-860) (-719)) (-516)) NIL (|has| |#1| (-331)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (-12 (|has| |#1| (-289)) (|has| |#1| (-851))))) (-4053 (($ $) NIL (-3810 (-12 (|has| |#1| (-289)) (|has| |#1| (-851))) (|has| |#1| (-344))))) (-4245 (((-386 $) $) NIL (-3810 (-12 (|has| |#1| (-289)) (|has| |#1| (-851))) (|has| |#1| (-344))))) (-3301 (($ $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-1120))))) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (-12 (|has| |#1| (-289)) (|has| |#1| (-851))))) (-1655 (((-110) $ $) NIL (|has| |#1| (-289)))) (-3395 (((-719)) NIL (|has| |#1| (-349)))) (-3764 (($ $) NIL (|has| |#1| (-1120)))) (-3920 (($ $) NIL (|has| |#1| (-1120)))) (-3768 (($ $) NIL (|has| |#1| (-1120)))) (-3919 (($ $) NIL (|has| |#1| (-1120)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-516) #2="failed") $) NIL (|has| |#1| (-975 (-516)))) (((-3 (-388 (-516)) #2#) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-3 |#1| #2#) $) NIL)) (-3431 (((-516) $) NIL (|has| |#1| (-975 (-516)))) (((-388 (-516)) $) NIL (|has| |#1| (-975 (-388 (-516))))) ((|#1| $) NIL)) (-1861 (($ (-1179 |#1|) (-1179 $)) NIL) (($ (-1179 |#1|)) NIL)) (-1739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-331)))) (-2824 (($ $ $) NIL (|has| |#1| (-289)))) (-1850 (((-637 |#1|) $ (-1179 $)) NIL) (((-637 |#1|) $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-4121 (($ (-1092 |#1|)) NIL) (((-3 $ "failed") (-388 (-1092 |#1|))) NIL (|has| |#1| (-344)))) (-3741 (((-3 $ "failed") $) NIL)) (-3925 ((|#1| $) 13)) (-3288 (((-3 (-388 (-516)) #3="failed") $) NIL (|has| |#1| (-515)))) (-3287 (((-110) $) NIL (|has| |#1| (-515)))) (-3286 (((-388 (-516)) $) NIL (|has| |#1| (-515)))) (-3368 (((-860)) NIL)) (-3258 (($) NIL (|has| |#1| (-349)))) (-2823 (($ $ $) NIL (|has| |#1| (-289)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL (|has| |#1| (-289)))) (-3097 (($) NIL (|has| |#1| (-331)))) (-1746 (((-110) $) NIL (|has| |#1| (-331)))) (-1836 (($ $ (-719)) NIL (|has| |#1| (-331))) (($ $) NIL (|has| |#1| (-331)))) (-4005 (((-110) $) NIL (-3810 (-12 (|has| |#1| (-289)) (|has| |#1| (-851))) (|has| |#1| (-344))))) (-1374 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-992)) (|has| |#1| (-1120))))) (-3909 (($) NIL (|has| |#1| (-1120)))) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (|has| |#1| (-827 (-516)))) (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (|has| |#1| (-827 (-359))))) (-4050 (((-860) $) NIL (|has| |#1| (-331))) (((-780 (-860)) $) NIL (|has| |#1| (-331)))) (-2436 (((-110) $) 35)) (-3275 (($ $ (-516)) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-1120))))) (-3391 ((|#1| $) 46)) (-3723 (((-3 $ "failed") $) NIL (|has| |#1| (-331)))) (-1652 (((-3 (-594 $) #4="failed") (-594 $) $) NIL (|has| |#1| (-289)))) (-2073 (((-1092 |#1|) $) NIL (|has| |#1| (-344)))) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-2069 (((-860) $) NIL (|has| |#1| (-349)))) (-4218 (($ $) NIL (|has| |#1| (-1120)))) (-3343 (((-1092 |#1|) $) NIL)) (-1963 (($ (-594 $)) NIL (|has| |#1| (-289))) (($ $ $) NIL (|has| |#1| (-289)))) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL (|has| |#1| (-344)))) (-3724 (($) NIL (|has| |#1| (-331)) CONST)) (-2426 (($ (-860)) NIL (|has| |#1| (-349)))) (-1376 (($) NIL)) (-3926 ((|#1| $) 15)) (-3514 (((-1045) $) NIL)) (-2435 (($) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#1| (-289)))) (-3419 (($ (-594 $)) NIL (|has| |#1| (-289))) (($ $ $) NIL (|has| |#1| (-289)))) (-1742 (((-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516))))) NIL (|has| |#1| (-331)))) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (-12 (|has| |#1| (-289)) (|has| |#1| (-851))))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (-12 (|has| |#1| (-289)) (|has| |#1| (-851))))) (-4011 (((-386 $) $) NIL (-3810 (-12 (|has| |#1| (-289)) (|has| |#1| (-851))) (|has| |#1| (-344))))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| |#1| (-289))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#1| (-289)))) (-3740 (((-3 $ #3#) $ |#1|) 44 (|has| |#1| (-523))) (((-3 $ "failed") $ $) 47 (-3810 (-12 (|has| |#1| (-289)) (|has| |#1| (-851))) (|has| |#1| (-523))))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL (|has| |#1| (-289)))) (-4219 (($ $) NIL (|has| |#1| (-1120)))) (-4046 (($ $ (-594 |#1|) (-594 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-275 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-594 (-275 |#1|))) NIL (|has| |#1| (-291 |#1|))) (($ $ (-594 (-1098)) (-594 |#1|)) NIL (|has| |#1| (-491 (-1098) |#1|))) (($ $ (-1098) |#1|) NIL (|has| |#1| (-491 (-1098) |#1|)))) (-1654 (((-719) $) NIL (|has| |#1| (-289)))) (-4078 (($ $ |#1|) NIL (|has| |#1| (-268 |#1| |#1|)))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-289)))) (-4036 ((|#1| (-1179 $)) NIL) ((|#1|) NIL)) (-1837 (((-719) $) NIL (|has| |#1| (-331))) (((-3 (-719) "failed") $ $) NIL (|has| |#1| (-331)))) (-4089 (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $) NIL (|has| |#1| (-216)))) (-2434 (((-637 |#1|) (-1179 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-344)))) (-3459 (((-1092 |#1|)) NIL)) (-3769 (($ $) NIL (|has| |#1| (-1120)))) (-3918 (($ $) NIL (|has| |#1| (-1120)))) (-1740 (($) NIL (|has| |#1| (-331)))) (-3767 (($ $) NIL (|has| |#1| (-1120)))) (-3917 (($ $) NIL (|has| |#1| (-1120)))) (-3765 (($ $) NIL (|has| |#1| (-1120)))) (-3916 (($ $) NIL (|has| |#1| (-1120)))) (-3497 (((-1179 |#1|) $ (-1179 $)) NIL) (((-637 |#1|) (-1179 $) (-1179 $)) NIL) (((-1179 |#1|) $) NIL) (((-637 |#1|) (-1179 $)) NIL)) (-4246 (((-1179 |#1|) $) NIL) (($ (-1179 |#1|)) NIL) (((-1092 |#1|) $) NIL) (($ (-1092 |#1|)) NIL) (((-831 (-516)) $) NIL (|has| |#1| (-572 (-831 (-516))))) (((-831 (-359)) $) NIL (|has| |#1| (-572 (-831 (-359))))) (((-158 (-359)) $) NIL (|has| |#1| (-958))) (((-158 (-208)) $) NIL (|has| |#1| (-958))) (((-505) $) NIL (|has| |#1| (-572 (-505))))) (-3273 (($ $) 45)) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-3810 (-12 (|has| $ (-138)) (|has| |#1| (-289)) (|has| |#1| (-851))) (|has| |#1| (-331))))) (-1375 (($ |#1| |#1|) 37)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ |#1|) 36) (($ (-388 (-516))) NIL (-3810 (|has| |#1| (-344)) (|has| |#1| (-975 (-388 (-516)))))) (($ $) NIL (-3810 (-12 (|has| |#1| (-289)) (|has| |#1| (-851))) (|has| |#1| (-523))))) (-2965 (($ $) NIL (|has| |#1| (-331))) (((-3 $ #1#) $) NIL (-3810 (-12 (|has| $ (-138)) (|has| |#1| (-289)) (|has| |#1| (-851))) (|has| |#1| (-138))))) (-2632 (((-1092 |#1|) $) NIL)) (-3385 (((-719)) NIL)) (-2071 (((-1179 $)) NIL)) (-3772 (($ $) NIL (|has| |#1| (-1120)))) (-3760 (($ $) NIL (|has| |#1| (-1120)))) (-2117 (((-110) $ $) NIL (-3810 (-12 (|has| |#1| (-289)) (|has| |#1| (-851))) (|has| |#1| (-523))))) (-3770 (($ $) NIL (|has| |#1| (-1120)))) (-3758 (($ $) NIL (|has| |#1| (-1120)))) (-3774 (($ $) NIL (|has| |#1| (-1120)))) (-3762 (($ $) NIL (|has| |#1| (-1120)))) (-2255 ((|#1| $) NIL (|has| |#1| (-1120)))) (-3775 (($ $) NIL (|has| |#1| (-1120)))) (-3763 (($ $) NIL (|has| |#1| (-1120)))) (-3773 (($ $) NIL (|has| |#1| (-1120)))) (-3761 (($ $) NIL (|has| |#1| (-1120)))) (-3771 (($ $) NIL (|has| |#1| (-1120)))) (-3759 (($ $) NIL (|has| |#1| (-1120)))) (-3661 (($ $) NIL (|has| |#1| (-992)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| |#1| (-344)))) (-2920 (($) 28 T CONST)) (-2927 (($) 30 T CONST)) (-2768 (((-1081) $) 23 (|has| |#1| (-769))) (((-1081) $ (-110)) 25 (|has| |#1| (-769))) (((-1185) (-771) $) 26 (|has| |#1| (-769))) (((-1185) (-771) $ (-110)) 27 (|has| |#1| (-769)))) (-2932 (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $) NIL (|has| |#1| (-216)))) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#1| (-795)))) (-4224 (($ $ $) NIL (|has| |#1| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) 39)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-388 (-516))) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-1120)))) (($ $ $) NIL (|has| |#1| (-1120))) (($ $ (-516)) NIL (|has| |#1| (-344)))) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-516)) $) NIL (|has| |#1| (-344))) (($ $ (-388 (-516))) NIL (|has| |#1| (-344)))))
+(((-158 |#1|) (-13 (-156 |#1|) (-10 -7 (IF (|has| |#1| (-769)) (-6 (-769)) |%noBranch|))) (-162)) (T -158))
+NIL
+(-13 (-156 |#1|) (-10 -7 (IF (|has| |#1| (-769)) (-6 (-769)) |%noBranch|)))
+((-4234 (((-158 |#2|) (-1 |#2| |#1|) (-158 |#1|)) 14)))
+(((-159 |#1| |#2|) (-10 -7 (-15 -4234 ((-158 |#2|) (-1 |#2| |#1|) (-158 |#1|)))) (-162) (-162)) (T -159))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-158 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-5 *2 (-158 *6)) (-5 *1 (-159 *5 *6)))))
+(-10 -7 (-15 -4234 ((-158 |#2|) (-1 |#2| |#1|) (-158 |#1|))))
+((-4246 (((-831 |#1|) |#3|) 22)))
+(((-160 |#1| |#2| |#3|) (-10 -7 (-15 -4246 ((-831 |#1|) |#3|))) (-1027) (-13 (-572 (-831 |#1|)) (-162)) (-156 |#2|)) (T -160))
+((-4246 (*1 *2 *3) (-12 (-4 *5 (-13 (-572 *2) (-162))) (-5 *2 (-831 *4)) (-5 *1 (-160 *4 *5 *3)) (-4 *4 (-1027)) (-4 *3 (-156 *5)))))
+(-10 -7 (-15 -4246 ((-831 |#1|) |#3|)))
+((-2828 (((-110) $ $) NIL)) (-1378 (((-110) $) 9)) (-1377 (((-110) $ (-110)) 11)) (-3896 (($) 12)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-3678 (($ $) 13)) (-4233 (((-805) $) 17)) (-3984 (((-110) $) 8)) (-4140 (((-110) $ (-110)) 10)) (-3317 (((-110) $ $) NIL)))
+(((-161) (-13 (-1027) (-10 -8 (-15 -3896 ($)) (-15 -3984 ((-110) $)) (-15 -1378 ((-110) $)) (-15 -4140 ((-110) $ (-110))) (-15 -1377 ((-110) $ (-110))) (-15 -3678 ($ $))))) (T -161))
+((-3896 (*1 *1) (-5 *1 (-161))) (-3984 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-1378 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-4140 (*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-1377 (*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-3678 (*1 *1 *1) (-5 *1 (-161))))
+(-13 (-1027) (-10 -8 (-15 -3896 ($)) (-15 -3984 ((-110) $)) (-15 -1378 ((-110) $)) (-15 -4140 ((-110) $ (-110))) (-15 -1377 ((-110) $ (-110))) (-15 -3678 ($ $))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3741 (((-3 $ "failed") $) 34)) (-2436 (((-110) $) 31)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11) (($ (-516)) 28)) (-3385 (((-719)) 29)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24)))
(((-162) (-133)) (T -162))
NIL
-(-13 (-981) (-109 $ $) (-10 -7 (-6 (-4266 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-569 (-802)) . T) ((-597 $) . T) ((-673) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3598 ((|#1| $) 75)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-2213 (((-110) $ $) NIL)) (-2816 (($) NIL T CONST)) (-3519 (($ $ $) NIL)) (-3528 (($ $) 19)) (-4069 (($ |#1| (-1076 |#1|)) 48)) (-1312 (((-3 $ "failed") $) 117)) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2124 (((-110) $) NIL)) (-2866 (((-1076 |#1|) $) 82)) (-3704 (((-1076 |#1|) $) 79)) (-3209 (((-1076 |#1|) $) 80)) (-1297 (((-110) $) NIL)) (-2630 (((-1076 |#1|) $) 88)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-2057 (($ (-595 $)) NIL) (($ $ $) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ (-595 $)) NIL) (($ $ $) NIL)) (-2437 (((-398 $) $) NIL)) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL)) (-3740 (($ $ (-528)) 91)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-2371 (((-1076 |#1|) $) 89)) (-3285 (((-1076 (-387 |#1|)) $) 14)) (-2356 (($ (-387 |#1|)) 17) (($ |#1| (-1076 |#1|) (-1076 |#1|)) 38)) (-3534 (($ $) 93)) (-2222 (((-802) $) 127) (($ (-528)) 51) (($ |#1|) 52) (($ (-387 |#1|)) 36) (($ (-387 (-528))) NIL) (($ $) NIL)) (-3742 (((-717)) 64)) (-4016 (((-110) $ $) NIL)) (-2726 (((-1076 (-387 |#1|)) $) 18)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) 25 T CONST)) (-2982 (($) 28 T CONST)) (-2186 (((-110) $ $) 35)) (-2296 (($ $ $) 115)) (-2286 (($ $) 106) (($ $ $) 103)) (-2275 (($ $ $) 101)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-387 |#1|) $) 111) (($ $ (-387 |#1|)) NIL) (($ (-387 (-528)) $) NIL) (($ $ (-387 (-528))) NIL)))
-(((-163 |#1|) (-13 (-37 |#1|) (-37 (-387 |#1|)) (-343) (-10 -8 (-15 -2356 ($ (-387 |#1|))) (-15 -2356 ($ |#1| (-1076 |#1|) (-1076 |#1|))) (-15 -4069 ($ |#1| (-1076 |#1|))) (-15 -3704 ((-1076 |#1|) $)) (-15 -3209 ((-1076 |#1|) $)) (-15 -2866 ((-1076 |#1|) $)) (-15 -3598 (|#1| $)) (-15 -3528 ($ $)) (-15 -2726 ((-1076 (-387 |#1|)) $)) (-15 -3285 ((-1076 (-387 |#1|)) $)) (-15 -2630 ((-1076 |#1|) $)) (-15 -2371 ((-1076 |#1|) $)) (-15 -3740 ($ $ (-528))) (-15 -3534 ($ $)))) (-288)) (T -163))
-((-2356 (*1 *1 *2) (-12 (-5 *2 (-387 *3)) (-4 *3 (-288)) (-5 *1 (-163 *3)))) (-2356 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1076 *2)) (-4 *2 (-288)) (-5 *1 (-163 *2)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *3 (-1076 *2)) (-4 *2 (-288)) (-5 *1 (-163 *2)))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-163 *3)) (-4 *3 (-288)))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-163 *3)) (-4 *3 (-288)))) (-2866 (*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-163 *3)) (-4 *3 (-288)))) (-3598 (*1 *2 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-288)))) (-3528 (*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-288)))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-1076 (-387 *3))) (-5 *1 (-163 *3)) (-4 *3 (-288)))) (-3285 (*1 *2 *1) (-12 (-5 *2 (-1076 (-387 *3))) (-5 *1 (-163 *3)) (-4 *3 (-288)))) (-2630 (*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-163 *3)) (-4 *3 (-288)))) (-2371 (*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-163 *3)) (-4 *3 (-288)))) (-3740 (*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-163 *3)) (-4 *3 (-288)))) (-3534 (*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-288)))))
-(-13 (-37 |#1|) (-37 (-387 |#1|)) (-343) (-10 -8 (-15 -2356 ($ (-387 |#1|))) (-15 -2356 ($ |#1| (-1076 |#1|) (-1076 |#1|))) (-15 -4069 ($ |#1| (-1076 |#1|))) (-15 -3704 ((-1076 |#1|) $)) (-15 -3209 ((-1076 |#1|) $)) (-15 -2866 ((-1076 |#1|) $)) (-15 -3598 (|#1| $)) (-15 -3528 ($ $)) (-15 -2726 ((-1076 (-387 |#1|)) $)) (-15 -3285 ((-1076 (-387 |#1|)) $)) (-15 -2630 ((-1076 |#1|) $)) (-15 -2371 ((-1076 |#1|) $)) (-15 -3740 ($ $ (-528))) (-15 -3534 ($ $))))
-((-2045 (($ (-106) $) 13)) (-4204 (((-3 (-106) "failed") (-1095) $) 12)) (-2222 (((-802) $) 16)) (-2588 (((-595 (-106)) $) 8)))
-(((-164) (-13 (-569 (-802)) (-10 -8 (-15 -2588 ((-595 (-106)) $)) (-15 -2045 ($ (-106) $)) (-15 -4204 ((-3 (-106) "failed") (-1095) $))))) (T -164))
-((-2588 (*1 *2 *1) (-12 (-5 *2 (-595 (-106))) (-5 *1 (-164)))) (-2045 (*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-164)))) (-4204 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1095)) (-5 *2 (-106)) (-5 *1 (-164)))))
-(-13 (-569 (-802)) (-10 -8 (-15 -2588 ((-595 (-106)) $)) (-15 -2045 ($ (-106) $)) (-15 -4204 ((-3 (-106) "failed") (-1095) $))))
-((-1377 (((-1 (-882 |#1|) (-882 |#1|)) |#1|) 40)) (-2100 (((-882 |#1|) (-882 |#1|)) 19)) (-3630 (((-1 (-882 |#1|) (-882 |#1|)) |#1|) 36)) (-3658 (((-882 |#1|) (-882 |#1|)) 17)) (-1511 (((-882 |#1|) (-882 |#1|)) 25)) (-3015 (((-882 |#1|) (-882 |#1|)) 24)) (-2415 (((-882 |#1|) (-882 |#1|)) 23)) (-3865 (((-1 (-882 |#1|) (-882 |#1|)) |#1|) 37)) (-2827 (((-1 (-882 |#1|) (-882 |#1|)) |#1|) 35)) (-2165 (((-1 (-882 |#1|) (-882 |#1|)) |#1|) 34)) (-2380 (((-882 |#1|) (-882 |#1|)) 18)) (-4027 (((-1 (-882 |#1|) (-882 |#1|)) |#1| |#1|) 43)) (-2948 (((-882 |#1|) (-882 |#1|)) 8)) (-3191 (((-1 (-882 |#1|) (-882 |#1|)) |#1|) 39)) (-2529 (((-1 (-882 |#1|) (-882 |#1|)) |#1|) 38)))
-(((-165 |#1|) (-10 -7 (-15 -2948 ((-882 |#1|) (-882 |#1|))) (-15 -3658 ((-882 |#1|) (-882 |#1|))) (-15 -2380 ((-882 |#1|) (-882 |#1|))) (-15 -2100 ((-882 |#1|) (-882 |#1|))) (-15 -2415 ((-882 |#1|) (-882 |#1|))) (-15 -3015 ((-882 |#1|) (-882 |#1|))) (-15 -1511 ((-882 |#1|) (-882 |#1|))) (-15 -2165 ((-1 (-882 |#1|) (-882 |#1|)) |#1|)) (-15 -2827 ((-1 (-882 |#1|) (-882 |#1|)) |#1|)) (-15 -3630 ((-1 (-882 |#1|) (-882 |#1|)) |#1|)) (-15 -3865 ((-1 (-882 |#1|) (-882 |#1|)) |#1|)) (-15 -2529 ((-1 (-882 |#1|) (-882 |#1|)) |#1|)) (-15 -3191 ((-1 (-882 |#1|) (-882 |#1|)) |#1|)) (-15 -1377 ((-1 (-882 |#1|) (-882 |#1|)) |#1|)) (-15 -4027 ((-1 (-882 |#1|) (-882 |#1|)) |#1| |#1|))) (-13 (-343) (-1117) (-938))) (T -165))
-((-4027 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-882 *3) (-882 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-343) (-1117) (-938))))) (-1377 (*1 *2 *3) (-12 (-5 *2 (-1 (-882 *3) (-882 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-343) (-1117) (-938))))) (-3191 (*1 *2 *3) (-12 (-5 *2 (-1 (-882 *3) (-882 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-343) (-1117) (-938))))) (-2529 (*1 *2 *3) (-12 (-5 *2 (-1 (-882 *3) (-882 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-343) (-1117) (-938))))) (-3865 (*1 *2 *3) (-12 (-5 *2 (-1 (-882 *3) (-882 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-343) (-1117) (-938))))) (-3630 (*1 *2 *3) (-12 (-5 *2 (-1 (-882 *3) (-882 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-343) (-1117) (-938))))) (-2827 (*1 *2 *3) (-12 (-5 *2 (-1 (-882 *3) (-882 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-343) (-1117) (-938))))) (-2165 (*1 *2 *3) (-12 (-5 *2 (-1 (-882 *3) (-882 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-343) (-1117) (-938))))) (-1511 (*1 *2 *2) (-12 (-5 *2 (-882 *3)) (-4 *3 (-13 (-343) (-1117) (-938))) (-5 *1 (-165 *3)))) (-3015 (*1 *2 *2) (-12 (-5 *2 (-882 *3)) (-4 *3 (-13 (-343) (-1117) (-938))) (-5 *1 (-165 *3)))) (-2415 (*1 *2 *2) (-12 (-5 *2 (-882 *3)) (-4 *3 (-13 (-343) (-1117) (-938))) (-5 *1 (-165 *3)))) (-2100 (*1 *2 *2) (-12 (-5 *2 (-882 *3)) (-4 *3 (-13 (-343) (-1117) (-938))) (-5 *1 (-165 *3)))) (-2380 (*1 *2 *2) (-12 (-5 *2 (-882 *3)) (-4 *3 (-13 (-343) (-1117) (-938))) (-5 *1 (-165 *3)))) (-3658 (*1 *2 *2) (-12 (-5 *2 (-882 *3)) (-4 *3 (-13 (-343) (-1117) (-938))) (-5 *1 (-165 *3)))) (-2948 (*1 *2 *2) (-12 (-5 *2 (-882 *3)) (-4 *3 (-13 (-343) (-1117) (-938))) (-5 *1 (-165 *3)))))
-(-10 -7 (-15 -2948 ((-882 |#1|) (-882 |#1|))) (-15 -3658 ((-882 |#1|) (-882 |#1|))) (-15 -2380 ((-882 |#1|) (-882 |#1|))) (-15 -2100 ((-882 |#1|) (-882 |#1|))) (-15 -2415 ((-882 |#1|) (-882 |#1|))) (-15 -3015 ((-882 |#1|) (-882 |#1|))) (-15 -1511 ((-882 |#1|) (-882 |#1|))) (-15 -2165 ((-1 (-882 |#1|) (-882 |#1|)) |#1|)) (-15 -2827 ((-1 (-882 |#1|) (-882 |#1|)) |#1|)) (-15 -3630 ((-1 (-882 |#1|) (-882 |#1|)) |#1|)) (-15 -3865 ((-1 (-882 |#1|) (-882 |#1|)) |#1|)) (-15 -2529 ((-1 (-882 |#1|) (-882 |#1|)) |#1|)) (-15 -3191 ((-1 (-882 |#1|) (-882 |#1|)) |#1|)) (-15 -1377 ((-1 (-882 |#1|) (-882 |#1|)) |#1|)) (-15 -4027 ((-1 (-882 |#1|) (-882 |#1|)) |#1| |#1|)))
-((-2516 ((|#2| |#3|) 27)))
-(((-166 |#1| |#2| |#3|) (-10 -7 (-15 -2516 (|#2| |#3|))) (-162) (-1153 |#1|) (-671 |#1| |#2|)) (T -166))
-((-2516 (*1 *2 *3) (-12 (-4 *4 (-162)) (-4 *2 (-1153 *4)) (-5 *1 (-166 *4 *2 *3)) (-4 *3 (-671 *4 *2)))))
-(-10 -7 (-15 -2516 (|#2| |#3|)))
-((-4181 (((-828 |#1| |#3|) |#3| (-831 |#1|) (-828 |#1| |#3|)) 47 (|has| (-891 |#2|) (-825 |#1|)))))
-(((-167 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-891 |#2|) (-825 |#1|)) (-15 -4181 ((-828 |#1| |#3|) |#3| (-831 |#1|) (-828 |#1| |#3|))) |%noBranch|)) (-1023) (-13 (-825 |#1|) (-162)) (-156 |#2|)) (T -167))
-((-4181 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-828 *5 *3)) (-5 *4 (-831 *5)) (-4 *5 (-1023)) (-4 *3 (-156 *6)) (-4 (-891 *6) (-825 *5)) (-4 *6 (-13 (-825 *5) (-162))) (-5 *1 (-167 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-891 |#2|) (-825 |#1|)) (-15 -4181 ((-828 |#1| |#3|) |#3| (-831 |#1|) (-828 |#1| |#3|))) |%noBranch|))
-((-3674 (((-595 |#1|) (-595 |#1|) |#1|) 38)) (-2738 (((-595 |#1|) |#1| (-595 |#1|)) 19)) (-2490 (((-595 |#1|) (-595 (-595 |#1|)) (-595 |#1|)) 33) ((|#1| (-595 |#1|) (-595 |#1|)) 31)))
-(((-168 |#1|) (-10 -7 (-15 -2738 ((-595 |#1|) |#1| (-595 |#1|))) (-15 -2490 (|#1| (-595 |#1|) (-595 |#1|))) (-15 -2490 ((-595 |#1|) (-595 (-595 |#1|)) (-595 |#1|))) (-15 -3674 ((-595 |#1|) (-595 |#1|) |#1|))) (-288)) (T -168))
-((-3674 (*1 *2 *2 *3) (-12 (-5 *2 (-595 *3)) (-4 *3 (-288)) (-5 *1 (-168 *3)))) (-2490 (*1 *2 *3 *2) (-12 (-5 *3 (-595 (-595 *4))) (-5 *2 (-595 *4)) (-4 *4 (-288)) (-5 *1 (-168 *4)))) (-2490 (*1 *2 *3 *3) (-12 (-5 *3 (-595 *2)) (-5 *1 (-168 *2)) (-4 *2 (-288)))) (-2738 (*1 *2 *3 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-288)) (-5 *1 (-168 *3)))))
-(-10 -7 (-15 -2738 ((-595 |#1|) |#1| (-595 |#1|))) (-15 -2490 (|#1| (-595 |#1|) (-595 |#1|))) (-15 -2490 ((-595 |#1|) (-595 (-595 |#1|)) (-595 |#1|))) (-15 -3674 ((-595 |#1|) (-595 |#1|) |#1|)))
-((-1914 (((-2 (|:| |start| |#2|) (|:| -2783 (-398 |#2|))) |#2|) 61)) (-1846 ((|#1| |#1|) 54)) (-3242 (((-159 |#1|) |#2|) 84)) (-1633 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-3971 ((|#2| |#2|) 83)) (-3217 (((-398 |#2|) |#2| |#1|) 113) (((-398 |#2|) |#2| |#1| (-110)) 81)) (-3297 ((|#1| |#2|) 112)) (-3990 ((|#2| |#2|) 119)) (-2437 (((-398 |#2|) |#2|) 134) (((-398 |#2|) |#2| |#1|) 32) (((-398 |#2|) |#2| |#1| (-110)) 133)) (-2053 (((-595 (-2 (|:| -2783 (-595 |#2|)) (|:| -3817 |#1|))) |#2| |#2|) 132) (((-595 (-2 (|:| -2783 (-595 |#2|)) (|:| -3817 |#1|))) |#2| |#2| (-110)) 76)) (-3091 (((-595 (-159 |#1|)) |#2| |#1|) 40) (((-595 (-159 |#1|)) |#2|) 41)))
-(((-169 |#1| |#2|) (-10 -7 (-15 -3091 ((-595 (-159 |#1|)) |#2|)) (-15 -3091 ((-595 (-159 |#1|)) |#2| |#1|)) (-15 -2053 ((-595 (-2 (|:| -2783 (-595 |#2|)) (|:| -3817 |#1|))) |#2| |#2| (-110))) (-15 -2053 ((-595 (-2 (|:| -2783 (-595 |#2|)) (|:| -3817 |#1|))) |#2| |#2|)) (-15 -2437 ((-398 |#2|) |#2| |#1| (-110))) (-15 -2437 ((-398 |#2|) |#2| |#1|)) (-15 -2437 ((-398 |#2|) |#2|)) (-15 -3990 (|#2| |#2|)) (-15 -3297 (|#1| |#2|)) (-15 -3217 ((-398 |#2|) |#2| |#1| (-110))) (-15 -3217 ((-398 |#2|) |#2| |#1|)) (-15 -3971 (|#2| |#2|)) (-15 -1633 (|#1| |#2| |#1|)) (-15 -1633 (|#1| |#2|)) (-15 -3242 ((-159 |#1|) |#2|)) (-15 -1846 (|#1| |#1|)) (-15 -1914 ((-2 (|:| |start| |#2|) (|:| -2783 (-398 |#2|))) |#2|))) (-13 (-343) (-791)) (-1153 (-159 |#1|))) (T -169))
-((-1914 (*1 *2 *3) (-12 (-4 *4 (-13 (-343) (-791))) (-5 *2 (-2 (|:| |start| *3) (|:| -2783 (-398 *3)))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1153 (-159 *4))))) (-1846 (*1 *2 *2) (-12 (-4 *2 (-13 (-343) (-791))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1153 (-159 *2))))) (-3242 (*1 *2 *3) (-12 (-5 *2 (-159 *4)) (-5 *1 (-169 *4 *3)) (-4 *4 (-13 (-343) (-791))) (-4 *3 (-1153 *2)))) (-1633 (*1 *2 *3) (-12 (-4 *2 (-13 (-343) (-791))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1153 (-159 *2))))) (-1633 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-343) (-791))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1153 (-159 *2))))) (-3971 (*1 *2 *2) (-12 (-4 *3 (-13 (-343) (-791))) (-5 *1 (-169 *3 *2)) (-4 *2 (-1153 (-159 *3))))) (-3217 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-343) (-791))) (-5 *2 (-398 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1153 (-159 *4))))) (-3217 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-110)) (-4 *4 (-13 (-343) (-791))) (-5 *2 (-398 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1153 (-159 *4))))) (-3297 (*1 *2 *3) (-12 (-4 *2 (-13 (-343) (-791))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1153 (-159 *2))))) (-3990 (*1 *2 *2) (-12 (-4 *3 (-13 (-343) (-791))) (-5 *1 (-169 *3 *2)) (-4 *2 (-1153 (-159 *3))))) (-2437 (*1 *2 *3) (-12 (-4 *4 (-13 (-343) (-791))) (-5 *2 (-398 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1153 (-159 *4))))) (-2437 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-343) (-791))) (-5 *2 (-398 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1153 (-159 *4))))) (-2437 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-110)) (-4 *4 (-13 (-343) (-791))) (-5 *2 (-398 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1153 (-159 *4))))) (-2053 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-343) (-791))) (-5 *2 (-595 (-2 (|:| -2783 (-595 *3)) (|:| -3817 *4)))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1153 (-159 *4))))) (-2053 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-343) (-791))) (-5 *2 (-595 (-2 (|:| -2783 (-595 *3)) (|:| -3817 *5)))) (-5 *1 (-169 *5 *3)) (-4 *3 (-1153 (-159 *5))))) (-3091 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-343) (-791))) (-5 *2 (-595 (-159 *4))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1153 (-159 *4))))) (-3091 (*1 *2 *3) (-12 (-4 *4 (-13 (-343) (-791))) (-5 *2 (-595 (-159 *4))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1153 (-159 *4))))))
-(-10 -7 (-15 -3091 ((-595 (-159 |#1|)) |#2|)) (-15 -3091 ((-595 (-159 |#1|)) |#2| |#1|)) (-15 -2053 ((-595 (-2 (|:| -2783 (-595 |#2|)) (|:| -3817 |#1|))) |#2| |#2| (-110))) (-15 -2053 ((-595 (-2 (|:| -2783 (-595 |#2|)) (|:| -3817 |#1|))) |#2| |#2|)) (-15 -2437 ((-398 |#2|) |#2| |#1| (-110))) (-15 -2437 ((-398 |#2|) |#2| |#1|)) (-15 -2437 ((-398 |#2|) |#2|)) (-15 -3990 (|#2| |#2|)) (-15 -3297 (|#1| |#2|)) (-15 -3217 ((-398 |#2|) |#2| |#1| (-110))) (-15 -3217 ((-398 |#2|) |#2| |#1|)) (-15 -3971 (|#2| |#2|)) (-15 -1633 (|#1| |#2| |#1|)) (-15 -1633 (|#1| |#2|)) (-15 -3242 ((-159 |#1|) |#2|)) (-15 -1846 (|#1| |#1|)) (-15 -1914 ((-2 (|:| |start| |#2|) (|:| -2783 (-398 |#2|))) |#2|)))
-((-2563 (((-3 |#2| "failed") |#2|) 14)) (-1533 (((-717) |#2|) 16)) (-3223 ((|#2| |#2| |#2|) 18)))
-(((-170 |#1| |#2|) (-10 -7 (-15 -2563 ((-3 |#2| "failed") |#2|)) (-15 -1533 ((-717) |#2|)) (-15 -3223 (|#2| |#2| |#2|))) (-1131) (-622 |#1|)) (T -170))
-((-3223 (*1 *2 *2 *2) (-12 (-4 *3 (-1131)) (-5 *1 (-170 *3 *2)) (-4 *2 (-622 *3)))) (-1533 (*1 *2 *3) (-12 (-4 *4 (-1131)) (-5 *2 (-717)) (-5 *1 (-170 *4 *3)) (-4 *3 (-622 *4)))) (-2563 (*1 *2 *2) (|partial| -12 (-4 *3 (-1131)) (-5 *1 (-170 *3 *2)) (-4 *2 (-622 *3)))))
-(-10 -7 (-15 -2563 ((-3 |#2| "failed") |#2|)) (-15 -1533 ((-717) |#2|)) (-15 -3223 (|#2| |#2| |#2|)))
-((-2207 (((-110) $ $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2360 (((-1095) $) 10)) (-2222 (((-802) $) 17)) (-3728 (((-595 (-1100)) $) 12)) (-2186 (((-110) $ $) 15)))
-(((-171) (-13 (-1023) (-10 -8 (-15 -2360 ((-1095) $)) (-15 -3728 ((-595 (-1100)) $))))) (T -171))
-((-2360 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-171)))) (-3728 (*1 *2 *1) (-12 (-5 *2 (-595 (-1100))) (-5 *1 (-171)))))
-(-13 (-1023) (-10 -8 (-15 -2360 ((-1095) $)) (-15 -3728 ((-595 (-1100)) $))))
-((-1365 ((|#2| |#2|) 28)) (-3137 (((-110) |#2|) 19)) (-2461 (((-296 |#1|) |#2|) 12)) (-2473 (((-296 |#1|) |#2|) 14)) (-3885 ((|#2| |#2| (-1095)) 68) ((|#2| |#2|) 69)) (-2367 (((-159 (-296 |#1|)) |#2|) 10)) (-2443 ((|#2| |#2| (-1095)) 65) ((|#2| |#2|) 59)))
-(((-172 |#1| |#2|) (-10 -7 (-15 -3885 (|#2| |#2|)) (-15 -3885 (|#2| |#2| (-1095))) (-15 -2443 (|#2| |#2|)) (-15 -2443 (|#2| |#2| (-1095))) (-15 -2461 ((-296 |#1|) |#2|)) (-15 -2473 ((-296 |#1|) |#2|)) (-15 -3137 ((-110) |#2|)) (-15 -1365 (|#2| |#2|)) (-15 -2367 ((-159 (-296 |#1|)) |#2|))) (-13 (-520) (-793) (-972 (-528))) (-13 (-27) (-1117) (-410 (-159 |#1|)))) (T -172))
-((-2367 (*1 *2 *3) (-12 (-4 *4 (-13 (-520) (-793) (-972 (-528)))) (-5 *2 (-159 (-296 *4))) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-410 (-159 *4)))))) (-1365 (*1 *2 *2) (-12 (-4 *3 (-13 (-520) (-793) (-972 (-528)))) (-5 *1 (-172 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-410 (-159 *3)))))) (-3137 (*1 *2 *3) (-12 (-4 *4 (-13 (-520) (-793) (-972 (-528)))) (-5 *2 (-110)) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-410 (-159 *4)))))) (-2473 (*1 *2 *3) (-12 (-4 *4 (-13 (-520) (-793) (-972 (-528)))) (-5 *2 (-296 *4)) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-410 (-159 *4)))))) (-2461 (*1 *2 *3) (-12 (-4 *4 (-13 (-520) (-793) (-972 (-528)))) (-5 *2 (-296 *4)) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-410 (-159 *4)))))) (-2443 (*1 *2 *2 *3) (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-520) (-793) (-972 (-528)))) (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-410 (-159 *4)))))) (-2443 (*1 *2 *2) (-12 (-4 *3 (-13 (-520) (-793) (-972 (-528)))) (-5 *1 (-172 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-410 (-159 *3)))))) (-3885 (*1 *2 *2 *3) (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-520) (-793) (-972 (-528)))) (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-410 (-159 *4)))))) (-3885 (*1 *2 *2) (-12 (-4 *3 (-13 (-520) (-793) (-972 (-528)))) (-5 *1 (-172 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-410 (-159 *3)))))))
-(-10 -7 (-15 -3885 (|#2| |#2|)) (-15 -3885 (|#2| |#2| (-1095))) (-15 -2443 (|#2| |#2|)) (-15 -2443 (|#2| |#2| (-1095))) (-15 -2461 ((-296 |#1|) |#2|)) (-15 -2473 ((-296 |#1|) |#2|)) (-15 -3137 ((-110) |#2|)) (-15 -1365 (|#2| |#2|)) (-15 -2367 ((-159 (-296 |#1|)) |#2|)))
-((-3532 (((-1177 (-635 (-891 |#1|))) (-1177 (-635 |#1|))) 24)) (-2222 (((-1177 (-635 (-387 (-891 |#1|)))) (-1177 (-635 |#1|))) 33)))
-(((-173 |#1|) (-10 -7 (-15 -3532 ((-1177 (-635 (-891 |#1|))) (-1177 (-635 |#1|)))) (-15 -2222 ((-1177 (-635 (-387 (-891 |#1|)))) (-1177 (-635 |#1|))))) (-162)) (T -173))
-((-2222 (*1 *2 *3) (-12 (-5 *3 (-1177 (-635 *4))) (-4 *4 (-162)) (-5 *2 (-1177 (-635 (-387 (-891 *4))))) (-5 *1 (-173 *4)))) (-3532 (*1 *2 *3) (-12 (-5 *3 (-1177 (-635 *4))) (-4 *4 (-162)) (-5 *2 (-1177 (-635 (-891 *4)))) (-5 *1 (-173 *4)))))
-(-10 -7 (-15 -3532 ((-1177 (-635 (-891 |#1|))) (-1177 (-635 |#1|)))) (-15 -2222 ((-1177 (-635 (-387 (-891 |#1|)))) (-1177 (-635 |#1|)))))
-((-2169 (((-1097 (-387 (-528))) (-1097 (-387 (-528))) (-1097 (-387 (-528)))) 66)) (-2626 (((-1097 (-387 (-528))) (-595 (-528)) (-595 (-528))) 75)) (-2114 (((-1097 (-387 (-528))) (-528)) 40)) (-2528 (((-1097 (-387 (-528))) (-528)) 52)) (-4014 (((-387 (-528)) (-1097 (-387 (-528)))) 62)) (-3415 (((-1097 (-387 (-528))) (-528)) 32)) (-3183 (((-1097 (-387 (-528))) (-528)) 48)) (-3204 (((-1097 (-387 (-528))) (-528)) 46)) (-3363 (((-1097 (-387 (-528))) (-1097 (-387 (-528))) (-1097 (-387 (-528)))) 60)) (-3534 (((-1097 (-387 (-528))) (-528)) 25)) (-2691 (((-387 (-528)) (-1097 (-387 (-528))) (-1097 (-387 (-528)))) 64)) (-3951 (((-1097 (-387 (-528))) (-528)) 30)) (-3256 (((-1097 (-387 (-528))) (-595 (-528))) 72)))
-(((-174) (-10 -7 (-15 -3534 ((-1097 (-387 (-528))) (-528))) (-15 -2114 ((-1097 (-387 (-528))) (-528))) (-15 -3415 ((-1097 (-387 (-528))) (-528))) (-15 -3951 ((-1097 (-387 (-528))) (-528))) (-15 -3204 ((-1097 (-387 (-528))) (-528))) (-15 -3183 ((-1097 (-387 (-528))) (-528))) (-15 -2528 ((-1097 (-387 (-528))) (-528))) (-15 -2691 ((-387 (-528)) (-1097 (-387 (-528))) (-1097 (-387 (-528))))) (-15 -3363 ((-1097 (-387 (-528))) (-1097 (-387 (-528))) (-1097 (-387 (-528))))) (-15 -4014 ((-387 (-528)) (-1097 (-387 (-528))))) (-15 -2169 ((-1097 (-387 (-528))) (-1097 (-387 (-528))) (-1097 (-387 (-528))))) (-15 -3256 ((-1097 (-387 (-528))) (-595 (-528)))) (-15 -2626 ((-1097 (-387 (-528))) (-595 (-528)) (-595 (-528)))))) (T -174))
-((-2626 (*1 *2 *3 *3) (-12 (-5 *3 (-595 (-528))) (-5 *2 (-1097 (-387 (-528)))) (-5 *1 (-174)))) (-3256 (*1 *2 *3) (-12 (-5 *3 (-595 (-528))) (-5 *2 (-1097 (-387 (-528)))) (-5 *1 (-174)))) (-2169 (*1 *2 *2 *2) (-12 (-5 *2 (-1097 (-387 (-528)))) (-5 *1 (-174)))) (-4014 (*1 *2 *3) (-12 (-5 *3 (-1097 (-387 (-528)))) (-5 *2 (-387 (-528))) (-5 *1 (-174)))) (-3363 (*1 *2 *2 *2) (-12 (-5 *2 (-1097 (-387 (-528)))) (-5 *1 (-174)))) (-2691 (*1 *2 *3 *3) (-12 (-5 *3 (-1097 (-387 (-528)))) (-5 *2 (-387 (-528))) (-5 *1 (-174)))) (-2528 (*1 *2 *3) (-12 (-5 *2 (-1097 (-387 (-528)))) (-5 *1 (-174)) (-5 *3 (-528)))) (-3183 (*1 *2 *3) (-12 (-5 *2 (-1097 (-387 (-528)))) (-5 *1 (-174)) (-5 *3 (-528)))) (-3204 (*1 *2 *3) (-12 (-5 *2 (-1097 (-387 (-528)))) (-5 *1 (-174)) (-5 *3 (-528)))) (-3951 (*1 *2 *3) (-12 (-5 *2 (-1097 (-387 (-528)))) (-5 *1 (-174)) (-5 *3 (-528)))) (-3415 (*1 *2 *3) (-12 (-5 *2 (-1097 (-387 (-528)))) (-5 *1 (-174)) (-5 *3 (-528)))) (-2114 (*1 *2 *3) (-12 (-5 *2 (-1097 (-387 (-528)))) (-5 *1 (-174)) (-5 *3 (-528)))) (-3534 (*1 *2 *3) (-12 (-5 *2 (-1097 (-387 (-528)))) (-5 *1 (-174)) (-5 *3 (-528)))))
-(-10 -7 (-15 -3534 ((-1097 (-387 (-528))) (-528))) (-15 -2114 ((-1097 (-387 (-528))) (-528))) (-15 -3415 ((-1097 (-387 (-528))) (-528))) (-15 -3951 ((-1097 (-387 (-528))) (-528))) (-15 -3204 ((-1097 (-387 (-528))) (-528))) (-15 -3183 ((-1097 (-387 (-528))) (-528))) (-15 -2528 ((-1097 (-387 (-528))) (-528))) (-15 -2691 ((-387 (-528)) (-1097 (-387 (-528))) (-1097 (-387 (-528))))) (-15 -3363 ((-1097 (-387 (-528))) (-1097 (-387 (-528))) (-1097 (-387 (-528))))) (-15 -4014 ((-387 (-528)) (-1097 (-387 (-528))))) (-15 -2169 ((-1097 (-387 (-528))) (-1097 (-387 (-528))) (-1097 (-387 (-528))))) (-15 -3256 ((-1097 (-387 (-528))) (-595 (-528)))) (-15 -2626 ((-1097 (-387 (-528))) (-595 (-528)) (-595 (-528)))))
-((-1902 (((-398 (-1091 (-528))) (-528)) 28)) (-1805 (((-595 (-1091 (-528))) (-528)) 23)) (-2438 (((-1091 (-528)) (-528)) 21)))
-(((-175) (-10 -7 (-15 -1805 ((-595 (-1091 (-528))) (-528))) (-15 -2438 ((-1091 (-528)) (-528))) (-15 -1902 ((-398 (-1091 (-528))) (-528))))) (T -175))
-((-1902 (*1 *2 *3) (-12 (-5 *2 (-398 (-1091 (-528)))) (-5 *1 (-175)) (-5 *3 (-528)))) (-2438 (*1 *2 *3) (-12 (-5 *2 (-1091 (-528))) (-5 *1 (-175)) (-5 *3 (-528)))) (-1805 (*1 *2 *3) (-12 (-5 *2 (-595 (-1091 (-528)))) (-5 *1 (-175)) (-5 *3 (-528)))))
-(-10 -7 (-15 -1805 ((-595 (-1091 (-528))) (-528))) (-15 -2438 ((-1091 (-528)) (-528))) (-15 -1902 ((-398 (-1091 (-528))) (-528))))
-((-3094 (((-1076 (-207)) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 105)) (-4183 (((-595 (-1078)) (-1076 (-207))) NIL)) (-3226 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 81)) (-1413 (((-595 (-207)) (-296 (-207)) (-1095) (-1018 (-786 (-207)))) NIL)) (-3192 (((-595 (-1078)) (-595 (-207))) NIL)) (-1285 (((-207) (-1018 (-786 (-207)))) 24)) (-1977 (((-207) (-1018 (-786 (-207)))) 25)) (-1593 (((-359) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 98)) (-2919 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 42)) (-3802 (((-1078) (-207)) NIL)) (-2717 (((-1078) (-595 (-1078))) 20)) (-1912 (((-970) (-1095) (-1095) (-970)) 13)))
-(((-176) (-10 -7 (-15 -3226 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -2919 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -1285 ((-207) (-1018 (-786 (-207))))) (-15 -1977 ((-207) (-1018 (-786 (-207))))) (-15 -1593 ((-359) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -1413 ((-595 (-207)) (-296 (-207)) (-1095) (-1018 (-786 (-207))))) (-15 -3094 ((-1076 (-207)) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -3802 ((-1078) (-207))) (-15 -3192 ((-595 (-1078)) (-595 (-207)))) (-15 -4183 ((-595 (-1078)) (-1076 (-207)))) (-15 -2717 ((-1078) (-595 (-1078)))) (-15 -1912 ((-970) (-1095) (-1095) (-970))))) (T -176))
-((-1912 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-970)) (-5 *3 (-1095)) (-5 *1 (-176)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-595 (-1078))) (-5 *2 (-1078)) (-5 *1 (-176)))) (-4183 (*1 *2 *3) (-12 (-5 *3 (-1076 (-207))) (-5 *2 (-595 (-1078))) (-5 *1 (-176)))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-595 (-207))) (-5 *2 (-595 (-1078))) (-5 *1 (-176)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-207)) (-5 *2 (-1078)) (-5 *1 (-176)))) (-3094 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (-5 *2 (-1076 (-207))) (-5 *1 (-176)))) (-1413 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-296 (-207))) (-5 *4 (-1095)) (-5 *5 (-1018 (-786 (-207)))) (-5 *2 (-595 (-207))) (-5 *1 (-176)))) (-1593 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (-5 *2 (-359)) (-5 *1 (-176)))) (-1977 (*1 *2 *3) (-12 (-5 *3 (-1018 (-786 (-207)))) (-5 *2 (-207)) (-5 *1 (-176)))) (-1285 (*1 *2 *3) (-12 (-5 *3 (-1018 (-786 (-207)))) (-5 *2 (-207)) (-5 *1 (-176)))) (-2919 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-176)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-176)))))
-(-10 -7 (-15 -3226 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -2919 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -1285 ((-207) (-1018 (-786 (-207))))) (-15 -1977 ((-207) (-1018 (-786 (-207))))) (-15 -1593 ((-359) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -1413 ((-595 (-207)) (-296 (-207)) (-1095) (-1018 (-786 (-207))))) (-15 -3094 ((-1076 (-207)) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -3802 ((-1078) (-207))) (-15 -3192 ((-595 (-1078)) (-595 (-207)))) (-15 -4183 ((-595 (-1078)) (-1076 (-207)))) (-15 -2717 ((-1078) (-595 (-1078)))) (-15 -1912 ((-970) (-1095) (-1095) (-970))))
-((-2207 (((-110) $ $) NIL)) (-1542 (((-970) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)) 55) (((-970) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)) NIL)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 32) (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2186 (((-110) $ $) NIL)))
-(((-177) (-733)) (T -177))
-NIL
-(-733)
-((-2207 (((-110) $ $) NIL)) (-1542 (((-970) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)) 60) (((-970) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)) NIL)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 41) (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2186 (((-110) $ $) NIL)))
-(((-178) (-733)) (T -178))
-NIL
-(-733)
-((-2207 (((-110) $ $) NIL)) (-1542 (((-970) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)) 69) (((-970) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)) NIL)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 40) (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2186 (((-110) $ $) NIL)))
-(((-179) (-733)) (T -179))
-NIL
-(-733)
-((-2207 (((-110) $ $) NIL)) (-1542 (((-970) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)) 56) (((-970) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)) NIL)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 34) (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2186 (((-110) $ $) NIL)))
-(((-180) (-733)) (T -180))
-NIL
-(-733)
-((-2207 (((-110) $ $) NIL)) (-1542 (((-970) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)) 67) (((-970) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)) NIL)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 38) (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2186 (((-110) $ $) NIL)))
-(((-181) (-733)) (T -181))
-NIL
-(-733)
-((-2207 (((-110) $ $) NIL)) (-1542 (((-970) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)) 73) (((-970) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)) NIL)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 36) (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2186 (((-110) $ $) NIL)))
-(((-182) (-733)) (T -182))
-NIL
-(-733)
-((-2207 (((-110) $ $) NIL)) (-1542 (((-970) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)) 80) (((-970) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)) NIL)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 44) (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2186 (((-110) $ $) NIL)))
-(((-183) (-733)) (T -183))
-NIL
-(-733)
-((-2207 (((-110) $ $) NIL)) (-1542 (((-970) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)) 70) (((-970) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)) NIL)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 40) (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2186 (((-110) $ $) NIL)))
-(((-184) (-733)) (T -184))
-NIL
-(-733)
-((-2207 (((-110) $ $) NIL)) (-1542 (((-970) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)) NIL) (((-970) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)) 66)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) NIL) (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 32)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2186 (((-110) $ $) NIL)))
-(((-185) (-733)) (T -185))
-NIL
-(-733)
-((-2207 (((-110) $ $) NIL)) (-1542 (((-970) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)) NIL) (((-970) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)) 63)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) NIL) (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 34)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2186 (((-110) $ $) NIL)))
-(((-186) (-733)) (T -186))
-NIL
-(-733)
-((-2207 (((-110) $ $) NIL)) (-1542 (((-970) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)) 90) (((-970) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)) NIL)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 78) (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2186 (((-110) $ $) NIL)))
-(((-187) (-733)) (T -187))
-NIL
-(-733)
-((-4045 (((-3 (-2 (|:| -4057 (-112)) (|:| |w| (-207))) "failed") (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 85)) (-4149 (((-528) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 42)) (-1996 (((-3 (-595 (-207)) "failed") (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 73)))
-(((-188) (-10 -7 (-15 -4045 ((-3 (-2 (|:| -4057 (-112)) (|:| |w| (-207))) "failed") (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -1996 ((-3 (-595 (-207)) "failed") (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -4149 ((-528) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))))) (T -188))
-((-4149 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (-5 *2 (-528)) (-5 *1 (-188)))) (-1996 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (-5 *2 (-595 (-207))) (-5 *1 (-188)))) (-4045 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (-5 *2 (-2 (|:| -4057 (-112)) (|:| |w| (-207)))) (-5 *1 (-188)))))
-(-10 -7 (-15 -4045 ((-3 (-2 (|:| -4057 (-112)) (|:| |w| (-207))) "failed") (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -1996 ((-3 (-595 (-207)) "failed") (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -4149 ((-528) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))))
-((-3696 (((-359) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 39)) (-1970 (((-2 (|:| |stiffnessFactor| (-359)) (|:| |stabilityFactor| (-359))) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 130)) (-2503 (((-2 (|:| |stiffnessFactor| (-359)) (|:| |stabilityFactor| (-359))) (-635 (-296 (-207)))) 89)) (-1275 (((-359) (-635 (-296 (-207)))) 113)) (-3301 (((-635 (-296 (-207))) (-1177 (-296 (-207))) (-595 (-1095))) 110)) (-3982 (((-359) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 30)) (-3698 (((-359) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 43)) (-4014 (((-635 (-296 (-207))) (-635 (-296 (-207))) (-595 (-1095)) (-1177 (-296 (-207)))) 102)) (-2733 (((-359) (-359) (-595 (-359))) 107) (((-359) (-359) (-359)) 105)) (-2188 (((-359) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 36)))
-(((-189) (-10 -7 (-15 -2733 ((-359) (-359) (-359))) (-15 -2733 ((-359) (-359) (-595 (-359)))) (-15 -1275 ((-359) (-635 (-296 (-207))))) (-15 -3301 ((-635 (-296 (-207))) (-1177 (-296 (-207))) (-595 (-1095)))) (-15 -4014 ((-635 (-296 (-207))) (-635 (-296 (-207))) (-595 (-1095)) (-1177 (-296 (-207))))) (-15 -2503 ((-2 (|:| |stiffnessFactor| (-359)) (|:| |stabilityFactor| (-359))) (-635 (-296 (-207))))) (-15 -1970 ((-2 (|:| |stiffnessFactor| (-359)) (|:| |stabilityFactor| (-359))) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -3696 ((-359) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -3698 ((-359) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -2188 ((-359) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -3982 ((-359) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))))) (T -189))
-((-3982 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (-5 *2 (-359)) (-5 *1 (-189)))) (-2188 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (-5 *2 (-359)) (-5 *1 (-189)))) (-3698 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (-5 *2 (-359)) (-5 *1 (-189)))) (-3696 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (-5 *2 (-359)) (-5 *1 (-189)))) (-1970 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-359)) (|:| |stabilityFactor| (-359)))) (-5 *1 (-189)))) (-2503 (*1 *2 *3) (-12 (-5 *3 (-635 (-296 (-207)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-359)) (|:| |stabilityFactor| (-359)))) (-5 *1 (-189)))) (-4014 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-635 (-296 (-207)))) (-5 *3 (-595 (-1095))) (-5 *4 (-1177 (-296 (-207)))) (-5 *1 (-189)))) (-3301 (*1 *2 *3 *4) (-12 (-5 *3 (-1177 (-296 (-207)))) (-5 *4 (-595 (-1095))) (-5 *2 (-635 (-296 (-207)))) (-5 *1 (-189)))) (-1275 (*1 *2 *3) (-12 (-5 *3 (-635 (-296 (-207)))) (-5 *2 (-359)) (-5 *1 (-189)))) (-2733 (*1 *2 *2 *3) (-12 (-5 *3 (-595 (-359))) (-5 *2 (-359)) (-5 *1 (-189)))) (-2733 (*1 *2 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-189)))))
-(-10 -7 (-15 -2733 ((-359) (-359) (-359))) (-15 -2733 ((-359) (-359) (-595 (-359)))) (-15 -1275 ((-359) (-635 (-296 (-207))))) (-15 -3301 ((-635 (-296 (-207))) (-1177 (-296 (-207))) (-595 (-1095)))) (-15 -4014 ((-635 (-296 (-207))) (-635 (-296 (-207))) (-595 (-1095)) (-1177 (-296 (-207))))) (-15 -2503 ((-2 (|:| |stiffnessFactor| (-359)) (|:| |stabilityFactor| (-359))) (-635 (-296 (-207))))) (-15 -1970 ((-2 (|:| |stiffnessFactor| (-359)) (|:| |stabilityFactor| (-359))) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -3696 ((-359) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -3698 ((-359) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -2188 ((-359) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -3982 ((-359) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))))
-((-2207 (((-110) $ $) NIL)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 41)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2288 (((-970) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 64)) (-2186 (((-110) $ $) NIL)))
-(((-190) (-746)) (T -190))
-NIL
-(-746)
-((-2207 (((-110) $ $) NIL)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 41)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2288 (((-970) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 62)) (-2186 (((-110) $ $) NIL)))
-(((-191) (-746)) (T -191))
-NIL
-(-746)
-((-2207 (((-110) $ $) NIL)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 40)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2288 (((-970) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 66)) (-2186 (((-110) $ $) NIL)))
-(((-192) (-746)) (T -192))
-NIL
-(-746)
-((-2207 (((-110) $ $) NIL)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 46)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2288 (((-970) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 75)) (-2186 (((-110) $ $) NIL)))
-(((-193) (-746)) (T -193))
-NIL
-(-746)
-((-3642 (((-595 (-1095)) (-1095) (-717)) 23)) (-1594 (((-296 (-207)) (-296 (-207))) 31)) (-2370 (((-110) (-2 (|:| |pde| (-595 (-296 (-207)))) (|:| |constraints| (-595 (-2 (|:| |start| (-207)) (|:| |finish| (-207)) (|:| |grid| (-717)) (|:| |boundaryType| (-528)) (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207)))))) (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078)) (|:| |tol| (-207)))) 74)) (-2016 (((-110) (-207) (-207) (-595 (-296 (-207)))) 45)))
-(((-194) (-10 -7 (-15 -3642 ((-595 (-1095)) (-1095) (-717))) (-15 -1594 ((-296 (-207)) (-296 (-207)))) (-15 -2016 ((-110) (-207) (-207) (-595 (-296 (-207))))) (-15 -2370 ((-110) (-2 (|:| |pde| (-595 (-296 (-207)))) (|:| |constraints| (-595 (-2 (|:| |start| (-207)) (|:| |finish| (-207)) (|:| |grid| (-717)) (|:| |boundaryType| (-528)) (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207)))))) (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078)) (|:| |tol| (-207))))))) (T -194))
-((-2370 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-595 (-296 (-207)))) (|:| |constraints| (-595 (-2 (|:| |start| (-207)) (|:| |finish| (-207)) (|:| |grid| (-717)) (|:| |boundaryType| (-528)) (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207)))))) (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078)) (|:| |tol| (-207)))) (-5 *2 (-110)) (-5 *1 (-194)))) (-2016 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-595 (-296 (-207)))) (-5 *3 (-207)) (-5 *2 (-110)) (-5 *1 (-194)))) (-1594 (*1 *2 *2) (-12 (-5 *2 (-296 (-207))) (-5 *1 (-194)))) (-3642 (*1 *2 *3 *4) (-12 (-5 *4 (-717)) (-5 *2 (-595 (-1095))) (-5 *1 (-194)) (-5 *3 (-1095)))))
-(-10 -7 (-15 -3642 ((-595 (-1095)) (-1095) (-717))) (-15 -1594 ((-296 (-207)) (-296 (-207)))) (-15 -2016 ((-110) (-207) (-207) (-595 (-296 (-207))))) (-15 -2370 ((-110) (-2 (|:| |pde| (-595 (-296 (-207)))) (|:| |constraints| (-595 (-2 (|:| |start| (-207)) (|:| |finish| (-207)) (|:| |grid| (-717)) (|:| |boundaryType| (-528)) (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207)))))) (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078)) (|:| |tol| (-207))))))
-((-2207 (((-110) $ $) NIL)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |pde| (-595 (-296 (-207)))) (|:| |constraints| (-595 (-2 (|:| |start| (-207)) (|:| |finish| (-207)) (|:| |grid| (-717)) (|:| |boundaryType| (-528)) (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207)))))) (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078)) (|:| |tol| (-207)))) 26)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-3447 (((-970) (-2 (|:| |pde| (-595 (-296 (-207)))) (|:| |constraints| (-595 (-2 (|:| |start| (-207)) (|:| |finish| (-207)) (|:| |grid| (-717)) (|:| |boundaryType| (-528)) (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207)))))) (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078)) (|:| |tol| (-207)))) 57)) (-2186 (((-110) $ $) NIL)))
-(((-195) (-834)) (T -195))
-NIL
-(-834)
-((-2207 (((-110) $ $) NIL)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |pde| (-595 (-296 (-207)))) (|:| |constraints| (-595 (-2 (|:| |start| (-207)) (|:| |finish| (-207)) (|:| |grid| (-717)) (|:| |boundaryType| (-528)) (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207)))))) (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078)) (|:| |tol| (-207)))) 21)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-3447 (((-970) (-2 (|:| |pde| (-595 (-296 (-207)))) (|:| |constraints| (-595 (-2 (|:| |start| (-207)) (|:| |finish| (-207)) (|:| |grid| (-717)) (|:| |boundaryType| (-528)) (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207)))))) (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078)) (|:| |tol| (-207)))) NIL)) (-2186 (((-110) $ $) NIL)))
-(((-196) (-834)) (T -196))
-NIL
-(-834)
-((-2207 (((-110) $ $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3294 (((-1182) $) 36) (((-1182) $ (-860) (-860)) 38)) (-3043 (($ $ (-926)) 19) (((-227 (-1078)) $ (-1095)) 15)) (-2273 (((-1182) $) 34)) (-2222 (((-802) $) 31) (($ (-595 |#1|)) 8)) (-2186 (((-110) $ $) NIL)) (-2286 (($ $ $) 27)) (-2275 (($ $ $) 22)))
-(((-197 |#1|) (-13 (-1023) (-10 -8 (-15 -3043 ($ $ (-926))) (-15 -3043 ((-227 (-1078)) $ (-1095))) (-15 -2275 ($ $ $)) (-15 -2286 ($ $ $)) (-15 -2222 ($ (-595 |#1|))) (-15 -2273 ((-1182) $)) (-15 -3294 ((-1182) $)) (-15 -3294 ((-1182) $ (-860) (-860))))) (-13 (-793) (-10 -8 (-15 -3043 ((-1078) $ (-1095))) (-15 -2273 ((-1182) $)) (-15 -3294 ((-1182) $))))) (T -197))
-((-3043 (*1 *1 *1 *2) (-12 (-5 *2 (-926)) (-5 *1 (-197 *3)) (-4 *3 (-13 (-793) (-10 -8 (-15 -3043 ((-1078) $ (-1095))) (-15 -2273 ((-1182) $)) (-15 -3294 ((-1182) $))))))) (-3043 (*1 *2 *1 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-227 (-1078))) (-5 *1 (-197 *4)) (-4 *4 (-13 (-793) (-10 -8 (-15 -3043 ((-1078) $ *3)) (-15 -2273 ((-1182) $)) (-15 -3294 ((-1182) $))))))) (-2275 (*1 *1 *1 *1) (-12 (-5 *1 (-197 *2)) (-4 *2 (-13 (-793) (-10 -8 (-15 -3043 ((-1078) $ (-1095))) (-15 -2273 ((-1182) $)) (-15 -3294 ((-1182) $))))))) (-2286 (*1 *1 *1 *1) (-12 (-5 *1 (-197 *2)) (-4 *2 (-13 (-793) (-10 -8 (-15 -3043 ((-1078) $ (-1095))) (-15 -2273 ((-1182) $)) (-15 -3294 ((-1182) $))))))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-13 (-793) (-10 -8 (-15 -3043 ((-1078) $ (-1095))) (-15 -2273 ((-1182) $)) (-15 -3294 ((-1182) $))))) (-5 *1 (-197 *3)))) (-2273 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-197 *3)) (-4 *3 (-13 (-793) (-10 -8 (-15 -3043 ((-1078) $ (-1095))) (-15 -2273 (*2 $)) (-15 -3294 (*2 $))))))) (-3294 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-197 *3)) (-4 *3 (-13 (-793) (-10 -8 (-15 -3043 ((-1078) $ (-1095))) (-15 -2273 (*2 $)) (-15 -3294 (*2 $))))))) (-3294 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1182)) (-5 *1 (-197 *4)) (-4 *4 (-13 (-793) (-10 -8 (-15 -3043 ((-1078) $ (-1095))) (-15 -2273 (*2 $)) (-15 -3294 (*2 $))))))))
-(-13 (-1023) (-10 -8 (-15 -3043 ($ $ (-926))) (-15 -3043 ((-227 (-1078)) $ (-1095))) (-15 -2275 ($ $ $)) (-15 -2286 ($ $ $)) (-15 -2222 ($ (-595 |#1|))) (-15 -2273 ((-1182) $)) (-15 -3294 ((-1182) $)) (-15 -3294 ((-1182) $ (-860) (-860)))))
-((-2221 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
-(((-198 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2221 (|#2| |#4| (-1 |#2| |#2|)))) (-343) (-1153 |#1|) (-1153 (-387 |#2|)) (-322 |#1| |#2| |#3|)) (T -198))
-((-2221 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-343)) (-4 *6 (-1153 (-387 *2))) (-4 *2 (-1153 *5)) (-5 *1 (-198 *5 *2 *6 *3)) (-4 *3 (-322 *5 *2 *6)))))
-(-10 -7 (-15 -2221 (|#2| |#4| (-1 |#2| |#2|))))
-((-2214 ((|#2| |#2| (-717) |#2|) 42)) (-3121 ((|#2| |#2| (-717) |#2|) 38)) (-2470 (((-595 |#2|) (-595 (-2 (|:| |deg| (-717)) (|:| -3891 |#2|)))) 58)) (-2668 (((-595 (-2 (|:| |deg| (-717)) (|:| -3891 |#2|))) |#2|) 53)) (-3999 (((-110) |#2|) 50)) (-1668 (((-398 |#2|) |#2|) 78)) (-2437 (((-398 |#2|) |#2|) 77)) (-3797 ((|#2| |#2| (-717) |#2|) 36)) (-4131 (((-2 (|:| |cont| |#1|) (|:| -2783 (-595 (-2 (|:| |irr| |#2|) (|:| -2842 (-528)))))) |#2| (-110)) 70)))
-(((-199 |#1| |#2|) (-10 -7 (-15 -2437 ((-398 |#2|) |#2|)) (-15 -1668 ((-398 |#2|) |#2|)) (-15 -4131 ((-2 (|:| |cont| |#1|) (|:| -2783 (-595 (-2 (|:| |irr| |#2|) (|:| -2842 (-528)))))) |#2| (-110))) (-15 -2668 ((-595 (-2 (|:| |deg| (-717)) (|:| -3891 |#2|))) |#2|)) (-15 -2470 ((-595 |#2|) (-595 (-2 (|:| |deg| (-717)) (|:| -3891 |#2|))))) (-15 -3797 (|#2| |#2| (-717) |#2|)) (-15 -3121 (|#2| |#2| (-717) |#2|)) (-15 -2214 (|#2| |#2| (-717) |#2|)) (-15 -3999 ((-110) |#2|))) (-329) (-1153 |#1|)) (T -199))
-((-3999 (*1 *2 *3) (-12 (-4 *4 (-329)) (-5 *2 (-110)) (-5 *1 (-199 *4 *3)) (-4 *3 (-1153 *4)))) (-2214 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-717)) (-4 *4 (-329)) (-5 *1 (-199 *4 *2)) (-4 *2 (-1153 *4)))) (-3121 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-717)) (-4 *4 (-329)) (-5 *1 (-199 *4 *2)) (-4 *2 (-1153 *4)))) (-3797 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-717)) (-4 *4 (-329)) (-5 *1 (-199 *4 *2)) (-4 *2 (-1153 *4)))) (-2470 (*1 *2 *3) (-12 (-5 *3 (-595 (-2 (|:| |deg| (-717)) (|:| -3891 *5)))) (-4 *5 (-1153 *4)) (-4 *4 (-329)) (-5 *2 (-595 *5)) (-5 *1 (-199 *4 *5)))) (-2668 (*1 *2 *3) (-12 (-4 *4 (-329)) (-5 *2 (-595 (-2 (|:| |deg| (-717)) (|:| -3891 *3)))) (-5 *1 (-199 *4 *3)) (-4 *3 (-1153 *4)))) (-4131 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-329)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2783 (-595 (-2 (|:| |irr| *3) (|:| -2842 (-528))))))) (-5 *1 (-199 *5 *3)) (-4 *3 (-1153 *5)))) (-1668 (*1 *2 *3) (-12 (-4 *4 (-329)) (-5 *2 (-398 *3)) (-5 *1 (-199 *4 *3)) (-4 *3 (-1153 *4)))) (-2437 (*1 *2 *3) (-12 (-4 *4 (-329)) (-5 *2 (-398 *3)) (-5 *1 (-199 *4 *3)) (-4 *3 (-1153 *4)))))
-(-10 -7 (-15 -2437 ((-398 |#2|) |#2|)) (-15 -1668 ((-398 |#2|) |#2|)) (-15 -4131 ((-2 (|:| |cont| |#1|) (|:| -2783 (-595 (-2 (|:| |irr| |#2|) (|:| -2842 (-528)))))) |#2| (-110))) (-15 -2668 ((-595 (-2 (|:| |deg| (-717)) (|:| -3891 |#2|))) |#2|)) (-15 -2470 ((-595 |#2|) (-595 (-2 (|:| |deg| (-717)) (|:| -3891 |#2|))))) (-15 -3797 (|#2| |#2| (-717) |#2|)) (-15 -3121 (|#2| |#2| (-717) |#2|)) (-15 -2214 (|#2| |#2| (-717) |#2|)) (-15 -3999 ((-110) |#2|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3598 (((-528) $) NIL (|has| (-528) (-288)))) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (|has| (-528) (-848)))) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (|has| (-528) (-848)))) (-2213 (((-110) $ $) NIL)) (-3605 (((-528) $) NIL (|has| (-528) (-766)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-528) "failed") $) NIL) (((-3 (-1095) "failed") $) NIL (|has| (-528) (-972 (-1095)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| (-528) (-972 (-528)))) (((-3 (-528) "failed") $) NIL (|has| (-528) (-972 (-528))))) (-2409 (((-528) $) NIL) (((-1095) $) NIL (|has| (-528) (-972 (-1095)))) (((-387 (-528)) $) NIL (|has| (-528) (-972 (-528)))) (((-528) $) NIL (|has| (-528) (-972 (-528))))) (-3519 (($ $ $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| (-528) (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| (-528) (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL) (((-635 (-528)) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1338 (($) NIL (|has| (-528) (-513)))) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2124 (((-110) $) NIL)) (-3657 (((-110) $) NIL (|has| (-528) (-766)))) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (|has| (-528) (-825 (-528)))) (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (|has| (-528) (-825 (-359))))) (-1297 (((-110) $) NIL)) (-3037 (($ $) NIL)) (-3031 (((-528) $) NIL)) (-3296 (((-3 $ "failed") $) NIL (|has| (-528) (-1071)))) (-3710 (((-110) $) NIL (|has| (-528) (-766)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-1436 (($ $ $) NIL (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (|has| (-528) (-793)))) (-3106 (($ (-1 (-528) (-528)) $) NIL)) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL)) (-4197 (($) NIL (|has| (-528) (-1071)) CONST)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3270 (($ $) NIL (|has| (-528) (-288))) (((-387 (-528)) $) NIL)) (-2925 (((-528) $) NIL (|has| (-528) (-513)))) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (|has| (-528) (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (|has| (-528) (-848)))) (-2437 (((-398 $) $) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-4014 (($ $ (-595 (-528)) (-595 (-528))) NIL (|has| (-528) (-290 (-528)))) (($ $ (-528) (-528)) NIL (|has| (-528) (-290 (-528)))) (($ $ (-275 (-528))) NIL (|has| (-528) (-290 (-528)))) (($ $ (-595 (-275 (-528)))) NIL (|has| (-528) (-290 (-528)))) (($ $ (-595 (-1095)) (-595 (-528))) NIL (|has| (-528) (-489 (-1095) (-528)))) (($ $ (-1095) (-528)) NIL (|has| (-528) (-489 (-1095) (-528))))) (-3973 (((-717) $) NIL)) (-3043 (($ $ (-528)) NIL (|has| (-528) (-267 (-528) (-528))))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3235 (($ $) NIL (|has| (-528) (-215))) (($ $ (-717)) NIL (|has| (-528) (-215))) (($ $ (-1095)) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-1 (-528) (-528)) (-717)) NIL) (($ $ (-1 (-528) (-528))) NIL)) (-4118 (($ $) NIL)) (-3042 (((-528) $) NIL)) (-2934 (($ (-387 (-528))) 9)) (-3155 (((-831 (-528)) $) NIL (|has| (-528) (-570 (-831 (-528))))) (((-831 (-359)) $) NIL (|has| (-528) (-570 (-831 (-359))))) (((-504) $) NIL (|has| (-528) (-570 (-504)))) (((-359) $) NIL (|has| (-528) (-957))) (((-207) $) NIL (|has| (-528) (-957)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| (-528) (-848))))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ $) NIL) (($ (-387 (-528))) 8) (($ (-528)) NIL) (($ (-1095)) NIL (|has| (-528) (-972 (-1095)))) (((-387 (-528)) $) NIL) (((-940 10) $) 10)) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| (-528) (-848))) (|has| (-528) (-138))))) (-3742 (((-717)) NIL)) (-1769 (((-528) $) NIL (|has| (-528) (-513)))) (-4016 (((-110) $ $) NIL)) (-1775 (($ $) NIL (|has| (-528) (-766)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($ $) NIL (|has| (-528) (-215))) (($ $ (-717)) NIL (|has| (-528) (-215))) (($ $ (-1095)) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-1 (-528) (-528)) (-717)) NIL) (($ $ (-1 (-528) (-528))) NIL)) (-2244 (((-110) $ $) NIL (|has| (-528) (-793)))) (-2220 (((-110) $ $) NIL (|has| (-528) (-793)))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (|has| (-528) (-793)))) (-2208 (((-110) $ $) NIL (|has| (-528) (-793)))) (-2296 (($ $ $) NIL) (($ (-528) (-528)) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL) (($ (-528) $) NIL) (($ $ (-528)) NIL)))
-(((-200) (-13 (-929 (-528)) (-10 -8 (-15 -2222 ((-387 (-528)) $)) (-15 -2222 ((-940 10) $)) (-15 -3270 ((-387 (-528)) $)) (-15 -2934 ($ (-387 (-528))))))) (T -200))
-((-2222 (*1 *2 *1) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-200)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-940 10)) (-5 *1 (-200)))) (-3270 (*1 *2 *1) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-200)))) (-2934 (*1 *1 *2) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-200)))))
-(-13 (-929 (-528)) (-10 -8 (-15 -2222 ((-387 (-528)) $)) (-15 -2222 ((-940 10) $)) (-15 -3270 ((-387 (-528)) $)) (-15 -2934 ($ (-387 (-528))))))
-((-1923 (((-3 (|:| |f1| (-786 |#2|)) (|:| |f2| (-595 (-786 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1016 (-786 |#2|)) (-1078)) 28) (((-3 (|:| |f1| (-786 |#2|)) (|:| |f2| (-595 (-786 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1016 (-786 |#2|))) 24)) (-1595 (((-3 (|:| |f1| (-786 |#2|)) (|:| |f2| (-595 (-786 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1095) (-786 |#2|) (-786 |#2|) (-110)) 17)))
-(((-201 |#1| |#2|) (-10 -7 (-15 -1923 ((-3 (|:| |f1| (-786 |#2|)) (|:| |f2| (-595 (-786 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1016 (-786 |#2|)))) (-15 -1923 ((-3 (|:| |f1| (-786 |#2|)) (|:| |f2| (-595 (-786 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1016 (-786 |#2|)) (-1078))) (-15 -1595 ((-3 (|:| |f1| (-786 |#2|)) (|:| |f2| (-595 (-786 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1095) (-786 |#2|) (-786 |#2|) (-110)))) (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528))) (-13 (-1117) (-897) (-29 |#1|))) (T -201))
-((-1595 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1095)) (-5 *6 (-110)) (-4 *7 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528)))) (-4 *3 (-13 (-1117) (-897) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-786 *3)) (|:| |f2| (-595 (-786 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-201 *7 *3)) (-5 *5 (-786 *3)))) (-1923 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1016 (-786 *3))) (-5 *5 (-1078)) (-4 *3 (-13 (-1117) (-897) (-29 *6))) (-4 *6 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528)))) (-5 *2 (-3 (|:| |f1| (-786 *3)) (|:| |f2| (-595 (-786 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-201 *6 *3)))) (-1923 (*1 *2 *3 *4) (-12 (-5 *4 (-1016 (-786 *3))) (-4 *3 (-13 (-1117) (-897) (-29 *5))) (-4 *5 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528)))) (-5 *2 (-3 (|:| |f1| (-786 *3)) (|:| |f2| (-595 (-786 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-201 *5 *3)))))
-(-10 -7 (-15 -1923 ((-3 (|:| |f1| (-786 |#2|)) (|:| |f2| (-595 (-786 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1016 (-786 |#2|)))) (-15 -1923 ((-3 (|:| |f1| (-786 |#2|)) (|:| |f2| (-595 (-786 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1016 (-786 |#2|)) (-1078))) (-15 -1595 ((-3 (|:| |f1| (-786 |#2|)) (|:| |f2| (-595 (-786 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1095) (-786 |#2|) (-786 |#2|) (-110))))
-((-1923 (((-3 (|:| |f1| (-786 (-296 |#1|))) (|:| |f2| (-595 (-786 (-296 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-387 (-891 |#1|)) (-1016 (-786 (-387 (-891 |#1|)))) (-1078)) 46) (((-3 (|:| |f1| (-786 (-296 |#1|))) (|:| |f2| (-595 (-786 (-296 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-387 (-891 |#1|)) (-1016 (-786 (-387 (-891 |#1|))))) 43) (((-3 (|:| |f1| (-786 (-296 |#1|))) (|:| |f2| (-595 (-786 (-296 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-387 (-891 |#1|)) (-1016 (-786 (-296 |#1|))) (-1078)) 47) (((-3 (|:| |f1| (-786 (-296 |#1|))) (|:| |f2| (-595 (-786 (-296 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-387 (-891 |#1|)) (-1016 (-786 (-296 |#1|)))) 20)))
-(((-202 |#1|) (-10 -7 (-15 -1923 ((-3 (|:| |f1| (-786 (-296 |#1|))) (|:| |f2| (-595 (-786 (-296 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-387 (-891 |#1|)) (-1016 (-786 (-296 |#1|))))) (-15 -1923 ((-3 (|:| |f1| (-786 (-296 |#1|))) (|:| |f2| (-595 (-786 (-296 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-387 (-891 |#1|)) (-1016 (-786 (-296 |#1|))) (-1078))) (-15 -1923 ((-3 (|:| |f1| (-786 (-296 |#1|))) (|:| |f2| (-595 (-786 (-296 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-387 (-891 |#1|)) (-1016 (-786 (-387 (-891 |#1|)))))) (-15 -1923 ((-3 (|:| |f1| (-786 (-296 |#1|))) (|:| |f2| (-595 (-786 (-296 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-387 (-891 |#1|)) (-1016 (-786 (-387 (-891 |#1|)))) (-1078)))) (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528)))) (T -202))
-((-1923 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1016 (-786 (-387 (-891 *6))))) (-5 *5 (-1078)) (-5 *3 (-387 (-891 *6))) (-4 *6 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528)))) (-5 *2 (-3 (|:| |f1| (-786 (-296 *6))) (|:| |f2| (-595 (-786 (-296 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-202 *6)))) (-1923 (*1 *2 *3 *4) (-12 (-5 *4 (-1016 (-786 (-387 (-891 *5))))) (-5 *3 (-387 (-891 *5))) (-4 *5 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528)))) (-5 *2 (-3 (|:| |f1| (-786 (-296 *5))) (|:| |f2| (-595 (-786 (-296 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-202 *5)))) (-1923 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-387 (-891 *6))) (-5 *4 (-1016 (-786 (-296 *6)))) (-5 *5 (-1078)) (-4 *6 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528)))) (-5 *2 (-3 (|:| |f1| (-786 (-296 *6))) (|:| |f2| (-595 (-786 (-296 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-202 *6)))) (-1923 (*1 *2 *3 *4) (-12 (-5 *3 (-387 (-891 *5))) (-5 *4 (-1016 (-786 (-296 *5)))) (-4 *5 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528)))) (-5 *2 (-3 (|:| |f1| (-786 (-296 *5))) (|:| |f2| (-595 (-786 (-296 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-202 *5)))))
-(-10 -7 (-15 -1923 ((-3 (|:| |f1| (-786 (-296 |#1|))) (|:| |f2| (-595 (-786 (-296 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-387 (-891 |#1|)) (-1016 (-786 (-296 |#1|))))) (-15 -1923 ((-3 (|:| |f1| (-786 (-296 |#1|))) (|:| |f2| (-595 (-786 (-296 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-387 (-891 |#1|)) (-1016 (-786 (-296 |#1|))) (-1078))) (-15 -1923 ((-3 (|:| |f1| (-786 (-296 |#1|))) (|:| |f2| (-595 (-786 (-296 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-387 (-891 |#1|)) (-1016 (-786 (-387 (-891 |#1|)))))) (-15 -1923 ((-3 (|:| |f1| (-786 (-296 |#1|))) (|:| |f2| (-595 (-786 (-296 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-387 (-891 |#1|)) (-1016 (-786 (-387 (-891 |#1|)))) (-1078))))
-((-1422 (((-2 (|:| -3292 (-1091 |#1|)) (|:| |deg| (-860))) (-1091 |#1|)) 21)) (-1535 (((-595 (-296 |#2|)) (-296 |#2|) (-860)) 42)))
-(((-203 |#1| |#2|) (-10 -7 (-15 -1422 ((-2 (|:| -3292 (-1091 |#1|)) (|:| |deg| (-860))) (-1091 |#1|))) (-15 -1535 ((-595 (-296 |#2|)) (-296 |#2|) (-860)))) (-981) (-13 (-520) (-793))) (T -203))
-((-1535 (*1 *2 *3 *4) (-12 (-5 *4 (-860)) (-4 *6 (-13 (-520) (-793))) (-5 *2 (-595 (-296 *6))) (-5 *1 (-203 *5 *6)) (-5 *3 (-296 *6)) (-4 *5 (-981)))) (-1422 (*1 *2 *3) (-12 (-4 *4 (-981)) (-5 *2 (-2 (|:| -3292 (-1091 *4)) (|:| |deg| (-860)))) (-5 *1 (-203 *4 *5)) (-5 *3 (-1091 *4)) (-4 *5 (-13 (-520) (-793))))))
-(-10 -7 (-15 -1422 ((-2 (|:| -3292 (-1091 |#1|)) (|:| |deg| (-860))) (-1091 |#1|))) (-15 -1535 ((-595 (-296 |#2|)) (-296 |#2|) (-860))))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3811 ((|#1| $) NIL)) (-1513 ((|#1| $) 25)) (-3535 (((-110) $ (-717)) NIL)) (-2816 (($) NIL T CONST)) (-4202 (($ $) NIL)) (-2472 (($ $) 31)) (-3712 ((|#1| |#1| $) NIL)) (-4113 ((|#1| $) NIL)) (-3342 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) NIL)) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2800 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-1584 (((-717) $) NIL)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-3934 ((|#1| $) NIL)) (-3576 ((|#1| |#1| $) 28)) (-2098 ((|#1| |#1| $) 30)) (-1950 (($ |#1| $) NIL)) (-4073 (((-717) $) 27)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-1703 ((|#1| $) NIL)) (-2239 ((|#1| $) 26)) (-1270 ((|#1| $) 24)) (-1390 ((|#1| $) NIL)) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-3825 ((|#1| |#1| $) NIL)) (-1972 (((-110) $) 9)) (-2147 (($) NIL)) (-3634 ((|#1| $) NIL)) (-1667 (($) NIL) (($ (-595 |#1|)) 16)) (-3972 (((-717) $) NIL)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2406 (($ $) NIL)) (-2222 (((-802) $) NIL (|has| |#1| (-569 (-802))))) (-1788 ((|#1| $) 13)) (-2164 (($ (-595 |#1|)) NIL)) (-3770 ((|#1| $) NIL)) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-204 |#1|) (-13 (-235 |#1|) (-10 -8 (-15 -1667 ($ (-595 |#1|))))) (-1023)) (T -204))
-((-1667 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1023)) (-5 *1 (-204 *3)))))
-(-13 (-235 |#1|) (-10 -8 (-15 -1667 ($ (-595 |#1|)))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3564 (($ (-296 |#1|)) 23)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-3113 (((-110) $) NIL)) (-3001 (((-3 (-296 |#1|) "failed") $) NIL)) (-2409 (((-296 |#1|) $) NIL)) (-2388 (($ $) 31)) (-1312 (((-3 $ "failed") $) NIL)) (-1297 (((-110) $) NIL)) (-3106 (($ (-1 (-296 |#1|) (-296 |#1|)) $) NIL)) (-2697 (((-296 |#1|) $) NIL)) (-1990 (($ $) 30)) (-3034 (((-1078) $) NIL)) (-3449 (((-110) $) NIL)) (-2495 (((-1042) $) NIL)) (-1261 (($ (-717)) NIL)) (-4114 (($ $) 32)) (-2935 (((-528) $) NIL)) (-2222 (((-802) $) 57) (($ (-528)) NIL) (($ (-296 |#1|)) NIL)) (-3216 (((-296 |#1|) $ $) NIL)) (-3742 (((-717)) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 25 T CONST)) (-2982 (($) 50 T CONST)) (-2186 (((-110) $ $) 28)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) 19)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 24) (($ (-296 |#1|) $) 18)))
-(((-205 |#1| |#2|) (-13 (-573 (-296 |#1|)) (-972 (-296 |#1|)) (-10 -8 (-15 -2697 ((-296 |#1|) $)) (-15 -1990 ($ $)) (-15 -2388 ($ $)) (-15 -3216 ((-296 |#1|) $ $)) (-15 -1261 ($ (-717))) (-15 -3449 ((-110) $)) (-15 -3113 ((-110) $)) (-15 -2935 ((-528) $)) (-15 -3106 ($ (-1 (-296 |#1|) (-296 |#1|)) $)) (-15 -3564 ($ (-296 |#1|))) (-15 -4114 ($ $)))) (-13 (-981) (-793)) (-595 (-1095))) (T -205))
-((-2697 (*1 *2 *1) (-12 (-5 *2 (-296 *3)) (-5 *1 (-205 *3 *4)) (-4 *3 (-13 (-981) (-793))) (-14 *4 (-595 (-1095))))) (-1990 (*1 *1 *1) (-12 (-5 *1 (-205 *2 *3)) (-4 *2 (-13 (-981) (-793))) (-14 *3 (-595 (-1095))))) (-2388 (*1 *1 *1) (-12 (-5 *1 (-205 *2 *3)) (-4 *2 (-13 (-981) (-793))) (-14 *3 (-595 (-1095))))) (-3216 (*1 *2 *1 *1) (-12 (-5 *2 (-296 *3)) (-5 *1 (-205 *3 *4)) (-4 *3 (-13 (-981) (-793))) (-14 *4 (-595 (-1095))))) (-1261 (*1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-205 *3 *4)) (-4 *3 (-13 (-981) (-793))) (-14 *4 (-595 (-1095))))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-205 *3 *4)) (-4 *3 (-13 (-981) (-793))) (-14 *4 (-595 (-1095))))) (-3113 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-205 *3 *4)) (-4 *3 (-13 (-981) (-793))) (-14 *4 (-595 (-1095))))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-205 *3 *4)) (-4 *3 (-13 (-981) (-793))) (-14 *4 (-595 (-1095))))) (-3106 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-296 *3) (-296 *3))) (-4 *3 (-13 (-981) (-793))) (-5 *1 (-205 *3 *4)) (-14 *4 (-595 (-1095))))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-296 *3)) (-4 *3 (-13 (-981) (-793))) (-5 *1 (-205 *3 *4)) (-14 *4 (-595 (-1095))))) (-4114 (*1 *1 *1) (-12 (-5 *1 (-205 *2 *3)) (-4 *2 (-13 (-981) (-793))) (-14 *3 (-595 (-1095))))))
-(-13 (-573 (-296 |#1|)) (-972 (-296 |#1|)) (-10 -8 (-15 -2697 ((-296 |#1|) $)) (-15 -1990 ($ $)) (-15 -2388 ($ $)) (-15 -3216 ((-296 |#1|) $ $)) (-15 -1261 ($ (-717))) (-15 -3449 ((-110) $)) (-15 -3113 ((-110) $)) (-15 -2935 ((-528) $)) (-15 -3106 ($ (-1 (-296 |#1|) (-296 |#1|)) $)) (-15 -3564 ($ (-296 |#1|))) (-15 -4114 ($ $))))
-((-3760 (((-110) (-1078)) 22)) (-1524 (((-3 (-786 |#2|) "failed") (-568 |#2|) |#2| (-786 |#2|) (-786 |#2|) (-110)) 32)) (-2843 (((-3 (-110) "failed") (-1091 |#2|) (-786 |#2|) (-786 |#2|) (-110)) 73) (((-3 (-110) "failed") (-891 |#1|) (-1095) (-786 |#2|) (-786 |#2|) (-110)) 74)))
-(((-206 |#1| |#2|) (-10 -7 (-15 -3760 ((-110) (-1078))) (-15 -1524 ((-3 (-786 |#2|) "failed") (-568 |#2|) |#2| (-786 |#2|) (-786 |#2|) (-110))) (-15 -2843 ((-3 (-110) "failed") (-891 |#1|) (-1095) (-786 |#2|) (-786 |#2|) (-110))) (-15 -2843 ((-3 (-110) "failed") (-1091 |#2|) (-786 |#2|) (-786 |#2|) (-110)))) (-13 (-431) (-793) (-972 (-528)) (-591 (-528))) (-13 (-1117) (-29 |#1|))) (T -206))
-((-2843 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-110)) (-5 *3 (-1091 *6)) (-5 *4 (-786 *6)) (-4 *6 (-13 (-1117) (-29 *5))) (-4 *5 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *1 (-206 *5 *6)))) (-2843 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-110)) (-5 *3 (-891 *6)) (-5 *4 (-1095)) (-5 *5 (-786 *7)) (-4 *6 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-4 *7 (-13 (-1117) (-29 *6))) (-5 *1 (-206 *6 *7)))) (-1524 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-786 *4)) (-5 *3 (-568 *4)) (-5 *5 (-110)) (-4 *4 (-13 (-1117) (-29 *6))) (-4 *6 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *1 (-206 *6 *4)))) (-3760 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-110)) (-5 *1 (-206 *4 *5)) (-4 *5 (-13 (-1117) (-29 *4))))))
-(-10 -7 (-15 -3760 ((-110) (-1078))) (-15 -1524 ((-3 (-786 |#2|) "failed") (-568 |#2|) |#2| (-786 |#2|) (-786 |#2|) (-110))) (-15 -2843 ((-3 (-110) "failed") (-891 |#1|) (-1095) (-786 |#2|) (-786 |#2|) (-110))) (-15 -2843 ((-3 (-110) "failed") (-1091 |#2|) (-786 |#2|) (-786 |#2|) (-110))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 89)) (-3598 (((-528) $) 99)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-1781 (($ $) NIL)) (-2880 (($ $) 77)) (-2735 (($ $) 65)) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-2450 (($ $) 56)) (-2213 (((-110) $ $) NIL)) (-2859 (($ $) 75)) (-2712 (($ $) 63)) (-3605 (((-528) $) 116)) (-2904 (($ $) 80)) (-2761 (($ $) 67)) (-2816 (($) NIL T CONST)) (-2212 (($ $) NIL)) (-3001 (((-3 (-528) "failed") $) 115) (((-3 (-387 (-528)) "failed") $) 112)) (-2409 (((-528) $) 113) (((-387 (-528)) $) 110)) (-3519 (($ $ $) NIL)) (-1312 (((-3 $ "failed") $) 92)) (-2942 (((-387 (-528)) $ (-717)) 108) (((-387 (-528)) $ (-717) (-717)) 107)) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2124 (((-110) $) NIL)) (-1239 (((-860)) 29) (((-860) (-860)) NIL (|has| $ (-6 -4255)))) (-3657 (((-110) $) NIL)) (-1505 (($) 39)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL)) (-3689 (((-528) $) 35)) (-1297 (((-110) $) NIL)) (-2796 (($ $ (-528)) NIL)) (-3297 (($ $) NIL)) (-3710 (((-110) $) 88)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-1436 (($ $ $) 53) (($) 34 (-12 (-3617 (|has| $ (-6 -4247))) (-3617 (|has| $ (-6 -4255)))))) (-1736 (($ $ $) 52) (($) 33 (-12 (-3617 (|has| $ (-6 -4247))) (-3617 (|has| $ (-6 -4255)))))) (-3095 (((-528) $) 27)) (-2374 (($ $) 30)) (-1862 (($ $) 57)) (-2097 (($ $) 62)) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL)) (-3144 (((-860) (-528)) NIL (|has| $ (-6 -4255)))) (-2495 (((-1042) $) NIL) (((-528) $) 90)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3270 (($ $) NIL)) (-2925 (($ $) NIL)) (-2849 (($ (-528) (-528)) NIL) (($ (-528) (-528) (-860)) 100)) (-2437 (((-398 $) $) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-2564 (((-528) $) 28)) (-3050 (($) 38)) (-2656 (($ $) 61)) (-3973 (((-717) $) NIL)) (-3621 (((-1078) (-1078)) 8)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-1913 (((-860)) NIL) (((-860) (-860)) NIL (|has| $ (-6 -4255)))) (-3235 (($ $ (-717)) NIL) (($ $) 93)) (-2166 (((-860) (-528)) NIL (|has| $ (-6 -4255)))) (-2917 (($ $) 78)) (-2773 (($ $) 68)) (-2892 (($ $) 79)) (-2749 (($ $) 66)) (-2869 (($ $) 76)) (-2724 (($ $) 64)) (-3155 (((-359) $) 104) (((-207) $) 101) (((-831 (-359)) $) NIL) (((-504) $) 45)) (-2222 (((-802) $) 42) (($ (-528)) 60) (($ $) NIL) (($ (-387 (-528))) NIL) (($ (-528)) 60) (($ (-387 (-528))) NIL)) (-3742 (((-717)) NIL)) (-1769 (($ $) NIL)) (-3341 (((-860)) 32) (((-860) (-860)) NIL (|has| $ (-6 -4255)))) (-2911 (((-860)) 25)) (-2953 (($ $) 83)) (-2811 (($ $) 71) (($ $ $) 109)) (-4016 (((-110) $ $) NIL)) (-2928 (($ $) 81)) (-2784 (($ $) 69)) (-2981 (($ $) 86)) (-2836 (($ $) 74)) (-3592 (($ $) 84)) (-2846 (($ $) 72)) (-2967 (($ $) 85)) (-2825 (($ $) 73)) (-2940 (($ $) 82)) (-2797 (($ $) 70)) (-1775 (($ $) 117)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) 36 T CONST)) (-2982 (($) 37 T CONST)) (-1256 (((-1078) $) 19) (((-1078) $ (-110)) 21) (((-1182) (-768) $) 22) (((-1182) (-768) $ (-110)) 23)) (-3818 (($ $) 96)) (-3245 (($ $ (-717)) NIL) (($ $) NIL)) (-3167 (($ $ $) 98)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 54)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 46)) (-2296 (($ $ $) 87) (($ $ (-528)) 55)) (-2286 (($ $) 47) (($ $ $) 49)) (-2275 (($ $ $) 48)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) 58) (($ $ (-387 (-528))) 129) (($ $ $) 59)) (* (($ (-860) $) 31) (($ (-717) $) NIL) (($ (-528) $) 51) (($ $ $) 50) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL)))
-(((-207) (-13 (-384) (-215) (-774) (-1117) (-570 (-504)) (-10 -8 (-15 -2296 ($ $ (-528))) (-15 ** ($ $ $)) (-15 -3050 ($)) (-15 -2495 ((-528) $)) (-15 -2374 ($ $)) (-15 -1862 ($ $)) (-15 -2811 ($ $ $)) (-15 -3818 ($ $)) (-15 -3167 ($ $ $)) (-15 -3621 ((-1078) (-1078))) (-15 -2942 ((-387 (-528)) $ (-717))) (-15 -2942 ((-387 (-528)) $ (-717) (-717)))))) (T -207))
-((** (*1 *1 *1 *1) (-5 *1 (-207))) (-2296 (*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-207)))) (-3050 (*1 *1) (-5 *1 (-207))) (-2495 (*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-207)))) (-2374 (*1 *1 *1) (-5 *1 (-207))) (-1862 (*1 *1 *1) (-5 *1 (-207))) (-2811 (*1 *1 *1 *1) (-5 *1 (-207))) (-3818 (*1 *1 *1) (-5 *1 (-207))) (-3167 (*1 *1 *1 *1) (-5 *1 (-207))) (-3621 (*1 *2 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-207)))) (-2942 (*1 *2 *1 *3) (-12 (-5 *3 (-717)) (-5 *2 (-387 (-528))) (-5 *1 (-207)))) (-2942 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-717)) (-5 *2 (-387 (-528))) (-5 *1 (-207)))))
-(-13 (-384) (-215) (-774) (-1117) (-570 (-504)) (-10 -8 (-15 -2296 ($ $ (-528))) (-15 ** ($ $ $)) (-15 -3050 ($)) (-15 -2495 ((-528) $)) (-15 -2374 ($ $)) (-15 -1862 ($ $)) (-15 -2811 ($ $ $)) (-15 -3818 ($ $)) (-15 -3167 ($ $ $)) (-15 -3621 ((-1078) (-1078))) (-15 -2942 ((-387 (-528)) $ (-717))) (-15 -2942 ((-387 (-528)) $ (-717) (-717)))))
-((-1741 (((-159 (-207)) (-717) (-159 (-207))) 11) (((-207) (-717) (-207)) 12)) (-2987 (((-159 (-207)) (-159 (-207))) 13) (((-207) (-207)) 14)) (-1300 (((-159 (-207)) (-159 (-207)) (-159 (-207))) 19) (((-207) (-207) (-207)) 22)) (-2251 (((-159 (-207)) (-159 (-207))) 25) (((-207) (-207)) 24)) (-2803 (((-159 (-207)) (-159 (-207)) (-159 (-207))) 43) (((-207) (-207) (-207)) 35)) (-2938 (((-159 (-207)) (-159 (-207)) (-159 (-207))) 48) (((-207) (-207) (-207)) 45)) (-3950 (((-159 (-207)) (-159 (-207)) (-159 (-207))) 15) (((-207) (-207) (-207)) 16)) (-1978 (((-159 (-207)) (-159 (-207)) (-159 (-207))) 17) (((-207) (-207) (-207)) 18)) (-1599 (((-159 (-207)) (-159 (-207))) 60) (((-207) (-207)) 59)) (-2815 (((-207) (-207)) 54) (((-159 (-207)) (-159 (-207))) 58)) (-3818 (((-159 (-207)) (-159 (-207))) 8) (((-207) (-207)) 9)) (-3167 (((-159 (-207)) (-159 (-207)) (-159 (-207))) 30) (((-207) (-207) (-207)) 26)))
-(((-208) (-10 -7 (-15 -3818 ((-207) (-207))) (-15 -3818 ((-159 (-207)) (-159 (-207)))) (-15 -3167 ((-207) (-207) (-207))) (-15 -3167 ((-159 (-207)) (-159 (-207)) (-159 (-207)))) (-15 -2987 ((-207) (-207))) (-15 -2987 ((-159 (-207)) (-159 (-207)))) (-15 -2251 ((-207) (-207))) (-15 -2251 ((-159 (-207)) (-159 (-207)))) (-15 -1741 ((-207) (-717) (-207))) (-15 -1741 ((-159 (-207)) (-717) (-159 (-207)))) (-15 -3950 ((-207) (-207) (-207))) (-15 -3950 ((-159 (-207)) (-159 (-207)) (-159 (-207)))) (-15 -2803 ((-207) (-207) (-207))) (-15 -2803 ((-159 (-207)) (-159 (-207)) (-159 (-207)))) (-15 -1978 ((-207) (-207) (-207))) (-15 -1978 ((-159 (-207)) (-159 (-207)) (-159 (-207)))) (-15 -2938 ((-207) (-207) (-207))) (-15 -2938 ((-159 (-207)) (-159 (-207)) (-159 (-207)))) (-15 -2815 ((-159 (-207)) (-159 (-207)))) (-15 -2815 ((-207) (-207))) (-15 -1599 ((-207) (-207))) (-15 -1599 ((-159 (-207)) (-159 (-207)))) (-15 -1300 ((-207) (-207) (-207))) (-15 -1300 ((-159 (-207)) (-159 (-207)) (-159 (-207)))))) (T -208))
-((-1300 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-207))) (-5 *1 (-208)))) (-1300 (*1 *2 *2 *2) (-12 (-5 *2 (-207)) (-5 *1 (-208)))) (-1599 (*1 *2 *2) (-12 (-5 *2 (-159 (-207))) (-5 *1 (-208)))) (-1599 (*1 *2 *2) (-12 (-5 *2 (-207)) (-5 *1 (-208)))) (-2815 (*1 *2 *2) (-12 (-5 *2 (-207)) (-5 *1 (-208)))) (-2815 (*1 *2 *2) (-12 (-5 *2 (-159 (-207))) (-5 *1 (-208)))) (-2938 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-207))) (-5 *1 (-208)))) (-2938 (*1 *2 *2 *2) (-12 (-5 *2 (-207)) (-5 *1 (-208)))) (-1978 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-207))) (-5 *1 (-208)))) (-1978 (*1 *2 *2 *2) (-12 (-5 *2 (-207)) (-5 *1 (-208)))) (-2803 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-207))) (-5 *1 (-208)))) (-2803 (*1 *2 *2 *2) (-12 (-5 *2 (-207)) (-5 *1 (-208)))) (-3950 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-207))) (-5 *1 (-208)))) (-3950 (*1 *2 *2 *2) (-12 (-5 *2 (-207)) (-5 *1 (-208)))) (-1741 (*1 *2 *3 *2) (-12 (-5 *2 (-159 (-207))) (-5 *3 (-717)) (-5 *1 (-208)))) (-1741 (*1 *2 *3 *2) (-12 (-5 *2 (-207)) (-5 *3 (-717)) (-5 *1 (-208)))) (-2251 (*1 *2 *2) (-12 (-5 *2 (-159 (-207))) (-5 *1 (-208)))) (-2251 (*1 *2 *2) (-12 (-5 *2 (-207)) (-5 *1 (-208)))) (-2987 (*1 *2 *2) (-12 (-5 *2 (-159 (-207))) (-5 *1 (-208)))) (-2987 (*1 *2 *2) (-12 (-5 *2 (-207)) (-5 *1 (-208)))) (-3167 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-207))) (-5 *1 (-208)))) (-3167 (*1 *2 *2 *2) (-12 (-5 *2 (-207)) (-5 *1 (-208)))) (-3818 (*1 *2 *2) (-12 (-5 *2 (-159 (-207))) (-5 *1 (-208)))) (-3818 (*1 *2 *2) (-12 (-5 *2 (-207)) (-5 *1 (-208)))))
-(-10 -7 (-15 -3818 ((-207) (-207))) (-15 -3818 ((-159 (-207)) (-159 (-207)))) (-15 -3167 ((-207) (-207) (-207))) (-15 -3167 ((-159 (-207)) (-159 (-207)) (-159 (-207)))) (-15 -2987 ((-207) (-207))) (-15 -2987 ((-159 (-207)) (-159 (-207)))) (-15 -2251 ((-207) (-207))) (-15 -2251 ((-159 (-207)) (-159 (-207)))) (-15 -1741 ((-207) (-717) (-207))) (-15 -1741 ((-159 (-207)) (-717) (-159 (-207)))) (-15 -3950 ((-207) (-207) (-207))) (-15 -3950 ((-159 (-207)) (-159 (-207)) (-159 (-207)))) (-15 -2803 ((-207) (-207) (-207))) (-15 -2803 ((-159 (-207)) (-159 (-207)) (-159 (-207)))) (-15 -1978 ((-207) (-207) (-207))) (-15 -1978 ((-159 (-207)) (-159 (-207)) (-159 (-207)))) (-15 -2938 ((-207) (-207) (-207))) (-15 -2938 ((-159 (-207)) (-159 (-207)) (-159 (-207)))) (-15 -2815 ((-159 (-207)) (-159 (-207)))) (-15 -2815 ((-207) (-207))) (-15 -1599 ((-207) (-207))) (-15 -1599 ((-159 (-207)) (-159 (-207)))) (-15 -1300 ((-207) (-207) (-207))) (-15 -1300 ((-159 (-207)) (-159 (-207)) (-159 (-207)))))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3460 (($ (-717) (-717)) NIL)) (-2313 (($ $ $) NIL)) (-3351 (($ (-1177 |#1|)) NIL) (($ $) NIL)) (-2741 (($ |#1| |#1| |#1|) 32)) (-1987 (((-110) $) NIL)) (-3433 (($ $ (-528) (-528)) NIL)) (-2087 (($ $ (-528) (-528)) NIL)) (-2530 (($ $ (-528) (-528) (-528) (-528)) NIL)) (-3886 (($ $) NIL)) (-2300 (((-110) $) NIL)) (-3535 (((-110) $ (-717)) NIL)) (-2722 (($ $ (-528) (-528) $) NIL)) (-2381 ((|#1| $ (-528) (-528) |#1|) NIL) (($ $ (-595 (-528)) (-595 (-528)) $) NIL)) (-3898 (($ $ (-528) (-1177 |#1|)) NIL)) (-2542 (($ $ (-528) (-1177 |#1|)) NIL)) (-3721 (($ |#1| |#1| |#1|) 31)) (-1626 (($ (-717) |#1|) NIL)) (-2816 (($) NIL T CONST)) (-2614 (($ $) NIL (|has| |#1| (-288)))) (-4203 (((-1177 |#1|) $ (-528)) NIL)) (-2610 (($ |#1|) 30)) (-1388 (($ |#1|) 29)) (-3893 (($ |#1|) 28)) (-3090 (((-717) $) NIL (|has| |#1| (-520)))) (-2812 ((|#1| $ (-528) (-528) |#1|) NIL)) (-2742 ((|#1| $ (-528) (-528)) NIL)) (-3342 (((-595 |#1|) $) NIL)) (-1877 (((-717) $) NIL (|has| |#1| (-520)))) (-1809 (((-595 (-1177 |#1|)) $) NIL (|has| |#1| (-520)))) (-1358 (((-717) $) NIL)) (-3462 (($ (-717) (-717) |#1|) NIL)) (-1370 (((-717) $) NIL)) (-2029 (((-110) $ (-717)) NIL)) (-3997 ((|#1| $) NIL (|has| |#1| (-6 (-4266 "*"))))) (-3065 (((-528) $) NIL)) (-2567 (((-528) $) NIL)) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3224 (((-528) $) NIL)) (-1268 (((-528) $) NIL)) (-1553 (($ (-595 (-595 |#1|))) 11)) (-2800 (($ (-1 |#1| |#1|) $) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2062 (((-595 (-595 |#1|)) $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-1666 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-1455 (($) 12)) (-2468 (($ $ $) NIL)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-1332 (($ $ |#1|) NIL)) (-3477 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-520)))) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#1| $ (-528) (-528)) NIL) ((|#1| $ (-528) (-528) |#1|) NIL) (($ $ (-595 (-528)) (-595 (-528))) NIL)) (-3751 (($ (-595 |#1|)) NIL) (($ (-595 $)) NIL)) (-2851 (((-110) $) NIL)) (-3166 ((|#1| $) NIL (|has| |#1| (-6 (-4266 "*"))))) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2406 (($ $) NIL)) (-3946 (((-1177 |#1|) $ (-528)) NIL)) (-2222 (($ (-1177 |#1|)) NIL) (((-802) $) NIL (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-1428 (((-110) $) NIL)) (-2186 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2296 (($ $ |#1|) NIL (|has| |#1| (-343)))) (-2286 (($ $ $) NIL) (($ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| |#1| (-343)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-528) $) NIL) (((-1177 |#1|) $ (-1177 |#1|)) 15) (((-1177 |#1|) (-1177 |#1|) $) NIL) (((-882 |#1|) $ (-882 |#1|)) 20)) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-209 |#1|) (-13 (-633 |#1| (-1177 |#1|) (-1177 |#1|)) (-10 -8 (-15 * ((-882 |#1|) $ (-882 |#1|))) (-15 -1455 ($)) (-15 -3893 ($ |#1|)) (-15 -1388 ($ |#1|)) (-15 -2610 ($ |#1|)) (-15 -3721 ($ |#1| |#1| |#1|)) (-15 -2741 ($ |#1| |#1| |#1|)))) (-13 (-343) (-1117))) (T -209))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-882 *3)) (-4 *3 (-13 (-343) (-1117))) (-5 *1 (-209 *3)))) (-1455 (*1 *1) (-12 (-5 *1 (-209 *2)) (-4 *2 (-13 (-343) (-1117))))) (-3893 (*1 *1 *2) (-12 (-5 *1 (-209 *2)) (-4 *2 (-13 (-343) (-1117))))) (-1388 (*1 *1 *2) (-12 (-5 *1 (-209 *2)) (-4 *2 (-13 (-343) (-1117))))) (-2610 (*1 *1 *2) (-12 (-5 *1 (-209 *2)) (-4 *2 (-13 (-343) (-1117))))) (-3721 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-209 *2)) (-4 *2 (-13 (-343) (-1117))))) (-2741 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-209 *2)) (-4 *2 (-13 (-343) (-1117))))))
-(-13 (-633 |#1| (-1177 |#1|) (-1177 |#1|)) (-10 -8 (-15 * ((-882 |#1|) $ (-882 |#1|))) (-15 -1455 ($)) (-15 -3893 ($ |#1|)) (-15 -1388 ($ |#1|)) (-15 -2610 ($ |#1|)) (-15 -3721 ($ |#1| |#1| |#1|)) (-15 -2741 ($ |#1| |#1| |#1|))))
-((-1836 (($ (-1 (-110) |#2|) $) 16)) (-3991 (($ |#2| $) NIL) (($ (-1 (-110) |#2|) $) 25)) (-3900 (($) NIL) (($ (-595 |#2|)) 11)) (-2186 (((-110) $ $) 23)))
-(((-210 |#1| |#2|) (-10 -8 (-15 -1836 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3991 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3991 (|#1| |#2| |#1|)) (-15 -3900 (|#1| (-595 |#2|))) (-15 -3900 (|#1|)) (-15 -2186 ((-110) |#1| |#1|))) (-211 |#2|) (-1023)) (T -210))
-NIL
-(-10 -8 (-15 -1836 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3991 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3991 (|#1| |#2| |#1|)) (-15 -3900 (|#1| (-595 |#2|))) (-15 -3900 (|#1|)) (-15 -2186 ((-110) |#1| |#1|)))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-3535 (((-110) $ (-717)) 8)) (-1836 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4264)))) (-1573 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4264)))) (-2816 (($) 7 T CONST)) (-2923 (($ $) 58 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-3991 (($ |#1| $) 47 (|has| $ (-6 -4264))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4264)))) (-2280 (($ |#1| $) 57 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4264)))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4264)))) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) 9)) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35)) (-3358 (((-110) $ (-717)) 10)) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-3934 ((|#1| $) 39)) (-1950 (($ |#1| $) 40)) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-1390 ((|#1| $) 41)) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3900 (($) 49) (($ (-595 |#1|)) 48)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-3155 (((-504) $) 59 (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) 50)) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-2164 (($ (-595 |#1|)) 42)) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-211 |#1|) (-133) (-1023)) (T -211))
-NIL
-(-13 (-217 |t#1|))
-(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1023)) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-569 (-802)))) ((-144 |#1|) . T) ((-570 (-504)) |has| |#1| (-570 (-504))) ((-217 |#1|) . T) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-467 |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-1023) |has| |#1| (-1023)) ((-1131) . T))
-((-3235 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-717)) 11) (($ $ (-595 (-1095)) (-595 (-717))) NIL) (($ $ (-1095) (-717)) NIL) (($ $ (-595 (-1095))) NIL) (($ $ (-1095)) 19) (($ $ (-717)) NIL) (($ $) 16)) (-3245 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-717)) 14) (($ $ (-595 (-1095)) (-595 (-717))) NIL) (($ $ (-1095) (-717)) NIL) (($ $ (-595 (-1095))) NIL) (($ $ (-1095)) NIL) (($ $ (-717)) NIL) (($ $) NIL)))
-(((-212 |#1| |#2|) (-10 -8 (-15 -3235 (|#1| |#1|)) (-15 -3245 (|#1| |#1|)) (-15 -3235 (|#1| |#1| (-717))) (-15 -3245 (|#1| |#1| (-717))) (-15 -3235 (|#1| |#1| (-1095))) (-15 -3235 (|#1| |#1| (-595 (-1095)))) (-15 -3235 (|#1| |#1| (-1095) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)) (-595 (-717)))) (-15 -3245 (|#1| |#1| (-1095))) (-15 -3245 (|#1| |#1| (-595 (-1095)))) (-15 -3245 (|#1| |#1| (-1095) (-717))) (-15 -3245 (|#1| |#1| (-595 (-1095)) (-595 (-717)))) (-15 -3245 (|#1| |#1| (-1 |#2| |#2|) (-717))) (-15 -3245 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|) (-717))) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|)))) (-213 |#2|) (-981)) (T -212))
-NIL
-(-10 -8 (-15 -3235 (|#1| |#1|)) (-15 -3245 (|#1| |#1|)) (-15 -3235 (|#1| |#1| (-717))) (-15 -3245 (|#1| |#1| (-717))) (-15 -3235 (|#1| |#1| (-1095))) (-15 -3235 (|#1| |#1| (-595 (-1095)))) (-15 -3235 (|#1| |#1| (-1095) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)) (-595 (-717)))) (-15 -3245 (|#1| |#1| (-1095))) (-15 -3245 (|#1| |#1| (-595 (-1095)))) (-15 -3245 (|#1| |#1| (-1095) (-717))) (-15 -3245 (|#1| |#1| (-595 (-1095)) (-595 (-717)))) (-15 -3245 (|#1| |#1| (-1 |#2| |#2|) (-717))) (-15 -3245 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|) (-717))) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-1312 (((-3 $ "failed") $) 34)) (-1297 (((-110) $) 31)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-3235 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-717)) 51) (($ $ (-595 (-1095)) (-595 (-717))) 44 (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) 43 (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) 42 (|has| |#1| (-839 (-1095)))) (($ $ (-1095)) 41 (|has| |#1| (-839 (-1095)))) (($ $ (-717)) 39 (|has| |#1| (-215))) (($ $) 37 (|has| |#1| (-215)))) (-2222 (((-802) $) 11) (($ (-528)) 28)) (-3742 (((-717)) 29)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-3245 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-717)) 49) (($ $ (-595 (-1095)) (-595 (-717))) 48 (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) 47 (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) 46 (|has| |#1| (-839 (-1095)))) (($ $ (-1095)) 45 (|has| |#1| (-839 (-1095)))) (($ $ (-717)) 40 (|has| |#1| (-215))) (($ $) 38 (|has| |#1| (-215)))) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24)))
-(((-213 |#1|) (-133) (-981)) (T -213))
-((-3235 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-213 *3)) (-4 *3 (-981)))) (-3235 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-717)) (-4 *1 (-213 *4)) (-4 *4 (-981)))) (-3245 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-213 *3)) (-4 *3 (-981)))) (-3245 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-717)) (-4 *1 (-213 *4)) (-4 *4 (-981)))))
-(-13 (-981) (-10 -8 (-15 -3235 ($ $ (-1 |t#1| |t#1|))) (-15 -3235 ($ $ (-1 |t#1| |t#1|) (-717))) (-15 -3245 ($ $ (-1 |t#1| |t#1|))) (-15 -3245 ($ $ (-1 |t#1| |t#1|) (-717))) (IF (|has| |t#1| (-215)) (-6 (-215)) |%noBranch|) (IF (|has| |t#1| (-839 (-1095))) (-6 (-839 (-1095))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-569 (-802)) . T) ((-215) |has| |#1| (-215)) ((-597 $) . T) ((-673) . T) ((-839 (-1095)) |has| |#1| (-839 (-1095))) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-3235 (($ $) NIL) (($ $ (-717)) 10)) (-3245 (($ $) 8) (($ $ (-717)) 12)))
-(((-214 |#1|) (-10 -8 (-15 -3245 (|#1| |#1| (-717))) (-15 -3235 (|#1| |#1| (-717))) (-15 -3245 (|#1| |#1|)) (-15 -3235 (|#1| |#1|))) (-215)) (T -214))
-NIL
-(-10 -8 (-15 -3245 (|#1| |#1| (-717))) (-15 -3235 (|#1| |#1| (-717))) (-15 -3245 (|#1| |#1|)) (-15 -3235 (|#1| |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-1312 (((-3 $ "failed") $) 34)) (-1297 (((-110) $) 31)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-3235 (($ $) 38) (($ $ (-717)) 36)) (-2222 (((-802) $) 11) (($ (-528)) 28)) (-3742 (((-717)) 29)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-3245 (($ $) 37) (($ $ (-717)) 35)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24)))
-(((-215) (-133)) (T -215))
-((-3235 (*1 *1 *1) (-4 *1 (-215))) (-3245 (*1 *1 *1) (-4 *1 (-215))) (-3235 (*1 *1 *1 *2) (-12 (-4 *1 (-215)) (-5 *2 (-717)))) (-3245 (*1 *1 *1 *2) (-12 (-4 *1 (-215)) (-5 *2 (-717)))))
-(-13 (-981) (-10 -8 (-15 -3235 ($ $)) (-15 -3245 ($ $)) (-15 -3235 ($ $ (-717))) (-15 -3245 ($ $ (-717)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-569 (-802)) . T) ((-597 $) . T) ((-673) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-3900 (($) 12) (($ (-595 |#2|)) NIL)) (-2406 (($ $) 14)) (-2233 (($ (-595 |#2|)) 10)) (-2222 (((-802) $) 21)))
-(((-216 |#1| |#2|) (-10 -8 (-15 -2222 ((-802) |#1|)) (-15 -3900 (|#1| (-595 |#2|))) (-15 -3900 (|#1|)) (-15 -2233 (|#1| (-595 |#2|))) (-15 -2406 (|#1| |#1|))) (-217 |#2|) (-1023)) (T -216))
-NIL
-(-10 -8 (-15 -2222 ((-802) |#1|)) (-15 -3900 (|#1| (-595 |#2|))) (-15 -3900 (|#1|)) (-15 -2233 (|#1| (-595 |#2|))) (-15 -2406 (|#1| |#1|)))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-3535 (((-110) $ (-717)) 8)) (-1836 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4264)))) (-1573 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4264)))) (-2816 (($) 7 T CONST)) (-2923 (($ $) 58 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-3991 (($ |#1| $) 47 (|has| $ (-6 -4264))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4264)))) (-2280 (($ |#1| $) 57 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4264)))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4264)))) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) 9)) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35)) (-3358 (((-110) $ (-717)) 10)) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-3934 ((|#1| $) 39)) (-1950 (($ |#1| $) 40)) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-1390 ((|#1| $) 41)) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3900 (($) 49) (($ (-595 |#1|)) 48)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-3155 (((-504) $) 59 (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) 50)) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-2164 (($ (-595 |#1|)) 42)) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-217 |#1|) (-133) (-1023)) (T -217))
-((-3900 (*1 *1) (-12 (-4 *1 (-217 *2)) (-4 *2 (-1023)))) (-3900 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1023)) (-4 *1 (-217 *3)))) (-3991 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4264)) (-4 *1 (-217 *2)) (-4 *2 (-1023)))) (-3991 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4264)) (-4 *1 (-217 *3)) (-4 *3 (-1023)))) (-1836 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4264)) (-4 *1 (-217 *3)) (-4 *3 (-1023)))))
-(-13 (-104 |t#1|) (-144 |t#1|) (-10 -8 (-15 -3900 ($)) (-15 -3900 ($ (-595 |t#1|))) (IF (|has| $ (-6 -4264)) (PROGN (-15 -3991 ($ |t#1| $)) (-15 -3991 ($ (-1 (-110) |t#1|) $)) (-15 -1836 ($ (-1 (-110) |t#1|) $))) |%noBranch|)))
-(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1023)) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-569 (-802)))) ((-144 |#1|) . T) ((-570 (-504)) |has| |#1| (-570 (-504))) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-467 |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-1023) |has| |#1| (-1023)) ((-1131) . T))
-((-3182 (((-2 (|:| |varOrder| (-595 (-1095))) (|:| |inhom| (-3 (-595 (-1177 (-717))) "failed")) (|:| |hom| (-595 (-1177 (-717))))) (-275 (-891 (-528)))) 27)))
-(((-218) (-10 -7 (-15 -3182 ((-2 (|:| |varOrder| (-595 (-1095))) (|:| |inhom| (-3 (-595 (-1177 (-717))) "failed")) (|:| |hom| (-595 (-1177 (-717))))) (-275 (-891 (-528))))))) (T -218))
-((-3182 (*1 *2 *3) (-12 (-5 *3 (-275 (-891 (-528)))) (-5 *2 (-2 (|:| |varOrder| (-595 (-1095))) (|:| |inhom| (-3 (-595 (-1177 (-717))) "failed")) (|:| |hom| (-595 (-1177 (-717)))))) (-5 *1 (-218)))))
-(-10 -7 (-15 -3182 ((-2 (|:| |varOrder| (-595 (-1095))) (|:| |inhom| (-3 (-595 (-1177 (-717))) "failed")) (|:| |hom| (-595 (-1177 (-717))))) (-275 (-891 (-528))))))
-((-2856 (((-717)) 51)) (-2120 (((-2 (|:| -2163 (-635 |#3|)) (|:| |vec| (-1177 |#3|))) (-635 $) (-1177 $)) 49) (((-635 |#3|) (-635 $)) 41) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL) (((-635 (-528)) (-635 $)) NIL)) (-3017 (((-130)) 57)) (-3235 (($ $ (-1 |#3| |#3|) (-717)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-595 (-1095)) (-595 (-717))) NIL) (($ $ (-1095) (-717)) NIL) (($ $ (-595 (-1095))) NIL) (($ $ (-1095)) NIL) (($ $ (-717)) NIL) (($ $) NIL)) (-2222 (((-1177 |#3|) $) NIL) (($ |#3|) NIL) (((-802) $) NIL) (($ (-528)) 12) (($ (-387 (-528))) NIL)) (-3742 (((-717)) 15)) (-2296 (($ $ |#3|) 54)))
-(((-219 |#1| |#2| |#3|) (-10 -8 (-15 -2222 (|#1| (-387 (-528)))) (-15 -2222 (|#1| (-528))) (-15 -2222 ((-802) |#1|)) (-15 -3742 ((-717))) (-15 -3235 (|#1| |#1|)) (-15 -3235 (|#1| |#1| (-717))) (-15 -3235 (|#1| |#1| (-1095))) (-15 -3235 (|#1| |#1| (-595 (-1095)))) (-15 -3235 (|#1| |#1| (-1095) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)) (-595 (-717)))) (-15 -2120 ((-635 (-528)) (-635 |#1|))) (-15 -2120 ((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 |#1|) (-1177 |#1|))) (-15 -2222 (|#1| |#3|)) (-15 -3235 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3235 (|#1| |#1| (-1 |#3| |#3|) (-717))) (-15 -2120 ((-635 |#3|) (-635 |#1|))) (-15 -2120 ((-2 (|:| -2163 (-635 |#3|)) (|:| |vec| (-1177 |#3|))) (-635 |#1|) (-1177 |#1|))) (-15 -2856 ((-717))) (-15 -2296 (|#1| |#1| |#3|)) (-15 -3017 ((-130))) (-15 -2222 ((-1177 |#3|) |#1|))) (-220 |#2| |#3|) (-717) (-1131)) (T -219))
-((-3017 (*1 *2) (-12 (-14 *4 (-717)) (-4 *5 (-1131)) (-5 *2 (-130)) (-5 *1 (-219 *3 *4 *5)) (-4 *3 (-220 *4 *5)))) (-2856 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1131)) (-5 *2 (-717)) (-5 *1 (-219 *3 *4 *5)) (-4 *3 (-220 *4 *5)))) (-3742 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1131)) (-5 *2 (-717)) (-5 *1 (-219 *3 *4 *5)) (-4 *3 (-220 *4 *5)))))
-(-10 -8 (-15 -2222 (|#1| (-387 (-528)))) (-15 -2222 (|#1| (-528))) (-15 -2222 ((-802) |#1|)) (-15 -3742 ((-717))) (-15 -3235 (|#1| |#1|)) (-15 -3235 (|#1| |#1| (-717))) (-15 -3235 (|#1| |#1| (-1095))) (-15 -3235 (|#1| |#1| (-595 (-1095)))) (-15 -3235 (|#1| |#1| (-1095) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)) (-595 (-717)))) (-15 -2120 ((-635 (-528)) (-635 |#1|))) (-15 -2120 ((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 |#1|) (-1177 |#1|))) (-15 -2222 (|#1| |#3|)) (-15 -3235 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3235 (|#1| |#1| (-1 |#3| |#3|) (-717))) (-15 -2120 ((-635 |#3|) (-635 |#1|))) (-15 -2120 ((-2 (|:| -2163 (-635 |#3|)) (|:| |vec| (-1177 |#3|))) (-635 |#1|) (-1177 |#1|))) (-15 -2856 ((-717))) (-15 -2296 (|#1| |#1| |#3|)) (-15 -3017 ((-130))) (-15 -2222 ((-1177 |#3|) |#1|)))
-((-2207 (((-110) $ $) 19 (|has| |#2| (-1023)))) (-1359 (((-110) $) 72 (|has| |#2| (-128)))) (-2562 (($ (-860)) 127 (|has| |#2| (-981)))) (-1444 (((-1182) $ (-528) (-528)) 40 (|has| $ (-6 -4265)))) (-3622 (($ $ $) 123 (|has| |#2| (-739)))) (-3181 (((-3 $ "failed") $ $) 74 (|has| |#2| (-128)))) (-3535 (((-110) $ (-717)) 8)) (-2856 (((-717)) 109 (|has| |#2| (-348)))) (-3605 (((-528) $) 121 (|has| |#2| (-791)))) (-2381 ((|#2| $ (-528) |#2|) 52 (|has| $ (-6 -4265)))) (-2816 (($) 7 T CONST)) (-3001 (((-3 (-528) "failed") $) 67 (-3287 (|has| |#2| (-972 (-528))) (|has| |#2| (-1023)))) (((-3 (-387 (-528)) "failed") $) 64 (-3287 (|has| |#2| (-972 (-387 (-528)))) (|has| |#2| (-1023)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1023)))) (-2409 (((-528) $) 68 (-3287 (|has| |#2| (-972 (-528))) (|has| |#2| (-1023)))) (((-387 (-528)) $) 65 (-3287 (|has| |#2| (-972 (-387 (-528)))) (|has| |#2| (-1023)))) ((|#2| $) 60 (|has| |#2| (-1023)))) (-2120 (((-635 (-528)) (-635 $)) 108 (-3287 (|has| |#2| (-591 (-528))) (|has| |#2| (-981)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) 107 (-3287 (|has| |#2| (-591 (-528))) (|has| |#2| (-981)))) (((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 $) (-1177 $)) 106 (|has| |#2| (-981))) (((-635 |#2|) (-635 $)) 105 (|has| |#2| (-981)))) (-1312 (((-3 $ "failed") $) 80 (|has| |#2| (-673)))) (-1338 (($) 112 (|has| |#2| (-348)))) (-2812 ((|#2| $ (-528) |#2|) 53 (|has| $ (-6 -4265)))) (-2742 ((|#2| $ (-528)) 51)) (-3657 (((-110) $) 119 (|has| |#2| (-791)))) (-3342 (((-595 |#2|) $) 30 (|has| $ (-6 -4264)))) (-1297 (((-110) $) 83 (|has| |#2| (-673)))) (-3710 (((-110) $) 120 (|has| |#2| (-791)))) (-2029 (((-110) $ (-717)) 9)) (-3530 (((-528) $) 43 (|has| (-528) (-793)))) (-1436 (($ $ $) 118 (-1463 (|has| |#2| (-791)) (|has| |#2| (-739))))) (-2604 (((-595 |#2|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#2| $) 27 (-12 (|has| |#2| (-1023)) (|has| $ (-6 -4264))))) (-1709 (((-528) $) 44 (|has| (-528) (-793)))) (-1736 (($ $ $) 117 (-1463 (|has| |#2| (-791)) (|has| |#2| (-739))))) (-2800 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#2| |#2|) $) 35)) (-3201 (((-860) $) 111 (|has| |#2| (-348)))) (-3358 (((-110) $ (-717)) 10)) (-3034 (((-1078) $) 22 (|has| |#2| (-1023)))) (-2084 (((-595 (-528)) $) 46)) (-3966 (((-110) (-528) $) 47)) (-3108 (($ (-860)) 110 (|has| |#2| (-348)))) (-2495 (((-1042) $) 21 (|has| |#2| (-1023)))) (-2890 ((|#2| $) 42 (|has| (-528) (-793)))) (-1332 (($ $ |#2|) 41 (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) |#2|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#2|))) 26 (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-275 |#2|)) 25 (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-595 |#2|) (-595 |#2|)) 23 (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))) (-3744 (((-110) $ $) 14)) (-2111 (((-110) |#2| $) 45 (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-2861 (((-595 |#2|) $) 48)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3043 ((|#2| $ (-528) |#2|) 50) ((|#2| $ (-528)) 49)) (-3675 ((|#2| $ $) 126 (|has| |#2| (-981)))) (-2484 (($ (-1177 |#2|)) 128)) (-3017 (((-130)) 125 (|has| |#2| (-343)))) (-3235 (($ $) 100 (-3287 (|has| |#2| (-215)) (|has| |#2| (-981)))) (($ $ (-717)) 98 (-3287 (|has| |#2| (-215)) (|has| |#2| (-981)))) (($ $ (-1095)) 96 (-3287 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-595 (-1095))) 95 (-3287 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-1095) (-717)) 94 (-3287 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-595 (-1095)) (-595 (-717))) 93 (-3287 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-1 |#2| |#2|) (-717)) 86 (|has| |#2| (-981))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-981)))) (-2507 (((-717) (-1 (-110) |#2|) $) 31 (|has| $ (-6 -4264))) (((-717) |#2| $) 28 (-12 (|has| |#2| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-2222 (((-1177 |#2|) $) 129) (($ (-528)) 66 (-1463 (-3287 (|has| |#2| (-972 (-528))) (|has| |#2| (-1023))) (|has| |#2| (-981)))) (($ (-387 (-528))) 63 (-3287 (|has| |#2| (-972 (-387 (-528)))) (|has| |#2| (-1023)))) (($ |#2|) 62 (|has| |#2| (-1023))) (((-802) $) 18 (|has| |#2| (-569 (-802))))) (-3742 (((-717)) 104 (|has| |#2| (-981)))) (-3451 (((-110) (-1 (-110) |#2|) $) 33 (|has| $ (-6 -4264)))) (-1775 (($ $) 122 (|has| |#2| (-791)))) (-2690 (($ $ (-717)) 81 (|has| |#2| (-673))) (($ $ (-860)) 77 (|has| |#2| (-673)))) (-2969 (($) 71 (|has| |#2| (-128)) CONST)) (-2982 (($) 84 (|has| |#2| (-673)) CONST)) (-3245 (($ $) 99 (-3287 (|has| |#2| (-215)) (|has| |#2| (-981)))) (($ $ (-717)) 97 (-3287 (|has| |#2| (-215)) (|has| |#2| (-981)))) (($ $ (-1095)) 92 (-3287 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-595 (-1095))) 91 (-3287 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-1095) (-717)) 90 (-3287 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-595 (-1095)) (-595 (-717))) 89 (-3287 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-1 |#2| |#2|) (-717)) 88 (|has| |#2| (-981))) (($ $ (-1 |#2| |#2|)) 87 (|has| |#2| (-981)))) (-2244 (((-110) $ $) 115 (-1463 (|has| |#2| (-791)) (|has| |#2| (-739))))) (-2220 (((-110) $ $) 114 (-1463 (|has| |#2| (-791)) (|has| |#2| (-739))))) (-2186 (((-110) $ $) 20 (|has| |#2| (-1023)))) (-2232 (((-110) $ $) 116 (-1463 (|has| |#2| (-791)) (|has| |#2| (-739))))) (-2208 (((-110) $ $) 113 (-1463 (|has| |#2| (-791)) (|has| |#2| (-739))))) (-2296 (($ $ |#2|) 124 (|has| |#2| (-343)))) (-2286 (($ $ $) 102 (|has| |#2| (-981))) (($ $) 101 (|has| |#2| (-981)))) (-2275 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-717)) 82 (|has| |#2| (-673))) (($ $ (-860)) 78 (|has| |#2| (-673)))) (* (($ (-528) $) 103 (|has| |#2| (-981))) (($ $ $) 79 (|has| |#2| (-673))) (($ $ |#2|) 76 (|has| |#2| (-673))) (($ |#2| $) 75 (|has| |#2| (-673))) (($ (-717) $) 73 (|has| |#2| (-128))) (($ (-860) $) 70 (|has| |#2| (-25)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-220 |#1| |#2|) (-133) (-717) (-1131)) (T -220))
-((-2484 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1131)) (-4 *1 (-220 *3 *4)))) (-2562 (*1 *1 *2) (-12 (-5 *2 (-860)) (-4 *1 (-220 *3 *4)) (-4 *4 (-981)) (-4 *4 (-1131)))) (-3675 (*1 *2 *1 *1) (-12 (-4 *1 (-220 *3 *2)) (-4 *2 (-1131)) (-4 *2 (-981)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-220 *3 *2)) (-4 *2 (-1131)) (-4 *2 (-673)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-220 *3 *2)) (-4 *2 (-1131)) (-4 *2 (-673)))))
-(-13 (-561 (-528) |t#2|) (-569 (-1177 |t#2|)) (-10 -8 (-6 -4264) (-15 -2484 ($ (-1177 |t#2|))) (IF (|has| |t#2| (-1023)) (-6 (-391 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-981)) (PROGN (-6 (-109 |t#2| |t#2|)) (-6 (-213 |t#2|)) (-6 (-357 |t#2|)) (-15 -2562 ($ (-860))) (-15 -3675 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-128)) (-6 (-128)) |%noBranch|) (IF (|has| |t#2| (-673)) (PROGN (-6 (-673)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-348)) (-6 (-348)) |%noBranch|) (IF (|has| |t#2| (-162)) (PROGN (-6 (-37 |t#2|)) (-6 (-162))) |%noBranch|) (IF (|has| |t#2| (-6 -4261)) (-6 -4261) |%noBranch|) (IF (|has| |t#2| (-791)) (-6 (-791)) |%noBranch|) (IF (|has| |t#2| (-739)) (-6 (-739)) |%noBranch|) (IF (|has| |t#2| (-343)) (-6 (-1184 |t#2|)) |%noBranch|)))
-(((-21) -1463 (|has| |#2| (-981)) (|has| |#2| (-791)) (|has| |#2| (-343)) (|has| |#2| (-162))) ((-23) -1463 (|has| |#2| (-981)) (|has| |#2| (-791)) (|has| |#2| (-739)) (|has| |#2| (-343)) (|has| |#2| (-162)) (|has| |#2| (-128))) ((-25) -1463 (|has| |#2| (-981)) (|has| |#2| (-791)) (|has| |#2| (-739)) (|has| |#2| (-343)) (|has| |#2| (-162)) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-162)) ((-99) -1463 (|has| |#2| (-1023)) (|has| |#2| (-981)) (|has| |#2| (-791)) (|has| |#2| (-739)) (|has| |#2| (-673)) (|has| |#2| (-348)) (|has| |#2| (-343)) (|has| |#2| (-162)) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-109 |#2| |#2|) -1463 (|has| |#2| (-981)) (|has| |#2| (-343)) (|has| |#2| (-162))) ((-109 $ $) |has| |#2| (-162)) ((-128) -1463 (|has| |#2| (-981)) (|has| |#2| (-791)) (|has| |#2| (-739)) (|has| |#2| (-343)) (|has| |#2| (-162)) (|has| |#2| (-128))) ((-569 (-802)) -1463 (|has| |#2| (-1023)) (|has| |#2| (-981)) (|has| |#2| (-791)) (|has| |#2| (-739)) (|has| |#2| (-673)) (|has| |#2| (-348)) (|has| |#2| (-343)) (|has| |#2| (-162)) (|has| |#2| (-569 (-802))) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-569 (-1177 |#2|)) . T) ((-162) |has| |#2| (-162)) ((-213 |#2|) |has| |#2| (-981)) ((-215) -12 (|has| |#2| (-215)) (|has| |#2| (-981))) ((-267 #0=(-528) |#2|) . T) ((-269 #0# |#2|) . T) ((-290 |#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))) ((-348) |has| |#2| (-348)) ((-357 |#2|) |has| |#2| (-981)) ((-391 |#2|) |has| |#2| (-1023)) ((-467 |#2|) . T) ((-561 #0# |#2|) . T) ((-489 |#2| |#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))) ((-597 |#2|) -1463 (|has| |#2| (-981)) (|has| |#2| (-343)) (|has| |#2| (-162))) ((-597 $) -1463 (|has| |#2| (-981)) (|has| |#2| (-791)) (|has| |#2| (-162))) ((-591 (-528)) -12 (|has| |#2| (-591 (-528))) (|has| |#2| (-981))) ((-591 |#2|) |has| |#2| (-981)) ((-664 |#2|) -1463 (|has| |#2| (-343)) (|has| |#2| (-162))) ((-673) -1463 (|has| |#2| (-981)) (|has| |#2| (-791)) (|has| |#2| (-673)) (|has| |#2| (-162))) ((-737) |has| |#2| (-791)) ((-738) -1463 (|has| |#2| (-791)) (|has| |#2| (-739))) ((-739) |has| |#2| (-739)) ((-740) -1463 (|has| |#2| (-791)) (|has| |#2| (-739))) ((-741) -1463 (|has| |#2| (-791)) (|has| |#2| (-739))) ((-791) |has| |#2| (-791)) ((-793) -1463 (|has| |#2| (-791)) (|has| |#2| (-739))) ((-839 (-1095)) -12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981))) ((-972 (-387 (-528))) -12 (|has| |#2| (-972 (-387 (-528)))) (|has| |#2| (-1023))) ((-972 (-528)) -12 (|has| |#2| (-972 (-528))) (|has| |#2| (-1023))) ((-972 |#2|) |has| |#2| (-1023)) ((-986 |#2|) -1463 (|has| |#2| (-981)) (|has| |#2| (-343)) (|has| |#2| (-162))) ((-986 $) |has| |#2| (-162)) ((-981) -1463 (|has| |#2| (-981)) (|has| |#2| (-791)) (|has| |#2| (-162))) ((-987) -1463 (|has| |#2| (-981)) (|has| |#2| (-791)) (|has| |#2| (-162))) ((-1035) -1463 (|has| |#2| (-981)) (|has| |#2| (-791)) (|has| |#2| (-673)) (|has| |#2| (-162))) ((-1023) -1463 (|has| |#2| (-1023)) (|has| |#2| (-981)) (|has| |#2| (-791)) (|has| |#2| (-739)) (|has| |#2| (-673)) (|has| |#2| (-348)) (|has| |#2| (-343)) (|has| |#2| (-162)) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-1131) . T) ((-1184 |#2|) |has| |#2| (-343)))
-((-3718 (((-222 |#1| |#3|) (-1 |#3| |#2| |#3|) (-222 |#1| |#2|) |#3|) 21)) (-1422 ((|#3| (-1 |#3| |#2| |#3|) (-222 |#1| |#2|) |#3|) 23)) (-3106 (((-222 |#1| |#3|) (-1 |#3| |#2|) (-222 |#1| |#2|)) 18)))
-(((-221 |#1| |#2| |#3|) (-10 -7 (-15 -3718 ((-222 |#1| |#3|) (-1 |#3| |#2| |#3|) (-222 |#1| |#2|) |#3|)) (-15 -1422 (|#3| (-1 |#3| |#2| |#3|) (-222 |#1| |#2|) |#3|)) (-15 -3106 ((-222 |#1| |#3|) (-1 |#3| |#2|) (-222 |#1| |#2|)))) (-717) (-1131) (-1131)) (T -221))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-222 *5 *6)) (-14 *5 (-717)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-222 *5 *7)) (-5 *1 (-221 *5 *6 *7)))) (-1422 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-222 *5 *6)) (-14 *5 (-717)) (-4 *6 (-1131)) (-4 *2 (-1131)) (-5 *1 (-221 *5 *6 *2)))) (-3718 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-222 *6 *7)) (-14 *6 (-717)) (-4 *7 (-1131)) (-4 *5 (-1131)) (-5 *2 (-222 *6 *5)) (-5 *1 (-221 *6 *7 *5)))))
-(-10 -7 (-15 -3718 ((-222 |#1| |#3|) (-1 |#3| |#2| |#3|) (-222 |#1| |#2|) |#3|)) (-15 -1422 (|#3| (-1 |#3| |#2| |#3|) (-222 |#1| |#2|) |#3|)) (-15 -3106 ((-222 |#1| |#3|) (-1 |#3| |#2|) (-222 |#1| |#2|))))
-((-2207 (((-110) $ $) NIL (|has| |#2| (-1023)))) (-1359 (((-110) $) NIL (|has| |#2| (-128)))) (-2562 (($ (-860)) 56 (|has| |#2| (-981)))) (-1444 (((-1182) $ (-528) (-528)) NIL (|has| $ (-6 -4265)))) (-3622 (($ $ $) 60 (|has| |#2| (-739)))) (-3181 (((-3 $ "failed") $ $) 49 (|has| |#2| (-128)))) (-3535 (((-110) $ (-717)) 17)) (-2856 (((-717)) NIL (|has| |#2| (-348)))) (-3605 (((-528) $) NIL (|has| |#2| (-791)))) (-2381 ((|#2| $ (-528) |#2|) NIL (|has| $ (-6 -4265)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-528) "failed") $) NIL (-12 (|has| |#2| (-972 (-528))) (|has| |#2| (-1023)))) (((-3 (-387 (-528)) "failed") $) NIL (-12 (|has| |#2| (-972 (-387 (-528)))) (|has| |#2| (-1023)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1023)))) (-2409 (((-528) $) NIL (-12 (|has| |#2| (-972 (-528))) (|has| |#2| (-1023)))) (((-387 (-528)) $) NIL (-12 (|has| |#2| (-972 (-387 (-528)))) (|has| |#2| (-1023)))) ((|#2| $) 27 (|has| |#2| (-1023)))) (-2120 (((-635 (-528)) (-635 $)) NIL (-12 (|has| |#2| (-591 (-528))) (|has| |#2| (-981)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (-12 (|has| |#2| (-591 (-528))) (|has| |#2| (-981)))) (((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 $) (-1177 $)) NIL (|has| |#2| (-981))) (((-635 |#2|) (-635 $)) NIL (|has| |#2| (-981)))) (-1312 (((-3 $ "failed") $) 53 (|has| |#2| (-673)))) (-1338 (($) NIL (|has| |#2| (-348)))) (-2812 ((|#2| $ (-528) |#2|) NIL (|has| $ (-6 -4265)))) (-2742 ((|#2| $ (-528)) 51)) (-3657 (((-110) $) NIL (|has| |#2| (-791)))) (-3342 (((-595 |#2|) $) 15 (|has| $ (-6 -4264)))) (-1297 (((-110) $) NIL (|has| |#2| (-673)))) (-3710 (((-110) $) NIL (|has| |#2| (-791)))) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-528) $) 20 (|has| (-528) (-793)))) (-1436 (($ $ $) NIL (-1463 (|has| |#2| (-739)) (|has| |#2| (-791))))) (-2604 (((-595 |#2|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-1709 (((-528) $) 50 (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (-1463 (|has| |#2| (-739)) (|has| |#2| (-791))))) (-2800 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#2| |#2|) $) 41)) (-3201 (((-860) $) NIL (|has| |#2| (-348)))) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (|has| |#2| (-1023)))) (-2084 (((-595 (-528)) $) NIL)) (-3966 (((-110) (-528) $) NIL)) (-3108 (($ (-860)) NIL (|has| |#2| (-348)))) (-2495 (((-1042) $) NIL (|has| |#2| (-1023)))) (-2890 ((|#2| $) NIL (|has| (-528) (-793)))) (-1332 (($ $ |#2|) NIL (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) |#2|) $) 24 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#2|))) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-595 |#2|) (-595 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-2861 (((-595 |#2|) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#2| $ (-528) |#2|) NIL) ((|#2| $ (-528)) 21)) (-3675 ((|#2| $ $) NIL (|has| |#2| (-981)))) (-2484 (($ (-1177 |#2|)) 18)) (-3017 (((-130)) NIL (|has| |#2| (-343)))) (-3235 (($ $) NIL (-12 (|has| |#2| (-215)) (|has| |#2| (-981)))) (($ $ (-717)) NIL (-12 (|has| |#2| (-215)) (|has| |#2| (-981)))) (($ $ (-1095)) NIL (-12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-1 |#2| |#2|) (-717)) NIL (|has| |#2| (-981))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-981)))) (-2507 (((-717) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264))) (((-717) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-2406 (($ $) NIL)) (-2222 (((-1177 |#2|) $) 10) (($ (-528)) NIL (-1463 (-12 (|has| |#2| (-972 (-528))) (|has| |#2| (-1023))) (|has| |#2| (-981)))) (($ (-387 (-528))) NIL (-12 (|has| |#2| (-972 (-387 (-528)))) (|has| |#2| (-1023)))) (($ |#2|) 13 (|has| |#2| (-1023))) (((-802) $) NIL (|has| |#2| (-569 (-802))))) (-3742 (((-717)) NIL (|has| |#2| (-981)))) (-3451 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-1775 (($ $) NIL (|has| |#2| (-791)))) (-2690 (($ $ (-717)) NIL (|has| |#2| (-673))) (($ $ (-860)) NIL (|has| |#2| (-673)))) (-2969 (($) 35 (|has| |#2| (-128)) CONST)) (-2982 (($) 38 (|has| |#2| (-673)) CONST)) (-3245 (($ $) NIL (-12 (|has| |#2| (-215)) (|has| |#2| (-981)))) (($ $ (-717)) NIL (-12 (|has| |#2| (-215)) (|has| |#2| (-981)))) (($ $ (-1095)) NIL (-12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-1 |#2| |#2|) (-717)) NIL (|has| |#2| (-981))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-981)))) (-2244 (((-110) $ $) NIL (-1463 (|has| |#2| (-739)) (|has| |#2| (-791))))) (-2220 (((-110) $ $) NIL (-1463 (|has| |#2| (-739)) (|has| |#2| (-791))))) (-2186 (((-110) $ $) 26 (|has| |#2| (-1023)))) (-2232 (((-110) $ $) NIL (-1463 (|has| |#2| (-739)) (|has| |#2| (-791))))) (-2208 (((-110) $ $) 58 (-1463 (|has| |#2| (-739)) (|has| |#2| (-791))))) (-2296 (($ $ |#2|) NIL (|has| |#2| (-343)))) (-2286 (($ $ $) NIL (|has| |#2| (-981))) (($ $) NIL (|has| |#2| (-981)))) (-2275 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-717)) NIL (|has| |#2| (-673))) (($ $ (-860)) NIL (|has| |#2| (-673)))) (* (($ (-528) $) NIL (|has| |#2| (-981))) (($ $ $) 44 (|has| |#2| (-673))) (($ $ |#2|) 42 (|has| |#2| (-673))) (($ |#2| $) 43 (|has| |#2| (-673))) (($ (-717) $) NIL (|has| |#2| (-128))) (($ (-860) $) NIL (|has| |#2| (-25)))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-222 |#1| |#2|) (-220 |#1| |#2|) (-717) (-1131)) (T -222))
-NIL
-(-220 |#1| |#2|)
-((-2321 (((-528) (-595 (-1078))) 24) (((-528) (-1078)) 19)) (-2372 (((-1182) (-595 (-1078))) 29) (((-1182) (-1078)) 28)) (-2241 (((-1078)) 14)) (-2679 (((-1078) (-528) (-1078)) 16)) (-1884 (((-595 (-1078)) (-595 (-1078)) (-528) (-1078)) 25) (((-1078) (-1078) (-528) (-1078)) 23)) (-1681 (((-595 (-1078)) (-595 (-1078))) 13) (((-595 (-1078)) (-1078)) 11)))
-(((-223) (-10 -7 (-15 -1681 ((-595 (-1078)) (-1078))) (-15 -1681 ((-595 (-1078)) (-595 (-1078)))) (-15 -2241 ((-1078))) (-15 -2679 ((-1078) (-528) (-1078))) (-15 -1884 ((-1078) (-1078) (-528) (-1078))) (-15 -1884 ((-595 (-1078)) (-595 (-1078)) (-528) (-1078))) (-15 -2372 ((-1182) (-1078))) (-15 -2372 ((-1182) (-595 (-1078)))) (-15 -2321 ((-528) (-1078))) (-15 -2321 ((-528) (-595 (-1078)))))) (T -223))
-((-2321 (*1 *2 *3) (-12 (-5 *3 (-595 (-1078))) (-5 *2 (-528)) (-5 *1 (-223)))) (-2321 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-528)) (-5 *1 (-223)))) (-2372 (*1 *2 *3) (-12 (-5 *3 (-595 (-1078))) (-5 *2 (-1182)) (-5 *1 (-223)))) (-2372 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-223)))) (-1884 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-595 (-1078))) (-5 *3 (-528)) (-5 *4 (-1078)) (-5 *1 (-223)))) (-1884 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1078)) (-5 *3 (-528)) (-5 *1 (-223)))) (-2679 (*1 *2 *3 *2) (-12 (-5 *2 (-1078)) (-5 *3 (-528)) (-5 *1 (-223)))) (-2241 (*1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-223)))) (-1681 (*1 *2 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-223)))) (-1681 (*1 *2 *3) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-223)) (-5 *3 (-1078)))))
-(-10 -7 (-15 -1681 ((-595 (-1078)) (-1078))) (-15 -1681 ((-595 (-1078)) (-595 (-1078)))) (-15 -2241 ((-1078))) (-15 -2679 ((-1078) (-528) (-1078))) (-15 -1884 ((-1078) (-1078) (-528) (-1078))) (-15 -1884 ((-595 (-1078)) (-595 (-1078)) (-528) (-1078))) (-15 -2372 ((-1182) (-1078))) (-15 -2372 ((-1182) (-595 (-1078)))) (-15 -2321 ((-528) (-1078))) (-15 -2321 ((-528) (-595 (-1078)))))
-((-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) 9)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) 18)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ (-387 (-528)) $) 25) (($ $ (-387 (-528))) NIL)))
-(((-224 |#1|) (-10 -8 (-15 -2690 (|#1| |#1| (-528))) (-15 ** (|#1| |#1| (-528))) (-15 * (|#1| |#1| (-387 (-528)))) (-15 * (|#1| (-387 (-528)) |#1|)) (-15 ** (|#1| |#1| (-717))) (-15 -2690 (|#1| |#1| (-717))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-860))) (-15 -2690 (|#1| |#1| (-860))) (-15 * (|#1| (-528) |#1|)) (-15 * (|#1| (-717) |#1|)) (-15 * (|#1| (-860) |#1|))) (-225)) (T -224))
-NIL
-(-10 -8 (-15 -2690 (|#1| |#1| (-528))) (-15 ** (|#1| |#1| (-528))) (-15 * (|#1| |#1| (-387 (-528)))) (-15 * (|#1| (-387 (-528)) |#1|)) (-15 ** (|#1| |#1| (-717))) (-15 -2690 (|#1| |#1| (-717))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-860))) (-15 -2690 (|#1| |#1| (-860))) (-15 * (|#1| (-528) |#1|)) (-15 * (|#1| (-717) |#1|)) (-15 * (|#1| (-860) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-1312 (((-3 $ "failed") $) 34)) (-1297 (((-110) $) 31)) (-3034 (((-1078) $) 9)) (-2652 (($ $) 39)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ (-387 (-528))) 44)) (-3742 (((-717)) 29)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33) (($ $ (-528)) 40)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32) (($ $ (-528)) 41)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ (-387 (-528)) $) 43) (($ $ (-387 (-528))) 42)))
-(((-225) (-133)) (T -225))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-225)) (-5 *2 (-528)))) (-2690 (*1 *1 *1 *2) (-12 (-4 *1 (-225)) (-5 *2 (-528)))) (-2652 (*1 *1 *1) (-4 *1 (-225))))
-(-13 (-271) (-37 (-387 (-528))) (-10 -8 (-15 ** ($ $ (-528))) (-15 -2690 ($ $ (-528))) (-15 -2652 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-387 (-528))) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-569 (-802)) . T) ((-271) . T) ((-597 #0#) . T) ((-597 $) . T) ((-664 #0#) . T) ((-673) . T) ((-986 #0#) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-3327 ((|#1| $) 48)) (-2023 (($ $) 57)) (-3535 (((-110) $ (-717)) 8)) (-2074 ((|#1| $ |#1|) 39 (|has| $ (-6 -4265)))) (-1829 (($ $ $) 53 (|has| $ (-6 -4265)))) (-3838 (($ $ $) 52 (|has| $ (-6 -4265)))) (-2381 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4265)))) (-3409 (($ $ (-595 $)) 41 (|has| $ (-6 -4265)))) (-2816 (($) 7 T CONST)) (-1848 (($ $) 56)) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-1690 (((-595 $) $) 50)) (-1313 (((-110) $ $) 42 (|has| |#1| (-1023)))) (-2719 (($ $) 55)) (-2029 (((-110) $ (-717)) 9)) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35)) (-3358 (((-110) $ (-717)) 10)) (-3298 (((-595 |#1|) $) 45)) (-2578 (((-110) $) 49)) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-2301 ((|#1| $) 59)) (-2996 (($ $) 58)) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3043 ((|#1| $ "value") 47)) (-3241 (((-528) $ $) 44)) (-3177 (((-110) $) 46)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-3579 (($ $ $) 54 (|has| $ (-6 -4265)))) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-3813 (((-595 $) $) 51)) (-2688 (((-110) $ $) 43 (|has| |#1| (-1023)))) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-226 |#1|) (-133) (-1131)) (T -226))
-((-2301 (*1 *2 *1) (-12 (-4 *1 (-226 *2)) (-4 *2 (-1131)))) (-2996 (*1 *1 *1) (-12 (-4 *1 (-226 *2)) (-4 *2 (-1131)))) (-2023 (*1 *1 *1) (-12 (-4 *1 (-226 *2)) (-4 *2 (-1131)))) (-1848 (*1 *1 *1) (-12 (-4 *1 (-226 *2)) (-4 *2 (-1131)))) (-2719 (*1 *1 *1) (-12 (-4 *1 (-226 *2)) (-4 *2 (-1131)))) (-3579 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4265)) (-4 *1 (-226 *2)) (-4 *2 (-1131)))) (-1829 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4265)) (-4 *1 (-226 *2)) (-4 *2 (-1131)))) (-3838 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4265)) (-4 *1 (-226 *2)) (-4 *2 (-1131)))))
-(-13 (-946 |t#1|) (-10 -8 (-15 -2301 (|t#1| $)) (-15 -2996 ($ $)) (-15 -2023 ($ $)) (-15 -1848 ($ $)) (-15 -2719 ($ $)) (IF (|has| $ (-6 -4265)) (PROGN (-15 -3579 ($ $ $)) (-15 -1829 ($ $ $)) (-15 -3838 ($ $ $))) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1023)) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-569 (-802)))) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-467 |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-946 |#1|) . T) ((-1023) |has| |#1| (-1023)) ((-1131) . T))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3327 ((|#1| $) NIL)) (-2513 ((|#1| $) NIL)) (-2023 (($ $) NIL)) (-1444 (((-1182) $ (-528) (-528)) NIL (|has| $ (-6 -4265)))) (-3084 (($ $ (-528)) NIL (|has| $ (-6 -4265)))) (-3608 (((-110) $) NIL (|has| |#1| (-793))) (((-110) (-1 (-110) |#1| |#1|) $) NIL)) (-3863 (($ $) NIL (-12 (|has| $ (-6 -4265)) (|has| |#1| (-793)))) (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4265)))) (-1289 (($ $) 10 (|has| |#1| (-793))) (($ (-1 (-110) |#1| |#1|) $) NIL)) (-3535 (((-110) $ (-717)) NIL)) (-2074 ((|#1| $ |#1|) NIL (|has| $ (-6 -4265)))) (-3307 (($ $ $) NIL (|has| $ (-6 -4265)))) (-2624 ((|#1| $ |#1|) NIL (|has| $ (-6 -4265)))) (-2153 ((|#1| $ |#1|) NIL (|has| $ (-6 -4265)))) (-2381 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4265))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4265))) (($ $ "rest" $) NIL (|has| $ (-6 -4265))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4265))) ((|#1| $ (-1144 (-528)) |#1|) NIL (|has| $ (-6 -4265))) ((|#1| $ (-528) |#1|) NIL (|has| $ (-6 -4265)))) (-3409 (($ $ (-595 $)) NIL (|has| $ (-6 -4265)))) (-1836 (($ (-1 (-110) |#1|) $) NIL)) (-1573 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2500 ((|#1| $) NIL)) (-2816 (($) NIL T CONST)) (-2472 (($ $) NIL (|has| $ (-6 -4265)))) (-3009 (($ $) NIL)) (-2902 (($ $) NIL) (($ $ (-717)) NIL)) (-2833 (($ $) NIL (|has| |#1| (-1023)))) (-2923 (($ $) 7 (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3991 (($ |#1| $) NIL (|has| |#1| (-1023))) (($ (-1 (-110) |#1|) $) NIL)) (-2280 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2812 ((|#1| $ (-528) |#1|) NIL (|has| $ (-6 -4265)))) (-2742 ((|#1| $ (-528)) NIL)) (-3691 (((-110) $) NIL)) (-3140 (((-528) |#1| $ (-528)) NIL (|has| |#1| (-1023))) (((-528) |#1| $) NIL (|has| |#1| (-1023))) (((-528) (-1 (-110) |#1|) $) NIL)) (-3342 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-1690 (((-595 $) $) NIL)) (-1313 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3462 (($ (-717) |#1|) NIL)) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-528) $) NIL (|has| (-528) (-793)))) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-3368 (($ $ $) NIL (|has| |#1| (-793))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-1356 (($ $ $) NIL (|has| |#1| (-793))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-1709 (((-528) $) NIL (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-2800 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2759 (($ |#1|) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3298 (((-595 |#1|) $) NIL)) (-2578 (((-110) $) NIL)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-2301 ((|#1| $) NIL) (($ $ (-717)) NIL)) (-1950 (($ $ $ (-528)) NIL) (($ |#1| $ (-528)) NIL)) (-3939 (($ $ $ (-528)) NIL) (($ |#1| $ (-528)) NIL)) (-2084 (((-595 (-528)) $) NIL)) (-3966 (((-110) (-528) $) NIL)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-2890 ((|#1| $) NIL) (($ $ (-717)) NIL)) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1332 (($ $ |#1|) NIL (|has| $ (-6 -4265)))) (-1441 (((-110) $) NIL)) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2861 (((-595 |#1|) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1144 (-528))) NIL) ((|#1| $ (-528)) NIL) ((|#1| $ (-528) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-717) $ "count") 16)) (-3241 (((-528) $ $) NIL)) (-1704 (($ $ (-1144 (-528))) NIL) (($ $ (-528)) NIL)) (-1745 (($ $ (-1144 (-528))) NIL) (($ $ (-528)) NIL)) (-4094 (($ (-595 |#1|)) 22)) (-3177 (((-110) $) NIL)) (-2185 (($ $) NIL)) (-3821 (($ $) NIL (|has| $ (-6 -4265)))) (-3887 (((-717) $) NIL)) (-3539 (($ $) NIL)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3761 (($ $ $ (-528)) NIL (|has| $ (-6 -4265)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) NIL (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) NIL)) (-3579 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3400 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-595 $)) NIL) (($ $ |#1|) NIL)) (-2222 (($ (-595 |#1|)) 17) (((-595 |#1|) $) 18) (((-802) $) 21 (|has| |#1| (-569 (-802))))) (-3813 (((-595 $) $) NIL)) (-2688 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2138 (((-717) $) 14 (|has| $ (-6 -4264)))))
-(((-227 |#1|) (-13 (-615 |#1|) (-10 -8 (-15 -2222 ($ (-595 |#1|))) (-15 -2222 ((-595 |#1|) $)) (-15 -4094 ($ (-595 |#1|))) (-15 -3043 ($ $ "unique")) (-15 -3043 ($ $ "sort")) (-15 -3043 ((-717) $ "count")))) (-793)) (T -227))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-793)) (-5 *1 (-227 *3)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-595 *3)) (-5 *1 (-227 *3)) (-4 *3 (-793)))) (-4094 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-793)) (-5 *1 (-227 *3)))) (-3043 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-227 *3)) (-4 *3 (-793)))) (-3043 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-227 *3)) (-4 *3 (-793)))) (-3043 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-717)) (-5 *1 (-227 *4)) (-4 *4 (-793)))))
-(-13 (-615 |#1|) (-10 -8 (-15 -2222 ($ (-595 |#1|))) (-15 -2222 ((-595 |#1|) $)) (-15 -4094 ($ (-595 |#1|))) (-15 -3043 ($ $ "unique")) (-15 -3043 ($ $ "sort")) (-15 -3043 ((-717) $ "count"))))
-((-1897 (((-3 (-717) "failed") |#1| |#1| (-717)) 27)))
-(((-228 |#1|) (-10 -7 (-15 -1897 ((-3 (-717) "failed") |#1| |#1| (-717)))) (-13 (-673) (-348) (-10 -7 (-15 ** (|#1| |#1| (-528)))))) (T -228))
-((-1897 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-717)) (-4 *3 (-13 (-673) (-348) (-10 -7 (-15 ** (*3 *3 (-528)))))) (-5 *1 (-228 *3)))))
-(-10 -7 (-15 -1897 ((-3 (-717) "failed") |#1| |#1| (-717))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2565 (((-595 (-804 |#1|)) $) NIL)) (-2402 (((-1091 $) $ (-804 |#1|)) NIL) (((-1091 |#2|) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#2| (-520)))) (-1738 (($ $) NIL (|has| |#2| (-520)))) (-1811 (((-110) $) NIL (|has| |#2| (-520)))) (-4042 (((-717) $) NIL) (((-717) $ (-595 (-804 |#1|))) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#2| (-848)))) (-1232 (($ $) NIL (|has| |#2| (-431)))) (-2705 (((-398 $) $) NIL (|has| |#2| (-431)))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (|has| |#2| (-848)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#2| "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#2| (-972 (-387 (-528))))) (((-3 (-528) "failed") $) NIL (|has| |#2| (-972 (-528)))) (((-3 (-804 |#1|) "failed") $) NIL)) (-2409 ((|#2| $) NIL) (((-387 (-528)) $) NIL (|has| |#2| (-972 (-387 (-528))))) (((-528) $) NIL (|has| |#2| (-972 (-528)))) (((-804 |#1|) $) NIL)) (-1606 (($ $ $ (-804 |#1|)) NIL (|has| |#2| (-162)))) (-1808 (($ $ (-595 (-528))) NIL)) (-2388 (($ $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| |#2| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| |#2| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 $) (-1177 $)) NIL) (((-635 |#2|) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1551 (($ $) NIL (|has| |#2| (-431))) (($ $ (-804 |#1|)) NIL (|has| |#2| (-431)))) (-2376 (((-595 $) $) NIL)) (-2124 (((-110) $) NIL (|has| |#2| (-848)))) (-4047 (($ $ |#2| (-222 (-2138 |#1|) (-717)) $) NIL)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (-12 (|has| (-804 |#1|) (-825 (-359))) (|has| |#2| (-825 (-359))))) (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (-12 (|has| (-804 |#1|) (-825 (-528))) (|has| |#2| (-825 (-528)))))) (-1297 (((-110) $) NIL)) (-1224 (((-717) $) NIL)) (-2557 (($ (-1091 |#2|) (-804 |#1|)) NIL) (($ (-1091 $) (-804 |#1|)) NIL)) (-3737 (((-595 $) $) NIL)) (-2195 (((-110) $) NIL)) (-2548 (($ |#2| (-222 (-2138 |#1|) (-717))) NIL) (($ $ (-804 |#1|) (-717)) NIL) (($ $ (-595 (-804 |#1|)) (-595 (-717))) NIL)) (-3275 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $ (-804 |#1|)) NIL)) (-3499 (((-222 (-2138 |#1|) (-717)) $) NIL) (((-717) $ (-804 |#1|)) NIL) (((-595 (-717)) $ (-595 (-804 |#1|))) NIL)) (-1436 (($ $ $) NIL (|has| |#2| (-793)))) (-1736 (($ $ $) NIL (|has| |#2| (-793)))) (-1264 (($ (-1 (-222 (-2138 |#1|) (-717)) (-222 (-2138 |#1|) (-717))) $) NIL)) (-3106 (($ (-1 |#2| |#2|) $) NIL)) (-3288 (((-3 (-804 |#1|) "failed") $) NIL)) (-2686 (($ $) NIL)) (-2697 ((|#2| $) NIL)) (-2057 (($ (-595 $)) NIL (|has| |#2| (-431))) (($ $ $) NIL (|has| |#2| (-431)))) (-3034 (((-1078) $) NIL)) (-3024 (((-3 (-595 $) "failed") $) NIL)) (-1281 (((-3 (-595 $) "failed") $) NIL)) (-3352 (((-3 (-2 (|:| |var| (-804 |#1|)) (|:| -2564 (-717))) "failed") $) NIL)) (-2495 (((-1042) $) NIL)) (-2662 (((-110) $) NIL)) (-2675 ((|#2| $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#2| (-431)))) (-2088 (($ (-595 $)) NIL (|has| |#2| (-431))) (($ $ $) NIL (|has| |#2| (-431)))) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#2| (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#2| (-848)))) (-2437 (((-398 $) $) NIL (|has| |#2| (-848)))) (-3477 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-520))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-520)))) (-4014 (($ $ (-595 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL) (($ $ (-804 |#1|) |#2|) NIL) (($ $ (-595 (-804 |#1|)) (-595 |#2|)) NIL) (($ $ (-804 |#1|) $) NIL) (($ $ (-595 (-804 |#1|)) (-595 $)) NIL)) (-1372 (($ $ (-804 |#1|)) NIL (|has| |#2| (-162)))) (-3235 (($ $ (-804 |#1|)) NIL) (($ $ (-595 (-804 |#1|))) NIL) (($ $ (-804 |#1|) (-717)) NIL) (($ $ (-595 (-804 |#1|)) (-595 (-717))) NIL)) (-2935 (((-222 (-2138 |#1|) (-717)) $) NIL) (((-717) $ (-804 |#1|)) NIL) (((-595 (-717)) $ (-595 (-804 |#1|))) NIL)) (-3155 (((-831 (-359)) $) NIL (-12 (|has| (-804 |#1|) (-570 (-831 (-359)))) (|has| |#2| (-570 (-831 (-359)))))) (((-831 (-528)) $) NIL (-12 (|has| (-804 |#1|) (-570 (-831 (-528)))) (|has| |#2| (-570 (-831 (-528)))))) (((-504) $) NIL (-12 (|has| (-804 |#1|) (-570 (-504))) (|has| |#2| (-570 (-504)))))) (-1618 ((|#2| $) NIL (|has| |#2| (-431))) (($ $ (-804 |#1|)) NIL (|has| |#2| (-431)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-848))))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ |#2|) NIL) (($ (-804 |#1|)) NIL) (($ (-387 (-528))) NIL (-1463 (|has| |#2| (-37 (-387 (-528)))) (|has| |#2| (-972 (-387 (-528)))))) (($ $) NIL (|has| |#2| (-520)))) (-3348 (((-595 |#2|) $) NIL)) (-3216 ((|#2| $ (-222 (-2138 |#1|) (-717))) NIL) (($ $ (-804 |#1|) (-717)) NIL) (($ $ (-595 (-804 |#1|)) (-595 (-717))) NIL)) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| |#2| (-848))) (|has| |#2| (-138))))) (-3742 (((-717)) NIL)) (-1997 (($ $ $ (-717)) NIL (|has| |#2| (-162)))) (-4016 (((-110) $ $) NIL (|has| |#2| (-520)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($ $ (-804 |#1|)) NIL) (($ $ (-595 (-804 |#1|))) NIL) (($ $ (-804 |#1|) (-717)) NIL) (($ $ (-595 (-804 |#1|)) (-595 (-717))) NIL)) (-2244 (((-110) $ $) NIL (|has| |#2| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#2| (-793)))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (|has| |#2| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#2| (-793)))) (-2296 (($ $ |#2|) NIL (|has| |#2| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL (|has| |#2| (-37 (-387 (-528))))) (($ (-387 (-528)) $) NIL (|has| |#2| (-37 (-387 (-528))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-229 |#1| |#2|) (-13 (-888 |#2| (-222 (-2138 |#1|) (-717)) (-804 |#1|)) (-10 -8 (-15 -1808 ($ $ (-595 (-528)))))) (-595 (-1095)) (-981)) (T -229))
-((-1808 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-229 *3 *4)) (-14 *3 (-595 (-1095))) (-4 *4 (-981)))))
-(-13 (-888 |#2| (-222 (-2138 |#1|) (-717)) (-804 |#1|)) (-10 -8 (-15 -1808 ($ $ (-595 (-528))))))
-((-2207 (((-110) $ $) NIL)) (-1903 (((-1182) $) 15)) (-1613 (((-171) $) 9)) (-2660 (($ (-171)) 10)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 7)) (-2186 (((-110) $ $) 13)))
-(((-230) (-13 (-1023) (-10 -8 (-15 -1613 ((-171) $)) (-15 -2660 ($ (-171))) (-15 -1903 ((-1182) $))))) (T -230))
-((-1613 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-230)))) (-2660 (*1 *1 *2) (-12 (-5 *2 (-171)) (-5 *1 (-230)))) (-1903 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-230)))))
-(-13 (-1023) (-10 -8 (-15 -1613 ((-171) $)) (-15 -2660 ($ (-171))) (-15 -1903 ((-1182) $))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2562 (($ (-860)) NIL (|has| |#4| (-981)))) (-1444 (((-1182) $ (-528) (-528)) NIL (|has| $ (-6 -4265)))) (-3622 (($ $ $) NIL (|has| |#4| (-739)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-3535 (((-110) $ (-717)) NIL)) (-2856 (((-717)) NIL (|has| |#4| (-348)))) (-3605 (((-528) $) NIL (|has| |#4| (-791)))) (-2381 ((|#4| $ (-528) |#4|) NIL (|has| $ (-6 -4265)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1023))) (((-3 (-528) "failed") $) NIL (-12 (|has| |#4| (-972 (-528))) (|has| |#4| (-1023)))) (((-3 (-387 (-528)) "failed") $) NIL (-12 (|has| |#4| (-972 (-387 (-528)))) (|has| |#4| (-1023))))) (-2409 ((|#4| $) NIL (|has| |#4| (-1023))) (((-528) $) NIL (-12 (|has| |#4| (-972 (-528))) (|has| |#4| (-1023)))) (((-387 (-528)) $) NIL (-12 (|has| |#4| (-972 (-387 (-528)))) (|has| |#4| (-1023))))) (-2120 (((-2 (|:| -2163 (-635 |#4|)) (|:| |vec| (-1177 |#4|))) (-635 $) (-1177 $)) NIL (|has| |#4| (-981))) (((-635 |#4|) (-635 $)) NIL (|has| |#4| (-981))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (-12 (|has| |#4| (-591 (-528))) (|has| |#4| (-981)))) (((-635 (-528)) (-635 $)) NIL (-12 (|has| |#4| (-591 (-528))) (|has| |#4| (-981))))) (-1312 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| |#4| (-215)) (|has| |#4| (-981))) (-12 (|has| |#4| (-591 (-528))) (|has| |#4| (-981))) (|has| |#4| (-673)) (-12 (|has| |#4| (-839 (-1095))) (|has| |#4| (-981)))))) (-1338 (($) NIL (|has| |#4| (-348)))) (-2812 ((|#4| $ (-528) |#4|) NIL (|has| $ (-6 -4265)))) (-2742 ((|#4| $ (-528)) NIL)) (-3657 (((-110) $) NIL (|has| |#4| (-791)))) (-3342 (((-595 |#4|) $) NIL (|has| $ (-6 -4264)))) (-1297 (((-110) $) NIL (-1463 (-12 (|has| |#4| (-215)) (|has| |#4| (-981))) (-12 (|has| |#4| (-591 (-528))) (|has| |#4| (-981))) (|has| |#4| (-673)) (-12 (|has| |#4| (-839 (-1095))) (|has| |#4| (-981)))))) (-3710 (((-110) $) NIL (|has| |#4| (-791)))) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-528) $) NIL (|has| (-528) (-793)))) (-1436 (($ $ $) NIL (-1463 (|has| |#4| (-739)) (|has| |#4| (-791))))) (-2604 (((-595 |#4|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#4| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023))))) (-1709 (((-528) $) NIL (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (-1463 (|has| |#4| (-739)) (|has| |#4| (-791))))) (-2800 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#4| |#4|) $) NIL)) (-3201 (((-860) $) NIL (|has| |#4| (-348)))) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL)) (-2084 (((-595 (-528)) $) NIL)) (-3966 (((-110) (-528) $) NIL)) (-3108 (($ (-860)) NIL (|has| |#4| (-348)))) (-2495 (((-1042) $) NIL)) (-2890 ((|#4| $) NIL (|has| (-528) (-793)))) (-1332 (($ $ |#4|) NIL (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#4|))) NIL (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ (-275 |#4|)) NIL (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ (-595 |#4|) (-595 |#4|)) NIL (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) |#4| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023))))) (-2861 (((-595 |#4|) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#4| $ (-528) |#4|) NIL) ((|#4| $ (-528)) 12)) (-3675 ((|#4| $ $) NIL (|has| |#4| (-981)))) (-2484 (($ (-1177 |#4|)) NIL)) (-3017 (((-130)) NIL (|has| |#4| (-343)))) (-3235 (($ $ (-1 |#4| |#4|) (-717)) NIL (|has| |#4| (-981))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-981))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#4| (-839 (-1095))) (|has| |#4| (-981)))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#4| (-839 (-1095))) (|has| |#4| (-981)))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#4| (-839 (-1095))) (|has| |#4| (-981)))) (($ $ (-1095)) NIL (-12 (|has| |#4| (-839 (-1095))) (|has| |#4| (-981)))) (($ $ (-717)) NIL (-12 (|has| |#4| (-215)) (|has| |#4| (-981)))) (($ $) NIL (-12 (|has| |#4| (-215)) (|has| |#4| (-981))))) (-2507 (((-717) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264))) (((-717) |#4| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023))))) (-2406 (($ $) NIL)) (-2222 (((-1177 |#4|) $) NIL) (((-802) $) NIL) (($ |#4|) NIL (|has| |#4| (-1023))) (($ (-528)) NIL (-1463 (-12 (|has| |#4| (-972 (-528))) (|has| |#4| (-1023))) (|has| |#4| (-981)))) (($ (-387 (-528))) NIL (-12 (|has| |#4| (-972 (-387 (-528)))) (|has| |#4| (-1023))))) (-3742 (((-717)) NIL (|has| |#4| (-981)))) (-3451 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264)))) (-1775 (($ $) NIL (|has| |#4| (-791)))) (-2690 (($ $ (-717)) NIL (-1463 (-12 (|has| |#4| (-215)) (|has| |#4| (-981))) (-12 (|has| |#4| (-591 (-528))) (|has| |#4| (-981))) (|has| |#4| (-673)) (-12 (|has| |#4| (-839 (-1095))) (|has| |#4| (-981))))) (($ $ (-860)) NIL (-1463 (-12 (|has| |#4| (-215)) (|has| |#4| (-981))) (-12 (|has| |#4| (-591 (-528))) (|has| |#4| (-981))) (|has| |#4| (-673)) (-12 (|has| |#4| (-839 (-1095))) (|has| |#4| (-981)))))) (-2969 (($) NIL T CONST)) (-2982 (($) NIL (-1463 (-12 (|has| |#4| (-215)) (|has| |#4| (-981))) (-12 (|has| |#4| (-591 (-528))) (|has| |#4| (-981))) (|has| |#4| (-673)) (-12 (|has| |#4| (-839 (-1095))) (|has| |#4| (-981)))) CONST)) (-3245 (($ $ (-1 |#4| |#4|) (-717)) NIL (|has| |#4| (-981))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-981))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#4| (-839 (-1095))) (|has| |#4| (-981)))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#4| (-839 (-1095))) (|has| |#4| (-981)))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#4| (-839 (-1095))) (|has| |#4| (-981)))) (($ $ (-1095)) NIL (-12 (|has| |#4| (-839 (-1095))) (|has| |#4| (-981)))) (($ $ (-717)) NIL (-12 (|has| |#4| (-215)) (|has| |#4| (-981)))) (($ $) NIL (-12 (|has| |#4| (-215)) (|has| |#4| (-981))))) (-2244 (((-110) $ $) NIL (-1463 (|has| |#4| (-739)) (|has| |#4| (-791))))) (-2220 (((-110) $ $) NIL (-1463 (|has| |#4| (-739)) (|has| |#4| (-791))))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (-1463 (|has| |#4| (-739)) (|has| |#4| (-791))))) (-2208 (((-110) $ $) NIL (-1463 (|has| |#4| (-739)) (|has| |#4| (-791))))) (-2296 (($ $ |#4|) NIL (|has| |#4| (-343)))) (-2286 (($ $ $) NIL) (($ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-717)) NIL (-1463 (-12 (|has| |#4| (-215)) (|has| |#4| (-981))) (-12 (|has| |#4| (-591 (-528))) (|has| |#4| (-981))) (|has| |#4| (-673)) (-12 (|has| |#4| (-839 (-1095))) (|has| |#4| (-981))))) (($ $ (-860)) NIL (-1463 (-12 (|has| |#4| (-215)) (|has| |#4| (-981))) (-12 (|has| |#4| (-591 (-528))) (|has| |#4| (-981))) (|has| |#4| (-673)) (-12 (|has| |#4| (-839 (-1095))) (|has| |#4| (-981)))))) (* (($ |#2| $) 14) (($ (-528) $) NIL) (($ (-717) $) NIL) (($ (-860) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-673))) (($ |#4| $) NIL (|has| |#4| (-673))) (($ $ $) NIL (-1463 (-12 (|has| |#4| (-215)) (|has| |#4| (-981))) (-12 (|has| |#4| (-591 (-528))) (|has| |#4| (-981))) (|has| |#4| (-673)) (-12 (|has| |#4| (-839 (-1095))) (|has| |#4| (-981)))))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-231 |#1| |#2| |#3| |#4|) (-13 (-220 |#1| |#4|) (-597 |#2|) (-597 |#3|)) (-860) (-981) (-1045 |#1| |#2| (-222 |#1| |#2|) (-222 |#1| |#2|)) (-597 |#2|)) (T -231))
-NIL
-(-13 (-220 |#1| |#4|) (-597 |#2|) (-597 |#3|))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2562 (($ (-860)) NIL (|has| |#3| (-981)))) (-1444 (((-1182) $ (-528) (-528)) NIL (|has| $ (-6 -4265)))) (-3622 (($ $ $) NIL (|has| |#3| (-739)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-3535 (((-110) $ (-717)) NIL)) (-2856 (((-717)) NIL (|has| |#3| (-348)))) (-3605 (((-528) $) NIL (|has| |#3| (-791)))) (-2381 ((|#3| $ (-528) |#3|) NIL (|has| $ (-6 -4265)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1023))) (((-3 (-528) "failed") $) NIL (-12 (|has| |#3| (-972 (-528))) (|has| |#3| (-1023)))) (((-3 (-387 (-528)) "failed") $) NIL (-12 (|has| |#3| (-972 (-387 (-528)))) (|has| |#3| (-1023))))) (-2409 ((|#3| $) NIL (|has| |#3| (-1023))) (((-528) $) NIL (-12 (|has| |#3| (-972 (-528))) (|has| |#3| (-1023)))) (((-387 (-528)) $) NIL (-12 (|has| |#3| (-972 (-387 (-528)))) (|has| |#3| (-1023))))) (-2120 (((-2 (|:| -2163 (-635 |#3|)) (|:| |vec| (-1177 |#3|))) (-635 $) (-1177 $)) NIL (|has| |#3| (-981))) (((-635 |#3|) (-635 $)) NIL (|has| |#3| (-981))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (-12 (|has| |#3| (-591 (-528))) (|has| |#3| (-981)))) (((-635 (-528)) (-635 $)) NIL (-12 (|has| |#3| (-591 (-528))) (|has| |#3| (-981))))) (-1312 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| |#3| (-215)) (|has| |#3| (-981))) (-12 (|has| |#3| (-591 (-528))) (|has| |#3| (-981))) (|has| |#3| (-673)) (-12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981)))))) (-1338 (($) NIL (|has| |#3| (-348)))) (-2812 ((|#3| $ (-528) |#3|) NIL (|has| $ (-6 -4265)))) (-2742 ((|#3| $ (-528)) NIL)) (-3657 (((-110) $) NIL (|has| |#3| (-791)))) (-3342 (((-595 |#3|) $) NIL (|has| $ (-6 -4264)))) (-1297 (((-110) $) NIL (-1463 (-12 (|has| |#3| (-215)) (|has| |#3| (-981))) (-12 (|has| |#3| (-591 (-528))) (|has| |#3| (-981))) (|has| |#3| (-673)) (-12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981)))))) (-3710 (((-110) $) NIL (|has| |#3| (-791)))) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-528) $) NIL (|has| (-528) (-793)))) (-1436 (($ $ $) NIL (-1463 (|has| |#3| (-739)) (|has| |#3| (-791))))) (-2604 (((-595 |#3|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#3| (-1023))))) (-1709 (((-528) $) NIL (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (-1463 (|has| |#3| (-739)) (|has| |#3| (-791))))) (-2800 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#3| |#3|) $) NIL)) (-3201 (((-860) $) NIL (|has| |#3| (-348)))) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL)) (-2084 (((-595 (-528)) $) NIL)) (-3966 (((-110) (-528) $) NIL)) (-3108 (($ (-860)) NIL (|has| |#3| (-348)))) (-2495 (((-1042) $) NIL)) (-2890 ((|#3| $) NIL (|has| (-528) (-793)))) (-1332 (($ $ |#3|) NIL (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#3|))) NIL (-12 (|has| |#3| (-290 |#3|)) (|has| |#3| (-1023)))) (($ $ (-275 |#3|)) NIL (-12 (|has| |#3| (-290 |#3|)) (|has| |#3| (-1023)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-290 |#3|)) (|has| |#3| (-1023)))) (($ $ (-595 |#3|) (-595 |#3|)) NIL (-12 (|has| |#3| (-290 |#3|)) (|has| |#3| (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#3| (-1023))))) (-2861 (((-595 |#3|) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#3| $ (-528) |#3|) NIL) ((|#3| $ (-528)) 11)) (-3675 ((|#3| $ $) NIL (|has| |#3| (-981)))) (-2484 (($ (-1177 |#3|)) NIL)) (-3017 (((-130)) NIL (|has| |#3| (-343)))) (-3235 (($ $ (-1 |#3| |#3|) (-717)) NIL (|has| |#3| (-981))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-981))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981)))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981)))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981)))) (($ $ (-1095)) NIL (-12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981)))) (($ $ (-717)) NIL (-12 (|has| |#3| (-215)) (|has| |#3| (-981)))) (($ $) NIL (-12 (|has| |#3| (-215)) (|has| |#3| (-981))))) (-2507 (((-717) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4264))) (((-717) |#3| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#3| (-1023))))) (-2406 (($ $) NIL)) (-2222 (((-1177 |#3|) $) NIL) (((-802) $) NIL) (($ |#3|) NIL (|has| |#3| (-1023))) (($ (-528)) NIL (-1463 (-12 (|has| |#3| (-972 (-528))) (|has| |#3| (-1023))) (|has| |#3| (-981)))) (($ (-387 (-528))) NIL (-12 (|has| |#3| (-972 (-387 (-528)))) (|has| |#3| (-1023))))) (-3742 (((-717)) NIL (|has| |#3| (-981)))) (-3451 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4264)))) (-1775 (($ $) NIL (|has| |#3| (-791)))) (-2690 (($ $ (-717)) NIL (-1463 (-12 (|has| |#3| (-215)) (|has| |#3| (-981))) (-12 (|has| |#3| (-591 (-528))) (|has| |#3| (-981))) (|has| |#3| (-673)) (-12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981))))) (($ $ (-860)) NIL (-1463 (-12 (|has| |#3| (-215)) (|has| |#3| (-981))) (-12 (|has| |#3| (-591 (-528))) (|has| |#3| (-981))) (|has| |#3| (-673)) (-12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981)))))) (-2969 (($) NIL T CONST)) (-2982 (($) NIL (-1463 (-12 (|has| |#3| (-215)) (|has| |#3| (-981))) (-12 (|has| |#3| (-591 (-528))) (|has| |#3| (-981))) (|has| |#3| (-673)) (-12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981)))) CONST)) (-3245 (($ $ (-1 |#3| |#3|) (-717)) NIL (|has| |#3| (-981))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-981))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981)))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981)))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981)))) (($ $ (-1095)) NIL (-12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981)))) (($ $ (-717)) NIL (-12 (|has| |#3| (-215)) (|has| |#3| (-981)))) (($ $) NIL (-12 (|has| |#3| (-215)) (|has| |#3| (-981))))) (-2244 (((-110) $ $) NIL (-1463 (|has| |#3| (-739)) (|has| |#3| (-791))))) (-2220 (((-110) $ $) NIL (-1463 (|has| |#3| (-739)) (|has| |#3| (-791))))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (-1463 (|has| |#3| (-739)) (|has| |#3| (-791))))) (-2208 (((-110) $ $) NIL (-1463 (|has| |#3| (-739)) (|has| |#3| (-791))))) (-2296 (($ $ |#3|) NIL (|has| |#3| (-343)))) (-2286 (($ $ $) NIL) (($ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-717)) NIL (-1463 (-12 (|has| |#3| (-215)) (|has| |#3| (-981))) (-12 (|has| |#3| (-591 (-528))) (|has| |#3| (-981))) (|has| |#3| (-673)) (-12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981))))) (($ $ (-860)) NIL (-1463 (-12 (|has| |#3| (-215)) (|has| |#3| (-981))) (-12 (|has| |#3| (-591 (-528))) (|has| |#3| (-981))) (|has| |#3| (-673)) (-12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981)))))) (* (($ |#2| $) 13) (($ (-528) $) NIL) (($ (-717) $) NIL) (($ (-860) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-673))) (($ |#3| $) NIL (|has| |#3| (-673))) (($ $ $) NIL (-1463 (-12 (|has| |#3| (-215)) (|has| |#3| (-981))) (-12 (|has| |#3| (-591 (-528))) (|has| |#3| (-981))) (|has| |#3| (-673)) (-12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981)))))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-232 |#1| |#2| |#3|) (-13 (-220 |#1| |#3|) (-597 |#2|)) (-717) (-981) (-597 |#2|)) (T -232))
-NIL
-(-13 (-220 |#1| |#3|) (-597 |#2|))
-((-4055 (((-595 (-717)) $) 47) (((-595 (-717)) $ |#3|) 50)) (-1479 (((-717) $) 49) (((-717) $ |#3|) 52)) (-2745 (($ $) 65)) (-3001 (((-3 |#2| "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL) (((-3 (-528) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-3689 (((-717) $ |#3|) 39) (((-717) $) 36)) (-4161 (((-1 $ (-717)) |#3|) 15) (((-1 $ (-717)) $) 77)) (-4018 ((|#4| $) 58)) (-4071 (((-110) $) 56)) (-2237 (($ $) 64)) (-4014 (($ $ (-595 (-275 $))) 97) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-595 |#4|) (-595 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-595 |#4|) (-595 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-595 |#3|) (-595 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-595 |#3|) (-595 |#2|)) 84)) (-3235 (($ $ |#4|) NIL) (($ $ (-595 |#4|)) NIL) (($ $ |#4| (-717)) NIL) (($ $ (-595 |#4|) (-595 (-717))) NIL) (($ $) NIL) (($ $ (-717)) NIL) (($ $ (-1095)) NIL) (($ $ (-595 (-1095))) NIL) (($ $ (-1095) (-717)) NIL) (($ $ (-595 (-1095)) (-595 (-717))) NIL) (($ $ (-1 |#2| |#2|) (-717)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3553 (((-595 |#3|) $) 75)) (-2935 ((|#5| $) NIL) (((-717) $ |#4|) NIL) (((-595 (-717)) $ (-595 |#4|)) NIL) (((-717) $ |#3|) 44)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-387 (-528))) NIL) (($ $) NIL)))
-(((-233 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2222 (|#1| |#1|)) (-15 -2222 (|#1| (-387 (-528)))) (-15 -4014 (|#1| |#1| (-595 |#3|) (-595 |#2|))) (-15 -4014 (|#1| |#1| |#3| |#2|)) (-15 -4014 (|#1| |#1| (-595 |#3|) (-595 |#1|))) (-15 -4014 (|#1| |#1| |#3| |#1|)) (-15 -4161 ((-1 |#1| (-717)) |#1|)) (-15 -2745 (|#1| |#1|)) (-15 -2237 (|#1| |#1|)) (-15 -4018 (|#4| |#1|)) (-15 -4071 ((-110) |#1|)) (-15 -1479 ((-717) |#1| |#3|)) (-15 -4055 ((-595 (-717)) |#1| |#3|)) (-15 -1479 ((-717) |#1|)) (-15 -4055 ((-595 (-717)) |#1|)) (-15 -2935 ((-717) |#1| |#3|)) (-15 -3689 ((-717) |#1|)) (-15 -3689 ((-717) |#1| |#3|)) (-15 -3553 ((-595 |#3|) |#1|)) (-15 -4161 ((-1 |#1| (-717)) |#3|)) (-15 -3001 ((-3 |#3| "failed") |#1|)) (-15 -2222 (|#1| |#3|)) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)) (-595 (-717)))) (-15 -3235 (|#1| |#1| (-1095) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)))) (-15 -3235 (|#1| |#1| (-1095))) (-15 -3235 (|#1| |#1| (-717))) (-15 -3235 (|#1| |#1|)) (-15 -2935 ((-595 (-717)) |#1| (-595 |#4|))) (-15 -2935 ((-717) |#1| |#4|)) (-15 -3001 ((-3 |#4| "failed") |#1|)) (-15 -2222 (|#1| |#4|)) (-15 -4014 (|#1| |#1| (-595 |#4|) (-595 |#1|))) (-15 -4014 (|#1| |#1| |#4| |#1|)) (-15 -4014 (|#1| |#1| (-595 |#4|) (-595 |#2|))) (-15 -4014 (|#1| |#1| |#4| |#2|)) (-15 -4014 (|#1| |#1| (-595 |#1|) (-595 |#1|))) (-15 -4014 (|#1| |#1| |#1| |#1|)) (-15 -4014 (|#1| |#1| (-275 |#1|))) (-15 -4014 (|#1| |#1| (-595 (-275 |#1|)))) (-15 -2935 (|#5| |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -2222 (|#1| |#2|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -3235 (|#1| |#1| (-595 |#4|) (-595 (-717)))) (-15 -3235 (|#1| |#1| |#4| (-717))) (-15 -3235 (|#1| |#1| (-595 |#4|))) (-15 -3235 (|#1| |#1| |#4|)) (-15 -2222 (|#1| (-528))) (-15 -2222 ((-802) |#1|))) (-234 |#2| |#3| |#4| |#5|) (-981) (-793) (-247 |#3|) (-739)) (T -233))
-NIL
-(-10 -8 (-15 -2222 (|#1| |#1|)) (-15 -2222 (|#1| (-387 (-528)))) (-15 -4014 (|#1| |#1| (-595 |#3|) (-595 |#2|))) (-15 -4014 (|#1| |#1| |#3| |#2|)) (-15 -4014 (|#1| |#1| (-595 |#3|) (-595 |#1|))) (-15 -4014 (|#1| |#1| |#3| |#1|)) (-15 -4161 ((-1 |#1| (-717)) |#1|)) (-15 -2745 (|#1| |#1|)) (-15 -2237 (|#1| |#1|)) (-15 -4018 (|#4| |#1|)) (-15 -4071 ((-110) |#1|)) (-15 -1479 ((-717) |#1| |#3|)) (-15 -4055 ((-595 (-717)) |#1| |#3|)) (-15 -1479 ((-717) |#1|)) (-15 -4055 ((-595 (-717)) |#1|)) (-15 -2935 ((-717) |#1| |#3|)) (-15 -3689 ((-717) |#1|)) (-15 -3689 ((-717) |#1| |#3|)) (-15 -3553 ((-595 |#3|) |#1|)) (-15 -4161 ((-1 |#1| (-717)) |#3|)) (-15 -3001 ((-3 |#3| "failed") |#1|)) (-15 -2222 (|#1| |#3|)) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)) (-595 (-717)))) (-15 -3235 (|#1| |#1| (-1095) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)))) (-15 -3235 (|#1| |#1| (-1095))) (-15 -3235 (|#1| |#1| (-717))) (-15 -3235 (|#1| |#1|)) (-15 -2935 ((-595 (-717)) |#1| (-595 |#4|))) (-15 -2935 ((-717) |#1| |#4|)) (-15 -3001 ((-3 |#4| "failed") |#1|)) (-15 -2222 (|#1| |#4|)) (-15 -4014 (|#1| |#1| (-595 |#4|) (-595 |#1|))) (-15 -4014 (|#1| |#1| |#4| |#1|)) (-15 -4014 (|#1| |#1| (-595 |#4|) (-595 |#2|))) (-15 -4014 (|#1| |#1| |#4| |#2|)) (-15 -4014 (|#1| |#1| (-595 |#1|) (-595 |#1|))) (-15 -4014 (|#1| |#1| |#1| |#1|)) (-15 -4014 (|#1| |#1| (-275 |#1|))) (-15 -4014 (|#1| |#1| (-595 (-275 |#1|)))) (-15 -2935 (|#5| |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -2222 (|#1| |#2|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -3235 (|#1| |#1| (-595 |#4|) (-595 (-717)))) (-15 -3235 (|#1| |#1| |#4| (-717))) (-15 -3235 (|#1| |#1| (-595 |#4|))) (-15 -3235 (|#1| |#1| |#4|)) (-15 -2222 (|#1| (-528))) (-15 -2222 ((-802) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-4055 (((-595 (-717)) $) 214) (((-595 (-717)) $ |#2|) 212)) (-1479 (((-717) $) 213) (((-717) $ |#2|) 211)) (-2565 (((-595 |#3|) $) 110)) (-2402 (((-1091 $) $ |#3|) 125) (((-1091 |#1|) $) 124)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 87 (|has| |#1| (-520)))) (-1738 (($ $) 88 (|has| |#1| (-520)))) (-1811 (((-110) $) 90 (|has| |#1| (-520)))) (-4042 (((-717) $) 112) (((-717) $ (-595 |#3|)) 111)) (-3181 (((-3 $ "failed") $ $) 19)) (-2152 (((-398 (-1091 $)) (-1091 $)) 100 (|has| |#1| (-848)))) (-1232 (($ $) 98 (|has| |#1| (-431)))) (-2705 (((-398 $) $) 97 (|has| |#1| (-431)))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) 103 (|has| |#1| (-848)))) (-2745 (($ $) 207)) (-2816 (($) 17 T CONST)) (-3001 (((-3 |#1| "failed") $) 164) (((-3 (-387 (-528)) "failed") $) 162 (|has| |#1| (-972 (-387 (-528))))) (((-3 (-528) "failed") $) 160 (|has| |#1| (-972 (-528)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-2409 ((|#1| $) 165) (((-387 (-528)) $) 161 (|has| |#1| (-972 (-387 (-528))))) (((-528) $) 159 (|has| |#1| (-972 (-528)))) ((|#3| $) 135) ((|#2| $) 220)) (-1606 (($ $ $ |#3|) 108 (|has| |#1| (-162)))) (-2388 (($ $) 154)) (-2120 (((-635 (-528)) (-635 $)) 134 (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) 133 (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) 132) (((-635 |#1|) (-635 $)) 131)) (-1312 (((-3 $ "failed") $) 34)) (-1551 (($ $) 176 (|has| |#1| (-431))) (($ $ |#3|) 105 (|has| |#1| (-431)))) (-2376 (((-595 $) $) 109)) (-2124 (((-110) $) 96 (|has| |#1| (-848)))) (-4047 (($ $ |#1| |#4| $) 172)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) 84 (-12 (|has| |#3| (-825 (-359))) (|has| |#1| (-825 (-359))))) (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) 83 (-12 (|has| |#3| (-825 (-528))) (|has| |#1| (-825 (-528)))))) (-3689 (((-717) $ |#2|) 217) (((-717) $) 216)) (-1297 (((-110) $) 31)) (-1224 (((-717) $) 169)) (-2557 (($ (-1091 |#1|) |#3|) 117) (($ (-1091 $) |#3|) 116)) (-3737 (((-595 $) $) 126)) (-2195 (((-110) $) 152)) (-2548 (($ |#1| |#4|) 153) (($ $ |#3| (-717)) 119) (($ $ (-595 |#3|) (-595 (-717))) 118)) (-3275 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $ |#3|) 120)) (-3499 ((|#4| $) 170) (((-717) $ |#3|) 122) (((-595 (-717)) $ (-595 |#3|)) 121)) (-1436 (($ $ $) 79 (|has| |#1| (-793)))) (-1736 (($ $ $) 78 (|has| |#1| (-793)))) (-1264 (($ (-1 |#4| |#4|) $) 171)) (-3106 (($ (-1 |#1| |#1|) $) 151)) (-4161 (((-1 $ (-717)) |#2|) 219) (((-1 $ (-717)) $) 206 (|has| |#1| (-215)))) (-3288 (((-3 |#3| "failed") $) 123)) (-2686 (($ $) 149)) (-2697 ((|#1| $) 148)) (-4018 ((|#3| $) 209)) (-2057 (($ (-595 $)) 94 (|has| |#1| (-431))) (($ $ $) 93 (|has| |#1| (-431)))) (-3034 (((-1078) $) 9)) (-4071 (((-110) $) 210)) (-3024 (((-3 (-595 $) "failed") $) 114)) (-1281 (((-3 (-595 $) "failed") $) 115)) (-3352 (((-3 (-2 (|:| |var| |#3|) (|:| -2564 (-717))) "failed") $) 113)) (-2237 (($ $) 208)) (-2495 (((-1042) $) 10)) (-2662 (((-110) $) 166)) (-2675 ((|#1| $) 167)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 95 (|has| |#1| (-431)))) (-2088 (($ (-595 $)) 92 (|has| |#1| (-431))) (($ $ $) 91 (|has| |#1| (-431)))) (-3261 (((-398 (-1091 $)) (-1091 $)) 102 (|has| |#1| (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) 101 (|has| |#1| (-848)))) (-2437 (((-398 $) $) 99 (|has| |#1| (-848)))) (-3477 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-520))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-520)))) (-4014 (($ $ (-595 (-275 $))) 145) (($ $ (-275 $)) 144) (($ $ $ $) 143) (($ $ (-595 $) (-595 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-595 |#3|) (-595 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-595 |#3|) (-595 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-215))) (($ $ (-595 |#2|) (-595 $)) 204 (|has| |#1| (-215))) (($ $ |#2| |#1|) 203 (|has| |#1| (-215))) (($ $ (-595 |#2|) (-595 |#1|)) 202 (|has| |#1| (-215)))) (-1372 (($ $ |#3|) 107 (|has| |#1| (-162)))) (-3235 (($ $ |#3|) 42) (($ $ (-595 |#3|)) 41) (($ $ |#3| (-717)) 40) (($ $ (-595 |#3|) (-595 (-717))) 39) (($ $) 238 (|has| |#1| (-215))) (($ $ (-717)) 236 (|has| |#1| (-215))) (($ $ (-1095)) 234 (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) 233 (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) 232 (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) 231 (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-3553 (((-595 |#2|) $) 218)) (-2935 ((|#4| $) 150) (((-717) $ |#3|) 130) (((-595 (-717)) $ (-595 |#3|)) 129) (((-717) $ |#2|) 215)) (-3155 (((-831 (-359)) $) 82 (-12 (|has| |#3| (-570 (-831 (-359)))) (|has| |#1| (-570 (-831 (-359)))))) (((-831 (-528)) $) 81 (-12 (|has| |#3| (-570 (-831 (-528)))) (|has| |#1| (-570 (-831 (-528)))))) (((-504) $) 80 (-12 (|has| |#3| (-570 (-504))) (|has| |#1| (-570 (-504)))))) (-1618 ((|#1| $) 175 (|has| |#1| (-431))) (($ $ |#3|) 106 (|has| |#1| (-431)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) 104 (-3287 (|has| $ (-138)) (|has| |#1| (-848))))) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-387 (-528))) 72 (-1463 (|has| |#1| (-972 (-387 (-528)))) (|has| |#1| (-37 (-387 (-528)))))) (($ $) 85 (|has| |#1| (-520)))) (-3348 (((-595 |#1|) $) 168)) (-3216 ((|#1| $ |#4|) 155) (($ $ |#3| (-717)) 128) (($ $ (-595 |#3|) (-595 (-717))) 127)) (-3749 (((-3 $ "failed") $) 73 (-1463 (-3287 (|has| $ (-138)) (|has| |#1| (-848))) (|has| |#1| (-138))))) (-3742 (((-717)) 29)) (-1997 (($ $ $ (-717)) 173 (|has| |#1| (-162)))) (-4016 (((-110) $ $) 89 (|has| |#1| (-520)))) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-3245 (($ $ |#3|) 38) (($ $ (-595 |#3|)) 37) (($ $ |#3| (-717)) 36) (($ $ (-595 |#3|) (-595 (-717))) 35) (($ $) 237 (|has| |#1| (-215))) (($ $ (-717)) 235 (|has| |#1| (-215))) (($ $ (-1095)) 230 (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) 229 (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) 228 (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) 227 (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-2244 (((-110) $ $) 76 (|has| |#1| (-793)))) (-2220 (((-110) $ $) 75 (|has| |#1| (-793)))) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 77 (|has| |#1| (-793)))) (-2208 (((-110) $ $) 74 (|has| |#1| (-793)))) (-2296 (($ $ |#1|) 156 (|has| |#1| (-343)))) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ (-387 (-528))) 158 (|has| |#1| (-37 (-387 (-528))))) (($ (-387 (-528)) $) 157 (|has| |#1| (-37 (-387 (-528))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-234 |#1| |#2| |#3| |#4|) (-133) (-981) (-793) (-247 |t#2|) (-739)) (T -234))
-((-4161 (*1 *2 *3) (-12 (-4 *4 (-981)) (-4 *3 (-793)) (-4 *5 (-247 *3)) (-4 *6 (-739)) (-5 *2 (-1 *1 (-717))) (-4 *1 (-234 *4 *3 *5 *6)))) (-3553 (*1 *2 *1) (-12 (-4 *1 (-234 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-793)) (-4 *5 (-247 *4)) (-4 *6 (-739)) (-5 *2 (-595 *4)))) (-3689 (*1 *2 *1 *3) (-12 (-4 *1 (-234 *4 *3 *5 *6)) (-4 *4 (-981)) (-4 *3 (-793)) (-4 *5 (-247 *3)) (-4 *6 (-739)) (-5 *2 (-717)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-234 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-793)) (-4 *5 (-247 *4)) (-4 *6 (-739)) (-5 *2 (-717)))) (-2935 (*1 *2 *1 *3) (-12 (-4 *1 (-234 *4 *3 *5 *6)) (-4 *4 (-981)) (-4 *3 (-793)) (-4 *5 (-247 *3)) (-4 *6 (-739)) (-5 *2 (-717)))) (-4055 (*1 *2 *1) (-12 (-4 *1 (-234 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-793)) (-4 *5 (-247 *4)) (-4 *6 (-739)) (-5 *2 (-595 (-717))))) (-1479 (*1 *2 *1) (-12 (-4 *1 (-234 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-793)) (-4 *5 (-247 *4)) (-4 *6 (-739)) (-5 *2 (-717)))) (-4055 (*1 *2 *1 *3) (-12 (-4 *1 (-234 *4 *3 *5 *6)) (-4 *4 (-981)) (-4 *3 (-793)) (-4 *5 (-247 *3)) (-4 *6 (-739)) (-5 *2 (-595 (-717))))) (-1479 (*1 *2 *1 *3) (-12 (-4 *1 (-234 *4 *3 *5 *6)) (-4 *4 (-981)) (-4 *3 (-793)) (-4 *5 (-247 *3)) (-4 *6 (-739)) (-5 *2 (-717)))) (-4071 (*1 *2 *1) (-12 (-4 *1 (-234 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-793)) (-4 *5 (-247 *4)) (-4 *6 (-739)) (-5 *2 (-110)))) (-4018 (*1 *2 *1) (-12 (-4 *1 (-234 *3 *4 *2 *5)) (-4 *3 (-981)) (-4 *4 (-793)) (-4 *5 (-739)) (-4 *2 (-247 *4)))) (-2237 (*1 *1 *1) (-12 (-4 *1 (-234 *2 *3 *4 *5)) (-4 *2 (-981)) (-4 *3 (-793)) (-4 *4 (-247 *3)) (-4 *5 (-739)))) (-2745 (*1 *1 *1) (-12 (-4 *1 (-234 *2 *3 *4 *5)) (-4 *2 (-981)) (-4 *3 (-793)) (-4 *4 (-247 *3)) (-4 *5 (-739)))) (-4161 (*1 *2 *1) (-12 (-4 *3 (-215)) (-4 *3 (-981)) (-4 *4 (-793)) (-4 *5 (-247 *4)) (-4 *6 (-739)) (-5 *2 (-1 *1 (-717))) (-4 *1 (-234 *3 *4 *5 *6)))))
-(-13 (-888 |t#1| |t#4| |t#3|) (-213 |t#1|) (-972 |t#2|) (-10 -8 (-15 -4161 ((-1 $ (-717)) |t#2|)) (-15 -3553 ((-595 |t#2|) $)) (-15 -3689 ((-717) $ |t#2|)) (-15 -3689 ((-717) $)) (-15 -2935 ((-717) $ |t#2|)) (-15 -4055 ((-595 (-717)) $)) (-15 -1479 ((-717) $)) (-15 -4055 ((-595 (-717)) $ |t#2|)) (-15 -1479 ((-717) $ |t#2|)) (-15 -4071 ((-110) $)) (-15 -4018 (|t#3| $)) (-15 -2237 ($ $)) (-15 -2745 ($ $)) (IF (|has| |t#1| (-215)) (PROGN (-6 (-489 |t#2| |t#1|)) (-6 (-489 |t#2| $)) (-6 (-290 $)) (-15 -4161 ((-1 $ (-717)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431))) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-387 (-528)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-569 (-802)) . T) ((-162) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431)) (|has| |#1| (-162))) ((-570 (-504)) -12 (|has| |#1| (-570 (-504))) (|has| |#3| (-570 (-504)))) ((-570 (-831 (-359))) -12 (|has| |#1| (-570 (-831 (-359)))) (|has| |#3| (-570 (-831 (-359))))) ((-570 (-831 (-528))) -12 (|has| |#1| (-570 (-831 (-528)))) (|has| |#3| (-570 (-831 (-528))))) ((-213 |#1|) . T) ((-215) |has| |#1| (-215)) ((-271) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431))) ((-290 $) . T) ((-306 |#1| |#4|) . T) ((-357 |#1|) . T) ((-391 |#1|) . T) ((-431) -1463 (|has| |#1| (-848)) (|has| |#1| (-431))) ((-489 |#2| |#1|) |has| |#1| (-215)) ((-489 |#2| $) |has| |#1| (-215)) ((-489 |#3| |#1|) . T) ((-489 |#3| $) . T) ((-489 $ $) . T) ((-520) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431))) ((-597 #0#) |has| |#1| (-37 (-387 (-528)))) ((-597 |#1|) . T) ((-597 $) . T) ((-591 (-528)) |has| |#1| (-591 (-528))) ((-591 |#1|) . T) ((-664 #0#) |has| |#1| (-37 (-387 (-528)))) ((-664 |#1|) |has| |#1| (-162)) ((-664 $) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431))) ((-673) . T) ((-793) |has| |#1| (-793)) ((-839 (-1095)) |has| |#1| (-839 (-1095))) ((-839 |#3|) . T) ((-825 (-359)) -12 (|has| |#1| (-825 (-359))) (|has| |#3| (-825 (-359)))) ((-825 (-528)) -12 (|has| |#1| (-825 (-528))) (|has| |#3| (-825 (-528)))) ((-888 |#1| |#4| |#3|) . T) ((-848) |has| |#1| (-848)) ((-972 (-387 (-528))) |has| |#1| (-972 (-387 (-528)))) ((-972 (-528)) |has| |#1| (-972 (-528))) ((-972 |#1|) . T) ((-972 |#2|) . T) ((-972 |#3|) . T) ((-986 #0#) |has| |#1| (-37 (-387 (-528)))) ((-986 |#1|) . T) ((-986 $) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431)) (|has| |#1| (-162))) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1135) |has| |#1| (-848)))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-3811 ((|#1| $) 54)) (-1513 ((|#1| $) 44)) (-3535 (((-110) $ (-717)) 8)) (-2816 (($) 7 T CONST)) (-4202 (($ $) 60)) (-2472 (($ $) 48)) (-3712 ((|#1| |#1| $) 46)) (-4113 ((|#1| $) 45)) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) 9)) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35)) (-3358 (((-110) $ (-717)) 10)) (-1584 (((-717) $) 61)) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-3934 ((|#1| $) 39)) (-3576 ((|#1| |#1| $) 52)) (-2098 ((|#1| |#1| $) 51)) (-1950 (($ |#1| $) 40)) (-4073 (((-717) $) 55)) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-1703 ((|#1| $) 62)) (-2239 ((|#1| $) 50)) (-1270 ((|#1| $) 49)) (-1390 ((|#1| $) 41)) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-3825 ((|#1| |#1| $) 58)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3634 ((|#1| $) 59)) (-1667 (($) 57) (($ (-595 |#1|)) 56)) (-3972 (((-717) $) 43)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-1788 ((|#1| $) 53)) (-2164 (($ (-595 |#1|)) 42)) (-3770 ((|#1| $) 63)) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-235 |#1|) (-133) (-1131)) (T -235))
-((-1667 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1131)))) (-1667 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1131)) (-4 *1 (-235 *3)))) (-4073 (*1 *2 *1) (-12 (-4 *1 (-235 *3)) (-4 *3 (-1131)) (-5 *2 (-717)))) (-3811 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1131)))) (-1788 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1131)))) (-3576 (*1 *2 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1131)))) (-2098 (*1 *2 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1131)))) (-2239 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1131)))) (-1270 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1131)))) (-2472 (*1 *1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1131)))))
-(-13 (-1043 |t#1|) (-931 |t#1|) (-10 -8 (-15 -1667 ($)) (-15 -1667 ($ (-595 |t#1|))) (-15 -4073 ((-717) $)) (-15 -3811 (|t#1| $)) (-15 -1788 (|t#1| $)) (-15 -3576 (|t#1| |t#1| $)) (-15 -2098 (|t#1| |t#1| $)) (-15 -2239 (|t#1| $)) (-15 -1270 (|t#1| $)) (-15 -2472 ($ $))))
-(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1023)) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-569 (-802)))) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-467 |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-931 |#1|) . T) ((-1023) |has| |#1| (-1023)) ((-1043 |#1|) . T) ((-1131) . T))
-((-1820 (((-1 (-882 (-207)) (-207) (-207)) (-1 (-882 (-207)) (-207) (-207)) (-1 (-207) (-207) (-207) (-207))) 139)) (-1617 (((-1055 (-207)) (-821 (-1 (-207) (-207) (-207))) (-1018 (-359)) (-1018 (-359))) 160) (((-1055 (-207)) (-821 (-1 (-207) (-207) (-207))) (-1018 (-359)) (-1018 (-359)) (-595 (-244))) 158) (((-1055 (-207)) (-1 (-882 (-207)) (-207) (-207)) (-1018 (-359)) (-1018 (-359))) 163) (((-1055 (-207)) (-1 (-882 (-207)) (-207) (-207)) (-1018 (-359)) (-1018 (-359)) (-595 (-244))) 159) (((-1055 (-207)) (-1 (-207) (-207) (-207)) (-1018 (-359)) (-1018 (-359))) 150) (((-1055 (-207)) (-1 (-207) (-207) (-207)) (-1018 (-359)) (-1018 (-359)) (-595 (-244))) 149) (((-1055 (-207)) (-1 (-882 (-207)) (-207)) (-1018 (-359))) 129) (((-1055 (-207)) (-1 (-882 (-207)) (-207)) (-1018 (-359)) (-595 (-244))) 127) (((-1055 (-207)) (-818 (-1 (-207) (-207))) (-1018 (-359))) 128) (((-1055 (-207)) (-818 (-1 (-207) (-207))) (-1018 (-359)) (-595 (-244))) 125)) (-1566 (((-1179) (-821 (-1 (-207) (-207) (-207))) (-1018 (-359)) (-1018 (-359))) 162) (((-1179) (-821 (-1 (-207) (-207) (-207))) (-1018 (-359)) (-1018 (-359)) (-595 (-244))) 161) (((-1179) (-1 (-882 (-207)) (-207) (-207)) (-1018 (-359)) (-1018 (-359))) 165) (((-1179) (-1 (-882 (-207)) (-207) (-207)) (-1018 (-359)) (-1018 (-359)) (-595 (-244))) 164) (((-1179) (-1 (-207) (-207) (-207)) (-1018 (-359)) (-1018 (-359))) 152) (((-1179) (-1 (-207) (-207) (-207)) (-1018 (-359)) (-1018 (-359)) (-595 (-244))) 151) (((-1179) (-1 (-882 (-207)) (-207)) (-1018 (-359))) 135) (((-1179) (-1 (-882 (-207)) (-207)) (-1018 (-359)) (-595 (-244))) 134) (((-1179) (-818 (-1 (-207) (-207))) (-1018 (-359))) 133) (((-1179) (-818 (-1 (-207) (-207))) (-1018 (-359)) (-595 (-244))) 132) (((-1178) (-816 (-1 (-207) (-207))) (-1018 (-359))) 100) (((-1178) (-816 (-1 (-207) (-207))) (-1018 (-359)) (-595 (-244))) 99) (((-1178) (-1 (-207) (-207)) (-1018 (-359))) 96) (((-1178) (-1 (-207) (-207)) (-1018 (-359)) (-595 (-244))) 95)))
-(((-236) (-10 -7 (-15 -1566 ((-1178) (-1 (-207) (-207)) (-1018 (-359)) (-595 (-244)))) (-15 -1566 ((-1178) (-1 (-207) (-207)) (-1018 (-359)))) (-15 -1566 ((-1178) (-816 (-1 (-207) (-207))) (-1018 (-359)) (-595 (-244)))) (-15 -1566 ((-1178) (-816 (-1 (-207) (-207))) (-1018 (-359)))) (-15 -1566 ((-1179) (-818 (-1 (-207) (-207))) (-1018 (-359)) (-595 (-244)))) (-15 -1566 ((-1179) (-818 (-1 (-207) (-207))) (-1018 (-359)))) (-15 -1566 ((-1179) (-1 (-882 (-207)) (-207)) (-1018 (-359)) (-595 (-244)))) (-15 -1566 ((-1179) (-1 (-882 (-207)) (-207)) (-1018 (-359)))) (-15 -1617 ((-1055 (-207)) (-818 (-1 (-207) (-207))) (-1018 (-359)) (-595 (-244)))) (-15 -1617 ((-1055 (-207)) (-818 (-1 (-207) (-207))) (-1018 (-359)))) (-15 -1617 ((-1055 (-207)) (-1 (-882 (-207)) (-207)) (-1018 (-359)) (-595 (-244)))) (-15 -1617 ((-1055 (-207)) (-1 (-882 (-207)) (-207)) (-1018 (-359)))) (-15 -1566 ((-1179) (-1 (-207) (-207) (-207)) (-1018 (-359)) (-1018 (-359)) (-595 (-244)))) (-15 -1566 ((-1179) (-1 (-207) (-207) (-207)) (-1018 (-359)) (-1018 (-359)))) (-15 -1617 ((-1055 (-207)) (-1 (-207) (-207) (-207)) (-1018 (-359)) (-1018 (-359)) (-595 (-244)))) (-15 -1617 ((-1055 (-207)) (-1 (-207) (-207) (-207)) (-1018 (-359)) (-1018 (-359)))) (-15 -1566 ((-1179) (-1 (-882 (-207)) (-207) (-207)) (-1018 (-359)) (-1018 (-359)) (-595 (-244)))) (-15 -1566 ((-1179) (-1 (-882 (-207)) (-207) (-207)) (-1018 (-359)) (-1018 (-359)))) (-15 -1617 ((-1055 (-207)) (-1 (-882 (-207)) (-207) (-207)) (-1018 (-359)) (-1018 (-359)) (-595 (-244)))) (-15 -1617 ((-1055 (-207)) (-1 (-882 (-207)) (-207) (-207)) (-1018 (-359)) (-1018 (-359)))) (-15 -1566 ((-1179) (-821 (-1 (-207) (-207) (-207))) (-1018 (-359)) (-1018 (-359)) (-595 (-244)))) (-15 -1566 ((-1179) (-821 (-1 (-207) (-207) (-207))) (-1018 (-359)) (-1018 (-359)))) (-15 -1617 ((-1055 (-207)) (-821 (-1 (-207) (-207) (-207))) (-1018 (-359)) (-1018 (-359)) (-595 (-244)))) (-15 -1617 ((-1055 (-207)) (-821 (-1 (-207) (-207) (-207))) (-1018 (-359)) (-1018 (-359)))) (-15 -1820 ((-1 (-882 (-207)) (-207) (-207)) (-1 (-882 (-207)) (-207) (-207)) (-1 (-207) (-207) (-207) (-207)))))) (T -236))
-((-1820 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-882 (-207)) (-207) (-207))) (-5 *3 (-1 (-207) (-207) (-207) (-207))) (-5 *1 (-236)))) (-1617 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-821 (-1 (-207) (-207) (-207)))) (-5 *4 (-1018 (-359))) (-5 *2 (-1055 (-207))) (-5 *1 (-236)))) (-1617 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-821 (-1 (-207) (-207) (-207)))) (-5 *4 (-1018 (-359))) (-5 *5 (-595 (-244))) (-5 *2 (-1055 (-207))) (-5 *1 (-236)))) (-1566 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-821 (-1 (-207) (-207) (-207)))) (-5 *4 (-1018 (-359))) (-5 *2 (-1179)) (-5 *1 (-236)))) (-1566 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-821 (-1 (-207) (-207) (-207)))) (-5 *4 (-1018 (-359))) (-5 *5 (-595 (-244))) (-5 *2 (-1179)) (-5 *1 (-236)))) (-1617 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-882 (-207)) (-207) (-207))) (-5 *4 (-1018 (-359))) (-5 *2 (-1055 (-207))) (-5 *1 (-236)))) (-1617 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-882 (-207)) (-207) (-207))) (-5 *4 (-1018 (-359))) (-5 *5 (-595 (-244))) (-5 *2 (-1055 (-207))) (-5 *1 (-236)))) (-1566 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-882 (-207)) (-207) (-207))) (-5 *4 (-1018 (-359))) (-5 *2 (-1179)) (-5 *1 (-236)))) (-1566 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-882 (-207)) (-207) (-207))) (-5 *4 (-1018 (-359))) (-5 *5 (-595 (-244))) (-5 *2 (-1179)) (-5 *1 (-236)))) (-1617 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-207) (-207) (-207))) (-5 *4 (-1018 (-359))) (-5 *2 (-1055 (-207))) (-5 *1 (-236)))) (-1617 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-207) (-207) (-207))) (-5 *4 (-1018 (-359))) (-5 *5 (-595 (-244))) (-5 *2 (-1055 (-207))) (-5 *1 (-236)))) (-1566 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-207) (-207) (-207))) (-5 *4 (-1018 (-359))) (-5 *2 (-1179)) (-5 *1 (-236)))) (-1566 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-207) (-207) (-207))) (-5 *4 (-1018 (-359))) (-5 *5 (-595 (-244))) (-5 *2 (-1179)) (-5 *1 (-236)))) (-1617 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-882 (-207)) (-207))) (-5 *4 (-1018 (-359))) (-5 *2 (-1055 (-207))) (-5 *1 (-236)))) (-1617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-882 (-207)) (-207))) (-5 *4 (-1018 (-359))) (-5 *5 (-595 (-244))) (-5 *2 (-1055 (-207))) (-5 *1 (-236)))) (-1617 (*1 *2 *3 *4) (-12 (-5 *3 (-818 (-1 (-207) (-207)))) (-5 *4 (-1018 (-359))) (-5 *2 (-1055 (-207))) (-5 *1 (-236)))) (-1617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-818 (-1 (-207) (-207)))) (-5 *4 (-1018 (-359))) (-5 *5 (-595 (-244))) (-5 *2 (-1055 (-207))) (-5 *1 (-236)))) (-1566 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-882 (-207)) (-207))) (-5 *4 (-1018 (-359))) (-5 *2 (-1179)) (-5 *1 (-236)))) (-1566 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-882 (-207)) (-207))) (-5 *4 (-1018 (-359))) (-5 *5 (-595 (-244))) (-5 *2 (-1179)) (-5 *1 (-236)))) (-1566 (*1 *2 *3 *4) (-12 (-5 *3 (-818 (-1 (-207) (-207)))) (-5 *4 (-1018 (-359))) (-5 *2 (-1179)) (-5 *1 (-236)))) (-1566 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-818 (-1 (-207) (-207)))) (-5 *4 (-1018 (-359))) (-5 *5 (-595 (-244))) (-5 *2 (-1179)) (-5 *1 (-236)))) (-1566 (*1 *2 *3 *4) (-12 (-5 *3 (-816 (-1 (-207) (-207)))) (-5 *4 (-1018 (-359))) (-5 *2 (-1178)) (-5 *1 (-236)))) (-1566 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-816 (-1 (-207) (-207)))) (-5 *4 (-1018 (-359))) (-5 *5 (-595 (-244))) (-5 *2 (-1178)) (-5 *1 (-236)))) (-1566 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-207) (-207))) (-5 *4 (-1018 (-359))) (-5 *2 (-1178)) (-5 *1 (-236)))) (-1566 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-207) (-207))) (-5 *4 (-1018 (-359))) (-5 *5 (-595 (-244))) (-5 *2 (-1178)) (-5 *1 (-236)))))
-(-10 -7 (-15 -1566 ((-1178) (-1 (-207) (-207)) (-1018 (-359)) (-595 (-244)))) (-15 -1566 ((-1178) (-1 (-207) (-207)) (-1018 (-359)))) (-15 -1566 ((-1178) (-816 (-1 (-207) (-207))) (-1018 (-359)) (-595 (-244)))) (-15 -1566 ((-1178) (-816 (-1 (-207) (-207))) (-1018 (-359)))) (-15 -1566 ((-1179) (-818 (-1 (-207) (-207))) (-1018 (-359)) (-595 (-244)))) (-15 -1566 ((-1179) (-818 (-1 (-207) (-207))) (-1018 (-359)))) (-15 -1566 ((-1179) (-1 (-882 (-207)) (-207)) (-1018 (-359)) (-595 (-244)))) (-15 -1566 ((-1179) (-1 (-882 (-207)) (-207)) (-1018 (-359)))) (-15 -1617 ((-1055 (-207)) (-818 (-1 (-207) (-207))) (-1018 (-359)) (-595 (-244)))) (-15 -1617 ((-1055 (-207)) (-818 (-1 (-207) (-207))) (-1018 (-359)))) (-15 -1617 ((-1055 (-207)) (-1 (-882 (-207)) (-207)) (-1018 (-359)) (-595 (-244)))) (-15 -1617 ((-1055 (-207)) (-1 (-882 (-207)) (-207)) (-1018 (-359)))) (-15 -1566 ((-1179) (-1 (-207) (-207) (-207)) (-1018 (-359)) (-1018 (-359)) (-595 (-244)))) (-15 -1566 ((-1179) (-1 (-207) (-207) (-207)) (-1018 (-359)) (-1018 (-359)))) (-15 -1617 ((-1055 (-207)) (-1 (-207) (-207) (-207)) (-1018 (-359)) (-1018 (-359)) (-595 (-244)))) (-15 -1617 ((-1055 (-207)) (-1 (-207) (-207) (-207)) (-1018 (-359)) (-1018 (-359)))) (-15 -1566 ((-1179) (-1 (-882 (-207)) (-207) (-207)) (-1018 (-359)) (-1018 (-359)) (-595 (-244)))) (-15 -1566 ((-1179) (-1 (-882 (-207)) (-207) (-207)) (-1018 (-359)) (-1018 (-359)))) (-15 -1617 ((-1055 (-207)) (-1 (-882 (-207)) (-207) (-207)) (-1018 (-359)) (-1018 (-359)) (-595 (-244)))) (-15 -1617 ((-1055 (-207)) (-1 (-882 (-207)) (-207) (-207)) (-1018 (-359)) (-1018 (-359)))) (-15 -1566 ((-1179) (-821 (-1 (-207) (-207) (-207))) (-1018 (-359)) (-1018 (-359)) (-595 (-244)))) (-15 -1566 ((-1179) (-821 (-1 (-207) (-207) (-207))) (-1018 (-359)) (-1018 (-359)))) (-15 -1617 ((-1055 (-207)) (-821 (-1 (-207) (-207) (-207))) (-1018 (-359)) (-1018 (-359)) (-595 (-244)))) (-15 -1617 ((-1055 (-207)) (-821 (-1 (-207) (-207) (-207))) (-1018 (-359)) (-1018 (-359)))) (-15 -1820 ((-1 (-882 (-207)) (-207) (-207)) (-1 (-882 (-207)) (-207) (-207)) (-1 (-207) (-207) (-207) (-207)))))
-((-1566 (((-1178) (-275 |#2|) (-1095) (-1095) (-595 (-244))) 96)))
-(((-237 |#1| |#2|) (-10 -7 (-15 -1566 ((-1178) (-275 |#2|) (-1095) (-1095) (-595 (-244))))) (-13 (-520) (-793) (-972 (-528))) (-410 |#1|)) (T -237))
-((-1566 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-275 *7)) (-5 *4 (-1095)) (-5 *5 (-595 (-244))) (-4 *7 (-410 *6)) (-4 *6 (-13 (-520) (-793) (-972 (-528)))) (-5 *2 (-1178)) (-5 *1 (-237 *6 *7)))))
-(-10 -7 (-15 -1566 ((-1178) (-275 |#2|) (-1095) (-1095) (-595 (-244)))))
-((-1852 (((-528) (-528)) 50)) (-2038 (((-528) (-528)) 51)) (-3344 (((-207) (-207)) 52)) (-1743 (((-1179) (-1 (-159 (-207)) (-159 (-207))) (-1018 (-207)) (-1018 (-207))) 49)) (-3506 (((-1179) (-1 (-159 (-207)) (-159 (-207))) (-1018 (-207)) (-1018 (-207)) (-110)) 47)))
-(((-238) (-10 -7 (-15 -3506 ((-1179) (-1 (-159 (-207)) (-159 (-207))) (-1018 (-207)) (-1018 (-207)) (-110))) (-15 -1743 ((-1179) (-1 (-159 (-207)) (-159 (-207))) (-1018 (-207)) (-1018 (-207)))) (-15 -1852 ((-528) (-528))) (-15 -2038 ((-528) (-528))) (-15 -3344 ((-207) (-207))))) (T -238))
-((-3344 (*1 *2 *2) (-12 (-5 *2 (-207)) (-5 *1 (-238)))) (-2038 (*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-238)))) (-1852 (*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-238)))) (-1743 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-159 (-207)) (-159 (-207)))) (-5 *4 (-1018 (-207))) (-5 *2 (-1179)) (-5 *1 (-238)))) (-3506 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-159 (-207)) (-159 (-207)))) (-5 *4 (-1018 (-207))) (-5 *5 (-110)) (-5 *2 (-1179)) (-5 *1 (-238)))))
-(-10 -7 (-15 -3506 ((-1179) (-1 (-159 (-207)) (-159 (-207))) (-1018 (-207)) (-1018 (-207)) (-110))) (-15 -1743 ((-1179) (-1 (-159 (-207)) (-159 (-207))) (-1018 (-207)) (-1018 (-207)))) (-15 -1852 ((-528) (-528))) (-15 -2038 ((-528) (-528))) (-15 -3344 ((-207) (-207))))
-((-2222 (((-1016 (-359)) (-1016 (-296 |#1|))) 16)))
-(((-239 |#1|) (-10 -7 (-15 -2222 ((-1016 (-359)) (-1016 (-296 |#1|))))) (-13 (-793) (-520) (-570 (-359)))) (T -239))
-((-2222 (*1 *2 *3) (-12 (-5 *3 (-1016 (-296 *4))) (-4 *4 (-13 (-793) (-520) (-570 (-359)))) (-5 *2 (-1016 (-359))) (-5 *1 (-239 *4)))))
-(-10 -7 (-15 -2222 ((-1016 (-359)) (-1016 (-296 |#1|)))))
-((-1617 (((-1055 (-207)) (-821 |#1|) (-1016 (-359)) (-1016 (-359))) 71) (((-1055 (-207)) (-821 |#1|) (-1016 (-359)) (-1016 (-359)) (-595 (-244))) 70) (((-1055 (-207)) |#1| (-1016 (-359)) (-1016 (-359))) 61) (((-1055 (-207)) |#1| (-1016 (-359)) (-1016 (-359)) (-595 (-244))) 60) (((-1055 (-207)) (-818 |#1|) (-1016 (-359))) 52) (((-1055 (-207)) (-818 |#1|) (-1016 (-359)) (-595 (-244))) 51)) (-1566 (((-1179) (-821 |#1|) (-1016 (-359)) (-1016 (-359))) 74) (((-1179) (-821 |#1|) (-1016 (-359)) (-1016 (-359)) (-595 (-244))) 73) (((-1179) |#1| (-1016 (-359)) (-1016 (-359))) 64) (((-1179) |#1| (-1016 (-359)) (-1016 (-359)) (-595 (-244))) 63) (((-1179) (-818 |#1|) (-1016 (-359))) 56) (((-1179) (-818 |#1|) (-1016 (-359)) (-595 (-244))) 55) (((-1178) (-816 |#1|) (-1016 (-359))) 43) (((-1178) (-816 |#1|) (-1016 (-359)) (-595 (-244))) 42) (((-1178) |#1| (-1016 (-359))) 35) (((-1178) |#1| (-1016 (-359)) (-595 (-244))) 34)))
-(((-240 |#1|) (-10 -7 (-15 -1566 ((-1178) |#1| (-1016 (-359)) (-595 (-244)))) (-15 -1566 ((-1178) |#1| (-1016 (-359)))) (-15 -1566 ((-1178) (-816 |#1|) (-1016 (-359)) (-595 (-244)))) (-15 -1566 ((-1178) (-816 |#1|) (-1016 (-359)))) (-15 -1566 ((-1179) (-818 |#1|) (-1016 (-359)) (-595 (-244)))) (-15 -1566 ((-1179) (-818 |#1|) (-1016 (-359)))) (-15 -1617 ((-1055 (-207)) (-818 |#1|) (-1016 (-359)) (-595 (-244)))) (-15 -1617 ((-1055 (-207)) (-818 |#1|) (-1016 (-359)))) (-15 -1566 ((-1179) |#1| (-1016 (-359)) (-1016 (-359)) (-595 (-244)))) (-15 -1566 ((-1179) |#1| (-1016 (-359)) (-1016 (-359)))) (-15 -1617 ((-1055 (-207)) |#1| (-1016 (-359)) (-1016 (-359)) (-595 (-244)))) (-15 -1617 ((-1055 (-207)) |#1| (-1016 (-359)) (-1016 (-359)))) (-15 -1566 ((-1179) (-821 |#1|) (-1016 (-359)) (-1016 (-359)) (-595 (-244)))) (-15 -1566 ((-1179) (-821 |#1|) (-1016 (-359)) (-1016 (-359)))) (-15 -1617 ((-1055 (-207)) (-821 |#1|) (-1016 (-359)) (-1016 (-359)) (-595 (-244)))) (-15 -1617 ((-1055 (-207)) (-821 |#1|) (-1016 (-359)) (-1016 (-359))))) (-13 (-570 (-504)) (-1023))) (T -240))
-((-1617 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-821 *5)) (-5 *4 (-1016 (-359))) (-4 *5 (-13 (-570 (-504)) (-1023))) (-5 *2 (-1055 (-207))) (-5 *1 (-240 *5)))) (-1617 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-821 *6)) (-5 *4 (-1016 (-359))) (-5 *5 (-595 (-244))) (-4 *6 (-13 (-570 (-504)) (-1023))) (-5 *2 (-1055 (-207))) (-5 *1 (-240 *6)))) (-1566 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-821 *5)) (-5 *4 (-1016 (-359))) (-4 *5 (-13 (-570 (-504)) (-1023))) (-5 *2 (-1179)) (-5 *1 (-240 *5)))) (-1566 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-821 *6)) (-5 *4 (-1016 (-359))) (-5 *5 (-595 (-244))) (-4 *6 (-13 (-570 (-504)) (-1023))) (-5 *2 (-1179)) (-5 *1 (-240 *6)))) (-1617 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1016 (-359))) (-5 *2 (-1055 (-207))) (-5 *1 (-240 *3)) (-4 *3 (-13 (-570 (-504)) (-1023))))) (-1617 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1016 (-359))) (-5 *5 (-595 (-244))) (-5 *2 (-1055 (-207))) (-5 *1 (-240 *3)) (-4 *3 (-13 (-570 (-504)) (-1023))))) (-1566 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1016 (-359))) (-5 *2 (-1179)) (-5 *1 (-240 *3)) (-4 *3 (-13 (-570 (-504)) (-1023))))) (-1566 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1016 (-359))) (-5 *5 (-595 (-244))) (-5 *2 (-1179)) (-5 *1 (-240 *3)) (-4 *3 (-13 (-570 (-504)) (-1023))))) (-1617 (*1 *2 *3 *4) (-12 (-5 *3 (-818 *5)) (-5 *4 (-1016 (-359))) (-4 *5 (-13 (-570 (-504)) (-1023))) (-5 *2 (-1055 (-207))) (-5 *1 (-240 *5)))) (-1617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-818 *6)) (-5 *4 (-1016 (-359))) (-5 *5 (-595 (-244))) (-4 *6 (-13 (-570 (-504)) (-1023))) (-5 *2 (-1055 (-207))) (-5 *1 (-240 *6)))) (-1566 (*1 *2 *3 *4) (-12 (-5 *3 (-818 *5)) (-5 *4 (-1016 (-359))) (-4 *5 (-13 (-570 (-504)) (-1023))) (-5 *2 (-1179)) (-5 *1 (-240 *5)))) (-1566 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-818 *6)) (-5 *4 (-1016 (-359))) (-5 *5 (-595 (-244))) (-4 *6 (-13 (-570 (-504)) (-1023))) (-5 *2 (-1179)) (-5 *1 (-240 *6)))) (-1566 (*1 *2 *3 *4) (-12 (-5 *3 (-816 *5)) (-5 *4 (-1016 (-359))) (-4 *5 (-13 (-570 (-504)) (-1023))) (-5 *2 (-1178)) (-5 *1 (-240 *5)))) (-1566 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-816 *6)) (-5 *4 (-1016 (-359))) (-5 *5 (-595 (-244))) (-4 *6 (-13 (-570 (-504)) (-1023))) (-5 *2 (-1178)) (-5 *1 (-240 *6)))) (-1566 (*1 *2 *3 *4) (-12 (-5 *4 (-1016 (-359))) (-5 *2 (-1178)) (-5 *1 (-240 *3)) (-4 *3 (-13 (-570 (-504)) (-1023))))) (-1566 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1016 (-359))) (-5 *5 (-595 (-244))) (-5 *2 (-1178)) (-5 *1 (-240 *3)) (-4 *3 (-13 (-570 (-504)) (-1023))))))
-(-10 -7 (-15 -1566 ((-1178) |#1| (-1016 (-359)) (-595 (-244)))) (-15 -1566 ((-1178) |#1| (-1016 (-359)))) (-15 -1566 ((-1178) (-816 |#1|) (-1016 (-359)) (-595 (-244)))) (-15 -1566 ((-1178) (-816 |#1|) (-1016 (-359)))) (-15 -1566 ((-1179) (-818 |#1|) (-1016 (-359)) (-595 (-244)))) (-15 -1566 ((-1179) (-818 |#1|) (-1016 (-359)))) (-15 -1617 ((-1055 (-207)) (-818 |#1|) (-1016 (-359)) (-595 (-244)))) (-15 -1617 ((-1055 (-207)) (-818 |#1|) (-1016 (-359)))) (-15 -1566 ((-1179) |#1| (-1016 (-359)) (-1016 (-359)) (-595 (-244)))) (-15 -1566 ((-1179) |#1| (-1016 (-359)) (-1016 (-359)))) (-15 -1617 ((-1055 (-207)) |#1| (-1016 (-359)) (-1016 (-359)) (-595 (-244)))) (-15 -1617 ((-1055 (-207)) |#1| (-1016 (-359)) (-1016 (-359)))) (-15 -1566 ((-1179) (-821 |#1|) (-1016 (-359)) (-1016 (-359)) (-595 (-244)))) (-15 -1566 ((-1179) (-821 |#1|) (-1016 (-359)) (-1016 (-359)))) (-15 -1617 ((-1055 (-207)) (-821 |#1|) (-1016 (-359)) (-1016 (-359)) (-595 (-244)))) (-15 -1617 ((-1055 (-207)) (-821 |#1|) (-1016 (-359)) (-1016 (-359)))))
-((-1566 (((-1179) (-595 (-207)) (-595 (-207)) (-595 (-207)) (-595 (-244))) 23) (((-1179) (-595 (-207)) (-595 (-207)) (-595 (-207))) 24) (((-1178) (-595 (-882 (-207))) (-595 (-244))) 16) (((-1178) (-595 (-882 (-207)))) 17) (((-1178) (-595 (-207)) (-595 (-207)) (-595 (-244))) 20) (((-1178) (-595 (-207)) (-595 (-207))) 21)))
-(((-241) (-10 -7 (-15 -1566 ((-1178) (-595 (-207)) (-595 (-207)))) (-15 -1566 ((-1178) (-595 (-207)) (-595 (-207)) (-595 (-244)))) (-15 -1566 ((-1178) (-595 (-882 (-207))))) (-15 -1566 ((-1178) (-595 (-882 (-207))) (-595 (-244)))) (-15 -1566 ((-1179) (-595 (-207)) (-595 (-207)) (-595 (-207)))) (-15 -1566 ((-1179) (-595 (-207)) (-595 (-207)) (-595 (-207)) (-595 (-244)))))) (T -241))
-((-1566 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-595 (-207))) (-5 *4 (-595 (-244))) (-5 *2 (-1179)) (-5 *1 (-241)))) (-1566 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-595 (-207))) (-5 *2 (-1179)) (-5 *1 (-241)))) (-1566 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-882 (-207)))) (-5 *4 (-595 (-244))) (-5 *2 (-1178)) (-5 *1 (-241)))) (-1566 (*1 *2 *3) (-12 (-5 *3 (-595 (-882 (-207)))) (-5 *2 (-1178)) (-5 *1 (-241)))) (-1566 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-595 (-207))) (-5 *4 (-595 (-244))) (-5 *2 (-1178)) (-5 *1 (-241)))) (-1566 (*1 *2 *3 *3) (-12 (-5 *3 (-595 (-207))) (-5 *2 (-1178)) (-5 *1 (-241)))))
-(-10 -7 (-15 -1566 ((-1178) (-595 (-207)) (-595 (-207)))) (-15 -1566 ((-1178) (-595 (-207)) (-595 (-207)) (-595 (-244)))) (-15 -1566 ((-1178) (-595 (-882 (-207))))) (-15 -1566 ((-1178) (-595 (-882 (-207))) (-595 (-244)))) (-15 -1566 ((-1179) (-595 (-207)) (-595 (-207)) (-595 (-207)))) (-15 -1566 ((-1179) (-595 (-207)) (-595 (-207)) (-595 (-207)) (-595 (-244)))))
-((-4091 (((-2 (|:| |theta| (-207)) (|:| |phi| (-207)) (|:| -3721 (-207)) (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |scaleZ| (-207)) (|:| |deltaX| (-207)) (|:| |deltaY| (-207))) (-595 (-244)) (-2 (|:| |theta| (-207)) (|:| |phi| (-207)) (|:| -3721 (-207)) (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |scaleZ| (-207)) (|:| |deltaX| (-207)) (|:| |deltaY| (-207)))) 26)) (-2139 (((-860) (-595 (-244)) (-860)) 53)) (-2123 (((-860) (-595 (-244)) (-860)) 52)) (-1756 (((-595 (-359)) (-595 (-244)) (-595 (-359))) 69)) (-2396 (((-359) (-595 (-244)) (-359)) 58)) (-2025 (((-860) (-595 (-244)) (-860)) 54)) (-2644 (((-110) (-595 (-244)) (-110)) 28)) (-1215 (((-1078) (-595 (-244)) (-1078)) 20)) (-2219 (((-1078) (-595 (-244)) (-1078)) 27)) (-1892 (((-1055 (-207)) (-595 (-244))) 47)) (-4011 (((-595 (-1018 (-359))) (-595 (-244)) (-595 (-1018 (-359)))) 41)) (-3357 (((-813) (-595 (-244)) (-813)) 33)) (-3808 (((-813) (-595 (-244)) (-813)) 34)) (-2721 (((-1 (-882 (-207)) (-882 (-207))) (-595 (-244)) (-1 (-882 (-207)) (-882 (-207)))) 64)) (-2019 (((-110) (-595 (-244)) (-110)) 16)) (-4075 (((-110) (-595 (-244)) (-110)) 15)))
-(((-242) (-10 -7 (-15 -4075 ((-110) (-595 (-244)) (-110))) (-15 -2019 ((-110) (-595 (-244)) (-110))) (-15 -4091 ((-2 (|:| |theta| (-207)) (|:| |phi| (-207)) (|:| -3721 (-207)) (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |scaleZ| (-207)) (|:| |deltaX| (-207)) (|:| |deltaY| (-207))) (-595 (-244)) (-2 (|:| |theta| (-207)) (|:| |phi| (-207)) (|:| -3721 (-207)) (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |scaleZ| (-207)) (|:| |deltaX| (-207)) (|:| |deltaY| (-207))))) (-15 -1215 ((-1078) (-595 (-244)) (-1078))) (-15 -2219 ((-1078) (-595 (-244)) (-1078))) (-15 -2644 ((-110) (-595 (-244)) (-110))) (-15 -3357 ((-813) (-595 (-244)) (-813))) (-15 -3808 ((-813) (-595 (-244)) (-813))) (-15 -4011 ((-595 (-1018 (-359))) (-595 (-244)) (-595 (-1018 (-359))))) (-15 -2123 ((-860) (-595 (-244)) (-860))) (-15 -2139 ((-860) (-595 (-244)) (-860))) (-15 -1892 ((-1055 (-207)) (-595 (-244)))) (-15 -2025 ((-860) (-595 (-244)) (-860))) (-15 -2396 ((-359) (-595 (-244)) (-359))) (-15 -2721 ((-1 (-882 (-207)) (-882 (-207))) (-595 (-244)) (-1 (-882 (-207)) (-882 (-207))))) (-15 -1756 ((-595 (-359)) (-595 (-244)) (-595 (-359)))))) (T -242))
-((-1756 (*1 *2 *3 *2) (-12 (-5 *2 (-595 (-359))) (-5 *3 (-595 (-244))) (-5 *1 (-242)))) (-2721 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-882 (-207)) (-882 (-207)))) (-5 *3 (-595 (-244))) (-5 *1 (-242)))) (-2396 (*1 *2 *3 *2) (-12 (-5 *2 (-359)) (-5 *3 (-595 (-244))) (-5 *1 (-242)))) (-2025 (*1 *2 *3 *2) (-12 (-5 *2 (-860)) (-5 *3 (-595 (-244))) (-5 *1 (-242)))) (-1892 (*1 *2 *3) (-12 (-5 *3 (-595 (-244))) (-5 *2 (-1055 (-207))) (-5 *1 (-242)))) (-2139 (*1 *2 *3 *2) (-12 (-5 *2 (-860)) (-5 *3 (-595 (-244))) (-5 *1 (-242)))) (-2123 (*1 *2 *3 *2) (-12 (-5 *2 (-860)) (-5 *3 (-595 (-244))) (-5 *1 (-242)))) (-4011 (*1 *2 *3 *2) (-12 (-5 *2 (-595 (-1018 (-359)))) (-5 *3 (-595 (-244))) (-5 *1 (-242)))) (-3808 (*1 *2 *3 *2) (-12 (-5 *2 (-813)) (-5 *3 (-595 (-244))) (-5 *1 (-242)))) (-3357 (*1 *2 *3 *2) (-12 (-5 *2 (-813)) (-5 *3 (-595 (-244))) (-5 *1 (-242)))) (-2644 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *3 (-595 (-244))) (-5 *1 (-242)))) (-2219 (*1 *2 *3 *2) (-12 (-5 *2 (-1078)) (-5 *3 (-595 (-244))) (-5 *1 (-242)))) (-1215 (*1 *2 *3 *2) (-12 (-5 *2 (-1078)) (-5 *3 (-595 (-244))) (-5 *1 (-242)))) (-4091 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-207)) (|:| |phi| (-207)) (|:| -3721 (-207)) (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |scaleZ| (-207)) (|:| |deltaX| (-207)) (|:| |deltaY| (-207)))) (-5 *3 (-595 (-244))) (-5 *1 (-242)))) (-2019 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *3 (-595 (-244))) (-5 *1 (-242)))) (-4075 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *3 (-595 (-244))) (-5 *1 (-242)))))
-(-10 -7 (-15 -4075 ((-110) (-595 (-244)) (-110))) (-15 -2019 ((-110) (-595 (-244)) (-110))) (-15 -4091 ((-2 (|:| |theta| (-207)) (|:| |phi| (-207)) (|:| -3721 (-207)) (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |scaleZ| (-207)) (|:| |deltaX| (-207)) (|:| |deltaY| (-207))) (-595 (-244)) (-2 (|:| |theta| (-207)) (|:| |phi| (-207)) (|:| -3721 (-207)) (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |scaleZ| (-207)) (|:| |deltaX| (-207)) (|:| |deltaY| (-207))))) (-15 -1215 ((-1078) (-595 (-244)) (-1078))) (-15 -2219 ((-1078) (-595 (-244)) (-1078))) (-15 -2644 ((-110) (-595 (-244)) (-110))) (-15 -3357 ((-813) (-595 (-244)) (-813))) (-15 -3808 ((-813) (-595 (-244)) (-813))) (-15 -4011 ((-595 (-1018 (-359))) (-595 (-244)) (-595 (-1018 (-359))))) (-15 -2123 ((-860) (-595 (-244)) (-860))) (-15 -2139 ((-860) (-595 (-244)) (-860))) (-15 -1892 ((-1055 (-207)) (-595 (-244)))) (-15 -2025 ((-860) (-595 (-244)) (-860))) (-15 -2396 ((-359) (-595 (-244)) (-359))) (-15 -2721 ((-1 (-882 (-207)) (-882 (-207))) (-595 (-244)) (-1 (-882 (-207)) (-882 (-207))))) (-15 -1756 ((-595 (-359)) (-595 (-244)) (-595 (-359)))))
-((-1922 (((-3 |#1| "failed") (-595 (-244)) (-1095)) 17)))
-(((-243 |#1|) (-10 -7 (-15 -1922 ((-3 |#1| "failed") (-595 (-244)) (-1095)))) (-1131)) (T -243))
-((-1922 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-595 (-244))) (-5 *4 (-1095)) (-5 *1 (-243 *2)) (-4 *2 (-1131)))))
-(-10 -7 (-15 -1922 ((-3 |#1| "failed") (-595 (-244)) (-1095))))
-((-2207 (((-110) $ $) NIL)) (-4091 (($ (-2 (|:| |theta| (-207)) (|:| |phi| (-207)) (|:| -3721 (-207)) (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |scaleZ| (-207)) (|:| |deltaX| (-207)) (|:| |deltaY| (-207)))) 15)) (-2139 (($ (-860)) 76)) (-2123 (($ (-860)) 75)) (-2445 (($ (-595 (-359))) 82)) (-2396 (($ (-359)) 58)) (-2025 (($ (-860)) 77)) (-2644 (($ (-110)) 23)) (-1215 (($ (-1078)) 18)) (-2219 (($ (-1078)) 19)) (-1892 (($ (-1055 (-207))) 71)) (-4011 (($ (-595 (-1018 (-359)))) 67)) (-2931 (($ (-595 (-1018 (-359)))) 59) (($ (-595 (-1018 (-387 (-528))))) 66)) (-2228 (($ (-359)) 29) (($ (-813)) 33)) (-3387 (((-110) (-595 $) (-1095)) 91)) (-1922 (((-3 (-51) "failed") (-595 $) (-1095)) 93)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-1952 (($ (-359)) 34) (($ (-813)) 35)) (-4243 (($ (-1 (-882 (-207)) (-882 (-207)))) 57)) (-2721 (($ (-1 (-882 (-207)) (-882 (-207)))) 78)) (-4179 (($ (-1 (-207) (-207))) 39) (($ (-1 (-207) (-207) (-207))) 43) (($ (-1 (-207) (-207) (-207) (-207))) 47)) (-2222 (((-802) $) 87)) (-3408 (($ (-110)) 24) (($ (-595 (-1018 (-359)))) 52)) (-4075 (($ (-110)) 25)) (-2186 (((-110) $ $) 89)))
-(((-244) (-13 (-1023) (-10 -8 (-15 -4075 ($ (-110))) (-15 -3408 ($ (-110))) (-15 -4091 ($ (-2 (|:| |theta| (-207)) (|:| |phi| (-207)) (|:| -3721 (-207)) (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |scaleZ| (-207)) (|:| |deltaX| (-207)) (|:| |deltaY| (-207))))) (-15 -1215 ($ (-1078))) (-15 -2219 ($ (-1078))) (-15 -2644 ($ (-110))) (-15 -3408 ($ (-595 (-1018 (-359))))) (-15 -4243 ($ (-1 (-882 (-207)) (-882 (-207))))) (-15 -2228 ($ (-359))) (-15 -2228 ($ (-813))) (-15 -1952 ($ (-359))) (-15 -1952 ($ (-813))) (-15 -4179 ($ (-1 (-207) (-207)))) (-15 -4179 ($ (-1 (-207) (-207) (-207)))) (-15 -4179 ($ (-1 (-207) (-207) (-207) (-207)))) (-15 -2396 ($ (-359))) (-15 -2931 ($ (-595 (-1018 (-359))))) (-15 -2931 ($ (-595 (-1018 (-387 (-528)))))) (-15 -4011 ($ (-595 (-1018 (-359))))) (-15 -1892 ($ (-1055 (-207)))) (-15 -2123 ($ (-860))) (-15 -2139 ($ (-860))) (-15 -2025 ($ (-860))) (-15 -2721 ($ (-1 (-882 (-207)) (-882 (-207))))) (-15 -2445 ($ (-595 (-359)))) (-15 -1922 ((-3 (-51) "failed") (-595 $) (-1095))) (-15 -3387 ((-110) (-595 $) (-1095)))))) (T -244))
-((-4075 (*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-244)))) (-3408 (*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-244)))) (-4091 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-207)) (|:| |phi| (-207)) (|:| -3721 (-207)) (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |scaleZ| (-207)) (|:| |deltaX| (-207)) (|:| |deltaY| (-207)))) (-5 *1 (-244)))) (-1215 (*1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-244)))) (-2219 (*1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-244)))) (-2644 (*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-244)))) (-3408 (*1 *1 *2) (-12 (-5 *2 (-595 (-1018 (-359)))) (-5 *1 (-244)))) (-4243 (*1 *1 *2) (-12 (-5 *2 (-1 (-882 (-207)) (-882 (-207)))) (-5 *1 (-244)))) (-2228 (*1 *1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-244)))) (-2228 (*1 *1 *2) (-12 (-5 *2 (-813)) (-5 *1 (-244)))) (-1952 (*1 *1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-244)))) (-1952 (*1 *1 *2) (-12 (-5 *2 (-813)) (-5 *1 (-244)))) (-4179 (*1 *1 *2) (-12 (-5 *2 (-1 (-207) (-207))) (-5 *1 (-244)))) (-4179 (*1 *1 *2) (-12 (-5 *2 (-1 (-207) (-207) (-207))) (-5 *1 (-244)))) (-4179 (*1 *1 *2) (-12 (-5 *2 (-1 (-207) (-207) (-207) (-207))) (-5 *1 (-244)))) (-2396 (*1 *1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-244)))) (-2931 (*1 *1 *2) (-12 (-5 *2 (-595 (-1018 (-359)))) (-5 *1 (-244)))) (-2931 (*1 *1 *2) (-12 (-5 *2 (-595 (-1018 (-387 (-528))))) (-5 *1 (-244)))) (-4011 (*1 *1 *2) (-12 (-5 *2 (-595 (-1018 (-359)))) (-5 *1 (-244)))) (-1892 (*1 *1 *2) (-12 (-5 *2 (-1055 (-207))) (-5 *1 (-244)))) (-2123 (*1 *1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-244)))) (-2139 (*1 *1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-244)))) (-2025 (*1 *1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-244)))) (-2721 (*1 *1 *2) (-12 (-5 *2 (-1 (-882 (-207)) (-882 (-207)))) (-5 *1 (-244)))) (-2445 (*1 *1 *2) (-12 (-5 *2 (-595 (-359))) (-5 *1 (-244)))) (-1922 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-595 (-244))) (-5 *4 (-1095)) (-5 *2 (-51)) (-5 *1 (-244)))) (-3387 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-244))) (-5 *4 (-1095)) (-5 *2 (-110)) (-5 *1 (-244)))))
-(-13 (-1023) (-10 -8 (-15 -4075 ($ (-110))) (-15 -3408 ($ (-110))) (-15 -4091 ($ (-2 (|:| |theta| (-207)) (|:| |phi| (-207)) (|:| -3721 (-207)) (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |scaleZ| (-207)) (|:| |deltaX| (-207)) (|:| |deltaY| (-207))))) (-15 -1215 ($ (-1078))) (-15 -2219 ($ (-1078))) (-15 -2644 ($ (-110))) (-15 -3408 ($ (-595 (-1018 (-359))))) (-15 -4243 ($ (-1 (-882 (-207)) (-882 (-207))))) (-15 -2228 ($ (-359))) (-15 -2228 ($ (-813))) (-15 -1952 ($ (-359))) (-15 -1952 ($ (-813))) (-15 -4179 ($ (-1 (-207) (-207)))) (-15 -4179 ($ (-1 (-207) (-207) (-207)))) (-15 -4179 ($ (-1 (-207) (-207) (-207) (-207)))) (-15 -2396 ($ (-359))) (-15 -2931 ($ (-595 (-1018 (-359))))) (-15 -2931 ($ (-595 (-1018 (-387 (-528)))))) (-15 -4011 ($ (-595 (-1018 (-359))))) (-15 -1892 ($ (-1055 (-207)))) (-15 -2123 ($ (-860))) (-15 -2139 ($ (-860))) (-15 -2025 ($ (-860))) (-15 -2721 ($ (-1 (-882 (-207)) (-882 (-207))))) (-15 -2445 ($ (-595 (-359)))) (-15 -1922 ((-3 (-51) "failed") (-595 $) (-1095))) (-15 -3387 ((-110) (-595 $) (-1095)))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-4055 (((-595 (-717)) $) NIL) (((-595 (-717)) $ |#2|) NIL)) (-1479 (((-717) $) NIL) (((-717) $ |#2|) NIL)) (-2565 (((-595 |#3|) $) NIL)) (-2402 (((-1091 $) $ |#3|) NIL) (((-1091 |#1|) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#1| (-520)))) (-1738 (($ $) NIL (|has| |#1| (-520)))) (-1811 (((-110) $) NIL (|has| |#1| (-520)))) (-4042 (((-717) $) NIL) (((-717) $ (-595 |#3|)) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-1232 (($ $) NIL (|has| |#1| (-431)))) (-2705 (((-398 $) $) NIL (|has| |#1| (-431)))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2745 (($ $) NIL)) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#1| "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-3 (-528) "failed") $) NIL (|has| |#1| (-972 (-528)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1047 |#1| |#2|) "failed") $) 21)) (-2409 ((|#1| $) NIL) (((-387 (-528)) $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-528) $) NIL (|has| |#1| (-972 (-528)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1047 |#1| |#2|) $) NIL)) (-1606 (($ $ $ |#3|) NIL (|has| |#1| (-162)))) (-2388 (($ $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) NIL) (((-635 |#1|) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1551 (($ $) NIL (|has| |#1| (-431))) (($ $ |#3|) NIL (|has| |#1| (-431)))) (-2376 (((-595 $) $) NIL)) (-2124 (((-110) $) NIL (|has| |#1| (-848)))) (-4047 (($ $ |#1| (-500 |#3|) $) NIL)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (-12 (|has| |#1| (-825 (-359))) (|has| |#3| (-825 (-359))))) (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (-12 (|has| |#1| (-825 (-528))) (|has| |#3| (-825 (-528)))))) (-3689 (((-717) $ |#2|) NIL) (((-717) $) 10)) (-1297 (((-110) $) NIL)) (-1224 (((-717) $) NIL)) (-2557 (($ (-1091 |#1|) |#3|) NIL) (($ (-1091 $) |#3|) NIL)) (-3737 (((-595 $) $) NIL)) (-2195 (((-110) $) NIL)) (-2548 (($ |#1| (-500 |#3|)) NIL) (($ $ |#3| (-717)) NIL) (($ $ (-595 |#3|) (-595 (-717))) NIL)) (-3275 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $ |#3|) NIL)) (-3499 (((-500 |#3|) $) NIL) (((-717) $ |#3|) NIL) (((-595 (-717)) $ (-595 |#3|)) NIL)) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-1264 (($ (-1 (-500 |#3|) (-500 |#3|)) $) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-4161 (((-1 $ (-717)) |#2|) NIL) (((-1 $ (-717)) $) NIL (|has| |#1| (-215)))) (-3288 (((-3 |#3| "failed") $) NIL)) (-2686 (($ $) NIL)) (-2697 ((|#1| $) NIL)) (-4018 ((|#3| $) NIL)) (-2057 (($ (-595 $)) NIL (|has| |#1| (-431))) (($ $ $) NIL (|has| |#1| (-431)))) (-3034 (((-1078) $) NIL)) (-4071 (((-110) $) NIL)) (-3024 (((-3 (-595 $) "failed") $) NIL)) (-1281 (((-3 (-595 $) "failed") $) NIL)) (-3352 (((-3 (-2 (|:| |var| |#3|) (|:| -2564 (-717))) "failed") $) NIL)) (-2237 (($ $) NIL)) (-2495 (((-1042) $) NIL)) (-2662 (((-110) $) NIL)) (-2675 ((|#1| $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#1| (-431)))) (-2088 (($ (-595 $)) NIL (|has| |#1| (-431))) (($ $ $) NIL (|has| |#1| (-431)))) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2437 (((-398 $) $) NIL (|has| |#1| (-848)))) (-3477 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-520))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-520)))) (-4014 (($ $ (-595 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-595 |#3|) (-595 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-595 |#3|) (-595 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-215))) (($ $ (-595 |#2|) (-595 $)) NIL (|has| |#1| (-215))) (($ $ |#2| |#1|) NIL (|has| |#1| (-215))) (($ $ (-595 |#2|) (-595 |#1|)) NIL (|has| |#1| (-215)))) (-1372 (($ $ |#3|) NIL (|has| |#1| (-162)))) (-3235 (($ $ |#3|) NIL) (($ $ (-595 |#3|)) NIL) (($ $ |#3| (-717)) NIL) (($ $ (-595 |#3|) (-595 (-717))) NIL) (($ $) NIL (|has| |#1| (-215))) (($ $ (-717)) NIL (|has| |#1| (-215))) (($ $ (-1095)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3553 (((-595 |#2|) $) NIL)) (-2935 (((-500 |#3|) $) NIL) (((-717) $ |#3|) NIL) (((-595 (-717)) $ (-595 |#3|)) NIL) (((-717) $ |#2|) NIL)) (-3155 (((-831 (-359)) $) NIL (-12 (|has| |#1| (-570 (-831 (-359)))) (|has| |#3| (-570 (-831 (-359)))))) (((-831 (-528)) $) NIL (-12 (|has| |#1| (-570 (-831 (-528)))) (|has| |#3| (-570 (-831 (-528)))))) (((-504) $) NIL (-12 (|has| |#1| (-570 (-504))) (|has| |#3| (-570 (-504)))))) (-1618 ((|#1| $) NIL (|has| |#1| (-431))) (($ $ |#3|) NIL (|has| |#1| (-431)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-848))))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1047 |#1| |#2|)) 30) (($ (-387 (-528))) NIL (-1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-972 (-387 (-528)))))) (($ $) NIL (|has| |#1| (-520)))) (-3348 (((-595 |#1|) $) NIL)) (-3216 ((|#1| $ (-500 |#3|)) NIL) (($ $ |#3| (-717)) NIL) (($ $ (-595 |#3|) (-595 (-717))) NIL)) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| |#1| (-848))) (|has| |#1| (-138))))) (-3742 (((-717)) NIL)) (-1997 (($ $ $ (-717)) NIL (|has| |#1| (-162)))) (-4016 (((-110) $ $) NIL (|has| |#1| (-520)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($ $ |#3|) NIL) (($ $ (-595 |#3|)) NIL) (($ $ |#3| (-717)) NIL) (($ $ (-595 |#3|) (-595 (-717))) NIL) (($ $) NIL (|has| |#1| (-215))) (($ $ (-717)) NIL (|has| |#1| (-215))) (($ $ (-1095)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2296 (($ $ |#1|) NIL (|has| |#1| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528))))) (($ (-387 (-528)) $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-245 |#1| |#2| |#3|) (-13 (-234 |#1| |#2| |#3| (-500 |#3|)) (-972 (-1047 |#1| |#2|))) (-981) (-793) (-247 |#2|)) (T -245))
-NIL
-(-13 (-234 |#1| |#2| |#3| (-500 |#3|)) (-972 (-1047 |#1| |#2|)))
-((-1479 (((-717) $) 30)) (-3001 (((-3 |#2| "failed") $) 17)) (-2409 ((|#2| $) 27)) (-3235 (($ $) 12) (($ $ (-717)) 15)) (-2222 (((-802) $) 26) (($ |#2|) 10)) (-2186 (((-110) $ $) 20)) (-2208 (((-110) $ $) 29)))
-(((-246 |#1| |#2|) (-10 -8 (-15 -3235 (|#1| |#1| (-717))) (-15 -3235 (|#1| |#1|)) (-15 -1479 ((-717) |#1|)) (-15 -2409 (|#2| |#1|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -2222 (|#1| |#2|)) (-15 -2208 ((-110) |#1| |#1|)) (-15 -2222 ((-802) |#1|)) (-15 -2186 ((-110) |#1| |#1|))) (-247 |#2|) (-793)) (T -246))
-NIL
-(-10 -8 (-15 -3235 (|#1| |#1| (-717))) (-15 -3235 (|#1| |#1|)) (-15 -1479 ((-717) |#1|)) (-15 -2409 (|#2| |#1|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -2222 (|#1| |#2|)) (-15 -2208 ((-110) |#1| |#1|)) (-15 -2222 ((-802) |#1|)) (-15 -2186 ((-110) |#1| |#1|)))
-((-2207 (((-110) $ $) 7)) (-1479 (((-717) $) 22)) (-3915 ((|#1| $) 23)) (-3001 (((-3 |#1| "failed") $) 27)) (-2409 ((|#1| $) 26)) (-3689 (((-717) $) 24)) (-1436 (($ $ $) 13)) (-1736 (($ $ $) 14)) (-4161 (($ |#1| (-717)) 25)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-3235 (($ $) 21) (($ $ (-717)) 20)) (-2222 (((-802) $) 11) (($ |#1|) 28)) (-2244 (((-110) $ $) 16)) (-2220 (((-110) $ $) 17)) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 15)) (-2208 (((-110) $ $) 18)))
-(((-247 |#1|) (-133) (-793)) (T -247))
-((-2222 (*1 *1 *2) (-12 (-4 *1 (-247 *2)) (-4 *2 (-793)))) (-4161 (*1 *1 *2 *3) (-12 (-5 *3 (-717)) (-4 *1 (-247 *2)) (-4 *2 (-793)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-247 *3)) (-4 *3 (-793)) (-5 *2 (-717)))) (-3915 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-793)))) (-1479 (*1 *2 *1) (-12 (-4 *1 (-247 *3)) (-4 *3 (-793)) (-5 *2 (-717)))) (-3235 (*1 *1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-793)))) (-3235 (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-247 *3)) (-4 *3 (-793)))))
-(-13 (-793) (-972 |t#1|) (-10 -8 (-15 -4161 ($ |t#1| (-717))) (-15 -3689 ((-717) $)) (-15 -3915 (|t#1| $)) (-15 -1479 ((-717) $)) (-15 -3235 ($ $)) (-15 -3235 ($ $ (-717))) (-15 -2222 ($ |t#1|))))
-(((-99) . T) ((-569 (-802)) . T) ((-793) . T) ((-972 |#1|) . T) ((-1023) . T))
-((-2565 (((-595 (-1095)) (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))) 41)) (-3642 (((-595 (-1095)) (-296 (-207)) (-717)) 80)) (-3560 (((-3 (-296 (-207)) "failed") (-296 (-207))) 51)) (-3667 (((-296 (-207)) (-296 (-207))) 67)) (-2640 (((-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207))))) (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) 26)) (-3526 (((-110) (-595 (-296 (-207)))) 84)) (-1652 (((-110) (-296 (-207))) 24)) (-3911 (((-595 (-1078)) (-3 (|:| |noa| (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) (|:| |lsa| (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))))) 106)) (-2838 (((-595 (-296 (-207))) (-595 (-296 (-207)))) 88)) (-2429 (((-595 (-296 (-207))) (-595 (-296 (-207)))) 86)) (-2337 (((-635 (-207)) (-595 (-296 (-207))) (-717)) 95)) (-2081 (((-110) (-296 (-207))) 20) (((-110) (-595 (-296 (-207)))) 85)) (-2075 (((-595 (-207)) (-595 (-786 (-207))) (-207)) 14)) (-1282 (((-359) (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))) 101)) (-1716 (((-970) (-1095) (-970)) 34)))
-(((-248) (-10 -7 (-15 -2075 ((-595 (-207)) (-595 (-786 (-207))) (-207))) (-15 -2640 ((-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207))))) (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207))))))) (-15 -3560 ((-3 (-296 (-207)) "failed") (-296 (-207)))) (-15 -3667 ((-296 (-207)) (-296 (-207)))) (-15 -3526 ((-110) (-595 (-296 (-207))))) (-15 -2081 ((-110) (-595 (-296 (-207))))) (-15 -2081 ((-110) (-296 (-207)))) (-15 -2337 ((-635 (-207)) (-595 (-296 (-207))) (-717))) (-15 -2429 ((-595 (-296 (-207))) (-595 (-296 (-207))))) (-15 -2838 ((-595 (-296 (-207))) (-595 (-296 (-207))))) (-15 -1652 ((-110) (-296 (-207)))) (-15 -2565 ((-595 (-1095)) (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207)))))) (-15 -3642 ((-595 (-1095)) (-296 (-207)) (-717))) (-15 -1716 ((-970) (-1095) (-970))) (-15 -1282 ((-359) (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207)))))) (-15 -3911 ((-595 (-1078)) (-3 (|:| |noa| (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) (|:| |lsa| (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207)))))))))) (T -248))
-((-3911 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) (|:| |lsa| (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))))) (-5 *2 (-595 (-1078))) (-5 *1 (-248)))) (-1282 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))) (-5 *2 (-359)) (-5 *1 (-248)))) (-1716 (*1 *2 *3 *2) (-12 (-5 *2 (-970)) (-5 *3 (-1095)) (-5 *1 (-248)))) (-3642 (*1 *2 *3 *4) (-12 (-5 *3 (-296 (-207))) (-5 *4 (-717)) (-5 *2 (-595 (-1095))) (-5 *1 (-248)))) (-2565 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))) (-5 *2 (-595 (-1095))) (-5 *1 (-248)))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-296 (-207))) (-5 *2 (-110)) (-5 *1 (-248)))) (-2838 (*1 *2 *2) (-12 (-5 *2 (-595 (-296 (-207)))) (-5 *1 (-248)))) (-2429 (*1 *2 *2) (-12 (-5 *2 (-595 (-296 (-207)))) (-5 *1 (-248)))) (-2337 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-296 (-207)))) (-5 *4 (-717)) (-5 *2 (-635 (-207))) (-5 *1 (-248)))) (-2081 (*1 *2 *3) (-12 (-5 *3 (-296 (-207))) (-5 *2 (-110)) (-5 *1 (-248)))) (-2081 (*1 *2 *3) (-12 (-5 *3 (-595 (-296 (-207)))) (-5 *2 (-110)) (-5 *1 (-248)))) (-3526 (*1 *2 *3) (-12 (-5 *3 (-595 (-296 (-207)))) (-5 *2 (-110)) (-5 *1 (-248)))) (-3667 (*1 *2 *2) (-12 (-5 *2 (-296 (-207))) (-5 *1 (-248)))) (-3560 (*1 *2 *2) (|partial| -12 (-5 *2 (-296 (-207))) (-5 *1 (-248)))) (-2640 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) (-5 *1 (-248)))) (-2075 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-786 (-207)))) (-5 *4 (-207)) (-5 *2 (-595 *4)) (-5 *1 (-248)))))
-(-10 -7 (-15 -2075 ((-595 (-207)) (-595 (-786 (-207))) (-207))) (-15 -2640 ((-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207))))) (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207))))))) (-15 -3560 ((-3 (-296 (-207)) "failed") (-296 (-207)))) (-15 -3667 ((-296 (-207)) (-296 (-207)))) (-15 -3526 ((-110) (-595 (-296 (-207))))) (-15 -2081 ((-110) (-595 (-296 (-207))))) (-15 -2081 ((-110) (-296 (-207)))) (-15 -2337 ((-635 (-207)) (-595 (-296 (-207))) (-717))) (-15 -2429 ((-595 (-296 (-207))) (-595 (-296 (-207))))) (-15 -2838 ((-595 (-296 (-207))) (-595 (-296 (-207))))) (-15 -1652 ((-110) (-296 (-207)))) (-15 -2565 ((-595 (-1095)) (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207)))))) (-15 -3642 ((-595 (-1095)) (-296 (-207)) (-717))) (-15 -1716 ((-970) (-1095) (-970))) (-15 -1282 ((-359) (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207)))))) (-15 -3911 ((-595 (-1078)) (-3 (|:| |noa| (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) (|:| |lsa| (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207)))))))))
-((-2207 (((-110) $ $) NIL)) (-2203 (((-970) (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))) NIL) (((-970) (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) 44)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) 26) (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2186 (((-110) $ $) NIL)))
-(((-249) (-782)) (T -249))
-NIL
-(-782)
-((-2207 (((-110) $ $) NIL)) (-2203 (((-970) (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))) 58) (((-970) (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) 54)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) 34) (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))) 36)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2186 (((-110) $ $) NIL)))
-(((-250) (-782)) (T -250))
-NIL
-(-782)
-((-2207 (((-110) $ $) NIL)) (-2203 (((-970) (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))) 76) (((-970) (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) 73)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) 44) (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))) 55)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2186 (((-110) $ $) NIL)))
-(((-251) (-782)) (T -251))
-NIL
-(-782)
-((-2207 (((-110) $ $) NIL)) (-2203 (((-970) (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))) NIL) (((-970) (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) 50)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) 31) (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2186 (((-110) $ $) NIL)))
-(((-252) (-782)) (T -252))
-NIL
-(-782)
-((-2207 (((-110) $ $) NIL)) (-2203 (((-970) (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))) NIL) (((-970) (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) 50)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) 28) (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2186 (((-110) $ $) NIL)))
-(((-253) (-782)) (T -253))
-NIL
-(-782)
-((-2207 (((-110) $ $) NIL)) (-2203 (((-970) (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))) NIL) (((-970) (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) 73)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) 28) (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2186 (((-110) $ $) NIL)))
-(((-254) (-782)) (T -254))
-NIL
-(-782)
-((-2207 (((-110) $ $) NIL)) (-2203 (((-970) (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))) NIL) (((-970) (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) 77)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) 25) (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2186 (((-110) $ $) NIL)))
-(((-255) (-782)) (T -255))
-NIL
-(-782)
-((-2207 (((-110) $ $) NIL)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3826 (((-595 (-528)) $) 19)) (-2935 (((-717) $) 17)) (-2222 (((-802) $) 23) (($ (-595 (-528))) 15)) (-1450 (($ (-717)) 20)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 9)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 11)))
-(((-256) (-13 (-793) (-10 -8 (-15 -2222 ($ (-595 (-528)))) (-15 -2935 ((-717) $)) (-15 -3826 ((-595 (-528)) $)) (-15 -1450 ($ (-717)))))) (T -256))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-256)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-256)))) (-3826 (*1 *2 *1) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-256)))) (-1450 (*1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-256)))))
-(-13 (-793) (-10 -8 (-15 -2222 ($ (-595 (-528)))) (-15 -2935 ((-717) $)) (-15 -3826 ((-595 (-528)) $)) (-15 -1450 ($ (-717)))))
-((-2880 ((|#2| |#2|) 77)) (-2735 ((|#2| |#2|) 65)) (-2808 (((-3 |#2| "failed") |#2| (-595 (-2 (|:| |func| |#2|) (|:| |pole| (-110))))) 116)) (-2859 ((|#2| |#2|) 75)) (-2712 ((|#2| |#2|) 63)) (-2904 ((|#2| |#2|) 79)) (-2761 ((|#2| |#2|) 67)) (-1505 ((|#2|) 46)) (-3748 (((-112) (-112)) 95)) (-2097 ((|#2| |#2|) 61)) (-1598 (((-110) |#2|) 134)) (-1456 ((|#2| |#2|) 181)) (-3504 ((|#2| |#2|) 157)) (-4146 ((|#2|) 59)) (-3547 ((|#2|) 58)) (-3807 ((|#2| |#2|) 177)) (-1427 ((|#2| |#2|) 153)) (-2013 ((|#2| |#2|) 185)) (-3881 ((|#2| |#2|) 161)) (-3202 ((|#2| |#2|) 149)) (-2478 ((|#2| |#2|) 151)) (-3086 ((|#2| |#2|) 187)) (-2411 ((|#2| |#2|) 163)) (-2680 ((|#2| |#2|) 183)) (-1754 ((|#2| |#2|) 159)) (-3120 ((|#2| |#2|) 179)) (-2570 ((|#2| |#2|) 155)) (-3945 ((|#2| |#2|) 193)) (-4025 ((|#2| |#2|) 169)) (-3792 ((|#2| |#2|) 189)) (-4222 ((|#2| |#2|) 165)) (-2462 ((|#2| |#2|) 197)) (-3466 ((|#2| |#2|) 173)) (-1558 ((|#2| |#2|) 199)) (-3765 ((|#2| |#2|) 175)) (-3452 ((|#2| |#2|) 195)) (-4120 ((|#2| |#2|) 171)) (-3062 ((|#2| |#2|) 191)) (-3871 ((|#2| |#2|) 167)) (-2656 ((|#2| |#2|) 62)) (-2917 ((|#2| |#2|) 80)) (-2773 ((|#2| |#2|) 68)) (-2892 ((|#2| |#2|) 78)) (-2749 ((|#2| |#2|) 66)) (-2869 ((|#2| |#2|) 76)) (-2724 ((|#2| |#2|) 64)) (-2042 (((-110) (-112)) 93)) (-2953 ((|#2| |#2|) 83)) (-2811 ((|#2| |#2|) 71)) (-2928 ((|#2| |#2|) 81)) (-2784 ((|#2| |#2|) 69)) (-2981 ((|#2| |#2|) 85)) (-2836 ((|#2| |#2|) 73)) (-3592 ((|#2| |#2|) 86)) (-2846 ((|#2| |#2|) 74)) (-2967 ((|#2| |#2|) 84)) (-2825 ((|#2| |#2|) 72)) (-2940 ((|#2| |#2|) 82)) (-2797 ((|#2| |#2|) 70)))
-(((-257 |#1| |#2|) (-10 -7 (-15 -2656 (|#2| |#2|)) (-15 -2097 (|#2| |#2|)) (-15 -2712 (|#2| |#2|)) (-15 -2724 (|#2| |#2|)) (-15 -2735 (|#2| |#2|)) (-15 -2749 (|#2| |#2|)) (-15 -2761 (|#2| |#2|)) (-15 -2773 (|#2| |#2|)) (-15 -2784 (|#2| |#2|)) (-15 -2797 (|#2| |#2|)) (-15 -2811 (|#2| |#2|)) (-15 -2825 (|#2| |#2|)) (-15 -2836 (|#2| |#2|)) (-15 -2846 (|#2| |#2|)) (-15 -2859 (|#2| |#2|)) (-15 -2869 (|#2| |#2|)) (-15 -2880 (|#2| |#2|)) (-15 -2892 (|#2| |#2|)) (-15 -2904 (|#2| |#2|)) (-15 -2917 (|#2| |#2|)) (-15 -2928 (|#2| |#2|)) (-15 -2940 (|#2| |#2|)) (-15 -2953 (|#2| |#2|)) (-15 -2967 (|#2| |#2|)) (-15 -2981 (|#2| |#2|)) (-15 -3592 (|#2| |#2|)) (-15 -1505 (|#2|)) (-15 -2042 ((-110) (-112))) (-15 -3748 ((-112) (-112))) (-15 -3547 (|#2|)) (-15 -4146 (|#2|)) (-15 -2478 (|#2| |#2|)) (-15 -3202 (|#2| |#2|)) (-15 -1427 (|#2| |#2|)) (-15 -2570 (|#2| |#2|)) (-15 -3504 (|#2| |#2|)) (-15 -1754 (|#2| |#2|)) (-15 -3881 (|#2| |#2|)) (-15 -2411 (|#2| |#2|)) (-15 -4222 (|#2| |#2|)) (-15 -3871 (|#2| |#2|)) (-15 -4025 (|#2| |#2|)) (-15 -4120 (|#2| |#2|)) (-15 -3466 (|#2| |#2|)) (-15 -3765 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -3120 (|#2| |#2|)) (-15 -1456 (|#2| |#2|)) (-15 -2680 (|#2| |#2|)) (-15 -2013 (|#2| |#2|)) (-15 -3086 (|#2| |#2|)) (-15 -3792 (|#2| |#2|)) (-15 -3062 (|#2| |#2|)) (-15 -3945 (|#2| |#2|)) (-15 -3452 (|#2| |#2|)) (-15 -2462 (|#2| |#2|)) (-15 -1558 (|#2| |#2|)) (-15 -2808 ((-3 |#2| "failed") |#2| (-595 (-2 (|:| |func| |#2|) (|:| |pole| (-110)))))) (-15 -1598 ((-110) |#2|))) (-13 (-793) (-520)) (-13 (-410 |#1|) (-938))) (T -257))
-((-1598 (*1 *2 *3) (-12 (-4 *4 (-13 (-793) (-520))) (-5 *2 (-110)) (-5 *1 (-257 *4 *3)) (-4 *3 (-13 (-410 *4) (-938))))) (-2808 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-595 (-2 (|:| |func| *2) (|:| |pole| (-110))))) (-4 *2 (-13 (-410 *4) (-938))) (-4 *4 (-13 (-793) (-520))) (-5 *1 (-257 *4 *2)))) (-1558 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2462 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-3062 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-3792 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-3086 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2013 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2680 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-1456 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-3120 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-3765 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-3466 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-4120 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-4025 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-3871 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-4222 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2411 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-3881 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-1754 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-3504 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2570 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-1427 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-3202 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2478 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-4146 (*1 *2) (-12 (-4 *2 (-13 (-410 *3) (-938))) (-5 *1 (-257 *3 *2)) (-4 *3 (-13 (-793) (-520))))) (-3547 (*1 *2) (-12 (-4 *2 (-13 (-410 *3) (-938))) (-5 *1 (-257 *3 *2)) (-4 *3 (-13 (-793) (-520))))) (-3748 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *4)) (-4 *4 (-13 (-410 *3) (-938))))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-793) (-520))) (-5 *2 (-110)) (-5 *1 (-257 *4 *5)) (-4 *5 (-13 (-410 *4) (-938))))) (-1505 (*1 *2) (-12 (-4 *2 (-13 (-410 *3) (-938))) (-5 *1 (-257 *3 *2)) (-4 *3 (-13 (-793) (-520))))) (-3592 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2981 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2967 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2953 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2940 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2928 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2917 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2904 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2892 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2880 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2869 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2859 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2846 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2836 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2825 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2811 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2797 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2784 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2773 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2761 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2749 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2735 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2724 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2712 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2097 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))) (-2656 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2)) (-4 *2 (-13 (-410 *3) (-938))))))
-(-10 -7 (-15 -2656 (|#2| |#2|)) (-15 -2097 (|#2| |#2|)) (-15 -2712 (|#2| |#2|)) (-15 -2724 (|#2| |#2|)) (-15 -2735 (|#2| |#2|)) (-15 -2749 (|#2| |#2|)) (-15 -2761 (|#2| |#2|)) (-15 -2773 (|#2| |#2|)) (-15 -2784 (|#2| |#2|)) (-15 -2797 (|#2| |#2|)) (-15 -2811 (|#2| |#2|)) (-15 -2825 (|#2| |#2|)) (-15 -2836 (|#2| |#2|)) (-15 -2846 (|#2| |#2|)) (-15 -2859 (|#2| |#2|)) (-15 -2869 (|#2| |#2|)) (-15 -2880 (|#2| |#2|)) (-15 -2892 (|#2| |#2|)) (-15 -2904 (|#2| |#2|)) (-15 -2917 (|#2| |#2|)) (-15 -2928 (|#2| |#2|)) (-15 -2940 (|#2| |#2|)) (-15 -2953 (|#2| |#2|)) (-15 -2967 (|#2| |#2|)) (-15 -2981 (|#2| |#2|)) (-15 -3592 (|#2| |#2|)) (-15 -1505 (|#2|)) (-15 -2042 ((-110) (-112))) (-15 -3748 ((-112) (-112))) (-15 -3547 (|#2|)) (-15 -4146 (|#2|)) (-15 -2478 (|#2| |#2|)) (-15 -3202 (|#2| |#2|)) (-15 -1427 (|#2| |#2|)) (-15 -2570 (|#2| |#2|)) (-15 -3504 (|#2| |#2|)) (-15 -1754 (|#2| |#2|)) (-15 -3881 (|#2| |#2|)) (-15 -2411 (|#2| |#2|)) (-15 -4222 (|#2| |#2|)) (-15 -3871 (|#2| |#2|)) (-15 -4025 (|#2| |#2|)) (-15 -4120 (|#2| |#2|)) (-15 -3466 (|#2| |#2|)) (-15 -3765 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -3120 (|#2| |#2|)) (-15 -1456 (|#2| |#2|)) (-15 -2680 (|#2| |#2|)) (-15 -2013 (|#2| |#2|)) (-15 -3086 (|#2| |#2|)) (-15 -3792 (|#2| |#2|)) (-15 -3062 (|#2| |#2|)) (-15 -3945 (|#2| |#2|)) (-15 -3452 (|#2| |#2|)) (-15 -2462 (|#2| |#2|)) (-15 -1558 (|#2| |#2|)) (-15 -2808 ((-3 |#2| "failed") |#2| (-595 (-2 (|:| |func| |#2|) (|:| |pole| (-110)))))) (-15 -1598 ((-110) |#2|)))
-((-1576 (((-3 |#2| "failed") (-595 (-568 |#2|)) |#2| (-1095)) 135)) (-2242 ((|#2| (-387 (-528)) |#2|) 51)) (-1650 ((|#2| |#2| (-568 |#2|)) 128)) (-2766 (((-2 (|:| |func| |#2|) (|:| |kers| (-595 (-568 |#2|))) (|:| |vals| (-595 |#2|))) |#2| (-1095)) 127)) (-4156 ((|#2| |#2| (-1095)) 20) ((|#2| |#2|) 23)) (-1837 ((|#2| |#2| (-1095)) 141) ((|#2| |#2|) 139)))
-(((-258 |#1| |#2|) (-10 -7 (-15 -1837 (|#2| |#2|)) (-15 -1837 (|#2| |#2| (-1095))) (-15 -2766 ((-2 (|:| |func| |#2|) (|:| |kers| (-595 (-568 |#2|))) (|:| |vals| (-595 |#2|))) |#2| (-1095))) (-15 -4156 (|#2| |#2|)) (-15 -4156 (|#2| |#2| (-1095))) (-15 -1576 ((-3 |#2| "failed") (-595 (-568 |#2|)) |#2| (-1095))) (-15 -1650 (|#2| |#2| (-568 |#2|))) (-15 -2242 (|#2| (-387 (-528)) |#2|))) (-13 (-520) (-793) (-972 (-528)) (-591 (-528))) (-13 (-27) (-1117) (-410 |#1|))) (T -258))
-((-2242 (*1 *2 *3 *2) (-12 (-5 *3 (-387 (-528))) (-4 *4 (-13 (-520) (-793) (-972 (-528)) (-591 (-528)))) (-5 *1 (-258 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *4))))) (-1650 (*1 *2 *2 *3) (-12 (-5 *3 (-568 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *4))) (-4 *4 (-13 (-520) (-793) (-972 (-528)) (-591 (-528)))) (-5 *1 (-258 *4 *2)))) (-1576 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-595 (-568 *2))) (-5 *4 (-1095)) (-4 *2 (-13 (-27) (-1117) (-410 *5))) (-4 *5 (-13 (-520) (-793) (-972 (-528)) (-591 (-528)))) (-5 *1 (-258 *5 *2)))) (-4156 (*1 *2 *2 *3) (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-520) (-793) (-972 (-528)) (-591 (-528)))) (-5 *1 (-258 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *4))))) (-4156 (*1 *2 *2) (-12 (-4 *3 (-13 (-520) (-793) (-972 (-528)) (-591 (-528)))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *3))))) (-2766 (*1 *2 *3 *4) (-12 (-5 *4 (-1095)) (-4 *5 (-13 (-520) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-595 (-568 *3))) (|:| |vals| (-595 *3)))) (-5 *1 (-258 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *5))))) (-1837 (*1 *2 *2 *3) (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-520) (-793) (-972 (-528)) (-591 (-528)))) (-5 *1 (-258 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *4))))) (-1837 (*1 *2 *2) (-12 (-4 *3 (-13 (-520) (-793) (-972 (-528)) (-591 (-528)))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *3))))))
-(-10 -7 (-15 -1837 (|#2| |#2|)) (-15 -1837 (|#2| |#2| (-1095))) (-15 -2766 ((-2 (|:| |func| |#2|) (|:| |kers| (-595 (-568 |#2|))) (|:| |vals| (-595 |#2|))) |#2| (-1095))) (-15 -4156 (|#2| |#2|)) (-15 -4156 (|#2| |#2| (-1095))) (-15 -1576 ((-3 |#2| "failed") (-595 (-568 |#2|)) |#2| (-1095))) (-15 -1650 (|#2| |#2| (-568 |#2|))) (-15 -2242 (|#2| (-387 (-528)) |#2|)))
-((-2606 (((-3 |#3| "failed") |#3|) 110)) (-2880 ((|#3| |#3|) 131)) (-1746 (((-3 |#3| "failed") |#3|) 82)) (-2735 ((|#3| |#3|) 121)) (-2574 (((-3 |#3| "failed") |#3|) 58)) (-2859 ((|#3| |#3|) 129)) (-1885 (((-3 |#3| "failed") |#3|) 46)) (-2712 ((|#3| |#3|) 119)) (-1389 (((-3 |#3| "failed") |#3|) 112)) (-2904 ((|#3| |#3|) 133)) (-3308 (((-3 |#3| "failed") |#3|) 84)) (-2761 ((|#3| |#3|) 123)) (-1911 (((-3 |#3| "failed") |#3| (-717)) 36)) (-1838 (((-3 |#3| "failed") |#3|) 74)) (-2097 ((|#3| |#3|) 118)) (-2566 (((-3 |#3| "failed") |#3|) 44)) (-2656 ((|#3| |#3|) 117)) (-2454 (((-3 |#3| "failed") |#3|) 113)) (-2917 ((|#3| |#3|) 134)) (-4241 (((-3 |#3| "failed") |#3|) 85)) (-2773 ((|#3| |#3|) 124)) (-3983 (((-3 |#3| "failed") |#3|) 111)) (-2892 ((|#3| |#3|) 132)) (-3111 (((-3 |#3| "failed") |#3|) 83)) (-2749 ((|#3| |#3|) 122)) (-1568 (((-3 |#3| "failed") |#3|) 60)) (-2869 ((|#3| |#3|) 130)) (-2975 (((-3 |#3| "failed") |#3|) 48)) (-2724 ((|#3| |#3|) 120)) (-3446 (((-3 |#3| "failed") |#3|) 66)) (-2953 ((|#3| |#3|) 137)) (-2350 (((-3 |#3| "failed") |#3|) 104)) (-2811 ((|#3| |#3|) 142)) (-1591 (((-3 |#3| "failed") |#3|) 62)) (-2928 ((|#3| |#3|) 135)) (-3820 (((-3 |#3| "failed") |#3|) 50)) (-2784 ((|#3| |#3|) 125)) (-3364 (((-3 |#3| "failed") |#3|) 70)) (-2981 ((|#3| |#3|) 139)) (-2247 (((-3 |#3| "failed") |#3|) 54)) (-2836 ((|#3| |#3|) 127)) (-3407 (((-3 |#3| "failed") |#3|) 72)) (-3592 ((|#3| |#3|) 140)) (-1534 (((-3 |#3| "failed") |#3|) 56)) (-2846 ((|#3| |#3|) 128)) (-1961 (((-3 |#3| "failed") |#3|) 68)) (-2967 ((|#3| |#3|) 138)) (-3615 (((-3 |#3| "failed") |#3|) 107)) (-2825 ((|#3| |#3|) 143)) (-2862 (((-3 |#3| "failed") |#3|) 64)) (-2940 ((|#3| |#3|) 136)) (-2781 (((-3 |#3| "failed") |#3|) 52)) (-2797 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-387 (-528))) 40 (|has| |#1| (-343)))))
-(((-259 |#1| |#2| |#3|) (-13 (-920 |#3|) (-10 -7 (IF (|has| |#1| (-343)) (-15 ** (|#3| |#3| (-387 (-528)))) |%noBranch|) (-15 -2656 (|#3| |#3|)) (-15 -2097 (|#3| |#3|)) (-15 -2712 (|#3| |#3|)) (-15 -2724 (|#3| |#3|)) (-15 -2735 (|#3| |#3|)) (-15 -2749 (|#3| |#3|)) (-15 -2761 (|#3| |#3|)) (-15 -2773 (|#3| |#3|)) (-15 -2784 (|#3| |#3|)) (-15 -2797 (|#3| |#3|)) (-15 -2811 (|#3| |#3|)) (-15 -2825 (|#3| |#3|)) (-15 -2836 (|#3| |#3|)) (-15 -2846 (|#3| |#3|)) (-15 -2859 (|#3| |#3|)) (-15 -2869 (|#3| |#3|)) (-15 -2880 (|#3| |#3|)) (-15 -2892 (|#3| |#3|)) (-15 -2904 (|#3| |#3|)) (-15 -2917 (|#3| |#3|)) (-15 -2928 (|#3| |#3|)) (-15 -2940 (|#3| |#3|)) (-15 -2953 (|#3| |#3|)) (-15 -2967 (|#3| |#3|)) (-15 -2981 (|#3| |#3|)) (-15 -3592 (|#3| |#3|)))) (-37 (-387 (-528))) (-1168 |#1|) (-1139 |#1| |#2|)) (T -259))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-387 (-528))) (-4 *4 (-343)) (-4 *4 (-37 *3)) (-4 *5 (-1168 *4)) (-5 *1 (-259 *4 *5 *2)) (-4 *2 (-1139 *4 *5)))) (-2656 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-2097 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-2712 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-2724 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-2735 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-2749 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-2761 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-2773 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-2784 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-2797 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-2811 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-2825 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-2836 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-2846 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-2859 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-2869 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-2880 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-2892 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-2904 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-2917 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-2928 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-2940 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-2953 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-2967 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-2981 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))) (-3592 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3)) (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4)))))
-(-13 (-920 |#3|) (-10 -7 (IF (|has| |#1| (-343)) (-15 ** (|#3| |#3| (-387 (-528)))) |%noBranch|) (-15 -2656 (|#3| |#3|)) (-15 -2097 (|#3| |#3|)) (-15 -2712 (|#3| |#3|)) (-15 -2724 (|#3| |#3|)) (-15 -2735 (|#3| |#3|)) (-15 -2749 (|#3| |#3|)) (-15 -2761 (|#3| |#3|)) (-15 -2773 (|#3| |#3|)) (-15 -2784 (|#3| |#3|)) (-15 -2797 (|#3| |#3|)) (-15 -2811 (|#3| |#3|)) (-15 -2825 (|#3| |#3|)) (-15 -2836 (|#3| |#3|)) (-15 -2846 (|#3| |#3|)) (-15 -2859 (|#3| |#3|)) (-15 -2869 (|#3| |#3|)) (-15 -2880 (|#3| |#3|)) (-15 -2892 (|#3| |#3|)) (-15 -2904 (|#3| |#3|)) (-15 -2917 (|#3| |#3|)) (-15 -2928 (|#3| |#3|)) (-15 -2940 (|#3| |#3|)) (-15 -2953 (|#3| |#3|)) (-15 -2967 (|#3| |#3|)) (-15 -2981 (|#3| |#3|)) (-15 -3592 (|#3| |#3|))))
-((-2606 (((-3 |#3| "failed") |#3|) 66)) (-2880 ((|#3| |#3|) 133)) (-1746 (((-3 |#3| "failed") |#3|) 50)) (-2735 ((|#3| |#3|) 121)) (-2574 (((-3 |#3| "failed") |#3|) 62)) (-2859 ((|#3| |#3|) 131)) (-1885 (((-3 |#3| "failed") |#3|) 46)) (-2712 ((|#3| |#3|) 119)) (-1389 (((-3 |#3| "failed") |#3|) 70)) (-2904 ((|#3| |#3|) 135)) (-3308 (((-3 |#3| "failed") |#3|) 54)) (-2761 ((|#3| |#3|) 123)) (-1911 (((-3 |#3| "failed") |#3| (-717)) 35)) (-1838 (((-3 |#3| "failed") |#3|) 44)) (-2097 ((|#3| |#3|) 112)) (-2566 (((-3 |#3| "failed") |#3|) 42)) (-2656 ((|#3| |#3|) 118)) (-2454 (((-3 |#3| "failed") |#3|) 72)) (-2917 ((|#3| |#3|) 136)) (-4241 (((-3 |#3| "failed") |#3|) 56)) (-2773 ((|#3| |#3|) 124)) (-3983 (((-3 |#3| "failed") |#3|) 68)) (-2892 ((|#3| |#3|) 134)) (-3111 (((-3 |#3| "failed") |#3|) 52)) (-2749 ((|#3| |#3|) 122)) (-1568 (((-3 |#3| "failed") |#3|) 64)) (-2869 ((|#3| |#3|) 132)) (-2975 (((-3 |#3| "failed") |#3|) 48)) (-2724 ((|#3| |#3|) 120)) (-3446 (((-3 |#3| "failed") |#3|) 78)) (-2953 ((|#3| |#3|) 139)) (-2350 (((-3 |#3| "failed") |#3|) 58)) (-2811 ((|#3| |#3|) 127)) (-1591 (((-3 |#3| "failed") |#3|) 74)) (-2928 ((|#3| |#3|) 137)) (-3820 (((-3 |#3| "failed") |#3|) 102)) (-2784 ((|#3| |#3|) 125)) (-3364 (((-3 |#3| "failed") |#3|) 82)) (-2981 ((|#3| |#3|) 141)) (-2247 (((-3 |#3| "failed") |#3|) 109)) (-2836 ((|#3| |#3|) 129)) (-3407 (((-3 |#3| "failed") |#3|) 84)) (-3592 ((|#3| |#3|) 142)) (-1534 (((-3 |#3| "failed") |#3|) 111)) (-2846 ((|#3| |#3|) 130)) (-1961 (((-3 |#3| "failed") |#3|) 80)) (-2967 ((|#3| |#3|) 140)) (-3615 (((-3 |#3| "failed") |#3|) 60)) (-2825 ((|#3| |#3|) 128)) (-2862 (((-3 |#3| "failed") |#3|) 76)) (-2940 ((|#3| |#3|) 138)) (-2781 (((-3 |#3| "failed") |#3|) 105)) (-2797 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-387 (-528))) 40 (|has| |#1| (-343)))))
-(((-260 |#1| |#2| |#3| |#4|) (-13 (-920 |#3|) (-10 -7 (IF (|has| |#1| (-343)) (-15 ** (|#3| |#3| (-387 (-528)))) |%noBranch|) (-15 -2656 (|#3| |#3|)) (-15 -2097 (|#3| |#3|)) (-15 -2712 (|#3| |#3|)) (-15 -2724 (|#3| |#3|)) (-15 -2735 (|#3| |#3|)) (-15 -2749 (|#3| |#3|)) (-15 -2761 (|#3| |#3|)) (-15 -2773 (|#3| |#3|)) (-15 -2784 (|#3| |#3|)) (-15 -2797 (|#3| |#3|)) (-15 -2811 (|#3| |#3|)) (-15 -2825 (|#3| |#3|)) (-15 -2836 (|#3| |#3|)) (-15 -2846 (|#3| |#3|)) (-15 -2859 (|#3| |#3|)) (-15 -2869 (|#3| |#3|)) (-15 -2880 (|#3| |#3|)) (-15 -2892 (|#3| |#3|)) (-15 -2904 (|#3| |#3|)) (-15 -2917 (|#3| |#3|)) (-15 -2928 (|#3| |#3|)) (-15 -2940 (|#3| |#3|)) (-15 -2953 (|#3| |#3|)) (-15 -2967 (|#3| |#3|)) (-15 -2981 (|#3| |#3|)) (-15 -3592 (|#3| |#3|)))) (-37 (-387 (-528))) (-1137 |#1|) (-1160 |#1| |#2|) (-920 |#2|)) (T -260))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-387 (-528))) (-4 *4 (-343)) (-4 *4 (-37 *3)) (-4 *5 (-1137 *4)) (-5 *1 (-260 *4 *5 *2 *6)) (-4 *2 (-1160 *4 *5)) (-4 *6 (-920 *5)))) (-2656 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-2097 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-2712 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-2724 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-2735 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-2749 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-2761 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-2773 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-2784 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-2797 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-2811 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-2825 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-2836 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-2846 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-2859 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-2869 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-2880 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-2892 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-2904 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-2917 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-2928 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-2940 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-2953 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-2967 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-2981 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))) (-3592 (*1 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3)) (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4)))))
-(-13 (-920 |#3|) (-10 -7 (IF (|has| |#1| (-343)) (-15 ** (|#3| |#3| (-387 (-528)))) |%noBranch|) (-15 -2656 (|#3| |#3|)) (-15 -2097 (|#3| |#3|)) (-15 -2712 (|#3| |#3|)) (-15 -2724 (|#3| |#3|)) (-15 -2735 (|#3| |#3|)) (-15 -2749 (|#3| |#3|)) (-15 -2761 (|#3| |#3|)) (-15 -2773 (|#3| |#3|)) (-15 -2784 (|#3| |#3|)) (-15 -2797 (|#3| |#3|)) (-15 -2811 (|#3| |#3|)) (-15 -2825 (|#3| |#3|)) (-15 -2836 (|#3| |#3|)) (-15 -2846 (|#3| |#3|)) (-15 -2859 (|#3| |#3|)) (-15 -2869 (|#3| |#3|)) (-15 -2880 (|#3| |#3|)) (-15 -2892 (|#3| |#3|)) (-15 -2904 (|#3| |#3|)) (-15 -2917 (|#3| |#3|)) (-15 -2928 (|#3| |#3|)) (-15 -2940 (|#3| |#3|)) (-15 -2953 (|#3| |#3|)) (-15 -2967 (|#3| |#3|)) (-15 -2981 (|#3| |#3|)) (-15 -3592 (|#3| |#3|))))
-((-2416 (((-110) $) 19)) (-1480 (((-171) $) 7)) (-2922 (((-3 (-1095) "failed") $) 14)) (-3694 (((-3 (-595 $) "failed") $) NIL)) (-1898 (((-3 (-1095) "failed") $) 21)) (-2533 (((-3 (-1027) "failed") $) 17)) (-4217 (((-110) $) 15)) (-2222 (((-802) $) NIL)) (-1501 (((-110) $) 9)))
-(((-261) (-13 (-569 (-802)) (-10 -8 (-15 -1480 ((-171) $)) (-15 -4217 ((-110) $)) (-15 -2533 ((-3 (-1027) "failed") $)) (-15 -2416 ((-110) $)) (-15 -1898 ((-3 (-1095) "failed") $)) (-15 -1501 ((-110) $)) (-15 -2922 ((-3 (-1095) "failed") $)) (-15 -3694 ((-3 (-595 $) "failed") $))))) (T -261))
-((-1480 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-261)))) (-4217 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-261)))) (-2533 (*1 *2 *1) (|partial| -12 (-5 *2 (-1027)) (-5 *1 (-261)))) (-2416 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-261)))) (-1898 (*1 *2 *1) (|partial| -12 (-5 *2 (-1095)) (-5 *1 (-261)))) (-1501 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-261)))) (-2922 (*1 *2 *1) (|partial| -12 (-5 *2 (-1095)) (-5 *1 (-261)))) (-3694 (*1 *2 *1) (|partial| -12 (-5 *2 (-595 (-261))) (-5 *1 (-261)))))
-(-13 (-569 (-802)) (-10 -8 (-15 -1480 ((-171) $)) (-15 -4217 ((-110) $)) (-15 -2533 ((-3 (-1027) "failed") $)) (-15 -2416 ((-110) $)) (-15 -1898 ((-3 (-1095) "failed") $)) (-15 -1501 ((-110) $)) (-15 -2922 ((-3 (-1095) "failed") $)) (-15 -3694 ((-3 (-595 $) "failed") $))))
-((-1573 (($ (-1 (-110) |#2|) $) 24)) (-2923 (($ $) 36)) (-3991 (($ (-1 (-110) |#2|) $) NIL) (($ |#2| $) 34)) (-2280 (($ |#2| $) 32) (($ (-1 (-110) |#2|) $) 18)) (-3368 (($ (-1 (-110) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-3939 (($ |#2| $ (-528)) 20) (($ $ $ (-528)) 22)) (-1745 (($ $ (-528)) 11) (($ $ (-1144 (-528))) 14)) (-3579 (($ $ |#2|) 30) (($ $ $) NIL)) (-3400 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-595 $)) NIL)))
-(((-262 |#1| |#2|) (-10 -8 (-15 -3368 (|#1| |#1| |#1|)) (-15 -3991 (|#1| |#2| |#1|)) (-15 -3368 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -3991 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3579 (|#1| |#1| |#1|)) (-15 -3579 (|#1| |#1| |#2|)) (-15 -3939 (|#1| |#1| |#1| (-528))) (-15 -3939 (|#1| |#2| |#1| (-528))) (-15 -1745 (|#1| |#1| (-1144 (-528)))) (-15 -1745 (|#1| |#1| (-528))) (-15 -3400 (|#1| (-595 |#1|))) (-15 -3400 (|#1| |#1| |#1|)) (-15 -3400 (|#1| |#2| |#1|)) (-15 -3400 (|#1| |#1| |#2|)) (-15 -2280 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1573 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2280 (|#1| |#2| |#1|)) (-15 -2923 (|#1| |#1|))) (-263 |#2|) (-1131)) (T -262))
-NIL
-(-10 -8 (-15 -3368 (|#1| |#1| |#1|)) (-15 -3991 (|#1| |#2| |#1|)) (-15 -3368 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -3991 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3579 (|#1| |#1| |#1|)) (-15 -3579 (|#1| |#1| |#2|)) (-15 -3939 (|#1| |#1| |#1| (-528))) (-15 -3939 (|#1| |#2| |#1| (-528))) (-15 -1745 (|#1| |#1| (-1144 (-528)))) (-15 -1745 (|#1| |#1| (-528))) (-15 -3400 (|#1| (-595 |#1|))) (-15 -3400 (|#1| |#1| |#1|)) (-15 -3400 (|#1| |#2| |#1|)) (-15 -3400 (|#1| |#1| |#2|)) (-15 -2280 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1573 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2280 (|#1| |#2| |#1|)) (-15 -2923 (|#1| |#1|)))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-1444 (((-1182) $ (-528) (-528)) 40 (|has| $ (-6 -4265)))) (-3535 (((-110) $ (-717)) 8)) (-2381 ((|#1| $ (-528) |#1|) 52 (|has| $ (-6 -4265))) ((|#1| $ (-1144 (-528)) |#1|) 58 (|has| $ (-6 -4265)))) (-1836 (($ (-1 (-110) |#1|) $) 85)) (-1573 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4264)))) (-2816 (($) 7 T CONST)) (-2833 (($ $) 83 (|has| |#1| (-1023)))) (-2923 (($ $) 78 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-3991 (($ (-1 (-110) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1023)))) (-2280 (($ |#1| $) 77 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4264)))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4264)))) (-2812 ((|#1| $ (-528) |#1|) 53 (|has| $ (-6 -4265)))) (-2742 ((|#1| $ (-528)) 51)) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-3462 (($ (-717) |#1|) 69)) (-2029 (((-110) $ (-717)) 9)) (-3530 (((-528) $) 43 (|has| (-528) (-793)))) (-3368 (($ (-1 (-110) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-793)))) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-1709 (((-528) $) 44 (|has| (-528) (-793)))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3358 (((-110) $ (-717)) 10)) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-1950 (($ |#1| $ (-528)) 88) (($ $ $ (-528)) 87)) (-3939 (($ |#1| $ (-528)) 60) (($ $ $ (-528)) 59)) (-2084 (((-595 (-528)) $) 46)) (-3966 (((-110) (-528) $) 47)) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-2890 ((|#1| $) 42 (|has| (-528) (-793)))) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-1332 (($ $ |#1|) 41 (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-2111 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2861 (((-595 |#1|) $) 48)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3043 ((|#1| $ (-528) |#1|) 50) ((|#1| $ (-528)) 49) (($ $ (-1144 (-528))) 63)) (-1704 (($ $ (-528)) 91) (($ $ (-1144 (-528))) 90)) (-1745 (($ $ (-528)) 62) (($ $ (-1144 (-528))) 61)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-3155 (((-504) $) 79 (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) 70)) (-3579 (($ $ |#1|) 93) (($ $ $) 92)) (-3400 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-595 $)) 65)) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-263 |#1|) (-133) (-1131)) (T -263))
-((-3579 (*1 *1 *1 *2) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1131)))) (-3579 (*1 *1 *1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1131)))) (-1704 (*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-4 *1 (-263 *3)) (-4 *3 (-1131)))) (-1704 (*1 *1 *1 *2) (-12 (-5 *2 (-1144 (-528))) (-4 *1 (-263 *3)) (-4 *3 (-1131)))) (-3991 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-263 *3)) (-4 *3 (-1131)))) (-1950 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-528)) (-4 *1 (-263 *2)) (-4 *2 (-1131)))) (-1950 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-528)) (-4 *1 (-263 *3)) (-4 *3 (-1131)))) (-3368 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-263 *3)) (-4 *3 (-1131)))) (-1836 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-263 *3)) (-4 *3 (-1131)))) (-3991 (*1 *1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1131)) (-4 *2 (-1023)))) (-2833 (*1 *1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1131)) (-4 *2 (-1023)))) (-3368 (*1 *1 *1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1131)) (-4 *2 (-793)))))
-(-13 (-600 |t#1|) (-10 -8 (-6 -4265) (-15 -3579 ($ $ |t#1|)) (-15 -3579 ($ $ $)) (-15 -1704 ($ $ (-528))) (-15 -1704 ($ $ (-1144 (-528)))) (-15 -3991 ($ (-1 (-110) |t#1|) $)) (-15 -1950 ($ |t#1| $ (-528))) (-15 -1950 ($ $ $ (-528))) (-15 -3368 ($ (-1 (-110) |t#1| |t#1|) $ $)) (-15 -1836 ($ (-1 (-110) |t#1|) $)) (IF (|has| |t#1| (-1023)) (PROGN (-15 -3991 ($ |t#1| $)) (-15 -2833 ($ $))) |%noBranch|) (IF (|has| |t#1| (-793)) (-15 -3368 ($ $ $)) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1023)) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-569 (-802)))) ((-144 |#1|) . T) ((-570 (-504)) |has| |#1| (-570 (-504))) ((-267 #0=(-528) |#1|) . T) ((-269 #0# |#1|) . T) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-467 |#1|) . T) ((-561 #0# |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-600 |#1|) . T) ((-1023) |has| |#1| (-1023)) ((-1131) . T))
+(-13 (-984) (-109 $ $) (-10 -7 (-6 (-4271 "*"))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-805)) . T) ((-599 $) . T) ((-675) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3388 ((|#1| $) 75)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-1655 (((-110) $ $) NIL)) (-3815 (($) NIL T CONST)) (-2824 (($ $ $) NIL)) (-1383 (($ $) 19)) (-1387 (($ |#1| (-1076 |#1|)) 48)) (-3741 (((-3 $ "failed") $) 117)) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4005 (((-110) $) NIL)) (-1384 (((-1076 |#1|) $) 82)) (-1386 (((-1076 |#1|) $) 79)) (-1385 (((-1076 |#1|) $) 80)) (-2436 (((-110) $) NIL)) (-1380 (((-1076 |#1|) $) 88)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL)) (-1963 (($ (-594 $)) NIL) (($ $ $) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ (-594 $)) NIL) (($ $ $) NIL)) (-4011 (((-386 $) $) NIL)) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL)) (-4047 (($ $ (-516)) 91)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-1379 (((-1076 |#1|) $) 89)) (-1381 (((-1076 (-388 |#1|)) $) 14)) (-2874 (($ (-388 |#1|)) 17) (($ |#1| (-1076 |#1|) (-1076 |#1|)) 38)) (-3155 (($ $) 93)) (-4233 (((-805) $) 127) (($ (-516)) 51) (($ |#1|) 52) (($ (-388 |#1|)) 36) (($ (-388 (-516))) NIL) (($ $) NIL)) (-3385 (((-719)) 64)) (-2117 (((-110) $ $) NIL)) (-1382 (((-1076 (-388 |#1|)) $) 18)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) 25 T CONST)) (-2927 (($) 28 T CONST)) (-3317 (((-110) $ $) 35)) (-4224 (($ $ $) 115)) (-4116 (($ $) 106) (($ $ $) 103)) (-4118 (($ $ $) 101)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-388 |#1|) $) 111) (($ $ (-388 |#1|)) NIL) (($ (-388 (-516)) $) NIL) (($ $ (-388 (-516))) NIL)))
+(((-163 |#1|) (-13 (-37 |#1|) (-37 (-388 |#1|)) (-344) (-10 -8 (-15 -2874 ($ (-388 |#1|))) (-15 -2874 ($ |#1| (-1076 |#1|) (-1076 |#1|))) (-15 -1387 ($ |#1| (-1076 |#1|))) (-15 -1386 ((-1076 |#1|) $)) (-15 -1385 ((-1076 |#1|) $)) (-15 -1384 ((-1076 |#1|) $)) (-15 -3388 (|#1| $)) (-15 -1383 ($ $)) (-15 -1382 ((-1076 (-388 |#1|)) $)) (-15 -1381 ((-1076 (-388 |#1|)) $)) (-15 -1380 ((-1076 |#1|) $)) (-15 -1379 ((-1076 |#1|) $)) (-15 -4047 ($ $ (-516))) (-15 -3155 ($ $)))) (-289)) (T -163))
+((-2874 (*1 *1 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-289)) (-5 *1 (-163 *3)))) (-2874 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1076 *2)) (-4 *2 (-289)) (-5 *1 (-163 *2)))) (-1387 (*1 *1 *2 *3) (-12 (-5 *3 (-1076 *2)) (-4 *2 (-289)) (-5 *1 (-163 *2)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-3388 (*1 *2 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289)))) (-1383 (*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-1076 (-388 *3))) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-1076 (-388 *3))) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-1379 (*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-4047 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-3155 (*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289)))))
+(-13 (-37 |#1|) (-37 (-388 |#1|)) (-344) (-10 -8 (-15 -2874 ($ (-388 |#1|))) (-15 -2874 ($ |#1| (-1076 |#1|) (-1076 |#1|))) (-15 -1387 ($ |#1| (-1076 |#1|))) (-15 -1386 ((-1076 |#1|) $)) (-15 -1385 ((-1076 |#1|) $)) (-15 -1384 ((-1076 |#1|) $)) (-15 -3388 (|#1| $)) (-15 -1383 ($ $)) (-15 -1382 ((-1076 (-388 |#1|)) $)) (-15 -1381 ((-1076 (-388 |#1|)) $)) (-15 -1380 ((-1076 |#1|) $)) (-15 -1379 ((-1076 |#1|) $)) (-15 -4047 ($ $ (-516))) (-15 -3155 ($ $))))
+((-1388 (($ (-106) $) 13)) (-3494 (((-3 (-106) "failed") (-1098) $) 12)) (-4233 (((-805) $) 16)) (-1389 (((-594 (-106)) $) 8)))
+(((-164) (-13 (-571 (-805)) (-10 -8 (-15 -1389 ((-594 (-106)) $)) (-15 -1388 ($ (-106) $)) (-15 -3494 ((-3 (-106) "failed") (-1098) $))))) (T -164))
+((-1389 (*1 *2 *1) (-12 (-5 *2 (-594 (-106))) (-5 *1 (-164)))) (-1388 (*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-164)))) (-3494 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1098)) (-5 *2 (-106)) (-5 *1 (-164)))))
+(-13 (-571 (-805)) (-10 -8 (-15 -1389 ((-594 (-106)) $)) (-15 -1388 ($ (-106) $)) (-15 -3494 ((-3 (-106) "failed") (-1098) $))))
+((-1402 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 40)) (-1393 (((-884 |#1|) (-884 |#1|)) 19)) (-1398 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 36)) (-1391 (((-884 |#1|) (-884 |#1|)) 17)) (-1396 (((-884 |#1|) (-884 |#1|)) 25)) (-1395 (((-884 |#1|) (-884 |#1|)) 24)) (-1394 (((-884 |#1|) (-884 |#1|)) 23)) (-1399 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 37)) (-1397 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 35)) (-1709 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 34)) (-1392 (((-884 |#1|) (-884 |#1|)) 18)) (-1403 (((-1 (-884 |#1|) (-884 |#1|)) |#1| |#1|) 43)) (-1390 (((-884 |#1|) (-884 |#1|)) 8)) (-1401 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 39)) (-1400 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 38)))
+(((-165 |#1|) (-10 -7 (-15 -1390 ((-884 |#1|) (-884 |#1|))) (-15 -1391 ((-884 |#1|) (-884 |#1|))) (-15 -1392 ((-884 |#1|) (-884 |#1|))) (-15 -1393 ((-884 |#1|) (-884 |#1|))) (-15 -1394 ((-884 |#1|) (-884 |#1|))) (-15 -1395 ((-884 |#1|) (-884 |#1|))) (-15 -1396 ((-884 |#1|) (-884 |#1|))) (-15 -1709 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1397 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1398 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1399 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1400 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1401 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1402 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1403 ((-1 (-884 |#1|) (-884 |#1|)) |#1| |#1|))) (-13 (-344) (-1120) (-941))) (T -165))
+((-1403 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1120) (-941))))) (-1402 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1120) (-941))))) (-1401 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1120) (-941))))) (-1400 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1120) (-941))))) (-1399 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1120) (-941))))) (-1398 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1120) (-941))))) (-1397 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1120) (-941))))) (-1709 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1120) (-941))))) (-1396 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1120) (-941))) (-5 *1 (-165 *3)))) (-1395 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1120) (-941))) (-5 *1 (-165 *3)))) (-1394 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1120) (-941))) (-5 *1 (-165 *3)))) (-1393 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1120) (-941))) (-5 *1 (-165 *3)))) (-1392 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1120) (-941))) (-5 *1 (-165 *3)))) (-1391 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1120) (-941))) (-5 *1 (-165 *3)))) (-1390 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1120) (-941))) (-5 *1 (-165 *3)))))
+(-10 -7 (-15 -1390 ((-884 |#1|) (-884 |#1|))) (-15 -1391 ((-884 |#1|) (-884 |#1|))) (-15 -1392 ((-884 |#1|) (-884 |#1|))) (-15 -1393 ((-884 |#1|) (-884 |#1|))) (-15 -1394 ((-884 |#1|) (-884 |#1|))) (-15 -1395 ((-884 |#1|) (-884 |#1|))) (-15 -1396 ((-884 |#1|) (-884 |#1|))) (-15 -1709 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1397 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1398 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1399 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1400 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1401 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1402 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1403 ((-1 (-884 |#1|) (-884 |#1|)) |#1| |#1|)))
+((-2632 ((|#2| |#3|) 27)))
+(((-166 |#1| |#2| |#3|) (-10 -7 (-15 -2632 (|#2| |#3|))) (-162) (-1155 |#1|) (-673 |#1| |#2|)) (T -166))
+((-2632 (*1 *2 *3) (-12 (-4 *4 (-162)) (-4 *2 (-1155 *4)) (-5 *1 (-166 *4 *2 *3)) (-4 *3 (-673 *4 *2)))))
+(-10 -7 (-15 -2632 (|#2| |#3|)))
+((-3060 (((-829 |#1| |#3|) |#3| (-831 |#1|) (-829 |#1| |#3|)) 47 (|has| (-887 |#2|) (-827 |#1|)))))
+(((-167 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-887 |#2|) (-827 |#1|)) (-15 -3060 ((-829 |#1| |#3|) |#3| (-831 |#1|) (-829 |#1| |#3|))) |%noBranch|)) (-1027) (-13 (-827 |#1|) (-162)) (-156 |#2|)) (T -167))
+((-3060 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-829 *5 *3)) (-5 *4 (-831 *5)) (-4 *5 (-1027)) (-4 *3 (-156 *6)) (-4 (-887 *6) (-827 *5)) (-4 *6 (-13 (-827 *5) (-162))) (-5 *1 (-167 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-887 |#2|) (-827 |#1|)) (-15 -3060 ((-829 |#1| |#3|) |#3| (-831 |#1|) (-829 |#1| |#3|))) |%noBranch|))
+((-1405 (((-594 |#1|) (-594 |#1|) |#1|) 38)) (-1404 (((-594 |#1|) |#1| (-594 |#1|)) 19)) (-2137 (((-594 |#1|) (-594 (-594 |#1|)) (-594 |#1|)) 33) ((|#1| (-594 |#1|) (-594 |#1|)) 31)))
+(((-168 |#1|) (-10 -7 (-15 -1404 ((-594 |#1|) |#1| (-594 |#1|))) (-15 -2137 (|#1| (-594 |#1|) (-594 |#1|))) (-15 -2137 ((-594 |#1|) (-594 (-594 |#1|)) (-594 |#1|))) (-15 -1405 ((-594 |#1|) (-594 |#1|) |#1|))) (-289)) (T -168))
+((-1405 (*1 *2 *2 *3) (-12 (-5 *2 (-594 *3)) (-4 *3 (-289)) (-5 *1 (-168 *3)))) (-2137 (*1 *2 *3 *2) (-12 (-5 *3 (-594 (-594 *4))) (-5 *2 (-594 *4)) (-4 *4 (-289)) (-5 *1 (-168 *4)))) (-2137 (*1 *2 *3 *3) (-12 (-5 *3 (-594 *2)) (-5 *1 (-168 *2)) (-4 *2 (-289)))) (-1404 (*1 *2 *3 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-289)) (-5 *1 (-168 *3)))))
+(-10 -7 (-15 -1404 ((-594 |#1|) |#1| (-594 |#1|))) (-15 -2137 (|#1| (-594 |#1|) (-594 |#1|))) (-15 -2137 ((-594 |#1|) (-594 (-594 |#1|)) (-594 |#1|))) (-15 -1405 ((-594 |#1|) (-594 |#1|) |#1|)))
+((-1414 (((-2 (|:| |start| |#2|) (|:| -2701 (-386 |#2|))) |#2|) 61)) (-1413 ((|#1| |#1|) 54)) (-1412 (((-158 |#1|) |#2|) 84)) (-1411 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-1410 ((|#2| |#2|) 83)) (-1409 (((-386 |#2|) |#2| |#1|) 113) (((-386 |#2|) |#2| |#1| (-110)) 81)) (-3391 ((|#1| |#2|) 112)) (-1408 ((|#2| |#2|) 119)) (-4011 (((-386 |#2|) |#2|) 134) (((-386 |#2|) |#2| |#1|) 32) (((-386 |#2|) |#2| |#1| (-110)) 133)) (-1407 (((-594 (-2 (|:| -2701 (-594 |#2|)) (|:| -1606 |#1|))) |#2| |#2|) 132) (((-594 (-2 (|:| -2701 (-594 |#2|)) (|:| -1606 |#1|))) |#2| |#2| (-110)) 76)) (-1406 (((-594 (-158 |#1|)) |#2| |#1|) 40) (((-594 (-158 |#1|)) |#2|) 41)))
+(((-169 |#1| |#2|) (-10 -7 (-15 -1406 ((-594 (-158 |#1|)) |#2|)) (-15 -1406 ((-594 (-158 |#1|)) |#2| |#1|)) (-15 -1407 ((-594 (-2 (|:| -2701 (-594 |#2|)) (|:| -1606 |#1|))) |#2| |#2| (-110))) (-15 -1407 ((-594 (-2 (|:| -2701 (-594 |#2|)) (|:| -1606 |#1|))) |#2| |#2|)) (-15 -4011 ((-386 |#2|) |#2| |#1| (-110))) (-15 -4011 ((-386 |#2|) |#2| |#1|)) (-15 -4011 ((-386 |#2|) |#2|)) (-15 -1408 (|#2| |#2|)) (-15 -3391 (|#1| |#2|)) (-15 -1409 ((-386 |#2|) |#2| |#1| (-110))) (-15 -1409 ((-386 |#2|) |#2| |#1|)) (-15 -1410 (|#2| |#2|)) (-15 -1411 (|#1| |#2| |#1|)) (-15 -1411 (|#1| |#2|)) (-15 -1412 ((-158 |#1|) |#2|)) (-15 -1413 (|#1| |#1|)) (-15 -1414 ((-2 (|:| |start| |#2|) (|:| -2701 (-386 |#2|))) |#2|))) (-13 (-344) (-793)) (-1155 (-158 |#1|))) (T -169))
+((-1414 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-2 (|:| |start| *3) (|:| -2701 (-386 *3)))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1155 (-158 *4))))) (-1413 (*1 *2 *2) (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1155 (-158 *2))))) (-1412 (*1 *2 *3) (-12 (-5 *2 (-158 *4)) (-5 *1 (-169 *4 *3)) (-4 *4 (-13 (-344) (-793))) (-4 *3 (-1155 *2)))) (-1411 (*1 *2 *3) (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1155 (-158 *2))))) (-1411 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1155 (-158 *2))))) (-1410 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-793))) (-5 *1 (-169 *3 *2)) (-4 *2 (-1155 (-158 *3))))) (-1409 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-386 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1155 (-158 *4))))) (-1409 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-110)) (-4 *4 (-13 (-344) (-793))) (-5 *2 (-386 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1155 (-158 *4))))) (-3391 (*1 *2 *3) (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1155 (-158 *2))))) (-1408 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-793))) (-5 *1 (-169 *3 *2)) (-4 *2 (-1155 (-158 *3))))) (-4011 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-386 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1155 (-158 *4))))) (-4011 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-386 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1155 (-158 *4))))) (-4011 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-110)) (-4 *4 (-13 (-344) (-793))) (-5 *2 (-386 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1155 (-158 *4))))) (-1407 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-594 (-2 (|:| -2701 (-594 *3)) (|:| -1606 *4)))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1155 (-158 *4))))) (-1407 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-344) (-793))) (-5 *2 (-594 (-2 (|:| -2701 (-594 *3)) (|:| -1606 *5)))) (-5 *1 (-169 *5 *3)) (-4 *3 (-1155 (-158 *5))))) (-1406 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-594 (-158 *4))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1155 (-158 *4))))) (-1406 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-594 (-158 *4))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1155 (-158 *4))))))
+(-10 -7 (-15 -1406 ((-594 (-158 |#1|)) |#2|)) (-15 -1406 ((-594 (-158 |#1|)) |#2| |#1|)) (-15 -1407 ((-594 (-2 (|:| -2701 (-594 |#2|)) (|:| -1606 |#1|))) |#2| |#2| (-110))) (-15 -1407 ((-594 (-2 (|:| -2701 (-594 |#2|)) (|:| -1606 |#1|))) |#2| |#2|)) (-15 -4011 ((-386 |#2|) |#2| |#1| (-110))) (-15 -4011 ((-386 |#2|) |#2| |#1|)) (-15 -4011 ((-386 |#2|) |#2|)) (-15 -1408 (|#2| |#2|)) (-15 -3391 (|#1| |#2|)) (-15 -1409 ((-386 |#2|) |#2| |#1| (-110))) (-15 -1409 ((-386 |#2|) |#2| |#1|)) (-15 -1410 (|#2| |#2|)) (-15 -1411 (|#1| |#2| |#1|)) (-15 -1411 (|#1| |#2|)) (-15 -1412 ((-158 |#1|) |#2|)) (-15 -1413 (|#1| |#1|)) (-15 -1414 ((-2 (|:| |start| |#2|) (|:| -2701 (-386 |#2|))) |#2|)))
+((-1415 (((-3 |#2| "failed") |#2|) 14)) (-1416 (((-719) |#2|) 16)) (-1417 ((|#2| |#2| |#2|) 18)))
+(((-170 |#1| |#2|) (-10 -7 (-15 -1415 ((-3 |#2| "failed") |#2|)) (-15 -1416 ((-719) |#2|)) (-15 -1417 (|#2| |#2| |#2|))) (-1134) (-624 |#1|)) (T -170))
+((-1417 (*1 *2 *2 *2) (-12 (-4 *3 (-1134)) (-5 *1 (-170 *3 *2)) (-4 *2 (-624 *3)))) (-1416 (*1 *2 *3) (-12 (-4 *4 (-1134)) (-5 *2 (-719)) (-5 *1 (-170 *4 *3)) (-4 *3 (-624 *4)))) (-1415 (*1 *2 *2) (|partial| -12 (-4 *3 (-1134)) (-5 *1 (-170 *3 *2)) (-4 *2 (-624 *3)))))
+(-10 -7 (-15 -1415 ((-3 |#2| "failed") |#2|)) (-15 -1416 ((-719) |#2|)) (-15 -1417 (|#2| |#2| |#2|)))
+((-2828 (((-110) $ $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-1419 (((-1098) $) 10)) (-4233 (((-805) $) 17)) (-1418 (((-594 (-1103)) $) 12)) (-3317 (((-110) $ $) 15)))
+(((-171) (-13 (-1027) (-10 -8 (-15 -1419 ((-1098) $)) (-15 -1418 ((-594 (-1103)) $))))) (T -171))
+((-1419 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-171)))) (-1418 (*1 *2 *1) (-12 (-5 *2 (-594 (-1103))) (-5 *1 (-171)))))
+(-13 (-1027) (-10 -8 (-15 -1419 ((-1098) $)) (-15 -1418 ((-594 (-1103)) $))))
+((-3924 ((|#2| |#2|) 28)) (-3927 (((-110) |#2|) 19)) (-3925 (((-295 |#1|) |#2|) 12)) (-3926 (((-295 |#1|) |#2|) 14)) (-3922 ((|#2| |#2| (-1098)) 68) ((|#2| |#2|) 69)) (-3928 (((-158 (-295 |#1|)) |#2|) 10)) (-3923 ((|#2| |#2| (-1098)) 65) ((|#2| |#2|) 59)))
+(((-172 |#1| |#2|) (-10 -7 (-15 -3922 (|#2| |#2|)) (-15 -3922 (|#2| |#2| (-1098))) (-15 -3923 (|#2| |#2|)) (-15 -3923 (|#2| |#2| (-1098))) (-15 -3925 ((-295 |#1|) |#2|)) (-15 -3926 ((-295 |#1|) |#2|)) (-15 -3927 ((-110) |#2|)) (-15 -3924 (|#2| |#2|)) (-15 -3928 ((-158 (-295 |#1|)) |#2|))) (-13 (-523) (-795) (-975 (-516))) (-13 (-27) (-1120) (-402 (-158 |#1|)))) (T -172))
+((-3928 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-795) (-975 (-516)))) (-5 *2 (-158 (-295 *4))) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1120) (-402 (-158 *4)))))) (-3924 (*1 *2 *2) (-12 (-4 *3 (-13 (-523) (-795) (-975 (-516)))) (-5 *1 (-172 *3 *2)) (-4 *2 (-13 (-27) (-1120) (-402 (-158 *3)))))) (-3927 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-795) (-975 (-516)))) (-5 *2 (-110)) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1120) (-402 (-158 *4)))))) (-3926 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-795) (-975 (-516)))) (-5 *2 (-295 *4)) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1120) (-402 (-158 *4)))))) (-3925 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-795) (-975 (-516)))) (-5 *2 (-295 *4)) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1120) (-402 (-158 *4)))))) (-3923 (*1 *2 *2 *3) (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-523) (-795) (-975 (-516)))) (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1120) (-402 (-158 *4)))))) (-3923 (*1 *2 *2) (-12 (-4 *3 (-13 (-523) (-795) (-975 (-516)))) (-5 *1 (-172 *3 *2)) (-4 *2 (-13 (-27) (-1120) (-402 (-158 *3)))))) (-3922 (*1 *2 *2 *3) (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-523) (-795) (-975 (-516)))) (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1120) (-402 (-158 *4)))))) (-3922 (*1 *2 *2) (-12 (-4 *3 (-13 (-523) (-795) (-975 (-516)))) (-5 *1 (-172 *3 *2)) (-4 *2 (-13 (-27) (-1120) (-402 (-158 *3)))))))
+(-10 -7 (-15 -3922 (|#2| |#2|)) (-15 -3922 (|#2| |#2| (-1098))) (-15 -3923 (|#2| |#2|)) (-15 -3923 (|#2| |#2| (-1098))) (-15 -3925 ((-295 |#1|) |#2|)) (-15 -3926 ((-295 |#1|) |#2|)) (-15 -3927 ((-110) |#2|)) (-15 -3924 (|#2| |#2|)) (-15 -3928 ((-158 (-295 |#1|)) |#2|)))
+((-1420 (((-1179 (-637 (-887 |#1|))) (-1179 (-637 |#1|))) 24)) (-4233 (((-1179 (-637 (-388 (-887 |#1|)))) (-1179 (-637 |#1|))) 33)))
+(((-173 |#1|) (-10 -7 (-15 -1420 ((-1179 (-637 (-887 |#1|))) (-1179 (-637 |#1|)))) (-15 -4233 ((-1179 (-637 (-388 (-887 |#1|)))) (-1179 (-637 |#1|))))) (-162)) (T -173))
+((-4233 (*1 *2 *3) (-12 (-5 *3 (-1179 (-637 *4))) (-4 *4 (-162)) (-5 *2 (-1179 (-637 (-388 (-887 *4))))) (-5 *1 (-173 *4)))) (-1420 (*1 *2 *3) (-12 (-5 *3 (-1179 (-637 *4))) (-4 *4 (-162)) (-5 *2 (-1179 (-637 (-887 *4)))) (-5 *1 (-173 *4)))))
+(-10 -7 (-15 -1420 ((-1179 (-637 (-887 |#1|))) (-1179 (-637 |#1|)))) (-15 -4233 ((-1179 (-637 (-388 (-887 |#1|)))) (-1179 (-637 |#1|)))))
+((-1428 (((-1100 (-388 (-516))) (-1100 (-388 (-516))) (-1100 (-388 (-516)))) 66)) (-1430 (((-1100 (-388 (-516))) (-594 (-516)) (-594 (-516))) 75)) (-1421 (((-1100 (-388 (-516))) (-516)) 40)) (-4133 (((-1100 (-388 (-516))) (-516)) 52)) (-4046 (((-388 (-516)) (-1100 (-388 (-516)))) 62)) (-1422 (((-1100 (-388 (-516))) (-516)) 32)) (-1425 (((-1100 (-388 (-516))) (-516)) 48)) (-1424 (((-1100 (-388 (-516))) (-516)) 46)) (-1427 (((-1100 (-388 (-516))) (-1100 (-388 (-516))) (-1100 (-388 (-516)))) 60)) (-3155 (((-1100 (-388 (-516))) (-516)) 25)) (-1426 (((-388 (-516)) (-1100 (-388 (-516))) (-1100 (-388 (-516)))) 64)) (-1423 (((-1100 (-388 (-516))) (-516)) 30)) (-1429 (((-1100 (-388 (-516))) (-594 (-516))) 72)))
+(((-174) (-10 -7 (-15 -3155 ((-1100 (-388 (-516))) (-516))) (-15 -1421 ((-1100 (-388 (-516))) (-516))) (-15 -1422 ((-1100 (-388 (-516))) (-516))) (-15 -1423 ((-1100 (-388 (-516))) (-516))) (-15 -1424 ((-1100 (-388 (-516))) (-516))) (-15 -1425 ((-1100 (-388 (-516))) (-516))) (-15 -4133 ((-1100 (-388 (-516))) (-516))) (-15 -1426 ((-388 (-516)) (-1100 (-388 (-516))) (-1100 (-388 (-516))))) (-15 -1427 ((-1100 (-388 (-516))) (-1100 (-388 (-516))) (-1100 (-388 (-516))))) (-15 -4046 ((-388 (-516)) (-1100 (-388 (-516))))) (-15 -1428 ((-1100 (-388 (-516))) (-1100 (-388 (-516))) (-1100 (-388 (-516))))) (-15 -1429 ((-1100 (-388 (-516))) (-594 (-516)))) (-15 -1430 ((-1100 (-388 (-516))) (-594 (-516)) (-594 (-516)))))) (T -174))
+((-1430 (*1 *2 *3 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-1100 (-388 (-516)))) (-5 *1 (-174)))) (-1429 (*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-1100 (-388 (-516)))) (-5 *1 (-174)))) (-1428 (*1 *2 *2 *2) (-12 (-5 *2 (-1100 (-388 (-516)))) (-5 *1 (-174)))) (-4046 (*1 *2 *3) (-12 (-5 *3 (-1100 (-388 (-516)))) (-5 *2 (-388 (-516))) (-5 *1 (-174)))) (-1427 (*1 *2 *2 *2) (-12 (-5 *2 (-1100 (-388 (-516)))) (-5 *1 (-174)))) (-1426 (*1 *2 *3 *3) (-12 (-5 *3 (-1100 (-388 (-516)))) (-5 *2 (-388 (-516))) (-5 *1 (-174)))) (-4133 (*1 *2 *3) (-12 (-5 *2 (-1100 (-388 (-516)))) (-5 *1 (-174)) (-5 *3 (-516)))) (-1425 (*1 *2 *3) (-12 (-5 *2 (-1100 (-388 (-516)))) (-5 *1 (-174)) (-5 *3 (-516)))) (-1424 (*1 *2 *3) (-12 (-5 *2 (-1100 (-388 (-516)))) (-5 *1 (-174)) (-5 *3 (-516)))) (-1423 (*1 *2 *3) (-12 (-5 *2 (-1100 (-388 (-516)))) (-5 *1 (-174)) (-5 *3 (-516)))) (-1422 (*1 *2 *3) (-12 (-5 *2 (-1100 (-388 (-516)))) (-5 *1 (-174)) (-5 *3 (-516)))) (-1421 (*1 *2 *3) (-12 (-5 *2 (-1100 (-388 (-516)))) (-5 *1 (-174)) (-5 *3 (-516)))) (-3155 (*1 *2 *3) (-12 (-5 *2 (-1100 (-388 (-516)))) (-5 *1 (-174)) (-5 *3 (-516)))))
+(-10 -7 (-15 -3155 ((-1100 (-388 (-516))) (-516))) (-15 -1421 ((-1100 (-388 (-516))) (-516))) (-15 -1422 ((-1100 (-388 (-516))) (-516))) (-15 -1423 ((-1100 (-388 (-516))) (-516))) (-15 -1424 ((-1100 (-388 (-516))) (-516))) (-15 -1425 ((-1100 (-388 (-516))) (-516))) (-15 -4133 ((-1100 (-388 (-516))) (-516))) (-15 -1426 ((-388 (-516)) (-1100 (-388 (-516))) (-1100 (-388 (-516))))) (-15 -1427 ((-1100 (-388 (-516))) (-1100 (-388 (-516))) (-1100 (-388 (-516))))) (-15 -4046 ((-388 (-516)) (-1100 (-388 (-516))))) (-15 -1428 ((-1100 (-388 (-516))) (-1100 (-388 (-516))) (-1100 (-388 (-516))))) (-15 -1429 ((-1100 (-388 (-516))) (-594 (-516)))) (-15 -1430 ((-1100 (-388 (-516))) (-594 (-516)) (-594 (-516)))))
+((-1432 (((-386 (-1092 (-516))) (-516)) 28)) (-1431 (((-594 (-1092 (-516))) (-516)) 23)) (-3065 (((-1092 (-516)) (-516)) 21)))
+(((-175) (-10 -7 (-15 -1431 ((-594 (-1092 (-516))) (-516))) (-15 -3065 ((-1092 (-516)) (-516))) (-15 -1432 ((-386 (-1092 (-516))) (-516))))) (T -175))
+((-1432 (*1 *2 *3) (-12 (-5 *2 (-386 (-1092 (-516)))) (-5 *1 (-175)) (-5 *3 (-516)))) (-3065 (*1 *2 *3) (-12 (-5 *2 (-1092 (-516))) (-5 *1 (-175)) (-5 *3 (-516)))) (-1431 (*1 *2 *3) (-12 (-5 *2 (-594 (-1092 (-516)))) (-5 *1 (-175)) (-5 *3 (-516)))))
+(-10 -7 (-15 -1431 ((-594 (-1092 (-516))) (-516))) (-15 -3065 ((-1092 (-516)) (-516))) (-15 -1432 ((-386 (-1092 (-516))) (-516))))
+((-1618 (((-1076 (-208)) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 105)) (-1639 (((-594 (-1081)) (-1076 (-208))) NIL)) (-1433 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 81)) (-1616 (((-594 (-208)) (-295 (-208)) (-1098) (-1017 (-787 (-208)))) NIL)) (-1638 (((-594 (-1081)) (-594 (-208))) NIL)) (-1640 (((-208) (-1017 (-787 (-208)))) 24)) (-1641 (((-208) (-1017 (-787 (-208)))) 25)) (-1435 (((-359) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 98)) (-1434 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 42)) (-1636 (((-1081) (-208)) NIL)) (-2831 (((-1081) (-594 (-1081))) 20)) (-1436 (((-973) (-1098) (-1098) (-973)) 13)))
+(((-176) (-10 -7 (-15 -1433 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1434 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1640 ((-208) (-1017 (-787 (-208))))) (-15 -1641 ((-208) (-1017 (-787 (-208))))) (-15 -1435 ((-359) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1616 ((-594 (-208)) (-295 (-208)) (-1098) (-1017 (-787 (-208))))) (-15 -1618 ((-1076 (-208)) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1636 ((-1081) (-208))) (-15 -1638 ((-594 (-1081)) (-594 (-208)))) (-15 -1639 ((-594 (-1081)) (-1076 (-208)))) (-15 -2831 ((-1081) (-594 (-1081)))) (-15 -1436 ((-973) (-1098) (-1098) (-973))))) (T -176))
+((-1436 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-973)) (-5 *3 (-1098)) (-5 *1 (-176)))) (-2831 (*1 *2 *3) (-12 (-5 *3 (-594 (-1081))) (-5 *2 (-1081)) (-5 *1 (-176)))) (-1639 (*1 *2 *3) (-12 (-5 *3 (-1076 (-208))) (-5 *2 (-594 (-1081))) (-5 *1 (-176)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-594 (-208))) (-5 *2 (-594 (-1081))) (-5 *1 (-176)))) (-1636 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1081)) (-5 *1 (-176)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-1076 (-208))) (-5 *1 (-176)))) (-1616 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-295 (-208))) (-5 *4 (-1098)) (-5 *5 (-1017 (-787 (-208)))) (-5 *2 (-594 (-208))) (-5 *1 (-176)))) (-1435 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-359)) (-5 *1 (-176)))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-1017 (-787 (-208)))) (-5 *2 (-208)) (-5 *1 (-176)))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-1017 (-787 (-208)))) (-5 *2 (-208)) (-5 *1 (-176)))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-176)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-176)))))
+(-10 -7 (-15 -1433 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1434 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1640 ((-208) (-1017 (-787 (-208))))) (-15 -1641 ((-208) (-1017 (-787 (-208))))) (-15 -1435 ((-359) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1616 ((-594 (-208)) (-295 (-208)) (-1098) (-1017 (-787 (-208))))) (-15 -1618 ((-1076 (-208)) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1636 ((-1081) (-208))) (-15 -1638 ((-594 (-1081)) (-594 (-208)))) (-15 -1639 ((-594 (-1081)) (-1076 (-208)))) (-15 -2831 ((-1081) (-594 (-1081)))) (-15 -1436 ((-973) (-1098) (-1098) (-973))))
+((-2828 (((-110) $ $) NIL)) (-2653 (((-973) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 55) (((-973) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 32) (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-3317 (((-110) $ $) NIL)))
+(((-177) (-735)) (T -177))
+NIL
+(-735)
+((-2828 (((-110) $ $) NIL)) (-2653 (((-973) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 60) (((-973) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 41) (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-3317 (((-110) $ $) NIL)))
+(((-178) (-735)) (T -178))
+NIL
+(-735)
+((-2828 (((-110) $ $) NIL)) (-2653 (((-973) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 69) (((-973) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 40) (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-3317 (((-110) $ $) NIL)))
+(((-179) (-735)) (T -179))
+NIL
+(-735)
+((-2828 (((-110) $ $) NIL)) (-2653 (((-973) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 56) (((-973) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 34) (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-3317 (((-110) $ $) NIL)))
+(((-180) (-735)) (T -180))
+NIL
+(-735)
+((-2828 (((-110) $ $) NIL)) (-2653 (((-973) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 67) (((-973) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 38) (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-3317 (((-110) $ $) NIL)))
+(((-181) (-735)) (T -181))
+NIL
+(-735)
+((-2828 (((-110) $ $) NIL)) (-2653 (((-973) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 73) (((-973) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 36) (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-3317 (((-110) $ $) NIL)))
+(((-182) (-735)) (T -182))
+NIL
+(-735)
+((-2828 (((-110) $ $) NIL)) (-2653 (((-973) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 80) (((-973) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 44) (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-3317 (((-110) $ $) NIL)))
+(((-183) (-735)) (T -183))
+NIL
+(-735)
+((-2828 (((-110) $ $) NIL)) (-2653 (((-973) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 70) (((-973) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 40) (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-3317 (((-110) $ $) NIL)))
+(((-184) (-735)) (T -184))
+NIL
+(-735)
+((-2828 (((-110) $ $) NIL)) (-2653 (((-973) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL) (((-973) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 66)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL) (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 32)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-3317 (((-110) $ $) NIL)))
+(((-185) (-735)) (T -185))
+NIL
+(-735)
+((-2828 (((-110) $ $) NIL)) (-2653 (((-973) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL) (((-973) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 63)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL) (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 34)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-3317 (((-110) $ $) NIL)))
+(((-186) (-735)) (T -186))
+NIL
+(-735)
+((-2828 (((-110) $ $) NIL)) (-2653 (((-973) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 90) (((-973) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 78) (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-3317 (((-110) $ $) NIL)))
+(((-187) (-735)) (T -187))
+NIL
+(-735)
+((-1437 (((-3 (-2 (|:| -2770 (-111)) (|:| |w| (-208))) "failed") (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 85)) (-1439 (((-516) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 42)) (-1438 (((-3 (-594 (-208)) "failed") (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 73)))
+(((-188) (-10 -7 (-15 -1437 ((-3 (-2 (|:| -2770 (-111)) (|:| |w| (-208))) "failed") (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1438 ((-3 (-594 (-208)) "failed") (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1439 ((-516) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (T -188))
+((-1439 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-516)) (-5 *1 (-188)))) (-1438 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-594 (-208))) (-5 *1 (-188)))) (-1437 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| -2770 (-111)) (|:| |w| (-208)))) (-5 *1 (-188)))))
+(-10 -7 (-15 -1437 ((-3 (-2 (|:| -2770 (-111)) (|:| |w| (-208))) "failed") (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1438 ((-3 (-594 (-208)) "failed") (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1439 ((-516) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))
+((-1444 (((-359) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 39)) (-1443 (((-2 (|:| |stiffnessFactor| (-359)) (|:| |stabilityFactor| (-359))) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 130)) (-1442 (((-2 (|:| |stiffnessFactor| (-359)) (|:| |stabilityFactor| (-359))) (-637 (-295 (-208)))) 89)) (-1441 (((-359) (-637 (-295 (-208)))) 113)) (-2386 (((-637 (-295 (-208))) (-1179 (-295 (-208))) (-594 (-1098))) 110)) (-1447 (((-359) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 30)) (-1445 (((-359) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 43)) (-4046 (((-637 (-295 (-208))) (-637 (-295 (-208))) (-594 (-1098)) (-1179 (-295 (-208)))) 102)) (-1440 (((-359) (-359) (-594 (-359))) 107) (((-359) (-359) (-359)) 105)) (-1446 (((-359) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 36)))
+(((-189) (-10 -7 (-15 -1440 ((-359) (-359) (-359))) (-15 -1440 ((-359) (-359) (-594 (-359)))) (-15 -1441 ((-359) (-637 (-295 (-208))))) (-15 -2386 ((-637 (-295 (-208))) (-1179 (-295 (-208))) (-594 (-1098)))) (-15 -4046 ((-637 (-295 (-208))) (-637 (-295 (-208))) (-594 (-1098)) (-1179 (-295 (-208))))) (-15 -1442 ((-2 (|:| |stiffnessFactor| (-359)) (|:| |stabilityFactor| (-359))) (-637 (-295 (-208))))) (-15 -1443 ((-2 (|:| |stiffnessFactor| (-359)) (|:| |stabilityFactor| (-359))) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1444 ((-359) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1445 ((-359) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1446 ((-359) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1447 ((-359) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (T -189))
+((-1447 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-359)) (-5 *1 (-189)))) (-1446 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-359)) (-5 *1 (-189)))) (-1445 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-359)) (-5 *1 (-189)))) (-1444 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-359)) (-5 *1 (-189)))) (-1443 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-359)) (|:| |stabilityFactor| (-359)))) (-5 *1 (-189)))) (-1442 (*1 *2 *3) (-12 (-5 *3 (-637 (-295 (-208)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-359)) (|:| |stabilityFactor| (-359)))) (-5 *1 (-189)))) (-4046 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-637 (-295 (-208)))) (-5 *3 (-594 (-1098))) (-5 *4 (-1179 (-295 (-208)))) (-5 *1 (-189)))) (-2386 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 (-295 (-208)))) (-5 *4 (-594 (-1098))) (-5 *2 (-637 (-295 (-208)))) (-5 *1 (-189)))) (-1441 (*1 *2 *3) (-12 (-5 *3 (-637 (-295 (-208)))) (-5 *2 (-359)) (-5 *1 (-189)))) (-1440 (*1 *2 *2 *3) (-12 (-5 *3 (-594 (-359))) (-5 *2 (-359)) (-5 *1 (-189)))) (-1440 (*1 *2 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-189)))))
+(-10 -7 (-15 -1440 ((-359) (-359) (-359))) (-15 -1440 ((-359) (-359) (-594 (-359)))) (-15 -1441 ((-359) (-637 (-295 (-208))))) (-15 -2386 ((-637 (-295 (-208))) (-1179 (-295 (-208))) (-594 (-1098)))) (-15 -4046 ((-637 (-295 (-208))) (-637 (-295 (-208))) (-594 (-1098)) (-1179 (-295 (-208))))) (-15 -1442 ((-2 (|:| |stiffnessFactor| (-359)) (|:| |stabilityFactor| (-359))) (-637 (-295 (-208))))) (-15 -1443 ((-2 (|:| |stiffnessFactor| (-359)) (|:| |stabilityFactor| (-359))) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1444 ((-359) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1445 ((-359) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1446 ((-359) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1447 ((-359) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))
+((-2828 (((-110) $ $) NIL)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 41)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-2674 (((-973) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 64)) (-3317 (((-110) $ $) NIL)))
+(((-190) (-748)) (T -190))
+NIL
+(-748)
+((-2828 (((-110) $ $) NIL)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 41)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-2674 (((-973) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 62)) (-3317 (((-110) $ $) NIL)))
+(((-191) (-748)) (T -191))
+NIL
+(-748)
+((-2828 (((-110) $ $) NIL)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 40)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-2674 (((-973) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 66)) (-3317 (((-110) $ $) NIL)))
+(((-192) (-748)) (T -192))
+NIL
+(-748)
+((-2828 (((-110) $ $) NIL)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 46)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-2674 (((-973) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 75)) (-3317 (((-110) $ $) NIL)))
+(((-193) (-748)) (T -193))
+NIL
+(-748)
+((-4210 (((-594 (-1098)) (-1098) (-719)) 23)) (-1448 (((-295 (-208)) (-295 (-208))) 31)) (-1450 (((-110) (-2 (|:| |pde| (-594 (-295 (-208)))) (|:| |constraints| (-594 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081)) (|:| |tol| (-208)))) 74)) (-1449 (((-110) (-208) (-208) (-594 (-295 (-208)))) 45)))
+(((-194) (-10 -7 (-15 -4210 ((-594 (-1098)) (-1098) (-719))) (-15 -1448 ((-295 (-208)) (-295 (-208)))) (-15 -1449 ((-110) (-208) (-208) (-594 (-295 (-208))))) (-15 -1450 ((-110) (-2 (|:| |pde| (-594 (-295 (-208)))) (|:| |constraints| (-594 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081)) (|:| |tol| (-208))))))) (T -194))
+((-1450 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-594 (-295 (-208)))) (|:| |constraints| (-594 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081)) (|:| |tol| (-208)))) (-5 *2 (-110)) (-5 *1 (-194)))) (-1449 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-594 (-295 (-208)))) (-5 *3 (-208)) (-5 *2 (-110)) (-5 *1 (-194)))) (-1448 (*1 *2 *2) (-12 (-5 *2 (-295 (-208))) (-5 *1 (-194)))) (-4210 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-5 *2 (-594 (-1098))) (-5 *1 (-194)) (-5 *3 (-1098)))))
+(-10 -7 (-15 -4210 ((-594 (-1098)) (-1098) (-719))) (-15 -1448 ((-295 (-208)) (-295 (-208)))) (-15 -1449 ((-110) (-208) (-208) (-594 (-295 (-208))))) (-15 -1450 ((-110) (-2 (|:| |pde| (-594 (-295 (-208)))) (|:| |constraints| (-594 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081)) (|:| |tol| (-208))))))
+((-2828 (((-110) $ $) NIL)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |pde| (-594 (-295 (-208)))) (|:| |constraints| (-594 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081)) (|:| |tol| (-208)))) 26)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-2928 (((-973) (-2 (|:| |pde| (-594 (-295 (-208)))) (|:| |constraints| (-594 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081)) (|:| |tol| (-208)))) 57)) (-3317 (((-110) $ $) NIL)))
+(((-195) (-836)) (T -195))
+NIL
+(-836)
+((-2828 (((-110) $ $) NIL)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |pde| (-594 (-295 (-208)))) (|:| |constraints| (-594 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081)) (|:| |tol| (-208)))) 21)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-2928 (((-973) (-2 (|:| |pde| (-594 (-295 (-208)))) (|:| |constraints| (-594 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081)) (|:| |tol| (-208)))) NIL)) (-3317 (((-110) $ $) NIL)))
+(((-196) (-836)) (T -196))
+NIL
+(-836)
+((-2828 (((-110) $ $) NIL)) (-4066 ((|#2| $ (-719) |#2|) 11)) (-3896 (($) 8)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4078 ((|#2| $ (-719)) 10)) (-4233 (((-805) $) 18)) (-3317 (((-110) $ $) 13)))
+(((-197 |#1| |#2|) (-13 (-1027) (-10 -8 (-15 -3896 ($)) (-15 -4078 (|#2| $ (-719))) (-15 -4066 (|#2| $ (-719) |#2|)))) (-860) (-1027)) (T -197))
+((-3896 (*1 *1) (-12 (-5 *1 (-197 *2 *3)) (-14 *2 (-860)) (-4 *3 (-1027)))) (-4078 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *2 (-1027)) (-5 *1 (-197 *4 *2)) (-14 *4 (-860)))) (-4066 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-197 *4 *2)) (-14 *4 (-860)) (-4 *2 (-1027)))))
+(-13 (-1027) (-10 -8 (-15 -3896 ($)) (-15 -4078 (|#2| $ (-719))) (-15 -4066 (|#2| $ (-719) |#2|))))
+((-2828 (((-110) $ $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-2037 (((-1185) $) 36) (((-1185) $ (-860) (-860)) 38)) (-4078 (($ $ (-929)) 19) (((-228 (-1081)) $ (-1098)) 15)) (-3899 (((-1185) $) 34)) (-4233 (((-805) $) 31) (($ (-594 |#1|)) 8)) (-3317 (((-110) $ $) NIL)) (-4116 (($ $ $) 27)) (-4118 (($ $ $) 22)))
+(((-198 |#1|) (-13 (-1027) (-10 -8 (-15 -4078 ($ $ (-929))) (-15 -4078 ((-228 (-1081)) $ (-1098))) (-15 -4118 ($ $ $)) (-15 -4116 ($ $ $)) (-15 -4233 ($ (-594 |#1|))) (-15 -3899 ((-1185) $)) (-15 -2037 ((-1185) $)) (-15 -2037 ((-1185) $ (-860) (-860))))) (-13 (-795) (-10 -8 (-15 -4078 ((-1081) $ (-1098))) (-15 -3899 ((-1185) $)) (-15 -2037 ((-1185) $))))) (T -198))
+((-4078 (*1 *1 *1 *2) (-12 (-5 *2 (-929)) (-5 *1 (-198 *3)) (-4 *3 (-13 (-795) (-10 -8 (-15 -4078 ((-1081) $ (-1098))) (-15 -3899 ((-1185) $)) (-15 -2037 ((-1185) $))))))) (-4078 (*1 *2 *1 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-228 (-1081))) (-5 *1 (-198 *4)) (-4 *4 (-13 (-795) (-10 -8 (-15 -4078 ((-1081) $ *3)) (-15 -3899 ((-1185) $)) (-15 -2037 ((-1185) $))))))) (-4118 (*1 *1 *1 *1) (-12 (-5 *1 (-198 *2)) (-4 *2 (-13 (-795) (-10 -8 (-15 -4078 ((-1081) $ (-1098))) (-15 -3899 ((-1185) $)) (-15 -2037 ((-1185) $))))))) (-4116 (*1 *1 *1 *1) (-12 (-5 *1 (-198 *2)) (-4 *2 (-13 (-795) (-10 -8 (-15 -4078 ((-1081) $ (-1098))) (-15 -3899 ((-1185) $)) (-15 -2037 ((-1185) $))))))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-13 (-795) (-10 -8 (-15 -4078 ((-1081) $ (-1098))) (-15 -3899 ((-1185) $)) (-15 -2037 ((-1185) $))))) (-5 *1 (-198 *3)))) (-3899 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-198 *3)) (-4 *3 (-13 (-795) (-10 -8 (-15 -4078 ((-1081) $ (-1098))) (-15 -3899 (*2 $)) (-15 -2037 (*2 $))))))) (-2037 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-198 *3)) (-4 *3 (-13 (-795) (-10 -8 (-15 -4078 ((-1081) $ (-1098))) (-15 -3899 (*2 $)) (-15 -2037 (*2 $))))))) (-2037 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1185)) (-5 *1 (-198 *4)) (-4 *4 (-13 (-795) (-10 -8 (-15 -4078 ((-1081) $ (-1098))) (-15 -3899 (*2 $)) (-15 -2037 (*2 $))))))))
+(-13 (-1027) (-10 -8 (-15 -4078 ($ $ (-929))) (-15 -4078 ((-228 (-1081)) $ (-1098))) (-15 -4118 ($ $ $)) (-15 -4116 ($ $ $)) (-15 -4233 ($ (-594 |#1|))) (-15 -3899 ((-1185) $)) (-15 -2037 ((-1185) $)) (-15 -2037 ((-1185) $ (-860) (-860)))))
+((-1451 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
+(((-199 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1451 (|#2| |#4| (-1 |#2| |#2|)))) (-344) (-1155 |#1|) (-1155 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -199))
+((-1451 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-344)) (-4 *6 (-1155 (-388 *2))) (-4 *2 (-1155 *5)) (-5 *1 (-199 *5 *2 *6 *3)) (-4 *3 (-323 *5 *2 *6)))))
+(-10 -7 (-15 -1451 (|#2| |#4| (-1 |#2| |#2|))))
+((-1455 ((|#2| |#2| (-719) |#2|) 42)) (-1454 ((|#2| |#2| (-719) |#2|) 38)) (-2392 (((-594 |#2|) (-594 (-2 (|:| |deg| (-719)) (|:| -2835 |#2|)))) 58)) (-1453 (((-594 (-2 (|:| |deg| (-719)) (|:| -2835 |#2|))) |#2|) 53)) (-1456 (((-110) |#2|) 50)) (-4012 (((-386 |#2|) |#2|) 78)) (-4011 (((-386 |#2|) |#2|) 77)) (-2393 ((|#2| |#2| (-719) |#2|) 36)) (-1452 (((-2 (|:| |cont| |#1|) (|:| -2701 (-594 (-2 (|:| |irr| |#2|) (|:| -2421 (-516)))))) |#2| (-110)) 70)))
+(((-200 |#1| |#2|) (-10 -7 (-15 -4011 ((-386 |#2|) |#2|)) (-15 -4012 ((-386 |#2|) |#2|)) (-15 -1452 ((-2 (|:| |cont| |#1|) (|:| -2701 (-594 (-2 (|:| |irr| |#2|) (|:| -2421 (-516)))))) |#2| (-110))) (-15 -1453 ((-594 (-2 (|:| |deg| (-719)) (|:| -2835 |#2|))) |#2|)) (-15 -2392 ((-594 |#2|) (-594 (-2 (|:| |deg| (-719)) (|:| -2835 |#2|))))) (-15 -2393 (|#2| |#2| (-719) |#2|)) (-15 -1454 (|#2| |#2| (-719) |#2|)) (-15 -1455 (|#2| |#2| (-719) |#2|)) (-15 -1456 ((-110) |#2|))) (-331) (-1155 |#1|)) (T -200))
+((-1456 (*1 *2 *3) (-12 (-4 *4 (-331)) (-5 *2 (-110)) (-5 *1 (-200 *4 *3)) (-4 *3 (-1155 *4)))) (-1455 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-719)) (-4 *4 (-331)) (-5 *1 (-200 *4 *2)) (-4 *2 (-1155 *4)))) (-1454 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-719)) (-4 *4 (-331)) (-5 *1 (-200 *4 *2)) (-4 *2 (-1155 *4)))) (-2393 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-719)) (-4 *4 (-331)) (-5 *1 (-200 *4 *2)) (-4 *2 (-1155 *4)))) (-2392 (*1 *2 *3) (-12 (-5 *3 (-594 (-2 (|:| |deg| (-719)) (|:| -2835 *5)))) (-4 *5 (-1155 *4)) (-4 *4 (-331)) (-5 *2 (-594 *5)) (-5 *1 (-200 *4 *5)))) (-1453 (*1 *2 *3) (-12 (-4 *4 (-331)) (-5 *2 (-594 (-2 (|:| |deg| (-719)) (|:| -2835 *3)))) (-5 *1 (-200 *4 *3)) (-4 *3 (-1155 *4)))) (-1452 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-331)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2701 (-594 (-2 (|:| |irr| *3) (|:| -2421 (-516))))))) (-5 *1 (-200 *5 *3)) (-4 *3 (-1155 *5)))) (-4012 (*1 *2 *3) (-12 (-4 *4 (-331)) (-5 *2 (-386 *3)) (-5 *1 (-200 *4 *3)) (-4 *3 (-1155 *4)))) (-4011 (*1 *2 *3) (-12 (-4 *4 (-331)) (-5 *2 (-386 *3)) (-5 *1 (-200 *4 *3)) (-4 *3 (-1155 *4)))))
+(-10 -7 (-15 -4011 ((-386 |#2|) |#2|)) (-15 -4012 ((-386 |#2|) |#2|)) (-15 -1452 ((-2 (|:| |cont| |#1|) (|:| -2701 (-594 (-2 (|:| |irr| |#2|) (|:| -2421 (-516)))))) |#2| (-110))) (-15 -1453 ((-594 (-2 (|:| |deg| (-719)) (|:| -2835 |#2|))) |#2|)) (-15 -2392 ((-594 |#2|) (-594 (-2 (|:| |deg| (-719)) (|:| -2835 |#2|))))) (-15 -2393 (|#2| |#2| (-719) |#2|)) (-15 -1454 (|#2| |#2| (-719) |#2|)) (-15 -1455 (|#2| |#2| (-719) |#2|)) (-15 -1456 ((-110) |#2|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3388 (((-516) $) NIL (|has| (-516) (-289)))) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (|has| (-516) (-851)))) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (|has| (-516) (-851)))) (-1655 (((-110) $ $) NIL)) (-3905 (((-516) $) NIL (|has| (-516) (-768)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-516) #2="failed") $) NIL) (((-3 (-1098) #2#) $) NIL (|has| (-516) (-975 (-1098)))) (((-3 (-388 (-516)) #2#) $) NIL (|has| (-516) (-975 (-516)))) (((-3 (-516) #2#) $) NIL (|has| (-516) (-975 (-516))))) (-3431 (((-516) $) NIL) (((-1098) $) NIL (|has| (-516) (-975 (-1098)))) (((-388 (-516)) $) NIL (|has| (-516) (-975 (-516)))) (((-516) $) NIL (|has| (-516) (-975 (-516))))) (-2824 (($ $ $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| (-516) (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| (-516) (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL) (((-637 (-516)) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3258 (($) NIL (|has| (-516) (-515)))) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4005 (((-110) $) NIL)) (-3460 (((-110) $) NIL (|has| (-516) (-768)))) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (|has| (-516) (-827 (-516)))) (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (|has| (-516) (-827 (-359))))) (-2436 (((-110) $) NIL)) (-3260 (($ $) NIL)) (-3262 (((-516) $) NIL)) (-3723 (((-3 $ "failed") $) NIL (|has| (-516) (-1074)))) (-3461 (((-110) $) NIL (|has| (-516) (-768)))) (-1652 (((-3 (-594 $) #3="failed") (-594 $) $) NIL)) (-3596 (($ $ $) NIL (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (|has| (-516) (-795)))) (-4234 (($ (-1 (-516) (-516)) $) NIL)) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL)) (-3724 (($) NIL (|has| (-516) (-1074)) CONST)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3387 (($ $) NIL (|has| (-516) (-289))) (((-388 (-516)) $) NIL)) (-3389 (((-516) $) NIL (|has| (-516) (-515)))) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (|has| (-516) (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (|has| (-516) (-851)))) (-4011 (((-386 $) $) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-4046 (($ $ (-594 (-516)) (-594 (-516))) NIL (|has| (-516) (-291 (-516)))) (($ $ (-516) (-516)) NIL (|has| (-516) (-291 (-516)))) (($ $ (-275 (-516))) NIL (|has| (-516) (-291 (-516)))) (($ $ (-594 (-275 (-516)))) NIL (|has| (-516) (-291 (-516)))) (($ $ (-594 (-1098)) (-594 (-516))) NIL (|has| (-516) (-491 (-1098) (-516)))) (($ $ (-1098) (-516)) NIL (|has| (-516) (-491 (-1098) (-516))))) (-1654 (((-719) $) NIL)) (-4078 (($ $ (-516)) NIL (|has| (-516) (-268 (-516) (-516))))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-4089 (($ $) NIL (|has| (-516) (-216))) (($ $ (-719)) NIL (|has| (-516) (-216))) (($ $ (-1098)) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-1 (-516) (-516)) (-719)) NIL) (($ $ (-1 (-516) (-516))) NIL)) (-3259 (($ $) NIL)) (-3261 (((-516) $) NIL)) (-1457 (($ (-388 (-516))) 9)) (-4246 (((-831 (-516)) $) NIL (|has| (-516) (-572 (-831 (-516))))) (((-831 (-359)) $) NIL (|has| (-516) (-572 (-831 (-359))))) (((-505) $) NIL (|has| (-516) (-572 (-505)))) (((-359) $) NIL (|has| (-516) (-958))) (((-208) $) NIL (|has| (-516) (-958)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-516) (-851))))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ $) NIL) (($ (-388 (-516))) 8) (($ (-516)) NIL) (($ (-1098)) NIL (|has| (-516) (-975 (-1098)))) (((-388 (-516)) $) NIL) (((-943 10) $) 10)) (-2965 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| $ (-138)) (|has| (-516) (-851))) (|has| (-516) (-138))))) (-3385 (((-719)) NIL)) (-3390 (((-516) $) NIL (|has| (-516) (-515)))) (-2117 (((-110) $ $) NIL)) (-3661 (($ $) NIL (|has| (-516) (-768)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($ $) NIL (|has| (-516) (-216))) (($ $ (-719)) NIL (|has| (-516) (-216))) (($ $ (-1098)) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-1 (-516) (-516)) (-719)) NIL) (($ $ (-1 (-516) (-516))) NIL)) (-2826 (((-110) $ $) NIL (|has| (-516) (-795)))) (-2827 (((-110) $ $) NIL (|has| (-516) (-795)))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (|has| (-516) (-795)))) (-2948 (((-110) $ $) NIL (|has| (-516) (-795)))) (-4224 (($ $ $) NIL) (($ (-516) (-516)) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL) (($ (-516) $) NIL) (($ $ (-516)) NIL)))
+(((-201) (-13 (-931 (-516)) (-10 -8 (-15 -4233 ((-388 (-516)) $)) (-15 -4233 ((-943 10) $)) (-15 -3387 ((-388 (-516)) $)) (-15 -1457 ($ (-388 (-516))))))) (T -201))
+((-4233 (*1 *2 *1) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-201)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-943 10)) (-5 *1 (-201)))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-201)))) (-1457 (*1 *1 *2) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-201)))))
+(-13 (-931 (-516)) (-10 -8 (-15 -4233 ((-388 (-516)) $)) (-15 -4233 ((-943 10) $)) (-15 -3387 ((-388 (-516)) $)) (-15 -1457 ($ (-388 (-516))))))
+((-4091 (((-3 (|:| |f1| (-787 |#2|)) (|:| |f2| (-594 (-787 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1019 (-787 |#2|)) (-1081)) 28) (((-3 (|:| |f1| (-787 |#2|)) (|:| |f2| (-594 (-787 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1019 (-787 |#2|))) 24)) (-1458 (((-3 (|:| |f1| (-787 |#2|)) (|:| |f2| (-594 (-787 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1098) (-787 |#2|) (-787 |#2|) (-110)) 17)))
+(((-202 |#1| |#2|) (-10 -7 (-15 -4091 ((-3 (|:| |f1| (-787 |#2|)) (|:| |f2| (-594 (-787 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1019 (-787 |#2|)))) (-15 -4091 ((-3 (|:| |f1| (-787 |#2|)) (|:| |f2| (-594 (-787 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1019 (-787 |#2|)) (-1081))) (-15 -1458 ((-3 (|:| |f1| (-787 |#2|)) (|:| |f2| (-594 (-787 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1098) (-787 |#2|) (-787 |#2|) (-110)))) (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516))) (-13 (-1120) (-901) (-29 |#1|))) (T -202))
+((-1458 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1098)) (-5 *6 (-110)) (-4 *7 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516)))) (-4 *3 (-13 (-1120) (-901) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-787 *3)) (|:| |f2| (-594 (-787 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-202 *7 *3)) (-5 *5 (-787 *3)))) (-4091 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1019 (-787 *3))) (-5 *5 (-1081)) (-4 *3 (-13 (-1120) (-901) (-29 *6))) (-4 *6 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516)))) (-5 *2 (-3 (|:| |f1| (-787 *3)) (|:| |f2| (-594 (-787 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-202 *6 *3)))) (-4091 (*1 *2 *3 *4) (-12 (-5 *4 (-1019 (-787 *3))) (-4 *3 (-13 (-1120) (-901) (-29 *5))) (-4 *5 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516)))) (-5 *2 (-3 (|:| |f1| (-787 *3)) (|:| |f2| (-594 (-787 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-202 *5 *3)))))
+(-10 -7 (-15 -4091 ((-3 (|:| |f1| (-787 |#2|)) (|:| |f2| (-594 (-787 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1019 (-787 |#2|)))) (-15 -4091 ((-3 (|:| |f1| (-787 |#2|)) (|:| |f2| (-594 (-787 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1019 (-787 |#2|)) (-1081))) (-15 -1458 ((-3 (|:| |f1| (-787 |#2|)) (|:| |f2| (-594 (-787 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1098) (-787 |#2|) (-787 |#2|) (-110))))
+((-4091 (((-3 (|:| |f1| (-787 (-295 |#1|))) (|:| |f2| (-594 (-787 (-295 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-388 (-887 |#1|)) (-1019 (-787 (-388 (-887 |#1|)))) (-1081)) 46) (((-3 (|:| |f1| (-787 (-295 |#1|))) (|:| |f2| (-594 (-787 (-295 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-388 (-887 |#1|)) (-1019 (-787 (-388 (-887 |#1|))))) 43) (((-3 (|:| |f1| (-787 (-295 |#1|))) (|:| |f2| (-594 (-787 (-295 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-388 (-887 |#1|)) (-1019 (-787 (-295 |#1|))) (-1081)) 47) (((-3 (|:| |f1| (-787 (-295 |#1|))) (|:| |f2| (-594 (-787 (-295 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-388 (-887 |#1|)) (-1019 (-787 (-295 |#1|)))) 20)))
+(((-203 |#1|) (-10 -7 (-15 -4091 ((-3 (|:| |f1| (-787 (-295 |#1|))) (|:| |f2| (-594 (-787 (-295 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-388 (-887 |#1|)) (-1019 (-787 (-295 |#1|))))) (-15 -4091 ((-3 (|:| |f1| (-787 (-295 |#1|))) (|:| |f2| (-594 (-787 (-295 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-388 (-887 |#1|)) (-1019 (-787 (-295 |#1|))) (-1081))) (-15 -4091 ((-3 (|:| |f1| (-787 (-295 |#1|))) (|:| |f2| (-594 (-787 (-295 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-388 (-887 |#1|)) (-1019 (-787 (-388 (-887 |#1|)))))) (-15 -4091 ((-3 (|:| |f1| (-787 (-295 |#1|))) (|:| |f2| (-594 (-787 (-295 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-388 (-887 |#1|)) (-1019 (-787 (-388 (-887 |#1|)))) (-1081)))) (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516)))) (T -203))
+((-4091 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1019 (-787 (-388 (-887 *6))))) (-5 *5 (-1081)) (-5 *3 (-388 (-887 *6))) (-4 *6 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516)))) (-5 *2 (-3 (|:| |f1| (-787 (-295 *6))) (|:| |f2| (-594 (-787 (-295 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-203 *6)))) (-4091 (*1 *2 *3 *4) (-12 (-5 *4 (-1019 (-787 (-388 (-887 *5))))) (-5 *3 (-388 (-887 *5))) (-4 *5 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516)))) (-5 *2 (-3 (|:| |f1| (-787 (-295 *5))) (|:| |f2| (-594 (-787 (-295 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-203 *5)))) (-4091 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-388 (-887 *6))) (-5 *4 (-1019 (-787 (-295 *6)))) (-5 *5 (-1081)) (-4 *6 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516)))) (-5 *2 (-3 (|:| |f1| (-787 (-295 *6))) (|:| |f2| (-594 (-787 (-295 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-203 *6)))) (-4091 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-887 *5))) (-5 *4 (-1019 (-787 (-295 *5)))) (-4 *5 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516)))) (-5 *2 (-3 (|:| |f1| (-787 (-295 *5))) (|:| |f2| (-594 (-787 (-295 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-203 *5)))))
+(-10 -7 (-15 -4091 ((-3 (|:| |f1| (-787 (-295 |#1|))) (|:| |f2| (-594 (-787 (-295 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-388 (-887 |#1|)) (-1019 (-787 (-295 |#1|))))) (-15 -4091 ((-3 (|:| |f1| (-787 (-295 |#1|))) (|:| |f2| (-594 (-787 (-295 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-388 (-887 |#1|)) (-1019 (-787 (-295 |#1|))) (-1081))) (-15 -4091 ((-3 (|:| |f1| (-787 (-295 |#1|))) (|:| |f2| (-594 (-787 (-295 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-388 (-887 |#1|)) (-1019 (-787 (-388 (-887 |#1|)))))) (-15 -4091 ((-3 (|:| |f1| (-787 (-295 |#1|))) (|:| |f2| (-594 (-787 (-295 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-388 (-887 |#1|)) (-1019 (-787 (-388 (-887 |#1|)))) (-1081))))
+((-4121 (((-2 (|:| -2063 (-1092 |#1|)) (|:| |deg| (-860))) (-1092 |#1|)) 21)) (-4239 (((-594 (-295 |#2|)) (-295 |#2|) (-860)) 42)))
+(((-204 |#1| |#2|) (-10 -7 (-15 -4121 ((-2 (|:| -2063 (-1092 |#1|)) (|:| |deg| (-860))) (-1092 |#1|))) (-15 -4239 ((-594 (-295 |#2|)) (-295 |#2|) (-860)))) (-984) (-13 (-523) (-795))) (T -204))
+((-4239 (*1 *2 *3 *4) (-12 (-5 *4 (-860)) (-4 *6 (-13 (-523) (-795))) (-5 *2 (-594 (-295 *6))) (-5 *1 (-204 *5 *6)) (-5 *3 (-295 *6)) (-4 *5 (-984)))) (-4121 (*1 *2 *3) (-12 (-4 *4 (-984)) (-5 *2 (-2 (|:| -2063 (-1092 *4)) (|:| |deg| (-860)))) (-5 *1 (-204 *4 *5)) (-5 *3 (-1092 *4)) (-4 *5 (-13 (-523) (-795))))))
+(-10 -7 (-15 -4121 ((-2 (|:| -2063 (-1092 |#1|)) (|:| |deg| (-860))) (-1092 |#1|))) (-15 -4239 ((-594 (-295 |#2|)) (-295 |#2|) (-860))))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1500 ((|#1| $) NIL)) (-3602 ((|#1| $) 25)) (-1217 (((-110) $ (-719)) NIL)) (-3815 (($) NIL T CONST)) (-3266 (($ $) NIL)) (-2312 (($ $) 31)) (-3604 ((|#1| |#1| $) NIL)) (-3603 ((|#1| $) NIL)) (-2018 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) NIL)) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2022 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-4112 (((-719) $) NIL)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-1280 ((|#1| $) NIL)) (-1498 ((|#1| |#1| $) 28)) (-1497 ((|#1| |#1| $) 30)) (-3889 (($ |#1| $) NIL)) (-2863 (((-719) $) 27)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-3265 ((|#1| $) NIL)) (-1496 ((|#1| $) 26)) (-1495 ((|#1| $) 24)) (-1281 ((|#1| $) NIL)) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3268 ((|#1| |#1| $) NIL)) (-3682 (((-110) $) 9)) (-3847 (($) NIL)) (-3267 ((|#1| $) NIL)) (-1501 (($) NIL) (($ (-594 |#1|)) 16)) (-3601 (((-719) $) NIL)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3678 (($ $) NIL)) (-4233 (((-805) $) NIL (|has| |#1| (-571 (-805))))) (-1499 ((|#1| $) 13)) (-1282 (($ (-594 |#1|)) NIL)) (-3264 ((|#1| $) NIL)) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-205 |#1|) (-13 (-236 |#1|) (-10 -8 (-15 -1501 ($ (-594 |#1|))))) (-1027)) (T -205))
+((-1501 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1027)) (-5 *1 (-205 *3)))))
+(-13 (-236 |#1|) (-10 -8 (-15 -1501 ($ (-594 |#1|)))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1460 (($ (-295 |#1|)) 23)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-2925 (((-110) $) NIL)) (-3432 (((-3 (-295 |#1|) "failed") $) NIL)) (-3431 (((-295 |#1|) $) NIL)) (-4235 (($ $) 31)) (-3741 (((-3 $ "failed") $) NIL)) (-2436 (((-110) $) NIL)) (-4234 (($ (-1 (-295 |#1|) (-295 |#1|)) $) NIL)) (-3449 (((-295 |#1|) $) NIL)) (-1462 (($ $) 30)) (-3513 (((-1081) $) NIL)) (-1461 (((-110) $) NIL)) (-3514 (((-1045) $) NIL)) (-2435 (($ (-719)) NIL)) (-1459 (($ $) 32)) (-4223 (((-516) $) NIL)) (-4233 (((-805) $) 57) (($ (-516)) NIL) (($ (-295 |#1|)) NIL)) (-3959 (((-295 |#1|) $ $) NIL)) (-3385 (((-719)) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 25 T CONST)) (-2927 (($) 50 T CONST)) (-3317 (((-110) $ $) 28)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) 19)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 24) (($ (-295 |#1|) $) 18)))
+(((-206 |#1| |#2|) (-13 (-576 (-295 |#1|)) (-975 (-295 |#1|)) (-10 -8 (-15 -3449 ((-295 |#1|) $)) (-15 -1462 ($ $)) (-15 -4235 ($ $)) (-15 -3959 ((-295 |#1|) $ $)) (-15 -2435 ($ (-719))) (-15 -1461 ((-110) $)) (-15 -2925 ((-110) $)) (-15 -4223 ((-516) $)) (-15 -4234 ($ (-1 (-295 |#1|) (-295 |#1|)) $)) (-15 -1460 ($ (-295 |#1|))) (-15 -1459 ($ $)))) (-13 (-984) (-795)) (-594 (-1098))) (T -206))
+((-3449 (*1 *2 *1) (-12 (-5 *2 (-295 *3)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795))) (-14 *4 (-594 (-1098))))) (-1462 (*1 *1 *1) (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-984) (-795))) (-14 *3 (-594 (-1098))))) (-4235 (*1 *1 *1) (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-984) (-795))) (-14 *3 (-594 (-1098))))) (-3959 (*1 *2 *1 *1) (-12 (-5 *2 (-295 *3)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795))) (-14 *4 (-594 (-1098))))) (-2435 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795))) (-14 *4 (-594 (-1098))))) (-1461 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795))) (-14 *4 (-594 (-1098))))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795))) (-14 *4 (-594 (-1098))))) (-4223 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795))) (-14 *4 (-594 (-1098))))) (-4234 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-295 *3) (-295 *3))) (-4 *3 (-13 (-984) (-795))) (-5 *1 (-206 *3 *4)) (-14 *4 (-594 (-1098))))) (-1460 (*1 *1 *2) (-12 (-5 *2 (-295 *3)) (-4 *3 (-13 (-984) (-795))) (-5 *1 (-206 *3 *4)) (-14 *4 (-594 (-1098))))) (-1459 (*1 *1 *1) (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-984) (-795))) (-14 *3 (-594 (-1098))))))
+(-13 (-576 (-295 |#1|)) (-975 (-295 |#1|)) (-10 -8 (-15 -3449 ((-295 |#1|) $)) (-15 -1462 ($ $)) (-15 -4235 ($ $)) (-15 -3959 ((-295 |#1|) $ $)) (-15 -2435 ($ (-719))) (-15 -1461 ((-110) $)) (-15 -2925 ((-110) $)) (-15 -4223 ((-516) $)) (-15 -4234 ($ (-1 (-295 |#1|) (-295 |#1|)) $)) (-15 -1460 ($ (-295 |#1|))) (-15 -1459 ($ $))))
+((-1463 (((-110) (-1081)) 22)) (-1464 (((-3 (-787 |#2|) "failed") (-569 |#2|) |#2| (-787 |#2|) (-787 |#2|) (-110)) 32)) (-1465 (((-3 (-110) "failed") (-1092 |#2|) (-787 |#2|) (-787 |#2|) (-110)) 73) (((-3 (-110) "failed") (-887 |#1|) (-1098) (-787 |#2|) (-787 |#2|) (-110)) 74)))
+(((-207 |#1| |#2|) (-10 -7 (-15 -1463 ((-110) (-1081))) (-15 -1464 ((-3 (-787 |#2|) "failed") (-569 |#2|) |#2| (-787 |#2|) (-787 |#2|) (-110))) (-15 -1465 ((-3 (-110) "failed") (-887 |#1|) (-1098) (-787 |#2|) (-787 |#2|) (-110))) (-15 -1465 ((-3 (-110) "failed") (-1092 |#2|) (-787 |#2|) (-787 |#2|) (-110)))) (-13 (-432) (-795) (-975 (-516)) (-593 (-516))) (-13 (-1120) (-29 |#1|))) (T -207))
+((-1465 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-110)) (-5 *3 (-1092 *6)) (-5 *4 (-787 *6)) (-4 *6 (-13 (-1120) (-29 *5))) (-4 *5 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *1 (-207 *5 *6)))) (-1465 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-110)) (-5 *3 (-887 *6)) (-5 *4 (-1098)) (-5 *5 (-787 *7)) (-4 *6 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-4 *7 (-13 (-1120) (-29 *6))) (-5 *1 (-207 *6 *7)))) (-1464 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-787 *4)) (-5 *3 (-569 *4)) (-5 *5 (-110)) (-4 *4 (-13 (-1120) (-29 *6))) (-4 *6 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *1 (-207 *6 *4)))) (-1463 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-110)) (-5 *1 (-207 *4 *5)) (-4 *5 (-13 (-1120) (-29 *4))))))
+(-10 -7 (-15 -1463 ((-110) (-1081))) (-15 -1464 ((-3 (-787 |#2|) "failed") (-569 |#2|) |#2| (-787 |#2|) (-787 |#2|) (-110))) (-15 -1465 ((-3 (-110) "failed") (-887 |#1|) (-1098) (-787 |#2|) (-787 |#2|) (-110))) (-15 -1465 ((-3 (-110) "failed") (-1092 |#2|) (-787 |#2|) (-787 |#2|) (-110))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 89)) (-3388 (((-516) $) 99)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-4049 (($ $) NIL)) (-3766 (($ $) 77)) (-3921 (($ $) 65)) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-3301 (($ $) 56)) (-1655 (((-110) $ $) NIL)) (-3764 (($ $) 75)) (-3920 (($ $) 63)) (-3905 (((-516) $) 116)) (-3768 (($ $) 80)) (-3919 (($ $) 67)) (-3815 (($) NIL T CONST)) (-3386 (($ $) NIL)) (-3432 (((-3 (-516) #1="failed") $) 115) (((-3 (-388 (-516)) #1#) $) 112)) (-3431 (((-516) $) 113) (((-388 (-516)) $) 110)) (-2824 (($ $ $) NIL)) (-3741 (((-3 $ "failed") $) 92)) (-1810 (((-388 (-516)) $ (-719)) 108) (((-388 (-516)) $ (-719) (-719)) 107)) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4005 (((-110) $) NIL)) (-2400 (((-860)) 29) (((-860) (-860)) NIL (|has| $ (-6 -4260)))) (-3460 (((-110) $) NIL)) (-3909 (($) 39)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL)) (-4050 (((-516) $) 35)) (-2436 (((-110) $) NIL)) (-3275 (($ $ (-516)) NIL)) (-3391 (($ $) NIL)) (-3461 (((-110) $) 88)) (-1652 (((-3 (-594 $) #2="failed") (-594 $) $) NIL)) (-3596 (($ $ $) 53) (($) 34 (-12 (-3595 (|has| $ (-6 -4252))) (-3595 (|has| $ (-6 -4260)))))) (-3597 (($ $ $) 52) (($) 33 (-12 (-3595 (|has| $ (-6 -4252))) (-3595 (|has| $ (-6 -4260)))))) (-2401 (((-516) $) 27)) (-1809 (($ $) 30)) (-1808 (($ $) 57)) (-4218 (($ $) 62)) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL)) (-1839 (((-860) (-516)) NIL (|has| $ (-6 -4260)))) (-3514 (((-1045) $) NIL) (((-516) $) 90)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3387 (($ $) NIL)) (-3389 (($ $) NIL)) (-3525 (($ (-516) (-516)) NIL) (($ (-516) (-516) (-860)) 100)) (-4011 (((-386 $) $) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-2427 (((-516) $) 28)) (-1807 (($) 38)) (-4219 (($ $) 61)) (-1654 (((-719) $) NIL)) (-1466 (((-1081) (-1081)) 8)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-2873 (((-860)) NIL) (((-860) (-860)) NIL (|has| $ (-6 -4260)))) (-4089 (($ $ (-719)) NIL) (($ $) 93)) (-1838 (((-860) (-516)) NIL (|has| $ (-6 -4260)))) (-3769 (($ $) 78)) (-3918 (($ $) 68)) (-3767 (($ $) 79)) (-3917 (($ $) 66)) (-3765 (($ $) 76)) (-3916 (($ $) 64)) (-4246 (((-359) $) 104) (((-208) $) 101) (((-831 (-359)) $) NIL) (((-505) $) 45)) (-4233 (((-805) $) 42) (($ (-516)) 60) (($ $) NIL) (($ (-388 (-516))) NIL) (($ (-516)) 60) (($ (-388 (-516))) NIL)) (-3385 (((-719)) NIL)) (-3390 (($ $) NIL)) (-1840 (((-860)) 32) (((-860) (-860)) NIL (|has| $ (-6 -4260)))) (-2957 (((-860)) 25)) (-3772 (($ $) 83)) (-3760 (($ $) 71) (($ $ $) 109)) (-2117 (((-110) $ $) NIL)) (-3770 (($ $) 81)) (-3758 (($ $) 69)) (-3774 (($ $) 86)) (-3762 (($ $) 74)) (-3775 (($ $) 84)) (-3763 (($ $) 72)) (-3773 (($ $) 85)) (-3761 (($ $) 73)) (-3771 (($ $) 82)) (-3759 (($ $) 70)) (-3661 (($ $) 117)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) 36 T CONST)) (-2927 (($) 37 T CONST)) (-2768 (((-1081) $) 19) (((-1081) $ (-110)) 21) (((-1185) (-771) $) 22) (((-1185) (-771) $ (-110)) 23)) (-3665 (($ $) 96)) (-2932 (($ $ (-719)) NIL) (($ $) NIL)) (-3662 (($ $ $) 98)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 54)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 46)) (-4224 (($ $ $) 87) (($ $ (-516)) 55)) (-4116 (($ $) 47) (($ $ $) 49)) (-4118 (($ $ $) 48)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) 58) (($ $ (-388 (-516))) 129) (($ $ $) 59)) (* (($ (-860) $) 31) (($ (-719) $) NIL) (($ (-516) $) 51) (($ $ $) 50) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL)))
+(((-208) (-13 (-385) (-216) (-769) (-1120) (-572 (-505)) (-10 -8 (-15 -4224 ($ $ (-516))) (-15 ** ($ $ $)) (-15 -1807 ($)) (-15 -3514 ((-516) $)) (-15 -1809 ($ $)) (-15 -1808 ($ $)) (-15 -3760 ($ $ $)) (-15 -3665 ($ $)) (-15 -3662 ($ $ $)) (-15 -1466 ((-1081) (-1081))) (-15 -1810 ((-388 (-516)) $ (-719))) (-15 -1810 ((-388 (-516)) $ (-719) (-719)))))) (T -208))
+((** (*1 *1 *1 *1) (-5 *1 (-208))) (-4224 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-208)))) (-1807 (*1 *1) (-5 *1 (-208))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-208)))) (-1809 (*1 *1 *1) (-5 *1 (-208))) (-1808 (*1 *1 *1) (-5 *1 (-208))) (-3760 (*1 *1 *1 *1) (-5 *1 (-208))) (-3665 (*1 *1 *1) (-5 *1 (-208))) (-3662 (*1 *1 *1 *1) (-5 *1 (-208))) (-1466 (*1 *2 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-208)))) (-1810 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-388 (-516))) (-5 *1 (-208)))) (-1810 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-388 (-516))) (-5 *1 (-208)))))
+(-13 (-385) (-216) (-769) (-1120) (-572 (-505)) (-10 -8 (-15 -4224 ($ $ (-516))) (-15 ** ($ $ $)) (-15 -1807 ($)) (-15 -3514 ((-516) $)) (-15 -1809 ($ $)) (-15 -1808 ($ $)) (-15 -3760 ($ $ $)) (-15 -3665 ($ $)) (-15 -3662 ($ $ $)) (-15 -1466 ((-1081) (-1081))) (-15 -1810 ((-388 (-516)) $ (-719))) (-15 -1810 ((-388 (-516)) $ (-719) (-719)))))
+((-3664 (((-158 (-208)) (-719) (-158 (-208))) 11) (((-208) (-719) (-208)) 12)) (-1467 (((-158 (-208)) (-158 (-208))) 13) (((-208) (-208)) 14)) (-1468 (((-158 (-208)) (-158 (-208)) (-158 (-208))) 19) (((-208) (-208) (-208)) 22)) (-3663 (((-158 (-208)) (-158 (-208))) 25) (((-208) (-208)) 24)) (-3667 (((-158 (-208)) (-158 (-208)) (-158 (-208))) 43) (((-208) (-208) (-208)) 35)) (-3669 (((-158 (-208)) (-158 (-208)) (-158 (-208))) 48) (((-208) (-208) (-208)) 45)) (-3666 (((-158 (-208)) (-158 (-208)) (-158 (-208))) 15) (((-208) (-208) (-208)) 16)) (-3668 (((-158 (-208)) (-158 (-208)) (-158 (-208))) 17) (((-208) (-208) (-208)) 18)) (-3671 (((-158 (-208)) (-158 (-208))) 60) (((-208) (-208)) 59)) (-3670 (((-208) (-208)) 54) (((-158 (-208)) (-158 (-208))) 58)) (-3665 (((-158 (-208)) (-158 (-208))) 8) (((-208) (-208)) 9)) (-3662 (((-158 (-208)) (-158 (-208)) (-158 (-208))) 30) (((-208) (-208) (-208)) 26)))
+(((-209) (-10 -7 (-15 -3665 ((-208) (-208))) (-15 -3665 ((-158 (-208)) (-158 (-208)))) (-15 -3662 ((-208) (-208) (-208))) (-15 -3662 ((-158 (-208)) (-158 (-208)) (-158 (-208)))) (-15 -1467 ((-208) (-208))) (-15 -1467 ((-158 (-208)) (-158 (-208)))) (-15 -3663 ((-208) (-208))) (-15 -3663 ((-158 (-208)) (-158 (-208)))) (-15 -3664 ((-208) (-719) (-208))) (-15 -3664 ((-158 (-208)) (-719) (-158 (-208)))) (-15 -3666 ((-208) (-208) (-208))) (-15 -3666 ((-158 (-208)) (-158 (-208)) (-158 (-208)))) (-15 -3667 ((-208) (-208) (-208))) (-15 -3667 ((-158 (-208)) (-158 (-208)) (-158 (-208)))) (-15 -3668 ((-208) (-208) (-208))) (-15 -3668 ((-158 (-208)) (-158 (-208)) (-158 (-208)))) (-15 -3669 ((-208) (-208) (-208))) (-15 -3669 ((-158 (-208)) (-158 (-208)) (-158 (-208)))) (-15 -3670 ((-158 (-208)) (-158 (-208)))) (-15 -3670 ((-208) (-208))) (-15 -3671 ((-208) (-208))) (-15 -3671 ((-158 (-208)) (-158 (-208)))) (-15 -1468 ((-208) (-208) (-208))) (-15 -1468 ((-158 (-208)) (-158 (-208)) (-158 (-208)))))) (T -209))
+((-1468 (*1 *2 *2 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-209)))) (-1468 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-3671 (*1 *2 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-209)))) (-3671 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-3670 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-3670 (*1 *2 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-209)))) (-3669 (*1 *2 *2 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-209)))) (-3669 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-3668 (*1 *2 *2 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-209)))) (-3668 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-3667 (*1 *2 *2 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-209)))) (-3667 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-3666 (*1 *2 *2 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-209)))) (-3666 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-3664 (*1 *2 *3 *2) (-12 (-5 *2 (-158 (-208))) (-5 *3 (-719)) (-5 *1 (-209)))) (-3664 (*1 *2 *3 *2) (-12 (-5 *2 (-208)) (-5 *3 (-719)) (-5 *1 (-209)))) (-3663 (*1 *2 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-209)))) (-3663 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-1467 (*1 *2 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-209)))) (-1467 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-3662 (*1 *2 *2 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-209)))) (-3662 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-3665 (*1 *2 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-209)))) (-3665 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))))
+(-10 -7 (-15 -3665 ((-208) (-208))) (-15 -3665 ((-158 (-208)) (-158 (-208)))) (-15 -3662 ((-208) (-208) (-208))) (-15 -3662 ((-158 (-208)) (-158 (-208)) (-158 (-208)))) (-15 -1467 ((-208) (-208))) (-15 -1467 ((-158 (-208)) (-158 (-208)))) (-15 -3663 ((-208) (-208))) (-15 -3663 ((-158 (-208)) (-158 (-208)))) (-15 -3664 ((-208) (-719) (-208))) (-15 -3664 ((-158 (-208)) (-719) (-158 (-208)))) (-15 -3666 ((-208) (-208) (-208))) (-15 -3666 ((-158 (-208)) (-158 (-208)) (-158 (-208)))) (-15 -3667 ((-208) (-208) (-208))) (-15 -3667 ((-158 (-208)) (-158 (-208)) (-158 (-208)))) (-15 -3668 ((-208) (-208) (-208))) (-15 -3668 ((-158 (-208)) (-158 (-208)) (-158 (-208)))) (-15 -3669 ((-208) (-208) (-208))) (-15 -3669 ((-158 (-208)) (-158 (-208)) (-158 (-208)))) (-15 -3670 ((-158 (-208)) (-158 (-208)))) (-15 -3670 ((-208) (-208))) (-15 -3671 ((-208) (-208))) (-15 -3671 ((-158 (-208)) (-158 (-208)))) (-15 -1468 ((-208) (-208) (-208))) (-15 -1468 ((-158 (-208)) (-158 (-208)) (-158 (-208)))))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4117 (($ (-719) (-719)) NIL)) (-2365 (($ $ $) NIL)) (-3693 (($ (-1179 |#1|)) NIL) (($ $) NIL)) (-4152 (($ |#1| |#1| |#1|) 32)) (-3380 (((-110) $) NIL)) (-2364 (($ $ (-516) (-516)) NIL)) (-2363 (($ $ (-516) (-516)) NIL)) (-2362 (($ $ (-516) (-516) (-516) (-516)) NIL)) (-2367 (($ $) NIL)) (-3382 (((-110) $) NIL)) (-1217 (((-110) $ (-719)) NIL)) (-2361 (($ $ (-516) (-516) $) NIL)) (-4066 ((|#1| $ (-516) (-516) |#1|) NIL) (($ $ (-594 (-516)) (-594 (-516)) $) NIL)) (-1256 (($ $ (-516) (-1179 |#1|)) NIL)) (-1255 (($ $ (-516) (-1179 |#1|)) NIL)) (-4126 (($ |#1| |#1| |#1|) 31)) (-3611 (($ (-719) |#1|) NIL)) (-3815 (($) NIL T CONST)) (-3369 (($ $) NIL (|has| |#1| (-289)))) (-3371 (((-1179 |#1|) $ (-516)) NIL)) (-1469 (($ |#1|) 30)) (-1470 (($ |#1|) 29)) (-1471 (($ |#1|) 28)) (-3368 (((-719) $) NIL (|has| |#1| (-523)))) (-1587 ((|#1| $ (-516) (-516) |#1|) NIL)) (-3372 ((|#1| $ (-516) (-516)) NIL)) (-2018 (((-594 |#1|) $) NIL)) (-3367 (((-719) $) NIL (|has| |#1| (-523)))) (-3366 (((-594 (-1179 |#1|)) $) NIL (|has| |#1| (-523)))) (-3374 (((-719) $) NIL)) (-3896 (($ (-719) (-719) |#1|) NIL)) (-3373 (((-719) $) NIL)) (-4001 (((-110) $ (-719)) NIL)) (-3605 ((|#1| $) NIL (|has| |#1| (-6 (-4271 #1="*"))))) (-3378 (((-516) $) NIL)) (-3376 (((-516) $) NIL)) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3377 (((-516) $) NIL)) (-3375 (((-516) $) NIL)) (-3383 (($ (-594 (-594 |#1|))) 11)) (-2022 (($ (-1 |#1| |#1|) $) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3875 (((-594 (-594 |#1|)) $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-3871 (((-3 $ #2="failed") $) NIL (|has| |#1| (-344)))) (-1472 (($) 12)) (-2366 (($ $ $) NIL)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-2244 (($ $ |#1|) NIL)) (-3740 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-523)))) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#1| $ (-516) (-516)) NIL) ((|#1| $ (-516) (-516) |#1|) NIL) (($ $ (-594 (-516)) (-594 (-516))) NIL)) (-3610 (($ (-594 |#1|)) NIL) (($ (-594 $)) NIL)) (-3381 (((-110) $) NIL)) (-3606 ((|#1| $) NIL (|has| |#1| (-6 (-4271 #1#))))) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3678 (($ $) NIL)) (-3370 (((-1179 |#1|) $ (-516)) NIL)) (-4233 (($ (-1179 |#1|)) NIL) (((-805) $) NIL (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3379 (((-110) $) NIL)) (-3317 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4224 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-4116 (($ $ $) NIL) (($ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| |#1| (-344)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-516) $) NIL) (((-1179 |#1|) $ (-1179 |#1|)) 15) (((-1179 |#1|) (-1179 |#1|) $) NIL) (((-884 |#1|) $ (-884 |#1|)) 20)) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-210 |#1|) (-13 (-634 |#1| (-1179 |#1|) (-1179 |#1|)) (-10 -8 (-15 * ((-884 |#1|) $ (-884 |#1|))) (-15 -1472 ($)) (-15 -1471 ($ |#1|)) (-15 -1470 ($ |#1|)) (-15 -1469 ($ |#1|)) (-15 -4126 ($ |#1| |#1| |#1|)) (-15 -4152 ($ |#1| |#1| |#1|)))) (-13 (-344) (-1120))) (T -210))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1120))) (-5 *1 (-210 *3)))) (-1472 (*1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1120))))) (-1471 (*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1120))))) (-1470 (*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1120))))) (-1469 (*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1120))))) (-4126 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1120))))) (-4152 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1120))))))
+(-13 (-634 |#1| (-1179 |#1|) (-1179 |#1|)) (-10 -8 (-15 * ((-884 |#1|) $ (-884 |#1|))) (-15 -1472 ($)) (-15 -1471 ($ |#1|)) (-15 -1470 ($ |#1|)) (-15 -1469 ($ |#1|)) (-15 -4126 ($ |#1| |#1| |#1|)) (-15 -4152 ($ |#1| |#1| |#1|))))
+((-1581 (($ (-1 (-110) |#2|) $) 16)) (-3684 (($ |#2| $) NIL) (($ (-1 (-110) |#2|) $) 25)) (-1473 (($) NIL) (($ (-594 |#2|)) 11)) (-3317 (((-110) $ $) 23)))
+(((-211 |#1| |#2|) (-10 -8 (-15 -1581 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3684 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3684 (|#1| |#2| |#1|)) (-15 -1473 (|#1| (-594 |#2|))) (-15 -1473 (|#1|)) (-15 -3317 ((-110) |#1| |#1|))) (-212 |#2|) (-1027)) (T -211))
+NIL
+(-10 -8 (-15 -1581 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3684 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3684 (|#1| |#2| |#1|)) (-15 -1473 (|#1| (-594 |#2|))) (-15 -1473 (|#1|)) (-15 -3317 ((-110) |#1| |#1|)))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1217 (((-110) $ (-719)) 8)) (-1581 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4269)))) (-3992 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4269)))) (-3815 (($) 7 T CONST)) (-1349 (($ $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3684 (($ |#1| $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4269)))) (-3685 (($ |#1| $) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4269)))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4269)))) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) 9)) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35)) (-3998 (((-110) $ (-719)) 10)) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-1280 ((|#1| $) 39)) (-3889 (($ |#1| $) 40)) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-1281 ((|#1| $) 41)) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-1473 (($) 49) (($ (-594 |#1|)) 48)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4246 (((-505) $) 59 (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) 50)) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-1282 (($ (-594 |#1|)) 42)) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-212 |#1|) (-133) (-1027)) (T -212))
+NIL
+(-13 (-218 |t#1|))
+(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-571 (-805)))) ((-144 |#1|) . T) ((-572 (-505)) |has| |#1| (-572 (-505))) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1134) . T))
+((-4089 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-719)) 11) (($ $ (-594 (-1098)) (-594 (-719))) NIL) (($ $ (-1098) (-719)) NIL) (($ $ (-594 (-1098))) NIL) (($ $ (-1098)) 19) (($ $ (-719)) NIL) (($ $) 16)) (-2932 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-719)) 14) (($ $ (-594 (-1098)) (-594 (-719))) NIL) (($ $ (-1098) (-719)) NIL) (($ $ (-594 (-1098))) NIL) (($ $ (-1098)) NIL) (($ $ (-719)) NIL) (($ $) NIL)))
+(((-213 |#1| |#2|) (-10 -8 (-15 -4089 (|#1| |#1|)) (-15 -2932 (|#1| |#1|)) (-15 -4089 (|#1| |#1| (-719))) (-15 -2932 (|#1| |#1| (-719))) (-15 -4089 (|#1| |#1| (-1098))) (-15 -4089 (|#1| |#1| (-594 (-1098)))) (-15 -4089 (|#1| |#1| (-1098) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)) (-594 (-719)))) (-15 -2932 (|#1| |#1| (-1098))) (-15 -2932 (|#1| |#1| (-594 (-1098)))) (-15 -2932 (|#1| |#1| (-1098) (-719))) (-15 -2932 (|#1| |#1| (-594 (-1098)) (-594 (-719)))) (-15 -2932 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -2932 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|)))) (-214 |#2|) (-984)) (T -213))
+NIL
+(-10 -8 (-15 -4089 (|#1| |#1|)) (-15 -2932 (|#1| |#1|)) (-15 -4089 (|#1| |#1| (-719))) (-15 -2932 (|#1| |#1| (-719))) (-15 -4089 (|#1| |#1| (-1098))) (-15 -4089 (|#1| |#1| (-594 (-1098)))) (-15 -4089 (|#1| |#1| (-1098) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)) (-594 (-719)))) (-15 -2932 (|#1| |#1| (-1098))) (-15 -2932 (|#1| |#1| (-594 (-1098)))) (-15 -2932 (|#1| |#1| (-1098) (-719))) (-15 -2932 (|#1| |#1| (-594 (-1098)) (-594 (-719)))) (-15 -2932 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -2932 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3741 (((-3 $ "failed") $) 34)) (-2436 (((-110) $) 31)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4089 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-719)) 51) (($ $ (-594 (-1098)) (-594 (-719))) 44 (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) 43 (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) 42 (|has| |#1| (-841 (-1098)))) (($ $ (-1098)) 41 (|has| |#1| (-841 (-1098)))) (($ $ (-719)) 39 (|has| |#1| (-216))) (($ $) 37 (|has| |#1| (-216)))) (-4233 (((-805) $) 11) (($ (-516)) 28)) (-3385 (((-719)) 29)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2932 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-719)) 49) (($ $ (-594 (-1098)) (-594 (-719))) 48 (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) 47 (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) 46 (|has| |#1| (-841 (-1098)))) (($ $ (-1098)) 45 (|has| |#1| (-841 (-1098)))) (($ $ (-719)) 40 (|has| |#1| (-216))) (($ $) 38 (|has| |#1| (-216)))) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24)))
+(((-214 |#1|) (-133) (-984)) (T -214))
+((-4089 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-214 *3)) (-4 *3 (-984)))) (-4089 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-719)) (-4 *1 (-214 *4)) (-4 *4 (-984)))) (-2932 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-214 *3)) (-4 *3 (-984)))) (-2932 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-719)) (-4 *1 (-214 *4)) (-4 *4 (-984)))))
+(-13 (-984) (-10 -8 (-15 -4089 ($ $ (-1 |t#1| |t#1|))) (-15 -4089 ($ $ (-1 |t#1| |t#1|) (-719))) (-15 -2932 ($ $ (-1 |t#1| |t#1|))) (-15 -2932 ($ $ (-1 |t#1| |t#1|) (-719))) (IF (|has| |t#1| (-216)) (-6 (-216)) |%noBranch|) (IF (|has| |t#1| (-841 (-1098))) (-6 (-841 (-1098))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-805)) . T) ((-216) |has| |#1| (-216)) ((-599 $) . T) ((-675) . T) ((-841 (-1098)) |has| |#1| (-841 (-1098))) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-4089 (($ $) NIL) (($ $ (-719)) 10)) (-2932 (($ $) 8) (($ $ (-719)) 12)))
+(((-215 |#1|) (-10 -8 (-15 -2932 (|#1| |#1| (-719))) (-15 -4089 (|#1| |#1| (-719))) (-15 -2932 (|#1| |#1|)) (-15 -4089 (|#1| |#1|))) (-216)) (T -215))
+NIL
+(-10 -8 (-15 -2932 (|#1| |#1| (-719))) (-15 -4089 (|#1| |#1| (-719))) (-15 -2932 (|#1| |#1|)) (-15 -4089 (|#1| |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3741 (((-3 $ "failed") $) 34)) (-2436 (((-110) $) 31)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4089 (($ $) 38) (($ $ (-719)) 36)) (-4233 (((-805) $) 11) (($ (-516)) 28)) (-3385 (((-719)) 29)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2932 (($ $) 37) (($ $ (-719)) 35)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24)))
+(((-216) (-133)) (T -216))
+((-4089 (*1 *1 *1) (-4 *1 (-216))) (-2932 (*1 *1 *1) (-4 *1 (-216))) (-4089 (*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-719)))) (-2932 (*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-719)))))
+(-13 (-984) (-10 -8 (-15 -4089 ($ $)) (-15 -2932 ($ $)) (-15 -4089 ($ $ (-719))) (-15 -2932 ($ $ (-719)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-805)) . T) ((-599 $) . T) ((-675) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-1473 (($) 12) (($ (-594 |#2|)) NIL)) (-3678 (($ $) 14)) (-3804 (($ (-594 |#2|)) 10)) (-4233 (((-805) $) 21)))
+(((-217 |#1| |#2|) (-10 -8 (-15 -4233 ((-805) |#1|)) (-15 -1473 (|#1| (-594 |#2|))) (-15 -1473 (|#1|)) (-15 -3804 (|#1| (-594 |#2|))) (-15 -3678 (|#1| |#1|))) (-218 |#2|) (-1027)) (T -217))
+NIL
+(-10 -8 (-15 -4233 ((-805) |#1|)) (-15 -1473 (|#1| (-594 |#2|))) (-15 -1473 (|#1|)) (-15 -3804 (|#1| (-594 |#2|))) (-15 -3678 (|#1| |#1|)))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1217 (((-110) $ (-719)) 8)) (-1581 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4269)))) (-3992 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4269)))) (-3815 (($) 7 T CONST)) (-1349 (($ $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3684 (($ |#1| $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4269)))) (-3685 (($ |#1| $) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4269)))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4269)))) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) 9)) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35)) (-3998 (((-110) $ (-719)) 10)) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-1280 ((|#1| $) 39)) (-3889 (($ |#1| $) 40)) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-1281 ((|#1| $) 41)) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-1473 (($) 49) (($ (-594 |#1|)) 48)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4246 (((-505) $) 59 (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) 50)) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-1282 (($ (-594 |#1|)) 42)) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-218 |#1|) (-133) (-1027)) (T -218))
+((-1473 (*1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1027)))) (-1473 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1027)) (-4 *1 (-218 *3)))) (-3684 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-218 *2)) (-4 *2 (-1027)))) (-3684 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4269)) (-4 *1 (-218 *3)) (-4 *3 (-1027)))) (-1581 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4269)) (-4 *1 (-218 *3)) (-4 *3 (-1027)))))
+(-13 (-104 |t#1|) (-144 |t#1|) (-10 -8 (-15 -1473 ($)) (-15 -1473 ($ (-594 |t#1|))) (IF (|has| $ (-6 -4269)) (PROGN (-15 -3684 ($ |t#1| $)) (-15 -3684 ($ (-1 (-110) |t#1|) $)) (-15 -1581 ($ (-1 (-110) |t#1|) $))) |%noBranch|)))
+(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-571 (-805)))) ((-144 |#1|) . T) ((-572 (-505)) |has| |#1| (-572 (-505))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1134) . T))
+((-1474 (((-2 (|:| |varOrder| (-594 (-1098))) (|:| |inhom| (-3 (-594 (-1179 (-719))) "failed")) (|:| |hom| (-594 (-1179 (-719))))) (-275 (-887 (-516)))) 27)))
+(((-219) (-10 -7 (-15 -1474 ((-2 (|:| |varOrder| (-594 (-1098))) (|:| |inhom| (-3 (-594 (-1179 (-719))) "failed")) (|:| |hom| (-594 (-1179 (-719))))) (-275 (-887 (-516))))))) (T -219))
+((-1474 (*1 *2 *3) (-12 (-5 *3 (-275 (-887 (-516)))) (-5 *2 (-2 (|:| |varOrder| (-594 (-1098))) (|:| |inhom| (-3 (-594 (-1179 (-719))) "failed")) (|:| |hom| (-594 (-1179 (-719)))))) (-5 *1 (-219)))))
+(-10 -7 (-15 -1474 ((-2 (|:| |varOrder| (-594 (-1098))) (|:| |inhom| (-3 (-594 (-1179 (-719))) "failed")) (|:| |hom| (-594 (-1179 (-719))))) (-275 (-887 (-516))))))
+((-3395 (((-719)) 51)) (-2297 (((-2 (|:| -1650 (-637 |#3|)) (|:| |vec| (-1179 |#3|))) (-637 $) (-1179 $)) 49) (((-637 |#3|) (-637 $)) 41) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL) (((-637 (-516)) (-637 $)) NIL)) (-4190 (((-130)) 57)) (-4089 (($ $ (-1 |#3| |#3|) (-719)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-594 (-1098)) (-594 (-719))) NIL) (($ $ (-1098) (-719)) NIL) (($ $ (-594 (-1098))) NIL) (($ $ (-1098)) NIL) (($ $ (-719)) NIL) (($ $) NIL)) (-4233 (((-1179 |#3|) $) NIL) (($ |#3|) NIL) (((-805) $) NIL) (($ (-516)) 12) (($ (-388 (-516))) NIL)) (-3385 (((-719)) 15)) (-4224 (($ $ |#3|) 54)))
+(((-220 |#1| |#2| |#3|) (-10 -8 (-15 -4233 (|#1| (-388 (-516)))) (-15 -4233 (|#1| (-516))) (-15 -4233 ((-805) |#1|)) (-15 -3385 ((-719))) (-15 -4089 (|#1| |#1|)) (-15 -4089 (|#1| |#1| (-719))) (-15 -4089 (|#1| |#1| (-1098))) (-15 -4089 (|#1| |#1| (-594 (-1098)))) (-15 -4089 (|#1| |#1| (-1098) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)) (-594 (-719)))) (-15 -2297 ((-637 (-516)) (-637 |#1|))) (-15 -2297 ((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 |#1|) (-1179 |#1|))) (-15 -4233 (|#1| |#3|)) (-15 -4089 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4089 (|#1| |#1| (-1 |#3| |#3|) (-719))) (-15 -2297 ((-637 |#3|) (-637 |#1|))) (-15 -2297 ((-2 (|:| -1650 (-637 |#3|)) (|:| |vec| (-1179 |#3|))) (-637 |#1|) (-1179 |#1|))) (-15 -3395 ((-719))) (-15 -4224 (|#1| |#1| |#3|)) (-15 -4190 ((-130))) (-15 -4233 ((-1179 |#3|) |#1|))) (-221 |#2| |#3|) (-719) (-1134)) (T -220))
+((-4190 (*1 *2) (-12 (-14 *4 (-719)) (-4 *5 (-1134)) (-5 *2 (-130)) (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5)))) (-3395 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1134)) (-5 *2 (-719)) (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5)))) (-3385 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1134)) (-5 *2 (-719)) (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5)))))
+(-10 -8 (-15 -4233 (|#1| (-388 (-516)))) (-15 -4233 (|#1| (-516))) (-15 -4233 ((-805) |#1|)) (-15 -3385 ((-719))) (-15 -4089 (|#1| |#1|)) (-15 -4089 (|#1| |#1| (-719))) (-15 -4089 (|#1| |#1| (-1098))) (-15 -4089 (|#1| |#1| (-594 (-1098)))) (-15 -4089 (|#1| |#1| (-1098) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)) (-594 (-719)))) (-15 -2297 ((-637 (-516)) (-637 |#1|))) (-15 -2297 ((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 |#1|) (-1179 |#1|))) (-15 -4233 (|#1| |#3|)) (-15 -4089 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4089 (|#1| |#1| (-1 |#3| |#3|) (-719))) (-15 -2297 ((-637 |#3|) (-637 |#1|))) (-15 -2297 ((-2 (|:| -1650 (-637 |#3|)) (|:| |vec| (-1179 |#3|))) (-637 |#1|) (-1179 |#1|))) (-15 -3395 ((-719))) (-15 -4224 (|#1| |#1| |#3|)) (-15 -4190 ((-130))) (-15 -4233 ((-1179 |#3|) |#1|)))
+((-2828 (((-110) $ $) 19 (|has| |#2| (-1027)))) (-3462 (((-110) $) 72 (|has| |#2| (-128)))) (-3989 (($ (-860)) 127 (|has| |#2| (-984)))) (-2243 (((-1185) $ (-516) (-516)) 40 (|has| $ (-6 -4270)))) (-2667 (($ $ $) 123 (|has| |#2| (-741)))) (-1319 (((-3 $ "failed") $ $) 74 (|has| |#2| (-128)))) (-1217 (((-110) $ (-719)) 8)) (-3395 (((-719)) 109 (|has| |#2| (-349)))) (-3905 (((-516) $) 121 (|has| |#2| (-793)))) (-4066 ((|#2| $ (-516) |#2|) 52 (|has| $ (-6 -4270)))) (-3815 (($) 7 T CONST)) (-3432 (((-3 (-516) #1="failed") $) 67 (-3119 (|has| |#2| (-975 (-516))) (|has| |#2| (-1027)))) (((-3 (-388 (-516)) #1#) $) 64 (-3119 (|has| |#2| (-975 (-388 (-516)))) (|has| |#2| (-1027)))) (((-3 |#2| #1#) $) 61 (|has| |#2| (-1027)))) (-3431 (((-516) $) 68 (-3119 (|has| |#2| (-975 (-516))) (|has| |#2| (-1027)))) (((-388 (-516)) $) 65 (-3119 (|has| |#2| (-975 (-388 (-516)))) (|has| |#2| (-1027)))) ((|#2| $) 60 (|has| |#2| (-1027)))) (-2297 (((-637 (-516)) (-637 $)) 108 (-3119 (|has| |#2| (-593 (-516))) (|has| |#2| (-984)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) 107 (-3119 (|has| |#2| (-593 (-516))) (|has| |#2| (-984)))) (((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 $) (-1179 $)) 106 (|has| |#2| (-984))) (((-637 |#2|) (-637 $)) 105 (|has| |#2| (-984)))) (-3741 (((-3 $ "failed") $) 80 (|has| |#2| (-675)))) (-3258 (($) 112 (|has| |#2| (-349)))) (-1587 ((|#2| $ (-516) |#2|) 53 (|has| $ (-6 -4270)))) (-3372 ((|#2| $ (-516)) 51)) (-3460 (((-110) $) 119 (|has| |#2| (-793)))) (-2018 (((-594 |#2|) $) 30 (|has| $ (-6 -4269)))) (-2436 (((-110) $) 83 (|has| |#2| (-675)))) (-3461 (((-110) $) 120 (|has| |#2| (-793)))) (-4001 (((-110) $ (-719)) 9)) (-2245 (((-516) $) 43 (|has| (-516) (-795)))) (-3596 (($ $ $) 118 (-3810 (|has| |#2| (-793)) (|has| |#2| (-741))))) (-2445 (((-594 |#2|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#2| $) 27 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269))))) (-2246 (((-516) $) 44 (|has| (-516) (-795)))) (-3597 (($ $ $) 117 (-3810 (|has| |#2| (-793)) (|has| |#2| (-741))))) (-2022 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#2| |#2|) $) 35)) (-2069 (((-860) $) 111 (|has| |#2| (-349)))) (-3998 (((-110) $ (-719)) 10)) (-3513 (((-1081) $) 22 (|has| |#2| (-1027)))) (-2248 (((-594 (-516)) $) 46)) (-2249 (((-110) (-516) $) 47)) (-2426 (($ (-860)) 110 (|has| |#2| (-349)))) (-3514 (((-1045) $) 21 (|has| |#2| (-1027)))) (-4079 ((|#2| $) 42 (|has| (-516) (-795)))) (-2244 (($ $ |#2|) 41 (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) |#2|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#2|))) 26 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-275 |#2|)) 25 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-594 |#2|) (-594 |#2|)) 23 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1218 (((-110) $ $) 14)) (-2247 (((-110) |#2| $) 45 (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2250 (((-594 |#2|) $) 48)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-4078 ((|#2| $ (-516) |#2|) 50) ((|#2| $ (-516)) 49)) (-4115 ((|#2| $ $) 126 (|has| |#2| (-984)))) (-1475 (($ (-1179 |#2|)) 128)) (-4190 (((-130)) 125 (|has| |#2| (-344)))) (-4089 (($ $) 100 (-3119 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) 98 (-3119 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1098)) 96 (-3119 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-594 (-1098))) 95 (-3119 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-1098) (-719)) 94 (-3119 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-594 (-1098)) (-594 (-719))) 93 (-3119 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) 86 (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-984)))) (-2019 (((-719) (-1 (-110) |#2|) $) 31 (|has| $ (-6 -4269))) (((-719) |#2| $) 28 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4233 (((-1179 |#2|) $) 129) (($ (-516)) 66 (-3810 (-3119 (|has| |#2| (-975 (-516))) (|has| |#2| (-1027))) (|has| |#2| (-984)))) (($ (-388 (-516))) 63 (-3119 (|has| |#2| (-975 (-388 (-516)))) (|has| |#2| (-1027)))) (($ |#2|) 62 (|has| |#2| (-1027))) (((-805) $) 18 (|has| |#2| (-571 (-805))))) (-3385 (((-719)) 104 (|has| |#2| (-984)))) (-2021 (((-110) (-1 (-110) |#2|) $) 33 (|has| $ (-6 -4269)))) (-3661 (($ $) 122 (|has| |#2| (-793)))) (-3581 (($ $ (-719)) 81 (|has| |#2| (-675))) (($ $ (-860)) 77 (|has| |#2| (-675)))) (-2920 (($) 71 (|has| |#2| (-128)) CONST)) (-2927 (($) 84 (|has| |#2| (-675)) CONST)) (-2932 (($ $) 99 (-3119 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) 97 (-3119 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1098)) 92 (-3119 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-594 (-1098))) 91 (-3119 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-1098) (-719)) 90 (-3119 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-594 (-1098)) (-594 (-719))) 89 (-3119 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) 88 (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) 87 (|has| |#2| (-984)))) (-2826 (((-110) $ $) 115 (-3810 (|has| |#2| (-793)) (|has| |#2| (-741))))) (-2827 (((-110) $ $) 114 (-3810 (|has| |#2| (-793)) (|has| |#2| (-741))))) (-3317 (((-110) $ $) 20 (|has| |#2| (-1027)))) (-2947 (((-110) $ $) 116 (-3810 (|has| |#2| (-793)) (|has| |#2| (-741))))) (-2948 (((-110) $ $) 113 (-3810 (|has| |#2| (-793)) (|has| |#2| (-741))))) (-4224 (($ $ |#2|) 124 (|has| |#2| (-344)))) (-4116 (($ $ $) 102 (|has| |#2| (-984))) (($ $) 101 (|has| |#2| (-984)))) (-4118 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-719)) 82 (|has| |#2| (-675))) (($ $ (-860)) 78 (|has| |#2| (-675)))) (* (($ (-516) $) 103 (|has| |#2| (-984))) (($ $ $) 79 (|has| |#2| (-675))) (($ $ |#2|) 76 (|has| |#2| (-675))) (($ |#2| $) 75 (|has| |#2| (-675))) (($ (-719) $) 73 (|has| |#2| (-128))) (($ (-860) $) 70 (|has| |#2| (-25)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-221 |#1| |#2|) (-133) (-719) (-1134)) (T -221))
+((-1475 (*1 *1 *2) (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1134)) (-4 *1 (-221 *3 *4)))) (-3989 (*1 *1 *2) (-12 (-5 *2 (-860)) (-4 *1 (-221 *3 *4)) (-4 *4 (-984)) (-4 *4 (-1134)))) (-4115 (*1 *2 *1 *1) (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1134)) (-4 *2 (-984)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1134)) (-4 *2 (-675)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1134)) (-4 *2 (-675)))))
+(-13 (-563 (-516) |t#2|) (-571 (-1179 |t#2|)) (-10 -8 (-6 -4269) (-15 -1475 ($ (-1179 |t#2|))) (IF (|has| |t#2| (-1027)) (-6 (-393 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-984)) (PROGN (-6 (-109 |t#2| |t#2|)) (-6 (-214 |t#2|)) (-6 (-358 |t#2|)) (-15 -3989 ($ (-860))) (-15 -4115 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-128)) (-6 (-128)) |%noBranch|) (IF (|has| |t#2| (-675)) (PROGN (-6 (-675)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-349)) (-6 (-349)) |%noBranch|) (IF (|has| |t#2| (-162)) (PROGN (-6 (-37 |t#2|)) (-6 (-162))) |%noBranch|) (IF (|has| |t#2| (-6 -4266)) (-6 -4266) |%noBranch|) (IF (|has| |t#2| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |t#2| (-741)) (-6 (-741)) |%noBranch|) (IF (|has| |t#2| (-344)) (-6 (-1187 |t#2|)) |%noBranch|)))
+(((-21) -3810 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-344)) (|has| |#2| (-162))) ((-23) -3810 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-741)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128))) ((-25) -3810 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-741)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-162)) ((-99) -3810 (|has| |#2| (-1027)) (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-741)) (|has| |#2| (-675)) (|has| |#2| (-349)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-109 |#2| |#2|) -3810 (|has| |#2| (-984)) (|has| |#2| (-344)) (|has| |#2| (-162))) ((-109 $ $) |has| |#2| (-162)) ((-128) -3810 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-741)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128))) ((-571 (-805)) -3810 (|has| |#2| (-1027)) (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-741)) (|has| |#2| (-675)) (|has| |#2| (-349)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-571 (-805))) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-571 (-1179 |#2|)) . T) ((-162) |has| |#2| (-162)) ((-214 |#2|) |has| |#2| (-984)) ((-216) -12 (|has| |#2| (-216)) (|has| |#2| (-984))) ((-268 #1=(-516) |#2|) . T) ((-270 #1# |#2|) . T) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-349) |has| |#2| (-349)) ((-358 |#2|) |has| |#2| (-984)) ((-393 |#2|) |has| |#2| (-1027)) ((-468 |#2|) . T) ((-563 #1# |#2|) . T) ((-491 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-599 |#2|) -3810 (|has| |#2| (-984)) (|has| |#2| (-344)) (|has| |#2| (-162))) ((-599 $) -3810 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-162))) ((-593 (-516)) -12 (|has| |#2| (-593 (-516))) (|has| |#2| (-984))) ((-593 |#2|) |has| |#2| (-984)) ((-666 |#2|) -3810 (|has| |#2| (-344)) (|has| |#2| (-162))) ((-675) -3810 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-675)) (|has| |#2| (-162))) ((-739) |has| |#2| (-793)) ((-740) -3810 (|has| |#2| (-793)) (|has| |#2| (-741))) ((-741) |has| |#2| (-741)) ((-742) -3810 (|has| |#2| (-793)) (|has| |#2| (-741))) ((-745) -3810 (|has| |#2| (-793)) (|has| |#2| (-741))) ((-793) |has| |#2| (-793)) ((-795) -3810 (|has| |#2| (-793)) (|has| |#2| (-741))) ((-841 (-1098)) -12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984))) ((-975 (-388 (-516))) -12 (|has| |#2| (-975 (-388 (-516)))) (|has| |#2| (-1027))) ((-975 (-516)) -12 (|has| |#2| (-975 (-516))) (|has| |#2| (-1027))) ((-975 |#2|) |has| |#2| (-1027)) ((-989 |#2|) -3810 (|has| |#2| (-984)) (|has| |#2| (-344)) (|has| |#2| (-162))) ((-989 $) |has| |#2| (-162)) ((-984) -3810 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-162))) ((-990) -3810 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-162))) ((-1038) -3810 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-675)) (|has| |#2| (-162))) ((-1027) -3810 (|has| |#2| (-1027)) (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-741)) (|has| |#2| (-675)) (|has| |#2| (-349)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-1134) . T) ((-1187 |#2|) |has| |#2| (-344)))
+((-2828 (((-110) $ $) NIL (|has| |#2| (-1027)))) (-3462 (((-110) $) NIL (|has| |#2| (-128)))) (-3989 (($ (-860)) 56 (|has| |#2| (-984)))) (-2243 (((-1185) $ (-516) (-516)) NIL (|has| $ (-6 -4270)))) (-2667 (($ $ $) 60 (|has| |#2| (-741)))) (-1319 (((-3 $ "failed") $ $) 49 (|has| |#2| (-128)))) (-1217 (((-110) $ (-719)) 17)) (-3395 (((-719)) NIL (|has| |#2| (-349)))) (-3905 (((-516) $) NIL (|has| |#2| (-793)))) (-4066 ((|#2| $ (-516) |#2|) NIL (|has| $ (-6 -4270)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-516) #1="failed") $) NIL (-12 (|has| |#2| (-975 (-516))) (|has| |#2| (-1027)))) (((-3 (-388 (-516)) #1#) $) NIL (-12 (|has| |#2| (-975 (-388 (-516)))) (|has| |#2| (-1027)))) (((-3 |#2| #1#) $) 29 (|has| |#2| (-1027)))) (-3431 (((-516) $) NIL (-12 (|has| |#2| (-975 (-516))) (|has| |#2| (-1027)))) (((-388 (-516)) $) NIL (-12 (|has| |#2| (-975 (-388 (-516)))) (|has| |#2| (-1027)))) ((|#2| $) 27 (|has| |#2| (-1027)))) (-2297 (((-637 (-516)) (-637 $)) NIL (-12 (|has| |#2| (-593 (-516))) (|has| |#2| (-984)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (-12 (|has| |#2| (-593 (-516))) (|has| |#2| (-984)))) (((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 $) (-1179 $)) NIL (|has| |#2| (-984))) (((-637 |#2|) (-637 $)) NIL (|has| |#2| (-984)))) (-3741 (((-3 $ "failed") $) 53 (|has| |#2| (-675)))) (-3258 (($) NIL (|has| |#2| (-349)))) (-1587 ((|#2| $ (-516) |#2|) NIL (|has| $ (-6 -4270)))) (-3372 ((|#2| $ (-516)) 51)) (-3460 (((-110) $) NIL (|has| |#2| (-793)))) (-2018 (((-594 |#2|) $) 15 (|has| $ (-6 -4269)))) (-2436 (((-110) $) NIL (|has| |#2| (-675)))) (-3461 (((-110) $) NIL (|has| |#2| (-793)))) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-516) $) 20 (|has| (-516) (-795)))) (-3596 (($ $ $) NIL (-3810 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2445 (((-594 |#2|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2246 (((-516) $) 50 (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (-3810 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2022 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#2| |#2|) $) 41)) (-2069 (((-860) $) NIL (|has| |#2| (-349)))) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (|has| |#2| (-1027)))) (-2248 (((-594 (-516)) $) NIL)) (-2249 (((-110) (-516) $) NIL)) (-2426 (($ (-860)) NIL (|has| |#2| (-349)))) (-3514 (((-1045) $) NIL (|has| |#2| (-1027)))) (-4079 ((|#2| $) NIL (|has| (-516) (-795)))) (-2244 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) |#2|) $) 24 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-594 |#2|) (-594 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2250 (((-594 |#2|) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#2| $ (-516) |#2|) NIL) ((|#2| $ (-516)) 21)) (-4115 ((|#2| $ $) NIL (|has| |#2| (-984)))) (-1475 (($ (-1179 |#2|)) 18)) (-4190 (((-130)) NIL (|has| |#2| (-344)))) (-4089 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1098)) NIL (-12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-984)))) (-2019 (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-3678 (($ $) NIL)) (-4233 (((-1179 |#2|) $) 10) (($ (-516)) NIL (-3810 (-12 (|has| |#2| (-975 (-516))) (|has| |#2| (-1027))) (|has| |#2| (-984)))) (($ (-388 (-516))) NIL (-12 (|has| |#2| (-975 (-388 (-516)))) (|has| |#2| (-1027)))) (($ |#2|) 13 (|has| |#2| (-1027))) (((-805) $) NIL (|has| |#2| (-571 (-805))))) (-3385 (((-719)) NIL (|has| |#2| (-984)))) (-2021 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3661 (($ $) NIL (|has| |#2| (-793)))) (-3581 (($ $ (-719)) NIL (|has| |#2| (-675))) (($ $ (-860)) NIL (|has| |#2| (-675)))) (-2920 (($) 35 (|has| |#2| (-128)) CONST)) (-2927 (($) 38 (|has| |#2| (-675)) CONST)) (-2932 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1098)) NIL (-12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-984)))) (-2826 (((-110) $ $) NIL (-3810 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2827 (((-110) $ $) NIL (-3810 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-3317 (((-110) $ $) 26 (|has| |#2| (-1027)))) (-2947 (((-110) $ $) NIL (-3810 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2948 (((-110) $ $) 58 (-3810 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-4224 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-4116 (($ $ $) NIL (|has| |#2| (-984))) (($ $) NIL (|has| |#2| (-984)))) (-4118 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-719)) NIL (|has| |#2| (-675))) (($ $ (-860)) NIL (|has| |#2| (-675)))) (* (($ (-516) $) NIL (|has| |#2| (-984))) (($ $ $) 44 (|has| |#2| (-675))) (($ $ |#2|) 42 (|has| |#2| (-675))) (($ |#2| $) 43 (|has| |#2| (-675))) (($ (-719) $) NIL (|has| |#2| (-128))) (($ (-860) $) NIL (|has| |#2| (-25)))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-222 |#1| |#2|) (-221 |#1| |#2|) (-719) (-1134)) (T -222))
+NIL
+(-221 |#1| |#2|)
+((-4120 (((-222 |#1| |#3|) (-1 |#3| |#2| |#3|) (-222 |#1| |#2|) |#3|) 21)) (-4121 ((|#3| (-1 |#3| |#2| |#3|) (-222 |#1| |#2|) |#3|) 23)) (-4234 (((-222 |#1| |#3|) (-1 |#3| |#2|) (-222 |#1| |#2|)) 18)))
+(((-223 |#1| |#2| |#3|) (-10 -7 (-15 -4120 ((-222 |#1| |#3|) (-1 |#3| |#2| |#3|) (-222 |#1| |#2|) |#3|)) (-15 -4121 (|#3| (-1 |#3| |#2| |#3|) (-222 |#1| |#2|) |#3|)) (-15 -4234 ((-222 |#1| |#3|) (-1 |#3| |#2|) (-222 |#1| |#2|)))) (-719) (-1134) (-1134)) (T -223))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-222 *5 *6)) (-14 *5 (-719)) (-4 *6 (-1134)) (-4 *7 (-1134)) (-5 *2 (-222 *5 *7)) (-5 *1 (-223 *5 *6 *7)))) (-4121 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-222 *5 *6)) (-14 *5 (-719)) (-4 *6 (-1134)) (-4 *2 (-1134)) (-5 *1 (-223 *5 *6 *2)))) (-4120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-222 *6 *7)) (-14 *6 (-719)) (-4 *7 (-1134)) (-4 *5 (-1134)) (-5 *2 (-222 *6 *5)) (-5 *1 (-223 *6 *7 *5)))))
+(-10 -7 (-15 -4120 ((-222 |#1| |#3|) (-1 |#3| |#2| |#3|) (-222 |#1| |#2|) |#3|)) (-15 -4121 (|#3| (-1 |#3| |#2| |#3|) (-222 |#1| |#2|) |#3|)) (-15 -4234 ((-222 |#1| |#3|) (-1 |#3| |#2|) (-222 |#1| |#2|))))
+((-1479 (((-516) (-594 (-1081))) 24) (((-516) (-1081)) 19)) (-1478 (((-1185) (-594 (-1081))) 29) (((-1185) (-1081)) 28)) (-1476 (((-1081)) 14)) (-1477 (((-1081) (-516) (-1081)) 16)) (-4051 (((-594 (-1081)) (-594 (-1081)) (-516) (-1081)) 25) (((-1081) (-1081) (-516) (-1081)) 23)) (-2878 (((-594 (-1081)) (-594 (-1081))) 13) (((-594 (-1081)) (-1081)) 11)))
+(((-224) (-10 -7 (-15 -2878 ((-594 (-1081)) (-1081))) (-15 -2878 ((-594 (-1081)) (-594 (-1081)))) (-15 -1476 ((-1081))) (-15 -1477 ((-1081) (-516) (-1081))) (-15 -4051 ((-1081) (-1081) (-516) (-1081))) (-15 -4051 ((-594 (-1081)) (-594 (-1081)) (-516) (-1081))) (-15 -1478 ((-1185) (-1081))) (-15 -1478 ((-1185) (-594 (-1081)))) (-15 -1479 ((-516) (-1081))) (-15 -1479 ((-516) (-594 (-1081)))))) (T -224))
+((-1479 (*1 *2 *3) (-12 (-5 *3 (-594 (-1081))) (-5 *2 (-516)) (-5 *1 (-224)))) (-1479 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-516)) (-5 *1 (-224)))) (-1478 (*1 *2 *3) (-12 (-5 *3 (-594 (-1081))) (-5 *2 (-1185)) (-5 *1 (-224)))) (-1478 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-224)))) (-4051 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-594 (-1081))) (-5 *3 (-516)) (-5 *4 (-1081)) (-5 *1 (-224)))) (-4051 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1081)) (-5 *3 (-516)) (-5 *1 (-224)))) (-1477 (*1 *2 *3 *2) (-12 (-5 *2 (-1081)) (-5 *3 (-516)) (-5 *1 (-224)))) (-1476 (*1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-224)))) (-2878 (*1 *2 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-224)))) (-2878 (*1 *2 *3) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-224)) (-5 *3 (-1081)))))
+(-10 -7 (-15 -2878 ((-594 (-1081)) (-1081))) (-15 -2878 ((-594 (-1081)) (-594 (-1081)))) (-15 -1476 ((-1081))) (-15 -1477 ((-1081) (-516) (-1081))) (-15 -4051 ((-1081) (-1081) (-516) (-1081))) (-15 -4051 ((-594 (-1081)) (-594 (-1081)) (-516) (-1081))) (-15 -1478 ((-1185) (-1081))) (-15 -1478 ((-1185) (-594 (-1081)))) (-15 -1479 ((-516) (-1081))) (-15 -1479 ((-516) (-594 (-1081)))))
+((-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) 9)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) 18)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ (-388 (-516)) $) 25) (($ $ (-388 (-516))) NIL)))
+(((-225 |#1|) (-10 -8 (-15 -3581 (|#1| |#1| (-516))) (-15 ** (|#1| |#1| (-516))) (-15 * (|#1| |#1| (-388 (-516)))) (-15 * (|#1| (-388 (-516)) |#1|)) (-15 ** (|#1| |#1| (-719))) (-15 -3581 (|#1| |#1| (-719))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-860))) (-15 -3581 (|#1| |#1| (-860))) (-15 * (|#1| (-516) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-860) |#1|))) (-226)) (T -225))
+NIL
+(-10 -8 (-15 -3581 (|#1| |#1| (-516))) (-15 ** (|#1| |#1| (-516))) (-15 * (|#1| |#1| (-388 (-516)))) (-15 * (|#1| (-388 (-516)) |#1|)) (-15 ** (|#1| |#1| (-719))) (-15 -3581 (|#1| |#1| (-719))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-860))) (-15 -3581 (|#1| |#1| (-860))) (-15 * (|#1| (-516) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-860) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3741 (((-3 $ "failed") $) 34)) (-2436 (((-110) $) 31)) (-3513 (((-1081) $) 9)) (-2668 (($ $) 39)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ (-388 (-516))) 44)) (-3385 (((-719)) 29)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33) (($ $ (-516)) 40)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32) (($ $ (-516)) 41)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ (-388 (-516)) $) 43) (($ $ (-388 (-516))) 42)))
+(((-226) (-133)) (T -226))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-226)) (-5 *2 (-516)))) (-3581 (*1 *1 *1 *2) (-12 (-4 *1 (-226)) (-5 *2 (-516)))) (-2668 (*1 *1 *1) (-4 *1 (-226))))
+(-13 (-272) (-37 (-388 (-516))) (-10 -8 (-15 ** ($ $ (-516))) (-15 -3581 ($ $ (-516))) (-15 -2668 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-388 (-516))) . T) ((-99) . T) ((-109 #1# #1#) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-805)) . T) ((-272) . T) ((-599 #1#) . T) ((-599 $) . T) ((-666 #1#) . T) ((-675) . T) ((-989 #1#) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3681 ((|#1| $) 48)) (-4075 (($ $) 57)) (-1217 (((-110) $ (-719)) 8)) (-3289 ((|#1| $ |#1|) 39 (|has| $ (-6 -4270)))) (-1481 (($ $ $) 53 (|has| $ (-6 -4270)))) (-1480 (($ $ $) 52 (|has| $ (-6 -4270)))) (-4066 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4270)))) (-3290 (($ $ (-594 $)) 41 (|has| $ (-6 -4270)))) (-3815 (($) 7 T CONST)) (-1483 (($ $) 56)) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-3295 (((-594 $) $) 50)) (-3291 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-1482 (($ $) 55)) (-4001 (((-110) $ (-719)) 9)) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35)) (-3998 (((-110) $ (-719)) 10)) (-3294 (((-594 |#1|) $) 45)) (-3801 (((-110) $) 49)) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-4076 ((|#1| $) 59)) (-3453 (($ $) 58)) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-4078 ((|#1| $ #1#) 47)) (-3293 (((-516) $ $) 44)) (-3915 (((-110) $) 46)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4069 (($ $ $) 54 (|has| $ (-6 -4270)))) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-3796 (((-594 $) $) 51)) (-3292 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-227 |#1|) (-133) (-1134)) (T -227))
+((-4076 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1134)))) (-3453 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1134)))) (-4075 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1134)))) (-1483 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1134)))) (-1482 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1134)))) (-4069 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-227 *2)) (-4 *2 (-1134)))) (-1481 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-227 *2)) (-4 *2 (-1134)))) (-1480 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-227 *2)) (-4 *2 (-1134)))))
+(-13 (-949 |t#1|) (-10 -8 (-15 -4076 (|t#1| $)) (-15 -3453 ($ $)) (-15 -4075 ($ $)) (-15 -1483 ($ $)) (-15 -1482 ($ $)) (IF (|has| $ (-6 -4270)) (PROGN (-15 -4069 ($ $ $)) (-15 -1481 ($ $ $)) (-15 -1480 ($ $ $))) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-571 (-805)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-949 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1134) . T))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3681 ((|#1| $) NIL)) (-4073 ((|#1| $) NIL)) (-4075 (($ $) NIL)) (-2243 (((-1185) $ (-516) (-516)) NIL (|has| $ (-6 -4270)))) (-4063 (($ $ (-516)) NIL (|has| $ (-6 -4270)))) (-1798 (((-110) $) NIL (|has| |#1| (-795))) (((-110) (-1 (-110) |#1| |#1|) $) NIL)) (-1796 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795)))) (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3173 (($ $) 10 (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $) NIL)) (-1217 (((-110) $ (-719)) NIL)) (-3289 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-4065 (($ $ $) NIL (|has| $ (-6 -4270)))) (-4064 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-4067 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-4066 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4270))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4270))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-1146 (-516)) |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-516) |#1|) NIL (|has| $ (-6 -4270)))) (-3290 (($ $ (-594 $)) NIL (|has| $ (-6 -4270)))) (-1581 (($ (-1 (-110) |#1|) $) NIL)) (-3992 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4074 ((|#1| $) NIL)) (-3815 (($) NIL T CONST)) (-2312 (($ $) NIL (|has| $ (-6 -4270)))) (-2313 (($ $) NIL)) (-4077 (($ $) NIL) (($ $ (-719)) NIL)) (-2389 (($ $) NIL (|has| |#1| (-1027)))) (-1349 (($ $) 7 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3684 (($ |#1| $) NIL (|has| |#1| (-1027))) (($ (-1 (-110) |#1|) $) NIL)) (-3685 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1587 ((|#1| $ (-516) |#1|) NIL (|has| $ (-6 -4270)))) (-3372 ((|#1| $ (-516)) NIL)) (-3721 (((-110) $) NIL)) (-3698 (((-516) |#1| $ (-516)) NIL (|has| |#1| (-1027))) (((-516) |#1| $) NIL (|has| |#1| (-1027))) (((-516) (-1 (-110) |#1|) $) NIL)) (-2018 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3295 (((-594 $) $) NIL)) (-3291 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3896 (($ (-719) |#1|) NIL)) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-516) $) NIL (|has| (-516) (-795)))) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3123 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-3792 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2246 (((-516) $) NIL (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-2022 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3816 (($ |#1|) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3294 (((-594 |#1|) $) NIL)) (-3801 (((-110) $) NIL)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-4076 ((|#1| $) NIL) (($ $ (-719)) NIL)) (-3889 (($ $ $ (-516)) NIL) (($ |#1| $ (-516)) NIL)) (-2317 (($ $ $ (-516)) NIL) (($ |#1| $ (-516)) NIL)) (-2248 (((-594 (-516)) $) NIL)) (-2249 (((-110) (-516) $) NIL)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-4079 ((|#1| $) NIL) (($ $ (-719)) NIL)) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-2244 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-3722 (((-110) $) NIL)) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2250 (((-594 |#1|) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1146 (-516))) NIL) ((|#1| $ (-516)) NIL) ((|#1| $ (-516) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-719) $ "count") 16)) (-3293 (((-516) $ $) NIL)) (-1582 (($ $ (-1146 (-516))) NIL) (($ $ (-516)) NIL)) (-2318 (($ $ (-1146 (-516))) NIL) (($ $ (-516)) NIL)) (-1484 (($ (-594 |#1|)) 22)) (-3915 (((-110) $) NIL)) (-4070 (($ $) NIL)) (-4068 (($ $) NIL (|has| $ (-6 -4270)))) (-4071 (((-719) $) NIL)) (-4072 (($ $) NIL)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1797 (($ $ $ (-516)) NIL (|has| $ (-6 -4270)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) NIL (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) NIL)) (-4069 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4080 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-594 $)) NIL) (($ $ |#1|) NIL)) (-4233 (($ (-594 |#1|)) 17) (((-594 |#1|) $) 18) (((-805) $) 21 (|has| |#1| (-571 (-805))))) (-3796 (((-594 $) $) NIL)) (-3292 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#1| (-795)))) (-4232 (((-719) $) 14 (|has| $ (-6 -4269)))))
+(((-228 |#1|) (-13 (-617 |#1|) (-10 -8 (-15 -4233 ($ (-594 |#1|))) (-15 -4233 ((-594 |#1|) $)) (-15 -1484 ($ (-594 |#1|))) (-15 -4078 ($ $ "unique")) (-15 -4078 ($ $ "sort")) (-15 -4078 ((-719) $ "count")))) (-795)) (T -228))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-795)) (-5 *1 (-228 *3)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-594 *3)) (-5 *1 (-228 *3)) (-4 *3 (-795)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-795)) (-5 *1 (-228 *3)))) (-4078 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-228 *3)) (-4 *3 (-795)))) (-4078 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-228 *3)) (-4 *3 (-795)))) (-4078 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-719)) (-5 *1 (-228 *4)) (-4 *4 (-795)))))
+(-13 (-617 |#1|) (-10 -8 (-15 -4233 ($ (-594 |#1|))) (-15 -4233 ((-594 |#1|) $)) (-15 -1484 ($ (-594 |#1|))) (-15 -4078 ($ $ "unique")) (-15 -4078 ($ $ "sort")) (-15 -4078 ((-719) $ "count"))))
+((-1485 (((-3 (-719) "failed") |#1| |#1| (-719)) 27)))
+(((-229 |#1|) (-10 -7 (-15 -1485 ((-3 (-719) "failed") |#1| |#1| (-719)))) (-13 (-675) (-349) (-10 -7 (-15 ** (|#1| |#1| (-516)))))) (T -229))
+((-1485 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-719)) (-4 *3 (-13 (-675) (-349) (-10 -7 (-15 ** (*3 *3 (-516)))))) (-5 *1 (-229 *3)))))
+(-10 -7 (-15 -1485 ((-3 (-719) "failed") |#1| |#1| (-719))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3347 (((-594 (-806 |#1|)) $) NIL)) (-3349 (((-1092 $) $ (-806 |#1|)) NIL) (((-1092 |#2|) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#2| (-523)))) (-2118 (($ $) NIL (|has| |#2| (-523)))) (-2116 (((-110) $) NIL (|has| |#2| (-523)))) (-3083 (((-719) $) NIL) (((-719) $ (-594 (-806 |#1|))) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#2| (-851)))) (-4053 (($ $) NIL (|has| |#2| (-432)))) (-4245 (((-386 $) $) NIL (|has| |#2| (-432)))) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (|has| |#2| (-851)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#2| #2="failed") $) NIL) (((-3 (-388 (-516)) #2#) $) NIL (|has| |#2| (-975 (-388 (-516))))) (((-3 (-516) #2#) $) NIL (|has| |#2| (-975 (-516)))) (((-3 (-806 |#1|) #2#) $) NIL)) (-3431 ((|#2| $) NIL) (((-388 (-516)) $) NIL (|has| |#2| (-975 (-388 (-516))))) (((-516) $) NIL (|has| |#2| (-975 (-516)))) (((-806 |#1|) $) NIL)) (-4035 (($ $ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-2009 (($ $ (-594 (-516))) NIL)) (-4235 (($ $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| |#2| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| |#2| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 $) (-1179 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3777 (($ $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-3082 (((-594 $) $) NIL)) (-4005 (((-110) $) NIL (|has| |#2| (-851)))) (-1671 (($ $ |#2| (-222 (-4232 |#1|) (-719)) $) NIL)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-359))) (|has| |#2| (-827 (-359))))) (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-516))) (|has| |#2| (-827 (-516)))))) (-2436 (((-110) $) NIL)) (-2444 (((-719) $) NIL)) (-3350 (($ (-1092 |#2|) (-806 |#1|)) NIL) (($ (-1092 $) (-806 |#1|)) NIL)) (-3085 (((-594 $) $) NIL)) (-4213 (((-110) $) NIL)) (-3157 (($ |#2| (-222 (-4232 |#1|) (-719))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-594 (-806 |#1|)) (-594 (-719))) NIL)) (-4041 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $ (-806 |#1|)) NIL)) (-3084 (((-222 (-4232 |#1|) (-719)) $) NIL) (((-719) $ (-806 |#1|)) NIL) (((-594 (-719)) $ (-594 (-806 |#1|))) NIL)) (-3596 (($ $ $) NIL (|has| |#2| (-795)))) (-3597 (($ $ $) NIL (|has| |#2| (-795)))) (-1672 (($ (-1 (-222 (-4232 |#1|) (-719)) (-222 (-4232 |#1|) (-719))) $) NIL)) (-4234 (($ (-1 |#2| |#2|) $) NIL)) (-3348 (((-3 (-806 |#1|) #3="failed") $) NIL)) (-3158 (($ $) NIL)) (-3449 ((|#2| $) NIL)) (-1963 (($ (-594 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-3513 (((-1081) $) NIL)) (-3087 (((-3 (-594 $) #3#) $) NIL)) (-3086 (((-3 (-594 $) #3#) $) NIL)) (-3088 (((-3 (-2 (|:| |var| (-806 |#1|)) (|:| -2427 (-719))) #3#) $) NIL)) (-3514 (((-1045) $) NIL)) (-1866 (((-110) $) NIL)) (-1865 ((|#2| $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#2| (-432)))) (-3419 (($ (-594 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#2| (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#2| (-851)))) (-4011 (((-386 $) $) NIL (|has| |#2| (-851)))) (-3740 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-523)))) (-4046 (($ $ (-594 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL) (($ $ (-806 |#1|) |#2|) NIL) (($ $ (-594 (-806 |#1|)) (-594 |#2|)) NIL) (($ $ (-806 |#1|) $) NIL) (($ $ (-594 (-806 |#1|)) (-594 $)) NIL)) (-4036 (($ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-4089 (($ $ (-806 |#1|)) NIL) (($ $ (-594 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-594 (-806 |#1|)) (-594 (-719))) NIL)) (-4223 (((-222 (-4232 |#1|) (-719)) $) NIL) (((-719) $ (-806 |#1|)) NIL) (((-594 (-719)) $ (-594 (-806 |#1|))) NIL)) (-4246 (((-831 (-359)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-831 (-359)))) (|has| |#2| (-572 (-831 (-359)))))) (((-831 (-516)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-831 (-516)))) (|has| |#2| (-572 (-831 (-516)))))) (((-505) $) NIL (-12 (|has| (-806 |#1|) (-572 (-505))) (|has| |#2| (-572 (-505)))))) (-3081 ((|#2| $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-851))))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ |#2|) NIL) (($ (-806 |#1|)) NIL) (($ (-388 (-516))) NIL (-3810 (|has| |#2| (-37 (-388 (-516)))) (|has| |#2| (-975 (-388 (-516)))))) (($ $) NIL (|has| |#2| (-523)))) (-4096 (((-594 |#2|) $) NIL)) (-3959 ((|#2| $ (-222 (-4232 |#1|) (-719))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-594 (-806 |#1|)) (-594 (-719))) NIL)) (-2965 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| $ (-138)) (|has| |#2| (-851))) (|has| |#2| (-138))))) (-3385 (((-719)) NIL)) (-1670 (($ $ $ (-719)) NIL (|has| |#2| (-162)))) (-2117 (((-110) $ $) NIL (|has| |#2| (-523)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($ $ (-806 |#1|)) NIL) (($ $ (-594 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-594 (-806 |#1|)) (-594 (-719))) NIL)) (-2826 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#2| (-795)))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#2| (-795)))) (-4224 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL (|has| |#2| (-37 (-388 (-516))))) (($ (-388 (-516)) $) NIL (|has| |#2| (-37 (-388 (-516))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-230 |#1| |#2|) (-13 (-891 |#2| (-222 (-4232 |#1|) (-719)) (-806 |#1|)) (-10 -8 (-15 -2009 ($ $ (-594 (-516)))))) (-594 (-1098)) (-984)) (T -230))
+((-2009 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-230 *3 *4)) (-14 *3 (-594 (-1098))) (-4 *4 (-984)))))
+(-13 (-891 |#2| (-222 (-4232 |#1|) (-719)) (-806 |#1|)) (-10 -8 (-15 -2009 ($ $ (-594 (-516))))))
+((-2828 (((-110) $ $) NIL)) (-1486 (((-1185) $) 15)) (-1488 (((-171) $) 9)) (-1487 (($ (-171)) 10)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 7)) (-3317 (((-110) $ $) 13)))
+(((-231) (-13 (-1027) (-10 -8 (-15 -1488 ((-171) $)) (-15 -1487 ($ (-171))) (-15 -1486 ((-1185) $))))) (T -231))
+((-1488 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-231)))) (-1487 (*1 *1 *2) (-12 (-5 *2 (-171)) (-5 *1 (-231)))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-231)))))
+(-13 (-1027) (-10 -8 (-15 -1488 ((-171) $)) (-15 -1487 ($ (-171))) (-15 -1486 ((-1185) $))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3989 (($ (-860)) NIL (|has| |#4| (-984)))) (-2243 (((-1185) $ (-516) (-516)) NIL (|has| $ (-6 -4270)))) (-2667 (($ $ $) NIL (|has| |#4| (-741)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-1217 (((-110) $ (-719)) NIL)) (-3395 (((-719)) NIL (|has| |#4| (-349)))) (-3905 (((-516) $) NIL (|has| |#4| (-793)))) (-4066 ((|#4| $ (-516) |#4|) NIL (|has| $ (-6 -4270)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#4| #1="failed") $) NIL (|has| |#4| (-1027))) (((-3 (-516) #1#) $) NIL (-12 (|has| |#4| (-975 (-516))) (|has| |#4| (-1027)))) (((-3 (-388 (-516)) #1#) $) NIL (-12 (|has| |#4| (-975 (-388 (-516)))) (|has| |#4| (-1027))))) (-3431 ((|#4| $) NIL (|has| |#4| (-1027))) (((-516) $) NIL (-12 (|has| |#4| (-975 (-516))) (|has| |#4| (-1027)))) (((-388 (-516)) $) NIL (-12 (|has| |#4| (-975 (-388 (-516)))) (|has| |#4| (-1027))))) (-2297 (((-2 (|:| -1650 (-637 |#4|)) (|:| |vec| (-1179 |#4|))) (-637 $) (-1179 $)) NIL (|has| |#4| (-984))) (((-637 |#4|) (-637 $)) NIL (|has| |#4| (-984))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (-12 (|has| |#4| (-593 (-516))) (|has| |#4| (-984)))) (((-637 (-516)) (-637 $)) NIL (-12 (|has| |#4| (-593 (-516))) (|has| |#4| (-984))))) (-3741 (((-3 $ "failed") $) NIL (-3810 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-516))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1098))) (|has| |#4| (-984)))))) (-3258 (($) NIL (|has| |#4| (-349)))) (-1587 ((|#4| $ (-516) |#4|) NIL (|has| $ (-6 -4270)))) (-3372 ((|#4| $ (-516)) NIL)) (-3460 (((-110) $) NIL (|has| |#4| (-793)))) (-2018 (((-594 |#4|) $) NIL (|has| $ (-6 -4269)))) (-2436 (((-110) $) NIL (-3810 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-516))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1098))) (|has| |#4| (-984)))))) (-3461 (((-110) $) NIL (|has| |#4| (-793)))) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-516) $) NIL (|has| (-516) (-795)))) (-3596 (($ $ $) NIL (-3810 (|has| |#4| (-741)) (|has| |#4| (-793))))) (-2445 (((-594 |#4|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-2246 (((-516) $) NIL (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (-3810 (|has| |#4| (-741)) (|has| |#4| (-793))))) (-2022 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#4| |#4|) $) NIL)) (-2069 (((-860) $) NIL (|has| |#4| (-349)))) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL)) (-2248 (((-594 (-516)) $) NIL)) (-2249 (((-110) (-516) $) NIL)) (-2426 (($ (-860)) NIL (|has| |#4| (-349)))) (-3514 (((-1045) $) NIL)) (-4079 ((|#4| $) NIL (|has| (-516) (-795)))) (-2244 (($ $ |#4|) NIL (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-275 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-594 |#4|) (-594 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-2250 (((-594 |#4|) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#4| $ (-516) |#4|) NIL) ((|#4| $ (-516)) 12)) (-4115 ((|#4| $ $) NIL (|has| |#4| (-984)))) (-1475 (($ (-1179 |#4|)) NIL)) (-4190 (((-130)) NIL (|has| |#4| (-344)))) (-4089 (($ $ (-1 |#4| |#4|) (-719)) NIL (|has| |#4| (-984))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-984))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#4| (-841 (-1098))) (|has| |#4| (-984)))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#4| (-841 (-1098))) (|has| |#4| (-984)))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#4| (-841 (-1098))) (|has| |#4| (-984)))) (($ $ (-1098)) NIL (-12 (|has| |#4| (-841 (-1098))) (|has| |#4| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#4| (-216)) (|has| |#4| (-984)))) (($ $) NIL (-12 (|has| |#4| (-216)) (|has| |#4| (-984))))) (-2019 (((-719) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269))) (((-719) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-3678 (($ $) NIL)) (-4233 (((-1179 |#4|) $) NIL) (((-805) $) NIL) (($ |#4|) NIL (|has| |#4| (-1027))) (($ (-516)) NIL (-3810 (-12 (|has| |#4| (-975 (-516))) (|has| |#4| (-1027))) (|has| |#4| (-984)))) (($ (-388 (-516))) NIL (-12 (|has| |#4| (-975 (-388 (-516)))) (|has| |#4| (-1027))))) (-3385 (((-719)) NIL (|has| |#4| (-984)))) (-2021 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3661 (($ $) NIL (|has| |#4| (-793)))) (-3581 (($ $ (-719)) NIL (-3810 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-516))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1098))) (|has| |#4| (-984))))) (($ $ (-860)) NIL (-3810 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-516))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1098))) (|has| |#4| (-984)))))) (-2920 (($) NIL T CONST)) (-2927 (($) NIL (-3810 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-516))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1098))) (|has| |#4| (-984)))) CONST)) (-2932 (($ $ (-1 |#4| |#4|) (-719)) NIL (|has| |#4| (-984))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-984))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#4| (-841 (-1098))) (|has| |#4| (-984)))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#4| (-841 (-1098))) (|has| |#4| (-984)))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#4| (-841 (-1098))) (|has| |#4| (-984)))) (($ $ (-1098)) NIL (-12 (|has| |#4| (-841 (-1098))) (|has| |#4| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#4| (-216)) (|has| |#4| (-984)))) (($ $) NIL (-12 (|has| |#4| (-216)) (|has| |#4| (-984))))) (-2826 (((-110) $ $) NIL (-3810 (|has| |#4| (-741)) (|has| |#4| (-793))))) (-2827 (((-110) $ $) NIL (-3810 (|has| |#4| (-741)) (|has| |#4| (-793))))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (-3810 (|has| |#4| (-741)) (|has| |#4| (-793))))) (-2948 (((-110) $ $) NIL (-3810 (|has| |#4| (-741)) (|has| |#4| (-793))))) (-4224 (($ $ |#4|) NIL (|has| |#4| (-344)))) (-4116 (($ $ $) NIL) (($ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-719)) NIL (-3810 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-516))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1098))) (|has| |#4| (-984))))) (($ $ (-860)) NIL (-3810 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-516))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1098))) (|has| |#4| (-984)))))) (* (($ |#2| $) 14) (($ (-516) $) NIL) (($ (-719) $) NIL) (($ (-860) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-675))) (($ |#4| $) NIL (|has| |#4| (-675))) (($ $ $) NIL (-3810 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-516))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1098))) (|has| |#4| (-984)))))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-232 |#1| |#2| |#3| |#4|) (-13 (-221 |#1| |#4|) (-599 |#2|) (-599 |#3|)) (-860) (-984) (-1048 |#1| |#2| (-222 |#1| |#2|) (-222 |#1| |#2|)) (-599 |#2|)) (T -232))
+NIL
+(-13 (-221 |#1| |#4|) (-599 |#2|) (-599 |#3|))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3989 (($ (-860)) NIL (|has| |#3| (-984)))) (-2243 (((-1185) $ (-516) (-516)) NIL (|has| $ (-6 -4270)))) (-2667 (($ $ $) NIL (|has| |#3| (-741)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-1217 (((-110) $ (-719)) NIL)) (-3395 (((-719)) NIL (|has| |#3| (-349)))) (-3905 (((-516) $) NIL (|has| |#3| (-793)))) (-4066 ((|#3| $ (-516) |#3|) NIL (|has| $ (-6 -4270)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#3| #1="failed") $) NIL (|has| |#3| (-1027))) (((-3 (-516) #1#) $) NIL (-12 (|has| |#3| (-975 (-516))) (|has| |#3| (-1027)))) (((-3 (-388 (-516)) #1#) $) NIL (-12 (|has| |#3| (-975 (-388 (-516)))) (|has| |#3| (-1027))))) (-3431 ((|#3| $) NIL (|has| |#3| (-1027))) (((-516) $) NIL (-12 (|has| |#3| (-975 (-516))) (|has| |#3| (-1027)))) (((-388 (-516)) $) NIL (-12 (|has| |#3| (-975 (-388 (-516)))) (|has| |#3| (-1027))))) (-2297 (((-2 (|:| -1650 (-637 |#3|)) (|:| |vec| (-1179 |#3|))) (-637 $) (-1179 $)) NIL (|has| |#3| (-984))) (((-637 |#3|) (-637 $)) NIL (|has| |#3| (-984))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (-12 (|has| |#3| (-593 (-516))) (|has| |#3| (-984)))) (((-637 (-516)) (-637 $)) NIL (-12 (|has| |#3| (-593 (-516))) (|has| |#3| (-984))))) (-3741 (((-3 $ "failed") $) NIL (-3810 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-516))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984)))))) (-3258 (($) NIL (|has| |#3| (-349)))) (-1587 ((|#3| $ (-516) |#3|) NIL (|has| $ (-6 -4270)))) (-3372 ((|#3| $ (-516)) NIL)) (-3460 (((-110) $) NIL (|has| |#3| (-793)))) (-2018 (((-594 |#3|) $) NIL (|has| $ (-6 -4269)))) (-2436 (((-110) $) NIL (-3810 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-516))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984)))))) (-3461 (((-110) $) NIL (|has| |#3| (-793)))) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-516) $) NIL (|has| (-516) (-795)))) (-3596 (($ $ $) NIL (-3810 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2445 (((-594 |#3|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#3| (-1027))))) (-2246 (((-516) $) NIL (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (-3810 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2022 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#3| |#3|) $) NIL)) (-2069 (((-860) $) NIL (|has| |#3| (-349)))) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL)) (-2248 (((-594 (-516)) $) NIL)) (-2249 (((-110) (-516) $) NIL)) (-2426 (($ (-860)) NIL (|has| |#3| (-349)))) (-3514 (((-1045) $) NIL)) (-4079 ((|#3| $) NIL (|has| (-516) (-795)))) (-2244 (($ $ |#3|) NIL (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#3|))) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-275 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-594 |#3|) (-594 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#3| (-1027))))) (-2250 (((-594 |#3|) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#3| $ (-516) |#3|) NIL) ((|#3| $ (-516)) 11)) (-4115 ((|#3| $ $) NIL (|has| |#3| (-984)))) (-1475 (($ (-1179 |#3|)) NIL)) (-4190 (((-130)) NIL (|has| |#3| (-344)))) (-4089 (($ $ (-1 |#3| |#3|) (-719)) NIL (|has| |#3| (-984))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-984))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984)))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984)))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984)))) (($ $ (-1098)) NIL (-12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984)))) (($ $) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984))))) (-2019 (((-719) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269))) (((-719) |#3| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#3| (-1027))))) (-3678 (($ $) NIL)) (-4233 (((-1179 |#3|) $) NIL) (((-805) $) NIL) (($ |#3|) NIL (|has| |#3| (-1027))) (($ (-516)) NIL (-3810 (-12 (|has| |#3| (-975 (-516))) (|has| |#3| (-1027))) (|has| |#3| (-984)))) (($ (-388 (-516))) NIL (-12 (|has| |#3| (-975 (-388 (-516)))) (|has| |#3| (-1027))))) (-3385 (((-719)) NIL (|has| |#3| (-984)))) (-2021 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269)))) (-3661 (($ $) NIL (|has| |#3| (-793)))) (-3581 (($ $ (-719)) NIL (-3810 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-516))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984))))) (($ $ (-860)) NIL (-3810 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-516))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984)))))) (-2920 (($) NIL T CONST)) (-2927 (($) NIL (-3810 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-516))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984)))) CONST)) (-2932 (($ $ (-1 |#3| |#3|) (-719)) NIL (|has| |#3| (-984))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-984))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984)))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984)))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984)))) (($ $ (-1098)) NIL (-12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984)))) (($ $) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984))))) (-2826 (((-110) $ $) NIL (-3810 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2827 (((-110) $ $) NIL (-3810 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (-3810 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2948 (((-110) $ $) NIL (-3810 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-4224 (($ $ |#3|) NIL (|has| |#3| (-344)))) (-4116 (($ $ $) NIL) (($ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-719)) NIL (-3810 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-516))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984))))) (($ $ (-860)) NIL (-3810 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-516))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984)))))) (* (($ |#2| $) 13) (($ (-516) $) NIL) (($ (-719) $) NIL) (($ (-860) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-675))) (($ |#3| $) NIL (|has| |#3| (-675))) (($ $ $) NIL (-3810 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-516))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984)))))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-233 |#1| |#2| |#3|) (-13 (-221 |#1| |#3|) (-599 |#2|)) (-719) (-984) (-599 |#2|)) (T -233))
+NIL
+(-13 (-221 |#1| |#3|) (-599 |#2|))
+((-1493 (((-594 (-719)) $) 47) (((-594 (-719)) $ |#3|) 50)) (-1527 (((-719) $) 49) (((-719) $ |#3|) 52)) (-1489 (($ $) 65)) (-3432 (((-3 |#2| #1="failed") $) NIL) (((-3 (-388 (-516)) #1#) $) NIL) (((-3 (-516) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 |#3| #1#) $) 72)) (-4050 (((-719) $ |#3|) 39) (((-719) $) 36)) (-1528 (((-1 $ (-719)) |#3|) 15) (((-1 $ (-719)) $) 77)) (-1491 ((|#4| $) 58)) (-1492 (((-110) $) 56)) (-1490 (($ $) 64)) (-4046 (($ $ (-594 (-275 $))) 97) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-594 |#4|) (-594 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-594 |#4|) (-594 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-594 |#3|) (-594 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-594 |#3|) (-594 |#2|)) 84)) (-4089 (($ $ |#4|) NIL) (($ $ (-594 |#4|)) NIL) (($ $ |#4| (-719)) NIL) (($ $ (-594 |#4|) (-594 (-719))) NIL) (($ $) NIL) (($ $ (-719)) NIL) (($ $ (-1098)) NIL) (($ $ (-594 (-1098))) NIL) (($ $ (-1098) (-719)) NIL) (($ $ (-594 (-1098)) (-594 (-719))) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1494 (((-594 |#3|) $) 75)) (-4223 ((|#5| $) NIL) (((-719) $ |#4|) NIL) (((-594 (-719)) $ (-594 |#4|)) NIL) (((-719) $ |#3|) 44)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-388 (-516))) NIL) (($ $) NIL)))
+(((-234 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4233 (|#1| |#1|)) (-15 -4233 (|#1| (-388 (-516)))) (-15 -4046 (|#1| |#1| (-594 |#3|) (-594 |#2|))) (-15 -4046 (|#1| |#1| |#3| |#2|)) (-15 -4046 (|#1| |#1| (-594 |#3|) (-594 |#1|))) (-15 -4046 (|#1| |#1| |#3| |#1|)) (-15 -1528 ((-1 |#1| (-719)) |#1|)) (-15 -1489 (|#1| |#1|)) (-15 -1490 (|#1| |#1|)) (-15 -1491 (|#4| |#1|)) (-15 -1492 ((-110) |#1|)) (-15 -1527 ((-719) |#1| |#3|)) (-15 -1493 ((-594 (-719)) |#1| |#3|)) (-15 -1527 ((-719) |#1|)) (-15 -1493 ((-594 (-719)) |#1|)) (-15 -4223 ((-719) |#1| |#3|)) (-15 -4050 ((-719) |#1|)) (-15 -4050 ((-719) |#1| |#3|)) (-15 -1494 ((-594 |#3|) |#1|)) (-15 -1528 ((-1 |#1| (-719)) |#3|)) (-15 -3432 ((-3 |#3| #1="failed") |#1|)) (-15 -4233 (|#1| |#3|)) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)) (-594 (-719)))) (-15 -4089 (|#1| |#1| (-1098) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)))) (-15 -4089 (|#1| |#1| (-1098))) (-15 -4089 (|#1| |#1| (-719))) (-15 -4089 (|#1| |#1|)) (-15 -4223 ((-594 (-719)) |#1| (-594 |#4|))) (-15 -4223 ((-719) |#1| |#4|)) (-15 -3432 ((-3 |#4| #1#) |#1|)) (-15 -4233 (|#1| |#4|)) (-15 -4046 (|#1| |#1| (-594 |#4|) (-594 |#1|))) (-15 -4046 (|#1| |#1| |#4| |#1|)) (-15 -4046 (|#1| |#1| (-594 |#4|) (-594 |#2|))) (-15 -4046 (|#1| |#1| |#4| |#2|)) (-15 -4046 (|#1| |#1| (-594 |#1|) (-594 |#1|))) (-15 -4046 (|#1| |#1| |#1| |#1|)) (-15 -4046 (|#1| |#1| (-275 |#1|))) (-15 -4046 (|#1| |#1| (-594 (-275 |#1|)))) (-15 -4223 (|#5| |#1|)) (-15 -3432 ((-3 (-516) #1#) |#1|)) (-15 -3432 ((-3 (-388 (-516)) #1#) |#1|)) (-15 -4233 (|#1| |#2|)) (-15 -3432 ((-3 |#2| #1#) |#1|)) (-15 -4089 (|#1| |#1| (-594 |#4|) (-594 (-719)))) (-15 -4089 (|#1| |#1| |#4| (-719))) (-15 -4089 (|#1| |#1| (-594 |#4|))) (-15 -4089 (|#1| |#1| |#4|)) (-15 -4233 (|#1| (-516))) (-15 -4233 ((-805) |#1|))) (-235 |#2| |#3| |#4| |#5|) (-984) (-795) (-248 |#3|) (-741)) (T -234))
+NIL
+(-10 -8 (-15 -4233 (|#1| |#1|)) (-15 -4233 (|#1| (-388 (-516)))) (-15 -4046 (|#1| |#1| (-594 |#3|) (-594 |#2|))) (-15 -4046 (|#1| |#1| |#3| |#2|)) (-15 -4046 (|#1| |#1| (-594 |#3|) (-594 |#1|))) (-15 -4046 (|#1| |#1| |#3| |#1|)) (-15 -1528 ((-1 |#1| (-719)) |#1|)) (-15 -1489 (|#1| |#1|)) (-15 -1490 (|#1| |#1|)) (-15 -1491 (|#4| |#1|)) (-15 -1492 ((-110) |#1|)) (-15 -1527 ((-719) |#1| |#3|)) (-15 -1493 ((-594 (-719)) |#1| |#3|)) (-15 -1527 ((-719) |#1|)) (-15 -1493 ((-594 (-719)) |#1|)) (-15 -4223 ((-719) |#1| |#3|)) (-15 -4050 ((-719) |#1|)) (-15 -4050 ((-719) |#1| |#3|)) (-15 -1494 ((-594 |#3|) |#1|)) (-15 -1528 ((-1 |#1| (-719)) |#3|)) (-15 -3432 ((-3 |#3| #1="failed") |#1|)) (-15 -4233 (|#1| |#3|)) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)) (-594 (-719)))) (-15 -4089 (|#1| |#1| (-1098) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)))) (-15 -4089 (|#1| |#1| (-1098))) (-15 -4089 (|#1| |#1| (-719))) (-15 -4089 (|#1| |#1|)) (-15 -4223 ((-594 (-719)) |#1| (-594 |#4|))) (-15 -4223 ((-719) |#1| |#4|)) (-15 -3432 ((-3 |#4| #1#) |#1|)) (-15 -4233 (|#1| |#4|)) (-15 -4046 (|#1| |#1| (-594 |#4|) (-594 |#1|))) (-15 -4046 (|#1| |#1| |#4| |#1|)) (-15 -4046 (|#1| |#1| (-594 |#4|) (-594 |#2|))) (-15 -4046 (|#1| |#1| |#4| |#2|)) (-15 -4046 (|#1| |#1| (-594 |#1|) (-594 |#1|))) (-15 -4046 (|#1| |#1| |#1| |#1|)) (-15 -4046 (|#1| |#1| (-275 |#1|))) (-15 -4046 (|#1| |#1| (-594 (-275 |#1|)))) (-15 -4223 (|#5| |#1|)) (-15 -3432 ((-3 (-516) #1#) |#1|)) (-15 -3432 ((-3 (-388 (-516)) #1#) |#1|)) (-15 -4233 (|#1| |#2|)) (-15 -3432 ((-3 |#2| #1#) |#1|)) (-15 -4089 (|#1| |#1| (-594 |#4|) (-594 (-719)))) (-15 -4089 (|#1| |#1| |#4| (-719))) (-15 -4089 (|#1| |#1| (-594 |#4|))) (-15 -4089 (|#1| |#1| |#4|)) (-15 -4233 (|#1| (-516))) (-15 -4233 ((-805) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1493 (((-594 (-719)) $) 214) (((-594 (-719)) $ |#2|) 212)) (-1527 (((-719) $) 213) (((-719) $ |#2|) 211)) (-3347 (((-594 |#3|) $) 110)) (-3349 (((-1092 $) $ |#3|) 125) (((-1092 |#1|) $) 124)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 87 (|has| |#1| (-523)))) (-2118 (($ $) 88 (|has| |#1| (-523)))) (-2116 (((-110) $) 90 (|has| |#1| (-523)))) (-3083 (((-719) $) 112) (((-719) $ (-594 |#3|)) 111)) (-1319 (((-3 $ "failed") $ $) 19)) (-2970 (((-386 (-1092 $)) (-1092 $)) 100 (|has| |#1| (-851)))) (-4053 (($ $) 98 (|has| |#1| (-432)))) (-4245 (((-386 $) $) 97 (|has| |#1| (-432)))) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) 103 (|has| |#1| (-851)))) (-1489 (($ $) 207)) (-3815 (($) 17 T CONST)) (-3432 (((-3 |#1| #2="failed") $) 164) (((-3 (-388 (-516)) #2#) $) 162 (|has| |#1| (-975 (-388 (-516))))) (((-3 (-516) #2#) $) 160 (|has| |#1| (-975 (-516)))) (((-3 |#3| #2#) $) 136) (((-3 |#2| #2#) $) 221)) (-3431 ((|#1| $) 165) (((-388 (-516)) $) 161 (|has| |#1| (-975 (-388 (-516))))) (((-516) $) 159 (|has| |#1| (-975 (-516)))) ((|#3| $) 135) ((|#2| $) 220)) (-4035 (($ $ $ |#3|) 108 (|has| |#1| (-162)))) (-4235 (($ $) 154)) (-2297 (((-637 (-516)) (-637 $)) 134 (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) 133 (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) 132) (((-637 |#1|) (-637 $)) 131)) (-3741 (((-3 $ "failed") $) 34)) (-3777 (($ $) 176 (|has| |#1| (-432))) (($ $ |#3|) 105 (|has| |#1| (-432)))) (-3082 (((-594 $) $) 109)) (-4005 (((-110) $) 96 (|has| |#1| (-851)))) (-1671 (($ $ |#1| |#4| $) 172)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) 84 (-12 (|has| |#3| (-827 (-359))) (|has| |#1| (-827 (-359))))) (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) 83 (-12 (|has| |#3| (-827 (-516))) (|has| |#1| (-827 (-516)))))) (-4050 (((-719) $ |#2|) 217) (((-719) $) 216)) (-2436 (((-110) $) 31)) (-2444 (((-719) $) 169)) (-3350 (($ (-1092 |#1|) |#3|) 117) (($ (-1092 $) |#3|) 116)) (-3085 (((-594 $) $) 126)) (-4213 (((-110) $) 152)) (-3157 (($ |#1| |#4|) 153) (($ $ |#3| (-719)) 119) (($ $ (-594 |#3|) (-594 (-719))) 118)) (-4041 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $ |#3|) 120)) (-3084 ((|#4| $) 170) (((-719) $ |#3|) 122) (((-594 (-719)) $ (-594 |#3|)) 121)) (-3596 (($ $ $) 79 (|has| |#1| (-795)))) (-3597 (($ $ $) 78 (|has| |#1| (-795)))) (-1672 (($ (-1 |#4| |#4|) $) 171)) (-4234 (($ (-1 |#1| |#1|) $) 151)) (-1528 (((-1 $ (-719)) |#2|) 219) (((-1 $ (-719)) $) 206 (|has| |#1| (-216)))) (-3348 (((-3 |#3| #3="failed") $) 123)) (-3158 (($ $) 149)) (-3449 ((|#1| $) 148)) (-1491 ((|#3| $) 209)) (-1963 (($ (-594 $)) 94 (|has| |#1| (-432))) (($ $ $) 93 (|has| |#1| (-432)))) (-3513 (((-1081) $) 9)) (-1492 (((-110) $) 210)) (-3087 (((-3 (-594 $) #3#) $) 114)) (-3086 (((-3 (-594 $) #3#) $) 115)) (-3088 (((-3 (-2 (|:| |var| |#3|) (|:| -2427 (-719))) #3#) $) 113)) (-1490 (($ $) 208)) (-3514 (((-1045) $) 10)) (-1866 (((-110) $) 166)) (-1865 ((|#1| $) 167)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 95 (|has| |#1| (-432)))) (-3419 (($ (-594 $)) 92 (|has| |#1| (-432))) (($ $ $) 91 (|has| |#1| (-432)))) (-2968 (((-386 (-1092 $)) (-1092 $)) 102 (|has| |#1| (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) 101 (|has| |#1| (-851)))) (-4011 (((-386 $) $) 99 (|has| |#1| (-851)))) (-3740 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-523))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-523)))) (-4046 (($ $ (-594 (-275 $))) 145) (($ $ (-275 $)) 144) (($ $ $ $) 143) (($ $ (-594 $) (-594 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-594 |#3|) (-594 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-594 |#3|) (-594 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-216))) (($ $ (-594 |#2|) (-594 $)) 204 (|has| |#1| (-216))) (($ $ |#2| |#1|) 203 (|has| |#1| (-216))) (($ $ (-594 |#2|) (-594 |#1|)) 202 (|has| |#1| (-216)))) (-4036 (($ $ |#3|) 107 (|has| |#1| (-162)))) (-4089 (($ $ |#3|) 42) (($ $ (-594 |#3|)) 41) (($ $ |#3| (-719)) 40) (($ $ (-594 |#3|) (-594 (-719))) 39) (($ $) 238 (|has| |#1| (-216))) (($ $ (-719)) 236 (|has| |#1| (-216))) (($ $ (-1098)) 234 (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) 233 (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) 232 (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) 231 (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-1494 (((-594 |#2|) $) 218)) (-4223 ((|#4| $) 150) (((-719) $ |#3|) 130) (((-594 (-719)) $ (-594 |#3|)) 129) (((-719) $ |#2|) 215)) (-4246 (((-831 (-359)) $) 82 (-12 (|has| |#3| (-572 (-831 (-359)))) (|has| |#1| (-572 (-831 (-359)))))) (((-831 (-516)) $) 81 (-12 (|has| |#3| (-572 (-831 (-516)))) (|has| |#1| (-572 (-831 (-516)))))) (((-505) $) 80 (-12 (|has| |#3| (-572 (-505))) (|has| |#1| (-572 (-505)))))) (-3081 ((|#1| $) 175 (|has| |#1| (-432))) (($ $ |#3|) 106 (|has| |#1| (-432)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) 104 (-3119 (|has| $ (-138)) (|has| |#1| (-851))))) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-388 (-516))) 72 (-3810 (|has| |#1| (-975 (-388 (-516)))) (|has| |#1| (-37 (-388 (-516)))))) (($ $) 85 (|has| |#1| (-523)))) (-4096 (((-594 |#1|) $) 168)) (-3959 ((|#1| $ |#4|) 155) (($ $ |#3| (-719)) 128) (($ $ (-594 |#3|) (-594 (-719))) 127)) (-2965 (((-3 $ #1#) $) 73 (-3810 (-3119 (|has| $ (-138)) (|has| |#1| (-851))) (|has| |#1| (-138))))) (-3385 (((-719)) 29)) (-1670 (($ $ $ (-719)) 173 (|has| |#1| (-162)))) (-2117 (((-110) $ $) 89 (|has| |#1| (-523)))) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2932 (($ $ |#3|) 38) (($ $ (-594 |#3|)) 37) (($ $ |#3| (-719)) 36) (($ $ (-594 |#3|) (-594 (-719))) 35) (($ $) 237 (|has| |#1| (-216))) (($ $ (-719)) 235 (|has| |#1| (-216))) (($ $ (-1098)) 230 (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) 229 (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) 228 (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) 227 (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-2826 (((-110) $ $) 76 (|has| |#1| (-795)))) (-2827 (((-110) $ $) 75 (|has| |#1| (-795)))) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 77 (|has| |#1| (-795)))) (-2948 (((-110) $ $) 74 (|has| |#1| (-795)))) (-4224 (($ $ |#1|) 156 (|has| |#1| (-344)))) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ (-388 (-516))) 158 (|has| |#1| (-37 (-388 (-516))))) (($ (-388 (-516)) $) 157 (|has| |#1| (-37 (-388 (-516))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-235 |#1| |#2| |#3| |#4|) (-133) (-984) (-795) (-248 |t#2|) (-741)) (T -235))
+((-1528 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *3 (-795)) (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-1 *1 (-719))) (-4 *1 (-235 *4 *3 *5 *6)))) (-1494 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-594 *4)))) (-4050 (*1 *2 *1 *3) (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795)) (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-719)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-719)))) (-4223 (*1 *2 *1 *3) (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795)) (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-719)))) (-1493 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-594 (-719))))) (-1527 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-719)))) (-1493 (*1 *2 *1 *3) (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795)) (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-594 (-719))))) (-1527 (*1 *2 *1 *3) (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795)) (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-719)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-110)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-741)) (-4 *2 (-248 *4)))) (-1490 (*1 *1 *1) (-12 (-4 *1 (-235 *2 *3 *4 *5)) (-4 *2 (-984)) (-4 *3 (-795)) (-4 *4 (-248 *3)) (-4 *5 (-741)))) (-1489 (*1 *1 *1) (-12 (-4 *1 (-235 *2 *3 *4 *5)) (-4 *2 (-984)) (-4 *3 (-795)) (-4 *4 (-248 *3)) (-4 *5 (-741)))) (-1528 (*1 *2 *1) (-12 (-4 *3 (-216)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-1 *1 (-719))) (-4 *1 (-235 *3 *4 *5 *6)))))
+(-13 (-891 |t#1| |t#4| |t#3|) (-214 |t#1|) (-975 |t#2|) (-10 -8 (-15 -1528 ((-1 $ (-719)) |t#2|)) (-15 -1494 ((-594 |t#2|) $)) (-15 -4050 ((-719) $ |t#2|)) (-15 -4050 ((-719) $)) (-15 -4223 ((-719) $ |t#2|)) (-15 -1493 ((-594 (-719)) $)) (-15 -1527 ((-719) $)) (-15 -1493 ((-594 (-719)) $ |t#2|)) (-15 -1527 ((-719) $ |t#2|)) (-15 -1492 ((-110) $)) (-15 -1491 (|t#3| $)) (-15 -1490 ($ $)) (-15 -1489 ($ $)) (IF (|has| |t#1| (-216)) (PROGN (-6 (-491 |t#2| |t#1|)) (-6 (-491 |t#2| $)) (-6 (-291 $)) (-15 -1528 ((-1 $ (-719)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #1=(-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-388 (-516)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-805)) . T) ((-162) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-572 (-505)) -12 (|has| |#1| (-572 (-505))) (|has| |#3| (-572 (-505)))) ((-572 (-831 (-359))) -12 (|has| |#1| (-572 (-831 (-359)))) (|has| |#3| (-572 (-831 (-359))))) ((-572 (-831 (-516))) -12 (|has| |#1| (-572 (-831 (-516)))) (|has| |#3| (-572 (-831 (-516))))) ((-214 |#1|) . T) ((-216) |has| |#1| (-216)) ((-272) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-291 $) . T) ((-307 |#1| |#4|) . T) ((-358 |#1|) . T) ((-393 |#1|) . T) ((-432) -3810 (|has| |#1| (-851)) (|has| |#1| (-432))) ((-491 |#2| |#1|) |has| |#1| (-216)) ((-491 |#2| $) |has| |#1| (-216)) ((-491 |#3| |#1|) . T) ((-491 |#3| $) . T) ((-491 $ $) . T) ((-523) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-599 #1#) |has| |#1| (-37 (-388 (-516)))) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-516)) |has| |#1| (-593 (-516))) ((-593 |#1|) . T) ((-666 #1#) |has| |#1| (-37 (-388 (-516)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-675) . T) ((-795) |has| |#1| (-795)) ((-841 (-1098)) |has| |#1| (-841 (-1098))) ((-841 |#3|) . T) ((-827 (-359)) -12 (|has| |#1| (-827 (-359))) (|has| |#3| (-827 (-359)))) ((-827 (-516)) -12 (|has| |#1| (-827 (-516))) (|has| |#3| (-827 (-516)))) ((-891 |#1| |#4| |#3|) . T) ((-851) |has| |#1| (-851)) ((-975 (-388 (-516))) |has| |#1| (-975 (-388 (-516)))) ((-975 (-516)) |has| |#1| (-975 (-516))) ((-975 |#1|) . T) ((-975 |#2|) . T) ((-975 |#3|) . T) ((-989 #1#) |has| |#1| (-37 (-388 (-516)))) ((-989 |#1|) . T) ((-989 $) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1138) |has| |#1| (-851)))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1500 ((|#1| $) 54)) (-3602 ((|#1| $) 44)) (-1217 (((-110) $ (-719)) 8)) (-3815 (($) 7 T CONST)) (-3266 (($ $) 60)) (-2312 (($ $) 48)) (-3604 ((|#1| |#1| $) 46)) (-3603 ((|#1| $) 45)) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) 9)) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35)) (-3998 (((-110) $ (-719)) 10)) (-4112 (((-719) $) 61)) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-1280 ((|#1| $) 39)) (-1498 ((|#1| |#1| $) 52)) (-1497 ((|#1| |#1| $) 51)) (-3889 (($ |#1| $) 40)) (-2863 (((-719) $) 55)) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-3265 ((|#1| $) 62)) (-1496 ((|#1| $) 50)) (-1495 ((|#1| $) 49)) (-1281 ((|#1| $) 41)) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-3268 ((|#1| |#1| $) 58)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-3267 ((|#1| $) 59)) (-1501 (($) 57) (($ (-594 |#1|)) 56)) (-3601 (((-719) $) 43)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-1499 ((|#1| $) 53)) (-1282 (($ (-594 |#1|)) 42)) (-3264 ((|#1| $) 63)) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-236 |#1|) (-133) (-1134)) (T -236))
+((-1501 (*1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1134)))) (-1501 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1134)) (-4 *1 (-236 *3)))) (-2863 (*1 *2 *1) (-12 (-4 *1 (-236 *3)) (-4 *3 (-1134)) (-5 *2 (-719)))) (-1500 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1134)))) (-1499 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1134)))) (-1498 (*1 *2 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1134)))) (-1497 (*1 *2 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1134)))) (-1496 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1134)))) (-1495 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1134)))) (-2312 (*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1134)))))
+(-13 (-1046 |t#1|) (-934 |t#1|) (-10 -8 (-15 -1501 ($)) (-15 -1501 ($ (-594 |t#1|))) (-15 -2863 ((-719) $)) (-15 -1500 (|t#1| $)) (-15 -1499 (|t#1| $)) (-15 -1498 (|t#1| |t#1| $)) (-15 -1497 (|t#1| |t#1| $)) (-15 -1496 (|t#1| $)) (-15 -1495 (|t#1| $)) (-15 -2312 ($ $))))
+(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-571 (-805)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-934 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1046 |#1|) . T) ((-1134) . T))
+((-1502 (((-1058 (-208)) (-823 |#1|) (-1019 (-359)) (-1019 (-359))) 71) (((-1058 (-208)) (-823 |#1|) (-1019 (-359)) (-1019 (-359)) (-594 (-243))) 70) (((-1058 (-208)) |#1| (-1019 (-359)) (-1019 (-359))) 61) (((-1058 (-208)) |#1| (-1019 (-359)) (-1019 (-359)) (-594 (-243))) 60) (((-1058 (-208)) (-820 |#1|) (-1019 (-359))) 52) (((-1058 (-208)) (-820 |#1|) (-1019 (-359)) (-594 (-243))) 51)) (-1509 (((-1183) (-823 |#1|) (-1019 (-359)) (-1019 (-359))) 74) (((-1183) (-823 |#1|) (-1019 (-359)) (-1019 (-359)) (-594 (-243))) 73) (((-1183) |#1| (-1019 (-359)) (-1019 (-359))) 64) (((-1183) |#1| (-1019 (-359)) (-1019 (-359)) (-594 (-243))) 63) (((-1183) (-820 |#1|) (-1019 (-359))) 56) (((-1183) (-820 |#1|) (-1019 (-359)) (-594 (-243))) 55) (((-1182) (-818 |#1|) (-1019 (-359))) 43) (((-1182) (-818 |#1|) (-1019 (-359)) (-594 (-243))) 42) (((-1182) |#1| (-1019 (-359))) 35) (((-1182) |#1| (-1019 (-359)) (-594 (-243))) 34)))
+(((-237 |#1|) (-10 -7 (-15 -1509 ((-1182) |#1| (-1019 (-359)) (-594 (-243)))) (-15 -1509 ((-1182) |#1| (-1019 (-359)))) (-15 -1509 ((-1182) (-818 |#1|) (-1019 (-359)) (-594 (-243)))) (-15 -1509 ((-1182) (-818 |#1|) (-1019 (-359)))) (-15 -1509 ((-1183) (-820 |#1|) (-1019 (-359)) (-594 (-243)))) (-15 -1509 ((-1183) (-820 |#1|) (-1019 (-359)))) (-15 -1502 ((-1058 (-208)) (-820 |#1|) (-1019 (-359)) (-594 (-243)))) (-15 -1502 ((-1058 (-208)) (-820 |#1|) (-1019 (-359)))) (-15 -1509 ((-1183) |#1| (-1019 (-359)) (-1019 (-359)) (-594 (-243)))) (-15 -1509 ((-1183) |#1| (-1019 (-359)) (-1019 (-359)))) (-15 -1502 ((-1058 (-208)) |#1| (-1019 (-359)) (-1019 (-359)) (-594 (-243)))) (-15 -1502 ((-1058 (-208)) |#1| (-1019 (-359)) (-1019 (-359)))) (-15 -1509 ((-1183) (-823 |#1|) (-1019 (-359)) (-1019 (-359)) (-594 (-243)))) (-15 -1509 ((-1183) (-823 |#1|) (-1019 (-359)) (-1019 (-359)))) (-15 -1502 ((-1058 (-208)) (-823 |#1|) (-1019 (-359)) (-1019 (-359)) (-594 (-243)))) (-15 -1502 ((-1058 (-208)) (-823 |#1|) (-1019 (-359)) (-1019 (-359))))) (-13 (-572 (-505)) (-1027))) (T -237))
+((-1502 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-823 *5)) (-5 *4 (-1019 (-359))) (-4 *5 (-13 (-572 (-505)) (-1027))) (-5 *2 (-1058 (-208))) (-5 *1 (-237 *5)))) (-1502 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-823 *6)) (-5 *4 (-1019 (-359))) (-5 *5 (-594 (-243))) (-4 *6 (-13 (-572 (-505)) (-1027))) (-5 *2 (-1058 (-208))) (-5 *1 (-237 *6)))) (-1509 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-823 *5)) (-5 *4 (-1019 (-359))) (-4 *5 (-13 (-572 (-505)) (-1027))) (-5 *2 (-1183)) (-5 *1 (-237 *5)))) (-1509 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-823 *6)) (-5 *4 (-1019 (-359))) (-5 *5 (-594 (-243))) (-4 *6 (-13 (-572 (-505)) (-1027))) (-5 *2 (-1183)) (-5 *1 (-237 *6)))) (-1502 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1019 (-359))) (-5 *2 (-1058 (-208))) (-5 *1 (-237 *3)) (-4 *3 (-13 (-572 (-505)) (-1027))))) (-1502 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1019 (-359))) (-5 *5 (-594 (-243))) (-5 *2 (-1058 (-208))) (-5 *1 (-237 *3)) (-4 *3 (-13 (-572 (-505)) (-1027))))) (-1509 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1019 (-359))) (-5 *2 (-1183)) (-5 *1 (-237 *3)) (-4 *3 (-13 (-572 (-505)) (-1027))))) (-1509 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1019 (-359))) (-5 *5 (-594 (-243))) (-5 *2 (-1183)) (-5 *1 (-237 *3)) (-4 *3 (-13 (-572 (-505)) (-1027))))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-820 *5)) (-5 *4 (-1019 (-359))) (-4 *5 (-13 (-572 (-505)) (-1027))) (-5 *2 (-1058 (-208))) (-5 *1 (-237 *5)))) (-1502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-820 *6)) (-5 *4 (-1019 (-359))) (-5 *5 (-594 (-243))) (-4 *6 (-13 (-572 (-505)) (-1027))) (-5 *2 (-1058 (-208))) (-5 *1 (-237 *6)))) (-1509 (*1 *2 *3 *4) (-12 (-5 *3 (-820 *5)) (-5 *4 (-1019 (-359))) (-4 *5 (-13 (-572 (-505)) (-1027))) (-5 *2 (-1183)) (-5 *1 (-237 *5)))) (-1509 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-820 *6)) (-5 *4 (-1019 (-359))) (-5 *5 (-594 (-243))) (-4 *6 (-13 (-572 (-505)) (-1027))) (-5 *2 (-1183)) (-5 *1 (-237 *6)))) (-1509 (*1 *2 *3 *4) (-12 (-5 *3 (-818 *5)) (-5 *4 (-1019 (-359))) (-4 *5 (-13 (-572 (-505)) (-1027))) (-5 *2 (-1182)) (-5 *1 (-237 *5)))) (-1509 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-818 *6)) (-5 *4 (-1019 (-359))) (-5 *5 (-594 (-243))) (-4 *6 (-13 (-572 (-505)) (-1027))) (-5 *2 (-1182)) (-5 *1 (-237 *6)))) (-1509 (*1 *2 *3 *4) (-12 (-5 *4 (-1019 (-359))) (-5 *2 (-1182)) (-5 *1 (-237 *3)) (-4 *3 (-13 (-572 (-505)) (-1027))))) (-1509 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1019 (-359))) (-5 *5 (-594 (-243))) (-5 *2 (-1182)) (-5 *1 (-237 *3)) (-4 *3 (-13 (-572 (-505)) (-1027))))))
+(-10 -7 (-15 -1509 ((-1182) |#1| (-1019 (-359)) (-594 (-243)))) (-15 -1509 ((-1182) |#1| (-1019 (-359)))) (-15 -1509 ((-1182) (-818 |#1|) (-1019 (-359)) (-594 (-243)))) (-15 -1509 ((-1182) (-818 |#1|) (-1019 (-359)))) (-15 -1509 ((-1183) (-820 |#1|) (-1019 (-359)) (-594 (-243)))) (-15 -1509 ((-1183) (-820 |#1|) (-1019 (-359)))) (-15 -1502 ((-1058 (-208)) (-820 |#1|) (-1019 (-359)) (-594 (-243)))) (-15 -1502 ((-1058 (-208)) (-820 |#1|) (-1019 (-359)))) (-15 -1509 ((-1183) |#1| (-1019 (-359)) (-1019 (-359)) (-594 (-243)))) (-15 -1509 ((-1183) |#1| (-1019 (-359)) (-1019 (-359)))) (-15 -1502 ((-1058 (-208)) |#1| (-1019 (-359)) (-1019 (-359)) (-594 (-243)))) (-15 -1502 ((-1058 (-208)) |#1| (-1019 (-359)) (-1019 (-359)))) (-15 -1509 ((-1183) (-823 |#1|) (-1019 (-359)) (-1019 (-359)) (-594 (-243)))) (-15 -1509 ((-1183) (-823 |#1|) (-1019 (-359)) (-1019 (-359)))) (-15 -1502 ((-1058 (-208)) (-823 |#1|) (-1019 (-359)) (-1019 (-359)) (-594 (-243)))) (-15 -1502 ((-1058 (-208)) (-823 |#1|) (-1019 (-359)) (-1019 (-359)))))
+((-1503 (((-1 (-884 (-208)) (-208) (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208) (-208))) 139)) (-1502 (((-1058 (-208)) (-823 (-1 (-208) (-208) (-208))) (-1017 (-359)) (-1017 (-359))) 160) (((-1058 (-208)) (-823 (-1 (-208) (-208) (-208))) (-1017 (-359)) (-1017 (-359)) (-594 (-243))) 158) (((-1058 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1017 (-359)) (-1017 (-359))) 163) (((-1058 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1017 (-359)) (-1017 (-359)) (-594 (-243))) 159) (((-1058 (-208)) (-1 (-208) (-208) (-208)) (-1017 (-359)) (-1017 (-359))) 150) (((-1058 (-208)) (-1 (-208) (-208) (-208)) (-1017 (-359)) (-1017 (-359)) (-594 (-243))) 149) (((-1058 (-208)) (-1 (-884 (-208)) (-208)) (-1017 (-359))) 129) (((-1058 (-208)) (-1 (-884 (-208)) (-208)) (-1017 (-359)) (-594 (-243))) 127) (((-1058 (-208)) (-820 (-1 (-208) (-208))) (-1017 (-359))) 128) (((-1058 (-208)) (-820 (-1 (-208) (-208))) (-1017 (-359)) (-594 (-243))) 125)) (-1509 (((-1183) (-823 (-1 (-208) (-208) (-208))) (-1017 (-359)) (-1017 (-359))) 162) (((-1183) (-823 (-1 (-208) (-208) (-208))) (-1017 (-359)) (-1017 (-359)) (-594 (-243))) 161) (((-1183) (-1 (-884 (-208)) (-208) (-208)) (-1017 (-359)) (-1017 (-359))) 165) (((-1183) (-1 (-884 (-208)) (-208) (-208)) (-1017 (-359)) (-1017 (-359)) (-594 (-243))) 164) (((-1183) (-1 (-208) (-208) (-208)) (-1017 (-359)) (-1017 (-359))) 152) (((-1183) (-1 (-208) (-208) (-208)) (-1017 (-359)) (-1017 (-359)) (-594 (-243))) 151) (((-1183) (-1 (-884 (-208)) (-208)) (-1017 (-359))) 135) (((-1183) (-1 (-884 (-208)) (-208)) (-1017 (-359)) (-594 (-243))) 134) (((-1183) (-820 (-1 (-208) (-208))) (-1017 (-359))) 133) (((-1183) (-820 (-1 (-208) (-208))) (-1017 (-359)) (-594 (-243))) 132) (((-1182) (-818 (-1 (-208) (-208))) (-1017 (-359))) 100) (((-1182) (-818 (-1 (-208) (-208))) (-1017 (-359)) (-594 (-243))) 99) (((-1182) (-1 (-208) (-208)) (-1017 (-359))) 96) (((-1182) (-1 (-208) (-208)) (-1017 (-359)) (-594 (-243))) 95)))
+(((-238) (-10 -7 (-15 -1509 ((-1182) (-1 (-208) (-208)) (-1017 (-359)) (-594 (-243)))) (-15 -1509 ((-1182) (-1 (-208) (-208)) (-1017 (-359)))) (-15 -1509 ((-1182) (-818 (-1 (-208) (-208))) (-1017 (-359)) (-594 (-243)))) (-15 -1509 ((-1182) (-818 (-1 (-208) (-208))) (-1017 (-359)))) (-15 -1509 ((-1183) (-820 (-1 (-208) (-208))) (-1017 (-359)) (-594 (-243)))) (-15 -1509 ((-1183) (-820 (-1 (-208) (-208))) (-1017 (-359)))) (-15 -1509 ((-1183) (-1 (-884 (-208)) (-208)) (-1017 (-359)) (-594 (-243)))) (-15 -1509 ((-1183) (-1 (-884 (-208)) (-208)) (-1017 (-359)))) (-15 -1502 ((-1058 (-208)) (-820 (-1 (-208) (-208))) (-1017 (-359)) (-594 (-243)))) (-15 -1502 ((-1058 (-208)) (-820 (-1 (-208) (-208))) (-1017 (-359)))) (-15 -1502 ((-1058 (-208)) (-1 (-884 (-208)) (-208)) (-1017 (-359)) (-594 (-243)))) (-15 -1502 ((-1058 (-208)) (-1 (-884 (-208)) (-208)) (-1017 (-359)))) (-15 -1509 ((-1183) (-1 (-208) (-208) (-208)) (-1017 (-359)) (-1017 (-359)) (-594 (-243)))) (-15 -1509 ((-1183) (-1 (-208) (-208) (-208)) (-1017 (-359)) (-1017 (-359)))) (-15 -1502 ((-1058 (-208)) (-1 (-208) (-208) (-208)) (-1017 (-359)) (-1017 (-359)) (-594 (-243)))) (-15 -1502 ((-1058 (-208)) (-1 (-208) (-208) (-208)) (-1017 (-359)) (-1017 (-359)))) (-15 -1509 ((-1183) (-1 (-884 (-208)) (-208) (-208)) (-1017 (-359)) (-1017 (-359)) (-594 (-243)))) (-15 -1509 ((-1183) (-1 (-884 (-208)) (-208) (-208)) (-1017 (-359)) (-1017 (-359)))) (-15 -1502 ((-1058 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1017 (-359)) (-1017 (-359)) (-594 (-243)))) (-15 -1502 ((-1058 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1017 (-359)) (-1017 (-359)))) (-15 -1509 ((-1183) (-823 (-1 (-208) (-208) (-208))) (-1017 (-359)) (-1017 (-359)) (-594 (-243)))) (-15 -1509 ((-1183) (-823 (-1 (-208) (-208) (-208))) (-1017 (-359)) (-1017 (-359)))) (-15 -1502 ((-1058 (-208)) (-823 (-1 (-208) (-208) (-208))) (-1017 (-359)) (-1017 (-359)) (-594 (-243)))) (-15 -1502 ((-1058 (-208)) (-823 (-1 (-208) (-208) (-208))) (-1017 (-359)) (-1017 (-359)))) (-15 -1503 ((-1 (-884 (-208)) (-208) (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208) (-208)))))) (T -238))
+((-1503 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-884 (-208)) (-208) (-208))) (-5 *3 (-1 (-208) (-208) (-208) (-208))) (-5 *1 (-238)))) (-1502 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-823 (-1 (-208) (-208) (-208)))) (-5 *4 (-1017 (-359))) (-5 *2 (-1058 (-208))) (-5 *1 (-238)))) (-1502 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-823 (-1 (-208) (-208) (-208)))) (-5 *4 (-1017 (-359))) (-5 *5 (-594 (-243))) (-5 *2 (-1058 (-208))) (-5 *1 (-238)))) (-1509 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-823 (-1 (-208) (-208) (-208)))) (-5 *4 (-1017 (-359))) (-5 *2 (-1183)) (-5 *1 (-238)))) (-1509 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-823 (-1 (-208) (-208) (-208)))) (-5 *4 (-1017 (-359))) (-5 *5 (-594 (-243))) (-5 *2 (-1183)) (-5 *1 (-238)))) (-1502 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1017 (-359))) (-5 *2 (-1058 (-208))) (-5 *1 (-238)))) (-1502 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1017 (-359))) (-5 *5 (-594 (-243))) (-5 *2 (-1058 (-208))) (-5 *1 (-238)))) (-1509 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1017 (-359))) (-5 *2 (-1183)) (-5 *1 (-238)))) (-1509 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1017 (-359))) (-5 *5 (-594 (-243))) (-5 *2 (-1183)) (-5 *1 (-238)))) (-1502 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1017 (-359))) (-5 *2 (-1058 (-208))) (-5 *1 (-238)))) (-1502 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1017 (-359))) (-5 *5 (-594 (-243))) (-5 *2 (-1058 (-208))) (-5 *1 (-238)))) (-1509 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1017 (-359))) (-5 *2 (-1183)) (-5 *1 (-238)))) (-1509 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1017 (-359))) (-5 *5 (-594 (-243))) (-5 *2 (-1183)) (-5 *1 (-238)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-884 (-208)) (-208))) (-5 *4 (-1017 (-359))) (-5 *2 (-1058 (-208))) (-5 *1 (-238)))) (-1502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-884 (-208)) (-208))) (-5 *4 (-1017 (-359))) (-5 *5 (-594 (-243))) (-5 *2 (-1058 (-208))) (-5 *1 (-238)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1017 (-359))) (-5 *2 (-1058 (-208))) (-5 *1 (-238)))) (-1502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1017 (-359))) (-5 *5 (-594 (-243))) (-5 *2 (-1058 (-208))) (-5 *1 (-238)))) (-1509 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-884 (-208)) (-208))) (-5 *4 (-1017 (-359))) (-5 *2 (-1183)) (-5 *1 (-238)))) (-1509 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-884 (-208)) (-208))) (-5 *4 (-1017 (-359))) (-5 *5 (-594 (-243))) (-5 *2 (-1183)) (-5 *1 (-238)))) (-1509 (*1 *2 *3 *4) (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1017 (-359))) (-5 *2 (-1183)) (-5 *1 (-238)))) (-1509 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1017 (-359))) (-5 *5 (-594 (-243))) (-5 *2 (-1183)) (-5 *1 (-238)))) (-1509 (*1 *2 *3 *4) (-12 (-5 *3 (-818 (-1 (-208) (-208)))) (-5 *4 (-1017 (-359))) (-5 *2 (-1182)) (-5 *1 (-238)))) (-1509 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-818 (-1 (-208) (-208)))) (-5 *4 (-1017 (-359))) (-5 *5 (-594 (-243))) (-5 *2 (-1182)) (-5 *1 (-238)))) (-1509 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-208) (-208))) (-5 *4 (-1017 (-359))) (-5 *2 (-1182)) (-5 *1 (-238)))) (-1509 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-208) (-208))) (-5 *4 (-1017 (-359))) (-5 *5 (-594 (-243))) (-5 *2 (-1182)) (-5 *1 (-238)))))
+(-10 -7 (-15 -1509 ((-1182) (-1 (-208) (-208)) (-1017 (-359)) (-594 (-243)))) (-15 -1509 ((-1182) (-1 (-208) (-208)) (-1017 (-359)))) (-15 -1509 ((-1182) (-818 (-1 (-208) (-208))) (-1017 (-359)) (-594 (-243)))) (-15 -1509 ((-1182) (-818 (-1 (-208) (-208))) (-1017 (-359)))) (-15 -1509 ((-1183) (-820 (-1 (-208) (-208))) (-1017 (-359)) (-594 (-243)))) (-15 -1509 ((-1183) (-820 (-1 (-208) (-208))) (-1017 (-359)))) (-15 -1509 ((-1183) (-1 (-884 (-208)) (-208)) (-1017 (-359)) (-594 (-243)))) (-15 -1509 ((-1183) (-1 (-884 (-208)) (-208)) (-1017 (-359)))) (-15 -1502 ((-1058 (-208)) (-820 (-1 (-208) (-208))) (-1017 (-359)) (-594 (-243)))) (-15 -1502 ((-1058 (-208)) (-820 (-1 (-208) (-208))) (-1017 (-359)))) (-15 -1502 ((-1058 (-208)) (-1 (-884 (-208)) (-208)) (-1017 (-359)) (-594 (-243)))) (-15 -1502 ((-1058 (-208)) (-1 (-884 (-208)) (-208)) (-1017 (-359)))) (-15 -1509 ((-1183) (-1 (-208) (-208) (-208)) (-1017 (-359)) (-1017 (-359)) (-594 (-243)))) (-15 -1509 ((-1183) (-1 (-208) (-208) (-208)) (-1017 (-359)) (-1017 (-359)))) (-15 -1502 ((-1058 (-208)) (-1 (-208) (-208) (-208)) (-1017 (-359)) (-1017 (-359)) (-594 (-243)))) (-15 -1502 ((-1058 (-208)) (-1 (-208) (-208) (-208)) (-1017 (-359)) (-1017 (-359)))) (-15 -1509 ((-1183) (-1 (-884 (-208)) (-208) (-208)) (-1017 (-359)) (-1017 (-359)) (-594 (-243)))) (-15 -1509 ((-1183) (-1 (-884 (-208)) (-208) (-208)) (-1017 (-359)) (-1017 (-359)))) (-15 -1502 ((-1058 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1017 (-359)) (-1017 (-359)) (-594 (-243)))) (-15 -1502 ((-1058 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1017 (-359)) (-1017 (-359)))) (-15 -1509 ((-1183) (-823 (-1 (-208) (-208) (-208))) (-1017 (-359)) (-1017 (-359)) (-594 (-243)))) (-15 -1509 ((-1183) (-823 (-1 (-208) (-208) (-208))) (-1017 (-359)) (-1017 (-359)))) (-15 -1502 ((-1058 (-208)) (-823 (-1 (-208) (-208) (-208))) (-1017 (-359)) (-1017 (-359)) (-594 (-243)))) (-15 -1502 ((-1058 (-208)) (-823 (-1 (-208) (-208) (-208))) (-1017 (-359)) (-1017 (-359)))) (-15 -1503 ((-1 (-884 (-208)) (-208) (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208) (-208)))))
+((-1509 (((-1182) (-275 |#2|) (-1098) (-1098) (-594 (-243))) 96)))
+(((-239 |#1| |#2|) (-10 -7 (-15 -1509 ((-1182) (-275 |#2|) (-1098) (-1098) (-594 (-243))))) (-13 (-523) (-795) (-975 (-516))) (-402 |#1|)) (T -239))
+((-1509 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-275 *7)) (-5 *4 (-1098)) (-5 *5 (-594 (-243))) (-4 *7 (-402 *6)) (-4 *6 (-13 (-523) (-795) (-975 (-516)))) (-5 *2 (-1182)) (-5 *1 (-239 *6 *7)))))
+(-10 -7 (-15 -1509 ((-1182) (-275 |#2|) (-1098) (-1098) (-594 (-243)))))
+((-1506 (((-516) (-516)) 50)) (-1507 (((-516) (-516)) 51)) (-1508 (((-208) (-208)) 52)) (-1505 (((-1183) (-1 (-158 (-208)) (-158 (-208))) (-1017 (-208)) (-1017 (-208))) 49)) (-1504 (((-1183) (-1 (-158 (-208)) (-158 (-208))) (-1017 (-208)) (-1017 (-208)) (-110)) 47)))
+(((-240) (-10 -7 (-15 -1504 ((-1183) (-1 (-158 (-208)) (-158 (-208))) (-1017 (-208)) (-1017 (-208)) (-110))) (-15 -1505 ((-1183) (-1 (-158 (-208)) (-158 (-208))) (-1017 (-208)) (-1017 (-208)))) (-15 -1506 ((-516) (-516))) (-15 -1507 ((-516) (-516))) (-15 -1508 ((-208) (-208))))) (T -240))
+((-1508 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-240)))) (-1507 (*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-240)))) (-1506 (*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-240)))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-158 (-208)) (-158 (-208)))) (-5 *4 (-1017 (-208))) (-5 *2 (-1183)) (-5 *1 (-240)))) (-1504 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-158 (-208)) (-158 (-208)))) (-5 *4 (-1017 (-208))) (-5 *5 (-110)) (-5 *2 (-1183)) (-5 *1 (-240)))))
+(-10 -7 (-15 -1504 ((-1183) (-1 (-158 (-208)) (-158 (-208))) (-1017 (-208)) (-1017 (-208)) (-110))) (-15 -1505 ((-1183) (-1 (-158 (-208)) (-158 (-208))) (-1017 (-208)) (-1017 (-208)))) (-15 -1506 ((-516) (-516))) (-15 -1507 ((-516) (-516))) (-15 -1508 ((-208) (-208))))
+((-4233 (((-1019 (-359)) (-1019 (-295 |#1|))) 16)))
+(((-241 |#1|) (-10 -7 (-15 -4233 ((-1019 (-359)) (-1019 (-295 |#1|))))) (-13 (-795) (-523) (-572 (-359)))) (T -241))
+((-4233 (*1 *2 *3) (-12 (-5 *3 (-1019 (-295 *4))) (-4 *4 (-13 (-795) (-523) (-572 (-359)))) (-5 *2 (-1019 (-359))) (-5 *1 (-241 *4)))))
+(-10 -7 (-15 -4233 ((-1019 (-359)) (-1019 (-295 |#1|)))))
+((-1509 (((-1183) (-594 (-208)) (-594 (-208)) (-594 (-208)) (-594 (-243))) 23) (((-1183) (-594 (-208)) (-594 (-208)) (-594 (-208))) 24) (((-1182) (-594 (-884 (-208))) (-594 (-243))) 16) (((-1182) (-594 (-884 (-208)))) 17) (((-1182) (-594 (-208)) (-594 (-208)) (-594 (-243))) 20) (((-1182) (-594 (-208)) (-594 (-208))) 21)))
+(((-242) (-10 -7 (-15 -1509 ((-1182) (-594 (-208)) (-594 (-208)))) (-15 -1509 ((-1182) (-594 (-208)) (-594 (-208)) (-594 (-243)))) (-15 -1509 ((-1182) (-594 (-884 (-208))))) (-15 -1509 ((-1182) (-594 (-884 (-208))) (-594 (-243)))) (-15 -1509 ((-1183) (-594 (-208)) (-594 (-208)) (-594 (-208)))) (-15 -1509 ((-1183) (-594 (-208)) (-594 (-208)) (-594 (-208)) (-594 (-243)))))) (T -242))
+((-1509 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-594 (-208))) (-5 *4 (-594 (-243))) (-5 *2 (-1183)) (-5 *1 (-242)))) (-1509 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-594 (-208))) (-5 *2 (-1183)) (-5 *1 (-242)))) (-1509 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-884 (-208)))) (-5 *4 (-594 (-243))) (-5 *2 (-1182)) (-5 *1 (-242)))) (-1509 (*1 *2 *3) (-12 (-5 *3 (-594 (-884 (-208)))) (-5 *2 (-1182)) (-5 *1 (-242)))) (-1509 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-594 (-208))) (-5 *4 (-594 (-243))) (-5 *2 (-1182)) (-5 *1 (-242)))) (-1509 (*1 *2 *3 *3) (-12 (-5 *3 (-594 (-208))) (-5 *2 (-1182)) (-5 *1 (-242)))))
+(-10 -7 (-15 -1509 ((-1182) (-594 (-208)) (-594 (-208)))) (-15 -1509 ((-1182) (-594 (-208)) (-594 (-208)) (-594 (-243)))) (-15 -1509 ((-1182) (-594 (-884 (-208))))) (-15 -1509 ((-1182) (-594 (-884 (-208))) (-594 (-243)))) (-15 -1509 ((-1183) (-594 (-208)) (-594 (-208)) (-594 (-208)))) (-15 -1509 ((-1183) (-594 (-208)) (-594 (-208)) (-594 (-208)) (-594 (-243)))))
+((-2828 (((-110) $ $) NIL)) (-4160 (($ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -4126 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) 15)) (-1522 (($ (-860)) 76)) (-1521 (($ (-860)) 75)) (-1842 (($ (-594 (-359))) 82)) (-1525 (($ (-359)) 58)) (-1524 (($ (-860)) 77)) (-1518 (($ (-110)) 23)) (-4162 (($ (-1081)) 18)) (-1517 (($ (-1081)) 19)) (-1523 (($ (-1058 (-208))) 71)) (-2000 (($ (-594 (-1017 (-359)))) 67)) (-1511 (($ (-594 (-1017 (-359)))) 59) (($ (-594 (-1017 (-388 (-516))))) 66)) (-1514 (($ (-359)) 29) (($ (-815)) 33)) (-1510 (((-110) (-594 $) (-1098)) 91)) (-1526 (((-3 (-50) "failed") (-594 $) (-1098)) 93)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-1513 (($ (-359)) 34) (($ (-815)) 35)) (-3497 (($ (-1 (-884 (-208)) (-884 (-208)))) 57)) (-2285 (($ (-1 (-884 (-208)) (-884 (-208)))) 78)) (-1512 (($ (-1 (-208) (-208))) 39) (($ (-1 (-208) (-208) (-208))) 43) (($ (-1 (-208) (-208) (-208) (-208))) 47)) (-4233 (((-805) $) 87)) (-1515 (($ (-110)) 24) (($ (-594 (-1017 (-359)))) 52)) (-1995 (($ (-110)) 25)) (-3317 (((-110) $ $) 89)))
+(((-243) (-13 (-1027) (-10 -8 (-15 -1995 ($ (-110))) (-15 -1515 ($ (-110))) (-15 -4160 ($ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -4126 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -4162 ($ (-1081))) (-15 -1517 ($ (-1081))) (-15 -1518 ($ (-110))) (-15 -1515 ($ (-594 (-1017 (-359))))) (-15 -3497 ($ (-1 (-884 (-208)) (-884 (-208))))) (-15 -1514 ($ (-359))) (-15 -1514 ($ (-815))) (-15 -1513 ($ (-359))) (-15 -1513 ($ (-815))) (-15 -1512 ($ (-1 (-208) (-208)))) (-15 -1512 ($ (-1 (-208) (-208) (-208)))) (-15 -1512 ($ (-1 (-208) (-208) (-208) (-208)))) (-15 -1525 ($ (-359))) (-15 -1511 ($ (-594 (-1017 (-359))))) (-15 -1511 ($ (-594 (-1017 (-388 (-516)))))) (-15 -2000 ($ (-594 (-1017 (-359))))) (-15 -1523 ($ (-1058 (-208)))) (-15 -1521 ($ (-860))) (-15 -1522 ($ (-860))) (-15 -1524 ($ (-860))) (-15 -2285 ($ (-1 (-884 (-208)) (-884 (-208))))) (-15 -1842 ($ (-594 (-359)))) (-15 -1526 ((-3 (-50) "failed") (-594 $) (-1098))) (-15 -1510 ((-110) (-594 $) (-1098)))))) (T -243))
+((-1995 (*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-243)))) (-1515 (*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-243)))) (-4160 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -4126 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) (-5 *1 (-243)))) (-4162 (*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-243)))) (-1517 (*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-243)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-243)))) (-1515 (*1 *1 *2) (-12 (-5 *2 (-594 (-1017 (-359)))) (-5 *1 (-243)))) (-3497 (*1 *1 *2) (-12 (-5 *2 (-1 (-884 (-208)) (-884 (-208)))) (-5 *1 (-243)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-243)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-243)))) (-1513 (*1 *1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-243)))) (-1513 (*1 *1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-243)))) (-1512 (*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-243)))) (-1512 (*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208) (-208))) (-5 *1 (-243)))) (-1512 (*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208) (-208) (-208))) (-5 *1 (-243)))) (-1525 (*1 *1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-243)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-594 (-1017 (-359)))) (-5 *1 (-243)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-594 (-1017 (-388 (-516))))) (-5 *1 (-243)))) (-2000 (*1 *1 *2) (-12 (-5 *2 (-594 (-1017 (-359)))) (-5 *1 (-243)))) (-1523 (*1 *1 *2) (-12 (-5 *2 (-1058 (-208))) (-5 *1 (-243)))) (-1521 (*1 *1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-243)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-243)))) (-1524 (*1 *1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-243)))) (-2285 (*1 *1 *2) (-12 (-5 *2 (-1 (-884 (-208)) (-884 (-208)))) (-5 *1 (-243)))) (-1842 (*1 *1 *2) (-12 (-5 *2 (-594 (-359))) (-5 *1 (-243)))) (-1526 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-594 (-243))) (-5 *4 (-1098)) (-5 *2 (-50)) (-5 *1 (-243)))) (-1510 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-243))) (-5 *4 (-1098)) (-5 *2 (-110)) (-5 *1 (-243)))))
+(-13 (-1027) (-10 -8 (-15 -1995 ($ (-110))) (-15 -1515 ($ (-110))) (-15 -4160 ($ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -4126 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -4162 ($ (-1081))) (-15 -1517 ($ (-1081))) (-15 -1518 ($ (-110))) (-15 -1515 ($ (-594 (-1017 (-359))))) (-15 -3497 ($ (-1 (-884 (-208)) (-884 (-208))))) (-15 -1514 ($ (-359))) (-15 -1514 ($ (-815))) (-15 -1513 ($ (-359))) (-15 -1513 ($ (-815))) (-15 -1512 ($ (-1 (-208) (-208)))) (-15 -1512 ($ (-1 (-208) (-208) (-208)))) (-15 -1512 ($ (-1 (-208) (-208) (-208) (-208)))) (-15 -1525 ($ (-359))) (-15 -1511 ($ (-594 (-1017 (-359))))) (-15 -1511 ($ (-594 (-1017 (-388 (-516)))))) (-15 -2000 ($ (-594 (-1017 (-359))))) (-15 -1523 ($ (-1058 (-208)))) (-15 -1521 ($ (-860))) (-15 -1522 ($ (-860))) (-15 -1524 ($ (-860))) (-15 -2285 ($ (-1 (-884 (-208)) (-884 (-208))))) (-15 -1842 ($ (-594 (-359)))) (-15 -1526 ((-3 (-50) "failed") (-594 $) (-1098))) (-15 -1510 ((-110) (-594 $) (-1098)))))
+((-4160 (((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -4126 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) (-594 (-243)) (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -4126 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) 26)) (-1522 (((-860) (-594 (-243)) (-860)) 53)) (-1521 (((-860) (-594 (-243)) (-860)) 52)) (-4130 (((-594 (-359)) (-594 (-243)) (-594 (-359))) 69)) (-1525 (((-359) (-594 (-243)) (-359)) 58)) (-1524 (((-860) (-594 (-243)) (-860)) 54)) (-1518 (((-110) (-594 (-243)) (-110)) 28)) (-4162 (((-1081) (-594 (-243)) (-1081)) 20)) (-1517 (((-1081) (-594 (-243)) (-1081)) 27)) (-1523 (((-1058 (-208)) (-594 (-243))) 47)) (-2000 (((-594 (-1017 (-359))) (-594 (-243)) (-594 (-1017 (-359)))) 41)) (-1519 (((-815) (-594 (-243)) (-815)) 33)) (-1520 (((-815) (-594 (-243)) (-815)) 34)) (-2285 (((-1 (-884 (-208)) (-884 (-208))) (-594 (-243)) (-1 (-884 (-208)) (-884 (-208)))) 64)) (-1516 (((-110) (-594 (-243)) (-110)) 16)) (-1995 (((-110) (-594 (-243)) (-110)) 15)))
+(((-244) (-10 -7 (-15 -1995 ((-110) (-594 (-243)) (-110))) (-15 -1516 ((-110) (-594 (-243)) (-110))) (-15 -4160 ((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -4126 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) (-594 (-243)) (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -4126 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -4162 ((-1081) (-594 (-243)) (-1081))) (-15 -1517 ((-1081) (-594 (-243)) (-1081))) (-15 -1518 ((-110) (-594 (-243)) (-110))) (-15 -1519 ((-815) (-594 (-243)) (-815))) (-15 -1520 ((-815) (-594 (-243)) (-815))) (-15 -2000 ((-594 (-1017 (-359))) (-594 (-243)) (-594 (-1017 (-359))))) (-15 -1521 ((-860) (-594 (-243)) (-860))) (-15 -1522 ((-860) (-594 (-243)) (-860))) (-15 -1523 ((-1058 (-208)) (-594 (-243)))) (-15 -1524 ((-860) (-594 (-243)) (-860))) (-15 -1525 ((-359) (-594 (-243)) (-359))) (-15 -2285 ((-1 (-884 (-208)) (-884 (-208))) (-594 (-243)) (-1 (-884 (-208)) (-884 (-208))))) (-15 -4130 ((-594 (-359)) (-594 (-243)) (-594 (-359)))))) (T -244))
+((-4130 (*1 *2 *3 *2) (-12 (-5 *2 (-594 (-359))) (-5 *3 (-594 (-243))) (-5 *1 (-244)))) (-2285 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-884 (-208)) (-884 (-208)))) (-5 *3 (-594 (-243))) (-5 *1 (-244)))) (-1525 (*1 *2 *3 *2) (-12 (-5 *2 (-359)) (-5 *3 (-594 (-243))) (-5 *1 (-244)))) (-1524 (*1 *2 *3 *2) (-12 (-5 *2 (-860)) (-5 *3 (-594 (-243))) (-5 *1 (-244)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-594 (-243))) (-5 *2 (-1058 (-208))) (-5 *1 (-244)))) (-1522 (*1 *2 *3 *2) (-12 (-5 *2 (-860)) (-5 *3 (-594 (-243))) (-5 *1 (-244)))) (-1521 (*1 *2 *3 *2) (-12 (-5 *2 (-860)) (-5 *3 (-594 (-243))) (-5 *1 (-244)))) (-2000 (*1 *2 *3 *2) (-12 (-5 *2 (-594 (-1017 (-359)))) (-5 *3 (-594 (-243))) (-5 *1 (-244)))) (-1520 (*1 *2 *3 *2) (-12 (-5 *2 (-815)) (-5 *3 (-594 (-243))) (-5 *1 (-244)))) (-1519 (*1 *2 *3 *2) (-12 (-5 *2 (-815)) (-5 *3 (-594 (-243))) (-5 *1 (-244)))) (-1518 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *3 (-594 (-243))) (-5 *1 (-244)))) (-1517 (*1 *2 *3 *2) (-12 (-5 *2 (-1081)) (-5 *3 (-594 (-243))) (-5 *1 (-244)))) (-4162 (*1 *2 *3 *2) (-12 (-5 *2 (-1081)) (-5 *3 (-594 (-243))) (-5 *1 (-244)))) (-4160 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -4126 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) (-5 *3 (-594 (-243))) (-5 *1 (-244)))) (-1516 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *3 (-594 (-243))) (-5 *1 (-244)))) (-1995 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *3 (-594 (-243))) (-5 *1 (-244)))))
+(-10 -7 (-15 -1995 ((-110) (-594 (-243)) (-110))) (-15 -1516 ((-110) (-594 (-243)) (-110))) (-15 -4160 ((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -4126 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) (-594 (-243)) (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -4126 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -4162 ((-1081) (-594 (-243)) (-1081))) (-15 -1517 ((-1081) (-594 (-243)) (-1081))) (-15 -1518 ((-110) (-594 (-243)) (-110))) (-15 -1519 ((-815) (-594 (-243)) (-815))) (-15 -1520 ((-815) (-594 (-243)) (-815))) (-15 -2000 ((-594 (-1017 (-359))) (-594 (-243)) (-594 (-1017 (-359))))) (-15 -1521 ((-860) (-594 (-243)) (-860))) (-15 -1522 ((-860) (-594 (-243)) (-860))) (-15 -1523 ((-1058 (-208)) (-594 (-243)))) (-15 -1524 ((-860) (-594 (-243)) (-860))) (-15 -1525 ((-359) (-594 (-243)) (-359))) (-15 -2285 ((-1 (-884 (-208)) (-884 (-208))) (-594 (-243)) (-1 (-884 (-208)) (-884 (-208))))) (-15 -4130 ((-594 (-359)) (-594 (-243)) (-594 (-359)))))
+((-1526 (((-3 |#1| "failed") (-594 (-243)) (-1098)) 17)))
+(((-245 |#1|) (-10 -7 (-15 -1526 ((-3 |#1| "failed") (-594 (-243)) (-1098)))) (-1134)) (T -245))
+((-1526 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-594 (-243))) (-5 *4 (-1098)) (-5 *1 (-245 *2)) (-4 *2 (-1134)))))
+(-10 -7 (-15 -1526 ((-3 |#1| "failed") (-594 (-243)) (-1098))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1493 (((-594 (-719)) $) NIL) (((-594 (-719)) $ |#2|) NIL)) (-1527 (((-719) $) NIL) (((-719) $ |#2|) NIL)) (-3347 (((-594 |#3|) $) NIL)) (-3349 (((-1092 $) $ |#3|) NIL) (((-1092 |#1|) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-2118 (($ $) NIL (|has| |#1| (-523)))) (-2116 (((-110) $) NIL (|has| |#1| (-523)))) (-3083 (((-719) $) NIL) (((-719) $ (-594 |#3|)) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-4053 (($ $) NIL (|has| |#1| (-432)))) (-4245 (((-386 $) $) NIL (|has| |#1| (-432)))) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-1489 (($ $) NIL)) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#1| #2="failed") $) NIL) (((-3 (-388 (-516)) #2#) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-3 (-516) #2#) $) NIL (|has| |#1| (-975 (-516)))) (((-3 |#3| #2#) $) NIL) (((-3 |#2| #2#) $) NIL) (((-3 (-1050 |#1| |#2|) #2#) $) 21)) (-3431 ((|#1| $) NIL) (((-388 (-516)) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-516) $) NIL (|has| |#1| (-975 (-516)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1050 |#1| |#2|) $) NIL)) (-4035 (($ $ $ |#3|) NIL (|has| |#1| (-162)))) (-4235 (($ $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3777 (($ $) NIL (|has| |#1| (-432))) (($ $ |#3|) NIL (|has| |#1| (-432)))) (-3082 (((-594 $) $) NIL)) (-4005 (((-110) $) NIL (|has| |#1| (-851)))) (-1671 (($ $ |#1| (-502 |#3|) $) NIL)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (-12 (|has| |#1| (-827 (-359))) (|has| |#3| (-827 (-359))))) (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (-12 (|has| |#1| (-827 (-516))) (|has| |#3| (-827 (-516)))))) (-4050 (((-719) $ |#2|) NIL) (((-719) $) 10)) (-2436 (((-110) $) NIL)) (-2444 (((-719) $) NIL)) (-3350 (($ (-1092 |#1|) |#3|) NIL) (($ (-1092 $) |#3|) NIL)) (-3085 (((-594 $) $) NIL)) (-4213 (((-110) $) NIL)) (-3157 (($ |#1| (-502 |#3|)) NIL) (($ $ |#3| (-719)) NIL) (($ $ (-594 |#3|) (-594 (-719))) NIL)) (-4041 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $ |#3|) NIL)) (-3084 (((-502 |#3|) $) NIL) (((-719) $ |#3|) NIL) (((-594 (-719)) $ (-594 |#3|)) NIL)) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-1672 (($ (-1 (-502 |#3|) (-502 |#3|)) $) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-1528 (((-1 $ (-719)) |#2|) NIL) (((-1 $ (-719)) $) NIL (|has| |#1| (-216)))) (-3348 (((-3 |#3| #3="failed") $) NIL)) (-3158 (($ $) NIL)) (-3449 ((|#1| $) NIL)) (-1491 ((|#3| $) NIL)) (-1963 (($ (-594 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3513 (((-1081) $) NIL)) (-1492 (((-110) $) NIL)) (-3087 (((-3 (-594 $) #3#) $) NIL)) (-3086 (((-3 (-594 $) #3#) $) NIL)) (-3088 (((-3 (-2 (|:| |var| |#3|) (|:| -2427 (-719))) #3#) $) NIL)) (-1490 (($ $) NIL)) (-3514 (((-1045) $) NIL)) (-1866 (((-110) $) NIL)) (-1865 ((|#1| $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#1| (-432)))) (-3419 (($ (-594 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-4011 (((-386 $) $) NIL (|has| |#1| (-851)))) (-3740 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-4046 (($ $ (-594 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-594 |#3|) (-594 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-594 |#3|) (-594 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-216))) (($ $ (-594 |#2|) (-594 $)) NIL (|has| |#1| (-216))) (($ $ |#2| |#1|) NIL (|has| |#1| (-216))) (($ $ (-594 |#2|) (-594 |#1|)) NIL (|has| |#1| (-216)))) (-4036 (($ $ |#3|) NIL (|has| |#1| (-162)))) (-4089 (($ $ |#3|) NIL) (($ $ (-594 |#3|)) NIL) (($ $ |#3| (-719)) NIL) (($ $ (-594 |#3|) (-594 (-719))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1098)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1494 (((-594 |#2|) $) NIL)) (-4223 (((-502 |#3|) $) NIL) (((-719) $ |#3|) NIL) (((-594 (-719)) $ (-594 |#3|)) NIL) (((-719) $ |#2|) NIL)) (-4246 (((-831 (-359)) $) NIL (-12 (|has| |#1| (-572 (-831 (-359)))) (|has| |#3| (-572 (-831 (-359)))))) (((-831 (-516)) $) NIL (-12 (|has| |#1| (-572 (-831 (-516)))) (|has| |#3| (-572 (-831 (-516)))))) (((-505) $) NIL (-12 (|has| |#1| (-572 (-505))) (|has| |#3| (-572 (-505)))))) (-3081 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ |#3|) NIL (|has| |#1| (-432)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-851))))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1050 |#1| |#2|)) 30) (($ (-388 (-516))) NIL (-3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-975 (-388 (-516)))))) (($ $) NIL (|has| |#1| (-523)))) (-4096 (((-594 |#1|) $) NIL)) (-3959 ((|#1| $ (-502 |#3|)) NIL) (($ $ |#3| (-719)) NIL) (($ $ (-594 |#3|) (-594 (-719))) NIL)) (-2965 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| $ (-138)) (|has| |#1| (-851))) (|has| |#1| (-138))))) (-3385 (((-719)) NIL)) (-1670 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-2117 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($ $ |#3|) NIL) (($ $ (-594 |#3|)) NIL) (($ $ |#3| (-719)) NIL) (($ $ (-594 |#3|) (-594 (-719))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1098)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#1| (-795)))) (-4224 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516))))) (($ (-388 (-516)) $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-246 |#1| |#2| |#3|) (-13 (-235 |#1| |#2| |#3| (-502 |#3|)) (-975 (-1050 |#1| |#2|))) (-984) (-795) (-248 |#2|)) (T -246))
+NIL
+(-13 (-235 |#1| |#2| |#3| (-502 |#3|)) (-975 (-1050 |#1| |#2|)))
+((-1527 (((-719) $) 30)) (-3432 (((-3 |#2| "failed") $) 17)) (-3431 ((|#2| $) 27)) (-4089 (($ $) 12) (($ $ (-719)) 15)) (-4233 (((-805) $) 26) (($ |#2|) 10)) (-3317 (((-110) $ $) 20)) (-2948 (((-110) $ $) 29)))
+(((-247 |#1| |#2|) (-10 -8 (-15 -4089 (|#1| |#1| (-719))) (-15 -4089 (|#1| |#1|)) (-15 -1527 ((-719) |#1|)) (-15 -3431 (|#2| |#1|)) (-15 -3432 ((-3 |#2| "failed") |#1|)) (-15 -4233 (|#1| |#2|)) (-15 -2948 ((-110) |#1| |#1|)) (-15 -4233 ((-805) |#1|)) (-15 -3317 ((-110) |#1| |#1|))) (-248 |#2|) (-795)) (T -247))
+NIL
+(-10 -8 (-15 -4089 (|#1| |#1| (-719))) (-15 -4089 (|#1| |#1|)) (-15 -1527 ((-719) |#1|)) (-15 -3431 (|#2| |#1|)) (-15 -3432 ((-3 |#2| "failed") |#1|)) (-15 -4233 (|#1| |#2|)) (-15 -2948 ((-110) |#1| |#1|)) (-15 -4233 ((-805) |#1|)) (-15 -3317 ((-110) |#1| |#1|)))
+((-2828 (((-110) $ $) 7)) (-1527 (((-719) $) 22)) (-4110 ((|#1| $) 23)) (-3432 (((-3 |#1| "failed") $) 27)) (-3431 ((|#1| $) 26)) (-4050 (((-719) $) 24)) (-3596 (($ $ $) 13)) (-3597 (($ $ $) 14)) (-1528 (($ |#1| (-719)) 25)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4089 (($ $) 21) (($ $ (-719)) 20)) (-4233 (((-805) $) 11) (($ |#1|) 28)) (-2826 (((-110) $ $) 16)) (-2827 (((-110) $ $) 17)) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 15)) (-2948 (((-110) $ $) 18)))
+(((-248 |#1|) (-133) (-795)) (T -248))
+((-4233 (*1 *1 *2) (-12 (-4 *1 (-248 *2)) (-4 *2 (-795)))) (-1528 (*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-248 *2)) (-4 *2 (-795)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-795)) (-5 *2 (-719)))) (-4110 (*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-795)))) (-1527 (*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-795)) (-5 *2 (-719)))) (-4089 (*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-795)))) (-4089 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-248 *3)) (-4 *3 (-795)))))
+(-13 (-795) (-975 |t#1|) (-10 -8 (-15 -1528 ($ |t#1| (-719))) (-15 -4050 ((-719) $)) (-15 -4110 (|t#1| $)) (-15 -1527 ((-719) $)) (-15 -4089 ($ $)) (-15 -4089 ($ $ (-719))) (-15 -4233 ($ |t#1|))))
+(((-99) . T) ((-571 (-805)) . T) ((-795) . T) ((-975 |#1|) . T) ((-1027) . T))
+((-3347 (((-594 (-1098)) (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))) 41)) (-4210 (((-594 (-1098)) (-295 (-208)) (-719)) 80)) (-1531 (((-3 (-295 (-208)) "failed") (-295 (-208))) 51)) (-1532 (((-295 (-208)) (-295 (-208))) 67)) (-1530 (((-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208))))) (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) 26)) (-1533 (((-110) (-594 (-295 (-208)))) 84)) (-1537 (((-110) (-295 (-208))) 24)) (-1539 (((-594 (-1081)) (-3 (|:| |noa| (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))))) 106)) (-1536 (((-594 (-295 (-208))) (-594 (-295 (-208)))) 88)) (-1535 (((-594 (-295 (-208))) (-594 (-295 (-208)))) 86)) (-1534 (((-637 (-208)) (-594 (-295 (-208))) (-719)) 95)) (-3191 (((-110) (-295 (-208))) 20) (((-110) (-594 (-295 (-208)))) 85)) (-1529 (((-594 (-208)) (-594 (-787 (-208))) (-208)) 14)) (-1627 (((-359) (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))) 101)) (-1538 (((-973) (-1098) (-973)) 34)))
+(((-249) (-10 -7 (-15 -1529 ((-594 (-208)) (-594 (-787 (-208))) (-208))) (-15 -1530 ((-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208))))) (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208))))))) (-15 -1531 ((-3 (-295 (-208)) "failed") (-295 (-208)))) (-15 -1532 ((-295 (-208)) (-295 (-208)))) (-15 -1533 ((-110) (-594 (-295 (-208))))) (-15 -3191 ((-110) (-594 (-295 (-208))))) (-15 -3191 ((-110) (-295 (-208)))) (-15 -1534 ((-637 (-208)) (-594 (-295 (-208))) (-719))) (-15 -1535 ((-594 (-295 (-208))) (-594 (-295 (-208))))) (-15 -1536 ((-594 (-295 (-208))) (-594 (-295 (-208))))) (-15 -1537 ((-110) (-295 (-208)))) (-15 -3347 ((-594 (-1098)) (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208)))))) (-15 -4210 ((-594 (-1098)) (-295 (-208)) (-719))) (-15 -1538 ((-973) (-1098) (-973))) (-15 -1627 ((-359) (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208)))))) (-15 -1539 ((-594 (-1081)) (-3 (|:| |noa| (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208)))))))))) (T -249))
+((-1539 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))))) (-5 *2 (-594 (-1081))) (-5 *1 (-249)))) (-1627 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))) (-5 *2 (-359)) (-5 *1 (-249)))) (-1538 (*1 *2 *3 *2) (-12 (-5 *2 (-973)) (-5 *3 (-1098)) (-5 *1 (-249)))) (-4210 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-208))) (-5 *4 (-719)) (-5 *2 (-594 (-1098))) (-5 *1 (-249)))) (-3347 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))) (-5 *2 (-594 (-1098))) (-5 *1 (-249)))) (-1537 (*1 *2 *3) (-12 (-5 *3 (-295 (-208))) (-5 *2 (-110)) (-5 *1 (-249)))) (-1536 (*1 *2 *2) (-12 (-5 *2 (-594 (-295 (-208)))) (-5 *1 (-249)))) (-1535 (*1 *2 *2) (-12 (-5 *2 (-594 (-295 (-208)))) (-5 *1 (-249)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-295 (-208)))) (-5 *4 (-719)) (-5 *2 (-637 (-208))) (-5 *1 (-249)))) (-3191 (*1 *2 *3) (-12 (-5 *3 (-295 (-208))) (-5 *2 (-110)) (-5 *1 (-249)))) (-3191 (*1 *2 *3) (-12 (-5 *3 (-594 (-295 (-208)))) (-5 *2 (-110)) (-5 *1 (-249)))) (-1533 (*1 *2 *3) (-12 (-5 *3 (-594 (-295 (-208)))) (-5 *2 (-110)) (-5 *1 (-249)))) (-1532 (*1 *2 *2) (-12 (-5 *2 (-295 (-208))) (-5 *1 (-249)))) (-1531 (*1 *2 *2) (|partial| -12 (-5 *2 (-295 (-208))) (-5 *1 (-249)))) (-1530 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) (-5 *1 (-249)))) (-1529 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-787 (-208)))) (-5 *4 (-208)) (-5 *2 (-594 *4)) (-5 *1 (-249)))))
+(-10 -7 (-15 -1529 ((-594 (-208)) (-594 (-787 (-208))) (-208))) (-15 -1530 ((-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208))))) (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208))))))) (-15 -1531 ((-3 (-295 (-208)) "failed") (-295 (-208)))) (-15 -1532 ((-295 (-208)) (-295 (-208)))) (-15 -1533 ((-110) (-594 (-295 (-208))))) (-15 -3191 ((-110) (-594 (-295 (-208))))) (-15 -3191 ((-110) (-295 (-208)))) (-15 -1534 ((-637 (-208)) (-594 (-295 (-208))) (-719))) (-15 -1535 ((-594 (-295 (-208))) (-594 (-295 (-208))))) (-15 -1536 ((-594 (-295 (-208))) (-594 (-295 (-208))))) (-15 -1537 ((-110) (-295 (-208)))) (-15 -3347 ((-594 (-1098)) (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208)))))) (-15 -4210 ((-594 (-1098)) (-295 (-208)) (-719))) (-15 -1538 ((-973) (-1098) (-973))) (-15 -1627 ((-359) (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208)))))) (-15 -1539 ((-594 (-1081)) (-3 (|:| |noa| (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208)))))))))
+((-2828 (((-110) $ $) NIL)) (-2790 (((-973) (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))) NIL) (((-973) (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) 44)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) 26) (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-3317 (((-110) $ $) NIL)))
+(((-250) (-784)) (T -250))
+NIL
+(-784)
+((-2828 (((-110) $ $) NIL)) (-2790 (((-973) (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))) 58) (((-973) (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) 54)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) 34) (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))) 36)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-3317 (((-110) $ $) NIL)))
+(((-251) (-784)) (T -251))
+NIL
+(-784)
+((-2828 (((-110) $ $) NIL)) (-2790 (((-973) (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))) 76) (((-973) (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) 73)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) 44) (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))) 55)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-3317 (((-110) $ $) NIL)))
+(((-252) (-784)) (T -252))
+NIL
+(-784)
+((-2828 (((-110) $ $) NIL)) (-2790 (((-973) (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))) NIL) (((-973) (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) 50)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) 31) (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-3317 (((-110) $ $) NIL)))
+(((-253) (-784)) (T -253))
+NIL
+(-784)
+((-2828 (((-110) $ $) NIL)) (-2790 (((-973) (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))) NIL) (((-973) (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) 50)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) 28) (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-3317 (((-110) $ $) NIL)))
+(((-254) (-784)) (T -254))
+NIL
+(-784)
+((-2828 (((-110) $ $) NIL)) (-2790 (((-973) (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))) NIL) (((-973) (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) 73)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) 28) (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-3317 (((-110) $ $) NIL)))
+(((-255) (-784)) (T -255))
+NIL
+(-784)
+((-2828 (((-110) $ $) NIL)) (-2790 (((-973) (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))) NIL) (((-973) (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) 77)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) 25) (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-3317 (((-110) $ $) NIL)))
+(((-256) (-784)) (T -256))
+NIL
+(-784)
+((-2828 (((-110) $ $) NIL)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-1541 (((-594 (-516)) $) 19)) (-4223 (((-719) $) 17)) (-4233 (((-805) $) 23) (($ (-594 (-516))) 15)) (-1540 (($ (-719)) 20)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 9)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 11)))
+(((-257) (-13 (-795) (-10 -8 (-15 -4233 ($ (-594 (-516)))) (-15 -4223 ((-719) $)) (-15 -1541 ((-594 (-516)) $)) (-15 -1540 ($ (-719)))))) (T -257))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-257)))) (-4223 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-257)))) (-1541 (*1 *2 *1) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-257)))) (-1540 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-257)))))
+(-13 (-795) (-10 -8 (-15 -4233 ($ (-594 (-516)))) (-15 -4223 ((-719) $)) (-15 -1541 ((-594 (-516)) $)) (-15 -1540 ($ (-719)))))
+((-3766 ((|#2| |#2|) 77)) (-3921 ((|#2| |#2|) 65)) (-1570 (((-3 |#2| "failed") |#2| (-594 (-2 (|:| |func| |#2|) (|:| |pole| (-110))))) 116)) (-3764 ((|#2| |#2|) 75)) (-3920 ((|#2| |#2|) 63)) (-3768 ((|#2| |#2|) 79)) (-3919 ((|#2| |#2|) 67)) (-3909 ((|#2|) 46)) (-2273 (((-111) (-111)) 95)) (-4218 ((|#2| |#2|) 61)) (-1571 (((-110) |#2|) 134)) (-1560 ((|#2| |#2|) 181)) (-1548 ((|#2| |#2|) 157)) (-1543 ((|#2|) 59)) (-1542 ((|#2|) 58)) (-1558 ((|#2| |#2|) 177)) (-1546 ((|#2| |#2|) 153)) (-1562 ((|#2| |#2|) 185)) (-1550 ((|#2| |#2|) 161)) (-1545 ((|#2| |#2|) 149)) (-1544 ((|#2| |#2|) 151)) (-1563 ((|#2| |#2|) 187)) (-1551 ((|#2| |#2|) 163)) (-1561 ((|#2| |#2|) 183)) (-1549 ((|#2| |#2|) 159)) (-1559 ((|#2| |#2|) 179)) (-1547 ((|#2| |#2|) 155)) (-1566 ((|#2| |#2|) 193)) (-1554 ((|#2| |#2|) 169)) (-1564 ((|#2| |#2|) 189)) (-1552 ((|#2| |#2|) 165)) (-1568 ((|#2| |#2|) 197)) (-1556 ((|#2| |#2|) 173)) (-1569 ((|#2| |#2|) 199)) (-1557 ((|#2| |#2|) 175)) (-1567 ((|#2| |#2|) 195)) (-1555 ((|#2| |#2|) 171)) (-1565 ((|#2| |#2|) 191)) (-1553 ((|#2| |#2|) 167)) (-4219 ((|#2| |#2|) 62)) (-3769 ((|#2| |#2|) 80)) (-3918 ((|#2| |#2|) 68)) (-3767 ((|#2| |#2|) 78)) (-3917 ((|#2| |#2|) 66)) (-3765 ((|#2| |#2|) 76)) (-3916 ((|#2| |#2|) 64)) (-2272 (((-110) (-111)) 93)) (-3772 ((|#2| |#2|) 83)) (-3760 ((|#2| |#2|) 71)) (-3770 ((|#2| |#2|) 81)) (-3758 ((|#2| |#2|) 69)) (-3774 ((|#2| |#2|) 85)) (-3762 ((|#2| |#2|) 73)) (-3775 ((|#2| |#2|) 86)) (-3763 ((|#2| |#2|) 74)) (-3773 ((|#2| |#2|) 84)) (-3761 ((|#2| |#2|) 72)) (-3771 ((|#2| |#2|) 82)) (-3759 ((|#2| |#2|) 70)))
+(((-258 |#1| |#2|) (-10 -7 (-15 -4219 (|#2| |#2|)) (-15 -4218 (|#2| |#2|)) (-15 -3920 (|#2| |#2|)) (-15 -3916 (|#2| |#2|)) (-15 -3921 (|#2| |#2|)) (-15 -3917 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -3918 (|#2| |#2|)) (-15 -3758 (|#2| |#2|)) (-15 -3759 (|#2| |#2|)) (-15 -3760 (|#2| |#2|)) (-15 -3761 (|#2| |#2|)) (-15 -3762 (|#2| |#2|)) (-15 -3763 (|#2| |#2|)) (-15 -3764 (|#2| |#2|)) (-15 -3765 (|#2| |#2|)) (-15 -3766 (|#2| |#2|)) (-15 -3767 (|#2| |#2|)) (-15 -3768 (|#2| |#2|)) (-15 -3769 (|#2| |#2|)) (-15 -3770 (|#2| |#2|)) (-15 -3771 (|#2| |#2|)) (-15 -3772 (|#2| |#2|)) (-15 -3773 (|#2| |#2|)) (-15 -3774 (|#2| |#2|)) (-15 -3775 (|#2| |#2|)) (-15 -3909 (|#2|)) (-15 -2272 ((-110) (-111))) (-15 -2273 ((-111) (-111))) (-15 -1542 (|#2|)) (-15 -1543 (|#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -1552 (|#2| |#2|)) (-15 -1553 (|#2| |#2|)) (-15 -1554 (|#2| |#2|)) (-15 -1555 (|#2| |#2|)) (-15 -1556 (|#2| |#2|)) (-15 -1557 (|#2| |#2|)) (-15 -1558 (|#2| |#2|)) (-15 -1559 (|#2| |#2|)) (-15 -1560 (|#2| |#2|)) (-15 -1561 (|#2| |#2|)) (-15 -1562 (|#2| |#2|)) (-15 -1563 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -1565 (|#2| |#2|)) (-15 -1566 (|#2| |#2|)) (-15 -1567 (|#2| |#2|)) (-15 -1568 (|#2| |#2|)) (-15 -1569 (|#2| |#2|)) (-15 -1570 ((-3 |#2| "failed") |#2| (-594 (-2 (|:| |func| |#2|) (|:| |pole| (-110)))))) (-15 -1571 ((-110) |#2|))) (-13 (-795) (-523)) (-13 (-402 |#1|) (-941))) (T -258))
+((-1571 (*1 *2 *3) (-12 (-4 *4 (-13 (-795) (-523))) (-5 *2 (-110)) (-5 *1 (-258 *4 *3)) (-4 *3 (-13 (-402 *4) (-941))))) (-1570 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-594 (-2 (|:| |func| *2) (|:| |pole| (-110))))) (-4 *2 (-13 (-402 *4) (-941))) (-4 *4 (-13 (-795) (-523))) (-5 *1 (-258 *4 *2)))) (-1569 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1568 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1567 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1566 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1565 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1564 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1563 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1562 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1561 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1560 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1559 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1558 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1557 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1556 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1555 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1554 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1553 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1552 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1549 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1548 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-1543 (*1 *2) (-12 (-4 *2 (-13 (-402 *3) (-941))) (-5 *1 (-258 *3 *2)) (-4 *3 (-13 (-795) (-523))))) (-1542 (*1 *2) (-12 (-4 *2 (-13 (-402 *3) (-941))) (-5 *1 (-258 *3 *2)) (-4 *3 (-13 (-795) (-523))))) (-2273 (*1 *2 *2) (-12 (-5 *2 (-111)) (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *4)) (-4 *4 (-13 (-402 *3) (-941))))) (-2272 (*1 *2 *3) (-12 (-5 *3 (-111)) (-4 *4 (-13 (-795) (-523))) (-5 *2 (-110)) (-5 *1 (-258 *4 *5)) (-4 *5 (-13 (-402 *4) (-941))))) (-3909 (*1 *2) (-12 (-4 *2 (-13 (-402 *3) (-941))) (-5 *1 (-258 *3 *2)) (-4 *3 (-13 (-795) (-523))))) (-3775 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-3774 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-3773 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-3772 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-3771 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-3770 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-3769 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-3768 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-3767 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-3766 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-3765 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-3764 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-3763 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-3762 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-3761 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-3760 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-3759 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-3758 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-3921 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-4218 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))) (-4219 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-402 *3) (-941))))))
+(-10 -7 (-15 -4219 (|#2| |#2|)) (-15 -4218 (|#2| |#2|)) (-15 -3920 (|#2| |#2|)) (-15 -3916 (|#2| |#2|)) (-15 -3921 (|#2| |#2|)) (-15 -3917 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -3918 (|#2| |#2|)) (-15 -3758 (|#2| |#2|)) (-15 -3759 (|#2| |#2|)) (-15 -3760 (|#2| |#2|)) (-15 -3761 (|#2| |#2|)) (-15 -3762 (|#2| |#2|)) (-15 -3763 (|#2| |#2|)) (-15 -3764 (|#2| |#2|)) (-15 -3765 (|#2| |#2|)) (-15 -3766 (|#2| |#2|)) (-15 -3767 (|#2| |#2|)) (-15 -3768 (|#2| |#2|)) (-15 -3769 (|#2| |#2|)) (-15 -3770 (|#2| |#2|)) (-15 -3771 (|#2| |#2|)) (-15 -3772 (|#2| |#2|)) (-15 -3773 (|#2| |#2|)) (-15 -3774 (|#2| |#2|)) (-15 -3775 (|#2| |#2|)) (-15 -3909 (|#2|)) (-15 -2272 ((-110) (-111))) (-15 -2273 ((-111) (-111))) (-15 -1542 (|#2|)) (-15 -1543 (|#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -1552 (|#2| |#2|)) (-15 -1553 (|#2| |#2|)) (-15 -1554 (|#2| |#2|)) (-15 -1555 (|#2| |#2|)) (-15 -1556 (|#2| |#2|)) (-15 -1557 (|#2| |#2|)) (-15 -1558 (|#2| |#2|)) (-15 -1559 (|#2| |#2|)) (-15 -1560 (|#2| |#2|)) (-15 -1561 (|#2| |#2|)) (-15 -1562 (|#2| |#2|)) (-15 -1563 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -1565 (|#2| |#2|)) (-15 -1566 (|#2| |#2|)) (-15 -1567 (|#2| |#2|)) (-15 -1568 (|#2| |#2|)) (-15 -1569 (|#2| |#2|)) (-15 -1570 ((-3 |#2| "failed") |#2| (-594 (-2 (|:| |func| |#2|) (|:| |pole| (-110)))))) (-15 -1571 ((-110) |#2|)))
+((-1574 (((-3 |#2| "failed") (-594 (-569 |#2|)) |#2| (-1098)) 135)) (-1576 ((|#2| (-388 (-516)) |#2|) 51)) (-1575 ((|#2| |#2| (-569 |#2|)) 128)) (-1572 (((-2 (|:| |func| |#2|) (|:| |kers| (-594 (-569 |#2|))) (|:| |vals| (-594 |#2|))) |#2| (-1098)) 127)) (-1573 ((|#2| |#2| (-1098)) 20) ((|#2| |#2|) 23)) (-2626 ((|#2| |#2| (-1098)) 141) ((|#2| |#2|) 139)))
+(((-259 |#1| |#2|) (-10 -7 (-15 -2626 (|#2| |#2|)) (-15 -2626 (|#2| |#2| (-1098))) (-15 -1572 ((-2 (|:| |func| |#2|) (|:| |kers| (-594 (-569 |#2|))) (|:| |vals| (-594 |#2|))) |#2| (-1098))) (-15 -1573 (|#2| |#2|)) (-15 -1573 (|#2| |#2| (-1098))) (-15 -1574 ((-3 |#2| "failed") (-594 (-569 |#2|)) |#2| (-1098))) (-15 -1575 (|#2| |#2| (-569 |#2|))) (-15 -1576 (|#2| (-388 (-516)) |#2|))) (-13 (-523) (-795) (-975 (-516)) (-593 (-516))) (-13 (-27) (-1120) (-402 |#1|))) (T -259))
+((-1576 (*1 *2 *3 *2) (-12 (-5 *3 (-388 (-516))) (-4 *4 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *4))))) (-1575 (*1 *2 *2 *3) (-12 (-5 *3 (-569 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *4))) (-4 *4 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *1 (-259 *4 *2)))) (-1574 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-594 (-569 *2))) (-5 *4 (-1098)) (-4 *2 (-13 (-27) (-1120) (-402 *5))) (-4 *5 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *1 (-259 *5 *2)))) (-1573 (*1 *2 *2 *3) (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *4))))) (-1573 (*1 *2 *2) (-12 (-4 *3 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *1 (-259 *3 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *3))))) (-1572 (*1 *2 *3 *4) (-12 (-5 *4 (-1098)) (-4 *5 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-594 (-569 *3))) (|:| |vals| (-594 *3)))) (-5 *1 (-259 *5 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *5))))) (-2626 (*1 *2 *2 *3) (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *4))))) (-2626 (*1 *2 *2) (-12 (-4 *3 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *1 (-259 *3 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *3))))))
+(-10 -7 (-15 -2626 (|#2| |#2|)) (-15 -2626 (|#2| |#2| (-1098))) (-15 -1572 ((-2 (|:| |func| |#2|) (|:| |kers| (-594 (-569 |#2|))) (|:| |vals| (-594 |#2|))) |#2| (-1098))) (-15 -1573 (|#2| |#2|)) (-15 -1573 (|#2| |#2| (-1098))) (-15 -1574 ((-3 |#2| "failed") (-594 (-569 |#2|)) |#2| (-1098))) (-15 -1575 (|#2| |#2| (-569 |#2|))) (-15 -1576 (|#2| (-388 (-516)) |#2|)))
+((-3239 (((-3 |#3| #1="failed") |#3|) 110)) (-3766 ((|#3| |#3|) 131)) (-3227 (((-3 |#3| #1#) |#3|) 82)) (-3921 ((|#3| |#3|) 121)) (-3237 (((-3 |#3| #1#) |#3|) 58)) (-3764 ((|#3| |#3|) 129)) (-3225 (((-3 |#3| #1#) |#3|) 46)) (-3920 ((|#3| |#3|) 119)) (-3241 (((-3 |#3| #1#) |#3|) 112)) (-3768 ((|#3| |#3|) 133)) (-3229 (((-3 |#3| #1#) |#3|) 84)) (-3919 ((|#3| |#3|) 123)) (-3222 (((-3 |#3| #1#) |#3| (-719)) 36)) (-3224 (((-3 |#3| #1#) |#3|) 74)) (-4218 ((|#3| |#3|) 118)) (-3223 (((-3 |#3| #1#) |#3|) 44)) (-4219 ((|#3| |#3|) 117)) (-3242 (((-3 |#3| #1#) |#3|) 113)) (-3769 ((|#3| |#3|) 134)) (-3230 (((-3 |#3| #1#) |#3|) 85)) (-3918 ((|#3| |#3|) 124)) (-3240 (((-3 |#3| #1#) |#3|) 111)) (-3767 ((|#3| |#3|) 132)) (-3228 (((-3 |#3| #1#) |#3|) 83)) (-3917 ((|#3| |#3|) 122)) (-3238 (((-3 |#3| #1#) |#3|) 60)) (-3765 ((|#3| |#3|) 130)) (-3226 (((-3 |#3| #1#) |#3|) 48)) (-3916 ((|#3| |#3|) 120)) (-3245 (((-3 |#3| #1#) |#3|) 66)) (-3772 ((|#3| |#3|) 137)) (-3233 (((-3 |#3| #1#) |#3|) 104)) (-3760 ((|#3| |#3|) 142)) (-3243 (((-3 |#3| #1#) |#3|) 62)) (-3770 ((|#3| |#3|) 135)) (-3231 (((-3 |#3| #1#) |#3|) 50)) (-3758 ((|#3| |#3|) 125)) (-3247 (((-3 |#3| #1#) |#3|) 70)) (-3774 ((|#3| |#3|) 139)) (-3235 (((-3 |#3| #1#) |#3|) 54)) (-3762 ((|#3| |#3|) 127)) (-3248 (((-3 |#3| #1#) |#3|) 72)) (-3775 ((|#3| |#3|) 140)) (-3236 (((-3 |#3| #1#) |#3|) 56)) (-3763 ((|#3| |#3|) 128)) (-3246 (((-3 |#3| #1#) |#3|) 68)) (-3773 ((|#3| |#3|) 138)) (-3234 (((-3 |#3| #1#) |#3|) 107)) (-3761 ((|#3| |#3|) 143)) (-3244 (((-3 |#3| #1#) |#3|) 64)) (-3771 ((|#3| |#3|) 136)) (-3232 (((-3 |#3| #1#) |#3|) 52)) (-3759 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-388 (-516))) 40 (|has| |#1| (-344)))))
+(((-260 |#1| |#2| |#3|) (-13 (-923 |#3|) (-10 -7 (IF (|has| |#1| (-344)) (-15 ** (|#3| |#3| (-388 (-516)))) |%noBranch|) (-15 -4219 (|#3| |#3|)) (-15 -4218 (|#3| |#3|)) (-15 -3920 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3921 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3758 (|#3| |#3|)) (-15 -3759 (|#3| |#3|)) (-15 -3760 (|#3| |#3|)) (-15 -3761 (|#3| |#3|)) (-15 -3762 (|#3| |#3|)) (-15 -3763 (|#3| |#3|)) (-15 -3764 (|#3| |#3|)) (-15 -3765 (|#3| |#3|)) (-15 -3766 (|#3| |#3|)) (-15 -3767 (|#3| |#3|)) (-15 -3768 (|#3| |#3|)) (-15 -3769 (|#3| |#3|)) (-15 -3770 (|#3| |#3|)) (-15 -3771 (|#3| |#3|)) (-15 -3772 (|#3| |#3|)) (-15 -3773 (|#3| |#3|)) (-15 -3774 (|#3| |#3|)) (-15 -3775 (|#3| |#3|)))) (-37 (-388 (-516))) (-1172 |#1|) (-1143 |#1| |#2|)) (T -260))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-388 (-516))) (-4 *4 (-344)) (-4 *4 (-37 *3)) (-4 *5 (-1172 *4)) (-5 *1 (-260 *4 *5 *2)) (-4 *2 (-1143 *4 *5)))) (-4219 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-4218 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3921 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3758 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3759 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3760 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3761 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3762 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3763 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3764 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3765 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3766 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3767 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3768 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3769 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3770 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3771 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3772 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3773 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3774 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3775 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))))
+(-13 (-923 |#3|) (-10 -7 (IF (|has| |#1| (-344)) (-15 ** (|#3| |#3| (-388 (-516)))) |%noBranch|) (-15 -4219 (|#3| |#3|)) (-15 -4218 (|#3| |#3|)) (-15 -3920 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3921 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3758 (|#3| |#3|)) (-15 -3759 (|#3| |#3|)) (-15 -3760 (|#3| |#3|)) (-15 -3761 (|#3| |#3|)) (-15 -3762 (|#3| |#3|)) (-15 -3763 (|#3| |#3|)) (-15 -3764 (|#3| |#3|)) (-15 -3765 (|#3| |#3|)) (-15 -3766 (|#3| |#3|)) (-15 -3767 (|#3| |#3|)) (-15 -3768 (|#3| |#3|)) (-15 -3769 (|#3| |#3|)) (-15 -3770 (|#3| |#3|)) (-15 -3771 (|#3| |#3|)) (-15 -3772 (|#3| |#3|)) (-15 -3773 (|#3| |#3|)) (-15 -3774 (|#3| |#3|)) (-15 -3775 (|#3| |#3|))))
+((-3239 (((-3 |#3| #1="failed") |#3|) 66)) (-3766 ((|#3| |#3|) 133)) (-3227 (((-3 |#3| #1#) |#3|) 50)) (-3921 ((|#3| |#3|) 121)) (-3237 (((-3 |#3| #1#) |#3|) 62)) (-3764 ((|#3| |#3|) 131)) (-3225 (((-3 |#3| #1#) |#3|) 46)) (-3920 ((|#3| |#3|) 119)) (-3241 (((-3 |#3| #1#) |#3|) 70)) (-3768 ((|#3| |#3|) 135)) (-3229 (((-3 |#3| #1#) |#3|) 54)) (-3919 ((|#3| |#3|) 123)) (-3222 (((-3 |#3| #1#) |#3| (-719)) 35)) (-3224 (((-3 |#3| #1#) |#3|) 44)) (-4218 ((|#3| |#3|) 112)) (-3223 (((-3 |#3| #1#) |#3|) 42)) (-4219 ((|#3| |#3|) 118)) (-3242 (((-3 |#3| #1#) |#3|) 72)) (-3769 ((|#3| |#3|) 136)) (-3230 (((-3 |#3| #1#) |#3|) 56)) (-3918 ((|#3| |#3|) 124)) (-3240 (((-3 |#3| #1#) |#3|) 68)) (-3767 ((|#3| |#3|) 134)) (-3228 (((-3 |#3| #1#) |#3|) 52)) (-3917 ((|#3| |#3|) 122)) (-3238 (((-3 |#3| #1#) |#3|) 64)) (-3765 ((|#3| |#3|) 132)) (-3226 (((-3 |#3| #1#) |#3|) 48)) (-3916 ((|#3| |#3|) 120)) (-3245 (((-3 |#3| #1#) |#3|) 78)) (-3772 ((|#3| |#3|) 139)) (-3233 (((-3 |#3| #1#) |#3|) 58)) (-3760 ((|#3| |#3|) 127)) (-3243 (((-3 |#3| #1#) |#3|) 74)) (-3770 ((|#3| |#3|) 137)) (-3231 (((-3 |#3| #1#) |#3|) 102)) (-3758 ((|#3| |#3|) 125)) (-3247 (((-3 |#3| #1#) |#3|) 82)) (-3774 ((|#3| |#3|) 141)) (-3235 (((-3 |#3| #1#) |#3|) 109)) (-3762 ((|#3| |#3|) 129)) (-3248 (((-3 |#3| #1#) |#3|) 84)) (-3775 ((|#3| |#3|) 142)) (-3236 (((-3 |#3| #1#) |#3|) 111)) (-3763 ((|#3| |#3|) 130)) (-3246 (((-3 |#3| #1#) |#3|) 80)) (-3773 ((|#3| |#3|) 140)) (-3234 (((-3 |#3| #1#) |#3|) 60)) (-3761 ((|#3| |#3|) 128)) (-3244 (((-3 |#3| #1#) |#3|) 76)) (-3771 ((|#3| |#3|) 138)) (-3232 (((-3 |#3| #1#) |#3|) 105)) (-3759 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-388 (-516))) 40 (|has| |#1| (-344)))))
+(((-261 |#1| |#2| |#3| |#4|) (-13 (-923 |#3|) (-10 -7 (IF (|has| |#1| (-344)) (-15 ** (|#3| |#3| (-388 (-516)))) |%noBranch|) (-15 -4219 (|#3| |#3|)) (-15 -4218 (|#3| |#3|)) (-15 -3920 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3921 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3758 (|#3| |#3|)) (-15 -3759 (|#3| |#3|)) (-15 -3760 (|#3| |#3|)) (-15 -3761 (|#3| |#3|)) (-15 -3762 (|#3| |#3|)) (-15 -3763 (|#3| |#3|)) (-15 -3764 (|#3| |#3|)) (-15 -3765 (|#3| |#3|)) (-15 -3766 (|#3| |#3|)) (-15 -3767 (|#3| |#3|)) (-15 -3768 (|#3| |#3|)) (-15 -3769 (|#3| |#3|)) (-15 -3770 (|#3| |#3|)) (-15 -3771 (|#3| |#3|)) (-15 -3772 (|#3| |#3|)) (-15 -3773 (|#3| |#3|)) (-15 -3774 (|#3| |#3|)) (-15 -3775 (|#3| |#3|)))) (-37 (-388 (-516))) (-1141 |#1|) (-1164 |#1| |#2|) (-923 |#2|)) (T -261))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-388 (-516))) (-4 *4 (-344)) (-4 *4 (-37 *3)) (-4 *5 (-1141 *4)) (-5 *1 (-261 *4 *5 *2 *6)) (-4 *2 (-1164 *4 *5)) (-4 *6 (-923 *5)))) (-4219 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-4218 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3921 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3758 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3759 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3760 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3761 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3762 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3763 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3764 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3765 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3766 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3767 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3768 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3769 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3770 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3771 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3772 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3773 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3774 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3775 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))))
+(-13 (-923 |#3|) (-10 -7 (IF (|has| |#1| (-344)) (-15 ** (|#3| |#3| (-388 (-516)))) |%noBranch|) (-15 -4219 (|#3| |#3|)) (-15 -4218 (|#3| |#3|)) (-15 -3920 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3921 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3758 (|#3| |#3|)) (-15 -3759 (|#3| |#3|)) (-15 -3760 (|#3| |#3|)) (-15 -3761 (|#3| |#3|)) (-15 -3762 (|#3| |#3|)) (-15 -3763 (|#3| |#3|)) (-15 -3764 (|#3| |#3|)) (-15 -3765 (|#3| |#3|)) (-15 -3766 (|#3| |#3|)) (-15 -3767 (|#3| |#3|)) (-15 -3768 (|#3| |#3|)) (-15 -3769 (|#3| |#3|)) (-15 -3770 (|#3| |#3|)) (-15 -3771 (|#3| |#3|)) (-15 -3772 (|#3| |#3|)) (-15 -3773 (|#3| |#3|)) (-15 -3774 (|#3| |#3|)) (-15 -3775 (|#3| |#3|))))
+((-3116 (((-110) $) 19)) (-1580 (((-171) $) 7)) (-3851 (((-3 (-1098) "failed") $) 14)) (-3850 (((-3 (-594 $) "failed") $) NIL)) (-1578 (((-3 (-1098) "failed") $) 21)) (-1579 (((-3 (-1029) "failed") $) 17)) (-4228 (((-110) $) 15)) (-4233 (((-805) $) NIL)) (-1577 (((-110) $) 9)))
+(((-262) (-13 (-571 (-805)) (-10 -8 (-15 -1580 ((-171) $)) (-15 -4228 ((-110) $)) (-15 -1579 ((-3 (-1029) "failed") $)) (-15 -3116 ((-110) $)) (-15 -1578 ((-3 (-1098) "failed") $)) (-15 -1577 ((-110) $)) (-15 -3851 ((-3 (-1098) "failed") $)) (-15 -3850 ((-3 (-594 $) "failed") $))))) (T -262))
+((-1580 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-262)))) (-4228 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))) (-1579 (*1 *2 *1) (|partial| -12 (-5 *2 (-1029)) (-5 *1 (-262)))) (-3116 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))) (-1578 (*1 *2 *1) (|partial| -12 (-5 *2 (-1098)) (-5 *1 (-262)))) (-1577 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))) (-3851 (*1 *2 *1) (|partial| -12 (-5 *2 (-1098)) (-5 *1 (-262)))) (-3850 (*1 *2 *1) (|partial| -12 (-5 *2 (-594 (-262))) (-5 *1 (-262)))))
+(-13 (-571 (-805)) (-10 -8 (-15 -1580 ((-171) $)) (-15 -4228 ((-110) $)) (-15 -1579 ((-3 (-1029) "failed") $)) (-15 -3116 ((-110) $)) (-15 -1578 ((-3 (-1098) "failed") $)) (-15 -1577 ((-110) $)) (-15 -3851 ((-3 (-1098) "failed") $)) (-15 -3850 ((-3 (-594 $) "failed") $))))
+((-3992 (($ (-1 (-110) |#2|) $) 24)) (-1349 (($ $) 36)) (-3684 (($ (-1 (-110) |#2|) $) NIL) (($ |#2| $) 34)) (-3685 (($ |#2| $) 32) (($ (-1 (-110) |#2|) $) 18)) (-3123 (($ (-1 (-110) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2317 (($ |#2| $ (-516)) 20) (($ $ $ (-516)) 22)) (-2318 (($ $ (-516)) 11) (($ $ (-1146 (-516))) 14)) (-4069 (($ $ |#2|) 30) (($ $ $) NIL)) (-4080 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-594 $)) NIL)))
+(((-263 |#1| |#2|) (-10 -8 (-15 -3123 (|#1| |#1| |#1|)) (-15 -3684 (|#1| |#2| |#1|)) (-15 -3123 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -3684 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -4069 (|#1| |#1| |#1|)) (-15 -4069 (|#1| |#1| |#2|)) (-15 -2317 (|#1| |#1| |#1| (-516))) (-15 -2317 (|#1| |#2| |#1| (-516))) (-15 -2318 (|#1| |#1| (-1146 (-516)))) (-15 -2318 (|#1| |#1| (-516))) (-15 -4080 (|#1| (-594 |#1|))) (-15 -4080 (|#1| |#1| |#1|)) (-15 -4080 (|#1| |#2| |#1|)) (-15 -4080 (|#1| |#1| |#2|)) (-15 -3685 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3992 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3685 (|#1| |#2| |#1|)) (-15 -1349 (|#1| |#1|))) (-264 |#2|) (-1134)) (T -263))
+NIL
+(-10 -8 (-15 -3123 (|#1| |#1| |#1|)) (-15 -3684 (|#1| |#2| |#1|)) (-15 -3123 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -3684 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -4069 (|#1| |#1| |#1|)) (-15 -4069 (|#1| |#1| |#2|)) (-15 -2317 (|#1| |#1| |#1| (-516))) (-15 -2317 (|#1| |#2| |#1| (-516))) (-15 -2318 (|#1| |#1| (-1146 (-516)))) (-15 -2318 (|#1| |#1| (-516))) (-15 -4080 (|#1| (-594 |#1|))) (-15 -4080 (|#1| |#1| |#1|)) (-15 -4080 (|#1| |#2| |#1|)) (-15 -4080 (|#1| |#1| |#2|)) (-15 -3685 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3992 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3685 (|#1| |#2| |#1|)) (-15 -1349 (|#1| |#1|)))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-2243 (((-1185) $ (-516) (-516)) 40 (|has| $ (-6 -4270)))) (-1217 (((-110) $ (-719)) 8)) (-4066 ((|#1| $ (-516) |#1|) 52 (|has| $ (-6 -4270))) ((|#1| $ (-1146 (-516)) |#1|) 58 (|has| $ (-6 -4270)))) (-1581 (($ (-1 (-110) |#1|) $) 85)) (-3992 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4269)))) (-3815 (($) 7 T CONST)) (-2389 (($ $) 83 (|has| |#1| (-1027)))) (-1349 (($ $) 78 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3684 (($ (-1 (-110) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1027)))) (-3685 (($ |#1| $) 77 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4269)))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4269)))) (-1587 ((|#1| $ (-516) |#1|) 53 (|has| $ (-6 -4270)))) (-3372 ((|#1| $ (-516)) 51)) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-3896 (($ (-719) |#1|) 69)) (-4001 (((-110) $ (-719)) 9)) (-2245 (((-516) $) 43 (|has| (-516) (-795)))) (-3123 (($ (-1 (-110) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-795)))) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2246 (((-516) $) 44 (|has| (-516) (-795)))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3998 (((-110) $ (-719)) 10)) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-3889 (($ |#1| $ (-516)) 88) (($ $ $ (-516)) 87)) (-2317 (($ |#1| $ (-516)) 60) (($ $ $ (-516)) 59)) (-2248 (((-594 (-516)) $) 46)) (-2249 (((-110) (-516) $) 47)) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-4079 ((|#1| $) 42 (|has| (-516) (-795)))) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-2244 (($ $ |#1|) 41 (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-2247 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2250 (((-594 |#1|) $) 48)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-4078 ((|#1| $ (-516) |#1|) 50) ((|#1| $ (-516)) 49) (($ $ (-1146 (-516))) 63)) (-1582 (($ $ (-516)) 91) (($ $ (-1146 (-516))) 90)) (-2318 (($ $ (-516)) 62) (($ $ (-1146 (-516))) 61)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4246 (((-505) $) 79 (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) 70)) (-4069 (($ $ |#1|) 93) (($ $ $) 92)) (-4080 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-594 $)) 65)) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-264 |#1|) (-133) (-1134)) (T -264))
+((-4069 (*1 *1 *1 *2) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1134)))) (-4069 (*1 *1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1134)))) (-1582 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-4 *1 (-264 *3)) (-4 *3 (-1134)))) (-1582 (*1 *1 *1 *2) (-12 (-5 *2 (-1146 (-516))) (-4 *1 (-264 *3)) (-4 *3 (-1134)))) (-3684 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-264 *3)) (-4 *3 (-1134)))) (-3889 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-516)) (-4 *1 (-264 *2)) (-4 *2 (-1134)))) (-3889 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-516)) (-4 *1 (-264 *3)) (-4 *3 (-1134)))) (-3123 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-264 *3)) (-4 *3 (-1134)))) (-1581 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-264 *3)) (-4 *3 (-1134)))) (-3684 (*1 *1 *2 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1134)) (-4 *2 (-1027)))) (-2389 (*1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1134)) (-4 *2 (-1027)))) (-3123 (*1 *1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1134)) (-4 *2 (-795)))))
+(-13 (-602 |t#1|) (-10 -8 (-6 -4270) (-15 -4069 ($ $ |t#1|)) (-15 -4069 ($ $ $)) (-15 -1582 ($ $ (-516))) (-15 -1582 ($ $ (-1146 (-516)))) (-15 -3684 ($ (-1 (-110) |t#1|) $)) (-15 -3889 ($ |t#1| $ (-516))) (-15 -3889 ($ $ $ (-516))) (-15 -3123 ($ (-1 (-110) |t#1| |t#1|) $ $)) (-15 -1581 ($ (-1 (-110) |t#1|) $)) (IF (|has| |t#1| (-1027)) (PROGN (-15 -3684 ($ |t#1| $)) (-15 -2389 ($ $))) |%noBranch|) (IF (|has| |t#1| (-795)) (-15 -3123 ($ $ $)) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-571 (-805)))) ((-144 |#1|) . T) ((-572 (-505)) |has| |#1| (-572 (-505))) ((-268 #1=(-516) |#1|) . T) ((-270 #1# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-563 #1# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1134) . T))
((** (($ $ $) 10)))
-(((-264 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-265)) (T -264))
+(((-265 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-266)) (T -265))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-2097 (($ $) 6)) (-2656 (($ $) 7)) (** (($ $ $) 8)))
-(((-265) (-133)) (T -265))
-((** (*1 *1 *1 *1) (-4 *1 (-265))) (-2656 (*1 *1 *1) (-4 *1 (-265))) (-2097 (*1 *1 *1) (-4 *1 (-265))))
-(-13 (-10 -8 (-15 -2097 ($ $)) (-15 -2656 ($ $)) (-15 ** ($ $ $))))
-((-1484 (((-595 (-1076 |#1|)) (-1076 |#1|) |#1|) 35)) (-1439 ((|#2| |#2| |#1|) 38)) (-1331 ((|#2| |#2| |#1|) 40)) (-4034 ((|#2| |#2| |#1|) 39)))
-(((-266 |#1| |#2|) (-10 -7 (-15 -1439 (|#2| |#2| |#1|)) (-15 -4034 (|#2| |#2| |#1|)) (-15 -1331 (|#2| |#2| |#1|)) (-15 -1484 ((-595 (-1076 |#1|)) (-1076 |#1|) |#1|))) (-343) (-1168 |#1|)) (T -266))
-((-1484 (*1 *2 *3 *4) (-12 (-4 *4 (-343)) (-5 *2 (-595 (-1076 *4))) (-5 *1 (-266 *4 *5)) (-5 *3 (-1076 *4)) (-4 *5 (-1168 *4)))) (-1331 (*1 *2 *2 *3) (-12 (-4 *3 (-343)) (-5 *1 (-266 *3 *2)) (-4 *2 (-1168 *3)))) (-4034 (*1 *2 *2 *3) (-12 (-4 *3 (-343)) (-5 *1 (-266 *3 *2)) (-4 *2 (-1168 *3)))) (-1439 (*1 *2 *2 *3) (-12 (-4 *3 (-343)) (-5 *1 (-266 *3 *2)) (-4 *2 (-1168 *3)))))
-(-10 -7 (-15 -1439 (|#2| |#2| |#1|)) (-15 -4034 (|#2| |#2| |#1|)) (-15 -1331 (|#2| |#2| |#1|)) (-15 -1484 ((-595 (-1076 |#1|)) (-1076 |#1|) |#1|)))
-((-3043 ((|#2| $ |#1|) 6)))
-(((-267 |#1| |#2|) (-133) (-1023) (-1131)) (T -267))
-((-3043 (*1 *2 *1 *3) (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1131)))))
-(-13 (-10 -8 (-15 -3043 (|t#2| $ |t#1|))))
-((-2812 ((|#3| $ |#2| |#3|) 12)) (-2742 ((|#3| $ |#2|) 10)))
-(((-268 |#1| |#2| |#3|) (-10 -8 (-15 -2812 (|#3| |#1| |#2| |#3|)) (-15 -2742 (|#3| |#1| |#2|))) (-269 |#2| |#3|) (-1023) (-1131)) (T -268))
-NIL
-(-10 -8 (-15 -2812 (|#3| |#1| |#2| |#3|)) (-15 -2742 (|#3| |#1| |#2|)))
-((-2381 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4265)))) (-2812 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4265)))) (-2742 ((|#2| $ |#1|) 11)) (-3043 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-269 |#1| |#2|) (-133) (-1023) (-1131)) (T -269))
-((-3043 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-269 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1131)))) (-2742 (*1 *2 *1 *3) (-12 (-4 *1 (-269 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1131)))) (-2381 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4265)) (-4 *1 (-269 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1131)))) (-2812 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4265)) (-4 *1 (-269 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1131)))))
-(-13 (-267 |t#1| |t#2|) (-10 -8 (-15 -3043 (|t#2| $ |t#1| |t#2|)) (-15 -2742 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4265)) (PROGN (-15 -2381 (|t#2| $ |t#1| |t#2|)) (-15 -2812 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
-(((-267 |#1| |#2|) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 35)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 40)) (-1738 (($ $) 38)) (-1811 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2213 (((-110) $ $) NIL)) (-2816 (($) NIL T CONST)) (-3519 (($ $ $) 33)) (-1422 (($ |#2| |#3|) 19)) (-1312 (((-3 $ "failed") $) NIL)) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-1297 (((-110) $) NIL)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-2874 ((|#3| $) NIL)) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) 20)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-2515 (((-3 $ "failed") $ $) NIL)) (-3973 (((-717) $) 34)) (-3043 ((|#2| $ |#2|) 42)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 24)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3742 (((-717)) NIL)) (-4016 (((-110) $ $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 29 T CONST)) (-2982 (($) 36 T CONST)) (-2186 (((-110) $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 37)))
-(((-270 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-288) (-10 -8 (-15 -2874 (|#3| $)) (-15 -2222 (|#2| $)) (-15 -1422 ($ |#2| |#3|)) (-15 -2515 ((-3 $ "failed") $ $)) (-15 -1312 ((-3 $ "failed") $)) (-15 -2652 ($ $)) (-15 -3043 (|#2| $ |#2|)))) (-162) (-1153 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -270))
-((-1312 (*1 *1 *1) (|partial| -12 (-4 *2 (-162)) (-5 *1 (-270 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1153 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2874 (*1 *2 *1) (-12 (-4 *3 (-162)) (-4 *2 (-23)) (-5 *1 (-270 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1153 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2222 (*1 *2 *1) (-12 (-4 *2 (-1153 *3)) (-5 *1 (-270 *3 *2 *4 *5 *6 *7)) (-4 *3 (-162)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-1422 (*1 *1 *2 *3) (-12 (-4 *4 (-162)) (-5 *1 (-270 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1153 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2515 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-162)) (-5 *1 (-270 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1153 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2652 (*1 *1 *1) (-12 (-4 *2 (-162)) (-5 *1 (-270 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1153 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3043 (*1 *2 *1 *2) (-12 (-4 *3 (-162)) (-5 *1 (-270 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1153 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
-(-13 (-288) (-10 -8 (-15 -2874 (|#3| $)) (-15 -2222 (|#2| $)) (-15 -1422 ($ |#2| |#3|)) (-15 -2515 ((-3 $ "failed") $ $)) (-15 -1312 ((-3 $ "failed") $)) (-15 -2652 ($ $)) (-15 -3043 (|#2| $ |#2|))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-1312 (((-3 $ "failed") $) 34)) (-1297 (((-110) $) 31)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11) (($ (-528)) 28)) (-3742 (((-717)) 29)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24)))
-(((-271) (-133)) (T -271))
-NIL
-(-13 (-981) (-109 $ $) (-10 -7 (-6 -4257)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-569 (-802)) . T) ((-597 $) . T) ((-673) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-1693 (($ (-1095) (-1095) (-1027) $) 17)) (-1776 (($ (-1095) (-595 (-903)) $) 22)) (-2230 (((-595 (-1010)) $) 10)) (-2611 (((-3 (-1027) "failed") (-1095) (-1095) $) 16)) (-3686 (((-3 (-595 (-903)) "failed") (-1095) $) 21)) (-2147 (($) 7)) (-3483 (($) 23)) (-2222 (((-802) $) 27)) (-4003 (($) 24)))
-(((-272) (-13 (-569 (-802)) (-10 -8 (-15 -2147 ($)) (-15 -2230 ((-595 (-1010)) $)) (-15 -2611 ((-3 (-1027) "failed") (-1095) (-1095) $)) (-15 -1693 ($ (-1095) (-1095) (-1027) $)) (-15 -3686 ((-3 (-595 (-903)) "failed") (-1095) $)) (-15 -1776 ($ (-1095) (-595 (-903)) $)) (-15 -3483 ($)) (-15 -4003 ($))))) (T -272))
-((-2147 (*1 *1) (-5 *1 (-272))) (-2230 (*1 *2 *1) (-12 (-5 *2 (-595 (-1010))) (-5 *1 (-272)))) (-2611 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1095)) (-5 *2 (-1027)) (-5 *1 (-272)))) (-1693 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1095)) (-5 *3 (-1027)) (-5 *1 (-272)))) (-3686 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1095)) (-5 *2 (-595 (-903))) (-5 *1 (-272)))) (-1776 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1095)) (-5 *3 (-595 (-903))) (-5 *1 (-272)))) (-3483 (*1 *1) (-5 *1 (-272))) (-4003 (*1 *1) (-5 *1 (-272))))
-(-13 (-569 (-802)) (-10 -8 (-15 -2147 ($)) (-15 -2230 ((-595 (-1010)) $)) (-15 -2611 ((-3 (-1027) "failed") (-1095) (-1095) $)) (-15 -1693 ($ (-1095) (-1095) (-1027) $)) (-15 -3686 ((-3 (-595 (-903)) "failed") (-1095) $)) (-15 -1776 ($ (-1095) (-595 (-903)) $)) (-15 -3483 ($)) (-15 -4003 ($))))
-((-2041 (((-595 (-2 (|:| |eigval| (-3 (-387 (-891 |#1|)) (-1085 (-1095) (-891 |#1|)))) (|:| |geneigvec| (-595 (-635 (-387 (-891 |#1|))))))) (-635 (-387 (-891 |#1|)))) 85)) (-3002 (((-595 (-635 (-387 (-891 |#1|)))) (-2 (|:| |eigval| (-3 (-387 (-891 |#1|)) (-1085 (-1095) (-891 |#1|)))) (|:| |eigmult| (-717)) (|:| |eigvec| (-595 (-635 (-387 (-891 |#1|)))))) (-635 (-387 (-891 |#1|)))) 80) (((-595 (-635 (-387 (-891 |#1|)))) (-3 (-387 (-891 |#1|)) (-1085 (-1095) (-891 |#1|))) (-635 (-387 (-891 |#1|))) (-717) (-717)) 38)) (-3954 (((-595 (-2 (|:| |eigval| (-3 (-387 (-891 |#1|)) (-1085 (-1095) (-891 |#1|)))) (|:| |eigmult| (-717)) (|:| |eigvec| (-595 (-635 (-387 (-891 |#1|))))))) (-635 (-387 (-891 |#1|)))) 82)) (-2351 (((-595 (-635 (-387 (-891 |#1|)))) (-3 (-387 (-891 |#1|)) (-1085 (-1095) (-891 |#1|))) (-635 (-387 (-891 |#1|)))) 62)) (-1465 (((-595 (-3 (-387 (-891 |#1|)) (-1085 (-1095) (-891 |#1|)))) (-635 (-387 (-891 |#1|)))) 61)) (-2516 (((-891 |#1|) (-635 (-387 (-891 |#1|)))) 50) (((-891 |#1|) (-635 (-387 (-891 |#1|))) (-1095)) 51)))
-(((-273 |#1|) (-10 -7 (-15 -2516 ((-891 |#1|) (-635 (-387 (-891 |#1|))) (-1095))) (-15 -2516 ((-891 |#1|) (-635 (-387 (-891 |#1|))))) (-15 -1465 ((-595 (-3 (-387 (-891 |#1|)) (-1085 (-1095) (-891 |#1|)))) (-635 (-387 (-891 |#1|))))) (-15 -2351 ((-595 (-635 (-387 (-891 |#1|)))) (-3 (-387 (-891 |#1|)) (-1085 (-1095) (-891 |#1|))) (-635 (-387 (-891 |#1|))))) (-15 -3002 ((-595 (-635 (-387 (-891 |#1|)))) (-3 (-387 (-891 |#1|)) (-1085 (-1095) (-891 |#1|))) (-635 (-387 (-891 |#1|))) (-717) (-717))) (-15 -3002 ((-595 (-635 (-387 (-891 |#1|)))) (-2 (|:| |eigval| (-3 (-387 (-891 |#1|)) (-1085 (-1095) (-891 |#1|)))) (|:| |eigmult| (-717)) (|:| |eigvec| (-595 (-635 (-387 (-891 |#1|)))))) (-635 (-387 (-891 |#1|))))) (-15 -2041 ((-595 (-2 (|:| |eigval| (-3 (-387 (-891 |#1|)) (-1085 (-1095) (-891 |#1|)))) (|:| |geneigvec| (-595 (-635 (-387 (-891 |#1|))))))) (-635 (-387 (-891 |#1|))))) (-15 -3954 ((-595 (-2 (|:| |eigval| (-3 (-387 (-891 |#1|)) (-1085 (-1095) (-891 |#1|)))) (|:| |eigmult| (-717)) (|:| |eigvec| (-595 (-635 (-387 (-891 |#1|))))))) (-635 (-387 (-891 |#1|)))))) (-431)) (T -273))
-((-3954 (*1 *2 *3) (-12 (-4 *4 (-431)) (-5 *2 (-595 (-2 (|:| |eigval| (-3 (-387 (-891 *4)) (-1085 (-1095) (-891 *4)))) (|:| |eigmult| (-717)) (|:| |eigvec| (-595 (-635 (-387 (-891 *4)))))))) (-5 *1 (-273 *4)) (-5 *3 (-635 (-387 (-891 *4)))))) (-2041 (*1 *2 *3) (-12 (-4 *4 (-431)) (-5 *2 (-595 (-2 (|:| |eigval| (-3 (-387 (-891 *4)) (-1085 (-1095) (-891 *4)))) (|:| |geneigvec| (-595 (-635 (-387 (-891 *4)))))))) (-5 *1 (-273 *4)) (-5 *3 (-635 (-387 (-891 *4)))))) (-3002 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-387 (-891 *5)) (-1085 (-1095) (-891 *5)))) (|:| |eigmult| (-717)) (|:| |eigvec| (-595 *4)))) (-4 *5 (-431)) (-5 *2 (-595 (-635 (-387 (-891 *5))))) (-5 *1 (-273 *5)) (-5 *4 (-635 (-387 (-891 *5)))))) (-3002 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-387 (-891 *6)) (-1085 (-1095) (-891 *6)))) (-5 *5 (-717)) (-4 *6 (-431)) (-5 *2 (-595 (-635 (-387 (-891 *6))))) (-5 *1 (-273 *6)) (-5 *4 (-635 (-387 (-891 *6)))))) (-2351 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-387 (-891 *5)) (-1085 (-1095) (-891 *5)))) (-4 *5 (-431)) (-5 *2 (-595 (-635 (-387 (-891 *5))))) (-5 *1 (-273 *5)) (-5 *4 (-635 (-387 (-891 *5)))))) (-1465 (*1 *2 *3) (-12 (-5 *3 (-635 (-387 (-891 *4)))) (-4 *4 (-431)) (-5 *2 (-595 (-3 (-387 (-891 *4)) (-1085 (-1095) (-891 *4))))) (-5 *1 (-273 *4)))) (-2516 (*1 *2 *3) (-12 (-5 *3 (-635 (-387 (-891 *4)))) (-5 *2 (-891 *4)) (-5 *1 (-273 *4)) (-4 *4 (-431)))) (-2516 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-387 (-891 *5)))) (-5 *4 (-1095)) (-5 *2 (-891 *5)) (-5 *1 (-273 *5)) (-4 *5 (-431)))))
-(-10 -7 (-15 -2516 ((-891 |#1|) (-635 (-387 (-891 |#1|))) (-1095))) (-15 -2516 ((-891 |#1|) (-635 (-387 (-891 |#1|))))) (-15 -1465 ((-595 (-3 (-387 (-891 |#1|)) (-1085 (-1095) (-891 |#1|)))) (-635 (-387 (-891 |#1|))))) (-15 -2351 ((-595 (-635 (-387 (-891 |#1|)))) (-3 (-387 (-891 |#1|)) (-1085 (-1095) (-891 |#1|))) (-635 (-387 (-891 |#1|))))) (-15 -3002 ((-595 (-635 (-387 (-891 |#1|)))) (-3 (-387 (-891 |#1|)) (-1085 (-1095) (-891 |#1|))) (-635 (-387 (-891 |#1|))) (-717) (-717))) (-15 -3002 ((-595 (-635 (-387 (-891 |#1|)))) (-2 (|:| |eigval| (-3 (-387 (-891 |#1|)) (-1085 (-1095) (-891 |#1|)))) (|:| |eigmult| (-717)) (|:| |eigvec| (-595 (-635 (-387 (-891 |#1|)))))) (-635 (-387 (-891 |#1|))))) (-15 -2041 ((-595 (-2 (|:| |eigval| (-3 (-387 (-891 |#1|)) (-1085 (-1095) (-891 |#1|)))) (|:| |geneigvec| (-595 (-635 (-387 (-891 |#1|))))))) (-635 (-387 (-891 |#1|))))) (-15 -3954 ((-595 (-2 (|:| |eigval| (-3 (-387 (-891 |#1|)) (-1085 (-1095) (-891 |#1|)))) (|:| |eigmult| (-717)) (|:| |eigvec| (-595 (-635 (-387 (-891 |#1|))))))) (-635 (-387 (-891 |#1|))))))
-((-3106 (((-275 |#2|) (-1 |#2| |#1|) (-275 |#1|)) 14)))
-(((-274 |#1| |#2|) (-10 -7 (-15 -3106 ((-275 |#2|) (-1 |#2| |#1|) (-275 |#1|)))) (-1131) (-1131)) (T -274))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-275 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-275 *6)) (-5 *1 (-274 *5 *6)))))
-(-10 -7 (-15 -3106 ((-275 |#2|) (-1 |#2| |#1|) (-275 |#1|))))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-1359 (((-110) $) NIL (|has| |#1| (-21)))) (-3725 (($ $) 23)) (-3181 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2819 (($ $ $) 94 (|has| |#1| (-283)))) (-2816 (($) NIL (-1463 (|has| |#1| (-21)) (|has| |#1| (-673))) CONST)) (-4132 (($ $) 8 (|has| |#1| (-21)))) (-1751 (((-3 $ "failed") $) 69 (|has| |#1| (-673)))) (-1408 ((|#1| $) 22)) (-1312 (((-3 $ "failed") $) 67 (|has| |#1| (-673)))) (-1297 (((-110) $) NIL (|has| |#1| (-673)))) (-3106 (($ (-1 |#1| |#1|) $) 25)) (-1398 ((|#1| $) 9)) (-3396 (($ $) 58 (|has| |#1| (-21)))) (-2799 (((-3 $ "failed") $) 68 (|has| |#1| (-673)))) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-2652 (($ $) 71 (-1463 (|has| |#1| (-343)) (|has| |#1| (-452))))) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-3992 (((-595 $) $) 20 (|has| |#1| (-520)))) (-4014 (($ $ $) 35 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 $)) 38 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-1095) |#1|) 28 (|has| |#1| (-489 (-1095) |#1|))) (($ $ (-595 (-1095)) (-595 |#1|)) 32 (|has| |#1| (-489 (-1095) |#1|)))) (-1596 (($ |#1| |#1|) 18)) (-3017 (((-130)) 89 (|has| |#1| (-343)))) (-3235 (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095)) 86 (|has| |#1| (-839 (-1095))))) (-4097 (($ $ $) NIL (|has| |#1| (-452)))) (-2405 (($ $ $) NIL (|has| |#1| (-452)))) (-2222 (($ (-528)) NIL (|has| |#1| (-981))) (((-110) $) 46 (|has| |#1| (-1023))) (((-802) $) 45 (|has| |#1| (-1023)))) (-3742 (((-717)) 74 (|has| |#1| (-981)))) (-2690 (($ $ (-528)) NIL (|has| |#1| (-452))) (($ $ (-717)) NIL (|has| |#1| (-673))) (($ $ (-860)) NIL (|has| |#1| (-1035)))) (-2969 (($) 56 (|has| |#1| (-21)) CONST)) (-2982 (($) 64 (|has| |#1| (-673)) CONST)) (-3245 (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095)) NIL (|has| |#1| (-839 (-1095))))) (-2186 (($ |#1| |#1|) 21) (((-110) $ $) 41 (|has| |#1| (-1023)))) (-2296 (($ $ |#1|) NIL (|has| |#1| (-343))) (($ $ $) 91 (-1463 (|has| |#1| (-343)) (|has| |#1| (-452))))) (-2286 (($ |#1| $) 54 (|has| |#1| (-21))) (($ $ |#1|) 55 (|has| |#1| (-21))) (($ $ $) 53 (|has| |#1| (-21))) (($ $) 52 (|has| |#1| (-21)))) (-2275 (($ |#1| $) 49 (|has| |#1| (-25))) (($ $ |#1|) 50 (|has| |#1| (-25))) (($ $ $) 48 (|has| |#1| (-25)))) (** (($ $ (-528)) NIL (|has| |#1| (-452))) (($ $ (-717)) NIL (|has| |#1| (-673))) (($ $ (-860)) NIL (|has| |#1| (-1035)))) (* (($ $ |#1|) 62 (|has| |#1| (-1035))) (($ |#1| $) 61 (|has| |#1| (-1035))) (($ $ $) 60 (|has| |#1| (-1035))) (($ (-528) $) 76 (|has| |#1| (-21))) (($ (-717) $) NIL (|has| |#1| (-21))) (($ (-860) $) NIL (|has| |#1| (-25)))))
-(((-275 |#1|) (-13 (-1131) (-10 -8 (-15 -2186 ($ |#1| |#1|)) (-15 -1596 ($ |#1| |#1|)) (-15 -3725 ($ $)) (-15 -1398 (|#1| $)) (-15 -1408 (|#1| $)) (-15 -3106 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-489 (-1095) |#1|)) (-6 (-489 (-1095) |#1|)) |%noBranch|) (IF (|has| |#1| (-1023)) (PROGN (-6 (-1023)) (-6 (-569 (-110))) (IF (|has| |#1| (-290 |#1|)) (PROGN (-15 -4014 ($ $ $)) (-15 -4014 ($ $ (-595 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2275 ($ |#1| $)) (-15 -2275 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3396 ($ $)) (-15 -4132 ($ $)) (-15 -2286 ($ |#1| $)) (-15 -2286 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1035)) (PROGN (-6 (-1035)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-673)) (PROGN (-6 (-673)) (-15 -2799 ((-3 $ "failed") $)) (-15 -1751 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-452)) (PROGN (-6 (-452)) (-15 -2799 ((-3 $ "failed") $)) (-15 -1751 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-981)) (PROGN (-6 (-981)) (-6 (-109 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-664 |#1|)) |%noBranch|) (IF (|has| |#1| (-520)) (-15 -3992 ((-595 $) $)) |%noBranch|) (IF (|has| |#1| (-839 (-1095))) (-6 (-839 (-1095))) |%noBranch|) (IF (|has| |#1| (-343)) (PROGN (-6 (-1184 |#1|)) (-15 -2296 ($ $ $)) (-15 -2652 ($ $))) |%noBranch|) (IF (|has| |#1| (-283)) (-15 -2819 ($ $ $)) |%noBranch|))) (-1131)) (T -275))
-((-2186 (*1 *1 *2 *2) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1131)))) (-1596 (*1 *1 *2 *2) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1131)))) (-3725 (*1 *1 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1131)))) (-1398 (*1 *2 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1131)))) (-1408 (*1 *2 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1131)))) (-3106 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-275 *3)))) (-4014 (*1 *1 *1 *1) (-12 (-4 *2 (-290 *2)) (-4 *2 (-1023)) (-4 *2 (-1131)) (-5 *1 (-275 *2)))) (-4014 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-275 *3))) (-4 *3 (-290 *3)) (-4 *3 (-1023)) (-4 *3 (-1131)) (-5 *1 (-275 *3)))) (-2275 (*1 *1 *2 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-25)) (-4 *2 (-1131)))) (-2275 (*1 *1 *1 *2) (-12 (-5 *1 (-275 *2)) (-4 *2 (-25)) (-4 *2 (-1131)))) (-3396 (*1 *1 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-21)) (-4 *2 (-1131)))) (-4132 (*1 *1 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-21)) (-4 *2 (-1131)))) (-2286 (*1 *1 *2 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-21)) (-4 *2 (-1131)))) (-2286 (*1 *1 *1 *2) (-12 (-5 *1 (-275 *2)) (-4 *2 (-21)) (-4 *2 (-1131)))) (-2799 (*1 *1 *1) (|partial| -12 (-5 *1 (-275 *2)) (-4 *2 (-673)) (-4 *2 (-1131)))) (-1751 (*1 *1 *1) (|partial| -12 (-5 *1 (-275 *2)) (-4 *2 (-673)) (-4 *2 (-1131)))) (-3992 (*1 *2 *1) (-12 (-5 *2 (-595 (-275 *3))) (-5 *1 (-275 *3)) (-4 *3 (-520)) (-4 *3 (-1131)))) (-2819 (*1 *1 *1 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-283)) (-4 *2 (-1131)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1035)) (-4 *2 (-1131)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1035)) (-4 *2 (-1131)))) (-2296 (*1 *1 *1 *1) (-1463 (-12 (-5 *1 (-275 *2)) (-4 *2 (-343)) (-4 *2 (-1131))) (-12 (-5 *1 (-275 *2)) (-4 *2 (-452)) (-4 *2 (-1131))))) (-2652 (*1 *1 *1) (-1463 (-12 (-5 *1 (-275 *2)) (-4 *2 (-343)) (-4 *2 (-1131))) (-12 (-5 *1 (-275 *2)) (-4 *2 (-452)) (-4 *2 (-1131))))))
-(-13 (-1131) (-10 -8 (-15 -2186 ($ |#1| |#1|)) (-15 -1596 ($ |#1| |#1|)) (-15 -3725 ($ $)) (-15 -1398 (|#1| $)) (-15 -1408 (|#1| $)) (-15 -3106 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-489 (-1095) |#1|)) (-6 (-489 (-1095) |#1|)) |%noBranch|) (IF (|has| |#1| (-1023)) (PROGN (-6 (-1023)) (-6 (-569 (-110))) (IF (|has| |#1| (-290 |#1|)) (PROGN (-15 -4014 ($ $ $)) (-15 -4014 ($ $ (-595 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2275 ($ |#1| $)) (-15 -2275 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3396 ($ $)) (-15 -4132 ($ $)) (-15 -2286 ($ |#1| $)) (-15 -2286 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1035)) (PROGN (-6 (-1035)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-673)) (PROGN (-6 (-673)) (-15 -2799 ((-3 $ "failed") $)) (-15 -1751 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-452)) (PROGN (-6 (-452)) (-15 -2799 ((-3 $ "failed") $)) (-15 -1751 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-981)) (PROGN (-6 (-981)) (-6 (-109 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-664 |#1|)) |%noBranch|) (IF (|has| |#1| (-520)) (-15 -3992 ((-595 $) $)) |%noBranch|) (IF (|has| |#1| (-839 (-1095))) (-6 (-839 (-1095))) |%noBranch|) (IF (|has| |#1| (-343)) (PROGN (-6 (-1184 |#1|)) (-15 -2296 ($ $ $)) (-15 -2652 ($ $))) |%noBranch|) (IF (|has| |#1| (-283)) (-15 -2819 ($ $ $)) |%noBranch|)))
-((-2207 (((-110) $ $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-3450 (($) NIL) (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-1444 (((-1182) $ |#1| |#1|) NIL (|has| $ (-6 -4265)))) (-3535 (((-110) $ (-717)) NIL)) (-2381 ((|#2| $ |#1| |#2|) NIL)) (-1836 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-1573 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-2582 (((-3 |#2| "failed") |#1| $) NIL)) (-2816 (($) NIL T CONST)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))))) (-3991 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (|has| $ (-6 -4264))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-3 |#2| "failed") |#1| $) NIL)) (-2280 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-1422 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (|has| $ (-6 -4264))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-2812 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4265)))) (-2742 ((|#2| $ |#1|) NIL)) (-3342 (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-595 |#2|) $) NIL (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) NIL)) (-3530 ((|#1| $) NIL (|has| |#1| (-793)))) (-2604 (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-595 |#2|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-1709 ((|#1| $) NIL (|has| |#1| (-793)))) (-2800 (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4265))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-3225 (((-595 |#1|) $) NIL)) (-4024 (((-110) |#1| $) NIL)) (-3934 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL)) (-1950 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL)) (-2084 (((-595 |#1|) $) NIL)) (-3966 (((-110) |#1| $) NIL)) (-2495 (((-1042) $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-2890 ((|#2| $) NIL (|has| |#1| (-793)))) (-1734 (((-3 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) "failed") (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL)) (-1332 (($ $ |#2|) NIL (|has| $ (-6 -4265)))) (-1390 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL)) (-1818 (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-275 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-595 |#2|) (-595 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-595 (-275 |#2|))) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-2861 (((-595 |#2|) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3900 (($) NIL) (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-2507 (((-717) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-717) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (((-717) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023)))) (((-717) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) NIL (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-570 (-504))))) (-2233 (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-2222 (((-802) $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-569 (-802))) (|has| |#2| (-569 (-802)))))) (-2164 (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-3451 (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-276 |#1| |#2|) (-13 (-1108 |#1| |#2|) (-10 -7 (-6 -4264))) (-1023) (-1023)) (T -276))
-NIL
-(-13 (-1108 |#1| |#2|) (-10 -7 (-6 -4264)))
-((-3817 (((-292) (-1078) (-595 (-1078))) 16) (((-292) (-1078) (-1078)) 15) (((-292) (-595 (-1078))) 14) (((-292) (-1078)) 12)))
-(((-277) (-10 -7 (-15 -3817 ((-292) (-1078))) (-15 -3817 ((-292) (-595 (-1078)))) (-15 -3817 ((-292) (-1078) (-1078))) (-15 -3817 ((-292) (-1078) (-595 (-1078)))))) (T -277))
-((-3817 (*1 *2 *3 *4) (-12 (-5 *4 (-595 (-1078))) (-5 *3 (-1078)) (-5 *2 (-292)) (-5 *1 (-277)))) (-3817 (*1 *2 *3 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-292)) (-5 *1 (-277)))) (-3817 (*1 *2 *3) (-12 (-5 *3 (-595 (-1078))) (-5 *2 (-292)) (-5 *1 (-277)))) (-3817 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-292)) (-5 *1 (-277)))))
-(-10 -7 (-15 -3817 ((-292) (-1078))) (-15 -3817 ((-292) (-595 (-1078)))) (-15 -3817 ((-292) (-1078) (-1078))) (-15 -3817 ((-292) (-1078) (-595 (-1078)))))
-((-3106 ((|#2| (-1 |#2| |#1|) (-1078) (-568 |#1|)) 18)))
-(((-278 |#1| |#2|) (-10 -7 (-15 -3106 (|#2| (-1 |#2| |#1|) (-1078) (-568 |#1|)))) (-283) (-1131)) (T -278))
-((-3106 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1078)) (-5 *5 (-568 *6)) (-4 *6 (-283)) (-4 *2 (-1131)) (-5 *1 (-278 *6 *2)))))
-(-10 -7 (-15 -3106 (|#2| (-1 |#2| |#1|) (-1078) (-568 |#1|))))
-((-3106 ((|#2| (-1 |#2| |#1|) (-568 |#1|)) 17)))
-(((-279 |#1| |#2|) (-10 -7 (-15 -3106 (|#2| (-1 |#2| |#1|) (-568 |#1|)))) (-283) (-283)) (T -279))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-568 *5)) (-4 *5 (-283)) (-4 *2 (-283)) (-5 *1 (-279 *5 *2)))))
-(-10 -7 (-15 -3106 (|#2| (-1 |#2| |#1|) (-568 |#1|))))
-((-1673 (((-110) (-207)) 10)))
-(((-280 |#1| |#2|) (-10 -7 (-15 -1673 ((-110) (-207)))) (-207) (-207)) (T -280))
-((-1673 (*1 *2 *3) (-12 (-5 *3 (-207)) (-5 *2 (-110)) (-5 *1 (-280 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -1673 ((-110) (-207))))
-((-3732 (((-1076 (-207)) (-296 (-207)) (-595 (-1095)) (-1018 (-786 (-207)))) 93)) (-3094 (((-1076 (-207)) (-1177 (-296 (-207))) (-595 (-1095)) (-1018 (-786 (-207)))) 107) (((-1076 (-207)) (-296 (-207)) (-595 (-1095)) (-1018 (-786 (-207)))) 61)) (-4183 (((-595 (-1078)) (-1076 (-207))) NIL)) (-1413 (((-595 (-207)) (-296 (-207)) (-1095) (-1018 (-786 (-207)))) 58)) (-3040 (((-595 (-207)) (-891 (-387 (-528))) (-1095) (-1018 (-786 (-207)))) 49)) (-3192 (((-595 (-1078)) (-595 (-207))) NIL)) (-1285 (((-207) (-1018 (-786 (-207)))) 25)) (-1977 (((-207) (-1018 (-786 (-207)))) 26)) (-1284 (((-110) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 54)) (-3802 (((-1078) (-207)) NIL)))
-(((-281) (-10 -7 (-15 -1285 ((-207) (-1018 (-786 (-207))))) (-15 -1977 ((-207) (-1018 (-786 (-207))))) (-15 -1284 ((-110) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -1413 ((-595 (-207)) (-296 (-207)) (-1095) (-1018 (-786 (-207))))) (-15 -3732 ((-1076 (-207)) (-296 (-207)) (-595 (-1095)) (-1018 (-786 (-207))))) (-15 -3094 ((-1076 (-207)) (-296 (-207)) (-595 (-1095)) (-1018 (-786 (-207))))) (-15 -3094 ((-1076 (-207)) (-1177 (-296 (-207))) (-595 (-1095)) (-1018 (-786 (-207))))) (-15 -3040 ((-595 (-207)) (-891 (-387 (-528))) (-1095) (-1018 (-786 (-207))))) (-15 -3802 ((-1078) (-207))) (-15 -3192 ((-595 (-1078)) (-595 (-207)))) (-15 -4183 ((-595 (-1078)) (-1076 (-207)))))) (T -281))
-((-4183 (*1 *2 *3) (-12 (-5 *3 (-1076 (-207))) (-5 *2 (-595 (-1078))) (-5 *1 (-281)))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-595 (-207))) (-5 *2 (-595 (-1078))) (-5 *1 (-281)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-207)) (-5 *2 (-1078)) (-5 *1 (-281)))) (-3040 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-891 (-387 (-528)))) (-5 *4 (-1095)) (-5 *5 (-1018 (-786 (-207)))) (-5 *2 (-595 (-207))) (-5 *1 (-281)))) (-3094 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1177 (-296 (-207)))) (-5 *4 (-595 (-1095))) (-5 *5 (-1018 (-786 (-207)))) (-5 *2 (-1076 (-207))) (-5 *1 (-281)))) (-3094 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-296 (-207))) (-5 *4 (-595 (-1095))) (-5 *5 (-1018 (-786 (-207)))) (-5 *2 (-1076 (-207))) (-5 *1 (-281)))) (-3732 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-296 (-207))) (-5 *4 (-595 (-1095))) (-5 *5 (-1018 (-786 (-207)))) (-5 *2 (-1076 (-207))) (-5 *1 (-281)))) (-1413 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-296 (-207))) (-5 *4 (-1095)) (-5 *5 (-1018 (-786 (-207)))) (-5 *2 (-595 (-207))) (-5 *1 (-281)))) (-1284 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (-5 *2 (-110)) (-5 *1 (-281)))) (-1977 (*1 *2 *3) (-12 (-5 *3 (-1018 (-786 (-207)))) (-5 *2 (-207)) (-5 *1 (-281)))) (-1285 (*1 *2 *3) (-12 (-5 *3 (-1018 (-786 (-207)))) (-5 *2 (-207)) (-5 *1 (-281)))))
-(-10 -7 (-15 -1285 ((-207) (-1018 (-786 (-207))))) (-15 -1977 ((-207) (-1018 (-786 (-207))))) (-15 -1284 ((-110) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -1413 ((-595 (-207)) (-296 (-207)) (-1095) (-1018 (-786 (-207))))) (-15 -3732 ((-1076 (-207)) (-296 (-207)) (-595 (-1095)) (-1018 (-786 (-207))))) (-15 -3094 ((-1076 (-207)) (-296 (-207)) (-595 (-1095)) (-1018 (-786 (-207))))) (-15 -3094 ((-1076 (-207)) (-1177 (-296 (-207))) (-595 (-1095)) (-1018 (-786 (-207))))) (-15 -3040 ((-595 (-207)) (-891 (-387 (-528))) (-1095) (-1018 (-786 (-207))))) (-15 -3802 ((-1078) (-207))) (-15 -3192 ((-595 (-1078)) (-595 (-207)))) (-15 -4183 ((-595 (-1078)) (-1076 (-207)))))
-((-2316 (((-595 (-568 $)) $) 30)) (-2819 (($ $ (-275 $)) 81) (($ $ (-595 (-275 $))) 123) (($ $ (-595 (-568 $)) (-595 $)) NIL)) (-3001 (((-3 (-568 $) "failed") $) 113)) (-2409 (((-568 $) $) 112)) (-4130 (($ $) 19) (($ (-595 $)) 56)) (-3930 (((-595 (-112)) $) 38)) (-3748 (((-112) (-112)) 91)) (-2580 (((-110) $) 131)) (-3106 (($ (-1 $ $) (-568 $)) 89)) (-1547 (((-3 (-568 $) "failed") $) 93)) (-1552 (($ (-112) $) 61) (($ (-112) (-595 $)) 100)) (-2341 (((-110) $ (-112)) 117) (((-110) $ (-1095)) 116)) (-4073 (((-717) $) 46)) (-3947 (((-110) $ $) 59) (((-110) $ (-1095)) 51)) (-3578 (((-110) $) 129)) (-4014 (($ $ (-568 $) $) NIL) (($ $ (-595 (-568 $)) (-595 $)) NIL) (($ $ (-595 (-275 $))) 121) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL) (($ $ (-595 (-1095)) (-595 (-1 $ $))) 84) (($ $ (-595 (-1095)) (-595 (-1 $ (-595 $)))) NIL) (($ $ (-1095) (-1 $ (-595 $))) 69) (($ $ (-1095) (-1 $ $)) 75) (($ $ (-595 (-112)) (-595 (-1 $ $))) 83) (($ $ (-595 (-112)) (-595 (-1 $ (-595 $)))) 85) (($ $ (-112) (-1 $ (-595 $))) 71) (($ $ (-112) (-1 $ $)) 77)) (-3043 (($ (-112) $) 62) (($ (-112) $ $) 63) (($ (-112) $ $ $) 64) (($ (-112) $ $ $ $) 65) (($ (-112) (-595 $)) 109)) (-3581 (($ $) 53) (($ $ $) 119)) (-1491 (($ $) 17) (($ (-595 $)) 55)) (-2042 (((-110) (-112)) 22)))
-(((-282 |#1|) (-10 -8 (-15 -2580 ((-110) |#1|)) (-15 -3578 ((-110) |#1|)) (-15 -4014 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4014 (|#1| |#1| (-112) (-1 |#1| (-595 |#1|)))) (-15 -4014 (|#1| |#1| (-595 (-112)) (-595 (-1 |#1| (-595 |#1|))))) (-15 -4014 (|#1| |#1| (-595 (-112)) (-595 (-1 |#1| |#1|)))) (-15 -4014 (|#1| |#1| (-1095) (-1 |#1| |#1|))) (-15 -4014 (|#1| |#1| (-1095) (-1 |#1| (-595 |#1|)))) (-15 -4014 (|#1| |#1| (-595 (-1095)) (-595 (-1 |#1| (-595 |#1|))))) (-15 -4014 (|#1| |#1| (-595 (-1095)) (-595 (-1 |#1| |#1|)))) (-15 -3947 ((-110) |#1| (-1095))) (-15 -3947 ((-110) |#1| |#1|)) (-15 -3106 (|#1| (-1 |#1| |#1|) (-568 |#1|))) (-15 -1552 (|#1| (-112) (-595 |#1|))) (-15 -1552 (|#1| (-112) |#1|)) (-15 -2341 ((-110) |#1| (-1095))) (-15 -2341 ((-110) |#1| (-112))) (-15 -2042 ((-110) (-112))) (-15 -3748 ((-112) (-112))) (-15 -3930 ((-595 (-112)) |#1|)) (-15 -2316 ((-595 (-568 |#1|)) |#1|)) (-15 -1547 ((-3 (-568 |#1|) "failed") |#1|)) (-15 -4073 ((-717) |#1|)) (-15 -3581 (|#1| |#1| |#1|)) (-15 -3581 (|#1| |#1|)) (-15 -4130 (|#1| (-595 |#1|))) (-15 -4130 (|#1| |#1|)) (-15 -1491 (|#1| (-595 |#1|))) (-15 -1491 (|#1| |#1|)) (-15 -2819 (|#1| |#1| (-595 (-568 |#1|)) (-595 |#1|))) (-15 -2819 (|#1| |#1| (-595 (-275 |#1|)))) (-15 -2819 (|#1| |#1| (-275 |#1|))) (-15 -3043 (|#1| (-112) (-595 |#1|))) (-15 -3043 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -3043 (|#1| (-112) |#1| |#1| |#1|)) (-15 -3043 (|#1| (-112) |#1| |#1|)) (-15 -3043 (|#1| (-112) |#1|)) (-15 -4014 (|#1| |#1| (-595 |#1|) (-595 |#1|))) (-15 -4014 (|#1| |#1| |#1| |#1|)) (-15 -4014 (|#1| |#1| (-275 |#1|))) (-15 -4014 (|#1| |#1| (-595 (-275 |#1|)))) (-15 -4014 (|#1| |#1| (-595 (-568 |#1|)) (-595 |#1|))) (-15 -4014 (|#1| |#1| (-568 |#1|) |#1|)) (-15 -2409 ((-568 |#1|) |#1|)) (-15 -3001 ((-3 (-568 |#1|) "failed") |#1|))) (-283)) (T -282))
-((-3748 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-282 *3)) (-4 *3 (-283)))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-110)) (-5 *1 (-282 *4)) (-4 *4 (-283)))))
-(-10 -8 (-15 -2580 ((-110) |#1|)) (-15 -3578 ((-110) |#1|)) (-15 -4014 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4014 (|#1| |#1| (-112) (-1 |#1| (-595 |#1|)))) (-15 -4014 (|#1| |#1| (-595 (-112)) (-595 (-1 |#1| (-595 |#1|))))) (-15 -4014 (|#1| |#1| (-595 (-112)) (-595 (-1 |#1| |#1|)))) (-15 -4014 (|#1| |#1| (-1095) (-1 |#1| |#1|))) (-15 -4014 (|#1| |#1| (-1095) (-1 |#1| (-595 |#1|)))) (-15 -4014 (|#1| |#1| (-595 (-1095)) (-595 (-1 |#1| (-595 |#1|))))) (-15 -4014 (|#1| |#1| (-595 (-1095)) (-595 (-1 |#1| |#1|)))) (-15 -3947 ((-110) |#1| (-1095))) (-15 -3947 ((-110) |#1| |#1|)) (-15 -3106 (|#1| (-1 |#1| |#1|) (-568 |#1|))) (-15 -1552 (|#1| (-112) (-595 |#1|))) (-15 -1552 (|#1| (-112) |#1|)) (-15 -2341 ((-110) |#1| (-1095))) (-15 -2341 ((-110) |#1| (-112))) (-15 -2042 ((-110) (-112))) (-15 -3748 ((-112) (-112))) (-15 -3930 ((-595 (-112)) |#1|)) (-15 -2316 ((-595 (-568 |#1|)) |#1|)) (-15 -1547 ((-3 (-568 |#1|) "failed") |#1|)) (-15 -4073 ((-717) |#1|)) (-15 -3581 (|#1| |#1| |#1|)) (-15 -3581 (|#1| |#1|)) (-15 -4130 (|#1| (-595 |#1|))) (-15 -4130 (|#1| |#1|)) (-15 -1491 (|#1| (-595 |#1|))) (-15 -1491 (|#1| |#1|)) (-15 -2819 (|#1| |#1| (-595 (-568 |#1|)) (-595 |#1|))) (-15 -2819 (|#1| |#1| (-595 (-275 |#1|)))) (-15 -2819 (|#1| |#1| (-275 |#1|))) (-15 -3043 (|#1| (-112) (-595 |#1|))) (-15 -3043 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -3043 (|#1| (-112) |#1| |#1| |#1|)) (-15 -3043 (|#1| (-112) |#1| |#1|)) (-15 -3043 (|#1| (-112) |#1|)) (-15 -4014 (|#1| |#1| (-595 |#1|) (-595 |#1|))) (-15 -4014 (|#1| |#1| |#1| |#1|)) (-15 -4014 (|#1| |#1| (-275 |#1|))) (-15 -4014 (|#1| |#1| (-595 (-275 |#1|)))) (-15 -4014 (|#1| |#1| (-595 (-568 |#1|)) (-595 |#1|))) (-15 -4014 (|#1| |#1| (-568 |#1|) |#1|)) (-15 -2409 ((-568 |#1|) |#1|)) (-15 -3001 ((-3 (-568 |#1|) "failed") |#1|)))
-((-2207 (((-110) $ $) 7)) (-2316 (((-595 (-568 $)) $) 44)) (-2819 (($ $ (-275 $)) 56) (($ $ (-595 (-275 $))) 55) (($ $ (-595 (-568 $)) (-595 $)) 54)) (-3001 (((-3 (-568 $) "failed") $) 69)) (-2409 (((-568 $) $) 68)) (-4130 (($ $) 51) (($ (-595 $)) 50)) (-3930 (((-595 (-112)) $) 43)) (-3748 (((-112) (-112)) 42)) (-2580 (((-110) $) 22 (|has| $ (-972 (-528))))) (-1822 (((-1091 $) (-568 $)) 25 (|has| $ (-981)))) (-1436 (($ $ $) 13)) (-1736 (($ $ $) 14)) (-3106 (($ (-1 $ $) (-568 $)) 36)) (-1547 (((-3 (-568 $) "failed") $) 46)) (-3034 (((-1078) $) 9)) (-2390 (((-595 (-568 $)) $) 45)) (-1552 (($ (-112) $) 38) (($ (-112) (-595 $)) 37)) (-2341 (((-110) $ (-112)) 40) (((-110) $ (-1095)) 39)) (-4073 (((-717) $) 47)) (-2495 (((-1042) $) 10)) (-3947 (((-110) $ $) 35) (((-110) $ (-1095)) 34)) (-3578 (((-110) $) 23 (|has| $ (-972 (-528))))) (-4014 (($ $ (-568 $) $) 67) (($ $ (-595 (-568 $)) (-595 $)) 66) (($ $ (-595 (-275 $))) 65) (($ $ (-275 $)) 64) (($ $ $ $) 63) (($ $ (-595 $) (-595 $)) 62) (($ $ (-595 (-1095)) (-595 (-1 $ $))) 33) (($ $ (-595 (-1095)) (-595 (-1 $ (-595 $)))) 32) (($ $ (-1095) (-1 $ (-595 $))) 31) (($ $ (-1095) (-1 $ $)) 30) (($ $ (-595 (-112)) (-595 (-1 $ $))) 29) (($ $ (-595 (-112)) (-595 (-1 $ (-595 $)))) 28) (($ $ (-112) (-1 $ (-595 $))) 27) (($ $ (-112) (-1 $ $)) 26)) (-3043 (($ (-112) $) 61) (($ (-112) $ $) 60) (($ (-112) $ $ $) 59) (($ (-112) $ $ $ $) 58) (($ (-112) (-595 $)) 57)) (-3581 (($ $) 49) (($ $ $) 48)) (-4090 (($ $) 24 (|has| $ (-981)))) (-2222 (((-802) $) 11) (($ (-568 $)) 70)) (-1491 (($ $) 53) (($ (-595 $)) 52)) (-2042 (((-110) (-112)) 41)) (-2244 (((-110) $ $) 16)) (-2220 (((-110) $ $) 17)) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 15)) (-2208 (((-110) $ $) 18)))
-(((-283) (-133)) (T -283))
-((-3043 (*1 *1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) (-3043 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) (-3043 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) (-3043 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) (-3043 (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-595 *1)) (-4 *1 (-283)))) (-2819 (*1 *1 *1 *2) (-12 (-5 *2 (-275 *1)) (-4 *1 (-283)))) (-2819 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-275 *1))) (-4 *1 (-283)))) (-2819 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-595 (-568 *1))) (-5 *3 (-595 *1)) (-4 *1 (-283)))) (-1491 (*1 *1 *1) (-4 *1 (-283))) (-1491 (*1 *1 *2) (-12 (-5 *2 (-595 *1)) (-4 *1 (-283)))) (-4130 (*1 *1 *1) (-4 *1 (-283))) (-4130 (*1 *1 *2) (-12 (-5 *2 (-595 *1)) (-4 *1 (-283)))) (-3581 (*1 *1 *1) (-4 *1 (-283))) (-3581 (*1 *1 *1 *1) (-4 *1 (-283))) (-4073 (*1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-717)))) (-1547 (*1 *2 *1) (|partial| -12 (-5 *2 (-568 *1)) (-4 *1 (-283)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-595 (-568 *1))) (-4 *1 (-283)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-595 (-568 *1))) (-4 *1 (-283)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-595 (-112))))) (-3748 (*1 *2 *2) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) (-2042 (*1 *2 *3) (-12 (-4 *1 (-283)) (-5 *3 (-112)) (-5 *2 (-110)))) (-2341 (*1 *2 *1 *3) (-12 (-4 *1 (-283)) (-5 *3 (-112)) (-5 *2 (-110)))) (-2341 (*1 *2 *1 *3) (-12 (-4 *1 (-283)) (-5 *3 (-1095)) (-5 *2 (-110)))) (-1552 (*1 *1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) (-1552 (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-595 *1)) (-4 *1 (-283)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-568 *1)) (-4 *1 (-283)))) (-3947 (*1 *2 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-110)))) (-3947 (*1 *2 *1 *3) (-12 (-4 *1 (-283)) (-5 *3 (-1095)) (-5 *2 (-110)))) (-4014 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-595 (-1095))) (-5 *3 (-595 (-1 *1 *1))) (-4 *1 (-283)))) (-4014 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-595 (-1095))) (-5 *3 (-595 (-1 *1 (-595 *1)))) (-4 *1 (-283)))) (-4014 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-1 *1 (-595 *1))) (-4 *1 (-283)))) (-4014 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-1 *1 *1)) (-4 *1 (-283)))) (-4014 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-595 (-112))) (-5 *3 (-595 (-1 *1 *1))) (-4 *1 (-283)))) (-4014 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-595 (-112))) (-5 *3 (-595 (-1 *1 (-595 *1)))) (-4 *1 (-283)))) (-4014 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 (-595 *1))) (-4 *1 (-283)))) (-4014 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 *1)) (-4 *1 (-283)))) (-1822 (*1 *2 *3) (-12 (-5 *3 (-568 *1)) (-4 *1 (-981)) (-4 *1 (-283)) (-5 *2 (-1091 *1)))) (-4090 (*1 *1 *1) (-12 (-4 *1 (-981)) (-4 *1 (-283)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-972 (-528))) (-4 *1 (-283)) (-5 *2 (-110)))) (-2580 (*1 *2 *1) (-12 (-4 *1 (-972 (-528))) (-4 *1 (-283)) (-5 *2 (-110)))))
-(-13 (-793) (-972 (-568 $)) (-489 (-568 $) $) (-290 $) (-10 -8 (-15 -3043 ($ (-112) $)) (-15 -3043 ($ (-112) $ $)) (-15 -3043 ($ (-112) $ $ $)) (-15 -3043 ($ (-112) $ $ $ $)) (-15 -3043 ($ (-112) (-595 $))) (-15 -2819 ($ $ (-275 $))) (-15 -2819 ($ $ (-595 (-275 $)))) (-15 -2819 ($ $ (-595 (-568 $)) (-595 $))) (-15 -1491 ($ $)) (-15 -1491 ($ (-595 $))) (-15 -4130 ($ $)) (-15 -4130 ($ (-595 $))) (-15 -3581 ($ $)) (-15 -3581 ($ $ $)) (-15 -4073 ((-717) $)) (-15 -1547 ((-3 (-568 $) "failed") $)) (-15 -2390 ((-595 (-568 $)) $)) (-15 -2316 ((-595 (-568 $)) $)) (-15 -3930 ((-595 (-112)) $)) (-15 -3748 ((-112) (-112))) (-15 -2042 ((-110) (-112))) (-15 -2341 ((-110) $ (-112))) (-15 -2341 ((-110) $ (-1095))) (-15 -1552 ($ (-112) $)) (-15 -1552 ($ (-112) (-595 $))) (-15 -3106 ($ (-1 $ $) (-568 $))) (-15 -3947 ((-110) $ $)) (-15 -3947 ((-110) $ (-1095))) (-15 -4014 ($ $ (-595 (-1095)) (-595 (-1 $ $)))) (-15 -4014 ($ $ (-595 (-1095)) (-595 (-1 $ (-595 $))))) (-15 -4014 ($ $ (-1095) (-1 $ (-595 $)))) (-15 -4014 ($ $ (-1095) (-1 $ $))) (-15 -4014 ($ $ (-595 (-112)) (-595 (-1 $ $)))) (-15 -4014 ($ $ (-595 (-112)) (-595 (-1 $ (-595 $))))) (-15 -4014 ($ $ (-112) (-1 $ (-595 $)))) (-15 -4014 ($ $ (-112) (-1 $ $))) (IF (|has| $ (-981)) (PROGN (-15 -1822 ((-1091 $) (-568 $))) (-15 -4090 ($ $))) |%noBranch|) (IF (|has| $ (-972 (-528))) (PROGN (-15 -3578 ((-110) $)) (-15 -2580 ((-110) $))) |%noBranch|)))
-(((-99) . T) ((-569 (-802)) . T) ((-290 $) . T) ((-489 (-568 $) $) . T) ((-489 $ $) . T) ((-793) . T) ((-972 (-568 $)) . T) ((-1023) . T))
-((-2150 (((-595 |#1|) (-595 |#1|)) 10)))
-(((-284 |#1|) (-10 -7 (-15 -2150 ((-595 |#1|) (-595 |#1|)))) (-791)) (T -284))
-((-2150 (*1 *2 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-791)) (-5 *1 (-284 *3)))))
-(-10 -7 (-15 -2150 ((-595 |#1|) (-595 |#1|))))
-((-3106 (((-635 |#2|) (-1 |#2| |#1|) (-635 |#1|)) 17)))
-(((-285 |#1| |#2|) (-10 -7 (-15 -3106 ((-635 |#2|) (-1 |#2| |#1|) (-635 |#1|)))) (-981) (-981)) (T -285))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-635 *5)) (-4 *5 (-981)) (-4 *6 (-981)) (-5 *2 (-635 *6)) (-5 *1 (-285 *5 *6)))))
-(-10 -7 (-15 -3106 ((-635 |#2|) (-1 |#2| |#1|) (-635 |#1|))))
-((-1478 (((-1177 (-296 (-359))) (-1177 (-296 (-207)))) 105)) (-3692 (((-1018 (-786 (-207))) (-1018 (-786 (-359)))) 40)) (-4183 (((-595 (-1078)) (-1076 (-207))) 87)) (-3925 (((-296 (-359)) (-891 (-207))) 50)) (-3272 (((-207) (-891 (-207))) 46)) (-3595 (((-1078) (-359)) 169)) (-1999 (((-786 (-207)) (-786 (-359))) 34)) (-2751 (((-2 (|:| |additions| (-528)) (|:| |multiplications| (-528)) (|:| |exponentiations| (-528)) (|:| |functionCalls| (-528))) (-1177 (-296 (-207)))) 143)) (-2949 (((-970) (-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078))) (|:| |extra| (-970)))) 181) (((-970) (-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078))))) 179)) (-2163 (((-635 (-207)) (-595 (-207)) (-717)) 14)) (-3952 (((-1177 (-645)) (-595 (-207))) 94)) (-3192 (((-595 (-1078)) (-595 (-207))) 75)) (-4017 (((-3 (-296 (-207)) "failed") (-296 (-207))) 120)) (-1673 (((-110) (-207) (-1018 (-786 (-207)))) 109)) (-3823 (((-970) (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359)))) 198)) (-1285 (((-207) (-1018 (-786 (-207)))) 107)) (-1977 (((-207) (-1018 (-786 (-207)))) 108)) (-1669 (((-207) (-387 (-528))) 27)) (-4122 (((-1078) (-359)) 73)) (-1556 (((-207) (-359)) 17)) (-1282 (((-359) (-1177 (-296 (-207)))) 154)) (-2752 (((-296 (-207)) (-296 (-359))) 23)) (-1212 (((-387 (-528)) (-296 (-207))) 53)) (-2223 (((-296 (-387 (-528))) (-296 (-207))) 69)) (-2276 (((-296 (-359)) (-296 (-207))) 98)) (-2291 (((-207) (-296 (-207))) 54)) (-1214 (((-595 (-207)) (-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))) 64)) (-3268 (((-1018 (-786 (-207))) (-1018 (-786 (-207)))) 61)) (-3802 (((-1078) (-207)) 72)) (-3246 (((-645) (-207)) 90)) (-2106 (((-387 (-528)) (-207)) 55)) (-1965 (((-296 (-359)) (-207)) 49)) (-3155 (((-595 (-1018 (-786 (-207)))) (-595 (-1018 (-786 (-359))))) 43)) (-3400 (((-970) (-595 (-970))) 165) (((-970) (-970) (-970)) 162)) (-1685 (((-970) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-207))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2931 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195)))
-(((-286) (-10 -7 (-15 -1556 ((-207) (-359))) (-15 -2752 ((-296 (-207)) (-296 (-359)))) (-15 -1999 ((-786 (-207)) (-786 (-359)))) (-15 -3692 ((-1018 (-786 (-207))) (-1018 (-786 (-359))))) (-15 -3155 ((-595 (-1018 (-786 (-207)))) (-595 (-1018 (-786 (-359)))))) (-15 -2106 ((-387 (-528)) (-207))) (-15 -1212 ((-387 (-528)) (-296 (-207)))) (-15 -2291 ((-207) (-296 (-207)))) (-15 -4017 ((-3 (-296 (-207)) "failed") (-296 (-207)))) (-15 -1282 ((-359) (-1177 (-296 (-207))))) (-15 -2751 ((-2 (|:| |additions| (-528)) (|:| |multiplications| (-528)) (|:| |exponentiations| (-528)) (|:| |functionCalls| (-528))) (-1177 (-296 (-207))))) (-15 -2223 ((-296 (-387 (-528))) (-296 (-207)))) (-15 -3268 ((-1018 (-786 (-207))) (-1018 (-786 (-207))))) (-15 -1214 ((-595 (-207)) (-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))))) (-15 -3246 ((-645) (-207))) (-15 -3952 ((-1177 (-645)) (-595 (-207)))) (-15 -2276 ((-296 (-359)) (-296 (-207)))) (-15 -1478 ((-1177 (-296 (-359))) (-1177 (-296 (-207))))) (-15 -1673 ((-110) (-207) (-1018 (-786 (-207))))) (-15 -3802 ((-1078) (-207))) (-15 -4122 ((-1078) (-359))) (-15 -3192 ((-595 (-1078)) (-595 (-207)))) (-15 -4183 ((-595 (-1078)) (-1076 (-207)))) (-15 -1285 ((-207) (-1018 (-786 (-207))))) (-15 -1977 ((-207) (-1018 (-786 (-207))))) (-15 -3400 ((-970) (-970) (-970))) (-15 -3400 ((-970) (-595 (-970)))) (-15 -3595 ((-1078) (-359))) (-15 -2949 ((-970) (-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078)))))) (-15 -2949 ((-970) (-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078))) (|:| |extra| (-970))))) (-15 -1685 ((-970) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-207))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2931 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3823 ((-970) (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359))))) (-15 -3925 ((-296 (-359)) (-891 (-207)))) (-15 -3272 ((-207) (-891 (-207)))) (-15 -1965 ((-296 (-359)) (-207))) (-15 -1669 ((-207) (-387 (-528)))) (-15 -2163 ((-635 (-207)) (-595 (-207)) (-717))))) (T -286))
-((-2163 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-207))) (-5 *4 (-717)) (-5 *2 (-635 (-207))) (-5 *1 (-286)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-387 (-528))) (-5 *2 (-207)) (-5 *1 (-286)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-207)) (-5 *2 (-296 (-359))) (-5 *1 (-286)))) (-3272 (*1 *2 *3) (-12 (-5 *3 (-891 (-207))) (-5 *2 (-207)) (-5 *1 (-286)))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-891 (-207))) (-5 *2 (-296 (-359))) (-5 *1 (-286)))) (-3823 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359)))) (-5 *2 (-970)) (-5 *1 (-286)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-207))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2931 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-970)) (-5 *1 (-286)))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078))) (|:| |extra| (-970)))) (-5 *2 (-970)) (-5 *1 (-286)))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078))))) (-5 *2 (-970)) (-5 *1 (-286)))) (-3595 (*1 *2 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1078)) (-5 *1 (-286)))) (-3400 (*1 *2 *3) (-12 (-5 *3 (-595 (-970))) (-5 *2 (-970)) (-5 *1 (-286)))) (-3400 (*1 *2 *2 *2) (-12 (-5 *2 (-970)) (-5 *1 (-286)))) (-1977 (*1 *2 *3) (-12 (-5 *3 (-1018 (-786 (-207)))) (-5 *2 (-207)) (-5 *1 (-286)))) (-1285 (*1 *2 *3) (-12 (-5 *3 (-1018 (-786 (-207)))) (-5 *2 (-207)) (-5 *1 (-286)))) (-4183 (*1 *2 *3) (-12 (-5 *3 (-1076 (-207))) (-5 *2 (-595 (-1078))) (-5 *1 (-286)))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-595 (-207))) (-5 *2 (-595 (-1078))) (-5 *1 (-286)))) (-4122 (*1 *2 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1078)) (-5 *1 (-286)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-207)) (-5 *2 (-1078)) (-5 *1 (-286)))) (-1673 (*1 *2 *3 *4) (-12 (-5 *4 (-1018 (-786 (-207)))) (-5 *3 (-207)) (-5 *2 (-110)) (-5 *1 (-286)))) (-1478 (*1 *2 *3) (-12 (-5 *3 (-1177 (-296 (-207)))) (-5 *2 (-1177 (-296 (-359)))) (-5 *1 (-286)))) (-2276 (*1 *2 *3) (-12 (-5 *3 (-296 (-207))) (-5 *2 (-296 (-359))) (-5 *1 (-286)))) (-3952 (*1 *2 *3) (-12 (-5 *3 (-595 (-207))) (-5 *2 (-1177 (-645))) (-5 *1 (-286)))) (-3246 (*1 *2 *3) (-12 (-5 *3 (-207)) (-5 *2 (-645)) (-5 *1 (-286)))) (-1214 (*1 *2 *3) (-12 (-5 *3 (-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))) (-5 *2 (-595 (-207))) (-5 *1 (-286)))) (-3268 (*1 *2 *2) (-12 (-5 *2 (-1018 (-786 (-207)))) (-5 *1 (-286)))) (-2223 (*1 *2 *3) (-12 (-5 *3 (-296 (-207))) (-5 *2 (-296 (-387 (-528)))) (-5 *1 (-286)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-1177 (-296 (-207)))) (-5 *2 (-2 (|:| |additions| (-528)) (|:| |multiplications| (-528)) (|:| |exponentiations| (-528)) (|:| |functionCalls| (-528)))) (-5 *1 (-286)))) (-1282 (*1 *2 *3) (-12 (-5 *3 (-1177 (-296 (-207)))) (-5 *2 (-359)) (-5 *1 (-286)))) (-4017 (*1 *2 *2) (|partial| -12 (-5 *2 (-296 (-207))) (-5 *1 (-286)))) (-2291 (*1 *2 *3) (-12 (-5 *3 (-296 (-207))) (-5 *2 (-207)) (-5 *1 (-286)))) (-1212 (*1 *2 *3) (-12 (-5 *3 (-296 (-207))) (-5 *2 (-387 (-528))) (-5 *1 (-286)))) (-2106 (*1 *2 *3) (-12 (-5 *3 (-207)) (-5 *2 (-387 (-528))) (-5 *1 (-286)))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-595 (-1018 (-786 (-359))))) (-5 *2 (-595 (-1018 (-786 (-207))))) (-5 *1 (-286)))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-1018 (-786 (-359)))) (-5 *2 (-1018 (-786 (-207)))) (-5 *1 (-286)))) (-1999 (*1 *2 *3) (-12 (-5 *3 (-786 (-359))) (-5 *2 (-786 (-207))) (-5 *1 (-286)))) (-2752 (*1 *2 *3) (-12 (-5 *3 (-296 (-359))) (-5 *2 (-296 (-207))) (-5 *1 (-286)))) (-1556 (*1 *2 *3) (-12 (-5 *3 (-359)) (-5 *2 (-207)) (-5 *1 (-286)))))
-(-10 -7 (-15 -1556 ((-207) (-359))) (-15 -2752 ((-296 (-207)) (-296 (-359)))) (-15 -1999 ((-786 (-207)) (-786 (-359)))) (-15 -3692 ((-1018 (-786 (-207))) (-1018 (-786 (-359))))) (-15 -3155 ((-595 (-1018 (-786 (-207)))) (-595 (-1018 (-786 (-359)))))) (-15 -2106 ((-387 (-528)) (-207))) (-15 -1212 ((-387 (-528)) (-296 (-207)))) (-15 -2291 ((-207) (-296 (-207)))) (-15 -4017 ((-3 (-296 (-207)) "failed") (-296 (-207)))) (-15 -1282 ((-359) (-1177 (-296 (-207))))) (-15 -2751 ((-2 (|:| |additions| (-528)) (|:| |multiplications| (-528)) (|:| |exponentiations| (-528)) (|:| |functionCalls| (-528))) (-1177 (-296 (-207))))) (-15 -2223 ((-296 (-387 (-528))) (-296 (-207)))) (-15 -3268 ((-1018 (-786 (-207))) (-1018 (-786 (-207))))) (-15 -1214 ((-595 (-207)) (-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))))) (-15 -3246 ((-645) (-207))) (-15 -3952 ((-1177 (-645)) (-595 (-207)))) (-15 -2276 ((-296 (-359)) (-296 (-207)))) (-15 -1478 ((-1177 (-296 (-359))) (-1177 (-296 (-207))))) (-15 -1673 ((-110) (-207) (-1018 (-786 (-207))))) (-15 -3802 ((-1078) (-207))) (-15 -4122 ((-1078) (-359))) (-15 -3192 ((-595 (-1078)) (-595 (-207)))) (-15 -4183 ((-595 (-1078)) (-1076 (-207)))) (-15 -1285 ((-207) (-1018 (-786 (-207))))) (-15 -1977 ((-207) (-1018 (-786 (-207))))) (-15 -3400 ((-970) (-970) (-970))) (-15 -3400 ((-970) (-595 (-970)))) (-15 -3595 ((-1078) (-359))) (-15 -2949 ((-970) (-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078)))))) (-15 -2949 ((-970) (-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078))) (|:| |extra| (-970))))) (-15 -1685 ((-970) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-207))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2931 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3823 ((-970) (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359))))) (-15 -3925 ((-296 (-359)) (-891 (-207)))) (-15 -3272 ((-207) (-891 (-207)))) (-15 -1965 ((-296 (-359)) (-207))) (-15 -1669 ((-207) (-387 (-528)))) (-15 -2163 ((-635 (-207)) (-595 (-207)) (-717))))
-((-2213 (((-110) $ $) 11)) (-3519 (($ $ $) 15)) (-3498 (($ $ $) 14)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 44)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) 53)) (-2088 (($ $ $) 21) (($ (-595 $)) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3477 (((-3 $ "failed") $ $) 17)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 46)))
-(((-287 |#1|) (-10 -8 (-15 -1271 ((-3 (-595 |#1|) "failed") (-595 |#1|) |#1|)) (-15 -2401 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2401 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1261 |#1|)) |#1| |#1|)) (-15 -3519 (|#1| |#1| |#1|)) (-15 -3498 (|#1| |#1| |#1|)) (-15 -2213 ((-110) |#1| |#1|)) (-15 -1253 ((-3 (-595 |#1|) "failed") (-595 |#1|) |#1|)) (-15 -2403 ((-2 (|:| -1641 (-595 |#1|)) (|:| -1261 |#1|)) (-595 |#1|))) (-15 -2088 (|#1| (-595 |#1|))) (-15 -2088 (|#1| |#1| |#1|)) (-15 -3477 ((-3 |#1| "failed") |#1| |#1|))) (-288)) (T -287))
-NIL
-(-10 -8 (-15 -1271 ((-3 (-595 |#1|) "failed") (-595 |#1|) |#1|)) (-15 -2401 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2401 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1261 |#1|)) |#1| |#1|)) (-15 -3519 (|#1| |#1| |#1|)) (-15 -3498 (|#1| |#1| |#1|)) (-15 -2213 ((-110) |#1| |#1|)) (-15 -1253 ((-3 (-595 |#1|) "failed") (-595 |#1|) |#1|)) (-15 -2403 ((-2 (|:| -1641 (-595 |#1|)) (|:| -1261 |#1|)) (-595 |#1|))) (-15 -2088 (|#1| (-595 |#1|))) (-15 -2088 (|#1| |#1| |#1|)) (-15 -3477 ((-3 |#1| "failed") |#1| |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 41)) (-1738 (($ $) 40)) (-1811 (((-110) $) 38)) (-3181 (((-3 $ "failed") $ $) 19)) (-2213 (((-110) $ $) 59)) (-2816 (($) 17 T CONST)) (-3519 (($ $ $) 55)) (-1312 (((-3 $ "failed") $) 34)) (-3498 (($ $ $) 56)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 51)) (-1297 (((-110) $) 31)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) 52)) (-2057 (($ $ $) 46) (($ (-595 $)) 45)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 44)) (-2088 (($ $ $) 48) (($ (-595 $)) 47)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3477 (((-3 $ "failed") $ $) 42)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 50)) (-3973 (((-717) $) 58)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 57)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ $) 43)) (-3742 (((-717)) 29)) (-4016 (((-110) $ $) 39)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24)))
-(((-288) (-133)) (T -288))
-((-2213 (*1 *2 *1 *1) (-12 (-4 *1 (-288)) (-5 *2 (-110)))) (-3973 (*1 *2 *1) (-12 (-4 *1 (-288)) (-5 *2 (-717)))) (-1512 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3490 *1) (|:| -2537 *1))) (-4 *1 (-288)))) (-3498 (*1 *1 *1 *1) (-4 *1 (-288))) (-3519 (*1 *1 *1 *1) (-4 *1 (-288))) (-2401 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1261 *1))) (-4 *1 (-288)))) (-2401 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-288)))) (-1271 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-595 *1)) (-4 *1 (-288)))))
-(-13 (-859) (-10 -8 (-15 -2213 ((-110) $ $)) (-15 -3973 ((-717) $)) (-15 -1512 ((-2 (|:| -3490 $) (|:| -2537 $)) $ $)) (-15 -3498 ($ $ $)) (-15 -3519 ($ $ $)) (-15 -2401 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $)) (-15 -2401 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1271 ((-3 (-595 $) "failed") (-595 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-569 (-802)) . T) ((-162) . T) ((-271) . T) ((-431) . T) ((-520) . T) ((-597 $) . T) ((-664 $) . T) ((-673) . T) ((-859) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-4014 (($ $ (-595 |#2|) (-595 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-275 |#2|)) 11) (($ $ (-595 (-275 |#2|))) NIL)))
-(((-289 |#1| |#2|) (-10 -8 (-15 -4014 (|#1| |#1| (-595 (-275 |#2|)))) (-15 -4014 (|#1| |#1| (-275 |#2|))) (-15 -4014 (|#1| |#1| |#2| |#2|)) (-15 -4014 (|#1| |#1| (-595 |#2|) (-595 |#2|)))) (-290 |#2|) (-1023)) (T -289))
-NIL
-(-10 -8 (-15 -4014 (|#1| |#1| (-595 (-275 |#2|)))) (-15 -4014 (|#1| |#1| (-275 |#2|))) (-15 -4014 (|#1| |#1| |#2| |#2|)) (-15 -4014 (|#1| |#1| (-595 |#2|) (-595 |#2|))))
-((-4014 (($ $ (-595 |#1|) (-595 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-275 |#1|)) 11) (($ $ (-595 (-275 |#1|))) 10)))
-(((-290 |#1|) (-133) (-1023)) (T -290))
-((-4014 (*1 *1 *1 *2) (-12 (-5 *2 (-275 *3)) (-4 *1 (-290 *3)) (-4 *3 (-1023)))) (-4014 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-275 *3))) (-4 *1 (-290 *3)) (-4 *3 (-1023)))))
-(-13 (-489 |t#1| |t#1|) (-10 -8 (-15 -4014 ($ $ (-275 |t#1|))) (-15 -4014 ($ $ (-595 (-275 |t#1|))))))
-(((-489 |#1| |#1|) . T))
-((-4014 ((|#1| (-1 |#1| (-528)) (-1097 (-387 (-528)))) 25)))
-(((-291 |#1|) (-10 -7 (-15 -4014 (|#1| (-1 |#1| (-528)) (-1097 (-387 (-528)))))) (-37 (-387 (-528)))) (T -291))
-((-4014 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-528))) (-5 *4 (-1097 (-387 (-528)))) (-5 *1 (-291 *2)) (-4 *2 (-37 (-387 (-528)))))))
-(-10 -7 (-15 -4014 (|#1| (-1 |#1| (-528)) (-1097 (-387 (-528))))))
-((-2207 (((-110) $ $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 7)) (-2186 (((-110) $ $) 9)))
-(((-292) (-1023)) (T -292))
-NIL
-(-1023)
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 62)) (-3598 (((-1163 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-288)))) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-848)))) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-848)))) (-2213 (((-110) $ $) NIL)) (-3605 (((-528) $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-766)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-1163 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1095) "failed") $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-972 (-1095)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-972 (-528)))) (((-3 (-528) "failed") $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-972 (-528)))) (((-3 (-1162 |#2| |#3| |#4|) "failed") $) 25)) (-2409 (((-1163 |#1| |#2| |#3| |#4|) $) NIL) (((-1095) $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-972 (-1095)))) (((-387 (-528)) $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-972 (-528)))) (((-528) $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-972 (-528)))) (((-1162 |#2| |#3| |#4|) $) NIL)) (-3519 (($ $ $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-591 (-528)))) (((-2 (|:| -2163 (-635 (-1163 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1177 (-1163 |#1| |#2| |#3| |#4|)))) (-635 $) (-1177 $)) NIL) (((-635 (-1163 |#1| |#2| |#3| |#4|)) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1338 (($) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-513)))) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2124 (((-110) $) NIL)) (-3657 (((-110) $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-766)))) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-825 (-528)))) (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-825 (-359))))) (-1297 (((-110) $) NIL)) (-3037 (($ $) NIL)) (-3031 (((-1163 |#1| |#2| |#3| |#4|) $) 21)) (-3296 (((-3 $ "failed") $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-1071)))) (-3710 (((-110) $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-766)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-1436 (($ $ $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-793)))) (-1736 (($ $ $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-793)))) (-3106 (($ (-1 (-1163 |#1| |#2| |#3| |#4|) (-1163 |#1| |#2| |#3| |#4|)) $) NIL)) (-4191 (((-3 (-786 |#2|) "failed") $) 78)) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL)) (-4197 (($) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-1071)) CONST)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3270 (($ $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-288)))) (-2925 (((-1163 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-513)))) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-848)))) (-2437 (((-398 $) $) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-4014 (($ $ (-595 (-1163 |#1| |#2| |#3| |#4|)) (-595 (-1163 |#1| |#2| |#3| |#4|))) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-290 (-1163 |#1| |#2| |#3| |#4|)))) (($ $ (-1163 |#1| |#2| |#3| |#4|) (-1163 |#1| |#2| |#3| |#4|)) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-290 (-1163 |#1| |#2| |#3| |#4|)))) (($ $ (-275 (-1163 |#1| |#2| |#3| |#4|))) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-290 (-1163 |#1| |#2| |#3| |#4|)))) (($ $ (-595 (-275 (-1163 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-290 (-1163 |#1| |#2| |#3| |#4|)))) (($ $ (-595 (-1095)) (-595 (-1163 |#1| |#2| |#3| |#4|))) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-489 (-1095) (-1163 |#1| |#2| |#3| |#4|)))) (($ $ (-1095) (-1163 |#1| |#2| |#3| |#4|)) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-489 (-1095) (-1163 |#1| |#2| |#3| |#4|))))) (-3973 (((-717) $) NIL)) (-3043 (($ $ (-1163 |#1| |#2| |#3| |#4|)) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-267 (-1163 |#1| |#2| |#3| |#4|) (-1163 |#1| |#2| |#3| |#4|))))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3235 (($ $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-215))) (($ $ (-717)) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-215))) (($ $ (-1095)) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-839 (-1095)))) (($ $ (-1 (-1163 |#1| |#2| |#3| |#4|) (-1163 |#1| |#2| |#3| |#4|)) (-717)) NIL) (($ $ (-1 (-1163 |#1| |#2| |#3| |#4|) (-1163 |#1| |#2| |#3| |#4|))) NIL)) (-4118 (($ $) NIL)) (-3042 (((-1163 |#1| |#2| |#3| |#4|) $) 17)) (-3155 (((-831 (-528)) $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-570 (-831 (-528))))) (((-831 (-359)) $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-570 (-831 (-359))))) (((-504) $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-570 (-504)))) (((-359) $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-957))) (((-207) $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-957)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| (-1163 |#1| |#2| |#3| |#4|) (-848))))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ $) NIL) (($ (-387 (-528))) NIL) (($ (-1163 |#1| |#2| |#3| |#4|)) 29) (($ (-1095)) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-972 (-1095)))) (($ (-1162 |#2| |#3| |#4|)) 36)) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| (-1163 |#1| |#2| |#3| |#4|) (-848))) (|has| (-1163 |#1| |#2| |#3| |#4|) (-138))))) (-3742 (((-717)) NIL)) (-1769 (((-1163 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-513)))) (-4016 (((-110) $ $) NIL)) (-1775 (($ $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-766)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) 41 T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($ $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-215))) (($ $ (-717)) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-215))) (($ $ (-1095)) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-839 (-1095)))) (($ $ (-1 (-1163 |#1| |#2| |#3| |#4|) (-1163 |#1| |#2| |#3| |#4|)) (-717)) NIL) (($ $ (-1 (-1163 |#1| |#2| |#3| |#4|) (-1163 |#1| |#2| |#3| |#4|))) NIL)) (-2244 (((-110) $ $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-793)))) (-2220 (((-110) $ $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-793)))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-793)))) (-2208 (((-110) $ $) NIL (|has| (-1163 |#1| |#2| |#3| |#4|) (-793)))) (-2296 (($ $ $) 34) (($ (-1163 |#1| |#2| |#3| |#4|) (-1163 |#1| |#2| |#3| |#4|)) 31)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL) (($ (-1163 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1163 |#1| |#2| |#3| |#4|)) NIL)))
-(((-293 |#1| |#2| |#3| |#4|) (-13 (-929 (-1163 |#1| |#2| |#3| |#4|)) (-972 (-1162 |#2| |#3| |#4|)) (-10 -8 (-15 -4191 ((-3 (-786 |#2|) "failed") $)) (-15 -2222 ($ (-1162 |#2| |#3| |#4|))))) (-13 (-793) (-972 (-528)) (-591 (-528)) (-431)) (-13 (-27) (-1117) (-410 |#1|)) (-1095) |#2|) (T -293))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1162 *4 *5 *6)) (-4 *4 (-13 (-27) (-1117) (-410 *3))) (-14 *5 (-1095)) (-14 *6 *4) (-4 *3 (-13 (-793) (-972 (-528)) (-591 (-528)) (-431))) (-5 *1 (-293 *3 *4 *5 *6)))) (-4191 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-793) (-972 (-528)) (-591 (-528)) (-431))) (-5 *2 (-786 *4)) (-5 *1 (-293 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1117) (-410 *3))) (-14 *5 (-1095)) (-14 *6 *4))))
-(-13 (-929 (-1163 |#1| |#2| |#3| |#4|)) (-972 (-1162 |#2| |#3| |#4|)) (-10 -8 (-15 -4191 ((-3 (-786 |#2|) "failed") $)) (-15 -2222 ($ (-1162 |#2| |#3| |#4|)))))
-((-3106 (((-296 |#2|) (-1 |#2| |#1|) (-296 |#1|)) 13)))
-(((-294 |#1| |#2|) (-10 -7 (-15 -3106 ((-296 |#2|) (-1 |#2| |#1|) (-296 |#1|)))) (-793) (-793)) (T -294))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-296 *5)) (-4 *5 (-793)) (-4 *6 (-793)) (-5 *2 (-296 *6)) (-5 *1 (-294 *5 *6)))))
-(-10 -7 (-15 -3106 ((-296 |#2|) (-1 |#2| |#1|) (-296 |#1|))))
-((-2612 (((-51) |#2| (-275 |#2|) (-717)) 33) (((-51) |#2| (-275 |#2|)) 24) (((-51) |#2| (-717)) 28) (((-51) |#2|) 25) (((-51) (-1095)) 21)) (-1397 (((-51) |#2| (-275 |#2|) (-387 (-528))) 51) (((-51) |#2| (-275 |#2|)) 48) (((-51) |#2| (-387 (-528))) 50) (((-51) |#2|) 49) (((-51) (-1095)) 47)) (-2632 (((-51) |#2| (-275 |#2|) (-387 (-528))) 46) (((-51) |#2| (-275 |#2|)) 43) (((-51) |#2| (-387 (-528))) 45) (((-51) |#2|) 44) (((-51) (-1095)) 42)) (-2623 (((-51) |#2| (-275 |#2|) (-528)) 39) (((-51) |#2| (-275 |#2|)) 35) (((-51) |#2| (-528)) 38) (((-51) |#2|) 36) (((-51) (-1095)) 34)))
-(((-295 |#1| |#2|) (-10 -7 (-15 -2612 ((-51) (-1095))) (-15 -2612 ((-51) |#2|)) (-15 -2612 ((-51) |#2| (-717))) (-15 -2612 ((-51) |#2| (-275 |#2|))) (-15 -2612 ((-51) |#2| (-275 |#2|) (-717))) (-15 -2623 ((-51) (-1095))) (-15 -2623 ((-51) |#2|)) (-15 -2623 ((-51) |#2| (-528))) (-15 -2623 ((-51) |#2| (-275 |#2|))) (-15 -2623 ((-51) |#2| (-275 |#2|) (-528))) (-15 -2632 ((-51) (-1095))) (-15 -2632 ((-51) |#2|)) (-15 -2632 ((-51) |#2| (-387 (-528)))) (-15 -2632 ((-51) |#2| (-275 |#2|))) (-15 -2632 ((-51) |#2| (-275 |#2|) (-387 (-528)))) (-15 -1397 ((-51) (-1095))) (-15 -1397 ((-51) |#2|)) (-15 -1397 ((-51) |#2| (-387 (-528)))) (-15 -1397 ((-51) |#2| (-275 |#2|))) (-15 -1397 ((-51) |#2| (-275 |#2|) (-387 (-528))))) (-13 (-431) (-793) (-972 (-528)) (-591 (-528))) (-13 (-27) (-1117) (-410 |#1|))) (T -295))
-((-1397 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-275 *3)) (-5 *5 (-387 (-528))) (-4 *3 (-13 (-27) (-1117) (-410 *6))) (-4 *6 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *3)))) (-1397 (*1 *2 *3 *4) (-12 (-5 *4 (-275 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *5))) (-4 *5 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-295 *5 *3)))) (-1397 (*1 *2 *3 *4) (-12 (-5 *4 (-387 (-528))) (-4 *5 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-295 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *5))))) (-1397 (*1 *2 *3) (-12 (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-295 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *4))))) (-1397 (*1 *2 *3) (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-295 *4 *5)) (-4 *5 (-13 (-27) (-1117) (-410 *4))))) (-2632 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-275 *3)) (-5 *5 (-387 (-528))) (-4 *3 (-13 (-27) (-1117) (-410 *6))) (-4 *6 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *3)))) (-2632 (*1 *2 *3 *4) (-12 (-5 *4 (-275 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *5))) (-4 *5 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-295 *5 *3)))) (-2632 (*1 *2 *3 *4) (-12 (-5 *4 (-387 (-528))) (-4 *5 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-295 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *5))))) (-2632 (*1 *2 *3) (-12 (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-295 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *4))))) (-2632 (*1 *2 *3) (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-295 *4 *5)) (-4 *5 (-13 (-27) (-1117) (-410 *4))))) (-2623 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-275 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *6))) (-4 *6 (-13 (-431) (-793) (-972 *5) (-591 *5))) (-5 *5 (-528)) (-5 *2 (-51)) (-5 *1 (-295 *6 *3)))) (-2623 (*1 *2 *3 *4) (-12 (-5 *4 (-275 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *5))) (-4 *5 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-295 *5 *3)))) (-2623 (*1 *2 *3 *4) (-12 (-5 *4 (-528)) (-4 *5 (-13 (-431) (-793) (-972 *4) (-591 *4))) (-5 *2 (-51)) (-5 *1 (-295 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *5))))) (-2623 (*1 *2 *3) (-12 (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-295 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *4))))) (-2623 (*1 *2 *3) (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-295 *4 *5)) (-4 *5 (-13 (-27) (-1117) (-410 *4))))) (-2612 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-275 *3)) (-5 *5 (-717)) (-4 *3 (-13 (-27) (-1117) (-410 *6))) (-4 *6 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *3)))) (-2612 (*1 *2 *3 *4) (-12 (-5 *4 (-275 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *5))) (-4 *5 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-295 *5 *3)))) (-2612 (*1 *2 *3 *4) (-12 (-5 *4 (-717)) (-4 *5 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-295 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *5))))) (-2612 (*1 *2 *3) (-12 (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-295 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *4))))) (-2612 (*1 *2 *3) (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-295 *4 *5)) (-4 *5 (-13 (-27) (-1117) (-410 *4))))))
-(-10 -7 (-15 -2612 ((-51) (-1095))) (-15 -2612 ((-51) |#2|)) (-15 -2612 ((-51) |#2| (-717))) (-15 -2612 ((-51) |#2| (-275 |#2|))) (-15 -2612 ((-51) |#2| (-275 |#2|) (-717))) (-15 -2623 ((-51) (-1095))) (-15 -2623 ((-51) |#2|)) (-15 -2623 ((-51) |#2| (-528))) (-15 -2623 ((-51) |#2| (-275 |#2|))) (-15 -2623 ((-51) |#2| (-275 |#2|) (-528))) (-15 -2632 ((-51) (-1095))) (-15 -2632 ((-51) |#2|)) (-15 -2632 ((-51) |#2| (-387 (-528)))) (-15 -2632 ((-51) |#2| (-275 |#2|))) (-15 -2632 ((-51) |#2| (-275 |#2|) (-387 (-528)))) (-15 -1397 ((-51) (-1095))) (-15 -1397 ((-51) |#2|)) (-15 -1397 ((-51) |#2| (-387 (-528)))) (-15 -1397 ((-51) |#2| (-275 |#2|))) (-15 -1397 ((-51) |#2| (-275 |#2|) (-387 (-528)))))
-((-2207 (((-110) $ $) NIL)) (-3732 (((-595 $) $ (-1095)) NIL (|has| |#1| (-520))) (((-595 $) $) NIL (|has| |#1| (-520))) (((-595 $) (-1091 $) (-1095)) NIL (|has| |#1| (-520))) (((-595 $) (-1091 $)) NIL (|has| |#1| (-520))) (((-595 $) (-891 $)) NIL (|has| |#1| (-520)))) (-3895 (($ $ (-1095)) NIL (|has| |#1| (-520))) (($ $) NIL (|has| |#1| (-520))) (($ (-1091 $) (-1095)) NIL (|has| |#1| (-520))) (($ (-1091 $)) NIL (|has| |#1| (-520))) (($ (-891 $)) NIL (|has| |#1| (-520)))) (-1359 (((-110) $) 27 (-1463 (|has| |#1| (-25)) (-12 (|has| |#1| (-591 (-528))) (|has| |#1| (-981)))))) (-2565 (((-595 (-1095)) $) 351)) (-2402 (((-387 (-1091 $)) $ (-568 $)) NIL (|has| |#1| (-520)))) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#1| (-520)))) (-1738 (($ $) NIL (|has| |#1| (-520)))) (-1811 (((-110) $) NIL (|has| |#1| (-520)))) (-2316 (((-595 (-568 $)) $) NIL)) (-2880 (($ $) 161 (|has| |#1| (-520)))) (-2735 (($ $) 137 (|has| |#1| (-520)))) (-3157 (($ $ (-1016 $)) 222 (|has| |#1| (-520))) (($ $ (-1095)) 218 (|has| |#1| (-520)))) (-3181 (((-3 $ "failed") $ $) NIL (-1463 (|has| |#1| (-21)) (-12 (|has| |#1| (-591 (-528))) (|has| |#1| (-981)))))) (-2819 (($ $ (-275 $)) NIL) (($ $ (-595 (-275 $))) 368) (($ $ (-595 (-568 $)) (-595 $)) 412)) (-2152 (((-398 (-1091 $)) (-1091 $)) 295 (-12 (|has| |#1| (-431)) (|has| |#1| (-520))))) (-1232 (($ $) NIL (|has| |#1| (-520)))) (-2705 (((-398 $) $) NIL (|has| |#1| (-520)))) (-2450 (($ $) NIL (|has| |#1| (-520)))) (-2213 (((-110) $ $) NIL (|has| |#1| (-520)))) (-2859 (($ $) 157 (|has| |#1| (-520)))) (-2712 (($ $) 133 (|has| |#1| (-520)))) (-1291 (($ $ (-528)) 72 (|has| |#1| (-520)))) (-2904 (($ $) 165 (|has| |#1| (-520)))) (-2761 (($ $) 141 (|has| |#1| (-520)))) (-2816 (($) NIL (-1463 (|has| |#1| (-25)) (-12 (|has| |#1| (-591 (-528))) (|has| |#1| (-981))) (|has| |#1| (-1035))) CONST)) (-3953 (((-595 $) $ (-1095)) NIL (|has| |#1| (-520))) (((-595 $) $) NIL (|has| |#1| (-520))) (((-595 $) (-1091 $) (-1095)) NIL (|has| |#1| (-520))) (((-595 $) (-1091 $)) NIL (|has| |#1| (-520))) (((-595 $) (-891 $)) NIL (|has| |#1| (-520)))) (-1230 (($ $ (-1095)) NIL (|has| |#1| (-520))) (($ $) NIL (|has| |#1| (-520))) (($ (-1091 $) (-1095)) 124 (|has| |#1| (-520))) (($ (-1091 $)) NIL (|has| |#1| (-520))) (($ (-891 $)) NIL (|has| |#1| (-520)))) (-3001 (((-3 (-568 $) "failed") $) 17) (((-3 (-1095) "failed") $) NIL) (((-3 |#1| "failed") $) 421) (((-3 (-47) "failed") $) 323 (-12 (|has| |#1| (-520)) (|has| |#1| (-972 (-528))))) (((-3 (-528) "failed") $) NIL (|has| |#1| (-972 (-528)))) (((-3 (-387 (-891 |#1|)) "failed") $) NIL (|has| |#1| (-520))) (((-3 (-891 |#1|) "failed") $) NIL (|has| |#1| (-981))) (((-3 (-387 (-528)) "failed") $) 46 (-1463 (-12 (|has| |#1| (-520)) (|has| |#1| (-972 (-528)))) (|has| |#1| (-972 (-387 (-528))))))) (-2409 (((-568 $) $) 11) (((-1095) $) NIL) ((|#1| $) 403) (((-47) $) NIL (-12 (|has| |#1| (-520)) (|has| |#1| (-972 (-528))))) (((-528) $) NIL (|has| |#1| (-972 (-528)))) (((-387 (-891 |#1|)) $) NIL (|has| |#1| (-520))) (((-891 |#1|) $) NIL (|has| |#1| (-981))) (((-387 (-528)) $) 306 (-1463 (-12 (|has| |#1| (-520)) (|has| |#1| (-972 (-528)))) (|has| |#1| (-972 (-387 (-528))))))) (-3519 (($ $ $) NIL (|has| |#1| (-520)))) (-2120 (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) 117 (|has| |#1| (-981))) (((-635 |#1|) (-635 $)) 107 (|has| |#1| (-981))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (-12 (|has| |#1| (-591 (-528))) (|has| |#1| (-981)))) (((-635 (-528)) (-635 $)) NIL (-12 (|has| |#1| (-591 (-528))) (|has| |#1| (-981))))) (-1422 (($ $) 89 (|has| |#1| (-520)))) (-1312 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| |#1| (-591 (-528))) (|has| |#1| (-981))) (|has| |#1| (-1035))))) (-3498 (($ $ $) NIL (|has| |#1| (-520)))) (-1415 (($ $ (-1016 $)) 226 (|has| |#1| (-520))) (($ $ (-1095)) 224 (|has| |#1| (-520)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL (|has| |#1| (-520)))) (-2124 (((-110) $) NIL (|has| |#1| (-520)))) (-1741 (($ $ $) 192 (|has| |#1| (-520)))) (-1505 (($) 127 (|has| |#1| (-520)))) (-1752 (($ $ $) 212 (|has| |#1| (-520)))) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) 374 (|has| |#1| (-825 (-528)))) (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) 381 (|has| |#1| (-825 (-359))))) (-4130 (($ $) NIL) (($ (-595 $)) NIL)) (-3930 (((-595 (-112)) $) NIL)) (-3748 (((-112) (-112)) 267)) (-1297 (((-110) $) 25 (-1463 (-12 (|has| |#1| (-591 (-528))) (|has| |#1| (-981))) (|has| |#1| (-1035))))) (-2580 (((-110) $) NIL (|has| $ (-972 (-528))))) (-3037 (($ $) 71 (|has| |#1| (-981)))) (-3031 (((-1047 |#1| (-568 $)) $) 84 (|has| |#1| (-981)))) (-3393 (((-110) $) 64 (|has| |#1| (-520)))) (-2796 (($ $ (-528)) NIL (|has| |#1| (-520)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-520)))) (-1822 (((-1091 $) (-568 $)) 268 (|has| $ (-981)))) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3106 (($ (-1 $ $) (-568 $)) 408)) (-1547 (((-3 (-568 $) "failed") $) NIL)) (-2097 (($ $) 131 (|has| |#1| (-520)))) (-1799 (($ $) 237 (|has| |#1| (-520)))) (-2057 (($ (-595 $)) NIL (|has| |#1| (-520))) (($ $ $) NIL (|has| |#1| (-520)))) (-3034 (((-1078) $) NIL)) (-2390 (((-595 (-568 $)) $) 49)) (-1552 (($ (-112) $) NIL) (($ (-112) (-595 $)) 413)) (-3024 (((-3 (-595 $) "failed") $) NIL (|has| |#1| (-1035)))) (-1956 (((-3 (-2 (|:| |val| $) (|:| -2564 (-528))) "failed") $) NIL (|has| |#1| (-981)))) (-1281 (((-3 (-595 $) "failed") $) 416 (|has| |#1| (-25)))) (-4177 (((-3 (-2 (|:| -1641 (-528)) (|:| |var| (-568 $))) "failed") $) 420 (|has| |#1| (-25)))) (-3352 (((-3 (-2 (|:| |var| (-568 $)) (|:| -2564 (-528))) "failed") $) NIL (|has| |#1| (-1035))) (((-3 (-2 (|:| |var| (-568 $)) (|:| -2564 (-528))) "failed") $ (-112)) NIL (|has| |#1| (-981))) (((-3 (-2 (|:| |var| (-568 $)) (|:| -2564 (-528))) "failed") $ (-1095)) NIL (|has| |#1| (-981)))) (-2341 (((-110) $ (-112)) NIL) (((-110) $ (-1095)) 53)) (-2652 (($ $) NIL (-1463 (|has| |#1| (-452)) (|has| |#1| (-520))))) (-1375 (($ $ (-1095)) 241 (|has| |#1| (-520))) (($ $ (-1016 $)) 243 (|has| |#1| (-520)))) (-4073 (((-717) $) NIL)) (-2495 (((-1042) $) NIL)) (-2662 (((-110) $) 43)) (-2675 ((|#1| $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 288 (|has| |#1| (-520)))) (-2088 (($ (-595 $)) NIL (|has| |#1| (-520))) (($ $ $) NIL (|has| |#1| (-520)))) (-3947 (((-110) $ $) NIL) (((-110) $ (-1095)) NIL)) (-4239 (($ $ (-1095)) 216 (|has| |#1| (-520))) (($ $) 214 (|has| |#1| (-520)))) (-3918 (($ $) 208 (|has| |#1| (-520)))) (-2394 (((-398 (-1091 $)) (-1091 $)) 293 (-12 (|has| |#1| (-431)) (|has| |#1| (-520))))) (-2437 (((-398 $) $) NIL (|has| |#1| (-520)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-520))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#1| (-520)))) (-3477 (((-3 $ "failed") $ $) NIL (|has| |#1| (-520)))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-520)))) (-2656 (($ $) 129 (|has| |#1| (-520)))) (-3578 (((-110) $) NIL (|has| $ (-972 (-528))))) (-4014 (($ $ (-568 $) $) NIL) (($ $ (-595 (-568 $)) (-595 $)) 407) (($ $ (-595 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL) (($ $ (-595 (-1095)) (-595 (-1 $ $))) NIL) (($ $ (-595 (-1095)) (-595 (-1 $ (-595 $)))) NIL) (($ $ (-1095) (-1 $ (-595 $))) NIL) (($ $ (-1095) (-1 $ $)) NIL) (($ $ (-595 (-112)) (-595 (-1 $ $))) 361) (($ $ (-595 (-112)) (-595 (-1 $ (-595 $)))) NIL) (($ $ (-112) (-1 $ (-595 $))) NIL) (($ $ (-112) (-1 $ $)) NIL) (($ $ (-1095)) NIL (|has| |#1| (-570 (-504)))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-570 (-504)))) (($ $) NIL (|has| |#1| (-570 (-504)))) (($ $ (-112) $ (-1095)) 349 (|has| |#1| (-570 (-504)))) (($ $ (-595 (-112)) (-595 $) (-1095)) 348 (|has| |#1| (-570 (-504)))) (($ $ (-595 (-1095)) (-595 (-717)) (-595 (-1 $ $))) NIL (|has| |#1| (-981))) (($ $ (-595 (-1095)) (-595 (-717)) (-595 (-1 $ (-595 $)))) NIL (|has| |#1| (-981))) (($ $ (-1095) (-717) (-1 $ (-595 $))) NIL (|has| |#1| (-981))) (($ $ (-1095) (-717) (-1 $ $)) NIL (|has| |#1| (-981)))) (-3973 (((-717) $) NIL (|has| |#1| (-520)))) (-2666 (($ $) 229 (|has| |#1| (-520)))) (-3043 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-595 $)) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-520)))) (-3581 (($ $) NIL) (($ $ $) NIL)) (-2700 (($ $) 239 (|has| |#1| (-520)))) (-2251 (($ $) 190 (|has| |#1| (-520)))) (-3235 (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#1| (-981))) (($ $ (-1095) (-717)) NIL (|has| |#1| (-981))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-981))) (($ $ (-1095)) NIL (|has| |#1| (-981)))) (-4118 (($ $) 73 (|has| |#1| (-520)))) (-3042 (((-1047 |#1| (-568 $)) $) 86 (|has| |#1| (-520)))) (-4090 (($ $) 304 (|has| $ (-981)))) (-2917 (($ $) 167 (|has| |#1| (-520)))) (-2773 (($ $) 143 (|has| |#1| (-520)))) (-2892 (($ $) 163 (|has| |#1| (-520)))) (-2749 (($ $) 139 (|has| |#1| (-520)))) (-2869 (($ $) 159 (|has| |#1| (-520)))) (-2724 (($ $) 135 (|has| |#1| (-520)))) (-3155 (((-831 (-528)) $) NIL (|has| |#1| (-570 (-831 (-528))))) (((-831 (-359)) $) NIL (|has| |#1| (-570 (-831 (-359))))) (($ (-398 $)) NIL (|has| |#1| (-520))) (((-504) $) 346 (|has| |#1| (-570 (-504))))) (-4097 (($ $ $) NIL (|has| |#1| (-452)))) (-2405 (($ $ $) NIL (|has| |#1| (-452)))) (-2222 (((-802) $) 406) (($ (-568 $)) 397) (($ (-1095)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-520))) (($ (-47)) 299 (-12 (|has| |#1| (-520)) (|has| |#1| (-972 (-528))))) (($ (-1047 |#1| (-568 $))) 88 (|has| |#1| (-981))) (($ (-387 |#1|)) NIL (|has| |#1| (-520))) (($ (-891 (-387 |#1|))) NIL (|has| |#1| (-520))) (($ (-387 (-891 (-387 |#1|)))) NIL (|has| |#1| (-520))) (($ (-387 (-891 |#1|))) NIL (|has| |#1| (-520))) (($ (-891 |#1|)) NIL (|has| |#1| (-981))) (($ (-387 (-528))) NIL (-1463 (|has| |#1| (-520)) (|has| |#1| (-972 (-387 (-528)))))) (($ (-528)) 34 (-1463 (|has| |#1| (-972 (-528))) (|has| |#1| (-981))))) (-3749 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3742 (((-717)) NIL (|has| |#1| (-981)))) (-1491 (($ $) NIL) (($ (-595 $)) NIL)) (-3709 (($ $ $) 210 (|has| |#1| (-520)))) (-2803 (($ $ $) 196 (|has| |#1| (-520)))) (-2938 (($ $ $) 200 (|has| |#1| (-520)))) (-3950 (($ $ $) 194 (|has| |#1| (-520)))) (-1978 (($ $ $) 198 (|has| |#1| (-520)))) (-2042 (((-110) (-112)) 9)) (-2953 (($ $) 173 (|has| |#1| (-520)))) (-2811 (($ $) 149 (|has| |#1| (-520)))) (-4016 (((-110) $ $) NIL (|has| |#1| (-520)))) (-2928 (($ $) 169 (|has| |#1| (-520)))) (-2784 (($ $) 145 (|has| |#1| (-520)))) (-2981 (($ $) 177 (|has| |#1| (-520)))) (-2836 (($ $) 153 (|has| |#1| (-520)))) (-3016 (($ (-1095) $) NIL) (($ (-1095) $ $) NIL) (($ (-1095) $ $ $) NIL) (($ (-1095) $ $ $ $) NIL) (($ (-1095) (-595 $)) NIL)) (-1599 (($ $) 204 (|has| |#1| (-520)))) (-2815 (($ $) 202 (|has| |#1| (-520)))) (-3592 (($ $) 179 (|has| |#1| (-520)))) (-2846 (($ $) 155 (|has| |#1| (-520)))) (-2967 (($ $) 175 (|has| |#1| (-520)))) (-2825 (($ $) 151 (|has| |#1| (-520)))) (-2940 (($ $) 171 (|has| |#1| (-520)))) (-2797 (($ $) 147 (|has| |#1| (-520)))) (-1775 (($ $) 182 (|has| |#1| (-520)))) (-2690 (($ $ (-528)) NIL (-1463 (|has| |#1| (-452)) (|has| |#1| (-520)))) (($ $ (-717)) NIL (-1463 (-12 (|has| |#1| (-591 (-528))) (|has| |#1| (-981))) (|has| |#1| (-1035)))) (($ $ (-860)) NIL (-1463 (-12 (|has| |#1| (-591 (-528))) (|has| |#1| (-981))) (|has| |#1| (-1035))))) (-2969 (($) 20 (-1463 (|has| |#1| (-25)) (-12 (|has| |#1| (-591 (-528))) (|has| |#1| (-981)))) CONST)) (-3727 (($ $) 233 (|has| |#1| (-520)))) (-2982 (($) 22 (-1463 (-12 (|has| |#1| (-591 (-528))) (|has| |#1| (-981))) (|has| |#1| (-1035))) CONST)) (-3818 (($ $) 184 (|has| |#1| (-520))) (($ $ $) 186 (|has| |#1| (-520)))) (-3609 (($ $) 231 (|has| |#1| (-520)))) (-3245 (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#1| (-981))) (($ $ (-1095) (-717)) NIL (|has| |#1| (-981))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-981))) (($ $ (-1095)) NIL (|has| |#1| (-981)))) (-3114 (($ $) 235 (|has| |#1| (-520)))) (-3167 (($ $ $) 188 (|has| |#1| (-520)))) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 81)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 80)) (-2296 (($ (-1047 |#1| (-568 $)) (-1047 |#1| (-568 $))) 98 (|has| |#1| (-520))) (($ $ $) 42 (-1463 (|has| |#1| (-452)) (|has| |#1| (-520))))) (-2286 (($ $ $) 40 (-1463 (|has| |#1| (-21)) (-12 (|has| |#1| (-591 (-528))) (|has| |#1| (-981))))) (($ $) 29 (-1463 (|has| |#1| (-21)) (-12 (|has| |#1| (-591 (-528))) (|has| |#1| (-981)))))) (-2275 (($ $ $) 38 (-1463 (|has| |#1| (-25)) (-12 (|has| |#1| (-591 (-528))) (|has| |#1| (-981)))))) (** (($ $ $) 66 (|has| |#1| (-520))) (($ $ (-387 (-528))) 301 (|has| |#1| (-520))) (($ $ (-528)) 76 (-1463 (|has| |#1| (-452)) (|has| |#1| (-520)))) (($ $ (-717)) 74 (-1463 (-12 (|has| |#1| (-591 (-528))) (|has| |#1| (-981))) (|has| |#1| (-1035)))) (($ $ (-860)) 78 (-1463 (-12 (|has| |#1| (-591 (-528))) (|has| |#1| (-981))) (|has| |#1| (-1035))))) (* (($ (-387 (-528)) $) NIL (|has| |#1| (-520))) (($ $ (-387 (-528))) NIL (|has| |#1| (-520))) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162))) (($ $ $) 36 (-1463 (-12 (|has| |#1| (-591 (-528))) (|has| |#1| (-981))) (|has| |#1| (-1035)))) (($ (-528) $) 32 (-1463 (|has| |#1| (-21)) (-12 (|has| |#1| (-591 (-528))) (|has| |#1| (-981))))) (($ (-717) $) NIL (-1463 (|has| |#1| (-25)) (-12 (|has| |#1| (-591 (-528))) (|has| |#1| (-981))))) (($ (-860) $) NIL (-1463 (|has| |#1| (-25)) (-12 (|has| |#1| (-591 (-528))) (|has| |#1| (-981)))))))
-(((-296 |#1|) (-13 (-410 |#1|) (-10 -8 (IF (|has| |#1| (-520)) (PROGN (-6 (-29 |#1|)) (-6 (-1117)) (-6 (-151)) (-6 (-581)) (-6 (-1059)) (-15 -1422 ($ $)) (-15 -3393 ((-110) $)) (-15 -1291 ($ $ (-528))) (IF (|has| |#1| (-431)) (PROGN (-15 -2394 ((-398 (-1091 $)) (-1091 $))) (-15 -2152 ((-398 (-1091 $)) (-1091 $)))) |%noBranch|) (IF (|has| |#1| (-972 (-528))) (-6 (-972 (-47))) |%noBranch|)) |%noBranch|))) (-793)) (T -296))
-((-1422 (*1 *1 *1) (-12 (-5 *1 (-296 *2)) (-4 *2 (-520)) (-4 *2 (-793)))) (-3393 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-296 *3)) (-4 *3 (-520)) (-4 *3 (-793)))) (-1291 (*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-296 *3)) (-4 *3 (-520)) (-4 *3 (-793)))) (-2394 (*1 *2 *3) (-12 (-5 *2 (-398 (-1091 *1))) (-5 *1 (-296 *4)) (-5 *3 (-1091 *1)) (-4 *4 (-431)) (-4 *4 (-520)) (-4 *4 (-793)))) (-2152 (*1 *2 *3) (-12 (-5 *2 (-398 (-1091 *1))) (-5 *1 (-296 *4)) (-5 *3 (-1091 *1)) (-4 *4 (-431)) (-4 *4 (-520)) (-4 *4 (-793)))))
-(-13 (-410 |#1|) (-10 -8 (IF (|has| |#1| (-520)) (PROGN (-6 (-29 |#1|)) (-6 (-1117)) (-6 (-151)) (-6 (-581)) (-6 (-1059)) (-15 -1422 ($ $)) (-15 -3393 ((-110) $)) (-15 -1291 ($ $ (-528))) (IF (|has| |#1| (-431)) (PROGN (-15 -2394 ((-398 (-1091 $)) (-1091 $))) (-15 -2152 ((-398 (-1091 $)) (-1091 $)))) |%noBranch|) (IF (|has| |#1| (-972 (-528))) (-6 (-972 (-47))) |%noBranch|)) |%noBranch|)))
-((-2804 (((-51) |#2| (-112) (-275 |#2|) (-595 |#2|)) 88) (((-51) |#2| (-112) (-275 |#2|) (-275 |#2|)) 84) (((-51) |#2| (-112) (-275 |#2|) |#2|) 86) (((-51) (-275 |#2|) (-112) (-275 |#2|) |#2|) 87) (((-51) (-595 |#2|) (-595 (-112)) (-275 |#2|) (-595 (-275 |#2|))) 80) (((-51) (-595 |#2|) (-595 (-112)) (-275 |#2|) (-595 |#2|)) 82) (((-51) (-595 (-275 |#2|)) (-595 (-112)) (-275 |#2|) (-595 |#2|)) 83) (((-51) (-595 (-275 |#2|)) (-595 (-112)) (-275 |#2|) (-595 (-275 |#2|))) 81) (((-51) (-275 |#2|) (-112) (-275 |#2|) (-595 |#2|)) 89) (((-51) (-275 |#2|) (-112) (-275 |#2|) (-275 |#2|)) 85)))
-(((-297 |#1| |#2|) (-10 -7 (-15 -2804 ((-51) (-275 |#2|) (-112) (-275 |#2|) (-275 |#2|))) (-15 -2804 ((-51) (-275 |#2|) (-112) (-275 |#2|) (-595 |#2|))) (-15 -2804 ((-51) (-595 (-275 |#2|)) (-595 (-112)) (-275 |#2|) (-595 (-275 |#2|)))) (-15 -2804 ((-51) (-595 (-275 |#2|)) (-595 (-112)) (-275 |#2|) (-595 |#2|))) (-15 -2804 ((-51) (-595 |#2|) (-595 (-112)) (-275 |#2|) (-595 |#2|))) (-15 -2804 ((-51) (-595 |#2|) (-595 (-112)) (-275 |#2|) (-595 (-275 |#2|)))) (-15 -2804 ((-51) (-275 |#2|) (-112) (-275 |#2|) |#2|)) (-15 -2804 ((-51) |#2| (-112) (-275 |#2|) |#2|)) (-15 -2804 ((-51) |#2| (-112) (-275 |#2|) (-275 |#2|))) (-15 -2804 ((-51) |#2| (-112) (-275 |#2|) (-595 |#2|)))) (-13 (-793) (-520) (-570 (-504))) (-410 |#1|)) (T -297))
-((-2804 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-275 *3)) (-5 *6 (-595 *3)) (-4 *3 (-410 *7)) (-4 *7 (-13 (-793) (-520) (-570 (-504)))) (-5 *2 (-51)) (-5 *1 (-297 *7 *3)))) (-2804 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-275 *3)) (-4 *3 (-410 *6)) (-4 *6 (-13 (-793) (-520) (-570 (-504)))) (-5 *2 (-51)) (-5 *1 (-297 *6 *3)))) (-2804 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-112)) (-5 *5 (-275 *3)) (-4 *3 (-410 *6)) (-4 *6 (-13 (-793) (-520) (-570 (-504)))) (-5 *2 (-51)) (-5 *1 (-297 *6 *3)))) (-2804 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-275 *5)) (-5 *4 (-112)) (-4 *5 (-410 *6)) (-4 *6 (-13 (-793) (-520) (-570 (-504)))) (-5 *2 (-51)) (-5 *1 (-297 *6 *5)))) (-2804 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-595 *8)) (-5 *4 (-595 (-112))) (-5 *6 (-595 (-275 *8))) (-4 *8 (-410 *7)) (-5 *5 (-275 *8)) (-4 *7 (-13 (-793) (-520) (-570 (-504)))) (-5 *2 (-51)) (-5 *1 (-297 *7 *8)))) (-2804 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-595 *7)) (-5 *4 (-595 (-112))) (-5 *5 (-275 *7)) (-4 *7 (-410 *6)) (-4 *6 (-13 (-793) (-520) (-570 (-504)))) (-5 *2 (-51)) (-5 *1 (-297 *6 *7)))) (-2804 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-595 (-275 *8))) (-5 *4 (-595 (-112))) (-5 *5 (-275 *8)) (-5 *6 (-595 *8)) (-4 *8 (-410 *7)) (-4 *7 (-13 (-793) (-520) (-570 (-504)))) (-5 *2 (-51)) (-5 *1 (-297 *7 *8)))) (-2804 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-595 (-275 *7))) (-5 *4 (-595 (-112))) (-5 *5 (-275 *7)) (-4 *7 (-410 *6)) (-4 *6 (-13 (-793) (-520) (-570 (-504)))) (-5 *2 (-51)) (-5 *1 (-297 *6 *7)))) (-2804 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-275 *7)) (-5 *4 (-112)) (-5 *5 (-595 *7)) (-4 *7 (-410 *6)) (-4 *6 (-13 (-793) (-520) (-570 (-504)))) (-5 *2 (-51)) (-5 *1 (-297 *6 *7)))) (-2804 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-275 *6)) (-5 *4 (-112)) (-4 *6 (-410 *5)) (-4 *5 (-13 (-793) (-520) (-570 (-504)))) (-5 *2 (-51)) (-5 *1 (-297 *5 *6)))))
-(-10 -7 (-15 -2804 ((-51) (-275 |#2|) (-112) (-275 |#2|) (-275 |#2|))) (-15 -2804 ((-51) (-275 |#2|) (-112) (-275 |#2|) (-595 |#2|))) (-15 -2804 ((-51) (-595 (-275 |#2|)) (-595 (-112)) (-275 |#2|) (-595 (-275 |#2|)))) (-15 -2804 ((-51) (-595 (-275 |#2|)) (-595 (-112)) (-275 |#2|) (-595 |#2|))) (-15 -2804 ((-51) (-595 |#2|) (-595 (-112)) (-275 |#2|) (-595 |#2|))) (-15 -2804 ((-51) (-595 |#2|) (-595 (-112)) (-275 |#2|) (-595 (-275 |#2|)))) (-15 -2804 ((-51) (-275 |#2|) (-112) (-275 |#2|) |#2|)) (-15 -2804 ((-51) |#2| (-112) (-275 |#2|) |#2|)) (-15 -2804 ((-51) |#2| (-112) (-275 |#2|) (-275 |#2|))) (-15 -2804 ((-51) |#2| (-112) (-275 |#2|) (-595 |#2|))))
-((-4015 (((-1127 (-865)) (-296 (-528)) (-296 (-528)) (-296 (-528)) (-1 (-207) (-207)) (-1018 (-207)) (-207) (-528) (-1078)) 46) (((-1127 (-865)) (-296 (-528)) (-296 (-528)) (-296 (-528)) (-1 (-207) (-207)) (-1018 (-207)) (-207) (-528)) 47) (((-1127 (-865)) (-296 (-528)) (-296 (-528)) (-296 (-528)) (-1 (-207) (-207)) (-1018 (-207)) (-1 (-207) (-207)) (-528) (-1078)) 43) (((-1127 (-865)) (-296 (-528)) (-296 (-528)) (-296 (-528)) (-1 (-207) (-207)) (-1018 (-207)) (-1 (-207) (-207)) (-528)) 44)) (-1227 (((-1 (-207) (-207)) (-207)) 45)))
-(((-298) (-10 -7 (-15 -1227 ((-1 (-207) (-207)) (-207))) (-15 -4015 ((-1127 (-865)) (-296 (-528)) (-296 (-528)) (-296 (-528)) (-1 (-207) (-207)) (-1018 (-207)) (-1 (-207) (-207)) (-528))) (-15 -4015 ((-1127 (-865)) (-296 (-528)) (-296 (-528)) (-296 (-528)) (-1 (-207) (-207)) (-1018 (-207)) (-1 (-207) (-207)) (-528) (-1078))) (-15 -4015 ((-1127 (-865)) (-296 (-528)) (-296 (-528)) (-296 (-528)) (-1 (-207) (-207)) (-1018 (-207)) (-207) (-528))) (-15 -4015 ((-1127 (-865)) (-296 (-528)) (-296 (-528)) (-296 (-528)) (-1 (-207) (-207)) (-1018 (-207)) (-207) (-528) (-1078))))) (T -298))
-((-4015 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-296 (-528))) (-5 *4 (-1 (-207) (-207))) (-5 *5 (-1018 (-207))) (-5 *6 (-207)) (-5 *7 (-528)) (-5 *8 (-1078)) (-5 *2 (-1127 (-865))) (-5 *1 (-298)))) (-4015 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-296 (-528))) (-5 *4 (-1 (-207) (-207))) (-5 *5 (-1018 (-207))) (-5 *6 (-207)) (-5 *7 (-528)) (-5 *2 (-1127 (-865))) (-5 *1 (-298)))) (-4015 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-296 (-528))) (-5 *4 (-1 (-207) (-207))) (-5 *5 (-1018 (-207))) (-5 *6 (-528)) (-5 *7 (-1078)) (-5 *2 (-1127 (-865))) (-5 *1 (-298)))) (-4015 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-296 (-528))) (-5 *4 (-1 (-207) (-207))) (-5 *5 (-1018 (-207))) (-5 *6 (-528)) (-5 *2 (-1127 (-865))) (-5 *1 (-298)))) (-1227 (*1 *2 *3) (-12 (-5 *2 (-1 (-207) (-207))) (-5 *1 (-298)) (-5 *3 (-207)))))
-(-10 -7 (-15 -1227 ((-1 (-207) (-207)) (-207))) (-15 -4015 ((-1127 (-865)) (-296 (-528)) (-296 (-528)) (-296 (-528)) (-1 (-207) (-207)) (-1018 (-207)) (-1 (-207) (-207)) (-528))) (-15 -4015 ((-1127 (-865)) (-296 (-528)) (-296 (-528)) (-296 (-528)) (-1 (-207) (-207)) (-1018 (-207)) (-1 (-207) (-207)) (-528) (-1078))) (-15 -4015 ((-1127 (-865)) (-296 (-528)) (-296 (-528)) (-296 (-528)) (-1 (-207) (-207)) (-1018 (-207)) (-207) (-528))) (-15 -4015 ((-1127 (-865)) (-296 (-528)) (-296 (-528)) (-296 (-528)) (-1 (-207) (-207)) (-1018 (-207)) (-207) (-528) (-1078))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 25)) (-2565 (((-595 (-1008)) $) NIL)) (-3915 (((-1095) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#1| (-520)))) (-1738 (($ $) NIL (|has| |#1| (-520)))) (-1811 (((-110) $) NIL (|has| |#1| (-520)))) (-1781 (($ $ (-387 (-528))) NIL) (($ $ (-387 (-528)) (-387 (-528))) NIL)) (-1514 (((-1076 (-2 (|:| |k| (-387 (-528))) (|:| |c| |#1|))) $) 20)) (-2880 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2735 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL (|has| |#1| (-343)))) (-2705 (((-398 $) $) NIL (|has| |#1| (-343)))) (-2450 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2213 (((-110) $ $) NIL (|has| |#1| (-343)))) (-2859 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2712 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-1397 (($ (-717) (-1076 (-2 (|:| |k| (-387 (-528))) (|:| |c| |#1|)))) NIL)) (-2904 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2761 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2816 (($) NIL T CONST)) (-3519 (($ $ $) NIL (|has| |#1| (-343)))) (-2388 (($ $) 32)) (-1312 (((-3 $ "failed") $) NIL)) (-3498 (($ $ $) NIL (|has| |#1| (-343)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL (|has| |#1| (-343)))) (-2124 (((-110) $) NIL (|has| |#1| (-343)))) (-1900 (((-110) $) NIL)) (-1505 (($) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3689 (((-387 (-528)) $) NIL) (((-387 (-528)) $ (-387 (-528))) 16)) (-1297 (((-110) $) NIL)) (-2796 (($ $ (-528)) NIL (|has| |#1| (-37 (-387 (-528)))))) (-1771 (($ $ (-860)) NIL) (($ $ (-387 (-528))) NIL)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-2195 (((-110) $) NIL)) (-2548 (($ |#1| (-387 (-528))) NIL) (($ $ (-1008) (-387 (-528))) NIL) (($ $ (-595 (-1008)) (-595 (-387 (-528)))) NIL)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-2097 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2686 (($ $) NIL)) (-2697 ((|#1| $) NIL)) (-2057 (($ (-595 $)) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-343)))) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL (|has| |#1| (-343)))) (-1923 (($ $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-1095)) NIL (-1463 (-12 (|has| |#1| (-15 -1923 (|#1| |#1| (-1095)))) (|has| |#1| (-15 -2565 ((-595 (-1095)) |#1|))) (|has| |#1| (-37 (-387 (-528))))) (-12 (|has| |#1| (-29 (-528))) (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-897)) (|has| |#1| (-1117)))))) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#1| (-343)))) (-2088 (($ (-595 $)) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-343)))) (-2437 (((-398 $) $) NIL (|has| |#1| (-343)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-343))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#1| (-343)))) (-3740 (($ $ (-387 (-528))) NIL)) (-3477 (((-3 $ "failed") $ $) NIL (|has| |#1| (-520)))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-3644 (((-387 (-528)) $) 17)) (-4238 (($ (-1162 |#1| |#2| |#3|)) 11)) (-2564 (((-1162 |#1| |#2| |#3|) $) 12)) (-2656 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4014 (((-1076 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-387 (-528))))))) (-3973 (((-717) $) NIL (|has| |#1| (-343)))) (-3043 ((|#1| $ (-387 (-528))) NIL) (($ $ $) NIL (|has| (-387 (-528)) (-1035)))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-343)))) (-3235 (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095)) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-717)) NIL (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (-2935 (((-387 (-528)) $) NIL)) (-2917 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2773 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2892 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2749 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2869 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2724 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3534 (($ $) 10)) (-2222 (((-802) $) 38) (($ (-528)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $) NIL (|has| |#1| (-520)))) (-3216 ((|#1| $ (-387 (-528))) 30)) (-3749 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3742 (((-717)) NIL)) (-1884 ((|#1| $) NIL)) (-2953 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2811 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4016 (((-110) $ $) NIL (|has| |#1| (-520)))) (-2928 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2784 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2981 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2836 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4083 ((|#1| $ (-387 (-528))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-387 (-528))))) (|has| |#1| (-15 -2222 (|#1| (-1095))))))) (-3592 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2846 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2967 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2825 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2940 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2797 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| |#1| (-343)))) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095)) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-717)) NIL (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 27)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 33)) (-2296 (($ $ |#1|) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528)))))) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-387 (-528)) $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528)))))))
-(((-299 |#1| |#2| |#3|) (-13 (-1158 |#1|) (-738) (-10 -8 (-15 -4238 ($ (-1162 |#1| |#2| |#3|))) (-15 -2564 ((-1162 |#1| |#2| |#3|) $)) (-15 -3644 ((-387 (-528)) $)))) (-13 (-343) (-793)) (-1095) |#1|) (T -299))
-((-4238 (*1 *1 *2) (-12 (-5 *2 (-1162 *3 *4 *5)) (-4 *3 (-13 (-343) (-793))) (-14 *4 (-1095)) (-14 *5 *3) (-5 *1 (-299 *3 *4 *5)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-1162 *3 *4 *5)) (-5 *1 (-299 *3 *4 *5)) (-4 *3 (-13 (-343) (-793))) (-14 *4 (-1095)) (-14 *5 *3))) (-3644 (*1 *2 *1) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-299 *3 *4 *5)) (-4 *3 (-13 (-343) (-793))) (-14 *4 (-1095)) (-14 *5 *3))))
-(-13 (-1158 |#1|) (-738) (-10 -8 (-15 -4238 ($ (-1162 |#1| |#2| |#3|))) (-15 -2564 ((-1162 |#1| |#2| |#3|) $)) (-15 -3644 ((-387 (-528)) $))))
-((-2796 (((-2 (|:| -2564 (-717)) (|:| -1641 |#1|) (|:| |radicand| (-595 |#1|))) (-398 |#1|) (-717)) 24)) (-2097 (((-595 (-2 (|:| -1641 (-717)) (|:| |logand| |#1|))) (-398 |#1|)) 28)))
-(((-300 |#1|) (-10 -7 (-15 -2796 ((-2 (|:| -2564 (-717)) (|:| -1641 |#1|) (|:| |radicand| (-595 |#1|))) (-398 |#1|) (-717))) (-15 -2097 ((-595 (-2 (|:| -1641 (-717)) (|:| |logand| |#1|))) (-398 |#1|)))) (-520)) (T -300))
-((-2097 (*1 *2 *3) (-12 (-5 *3 (-398 *4)) (-4 *4 (-520)) (-5 *2 (-595 (-2 (|:| -1641 (-717)) (|:| |logand| *4)))) (-5 *1 (-300 *4)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-398 *5)) (-4 *5 (-520)) (-5 *2 (-2 (|:| -2564 (-717)) (|:| -1641 *5) (|:| |radicand| (-595 *5)))) (-5 *1 (-300 *5)) (-5 *4 (-717)))))
-(-10 -7 (-15 -2796 ((-2 (|:| -2564 (-717)) (|:| -1641 |#1|) (|:| |radicand| (-595 |#1|))) (-398 |#1|) (-717))) (-15 -2097 ((-595 (-2 (|:| -1641 (-717)) (|:| |logand| |#1|))) (-398 |#1|))))
-((-2565 (((-595 |#2|) (-1091 |#4|)) 43)) (-2117 ((|#3| (-528)) 46)) (-2579 (((-1091 |#4|) (-1091 |#3|)) 30)) (-3995 (((-1091 |#4|) (-1091 |#4|) (-528)) 56)) (-1860 (((-1091 |#3|) (-1091 |#4|)) 21)) (-2935 (((-595 (-717)) (-1091 |#4|) (-595 |#2|)) 40)) (-2762 (((-1091 |#3|) (-1091 |#4|) (-595 |#2|) (-595 |#3|)) 35)))
-(((-301 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2762 ((-1091 |#3|) (-1091 |#4|) (-595 |#2|) (-595 |#3|))) (-15 -2935 ((-595 (-717)) (-1091 |#4|) (-595 |#2|))) (-15 -2565 ((-595 |#2|) (-1091 |#4|))) (-15 -1860 ((-1091 |#3|) (-1091 |#4|))) (-15 -2579 ((-1091 |#4|) (-1091 |#3|))) (-15 -3995 ((-1091 |#4|) (-1091 |#4|) (-528))) (-15 -2117 (|#3| (-528)))) (-739) (-793) (-981) (-888 |#3| |#1| |#2|)) (T -301))
-((-2117 (*1 *2 *3) (-12 (-5 *3 (-528)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *2 (-981)) (-5 *1 (-301 *4 *5 *2 *6)) (-4 *6 (-888 *2 *4 *5)))) (-3995 (*1 *2 *2 *3) (-12 (-5 *2 (-1091 *7)) (-5 *3 (-528)) (-4 *7 (-888 *6 *4 *5)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-981)) (-5 *1 (-301 *4 *5 *6 *7)))) (-2579 (*1 *2 *3) (-12 (-5 *3 (-1091 *6)) (-4 *6 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-1091 *7)) (-5 *1 (-301 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5)))) (-1860 (*1 *2 *3) (-12 (-5 *3 (-1091 *7)) (-4 *7 (-888 *6 *4 *5)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-981)) (-5 *2 (-1091 *6)) (-5 *1 (-301 *4 *5 *6 *7)))) (-2565 (*1 *2 *3) (-12 (-5 *3 (-1091 *7)) (-4 *7 (-888 *6 *4 *5)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-981)) (-5 *2 (-595 *5)) (-5 *1 (-301 *4 *5 *6 *7)))) (-2935 (*1 *2 *3 *4) (-12 (-5 *3 (-1091 *8)) (-5 *4 (-595 *6)) (-4 *6 (-793)) (-4 *8 (-888 *7 *5 *6)) (-4 *5 (-739)) (-4 *7 (-981)) (-5 *2 (-595 (-717))) (-5 *1 (-301 *5 *6 *7 *8)))) (-2762 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1091 *9)) (-5 *4 (-595 *7)) (-5 *5 (-595 *8)) (-4 *7 (-793)) (-4 *8 (-981)) (-4 *9 (-888 *8 *6 *7)) (-4 *6 (-739)) (-5 *2 (-1091 *8)) (-5 *1 (-301 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2762 ((-1091 |#3|) (-1091 |#4|) (-595 |#2|) (-595 |#3|))) (-15 -2935 ((-595 (-717)) (-1091 |#4|) (-595 |#2|))) (-15 -2565 ((-595 |#2|) (-1091 |#4|))) (-15 -1860 ((-1091 |#3|) (-1091 |#4|))) (-15 -2579 ((-1091 |#4|) (-1091 |#3|))) (-15 -3995 ((-1091 |#4|) (-1091 |#4|) (-528))) (-15 -2117 (|#3| (-528))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 14)) (-1514 (((-595 (-2 (|:| |gen| |#1|) (|:| -2656 (-528)))) $) 18)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2856 (((-717) $) NIL)) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#1| "failed") $) NIL)) (-2409 ((|#1| $) NIL)) (-2492 ((|#1| $ (-528)) NIL)) (-1277 (((-528) $ (-528)) NIL)) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-1333 (($ (-1 |#1| |#1|) $) NIL)) (-4041 (($ (-1 (-528) (-528)) $) 10)) (-3034 (((-1078) $) NIL)) (-3556 (($ $ $) NIL (|has| (-528) (-738)))) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL) (($ |#1|) NIL)) (-3216 (((-528) |#1| $) NIL)) (-2969 (($) 15 T CONST)) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) 21 (|has| |#1| (-793)))) (-2286 (($ $) 11) (($ $ $) 20)) (-2275 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ (-528)) NIL) (($ (-528) |#1|) 19)))
-(((-302 |#1|) (-13 (-21) (-664 (-528)) (-303 |#1| (-528)) (-10 -7 (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|))) (-1023)) (T -302))
-NIL
-(-13 (-21) (-664 (-528)) (-303 |#1| (-528)) (-10 -7 (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-1514 (((-595 (-2 (|:| |gen| |#1|) (|:| -2656 |#2|))) $) 27)) (-3181 (((-3 $ "failed") $ $) 19)) (-2856 (((-717) $) 28)) (-2816 (($) 17 T CONST)) (-3001 (((-3 |#1| "failed") $) 32)) (-2409 ((|#1| $) 31)) (-2492 ((|#1| $ (-528)) 25)) (-1277 ((|#2| $ (-528)) 26)) (-1333 (($ (-1 |#1| |#1|) $) 22)) (-4041 (($ (-1 |#2| |#2|) $) 23)) (-3034 (((-1078) $) 9)) (-3556 (($ $ $) 21 (|has| |#2| (-738)))) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11) (($ |#1|) 33)) (-3216 ((|#2| |#1| $) 24)) (-2969 (($) 18 T CONST)) (-2186 (((-110) $ $) 6)) (-2275 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ |#2| |#1|) 29)))
-(((-303 |#1| |#2|) (-133) (-1023) (-128)) (T -303))
-((-2275 (*1 *1 *2 *1) (-12 (-4 *1 (-303 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-128)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-303 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-128)))) (-2856 (*1 *2 *1) (-12 (-4 *1 (-303 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-128)) (-5 *2 (-717)))) (-1514 (*1 *2 *1) (-12 (-4 *1 (-303 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-128)) (-5 *2 (-595 (-2 (|:| |gen| *3) (|:| -2656 *4)))))) (-1277 (*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-4 *1 (-303 *4 *2)) (-4 *4 (-1023)) (-4 *2 (-128)))) (-2492 (*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-4 *1 (-303 *2 *4)) (-4 *4 (-128)) (-4 *2 (-1023)))) (-3216 (*1 *2 *3 *1) (-12 (-4 *1 (-303 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-128)))) (-4041 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-303 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-128)))) (-1333 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-303 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-128)))) (-3556 (*1 *1 *1 *1) (-12 (-4 *1 (-303 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-128)) (-4 *3 (-738)))))
-(-13 (-128) (-972 |t#1|) (-10 -8 (-15 -2275 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2856 ((-717) $)) (-15 -1514 ((-595 (-2 (|:| |gen| |t#1|) (|:| -2656 |t#2|))) $)) (-15 -1277 (|t#2| $ (-528))) (-15 -2492 (|t#1| $ (-528))) (-15 -3216 (|t#2| |t#1| $)) (-15 -4041 ($ (-1 |t#2| |t#2|) $)) (-15 -1333 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-738)) (-15 -3556 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-569 (-802)) . T) ((-972 |#1|) . T) ((-1023) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-1514 (((-595 (-2 (|:| |gen| |#1|) (|:| -2656 (-717)))) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2856 (((-717) $) NIL)) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#1| "failed") $) NIL)) (-2409 ((|#1| $) NIL)) (-2492 ((|#1| $ (-528)) NIL)) (-1277 (((-717) $ (-528)) NIL)) (-1333 (($ (-1 |#1| |#1|) $) NIL)) (-4041 (($ (-1 (-717) (-717)) $) NIL)) (-3034 (((-1078) $) NIL)) (-3556 (($ $ $) NIL (|has| (-717) (-738)))) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL) (($ |#1|) NIL)) (-3216 (((-717) |#1| $) NIL)) (-2969 (($) NIL T CONST)) (-2186 (((-110) $ $) NIL)) (-2275 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-717) |#1|) NIL)))
-(((-304 |#1|) (-303 |#1| (-717)) (-1023)) (T -304))
-NIL
-(-303 |#1| (-717))
-((-1551 (($ $) 53)) (-4047 (($ $ |#2| |#3| $) 14)) (-1264 (($ (-1 |#3| |#3|) $) 35)) (-2662 (((-110) $) 27)) (-2675 ((|#2| $) 29)) (-3477 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-1618 ((|#2| $) 49)) (-3348 (((-595 |#2|) $) 38)) (-1997 (($ $ $ (-717)) 23)) (-2296 (($ $ |#2|) 42)))
-(((-305 |#1| |#2| |#3|) (-10 -8 (-15 -1551 (|#1| |#1|)) (-15 -1618 (|#2| |#1|)) (-15 -3477 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1997 (|#1| |#1| |#1| (-717))) (-15 -4047 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1264 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3348 ((-595 |#2|) |#1|)) (-15 -2675 (|#2| |#1|)) (-15 -2662 ((-110) |#1|)) (-15 -3477 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2296 (|#1| |#1| |#2|))) (-306 |#2| |#3|) (-981) (-738)) (T -305))
-NIL
-(-10 -8 (-15 -1551 (|#1| |#1|)) (-15 -1618 (|#2| |#1|)) (-15 -3477 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1997 (|#1| |#1| |#1| (-717))) (-15 -4047 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1264 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3348 ((-595 |#2|) |#1|)) (-15 -2675 (|#2| |#1|)) (-15 -2662 ((-110) |#1|)) (-15 -3477 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2296 (|#1| |#1| |#2|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 51 (|has| |#1| (-520)))) (-1738 (($ $) 52 (|has| |#1| (-520)))) (-1811 (((-110) $) 54 (|has| |#1| (-520)))) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-3001 (((-3 (-528) "failed") $) 90 (|has| |#1| (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) 88 (|has| |#1| (-972 (-387 (-528))))) (((-3 |#1| "failed") $) 87)) (-2409 (((-528) $) 91 (|has| |#1| (-972 (-528)))) (((-387 (-528)) $) 89 (|has| |#1| (-972 (-387 (-528))))) ((|#1| $) 86)) (-2388 (($ $) 60)) (-1312 (((-3 $ "failed") $) 34)) (-1551 (($ $) 75 (|has| |#1| (-431)))) (-4047 (($ $ |#1| |#2| $) 79)) (-1297 (((-110) $) 31)) (-1224 (((-717) $) 82)) (-2195 (((-110) $) 62)) (-2548 (($ |#1| |#2|) 61)) (-3499 ((|#2| $) 81)) (-1264 (($ (-1 |#2| |#2|) $) 80)) (-3106 (($ (-1 |#1| |#1|) $) 63)) (-2686 (($ $) 65)) (-2697 ((|#1| $) 66)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2662 (((-110) $) 85)) (-2675 ((|#1| $) 84)) (-3477 (((-3 $ "failed") $ $) 50 (|has| |#1| (-520))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-520)))) (-2935 ((|#2| $) 64)) (-1618 ((|#1| $) 76 (|has| |#1| (-431)))) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ $) 49 (|has| |#1| (-520))) (($ |#1|) 47) (($ (-387 (-528))) 57 (-1463 (|has| |#1| (-972 (-387 (-528)))) (|has| |#1| (-37 (-387 (-528))))))) (-3348 (((-595 |#1|) $) 83)) (-3216 ((|#1| $ |#2|) 59)) (-3749 (((-3 $ "failed") $) 48 (|has| |#1| (-138)))) (-3742 (((-717)) 29)) (-1997 (($ $ $ (-717)) 78 (|has| |#1| (-162)))) (-4016 (((-110) $ $) 53 (|has| |#1| (-520)))) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2296 (($ $ |#1|) 58 (|has| |#1| (-343)))) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-387 (-528)) $) 56 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) 55 (|has| |#1| (-37 (-387 (-528)))))))
-(((-306 |#1| |#2|) (-133) (-981) (-738)) (T -306))
-((-2662 (*1 *2 *1) (-12 (-4 *1 (-306 *3 *4)) (-4 *3 (-981)) (-4 *4 (-738)) (-5 *2 (-110)))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-306 *2 *3)) (-4 *3 (-738)) (-4 *2 (-981)))) (-3348 (*1 *2 *1) (-12 (-4 *1 (-306 *3 *4)) (-4 *3 (-981)) (-4 *4 (-738)) (-5 *2 (-595 *3)))) (-1224 (*1 *2 *1) (-12 (-4 *1 (-306 *3 *4)) (-4 *3 (-981)) (-4 *4 (-738)) (-5 *2 (-717)))) (-3499 (*1 *2 *1) (-12 (-4 *1 (-306 *3 *2)) (-4 *3 (-981)) (-4 *2 (-738)))) (-1264 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-306 *3 *4)) (-4 *3 (-981)) (-4 *4 (-738)))) (-4047 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-306 *2 *3)) (-4 *2 (-981)) (-4 *3 (-738)))) (-1997 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-306 *3 *4)) (-4 *3 (-981)) (-4 *4 (-738)) (-4 *3 (-162)))) (-3477 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-306 *2 *3)) (-4 *2 (-981)) (-4 *3 (-738)) (-4 *2 (-520)))) (-1618 (*1 *2 *1) (-12 (-4 *1 (-306 *2 *3)) (-4 *3 (-738)) (-4 *2 (-981)) (-4 *2 (-431)))) (-1551 (*1 *1 *1) (-12 (-4 *1 (-306 *2 *3)) (-4 *2 (-981)) (-4 *3 (-738)) (-4 *2 (-431)))))
-(-13 (-46 |t#1| |t#2|) (-391 |t#1|) (-10 -8 (-15 -2662 ((-110) $)) (-15 -2675 (|t#1| $)) (-15 -3348 ((-595 |t#1|) $)) (-15 -1224 ((-717) $)) (-15 -3499 (|t#2| $)) (-15 -1264 ($ (-1 |t#2| |t#2|) $)) (-15 -4047 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-162)) (-15 -1997 ($ $ $ (-717))) |%noBranch|) (IF (|has| |t#1| (-520)) (-15 -3477 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-431)) (PROGN (-15 -1618 (|t#1| $)) (-15 -1551 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-520)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-387 (-528)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1463 (|has| |#1| (-520)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-569 (-802)) . T) ((-162) -1463 (|has| |#1| (-520)) (|has| |#1| (-162))) ((-271) |has| |#1| (-520)) ((-391 |#1|) . T) ((-520) |has| |#1| (-520)) ((-597 #0#) |has| |#1| (-37 (-387 (-528)))) ((-597 |#1|) . T) ((-597 $) . T) ((-664 #0#) |has| |#1| (-37 (-387 (-528)))) ((-664 |#1|) |has| |#1| (-162)) ((-664 $) |has| |#1| (-520)) ((-673) . T) ((-972 (-387 (-528))) |has| |#1| (-972 (-387 (-528)))) ((-972 (-528)) |has| |#1| (-972 (-528))) ((-972 |#1|) . T) ((-986 #0#) |has| |#1| (-37 (-387 (-528)))) ((-986 |#1|) . T) ((-986 $) -1463 (|has| |#1| (-520)) (|has| |#1| (-162))) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-1444 (((-1182) $ (-528) (-528)) NIL (|has| $ (-6 -4265)))) (-3608 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-793)))) (-3863 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4265))) (($ $) NIL (-12 (|has| $ (-6 -4265)) (|has| |#1| (-793))))) (-1289 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-793)))) (-3535 (((-110) $ (-717)) NIL)) (-1449 (((-110) (-110)) NIL)) (-2381 ((|#1| $ (-528) |#1|) NIL (|has| $ (-6 -4265))) ((|#1| $ (-1144 (-528)) |#1|) NIL (|has| $ (-6 -4265)))) (-1836 (($ (-1 (-110) |#1|) $) NIL)) (-1573 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2816 (($) NIL T CONST)) (-2472 (($ $) NIL (|has| $ (-6 -4265)))) (-3009 (($ $) NIL)) (-2833 (($ $) NIL (|has| |#1| (-1023)))) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3991 (($ |#1| $) NIL (|has| |#1| (-1023))) (($ (-1 (-110) |#1|) $) NIL)) (-2280 (($ |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4264)))) (-2812 ((|#1| $ (-528) |#1|) NIL (|has| $ (-6 -4265)))) (-2742 ((|#1| $ (-528)) NIL)) (-3140 (((-528) (-1 (-110) |#1|) $) NIL) (((-528) |#1| $) NIL (|has| |#1| (-1023))) (((-528) |#1| $ (-528)) NIL (|has| |#1| (-1023)))) (-4096 (($ $ (-528)) NIL)) (-3538 (((-717) $) NIL)) (-3342 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-3462 (($ (-717) |#1|) NIL)) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-528) $) NIL (|has| (-528) (-793)))) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-3368 (($ $ $) NIL (|has| |#1| (-793))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-1356 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-793)))) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-1709 (((-528) $) NIL (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-2800 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-1950 (($ $ $ (-528)) NIL) (($ |#1| $ (-528)) NIL)) (-3939 (($ |#1| $ (-528)) NIL) (($ $ $ (-528)) NIL)) (-2084 (((-595 (-528)) $) NIL)) (-3966 (((-110) (-528) $) NIL)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-3215 (($ (-595 |#1|)) NIL)) (-2890 ((|#1| $) NIL (|has| (-528) (-793)))) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1332 (($ $ |#1|) NIL (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2861 (((-595 |#1|) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#1| $ (-528) |#1|) NIL) ((|#1| $ (-528)) NIL) (($ $ (-1144 (-528))) NIL)) (-1704 (($ $ (-1144 (-528))) NIL) (($ $ (-528)) NIL)) (-1745 (($ $ (-528)) NIL) (($ $ (-1144 (-528))) NIL)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3761 (($ $ $ (-528)) NIL (|has| $ (-6 -4265)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) NIL (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) NIL)) (-3579 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3400 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-595 $)) NIL)) (-2222 (((-802) $) NIL (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-307 |#1|) (-13 (-19 |#1|) (-263 |#1|) (-10 -8 (-15 -3215 ($ (-595 |#1|))) (-15 -3538 ((-717) $)) (-15 -4096 ($ $ (-528))) (-15 -1449 ((-110) (-110))))) (-1131)) (T -307))
-((-3215 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1131)) (-5 *1 (-307 *3)))) (-3538 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-307 *3)) (-4 *3 (-1131)))) (-4096 (*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-307 *3)) (-4 *3 (-1131)))) (-1449 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-307 *3)) (-4 *3 (-1131)))))
-(-13 (-19 |#1|) (-263 |#1|) (-10 -8 (-15 -3215 ($ (-595 |#1|))) (-15 -3538 ((-717) $)) (-15 -4096 ($ $ (-528))) (-15 -1449 ((-110) (-110)))))
-((-3455 (((-110) $) 42)) (-3370 (((-717)) 22)) (-1323 ((|#2| $) 46) (($ $ (-860)) 103)) (-2856 (((-717)) 98)) (-1945 (($ (-1177 |#2|)) 20)) (-2581 (((-110) $) 115)) (-3297 ((|#2| $) 48) (($ $ (-860)) 101)) (-3537 (((-1091 |#2|) $) NIL) (((-1091 $) $ (-860)) 95)) (-2304 (((-1091 |#2|) $) 83)) (-2143 (((-1091 |#2|) $) 80) (((-3 (-1091 |#2|) "failed") $ $) 77)) (-3640 (($ $ (-1091 |#2|)) 53)) (-2209 (((-779 (-860))) 28) (((-860)) 43)) (-3017 (((-130)) 25)) (-2935 (((-779 (-860)) $) 30) (((-860) $) 117)) (-1469 (($) 109)) (-4243 (((-1177 |#2|) $) NIL) (((-635 |#2|) (-1177 $)) 39)) (-3749 (($ $) NIL) (((-3 $ "failed") $) 86)) (-2190 (((-110) $) 41)))
-(((-308 |#1| |#2|) (-10 -8 (-15 -3749 ((-3 |#1| "failed") |#1|)) (-15 -2856 ((-717))) (-15 -3749 (|#1| |#1|)) (-15 -2143 ((-3 (-1091 |#2|) "failed") |#1| |#1|)) (-15 -2143 ((-1091 |#2|) |#1|)) (-15 -2304 ((-1091 |#2|) |#1|)) (-15 -3640 (|#1| |#1| (-1091 |#2|))) (-15 -2581 ((-110) |#1|)) (-15 -1469 (|#1|)) (-15 -1323 (|#1| |#1| (-860))) (-15 -3297 (|#1| |#1| (-860))) (-15 -3537 ((-1091 |#1|) |#1| (-860))) (-15 -1323 (|#2| |#1|)) (-15 -3297 (|#2| |#1|)) (-15 -2935 ((-860) |#1|)) (-15 -2209 ((-860))) (-15 -3537 ((-1091 |#2|) |#1|)) (-15 -1945 (|#1| (-1177 |#2|))) (-15 -4243 ((-635 |#2|) (-1177 |#1|))) (-15 -4243 ((-1177 |#2|) |#1|)) (-15 -3370 ((-717))) (-15 -2209 ((-779 (-860)))) (-15 -2935 ((-779 (-860)) |#1|)) (-15 -3455 ((-110) |#1|)) (-15 -2190 ((-110) |#1|)) (-15 -3017 ((-130)))) (-309 |#2|) (-343)) (T -308))
-((-3017 (*1 *2) (-12 (-4 *4 (-343)) (-5 *2 (-130)) (-5 *1 (-308 *3 *4)) (-4 *3 (-309 *4)))) (-2209 (*1 *2) (-12 (-4 *4 (-343)) (-5 *2 (-779 (-860))) (-5 *1 (-308 *3 *4)) (-4 *3 (-309 *4)))) (-3370 (*1 *2) (-12 (-4 *4 (-343)) (-5 *2 (-717)) (-5 *1 (-308 *3 *4)) (-4 *3 (-309 *4)))) (-2209 (*1 *2) (-12 (-4 *4 (-343)) (-5 *2 (-860)) (-5 *1 (-308 *3 *4)) (-4 *3 (-309 *4)))) (-2856 (*1 *2) (-12 (-4 *4 (-343)) (-5 *2 (-717)) (-5 *1 (-308 *3 *4)) (-4 *3 (-309 *4)))))
-(-10 -8 (-15 -3749 ((-3 |#1| "failed") |#1|)) (-15 -2856 ((-717))) (-15 -3749 (|#1| |#1|)) (-15 -2143 ((-3 (-1091 |#2|) "failed") |#1| |#1|)) (-15 -2143 ((-1091 |#2|) |#1|)) (-15 -2304 ((-1091 |#2|) |#1|)) (-15 -3640 (|#1| |#1| (-1091 |#2|))) (-15 -2581 ((-110) |#1|)) (-15 -1469 (|#1|)) (-15 -1323 (|#1| |#1| (-860))) (-15 -3297 (|#1| |#1| (-860))) (-15 -3537 ((-1091 |#1|) |#1| (-860))) (-15 -1323 (|#2| |#1|)) (-15 -3297 (|#2| |#1|)) (-15 -2935 ((-860) |#1|)) (-15 -2209 ((-860))) (-15 -3537 ((-1091 |#2|) |#1|)) (-15 -1945 (|#1| (-1177 |#2|))) (-15 -4243 ((-635 |#2|) (-1177 |#1|))) (-15 -4243 ((-1177 |#2|) |#1|)) (-15 -3370 ((-717))) (-15 -2209 ((-779 (-860)))) (-15 -2935 ((-779 (-860)) |#1|)) (-15 -3455 ((-110) |#1|)) (-15 -2190 ((-110) |#1|)) (-15 -3017 ((-130))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 41)) (-1738 (($ $) 40)) (-1811 (((-110) $) 38)) (-3455 (((-110) $) 94)) (-3370 (((-717)) 90)) (-1323 ((|#1| $) 140) (($ $ (-860)) 137 (|has| |#1| (-348)))) (-2338 (((-1105 (-860) (-717)) (-528)) 122 (|has| |#1| (-348)))) (-3181 (((-3 $ "failed") $ $) 19)) (-1232 (($ $) 73)) (-2705 (((-398 $) $) 72)) (-2213 (((-110) $ $) 59)) (-2856 (((-717)) 112 (|has| |#1| (-348)))) (-2816 (($) 17 T CONST)) (-3001 (((-3 |#1| "failed") $) 101)) (-2409 ((|#1| $) 100)) (-1945 (($ (-1177 |#1|)) 146)) (-2413 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-348)))) (-3519 (($ $ $) 55)) (-1312 (((-3 $ "failed") $) 34)) (-1338 (($) 109 (|has| |#1| (-348)))) (-3498 (($ $ $) 56)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 51)) (-2916 (($) 124 (|has| |#1| (-348)))) (-4086 (((-110) $) 125 (|has| |#1| (-348)))) (-2790 (($ $ (-717)) 87 (-1463 (|has| |#1| (-138)) (|has| |#1| (-348)))) (($ $) 86 (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-2124 (((-110) $) 71)) (-3689 (((-860) $) 127 (|has| |#1| (-348))) (((-779 (-860)) $) 84 (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-1297 (((-110) $) 31)) (-2339 (($) 135 (|has| |#1| (-348)))) (-2581 (((-110) $) 134 (|has| |#1| (-348)))) (-3297 ((|#1| $) 141) (($ $ (-860)) 138 (|has| |#1| (-348)))) (-3296 (((-3 $ "failed") $) 113 (|has| |#1| (-348)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) 52)) (-3537 (((-1091 |#1|) $) 145) (((-1091 $) $ (-860)) 139 (|has| |#1| (-348)))) (-3201 (((-860) $) 110 (|has| |#1| (-348)))) (-2304 (((-1091 |#1|) $) 131 (|has| |#1| (-348)))) (-2143 (((-1091 |#1|) $) 130 (|has| |#1| (-348))) (((-3 (-1091 |#1|) "failed") $ $) 129 (|has| |#1| (-348)))) (-3640 (($ $ (-1091 |#1|)) 132 (|has| |#1| (-348)))) (-2057 (($ $ $) 46) (($ (-595 $)) 45)) (-3034 (((-1078) $) 9)) (-2652 (($ $) 70)) (-4197 (($) 114 (|has| |#1| (-348)) CONST)) (-3108 (($ (-860)) 111 (|has| |#1| (-348)))) (-3148 (((-110) $) 93)) (-2495 (((-1042) $) 10)) (-1261 (($) 133 (|has| |#1| (-348)))) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 44)) (-2088 (($ $ $) 48) (($ (-595 $)) 47)) (-3010 (((-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528))))) 121 (|has| |#1| (-348)))) (-2437 (((-398 $) $) 74)) (-2209 (((-779 (-860))) 91) (((-860)) 143)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3477 (((-3 $ "failed") $ $) 42)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 50)) (-3973 (((-717) $) 58)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 57)) (-3500 (((-717) $) 126 (|has| |#1| (-348))) (((-3 (-717) "failed") $ $) 85 (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-3017 (((-130)) 99)) (-3235 (($ $) 118 (|has| |#1| (-348))) (($ $ (-717)) 116 (|has| |#1| (-348)))) (-2935 (((-779 (-860)) $) 92) (((-860) $) 142)) (-4090 (((-1091 |#1|)) 144)) (-1984 (($) 123 (|has| |#1| (-348)))) (-1469 (($) 136 (|has| |#1| (-348)))) (-4243 (((-1177 |#1|) $) 148) (((-635 |#1|) (-1177 $)) 147)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) 120 (|has| |#1| (-348)))) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ $) 43) (($ (-387 (-528))) 65) (($ |#1|) 102)) (-3749 (($ $) 119 (|has| |#1| (-348))) (((-3 $ "failed") $) 83 (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-3742 (((-717)) 29)) (-1400 (((-1177 $)) 150) (((-1177 $) (-860)) 149)) (-4016 (((-110) $ $) 39)) (-2190 (((-110) $) 95)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33) (($ $ (-528)) 69)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2698 (($ $) 89 (|has| |#1| (-348))) (($ $ (-717)) 88 (|has| |#1| (-348)))) (-3245 (($ $) 117 (|has| |#1| (-348))) (($ $ (-717)) 115 (|has| |#1| (-348)))) (-2186 (((-110) $ $) 6)) (-2296 (($ $ $) 64) (($ $ |#1|) 98)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32) (($ $ (-528)) 68)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ (-387 (-528))) 67) (($ (-387 (-528)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
-(((-309 |#1|) (-133) (-343)) (T -309))
-((-1400 (*1 *2) (-12 (-4 *3 (-343)) (-5 *2 (-1177 *1)) (-4 *1 (-309 *3)))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-860)) (-4 *4 (-343)) (-5 *2 (-1177 *1)) (-4 *1 (-309 *4)))) (-4243 (*1 *2 *1) (-12 (-4 *1 (-309 *3)) (-4 *3 (-343)) (-5 *2 (-1177 *3)))) (-4243 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-309 *4)) (-4 *4 (-343)) (-5 *2 (-635 *4)))) (-1945 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-343)) (-4 *1 (-309 *3)))) (-3537 (*1 *2 *1) (-12 (-4 *1 (-309 *3)) (-4 *3 (-343)) (-5 *2 (-1091 *3)))) (-4090 (*1 *2) (-12 (-4 *1 (-309 *3)) (-4 *3 (-343)) (-5 *2 (-1091 *3)))) (-2209 (*1 *2) (-12 (-4 *1 (-309 *3)) (-4 *3 (-343)) (-5 *2 (-860)))) (-2935 (*1 *2 *1) (-12 (-4 *1 (-309 *3)) (-4 *3 (-343)) (-5 *2 (-860)))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-309 *2)) (-4 *2 (-343)))) (-1323 (*1 *2 *1) (-12 (-4 *1 (-309 *2)) (-4 *2 (-343)))) (-3537 (*1 *2 *1 *3) (-12 (-5 *3 (-860)) (-4 *4 (-348)) (-4 *4 (-343)) (-5 *2 (-1091 *1)) (-4 *1 (-309 *4)))) (-3297 (*1 *1 *1 *2) (-12 (-5 *2 (-860)) (-4 *1 (-309 *3)) (-4 *3 (-343)) (-4 *3 (-348)))) (-1323 (*1 *1 *1 *2) (-12 (-5 *2 (-860)) (-4 *1 (-309 *3)) (-4 *3 (-343)) (-4 *3 (-348)))) (-1469 (*1 *1) (-12 (-4 *1 (-309 *2)) (-4 *2 (-348)) (-4 *2 (-343)))) (-2339 (*1 *1) (-12 (-4 *1 (-309 *2)) (-4 *2 (-348)) (-4 *2 (-343)))) (-2581 (*1 *2 *1) (-12 (-4 *1 (-309 *3)) (-4 *3 (-343)) (-4 *3 (-348)) (-5 *2 (-110)))) (-1261 (*1 *1) (-12 (-4 *1 (-309 *2)) (-4 *2 (-348)) (-4 *2 (-343)))) (-3640 (*1 *1 *1 *2) (-12 (-5 *2 (-1091 *3)) (-4 *3 (-348)) (-4 *1 (-309 *3)) (-4 *3 (-343)))) (-2304 (*1 *2 *1) (-12 (-4 *1 (-309 *3)) (-4 *3 (-343)) (-4 *3 (-348)) (-5 *2 (-1091 *3)))) (-2143 (*1 *2 *1) (-12 (-4 *1 (-309 *3)) (-4 *3 (-343)) (-4 *3 (-348)) (-5 *2 (-1091 *3)))) (-2143 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-309 *3)) (-4 *3 (-343)) (-4 *3 (-348)) (-5 *2 (-1091 *3)))))
-(-13 (-1194 |t#1|) (-972 |t#1|) (-10 -8 (-15 -1400 ((-1177 $))) (-15 -1400 ((-1177 $) (-860))) (-15 -4243 ((-1177 |t#1|) $)) (-15 -4243 ((-635 |t#1|) (-1177 $))) (-15 -1945 ($ (-1177 |t#1|))) (-15 -3537 ((-1091 |t#1|) $)) (-15 -4090 ((-1091 |t#1|))) (-15 -2209 ((-860))) (-15 -2935 ((-860) $)) (-15 -3297 (|t#1| $)) (-15 -1323 (|t#1| $)) (IF (|has| |t#1| (-348)) (PROGN (-6 (-329)) (-15 -3537 ((-1091 $) $ (-860))) (-15 -3297 ($ $ (-860))) (-15 -1323 ($ $ (-860))) (-15 -1469 ($)) (-15 -2339 ($)) (-15 -2581 ((-110) $)) (-15 -1261 ($)) (-15 -3640 ($ $ (-1091 |t#1|))) (-15 -2304 ((-1091 |t#1|) $)) (-15 -2143 ((-1091 |t#1|) $)) (-15 -2143 ((-3 (-1091 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-387 (-528))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1463 (|has| |#1| (-348)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-569 (-802)) . T) ((-162) . T) ((-215) |has| |#1| (-348)) ((-225) . T) ((-271) . T) ((-288) . T) ((-1194 |#1|) . T) ((-343) . T) ((-382) -1463 (|has| |#1| (-348)) (|has| |#1| (-138))) ((-348) |has| |#1| (-348)) ((-329) |has| |#1| (-348)) ((-431) . T) ((-520) . T) ((-597 #0#) . T) ((-597 |#1|) . T) ((-597 $) . T) ((-664 #0#) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-673) . T) ((-859) . T) ((-972 |#1|) . T) ((-986 #0#) . T) ((-986 |#1|) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1071) |has| |#1| (-348)) ((-1135) . T) ((-1184 |#1|) . T))
-((-2207 (((-110) $ $) NIL)) (-1782 (($ (-1094) $) 88)) (-2477 (($) 77)) (-1548 (((-1042) (-1042)) 11)) (-2480 (($) 78)) (-3349 (($) 90) (($ (-296 (-645))) 98) (($ (-296 (-647))) 94) (($ (-296 (-640))) 102) (($ (-296 (-359))) 109) (($ (-296 (-528))) 105) (($ (-296 (-159 (-359)))) 113)) (-1248 (($ (-1094) $) 89)) (-1916 (($ (-595 (-802))) 79)) (-3894 (((-1182) $) 75)) (-1369 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-1272 (($ (-1042)) 51)) (-1431 (((-1027) $) 25)) (-1785 (($ (-1016 (-891 (-528))) $) 85) (($ (-1016 (-891 (-528))) (-891 (-528)) $) 86)) (-1525 (($ (-1042)) 87)) (-2054 (($ (-1094) $) 115) (($ (-1094) $ $) 116)) (-3872 (($ (-1095) (-595 (-1095))) 76)) (-2509 (($ (-1078)) 82) (($ (-595 (-1078))) 80)) (-2222 (((-802) $) 118)) (-1806 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1095)) (|:| |arrayIndex| (-595 (-891 (-528)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -2036 (-802)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1095)) (|:| |rand| (-802)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1094)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1972 (-110)) (|:| -3327 (-2 (|:| |ints2Floats?| (-110)) (|:| -2036 (-802)))))) (|:| |blockBranch| (-595 $)) (|:| |commentBranch| (-595 (-1078))) (|:| |callBranch| (-1078)) (|:| |forBranch| (-2 (|:| -2931 (-1016 (-891 (-528)))) (|:| |span| (-891 (-528))) (|:| -3822 $))) (|:| |labelBranch| (-1042)) (|:| |loopBranch| (-2 (|:| |switch| (-1094)) (|:| -3822 $))) (|:| |commonBranch| (-2 (|:| -3814 (-1095)) (|:| |contents| (-595 (-1095))))) (|:| |printBranch| (-595 (-802)))) $) 44)) (-2747 (($ (-1078)) 187)) (-3659 (($ (-595 $)) 114)) (-2707 (($ (-1095) (-1078)) 120) (($ (-1095) (-296 (-647))) 160) (($ (-1095) (-296 (-645))) 161) (($ (-1095) (-296 (-640))) 162) (($ (-1095) (-635 (-647))) 123) (($ (-1095) (-635 (-645))) 126) (($ (-1095) (-635 (-640))) 129) (($ (-1095) (-1177 (-647))) 132) (($ (-1095) (-1177 (-645))) 135) (($ (-1095) (-1177 (-640))) 138) (($ (-1095) (-635 (-296 (-647)))) 141) (($ (-1095) (-635 (-296 (-645)))) 144) (($ (-1095) (-635 (-296 (-640)))) 147) (($ (-1095) (-1177 (-296 (-647)))) 150) (($ (-1095) (-1177 (-296 (-645)))) 153) (($ (-1095) (-1177 (-296 (-640)))) 156) (($ (-1095) (-595 (-891 (-528))) (-296 (-647))) 157) (($ (-1095) (-595 (-891 (-528))) (-296 (-645))) 158) (($ (-1095) (-595 (-891 (-528))) (-296 (-640))) 159) (($ (-1095) (-296 (-528))) 184) (($ (-1095) (-296 (-359))) 185) (($ (-1095) (-296 (-159 (-359)))) 186) (($ (-1095) (-635 (-296 (-528)))) 165) (($ (-1095) (-635 (-296 (-359)))) 168) (($ (-1095) (-635 (-296 (-159 (-359))))) 171) (($ (-1095) (-1177 (-296 (-528)))) 174) (($ (-1095) (-1177 (-296 (-359)))) 177) (($ (-1095) (-1177 (-296 (-159 (-359))))) 180) (($ (-1095) (-595 (-891 (-528))) (-296 (-528))) 181) (($ (-1095) (-595 (-891 (-528))) (-296 (-359))) 182) (($ (-1095) (-595 (-891 (-528))) (-296 (-159 (-359)))) 183)) (-2186 (((-110) $ $) NIL)))
-(((-310) (-13 (-1023) (-10 -8 (-15 -2222 ((-802) $)) (-15 -1785 ($ (-1016 (-891 (-528))) $)) (-15 -1785 ($ (-1016 (-891 (-528))) (-891 (-528)) $)) (-15 -1782 ($ (-1094) $)) (-15 -1248 ($ (-1094) $)) (-15 -1272 ($ (-1042))) (-15 -1525 ($ (-1042))) (-15 -2509 ($ (-1078))) (-15 -2509 ($ (-595 (-1078)))) (-15 -2747 ($ (-1078))) (-15 -3349 ($)) (-15 -3349 ($ (-296 (-645)))) (-15 -3349 ($ (-296 (-647)))) (-15 -3349 ($ (-296 (-640)))) (-15 -3349 ($ (-296 (-359)))) (-15 -3349 ($ (-296 (-528)))) (-15 -3349 ($ (-296 (-159 (-359))))) (-15 -2054 ($ (-1094) $)) (-15 -2054 ($ (-1094) $ $)) (-15 -2707 ($ (-1095) (-1078))) (-15 -2707 ($ (-1095) (-296 (-647)))) (-15 -2707 ($ (-1095) (-296 (-645)))) (-15 -2707 ($ (-1095) (-296 (-640)))) (-15 -2707 ($ (-1095) (-635 (-647)))) (-15 -2707 ($ (-1095) (-635 (-645)))) (-15 -2707 ($ (-1095) (-635 (-640)))) (-15 -2707 ($ (-1095) (-1177 (-647)))) (-15 -2707 ($ (-1095) (-1177 (-645)))) (-15 -2707 ($ (-1095) (-1177 (-640)))) (-15 -2707 ($ (-1095) (-635 (-296 (-647))))) (-15 -2707 ($ (-1095) (-635 (-296 (-645))))) (-15 -2707 ($ (-1095) (-635 (-296 (-640))))) (-15 -2707 ($ (-1095) (-1177 (-296 (-647))))) (-15 -2707 ($ (-1095) (-1177 (-296 (-645))))) (-15 -2707 ($ (-1095) (-1177 (-296 (-640))))) (-15 -2707 ($ (-1095) (-595 (-891 (-528))) (-296 (-647)))) (-15 -2707 ($ (-1095) (-595 (-891 (-528))) (-296 (-645)))) (-15 -2707 ($ (-1095) (-595 (-891 (-528))) (-296 (-640)))) (-15 -2707 ($ (-1095) (-296 (-528)))) (-15 -2707 ($ (-1095) (-296 (-359)))) (-15 -2707 ($ (-1095) (-296 (-159 (-359))))) (-15 -2707 ($ (-1095) (-635 (-296 (-528))))) (-15 -2707 ($ (-1095) (-635 (-296 (-359))))) (-15 -2707 ($ (-1095) (-635 (-296 (-159 (-359)))))) (-15 -2707 ($ (-1095) (-1177 (-296 (-528))))) (-15 -2707 ($ (-1095) (-1177 (-296 (-359))))) (-15 -2707 ($ (-1095) (-1177 (-296 (-159 (-359)))))) (-15 -2707 ($ (-1095) (-595 (-891 (-528))) (-296 (-528)))) (-15 -2707 ($ (-1095) (-595 (-891 (-528))) (-296 (-359)))) (-15 -2707 ($ (-1095) (-595 (-891 (-528))) (-296 (-159 (-359))))) (-15 -3659 ($ (-595 $))) (-15 -2477 ($)) (-15 -2480 ($)) (-15 -1916 ($ (-595 (-802)))) (-15 -3872 ($ (-1095) (-595 (-1095)))) (-15 -1369 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1806 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1095)) (|:| |arrayIndex| (-595 (-891 (-528)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -2036 (-802)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1095)) (|:| |rand| (-802)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1094)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1972 (-110)) (|:| -3327 (-2 (|:| |ints2Floats?| (-110)) (|:| -2036 (-802)))))) (|:| |blockBranch| (-595 $)) (|:| |commentBranch| (-595 (-1078))) (|:| |callBranch| (-1078)) (|:| |forBranch| (-2 (|:| -2931 (-1016 (-891 (-528)))) (|:| |span| (-891 (-528))) (|:| -3822 $))) (|:| |labelBranch| (-1042)) (|:| |loopBranch| (-2 (|:| |switch| (-1094)) (|:| -3822 $))) (|:| |commonBranch| (-2 (|:| -3814 (-1095)) (|:| |contents| (-595 (-1095))))) (|:| |printBranch| (-595 (-802)))) $)) (-15 -3894 ((-1182) $)) (-15 -1431 ((-1027) $)) (-15 -1548 ((-1042) (-1042)))))) (T -310))
-((-2222 (*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-310)))) (-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1016 (-891 (-528)))) (-5 *1 (-310)))) (-1785 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1016 (-891 (-528)))) (-5 *3 (-891 (-528))) (-5 *1 (-310)))) (-1782 (*1 *1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-310)))) (-1248 (*1 *1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-310)))) (-1272 (*1 *1 *2) (-12 (-5 *2 (-1042)) (-5 *1 (-310)))) (-1525 (*1 *1 *2) (-12 (-5 *2 (-1042)) (-5 *1 (-310)))) (-2509 (*1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-310)))) (-2509 (*1 *1 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-310)))) (-2747 (*1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-310)))) (-3349 (*1 *1) (-5 *1 (-310))) (-3349 (*1 *1 *2) (-12 (-5 *2 (-296 (-645))) (-5 *1 (-310)))) (-3349 (*1 *1 *2) (-12 (-5 *2 (-296 (-647))) (-5 *1 (-310)))) (-3349 (*1 *1 *2) (-12 (-5 *2 (-296 (-640))) (-5 *1 (-310)))) (-3349 (*1 *1 *2) (-12 (-5 *2 (-296 (-359))) (-5 *1 (-310)))) (-3349 (*1 *1 *2) (-12 (-5 *2 (-296 (-528))) (-5 *1 (-310)))) (-3349 (*1 *1 *2) (-12 (-5 *2 (-296 (-159 (-359)))) (-5 *1 (-310)))) (-2054 (*1 *1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-310)))) (-2054 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-1078)) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-296 (-647))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-296 (-645))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-296 (-640))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-635 (-647))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-635 (-645))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-635 (-640))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-1177 (-647))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-1177 (-645))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-1177 (-640))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-635 (-296 (-647)))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-635 (-296 (-645)))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-635 (-296 (-640)))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-1177 (-296 (-647)))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-1177 (-296 (-645)))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-1177 (-296 (-640)))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1095)) (-5 *3 (-595 (-891 (-528)))) (-5 *4 (-296 (-647))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1095)) (-5 *3 (-595 (-891 (-528)))) (-5 *4 (-296 (-645))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1095)) (-5 *3 (-595 (-891 (-528)))) (-5 *4 (-296 (-640))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-296 (-528))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-296 (-359))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-296 (-159 (-359)))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-635 (-296 (-528)))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-635 (-296 (-359)))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-635 (-296 (-159 (-359))))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-1177 (-296 (-528)))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-1177 (-296 (-359)))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-1177 (-296 (-159 (-359))))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1095)) (-5 *3 (-595 (-891 (-528)))) (-5 *4 (-296 (-528))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1095)) (-5 *3 (-595 (-891 (-528)))) (-5 *4 (-296 (-359))) (-5 *1 (-310)))) (-2707 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1095)) (-5 *3 (-595 (-891 (-528)))) (-5 *4 (-296 (-159 (-359)))) (-5 *1 (-310)))) (-3659 (*1 *1 *2) (-12 (-5 *2 (-595 (-310))) (-5 *1 (-310)))) (-2477 (*1 *1) (-5 *1 (-310))) (-2480 (*1 *1) (-5 *1 (-310))) (-1916 (*1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-310)))) (-3872 (*1 *1 *2 *3) (-12 (-5 *3 (-595 (-1095))) (-5 *2 (-1095)) (-5 *1 (-310)))) (-1369 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-310)))) (-1806 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1095)) (|:| |arrayIndex| (-595 (-891 (-528)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -2036 (-802)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1095)) (|:| |rand| (-802)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1094)) (|:| |thenClause| (-310)) (|:| |elseClause| (-310)))) (|:| |returnBranch| (-2 (|:| -1972 (-110)) (|:| -3327 (-2 (|:| |ints2Floats?| (-110)) (|:| -2036 (-802)))))) (|:| |blockBranch| (-595 (-310))) (|:| |commentBranch| (-595 (-1078))) (|:| |callBranch| (-1078)) (|:| |forBranch| (-2 (|:| -2931 (-1016 (-891 (-528)))) (|:| |span| (-891 (-528))) (|:| -3822 (-310)))) (|:| |labelBranch| (-1042)) (|:| |loopBranch| (-2 (|:| |switch| (-1094)) (|:| -3822 (-310)))) (|:| |commonBranch| (-2 (|:| -3814 (-1095)) (|:| |contents| (-595 (-1095))))) (|:| |printBranch| (-595 (-802))))) (-5 *1 (-310)))) (-3894 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-310)))) (-1431 (*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-310)))) (-1548 (*1 *2 *2) (-12 (-5 *2 (-1042)) (-5 *1 (-310)))))
-(-13 (-1023) (-10 -8 (-15 -2222 ((-802) $)) (-15 -1785 ($ (-1016 (-891 (-528))) $)) (-15 -1785 ($ (-1016 (-891 (-528))) (-891 (-528)) $)) (-15 -1782 ($ (-1094) $)) (-15 -1248 ($ (-1094) $)) (-15 -1272 ($ (-1042))) (-15 -1525 ($ (-1042))) (-15 -2509 ($ (-1078))) (-15 -2509 ($ (-595 (-1078)))) (-15 -2747 ($ (-1078))) (-15 -3349 ($)) (-15 -3349 ($ (-296 (-645)))) (-15 -3349 ($ (-296 (-647)))) (-15 -3349 ($ (-296 (-640)))) (-15 -3349 ($ (-296 (-359)))) (-15 -3349 ($ (-296 (-528)))) (-15 -3349 ($ (-296 (-159 (-359))))) (-15 -2054 ($ (-1094) $)) (-15 -2054 ($ (-1094) $ $)) (-15 -2707 ($ (-1095) (-1078))) (-15 -2707 ($ (-1095) (-296 (-647)))) (-15 -2707 ($ (-1095) (-296 (-645)))) (-15 -2707 ($ (-1095) (-296 (-640)))) (-15 -2707 ($ (-1095) (-635 (-647)))) (-15 -2707 ($ (-1095) (-635 (-645)))) (-15 -2707 ($ (-1095) (-635 (-640)))) (-15 -2707 ($ (-1095) (-1177 (-647)))) (-15 -2707 ($ (-1095) (-1177 (-645)))) (-15 -2707 ($ (-1095) (-1177 (-640)))) (-15 -2707 ($ (-1095) (-635 (-296 (-647))))) (-15 -2707 ($ (-1095) (-635 (-296 (-645))))) (-15 -2707 ($ (-1095) (-635 (-296 (-640))))) (-15 -2707 ($ (-1095) (-1177 (-296 (-647))))) (-15 -2707 ($ (-1095) (-1177 (-296 (-645))))) (-15 -2707 ($ (-1095) (-1177 (-296 (-640))))) (-15 -2707 ($ (-1095) (-595 (-891 (-528))) (-296 (-647)))) (-15 -2707 ($ (-1095) (-595 (-891 (-528))) (-296 (-645)))) (-15 -2707 ($ (-1095) (-595 (-891 (-528))) (-296 (-640)))) (-15 -2707 ($ (-1095) (-296 (-528)))) (-15 -2707 ($ (-1095) (-296 (-359)))) (-15 -2707 ($ (-1095) (-296 (-159 (-359))))) (-15 -2707 ($ (-1095) (-635 (-296 (-528))))) (-15 -2707 ($ (-1095) (-635 (-296 (-359))))) (-15 -2707 ($ (-1095) (-635 (-296 (-159 (-359)))))) (-15 -2707 ($ (-1095) (-1177 (-296 (-528))))) (-15 -2707 ($ (-1095) (-1177 (-296 (-359))))) (-15 -2707 ($ (-1095) (-1177 (-296 (-159 (-359)))))) (-15 -2707 ($ (-1095) (-595 (-891 (-528))) (-296 (-528)))) (-15 -2707 ($ (-1095) (-595 (-891 (-528))) (-296 (-359)))) (-15 -2707 ($ (-1095) (-595 (-891 (-528))) (-296 (-159 (-359))))) (-15 -3659 ($ (-595 $))) (-15 -2477 ($)) (-15 -2480 ($)) (-15 -1916 ($ (-595 (-802)))) (-15 -3872 ($ (-1095) (-595 (-1095)))) (-15 -1369 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1806 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1095)) (|:| |arrayIndex| (-595 (-891 (-528)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -2036 (-802)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1095)) (|:| |rand| (-802)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1094)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1972 (-110)) (|:| -3327 (-2 (|:| |ints2Floats?| (-110)) (|:| -2036 (-802)))))) (|:| |blockBranch| (-595 $)) (|:| |commentBranch| (-595 (-1078))) (|:| |callBranch| (-1078)) (|:| |forBranch| (-2 (|:| -2931 (-1016 (-891 (-528)))) (|:| |span| (-891 (-528))) (|:| -3822 $))) (|:| |labelBranch| (-1042)) (|:| |loopBranch| (-2 (|:| |switch| (-1094)) (|:| -3822 $))) (|:| |commonBranch| (-2 (|:| -3814 (-1095)) (|:| |contents| (-595 (-1095))))) (|:| |printBranch| (-595 (-802)))) $)) (-15 -3894 ((-1182) $)) (-15 -1431 ((-1027) $)) (-15 -1548 ((-1042) (-1042)))))
-((-2207 (((-110) $ $) NIL)) (-3984 (((-110) $) 11)) (-2712 (($ |#1|) 8)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2724 (($ |#1|) 9)) (-2222 (((-802) $) 17)) (-3625 ((|#1| $) 12)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 19)))
-(((-311 |#1|) (-13 (-793) (-10 -8 (-15 -2712 ($ |#1|)) (-15 -2724 ($ |#1|)) (-15 -3984 ((-110) $)) (-15 -3625 (|#1| $)))) (-793)) (T -311))
-((-2712 (*1 *1 *2) (-12 (-5 *1 (-311 *2)) (-4 *2 (-793)))) (-2724 (*1 *1 *2) (-12 (-5 *1 (-311 *2)) (-4 *2 (-793)))) (-3984 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-311 *3)) (-4 *3 (-793)))) (-3625 (*1 *2 *1) (-12 (-5 *1 (-311 *2)) (-4 *2 (-793)))))
-(-13 (-793) (-10 -8 (-15 -2712 ($ |#1|)) (-15 -2724 ($ |#1|)) (-15 -3984 ((-110) $)) (-15 -3625 (|#1| $))))
-((-3276 (((-310) (-1095) (-891 (-528))) 23)) (-4048 (((-310) (-1095) (-891 (-528))) 27)) (-2593 (((-310) (-1095) (-1016 (-891 (-528))) (-1016 (-891 (-528)))) 26) (((-310) (-1095) (-891 (-528)) (-891 (-528))) 24)) (-2977 (((-310) (-1095) (-891 (-528))) 31)))
-(((-312) (-10 -7 (-15 -3276 ((-310) (-1095) (-891 (-528)))) (-15 -2593 ((-310) (-1095) (-891 (-528)) (-891 (-528)))) (-15 -2593 ((-310) (-1095) (-1016 (-891 (-528))) (-1016 (-891 (-528))))) (-15 -4048 ((-310) (-1095) (-891 (-528)))) (-15 -2977 ((-310) (-1095) (-891 (-528)))))) (T -312))
-((-2977 (*1 *2 *3 *4) (-12 (-5 *3 (-1095)) (-5 *4 (-891 (-528))) (-5 *2 (-310)) (-5 *1 (-312)))) (-4048 (*1 *2 *3 *4) (-12 (-5 *3 (-1095)) (-5 *4 (-891 (-528))) (-5 *2 (-310)) (-5 *1 (-312)))) (-2593 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1095)) (-5 *4 (-1016 (-891 (-528)))) (-5 *2 (-310)) (-5 *1 (-312)))) (-2593 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1095)) (-5 *4 (-891 (-528))) (-5 *2 (-310)) (-5 *1 (-312)))) (-3276 (*1 *2 *3 *4) (-12 (-5 *3 (-1095)) (-5 *4 (-891 (-528))) (-5 *2 (-310)) (-5 *1 (-312)))))
-(-10 -7 (-15 -3276 ((-310) (-1095) (-891 (-528)))) (-15 -2593 ((-310) (-1095) (-891 (-528)) (-891 (-528)))) (-15 -2593 ((-310) (-1095) (-1016 (-891 (-528))) (-1016 (-891 (-528))))) (-15 -4048 ((-310) (-1095) (-891 (-528)))) (-15 -2977 ((-310) (-1095) (-891 (-528)))))
-((-3106 (((-316 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-316 |#1| |#2| |#3| |#4|)) 33)))
-(((-313 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3106 ((-316 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-316 |#1| |#2| |#3| |#4|)))) (-343) (-1153 |#1|) (-1153 (-387 |#2|)) (-322 |#1| |#2| |#3|) (-343) (-1153 |#5|) (-1153 (-387 |#6|)) (-322 |#5| |#6| |#7|)) (T -313))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-316 *5 *6 *7 *8)) (-4 *5 (-343)) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-387 *6))) (-4 *8 (-322 *5 *6 *7)) (-4 *9 (-343)) (-4 *10 (-1153 *9)) (-4 *11 (-1153 (-387 *10))) (-5 *2 (-316 *9 *10 *11 *12)) (-5 *1 (-313 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-322 *9 *10 *11)))))
-(-10 -7 (-15 -3106 ((-316 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-316 |#1| |#2| |#3| |#4|))))
-((-2786 (((-110) $) 14)))
-(((-314 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2786 ((-110) |#1|))) (-315 |#2| |#3| |#4| |#5|) (-343) (-1153 |#2|) (-1153 (-387 |#3|)) (-322 |#2| |#3| |#4|)) (T -314))
-NIL
-(-10 -8 (-15 -2786 ((-110) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-1422 (($ $) 26)) (-2786 (((-110) $) 25)) (-3034 (((-1078) $) 9)) (-3046 (((-393 |#2| (-387 |#2|) |#3| |#4|) $) 32)) (-2495 (((-1042) $) 10)) (-1261 (((-3 |#4| "failed") $) 24)) (-1853 (($ (-393 |#2| (-387 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-528)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-1208 (((-2 (|:| -3431 (-393 |#2| (-387 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2222 (((-802) $) 11)) (-2969 (($) 18 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20)))
-(((-315 |#1| |#2| |#3| |#4|) (-133) (-343) (-1153 |t#1|) (-1153 (-387 |t#2|)) (-322 |t#1| |t#2| |t#3|)) (T -315))
-((-3046 (*1 *2 *1) (-12 (-4 *1 (-315 *3 *4 *5 *6)) (-4 *3 (-343)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-4 *6 (-322 *3 *4 *5)) (-5 *2 (-393 *4 (-387 *4) *5 *6)))) (-1853 (*1 *1 *2) (-12 (-5 *2 (-393 *4 (-387 *4) *5 *6)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-4 *6 (-322 *3 *4 *5)) (-4 *3 (-343)) (-4 *1 (-315 *3 *4 *5 *6)))) (-1853 (*1 *1 *2) (-12 (-4 *3 (-343)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-4 *1 (-315 *3 *4 *5 *2)) (-4 *2 (-322 *3 *4 *5)))) (-1853 (*1 *1 *2 *2) (-12 (-4 *2 (-343)) (-4 *3 (-1153 *2)) (-4 *4 (-1153 (-387 *3))) (-4 *1 (-315 *2 *3 *4 *5)) (-4 *5 (-322 *2 *3 *4)))) (-1853 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-528)) (-4 *2 (-343)) (-4 *4 (-1153 *2)) (-4 *5 (-1153 (-387 *4))) (-4 *1 (-315 *2 *4 *5 *6)) (-4 *6 (-322 *2 *4 *5)))) (-1208 (*1 *2 *1) (-12 (-4 *1 (-315 *3 *4 *5 *6)) (-4 *3 (-343)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-4 *6 (-322 *3 *4 *5)) (-5 *2 (-2 (|:| -3431 (-393 *4 (-387 *4) *5 *6)) (|:| |principalPart| *6))))) (-1422 (*1 *1 *1) (-12 (-4 *1 (-315 *2 *3 *4 *5)) (-4 *2 (-343)) (-4 *3 (-1153 *2)) (-4 *4 (-1153 (-387 *3))) (-4 *5 (-322 *2 *3 *4)))) (-2786 (*1 *2 *1) (-12 (-4 *1 (-315 *3 *4 *5 *6)) (-4 *3 (-343)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-4 *6 (-322 *3 *4 *5)) (-5 *2 (-110)))) (-1261 (*1 *2 *1) (|partial| -12 (-4 *1 (-315 *3 *4 *5 *2)) (-4 *3 (-343)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-4 *2 (-322 *3 *4 *5)))) (-1853 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-343)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 (-387 *3))) (-4 *1 (-315 *4 *3 *5 *2)) (-4 *2 (-322 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -3046 ((-393 |t#2| (-387 |t#2|) |t#3| |t#4|) $)) (-15 -1853 ($ (-393 |t#2| (-387 |t#2|) |t#3| |t#4|))) (-15 -1853 ($ |t#4|)) (-15 -1853 ($ |t#1| |t#1|)) (-15 -1853 ($ |t#1| |t#1| (-528))) (-15 -1208 ((-2 (|:| -3431 (-393 |t#2| (-387 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -1422 ($ $)) (-15 -2786 ((-110) $)) (-15 -1261 ((-3 |t#4| "failed") $)) (-15 -1853 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-569 (-802)) . T) ((-1023) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-1422 (($ $) 33)) (-2786 (((-110) $) NIL)) (-3034 (((-1078) $) NIL)) (-3240 (((-1177 |#4|) $) 125)) (-3046 (((-393 |#2| (-387 |#2|) |#3| |#4|) $) 31)) (-2495 (((-1042) $) NIL)) (-1261 (((-3 |#4| "failed") $) 36)) (-1645 (((-1177 |#4|) $) 118)) (-1853 (($ (-393 |#2| (-387 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-528)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-1208 (((-2 (|:| -3431 (-393 |#2| (-387 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2222 (((-802) $) 17)) (-2969 (($) 14 T CONST)) (-2186 (((-110) $ $) 20)) (-2286 (($ $) 27) (($ $ $) NIL)) (-2275 (($ $ $) 25)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 23)))
-(((-316 |#1| |#2| |#3| |#4|) (-13 (-315 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1645 ((-1177 |#4|) $)) (-15 -3240 ((-1177 |#4|) $)))) (-343) (-1153 |#1|) (-1153 (-387 |#2|)) (-322 |#1| |#2| |#3|)) (T -316))
-((-1645 (*1 *2 *1) (-12 (-4 *3 (-343)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-5 *2 (-1177 *6)) (-5 *1 (-316 *3 *4 *5 *6)) (-4 *6 (-322 *3 *4 *5)))) (-3240 (*1 *2 *1) (-12 (-4 *3 (-343)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-5 *2 (-1177 *6)) (-5 *1 (-316 *3 *4 *5 *6)) (-4 *6 (-322 *3 *4 *5)))))
-(-13 (-315 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1645 ((-1177 |#4|) $)) (-15 -3240 ((-1177 |#4|) $))))
-((-4014 (($ $ (-1095) |#2|) NIL) (($ $ (-595 (-1095)) (-595 |#2|)) 20) (($ $ (-595 (-275 |#2|))) 15) (($ $ (-275 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-595 |#2|) (-595 |#2|)) NIL)) (-3043 (($ $ |#2|) 11)))
-(((-317 |#1| |#2|) (-10 -8 (-15 -3043 (|#1| |#1| |#2|)) (-15 -4014 (|#1| |#1| (-595 |#2|) (-595 |#2|))) (-15 -4014 (|#1| |#1| |#2| |#2|)) (-15 -4014 (|#1| |#1| (-275 |#2|))) (-15 -4014 (|#1| |#1| (-595 (-275 |#2|)))) (-15 -4014 (|#1| |#1| (-595 (-1095)) (-595 |#2|))) (-15 -4014 (|#1| |#1| (-1095) |#2|))) (-318 |#2|) (-1023)) (T -317))
-NIL
-(-10 -8 (-15 -3043 (|#1| |#1| |#2|)) (-15 -4014 (|#1| |#1| (-595 |#2|) (-595 |#2|))) (-15 -4014 (|#1| |#1| |#2| |#2|)) (-15 -4014 (|#1| |#1| (-275 |#2|))) (-15 -4014 (|#1| |#1| (-595 (-275 |#2|)))) (-15 -4014 (|#1| |#1| (-595 (-1095)) (-595 |#2|))) (-15 -4014 (|#1| |#1| (-1095) |#2|)))
-((-3106 (($ (-1 |#1| |#1|) $) 6)) (-4014 (($ $ (-1095) |#1|) 17 (|has| |#1| (-489 (-1095) |#1|))) (($ $ (-595 (-1095)) (-595 |#1|)) 16 (|has| |#1| (-489 (-1095) |#1|))) (($ $ (-595 (-275 |#1|))) 15 (|has| |#1| (-290 |#1|))) (($ $ (-275 |#1|)) 14 (|has| |#1| (-290 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-290 |#1|))) (($ $ (-595 |#1|) (-595 |#1|)) 12 (|has| |#1| (-290 |#1|)))) (-3043 (($ $ |#1|) 11 (|has| |#1| (-267 |#1| |#1|)))))
-(((-318 |#1|) (-133) (-1023)) (T -318))
-((-3106 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-318 *3)) (-4 *3 (-1023)))))
-(-13 (-10 -8 (-15 -3106 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-267 |t#1| |t#1|)) (-6 (-267 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-290 |t#1|)) (-6 (-290 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-489 (-1095) |t#1|)) (-6 (-489 (-1095) |t#1|)) |%noBranch|)))
-(((-267 |#1| $) |has| |#1| (-267 |#1| |#1|)) ((-290 |#1|) |has| |#1| (-290 |#1|)) ((-489 (-1095) |#1|) |has| |#1| (-489 (-1095) |#1|)) ((-489 |#1| |#1|) |has| |#1| (-290 |#1|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2565 (((-595 (-1095)) $) NIL)) (-3070 (((-110)) 91) (((-110) (-110)) 92)) (-2316 (((-595 (-568 $)) $) NIL)) (-2880 (($ $) NIL)) (-2735 (($ $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2819 (($ $ (-275 $)) NIL) (($ $ (-595 (-275 $))) NIL) (($ $ (-595 (-568 $)) (-595 $)) NIL)) (-2450 (($ $) NIL)) (-2859 (($ $) NIL)) (-2712 (($ $) NIL)) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-568 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-296 |#3|)) 71) (((-3 $ "failed") (-1095)) 97) (((-3 $ "failed") (-296 (-528))) 59 (|has| |#3| (-972 (-528)))) (((-3 $ "failed") (-387 (-891 (-528)))) 65 (|has| |#3| (-972 (-528)))) (((-3 $ "failed") (-891 (-528))) 60 (|has| |#3| (-972 (-528)))) (((-3 $ "failed") (-296 (-359))) 89 (|has| |#3| (-972 (-359)))) (((-3 $ "failed") (-387 (-891 (-359)))) 83 (|has| |#3| (-972 (-359)))) (((-3 $ "failed") (-891 (-359))) 78 (|has| |#3| (-972 (-359))))) (-2409 (((-568 $) $) NIL) ((|#3| $) NIL) (($ (-296 |#3|)) 72) (($ (-1095)) 98) (($ (-296 (-528))) 61 (|has| |#3| (-972 (-528)))) (($ (-387 (-891 (-528)))) 66 (|has| |#3| (-972 (-528)))) (($ (-891 (-528))) 62 (|has| |#3| (-972 (-528)))) (($ (-296 (-359))) 90 (|has| |#3| (-972 (-359)))) (($ (-387 (-891 (-359)))) 84 (|has| |#3| (-972 (-359)))) (($ (-891 (-359))) 80 (|has| |#3| (-972 (-359))))) (-1312 (((-3 $ "failed") $) NIL)) (-1505 (($) 10)) (-4130 (($ $) NIL) (($ (-595 $)) NIL)) (-3930 (((-595 (-112)) $) NIL)) (-3748 (((-112) (-112)) NIL)) (-1297 (((-110) $) NIL)) (-2580 (((-110) $) NIL (|has| $ (-972 (-528))))) (-1822 (((-1091 $) (-568 $)) NIL (|has| $ (-981)))) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3106 (($ (-1 $ $) (-568 $)) NIL)) (-1547 (((-3 (-568 $) "failed") $) NIL)) (-1862 (($ $) 94)) (-2097 (($ $) NIL)) (-3034 (((-1078) $) NIL)) (-2390 (((-595 (-568 $)) $) NIL)) (-1552 (($ (-112) $) 93) (($ (-112) (-595 $)) NIL)) (-2341 (((-110) $ (-112)) NIL) (((-110) $ (-1095)) NIL)) (-4073 (((-717) $) NIL)) (-2495 (((-1042) $) NIL)) (-3947 (((-110) $ $) NIL) (((-110) $ (-1095)) NIL)) (-2656 (($ $) NIL)) (-3578 (((-110) $) NIL (|has| $ (-972 (-528))))) (-4014 (($ $ (-568 $) $) NIL) (($ $ (-595 (-568 $)) (-595 $)) NIL) (($ $ (-595 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL) (($ $ (-595 (-1095)) (-595 (-1 $ $))) NIL) (($ $ (-595 (-1095)) (-595 (-1 $ (-595 $)))) NIL) (($ $ (-1095) (-1 $ (-595 $))) NIL) (($ $ (-1095) (-1 $ $)) NIL) (($ $ (-595 (-112)) (-595 (-1 $ $))) NIL) (($ $ (-595 (-112)) (-595 (-1 $ (-595 $)))) NIL) (($ $ (-112) (-1 $ (-595 $))) NIL) (($ $ (-112) (-1 $ $)) NIL)) (-3043 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-595 $)) NIL)) (-3581 (($ $) NIL) (($ $ $) NIL)) (-3235 (($ $ (-595 (-1095)) (-595 (-717))) NIL) (($ $ (-1095) (-717)) NIL) (($ $ (-595 (-1095))) NIL) (($ $ (-1095)) NIL)) (-4090 (($ $) NIL (|has| $ (-981)))) (-2869 (($ $) NIL)) (-2724 (($ $) NIL)) (-2222 (((-802) $) NIL) (($ (-568 $)) NIL) (($ |#3|) NIL) (($ (-528)) NIL) (((-296 |#3|) $) 96)) (-3742 (((-717)) NIL)) (-1491 (($ $) NIL) (($ (-595 $)) NIL)) (-2042 (((-110) (-112)) NIL)) (-2811 (($ $) NIL)) (-2784 (($ $) NIL)) (-2797 (($ $) NIL)) (-1775 (($ $) NIL)) (-2690 (($ $ (-717)) NIL) (($ $ (-860)) NIL)) (-2969 (($) 95 T CONST)) (-2982 (($) 24 T CONST)) (-3245 (($ $ (-595 (-1095)) (-595 (-717))) NIL) (($ $ (-1095) (-717)) NIL) (($ $ (-595 (-1095))) NIL) (($ $ (-1095)) NIL)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) NIL)) (-2286 (($ $ $) NIL) (($ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-717)) NIL) (($ $ (-860)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-528) $) NIL) (($ (-717) $) NIL) (($ (-860) $) NIL)))
-(((-319 |#1| |#2| |#3|) (-13 (-283) (-37 |#3|) (-972 |#3|) (-839 (-1095)) (-10 -8 (-15 -2409 ($ (-296 |#3|))) (-15 -3001 ((-3 $ "failed") (-296 |#3|))) (-15 -2409 ($ (-1095))) (-15 -3001 ((-3 $ "failed") (-1095))) (-15 -2222 ((-296 |#3|) $)) (IF (|has| |#3| (-972 (-528))) (PROGN (-15 -2409 ($ (-296 (-528)))) (-15 -3001 ((-3 $ "failed") (-296 (-528)))) (-15 -2409 ($ (-387 (-891 (-528))))) (-15 -3001 ((-3 $ "failed") (-387 (-891 (-528))))) (-15 -2409 ($ (-891 (-528)))) (-15 -3001 ((-3 $ "failed") (-891 (-528))))) |%noBranch|) (IF (|has| |#3| (-972 (-359))) (PROGN (-15 -2409 ($ (-296 (-359)))) (-15 -3001 ((-3 $ "failed") (-296 (-359)))) (-15 -2409 ($ (-387 (-891 (-359))))) (-15 -3001 ((-3 $ "failed") (-387 (-891 (-359))))) (-15 -2409 ($ (-891 (-359)))) (-15 -3001 ((-3 $ "failed") (-891 (-359))))) |%noBranch|) (-15 -1775 ($ $)) (-15 -2450 ($ $)) (-15 -2656 ($ $)) (-15 -2097 ($ $)) (-15 -1862 ($ $)) (-15 -2712 ($ $)) (-15 -2724 ($ $)) (-15 -2735 ($ $)) (-15 -2784 ($ $)) (-15 -2797 ($ $)) (-15 -2811 ($ $)) (-15 -2859 ($ $)) (-15 -2869 ($ $)) (-15 -2880 ($ $)) (-15 -1505 ($)) (-15 -2565 ((-595 (-1095)) $)) (-15 -3070 ((-110))) (-15 -3070 ((-110) (-110))))) (-595 (-1095)) (-595 (-1095)) (-367)) (T -319))
-((-2409 (*1 *1 *2) (-12 (-5 *2 (-296 *5)) (-4 *5 (-367)) (-5 *1 (-319 *3 *4 *5)) (-14 *3 (-595 (-1095))) (-14 *4 (-595 (-1095))))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-296 *5)) (-4 *5 (-367)) (-5 *1 (-319 *3 *4 *5)) (-14 *3 (-595 (-1095))) (-14 *4 (-595 (-1095))))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-319 *3 *4 *5)) (-14 *3 (-595 *2)) (-14 *4 (-595 *2)) (-4 *5 (-367)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-1095)) (-5 *1 (-319 *3 *4 *5)) (-14 *3 (-595 *2)) (-14 *4 (-595 *2)) (-4 *5 (-367)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-296 *5)) (-5 *1 (-319 *3 *4 *5)) (-14 *3 (-595 (-1095))) (-14 *4 (-595 (-1095))) (-4 *5 (-367)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-296 (-528))) (-5 *1 (-319 *3 *4 *5)) (-4 *5 (-972 (-528))) (-14 *3 (-595 (-1095))) (-14 *4 (-595 (-1095))) (-4 *5 (-367)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-296 (-528))) (-5 *1 (-319 *3 *4 *5)) (-4 *5 (-972 (-528))) (-14 *3 (-595 (-1095))) (-14 *4 (-595 (-1095))) (-4 *5 (-367)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-387 (-891 (-528)))) (-5 *1 (-319 *3 *4 *5)) (-4 *5 (-972 (-528))) (-14 *3 (-595 (-1095))) (-14 *4 (-595 (-1095))) (-4 *5 (-367)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-387 (-891 (-528)))) (-5 *1 (-319 *3 *4 *5)) (-4 *5 (-972 (-528))) (-14 *3 (-595 (-1095))) (-14 *4 (-595 (-1095))) (-4 *5 (-367)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-891 (-528))) (-5 *1 (-319 *3 *4 *5)) (-4 *5 (-972 (-528))) (-14 *3 (-595 (-1095))) (-14 *4 (-595 (-1095))) (-4 *5 (-367)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-891 (-528))) (-5 *1 (-319 *3 *4 *5)) (-4 *5 (-972 (-528))) (-14 *3 (-595 (-1095))) (-14 *4 (-595 (-1095))) (-4 *5 (-367)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-296 (-359))) (-5 *1 (-319 *3 *4 *5)) (-4 *5 (-972 (-359))) (-14 *3 (-595 (-1095))) (-14 *4 (-595 (-1095))) (-4 *5 (-367)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-296 (-359))) (-5 *1 (-319 *3 *4 *5)) (-4 *5 (-972 (-359))) (-14 *3 (-595 (-1095))) (-14 *4 (-595 (-1095))) (-4 *5 (-367)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-387 (-891 (-359)))) (-5 *1 (-319 *3 *4 *5)) (-4 *5 (-972 (-359))) (-14 *3 (-595 (-1095))) (-14 *4 (-595 (-1095))) (-4 *5 (-367)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-387 (-891 (-359)))) (-5 *1 (-319 *3 *4 *5)) (-4 *5 (-972 (-359))) (-14 *3 (-595 (-1095))) (-14 *4 (-595 (-1095))) (-4 *5 (-367)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-891 (-359))) (-5 *1 (-319 *3 *4 *5)) (-4 *5 (-972 (-359))) (-14 *3 (-595 (-1095))) (-14 *4 (-595 (-1095))) (-4 *5 (-367)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-891 (-359))) (-5 *1 (-319 *3 *4 *5)) (-4 *5 (-972 (-359))) (-14 *3 (-595 (-1095))) (-14 *4 (-595 (-1095))) (-4 *5 (-367)))) (-1775 (*1 *1 *1) (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095))) (-14 *3 (-595 (-1095))) (-4 *4 (-367)))) (-2450 (*1 *1 *1) (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095))) (-14 *3 (-595 (-1095))) (-4 *4 (-367)))) (-2656 (*1 *1 *1) (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095))) (-14 *3 (-595 (-1095))) (-4 *4 (-367)))) (-2097 (*1 *1 *1) (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095))) (-14 *3 (-595 (-1095))) (-4 *4 (-367)))) (-1862 (*1 *1 *1) (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095))) (-14 *3 (-595 (-1095))) (-4 *4 (-367)))) (-2712 (*1 *1 *1) (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095))) (-14 *3 (-595 (-1095))) (-4 *4 (-367)))) (-2724 (*1 *1 *1) (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095))) (-14 *3 (-595 (-1095))) (-4 *4 (-367)))) (-2735 (*1 *1 *1) (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095))) (-14 *3 (-595 (-1095))) (-4 *4 (-367)))) (-2784 (*1 *1 *1) (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095))) (-14 *3 (-595 (-1095))) (-4 *4 (-367)))) (-2797 (*1 *1 *1) (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095))) (-14 *3 (-595 (-1095))) (-4 *4 (-367)))) (-2811 (*1 *1 *1) (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095))) (-14 *3 (-595 (-1095))) (-4 *4 (-367)))) (-2859 (*1 *1 *1) (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095))) (-14 *3 (-595 (-1095))) (-4 *4 (-367)))) (-2869 (*1 *1 *1) (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095))) (-14 *3 (-595 (-1095))) (-4 *4 (-367)))) (-2880 (*1 *1 *1) (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095))) (-14 *3 (-595 (-1095))) (-4 *4 (-367)))) (-1505 (*1 *1) (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095))) (-14 *3 (-595 (-1095))) (-4 *4 (-367)))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-595 (-1095))) (-5 *1 (-319 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-367)))) (-3070 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-319 *3 *4 *5)) (-14 *3 (-595 (-1095))) (-14 *4 (-595 (-1095))) (-4 *5 (-367)))) (-3070 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-319 *3 *4 *5)) (-14 *3 (-595 (-1095))) (-14 *4 (-595 (-1095))) (-4 *5 (-367)))))
-(-13 (-283) (-37 |#3|) (-972 |#3|) (-839 (-1095)) (-10 -8 (-15 -2409 ($ (-296 |#3|))) (-15 -3001 ((-3 $ "failed") (-296 |#3|))) (-15 -2409 ($ (-1095))) (-15 -3001 ((-3 $ "failed") (-1095))) (-15 -2222 ((-296 |#3|) $)) (IF (|has| |#3| (-972 (-528))) (PROGN (-15 -2409 ($ (-296 (-528)))) (-15 -3001 ((-3 $ "failed") (-296 (-528)))) (-15 -2409 ($ (-387 (-891 (-528))))) (-15 -3001 ((-3 $ "failed") (-387 (-891 (-528))))) (-15 -2409 ($ (-891 (-528)))) (-15 -3001 ((-3 $ "failed") (-891 (-528))))) |%noBranch|) (IF (|has| |#3| (-972 (-359))) (PROGN (-15 -2409 ($ (-296 (-359)))) (-15 -3001 ((-3 $ "failed") (-296 (-359)))) (-15 -2409 ($ (-387 (-891 (-359))))) (-15 -3001 ((-3 $ "failed") (-387 (-891 (-359))))) (-15 -2409 ($ (-891 (-359)))) (-15 -3001 ((-3 $ "failed") (-891 (-359))))) |%noBranch|) (-15 -1775 ($ $)) (-15 -2450 ($ $)) (-15 -2656 ($ $)) (-15 -2097 ($ $)) (-15 -1862 ($ $)) (-15 -2712 ($ $)) (-15 -2724 ($ $)) (-15 -2735 ($ $)) (-15 -2784 ($ $)) (-15 -2797 ($ $)) (-15 -2811 ($ $)) (-15 -2859 ($ $)) (-15 -2869 ($ $)) (-15 -2880 ($ $)) (-15 -1505 ($)) (-15 -2565 ((-595 (-1095)) $)) (-15 -3070 ((-110))) (-15 -3070 ((-110) (-110)))))
-((-3106 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-320 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3106 (|#8| (-1 |#5| |#1|) |#4|))) (-1135) (-1153 |#1|) (-1153 (-387 |#2|)) (-322 |#1| |#2| |#3|) (-1135) (-1153 |#5|) (-1153 (-387 |#6|)) (-322 |#5| |#6| |#7|)) (T -320))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1135)) (-4 *8 (-1135)) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-387 *6))) (-4 *9 (-1153 *8)) (-4 *2 (-322 *8 *9 *10)) (-5 *1 (-320 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-322 *5 *6 *7)) (-4 *10 (-1153 (-387 *9))))))
-(-10 -7 (-15 -3106 (|#8| (-1 |#5| |#1|) |#4|)))
-((-4026 (((-2 (|:| |num| (-1177 |#3|)) (|:| |den| |#3|)) $) 38)) (-1945 (($ (-1177 (-387 |#3|)) (-1177 $)) NIL) (($ (-1177 (-387 |#3|))) NIL) (($ (-1177 |#3|) |#3|) 161)) (-2115 (((-1177 $) (-1177 $)) 145)) (-1727 (((-595 (-595 |#2|))) 119)) (-3008 (((-110) |#2| |#2|) 73)) (-1551 (($ $) 139)) (-2531 (((-717)) 31)) (-3652 (((-1177 $) (-1177 $)) 198)) (-3515 (((-595 (-891 |#2|)) (-1095)) 110)) (-2277 (((-110) $) 158)) (-3697 (((-110) $) 25) (((-110) $ |#2|) 29) (((-110) $ |#3|) 202)) (-3743 (((-3 |#3| "failed")) 50)) (-1755 (((-717)) 170)) (-3043 ((|#2| $ |#2| |#2|) 132)) (-2165 (((-3 |#3| "failed")) 68)) (-3235 (($ $ (-1 (-387 |#3|) (-387 |#3|)) (-717)) NIL) (($ $ (-1 (-387 |#3|) (-387 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-595 (-1095)) (-595 (-717))) NIL) (($ $ (-1095) (-717)) NIL) (($ $ (-595 (-1095))) NIL) (($ $ (-1095)) NIL) (($ $ (-717)) NIL) (($ $) NIL)) (-3295 (((-1177 $) (-1177 $)) 151)) (-2245 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-3753 (((-110)) 33)))
-(((-321 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3235 (|#1| |#1|)) (-15 -3235 (|#1| |#1| (-717))) (-15 -3235 (|#1| |#1| (-1095))) (-15 -3235 (|#1| |#1| (-595 (-1095)))) (-15 -3235 (|#1| |#1| (-1095) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)) (-595 (-717)))) (-15 -1727 ((-595 (-595 |#2|)))) (-15 -3515 ((-595 (-891 |#2|)) (-1095))) (-15 -2245 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3743 ((-3 |#3| "failed"))) (-15 -2165 ((-3 |#3| "failed"))) (-15 -3043 (|#2| |#1| |#2| |#2|)) (-15 -1551 (|#1| |#1|)) (-15 -1945 (|#1| (-1177 |#3|) |#3|)) (-15 -3235 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3697 ((-110) |#1| |#3|)) (-15 -3697 ((-110) |#1| |#2|)) (-15 -4026 ((-2 (|:| |num| (-1177 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2115 ((-1177 |#1|) (-1177 |#1|))) (-15 -3652 ((-1177 |#1|) (-1177 |#1|))) (-15 -3295 ((-1177 |#1|) (-1177 |#1|))) (-15 -3697 ((-110) |#1|)) (-15 -2277 ((-110) |#1|)) (-15 -3008 ((-110) |#2| |#2|)) (-15 -3753 ((-110))) (-15 -1755 ((-717))) (-15 -2531 ((-717))) (-15 -3235 (|#1| |#1| (-1 (-387 |#3|) (-387 |#3|)))) (-15 -3235 (|#1| |#1| (-1 (-387 |#3|) (-387 |#3|)) (-717))) (-15 -1945 (|#1| (-1177 (-387 |#3|)))) (-15 -1945 (|#1| (-1177 (-387 |#3|)) (-1177 |#1|)))) (-322 |#2| |#3| |#4|) (-1135) (-1153 |#2|) (-1153 (-387 |#3|))) (T -321))
-((-2531 (*1 *2) (-12 (-4 *4 (-1135)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-387 *5))) (-5 *2 (-717)) (-5 *1 (-321 *3 *4 *5 *6)) (-4 *3 (-322 *4 *5 *6)))) (-1755 (*1 *2) (-12 (-4 *4 (-1135)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-387 *5))) (-5 *2 (-717)) (-5 *1 (-321 *3 *4 *5 *6)) (-4 *3 (-322 *4 *5 *6)))) (-3753 (*1 *2) (-12 (-4 *4 (-1135)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-387 *5))) (-5 *2 (-110)) (-5 *1 (-321 *3 *4 *5 *6)) (-4 *3 (-322 *4 *5 *6)))) (-3008 (*1 *2 *3 *3) (-12 (-4 *3 (-1135)) (-4 *5 (-1153 *3)) (-4 *6 (-1153 (-387 *5))) (-5 *2 (-110)) (-5 *1 (-321 *4 *3 *5 *6)) (-4 *4 (-322 *3 *5 *6)))) (-2165 (*1 *2) (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1153 (-387 *2))) (-4 *2 (-1153 *4)) (-5 *1 (-321 *3 *4 *2 *5)) (-4 *3 (-322 *4 *2 *5)))) (-3743 (*1 *2) (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1153 (-387 *2))) (-4 *2 (-1153 *4)) (-5 *1 (-321 *3 *4 *2 *5)) (-4 *3 (-322 *4 *2 *5)))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-1095)) (-4 *5 (-1135)) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-387 *6))) (-5 *2 (-595 (-891 *5))) (-5 *1 (-321 *4 *5 *6 *7)) (-4 *4 (-322 *5 *6 *7)))) (-1727 (*1 *2) (-12 (-4 *4 (-1135)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-387 *5))) (-5 *2 (-595 (-595 *4))) (-5 *1 (-321 *3 *4 *5 *6)) (-4 *3 (-322 *4 *5 *6)))))
-(-10 -8 (-15 -3235 (|#1| |#1|)) (-15 -3235 (|#1| |#1| (-717))) (-15 -3235 (|#1| |#1| (-1095))) (-15 -3235 (|#1| |#1| (-595 (-1095)))) (-15 -3235 (|#1| |#1| (-1095) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)) (-595 (-717)))) (-15 -1727 ((-595 (-595 |#2|)))) (-15 -3515 ((-595 (-891 |#2|)) (-1095))) (-15 -2245 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3743 ((-3 |#3| "failed"))) (-15 -2165 ((-3 |#3| "failed"))) (-15 -3043 (|#2| |#1| |#2| |#2|)) (-15 -1551 (|#1| |#1|)) (-15 -1945 (|#1| (-1177 |#3|) |#3|)) (-15 -3235 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3697 ((-110) |#1| |#3|)) (-15 -3697 ((-110) |#1| |#2|)) (-15 -4026 ((-2 (|:| |num| (-1177 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2115 ((-1177 |#1|) (-1177 |#1|))) (-15 -3652 ((-1177 |#1|) (-1177 |#1|))) (-15 -3295 ((-1177 |#1|) (-1177 |#1|))) (-15 -3697 ((-110) |#1|)) (-15 -2277 ((-110) |#1|)) (-15 -3008 ((-110) |#2| |#2|)) (-15 -3753 ((-110))) (-15 -1755 ((-717))) (-15 -2531 ((-717))) (-15 -3235 (|#1| |#1| (-1 (-387 |#3|) (-387 |#3|)))) (-15 -3235 (|#1| |#1| (-1 (-387 |#3|) (-387 |#3|)) (-717))) (-15 -1945 (|#1| (-1177 (-387 |#3|)))) (-15 -1945 (|#1| (-1177 (-387 |#3|)) (-1177 |#1|))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-4026 (((-2 (|:| |num| (-1177 |#2|)) (|:| |den| |#2|)) $) 196)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 93 (|has| (-387 |#2|) (-343)))) (-1738 (($ $) 94 (|has| (-387 |#2|) (-343)))) (-1811 (((-110) $) 96 (|has| (-387 |#2|) (-343)))) (-2486 (((-635 (-387 |#2|)) (-1177 $)) 46) (((-635 (-387 |#2|))) 61)) (-1323 (((-387 |#2|) $) 52)) (-2338 (((-1105 (-860) (-717)) (-528)) 147 (|has| (-387 |#2|) (-329)))) (-3181 (((-3 $ "failed") $ $) 19)) (-1232 (($ $) 113 (|has| (-387 |#2|) (-343)))) (-2705 (((-398 $) $) 114 (|has| (-387 |#2|) (-343)))) (-2213 (((-110) $ $) 104 (|has| (-387 |#2|) (-343)))) (-2856 (((-717)) 87 (|has| (-387 |#2|) (-348)))) (-1824 (((-110)) 213)) (-2161 (((-110) |#1|) 212) (((-110) |#2|) 211)) (-2816 (($) 17 T CONST)) (-3001 (((-3 (-528) "failed") $) 169 (|has| (-387 |#2|) (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) 167 (|has| (-387 |#2|) (-972 (-387 (-528))))) (((-3 (-387 |#2|) "failed") $) 166)) (-2409 (((-528) $) 170 (|has| (-387 |#2|) (-972 (-528)))) (((-387 (-528)) $) 168 (|has| (-387 |#2|) (-972 (-387 (-528))))) (((-387 |#2|) $) 165)) (-1945 (($ (-1177 (-387 |#2|)) (-1177 $)) 48) (($ (-1177 (-387 |#2|))) 64) (($ (-1177 |#2|) |#2|) 189)) (-2413 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-387 |#2|) (-329)))) (-3519 (($ $ $) 108 (|has| (-387 |#2|) (-343)))) (-3847 (((-635 (-387 |#2|)) $ (-1177 $)) 53) (((-635 (-387 |#2|)) $) 59)) (-2120 (((-635 (-528)) (-635 $)) 164 (|has| (-387 |#2|) (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) 163 (|has| (-387 |#2|) (-591 (-528)))) (((-2 (|:| -2163 (-635 (-387 |#2|))) (|:| |vec| (-1177 (-387 |#2|)))) (-635 $) (-1177 $)) 162) (((-635 (-387 |#2|)) (-635 $)) 161)) (-2115 (((-1177 $) (-1177 $)) 201)) (-1422 (($ |#3|) 158) (((-3 $ "failed") (-387 |#3|)) 155 (|has| (-387 |#2|) (-343)))) (-1312 (((-3 $ "failed") $) 34)) (-1727 (((-595 (-595 |#1|))) 182 (|has| |#1| (-348)))) (-3008 (((-110) |#1| |#1|) 217)) (-3090 (((-860)) 54)) (-1338 (($) 90 (|has| (-387 |#2|) (-348)))) (-2327 (((-110)) 210)) (-3665 (((-110) |#1|) 209) (((-110) |#2|) 208)) (-3498 (($ $ $) 107 (|has| (-387 |#2|) (-343)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 102 (|has| (-387 |#2|) (-343)))) (-1551 (($ $) 188)) (-2916 (($) 149 (|has| (-387 |#2|) (-329)))) (-4086 (((-110) $) 150 (|has| (-387 |#2|) (-329)))) (-2790 (($ $ (-717)) 141 (|has| (-387 |#2|) (-329))) (($ $) 140 (|has| (-387 |#2|) (-329)))) (-2124 (((-110) $) 115 (|has| (-387 |#2|) (-343)))) (-3689 (((-860) $) 152 (|has| (-387 |#2|) (-329))) (((-779 (-860)) $) 138 (|has| (-387 |#2|) (-329)))) (-1297 (((-110) $) 31)) (-2531 (((-717)) 220)) (-3652 (((-1177 $) (-1177 $)) 202)) (-3297 (((-387 |#2|) $) 51)) (-3515 (((-595 (-891 |#1|)) (-1095)) 183 (|has| |#1| (-343)))) (-3296 (((-3 $ "failed") $) 142 (|has| (-387 |#2|) (-329)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) 111 (|has| (-387 |#2|) (-343)))) (-3537 ((|#3| $) 44 (|has| (-387 |#2|) (-343)))) (-3201 (((-860) $) 89 (|has| (-387 |#2|) (-348)))) (-1412 ((|#3| $) 156)) (-2057 (($ (-595 $)) 100 (|has| (-387 |#2|) (-343))) (($ $ $) 99 (|has| (-387 |#2|) (-343)))) (-3034 (((-1078) $) 9)) (-3139 (((-635 (-387 |#2|))) 197)) (-1955 (((-635 (-387 |#2|))) 199)) (-2652 (($ $) 116 (|has| (-387 |#2|) (-343)))) (-2460 (($ (-1177 |#2|) |#2|) 194)) (-2547 (((-635 (-387 |#2|))) 198)) (-2832 (((-635 (-387 |#2|))) 200)) (-1326 (((-2 (|:| |num| (-635 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-1749 (((-2 (|:| |num| (-1177 |#2|)) (|:| |den| |#2|)) $) 195)) (-2079 (((-1177 $)) 206)) (-3882 (((-1177 $)) 207)) (-2277 (((-110) $) 205)) (-3697 (((-110) $) 204) (((-110) $ |#1|) 192) (((-110) $ |#2|) 191)) (-4197 (($) 143 (|has| (-387 |#2|) (-329)) CONST)) (-3108 (($ (-860)) 88 (|has| (-387 |#2|) (-348)))) (-3743 (((-3 |#2| "failed")) 185)) (-2495 (((-1042) $) 10)) (-1755 (((-717)) 219)) (-1261 (($) 160)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 101 (|has| (-387 |#2|) (-343)))) (-2088 (($ (-595 $)) 98 (|has| (-387 |#2|) (-343))) (($ $ $) 97 (|has| (-387 |#2|) (-343)))) (-3010 (((-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528))))) 146 (|has| (-387 |#2|) (-329)))) (-2437 (((-398 $) $) 112 (|has| (-387 |#2|) (-343)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-387 |#2|) (-343))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 109 (|has| (-387 |#2|) (-343)))) (-3477 (((-3 $ "failed") $ $) 92 (|has| (-387 |#2|) (-343)))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 103 (|has| (-387 |#2|) (-343)))) (-3973 (((-717) $) 105 (|has| (-387 |#2|) (-343)))) (-3043 ((|#1| $ |#1| |#1|) 187)) (-2165 (((-3 |#2| "failed")) 186)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 106 (|has| (-387 |#2|) (-343)))) (-1372 (((-387 |#2|) (-1177 $)) 47) (((-387 |#2|)) 60)) (-3500 (((-717) $) 151 (|has| (-387 |#2|) (-329))) (((-3 (-717) "failed") $ $) 139 (|has| (-387 |#2|) (-329)))) (-3235 (($ $ (-1 (-387 |#2|) (-387 |#2|)) (-717)) 123 (|has| (-387 |#2|) (-343))) (($ $ (-1 (-387 |#2|) (-387 |#2|))) 122 (|has| (-387 |#2|) (-343))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-595 (-1095)) (-595 (-717))) 130 (-1463 (-3287 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095)))) (-3287 (|has| (-387 |#2|) (-839 (-1095))) (|has| (-387 |#2|) (-343))))) (($ $ (-1095) (-717)) 131 (-1463 (-3287 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095)))) (-3287 (|has| (-387 |#2|) (-839 (-1095))) (|has| (-387 |#2|) (-343))))) (($ $ (-595 (-1095))) 132 (-1463 (-3287 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095)))) (-3287 (|has| (-387 |#2|) (-839 (-1095))) (|has| (-387 |#2|) (-343))))) (($ $ (-1095)) 133 (-1463 (-3287 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095)))) (-3287 (|has| (-387 |#2|) (-839 (-1095))) (|has| (-387 |#2|) (-343))))) (($ $ (-717)) 135 (-1463 (-3287 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-215))) (-3287 (|has| (-387 |#2|) (-215)) (|has| (-387 |#2|) (-343))) (|has| (-387 |#2|) (-329)))) (($ $) 137 (-1463 (-3287 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-215))) (-3287 (|has| (-387 |#2|) (-215)) (|has| (-387 |#2|) (-343))) (|has| (-387 |#2|) (-329))))) (-2348 (((-635 (-387 |#2|)) (-1177 $) (-1 (-387 |#2|) (-387 |#2|))) 154 (|has| (-387 |#2|) (-343)))) (-4090 ((|#3|) 159)) (-1984 (($) 148 (|has| (-387 |#2|) (-329)))) (-4243 (((-1177 (-387 |#2|)) $ (-1177 $)) 50) (((-635 (-387 |#2|)) (-1177 $) (-1177 $)) 49) (((-1177 (-387 |#2|)) $) 66) (((-635 (-387 |#2|)) (-1177 $)) 65)) (-3155 (((-1177 (-387 |#2|)) $) 63) (($ (-1177 (-387 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) 145 (|has| (-387 |#2|) (-329)))) (-3295 (((-1177 $) (-1177 $)) 203)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ (-387 |#2|)) 37) (($ (-387 (-528))) 86 (-1463 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-972 (-387 (-528)))))) (($ $) 91 (|has| (-387 |#2|) (-343)))) (-3749 (($ $) 144 (|has| (-387 |#2|) (-329))) (((-3 $ "failed") $) 43 (|has| (-387 |#2|) (-138)))) (-2516 ((|#3| $) 45)) (-3742 (((-717)) 29)) (-3470 (((-110)) 216)) (-3527 (((-110) |#1|) 215) (((-110) |#2|) 214)) (-1400 (((-1177 $)) 67)) (-4016 (((-110) $ $) 95 (|has| (-387 |#2|) (-343)))) (-2245 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-3753 (((-110)) 218)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33) (($ $ (-528)) 117 (|has| (-387 |#2|) (-343)))) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-3245 (($ $ (-1 (-387 |#2|) (-387 |#2|)) (-717)) 125 (|has| (-387 |#2|) (-343))) (($ $ (-1 (-387 |#2|) (-387 |#2|))) 124 (|has| (-387 |#2|) (-343))) (($ $ (-595 (-1095)) (-595 (-717))) 126 (-1463 (-3287 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095)))) (-3287 (|has| (-387 |#2|) (-839 (-1095))) (|has| (-387 |#2|) (-343))))) (($ $ (-1095) (-717)) 127 (-1463 (-3287 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095)))) (-3287 (|has| (-387 |#2|) (-839 (-1095))) (|has| (-387 |#2|) (-343))))) (($ $ (-595 (-1095))) 128 (-1463 (-3287 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095)))) (-3287 (|has| (-387 |#2|) (-839 (-1095))) (|has| (-387 |#2|) (-343))))) (($ $ (-1095)) 129 (-1463 (-3287 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095)))) (-3287 (|has| (-387 |#2|) (-839 (-1095))) (|has| (-387 |#2|) (-343))))) (($ $ (-717)) 134 (-1463 (-3287 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-215))) (-3287 (|has| (-387 |#2|) (-215)) (|has| (-387 |#2|) (-343))) (|has| (-387 |#2|) (-329)))) (($ $) 136 (-1463 (-3287 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-215))) (-3287 (|has| (-387 |#2|) (-215)) (|has| (-387 |#2|) (-343))) (|has| (-387 |#2|) (-329))))) (-2186 (((-110) $ $) 6)) (-2296 (($ $ $) 121 (|has| (-387 |#2|) (-343)))) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32) (($ $ (-528)) 118 (|has| (-387 |#2|) (-343)))) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ (-387 |#2|)) 39) (($ (-387 |#2|) $) 38) (($ (-387 (-528)) $) 120 (|has| (-387 |#2|) (-343))) (($ $ (-387 (-528))) 119 (|has| (-387 |#2|) (-343)))))
-(((-322 |#1| |#2| |#3|) (-133) (-1135) (-1153 |t#1|) (-1153 (-387 |t#2|))) (T -322))
-((-2531 (*1 *2) (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-5 *2 (-717)))) (-1755 (*1 *2) (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-5 *2 (-717)))) (-3753 (*1 *2) (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-5 *2 (-110)))) (-3008 (*1 *2 *3 *3) (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-5 *2 (-110)))) (-3470 (*1 *2) (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-5 *2 (-110)))) (-3527 (*1 *2 *3) (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-5 *2 (-110)))) (-3527 (*1 *2 *3) (-12 (-4 *1 (-322 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 (-387 *3))) (-5 *2 (-110)))) (-1824 (*1 *2) (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-5 *2 (-110)))) (-2161 (*1 *2 *3) (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-5 *2 (-110)))) (-2161 (*1 *2 *3) (-12 (-4 *1 (-322 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 (-387 *3))) (-5 *2 (-110)))) (-2327 (*1 *2) (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-5 *2 (-110)))) (-3665 (*1 *2 *3) (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-5 *2 (-110)))) (-3665 (*1 *2 *3) (-12 (-4 *1 (-322 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 (-387 *3))) (-5 *2 (-110)))) (-3882 (*1 *2) (-12 (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-5 *2 (-1177 *1)) (-4 *1 (-322 *3 *4 *5)))) (-2079 (*1 *2) (-12 (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-5 *2 (-1177 *1)) (-4 *1 (-322 *3 *4 *5)))) (-2277 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-5 *2 (-110)))) (-3697 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-5 *2 (-110)))) (-3295 (*1 *2 *2) (-12 (-5 *2 (-1177 *1)) (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))))) (-3652 (*1 *2 *2) (-12 (-5 *2 (-1177 *1)) (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))))) (-2115 (*1 *2 *2) (-12 (-5 *2 (-1177 *1)) (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))))) (-2832 (*1 *2) (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-5 *2 (-635 (-387 *4))))) (-1955 (*1 *2) (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-5 *2 (-635 (-387 *4))))) (-2547 (*1 *2) (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-5 *2 (-635 (-387 *4))))) (-3139 (*1 *2) (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-5 *2 (-635 (-387 *4))))) (-4026 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-5 *2 (-2 (|:| |num| (-1177 *4)) (|:| |den| *4))))) (-1749 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-5 *2 (-2 (|:| |num| (-1177 *4)) (|:| |den| *4))))) (-2460 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1153 *4)) (-4 *4 (-1135)) (-4 *1 (-322 *4 *3 *5)) (-4 *5 (-1153 (-387 *3))))) (-1326 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-322 *4 *5 *6)) (-4 *4 (-1135)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-387 *5))) (-5 *2 (-2 (|:| |num| (-635 *5)) (|:| |den| *5))))) (-3697 (*1 *2 *1 *3) (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-5 *2 (-110)))) (-3697 (*1 *2 *1 *3) (-12 (-4 *1 (-322 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 (-387 *3))) (-5 *2 (-110)))) (-3235 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))))) (-1945 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1153 *4)) (-4 *4 (-1135)) (-4 *1 (-322 *4 *3 *5)) (-4 *5 (-1153 (-387 *3))))) (-1551 (*1 *1 *1) (-12 (-4 *1 (-322 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-1153 *2)) (-4 *4 (-1153 (-387 *3))))) (-3043 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-322 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-1153 *2)) (-4 *4 (-1153 (-387 *3))))) (-2165 (*1 *2) (|partial| -12 (-4 *1 (-322 *3 *2 *4)) (-4 *3 (-1135)) (-4 *4 (-1153 (-387 *2))) (-4 *2 (-1153 *3)))) (-3743 (*1 *2) (|partial| -12 (-4 *1 (-322 *3 *2 *4)) (-4 *3 (-1135)) (-4 *4 (-1153 (-387 *2))) (-4 *2 (-1153 *3)))) (-2245 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-1135)) (-4 *6 (-1153 (-387 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-322 *4 *5 *6)))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-1095)) (-4 *1 (-322 *4 *5 *6)) (-4 *4 (-1135)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-387 *5))) (-4 *4 (-343)) (-5 *2 (-595 (-891 *4))))) (-1727 (*1 *2) (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))) (-4 *3 (-348)) (-5 *2 (-595 (-595 *3))))))
-(-13 (-671 (-387 |t#2|) |t#3|) (-10 -8 (-15 -2531 ((-717))) (-15 -1755 ((-717))) (-15 -3753 ((-110))) (-15 -3008 ((-110) |t#1| |t#1|)) (-15 -3470 ((-110))) (-15 -3527 ((-110) |t#1|)) (-15 -3527 ((-110) |t#2|)) (-15 -1824 ((-110))) (-15 -2161 ((-110) |t#1|)) (-15 -2161 ((-110) |t#2|)) (-15 -2327 ((-110))) (-15 -3665 ((-110) |t#1|)) (-15 -3665 ((-110) |t#2|)) (-15 -3882 ((-1177 $))) (-15 -2079 ((-1177 $))) (-15 -2277 ((-110) $)) (-15 -3697 ((-110) $)) (-15 -3295 ((-1177 $) (-1177 $))) (-15 -3652 ((-1177 $) (-1177 $))) (-15 -2115 ((-1177 $) (-1177 $))) (-15 -2832 ((-635 (-387 |t#2|)))) (-15 -1955 ((-635 (-387 |t#2|)))) (-15 -2547 ((-635 (-387 |t#2|)))) (-15 -3139 ((-635 (-387 |t#2|)))) (-15 -4026 ((-2 (|:| |num| (-1177 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1945 ($ (-1177 |t#2|) |t#2|)) (-15 -1749 ((-2 (|:| |num| (-1177 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2460 ($ (-1177 |t#2|) |t#2|)) (-15 -1326 ((-2 (|:| |num| (-635 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3697 ((-110) $ |t#1|)) (-15 -3697 ((-110) $ |t#2|)) (-15 -3235 ($ $ (-1 |t#2| |t#2|))) (-15 -1945 ($ (-1177 |t#2|) |t#2|)) (-15 -1551 ($ $)) (-15 -3043 (|t#1| $ |t#1| |t#1|)) (-15 -2165 ((-3 |t#2| "failed"))) (-15 -3743 ((-3 |t#2| "failed"))) (-15 -2245 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-343)) (-15 -3515 ((-595 (-891 |t#1|)) (-1095))) |%noBranch|) (IF (|has| |t#1| (-348)) (-15 -1727 ((-595 (-595 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-387 (-528))) -1463 (|has| (-387 |#2|) (-329)) (|has| (-387 |#2|) (-343))) ((-37 #1=(-387 |#2|)) . T) ((-37 $) -1463 (|has| (-387 |#2|) (-329)) (|has| (-387 |#2|) (-343))) ((-99) . T) ((-109 #0# #0#) -1463 (|has| (-387 |#2|) (-329)) (|has| (-387 |#2|) (-343))) ((-109 #1# #1#) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1463 (|has| (-387 |#2|) (-329)) (|has| (-387 |#2|) (-138))) ((-140) |has| (-387 |#2|) (-140)) ((-569 (-802)) . T) ((-162) . T) ((-570 |#3|) . T) ((-213 #1#) |has| (-387 |#2|) (-343)) ((-215) -1463 (|has| (-387 |#2|) (-329)) (-12 (|has| (-387 |#2|) (-215)) (|has| (-387 |#2|) (-343)))) ((-225) -1463 (|has| (-387 |#2|) (-329)) (|has| (-387 |#2|) (-343))) ((-271) -1463 (|has| (-387 |#2|) (-329)) (|has| (-387 |#2|) (-343))) ((-288) -1463 (|has| (-387 |#2|) (-329)) (|has| (-387 |#2|) (-343))) ((-343) -1463 (|has| (-387 |#2|) (-329)) (|has| (-387 |#2|) (-343))) ((-382) |has| (-387 |#2|) (-329)) ((-348) -1463 (|has| (-387 |#2|) (-348)) (|has| (-387 |#2|) (-329))) ((-329) |has| (-387 |#2|) (-329)) ((-350 #1# |#3|) . T) ((-389 #1# |#3|) . T) ((-357 #1#) . T) ((-391 #1#) . T) ((-431) -1463 (|has| (-387 |#2|) (-329)) (|has| (-387 |#2|) (-343))) ((-520) -1463 (|has| (-387 |#2|) (-329)) (|has| (-387 |#2|) (-343))) ((-597 #0#) -1463 (|has| (-387 |#2|) (-329)) (|has| (-387 |#2|) (-343))) ((-597 #1#) . T) ((-597 $) . T) ((-591 #1#) . T) ((-591 (-528)) |has| (-387 |#2|) (-591 (-528))) ((-664 #0#) -1463 (|has| (-387 |#2|) (-329)) (|has| (-387 |#2|) (-343))) ((-664 #1#) . T) ((-664 $) -1463 (|has| (-387 |#2|) (-329)) (|has| (-387 |#2|) (-343))) ((-671 #1# |#3|) . T) ((-673) . T) ((-839 (-1095)) -12 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095)))) ((-859) -1463 (|has| (-387 |#2|) (-329)) (|has| (-387 |#2|) (-343))) ((-972 (-387 (-528))) |has| (-387 |#2|) (-972 (-387 (-528)))) ((-972 #1#) . T) ((-972 (-528)) |has| (-387 |#2|) (-972 (-528))) ((-986 #0#) -1463 (|has| (-387 |#2|) (-329)) (|has| (-387 |#2|) (-343))) ((-986 #1#) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1071) |has| (-387 |#2|) (-329)) ((-1135) -1463 (|has| (-387 |#2|) (-329)) (|has| (-387 |#2|) (-343))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3455 (((-110) $) NIL)) (-3370 (((-717)) NIL)) (-1323 (((-849 |#1|) $) NIL) (($ $ (-860)) NIL (|has| (-849 |#1|) (-348)))) (-2338 (((-1105 (-860) (-717)) (-528)) NIL (|has| (-849 |#1|) (-348)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-2213 (((-110) $ $) NIL)) (-2856 (((-717)) NIL (|has| (-849 |#1|) (-348)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-849 |#1|) "failed") $) NIL)) (-2409 (((-849 |#1|) $) NIL)) (-1945 (($ (-1177 (-849 |#1|))) NIL)) (-2413 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-849 |#1|) (-348)))) (-3519 (($ $ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1338 (($) NIL (|has| (-849 |#1|) (-348)))) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2916 (($) NIL (|has| (-849 |#1|) (-348)))) (-4086 (((-110) $) NIL (|has| (-849 |#1|) (-348)))) (-2790 (($ $ (-717)) NIL (-1463 (|has| (-849 |#1|) (-138)) (|has| (-849 |#1|) (-348)))) (($ $) NIL (-1463 (|has| (-849 |#1|) (-138)) (|has| (-849 |#1|) (-348))))) (-2124 (((-110) $) NIL)) (-3689 (((-860) $) NIL (|has| (-849 |#1|) (-348))) (((-779 (-860)) $) NIL (-1463 (|has| (-849 |#1|) (-138)) (|has| (-849 |#1|) (-348))))) (-1297 (((-110) $) NIL)) (-2339 (($) NIL (|has| (-849 |#1|) (-348)))) (-2581 (((-110) $) NIL (|has| (-849 |#1|) (-348)))) (-3297 (((-849 |#1|) $) NIL) (($ $ (-860)) NIL (|has| (-849 |#1|) (-348)))) (-3296 (((-3 $ "failed") $) NIL (|has| (-849 |#1|) (-348)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3537 (((-1091 (-849 |#1|)) $) NIL) (((-1091 $) $ (-860)) NIL (|has| (-849 |#1|) (-348)))) (-3201 (((-860) $) NIL (|has| (-849 |#1|) (-348)))) (-2304 (((-1091 (-849 |#1|)) $) NIL (|has| (-849 |#1|) (-348)))) (-2143 (((-1091 (-849 |#1|)) $) NIL (|has| (-849 |#1|) (-348))) (((-3 (-1091 (-849 |#1|)) "failed") $ $) NIL (|has| (-849 |#1|) (-348)))) (-3640 (($ $ (-1091 (-849 |#1|))) NIL (|has| (-849 |#1|) (-348)))) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL)) (-4197 (($) NIL (|has| (-849 |#1|) (-348)) CONST)) (-3108 (($ (-860)) NIL (|has| (-849 |#1|) (-348)))) (-3148 (((-110) $) NIL)) (-2495 (((-1042) $) NIL)) (-2672 (((-896 (-1042))) NIL)) (-1261 (($) NIL (|has| (-849 |#1|) (-348)))) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3010 (((-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528))))) NIL (|has| (-849 |#1|) (-348)))) (-2437 (((-398 $) $) NIL)) (-2209 (((-779 (-860))) NIL) (((-860)) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3500 (((-717) $) NIL (|has| (-849 |#1|) (-348))) (((-3 (-717) "failed") $ $) NIL (-1463 (|has| (-849 |#1|) (-138)) (|has| (-849 |#1|) (-348))))) (-3017 (((-130)) NIL)) (-3235 (($ $) NIL (|has| (-849 |#1|) (-348))) (($ $ (-717)) NIL (|has| (-849 |#1|) (-348)))) (-2935 (((-779 (-860)) $) NIL) (((-860) $) NIL)) (-4090 (((-1091 (-849 |#1|))) NIL)) (-1984 (($) NIL (|has| (-849 |#1|) (-348)))) (-1469 (($) NIL (|has| (-849 |#1|) (-348)))) (-4243 (((-1177 (-849 |#1|)) $) NIL) (((-635 (-849 |#1|)) (-1177 $)) NIL)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (|has| (-849 |#1|) (-348)))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ $) NIL) (($ (-387 (-528))) NIL) (($ (-849 |#1|)) NIL)) (-3749 (($ $) NIL (|has| (-849 |#1|) (-348))) (((-3 $ "failed") $) NIL (-1463 (|has| (-849 |#1|) (-138)) (|has| (-849 |#1|) (-348))))) (-3742 (((-717)) NIL)) (-1400 (((-1177 $)) NIL) (((-1177 $) (-860)) NIL)) (-4016 (((-110) $ $) NIL)) (-2190 (((-110) $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-2698 (($ $) NIL (|has| (-849 |#1|) (-348))) (($ $ (-717)) NIL (|has| (-849 |#1|) (-348)))) (-3245 (($ $) NIL (|has| (-849 |#1|) (-348))) (($ $ (-717)) NIL (|has| (-849 |#1|) (-348)))) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ $) NIL) (($ $ (-849 |#1|)) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL) (($ $ (-849 |#1|)) NIL) (($ (-849 |#1|) $) NIL)))
-(((-323 |#1| |#2|) (-13 (-309 (-849 |#1|)) (-10 -7 (-15 -2672 ((-896 (-1042)))))) (-860) (-860)) (T -323))
-((-2672 (*1 *2) (-12 (-5 *2 (-896 (-1042))) (-5 *1 (-323 *3 *4)) (-14 *3 (-860)) (-14 *4 (-860)))))
-(-13 (-309 (-849 |#1|)) (-10 -7 (-15 -2672 ((-896 (-1042))))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 46)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3455 (((-110) $) NIL)) (-3370 (((-717)) NIL)) (-1323 ((|#1| $) NIL) (($ $ (-860)) NIL (|has| |#1| (-348)))) (-2338 (((-1105 (-860) (-717)) (-528)) 43 (|has| |#1| (-348)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-2213 (((-110) $ $) NIL)) (-2856 (((-717)) NIL (|has| |#1| (-348)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#1| "failed") $) 115)) (-2409 ((|#1| $) 86)) (-1945 (($ (-1177 |#1|)) 104)) (-2413 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-348)))) (-3519 (($ $ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1338 (($) 98 (|has| |#1| (-348)))) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2916 (($) 130 (|has| |#1| (-348)))) (-4086 (((-110) $) 49 (|has| |#1| (-348)))) (-2790 (($ $ (-717)) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348)))) (($ $) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-2124 (((-110) $) NIL)) (-3689 (((-860) $) 47 (|has| |#1| (-348))) (((-779 (-860)) $) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-1297 (((-110) $) NIL)) (-2339 (($) 132 (|has| |#1| (-348)))) (-2581 (((-110) $) NIL (|has| |#1| (-348)))) (-3297 ((|#1| $) NIL) (($ $ (-860)) NIL (|has| |#1| (-348)))) (-3296 (((-3 $ "failed") $) NIL (|has| |#1| (-348)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3537 (((-1091 |#1|) $) 90) (((-1091 $) $ (-860)) NIL (|has| |#1| (-348)))) (-3201 (((-860) $) 140 (|has| |#1| (-348)))) (-2304 (((-1091 |#1|) $) NIL (|has| |#1| (-348)))) (-2143 (((-1091 |#1|) $) NIL (|has| |#1| (-348))) (((-3 (-1091 |#1|) "failed") $ $) NIL (|has| |#1| (-348)))) (-3640 (($ $ (-1091 |#1|)) NIL (|has| |#1| (-348)))) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) 147)) (-4197 (($) NIL (|has| |#1| (-348)) CONST)) (-3108 (($ (-860)) 71 (|has| |#1| (-348)))) (-3148 (((-110) $) 118)) (-2495 (((-1042) $) NIL)) (-2672 (((-896 (-1042))) 44)) (-1261 (($) 128 (|has| |#1| (-348)))) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3010 (((-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528))))) 93 (|has| |#1| (-348)))) (-2437 (((-398 $) $) NIL)) (-2209 (((-779 (-860))) 67) (((-860)) 68)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3500 (((-717) $) 131 (|has| |#1| (-348))) (((-3 (-717) "failed") $ $) 125 (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-3017 (((-130)) NIL)) (-3235 (($ $) NIL (|has| |#1| (-348))) (($ $ (-717)) NIL (|has| |#1| (-348)))) (-2935 (((-779 (-860)) $) NIL) (((-860) $) NIL)) (-4090 (((-1091 |#1|)) 96)) (-1984 (($) 129 (|has| |#1| (-348)))) (-1469 (($) 137 (|has| |#1| (-348)))) (-4243 (((-1177 |#1|) $) 59) (((-635 |#1|) (-1177 $)) NIL)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (|has| |#1| (-348)))) (-2222 (((-802) $) 143) (($ (-528)) NIL) (($ $) NIL) (($ (-387 (-528))) NIL) (($ |#1|) 75)) (-3749 (($ $) NIL (|has| |#1| (-348))) (((-3 $ "failed") $) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-3742 (((-717)) 139)) (-1400 (((-1177 $)) 117) (((-1177 $) (-860)) 73)) (-4016 (((-110) $ $) NIL)) (-2190 (((-110) $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) 32 T CONST)) (-2982 (($) 19 T CONST)) (-2698 (($ $) 81 (|has| |#1| (-348))) (($ $ (-717)) NIL (|has| |#1| (-348)))) (-3245 (($ $) NIL (|has| |#1| (-348))) (($ $ (-717)) NIL (|has| |#1| (-348)))) (-2186 (((-110) $ $) 48)) (-2296 (($ $ $) 145) (($ $ |#1|) 146)) (-2286 (($ $) 127) (($ $ $) NIL)) (-2275 (($ $ $) 61)) (** (($ $ (-860)) 149) (($ $ (-717)) 150) (($ $ (-528)) 148)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 77) (($ $ $) 76) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 144)))
-(((-324 |#1| |#2|) (-13 (-309 |#1|) (-10 -7 (-15 -2672 ((-896 (-1042)))))) (-329) (-1091 |#1|)) (T -324))
-((-2672 (*1 *2) (-12 (-5 *2 (-896 (-1042))) (-5 *1 (-324 *3 *4)) (-4 *3 (-329)) (-14 *4 (-1091 *3)))))
-(-13 (-309 |#1|) (-10 -7 (-15 -2672 ((-896 (-1042))))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3455 (((-110) $) NIL)) (-3370 (((-717)) NIL)) (-1323 ((|#1| $) NIL) (($ $ (-860)) NIL (|has| |#1| (-348)))) (-2338 (((-1105 (-860) (-717)) (-528)) NIL (|has| |#1| (-348)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-2213 (((-110) $ $) NIL)) (-2856 (((-717)) NIL (|has| |#1| (-348)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#1| "failed") $) NIL)) (-2409 ((|#1| $) NIL)) (-1945 (($ (-1177 |#1|)) NIL)) (-2413 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-348)))) (-3519 (($ $ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1338 (($) NIL (|has| |#1| (-348)))) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2916 (($) NIL (|has| |#1| (-348)))) (-4086 (((-110) $) NIL (|has| |#1| (-348)))) (-2790 (($ $ (-717)) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348)))) (($ $) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-2124 (((-110) $) NIL)) (-3689 (((-860) $) NIL (|has| |#1| (-348))) (((-779 (-860)) $) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-1297 (((-110) $) NIL)) (-2339 (($) NIL (|has| |#1| (-348)))) (-2581 (((-110) $) NIL (|has| |#1| (-348)))) (-3297 ((|#1| $) NIL) (($ $ (-860)) NIL (|has| |#1| (-348)))) (-3296 (((-3 $ "failed") $) NIL (|has| |#1| (-348)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3537 (((-1091 |#1|) $) NIL) (((-1091 $) $ (-860)) NIL (|has| |#1| (-348)))) (-3201 (((-860) $) NIL (|has| |#1| (-348)))) (-2304 (((-1091 |#1|) $) NIL (|has| |#1| (-348)))) (-2143 (((-1091 |#1|) $) NIL (|has| |#1| (-348))) (((-3 (-1091 |#1|) "failed") $ $) NIL (|has| |#1| (-348)))) (-3640 (($ $ (-1091 |#1|)) NIL (|has| |#1| (-348)))) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL)) (-4197 (($) NIL (|has| |#1| (-348)) CONST)) (-3108 (($ (-860)) NIL (|has| |#1| (-348)))) (-3148 (((-110) $) NIL)) (-2495 (((-1042) $) NIL)) (-2672 (((-896 (-1042))) NIL)) (-1261 (($) NIL (|has| |#1| (-348)))) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3010 (((-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528))))) NIL (|has| |#1| (-348)))) (-2437 (((-398 $) $) NIL)) (-2209 (((-779 (-860))) NIL) (((-860)) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3500 (((-717) $) NIL (|has| |#1| (-348))) (((-3 (-717) "failed") $ $) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-3017 (((-130)) NIL)) (-3235 (($ $) NIL (|has| |#1| (-348))) (($ $ (-717)) NIL (|has| |#1| (-348)))) (-2935 (((-779 (-860)) $) NIL) (((-860) $) NIL)) (-4090 (((-1091 |#1|)) NIL)) (-1984 (($) NIL (|has| |#1| (-348)))) (-1469 (($) NIL (|has| |#1| (-348)))) (-4243 (((-1177 |#1|) $) NIL) (((-635 |#1|) (-1177 $)) NIL)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (|has| |#1| (-348)))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ $) NIL) (($ (-387 (-528))) NIL) (($ |#1|) NIL)) (-3749 (($ $) NIL (|has| |#1| (-348))) (((-3 $ "failed") $) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-3742 (((-717)) NIL)) (-1400 (((-1177 $)) NIL) (((-1177 $) (-860)) NIL)) (-4016 (((-110) $ $) NIL)) (-2190 (((-110) $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-2698 (($ $) NIL (|has| |#1| (-348))) (($ $ (-717)) NIL (|has| |#1| (-348)))) (-3245 (($ $) NIL (|has| |#1| (-348))) (($ $ (-717)) NIL (|has| |#1| (-348)))) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-325 |#1| |#2|) (-13 (-309 |#1|) (-10 -7 (-15 -2672 ((-896 (-1042)))))) (-329) (-860)) (T -325))
-((-2672 (*1 *2) (-12 (-5 *2 (-896 (-1042))) (-5 *1 (-325 *3 *4)) (-4 *3 (-329)) (-14 *4 (-860)))))
-(-13 (-309 |#1|) (-10 -7 (-15 -2672 ((-896 (-1042))))))
-((-3404 (((-717) (-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042)))))) 42)) (-2385 (((-896 (-1042)) (-1091 |#1|)) 85)) (-3163 (((-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042))))) (-1091 |#1|)) 78)) (-3623 (((-635 |#1|) (-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042)))))) 86)) (-3684 (((-3 (-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042))))) "failed") (-860)) 13)) (-2279 (((-3 (-1091 |#1|) (-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042)))))) (-860)) 18)))
-(((-326 |#1|) (-10 -7 (-15 -2385 ((-896 (-1042)) (-1091 |#1|))) (-15 -3163 ((-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042))))) (-1091 |#1|))) (-15 -3623 ((-635 |#1|) (-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042))))))) (-15 -3404 ((-717) (-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042))))))) (-15 -3684 ((-3 (-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042))))) "failed") (-860))) (-15 -2279 ((-3 (-1091 |#1|) (-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042)))))) (-860)))) (-329)) (T -326))
-((-2279 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-3 (-1091 *4) (-1177 (-595 (-2 (|:| -3327 *4) (|:| -3108 (-1042))))))) (-5 *1 (-326 *4)) (-4 *4 (-329)))) (-3684 (*1 *2 *3) (|partial| -12 (-5 *3 (-860)) (-5 *2 (-1177 (-595 (-2 (|:| -3327 *4) (|:| -3108 (-1042)))))) (-5 *1 (-326 *4)) (-4 *4 (-329)))) (-3404 (*1 *2 *3) (-12 (-5 *3 (-1177 (-595 (-2 (|:| -3327 *4) (|:| -3108 (-1042)))))) (-4 *4 (-329)) (-5 *2 (-717)) (-5 *1 (-326 *4)))) (-3623 (*1 *2 *3) (-12 (-5 *3 (-1177 (-595 (-2 (|:| -3327 *4) (|:| -3108 (-1042)))))) (-4 *4 (-329)) (-5 *2 (-635 *4)) (-5 *1 (-326 *4)))) (-3163 (*1 *2 *3) (-12 (-5 *3 (-1091 *4)) (-4 *4 (-329)) (-5 *2 (-1177 (-595 (-2 (|:| -3327 *4) (|:| -3108 (-1042)))))) (-5 *1 (-326 *4)))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-1091 *4)) (-4 *4 (-329)) (-5 *2 (-896 (-1042))) (-5 *1 (-326 *4)))))
-(-10 -7 (-15 -2385 ((-896 (-1042)) (-1091 |#1|))) (-15 -3163 ((-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042))))) (-1091 |#1|))) (-15 -3623 ((-635 |#1|) (-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042))))))) (-15 -3404 ((-717) (-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042))))))) (-15 -3684 ((-3 (-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042))))) "failed") (-860))) (-15 -2279 ((-3 (-1091 |#1|) (-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042)))))) (-860))))
-((-2222 ((|#1| |#3|) 86) ((|#3| |#1|) 69)))
-(((-327 |#1| |#2| |#3|) (-10 -7 (-15 -2222 (|#3| |#1|)) (-15 -2222 (|#1| |#3|))) (-309 |#2|) (-329) (-309 |#2|)) (T -327))
-((-2222 (*1 *2 *3) (-12 (-4 *4 (-329)) (-4 *2 (-309 *4)) (-5 *1 (-327 *2 *4 *3)) (-4 *3 (-309 *4)))) (-2222 (*1 *2 *3) (-12 (-4 *4 (-329)) (-4 *2 (-309 *4)) (-5 *1 (-327 *3 *4 *2)) (-4 *3 (-309 *4)))))
-(-10 -7 (-15 -2222 (|#3| |#1|)) (-15 -2222 (|#1| |#3|)))
-((-4086 (((-110) $) 52)) (-3689 (((-779 (-860)) $) 21) (((-860) $) 53)) (-3296 (((-3 $ "failed") $) 16)) (-4197 (($) 9)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 95)) (-3500 (((-3 (-717) "failed") $ $) 73) (((-717) $) 61)) (-3235 (($ $ (-717)) NIL) (($ $) 8)) (-1984 (($) 46)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) 34)) (-3749 (((-3 $ "failed") $) 40) (($ $) 39)))
-(((-328 |#1|) (-10 -8 (-15 -3689 ((-860) |#1|)) (-15 -3500 ((-717) |#1|)) (-15 -4086 ((-110) |#1|)) (-15 -1984 (|#1|)) (-15 -1495 ((-3 (-1177 |#1|) "failed") (-635 |#1|))) (-15 -3749 (|#1| |#1|)) (-15 -3235 (|#1| |#1|)) (-15 -3235 (|#1| |#1| (-717))) (-15 -4197 (|#1|)) (-15 -3296 ((-3 |#1| "failed") |#1|)) (-15 -3500 ((-3 (-717) "failed") |#1| |#1|)) (-15 -3689 ((-779 (-860)) |#1|)) (-15 -3749 ((-3 |#1| "failed") |#1|)) (-15 -3550 ((-1091 |#1|) (-1091 |#1|) (-1091 |#1|)))) (-329)) (T -328))
-NIL
-(-10 -8 (-15 -3689 ((-860) |#1|)) (-15 -3500 ((-717) |#1|)) (-15 -4086 ((-110) |#1|)) (-15 -1984 (|#1|)) (-15 -1495 ((-3 (-1177 |#1|) "failed") (-635 |#1|))) (-15 -3749 (|#1| |#1|)) (-15 -3235 (|#1| |#1|)) (-15 -3235 (|#1| |#1| (-717))) (-15 -4197 (|#1|)) (-15 -3296 ((-3 |#1| "failed") |#1|)) (-15 -3500 ((-3 (-717) "failed") |#1| |#1|)) (-15 -3689 ((-779 (-860)) |#1|)) (-15 -3749 ((-3 |#1| "failed") |#1|)) (-15 -3550 ((-1091 |#1|) (-1091 |#1|) (-1091 |#1|))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 41)) (-1738 (($ $) 40)) (-1811 (((-110) $) 38)) (-2338 (((-1105 (-860) (-717)) (-528)) 93)) (-3181 (((-3 $ "failed") $ $) 19)) (-1232 (($ $) 73)) (-2705 (((-398 $) $) 72)) (-2213 (((-110) $ $) 59)) (-2856 (((-717)) 103)) (-2816 (($) 17 T CONST)) (-2413 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-3519 (($ $ $) 55)) (-1312 (((-3 $ "failed") $) 34)) (-1338 (($) 106)) (-3498 (($ $ $) 56)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 51)) (-2916 (($) 91)) (-4086 (((-110) $) 90)) (-2790 (($ $) 79) (($ $ (-717)) 78)) (-2124 (((-110) $) 71)) (-3689 (((-779 (-860)) $) 81) (((-860) $) 88)) (-1297 (((-110) $) 31)) (-3296 (((-3 $ "failed") $) 102)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) 52)) (-3201 (((-860) $) 105)) (-2057 (($ $ $) 46) (($ (-595 $)) 45)) (-3034 (((-1078) $) 9)) (-2652 (($ $) 70)) (-4197 (($) 101 T CONST)) (-3108 (($ (-860)) 104)) (-2495 (((-1042) $) 10)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 44)) (-2088 (($ $ $) 48) (($ (-595 $)) 47)) (-3010 (((-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528))))) 94)) (-2437 (((-398 $) $) 74)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3477 (((-3 $ "failed") $ $) 42)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 50)) (-3973 (((-717) $) 58)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 57)) (-3500 (((-3 (-717) "failed") $ $) 80) (((-717) $) 89)) (-3235 (($ $ (-717)) 99) (($ $) 97)) (-1984 (($) 92)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) 95)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ $) 43) (($ (-387 (-528))) 65)) (-3749 (((-3 $ "failed") $) 82) (($ $) 96)) (-3742 (((-717)) 29)) (-4016 (((-110) $ $) 39)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33) (($ $ (-528)) 69)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-3245 (($ $ (-717)) 100) (($ $) 98)) (-2186 (((-110) $ $) 6)) (-2296 (($ $ $) 64)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32) (($ $ (-528)) 68)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ (-387 (-528))) 67) (($ (-387 (-528)) $) 66)))
-(((-329) (-133)) (T -329))
-((-3749 (*1 *1 *1) (-4 *1 (-329))) (-1495 (*1 *2 *3) (|partial| -12 (-5 *3 (-635 *1)) (-4 *1 (-329)) (-5 *2 (-1177 *1)))) (-3010 (*1 *2) (-12 (-4 *1 (-329)) (-5 *2 (-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528))))))) (-2338 (*1 *2 *3) (-12 (-4 *1 (-329)) (-5 *3 (-528)) (-5 *2 (-1105 (-860) (-717))))) (-1984 (*1 *1) (-4 *1 (-329))) (-2916 (*1 *1) (-4 *1 (-329))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-329)) (-5 *2 (-110)))) (-3500 (*1 *2 *1) (-12 (-4 *1 (-329)) (-5 *2 (-717)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-329)) (-5 *2 (-860)))) (-2413 (*1 *2) (-12 (-4 *1 (-329)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-382) (-348) (-1071) (-215) (-10 -8 (-15 -3749 ($ $)) (-15 -1495 ((-3 (-1177 $) "failed") (-635 $))) (-15 -3010 ((-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528)))))) (-15 -2338 ((-1105 (-860) (-717)) (-528))) (-15 -1984 ($)) (-15 -2916 ($)) (-15 -4086 ((-110) $)) (-15 -3500 ((-717) $)) (-15 -3689 ((-860) $)) (-15 -2413 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-387 (-528))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-138) . T) ((-569 (-802)) . T) ((-162) . T) ((-215) . T) ((-225) . T) ((-271) . T) ((-288) . T) ((-343) . T) ((-382) . T) ((-348) . T) ((-431) . T) ((-520) . T) ((-597 #0#) . T) ((-597 $) . T) ((-664 #0#) . T) ((-664 $) . T) ((-673) . T) ((-859) . T) ((-986 #0#) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1071) . T) ((-1135) . T))
-((-2954 (((-2 (|:| -1400 (-635 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-635 |#1|))) |#1|) 53)) (-3882 (((-2 (|:| -1400 (-635 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-635 |#1|)))) 51)))
-(((-330 |#1| |#2| |#3|) (-10 -7 (-15 -3882 ((-2 (|:| -1400 (-635 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-635 |#1|))))) (-15 -2954 ((-2 (|:| -1400 (-635 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-635 |#1|))) |#1|))) (-13 (-288) (-10 -8 (-15 -2705 ((-398 $) $)))) (-1153 |#1|) (-389 |#1| |#2|)) (T -330))
-((-2954 (*1 *2 *3) (-12 (-4 *3 (-13 (-288) (-10 -8 (-15 -2705 ((-398 $) $))))) (-4 *4 (-1153 *3)) (-5 *2 (-2 (|:| -1400 (-635 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-635 *3)))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-389 *3 *4)))) (-3882 (*1 *2) (-12 (-4 *3 (-13 (-288) (-10 -8 (-15 -2705 ((-398 $) $))))) (-4 *4 (-1153 *3)) (-5 *2 (-2 (|:| -1400 (-635 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-635 *3)))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-389 *3 *4)))))
-(-10 -7 (-15 -3882 ((-2 (|:| -1400 (-635 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-635 |#1|))))) (-15 -2954 ((-2 (|:| -1400 (-635 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-635 |#1|))) |#1|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3455 (((-110) $) NIL)) (-3370 (((-717)) NIL)) (-1323 (((-849 |#1|) $) NIL) (($ $ (-860)) NIL (|has| (-849 |#1|) (-348)))) (-2338 (((-1105 (-860) (-717)) (-528)) NIL (|has| (-849 |#1|) (-348)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-3404 (((-717)) NIL)) (-2213 (((-110) $ $) NIL)) (-2856 (((-717)) NIL (|has| (-849 |#1|) (-348)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-849 |#1|) "failed") $) NIL)) (-2409 (((-849 |#1|) $) NIL)) (-1945 (($ (-1177 (-849 |#1|))) NIL)) (-2413 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-849 |#1|) (-348)))) (-3519 (($ $ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1338 (($) NIL (|has| (-849 |#1|) (-348)))) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2916 (($) NIL (|has| (-849 |#1|) (-348)))) (-4086 (((-110) $) NIL (|has| (-849 |#1|) (-348)))) (-2790 (($ $ (-717)) NIL (-1463 (|has| (-849 |#1|) (-138)) (|has| (-849 |#1|) (-348)))) (($ $) NIL (-1463 (|has| (-849 |#1|) (-138)) (|has| (-849 |#1|) (-348))))) (-2124 (((-110) $) NIL)) (-3689 (((-860) $) NIL (|has| (-849 |#1|) (-348))) (((-779 (-860)) $) NIL (-1463 (|has| (-849 |#1|) (-138)) (|has| (-849 |#1|) (-348))))) (-1297 (((-110) $) NIL)) (-2339 (($) NIL (|has| (-849 |#1|) (-348)))) (-2581 (((-110) $) NIL (|has| (-849 |#1|) (-348)))) (-3297 (((-849 |#1|) $) NIL) (($ $ (-860)) NIL (|has| (-849 |#1|) (-348)))) (-3296 (((-3 $ "failed") $) NIL (|has| (-849 |#1|) (-348)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3537 (((-1091 (-849 |#1|)) $) NIL) (((-1091 $) $ (-860)) NIL (|has| (-849 |#1|) (-348)))) (-3201 (((-860) $) NIL (|has| (-849 |#1|) (-348)))) (-2304 (((-1091 (-849 |#1|)) $) NIL (|has| (-849 |#1|) (-348)))) (-2143 (((-1091 (-849 |#1|)) $) NIL (|has| (-849 |#1|) (-348))) (((-3 (-1091 (-849 |#1|)) "failed") $ $) NIL (|has| (-849 |#1|) (-348)))) (-3640 (($ $ (-1091 (-849 |#1|))) NIL (|has| (-849 |#1|) (-348)))) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL)) (-4197 (($) NIL (|has| (-849 |#1|) (-348)) CONST)) (-3108 (($ (-860)) NIL (|has| (-849 |#1|) (-348)))) (-3148 (((-110) $) NIL)) (-2495 (((-1042) $) NIL)) (-3974 (((-1177 (-595 (-2 (|:| -3327 (-849 |#1|)) (|:| -3108 (-1042)))))) NIL)) (-1403 (((-635 (-849 |#1|))) NIL)) (-1261 (($) NIL (|has| (-849 |#1|) (-348)))) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3010 (((-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528))))) NIL (|has| (-849 |#1|) (-348)))) (-2437 (((-398 $) $) NIL)) (-2209 (((-779 (-860))) NIL) (((-860)) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3500 (((-717) $) NIL (|has| (-849 |#1|) (-348))) (((-3 (-717) "failed") $ $) NIL (-1463 (|has| (-849 |#1|) (-138)) (|has| (-849 |#1|) (-348))))) (-3017 (((-130)) NIL)) (-3235 (($ $) NIL (|has| (-849 |#1|) (-348))) (($ $ (-717)) NIL (|has| (-849 |#1|) (-348)))) (-2935 (((-779 (-860)) $) NIL) (((-860) $) NIL)) (-4090 (((-1091 (-849 |#1|))) NIL)) (-1984 (($) NIL (|has| (-849 |#1|) (-348)))) (-1469 (($) NIL (|has| (-849 |#1|) (-348)))) (-4243 (((-1177 (-849 |#1|)) $) NIL) (((-635 (-849 |#1|)) (-1177 $)) NIL)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (|has| (-849 |#1|) (-348)))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ $) NIL) (($ (-387 (-528))) NIL) (($ (-849 |#1|)) NIL)) (-3749 (($ $) NIL (|has| (-849 |#1|) (-348))) (((-3 $ "failed") $) NIL (-1463 (|has| (-849 |#1|) (-138)) (|has| (-849 |#1|) (-348))))) (-3742 (((-717)) NIL)) (-1400 (((-1177 $)) NIL) (((-1177 $) (-860)) NIL)) (-4016 (((-110) $ $) NIL)) (-2190 (((-110) $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-2698 (($ $) NIL (|has| (-849 |#1|) (-348))) (($ $ (-717)) NIL (|has| (-849 |#1|) (-348)))) (-3245 (($ $) NIL (|has| (-849 |#1|) (-348))) (($ $ (-717)) NIL (|has| (-849 |#1|) (-348)))) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ $) NIL) (($ $ (-849 |#1|)) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL) (($ $ (-849 |#1|)) NIL) (($ (-849 |#1|) $) NIL)))
-(((-331 |#1| |#2|) (-13 (-309 (-849 |#1|)) (-10 -7 (-15 -3974 ((-1177 (-595 (-2 (|:| -3327 (-849 |#1|)) (|:| -3108 (-1042))))))) (-15 -1403 ((-635 (-849 |#1|)))) (-15 -3404 ((-717))))) (-860) (-860)) (T -331))
-((-3974 (*1 *2) (-12 (-5 *2 (-1177 (-595 (-2 (|:| -3327 (-849 *3)) (|:| -3108 (-1042)))))) (-5 *1 (-331 *3 *4)) (-14 *3 (-860)) (-14 *4 (-860)))) (-1403 (*1 *2) (-12 (-5 *2 (-635 (-849 *3))) (-5 *1 (-331 *3 *4)) (-14 *3 (-860)) (-14 *4 (-860)))) (-3404 (*1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-331 *3 *4)) (-14 *3 (-860)) (-14 *4 (-860)))))
-(-13 (-309 (-849 |#1|)) (-10 -7 (-15 -3974 ((-1177 (-595 (-2 (|:| -3327 (-849 |#1|)) (|:| -3108 (-1042))))))) (-15 -1403 ((-635 (-849 |#1|)))) (-15 -3404 ((-717)))))
-((-2207 (((-110) $ $) 62)) (-1359 (((-110) $) 75)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3455 (((-110) $) NIL)) (-3370 (((-717)) NIL)) (-1323 ((|#1| $) 93) (($ $ (-860)) 91 (|has| |#1| (-348)))) (-2338 (((-1105 (-860) (-717)) (-528)) 149 (|has| |#1| (-348)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-3404 (((-717)) 90)) (-2213 (((-110) $ $) NIL)) (-2856 (((-717)) 163 (|has| |#1| (-348)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#1| "failed") $) 113)) (-2409 ((|#1| $) 92)) (-1945 (($ (-1177 |#1|)) 59)) (-2413 (((-3 "prime" "polynomial" "normal" "cyclic")) 189 (|has| |#1| (-348)))) (-3519 (($ $ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1338 (($) 159 (|has| |#1| (-348)))) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2916 (($) 150 (|has| |#1| (-348)))) (-4086 (((-110) $) NIL (|has| |#1| (-348)))) (-2790 (($ $ (-717)) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348)))) (($ $) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-2124 (((-110) $) NIL)) (-3689 (((-860) $) NIL (|has| |#1| (-348))) (((-779 (-860)) $) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-1297 (((-110) $) NIL)) (-2339 (($) 99 (|has| |#1| (-348)))) (-2581 (((-110) $) 176 (|has| |#1| (-348)))) (-3297 ((|#1| $) 95) (($ $ (-860)) 94 (|has| |#1| (-348)))) (-3296 (((-3 $ "failed") $) NIL (|has| |#1| (-348)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3537 (((-1091 |#1|) $) 190) (((-1091 $) $ (-860)) NIL (|has| |#1| (-348)))) (-3201 (((-860) $) 135 (|has| |#1| (-348)))) (-2304 (((-1091 |#1|) $) 74 (|has| |#1| (-348)))) (-2143 (((-1091 |#1|) $) 71 (|has| |#1| (-348))) (((-3 (-1091 |#1|) "failed") $ $) 83 (|has| |#1| (-348)))) (-3640 (($ $ (-1091 |#1|)) 70 (|has| |#1| (-348)))) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) 193)) (-4197 (($) NIL (|has| |#1| (-348)) CONST)) (-3108 (($ (-860)) 138 (|has| |#1| (-348)))) (-3148 (((-110) $) 109)) (-2495 (((-1042) $) NIL)) (-3974 (((-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042)))))) 84)) (-1403 (((-635 |#1|)) 88)) (-1261 (($) 97 (|has| |#1| (-348)))) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3010 (((-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528))))) 151 (|has| |#1| (-348)))) (-2437 (((-398 $) $) NIL)) (-2209 (((-779 (-860))) NIL) (((-860)) 152)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3500 (((-717) $) NIL (|has| |#1| (-348))) (((-3 (-717) "failed") $ $) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-3017 (((-130)) NIL)) (-3235 (($ $) NIL (|has| |#1| (-348))) (($ $ (-717)) NIL (|has| |#1| (-348)))) (-2935 (((-779 (-860)) $) NIL) (((-860) $) 63)) (-4090 (((-1091 |#1|)) 153)) (-1984 (($) 134 (|has| |#1| (-348)))) (-1469 (($) NIL (|has| |#1| (-348)))) (-4243 (((-1177 |#1|) $) 107) (((-635 |#1|) (-1177 $)) NIL)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (|has| |#1| (-348)))) (-2222 (((-802) $) 125) (($ (-528)) NIL) (($ $) NIL) (($ (-387 (-528))) NIL) (($ |#1|) 58)) (-3749 (($ $) NIL (|has| |#1| (-348))) (((-3 $ "failed") $) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-3742 (((-717)) 157)) (-1400 (((-1177 $)) 173) (((-1177 $) (-860)) 102)) (-4016 (((-110) $ $) NIL)) (-2190 (((-110) $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) 30 T CONST)) (-2982 (($) 22 T CONST)) (-2698 (($ $) 108 (|has| |#1| (-348))) (($ $ (-717)) 100 (|has| |#1| (-348)))) (-3245 (($ $) NIL (|has| |#1| (-348))) (($ $ (-717)) NIL (|has| |#1| (-348)))) (-2186 (((-110) $ $) 184)) (-2296 (($ $ $) 105) (($ $ |#1|) 106)) (-2286 (($ $) 178) (($ $ $) 182)) (-2275 (($ $ $) 180)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) 139)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 187) (($ $ $) 143) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 104)))
-(((-332 |#1| |#2|) (-13 (-309 |#1|) (-10 -7 (-15 -3974 ((-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042))))))) (-15 -1403 ((-635 |#1|))) (-15 -3404 ((-717))))) (-329) (-3 (-1091 |#1|) (-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042))))))) (T -332))
-((-3974 (*1 *2) (-12 (-5 *2 (-1177 (-595 (-2 (|:| -3327 *3) (|:| -3108 (-1042)))))) (-5 *1 (-332 *3 *4)) (-4 *3 (-329)) (-14 *4 (-3 (-1091 *3) *2)))) (-1403 (*1 *2) (-12 (-5 *2 (-635 *3)) (-5 *1 (-332 *3 *4)) (-4 *3 (-329)) (-14 *4 (-3 (-1091 *3) (-1177 (-595 (-2 (|:| -3327 *3) (|:| -3108 (-1042))))))))) (-3404 (*1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-332 *3 *4)) (-4 *3 (-329)) (-14 *4 (-3 (-1091 *3) (-1177 (-595 (-2 (|:| -3327 *3) (|:| -3108 (-1042))))))))))
-(-13 (-309 |#1|) (-10 -7 (-15 -3974 ((-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042))))))) (-15 -1403 ((-635 |#1|))) (-15 -3404 ((-717)))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3455 (((-110) $) NIL)) (-3370 (((-717)) NIL)) (-1323 ((|#1| $) NIL) (($ $ (-860)) NIL (|has| |#1| (-348)))) (-2338 (((-1105 (-860) (-717)) (-528)) NIL (|has| |#1| (-348)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-3404 (((-717)) NIL)) (-2213 (((-110) $ $) NIL)) (-2856 (((-717)) NIL (|has| |#1| (-348)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#1| "failed") $) NIL)) (-2409 ((|#1| $) NIL)) (-1945 (($ (-1177 |#1|)) NIL)) (-2413 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-348)))) (-3519 (($ $ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1338 (($) NIL (|has| |#1| (-348)))) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2916 (($) NIL (|has| |#1| (-348)))) (-4086 (((-110) $) NIL (|has| |#1| (-348)))) (-2790 (($ $ (-717)) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348)))) (($ $) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-2124 (((-110) $) NIL)) (-3689 (((-860) $) NIL (|has| |#1| (-348))) (((-779 (-860)) $) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-1297 (((-110) $) NIL)) (-2339 (($) NIL (|has| |#1| (-348)))) (-2581 (((-110) $) NIL (|has| |#1| (-348)))) (-3297 ((|#1| $) NIL) (($ $ (-860)) NIL (|has| |#1| (-348)))) (-3296 (((-3 $ "failed") $) NIL (|has| |#1| (-348)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3537 (((-1091 |#1|) $) NIL) (((-1091 $) $ (-860)) NIL (|has| |#1| (-348)))) (-3201 (((-860) $) NIL (|has| |#1| (-348)))) (-2304 (((-1091 |#1|) $) NIL (|has| |#1| (-348)))) (-2143 (((-1091 |#1|) $) NIL (|has| |#1| (-348))) (((-3 (-1091 |#1|) "failed") $ $) NIL (|has| |#1| (-348)))) (-3640 (($ $ (-1091 |#1|)) NIL (|has| |#1| (-348)))) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL)) (-4197 (($) NIL (|has| |#1| (-348)) CONST)) (-3108 (($ (-860)) NIL (|has| |#1| (-348)))) (-3148 (((-110) $) NIL)) (-2495 (((-1042) $) NIL)) (-3974 (((-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042)))))) NIL)) (-1403 (((-635 |#1|)) NIL)) (-1261 (($) NIL (|has| |#1| (-348)))) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3010 (((-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528))))) NIL (|has| |#1| (-348)))) (-2437 (((-398 $) $) NIL)) (-2209 (((-779 (-860))) NIL) (((-860)) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3500 (((-717) $) NIL (|has| |#1| (-348))) (((-3 (-717) "failed") $ $) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-3017 (((-130)) NIL)) (-3235 (($ $) NIL (|has| |#1| (-348))) (($ $ (-717)) NIL (|has| |#1| (-348)))) (-2935 (((-779 (-860)) $) NIL) (((-860) $) NIL)) (-4090 (((-1091 |#1|)) NIL)) (-1984 (($) NIL (|has| |#1| (-348)))) (-1469 (($) NIL (|has| |#1| (-348)))) (-4243 (((-1177 |#1|) $) NIL) (((-635 |#1|) (-1177 $)) NIL)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (|has| |#1| (-348)))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ $) NIL) (($ (-387 (-528))) NIL) (($ |#1|) NIL)) (-3749 (($ $) NIL (|has| |#1| (-348))) (((-3 $ "failed") $) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-3742 (((-717)) NIL)) (-1400 (((-1177 $)) NIL) (((-1177 $) (-860)) NIL)) (-4016 (((-110) $ $) NIL)) (-2190 (((-110) $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-2698 (($ $) NIL (|has| |#1| (-348))) (($ $ (-717)) NIL (|has| |#1| (-348)))) (-3245 (($ $) NIL (|has| |#1| (-348))) (($ $ (-717)) NIL (|has| |#1| (-348)))) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-333 |#1| |#2|) (-13 (-309 |#1|) (-10 -7 (-15 -3974 ((-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042))))))) (-15 -1403 ((-635 |#1|))) (-15 -3404 ((-717))))) (-329) (-860)) (T -333))
-((-3974 (*1 *2) (-12 (-5 *2 (-1177 (-595 (-2 (|:| -3327 *3) (|:| -3108 (-1042)))))) (-5 *1 (-333 *3 *4)) (-4 *3 (-329)) (-14 *4 (-860)))) (-1403 (*1 *2) (-12 (-5 *2 (-635 *3)) (-5 *1 (-333 *3 *4)) (-4 *3 (-329)) (-14 *4 (-860)))) (-3404 (*1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-333 *3 *4)) (-4 *3 (-329)) (-14 *4 (-860)))))
-(-13 (-309 |#1|) (-10 -7 (-15 -3974 ((-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042))))))) (-15 -1403 ((-635 |#1|))) (-15 -3404 ((-717)))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3455 (((-110) $) NIL)) (-3370 (((-717)) NIL)) (-1323 (((-849 |#1|) $) NIL) (($ $ (-860)) NIL (|has| (-849 |#1|) (-348)))) (-2338 (((-1105 (-860) (-717)) (-528)) NIL (|has| (-849 |#1|) (-348)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-2213 (((-110) $ $) NIL)) (-2856 (((-717)) NIL (|has| (-849 |#1|) (-348)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-849 |#1|) "failed") $) NIL)) (-2409 (((-849 |#1|) $) NIL)) (-1945 (($ (-1177 (-849 |#1|))) NIL)) (-2413 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-849 |#1|) (-348)))) (-3519 (($ $ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1338 (($) NIL (|has| (-849 |#1|) (-348)))) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2916 (($) NIL (|has| (-849 |#1|) (-348)))) (-4086 (((-110) $) NIL (|has| (-849 |#1|) (-348)))) (-2790 (($ $ (-717)) NIL (-1463 (|has| (-849 |#1|) (-138)) (|has| (-849 |#1|) (-348)))) (($ $) NIL (-1463 (|has| (-849 |#1|) (-138)) (|has| (-849 |#1|) (-348))))) (-2124 (((-110) $) NIL)) (-3689 (((-860) $) NIL (|has| (-849 |#1|) (-348))) (((-779 (-860)) $) NIL (-1463 (|has| (-849 |#1|) (-138)) (|has| (-849 |#1|) (-348))))) (-1297 (((-110) $) NIL)) (-2339 (($) NIL (|has| (-849 |#1|) (-348)))) (-2581 (((-110) $) NIL (|has| (-849 |#1|) (-348)))) (-3297 (((-849 |#1|) $) NIL) (($ $ (-860)) NIL (|has| (-849 |#1|) (-348)))) (-3296 (((-3 $ "failed") $) NIL (|has| (-849 |#1|) (-348)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3537 (((-1091 (-849 |#1|)) $) NIL) (((-1091 $) $ (-860)) NIL (|has| (-849 |#1|) (-348)))) (-3201 (((-860) $) NIL (|has| (-849 |#1|) (-348)))) (-2304 (((-1091 (-849 |#1|)) $) NIL (|has| (-849 |#1|) (-348)))) (-2143 (((-1091 (-849 |#1|)) $) NIL (|has| (-849 |#1|) (-348))) (((-3 (-1091 (-849 |#1|)) "failed") $ $) NIL (|has| (-849 |#1|) (-348)))) (-3640 (($ $ (-1091 (-849 |#1|))) NIL (|has| (-849 |#1|) (-348)))) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL)) (-4197 (($) NIL (|has| (-849 |#1|) (-348)) CONST)) (-3108 (($ (-860)) NIL (|has| (-849 |#1|) (-348)))) (-3148 (((-110) $) NIL)) (-2495 (((-1042) $) NIL)) (-1261 (($) NIL (|has| (-849 |#1|) (-348)))) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3010 (((-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528))))) NIL (|has| (-849 |#1|) (-348)))) (-2437 (((-398 $) $) NIL)) (-2209 (((-779 (-860))) NIL) (((-860)) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3500 (((-717) $) NIL (|has| (-849 |#1|) (-348))) (((-3 (-717) "failed") $ $) NIL (-1463 (|has| (-849 |#1|) (-138)) (|has| (-849 |#1|) (-348))))) (-3017 (((-130)) NIL)) (-3235 (($ $) NIL (|has| (-849 |#1|) (-348))) (($ $ (-717)) NIL (|has| (-849 |#1|) (-348)))) (-2935 (((-779 (-860)) $) NIL) (((-860) $) NIL)) (-4090 (((-1091 (-849 |#1|))) NIL)) (-1984 (($) NIL (|has| (-849 |#1|) (-348)))) (-1469 (($) NIL (|has| (-849 |#1|) (-348)))) (-4243 (((-1177 (-849 |#1|)) $) NIL) (((-635 (-849 |#1|)) (-1177 $)) NIL)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (|has| (-849 |#1|) (-348)))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ $) NIL) (($ (-387 (-528))) NIL) (($ (-849 |#1|)) NIL)) (-3749 (($ $) NIL (|has| (-849 |#1|) (-348))) (((-3 $ "failed") $) NIL (-1463 (|has| (-849 |#1|) (-138)) (|has| (-849 |#1|) (-348))))) (-3742 (((-717)) NIL)) (-1400 (((-1177 $)) NIL) (((-1177 $) (-860)) NIL)) (-4016 (((-110) $ $) NIL)) (-2190 (((-110) $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-2698 (($ $) NIL (|has| (-849 |#1|) (-348))) (($ $ (-717)) NIL (|has| (-849 |#1|) (-348)))) (-3245 (($ $) NIL (|has| (-849 |#1|) (-348))) (($ $ (-717)) NIL (|has| (-849 |#1|) (-348)))) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ $) NIL) (($ $ (-849 |#1|)) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL) (($ $ (-849 |#1|)) NIL) (($ (-849 |#1|) $) NIL)))
-(((-334 |#1| |#2|) (-309 (-849 |#1|)) (-860) (-860)) (T -334))
-NIL
-(-309 (-849 |#1|))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3455 (((-110) $) NIL)) (-3370 (((-717)) NIL)) (-1323 ((|#1| $) NIL) (($ $ (-860)) NIL (|has| |#1| (-348)))) (-2338 (((-1105 (-860) (-717)) (-528)) 120 (|has| |#1| (-348)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-2213 (((-110) $ $) NIL)) (-2856 (((-717)) 140 (|has| |#1| (-348)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#1| "failed") $) 93)) (-2409 ((|#1| $) 90)) (-1945 (($ (-1177 |#1|)) 85)) (-2413 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-348)))) (-3519 (($ $ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1338 (($) 82 (|has| |#1| (-348)))) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2916 (($) 42 (|has| |#1| (-348)))) (-4086 (((-110) $) NIL (|has| |#1| (-348)))) (-2790 (($ $ (-717)) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348)))) (($ $) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-2124 (((-110) $) NIL)) (-3689 (((-860) $) NIL (|has| |#1| (-348))) (((-779 (-860)) $) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-1297 (((-110) $) NIL)) (-2339 (($) 121 (|has| |#1| (-348)))) (-2581 (((-110) $) 74 (|has| |#1| (-348)))) (-3297 ((|#1| $) 39) (($ $ (-860)) 43 (|has| |#1| (-348)))) (-3296 (((-3 $ "failed") $) NIL (|has| |#1| (-348)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3537 (((-1091 |#1|) $) 65) (((-1091 $) $ (-860)) NIL (|has| |#1| (-348)))) (-3201 (((-860) $) 97 (|has| |#1| (-348)))) (-2304 (((-1091 |#1|) $) NIL (|has| |#1| (-348)))) (-2143 (((-1091 |#1|) $) NIL (|has| |#1| (-348))) (((-3 (-1091 |#1|) "failed") $ $) NIL (|has| |#1| (-348)))) (-3640 (($ $ (-1091 |#1|)) NIL (|has| |#1| (-348)))) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL)) (-4197 (($) NIL (|has| |#1| (-348)) CONST)) (-3108 (($ (-860)) 95 (|has| |#1| (-348)))) (-3148 (((-110) $) 142)) (-2495 (((-1042) $) NIL)) (-1261 (($) 36 (|has| |#1| (-348)))) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3010 (((-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528))))) 115 (|has| |#1| (-348)))) (-2437 (((-398 $) $) NIL)) (-2209 (((-779 (-860))) NIL) (((-860)) 139)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3500 (((-717) $) NIL (|has| |#1| (-348))) (((-3 (-717) "failed") $ $) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-3017 (((-130)) NIL)) (-3235 (($ $) NIL (|has| |#1| (-348))) (($ $ (-717)) NIL (|has| |#1| (-348)))) (-2935 (((-779 (-860)) $) NIL) (((-860) $) 59)) (-4090 (((-1091 |#1|)) 88)) (-1984 (($) 126 (|has| |#1| (-348)))) (-1469 (($) NIL (|has| |#1| (-348)))) (-4243 (((-1177 |#1|) $) 53) (((-635 |#1|) (-1177 $)) NIL)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (|has| |#1| (-348)))) (-2222 (((-802) $) 138) (($ (-528)) NIL) (($ $) NIL) (($ (-387 (-528))) NIL) (($ |#1|) 87)) (-3749 (($ $) NIL (|has| |#1| (-348))) (((-3 $ "failed") $) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-3742 (((-717)) 144)) (-1400 (((-1177 $)) 109) (((-1177 $) (-860)) 49)) (-4016 (((-110) $ $) NIL)) (-2190 (((-110) $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) 111 T CONST)) (-2982 (($) 32 T CONST)) (-2698 (($ $) 68 (|has| |#1| (-348))) (($ $ (-717)) NIL (|has| |#1| (-348)))) (-3245 (($ $) NIL (|has| |#1| (-348))) (($ $ (-717)) NIL (|has| |#1| (-348)))) (-2186 (((-110) $ $) 107)) (-2296 (($ $ $) 99) (($ $ |#1|) 100)) (-2286 (($ $) 80) (($ $ $) 105)) (-2275 (($ $ $) 103)) (** (($ $ (-860)) NIL) (($ $ (-717)) 44) (($ $ (-528)) 130)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 78) (($ $ $) 56) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76)))
-(((-335 |#1| |#2|) (-309 |#1|) (-329) (-1091 |#1|)) (T -335))
-NIL
-(-309 |#1|)
-((-2457 ((|#1| (-1091 |#2|)) 52)))
-(((-336 |#1| |#2|) (-10 -7 (-15 -2457 (|#1| (-1091 |#2|)))) (-13 (-382) (-10 -7 (-15 -2222 (|#1| |#2|)) (-15 -3201 ((-860) |#1|)) (-15 -1400 ((-1177 |#1|) (-860))) (-15 -2698 (|#1| |#1|)))) (-329)) (T -336))
-((-2457 (*1 *2 *3) (-12 (-5 *3 (-1091 *4)) (-4 *4 (-329)) (-4 *2 (-13 (-382) (-10 -7 (-15 -2222 (*2 *4)) (-15 -3201 ((-860) *2)) (-15 -1400 ((-1177 *2) (-860))) (-15 -2698 (*2 *2))))) (-5 *1 (-336 *2 *4)))))
-(-10 -7 (-15 -2457 (|#1| (-1091 |#2|))))
-((-1236 (((-896 (-1091 |#1|)) (-1091 |#1|)) 36)) (-1338 (((-1091 |#1|) (-860) (-860)) 113) (((-1091 |#1|) (-860)) 112)) (-4086 (((-110) (-1091 |#1|)) 84)) (-2297 (((-860) (-860)) 71)) (-3536 (((-860) (-860)) 74)) (-2699 (((-860) (-860)) 69)) (-2581 (((-110) (-1091 |#1|)) 88)) (-2487 (((-3 (-1091 |#1|) "failed") (-1091 |#1|)) 101)) (-4171 (((-3 (-1091 |#1|) "failed") (-1091 |#1|)) 104)) (-2978 (((-3 (-1091 |#1|) "failed") (-1091 |#1|)) 103)) (-3068 (((-3 (-1091 |#1|) "failed") (-1091 |#1|)) 102)) (-2654 (((-3 (-1091 |#1|) "failed") (-1091 |#1|)) 98)) (-2829 (((-1091 |#1|) (-1091 |#1|)) 62)) (-4008 (((-1091 |#1|) (-860)) 107)) (-1858 (((-1091 |#1|) (-860)) 110)) (-4020 (((-1091 |#1|) (-860)) 109)) (-3369 (((-1091 |#1|) (-860)) 108)) (-1968 (((-1091 |#1|) (-860)) 105)))
-(((-337 |#1|) (-10 -7 (-15 -4086 ((-110) (-1091 |#1|))) (-15 -2581 ((-110) (-1091 |#1|))) (-15 -2699 ((-860) (-860))) (-15 -2297 ((-860) (-860))) (-15 -3536 ((-860) (-860))) (-15 -1968 ((-1091 |#1|) (-860))) (-15 -4008 ((-1091 |#1|) (-860))) (-15 -3369 ((-1091 |#1|) (-860))) (-15 -4020 ((-1091 |#1|) (-860))) (-15 -1858 ((-1091 |#1|) (-860))) (-15 -2654 ((-3 (-1091 |#1|) "failed") (-1091 |#1|))) (-15 -2487 ((-3 (-1091 |#1|) "failed") (-1091 |#1|))) (-15 -3068 ((-3 (-1091 |#1|) "failed") (-1091 |#1|))) (-15 -2978 ((-3 (-1091 |#1|) "failed") (-1091 |#1|))) (-15 -4171 ((-3 (-1091 |#1|) "failed") (-1091 |#1|))) (-15 -1338 ((-1091 |#1|) (-860))) (-15 -1338 ((-1091 |#1|) (-860) (-860))) (-15 -2829 ((-1091 |#1|) (-1091 |#1|))) (-15 -1236 ((-896 (-1091 |#1|)) (-1091 |#1|)))) (-329)) (T -337))
-((-1236 (*1 *2 *3) (-12 (-4 *4 (-329)) (-5 *2 (-896 (-1091 *4))) (-5 *1 (-337 *4)) (-5 *3 (-1091 *4)))) (-2829 (*1 *2 *2) (-12 (-5 *2 (-1091 *3)) (-4 *3 (-329)) (-5 *1 (-337 *3)))) (-1338 (*1 *2 *3 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1091 *4)) (-5 *1 (-337 *4)) (-4 *4 (-329)))) (-1338 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1091 *4)) (-5 *1 (-337 *4)) (-4 *4 (-329)))) (-4171 (*1 *2 *2) (|partial| -12 (-5 *2 (-1091 *3)) (-4 *3 (-329)) (-5 *1 (-337 *3)))) (-2978 (*1 *2 *2) (|partial| -12 (-5 *2 (-1091 *3)) (-4 *3 (-329)) (-5 *1 (-337 *3)))) (-3068 (*1 *2 *2) (|partial| -12 (-5 *2 (-1091 *3)) (-4 *3 (-329)) (-5 *1 (-337 *3)))) (-2487 (*1 *2 *2) (|partial| -12 (-5 *2 (-1091 *3)) (-4 *3 (-329)) (-5 *1 (-337 *3)))) (-2654 (*1 *2 *2) (|partial| -12 (-5 *2 (-1091 *3)) (-4 *3 (-329)) (-5 *1 (-337 *3)))) (-1858 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1091 *4)) (-5 *1 (-337 *4)) (-4 *4 (-329)))) (-4020 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1091 *4)) (-5 *1 (-337 *4)) (-4 *4 (-329)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1091 *4)) (-5 *1 (-337 *4)) (-4 *4 (-329)))) (-4008 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1091 *4)) (-5 *1 (-337 *4)) (-4 *4 (-329)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1091 *4)) (-5 *1 (-337 *4)) (-4 *4 (-329)))) (-3536 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-337 *3)) (-4 *3 (-329)))) (-2297 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-337 *3)) (-4 *3 (-329)))) (-2699 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-337 *3)) (-4 *3 (-329)))) (-2581 (*1 *2 *3) (-12 (-5 *3 (-1091 *4)) (-4 *4 (-329)) (-5 *2 (-110)) (-5 *1 (-337 *4)))) (-4086 (*1 *2 *3) (-12 (-5 *3 (-1091 *4)) (-4 *4 (-329)) (-5 *2 (-110)) (-5 *1 (-337 *4)))))
-(-10 -7 (-15 -4086 ((-110) (-1091 |#1|))) (-15 -2581 ((-110) (-1091 |#1|))) (-15 -2699 ((-860) (-860))) (-15 -2297 ((-860) (-860))) (-15 -3536 ((-860) (-860))) (-15 -1968 ((-1091 |#1|) (-860))) (-15 -4008 ((-1091 |#1|) (-860))) (-15 -3369 ((-1091 |#1|) (-860))) (-15 -4020 ((-1091 |#1|) (-860))) (-15 -1858 ((-1091 |#1|) (-860))) (-15 -2654 ((-3 (-1091 |#1|) "failed") (-1091 |#1|))) (-15 -2487 ((-3 (-1091 |#1|) "failed") (-1091 |#1|))) (-15 -3068 ((-3 (-1091 |#1|) "failed") (-1091 |#1|))) (-15 -2978 ((-3 (-1091 |#1|) "failed") (-1091 |#1|))) (-15 -4171 ((-3 (-1091 |#1|) "failed") (-1091 |#1|))) (-15 -1338 ((-1091 |#1|) (-860))) (-15 -1338 ((-1091 |#1|) (-860) (-860))) (-15 -2829 ((-1091 |#1|) (-1091 |#1|))) (-15 -1236 ((-896 (-1091 |#1|)) (-1091 |#1|))))
-((-4159 (((-3 (-595 |#3|) "failed") (-595 |#3|) |#3|) 34)))
-(((-338 |#1| |#2| |#3|) (-10 -7 (-15 -4159 ((-3 (-595 |#3|) "failed") (-595 |#3|) |#3|))) (-329) (-1153 |#1|) (-1153 |#2|)) (T -338))
-((-4159 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-595 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-329)) (-5 *1 (-338 *4 *5 *3)))))
-(-10 -7 (-15 -4159 ((-3 (-595 |#3|) "failed") (-595 |#3|) |#3|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3455 (((-110) $) NIL)) (-3370 (((-717)) NIL)) (-1323 ((|#1| $) NIL) (($ $ (-860)) NIL (|has| |#1| (-348)))) (-2338 (((-1105 (-860) (-717)) (-528)) NIL (|has| |#1| (-348)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-2213 (((-110) $ $) NIL)) (-2856 (((-717)) NIL (|has| |#1| (-348)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#1| "failed") $) NIL)) (-2409 ((|#1| $) NIL)) (-1945 (($ (-1177 |#1|)) NIL)) (-2413 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-348)))) (-3519 (($ $ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1338 (($) NIL (|has| |#1| (-348)))) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2916 (($) NIL (|has| |#1| (-348)))) (-4086 (((-110) $) NIL (|has| |#1| (-348)))) (-2790 (($ $ (-717)) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348)))) (($ $) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-2124 (((-110) $) NIL)) (-3689 (((-860) $) NIL (|has| |#1| (-348))) (((-779 (-860)) $) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-1297 (((-110) $) NIL)) (-2339 (($) NIL (|has| |#1| (-348)))) (-2581 (((-110) $) NIL (|has| |#1| (-348)))) (-3297 ((|#1| $) NIL) (($ $ (-860)) NIL (|has| |#1| (-348)))) (-3296 (((-3 $ "failed") $) NIL (|has| |#1| (-348)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3537 (((-1091 |#1|) $) NIL) (((-1091 $) $ (-860)) NIL (|has| |#1| (-348)))) (-3201 (((-860) $) NIL (|has| |#1| (-348)))) (-2304 (((-1091 |#1|) $) NIL (|has| |#1| (-348)))) (-2143 (((-1091 |#1|) $) NIL (|has| |#1| (-348))) (((-3 (-1091 |#1|) "failed") $ $) NIL (|has| |#1| (-348)))) (-3640 (($ $ (-1091 |#1|)) NIL (|has| |#1| (-348)))) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL)) (-4197 (($) NIL (|has| |#1| (-348)) CONST)) (-3108 (($ (-860)) NIL (|has| |#1| (-348)))) (-3148 (((-110) $) NIL)) (-2495 (((-1042) $) NIL)) (-1261 (($) NIL (|has| |#1| (-348)))) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3010 (((-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528))))) NIL (|has| |#1| (-348)))) (-2437 (((-398 $) $) NIL)) (-2209 (((-779 (-860))) NIL) (((-860)) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3500 (((-717) $) NIL (|has| |#1| (-348))) (((-3 (-717) "failed") $ $) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-3017 (((-130)) NIL)) (-3235 (($ $) NIL (|has| |#1| (-348))) (($ $ (-717)) NIL (|has| |#1| (-348)))) (-2935 (((-779 (-860)) $) NIL) (((-860) $) NIL)) (-4090 (((-1091 |#1|)) NIL)) (-1984 (($) NIL (|has| |#1| (-348)))) (-1469 (($) NIL (|has| |#1| (-348)))) (-4243 (((-1177 |#1|) $) NIL) (((-635 |#1|) (-1177 $)) NIL)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (|has| |#1| (-348)))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ $) NIL) (($ (-387 (-528))) NIL) (($ |#1|) NIL)) (-3749 (($ $) NIL (|has| |#1| (-348))) (((-3 $ "failed") $) NIL (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-3742 (((-717)) NIL)) (-1400 (((-1177 $)) NIL) (((-1177 $) (-860)) NIL)) (-4016 (((-110) $ $) NIL)) (-2190 (((-110) $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-2698 (($ $) NIL (|has| |#1| (-348))) (($ $ (-717)) NIL (|has| |#1| (-348)))) (-3245 (($ $) NIL (|has| |#1| (-348))) (($ $ (-717)) NIL (|has| |#1| (-348)))) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-339 |#1| |#2|) (-309 |#1|) (-329) (-860)) (T -339))
-NIL
-(-309 |#1|)
-((-1274 (((-110) (-595 (-891 |#1|))) 34)) (-2175 (((-595 (-891 |#1|)) (-595 (-891 |#1|))) 46)) (-3385 (((-3 (-595 (-891 |#1|)) "failed") (-595 (-891 |#1|))) 41)))
-(((-340 |#1| |#2|) (-10 -7 (-15 -1274 ((-110) (-595 (-891 |#1|)))) (-15 -3385 ((-3 (-595 (-891 |#1|)) "failed") (-595 (-891 |#1|)))) (-15 -2175 ((-595 (-891 |#1|)) (-595 (-891 |#1|))))) (-431) (-595 (-1095))) (T -340))
-((-2175 (*1 *2 *2) (-12 (-5 *2 (-595 (-891 *3))) (-4 *3 (-431)) (-5 *1 (-340 *3 *4)) (-14 *4 (-595 (-1095))))) (-3385 (*1 *2 *2) (|partial| -12 (-5 *2 (-595 (-891 *3))) (-4 *3 (-431)) (-5 *1 (-340 *3 *4)) (-14 *4 (-595 (-1095))))) (-1274 (*1 *2 *3) (-12 (-5 *3 (-595 (-891 *4))) (-4 *4 (-431)) (-5 *2 (-110)) (-5 *1 (-340 *4 *5)) (-14 *5 (-595 (-1095))))))
-(-10 -7 (-15 -1274 ((-110) (-595 (-891 |#1|)))) (-15 -3385 ((-3 (-595 (-891 |#1|)) "failed") (-595 (-891 |#1|)))) (-15 -2175 ((-595 (-891 |#1|)) (-595 (-891 |#1|)))))
-((-2207 (((-110) $ $) NIL)) (-2856 (((-717) $) NIL)) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#1| "failed") $) NIL)) (-2409 ((|#1| $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1297 (((-110) $) 15)) (-2492 ((|#1| $ (-528)) NIL)) (-3442 (((-528) $ (-528)) NIL)) (-1333 (($ (-1 |#1| |#1|) $) 32)) (-3677 (($ (-1 (-528) (-528)) $) 24)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) 26)) (-2495 (((-1042) $) NIL)) (-2783 (((-595 (-2 (|:| |gen| |#1|) (|:| -2656 (-528)))) $) 28)) (-4097 (($ $ $) NIL)) (-2405 (($ $ $) NIL)) (-2222 (((-802) $) 38) (($ |#1|) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2982 (($) 9 T CONST)) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL) (($ |#1| (-528)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
-(((-341 |#1|) (-13 (-452) (-972 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-528))) (-15 -2856 ((-717) $)) (-15 -3442 ((-528) $ (-528))) (-15 -2492 (|#1| $ (-528))) (-15 -3677 ($ (-1 (-528) (-528)) $)) (-15 -1333 ($ (-1 |#1| |#1|) $)) (-15 -2783 ((-595 (-2 (|:| |gen| |#1|) (|:| -2656 (-528)))) $)))) (-1023)) (T -341))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-1023)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-1023)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-341 *2)) (-4 *2 (-1023)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-341 *3)) (-4 *3 (-1023)))) (-3442 (*1 *2 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-341 *3)) (-4 *3 (-1023)))) (-2492 (*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-5 *1 (-341 *2)) (-4 *2 (-1023)))) (-3677 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-528) (-528))) (-5 *1 (-341 *3)) (-4 *3 (-1023)))) (-1333 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-341 *3)))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-595 (-2 (|:| |gen| *3) (|:| -2656 (-528))))) (-5 *1 (-341 *3)) (-4 *3 (-1023)))))
-(-13 (-452) (-972 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-528))) (-15 -2856 ((-717) $)) (-15 -3442 ((-528) $ (-528))) (-15 -2492 (|#1| $ (-528))) (-15 -3677 ($ (-1 (-528) (-528)) $)) (-15 -1333 ($ (-1 |#1| |#1|) $)) (-15 -2783 ((-595 (-2 (|:| |gen| |#1|) (|:| -2656 (-528)))) $))))
-((-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 13)) (-1738 (($ $) 14)) (-2705 (((-398 $) $) 30)) (-2124 (((-110) $) 26)) (-2652 (($ $) 19)) (-2088 (($ $ $) 23) (($ (-595 $)) NIL)) (-2437 (((-398 $) $) 31)) (-3477 (((-3 $ "failed") $ $) 22)) (-3973 (((-717) $) 25)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 35)) (-4016 (((-110) $ $) 16)) (-2296 (($ $ $) 33)))
-(((-342 |#1|) (-10 -8 (-15 -2296 (|#1| |#1| |#1|)) (-15 -2652 (|#1| |#1|)) (-15 -2124 ((-110) |#1|)) (-15 -2705 ((-398 |#1|) |#1|)) (-15 -2437 ((-398 |#1|) |#1|)) (-15 -1512 ((-2 (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1|)) (-15 -3973 ((-717) |#1|)) (-15 -2088 (|#1| (-595 |#1|))) (-15 -2088 (|#1| |#1| |#1|)) (-15 -4016 ((-110) |#1| |#1|)) (-15 -1738 (|#1| |#1|)) (-15 -2142 ((-2 (|:| -2445 |#1|) (|:| -4251 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3477 ((-3 |#1| "failed") |#1| |#1|))) (-343)) (T -342))
-NIL
-(-10 -8 (-15 -2296 (|#1| |#1| |#1|)) (-15 -2652 (|#1| |#1|)) (-15 -2124 ((-110) |#1|)) (-15 -2705 ((-398 |#1|) |#1|)) (-15 -2437 ((-398 |#1|) |#1|)) (-15 -1512 ((-2 (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1|)) (-15 -3973 ((-717) |#1|)) (-15 -2088 (|#1| (-595 |#1|))) (-15 -2088 (|#1| |#1| |#1|)) (-15 -4016 ((-110) |#1| |#1|)) (-15 -1738 (|#1| |#1|)) (-15 -2142 ((-2 (|:| -2445 |#1|) (|:| -4251 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3477 ((-3 |#1| "failed") |#1| |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 41)) (-1738 (($ $) 40)) (-1811 (((-110) $) 38)) (-3181 (((-3 $ "failed") $ $) 19)) (-1232 (($ $) 73)) (-2705 (((-398 $) $) 72)) (-2213 (((-110) $ $) 59)) (-2816 (($) 17 T CONST)) (-3519 (($ $ $) 55)) (-1312 (((-3 $ "failed") $) 34)) (-3498 (($ $ $) 56)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 51)) (-2124 (((-110) $) 71)) (-1297 (((-110) $) 31)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) 52)) (-2057 (($ $ $) 46) (($ (-595 $)) 45)) (-3034 (((-1078) $) 9)) (-2652 (($ $) 70)) (-2495 (((-1042) $) 10)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 44)) (-2088 (($ $ $) 48) (($ (-595 $)) 47)) (-2437 (((-398 $) $) 74)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3477 (((-3 $ "failed") $ $) 42)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 50)) (-3973 (((-717) $) 58)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 57)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ $) 43) (($ (-387 (-528))) 65)) (-3742 (((-717)) 29)) (-4016 (((-110) $ $) 39)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33) (($ $ (-528)) 69)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2296 (($ $ $) 64)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32) (($ $ (-528)) 68)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ (-387 (-528))) 67) (($ (-387 (-528)) $) 66)))
-(((-343) (-133)) (T -343))
-((-2296 (*1 *1 *1 *1) (-4 *1 (-343))))
-(-13 (-288) (-1135) (-225) (-10 -8 (-15 -2296 ($ $ $)) (-6 -4262) (-6 -4256)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-387 (-528))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-569 (-802)) . T) ((-162) . T) ((-225) . T) ((-271) . T) ((-288) . T) ((-431) . T) ((-520) . T) ((-597 #0#) . T) ((-597 $) . T) ((-664 #0#) . T) ((-664 $) . T) ((-673) . T) ((-859) . T) ((-986 #0#) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1135) . T))
-((-2207 (((-110) $ $) 7)) (-2059 ((|#2| $ |#2|) 13)) (-1879 (($ $ (-1078)) 18)) (-1757 ((|#2| $) 14)) (-2378 (($ |#1|) 20) (($ |#1| (-1078)) 19)) (-3814 ((|#1| $) 16)) (-3034 (((-1078) $) 9)) (-3978 (((-1078) $) 15)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-3250 (($ $) 17)) (-2186 (((-110) $ $) 6)))
-(((-344 |#1| |#2|) (-133) (-1023) (-1023)) (T -344))
-((-2378 (*1 *1 *2) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1023)))) (-2378 (*1 *1 *2 *3) (-12 (-5 *3 (-1078)) (-4 *1 (-344 *2 *4)) (-4 *2 (-1023)) (-4 *4 (-1023)))) (-1879 (*1 *1 *1 *2) (-12 (-5 *2 (-1078)) (-4 *1 (-344 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1023)))) (-3250 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1023)))) (-3814 (*1 *2 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *3 (-1023)) (-4 *2 (-1023)))) (-3978 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-5 *2 (-1078)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1023)))) (-2059 (*1 *2 *1 *2) (-12 (-4 *1 (-344 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1023)))))
-(-13 (-1023) (-10 -8 (-15 -2378 ($ |t#1|)) (-15 -2378 ($ |t#1| (-1078))) (-15 -1879 ($ $ (-1078))) (-15 -3250 ($ $)) (-15 -3814 (|t#1| $)) (-15 -3978 ((-1078) $)) (-15 -1757 (|t#2| $)) (-15 -2059 (|t#2| $ |t#2|))))
-(((-99) . T) ((-569 (-802)) . T) ((-1023) . T))
-((-2207 (((-110) $ $) NIL)) (-2059 ((|#1| $ |#1|) 30)) (-1879 (($ $ (-1078)) 22)) (-2256 (((-3 |#1| "failed") $) 29)) (-1757 ((|#1| $) 27)) (-2378 (($ (-368)) 21) (($ (-368) (-1078)) 20)) (-3814 (((-368) $) 24)) (-3034 (((-1078) $) NIL)) (-3978 (((-1078) $) 25)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 19)) (-3250 (($ $) 23)) (-2186 (((-110) $ $) 18)))
-(((-345 |#1|) (-13 (-344 (-368) |#1|) (-10 -8 (-15 -2256 ((-3 |#1| "failed") $)))) (-1023)) (T -345))
-((-2256 (*1 *2 *1) (|partial| -12 (-5 *1 (-345 *2)) (-4 *2 (-1023)))))
-(-13 (-344 (-368) |#1|) (-10 -8 (-15 -2256 ((-3 |#1| "failed") $))))
-((-4023 (((-1177 (-635 |#2|)) (-1177 $)) 61)) (-3107 (((-635 |#2|) (-1177 $)) 120)) (-3913 ((|#2| $) 32)) (-3281 (((-635 |#2|) $ (-1177 $)) 123)) (-3552 (((-3 $ "failed") $) 75)) (-2061 ((|#2| $) 35)) (-2466 (((-1091 |#2|) $) 83)) (-3326 ((|#2| (-1177 $)) 106)) (-3922 (((-1091 |#2|) $) 28)) (-2683 (((-110)) 100)) (-1945 (($ (-1177 |#2|) (-1177 $)) 113)) (-1312 (((-3 $ "failed") $) 79)) (-2854 (((-110)) 95)) (-1795 (((-110)) 90)) (-1870 (((-110)) 53)) (-2906 (((-635 |#2|) (-1177 $)) 118)) (-1948 ((|#2| $) 31)) (-3867 (((-635 |#2|) $ (-1177 $)) 122)) (-1895 (((-3 $ "failed") $) 73)) (-4000 ((|#2| $) 34)) (-3549 (((-1091 |#2|) $) 82)) (-1991 ((|#2| (-1177 $)) 104)) (-2732 (((-1091 |#2|) $) 26)) (-4194 (((-110)) 99)) (-2044 (((-110)) 92)) (-3074 (((-110)) 51)) (-1302 (((-110)) 87)) (-3176 (((-110)) 101)) (-4243 (((-1177 |#2|) $ (-1177 $)) NIL) (((-635 |#2|) (-1177 $) (-1177 $)) 111)) (-2643 (((-110)) 97)) (-3586 (((-595 (-1177 |#2|))) 86)) (-1461 (((-110)) 98)) (-3047 (((-110)) 96)) (-1907 (((-110)) 46)) (-3405 (((-110)) 102)))
-(((-346 |#1| |#2|) (-10 -8 (-15 -2466 ((-1091 |#2|) |#1|)) (-15 -3549 ((-1091 |#2|) |#1|)) (-15 -3586 ((-595 (-1177 |#2|)))) (-15 -3552 ((-3 |#1| "failed") |#1|)) (-15 -1895 ((-3 |#1| "failed") |#1|)) (-15 -1312 ((-3 |#1| "failed") |#1|)) (-15 -1795 ((-110))) (-15 -2044 ((-110))) (-15 -2854 ((-110))) (-15 -3074 ((-110))) (-15 -1870 ((-110))) (-15 -1302 ((-110))) (-15 -3405 ((-110))) (-15 -3176 ((-110))) (-15 -2683 ((-110))) (-15 -4194 ((-110))) (-15 -1907 ((-110))) (-15 -1461 ((-110))) (-15 -3047 ((-110))) (-15 -2643 ((-110))) (-15 -3922 ((-1091 |#2|) |#1|)) (-15 -2732 ((-1091 |#2|) |#1|)) (-15 -3107 ((-635 |#2|) (-1177 |#1|))) (-15 -2906 ((-635 |#2|) (-1177 |#1|))) (-15 -3326 (|#2| (-1177 |#1|))) (-15 -1991 (|#2| (-1177 |#1|))) (-15 -1945 (|#1| (-1177 |#2|) (-1177 |#1|))) (-15 -4243 ((-635 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -4243 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -2061 (|#2| |#1|)) (-15 -4000 (|#2| |#1|)) (-15 -3913 (|#2| |#1|)) (-15 -1948 (|#2| |#1|)) (-15 -3281 ((-635 |#2|) |#1| (-1177 |#1|))) (-15 -3867 ((-635 |#2|) |#1| (-1177 |#1|))) (-15 -4023 ((-1177 (-635 |#2|)) (-1177 |#1|)))) (-347 |#2|) (-162)) (T -346))
-((-2643 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4)) (-4 *3 (-347 *4)))) (-3047 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4)) (-4 *3 (-347 *4)))) (-1461 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4)) (-4 *3 (-347 *4)))) (-1907 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4)) (-4 *3 (-347 *4)))) (-4194 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4)) (-4 *3 (-347 *4)))) (-2683 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4)) (-4 *3 (-347 *4)))) (-3176 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4)) (-4 *3 (-347 *4)))) (-3405 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4)) (-4 *3 (-347 *4)))) (-1302 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4)) (-4 *3 (-347 *4)))) (-1870 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4)) (-4 *3 (-347 *4)))) (-3074 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4)) (-4 *3 (-347 *4)))) (-2854 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4)) (-4 *3 (-347 *4)))) (-2044 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4)) (-4 *3 (-347 *4)))) (-1795 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4)) (-4 *3 (-347 *4)))) (-3586 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-595 (-1177 *4))) (-5 *1 (-346 *3 *4)) (-4 *3 (-347 *4)))))
-(-10 -8 (-15 -2466 ((-1091 |#2|) |#1|)) (-15 -3549 ((-1091 |#2|) |#1|)) (-15 -3586 ((-595 (-1177 |#2|)))) (-15 -3552 ((-3 |#1| "failed") |#1|)) (-15 -1895 ((-3 |#1| "failed") |#1|)) (-15 -1312 ((-3 |#1| "failed") |#1|)) (-15 -1795 ((-110))) (-15 -2044 ((-110))) (-15 -2854 ((-110))) (-15 -3074 ((-110))) (-15 -1870 ((-110))) (-15 -1302 ((-110))) (-15 -3405 ((-110))) (-15 -3176 ((-110))) (-15 -2683 ((-110))) (-15 -4194 ((-110))) (-15 -1907 ((-110))) (-15 -1461 ((-110))) (-15 -3047 ((-110))) (-15 -2643 ((-110))) (-15 -3922 ((-1091 |#2|) |#1|)) (-15 -2732 ((-1091 |#2|) |#1|)) (-15 -3107 ((-635 |#2|) (-1177 |#1|))) (-15 -2906 ((-635 |#2|) (-1177 |#1|))) (-15 -3326 (|#2| (-1177 |#1|))) (-15 -1991 (|#2| (-1177 |#1|))) (-15 -1945 (|#1| (-1177 |#2|) (-1177 |#1|))) (-15 -4243 ((-635 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -4243 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -2061 (|#2| |#1|)) (-15 -4000 (|#2| |#1|)) (-15 -3913 (|#2| |#1|)) (-15 -1948 (|#2| |#1|)) (-15 -3281 ((-635 |#2|) |#1| (-1177 |#1|))) (-15 -3867 ((-635 |#2|) |#1| (-1177 |#1|))) (-15 -4023 ((-1177 (-635 |#2|)) (-1177 |#1|))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2445 (((-3 $ "failed")) 37 (|has| |#1| (-520)))) (-3181 (((-3 $ "failed") $ $) 19)) (-4023 (((-1177 (-635 |#1|)) (-1177 $)) 78)) (-1653 (((-1177 $)) 81)) (-2816 (($) 17 T CONST)) (-2202 (((-3 (-2 (|:| |particular| $) (|:| -1400 (-595 $))) "failed")) 40 (|has| |#1| (-520)))) (-3403 (((-3 $ "failed")) 38 (|has| |#1| (-520)))) (-3107 (((-635 |#1|) (-1177 $)) 65)) (-3913 ((|#1| $) 74)) (-3281 (((-635 |#1|) $ (-1177 $)) 76)) (-3552 (((-3 $ "failed") $) 45 (|has| |#1| (-520)))) (-3693 (($ $ (-860)) 28)) (-2061 ((|#1| $) 72)) (-2466 (((-1091 |#1|) $) 42 (|has| |#1| (-520)))) (-3326 ((|#1| (-1177 $)) 67)) (-3922 (((-1091 |#1|) $) 63)) (-2683 (((-110)) 57)) (-1945 (($ (-1177 |#1|) (-1177 $)) 69)) (-1312 (((-3 $ "failed") $) 47 (|has| |#1| (-520)))) (-3090 (((-860)) 80)) (-3733 (((-110)) 54)) (-2451 (($ $ (-860)) 33)) (-2854 (((-110)) 50)) (-1795 (((-110)) 48)) (-1870 (((-110)) 52)) (-2481 (((-3 (-2 (|:| |particular| $) (|:| -1400 (-595 $))) "failed")) 41 (|has| |#1| (-520)))) (-2615 (((-3 $ "failed")) 39 (|has| |#1| (-520)))) (-2906 (((-635 |#1|) (-1177 $)) 66)) (-1948 ((|#1| $) 75)) (-3867 (((-635 |#1|) $ (-1177 $)) 77)) (-1895 (((-3 $ "failed") $) 46 (|has| |#1| (-520)))) (-3964 (($ $ (-860)) 29)) (-4000 ((|#1| $) 73)) (-3549 (((-1091 |#1|) $) 43 (|has| |#1| (-520)))) (-1991 ((|#1| (-1177 $)) 68)) (-2732 (((-1091 |#1|) $) 64)) (-4194 (((-110)) 58)) (-3034 (((-1078) $) 9)) (-2044 (((-110)) 49)) (-3074 (((-110)) 51)) (-1302 (((-110)) 53)) (-2495 (((-1042) $) 10)) (-3176 (((-110)) 56)) (-4243 (((-1177 |#1|) $ (-1177 $)) 71) (((-635 |#1|) (-1177 $) (-1177 $)) 70)) (-1730 (((-595 (-891 |#1|)) (-1177 $)) 79)) (-2405 (($ $ $) 25)) (-2643 (((-110)) 62)) (-2222 (((-802) $) 11)) (-3586 (((-595 (-1177 |#1|))) 44 (|has| |#1| (-520)))) (-4103 (($ $ $ $) 26)) (-1461 (((-110)) 60)) (-3607 (($ $ $) 24)) (-3047 (((-110)) 61)) (-1907 (((-110)) 59)) (-3405 (((-110)) 55)) (-2969 (($) 18 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 30)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-347 |#1|) (-133) (-162)) (T -347))
-((-1653 (*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1177 *1)) (-4 *1 (-347 *3)))) (-3090 (*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-860)))) (-1730 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-347 *4)) (-4 *4 (-162)) (-5 *2 (-595 (-891 *4))))) (-4023 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-347 *4)) (-4 *4 (-162)) (-5 *2 (-1177 (-635 *4))))) (-3867 (*1 *2 *1 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-347 *4)) (-4 *4 (-162)) (-5 *2 (-635 *4)))) (-3281 (*1 *2 *1 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-347 *4)) (-4 *4 (-162)) (-5 *2 (-635 *4)))) (-1948 (*1 *2 *1) (-12 (-4 *1 (-347 *2)) (-4 *2 (-162)))) (-3913 (*1 *2 *1) (-12 (-4 *1 (-347 *2)) (-4 *2 (-162)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-347 *2)) (-4 *2 (-162)))) (-2061 (*1 *2 *1) (-12 (-4 *1 (-347 *2)) (-4 *2 (-162)))) (-4243 (*1 *2 *1 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-347 *4)) (-4 *4 (-162)) (-5 *2 (-1177 *4)))) (-4243 (*1 *2 *3 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-347 *4)) (-4 *4 (-162)) (-5 *2 (-635 *4)))) (-1945 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1177 *1)) (-4 *4 (-162)) (-4 *1 (-347 *4)))) (-1991 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-347 *2)) (-4 *2 (-162)))) (-3326 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-347 *2)) (-4 *2 (-162)))) (-2906 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-347 *4)) (-4 *4 (-162)) (-5 *2 (-635 *4)))) (-3107 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-347 *4)) (-4 *4 (-162)) (-5 *2 (-635 *4)))) (-2732 (*1 *2 *1) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-1091 *3)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-1091 *3)))) (-2643 (*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3047 (*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1461 (*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1907 (*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-4194 (*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2683 (*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3176 (*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3405 (*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3733 (*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1302 (*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1870 (*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3074 (*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2854 (*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2044 (*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1795 (*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1312 (*1 *1 *1) (|partial| -12 (-4 *1 (-347 *2)) (-4 *2 (-162)) (-4 *2 (-520)))) (-1895 (*1 *1 *1) (|partial| -12 (-4 *1 (-347 *2)) (-4 *2 (-162)) (-4 *2 (-520)))) (-3552 (*1 *1 *1) (|partial| -12 (-4 *1 (-347 *2)) (-4 *2 (-162)) (-4 *2 (-520)))) (-3586 (*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-4 *3 (-520)) (-5 *2 (-595 (-1177 *3))))) (-3549 (*1 *2 *1) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-4 *3 (-520)) (-5 *2 (-1091 *3)))) (-2466 (*1 *2 *1) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-4 *3 (-520)) (-5 *2 (-1091 *3)))) (-2481 (*1 *2) (|partial| -12 (-4 *3 (-520)) (-4 *3 (-162)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1400 (-595 *1)))) (-4 *1 (-347 *3)))) (-2202 (*1 *2) (|partial| -12 (-4 *3 (-520)) (-4 *3 (-162)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1400 (-595 *1)))) (-4 *1 (-347 *3)))) (-2615 (*1 *1) (|partial| -12 (-4 *1 (-347 *2)) (-4 *2 (-520)) (-4 *2 (-162)))) (-3403 (*1 *1) (|partial| -12 (-4 *1 (-347 *2)) (-4 *2 (-520)) (-4 *2 (-162)))) (-2445 (*1 *1) (|partial| -12 (-4 *1 (-347 *2)) (-4 *2 (-520)) (-4 *2 (-162)))))
-(-13 (-691 |t#1|) (-10 -8 (-15 -1653 ((-1177 $))) (-15 -3090 ((-860))) (-15 -1730 ((-595 (-891 |t#1|)) (-1177 $))) (-15 -4023 ((-1177 (-635 |t#1|)) (-1177 $))) (-15 -3867 ((-635 |t#1|) $ (-1177 $))) (-15 -3281 ((-635 |t#1|) $ (-1177 $))) (-15 -1948 (|t#1| $)) (-15 -3913 (|t#1| $)) (-15 -4000 (|t#1| $)) (-15 -2061 (|t#1| $)) (-15 -4243 ((-1177 |t#1|) $ (-1177 $))) (-15 -4243 ((-635 |t#1|) (-1177 $) (-1177 $))) (-15 -1945 ($ (-1177 |t#1|) (-1177 $))) (-15 -1991 (|t#1| (-1177 $))) (-15 -3326 (|t#1| (-1177 $))) (-15 -2906 ((-635 |t#1|) (-1177 $))) (-15 -3107 ((-635 |t#1|) (-1177 $))) (-15 -2732 ((-1091 |t#1|) $)) (-15 -3922 ((-1091 |t#1|) $)) (-15 -2643 ((-110))) (-15 -3047 ((-110))) (-15 -1461 ((-110))) (-15 -1907 ((-110))) (-15 -4194 ((-110))) (-15 -2683 ((-110))) (-15 -3176 ((-110))) (-15 -3405 ((-110))) (-15 -3733 ((-110))) (-15 -1302 ((-110))) (-15 -1870 ((-110))) (-15 -3074 ((-110))) (-15 -2854 ((-110))) (-15 -2044 ((-110))) (-15 -1795 ((-110))) (IF (|has| |t#1| (-520)) (PROGN (-15 -1312 ((-3 $ "failed") $)) (-15 -1895 ((-3 $ "failed") $)) (-15 -3552 ((-3 $ "failed") $)) (-15 -3586 ((-595 (-1177 |t#1|)))) (-15 -3549 ((-1091 |t#1|) $)) (-15 -2466 ((-1091 |t#1|) $)) (-15 -2481 ((-3 (-2 (|:| |particular| $) (|:| -1400 (-595 $))) "failed"))) (-15 -2202 ((-3 (-2 (|:| |particular| $) (|:| -1400 (-595 $))) "failed"))) (-15 -2615 ((-3 $ "failed"))) (-15 -3403 ((-3 $ "failed"))) (-15 -2445 ((-3 $ "failed"))) (-6 -4261)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-569 (-802)) . T) ((-597 |#1|) . T) ((-664 |#1|) . T) ((-667) . T) ((-691 |#1|) . T) ((-708) . T) ((-986 |#1|) . T) ((-1023) . T))
-((-2207 (((-110) $ $) 7)) (-2856 (((-717)) 16)) (-1338 (($) 13)) (-3201 (((-860) $) 14)) (-3034 (((-1078) $) 9)) (-3108 (($ (-860)) 15)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2186 (((-110) $ $) 6)))
-(((-348) (-133)) (T -348))
-((-2856 (*1 *2) (-12 (-4 *1 (-348)) (-5 *2 (-717)))) (-3108 (*1 *1 *2) (-12 (-5 *2 (-860)) (-4 *1 (-348)))) (-3201 (*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-860)))) (-1338 (*1 *1) (-4 *1 (-348))))
-(-13 (-1023) (-10 -8 (-15 -2856 ((-717))) (-15 -3108 ($ (-860))) (-15 -3201 ((-860) $)) (-15 -1338 ($))))
-(((-99) . T) ((-569 (-802)) . T) ((-1023) . T))
-((-2486 (((-635 |#2|) (-1177 $)) 41)) (-1945 (($ (-1177 |#2|) (-1177 $)) 35)) (-3847 (((-635 |#2|) $ (-1177 $)) 43)) (-1372 ((|#2| (-1177 $)) 13)) (-4243 (((-1177 |#2|) $ (-1177 $)) NIL) (((-635 |#2|) (-1177 $) (-1177 $)) 25)))
-(((-349 |#1| |#2| |#3|) (-10 -8 (-15 -2486 ((-635 |#2|) (-1177 |#1|))) (-15 -1372 (|#2| (-1177 |#1|))) (-15 -1945 (|#1| (-1177 |#2|) (-1177 |#1|))) (-15 -4243 ((-635 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -4243 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -3847 ((-635 |#2|) |#1| (-1177 |#1|)))) (-350 |#2| |#3|) (-162) (-1153 |#2|)) (T -349))
-NIL
-(-10 -8 (-15 -2486 ((-635 |#2|) (-1177 |#1|))) (-15 -1372 (|#2| (-1177 |#1|))) (-15 -1945 (|#1| (-1177 |#2|) (-1177 |#1|))) (-15 -4243 ((-635 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -4243 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -3847 ((-635 |#2|) |#1| (-1177 |#1|))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2486 (((-635 |#1|) (-1177 $)) 46)) (-1323 ((|#1| $) 52)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-1945 (($ (-1177 |#1|) (-1177 $)) 48)) (-3847 (((-635 |#1|) $ (-1177 $)) 53)) (-1312 (((-3 $ "failed") $) 34)) (-3090 (((-860)) 54)) (-1297 (((-110) $) 31)) (-3297 ((|#1| $) 51)) (-3537 ((|#2| $) 44 (|has| |#1| (-343)))) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-1372 ((|#1| (-1177 $)) 47)) (-4243 (((-1177 |#1|) $ (-1177 $)) 50) (((-635 |#1|) (-1177 $) (-1177 $)) 49)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ |#1|) 37)) (-3749 (((-3 $ "failed") $) 43 (|has| |#1| (-138)))) (-2516 ((|#2| $) 45)) (-3742 (((-717)) 29)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-350 |#1| |#2|) (-133) (-162) (-1153 |t#1|)) (T -350))
-((-3090 (*1 *2) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1153 *3)) (-5 *2 (-860)))) (-3847 (*1 *2 *1 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-350 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1153 *4)) (-5 *2 (-635 *4)))) (-1323 (*1 *2 *1) (-12 (-4 *1 (-350 *2 *3)) (-4 *3 (-1153 *2)) (-4 *2 (-162)))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-350 *2 *3)) (-4 *3 (-1153 *2)) (-4 *2 (-162)))) (-4243 (*1 *2 *1 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-350 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *4)))) (-4243 (*1 *2 *3 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-350 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1153 *4)) (-5 *2 (-635 *4)))) (-1945 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1177 *1)) (-4 *4 (-162)) (-4 *1 (-350 *4 *5)) (-4 *5 (-1153 *4)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-350 *2 *4)) (-4 *4 (-1153 *2)) (-4 *2 (-162)))) (-2486 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-350 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1153 *4)) (-5 *2 (-635 *4)))) (-2516 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1153 *3)))) (-3537 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *2)) (-4 *3 (-162)) (-4 *3 (-343)) (-4 *2 (-1153 *3)))))
-(-13 (-37 |t#1|) (-10 -8 (-15 -3090 ((-860))) (-15 -3847 ((-635 |t#1|) $ (-1177 $))) (-15 -1323 (|t#1| $)) (-15 -3297 (|t#1| $)) (-15 -4243 ((-1177 |t#1|) $ (-1177 $))) (-15 -4243 ((-635 |t#1|) (-1177 $) (-1177 $))) (-15 -1945 ($ (-1177 |t#1|) (-1177 $))) (-15 -1372 (|t#1| (-1177 $))) (-15 -2486 ((-635 |t#1|) (-1177 $))) (-15 -2516 (|t#2| $)) (IF (|has| |t#1| (-343)) (-15 -3537 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-569 (-802)) . T) ((-597 |#1|) . T) ((-597 $) . T) ((-664 |#1|) . T) ((-673) . T) ((-986 |#1|) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-3718 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-1422 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-3106 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
-(((-351 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3106 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1422 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3718 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1131) (-353 |#1|) (-1131) (-353 |#3|)) (T -351))
-((-3718 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1131)) (-4 *5 (-1131)) (-4 *2 (-353 *5)) (-5 *1 (-351 *6 *4 *5 *2)) (-4 *4 (-353 *6)))) (-1422 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1131)) (-4 *2 (-1131)) (-5 *1 (-351 *5 *4 *2 *6)) (-4 *4 (-353 *5)) (-4 *6 (-353 *2)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-353 *6)) (-5 *1 (-351 *5 *4 *6 *2)) (-4 *4 (-353 *5)))))
-(-10 -7 (-15 -3106 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1422 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3718 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-3608 (((-110) (-1 (-110) |#2| |#2|) $) NIL) (((-110) $) 18)) (-3863 (($ (-1 (-110) |#2| |#2|) $) NIL) (($ $) 28)) (-1289 (($ (-1 (-110) |#2| |#2|) $) 27) (($ $) 22)) (-3009 (($ $) 25)) (-3140 (((-528) (-1 (-110) |#2|) $) NIL) (((-528) |#2| $) 11) (((-528) |#2| $ (-528)) NIL)) (-1356 (($ (-1 (-110) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-352 |#1| |#2|) (-10 -8 (-15 -3863 (|#1| |#1|)) (-15 -3863 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -3608 ((-110) |#1|)) (-15 -1289 (|#1| |#1|)) (-15 -1356 (|#1| |#1| |#1|)) (-15 -3140 ((-528) |#2| |#1| (-528))) (-15 -3140 ((-528) |#2| |#1|)) (-15 -3140 ((-528) (-1 (-110) |#2|) |#1|)) (-15 -3608 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -1289 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -3009 (|#1| |#1|)) (-15 -1356 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|))) (-353 |#2|) (-1131)) (T -352))
-NIL
-(-10 -8 (-15 -3863 (|#1| |#1|)) (-15 -3863 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -3608 ((-110) |#1|)) (-15 -1289 (|#1| |#1|)) (-15 -1356 (|#1| |#1| |#1|)) (-15 -3140 ((-528) |#2| |#1| (-528))) (-15 -3140 ((-528) |#2| |#1|)) (-15 -3140 ((-528) (-1 (-110) |#2|) |#1|)) (-15 -3608 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -1289 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -3009 (|#1| |#1|)) (-15 -1356 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-1444 (((-1182) $ (-528) (-528)) 40 (|has| $ (-6 -4265)))) (-3608 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-793)))) (-3863 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4265))) (($ $) 88 (-12 (|has| |#1| (-793)) (|has| $ (-6 -4265))))) (-1289 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-793)))) (-3535 (((-110) $ (-717)) 8)) (-2381 ((|#1| $ (-528) |#1|) 52 (|has| $ (-6 -4265))) ((|#1| $ (-1144 (-528)) |#1|) 58 (|has| $ (-6 -4265)))) (-1573 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4264)))) (-2816 (($) 7 T CONST)) (-2472 (($ $) 90 (|has| $ (-6 -4265)))) (-3009 (($ $) 100)) (-2923 (($ $) 78 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2280 (($ |#1| $) 77 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4264)))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4264)))) (-2812 ((|#1| $ (-528) |#1|) 53 (|has| $ (-6 -4265)))) (-2742 ((|#1| $ (-528)) 51)) (-3140 (((-528) (-1 (-110) |#1|) $) 97) (((-528) |#1| $) 96 (|has| |#1| (-1023))) (((-528) |#1| $ (-528)) 95 (|has| |#1| (-1023)))) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-3462 (($ (-717) |#1|) 69)) (-2029 (((-110) $ (-717)) 9)) (-3530 (((-528) $) 43 (|has| (-528) (-793)))) (-1436 (($ $ $) 87 (|has| |#1| (-793)))) (-1356 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-793)))) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-1709 (((-528) $) 44 (|has| (-528) (-793)))) (-1736 (($ $ $) 86 (|has| |#1| (-793)))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3358 (((-110) $ (-717)) 10)) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-3939 (($ |#1| $ (-528)) 60) (($ $ $ (-528)) 59)) (-2084 (((-595 (-528)) $) 46)) (-3966 (((-110) (-528) $) 47)) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-2890 ((|#1| $) 42 (|has| (-528) (-793)))) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-1332 (($ $ |#1|) 41 (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-2111 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2861 (((-595 |#1|) $) 48)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3043 ((|#1| $ (-528) |#1|) 50) ((|#1| $ (-528)) 49) (($ $ (-1144 (-528))) 63)) (-1745 (($ $ (-528)) 62) (($ $ (-1144 (-528))) 61)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-3761 (($ $ $ (-528)) 91 (|has| $ (-6 -4265)))) (-2406 (($ $) 13)) (-3155 (((-504) $) 79 (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) 70)) (-3400 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-595 $)) 65)) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2244 (((-110) $ $) 84 (|has| |#1| (-793)))) (-2220 (((-110) $ $) 83 (|has| |#1| (-793)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2232 (((-110) $ $) 85 (|has| |#1| (-793)))) (-2208 (((-110) $ $) 82 (|has| |#1| (-793)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-353 |#1|) (-133) (-1131)) (T -353))
-((-1356 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-353 *3)) (-4 *3 (-1131)))) (-3009 (*1 *1 *1) (-12 (-4 *1 (-353 *2)) (-4 *2 (-1131)))) (-1289 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-353 *3)) (-4 *3 (-1131)))) (-3608 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *1 (-353 *4)) (-4 *4 (-1131)) (-5 *2 (-110)))) (-3140 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (-4 *1 (-353 *4)) (-4 *4 (-1131)) (-5 *2 (-528)))) (-3140 (*1 *2 *3 *1) (-12 (-4 *1 (-353 *3)) (-4 *3 (-1131)) (-4 *3 (-1023)) (-5 *2 (-528)))) (-3140 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-528)) (-4 *1 (-353 *3)) (-4 *3 (-1131)) (-4 *3 (-1023)))) (-1356 (*1 *1 *1 *1) (-12 (-4 *1 (-353 *2)) (-4 *2 (-1131)) (-4 *2 (-793)))) (-1289 (*1 *1 *1) (-12 (-4 *1 (-353 *2)) (-4 *2 (-1131)) (-4 *2 (-793)))) (-3608 (*1 *2 *1) (-12 (-4 *1 (-353 *3)) (-4 *3 (-1131)) (-4 *3 (-793)) (-5 *2 (-110)))) (-3761 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-528)) (|has| *1 (-6 -4265)) (-4 *1 (-353 *3)) (-4 *3 (-1131)))) (-2472 (*1 *1 *1) (-12 (|has| *1 (-6 -4265)) (-4 *1 (-353 *2)) (-4 *2 (-1131)))) (-3863 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (|has| *1 (-6 -4265)) (-4 *1 (-353 *3)) (-4 *3 (-1131)))) (-3863 (*1 *1 *1) (-12 (|has| *1 (-6 -4265)) (-4 *1 (-353 *2)) (-4 *2 (-1131)) (-4 *2 (-793)))))
-(-13 (-600 |t#1|) (-10 -8 (-6 -4264) (-15 -1356 ($ (-1 (-110) |t#1| |t#1|) $ $)) (-15 -3009 ($ $)) (-15 -1289 ($ (-1 (-110) |t#1| |t#1|) $)) (-15 -3608 ((-110) (-1 (-110) |t#1| |t#1|) $)) (-15 -3140 ((-528) (-1 (-110) |t#1|) $)) (IF (|has| |t#1| (-1023)) (PROGN (-15 -3140 ((-528) |t#1| $)) (-15 -3140 ((-528) |t#1| $ (-528)))) |%noBranch|) (IF (|has| |t#1| (-793)) (PROGN (-6 (-793)) (-15 -1356 ($ $ $)) (-15 -1289 ($ $)) (-15 -3608 ((-110) $))) |%noBranch|) (IF (|has| $ (-6 -4265)) (PROGN (-15 -3761 ($ $ $ (-528))) (-15 -2472 ($ $)) (-15 -3863 ($ (-1 (-110) |t#1| |t#1|) $)) (IF (|has| |t#1| (-793)) (-15 -3863 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-33) . T) ((-99) -1463 (|has| |#1| (-1023)) (|has| |#1| (-793))) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-793)) (|has| |#1| (-569 (-802)))) ((-144 |#1|) . T) ((-570 (-504)) |has| |#1| (-570 (-504))) ((-267 #0=(-528) |#1|) . T) ((-269 #0# |#1|) . T) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-467 |#1|) . T) ((-561 #0# |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-600 |#1|) . T) ((-793) |has| |#1| (-793)) ((-1023) -1463 (|has| |#1| (-1023)) (|has| |#1| (-793))) ((-1131) . T))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3642 (((-595 |#1|) $) 32)) (-2086 (($ $ (-717)) 33)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-2650 (((-1199 |#1| |#2|) (-1199 |#1| |#2|) $) 36)) (-2091 (($ $) 34)) (-1572 (((-1199 |#1| |#2|) (-1199 |#1| |#2|) $) 37)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-4014 (($ $ |#1| $) 31) (($ $ (-595 |#1|) (-595 $)) 30)) (-2935 (((-717) $) 38)) (-2233 (($ $ $) 29)) (-2222 (((-802) $) 11) (($ |#1|) 41) (((-1190 |#1| |#2|) $) 40) (((-1199 |#1| |#2|) $) 39)) (-1641 ((|#2| (-1199 |#1| |#2|) $) 42)) (-2969 (($) 18 T CONST)) (-1660 (($ (-620 |#1|)) 35)) (-2186 (((-110) $ $) 6)) (-2296 (($ $ |#2|) 28 (|has| |#2| (-343)))) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
-(((-354 |#1| |#2|) (-133) (-793) (-162)) (T -354))
-((-1641 (*1 *2 *3 *1) (-12 (-5 *3 (-1199 *4 *2)) (-4 *1 (-354 *4 *2)) (-4 *4 (-793)) (-4 *2 (-162)))) (-2222 (*1 *1 *2) (-12 (-4 *1 (-354 *2 *3)) (-4 *2 (-793)) (-4 *3 (-162)))) (-2222 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4)) (-4 *3 (-793)) (-4 *4 (-162)) (-5 *2 (-1190 *3 *4)))) (-2222 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4)) (-4 *3 (-793)) (-4 *4 (-162)) (-5 *2 (-1199 *3 *4)))) (-2935 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4)) (-4 *3 (-793)) (-4 *4 (-162)) (-5 *2 (-717)))) (-1572 (*1 *2 *2 *1) (-12 (-5 *2 (-1199 *3 *4)) (-4 *1 (-354 *3 *4)) (-4 *3 (-793)) (-4 *4 (-162)))) (-2650 (*1 *2 *2 *1) (-12 (-5 *2 (-1199 *3 *4)) (-4 *1 (-354 *3 *4)) (-4 *3 (-793)) (-4 *4 (-162)))) (-1660 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-793)) (-4 *1 (-354 *3 *4)) (-4 *4 (-162)))) (-2091 (*1 *1 *1) (-12 (-4 *1 (-354 *2 *3)) (-4 *2 (-793)) (-4 *3 (-162)))) (-2086 (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-354 *3 *4)) (-4 *3 (-793)) (-4 *4 (-162)))) (-3642 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4)) (-4 *3 (-793)) (-4 *4 (-162)) (-5 *2 (-595 *3)))) (-4014 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-354 *2 *3)) (-4 *2 (-793)) (-4 *3 (-162)))) (-4014 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-595 *4)) (-5 *3 (-595 *1)) (-4 *1 (-354 *4 *5)) (-4 *4 (-793)) (-4 *5 (-162)))))
-(-13 (-586 |t#2|) (-10 -8 (-15 -1641 (|t#2| (-1199 |t#1| |t#2|) $)) (-15 -2222 ($ |t#1|)) (-15 -2222 ((-1190 |t#1| |t#2|) $)) (-15 -2222 ((-1199 |t#1| |t#2|) $)) (-15 -2935 ((-717) $)) (-15 -1572 ((-1199 |t#1| |t#2|) (-1199 |t#1| |t#2|) $)) (-15 -2650 ((-1199 |t#1| |t#2|) (-1199 |t#1| |t#2|) $)) (-15 -1660 ($ (-620 |t#1|))) (-15 -2091 ($ $)) (-15 -2086 ($ $ (-717))) (-15 -3642 ((-595 |t#1|) $)) (-15 -4014 ($ $ |t#1| $)) (-15 -4014 ($ $ (-595 |t#1|) (-595 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-569 (-802)) . T) ((-597 |#2|) . T) ((-586 |#2|) . T) ((-664 |#2|) . T) ((-986 |#2|) . T) ((-1023) . T))
-((-1695 ((|#2| (-1 (-110) |#1| |#1|) |#2|) 24)) (-3631 ((|#2| (-1 (-110) |#1| |#1|) |#2|) 13)) (-2331 ((|#2| (-1 (-110) |#1| |#1|) |#2|) 22)))
-(((-355 |#1| |#2|) (-10 -7 (-15 -3631 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -2331 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -1695 (|#2| (-1 (-110) |#1| |#1|) |#2|))) (-1131) (-13 (-353 |#1|) (-10 -7 (-6 -4265)))) (T -355))
-((-1695 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-355 *4 *2)) (-4 *2 (-13 (-353 *4) (-10 -7 (-6 -4265)))))) (-2331 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-355 *4 *2)) (-4 *2 (-13 (-353 *4) (-10 -7 (-6 -4265)))))) (-3631 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-355 *4 *2)) (-4 *2 (-13 (-353 *4) (-10 -7 (-6 -4265)))))))
-(-10 -7 (-15 -3631 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -2331 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -1695 (|#2| (-1 (-110) |#1| |#1|) |#2|)))
-((-2120 (((-635 |#2|) (-635 $)) NIL) (((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 $) (-1177 $)) NIL) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) 22) (((-635 (-528)) (-635 $)) 14)))
-(((-356 |#1| |#2|) (-10 -8 (-15 -2120 ((-635 (-528)) (-635 |#1|))) (-15 -2120 ((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 |#1|) (-1177 |#1|))) (-15 -2120 ((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 |#1|) (-1177 |#1|))) (-15 -2120 ((-635 |#2|) (-635 |#1|)))) (-357 |#2|) (-981)) (T -356))
-NIL
-(-10 -8 (-15 -2120 ((-635 (-528)) (-635 |#1|))) (-15 -2120 ((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 |#1|) (-1177 |#1|))) (-15 -2120 ((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 |#1|) (-1177 |#1|))) (-15 -2120 ((-635 |#2|) (-635 |#1|))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-2120 (((-635 |#1|) (-635 $)) 36) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) 35) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) 43 (|has| |#1| (-591 (-528)))) (((-635 (-528)) (-635 $)) 42 (|has| |#1| (-591 (-528))))) (-1312 (((-3 $ "failed") $) 34)) (-1297 (((-110) $) 31)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11) (($ (-528)) 28)) (-3742 (((-717)) 29)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24)))
-(((-357 |#1|) (-133) (-981)) (T -357))
-NIL
-(-13 (-591 |t#1|) (-10 -7 (IF (|has| |t#1| (-591 (-528))) (-6 (-591 (-528))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-569 (-802)) . T) ((-597 $) . T) ((-591 (-528)) |has| |#1| (-591 (-528))) ((-591 |#1|) . T) ((-673) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-3473 (((-595 (-275 (-891 (-159 |#1|)))) (-275 (-387 (-891 (-159 (-528))))) |#1|) 51) (((-595 (-275 (-891 (-159 |#1|)))) (-387 (-891 (-159 (-528)))) |#1|) 50) (((-595 (-595 (-275 (-891 (-159 |#1|))))) (-595 (-275 (-387 (-891 (-159 (-528)))))) |#1|) 47) (((-595 (-595 (-275 (-891 (-159 |#1|))))) (-595 (-387 (-891 (-159 (-528))))) |#1|) 41)) (-1697 (((-595 (-595 (-159 |#1|))) (-595 (-387 (-891 (-159 (-528))))) (-595 (-1095)) |#1|) 30) (((-595 (-159 |#1|)) (-387 (-891 (-159 (-528)))) |#1|) 18)))
-(((-358 |#1|) (-10 -7 (-15 -3473 ((-595 (-595 (-275 (-891 (-159 |#1|))))) (-595 (-387 (-891 (-159 (-528))))) |#1|)) (-15 -3473 ((-595 (-595 (-275 (-891 (-159 |#1|))))) (-595 (-275 (-387 (-891 (-159 (-528)))))) |#1|)) (-15 -3473 ((-595 (-275 (-891 (-159 |#1|)))) (-387 (-891 (-159 (-528)))) |#1|)) (-15 -3473 ((-595 (-275 (-891 (-159 |#1|)))) (-275 (-387 (-891 (-159 (-528))))) |#1|)) (-15 -1697 ((-595 (-159 |#1|)) (-387 (-891 (-159 (-528)))) |#1|)) (-15 -1697 ((-595 (-595 (-159 |#1|))) (-595 (-387 (-891 (-159 (-528))))) (-595 (-1095)) |#1|))) (-13 (-343) (-791))) (T -358))
-((-1697 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-595 (-387 (-891 (-159 (-528)))))) (-5 *4 (-595 (-1095))) (-5 *2 (-595 (-595 (-159 *5)))) (-5 *1 (-358 *5)) (-4 *5 (-13 (-343) (-791))))) (-1697 (*1 *2 *3 *4) (-12 (-5 *3 (-387 (-891 (-159 (-528))))) (-5 *2 (-595 (-159 *4))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-343) (-791))))) (-3473 (*1 *2 *3 *4) (-12 (-5 *3 (-275 (-387 (-891 (-159 (-528)))))) (-5 *2 (-595 (-275 (-891 (-159 *4))))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-343) (-791))))) (-3473 (*1 *2 *3 *4) (-12 (-5 *3 (-387 (-891 (-159 (-528))))) (-5 *2 (-595 (-275 (-891 (-159 *4))))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-343) (-791))))) (-3473 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-275 (-387 (-891 (-159 (-528))))))) (-5 *2 (-595 (-595 (-275 (-891 (-159 *4)))))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-343) (-791))))) (-3473 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-387 (-891 (-159 (-528)))))) (-5 *2 (-595 (-595 (-275 (-891 (-159 *4)))))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-343) (-791))))))
-(-10 -7 (-15 -3473 ((-595 (-595 (-275 (-891 (-159 |#1|))))) (-595 (-387 (-891 (-159 (-528))))) |#1|)) (-15 -3473 ((-595 (-595 (-275 (-891 (-159 |#1|))))) (-595 (-275 (-387 (-891 (-159 (-528)))))) |#1|)) (-15 -3473 ((-595 (-275 (-891 (-159 |#1|)))) (-387 (-891 (-159 (-528)))) |#1|)) (-15 -3473 ((-595 (-275 (-891 (-159 |#1|)))) (-275 (-387 (-891 (-159 (-528))))) |#1|)) (-15 -1697 ((-595 (-159 |#1|)) (-387 (-891 (-159 (-528)))) |#1|)) (-15 -1697 ((-595 (-595 (-159 |#1|))) (-595 (-387 (-891 (-159 (-528))))) (-595 (-1095)) |#1|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 33)) (-3598 (((-528) $) 55)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-1781 (($ $) 110)) (-2880 (($ $) 82)) (-2735 (($ $) 71)) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-2450 (($ $) 44)) (-2213 (((-110) $ $) NIL)) (-2859 (($ $) 80)) (-2712 (($ $) 69)) (-3605 (((-528) $) 64)) (-2950 (($ $ (-528)) 62)) (-2904 (($ $) NIL)) (-2761 (($ $) NIL)) (-2816 (($) NIL T CONST)) (-2212 (($ $) 112)) (-3001 (((-3 (-528) "failed") $) 189) (((-3 (-387 (-528)) "failed") $) 185)) (-2409 (((-528) $) 187) (((-387 (-528)) $) 183)) (-3519 (($ $ $) NIL)) (-2386 (((-528) $ $) 102)) (-1312 (((-3 $ "failed") $) 114)) (-2942 (((-387 (-528)) $ (-717)) 190) (((-387 (-528)) $ (-717) (-717)) 182)) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2124 (((-110) $) NIL)) (-1239 (((-860)) 73) (((-860) (-860)) 98 (|has| $ (-6 -4255)))) (-3657 (((-110) $) 106)) (-1505 (($) 40)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL)) (-3819 (((-1182) (-717)) 152)) (-3931 (((-1182)) 157) (((-1182) (-717)) 158)) (-4213 (((-1182)) 159) (((-1182) (-717)) 160)) (-3831 (((-1182)) 155) (((-1182) (-717)) 156)) (-3689 (((-528) $) 58)) (-1297 (((-110) $) 104)) (-2796 (($ $ (-528)) NIL)) (-1837 (($ $) 48)) (-3297 (($ $) NIL)) (-3710 (((-110) $) 35)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-1436 (($ $ $) NIL) (($) NIL (-12 (-3617 (|has| $ (-6 -4247))) (-3617 (|has| $ (-6 -4255)))))) (-1736 (($ $ $) NIL) (($) 99 (-12 (-3617 (|has| $ (-6 -4247))) (-3617 (|has| $ (-6 -4255)))))) (-3095 (((-528) $) 17)) (-2374 (($) 87) (($ $) 92)) (-1862 (($) 91) (($ $) 93)) (-2097 (($ $) 83)) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) 116)) (-3144 (((-860) (-528)) 43 (|has| $ (-6 -4255)))) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3270 (($ $) 53)) (-2925 (($ $) 109)) (-2849 (($ (-528) (-528)) 107) (($ (-528) (-528) (-860)) 108)) (-2437 (((-398 $) $) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-2564 (((-528) $) 19)) (-3050 (($) 94)) (-2656 (($ $) 79)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-1913 (((-860)) 100) (((-860) (-860)) 101 (|has| $ (-6 -4255)))) (-3235 (($ $ (-717)) NIL) (($ $) 115)) (-2166 (((-860) (-528)) 47 (|has| $ (-6 -4255)))) (-2917 (($ $) NIL)) (-2773 (($ $) NIL)) (-2892 (($ $) NIL)) (-2749 (($ $) NIL)) (-2869 (($ $) 81)) (-2724 (($ $) 70)) (-3155 (((-359) $) 175) (((-207) $) 177) (((-831 (-359)) $) NIL) (((-1078) $) 162) (((-504) $) 173) (($ (-207)) 181)) (-2222 (((-802) $) 164) (($ (-528)) 186) (($ $) NIL) (($ (-387 (-528))) NIL) (($ (-528)) 186) (($ (-387 (-528))) NIL) (((-207) $) 178)) (-3742 (((-717)) NIL)) (-1769 (($ $) 111)) (-3341 (((-860)) 54) (((-860) (-860)) 66 (|has| $ (-6 -4255)))) (-2911 (((-860)) 103)) (-2953 (($ $) 86)) (-2811 (($ $) 46) (($ $ $) 52)) (-4016 (((-110) $ $) NIL)) (-2928 (($ $) 84)) (-2784 (($ $) 37)) (-2981 (($ $) NIL)) (-2836 (($ $) NIL)) (-3592 (($ $) NIL)) (-2846 (($ $) NIL)) (-2967 (($ $) NIL)) (-2825 (($ $) NIL)) (-2940 (($ $) 85)) (-2797 (($ $) 49)) (-1775 (($ $) 51)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) 34 T CONST)) (-2982 (($) 38 T CONST)) (-1256 (((-1078) $) 27) (((-1078) $ (-110)) 29) (((-1182) (-768) $) 30) (((-1182) (-768) $ (-110)) 31)) (-3245 (($ $ (-717)) NIL) (($ $) NIL)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 39)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 42)) (-2296 (($ $ $) 45) (($ $ (-528)) 41)) (-2286 (($ $) 36) (($ $ $) 50)) (-2275 (($ $ $) 61)) (** (($ $ (-860)) 67) (($ $ (-717)) NIL) (($ $ (-528)) 88) (($ $ (-387 (-528))) 125) (($ $ $) 117)) (* (($ (-860) $) 65) (($ (-717) $) NIL) (($ (-528) $) 68) (($ $ $) 60) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL)))
-(((-359) (-13 (-384) (-215) (-570 (-1078)) (-774) (-569 (-207)) (-1117) (-570 (-504)) (-10 -8 (-15 -2296 ($ $ (-528))) (-15 ** ($ $ $)) (-15 -1837 ($ $)) (-15 -2386 ((-528) $ $)) (-15 -2950 ($ $ (-528))) (-15 -2942 ((-387 (-528)) $ (-717))) (-15 -2942 ((-387 (-528)) $ (-717) (-717))) (-15 -2374 ($)) (-15 -1862 ($)) (-15 -3050 ($)) (-15 -2811 ($ $ $)) (-15 -2374 ($ $)) (-15 -1862 ($ $)) (-15 -3155 ($ (-207))) (-15 -4213 ((-1182))) (-15 -4213 ((-1182) (-717))) (-15 -3831 ((-1182))) (-15 -3831 ((-1182) (-717))) (-15 -3931 ((-1182))) (-15 -3931 ((-1182) (-717))) (-15 -3819 ((-1182) (-717))) (-6 -4255) (-6 -4247)))) (T -359))
-((** (*1 *1 *1 *1) (-5 *1 (-359))) (-2296 (*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-359)))) (-1837 (*1 *1 *1) (-5 *1 (-359))) (-2386 (*1 *2 *1 *1) (-12 (-5 *2 (-528)) (-5 *1 (-359)))) (-2950 (*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-359)))) (-2942 (*1 *2 *1 *3) (-12 (-5 *3 (-717)) (-5 *2 (-387 (-528))) (-5 *1 (-359)))) (-2942 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-717)) (-5 *2 (-387 (-528))) (-5 *1 (-359)))) (-2374 (*1 *1) (-5 *1 (-359))) (-1862 (*1 *1) (-5 *1 (-359))) (-3050 (*1 *1) (-5 *1 (-359))) (-2811 (*1 *1 *1 *1) (-5 *1 (-359))) (-2374 (*1 *1 *1) (-5 *1 (-359))) (-1862 (*1 *1 *1) (-5 *1 (-359))) (-3155 (*1 *1 *2) (-12 (-5 *2 (-207)) (-5 *1 (-359)))) (-4213 (*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-359)))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-1182)) (-5 *1 (-359)))) (-3831 (*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-359)))) (-3831 (*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-1182)) (-5 *1 (-359)))) (-3931 (*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-359)))) (-3931 (*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-1182)) (-5 *1 (-359)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-1182)) (-5 *1 (-359)))))
-(-13 (-384) (-215) (-570 (-1078)) (-774) (-569 (-207)) (-1117) (-570 (-504)) (-10 -8 (-15 -2296 ($ $ (-528))) (-15 ** ($ $ $)) (-15 -1837 ($ $)) (-15 -2386 ((-528) $ $)) (-15 -2950 ($ $ (-528))) (-15 -2942 ((-387 (-528)) $ (-717))) (-15 -2942 ((-387 (-528)) $ (-717) (-717))) (-15 -2374 ($)) (-15 -1862 ($)) (-15 -3050 ($)) (-15 -2811 ($ $ $)) (-15 -2374 ($ $)) (-15 -1862 ($ $)) (-15 -3155 ($ (-207))) (-15 -4213 ((-1182))) (-15 -4213 ((-1182) (-717))) (-15 -3831 ((-1182))) (-15 -3831 ((-1182) (-717))) (-15 -3931 ((-1182))) (-15 -3931 ((-1182) (-717))) (-15 -3819 ((-1182) (-717))) (-6 -4255) (-6 -4247)))
-((-1651 (((-595 (-275 (-891 |#1|))) (-275 (-387 (-891 (-528)))) |#1|) 46) (((-595 (-275 (-891 |#1|))) (-387 (-891 (-528))) |#1|) 45) (((-595 (-595 (-275 (-891 |#1|)))) (-595 (-275 (-387 (-891 (-528))))) |#1|) 42) (((-595 (-595 (-275 (-891 |#1|)))) (-595 (-387 (-891 (-528)))) |#1|) 36)) (-2817 (((-595 |#1|) (-387 (-891 (-528))) |#1|) 20) (((-595 (-595 |#1|)) (-595 (-387 (-891 (-528)))) (-595 (-1095)) |#1|) 30)))
-(((-360 |#1|) (-10 -7 (-15 -1651 ((-595 (-595 (-275 (-891 |#1|)))) (-595 (-387 (-891 (-528)))) |#1|)) (-15 -1651 ((-595 (-595 (-275 (-891 |#1|)))) (-595 (-275 (-387 (-891 (-528))))) |#1|)) (-15 -1651 ((-595 (-275 (-891 |#1|))) (-387 (-891 (-528))) |#1|)) (-15 -1651 ((-595 (-275 (-891 |#1|))) (-275 (-387 (-891 (-528)))) |#1|)) (-15 -2817 ((-595 (-595 |#1|)) (-595 (-387 (-891 (-528)))) (-595 (-1095)) |#1|)) (-15 -2817 ((-595 |#1|) (-387 (-891 (-528))) |#1|))) (-13 (-791) (-343))) (T -360))
-((-2817 (*1 *2 *3 *4) (-12 (-5 *3 (-387 (-891 (-528)))) (-5 *2 (-595 *4)) (-5 *1 (-360 *4)) (-4 *4 (-13 (-791) (-343))))) (-2817 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-595 (-387 (-891 (-528))))) (-5 *4 (-595 (-1095))) (-5 *2 (-595 (-595 *5))) (-5 *1 (-360 *5)) (-4 *5 (-13 (-791) (-343))))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-275 (-387 (-891 (-528))))) (-5 *2 (-595 (-275 (-891 *4)))) (-5 *1 (-360 *4)) (-4 *4 (-13 (-791) (-343))))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-387 (-891 (-528)))) (-5 *2 (-595 (-275 (-891 *4)))) (-5 *1 (-360 *4)) (-4 *4 (-13 (-791) (-343))))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-275 (-387 (-891 (-528)))))) (-5 *2 (-595 (-595 (-275 (-891 *4))))) (-5 *1 (-360 *4)) (-4 *4 (-13 (-791) (-343))))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-387 (-891 (-528))))) (-5 *2 (-595 (-595 (-275 (-891 *4))))) (-5 *1 (-360 *4)) (-4 *4 (-13 (-791) (-343))))))
-(-10 -7 (-15 -1651 ((-595 (-595 (-275 (-891 |#1|)))) (-595 (-387 (-891 (-528)))) |#1|)) (-15 -1651 ((-595 (-595 (-275 (-891 |#1|)))) (-595 (-275 (-387 (-891 (-528))))) |#1|)) (-15 -1651 ((-595 (-275 (-891 |#1|))) (-387 (-891 (-528))) |#1|)) (-15 -1651 ((-595 (-275 (-891 |#1|))) (-275 (-387 (-891 (-528)))) |#1|)) (-15 -2817 ((-595 (-595 |#1|)) (-595 (-387 (-891 (-528)))) (-595 (-1095)) |#1|)) (-15 -2817 ((-595 |#1|) (-387 (-891 (-528))) |#1|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#2| "failed") $) 26)) (-2409 ((|#2| $) 28)) (-2388 (($ $) NIL)) (-1224 (((-717) $) 10)) (-3737 (((-595 $) $) 20)) (-2195 (((-110) $) NIL)) (-3841 (($ |#2| |#1|) 18)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-1868 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-2686 ((|#2| $) 15)) (-2697 ((|#1| $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 45) (($ |#2|) 27)) (-3348 (((-595 |#1|) $) 17)) (-3216 ((|#1| $ |#2|) 47)) (-2969 (($) 29 T CONST)) (-2145 (((-595 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-2186 (((-110) $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36)))
-(((-361 |#1| |#2|) (-13 (-362 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-981) (-793)) (T -361))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-361 *3 *2)) (-4 *3 (-981)) (-4 *2 (-793)))))
-(-13 (-362 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-3001 (((-3 |#2| "failed") $) 44)) (-2409 ((|#2| $) 43)) (-2388 (($ $) 30)) (-1224 (((-717) $) 34)) (-3737 (((-595 $) $) 35)) (-2195 (((-110) $) 38)) (-3841 (($ |#2| |#1|) 39)) (-3106 (($ (-1 |#1| |#1|) $) 40)) (-1868 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-2686 ((|#2| $) 33)) (-2697 ((|#1| $) 32)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11) (($ |#2|) 45)) (-3348 (((-595 |#1|) $) 36)) (-3216 ((|#1| $ |#2|) 41)) (-2969 (($) 18 T CONST)) (-2145 (((-595 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
-(((-362 |#1| |#2|) (-133) (-981) (-1023)) (T -362))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-362 *2 *3)) (-4 *2 (-981)) (-4 *3 (-1023)))) (-3216 (*1 *2 *1 *3) (-12 (-4 *1 (-362 *2 *3)) (-4 *3 (-1023)) (-4 *2 (-981)))) (-3106 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-362 *3 *4)) (-4 *3 (-981)) (-4 *4 (-1023)))) (-3841 (*1 *1 *2 *3) (-12 (-4 *1 (-362 *3 *2)) (-4 *3 (-981)) (-4 *2 (-1023)))) (-2195 (*1 *2 *1) (-12 (-4 *1 (-362 *3 *4)) (-4 *3 (-981)) (-4 *4 (-1023)) (-5 *2 (-110)))) (-2145 (*1 *2 *1) (-12 (-4 *1 (-362 *3 *4)) (-4 *3 (-981)) (-4 *4 (-1023)) (-5 *2 (-595 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3348 (*1 *2 *1) (-12 (-4 *1 (-362 *3 *4)) (-4 *3 (-981)) (-4 *4 (-1023)) (-5 *2 (-595 *3)))) (-3737 (*1 *2 *1) (-12 (-4 *3 (-981)) (-4 *4 (-1023)) (-5 *2 (-595 *1)) (-4 *1 (-362 *3 *4)))) (-1224 (*1 *2 *1) (-12 (-4 *1 (-362 *3 *4)) (-4 *3 (-981)) (-4 *4 (-1023)) (-5 *2 (-717)))) (-2686 (*1 *2 *1) (-12 (-4 *1 (-362 *3 *2)) (-4 *3 (-981)) (-4 *2 (-1023)))) (-2697 (*1 *2 *1) (-12 (-4 *1 (-362 *2 *3)) (-4 *3 (-1023)) (-4 *2 (-981)))) (-1868 (*1 *2 *1) (-12 (-4 *1 (-362 *3 *4)) (-4 *3 (-981)) (-4 *4 (-1023)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2388 (*1 *1 *1) (-12 (-4 *1 (-362 *2 *3)) (-4 *2 (-981)) (-4 *3 (-1023)))))
-(-13 (-109 |t#1| |t#1|) (-972 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3216 (|t#1| $ |t#2|)) (-15 -3106 ($ (-1 |t#1| |t#1|) $)) (-15 -3841 ($ |t#2| |t#1|)) (-15 -2195 ((-110) $)) (-15 -2145 ((-595 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3348 ((-595 |t#1|) $)) (-15 -3737 ((-595 $) $)) (-15 -1224 ((-717) $)) (-15 -2686 (|t#2| $)) (-15 -2697 (|t#1| $)) (-15 -1868 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2388 ($ $)) (IF (|has| |t#1| (-162)) (-6 (-664 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-569 (-802)) . T) ((-597 |#1|) . T) ((-664 |#1|) |has| |#1| (-162)) ((-972 |#2|) . T) ((-986 |#1|) . T) ((-1023) . T))
-((-3105 (((-1182) $) 7)) (-2222 (((-802) $) 8) (($ (-635 (-645))) 14) (($ (-595 (-310))) 13) (($ (-310)) 12) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 11)))
-(((-363) (-133)) (T -363))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-635 (-645))) (-4 *1 (-363)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-595 (-310))) (-4 *1 (-363)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-310)) (-4 *1 (-363)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) (-4 *1 (-363)))))
-(-13 (-375) (-10 -8 (-15 -2222 ($ (-635 (-645)))) (-15 -2222 ($ (-595 (-310)))) (-15 -2222 ($ (-310))) (-15 -2222 ($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))))))
-(((-569 (-802)) . T) ((-375) . T) ((-1131) . T))
-((-3001 (((-3 $ "failed") (-635 (-296 (-359)))) 21) (((-3 $ "failed") (-635 (-296 (-528)))) 19) (((-3 $ "failed") (-635 (-891 (-359)))) 17) (((-3 $ "failed") (-635 (-891 (-528)))) 15) (((-3 $ "failed") (-635 (-387 (-891 (-359))))) 13) (((-3 $ "failed") (-635 (-387 (-891 (-528))))) 11)) (-2409 (($ (-635 (-296 (-359)))) 22) (($ (-635 (-296 (-528)))) 20) (($ (-635 (-891 (-359)))) 18) (($ (-635 (-891 (-528)))) 16) (($ (-635 (-387 (-891 (-359))))) 14) (($ (-635 (-387 (-891 (-528))))) 12)) (-3105 (((-1182) $) 7)) (-2222 (((-802) $) 8) (($ (-595 (-310))) 25) (($ (-310)) 24) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 23)))
+((-4218 (($ $) 6)) (-4219 (($ $) 7)) (** (($ $ $) 8)))
+(((-266) (-133)) (T -266))
+((** (*1 *1 *1 *1) (-4 *1 (-266))) (-4219 (*1 *1 *1) (-4 *1 (-266))) (-4218 (*1 *1 *1) (-4 *1 (-266))))
+(-13 (-10 -8 (-15 -4218 ($ $)) (-15 -4219 ($ $)) (-15 ** ($ $ $))))
+((-1586 (((-594 (-1076 |#1|)) (-1076 |#1|) |#1|) 35)) (-1583 ((|#2| |#2| |#1|) 38)) (-1585 ((|#2| |#2| |#1|) 40)) (-1584 ((|#2| |#2| |#1|) 39)))
+(((-267 |#1| |#2|) (-10 -7 (-15 -1583 (|#2| |#2| |#1|)) (-15 -1584 (|#2| |#2| |#1|)) (-15 -1585 (|#2| |#2| |#1|)) (-15 -1586 ((-594 (-1076 |#1|)) (-1076 |#1|) |#1|))) (-344) (-1172 |#1|)) (T -267))
+((-1586 (*1 *2 *3 *4) (-12 (-4 *4 (-344)) (-5 *2 (-594 (-1076 *4))) (-5 *1 (-267 *4 *5)) (-5 *3 (-1076 *4)) (-4 *5 (-1172 *4)))) (-1585 (*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1172 *3)))) (-1584 (*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1172 *3)))) (-1583 (*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1172 *3)))))
+(-10 -7 (-15 -1583 (|#2| |#2| |#1|)) (-15 -1584 (|#2| |#2| |#1|)) (-15 -1585 (|#2| |#2| |#1|)) (-15 -1586 ((-594 (-1076 |#1|)) (-1076 |#1|) |#1|)))
+((-4078 ((|#2| $ |#1|) 6)))
+(((-268 |#1| |#2|) (-133) (-1027) (-1134)) (T -268))
+((-4078 (*1 *2 *1 *3) (-12 (-4 *1 (-268 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1134)))))
+(-13 (-10 -8 (-15 -4078 (|t#2| $ |t#1|))))
+((-1587 ((|#3| $ |#2| |#3|) 12)) (-3372 ((|#3| $ |#2|) 10)))
+(((-269 |#1| |#2| |#3|) (-10 -8 (-15 -1587 (|#3| |#1| |#2| |#3|)) (-15 -3372 (|#3| |#1| |#2|))) (-270 |#2| |#3|) (-1027) (-1134)) (T -269))
+NIL
+(-10 -8 (-15 -1587 (|#3| |#1| |#2| |#3|)) (-15 -3372 (|#3| |#1| |#2|)))
+((-4066 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4270)))) (-1587 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4270)))) (-3372 ((|#2| $ |#1|) 11)) (-4078 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-270 |#1| |#2|) (-133) (-1027) (-1134)) (T -270))
+((-4078 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1134)))) (-3372 (*1 *2 *1 *3) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1134)))) (-4066 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-270 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1134)))) (-1587 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-270 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1134)))))
+(-13 (-268 |t#1| |t#2|) (-10 -8 (-15 -4078 (|t#2| $ |t#1| |t#2|)) (-15 -3372 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4270)) (PROGN (-15 -4066 (|t#2| $ |t#1| |t#2|)) (-15 -1587 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+(((-268 |#1| |#2|) . T))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 35)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 40)) (-2118 (($ $) 38)) (-2116 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-1655 (((-110) $ $) NIL)) (-3815 (($) NIL T CONST)) (-2824 (($ $ $) 33)) (-4121 (($ |#2| |#3|) 19)) (-3741 (((-3 $ "failed") $) NIL)) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-2436 (((-110) $) NIL)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL)) (-2872 ((|#3| $) NIL)) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) 20)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-1654 (((-719) $) 34)) (-4078 ((|#2| $ |#2|) 42)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 24)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3385 (((-719)) NIL)) (-2117 (((-110) $ $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 29 T CONST)) (-2927 (($) 36 T CONST)) (-3317 (((-110) $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 37)))
+(((-271 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-289) (-10 -8 (-15 -2872 (|#3| $)) (-15 -4233 (|#2| $)) (-15 -4121 ($ |#2| |#3|)) (-15 -2428 ((-3 $ "failed") $ $)) (-15 -3741 ((-3 $ "failed") $)) (-15 -2668 ($ $)) (-15 -4078 (|#2| $ |#2|)))) (-162) (-1155 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -271))
+((-3741 (*1 *1 *1) (|partial| -12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1155 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2872 (*1 *2 *1) (-12 (-4 *3 (-162)) (-4 *2 (-23)) (-5 *1 (-271 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1155 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-4233 (*1 *2 *1) (-12 (-4 *2 (-1155 *3)) (-5 *1 (-271 *3 *2 *4 *5 *6 *7)) (-4 *3 (-162)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-4121 (*1 *1 *2 *3) (-12 (-4 *4 (-162)) (-5 *1 (-271 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1155 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2428 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1155 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2668 (*1 *1 *1) (-12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1155 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-4078 (*1 *2 *1 *2) (-12 (-4 *3 (-162)) (-5 *1 (-271 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1155 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))))
+(-13 (-289) (-10 -8 (-15 -2872 (|#3| $)) (-15 -4233 (|#2| $)) (-15 -4121 ($ |#2| |#3|)) (-15 -2428 ((-3 $ "failed") $ $)) (-15 -3741 ((-3 $ "failed") $)) (-15 -2668 ($ $)) (-15 -4078 (|#2| $ |#2|))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3741 (((-3 $ "failed") $) 34)) (-2436 (((-110) $) 31)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11) (($ (-516)) 28)) (-3385 (((-719)) 29)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24)))
+(((-272) (-133)) (T -272))
+NIL
+(-13 (-984) (-109 $ $) (-10 -7 (-6 -4262)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-805)) . T) ((-599 $) . T) ((-675) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-1592 (($ (-1098) (-1098) (-1029) $) 17)) (-1590 (($ (-1098) (-594 (-906)) $) 22)) (-1594 (((-594 (-1013)) $) 10)) (-1593 (((-3 (-1029) "failed") (-1098) (-1098) $) 16)) (-1591 (((-3 (-594 (-906)) "failed") (-1098) $) 21)) (-3847 (($) 7)) (-1589 (($) 23)) (-4233 (((-805) $) 27)) (-1588 (($) 24)))
+(((-273) (-13 (-571 (-805)) (-10 -8 (-15 -3847 ($)) (-15 -1594 ((-594 (-1013)) $)) (-15 -1593 ((-3 (-1029) "failed") (-1098) (-1098) $)) (-15 -1592 ($ (-1098) (-1098) (-1029) $)) (-15 -1591 ((-3 (-594 (-906)) "failed") (-1098) $)) (-15 -1590 ($ (-1098) (-594 (-906)) $)) (-15 -1589 ($)) (-15 -1588 ($))))) (T -273))
+((-3847 (*1 *1) (-5 *1 (-273))) (-1594 (*1 *2 *1) (-12 (-5 *2 (-594 (-1013))) (-5 *1 (-273)))) (-1593 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1098)) (-5 *2 (-1029)) (-5 *1 (-273)))) (-1592 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1098)) (-5 *3 (-1029)) (-5 *1 (-273)))) (-1591 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1098)) (-5 *2 (-594 (-906))) (-5 *1 (-273)))) (-1590 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1098)) (-5 *3 (-594 (-906))) (-5 *1 (-273)))) (-1589 (*1 *1) (-5 *1 (-273))) (-1588 (*1 *1) (-5 *1 (-273))))
+(-13 (-571 (-805)) (-10 -8 (-15 -3847 ($)) (-15 -1594 ((-594 (-1013)) $)) (-15 -1593 ((-3 (-1029) "failed") (-1098) (-1098) $)) (-15 -1592 ($ (-1098) (-1098) (-1029) $)) (-15 -1591 ((-3 (-594 (-906)) "failed") (-1098) $)) (-15 -1590 ($ (-1098) (-594 (-906)) $)) (-15 -1589 ($)) (-15 -1588 ($))))
+((-1598 (((-594 (-2 (|:| |eigval| (-3 (-388 (-887 |#1|)) (-1088 (-1098) (-887 |#1|)))) (|:| |geneigvec| (-594 (-637 (-388 (-887 |#1|))))))) (-637 (-388 (-887 |#1|)))) 85)) (-1597 (((-594 (-637 (-388 (-887 |#1|)))) (-2 (|:| |eigval| (-3 (-388 (-887 |#1|)) (-1088 (-1098) (-887 |#1|)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-594 (-637 (-388 (-887 |#1|)))))) (-637 (-388 (-887 |#1|)))) 80) (((-594 (-637 (-388 (-887 |#1|)))) (-3 (-388 (-887 |#1|)) (-1088 (-1098) (-887 |#1|))) (-637 (-388 (-887 |#1|))) (-719) (-719)) 38)) (-1599 (((-594 (-2 (|:| |eigval| (-3 (-388 (-887 |#1|)) (-1088 (-1098) (-887 |#1|)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-594 (-637 (-388 (-887 |#1|))))))) (-637 (-388 (-887 |#1|)))) 82)) (-1596 (((-594 (-637 (-388 (-887 |#1|)))) (-3 (-388 (-887 |#1|)) (-1088 (-1098) (-887 |#1|))) (-637 (-388 (-887 |#1|)))) 62)) (-1595 (((-594 (-3 (-388 (-887 |#1|)) (-1088 (-1098) (-887 |#1|)))) (-637 (-388 (-887 |#1|)))) 61)) (-2632 (((-887 |#1|) (-637 (-388 (-887 |#1|)))) 50) (((-887 |#1|) (-637 (-388 (-887 |#1|))) (-1098)) 51)))
+(((-274 |#1|) (-10 -7 (-15 -2632 ((-887 |#1|) (-637 (-388 (-887 |#1|))) (-1098))) (-15 -2632 ((-887 |#1|) (-637 (-388 (-887 |#1|))))) (-15 -1595 ((-594 (-3 (-388 (-887 |#1|)) (-1088 (-1098) (-887 |#1|)))) (-637 (-388 (-887 |#1|))))) (-15 -1596 ((-594 (-637 (-388 (-887 |#1|)))) (-3 (-388 (-887 |#1|)) (-1088 (-1098) (-887 |#1|))) (-637 (-388 (-887 |#1|))))) (-15 -1597 ((-594 (-637 (-388 (-887 |#1|)))) (-3 (-388 (-887 |#1|)) (-1088 (-1098) (-887 |#1|))) (-637 (-388 (-887 |#1|))) (-719) (-719))) (-15 -1597 ((-594 (-637 (-388 (-887 |#1|)))) (-2 (|:| |eigval| (-3 (-388 (-887 |#1|)) (-1088 (-1098) (-887 |#1|)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-594 (-637 (-388 (-887 |#1|)))))) (-637 (-388 (-887 |#1|))))) (-15 -1598 ((-594 (-2 (|:| |eigval| (-3 (-388 (-887 |#1|)) (-1088 (-1098) (-887 |#1|)))) (|:| |geneigvec| (-594 (-637 (-388 (-887 |#1|))))))) (-637 (-388 (-887 |#1|))))) (-15 -1599 ((-594 (-2 (|:| |eigval| (-3 (-388 (-887 |#1|)) (-1088 (-1098) (-887 |#1|)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-594 (-637 (-388 (-887 |#1|))))))) (-637 (-388 (-887 |#1|)))))) (-432)) (T -274))
+((-1599 (*1 *2 *3) (-12 (-4 *4 (-432)) (-5 *2 (-594 (-2 (|:| |eigval| (-3 (-388 (-887 *4)) (-1088 (-1098) (-887 *4)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-594 (-637 (-388 (-887 *4)))))))) (-5 *1 (-274 *4)) (-5 *3 (-637 (-388 (-887 *4)))))) (-1598 (*1 *2 *3) (-12 (-4 *4 (-432)) (-5 *2 (-594 (-2 (|:| |eigval| (-3 (-388 (-887 *4)) (-1088 (-1098) (-887 *4)))) (|:| |geneigvec| (-594 (-637 (-388 (-887 *4)))))))) (-5 *1 (-274 *4)) (-5 *3 (-637 (-388 (-887 *4)))))) (-1597 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-388 (-887 *5)) (-1088 (-1098) (-887 *5)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-594 *4)))) (-4 *5 (-432)) (-5 *2 (-594 (-637 (-388 (-887 *5))))) (-5 *1 (-274 *5)) (-5 *4 (-637 (-388 (-887 *5)))))) (-1597 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-388 (-887 *6)) (-1088 (-1098) (-887 *6)))) (-5 *5 (-719)) (-4 *6 (-432)) (-5 *2 (-594 (-637 (-388 (-887 *6))))) (-5 *1 (-274 *6)) (-5 *4 (-637 (-388 (-887 *6)))))) (-1596 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-388 (-887 *5)) (-1088 (-1098) (-887 *5)))) (-4 *5 (-432)) (-5 *2 (-594 (-637 (-388 (-887 *5))))) (-5 *1 (-274 *5)) (-5 *4 (-637 (-388 (-887 *5)))))) (-1595 (*1 *2 *3) (-12 (-5 *3 (-637 (-388 (-887 *4)))) (-4 *4 (-432)) (-5 *2 (-594 (-3 (-388 (-887 *4)) (-1088 (-1098) (-887 *4))))) (-5 *1 (-274 *4)))) (-2632 (*1 *2 *3) (-12 (-5 *3 (-637 (-388 (-887 *4)))) (-5 *2 (-887 *4)) (-5 *1 (-274 *4)) (-4 *4 (-432)))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-388 (-887 *5)))) (-5 *4 (-1098)) (-5 *2 (-887 *5)) (-5 *1 (-274 *5)) (-4 *5 (-432)))))
+(-10 -7 (-15 -2632 ((-887 |#1|) (-637 (-388 (-887 |#1|))) (-1098))) (-15 -2632 ((-887 |#1|) (-637 (-388 (-887 |#1|))))) (-15 -1595 ((-594 (-3 (-388 (-887 |#1|)) (-1088 (-1098) (-887 |#1|)))) (-637 (-388 (-887 |#1|))))) (-15 -1596 ((-594 (-637 (-388 (-887 |#1|)))) (-3 (-388 (-887 |#1|)) (-1088 (-1098) (-887 |#1|))) (-637 (-388 (-887 |#1|))))) (-15 -1597 ((-594 (-637 (-388 (-887 |#1|)))) (-3 (-388 (-887 |#1|)) (-1088 (-1098) (-887 |#1|))) (-637 (-388 (-887 |#1|))) (-719) (-719))) (-15 -1597 ((-594 (-637 (-388 (-887 |#1|)))) (-2 (|:| |eigval| (-3 (-388 (-887 |#1|)) (-1088 (-1098) (-887 |#1|)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-594 (-637 (-388 (-887 |#1|)))))) (-637 (-388 (-887 |#1|))))) (-15 -1598 ((-594 (-2 (|:| |eigval| (-3 (-388 (-887 |#1|)) (-1088 (-1098) (-887 |#1|)))) (|:| |geneigvec| (-594 (-637 (-388 (-887 |#1|))))))) (-637 (-388 (-887 |#1|))))) (-15 -1599 ((-594 (-2 (|:| |eigval| (-3 (-388 (-887 |#1|)) (-1088 (-1098) (-887 |#1|)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-594 (-637 (-388 (-887 |#1|))))))) (-637 (-388 (-887 |#1|))))))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3462 (((-110) $) NIL (|has| |#1| (-21)))) (-1605 (($ $) 23)) (-1319 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1614 (($ $ $) 94 (|has| |#1| (-280)))) (-3815 (($) NIL (-3810 (|has| |#1| (-21)) (|has| |#1| (-675))) CONST)) (-1603 (($ $) 8 (|has| |#1| (-21)))) (-1601 (((-3 $ "failed") $) 69 (|has| |#1| (-675)))) (-3802 ((|#1| $) 22)) (-3741 (((-3 $ "failed") $) 67 (|has| |#1| (-675)))) (-2436 (((-110) $) NIL (|has| |#1| (-675)))) (-4234 (($ (-1 |#1| |#1|) $) 25)) (-3803 ((|#1| $) 9)) (-1604 (($ $) 58 (|has| |#1| (-21)))) (-1602 (((-3 $ "failed") $) 68 (|has| |#1| (-675)))) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-2668 (($ $) 71 (-3810 (|has| |#1| (-344)) (|has| |#1| (-453))))) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-1600 (((-594 $) $) 20 (|has| |#1| (-523)))) (-4046 (($ $ $) 35 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 $)) 38 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-1098) |#1|) 28 (|has| |#1| (-491 (-1098) |#1|))) (($ $ (-594 (-1098)) (-594 |#1|)) 32 (|has| |#1| (-491 (-1098) |#1|)))) (-3498 (($ |#1| |#1|) 18)) (-4190 (((-130)) 89 (|has| |#1| (-344)))) (-4089 (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098)) 86 (|has| |#1| (-841 (-1098))))) (-3273 (($ $ $) NIL (|has| |#1| (-453)))) (-2620 (($ $ $) NIL (|has| |#1| (-453)))) (-4233 (($ (-516)) NIL (|has| |#1| (-984))) (((-110) $) 46 (|has| |#1| (-1027))) (((-805) $) 45 (|has| |#1| (-1027)))) (-3385 (((-719)) 74 (|has| |#1| (-984)))) (-3581 (($ $ (-516)) NIL (|has| |#1| (-453))) (($ $ (-719)) NIL (|has| |#1| (-675))) (($ $ (-860)) NIL (|has| |#1| (-1038)))) (-2920 (($) 56 (|has| |#1| (-21)) CONST)) (-2927 (($) 64 (|has| |#1| (-675)) CONST)) (-2932 (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098)) NIL (|has| |#1| (-841 (-1098))))) (-3317 (($ |#1| |#1|) 21) (((-110) $ $) 41 (|has| |#1| (-1027)))) (-4224 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) 91 (-3810 (|has| |#1| (-344)) (|has| |#1| (-453))))) (-4116 (($ |#1| $) 54 (|has| |#1| (-21))) (($ $ |#1|) 55 (|has| |#1| (-21))) (($ $ $) 53 (|has| |#1| (-21))) (($ $) 52 (|has| |#1| (-21)))) (-4118 (($ |#1| $) 49 (|has| |#1| (-25))) (($ $ |#1|) 50 (|has| |#1| (-25))) (($ $ $) 48 (|has| |#1| (-25)))) (** (($ $ (-516)) NIL (|has| |#1| (-453))) (($ $ (-719)) NIL (|has| |#1| (-675))) (($ $ (-860)) NIL (|has| |#1| (-1038)))) (* (($ $ |#1|) 62 (|has| |#1| (-1038))) (($ |#1| $) 61 (|has| |#1| (-1038))) (($ $ $) 60 (|has| |#1| (-1038))) (($ (-516) $) 76 (|has| |#1| (-21))) (($ (-719) $) NIL (|has| |#1| (-21))) (($ (-860) $) NIL (|has| |#1| (-25)))))
+(((-275 |#1|) (-13 (-1134) (-10 -8 (-15 -3317 ($ |#1| |#1|)) (-15 -3498 ($ |#1| |#1|)) (-15 -1605 ($ $)) (-15 -3803 (|#1| $)) (-15 -3802 (|#1| $)) (-15 -4234 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-491 (-1098) |#1|)) (-6 (-491 (-1098) |#1|)) |%noBranch|) (IF (|has| |#1| (-1027)) (PROGN (-6 (-1027)) (-6 (-571 (-110))) (IF (|has| |#1| (-291 |#1|)) (PROGN (-15 -4046 ($ $ $)) (-15 -4046 ($ $ (-594 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4118 ($ |#1| $)) (-15 -4118 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1604 ($ $)) (-15 -1603 ($ $)) (-15 -4116 ($ |#1| $)) (-15 -4116 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1038)) (PROGN (-6 (-1038)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-675)) (PROGN (-6 (-675)) (-15 -1602 ((-3 $ "failed") $)) (-15 -1601 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-453)) (PROGN (-6 (-453)) (-15 -1602 ((-3 $ "failed") $)) (-15 -1601 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-984)) (PROGN (-6 (-984)) (-6 (-109 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-666 |#1|)) |%noBranch|) (IF (|has| |#1| (-523)) (-15 -1600 ((-594 $) $)) |%noBranch|) (IF (|has| |#1| (-841 (-1098))) (-6 (-841 (-1098))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-6 (-1187 |#1|)) (-15 -4224 ($ $ $)) (-15 -2668 ($ $))) |%noBranch|) (IF (|has| |#1| (-280)) (-15 -1614 ($ $ $)) |%noBranch|))) (-1134)) (T -275))
+((-3317 (*1 *1 *2 *2) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1134)))) (-3498 (*1 *1 *2 *2) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1134)))) (-1605 (*1 *1 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1134)))) (-3803 (*1 *2 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1134)))) (-3802 (*1 *2 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1134)))) (-4234 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1134)) (-5 *1 (-275 *3)))) (-4046 (*1 *1 *1 *1) (-12 (-4 *2 (-291 *2)) (-4 *2 (-1027)) (-4 *2 (-1134)) (-5 *1 (-275 *2)))) (-4046 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-275 *3))) (-4 *3 (-291 *3)) (-4 *3 (-1027)) (-4 *3 (-1134)) (-5 *1 (-275 *3)))) (-4118 (*1 *1 *2 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-25)) (-4 *2 (-1134)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *1 (-275 *2)) (-4 *2 (-25)) (-4 *2 (-1134)))) (-1604 (*1 *1 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-21)) (-4 *2 (-1134)))) (-1603 (*1 *1 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-21)) (-4 *2 (-1134)))) (-4116 (*1 *1 *2 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-21)) (-4 *2 (-1134)))) (-4116 (*1 *1 *1 *2) (-12 (-5 *1 (-275 *2)) (-4 *2 (-21)) (-4 *2 (-1134)))) (-1602 (*1 *1 *1) (|partial| -12 (-5 *1 (-275 *2)) (-4 *2 (-675)) (-4 *2 (-1134)))) (-1601 (*1 *1 *1) (|partial| -12 (-5 *1 (-275 *2)) (-4 *2 (-675)) (-4 *2 (-1134)))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-594 (-275 *3))) (-5 *1 (-275 *3)) (-4 *3 (-523)) (-4 *3 (-1134)))) (-1614 (*1 *1 *1 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-280)) (-4 *2 (-1134)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1038)) (-4 *2 (-1134)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1038)) (-4 *2 (-1134)))) (-4224 (*1 *1 *1 *1) (-3810 (-12 (-5 *1 (-275 *2)) (-4 *2 (-344)) (-4 *2 (-1134))) (-12 (-5 *1 (-275 *2)) (-4 *2 (-453)) (-4 *2 (-1134))))) (-2668 (*1 *1 *1) (-3810 (-12 (-5 *1 (-275 *2)) (-4 *2 (-344)) (-4 *2 (-1134))) (-12 (-5 *1 (-275 *2)) (-4 *2 (-453)) (-4 *2 (-1134))))))
+(-13 (-1134) (-10 -8 (-15 -3317 ($ |#1| |#1|)) (-15 -3498 ($ |#1| |#1|)) (-15 -1605 ($ $)) (-15 -3803 (|#1| $)) (-15 -3802 (|#1| $)) (-15 -4234 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-491 (-1098) |#1|)) (-6 (-491 (-1098) |#1|)) |%noBranch|) (IF (|has| |#1| (-1027)) (PROGN (-6 (-1027)) (-6 (-571 (-110))) (IF (|has| |#1| (-291 |#1|)) (PROGN (-15 -4046 ($ $ $)) (-15 -4046 ($ $ (-594 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4118 ($ |#1| $)) (-15 -4118 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1604 ($ $)) (-15 -1603 ($ $)) (-15 -4116 ($ |#1| $)) (-15 -4116 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1038)) (PROGN (-6 (-1038)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-675)) (PROGN (-6 (-675)) (-15 -1602 ((-3 $ "failed") $)) (-15 -1601 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-453)) (PROGN (-6 (-453)) (-15 -1602 ((-3 $ "failed") $)) (-15 -1601 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-984)) (PROGN (-6 (-984)) (-6 (-109 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-666 |#1|)) |%noBranch|) (IF (|has| |#1| (-523)) (-15 -1600 ((-594 $) $)) |%noBranch|) (IF (|has| |#1| (-841 (-1098))) (-6 (-841 (-1098))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-6 (-1187 |#1|)) (-15 -4224 ($ $ $)) (-15 -2668 ($ $))) |%noBranch|) (IF (|has| |#1| (-280)) (-15 -1614 ($ $ $)) |%noBranch|)))
+((-4234 (((-275 |#2|) (-1 |#2| |#1|) (-275 |#1|)) 14)))
+(((-276 |#1| |#2|) (-10 -7 (-15 -4234 ((-275 |#2|) (-1 |#2| |#1|) (-275 |#1|)))) (-1134) (-1134)) (T -276))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-275 *5)) (-4 *5 (-1134)) (-4 *6 (-1134)) (-5 *2 (-275 *6)) (-5 *1 (-276 *5 *6)))))
+(-10 -7 (-15 -4234 ((-275 |#2|) (-1 |#2| |#1|) (-275 |#1|))))
+((-2828 (((-110) $ $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3879 (($) NIL) (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-2243 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -4270)))) (-1217 (((-110) $ (-719)) NIL)) (-4066 ((|#2| $ |#1| |#2|) NIL)) (-1581 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3992 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2251 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3815 (($) NIL T CONST)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))))) (-3684 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-3 |#2| #1#) |#1| $) NIL)) (-3685 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-4121 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-1587 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4270)))) (-3372 ((|#2| $ |#1|) NIL)) (-2018 (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-594 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) NIL)) (-2245 ((|#1| $) NIL (|has| |#1| (-795)))) (-2445 (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-594 |#2|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2246 ((|#1| $) NIL (|has| |#1| (-795)))) (-2022 (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2678 (((-594 |#1|) $) NIL)) (-2252 (((-110) |#1| $) NIL)) (-1280 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL)) (-3889 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL)) (-2248 (((-594 |#1|) $) NIL)) (-2249 (((-110) |#1| $) NIL)) (-3514 (((-1045) $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-4079 ((|#2| $) NIL (|has| |#1| (-795)))) (-1350 (((-3 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) "failed") (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL)) (-2244 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-1281 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL)) (-2020 (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-275 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-594 |#2|) (-594 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-594 (-275 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2250 (((-594 |#2|) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1473 (($) NIL) (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-2019 (((-719) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) NIL (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-572 (-505))))) (-3804 (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-4233 (((-805) $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-571 (-805))) (|has| |#2| (-571 (-805)))))) (-1282 (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-2021 (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-277 |#1| |#2|) (-13 (-1111 |#1| |#2|) (-10 -7 (-6 -4269))) (-1027) (-1027)) (T -277))
+NIL
+(-13 (-1111 |#1| |#2|) (-10 -7 (-6 -4269)))
+((-1606 (((-293) (-1081) (-594 (-1081))) 16) (((-293) (-1081) (-1081)) 15) (((-293) (-594 (-1081))) 14) (((-293) (-1081)) 12)))
+(((-278) (-10 -7 (-15 -1606 ((-293) (-1081))) (-15 -1606 ((-293) (-594 (-1081)))) (-15 -1606 ((-293) (-1081) (-1081))) (-15 -1606 ((-293) (-1081) (-594 (-1081)))))) (T -278))
+((-1606 (*1 *2 *3 *4) (-12 (-5 *4 (-594 (-1081))) (-5 *3 (-1081)) (-5 *2 (-293)) (-5 *1 (-278)))) (-1606 (*1 *2 *3 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-293)) (-5 *1 (-278)))) (-1606 (*1 *2 *3) (-12 (-5 *3 (-594 (-1081))) (-5 *2 (-293)) (-5 *1 (-278)))) (-1606 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-293)) (-5 *1 (-278)))))
+(-10 -7 (-15 -1606 ((-293) (-1081))) (-15 -1606 ((-293) (-594 (-1081)))) (-15 -1606 ((-293) (-1081) (-1081))) (-15 -1606 ((-293) (-1081) (-594 (-1081)))))
+((-1610 (((-594 (-569 $)) $) 30)) (-1614 (($ $ (-275 $)) 81) (($ $ (-594 (-275 $))) 123) (($ $ (-594 (-569 $)) (-594 $)) NIL)) (-3432 (((-3 (-569 $) "failed") $) 113)) (-3431 (((-569 $) $) 112)) (-2833 (($ $) 19) (($ (-594 $)) 56)) (-1609 (((-594 (-111)) $) 38)) (-2273 (((-111) (-111)) 91)) (-2936 (((-110) $) 131)) (-4234 (($ (-1 $ $) (-569 $)) 89)) (-1612 (((-3 (-569 $) "failed") $) 93)) (-2254 (($ (-111) $) 61) (($ (-111) (-594 $)) 100)) (-2893 (((-110) $ (-111)) 117) (((-110) $ (-1098)) 116)) (-2863 (((-719) $) 46)) (-1608 (((-110) $ $) 59) (((-110) $ (-1098)) 51)) (-2937 (((-110) $) 129)) (-4046 (($ $ (-569 $) $) NIL) (($ $ (-594 (-569 $)) (-594 $)) NIL) (($ $ (-594 (-275 $))) 121) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL) (($ $ (-594 (-1098)) (-594 (-1 $ $))) 84) (($ $ (-594 (-1098)) (-594 (-1 $ (-594 $)))) NIL) (($ $ (-1098) (-1 $ (-594 $))) 69) (($ $ (-1098) (-1 $ $)) 75) (($ $ (-594 (-111)) (-594 (-1 $ $))) 83) (($ $ (-594 (-111)) (-594 (-1 $ (-594 $)))) 85) (($ $ (-111) (-1 $ (-594 $))) 71) (($ $ (-111) (-1 $ $)) 77)) (-4078 (($ (-111) $) 62) (($ (-111) $ $) 63) (($ (-111) $ $ $) 64) (($ (-111) $ $ $ $) 65) (($ (-111) (-594 $)) 109)) (-1613 (($ $) 53) (($ $ $) 119)) (-2850 (($ $) 17) (($ (-594 $)) 55)) (-2272 (((-110) (-111)) 22)))
+(((-279 |#1|) (-10 -8 (-15 -2936 ((-110) |#1|)) (-15 -2937 ((-110) |#1|)) (-15 -4046 (|#1| |#1| (-111) (-1 |#1| |#1|))) (-15 -4046 (|#1| |#1| (-111) (-1 |#1| (-594 |#1|)))) (-15 -4046 (|#1| |#1| (-594 (-111)) (-594 (-1 |#1| (-594 |#1|))))) (-15 -4046 (|#1| |#1| (-594 (-111)) (-594 (-1 |#1| |#1|)))) (-15 -4046 (|#1| |#1| (-1098) (-1 |#1| |#1|))) (-15 -4046 (|#1| |#1| (-1098) (-1 |#1| (-594 |#1|)))) (-15 -4046 (|#1| |#1| (-594 (-1098)) (-594 (-1 |#1| (-594 |#1|))))) (-15 -4046 (|#1| |#1| (-594 (-1098)) (-594 (-1 |#1| |#1|)))) (-15 -1608 ((-110) |#1| (-1098))) (-15 -1608 ((-110) |#1| |#1|)) (-15 -4234 (|#1| (-1 |#1| |#1|) (-569 |#1|))) (-15 -2254 (|#1| (-111) (-594 |#1|))) (-15 -2254 (|#1| (-111) |#1|)) (-15 -2893 ((-110) |#1| (-1098))) (-15 -2893 ((-110) |#1| (-111))) (-15 -2272 ((-110) (-111))) (-15 -2273 ((-111) (-111))) (-15 -1609 ((-594 (-111)) |#1|)) (-15 -1610 ((-594 (-569 |#1|)) |#1|)) (-15 -1612 ((-3 (-569 |#1|) "failed") |#1|)) (-15 -2863 ((-719) |#1|)) (-15 -1613 (|#1| |#1| |#1|)) (-15 -1613 (|#1| |#1|)) (-15 -2833 (|#1| (-594 |#1|))) (-15 -2833 (|#1| |#1|)) (-15 -2850 (|#1| (-594 |#1|))) (-15 -2850 (|#1| |#1|)) (-15 -1614 (|#1| |#1| (-594 (-569 |#1|)) (-594 |#1|))) (-15 -1614 (|#1| |#1| (-594 (-275 |#1|)))) (-15 -1614 (|#1| |#1| (-275 |#1|))) (-15 -4078 (|#1| (-111) (-594 |#1|))) (-15 -4078 (|#1| (-111) |#1| |#1| |#1| |#1|)) (-15 -4078 (|#1| (-111) |#1| |#1| |#1|)) (-15 -4078 (|#1| (-111) |#1| |#1|)) (-15 -4078 (|#1| (-111) |#1|)) (-15 -4046 (|#1| |#1| (-594 |#1|) (-594 |#1|))) (-15 -4046 (|#1| |#1| |#1| |#1|)) (-15 -4046 (|#1| |#1| (-275 |#1|))) (-15 -4046 (|#1| |#1| (-594 (-275 |#1|)))) (-15 -4046 (|#1| |#1| (-594 (-569 |#1|)) (-594 |#1|))) (-15 -4046 (|#1| |#1| (-569 |#1|) |#1|)) (-15 -3431 ((-569 |#1|) |#1|)) (-15 -3432 ((-3 (-569 |#1|) "failed") |#1|))) (-280)) (T -279))
+((-2273 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-279 *3)) (-4 *3 (-280)))) (-2272 (*1 *2 *3) (-12 (-5 *3 (-111)) (-5 *2 (-110)) (-5 *1 (-279 *4)) (-4 *4 (-280)))))
+(-10 -8 (-15 -2936 ((-110) |#1|)) (-15 -2937 ((-110) |#1|)) (-15 -4046 (|#1| |#1| (-111) (-1 |#1| |#1|))) (-15 -4046 (|#1| |#1| (-111) (-1 |#1| (-594 |#1|)))) (-15 -4046 (|#1| |#1| (-594 (-111)) (-594 (-1 |#1| (-594 |#1|))))) (-15 -4046 (|#1| |#1| (-594 (-111)) (-594 (-1 |#1| |#1|)))) (-15 -4046 (|#1| |#1| (-1098) (-1 |#1| |#1|))) (-15 -4046 (|#1| |#1| (-1098) (-1 |#1| (-594 |#1|)))) (-15 -4046 (|#1| |#1| (-594 (-1098)) (-594 (-1 |#1| (-594 |#1|))))) (-15 -4046 (|#1| |#1| (-594 (-1098)) (-594 (-1 |#1| |#1|)))) (-15 -1608 ((-110) |#1| (-1098))) (-15 -1608 ((-110) |#1| |#1|)) (-15 -4234 (|#1| (-1 |#1| |#1|) (-569 |#1|))) (-15 -2254 (|#1| (-111) (-594 |#1|))) (-15 -2254 (|#1| (-111) |#1|)) (-15 -2893 ((-110) |#1| (-1098))) (-15 -2893 ((-110) |#1| (-111))) (-15 -2272 ((-110) (-111))) (-15 -2273 ((-111) (-111))) (-15 -1609 ((-594 (-111)) |#1|)) (-15 -1610 ((-594 (-569 |#1|)) |#1|)) (-15 -1612 ((-3 (-569 |#1|) "failed") |#1|)) (-15 -2863 ((-719) |#1|)) (-15 -1613 (|#1| |#1| |#1|)) (-15 -1613 (|#1| |#1|)) (-15 -2833 (|#1| (-594 |#1|))) (-15 -2833 (|#1| |#1|)) (-15 -2850 (|#1| (-594 |#1|))) (-15 -2850 (|#1| |#1|)) (-15 -1614 (|#1| |#1| (-594 (-569 |#1|)) (-594 |#1|))) (-15 -1614 (|#1| |#1| (-594 (-275 |#1|)))) (-15 -1614 (|#1| |#1| (-275 |#1|))) (-15 -4078 (|#1| (-111) (-594 |#1|))) (-15 -4078 (|#1| (-111) |#1| |#1| |#1| |#1|)) (-15 -4078 (|#1| (-111) |#1| |#1| |#1|)) (-15 -4078 (|#1| (-111) |#1| |#1|)) (-15 -4078 (|#1| (-111) |#1|)) (-15 -4046 (|#1| |#1| (-594 |#1|) (-594 |#1|))) (-15 -4046 (|#1| |#1| |#1| |#1|)) (-15 -4046 (|#1| |#1| (-275 |#1|))) (-15 -4046 (|#1| |#1| (-594 (-275 |#1|)))) (-15 -4046 (|#1| |#1| (-594 (-569 |#1|)) (-594 |#1|))) (-15 -4046 (|#1| |#1| (-569 |#1|) |#1|)) (-15 -3431 ((-569 |#1|) |#1|)) (-15 -3432 ((-3 (-569 |#1|) "failed") |#1|)))
+((-2828 (((-110) $ $) 7)) (-1610 (((-594 (-569 $)) $) 44)) (-1614 (($ $ (-275 $)) 56) (($ $ (-594 (-275 $))) 55) (($ $ (-594 (-569 $)) (-594 $)) 54)) (-3432 (((-3 (-569 $) "failed") $) 69)) (-3431 (((-569 $) $) 68)) (-2833 (($ $) 51) (($ (-594 $)) 50)) (-1609 (((-594 (-111)) $) 43)) (-2273 (((-111) (-111)) 42)) (-2936 (((-110) $) 22 (|has| $ (-975 (-516))))) (-1607 (((-1092 $) (-569 $)) 25 (|has| $ (-984)))) (-3596 (($ $ $) 13)) (-3597 (($ $ $) 14)) (-4234 (($ (-1 $ $) (-569 $)) 36)) (-1612 (((-3 (-569 $) "failed") $) 46)) (-3513 (((-1081) $) 9)) (-1611 (((-594 (-569 $)) $) 45)) (-2254 (($ (-111) $) 38) (($ (-111) (-594 $)) 37)) (-2893 (((-110) $ (-111)) 40) (((-110) $ (-1098)) 39)) (-2863 (((-719) $) 47)) (-3514 (((-1045) $) 10)) (-1608 (((-110) $ $) 35) (((-110) $ (-1098)) 34)) (-2937 (((-110) $) 23 (|has| $ (-975 (-516))))) (-4046 (($ $ (-569 $) $) 67) (($ $ (-594 (-569 $)) (-594 $)) 66) (($ $ (-594 (-275 $))) 65) (($ $ (-275 $)) 64) (($ $ $ $) 63) (($ $ (-594 $) (-594 $)) 62) (($ $ (-594 (-1098)) (-594 (-1 $ $))) 33) (($ $ (-594 (-1098)) (-594 (-1 $ (-594 $)))) 32) (($ $ (-1098) (-1 $ (-594 $))) 31) (($ $ (-1098) (-1 $ $)) 30) (($ $ (-594 (-111)) (-594 (-1 $ $))) 29) (($ $ (-594 (-111)) (-594 (-1 $ (-594 $)))) 28) (($ $ (-111) (-1 $ (-594 $))) 27) (($ $ (-111) (-1 $ $)) 26)) (-4078 (($ (-111) $) 61) (($ (-111) $ $) 60) (($ (-111) $ $ $) 59) (($ (-111) $ $ $ $) 58) (($ (-111) (-594 $)) 57)) (-1613 (($ $) 49) (($ $ $) 48)) (-3459 (($ $) 24 (|has| $ (-984)))) (-4233 (((-805) $) 11) (($ (-569 $)) 70)) (-2850 (($ $) 53) (($ (-594 $)) 52)) (-2272 (((-110) (-111)) 41)) (-2826 (((-110) $ $) 16)) (-2827 (((-110) $ $) 17)) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 15)) (-2948 (((-110) $ $) 18)))
+(((-280) (-133)) (T -280))
+((-4078 (*1 *1 *2 *1) (-12 (-4 *1 (-280)) (-5 *2 (-111)))) (-4078 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-280)) (-5 *2 (-111)))) (-4078 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-280)) (-5 *2 (-111)))) (-4078 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-280)) (-5 *2 (-111)))) (-4078 (*1 *1 *2 *3) (-12 (-5 *2 (-111)) (-5 *3 (-594 *1)) (-4 *1 (-280)))) (-1614 (*1 *1 *1 *2) (-12 (-5 *2 (-275 *1)) (-4 *1 (-280)))) (-1614 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-275 *1))) (-4 *1 (-280)))) (-1614 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-594 (-569 *1))) (-5 *3 (-594 *1)) (-4 *1 (-280)))) (-2850 (*1 *1 *1) (-4 *1 (-280))) (-2850 (*1 *1 *2) (-12 (-5 *2 (-594 *1)) (-4 *1 (-280)))) (-2833 (*1 *1 *1) (-4 *1 (-280))) (-2833 (*1 *1 *2) (-12 (-5 *2 (-594 *1)) (-4 *1 (-280)))) (-1613 (*1 *1 *1) (-4 *1 (-280))) (-1613 (*1 *1 *1 *1) (-4 *1 (-280))) (-2863 (*1 *2 *1) (-12 (-4 *1 (-280)) (-5 *2 (-719)))) (-1612 (*1 *2 *1) (|partial| -12 (-5 *2 (-569 *1)) (-4 *1 (-280)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-594 (-569 *1))) (-4 *1 (-280)))) (-1610 (*1 *2 *1) (-12 (-5 *2 (-594 (-569 *1))) (-4 *1 (-280)))) (-1609 (*1 *2 *1) (-12 (-4 *1 (-280)) (-5 *2 (-594 (-111))))) (-2273 (*1 *2 *2) (-12 (-4 *1 (-280)) (-5 *2 (-111)))) (-2272 (*1 *2 *3) (-12 (-4 *1 (-280)) (-5 *3 (-111)) (-5 *2 (-110)))) (-2893 (*1 *2 *1 *3) (-12 (-4 *1 (-280)) (-5 *3 (-111)) (-5 *2 (-110)))) (-2893 (*1 *2 *1 *3) (-12 (-4 *1 (-280)) (-5 *3 (-1098)) (-5 *2 (-110)))) (-2254 (*1 *1 *2 *1) (-12 (-4 *1 (-280)) (-5 *2 (-111)))) (-2254 (*1 *1 *2 *3) (-12 (-5 *2 (-111)) (-5 *3 (-594 *1)) (-4 *1 (-280)))) (-4234 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-569 *1)) (-4 *1 (-280)))) (-1608 (*1 *2 *1 *1) (-12 (-4 *1 (-280)) (-5 *2 (-110)))) (-1608 (*1 *2 *1 *3) (-12 (-4 *1 (-280)) (-5 *3 (-1098)) (-5 *2 (-110)))) (-4046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-594 (-1098))) (-5 *3 (-594 (-1 *1 *1))) (-4 *1 (-280)))) (-4046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-594 (-1098))) (-5 *3 (-594 (-1 *1 (-594 *1)))) (-4 *1 (-280)))) (-4046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-1 *1 (-594 *1))) (-4 *1 (-280)))) (-4046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-1 *1 *1)) (-4 *1 (-280)))) (-4046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-594 (-111))) (-5 *3 (-594 (-1 *1 *1))) (-4 *1 (-280)))) (-4046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-594 (-111))) (-5 *3 (-594 (-1 *1 (-594 *1)))) (-4 *1 (-280)))) (-4046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-111)) (-5 *3 (-1 *1 (-594 *1))) (-4 *1 (-280)))) (-4046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-111)) (-5 *3 (-1 *1 *1)) (-4 *1 (-280)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-569 *1)) (-4 *1 (-984)) (-4 *1 (-280)) (-5 *2 (-1092 *1)))) (-3459 (*1 *1 *1) (-12 (-4 *1 (-984)) (-4 *1 (-280)))) (-2937 (*1 *2 *1) (-12 (-4 *1 (-975 (-516))) (-4 *1 (-280)) (-5 *2 (-110)))) (-2936 (*1 *2 *1) (-12 (-4 *1 (-975 (-516))) (-4 *1 (-280)) (-5 *2 (-110)))))
+(-13 (-795) (-975 (-569 $)) (-491 (-569 $) $) (-291 $) (-10 -8 (-15 -4078 ($ (-111) $)) (-15 -4078 ($ (-111) $ $)) (-15 -4078 ($ (-111) $ $ $)) (-15 -4078 ($ (-111) $ $ $ $)) (-15 -4078 ($ (-111) (-594 $))) (-15 -1614 ($ $ (-275 $))) (-15 -1614 ($ $ (-594 (-275 $)))) (-15 -1614 ($ $ (-594 (-569 $)) (-594 $))) (-15 -2850 ($ $)) (-15 -2850 ($ (-594 $))) (-15 -2833 ($ $)) (-15 -2833 ($ (-594 $))) (-15 -1613 ($ $)) (-15 -1613 ($ $ $)) (-15 -2863 ((-719) $)) (-15 -1612 ((-3 (-569 $) "failed") $)) (-15 -1611 ((-594 (-569 $)) $)) (-15 -1610 ((-594 (-569 $)) $)) (-15 -1609 ((-594 (-111)) $)) (-15 -2273 ((-111) (-111))) (-15 -2272 ((-110) (-111))) (-15 -2893 ((-110) $ (-111))) (-15 -2893 ((-110) $ (-1098))) (-15 -2254 ($ (-111) $)) (-15 -2254 ($ (-111) (-594 $))) (-15 -4234 ($ (-1 $ $) (-569 $))) (-15 -1608 ((-110) $ $)) (-15 -1608 ((-110) $ (-1098))) (-15 -4046 ($ $ (-594 (-1098)) (-594 (-1 $ $)))) (-15 -4046 ($ $ (-594 (-1098)) (-594 (-1 $ (-594 $))))) (-15 -4046 ($ $ (-1098) (-1 $ (-594 $)))) (-15 -4046 ($ $ (-1098) (-1 $ $))) (-15 -4046 ($ $ (-594 (-111)) (-594 (-1 $ $)))) (-15 -4046 ($ $ (-594 (-111)) (-594 (-1 $ (-594 $))))) (-15 -4046 ($ $ (-111) (-1 $ (-594 $)))) (-15 -4046 ($ $ (-111) (-1 $ $))) (IF (|has| $ (-984)) (PROGN (-15 -1607 ((-1092 $) (-569 $))) (-15 -3459 ($ $))) |%noBranch|) (IF (|has| $ (-975 (-516))) (PROGN (-15 -2937 ((-110) $)) (-15 -2936 ((-110) $))) |%noBranch|)))
+(((-99) . T) ((-571 (-805)) . T) ((-291 $) . T) ((-491 (-569 $) $) . T) ((-491 $ $) . T) ((-795) . T) ((-975 (-569 $)) . T) ((-1027) . T))
+((-4234 ((|#2| (-1 |#2| |#1|) (-1081) (-569 |#1|)) 18)))
+(((-281 |#1| |#2|) (-10 -7 (-15 -4234 (|#2| (-1 |#2| |#1|) (-1081) (-569 |#1|)))) (-280) (-1134)) (T -281))
+((-4234 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1081)) (-5 *5 (-569 *6)) (-4 *6 (-280)) (-4 *2 (-1134)) (-5 *1 (-281 *6 *2)))))
+(-10 -7 (-15 -4234 (|#2| (-1 |#2| |#1|) (-1081) (-569 |#1|))))
+((-4234 ((|#2| (-1 |#2| |#1|) (-569 |#1|)) 17)))
+(((-282 |#1| |#2|) (-10 -7 (-15 -4234 (|#2| (-1 |#2| |#1|) (-569 |#1|)))) (-280) (-280)) (T -282))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-569 *5)) (-4 *5 (-280)) (-4 *2 (-280)) (-5 *1 (-282 *5 *2)))))
+(-10 -7 (-15 -4234 (|#2| (-1 |#2| |#1|) (-569 |#1|))))
+((-1617 (((-1076 (-208)) (-295 (-208)) (-594 (-1098)) (-1017 (-787 (-208)))) 93)) (-1618 (((-1076 (-208)) (-1179 (-295 (-208))) (-594 (-1098)) (-1017 (-787 (-208)))) 107) (((-1076 (-208)) (-295 (-208)) (-594 (-1098)) (-1017 (-787 (-208)))) 61)) (-1639 (((-594 (-1081)) (-1076 (-208))) NIL)) (-1616 (((-594 (-208)) (-295 (-208)) (-1098) (-1017 (-787 (-208)))) 58)) (-1619 (((-594 (-208)) (-887 (-388 (-516))) (-1098) (-1017 (-787 (-208)))) 49)) (-1638 (((-594 (-1081)) (-594 (-208))) NIL)) (-1640 (((-208) (-1017 (-787 (-208)))) 25)) (-1641 (((-208) (-1017 (-787 (-208)))) 26)) (-1615 (((-110) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 54)) (-1636 (((-1081) (-208)) NIL)))
+(((-283) (-10 -7 (-15 -1640 ((-208) (-1017 (-787 (-208))))) (-15 -1641 ((-208) (-1017 (-787 (-208))))) (-15 -1615 ((-110) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1616 ((-594 (-208)) (-295 (-208)) (-1098) (-1017 (-787 (-208))))) (-15 -1617 ((-1076 (-208)) (-295 (-208)) (-594 (-1098)) (-1017 (-787 (-208))))) (-15 -1618 ((-1076 (-208)) (-295 (-208)) (-594 (-1098)) (-1017 (-787 (-208))))) (-15 -1618 ((-1076 (-208)) (-1179 (-295 (-208))) (-594 (-1098)) (-1017 (-787 (-208))))) (-15 -1619 ((-594 (-208)) (-887 (-388 (-516))) (-1098) (-1017 (-787 (-208))))) (-15 -1636 ((-1081) (-208))) (-15 -1638 ((-594 (-1081)) (-594 (-208)))) (-15 -1639 ((-594 (-1081)) (-1076 (-208)))))) (T -283))
+((-1639 (*1 *2 *3) (-12 (-5 *3 (-1076 (-208))) (-5 *2 (-594 (-1081))) (-5 *1 (-283)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-594 (-208))) (-5 *2 (-594 (-1081))) (-5 *1 (-283)))) (-1636 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1081)) (-5 *1 (-283)))) (-1619 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-887 (-388 (-516)))) (-5 *4 (-1098)) (-5 *5 (-1017 (-787 (-208)))) (-5 *2 (-594 (-208))) (-5 *1 (-283)))) (-1618 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1179 (-295 (-208)))) (-5 *4 (-594 (-1098))) (-5 *5 (-1017 (-787 (-208)))) (-5 *2 (-1076 (-208))) (-5 *1 (-283)))) (-1618 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-295 (-208))) (-5 *4 (-594 (-1098))) (-5 *5 (-1017 (-787 (-208)))) (-5 *2 (-1076 (-208))) (-5 *1 (-283)))) (-1617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-295 (-208))) (-5 *4 (-594 (-1098))) (-5 *5 (-1017 (-787 (-208)))) (-5 *2 (-1076 (-208))) (-5 *1 (-283)))) (-1616 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-295 (-208))) (-5 *4 (-1098)) (-5 *5 (-1017 (-787 (-208)))) (-5 *2 (-594 (-208))) (-5 *1 (-283)))) (-1615 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-110)) (-5 *1 (-283)))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-1017 (-787 (-208)))) (-5 *2 (-208)) (-5 *1 (-283)))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-1017 (-787 (-208)))) (-5 *2 (-208)) (-5 *1 (-283)))))
+(-10 -7 (-15 -1640 ((-208) (-1017 (-787 (-208))))) (-15 -1641 ((-208) (-1017 (-787 (-208))))) (-15 -1615 ((-110) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1616 ((-594 (-208)) (-295 (-208)) (-1098) (-1017 (-787 (-208))))) (-15 -1617 ((-1076 (-208)) (-295 (-208)) (-594 (-1098)) (-1017 (-787 (-208))))) (-15 -1618 ((-1076 (-208)) (-295 (-208)) (-594 (-1098)) (-1017 (-787 (-208))))) (-15 -1618 ((-1076 (-208)) (-1179 (-295 (-208))) (-594 (-1098)) (-1017 (-787 (-208))))) (-15 -1619 ((-594 (-208)) (-887 (-388 (-516))) (-1098) (-1017 (-787 (-208))))) (-15 -1636 ((-1081) (-208))) (-15 -1638 ((-594 (-1081)) (-594 (-208)))) (-15 -1639 ((-594 (-1081)) (-1076 (-208)))))
+((-2049 (((-110) (-208)) 10)))
+(((-284 |#1| |#2|) (-10 -7 (-15 -2049 ((-110) (-208)))) (-208) (-208)) (T -284))
+((-2049 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-110)) (-5 *1 (-284 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -2049 ((-110) (-208))))
+((-1635 (((-1179 (-295 (-359))) (-1179 (-295 (-208)))) 105)) (-1623 (((-1017 (-787 (-208))) (-1017 (-787 (-359)))) 40)) (-1639 (((-594 (-1081)) (-1076 (-208))) 87)) (-1646 (((-295 (-359)) (-887 (-208))) 50)) (-1647 (((-208) (-887 (-208))) 46)) (-1642 (((-1081) (-359)) 169)) (-1622 (((-787 (-208)) (-787 (-359))) 34)) (-1628 (((-2 (|:| |additions| (-516)) (|:| |multiplications| (-516)) (|:| |exponentiations| (-516)) (|:| |functionCalls| (-516))) (-1179 (-295 (-208)))) 143)) (-1643 (((-973) (-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081))) (|:| |extra| (-973)))) 181) (((-973) (-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081))))) 179)) (-1650 (((-637 (-208)) (-594 (-208)) (-719)) 14)) (-1633 (((-1179 (-647)) (-594 (-208))) 94)) (-1638 (((-594 (-1081)) (-594 (-208))) 75)) (-2918 (((-3 (-295 (-208)) "failed") (-295 (-208))) 120)) (-2049 (((-110) (-208) (-1017 (-787 (-208)))) 109)) (-1645 (((-973) (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359)))) 198)) (-1640 (((-208) (-1017 (-787 (-208)))) 107)) (-1641 (((-208) (-1017 (-787 (-208)))) 108)) (-1649 (((-208) (-388 (-516))) 27)) (-1637 (((-1081) (-359)) 73)) (-1620 (((-208) (-359)) 17)) (-1627 (((-359) (-1179 (-295 (-208)))) 154)) (-1621 (((-295 (-208)) (-295 (-359))) 23)) (-1625 (((-388 (-516)) (-295 (-208))) 53)) (-1629 (((-295 (-388 (-516))) (-295 (-208))) 69)) (-1634 (((-295 (-359)) (-295 (-208))) 98)) (-1626 (((-208) (-295 (-208))) 54)) (-1631 (((-594 (-208)) (-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))) 64)) (-1630 (((-1017 (-787 (-208))) (-1017 (-787 (-208)))) 61)) (-1636 (((-1081) (-208)) 72)) (-1632 (((-647) (-208)) 90)) (-1624 (((-388 (-516)) (-208)) 55)) (-1648 (((-295 (-359)) (-208)) 49)) (-4246 (((-594 (-1017 (-787 (-208)))) (-594 (-1017 (-787 (-359))))) 43)) (-4080 (((-973) (-594 (-973))) 165) (((-973) (-973) (-973)) 162)) (-1644 (((-973) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1511 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195)))
+(((-285) (-10 -7 (-15 -1620 ((-208) (-359))) (-15 -1621 ((-295 (-208)) (-295 (-359)))) (-15 -1622 ((-787 (-208)) (-787 (-359)))) (-15 -1623 ((-1017 (-787 (-208))) (-1017 (-787 (-359))))) (-15 -4246 ((-594 (-1017 (-787 (-208)))) (-594 (-1017 (-787 (-359)))))) (-15 -1624 ((-388 (-516)) (-208))) (-15 -1625 ((-388 (-516)) (-295 (-208)))) (-15 -1626 ((-208) (-295 (-208)))) (-15 -2918 ((-3 (-295 (-208)) "failed") (-295 (-208)))) (-15 -1627 ((-359) (-1179 (-295 (-208))))) (-15 -1628 ((-2 (|:| |additions| (-516)) (|:| |multiplications| (-516)) (|:| |exponentiations| (-516)) (|:| |functionCalls| (-516))) (-1179 (-295 (-208))))) (-15 -1629 ((-295 (-388 (-516))) (-295 (-208)))) (-15 -1630 ((-1017 (-787 (-208))) (-1017 (-787 (-208))))) (-15 -1631 ((-594 (-208)) (-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))))) (-15 -1632 ((-647) (-208))) (-15 -1633 ((-1179 (-647)) (-594 (-208)))) (-15 -1634 ((-295 (-359)) (-295 (-208)))) (-15 -1635 ((-1179 (-295 (-359))) (-1179 (-295 (-208))))) (-15 -2049 ((-110) (-208) (-1017 (-787 (-208))))) (-15 -1636 ((-1081) (-208))) (-15 -1637 ((-1081) (-359))) (-15 -1638 ((-594 (-1081)) (-594 (-208)))) (-15 -1639 ((-594 (-1081)) (-1076 (-208)))) (-15 -1640 ((-208) (-1017 (-787 (-208))))) (-15 -1641 ((-208) (-1017 (-787 (-208))))) (-15 -4080 ((-973) (-973) (-973))) (-15 -4080 ((-973) (-594 (-973)))) (-15 -1642 ((-1081) (-359))) (-15 -1643 ((-973) (-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081)))))) (-15 -1643 ((-973) (-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081))) (|:| |extra| (-973))))) (-15 -1644 ((-973) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1511 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1645 ((-973) (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359))))) (-15 -1646 ((-295 (-359)) (-887 (-208)))) (-15 -1647 ((-208) (-887 (-208)))) (-15 -1648 ((-295 (-359)) (-208))) (-15 -1649 ((-208) (-388 (-516)))) (-15 -1650 ((-637 (-208)) (-594 (-208)) (-719))))) (T -285))
+((-1650 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-208))) (-5 *4 (-719)) (-5 *2 (-637 (-208))) (-5 *1 (-285)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-388 (-516))) (-5 *2 (-208)) (-5 *1 (-285)))) (-1648 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-295 (-359))) (-5 *1 (-285)))) (-1647 (*1 *2 *3) (-12 (-5 *3 (-887 (-208))) (-5 *2 (-208)) (-5 *1 (-285)))) (-1646 (*1 *2 *3) (-12 (-5 *3 (-887 (-208))) (-5 *2 (-295 (-359))) (-5 *1 (-285)))) (-1645 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359)))) (-5 *2 (-973)) (-5 *1 (-285)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1511 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-973)) (-5 *1 (-285)))) (-1643 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081))) (|:| |extra| (-973)))) (-5 *2 (-973)) (-5 *1 (-285)))) (-1643 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081))))) (-5 *2 (-973)) (-5 *1 (-285)))) (-1642 (*1 *2 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1081)) (-5 *1 (-285)))) (-4080 (*1 *2 *3) (-12 (-5 *3 (-594 (-973))) (-5 *2 (-973)) (-5 *1 (-285)))) (-4080 (*1 *2 *2 *2) (-12 (-5 *2 (-973)) (-5 *1 (-285)))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-1017 (-787 (-208)))) (-5 *2 (-208)) (-5 *1 (-285)))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-1017 (-787 (-208)))) (-5 *2 (-208)) (-5 *1 (-285)))) (-1639 (*1 *2 *3) (-12 (-5 *3 (-1076 (-208))) (-5 *2 (-594 (-1081))) (-5 *1 (-285)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-594 (-208))) (-5 *2 (-594 (-1081))) (-5 *1 (-285)))) (-1637 (*1 *2 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1081)) (-5 *1 (-285)))) (-1636 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1081)) (-5 *1 (-285)))) (-2049 (*1 *2 *3 *4) (-12 (-5 *4 (-1017 (-787 (-208)))) (-5 *3 (-208)) (-5 *2 (-110)) (-5 *1 (-285)))) (-1635 (*1 *2 *3) (-12 (-5 *3 (-1179 (-295 (-208)))) (-5 *2 (-1179 (-295 (-359)))) (-5 *1 (-285)))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-295 (-208))) (-5 *2 (-295 (-359))) (-5 *1 (-285)))) (-1633 (*1 *2 *3) (-12 (-5 *3 (-594 (-208))) (-5 *2 (-1179 (-647))) (-5 *1 (-285)))) (-1632 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-647)) (-5 *1 (-285)))) (-1631 (*1 *2 *3) (-12 (-5 *3 (-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))) (-5 *2 (-594 (-208))) (-5 *1 (-285)))) (-1630 (*1 *2 *2) (-12 (-5 *2 (-1017 (-787 (-208)))) (-5 *1 (-285)))) (-1629 (*1 *2 *3) (-12 (-5 *3 (-295 (-208))) (-5 *2 (-295 (-388 (-516)))) (-5 *1 (-285)))) (-1628 (*1 *2 *3) (-12 (-5 *3 (-1179 (-295 (-208)))) (-5 *2 (-2 (|:| |additions| (-516)) (|:| |multiplications| (-516)) (|:| |exponentiations| (-516)) (|:| |functionCalls| (-516)))) (-5 *1 (-285)))) (-1627 (*1 *2 *3) (-12 (-5 *3 (-1179 (-295 (-208)))) (-5 *2 (-359)) (-5 *1 (-285)))) (-2918 (*1 *2 *2) (|partial| -12 (-5 *2 (-295 (-208))) (-5 *1 (-285)))) (-1626 (*1 *2 *3) (-12 (-5 *3 (-295 (-208))) (-5 *2 (-208)) (-5 *1 (-285)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-295 (-208))) (-5 *2 (-388 (-516))) (-5 *1 (-285)))) (-1624 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-388 (-516))) (-5 *1 (-285)))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-594 (-1017 (-787 (-359))))) (-5 *2 (-594 (-1017 (-787 (-208))))) (-5 *1 (-285)))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-1017 (-787 (-359)))) (-5 *2 (-1017 (-787 (-208)))) (-5 *1 (-285)))) (-1622 (*1 *2 *3) (-12 (-5 *3 (-787 (-359))) (-5 *2 (-787 (-208))) (-5 *1 (-285)))) (-1621 (*1 *2 *3) (-12 (-5 *3 (-295 (-359))) (-5 *2 (-295 (-208))) (-5 *1 (-285)))) (-1620 (*1 *2 *3) (-12 (-5 *3 (-359)) (-5 *2 (-208)) (-5 *1 (-285)))))
+(-10 -7 (-15 -1620 ((-208) (-359))) (-15 -1621 ((-295 (-208)) (-295 (-359)))) (-15 -1622 ((-787 (-208)) (-787 (-359)))) (-15 -1623 ((-1017 (-787 (-208))) (-1017 (-787 (-359))))) (-15 -4246 ((-594 (-1017 (-787 (-208)))) (-594 (-1017 (-787 (-359)))))) (-15 -1624 ((-388 (-516)) (-208))) (-15 -1625 ((-388 (-516)) (-295 (-208)))) (-15 -1626 ((-208) (-295 (-208)))) (-15 -2918 ((-3 (-295 (-208)) "failed") (-295 (-208)))) (-15 -1627 ((-359) (-1179 (-295 (-208))))) (-15 -1628 ((-2 (|:| |additions| (-516)) (|:| |multiplications| (-516)) (|:| |exponentiations| (-516)) (|:| |functionCalls| (-516))) (-1179 (-295 (-208))))) (-15 -1629 ((-295 (-388 (-516))) (-295 (-208)))) (-15 -1630 ((-1017 (-787 (-208))) (-1017 (-787 (-208))))) (-15 -1631 ((-594 (-208)) (-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))))) (-15 -1632 ((-647) (-208))) (-15 -1633 ((-1179 (-647)) (-594 (-208)))) (-15 -1634 ((-295 (-359)) (-295 (-208)))) (-15 -1635 ((-1179 (-295 (-359))) (-1179 (-295 (-208))))) (-15 -2049 ((-110) (-208) (-1017 (-787 (-208))))) (-15 -1636 ((-1081) (-208))) (-15 -1637 ((-1081) (-359))) (-15 -1638 ((-594 (-1081)) (-594 (-208)))) (-15 -1639 ((-594 (-1081)) (-1076 (-208)))) (-15 -1640 ((-208) (-1017 (-787 (-208))))) (-15 -1641 ((-208) (-1017 (-787 (-208))))) (-15 -4080 ((-973) (-973) (-973))) (-15 -4080 ((-973) (-594 (-973)))) (-15 -1642 ((-1081) (-359))) (-15 -1643 ((-973) (-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081)))))) (-15 -1643 ((-973) (-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081))) (|:| |extra| (-973))))) (-15 -1644 ((-973) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1511 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1645 ((-973) (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359))))) (-15 -1646 ((-295 (-359)) (-887 (-208)))) (-15 -1647 ((-208) (-887 (-208)))) (-15 -1648 ((-295 (-359)) (-208))) (-15 -1649 ((-208) (-388 (-516)))) (-15 -1650 ((-637 (-208)) (-594 (-208)) (-719))))
+((-1651 (((-594 |#1|) (-594 |#1|)) 10)))
+(((-286 |#1|) (-10 -7 (-15 -1651 ((-594 |#1|) (-594 |#1|)))) (-793)) (T -286))
+((-1651 (*1 *2 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-793)) (-5 *1 (-286 *3)))))
+(-10 -7 (-15 -1651 ((-594 |#1|) (-594 |#1|))))
+((-4234 (((-637 |#2|) (-1 |#2| |#1|) (-637 |#1|)) 17)))
+(((-287 |#1| |#2|) (-10 -7 (-15 -4234 ((-637 |#2|) (-1 |#2| |#1|) (-637 |#1|)))) (-984) (-984)) (T -287))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-637 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-5 *2 (-637 *6)) (-5 *1 (-287 *5 *6)))))
+(-10 -7 (-15 -4234 ((-637 |#2|) (-1 |#2| |#1|) (-637 |#1|))))
+((-1655 (((-110) $ $) 11)) (-2824 (($ $ $) 15)) (-2823 (($ $ $) 14)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 44)) (-1652 (((-3 (-594 $) "failed") (-594 $) $) 53)) (-3419 (($ $ $) 21) (($ (-594 $)) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3740 (((-3 $ "failed") $ $) 17)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 46)))
+(((-288 |#1|) (-10 -8 (-15 -1652 ((-3 (-594 |#1|) "failed") (-594 |#1|) |#1|)) (-15 -1653 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1653 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2435 |#1|)) |#1| |#1|)) (-15 -2824 (|#1| |#1| |#1|)) (-15 -2823 (|#1| |#1| |#1|)) (-15 -1655 ((-110) |#1| |#1|)) (-15 -3003 ((-3 (-594 |#1|) "failed") (-594 |#1|) |#1|)) (-15 -3004 ((-2 (|:| -4229 (-594 |#1|)) (|:| -2435 |#1|)) (-594 |#1|))) (-15 -3419 (|#1| (-594 |#1|))) (-15 -3419 (|#1| |#1| |#1|)) (-15 -3740 ((-3 |#1| "failed") |#1| |#1|))) (-289)) (T -288))
+NIL
+(-10 -8 (-15 -1652 ((-3 (-594 |#1|) "failed") (-594 |#1|) |#1|)) (-15 -1653 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1653 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2435 |#1|)) |#1| |#1|)) (-15 -2824 (|#1| |#1| |#1|)) (-15 -2823 (|#1| |#1| |#1|)) (-15 -1655 ((-110) |#1| |#1|)) (-15 -3003 ((-3 (-594 |#1|) "failed") (-594 |#1|) |#1|)) (-15 -3004 ((-2 (|:| -4229 (-594 |#1|)) (|:| -2435 |#1|)) (-594 |#1|))) (-15 -3419 (|#1| (-594 |#1|))) (-15 -3419 (|#1| |#1| |#1|)) (-15 -3740 ((-3 |#1| "failed") |#1| |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 41)) (-2118 (($ $) 40)) (-2116 (((-110) $) 38)) (-1319 (((-3 $ "failed") $ $) 19)) (-1655 (((-110) $ $) 59)) (-3815 (($) 17 T CONST)) (-2824 (($ $ $) 55)) (-3741 (((-3 $ "failed") $) 34)) (-2823 (($ $ $) 56)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 51)) (-2436 (((-110) $) 31)) (-1652 (((-3 (-594 $) "failed") (-594 $) $) 52)) (-1963 (($ $ $) 46) (($ (-594 $)) 45)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 44)) (-3419 (($ $ $) 48) (($ (-594 $)) 47)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3740 (((-3 $ "failed") $ $) 42)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 50)) (-1654 (((-719) $) 58)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 57)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ $) 43)) (-3385 (((-719)) 29)) (-2117 (((-110) $ $) 39)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24)))
+(((-289) (-133)) (T -289))
+((-1655 (*1 *2 *1 *1) (-12 (-4 *1 (-289)) (-5 *2 (-110)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-289)) (-5 *2 (-719)))) (-3145 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2046 *1) (|:| -3166 *1))) (-4 *1 (-289)))) (-2823 (*1 *1 *1 *1) (-4 *1 (-289))) (-2824 (*1 *1 *1 *1) (-4 *1 (-289))) (-1653 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2435 *1))) (-4 *1 (-289)))) (-1653 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-289)))) (-1652 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-594 *1)) (-4 *1 (-289)))))
+(-13 (-862) (-10 -8 (-15 -1655 ((-110) $ $)) (-15 -1654 ((-719) $)) (-15 -3145 ((-2 (|:| -2046 $) (|:| -3166 $)) $ $)) (-15 -2823 ($ $ $)) (-15 -2824 ($ $ $)) (-15 -1653 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $)) (-15 -1653 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1652 ((-3 (-594 $) "failed") (-594 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-805)) . T) ((-162) . T) ((-272) . T) ((-432) . T) ((-523) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-862) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-4046 (($ $ (-594 |#2|) (-594 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-275 |#2|)) 11) (($ $ (-594 (-275 |#2|))) NIL)))
+(((-290 |#1| |#2|) (-10 -8 (-15 -4046 (|#1| |#1| (-594 (-275 |#2|)))) (-15 -4046 (|#1| |#1| (-275 |#2|))) (-15 -4046 (|#1| |#1| |#2| |#2|)) (-15 -4046 (|#1| |#1| (-594 |#2|) (-594 |#2|)))) (-291 |#2|) (-1027)) (T -290))
+NIL
+(-10 -8 (-15 -4046 (|#1| |#1| (-594 (-275 |#2|)))) (-15 -4046 (|#1| |#1| (-275 |#2|))) (-15 -4046 (|#1| |#1| |#2| |#2|)) (-15 -4046 (|#1| |#1| (-594 |#2|) (-594 |#2|))))
+((-4046 (($ $ (-594 |#1|) (-594 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-275 |#1|)) 11) (($ $ (-594 (-275 |#1|))) 10)))
+(((-291 |#1|) (-133) (-1027)) (T -291))
+((-4046 (*1 *1 *1 *2) (-12 (-5 *2 (-275 *3)) (-4 *1 (-291 *3)) (-4 *3 (-1027)))) (-4046 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-275 *3))) (-4 *1 (-291 *3)) (-4 *3 (-1027)))))
+(-13 (-491 |t#1| |t#1|) (-10 -8 (-15 -4046 ($ $ (-275 |t#1|))) (-15 -4046 ($ $ (-594 (-275 |t#1|))))))
+(((-491 |#1| |#1|) . T))
+((-4046 ((|#1| (-1 |#1| (-516)) (-1100 (-388 (-516)))) 25)))
+(((-292 |#1|) (-10 -7 (-15 -4046 (|#1| (-1 |#1| (-516)) (-1100 (-388 (-516)))))) (-37 (-388 (-516)))) (T -292))
+((-4046 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-516))) (-5 *4 (-1100 (-388 (-516)))) (-5 *1 (-292 *2)) (-4 *2 (-37 (-388 (-516)))))))
+(-10 -7 (-15 -4046 (|#1| (-1 |#1| (-516)) (-1100 (-388 (-516))))))
+((-2828 (((-110) $ $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 7)) (-3317 (((-110) $ $) 9)))
+(((-293) (-1027)) (T -293))
+NIL
+(-1027)
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 62)) (-3388 (((-1166 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-289)))) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-851)))) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-851)))) (-1655 (((-110) $ $) NIL)) (-3905 (((-516) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-768)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-1166 |#1| |#2| |#3| |#4|) #2="failed") $) NIL) (((-3 (-1098) #2#) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-975 (-1098)))) (((-3 (-388 (-516)) #2#) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-975 (-516)))) (((-3 (-516) #2#) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-975 (-516)))) (((-3 (-1160 |#2| |#3| |#4|) #2#) $) 25)) (-3431 (((-1166 |#1| |#2| |#3| |#4|) $) NIL) (((-1098) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-975 (-1098)))) (((-388 (-516)) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-975 (-516)))) (((-516) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-975 (-516)))) (((-1160 |#2| |#3| |#4|) $) NIL)) (-2824 (($ $ $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-593 (-516)))) (((-2 (|:| -1650 (-637 (-1166 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1179 (-1166 |#1| |#2| |#3| |#4|)))) (-637 $) (-1179 $)) NIL) (((-637 (-1166 |#1| |#2| |#3| |#4|)) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3258 (($) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-515)))) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4005 (((-110) $) NIL)) (-3460 (((-110) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-768)))) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-827 (-516)))) (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-827 (-359))))) (-2436 (((-110) $) NIL)) (-3260 (($ $) NIL)) (-3262 (((-1166 |#1| |#2| |#3| |#4|) $) 21)) (-3723 (((-3 $ "failed") $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-1074)))) (-3461 (((-110) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-768)))) (-1652 (((-3 (-594 $) #3="failed") (-594 $) $) NIL)) (-3596 (($ $ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-795)))) (-3597 (($ $ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-795)))) (-4234 (($ (-1 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) $) NIL)) (-4062 (((-3 (-787 |#2|) "failed") $) 78)) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL)) (-3724 (($) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-1074)) CONST)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3387 (($ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-289)))) (-3389 (((-1166 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-515)))) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-851)))) (-4011 (((-386 $) $) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-4046 (($ $ (-594 (-1166 |#1| |#2| |#3| |#4|)) (-594 (-1166 |#1| |#2| |#3| |#4|))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-291 (-1166 |#1| |#2| |#3| |#4|)))) (($ $ (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-291 (-1166 |#1| |#2| |#3| |#4|)))) (($ $ (-275 (-1166 |#1| |#2| |#3| |#4|))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-291 (-1166 |#1| |#2| |#3| |#4|)))) (($ $ (-594 (-275 (-1166 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-291 (-1166 |#1| |#2| |#3| |#4|)))) (($ $ (-594 (-1098)) (-594 (-1166 |#1| |#2| |#3| |#4|))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-491 (-1098) (-1166 |#1| |#2| |#3| |#4|)))) (($ $ (-1098) (-1166 |#1| |#2| |#3| |#4|)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-491 (-1098) (-1166 |#1| |#2| |#3| |#4|))))) (-1654 (((-719) $) NIL)) (-4078 (($ $ (-1166 |#1| |#2| |#3| |#4|)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-268 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|))))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-4089 (($ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-216))) (($ $ (-719)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-216))) (($ $ (-1098)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-841 (-1098)))) (($ $ (-1 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) (-719)) NIL) (($ $ (-1 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|))) NIL)) (-3259 (($ $) NIL)) (-3261 (((-1166 |#1| |#2| |#3| |#4|) $) 17)) (-4246 (((-831 (-516)) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-572 (-831 (-516))))) (((-831 (-359)) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-572 (-831 (-359))))) (((-505) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-572 (-505)))) (((-359) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-958))) (((-208) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-958)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-1166 |#1| |#2| |#3| |#4|) (-851))))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ $) NIL) (($ (-388 (-516))) NIL) (($ (-1166 |#1| |#2| |#3| |#4|)) 29) (($ (-1098)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-975 (-1098)))) (($ (-1160 |#2| |#3| |#4|)) 36)) (-2965 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| $ (-138)) (|has| (-1166 |#1| |#2| |#3| |#4|) (-851))) (|has| (-1166 |#1| |#2| |#3| |#4|) (-138))))) (-3385 (((-719)) NIL)) (-3390 (((-1166 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-515)))) (-2117 (((-110) $ $) NIL)) (-3661 (($ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-768)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) 41 T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-216))) (($ $ (-719)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-216))) (($ $ (-1098)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-841 (-1098)))) (($ $ (-1 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) (-719)) NIL) (($ $ (-1 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|))) NIL)) (-2826 (((-110) $ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-795)))) (-2827 (((-110) $ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-795)))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-795)))) (-2948 (((-110) $ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-795)))) (-4224 (($ $ $) 34) (($ (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) 31)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL) (($ (-1166 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1166 |#1| |#2| |#3| |#4|)) NIL)))
+(((-294 |#1| |#2| |#3| |#4|) (-13 (-931 (-1166 |#1| |#2| |#3| |#4|)) (-975 (-1160 |#2| |#3| |#4|)) (-10 -8 (-15 -4062 ((-3 (-787 |#2|) "failed") $)) (-15 -4233 ($ (-1160 |#2| |#3| |#4|))))) (-13 (-795) (-975 (-516)) (-593 (-516)) (-432)) (-13 (-27) (-1120) (-402 |#1|)) (-1098) |#2|) (T -294))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1160 *4 *5 *6)) (-4 *4 (-13 (-27) (-1120) (-402 *3))) (-14 *5 (-1098)) (-14 *6 *4) (-4 *3 (-13 (-795) (-975 (-516)) (-593 (-516)) (-432))) (-5 *1 (-294 *3 *4 *5 *6)))) (-4062 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-795) (-975 (-516)) (-593 (-516)) (-432))) (-5 *2 (-787 *4)) (-5 *1 (-294 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1120) (-402 *3))) (-14 *5 (-1098)) (-14 *6 *4))))
+(-13 (-931 (-1166 |#1| |#2| |#3| |#4|)) (-975 (-1160 |#2| |#3| |#4|)) (-10 -8 (-15 -4062 ((-3 (-787 |#2|) "failed") $)) (-15 -4233 ($ (-1160 |#2| |#3| |#4|)))))
+((-2828 (((-110) $ $) NIL)) (-1617 (((-594 $) $ (-1098)) NIL (|has| |#1| (-523))) (((-594 $) $) NIL (|has| |#1| (-523))) (((-594 $) (-1092 $) (-1098)) NIL (|has| |#1| (-523))) (((-594 $) (-1092 $)) NIL (|has| |#1| (-523))) (((-594 $) (-887 $)) NIL (|has| |#1| (-523)))) (-1211 (($ $ (-1098)) NIL (|has| |#1| (-523))) (($ $) NIL (|has| |#1| (-523))) (($ (-1092 $) (-1098)) NIL (|has| |#1| (-523))) (($ (-1092 $)) NIL (|has| |#1| (-523))) (($ (-887 $)) NIL (|has| |#1| (-523)))) (-3462 (((-110) $) 27 (-3810 (|has| |#1| (-25)) (-12 (|has| |#1| (-593 (-516))) (|has| |#1| (-984)))))) (-3347 (((-594 (-1098)) $) 351)) (-3349 (((-388 (-1092 $)) $ (-569 $)) NIL (|has| |#1| (-523)))) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-2118 (($ $) NIL (|has| |#1| (-523)))) (-2116 (((-110) $) NIL (|has| |#1| (-523)))) (-1610 (((-594 (-569 $)) $) NIL)) (-3766 (($ $) 161 (|has| |#1| (-523)))) (-3921 (($ $) 137 (|has| |#1| (-523)))) (-1371 (($ $ (-1019 $)) 222 (|has| |#1| (-523))) (($ $ (-1098)) 218 (|has| |#1| (-523)))) (-1319 (((-3 $ "failed") $ $) NIL (-3810 (|has| |#1| (-21)) (-12 (|has| |#1| (-593 (-516))) (|has| |#1| (-984)))))) (-1614 (($ $ (-275 $)) NIL) (($ $ (-594 (-275 $))) 368) (($ $ (-594 (-569 $)) (-594 $)) 412)) (-2970 (((-386 (-1092 $)) (-1092 $)) 295 (-12 (|has| |#1| (-432)) (|has| |#1| (-523))))) (-4053 (($ $) NIL (|has| |#1| (-523)))) (-4245 (((-386 $) $) NIL (|has| |#1| (-523)))) (-3301 (($ $) NIL (|has| |#1| (-523)))) (-1655 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3764 (($ $) 157 (|has| |#1| (-523)))) (-3920 (($ $) 133 (|has| |#1| (-523)))) (-1656 (($ $ (-516)) 72 (|has| |#1| (-523)))) (-3768 (($ $) 165 (|has| |#1| (-523)))) (-3919 (($ $) 141 (|has| |#1| (-523)))) (-3815 (($) NIL (-3810 (|has| |#1| (-25)) (-12 (|has| |#1| (-593 (-516))) (|has| |#1| (-984))) (|has| |#1| (-1038))) CONST)) (-1212 (((-594 $) $ (-1098)) NIL (|has| |#1| (-523))) (((-594 $) $) NIL (|has| |#1| (-523))) (((-594 $) (-1092 $) (-1098)) NIL (|has| |#1| (-523))) (((-594 $) (-1092 $)) NIL (|has| |#1| (-523))) (((-594 $) (-887 $)) NIL (|has| |#1| (-523)))) (-3457 (($ $ (-1098)) NIL (|has| |#1| (-523))) (($ $) NIL (|has| |#1| (-523))) (($ (-1092 $) (-1098)) 124 (|has| |#1| (-523))) (($ (-1092 $)) NIL (|has| |#1| (-523))) (($ (-887 $)) NIL (|has| |#1| (-523)))) (-3432 (((-3 (-569 $) #1="failed") $) 17) (((-3 (-1098) #1#) $) NIL) (((-3 |#1| #1#) $) 421) (((-3 (-47) #1#) $) 323 (-12 (|has| |#1| (-523)) (|has| |#1| (-975 (-516))))) (((-3 (-516) #1#) $) NIL (|has| |#1| (-975 (-516)))) (((-3 (-388 (-887 |#1|)) #1#) $) NIL (|has| |#1| (-523))) (((-3 (-887 |#1|) #1#) $) NIL (|has| |#1| (-984))) (((-3 (-388 (-516)) #1#) $) 46 (-3810 (-12 (|has| |#1| (-523)) (|has| |#1| (-975 (-516)))) (|has| |#1| (-975 (-388 (-516))))))) (-3431 (((-569 $) $) 11) (((-1098) $) NIL) ((|#1| $) 403) (((-47) $) NIL (-12 (|has| |#1| (-523)) (|has| |#1| (-975 (-516))))) (((-516) $) NIL (|has| |#1| (-975 (-516)))) (((-388 (-887 |#1|)) $) NIL (|has| |#1| (-523))) (((-887 |#1|) $) NIL (|has| |#1| (-984))) (((-388 (-516)) $) 306 (-3810 (-12 (|has| |#1| (-523)) (|has| |#1| (-975 (-516)))) (|has| |#1| (-975 (-388 (-516))))))) (-2824 (($ $ $) NIL (|has| |#1| (-523)))) (-2297 (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) 117 (|has| |#1| (-984))) (((-637 |#1|) (-637 $)) 107 (|has| |#1| (-984))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (-12 (|has| |#1| (-593 (-516))) (|has| |#1| (-984)))) (((-637 (-516)) (-637 $)) NIL (-12 (|has| |#1| (-593 (-516))) (|has| |#1| (-984))))) (-4121 (($ $) 89 (|has| |#1| (-523)))) (-3741 (((-3 $ "failed") $) NIL (-3810 (-12 (|has| |#1| (-593 (-516))) (|has| |#1| (-984))) (|has| |#1| (-1038))))) (-2823 (($ $ $) NIL (|has| |#1| (-523)))) (-4220 (($ $ (-1019 $)) 226 (|has| |#1| (-523))) (($ $ (-1098)) 224 (|has| |#1| (-523)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL (|has| |#1| (-523)))) (-4005 (((-110) $) NIL (|has| |#1| (-523)))) (-3664 (($ $ $) 192 (|has| |#1| (-523)))) (-3909 (($) 127 (|has| |#1| (-523)))) (-1368 (($ $ $) 212 (|has| |#1| (-523)))) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) 374 (|has| |#1| (-827 (-516)))) (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) 381 (|has| |#1| (-827 (-359))))) (-2833 (($ $) NIL) (($ (-594 $)) NIL)) (-1609 (((-594 (-111)) $) NIL)) (-2273 (((-111) (-111)) 267)) (-2436 (((-110) $) 25 (-3810 (-12 (|has| |#1| (-593 (-516))) (|has| |#1| (-984))) (|has| |#1| (-1038))))) (-2936 (((-110) $) NIL (|has| $ (-975 (-516))))) (-3260 (($ $) 71 (|has| |#1| (-984)))) (-3262 (((-1050 |#1| (-569 $)) $) 84 (|has| |#1| (-984)))) (-1657 (((-110) $) 64 (|has| |#1| (-523)))) (-3275 (($ $ (-516)) NIL (|has| |#1| (-523)))) (-1652 (((-3 (-594 $) #2="failed") (-594 $) $) NIL (|has| |#1| (-523)))) (-1607 (((-1092 $) (-569 $)) 268 (|has| $ (-984)))) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-4234 (($ (-1 $ $) (-569 $)) 408)) (-1612 (((-3 (-569 $) "failed") $) NIL)) (-4218 (($ $) 131 (|has| |#1| (-523)))) (-2276 (($ $) 237 (|has| |#1| (-523)))) (-1963 (($ (-594 $)) NIL (|has| |#1| (-523))) (($ $ $) NIL (|has| |#1| (-523)))) (-3513 (((-1081) $) NIL)) (-1611 (((-594 (-569 $)) $) 49)) (-2254 (($ (-111) $) NIL) (($ (-111) (-594 $)) 413)) (-3087 (((-3 (-594 $) #3="failed") $) NIL (|has| |#1| (-1038)))) (-3089 (((-3 (-2 (|:| |val| $) (|:| -2427 (-516))) #3#) $) NIL (|has| |#1| (-984)))) (-3086 (((-3 (-594 $) #3#) $) 416 (|has| |#1| (-25)))) (-1863 (((-3 (-2 (|:| -4229 (-516)) (|:| |var| (-569 $))) #3#) $) 420 (|has| |#1| (-25)))) (-3088 (((-3 (-2 (|:| |var| (-569 $)) (|:| -2427 (-516))) #3#) $) NIL (|has| |#1| (-1038))) (((-3 (-2 (|:| |var| (-569 $)) (|:| -2427 (-516))) #3#) $ (-111)) NIL (|has| |#1| (-984))) (((-3 (-2 (|:| |var| (-569 $)) (|:| -2427 (-516))) #3#) $ (-1098)) NIL (|has| |#1| (-984)))) (-2893 (((-110) $ (-111)) NIL) (((-110) $ (-1098)) 53)) (-2668 (($ $) NIL (-3810 (|has| |#1| (-453)) (|has| |#1| (-523))))) (-3096 (($ $ (-1098)) 241 (|has| |#1| (-523))) (($ $ (-1019 $)) 243 (|has| |#1| (-523)))) (-2863 (((-719) $) NIL)) (-3514 (((-1045) $) NIL)) (-1866 (((-110) $) 43)) (-1865 ((|#1| $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 288 (|has| |#1| (-523)))) (-3419 (($ (-594 $)) NIL (|has| |#1| (-523))) (($ $ $) NIL (|has| |#1| (-523)))) (-1608 (((-110) $ $) NIL) (((-110) $ (-1098)) NIL)) (-1372 (($ $ (-1098)) 216 (|has| |#1| (-523))) (($ $) 214 (|has| |#1| (-523)))) (-1366 (($ $) 208 (|has| |#1| (-523)))) (-2969 (((-386 (-1092 $)) (-1092 $)) 293 (-12 (|has| |#1| (-432)) (|has| |#1| (-523))))) (-4011 (((-386 $) $) NIL (|has| |#1| (-523)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-523))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#1| (-523)))) (-3740 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL (|has| |#1| (-523)))) (-4219 (($ $) 129 (|has| |#1| (-523)))) (-2937 (((-110) $) NIL (|has| $ (-975 (-516))))) (-4046 (($ $ (-569 $) $) NIL) (($ $ (-594 (-569 $)) (-594 $)) 407) (($ $ (-594 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL) (($ $ (-594 (-1098)) (-594 (-1 $ $))) NIL) (($ $ (-594 (-1098)) (-594 (-1 $ (-594 $)))) NIL) (($ $ (-1098) (-1 $ (-594 $))) NIL) (($ $ (-1098) (-1 $ $)) NIL) (($ $ (-594 (-111)) (-594 (-1 $ $))) 361) (($ $ (-594 (-111)) (-594 (-1 $ (-594 $)))) NIL) (($ $ (-111) (-1 $ (-594 $))) NIL) (($ $ (-111) (-1 $ $)) NIL) (($ $ (-1098)) NIL (|has| |#1| (-572 (-505)))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-572 (-505)))) (($ $) NIL (|has| |#1| (-572 (-505)))) (($ $ (-111) $ (-1098)) 349 (|has| |#1| (-572 (-505)))) (($ $ (-594 (-111)) (-594 $) (-1098)) 348 (|has| |#1| (-572 (-505)))) (($ $ (-594 (-1098)) (-594 (-719)) (-594 (-1 $ $))) NIL (|has| |#1| (-984))) (($ $ (-594 (-1098)) (-594 (-719)) (-594 (-1 $ (-594 $)))) NIL (|has| |#1| (-984))) (($ $ (-1098) (-719) (-1 $ (-594 $))) NIL (|has| |#1| (-984))) (($ $ (-1098) (-719) (-1 $ $)) NIL (|has| |#1| (-984)))) (-1654 (((-719) $) NIL (|has| |#1| (-523)))) (-2274 (($ $) 229 (|has| |#1| (-523)))) (-4078 (($ (-111) $) NIL) (($ (-111) $ $) NIL) (($ (-111) $ $ $) NIL) (($ (-111) $ $ $ $) NIL) (($ (-111) (-594 $)) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-523)))) (-1613 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $) 239 (|has| |#1| (-523)))) (-3663 (($ $) 190 (|has| |#1| (-523)))) (-4089 (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#1| (-984))) (($ $ (-1098) (-719)) NIL (|has| |#1| (-984))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-984))) (($ $ (-1098)) NIL (|has| |#1| (-984)))) (-3259 (($ $) 73 (|has| |#1| (-523)))) (-3261 (((-1050 |#1| (-569 $)) $) 86 (|has| |#1| (-523)))) (-3459 (($ $) 304 (|has| $ (-984)))) (-3769 (($ $) 167 (|has| |#1| (-523)))) (-3918 (($ $) 143 (|has| |#1| (-523)))) (-3767 (($ $) 163 (|has| |#1| (-523)))) (-3917 (($ $) 139 (|has| |#1| (-523)))) (-3765 (($ $) 159 (|has| |#1| (-523)))) (-3916 (($ $) 135 (|has| |#1| (-523)))) (-4246 (((-831 (-516)) $) NIL (|has| |#1| (-572 (-831 (-516))))) (((-831 (-359)) $) NIL (|has| |#1| (-572 (-831 (-359))))) (($ (-386 $)) NIL (|has| |#1| (-523))) (((-505) $) 346 (|has| |#1| (-572 (-505))))) (-3273 (($ $ $) NIL (|has| |#1| (-453)))) (-2620 (($ $ $) NIL (|has| |#1| (-453)))) (-4233 (((-805) $) 406) (($ (-569 $)) 397) (($ (-1098)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-523))) (($ (-47)) 299 (-12 (|has| |#1| (-523)) (|has| |#1| (-975 (-516))))) (($ (-1050 |#1| (-569 $))) 88 (|has| |#1| (-984))) (($ (-388 |#1|)) NIL (|has| |#1| (-523))) (($ (-887 (-388 |#1|))) NIL (|has| |#1| (-523))) (($ (-388 (-887 (-388 |#1|)))) NIL (|has| |#1| (-523))) (($ (-388 (-887 |#1|))) NIL (|has| |#1| (-523))) (($ (-887 |#1|)) NIL (|has| |#1| (-984))) (($ (-388 (-516))) NIL (-3810 (|has| |#1| (-523)) (|has| |#1| (-975 (-388 (-516)))))) (($ (-516)) 34 (-3810 (|has| |#1| (-975 (-516))) (|has| |#1| (-984))))) (-2965 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3385 (((-719)) NIL (|has| |#1| (-984)))) (-2850 (($ $) NIL) (($ (-594 $)) NIL)) (-3362 (($ $ $) 210 (|has| |#1| (-523)))) (-3667 (($ $ $) 196 (|has| |#1| (-523)))) (-3669 (($ $ $) 200 (|has| |#1| (-523)))) (-3666 (($ $ $) 194 (|has| |#1| (-523)))) (-3668 (($ $ $) 198 (|has| |#1| (-523)))) (-2272 (((-110) (-111)) 9)) (-3772 (($ $) 173 (|has| |#1| (-523)))) (-3760 (($ $) 149 (|has| |#1| (-523)))) (-2117 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3770 (($ $) 169 (|has| |#1| (-523)))) (-3758 (($ $) 145 (|has| |#1| (-523)))) (-3774 (($ $) 177 (|has| |#1| (-523)))) (-3762 (($ $) 153 (|has| |#1| (-523)))) (-1864 (($ (-1098) $) NIL) (($ (-1098) $ $) NIL) (($ (-1098) $ $ $) NIL) (($ (-1098) $ $ $ $) NIL) (($ (-1098) (-594 $)) NIL)) (-3671 (($ $) 204 (|has| |#1| (-523)))) (-3670 (($ $) 202 (|has| |#1| (-523)))) (-3775 (($ $) 179 (|has| |#1| (-523)))) (-3763 (($ $) 155 (|has| |#1| (-523)))) (-3773 (($ $) 175 (|has| |#1| (-523)))) (-3761 (($ $) 151 (|has| |#1| (-523)))) (-3771 (($ $) 171 (|has| |#1| (-523)))) (-3759 (($ $) 147 (|has| |#1| (-523)))) (-3661 (($ $) 182 (|has| |#1| (-523)))) (-3581 (($ $ (-516)) NIL (-3810 (|has| |#1| (-453)) (|has| |#1| (-523)))) (($ $ (-719)) NIL (-3810 (-12 (|has| |#1| (-593 (-516))) (|has| |#1| (-984))) (|has| |#1| (-1038)))) (($ $ (-860)) NIL (-3810 (-12 (|has| |#1| (-593 (-516))) (|has| |#1| (-984))) (|has| |#1| (-1038))))) (-2920 (($) 20 (-3810 (|has| |#1| (-25)) (-12 (|has| |#1| (-593 (-516))) (|has| |#1| (-984)))) CONST)) (-2278 (($ $) 233 (|has| |#1| (-523)))) (-2927 (($) 22 (-3810 (-12 (|has| |#1| (-593 (-516))) (|has| |#1| (-984))) (|has| |#1| (-1038))) CONST)) (-3665 (($ $) 184 (|has| |#1| (-523))) (($ $ $) 186 (|has| |#1| (-523)))) (-2279 (($ $) 231 (|has| |#1| (-523)))) (-2932 (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#1| (-984))) (($ $ (-1098) (-719)) NIL (|has| |#1| (-984))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-984))) (($ $ (-1098)) NIL (|has| |#1| (-984)))) (-2277 (($ $) 235 (|has| |#1| (-523)))) (-3662 (($ $ $) 188 (|has| |#1| (-523)))) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 81)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 80)) (-4224 (($ (-1050 |#1| (-569 $)) (-1050 |#1| (-569 $))) 98 (|has| |#1| (-523))) (($ $ $) 42 (-3810 (|has| |#1| (-453)) (|has| |#1| (-523))))) (-4116 (($ $ $) 40 (-3810 (|has| |#1| (-21)) (-12 (|has| |#1| (-593 (-516))) (|has| |#1| (-984))))) (($ $) 29 (-3810 (|has| |#1| (-21)) (-12 (|has| |#1| (-593 (-516))) (|has| |#1| (-984)))))) (-4118 (($ $ $) 38 (-3810 (|has| |#1| (-25)) (-12 (|has| |#1| (-593 (-516))) (|has| |#1| (-984)))))) (** (($ $ $) 66 (|has| |#1| (-523))) (($ $ (-388 (-516))) 301 (|has| |#1| (-523))) (($ $ (-516)) 76 (-3810 (|has| |#1| (-453)) (|has| |#1| (-523)))) (($ $ (-719)) 74 (-3810 (-12 (|has| |#1| (-593 (-516))) (|has| |#1| (-984))) (|has| |#1| (-1038)))) (($ $ (-860)) 78 (-3810 (-12 (|has| |#1| (-593 (-516))) (|has| |#1| (-984))) (|has| |#1| (-1038))))) (* (($ (-388 (-516)) $) NIL (|has| |#1| (-523))) (($ $ (-388 (-516))) NIL (|has| |#1| (-523))) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162))) (($ $ $) 36 (-3810 (-12 (|has| |#1| (-593 (-516))) (|has| |#1| (-984))) (|has| |#1| (-1038)))) (($ (-516) $) 32 (-3810 (|has| |#1| (-21)) (-12 (|has| |#1| (-593 (-516))) (|has| |#1| (-984))))) (($ (-719) $) NIL (-3810 (|has| |#1| (-25)) (-12 (|has| |#1| (-593 (-516))) (|has| |#1| (-984))))) (($ (-860) $) NIL (-3810 (|has| |#1| (-25)) (-12 (|has| |#1| (-593 (-516))) (|has| |#1| (-984)))))))
+(((-295 |#1|) (-13 (-402 |#1|) (-10 -8 (IF (|has| |#1| (-523)) (PROGN (-6 (-29 |#1|)) (-6 (-1120)) (-6 (-151)) (-6 (-584)) (-6 (-1062)) (-15 -4121 ($ $)) (-15 -1657 ((-110) $)) (-15 -1656 ($ $ (-516))) (IF (|has| |#1| (-432)) (PROGN (-15 -2969 ((-386 (-1092 $)) (-1092 $))) (-15 -2970 ((-386 (-1092 $)) (-1092 $)))) |%noBranch|) (IF (|has| |#1| (-975 (-516))) (-6 (-975 (-47))) |%noBranch|)) |%noBranch|))) (-795)) (T -295))
+((-4121 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-523)) (-4 *2 (-795)))) (-1657 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-295 *3)) (-4 *3 (-523)) (-4 *3 (-795)))) (-1656 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-295 *3)) (-4 *3 (-523)) (-4 *3 (-795)))) (-2969 (*1 *2 *3) (-12 (-5 *2 (-386 (-1092 *1))) (-5 *1 (-295 *4)) (-5 *3 (-1092 *1)) (-4 *4 (-432)) (-4 *4 (-523)) (-4 *4 (-795)))) (-2970 (*1 *2 *3) (-12 (-5 *2 (-386 (-1092 *1))) (-5 *1 (-295 *4)) (-5 *3 (-1092 *1)) (-4 *4 (-432)) (-4 *4 (-523)) (-4 *4 (-795)))))
+(-13 (-402 |#1|) (-10 -8 (IF (|has| |#1| (-523)) (PROGN (-6 (-29 |#1|)) (-6 (-1120)) (-6 (-151)) (-6 (-584)) (-6 (-1062)) (-15 -4121 ($ $)) (-15 -1657 ((-110) $)) (-15 -1656 ($ $ (-516))) (IF (|has| |#1| (-432)) (PROGN (-15 -2969 ((-386 (-1092 $)) (-1092 $))) (-15 -2970 ((-386 (-1092 $)) (-1092 $)))) |%noBranch|) (IF (|has| |#1| (-975 (-516))) (-6 (-975 (-47))) |%noBranch|)) |%noBranch|)))
+((-4234 (((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)) 13)))
+(((-296 |#1| |#2|) (-10 -7 (-15 -4234 ((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)))) (-795) (-795)) (T -296))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-295 *5)) (-4 *5 (-795)) (-4 *6 (-795)) (-5 *2 (-295 *6)) (-5 *1 (-296 *5 *6)))))
+(-10 -7 (-15 -4234 ((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|))))
+((-4008 (((-50) |#2| (-275 |#2|) (-719)) 33) (((-50) |#2| (-275 |#2|)) 24) (((-50) |#2| (-719)) 28) (((-50) |#2|) 25) (((-50) (-1098)) 21)) (-4097 (((-50) |#2| (-275 |#2|) (-388 (-516))) 51) (((-50) |#2| (-275 |#2|)) 48) (((-50) |#2| (-388 (-516))) 50) (((-50) |#2|) 49) (((-50) (-1098)) 47)) (-4060 (((-50) |#2| (-275 |#2|) (-388 (-516))) 46) (((-50) |#2| (-275 |#2|)) 43) (((-50) |#2| (-388 (-516))) 45) (((-50) |#2|) 44) (((-50) (-1098)) 42)) (-4057 (((-50) |#2| (-275 |#2|) (-516)) 39) (((-50) |#2| (-275 |#2|)) 35) (((-50) |#2| (-516)) 38) (((-50) |#2|) 36) (((-50) (-1098)) 34)))
+(((-297 |#1| |#2|) (-10 -7 (-15 -4008 ((-50) (-1098))) (-15 -4008 ((-50) |#2|)) (-15 -4008 ((-50) |#2| (-719))) (-15 -4008 ((-50) |#2| (-275 |#2|))) (-15 -4008 ((-50) |#2| (-275 |#2|) (-719))) (-15 -4057 ((-50) (-1098))) (-15 -4057 ((-50) |#2|)) (-15 -4057 ((-50) |#2| (-516))) (-15 -4057 ((-50) |#2| (-275 |#2|))) (-15 -4057 ((-50) |#2| (-275 |#2|) (-516))) (-15 -4060 ((-50) (-1098))) (-15 -4060 ((-50) |#2|)) (-15 -4060 ((-50) |#2| (-388 (-516)))) (-15 -4060 ((-50) |#2| (-275 |#2|))) (-15 -4060 ((-50) |#2| (-275 |#2|) (-388 (-516)))) (-15 -4097 ((-50) (-1098))) (-15 -4097 ((-50) |#2|)) (-15 -4097 ((-50) |#2| (-388 (-516)))) (-15 -4097 ((-50) |#2| (-275 |#2|))) (-15 -4097 ((-50) |#2| (-275 |#2|) (-388 (-516))))) (-13 (-432) (-795) (-975 (-516)) (-593 (-516))) (-13 (-27) (-1120) (-402 |#1|))) (T -297))
+((-4097 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-275 *3)) (-5 *5 (-388 (-516))) (-4 *3 (-13 (-27) (-1120) (-402 *6))) (-4 *6 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-297 *6 *3)))) (-4097 (*1 *2 *3 *4) (-12 (-5 *4 (-275 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *5))) (-4 *5 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-297 *5 *3)))) (-4097 (*1 *2 *3 *4) (-12 (-5 *4 (-388 (-516))) (-4 *5 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-297 *5 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *5))))) (-4097 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-297 *4 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *4))))) (-4097 (*1 *2 *3) (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-297 *4 *5)) (-4 *5 (-13 (-27) (-1120) (-402 *4))))) (-4060 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-275 *3)) (-5 *5 (-388 (-516))) (-4 *3 (-13 (-27) (-1120) (-402 *6))) (-4 *6 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-297 *6 *3)))) (-4060 (*1 *2 *3 *4) (-12 (-5 *4 (-275 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *5))) (-4 *5 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-297 *5 *3)))) (-4060 (*1 *2 *3 *4) (-12 (-5 *4 (-388 (-516))) (-4 *5 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-297 *5 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *5))))) (-4060 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-297 *4 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *4))))) (-4060 (*1 *2 *3) (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-297 *4 *5)) (-4 *5 (-13 (-27) (-1120) (-402 *4))))) (-4057 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-275 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *6))) (-4 *6 (-13 (-432) (-795) (-975 *5) (-593 *5))) (-5 *5 (-516)) (-5 *2 (-50)) (-5 *1 (-297 *6 *3)))) (-4057 (*1 *2 *3 *4) (-12 (-5 *4 (-275 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *5))) (-4 *5 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-297 *5 *3)))) (-4057 (*1 *2 *3 *4) (-12 (-5 *4 (-516)) (-4 *5 (-13 (-432) (-795) (-975 *4) (-593 *4))) (-5 *2 (-50)) (-5 *1 (-297 *5 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *5))))) (-4057 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-297 *4 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *4))))) (-4057 (*1 *2 *3) (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-297 *4 *5)) (-4 *5 (-13 (-27) (-1120) (-402 *4))))) (-4008 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-275 *3)) (-5 *5 (-719)) (-4 *3 (-13 (-27) (-1120) (-402 *6))) (-4 *6 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-297 *6 *3)))) (-4008 (*1 *2 *3 *4) (-12 (-5 *4 (-275 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *5))) (-4 *5 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-297 *5 *3)))) (-4008 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-297 *5 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *5))))) (-4008 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-297 *4 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *4))))) (-4008 (*1 *2 *3) (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-297 *4 *5)) (-4 *5 (-13 (-27) (-1120) (-402 *4))))))
+(-10 -7 (-15 -4008 ((-50) (-1098))) (-15 -4008 ((-50) |#2|)) (-15 -4008 ((-50) |#2| (-719))) (-15 -4008 ((-50) |#2| (-275 |#2|))) (-15 -4008 ((-50) |#2| (-275 |#2|) (-719))) (-15 -4057 ((-50) (-1098))) (-15 -4057 ((-50) |#2|)) (-15 -4057 ((-50) |#2| (-516))) (-15 -4057 ((-50) |#2| (-275 |#2|))) (-15 -4057 ((-50) |#2| (-275 |#2|) (-516))) (-15 -4060 ((-50) (-1098))) (-15 -4060 ((-50) |#2|)) (-15 -4060 ((-50) |#2| (-388 (-516)))) (-15 -4060 ((-50) |#2| (-275 |#2|))) (-15 -4060 ((-50) |#2| (-275 |#2|) (-388 (-516)))) (-15 -4097 ((-50) (-1098))) (-15 -4097 ((-50) |#2|)) (-15 -4097 ((-50) |#2| (-388 (-516)))) (-15 -4097 ((-50) |#2| (-275 |#2|))) (-15 -4097 ((-50) |#2| (-275 |#2|) (-388 (-516)))))
+((-1658 (((-50) |#2| (-111) (-275 |#2|) (-594 |#2|)) 88) (((-50) |#2| (-111) (-275 |#2|) (-275 |#2|)) 84) (((-50) |#2| (-111) (-275 |#2|) |#2|) 86) (((-50) (-275 |#2|) (-111) (-275 |#2|) |#2|) 87) (((-50) (-594 |#2|) (-594 (-111)) (-275 |#2|) (-594 (-275 |#2|))) 80) (((-50) (-594 |#2|) (-594 (-111)) (-275 |#2|) (-594 |#2|)) 82) (((-50) (-594 (-275 |#2|)) (-594 (-111)) (-275 |#2|) (-594 |#2|)) 83) (((-50) (-594 (-275 |#2|)) (-594 (-111)) (-275 |#2|) (-594 (-275 |#2|))) 81) (((-50) (-275 |#2|) (-111) (-275 |#2|) (-594 |#2|)) 89) (((-50) (-275 |#2|) (-111) (-275 |#2|) (-275 |#2|)) 85)))
+(((-298 |#1| |#2|) (-10 -7 (-15 -1658 ((-50) (-275 |#2|) (-111) (-275 |#2|) (-275 |#2|))) (-15 -1658 ((-50) (-275 |#2|) (-111) (-275 |#2|) (-594 |#2|))) (-15 -1658 ((-50) (-594 (-275 |#2|)) (-594 (-111)) (-275 |#2|) (-594 (-275 |#2|)))) (-15 -1658 ((-50) (-594 (-275 |#2|)) (-594 (-111)) (-275 |#2|) (-594 |#2|))) (-15 -1658 ((-50) (-594 |#2|) (-594 (-111)) (-275 |#2|) (-594 |#2|))) (-15 -1658 ((-50) (-594 |#2|) (-594 (-111)) (-275 |#2|) (-594 (-275 |#2|)))) (-15 -1658 ((-50) (-275 |#2|) (-111) (-275 |#2|) |#2|)) (-15 -1658 ((-50) |#2| (-111) (-275 |#2|) |#2|)) (-15 -1658 ((-50) |#2| (-111) (-275 |#2|) (-275 |#2|))) (-15 -1658 ((-50) |#2| (-111) (-275 |#2|) (-594 |#2|)))) (-13 (-795) (-523) (-572 (-505))) (-402 |#1|)) (T -298))
+((-1658 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-111)) (-5 *5 (-275 *3)) (-5 *6 (-594 *3)) (-4 *3 (-402 *7)) (-4 *7 (-13 (-795) (-523) (-572 (-505)))) (-5 *2 (-50)) (-5 *1 (-298 *7 *3)))) (-1658 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-111)) (-5 *5 (-275 *3)) (-4 *3 (-402 *6)) (-4 *6 (-13 (-795) (-523) (-572 (-505)))) (-5 *2 (-50)) (-5 *1 (-298 *6 *3)))) (-1658 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-111)) (-5 *5 (-275 *3)) (-4 *3 (-402 *6)) (-4 *6 (-13 (-795) (-523) (-572 (-505)))) (-5 *2 (-50)) (-5 *1 (-298 *6 *3)))) (-1658 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-275 *5)) (-5 *4 (-111)) (-4 *5 (-402 *6)) (-4 *6 (-13 (-795) (-523) (-572 (-505)))) (-5 *2 (-50)) (-5 *1 (-298 *6 *5)))) (-1658 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-594 *8)) (-5 *4 (-594 (-111))) (-5 *6 (-594 (-275 *8))) (-4 *8 (-402 *7)) (-5 *5 (-275 *8)) (-4 *7 (-13 (-795) (-523) (-572 (-505)))) (-5 *2 (-50)) (-5 *1 (-298 *7 *8)))) (-1658 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-594 *7)) (-5 *4 (-594 (-111))) (-5 *5 (-275 *7)) (-4 *7 (-402 *6)) (-4 *6 (-13 (-795) (-523) (-572 (-505)))) (-5 *2 (-50)) (-5 *1 (-298 *6 *7)))) (-1658 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-594 (-275 *8))) (-5 *4 (-594 (-111))) (-5 *5 (-275 *8)) (-5 *6 (-594 *8)) (-4 *8 (-402 *7)) (-4 *7 (-13 (-795) (-523) (-572 (-505)))) (-5 *2 (-50)) (-5 *1 (-298 *7 *8)))) (-1658 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-594 (-275 *7))) (-5 *4 (-594 (-111))) (-5 *5 (-275 *7)) (-4 *7 (-402 *6)) (-4 *6 (-13 (-795) (-523) (-572 (-505)))) (-5 *2 (-50)) (-5 *1 (-298 *6 *7)))) (-1658 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-275 *7)) (-5 *4 (-111)) (-5 *5 (-594 *7)) (-4 *7 (-402 *6)) (-4 *6 (-13 (-795) (-523) (-572 (-505)))) (-5 *2 (-50)) (-5 *1 (-298 *6 *7)))) (-1658 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-275 *6)) (-5 *4 (-111)) (-4 *6 (-402 *5)) (-4 *5 (-13 (-795) (-523) (-572 (-505)))) (-5 *2 (-50)) (-5 *1 (-298 *5 *6)))))
+(-10 -7 (-15 -1658 ((-50) (-275 |#2|) (-111) (-275 |#2|) (-275 |#2|))) (-15 -1658 ((-50) (-275 |#2|) (-111) (-275 |#2|) (-594 |#2|))) (-15 -1658 ((-50) (-594 (-275 |#2|)) (-594 (-111)) (-275 |#2|) (-594 (-275 |#2|)))) (-15 -1658 ((-50) (-594 (-275 |#2|)) (-594 (-111)) (-275 |#2|) (-594 |#2|))) (-15 -1658 ((-50) (-594 |#2|) (-594 (-111)) (-275 |#2|) (-594 |#2|))) (-15 -1658 ((-50) (-594 |#2|) (-594 (-111)) (-275 |#2|) (-594 (-275 |#2|)))) (-15 -1658 ((-50) (-275 |#2|) (-111) (-275 |#2|) |#2|)) (-15 -1658 ((-50) |#2| (-111) (-275 |#2|) |#2|)) (-15 -1658 ((-50) |#2| (-111) (-275 |#2|) (-275 |#2|))) (-15 -1658 ((-50) |#2| (-111) (-275 |#2|) (-594 |#2|))))
+((-1660 (((-1130 (-868)) (-295 (-516)) (-295 (-516)) (-295 (-516)) (-1 (-208) (-208)) (-1017 (-208)) (-208) (-516) (-1081)) 46) (((-1130 (-868)) (-295 (-516)) (-295 (-516)) (-295 (-516)) (-1 (-208) (-208)) (-1017 (-208)) (-208) (-516)) 47) (((-1130 (-868)) (-295 (-516)) (-295 (-516)) (-295 (-516)) (-1 (-208) (-208)) (-1017 (-208)) (-1 (-208) (-208)) (-516) (-1081)) 43) (((-1130 (-868)) (-295 (-516)) (-295 (-516)) (-295 (-516)) (-1 (-208) (-208)) (-1017 (-208)) (-1 (-208) (-208)) (-516)) 44)) (-1659 (((-1 (-208) (-208)) (-208)) 45)))
+(((-299) (-10 -7 (-15 -1659 ((-1 (-208) (-208)) (-208))) (-15 -1660 ((-1130 (-868)) (-295 (-516)) (-295 (-516)) (-295 (-516)) (-1 (-208) (-208)) (-1017 (-208)) (-1 (-208) (-208)) (-516))) (-15 -1660 ((-1130 (-868)) (-295 (-516)) (-295 (-516)) (-295 (-516)) (-1 (-208) (-208)) (-1017 (-208)) (-1 (-208) (-208)) (-516) (-1081))) (-15 -1660 ((-1130 (-868)) (-295 (-516)) (-295 (-516)) (-295 (-516)) (-1 (-208) (-208)) (-1017 (-208)) (-208) (-516))) (-15 -1660 ((-1130 (-868)) (-295 (-516)) (-295 (-516)) (-295 (-516)) (-1 (-208) (-208)) (-1017 (-208)) (-208) (-516) (-1081))))) (T -299))
+((-1660 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-295 (-516))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1017 (-208))) (-5 *6 (-208)) (-5 *7 (-516)) (-5 *8 (-1081)) (-5 *2 (-1130 (-868))) (-5 *1 (-299)))) (-1660 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-295 (-516))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1017 (-208))) (-5 *6 (-208)) (-5 *7 (-516)) (-5 *2 (-1130 (-868))) (-5 *1 (-299)))) (-1660 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-295 (-516))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1017 (-208))) (-5 *6 (-516)) (-5 *7 (-1081)) (-5 *2 (-1130 (-868))) (-5 *1 (-299)))) (-1660 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-295 (-516))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1017 (-208))) (-5 *6 (-516)) (-5 *2 (-1130 (-868))) (-5 *1 (-299)))) (-1659 (*1 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-299)) (-5 *3 (-208)))))
+(-10 -7 (-15 -1659 ((-1 (-208) (-208)) (-208))) (-15 -1660 ((-1130 (-868)) (-295 (-516)) (-295 (-516)) (-295 (-516)) (-1 (-208) (-208)) (-1017 (-208)) (-1 (-208) (-208)) (-516))) (-15 -1660 ((-1130 (-868)) (-295 (-516)) (-295 (-516)) (-295 (-516)) (-1 (-208) (-208)) (-1017 (-208)) (-1 (-208) (-208)) (-516) (-1081))) (-15 -1660 ((-1130 (-868)) (-295 (-516)) (-295 (-516)) (-295 (-516)) (-1 (-208) (-208)) (-1017 (-208)) (-208) (-516))) (-15 -1660 ((-1130 (-868)) (-295 (-516)) (-295 (-516)) (-295 (-516)) (-1 (-208) (-208)) (-1017 (-208)) (-208) (-516) (-1081))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 25)) (-3347 (((-594 (-1011)) $) NIL)) (-4110 (((-1098) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-2118 (($ $) NIL (|has| |#1| (-523)))) (-2116 (((-110) $) NIL (|has| |#1| (-523)))) (-4049 (($ $ (-388 (-516))) NIL) (($ $ (-388 (-516)) (-388 (-516))) NIL)) (-4052 (((-1076 (-2 (|:| |k| (-388 (-516))) (|:| |c| |#1|))) $) 20)) (-3766 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3921 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL (|has| |#1| (-344)))) (-4245 (((-386 $) $) NIL (|has| |#1| (-344)))) (-3301 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-1655 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3764 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3920 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4097 (($ (-719) (-1076 (-2 (|:| |k| (-388 (-516))) (|:| |c| |#1|)))) NIL)) (-3768 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3815 (($) NIL T CONST)) (-2824 (($ $ $) NIL (|has| |#1| (-344)))) (-4235 (($ $) 32)) (-3741 (((-3 $ "failed") $) NIL)) (-2823 (($ $ $) NIL (|has| |#1| (-344)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL (|has| |#1| (-344)))) (-4005 (((-110) $) NIL (|has| |#1| (-344)))) (-3156 (((-110) $) NIL)) (-3909 (($) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4050 (((-388 (-516)) $) NIL) (((-388 (-516)) $ (-388 (-516))) 16)) (-2436 (((-110) $) NIL)) (-3275 (($ $ (-516)) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4055 (($ $ (-860)) NIL) (($ $ (-388 (-516))) NIL)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-4213 (((-110) $) NIL)) (-3157 (($ |#1| (-388 (-516))) NIL) (($ $ (-1011) (-388 (-516))) NIL) (($ $ (-594 (-1011)) (-594 (-388 (-516)))) NIL)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-4218 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3158 (($ $) NIL)) (-3449 ((|#1| $) NIL)) (-1963 (($ (-594 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL (|has| |#1| (-344)))) (-4091 (($ $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-1098)) NIL (-3810 (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-29 (-516))) (|has| |#1| (-901)) (|has| |#1| (-1120))) (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-15 -4091 (|#1| |#1| (-1098)))) (|has| |#1| (-15 -3347 ((-594 (-1098)) |#1|))))))) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#1| (-344)))) (-3419 (($ (-594 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-4011 (((-386 $) $) NIL (|has| |#1| (-344)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#1| (-344)))) (-4047 (($ $ (-388 (-516))) NIL)) (-3740 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-1661 (((-388 (-516)) $) 17)) (-3356 (($ (-1160 |#1| |#2| |#3|)) 11)) (-2427 (((-1160 |#1| |#2| |#3|) $) 12)) (-4219 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4046 (((-1076 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-388 (-516))))))) (-1654 (((-719) $) NIL (|has| |#1| (-344)))) (-4078 ((|#1| $ (-388 (-516))) NIL) (($ $ $) NIL (|has| (-388 (-516)) (-1038)))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-344)))) (-4089 (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (-4223 (((-388 (-516)) $) NIL)) (-3769 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3918 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3767 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3917 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3765 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3916 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3155 (($ $) 10)) (-4233 (((-805) $) 38) (($ (-516)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $) NIL (|has| |#1| (-523)))) (-3959 ((|#1| $ (-388 (-516))) 30)) (-2965 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3385 (((-719)) NIL)) (-4051 ((|#1| $) NIL)) (-3772 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3760 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-2117 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3770 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3758 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3774 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3762 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4048 ((|#1| $ (-388 (-516))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-516))))) (|has| |#1| (-15 -4233 (|#1| (-1098))))))) (-3775 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3763 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3773 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3761 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3771 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3759 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| |#1| (-344)))) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 27)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 33)) (-4224 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516)))))) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-516)) $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516)))))))
+(((-300 |#1| |#2| |#3|) (-13 (-1162 |#1|) (-740) (-10 -8 (-15 -3356 ($ (-1160 |#1| |#2| |#3|))) (-15 -2427 ((-1160 |#1| |#2| |#3|) $)) (-15 -1661 ((-388 (-516)) $)))) (-13 (-344) (-795)) (-1098) |#1|) (T -300))
+((-3356 (*1 *1 *2) (-12 (-5 *2 (-1160 *3 *4 *5)) (-4 *3 (-13 (-344) (-795))) (-14 *4 (-1098)) (-14 *5 *3) (-5 *1 (-300 *3 *4 *5)))) (-2427 (*1 *2 *1) (-12 (-5 *2 (-1160 *3 *4 *5)) (-5 *1 (-300 *3 *4 *5)) (-4 *3 (-13 (-344) (-795))) (-14 *4 (-1098)) (-14 *5 *3))) (-1661 (*1 *2 *1) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-300 *3 *4 *5)) (-4 *3 (-13 (-344) (-795))) (-14 *4 (-1098)) (-14 *5 *3))))
+(-13 (-1162 |#1|) (-740) (-10 -8 (-15 -3356 ($ (-1160 |#1| |#2| |#3|))) (-15 -2427 ((-1160 |#1| |#2| |#3|) $)) (-15 -1661 ((-388 (-516)) $))))
+((-3275 (((-2 (|:| -2427 (-719)) (|:| -4229 |#1|) (|:| |radicand| (-594 |#1|))) (-386 |#1|) (-719)) 24)) (-4218 (((-594 (-2 (|:| -4229 (-719)) (|:| |logand| |#1|))) (-386 |#1|)) 28)))
+(((-301 |#1|) (-10 -7 (-15 -3275 ((-2 (|:| -2427 (-719)) (|:| -4229 |#1|) (|:| |radicand| (-594 |#1|))) (-386 |#1|) (-719))) (-15 -4218 ((-594 (-2 (|:| -4229 (-719)) (|:| |logand| |#1|))) (-386 |#1|)))) (-523)) (T -301))
+((-4218 (*1 *2 *3) (-12 (-5 *3 (-386 *4)) (-4 *4 (-523)) (-5 *2 (-594 (-2 (|:| -4229 (-719)) (|:| |logand| *4)))) (-5 *1 (-301 *4)))) (-3275 (*1 *2 *3 *4) (-12 (-5 *3 (-386 *5)) (-4 *5 (-523)) (-5 *2 (-2 (|:| -2427 (-719)) (|:| -4229 *5) (|:| |radicand| (-594 *5)))) (-5 *1 (-301 *5)) (-5 *4 (-719)))))
+(-10 -7 (-15 -3275 ((-2 (|:| -2427 (-719)) (|:| -4229 |#1|) (|:| |radicand| (-594 |#1|))) (-386 |#1|) (-719))) (-15 -4218 ((-594 (-2 (|:| -4229 (-719)) (|:| |logand| |#1|))) (-386 |#1|))))
+((-3347 (((-594 |#2|) (-1092 |#4|)) 43)) (-1666 ((|#3| (-516)) 46)) (-1664 (((-1092 |#4|) (-1092 |#3|)) 30)) (-1665 (((-1092 |#4|) (-1092 |#4|) (-516)) 56)) (-1663 (((-1092 |#3|) (-1092 |#4|)) 21)) (-4223 (((-594 (-719)) (-1092 |#4|) (-594 |#2|)) 40)) (-1662 (((-1092 |#3|) (-1092 |#4|) (-594 |#2|) (-594 |#3|)) 35)))
+(((-302 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1662 ((-1092 |#3|) (-1092 |#4|) (-594 |#2|) (-594 |#3|))) (-15 -4223 ((-594 (-719)) (-1092 |#4|) (-594 |#2|))) (-15 -3347 ((-594 |#2|) (-1092 |#4|))) (-15 -1663 ((-1092 |#3|) (-1092 |#4|))) (-15 -1664 ((-1092 |#4|) (-1092 |#3|))) (-15 -1665 ((-1092 |#4|) (-1092 |#4|) (-516))) (-15 -1666 (|#3| (-516)))) (-741) (-795) (-984) (-891 |#3| |#1| |#2|)) (T -302))
+((-1666 (*1 *2 *3) (-12 (-5 *3 (-516)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-984)) (-5 *1 (-302 *4 *5 *2 *6)) (-4 *6 (-891 *2 *4 *5)))) (-1665 (*1 *2 *2 *3) (-12 (-5 *2 (-1092 *7)) (-5 *3 (-516)) (-4 *7 (-891 *6 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-5 *1 (-302 *4 *5 *6 *7)))) (-1664 (*1 *2 *3) (-12 (-5 *3 (-1092 *6)) (-4 *6 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-1092 *7)) (-5 *1 (-302 *4 *5 *6 *7)) (-4 *7 (-891 *6 *4 *5)))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-1092 *7)) (-4 *7 (-891 *6 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-5 *2 (-1092 *6)) (-5 *1 (-302 *4 *5 *6 *7)))) (-3347 (*1 *2 *3) (-12 (-5 *3 (-1092 *7)) (-4 *7 (-891 *6 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-5 *2 (-594 *5)) (-5 *1 (-302 *4 *5 *6 *7)))) (-4223 (*1 *2 *3 *4) (-12 (-5 *3 (-1092 *8)) (-5 *4 (-594 *6)) (-4 *6 (-795)) (-4 *8 (-891 *7 *5 *6)) (-4 *5 (-741)) (-4 *7 (-984)) (-5 *2 (-594 (-719))) (-5 *1 (-302 *5 *6 *7 *8)))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1092 *9)) (-5 *4 (-594 *7)) (-5 *5 (-594 *8)) (-4 *7 (-795)) (-4 *8 (-984)) (-4 *9 (-891 *8 *6 *7)) (-4 *6 (-741)) (-5 *2 (-1092 *8)) (-5 *1 (-302 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1662 ((-1092 |#3|) (-1092 |#4|) (-594 |#2|) (-594 |#3|))) (-15 -4223 ((-594 (-719)) (-1092 |#4|) (-594 |#2|))) (-15 -3347 ((-594 |#2|) (-1092 |#4|))) (-15 -1663 ((-1092 |#3|) (-1092 |#4|))) (-15 -1664 ((-1092 |#4|) (-1092 |#3|))) (-15 -1665 ((-1092 |#4|) (-1092 |#4|) (-516))) (-15 -1666 (|#3| (-516))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 14)) (-4052 (((-594 (-2 (|:| |gen| |#1|) (|:| -4219 (-516)))) $) 18)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3395 (((-719) $) NIL)) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#1| "failed") $) NIL)) (-3431 ((|#1| $) NIL)) (-2702 ((|#1| $ (-516)) NIL)) (-1669 (((-516) $ (-516)) NIL)) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-2306 (($ (-1 |#1| |#1|) $) NIL)) (-1668 (($ (-1 (-516) (-516)) $) 10)) (-3513 (((-1081) $) NIL)) (-1667 (($ $ $) NIL (|has| (-516) (-740)))) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL) (($ |#1|) NIL)) (-3959 (((-516) |#1| $) NIL)) (-2920 (($) 15 T CONST)) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) 21 (|has| |#1| (-795)))) (-4116 (($ $) 11) (($ $ $) 20)) (-4118 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ (-516)) NIL) (($ (-516) |#1|) 19)))
+(((-303 |#1|) (-13 (-21) (-666 (-516)) (-304 |#1| (-516)) (-10 -7 (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|))) (-1027)) (T -303))
+NIL
+(-13 (-21) (-666 (-516)) (-304 |#1| (-516)) (-10 -7 (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-4052 (((-594 (-2 (|:| |gen| |#1|) (|:| -4219 |#2|))) $) 27)) (-1319 (((-3 $ "failed") $ $) 19)) (-3395 (((-719) $) 28)) (-3815 (($) 17 T CONST)) (-3432 (((-3 |#1| "failed") $) 32)) (-3431 ((|#1| $) 31)) (-2702 ((|#1| $ (-516)) 25)) (-1669 ((|#2| $ (-516)) 26)) (-2306 (($ (-1 |#1| |#1|) $) 22)) (-1668 (($ (-1 |#2| |#2|) $) 23)) (-3513 (((-1081) $) 9)) (-1667 (($ $ $) 21 (|has| |#2| (-740)))) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11) (($ |#1|) 33)) (-3959 ((|#2| |#1| $) 24)) (-2920 (($) 18 T CONST)) (-3317 (((-110) $ $) 6)) (-4118 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ |#2| |#1|) 29)))
+(((-304 |#1| |#2|) (-133) (-1027) (-128)) (T -304))
+((-4118 (*1 *1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-128)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-128)))) (-3395 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-128)) (-5 *2 (-719)))) (-4052 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-128)) (-5 *2 (-594 (-2 (|:| |gen| *3) (|:| -4219 *4)))))) (-1669 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-4 *1 (-304 *4 *2)) (-4 *4 (-1027)) (-4 *2 (-128)))) (-2702 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-4 *1 (-304 *2 *4)) (-4 *4 (-128)) (-4 *2 (-1027)))) (-3959 (*1 *2 *3 *1) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-128)))) (-1668 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-304 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-128)))) (-2306 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-304 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-128)))) (-1667 (*1 *1 *1 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-128)) (-4 *3 (-740)))))
+(-13 (-128) (-975 |t#1|) (-10 -8 (-15 -4118 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3395 ((-719) $)) (-15 -4052 ((-594 (-2 (|:| |gen| |t#1|) (|:| -4219 |t#2|))) $)) (-15 -1669 (|t#2| $ (-516))) (-15 -2702 (|t#1| $ (-516))) (-15 -3959 (|t#2| |t#1| $)) (-15 -1668 ($ (-1 |t#2| |t#2|) $)) (-15 -2306 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-740)) (-15 -1667 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-805)) . T) ((-975 |#1|) . T) ((-1027) . T))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-4052 (((-594 (-2 (|:| |gen| |#1|) (|:| -4219 (-719)))) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3395 (((-719) $) NIL)) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#1| "failed") $) NIL)) (-3431 ((|#1| $) NIL)) (-2702 ((|#1| $ (-516)) NIL)) (-1669 (((-719) $ (-516)) NIL)) (-2306 (($ (-1 |#1| |#1|) $) NIL)) (-1668 (($ (-1 (-719) (-719)) $) NIL)) (-3513 (((-1081) $) NIL)) (-1667 (($ $ $) NIL (|has| (-719) (-740)))) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL) (($ |#1|) NIL)) (-3959 (((-719) |#1| $) NIL)) (-2920 (($) NIL T CONST)) (-3317 (((-110) $ $) NIL)) (-4118 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-719) |#1|) NIL)))
+(((-305 |#1|) (-304 |#1| (-719)) (-1027)) (T -305))
+NIL
+(-304 |#1| (-719))
+((-3777 (($ $) 53)) (-1671 (($ $ |#2| |#3| $) 14)) (-1672 (($ (-1 |#3| |#3|) $) 35)) (-1866 (((-110) $) 27)) (-1865 ((|#2| $) 29)) (-3740 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-3081 ((|#2| $) 49)) (-4096 (((-594 |#2|) $) 38)) (-1670 (($ $ $ (-719)) 23)) (-4224 (($ $ |#2|) 42)))
+(((-306 |#1| |#2| |#3|) (-10 -8 (-15 -3777 (|#1| |#1|)) (-15 -3081 (|#2| |#1|)) (-15 -3740 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1670 (|#1| |#1| |#1| (-719))) (-15 -1671 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1672 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4096 ((-594 |#2|) |#1|)) (-15 -1865 (|#2| |#1|)) (-15 -1866 ((-110) |#1|)) (-15 -3740 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4224 (|#1| |#1| |#2|))) (-307 |#2| |#3|) (-984) (-740)) (T -306))
+NIL
+(-10 -8 (-15 -3777 (|#1| |#1|)) (-15 -3081 (|#2| |#1|)) (-15 -3740 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1670 (|#1| |#1| |#1| (-719))) (-15 -1671 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1672 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4096 ((-594 |#2|) |#1|)) (-15 -1865 (|#2| |#1|)) (-15 -1866 ((-110) |#1|)) (-15 -3740 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4224 (|#1| |#1| |#2|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 51 (|has| |#1| (-523)))) (-2118 (($ $) 52 (|has| |#1| (-523)))) (-2116 (((-110) $) 54 (|has| |#1| (-523)))) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3432 (((-3 (-516) #1="failed") $) 90 (|has| |#1| (-975 (-516)))) (((-3 (-388 (-516)) #1#) $) 88 (|has| |#1| (-975 (-388 (-516))))) (((-3 |#1| #1#) $) 87)) (-3431 (((-516) $) 91 (|has| |#1| (-975 (-516)))) (((-388 (-516)) $) 89 (|has| |#1| (-975 (-388 (-516))))) ((|#1| $) 86)) (-4235 (($ $) 60)) (-3741 (((-3 $ "failed") $) 34)) (-3777 (($ $) 75 (|has| |#1| (-432)))) (-1671 (($ $ |#1| |#2| $) 79)) (-2436 (((-110) $) 31)) (-2444 (((-719) $) 82)) (-4213 (((-110) $) 62)) (-3157 (($ |#1| |#2|) 61)) (-3084 ((|#2| $) 81)) (-1672 (($ (-1 |#2| |#2|) $) 80)) (-4234 (($ (-1 |#1| |#1|) $) 63)) (-3158 (($ $) 65)) (-3449 ((|#1| $) 66)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-1866 (((-110) $) 85)) (-1865 ((|#1| $) 84)) (-3740 (((-3 $ "failed") $ $) 50 (|has| |#1| (-523))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-523)))) (-4223 ((|#2| $) 64)) (-3081 ((|#1| $) 76 (|has| |#1| (-432)))) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ $) 49 (|has| |#1| (-523))) (($ |#1|) 47) (($ (-388 (-516))) 57 (-3810 (|has| |#1| (-975 (-388 (-516)))) (|has| |#1| (-37 (-388 (-516))))))) (-4096 (((-594 |#1|) $) 83)) (-3959 ((|#1| $ |#2|) 59)) (-2965 (((-3 $ "failed") $) 48 (|has| |#1| (-138)))) (-3385 (((-719)) 29)) (-1670 (($ $ $ (-719)) 78 (|has| |#1| (-162)))) (-2117 (((-110) $ $) 53 (|has| |#1| (-523)))) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4224 (($ $ |#1|) 58 (|has| |#1| (-344)))) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-388 (-516)) $) 56 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) 55 (|has| |#1| (-37 (-388 (-516)))))))
+(((-307 |#1| |#2|) (-133) (-984) (-740)) (T -307))
+((-1866 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-110)))) (-1865 (*1 *2 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)))) (-4096 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-594 *3)))) (-2444 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-719)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-1672 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)))) (-1671 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)))) (-1670 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-4 *3 (-162)))) (-3740 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-307 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)) (-4 *2 (-523)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)) (-4 *2 (-432)))) (-3777 (*1 *1 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)) (-4 *2 (-432)))))
+(-13 (-46 |t#1| |t#2|) (-393 |t#1|) (-10 -8 (-15 -1866 ((-110) $)) (-15 -1865 (|t#1| $)) (-15 -4096 ((-594 |t#1|) $)) (-15 -2444 ((-719) $)) (-15 -3084 (|t#2| $)) (-15 -1672 ($ (-1 |t#2| |t#2|) $)) (-15 -1671 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-162)) (-15 -1670 ($ $ $ (-719))) |%noBranch|) (IF (|has| |t#1| (-523)) (-15 -3740 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-432)) (PROGN (-15 -3081 (|t#1| $)) (-15 -3777 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #1=(-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-523)) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-388 (-516)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -3810 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-805)) . T) ((-162) -3810 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-272) |has| |#1| (-523)) ((-393 |#1|) . T) ((-523) |has| |#1| (-523)) ((-599 #1#) |has| |#1| (-37 (-388 (-516)))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #1#) |has| |#1| (-37 (-388 (-516)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-523)) ((-675) . T) ((-975 (-388 (-516))) |has| |#1| (-975 (-388 (-516)))) ((-975 (-516)) |has| |#1| (-975 (-516))) ((-975 |#1|) . T) ((-989 #1#) |has| |#1| (-37 (-388 (-516)))) ((-989 |#1|) . T) ((-989 $) -3810 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2243 (((-1185) $ (-516) (-516)) NIL (|has| $ (-6 -4270)))) (-1798 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-1796 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795))))) (-3173 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-1217 (((-110) $ (-719)) NIL)) (-2057 (((-110) (-110)) NIL)) (-4066 ((|#1| $ (-516) |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-1146 (-516)) |#1|) NIL (|has| $ (-6 -4270)))) (-1581 (($ (-1 (-110) |#1|) $) NIL)) (-3992 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3815 (($) NIL T CONST)) (-2312 (($ $) NIL (|has| $ (-6 -4270)))) (-2313 (($ $) NIL)) (-2389 (($ $) NIL (|has| |#1| (-1027)))) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3684 (($ |#1| $) NIL (|has| |#1| (-1027))) (($ (-1 (-110) |#1|) $) NIL)) (-3685 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-1587 ((|#1| $ (-516) |#1|) NIL (|has| $ (-6 -4270)))) (-3372 ((|#1| $ (-516)) NIL)) (-3698 (((-516) (-1 (-110) |#1|) $) NIL) (((-516) |#1| $) NIL (|has| |#1| (-1027))) (((-516) |#1| $ (-516)) NIL (|has| |#1| (-1027)))) (-2058 (($ $ (-516)) NIL)) (-2059 (((-719) $) NIL)) (-2018 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3896 (($ (-719) |#1|) NIL)) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-516) $) NIL (|has| (-516) (-795)))) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3123 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-3792 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2246 (((-516) $) NIL (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-2022 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-3889 (($ $ $ (-516)) NIL) (($ |#1| $ (-516)) NIL)) (-2317 (($ |#1| $ (-516)) NIL) (($ $ $ (-516)) NIL)) (-2248 (((-594 (-516)) $) NIL)) (-2249 (((-110) (-516) $) NIL)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-2060 (($ (-594 |#1|)) NIL)) (-4079 ((|#1| $) NIL (|has| (-516) (-795)))) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-2244 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2250 (((-594 |#1|) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#1| $ (-516) |#1|) NIL) ((|#1| $ (-516)) NIL) (($ $ (-1146 (-516))) NIL)) (-1582 (($ $ (-1146 (-516))) NIL) (($ $ (-516)) NIL)) (-2318 (($ $ (-516)) NIL) (($ $ (-1146 (-516))) NIL)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1797 (($ $ $ (-516)) NIL (|has| $ (-6 -4270)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) NIL (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) NIL)) (-4069 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4080 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-594 $)) NIL)) (-4233 (((-805) $) NIL (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#1| (-795)))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-308 |#1|) (-13 (-19 |#1|) (-264 |#1|) (-10 -8 (-15 -2060 ($ (-594 |#1|))) (-15 -2059 ((-719) $)) (-15 -2058 ($ $ (-516))) (-15 -2057 ((-110) (-110))))) (-1134)) (T -308))
+((-2060 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1134)) (-5 *1 (-308 *3)))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-308 *3)) (-4 *3 (-1134)))) (-2058 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-308 *3)) (-4 *3 (-1134)))) (-2057 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-308 *3)) (-4 *3 (-1134)))))
+(-13 (-19 |#1|) (-264 |#1|) (-10 -8 (-15 -2060 ($ (-594 |#1|))) (-15 -2059 ((-719) $)) (-15 -2058 ($ $ (-516))) (-15 -2057 ((-110) (-110)))))
+((-4208 (((-110) $) 42)) (-4205 (((-719)) 22)) (-3608 ((|#2| $) 46) (($ $ (-860)) 103)) (-3395 (((-719)) 98)) (-1861 (($ (-1179 |#2|)) 20)) (-2070 (((-110) $) 115)) (-3391 ((|#2| $) 48) (($ $ (-860)) 101)) (-2073 (((-1092 |#2|) $) NIL) (((-1092 $) $ (-860)) 95)) (-1674 (((-1092 |#2|) $) 83)) (-1673 (((-1092 |#2|) $) 80) (((-3 (-1092 |#2|) "failed") $ $) 77)) (-1675 (($ $ (-1092 |#2|)) 53)) (-4206 (((-780 (-860))) 28) (((-860)) 43)) (-4190 (((-130)) 25)) (-4223 (((-780 (-860)) $) 30) (((-860) $) 117)) (-1676 (($) 109)) (-3497 (((-1179 |#2|) $) NIL) (((-637 |#2|) (-1179 $)) 39)) (-2965 (($ $) NIL) (((-3 $ "failed") $) 86)) (-4209 (((-110) $) 41)))
+(((-309 |#1| |#2|) (-10 -8 (-15 -2965 ((-3 |#1| "failed") |#1|)) (-15 -3395 ((-719))) (-15 -2965 (|#1| |#1|)) (-15 -1673 ((-3 (-1092 |#2|) "failed") |#1| |#1|)) (-15 -1673 ((-1092 |#2|) |#1|)) (-15 -1674 ((-1092 |#2|) |#1|)) (-15 -1675 (|#1| |#1| (-1092 |#2|))) (-15 -2070 ((-110) |#1|)) (-15 -1676 (|#1|)) (-15 -3608 (|#1| |#1| (-860))) (-15 -3391 (|#1| |#1| (-860))) (-15 -2073 ((-1092 |#1|) |#1| (-860))) (-15 -3608 (|#2| |#1|)) (-15 -3391 (|#2| |#1|)) (-15 -4223 ((-860) |#1|)) (-15 -4206 ((-860))) (-15 -2073 ((-1092 |#2|) |#1|)) (-15 -1861 (|#1| (-1179 |#2|))) (-15 -3497 ((-637 |#2|) (-1179 |#1|))) (-15 -3497 ((-1179 |#2|) |#1|)) (-15 -4205 ((-719))) (-15 -4206 ((-780 (-860)))) (-15 -4223 ((-780 (-860)) |#1|)) (-15 -4208 ((-110) |#1|)) (-15 -4209 ((-110) |#1|)) (-15 -4190 ((-130)))) (-310 |#2|) (-344)) (T -309))
+((-4190 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-130)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))) (-4206 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-780 (-860))) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))) (-4205 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-719)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))) (-4206 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-860)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))) (-3395 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-719)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))))
+(-10 -8 (-15 -2965 ((-3 |#1| "failed") |#1|)) (-15 -3395 ((-719))) (-15 -2965 (|#1| |#1|)) (-15 -1673 ((-3 (-1092 |#2|) "failed") |#1| |#1|)) (-15 -1673 ((-1092 |#2|) |#1|)) (-15 -1674 ((-1092 |#2|) |#1|)) (-15 -1675 (|#1| |#1| (-1092 |#2|))) (-15 -2070 ((-110) |#1|)) (-15 -1676 (|#1|)) (-15 -3608 (|#1| |#1| (-860))) (-15 -3391 (|#1| |#1| (-860))) (-15 -2073 ((-1092 |#1|) |#1| (-860))) (-15 -3608 (|#2| |#1|)) (-15 -3391 (|#2| |#1|)) (-15 -4223 ((-860) |#1|)) (-15 -4206 ((-860))) (-15 -2073 ((-1092 |#2|) |#1|)) (-15 -1861 (|#1| (-1179 |#2|))) (-15 -3497 ((-637 |#2|) (-1179 |#1|))) (-15 -3497 ((-1179 |#2|) |#1|)) (-15 -4205 ((-719))) (-15 -4206 ((-780 (-860)))) (-15 -4223 ((-780 (-860)) |#1|)) (-15 -4208 ((-110) |#1|)) (-15 -4209 ((-110) |#1|)) (-15 -4190 ((-130))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 41)) (-2118 (($ $) 40)) (-2116 (((-110) $) 38)) (-4208 (((-110) $) 94)) (-4205 (((-719)) 90)) (-3608 ((|#1| $) 140) (($ $ (-860)) 137 (|has| |#1| (-349)))) (-1741 (((-1107 (-860) (-719)) (-516)) 122 (|has| |#1| (-349)))) (-1319 (((-3 $ "failed") $ $) 19)) (-4053 (($ $) 73)) (-4245 (((-386 $) $) 72)) (-1655 (((-110) $ $) 59)) (-3395 (((-719)) 112 (|has| |#1| (-349)))) (-3815 (($) 17 T CONST)) (-3432 (((-3 |#1| "failed") $) 101)) (-3431 ((|#1| $) 100)) (-1861 (($ (-1179 |#1|)) 146)) (-1739 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-349)))) (-2824 (($ $ $) 55)) (-3741 (((-3 $ "failed") $) 34)) (-3258 (($) 109 (|has| |#1| (-349)))) (-2823 (($ $ $) 56)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 51)) (-3097 (($) 124 (|has| |#1| (-349)))) (-1746 (((-110) $) 125 (|has| |#1| (-349)))) (-1836 (($ $ (-719)) 87 (-3810 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) 86 (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-4005 (((-110) $) 71)) (-4050 (((-860) $) 127 (|has| |#1| (-349))) (((-780 (-860)) $) 84 (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2436 (((-110) $) 31)) (-2072 (($) 135 (|has| |#1| (-349)))) (-2070 (((-110) $) 134 (|has| |#1| (-349)))) (-3391 ((|#1| $) 141) (($ $ (-860)) 138 (|has| |#1| (-349)))) (-3723 (((-3 $ "failed") $) 113 (|has| |#1| (-349)))) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) 52)) (-2073 (((-1092 |#1|) $) 145) (((-1092 $) $ (-860)) 139 (|has| |#1| (-349)))) (-2069 (((-860) $) 110 (|has| |#1| (-349)))) (-1674 (((-1092 |#1|) $) 131 (|has| |#1| (-349)))) (-1673 (((-1092 |#1|) $) 130 (|has| |#1| (-349))) (((-3 (-1092 |#1|) "failed") $ $) 129 (|has| |#1| (-349)))) (-1675 (($ $ (-1092 |#1|)) 132 (|has| |#1| (-349)))) (-1963 (($ $ $) 46) (($ (-594 $)) 45)) (-3513 (((-1081) $) 9)) (-2668 (($ $) 70)) (-3724 (($) 114 (|has| |#1| (-349)) CONST)) (-2426 (($ (-860)) 111 (|has| |#1| (-349)))) (-4207 (((-110) $) 93)) (-3514 (((-1045) $) 10)) (-2435 (($) 133 (|has| |#1| (-349)))) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 44)) (-3419 (($ $ $) 48) (($ (-594 $)) 47)) (-1742 (((-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516))))) 121 (|has| |#1| (-349)))) (-4011 (((-386 $) $) 74)) (-4206 (((-780 (-860))) 91) (((-860)) 143)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 53)) (-3740 (((-3 $ "failed") $ $) 42)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 50)) (-1654 (((-719) $) 58)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 57)) (-1837 (((-719) $) 126 (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) 85 (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-4190 (((-130)) 99)) (-4089 (($ $) 118 (|has| |#1| (-349))) (($ $ (-719)) 116 (|has| |#1| (-349)))) (-4223 (((-780 (-860)) $) 92) (((-860) $) 142)) (-3459 (((-1092 |#1|)) 144)) (-1740 (($) 123 (|has| |#1| (-349)))) (-1676 (($) 136 (|has| |#1| (-349)))) (-3497 (((-1179 |#1|) $) 148) (((-637 |#1|) (-1179 $)) 147)) (-2966 (((-3 (-1179 $) "failed") (-637 $)) 120 (|has| |#1| (-349)))) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ $) 43) (($ (-388 (-516))) 65) (($ |#1|) 102)) (-2965 (($ $) 119 (|has| |#1| (-349))) (((-3 $ "failed") $) 83 (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3385 (((-719)) 29)) (-2071 (((-1179 $)) 150) (((-1179 $) (-860)) 149)) (-2117 (((-110) $ $) 39)) (-4209 (((-110) $) 95)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33) (($ $ (-516)) 69)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-4204 (($ $) 89 (|has| |#1| (-349))) (($ $ (-719)) 88 (|has| |#1| (-349)))) (-2932 (($ $) 117 (|has| |#1| (-349))) (($ $ (-719)) 115 (|has| |#1| (-349)))) (-3317 (((-110) $ $) 6)) (-4224 (($ $ $) 64) (($ $ |#1|) 98)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32) (($ $ (-516)) 68)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ (-388 (-516))) 67) (($ (-388 (-516)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
+(((-310 |#1|) (-133) (-344)) (T -310))
+((-2071 (*1 *2) (-12 (-4 *3 (-344)) (-5 *2 (-1179 *1)) (-4 *1 (-310 *3)))) (-2071 (*1 *2 *3) (-12 (-5 *3 (-860)) (-4 *4 (-344)) (-5 *2 (-1179 *1)) (-4 *1 (-310 *4)))) (-3497 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1179 *3)))) (-3497 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-310 *4)) (-4 *4 (-344)) (-5 *2 (-637 *4)))) (-1861 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-344)) (-4 *1 (-310 *3)))) (-2073 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1092 *3)))) (-3459 (*1 *2) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1092 *3)))) (-4206 (*1 *2) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-860)))) (-4223 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-860)))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-344)))) (-3608 (*1 *2 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-344)))) (-2073 (*1 *2 *1 *3) (-12 (-5 *3 (-860)) (-4 *4 (-349)) (-4 *4 (-344)) (-5 *2 (-1092 *1)) (-4 *1 (-310 *4)))) (-3391 (*1 *1 *1 *2) (-12 (-5 *2 (-860)) (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)))) (-3608 (*1 *1 *1 *2) (-12 (-5 *2 (-860)) (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)))) (-1676 (*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))) (-2072 (*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))) (-2070 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-110)))) (-2435 (*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))) (-1675 (*1 *1 *1 *2) (-12 (-5 *2 (-1092 *3)) (-4 *3 (-349)) (-4 *1 (-310 *3)) (-4 *3 (-344)))) (-1674 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-1092 *3)))) (-1673 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-1092 *3)))) (-1673 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-1092 *3)))))
+(-13 (-1196 |t#1|) (-975 |t#1|) (-10 -8 (-15 -2071 ((-1179 $))) (-15 -2071 ((-1179 $) (-860))) (-15 -3497 ((-1179 |t#1|) $)) (-15 -3497 ((-637 |t#1|) (-1179 $))) (-15 -1861 ($ (-1179 |t#1|))) (-15 -2073 ((-1092 |t#1|) $)) (-15 -3459 ((-1092 |t#1|))) (-15 -4206 ((-860))) (-15 -4223 ((-860) $)) (-15 -3391 (|t#1| $)) (-15 -3608 (|t#1| $)) (IF (|has| |t#1| (-349)) (PROGN (-6 (-331)) (-15 -2073 ((-1092 $) $ (-860))) (-15 -3391 ($ $ (-860))) (-15 -3608 ($ $ (-860))) (-15 -1676 ($)) (-15 -2072 ($)) (-15 -2070 ((-110) $)) (-15 -2435 ($)) (-15 -1675 ($ $ (-1092 |t#1|))) (-15 -1674 ((-1092 |t#1|) $)) (-15 -1673 ((-1092 |t#1|) $)) (-15 -1673 ((-3 (-1092 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-388 (-516))) . T) ((-37 $) . T) ((-99) . T) ((-109 #1# #1#) . T) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -3810 (|has| |#1| (-349)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-571 (-805)) . T) ((-162) . T) ((-216) |has| |#1| (-349)) ((-226) . T) ((-272) . T) ((-289) . T) ((-1196 |#1|) . T) ((-344) . T) ((-383) -3810 (|has| |#1| (-349)) (|has| |#1| (-138))) ((-349) |has| |#1| (-349)) ((-331) |has| |#1| (-349)) ((-432) . T) ((-523) . T) ((-599 #1#) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #1#) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-675) . T) ((-862) . T) ((-975 |#1|) . T) ((-989 #1#) . T) ((-989 |#1|) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1074) |has| |#1| (-349)) ((-1138) . T) ((-1187 |#1|) . T))
+((-2828 (((-110) $ $) NIL)) (-1694 (($ (-1097) $) 88)) (-1685 (($) 77)) (-1677 (((-1045) (-1045)) 11)) (-1684 (($) 78)) (-1688 (($) 90) (($ (-295 (-647))) 98) (($ (-295 (-649))) 94) (($ (-295 (-642))) 102) (($ (-295 (-359))) 109) (($ (-295 (-516))) 105) (($ (-295 (-158 (-359)))) 113)) (-1693 (($ (-1097) $) 89)) (-1683 (($ (-594 (-805))) 79)) (-1679 (((-1185) $) 75)) (-1681 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-1692 (($ (-1045)) 51)) (-1678 (((-1029) $) 25)) (-1695 (($ (-1019 (-887 (-516))) $) 85) (($ (-1019 (-887 (-516))) (-887 (-516)) $) 86)) (-1691 (($ (-1045)) 87)) (-1687 (($ (-1097) $) 115) (($ (-1097) $ $) 116)) (-1682 (($ (-1098) (-594 (-1098))) 76)) (-1690 (($ (-1081)) 82) (($ (-594 (-1081))) 80)) (-4233 (((-805) $) 118)) (-1680 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1098)) (|:| |arrayIndex| (-594 (-887 (-516)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3524 (-805)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1098)) (|:| |rand| (-805)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1097)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3682 (-110)) (|:| -3681 (-2 (|:| |ints2Floats?| (-110)) (|:| -3524 (-805)))))) (|:| |blockBranch| (-594 $)) (|:| |commentBranch| (-594 (-1081))) (|:| |callBranch| (-1081)) (|:| |forBranch| (-2 (|:| -1511 (-1019 (-887 (-516)))) (|:| |span| (-887 (-516))) (|:| -1246 $))) (|:| |labelBranch| (-1045)) (|:| |loopBranch| (-2 (|:| |switch| (-1097)) (|:| -1246 $))) (|:| |commonBranch| (-2 (|:| -3824 (-1098)) (|:| |contents| (-594 (-1098))))) (|:| |printBranch| (-594 (-805)))) $) 44)) (-1689 (($ (-1081)) 187)) (-1686 (($ (-594 $)) 114)) (-2846 (($ (-1098) (-1081)) 120) (($ (-1098) (-295 (-649))) 160) (($ (-1098) (-295 (-647))) 161) (($ (-1098) (-295 (-642))) 162) (($ (-1098) (-637 (-649))) 123) (($ (-1098) (-637 (-647))) 126) (($ (-1098) (-637 (-642))) 129) (($ (-1098) (-1179 (-649))) 132) (($ (-1098) (-1179 (-647))) 135) (($ (-1098) (-1179 (-642))) 138) (($ (-1098) (-637 (-295 (-649)))) 141) (($ (-1098) (-637 (-295 (-647)))) 144) (($ (-1098) (-637 (-295 (-642)))) 147) (($ (-1098) (-1179 (-295 (-649)))) 150) (($ (-1098) (-1179 (-295 (-647)))) 153) (($ (-1098) (-1179 (-295 (-642)))) 156) (($ (-1098) (-594 (-887 (-516))) (-295 (-649))) 157) (($ (-1098) (-594 (-887 (-516))) (-295 (-647))) 158) (($ (-1098) (-594 (-887 (-516))) (-295 (-642))) 159) (($ (-1098) (-295 (-516))) 184) (($ (-1098) (-295 (-359))) 185) (($ (-1098) (-295 (-158 (-359)))) 186) (($ (-1098) (-637 (-295 (-516)))) 165) (($ (-1098) (-637 (-295 (-359)))) 168) (($ (-1098) (-637 (-295 (-158 (-359))))) 171) (($ (-1098) (-1179 (-295 (-516)))) 174) (($ (-1098) (-1179 (-295 (-359)))) 177) (($ (-1098) (-1179 (-295 (-158 (-359))))) 180) (($ (-1098) (-594 (-887 (-516))) (-295 (-516))) 181) (($ (-1098) (-594 (-887 (-516))) (-295 (-359))) 182) (($ (-1098) (-594 (-887 (-516))) (-295 (-158 (-359)))) 183)) (-3317 (((-110) $ $) NIL)))
+(((-311) (-13 (-1027) (-10 -8 (-15 -4233 ((-805) $)) (-15 -1695 ($ (-1019 (-887 (-516))) $)) (-15 -1695 ($ (-1019 (-887 (-516))) (-887 (-516)) $)) (-15 -1694 ($ (-1097) $)) (-15 -1693 ($ (-1097) $)) (-15 -1692 ($ (-1045))) (-15 -1691 ($ (-1045))) (-15 -1690 ($ (-1081))) (-15 -1690 ($ (-594 (-1081)))) (-15 -1689 ($ (-1081))) (-15 -1688 ($)) (-15 -1688 ($ (-295 (-647)))) (-15 -1688 ($ (-295 (-649)))) (-15 -1688 ($ (-295 (-642)))) (-15 -1688 ($ (-295 (-359)))) (-15 -1688 ($ (-295 (-516)))) (-15 -1688 ($ (-295 (-158 (-359))))) (-15 -1687 ($ (-1097) $)) (-15 -1687 ($ (-1097) $ $)) (-15 -2846 ($ (-1098) (-1081))) (-15 -2846 ($ (-1098) (-295 (-649)))) (-15 -2846 ($ (-1098) (-295 (-647)))) (-15 -2846 ($ (-1098) (-295 (-642)))) (-15 -2846 ($ (-1098) (-637 (-649)))) (-15 -2846 ($ (-1098) (-637 (-647)))) (-15 -2846 ($ (-1098) (-637 (-642)))) (-15 -2846 ($ (-1098) (-1179 (-649)))) (-15 -2846 ($ (-1098) (-1179 (-647)))) (-15 -2846 ($ (-1098) (-1179 (-642)))) (-15 -2846 ($ (-1098) (-637 (-295 (-649))))) (-15 -2846 ($ (-1098) (-637 (-295 (-647))))) (-15 -2846 ($ (-1098) (-637 (-295 (-642))))) (-15 -2846 ($ (-1098) (-1179 (-295 (-649))))) (-15 -2846 ($ (-1098) (-1179 (-295 (-647))))) (-15 -2846 ($ (-1098) (-1179 (-295 (-642))))) (-15 -2846 ($ (-1098) (-594 (-887 (-516))) (-295 (-649)))) (-15 -2846 ($ (-1098) (-594 (-887 (-516))) (-295 (-647)))) (-15 -2846 ($ (-1098) (-594 (-887 (-516))) (-295 (-642)))) (-15 -2846 ($ (-1098) (-295 (-516)))) (-15 -2846 ($ (-1098) (-295 (-359)))) (-15 -2846 ($ (-1098) (-295 (-158 (-359))))) (-15 -2846 ($ (-1098) (-637 (-295 (-516))))) (-15 -2846 ($ (-1098) (-637 (-295 (-359))))) (-15 -2846 ($ (-1098) (-637 (-295 (-158 (-359)))))) (-15 -2846 ($ (-1098) (-1179 (-295 (-516))))) (-15 -2846 ($ (-1098) (-1179 (-295 (-359))))) (-15 -2846 ($ (-1098) (-1179 (-295 (-158 (-359)))))) (-15 -2846 ($ (-1098) (-594 (-887 (-516))) (-295 (-516)))) (-15 -2846 ($ (-1098) (-594 (-887 (-516))) (-295 (-359)))) (-15 -2846 ($ (-1098) (-594 (-887 (-516))) (-295 (-158 (-359))))) (-15 -1686 ($ (-594 $))) (-15 -1685 ($)) (-15 -1684 ($)) (-15 -1683 ($ (-594 (-805)))) (-15 -1682 ($ (-1098) (-594 (-1098)))) (-15 -1681 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1680 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1098)) (|:| |arrayIndex| (-594 (-887 (-516)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3524 (-805)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1098)) (|:| |rand| (-805)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1097)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3682 (-110)) (|:| -3681 (-2 (|:| |ints2Floats?| (-110)) (|:| -3524 (-805)))))) (|:| |blockBranch| (-594 $)) (|:| |commentBranch| (-594 (-1081))) (|:| |callBranch| (-1081)) (|:| |forBranch| (-2 (|:| -1511 (-1019 (-887 (-516)))) (|:| |span| (-887 (-516))) (|:| -1246 $))) (|:| |labelBranch| (-1045)) (|:| |loopBranch| (-2 (|:| |switch| (-1097)) (|:| -1246 $))) (|:| |commonBranch| (-2 (|:| -3824 (-1098)) (|:| |contents| (-594 (-1098))))) (|:| |printBranch| (-594 (-805)))) $)) (-15 -1679 ((-1185) $)) (-15 -1678 ((-1029) $)) (-15 -1677 ((-1045) (-1045)))))) (T -311))
+((-4233 (*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-311)))) (-1695 (*1 *1 *2 *1) (-12 (-5 *2 (-1019 (-887 (-516)))) (-5 *1 (-311)))) (-1695 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1019 (-887 (-516)))) (-5 *3 (-887 (-516))) (-5 *1 (-311)))) (-1694 (*1 *1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-311)))) (-1693 (*1 *1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-311)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-1045)) (-5 *1 (-311)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-1045)) (-5 *1 (-311)))) (-1690 (*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-311)))) (-1690 (*1 *1 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-311)))) (-1689 (*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-311)))) (-1688 (*1 *1) (-5 *1 (-311))) (-1688 (*1 *1 *2) (-12 (-5 *2 (-295 (-647))) (-5 *1 (-311)))) (-1688 (*1 *1 *2) (-12 (-5 *2 (-295 (-649))) (-5 *1 (-311)))) (-1688 (*1 *1 *2) (-12 (-5 *2 (-295 (-642))) (-5 *1 (-311)))) (-1688 (*1 *1 *2) (-12 (-5 *2 (-295 (-359))) (-5 *1 (-311)))) (-1688 (*1 *1 *2) (-12 (-5 *2 (-295 (-516))) (-5 *1 (-311)))) (-1688 (*1 *1 *2) (-12 (-5 *2 (-295 (-158 (-359)))) (-5 *1 (-311)))) (-1687 (*1 *1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-311)))) (-1687 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-1081)) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-295 (-649))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-295 (-647))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-295 (-642))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-637 (-649))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-637 (-647))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-637 (-642))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-1179 (-649))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-1179 (-647))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-1179 (-642))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-637 (-295 (-649)))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-637 (-295 (-647)))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-637 (-295 (-642)))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-1179 (-295 (-649)))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-1179 (-295 (-647)))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-1179 (-295 (-642)))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1098)) (-5 *3 (-594 (-887 (-516)))) (-5 *4 (-295 (-649))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1098)) (-5 *3 (-594 (-887 (-516)))) (-5 *4 (-295 (-647))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1098)) (-5 *3 (-594 (-887 (-516)))) (-5 *4 (-295 (-642))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-295 (-516))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-295 (-359))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-295 (-158 (-359)))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-637 (-295 (-516)))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-637 (-295 (-359)))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-637 (-295 (-158 (-359))))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-1179 (-295 (-516)))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-1179 (-295 (-359)))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-1179 (-295 (-158 (-359))))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1098)) (-5 *3 (-594 (-887 (-516)))) (-5 *4 (-295 (-516))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1098)) (-5 *3 (-594 (-887 (-516)))) (-5 *4 (-295 (-359))) (-5 *1 (-311)))) (-2846 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1098)) (-5 *3 (-594 (-887 (-516)))) (-5 *4 (-295 (-158 (-359)))) (-5 *1 (-311)))) (-1686 (*1 *1 *2) (-12 (-5 *2 (-594 (-311))) (-5 *1 (-311)))) (-1685 (*1 *1) (-5 *1 (-311))) (-1684 (*1 *1) (-5 *1 (-311))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-311)))) (-1682 (*1 *1 *2 *3) (-12 (-5 *3 (-594 (-1098))) (-5 *2 (-1098)) (-5 *1 (-311)))) (-1681 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-311)))) (-1680 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1098)) (|:| |arrayIndex| (-594 (-887 (-516)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3524 (-805)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1098)) (|:| |rand| (-805)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1097)) (|:| |thenClause| (-311)) (|:| |elseClause| (-311)))) (|:| |returnBranch| (-2 (|:| -3682 (-110)) (|:| -3681 (-2 (|:| |ints2Floats?| (-110)) (|:| -3524 (-805)))))) (|:| |blockBranch| (-594 (-311))) (|:| |commentBranch| (-594 (-1081))) (|:| |callBranch| (-1081)) (|:| |forBranch| (-2 (|:| -1511 (-1019 (-887 (-516)))) (|:| |span| (-887 (-516))) (|:| -1246 (-311)))) (|:| |labelBranch| (-1045)) (|:| |loopBranch| (-2 (|:| |switch| (-1097)) (|:| -1246 (-311)))) (|:| |commonBranch| (-2 (|:| -3824 (-1098)) (|:| |contents| (-594 (-1098))))) (|:| |printBranch| (-594 (-805))))) (-5 *1 (-311)))) (-1679 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-311)))) (-1678 (*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-311)))) (-1677 (*1 *2 *2) (-12 (-5 *2 (-1045)) (-5 *1 (-311)))))
+(-13 (-1027) (-10 -8 (-15 -4233 ((-805) $)) (-15 -1695 ($ (-1019 (-887 (-516))) $)) (-15 -1695 ($ (-1019 (-887 (-516))) (-887 (-516)) $)) (-15 -1694 ($ (-1097) $)) (-15 -1693 ($ (-1097) $)) (-15 -1692 ($ (-1045))) (-15 -1691 ($ (-1045))) (-15 -1690 ($ (-1081))) (-15 -1690 ($ (-594 (-1081)))) (-15 -1689 ($ (-1081))) (-15 -1688 ($)) (-15 -1688 ($ (-295 (-647)))) (-15 -1688 ($ (-295 (-649)))) (-15 -1688 ($ (-295 (-642)))) (-15 -1688 ($ (-295 (-359)))) (-15 -1688 ($ (-295 (-516)))) (-15 -1688 ($ (-295 (-158 (-359))))) (-15 -1687 ($ (-1097) $)) (-15 -1687 ($ (-1097) $ $)) (-15 -2846 ($ (-1098) (-1081))) (-15 -2846 ($ (-1098) (-295 (-649)))) (-15 -2846 ($ (-1098) (-295 (-647)))) (-15 -2846 ($ (-1098) (-295 (-642)))) (-15 -2846 ($ (-1098) (-637 (-649)))) (-15 -2846 ($ (-1098) (-637 (-647)))) (-15 -2846 ($ (-1098) (-637 (-642)))) (-15 -2846 ($ (-1098) (-1179 (-649)))) (-15 -2846 ($ (-1098) (-1179 (-647)))) (-15 -2846 ($ (-1098) (-1179 (-642)))) (-15 -2846 ($ (-1098) (-637 (-295 (-649))))) (-15 -2846 ($ (-1098) (-637 (-295 (-647))))) (-15 -2846 ($ (-1098) (-637 (-295 (-642))))) (-15 -2846 ($ (-1098) (-1179 (-295 (-649))))) (-15 -2846 ($ (-1098) (-1179 (-295 (-647))))) (-15 -2846 ($ (-1098) (-1179 (-295 (-642))))) (-15 -2846 ($ (-1098) (-594 (-887 (-516))) (-295 (-649)))) (-15 -2846 ($ (-1098) (-594 (-887 (-516))) (-295 (-647)))) (-15 -2846 ($ (-1098) (-594 (-887 (-516))) (-295 (-642)))) (-15 -2846 ($ (-1098) (-295 (-516)))) (-15 -2846 ($ (-1098) (-295 (-359)))) (-15 -2846 ($ (-1098) (-295 (-158 (-359))))) (-15 -2846 ($ (-1098) (-637 (-295 (-516))))) (-15 -2846 ($ (-1098) (-637 (-295 (-359))))) (-15 -2846 ($ (-1098) (-637 (-295 (-158 (-359)))))) (-15 -2846 ($ (-1098) (-1179 (-295 (-516))))) (-15 -2846 ($ (-1098) (-1179 (-295 (-359))))) (-15 -2846 ($ (-1098) (-1179 (-295 (-158 (-359)))))) (-15 -2846 ($ (-1098) (-594 (-887 (-516))) (-295 (-516)))) (-15 -2846 ($ (-1098) (-594 (-887 (-516))) (-295 (-359)))) (-15 -2846 ($ (-1098) (-594 (-887 (-516))) (-295 (-158 (-359))))) (-15 -1686 ($ (-594 $))) (-15 -1685 ($)) (-15 -1684 ($)) (-15 -1683 ($ (-594 (-805)))) (-15 -1682 ($ (-1098) (-594 (-1098)))) (-15 -1681 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1680 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1098)) (|:| |arrayIndex| (-594 (-887 (-516)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3524 (-805)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1098)) (|:| |rand| (-805)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1097)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3682 (-110)) (|:| -3681 (-2 (|:| |ints2Floats?| (-110)) (|:| -3524 (-805)))))) (|:| |blockBranch| (-594 $)) (|:| |commentBranch| (-594 (-1081))) (|:| |callBranch| (-1081)) (|:| |forBranch| (-2 (|:| -1511 (-1019 (-887 (-516)))) (|:| |span| (-887 (-516))) (|:| -1246 $))) (|:| |labelBranch| (-1045)) (|:| |loopBranch| (-2 (|:| |switch| (-1097)) (|:| -1246 $))) (|:| |commonBranch| (-2 (|:| -3824 (-1098)) (|:| |contents| (-594 (-1098))))) (|:| |printBranch| (-594 (-805)))) $)) (-15 -1679 ((-1185) $)) (-15 -1678 ((-1029) $)) (-15 -1677 ((-1045) (-1045)))))
+((-2828 (((-110) $ $) NIL)) (-1696 (((-110) $) 11)) (-3920 (($ |#1|) 8)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-3916 (($ |#1|) 9)) (-4233 (((-805) $) 17)) (-2255 ((|#1| $) 12)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 19)))
+(((-312 |#1|) (-13 (-795) (-10 -8 (-15 -3920 ($ |#1|)) (-15 -3916 ($ |#1|)) (-15 -1696 ((-110) $)) (-15 -2255 (|#1| $)))) (-795)) (T -312))
+((-3920 (*1 *1 *2) (-12 (-5 *1 (-312 *2)) (-4 *2 (-795)))) (-3916 (*1 *1 *2) (-12 (-5 *1 (-312 *2)) (-4 *2 (-795)))) (-1696 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-312 *3)) (-4 *3 (-795)))) (-2255 (*1 *2 *1) (-12 (-5 *1 (-312 *2)) (-4 *2 (-795)))))
+(-13 (-795) (-10 -8 (-15 -3920 ($ |#1|)) (-15 -3916 ($ |#1|)) (-15 -1696 ((-110) $)) (-15 -2255 (|#1| $))))
+((-1697 (((-311) (-1098) (-887 (-516))) 23)) (-1698 (((-311) (-1098) (-887 (-516))) 27)) (-2344 (((-311) (-1098) (-1019 (-887 (-516))) (-1019 (-887 (-516)))) 26) (((-311) (-1098) (-887 (-516)) (-887 (-516))) 24)) (-1699 (((-311) (-1098) (-887 (-516))) 31)))
+(((-313) (-10 -7 (-15 -1697 ((-311) (-1098) (-887 (-516)))) (-15 -2344 ((-311) (-1098) (-887 (-516)) (-887 (-516)))) (-15 -2344 ((-311) (-1098) (-1019 (-887 (-516))) (-1019 (-887 (-516))))) (-15 -1698 ((-311) (-1098) (-887 (-516)))) (-15 -1699 ((-311) (-1098) (-887 (-516)))))) (T -313))
+((-1699 (*1 *2 *3 *4) (-12 (-5 *3 (-1098)) (-5 *4 (-887 (-516))) (-5 *2 (-311)) (-5 *1 (-313)))) (-1698 (*1 *2 *3 *4) (-12 (-5 *3 (-1098)) (-5 *4 (-887 (-516))) (-5 *2 (-311)) (-5 *1 (-313)))) (-2344 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1098)) (-5 *4 (-1019 (-887 (-516)))) (-5 *2 (-311)) (-5 *1 (-313)))) (-2344 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1098)) (-5 *4 (-887 (-516))) (-5 *2 (-311)) (-5 *1 (-313)))) (-1697 (*1 *2 *3 *4) (-12 (-5 *3 (-1098)) (-5 *4 (-887 (-516))) (-5 *2 (-311)) (-5 *1 (-313)))))
+(-10 -7 (-15 -1697 ((-311) (-1098) (-887 (-516)))) (-15 -2344 ((-311) (-1098) (-887 (-516)) (-887 (-516)))) (-15 -2344 ((-311) (-1098) (-1019 (-887 (-516))) (-1019 (-887 (-516))))) (-15 -1698 ((-311) (-1098) (-887 (-516)))) (-15 -1699 ((-311) (-1098) (-887 (-516)))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-4121 (($ $) 33)) (-1702 (((-110) $) NIL)) (-3513 (((-1081) $) NIL)) (-1700 (((-1179 |#4|) $) 125)) (-2042 (((-394 |#2| (-388 |#2|) |#3| |#4|) $) 31)) (-3514 (((-1045) $) NIL)) (-2435 (((-3 |#4| "failed") $) 36)) (-1701 (((-1179 |#4|) $) 118)) (-1703 (($ (-394 |#2| (-388 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-516)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3714 (((-2 (|:| -2351 (-394 |#2| (-388 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4233 (((-805) $) 17)) (-2920 (($) 14 T CONST)) (-3317 (((-110) $ $) 20)) (-4116 (($ $) 27) (($ $ $) NIL)) (-4118 (($ $ $) 25)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 23)))
+(((-314 |#1| |#2| |#3| |#4|) (-13 (-317 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1701 ((-1179 |#4|) $)) (-15 -1700 ((-1179 |#4|) $)))) (-344) (-1155 |#1|) (-1155 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -314))
+((-1701 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-5 *2 (-1179 *6)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *6 (-323 *3 *4 *5)))) (-1700 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-5 *2 (-1179 *6)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *6 (-323 *3 *4 *5)))))
+(-13 (-317 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1701 ((-1179 |#4|) $)) (-15 -1700 ((-1179 |#4|) $))))
+((-4234 (((-314 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-314 |#1| |#2| |#3| |#4|)) 33)))
+(((-315 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4234 ((-314 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-314 |#1| |#2| |#3| |#4|)))) (-344) (-1155 |#1|) (-1155 (-388 |#2|)) (-323 |#1| |#2| |#3|) (-344) (-1155 |#5|) (-1155 (-388 |#6|)) (-323 |#5| |#6| |#7|)) (T -315))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-314 *5 *6 *7 *8)) (-4 *5 (-344)) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) (-4 *9 (-344)) (-4 *10 (-1155 *9)) (-4 *11 (-1155 (-388 *10))) (-5 *2 (-314 *9 *10 *11 *12)) (-5 *1 (-315 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-323 *9 *10 *11)))))
+(-10 -7 (-15 -4234 ((-314 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-314 |#1| |#2| |#3| |#4|))))
+((-1702 (((-110) $) 14)))
+(((-316 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1702 ((-110) |#1|))) (-317 |#2| |#3| |#4| |#5|) (-344) (-1155 |#2|) (-1155 (-388 |#3|)) (-323 |#2| |#3| |#4|)) (T -316))
+NIL
+(-10 -8 (-15 -1702 ((-110) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-4121 (($ $) 26)) (-1702 (((-110) $) 25)) (-3513 (((-1081) $) 9)) (-2042 (((-394 |#2| (-388 |#2|) |#3| |#4|) $) 32)) (-3514 (((-1045) $) 10)) (-2435 (((-3 |#4| "failed") $) 24)) (-1703 (($ (-394 |#2| (-388 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-516)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3714 (((-2 (|:| -2351 (-394 |#2| (-388 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-4233 (((-805) $) 11)) (-2920 (($) 18 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20)))
+(((-317 |#1| |#2| |#3| |#4|) (-133) (-344) (-1155 |t#1|) (-1155 (-388 |t#2|)) (-323 |t#1| |t#2| |t#3|)) (T -317))
+((-2042 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-5 *2 (-394 *4 (-388 *4) *5 *6)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-394 *4 (-388 *4) *5 *6)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-4 *3 (-344)) (-4 *1 (-317 *3 *4 *5 *6)))) (-1703 (*1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-4 *1 (-317 *3 *4 *5 *2)) (-4 *2 (-323 *3 *4 *5)))) (-1703 (*1 *1 *2 *2) (-12 (-4 *2 (-344)) (-4 *3 (-1155 *2)) (-4 *4 (-1155 (-388 *3))) (-4 *1 (-317 *2 *3 *4 *5)) (-4 *5 (-323 *2 *3 *4)))) (-1703 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-516)) (-4 *2 (-344)) (-4 *4 (-1155 *2)) (-4 *5 (-1155 (-388 *4))) (-4 *1 (-317 *2 *4 *5 *6)) (-4 *6 (-323 *2 *4 *5)))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-5 *2 (-2 (|:| -2351 (-394 *4 (-388 *4) *5 *6)) (|:| |principalPart| *6))))) (-4121 (*1 *1 *1) (-12 (-4 *1 (-317 *2 *3 *4 *5)) (-4 *2 (-344)) (-4 *3 (-1155 *2)) (-4 *4 (-1155 (-388 *3))) (-4 *5 (-323 *2 *3 *4)))) (-1702 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-5 *2 (-110)))) (-2435 (*1 *2 *1) (|partial| -12 (-4 *1 (-317 *3 *4 *5 *2)) (-4 *3 (-344)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-4 *2 (-323 *3 *4 *5)))) (-1703 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-344)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 (-388 *3))) (-4 *1 (-317 *4 *3 *5 *2)) (-4 *2 (-323 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -2042 ((-394 |t#2| (-388 |t#2|) |t#3| |t#4|) $)) (-15 -1703 ($ (-394 |t#2| (-388 |t#2|) |t#3| |t#4|))) (-15 -1703 ($ |t#4|)) (-15 -1703 ($ |t#1| |t#1|)) (-15 -1703 ($ |t#1| |t#1| (-516))) (-15 -3714 ((-2 (|:| -2351 (-394 |t#2| (-388 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -4121 ($ $)) (-15 -1702 ((-110) $)) (-15 -2435 ((-3 |t#4| "failed") $)) (-15 -1703 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-805)) . T) ((-1027) . T))
+((-4046 (($ $ (-1098) |#2|) NIL) (($ $ (-594 (-1098)) (-594 |#2|)) 20) (($ $ (-594 (-275 |#2|))) 15) (($ $ (-275 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-594 |#2|) (-594 |#2|)) NIL)) (-4078 (($ $ |#2|) 11)))
+(((-318 |#1| |#2|) (-10 -8 (-15 -4078 (|#1| |#1| |#2|)) (-15 -4046 (|#1| |#1| (-594 |#2|) (-594 |#2|))) (-15 -4046 (|#1| |#1| |#2| |#2|)) (-15 -4046 (|#1| |#1| (-275 |#2|))) (-15 -4046 (|#1| |#1| (-594 (-275 |#2|)))) (-15 -4046 (|#1| |#1| (-594 (-1098)) (-594 |#2|))) (-15 -4046 (|#1| |#1| (-1098) |#2|))) (-319 |#2|) (-1027)) (T -318))
+NIL
+(-10 -8 (-15 -4078 (|#1| |#1| |#2|)) (-15 -4046 (|#1| |#1| (-594 |#2|) (-594 |#2|))) (-15 -4046 (|#1| |#1| |#2| |#2|)) (-15 -4046 (|#1| |#1| (-275 |#2|))) (-15 -4046 (|#1| |#1| (-594 (-275 |#2|)))) (-15 -4046 (|#1| |#1| (-594 (-1098)) (-594 |#2|))) (-15 -4046 (|#1| |#1| (-1098) |#2|)))
+((-4234 (($ (-1 |#1| |#1|) $) 6)) (-4046 (($ $ (-1098) |#1|) 17 (|has| |#1| (-491 (-1098) |#1|))) (($ $ (-594 (-1098)) (-594 |#1|)) 16 (|has| |#1| (-491 (-1098) |#1|))) (($ $ (-594 (-275 |#1|))) 15 (|has| |#1| (-291 |#1|))) (($ $ (-275 |#1|)) 14 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-291 |#1|))) (($ $ (-594 |#1|) (-594 |#1|)) 12 (|has| |#1| (-291 |#1|)))) (-4078 (($ $ |#1|) 11 (|has| |#1| (-268 |#1| |#1|)))))
+(((-319 |#1|) (-133) (-1027)) (T -319))
+((-4234 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1027)))))
+(-13 (-10 -8 (-15 -4234 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-268 |t#1| |t#1|)) (-6 (-268 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-291 |t#1|)) (-6 (-291 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-491 (-1098) |t#1|)) (-6 (-491 (-1098) |t#1|)) |%noBranch|)))
+(((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-491 (-1098) |#1|) |has| |#1| (-491 (-1098) |#1|)) ((-491 |#1| |#1|) |has| |#1| (-291 |#1|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3347 (((-594 (-1098)) $) NIL)) (-1704 (((-110)) 91) (((-110) (-110)) 92)) (-1610 (((-594 (-569 $)) $) NIL)) (-3766 (($ $) NIL)) (-3921 (($ $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-1614 (($ $ (-275 $)) NIL) (($ $ (-594 (-275 $))) NIL) (($ $ (-594 (-569 $)) (-594 $)) NIL)) (-3301 (($ $) NIL)) (-3764 (($ $) NIL)) (-3920 (($ $) NIL)) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-569 $) #1="failed") $) NIL) (((-3 |#3| #1#) $) NIL) (((-3 $ "failed") (-295 |#3|)) 71) (((-3 $ "failed") (-1098)) 97) (((-3 $ "failed") (-295 (-516))) 59 (|has| |#3| (-975 (-516)))) (((-3 $ "failed") (-388 (-887 (-516)))) 65 (|has| |#3| (-975 (-516)))) (((-3 $ "failed") (-887 (-516))) 60 (|has| |#3| (-975 (-516)))) (((-3 $ "failed") (-295 (-359))) 89 (|has| |#3| (-975 (-359)))) (((-3 $ "failed") (-388 (-887 (-359)))) 83 (|has| |#3| (-975 (-359)))) (((-3 $ "failed") (-887 (-359))) 78 (|has| |#3| (-975 (-359))))) (-3431 (((-569 $) $) NIL) ((|#3| $) NIL) (($ (-295 |#3|)) 72) (($ (-1098)) 98) (($ (-295 (-516))) 61 (|has| |#3| (-975 (-516)))) (($ (-388 (-887 (-516)))) 66 (|has| |#3| (-975 (-516)))) (($ (-887 (-516))) 62 (|has| |#3| (-975 (-516)))) (($ (-295 (-359))) 90 (|has| |#3| (-975 (-359)))) (($ (-388 (-887 (-359)))) 84 (|has| |#3| (-975 (-359)))) (($ (-887 (-359))) 80 (|has| |#3| (-975 (-359))))) (-3741 (((-3 $ "failed") $) NIL)) (-3909 (($) 10)) (-2833 (($ $) NIL) (($ (-594 $)) NIL)) (-1609 (((-594 (-111)) $) NIL)) (-2273 (((-111) (-111)) NIL)) (-2436 (((-110) $) NIL)) (-2936 (((-110) $) NIL (|has| $ (-975 (-516))))) (-1607 (((-1092 $) (-569 $)) NIL (|has| $ (-984)))) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-4234 (($ (-1 $ $) (-569 $)) NIL)) (-1612 (((-3 (-569 $) "failed") $) NIL)) (-1808 (($ $) 94)) (-4218 (($ $) NIL)) (-3513 (((-1081) $) NIL)) (-1611 (((-594 (-569 $)) $) NIL)) (-2254 (($ (-111) $) 93) (($ (-111) (-594 $)) NIL)) (-2893 (((-110) $ (-111)) NIL) (((-110) $ (-1098)) NIL)) (-2863 (((-719) $) NIL)) (-3514 (((-1045) $) NIL)) (-1608 (((-110) $ $) NIL) (((-110) $ (-1098)) NIL)) (-4219 (($ $) NIL)) (-2937 (((-110) $) NIL (|has| $ (-975 (-516))))) (-4046 (($ $ (-569 $) $) NIL) (($ $ (-594 (-569 $)) (-594 $)) NIL) (($ $ (-594 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL) (($ $ (-594 (-1098)) (-594 (-1 $ $))) NIL) (($ $ (-594 (-1098)) (-594 (-1 $ (-594 $)))) NIL) (($ $ (-1098) (-1 $ (-594 $))) NIL) (($ $ (-1098) (-1 $ $)) NIL) (($ $ (-594 (-111)) (-594 (-1 $ $))) NIL) (($ $ (-594 (-111)) (-594 (-1 $ (-594 $)))) NIL) (($ $ (-111) (-1 $ (-594 $))) NIL) (($ $ (-111) (-1 $ $)) NIL)) (-4078 (($ (-111) $) NIL) (($ (-111) $ $) NIL) (($ (-111) $ $ $) NIL) (($ (-111) $ $ $ $) NIL) (($ (-111) (-594 $)) NIL)) (-1613 (($ $) NIL) (($ $ $) NIL)) (-4089 (($ $ (-594 (-1098)) (-594 (-719))) NIL) (($ $ (-1098) (-719)) NIL) (($ $ (-594 (-1098))) NIL) (($ $ (-1098)) NIL)) (-3459 (($ $) NIL (|has| $ (-984)))) (-3765 (($ $) NIL)) (-3916 (($ $) NIL)) (-4233 (((-805) $) NIL) (($ (-569 $)) NIL) (($ |#3|) NIL) (($ (-516)) NIL) (((-295 |#3|) $) 96)) (-3385 (((-719)) NIL)) (-2850 (($ $) NIL) (($ (-594 $)) NIL)) (-2272 (((-110) (-111)) NIL)) (-3760 (($ $) NIL)) (-3758 (($ $) NIL)) (-3759 (($ $) NIL)) (-3661 (($ $) NIL)) (-3581 (($ $ (-719)) NIL) (($ $ (-860)) NIL)) (-2920 (($) 95 T CONST)) (-2927 (($) 24 T CONST)) (-2932 (($ $ (-594 (-1098)) (-594 (-719))) NIL) (($ $ (-1098) (-719)) NIL) (($ $ (-594 (-1098))) NIL) (($ $ (-1098)) NIL)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) NIL)) (-4116 (($ $ $) NIL) (($ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-719)) NIL) (($ $ (-860)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-516) $) NIL) (($ (-719) $) NIL) (($ (-860) $) NIL)))
+(((-320 |#1| |#2| |#3|) (-13 (-280) (-37 |#3|) (-975 |#3|) (-841 (-1098)) (-10 -8 (-15 -3431 ($ (-295 |#3|))) (-15 -3432 ((-3 $ "failed") (-295 |#3|))) (-15 -3431 ($ (-1098))) (-15 -3432 ((-3 $ "failed") (-1098))) (-15 -4233 ((-295 |#3|) $)) (IF (|has| |#3| (-975 (-516))) (PROGN (-15 -3431 ($ (-295 (-516)))) (-15 -3432 ((-3 $ "failed") (-295 (-516)))) (-15 -3431 ($ (-388 (-887 (-516))))) (-15 -3432 ((-3 $ "failed") (-388 (-887 (-516))))) (-15 -3431 ($ (-887 (-516)))) (-15 -3432 ((-3 $ "failed") (-887 (-516))))) |%noBranch|) (IF (|has| |#3| (-975 (-359))) (PROGN (-15 -3431 ($ (-295 (-359)))) (-15 -3432 ((-3 $ "failed") (-295 (-359)))) (-15 -3431 ($ (-388 (-887 (-359))))) (-15 -3432 ((-3 $ "failed") (-388 (-887 (-359))))) (-15 -3431 ($ (-887 (-359)))) (-15 -3432 ((-3 $ "failed") (-887 (-359))))) |%noBranch|) (-15 -3661 ($ $)) (-15 -3301 ($ $)) (-15 -4219 ($ $)) (-15 -4218 ($ $)) (-15 -1808 ($ $)) (-15 -3920 ($ $)) (-15 -3916 ($ $)) (-15 -3921 ($ $)) (-15 -3758 ($ $)) (-15 -3759 ($ $)) (-15 -3760 ($ $)) (-15 -3764 ($ $)) (-15 -3765 ($ $)) (-15 -3766 ($ $)) (-15 -3909 ($)) (-15 -3347 ((-594 (-1098)) $)) (-15 -1704 ((-110))) (-15 -1704 ((-110) (-110))))) (-594 (-1098)) (-594 (-1098)) (-368)) (T -320))
+((-3431 (*1 *1 *2) (-12 (-5 *2 (-295 *5)) (-4 *5 (-368)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098))))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-295 *5)) (-4 *5 (-368)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098))))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-594 *2)) (-14 *4 (-594 *2)) (-4 *5 (-368)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-1098)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-594 *2)) (-14 *4 (-594 *2)) (-4 *5 (-368)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-295 *5)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098))) (-4 *5 (-368)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-295 (-516))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-516))) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098))) (-4 *5 (-368)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-295 (-516))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-516))) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098))) (-4 *5 (-368)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-388 (-887 (-516)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-516))) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098))) (-4 *5 (-368)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-887 (-516)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-516))) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098))) (-4 *5 (-368)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-887 (-516))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-516))) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098))) (-4 *5 (-368)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-887 (-516))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-516))) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098))) (-4 *5 (-368)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-295 (-359))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-359))) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098))) (-4 *5 (-368)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-295 (-359))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-359))) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098))) (-4 *5 (-368)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-388 (-887 (-359)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-359))) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098))) (-4 *5 (-368)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-887 (-359)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-359))) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098))) (-4 *5 (-368)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-887 (-359))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-359))) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098))) (-4 *5 (-368)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-887 (-359))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-359))) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098))) (-4 *5 (-368)))) (-3661 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098))) (-4 *4 (-368)))) (-3301 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098))) (-4 *4 (-368)))) (-4219 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098))) (-4 *4 (-368)))) (-4218 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098))) (-4 *4 (-368)))) (-1808 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098))) (-4 *4 (-368)))) (-3920 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098))) (-4 *4 (-368)))) (-3916 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098))) (-4 *4 (-368)))) (-3921 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098))) (-4 *4 (-368)))) (-3758 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098))) (-4 *4 (-368)))) (-3759 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098))) (-4 *4 (-368)))) (-3760 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098))) (-4 *4 (-368)))) (-3764 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098))) (-4 *4 (-368)))) (-3765 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098))) (-4 *4 (-368)))) (-3766 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098))) (-4 *4 (-368)))) (-3909 (*1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098))) (-4 *4 (-368)))) (-3347 (*1 *2 *1) (-12 (-5 *2 (-594 (-1098))) (-5 *1 (-320 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-368)))) (-1704 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098))) (-4 *5 (-368)))) (-1704 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098))) (-4 *5 (-368)))))
+(-13 (-280) (-37 |#3|) (-975 |#3|) (-841 (-1098)) (-10 -8 (-15 -3431 ($ (-295 |#3|))) (-15 -3432 ((-3 $ "failed") (-295 |#3|))) (-15 -3431 ($ (-1098))) (-15 -3432 ((-3 $ "failed") (-1098))) (-15 -4233 ((-295 |#3|) $)) (IF (|has| |#3| (-975 (-516))) (PROGN (-15 -3431 ($ (-295 (-516)))) (-15 -3432 ((-3 $ "failed") (-295 (-516)))) (-15 -3431 ($ (-388 (-887 (-516))))) (-15 -3432 ((-3 $ "failed") (-388 (-887 (-516))))) (-15 -3431 ($ (-887 (-516)))) (-15 -3432 ((-3 $ "failed") (-887 (-516))))) |%noBranch|) (IF (|has| |#3| (-975 (-359))) (PROGN (-15 -3431 ($ (-295 (-359)))) (-15 -3432 ((-3 $ "failed") (-295 (-359)))) (-15 -3431 ($ (-388 (-887 (-359))))) (-15 -3432 ((-3 $ "failed") (-388 (-887 (-359))))) (-15 -3431 ($ (-887 (-359)))) (-15 -3432 ((-3 $ "failed") (-887 (-359))))) |%noBranch|) (-15 -3661 ($ $)) (-15 -3301 ($ $)) (-15 -4219 ($ $)) (-15 -4218 ($ $)) (-15 -1808 ($ $)) (-15 -3920 ($ $)) (-15 -3916 ($ $)) (-15 -3921 ($ $)) (-15 -3758 ($ $)) (-15 -3759 ($ $)) (-15 -3760 ($ $)) (-15 -3764 ($ $)) (-15 -3765 ($ $)) (-15 -3766 ($ $)) (-15 -3909 ($)) (-15 -3347 ((-594 (-1098)) $)) (-15 -1704 ((-110))) (-15 -1704 ((-110) (-110)))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-4208 (((-110) $) NIL)) (-4205 (((-719)) NIL)) (-3608 (((-847 |#1|) $) NIL) (($ $ (-860)) NIL (|has| (-847 |#1|) (-349)))) (-1741 (((-1107 (-860) (-719)) (-516)) NIL (|has| (-847 |#1|) (-349)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-1655 (((-110) $ $) NIL)) (-3395 (((-719)) NIL (|has| (-847 |#1|) (-349)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-847 |#1|) "failed") $) NIL)) (-3431 (((-847 |#1|) $) NIL)) (-1861 (($ (-1179 (-847 |#1|))) NIL)) (-1739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-847 |#1|) (-349)))) (-2824 (($ $ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3258 (($) NIL (|has| (-847 |#1|) (-349)))) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-3097 (($) NIL (|has| (-847 |#1|) (-349)))) (-1746 (((-110) $) NIL (|has| (-847 |#1|) (-349)))) (-1836 (($ $ (-719)) NIL (-3810 (|has| (-847 |#1|) (-138)) (|has| (-847 |#1|) (-349)))) (($ $) NIL (-3810 (|has| (-847 |#1|) (-138)) (|has| (-847 |#1|) (-349))))) (-4005 (((-110) $) NIL)) (-4050 (((-860) $) NIL (|has| (-847 |#1|) (-349))) (((-780 (-860)) $) NIL (-3810 (|has| (-847 |#1|) (-138)) (|has| (-847 |#1|) (-349))))) (-2436 (((-110) $) NIL)) (-2072 (($) NIL (|has| (-847 |#1|) (-349)))) (-2070 (((-110) $) NIL (|has| (-847 |#1|) (-349)))) (-3391 (((-847 |#1|) $) NIL) (($ $ (-860)) NIL (|has| (-847 |#1|) (-349)))) (-3723 (((-3 $ "failed") $) NIL (|has| (-847 |#1|) (-349)))) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL)) (-2073 (((-1092 (-847 |#1|)) $) NIL) (((-1092 $) $ (-860)) NIL (|has| (-847 |#1|) (-349)))) (-2069 (((-860) $) NIL (|has| (-847 |#1|) (-349)))) (-1674 (((-1092 (-847 |#1|)) $) NIL (|has| (-847 |#1|) (-349)))) (-1673 (((-1092 (-847 |#1|)) $) NIL (|has| (-847 |#1|) (-349))) (((-3 (-1092 (-847 |#1|)) "failed") $ $) NIL (|has| (-847 |#1|) (-349)))) (-1675 (($ $ (-1092 (-847 |#1|))) NIL (|has| (-847 |#1|) (-349)))) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL)) (-3724 (($) NIL (|has| (-847 |#1|) (-349)) CONST)) (-2426 (($ (-860)) NIL (|has| (-847 |#1|) (-349)))) (-4207 (((-110) $) NIL)) (-3514 (((-1045) $) NIL)) (-2435 (($) NIL (|has| (-847 |#1|) (-349)))) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-1742 (((-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516))))) NIL (|has| (-847 |#1|) (-349)))) (-4011 (((-386 $) $) NIL)) (-4206 (((-780 (-860))) NIL) (((-860)) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-1837 (((-719) $) NIL (|has| (-847 |#1|) (-349))) (((-3 (-719) "failed") $ $) NIL (-3810 (|has| (-847 |#1|) (-138)) (|has| (-847 |#1|) (-349))))) (-4190 (((-130)) NIL)) (-4089 (($ $) NIL (|has| (-847 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-847 |#1|) (-349)))) (-4223 (((-780 (-860)) $) NIL) (((-860) $) NIL)) (-3459 (((-1092 (-847 |#1|))) NIL)) (-1740 (($) NIL (|has| (-847 |#1|) (-349)))) (-1676 (($) NIL (|has| (-847 |#1|) (-349)))) (-3497 (((-1179 (-847 |#1|)) $) NIL) (((-637 (-847 |#1|)) (-1179 $)) NIL)) (-2966 (((-3 (-1179 $) "failed") (-637 $)) NIL (|has| (-847 |#1|) (-349)))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ $) NIL) (($ (-388 (-516))) NIL) (($ (-847 |#1|)) NIL)) (-2965 (($ $) NIL (|has| (-847 |#1|) (-349))) (((-3 $ "failed") $) NIL (-3810 (|has| (-847 |#1|) (-138)) (|has| (-847 |#1|) (-349))))) (-3385 (((-719)) NIL)) (-2071 (((-1179 $)) NIL) (((-1179 $) (-860)) NIL)) (-2117 (((-110) $ $) NIL)) (-4209 (((-110) $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-4204 (($ $) NIL (|has| (-847 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-847 |#1|) (-349)))) (-2932 (($ $) NIL (|has| (-847 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-847 |#1|) (-349)))) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ $) NIL) (($ $ (-847 |#1|)) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL) (($ $ (-847 |#1|)) NIL) (($ (-847 |#1|) $) NIL)))
+(((-321 |#1| |#2|) (-310 (-847 |#1|)) (-860) (-860)) (T -321))
+NIL
+(-310 (-847 |#1|))
+((-1713 (((-2 (|:| |num| (-1179 |#3|)) (|:| |den| |#3|)) $) 38)) (-1861 (($ (-1179 (-388 |#3|)) (-1179 $)) NIL) (($ (-1179 (-388 |#3|))) NIL) (($ (-1179 |#3|) |#3|) 161)) (-1718 (((-1179 $) (-1179 $)) 145)) (-1705 (((-594 (-594 |#2|))) 119)) (-1730 (((-110) |#2| |#2|) 73)) (-3777 (($ $) 139)) (-3655 (((-719)) 31)) (-1719 (((-1179 $) (-1179 $)) 198)) (-1706 (((-594 (-887 |#2|)) (-1098)) 110)) (-1722 (((-110) $) 158)) (-1721 (((-110) $) 25) (((-110) $ |#2|) 29) (((-110) $ |#3|) 202)) (-1708 (((-3 |#3| "failed")) 50)) (-1732 (((-719)) 170)) (-4078 ((|#2| $ |#2| |#2|) 132)) (-1709 (((-3 |#3| "failed")) 68)) (-4089 (($ $ (-1 (-388 |#3|) (-388 |#3|)) (-719)) NIL) (($ $ (-1 (-388 |#3|) (-388 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-594 (-1098)) (-594 (-719))) NIL) (($ $ (-1098) (-719)) NIL) (($ $ (-594 (-1098))) NIL) (($ $ (-1098)) NIL) (($ $ (-719)) NIL) (($ $) NIL)) (-1720 (((-1179 $) (-1179 $)) 151)) (-1707 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-1731 (((-110)) 33)))
+(((-322 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4089 (|#1| |#1|)) (-15 -4089 (|#1| |#1| (-719))) (-15 -4089 (|#1| |#1| (-1098))) (-15 -4089 (|#1| |#1| (-594 (-1098)))) (-15 -4089 (|#1| |#1| (-1098) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)) (-594 (-719)))) (-15 -1705 ((-594 (-594 |#2|)))) (-15 -1706 ((-594 (-887 |#2|)) (-1098))) (-15 -1707 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1708 ((-3 |#3| "failed"))) (-15 -1709 ((-3 |#3| "failed"))) (-15 -4078 (|#2| |#1| |#2| |#2|)) (-15 -3777 (|#1| |#1|)) (-15 -1861 (|#1| (-1179 |#3|) |#3|)) (-15 -4089 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1721 ((-110) |#1| |#3|)) (-15 -1721 ((-110) |#1| |#2|)) (-15 -1713 ((-2 (|:| |num| (-1179 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1718 ((-1179 |#1|) (-1179 |#1|))) (-15 -1719 ((-1179 |#1|) (-1179 |#1|))) (-15 -1720 ((-1179 |#1|) (-1179 |#1|))) (-15 -1721 ((-110) |#1|)) (-15 -1722 ((-110) |#1|)) (-15 -1730 ((-110) |#2| |#2|)) (-15 -1731 ((-110))) (-15 -1732 ((-719))) (-15 -3655 ((-719))) (-15 -4089 (|#1| |#1| (-1 (-388 |#3|) (-388 |#3|)))) (-15 -4089 (|#1| |#1| (-1 (-388 |#3|) (-388 |#3|)) (-719))) (-15 -1861 (|#1| (-1179 (-388 |#3|)))) (-15 -1861 (|#1| (-1179 (-388 |#3|)) (-1179 |#1|)))) (-323 |#2| |#3| |#4|) (-1138) (-1155 |#2|) (-1155 (-388 |#3|))) (T -322))
+((-3655 (*1 *2) (-12 (-4 *4 (-1138)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-388 *5))) (-5 *2 (-719)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))) (-1732 (*1 *2) (-12 (-4 *4 (-1138)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-388 *5))) (-5 *2 (-719)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))) (-1731 (*1 *2) (-12 (-4 *4 (-1138)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-388 *5))) (-5 *2 (-110)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))) (-1730 (*1 *2 *3 *3) (-12 (-4 *3 (-1138)) (-4 *5 (-1155 *3)) (-4 *6 (-1155 (-388 *5))) (-5 *2 (-110)) (-5 *1 (-322 *4 *3 *5 *6)) (-4 *4 (-323 *3 *5 *6)))) (-1709 (*1 *2) (|partial| -12 (-4 *4 (-1138)) (-4 *5 (-1155 (-388 *2))) (-4 *2 (-1155 *4)) (-5 *1 (-322 *3 *4 *2 *5)) (-4 *3 (-323 *4 *2 *5)))) (-1708 (*1 *2) (|partial| -12 (-4 *4 (-1138)) (-4 *5 (-1155 (-388 *2))) (-4 *2 (-1155 *4)) (-5 *1 (-322 *3 *4 *2 *5)) (-4 *3 (-323 *4 *2 *5)))) (-1706 (*1 *2 *3) (-12 (-5 *3 (-1098)) (-4 *5 (-1138)) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-388 *6))) (-5 *2 (-594 (-887 *5))) (-5 *1 (-322 *4 *5 *6 *7)) (-4 *4 (-323 *5 *6 *7)))) (-1705 (*1 *2) (-12 (-4 *4 (-1138)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-388 *5))) (-5 *2 (-594 (-594 *4))) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))))
+(-10 -8 (-15 -4089 (|#1| |#1|)) (-15 -4089 (|#1| |#1| (-719))) (-15 -4089 (|#1| |#1| (-1098))) (-15 -4089 (|#1| |#1| (-594 (-1098)))) (-15 -4089 (|#1| |#1| (-1098) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)) (-594 (-719)))) (-15 -1705 ((-594 (-594 |#2|)))) (-15 -1706 ((-594 (-887 |#2|)) (-1098))) (-15 -1707 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1708 ((-3 |#3| "failed"))) (-15 -1709 ((-3 |#3| "failed"))) (-15 -4078 (|#2| |#1| |#2| |#2|)) (-15 -3777 (|#1| |#1|)) (-15 -1861 (|#1| (-1179 |#3|) |#3|)) (-15 -4089 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1721 ((-110) |#1| |#3|)) (-15 -1721 ((-110) |#1| |#2|)) (-15 -1713 ((-2 (|:| |num| (-1179 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1718 ((-1179 |#1|) (-1179 |#1|))) (-15 -1719 ((-1179 |#1|) (-1179 |#1|))) (-15 -1720 ((-1179 |#1|) (-1179 |#1|))) (-15 -1721 ((-110) |#1|)) (-15 -1722 ((-110) |#1|)) (-15 -1730 ((-110) |#2| |#2|)) (-15 -1731 ((-110))) (-15 -1732 ((-719))) (-15 -3655 ((-719))) (-15 -4089 (|#1| |#1| (-1 (-388 |#3|) (-388 |#3|)))) (-15 -4089 (|#1| |#1| (-1 (-388 |#3|) (-388 |#3|)) (-719))) (-15 -1861 (|#1| (-1179 (-388 |#3|)))) (-15 -1861 (|#1| (-1179 (-388 |#3|)) (-1179 |#1|))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1713 (((-2 (|:| |num| (-1179 |#2|)) (|:| |den| |#2|)) $) 196)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 93 (|has| (-388 |#2|) (-344)))) (-2118 (($ $) 94 (|has| (-388 |#2|) (-344)))) (-2116 (((-110) $) 96 (|has| (-388 |#2|) (-344)))) (-1851 (((-637 (-388 |#2|)) (-1179 $)) 46) (((-637 (-388 |#2|))) 61)) (-3608 (((-388 |#2|) $) 52)) (-1741 (((-1107 (-860) (-719)) (-516)) 147 (|has| (-388 |#2|) (-331)))) (-1319 (((-3 $ "failed") $ $) 19)) (-4053 (($ $) 113 (|has| (-388 |#2|) (-344)))) (-4245 (((-386 $) $) 114 (|has| (-388 |#2|) (-344)))) (-1655 (((-110) $ $) 104 (|has| (-388 |#2|) (-344)))) (-3395 (((-719)) 87 (|has| (-388 |#2|) (-349)))) (-1727 (((-110)) 213)) (-1726 (((-110) |#1|) 212) (((-110) |#2|) 211)) (-3815 (($) 17 T CONST)) (-3432 (((-3 (-516) #1="failed") $) 169 (|has| (-388 |#2|) (-975 (-516)))) (((-3 (-388 (-516)) #1#) $) 167 (|has| (-388 |#2|) (-975 (-388 (-516))))) (((-3 (-388 |#2|) #1#) $) 166)) (-3431 (((-516) $) 170 (|has| (-388 |#2|) (-975 (-516)))) (((-388 (-516)) $) 168 (|has| (-388 |#2|) (-975 (-388 (-516))))) (((-388 |#2|) $) 165)) (-1861 (($ (-1179 (-388 |#2|)) (-1179 $)) 48) (($ (-1179 (-388 |#2|))) 64) (($ (-1179 |#2|) |#2|) 189)) (-1739 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-388 |#2|) (-331)))) (-2824 (($ $ $) 108 (|has| (-388 |#2|) (-344)))) (-1850 (((-637 (-388 |#2|)) $ (-1179 $)) 53) (((-637 (-388 |#2|)) $) 59)) (-2297 (((-637 (-516)) (-637 $)) 164 (|has| (-388 |#2|) (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) 163 (|has| (-388 |#2|) (-593 (-516)))) (((-2 (|:| -1650 (-637 (-388 |#2|))) (|:| |vec| (-1179 (-388 |#2|)))) (-637 $) (-1179 $)) 162) (((-637 (-388 |#2|)) (-637 $)) 161)) (-1718 (((-1179 $) (-1179 $)) 201)) (-4121 (($ |#3|) 158) (((-3 $ "failed") (-388 |#3|)) 155 (|has| (-388 |#2|) (-344)))) (-3741 (((-3 $ "failed") $) 34)) (-1705 (((-594 (-594 |#1|))) 182 (|has| |#1| (-349)))) (-1730 (((-110) |#1| |#1|) 217)) (-3368 (((-860)) 54)) (-3258 (($) 90 (|has| (-388 |#2|) (-349)))) (-1725 (((-110)) 210)) (-1724 (((-110) |#1|) 209) (((-110) |#2|) 208)) (-2823 (($ $ $) 107 (|has| (-388 |#2|) (-344)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 102 (|has| (-388 |#2|) (-344)))) (-3777 (($ $) 188)) (-3097 (($) 149 (|has| (-388 |#2|) (-331)))) (-1746 (((-110) $) 150 (|has| (-388 |#2|) (-331)))) (-1836 (($ $ (-719)) 141 (|has| (-388 |#2|) (-331))) (($ $) 140 (|has| (-388 |#2|) (-331)))) (-4005 (((-110) $) 115 (|has| (-388 |#2|) (-344)))) (-4050 (((-860) $) 152 (|has| (-388 |#2|) (-331))) (((-780 (-860)) $) 138 (|has| (-388 |#2|) (-331)))) (-2436 (((-110) $) 31)) (-3655 (((-719)) 220)) (-1719 (((-1179 $) (-1179 $)) 202)) (-3391 (((-388 |#2|) $) 51)) (-1706 (((-594 (-887 |#1|)) (-1098)) 183 (|has| |#1| (-344)))) (-3723 (((-3 $ "failed") $) 142 (|has| (-388 |#2|) (-331)))) (-1652 (((-3 (-594 $) #2="failed") (-594 $) $) 111 (|has| (-388 |#2|) (-344)))) (-2073 ((|#3| $) 44 (|has| (-388 |#2|) (-344)))) (-2069 (((-860) $) 89 (|has| (-388 |#2|) (-349)))) (-3343 ((|#3| $) 156)) (-1963 (($ (-594 $)) 100 (|has| (-388 |#2|) (-344))) (($ $ $) 99 (|has| (-388 |#2|) (-344)))) (-3513 (((-1081) $) 9)) (-1714 (((-637 (-388 |#2|))) 197)) (-1716 (((-637 (-388 |#2|))) 199)) (-2668 (($ $) 116 (|has| (-388 |#2|) (-344)))) (-1711 (($ (-1179 |#2|) |#2|) 194)) (-1715 (((-637 (-388 |#2|))) 198)) (-1717 (((-637 (-388 |#2|))) 200)) (-1710 (((-2 (|:| |num| (-637 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-1712 (((-2 (|:| |num| (-1179 |#2|)) (|:| |den| |#2|)) $) 195)) (-1723 (((-1179 $)) 206)) (-4197 (((-1179 $)) 207)) (-1722 (((-110) $) 205)) (-1721 (((-110) $) 204) (((-110) $ |#1|) 192) (((-110) $ |#2|) 191)) (-3724 (($) 143 (|has| (-388 |#2|) (-331)) CONST)) (-2426 (($ (-860)) 88 (|has| (-388 |#2|) (-349)))) (-1708 (((-3 |#2| "failed")) 185)) (-3514 (((-1045) $) 10)) (-1732 (((-719)) 219)) (-2435 (($) 160)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 101 (|has| (-388 |#2|) (-344)))) (-3419 (($ (-594 $)) 98 (|has| (-388 |#2|) (-344))) (($ $ $) 97 (|has| (-388 |#2|) (-344)))) (-1742 (((-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516))))) 146 (|has| (-388 |#2|) (-331)))) (-4011 (((-386 $) $) 112 (|has| (-388 |#2|) (-344)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 110 (|has| (-388 |#2|) (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 109 (|has| (-388 |#2|) (-344)))) (-3740 (((-3 $ "failed") $ $) 92 (|has| (-388 |#2|) (-344)))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 103 (|has| (-388 |#2|) (-344)))) (-1654 (((-719) $) 105 (|has| (-388 |#2|) (-344)))) (-4078 ((|#1| $ |#1| |#1|) 187)) (-1709 (((-3 |#2| "failed")) 186)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 106 (|has| (-388 |#2|) (-344)))) (-4036 (((-388 |#2|) (-1179 $)) 47) (((-388 |#2|)) 60)) (-1837 (((-719) $) 151 (|has| (-388 |#2|) (-331))) (((-3 (-719) "failed") $ $) 139 (|has| (-388 |#2|) (-331)))) (-4089 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-719)) 123 (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) 122 (|has| (-388 |#2|) (-344))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-594 (-1098)) (-594 (-719))) 130 (-3810 (-3119 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098)))) (-3119 (|has| (-388 |#2|) (-841 (-1098))) (|has| (-388 |#2|) (-344))))) (($ $ (-1098) (-719)) 131 (-3810 (-3119 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098)))) (-3119 (|has| (-388 |#2|) (-841 (-1098))) (|has| (-388 |#2|) (-344))))) (($ $ (-594 (-1098))) 132 (-3810 (-3119 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098)))) (-3119 (|has| (-388 |#2|) (-841 (-1098))) (|has| (-388 |#2|) (-344))))) (($ $ (-1098)) 133 (-3810 (-3119 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098)))) (-3119 (|has| (-388 |#2|) (-841 (-1098))) (|has| (-388 |#2|) (-344))))) (($ $ (-719)) 135 (-3810 (-3119 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-216))) (-3119 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-331)))) (($ $) 137 (-3810 (-3119 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-216))) (-3119 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-331))))) (-2434 (((-637 (-388 |#2|)) (-1179 $) (-1 (-388 |#2|) (-388 |#2|))) 154 (|has| (-388 |#2|) (-344)))) (-3459 ((|#3|) 159)) (-1740 (($) 148 (|has| (-388 |#2|) (-331)))) (-3497 (((-1179 (-388 |#2|)) $ (-1179 $)) 50) (((-637 (-388 |#2|)) (-1179 $) (-1179 $)) 49) (((-1179 (-388 |#2|)) $) 66) (((-637 (-388 |#2|)) (-1179 $)) 65)) (-4246 (((-1179 (-388 |#2|)) $) 63) (($ (-1179 (-388 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-2966 (((-3 (-1179 $) "failed") (-637 $)) 145 (|has| (-388 |#2|) (-331)))) (-1720 (((-1179 $) (-1179 $)) 203)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ (-388 |#2|)) 37) (($ (-388 (-516))) 86 (-3810 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-975 (-388 (-516)))))) (($ $) 91 (|has| (-388 |#2|) (-344)))) (-2965 (($ $) 144 (|has| (-388 |#2|) (-331))) (((-3 $ "failed") $) 43 (|has| (-388 |#2|) (-138)))) (-2632 ((|#3| $) 45)) (-3385 (((-719)) 29)) (-1729 (((-110)) 216)) (-1728 (((-110) |#1|) 215) (((-110) |#2|) 214)) (-2071 (((-1179 $)) 67)) (-2117 (((-110) $ $) 95 (|has| (-388 |#2|) (-344)))) (-1707 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-1731 (((-110)) 218)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33) (($ $ (-516)) 117 (|has| (-388 |#2|) (-344)))) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2932 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-719)) 125 (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) 124 (|has| (-388 |#2|) (-344))) (($ $ (-594 (-1098)) (-594 (-719))) 126 (-3810 (-3119 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098)))) (-3119 (|has| (-388 |#2|) (-841 (-1098))) (|has| (-388 |#2|) (-344))))) (($ $ (-1098) (-719)) 127 (-3810 (-3119 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098)))) (-3119 (|has| (-388 |#2|) (-841 (-1098))) (|has| (-388 |#2|) (-344))))) (($ $ (-594 (-1098))) 128 (-3810 (-3119 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098)))) (-3119 (|has| (-388 |#2|) (-841 (-1098))) (|has| (-388 |#2|) (-344))))) (($ $ (-1098)) 129 (-3810 (-3119 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098)))) (-3119 (|has| (-388 |#2|) (-841 (-1098))) (|has| (-388 |#2|) (-344))))) (($ $ (-719)) 134 (-3810 (-3119 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-216))) (-3119 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-331)))) (($ $) 136 (-3810 (-3119 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-216))) (-3119 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-331))))) (-3317 (((-110) $ $) 6)) (-4224 (($ $ $) 121 (|has| (-388 |#2|) (-344)))) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32) (($ $ (-516)) 118 (|has| (-388 |#2|) (-344)))) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ (-388 |#2|)) 39) (($ (-388 |#2|) $) 38) (($ (-388 (-516)) $) 120 (|has| (-388 |#2|) (-344))) (($ $ (-388 (-516))) 119 (|has| (-388 |#2|) (-344)))))
+(((-323 |#1| |#2| |#3|) (-133) (-1138) (-1155 |t#1|) (-1155 (-388 |t#2|))) (T -323))
+((-3655 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-5 *2 (-719)))) (-1732 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-5 *2 (-719)))) (-1731 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-5 *2 (-110)))) (-1730 (*1 *2 *3 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-5 *2 (-110)))) (-1729 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-5 *2 (-110)))) (-1728 (*1 *2 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-5 *2 (-110)))) (-1728 (*1 *2 *3) (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1138)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 (-388 *3))) (-5 *2 (-110)))) (-1727 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-5 *2 (-110)))) (-1726 (*1 *2 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-5 *2 (-110)))) (-1726 (*1 *2 *3) (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1138)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 (-388 *3))) (-5 *2 (-110)))) (-1725 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-5 *2 (-110)))) (-1724 (*1 *2 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-5 *2 (-110)))) (-1724 (*1 *2 *3) (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1138)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 (-388 *3))) (-5 *2 (-110)))) (-4197 (*1 *2) (-12 (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-5 *2 (-1179 *1)) (-4 *1 (-323 *3 *4 *5)))) (-1723 (*1 *2) (-12 (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-5 *2 (-1179 *1)) (-4 *1 (-323 *3 *4 *5)))) (-1722 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-5 *2 (-110)))) (-1721 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-5 *2 (-110)))) (-1720 (*1 *2 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))))) (-1719 (*1 *2 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))))) (-1718 (*1 *2 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))))) (-1717 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-5 *2 (-637 (-388 *4))))) (-1716 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-5 *2 (-637 (-388 *4))))) (-1715 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-5 *2 (-637 (-388 *4))))) (-1714 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-5 *2 (-637 (-388 *4))))) (-1713 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-5 *2 (-2 (|:| |num| (-1179 *4)) (|:| |den| *4))))) (-1712 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-5 *2 (-2 (|:| |num| (-1179 *4)) (|:| |den| *4))))) (-1711 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1155 *4)) (-4 *4 (-1138)) (-4 *1 (-323 *4 *3 *5)) (-4 *5 (-1155 (-388 *3))))) (-1710 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-323 *4 *5 *6)) (-4 *4 (-1138)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-388 *5))) (-5 *2 (-2 (|:| |num| (-637 *5)) (|:| |den| *5))))) (-1721 (*1 *2 *1 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-5 *2 (-110)))) (-1721 (*1 *2 *1 *3) (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1138)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 (-388 *3))) (-5 *2 (-110)))) (-4089 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))))) (-1861 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1155 *4)) (-4 *4 (-1138)) (-4 *1 (-323 *4 *3 *5)) (-4 *5 (-1155 (-388 *3))))) (-3777 (*1 *1 *1) (-12 (-4 *1 (-323 *2 *3 *4)) (-4 *2 (-1138)) (-4 *3 (-1155 *2)) (-4 *4 (-1155 (-388 *3))))) (-4078 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-323 *2 *3 *4)) (-4 *2 (-1138)) (-4 *3 (-1155 *2)) (-4 *4 (-1155 (-388 *3))))) (-1709 (*1 *2) (|partial| -12 (-4 *1 (-323 *3 *2 *4)) (-4 *3 (-1138)) (-4 *4 (-1155 (-388 *2))) (-4 *2 (-1155 *3)))) (-1708 (*1 *2) (|partial| -12 (-4 *1 (-323 *3 *2 *4)) (-4 *3 (-1138)) (-4 *4 (-1155 (-388 *2))) (-4 *2 (-1155 *3)))) (-1707 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-1138)) (-4 *6 (-1155 (-388 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-323 *4 *5 *6)))) (-1706 (*1 *2 *3) (-12 (-5 *3 (-1098)) (-4 *1 (-323 *4 *5 *6)) (-4 *4 (-1138)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-388 *5))) (-4 *4 (-344)) (-5 *2 (-594 (-887 *4))))) (-1705 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))) (-4 *3 (-349)) (-5 *2 (-594 (-594 *3))))))
+(-13 (-673 (-388 |t#2|) |t#3|) (-10 -8 (-15 -3655 ((-719))) (-15 -1732 ((-719))) (-15 -1731 ((-110))) (-15 -1730 ((-110) |t#1| |t#1|)) (-15 -1729 ((-110))) (-15 -1728 ((-110) |t#1|)) (-15 -1728 ((-110) |t#2|)) (-15 -1727 ((-110))) (-15 -1726 ((-110) |t#1|)) (-15 -1726 ((-110) |t#2|)) (-15 -1725 ((-110))) (-15 -1724 ((-110) |t#1|)) (-15 -1724 ((-110) |t#2|)) (-15 -4197 ((-1179 $))) (-15 -1723 ((-1179 $))) (-15 -1722 ((-110) $)) (-15 -1721 ((-110) $)) (-15 -1720 ((-1179 $) (-1179 $))) (-15 -1719 ((-1179 $) (-1179 $))) (-15 -1718 ((-1179 $) (-1179 $))) (-15 -1717 ((-637 (-388 |t#2|)))) (-15 -1716 ((-637 (-388 |t#2|)))) (-15 -1715 ((-637 (-388 |t#2|)))) (-15 -1714 ((-637 (-388 |t#2|)))) (-15 -1713 ((-2 (|:| |num| (-1179 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1861 ($ (-1179 |t#2|) |t#2|)) (-15 -1712 ((-2 (|:| |num| (-1179 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1711 ($ (-1179 |t#2|) |t#2|)) (-15 -1710 ((-2 (|:| |num| (-637 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1721 ((-110) $ |t#1|)) (-15 -1721 ((-110) $ |t#2|)) (-15 -4089 ($ $ (-1 |t#2| |t#2|))) (-15 -1861 ($ (-1179 |t#2|) |t#2|)) (-15 -3777 ($ $)) (-15 -4078 (|t#1| $ |t#1| |t#1|)) (-15 -1709 ((-3 |t#2| "failed"))) (-15 -1708 ((-3 |t#2| "failed"))) (-15 -1707 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-344)) (-15 -1706 ((-594 (-887 |t#1|)) (-1098))) |%noBranch|) (IF (|has| |t#1| (-349)) (-15 -1705 ((-594 (-594 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-388 (-516))) -3810 (|has| (-388 |#2|) (-331)) (|has| (-388 |#2|) (-344))) ((-37 #2=(-388 |#2|)) . T) ((-37 $) -3810 (|has| (-388 |#2|) (-331)) (|has| (-388 |#2|) (-344))) ((-99) . T) ((-109 #1# #1#) -3810 (|has| (-388 |#2|) (-331)) (|has| (-388 |#2|) (-344))) ((-109 #2# #2#) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -3810 (|has| (-388 |#2|) (-331)) (|has| (-388 |#2|) (-138))) ((-140) |has| (-388 |#2|) (-140)) ((-571 (-805)) . T) ((-162) . T) ((-572 |#3|) . T) ((-214 #2#) |has| (-388 |#2|) (-344)) ((-216) -3810 (|has| (-388 |#2|) (-331)) (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344)))) ((-226) -3810 (|has| (-388 |#2|) (-331)) (|has| (-388 |#2|) (-344))) ((-272) -3810 (|has| (-388 |#2|) (-331)) (|has| (-388 |#2|) (-344))) ((-289) -3810 (|has| (-388 |#2|) (-331)) (|has| (-388 |#2|) (-344))) ((-344) -3810 (|has| (-388 |#2|) (-331)) (|has| (-388 |#2|) (-344))) ((-383) |has| (-388 |#2|) (-331)) ((-349) -3810 (|has| (-388 |#2|) (-331)) (|has| (-388 |#2|) (-349))) ((-331) |has| (-388 |#2|) (-331)) ((-351 #2# |#3|) . T) ((-391 #2# |#3|) . T) ((-358 #2#) . T) ((-393 #2#) . T) ((-432) -3810 (|has| (-388 |#2|) (-331)) (|has| (-388 |#2|) (-344))) ((-523) -3810 (|has| (-388 |#2|) (-331)) (|has| (-388 |#2|) (-344))) ((-599 #1#) -3810 (|has| (-388 |#2|) (-331)) (|has| (-388 |#2|) (-344))) ((-599 #2#) . T) ((-599 $) . T) ((-593 #2#) . T) ((-593 (-516)) |has| (-388 |#2|) (-593 (-516))) ((-666 #1#) -3810 (|has| (-388 |#2|) (-331)) (|has| (-388 |#2|) (-344))) ((-666 #2#) . T) ((-666 $) -3810 (|has| (-388 |#2|) (-331)) (|has| (-388 |#2|) (-344))) ((-673 #2# |#3|) . T) ((-675) . T) ((-841 (-1098)) -12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098)))) ((-862) -3810 (|has| (-388 |#2|) (-331)) (|has| (-388 |#2|) (-344))) ((-975 (-388 (-516))) |has| (-388 |#2|) (-975 (-388 (-516)))) ((-975 #2#) . T) ((-975 (-516)) |has| (-388 |#2|) (-975 (-516))) ((-989 #1#) -3810 (|has| (-388 |#2|) (-331)) (|has| (-388 |#2|) (-344))) ((-989 #2#) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1074) |has| (-388 |#2|) (-331)) ((-1138) -3810 (|has| (-388 |#2|) (-331)) (|has| (-388 |#2|) (-344))))
+((-4234 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-324 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4234 (|#8| (-1 |#5| |#1|) |#4|))) (-1138) (-1155 |#1|) (-1155 (-388 |#2|)) (-323 |#1| |#2| |#3|) (-1138) (-1155 |#5|) (-1155 (-388 |#6|)) (-323 |#5| |#6| |#7|)) (T -324))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1138)) (-4 *8 (-1138)) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-388 *6))) (-4 *9 (-1155 *8)) (-4 *2 (-323 *8 *9 *10)) (-5 *1 (-324 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-323 *5 *6 *7)) (-4 *10 (-1155 (-388 *9))))))
+(-10 -7 (-15 -4234 (|#8| (-1 |#5| |#1|) |#4|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-4208 (((-110) $) NIL)) (-4205 (((-719)) NIL)) (-3608 (((-847 |#1|) $) NIL) (($ $ (-860)) NIL (|has| (-847 |#1|) (-349)))) (-1741 (((-1107 (-860) (-719)) (-516)) NIL (|has| (-847 |#1|) (-349)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-1655 (((-110) $ $) NIL)) (-3395 (((-719)) NIL (|has| (-847 |#1|) (-349)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-847 |#1|) "failed") $) NIL)) (-3431 (((-847 |#1|) $) NIL)) (-1861 (($ (-1179 (-847 |#1|))) NIL)) (-1739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-847 |#1|) (-349)))) (-2824 (($ $ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3258 (($) NIL (|has| (-847 |#1|) (-349)))) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-3097 (($) NIL (|has| (-847 |#1|) (-349)))) (-1746 (((-110) $) NIL (|has| (-847 |#1|) (-349)))) (-1836 (($ $ (-719)) NIL (-3810 (|has| (-847 |#1|) (-138)) (|has| (-847 |#1|) (-349)))) (($ $) NIL (-3810 (|has| (-847 |#1|) (-138)) (|has| (-847 |#1|) (-349))))) (-4005 (((-110) $) NIL)) (-4050 (((-860) $) NIL (|has| (-847 |#1|) (-349))) (((-780 (-860)) $) NIL (-3810 (|has| (-847 |#1|) (-138)) (|has| (-847 |#1|) (-349))))) (-2436 (((-110) $) NIL)) (-2072 (($) NIL (|has| (-847 |#1|) (-349)))) (-2070 (((-110) $) NIL (|has| (-847 |#1|) (-349)))) (-3391 (((-847 |#1|) $) NIL) (($ $ (-860)) NIL (|has| (-847 |#1|) (-349)))) (-3723 (((-3 $ "failed") $) NIL (|has| (-847 |#1|) (-349)))) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL)) (-2073 (((-1092 (-847 |#1|)) $) NIL) (((-1092 $) $ (-860)) NIL (|has| (-847 |#1|) (-349)))) (-2069 (((-860) $) NIL (|has| (-847 |#1|) (-349)))) (-1674 (((-1092 (-847 |#1|)) $) NIL (|has| (-847 |#1|) (-349)))) (-1673 (((-1092 (-847 |#1|)) $) NIL (|has| (-847 |#1|) (-349))) (((-3 (-1092 (-847 |#1|)) "failed") $ $) NIL (|has| (-847 |#1|) (-349)))) (-1675 (($ $ (-1092 (-847 |#1|))) NIL (|has| (-847 |#1|) (-349)))) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL)) (-3724 (($) NIL (|has| (-847 |#1|) (-349)) CONST)) (-2426 (($ (-860)) NIL (|has| (-847 |#1|) (-349)))) (-4207 (((-110) $) NIL)) (-3514 (((-1045) $) NIL)) (-1733 (((-899 (-1045))) NIL)) (-2435 (($) NIL (|has| (-847 |#1|) (-349)))) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-1742 (((-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516))))) NIL (|has| (-847 |#1|) (-349)))) (-4011 (((-386 $) $) NIL)) (-4206 (((-780 (-860))) NIL) (((-860)) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-1837 (((-719) $) NIL (|has| (-847 |#1|) (-349))) (((-3 (-719) "failed") $ $) NIL (-3810 (|has| (-847 |#1|) (-138)) (|has| (-847 |#1|) (-349))))) (-4190 (((-130)) NIL)) (-4089 (($ $) NIL (|has| (-847 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-847 |#1|) (-349)))) (-4223 (((-780 (-860)) $) NIL) (((-860) $) NIL)) (-3459 (((-1092 (-847 |#1|))) NIL)) (-1740 (($) NIL (|has| (-847 |#1|) (-349)))) (-1676 (($) NIL (|has| (-847 |#1|) (-349)))) (-3497 (((-1179 (-847 |#1|)) $) NIL) (((-637 (-847 |#1|)) (-1179 $)) NIL)) (-2966 (((-3 (-1179 $) "failed") (-637 $)) NIL (|has| (-847 |#1|) (-349)))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ $) NIL) (($ (-388 (-516))) NIL) (($ (-847 |#1|)) NIL)) (-2965 (($ $) NIL (|has| (-847 |#1|) (-349))) (((-3 $ "failed") $) NIL (-3810 (|has| (-847 |#1|) (-138)) (|has| (-847 |#1|) (-349))))) (-3385 (((-719)) NIL)) (-2071 (((-1179 $)) NIL) (((-1179 $) (-860)) NIL)) (-2117 (((-110) $ $) NIL)) (-4209 (((-110) $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-4204 (($ $) NIL (|has| (-847 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-847 |#1|) (-349)))) (-2932 (($ $) NIL (|has| (-847 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-847 |#1|) (-349)))) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ $) NIL) (($ $ (-847 |#1|)) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL) (($ $ (-847 |#1|)) NIL) (($ (-847 |#1|) $) NIL)))
+(((-325 |#1| |#2|) (-13 (-310 (-847 |#1|)) (-10 -7 (-15 -1733 ((-899 (-1045)))))) (-860) (-860)) (T -325))
+((-1733 (*1 *2) (-12 (-5 *2 (-899 (-1045))) (-5 *1 (-325 *3 *4)) (-14 *3 (-860)) (-14 *4 (-860)))))
+(-13 (-310 (-847 |#1|)) (-10 -7 (-15 -1733 ((-899 (-1045))))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 46)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-4208 (((-110) $) NIL)) (-4205 (((-719)) NIL)) (-3608 ((|#1| $) NIL) (($ $ (-860)) NIL (|has| |#1| (-349)))) (-1741 (((-1107 (-860) (-719)) (-516)) 43 (|has| |#1| (-349)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-1655 (((-110) $ $) NIL)) (-3395 (((-719)) NIL (|has| |#1| (-349)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#1| "failed") $) 115)) (-3431 ((|#1| $) 86)) (-1861 (($ (-1179 |#1|)) 104)) (-1739 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-349)))) (-2824 (($ $ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3258 (($) 98 (|has| |#1| (-349)))) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-3097 (($) 130 (|has| |#1| (-349)))) (-1746 (((-110) $) 49 (|has| |#1| (-349)))) (-1836 (($ $ (-719)) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-4005 (((-110) $) NIL)) (-4050 (((-860) $) 47 (|has| |#1| (-349))) (((-780 (-860)) $) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2436 (((-110) $) NIL)) (-2072 (($) 132 (|has| |#1| (-349)))) (-2070 (((-110) $) NIL (|has| |#1| (-349)))) (-3391 ((|#1| $) NIL) (($ $ (-860)) NIL (|has| |#1| (-349)))) (-3723 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL)) (-2073 (((-1092 |#1|) $) 90) (((-1092 $) $ (-860)) NIL (|has| |#1| (-349)))) (-2069 (((-860) $) 140 (|has| |#1| (-349)))) (-1674 (((-1092 |#1|) $) NIL (|has| |#1| (-349)))) (-1673 (((-1092 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1092 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-1675 (($ $ (-1092 |#1|)) NIL (|has| |#1| (-349)))) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) 147)) (-3724 (($) NIL (|has| |#1| (-349)) CONST)) (-2426 (($ (-860)) 71 (|has| |#1| (-349)))) (-4207 (((-110) $) 118)) (-3514 (((-1045) $) NIL)) (-1733 (((-899 (-1045))) 44)) (-2435 (($) 128 (|has| |#1| (-349)))) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-1742 (((-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516))))) 93 (|has| |#1| (-349)))) (-4011 (((-386 $) $) NIL)) (-4206 (((-780 (-860))) 67) (((-860)) 68)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-1837 (((-719) $) 131 (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) 125 (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-4190 (((-130)) NIL)) (-4089 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-4223 (((-780 (-860)) $) NIL) (((-860) $) NIL)) (-3459 (((-1092 |#1|)) 96)) (-1740 (($) 129 (|has| |#1| (-349)))) (-1676 (($) 137 (|has| |#1| (-349)))) (-3497 (((-1179 |#1|) $) 59) (((-637 |#1|) (-1179 $)) NIL)) (-2966 (((-3 (-1179 $) "failed") (-637 $)) NIL (|has| |#1| (-349)))) (-4233 (((-805) $) 143) (($ (-516)) NIL) (($ $) NIL) (($ (-388 (-516))) NIL) (($ |#1|) 75)) (-2965 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3385 (((-719)) 139)) (-2071 (((-1179 $)) 117) (((-1179 $) (-860)) 73)) (-2117 (((-110) $ $) NIL)) (-4209 (((-110) $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) 32 T CONST)) (-2927 (($) 19 T CONST)) (-4204 (($ $) 81 (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-2932 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3317 (((-110) $ $) 48)) (-4224 (($ $ $) 145) (($ $ |#1|) 146)) (-4116 (($ $) 127) (($ $ $) NIL)) (-4118 (($ $ $) 61)) (** (($ $ (-860)) 149) (($ $ (-719)) 150) (($ $ (-516)) 148)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 77) (($ $ $) 76) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 144)))
+(((-326 |#1| |#2|) (-13 (-310 |#1|) (-10 -7 (-15 -1733 ((-899 (-1045)))))) (-331) (-1092 |#1|)) (T -326))
+((-1733 (*1 *2) (-12 (-5 *2 (-899 (-1045))) (-5 *1 (-326 *3 *4)) (-4 *3 (-331)) (-14 *4 (-1092 *3)))))
+(-13 (-310 |#1|) (-10 -7 (-15 -1733 ((-899 (-1045))))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-4208 (((-110) $) NIL)) (-4205 (((-719)) NIL)) (-3608 ((|#1| $) NIL) (($ $ (-860)) NIL (|has| |#1| (-349)))) (-1741 (((-1107 (-860) (-719)) (-516)) NIL (|has| |#1| (-349)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-1655 (((-110) $ $) NIL)) (-3395 (((-719)) NIL (|has| |#1| (-349)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#1| "failed") $) NIL)) (-3431 ((|#1| $) NIL)) (-1861 (($ (-1179 |#1|)) NIL)) (-1739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-2824 (($ $ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3258 (($) NIL (|has| |#1| (-349)))) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-3097 (($) NIL (|has| |#1| (-349)))) (-1746 (((-110) $) NIL (|has| |#1| (-349)))) (-1836 (($ $ (-719)) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-4005 (((-110) $) NIL)) (-4050 (((-860) $) NIL (|has| |#1| (-349))) (((-780 (-860)) $) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2436 (((-110) $) NIL)) (-2072 (($) NIL (|has| |#1| (-349)))) (-2070 (((-110) $) NIL (|has| |#1| (-349)))) (-3391 ((|#1| $) NIL) (($ $ (-860)) NIL (|has| |#1| (-349)))) (-3723 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL)) (-2073 (((-1092 |#1|) $) NIL) (((-1092 $) $ (-860)) NIL (|has| |#1| (-349)))) (-2069 (((-860) $) NIL (|has| |#1| (-349)))) (-1674 (((-1092 |#1|) $) NIL (|has| |#1| (-349)))) (-1673 (((-1092 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1092 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-1675 (($ $ (-1092 |#1|)) NIL (|has| |#1| (-349)))) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL)) (-3724 (($) NIL (|has| |#1| (-349)) CONST)) (-2426 (($ (-860)) NIL (|has| |#1| (-349)))) (-4207 (((-110) $) NIL)) (-3514 (((-1045) $) NIL)) (-1733 (((-899 (-1045))) NIL)) (-2435 (($) NIL (|has| |#1| (-349)))) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-1742 (((-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516))))) NIL (|has| |#1| (-349)))) (-4011 (((-386 $) $) NIL)) (-4206 (((-780 (-860))) NIL) (((-860)) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-1837 (((-719) $) NIL (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-4190 (((-130)) NIL)) (-4089 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-4223 (((-780 (-860)) $) NIL) (((-860) $) NIL)) (-3459 (((-1092 |#1|)) NIL)) (-1740 (($) NIL (|has| |#1| (-349)))) (-1676 (($) NIL (|has| |#1| (-349)))) (-3497 (((-1179 |#1|) $) NIL) (((-637 |#1|) (-1179 $)) NIL)) (-2966 (((-3 (-1179 $) "failed") (-637 $)) NIL (|has| |#1| (-349)))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ $) NIL) (($ (-388 (-516))) NIL) (($ |#1|) NIL)) (-2965 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3385 (((-719)) NIL)) (-2071 (((-1179 $)) NIL) (((-1179 $) (-860)) NIL)) (-2117 (((-110) $ $) NIL)) (-4209 (((-110) $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-4204 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-2932 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-327 |#1| |#2|) (-13 (-310 |#1|) (-10 -7 (-15 -1733 ((-899 (-1045)))))) (-331) (-860)) (T -327))
+((-1733 (*1 *2) (-12 (-5 *2 (-899 (-1045))) (-5 *1 (-327 *3 *4)) (-4 *3 (-331)) (-14 *4 (-860)))))
+(-13 (-310 |#1|) (-10 -7 (-15 -1733 ((-899 (-1045))))))
+((-1743 (((-719) (-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045)))))) 42)) (-1734 (((-899 (-1045)) (-1092 |#1|)) 85)) (-1735 (((-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045))))) (-1092 |#1|)) 78)) (-1736 (((-637 |#1|) (-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045)))))) 86)) (-1737 (((-3 (-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045))))) "failed") (-860)) 13)) (-1738 (((-3 (-1092 |#1|) (-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045)))))) (-860)) 18)))
+(((-328 |#1|) (-10 -7 (-15 -1734 ((-899 (-1045)) (-1092 |#1|))) (-15 -1735 ((-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045))))) (-1092 |#1|))) (-15 -1736 ((-637 |#1|) (-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045))))))) (-15 -1743 ((-719) (-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045))))))) (-15 -1737 ((-3 (-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045))))) "failed") (-860))) (-15 -1738 ((-3 (-1092 |#1|) (-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045)))))) (-860)))) (-331)) (T -328))
+((-1738 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-3 (-1092 *4) (-1179 (-594 (-2 (|:| -3681 *4) (|:| -2426 (-1045))))))) (-5 *1 (-328 *4)) (-4 *4 (-331)))) (-1737 (*1 *2 *3) (|partial| -12 (-5 *3 (-860)) (-5 *2 (-1179 (-594 (-2 (|:| -3681 *4) (|:| -2426 (-1045)))))) (-5 *1 (-328 *4)) (-4 *4 (-331)))) (-1743 (*1 *2 *3) (-12 (-5 *3 (-1179 (-594 (-2 (|:| -3681 *4) (|:| -2426 (-1045)))))) (-4 *4 (-331)) (-5 *2 (-719)) (-5 *1 (-328 *4)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-1179 (-594 (-2 (|:| -3681 *4) (|:| -2426 (-1045)))))) (-4 *4 (-331)) (-5 *2 (-637 *4)) (-5 *1 (-328 *4)))) (-1735 (*1 *2 *3) (-12 (-5 *3 (-1092 *4)) (-4 *4 (-331)) (-5 *2 (-1179 (-594 (-2 (|:| -3681 *4) (|:| -2426 (-1045)))))) (-5 *1 (-328 *4)))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-1092 *4)) (-4 *4 (-331)) (-5 *2 (-899 (-1045))) (-5 *1 (-328 *4)))))
+(-10 -7 (-15 -1734 ((-899 (-1045)) (-1092 |#1|))) (-15 -1735 ((-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045))))) (-1092 |#1|))) (-15 -1736 ((-637 |#1|) (-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045))))))) (-15 -1743 ((-719) (-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045))))))) (-15 -1737 ((-3 (-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045))))) "failed") (-860))) (-15 -1738 ((-3 (-1092 |#1|) (-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045)))))) (-860))))
+((-4233 ((|#1| |#3|) 86) ((|#3| |#1|) 69)))
+(((-329 |#1| |#2| |#3|) (-10 -7 (-15 -4233 (|#3| |#1|)) (-15 -4233 (|#1| |#3|))) (-310 |#2|) (-331) (-310 |#2|)) (T -329))
+((-4233 (*1 *2 *3) (-12 (-4 *4 (-331)) (-4 *2 (-310 *4)) (-5 *1 (-329 *2 *4 *3)) (-4 *3 (-310 *4)))) (-4233 (*1 *2 *3) (-12 (-4 *4 (-331)) (-4 *2 (-310 *4)) (-5 *1 (-329 *3 *4 *2)) (-4 *3 (-310 *4)))))
+(-10 -7 (-15 -4233 (|#3| |#1|)) (-15 -4233 (|#1| |#3|)))
+((-1746 (((-110) $) 52)) (-4050 (((-780 (-860)) $) 21) (((-860) $) 53)) (-3723 (((-3 $ "failed") $) 16)) (-3724 (($) 9)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 95)) (-1837 (((-3 (-719) "failed") $ $) 73) (((-719) $) 61)) (-4089 (($ $ (-719)) NIL) (($ $) 8)) (-1740 (($) 46)) (-2966 (((-3 (-1179 $) "failed") (-637 $)) 34)) (-2965 (((-3 $ "failed") $) 40) (($ $) 39)))
+(((-330 |#1|) (-10 -8 (-15 -4050 ((-860) |#1|)) (-15 -1837 ((-719) |#1|)) (-15 -1746 ((-110) |#1|)) (-15 -1740 (|#1|)) (-15 -2966 ((-3 (-1179 |#1|) "failed") (-637 |#1|))) (-15 -2965 (|#1| |#1|)) (-15 -4089 (|#1| |#1|)) (-15 -4089 (|#1| |#1| (-719))) (-15 -3724 (|#1|)) (-15 -3723 ((-3 |#1| "failed") |#1|)) (-15 -1837 ((-3 (-719) "failed") |#1| |#1|)) (-15 -4050 ((-780 (-860)) |#1|)) (-15 -2965 ((-3 |#1| "failed") |#1|)) (-15 -2971 ((-1092 |#1|) (-1092 |#1|) (-1092 |#1|)))) (-331)) (T -330))
+NIL
+(-10 -8 (-15 -4050 ((-860) |#1|)) (-15 -1837 ((-719) |#1|)) (-15 -1746 ((-110) |#1|)) (-15 -1740 (|#1|)) (-15 -2966 ((-3 (-1179 |#1|) "failed") (-637 |#1|))) (-15 -2965 (|#1| |#1|)) (-15 -4089 (|#1| |#1|)) (-15 -4089 (|#1| |#1| (-719))) (-15 -3724 (|#1|)) (-15 -3723 ((-3 |#1| "failed") |#1|)) (-15 -1837 ((-3 (-719) "failed") |#1| |#1|)) (-15 -4050 ((-780 (-860)) |#1|)) (-15 -2965 ((-3 |#1| "failed") |#1|)) (-15 -2971 ((-1092 |#1|) (-1092 |#1|) (-1092 |#1|))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 41)) (-2118 (($ $) 40)) (-2116 (((-110) $) 38)) (-1741 (((-1107 (-860) (-719)) (-516)) 93)) (-1319 (((-3 $ "failed") $ $) 19)) (-4053 (($ $) 73)) (-4245 (((-386 $) $) 72)) (-1655 (((-110) $ $) 59)) (-3395 (((-719)) 103)) (-3815 (($) 17 T CONST)) (-1739 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-2824 (($ $ $) 55)) (-3741 (((-3 $ "failed") $) 34)) (-3258 (($) 106)) (-2823 (($ $ $) 56)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 51)) (-3097 (($) 91)) (-1746 (((-110) $) 90)) (-1836 (($ $) 79) (($ $ (-719)) 78)) (-4005 (((-110) $) 71)) (-4050 (((-780 (-860)) $) 81) (((-860) $) 88)) (-2436 (((-110) $) 31)) (-3723 (((-3 $ "failed") $) 102)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) 52)) (-2069 (((-860) $) 105)) (-1963 (($ $ $) 46) (($ (-594 $)) 45)) (-3513 (((-1081) $) 9)) (-2668 (($ $) 70)) (-3724 (($) 101 T CONST)) (-2426 (($ (-860)) 104)) (-3514 (((-1045) $) 10)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 44)) (-3419 (($ $ $) 48) (($ (-594 $)) 47)) (-1742 (((-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516))))) 94)) (-4011 (((-386 $) $) 74)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 53)) (-3740 (((-3 $ "failed") $ $) 42)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 50)) (-1654 (((-719) $) 58)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 57)) (-1837 (((-3 (-719) "failed") $ $) 80) (((-719) $) 89)) (-4089 (($ $ (-719)) 99) (($ $) 97)) (-1740 (($) 92)) (-2966 (((-3 (-1179 $) "failed") (-637 $)) 95)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ $) 43) (($ (-388 (-516))) 65)) (-2965 (((-3 $ "failed") $) 82) (($ $) 96)) (-3385 (((-719)) 29)) (-2117 (((-110) $ $) 39)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33) (($ $ (-516)) 69)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2932 (($ $ (-719)) 100) (($ $) 98)) (-3317 (((-110) $ $) 6)) (-4224 (($ $ $) 64)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32) (($ $ (-516)) 68)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ (-388 (-516))) 67) (($ (-388 (-516)) $) 66)))
+(((-331) (-133)) (T -331))
+((-2965 (*1 *1 *1) (-4 *1 (-331))) (-2966 (*1 *2 *3) (|partial| -12 (-5 *3 (-637 *1)) (-4 *1 (-331)) (-5 *2 (-1179 *1)))) (-1742 (*1 *2) (-12 (-4 *1 (-331)) (-5 *2 (-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516))))))) (-1741 (*1 *2 *3) (-12 (-4 *1 (-331)) (-5 *3 (-516)) (-5 *2 (-1107 (-860) (-719))))) (-1740 (*1 *1) (-4 *1 (-331))) (-3097 (*1 *1) (-4 *1 (-331))) (-1746 (*1 *2 *1) (-12 (-4 *1 (-331)) (-5 *2 (-110)))) (-1837 (*1 *2 *1) (-12 (-4 *1 (-331)) (-5 *2 (-719)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-331)) (-5 *2 (-860)))) (-1739 (*1 *2) (-12 (-4 *1 (-331)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-383) (-349) (-1074) (-216) (-10 -8 (-15 -2965 ($ $)) (-15 -2966 ((-3 (-1179 $) "failed") (-637 $))) (-15 -1742 ((-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516)))))) (-15 -1741 ((-1107 (-860) (-719)) (-516))) (-15 -1740 ($)) (-15 -3097 ($)) (-15 -1746 ((-110) $)) (-15 -1837 ((-719) $)) (-15 -4050 ((-860) $)) (-15 -1739 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-388 (-516))) . T) ((-37 $) . T) ((-99) . T) ((-109 #1# #1#) . T) ((-109 $ $) . T) ((-128) . T) ((-138) . T) ((-571 (-805)) . T) ((-162) . T) ((-216) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-383) . T) ((-349) . T) ((-432) . T) ((-523) . T) ((-599 #1#) . T) ((-599 $) . T) ((-666 #1#) . T) ((-666 $) . T) ((-675) . T) ((-862) . T) ((-989 #1#) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1074) . T) ((-1138) . T))
+((-4198 (((-2 (|:| -2071 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) |#1|) 53)) (-4197 (((-2 (|:| -2071 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|)))) 51)))
+(((-332 |#1| |#2| |#3|) (-10 -7 (-15 -4197 ((-2 (|:| -2071 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))))) (-15 -4198 ((-2 (|:| -2071 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) |#1|))) (-13 (-289) (-10 -8 (-15 -4245 ((-386 $) $)))) (-1155 |#1|) (-391 |#1| |#2|)) (T -332))
+((-4198 (*1 *2 *3) (-12 (-4 *3 (-13 (-289) (-10 -8 (-15 -4245 ((-386 $) $))))) (-4 *4 (-1155 *3)) (-5 *2 (-2 (|:| -2071 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-391 *3 *4)))) (-4197 (*1 *2) (-12 (-4 *3 (-13 (-289) (-10 -8 (-15 -4245 ((-386 $) $))))) (-4 *4 (-1155 *3)) (-5 *2 (-2 (|:| -2071 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-391 *3 *4)))))
+(-10 -7 (-15 -4197 ((-2 (|:| -2071 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))))) (-15 -4198 ((-2 (|:| -2071 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) |#1|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-4208 (((-110) $) NIL)) (-4205 (((-719)) NIL)) (-3608 (((-847 |#1|) $) NIL) (($ $ (-860)) NIL (|has| (-847 |#1|) (-349)))) (-1741 (((-1107 (-860) (-719)) (-516)) NIL (|has| (-847 |#1|) (-349)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-1743 (((-719)) NIL)) (-1655 (((-110) $ $) NIL)) (-3395 (((-719)) NIL (|has| (-847 |#1|) (-349)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-847 |#1|) "failed") $) NIL)) (-3431 (((-847 |#1|) $) NIL)) (-1861 (($ (-1179 (-847 |#1|))) NIL)) (-1739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-847 |#1|) (-349)))) (-2824 (($ $ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3258 (($) NIL (|has| (-847 |#1|) (-349)))) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-3097 (($) NIL (|has| (-847 |#1|) (-349)))) (-1746 (((-110) $) NIL (|has| (-847 |#1|) (-349)))) (-1836 (($ $ (-719)) NIL (-3810 (|has| (-847 |#1|) (-138)) (|has| (-847 |#1|) (-349)))) (($ $) NIL (-3810 (|has| (-847 |#1|) (-138)) (|has| (-847 |#1|) (-349))))) (-4005 (((-110) $) NIL)) (-4050 (((-860) $) NIL (|has| (-847 |#1|) (-349))) (((-780 (-860)) $) NIL (-3810 (|has| (-847 |#1|) (-138)) (|has| (-847 |#1|) (-349))))) (-2436 (((-110) $) NIL)) (-2072 (($) NIL (|has| (-847 |#1|) (-349)))) (-2070 (((-110) $) NIL (|has| (-847 |#1|) (-349)))) (-3391 (((-847 |#1|) $) NIL) (($ $ (-860)) NIL (|has| (-847 |#1|) (-349)))) (-3723 (((-3 $ "failed") $) NIL (|has| (-847 |#1|) (-349)))) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL)) (-2073 (((-1092 (-847 |#1|)) $) NIL) (((-1092 $) $ (-860)) NIL (|has| (-847 |#1|) (-349)))) (-2069 (((-860) $) NIL (|has| (-847 |#1|) (-349)))) (-1674 (((-1092 (-847 |#1|)) $) NIL (|has| (-847 |#1|) (-349)))) (-1673 (((-1092 (-847 |#1|)) $) NIL (|has| (-847 |#1|) (-349))) (((-3 (-1092 (-847 |#1|)) "failed") $ $) NIL (|has| (-847 |#1|) (-349)))) (-1675 (($ $ (-1092 (-847 |#1|))) NIL (|has| (-847 |#1|) (-349)))) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL)) (-3724 (($) NIL (|has| (-847 |#1|) (-349)) CONST)) (-2426 (($ (-860)) NIL (|has| (-847 |#1|) (-349)))) (-4207 (((-110) $) NIL)) (-3514 (((-1045) $) NIL)) (-1745 (((-1179 (-594 (-2 (|:| -3681 (-847 |#1|)) (|:| -2426 (-1045)))))) NIL)) (-1744 (((-637 (-847 |#1|))) NIL)) (-2435 (($) NIL (|has| (-847 |#1|) (-349)))) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-1742 (((-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516))))) NIL (|has| (-847 |#1|) (-349)))) (-4011 (((-386 $) $) NIL)) (-4206 (((-780 (-860))) NIL) (((-860)) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-1837 (((-719) $) NIL (|has| (-847 |#1|) (-349))) (((-3 (-719) "failed") $ $) NIL (-3810 (|has| (-847 |#1|) (-138)) (|has| (-847 |#1|) (-349))))) (-4190 (((-130)) NIL)) (-4089 (($ $) NIL (|has| (-847 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-847 |#1|) (-349)))) (-4223 (((-780 (-860)) $) NIL) (((-860) $) NIL)) (-3459 (((-1092 (-847 |#1|))) NIL)) (-1740 (($) NIL (|has| (-847 |#1|) (-349)))) (-1676 (($) NIL (|has| (-847 |#1|) (-349)))) (-3497 (((-1179 (-847 |#1|)) $) NIL) (((-637 (-847 |#1|)) (-1179 $)) NIL)) (-2966 (((-3 (-1179 $) "failed") (-637 $)) NIL (|has| (-847 |#1|) (-349)))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ $) NIL) (($ (-388 (-516))) NIL) (($ (-847 |#1|)) NIL)) (-2965 (($ $) NIL (|has| (-847 |#1|) (-349))) (((-3 $ "failed") $) NIL (-3810 (|has| (-847 |#1|) (-138)) (|has| (-847 |#1|) (-349))))) (-3385 (((-719)) NIL)) (-2071 (((-1179 $)) NIL) (((-1179 $) (-860)) NIL)) (-2117 (((-110) $ $) NIL)) (-4209 (((-110) $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-4204 (($ $) NIL (|has| (-847 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-847 |#1|) (-349)))) (-2932 (($ $) NIL (|has| (-847 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-847 |#1|) (-349)))) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ $) NIL) (($ $ (-847 |#1|)) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL) (($ $ (-847 |#1|)) NIL) (($ (-847 |#1|) $) NIL)))
+(((-333 |#1| |#2|) (-13 (-310 (-847 |#1|)) (-10 -7 (-15 -1745 ((-1179 (-594 (-2 (|:| -3681 (-847 |#1|)) (|:| -2426 (-1045))))))) (-15 -1744 ((-637 (-847 |#1|)))) (-15 -1743 ((-719))))) (-860) (-860)) (T -333))
+((-1745 (*1 *2) (-12 (-5 *2 (-1179 (-594 (-2 (|:| -3681 (-847 *3)) (|:| -2426 (-1045)))))) (-5 *1 (-333 *3 *4)) (-14 *3 (-860)) (-14 *4 (-860)))) (-1744 (*1 *2) (-12 (-5 *2 (-637 (-847 *3))) (-5 *1 (-333 *3 *4)) (-14 *3 (-860)) (-14 *4 (-860)))) (-1743 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-333 *3 *4)) (-14 *3 (-860)) (-14 *4 (-860)))))
+(-13 (-310 (-847 |#1|)) (-10 -7 (-15 -1745 ((-1179 (-594 (-2 (|:| -3681 (-847 |#1|)) (|:| -2426 (-1045))))))) (-15 -1744 ((-637 (-847 |#1|)))) (-15 -1743 ((-719)))))
+((-2828 (((-110) $ $) 62)) (-3462 (((-110) $) 75)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-4208 (((-110) $) NIL)) (-4205 (((-719)) NIL)) (-3608 ((|#1| $) 93) (($ $ (-860)) 91 (|has| |#1| (-349)))) (-1741 (((-1107 (-860) (-719)) (-516)) 149 (|has| |#1| (-349)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-1743 (((-719)) 90)) (-1655 (((-110) $ $) NIL)) (-3395 (((-719)) 163 (|has| |#1| (-349)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#1| "failed") $) 113)) (-3431 ((|#1| $) 92)) (-1861 (($ (-1179 |#1|)) 59)) (-1739 (((-3 "prime" "polynomial" "normal" "cyclic")) 189 (|has| |#1| (-349)))) (-2824 (($ $ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3258 (($) 159 (|has| |#1| (-349)))) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-3097 (($) 150 (|has| |#1| (-349)))) (-1746 (((-110) $) NIL (|has| |#1| (-349)))) (-1836 (($ $ (-719)) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-4005 (((-110) $) NIL)) (-4050 (((-860) $) NIL (|has| |#1| (-349))) (((-780 (-860)) $) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2436 (((-110) $) NIL)) (-2072 (($) 99 (|has| |#1| (-349)))) (-2070 (((-110) $) 176 (|has| |#1| (-349)))) (-3391 ((|#1| $) 95) (($ $ (-860)) 94 (|has| |#1| (-349)))) (-3723 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL)) (-2073 (((-1092 |#1|) $) 190) (((-1092 $) $ (-860)) NIL (|has| |#1| (-349)))) (-2069 (((-860) $) 135 (|has| |#1| (-349)))) (-1674 (((-1092 |#1|) $) 74 (|has| |#1| (-349)))) (-1673 (((-1092 |#1|) $) 71 (|has| |#1| (-349))) (((-3 (-1092 |#1|) "failed") $ $) 83 (|has| |#1| (-349)))) (-1675 (($ $ (-1092 |#1|)) 70 (|has| |#1| (-349)))) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) 193)) (-3724 (($) NIL (|has| |#1| (-349)) CONST)) (-2426 (($ (-860)) 138 (|has| |#1| (-349)))) (-4207 (((-110) $) 109)) (-3514 (((-1045) $) NIL)) (-1745 (((-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045)))))) 84)) (-1744 (((-637 |#1|)) 88)) (-2435 (($) 97 (|has| |#1| (-349)))) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-1742 (((-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516))))) 151 (|has| |#1| (-349)))) (-4011 (((-386 $) $) NIL)) (-4206 (((-780 (-860))) NIL) (((-860)) 152)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-1837 (((-719) $) NIL (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-4190 (((-130)) NIL)) (-4089 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-4223 (((-780 (-860)) $) NIL) (((-860) $) 63)) (-3459 (((-1092 |#1|)) 153)) (-1740 (($) 134 (|has| |#1| (-349)))) (-1676 (($) NIL (|has| |#1| (-349)))) (-3497 (((-1179 |#1|) $) 107) (((-637 |#1|) (-1179 $)) NIL)) (-2966 (((-3 (-1179 $) "failed") (-637 $)) NIL (|has| |#1| (-349)))) (-4233 (((-805) $) 125) (($ (-516)) NIL) (($ $) NIL) (($ (-388 (-516))) NIL) (($ |#1|) 58)) (-2965 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3385 (((-719)) 157)) (-2071 (((-1179 $)) 173) (((-1179 $) (-860)) 102)) (-2117 (((-110) $ $) NIL)) (-4209 (((-110) $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) 30 T CONST)) (-2927 (($) 22 T CONST)) (-4204 (($ $) 108 (|has| |#1| (-349))) (($ $ (-719)) 100 (|has| |#1| (-349)))) (-2932 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3317 (((-110) $ $) 184)) (-4224 (($ $ $) 105) (($ $ |#1|) 106)) (-4116 (($ $) 178) (($ $ $) 182)) (-4118 (($ $ $) 180)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) 139)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 187) (($ $ $) 143) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 104)))
+(((-334 |#1| |#2|) (-13 (-310 |#1|) (-10 -7 (-15 -1745 ((-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045))))))) (-15 -1744 ((-637 |#1|))) (-15 -1743 ((-719))))) (-331) (-3 (-1092 |#1|) (-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045))))))) (T -334))
+((-1745 (*1 *2) (-12 (-5 *2 (-1179 (-594 (-2 (|:| -3681 *3) (|:| -2426 (-1045)))))) (-5 *1 (-334 *3 *4)) (-4 *3 (-331)) (-14 *4 (-3 (-1092 *3) *2)))) (-1744 (*1 *2) (-12 (-5 *2 (-637 *3)) (-5 *1 (-334 *3 *4)) (-4 *3 (-331)) (-14 *4 (-3 (-1092 *3) (-1179 (-594 (-2 (|:| -3681 *3) (|:| -2426 (-1045))))))))) (-1743 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-334 *3 *4)) (-4 *3 (-331)) (-14 *4 (-3 (-1092 *3) (-1179 (-594 (-2 (|:| -3681 *3) (|:| -2426 (-1045))))))))))
+(-13 (-310 |#1|) (-10 -7 (-15 -1745 ((-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045))))))) (-15 -1744 ((-637 |#1|))) (-15 -1743 ((-719)))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-4208 (((-110) $) NIL)) (-4205 (((-719)) NIL)) (-3608 ((|#1| $) NIL) (($ $ (-860)) NIL (|has| |#1| (-349)))) (-1741 (((-1107 (-860) (-719)) (-516)) NIL (|has| |#1| (-349)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-1743 (((-719)) NIL)) (-1655 (((-110) $ $) NIL)) (-3395 (((-719)) NIL (|has| |#1| (-349)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#1| "failed") $) NIL)) (-3431 ((|#1| $) NIL)) (-1861 (($ (-1179 |#1|)) NIL)) (-1739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-2824 (($ $ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3258 (($) NIL (|has| |#1| (-349)))) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-3097 (($) NIL (|has| |#1| (-349)))) (-1746 (((-110) $) NIL (|has| |#1| (-349)))) (-1836 (($ $ (-719)) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-4005 (((-110) $) NIL)) (-4050 (((-860) $) NIL (|has| |#1| (-349))) (((-780 (-860)) $) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2436 (((-110) $) NIL)) (-2072 (($) NIL (|has| |#1| (-349)))) (-2070 (((-110) $) NIL (|has| |#1| (-349)))) (-3391 ((|#1| $) NIL) (($ $ (-860)) NIL (|has| |#1| (-349)))) (-3723 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL)) (-2073 (((-1092 |#1|) $) NIL) (((-1092 $) $ (-860)) NIL (|has| |#1| (-349)))) (-2069 (((-860) $) NIL (|has| |#1| (-349)))) (-1674 (((-1092 |#1|) $) NIL (|has| |#1| (-349)))) (-1673 (((-1092 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1092 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-1675 (($ $ (-1092 |#1|)) NIL (|has| |#1| (-349)))) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL)) (-3724 (($) NIL (|has| |#1| (-349)) CONST)) (-2426 (($ (-860)) NIL (|has| |#1| (-349)))) (-4207 (((-110) $) NIL)) (-3514 (((-1045) $) NIL)) (-1745 (((-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045)))))) NIL)) (-1744 (((-637 |#1|)) NIL)) (-2435 (($) NIL (|has| |#1| (-349)))) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-1742 (((-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516))))) NIL (|has| |#1| (-349)))) (-4011 (((-386 $) $) NIL)) (-4206 (((-780 (-860))) NIL) (((-860)) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-1837 (((-719) $) NIL (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-4190 (((-130)) NIL)) (-4089 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-4223 (((-780 (-860)) $) NIL) (((-860) $) NIL)) (-3459 (((-1092 |#1|)) NIL)) (-1740 (($) NIL (|has| |#1| (-349)))) (-1676 (($) NIL (|has| |#1| (-349)))) (-3497 (((-1179 |#1|) $) NIL) (((-637 |#1|) (-1179 $)) NIL)) (-2966 (((-3 (-1179 $) "failed") (-637 $)) NIL (|has| |#1| (-349)))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ $) NIL) (($ (-388 (-516))) NIL) (($ |#1|) NIL)) (-2965 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3385 (((-719)) NIL)) (-2071 (((-1179 $)) NIL) (((-1179 $) (-860)) NIL)) (-2117 (((-110) $ $) NIL)) (-4209 (((-110) $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-4204 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-2932 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-335 |#1| |#2|) (-13 (-310 |#1|) (-10 -7 (-15 -1745 ((-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045))))))) (-15 -1744 ((-637 |#1|))) (-15 -1743 ((-719))))) (-331) (-860)) (T -335))
+((-1745 (*1 *2) (-12 (-5 *2 (-1179 (-594 (-2 (|:| -3681 *3) (|:| -2426 (-1045)))))) (-5 *1 (-335 *3 *4)) (-4 *3 (-331)) (-14 *4 (-860)))) (-1744 (*1 *2) (-12 (-5 *2 (-637 *3)) (-5 *1 (-335 *3 *4)) (-4 *3 (-331)) (-14 *4 (-860)))) (-1743 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-335 *3 *4)) (-4 *3 (-331)) (-14 *4 (-860)))))
+(-13 (-310 |#1|) (-10 -7 (-15 -1745 ((-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045))))))) (-15 -1744 ((-637 |#1|))) (-15 -1743 ((-719)))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-4208 (((-110) $) NIL)) (-4205 (((-719)) NIL)) (-3608 ((|#1| $) NIL) (($ $ (-860)) NIL (|has| |#1| (-349)))) (-1741 (((-1107 (-860) (-719)) (-516)) 120 (|has| |#1| (-349)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-1655 (((-110) $ $) NIL)) (-3395 (((-719)) 140 (|has| |#1| (-349)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#1| "failed") $) 93)) (-3431 ((|#1| $) 90)) (-1861 (($ (-1179 |#1|)) 85)) (-1739 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-349)))) (-2824 (($ $ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3258 (($) 82 (|has| |#1| (-349)))) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-3097 (($) 42 (|has| |#1| (-349)))) (-1746 (((-110) $) NIL (|has| |#1| (-349)))) (-1836 (($ $ (-719)) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-4005 (((-110) $) NIL)) (-4050 (((-860) $) NIL (|has| |#1| (-349))) (((-780 (-860)) $) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2436 (((-110) $) NIL)) (-2072 (($) 121 (|has| |#1| (-349)))) (-2070 (((-110) $) 74 (|has| |#1| (-349)))) (-3391 ((|#1| $) 39) (($ $ (-860)) 43 (|has| |#1| (-349)))) (-3723 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL)) (-2073 (((-1092 |#1|) $) 65) (((-1092 $) $ (-860)) NIL (|has| |#1| (-349)))) (-2069 (((-860) $) 97 (|has| |#1| (-349)))) (-1674 (((-1092 |#1|) $) NIL (|has| |#1| (-349)))) (-1673 (((-1092 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1092 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-1675 (($ $ (-1092 |#1|)) NIL (|has| |#1| (-349)))) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL)) (-3724 (($) NIL (|has| |#1| (-349)) CONST)) (-2426 (($ (-860)) 95 (|has| |#1| (-349)))) (-4207 (((-110) $) 142)) (-3514 (((-1045) $) NIL)) (-2435 (($) 36 (|has| |#1| (-349)))) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-1742 (((-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516))))) 115 (|has| |#1| (-349)))) (-4011 (((-386 $) $) NIL)) (-4206 (((-780 (-860))) NIL) (((-860)) 139)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-1837 (((-719) $) NIL (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-4190 (((-130)) NIL)) (-4089 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-4223 (((-780 (-860)) $) NIL) (((-860) $) 59)) (-3459 (((-1092 |#1|)) 88)) (-1740 (($) 126 (|has| |#1| (-349)))) (-1676 (($) NIL (|has| |#1| (-349)))) (-3497 (((-1179 |#1|) $) 53) (((-637 |#1|) (-1179 $)) NIL)) (-2966 (((-3 (-1179 $) "failed") (-637 $)) NIL (|has| |#1| (-349)))) (-4233 (((-805) $) 138) (($ (-516)) NIL) (($ $) NIL) (($ (-388 (-516))) NIL) (($ |#1|) 87)) (-2965 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3385 (((-719)) 144)) (-2071 (((-1179 $)) 109) (((-1179 $) (-860)) 49)) (-2117 (((-110) $ $) NIL)) (-4209 (((-110) $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) 111 T CONST)) (-2927 (($) 32 T CONST)) (-4204 (($ $) 68 (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-2932 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3317 (((-110) $ $) 107)) (-4224 (($ $ $) 99) (($ $ |#1|) 100)) (-4116 (($ $) 80) (($ $ $) 105)) (-4118 (($ $ $) 103)) (** (($ $ (-860)) NIL) (($ $ (-719)) 44) (($ $ (-516)) 130)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 78) (($ $ $) 56) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76)))
+(((-336 |#1| |#2|) (-310 |#1|) (-331) (-1092 |#1|)) (T -336))
+NIL
+(-310 |#1|)
+((-1761 (((-899 (-1092 |#1|)) (-1092 |#1|)) 36)) (-3258 (((-1092 |#1|) (-860) (-860)) 113) (((-1092 |#1|) (-860)) 112)) (-1746 (((-110) (-1092 |#1|)) 84)) (-1748 (((-860) (-860)) 71)) (-1749 (((-860) (-860)) 74)) (-1747 (((-860) (-860)) 69)) (-2070 (((-110) (-1092 |#1|)) 88)) (-1756 (((-3 (-1092 |#1|) "failed") (-1092 |#1|)) 101)) (-1759 (((-3 (-1092 |#1|) "failed") (-1092 |#1|)) 104)) (-1758 (((-3 (-1092 |#1|) "failed") (-1092 |#1|)) 103)) (-1757 (((-3 (-1092 |#1|) "failed") (-1092 |#1|)) 102)) (-1755 (((-3 (-1092 |#1|) "failed") (-1092 |#1|)) 98)) (-1760 (((-1092 |#1|) (-1092 |#1|)) 62)) (-1751 (((-1092 |#1|) (-860)) 107)) (-1754 (((-1092 |#1|) (-860)) 110)) (-1753 (((-1092 |#1|) (-860)) 109)) (-1752 (((-1092 |#1|) (-860)) 108)) (-1750 (((-1092 |#1|) (-860)) 105)))
+(((-337 |#1|) (-10 -7 (-15 -1746 ((-110) (-1092 |#1|))) (-15 -2070 ((-110) (-1092 |#1|))) (-15 -1747 ((-860) (-860))) (-15 -1748 ((-860) (-860))) (-15 -1749 ((-860) (-860))) (-15 -1750 ((-1092 |#1|) (-860))) (-15 -1751 ((-1092 |#1|) (-860))) (-15 -1752 ((-1092 |#1|) (-860))) (-15 -1753 ((-1092 |#1|) (-860))) (-15 -1754 ((-1092 |#1|) (-860))) (-15 -1755 ((-3 (-1092 |#1|) "failed") (-1092 |#1|))) (-15 -1756 ((-3 (-1092 |#1|) "failed") (-1092 |#1|))) (-15 -1757 ((-3 (-1092 |#1|) "failed") (-1092 |#1|))) (-15 -1758 ((-3 (-1092 |#1|) "failed") (-1092 |#1|))) (-15 -1759 ((-3 (-1092 |#1|) "failed") (-1092 |#1|))) (-15 -3258 ((-1092 |#1|) (-860))) (-15 -3258 ((-1092 |#1|) (-860) (-860))) (-15 -1760 ((-1092 |#1|) (-1092 |#1|))) (-15 -1761 ((-899 (-1092 |#1|)) (-1092 |#1|)))) (-331)) (T -337))
+((-1761 (*1 *2 *3) (-12 (-4 *4 (-331)) (-5 *2 (-899 (-1092 *4))) (-5 *1 (-337 *4)) (-5 *3 (-1092 *4)))) (-1760 (*1 *2 *2) (-12 (-5 *2 (-1092 *3)) (-4 *3 (-331)) (-5 *1 (-337 *3)))) (-3258 (*1 *2 *3 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1092 *4)) (-5 *1 (-337 *4)) (-4 *4 (-331)))) (-3258 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1092 *4)) (-5 *1 (-337 *4)) (-4 *4 (-331)))) (-1759 (*1 *2 *2) (|partial| -12 (-5 *2 (-1092 *3)) (-4 *3 (-331)) (-5 *1 (-337 *3)))) (-1758 (*1 *2 *2) (|partial| -12 (-5 *2 (-1092 *3)) (-4 *3 (-331)) (-5 *1 (-337 *3)))) (-1757 (*1 *2 *2) (|partial| -12 (-5 *2 (-1092 *3)) (-4 *3 (-331)) (-5 *1 (-337 *3)))) (-1756 (*1 *2 *2) (|partial| -12 (-5 *2 (-1092 *3)) (-4 *3 (-331)) (-5 *1 (-337 *3)))) (-1755 (*1 *2 *2) (|partial| -12 (-5 *2 (-1092 *3)) (-4 *3 (-331)) (-5 *1 (-337 *3)))) (-1754 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1092 *4)) (-5 *1 (-337 *4)) (-4 *4 (-331)))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1092 *4)) (-5 *1 (-337 *4)) (-4 *4 (-331)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1092 *4)) (-5 *1 (-337 *4)) (-4 *4 (-331)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1092 *4)) (-5 *1 (-337 *4)) (-4 *4 (-331)))) (-1750 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1092 *4)) (-5 *1 (-337 *4)) (-4 *4 (-331)))) (-1749 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-337 *3)) (-4 *3 (-331)))) (-1748 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-337 *3)) (-4 *3 (-331)))) (-1747 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-337 *3)) (-4 *3 (-331)))) (-2070 (*1 *2 *3) (-12 (-5 *3 (-1092 *4)) (-4 *4 (-331)) (-5 *2 (-110)) (-5 *1 (-337 *4)))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-1092 *4)) (-4 *4 (-331)) (-5 *2 (-110)) (-5 *1 (-337 *4)))))
+(-10 -7 (-15 -1746 ((-110) (-1092 |#1|))) (-15 -2070 ((-110) (-1092 |#1|))) (-15 -1747 ((-860) (-860))) (-15 -1748 ((-860) (-860))) (-15 -1749 ((-860) (-860))) (-15 -1750 ((-1092 |#1|) (-860))) (-15 -1751 ((-1092 |#1|) (-860))) (-15 -1752 ((-1092 |#1|) (-860))) (-15 -1753 ((-1092 |#1|) (-860))) (-15 -1754 ((-1092 |#1|) (-860))) (-15 -1755 ((-3 (-1092 |#1|) "failed") (-1092 |#1|))) (-15 -1756 ((-3 (-1092 |#1|) "failed") (-1092 |#1|))) (-15 -1757 ((-3 (-1092 |#1|) "failed") (-1092 |#1|))) (-15 -1758 ((-3 (-1092 |#1|) "failed") (-1092 |#1|))) (-15 -1759 ((-3 (-1092 |#1|) "failed") (-1092 |#1|))) (-15 -3258 ((-1092 |#1|) (-860))) (-15 -3258 ((-1092 |#1|) (-860) (-860))) (-15 -1760 ((-1092 |#1|) (-1092 |#1|))) (-15 -1761 ((-899 (-1092 |#1|)) (-1092 |#1|))))
+((-1762 ((|#1| (-1092 |#2|)) 52)))
+(((-338 |#1| |#2|) (-10 -7 (-15 -1762 (|#1| (-1092 |#2|)))) (-13 (-383) (-10 -7 (-15 -4233 (|#1| |#2|)) (-15 -2069 ((-860) |#1|)) (-15 -2071 ((-1179 |#1|) (-860))) (-15 -4204 (|#1| |#1|)))) (-331)) (T -338))
+((-1762 (*1 *2 *3) (-12 (-5 *3 (-1092 *4)) (-4 *4 (-331)) (-4 *2 (-13 (-383) (-10 -7 (-15 -4233 (*2 *4)) (-15 -2069 ((-860) *2)) (-15 -2071 ((-1179 *2) (-860))) (-15 -4204 (*2 *2))))) (-5 *1 (-338 *2 *4)))))
+(-10 -7 (-15 -1762 (|#1| (-1092 |#2|))))
+((-2967 (((-3 (-594 |#3|) "failed") (-594 |#3|) |#3|) 34)))
+(((-339 |#1| |#2| |#3|) (-10 -7 (-15 -2967 ((-3 (-594 |#3|) "failed") (-594 |#3|) |#3|))) (-331) (-1155 |#1|) (-1155 |#2|)) (T -339))
+((-2967 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-594 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-331)) (-5 *1 (-339 *4 *5 *3)))))
+(-10 -7 (-15 -2967 ((-3 (-594 |#3|) "failed") (-594 |#3|) |#3|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-4208 (((-110) $) NIL)) (-4205 (((-719)) NIL)) (-3608 ((|#1| $) NIL) (($ $ (-860)) NIL (|has| |#1| (-349)))) (-1741 (((-1107 (-860) (-719)) (-516)) NIL (|has| |#1| (-349)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-1655 (((-110) $ $) NIL)) (-3395 (((-719)) NIL (|has| |#1| (-349)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#1| "failed") $) NIL)) (-3431 ((|#1| $) NIL)) (-1861 (($ (-1179 |#1|)) NIL)) (-1739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-2824 (($ $ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3258 (($) NIL (|has| |#1| (-349)))) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-3097 (($) NIL (|has| |#1| (-349)))) (-1746 (((-110) $) NIL (|has| |#1| (-349)))) (-1836 (($ $ (-719)) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-4005 (((-110) $) NIL)) (-4050 (((-860) $) NIL (|has| |#1| (-349))) (((-780 (-860)) $) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2436 (((-110) $) NIL)) (-2072 (($) NIL (|has| |#1| (-349)))) (-2070 (((-110) $) NIL (|has| |#1| (-349)))) (-3391 ((|#1| $) NIL) (($ $ (-860)) NIL (|has| |#1| (-349)))) (-3723 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL)) (-2073 (((-1092 |#1|) $) NIL) (((-1092 $) $ (-860)) NIL (|has| |#1| (-349)))) (-2069 (((-860) $) NIL (|has| |#1| (-349)))) (-1674 (((-1092 |#1|) $) NIL (|has| |#1| (-349)))) (-1673 (((-1092 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1092 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-1675 (($ $ (-1092 |#1|)) NIL (|has| |#1| (-349)))) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL)) (-3724 (($) NIL (|has| |#1| (-349)) CONST)) (-2426 (($ (-860)) NIL (|has| |#1| (-349)))) (-4207 (((-110) $) NIL)) (-3514 (((-1045) $) NIL)) (-2435 (($) NIL (|has| |#1| (-349)))) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-1742 (((-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516))))) NIL (|has| |#1| (-349)))) (-4011 (((-386 $) $) NIL)) (-4206 (((-780 (-860))) NIL) (((-860)) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-1837 (((-719) $) NIL (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-4190 (((-130)) NIL)) (-4089 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-4223 (((-780 (-860)) $) NIL) (((-860) $) NIL)) (-3459 (((-1092 |#1|)) NIL)) (-1740 (($) NIL (|has| |#1| (-349)))) (-1676 (($) NIL (|has| |#1| (-349)))) (-3497 (((-1179 |#1|) $) NIL) (((-637 |#1|) (-1179 $)) NIL)) (-2966 (((-3 (-1179 $) "failed") (-637 $)) NIL (|has| |#1| (-349)))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ $) NIL) (($ (-388 (-516))) NIL) (($ |#1|) NIL)) (-2965 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3385 (((-719)) NIL)) (-2071 (((-1179 $)) NIL) (((-1179 $) (-860)) NIL)) (-2117 (((-110) $ $) NIL)) (-4209 (((-110) $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-4204 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-2932 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-340 |#1| |#2|) (-310 |#1|) (-331) (-860)) (T -340))
+NIL
+(-310 |#1|)
+((-2267 (((-110) (-594 (-887 |#1|))) 34)) (-2269 (((-594 (-887 |#1|)) (-594 (-887 |#1|))) 46)) (-2268 (((-3 (-594 (-887 |#1|)) "failed") (-594 (-887 |#1|))) 41)))
+(((-341 |#1| |#2|) (-10 -7 (-15 -2267 ((-110) (-594 (-887 |#1|)))) (-15 -2268 ((-3 (-594 (-887 |#1|)) "failed") (-594 (-887 |#1|)))) (-15 -2269 ((-594 (-887 |#1|)) (-594 (-887 |#1|))))) (-432) (-594 (-1098))) (T -341))
+((-2269 (*1 *2 *2) (-12 (-5 *2 (-594 (-887 *3))) (-4 *3 (-432)) (-5 *1 (-341 *3 *4)) (-14 *4 (-594 (-1098))))) (-2268 (*1 *2 *2) (|partial| -12 (-5 *2 (-594 (-887 *3))) (-4 *3 (-432)) (-5 *1 (-341 *3 *4)) (-14 *4 (-594 (-1098))))) (-2267 (*1 *2 *3) (-12 (-5 *3 (-594 (-887 *4))) (-4 *4 (-432)) (-5 *2 (-110)) (-5 *1 (-341 *4 *5)) (-14 *5 (-594 (-1098))))))
+(-10 -7 (-15 -2267 ((-110) (-594 (-887 |#1|)))) (-15 -2268 ((-3 (-594 (-887 |#1|)) "failed") (-594 (-887 |#1|)))) (-15 -2269 ((-594 (-887 |#1|)) (-594 (-887 |#1|)))))
+((-2828 (((-110) $ $) NIL)) (-3395 (((-719) $) NIL)) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#1| "failed") $) NIL)) (-3431 ((|#1| $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-2436 (((-110) $) 15)) (-2702 ((|#1| $ (-516)) NIL)) (-2703 (((-516) $ (-516)) NIL)) (-2306 (($ (-1 |#1| |#1|) $) 32)) (-2307 (($ (-1 (-516) (-516)) $) 24)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) 26)) (-3514 (((-1045) $) NIL)) (-2701 (((-594 (-2 (|:| |gen| |#1|) (|:| -4219 (-516)))) $) 28)) (-3273 (($ $ $) NIL)) (-2620 (($ $ $) NIL)) (-4233 (((-805) $) 38) (($ |#1|) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2927 (($) 9 T CONST)) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL) (($ |#1| (-516)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
+(((-342 |#1|) (-13 (-453) (-975 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-516))) (-15 -3395 ((-719) $)) (-15 -2703 ((-516) $ (-516))) (-15 -2702 (|#1| $ (-516))) (-15 -2307 ($ (-1 (-516) (-516)) $)) (-15 -2306 ($ (-1 |#1| |#1|) $)) (-15 -2701 ((-594 (-2 (|:| |gen| |#1|) (|:| -4219 (-516)))) $)))) (-1027)) (T -342))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-1027)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-1027)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-516)) (-5 *1 (-342 *2)) (-4 *2 (-1027)))) (-3395 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-342 *3)) (-4 *3 (-1027)))) (-2703 (*1 *2 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-342 *3)) (-4 *3 (-1027)))) (-2702 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *1 (-342 *2)) (-4 *2 (-1027)))) (-2307 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-516) (-516))) (-5 *1 (-342 *3)) (-4 *3 (-1027)))) (-2306 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-342 *3)))) (-2701 (*1 *2 *1) (-12 (-5 *2 (-594 (-2 (|:| |gen| *3) (|:| -4219 (-516))))) (-5 *1 (-342 *3)) (-4 *3 (-1027)))))
+(-13 (-453) (-975 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-516))) (-15 -3395 ((-719) $)) (-15 -2703 ((-516) $ (-516))) (-15 -2702 (|#1| $ (-516))) (-15 -2307 ($ (-1 (-516) (-516)) $)) (-15 -2306 ($ (-1 |#1| |#1|) $)) (-15 -2701 ((-594 (-2 (|:| |gen| |#1|) (|:| -4219 (-516)))) $))))
+((-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 13)) (-2118 (($ $) 14)) (-4245 (((-386 $) $) 30)) (-4005 (((-110) $) 26)) (-2668 (($ $) 19)) (-3419 (($ $ $) 23) (($ (-594 $)) NIL)) (-4011 (((-386 $) $) 31)) (-3740 (((-3 $ "failed") $ $) 22)) (-1654 (((-719) $) 25)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 35)) (-2117 (((-110) $ $) 16)) (-4224 (($ $ $) 33)))
+(((-343 |#1|) (-10 -8 (-15 -4224 (|#1| |#1| |#1|)) (-15 -2668 (|#1| |#1|)) (-15 -4005 ((-110) |#1|)) (-15 -4245 ((-386 |#1|) |#1|)) (-15 -4011 ((-386 |#1|) |#1|)) (-15 -3145 ((-2 (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1|)) (-15 -1654 ((-719) |#1|)) (-15 -3419 (|#1| (-594 |#1|))) (-15 -3419 (|#1| |#1| |#1|)) (-15 -2117 ((-110) |#1| |#1|)) (-15 -2118 (|#1| |#1|)) (-15 -2119 ((-2 (|:| -1842 |#1|) (|:| -4256 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3740 ((-3 |#1| "failed") |#1| |#1|))) (-344)) (T -343))
+NIL
+(-10 -8 (-15 -4224 (|#1| |#1| |#1|)) (-15 -2668 (|#1| |#1|)) (-15 -4005 ((-110) |#1|)) (-15 -4245 ((-386 |#1|) |#1|)) (-15 -4011 ((-386 |#1|) |#1|)) (-15 -3145 ((-2 (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1|)) (-15 -1654 ((-719) |#1|)) (-15 -3419 (|#1| (-594 |#1|))) (-15 -3419 (|#1| |#1| |#1|)) (-15 -2117 ((-110) |#1| |#1|)) (-15 -2118 (|#1| |#1|)) (-15 -2119 ((-2 (|:| -1842 |#1|) (|:| -4256 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3740 ((-3 |#1| "failed") |#1| |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 41)) (-2118 (($ $) 40)) (-2116 (((-110) $) 38)) (-1319 (((-3 $ "failed") $ $) 19)) (-4053 (($ $) 73)) (-4245 (((-386 $) $) 72)) (-1655 (((-110) $ $) 59)) (-3815 (($) 17 T CONST)) (-2824 (($ $ $) 55)) (-3741 (((-3 $ "failed") $) 34)) (-2823 (($ $ $) 56)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 51)) (-4005 (((-110) $) 71)) (-2436 (((-110) $) 31)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) 52)) (-1963 (($ $ $) 46) (($ (-594 $)) 45)) (-3513 (((-1081) $) 9)) (-2668 (($ $) 70)) (-3514 (((-1045) $) 10)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 44)) (-3419 (($ $ $) 48) (($ (-594 $)) 47)) (-4011 (((-386 $) $) 74)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 53)) (-3740 (((-3 $ "failed") $ $) 42)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 50)) (-1654 (((-719) $) 58)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 57)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ $) 43) (($ (-388 (-516))) 65)) (-3385 (((-719)) 29)) (-2117 (((-110) $ $) 39)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33) (($ $ (-516)) 69)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4224 (($ $ $) 64)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32) (($ $ (-516)) 68)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ (-388 (-516))) 67) (($ (-388 (-516)) $) 66)))
+(((-344) (-133)) (T -344))
+((-4224 (*1 *1 *1 *1) (-4 *1 (-344))))
+(-13 (-289) (-1138) (-226) (-10 -8 (-15 -4224 ($ $ $)) (-6 -4267) (-6 -4261)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-388 (-516))) . T) ((-37 $) . T) ((-99) . T) ((-109 #1# #1#) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-805)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-432) . T) ((-523) . T) ((-599 #1#) . T) ((-599 $) . T) ((-666 #1#) . T) ((-666 $) . T) ((-675) . T) ((-862) . T) ((-989 #1#) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1138) . T))
+((-2828 (((-110) $ $) NIL)) (-1763 ((|#1| $ |#1|) 30)) (-1767 (($ $ (-1081)) 22)) (-3901 (((-3 |#1| "failed") $) 29)) (-1764 ((|#1| $) 27)) (-1768 (($ (-369)) 21) (($ (-369) (-1081)) 20)) (-3824 (((-369) $) 24)) (-3513 (((-1081) $) NIL)) (-1765 (((-1081) $) 25)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 19)) (-1766 (($ $) 23)) (-3317 (((-110) $ $) 18)))
+(((-345 |#1|) (-13 (-346 (-369) |#1|) (-10 -8 (-15 -3901 ((-3 |#1| "failed") $)))) (-1027)) (T -345))
+((-3901 (*1 *2 *1) (|partial| -12 (-5 *1 (-345 *2)) (-4 *2 (-1027)))))
+(-13 (-346 (-369) |#1|) (-10 -8 (-15 -3901 ((-3 |#1| "failed") $))))
+((-2828 (((-110) $ $) 7)) (-1763 ((|#2| $ |#2|) 13)) (-1767 (($ $ (-1081)) 18)) (-1764 ((|#2| $) 14)) (-1768 (($ |#1|) 20) (($ |#1| (-1081)) 19)) (-3824 ((|#1| $) 16)) (-3513 (((-1081) $) 9)) (-1765 (((-1081) $) 15)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-1766 (($ $) 17)) (-3317 (((-110) $ $) 6)))
+(((-346 |#1| |#2|) (-133) (-1027) (-1027)) (T -346))
+((-1768 (*1 *1 *2) (-12 (-4 *1 (-346 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-1768 (*1 *1 *2 *3) (-12 (-5 *3 (-1081)) (-4 *1 (-346 *2 *4)) (-4 *2 (-1027)) (-4 *4 (-1027)))) (-1767 (*1 *1 *1 *2) (-12 (-5 *2 (-1081)) (-4 *1 (-346 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-1766 (*1 *1 *1) (-12 (-4 *1 (-346 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-3824 (*1 *2 *1) (-12 (-4 *1 (-346 *2 *3)) (-4 *3 (-1027)) (-4 *2 (-1027)))) (-1765 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-5 *2 (-1081)))) (-1764 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))) (-1763 (*1 *2 *1 *2) (-12 (-4 *1 (-346 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))))
+(-13 (-1027) (-10 -8 (-15 -1768 ($ |t#1|)) (-15 -1768 ($ |t#1| (-1081))) (-15 -1767 ($ $ (-1081))) (-15 -1766 ($ $)) (-15 -3824 (|t#1| $)) (-15 -1765 ((-1081) $)) (-15 -1764 (|t#2| $)) (-15 -1763 (|t#2| $ |t#2|))))
+(((-99) . T) ((-571 (-805)) . T) ((-1027) . T))
+((-3496 (((-1179 (-637 |#2|)) (-1179 $)) 61)) (-1857 (((-637 |#2|) (-1179 $)) 120)) (-1793 ((|#2| $) 32)) (-1855 (((-637 |#2|) $ (-1179 $)) 123)) (-2430 (((-3 $ "failed") $) 75)) (-1791 ((|#2| $) 35)) (-1771 (((-1092 |#2|) $) 83)) (-1859 ((|#2| (-1179 $)) 106)) (-1789 (((-1092 |#2|) $) 28)) (-1783 (((-110)) 100)) (-1861 (($ (-1179 |#2|) (-1179 $)) 113)) (-3741 (((-3 $ "failed") $) 79)) (-1776 (((-110)) 95)) (-1774 (((-110)) 90)) (-1778 (((-110)) 53)) (-1858 (((-637 |#2|) (-1179 $)) 118)) (-1794 ((|#2| $) 31)) (-1856 (((-637 |#2|) $ (-1179 $)) 122)) (-2431 (((-3 $ "failed") $) 73)) (-1792 ((|#2| $) 34)) (-1772 (((-1092 |#2|) $) 82)) (-1860 ((|#2| (-1179 $)) 104)) (-1790 (((-1092 |#2|) $) 26)) (-1784 (((-110)) 99)) (-1775 (((-110)) 92)) (-1777 (((-110)) 51)) (-1779 (((-110)) 87)) (-1782 (((-110)) 101)) (-3497 (((-1179 |#2|) $ (-1179 $)) NIL) (((-637 |#2|) (-1179 $) (-1179 $)) 111)) (-1788 (((-110)) 97)) (-1773 (((-594 (-1179 |#2|))) 86)) (-1786 (((-110)) 98)) (-1787 (((-110)) 96)) (-1785 (((-110)) 46)) (-1781 (((-110)) 102)))
+(((-347 |#1| |#2|) (-10 -8 (-15 -1771 ((-1092 |#2|) |#1|)) (-15 -1772 ((-1092 |#2|) |#1|)) (-15 -1773 ((-594 (-1179 |#2|)))) (-15 -2430 ((-3 |#1| "failed") |#1|)) (-15 -2431 ((-3 |#1| "failed") |#1|)) (-15 -3741 ((-3 |#1| "failed") |#1|)) (-15 -1774 ((-110))) (-15 -1775 ((-110))) (-15 -1776 ((-110))) (-15 -1777 ((-110))) (-15 -1778 ((-110))) (-15 -1779 ((-110))) (-15 -1781 ((-110))) (-15 -1782 ((-110))) (-15 -1783 ((-110))) (-15 -1784 ((-110))) (-15 -1785 ((-110))) (-15 -1786 ((-110))) (-15 -1787 ((-110))) (-15 -1788 ((-110))) (-15 -1789 ((-1092 |#2|) |#1|)) (-15 -1790 ((-1092 |#2|) |#1|)) (-15 -1857 ((-637 |#2|) (-1179 |#1|))) (-15 -1858 ((-637 |#2|) (-1179 |#1|))) (-15 -1859 (|#2| (-1179 |#1|))) (-15 -1860 (|#2| (-1179 |#1|))) (-15 -1861 (|#1| (-1179 |#2|) (-1179 |#1|))) (-15 -3497 ((-637 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3497 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -1791 (|#2| |#1|)) (-15 -1792 (|#2| |#1|)) (-15 -1793 (|#2| |#1|)) (-15 -1794 (|#2| |#1|)) (-15 -1855 ((-637 |#2|) |#1| (-1179 |#1|))) (-15 -1856 ((-637 |#2|) |#1| (-1179 |#1|))) (-15 -3496 ((-1179 (-637 |#2|)) (-1179 |#1|)))) (-348 |#2|) (-162)) (T -347))
+((-1788 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1787 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1786 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1785 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1784 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1783 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1782 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1781 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1779 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1778 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1777 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1776 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1775 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1774 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1773 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-594 (-1179 *4))) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))))
+(-10 -8 (-15 -1771 ((-1092 |#2|) |#1|)) (-15 -1772 ((-1092 |#2|) |#1|)) (-15 -1773 ((-594 (-1179 |#2|)))) (-15 -2430 ((-3 |#1| "failed") |#1|)) (-15 -2431 ((-3 |#1| "failed") |#1|)) (-15 -3741 ((-3 |#1| "failed") |#1|)) (-15 -1774 ((-110))) (-15 -1775 ((-110))) (-15 -1776 ((-110))) (-15 -1777 ((-110))) (-15 -1778 ((-110))) (-15 -1779 ((-110))) (-15 -1781 ((-110))) (-15 -1782 ((-110))) (-15 -1783 ((-110))) (-15 -1784 ((-110))) (-15 -1785 ((-110))) (-15 -1786 ((-110))) (-15 -1787 ((-110))) (-15 -1788 ((-110))) (-15 -1789 ((-1092 |#2|) |#1|)) (-15 -1790 ((-1092 |#2|) |#1|)) (-15 -1857 ((-637 |#2|) (-1179 |#1|))) (-15 -1858 ((-637 |#2|) (-1179 |#1|))) (-15 -1859 (|#2| (-1179 |#1|))) (-15 -1860 (|#2| (-1179 |#1|))) (-15 -1861 (|#1| (-1179 |#2|) (-1179 |#1|))) (-15 -3497 ((-637 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3497 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -1791 (|#2| |#1|)) (-15 -1792 (|#2| |#1|)) (-15 -1793 (|#2| |#1|)) (-15 -1794 (|#2| |#1|)) (-15 -1855 ((-637 |#2|) |#1| (-1179 |#1|))) (-15 -1856 ((-637 |#2|) |#1| (-1179 |#1|))) (-15 -3496 ((-1179 (-637 |#2|)) (-1179 |#1|))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1842 (((-3 $ "failed")) 37 (|has| |#1| (-523)))) (-1319 (((-3 $ "failed") $ $) 19)) (-3496 (((-1179 (-637 |#1|)) (-1179 $)) 78)) (-1795 (((-1179 $)) 81)) (-3815 (($) 17 T CONST)) (-1978 (((-3 (-2 (|:| |particular| $) (|:| -2071 (-594 $))) "failed")) 40 (|has| |#1| (-523)))) (-1769 (((-3 $ "failed")) 38 (|has| |#1| (-523)))) (-1857 (((-637 |#1|) (-1179 $)) 65)) (-1793 ((|#1| $) 74)) (-1855 (((-637 |#1|) $ (-1179 $)) 76)) (-2430 (((-3 $ "failed") $) 45 (|has| |#1| (-523)))) (-2433 (($ $ (-860)) 28)) (-1791 ((|#1| $) 72)) (-1771 (((-1092 |#1|) $) 42 (|has| |#1| (-523)))) (-1859 ((|#1| (-1179 $)) 67)) (-1789 (((-1092 |#1|) $) 63)) (-1783 (((-110)) 57)) (-1861 (($ (-1179 |#1|) (-1179 $)) 69)) (-3741 (((-3 $ "failed") $) 47 (|has| |#1| (-523)))) (-3368 (((-860)) 80)) (-1780 (((-110)) 54)) (-2458 (($ $ (-860)) 33)) (-1776 (((-110)) 50)) (-1774 (((-110)) 48)) (-1778 (((-110)) 52)) (-1979 (((-3 (-2 (|:| |particular| $) (|:| -2071 (-594 $))) "failed")) 41 (|has| |#1| (-523)))) (-1770 (((-3 $ "failed")) 39 (|has| |#1| (-523)))) (-1858 (((-637 |#1|) (-1179 $)) 66)) (-1794 ((|#1| $) 75)) (-1856 (((-637 |#1|) $ (-1179 $)) 77)) (-2431 (((-3 $ "failed") $) 46 (|has| |#1| (-523)))) (-2432 (($ $ (-860)) 29)) (-1792 ((|#1| $) 73)) (-1772 (((-1092 |#1|) $) 43 (|has| |#1| (-523)))) (-1860 ((|#1| (-1179 $)) 68)) (-1790 (((-1092 |#1|) $) 64)) (-1784 (((-110)) 58)) (-3513 (((-1081) $) 9)) (-1775 (((-110)) 49)) (-1777 (((-110)) 51)) (-1779 (((-110)) 53)) (-3514 (((-1045) $) 10)) (-1782 (((-110)) 56)) (-3497 (((-1179 |#1|) $ (-1179 $)) 71) (((-637 |#1|) (-1179 $) (-1179 $)) 70)) (-1964 (((-594 (-887 |#1|)) (-1179 $)) 79)) (-2620 (($ $ $) 25)) (-1788 (((-110)) 62)) (-4233 (((-805) $) 11)) (-1773 (((-594 (-1179 |#1|))) 44 (|has| |#1| (-523)))) (-2621 (($ $ $ $) 26)) (-1786 (((-110)) 60)) (-2619 (($ $ $) 24)) (-1787 (((-110)) 61)) (-1785 (((-110)) 59)) (-1781 (((-110)) 55)) (-2920 (($) 18 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 30)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-348 |#1|) (-133) (-162)) (T -348))
+((-1795 (*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1179 *1)) (-4 *1 (-348 *3)))) (-3368 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-860)))) (-1964 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-594 (-887 *4))))) (-3496 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-1179 (-637 *4))))) (-1856 (*1 *2 *1 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4)))) (-1855 (*1 *2 *1 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4)))) (-1794 (*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-1793 (*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-1792 (*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-3497 (*1 *2 *1 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-1179 *4)))) (-3497 (*1 *2 *3 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4)))) (-1861 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1179 *1)) (-4 *4 (-162)) (-4 *1 (-348 *4)))) (-1860 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-1859 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-1858 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4)))) (-1857 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4)))) (-1790 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-1092 *3)))) (-1789 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-1092 *3)))) (-1788 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1787 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1786 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1785 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1784 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1783 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1782 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1781 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1780 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1779 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1778 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1777 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1776 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1775 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1774 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3741 (*1 *1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-523)))) (-2431 (*1 *1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-523)))) (-2430 (*1 *1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-523)))) (-1773 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-523)) (-5 *2 (-594 (-1179 *3))))) (-1772 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-523)) (-5 *2 (-1092 *3)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-523)) (-5 *2 (-1092 *3)))) (-1979 (*1 *2) (|partial| -12 (-4 *3 (-523)) (-4 *3 (-162)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2071 (-594 *1)))) (-4 *1 (-348 *3)))) (-1978 (*1 *2) (|partial| -12 (-4 *3 (-523)) (-4 *3 (-162)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2071 (-594 *1)))) (-4 *1 (-348 *3)))) (-1770 (*1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-523)) (-4 *2 (-162)))) (-1769 (*1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-523)) (-4 *2 (-162)))) (-1842 (*1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-523)) (-4 *2 (-162)))))
+(-13 (-693 |t#1|) (-10 -8 (-15 -1795 ((-1179 $))) (-15 -3368 ((-860))) (-15 -1964 ((-594 (-887 |t#1|)) (-1179 $))) (-15 -3496 ((-1179 (-637 |t#1|)) (-1179 $))) (-15 -1856 ((-637 |t#1|) $ (-1179 $))) (-15 -1855 ((-637 |t#1|) $ (-1179 $))) (-15 -1794 (|t#1| $)) (-15 -1793 (|t#1| $)) (-15 -1792 (|t#1| $)) (-15 -1791 (|t#1| $)) (-15 -3497 ((-1179 |t#1|) $ (-1179 $))) (-15 -3497 ((-637 |t#1|) (-1179 $) (-1179 $))) (-15 -1861 ($ (-1179 |t#1|) (-1179 $))) (-15 -1860 (|t#1| (-1179 $))) (-15 -1859 (|t#1| (-1179 $))) (-15 -1858 ((-637 |t#1|) (-1179 $))) (-15 -1857 ((-637 |t#1|) (-1179 $))) (-15 -1790 ((-1092 |t#1|) $)) (-15 -1789 ((-1092 |t#1|) $)) (-15 -1788 ((-110))) (-15 -1787 ((-110))) (-15 -1786 ((-110))) (-15 -1785 ((-110))) (-15 -1784 ((-110))) (-15 -1783 ((-110))) (-15 -1782 ((-110))) (-15 -1781 ((-110))) (-15 -1780 ((-110))) (-15 -1779 ((-110))) (-15 -1778 ((-110))) (-15 -1777 ((-110))) (-15 -1776 ((-110))) (-15 -1775 ((-110))) (-15 -1774 ((-110))) (IF (|has| |t#1| (-523)) (PROGN (-15 -3741 ((-3 $ "failed") $)) (-15 -2431 ((-3 $ "failed") $)) (-15 -2430 ((-3 $ "failed") $)) (-15 -1773 ((-594 (-1179 |t#1|)))) (-15 -1772 ((-1092 |t#1|) $)) (-15 -1771 ((-1092 |t#1|) $)) (-15 -1979 ((-3 (-2 (|:| |particular| $) (|:| -2071 (-594 $))) "failed"))) (-15 -1978 ((-3 (-2 (|:| |particular| $) (|:| -2071 (-594 $))) "failed"))) (-15 -1770 ((-3 $ "failed"))) (-15 -1769 ((-3 $ "failed"))) (-15 -1842 ((-3 $ "failed"))) (-6 -4266)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-805)) . T) ((-599 |#1|) . T) ((-666 |#1|) . T) ((-669) . T) ((-693 |#1|) . T) ((-710) . T) ((-989 |#1|) . T) ((-1027) . T))
+((-2828 (((-110) $ $) 7)) (-3395 (((-719)) 16)) (-3258 (($) 13)) (-2069 (((-860) $) 14)) (-3513 (((-1081) $) 9)) (-2426 (($ (-860)) 15)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-3317 (((-110) $ $) 6)))
+(((-349) (-133)) (T -349))
+((-3395 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-719)))) (-2426 (*1 *1 *2) (-12 (-5 *2 (-860)) (-4 *1 (-349)))) (-2069 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-860)))) (-3258 (*1 *1) (-4 *1 (-349))))
+(-13 (-1027) (-10 -8 (-15 -3395 ((-719))) (-15 -2426 ($ (-860))) (-15 -2069 ((-860) $)) (-15 -3258 ($))))
+(((-99) . T) ((-571 (-805)) . T) ((-1027) . T))
+((-1851 (((-637 |#2|) (-1179 $)) 41)) (-1861 (($ (-1179 |#2|) (-1179 $)) 35)) (-1850 (((-637 |#2|) $ (-1179 $)) 43)) (-4036 ((|#2| (-1179 $)) 13)) (-3497 (((-1179 |#2|) $ (-1179 $)) NIL) (((-637 |#2|) (-1179 $) (-1179 $)) 25)))
+(((-350 |#1| |#2| |#3|) (-10 -8 (-15 -1851 ((-637 |#2|) (-1179 |#1|))) (-15 -4036 (|#2| (-1179 |#1|))) (-15 -1861 (|#1| (-1179 |#2|) (-1179 |#1|))) (-15 -3497 ((-637 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3497 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -1850 ((-637 |#2|) |#1| (-1179 |#1|)))) (-351 |#2| |#3|) (-162) (-1155 |#2|)) (T -350))
+NIL
+(-10 -8 (-15 -1851 ((-637 |#2|) (-1179 |#1|))) (-15 -4036 (|#2| (-1179 |#1|))) (-15 -1861 (|#1| (-1179 |#2|) (-1179 |#1|))) (-15 -3497 ((-637 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3497 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -1850 ((-637 |#2|) |#1| (-1179 |#1|))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1851 (((-637 |#1|) (-1179 $)) 46)) (-3608 ((|#1| $) 52)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-1861 (($ (-1179 |#1|) (-1179 $)) 48)) (-1850 (((-637 |#1|) $ (-1179 $)) 53)) (-3741 (((-3 $ "failed") $) 34)) (-3368 (((-860)) 54)) (-2436 (((-110) $) 31)) (-3391 ((|#1| $) 51)) (-2073 ((|#2| $) 44 (|has| |#1| (-344)))) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4036 ((|#1| (-1179 $)) 47)) (-3497 (((-1179 |#1|) $ (-1179 $)) 50) (((-637 |#1|) (-1179 $) (-1179 $)) 49)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ |#1|) 37)) (-2965 (((-3 $ "failed") $) 43 (|has| |#1| (-138)))) (-2632 ((|#2| $) 45)) (-3385 (((-719)) 29)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-351 |#1| |#2|) (-133) (-162) (-1155 |t#1|)) (T -351))
+((-3368 (*1 *2) (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1155 *3)) (-5 *2 (-860)))) (-1850 (*1 *2 *1 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1155 *4)) (-5 *2 (-637 *4)))) (-3608 (*1 *2 *1) (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1155 *2)) (-4 *2 (-162)))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1155 *2)) (-4 *2 (-162)))) (-3497 (*1 *2 *1 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *4)))) (-3497 (*1 *2 *3 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1155 *4)) (-5 *2 (-637 *4)))) (-1861 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1179 *1)) (-4 *4 (-162)) (-4 *1 (-351 *4 *5)) (-4 *5 (-1155 *4)))) (-4036 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-351 *2 *4)) (-4 *4 (-1155 *2)) (-4 *2 (-162)))) (-1851 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1155 *4)) (-5 *2 (-637 *4)))) (-2632 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1155 *3)))) (-2073 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *2)) (-4 *3 (-162)) (-4 *3 (-344)) (-4 *2 (-1155 *3)))))
+(-13 (-37 |t#1|) (-10 -8 (-15 -3368 ((-860))) (-15 -1850 ((-637 |t#1|) $ (-1179 $))) (-15 -3608 (|t#1| $)) (-15 -3391 (|t#1| $)) (-15 -3497 ((-1179 |t#1|) $ (-1179 $))) (-15 -3497 ((-637 |t#1|) (-1179 $) (-1179 $))) (-15 -1861 ($ (-1179 |t#1|) (-1179 $))) (-15 -4036 (|t#1| (-1179 $))) (-15 -1851 ((-637 |t#1|) (-1179 $))) (-15 -2632 (|t#2| $)) (IF (|has| |t#1| (-344)) (-15 -2073 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-805)) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 |#1|) . T) ((-675) . T) ((-989 |#1|) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-1798 (((-110) (-1 (-110) |#2| |#2|) $) NIL) (((-110) $) 18)) (-1796 (($ (-1 (-110) |#2| |#2|) $) NIL) (($ $) 28)) (-3173 (($ (-1 (-110) |#2| |#2|) $) 27) (($ $) 22)) (-2313 (($ $) 25)) (-3698 (((-516) (-1 (-110) |#2|) $) NIL) (((-516) |#2| $) 11) (((-516) |#2| $ (-516)) NIL)) (-3792 (($ (-1 (-110) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-352 |#1| |#2|) (-10 -8 (-15 -1796 (|#1| |#1|)) (-15 -1796 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -1798 ((-110) |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -3792 (|#1| |#1| |#1|)) (-15 -3698 ((-516) |#2| |#1| (-516))) (-15 -3698 ((-516) |#2| |#1|)) (-15 -3698 ((-516) (-1 (-110) |#2|) |#1|)) (-15 -1798 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -3173 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -2313 (|#1| |#1|)) (-15 -3792 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|))) (-353 |#2|) (-1134)) (T -352))
+NIL
+(-10 -8 (-15 -1796 (|#1| |#1|)) (-15 -1796 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -1798 ((-110) |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -3792 (|#1| |#1| |#1|)) (-15 -3698 ((-516) |#2| |#1| (-516))) (-15 -3698 ((-516) |#2| |#1|)) (-15 -3698 ((-516) (-1 (-110) |#2|) |#1|)) (-15 -1798 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -3173 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -2313 (|#1| |#1|)) (-15 -3792 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-2243 (((-1185) $ (-516) (-516)) 40 (|has| $ (-6 -4270)))) (-1798 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-795)))) (-1796 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4270))) (($ $) 88 (-12 (|has| |#1| (-795)) (|has| $ (-6 -4270))))) (-3173 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-795)))) (-1217 (((-110) $ (-719)) 8)) (-4066 ((|#1| $ (-516) |#1|) 52 (|has| $ (-6 -4270))) ((|#1| $ (-1146 (-516)) |#1|) 58 (|has| $ (-6 -4270)))) (-3992 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4269)))) (-3815 (($) 7 T CONST)) (-2312 (($ $) 90 (|has| $ (-6 -4270)))) (-2313 (($ $) 100)) (-1349 (($ $) 78 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3685 (($ |#1| $) 77 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4269)))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4269)))) (-1587 ((|#1| $ (-516) |#1|) 53 (|has| $ (-6 -4270)))) (-3372 ((|#1| $ (-516)) 51)) (-3698 (((-516) (-1 (-110) |#1|) $) 97) (((-516) |#1| $) 96 (|has| |#1| (-1027))) (((-516) |#1| $ (-516)) 95 (|has| |#1| (-1027)))) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-3896 (($ (-719) |#1|) 69)) (-4001 (((-110) $ (-719)) 9)) (-2245 (((-516) $) 43 (|has| (-516) (-795)))) (-3596 (($ $ $) 87 (|has| |#1| (-795)))) (-3792 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-795)))) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2246 (((-516) $) 44 (|has| (-516) (-795)))) (-3597 (($ $ $) 86 (|has| |#1| (-795)))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3998 (((-110) $ (-719)) 10)) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-2317 (($ |#1| $ (-516)) 60) (($ $ $ (-516)) 59)) (-2248 (((-594 (-516)) $) 46)) (-2249 (((-110) (-516) $) 47)) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-4079 ((|#1| $) 42 (|has| (-516) (-795)))) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-2244 (($ $ |#1|) 41 (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-2247 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2250 (((-594 |#1|) $) 48)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-4078 ((|#1| $ (-516) |#1|) 50) ((|#1| $ (-516)) 49) (($ $ (-1146 (-516))) 63)) (-2318 (($ $ (-516)) 62) (($ $ (-1146 (-516))) 61)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1797 (($ $ $ (-516)) 91 (|has| $ (-6 -4270)))) (-3678 (($ $) 13)) (-4246 (((-505) $) 79 (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) 70)) (-4080 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-594 $)) 65)) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2826 (((-110) $ $) 84 (|has| |#1| (-795)))) (-2827 (((-110) $ $) 83 (|has| |#1| (-795)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2947 (((-110) $ $) 85 (|has| |#1| (-795)))) (-2948 (((-110) $ $) 82 (|has| |#1| (-795)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-353 |#1|) (-133) (-1134)) (T -353))
+((-3792 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-353 *3)) (-4 *3 (-1134)))) (-2313 (*1 *1 *1) (-12 (-4 *1 (-353 *2)) (-4 *2 (-1134)))) (-3173 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-353 *3)) (-4 *3 (-1134)))) (-1798 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *1 (-353 *4)) (-4 *4 (-1134)) (-5 *2 (-110)))) (-3698 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (-4 *1 (-353 *4)) (-4 *4 (-1134)) (-5 *2 (-516)))) (-3698 (*1 *2 *3 *1) (-12 (-4 *1 (-353 *3)) (-4 *3 (-1134)) (-4 *3 (-1027)) (-5 *2 (-516)))) (-3698 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-516)) (-4 *1 (-353 *3)) (-4 *3 (-1134)) (-4 *3 (-1027)))) (-3792 (*1 *1 *1 *1) (-12 (-4 *1 (-353 *2)) (-4 *2 (-1134)) (-4 *2 (-795)))) (-3173 (*1 *1 *1) (-12 (-4 *1 (-353 *2)) (-4 *2 (-1134)) (-4 *2 (-795)))) (-1798 (*1 *2 *1) (-12 (-4 *1 (-353 *3)) (-4 *3 (-1134)) (-4 *3 (-795)) (-5 *2 (-110)))) (-1797 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-516)) (|has| *1 (-6 -4270)) (-4 *1 (-353 *3)) (-4 *3 (-1134)))) (-2312 (*1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-353 *2)) (-4 *2 (-1134)))) (-1796 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (|has| *1 (-6 -4270)) (-4 *1 (-353 *3)) (-4 *3 (-1134)))) (-1796 (*1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-353 *2)) (-4 *2 (-1134)) (-4 *2 (-795)))))
+(-13 (-602 |t#1|) (-10 -8 (-6 -4269) (-15 -3792 ($ (-1 (-110) |t#1| |t#1|) $ $)) (-15 -2313 ($ $)) (-15 -3173 ($ (-1 (-110) |t#1| |t#1|) $)) (-15 -1798 ((-110) (-1 (-110) |t#1| |t#1|) $)) (-15 -3698 ((-516) (-1 (-110) |t#1|) $)) (IF (|has| |t#1| (-1027)) (PROGN (-15 -3698 ((-516) |t#1| $)) (-15 -3698 ((-516) |t#1| $ (-516)))) |%noBranch|) (IF (|has| |t#1| (-795)) (PROGN (-6 (-795)) (-15 -3792 ($ $ $)) (-15 -3173 ($ $)) (-15 -1798 ((-110) $))) |%noBranch|) (IF (|has| $ (-6 -4270)) (PROGN (-15 -1797 ($ $ $ (-516))) (-15 -2312 ($ $)) (-15 -1796 ($ (-1 (-110) |t#1| |t#1|) $)) (IF (|has| |t#1| (-795)) (-15 -1796 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-33) . T) ((-99) -3810 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-795)) (|has| |#1| (-571 (-805)))) ((-144 |#1|) . T) ((-572 (-505)) |has| |#1| (-572 (-505))) ((-268 #1=(-516) |#1|) . T) ((-270 #1# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-563 #1# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-795) |has| |#1| (-795)) ((-1027) -3810 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-1134) . T))
+((-4120 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-4121 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-4234 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
+(((-354 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4234 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4121 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4120 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1134) (-353 |#1|) (-1134) (-353 |#3|)) (T -354))
+((-4120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1134)) (-4 *5 (-1134)) (-4 *2 (-353 *5)) (-5 *1 (-354 *6 *4 *5 *2)) (-4 *4 (-353 *6)))) (-4121 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1134)) (-4 *2 (-1134)) (-5 *1 (-354 *5 *4 *2 *6)) (-4 *4 (-353 *5)) (-4 *6 (-353 *2)))) (-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1134)) (-4 *6 (-1134)) (-4 *2 (-353 *6)) (-5 *1 (-354 *5 *4 *6 *2)) (-4 *4 (-353 *5)))))
+(-10 -7 (-15 -4234 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4121 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4120 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-4210 (((-594 |#1|) $) 32)) (-4222 (($ $ (-719)) 33)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-4215 (((-1202 |#1| |#2|) (-1202 |#1| |#2|) $) 36)) (-4212 (($ $) 34)) (-4216 (((-1202 |#1| |#2|) (-1202 |#1| |#2|) $) 37)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4046 (($ $ |#1| $) 31) (($ $ (-594 |#1|) (-594 $)) 30)) (-4223 (((-719) $) 38)) (-3804 (($ $ $) 29)) (-4233 (((-805) $) 11) (($ |#1|) 41) (((-1193 |#1| |#2|) $) 40) (((-1202 |#1| |#2|) $) 39)) (-4229 ((|#2| (-1202 |#1| |#2|) $) 42)) (-2920 (($) 18 T CONST)) (-1799 (($ (-622 |#1|)) 35)) (-3317 (((-110) $ $) 6)) (-4224 (($ $ |#2|) 28 (|has| |#2| (-344)))) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
+(((-355 |#1| |#2|) (-133) (-795) (-162)) (T -355))
+((-4229 (*1 *2 *3 *1) (-12 (-5 *3 (-1202 *4 *2)) (-4 *1 (-355 *4 *2)) (-4 *4 (-795)) (-4 *2 (-162)))) (-4233 (*1 *1 *2) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-795)) (-4 *3 (-162)))) (-4233 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *2 (-1193 *3 *4)))) (-4233 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *2 (-1202 *3 *4)))) (-4223 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *2 (-719)))) (-4216 (*1 *2 *2 *1) (-12 (-5 *2 (-1202 *3 *4)) (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-4215 (*1 *2 *2 *1) (-12 (-5 *2 (-1202 *3 *4)) (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-1799 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-4 *1 (-355 *3 *4)) (-4 *4 (-162)))) (-4212 (*1 *1 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-795)) (-4 *3 (-162)))) (-4222 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-4210 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *2 (-594 *3)))) (-4046 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-795)) (-4 *3 (-162)))) (-4046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-594 *4)) (-5 *3 (-594 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-795)) (-4 *5 (-162)))))
+(-13 (-589 |t#2|) (-10 -8 (-15 -4229 (|t#2| (-1202 |t#1| |t#2|) $)) (-15 -4233 ($ |t#1|)) (-15 -4233 ((-1193 |t#1| |t#2|) $)) (-15 -4233 ((-1202 |t#1| |t#2|) $)) (-15 -4223 ((-719) $)) (-15 -4216 ((-1202 |t#1| |t#2|) (-1202 |t#1| |t#2|) $)) (-15 -4215 ((-1202 |t#1| |t#2|) (-1202 |t#1| |t#2|) $)) (-15 -1799 ($ (-622 |t#1|))) (-15 -4212 ($ $)) (-15 -4222 ($ $ (-719))) (-15 -4210 ((-594 |t#1|) $)) (-15 -4046 ($ $ |t#1| $)) (-15 -4046 ($ $ (-594 |t#1|) (-594 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-571 (-805)) . T) ((-599 |#2|) . T) ((-589 |#2|) . T) ((-666 |#2|) . T) ((-989 |#2|) . T) ((-1027) . T))
+((-1802 ((|#2| (-1 (-110) |#1| |#1|) |#2|) 24)) (-1800 ((|#2| (-1 (-110) |#1| |#1|) |#2|) 13)) (-1801 ((|#2| (-1 (-110) |#1| |#1|) |#2|) 22)))
+(((-356 |#1| |#2|) (-10 -7 (-15 -1800 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -1801 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -1802 (|#2| (-1 (-110) |#1| |#1|) |#2|))) (-1134) (-13 (-353 |#1|) (-10 -7 (-6 -4270)))) (T -356))
+((-1802 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1134)) (-5 *1 (-356 *4 *2)) (-4 *2 (-13 (-353 *4) (-10 -7 (-6 -4270)))))) (-1801 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1134)) (-5 *1 (-356 *4 *2)) (-4 *2 (-13 (-353 *4) (-10 -7 (-6 -4270)))))) (-1800 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1134)) (-5 *1 (-356 *4 *2)) (-4 *2 (-13 (-353 *4) (-10 -7 (-6 -4270)))))))
+(-10 -7 (-15 -1800 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -1801 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -1802 (|#2| (-1 (-110) |#1| |#1|) |#2|)))
+((-2297 (((-637 |#2|) (-637 $)) NIL) (((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 $) (-1179 $)) NIL) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) 22) (((-637 (-516)) (-637 $)) 14)))
+(((-357 |#1| |#2|) (-10 -8 (-15 -2297 ((-637 (-516)) (-637 |#1|))) (-15 -2297 ((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 |#1|) (-1179 |#1|))) (-15 -2297 ((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 |#1|) (-1179 |#1|))) (-15 -2297 ((-637 |#2|) (-637 |#1|)))) (-358 |#2|) (-984)) (T -357))
+NIL
+(-10 -8 (-15 -2297 ((-637 (-516)) (-637 |#1|))) (-15 -2297 ((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 |#1|) (-1179 |#1|))) (-15 -2297 ((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 |#1|) (-1179 |#1|))) (-15 -2297 ((-637 |#2|) (-637 |#1|))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-2297 (((-637 |#1|) (-637 $)) 36) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) 35) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) 43 (|has| |#1| (-593 (-516)))) (((-637 (-516)) (-637 $)) 42 (|has| |#1| (-593 (-516))))) (-3741 (((-3 $ "failed") $) 34)) (-2436 (((-110) $) 31)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11) (($ (-516)) 28)) (-3385 (((-719)) 29)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24)))
+(((-358 |#1|) (-133) (-984)) (T -358))
+NIL
+(-13 (-593 |t#1|) (-10 -7 (IF (|has| |t#1| (-593 (-516))) (-6 (-593 (-516))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-805)) . T) ((-599 $) . T) ((-593 (-516)) |has| |#1| (-593 (-516))) ((-593 |#1|) . T) ((-675) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 33)) (-3388 (((-516) $) 55)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-4049 (($ $) 110)) (-3766 (($ $) 82)) (-3921 (($ $) 71)) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-3301 (($ $) 44)) (-1655 (((-110) $ $) NIL)) (-3764 (($ $) 80)) (-3920 (($ $) 69)) (-3905 (((-516) $) 64)) (-2624 (($ $ (-516)) 62)) (-3768 (($ $) NIL)) (-3919 (($ $) NIL)) (-3815 (($) NIL T CONST)) (-3386 (($ $) 112)) (-3432 (((-3 (-516) #1="failed") $) 189) (((-3 (-388 (-516)) #1#) $) 185)) (-3431 (((-516) $) 187) (((-388 (-516)) $) 183)) (-2824 (($ $ $) NIL)) (-1811 (((-516) $ $) 102)) (-3741 (((-3 $ "failed") $) 114)) (-1810 (((-388 (-516)) $ (-719)) 190) (((-388 (-516)) $ (-719) (-719)) 182)) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4005 (((-110) $) NIL)) (-2400 (((-860)) 73) (((-860) (-860)) 98 (|has| $ (-6 -4260)))) (-3460 (((-110) $) 106)) (-3909 (($) 40)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL)) (-1803 (((-1185) (-719)) 152)) (-1804 (((-1185)) 157) (((-1185) (-719)) 158)) (-1806 (((-1185)) 159) (((-1185) (-719)) 160)) (-1805 (((-1185)) 155) (((-1185) (-719)) 156)) (-4050 (((-516) $) 58)) (-2436 (((-110) $) 104)) (-3275 (($ $ (-516)) NIL)) (-2626 (($ $) 48)) (-3391 (($ $) NIL)) (-3461 (((-110) $) 35)) (-1652 (((-3 (-594 $) #2="failed") (-594 $) $) NIL)) (-3596 (($ $ $) NIL) (($) NIL (-12 (-3595 (|has| $ (-6 -4252))) (-3595 (|has| $ (-6 -4260)))))) (-3597 (($ $ $) NIL) (($) 99 (-12 (-3595 (|has| $ (-6 -4252))) (-3595 (|has| $ (-6 -4260)))))) (-2401 (((-516) $) 17)) (-1809 (($) 87) (($ $) 92)) (-1808 (($) 91) (($ $) 93)) (-4218 (($ $) 83)) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) 116)) (-1839 (((-860) (-516)) 43 (|has| $ (-6 -4260)))) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3387 (($ $) 53)) (-3389 (($ $) 109)) (-3525 (($ (-516) (-516)) 107) (($ (-516) (-516) (-860)) 108)) (-4011 (((-386 $) $) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-2427 (((-516) $) 19)) (-1807 (($) 94)) (-4219 (($ $) 79)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-2873 (((-860)) 100) (((-860) (-860)) 101 (|has| $ (-6 -4260)))) (-4089 (($ $ (-719)) NIL) (($ $) 115)) (-1838 (((-860) (-516)) 47 (|has| $ (-6 -4260)))) (-3769 (($ $) NIL)) (-3918 (($ $) NIL)) (-3767 (($ $) NIL)) (-3917 (($ $) NIL)) (-3765 (($ $) 81)) (-3916 (($ $) 70)) (-4246 (((-359) $) 175) (((-208) $) 177) (((-831 (-359)) $) NIL) (((-1081) $) 162) (((-505) $) 173) (($ (-208)) 181)) (-4233 (((-805) $) 164) (($ (-516)) 186) (($ $) NIL) (($ (-388 (-516))) NIL) (($ (-516)) 186) (($ (-388 (-516))) NIL) (((-208) $) 178)) (-3385 (((-719)) NIL)) (-3390 (($ $) 111)) (-1840 (((-860)) 54) (((-860) (-860)) 66 (|has| $ (-6 -4260)))) (-2957 (((-860)) 103)) (-3772 (($ $) 86)) (-3760 (($ $) 46) (($ $ $) 52)) (-2117 (((-110) $ $) NIL)) (-3770 (($ $) 84)) (-3758 (($ $) 37)) (-3774 (($ $) NIL)) (-3762 (($ $) NIL)) (-3775 (($ $) NIL)) (-3763 (($ $) NIL)) (-3773 (($ $) NIL)) (-3761 (($ $) NIL)) (-3771 (($ $) 85)) (-3759 (($ $) 49)) (-3661 (($ $) 51)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) 34 T CONST)) (-2927 (($) 38 T CONST)) (-2768 (((-1081) $) 27) (((-1081) $ (-110)) 29) (((-1185) (-771) $) 30) (((-1185) (-771) $ (-110)) 31)) (-2932 (($ $ (-719)) NIL) (($ $) NIL)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 39)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 42)) (-4224 (($ $ $) 45) (($ $ (-516)) 41)) (-4116 (($ $) 36) (($ $ $) 50)) (-4118 (($ $ $) 61)) (** (($ $ (-860)) 67) (($ $ (-719)) NIL) (($ $ (-516)) 88) (($ $ (-388 (-516))) 125) (($ $ $) 117)) (* (($ (-860) $) 65) (($ (-719) $) NIL) (($ (-516) $) 68) (($ $ $) 60) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL)))
+(((-359) (-13 (-385) (-216) (-572 (-1081)) (-769) (-571 (-208)) (-1120) (-572 (-505)) (-10 -8 (-15 -4224 ($ $ (-516))) (-15 ** ($ $ $)) (-15 -2626 ($ $)) (-15 -1811 ((-516) $ $)) (-15 -2624 ($ $ (-516))) (-15 -1810 ((-388 (-516)) $ (-719))) (-15 -1810 ((-388 (-516)) $ (-719) (-719))) (-15 -1809 ($)) (-15 -1808 ($)) (-15 -1807 ($)) (-15 -3760 ($ $ $)) (-15 -1809 ($ $)) (-15 -1808 ($ $)) (-15 -4246 ($ (-208))) (-15 -1806 ((-1185))) (-15 -1806 ((-1185) (-719))) (-15 -1805 ((-1185))) (-15 -1805 ((-1185) (-719))) (-15 -1804 ((-1185))) (-15 -1804 ((-1185) (-719))) (-15 -1803 ((-1185) (-719))) (-6 -4260) (-6 -4252)))) (T -359))
+((** (*1 *1 *1 *1) (-5 *1 (-359))) (-4224 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-359)))) (-2626 (*1 *1 *1) (-5 *1 (-359))) (-1811 (*1 *2 *1 *1) (-12 (-5 *2 (-516)) (-5 *1 (-359)))) (-2624 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-359)))) (-1810 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-388 (-516))) (-5 *1 (-359)))) (-1810 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-388 (-516))) (-5 *1 (-359)))) (-1809 (*1 *1) (-5 *1 (-359))) (-1808 (*1 *1) (-5 *1 (-359))) (-1807 (*1 *1) (-5 *1 (-359))) (-3760 (*1 *1 *1 *1) (-5 *1 (-359))) (-1809 (*1 *1 *1) (-5 *1 (-359))) (-1808 (*1 *1 *1) (-5 *1 (-359))) (-4246 (*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-359)))) (-1806 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-359)))) (-1806 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1185)) (-5 *1 (-359)))) (-1805 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-359)))) (-1805 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1185)) (-5 *1 (-359)))) (-1804 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-359)))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1185)) (-5 *1 (-359)))) (-1803 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1185)) (-5 *1 (-359)))))
+(-13 (-385) (-216) (-572 (-1081)) (-769) (-571 (-208)) (-1120) (-572 (-505)) (-10 -8 (-15 -4224 ($ $ (-516))) (-15 ** ($ $ $)) (-15 -2626 ($ $)) (-15 -1811 ((-516) $ $)) (-15 -2624 ($ $ (-516))) (-15 -1810 ((-388 (-516)) $ (-719))) (-15 -1810 ((-388 (-516)) $ (-719) (-719))) (-15 -1809 ($)) (-15 -1808 ($)) (-15 -1807 ($)) (-15 -3760 ($ $ $)) (-15 -1809 ($ $)) (-15 -1808 ($ $)) (-15 -4246 ($ (-208))) (-15 -1806 ((-1185))) (-15 -1806 ((-1185) (-719))) (-15 -1805 ((-1185))) (-15 -1805 ((-1185) (-719))) (-15 -1804 ((-1185))) (-15 -1804 ((-1185) (-719))) (-15 -1803 ((-1185) (-719))) (-6 -4260) (-6 -4252)))
+((-1812 (((-594 (-275 (-887 (-158 |#1|)))) (-275 (-388 (-887 (-158 (-516))))) |#1|) 51) (((-594 (-275 (-887 (-158 |#1|)))) (-388 (-887 (-158 (-516)))) |#1|) 50) (((-594 (-594 (-275 (-887 (-158 |#1|))))) (-594 (-275 (-388 (-887 (-158 (-516)))))) |#1|) 47) (((-594 (-594 (-275 (-887 (-158 |#1|))))) (-594 (-388 (-887 (-158 (-516))))) |#1|) 41)) (-1813 (((-594 (-594 (-158 |#1|))) (-594 (-388 (-887 (-158 (-516))))) (-594 (-1098)) |#1|) 30) (((-594 (-158 |#1|)) (-388 (-887 (-158 (-516)))) |#1|) 18)))
+(((-360 |#1|) (-10 -7 (-15 -1812 ((-594 (-594 (-275 (-887 (-158 |#1|))))) (-594 (-388 (-887 (-158 (-516))))) |#1|)) (-15 -1812 ((-594 (-594 (-275 (-887 (-158 |#1|))))) (-594 (-275 (-388 (-887 (-158 (-516)))))) |#1|)) (-15 -1812 ((-594 (-275 (-887 (-158 |#1|)))) (-388 (-887 (-158 (-516)))) |#1|)) (-15 -1812 ((-594 (-275 (-887 (-158 |#1|)))) (-275 (-388 (-887 (-158 (-516))))) |#1|)) (-15 -1813 ((-594 (-158 |#1|)) (-388 (-887 (-158 (-516)))) |#1|)) (-15 -1813 ((-594 (-594 (-158 |#1|))) (-594 (-388 (-887 (-158 (-516))))) (-594 (-1098)) |#1|))) (-13 (-344) (-793))) (T -360))
+((-1813 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-594 (-388 (-887 (-158 (-516)))))) (-5 *4 (-594 (-1098))) (-5 *2 (-594 (-594 (-158 *5)))) (-5 *1 (-360 *5)) (-4 *5 (-13 (-344) (-793))))) (-1813 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-887 (-158 (-516))))) (-5 *2 (-594 (-158 *4))) (-5 *1 (-360 *4)) (-4 *4 (-13 (-344) (-793))))) (-1812 (*1 *2 *3 *4) (-12 (-5 *3 (-275 (-388 (-887 (-158 (-516)))))) (-5 *2 (-594 (-275 (-887 (-158 *4))))) (-5 *1 (-360 *4)) (-4 *4 (-13 (-344) (-793))))) (-1812 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-887 (-158 (-516))))) (-5 *2 (-594 (-275 (-887 (-158 *4))))) (-5 *1 (-360 *4)) (-4 *4 (-13 (-344) (-793))))) (-1812 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-275 (-388 (-887 (-158 (-516))))))) (-5 *2 (-594 (-594 (-275 (-887 (-158 *4)))))) (-5 *1 (-360 *4)) (-4 *4 (-13 (-344) (-793))))) (-1812 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-388 (-887 (-158 (-516)))))) (-5 *2 (-594 (-594 (-275 (-887 (-158 *4)))))) (-5 *1 (-360 *4)) (-4 *4 (-13 (-344) (-793))))))
+(-10 -7 (-15 -1812 ((-594 (-594 (-275 (-887 (-158 |#1|))))) (-594 (-388 (-887 (-158 (-516))))) |#1|)) (-15 -1812 ((-594 (-594 (-275 (-887 (-158 |#1|))))) (-594 (-275 (-388 (-887 (-158 (-516)))))) |#1|)) (-15 -1812 ((-594 (-275 (-887 (-158 |#1|)))) (-388 (-887 (-158 (-516)))) |#1|)) (-15 -1812 ((-594 (-275 (-887 (-158 |#1|)))) (-275 (-388 (-887 (-158 (-516))))) |#1|)) (-15 -1813 ((-594 (-158 |#1|)) (-388 (-887 (-158 (-516)))) |#1|)) (-15 -1813 ((-594 (-594 (-158 |#1|))) (-594 (-388 (-887 (-158 (-516))))) (-594 (-1098)) |#1|)))
+((-3855 (((-594 (-275 (-887 |#1|))) (-275 (-388 (-887 (-516)))) |#1|) 46) (((-594 (-275 (-887 |#1|))) (-388 (-887 (-516))) |#1|) 45) (((-594 (-594 (-275 (-887 |#1|)))) (-594 (-275 (-388 (-887 (-516))))) |#1|) 42) (((-594 (-594 (-275 (-887 |#1|)))) (-594 (-388 (-887 (-516)))) |#1|) 36)) (-1814 (((-594 |#1|) (-388 (-887 (-516))) |#1|) 20) (((-594 (-594 |#1|)) (-594 (-388 (-887 (-516)))) (-594 (-1098)) |#1|) 30)))
+(((-361 |#1|) (-10 -7 (-15 -3855 ((-594 (-594 (-275 (-887 |#1|)))) (-594 (-388 (-887 (-516)))) |#1|)) (-15 -3855 ((-594 (-594 (-275 (-887 |#1|)))) (-594 (-275 (-388 (-887 (-516))))) |#1|)) (-15 -3855 ((-594 (-275 (-887 |#1|))) (-388 (-887 (-516))) |#1|)) (-15 -3855 ((-594 (-275 (-887 |#1|))) (-275 (-388 (-887 (-516)))) |#1|)) (-15 -1814 ((-594 (-594 |#1|)) (-594 (-388 (-887 (-516)))) (-594 (-1098)) |#1|)) (-15 -1814 ((-594 |#1|) (-388 (-887 (-516))) |#1|))) (-13 (-793) (-344))) (T -361))
+((-1814 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-887 (-516)))) (-5 *2 (-594 *4)) (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344))))) (-1814 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-594 (-388 (-887 (-516))))) (-5 *4 (-594 (-1098))) (-5 *2 (-594 (-594 *5))) (-5 *1 (-361 *5)) (-4 *5 (-13 (-793) (-344))))) (-3855 (*1 *2 *3 *4) (-12 (-5 *3 (-275 (-388 (-887 (-516))))) (-5 *2 (-594 (-275 (-887 *4)))) (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344))))) (-3855 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-887 (-516)))) (-5 *2 (-594 (-275 (-887 *4)))) (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344))))) (-3855 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-275 (-388 (-887 (-516)))))) (-5 *2 (-594 (-594 (-275 (-887 *4))))) (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344))))) (-3855 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-388 (-887 (-516))))) (-5 *2 (-594 (-594 (-275 (-887 *4))))) (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344))))))
+(-10 -7 (-15 -3855 ((-594 (-594 (-275 (-887 |#1|)))) (-594 (-388 (-887 (-516)))) |#1|)) (-15 -3855 ((-594 (-594 (-275 (-887 |#1|)))) (-594 (-275 (-388 (-887 (-516))))) |#1|)) (-15 -3855 ((-594 (-275 (-887 |#1|))) (-388 (-887 (-516))) |#1|)) (-15 -3855 ((-594 (-275 (-887 |#1|))) (-275 (-388 (-887 (-516)))) |#1|)) (-15 -1814 ((-594 (-594 |#1|)) (-594 (-388 (-887 (-516)))) (-594 (-1098)) |#1|)) (-15 -1814 ((-594 |#1|) (-388 (-887 (-516))) |#1|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-4235 (($ $) NIL)) (-3157 (($ |#1| |#2|) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-2056 ((|#2| $) NIL)) (-3449 ((|#1| $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 28)) (-2920 (($) 12 T CONST)) (-3317 (((-110) $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
+(((-362 |#1| |#2|) (-13 (-109 |#1| |#1|) (-486 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-162)) (-6 (-666 |#1|)) |%noBranch|))) (-984) (-795)) (T -362))
+NIL
+(-13 (-109 |#1| |#1|) (-486 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-162)) (-6 (-666 |#1|)) |%noBranch|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#2| "failed") $) 26)) (-3431 ((|#2| $) 28)) (-4235 (($ $) NIL)) (-2444 (((-719) $) 10)) (-3085 (((-594 $) $) 20)) (-4213 (((-110) $) NIL)) (-4214 (($ |#2| |#1|) 18)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-1815 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3158 ((|#2| $) 15)) (-3449 ((|#1| $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 45) (($ |#2|) 27)) (-4096 (((-594 |#1|) $) 17)) (-3959 ((|#1| $ |#2|) 47)) (-2920 (($) 29 T CONST)) (-2926 (((-594 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-3317 (((-110) $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36)))
+(((-363 |#1| |#2|) (-13 (-365 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-984) (-795)) (T -363))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-363 *3 *2)) (-4 *3 (-984)) (-4 *2 (-795)))))
+(-13 (-365 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
+((-3658 (((-1185) $) 7)) (-4233 (((-805) $) 8) (($ (-637 (-647))) 14) (($ (-594 (-311))) 13) (($ (-311)) 12) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 11)))
(((-364) (-133)) (T -364))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-595 (-310))) (-4 *1 (-364)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-310)) (-4 *1 (-364)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) (-4 *1 (-364)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-635 (-296 (-359)))) (-4 *1 (-364)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-635 (-296 (-359)))) (-4 *1 (-364)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-635 (-296 (-528)))) (-4 *1 (-364)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-635 (-296 (-528)))) (-4 *1 (-364)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-635 (-891 (-359)))) (-4 *1 (-364)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-635 (-891 (-359)))) (-4 *1 (-364)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-635 (-891 (-528)))) (-4 *1 (-364)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-635 (-891 (-528)))) (-4 *1 (-364)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-635 (-387 (-891 (-359))))) (-4 *1 (-364)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-635 (-387 (-891 (-359))))) (-4 *1 (-364)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-635 (-387 (-891 (-528))))) (-4 *1 (-364)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-635 (-387 (-891 (-528))))) (-4 *1 (-364)))))
-(-13 (-375) (-10 -8 (-15 -2222 ($ (-595 (-310)))) (-15 -2222 ($ (-310))) (-15 -2222 ($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310)))))) (-15 -2409 ($ (-635 (-296 (-359))))) (-15 -3001 ((-3 $ "failed") (-635 (-296 (-359))))) (-15 -2409 ($ (-635 (-296 (-528))))) (-15 -3001 ((-3 $ "failed") (-635 (-296 (-528))))) (-15 -2409 ($ (-635 (-891 (-359))))) (-15 -3001 ((-3 $ "failed") (-635 (-891 (-359))))) (-15 -2409 ($ (-635 (-891 (-528))))) (-15 -3001 ((-3 $ "failed") (-635 (-891 (-528))))) (-15 -2409 ($ (-635 (-387 (-891 (-359)))))) (-15 -3001 ((-3 $ "failed") (-635 (-387 (-891 (-359)))))) (-15 -2409 ($ (-635 (-387 (-891 (-528)))))) (-15 -3001 ((-3 $ "failed") (-635 (-387 (-891 (-528))))))))
-(((-569 (-802)) . T) ((-375) . T) ((-1131) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-2388 (($ $) NIL)) (-2548 (($ |#1| |#2|) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-2787 ((|#2| $) NIL)) (-2697 ((|#1| $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 28)) (-2969 (($) 12 T CONST)) (-2186 (((-110) $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
-(((-365 |#1| |#2|) (-13 (-109 |#1| |#1|) (-484 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-162)) (-6 (-664 |#1|)) |%noBranch|))) (-981) (-793)) (T -365))
-NIL
-(-13 (-109 |#1| |#1|) (-484 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-162)) (-6 (-664 |#1|)) |%noBranch|)))
-((-2207 (((-110) $ $) NIL)) (-2856 (((-717) $) 59)) (-2816 (($) NIL T CONST)) (-2650 (((-3 $ "failed") $ $) 61)) (-3001 (((-3 |#1| "failed") $) NIL)) (-2409 ((|#1| $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-3588 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-1297 (((-110) $) 15)) (-2492 ((|#1| $ (-528)) NIL)) (-3442 (((-717) $ (-528)) NIL)) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-1333 (($ (-1 |#1| |#1|) $) 38)) (-3677 (($ (-1 (-717) (-717)) $) 35)) (-1572 (((-3 $ "failed") $ $) 50)) (-3034 (((-1078) $) NIL)) (-3944 (($ $ $) 26)) (-2577 (($ $ $) 24)) (-2495 (((-1042) $) NIL)) (-2783 (((-595 (-2 (|:| |gen| |#1|) (|:| -2656 (-717)))) $) 32)) (-1512 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-2222 (((-802) $) 22) (($ |#1|) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2982 (($) 9 T CONST)) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) 41)) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) 63 (|has| |#1| (-793)))) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ |#1| (-717)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28)))
-(((-366 |#1|) (-13 (-673) (-972 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-717))) (-15 -2577 ($ $ $)) (-15 -3944 ($ $ $)) (-15 -1572 ((-3 $ "failed") $ $)) (-15 -2650 ((-3 $ "failed") $ $)) (-15 -1512 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3588 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2856 ((-717) $)) (-15 -2783 ((-595 (-2 (|:| |gen| |#1|) (|:| -2656 (-717)))) $)) (-15 -3442 ((-717) $ (-528))) (-15 -2492 (|#1| $ (-528))) (-15 -3677 ($ (-1 (-717) (-717)) $)) (-15 -1333 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|))) (-1023)) (T -366))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-366 *2)) (-4 *2 (-1023)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-366 *2)) (-4 *2 (-1023)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-717)) (-5 *1 (-366 *2)) (-4 *2 (-1023)))) (-2577 (*1 *1 *1 *1) (-12 (-5 *1 (-366 *2)) (-4 *2 (-1023)))) (-3944 (*1 *1 *1 *1) (-12 (-5 *1 (-366 *2)) (-4 *2 (-1023)))) (-1572 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-366 *2)) (-4 *2 (-1023)))) (-2650 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-366 *2)) (-4 *2 (-1023)))) (-1512 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-366 *3)) (|:| |rm| (-366 *3)))) (-5 *1 (-366 *3)) (-4 *3 (-1023)))) (-3588 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-366 *3)) (|:| |mm| (-366 *3)) (|:| |rm| (-366 *3)))) (-5 *1 (-366 *3)) (-4 *3 (-1023)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-366 *3)) (-4 *3 (-1023)))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-595 (-2 (|:| |gen| *3) (|:| -2656 (-717))))) (-5 *1 (-366 *3)) (-4 *3 (-1023)))) (-3442 (*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-5 *2 (-717)) (-5 *1 (-366 *4)) (-4 *4 (-1023)))) (-2492 (*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-5 *1 (-366 *2)) (-4 *2 (-1023)))) (-3677 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-717) (-717))) (-5 *1 (-366 *3)) (-4 *3 (-1023)))) (-1333 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-366 *3)))))
-(-13 (-673) (-972 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-717))) (-15 -2577 ($ $ $)) (-15 -3944 ($ $ $)) (-15 -1572 ((-3 $ "failed") $ $)) (-15 -2650 ((-3 $ "failed") $ $)) (-15 -1512 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3588 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2856 ((-717) $)) (-15 -2783 ((-595 (-2 (|:| |gen| |#1|) (|:| -2656 (-717)))) $)) (-15 -3442 ((-717) $ (-528))) (-15 -2492 (|#1| $ (-528))) (-15 -3677 ($ (-1 (-717) (-717)) $)) (-15 -1333 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 41)) (-1738 (($ $) 40)) (-1811 (((-110) $) 38)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-3001 (((-3 (-528) "failed") $) 47)) (-2409 (((-528) $) 46)) (-1312 (((-3 $ "failed") $) 34)) (-1297 (((-110) $) 31)) (-1436 (($ $ $) 54)) (-1736 (($ $ $) 53)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-3477 (((-3 $ "failed") $ $) 42)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ $) 43) (($ (-528)) 48)) (-3742 (((-717)) 29)) (-4016 (((-110) $ $) 39)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2244 (((-110) $ $) 51)) (-2220 (((-110) $ $) 50)) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 52)) (-2208 (((-110) $ $) 49)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24)))
-(((-367) (-133)) (T -367))
-NIL
-(-13 (-520) (-793) (-972 (-528)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-569 (-802)) . T) ((-162) . T) ((-271) . T) ((-520) . T) ((-597 $) . T) ((-664 $) . T) ((-673) . T) ((-793) . T) ((-972 (-528)) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-2207 (((-110) $ $) NIL)) (-4043 (((-110) $) 20)) (-2583 (((-110) $) 19)) (-3462 (($ (-1078) (-1078) (-1078)) 21)) (-3814 (((-1078) $) 16)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2951 (($ (-1078) (-1078) (-1078)) 14)) (-2292 (((-1078) $) 17)) (-1317 (((-110) $) 18)) (-4067 (((-1078) $) 15)) (-2222 (((-802) $) 12) (($ (-1078)) 13) (((-1078) $) 9)) (-2186 (((-110) $ $) 7)))
-(((-368) (-369)) (T -368))
-NIL
-(-369)
-((-2207 (((-110) $ $) 7)) (-4043 (((-110) $) 14)) (-2583 (((-110) $) 15)) (-3462 (($ (-1078) (-1078) (-1078)) 13)) (-3814 (((-1078) $) 18)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2951 (($ (-1078) (-1078) (-1078)) 20)) (-2292 (((-1078) $) 17)) (-1317 (((-110) $) 16)) (-4067 (((-1078) $) 19)) (-2222 (((-802) $) 11) (($ (-1078)) 22) (((-1078) $) 21)) (-2186 (((-110) $ $) 6)))
-(((-369) (-133)) (T -369))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1078)) (-4 *1 (-369)))) (-2222 (*1 *2 *1) (-12 (-4 *1 (-369)) (-5 *2 (-1078)))) (-2951 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1078)) (-4 *1 (-369)))) (-4067 (*1 *2 *1) (-12 (-4 *1 (-369)) (-5 *2 (-1078)))) (-3814 (*1 *2 *1) (-12 (-4 *1 (-369)) (-5 *2 (-1078)))) (-2292 (*1 *2 *1) (-12 (-4 *1 (-369)) (-5 *2 (-1078)))) (-1317 (*1 *2 *1) (-12 (-4 *1 (-369)) (-5 *2 (-110)))) (-2583 (*1 *2 *1) (-12 (-4 *1 (-369)) (-5 *2 (-110)))) (-4043 (*1 *2 *1) (-12 (-4 *1 (-369)) (-5 *2 (-110)))) (-3462 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1078)) (-4 *1 (-369)))))
-(-13 (-1023) (-10 -8 (-15 -2222 ($ (-1078))) (-15 -2222 ((-1078) $)) (-15 -2951 ($ (-1078) (-1078) (-1078))) (-15 -4067 ((-1078) $)) (-15 -3814 ((-1078) $)) (-15 -2292 ((-1078) $)) (-15 -1317 ((-110) $)) (-15 -2583 ((-110) $)) (-15 -4043 ((-110) $)) (-15 -3462 ($ (-1078) (-1078) (-1078)))))
-(((-99) . T) ((-569 (-802)) . T) ((-1023) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-4066 (((-802) $) 50)) (-2816 (($) NIL T CONST)) (-3693 (($ $ (-860)) NIL)) (-2451 (($ $ (-860)) NIL)) (-3964 (($ $ (-860)) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-1261 (($ (-717)) 26)) (-3017 (((-717)) 17)) (-2314 (((-802) $) 52)) (-2405 (($ $ $) NIL)) (-2222 (((-802) $) NIL)) (-4103 (($ $ $ $) NIL)) (-3607 (($ $ $) NIL)) (-2969 (($) 20 T CONST)) (-2186 (((-110) $ $) 28)) (-2286 (($ $) 34) (($ $ $) 36)) (-2275 (($ $ $) 37)) (** (($ $ (-860)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
-(((-370 |#1| |#2| |#3|) (-13 (-691 |#3|) (-10 -8 (-15 -3017 ((-717))) (-15 -2314 ((-802) $)) (-15 -4066 ((-802) $)) (-15 -1261 ($ (-717))))) (-717) (-717) (-162)) (T -370))
-((-3017 (*1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-370 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-162)))) (-2314 (*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-370 *3 *4 *5)) (-14 *3 (-717)) (-14 *4 (-717)) (-4 *5 (-162)))) (-4066 (*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-370 *3 *4 *5)) (-14 *3 (-717)) (-14 *4 (-717)) (-4 *5 (-162)))) (-1261 (*1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-370 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-162)))))
-(-13 (-691 |#3|) (-10 -8 (-15 -3017 ((-717))) (-15 -2314 ((-802) $)) (-15 -4066 ((-802) $)) (-15 -1261 ($ (-717)))))
-((-1242 (((-1078)) 10)) (-3378 (((-1067 (-1078))) 28)) (-3080 (((-1182) (-1078)) 25) (((-1182) (-368)) 24)) (-3093 (((-1182)) 26)) (-2887 (((-1067 (-1078))) 27)))
-(((-371) (-10 -7 (-15 -2887 ((-1067 (-1078)))) (-15 -3378 ((-1067 (-1078)))) (-15 -3093 ((-1182))) (-15 -3080 ((-1182) (-368))) (-15 -3080 ((-1182) (-1078))) (-15 -1242 ((-1078))))) (T -371))
-((-1242 (*1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-371)))) (-3080 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-371)))) (-3080 (*1 *2 *3) (-12 (-5 *3 (-368)) (-5 *2 (-1182)) (-5 *1 (-371)))) (-3093 (*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-371)))) (-3378 (*1 *2) (-12 (-5 *2 (-1067 (-1078))) (-5 *1 (-371)))) (-2887 (*1 *2) (-12 (-5 *2 (-1067 (-1078))) (-5 *1 (-371)))))
-(-10 -7 (-15 -2887 ((-1067 (-1078)))) (-15 -3378 ((-1067 (-1078)))) (-15 -3093 ((-1182))) (-15 -3080 ((-1182) (-368))) (-15 -3080 ((-1182) (-1078))) (-15 -1242 ((-1078))))
-((-3689 (((-717) (-316 |#1| |#2| |#3| |#4|)) 16)))
-(((-372 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3689 ((-717) (-316 |#1| |#2| |#3| |#4|)))) (-13 (-348) (-343)) (-1153 |#1|) (-1153 (-387 |#2|)) (-322 |#1| |#2| |#3|)) (T -372))
-((-3689 (*1 *2 *3) (-12 (-5 *3 (-316 *4 *5 *6 *7)) (-4 *4 (-13 (-348) (-343))) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-387 *5))) (-4 *7 (-322 *4 *5 *6)) (-5 *2 (-717)) (-5 *1 (-372 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3689 ((-717) (-316 |#1| |#2| |#3| |#4|))))
-((-2222 (((-374) |#1|) 11)))
-(((-373 |#1|) (-10 -7 (-15 -2222 ((-374) |#1|))) (-1023)) (T -373))
-((-2222 (*1 *2 *3) (-12 (-5 *2 (-374)) (-5 *1 (-373 *3)) (-4 *3 (-1023)))))
-(-10 -7 (-15 -2222 ((-374) |#1|)))
-((-2207 (((-110) $ $) NIL)) (-3862 (((-595 (-1078)) $ (-595 (-1078))) 38)) (-1327 (((-595 (-1078)) $ (-595 (-1078))) 39)) (-4002 (((-595 (-1078)) $ (-595 (-1078))) 40)) (-3066 (((-595 (-1078)) $) 35)) (-3462 (($) 23)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-1319 (((-595 (-1078)) $) 36)) (-3079 (((-595 (-1078)) $) 37)) (-2273 (((-1182) $ (-528)) 33) (((-1182) $) 34)) (-3155 (($ (-802) (-528)) 30)) (-2222 (((-802) $) 42) (($ (-802)) 25)) (-2186 (((-110) $ $) NIL)))
-(((-374) (-13 (-1023) (-10 -8 (-15 -2222 ($ (-802))) (-15 -3155 ($ (-802) (-528))) (-15 -2273 ((-1182) $ (-528))) (-15 -2273 ((-1182) $)) (-15 -3079 ((-595 (-1078)) $)) (-15 -1319 ((-595 (-1078)) $)) (-15 -3462 ($)) (-15 -3066 ((-595 (-1078)) $)) (-15 -4002 ((-595 (-1078)) $ (-595 (-1078)))) (-15 -1327 ((-595 (-1078)) $ (-595 (-1078)))) (-15 -3862 ((-595 (-1078)) $ (-595 (-1078))))))) (T -374))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-374)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-802)) (-5 *3 (-528)) (-5 *1 (-374)))) (-2273 (*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-5 *2 (-1182)) (-5 *1 (-374)))) (-2273 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-374)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-374)))) (-1319 (*1 *2 *1) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-374)))) (-3462 (*1 *1) (-5 *1 (-374))) (-3066 (*1 *2 *1) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-374)))) (-4002 (*1 *2 *1 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-374)))) (-1327 (*1 *2 *1 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-374)))) (-3862 (*1 *2 *1 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-374)))))
-(-13 (-1023) (-10 -8 (-15 -2222 ($ (-802))) (-15 -3155 ($ (-802) (-528))) (-15 -2273 ((-1182) $ (-528))) (-15 -2273 ((-1182) $)) (-15 -3079 ((-595 (-1078)) $)) (-15 -1319 ((-595 (-1078)) $)) (-15 -3462 ($)) (-15 -3066 ((-595 (-1078)) $)) (-15 -4002 ((-595 (-1078)) $ (-595 (-1078)))) (-15 -1327 ((-595 (-1078)) $ (-595 (-1078)))) (-15 -3862 ((-595 (-1078)) $ (-595 (-1078))))))
-((-3105 (((-1182) $) 7)) (-2222 (((-802) $) 8)))
-(((-375) (-133)) (T -375))
-((-3105 (*1 *2 *1) (-12 (-4 *1 (-375)) (-5 *2 (-1182)))))
-(-13 (-1131) (-569 (-802)) (-10 -8 (-15 -3105 ((-1182) $))))
-(((-569 (-802)) . T) ((-1131) . T))
-((-3001 (((-3 $ "failed") (-296 (-359))) 21) (((-3 $ "failed") (-296 (-528))) 19) (((-3 $ "failed") (-891 (-359))) 17) (((-3 $ "failed") (-891 (-528))) 15) (((-3 $ "failed") (-387 (-891 (-359)))) 13) (((-3 $ "failed") (-387 (-891 (-528)))) 11)) (-2409 (($ (-296 (-359))) 22) (($ (-296 (-528))) 20) (($ (-891 (-359))) 18) (($ (-891 (-528))) 16) (($ (-387 (-891 (-359)))) 14) (($ (-387 (-891 (-528)))) 12)) (-3105 (((-1182) $) 7)) (-2222 (((-802) $) 8) (($ (-595 (-310))) 25) (($ (-310)) 24) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 23)))
-(((-376) (-133)) (T -376))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-595 (-310))) (-4 *1 (-376)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-310)) (-4 *1 (-376)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) (-4 *1 (-376)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-296 (-359))) (-4 *1 (-376)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-296 (-359))) (-4 *1 (-376)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-296 (-528))) (-4 *1 (-376)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-296 (-528))) (-4 *1 (-376)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-891 (-359))) (-4 *1 (-376)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-891 (-359))) (-4 *1 (-376)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-891 (-528))) (-4 *1 (-376)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-891 (-528))) (-4 *1 (-376)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-387 (-891 (-359)))) (-4 *1 (-376)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-387 (-891 (-359)))) (-4 *1 (-376)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-387 (-891 (-528)))) (-4 *1 (-376)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-387 (-891 (-528)))) (-4 *1 (-376)))))
-(-13 (-375) (-10 -8 (-15 -2222 ($ (-595 (-310)))) (-15 -2222 ($ (-310))) (-15 -2222 ($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310)))))) (-15 -2409 ($ (-296 (-359)))) (-15 -3001 ((-3 $ "failed") (-296 (-359)))) (-15 -2409 ($ (-296 (-528)))) (-15 -3001 ((-3 $ "failed") (-296 (-528)))) (-15 -2409 ($ (-891 (-359)))) (-15 -3001 ((-3 $ "failed") (-891 (-359)))) (-15 -2409 ($ (-891 (-528)))) (-15 -3001 ((-3 $ "failed") (-891 (-528)))) (-15 -2409 ($ (-387 (-891 (-359))))) (-15 -3001 ((-3 $ "failed") (-387 (-891 (-359))))) (-15 -2409 ($ (-387 (-891 (-528))))) (-15 -3001 ((-3 $ "failed") (-387 (-891 (-528)))))))
-(((-569 (-802)) . T) ((-375) . T) ((-1131) . T))
-((-1724 (((-595 (-1078)) (-595 (-1078))) 9)) (-3105 (((-1182) (-368)) 27)) (-3897 (((-1027) (-1095) (-595 (-1095)) (-1098) (-595 (-1095))) 60) (((-1027) (-1095) (-595 (-3 (|:| |array| (-595 (-1095))) (|:| |scalar| (-1095)))) (-595 (-595 (-3 (|:| |array| (-595 (-1095))) (|:| |scalar| (-1095))))) (-595 (-1095)) (-1095)) 35) (((-1027) (-1095) (-595 (-3 (|:| |array| (-595 (-1095))) (|:| |scalar| (-1095)))) (-595 (-595 (-3 (|:| |array| (-595 (-1095))) (|:| |scalar| (-1095))))) (-595 (-1095))) 34)))
-(((-377) (-10 -7 (-15 -3897 ((-1027) (-1095) (-595 (-3 (|:| |array| (-595 (-1095))) (|:| |scalar| (-1095)))) (-595 (-595 (-3 (|:| |array| (-595 (-1095))) (|:| |scalar| (-1095))))) (-595 (-1095)))) (-15 -3897 ((-1027) (-1095) (-595 (-3 (|:| |array| (-595 (-1095))) (|:| |scalar| (-1095)))) (-595 (-595 (-3 (|:| |array| (-595 (-1095))) (|:| |scalar| (-1095))))) (-595 (-1095)) (-1095))) (-15 -3897 ((-1027) (-1095) (-595 (-1095)) (-1098) (-595 (-1095)))) (-15 -3105 ((-1182) (-368))) (-15 -1724 ((-595 (-1078)) (-595 (-1078)))))) (T -377))
-((-1724 (*1 *2 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-377)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-368)) (-5 *2 (-1182)) (-5 *1 (-377)))) (-3897 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-595 (-1095))) (-5 *5 (-1098)) (-5 *3 (-1095)) (-5 *2 (-1027)) (-5 *1 (-377)))) (-3897 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-595 (-595 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-595 (-3 (|:| |array| (-595 *3)) (|:| |scalar| (-1095))))) (-5 *6 (-595 (-1095))) (-5 *3 (-1095)) (-5 *2 (-1027)) (-5 *1 (-377)))) (-3897 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-595 (-595 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-595 (-3 (|:| |array| (-595 *3)) (|:| |scalar| (-1095))))) (-5 *6 (-595 (-1095))) (-5 *3 (-1095)) (-5 *2 (-1027)) (-5 *1 (-377)))))
-(-10 -7 (-15 -3897 ((-1027) (-1095) (-595 (-3 (|:| |array| (-595 (-1095))) (|:| |scalar| (-1095)))) (-595 (-595 (-3 (|:| |array| (-595 (-1095))) (|:| |scalar| (-1095))))) (-595 (-1095)))) (-15 -3897 ((-1027) (-1095) (-595 (-3 (|:| |array| (-595 (-1095))) (|:| |scalar| (-1095)))) (-595 (-595 (-3 (|:| |array| (-595 (-1095))) (|:| |scalar| (-1095))))) (-595 (-1095)) (-1095))) (-15 -3897 ((-1027) (-1095) (-595 (-1095)) (-1098) (-595 (-1095)))) (-15 -3105 ((-1182) (-368))) (-15 -1724 ((-595 (-1078)) (-595 (-1078)))))
-((-3105 (((-1182) $) 38)) (-2222 (((-802) $) 98) (($ (-310)) 100) (($ (-595 (-310))) 99) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 97) (($ (-296 (-647))) 54) (($ (-296 (-645))) 73) (($ (-296 (-640))) 86) (($ (-275 (-296 (-647)))) 68) (($ (-275 (-296 (-645)))) 81) (($ (-275 (-296 (-640)))) 94) (($ (-296 (-528))) 104) (($ (-296 (-359))) 117) (($ (-296 (-159 (-359)))) 130) (($ (-275 (-296 (-528)))) 112) (($ (-275 (-296 (-359)))) 125) (($ (-275 (-296 (-159 (-359))))) 138)))
-(((-378 |#1| |#2| |#3| |#4|) (-13 (-375) (-10 -8 (-15 -2222 ($ (-310))) (-15 -2222 ($ (-595 (-310)))) (-15 -2222 ($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310)))))) (-15 -2222 ($ (-296 (-647)))) (-15 -2222 ($ (-296 (-645)))) (-15 -2222 ($ (-296 (-640)))) (-15 -2222 ($ (-275 (-296 (-647))))) (-15 -2222 ($ (-275 (-296 (-645))))) (-15 -2222 ($ (-275 (-296 (-640))))) (-15 -2222 ($ (-296 (-528)))) (-15 -2222 ($ (-296 (-359)))) (-15 -2222 ($ (-296 (-159 (-359))))) (-15 -2222 ($ (-275 (-296 (-528))))) (-15 -2222 ($ (-275 (-296 (-359))))) (-15 -2222 ($ (-275 (-296 (-159 (-359)))))))) (-1095) (-3 (|:| |fst| (-414)) (|:| -2853 "void")) (-595 (-1095)) (-1099)) (T -378))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-310)) (-5 *1 (-378 *3 *4 *5 *6)) (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-14 *5 (-595 (-1095))) (-14 *6 (-1099)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-595 (-310))) (-5 *1 (-378 *3 *4 *5 *6)) (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-14 *5 (-595 (-1095))) (-14 *6 (-1099)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) (-5 *1 (-378 *3 *4 *5 *6)) (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-14 *5 (-595 (-1095))) (-14 *6 (-1099)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-296 (-647))) (-5 *1 (-378 *3 *4 *5 *6)) (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-14 *5 (-595 (-1095))) (-14 *6 (-1099)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-296 (-645))) (-5 *1 (-378 *3 *4 *5 *6)) (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-14 *5 (-595 (-1095))) (-14 *6 (-1099)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-296 (-640))) (-5 *1 (-378 *3 *4 *5 *6)) (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-14 *5 (-595 (-1095))) (-14 *6 (-1099)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-275 (-296 (-647)))) (-5 *1 (-378 *3 *4 *5 *6)) (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-14 *5 (-595 (-1095))) (-14 *6 (-1099)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-275 (-296 (-645)))) (-5 *1 (-378 *3 *4 *5 *6)) (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-14 *5 (-595 (-1095))) (-14 *6 (-1099)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-275 (-296 (-640)))) (-5 *1 (-378 *3 *4 *5 *6)) (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-14 *5 (-595 (-1095))) (-14 *6 (-1099)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-296 (-528))) (-5 *1 (-378 *3 *4 *5 *6)) (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-14 *5 (-595 (-1095))) (-14 *6 (-1099)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-296 (-359))) (-5 *1 (-378 *3 *4 *5 *6)) (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-14 *5 (-595 (-1095))) (-14 *6 (-1099)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-296 (-159 (-359)))) (-5 *1 (-378 *3 *4 *5 *6)) (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-14 *5 (-595 (-1095))) (-14 *6 (-1099)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-275 (-296 (-528)))) (-5 *1 (-378 *3 *4 *5 *6)) (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-14 *5 (-595 (-1095))) (-14 *6 (-1099)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-275 (-296 (-359)))) (-5 *1 (-378 *3 *4 *5 *6)) (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-14 *5 (-595 (-1095))) (-14 *6 (-1099)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-275 (-296 (-159 (-359))))) (-5 *1 (-378 *3 *4 *5 *6)) (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-14 *5 (-595 (-1095))) (-14 *6 (-1099)))))
-(-13 (-375) (-10 -8 (-15 -2222 ($ (-310))) (-15 -2222 ($ (-595 (-310)))) (-15 -2222 ($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310)))))) (-15 -2222 ($ (-296 (-647)))) (-15 -2222 ($ (-296 (-645)))) (-15 -2222 ($ (-296 (-640)))) (-15 -2222 ($ (-275 (-296 (-647))))) (-15 -2222 ($ (-275 (-296 (-645))))) (-15 -2222 ($ (-275 (-296 (-640))))) (-15 -2222 ($ (-296 (-528)))) (-15 -2222 ($ (-296 (-359)))) (-15 -2222 ($ (-296 (-159 (-359))))) (-15 -2222 ($ (-275 (-296 (-528))))) (-15 -2222 ($ (-275 (-296 (-359))))) (-15 -2222 ($ (-275 (-296 (-159 (-359))))))))
-((-2207 (((-110) $ $) NIL)) (-1226 ((|#2| $) 36)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3118 (($ (-387 |#2|)) 85)) (-3959 (((-595 (-2 (|:| -2564 (-717)) (|:| -1884 |#2|) (|:| |num| |#2|))) $) 37)) (-3235 (($ $) 32) (($ $ (-717)) 34)) (-3155 (((-387 |#2|) $) 46)) (-2233 (($ (-595 (-2 (|:| -2564 (-717)) (|:| -1884 |#2|) (|:| |num| |#2|)))) 31)) (-2222 (((-802) $) 120)) (-3245 (($ $) 33) (($ $ (-717)) 35)) (-2186 (((-110) $ $) NIL)) (-2275 (($ |#2| $) 39)))
-(((-379 |#1| |#2|) (-13 (-1023) (-570 (-387 |#2|)) (-10 -8 (-15 -2275 ($ |#2| $)) (-15 -3118 ($ (-387 |#2|))) (-15 -1226 (|#2| $)) (-15 -3959 ((-595 (-2 (|:| -2564 (-717)) (|:| -1884 |#2|) (|:| |num| |#2|))) $)) (-15 -2233 ($ (-595 (-2 (|:| -2564 (-717)) (|:| -1884 |#2|) (|:| |num| |#2|))))) (-15 -3235 ($ $)) (-15 -3245 ($ $)) (-15 -3235 ($ $ (-717))) (-15 -3245 ($ $ (-717))))) (-13 (-343) (-140)) (-1153 |#1|)) (T -379))
-((-2275 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-343) (-140))) (-5 *1 (-379 *3 *2)) (-4 *2 (-1153 *3)))) (-3118 (*1 *1 *2) (-12 (-5 *2 (-387 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-13 (-343) (-140))) (-5 *1 (-379 *3 *4)))) (-1226 (*1 *2 *1) (-12 (-4 *2 (-1153 *3)) (-5 *1 (-379 *3 *2)) (-4 *3 (-13 (-343) (-140))))) (-3959 (*1 *2 *1) (-12 (-4 *3 (-13 (-343) (-140))) (-5 *2 (-595 (-2 (|:| -2564 (-717)) (|:| -1884 *4) (|:| |num| *4)))) (-5 *1 (-379 *3 *4)) (-4 *4 (-1153 *3)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-595 (-2 (|:| -2564 (-717)) (|:| -1884 *4) (|:| |num| *4)))) (-4 *4 (-1153 *3)) (-4 *3 (-13 (-343) (-140))) (-5 *1 (-379 *3 *4)))) (-3235 (*1 *1 *1) (-12 (-4 *2 (-13 (-343) (-140))) (-5 *1 (-379 *2 *3)) (-4 *3 (-1153 *2)))) (-3245 (*1 *1 *1) (-12 (-4 *2 (-13 (-343) (-140))) (-5 *1 (-379 *2 *3)) (-4 *3 (-1153 *2)))) (-3235 (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *3 (-13 (-343) (-140))) (-5 *1 (-379 *3 *4)) (-4 *4 (-1153 *3)))) (-3245 (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *3 (-13 (-343) (-140))) (-5 *1 (-379 *3 *4)) (-4 *4 (-1153 *3)))))
-(-13 (-1023) (-570 (-387 |#2|)) (-10 -8 (-15 -2275 ($ |#2| $)) (-15 -3118 ($ (-387 |#2|))) (-15 -1226 (|#2| $)) (-15 -3959 ((-595 (-2 (|:| -2564 (-717)) (|:| -1884 |#2|) (|:| |num| |#2|))) $)) (-15 -2233 ($ (-595 (-2 (|:| -2564 (-717)) (|:| -1884 |#2|) (|:| |num| |#2|))))) (-15 -3235 ($ $)) (-15 -3245 ($ $)) (-15 -3235 ($ $ (-717))) (-15 -3245 ($ $ (-717)))))
-((-2207 (((-110) $ $) 9 (-1463 (|has| |#1| (-825 (-528))) (|has| |#1| (-825 (-359)))))) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) 15 (|has| |#1| (-825 (-359)))) (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) 14 (|has| |#1| (-825 (-528))))) (-3034 (((-1078) $) 13 (-1463 (|has| |#1| (-825 (-528))) (|has| |#1| (-825 (-359)))))) (-2495 (((-1042) $) 12 (-1463 (|has| |#1| (-825 (-528))) (|has| |#1| (-825 (-359)))))) (-2222 (((-802) $) 11 (-1463 (|has| |#1| (-825 (-528))) (|has| |#1| (-825 (-359)))))) (-2186 (((-110) $ $) 10 (-1463 (|has| |#1| (-825 (-528))) (|has| |#1| (-825 (-359)))))))
-(((-380 |#1|) (-133) (-1131)) (T -380))
-NIL
-(-13 (-1131) (-10 -7 (IF (|has| |t#1| (-825 (-528))) (-6 (-825 (-528))) |%noBranch|) (IF (|has| |t#1| (-825 (-359))) (-6 (-825 (-359))) |%noBranch|)))
-(((-99) -1463 (|has| |#1| (-825 (-528))) (|has| |#1| (-825 (-359)))) ((-569 (-802)) -1463 (|has| |#1| (-825 (-528))) (|has| |#1| (-825 (-359)))) ((-825 (-359)) |has| |#1| (-825 (-359))) ((-825 (-528)) |has| |#1| (-825 (-528))) ((-1023) -1463 (|has| |#1| (-825 (-528))) (|has| |#1| (-825 (-359)))) ((-1131) . T))
-((-2790 (($ $) 10) (($ $ (-717)) 11)))
-(((-381 |#1|) (-10 -8 (-15 -2790 (|#1| |#1| (-717))) (-15 -2790 (|#1| |#1|))) (-382)) (T -381))
-NIL
-(-10 -8 (-15 -2790 (|#1| |#1| (-717))) (-15 -2790 (|#1| |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 41)) (-1738 (($ $) 40)) (-1811 (((-110) $) 38)) (-3181 (((-3 $ "failed") $ $) 19)) (-1232 (($ $) 73)) (-2705 (((-398 $) $) 72)) (-2213 (((-110) $ $) 59)) (-2816 (($) 17 T CONST)) (-3519 (($ $ $) 55)) (-1312 (((-3 $ "failed") $) 34)) (-3498 (($ $ $) 56)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 51)) (-2790 (($ $) 79) (($ $ (-717)) 78)) (-2124 (((-110) $) 71)) (-3689 (((-779 (-860)) $) 81)) (-1297 (((-110) $) 31)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) 52)) (-2057 (($ $ $) 46) (($ (-595 $)) 45)) (-3034 (((-1078) $) 9)) (-2652 (($ $) 70)) (-2495 (((-1042) $) 10)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 44)) (-2088 (($ $ $) 48) (($ (-595 $)) 47)) (-2437 (((-398 $) $) 74)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3477 (((-3 $ "failed") $ $) 42)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 50)) (-3973 (((-717) $) 58)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 57)) (-3500 (((-3 (-717) "failed") $ $) 80)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ $) 43) (($ (-387 (-528))) 65)) (-3749 (((-3 $ "failed") $) 82)) (-3742 (((-717)) 29)) (-4016 (((-110) $ $) 39)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33) (($ $ (-528)) 69)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2296 (($ $ $) 64)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32) (($ $ (-528)) 68)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ (-387 (-528))) 67) (($ (-387 (-528)) $) 66)))
-(((-382) (-133)) (T -382))
-((-3689 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-779 (-860))))) (-3500 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-382)) (-5 *2 (-717)))) (-2790 (*1 *1 *1) (-4 *1 (-382))) (-2790 (*1 *1 *1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-717)))))
-(-13 (-343) (-138) (-10 -8 (-15 -3689 ((-779 (-860)) $)) (-15 -3500 ((-3 (-717) "failed") $ $)) (-15 -2790 ($ $)) (-15 -2790 ($ $ (-717)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-387 (-528))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-138) . T) ((-569 (-802)) . T) ((-162) . T) ((-225) . T) ((-271) . T) ((-288) . T) ((-343) . T) ((-431) . T) ((-520) . T) ((-597 #0#) . T) ((-597 $) . T) ((-664 #0#) . T) ((-664 $) . T) ((-673) . T) ((-859) . T) ((-986 #0#) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1135) . T))
-((-2849 (($ (-528) (-528)) 11) (($ (-528) (-528) (-860)) NIL)) (-1913 (((-860)) 16) (((-860) (-860)) NIL)))
-(((-383 |#1|) (-10 -8 (-15 -1913 ((-860) (-860))) (-15 -1913 ((-860))) (-15 -2849 (|#1| (-528) (-528) (-860))) (-15 -2849 (|#1| (-528) (-528)))) (-384)) (T -383))
-((-1913 (*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-383 *3)) (-4 *3 (-384)))) (-1913 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-383 *3)) (-4 *3 (-384)))))
-(-10 -8 (-15 -1913 ((-860) (-860))) (-15 -1913 ((-860))) (-15 -2849 (|#1| (-528) (-528) (-860))) (-15 -2849 (|#1| (-528) (-528))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3598 (((-528) $) 89)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 41)) (-1738 (($ $) 40)) (-1811 (((-110) $) 38)) (-1781 (($ $) 87)) (-3181 (((-3 $ "failed") $ $) 19)) (-1232 (($ $) 73)) (-2705 (((-398 $) $) 72)) (-2450 (($ $) 97)) (-2213 (((-110) $ $) 59)) (-3605 (((-528) $) 114)) (-2816 (($) 17 T CONST)) (-2212 (($ $) 86)) (-3001 (((-3 (-528) "failed") $) 102) (((-3 (-387 (-528)) "failed") $) 99)) (-2409 (((-528) $) 101) (((-387 (-528)) $) 98)) (-3519 (($ $ $) 55)) (-1312 (((-3 $ "failed") $) 34)) (-3498 (($ $ $) 56)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 51)) (-2124 (((-110) $) 71)) (-1239 (((-860)) 130) (((-860) (-860)) 127 (|has| $ (-6 -4255)))) (-3657 (((-110) $) 112)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) 93)) (-3689 (((-528) $) 136)) (-1297 (((-110) $) 31)) (-2796 (($ $ (-528)) 96)) (-3297 (($ $) 92)) (-3710 (((-110) $) 113)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) 52)) (-1436 (($ $ $) 111) (($) 124 (-12 (-3617 (|has| $ (-6 -4255))) (-3617 (|has| $ (-6 -4247)))))) (-1736 (($ $ $) 110) (($) 123 (-12 (-3617 (|has| $ (-6 -4255))) (-3617 (|has| $ (-6 -4247)))))) (-3095 (((-528) $) 133)) (-2057 (($ $ $) 46) (($ (-595 $)) 45)) (-3034 (((-1078) $) 9)) (-2652 (($ $) 70)) (-3144 (((-860) (-528)) 126 (|has| $ (-6 -4255)))) (-2495 (((-1042) $) 10)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 44)) (-2088 (($ $ $) 48) (($ (-595 $)) 47)) (-3270 (($ $) 88)) (-2925 (($ $) 90)) (-2849 (($ (-528) (-528)) 138) (($ (-528) (-528) (-860)) 137)) (-2437 (((-398 $) $) 74)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3477 (((-3 $ "failed") $ $) 42)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 50)) (-2564 (((-528) $) 134)) (-3973 (((-717) $) 58)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 57)) (-1913 (((-860)) 131) (((-860) (-860)) 128 (|has| $ (-6 -4255)))) (-2166 (((-860) (-528)) 125 (|has| $ (-6 -4255)))) (-3155 (((-359) $) 105) (((-207) $) 104) (((-831 (-359)) $) 94)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ $) 43) (($ (-387 (-528))) 65) (($ (-528)) 103) (($ (-387 (-528))) 100)) (-3742 (((-717)) 29)) (-1769 (($ $) 91)) (-3341 (((-860)) 132) (((-860) (-860)) 129 (|has| $ (-6 -4255)))) (-2911 (((-860)) 135)) (-4016 (((-110) $ $) 39)) (-1775 (($ $) 115)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33) (($ $ (-528)) 69)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2244 (((-110) $ $) 108)) (-2220 (((-110) $ $) 107)) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 109)) (-2208 (((-110) $ $) 106)) (-2296 (($ $ $) 64)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32) (($ $ (-528)) 68) (($ $ (-387 (-528))) 95)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ (-387 (-528))) 67) (($ (-387 (-528)) $) 66)))
-(((-384) (-133)) (T -384))
-((-2849 (*1 *1 *2 *2) (-12 (-5 *2 (-528)) (-4 *1 (-384)))) (-2849 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-528)) (-5 *3 (-860)) (-4 *1 (-384)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-528)))) (-2911 (*1 *2) (-12 (-4 *1 (-384)) (-5 *2 (-860)))) (-2564 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-528)))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-528)))) (-3341 (*1 *2) (-12 (-4 *1 (-384)) (-5 *2 (-860)))) (-1913 (*1 *2) (-12 (-4 *1 (-384)) (-5 *2 (-860)))) (-1239 (*1 *2) (-12 (-4 *1 (-384)) (-5 *2 (-860)))) (-3341 (*1 *2 *2) (-12 (-5 *2 (-860)) (|has| *1 (-6 -4255)) (-4 *1 (-384)))) (-1913 (*1 *2 *2) (-12 (-5 *2 (-860)) (|has| *1 (-6 -4255)) (-4 *1 (-384)))) (-1239 (*1 *2 *2) (-12 (-5 *2 (-860)) (|has| *1 (-6 -4255)) (-4 *1 (-384)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-528)) (|has| *1 (-6 -4255)) (-4 *1 (-384)) (-5 *2 (-860)))) (-2166 (*1 *2 *3) (-12 (-5 *3 (-528)) (|has| *1 (-6 -4255)) (-4 *1 (-384)) (-5 *2 (-860)))) (-1436 (*1 *1) (-12 (-4 *1 (-384)) (-3617 (|has| *1 (-6 -4255))) (-3617 (|has| *1 (-6 -4247))))) (-1736 (*1 *1) (-12 (-4 *1 (-384)) (-3617 (|has| *1 (-6 -4255))) (-3617 (|has| *1 (-6 -4247))))))
-(-13 (-989) (-10 -8 (-6 -4083) (-15 -2849 ($ (-528) (-528))) (-15 -2849 ($ (-528) (-528) (-860))) (-15 -3689 ((-528) $)) (-15 -2911 ((-860))) (-15 -2564 ((-528) $)) (-15 -3095 ((-528) $)) (-15 -3341 ((-860))) (-15 -1913 ((-860))) (-15 -1239 ((-860))) (IF (|has| $ (-6 -4255)) (PROGN (-15 -3341 ((-860) (-860))) (-15 -1913 ((-860) (-860))) (-15 -1239 ((-860) (-860))) (-15 -3144 ((-860) (-528))) (-15 -2166 ((-860) (-528)))) |%noBranch|) (IF (|has| $ (-6 -4247)) |%noBranch| (IF (|has| $ (-6 -4255)) |%noBranch| (PROGN (-15 -1436 ($)) (-15 -1736 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-387 (-528))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-569 (-802)) . T) ((-162) . T) ((-570 (-207)) . T) ((-570 (-359)) . T) ((-570 (-831 (-359))) . T) ((-225) . T) ((-271) . T) ((-288) . T) ((-343) . T) ((-431) . T) ((-520) . T) ((-597 #0#) . T) ((-597 $) . T) ((-664 #0#) . T) ((-664 $) . T) ((-673) . T) ((-737) . T) ((-738) . T) ((-740) . T) ((-741) . T) ((-791) . T) ((-793) . T) ((-825 (-359)) . T) ((-859) . T) ((-938) . T) ((-957) . T) ((-989) . T) ((-972 (-387 (-528))) . T) ((-972 (-528)) . T) ((-986 #0#) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1135) . T))
-((-3106 (((-398 |#2|) (-1 |#2| |#1|) (-398 |#1|)) 20)))
-(((-385 |#1| |#2|) (-10 -7 (-15 -3106 ((-398 |#2|) (-1 |#2| |#1|) (-398 |#1|)))) (-520) (-520)) (T -385))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-398 *5)) (-4 *5 (-520)) (-4 *6 (-520)) (-5 *2 (-398 *6)) (-5 *1 (-385 *5 *6)))))
-(-10 -7 (-15 -3106 ((-398 |#2|) (-1 |#2| |#1|) (-398 |#1|))))
-((-3106 (((-387 |#2|) (-1 |#2| |#1|) (-387 |#1|)) 13)))
-(((-386 |#1| |#2|) (-10 -7 (-15 -3106 ((-387 |#2|) (-1 |#2| |#1|) (-387 |#1|)))) (-520) (-520)) (T -386))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-387 *5)) (-4 *5 (-520)) (-4 *6 (-520)) (-5 *2 (-387 *6)) (-5 *1 (-386 *5 *6)))))
-(-10 -7 (-15 -3106 ((-387 |#2|) (-1 |#2| |#1|) (-387 |#1|))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 13)) (-3598 ((|#1| $) 21 (|has| |#1| (-288)))) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2213 (((-110) $ $) NIL)) (-3605 (((-528) $) NIL (|has| |#1| (-766)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#1| "failed") $) 17) (((-3 (-1095) "failed") $) NIL (|has| |#1| (-972 (-1095)))) (((-3 (-387 (-528)) "failed") $) 70 (|has| |#1| (-972 (-528)))) (((-3 (-528) "failed") $) NIL (|has| |#1| (-972 (-528))))) (-2409 ((|#1| $) 15) (((-1095) $) NIL (|has| |#1| (-972 (-1095)))) (((-387 (-528)) $) 67 (|has| |#1| (-972 (-528)))) (((-528) $) NIL (|has| |#1| (-972 (-528))))) (-3519 (($ $ $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) NIL) (((-635 |#1|) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) 50)) (-1338 (($) NIL (|has| |#1| (-513)))) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2124 (((-110) $) NIL)) (-3657 (((-110) $) NIL (|has| |#1| (-766)))) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (|has| |#1| (-825 (-528)))) (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (|has| |#1| (-825 (-359))))) (-1297 (((-110) $) 64)) (-3037 (($ $) NIL)) (-3031 ((|#1| $) 71)) (-3296 (((-3 $ "failed") $) NIL (|has| |#1| (-1071)))) (-3710 (((-110) $) NIL (|has| |#1| (-766)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL)) (-4197 (($) NIL (|has| |#1| (-1071)) CONST)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 97)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3270 (($ $) NIL (|has| |#1| (-288)))) (-2925 ((|#1| $) 28 (|has| |#1| (-513)))) (-3261 (((-398 (-1091 $)) (-1091 $)) 135 (|has| |#1| (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) 131 (|has| |#1| (-848)))) (-2437 (((-398 $) $) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-4014 (($ $ (-595 |#1|) (-595 |#1|)) NIL (|has| |#1| (-290 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-290 |#1|))) (($ $ (-275 |#1|)) NIL (|has| |#1| (-290 |#1|))) (($ $ (-595 (-275 |#1|))) NIL (|has| |#1| (-290 |#1|))) (($ $ (-595 (-1095)) (-595 |#1|)) NIL (|has| |#1| (-489 (-1095) |#1|))) (($ $ (-1095) |#1|) NIL (|has| |#1| (-489 (-1095) |#1|)))) (-3973 (((-717) $) NIL)) (-3043 (($ $ |#1|) NIL (|has| |#1| (-267 |#1| |#1|)))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3235 (($ $) NIL (|has| |#1| (-215))) (($ $ (-717)) NIL (|has| |#1| (-215))) (($ $ (-1095)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-4118 (($ $) NIL)) (-3042 ((|#1| $) 73)) (-3155 (((-831 (-528)) $) NIL (|has| |#1| (-570 (-831 (-528))))) (((-831 (-359)) $) NIL (|has| |#1| (-570 (-831 (-359))))) (((-504) $) NIL (|has| |#1| (-570 (-504)))) (((-359) $) NIL (|has| |#1| (-957))) (((-207) $) NIL (|has| |#1| (-957)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) 115 (-12 (|has| $ (-138)) (|has| |#1| (-848))))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ $) NIL) (($ (-387 (-528))) NIL) (($ |#1|) 10) (($ (-1095)) NIL (|has| |#1| (-972 (-1095))))) (-3749 (((-3 $ "failed") $) 99 (-1463 (-12 (|has| $ (-138)) (|has| |#1| (-848))) (|has| |#1| (-138))))) (-3742 (((-717)) 100)) (-1769 ((|#1| $) 26 (|has| |#1| (-513)))) (-4016 (((-110) $ $) NIL)) (-1775 (($ $) NIL (|has| |#1| (-766)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) 22 T CONST)) (-2982 (($) 8 T CONST)) (-1256 (((-1078) $) 43 (-12 (|has| |#1| (-513)) (|has| |#1| (-774)))) (((-1078) $ (-110)) 44 (-12 (|has| |#1| (-513)) (|has| |#1| (-774)))) (((-1182) (-768) $) 45 (-12 (|has| |#1| (-513)) (|has| |#1| (-774)))) (((-1182) (-768) $ (-110)) 46 (-12 (|has| |#1| (-513)) (|has| |#1| (-774))))) (-3245 (($ $) NIL (|has| |#1| (-215))) (($ $ (-717)) NIL (|has| |#1| (-215))) (($ $ (-1095)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) 56)) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) 24 (|has| |#1| (-793)))) (-2296 (($ $ $) 126) (($ |#1| |#1|) 52)) (-2286 (($ $) 25) (($ $ $) 55)) (-2275 (($ $ $) 53)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) 125)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 60) (($ $ $) 57) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
-(((-387 |#1|) (-13 (-929 |#1|) (-10 -7 (IF (|has| |#1| (-513)) (IF (|has| |#1| (-774)) (-6 (-774)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4251)) (IF (|has| |#1| (-431)) (IF (|has| |#1| (-6 -4262)) (-6 -4251) |%noBranch|) |%noBranch|) |%noBranch|))) (-520)) (T -387))
-NIL
-(-13 (-929 |#1|) (-10 -7 (IF (|has| |#1| (-513)) (IF (|has| |#1| (-774)) (-6 (-774)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4251)) (IF (|has| |#1| (-431)) (IF (|has| |#1| (-6 -4262)) (-6 -4251) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-2486 (((-635 |#2|) (-1177 $)) NIL) (((-635 |#2|)) 18)) (-1945 (($ (-1177 |#2|) (-1177 $)) NIL) (($ (-1177 |#2|)) 26)) (-3847 (((-635 |#2|) $ (-1177 $)) NIL) (((-635 |#2|) $) 22)) (-3537 ((|#3| $) 60)) (-1372 ((|#2| (-1177 $)) NIL) ((|#2|) 20)) (-4243 (((-1177 |#2|) $ (-1177 $)) NIL) (((-635 |#2|) (-1177 $) (-1177 $)) NIL) (((-1177 |#2|) $) NIL) (((-635 |#2|) (-1177 $)) 24)) (-3155 (((-1177 |#2|) $) 11) (($ (-1177 |#2|)) 13)) (-2516 ((|#3| $) 52)))
-(((-388 |#1| |#2| |#3|) (-10 -8 (-15 -3847 ((-635 |#2|) |#1|)) (-15 -1372 (|#2|)) (-15 -2486 ((-635 |#2|))) (-15 -3155 (|#1| (-1177 |#2|))) (-15 -3155 ((-1177 |#2|) |#1|)) (-15 -1945 (|#1| (-1177 |#2|))) (-15 -4243 ((-635 |#2|) (-1177 |#1|))) (-15 -4243 ((-1177 |#2|) |#1|)) (-15 -3537 (|#3| |#1|)) (-15 -2516 (|#3| |#1|)) (-15 -2486 ((-635 |#2|) (-1177 |#1|))) (-15 -1372 (|#2| (-1177 |#1|))) (-15 -1945 (|#1| (-1177 |#2|) (-1177 |#1|))) (-15 -4243 ((-635 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -4243 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -3847 ((-635 |#2|) |#1| (-1177 |#1|)))) (-389 |#2| |#3|) (-162) (-1153 |#2|)) (T -388))
-((-2486 (*1 *2) (-12 (-4 *4 (-162)) (-4 *5 (-1153 *4)) (-5 *2 (-635 *4)) (-5 *1 (-388 *3 *4 *5)) (-4 *3 (-389 *4 *5)))) (-1372 (*1 *2) (-12 (-4 *4 (-1153 *2)) (-4 *2 (-162)) (-5 *1 (-388 *3 *2 *4)) (-4 *3 (-389 *2 *4)))))
-(-10 -8 (-15 -3847 ((-635 |#2|) |#1|)) (-15 -1372 (|#2|)) (-15 -2486 ((-635 |#2|))) (-15 -3155 (|#1| (-1177 |#2|))) (-15 -3155 ((-1177 |#2|) |#1|)) (-15 -1945 (|#1| (-1177 |#2|))) (-15 -4243 ((-635 |#2|) (-1177 |#1|))) (-15 -4243 ((-1177 |#2|) |#1|)) (-15 -3537 (|#3| |#1|)) (-15 -2516 (|#3| |#1|)) (-15 -2486 ((-635 |#2|) (-1177 |#1|))) (-15 -1372 (|#2| (-1177 |#1|))) (-15 -1945 (|#1| (-1177 |#2|) (-1177 |#1|))) (-15 -4243 ((-635 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -4243 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -3847 ((-635 |#2|) |#1| (-1177 |#1|))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2486 (((-635 |#1|) (-1177 $)) 46) (((-635 |#1|)) 61)) (-1323 ((|#1| $) 52)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-1945 (($ (-1177 |#1|) (-1177 $)) 48) (($ (-1177 |#1|)) 64)) (-3847 (((-635 |#1|) $ (-1177 $)) 53) (((-635 |#1|) $) 59)) (-1312 (((-3 $ "failed") $) 34)) (-3090 (((-860)) 54)) (-1297 (((-110) $) 31)) (-3297 ((|#1| $) 51)) (-3537 ((|#2| $) 44 (|has| |#1| (-343)))) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-1372 ((|#1| (-1177 $)) 47) ((|#1|) 60)) (-4243 (((-1177 |#1|) $ (-1177 $)) 50) (((-635 |#1|) (-1177 $) (-1177 $)) 49) (((-1177 |#1|) $) 66) (((-635 |#1|) (-1177 $)) 65)) (-3155 (((-1177 |#1|) $) 63) (($ (-1177 |#1|)) 62)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ |#1|) 37)) (-3749 (((-3 $ "failed") $) 43 (|has| |#1| (-138)))) (-2516 ((|#2| $) 45)) (-3742 (((-717)) 29)) (-1400 (((-1177 $)) 67)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-389 |#1| |#2|) (-133) (-162) (-1153 |t#1|)) (T -389))
-((-1400 (*1 *2) (-12 (-4 *3 (-162)) (-4 *4 (-1153 *3)) (-5 *2 (-1177 *1)) (-4 *1 (-389 *3 *4)))) (-4243 (*1 *2 *1) (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1153 *3)) (-5 *2 (-1177 *3)))) (-4243 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-389 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1153 *4)) (-5 *2 (-635 *4)))) (-1945 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-162)) (-4 *1 (-389 *3 *4)) (-4 *4 (-1153 *3)))) (-3155 (*1 *2 *1) (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1153 *3)) (-5 *2 (-1177 *3)))) (-3155 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-162)) (-4 *1 (-389 *3 *4)) (-4 *4 (-1153 *3)))) (-2486 (*1 *2) (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1153 *3)) (-5 *2 (-635 *3)))) (-1372 (*1 *2) (-12 (-4 *1 (-389 *2 *3)) (-4 *3 (-1153 *2)) (-4 *2 (-162)))) (-3847 (*1 *2 *1) (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1153 *3)) (-5 *2 (-635 *3)))))
-(-13 (-350 |t#1| |t#2|) (-10 -8 (-15 -1400 ((-1177 $))) (-15 -4243 ((-1177 |t#1|) $)) (-15 -4243 ((-635 |t#1|) (-1177 $))) (-15 -1945 ($ (-1177 |t#1|))) (-15 -3155 ((-1177 |t#1|) $)) (-15 -3155 ($ (-1177 |t#1|))) (-15 -2486 ((-635 |t#1|))) (-15 -1372 (|t#1|)) (-15 -3847 ((-635 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-569 (-802)) . T) ((-350 |#1| |#2|) . T) ((-597 |#1|) . T) ((-597 $) . T) ((-664 |#1|) . T) ((-673) . T) ((-986 |#1|) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-3001 (((-3 |#2| "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) 27) (((-3 (-528) "failed") $) 19)) (-2409 ((|#2| $) NIL) (((-387 (-528)) $) 24) (((-528) $) 14)) (-2222 (($ |#2|) NIL) (($ (-387 (-528))) 22) (($ (-528)) 11)))
-(((-390 |#1| |#2|) (-10 -8 (-15 -2409 ((-528) |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -2222 (|#1| (-528))) (-15 -2409 ((-387 (-528)) |#1|)) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -2222 (|#1| (-387 (-528)))) (-15 -2222 (|#1| |#2|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -2409 (|#2| |#1|))) (-391 |#2|) (-1131)) (T -390))
-NIL
-(-10 -8 (-15 -2409 ((-528) |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -2222 (|#1| (-528))) (-15 -2409 ((-387 (-528)) |#1|)) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -2222 (|#1| (-387 (-528)))) (-15 -2222 (|#1| |#2|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -2409 (|#2| |#1|)))
-((-3001 (((-3 |#1| "failed") $) 7) (((-3 (-387 (-528)) "failed") $) 16 (|has| |#1| (-972 (-387 (-528))))) (((-3 (-528) "failed") $) 13 (|has| |#1| (-972 (-528))))) (-2409 ((|#1| $) 8) (((-387 (-528)) $) 15 (|has| |#1| (-972 (-387 (-528))))) (((-528) $) 12 (|has| |#1| (-972 (-528))))) (-2222 (($ |#1|) 6) (($ (-387 (-528))) 17 (|has| |#1| (-972 (-387 (-528))))) (($ (-528)) 14 (|has| |#1| (-972 (-528))))))
-(((-391 |#1|) (-133) (-1131)) (T -391))
-NIL
-(-13 (-972 |t#1|) (-10 -7 (IF (|has| |t#1| (-972 (-528))) (-6 (-972 (-528))) |%noBranch|) (IF (|has| |t#1| (-972 (-387 (-528)))) (-6 (-972 (-387 (-528)))) |%noBranch|)))
-(((-972 (-387 (-528))) |has| |#1| (-972 (-387 (-528)))) ((-972 (-528)) |has| |#1| (-972 (-528))) ((-972 |#1|) . T))
-((-3106 (((-393 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-393 |#1| |#2| |#3| |#4|)) 33)))
-(((-392 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3106 ((-393 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-393 |#1| |#2| |#3| |#4|)))) (-288) (-929 |#1|) (-1153 |#2|) (-13 (-389 |#2| |#3|) (-972 |#2|)) (-288) (-929 |#5|) (-1153 |#6|) (-13 (-389 |#6| |#7|) (-972 |#6|))) (T -392))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-393 *5 *6 *7 *8)) (-4 *5 (-288)) (-4 *6 (-929 *5)) (-4 *7 (-1153 *6)) (-4 *8 (-13 (-389 *6 *7) (-972 *6))) (-4 *9 (-288)) (-4 *10 (-929 *9)) (-4 *11 (-1153 *10)) (-5 *2 (-393 *9 *10 *11 *12)) (-5 *1 (-392 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-389 *10 *11) (-972 *10))))))
-(-10 -7 (-15 -3106 ((-393 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-393 |#1| |#2| |#3| |#4|))))
-((-2207 (((-110) $ $) NIL)) (-2816 (($) NIL T CONST)) (-1312 (((-3 $ "failed") $) NIL)) (-1760 ((|#4| (-717) (-1177 |#4|)) 56)) (-1297 (((-110) $) NIL)) (-3031 (((-1177 |#4|) $) 17)) (-3297 ((|#2| $) 54)) (-3522 (($ $) 139)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) 100)) (-3046 (($ (-1177 |#4|)) 99)) (-2495 (((-1042) $) NIL)) (-3042 ((|#1| $) 18)) (-4097 (($ $ $) NIL)) (-2405 (($ $ $) NIL)) (-2222 (((-802) $) 134)) (-1400 (((-1177 |#4|) $) 129)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2982 (($) 11 T CONST)) (-2186 (((-110) $ $) 40)) (-2296 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) 122)) (* (($ $ $) 121)))
-(((-393 |#1| |#2| |#3| |#4|) (-13 (-452) (-10 -8 (-15 -3046 ($ (-1177 |#4|))) (-15 -1400 ((-1177 |#4|) $)) (-15 -3297 (|#2| $)) (-15 -3031 ((-1177 |#4|) $)) (-15 -3042 (|#1| $)) (-15 -3522 ($ $)) (-15 -1760 (|#4| (-717) (-1177 |#4|))))) (-288) (-929 |#1|) (-1153 |#2|) (-13 (-389 |#2| |#3|) (-972 |#2|))) (T -393))
-((-3046 (*1 *1 *2) (-12 (-5 *2 (-1177 *6)) (-4 *6 (-13 (-389 *4 *5) (-972 *4))) (-4 *4 (-929 *3)) (-4 *5 (-1153 *4)) (-4 *3 (-288)) (-5 *1 (-393 *3 *4 *5 *6)))) (-1400 (*1 *2 *1) (-12 (-4 *3 (-288)) (-4 *4 (-929 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *6)) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *6 (-13 (-389 *4 *5) (-972 *4))))) (-3297 (*1 *2 *1) (-12 (-4 *4 (-1153 *2)) (-4 *2 (-929 *3)) (-5 *1 (-393 *3 *2 *4 *5)) (-4 *3 (-288)) (-4 *5 (-13 (-389 *2 *4) (-972 *2))))) (-3031 (*1 *2 *1) (-12 (-4 *3 (-288)) (-4 *4 (-929 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *6)) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *6 (-13 (-389 *4 *5) (-972 *4))))) (-3042 (*1 *2 *1) (-12 (-4 *3 (-929 *2)) (-4 *4 (-1153 *3)) (-4 *2 (-288)) (-5 *1 (-393 *2 *3 *4 *5)) (-4 *5 (-13 (-389 *3 *4) (-972 *3))))) (-3522 (*1 *1 *1) (-12 (-4 *2 (-288)) (-4 *3 (-929 *2)) (-4 *4 (-1153 *3)) (-5 *1 (-393 *2 *3 *4 *5)) (-4 *5 (-13 (-389 *3 *4) (-972 *3))))) (-1760 (*1 *2 *3 *4) (-12 (-5 *3 (-717)) (-5 *4 (-1177 *2)) (-4 *5 (-288)) (-4 *6 (-929 *5)) (-4 *2 (-13 (-389 *6 *7) (-972 *6))) (-5 *1 (-393 *5 *6 *7 *2)) (-4 *7 (-1153 *6)))))
-(-13 (-452) (-10 -8 (-15 -3046 ($ (-1177 |#4|))) (-15 -1400 ((-1177 |#4|) $)) (-15 -3297 (|#2| $)) (-15 -3031 ((-1177 |#4|) $)) (-15 -3042 (|#1| $)) (-15 -3522 ($ $)) (-15 -1760 (|#4| (-717) (-1177 |#4|)))))
-((-2207 (((-110) $ $) NIL)) (-2816 (($) NIL T CONST)) (-1312 (((-3 $ "failed") $) NIL)) (-1297 (((-110) $) NIL)) (-3297 ((|#2| $) 61)) (-3545 (($ (-1177 |#4|)) 25) (($ (-393 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-972 |#2|)))) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 34)) (-1400 (((-1177 |#4|) $) 26)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2982 (($) 23 T CONST)) (-2186 (((-110) $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ $ $) 72)))
-(((-394 |#1| |#2| |#3| |#4| |#5|) (-13 (-673) (-10 -8 (-15 -1400 ((-1177 |#4|) $)) (-15 -3297 (|#2| $)) (-15 -3545 ($ (-1177 |#4|))) (IF (|has| |#4| (-972 |#2|)) (-15 -3545 ($ (-393 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-288) (-929 |#1|) (-1153 |#2|) (-389 |#2| |#3|) (-1177 |#4|)) (T -394))
-((-1400 (*1 *2 *1) (-12 (-4 *3 (-288)) (-4 *4 (-929 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *6)) (-5 *1 (-394 *3 *4 *5 *6 *7)) (-4 *6 (-389 *4 *5)) (-14 *7 *2))) (-3297 (*1 *2 *1) (-12 (-4 *4 (-1153 *2)) (-4 *2 (-929 *3)) (-5 *1 (-394 *3 *2 *4 *5 *6)) (-4 *3 (-288)) (-4 *5 (-389 *2 *4)) (-14 *6 (-1177 *5)))) (-3545 (*1 *1 *2) (-12 (-5 *2 (-1177 *6)) (-4 *6 (-389 *4 *5)) (-4 *4 (-929 *3)) (-4 *5 (-1153 *4)) (-4 *3 (-288)) (-5 *1 (-394 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3545 (*1 *1 *2) (-12 (-5 *2 (-393 *3 *4 *5 *6)) (-4 *6 (-972 *4)) (-4 *3 (-288)) (-4 *4 (-929 *3)) (-4 *5 (-1153 *4)) (-4 *6 (-389 *4 *5)) (-14 *7 (-1177 *6)) (-5 *1 (-394 *3 *4 *5 *6 *7)))))
-(-13 (-673) (-10 -8 (-15 -1400 ((-1177 |#4|) $)) (-15 -3297 (|#2| $)) (-15 -3545 ($ (-1177 |#4|))) (IF (|has| |#4| (-972 |#2|)) (-15 -3545 ($ (-393 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-3106 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
-(((-395 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3106 (|#3| (-1 |#4| |#2|) |#1|))) (-397 |#2|) (-162) (-397 |#4|) (-162)) (T -395))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-4 *2 (-397 *6)) (-5 *1 (-395 *4 *5 *2 *6)) (-4 *4 (-397 *5)))))
-(-10 -7 (-15 -3106 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2445 (((-3 $ "failed")) 86)) (-4023 (((-1177 (-635 |#2|)) (-1177 $)) NIL) (((-1177 (-635 |#2|))) 91)) (-2202 (((-3 (-2 (|:| |particular| $) (|:| -1400 (-595 $))) "failed")) 85)) (-3403 (((-3 $ "failed")) 84)) (-3107 (((-635 |#2|) (-1177 $)) NIL) (((-635 |#2|)) 102)) (-3281 (((-635 |#2|) $ (-1177 $)) NIL) (((-635 |#2|) $) 110)) (-2591 (((-1091 (-891 |#2|))) 55)) (-3326 ((|#2| (-1177 $)) NIL) ((|#2|) 106)) (-1945 (($ (-1177 |#2|) (-1177 $)) NIL) (($ (-1177 |#2|)) 113)) (-2481 (((-3 (-2 (|:| |particular| $) (|:| -1400 (-595 $))) "failed")) 83)) (-2615 (((-3 $ "failed")) 75)) (-2906 (((-635 |#2|) (-1177 $)) NIL) (((-635 |#2|)) 100)) (-3867 (((-635 |#2|) $ (-1177 $)) NIL) (((-635 |#2|) $) 108)) (-2102 (((-1091 (-891 |#2|))) 54)) (-1991 ((|#2| (-1177 $)) NIL) ((|#2|) 104)) (-4243 (((-1177 |#2|) $ (-1177 $)) NIL) (((-635 |#2|) (-1177 $) (-1177 $)) NIL) (((-1177 |#2|) $) NIL) (((-635 |#2|) (-1177 $)) 112)) (-3155 (((-1177 |#2|) $) 96) (($ (-1177 |#2|)) 98)) (-1730 (((-595 (-891 |#2|)) (-1177 $)) NIL) (((-595 (-891 |#2|))) 94)) (-2834 (($ (-635 |#2|) $) 90)))
-(((-396 |#1| |#2|) (-10 -8 (-15 -2834 (|#1| (-635 |#2|) |#1|)) (-15 -2591 ((-1091 (-891 |#2|)))) (-15 -2102 ((-1091 (-891 |#2|)))) (-15 -3281 ((-635 |#2|) |#1|)) (-15 -3867 ((-635 |#2|) |#1|)) (-15 -3107 ((-635 |#2|))) (-15 -2906 ((-635 |#2|))) (-15 -3326 (|#2|)) (-15 -1991 (|#2|)) (-15 -3155 (|#1| (-1177 |#2|))) (-15 -3155 ((-1177 |#2|) |#1|)) (-15 -1945 (|#1| (-1177 |#2|))) (-15 -1730 ((-595 (-891 |#2|)))) (-15 -4023 ((-1177 (-635 |#2|)))) (-15 -4243 ((-635 |#2|) (-1177 |#1|))) (-15 -4243 ((-1177 |#2|) |#1|)) (-15 -2445 ((-3 |#1| "failed"))) (-15 -3403 ((-3 |#1| "failed"))) (-15 -2615 ((-3 |#1| "failed"))) (-15 -2202 ((-3 (-2 (|:| |particular| |#1|) (|:| -1400 (-595 |#1|))) "failed"))) (-15 -2481 ((-3 (-2 (|:| |particular| |#1|) (|:| -1400 (-595 |#1|))) "failed"))) (-15 -3107 ((-635 |#2|) (-1177 |#1|))) (-15 -2906 ((-635 |#2|) (-1177 |#1|))) (-15 -3326 (|#2| (-1177 |#1|))) (-15 -1991 (|#2| (-1177 |#1|))) (-15 -1945 (|#1| (-1177 |#2|) (-1177 |#1|))) (-15 -4243 ((-635 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -4243 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -3281 ((-635 |#2|) |#1| (-1177 |#1|))) (-15 -3867 ((-635 |#2|) |#1| (-1177 |#1|))) (-15 -4023 ((-1177 (-635 |#2|)) (-1177 |#1|))) (-15 -1730 ((-595 (-891 |#2|)) (-1177 |#1|)))) (-397 |#2|) (-162)) (T -396))
-((-4023 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1177 (-635 *4))) (-5 *1 (-396 *3 *4)) (-4 *3 (-397 *4)))) (-1730 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-595 (-891 *4))) (-5 *1 (-396 *3 *4)) (-4 *3 (-397 *4)))) (-1991 (*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-396 *3 *2)) (-4 *3 (-397 *2)))) (-3326 (*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-396 *3 *2)) (-4 *3 (-397 *2)))) (-2906 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-635 *4)) (-5 *1 (-396 *3 *4)) (-4 *3 (-397 *4)))) (-3107 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-635 *4)) (-5 *1 (-396 *3 *4)) (-4 *3 (-397 *4)))) (-2102 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1091 (-891 *4))) (-5 *1 (-396 *3 *4)) (-4 *3 (-397 *4)))) (-2591 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1091 (-891 *4))) (-5 *1 (-396 *3 *4)) (-4 *3 (-397 *4)))))
-(-10 -8 (-15 -2834 (|#1| (-635 |#2|) |#1|)) (-15 -2591 ((-1091 (-891 |#2|)))) (-15 -2102 ((-1091 (-891 |#2|)))) (-15 -3281 ((-635 |#2|) |#1|)) (-15 -3867 ((-635 |#2|) |#1|)) (-15 -3107 ((-635 |#2|))) (-15 -2906 ((-635 |#2|))) (-15 -3326 (|#2|)) (-15 -1991 (|#2|)) (-15 -3155 (|#1| (-1177 |#2|))) (-15 -3155 ((-1177 |#2|) |#1|)) (-15 -1945 (|#1| (-1177 |#2|))) (-15 -1730 ((-595 (-891 |#2|)))) (-15 -4023 ((-1177 (-635 |#2|)))) (-15 -4243 ((-635 |#2|) (-1177 |#1|))) (-15 -4243 ((-1177 |#2|) |#1|)) (-15 -2445 ((-3 |#1| "failed"))) (-15 -3403 ((-3 |#1| "failed"))) (-15 -2615 ((-3 |#1| "failed"))) (-15 -2202 ((-3 (-2 (|:| |particular| |#1|) (|:| -1400 (-595 |#1|))) "failed"))) (-15 -2481 ((-3 (-2 (|:| |particular| |#1|) (|:| -1400 (-595 |#1|))) "failed"))) (-15 -3107 ((-635 |#2|) (-1177 |#1|))) (-15 -2906 ((-635 |#2|) (-1177 |#1|))) (-15 -3326 (|#2| (-1177 |#1|))) (-15 -1991 (|#2| (-1177 |#1|))) (-15 -1945 (|#1| (-1177 |#2|) (-1177 |#1|))) (-15 -4243 ((-635 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -4243 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -3281 ((-635 |#2|) |#1| (-1177 |#1|))) (-15 -3867 ((-635 |#2|) |#1| (-1177 |#1|))) (-15 -4023 ((-1177 (-635 |#2|)) (-1177 |#1|))) (-15 -1730 ((-595 (-891 |#2|)) (-1177 |#1|))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2445 (((-3 $ "failed")) 37 (|has| |#1| (-520)))) (-3181 (((-3 $ "failed") $ $) 19)) (-4023 (((-1177 (-635 |#1|)) (-1177 $)) 78) (((-1177 (-635 |#1|))) 100)) (-1653 (((-1177 $)) 81)) (-2816 (($) 17 T CONST)) (-2202 (((-3 (-2 (|:| |particular| $) (|:| -1400 (-595 $))) "failed")) 40 (|has| |#1| (-520)))) (-3403 (((-3 $ "failed")) 38 (|has| |#1| (-520)))) (-3107 (((-635 |#1|) (-1177 $)) 65) (((-635 |#1|)) 92)) (-3913 ((|#1| $) 74)) (-3281 (((-635 |#1|) $ (-1177 $)) 76) (((-635 |#1|) $) 90)) (-3552 (((-3 $ "failed") $) 45 (|has| |#1| (-520)))) (-2591 (((-1091 (-891 |#1|))) 88 (|has| |#1| (-343)))) (-3693 (($ $ (-860)) 28)) (-2061 ((|#1| $) 72)) (-2466 (((-1091 |#1|) $) 42 (|has| |#1| (-520)))) (-3326 ((|#1| (-1177 $)) 67) ((|#1|) 94)) (-3922 (((-1091 |#1|) $) 63)) (-2683 (((-110)) 57)) (-1945 (($ (-1177 |#1|) (-1177 $)) 69) (($ (-1177 |#1|)) 98)) (-1312 (((-3 $ "failed") $) 47 (|has| |#1| (-520)))) (-3090 (((-860)) 80)) (-3733 (((-110)) 54)) (-2451 (($ $ (-860)) 33)) (-2854 (((-110)) 50)) (-1795 (((-110)) 48)) (-1870 (((-110)) 52)) (-2481 (((-3 (-2 (|:| |particular| $) (|:| -1400 (-595 $))) "failed")) 41 (|has| |#1| (-520)))) (-2615 (((-3 $ "failed")) 39 (|has| |#1| (-520)))) (-2906 (((-635 |#1|) (-1177 $)) 66) (((-635 |#1|)) 93)) (-1948 ((|#1| $) 75)) (-3867 (((-635 |#1|) $ (-1177 $)) 77) (((-635 |#1|) $) 91)) (-1895 (((-3 $ "failed") $) 46 (|has| |#1| (-520)))) (-2102 (((-1091 (-891 |#1|))) 89 (|has| |#1| (-343)))) (-3964 (($ $ (-860)) 29)) (-4000 ((|#1| $) 73)) (-3549 (((-1091 |#1|) $) 43 (|has| |#1| (-520)))) (-1991 ((|#1| (-1177 $)) 68) ((|#1|) 95)) (-2732 (((-1091 |#1|) $) 64)) (-4194 (((-110)) 58)) (-3034 (((-1078) $) 9)) (-2044 (((-110)) 49)) (-3074 (((-110)) 51)) (-1302 (((-110)) 53)) (-2495 (((-1042) $) 10)) (-3176 (((-110)) 56)) (-3043 ((|#1| $ (-528)) 101)) (-4243 (((-1177 |#1|) $ (-1177 $)) 71) (((-635 |#1|) (-1177 $) (-1177 $)) 70) (((-1177 |#1|) $) 103) (((-635 |#1|) (-1177 $)) 102)) (-3155 (((-1177 |#1|) $) 97) (($ (-1177 |#1|)) 96)) (-1730 (((-595 (-891 |#1|)) (-1177 $)) 79) (((-595 (-891 |#1|))) 99)) (-2405 (($ $ $) 25)) (-2643 (((-110)) 62)) (-2222 (((-802) $) 11)) (-1400 (((-1177 $)) 104)) (-3586 (((-595 (-1177 |#1|))) 44 (|has| |#1| (-520)))) (-4103 (($ $ $ $) 26)) (-1461 (((-110)) 60)) (-2834 (($ (-635 |#1|) $) 87)) (-3607 (($ $ $) 24)) (-3047 (((-110)) 61)) (-1907 (((-110)) 59)) (-3405 (((-110)) 55)) (-2969 (($) 18 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 30)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-397 |#1|) (-133) (-162)) (T -397))
-((-1400 (*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1177 *1)) (-4 *1 (-397 *3)))) (-4243 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-162)) (-5 *2 (-1177 *3)))) (-4243 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-397 *4)) (-4 *4 (-162)) (-5 *2 (-635 *4)))) (-3043 (*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-4 *1 (-397 *2)) (-4 *2 (-162)))) (-4023 (*1 *2) (-12 (-4 *1 (-397 *3)) (-4 *3 (-162)) (-5 *2 (-1177 (-635 *3))))) (-1730 (*1 *2) (-12 (-4 *1 (-397 *3)) (-4 *3 (-162)) (-5 *2 (-595 (-891 *3))))) (-1945 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-162)) (-4 *1 (-397 *3)))) (-3155 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-162)) (-5 *2 (-1177 *3)))) (-3155 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-162)) (-4 *1 (-397 *3)))) (-1991 (*1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-162)))) (-3326 (*1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-162)))) (-2906 (*1 *2) (-12 (-4 *1 (-397 *3)) (-4 *3 (-162)) (-5 *2 (-635 *3)))) (-3107 (*1 *2) (-12 (-4 *1 (-397 *3)) (-4 *3 (-162)) (-5 *2 (-635 *3)))) (-3867 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-162)) (-5 *2 (-635 *3)))) (-3281 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-162)) (-5 *2 (-635 *3)))) (-2102 (*1 *2) (-12 (-4 *1 (-397 *3)) (-4 *3 (-162)) (-4 *3 (-343)) (-5 *2 (-1091 (-891 *3))))) (-2591 (*1 *2) (-12 (-4 *1 (-397 *3)) (-4 *3 (-162)) (-4 *3 (-343)) (-5 *2 (-1091 (-891 *3))))) (-2834 (*1 *1 *2 *1) (-12 (-5 *2 (-635 *3)) (-4 *1 (-397 *3)) (-4 *3 (-162)))))
-(-13 (-347 |t#1|) (-10 -8 (-15 -1400 ((-1177 $))) (-15 -4243 ((-1177 |t#1|) $)) (-15 -4243 ((-635 |t#1|) (-1177 $))) (-15 -3043 (|t#1| $ (-528))) (-15 -4023 ((-1177 (-635 |t#1|)))) (-15 -1730 ((-595 (-891 |t#1|)))) (-15 -1945 ($ (-1177 |t#1|))) (-15 -3155 ((-1177 |t#1|) $)) (-15 -3155 ($ (-1177 |t#1|))) (-15 -1991 (|t#1|)) (-15 -3326 (|t#1|)) (-15 -2906 ((-635 |t#1|))) (-15 -3107 ((-635 |t#1|))) (-15 -3867 ((-635 |t#1|) $)) (-15 -3281 ((-635 |t#1|) $)) (IF (|has| |t#1| (-343)) (PROGN (-15 -2102 ((-1091 (-891 |t#1|)))) (-15 -2591 ((-1091 (-891 |t#1|))))) |%noBranch|) (-15 -2834 ($ (-635 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-569 (-802)) . T) ((-347 |#1|) . T) ((-597 |#1|) . T) ((-664 |#1|) . T) ((-667) . T) ((-691 |#1|) . T) ((-708) . T) ((-986 |#1|) . T) ((-1023) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 42)) (-1216 (($ $) 57)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 146)) (-1738 (($ $) NIL)) (-1811 (((-110) $) 36)) (-2445 ((|#1| $) 13)) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL (|has| |#1| (-1135)))) (-2705 (((-398 $) $) NIL (|has| |#1| (-1135)))) (-3322 (($ |#1| (-528)) 31)) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-528) "failed") $) NIL (|has| |#1| (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-3 |#1| "failed") $) 116)) (-2409 (((-528) $) NIL (|has| |#1| (-972 (-528)))) (((-387 (-528)) $) NIL (|has| |#1| (-972 (-387 (-528))))) ((|#1| $) 55)) (-1312 (((-3 $ "failed") $) 131)) (-1793 (((-3 (-387 (-528)) "failed") $) 63 (|has| |#1| (-513)))) (-3650 (((-110) $) 59 (|has| |#1| (-513)))) (-3099 (((-387 (-528)) $) 70 (|has| |#1| (-513)))) (-3100 (($ |#1| (-528)) 33)) (-2124 (((-110) $) 152 (|has| |#1| (-1135)))) (-1297 (((-110) $) 43)) (-1393 (((-717) $) 38)) (-1813 (((-3 "nil" "sqfr" "irred" "prime") $ (-528)) 137)) (-2492 ((|#1| $ (-528)) 136)) (-2960 (((-528) $ (-528)) 135)) (-3702 (($ |#1| (-528)) 30)) (-3106 (($ (-1 |#1| |#1|) $) 143)) (-2194 (($ |#1| (-595 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-528))))) 58)) (-2057 (($ (-595 $)) NIL (|has| |#1| (-431))) (($ $ $) NIL (|has| |#1| (-431)))) (-3034 (((-1078) $) NIL)) (-1341 (($ |#1| (-528)) 32)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#1| (-431)))) (-2088 (($ (-595 $)) NIL (|has| |#1| (-431))) (($ $ $) 147 (|has| |#1| (-431)))) (-2122 (($ |#1| (-528) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-2783 (((-595 (-2 (|:| -2437 |#1|) (|:| -2564 (-528)))) $) 54)) (-3858 (((-595 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-528)))) $) 12)) (-2437 (((-398 $) $) NIL (|has| |#1| (-1135)))) (-3477 (((-3 $ "failed") $ $) 138)) (-2564 (((-528) $) 132)) (-1535 ((|#1| $) 56)) (-4014 (($ $ (-595 |#1|) (-595 |#1|)) NIL (|has| |#1| (-290 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-290 |#1|))) (($ $ (-275 |#1|)) NIL (|has| |#1| (-290 |#1|))) (($ $ (-595 (-275 |#1|))) 79 (|has| |#1| (-290 |#1|))) (($ $ (-595 (-1095)) (-595 |#1|)) 85 (|has| |#1| (-489 (-1095) |#1|))) (($ $ (-1095) |#1|) NIL (|has| |#1| (-489 (-1095) |#1|))) (($ $ (-1095) $) NIL (|has| |#1| (-489 (-1095) $))) (($ $ (-595 (-1095)) (-595 $)) 86 (|has| |#1| (-489 (-1095) $))) (($ $ (-595 (-275 $))) 82 (|has| |#1| (-290 $))) (($ $ (-275 $)) NIL (|has| |#1| (-290 $))) (($ $ $ $) NIL (|has| |#1| (-290 $))) (($ $ (-595 $) (-595 $)) NIL (|has| |#1| (-290 $)))) (-3043 (($ $ |#1|) 71 (|has| |#1| (-267 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-267 $ $)))) (-3235 (($ $) NIL (|has| |#1| (-215))) (($ $ (-717)) NIL (|has| |#1| (-215))) (($ $ (-1095)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-3155 (((-504) $) 27 (|has| |#1| (-570 (-504)))) (((-359) $) 92 (|has| |#1| (-957))) (((-207) $) 95 (|has| |#1| (-957)))) (-2222 (((-802) $) 114) (($ (-528)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-387 (-528))) NIL (|has| |#1| (-972 (-387 (-528)))))) (-3742 (((-717)) 48)) (-4016 (((-110) $ $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 40 T CONST)) (-2982 (($) 39 T CONST)) (-3245 (($ $) NIL (|has| |#1| (-215))) (($ $ (-717)) NIL (|has| |#1| (-215))) (($ $ (-1095)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2186 (((-110) $ $) 96)) (-2286 (($ $) 128) (($ $ $) NIL)) (-2275 (($ $ $) 140)) (** (($ $ (-860)) NIL) (($ $ (-717)) 102)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL)))
-(((-398 |#1|) (-13 (-520) (-213 |#1|) (-37 |#1|) (-318 |#1|) (-391 |#1|) (-10 -8 (-15 -1535 (|#1| $)) (-15 -2564 ((-528) $)) (-15 -2194 ($ |#1| (-595 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-528)))))) (-15 -3858 ((-595 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-528)))) $)) (-15 -3702 ($ |#1| (-528))) (-15 -2783 ((-595 (-2 (|:| -2437 |#1|) (|:| -2564 (-528)))) $)) (-15 -1341 ($ |#1| (-528))) (-15 -2960 ((-528) $ (-528))) (-15 -2492 (|#1| $ (-528))) (-15 -1813 ((-3 "nil" "sqfr" "irred" "prime") $ (-528))) (-15 -1393 ((-717) $)) (-15 -3100 ($ |#1| (-528))) (-15 -3322 ($ |#1| (-528))) (-15 -2122 ($ |#1| (-528) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2445 (|#1| $)) (-15 -1216 ($ $)) (-15 -3106 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-431)) (-6 (-431)) |%noBranch|) (IF (|has| |#1| (-957)) (-6 (-957)) |%noBranch|) (IF (|has| |#1| (-1135)) (-6 (-1135)) |%noBranch|) (IF (|has| |#1| (-570 (-504))) (-6 (-570 (-504))) |%noBranch|) (IF (|has| |#1| (-513)) (PROGN (-15 -3650 ((-110) $)) (-15 -3099 ((-387 (-528)) $)) (-15 -1793 ((-3 (-387 (-528)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-267 $ $)) (-6 (-267 $ $)) |%noBranch|) (IF (|has| |#1| (-290 $)) (-6 (-290 $)) |%noBranch|) (IF (|has| |#1| (-489 (-1095) $)) (-6 (-489 (-1095) $)) |%noBranch|))) (-520)) (T -398))
-((-3106 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-520)) (-5 *1 (-398 *3)))) (-1535 (*1 *2 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-520)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-398 *3)) (-4 *3 (-520)))) (-2194 (*1 *1 *2 *3) (-12 (-5 *3 (-595 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-528))))) (-4 *2 (-520)) (-5 *1 (-398 *2)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-595 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-528))))) (-5 *1 (-398 *3)) (-4 *3 (-520)))) (-3702 (*1 *1 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-398 *2)) (-4 *2 (-520)))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-595 (-2 (|:| -2437 *3) (|:| -2564 (-528))))) (-5 *1 (-398 *3)) (-4 *3 (-520)))) (-1341 (*1 *1 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-398 *2)) (-4 *2 (-520)))) (-2960 (*1 *2 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-398 *3)) (-4 *3 (-520)))) (-2492 (*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-5 *1 (-398 *2)) (-4 *2 (-520)))) (-1813 (*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-398 *4)) (-4 *4 (-520)))) (-1393 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-398 *3)) (-4 *3 (-520)))) (-3100 (*1 *1 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-398 *2)) (-4 *2 (-520)))) (-3322 (*1 *1 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-398 *2)) (-4 *2 (-520)))) (-2122 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-528)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-398 *2)) (-4 *2 (-520)))) (-2445 (*1 *2 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-520)))) (-1216 (*1 *1 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-520)))) (-3650 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-398 *3)) (-4 *3 (-513)) (-4 *3 (-520)))) (-3099 (*1 *2 *1) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-398 *3)) (-4 *3 (-513)) (-4 *3 (-520)))) (-1793 (*1 *2 *1) (|partial| -12 (-5 *2 (-387 (-528))) (-5 *1 (-398 *3)) (-4 *3 (-513)) (-4 *3 (-520)))))
-(-13 (-520) (-213 |#1|) (-37 |#1|) (-318 |#1|) (-391 |#1|) (-10 -8 (-15 -1535 (|#1| $)) (-15 -2564 ((-528) $)) (-15 -2194 ($ |#1| (-595 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-528)))))) (-15 -3858 ((-595 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-528)))) $)) (-15 -3702 ($ |#1| (-528))) (-15 -2783 ((-595 (-2 (|:| -2437 |#1|) (|:| -2564 (-528)))) $)) (-15 -1341 ($ |#1| (-528))) (-15 -2960 ((-528) $ (-528))) (-15 -2492 (|#1| $ (-528))) (-15 -1813 ((-3 "nil" "sqfr" "irred" "prime") $ (-528))) (-15 -1393 ((-717) $)) (-15 -3100 ($ |#1| (-528))) (-15 -3322 ($ |#1| (-528))) (-15 -2122 ($ |#1| (-528) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2445 (|#1| $)) (-15 -1216 ($ $)) (-15 -3106 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-431)) (-6 (-431)) |%noBranch|) (IF (|has| |#1| (-957)) (-6 (-957)) |%noBranch|) (IF (|has| |#1| (-1135)) (-6 (-1135)) |%noBranch|) (IF (|has| |#1| (-570 (-504))) (-6 (-570 (-504))) |%noBranch|) (IF (|has| |#1| (-513)) (PROGN (-15 -3650 ((-110) $)) (-15 -3099 ((-387 (-528)) $)) (-15 -1793 ((-3 (-387 (-528)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-267 $ $)) (-6 (-267 $ $)) |%noBranch|) (IF (|has| |#1| (-290 $)) (-6 (-290 $)) |%noBranch|) (IF (|has| |#1| (-489 (-1095) $)) (-6 (-489 (-1095) $)) |%noBranch|)))
-((-2760 (((-398 |#1|) (-398 |#1|) (-1 (-398 |#1|) |#1|)) 21)) (-4187 (((-398 |#1|) (-398 |#1|) (-398 |#1|)) 16)))
-(((-399 |#1|) (-10 -7 (-15 -2760 ((-398 |#1|) (-398 |#1|) (-1 (-398 |#1|) |#1|))) (-15 -4187 ((-398 |#1|) (-398 |#1|) (-398 |#1|)))) (-520)) (T -399))
-((-4187 (*1 *2 *2 *2) (-12 (-5 *2 (-398 *3)) (-4 *3 (-520)) (-5 *1 (-399 *3)))) (-2760 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-398 *4) *4)) (-4 *4 (-520)) (-5 *2 (-398 *4)) (-5 *1 (-399 *4)))))
-(-10 -7 (-15 -2760 ((-398 |#1|) (-398 |#1|) (-1 (-398 |#1|) |#1|))) (-15 -4187 ((-398 |#1|) (-398 |#1|) (-398 |#1|))))
-((-2521 ((|#2| |#2|) 166)) (-2501 (((-3 (|:| |%expansion| (-293 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1078)) (|:| |prob| (-1078))))) |#2| (-110)) 57)))
-(((-400 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2501 ((-3 (|:| |%expansion| (-293 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1078)) (|:| |prob| (-1078))))) |#2| (-110))) (-15 -2521 (|#2| |#2|))) (-13 (-431) (-793) (-972 (-528)) (-591 (-528))) (-13 (-27) (-1117) (-410 |#1|)) (-1095) |#2|) (T -400))
-((-2521 (*1 *2 *2) (-12 (-4 *3 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *1 (-400 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1117) (-410 *3))) (-14 *4 (-1095)) (-14 *5 *2))) (-2501 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-3 (|:| |%expansion| (-293 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1078)) (|:| |prob| (-1078)))))) (-5 *1 (-400 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1117) (-410 *5))) (-14 *6 (-1095)) (-14 *7 *3))))
-(-10 -7 (-15 -2501 ((-3 (|:| |%expansion| (-293 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1078)) (|:| |prob| (-1078))))) |#2| (-110))) (-15 -2521 (|#2| |#2|)))
-((-3106 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-401 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3106 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-981) (-793)) (-410 |#1|) (-13 (-981) (-793)) (-410 |#3|)) (T -401))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-981) (-793))) (-4 *6 (-13 (-981) (-793))) (-4 *2 (-410 *6)) (-5 *1 (-401 *5 *4 *6 *2)) (-4 *4 (-410 *5)))))
-(-10 -7 (-15 -3106 (|#4| (-1 |#3| |#1|) |#2|)))
-((-2521 ((|#2| |#2|) 90)) (-3188 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1078)) (|:| |prob| (-1078))))) |#2| (-110) (-1078)) 48)) (-3413 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1078)) (|:| |prob| (-1078))))) |#2| (-110) (-1078)) 154)))
-(((-402 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3188 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1078)) (|:| |prob| (-1078))))) |#2| (-110) (-1078))) (-15 -3413 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1078)) (|:| |prob| (-1078))))) |#2| (-110) (-1078))) (-15 -2521 (|#2| |#2|))) (-13 (-431) (-793) (-972 (-528)) (-591 (-528))) (-13 (-27) (-1117) (-410 |#1|) (-10 -8 (-15 -2222 ($ |#3|)))) (-791) (-13 (-1155 |#2| |#3|) (-343) (-1117) (-10 -8 (-15 -3235 ($ $)) (-15 -1923 ($ $)))) (-920 |#4|) (-1095)) (T -402))
-((-2521 (*1 *2 *2) (-12 (-4 *3 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-4 *2 (-13 (-27) (-1117) (-410 *3) (-10 -8 (-15 -2222 ($ *4))))) (-4 *4 (-791)) (-4 *5 (-13 (-1155 *2 *4) (-343) (-1117) (-10 -8 (-15 -3235 ($ $)) (-15 -1923 ($ $))))) (-5 *1 (-402 *3 *2 *4 *5 *6 *7)) (-4 *6 (-920 *5)) (-14 *7 (-1095)))) (-3413 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-4 *6 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-4 *3 (-13 (-27) (-1117) (-410 *6) (-10 -8 (-15 -2222 ($ *7))))) (-4 *7 (-791)) (-4 *8 (-13 (-1155 *3 *7) (-343) (-1117) (-10 -8 (-15 -3235 ($ $)) (-15 -1923 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1078)) (|:| |prob| (-1078)))))) (-5 *1 (-402 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1078)) (-4 *9 (-920 *8)) (-14 *10 (-1095)))) (-3188 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-4 *6 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-4 *3 (-13 (-27) (-1117) (-410 *6) (-10 -8 (-15 -2222 ($ *7))))) (-4 *7 (-791)) (-4 *8 (-13 (-1155 *3 *7) (-343) (-1117) (-10 -8 (-15 -3235 ($ $)) (-15 -1923 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1078)) (|:| |prob| (-1078)))))) (-5 *1 (-402 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1078)) (-4 *9 (-920 *8)) (-14 *10 (-1095)))))
-(-10 -7 (-15 -3188 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1078)) (|:| |prob| (-1078))))) |#2| (-110) (-1078))) (-15 -3413 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1078)) (|:| |prob| (-1078))))) |#2| (-110) (-1078))) (-15 -2521 (|#2| |#2|)))
-((-3718 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-1422 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3106 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-403 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3106 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1422 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3718 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1023) (-405 |#1|) (-1023) (-405 |#3|)) (T -403))
-((-3718 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1023)) (-4 *5 (-1023)) (-4 *2 (-405 *5)) (-5 *1 (-403 *6 *4 *5 *2)) (-4 *4 (-405 *6)))) (-1422 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1023)) (-4 *2 (-1023)) (-5 *1 (-403 *5 *4 *2 *6)) (-4 *4 (-405 *5)) (-4 *6 (-405 *2)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *2 (-405 *6)) (-5 *1 (-403 *5 *4 *6 *2)) (-4 *4 (-405 *5)))))
-(-10 -7 (-15 -3106 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1422 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3718 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2805 (($) 44)) (-4123 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-2352 (($ $ $) 39)) (-1316 (((-110) $ $) 28)) (-2856 (((-717)) 47)) (-4237 (($ (-595 |#2|)) 20) (($) NIL)) (-1338 (($) 53)) (-4242 (((-110) $ $) 13)) (-1436 ((|#2| $) 61)) (-1736 ((|#2| $) 59)) (-3201 (((-860) $) 55)) (-3397 (($ $ $) 35)) (-3108 (($ (-860)) 50)) (-2183 (($ $ |#2|) NIL) (($ $ $) 38)) (-2507 (((-717) (-1 (-110) |#2|) $) NIL) (((-717) |#2| $) 26)) (-2233 (($ (-595 |#2|)) 24)) (-2792 (($ $) 46)) (-2222 (((-802) $) 33)) (-3713 (((-717) $) 21)) (-3289 (($ (-595 |#2|)) 19) (($) NIL)) (-2186 (((-110) $ $) 16)))
-(((-404 |#1| |#2|) (-10 -8 (-15 -2856 ((-717))) (-15 -3108 (|#1| (-860))) (-15 -3201 ((-860) |#1|)) (-15 -1338 (|#1|)) (-15 -1436 (|#2| |#1|)) (-15 -1736 (|#2| |#1|)) (-15 -2805 (|#1|)) (-15 -2792 (|#1| |#1|)) (-15 -3713 ((-717) |#1|)) (-15 -2186 ((-110) |#1| |#1|)) (-15 -2222 ((-802) |#1|)) (-15 -4242 ((-110) |#1| |#1|)) (-15 -3289 (|#1|)) (-15 -3289 (|#1| (-595 |#2|))) (-15 -4237 (|#1|)) (-15 -4237 (|#1| (-595 |#2|))) (-15 -3397 (|#1| |#1| |#1|)) (-15 -2183 (|#1| |#1| |#1|)) (-15 -2183 (|#1| |#1| |#2|)) (-15 -2352 (|#1| |#1| |#1|)) (-15 -1316 ((-110) |#1| |#1|)) (-15 -4123 (|#1| |#1| |#1|)) (-15 -4123 (|#1| |#1| |#2|)) (-15 -4123 (|#1| |#2| |#1|)) (-15 -2233 (|#1| (-595 |#2|))) (-15 -2507 ((-717) |#2| |#1|)) (-15 -2507 ((-717) (-1 (-110) |#2|) |#1|))) (-405 |#2|) (-1023)) (T -404))
-((-2856 (*1 *2) (-12 (-4 *4 (-1023)) (-5 *2 (-717)) (-5 *1 (-404 *3 *4)) (-4 *3 (-405 *4)))))
-(-10 -8 (-15 -2856 ((-717))) (-15 -3108 (|#1| (-860))) (-15 -3201 ((-860) |#1|)) (-15 -1338 (|#1|)) (-15 -1436 (|#2| |#1|)) (-15 -1736 (|#2| |#1|)) (-15 -2805 (|#1|)) (-15 -2792 (|#1| |#1|)) (-15 -3713 ((-717) |#1|)) (-15 -2186 ((-110) |#1| |#1|)) (-15 -2222 ((-802) |#1|)) (-15 -4242 ((-110) |#1| |#1|)) (-15 -3289 (|#1|)) (-15 -3289 (|#1| (-595 |#2|))) (-15 -4237 (|#1|)) (-15 -4237 (|#1| (-595 |#2|))) (-15 -3397 (|#1| |#1| |#1|)) (-15 -2183 (|#1| |#1| |#1|)) (-15 -2183 (|#1| |#1| |#2|)) (-15 -2352 (|#1| |#1| |#1|)) (-15 -1316 ((-110) |#1| |#1|)) (-15 -4123 (|#1| |#1| |#1|)) (-15 -4123 (|#1| |#1| |#2|)) (-15 -4123 (|#1| |#2| |#1|)) (-15 -2233 (|#1| (-595 |#2|))) (-15 -2507 ((-717) |#2| |#1|)) (-15 -2507 ((-717) (-1 (-110) |#2|) |#1|)))
-((-2207 (((-110) $ $) 19)) (-2805 (($) 67 (|has| |#1| (-348)))) (-4123 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-2352 (($ $ $) 78)) (-1316 (((-110) $ $) 79)) (-3535 (((-110) $ (-717)) 8)) (-2856 (((-717)) 61 (|has| |#1| (-348)))) (-4237 (($ (-595 |#1|)) 74) (($) 73)) (-1836 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4264)))) (-1573 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4264)))) (-2816 (($) 7 T CONST)) (-2923 (($ $) 58 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-3991 (($ |#1| $) 47 (|has| $ (-6 -4264))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4264)))) (-2280 (($ |#1| $) 57 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4264)))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4264)))) (-1338 (($) 64 (|has| |#1| (-348)))) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-4242 (((-110) $ $) 70)) (-2029 (((-110) $ (-717)) 9)) (-1436 ((|#1| $) 65 (|has| |#1| (-793)))) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-1736 ((|#1| $) 66 (|has| |#1| (-793)))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35)) (-3201 (((-860) $) 63 (|has| |#1| (-348)))) (-3358 (((-110) $ (-717)) 10)) (-3034 (((-1078) $) 22)) (-3397 (($ $ $) 75)) (-3934 ((|#1| $) 39)) (-1950 (($ |#1| $) 40)) (-3108 (($ (-860)) 62 (|has| |#1| (-348)))) (-2495 (((-1042) $) 21)) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-1390 ((|#1| $) 41)) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-2183 (($ $ |#1|) 77) (($ $ $) 76)) (-3900 (($) 49) (($ (-595 |#1|)) 48)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-3155 (((-504) $) 59 (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) 50)) (-2792 (($ $) 68 (|has| |#1| (-348)))) (-2222 (((-802) $) 18)) (-3713 (((-717) $) 69)) (-3289 (($ (-595 |#1|)) 72) (($) 71)) (-2164 (($ (-595 |#1|)) 42)) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20)) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-405 |#1|) (-133) (-1023)) (T -405))
-((-3713 (*1 *2 *1) (-12 (-4 *1 (-405 *3)) (-4 *3 (-1023)) (-5 *2 (-717)))) (-2792 (*1 *1 *1) (-12 (-4 *1 (-405 *2)) (-4 *2 (-1023)) (-4 *2 (-348)))) (-2805 (*1 *1) (-12 (-4 *1 (-405 *2)) (-4 *2 (-348)) (-4 *2 (-1023)))) (-1736 (*1 *2 *1) (-12 (-4 *1 (-405 *2)) (-4 *2 (-1023)) (-4 *2 (-793)))) (-1436 (*1 *2 *1) (-12 (-4 *1 (-405 *2)) (-4 *2 (-1023)) (-4 *2 (-793)))))
-(-13 (-211 |t#1|) (-1021 |t#1|) (-10 -8 (-6 -4264) (-15 -3713 ((-717) $)) (IF (|has| |t#1| (-348)) (PROGN (-6 (-348)) (-15 -2792 ($ $)) (-15 -2805 ($))) |%noBranch|) (IF (|has| |t#1| (-793)) (PROGN (-15 -1736 (|t#1| $)) (-15 -1436 (|t#1| $))) |%noBranch|)))
-(((-33) . T) ((-104 |#1|) . T) ((-99) . T) ((-569 (-802)) . T) ((-144 |#1|) . T) ((-570 (-504)) |has| |#1| (-570 (-504))) ((-211 |#1|) . T) ((-217 |#1|) . T) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-348) |has| |#1| (-348)) ((-467 |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-1021 |#1|) . T) ((-1023) . T) ((-1131) . T))
-((-3551 (((-545 |#2|) |#2| (-1095)) 36)) (-2399 (((-545 |#2|) |#2| (-1095)) 20)) (-3247 ((|#2| |#2| (-1095)) 25)))
-(((-406 |#1| |#2|) (-10 -7 (-15 -2399 ((-545 |#2|) |#2| (-1095))) (-15 -3551 ((-545 |#2|) |#2| (-1095))) (-15 -3247 (|#2| |#2| (-1095)))) (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528))) (-13 (-1117) (-29 |#1|))) (T -406))
-((-3247 (*1 *2 *2 *3) (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528)))) (-5 *1 (-406 *4 *2)) (-4 *2 (-13 (-1117) (-29 *4))))) (-3551 (*1 *2 *3 *4) (-12 (-5 *4 (-1095)) (-4 *5 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528)))) (-5 *2 (-545 *3)) (-5 *1 (-406 *5 *3)) (-4 *3 (-13 (-1117) (-29 *5))))) (-2399 (*1 *2 *3 *4) (-12 (-5 *4 (-1095)) (-4 *5 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528)))) (-5 *2 (-545 *3)) (-5 *1 (-406 *5 *3)) (-4 *3 (-13 (-1117) (-29 *5))))))
-(-10 -7 (-15 -2399 ((-545 |#2|) |#2| (-1095))) (-15 -3551 ((-545 |#2|) |#2| (-1095))) (-15 -3247 (|#2| |#2| (-1095))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-1312 (((-3 $ "failed") $) NIL)) (-1297 (((-110) $) NIL)) (-1481 (($ |#2| |#1|) 35)) (-3278 (($ |#2| |#1|) 33)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ |#1|) NIL) (($ (-311 |#2|)) 25)) (-3742 (((-717)) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 10 T CONST)) (-2982 (($) 16 T CONST)) (-2186 (((-110) $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) 34)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-407 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4251)) (IF (|has| |#1| (-6 -4251)) (-6 -4251) |%noBranch|) |%noBranch|) (-15 -2222 ($ |#1|)) (-15 -2222 ($ (-311 |#2|))) (-15 -1481 ($ |#2| |#1|)) (-15 -3278 ($ |#2| |#1|)))) (-13 (-162) (-37 (-387 (-528)))) (-13 (-793) (-21))) (T -407))
-((-2222 (*1 *1 *2) (-12 (-5 *1 (-407 *2 *3)) (-4 *2 (-13 (-162) (-37 (-387 (-528))))) (-4 *3 (-13 (-793) (-21))))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-311 *4)) (-4 *4 (-13 (-793) (-21))) (-5 *1 (-407 *3 *4)) (-4 *3 (-13 (-162) (-37 (-387 (-528))))))) (-1481 (*1 *1 *2 *3) (-12 (-5 *1 (-407 *3 *2)) (-4 *3 (-13 (-162) (-37 (-387 (-528))))) (-4 *2 (-13 (-793) (-21))))) (-3278 (*1 *1 *2 *3) (-12 (-5 *1 (-407 *3 *2)) (-4 *3 (-13 (-162) (-37 (-387 (-528))))) (-4 *2 (-13 (-793) (-21))))))
-(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4251)) (IF (|has| |#1| (-6 -4251)) (-6 -4251) |%noBranch|) |%noBranch|) (-15 -2222 ($ |#1|)) (-15 -2222 ($ (-311 |#2|))) (-15 -1481 ($ |#2| |#1|)) (-15 -3278 ($ |#2| |#1|))))
-((-1923 (((-3 |#2| (-595 |#2|)) |#2| (-1095)) 109)))
-(((-408 |#1| |#2|) (-10 -7 (-15 -1923 ((-3 |#2| (-595 |#2|)) |#2| (-1095)))) (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528))) (-13 (-1117) (-897) (-29 |#1|))) (T -408))
-((-1923 (*1 *2 *3 *4) (-12 (-5 *4 (-1095)) (-4 *5 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528)))) (-5 *2 (-3 *3 (-595 *3))) (-5 *1 (-408 *5 *3)) (-4 *3 (-13 (-1117) (-897) (-29 *5))))))
-(-10 -7 (-15 -1923 ((-3 |#2| (-595 |#2|)) |#2| (-1095))))
-((-2565 (((-595 (-1095)) $) 72)) (-2402 (((-387 (-1091 $)) $ (-568 $)) 273)) (-2819 (($ $ (-275 $)) NIL) (($ $ (-595 (-275 $))) NIL) (($ $ (-595 (-568 $)) (-595 $)) 237)) (-3001 (((-3 (-568 $) "failed") $) NIL) (((-3 (-1095) "failed") $) 75) (((-3 (-528) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-387 (-891 |#2|)) "failed") $) 324) (((-3 (-891 |#2|) "failed") $) 235) (((-3 (-387 (-528)) "failed") $) NIL)) (-2409 (((-568 $) $) NIL) (((-1095) $) 30) (((-528) $) NIL) ((|#2| $) 231) (((-387 (-891 |#2|)) $) 305) (((-891 |#2|) $) 232) (((-387 (-528)) $) NIL)) (-3748 (((-112) (-112)) 47)) (-3037 (($ $) 87)) (-1547 (((-3 (-568 $) "failed") $) 228)) (-2390 (((-595 (-568 $)) $) 229)) (-3024 (((-3 (-595 $) "failed") $) 247)) (-1956 (((-3 (-2 (|:| |val| $) (|:| -2564 (-528))) "failed") $) 254)) (-1281 (((-3 (-595 $) "failed") $) 245)) (-4177 (((-3 (-2 (|:| -1641 (-528)) (|:| |var| (-568 $))) "failed") $) 264)) (-3352 (((-3 (-2 (|:| |var| (-568 $)) (|:| -2564 (-528))) "failed") $) 251) (((-3 (-2 (|:| |var| (-568 $)) (|:| -2564 (-528))) "failed") $ (-112)) 217) (((-3 (-2 (|:| |var| (-568 $)) (|:| -2564 (-528))) "failed") $ (-1095)) 219)) (-2662 (((-110) $) 19)) (-2675 ((|#2| $) 21)) (-4014 (($ $ (-568 $) $) NIL) (($ $ (-595 (-568 $)) (-595 $)) 236) (($ $ (-595 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL) (($ $ (-595 (-1095)) (-595 (-1 $ $))) NIL) (($ $ (-595 (-1095)) (-595 (-1 $ (-595 $)))) 96) (($ $ (-1095) (-1 $ (-595 $))) NIL) (($ $ (-1095) (-1 $ $)) NIL) (($ $ (-595 (-112)) (-595 (-1 $ $))) NIL) (($ $ (-595 (-112)) (-595 (-1 $ (-595 $)))) NIL) (($ $ (-112) (-1 $ (-595 $))) NIL) (($ $ (-112) (-1 $ $)) NIL) (($ $ (-1095)) 57) (($ $ (-595 (-1095))) 240) (($ $) 241) (($ $ (-112) $ (-1095)) 60) (($ $ (-595 (-112)) (-595 $) (-1095)) 67) (($ $ (-595 (-1095)) (-595 (-717)) (-595 (-1 $ $))) 107) (($ $ (-595 (-1095)) (-595 (-717)) (-595 (-1 $ (-595 $)))) 242) (($ $ (-1095) (-717) (-1 $ (-595 $))) 94) (($ $ (-1095) (-717) (-1 $ $)) 93)) (-3043 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-595 $)) 106)) (-3235 (($ $ (-595 (-1095)) (-595 (-717))) NIL) (($ $ (-1095) (-717)) NIL) (($ $ (-595 (-1095))) NIL) (($ $ (-1095)) 238)) (-4118 (($ $) 284)) (-3155 (((-831 (-528)) $) 257) (((-831 (-359)) $) 261) (($ (-398 $)) 320) (((-504) $) NIL)) (-2222 (((-802) $) 239) (($ (-568 $)) 84) (($ (-1095)) 26) (($ |#2|) NIL) (($ (-1047 |#2| (-568 $))) NIL) (($ (-387 |#2|)) 289) (($ (-891 (-387 |#2|))) 329) (($ (-387 (-891 (-387 |#2|)))) 301) (($ (-387 (-891 |#2|))) 295) (($ $) NIL) (($ (-891 |#2|)) 185) (($ (-387 (-528))) 334) (($ (-528)) NIL)) (-3742 (((-717)) 79)) (-2042 (((-110) (-112)) 41)) (-3016 (($ (-1095) $) 33) (($ (-1095) $ $) 34) (($ (-1095) $ $ $) 35) (($ (-1095) $ $ $ $) 36) (($ (-1095) (-595 $)) 39)) (* (($ (-387 (-528)) $) NIL) (($ $ (-387 (-528))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-528) $) NIL) (($ (-717) $) NIL) (($ (-860) $) NIL)))
-(((-409 |#1| |#2|) (-10 -8 (-15 * (|#1| (-860) |#1|)) (-15 * (|#1| (-717) |#1|)) (-15 * (|#1| (-528) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3742 ((-717))) (-15 -2222 (|#1| (-528))) (-15 -2409 ((-387 (-528)) |#1|)) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -2222 (|#1| (-387 (-528)))) (-15 -3155 ((-504) |#1|)) (-15 -2409 ((-891 |#2|) |#1|)) (-15 -3001 ((-3 (-891 |#2|) "failed") |#1|)) (-15 -2222 (|#1| (-891 |#2|))) (-15 -3235 (|#1| |#1| (-1095))) (-15 -3235 (|#1| |#1| (-595 (-1095)))) (-15 -3235 (|#1| |#1| (-1095) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)) (-595 (-717)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2222 (|#1| |#1|)) (-15 * (|#1| |#1| (-387 (-528)))) (-15 * (|#1| (-387 (-528)) |#1|)) (-15 -2409 ((-387 (-891 |#2|)) |#1|)) (-15 -3001 ((-3 (-387 (-891 |#2|)) "failed") |#1|)) (-15 -2222 (|#1| (-387 (-891 |#2|)))) (-15 -2402 ((-387 (-1091 |#1|)) |#1| (-568 |#1|))) (-15 -2222 (|#1| (-387 (-891 (-387 |#2|))))) (-15 -2222 (|#1| (-891 (-387 |#2|)))) (-15 -2222 (|#1| (-387 |#2|))) (-15 -4118 (|#1| |#1|)) (-15 -3155 (|#1| (-398 |#1|))) (-15 -4014 (|#1| |#1| (-1095) (-717) (-1 |#1| |#1|))) (-15 -4014 (|#1| |#1| (-1095) (-717) (-1 |#1| (-595 |#1|)))) (-15 -4014 (|#1| |#1| (-595 (-1095)) (-595 (-717)) (-595 (-1 |#1| (-595 |#1|))))) (-15 -4014 (|#1| |#1| (-595 (-1095)) (-595 (-717)) (-595 (-1 |#1| |#1|)))) (-15 -1956 ((-3 (-2 (|:| |val| |#1|) (|:| -2564 (-528))) "failed") |#1|)) (-15 -3352 ((-3 (-2 (|:| |var| (-568 |#1|)) (|:| -2564 (-528))) "failed") |#1| (-1095))) (-15 -3352 ((-3 (-2 (|:| |var| (-568 |#1|)) (|:| -2564 (-528))) "failed") |#1| (-112))) (-15 -3037 (|#1| |#1|)) (-15 -2222 (|#1| (-1047 |#2| (-568 |#1|)))) (-15 -4177 ((-3 (-2 (|:| -1641 (-528)) (|:| |var| (-568 |#1|))) "failed") |#1|)) (-15 -1281 ((-3 (-595 |#1|) "failed") |#1|)) (-15 -3352 ((-3 (-2 (|:| |var| (-568 |#1|)) (|:| -2564 (-528))) "failed") |#1|)) (-15 -3024 ((-3 (-595 |#1|) "failed") |#1|)) (-15 -4014 (|#1| |#1| (-595 (-112)) (-595 |#1|) (-1095))) (-15 -4014 (|#1| |#1| (-112) |#1| (-1095))) (-15 -4014 (|#1| |#1|)) (-15 -4014 (|#1| |#1| (-595 (-1095)))) (-15 -4014 (|#1| |#1| (-1095))) (-15 -3016 (|#1| (-1095) (-595 |#1|))) (-15 -3016 (|#1| (-1095) |#1| |#1| |#1| |#1|)) (-15 -3016 (|#1| (-1095) |#1| |#1| |#1|)) (-15 -3016 (|#1| (-1095) |#1| |#1|)) (-15 -3016 (|#1| (-1095) |#1|)) (-15 -2565 ((-595 (-1095)) |#1|)) (-15 -2675 (|#2| |#1|)) (-15 -2662 ((-110) |#1|)) (-15 -2409 (|#2| |#1|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -2222 (|#1| |#2|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -2409 ((-528) |#1|)) (-15 -3155 ((-831 (-359)) |#1|)) (-15 -3155 ((-831 (-528)) |#1|)) (-15 -2409 ((-1095) |#1|)) (-15 -3001 ((-3 (-1095) "failed") |#1|)) (-15 -2222 (|#1| (-1095))) (-15 -4014 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4014 (|#1| |#1| (-112) (-1 |#1| (-595 |#1|)))) (-15 -4014 (|#1| |#1| (-595 (-112)) (-595 (-1 |#1| (-595 |#1|))))) (-15 -4014 (|#1| |#1| (-595 (-112)) (-595 (-1 |#1| |#1|)))) (-15 -4014 (|#1| |#1| (-1095) (-1 |#1| |#1|))) (-15 -4014 (|#1| |#1| (-1095) (-1 |#1| (-595 |#1|)))) (-15 -4014 (|#1| |#1| (-595 (-1095)) (-595 (-1 |#1| (-595 |#1|))))) (-15 -4014 (|#1| |#1| (-595 (-1095)) (-595 (-1 |#1| |#1|)))) (-15 -2042 ((-110) (-112))) (-15 -3748 ((-112) (-112))) (-15 -2390 ((-595 (-568 |#1|)) |#1|)) (-15 -1547 ((-3 (-568 |#1|) "failed") |#1|)) (-15 -2819 (|#1| |#1| (-595 (-568 |#1|)) (-595 |#1|))) (-15 -2819 (|#1| |#1| (-595 (-275 |#1|)))) (-15 -2819 (|#1| |#1| (-275 |#1|))) (-15 -3043 (|#1| (-112) (-595 |#1|))) (-15 -3043 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -3043 (|#1| (-112) |#1| |#1| |#1|)) (-15 -3043 (|#1| (-112) |#1| |#1|)) (-15 -3043 (|#1| (-112) |#1|)) (-15 -4014 (|#1| |#1| (-595 |#1|) (-595 |#1|))) (-15 -4014 (|#1| |#1| |#1| |#1|)) (-15 -4014 (|#1| |#1| (-275 |#1|))) (-15 -4014 (|#1| |#1| (-595 (-275 |#1|)))) (-15 -4014 (|#1| |#1| (-595 (-568 |#1|)) (-595 |#1|))) (-15 -4014 (|#1| |#1| (-568 |#1|) |#1|)) (-15 -2409 ((-568 |#1|) |#1|)) (-15 -3001 ((-3 (-568 |#1|) "failed") |#1|)) (-15 -2222 (|#1| (-568 |#1|))) (-15 -2222 ((-802) |#1|))) (-410 |#2|) (-793)) (T -409))
-((-3748 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *4 (-793)) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4)))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *5 (-793)) (-5 *2 (-110)) (-5 *1 (-409 *4 *5)) (-4 *4 (-410 *5)))) (-3742 (*1 *2) (-12 (-4 *4 (-793)) (-5 *2 (-717)) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4)))))
-(-10 -8 (-15 * (|#1| (-860) |#1|)) (-15 * (|#1| (-717) |#1|)) (-15 * (|#1| (-528) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3742 ((-717))) (-15 -2222 (|#1| (-528))) (-15 -2409 ((-387 (-528)) |#1|)) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -2222 (|#1| (-387 (-528)))) (-15 -3155 ((-504) |#1|)) (-15 -2409 ((-891 |#2|) |#1|)) (-15 -3001 ((-3 (-891 |#2|) "failed") |#1|)) (-15 -2222 (|#1| (-891 |#2|))) (-15 -3235 (|#1| |#1| (-1095))) (-15 -3235 (|#1| |#1| (-595 (-1095)))) (-15 -3235 (|#1| |#1| (-1095) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)) (-595 (-717)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2222 (|#1| |#1|)) (-15 * (|#1| |#1| (-387 (-528)))) (-15 * (|#1| (-387 (-528)) |#1|)) (-15 -2409 ((-387 (-891 |#2|)) |#1|)) (-15 -3001 ((-3 (-387 (-891 |#2|)) "failed") |#1|)) (-15 -2222 (|#1| (-387 (-891 |#2|)))) (-15 -2402 ((-387 (-1091 |#1|)) |#1| (-568 |#1|))) (-15 -2222 (|#1| (-387 (-891 (-387 |#2|))))) (-15 -2222 (|#1| (-891 (-387 |#2|)))) (-15 -2222 (|#1| (-387 |#2|))) (-15 -4118 (|#1| |#1|)) (-15 -3155 (|#1| (-398 |#1|))) (-15 -4014 (|#1| |#1| (-1095) (-717) (-1 |#1| |#1|))) (-15 -4014 (|#1| |#1| (-1095) (-717) (-1 |#1| (-595 |#1|)))) (-15 -4014 (|#1| |#1| (-595 (-1095)) (-595 (-717)) (-595 (-1 |#1| (-595 |#1|))))) (-15 -4014 (|#1| |#1| (-595 (-1095)) (-595 (-717)) (-595 (-1 |#1| |#1|)))) (-15 -1956 ((-3 (-2 (|:| |val| |#1|) (|:| -2564 (-528))) "failed") |#1|)) (-15 -3352 ((-3 (-2 (|:| |var| (-568 |#1|)) (|:| -2564 (-528))) "failed") |#1| (-1095))) (-15 -3352 ((-3 (-2 (|:| |var| (-568 |#1|)) (|:| -2564 (-528))) "failed") |#1| (-112))) (-15 -3037 (|#1| |#1|)) (-15 -2222 (|#1| (-1047 |#2| (-568 |#1|)))) (-15 -4177 ((-3 (-2 (|:| -1641 (-528)) (|:| |var| (-568 |#1|))) "failed") |#1|)) (-15 -1281 ((-3 (-595 |#1|) "failed") |#1|)) (-15 -3352 ((-3 (-2 (|:| |var| (-568 |#1|)) (|:| -2564 (-528))) "failed") |#1|)) (-15 -3024 ((-3 (-595 |#1|) "failed") |#1|)) (-15 -4014 (|#1| |#1| (-595 (-112)) (-595 |#1|) (-1095))) (-15 -4014 (|#1| |#1| (-112) |#1| (-1095))) (-15 -4014 (|#1| |#1|)) (-15 -4014 (|#1| |#1| (-595 (-1095)))) (-15 -4014 (|#1| |#1| (-1095))) (-15 -3016 (|#1| (-1095) (-595 |#1|))) (-15 -3016 (|#1| (-1095) |#1| |#1| |#1| |#1|)) (-15 -3016 (|#1| (-1095) |#1| |#1| |#1|)) (-15 -3016 (|#1| (-1095) |#1| |#1|)) (-15 -3016 (|#1| (-1095) |#1|)) (-15 -2565 ((-595 (-1095)) |#1|)) (-15 -2675 (|#2| |#1|)) (-15 -2662 ((-110) |#1|)) (-15 -2409 (|#2| |#1|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -2222 (|#1| |#2|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -2409 ((-528) |#1|)) (-15 -3155 ((-831 (-359)) |#1|)) (-15 -3155 ((-831 (-528)) |#1|)) (-15 -2409 ((-1095) |#1|)) (-15 -3001 ((-3 (-1095) "failed") |#1|)) (-15 -2222 (|#1| (-1095))) (-15 -4014 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4014 (|#1| |#1| (-112) (-1 |#1| (-595 |#1|)))) (-15 -4014 (|#1| |#1| (-595 (-112)) (-595 (-1 |#1| (-595 |#1|))))) (-15 -4014 (|#1| |#1| (-595 (-112)) (-595 (-1 |#1| |#1|)))) (-15 -4014 (|#1| |#1| (-1095) (-1 |#1| |#1|))) (-15 -4014 (|#1| |#1| (-1095) (-1 |#1| (-595 |#1|)))) (-15 -4014 (|#1| |#1| (-595 (-1095)) (-595 (-1 |#1| (-595 |#1|))))) (-15 -4014 (|#1| |#1| (-595 (-1095)) (-595 (-1 |#1| |#1|)))) (-15 -2042 ((-110) (-112))) (-15 -3748 ((-112) (-112))) (-15 -2390 ((-595 (-568 |#1|)) |#1|)) (-15 -1547 ((-3 (-568 |#1|) "failed") |#1|)) (-15 -2819 (|#1| |#1| (-595 (-568 |#1|)) (-595 |#1|))) (-15 -2819 (|#1| |#1| (-595 (-275 |#1|)))) (-15 -2819 (|#1| |#1| (-275 |#1|))) (-15 -3043 (|#1| (-112) (-595 |#1|))) (-15 -3043 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -3043 (|#1| (-112) |#1| |#1| |#1|)) (-15 -3043 (|#1| (-112) |#1| |#1|)) (-15 -3043 (|#1| (-112) |#1|)) (-15 -4014 (|#1| |#1| (-595 |#1|) (-595 |#1|))) (-15 -4014 (|#1| |#1| |#1| |#1|)) (-15 -4014 (|#1| |#1| (-275 |#1|))) (-15 -4014 (|#1| |#1| (-595 (-275 |#1|)))) (-15 -4014 (|#1| |#1| (-595 (-568 |#1|)) (-595 |#1|))) (-15 -4014 (|#1| |#1| (-568 |#1|) |#1|)) (-15 -2409 ((-568 |#1|) |#1|)) (-15 -3001 ((-3 (-568 |#1|) "failed") |#1|)) (-15 -2222 (|#1| (-568 |#1|))) (-15 -2222 ((-802) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 116 (|has| |#1| (-25)))) (-2565 (((-595 (-1095)) $) 203)) (-2402 (((-387 (-1091 $)) $ (-568 $)) 171 (|has| |#1| (-520)))) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 143 (|has| |#1| (-520)))) (-1738 (($ $) 144 (|has| |#1| (-520)))) (-1811 (((-110) $) 146 (|has| |#1| (-520)))) (-2316 (((-595 (-568 $)) $) 44)) (-3181 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-2819 (($ $ (-275 $)) 56) (($ $ (-595 (-275 $))) 55) (($ $ (-595 (-568 $)) (-595 $)) 54)) (-1232 (($ $) 163 (|has| |#1| (-520)))) (-2705 (((-398 $) $) 164 (|has| |#1| (-520)))) (-2213 (((-110) $ $) 154 (|has| |#1| (-520)))) (-2816 (($) 102 (-1463 (|has| |#1| (-1035)) (|has| |#1| (-25))) CONST)) (-3001 (((-3 (-568 $) "failed") $) 69) (((-3 (-1095) "failed") $) 216) (((-3 (-528) "failed") $) 209 (|has| |#1| (-972 (-528)))) (((-3 |#1| "failed") $) 207) (((-3 (-387 (-891 |#1|)) "failed") $) 169 (|has| |#1| (-520))) (((-3 (-891 |#1|) "failed") $) 123 (|has| |#1| (-981))) (((-3 (-387 (-528)) "failed") $) 95 (-1463 (-12 (|has| |#1| (-972 (-528))) (|has| |#1| (-520))) (|has| |#1| (-972 (-387 (-528))))))) (-2409 (((-568 $) $) 68) (((-1095) $) 215) (((-528) $) 210 (|has| |#1| (-972 (-528)))) ((|#1| $) 206) (((-387 (-891 |#1|)) $) 168 (|has| |#1| (-520))) (((-891 |#1|) $) 122 (|has| |#1| (-981))) (((-387 (-528)) $) 94 (-1463 (-12 (|has| |#1| (-972 (-528))) (|has| |#1| (-520))) (|has| |#1| (-972 (-387 (-528))))))) (-3519 (($ $ $) 158 (|has| |#1| (-520)))) (-2120 (((-635 (-528)) (-635 $)) 137 (-3287 (|has| |#1| (-591 (-528))) (|has| |#1| (-981)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) 136 (-3287 (|has| |#1| (-591 (-528))) (|has| |#1| (-981)))) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) 135 (|has| |#1| (-981))) (((-635 |#1|) (-635 $)) 134 (|has| |#1| (-981)))) (-1312 (((-3 $ "failed") $) 105 (|has| |#1| (-1035)))) (-3498 (($ $ $) 157 (|has| |#1| (-520)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 152 (|has| |#1| (-520)))) (-2124 (((-110) $) 165 (|has| |#1| (-520)))) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) 212 (|has| |#1| (-825 (-528)))) (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) 211 (|has| |#1| (-825 (-359))))) (-4130 (($ $) 51) (($ (-595 $)) 50)) (-3930 (((-595 (-112)) $) 43)) (-3748 (((-112) (-112)) 42)) (-1297 (((-110) $) 103 (|has| |#1| (-1035)))) (-2580 (((-110) $) 22 (|has| $ (-972 (-528))))) (-3037 (($ $) 186 (|has| |#1| (-981)))) (-3031 (((-1047 |#1| (-568 $)) $) 187 (|has| |#1| (-981)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) 161 (|has| |#1| (-520)))) (-1822 (((-1091 $) (-568 $)) 25 (|has| $ (-981)))) (-1436 (($ $ $) 13)) (-1736 (($ $ $) 14)) (-3106 (($ (-1 $ $) (-568 $)) 36)) (-1547 (((-3 (-568 $) "failed") $) 46)) (-2057 (($ (-595 $)) 150 (|has| |#1| (-520))) (($ $ $) 149 (|has| |#1| (-520)))) (-3034 (((-1078) $) 9)) (-2390 (((-595 (-568 $)) $) 45)) (-1552 (($ (-112) $) 38) (($ (-112) (-595 $)) 37)) (-3024 (((-3 (-595 $) "failed") $) 192 (|has| |#1| (-1035)))) (-1956 (((-3 (-2 (|:| |val| $) (|:| -2564 (-528))) "failed") $) 183 (|has| |#1| (-981)))) (-1281 (((-3 (-595 $) "failed") $) 190 (|has| |#1| (-25)))) (-4177 (((-3 (-2 (|:| -1641 (-528)) (|:| |var| (-568 $))) "failed") $) 189 (|has| |#1| (-25)))) (-3352 (((-3 (-2 (|:| |var| (-568 $)) (|:| -2564 (-528))) "failed") $) 191 (|has| |#1| (-1035))) (((-3 (-2 (|:| |var| (-568 $)) (|:| -2564 (-528))) "failed") $ (-112)) 185 (|has| |#1| (-981))) (((-3 (-2 (|:| |var| (-568 $)) (|:| -2564 (-528))) "failed") $ (-1095)) 184 (|has| |#1| (-981)))) (-2341 (((-110) $ (-112)) 40) (((-110) $ (-1095)) 39)) (-2652 (($ $) 107 (-1463 (|has| |#1| (-452)) (|has| |#1| (-520))))) (-4073 (((-717) $) 47)) (-2495 (((-1042) $) 10)) (-2662 (((-110) $) 205)) (-2675 ((|#1| $) 204)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 151 (|has| |#1| (-520)))) (-2088 (($ (-595 $)) 148 (|has| |#1| (-520))) (($ $ $) 147 (|has| |#1| (-520)))) (-3947 (((-110) $ $) 35) (((-110) $ (-1095)) 34)) (-2437 (((-398 $) $) 162 (|has| |#1| (-520)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-520))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 159 (|has| |#1| (-520)))) (-3477 (((-3 $ "failed") $ $) 142 (|has| |#1| (-520)))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 153 (|has| |#1| (-520)))) (-3578 (((-110) $) 23 (|has| $ (-972 (-528))))) (-4014 (($ $ (-568 $) $) 67) (($ $ (-595 (-568 $)) (-595 $)) 66) (($ $ (-595 (-275 $))) 65) (($ $ (-275 $)) 64) (($ $ $ $) 63) (($ $ (-595 $) (-595 $)) 62) (($ $ (-595 (-1095)) (-595 (-1 $ $))) 33) (($ $ (-595 (-1095)) (-595 (-1 $ (-595 $)))) 32) (($ $ (-1095) (-1 $ (-595 $))) 31) (($ $ (-1095) (-1 $ $)) 30) (($ $ (-595 (-112)) (-595 (-1 $ $))) 29) (($ $ (-595 (-112)) (-595 (-1 $ (-595 $)))) 28) (($ $ (-112) (-1 $ (-595 $))) 27) (($ $ (-112) (-1 $ $)) 26) (($ $ (-1095)) 197 (|has| |#1| (-570 (-504)))) (($ $ (-595 (-1095))) 196 (|has| |#1| (-570 (-504)))) (($ $) 195 (|has| |#1| (-570 (-504)))) (($ $ (-112) $ (-1095)) 194 (|has| |#1| (-570 (-504)))) (($ $ (-595 (-112)) (-595 $) (-1095)) 193 (|has| |#1| (-570 (-504)))) (($ $ (-595 (-1095)) (-595 (-717)) (-595 (-1 $ $))) 182 (|has| |#1| (-981))) (($ $ (-595 (-1095)) (-595 (-717)) (-595 (-1 $ (-595 $)))) 181 (|has| |#1| (-981))) (($ $ (-1095) (-717) (-1 $ (-595 $))) 180 (|has| |#1| (-981))) (($ $ (-1095) (-717) (-1 $ $)) 179 (|has| |#1| (-981)))) (-3973 (((-717) $) 155 (|has| |#1| (-520)))) (-3043 (($ (-112) $) 61) (($ (-112) $ $) 60) (($ (-112) $ $ $) 59) (($ (-112) $ $ $ $) 58) (($ (-112) (-595 $)) 57)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 156 (|has| |#1| (-520)))) (-3581 (($ $) 49) (($ $ $) 48)) (-3235 (($ $ (-595 (-1095)) (-595 (-717))) 128 (|has| |#1| (-981))) (($ $ (-1095) (-717)) 127 (|has| |#1| (-981))) (($ $ (-595 (-1095))) 126 (|has| |#1| (-981))) (($ $ (-1095)) 125 (|has| |#1| (-981)))) (-4118 (($ $) 176 (|has| |#1| (-520)))) (-3042 (((-1047 |#1| (-568 $)) $) 177 (|has| |#1| (-520)))) (-4090 (($ $) 24 (|has| $ (-981)))) (-3155 (((-831 (-528)) $) 214 (|has| |#1| (-570 (-831 (-528))))) (((-831 (-359)) $) 213 (|has| |#1| (-570 (-831 (-359))))) (($ (-398 $)) 178 (|has| |#1| (-520))) (((-504) $) 97 (|has| |#1| (-570 (-504))))) (-4097 (($ $ $) 111 (|has| |#1| (-452)))) (-2405 (($ $ $) 112 (|has| |#1| (-452)))) (-2222 (((-802) $) 11) (($ (-568 $)) 70) (($ (-1095)) 217) (($ |#1|) 208) (($ (-1047 |#1| (-568 $))) 188 (|has| |#1| (-981))) (($ (-387 |#1|)) 174 (|has| |#1| (-520))) (($ (-891 (-387 |#1|))) 173 (|has| |#1| (-520))) (($ (-387 (-891 (-387 |#1|)))) 172 (|has| |#1| (-520))) (($ (-387 (-891 |#1|))) 170 (|has| |#1| (-520))) (($ $) 141 (|has| |#1| (-520))) (($ (-891 |#1|)) 124 (|has| |#1| (-981))) (($ (-387 (-528))) 96 (-1463 (|has| |#1| (-520)) (-12 (|has| |#1| (-972 (-528))) (|has| |#1| (-520))) (|has| |#1| (-972 (-387 (-528)))))) (($ (-528)) 93 (-1463 (|has| |#1| (-981)) (|has| |#1| (-972 (-528)))))) (-3749 (((-3 $ "failed") $) 138 (|has| |#1| (-138)))) (-3742 (((-717)) 133 (|has| |#1| (-981)))) (-1491 (($ $) 53) (($ (-595 $)) 52)) (-2042 (((-110) (-112)) 41)) (-4016 (((-110) $ $) 145 (|has| |#1| (-520)))) (-3016 (($ (-1095) $) 202) (($ (-1095) $ $) 201) (($ (-1095) $ $ $) 200) (($ (-1095) $ $ $ $) 199) (($ (-1095) (-595 $)) 198)) (-2690 (($ $ (-528)) 110 (-1463 (|has| |#1| (-452)) (|has| |#1| (-520)))) (($ $ (-717)) 104 (|has| |#1| (-1035))) (($ $ (-860)) 100 (|has| |#1| (-1035)))) (-2969 (($) 115 (|has| |#1| (-25)) CONST)) (-2982 (($) 101 (|has| |#1| (-1035)) CONST)) (-3245 (($ $ (-595 (-1095)) (-595 (-717))) 132 (|has| |#1| (-981))) (($ $ (-1095) (-717)) 131 (|has| |#1| (-981))) (($ $ (-595 (-1095))) 130 (|has| |#1| (-981))) (($ $ (-1095)) 129 (|has| |#1| (-981)))) (-2244 (((-110) $ $) 16)) (-2220 (((-110) $ $) 17)) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 15)) (-2208 (((-110) $ $) 18)) (-2296 (($ (-1047 |#1| (-568 $)) (-1047 |#1| (-568 $))) 175 (|has| |#1| (-520))) (($ $ $) 108 (-1463 (|has| |#1| (-452)) (|has| |#1| (-520))))) (-2286 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-2275 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-528)) 109 (-1463 (|has| |#1| (-452)) (|has| |#1| (-520)))) (($ $ (-717)) 106 (|has| |#1| (-1035))) (($ $ (-860)) 99 (|has| |#1| (-1035)))) (* (($ (-387 (-528)) $) 167 (|has| |#1| (-520))) (($ $ (-387 (-528))) 166 (|has| |#1| (-520))) (($ |#1| $) 140 (|has| |#1| (-162))) (($ $ |#1|) 139 (|has| |#1| (-162))) (($ (-528) $) 121 (|has| |#1| (-21))) (($ (-717) $) 117 (|has| |#1| (-25))) (($ (-860) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1035)))))
-(((-410 |#1|) (-133) (-793)) (T -410))
-((-2662 (*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-793)) (-5 *2 (-110)))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-410 *2)) (-4 *2 (-793)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-793)) (-5 *2 (-595 (-1095))))) (-3016 (*1 *1 *2 *1) (-12 (-5 *2 (-1095)) (-4 *1 (-410 *3)) (-4 *3 (-793)))) (-3016 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1095)) (-4 *1 (-410 *3)) (-4 *3 (-793)))) (-3016 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1095)) (-4 *1 (-410 *3)) (-4 *3 (-793)))) (-3016 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1095)) (-4 *1 (-410 *3)) (-4 *3 (-793)))) (-3016 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-595 *1)) (-4 *1 (-410 *4)) (-4 *4 (-793)))) (-4014 (*1 *1 *1 *2) (-12 (-5 *2 (-1095)) (-4 *1 (-410 *3)) (-4 *3 (-793)) (-4 *3 (-570 (-504))))) (-4014 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-1095))) (-4 *1 (-410 *3)) (-4 *3 (-793)) (-4 *3 (-570 (-504))))) (-4014 (*1 *1 *1) (-12 (-4 *1 (-410 *2)) (-4 *2 (-793)) (-4 *2 (-570 (-504))))) (-4014 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1095)) (-4 *1 (-410 *4)) (-4 *4 (-793)) (-4 *4 (-570 (-504))))) (-4014 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-595 (-112))) (-5 *3 (-595 *1)) (-5 *4 (-1095)) (-4 *1 (-410 *5)) (-4 *5 (-793)) (-4 *5 (-570 (-504))))) (-3024 (*1 *2 *1) (|partial| -12 (-4 *3 (-1035)) (-4 *3 (-793)) (-5 *2 (-595 *1)) (-4 *1 (-410 *3)))) (-3352 (*1 *2 *1) (|partial| -12 (-4 *3 (-1035)) (-4 *3 (-793)) (-5 *2 (-2 (|:| |var| (-568 *1)) (|:| -2564 (-528)))) (-4 *1 (-410 *3)))) (-1281 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-793)) (-5 *2 (-595 *1)) (-4 *1 (-410 *3)))) (-4177 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-793)) (-5 *2 (-2 (|:| -1641 (-528)) (|:| |var| (-568 *1)))) (-4 *1 (-410 *3)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-1047 *3 (-568 *1))) (-4 *3 (-981)) (-4 *3 (-793)) (-4 *1 (-410 *3)))) (-3031 (*1 *2 *1) (-12 (-4 *3 (-981)) (-4 *3 (-793)) (-5 *2 (-1047 *3 (-568 *1))) (-4 *1 (-410 *3)))) (-3037 (*1 *1 *1) (-12 (-4 *1 (-410 *2)) (-4 *2 (-793)) (-4 *2 (-981)))) (-3352 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-112)) (-4 *4 (-981)) (-4 *4 (-793)) (-5 *2 (-2 (|:| |var| (-568 *1)) (|:| -2564 (-528)))) (-4 *1 (-410 *4)))) (-3352 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1095)) (-4 *4 (-981)) (-4 *4 (-793)) (-5 *2 (-2 (|:| |var| (-568 *1)) (|:| -2564 (-528)))) (-4 *1 (-410 *4)))) (-1956 (*1 *2 *1) (|partial| -12 (-4 *3 (-981)) (-4 *3 (-793)) (-5 *2 (-2 (|:| |val| *1) (|:| -2564 (-528)))) (-4 *1 (-410 *3)))) (-4014 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-595 (-1095))) (-5 *3 (-595 (-717))) (-5 *4 (-595 (-1 *1 *1))) (-4 *1 (-410 *5)) (-4 *5 (-793)) (-4 *5 (-981)))) (-4014 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-595 (-1095))) (-5 *3 (-595 (-717))) (-5 *4 (-595 (-1 *1 (-595 *1)))) (-4 *1 (-410 *5)) (-4 *5 (-793)) (-4 *5 (-981)))) (-4014 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1095)) (-5 *3 (-717)) (-5 *4 (-1 *1 (-595 *1))) (-4 *1 (-410 *5)) (-4 *5 (-793)) (-4 *5 (-981)))) (-4014 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1095)) (-5 *3 (-717)) (-5 *4 (-1 *1 *1)) (-4 *1 (-410 *5)) (-4 *5 (-793)) (-4 *5 (-981)))) (-3155 (*1 *1 *2) (-12 (-5 *2 (-398 *1)) (-4 *1 (-410 *3)) (-4 *3 (-520)) (-4 *3 (-793)))) (-3042 (*1 *2 *1) (-12 (-4 *3 (-520)) (-4 *3 (-793)) (-5 *2 (-1047 *3 (-568 *1))) (-4 *1 (-410 *3)))) (-4118 (*1 *1 *1) (-12 (-4 *1 (-410 *2)) (-4 *2 (-793)) (-4 *2 (-520)))) (-2296 (*1 *1 *2 *2) (-12 (-5 *2 (-1047 *3 (-568 *1))) (-4 *3 (-520)) (-4 *3 (-793)) (-4 *1 (-410 *3)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-387 *3)) (-4 *3 (-520)) (-4 *3 (-793)) (-4 *1 (-410 *3)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-891 (-387 *3))) (-4 *3 (-520)) (-4 *3 (-793)) (-4 *1 (-410 *3)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-387 (-891 (-387 *3)))) (-4 *3 (-520)) (-4 *3 (-793)) (-4 *1 (-410 *3)))) (-2402 (*1 *2 *1 *3) (-12 (-5 *3 (-568 *1)) (-4 *1 (-410 *4)) (-4 *4 (-793)) (-4 *4 (-520)) (-5 *2 (-387 (-1091 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-410 *3)) (-4 *3 (-793)) (-4 *3 (-1035)))))
-(-13 (-283) (-972 (-1095)) (-823 |t#1|) (-380 |t#1|) (-391 |t#1|) (-10 -8 (-15 -2662 ((-110) $)) (-15 -2675 (|t#1| $)) (-15 -2565 ((-595 (-1095)) $)) (-15 -3016 ($ (-1095) $)) (-15 -3016 ($ (-1095) $ $)) (-15 -3016 ($ (-1095) $ $ $)) (-15 -3016 ($ (-1095) $ $ $ $)) (-15 -3016 ($ (-1095) (-595 $))) (IF (|has| |t#1| (-570 (-504))) (PROGN (-6 (-570 (-504))) (-15 -4014 ($ $ (-1095))) (-15 -4014 ($ $ (-595 (-1095)))) (-15 -4014 ($ $)) (-15 -4014 ($ $ (-112) $ (-1095))) (-15 -4014 ($ $ (-595 (-112)) (-595 $) (-1095)))) |%noBranch|) (IF (|has| |t#1| (-1035)) (PROGN (-6 (-673)) (-15 ** ($ $ (-717))) (-15 -3024 ((-3 (-595 $) "failed") $)) (-15 -3352 ((-3 (-2 (|:| |var| (-568 $)) (|:| -2564 (-528))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1281 ((-3 (-595 $) "failed") $)) (-15 -4177 ((-3 (-2 (|:| -1641 (-528)) (|:| |var| (-568 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-981)) (PROGN (-6 (-981)) (-6 (-972 (-891 |t#1|))) (-6 (-839 (-1095))) (-6 (-357 |t#1|)) (-15 -2222 ($ (-1047 |t#1| (-568 $)))) (-15 -3031 ((-1047 |t#1| (-568 $)) $)) (-15 -3037 ($ $)) (-15 -3352 ((-3 (-2 (|:| |var| (-568 $)) (|:| -2564 (-528))) "failed") $ (-112))) (-15 -3352 ((-3 (-2 (|:| |var| (-568 $)) (|:| -2564 (-528))) "failed") $ (-1095))) (-15 -1956 ((-3 (-2 (|:| |val| $) (|:| -2564 (-528))) "failed") $)) (-15 -4014 ($ $ (-595 (-1095)) (-595 (-717)) (-595 (-1 $ $)))) (-15 -4014 ($ $ (-595 (-1095)) (-595 (-717)) (-595 (-1 $ (-595 $))))) (-15 -4014 ($ $ (-1095) (-717) (-1 $ (-595 $)))) (-15 -4014 ($ $ (-1095) (-717) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-520)) (PROGN (-6 (-343)) (-6 (-972 (-387 (-891 |t#1|)))) (-15 -3155 ($ (-398 $))) (-15 -3042 ((-1047 |t#1| (-568 $)) $)) (-15 -4118 ($ $)) (-15 -2296 ($ (-1047 |t#1| (-568 $)) (-1047 |t#1| (-568 $)))) (-15 -2222 ($ (-387 |t#1|))) (-15 -2222 ($ (-891 (-387 |t#1|)))) (-15 -2222 ($ (-387 (-891 (-387 |t#1|))))) (-15 -2402 ((-387 (-1091 $)) $ (-568 $))) (IF (|has| |t#1| (-972 (-528))) (-6 (-972 (-387 (-528)))) |%noBranch|)) |%noBranch|)))
-(((-21) -1463 (|has| |#1| (-981)) (|has| |#1| (-520)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-21))) ((-23) -1463 (|has| |#1| (-981)) (|has| |#1| (-520)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -1463 (|has| |#1| (-981)) (|has| |#1| (-520)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-387 (-528))) |has| |#1| (-520)) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-520)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-520)) ((-109 |#1| |#1|) |has| |#1| (-162)) ((-109 $ $) |has| |#1| (-520)) ((-128) -1463 (|has| |#1| (-981)) (|has| |#1| (-520)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-21))) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-569 (-802)) . T) ((-162) |has| |#1| (-520)) ((-570 (-504)) |has| |#1| (-570 (-504))) ((-570 (-831 (-359))) |has| |#1| (-570 (-831 (-359)))) ((-570 (-831 (-528))) |has| |#1| (-570 (-831 (-528)))) ((-225) |has| |#1| (-520)) ((-271) |has| |#1| (-520)) ((-288) |has| |#1| (-520)) ((-290 $) . T) ((-283) . T) ((-343) |has| |#1| (-520)) ((-357 |#1|) |has| |#1| (-981)) ((-380 |#1|) . T) ((-391 |#1|) . T) ((-431) |has| |#1| (-520)) ((-452) |has| |#1| (-452)) ((-489 (-568 $) $) . T) ((-489 $ $) . T) ((-520) |has| |#1| (-520)) ((-597 #0#) |has| |#1| (-520)) ((-597 |#1|) |has| |#1| (-162)) ((-597 $) -1463 (|has| |#1| (-981)) (|has| |#1| (-520)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-591 (-528)) -12 (|has| |#1| (-591 (-528))) (|has| |#1| (-981))) ((-591 |#1|) |has| |#1| (-981)) ((-664 #0#) |has| |#1| (-520)) ((-664 |#1|) |has| |#1| (-162)) ((-664 $) |has| |#1| (-520)) ((-673) -1463 (|has| |#1| (-1035)) (|has| |#1| (-981)) (|has| |#1| (-520)) (|has| |#1| (-452)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-793) . T) ((-839 (-1095)) |has| |#1| (-981)) ((-825 (-359)) |has| |#1| (-825 (-359))) ((-825 (-528)) |has| |#1| (-825 (-528))) ((-823 |#1|) . T) ((-859) |has| |#1| (-520)) ((-972 (-387 (-528))) -1463 (|has| |#1| (-972 (-387 (-528)))) (-12 (|has| |#1| (-520)) (|has| |#1| (-972 (-528))))) ((-972 (-387 (-891 |#1|))) |has| |#1| (-520)) ((-972 (-528)) |has| |#1| (-972 (-528))) ((-972 (-568 $)) . T) ((-972 (-891 |#1|)) |has| |#1| (-981)) ((-972 (-1095)) . T) ((-972 |#1|) . T) ((-986 #0#) |has| |#1| (-520)) ((-986 |#1|) |has| |#1| (-162)) ((-986 $) |has| |#1| (-520)) ((-981) -1463 (|has| |#1| (-981)) (|has| |#1| (-520)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-987) -1463 (|has| |#1| (-981)) (|has| |#1| (-520)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-1035) -1463 (|has| |#1| (-1035)) (|has| |#1| (-981)) (|has| |#1| (-520)) (|has| |#1| (-452)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-1023) . T) ((-1131) . T) ((-1135) |has| |#1| (-520)))
-((-1741 ((|#2| |#2| |#2|) 33)) (-3748 (((-112) (-112)) 44)) (-2205 ((|#2| |#2|) 66)) (-1833 ((|#2| |#2|) 69)) (-2251 ((|#2| |#2|) 32)) (-2803 ((|#2| |#2| |#2|) 35)) (-2938 ((|#2| |#2| |#2|) 37)) (-3950 ((|#2| |#2| |#2|) 34)) (-1978 ((|#2| |#2| |#2|) 36)) (-2042 (((-110) (-112)) 42)) (-1599 ((|#2| |#2|) 39)) (-2815 ((|#2| |#2|) 38)) (-1775 ((|#2| |#2|) 27)) (-3818 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3167 ((|#2| |#2| |#2|) 31)))
-(((-411 |#1| |#2|) (-10 -7 (-15 -2042 ((-110) (-112))) (-15 -3748 ((-112) (-112))) (-15 -1775 (|#2| |#2|)) (-15 -3818 (|#2| |#2|)) (-15 -3818 (|#2| |#2| |#2|)) (-15 -3167 (|#2| |#2| |#2|)) (-15 -2251 (|#2| |#2|)) (-15 -1741 (|#2| |#2| |#2|)) (-15 -3950 (|#2| |#2| |#2|)) (-15 -2803 (|#2| |#2| |#2|)) (-15 -1978 (|#2| |#2| |#2|)) (-15 -2938 (|#2| |#2| |#2|)) (-15 -2815 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -1833 (|#2| |#2|)) (-15 -2205 (|#2| |#2|))) (-13 (-793) (-520)) (-410 |#1|)) (T -411))
-((-2205 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2)) (-4 *2 (-410 *3)))) (-1833 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2)) (-4 *2 (-410 *3)))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2)) (-4 *2 (-410 *3)))) (-2815 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2)) (-4 *2 (-410 *3)))) (-2938 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2)) (-4 *2 (-410 *3)))) (-1978 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2)) (-4 *2 (-410 *3)))) (-2803 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2)) (-4 *2 (-410 *3)))) (-3950 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2)) (-4 *2 (-410 *3)))) (-1741 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2)) (-4 *2 (-410 *3)))) (-2251 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2)) (-4 *2 (-410 *3)))) (-3167 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2)) (-4 *2 (-410 *3)))) (-3818 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2)) (-4 *2 (-410 *3)))) (-3818 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2)) (-4 *2 (-410 *3)))) (-1775 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2)) (-4 *2 (-410 *3)))) (-3748 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *4)) (-4 *4 (-410 *3)))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-793) (-520))) (-5 *2 (-110)) (-5 *1 (-411 *4 *5)) (-4 *5 (-410 *4)))))
-(-10 -7 (-15 -2042 ((-110) (-112))) (-15 -3748 ((-112) (-112))) (-15 -1775 (|#2| |#2|)) (-15 -3818 (|#2| |#2|)) (-15 -3818 (|#2| |#2| |#2|)) (-15 -3167 (|#2| |#2| |#2|)) (-15 -2251 (|#2| |#2|)) (-15 -1741 (|#2| |#2| |#2|)) (-15 -3950 (|#2| |#2| |#2|)) (-15 -2803 (|#2| |#2| |#2|)) (-15 -1978 (|#2| |#2| |#2|)) (-15 -2938 (|#2| |#2| |#2|)) (-15 -2815 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -1833 (|#2| |#2|)) (-15 -2205 (|#2| |#2|)))
-((-2916 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1091 |#2|)) (|:| |pol2| (-1091 |#2|)) (|:| |prim| (-1091 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-595 (-1091 |#2|))) (|:| |prim| (-1091 |#2|))) (-595 |#2|)) 61)))
-(((-412 |#1| |#2|) (-10 -7 (-15 -2916 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-595 (-1091 |#2|))) (|:| |prim| (-1091 |#2|))) (-595 |#2|))) (IF (|has| |#2| (-27)) (-15 -2916 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1091 |#2|)) (|:| |pol2| (-1091 |#2|)) (|:| |prim| (-1091 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-520) (-793) (-140)) (-410 |#1|)) (T -412))
-((-2916 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-520) (-793) (-140))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1091 *3)) (|:| |pol2| (-1091 *3)) (|:| |prim| (-1091 *3)))) (-5 *1 (-412 *4 *3)) (-4 *3 (-27)) (-4 *3 (-410 *4)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-595 *5)) (-4 *5 (-410 *4)) (-4 *4 (-13 (-520) (-793) (-140))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-595 (-1091 *5))) (|:| |prim| (-1091 *5)))) (-5 *1 (-412 *4 *5)))))
-(-10 -7 (-15 -2916 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-595 (-1091 |#2|))) (|:| |prim| (-1091 |#2|))) (-595 |#2|))) (IF (|has| |#2| (-27)) (-15 -2916 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1091 |#2|)) (|:| |pol2| (-1091 |#2|)) (|:| |prim| (-1091 |#2|))) |#2| |#2|)) |%noBranch|))
-((-4209 (((-1182)) 19)) (-1604 (((-1091 (-387 (-528))) |#2| (-568 |#2|)) 41) (((-387 (-528)) |#2|) 25)))
-(((-413 |#1| |#2|) (-10 -7 (-15 -1604 ((-387 (-528)) |#2|)) (-15 -1604 ((-1091 (-387 (-528))) |#2| (-568 |#2|))) (-15 -4209 ((-1182)))) (-13 (-793) (-520) (-972 (-528))) (-410 |#1|)) (T -413))
-((-4209 (*1 *2) (-12 (-4 *3 (-13 (-793) (-520) (-972 (-528)))) (-5 *2 (-1182)) (-5 *1 (-413 *3 *4)) (-4 *4 (-410 *3)))) (-1604 (*1 *2 *3 *4) (-12 (-5 *4 (-568 *3)) (-4 *3 (-410 *5)) (-4 *5 (-13 (-793) (-520) (-972 (-528)))) (-5 *2 (-1091 (-387 (-528)))) (-5 *1 (-413 *5 *3)))) (-1604 (*1 *2 *3) (-12 (-4 *4 (-13 (-793) (-520) (-972 (-528)))) (-5 *2 (-387 (-528))) (-5 *1 (-413 *4 *3)) (-4 *3 (-410 *4)))))
-(-10 -7 (-15 -1604 ((-387 (-528)) |#2|)) (-15 -1604 ((-1091 (-387 (-528))) |#2| (-568 |#2|))) (-15 -4209 ((-1182))))
-((-3137 (((-110) $) 28)) (-3666 (((-110) $) 30)) (-1485 (((-110) $) 31)) (-1909 (((-110) $) 34)) (-1432 (((-110) $) 29)) (-1335 (((-110) $) 33)) (-2222 (((-802) $) 18) (($ (-1078)) 27) (($ (-1095)) 23) (((-1095) $) 22) (((-1027) $) 21)) (-4162 (((-110) $) 32)) (-2186 (((-110) $ $) 15)))
-(((-414) (-13 (-569 (-802)) (-10 -8 (-15 -2222 ($ (-1078))) (-15 -2222 ($ (-1095))) (-15 -2222 ((-1095) $)) (-15 -2222 ((-1027) $)) (-15 -3137 ((-110) $)) (-15 -1432 ((-110) $)) (-15 -1485 ((-110) $)) (-15 -1335 ((-110) $)) (-15 -1909 ((-110) $)) (-15 -4162 ((-110) $)) (-15 -3666 ((-110) $)) (-15 -2186 ((-110) $ $))))) (T -414))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-414)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-414)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-414)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-414)))) (-3137 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-414)))) (-1432 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-414)))) (-1485 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-414)))) (-1335 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-414)))) (-1909 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-414)))) (-4162 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-414)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-414)))) (-2186 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-414)))))
-(-13 (-569 (-802)) (-10 -8 (-15 -2222 ($ (-1078))) (-15 -2222 ($ (-1095))) (-15 -2222 ((-1095) $)) (-15 -2222 ((-1027) $)) (-15 -3137 ((-110) $)) (-15 -1432 ((-110) $)) (-15 -1485 ((-110) $)) (-15 -1335 ((-110) $)) (-15 -1909 ((-110) $)) (-15 -4162 ((-110) $)) (-15 -3666 ((-110) $)) (-15 -2186 ((-110) $ $))))
-((-1917 (((-3 (-398 (-1091 (-387 (-528)))) "failed") |#3|) 70)) (-1419 (((-398 |#3|) |#3|) 34)) (-4010 (((-3 (-398 (-1091 (-47))) "failed") |#3|) 46 (|has| |#2| (-972 (-47))))) (-2199 (((-3 (|:| |overq| (-1091 (-387 (-528)))) (|:| |overan| (-1091 (-47))) (|:| -3987 (-110))) |#3|) 37)))
-(((-415 |#1| |#2| |#3|) (-10 -7 (-15 -1419 ((-398 |#3|) |#3|)) (-15 -1917 ((-3 (-398 (-1091 (-387 (-528)))) "failed") |#3|)) (-15 -2199 ((-3 (|:| |overq| (-1091 (-387 (-528)))) (|:| |overan| (-1091 (-47))) (|:| -3987 (-110))) |#3|)) (IF (|has| |#2| (-972 (-47))) (-15 -4010 ((-3 (-398 (-1091 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-520) (-793) (-972 (-528))) (-410 |#1|) (-1153 |#2|)) (T -415))
-((-4010 (*1 *2 *3) (|partial| -12 (-4 *5 (-972 (-47))) (-4 *4 (-13 (-520) (-793) (-972 (-528)))) (-4 *5 (-410 *4)) (-5 *2 (-398 (-1091 (-47)))) (-5 *1 (-415 *4 *5 *3)) (-4 *3 (-1153 *5)))) (-2199 (*1 *2 *3) (-12 (-4 *4 (-13 (-520) (-793) (-972 (-528)))) (-4 *5 (-410 *4)) (-5 *2 (-3 (|:| |overq| (-1091 (-387 (-528)))) (|:| |overan| (-1091 (-47))) (|:| -3987 (-110)))) (-5 *1 (-415 *4 *5 *3)) (-4 *3 (-1153 *5)))) (-1917 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-520) (-793) (-972 (-528)))) (-4 *5 (-410 *4)) (-5 *2 (-398 (-1091 (-387 (-528))))) (-5 *1 (-415 *4 *5 *3)) (-4 *3 (-1153 *5)))) (-1419 (*1 *2 *3) (-12 (-4 *4 (-13 (-520) (-793) (-972 (-528)))) (-4 *5 (-410 *4)) (-5 *2 (-398 *3)) (-5 *1 (-415 *4 *5 *3)) (-4 *3 (-1153 *5)))))
-(-10 -7 (-15 -1419 ((-398 |#3|) |#3|)) (-15 -1917 ((-3 (-398 (-1091 (-387 (-528)))) "failed") |#3|)) (-15 -2199 ((-3 (|:| |overq| (-1091 (-387 (-528)))) (|:| |overan| (-1091 (-47))) (|:| -3987 (-110))) |#3|)) (IF (|has| |#2| (-972 (-47))) (-15 -4010 ((-3 (-398 (-1091 (-47))) "failed") |#3|)) |%noBranch|))
-((-2207 (((-110) $ $) NIL)) (-2059 (((-1078) $ (-1078)) NIL)) (-1879 (($ $ (-1078)) NIL)) (-1757 (((-1078) $) NIL)) (-4036 (((-368) (-368) (-368)) 17) (((-368) (-368)) 15)) (-2378 (($ (-368)) NIL) (($ (-368) (-1078)) NIL)) (-3814 (((-368) $) NIL)) (-3034 (((-1078) $) NIL)) (-3978 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2266 (((-1182) (-1078)) 9)) (-2055 (((-1182) (-1078)) 10)) (-1346 (((-1182)) 11)) (-2222 (((-802) $) NIL)) (-3250 (($ $) 35)) (-2186 (((-110) $ $) NIL)))
-(((-416) (-13 (-344 (-368) (-1078)) (-10 -7 (-15 -4036 ((-368) (-368) (-368))) (-15 -4036 ((-368) (-368))) (-15 -2266 ((-1182) (-1078))) (-15 -2055 ((-1182) (-1078))) (-15 -1346 ((-1182)))))) (T -416))
-((-4036 (*1 *2 *2 *2) (-12 (-5 *2 (-368)) (-5 *1 (-416)))) (-4036 (*1 *2 *2) (-12 (-5 *2 (-368)) (-5 *1 (-416)))) (-2266 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-416)))) (-2055 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-416)))) (-1346 (*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-416)))))
-(-13 (-344 (-368) (-1078)) (-10 -7 (-15 -4036 ((-368) (-368) (-368))) (-15 -4036 ((-368) (-368))) (-15 -2266 ((-1182) (-1078))) (-15 -2055 ((-1182) (-1078))) (-15 -1346 ((-1182)))))
-((-2207 (((-110) $ $) NIL)) (-3492 (((-3 (|:| |fst| (-414)) (|:| -2853 "void")) $) 11)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3932 (($) 32)) (-4142 (($) 38)) (-1219 (($) 34)) (-3329 (($) 36)) (-3656 (($) 33)) (-2113 (($) 35)) (-3429 (($) 37)) (-2002 (((-110) $) 8)) (-2324 (((-595 (-891 (-528))) $) 19)) (-2233 (($ (-3 (|:| |fst| (-414)) (|:| -2853 "void")) (-595 (-1095)) (-110)) 27) (($ (-3 (|:| |fst| (-414)) (|:| -2853 "void")) (-595 (-891 (-528))) (-110)) 28)) (-2222 (((-802) $) 23) (($ (-414)) 29)) (-2186 (((-110) $ $) NIL)))
-(((-417) (-13 (-1023) (-10 -8 (-15 -2222 ((-802) $)) (-15 -2222 ($ (-414))) (-15 -3492 ((-3 (|:| |fst| (-414)) (|:| -2853 "void")) $)) (-15 -2324 ((-595 (-891 (-528))) $)) (-15 -2002 ((-110) $)) (-15 -2233 ($ (-3 (|:| |fst| (-414)) (|:| -2853 "void")) (-595 (-1095)) (-110))) (-15 -2233 ($ (-3 (|:| |fst| (-414)) (|:| -2853 "void")) (-595 (-891 (-528))) (-110))) (-15 -3932 ($)) (-15 -3656 ($)) (-15 -1219 ($)) (-15 -4142 ($)) (-15 -2113 ($)) (-15 -3329 ($)) (-15 -3429 ($))))) (T -417))
-((-2222 (*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-417)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-414)) (-5 *1 (-417)))) (-3492 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-5 *1 (-417)))) (-2324 (*1 *2 *1) (-12 (-5 *2 (-595 (-891 (-528)))) (-5 *1 (-417)))) (-2002 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-417)))) (-2233 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-5 *3 (-595 (-1095))) (-5 *4 (-110)) (-5 *1 (-417)))) (-2233 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-5 *3 (-595 (-891 (-528)))) (-5 *4 (-110)) (-5 *1 (-417)))) (-3932 (*1 *1) (-5 *1 (-417))) (-3656 (*1 *1) (-5 *1 (-417))) (-1219 (*1 *1) (-5 *1 (-417))) (-4142 (*1 *1) (-5 *1 (-417))) (-2113 (*1 *1) (-5 *1 (-417))) (-3329 (*1 *1) (-5 *1 (-417))) (-3429 (*1 *1) (-5 *1 (-417))))
-(-13 (-1023) (-10 -8 (-15 -2222 ((-802) $)) (-15 -2222 ($ (-414))) (-15 -3492 ((-3 (|:| |fst| (-414)) (|:| -2853 "void")) $)) (-15 -2324 ((-595 (-891 (-528))) $)) (-15 -2002 ((-110) $)) (-15 -2233 ($ (-3 (|:| |fst| (-414)) (|:| -2853 "void")) (-595 (-1095)) (-110))) (-15 -2233 ($ (-3 (|:| |fst| (-414)) (|:| -2853 "void")) (-595 (-891 (-528))) (-110))) (-15 -3932 ($)) (-15 -3656 ($)) (-15 -1219 ($)) (-15 -4142 ($)) (-15 -2113 ($)) (-15 -3329 ($)) (-15 -3429 ($))))
-((-2207 (((-110) $ $) NIL)) (-3814 (((-1095) $) 8)) (-3034 (((-1078) $) 16)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 11)) (-2186 (((-110) $ $) 13)))
-(((-418 |#1|) (-13 (-1023) (-10 -8 (-15 -3814 ((-1095) $)))) (-1095)) (T -418))
-((-3814 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-418 *3)) (-14 *3 *2))))
-(-13 (-1023) (-10 -8 (-15 -3814 ((-1095) $))))
-((-3105 (((-1182) $) 7)) (-2222 (((-802) $) 8) (($ (-1177 (-645))) 14) (($ (-595 (-310))) 13) (($ (-310)) 12) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 11)))
-(((-419) (-133)) (T -419))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1177 (-645))) (-4 *1 (-419)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-595 (-310))) (-4 *1 (-419)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-310)) (-4 *1 (-419)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) (-4 *1 (-419)))))
-(-13 (-375) (-10 -8 (-15 -2222 ($ (-1177 (-645)))) (-15 -2222 ($ (-595 (-310)))) (-15 -2222 ($ (-310))) (-15 -2222 ($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))))))
-(((-569 (-802)) . T) ((-375) . T) ((-1131) . T))
-((-3001 (((-3 $ "failed") (-1177 (-296 (-359)))) 21) (((-3 $ "failed") (-1177 (-296 (-528)))) 19) (((-3 $ "failed") (-1177 (-891 (-359)))) 17) (((-3 $ "failed") (-1177 (-891 (-528)))) 15) (((-3 $ "failed") (-1177 (-387 (-891 (-359))))) 13) (((-3 $ "failed") (-1177 (-387 (-891 (-528))))) 11)) (-2409 (($ (-1177 (-296 (-359)))) 22) (($ (-1177 (-296 (-528)))) 20) (($ (-1177 (-891 (-359)))) 18) (($ (-1177 (-891 (-528)))) 16) (($ (-1177 (-387 (-891 (-359))))) 14) (($ (-1177 (-387 (-891 (-528))))) 12)) (-3105 (((-1182) $) 7)) (-2222 (((-802) $) 8) (($ (-595 (-310))) 25) (($ (-310)) 24) (($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) 23)))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-637 (-647))) (-4 *1 (-364)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-594 (-311))) (-4 *1 (-364)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-364)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) (-4 *1 (-364)))))
+(-13 (-377) (-10 -8 (-15 -4233 ($ (-637 (-647)))) (-15 -4233 ($ (-594 (-311)))) (-15 -4233 ($ (-311))) (-15 -4233 ($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))))))
+(((-571 (-805)) . T) ((-377) . T) ((-1134) . T))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3432 (((-3 |#2| "failed") $) 44)) (-3431 ((|#2| $) 43)) (-4235 (($ $) 30)) (-2444 (((-719) $) 34)) (-3085 (((-594 $) $) 35)) (-4213 (((-110) $) 38)) (-4214 (($ |#2| |#1|) 39)) (-4234 (($ (-1 |#1| |#1|) $) 40)) (-1815 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3158 ((|#2| $) 33)) (-3449 ((|#1| $) 32)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11) (($ |#2|) 45)) (-4096 (((-594 |#1|) $) 36)) (-3959 ((|#1| $ |#2|) 41)) (-2920 (($) 18 T CONST)) (-2926 (((-594 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
+(((-365 |#1| |#2|) (-133) (-984) (-1027)) (T -365))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-365 *2 *3)) (-4 *2 (-984)) (-4 *3 (-1027)))) (-3959 (*1 *2 *1 *3) (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1027)) (-4 *2 (-984)))) (-4234 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-365 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)))) (-4214 (*1 *1 *2 *3) (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1027)))) (-4213 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-110)))) (-2926 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-594 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4096 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-594 *3)))) (-3085 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-594 *1)) (-4 *1 (-365 *3 *4)))) (-2444 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-719)))) (-3158 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1027)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1027)) (-4 *2 (-984)))) (-1815 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4235 (*1 *1 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *2 (-984)) (-4 *3 (-1027)))))
+(-13 (-109 |t#1| |t#1|) (-975 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3959 (|t#1| $ |t#2|)) (-15 -4234 ($ (-1 |t#1| |t#1|) $)) (-15 -4214 ($ |t#2| |t#1|)) (-15 -4213 ((-110) $)) (-15 -2926 ((-594 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4096 ((-594 |t#1|) $)) (-15 -3085 ((-594 $) $)) (-15 -2444 ((-719) $)) (-15 -3158 (|t#2| $)) (-15 -3449 (|t#1| $)) (-15 -1815 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4235 ($ $)) (IF (|has| |t#1| (-162)) (-6 (-666 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-805)) . T) ((-599 |#1|) . T) ((-666 |#1|) |has| |#1| (-162)) ((-975 |#2|) . T) ((-989 |#1|) . T) ((-1027) . T))
+((-3432 (((-3 $ "failed") (-637 (-295 (-359)))) 21) (((-3 $ "failed") (-637 (-295 (-516)))) 19) (((-3 $ "failed") (-637 (-887 (-359)))) 17) (((-3 $ "failed") (-637 (-887 (-516)))) 15) (((-3 $ "failed") (-637 (-388 (-887 (-359))))) 13) (((-3 $ "failed") (-637 (-388 (-887 (-516))))) 11)) (-3431 (($ (-637 (-295 (-359)))) 22) (($ (-637 (-295 (-516)))) 20) (($ (-637 (-887 (-359)))) 18) (($ (-637 (-887 (-516)))) 16) (($ (-637 (-388 (-887 (-359))))) 14) (($ (-637 (-388 (-887 (-516))))) 12)) (-3658 (((-1185) $) 7)) (-4233 (((-805) $) 8) (($ (-594 (-311))) 25) (($ (-311)) 24) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 23)))
+(((-366) (-133)) (T -366))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-594 (-311))) (-4 *1 (-366)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-366)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) (-4 *1 (-366)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-637 (-295 (-359)))) (-4 *1 (-366)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-295 (-359)))) (-4 *1 (-366)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-637 (-295 (-516)))) (-4 *1 (-366)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-295 (-516)))) (-4 *1 (-366)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-637 (-887 (-359)))) (-4 *1 (-366)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-887 (-359)))) (-4 *1 (-366)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-637 (-887 (-516)))) (-4 *1 (-366)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-887 (-516)))) (-4 *1 (-366)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-637 (-388 (-887 (-359))))) (-4 *1 (-366)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-388 (-887 (-359))))) (-4 *1 (-366)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-637 (-388 (-887 (-516))))) (-4 *1 (-366)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-388 (-887 (-516))))) (-4 *1 (-366)))))
+(-13 (-377) (-10 -8 (-15 -4233 ($ (-594 (-311)))) (-15 -4233 ($ (-311))) (-15 -4233 ($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311)))))) (-15 -3431 ($ (-637 (-295 (-359))))) (-15 -3432 ((-3 $ "failed") (-637 (-295 (-359))))) (-15 -3431 ($ (-637 (-295 (-516))))) (-15 -3432 ((-3 $ "failed") (-637 (-295 (-516))))) (-15 -3431 ($ (-637 (-887 (-359))))) (-15 -3432 ((-3 $ "failed") (-637 (-887 (-359))))) (-15 -3431 ($ (-637 (-887 (-516))))) (-15 -3432 ((-3 $ "failed") (-637 (-887 (-516))))) (-15 -3431 ($ (-637 (-388 (-887 (-359)))))) (-15 -3432 ((-3 $ "failed") (-637 (-388 (-887 (-359)))))) (-15 -3431 ($ (-637 (-388 (-887 (-516)))))) (-15 -3432 ((-3 $ "failed") (-637 (-388 (-887 (-516))))))))
+(((-571 (-805)) . T) ((-377) . T) ((-1134) . T))
+((-2828 (((-110) $ $) NIL)) (-3395 (((-719) $) 59)) (-3815 (($) NIL T CONST)) (-4215 (((-3 $ "failed") $ $) 61)) (-3432 (((-3 |#1| "failed") $) NIL)) (-3431 ((|#1| $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-2704 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2436 (((-110) $) 15)) (-2702 ((|#1| $ (-516)) NIL)) (-2703 (((-719) $ (-516)) NIL)) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-2306 (($ (-1 |#1| |#1|) $) 38)) (-2307 (($ (-1 (-719) (-719)) $) 35)) (-4216 (((-3 $ "failed") $ $) 50)) (-3513 (((-1081) $) NIL)) (-2705 (($ $ $) 26)) (-2706 (($ $ $) 24)) (-3514 (((-1045) $) NIL)) (-2701 (((-594 (-2 (|:| |gen| |#1|) (|:| -4219 (-719)))) $) 32)) (-3145 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-4233 (((-805) $) 22) (($ |#1|) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2927 (($) 9 T CONST)) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) 41)) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) 63 (|has| |#1| (-795)))) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ |#1| (-719)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28)))
+(((-367 |#1|) (-13 (-675) (-975 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-719))) (-15 -2706 ($ $ $)) (-15 -2705 ($ $ $)) (-15 -4216 ((-3 $ "failed") $ $)) (-15 -4215 ((-3 $ "failed") $ $)) (-15 -3145 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2704 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3395 ((-719) $)) (-15 -2701 ((-594 (-2 (|:| |gen| |#1|) (|:| -4219 (-719)))) $)) (-15 -2703 ((-719) $ (-516))) (-15 -2702 (|#1| $ (-516))) (-15 -2307 ($ (-1 (-719) (-719)) $)) (-15 -2306 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|))) (-1027)) (T -367))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (-2706 (*1 *1 *1 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (-2705 (*1 *1 *1 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (-4216 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (-4215 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (-3145 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-367 *3)) (|:| |rm| (-367 *3)))) (-5 *1 (-367 *3)) (-4 *3 (-1027)))) (-2704 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-367 *3)) (|:| |mm| (-367 *3)) (|:| |rm| (-367 *3)))) (-5 *1 (-367 *3)) (-4 *3 (-1027)))) (-3395 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-367 *3)) (-4 *3 (-1027)))) (-2701 (*1 *2 *1) (-12 (-5 *2 (-594 (-2 (|:| |gen| *3) (|:| -4219 (-719))))) (-5 *1 (-367 *3)) (-4 *3 (-1027)))) (-2703 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-719)) (-5 *1 (-367 *4)) (-4 *4 (-1027)))) (-2702 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (-2307 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-719) (-719))) (-5 *1 (-367 *3)) (-4 *3 (-1027)))) (-2306 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-367 *3)))))
+(-13 (-675) (-975 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-719))) (-15 -2706 ($ $ $)) (-15 -2705 ($ $ $)) (-15 -4216 ((-3 $ "failed") $ $)) (-15 -4215 ((-3 $ "failed") $ $)) (-15 -3145 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2704 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3395 ((-719) $)) (-15 -2701 ((-594 (-2 (|:| |gen| |#1|) (|:| -4219 (-719)))) $)) (-15 -2703 ((-719) $ (-516))) (-15 -2702 (|#1| $ (-516))) (-15 -2307 ($ (-1 (-719) (-719)) $)) (-15 -2306 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 41)) (-2118 (($ $) 40)) (-2116 (((-110) $) 38)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3432 (((-3 (-516) "failed") $) 47)) (-3431 (((-516) $) 46)) (-3741 (((-3 $ "failed") $) 34)) (-2436 (((-110) $) 31)) (-3596 (($ $ $) 54)) (-3597 (($ $ $) 53)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-3740 (((-3 $ "failed") $ $) 42)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ $) 43) (($ (-516)) 48)) (-3385 (((-719)) 29)) (-2117 (((-110) $ $) 39)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2826 (((-110) $ $) 51)) (-2827 (((-110) $ $) 50)) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 52)) (-2948 (((-110) $ $) 49)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24)))
+(((-368) (-133)) (T -368))
+NIL
+(-13 (-523) (-795) (-975 (-516)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-805)) . T) ((-162) . T) ((-272) . T) ((-523) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-795) . T) ((-975 (-516)) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-2828 (((-110) $ $) NIL)) (-1816 (((-110) $) 20)) (-1817 (((-110) $) 19)) (-3896 (($ (-1081) (-1081) (-1081)) 21)) (-3824 (((-1081) $) 16)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-1821 (($ (-1081) (-1081) (-1081)) 14)) (-1819 (((-1081) $) 17)) (-1818 (((-110) $) 18)) (-1820 (((-1081) $) 15)) (-4233 (((-805) $) 12) (($ (-1081)) 13) (((-1081) $) 9)) (-3317 (((-110) $ $) 7)))
+(((-369) (-370)) (T -369))
+NIL
+(-370)
+((-2828 (((-110) $ $) 7)) (-1816 (((-110) $) 14)) (-1817 (((-110) $) 15)) (-3896 (($ (-1081) (-1081) (-1081)) 13)) (-3824 (((-1081) $) 18)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-1821 (($ (-1081) (-1081) (-1081)) 20)) (-1819 (((-1081) $) 17)) (-1818 (((-110) $) 16)) (-1820 (((-1081) $) 19)) (-4233 (((-805) $) 11) (($ (-1081)) 22) (((-1081) $) 21)) (-3317 (((-110) $ $) 6)))
+(((-370) (-133)) (T -370))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1081)) (-4 *1 (-370)))) (-4233 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1081)))) (-1821 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1081)) (-4 *1 (-370)))) (-1820 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1081)))) (-3824 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1081)))) (-1819 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1081)))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))) (-1817 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))) (-1816 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))) (-3896 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1081)) (-4 *1 (-370)))))
+(-13 (-1027) (-10 -8 (-15 -4233 ($ (-1081))) (-15 -4233 ((-1081) $)) (-15 -1821 ($ (-1081) (-1081) (-1081))) (-15 -1820 ((-1081) $)) (-15 -3824 ((-1081) $)) (-15 -1819 ((-1081) $)) (-15 -1818 ((-110) $)) (-15 -1817 ((-110) $)) (-15 -1816 ((-110) $)) (-15 -3896 ($ (-1081) (-1081) (-1081)))))
+(((-99) . T) ((-571 (-805)) . T) ((-1027) . T))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-1822 (((-805) $) 50)) (-3815 (($) NIL T CONST)) (-2433 (($ $ (-860)) NIL)) (-2458 (($ $ (-860)) NIL)) (-2432 (($ $ (-860)) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-2435 (($ (-719)) 26)) (-4190 (((-719)) 17)) (-1823 (((-805) $) 52)) (-2620 (($ $ $) NIL)) (-4233 (((-805) $) NIL)) (-2621 (($ $ $ $) NIL)) (-2619 (($ $ $) NIL)) (-2920 (($) 20 T CONST)) (-3317 (((-110) $ $) 28)) (-4116 (($ $) 34) (($ $ $) 36)) (-4118 (($ $ $) 37)) (** (($ $ (-860)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
+(((-371 |#1| |#2| |#3|) (-13 (-693 |#3|) (-10 -8 (-15 -4190 ((-719))) (-15 -1823 ((-805) $)) (-15 -1822 ((-805) $)) (-15 -2435 ($ (-719))))) (-719) (-719) (-162)) (T -371))
+((-4190 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-162)))) (-1823 (*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 (-719)) (-14 *4 (-719)) (-4 *5 (-162)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 (-719)) (-14 *4 (-719)) (-4 *5 (-162)))) (-2435 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-162)))))
+(-13 (-693 |#3|) (-10 -8 (-15 -4190 ((-719))) (-15 -1823 ((-805) $)) (-15 -1822 ((-805) $)) (-15 -2435 ($ (-719)))))
+((-1828 (((-1081)) 10)) (-1825 (((-1070 (-1081))) 28)) (-1827 (((-1185) (-1081)) 25) (((-1185) (-369)) 24)) (-1826 (((-1185)) 26)) (-1824 (((-1070 (-1081))) 27)))
+(((-372) (-10 -7 (-15 -1824 ((-1070 (-1081)))) (-15 -1825 ((-1070 (-1081)))) (-15 -1826 ((-1185))) (-15 -1827 ((-1185) (-369))) (-15 -1827 ((-1185) (-1081))) (-15 -1828 ((-1081))))) (T -372))
+((-1828 (*1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-372)))) (-1827 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-372)))) (-1827 (*1 *2 *3) (-12 (-5 *3 (-369)) (-5 *2 (-1185)) (-5 *1 (-372)))) (-1826 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-372)))) (-1825 (*1 *2) (-12 (-5 *2 (-1070 (-1081))) (-5 *1 (-372)))) (-1824 (*1 *2) (-12 (-5 *2 (-1070 (-1081))) (-5 *1 (-372)))))
+(-10 -7 (-15 -1824 ((-1070 (-1081)))) (-15 -1825 ((-1070 (-1081)))) (-15 -1826 ((-1185))) (-15 -1827 ((-1185) (-369))) (-15 -1827 ((-1185) (-1081))) (-15 -1828 ((-1081))))
+((-4050 (((-719) (-314 |#1| |#2| |#3| |#4|)) 16)))
+(((-373 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4050 ((-719) (-314 |#1| |#2| |#3| |#4|)))) (-13 (-349) (-344)) (-1155 |#1|) (-1155 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -373))
+((-4050 (*1 *2 *3) (-12 (-5 *3 (-314 *4 *5 *6 *7)) (-4 *4 (-13 (-349) (-344))) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-388 *5))) (-4 *7 (-323 *4 *5 *6)) (-5 *2 (-719)) (-5 *1 (-373 *4 *5 *6 *7)))))
+(-10 -7 (-15 -4050 ((-719) (-314 |#1| |#2| |#3| |#4|))))
+((-2828 (((-110) $ $) NIL)) (-3892 (((-594 (-1081)) $ (-594 (-1081))) 38)) (-1829 (((-594 (-1081)) $ (-594 (-1081))) 39)) (-3894 (((-594 (-1081)) $ (-594 (-1081))) 40)) (-3895 (((-594 (-1081)) $) 35)) (-3896 (($) 23)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-1830 (((-594 (-1081)) $) 36)) (-3898 (((-594 (-1081)) $) 37)) (-3899 (((-1185) $ (-516)) 33) (((-1185) $) 34)) (-4246 (($ (-805) (-516)) 30)) (-4233 (((-805) $) 42) (($ (-805)) 25)) (-3317 (((-110) $ $) NIL)))
+(((-374) (-13 (-1027) (-10 -8 (-15 -4233 ($ (-805))) (-15 -4246 ($ (-805) (-516))) (-15 -3899 ((-1185) $ (-516))) (-15 -3899 ((-1185) $)) (-15 -3898 ((-594 (-1081)) $)) (-15 -1830 ((-594 (-1081)) $)) (-15 -3896 ($)) (-15 -3895 ((-594 (-1081)) $)) (-15 -3894 ((-594 (-1081)) $ (-594 (-1081)))) (-15 -1829 ((-594 (-1081)) $ (-594 (-1081)))) (-15 -3892 ((-594 (-1081)) $ (-594 (-1081))))))) (T -374))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-374)))) (-4246 (*1 *1 *2 *3) (-12 (-5 *2 (-805)) (-5 *3 (-516)) (-5 *1 (-374)))) (-3899 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-1185)) (-5 *1 (-374)))) (-3899 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-374)))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-374)))) (-1830 (*1 *2 *1) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-374)))) (-3896 (*1 *1) (-5 *1 (-374))) (-3895 (*1 *2 *1) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-374)))) (-3894 (*1 *2 *1 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-374)))) (-1829 (*1 *2 *1 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-374)))) (-3892 (*1 *2 *1 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-374)))))
+(-13 (-1027) (-10 -8 (-15 -4233 ($ (-805))) (-15 -4246 ($ (-805) (-516))) (-15 -3899 ((-1185) $ (-516))) (-15 -3899 ((-1185) $)) (-15 -3898 ((-594 (-1081)) $)) (-15 -1830 ((-594 (-1081)) $)) (-15 -3896 ($)) (-15 -3895 ((-594 (-1081)) $)) (-15 -3894 ((-594 (-1081)) $ (-594 (-1081)))) (-15 -1829 ((-594 (-1081)) $ (-594 (-1081)))) (-15 -3892 ((-594 (-1081)) $ (-594 (-1081))))))
+((-4233 (((-374) |#1|) 11)))
+(((-375 |#1|) (-10 -7 (-15 -4233 ((-374) |#1|))) (-1027)) (T -375))
+((-4233 (*1 *2 *3) (-12 (-5 *2 (-374)) (-5 *1 (-375 *3)) (-4 *3 (-1027)))))
+(-10 -7 (-15 -4233 ((-374) |#1|)))
+((-1832 (((-594 (-1081)) (-594 (-1081))) 9)) (-3658 (((-1185) (-369)) 27)) (-1831 (((-1029) (-1098) (-594 (-1098)) (-1101) (-594 (-1098))) 60) (((-1029) (-1098) (-594 (-3 (|:| |array| (-594 (-1098))) (|:| |scalar| (-1098)))) (-594 (-594 (-3 (|:| |array| (-594 (-1098))) (|:| |scalar| (-1098))))) (-594 (-1098)) (-1098)) 35) (((-1029) (-1098) (-594 (-3 (|:| |array| (-594 (-1098))) (|:| |scalar| (-1098)))) (-594 (-594 (-3 (|:| |array| (-594 (-1098))) (|:| |scalar| (-1098))))) (-594 (-1098))) 34)))
+(((-376) (-10 -7 (-15 -1831 ((-1029) (-1098) (-594 (-3 (|:| |array| (-594 (-1098))) (|:| |scalar| (-1098)))) (-594 (-594 (-3 (|:| |array| (-594 (-1098))) (|:| |scalar| (-1098))))) (-594 (-1098)))) (-15 -1831 ((-1029) (-1098) (-594 (-3 (|:| |array| (-594 (-1098))) (|:| |scalar| (-1098)))) (-594 (-594 (-3 (|:| |array| (-594 (-1098))) (|:| |scalar| (-1098))))) (-594 (-1098)) (-1098))) (-15 -1831 ((-1029) (-1098) (-594 (-1098)) (-1101) (-594 (-1098)))) (-15 -3658 ((-1185) (-369))) (-15 -1832 ((-594 (-1081)) (-594 (-1081)))))) (T -376))
+((-1832 (*1 *2 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-376)))) (-3658 (*1 *2 *3) (-12 (-5 *3 (-369)) (-5 *2 (-1185)) (-5 *1 (-376)))) (-1831 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-594 (-1098))) (-5 *5 (-1101)) (-5 *3 (-1098)) (-5 *2 (-1029)) (-5 *1 (-376)))) (-1831 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-594 (-594 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-594 (-3 (|:| |array| (-594 *3)) (|:| |scalar| (-1098))))) (-5 *6 (-594 (-1098))) (-5 *3 (-1098)) (-5 *2 (-1029)) (-5 *1 (-376)))) (-1831 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-594 (-594 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-594 (-3 (|:| |array| (-594 *3)) (|:| |scalar| (-1098))))) (-5 *6 (-594 (-1098))) (-5 *3 (-1098)) (-5 *2 (-1029)) (-5 *1 (-376)))))
+(-10 -7 (-15 -1831 ((-1029) (-1098) (-594 (-3 (|:| |array| (-594 (-1098))) (|:| |scalar| (-1098)))) (-594 (-594 (-3 (|:| |array| (-594 (-1098))) (|:| |scalar| (-1098))))) (-594 (-1098)))) (-15 -1831 ((-1029) (-1098) (-594 (-3 (|:| |array| (-594 (-1098))) (|:| |scalar| (-1098)))) (-594 (-594 (-3 (|:| |array| (-594 (-1098))) (|:| |scalar| (-1098))))) (-594 (-1098)) (-1098))) (-15 -1831 ((-1029) (-1098) (-594 (-1098)) (-1101) (-594 (-1098)))) (-15 -3658 ((-1185) (-369))) (-15 -1832 ((-594 (-1081)) (-594 (-1081)))))
+((-3658 (((-1185) $) 7)) (-4233 (((-805) $) 8)))
+(((-377) (-133)) (T -377))
+((-3658 (*1 *2 *1) (-12 (-4 *1 (-377)) (-5 *2 (-1185)))))
+(-13 (-1134) (-571 (-805)) (-10 -8 (-15 -3658 ((-1185) $))))
+(((-571 (-805)) . T) ((-1134) . T))
+((-3432 (((-3 $ "failed") (-295 (-359))) 21) (((-3 $ "failed") (-295 (-516))) 19) (((-3 $ "failed") (-887 (-359))) 17) (((-3 $ "failed") (-887 (-516))) 15) (((-3 $ "failed") (-388 (-887 (-359)))) 13) (((-3 $ "failed") (-388 (-887 (-516)))) 11)) (-3431 (($ (-295 (-359))) 22) (($ (-295 (-516))) 20) (($ (-887 (-359))) 18) (($ (-887 (-516))) 16) (($ (-388 (-887 (-359)))) 14) (($ (-388 (-887 (-516)))) 12)) (-3658 (((-1185) $) 7)) (-4233 (((-805) $) 8) (($ (-594 (-311))) 25) (($ (-311)) 24) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 23)))
+(((-378) (-133)) (T -378))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-594 (-311))) (-4 *1 (-378)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-378)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) (-4 *1 (-378)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-295 (-359))) (-4 *1 (-378)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-295 (-359))) (-4 *1 (-378)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-295 (-516))) (-4 *1 (-378)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-295 (-516))) (-4 *1 (-378)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-887 (-359))) (-4 *1 (-378)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-887 (-359))) (-4 *1 (-378)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-887 (-516))) (-4 *1 (-378)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-887 (-516))) (-4 *1 (-378)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-388 (-887 (-359)))) (-4 *1 (-378)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-887 (-359)))) (-4 *1 (-378)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-388 (-887 (-516)))) (-4 *1 (-378)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-887 (-516)))) (-4 *1 (-378)))))
+(-13 (-377) (-10 -8 (-15 -4233 ($ (-594 (-311)))) (-15 -4233 ($ (-311))) (-15 -4233 ($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311)))))) (-15 -3431 ($ (-295 (-359)))) (-15 -3432 ((-3 $ "failed") (-295 (-359)))) (-15 -3431 ($ (-295 (-516)))) (-15 -3432 ((-3 $ "failed") (-295 (-516)))) (-15 -3431 ($ (-887 (-359)))) (-15 -3432 ((-3 $ "failed") (-887 (-359)))) (-15 -3431 ($ (-887 (-516)))) (-15 -3432 ((-3 $ "failed") (-887 (-516)))) (-15 -3431 ($ (-388 (-887 (-359))))) (-15 -3432 ((-3 $ "failed") (-388 (-887 (-359))))) (-15 -3431 ($ (-388 (-887 (-516))))) (-15 -3432 ((-3 $ "failed") (-388 (-887 (-516)))))))
+(((-571 (-805)) . T) ((-377) . T) ((-1134) . T))
+((-3658 (((-1185) $) 38)) (-4233 (((-805) $) 98) (($ (-311)) 100) (($ (-594 (-311))) 99) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 97) (($ (-295 (-649))) 54) (($ (-295 (-647))) 73) (($ (-295 (-642))) 86) (($ (-275 (-295 (-649)))) 68) (($ (-275 (-295 (-647)))) 81) (($ (-275 (-295 (-642)))) 94) (($ (-295 (-516))) 104) (($ (-295 (-359))) 117) (($ (-295 (-158 (-359)))) 130) (($ (-275 (-295 (-516)))) 112) (($ (-275 (-295 (-359)))) 125) (($ (-275 (-295 (-158 (-359))))) 138)))
+(((-379 |#1| |#2| |#3| |#4|) (-13 (-377) (-10 -8 (-15 -4233 ($ (-311))) (-15 -4233 ($ (-594 (-311)))) (-15 -4233 ($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311)))))) (-15 -4233 ($ (-295 (-649)))) (-15 -4233 ($ (-295 (-647)))) (-15 -4233 ($ (-295 (-642)))) (-15 -4233 ($ (-275 (-295 (-649))))) (-15 -4233 ($ (-275 (-295 (-647))))) (-15 -4233 ($ (-275 (-295 (-642))))) (-15 -4233 ($ (-295 (-516)))) (-15 -4233 ($ (-295 (-359)))) (-15 -4233 ($ (-295 (-158 (-359))))) (-15 -4233 ($ (-275 (-295 (-516))))) (-15 -4233 ($ (-275 (-295 (-359))))) (-15 -4233 ($ (-275 (-295 (-158 (-359)))))))) (-1098) (-3 (|:| |fst| (-415)) (|:| -4189 "void")) (-594 (-1098)) (-1102)) (T -379))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-311)) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1="void"))) (-14 *5 (-594 (-1098))) (-14 *6 (-1102)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-594 (-311))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098))) (-14 *6 (-1102)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098))) (-14 *6 (-1102)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-295 (-649))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098))) (-14 *6 (-1102)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-295 (-647))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098))) (-14 *6 (-1102)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-295 (-642))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098))) (-14 *6 (-1102)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-275 (-295 (-649)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098))) (-14 *6 (-1102)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-275 (-295 (-647)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098))) (-14 *6 (-1102)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-275 (-295 (-642)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098))) (-14 *6 (-1102)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-295 (-516))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098))) (-14 *6 (-1102)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-295 (-359))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098))) (-14 *6 (-1102)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-295 (-158 (-359)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098))) (-14 *6 (-1102)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-275 (-295 (-516)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098))) (-14 *6 (-1102)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-275 (-295 (-359)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098))) (-14 *6 (-1102)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-275 (-295 (-158 (-359))))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098))) (-14 *6 (-1102)))))
+(-13 (-377) (-10 -8 (-15 -4233 ($ (-311))) (-15 -4233 ($ (-594 (-311)))) (-15 -4233 ($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311)))))) (-15 -4233 ($ (-295 (-649)))) (-15 -4233 ($ (-295 (-647)))) (-15 -4233 ($ (-295 (-642)))) (-15 -4233 ($ (-275 (-295 (-649))))) (-15 -4233 ($ (-275 (-295 (-647))))) (-15 -4233 ($ (-275 (-295 (-642))))) (-15 -4233 ($ (-295 (-516)))) (-15 -4233 ($ (-295 (-359)))) (-15 -4233 ($ (-295 (-158 (-359))))) (-15 -4233 ($ (-275 (-295 (-516))))) (-15 -4233 ($ (-275 (-295 (-359))))) (-15 -4233 ($ (-275 (-295 (-158 (-359))))))))
+((-2828 (((-110) $ $) NIL)) (-1834 ((|#2| $) 36)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-1835 (($ (-388 |#2|)) 85)) (-1833 (((-594 (-2 (|:| -2427 (-719)) (|:| -4051 |#2|) (|:| |num| |#2|))) $) 37)) (-4089 (($ $) 32) (($ $ (-719)) 34)) (-4246 (((-388 |#2|) $) 46)) (-3804 (($ (-594 (-2 (|:| -2427 (-719)) (|:| -4051 |#2|) (|:| |num| |#2|)))) 31)) (-4233 (((-805) $) 120)) (-2932 (($ $) 33) (($ $ (-719)) 35)) (-3317 (((-110) $ $) NIL)) (-4118 (($ |#2| $) 39)))
+(((-380 |#1| |#2|) (-13 (-1027) (-572 (-388 |#2|)) (-10 -8 (-15 -4118 ($ |#2| $)) (-15 -1835 ($ (-388 |#2|))) (-15 -1834 (|#2| $)) (-15 -1833 ((-594 (-2 (|:| -2427 (-719)) (|:| -4051 |#2|) (|:| |num| |#2|))) $)) (-15 -3804 ($ (-594 (-2 (|:| -2427 (-719)) (|:| -4051 |#2|) (|:| |num| |#2|))))) (-15 -4089 ($ $)) (-15 -2932 ($ $)) (-15 -4089 ($ $ (-719))) (-15 -2932 ($ $ (-719))))) (-13 (-344) (-140)) (-1155 |#1|)) (T -380))
+((-4118 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *2)) (-4 *2 (-1155 *3)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-388 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)))) (-1834 (*1 *2 *1) (-12 (-4 *2 (-1155 *3)) (-5 *1 (-380 *3 *2)) (-4 *3 (-13 (-344) (-140))))) (-1833 (*1 *2 *1) (-12 (-4 *3 (-13 (-344) (-140))) (-5 *2 (-594 (-2 (|:| -2427 (-719)) (|:| -4051 *4) (|:| |num| *4)))) (-5 *1 (-380 *3 *4)) (-4 *4 (-1155 *3)))) (-3804 (*1 *1 *2) (-12 (-5 *2 (-594 (-2 (|:| -2427 (-719)) (|:| -4051 *4) (|:| |num| *4)))) (-4 *4 (-1155 *3)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)))) (-4089 (*1 *1 *1) (-12 (-4 *2 (-13 (-344) (-140))) (-5 *1 (-380 *2 *3)) (-4 *3 (-1155 *2)))) (-2932 (*1 *1 *1) (-12 (-4 *2 (-13 (-344) (-140))) (-5 *1 (-380 *2 *3)) (-4 *3 (-1155 *2)))) (-4089 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)) (-4 *4 (-1155 *3)))) (-2932 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)) (-4 *4 (-1155 *3)))))
+(-13 (-1027) (-572 (-388 |#2|)) (-10 -8 (-15 -4118 ($ |#2| $)) (-15 -1835 ($ (-388 |#2|))) (-15 -1834 (|#2| $)) (-15 -1833 ((-594 (-2 (|:| -2427 (-719)) (|:| -4051 |#2|) (|:| |num| |#2|))) $)) (-15 -3804 ($ (-594 (-2 (|:| -2427 (-719)) (|:| -4051 |#2|) (|:| |num| |#2|))))) (-15 -4089 ($ $)) (-15 -2932 ($ $)) (-15 -4089 ($ $ (-719))) (-15 -2932 ($ $ (-719)))))
+((-2828 (((-110) $ $) 9 (-3810 (|has| |#1| (-827 (-516))) (|has| |#1| (-827 (-359)))))) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) 15 (|has| |#1| (-827 (-359)))) (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) 14 (|has| |#1| (-827 (-516))))) (-3513 (((-1081) $) 13 (-3810 (|has| |#1| (-827 (-516))) (|has| |#1| (-827 (-359)))))) (-3514 (((-1045) $) 12 (-3810 (|has| |#1| (-827 (-516))) (|has| |#1| (-827 (-359)))))) (-4233 (((-805) $) 11 (-3810 (|has| |#1| (-827 (-516))) (|has| |#1| (-827 (-359)))))) (-3317 (((-110) $ $) 10 (-3810 (|has| |#1| (-827 (-516))) (|has| |#1| (-827 (-359)))))))
+(((-381 |#1|) (-133) (-1134)) (T -381))
+NIL
+(-13 (-1134) (-10 -7 (IF (|has| |t#1| (-827 (-516))) (-6 (-827 (-516))) |%noBranch|) (IF (|has| |t#1| (-827 (-359))) (-6 (-827 (-359))) |%noBranch|)))
+(((-99) -3810 (|has| |#1| (-827 (-516))) (|has| |#1| (-827 (-359)))) ((-571 (-805)) -3810 (|has| |#1| (-827 (-516))) (|has| |#1| (-827 (-359)))) ((-827 (-359)) |has| |#1| (-827 (-359))) ((-827 (-516)) |has| |#1| (-827 (-516))) ((-1027) -3810 (|has| |#1| (-827 (-516))) (|has| |#1| (-827 (-359)))) ((-1134) . T))
+((-1836 (($ $) 10) (($ $ (-719)) 11)))
+(((-382 |#1|) (-10 -8 (-15 -1836 (|#1| |#1| (-719))) (-15 -1836 (|#1| |#1|))) (-383)) (T -382))
+NIL
+(-10 -8 (-15 -1836 (|#1| |#1| (-719))) (-15 -1836 (|#1| |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 41)) (-2118 (($ $) 40)) (-2116 (((-110) $) 38)) (-1319 (((-3 $ "failed") $ $) 19)) (-4053 (($ $) 73)) (-4245 (((-386 $) $) 72)) (-1655 (((-110) $ $) 59)) (-3815 (($) 17 T CONST)) (-2824 (($ $ $) 55)) (-3741 (((-3 $ "failed") $) 34)) (-2823 (($ $ $) 56)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 51)) (-1836 (($ $) 79) (($ $ (-719)) 78)) (-4005 (((-110) $) 71)) (-4050 (((-780 (-860)) $) 81)) (-2436 (((-110) $) 31)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) 52)) (-1963 (($ $ $) 46) (($ (-594 $)) 45)) (-3513 (((-1081) $) 9)) (-2668 (($ $) 70)) (-3514 (((-1045) $) 10)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 44)) (-3419 (($ $ $) 48) (($ (-594 $)) 47)) (-4011 (((-386 $) $) 74)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 53)) (-3740 (((-3 $ "failed") $ $) 42)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 50)) (-1654 (((-719) $) 58)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 57)) (-1837 (((-3 (-719) "failed") $ $) 80)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ $) 43) (($ (-388 (-516))) 65)) (-2965 (((-3 $ "failed") $) 82)) (-3385 (((-719)) 29)) (-2117 (((-110) $ $) 39)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33) (($ $ (-516)) 69)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4224 (($ $ $) 64)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32) (($ $ (-516)) 68)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ (-388 (-516))) 67) (($ (-388 (-516)) $) 66)))
+(((-383) (-133)) (T -383))
+((-4050 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-780 (-860))))) (-1837 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-383)) (-5 *2 (-719)))) (-1836 (*1 *1 *1) (-4 *1 (-383))) (-1836 (*1 *1 *1 *2) (-12 (-4 *1 (-383)) (-5 *2 (-719)))))
+(-13 (-344) (-138) (-10 -8 (-15 -4050 ((-780 (-860)) $)) (-15 -1837 ((-3 (-719) "failed") $ $)) (-15 -1836 ($ $)) (-15 -1836 ($ $ (-719)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-388 (-516))) . T) ((-37 $) . T) ((-99) . T) ((-109 #1# #1#) . T) ((-109 $ $) . T) ((-128) . T) ((-138) . T) ((-571 (-805)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-432) . T) ((-523) . T) ((-599 #1#) . T) ((-599 $) . T) ((-666 #1#) . T) ((-666 $) . T) ((-675) . T) ((-862) . T) ((-989 #1#) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1138) . T))
+((-3525 (($ (-516) (-516)) 11) (($ (-516) (-516) (-860)) NIL)) (-2873 (((-860)) 16) (((-860) (-860)) NIL)))
+(((-384 |#1|) (-10 -8 (-15 -2873 ((-860) (-860))) (-15 -2873 ((-860))) (-15 -3525 (|#1| (-516) (-516) (-860))) (-15 -3525 (|#1| (-516) (-516)))) (-385)) (T -384))
+((-2873 (*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-384 *3)) (-4 *3 (-385)))) (-2873 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-384 *3)) (-4 *3 (-385)))))
+(-10 -8 (-15 -2873 ((-860) (-860))) (-15 -2873 ((-860))) (-15 -3525 (|#1| (-516) (-516) (-860))) (-15 -3525 (|#1| (-516) (-516))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-3388 (((-516) $) 89)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 41)) (-2118 (($ $) 40)) (-2116 (((-110) $) 38)) (-4049 (($ $) 87)) (-1319 (((-3 $ "failed") $ $) 19)) (-4053 (($ $) 73)) (-4245 (((-386 $) $) 72)) (-3301 (($ $) 97)) (-1655 (((-110) $ $) 59)) (-3905 (((-516) $) 114)) (-3815 (($) 17 T CONST)) (-3386 (($ $) 86)) (-3432 (((-3 (-516) #1="failed") $) 102) (((-3 (-388 (-516)) #1#) $) 99)) (-3431 (((-516) $) 101) (((-388 (-516)) $) 98)) (-2824 (($ $ $) 55)) (-3741 (((-3 $ "failed") $) 34)) (-2823 (($ $ $) 56)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 51)) (-4005 (((-110) $) 71)) (-2400 (((-860)) 130) (((-860) (-860)) 127 (|has| $ (-6 -4260)))) (-3460 (((-110) $) 112)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) 93)) (-4050 (((-516) $) 136)) (-2436 (((-110) $) 31)) (-3275 (($ $ (-516)) 96)) (-3391 (($ $) 92)) (-3461 (((-110) $) 113)) (-1652 (((-3 (-594 $) #2="failed") (-594 $) $) 52)) (-3596 (($ $ $) 111) (($) 124 (-12 (-3595 (|has| $ (-6 -4260))) (-3595 (|has| $ (-6 -4252)))))) (-3597 (($ $ $) 110) (($) 123 (-12 (-3595 (|has| $ (-6 -4260))) (-3595 (|has| $ (-6 -4252)))))) (-2401 (((-516) $) 133)) (-1963 (($ $ $) 46) (($ (-594 $)) 45)) (-3513 (((-1081) $) 9)) (-2668 (($ $) 70)) (-1839 (((-860) (-516)) 126 (|has| $ (-6 -4260)))) (-3514 (((-1045) $) 10)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 44)) (-3419 (($ $ $) 48) (($ (-594 $)) 47)) (-3387 (($ $) 88)) (-3389 (($ $) 90)) (-3525 (($ (-516) (-516)) 138) (($ (-516) (-516) (-860)) 137)) (-4011 (((-386 $) $) 74)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 53)) (-3740 (((-3 $ "failed") $ $) 42)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 50)) (-2427 (((-516) $) 134)) (-1654 (((-719) $) 58)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 57)) (-2873 (((-860)) 131) (((-860) (-860)) 128 (|has| $ (-6 -4260)))) (-1838 (((-860) (-516)) 125 (|has| $ (-6 -4260)))) (-4246 (((-359) $) 105) (((-208) $) 104) (((-831 (-359)) $) 94)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ $) 43) (($ (-388 (-516))) 65) (($ (-516)) 103) (($ (-388 (-516))) 100)) (-3385 (((-719)) 29)) (-3390 (($ $) 91)) (-1840 (((-860)) 132) (((-860) (-860)) 129 (|has| $ (-6 -4260)))) (-2957 (((-860)) 135)) (-2117 (((-110) $ $) 39)) (-3661 (($ $) 115)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33) (($ $ (-516)) 69)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2826 (((-110) $ $) 108)) (-2827 (((-110) $ $) 107)) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 109)) (-2948 (((-110) $ $) 106)) (-4224 (($ $ $) 64)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32) (($ $ (-516)) 68) (($ $ (-388 (-516))) 95)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ (-388 (-516))) 67) (($ (-388 (-516)) $) 66)))
+(((-385) (-133)) (T -385))
+((-3525 (*1 *1 *2 *2) (-12 (-5 *2 (-516)) (-4 *1 (-385)))) (-3525 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-860)) (-4 *1 (-385)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-516)))) (-2957 (*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-860)))) (-2427 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-516)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-516)))) (-1840 (*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-860)))) (-2873 (*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-860)))) (-2400 (*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-860)))) (-1840 (*1 *2 *2) (-12 (-5 *2 (-860)) (|has| *1 (-6 -4260)) (-4 *1 (-385)))) (-2873 (*1 *2 *2) (-12 (-5 *2 (-860)) (|has| *1 (-6 -4260)) (-4 *1 (-385)))) (-2400 (*1 *2 *2) (-12 (-5 *2 (-860)) (|has| *1 (-6 -4260)) (-4 *1 (-385)))) (-1839 (*1 *2 *3) (-12 (-5 *3 (-516)) (|has| *1 (-6 -4260)) (-4 *1 (-385)) (-5 *2 (-860)))) (-1838 (*1 *2 *3) (-12 (-5 *3 (-516)) (|has| *1 (-6 -4260)) (-4 *1 (-385)) (-5 *2 (-860)))) (-3596 (*1 *1) (-12 (-4 *1 (-385)) (-3595 (|has| *1 (-6 -4260))) (-3595 (|has| *1 (-6 -4252))))) (-3597 (*1 *1) (-12 (-4 *1 (-385)) (-3595 (|has| *1 (-6 -4260))) (-3595 (|has| *1 (-6 -4252))))))
+(-13 (-992) (-10 -8 (-6 -4048) (-15 -3525 ($ (-516) (-516))) (-15 -3525 ($ (-516) (-516) (-860))) (-15 -4050 ((-516) $)) (-15 -2957 ((-860))) (-15 -2427 ((-516) $)) (-15 -2401 ((-516) $)) (-15 -1840 ((-860))) (-15 -2873 ((-860))) (-15 -2400 ((-860))) (IF (|has| $ (-6 -4260)) (PROGN (-15 -1840 ((-860) (-860))) (-15 -2873 ((-860) (-860))) (-15 -2400 ((-860) (-860))) (-15 -1839 ((-860) (-516))) (-15 -1838 ((-860) (-516)))) |%noBranch|) (IF (|has| $ (-6 -4252)) |%noBranch| (IF (|has| $ (-6 -4260)) |%noBranch| (PROGN (-15 -3596 ($)) (-15 -3597 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-388 (-516))) . T) ((-37 $) . T) ((-99) . T) ((-109 #1# #1#) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-571 (-805)) . T) ((-162) . T) ((-572 (-208)) . T) ((-572 (-359)) . T) ((-572 (-831 (-359))) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-432) . T) ((-523) . T) ((-599 #1#) . T) ((-599 $) . T) ((-666 #1#) . T) ((-666 $) . T) ((-675) . T) ((-739) . T) ((-740) . T) ((-742) . T) ((-745) . T) ((-793) . T) ((-795) . T) ((-827 (-359)) . T) ((-862) . T) ((-941) . T) ((-958) . T) ((-992) . T) ((-975 (-388 (-516))) . T) ((-975 (-516)) . T) ((-989 #1#) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1138) . T))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 42)) (-1841 (($ $) 57)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 146)) (-2118 (($ $) NIL)) (-2116 (((-110) $) 36)) (-1842 ((|#1| $) 13)) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL (|has| |#1| (-1138)))) (-4245 (((-386 $) $) NIL (|has| |#1| (-1138)))) (-1844 (($ |#1| (-516)) 31)) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-516) #1="failed") $) NIL (|has| |#1| (-975 (-516)))) (((-3 (-388 (-516)) #1#) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-3 |#1| #1#) $) 116)) (-3431 (((-516) $) NIL (|has| |#1| (-975 (-516)))) (((-388 (-516)) $) NIL (|has| |#1| (-975 (-388 (-516))))) ((|#1| $) 55)) (-3741 (((-3 $ "failed") $) 131)) (-3288 (((-3 (-388 (-516)) "failed") $) 63 (|has| |#1| (-515)))) (-3287 (((-110) $) 59 (|has| |#1| (-515)))) (-3286 (((-388 (-516)) $) 70 (|has| |#1| (-515)))) (-1845 (($ |#1| (-516)) 33)) (-4005 (((-110) $) 152 (|has| |#1| (-1138)))) (-2436 (((-110) $) 43)) (-1906 (((-719) $) 38)) (-1846 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-516)) 137)) (-2702 ((|#1| $ (-516)) 136)) (-1847 (((-516) $ (-516)) 135)) (-1849 (($ |#1| (-516)) 30)) (-4234 (($ (-1 |#1| |#1|) $) 143)) (-1903 (($ |#1| (-594 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-516))))) 58)) (-1963 (($ (-594 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3513 (((-1081) $) NIL)) (-1848 (($ |#1| (-516)) 32)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#1| (-432)))) (-3419 (($ (-594 $)) NIL (|has| |#1| (-432))) (($ $ $) 147 (|has| |#1| (-432)))) (-1843 (($ |#1| (-516) (-3 #2# #3# #4# #5#)) 29)) (-2701 (((-594 (-2 (|:| -4011 |#1|) (|:| -2427 (-516)))) $) 54)) (-2025 (((-594 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-516)))) $) 12)) (-4011 (((-386 $) $) NIL (|has| |#1| (-1138)))) (-3740 (((-3 $ "failed") $ $) 138)) (-2427 (((-516) $) 132)) (-4239 ((|#1| $) 56)) (-4046 (($ $ (-594 |#1|) (-594 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-275 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-594 (-275 |#1|))) 79 (|has| |#1| (-291 |#1|))) (($ $ (-594 (-1098)) (-594 |#1|)) 85 (|has| |#1| (-491 (-1098) |#1|))) (($ $ (-1098) |#1|) NIL (|has| |#1| (-491 (-1098) |#1|))) (($ $ (-1098) $) NIL (|has| |#1| (-491 (-1098) $))) (($ $ (-594 (-1098)) (-594 $)) 86 (|has| |#1| (-491 (-1098) $))) (($ $ (-594 (-275 $))) 82 (|has| |#1| (-291 $))) (($ $ (-275 $)) NIL (|has| |#1| (-291 $))) (($ $ $ $) NIL (|has| |#1| (-291 $))) (($ $ (-594 $) (-594 $)) NIL (|has| |#1| (-291 $)))) (-4078 (($ $ |#1|) 71 (|has| |#1| (-268 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-268 $ $)))) (-4089 (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1098)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-4246 (((-505) $) 27 (|has| |#1| (-572 (-505)))) (((-359) $) 92 (|has| |#1| (-958))) (((-208) $) 95 (|has| |#1| (-958)))) (-4233 (((-805) $) 114) (($ (-516)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-388 (-516))) NIL (|has| |#1| (-975 (-388 (-516)))))) (-3385 (((-719)) 48)) (-2117 (((-110) $ $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 40 T CONST)) (-2927 (($) 39 T CONST)) (-2932 (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1098)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3317 (((-110) $ $) 96)) (-4116 (($ $) 128) (($ $ $) NIL)) (-4118 (($ $ $) 140)) (** (($ $ (-860)) NIL) (($ $ (-719)) 102)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL)))
+(((-386 |#1|) (-13 (-523) (-214 |#1|) (-37 |#1|) (-319 |#1|) (-393 |#1|) (-10 -8 (-15 -4239 (|#1| $)) (-15 -2427 ((-516) $)) (-15 -1903 ($ |#1| (-594 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-516)))))) (-15 -2025 ((-594 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-516)))) $)) (-15 -1849 ($ |#1| (-516))) (-15 -2701 ((-594 (-2 (|:| -4011 |#1|) (|:| -2427 (-516)))) $)) (-15 -1848 ($ |#1| (-516))) (-15 -1847 ((-516) $ (-516))) (-15 -2702 (|#1| $ (-516))) (-15 -1846 ((-3 #1# #2# #3# #4#) $ (-516))) (-15 -1906 ((-719) $)) (-15 -1845 ($ |#1| (-516))) (-15 -1844 ($ |#1| (-516))) (-15 -1843 ($ |#1| (-516) (-3 #1# #2# #3# #4#))) (-15 -1842 (|#1| $)) (-15 -1841 ($ $)) (-15 -4234 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-432)) (-6 (-432)) |%noBranch|) (IF (|has| |#1| (-958)) (-6 (-958)) |%noBranch|) (IF (|has| |#1| (-1138)) (-6 (-1138)) |%noBranch|) (IF (|has| |#1| (-572 (-505))) (-6 (-572 (-505))) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -3287 ((-110) $)) (-15 -3286 ((-388 (-516)) $)) (-15 -3288 ((-3 (-388 (-516)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-268 $ $)) (-6 (-268 $ $)) |%noBranch|) (IF (|has| |#1| (-291 $)) (-6 (-291 $)) |%noBranch|) (IF (|has| |#1| (-491 (-1098) $)) (-6 (-491 (-1098) $)) |%noBranch|))) (-523)) (T -386))
+((-4234 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-523)) (-5 *1 (-386 *3)))) (-4239 (*1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-523)))) (-2427 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-386 *3)) (-4 *3 (-523)))) (-1903 (*1 *1 *2 *3) (-12 (-5 *3 (-594 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-516))))) (-4 *2 (-523)) (-5 *1 (-386 *2)))) (-2025 (*1 *2 *1) (-12 (-5 *2 (-594 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-516))))) (-5 *1 (-386 *3)) (-4 *3 (-523)))) (-1849 (*1 *1 *2 *3) (-12 (-5 *3 (-516)) (-5 *1 (-386 *2)) (-4 *2 (-523)))) (-2701 (*1 *2 *1) (-12 (-5 *2 (-594 (-2 (|:| -4011 *3) (|:| -2427 (-516))))) (-5 *1 (-386 *3)) (-4 *3 (-523)))) (-1848 (*1 *1 *2 *3) (-12 (-5 *3 (-516)) (-5 *1 (-386 *2)) (-4 *2 (-523)))) (-1847 (*1 *2 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-386 *3)) (-4 *3 (-523)))) (-2702 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *1 (-386 *2)) (-4 *2 (-523)))) (-1846 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-386 *4)) (-4 *4 (-523)))) (-1906 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-386 *3)) (-4 *3 (-523)))) (-1845 (*1 *1 *2 *3) (-12 (-5 *3 (-516)) (-5 *1 (-386 *2)) (-4 *2 (-523)))) (-1844 (*1 *1 *2 *3) (-12 (-5 *3 (-516)) (-5 *1 (-386 *2)) (-4 *2 (-523)))) (-1843 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-516)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-386 *2)) (-4 *2 (-523)))) (-1842 (*1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-523)))) (-1841 (*1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-523)))) (-3287 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-386 *3)) (-4 *3 (-515)) (-4 *3 (-523)))) (-3286 (*1 *2 *1) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-386 *3)) (-4 *3 (-515)) (-4 *3 (-523)))) (-3288 (*1 *2 *1) (|partial| -12 (-5 *2 (-388 (-516))) (-5 *1 (-386 *3)) (-4 *3 (-515)) (-4 *3 (-523)))))
+(-13 (-523) (-214 |#1|) (-37 |#1|) (-319 |#1|) (-393 |#1|) (-10 -8 (-15 -4239 (|#1| $)) (-15 -2427 ((-516) $)) (-15 -1903 ($ |#1| (-594 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-516)))))) (-15 -2025 ((-594 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-516)))) $)) (-15 -1849 ($ |#1| (-516))) (-15 -2701 ((-594 (-2 (|:| -4011 |#1|) (|:| -2427 (-516)))) $)) (-15 -1848 ($ |#1| (-516))) (-15 -1847 ((-516) $ (-516))) (-15 -2702 (|#1| $ (-516))) (-15 -1846 ((-3 #1# #2# #3# #4#) $ (-516))) (-15 -1906 ((-719) $)) (-15 -1845 ($ |#1| (-516))) (-15 -1844 ($ |#1| (-516))) (-15 -1843 ($ |#1| (-516) (-3 #1# #2# #3# #4#))) (-15 -1842 (|#1| $)) (-15 -1841 ($ $)) (-15 -4234 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-432)) (-6 (-432)) |%noBranch|) (IF (|has| |#1| (-958)) (-6 (-958)) |%noBranch|) (IF (|has| |#1| (-1138)) (-6 (-1138)) |%noBranch|) (IF (|has| |#1| (-572 (-505))) (-6 (-572 (-505))) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -3287 ((-110) $)) (-15 -3286 ((-388 (-516)) $)) (-15 -3288 ((-3 (-388 (-516)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-268 $ $)) (-6 (-268 $ $)) |%noBranch|) (IF (|has| |#1| (-291 $)) (-6 (-291 $)) |%noBranch|) (IF (|has| |#1| (-491 (-1098) $)) (-6 (-491 (-1098) $)) |%noBranch|)))
+((-4234 (((-386 |#2|) (-1 |#2| |#1|) (-386 |#1|)) 20)))
+(((-387 |#1| |#2|) (-10 -7 (-15 -4234 ((-386 |#2|) (-1 |#2| |#1|) (-386 |#1|)))) (-523) (-523)) (T -387))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-386 *5)) (-4 *5 (-523)) (-4 *6 (-523)) (-5 *2 (-386 *6)) (-5 *1 (-387 *5 *6)))))
+(-10 -7 (-15 -4234 ((-386 |#2|) (-1 |#2| |#1|) (-386 |#1|))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 13)) (-3388 ((|#1| $) 21 (|has| |#1| (-289)))) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-1655 (((-110) $ $) NIL)) (-3905 (((-516) $) NIL (|has| |#1| (-768)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#1| #2="failed") $) 17) (((-3 (-1098) #2#) $) NIL (|has| |#1| (-975 (-1098)))) (((-3 (-388 (-516)) #2#) $) 70 (|has| |#1| (-975 (-516)))) (((-3 (-516) #2#) $) NIL (|has| |#1| (-975 (-516))))) (-3431 ((|#1| $) 15) (((-1098) $) NIL (|has| |#1| (-975 (-1098)))) (((-388 (-516)) $) 67 (|has| |#1| (-975 (-516)))) (((-516) $) NIL (|has| |#1| (-975 (-516))))) (-2824 (($ $ $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) 50)) (-3258 (($) NIL (|has| |#1| (-515)))) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4005 (((-110) $) NIL)) (-3460 (((-110) $) NIL (|has| |#1| (-768)))) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (|has| |#1| (-827 (-516)))) (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (|has| |#1| (-827 (-359))))) (-2436 (((-110) $) 64)) (-3260 (($ $) NIL)) (-3262 ((|#1| $) 71)) (-3723 (((-3 $ "failed") $) NIL (|has| |#1| (-1074)))) (-3461 (((-110) $) NIL (|has| |#1| (-768)))) (-1652 (((-3 (-594 $) #3="failed") (-594 $) $) NIL)) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL)) (-3724 (($) NIL (|has| |#1| (-1074)) CONST)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 97)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3387 (($ $) NIL (|has| |#1| (-289)))) (-3389 ((|#1| $) 28 (|has| |#1| (-515)))) (-2968 (((-386 (-1092 $)) (-1092 $)) 135 (|has| |#1| (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) 131 (|has| |#1| (-851)))) (-4011 (((-386 $) $) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-4046 (($ $ (-594 |#1|) (-594 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-275 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-594 (-275 |#1|))) NIL (|has| |#1| (-291 |#1|))) (($ $ (-594 (-1098)) (-594 |#1|)) NIL (|has| |#1| (-491 (-1098) |#1|))) (($ $ (-1098) |#1|) NIL (|has| |#1| (-491 (-1098) |#1|)))) (-1654 (((-719) $) NIL)) (-4078 (($ $ |#1|) NIL (|has| |#1| (-268 |#1| |#1|)))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-4089 (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1098)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3259 (($ $) NIL)) (-3261 ((|#1| $) 73)) (-4246 (((-831 (-516)) $) NIL (|has| |#1| (-572 (-831 (-516))))) (((-831 (-359)) $) NIL (|has| |#1| (-572 (-831 (-359))))) (((-505) $) NIL (|has| |#1| (-572 (-505)))) (((-359) $) NIL (|has| |#1| (-958))) (((-208) $) NIL (|has| |#1| (-958)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) 115 (-12 (|has| $ (-138)) (|has| |#1| (-851))))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ $) NIL) (($ (-388 (-516))) NIL) (($ |#1|) 10) (($ (-1098)) NIL (|has| |#1| (-975 (-1098))))) (-2965 (((-3 $ #1#) $) 99 (-3810 (-12 (|has| $ (-138)) (|has| |#1| (-851))) (|has| |#1| (-138))))) (-3385 (((-719)) 100)) (-3390 ((|#1| $) 26 (|has| |#1| (-515)))) (-2117 (((-110) $ $) NIL)) (-3661 (($ $) NIL (|has| |#1| (-768)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) 22 T CONST)) (-2927 (($) 8 T CONST)) (-2768 (((-1081) $) 43 (-12 (|has| |#1| (-515)) (|has| |#1| (-769)))) (((-1081) $ (-110)) 44 (-12 (|has| |#1| (-515)) (|has| |#1| (-769)))) (((-1185) (-771) $) 45 (-12 (|has| |#1| (-515)) (|has| |#1| (-769)))) (((-1185) (-771) $ (-110)) 46 (-12 (|has| |#1| (-515)) (|has| |#1| (-769))))) (-2932 (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1098)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) 56)) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) 24 (|has| |#1| (-795)))) (-4224 (($ $ $) 126) (($ |#1| |#1|) 52)) (-4116 (($ $) 25) (($ $ $) 55)) (-4118 (($ $ $) 53)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) 125)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 60) (($ $ $) 57) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
+(((-388 |#1|) (-13 (-931 |#1|) (-10 -7 (IF (|has| |#1| (-515)) (IF (|has| |#1| (-769)) (-6 (-769)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4256)) (IF (|has| |#1| (-432)) (IF (|has| |#1| (-6 -4267)) (-6 -4256) |%noBranch|) |%noBranch|) |%noBranch|))) (-523)) (T -388))
+NIL
+(-13 (-931 |#1|) (-10 -7 (IF (|has| |#1| (-515)) (IF (|has| |#1| (-769)) (-6 (-769)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4256)) (IF (|has| |#1| (-432)) (IF (|has| |#1| (-6 -4267)) (-6 -4256) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-4234 (((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)) 13)))
+(((-389 |#1| |#2|) (-10 -7 (-15 -4234 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)))) (-523) (-523)) (T -389))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-523)) (-4 *6 (-523)) (-5 *2 (-388 *6)) (-5 *1 (-389 *5 *6)))))
+(-10 -7 (-15 -4234 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|))))
+((-1851 (((-637 |#2|) (-1179 $)) NIL) (((-637 |#2|)) 18)) (-1861 (($ (-1179 |#2|) (-1179 $)) NIL) (($ (-1179 |#2|)) 26)) (-1850 (((-637 |#2|) $ (-1179 $)) NIL) (((-637 |#2|) $) 22)) (-2073 ((|#3| $) 60)) (-4036 ((|#2| (-1179 $)) NIL) ((|#2|) 20)) (-3497 (((-1179 |#2|) $ (-1179 $)) NIL) (((-637 |#2|) (-1179 $) (-1179 $)) NIL) (((-1179 |#2|) $) NIL) (((-637 |#2|) (-1179 $)) 24)) (-4246 (((-1179 |#2|) $) 11) (($ (-1179 |#2|)) 13)) (-2632 ((|#3| $) 52)))
+(((-390 |#1| |#2| |#3|) (-10 -8 (-15 -1850 ((-637 |#2|) |#1|)) (-15 -4036 (|#2|)) (-15 -1851 ((-637 |#2|))) (-15 -4246 (|#1| (-1179 |#2|))) (-15 -4246 ((-1179 |#2|) |#1|)) (-15 -1861 (|#1| (-1179 |#2|))) (-15 -3497 ((-637 |#2|) (-1179 |#1|))) (-15 -3497 ((-1179 |#2|) |#1|)) (-15 -2073 (|#3| |#1|)) (-15 -2632 (|#3| |#1|)) (-15 -1851 ((-637 |#2|) (-1179 |#1|))) (-15 -4036 (|#2| (-1179 |#1|))) (-15 -1861 (|#1| (-1179 |#2|) (-1179 |#1|))) (-15 -3497 ((-637 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3497 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -1850 ((-637 |#2|) |#1| (-1179 |#1|)))) (-391 |#2| |#3|) (-162) (-1155 |#2|)) (T -390))
+((-1851 (*1 *2) (-12 (-4 *4 (-162)) (-4 *5 (-1155 *4)) (-5 *2 (-637 *4)) (-5 *1 (-390 *3 *4 *5)) (-4 *3 (-391 *4 *5)))) (-4036 (*1 *2) (-12 (-4 *4 (-1155 *2)) (-4 *2 (-162)) (-5 *1 (-390 *3 *2 *4)) (-4 *3 (-391 *2 *4)))))
+(-10 -8 (-15 -1850 ((-637 |#2|) |#1|)) (-15 -4036 (|#2|)) (-15 -1851 ((-637 |#2|))) (-15 -4246 (|#1| (-1179 |#2|))) (-15 -4246 ((-1179 |#2|) |#1|)) (-15 -1861 (|#1| (-1179 |#2|))) (-15 -3497 ((-637 |#2|) (-1179 |#1|))) (-15 -3497 ((-1179 |#2|) |#1|)) (-15 -2073 (|#3| |#1|)) (-15 -2632 (|#3| |#1|)) (-15 -1851 ((-637 |#2|) (-1179 |#1|))) (-15 -4036 (|#2| (-1179 |#1|))) (-15 -1861 (|#1| (-1179 |#2|) (-1179 |#1|))) (-15 -3497 ((-637 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3497 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -1850 ((-637 |#2|) |#1| (-1179 |#1|))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1851 (((-637 |#1|) (-1179 $)) 46) (((-637 |#1|)) 61)) (-3608 ((|#1| $) 52)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-1861 (($ (-1179 |#1|) (-1179 $)) 48) (($ (-1179 |#1|)) 64)) (-1850 (((-637 |#1|) $ (-1179 $)) 53) (((-637 |#1|) $) 59)) (-3741 (((-3 $ "failed") $) 34)) (-3368 (((-860)) 54)) (-2436 (((-110) $) 31)) (-3391 ((|#1| $) 51)) (-2073 ((|#2| $) 44 (|has| |#1| (-344)))) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4036 ((|#1| (-1179 $)) 47) ((|#1|) 60)) (-3497 (((-1179 |#1|) $ (-1179 $)) 50) (((-637 |#1|) (-1179 $) (-1179 $)) 49) (((-1179 |#1|) $) 66) (((-637 |#1|) (-1179 $)) 65)) (-4246 (((-1179 |#1|) $) 63) (($ (-1179 |#1|)) 62)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ |#1|) 37)) (-2965 (((-3 $ "failed") $) 43 (|has| |#1| (-138)))) (-2632 ((|#2| $) 45)) (-3385 (((-719)) 29)) (-2071 (((-1179 $)) 67)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-391 |#1| |#2|) (-133) (-162) (-1155 |t#1|)) (T -391))
+((-2071 (*1 *2) (-12 (-4 *3 (-162)) (-4 *4 (-1155 *3)) (-5 *2 (-1179 *1)) (-4 *1 (-391 *3 *4)))) (-3497 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1155 *3)) (-5 *2 (-1179 *3)))) (-3497 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-391 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1155 *4)) (-5 *2 (-637 *4)))) (-1861 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-162)) (-4 *1 (-391 *3 *4)) (-4 *4 (-1155 *3)))) (-4246 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1155 *3)) (-5 *2 (-1179 *3)))) (-4246 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-162)) (-4 *1 (-391 *3 *4)) (-4 *4 (-1155 *3)))) (-1851 (*1 *2) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1155 *3)) (-5 *2 (-637 *3)))) (-4036 (*1 *2) (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1155 *2)) (-4 *2 (-162)))) (-1850 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1155 *3)) (-5 *2 (-637 *3)))))
+(-13 (-351 |t#1| |t#2|) (-10 -8 (-15 -2071 ((-1179 $))) (-15 -3497 ((-1179 |t#1|) $)) (-15 -3497 ((-637 |t#1|) (-1179 $))) (-15 -1861 ($ (-1179 |t#1|))) (-15 -4246 ((-1179 |t#1|) $)) (-15 -4246 ($ (-1179 |t#1|))) (-15 -1851 ((-637 |t#1|))) (-15 -4036 (|t#1|)) (-15 -1850 ((-637 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-805)) . T) ((-351 |#1| |#2|) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 |#1|) . T) ((-675) . T) ((-989 |#1|) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-3432 (((-3 |#2| #1="failed") $) NIL) (((-3 (-388 (-516)) #1#) $) 27) (((-3 (-516) #1#) $) 19)) (-3431 ((|#2| $) NIL) (((-388 (-516)) $) 24) (((-516) $) 14)) (-4233 (($ |#2|) NIL) (($ (-388 (-516))) 22) (($ (-516)) 11)))
+(((-392 |#1| |#2|) (-10 -8 (-15 -3431 ((-516) |#1|)) (-15 -3432 ((-3 (-516) #1="failed") |#1|)) (-15 -4233 (|#1| (-516))) (-15 -3431 ((-388 (-516)) |#1|)) (-15 -3432 ((-3 (-388 (-516)) #1#) |#1|)) (-15 -4233 (|#1| (-388 (-516)))) (-15 -4233 (|#1| |#2|)) (-15 -3432 ((-3 |#2| #1#) |#1|)) (-15 -3431 (|#2| |#1|))) (-393 |#2|) (-1134)) (T -392))
+NIL
+(-10 -8 (-15 -3431 ((-516) |#1|)) (-15 -3432 ((-3 (-516) #1="failed") |#1|)) (-15 -4233 (|#1| (-516))) (-15 -3431 ((-388 (-516)) |#1|)) (-15 -3432 ((-3 (-388 (-516)) #1#) |#1|)) (-15 -4233 (|#1| (-388 (-516)))) (-15 -4233 (|#1| |#2|)) (-15 -3432 ((-3 |#2| #1#) |#1|)) (-15 -3431 (|#2| |#1|)))
+((-3432 (((-3 |#1| #1="failed") $) 7) (((-3 (-388 (-516)) #1#) $) 16 (|has| |#1| (-975 (-388 (-516))))) (((-3 (-516) #1#) $) 13 (|has| |#1| (-975 (-516))))) (-3431 ((|#1| $) 8) (((-388 (-516)) $) 15 (|has| |#1| (-975 (-388 (-516))))) (((-516) $) 12 (|has| |#1| (-975 (-516))))) (-4233 (($ |#1|) 6) (($ (-388 (-516))) 17 (|has| |#1| (-975 (-388 (-516))))) (($ (-516)) 14 (|has| |#1| (-975 (-516))))))
+(((-393 |#1|) (-133) (-1134)) (T -393))
+NIL
+(-13 (-975 |t#1|) (-10 -7 (IF (|has| |t#1| (-975 (-516))) (-6 (-975 (-516))) |%noBranch|) (IF (|has| |t#1| (-975 (-388 (-516)))) (-6 (-975 (-388 (-516)))) |%noBranch|)))
+(((-975 (-388 (-516))) |has| |#1| (-975 (-388 (-516)))) ((-975 (-516)) |has| |#1| (-975 (-516))) ((-975 |#1|) . T))
+((-2828 (((-110) $ $) NIL)) (-3815 (($) NIL T CONST)) (-3741 (((-3 $ "failed") $) NIL)) (-1852 ((|#4| (-719) (-1179 |#4|)) 56)) (-2436 (((-110) $) NIL)) (-3262 (((-1179 |#4|) $) 17)) (-3391 ((|#2| $) 54)) (-1853 (($ $) 139)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) 100)) (-2042 (($ (-1179 |#4|)) 99)) (-3514 (((-1045) $) NIL)) (-3261 ((|#1| $) 18)) (-3273 (($ $ $) NIL)) (-2620 (($ $ $) NIL)) (-4233 (((-805) $) 134)) (-2071 (((-1179 |#4|) $) 129)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2927 (($) 11 T CONST)) (-3317 (((-110) $ $) 40)) (-4224 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) 122)) (* (($ $ $) 121)))
+(((-394 |#1| |#2| |#3| |#4|) (-13 (-453) (-10 -8 (-15 -2042 ($ (-1179 |#4|))) (-15 -2071 ((-1179 |#4|) $)) (-15 -3391 (|#2| $)) (-15 -3262 ((-1179 |#4|) $)) (-15 -3261 (|#1| $)) (-15 -1853 ($ $)) (-15 -1852 (|#4| (-719) (-1179 |#4|))))) (-289) (-931 |#1|) (-1155 |#2|) (-13 (-391 |#2| |#3|) (-975 |#2|))) (T -394))
+((-2042 (*1 *1 *2) (-12 (-5 *2 (-1179 *6)) (-4 *6 (-13 (-391 *4 *5) (-975 *4))) (-4 *4 (-931 *3)) (-4 *5 (-1155 *4)) (-4 *3 (-289)) (-5 *1 (-394 *3 *4 *5 *6)))) (-2071 (*1 *2 *1) (-12 (-4 *3 (-289)) (-4 *4 (-931 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *6)) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *6 (-13 (-391 *4 *5) (-975 *4))))) (-3391 (*1 *2 *1) (-12 (-4 *4 (-1155 *2)) (-4 *2 (-931 *3)) (-5 *1 (-394 *3 *2 *4 *5)) (-4 *3 (-289)) (-4 *5 (-13 (-391 *2 *4) (-975 *2))))) (-3262 (*1 *2 *1) (-12 (-4 *3 (-289)) (-4 *4 (-931 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *6)) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *6 (-13 (-391 *4 *5) (-975 *4))))) (-3261 (*1 *2 *1) (-12 (-4 *3 (-931 *2)) (-4 *4 (-1155 *3)) (-4 *2 (-289)) (-5 *1 (-394 *2 *3 *4 *5)) (-4 *5 (-13 (-391 *3 *4) (-975 *3))))) (-1853 (*1 *1 *1) (-12 (-4 *2 (-289)) (-4 *3 (-931 *2)) (-4 *4 (-1155 *3)) (-5 *1 (-394 *2 *3 *4 *5)) (-4 *5 (-13 (-391 *3 *4) (-975 *3))))) (-1852 (*1 *2 *3 *4) (-12 (-5 *3 (-719)) (-5 *4 (-1179 *2)) (-4 *5 (-289)) (-4 *6 (-931 *5)) (-4 *2 (-13 (-391 *6 *7) (-975 *6))) (-5 *1 (-394 *5 *6 *7 *2)) (-4 *7 (-1155 *6)))))
+(-13 (-453) (-10 -8 (-15 -2042 ($ (-1179 |#4|))) (-15 -2071 ((-1179 |#4|) $)) (-15 -3391 (|#2| $)) (-15 -3262 ((-1179 |#4|) $)) (-15 -3261 (|#1| $)) (-15 -1853 ($ $)) (-15 -1852 (|#4| (-719) (-1179 |#4|)))))
+((-4234 (((-394 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-394 |#1| |#2| |#3| |#4|)) 33)))
+(((-395 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4234 ((-394 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-394 |#1| |#2| |#3| |#4|)))) (-289) (-931 |#1|) (-1155 |#2|) (-13 (-391 |#2| |#3|) (-975 |#2|)) (-289) (-931 |#5|) (-1155 |#6|) (-13 (-391 |#6| |#7|) (-975 |#6|))) (T -395))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-394 *5 *6 *7 *8)) (-4 *5 (-289)) (-4 *6 (-931 *5)) (-4 *7 (-1155 *6)) (-4 *8 (-13 (-391 *6 *7) (-975 *6))) (-4 *9 (-289)) (-4 *10 (-931 *9)) (-4 *11 (-1155 *10)) (-5 *2 (-394 *9 *10 *11 *12)) (-5 *1 (-395 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-391 *10 *11) (-975 *10))))))
+(-10 -7 (-15 -4234 ((-394 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-394 |#1| |#2| |#3| |#4|))))
+((-2828 (((-110) $ $) NIL)) (-3815 (($) NIL T CONST)) (-3741 (((-3 $ "failed") $) NIL)) (-2436 (((-110) $) NIL)) (-3391 ((|#2| $) 61)) (-1854 (($ (-1179 |#4|)) 25) (($ (-394 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-975 |#2|)))) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 34)) (-2071 (((-1179 |#4|) $) 26)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2927 (($) 23 T CONST)) (-3317 (((-110) $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ $ $) 72)))
+(((-396 |#1| |#2| |#3| |#4| |#5|) (-13 (-675) (-10 -8 (-15 -2071 ((-1179 |#4|) $)) (-15 -3391 (|#2| $)) (-15 -1854 ($ (-1179 |#4|))) (IF (|has| |#4| (-975 |#2|)) (-15 -1854 ($ (-394 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-289) (-931 |#1|) (-1155 |#2|) (-391 |#2| |#3|) (-1179 |#4|)) (T -396))
+((-2071 (*1 *2 *1) (-12 (-4 *3 (-289)) (-4 *4 (-931 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *6)) (-5 *1 (-396 *3 *4 *5 *6 *7)) (-4 *6 (-391 *4 *5)) (-14 *7 *2))) (-3391 (*1 *2 *1) (-12 (-4 *4 (-1155 *2)) (-4 *2 (-931 *3)) (-5 *1 (-396 *3 *2 *4 *5 *6)) (-4 *3 (-289)) (-4 *5 (-391 *2 *4)) (-14 *6 (-1179 *5)))) (-1854 (*1 *1 *2) (-12 (-5 *2 (-1179 *6)) (-4 *6 (-391 *4 *5)) (-4 *4 (-931 *3)) (-4 *5 (-1155 *4)) (-4 *3 (-289)) (-5 *1 (-396 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1854 (*1 *1 *2) (-12 (-5 *2 (-394 *3 *4 *5 *6)) (-4 *6 (-975 *4)) (-4 *3 (-289)) (-4 *4 (-931 *3)) (-4 *5 (-1155 *4)) (-4 *6 (-391 *4 *5)) (-14 *7 (-1179 *6)) (-5 *1 (-396 *3 *4 *5 *6 *7)))))
+(-13 (-675) (-10 -8 (-15 -2071 ((-1179 |#4|) $)) (-15 -3391 (|#2| $)) (-15 -1854 ($ (-1179 |#4|))) (IF (|has| |#4| (-975 |#2|)) (-15 -1854 ($ (-394 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-4234 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
+(((-397 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4234 (|#3| (-1 |#4| |#2|) |#1|))) (-399 |#2|) (-162) (-399 |#4|) (-162)) (T -397))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-4 *2 (-399 *6)) (-5 *1 (-397 *4 *5 *2 *6)) (-4 *4 (-399 *5)))))
+(-10 -7 (-15 -4234 (|#3| (-1 |#4| |#2|) |#1|)))
+((-1842 (((-3 $ #1="failed")) 86)) (-3496 (((-1179 (-637 |#2|)) (-1179 $)) NIL) (((-1179 (-637 |#2|))) 91)) (-1978 (((-3 (-2 (|:| |particular| $) (|:| -2071 (-594 $))) #1#)) 85)) (-1769 (((-3 $ #1#)) 84)) (-1857 (((-637 |#2|) (-1179 $)) NIL) (((-637 |#2|)) 102)) (-1855 (((-637 |#2|) $ (-1179 $)) NIL) (((-637 |#2|) $) 110)) (-1972 (((-1092 (-887 |#2|))) 55)) (-1859 ((|#2| (-1179 $)) NIL) ((|#2|) 106)) (-1861 (($ (-1179 |#2|) (-1179 $)) NIL) (($ (-1179 |#2|)) 113)) (-1979 (((-3 (-2 (|:| |particular| $) (|:| -2071 (-594 $))) #1#)) 83)) (-1770 (((-3 $ #1#)) 75)) (-1858 (((-637 |#2|) (-1179 $)) NIL) (((-637 |#2|)) 100)) (-1856 (((-637 |#2|) $ (-1179 $)) NIL) (((-637 |#2|) $) 108)) (-1976 (((-1092 (-887 |#2|))) 54)) (-1860 ((|#2| (-1179 $)) NIL) ((|#2|) 104)) (-3497 (((-1179 |#2|) $ (-1179 $)) NIL) (((-637 |#2|) (-1179 $) (-1179 $)) NIL) (((-1179 |#2|) $) NIL) (((-637 |#2|) (-1179 $)) 112)) (-4246 (((-1179 |#2|) $) 96) (($ (-1179 |#2|)) 98)) (-1964 (((-594 (-887 |#2|)) (-1179 $)) NIL) (((-594 (-887 |#2|))) 94)) (-2814 (($ (-637 |#2|) $) 90)))
+(((-398 |#1| |#2|) (-10 -8 (-15 -2814 (|#1| (-637 |#2|) |#1|)) (-15 -1972 ((-1092 (-887 |#2|)))) (-15 -1976 ((-1092 (-887 |#2|)))) (-15 -1855 ((-637 |#2|) |#1|)) (-15 -1856 ((-637 |#2|) |#1|)) (-15 -1857 ((-637 |#2|))) (-15 -1858 ((-637 |#2|))) (-15 -1859 (|#2|)) (-15 -1860 (|#2|)) (-15 -4246 (|#1| (-1179 |#2|))) (-15 -4246 ((-1179 |#2|) |#1|)) (-15 -1861 (|#1| (-1179 |#2|))) (-15 -1964 ((-594 (-887 |#2|)))) (-15 -3496 ((-1179 (-637 |#2|)))) (-15 -3497 ((-637 |#2|) (-1179 |#1|))) (-15 -3497 ((-1179 |#2|) |#1|)) (-15 -1842 ((-3 |#1| #1="failed"))) (-15 -1769 ((-3 |#1| #1#))) (-15 -1770 ((-3 |#1| #1#))) (-15 -1978 ((-3 (-2 (|:| |particular| |#1|) (|:| -2071 (-594 |#1|))) #1#))) (-15 -1979 ((-3 (-2 (|:| |particular| |#1|) (|:| -2071 (-594 |#1|))) #1#))) (-15 -1857 ((-637 |#2|) (-1179 |#1|))) (-15 -1858 ((-637 |#2|) (-1179 |#1|))) (-15 -1859 (|#2| (-1179 |#1|))) (-15 -1860 (|#2| (-1179 |#1|))) (-15 -1861 (|#1| (-1179 |#2|) (-1179 |#1|))) (-15 -3497 ((-637 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3497 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -1855 ((-637 |#2|) |#1| (-1179 |#1|))) (-15 -1856 ((-637 |#2|) |#1| (-1179 |#1|))) (-15 -3496 ((-1179 (-637 |#2|)) (-1179 |#1|))) (-15 -1964 ((-594 (-887 |#2|)) (-1179 |#1|)))) (-399 |#2|) (-162)) (T -398))
+((-3496 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1179 (-637 *4))) (-5 *1 (-398 *3 *4)) (-4 *3 (-399 *4)))) (-1964 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-594 (-887 *4))) (-5 *1 (-398 *3 *4)) (-4 *3 (-399 *4)))) (-1860 (*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-398 *3 *2)) (-4 *3 (-399 *2)))) (-1859 (*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-398 *3 *2)) (-4 *3 (-399 *2)))) (-1858 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-637 *4)) (-5 *1 (-398 *3 *4)) (-4 *3 (-399 *4)))) (-1857 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-637 *4)) (-5 *1 (-398 *3 *4)) (-4 *3 (-399 *4)))) (-1976 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1092 (-887 *4))) (-5 *1 (-398 *3 *4)) (-4 *3 (-399 *4)))) (-1972 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1092 (-887 *4))) (-5 *1 (-398 *3 *4)) (-4 *3 (-399 *4)))))
+(-10 -8 (-15 -2814 (|#1| (-637 |#2|) |#1|)) (-15 -1972 ((-1092 (-887 |#2|)))) (-15 -1976 ((-1092 (-887 |#2|)))) (-15 -1855 ((-637 |#2|) |#1|)) (-15 -1856 ((-637 |#2|) |#1|)) (-15 -1857 ((-637 |#2|))) (-15 -1858 ((-637 |#2|))) (-15 -1859 (|#2|)) (-15 -1860 (|#2|)) (-15 -4246 (|#1| (-1179 |#2|))) (-15 -4246 ((-1179 |#2|) |#1|)) (-15 -1861 (|#1| (-1179 |#2|))) (-15 -1964 ((-594 (-887 |#2|)))) (-15 -3496 ((-1179 (-637 |#2|)))) (-15 -3497 ((-637 |#2|) (-1179 |#1|))) (-15 -3497 ((-1179 |#2|) |#1|)) (-15 -1842 ((-3 |#1| #1="failed"))) (-15 -1769 ((-3 |#1| #1#))) (-15 -1770 ((-3 |#1| #1#))) (-15 -1978 ((-3 (-2 (|:| |particular| |#1|) (|:| -2071 (-594 |#1|))) #1#))) (-15 -1979 ((-3 (-2 (|:| |particular| |#1|) (|:| -2071 (-594 |#1|))) #1#))) (-15 -1857 ((-637 |#2|) (-1179 |#1|))) (-15 -1858 ((-637 |#2|) (-1179 |#1|))) (-15 -1859 (|#2| (-1179 |#1|))) (-15 -1860 (|#2| (-1179 |#1|))) (-15 -1861 (|#1| (-1179 |#2|) (-1179 |#1|))) (-15 -3497 ((-637 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3497 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -1855 ((-637 |#2|) |#1| (-1179 |#1|))) (-15 -1856 ((-637 |#2|) |#1| (-1179 |#1|))) (-15 -3496 ((-1179 (-637 |#2|)) (-1179 |#1|))) (-15 -1964 ((-594 (-887 |#2|)) (-1179 |#1|))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1842 (((-3 $ #1="failed")) 37 (|has| |#1| (-523)))) (-1319 (((-3 $ "failed") $ $) 19)) (-3496 (((-1179 (-637 |#1|)) (-1179 $)) 78) (((-1179 (-637 |#1|))) 100)) (-1795 (((-1179 $)) 81)) (-3815 (($) 17 T CONST)) (-1978 (((-3 (-2 (|:| |particular| $) (|:| -2071 (-594 $))) #1#)) 40 (|has| |#1| (-523)))) (-1769 (((-3 $ #1#)) 38 (|has| |#1| (-523)))) (-1857 (((-637 |#1|) (-1179 $)) 65) (((-637 |#1|)) 92)) (-1793 ((|#1| $) 74)) (-1855 (((-637 |#1|) $ (-1179 $)) 76) (((-637 |#1|) $) 90)) (-2430 (((-3 $ #1#) $) 45 (|has| |#1| (-523)))) (-1972 (((-1092 (-887 |#1|))) 88 (|has| |#1| (-344)))) (-2433 (($ $ (-860)) 28)) (-1791 ((|#1| $) 72)) (-1771 (((-1092 |#1|) $) 42 (|has| |#1| (-523)))) (-1859 ((|#1| (-1179 $)) 67) ((|#1|) 94)) (-1789 (((-1092 |#1|) $) 63)) (-1783 (((-110)) 57)) (-1861 (($ (-1179 |#1|) (-1179 $)) 69) (($ (-1179 |#1|)) 98)) (-3741 (((-3 $ #1#) $) 47 (|has| |#1| (-523)))) (-3368 (((-860)) 80)) (-1780 (((-110)) 54)) (-2458 (($ $ (-860)) 33)) (-1776 (((-110)) 50)) (-1774 (((-110)) 48)) (-1778 (((-110)) 52)) (-1979 (((-3 (-2 (|:| |particular| $) (|:| -2071 (-594 $))) #1#)) 41 (|has| |#1| (-523)))) (-1770 (((-3 $ #1#)) 39 (|has| |#1| (-523)))) (-1858 (((-637 |#1|) (-1179 $)) 66) (((-637 |#1|)) 93)) (-1794 ((|#1| $) 75)) (-1856 (((-637 |#1|) $ (-1179 $)) 77) (((-637 |#1|) $) 91)) (-2431 (((-3 $ #1#) $) 46 (|has| |#1| (-523)))) (-1976 (((-1092 (-887 |#1|))) 89 (|has| |#1| (-344)))) (-2432 (($ $ (-860)) 29)) (-1792 ((|#1| $) 73)) (-1772 (((-1092 |#1|) $) 43 (|has| |#1| (-523)))) (-1860 ((|#1| (-1179 $)) 68) ((|#1|) 95)) (-1790 (((-1092 |#1|) $) 64)) (-1784 (((-110)) 58)) (-3513 (((-1081) $) 9)) (-1775 (((-110)) 49)) (-1777 (((-110)) 51)) (-1779 (((-110)) 53)) (-3514 (((-1045) $) 10)) (-1782 (((-110)) 56)) (-4078 ((|#1| $ (-516)) 101)) (-3497 (((-1179 |#1|) $ (-1179 $)) 71) (((-637 |#1|) (-1179 $) (-1179 $)) 70) (((-1179 |#1|) $) 103) (((-637 |#1|) (-1179 $)) 102)) (-4246 (((-1179 |#1|) $) 97) (($ (-1179 |#1|)) 96)) (-1964 (((-594 (-887 |#1|)) (-1179 $)) 79) (((-594 (-887 |#1|))) 99)) (-2620 (($ $ $) 25)) (-1788 (((-110)) 62)) (-4233 (((-805) $) 11)) (-2071 (((-1179 $)) 104)) (-1773 (((-594 (-1179 |#1|))) 44 (|has| |#1| (-523)))) (-2621 (($ $ $ $) 26)) (-1786 (((-110)) 60)) (-2814 (($ (-637 |#1|) $) 87)) (-2619 (($ $ $) 24)) (-1787 (((-110)) 61)) (-1785 (((-110)) 59)) (-1781 (((-110)) 55)) (-2920 (($) 18 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 30)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-399 |#1|) (-133) (-162)) (T -399))
+((-2071 (*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1179 *1)) (-4 *1 (-399 *3)))) (-3497 (*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-162)) (-5 *2 (-1179 *3)))) (-3497 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-399 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4)))) (-4078 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-4 *1 (-399 *2)) (-4 *2 (-162)))) (-3496 (*1 *2) (-12 (-4 *1 (-399 *3)) (-4 *3 (-162)) (-5 *2 (-1179 (-637 *3))))) (-1964 (*1 *2) (-12 (-4 *1 (-399 *3)) (-4 *3 (-162)) (-5 *2 (-594 (-887 *3))))) (-1861 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-162)) (-4 *1 (-399 *3)))) (-4246 (*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-162)) (-5 *2 (-1179 *3)))) (-4246 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-162)) (-4 *1 (-399 *3)))) (-1860 (*1 *2) (-12 (-4 *1 (-399 *2)) (-4 *2 (-162)))) (-1859 (*1 *2) (-12 (-4 *1 (-399 *2)) (-4 *2 (-162)))) (-1858 (*1 *2) (-12 (-4 *1 (-399 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))) (-1857 (*1 *2) (-12 (-4 *1 (-399 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))) (-1855 (*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))) (-1976 (*1 *2) (-12 (-4 *1 (-399 *3)) (-4 *3 (-162)) (-4 *3 (-344)) (-5 *2 (-1092 (-887 *3))))) (-1972 (*1 *2) (-12 (-4 *1 (-399 *3)) (-4 *3 (-162)) (-4 *3 (-344)) (-5 *2 (-1092 (-887 *3))))) (-2814 (*1 *1 *2 *1) (-12 (-5 *2 (-637 *3)) (-4 *1 (-399 *3)) (-4 *3 (-162)))))
+(-13 (-348 |t#1|) (-10 -8 (-15 -2071 ((-1179 $))) (-15 -3497 ((-1179 |t#1|) $)) (-15 -3497 ((-637 |t#1|) (-1179 $))) (-15 -4078 (|t#1| $ (-516))) (-15 -3496 ((-1179 (-637 |t#1|)))) (-15 -1964 ((-594 (-887 |t#1|)))) (-15 -1861 ($ (-1179 |t#1|))) (-15 -4246 ((-1179 |t#1|) $)) (-15 -4246 ($ (-1179 |t#1|))) (-15 -1860 (|t#1|)) (-15 -1859 (|t#1|)) (-15 -1858 ((-637 |t#1|))) (-15 -1857 ((-637 |t#1|))) (-15 -1856 ((-637 |t#1|) $)) (-15 -1855 ((-637 |t#1|) $)) (IF (|has| |t#1| (-344)) (PROGN (-15 -1976 ((-1092 (-887 |t#1|)))) (-15 -1972 ((-1092 (-887 |t#1|))))) |%noBranch|) (-15 -2814 ($ (-637 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-805)) . T) ((-348 |#1|) . T) ((-599 |#1|) . T) ((-666 |#1|) . T) ((-669) . T) ((-693 |#1|) . T) ((-710) . T) ((-989 |#1|) . T) ((-1027) . T))
+((-3393 (((-386 |#1|) (-386 |#1|) (-1 (-386 |#1|) |#1|)) 21)) (-1862 (((-386 |#1|) (-386 |#1|) (-386 |#1|)) 16)))
+(((-400 |#1|) (-10 -7 (-15 -3393 ((-386 |#1|) (-386 |#1|) (-1 (-386 |#1|) |#1|))) (-15 -1862 ((-386 |#1|) (-386 |#1|) (-386 |#1|)))) (-523)) (T -400))
+((-1862 (*1 *2 *2 *2) (-12 (-5 *2 (-386 *3)) (-4 *3 (-523)) (-5 *1 (-400 *3)))) (-3393 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-386 *4) *4)) (-4 *4 (-523)) (-5 *2 (-386 *4)) (-5 *1 (-400 *4)))))
+(-10 -7 (-15 -3393 ((-386 |#1|) (-386 |#1|) (-1 (-386 |#1|) |#1|))) (-15 -1862 ((-386 |#1|) (-386 |#1|) (-386 |#1|))))
+((-3347 (((-594 (-1098)) $) 72)) (-3349 (((-388 (-1092 $)) $ (-569 $)) 273)) (-1614 (($ $ (-275 $)) NIL) (($ $ (-594 (-275 $))) NIL) (($ $ (-594 (-569 $)) (-594 $)) 237)) (-3432 (((-3 (-569 $) #1="failed") $) NIL) (((-3 (-1098) #1#) $) 75) (((-3 (-516) #1#) $) NIL) (((-3 |#2| #1#) $) 233) (((-3 (-388 (-887 |#2|)) #1#) $) 324) (((-3 (-887 |#2|) #1#) $) 235) (((-3 (-388 (-516)) #1#) $) NIL)) (-3431 (((-569 $) $) NIL) (((-1098) $) 30) (((-516) $) NIL) ((|#2| $) 231) (((-388 (-887 |#2|)) $) 305) (((-887 |#2|) $) 232) (((-388 (-516)) $) NIL)) (-2273 (((-111) (-111)) 47)) (-3260 (($ $) 87)) (-1612 (((-3 (-569 $) "failed") $) 228)) (-1611 (((-594 (-569 $)) $) 229)) (-3087 (((-3 (-594 $) "failed") $) 247)) (-3089 (((-3 (-2 (|:| |val| $) (|:| -2427 (-516))) "failed") $) 254)) (-3086 (((-3 (-594 $) "failed") $) 245)) (-1863 (((-3 (-2 (|:| -4229 (-516)) (|:| |var| (-569 $))) "failed") $) 264)) (-3088 (((-3 (-2 (|:| |var| (-569 $)) (|:| -2427 (-516))) "failed") $) 251) (((-3 (-2 (|:| |var| (-569 $)) (|:| -2427 (-516))) "failed") $ (-111)) 217) (((-3 (-2 (|:| |var| (-569 $)) (|:| -2427 (-516))) "failed") $ (-1098)) 219)) (-1866 (((-110) $) 19)) (-1865 ((|#2| $) 21)) (-4046 (($ $ (-569 $) $) NIL) (($ $ (-594 (-569 $)) (-594 $)) 236) (($ $ (-594 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL) (($ $ (-594 (-1098)) (-594 (-1 $ $))) NIL) (($ $ (-594 (-1098)) (-594 (-1 $ (-594 $)))) 96) (($ $ (-1098) (-1 $ (-594 $))) NIL) (($ $ (-1098) (-1 $ $)) NIL) (($ $ (-594 (-111)) (-594 (-1 $ $))) NIL) (($ $ (-594 (-111)) (-594 (-1 $ (-594 $)))) NIL) (($ $ (-111) (-1 $ (-594 $))) NIL) (($ $ (-111) (-1 $ $)) NIL) (($ $ (-1098)) 57) (($ $ (-594 (-1098))) 240) (($ $) 241) (($ $ (-111) $ (-1098)) 60) (($ $ (-594 (-111)) (-594 $) (-1098)) 67) (($ $ (-594 (-1098)) (-594 (-719)) (-594 (-1 $ $))) 107) (($ $ (-594 (-1098)) (-594 (-719)) (-594 (-1 $ (-594 $)))) 242) (($ $ (-1098) (-719) (-1 $ (-594 $))) 94) (($ $ (-1098) (-719) (-1 $ $)) 93)) (-4078 (($ (-111) $) NIL) (($ (-111) $ $) NIL) (($ (-111) $ $ $) NIL) (($ (-111) $ $ $ $) NIL) (($ (-111) (-594 $)) 106)) (-4089 (($ $ (-594 (-1098)) (-594 (-719))) NIL) (($ $ (-1098) (-719)) NIL) (($ $ (-594 (-1098))) NIL) (($ $ (-1098)) 238)) (-3259 (($ $) 284)) (-4246 (((-831 (-516)) $) 257) (((-831 (-359)) $) 261) (($ (-386 $)) 320) (((-505) $) NIL)) (-4233 (((-805) $) 239) (($ (-569 $)) 84) (($ (-1098)) 26) (($ |#2|) NIL) (($ (-1050 |#2| (-569 $))) NIL) (($ (-388 |#2|)) 289) (($ (-887 (-388 |#2|))) 329) (($ (-388 (-887 (-388 |#2|)))) 301) (($ (-388 (-887 |#2|))) 295) (($ $) NIL) (($ (-887 |#2|)) 185) (($ (-388 (-516))) 334) (($ (-516)) NIL)) (-3385 (((-719)) 79)) (-2272 (((-110) (-111)) 41)) (-1864 (($ (-1098) $) 33) (($ (-1098) $ $) 34) (($ (-1098) $ $ $) 35) (($ (-1098) $ $ $ $) 36) (($ (-1098) (-594 $)) 39)) (* (($ (-388 (-516)) $) NIL) (($ $ (-388 (-516))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-516) $) NIL) (($ (-719) $) NIL) (($ (-860) $) NIL)))
+(((-401 |#1| |#2|) (-10 -8 (-15 * (|#1| (-860) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-516) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3385 ((-719))) (-15 -4233 (|#1| (-516))) (-15 -3431 ((-388 (-516)) |#1|)) (-15 -3432 ((-3 (-388 (-516)) #1="failed") |#1|)) (-15 -4233 (|#1| (-388 (-516)))) (-15 -4246 ((-505) |#1|)) (-15 -3431 ((-887 |#2|) |#1|)) (-15 -3432 ((-3 (-887 |#2|) #1#) |#1|)) (-15 -4233 (|#1| (-887 |#2|))) (-15 -4089 (|#1| |#1| (-1098))) (-15 -4089 (|#1| |#1| (-594 (-1098)))) (-15 -4089 (|#1| |#1| (-1098) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)) (-594 (-719)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4233 (|#1| |#1|)) (-15 * (|#1| |#1| (-388 (-516)))) (-15 * (|#1| (-388 (-516)) |#1|)) (-15 -3431 ((-388 (-887 |#2|)) |#1|)) (-15 -3432 ((-3 (-388 (-887 |#2|)) #1#) |#1|)) (-15 -4233 (|#1| (-388 (-887 |#2|)))) (-15 -3349 ((-388 (-1092 |#1|)) |#1| (-569 |#1|))) (-15 -4233 (|#1| (-388 (-887 (-388 |#2|))))) (-15 -4233 (|#1| (-887 (-388 |#2|)))) (-15 -4233 (|#1| (-388 |#2|))) (-15 -3259 (|#1| |#1|)) (-15 -4246 (|#1| (-386 |#1|))) (-15 -4046 (|#1| |#1| (-1098) (-719) (-1 |#1| |#1|))) (-15 -4046 (|#1| |#1| (-1098) (-719) (-1 |#1| (-594 |#1|)))) (-15 -4046 (|#1| |#1| (-594 (-1098)) (-594 (-719)) (-594 (-1 |#1| (-594 |#1|))))) (-15 -4046 (|#1| |#1| (-594 (-1098)) (-594 (-719)) (-594 (-1 |#1| |#1|)))) (-15 -3089 ((-3 (-2 (|:| |val| |#1|) (|:| -2427 (-516))) "failed") |#1|)) (-15 -3088 ((-3 (-2 (|:| |var| (-569 |#1|)) (|:| -2427 (-516))) "failed") |#1| (-1098))) (-15 -3088 ((-3 (-2 (|:| |var| (-569 |#1|)) (|:| -2427 (-516))) "failed") |#1| (-111))) (-15 -3260 (|#1| |#1|)) (-15 -4233 (|#1| (-1050 |#2| (-569 |#1|)))) (-15 -1863 ((-3 (-2 (|:| -4229 (-516)) (|:| |var| (-569 |#1|))) "failed") |#1|)) (-15 -3086 ((-3 (-594 |#1|) "failed") |#1|)) (-15 -3088 ((-3 (-2 (|:| |var| (-569 |#1|)) (|:| -2427 (-516))) "failed") |#1|)) (-15 -3087 ((-3 (-594 |#1|) "failed") |#1|)) (-15 -4046 (|#1| |#1| (-594 (-111)) (-594 |#1|) (-1098))) (-15 -4046 (|#1| |#1| (-111) |#1| (-1098))) (-15 -4046 (|#1| |#1|)) (-15 -4046 (|#1| |#1| (-594 (-1098)))) (-15 -4046 (|#1| |#1| (-1098))) (-15 -1864 (|#1| (-1098) (-594 |#1|))) (-15 -1864 (|#1| (-1098) |#1| |#1| |#1| |#1|)) (-15 -1864 (|#1| (-1098) |#1| |#1| |#1|)) (-15 -1864 (|#1| (-1098) |#1| |#1|)) (-15 -1864 (|#1| (-1098) |#1|)) (-15 -3347 ((-594 (-1098)) |#1|)) (-15 -1865 (|#2| |#1|)) (-15 -1866 ((-110) |#1|)) (-15 -3431 (|#2| |#1|)) (-15 -3432 ((-3 |#2| #1#) |#1|)) (-15 -4233 (|#1| |#2|)) (-15 -3432 ((-3 (-516) #1#) |#1|)) (-15 -3431 ((-516) |#1|)) (-15 -4246 ((-831 (-359)) |#1|)) (-15 -4246 ((-831 (-516)) |#1|)) (-15 -3431 ((-1098) |#1|)) (-15 -3432 ((-3 (-1098) #1#) |#1|)) (-15 -4233 (|#1| (-1098))) (-15 -4046 (|#1| |#1| (-111) (-1 |#1| |#1|))) (-15 -4046 (|#1| |#1| (-111) (-1 |#1| (-594 |#1|)))) (-15 -4046 (|#1| |#1| (-594 (-111)) (-594 (-1 |#1| (-594 |#1|))))) (-15 -4046 (|#1| |#1| (-594 (-111)) (-594 (-1 |#1| |#1|)))) (-15 -4046 (|#1| |#1| (-1098) (-1 |#1| |#1|))) (-15 -4046 (|#1| |#1| (-1098) (-1 |#1| (-594 |#1|)))) (-15 -4046 (|#1| |#1| (-594 (-1098)) (-594 (-1 |#1| (-594 |#1|))))) (-15 -4046 (|#1| |#1| (-594 (-1098)) (-594 (-1 |#1| |#1|)))) (-15 -2272 ((-110) (-111))) (-15 -2273 ((-111) (-111))) (-15 -1611 ((-594 (-569 |#1|)) |#1|)) (-15 -1612 ((-3 (-569 |#1|) "failed") |#1|)) (-15 -1614 (|#1| |#1| (-594 (-569 |#1|)) (-594 |#1|))) (-15 -1614 (|#1| |#1| (-594 (-275 |#1|)))) (-15 -1614 (|#1| |#1| (-275 |#1|))) (-15 -4078 (|#1| (-111) (-594 |#1|))) (-15 -4078 (|#1| (-111) |#1| |#1| |#1| |#1|)) (-15 -4078 (|#1| (-111) |#1| |#1| |#1|)) (-15 -4078 (|#1| (-111) |#1| |#1|)) (-15 -4078 (|#1| (-111) |#1|)) (-15 -4046 (|#1| |#1| (-594 |#1|) (-594 |#1|))) (-15 -4046 (|#1| |#1| |#1| |#1|)) (-15 -4046 (|#1| |#1| (-275 |#1|))) (-15 -4046 (|#1| |#1| (-594 (-275 |#1|)))) (-15 -4046 (|#1| |#1| (-594 (-569 |#1|)) (-594 |#1|))) (-15 -4046 (|#1| |#1| (-569 |#1|) |#1|)) (-15 -3431 ((-569 |#1|) |#1|)) (-15 -3432 ((-3 (-569 |#1|) #1#) |#1|)) (-15 -4233 (|#1| (-569 |#1|))) (-15 -4233 ((-805) |#1|))) (-402 |#2|) (-795)) (T -401))
+((-2273 (*1 *2 *2) (-12 (-5 *2 (-111)) (-4 *4 (-795)) (-5 *1 (-401 *3 *4)) (-4 *3 (-402 *4)))) (-2272 (*1 *2 *3) (-12 (-5 *3 (-111)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-401 *4 *5)) (-4 *4 (-402 *5)))) (-3385 (*1 *2) (-12 (-4 *4 (-795)) (-5 *2 (-719)) (-5 *1 (-401 *3 *4)) (-4 *3 (-402 *4)))))
+(-10 -8 (-15 * (|#1| (-860) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-516) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3385 ((-719))) (-15 -4233 (|#1| (-516))) (-15 -3431 ((-388 (-516)) |#1|)) (-15 -3432 ((-3 (-388 (-516)) #1="failed") |#1|)) (-15 -4233 (|#1| (-388 (-516)))) (-15 -4246 ((-505) |#1|)) (-15 -3431 ((-887 |#2|) |#1|)) (-15 -3432 ((-3 (-887 |#2|) #1#) |#1|)) (-15 -4233 (|#1| (-887 |#2|))) (-15 -4089 (|#1| |#1| (-1098))) (-15 -4089 (|#1| |#1| (-594 (-1098)))) (-15 -4089 (|#1| |#1| (-1098) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)) (-594 (-719)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4233 (|#1| |#1|)) (-15 * (|#1| |#1| (-388 (-516)))) (-15 * (|#1| (-388 (-516)) |#1|)) (-15 -3431 ((-388 (-887 |#2|)) |#1|)) (-15 -3432 ((-3 (-388 (-887 |#2|)) #1#) |#1|)) (-15 -4233 (|#1| (-388 (-887 |#2|)))) (-15 -3349 ((-388 (-1092 |#1|)) |#1| (-569 |#1|))) (-15 -4233 (|#1| (-388 (-887 (-388 |#2|))))) (-15 -4233 (|#1| (-887 (-388 |#2|)))) (-15 -4233 (|#1| (-388 |#2|))) (-15 -3259 (|#1| |#1|)) (-15 -4246 (|#1| (-386 |#1|))) (-15 -4046 (|#1| |#1| (-1098) (-719) (-1 |#1| |#1|))) (-15 -4046 (|#1| |#1| (-1098) (-719) (-1 |#1| (-594 |#1|)))) (-15 -4046 (|#1| |#1| (-594 (-1098)) (-594 (-719)) (-594 (-1 |#1| (-594 |#1|))))) (-15 -4046 (|#1| |#1| (-594 (-1098)) (-594 (-719)) (-594 (-1 |#1| |#1|)))) (-15 -3089 ((-3 (-2 (|:| |val| |#1|) (|:| -2427 (-516))) "failed") |#1|)) (-15 -3088 ((-3 (-2 (|:| |var| (-569 |#1|)) (|:| -2427 (-516))) "failed") |#1| (-1098))) (-15 -3088 ((-3 (-2 (|:| |var| (-569 |#1|)) (|:| -2427 (-516))) "failed") |#1| (-111))) (-15 -3260 (|#1| |#1|)) (-15 -4233 (|#1| (-1050 |#2| (-569 |#1|)))) (-15 -1863 ((-3 (-2 (|:| -4229 (-516)) (|:| |var| (-569 |#1|))) "failed") |#1|)) (-15 -3086 ((-3 (-594 |#1|) "failed") |#1|)) (-15 -3088 ((-3 (-2 (|:| |var| (-569 |#1|)) (|:| -2427 (-516))) "failed") |#1|)) (-15 -3087 ((-3 (-594 |#1|) "failed") |#1|)) (-15 -4046 (|#1| |#1| (-594 (-111)) (-594 |#1|) (-1098))) (-15 -4046 (|#1| |#1| (-111) |#1| (-1098))) (-15 -4046 (|#1| |#1|)) (-15 -4046 (|#1| |#1| (-594 (-1098)))) (-15 -4046 (|#1| |#1| (-1098))) (-15 -1864 (|#1| (-1098) (-594 |#1|))) (-15 -1864 (|#1| (-1098) |#1| |#1| |#1| |#1|)) (-15 -1864 (|#1| (-1098) |#1| |#1| |#1|)) (-15 -1864 (|#1| (-1098) |#1| |#1|)) (-15 -1864 (|#1| (-1098) |#1|)) (-15 -3347 ((-594 (-1098)) |#1|)) (-15 -1865 (|#2| |#1|)) (-15 -1866 ((-110) |#1|)) (-15 -3431 (|#2| |#1|)) (-15 -3432 ((-3 |#2| #1#) |#1|)) (-15 -4233 (|#1| |#2|)) (-15 -3432 ((-3 (-516) #1#) |#1|)) (-15 -3431 ((-516) |#1|)) (-15 -4246 ((-831 (-359)) |#1|)) (-15 -4246 ((-831 (-516)) |#1|)) (-15 -3431 ((-1098) |#1|)) (-15 -3432 ((-3 (-1098) #1#) |#1|)) (-15 -4233 (|#1| (-1098))) (-15 -4046 (|#1| |#1| (-111) (-1 |#1| |#1|))) (-15 -4046 (|#1| |#1| (-111) (-1 |#1| (-594 |#1|)))) (-15 -4046 (|#1| |#1| (-594 (-111)) (-594 (-1 |#1| (-594 |#1|))))) (-15 -4046 (|#1| |#1| (-594 (-111)) (-594 (-1 |#1| |#1|)))) (-15 -4046 (|#1| |#1| (-1098) (-1 |#1| |#1|))) (-15 -4046 (|#1| |#1| (-1098) (-1 |#1| (-594 |#1|)))) (-15 -4046 (|#1| |#1| (-594 (-1098)) (-594 (-1 |#1| (-594 |#1|))))) (-15 -4046 (|#1| |#1| (-594 (-1098)) (-594 (-1 |#1| |#1|)))) (-15 -2272 ((-110) (-111))) (-15 -2273 ((-111) (-111))) (-15 -1611 ((-594 (-569 |#1|)) |#1|)) (-15 -1612 ((-3 (-569 |#1|) "failed") |#1|)) (-15 -1614 (|#1| |#1| (-594 (-569 |#1|)) (-594 |#1|))) (-15 -1614 (|#1| |#1| (-594 (-275 |#1|)))) (-15 -1614 (|#1| |#1| (-275 |#1|))) (-15 -4078 (|#1| (-111) (-594 |#1|))) (-15 -4078 (|#1| (-111) |#1| |#1| |#1| |#1|)) (-15 -4078 (|#1| (-111) |#1| |#1| |#1|)) (-15 -4078 (|#1| (-111) |#1| |#1|)) (-15 -4078 (|#1| (-111) |#1|)) (-15 -4046 (|#1| |#1| (-594 |#1|) (-594 |#1|))) (-15 -4046 (|#1| |#1| |#1| |#1|)) (-15 -4046 (|#1| |#1| (-275 |#1|))) (-15 -4046 (|#1| |#1| (-594 (-275 |#1|)))) (-15 -4046 (|#1| |#1| (-594 (-569 |#1|)) (-594 |#1|))) (-15 -4046 (|#1| |#1| (-569 |#1|) |#1|)) (-15 -3431 ((-569 |#1|) |#1|)) (-15 -3432 ((-3 (-569 |#1|) #1#) |#1|)) (-15 -4233 (|#1| (-569 |#1|))) (-15 -4233 ((-805) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 116 (|has| |#1| (-25)))) (-3347 (((-594 (-1098)) $) 203)) (-3349 (((-388 (-1092 $)) $ (-569 $)) 171 (|has| |#1| (-523)))) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 143 (|has| |#1| (-523)))) (-2118 (($ $) 144 (|has| |#1| (-523)))) (-2116 (((-110) $) 146 (|has| |#1| (-523)))) (-1610 (((-594 (-569 $)) $) 44)) (-1319 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-1614 (($ $ (-275 $)) 56) (($ $ (-594 (-275 $))) 55) (($ $ (-594 (-569 $)) (-594 $)) 54)) (-4053 (($ $) 163 (|has| |#1| (-523)))) (-4245 (((-386 $) $) 164 (|has| |#1| (-523)))) (-1655 (((-110) $ $) 154 (|has| |#1| (-523)))) (-3815 (($) 102 (-3810 (|has| |#1| (-1038)) (|has| |#1| (-25))) CONST)) (-3432 (((-3 (-569 $) #1="failed") $) 69) (((-3 (-1098) #1#) $) 216) (((-3 (-516) #1#) $) 209 (|has| |#1| (-975 (-516)))) (((-3 |#1| #1#) $) 207) (((-3 (-388 (-887 |#1|)) #1#) $) 169 (|has| |#1| (-523))) (((-3 (-887 |#1|) #1#) $) 123 (|has| |#1| (-984))) (((-3 (-388 (-516)) #1#) $) 95 (-3810 (-12 (|has| |#1| (-975 (-516))) (|has| |#1| (-523))) (|has| |#1| (-975 (-388 (-516))))))) (-3431 (((-569 $) $) 68) (((-1098) $) 215) (((-516) $) 210 (|has| |#1| (-975 (-516)))) ((|#1| $) 206) (((-388 (-887 |#1|)) $) 168 (|has| |#1| (-523))) (((-887 |#1|) $) 122 (|has| |#1| (-984))) (((-388 (-516)) $) 94 (-3810 (-12 (|has| |#1| (-975 (-516))) (|has| |#1| (-523))) (|has| |#1| (-975 (-388 (-516))))))) (-2824 (($ $ $) 158 (|has| |#1| (-523)))) (-2297 (((-637 (-516)) (-637 $)) 137 (-3119 (|has| |#1| (-593 (-516))) (|has| |#1| (-984)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) 136 (-3119 (|has| |#1| (-593 (-516))) (|has| |#1| (-984)))) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) 135 (|has| |#1| (-984))) (((-637 |#1|) (-637 $)) 134 (|has| |#1| (-984)))) (-3741 (((-3 $ "failed") $) 105 (|has| |#1| (-1038)))) (-2823 (($ $ $) 157 (|has| |#1| (-523)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 152 (|has| |#1| (-523)))) (-4005 (((-110) $) 165 (|has| |#1| (-523)))) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) 212 (|has| |#1| (-827 (-516)))) (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) 211 (|has| |#1| (-827 (-359))))) (-2833 (($ $) 51) (($ (-594 $)) 50)) (-1609 (((-594 (-111)) $) 43)) (-2273 (((-111) (-111)) 42)) (-2436 (((-110) $) 103 (|has| |#1| (-1038)))) (-2936 (((-110) $) 22 (|has| $ (-975 (-516))))) (-3260 (($ $) 186 (|has| |#1| (-984)))) (-3262 (((-1050 |#1| (-569 $)) $) 187 (|has| |#1| (-984)))) (-1652 (((-3 (-594 $) #2="failed") (-594 $) $) 161 (|has| |#1| (-523)))) (-1607 (((-1092 $) (-569 $)) 25 (|has| $ (-984)))) (-3596 (($ $ $) 13)) (-3597 (($ $ $) 14)) (-4234 (($ (-1 $ $) (-569 $)) 36)) (-1612 (((-3 (-569 $) "failed") $) 46)) (-1963 (($ (-594 $)) 150 (|has| |#1| (-523))) (($ $ $) 149 (|has| |#1| (-523)))) (-3513 (((-1081) $) 9)) (-1611 (((-594 (-569 $)) $) 45)) (-2254 (($ (-111) $) 38) (($ (-111) (-594 $)) 37)) (-3087 (((-3 (-594 $) "failed") $) 192 (|has| |#1| (-1038)))) (-3089 (((-3 (-2 (|:| |val| $) (|:| -2427 (-516))) "failed") $) 183 (|has| |#1| (-984)))) (-3086 (((-3 (-594 $) "failed") $) 190 (|has| |#1| (-25)))) (-1863 (((-3 (-2 (|:| -4229 (-516)) (|:| |var| (-569 $))) "failed") $) 189 (|has| |#1| (-25)))) (-3088 (((-3 (-2 (|:| |var| (-569 $)) (|:| -2427 (-516))) "failed") $) 191 (|has| |#1| (-1038))) (((-3 (-2 (|:| |var| (-569 $)) (|:| -2427 (-516))) "failed") $ (-111)) 185 (|has| |#1| (-984))) (((-3 (-2 (|:| |var| (-569 $)) (|:| -2427 (-516))) "failed") $ (-1098)) 184 (|has| |#1| (-984)))) (-2893 (((-110) $ (-111)) 40) (((-110) $ (-1098)) 39)) (-2668 (($ $) 107 (-3810 (|has| |#1| (-453)) (|has| |#1| (-523))))) (-2863 (((-719) $) 47)) (-3514 (((-1045) $) 10)) (-1866 (((-110) $) 205)) (-1865 ((|#1| $) 204)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 151 (|has| |#1| (-523)))) (-3419 (($ (-594 $)) 148 (|has| |#1| (-523))) (($ $ $) 147 (|has| |#1| (-523)))) (-1608 (((-110) $ $) 35) (((-110) $ (-1098)) 34)) (-4011 (((-386 $) $) 162 (|has| |#1| (-523)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 160 (|has| |#1| (-523))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 159 (|has| |#1| (-523)))) (-3740 (((-3 $ "failed") $ $) 142 (|has| |#1| (-523)))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 153 (|has| |#1| (-523)))) (-2937 (((-110) $) 23 (|has| $ (-975 (-516))))) (-4046 (($ $ (-569 $) $) 67) (($ $ (-594 (-569 $)) (-594 $)) 66) (($ $ (-594 (-275 $))) 65) (($ $ (-275 $)) 64) (($ $ $ $) 63) (($ $ (-594 $) (-594 $)) 62) (($ $ (-594 (-1098)) (-594 (-1 $ $))) 33) (($ $ (-594 (-1098)) (-594 (-1 $ (-594 $)))) 32) (($ $ (-1098) (-1 $ (-594 $))) 31) (($ $ (-1098) (-1 $ $)) 30) (($ $ (-594 (-111)) (-594 (-1 $ $))) 29) (($ $ (-594 (-111)) (-594 (-1 $ (-594 $)))) 28) (($ $ (-111) (-1 $ (-594 $))) 27) (($ $ (-111) (-1 $ $)) 26) (($ $ (-1098)) 197 (|has| |#1| (-572 (-505)))) (($ $ (-594 (-1098))) 196 (|has| |#1| (-572 (-505)))) (($ $) 195 (|has| |#1| (-572 (-505)))) (($ $ (-111) $ (-1098)) 194 (|has| |#1| (-572 (-505)))) (($ $ (-594 (-111)) (-594 $) (-1098)) 193 (|has| |#1| (-572 (-505)))) (($ $ (-594 (-1098)) (-594 (-719)) (-594 (-1 $ $))) 182 (|has| |#1| (-984))) (($ $ (-594 (-1098)) (-594 (-719)) (-594 (-1 $ (-594 $)))) 181 (|has| |#1| (-984))) (($ $ (-1098) (-719) (-1 $ (-594 $))) 180 (|has| |#1| (-984))) (($ $ (-1098) (-719) (-1 $ $)) 179 (|has| |#1| (-984)))) (-1654 (((-719) $) 155 (|has| |#1| (-523)))) (-4078 (($ (-111) $) 61) (($ (-111) $ $) 60) (($ (-111) $ $ $) 59) (($ (-111) $ $ $ $) 58) (($ (-111) (-594 $)) 57)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 156 (|has| |#1| (-523)))) (-1613 (($ $) 49) (($ $ $) 48)) (-4089 (($ $ (-594 (-1098)) (-594 (-719))) 128 (|has| |#1| (-984))) (($ $ (-1098) (-719)) 127 (|has| |#1| (-984))) (($ $ (-594 (-1098))) 126 (|has| |#1| (-984))) (($ $ (-1098)) 125 (|has| |#1| (-984)))) (-3259 (($ $) 176 (|has| |#1| (-523)))) (-3261 (((-1050 |#1| (-569 $)) $) 177 (|has| |#1| (-523)))) (-3459 (($ $) 24 (|has| $ (-984)))) (-4246 (((-831 (-516)) $) 214 (|has| |#1| (-572 (-831 (-516))))) (((-831 (-359)) $) 213 (|has| |#1| (-572 (-831 (-359))))) (($ (-386 $)) 178 (|has| |#1| (-523))) (((-505) $) 97 (|has| |#1| (-572 (-505))))) (-3273 (($ $ $) 111 (|has| |#1| (-453)))) (-2620 (($ $ $) 112 (|has| |#1| (-453)))) (-4233 (((-805) $) 11) (($ (-569 $)) 70) (($ (-1098)) 217) (($ |#1|) 208) (($ (-1050 |#1| (-569 $))) 188 (|has| |#1| (-984))) (($ (-388 |#1|)) 174 (|has| |#1| (-523))) (($ (-887 (-388 |#1|))) 173 (|has| |#1| (-523))) (($ (-388 (-887 (-388 |#1|)))) 172 (|has| |#1| (-523))) (($ (-388 (-887 |#1|))) 170 (|has| |#1| (-523))) (($ $) 141 (|has| |#1| (-523))) (($ (-887 |#1|)) 124 (|has| |#1| (-984))) (($ (-388 (-516))) 96 (-3810 (|has| |#1| (-523)) (-12 (|has| |#1| (-975 (-516))) (|has| |#1| (-523))) (|has| |#1| (-975 (-388 (-516)))))) (($ (-516)) 93 (-3810 (|has| |#1| (-984)) (|has| |#1| (-975 (-516)))))) (-2965 (((-3 $ "failed") $) 138 (|has| |#1| (-138)))) (-3385 (((-719)) 133 (|has| |#1| (-984)))) (-2850 (($ $) 53) (($ (-594 $)) 52)) (-2272 (((-110) (-111)) 41)) (-2117 (((-110) $ $) 145 (|has| |#1| (-523)))) (-1864 (($ (-1098) $) 202) (($ (-1098) $ $) 201) (($ (-1098) $ $ $) 200) (($ (-1098) $ $ $ $) 199) (($ (-1098) (-594 $)) 198)) (-3581 (($ $ (-516)) 110 (-3810 (|has| |#1| (-453)) (|has| |#1| (-523)))) (($ $ (-719)) 104 (|has| |#1| (-1038))) (($ $ (-860)) 100 (|has| |#1| (-1038)))) (-2920 (($) 115 (|has| |#1| (-25)) CONST)) (-2927 (($) 101 (|has| |#1| (-1038)) CONST)) (-2932 (($ $ (-594 (-1098)) (-594 (-719))) 132 (|has| |#1| (-984))) (($ $ (-1098) (-719)) 131 (|has| |#1| (-984))) (($ $ (-594 (-1098))) 130 (|has| |#1| (-984))) (($ $ (-1098)) 129 (|has| |#1| (-984)))) (-2826 (((-110) $ $) 16)) (-2827 (((-110) $ $) 17)) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 15)) (-2948 (((-110) $ $) 18)) (-4224 (($ (-1050 |#1| (-569 $)) (-1050 |#1| (-569 $))) 175 (|has| |#1| (-523))) (($ $ $) 108 (-3810 (|has| |#1| (-453)) (|has| |#1| (-523))))) (-4116 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-4118 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-516)) 109 (-3810 (|has| |#1| (-453)) (|has| |#1| (-523)))) (($ $ (-719)) 106 (|has| |#1| (-1038))) (($ $ (-860)) 99 (|has| |#1| (-1038)))) (* (($ (-388 (-516)) $) 167 (|has| |#1| (-523))) (($ $ (-388 (-516))) 166 (|has| |#1| (-523))) (($ |#1| $) 140 (|has| |#1| (-162))) (($ $ |#1|) 139 (|has| |#1| (-162))) (($ (-516) $) 121 (|has| |#1| (-21))) (($ (-719) $) 117 (|has| |#1| (-25))) (($ (-860) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1038)))))
+(((-402 |#1|) (-133) (-795)) (T -402))
+((-1866 (*1 *2 *1) (-12 (-4 *1 (-402 *3)) (-4 *3 (-795)) (-5 *2 (-110)))) (-1865 (*1 *2 *1) (-12 (-4 *1 (-402 *2)) (-4 *2 (-795)))) (-3347 (*1 *2 *1) (-12 (-4 *1 (-402 *3)) (-4 *3 (-795)) (-5 *2 (-594 (-1098))))) (-1864 (*1 *1 *2 *1) (-12 (-5 *2 (-1098)) (-4 *1 (-402 *3)) (-4 *3 (-795)))) (-1864 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1098)) (-4 *1 (-402 *3)) (-4 *3 (-795)))) (-1864 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1098)) (-4 *1 (-402 *3)) (-4 *3 (-795)))) (-1864 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1098)) (-4 *1 (-402 *3)) (-4 *3 (-795)))) (-1864 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-594 *1)) (-4 *1 (-402 *4)) (-4 *4 (-795)))) (-4046 (*1 *1 *1 *2) (-12 (-5 *2 (-1098)) (-4 *1 (-402 *3)) (-4 *3 (-795)) (-4 *3 (-572 (-505))))) (-4046 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-1098))) (-4 *1 (-402 *3)) (-4 *3 (-795)) (-4 *3 (-572 (-505))))) (-4046 (*1 *1 *1) (-12 (-4 *1 (-402 *2)) (-4 *2 (-795)) (-4 *2 (-572 (-505))))) (-4046 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-111)) (-5 *3 (-1098)) (-4 *1 (-402 *4)) (-4 *4 (-795)) (-4 *4 (-572 (-505))))) (-4046 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-594 (-111))) (-5 *3 (-594 *1)) (-5 *4 (-1098)) (-4 *1 (-402 *5)) (-4 *5 (-795)) (-4 *5 (-572 (-505))))) (-3087 (*1 *2 *1) (|partial| -12 (-4 *3 (-1038)) (-4 *3 (-795)) (-5 *2 (-594 *1)) (-4 *1 (-402 *3)))) (-3088 (*1 *2 *1) (|partial| -12 (-4 *3 (-1038)) (-4 *3 (-795)) (-5 *2 (-2 (|:| |var| (-569 *1)) (|:| -2427 (-516)))) (-4 *1 (-402 *3)))) (-3086 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-795)) (-5 *2 (-594 *1)) (-4 *1 (-402 *3)))) (-1863 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-795)) (-5 *2 (-2 (|:| -4229 (-516)) (|:| |var| (-569 *1)))) (-4 *1 (-402 *3)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-1050 *3 (-569 *1))) (-4 *3 (-984)) (-4 *3 (-795)) (-4 *1 (-402 *3)))) (-3262 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *3 (-795)) (-5 *2 (-1050 *3 (-569 *1))) (-4 *1 (-402 *3)))) (-3260 (*1 *1 *1) (-12 (-4 *1 (-402 *2)) (-4 *2 (-795)) (-4 *2 (-984)))) (-3088 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-111)) (-4 *4 (-984)) (-4 *4 (-795)) (-5 *2 (-2 (|:| |var| (-569 *1)) (|:| -2427 (-516)))) (-4 *1 (-402 *4)))) (-3088 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1098)) (-4 *4 (-984)) (-4 *4 (-795)) (-5 *2 (-2 (|:| |var| (-569 *1)) (|:| -2427 (-516)))) (-4 *1 (-402 *4)))) (-3089 (*1 *2 *1) (|partial| -12 (-4 *3 (-984)) (-4 *3 (-795)) (-5 *2 (-2 (|:| |val| *1) (|:| -2427 (-516)))) (-4 *1 (-402 *3)))) (-4046 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-594 (-1098))) (-5 *3 (-594 (-719))) (-5 *4 (-594 (-1 *1 *1))) (-4 *1 (-402 *5)) (-4 *5 (-795)) (-4 *5 (-984)))) (-4046 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-594 (-1098))) (-5 *3 (-594 (-719))) (-5 *4 (-594 (-1 *1 (-594 *1)))) (-4 *1 (-402 *5)) (-4 *5 (-795)) (-4 *5 (-984)))) (-4046 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1098)) (-5 *3 (-719)) (-5 *4 (-1 *1 (-594 *1))) (-4 *1 (-402 *5)) (-4 *5 (-795)) (-4 *5 (-984)))) (-4046 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1098)) (-5 *3 (-719)) (-5 *4 (-1 *1 *1)) (-4 *1 (-402 *5)) (-4 *5 (-795)) (-4 *5 (-984)))) (-4246 (*1 *1 *2) (-12 (-5 *2 (-386 *1)) (-4 *1 (-402 *3)) (-4 *3 (-523)) (-4 *3 (-795)))) (-3261 (*1 *2 *1) (-12 (-4 *3 (-523)) (-4 *3 (-795)) (-5 *2 (-1050 *3 (-569 *1))) (-4 *1 (-402 *3)))) (-3259 (*1 *1 *1) (-12 (-4 *1 (-402 *2)) (-4 *2 (-795)) (-4 *2 (-523)))) (-4224 (*1 *1 *2 *2) (-12 (-5 *2 (-1050 *3 (-569 *1))) (-4 *3 (-523)) (-4 *3 (-795)) (-4 *1 (-402 *3)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-523)) (-4 *3 (-795)) (-4 *1 (-402 *3)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-887 (-388 *3))) (-4 *3 (-523)) (-4 *3 (-795)) (-4 *1 (-402 *3)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-388 (-887 (-388 *3)))) (-4 *3 (-523)) (-4 *3 (-795)) (-4 *1 (-402 *3)))) (-3349 (*1 *2 *1 *3) (-12 (-5 *3 (-569 *1)) (-4 *1 (-402 *4)) (-4 *4 (-795)) (-4 *4 (-523)) (-5 *2 (-388 (-1092 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-402 *3)) (-4 *3 (-795)) (-4 *3 (-1038)))))
+(-13 (-280) (-975 (-1098)) (-825 |t#1|) (-381 |t#1|) (-393 |t#1|) (-10 -8 (-15 -1866 ((-110) $)) (-15 -1865 (|t#1| $)) (-15 -3347 ((-594 (-1098)) $)) (-15 -1864 ($ (-1098) $)) (-15 -1864 ($ (-1098) $ $)) (-15 -1864 ($ (-1098) $ $ $)) (-15 -1864 ($ (-1098) $ $ $ $)) (-15 -1864 ($ (-1098) (-594 $))) (IF (|has| |t#1| (-572 (-505))) (PROGN (-6 (-572 (-505))) (-15 -4046 ($ $ (-1098))) (-15 -4046 ($ $ (-594 (-1098)))) (-15 -4046 ($ $)) (-15 -4046 ($ $ (-111) $ (-1098))) (-15 -4046 ($ $ (-594 (-111)) (-594 $) (-1098)))) |%noBranch|) (IF (|has| |t#1| (-1038)) (PROGN (-6 (-675)) (-15 ** ($ $ (-719))) (-15 -3087 ((-3 (-594 $) "failed") $)) (-15 -3088 ((-3 (-2 (|:| |var| (-569 $)) (|:| -2427 (-516))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-453)) (-6 (-453)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3086 ((-3 (-594 $) "failed") $)) (-15 -1863 ((-3 (-2 (|:| -4229 (-516)) (|:| |var| (-569 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-984)) (PROGN (-6 (-984)) (-6 (-975 (-887 |t#1|))) (-6 (-841 (-1098))) (-6 (-358 |t#1|)) (-15 -4233 ($ (-1050 |t#1| (-569 $)))) (-15 -3262 ((-1050 |t#1| (-569 $)) $)) (-15 -3260 ($ $)) (-15 -3088 ((-3 (-2 (|:| |var| (-569 $)) (|:| -2427 (-516))) "failed") $ (-111))) (-15 -3088 ((-3 (-2 (|:| |var| (-569 $)) (|:| -2427 (-516))) "failed") $ (-1098))) (-15 -3089 ((-3 (-2 (|:| |val| $) (|:| -2427 (-516))) "failed") $)) (-15 -4046 ($ $ (-594 (-1098)) (-594 (-719)) (-594 (-1 $ $)))) (-15 -4046 ($ $ (-594 (-1098)) (-594 (-719)) (-594 (-1 $ (-594 $))))) (-15 -4046 ($ $ (-1098) (-719) (-1 $ (-594 $)))) (-15 -4046 ($ $ (-1098) (-719) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-523)) (PROGN (-6 (-344)) (-6 (-975 (-388 (-887 |t#1|)))) (-15 -4246 ($ (-386 $))) (-15 -3261 ((-1050 |t#1| (-569 $)) $)) (-15 -3259 ($ $)) (-15 -4224 ($ (-1050 |t#1| (-569 $)) (-1050 |t#1| (-569 $)))) (-15 -4233 ($ (-388 |t#1|))) (-15 -4233 ($ (-887 (-388 |t#1|)))) (-15 -4233 ($ (-388 (-887 (-388 |t#1|))))) (-15 -3349 ((-388 (-1092 $)) $ (-569 $))) (IF (|has| |t#1| (-975 (-516))) (-6 (-975 (-388 (-516)))) |%noBranch|)) |%noBranch|)))
+(((-21) -3810 (|has| |#1| (-984)) (|has| |#1| (-523)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-21))) ((-23) -3810 (|has| |#1| (-984)) (|has| |#1| (-523)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3810 (|has| |#1| (-984)) (|has| |#1| (-523)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #1=(-388 (-516))) |has| |#1| (-523)) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-523)) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-523)) ((-109 |#1| |#1|) |has| |#1| (-162)) ((-109 $ $) |has| |#1| (-523)) ((-128) -3810 (|has| |#1| (-984)) (|has| |#1| (-523)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-21))) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-805)) . T) ((-162) |has| |#1| (-523)) ((-572 (-505)) |has| |#1| (-572 (-505))) ((-572 (-831 (-359))) |has| |#1| (-572 (-831 (-359)))) ((-572 (-831 (-516))) |has| |#1| (-572 (-831 (-516)))) ((-226) |has| |#1| (-523)) ((-272) |has| |#1| (-523)) ((-289) |has| |#1| (-523)) ((-291 $) . T) ((-280) . T) ((-344) |has| |#1| (-523)) ((-358 |#1|) |has| |#1| (-984)) ((-381 |#1|) . T) ((-393 |#1|) . T) ((-432) |has| |#1| (-523)) ((-453) |has| |#1| (-453)) ((-491 (-569 $) $) . T) ((-491 $ $) . T) ((-523) |has| |#1| (-523)) ((-599 #1#) |has| |#1| (-523)) ((-599 |#1|) |has| |#1| (-162)) ((-599 $) -3810 (|has| |#1| (-984)) (|has| |#1| (-523)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-593 (-516)) -12 (|has| |#1| (-593 (-516))) (|has| |#1| (-984))) ((-593 |#1|) |has| |#1| (-984)) ((-666 #1#) |has| |#1| (-523)) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-523)) ((-675) -3810 (|has| |#1| (-1038)) (|has| |#1| (-984)) (|has| |#1| (-523)) (|has| |#1| (-453)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-795) . T) ((-841 (-1098)) |has| |#1| (-984)) ((-827 (-359)) |has| |#1| (-827 (-359))) ((-827 (-516)) |has| |#1| (-827 (-516))) ((-825 |#1|) . T) ((-862) |has| |#1| (-523)) ((-975 (-388 (-516))) -3810 (|has| |#1| (-975 (-388 (-516)))) (-12 (|has| |#1| (-523)) (|has| |#1| (-975 (-516))))) ((-975 (-388 (-887 |#1|))) |has| |#1| (-523)) ((-975 (-516)) |has| |#1| (-975 (-516))) ((-975 (-569 $)) . T) ((-975 (-887 |#1|)) |has| |#1| (-984)) ((-975 (-1098)) . T) ((-975 |#1|) . T) ((-989 #1#) |has| |#1| (-523)) ((-989 |#1|) |has| |#1| (-162)) ((-989 $) |has| |#1| (-523)) ((-984) -3810 (|has| |#1| (-984)) (|has| |#1| (-523)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-990) -3810 (|has| |#1| (-984)) (|has| |#1| (-523)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-1038) -3810 (|has| |#1| (-1038)) (|has| |#1| (-984)) (|has| |#1| (-523)) (|has| |#1| (-453)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-1027) . T) ((-1134) . T) ((-1138) |has| |#1| (-523)))
+((-4234 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-403 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4234 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-984) (-795)) (-402 |#1|) (-13 (-984) (-795)) (-402 |#3|)) (T -403))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-984) (-795))) (-4 *6 (-13 (-984) (-795))) (-4 *2 (-402 *6)) (-5 *1 (-403 *5 *4 *6 *2)) (-4 *4 (-402 *5)))))
+(-10 -7 (-15 -4234 (|#4| (-1 |#3| |#1|) |#2|)))
+((-1870 ((|#2| |#2|) 166)) (-1867 (((-3 (|:| |%expansion| (-294 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1081)) (|:| |prob| (-1081))))) |#2| (-110)) 57)))
+(((-404 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1867 ((-3 (|:| |%expansion| (-294 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1081)) (|:| |prob| (-1081))))) |#2| (-110))) (-15 -1870 (|#2| |#2|))) (-13 (-432) (-795) (-975 (-516)) (-593 (-516))) (-13 (-27) (-1120) (-402 |#1|)) (-1098) |#2|) (T -404))
+((-1870 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *1 (-404 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1120) (-402 *3))) (-14 *4 (-1098)) (-14 *5 *2))) (-1867 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-3 (|:| |%expansion| (-294 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1081)) (|:| |prob| (-1081)))))) (-5 *1 (-404 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1120) (-402 *5))) (-14 *6 (-1098)) (-14 *7 *3))))
+(-10 -7 (-15 -1867 ((-3 (|:| |%expansion| (-294 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1081)) (|:| |prob| (-1081))))) |#2| (-110))) (-15 -1870 (|#2| |#2|)))
+((-1870 ((|#2| |#2|) 90)) (-1868 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1081)) (|:| |prob| (-1081))))) |#2| (-110) (-1081)) 48)) (-1869 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1081)) (|:| |prob| (-1081))))) |#2| (-110) (-1081)) 154)))
+(((-405 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1868 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1081)) (|:| |prob| (-1081))))) |#2| (-110) (-1081))) (-15 -1869 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1081)) (|:| |prob| (-1081))))) |#2| (-110) (-1081))) (-15 -1870 (|#2| |#2|))) (-13 (-432) (-795) (-975 (-516)) (-593 (-516))) (-13 (-27) (-1120) (-402 |#1|) (-10 -8 (-15 -4233 ($ |#3|)))) (-793) (-13 (-1158 |#2| |#3|) (-344) (-1120) (-10 -8 (-15 -4089 ($ $)) (-15 -4091 ($ $)))) (-923 |#4|) (-1098)) (T -405))
+((-1870 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-4 *2 (-13 (-27) (-1120) (-402 *3) (-10 -8 (-15 -4233 ($ *4))))) (-4 *4 (-793)) (-4 *5 (-13 (-1158 *2 *4) (-344) (-1120) (-10 -8 (-15 -4089 ($ $)) (-15 -4091 ($ $))))) (-5 *1 (-405 *3 *2 *4 *5 *6 *7)) (-4 *6 (-923 *5)) (-14 *7 (-1098)))) (-1869 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-4 *6 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-4 *3 (-13 (-27) (-1120) (-402 *6) (-10 -8 (-15 -4233 ($ *7))))) (-4 *7 (-793)) (-4 *8 (-13 (-1158 *3 *7) (-344) (-1120) (-10 -8 (-15 -4089 ($ $)) (-15 -4091 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1081)) (|:| |prob| (-1081)))))) (-5 *1 (-405 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1081)) (-4 *9 (-923 *8)) (-14 *10 (-1098)))) (-1868 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-4 *6 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-4 *3 (-13 (-27) (-1120) (-402 *6) (-10 -8 (-15 -4233 ($ *7))))) (-4 *7 (-793)) (-4 *8 (-13 (-1158 *3 *7) (-344) (-1120) (-10 -8 (-15 -4089 ($ $)) (-15 -4091 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1081)) (|:| |prob| (-1081)))))) (-5 *1 (-405 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1081)) (-4 *9 (-923 *8)) (-14 *10 (-1098)))))
+(-10 -7 (-15 -1868 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1081)) (|:| |prob| (-1081))))) |#2| (-110) (-1081))) (-15 -1869 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1081)) (|:| |prob| (-1081))))) |#2| (-110) (-1081))) (-15 -1870 (|#2| |#2|)))
+((-1871 (($) 44)) (-3505 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3507 (($ $ $) 39)) (-3506 (((-110) $ $) 28)) (-3395 (((-719)) 47)) (-3510 (($ (-594 |#2|)) 20) (($) NIL)) (-3258 (($) 53)) (-3512 (((-110) $ $) 13)) (-3596 ((|#2| $) 61)) (-3597 ((|#2| $) 59)) (-2069 (((-860) $) 55)) (-3509 (($ $ $) 35)) (-2426 (($ (-860)) 50)) (-3508 (($ $ |#2|) NIL) (($ $ $) 38)) (-2019 (((-719) (-1 (-110) |#2|) $) NIL) (((-719) |#2| $) 26)) (-3804 (($ (-594 |#2|)) 24)) (-1872 (($ $) 46)) (-4233 (((-805) $) 33)) (-1873 (((-719) $) 21)) (-3511 (($ (-594 |#2|)) 19) (($) NIL)) (-3317 (((-110) $ $) 16)))
+(((-406 |#1| |#2|) (-10 -8 (-15 -3395 ((-719))) (-15 -2426 (|#1| (-860))) (-15 -2069 ((-860) |#1|)) (-15 -3258 (|#1|)) (-15 -3596 (|#2| |#1|)) (-15 -3597 (|#2| |#1|)) (-15 -1871 (|#1|)) (-15 -1872 (|#1| |#1|)) (-15 -1873 ((-719) |#1|)) (-15 -3317 ((-110) |#1| |#1|)) (-15 -4233 ((-805) |#1|)) (-15 -3512 ((-110) |#1| |#1|)) (-15 -3511 (|#1|)) (-15 -3511 (|#1| (-594 |#2|))) (-15 -3510 (|#1|)) (-15 -3510 (|#1| (-594 |#2|))) (-15 -3509 (|#1| |#1| |#1|)) (-15 -3508 (|#1| |#1| |#1|)) (-15 -3508 (|#1| |#1| |#2|)) (-15 -3507 (|#1| |#1| |#1|)) (-15 -3506 ((-110) |#1| |#1|)) (-15 -3505 (|#1| |#1| |#1|)) (-15 -3505 (|#1| |#1| |#2|)) (-15 -3505 (|#1| |#2| |#1|)) (-15 -3804 (|#1| (-594 |#2|))) (-15 -2019 ((-719) |#2| |#1|)) (-15 -2019 ((-719) (-1 (-110) |#2|) |#1|))) (-407 |#2|) (-1027)) (T -406))
+((-3395 (*1 *2) (-12 (-4 *4 (-1027)) (-5 *2 (-719)) (-5 *1 (-406 *3 *4)) (-4 *3 (-407 *4)))))
+(-10 -8 (-15 -3395 ((-719))) (-15 -2426 (|#1| (-860))) (-15 -2069 ((-860) |#1|)) (-15 -3258 (|#1|)) (-15 -3596 (|#2| |#1|)) (-15 -3597 (|#2| |#1|)) (-15 -1871 (|#1|)) (-15 -1872 (|#1| |#1|)) (-15 -1873 ((-719) |#1|)) (-15 -3317 ((-110) |#1| |#1|)) (-15 -4233 ((-805) |#1|)) (-15 -3512 ((-110) |#1| |#1|)) (-15 -3511 (|#1|)) (-15 -3511 (|#1| (-594 |#2|))) (-15 -3510 (|#1|)) (-15 -3510 (|#1| (-594 |#2|))) (-15 -3509 (|#1| |#1| |#1|)) (-15 -3508 (|#1| |#1| |#1|)) (-15 -3508 (|#1| |#1| |#2|)) (-15 -3507 (|#1| |#1| |#1|)) (-15 -3506 ((-110) |#1| |#1|)) (-15 -3505 (|#1| |#1| |#1|)) (-15 -3505 (|#1| |#1| |#2|)) (-15 -3505 (|#1| |#2| |#1|)) (-15 -3804 (|#1| (-594 |#2|))) (-15 -2019 ((-719) |#2| |#1|)) (-15 -2019 ((-719) (-1 (-110) |#2|) |#1|)))
+((-2828 (((-110) $ $) 19)) (-1871 (($) 67 (|has| |#1| (-349)))) (-3505 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3507 (($ $ $) 78)) (-3506 (((-110) $ $) 79)) (-1217 (((-110) $ (-719)) 8)) (-3395 (((-719)) 61 (|has| |#1| (-349)))) (-3510 (($ (-594 |#1|)) 74) (($) 73)) (-1581 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4269)))) (-3992 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4269)))) (-3815 (($) 7 T CONST)) (-1349 (($ $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3684 (($ |#1| $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4269)))) (-3685 (($ |#1| $) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4269)))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4269)))) (-3258 (($) 64 (|has| |#1| (-349)))) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-3512 (((-110) $ $) 70)) (-4001 (((-110) $ (-719)) 9)) (-3596 ((|#1| $) 65 (|has| |#1| (-795)))) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3597 ((|#1| $) 66 (|has| |#1| (-795)))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35)) (-2069 (((-860) $) 63 (|has| |#1| (-349)))) (-3998 (((-110) $ (-719)) 10)) (-3513 (((-1081) $) 22)) (-3509 (($ $ $) 75)) (-1280 ((|#1| $) 39)) (-3889 (($ |#1| $) 40)) (-2426 (($ (-860)) 62 (|has| |#1| (-349)))) (-3514 (((-1045) $) 21)) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-1281 ((|#1| $) 41)) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-3508 (($ $ |#1|) 77) (($ $ $) 76)) (-1473 (($) 49) (($ (-594 |#1|)) 48)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4246 (((-505) $) 59 (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) 50)) (-1872 (($ $) 68 (|has| |#1| (-349)))) (-4233 (((-805) $) 18)) (-1873 (((-719) $) 69)) (-3511 (($ (-594 |#1|)) 72) (($) 71)) (-1282 (($ (-594 |#1|)) 42)) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20)) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-407 |#1|) (-133) (-1027)) (T -407))
+((-1873 (*1 *2 *1) (-12 (-4 *1 (-407 *3)) (-4 *3 (-1027)) (-5 *2 (-719)))) (-1872 (*1 *1 *1) (-12 (-4 *1 (-407 *2)) (-4 *2 (-1027)) (-4 *2 (-349)))) (-1871 (*1 *1) (-12 (-4 *1 (-407 *2)) (-4 *2 (-349)) (-4 *2 (-1027)))) (-3597 (*1 *2 *1) (-12 (-4 *1 (-407 *2)) (-4 *2 (-1027)) (-4 *2 (-795)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-407 *2)) (-4 *2 (-1027)) (-4 *2 (-795)))))
+(-13 (-212 |t#1|) (-1025 |t#1|) (-10 -8 (-6 -4269) (-15 -1873 ((-719) $)) (IF (|has| |t#1| (-349)) (PROGN (-6 (-349)) (-15 -1872 ($ $)) (-15 -1871 ($))) |%noBranch|) (IF (|has| |t#1| (-795)) (PROGN (-15 -3597 (|t#1| $)) (-15 -3596 (|t#1| $))) |%noBranch|)))
+(((-33) . T) ((-104 |#1|) . T) ((-99) . T) ((-571 (-805)) . T) ((-144 |#1|) . T) ((-572 (-505)) |has| |#1| (-572 (-505))) ((-212 |#1|) . T) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-349) |has| |#1| (-349)) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1025 |#1|) . T) ((-1027) . T) ((-1134) . T))
+((-4120 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-4121 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4234 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-408 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4234 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4121 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4120 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1027) (-407 |#1|) (-1027) (-407 |#3|)) (T -408))
+((-4120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1027)) (-4 *5 (-1027)) (-4 *2 (-407 *5)) (-5 *1 (-408 *6 *4 *5 *2)) (-4 *4 (-407 *6)))) (-4121 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1027)) (-4 *2 (-1027)) (-5 *1 (-408 *5 *4 *2 *6)) (-4 *4 (-407 *5)) (-4 *6 (-407 *2)))) (-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-407 *6)) (-5 *1 (-408 *5 *4 *6 *2)) (-4 *4 (-407 *5)))))
+(-10 -7 (-15 -4234 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4121 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4120 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-1874 (((-545 |#2|) |#2| (-1098)) 36)) (-2160 (((-545 |#2|) |#2| (-1098)) 20)) (-2199 ((|#2| |#2| (-1098)) 25)))
+(((-409 |#1| |#2|) (-10 -7 (-15 -2160 ((-545 |#2|) |#2| (-1098))) (-15 -1874 ((-545 |#2|) |#2| (-1098))) (-15 -2199 (|#2| |#2| (-1098)))) (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516))) (-13 (-1120) (-29 |#1|))) (T -409))
+((-2199 (*1 *2 *2 *3) (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516)))) (-5 *1 (-409 *4 *2)) (-4 *2 (-13 (-1120) (-29 *4))))) (-1874 (*1 *2 *3 *4) (-12 (-5 *4 (-1098)) (-4 *5 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516)))) (-5 *2 (-545 *3)) (-5 *1 (-409 *5 *3)) (-4 *3 (-13 (-1120) (-29 *5))))) (-2160 (*1 *2 *3 *4) (-12 (-5 *4 (-1098)) (-4 *5 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516)))) (-5 *2 (-545 *3)) (-5 *1 (-409 *5 *3)) (-4 *3 (-13 (-1120) (-29 *5))))))
+(-10 -7 (-15 -2160 ((-545 |#2|) |#2| (-1098))) (-15 -1874 ((-545 |#2|) |#2| (-1098))) (-15 -2199 (|#2| |#2| (-1098))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-3741 (((-3 $ "failed") $) NIL)) (-2436 (((-110) $) NIL)) (-1876 (($ |#2| |#1|) 35)) (-1875 (($ |#2| |#1|) 33)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ |#1|) NIL) (($ (-312 |#2|)) 25)) (-3385 (((-719)) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 10 T CONST)) (-2927 (($) 16 T CONST)) (-3317 (((-110) $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) 34)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-410 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4256)) (IF (|has| |#1| (-6 -4256)) (-6 -4256) |%noBranch|) |%noBranch|) (-15 -4233 ($ |#1|)) (-15 -4233 ($ (-312 |#2|))) (-15 -1876 ($ |#2| |#1|)) (-15 -1875 ($ |#2| |#1|)))) (-13 (-162) (-37 (-388 (-516)))) (-13 (-795) (-21))) (T -410))
+((-4233 (*1 *1 *2) (-12 (-5 *1 (-410 *2 *3)) (-4 *2 (-13 (-162) (-37 (-388 (-516))))) (-4 *3 (-13 (-795) (-21))))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-312 *4)) (-4 *4 (-13 (-795) (-21))) (-5 *1 (-410 *3 *4)) (-4 *3 (-13 (-162) (-37 (-388 (-516))))))) (-1876 (*1 *1 *2 *3) (-12 (-5 *1 (-410 *3 *2)) (-4 *3 (-13 (-162) (-37 (-388 (-516))))) (-4 *2 (-13 (-795) (-21))))) (-1875 (*1 *1 *2 *3) (-12 (-5 *1 (-410 *3 *2)) (-4 *3 (-13 (-162) (-37 (-388 (-516))))) (-4 *2 (-13 (-795) (-21))))))
+(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4256)) (IF (|has| |#1| (-6 -4256)) (-6 -4256) |%noBranch|) |%noBranch|) (-15 -4233 ($ |#1|)) (-15 -4233 ($ (-312 |#2|))) (-15 -1876 ($ |#2| |#1|)) (-15 -1875 ($ |#2| |#1|))))
+((-4091 (((-3 |#2| (-594 |#2|)) |#2| (-1098)) 109)))
+(((-411 |#1| |#2|) (-10 -7 (-15 -4091 ((-3 |#2| (-594 |#2|)) |#2| (-1098)))) (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516))) (-13 (-1120) (-901) (-29 |#1|))) (T -411))
+((-4091 (*1 *2 *3 *4) (-12 (-5 *4 (-1098)) (-4 *5 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516)))) (-5 *2 (-3 *3 (-594 *3))) (-5 *1 (-411 *5 *3)) (-4 *3 (-13 (-1120) (-901) (-29 *5))))))
+(-10 -7 (-15 -4091 ((-3 |#2| (-594 |#2|)) |#2| (-1098))))
+((-3664 ((|#2| |#2| |#2|) 33)) (-2273 (((-111) (-111)) 44)) (-1878 ((|#2| |#2|) 66)) (-1877 ((|#2| |#2|) 69)) (-3663 ((|#2| |#2|) 32)) (-3667 ((|#2| |#2| |#2|) 35)) (-3669 ((|#2| |#2| |#2|) 37)) (-3666 ((|#2| |#2| |#2|) 34)) (-3668 ((|#2| |#2| |#2|) 36)) (-2272 (((-110) (-111)) 42)) (-3671 ((|#2| |#2|) 39)) (-3670 ((|#2| |#2|) 38)) (-3661 ((|#2| |#2|) 27)) (-3665 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3662 ((|#2| |#2| |#2|) 31)))
+(((-412 |#1| |#2|) (-10 -7 (-15 -2272 ((-110) (-111))) (-15 -2273 ((-111) (-111))) (-15 -3661 (|#2| |#2|)) (-15 -3665 (|#2| |#2|)) (-15 -3665 (|#2| |#2| |#2|)) (-15 -3662 (|#2| |#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3664 (|#2| |#2| |#2|)) (-15 -3666 (|#2| |#2| |#2|)) (-15 -3667 (|#2| |#2| |#2|)) (-15 -3668 (|#2| |#2| |#2|)) (-15 -3669 (|#2| |#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3671 (|#2| |#2|)) (-15 -1877 (|#2| |#2|)) (-15 -1878 (|#2| |#2|))) (-13 (-795) (-523)) (-402 |#1|)) (T -412))
+((-1878 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3)))) (-1877 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3)))) (-3671 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3)))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3)))) (-3669 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3)))) (-3668 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3)))) (-3667 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3)))) (-3666 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3)))) (-3664 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3)))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3)))) (-3662 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3)))) (-3665 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3)))) (-3665 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3)))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3)))) (-2273 (*1 *2 *2) (-12 (-5 *2 (-111)) (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *4)) (-4 *4 (-402 *3)))) (-2272 (*1 *2 *3) (-12 (-5 *3 (-111)) (-4 *4 (-13 (-795) (-523))) (-5 *2 (-110)) (-5 *1 (-412 *4 *5)) (-4 *5 (-402 *4)))))
+(-10 -7 (-15 -2272 ((-110) (-111))) (-15 -2273 ((-111) (-111))) (-15 -3661 (|#2| |#2|)) (-15 -3665 (|#2| |#2|)) (-15 -3665 (|#2| |#2| |#2|)) (-15 -3662 (|#2| |#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3664 (|#2| |#2| |#2|)) (-15 -3666 (|#2| |#2| |#2|)) (-15 -3667 (|#2| |#2| |#2|)) (-15 -3668 (|#2| |#2| |#2|)) (-15 -3669 (|#2| |#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3671 (|#2| |#2|)) (-15 -1877 (|#2| |#2|)) (-15 -1878 (|#2| |#2|)))
+((-3097 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1092 |#2|)) (|:| |pol2| (-1092 |#2|)) (|:| |prim| (-1092 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-594 (-1092 |#2|))) (|:| |prim| (-1092 |#2|))) (-594 |#2|)) 61)))
+(((-413 |#1| |#2|) (-10 -7 (-15 -3097 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-594 (-1092 |#2|))) (|:| |prim| (-1092 |#2|))) (-594 |#2|))) (IF (|has| |#2| (-27)) (-15 -3097 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1092 |#2|)) (|:| |pol2| (-1092 |#2|)) (|:| |prim| (-1092 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-523) (-795) (-140)) (-402 |#1|)) (T -413))
+((-3097 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-523) (-795) (-140))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1092 *3)) (|:| |pol2| (-1092 *3)) (|:| |prim| (-1092 *3)))) (-5 *1 (-413 *4 *3)) (-4 *3 (-27)) (-4 *3 (-402 *4)))) (-3097 (*1 *2 *3) (-12 (-5 *3 (-594 *5)) (-4 *5 (-402 *4)) (-4 *4 (-13 (-523) (-795) (-140))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-594 (-1092 *5))) (|:| |prim| (-1092 *5)))) (-5 *1 (-413 *4 *5)))))
+(-10 -7 (-15 -3097 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-594 (-1092 |#2|))) (|:| |prim| (-1092 |#2|))) (-594 |#2|))) (IF (|has| |#2| (-27)) (-15 -3097 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1092 |#2|)) (|:| |pol2| (-1092 |#2|)) (|:| |prim| (-1092 |#2|))) |#2| |#2|)) |%noBranch|))
+((-1880 (((-1185)) 19)) (-1879 (((-1092 (-388 (-516))) |#2| (-569 |#2|)) 41) (((-388 (-516)) |#2|) 25)))
+(((-414 |#1| |#2|) (-10 -7 (-15 -1879 ((-388 (-516)) |#2|)) (-15 -1879 ((-1092 (-388 (-516))) |#2| (-569 |#2|))) (-15 -1880 ((-1185)))) (-13 (-795) (-523) (-975 (-516))) (-402 |#1|)) (T -414))
+((-1880 (*1 *2) (-12 (-4 *3 (-13 (-795) (-523) (-975 (-516)))) (-5 *2 (-1185)) (-5 *1 (-414 *3 *4)) (-4 *4 (-402 *3)))) (-1879 (*1 *2 *3 *4) (-12 (-5 *4 (-569 *3)) (-4 *3 (-402 *5)) (-4 *5 (-13 (-795) (-523) (-975 (-516)))) (-5 *2 (-1092 (-388 (-516)))) (-5 *1 (-414 *5 *3)))) (-1879 (*1 *2 *3) (-12 (-4 *4 (-13 (-795) (-523) (-975 (-516)))) (-5 *2 (-388 (-516))) (-5 *1 (-414 *4 *3)) (-4 *3 (-402 *4)))))
+(-10 -7 (-15 -1879 ((-388 (-516)) |#2|)) (-15 -1879 ((-1092 (-388 (-516))) |#2| (-569 |#2|))) (-15 -1880 ((-1185))))
+((-3927 (((-110) $) 28)) (-1881 (((-110) $) 30)) (-3530 (((-110) $) 31)) (-1883 (((-110) $) 34)) (-1885 (((-110) $) 29)) (-1884 (((-110) $) 33)) (-4233 (((-805) $) 18) (($ (-1081)) 27) (($ (-1098)) 23) (((-1098) $) 22) (((-1029) $) 21)) (-1882 (((-110) $) 32)) (-3317 (((-110) $ $) 15)))
+(((-415) (-13 (-571 (-805)) (-10 -8 (-15 -4233 ($ (-1081))) (-15 -4233 ($ (-1098))) (-15 -4233 ((-1098) $)) (-15 -4233 ((-1029) $)) (-15 -3927 ((-110) $)) (-15 -1885 ((-110) $)) (-15 -3530 ((-110) $)) (-15 -1884 ((-110) $)) (-15 -1883 ((-110) $)) (-15 -1882 ((-110) $)) (-15 -1881 ((-110) $)) (-15 -3317 ((-110) $ $))))) (T -415))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-415)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-415)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-415)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-415)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-1885 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-1884 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-1883 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-1882 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-1881 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-3317 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
+(-13 (-571 (-805)) (-10 -8 (-15 -4233 ($ (-1081))) (-15 -4233 ($ (-1098))) (-15 -4233 ((-1098) $)) (-15 -4233 ((-1029) $)) (-15 -3927 ((-110) $)) (-15 -1885 ((-110) $)) (-15 -3530 ((-110) $)) (-15 -1884 ((-110) $)) (-15 -1883 ((-110) $)) (-15 -1882 ((-110) $)) (-15 -1881 ((-110) $)) (-15 -3317 ((-110) $ $))))
+((-1887 (((-3 (-386 (-1092 (-388 (-516)))) "failed") |#3|) 70)) (-1886 (((-386 |#3|) |#3|) 34)) (-1889 (((-3 (-386 (-1092 (-47))) "failed") |#3|) 46 (|has| |#2| (-975 (-47))))) (-1888 (((-3 (|:| |overq| (-1092 (-388 (-516)))) (|:| |overan| (-1092 (-47))) (|:| -2899 (-110))) |#3|) 37)))
+(((-416 |#1| |#2| |#3|) (-10 -7 (-15 -1886 ((-386 |#3|) |#3|)) (-15 -1887 ((-3 (-386 (-1092 (-388 (-516)))) "failed") |#3|)) (-15 -1888 ((-3 (|:| |overq| (-1092 (-388 (-516)))) (|:| |overan| (-1092 (-47))) (|:| -2899 (-110))) |#3|)) (IF (|has| |#2| (-975 (-47))) (-15 -1889 ((-3 (-386 (-1092 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-523) (-795) (-975 (-516))) (-402 |#1|) (-1155 |#2|)) (T -416))
+((-1889 (*1 *2 *3) (|partial| -12 (-4 *5 (-975 (-47))) (-4 *4 (-13 (-523) (-795) (-975 (-516)))) (-4 *5 (-402 *4)) (-5 *2 (-386 (-1092 (-47)))) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1155 *5)))) (-1888 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-795) (-975 (-516)))) (-4 *5 (-402 *4)) (-5 *2 (-3 (|:| |overq| (-1092 (-388 (-516)))) (|:| |overan| (-1092 (-47))) (|:| -2899 (-110)))) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1155 *5)))) (-1887 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-523) (-795) (-975 (-516)))) (-4 *5 (-402 *4)) (-5 *2 (-386 (-1092 (-388 (-516))))) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1155 *5)))) (-1886 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-795) (-975 (-516)))) (-4 *5 (-402 *4)) (-5 *2 (-386 *3)) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1155 *5)))))
+(-10 -7 (-15 -1886 ((-386 |#3|) |#3|)) (-15 -1887 ((-3 (-386 (-1092 (-388 (-516)))) "failed") |#3|)) (-15 -1888 ((-3 (|:| |overq| (-1092 (-388 (-516)))) (|:| |overan| (-1092 (-47))) (|:| -2899 (-110))) |#3|)) (IF (|has| |#2| (-975 (-47))) (-15 -1889 ((-3 (-386 (-1092 (-47))) "failed") |#3|)) |%noBranch|))
+((-2828 (((-110) $ $) NIL)) (-1898 (((-3 (|:| |fst| (-415)) (|:| -4189 #1="void")) $) 11)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-1896 (($) 32)) (-1893 (($) 38)) (-1894 (($) 34)) (-1891 (($) 36)) (-1895 (($) 33)) (-1892 (($) 35)) (-1890 (($) 37)) (-1897 (((-110) $) 8)) (-2616 (((-594 (-887 (-516))) $) 19)) (-3804 (($ (-3 (|:| |fst| (-415)) (|:| -4189 #1#)) (-594 (-1098)) (-110)) 27) (($ (-3 (|:| |fst| (-415)) (|:| -4189 #1#)) (-594 (-887 (-516))) (-110)) 28)) (-4233 (((-805) $) 23) (($ (-415)) 29)) (-3317 (((-110) $ $) NIL)))
+(((-417) (-13 (-1027) (-10 -8 (-15 -4233 ((-805) $)) (-15 -4233 ($ (-415))) (-15 -1898 ((-3 (|:| |fst| (-415)) (|:| -4189 #1="void")) $)) (-15 -2616 ((-594 (-887 (-516))) $)) (-15 -1897 ((-110) $)) (-15 -3804 ($ (-3 (|:| |fst| (-415)) (|:| -4189 #1#)) (-594 (-1098)) (-110))) (-15 -3804 ($ (-3 (|:| |fst| (-415)) (|:| -4189 #1#)) (-594 (-887 (-516))) (-110))) (-15 -1896 ($)) (-15 -1895 ($)) (-15 -1894 ($)) (-15 -1893 ($)) (-15 -1892 ($)) (-15 -1891 ($)) (-15 -1890 ($))))) (T -417))
+((-4233 (*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-417)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-415)) (-5 *1 (-417)))) (-1898 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -4189 #1="void"))) (-5 *1 (-417)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-594 (-887 (-516)))) (-5 *1 (-417)))) (-1897 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-417)))) (-3804 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-5 *3 (-594 (-1098))) (-5 *4 (-110)) (-5 *1 (-417)))) (-3804 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-5 *3 (-594 (-887 (-516)))) (-5 *4 (-110)) (-5 *1 (-417)))) (-1896 (*1 *1) (-5 *1 (-417))) (-1895 (*1 *1) (-5 *1 (-417))) (-1894 (*1 *1) (-5 *1 (-417))) (-1893 (*1 *1) (-5 *1 (-417))) (-1892 (*1 *1) (-5 *1 (-417))) (-1891 (*1 *1) (-5 *1 (-417))) (-1890 (*1 *1) (-5 *1 (-417))))
+(-13 (-1027) (-10 -8 (-15 -4233 ((-805) $)) (-15 -4233 ($ (-415))) (-15 -1898 ((-3 (|:| |fst| (-415)) (|:| -4189 #1="void")) $)) (-15 -2616 ((-594 (-887 (-516))) $)) (-15 -1897 ((-110) $)) (-15 -3804 ($ (-3 (|:| |fst| (-415)) (|:| -4189 #1#)) (-594 (-1098)) (-110))) (-15 -3804 ($ (-3 (|:| |fst| (-415)) (|:| -4189 #1#)) (-594 (-887 (-516))) (-110))) (-15 -1896 ($)) (-15 -1895 ($)) (-15 -1894 ($)) (-15 -1893 ($)) (-15 -1892 ($)) (-15 -1891 ($)) (-15 -1890 ($))))
+((-2828 (((-110) $ $) NIL)) (-1763 (((-1081) $ (-1081)) NIL)) (-1767 (($ $ (-1081)) NIL)) (-1764 (((-1081) $) NIL)) (-1902 (((-369) (-369) (-369)) 17) (((-369) (-369)) 15)) (-1768 (($ (-369)) NIL) (($ (-369) (-1081)) NIL)) (-3824 (((-369) $) NIL)) (-3513 (((-1081) $) NIL)) (-1765 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-1901 (((-1185) (-1081)) 9)) (-1900 (((-1185) (-1081)) 10)) (-1899 (((-1185)) 11)) (-4233 (((-805) $) NIL)) (-1766 (($ $) 35)) (-3317 (((-110) $ $) NIL)))
+(((-418) (-13 (-346 (-369) (-1081)) (-10 -7 (-15 -1902 ((-369) (-369) (-369))) (-15 -1902 ((-369) (-369))) (-15 -1901 ((-1185) (-1081))) (-15 -1900 ((-1185) (-1081))) (-15 -1899 ((-1185)))))) (T -418))
+((-1902 (*1 *2 *2 *2) (-12 (-5 *2 (-369)) (-5 *1 (-418)))) (-1902 (*1 *2 *2) (-12 (-5 *2 (-369)) (-5 *1 (-418)))) (-1901 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-418)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-418)))) (-1899 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-418)))))
+(-13 (-346 (-369) (-1081)) (-10 -7 (-15 -1902 ((-369) (-369) (-369))) (-15 -1902 ((-369) (-369))) (-15 -1901 ((-1185) (-1081))) (-15 -1900 ((-1185) (-1081))) (-15 -1899 ((-1185)))))
+((-2828 (((-110) $ $) NIL)) (-3824 (((-1098) $) 8)) (-3513 (((-1081) $) 16)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 11)) (-3317 (((-110) $ $) 13)))
+(((-419 |#1|) (-13 (-1027) (-10 -8 (-15 -3824 ((-1098) $)))) (-1098)) (T -419))
+((-3824 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-419 *3)) (-14 *3 *2))))
+(-13 (-1027) (-10 -8 (-15 -3824 ((-1098) $))))
+((-3658 (((-1185) $) 7)) (-4233 (((-805) $) 8) (($ (-1179 (-647))) 14) (($ (-594 (-311))) 13) (($ (-311)) 12) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 11)))
(((-420) (-133)) (T -420))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-595 (-310))) (-4 *1 (-420)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-310)) (-4 *1 (-420)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310))))) (-4 *1 (-420)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-1177 (-296 (-359)))) (-4 *1 (-420)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-1177 (-296 (-359)))) (-4 *1 (-420)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-1177 (-296 (-528)))) (-4 *1 (-420)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-1177 (-296 (-528)))) (-4 *1 (-420)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-1177 (-891 (-359)))) (-4 *1 (-420)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-1177 (-891 (-359)))) (-4 *1 (-420)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-1177 (-891 (-528)))) (-4 *1 (-420)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-1177 (-891 (-528)))) (-4 *1 (-420)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-1177 (-387 (-891 (-359))))) (-4 *1 (-420)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-1177 (-387 (-891 (-359))))) (-4 *1 (-420)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-1177 (-387 (-891 (-528))))) (-4 *1 (-420)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-1177 (-387 (-891 (-528))))) (-4 *1 (-420)))))
-(-13 (-375) (-10 -8 (-15 -2222 ($ (-595 (-310)))) (-15 -2222 ($ (-310))) (-15 -2222 ($ (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310)))))) (-15 -2409 ($ (-1177 (-296 (-359))))) (-15 -3001 ((-3 $ "failed") (-1177 (-296 (-359))))) (-15 -2409 ($ (-1177 (-296 (-528))))) (-15 -3001 ((-3 $ "failed") (-1177 (-296 (-528))))) (-15 -2409 ($ (-1177 (-891 (-359))))) (-15 -3001 ((-3 $ "failed") (-1177 (-891 (-359))))) (-15 -2409 ($ (-1177 (-891 (-528))))) (-15 -3001 ((-3 $ "failed") (-1177 (-891 (-528))))) (-15 -2409 ($ (-1177 (-387 (-891 (-359)))))) (-15 -3001 ((-3 $ "failed") (-1177 (-387 (-891 (-359)))))) (-15 -2409 ($ (-1177 (-387 (-891 (-528)))))) (-15 -3001 ((-3 $ "failed") (-1177 (-387 (-891 (-528))))))))
-(((-569 (-802)) . T) ((-375) . T) ((-1131) . T))
-((-4056 (((-110)) 17)) (-3986 (((-110) (-110)) 18)) (-2422 (((-110)) 13)) (-3809 (((-110) (-110)) 14)) (-1935 (((-110)) 15)) (-4126 (((-110) (-110)) 16)) (-2924 (((-860) (-860)) 21) (((-860)) 20)) (-1393 (((-717) (-595 (-2 (|:| -2437 |#1|) (|:| -2935 (-528))))) 42)) (-2430 (((-860) (-860)) 23) (((-860)) 22)) (-1711 (((-2 (|:| -1759 (-528)) (|:| -2783 (-595 |#1|))) |#1|) 62)) (-2194 (((-398 |#1|) (-2 (|:| |contp| (-528)) (|:| -2783 (-595 (-2 (|:| |irr| |#1|) (|:| -2842 (-528))))))) 126)) (-3683 (((-2 (|:| |contp| (-528)) (|:| -2783 (-595 (-2 (|:| |irr| |#1|) (|:| -2842 (-528)))))) |#1| (-110)) 152)) (-1668 (((-398 |#1|) |#1| (-717) (-717)) 165) (((-398 |#1|) |#1| (-595 (-717)) (-717)) 162) (((-398 |#1|) |#1| (-595 (-717))) 164) (((-398 |#1|) |#1| (-717)) 163) (((-398 |#1|) |#1|) 161)) (-3653 (((-3 |#1| "failed") (-860) |#1| (-595 (-717)) (-717) (-110)) 167) (((-3 |#1| "failed") (-860) |#1| (-595 (-717)) (-717)) 168) (((-3 |#1| "failed") (-860) |#1| (-595 (-717))) 170) (((-3 |#1| "failed") (-860) |#1| (-717)) 169) (((-3 |#1| "failed") (-860) |#1|) 171)) (-2437 (((-398 |#1|) |#1| (-717) (-717)) 160) (((-398 |#1|) |#1| (-595 (-717)) (-717)) 156) (((-398 |#1|) |#1| (-595 (-717))) 158) (((-398 |#1|) |#1| (-717)) 157) (((-398 |#1|) |#1|) 155)) (-1765 (((-110) |#1|) 37)) (-2576 (((-684 (-717)) (-595 (-2 (|:| -2437 |#1|) (|:| -2935 (-528))))) 67)) (-2432 (((-2 (|:| |contp| (-528)) (|:| -2783 (-595 (-2 (|:| |irr| |#1|) (|:| -2842 (-528)))))) |#1| (-110) (-1025 (-717)) (-717)) 154)))
-(((-421 |#1|) (-10 -7 (-15 -2194 ((-398 |#1|) (-2 (|:| |contp| (-528)) (|:| -2783 (-595 (-2 (|:| |irr| |#1|) (|:| -2842 (-528)))))))) (-15 -2576 ((-684 (-717)) (-595 (-2 (|:| -2437 |#1|) (|:| -2935 (-528)))))) (-15 -2430 ((-860))) (-15 -2430 ((-860) (-860))) (-15 -2924 ((-860))) (-15 -2924 ((-860) (-860))) (-15 -1393 ((-717) (-595 (-2 (|:| -2437 |#1|) (|:| -2935 (-528)))))) (-15 -1711 ((-2 (|:| -1759 (-528)) (|:| -2783 (-595 |#1|))) |#1|)) (-15 -4056 ((-110))) (-15 -3986 ((-110) (-110))) (-15 -2422 ((-110))) (-15 -3809 ((-110) (-110))) (-15 -1765 ((-110) |#1|)) (-15 -1935 ((-110))) (-15 -4126 ((-110) (-110))) (-15 -2437 ((-398 |#1|) |#1|)) (-15 -2437 ((-398 |#1|) |#1| (-717))) (-15 -2437 ((-398 |#1|) |#1| (-595 (-717)))) (-15 -2437 ((-398 |#1|) |#1| (-595 (-717)) (-717))) (-15 -2437 ((-398 |#1|) |#1| (-717) (-717))) (-15 -1668 ((-398 |#1|) |#1|)) (-15 -1668 ((-398 |#1|) |#1| (-717))) (-15 -1668 ((-398 |#1|) |#1| (-595 (-717)))) (-15 -1668 ((-398 |#1|) |#1| (-595 (-717)) (-717))) (-15 -1668 ((-398 |#1|) |#1| (-717) (-717))) (-15 -3653 ((-3 |#1| "failed") (-860) |#1|)) (-15 -3653 ((-3 |#1| "failed") (-860) |#1| (-717))) (-15 -3653 ((-3 |#1| "failed") (-860) |#1| (-595 (-717)))) (-15 -3653 ((-3 |#1| "failed") (-860) |#1| (-595 (-717)) (-717))) (-15 -3653 ((-3 |#1| "failed") (-860) |#1| (-595 (-717)) (-717) (-110))) (-15 -3683 ((-2 (|:| |contp| (-528)) (|:| -2783 (-595 (-2 (|:| |irr| |#1|) (|:| -2842 (-528)))))) |#1| (-110))) (-15 -2432 ((-2 (|:| |contp| (-528)) (|:| -2783 (-595 (-2 (|:| |irr| |#1|) (|:| -2842 (-528)))))) |#1| (-110) (-1025 (-717)) (-717)))) (-1153 (-528))) (T -421))
-((-2432 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-110)) (-5 *5 (-1025 (-717))) (-5 *6 (-717)) (-5 *2 (-2 (|:| |contp| (-528)) (|:| -2783 (-595 (-2 (|:| |irr| *3) (|:| -2842 (-528))))))) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))) (-3683 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-5 *2 (-2 (|:| |contp| (-528)) (|:| -2783 (-595 (-2 (|:| |irr| *3) (|:| -2842 (-528))))))) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))) (-3653 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-860)) (-5 *4 (-595 (-717))) (-5 *5 (-717)) (-5 *6 (-110)) (-5 *1 (-421 *2)) (-4 *2 (-1153 (-528))))) (-3653 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-860)) (-5 *4 (-595 (-717))) (-5 *5 (-717)) (-5 *1 (-421 *2)) (-4 *2 (-1153 (-528))))) (-3653 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-860)) (-5 *4 (-595 (-717))) (-5 *1 (-421 *2)) (-4 *2 (-1153 (-528))))) (-3653 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-860)) (-5 *4 (-717)) (-5 *1 (-421 *2)) (-4 *2 (-1153 (-528))))) (-3653 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-860)) (-5 *1 (-421 *2)) (-4 *2 (-1153 (-528))))) (-1668 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-717)) (-5 *2 (-398 *3)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))) (-1668 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-595 (-717))) (-5 *5 (-717)) (-5 *2 (-398 *3)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))) (-1668 (*1 *2 *3 *4) (-12 (-5 *4 (-595 (-717))) (-5 *2 (-398 *3)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))) (-1668 (*1 *2 *3 *4) (-12 (-5 *4 (-717)) (-5 *2 (-398 *3)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))) (-1668 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))) (-2437 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-717)) (-5 *2 (-398 *3)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))) (-2437 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-595 (-717))) (-5 *5 (-717)) (-5 *2 (-398 *3)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))) (-2437 (*1 *2 *3 *4) (-12 (-5 *4 (-595 (-717))) (-5 *2 (-398 *3)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))) (-2437 (*1 *2 *3 *4) (-12 (-5 *4 (-717)) (-5 *2 (-398 *3)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))) (-2437 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))) (-4126 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))) (-1935 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))) (-1765 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))) (-2422 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))) (-3986 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))) (-4056 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))) (-1711 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1759 (-528)) (|:| -2783 (-595 *3)))) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))) (-1393 (*1 *2 *3) (-12 (-5 *3 (-595 (-2 (|:| -2437 *4) (|:| -2935 (-528))))) (-4 *4 (-1153 (-528))) (-5 *2 (-717)) (-5 *1 (-421 *4)))) (-2924 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))) (-2924 (*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))) (-2430 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))) (-2430 (*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))) (-2576 (*1 *2 *3) (-12 (-5 *3 (-595 (-2 (|:| -2437 *4) (|:| -2935 (-528))))) (-4 *4 (-1153 (-528))) (-5 *2 (-684 (-717))) (-5 *1 (-421 *4)))) (-2194 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-528)) (|:| -2783 (-595 (-2 (|:| |irr| *4) (|:| -2842 (-528))))))) (-4 *4 (-1153 (-528))) (-5 *2 (-398 *4)) (-5 *1 (-421 *4)))))
-(-10 -7 (-15 -2194 ((-398 |#1|) (-2 (|:| |contp| (-528)) (|:| -2783 (-595 (-2 (|:| |irr| |#1|) (|:| -2842 (-528)))))))) (-15 -2576 ((-684 (-717)) (-595 (-2 (|:| -2437 |#1|) (|:| -2935 (-528)))))) (-15 -2430 ((-860))) (-15 -2430 ((-860) (-860))) (-15 -2924 ((-860))) (-15 -2924 ((-860) (-860))) (-15 -1393 ((-717) (-595 (-2 (|:| -2437 |#1|) (|:| -2935 (-528)))))) (-15 -1711 ((-2 (|:| -1759 (-528)) (|:| -2783 (-595 |#1|))) |#1|)) (-15 -4056 ((-110))) (-15 -3986 ((-110) (-110))) (-15 -2422 ((-110))) (-15 -3809 ((-110) (-110))) (-15 -1765 ((-110) |#1|)) (-15 -1935 ((-110))) (-15 -4126 ((-110) (-110))) (-15 -2437 ((-398 |#1|) |#1|)) (-15 -2437 ((-398 |#1|) |#1| (-717))) (-15 -2437 ((-398 |#1|) |#1| (-595 (-717)))) (-15 -2437 ((-398 |#1|) |#1| (-595 (-717)) (-717))) (-15 -2437 ((-398 |#1|) |#1| (-717) (-717))) (-15 -1668 ((-398 |#1|) |#1|)) (-15 -1668 ((-398 |#1|) |#1| (-717))) (-15 -1668 ((-398 |#1|) |#1| (-595 (-717)))) (-15 -1668 ((-398 |#1|) |#1| (-595 (-717)) (-717))) (-15 -1668 ((-398 |#1|) |#1| (-717) (-717))) (-15 -3653 ((-3 |#1| "failed") (-860) |#1|)) (-15 -3653 ((-3 |#1| "failed") (-860) |#1| (-717))) (-15 -3653 ((-3 |#1| "failed") (-860) |#1| (-595 (-717)))) (-15 -3653 ((-3 |#1| "failed") (-860) |#1| (-595 (-717)) (-717))) (-15 -3653 ((-3 |#1| "failed") (-860) |#1| (-595 (-717)) (-717) (-110))) (-15 -3683 ((-2 (|:| |contp| (-528)) (|:| -2783 (-595 (-2 (|:| |irr| |#1|) (|:| -2842 (-528)))))) |#1| (-110))) (-15 -2432 ((-2 (|:| |contp| (-528)) (|:| -2783 (-595 (-2 (|:| |irr| |#1|) (|:| -2842 (-528)))))) |#1| (-110) (-1025 (-717)) (-717))))
-((-3197 (((-528) |#2|) 48) (((-528) |#2| (-717)) 47)) (-2937 (((-528) |#2|) 55)) (-4052 ((|#3| |#2|) 25)) (-3297 ((|#3| |#2| (-860)) 14)) (-1584 ((|#3| |#2|) 15)) (-2647 ((|#3| |#2|) 9)) (-4073 ((|#3| |#2|) 10)) (-2860 ((|#3| |#2| (-860)) 62) ((|#3| |#2|) 30)) (-2344 (((-528) |#2|) 57)))
-(((-422 |#1| |#2| |#3|) (-10 -7 (-15 -2344 ((-528) |#2|)) (-15 -2860 (|#3| |#2|)) (-15 -2860 (|#3| |#2| (-860))) (-15 -2937 ((-528) |#2|)) (-15 -3197 ((-528) |#2| (-717))) (-15 -3197 ((-528) |#2|)) (-15 -3297 (|#3| |#2| (-860))) (-15 -4052 (|#3| |#2|)) (-15 -2647 (|#3| |#2|)) (-15 -4073 (|#3| |#2|)) (-15 -1584 (|#3| |#2|))) (-981) (-1153 |#1|) (-13 (-384) (-972 |#1|) (-343) (-1117) (-265))) (T -422))
-((-1584 (*1 *2 *3) (-12 (-4 *4 (-981)) (-4 *2 (-13 (-384) (-972 *4) (-343) (-1117) (-265))) (-5 *1 (-422 *4 *3 *2)) (-4 *3 (-1153 *4)))) (-4073 (*1 *2 *3) (-12 (-4 *4 (-981)) (-4 *2 (-13 (-384) (-972 *4) (-343) (-1117) (-265))) (-5 *1 (-422 *4 *3 *2)) (-4 *3 (-1153 *4)))) (-2647 (*1 *2 *3) (-12 (-4 *4 (-981)) (-4 *2 (-13 (-384) (-972 *4) (-343) (-1117) (-265))) (-5 *1 (-422 *4 *3 *2)) (-4 *3 (-1153 *4)))) (-4052 (*1 *2 *3) (-12 (-4 *4 (-981)) (-4 *2 (-13 (-384) (-972 *4) (-343) (-1117) (-265))) (-5 *1 (-422 *4 *3 *2)) (-4 *3 (-1153 *4)))) (-3297 (*1 *2 *3 *4) (-12 (-5 *4 (-860)) (-4 *5 (-981)) (-4 *2 (-13 (-384) (-972 *5) (-343) (-1117) (-265))) (-5 *1 (-422 *5 *3 *2)) (-4 *3 (-1153 *5)))) (-3197 (*1 *2 *3) (-12 (-4 *4 (-981)) (-5 *2 (-528)) (-5 *1 (-422 *4 *3 *5)) (-4 *3 (-1153 *4)) (-4 *5 (-13 (-384) (-972 *4) (-343) (-1117) (-265))))) (-3197 (*1 *2 *3 *4) (-12 (-5 *4 (-717)) (-4 *5 (-981)) (-5 *2 (-528)) (-5 *1 (-422 *5 *3 *6)) (-4 *3 (-1153 *5)) (-4 *6 (-13 (-384) (-972 *5) (-343) (-1117) (-265))))) (-2937 (*1 *2 *3) (-12 (-4 *4 (-981)) (-5 *2 (-528)) (-5 *1 (-422 *4 *3 *5)) (-4 *3 (-1153 *4)) (-4 *5 (-13 (-384) (-972 *4) (-343) (-1117) (-265))))) (-2860 (*1 *2 *3 *4) (-12 (-5 *4 (-860)) (-4 *5 (-981)) (-4 *2 (-13 (-384) (-972 *5) (-343) (-1117) (-265))) (-5 *1 (-422 *5 *3 *2)) (-4 *3 (-1153 *5)))) (-2860 (*1 *2 *3) (-12 (-4 *4 (-981)) (-4 *2 (-13 (-384) (-972 *4) (-343) (-1117) (-265))) (-5 *1 (-422 *4 *3 *2)) (-4 *3 (-1153 *4)))) (-2344 (*1 *2 *3) (-12 (-4 *4 (-981)) (-5 *2 (-528)) (-5 *1 (-422 *4 *3 *5)) (-4 *3 (-1153 *4)) (-4 *5 (-13 (-384) (-972 *4) (-343) (-1117) (-265))))))
-(-10 -7 (-15 -2344 ((-528) |#2|)) (-15 -2860 (|#3| |#2|)) (-15 -2860 (|#3| |#2| (-860))) (-15 -2937 ((-528) |#2|)) (-15 -3197 ((-528) |#2| (-717))) (-15 -3197 ((-528) |#2|)) (-15 -3297 (|#3| |#2| (-860))) (-15 -4052 (|#3| |#2|)) (-15 -2647 (|#3| |#2|)) (-15 -4073 (|#3| |#2|)) (-15 -1584 (|#3| |#2|)))
-((-1792 ((|#2| (-1177 |#1|)) 36)) (-3716 ((|#2| |#2| |#1|) 49)) (-3754 ((|#2| |#2| |#1|) 41)) (-3009 ((|#2| |#2|) 38)) (-1586 (((-110) |#2|) 30)) (-2424 (((-595 |#2|) (-860) (-398 |#2|)) 17)) (-3653 ((|#2| (-860) (-398 |#2|)) 21)) (-2576 (((-684 (-717)) (-398 |#2|)) 25)))
-(((-423 |#1| |#2|) (-10 -7 (-15 -1586 ((-110) |#2|)) (-15 -1792 (|#2| (-1177 |#1|))) (-15 -3009 (|#2| |#2|)) (-15 -3754 (|#2| |#2| |#1|)) (-15 -3716 (|#2| |#2| |#1|)) (-15 -2576 ((-684 (-717)) (-398 |#2|))) (-15 -3653 (|#2| (-860) (-398 |#2|))) (-15 -2424 ((-595 |#2|) (-860) (-398 |#2|)))) (-981) (-1153 |#1|)) (T -423))
-((-2424 (*1 *2 *3 *4) (-12 (-5 *3 (-860)) (-5 *4 (-398 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-981)) (-5 *2 (-595 *6)) (-5 *1 (-423 *5 *6)))) (-3653 (*1 *2 *3 *4) (-12 (-5 *3 (-860)) (-5 *4 (-398 *2)) (-4 *2 (-1153 *5)) (-5 *1 (-423 *5 *2)) (-4 *5 (-981)))) (-2576 (*1 *2 *3) (-12 (-5 *3 (-398 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-981)) (-5 *2 (-684 (-717))) (-5 *1 (-423 *4 *5)))) (-3716 (*1 *2 *2 *3) (-12 (-4 *3 (-981)) (-5 *1 (-423 *3 *2)) (-4 *2 (-1153 *3)))) (-3754 (*1 *2 *2 *3) (-12 (-4 *3 (-981)) (-5 *1 (-423 *3 *2)) (-4 *2 (-1153 *3)))) (-3009 (*1 *2 *2) (-12 (-4 *3 (-981)) (-5 *1 (-423 *3 *2)) (-4 *2 (-1153 *3)))) (-1792 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-981)) (-4 *2 (-1153 *4)) (-5 *1 (-423 *4 *2)))) (-1586 (*1 *2 *3) (-12 (-4 *4 (-981)) (-5 *2 (-110)) (-5 *1 (-423 *4 *3)) (-4 *3 (-1153 *4)))))
-(-10 -7 (-15 -1586 ((-110) |#2|)) (-15 -1792 (|#2| (-1177 |#1|))) (-15 -3009 (|#2| |#2|)) (-15 -3754 (|#2| |#2| |#1|)) (-15 -3716 (|#2| |#2| |#1|)) (-15 -2576 ((-684 (-717)) (-398 |#2|))) (-15 -3653 (|#2| (-860) (-398 |#2|))) (-15 -2424 ((-595 |#2|) (-860) (-398 |#2|))))
-((-3236 (((-717)) 41)) (-2631 (((-717)) 23 (|has| |#1| (-384))) (((-717) (-717)) 22 (|has| |#1| (-384)))) (-1391 (((-528) |#1|) 18 (|has| |#1| (-384)))) (-3846 (((-528) |#1|) 20 (|has| |#1| (-384)))) (-2298 (((-717)) 40) (((-717) (-717)) 39)) (-3303 ((|#1| (-717) (-528)) 29)) (-3361 (((-1182)) 43)))
-(((-424 |#1|) (-10 -7 (-15 -3303 (|#1| (-717) (-528))) (-15 -2298 ((-717) (-717))) (-15 -2298 ((-717))) (-15 -3236 ((-717))) (-15 -3361 ((-1182))) (IF (|has| |#1| (-384)) (PROGN (-15 -3846 ((-528) |#1|)) (-15 -1391 ((-528) |#1|)) (-15 -2631 ((-717) (-717))) (-15 -2631 ((-717)))) |%noBranch|)) (-981)) (T -424))
-((-2631 (*1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-424 *3)) (-4 *3 (-384)) (-4 *3 (-981)))) (-2631 (*1 *2 *2) (-12 (-5 *2 (-717)) (-5 *1 (-424 *3)) (-4 *3 (-384)) (-4 *3 (-981)))) (-1391 (*1 *2 *3) (-12 (-5 *2 (-528)) (-5 *1 (-424 *3)) (-4 *3 (-384)) (-4 *3 (-981)))) (-3846 (*1 *2 *3) (-12 (-5 *2 (-528)) (-5 *1 (-424 *3)) (-4 *3 (-384)) (-4 *3 (-981)))) (-3361 (*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-424 *3)) (-4 *3 (-981)))) (-3236 (*1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-424 *3)) (-4 *3 (-981)))) (-2298 (*1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-424 *3)) (-4 *3 (-981)))) (-2298 (*1 *2 *2) (-12 (-5 *2 (-717)) (-5 *1 (-424 *3)) (-4 *3 (-981)))) (-3303 (*1 *2 *3 *4) (-12 (-5 *3 (-717)) (-5 *4 (-528)) (-5 *1 (-424 *2)) (-4 *2 (-981)))))
-(-10 -7 (-15 -3303 (|#1| (-717) (-528))) (-15 -2298 ((-717) (-717))) (-15 -2298 ((-717))) (-15 -3236 ((-717))) (-15 -3361 ((-1182))) (IF (|has| |#1| (-384)) (PROGN (-15 -3846 ((-528) |#1|)) (-15 -1391 ((-528) |#1|)) (-15 -2631 ((-717) (-717))) (-15 -2631 ((-717)))) |%noBranch|))
-((-1451 (((-595 (-528)) (-528)) 61)) (-2124 (((-110) (-159 (-528))) 65)) (-2437 (((-398 (-159 (-528))) (-159 (-528))) 60)))
-(((-425) (-10 -7 (-15 -2437 ((-398 (-159 (-528))) (-159 (-528)))) (-15 -1451 ((-595 (-528)) (-528))) (-15 -2124 ((-110) (-159 (-528)))))) (T -425))
-((-2124 (*1 *2 *3) (-12 (-5 *3 (-159 (-528))) (-5 *2 (-110)) (-5 *1 (-425)))) (-1451 (*1 *2 *3) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-425)) (-5 *3 (-528)))) (-2437 (*1 *2 *3) (-12 (-5 *2 (-398 (-159 (-528)))) (-5 *1 (-425)) (-5 *3 (-159 (-528))))))
-(-10 -7 (-15 -2437 ((-398 (-159 (-528))) (-159 (-528)))) (-15 -1451 ((-595 (-528)) (-528))) (-15 -2124 ((-110) (-159 (-528)))))
-((-1821 ((|#4| |#4| (-595 |#4|)) 61)) (-3869 (((-595 |#4|) (-595 |#4|) (-1078) (-1078)) 17) (((-595 |#4|) (-595 |#4|) (-1078)) 16) (((-595 |#4|) (-595 |#4|)) 11)))
-(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1821 (|#4| |#4| (-595 |#4|))) (-15 -3869 ((-595 |#4|) (-595 |#4|))) (-15 -3869 ((-595 |#4|) (-595 |#4|) (-1078))) (-15 -3869 ((-595 |#4|) (-595 |#4|) (-1078) (-1078)))) (-288) (-739) (-793) (-888 |#1| |#2| |#3|)) (T -426))
-((-3869 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-595 *7)) (-5 *3 (-1078)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-288)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *1 (-426 *4 *5 *6 *7)))) (-3869 (*1 *2 *2 *3) (-12 (-5 *2 (-595 *7)) (-5 *3 (-1078)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-288)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *1 (-426 *4 *5 *6 *7)))) (-3869 (*1 *2 *2) (-12 (-5 *2 (-595 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-288)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-426 *3 *4 *5 *6)))) (-1821 (*1 *2 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-888 *4 *5 *6)) (-4 *4 (-288)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *1 (-426 *4 *5 *6 *2)))))
-(-10 -7 (-15 -1821 (|#4| |#4| (-595 |#4|))) (-15 -3869 ((-595 |#4|) (-595 |#4|))) (-15 -3869 ((-595 |#4|) (-595 |#4|) (-1078))) (-15 -3869 ((-595 |#4|) (-595 |#4|) (-1078) (-1078))))
-((-2560 (((-595 (-595 |#4|)) (-595 |#4|) (-110)) 73) (((-595 (-595 |#4|)) (-595 |#4|)) 72) (((-595 (-595 |#4|)) (-595 |#4|) (-595 |#4|) (-110)) 66) (((-595 (-595 |#4|)) (-595 |#4|) (-595 |#4|)) 67)) (-3319 (((-595 (-595 |#4|)) (-595 |#4|) (-110)) 42) (((-595 (-595 |#4|)) (-595 |#4|)) 63)))
-(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3319 ((-595 (-595 |#4|)) (-595 |#4|))) (-15 -3319 ((-595 (-595 |#4|)) (-595 |#4|) (-110))) (-15 -2560 ((-595 (-595 |#4|)) (-595 |#4|) (-595 |#4|))) (-15 -2560 ((-595 (-595 |#4|)) (-595 |#4|) (-595 |#4|) (-110))) (-15 -2560 ((-595 (-595 |#4|)) (-595 |#4|))) (-15 -2560 ((-595 (-595 |#4|)) (-595 |#4|) (-110)))) (-13 (-288) (-140)) (-739) (-793) (-888 |#1| |#2| |#3|)) (T -427))
-((-2560 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-288) (-140))) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *8 (-888 *5 *6 *7)) (-5 *2 (-595 (-595 *8))) (-5 *1 (-427 *5 *6 *7 *8)) (-5 *3 (-595 *8)))) (-2560 (*1 *2 *3) (-12 (-4 *4 (-13 (-288) (-140))) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-595 (-595 *7))) (-5 *1 (-427 *4 *5 *6 *7)) (-5 *3 (-595 *7)))) (-2560 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-288) (-140))) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *8 (-888 *5 *6 *7)) (-5 *2 (-595 (-595 *8))) (-5 *1 (-427 *5 *6 *7 *8)) (-5 *3 (-595 *8)))) (-2560 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-288) (-140))) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-595 (-595 *7))) (-5 *1 (-427 *4 *5 *6 *7)) (-5 *3 (-595 *7)))) (-3319 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-288) (-140))) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *8 (-888 *5 *6 *7)) (-5 *2 (-595 (-595 *8))) (-5 *1 (-427 *5 *6 *7 *8)) (-5 *3 (-595 *8)))) (-3319 (*1 *2 *3) (-12 (-4 *4 (-13 (-288) (-140))) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-595 (-595 *7))) (-5 *1 (-427 *4 *5 *6 *7)) (-5 *3 (-595 *7)))))
-(-10 -7 (-15 -3319 ((-595 (-595 |#4|)) (-595 |#4|))) (-15 -3319 ((-595 (-595 |#4|)) (-595 |#4|) (-110))) (-15 -2560 ((-595 (-595 |#4|)) (-595 |#4|) (-595 |#4|))) (-15 -2560 ((-595 (-595 |#4|)) (-595 |#4|) (-595 |#4|) (-110))) (-15 -2560 ((-595 (-595 |#4|)) (-595 |#4|))) (-15 -2560 ((-595 (-595 |#4|)) (-595 |#4|) (-110))))
-((-3756 (((-717) |#4|) 12)) (-2571 (((-595 (-2 (|:| |totdeg| (-717)) (|:| -3292 |#4|))) |#4| (-717) (-595 (-2 (|:| |totdeg| (-717)) (|:| -3292 |#4|)))) 31)) (-4188 (((-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-2692 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-3045 ((|#4| |#4| (-595 |#4|)) 40)) (-2684 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-595 |#4|)) 70)) (-2309 (((-1182) |#4|) 42)) (-1708 (((-1182) (-595 |#4|)) 51)) (-1797 (((-528) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-528) (-528) (-528)) 48)) (-3502 (((-1182) (-528)) 79)) (-3612 (((-595 |#4|) (-595 |#4|)) 77)) (-1401 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-717)) (|:| -3292 |#4|)) |#4| (-717)) 25)) (-3475 (((-528) |#4|) 78)) (-3606 ((|#4| |#4|) 29)) (-2523 (((-595 |#4|) (-595 |#4|) (-528) (-528)) 56)) (-3314 (((-528) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-528) (-528) (-528) (-528)) 89)) (-3570 (((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-3339 (((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-3200 (((-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-1457 (((-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-3654 (((-110) |#2| |#2|) 57)) (-3057 (((-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-2379 (((-110) |#2| |#2| |#2| |#2|) 60)) (-3474 ((|#4| |#4| (-595 |#4|)) 71)))
-(((-428 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3474 (|#4| |#4| (-595 |#4|))) (-15 -3045 (|#4| |#4| (-595 |#4|))) (-15 -2523 ((-595 |#4|) (-595 |#4|) (-528) (-528))) (-15 -3339 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3654 ((-110) |#2| |#2|)) (-15 -2379 ((-110) |#2| |#2| |#2| |#2|)) (-15 -3057 ((-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1457 ((-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3200 ((-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2684 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-595 |#4|))) (-15 -3606 (|#4| |#4|)) (-15 -2571 ((-595 (-2 (|:| |totdeg| (-717)) (|:| -3292 |#4|))) |#4| (-717) (-595 (-2 (|:| |totdeg| (-717)) (|:| -3292 |#4|))))) (-15 -2692 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4188 ((-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3612 ((-595 |#4|) (-595 |#4|))) (-15 -3475 ((-528) |#4|)) (-15 -2309 ((-1182) |#4|)) (-15 -1797 ((-528) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-528) (-528) (-528))) (-15 -3314 ((-528) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-528) (-528) (-528) (-528))) (-15 -1708 ((-1182) (-595 |#4|))) (-15 -3502 ((-1182) (-528))) (-15 -3570 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1401 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-717)) (|:| -3292 |#4|)) |#4| (-717))) (-15 -3756 ((-717) |#4|))) (-431) (-739) (-793) (-888 |#1| |#2| |#3|)) (T -428))
-((-3756 (*1 *2 *3) (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-717)) (-5 *1 (-428 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6)))) (-1401 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-717)) (|:| -3292 *4))) (-5 *5 (-717)) (-4 *4 (-888 *6 *7 *8)) (-4 *6 (-431)) (-4 *7 (-739)) (-4 *8 (-793)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-428 *6 *7 *8 *4)))) (-3570 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-717)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-739)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-431)) (-4 *6 (-793)) (-5 *2 (-110)) (-5 *1 (-428 *4 *5 *6 *7)))) (-3502 (*1 *2 *3) (-12 (-5 *3 (-528)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-1182)) (-5 *1 (-428 *4 *5 *6 *7)) (-4 *7 (-888 *4 *5 *6)))) (-1708 (*1 *2 *3) (-12 (-5 *3 (-595 *7)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-1182)) (-5 *1 (-428 *4 *5 *6 *7)))) (-3314 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-528)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-717)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-739)) (-4 *4 (-888 *5 *6 *7)) (-4 *5 (-431)) (-4 *7 (-793)) (-5 *1 (-428 *5 *6 *7 *4)))) (-1797 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-528)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-717)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-739)) (-4 *4 (-888 *5 *6 *7)) (-4 *5 (-431)) (-4 *7 (-793)) (-5 *1 (-428 *5 *6 *7 *4)))) (-2309 (*1 *2 *3) (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-1182)) (-5 *1 (-428 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6)))) (-3475 (*1 *2 *3) (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-528)) (-5 *1 (-428 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6)))) (-3612 (*1 *2 *2) (-12 (-5 *2 (-595 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-428 *3 *4 *5 *6)))) (-4188 (*1 *2 *2 *2) (-12 (-5 *2 (-595 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-717)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-739)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-431)) (-4 *5 (-793)) (-5 *1 (-428 *3 *4 *5 *6)))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-717)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-739)) (-4 *2 (-888 *4 *5 *6)) (-5 *1 (-428 *4 *5 *6 *2)) (-4 *4 (-431)) (-4 *6 (-793)))) (-2571 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-595 (-2 (|:| |totdeg| (-717)) (|:| -3292 *3)))) (-5 *4 (-717)) (-4 *3 (-888 *5 *6 *7)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *1 (-428 *5 *6 *7 *3)))) (-3606 (*1 *2 *2) (-12 (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-428 *3 *4 *5 *2)) (-4 *2 (-888 *3 *4 *5)))) (-2684 (*1 *2 *3 *4) (-12 (-5 *4 (-595 *3)) (-4 *3 (-888 *5 *6 *7)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-428 *5 *6 *7 *3)))) (-3200 (*1 *2 *3 *2) (-12 (-5 *2 (-595 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-717)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-739)) (-4 *6 (-888 *4 *3 *5)) (-4 *4 (-431)) (-4 *5 (-793)) (-5 *1 (-428 *4 *3 *5 *6)))) (-1457 (*1 *2 *2) (-12 (-5 *2 (-595 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-717)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-739)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-431)) (-4 *5 (-793)) (-5 *1 (-428 *3 *4 *5 *6)))) (-3057 (*1 *2 *3 *2) (-12 (-5 *2 (-595 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-717)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-739)) (-4 *3 (-888 *4 *5 *6)) (-4 *4 (-431)) (-4 *6 (-793)) (-5 *1 (-428 *4 *5 *6 *3)))) (-2379 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-431)) (-4 *3 (-739)) (-4 *5 (-793)) (-5 *2 (-110)) (-5 *1 (-428 *4 *3 *5 *6)) (-4 *6 (-888 *4 *3 *5)))) (-3654 (*1 *2 *3 *3) (-12 (-4 *4 (-431)) (-4 *3 (-739)) (-4 *5 (-793)) (-5 *2 (-110)) (-5 *1 (-428 *4 *3 *5 *6)) (-4 *6 (-888 *4 *3 *5)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-717)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-739)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-431)) (-4 *6 (-793)) (-5 *2 (-110)) (-5 *1 (-428 *4 *5 *6 *7)))) (-2523 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-595 *7)) (-5 *3 (-528)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *1 (-428 *4 *5 *6 *7)))) (-3045 (*1 *2 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-888 *4 *5 *6)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *1 (-428 *4 *5 *6 *2)))) (-3474 (*1 *2 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-888 *4 *5 *6)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *1 (-428 *4 *5 *6 *2)))))
-(-10 -7 (-15 -3474 (|#4| |#4| (-595 |#4|))) (-15 -3045 (|#4| |#4| (-595 |#4|))) (-15 -2523 ((-595 |#4|) (-595 |#4|) (-528) (-528))) (-15 -3339 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3654 ((-110) |#2| |#2|)) (-15 -2379 ((-110) |#2| |#2| |#2| |#2|)) (-15 -3057 ((-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1457 ((-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3200 ((-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2684 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-595 |#4|))) (-15 -3606 (|#4| |#4|)) (-15 -2571 ((-595 (-2 (|:| |totdeg| (-717)) (|:| -3292 |#4|))) |#4| (-717) (-595 (-2 (|:| |totdeg| (-717)) (|:| -3292 |#4|))))) (-15 -2692 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4188 ((-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-595 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3612 ((-595 |#4|) (-595 |#4|))) (-15 -3475 ((-528) |#4|)) (-15 -2309 ((-1182) |#4|)) (-15 -1797 ((-528) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-528) (-528) (-528))) (-15 -3314 ((-528) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-528) (-528) (-528) (-528))) (-15 -1708 ((-1182) (-595 |#4|))) (-15 -3502 ((-1182) (-528))) (-15 -3570 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1401 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-717)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-717)) (|:| -3292 |#4|)) |#4| (-717))) (-15 -3756 ((-717) |#4|)))
-((-3072 ((|#4| |#4| (-595 |#4|)) 22 (|has| |#1| (-343)))) (-2175 (((-595 |#4|) (-595 |#4|) (-1078) (-1078)) 41) (((-595 |#4|) (-595 |#4|) (-1078)) 40) (((-595 |#4|) (-595 |#4|)) 35)))
-(((-429 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2175 ((-595 |#4|) (-595 |#4|))) (-15 -2175 ((-595 |#4|) (-595 |#4|) (-1078))) (-15 -2175 ((-595 |#4|) (-595 |#4|) (-1078) (-1078))) (IF (|has| |#1| (-343)) (-15 -3072 (|#4| |#4| (-595 |#4|))) |%noBranch|)) (-431) (-739) (-793) (-888 |#1| |#2| |#3|)) (T -429))
-((-3072 (*1 *2 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-888 *4 *5 *6)) (-4 *4 (-343)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *1 (-429 *4 *5 *6 *2)))) (-2175 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-595 *7)) (-5 *3 (-1078)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *1 (-429 *4 *5 *6 *7)))) (-2175 (*1 *2 *2 *3) (-12 (-5 *2 (-595 *7)) (-5 *3 (-1078)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *1 (-429 *4 *5 *6 *7)))) (-2175 (*1 *2 *2) (-12 (-5 *2 (-595 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-429 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2175 ((-595 |#4|) (-595 |#4|))) (-15 -2175 ((-595 |#4|) (-595 |#4|) (-1078))) (-15 -2175 ((-595 |#4|) (-595 |#4|) (-1078) (-1078))) (IF (|has| |#1| (-343)) (-15 -3072 (|#4| |#4| (-595 |#4|))) |%noBranch|))
-((-2057 (($ $ $) 14) (($ (-595 $)) 21)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 41)) (-2088 (($ $ $) NIL) (($ (-595 $)) 22)))
-(((-430 |#1|) (-10 -8 (-15 -3550 ((-1091 |#1|) (-1091 |#1|) (-1091 |#1|))) (-15 -2057 (|#1| (-595 |#1|))) (-15 -2057 (|#1| |#1| |#1|)) (-15 -2088 (|#1| (-595 |#1|))) (-15 -2088 (|#1| |#1| |#1|))) (-431)) (T -430))
-NIL
-(-10 -8 (-15 -3550 ((-1091 |#1|) (-1091 |#1|) (-1091 |#1|))) (-15 -2057 (|#1| (-595 |#1|))) (-15 -2057 (|#1| |#1| |#1|)) (-15 -2088 (|#1| (-595 |#1|))) (-15 -2088 (|#1| |#1| |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 41)) (-1738 (($ $) 40)) (-1811 (((-110) $) 38)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-1312 (((-3 $ "failed") $) 34)) (-1297 (((-110) $) 31)) (-2057 (($ $ $) 46) (($ (-595 $)) 45)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 44)) (-2088 (($ $ $) 48) (($ (-595 $)) 47)) (-3477 (((-3 $ "failed") $ $) 42)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ $) 43)) (-3742 (((-717)) 29)) (-4016 (((-110) $ $) 39)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24)))
-(((-431) (-133)) (T -431))
-((-2088 (*1 *1 *1 *1) (-4 *1 (-431))) (-2088 (*1 *1 *2) (-12 (-5 *2 (-595 *1)) (-4 *1 (-431)))) (-2057 (*1 *1 *1 *1) (-4 *1 (-431))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-595 *1)) (-4 *1 (-431)))) (-3550 (*1 *2 *2 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-431)))))
-(-13 (-520) (-10 -8 (-15 -2088 ($ $ $)) (-15 -2088 ($ (-595 $))) (-15 -2057 ($ $ $)) (-15 -2057 ($ (-595 $))) (-15 -3550 ((-1091 $) (-1091 $) (-1091 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-569 (-802)) . T) ((-162) . T) ((-271) . T) ((-520) . T) ((-597 $) . T) ((-664 $) . T) ((-673) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2445 (((-3 $ "failed")) NIL (|has| (-387 (-891 |#1|)) (-520)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-4023 (((-1177 (-635 (-387 (-891 |#1|)))) (-1177 $)) NIL) (((-1177 (-635 (-387 (-891 |#1|))))) NIL)) (-1653 (((-1177 $)) NIL)) (-2816 (($) NIL T CONST)) (-2202 (((-3 (-2 (|:| |particular| $) (|:| -1400 (-595 $))) "failed")) NIL)) (-3403 (((-3 $ "failed")) NIL (|has| (-387 (-891 |#1|)) (-520)))) (-3107 (((-635 (-387 (-891 |#1|))) (-1177 $)) NIL) (((-635 (-387 (-891 |#1|)))) NIL)) (-3913 (((-387 (-891 |#1|)) $) NIL)) (-3281 (((-635 (-387 (-891 |#1|))) $ (-1177 $)) NIL) (((-635 (-387 (-891 |#1|))) $) NIL)) (-3552 (((-3 $ "failed") $) NIL (|has| (-387 (-891 |#1|)) (-520)))) (-2591 (((-1091 (-891 (-387 (-891 |#1|))))) NIL (|has| (-387 (-891 |#1|)) (-343))) (((-1091 (-387 (-891 |#1|)))) 84 (|has| |#1| (-520)))) (-3693 (($ $ (-860)) NIL)) (-2061 (((-387 (-891 |#1|)) $) NIL)) (-2466 (((-1091 (-387 (-891 |#1|))) $) 82 (|has| (-387 (-891 |#1|)) (-520)))) (-3326 (((-387 (-891 |#1|)) (-1177 $)) NIL) (((-387 (-891 |#1|))) NIL)) (-3922 (((-1091 (-387 (-891 |#1|))) $) NIL)) (-2683 (((-110)) NIL)) (-1945 (($ (-1177 (-387 (-891 |#1|))) (-1177 $)) 103) (($ (-1177 (-387 (-891 |#1|)))) NIL)) (-1312 (((-3 $ "failed") $) NIL (|has| (-387 (-891 |#1|)) (-520)))) (-3090 (((-860)) NIL)) (-3733 (((-110)) NIL)) (-2451 (($ $ (-860)) NIL)) (-2854 (((-110)) NIL)) (-1795 (((-110)) NIL)) (-1870 (((-110)) NIL)) (-2481 (((-3 (-2 (|:| |particular| $) (|:| -1400 (-595 $))) "failed")) NIL)) (-2615 (((-3 $ "failed")) NIL (|has| (-387 (-891 |#1|)) (-520)))) (-2906 (((-635 (-387 (-891 |#1|))) (-1177 $)) NIL) (((-635 (-387 (-891 |#1|)))) NIL)) (-1948 (((-387 (-891 |#1|)) $) NIL)) (-3867 (((-635 (-387 (-891 |#1|))) $ (-1177 $)) NIL) (((-635 (-387 (-891 |#1|))) $) NIL)) (-1895 (((-3 $ "failed") $) NIL (|has| (-387 (-891 |#1|)) (-520)))) (-2102 (((-1091 (-891 (-387 (-891 |#1|))))) NIL (|has| (-387 (-891 |#1|)) (-343))) (((-1091 (-387 (-891 |#1|)))) 83 (|has| |#1| (-520)))) (-3964 (($ $ (-860)) NIL)) (-4000 (((-387 (-891 |#1|)) $) NIL)) (-3549 (((-1091 (-387 (-891 |#1|))) $) 77 (|has| (-387 (-891 |#1|)) (-520)))) (-1991 (((-387 (-891 |#1|)) (-1177 $)) NIL) (((-387 (-891 |#1|))) NIL)) (-2732 (((-1091 (-387 (-891 |#1|))) $) NIL)) (-4194 (((-110)) NIL)) (-3034 (((-1078) $) NIL)) (-2044 (((-110)) NIL)) (-3074 (((-110)) NIL)) (-1302 (((-110)) NIL)) (-2495 (((-1042) $) NIL)) (-3138 (((-387 (-891 |#1|)) $ $) 71 (|has| |#1| (-520)))) (-4153 (((-387 (-891 |#1|)) $) 93 (|has| |#1| (-520)))) (-2347 (((-387 (-891 |#1|)) $) 95 (|has| |#1| (-520)))) (-2756 (((-1091 (-387 (-891 |#1|))) $) 88 (|has| |#1| (-520)))) (-1488 (((-387 (-891 |#1|))) 72 (|has| |#1| (-520)))) (-1367 (((-387 (-891 |#1|)) $ $) 64 (|has| |#1| (-520)))) (-3857 (((-387 (-891 |#1|)) $) 92 (|has| |#1| (-520)))) (-3382 (((-387 (-891 |#1|)) $) 94 (|has| |#1| (-520)))) (-2828 (((-1091 (-387 (-891 |#1|))) $) 87 (|has| |#1| (-520)))) (-3714 (((-387 (-891 |#1|))) 68 (|has| |#1| (-520)))) (-3071 (($) 101) (($ (-1095)) 107) (($ (-1177 (-1095))) 106) (($ (-1177 $)) 96) (($ (-1095) (-1177 $)) 105) (($ (-1177 (-1095)) (-1177 $)) 104)) (-3176 (((-110)) NIL)) (-3043 (((-387 (-891 |#1|)) $ (-528)) NIL)) (-4243 (((-1177 (-387 (-891 |#1|))) $ (-1177 $)) 98) (((-635 (-387 (-891 |#1|))) (-1177 $) (-1177 $)) NIL) (((-1177 (-387 (-891 |#1|))) $) 40) (((-635 (-387 (-891 |#1|))) (-1177 $)) NIL)) (-3155 (((-1177 (-387 (-891 |#1|))) $) NIL) (($ (-1177 (-387 (-891 |#1|)))) 37)) (-1730 (((-595 (-891 (-387 (-891 |#1|)))) (-1177 $)) NIL) (((-595 (-891 (-387 (-891 |#1|))))) NIL) (((-595 (-891 |#1|)) (-1177 $)) 99 (|has| |#1| (-520))) (((-595 (-891 |#1|))) 100 (|has| |#1| (-520)))) (-2405 (($ $ $) NIL)) (-2643 (((-110)) NIL)) (-2222 (((-802) $) NIL) (($ (-1177 (-387 (-891 |#1|)))) NIL)) (-1400 (((-1177 $)) 60)) (-3586 (((-595 (-1177 (-387 (-891 |#1|))))) NIL (|has| (-387 (-891 |#1|)) (-520)))) (-4103 (($ $ $ $) NIL)) (-1461 (((-110)) NIL)) (-2834 (($ (-635 (-387 (-891 |#1|))) $) NIL)) (-3607 (($ $ $) NIL)) (-3047 (((-110)) NIL)) (-1907 (((-110)) NIL)) (-3405 (((-110)) NIL)) (-2969 (($) NIL T CONST)) (-2186 (((-110) $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) 97)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 56) (($ $ (-387 (-891 |#1|))) NIL) (($ (-387 (-891 |#1|)) $) NIL) (($ (-1062 |#2| (-387 (-891 |#1|))) $) NIL)))
-(((-432 |#1| |#2| |#3| |#4|) (-13 (-397 (-387 (-891 |#1|))) (-597 (-1062 |#2| (-387 (-891 |#1|)))) (-10 -8 (-15 -2222 ($ (-1177 (-387 (-891 |#1|))))) (-15 -2481 ((-3 (-2 (|:| |particular| $) (|:| -1400 (-595 $))) "failed"))) (-15 -2202 ((-3 (-2 (|:| |particular| $) (|:| -1400 (-595 $))) "failed"))) (-15 -3071 ($)) (-15 -3071 ($ (-1095))) (-15 -3071 ($ (-1177 (-1095)))) (-15 -3071 ($ (-1177 $))) (-15 -3071 ($ (-1095) (-1177 $))) (-15 -3071 ($ (-1177 (-1095)) (-1177 $))) (IF (|has| |#1| (-520)) (PROGN (-15 -2102 ((-1091 (-387 (-891 |#1|))))) (-15 -2828 ((-1091 (-387 (-891 |#1|))) $)) (-15 -3857 ((-387 (-891 |#1|)) $)) (-15 -3382 ((-387 (-891 |#1|)) $)) (-15 -2591 ((-1091 (-387 (-891 |#1|))))) (-15 -2756 ((-1091 (-387 (-891 |#1|))) $)) (-15 -4153 ((-387 (-891 |#1|)) $)) (-15 -2347 ((-387 (-891 |#1|)) $)) (-15 -1367 ((-387 (-891 |#1|)) $ $)) (-15 -3714 ((-387 (-891 |#1|)))) (-15 -3138 ((-387 (-891 |#1|)) $ $)) (-15 -1488 ((-387 (-891 |#1|)))) (-15 -1730 ((-595 (-891 |#1|)) (-1177 $))) (-15 -1730 ((-595 (-891 |#1|))))) |%noBranch|))) (-162) (-860) (-595 (-1095)) (-1177 (-635 |#1|))) (T -432))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1177 (-387 (-891 *3)))) (-4 *3 (-162)) (-14 *6 (-1177 (-635 *3))) (-5 *1 (-432 *3 *4 *5 *6)) (-14 *4 (-860)) (-14 *5 (-595 (-1095))))) (-2481 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-432 *3 *4 *5 *6)) (|:| -1400 (-595 (-432 *3 *4 *5 *6))))) (-5 *1 (-432 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))) (-2202 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-432 *3 *4 *5 *6)) (|:| -1400 (-595 (-432 *3 *4 *5 *6))))) (-5 *1 (-432 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))) (-3071 (*1 *1) (-12 (-5 *1 (-432 *2 *3 *4 *5)) (-4 *2 (-162)) (-14 *3 (-860)) (-14 *4 (-595 (-1095))) (-14 *5 (-1177 (-635 *2))))) (-3071 (*1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-432 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-595 *2)) (-14 *6 (-1177 (-635 *3))))) (-3071 (*1 *1 *2) (-12 (-5 *2 (-1177 (-1095))) (-5 *1 (-432 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))) (-3071 (*1 *1 *2) (-12 (-5 *2 (-1177 (-432 *3 *4 *5 *6))) (-5 *1 (-432 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-1177 (-432 *4 *5 *6 *7))) (-5 *1 (-432 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-860)) (-14 *6 (-595 *2)) (-14 *7 (-1177 (-635 *4))))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 (-1095))) (-5 *3 (-1177 (-432 *4 *5 *6 *7))) (-5 *1 (-432 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-860)) (-14 *6 (-595 (-1095))) (-14 *7 (-1177 (-635 *4))))) (-2102 (*1 *2) (-12 (-5 *2 (-1091 (-387 (-891 *3)))) (-5 *1 (-432 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-1091 (-387 (-891 *3)))) (-5 *1 (-432 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-387 (-891 *3))) (-5 *1 (-432 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))) (-3382 (*1 *2 *1) (-12 (-5 *2 (-387 (-891 *3))) (-5 *1 (-432 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))) (-2591 (*1 *2) (-12 (-5 *2 (-1091 (-387 (-891 *3)))) (-5 *1 (-432 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))) (-2756 (*1 *2 *1) (-12 (-5 *2 (-1091 (-387 (-891 *3)))) (-5 *1 (-432 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))) (-4153 (*1 *2 *1) (-12 (-5 *2 (-387 (-891 *3))) (-5 *1 (-432 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))) (-2347 (*1 *2 *1) (-12 (-5 *2 (-387 (-891 *3))) (-5 *1 (-432 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))) (-1367 (*1 *2 *1 *1) (-12 (-5 *2 (-387 (-891 *3))) (-5 *1 (-432 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))) (-3714 (*1 *2) (-12 (-5 *2 (-387 (-891 *3))) (-5 *1 (-432 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))) (-3138 (*1 *2 *1 *1) (-12 (-5 *2 (-387 (-891 *3))) (-5 *1 (-432 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))) (-1488 (*1 *2) (-12 (-5 *2 (-387 (-891 *3))) (-5 *1 (-432 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))) (-1730 (*1 *2 *3) (-12 (-5 *3 (-1177 (-432 *4 *5 *6 *7))) (-5 *2 (-595 (-891 *4))) (-5 *1 (-432 *4 *5 *6 *7)) (-4 *4 (-520)) (-4 *4 (-162)) (-14 *5 (-860)) (-14 *6 (-595 (-1095))) (-14 *7 (-1177 (-635 *4))))) (-1730 (*1 *2) (-12 (-5 *2 (-595 (-891 *3))) (-5 *1 (-432 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))))
-(-13 (-397 (-387 (-891 |#1|))) (-597 (-1062 |#2| (-387 (-891 |#1|)))) (-10 -8 (-15 -2222 ($ (-1177 (-387 (-891 |#1|))))) (-15 -2481 ((-3 (-2 (|:| |particular| $) (|:| -1400 (-595 $))) "failed"))) (-15 -2202 ((-3 (-2 (|:| |particular| $) (|:| -1400 (-595 $))) "failed"))) (-15 -3071 ($)) (-15 -3071 ($ (-1095))) (-15 -3071 ($ (-1177 (-1095)))) (-15 -3071 ($ (-1177 $))) (-15 -3071 ($ (-1095) (-1177 $))) (-15 -3071 ($ (-1177 (-1095)) (-1177 $))) (IF (|has| |#1| (-520)) (PROGN (-15 -2102 ((-1091 (-387 (-891 |#1|))))) (-15 -2828 ((-1091 (-387 (-891 |#1|))) $)) (-15 -3857 ((-387 (-891 |#1|)) $)) (-15 -3382 ((-387 (-891 |#1|)) $)) (-15 -2591 ((-1091 (-387 (-891 |#1|))))) (-15 -2756 ((-1091 (-387 (-891 |#1|))) $)) (-15 -4153 ((-387 (-891 |#1|)) $)) (-15 -2347 ((-387 (-891 |#1|)) $)) (-15 -1367 ((-387 (-891 |#1|)) $ $)) (-15 -3714 ((-387 (-891 |#1|)))) (-15 -3138 ((-387 (-891 |#1|)) $ $)) (-15 -1488 ((-387 (-891 |#1|)))) (-15 -1730 ((-595 (-891 |#1|)) (-1177 $))) (-15 -1730 ((-595 (-891 |#1|))))) |%noBranch|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 13)) (-2565 (((-595 (-804 |#1|)) $) 75)) (-2402 (((-1091 $) $ (-804 |#1|)) 46) (((-1091 |#2|) $) 118)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#2| (-520)))) (-1738 (($ $) NIL (|has| |#2| (-520)))) (-1811 (((-110) $) NIL (|has| |#2| (-520)))) (-4042 (((-717) $) 21) (((-717) $ (-595 (-804 |#1|))) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#2| (-848)))) (-1232 (($ $) NIL (|has| |#2| (-431)))) (-2705 (((-398 $) $) NIL (|has| |#2| (-431)))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (|has| |#2| (-848)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#2| "failed") $) 44) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#2| (-972 (-387 (-528))))) (((-3 (-528) "failed") $) NIL (|has| |#2| (-972 (-528)))) (((-3 (-804 |#1|) "failed") $) NIL)) (-2409 ((|#2| $) 42) (((-387 (-528)) $) NIL (|has| |#2| (-972 (-387 (-528))))) (((-528) $) NIL (|has| |#2| (-972 (-528)))) (((-804 |#1|) $) NIL)) (-1606 (($ $ $ (-804 |#1|)) NIL (|has| |#2| (-162)))) (-1808 (($ $ (-595 (-528))) 80)) (-2388 (($ $) 68)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| |#2| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| |#2| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 $) (-1177 $)) NIL) (((-635 |#2|) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1551 (($ $) NIL (|has| |#2| (-431))) (($ $ (-804 |#1|)) NIL (|has| |#2| (-431)))) (-2376 (((-595 $) $) NIL)) (-2124 (((-110) $) NIL (|has| |#2| (-848)))) (-4047 (($ $ |#2| |#3| $) NIL)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (-12 (|has| (-804 |#1|) (-825 (-359))) (|has| |#2| (-825 (-359))))) (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (-12 (|has| (-804 |#1|) (-825 (-528))) (|has| |#2| (-825 (-528)))))) (-1297 (((-110) $) NIL)) (-1224 (((-717) $) 58)) (-2557 (($ (-1091 |#2|) (-804 |#1|)) 123) (($ (-1091 $) (-804 |#1|)) 52)) (-3737 (((-595 $) $) NIL)) (-2195 (((-110) $) 59)) (-2548 (($ |#2| |#3|) 28) (($ $ (-804 |#1|) (-717)) 30) (($ $ (-595 (-804 |#1|)) (-595 (-717))) NIL)) (-3275 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $ (-804 |#1|)) NIL)) (-3499 ((|#3| $) NIL) (((-717) $ (-804 |#1|)) 50) (((-595 (-717)) $ (-595 (-804 |#1|))) 57)) (-1436 (($ $ $) NIL (|has| |#2| (-793)))) (-1736 (($ $ $) NIL (|has| |#2| (-793)))) (-1264 (($ (-1 |#3| |#3|) $) NIL)) (-3106 (($ (-1 |#2| |#2|) $) NIL)) (-3288 (((-3 (-804 |#1|) "failed") $) 39)) (-2686 (($ $) NIL)) (-2697 ((|#2| $) 41)) (-2057 (($ (-595 $)) NIL (|has| |#2| (-431))) (($ $ $) NIL (|has| |#2| (-431)))) (-3034 (((-1078) $) NIL)) (-3024 (((-3 (-595 $) "failed") $) NIL)) (-1281 (((-3 (-595 $) "failed") $) NIL)) (-3352 (((-3 (-2 (|:| |var| (-804 |#1|)) (|:| -2564 (-717))) "failed") $) NIL)) (-2495 (((-1042) $) NIL)) (-2662 (((-110) $) 40)) (-2675 ((|#2| $) 116)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#2| (-431)))) (-2088 (($ (-595 $)) NIL (|has| |#2| (-431))) (($ $ $) 128 (|has| |#2| (-431)))) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#2| (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#2| (-848)))) (-2437 (((-398 $) $) NIL (|has| |#2| (-848)))) (-3477 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-520))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-520)))) (-4014 (($ $ (-595 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL) (($ $ (-804 |#1|) |#2|) 87) (($ $ (-595 (-804 |#1|)) (-595 |#2|)) 90) (($ $ (-804 |#1|) $) 85) (($ $ (-595 (-804 |#1|)) (-595 $)) 106)) (-1372 (($ $ (-804 |#1|)) NIL (|has| |#2| (-162)))) (-3235 (($ $ (-804 |#1|)) 53) (($ $ (-595 (-804 |#1|))) NIL) (($ $ (-804 |#1|) (-717)) NIL) (($ $ (-595 (-804 |#1|)) (-595 (-717))) NIL)) (-2935 ((|#3| $) 67) (((-717) $ (-804 |#1|)) 37) (((-595 (-717)) $ (-595 (-804 |#1|))) 56)) (-3155 (((-831 (-359)) $) NIL (-12 (|has| (-804 |#1|) (-570 (-831 (-359)))) (|has| |#2| (-570 (-831 (-359)))))) (((-831 (-528)) $) NIL (-12 (|has| (-804 |#1|) (-570 (-831 (-528)))) (|has| |#2| (-570 (-831 (-528)))))) (((-504) $) NIL (-12 (|has| (-804 |#1|) (-570 (-504))) (|has| |#2| (-570 (-504)))))) (-1618 ((|#2| $) 125 (|has| |#2| (-431))) (($ $ (-804 |#1|)) NIL (|has| |#2| (-431)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-848))))) (-2222 (((-802) $) 145) (($ (-528)) NIL) (($ |#2|) 86) (($ (-804 |#1|)) 31) (($ (-387 (-528))) NIL (-1463 (|has| |#2| (-37 (-387 (-528)))) (|has| |#2| (-972 (-387 (-528)))))) (($ $) NIL (|has| |#2| (-520)))) (-3348 (((-595 |#2|) $) NIL)) (-3216 ((|#2| $ |#3|) NIL) (($ $ (-804 |#1|) (-717)) NIL) (($ $ (-595 (-804 |#1|)) (-595 (-717))) NIL)) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| |#2| (-848))) (|has| |#2| (-138))))) (-3742 (((-717)) NIL)) (-1997 (($ $ $ (-717)) NIL (|has| |#2| (-162)))) (-4016 (((-110) $ $) NIL (|has| |#2| (-520)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 17 T CONST)) (-2982 (($) 25 T CONST)) (-3245 (($ $ (-804 |#1|)) NIL) (($ $ (-595 (-804 |#1|))) NIL) (($ $ (-804 |#1|) (-717)) NIL) (($ $ (-595 (-804 |#1|)) (-595 (-717))) NIL)) (-2244 (((-110) $ $) NIL (|has| |#2| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#2| (-793)))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (|has| |#2| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#2| (-793)))) (-2296 (($ $ |#2|) 64 (|has| |#2| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) 111)) (** (($ $ (-860)) NIL) (($ $ (-717)) 109)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 29) (($ $ (-387 (-528))) NIL (|has| |#2| (-37 (-387 (-528))))) (($ (-387 (-528)) $) NIL (|has| |#2| (-37 (-387 (-528))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
-(((-433 |#1| |#2| |#3|) (-13 (-888 |#2| |#3| (-804 |#1|)) (-10 -8 (-15 -1808 ($ $ (-595 (-528)))))) (-595 (-1095)) (-981) (-220 (-2138 |#1|) (-717))) (T -433))
-((-1808 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-528))) (-14 *3 (-595 (-1095))) (-5 *1 (-433 *3 *4 *5)) (-4 *4 (-981)) (-4 *5 (-220 (-2138 *3) (-717))))))
-(-13 (-888 |#2| |#3| (-804 |#1|)) (-10 -8 (-15 -1808 ($ $ (-595 (-528))))))
-((-3210 (((-110) |#1| (-595 |#2|)) 69)) (-3185 (((-3 (-1177 (-595 |#2|)) "failed") (-717) |#1| (-595 |#2|)) 78)) (-2083 (((-3 (-595 |#2|) "failed") |#2| |#1| (-1177 (-595 |#2|))) 80)) (-2110 ((|#2| |#2| |#1|) 28)) (-3075 (((-717) |#2| (-595 |#2|)) 20)))
-(((-434 |#1| |#2|) (-10 -7 (-15 -2110 (|#2| |#2| |#1|)) (-15 -3075 ((-717) |#2| (-595 |#2|))) (-15 -3185 ((-3 (-1177 (-595 |#2|)) "failed") (-717) |#1| (-595 |#2|))) (-15 -2083 ((-3 (-595 |#2|) "failed") |#2| |#1| (-1177 (-595 |#2|)))) (-15 -3210 ((-110) |#1| (-595 |#2|)))) (-288) (-1153 |#1|)) (T -434))
-((-3210 (*1 *2 *3 *4) (-12 (-5 *4 (-595 *5)) (-4 *5 (-1153 *3)) (-4 *3 (-288)) (-5 *2 (-110)) (-5 *1 (-434 *3 *5)))) (-2083 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1177 (-595 *3))) (-4 *4 (-288)) (-5 *2 (-595 *3)) (-5 *1 (-434 *4 *3)) (-4 *3 (-1153 *4)))) (-3185 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-717)) (-4 *4 (-288)) (-4 *6 (-1153 *4)) (-5 *2 (-1177 (-595 *6))) (-5 *1 (-434 *4 *6)) (-5 *5 (-595 *6)))) (-3075 (*1 *2 *3 *4) (-12 (-5 *4 (-595 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-288)) (-5 *2 (-717)) (-5 *1 (-434 *5 *3)))) (-2110 (*1 *2 *2 *3) (-12 (-4 *3 (-288)) (-5 *1 (-434 *3 *2)) (-4 *2 (-1153 *3)))))
-(-10 -7 (-15 -2110 (|#2| |#2| |#1|)) (-15 -3075 ((-717) |#2| (-595 |#2|))) (-15 -3185 ((-3 (-1177 (-595 |#2|)) "failed") (-717) |#1| (-595 |#2|))) (-15 -2083 ((-3 (-595 |#2|) "failed") |#2| |#1| (-1177 (-595 |#2|)))) (-15 -3210 ((-110) |#1| (-595 |#2|))))
-((-2437 (((-398 |#5|) |#5|) 24)))
-(((-435 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2437 ((-398 |#5|) |#5|))) (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $)) (-15 -3915 ((-3 $ "failed") (-1095))))) (-739) (-520) (-520) (-888 |#4| |#2| |#1|)) (T -435))
-((-2437 (*1 *2 *3) (-12 (-4 *4 (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $)) (-15 -3915 ((-3 $ "failed") (-1095)))))) (-4 *5 (-739)) (-4 *7 (-520)) (-5 *2 (-398 *3)) (-5 *1 (-435 *4 *5 *6 *7 *3)) (-4 *6 (-520)) (-4 *3 (-888 *7 *5 *4)))))
-(-10 -7 (-15 -2437 ((-398 |#5|) |#5|)))
-((-2349 ((|#3|) 37)) (-3550 (((-1091 |#4|) (-1091 |#4|) (-1091 |#4|)) 33)))
-(((-436 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3550 ((-1091 |#4|) (-1091 |#4|) (-1091 |#4|))) (-15 -2349 (|#3|))) (-739) (-793) (-848) (-888 |#3| |#1| |#2|)) (T -436))
-((-2349 (*1 *2) (-12 (-4 *3 (-739)) (-4 *4 (-793)) (-4 *2 (-848)) (-5 *1 (-436 *3 *4 *2 *5)) (-4 *5 (-888 *2 *3 *4)))) (-3550 (*1 *2 *2 *2) (-12 (-5 *2 (-1091 *6)) (-4 *6 (-888 *5 *3 *4)) (-4 *3 (-739)) (-4 *4 (-793)) (-4 *5 (-848)) (-5 *1 (-436 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3550 ((-1091 |#4|) (-1091 |#4|) (-1091 |#4|))) (-15 -2349 (|#3|)))
-((-2437 (((-398 (-1091 |#1|)) (-1091 |#1|)) 43)))
-(((-437 |#1|) (-10 -7 (-15 -2437 ((-398 (-1091 |#1|)) (-1091 |#1|)))) (-288)) (T -437))
-((-2437 (*1 *2 *3) (-12 (-4 *4 (-288)) (-5 *2 (-398 (-1091 *4))) (-5 *1 (-437 *4)) (-5 *3 (-1091 *4)))))
-(-10 -7 (-15 -2437 ((-398 (-1091 |#1|)) (-1091 |#1|))))
-((-2612 (((-51) |#2| (-1095) (-275 |#2|) (-1144 (-717))) 42) (((-51) (-1 |#2| (-528)) (-275 |#2|) (-1144 (-717))) 41) (((-51) |#2| (-1095) (-275 |#2|)) 35) (((-51) (-1 |#2| (-528)) (-275 |#2|)) 28)) (-1397 (((-51) |#2| (-1095) (-275 |#2|) (-1144 (-387 (-528))) (-387 (-528))) 80) (((-51) (-1 |#2| (-387 (-528))) (-275 |#2|) (-1144 (-387 (-528))) (-387 (-528))) 79) (((-51) |#2| (-1095) (-275 |#2|) (-1144 (-528))) 78) (((-51) (-1 |#2| (-528)) (-275 |#2|) (-1144 (-528))) 77) (((-51) |#2| (-1095) (-275 |#2|)) 72) (((-51) (-1 |#2| (-528)) (-275 |#2|)) 71)) (-2632 (((-51) |#2| (-1095) (-275 |#2|) (-1144 (-387 (-528))) (-387 (-528))) 66) (((-51) (-1 |#2| (-387 (-528))) (-275 |#2|) (-1144 (-387 (-528))) (-387 (-528))) 64)) (-2623 (((-51) |#2| (-1095) (-275 |#2|) (-1144 (-528))) 48) (((-51) (-1 |#2| (-528)) (-275 |#2|) (-1144 (-528))) 47)))
-(((-438 |#1| |#2|) (-10 -7 (-15 -2612 ((-51) (-1 |#2| (-528)) (-275 |#2|))) (-15 -2612 ((-51) |#2| (-1095) (-275 |#2|))) (-15 -2612 ((-51) (-1 |#2| (-528)) (-275 |#2|) (-1144 (-717)))) (-15 -2612 ((-51) |#2| (-1095) (-275 |#2|) (-1144 (-717)))) (-15 -2623 ((-51) (-1 |#2| (-528)) (-275 |#2|) (-1144 (-528)))) (-15 -2623 ((-51) |#2| (-1095) (-275 |#2|) (-1144 (-528)))) (-15 -2632 ((-51) (-1 |#2| (-387 (-528))) (-275 |#2|) (-1144 (-387 (-528))) (-387 (-528)))) (-15 -2632 ((-51) |#2| (-1095) (-275 |#2|) (-1144 (-387 (-528))) (-387 (-528)))) (-15 -1397 ((-51) (-1 |#2| (-528)) (-275 |#2|))) (-15 -1397 ((-51) |#2| (-1095) (-275 |#2|))) (-15 -1397 ((-51) (-1 |#2| (-528)) (-275 |#2|) (-1144 (-528)))) (-15 -1397 ((-51) |#2| (-1095) (-275 |#2|) (-1144 (-528)))) (-15 -1397 ((-51) (-1 |#2| (-387 (-528))) (-275 |#2|) (-1144 (-387 (-528))) (-387 (-528)))) (-15 -1397 ((-51) |#2| (-1095) (-275 |#2|) (-1144 (-387 (-528))) (-387 (-528))))) (-13 (-520) (-793) (-972 (-528)) (-591 (-528))) (-13 (-27) (-1117) (-410 |#1|))) (T -438))
-((-1397 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1095)) (-5 *5 (-275 *3)) (-5 *6 (-1144 (-387 (-528)))) (-5 *7 (-387 (-528))) (-4 *3 (-13 (-27) (-1117) (-410 *8))) (-4 *8 (-13 (-520) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-438 *8 *3)))) (-1397 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-387 (-528)))) (-5 *4 (-275 *8)) (-5 *5 (-1144 (-387 (-528)))) (-5 *6 (-387 (-528))) (-4 *8 (-13 (-27) (-1117) (-410 *7))) (-4 *7 (-13 (-520) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-438 *7 *8)))) (-1397 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1095)) (-5 *5 (-275 *3)) (-5 *6 (-1144 (-528))) (-4 *3 (-13 (-27) (-1117) (-410 *7))) (-4 *7 (-13 (-520) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-438 *7 *3)))) (-1397 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-528))) (-5 *4 (-275 *7)) (-5 *5 (-1144 (-528))) (-4 *7 (-13 (-27) (-1117) (-410 *6))) (-4 *6 (-13 (-520) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-438 *6 *7)))) (-1397 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1095)) (-5 *5 (-275 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *6))) (-4 *6 (-13 (-520) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-438 *6 *3)))) (-1397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-528))) (-5 *4 (-275 *6)) (-4 *6 (-13 (-27) (-1117) (-410 *5))) (-4 *5 (-13 (-520) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-438 *5 *6)))) (-2632 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1095)) (-5 *5 (-275 *3)) (-5 *6 (-1144 (-387 (-528)))) (-5 *7 (-387 (-528))) (-4 *3 (-13 (-27) (-1117) (-410 *8))) (-4 *8 (-13 (-520) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-438 *8 *3)))) (-2632 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-387 (-528)))) (-5 *4 (-275 *8)) (-5 *5 (-1144 (-387 (-528)))) (-5 *6 (-387 (-528))) (-4 *8 (-13 (-27) (-1117) (-410 *7))) (-4 *7 (-13 (-520) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-438 *7 *8)))) (-2623 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1095)) (-5 *5 (-275 *3)) (-5 *6 (-1144 (-528))) (-4 *3 (-13 (-27) (-1117) (-410 *7))) (-4 *7 (-13 (-520) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-438 *7 *3)))) (-2623 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-528))) (-5 *4 (-275 *7)) (-5 *5 (-1144 (-528))) (-4 *7 (-13 (-27) (-1117) (-410 *6))) (-4 *6 (-13 (-520) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-438 *6 *7)))) (-2612 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1095)) (-5 *5 (-275 *3)) (-5 *6 (-1144 (-717))) (-4 *3 (-13 (-27) (-1117) (-410 *7))) (-4 *7 (-13 (-520) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-438 *7 *3)))) (-2612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-528))) (-5 *4 (-275 *7)) (-5 *5 (-1144 (-717))) (-4 *7 (-13 (-27) (-1117) (-410 *6))) (-4 *6 (-13 (-520) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-438 *6 *7)))) (-2612 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1095)) (-5 *5 (-275 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *6))) (-4 *6 (-13 (-520) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-438 *6 *3)))) (-2612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-528))) (-5 *4 (-275 *6)) (-4 *6 (-13 (-27) (-1117) (-410 *5))) (-4 *5 (-13 (-520) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-51)) (-5 *1 (-438 *5 *6)))))
-(-10 -7 (-15 -2612 ((-51) (-1 |#2| (-528)) (-275 |#2|))) (-15 -2612 ((-51) |#2| (-1095) (-275 |#2|))) (-15 -2612 ((-51) (-1 |#2| (-528)) (-275 |#2|) (-1144 (-717)))) (-15 -2612 ((-51) |#2| (-1095) (-275 |#2|) (-1144 (-717)))) (-15 -2623 ((-51) (-1 |#2| (-528)) (-275 |#2|) (-1144 (-528)))) (-15 -2623 ((-51) |#2| (-1095) (-275 |#2|) (-1144 (-528)))) (-15 -2632 ((-51) (-1 |#2| (-387 (-528))) (-275 |#2|) (-1144 (-387 (-528))) (-387 (-528)))) (-15 -2632 ((-51) |#2| (-1095) (-275 |#2|) (-1144 (-387 (-528))) (-387 (-528)))) (-15 -1397 ((-51) (-1 |#2| (-528)) (-275 |#2|))) (-15 -1397 ((-51) |#2| (-1095) (-275 |#2|))) (-15 -1397 ((-51) (-1 |#2| (-528)) (-275 |#2|) (-1144 (-528)))) (-15 -1397 ((-51) |#2| (-1095) (-275 |#2|) (-1144 (-528)))) (-15 -1397 ((-51) (-1 |#2| (-387 (-528))) (-275 |#2|) (-1144 (-387 (-528))) (-387 (-528)))) (-15 -1397 ((-51) |#2| (-1095) (-275 |#2|) (-1144 (-387 (-528))) (-387 (-528)))))
-((-2110 ((|#2| |#2| |#1|) 15)) (-3362 (((-595 |#2|) |#2| (-595 |#2|) |#1| (-860)) 69)) (-2393 (((-2 (|:| |plist| (-595 |#2|)) (|:| |modulo| |#1|)) |#2| (-595 |#2|) |#1| (-860)) 60)))
-(((-439 |#1| |#2|) (-10 -7 (-15 -2393 ((-2 (|:| |plist| (-595 |#2|)) (|:| |modulo| |#1|)) |#2| (-595 |#2|) |#1| (-860))) (-15 -3362 ((-595 |#2|) |#2| (-595 |#2|) |#1| (-860))) (-15 -2110 (|#2| |#2| |#1|))) (-288) (-1153 |#1|)) (T -439))
-((-2110 (*1 *2 *2 *3) (-12 (-4 *3 (-288)) (-5 *1 (-439 *3 *2)) (-4 *2 (-1153 *3)))) (-3362 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-595 *3)) (-5 *5 (-860)) (-4 *3 (-1153 *4)) (-4 *4 (-288)) (-5 *1 (-439 *4 *3)))) (-2393 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-860)) (-4 *5 (-288)) (-4 *3 (-1153 *5)) (-5 *2 (-2 (|:| |plist| (-595 *3)) (|:| |modulo| *5))) (-5 *1 (-439 *5 *3)) (-5 *4 (-595 *3)))))
-(-10 -7 (-15 -2393 ((-2 (|:| |plist| (-595 |#2|)) (|:| |modulo| |#1|)) |#2| (-595 |#2|) |#1| (-860))) (-15 -3362 ((-595 |#2|) |#2| (-595 |#2|) |#1| (-860))) (-15 -2110 (|#2| |#2| |#1|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 28)) (-2562 (($ |#3|) 25)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-2388 (($ $) 32)) (-1521 (($ |#2| |#4| $) 33)) (-2548 (($ |#2| (-660 |#3| |#4| |#5|)) 24)) (-2686 (((-660 |#3| |#4| |#5|) $) 15)) (-2621 ((|#3| $) 19)) (-2302 ((|#4| $) 17)) (-2697 ((|#2| $) 29)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-1826 (($ |#2| |#3| |#4|) 26)) (-2969 (($) 36 T CONST)) (-2186 (((-110) $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) 34)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-440 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-664 |#6|) (-664 |#2|) (-10 -8 (-15 -2697 (|#2| $)) (-15 -2686 ((-660 |#3| |#4| |#5|) $)) (-15 -2302 (|#4| $)) (-15 -2621 (|#3| $)) (-15 -2388 ($ $)) (-15 -2548 ($ |#2| (-660 |#3| |#4| |#5|))) (-15 -2562 ($ |#3|)) (-15 -1826 ($ |#2| |#3| |#4|)) (-15 -1521 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-595 (-1095)) (-162) (-793) (-220 (-2138 |#1|) (-717)) (-1 (-110) (-2 (|:| -3108 |#3|) (|:| -2564 |#4|)) (-2 (|:| -3108 |#3|) (|:| -2564 |#4|))) (-888 |#2| |#4| (-804 |#1|))) (T -440))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-595 (-1095))) (-4 *4 (-162)) (-4 *6 (-220 (-2138 *3) (-717))) (-14 *7 (-1 (-110) (-2 (|:| -3108 *5) (|:| -2564 *6)) (-2 (|:| -3108 *5) (|:| -2564 *6)))) (-5 *1 (-440 *3 *4 *5 *6 *7 *2)) (-4 *5 (-793)) (-4 *2 (-888 *4 *6 (-804 *3))))) (-2697 (*1 *2 *1) (-12 (-14 *3 (-595 (-1095))) (-4 *5 (-220 (-2138 *3) (-717))) (-14 *6 (-1 (-110) (-2 (|:| -3108 *4) (|:| -2564 *5)) (-2 (|:| -3108 *4) (|:| -2564 *5)))) (-4 *2 (-162)) (-5 *1 (-440 *3 *2 *4 *5 *6 *7)) (-4 *4 (-793)) (-4 *7 (-888 *2 *5 (-804 *3))))) (-2686 (*1 *2 *1) (-12 (-14 *3 (-595 (-1095))) (-4 *4 (-162)) (-4 *6 (-220 (-2138 *3) (-717))) (-14 *7 (-1 (-110) (-2 (|:| -3108 *5) (|:| -2564 *6)) (-2 (|:| -3108 *5) (|:| -2564 *6)))) (-5 *2 (-660 *5 *6 *7)) (-5 *1 (-440 *3 *4 *5 *6 *7 *8)) (-4 *5 (-793)) (-4 *8 (-888 *4 *6 (-804 *3))))) (-2302 (*1 *2 *1) (-12 (-14 *3 (-595 (-1095))) (-4 *4 (-162)) (-14 *6 (-1 (-110) (-2 (|:| -3108 *5) (|:| -2564 *2)) (-2 (|:| -3108 *5) (|:| -2564 *2)))) (-4 *2 (-220 (-2138 *3) (-717))) (-5 *1 (-440 *3 *4 *5 *2 *6 *7)) (-4 *5 (-793)) (-4 *7 (-888 *4 *2 (-804 *3))))) (-2621 (*1 *2 *1) (-12 (-14 *3 (-595 (-1095))) (-4 *4 (-162)) (-4 *5 (-220 (-2138 *3) (-717))) (-14 *6 (-1 (-110) (-2 (|:| -3108 *2) (|:| -2564 *5)) (-2 (|:| -3108 *2) (|:| -2564 *5)))) (-4 *2 (-793)) (-5 *1 (-440 *3 *4 *2 *5 *6 *7)) (-4 *7 (-888 *4 *5 (-804 *3))))) (-2388 (*1 *1 *1) (-12 (-14 *2 (-595 (-1095))) (-4 *3 (-162)) (-4 *5 (-220 (-2138 *2) (-717))) (-14 *6 (-1 (-110) (-2 (|:| -3108 *4) (|:| -2564 *5)) (-2 (|:| -3108 *4) (|:| -2564 *5)))) (-5 *1 (-440 *2 *3 *4 *5 *6 *7)) (-4 *4 (-793)) (-4 *7 (-888 *3 *5 (-804 *2))))) (-2548 (*1 *1 *2 *3) (-12 (-5 *3 (-660 *5 *6 *7)) (-4 *5 (-793)) (-4 *6 (-220 (-2138 *4) (-717))) (-14 *7 (-1 (-110) (-2 (|:| -3108 *5) (|:| -2564 *6)) (-2 (|:| -3108 *5) (|:| -2564 *6)))) (-14 *4 (-595 (-1095))) (-4 *2 (-162)) (-5 *1 (-440 *4 *2 *5 *6 *7 *8)) (-4 *8 (-888 *2 *6 (-804 *4))))) (-2562 (*1 *1 *2) (-12 (-14 *3 (-595 (-1095))) (-4 *4 (-162)) (-4 *5 (-220 (-2138 *3) (-717))) (-14 *6 (-1 (-110) (-2 (|:| -3108 *2) (|:| -2564 *5)) (-2 (|:| -3108 *2) (|:| -2564 *5)))) (-5 *1 (-440 *3 *4 *2 *5 *6 *7)) (-4 *2 (-793)) (-4 *7 (-888 *4 *5 (-804 *3))))) (-1826 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-595 (-1095))) (-4 *2 (-162)) (-4 *4 (-220 (-2138 *5) (-717))) (-14 *6 (-1 (-110) (-2 (|:| -3108 *3) (|:| -2564 *4)) (-2 (|:| -3108 *3) (|:| -2564 *4)))) (-5 *1 (-440 *5 *2 *3 *4 *6 *7)) (-4 *3 (-793)) (-4 *7 (-888 *2 *4 (-804 *5))))) (-1521 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-595 (-1095))) (-4 *2 (-162)) (-4 *3 (-220 (-2138 *4) (-717))) (-14 *6 (-1 (-110) (-2 (|:| -3108 *5) (|:| -2564 *3)) (-2 (|:| -3108 *5) (|:| -2564 *3)))) (-5 *1 (-440 *4 *2 *5 *3 *6 *7)) (-4 *5 (-793)) (-4 *7 (-888 *2 *3 (-804 *4))))))
-(-13 (-664 |#6|) (-664 |#2|) (-10 -8 (-15 -2697 (|#2| $)) (-15 -2686 ((-660 |#3| |#4| |#5|) $)) (-15 -2302 (|#4| $)) (-15 -2621 (|#3| $)) (-15 -2388 ($ $)) (-15 -2548 ($ |#2| (-660 |#3| |#4| |#5|))) (-15 -2562 ($ |#3|)) (-15 -1826 ($ |#2| |#3| |#4|)) (-15 -1521 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-1339 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37)))
-(((-441 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1339 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-739) (-793) (-520) (-888 |#3| |#1| |#2|) (-13 (-972 (-387 (-528))) (-343) (-10 -8 (-15 -2222 ($ |#4|)) (-15 -3031 (|#4| $)) (-15 -3042 (|#4| $))))) (T -441))
-((-1339 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-793)) (-4 *5 (-739)) (-4 *6 (-520)) (-4 *7 (-888 *6 *5 *3)) (-5 *1 (-441 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-972 (-387 (-528))) (-343) (-10 -8 (-15 -2222 ($ *7)) (-15 -3031 (*7 $)) (-15 -3042 (*7 $))))))))
-(-10 -7 (-15 -1339 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-2207 (((-110) $ $) NIL)) (-2565 (((-595 |#3|) $) 41)) (-3812 (((-110) $) NIL)) (-2414 (((-110) $) NIL (|has| |#1| (-520)))) (-1289 (((-2 (|:| |under| $) (|:| -2925 $) (|:| |upper| $)) $ |#3|) NIL)) (-3535 (((-110) $ (-717)) NIL)) (-1573 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264)))) (-2816 (($) NIL T CONST)) (-1689 (((-110) $) NIL (|has| |#1| (-520)))) (-2584 (((-110) $ $) NIL (|has| |#1| (-520)))) (-3168 (((-110) $ $) NIL (|has| |#1| (-520)))) (-1924 (((-110) $) NIL (|has| |#1| (-520)))) (-1891 (((-595 |#4|) (-595 |#4|) $) NIL (|has| |#1| (-520)))) (-3794 (((-595 |#4|) (-595 |#4|) $) NIL (|has| |#1| (-520)))) (-3001 (((-3 $ "failed") (-595 |#4|)) 47)) (-2409 (($ (-595 |#4|)) NIL)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023))))) (-2280 (($ |#4| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264)))) (-2537 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-520)))) (-1422 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4264))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4264)))) (-3342 (((-595 |#4|) $) 18 (|has| $ (-6 -4264)))) (-1761 ((|#3| $) 45)) (-2029 (((-110) $ (-717)) NIL)) (-2604 (((-595 |#4|) $) 14 (|has| $ (-6 -4264)))) (-2408 (((-110) |#4| $) 26 (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023))))) (-2800 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#4| |#4|) $) 21)) (-3558 (((-595 |#3|) $) NIL)) (-3472 (((-110) |#3| $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL)) (-1827 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-520)))) (-2495 (((-1042) $) NIL)) (-1734 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-1818 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 |#4|) (-595 |#4|)) NIL (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ (-275 |#4|)) NIL (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ (-595 (-275 |#4|))) NIL (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) 39)) (-2147 (($) 17)) (-2507 (((-717) |#4| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023)))) (((-717) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264)))) (-2406 (($ $) 16)) (-3155 (((-504) $) NIL (|has| |#4| (-570 (-504)))) (($ (-595 |#4|)) 49)) (-2233 (($ (-595 |#4|)) 13)) (-2649 (($ $ |#3|) NIL)) (-3597 (($ $ |#3|) NIL)) (-1812 (($ $ |#3|) NIL)) (-2222 (((-802) $) 38) (((-595 |#4|) $) 48)) (-3451 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 30)) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-442 |#1| |#2| |#3| |#4|) (-13 (-913 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3155 ($ (-595 |#4|))) (-6 -4264) (-6 -4265))) (-981) (-739) (-793) (-994 |#1| |#2| |#3|)) (T -442))
-((-3155 (*1 *1 *2) (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-442 *3 *4 *5 *6)))))
-(-13 (-913 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3155 ($ (-595 |#4|))) (-6 -4264) (-6 -4265)))
-((-2969 (($) 11)) (-2982 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-443 |#1| |#2| |#3|) (-10 -8 (-15 -2982 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2969 (|#1|))) (-444 |#2| |#3|) (-162) (-23)) (T -443))
-NIL
-(-10 -8 (-15 -2982 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2969 (|#1|)))
-((-2207 (((-110) $ $) 7)) (-3001 (((-3 |#1| "failed") $) 26)) (-2409 ((|#1| $) 25)) (-1415 (($ $ $) 23)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2935 ((|#2| $) 19)) (-2222 (((-802) $) 11) (($ |#1|) 27)) (-2969 (($) 18 T CONST)) (-2982 (($) 24 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 15) (($ $ $) 13)) (-2275 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
-(((-444 |#1| |#2|) (-133) (-162) (-23)) (T -444))
-((-2982 (*1 *1) (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-1415 (*1 *1 *1 *1) (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))))
-(-13 (-449 |t#1| |t#2|) (-972 |t#1|) (-10 -8 (-15 (-2982) ($) -2636) (-15 -1415 ($ $ $))))
-(((-99) . T) ((-569 (-802)) . T) ((-449 |#1| |#2|) . T) ((-972 |#1|) . T) ((-1023) . T))
-((-1223 (((-1177 (-1177 (-528))) (-1177 (-1177 (-528))) (-860)) 18)) (-3910 (((-1177 (-1177 (-528))) (-860)) 16)))
-(((-445) (-10 -7 (-15 -1223 ((-1177 (-1177 (-528))) (-1177 (-1177 (-528))) (-860))) (-15 -3910 ((-1177 (-1177 (-528))) (-860))))) (T -445))
-((-3910 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1177 (-1177 (-528)))) (-5 *1 (-445)))) (-1223 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 (-1177 (-528)))) (-5 *3 (-860)) (-5 *1 (-445)))))
-(-10 -7 (-15 -1223 ((-1177 (-1177 (-528))) (-1177 (-1177 (-528))) (-860))) (-15 -3910 ((-1177 (-1177 (-528))) (-860))))
-((-3685 (((-528) (-528)) 30) (((-528)) 22)) (-2952 (((-528) (-528)) 26) (((-528)) 18)) (-1899 (((-528) (-528)) 28) (((-528)) 20)) (-3554 (((-110) (-110)) 12) (((-110)) 10)) (-4004 (((-110) (-110)) 11) (((-110)) 9)) (-4075 (((-110) (-110)) 24) (((-110)) 15)))
-(((-446) (-10 -7 (-15 -4004 ((-110))) (-15 -3554 ((-110))) (-15 -4004 ((-110) (-110))) (-15 -3554 ((-110) (-110))) (-15 -4075 ((-110))) (-15 -1899 ((-528))) (-15 -2952 ((-528))) (-15 -3685 ((-528))) (-15 -4075 ((-110) (-110))) (-15 -1899 ((-528) (-528))) (-15 -2952 ((-528) (-528))) (-15 -3685 ((-528) (-528))))) (T -446))
-((-3685 (*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-446)))) (-2952 (*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-446)))) (-1899 (*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-446)))) (-4075 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-446)))) (-3685 (*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-446)))) (-2952 (*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-446)))) (-1899 (*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-446)))) (-4075 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-446)))) (-3554 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-446)))) (-4004 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-446)))) (-3554 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-446)))) (-4004 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-446)))))
-(-10 -7 (-15 -4004 ((-110))) (-15 -3554 ((-110))) (-15 -4004 ((-110) (-110))) (-15 -3554 ((-110) (-110))) (-15 -4075 ((-110))) (-15 -1899 ((-528))) (-15 -2952 ((-528))) (-15 -3685 ((-528))) (-15 -4075 ((-110) (-110))) (-15 -1899 ((-528) (-528))) (-15 -2952 ((-528) (-528))) (-15 -3685 ((-528) (-528))))
-((-2207 (((-110) $ $) NIL)) (-1756 (((-595 (-359)) $) 28) (((-595 (-359)) $ (-595 (-359))) 96)) (-4011 (((-595 (-1018 (-359))) $) 16) (((-595 (-1018 (-359))) $ (-595 (-1018 (-359)))) 94)) (-1383 (((-595 (-595 (-882 (-207)))) (-595 (-595 (-882 (-207)))) (-595 (-813))) 45)) (-3299 (((-595 (-595 (-882 (-207)))) $) 90)) (-1363 (((-1182) $ (-882 (-207)) (-813)) 108)) (-1744 (($ $) 89) (($ (-595 (-595 (-882 (-207))))) 99) (($ (-595 (-595 (-882 (-207)))) (-595 (-813)) (-595 (-813)) (-595 (-860))) 98) (($ (-595 (-595 (-882 (-207)))) (-595 (-813)) (-595 (-813)) (-595 (-860)) (-595 (-244))) 100)) (-3034 (((-1078) $) NIL)) (-2927 (((-528) $) 71)) (-2495 (((-1042) $) NIL)) (-2196 (($) 97)) (-2889 (((-595 (-207)) (-595 (-595 (-882 (-207))))) 56)) (-3533 (((-1182) $ (-595 (-882 (-207))) (-813) (-813) (-860)) 102) (((-1182) $ (-882 (-207))) 104) (((-1182) $ (-882 (-207)) (-813) (-813) (-860)) 103)) (-2222 (((-802) $) 114) (($ (-595 (-595 (-882 (-207))))) 109)) (-1265 (((-1182) $ (-882 (-207))) 107)) (-2186 (((-110) $ $) NIL)))
-(((-447) (-13 (-1023) (-10 -8 (-15 -2196 ($)) (-15 -1744 ($ $)) (-15 -1744 ($ (-595 (-595 (-882 (-207)))))) (-15 -1744 ($ (-595 (-595 (-882 (-207)))) (-595 (-813)) (-595 (-813)) (-595 (-860)))) (-15 -1744 ($ (-595 (-595 (-882 (-207)))) (-595 (-813)) (-595 (-813)) (-595 (-860)) (-595 (-244)))) (-15 -3299 ((-595 (-595 (-882 (-207)))) $)) (-15 -2927 ((-528) $)) (-15 -4011 ((-595 (-1018 (-359))) $)) (-15 -4011 ((-595 (-1018 (-359))) $ (-595 (-1018 (-359))))) (-15 -1756 ((-595 (-359)) $)) (-15 -1756 ((-595 (-359)) $ (-595 (-359)))) (-15 -3533 ((-1182) $ (-595 (-882 (-207))) (-813) (-813) (-860))) (-15 -3533 ((-1182) $ (-882 (-207)))) (-15 -3533 ((-1182) $ (-882 (-207)) (-813) (-813) (-860))) (-15 -1265 ((-1182) $ (-882 (-207)))) (-15 -1363 ((-1182) $ (-882 (-207)) (-813))) (-15 -2222 ($ (-595 (-595 (-882 (-207)))))) (-15 -2222 ((-802) $)) (-15 -1383 ((-595 (-595 (-882 (-207)))) (-595 (-595 (-882 (-207)))) (-595 (-813)))) (-15 -2889 ((-595 (-207)) (-595 (-595 (-882 (-207))))))))) (T -447))
-((-2222 (*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-447)))) (-2196 (*1 *1) (-5 *1 (-447))) (-1744 (*1 *1 *1) (-5 *1 (-447))) (-1744 (*1 *1 *2) (-12 (-5 *2 (-595 (-595 (-882 (-207))))) (-5 *1 (-447)))) (-1744 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-595 (-595 (-882 (-207))))) (-5 *3 (-595 (-813))) (-5 *4 (-595 (-860))) (-5 *1 (-447)))) (-1744 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-595 (-595 (-882 (-207))))) (-5 *3 (-595 (-813))) (-5 *4 (-595 (-860))) (-5 *5 (-595 (-244))) (-5 *1 (-447)))) (-3299 (*1 *2 *1) (-12 (-5 *2 (-595 (-595 (-882 (-207))))) (-5 *1 (-447)))) (-2927 (*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-447)))) (-4011 (*1 *2 *1) (-12 (-5 *2 (-595 (-1018 (-359)))) (-5 *1 (-447)))) (-4011 (*1 *2 *1 *2) (-12 (-5 *2 (-595 (-1018 (-359)))) (-5 *1 (-447)))) (-1756 (*1 *2 *1) (-12 (-5 *2 (-595 (-359))) (-5 *1 (-447)))) (-1756 (*1 *2 *1 *2) (-12 (-5 *2 (-595 (-359))) (-5 *1 (-447)))) (-3533 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-595 (-882 (-207)))) (-5 *4 (-813)) (-5 *5 (-860)) (-5 *2 (-1182)) (-5 *1 (-447)))) (-3533 (*1 *2 *1 *3) (-12 (-5 *3 (-882 (-207))) (-5 *2 (-1182)) (-5 *1 (-447)))) (-3533 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-882 (-207))) (-5 *4 (-813)) (-5 *5 (-860)) (-5 *2 (-1182)) (-5 *1 (-447)))) (-1265 (*1 *2 *1 *3) (-12 (-5 *3 (-882 (-207))) (-5 *2 (-1182)) (-5 *1 (-447)))) (-1363 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-882 (-207))) (-5 *4 (-813)) (-5 *2 (-1182)) (-5 *1 (-447)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-595 (-595 (-882 (-207))))) (-5 *1 (-447)))) (-1383 (*1 *2 *2 *3) (-12 (-5 *2 (-595 (-595 (-882 (-207))))) (-5 *3 (-595 (-813))) (-5 *1 (-447)))) (-2889 (*1 *2 *3) (-12 (-5 *3 (-595 (-595 (-882 (-207))))) (-5 *2 (-595 (-207))) (-5 *1 (-447)))))
-(-13 (-1023) (-10 -8 (-15 -2196 ($)) (-15 -1744 ($ $)) (-15 -1744 ($ (-595 (-595 (-882 (-207)))))) (-15 -1744 ($ (-595 (-595 (-882 (-207)))) (-595 (-813)) (-595 (-813)) (-595 (-860)))) (-15 -1744 ($ (-595 (-595 (-882 (-207)))) (-595 (-813)) (-595 (-813)) (-595 (-860)) (-595 (-244)))) (-15 -3299 ((-595 (-595 (-882 (-207)))) $)) (-15 -2927 ((-528) $)) (-15 -4011 ((-595 (-1018 (-359))) $)) (-15 -4011 ((-595 (-1018 (-359))) $ (-595 (-1018 (-359))))) (-15 -1756 ((-595 (-359)) $)) (-15 -1756 ((-595 (-359)) $ (-595 (-359)))) (-15 -3533 ((-1182) $ (-595 (-882 (-207))) (-813) (-813) (-860))) (-15 -3533 ((-1182) $ (-882 (-207)))) (-15 -3533 ((-1182) $ (-882 (-207)) (-813) (-813) (-860))) (-15 -1265 ((-1182) $ (-882 (-207)))) (-15 -1363 ((-1182) $ (-882 (-207)) (-813))) (-15 -2222 ($ (-595 (-595 (-882 (-207)))))) (-15 -2222 ((-802) $)) (-15 -1383 ((-595 (-595 (-882 (-207)))) (-595 (-595 (-882 (-207)))) (-595 (-813)))) (-15 -2889 ((-595 (-207)) (-595 (-595 (-882 (-207))))))))
-((-2286 (($ $) NIL) (($ $ $) 11)))
-(((-448 |#1| |#2| |#3|) (-10 -8 (-15 -2286 (|#1| |#1| |#1|)) (-15 -2286 (|#1| |#1|))) (-449 |#2| |#3|) (-162) (-23)) (T -448))
-NIL
-(-10 -8 (-15 -2286 (|#1| |#1| |#1|)) (-15 -2286 (|#1| |#1|)))
-((-2207 (((-110) $ $) 7)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2935 ((|#2| $) 19)) (-2222 (((-802) $) 11)) (-2969 (($) 18 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 15) (($ $ $) 13)) (-2275 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
-(((-449 |#1| |#2|) (-133) (-162) (-23)) (T -449))
-((-2935 (*1 *2 *1) (-12 (-4 *1 (-449 *3 *2)) (-4 *3 (-162)) (-4 *2 (-23)))) (-2969 (*1 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-2286 (*1 *1 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-2275 (*1 *1 *1 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-2286 (*1 *1 *1 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))))
-(-13 (-1023) (-10 -8 (-15 -2935 (|t#2| $)) (-15 (-2969) ($) -2636) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2286 ($ $)) (-15 -2275 ($ $ $)) (-15 -2286 ($ $ $))))
-(((-99) . T) ((-569 (-802)) . T) ((-1023) . T))
-((-3286 (((-3 (-595 (-459 |#1| |#2|)) "failed") (-595 (-459 |#1| |#2|)) (-595 (-804 |#1|))) 93)) (-1631 (((-595 (-595 (-229 |#1| |#2|))) (-595 (-229 |#1| |#2|)) (-595 (-804 |#1|))) 91)) (-3669 (((-2 (|:| |dpolys| (-595 (-229 |#1| |#2|))) (|:| |coords| (-595 (-528)))) (-595 (-229 |#1| |#2|)) (-595 (-804 |#1|))) 61)))
-(((-450 |#1| |#2| |#3|) (-10 -7 (-15 -1631 ((-595 (-595 (-229 |#1| |#2|))) (-595 (-229 |#1| |#2|)) (-595 (-804 |#1|)))) (-15 -3286 ((-3 (-595 (-459 |#1| |#2|)) "failed") (-595 (-459 |#1| |#2|)) (-595 (-804 |#1|)))) (-15 -3669 ((-2 (|:| |dpolys| (-595 (-229 |#1| |#2|))) (|:| |coords| (-595 (-528)))) (-595 (-229 |#1| |#2|)) (-595 (-804 |#1|))))) (-595 (-1095)) (-431) (-431)) (T -450))
-((-3669 (*1 *2 *3 *4) (-12 (-5 *4 (-595 (-804 *5))) (-14 *5 (-595 (-1095))) (-4 *6 (-431)) (-5 *2 (-2 (|:| |dpolys| (-595 (-229 *5 *6))) (|:| |coords| (-595 (-528))))) (-5 *1 (-450 *5 *6 *7)) (-5 *3 (-595 (-229 *5 *6))) (-4 *7 (-431)))) (-3286 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-595 (-459 *4 *5))) (-5 *3 (-595 (-804 *4))) (-14 *4 (-595 (-1095))) (-4 *5 (-431)) (-5 *1 (-450 *4 *5 *6)) (-4 *6 (-431)))) (-1631 (*1 *2 *3 *4) (-12 (-5 *4 (-595 (-804 *5))) (-14 *5 (-595 (-1095))) (-4 *6 (-431)) (-5 *2 (-595 (-595 (-229 *5 *6)))) (-5 *1 (-450 *5 *6 *7)) (-5 *3 (-595 (-229 *5 *6))) (-4 *7 (-431)))))
-(-10 -7 (-15 -1631 ((-595 (-595 (-229 |#1| |#2|))) (-595 (-229 |#1| |#2|)) (-595 (-804 |#1|)))) (-15 -3286 ((-3 (-595 (-459 |#1| |#2|)) "failed") (-595 (-459 |#1| |#2|)) (-595 (-804 |#1|)))) (-15 -3669 ((-2 (|:| |dpolys| (-595 (-229 |#1| |#2|))) (|:| |coords| (-595 (-528)))) (-595 (-229 |#1| |#2|)) (-595 (-804 |#1|)))))
-((-1312 (((-3 $ "failed") $) 11)) (-4097 (($ $ $) 20)) (-2405 (($ $ $) 21)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) 14)) (-2296 (($ $ $) 9)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) 19)))
-(((-451 |#1|) (-10 -8 (-15 -2405 (|#1| |#1| |#1|)) (-15 -4097 (|#1| |#1| |#1|)) (-15 -2690 (|#1| |#1| (-528))) (-15 ** (|#1| |#1| (-528))) (-15 -2296 (|#1| |#1| |#1|)) (-15 -1312 ((-3 |#1| "failed") |#1|)) (-15 -2690 (|#1| |#1| (-717))) (-15 ** (|#1| |#1| (-717))) (-15 -2690 (|#1| |#1| (-860))) (-15 ** (|#1| |#1| (-860)))) (-452)) (T -451))
-NIL
-(-10 -8 (-15 -2405 (|#1| |#1| |#1|)) (-15 -4097 (|#1| |#1| |#1|)) (-15 -2690 (|#1| |#1| (-528))) (-15 ** (|#1| |#1| (-528))) (-15 -2296 (|#1| |#1| |#1|)) (-15 -1312 ((-3 |#1| "failed") |#1|)) (-15 -2690 (|#1| |#1| (-717))) (-15 ** (|#1| |#1| (-717))) (-15 -2690 (|#1| |#1| (-860))) (-15 ** (|#1| |#1| (-860))))
-((-2207 (((-110) $ $) 7)) (-2816 (($) 20 T CONST)) (-1312 (((-3 $ "failed") $) 16)) (-1297 (((-110) $) 19)) (-3034 (((-1078) $) 9)) (-2652 (($ $) 27)) (-2495 (((-1042) $) 10)) (-4097 (($ $ $) 23)) (-2405 (($ $ $) 22)) (-2222 (((-802) $) 11)) (-2690 (($ $ (-860)) 13) (($ $ (-717)) 17) (($ $ (-528)) 24)) (-2982 (($) 21 T CONST)) (-2186 (((-110) $ $) 6)) (-2296 (($ $ $) 26)) (** (($ $ (-860)) 14) (($ $ (-717)) 18) (($ $ (-528)) 25)) (* (($ $ $) 15)))
-(((-452) (-133)) (T -452))
-((-2652 (*1 *1 *1) (-4 *1 (-452))) (-2296 (*1 *1 *1 *1) (-4 *1 (-452))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-452)) (-5 *2 (-528)))) (-2690 (*1 *1 *1 *2) (-12 (-4 *1 (-452)) (-5 *2 (-528)))) (-4097 (*1 *1 *1 *1) (-4 *1 (-452))) (-2405 (*1 *1 *1 *1) (-4 *1 (-452))))
-(-13 (-673) (-10 -8 (-15 -2652 ($ $)) (-15 -2296 ($ $ $)) (-15 ** ($ $ (-528))) (-15 -2690 ($ $ (-528))) (-6 -4261) (-15 -4097 ($ $ $)) (-15 -2405 ($ $ $))))
-(((-99) . T) ((-569 (-802)) . T) ((-673) . T) ((-1035) . T) ((-1023) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2565 (((-595 (-1008)) $) NIL)) (-3915 (((-1095) $) 17)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#1| (-520)))) (-1738 (($ $) NIL (|has| |#1| (-520)))) (-1811 (((-110) $) NIL (|has| |#1| (-520)))) (-1781 (($ $ (-387 (-528))) NIL) (($ $ (-387 (-528)) (-387 (-528))) NIL)) (-1514 (((-1076 (-2 (|:| |k| (-387 (-528))) (|:| |c| |#1|))) $) NIL)) (-2880 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2735 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL (|has| |#1| (-343)))) (-2705 (((-398 $) $) NIL (|has| |#1| (-343)))) (-2450 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2213 (((-110) $ $) NIL (|has| |#1| (-343)))) (-2859 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2712 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-1397 (($ (-717) (-1076 (-2 (|:| |k| (-387 (-528))) (|:| |c| |#1|)))) NIL)) (-2904 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2761 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2816 (($) NIL T CONST)) (-3519 (($ $ $) NIL (|has| |#1| (-343)))) (-2388 (($ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-3498 (($ $ $) NIL (|has| |#1| (-343)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL (|has| |#1| (-343)))) (-2124 (((-110) $) NIL (|has| |#1| (-343)))) (-1900 (((-110) $) NIL)) (-1505 (($) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3689 (((-387 (-528)) $) NIL) (((-387 (-528)) $ (-387 (-528))) NIL)) (-1297 (((-110) $) NIL)) (-2796 (($ $ (-528)) NIL (|has| |#1| (-37 (-387 (-528)))))) (-1771 (($ $ (-860)) NIL) (($ $ (-387 (-528))) NIL)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-2195 (((-110) $) NIL)) (-2548 (($ |#1| (-387 (-528))) NIL) (($ $ (-1008) (-387 (-528))) NIL) (($ $ (-595 (-1008)) (-595 (-387 (-528)))) NIL)) (-3106 (($ (-1 |#1| |#1|) $) 22)) (-2097 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2686 (($ $) NIL)) (-2697 ((|#1| $) NIL)) (-2057 (($ (-595 $)) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-343)))) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL (|has| |#1| (-343)))) (-1923 (($ $) 26 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-1095)) 33 (-1463 (-12 (|has| |#1| (-15 -1923 (|#1| |#1| (-1095)))) (|has| |#1| (-15 -2565 ((-595 (-1095)) |#1|))) (|has| |#1| (-37 (-387 (-528))))) (-12 (|has| |#1| (-29 (-528))) (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-897)) (|has| |#1| (-1117))))) (($ $ (-1173 |#2|)) 27 (|has| |#1| (-37 (-387 (-528)))))) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#1| (-343)))) (-2088 (($ (-595 $)) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-343)))) (-2437 (((-398 $) $) NIL (|has| |#1| (-343)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-343))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#1| (-343)))) (-3740 (($ $ (-387 (-528))) NIL)) (-3477 (((-3 $ "failed") $ $) NIL (|has| |#1| (-520)))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-2656 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4014 (((-1076 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-387 (-528))))))) (-3973 (((-717) $) NIL (|has| |#1| (-343)))) (-3043 ((|#1| $ (-387 (-528))) NIL) (($ $ $) NIL (|has| (-387 (-528)) (-1035)))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-343)))) (-3235 (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095)) 25 (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-717)) NIL (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|)))) (($ $ (-1173 |#2|)) 15)) (-2935 (((-387 (-528)) $) NIL)) (-2917 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2773 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2892 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2749 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2869 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2724 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3534 (($ $) NIL)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1173 |#2|)) NIL) (($ (-1162 |#1| |#2| |#3|)) 9) (($ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $) NIL (|has| |#1| (-520)))) (-3216 ((|#1| $ (-387 (-528))) NIL)) (-3749 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3742 (((-717)) NIL)) (-1884 ((|#1| $) 18)) (-2953 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2811 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4016 (((-110) $ $) NIL (|has| |#1| (-520)))) (-2928 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2784 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2981 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2836 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4083 ((|#1| $ (-387 (-528))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-387 (-528))))) (|has| |#1| (-15 -2222 (|#1| (-1095))))))) (-3592 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2846 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2967 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2825 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2940 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2797 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| |#1| (-343)))) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095)) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-717)) NIL (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ |#1|) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-343)))) (-2286 (($ $) NIL) (($ $ $) 24)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528)))))) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-387 (-528)) $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528)))))))
-(((-453 |#1| |#2| |#3|) (-13 (-1158 |#1|) (-10 -8 (-15 -2222 ($ (-1173 |#2|))) (-15 -2222 ($ (-1162 |#1| |#2| |#3|))) (-15 -3235 ($ $ (-1173 |#2|))) (IF (|has| |#1| (-37 (-387 (-528)))) (-15 -1923 ($ $ (-1173 |#2|))) |%noBranch|))) (-981) (-1095) |#1|) (T -453))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-453 *3 *4 *5)) (-4 *3 (-981)) (-14 *5 *3))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-1162 *3 *4 *5)) (-4 *3 (-981)) (-14 *4 (-1095)) (-14 *5 *3) (-5 *1 (-453 *3 *4 *5)))) (-3235 (*1 *1 *1 *2) (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-453 *3 *4 *5)) (-4 *3 (-981)) (-14 *5 *3))) (-1923 (*1 *1 *1 *2) (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-453 *3 *4 *5)) (-4 *3 (-37 (-387 (-528)))) (-4 *3 (-981)) (-14 *5 *3))))
-(-13 (-1158 |#1|) (-10 -8 (-15 -2222 ($ (-1173 |#2|))) (-15 -2222 ($ (-1162 |#1| |#2| |#3|))) (-15 -3235 ($ $ (-1173 |#2|))) (IF (|has| |#1| (-37 (-387 (-528)))) (-15 -1923 ($ $ (-1173 |#2|))) |%noBranch|)))
-((-2207 (((-110) $ $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-3450 (($) NIL) (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-1444 (((-1182) $ |#1| |#1|) NIL (|has| $ (-6 -4265)))) (-3535 (((-110) $ (-717)) NIL)) (-2381 ((|#2| $ |#1| |#2|) 18)) (-1836 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-1573 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-2582 (((-3 |#2| "failed") |#1| $) 19)) (-2816 (($) NIL T CONST)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))))) (-3991 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (|has| $ (-6 -4264))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-3 |#2| "failed") |#1| $) 16)) (-2280 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-1422 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (|has| $ (-6 -4264))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-2812 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4265)))) (-2742 ((|#2| $ |#1|) NIL)) (-3342 (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-595 |#2|) $) NIL (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) NIL)) (-3530 ((|#1| $) NIL (|has| |#1| (-793)))) (-2604 (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-595 |#2|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-1709 ((|#1| $) NIL (|has| |#1| (-793)))) (-2800 (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4265))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-3225 (((-595 |#1|) $) NIL)) (-4024 (((-110) |#1| $) NIL)) (-3934 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL)) (-1950 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL)) (-2084 (((-595 |#1|) $) NIL)) (-3966 (((-110) |#1| $) NIL)) (-2495 (((-1042) $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-2890 ((|#2| $) NIL (|has| |#1| (-793)))) (-1734 (((-3 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) "failed") (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL)) (-1332 (($ $ |#2|) NIL (|has| $ (-6 -4265)))) (-1390 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL)) (-1818 (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-275 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-595 |#2|) (-595 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-595 (-275 |#2|))) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-2861 (((-595 |#2|) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3900 (($) NIL) (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-2507 (((-717) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-717) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (((-717) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023)))) (((-717) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) NIL (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-570 (-504))))) (-2233 (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-2222 (((-802) $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-569 (-802))) (|has| |#2| (-569 (-802)))))) (-2164 (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-3451 (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-454 |#1| |#2| |#3| |#4|) (-1108 |#1| |#2|) (-1023) (-1023) (-1108 |#1| |#2|) |#2|) (T -454))
-NIL
-(-1108 |#1| |#2|)
-((-2207 (((-110) $ $) NIL)) (-2785 (((-595 (-2 (|:| -2254 $) (|:| -2378 (-595 |#4|)))) (-595 |#4|)) NIL)) (-1985 (((-595 $) (-595 |#4|)) NIL)) (-2565 (((-595 |#3|) $) NIL)) (-3812 (((-110) $) NIL)) (-2414 (((-110) $) NIL (|has| |#1| (-520)))) (-3759 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1728 ((|#4| |#4| $) NIL)) (-1289 (((-2 (|:| |under| $) (|:| -2925 $) (|:| |upper| $)) $ |#3|) NIL)) (-3535 (((-110) $ (-717)) NIL)) (-1573 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2816 (($) NIL T CONST)) (-1689 (((-110) $) 26 (|has| |#1| (-520)))) (-2584 (((-110) $ $) NIL (|has| |#1| (-520)))) (-3168 (((-110) $ $) NIL (|has| |#1| (-520)))) (-1924 (((-110) $) NIL (|has| |#1| (-520)))) (-1658 (((-595 |#4|) (-595 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-1891 (((-595 |#4|) (-595 |#4|) $) NIL (|has| |#1| (-520)))) (-3794 (((-595 |#4|) (-595 |#4|) $) NIL (|has| |#1| (-520)))) (-3001 (((-3 $ "failed") (-595 |#4|)) NIL)) (-2409 (($ (-595 |#4|)) NIL)) (-2902 (((-3 $ "failed") $) 39)) (-1592 ((|#4| |#4| $) NIL)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023))))) (-2280 (($ |#4| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264)))) (-2537 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-520)))) (-1927 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-3345 ((|#4| |#4| $) NIL)) (-1422 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4264))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4264))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-4049 (((-2 (|:| -2254 (-595 |#4|)) (|:| -2378 (-595 |#4|))) $) NIL)) (-3342 (((-595 |#4|) $) 16 (|has| $ (-6 -4264)))) (-3092 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1761 ((|#3| $) 33)) (-2029 (((-110) $ (-717)) NIL)) (-2604 (((-595 |#4|) $) 17 (|has| $ (-6 -4264)))) (-2408 (((-110) |#4| $) 25 (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023))))) (-2800 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#4| |#4|) $) 21)) (-3558 (((-595 |#3|) $) NIL)) (-3472 (((-110) |#3| $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL)) (-2301 (((-3 |#4| "failed") $) 37)) (-3923 (((-595 |#4|) $) NIL)) (-2127 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3436 ((|#4| |#4| $) NIL)) (-3664 (((-110) $ $) NIL)) (-1827 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-520)))) (-1906 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-2001 ((|#4| |#4| $) NIL)) (-2495 (((-1042) $) NIL)) (-2890 (((-3 |#4| "failed") $) 35)) (-1734 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-3912 (((-3 $ "failed") $ |#4|) 47)) (-3740 (($ $ |#4|) NIL)) (-1818 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 |#4|) (-595 |#4|)) NIL (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ (-275 |#4|)) NIL (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ (-595 (-275 |#4|))) NIL (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) 15)) (-2147 (($) 13)) (-2935 (((-717) $) NIL)) (-2507 (((-717) |#4| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023)))) (((-717) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264)))) (-2406 (($ $) 12)) (-3155 (((-504) $) NIL (|has| |#4| (-570 (-504))))) (-2233 (($ (-595 |#4|)) 20)) (-2649 (($ $ |#3|) 42)) (-3597 (($ $ |#3|) 44)) (-3311 (($ $) NIL)) (-1812 (($ $ |#3|) NIL)) (-2222 (((-802) $) 31) (((-595 |#4|) $) 40)) (-2459 (((-717) $) NIL (|has| |#3| (-348)))) (-1411 (((-3 (-2 (|:| |bas| $) (|:| -1513 (-595 |#4|))) "failed") (-595 |#4|) (-1 (-110) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1513 (-595 |#4|))) "failed") (-595 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-1622 (((-110) $ (-1 (-110) |#4| (-595 |#4|))) NIL)) (-3451 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264)))) (-1490 (((-595 |#3|) $) NIL)) (-2190 (((-110) |#3| $) NIL)) (-2186 (((-110) $ $) NIL)) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-455 |#1| |#2| |#3| |#4|) (-1125 |#1| |#2| |#3| |#4|) (-520) (-739) (-793) (-994 |#1| |#2| |#3|)) (T -455))
-NIL
-(-1125 |#1| |#2| |#3| |#4|)
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-2213 (((-110) $ $) NIL)) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-528) "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL)) (-2409 (((-528) $) NIL) (((-387 (-528)) $) NIL)) (-3519 (($ $ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2124 (((-110) $) NIL)) (-1505 (($) 18)) (-1297 (((-110) $) NIL)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-2437 (((-398 $) $) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3155 (((-359) $) 22) (((-207) $) 25) (((-387 (-1091 (-528))) $) 19) (((-504) $) 52)) (-2222 (((-802) $) 50) (($ (-528)) NIL) (($ $) NIL) (($ (-387 (-528))) NIL) (((-207) $) 24) (((-359) $) 21)) (-3742 (((-717)) NIL)) (-4016 (((-110) $ $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) 36 T CONST)) (-2982 (($) 11 T CONST)) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL)))
-(((-456) (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528))) (-957) (-569 (-207)) (-569 (-359)) (-570 (-387 (-1091 (-528)))) (-570 (-504)) (-10 -8 (-15 -1505 ($))))) (T -456))
-((-1505 (*1 *1) (-5 *1 (-456))))
-(-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528))) (-957) (-569 (-207)) (-569 (-359)) (-570 (-387 (-1091 (-528)))) (-570 (-504)) (-10 -8 (-15 -1505 ($))))
-((-2207 (((-110) $ $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-3450 (($) NIL) (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-1444 (((-1182) $ |#1| |#1|) NIL (|has| $ (-6 -4265)))) (-3535 (((-110) $ (-717)) NIL)) (-2381 ((|#2| $ |#1| |#2|) 16)) (-1836 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-1573 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-2582 (((-3 |#2| "failed") |#1| $) 20)) (-2816 (($) NIL T CONST)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))))) (-3991 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (|has| $ (-6 -4264))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-3 |#2| "failed") |#1| $) 18)) (-2280 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-1422 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (|has| $ (-6 -4264))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-2812 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4265)))) (-2742 ((|#2| $ |#1|) NIL)) (-3342 (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-595 |#2|) $) NIL (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) NIL)) (-3530 ((|#1| $) NIL (|has| |#1| (-793)))) (-2604 (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-595 |#2|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-1709 ((|#1| $) NIL (|has| |#1| (-793)))) (-2800 (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4265))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-3225 (((-595 |#1|) $) 13)) (-4024 (((-110) |#1| $) NIL)) (-3934 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL)) (-1950 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL)) (-2084 (((-595 |#1|) $) NIL)) (-3966 (((-110) |#1| $) NIL)) (-2495 (((-1042) $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-2890 ((|#2| $) NIL (|has| |#1| (-793)))) (-1734 (((-3 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) "failed") (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL)) (-1332 (($ $ |#2|) NIL (|has| $ (-6 -4265)))) (-1390 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL)) (-1818 (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-275 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-595 |#2|) (-595 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-595 (-275 |#2|))) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-2861 (((-595 |#2|) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) 19)) (-3043 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3900 (($) NIL) (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-2507 (((-717) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-717) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (((-717) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023)))) (((-717) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) NIL (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-570 (-504))))) (-2233 (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-2222 (((-802) $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-569 (-802))) (|has| |#2| (-569 (-802)))))) (-2164 (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-3451 (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 11 (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-2138 (((-717) $) 15 (|has| $ (-6 -4264)))))
-(((-457 |#1| |#2| |#3|) (-13 (-1108 |#1| |#2|) (-10 -7 (-6 -4264))) (-1023) (-1023) (-1078)) (T -457))
-NIL
-(-13 (-1108 |#1| |#2|) (-10 -7 (-6 -4264)))
-((-1301 (((-528) (-528) (-528)) 7)) (-1611 (((-110) (-528) (-528) (-528) (-528)) 11)) (-1499 (((-1177 (-595 (-528))) (-717) (-717)) 23)))
-(((-458) (-10 -7 (-15 -1301 ((-528) (-528) (-528))) (-15 -1611 ((-110) (-528) (-528) (-528) (-528))) (-15 -1499 ((-1177 (-595 (-528))) (-717) (-717))))) (T -458))
-((-1499 (*1 *2 *3 *3) (-12 (-5 *3 (-717)) (-5 *2 (-1177 (-595 (-528)))) (-5 *1 (-458)))) (-1611 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-528)) (-5 *2 (-110)) (-5 *1 (-458)))) (-1301 (*1 *2 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-458)))))
-(-10 -7 (-15 -1301 ((-528) (-528) (-528))) (-15 -1611 ((-110) (-528) (-528) (-528) (-528))) (-15 -1499 ((-1177 (-595 (-528))) (-717) (-717))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2565 (((-595 (-804 |#1|)) $) NIL)) (-2402 (((-1091 $) $ (-804 |#1|)) NIL) (((-1091 |#2|) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#2| (-520)))) (-1738 (($ $) NIL (|has| |#2| (-520)))) (-1811 (((-110) $) NIL (|has| |#2| (-520)))) (-4042 (((-717) $) NIL) (((-717) $ (-595 (-804 |#1|))) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#2| (-848)))) (-1232 (($ $) NIL (|has| |#2| (-431)))) (-2705 (((-398 $) $) NIL (|has| |#2| (-431)))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (|has| |#2| (-848)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#2| "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#2| (-972 (-387 (-528))))) (((-3 (-528) "failed") $) NIL (|has| |#2| (-972 (-528)))) (((-3 (-804 |#1|) "failed") $) NIL)) (-2409 ((|#2| $) NIL) (((-387 (-528)) $) NIL (|has| |#2| (-972 (-387 (-528))))) (((-528) $) NIL (|has| |#2| (-972 (-528)))) (((-804 |#1|) $) NIL)) (-1606 (($ $ $ (-804 |#1|)) NIL (|has| |#2| (-162)))) (-1808 (($ $ (-595 (-528))) NIL)) (-2388 (($ $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| |#2| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| |#2| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 $) (-1177 $)) NIL) (((-635 |#2|) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1551 (($ $) NIL (|has| |#2| (-431))) (($ $ (-804 |#1|)) NIL (|has| |#2| (-431)))) (-2376 (((-595 $) $) NIL)) (-2124 (((-110) $) NIL (|has| |#2| (-848)))) (-4047 (($ $ |#2| (-460 (-2138 |#1|) (-717)) $) NIL)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (-12 (|has| (-804 |#1|) (-825 (-359))) (|has| |#2| (-825 (-359))))) (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (-12 (|has| (-804 |#1|) (-825 (-528))) (|has| |#2| (-825 (-528)))))) (-1297 (((-110) $) NIL)) (-1224 (((-717) $) NIL)) (-2557 (($ (-1091 |#2|) (-804 |#1|)) NIL) (($ (-1091 $) (-804 |#1|)) NIL)) (-3737 (((-595 $) $) NIL)) (-2195 (((-110) $) NIL)) (-2548 (($ |#2| (-460 (-2138 |#1|) (-717))) NIL) (($ $ (-804 |#1|) (-717)) NIL) (($ $ (-595 (-804 |#1|)) (-595 (-717))) NIL)) (-3275 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $ (-804 |#1|)) NIL)) (-3499 (((-460 (-2138 |#1|) (-717)) $) NIL) (((-717) $ (-804 |#1|)) NIL) (((-595 (-717)) $ (-595 (-804 |#1|))) NIL)) (-1436 (($ $ $) NIL (|has| |#2| (-793)))) (-1736 (($ $ $) NIL (|has| |#2| (-793)))) (-1264 (($ (-1 (-460 (-2138 |#1|) (-717)) (-460 (-2138 |#1|) (-717))) $) NIL)) (-3106 (($ (-1 |#2| |#2|) $) NIL)) (-3288 (((-3 (-804 |#1|) "failed") $) NIL)) (-2686 (($ $) NIL)) (-2697 ((|#2| $) NIL)) (-2057 (($ (-595 $)) NIL (|has| |#2| (-431))) (($ $ $) NIL (|has| |#2| (-431)))) (-3034 (((-1078) $) NIL)) (-3024 (((-3 (-595 $) "failed") $) NIL)) (-1281 (((-3 (-595 $) "failed") $) NIL)) (-3352 (((-3 (-2 (|:| |var| (-804 |#1|)) (|:| -2564 (-717))) "failed") $) NIL)) (-2495 (((-1042) $) NIL)) (-2662 (((-110) $) NIL)) (-2675 ((|#2| $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#2| (-431)))) (-2088 (($ (-595 $)) NIL (|has| |#2| (-431))) (($ $ $) NIL (|has| |#2| (-431)))) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#2| (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#2| (-848)))) (-2437 (((-398 $) $) NIL (|has| |#2| (-848)))) (-3477 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-520))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-520)))) (-4014 (($ $ (-595 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL) (($ $ (-804 |#1|) |#2|) NIL) (($ $ (-595 (-804 |#1|)) (-595 |#2|)) NIL) (($ $ (-804 |#1|) $) NIL) (($ $ (-595 (-804 |#1|)) (-595 $)) NIL)) (-1372 (($ $ (-804 |#1|)) NIL (|has| |#2| (-162)))) (-3235 (($ $ (-804 |#1|)) NIL) (($ $ (-595 (-804 |#1|))) NIL) (($ $ (-804 |#1|) (-717)) NIL) (($ $ (-595 (-804 |#1|)) (-595 (-717))) NIL)) (-2935 (((-460 (-2138 |#1|) (-717)) $) NIL) (((-717) $ (-804 |#1|)) NIL) (((-595 (-717)) $ (-595 (-804 |#1|))) NIL)) (-3155 (((-831 (-359)) $) NIL (-12 (|has| (-804 |#1|) (-570 (-831 (-359)))) (|has| |#2| (-570 (-831 (-359)))))) (((-831 (-528)) $) NIL (-12 (|has| (-804 |#1|) (-570 (-831 (-528)))) (|has| |#2| (-570 (-831 (-528)))))) (((-504) $) NIL (-12 (|has| (-804 |#1|) (-570 (-504))) (|has| |#2| (-570 (-504)))))) (-1618 ((|#2| $) NIL (|has| |#2| (-431))) (($ $ (-804 |#1|)) NIL (|has| |#2| (-431)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-848))))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ |#2|) NIL) (($ (-804 |#1|)) NIL) (($ (-387 (-528))) NIL (-1463 (|has| |#2| (-37 (-387 (-528)))) (|has| |#2| (-972 (-387 (-528)))))) (($ $) NIL (|has| |#2| (-520)))) (-3348 (((-595 |#2|) $) NIL)) (-3216 ((|#2| $ (-460 (-2138 |#1|) (-717))) NIL) (($ $ (-804 |#1|) (-717)) NIL) (($ $ (-595 (-804 |#1|)) (-595 (-717))) NIL)) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| |#2| (-848))) (|has| |#2| (-138))))) (-3742 (((-717)) NIL)) (-1997 (($ $ $ (-717)) NIL (|has| |#2| (-162)))) (-4016 (((-110) $ $) NIL (|has| |#2| (-520)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($ $ (-804 |#1|)) NIL) (($ $ (-595 (-804 |#1|))) NIL) (($ $ (-804 |#1|) (-717)) NIL) (($ $ (-595 (-804 |#1|)) (-595 (-717))) NIL)) (-2244 (((-110) $ $) NIL (|has| |#2| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#2| (-793)))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (|has| |#2| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#2| (-793)))) (-2296 (($ $ |#2|) NIL (|has| |#2| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL (|has| |#2| (-37 (-387 (-528))))) (($ (-387 (-528)) $) NIL (|has| |#2| (-37 (-387 (-528))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-459 |#1| |#2|) (-13 (-888 |#2| (-460 (-2138 |#1|) (-717)) (-804 |#1|)) (-10 -8 (-15 -1808 ($ $ (-595 (-528)))))) (-595 (-1095)) (-981)) (T -459))
-((-1808 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-459 *3 *4)) (-14 *3 (-595 (-1095))) (-4 *4 (-981)))))
-(-13 (-888 |#2| (-460 (-2138 |#1|) (-717)) (-804 |#1|)) (-10 -8 (-15 -1808 ($ $ (-595 (-528))))))
-((-2207 (((-110) $ $) NIL (|has| |#2| (-1023)))) (-1359 (((-110) $) NIL (|has| |#2| (-128)))) (-2562 (($ (-860)) NIL (|has| |#2| (-981)))) (-1444 (((-1182) $ (-528) (-528)) NIL (|has| $ (-6 -4265)))) (-3622 (($ $ $) NIL (|has| |#2| (-739)))) (-3181 (((-3 $ "failed") $ $) NIL (|has| |#2| (-128)))) (-3535 (((-110) $ (-717)) NIL)) (-2856 (((-717)) NIL (|has| |#2| (-348)))) (-3605 (((-528) $) NIL (|has| |#2| (-791)))) (-2381 ((|#2| $ (-528) |#2|) NIL (|has| $ (-6 -4265)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-528) "failed") $) NIL (-12 (|has| |#2| (-972 (-528))) (|has| |#2| (-1023)))) (((-3 (-387 (-528)) "failed") $) NIL (-12 (|has| |#2| (-972 (-387 (-528)))) (|has| |#2| (-1023)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1023)))) (-2409 (((-528) $) NIL (-12 (|has| |#2| (-972 (-528))) (|has| |#2| (-1023)))) (((-387 (-528)) $) NIL (-12 (|has| |#2| (-972 (-387 (-528)))) (|has| |#2| (-1023)))) ((|#2| $) NIL (|has| |#2| (-1023)))) (-2120 (((-635 (-528)) (-635 $)) NIL (-12 (|has| |#2| (-591 (-528))) (|has| |#2| (-981)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (-12 (|has| |#2| (-591 (-528))) (|has| |#2| (-981)))) (((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 $) (-1177 $)) NIL (|has| |#2| (-981))) (((-635 |#2|) (-635 $)) NIL (|has| |#2| (-981)))) (-1312 (((-3 $ "failed") $) NIL (|has| |#2| (-673)))) (-1338 (($) NIL (|has| |#2| (-348)))) (-2812 ((|#2| $ (-528) |#2|) NIL (|has| $ (-6 -4265)))) (-2742 ((|#2| $ (-528)) 11)) (-3657 (((-110) $) NIL (|has| |#2| (-791)))) (-3342 (((-595 |#2|) $) NIL (|has| $ (-6 -4264)))) (-1297 (((-110) $) NIL (|has| |#2| (-673)))) (-3710 (((-110) $) NIL (|has| |#2| (-791)))) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-528) $) NIL (|has| (-528) (-793)))) (-1436 (($ $ $) NIL (-1463 (|has| |#2| (-739)) (|has| |#2| (-791))))) (-2604 (((-595 |#2|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-1709 (((-528) $) NIL (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (-1463 (|has| |#2| (-739)) (|has| |#2| (-791))))) (-2800 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#2| |#2|) $) NIL)) (-3201 (((-860) $) NIL (|has| |#2| (-348)))) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (|has| |#2| (-1023)))) (-2084 (((-595 (-528)) $) NIL)) (-3966 (((-110) (-528) $) NIL)) (-3108 (($ (-860)) NIL (|has| |#2| (-348)))) (-2495 (((-1042) $) NIL (|has| |#2| (-1023)))) (-2890 ((|#2| $) NIL (|has| (-528) (-793)))) (-1332 (($ $ |#2|) NIL (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#2|))) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-595 |#2|) (-595 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-2861 (((-595 |#2|) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#2| $ (-528) |#2|) NIL) ((|#2| $ (-528)) NIL)) (-3675 ((|#2| $ $) NIL (|has| |#2| (-981)))) (-2484 (($ (-1177 |#2|)) NIL)) (-3017 (((-130)) NIL (|has| |#2| (-343)))) (-3235 (($ $) NIL (-12 (|has| |#2| (-215)) (|has| |#2| (-981)))) (($ $ (-717)) NIL (-12 (|has| |#2| (-215)) (|has| |#2| (-981)))) (($ $ (-1095)) NIL (-12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-1 |#2| |#2|) (-717)) NIL (|has| |#2| (-981))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-981)))) (-2507 (((-717) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264))) (((-717) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-2406 (($ $) NIL)) (-2222 (((-1177 |#2|) $) NIL) (($ (-528)) NIL (-1463 (-12 (|has| |#2| (-972 (-528))) (|has| |#2| (-1023))) (|has| |#2| (-981)))) (($ (-387 (-528))) NIL (-12 (|has| |#2| (-972 (-387 (-528)))) (|has| |#2| (-1023)))) (($ |#2|) NIL (|has| |#2| (-1023))) (((-802) $) NIL (|has| |#2| (-569 (-802))))) (-3742 (((-717)) NIL (|has| |#2| (-981)))) (-3451 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-1775 (($ $) NIL (|has| |#2| (-791)))) (-2690 (($ $ (-717)) NIL (|has| |#2| (-673))) (($ $ (-860)) NIL (|has| |#2| (-673)))) (-2969 (($) NIL (|has| |#2| (-128)) CONST)) (-2982 (($) NIL (|has| |#2| (-673)) CONST)) (-3245 (($ $) NIL (-12 (|has| |#2| (-215)) (|has| |#2| (-981)))) (($ $ (-717)) NIL (-12 (|has| |#2| (-215)) (|has| |#2| (-981)))) (($ $ (-1095)) NIL (-12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-1 |#2| |#2|) (-717)) NIL (|has| |#2| (-981))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-981)))) (-2244 (((-110) $ $) NIL (-1463 (|has| |#2| (-739)) (|has| |#2| (-791))))) (-2220 (((-110) $ $) NIL (-1463 (|has| |#2| (-739)) (|has| |#2| (-791))))) (-2186 (((-110) $ $) NIL (|has| |#2| (-1023)))) (-2232 (((-110) $ $) NIL (-1463 (|has| |#2| (-739)) (|has| |#2| (-791))))) (-2208 (((-110) $ $) 15 (-1463 (|has| |#2| (-739)) (|has| |#2| (-791))))) (-2296 (($ $ |#2|) NIL (|has| |#2| (-343)))) (-2286 (($ $ $) NIL (|has| |#2| (-981))) (($ $) NIL (|has| |#2| (-981)))) (-2275 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-717)) NIL (|has| |#2| (-673))) (($ $ (-860)) NIL (|has| |#2| (-673)))) (* (($ (-528) $) NIL (|has| |#2| (-981))) (($ $ $) NIL (|has| |#2| (-673))) (($ $ |#2|) NIL (|has| |#2| (-673))) (($ |#2| $) NIL (|has| |#2| (-673))) (($ (-717) $) NIL (|has| |#2| (-128))) (($ (-860) $) NIL (|has| |#2| (-25)))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-460 |#1| |#2|) (-220 |#1| |#2|) (-717) (-739)) (T -460))
-NIL
-(-220 |#1| |#2|)
-((-2207 (((-110) $ $) NIL)) (-2134 (((-595 (-1095)) $) 11)) (-3814 (((-1095) $) 10)) (-3034 (((-1078) $) NIL)) (-3228 (($ (-595 (-1095))) 9)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL) (((-1100) $) NIL)) (-2186 (((-110) $ $) NIL)))
-(((-461) (-13 (-91) (-10 -8 (-15 -3228 ($ (-595 (-1095)))) (-15 -3814 ((-1095) $)) (-15 -2134 ((-595 (-1095)) $))))) (T -461))
-((-3228 (*1 *1 *2) (-12 (-5 *2 (-595 (-1095))) (-5 *1 (-461)))) (-3814 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-461)))) (-2134 (*1 *2 *1) (-12 (-5 *2 (-595 (-1095))) (-5 *1 (-461)))))
-(-13 (-91) (-10 -8 (-15 -3228 ($ (-595 (-1095)))) (-15 -3814 ((-1095) $)) (-15 -2134 ((-595 (-1095)) $))))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3535 (((-110) $ (-717)) NIL)) (-2816 (($) NIL T CONST)) (-3342 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) NIL)) (-3368 (($ $ $) 32)) (-1356 (($ $ $) 31)) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-1736 ((|#1| $) 26)) (-2800 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-3934 ((|#1| $) 27)) (-1950 (($ |#1| $) 10)) (-3587 (($ (-595 |#1|)) 12)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-1390 ((|#1| $) 23)) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) 9)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2406 (($ $) NIL)) (-2222 (((-802) $) NIL (|has| |#1| (-569 (-802))))) (-2164 (($ (-595 |#1|)) 29)) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2138 (((-717) $) 21 (|has| $ (-6 -4264)))))
-(((-462 |#1|) (-13 (-906 |#1|) (-10 -8 (-15 -3587 ($ (-595 |#1|))))) (-793)) (T -462))
-((-3587 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-793)) (-5 *1 (-462 *3)))))
-(-13 (-906 |#1|) (-10 -8 (-15 -3587 ($ (-595 |#1|)))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-1422 (($ $) 69)) (-2786 (((-110) $) NIL)) (-3034 (((-1078) $) NIL)) (-3046 (((-393 |#2| (-387 |#2|) |#3| |#4|) $) 44)) (-2495 (((-1042) $) NIL)) (-1261 (((-3 |#4| "failed") $) 107)) (-1853 (($ (-393 |#2| (-387 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-528)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-1208 (((-2 (|:| -3431 (-393 |#2| (-387 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-2222 (((-802) $) 102)) (-2969 (($) 33 T CONST)) (-2186 (((-110) $ $) 109)) (-2286 (($ $) 72) (($ $ $) NIL)) (-2275 (($ $ $) 70)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 73)))
-(((-463 |#1| |#2| |#3| |#4|) (-315 |#1| |#2| |#3| |#4|) (-343) (-1153 |#1|) (-1153 (-387 |#2|)) (-322 |#1| |#2| |#3|)) (T -463))
-NIL
-(-315 |#1| |#2| |#3| |#4|)
-((-3257 (((-528) (-595 (-528))) 30)) (-2999 ((|#1| (-595 |#1|)) 56)) (-2182 (((-595 |#1|) (-595 |#1|)) 57)) (-3317 (((-595 |#1|) (-595 |#1|)) 59)) (-2088 ((|#1| (-595 |#1|)) 58)) (-1618 (((-595 (-528)) (-595 |#1|)) 33)))
-(((-464 |#1|) (-10 -7 (-15 -2088 (|#1| (-595 |#1|))) (-15 -2999 (|#1| (-595 |#1|))) (-15 -3317 ((-595 |#1|) (-595 |#1|))) (-15 -2182 ((-595 |#1|) (-595 |#1|))) (-15 -1618 ((-595 (-528)) (-595 |#1|))) (-15 -3257 ((-528) (-595 (-528))))) (-1153 (-528))) (T -464))
-((-3257 (*1 *2 *3) (-12 (-5 *3 (-595 (-528))) (-5 *2 (-528)) (-5 *1 (-464 *4)) (-4 *4 (-1153 *2)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-595 *4)) (-4 *4 (-1153 (-528))) (-5 *2 (-595 (-528))) (-5 *1 (-464 *4)))) (-2182 (*1 *2 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1153 (-528))) (-5 *1 (-464 *3)))) (-3317 (*1 *2 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1153 (-528))) (-5 *1 (-464 *3)))) (-2999 (*1 *2 *3) (-12 (-5 *3 (-595 *2)) (-5 *1 (-464 *2)) (-4 *2 (-1153 (-528))))) (-2088 (*1 *2 *3) (-12 (-5 *3 (-595 *2)) (-5 *1 (-464 *2)) (-4 *2 (-1153 (-528))))))
-(-10 -7 (-15 -2088 (|#1| (-595 |#1|))) (-15 -2999 (|#1| (-595 |#1|))) (-15 -3317 ((-595 |#1|) (-595 |#1|))) (-15 -2182 ((-595 |#1|) (-595 |#1|))) (-15 -1618 ((-595 (-528)) (-595 |#1|))) (-15 -3257 ((-528) (-595 (-528)))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3598 (((-528) $) NIL (|has| (-528) (-288)))) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (|has| (-528) (-848)))) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (|has| (-528) (-848)))) (-2213 (((-110) $ $) NIL)) (-3605 (((-528) $) NIL (|has| (-528) (-766)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-528) "failed") $) NIL) (((-3 (-1095) "failed") $) NIL (|has| (-528) (-972 (-1095)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| (-528) (-972 (-528)))) (((-3 (-528) "failed") $) NIL (|has| (-528) (-972 (-528))))) (-2409 (((-528) $) NIL) (((-1095) $) NIL (|has| (-528) (-972 (-1095)))) (((-387 (-528)) $) NIL (|has| (-528) (-972 (-528)))) (((-528) $) NIL (|has| (-528) (-972 (-528))))) (-3519 (($ $ $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| (-528) (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| (-528) (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL) (((-635 (-528)) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1338 (($) NIL (|has| (-528) (-513)))) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2124 (((-110) $) NIL)) (-3657 (((-110) $) NIL (|has| (-528) (-766)))) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (|has| (-528) (-825 (-528)))) (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (|has| (-528) (-825 (-359))))) (-1297 (((-110) $) NIL)) (-3037 (($ $) NIL)) (-3031 (((-528) $) NIL)) (-3296 (((-3 $ "failed") $) NIL (|has| (-528) (-1071)))) (-3710 (((-110) $) NIL (|has| (-528) (-766)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-1436 (($ $ $) NIL (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (|has| (-528) (-793)))) (-3106 (($ (-1 (-528) (-528)) $) NIL)) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL)) (-4197 (($) NIL (|has| (-528) (-1071)) CONST)) (-2293 (($ (-387 (-528))) 9)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3270 (($ $) NIL (|has| (-528) (-288))) (((-387 (-528)) $) NIL)) (-2925 (((-528) $) NIL (|has| (-528) (-513)))) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (|has| (-528) (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (|has| (-528) (-848)))) (-2437 (((-398 $) $) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-4014 (($ $ (-595 (-528)) (-595 (-528))) NIL (|has| (-528) (-290 (-528)))) (($ $ (-528) (-528)) NIL (|has| (-528) (-290 (-528)))) (($ $ (-275 (-528))) NIL (|has| (-528) (-290 (-528)))) (($ $ (-595 (-275 (-528)))) NIL (|has| (-528) (-290 (-528)))) (($ $ (-595 (-1095)) (-595 (-528))) NIL (|has| (-528) (-489 (-1095) (-528)))) (($ $ (-1095) (-528)) NIL (|has| (-528) (-489 (-1095) (-528))))) (-3973 (((-717) $) NIL)) (-3043 (($ $ (-528)) NIL (|has| (-528) (-267 (-528) (-528))))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3235 (($ $) NIL (|has| (-528) (-215))) (($ $ (-717)) NIL (|has| (-528) (-215))) (($ $ (-1095)) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-1 (-528) (-528)) (-717)) NIL) (($ $ (-1 (-528) (-528))) NIL)) (-4118 (($ $) NIL)) (-3042 (((-528) $) NIL)) (-3155 (((-831 (-528)) $) NIL (|has| (-528) (-570 (-831 (-528))))) (((-831 (-359)) $) NIL (|has| (-528) (-570 (-831 (-359))))) (((-504) $) NIL (|has| (-528) (-570 (-504)))) (((-359) $) NIL (|has| (-528) (-957))) (((-207) $) NIL (|has| (-528) (-957)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| (-528) (-848))))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ $) NIL) (($ (-387 (-528))) 8) (($ (-528)) NIL) (($ (-1095)) NIL (|has| (-528) (-972 (-1095)))) (((-387 (-528)) $) NIL) (((-940 16) $) 10)) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| (-528) (-848))) (|has| (-528) (-138))))) (-3742 (((-717)) NIL)) (-1769 (((-528) $) NIL (|has| (-528) (-513)))) (-4016 (((-110) $ $) NIL)) (-1775 (($ $) NIL (|has| (-528) (-766)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($ $) NIL (|has| (-528) (-215))) (($ $ (-717)) NIL (|has| (-528) (-215))) (($ $ (-1095)) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-1 (-528) (-528)) (-717)) NIL) (($ $ (-1 (-528) (-528))) NIL)) (-2244 (((-110) $ $) NIL (|has| (-528) (-793)))) (-2220 (((-110) $ $) NIL (|has| (-528) (-793)))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (|has| (-528) (-793)))) (-2208 (((-110) $ $) NIL (|has| (-528) (-793)))) (-2296 (($ $ $) NIL) (($ (-528) (-528)) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL) (($ (-528) $) NIL) (($ $ (-528)) NIL)))
-(((-465) (-13 (-929 (-528)) (-10 -8 (-15 -2222 ((-387 (-528)) $)) (-15 -2222 ((-940 16) $)) (-15 -3270 ((-387 (-528)) $)) (-15 -2293 ($ (-387 (-528))))))) (T -465))
-((-2222 (*1 *2 *1) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-465)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-940 16)) (-5 *1 (-465)))) (-3270 (*1 *2 *1) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-465)))) (-2293 (*1 *1 *2) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-465)))))
-(-13 (-929 (-528)) (-10 -8 (-15 -2222 ((-387 (-528)) $)) (-15 -2222 ((-940 16) $)) (-15 -3270 ((-387 (-528)) $)) (-15 -2293 ($ (-387 (-528))))))
-((-2604 (((-595 |#2|) $) 23)) (-2408 (((-110) |#2| $) 28)) (-1818 (((-110) (-1 (-110) |#2|) $) 21)) (-4014 (($ $ (-595 (-275 |#2|))) 13) (($ $ (-275 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-595 |#2|) (-595 |#2|)) NIL)) (-2507 (((-717) (-1 (-110) |#2|) $) 22) (((-717) |#2| $) 26)) (-2222 (((-802) $) 37)) (-3451 (((-110) (-1 (-110) |#2|) $) 20)) (-2186 (((-110) $ $) 31)) (-2138 (((-717) $) 17)))
-(((-466 |#1| |#2|) (-10 -8 (-15 -2222 ((-802) |#1|)) (-15 -2186 ((-110) |#1| |#1|)) (-15 -4014 (|#1| |#1| (-595 |#2|) (-595 |#2|))) (-15 -4014 (|#1| |#1| |#2| |#2|)) (-15 -4014 (|#1| |#1| (-275 |#2|))) (-15 -4014 (|#1| |#1| (-595 (-275 |#2|)))) (-15 -2408 ((-110) |#2| |#1|)) (-15 -2507 ((-717) |#2| |#1|)) (-15 -2604 ((-595 |#2|) |#1|)) (-15 -2507 ((-717) (-1 (-110) |#2|) |#1|)) (-15 -1818 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3451 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2138 ((-717) |#1|))) (-467 |#2|) (-1131)) (T -466))
-NIL
-(-10 -8 (-15 -2222 ((-802) |#1|)) (-15 -2186 ((-110) |#1| |#1|)) (-15 -4014 (|#1| |#1| (-595 |#2|) (-595 |#2|))) (-15 -4014 (|#1| |#1| |#2| |#2|)) (-15 -4014 (|#1| |#1| (-275 |#2|))) (-15 -4014 (|#1| |#1| (-595 (-275 |#2|)))) (-15 -2408 ((-110) |#2| |#1|)) (-15 -2507 ((-717) |#2| |#1|)) (-15 -2604 ((-595 |#2|) |#1|)) (-15 -2507 ((-717) (-1 (-110) |#2|) |#1|)) (-15 -1818 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3451 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2138 ((-717) |#1|)))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-3535 (((-110) $ (-717)) 8)) (-2816 (($) 7 T CONST)) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) 9)) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35)) (-3358 (((-110) $ (-717)) 10)) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-467 |#1|) (-133) (-1131)) (T -467))
-((-3106 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-467 *3)) (-4 *3 (-1131)))) (-2800 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4265)) (-4 *1 (-467 *3)) (-4 *3 (-1131)))) (-3451 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4264)) (-4 *1 (-467 *4)) (-4 *4 (-1131)) (-5 *2 (-110)))) (-1818 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4264)) (-4 *1 (-467 *4)) (-4 *4 (-1131)) (-5 *2 (-110)))) (-2507 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4264)) (-4 *1 (-467 *4)) (-4 *4 (-1131)) (-5 *2 (-717)))) (-3342 (*1 *2 *1) (-12 (|has| *1 (-6 -4264)) (-4 *1 (-467 *3)) (-4 *3 (-1131)) (-5 *2 (-595 *3)))) (-2604 (*1 *2 *1) (-12 (|has| *1 (-6 -4264)) (-4 *1 (-467 *3)) (-4 *3 (-1131)) (-5 *2 (-595 *3)))) (-2507 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4264)) (-4 *1 (-467 *3)) (-4 *3 (-1131)) (-4 *3 (-1023)) (-5 *2 (-717)))) (-2408 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4264)) (-4 *1 (-467 *3)) (-4 *3 (-1131)) (-4 *3 (-1023)) (-5 *2 (-110)))))
-(-13 (-33) (-10 -8 (IF (|has| |t#1| (-569 (-802))) (-6 (-569 (-802))) |%noBranch|) (IF (|has| |t#1| (-1023)) (-6 (-1023)) |%noBranch|) (IF (|has| |t#1| (-1023)) (IF (|has| |t#1| (-290 |t#1|)) (-6 (-290 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3106 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4265)) (-15 -2800 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4264)) (PROGN (-15 -3451 ((-110) (-1 (-110) |t#1|) $)) (-15 -1818 ((-110) (-1 (-110) |t#1|) $)) (-15 -2507 ((-717) (-1 (-110) |t#1|) $)) (-15 -3342 ((-595 |t#1|) $)) (-15 -2604 ((-595 |t#1|) $)) (IF (|has| |t#1| (-1023)) (PROGN (-15 -2507 ((-717) |t#1| $)) (-15 -2408 ((-110) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1023)) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-569 (-802)))) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-1023) |has| |#1| (-1023)) ((-1131) . T))
-((-2880 (($ $) 15)) (-2859 (($ $) 24)) (-2904 (($ $) 12)) (-2917 (($ $) 10)) (-2892 (($ $) 17)) (-2869 (($ $) 22)))
-(((-468 |#1|) (-10 -8 (-15 -2869 (|#1| |#1|)) (-15 -2892 (|#1| |#1|)) (-15 -2917 (|#1| |#1|)) (-15 -2904 (|#1| |#1|)) (-15 -2859 (|#1| |#1|)) (-15 -2880 (|#1| |#1|))) (-469)) (T -468))
-NIL
-(-10 -8 (-15 -2869 (|#1| |#1|)) (-15 -2892 (|#1| |#1|)) (-15 -2917 (|#1| |#1|)) (-15 -2904 (|#1| |#1|)) (-15 -2859 (|#1| |#1|)) (-15 -2880 (|#1| |#1|)))
-((-2880 (($ $) 11)) (-2859 (($ $) 10)) (-2904 (($ $) 9)) (-2917 (($ $) 8)) (-2892 (($ $) 7)) (-2869 (($ $) 6)))
-(((-469) (-133)) (T -469))
-((-2880 (*1 *1 *1) (-4 *1 (-469))) (-2859 (*1 *1 *1) (-4 *1 (-469))) (-2904 (*1 *1 *1) (-4 *1 (-469))) (-2917 (*1 *1 *1) (-4 *1 (-469))) (-2892 (*1 *1 *1) (-4 *1 (-469))) (-2869 (*1 *1 *1) (-4 *1 (-469))))
-(-13 (-10 -8 (-15 -2869 ($ $)) (-15 -2892 ($ $)) (-15 -2917 ($ $)) (-15 -2904 ($ $)) (-15 -2859 ($ $)) (-15 -2880 ($ $))))
-((-2437 (((-398 |#4|) |#4| (-1 (-398 |#2|) |#2|)) 42)))
-(((-470 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2437 ((-398 |#4|) |#4| (-1 (-398 |#2|) |#2|)))) (-343) (-1153 |#1|) (-13 (-343) (-140) (-671 |#1| |#2|)) (-1153 |#3|)) (T -470))
-((-2437 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1153 *5)) (-4 *5 (-343)) (-4 *7 (-13 (-343) (-140) (-671 *5 *6))) (-5 *2 (-398 *3)) (-5 *1 (-470 *5 *6 *7 *3)) (-4 *3 (-1153 *7)))))
-(-10 -7 (-15 -2437 ((-398 |#4|) |#4| (-1 (-398 |#2|) |#2|))))
-((-2207 (((-110) $ $) NIL)) (-3732 (((-595 $) (-1091 $) (-1095)) NIL) (((-595 $) (-1091 $)) NIL) (((-595 $) (-891 $)) NIL)) (-3895 (($ (-1091 $) (-1095)) NIL) (($ (-1091 $)) NIL) (($ (-891 $)) NIL)) (-1359 (((-110) $) 39)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-1515 (((-110) $ $) 64)) (-2316 (((-595 (-568 $)) $) 48)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2819 (($ $ (-275 $)) NIL) (($ $ (-595 (-275 $))) NIL) (($ $ (-595 (-568 $)) (-595 $)) NIL)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-2450 (($ $) NIL)) (-2213 (((-110) $ $) NIL)) (-2816 (($) NIL T CONST)) (-3953 (((-595 $) (-1091 $) (-1095)) NIL) (((-595 $) (-1091 $)) NIL) (((-595 $) (-891 $)) NIL)) (-1230 (($ (-1091 $) (-1095)) NIL) (($ (-1091 $)) NIL) (($ (-891 $)) NIL)) (-3001 (((-3 (-568 $) "failed") $) NIL) (((-3 (-528) "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL)) (-2409 (((-568 $) $) NIL) (((-528) $) NIL) (((-387 (-528)) $) 50)) (-3519 (($ $ $) NIL)) (-2120 (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL) (((-635 (-528)) (-635 $)) NIL) (((-2 (|:| -2163 (-635 (-387 (-528)))) (|:| |vec| (-1177 (-387 (-528))))) (-635 $) (-1177 $)) NIL) (((-635 (-387 (-528))) (-635 $)) NIL)) (-1422 (($ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2124 (((-110) $) NIL)) (-4130 (($ $) NIL) (($ (-595 $)) NIL)) (-3930 (((-595 (-112)) $) NIL)) (-3748 (((-112) (-112)) NIL)) (-1297 (((-110) $) 42)) (-2580 (((-110) $) NIL (|has| $ (-972 (-528))))) (-3031 (((-1047 (-528) (-568 $)) $) 37)) (-2796 (($ $ (-528)) NIL)) (-3297 (((-1091 $) (-1091 $) (-568 $)) 78) (((-1091 $) (-1091 $) (-595 (-568 $))) 55) (($ $ (-568 $)) 67) (($ $ (-595 (-568 $))) 68)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-1822 (((-1091 $) (-568 $)) 65 (|has| $ (-981)))) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3106 (($ (-1 $ $) (-568 $)) NIL)) (-1547 (((-3 (-568 $) "failed") $) NIL)) (-2057 (($ (-595 $)) NIL) (($ $ $) NIL)) (-3034 (((-1078) $) NIL)) (-2390 (((-595 (-568 $)) $) NIL)) (-1552 (($ (-112) $) NIL) (($ (-112) (-595 $)) NIL)) (-2341 (((-110) $ (-112)) NIL) (((-110) $ (-1095)) NIL)) (-2652 (($ $) NIL)) (-4073 (((-717) $) NIL)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ (-595 $)) NIL) (($ $ $) NIL)) (-3947 (((-110) $ $) NIL) (((-110) $ (-1095)) NIL)) (-2437 (((-398 $) $) NIL)) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3578 (((-110) $) NIL (|has| $ (-972 (-528))))) (-4014 (($ $ (-568 $) $) NIL) (($ $ (-595 (-568 $)) (-595 $)) NIL) (($ $ (-595 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL) (($ $ (-595 (-1095)) (-595 (-1 $ $))) NIL) (($ $ (-595 (-1095)) (-595 (-1 $ (-595 $)))) NIL) (($ $ (-1095) (-1 $ (-595 $))) NIL) (($ $ (-1095) (-1 $ $)) NIL) (($ $ (-595 (-112)) (-595 (-1 $ $))) NIL) (($ $ (-595 (-112)) (-595 (-1 $ (-595 $)))) NIL) (($ $ (-112) (-1 $ (-595 $))) NIL) (($ $ (-112) (-1 $ $)) NIL)) (-3973 (((-717) $) NIL)) (-3043 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-595 $)) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3581 (($ $) NIL) (($ $ $) NIL)) (-3235 (($ $ (-717)) NIL) (($ $) 36)) (-3042 (((-1047 (-528) (-568 $)) $) 20)) (-4090 (($ $) NIL (|has| $ (-981)))) (-3155 (((-359) $) 92) (((-207) $) 100) (((-159 (-359)) $) 108)) (-2222 (((-802) $) NIL) (($ (-568 $)) NIL) (($ (-387 (-528))) NIL) (($ $) NIL) (($ (-528)) NIL) (($ (-1047 (-528) (-568 $))) 21)) (-3742 (((-717)) NIL)) (-1491 (($ $) NIL) (($ (-595 $)) NIL)) (-2042 (((-110) (-112)) 84)) (-4016 (((-110) $ $) NIL)) (-2690 (($ $ (-528)) NIL) (($ $ (-717)) NIL) (($ $ (-860)) NIL)) (-2969 (($) 10 T CONST)) (-2982 (($) 22 T CONST)) (-3245 (($ $ (-717)) NIL) (($ $) NIL)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 24)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) NIL)) (-2296 (($ $ $) 44)) (-2286 (($ $ $) NIL) (($ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-387 (-528))) NIL) (($ $ (-528)) 46) (($ $ (-717)) NIL) (($ $ (-860)) NIL)) (* (($ (-387 (-528)) $) NIL) (($ $ (-387 (-528))) NIL) (($ $ $) 27) (($ (-528) $) NIL) (($ (-717) $) NIL) (($ (-860) $) NIL)))
-(((-471) (-13 (-283) (-27) (-972 (-528)) (-972 (-387 (-528))) (-591 (-528)) (-957) (-591 (-387 (-528))) (-140) (-570 (-159 (-359))) (-215) (-10 -8 (-15 -2222 ($ (-1047 (-528) (-568 $)))) (-15 -3031 ((-1047 (-528) (-568 $)) $)) (-15 -3042 ((-1047 (-528) (-568 $)) $)) (-15 -1422 ($ $)) (-15 -1515 ((-110) $ $)) (-15 -3297 ((-1091 $) (-1091 $) (-568 $))) (-15 -3297 ((-1091 $) (-1091 $) (-595 (-568 $)))) (-15 -3297 ($ $ (-568 $))) (-15 -3297 ($ $ (-595 (-568 $))))))) (T -471))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1047 (-528) (-568 (-471)))) (-5 *1 (-471)))) (-3031 (*1 *2 *1) (-12 (-5 *2 (-1047 (-528) (-568 (-471)))) (-5 *1 (-471)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-1047 (-528) (-568 (-471)))) (-5 *1 (-471)))) (-1422 (*1 *1 *1) (-5 *1 (-471))) (-1515 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-471)))) (-3297 (*1 *2 *2 *3) (-12 (-5 *2 (-1091 (-471))) (-5 *3 (-568 (-471))) (-5 *1 (-471)))) (-3297 (*1 *2 *2 *3) (-12 (-5 *2 (-1091 (-471))) (-5 *3 (-595 (-568 (-471)))) (-5 *1 (-471)))) (-3297 (*1 *1 *1 *2) (-12 (-5 *2 (-568 (-471))) (-5 *1 (-471)))) (-3297 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-568 (-471)))) (-5 *1 (-471)))))
-(-13 (-283) (-27) (-972 (-528)) (-972 (-387 (-528))) (-591 (-528)) (-957) (-591 (-387 (-528))) (-140) (-570 (-159 (-359))) (-215) (-10 -8 (-15 -2222 ($ (-1047 (-528) (-568 $)))) (-15 -3031 ((-1047 (-528) (-568 $)) $)) (-15 -3042 ((-1047 (-528) (-568 $)) $)) (-15 -1422 ($ $)) (-15 -1515 ((-110) $ $)) (-15 -3297 ((-1091 $) (-1091 $) (-568 $))) (-15 -3297 ((-1091 $) (-1091 $) (-595 (-568 $)))) (-15 -3297 ($ $ (-568 $))) (-15 -3297 ($ $ (-595 (-568 $))))))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-1444 (((-1182) $ (-528) (-528)) NIL (|has| $ (-6 -4265)))) (-3608 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-793)))) (-3863 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4265))) (($ $) NIL (-12 (|has| $ (-6 -4265)) (|has| |#1| (-793))))) (-1289 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-793)))) (-3535 (((-110) $ (-717)) NIL)) (-2381 ((|#1| $ (-528) |#1|) 25 (|has| $ (-6 -4265))) ((|#1| $ (-1144 (-528)) |#1|) NIL (|has| $ (-6 -4265)))) (-1573 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2816 (($) NIL T CONST)) (-2472 (($ $) NIL (|has| $ (-6 -4265)))) (-3009 (($ $) NIL)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2280 (($ |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4264)))) (-2812 ((|#1| $ (-528) |#1|) 22 (|has| $ (-6 -4265)))) (-2742 ((|#1| $ (-528)) 21)) (-3140 (((-528) (-1 (-110) |#1|) $) NIL) (((-528) |#1| $) NIL (|has| |#1| (-1023))) (((-528) |#1| $ (-528)) NIL (|has| |#1| (-1023)))) (-3342 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-3462 (($ (-717) |#1|) 14)) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-528) $) 12 (|has| (-528) (-793)))) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-1356 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-793)))) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-1709 (((-528) $) 23 (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-2800 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-3939 (($ |#1| $ (-528)) NIL) (($ $ $ (-528)) NIL)) (-2084 (((-595 (-528)) $) NIL)) (-3966 (((-110) (-528) $) NIL)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-2890 ((|#1| $) NIL (|has| (-528) (-793)))) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1332 (($ $ |#1|) 10 (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2861 (((-595 |#1|) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) 13)) (-3043 ((|#1| $ (-528) |#1|) NIL) ((|#1| $ (-528)) 24) (($ $ (-1144 (-528))) NIL)) (-1745 (($ $ (-528)) NIL) (($ $ (-1144 (-528))) NIL)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3761 (($ $ $ (-528)) NIL (|has| $ (-6 -4265)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) NIL (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) NIL)) (-3400 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-595 $)) NIL)) (-2222 (((-802) $) NIL (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2138 (((-717) $) 9 (|has| $ (-6 -4264)))))
-(((-472 |#1| |#2|) (-19 |#1|) (-1131) (-528)) (T -472))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1179 (-647))) (-4 *1 (-420)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-594 (-311))) (-4 *1 (-420)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-420)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) (-4 *1 (-420)))))
+(-13 (-377) (-10 -8 (-15 -4233 ($ (-1179 (-647)))) (-15 -4233 ($ (-594 (-311)))) (-15 -4233 ($ (-311))) (-15 -4233 ($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))))))
+(((-571 (-805)) . T) ((-377) . T) ((-1134) . T))
+((-3432 (((-3 $ "failed") (-1179 (-295 (-359)))) 21) (((-3 $ "failed") (-1179 (-295 (-516)))) 19) (((-3 $ "failed") (-1179 (-887 (-359)))) 17) (((-3 $ "failed") (-1179 (-887 (-516)))) 15) (((-3 $ "failed") (-1179 (-388 (-887 (-359))))) 13) (((-3 $ "failed") (-1179 (-388 (-887 (-516))))) 11)) (-3431 (($ (-1179 (-295 (-359)))) 22) (($ (-1179 (-295 (-516)))) 20) (($ (-1179 (-887 (-359)))) 18) (($ (-1179 (-887 (-516)))) 16) (($ (-1179 (-388 (-887 (-359))))) 14) (($ (-1179 (-388 (-887 (-516))))) 12)) (-3658 (((-1185) $) 7)) (-4233 (((-805) $) 8) (($ (-594 (-311))) 25) (($ (-311)) 24) (($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) 23)))
+(((-421) (-133)) (T -421))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-594 (-311))) (-4 *1 (-421)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-421)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311))))) (-4 *1 (-421)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-1179 (-295 (-359)))) (-4 *1 (-421)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-1179 (-295 (-359)))) (-4 *1 (-421)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-1179 (-295 (-516)))) (-4 *1 (-421)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-1179 (-295 (-516)))) (-4 *1 (-421)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-1179 (-887 (-359)))) (-4 *1 (-421)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-1179 (-887 (-359)))) (-4 *1 (-421)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-1179 (-887 (-516)))) (-4 *1 (-421)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-1179 (-887 (-516)))) (-4 *1 (-421)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-1179 (-388 (-887 (-359))))) (-4 *1 (-421)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-1179 (-388 (-887 (-359))))) (-4 *1 (-421)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-1179 (-388 (-887 (-516))))) (-4 *1 (-421)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-1179 (-388 (-887 (-516))))) (-4 *1 (-421)))))
+(-13 (-377) (-10 -8 (-15 -4233 ($ (-594 (-311)))) (-15 -4233 ($ (-311))) (-15 -4233 ($ (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311)))))) (-15 -3431 ($ (-1179 (-295 (-359))))) (-15 -3432 ((-3 $ "failed") (-1179 (-295 (-359))))) (-15 -3431 ($ (-1179 (-295 (-516))))) (-15 -3432 ((-3 $ "failed") (-1179 (-295 (-516))))) (-15 -3431 ($ (-1179 (-887 (-359))))) (-15 -3432 ((-3 $ "failed") (-1179 (-887 (-359))))) (-15 -3431 ($ (-1179 (-887 (-516))))) (-15 -3432 ((-3 $ "failed") (-1179 (-887 (-516))))) (-15 -3431 ($ (-1179 (-388 (-887 (-359)))))) (-15 -3432 ((-3 $ "failed") (-1179 (-388 (-887 (-359)))))) (-15 -3431 ($ (-1179 (-388 (-887 (-516)))))) (-15 -3432 ((-3 $ "failed") (-1179 (-388 (-887 (-516))))))))
+(((-571 (-805)) . T) ((-377) . T) ((-1134) . T))
+((-1908 (((-110)) 17)) (-1909 (((-110) (-110)) 18)) (-1910 (((-110)) 13)) (-1911 (((-110) (-110)) 14)) (-1913 (((-110)) 15)) (-1914 (((-110) (-110)) 16)) (-1905 (((-860) (-860)) 21) (((-860)) 20)) (-1906 (((-719) (-594 (-2 (|:| -4011 |#1|) (|:| -4223 (-516))))) 42)) (-1904 (((-860) (-860)) 23) (((-860)) 22)) (-1907 (((-2 (|:| -2838 (-516)) (|:| -2701 (-594 |#1|))) |#1|) 62)) (-1903 (((-386 |#1|) (-2 (|:| |contp| (-516)) (|:| -2701 (-594 (-2 (|:| |irr| |#1|) (|:| -2421 (-516))))))) 126)) (-4013 (((-2 (|:| |contp| (-516)) (|:| -2701 (-594 (-2 (|:| |irr| |#1|) (|:| -2421 (-516)))))) |#1| (-110)) 152)) (-4012 (((-386 |#1|) |#1| (-719) (-719)) 165) (((-386 |#1|) |#1| (-594 (-719)) (-719)) 162) (((-386 |#1|) |#1| (-594 (-719))) 164) (((-386 |#1|) |#1| (-719)) 163) (((-386 |#1|) |#1|) 161)) (-1925 (((-3 |#1| "failed") (-860) |#1| (-594 (-719)) (-719) (-110)) 167) (((-3 |#1| "failed") (-860) |#1| (-594 (-719)) (-719)) 168) (((-3 |#1| "failed") (-860) |#1| (-594 (-719))) 170) (((-3 |#1| "failed") (-860) |#1| (-719)) 169) (((-3 |#1| "failed") (-860) |#1|) 171)) (-4011 (((-386 |#1|) |#1| (-719) (-719)) 160) (((-386 |#1|) |#1| (-594 (-719)) (-719)) 156) (((-386 |#1|) |#1| (-594 (-719))) 158) (((-386 |#1|) |#1| (-719)) 157) (((-386 |#1|) |#1|) 155)) (-1912 (((-110) |#1|) 37)) (-1924 (((-685 (-719)) (-594 (-2 (|:| -4011 |#1|) (|:| -4223 (-516))))) 67)) (-1915 (((-2 (|:| |contp| (-516)) (|:| -2701 (-594 (-2 (|:| |irr| |#1|) (|:| -2421 (-516)))))) |#1| (-110) (-1023 (-719)) (-719)) 154)))
+(((-422 |#1|) (-10 -7 (-15 -1903 ((-386 |#1|) (-2 (|:| |contp| (-516)) (|:| -2701 (-594 (-2 (|:| |irr| |#1|) (|:| -2421 (-516)))))))) (-15 -1924 ((-685 (-719)) (-594 (-2 (|:| -4011 |#1|) (|:| -4223 (-516)))))) (-15 -1904 ((-860))) (-15 -1904 ((-860) (-860))) (-15 -1905 ((-860))) (-15 -1905 ((-860) (-860))) (-15 -1906 ((-719) (-594 (-2 (|:| -4011 |#1|) (|:| -4223 (-516)))))) (-15 -1907 ((-2 (|:| -2838 (-516)) (|:| -2701 (-594 |#1|))) |#1|)) (-15 -1908 ((-110))) (-15 -1909 ((-110) (-110))) (-15 -1910 ((-110))) (-15 -1911 ((-110) (-110))) (-15 -1912 ((-110) |#1|)) (-15 -1913 ((-110))) (-15 -1914 ((-110) (-110))) (-15 -4011 ((-386 |#1|) |#1|)) (-15 -4011 ((-386 |#1|) |#1| (-719))) (-15 -4011 ((-386 |#1|) |#1| (-594 (-719)))) (-15 -4011 ((-386 |#1|) |#1| (-594 (-719)) (-719))) (-15 -4011 ((-386 |#1|) |#1| (-719) (-719))) (-15 -4012 ((-386 |#1|) |#1|)) (-15 -4012 ((-386 |#1|) |#1| (-719))) (-15 -4012 ((-386 |#1|) |#1| (-594 (-719)))) (-15 -4012 ((-386 |#1|) |#1| (-594 (-719)) (-719))) (-15 -4012 ((-386 |#1|) |#1| (-719) (-719))) (-15 -1925 ((-3 |#1| "failed") (-860) |#1|)) (-15 -1925 ((-3 |#1| "failed") (-860) |#1| (-719))) (-15 -1925 ((-3 |#1| "failed") (-860) |#1| (-594 (-719)))) (-15 -1925 ((-3 |#1| "failed") (-860) |#1| (-594 (-719)) (-719))) (-15 -1925 ((-3 |#1| "failed") (-860) |#1| (-594 (-719)) (-719) (-110))) (-15 -4013 ((-2 (|:| |contp| (-516)) (|:| -2701 (-594 (-2 (|:| |irr| |#1|) (|:| -2421 (-516)))))) |#1| (-110))) (-15 -1915 ((-2 (|:| |contp| (-516)) (|:| -2701 (-594 (-2 (|:| |irr| |#1|) (|:| -2421 (-516)))))) |#1| (-110) (-1023 (-719)) (-719)))) (-1155 (-516))) (T -422))
+((-1915 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-110)) (-5 *5 (-1023 (-719))) (-5 *6 (-719)) (-5 *2 (-2 (|:| |contp| (-516)) (|:| -2701 (-594 (-2 (|:| |irr| *3) (|:| -2421 (-516))))))) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))) (-4013 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-5 *2 (-2 (|:| |contp| (-516)) (|:| -2701 (-594 (-2 (|:| |irr| *3) (|:| -2421 (-516))))))) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))) (-1925 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-860)) (-5 *4 (-594 (-719))) (-5 *5 (-719)) (-5 *6 (-110)) (-5 *1 (-422 *2)) (-4 *2 (-1155 (-516))))) (-1925 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-860)) (-5 *4 (-594 (-719))) (-5 *5 (-719)) (-5 *1 (-422 *2)) (-4 *2 (-1155 (-516))))) (-1925 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-860)) (-5 *4 (-594 (-719))) (-5 *1 (-422 *2)) (-4 *2 (-1155 (-516))))) (-1925 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-860)) (-5 *4 (-719)) (-5 *1 (-422 *2)) (-4 *2 (-1155 (-516))))) (-1925 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-860)) (-5 *1 (-422 *2)) (-4 *2 (-1155 (-516))))) (-4012 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-719)) (-5 *2 (-386 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))) (-4012 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-594 (-719))) (-5 *5 (-719)) (-5 *2 (-386 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))) (-4012 (*1 *2 *3 *4) (-12 (-5 *4 (-594 (-719))) (-5 *2 (-386 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))) (-4012 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-5 *2 (-386 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))) (-4012 (*1 *2 *3) (-12 (-5 *2 (-386 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))) (-4011 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-719)) (-5 *2 (-386 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))) (-4011 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-594 (-719))) (-5 *5 (-719)) (-5 *2 (-386 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))) (-4011 (*1 *2 *3 *4) (-12 (-5 *4 (-594 (-719))) (-5 *2 (-386 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))) (-4011 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-5 *2 (-386 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))) (-4011 (*1 *2 *3) (-12 (-5 *2 (-386 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))) (-1914 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))) (-1913 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))) (-1912 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))) (-1911 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))) (-1910 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))) (-1909 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))) (-1908 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))) (-1907 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2838 (-516)) (|:| -2701 (-594 *3)))) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))) (-1906 (*1 *2 *3) (-12 (-5 *3 (-594 (-2 (|:| -4011 *4) (|:| -4223 (-516))))) (-4 *4 (-1155 (-516))) (-5 *2 (-719)) (-5 *1 (-422 *4)))) (-1905 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))) (-1905 (*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))) (-1904 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))) (-1904 (*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))) (-1924 (*1 *2 *3) (-12 (-5 *3 (-594 (-2 (|:| -4011 *4) (|:| -4223 (-516))))) (-4 *4 (-1155 (-516))) (-5 *2 (-685 (-719))) (-5 *1 (-422 *4)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-516)) (|:| -2701 (-594 (-2 (|:| |irr| *4) (|:| -2421 (-516))))))) (-4 *4 (-1155 (-516))) (-5 *2 (-386 *4)) (-5 *1 (-422 *4)))))
+(-10 -7 (-15 -1903 ((-386 |#1|) (-2 (|:| |contp| (-516)) (|:| -2701 (-594 (-2 (|:| |irr| |#1|) (|:| -2421 (-516)))))))) (-15 -1924 ((-685 (-719)) (-594 (-2 (|:| -4011 |#1|) (|:| -4223 (-516)))))) (-15 -1904 ((-860))) (-15 -1904 ((-860) (-860))) (-15 -1905 ((-860))) (-15 -1905 ((-860) (-860))) (-15 -1906 ((-719) (-594 (-2 (|:| -4011 |#1|) (|:| -4223 (-516)))))) (-15 -1907 ((-2 (|:| -2838 (-516)) (|:| -2701 (-594 |#1|))) |#1|)) (-15 -1908 ((-110))) (-15 -1909 ((-110) (-110))) (-15 -1910 ((-110))) (-15 -1911 ((-110) (-110))) (-15 -1912 ((-110) |#1|)) (-15 -1913 ((-110))) (-15 -1914 ((-110) (-110))) (-15 -4011 ((-386 |#1|) |#1|)) (-15 -4011 ((-386 |#1|) |#1| (-719))) (-15 -4011 ((-386 |#1|) |#1| (-594 (-719)))) (-15 -4011 ((-386 |#1|) |#1| (-594 (-719)) (-719))) (-15 -4011 ((-386 |#1|) |#1| (-719) (-719))) (-15 -4012 ((-386 |#1|) |#1|)) (-15 -4012 ((-386 |#1|) |#1| (-719))) (-15 -4012 ((-386 |#1|) |#1| (-594 (-719)))) (-15 -4012 ((-386 |#1|) |#1| (-594 (-719)) (-719))) (-15 -4012 ((-386 |#1|) |#1| (-719) (-719))) (-15 -1925 ((-3 |#1| "failed") (-860) |#1|)) (-15 -1925 ((-3 |#1| "failed") (-860) |#1| (-719))) (-15 -1925 ((-3 |#1| "failed") (-860) |#1| (-594 (-719)))) (-15 -1925 ((-3 |#1| "failed") (-860) |#1| (-594 (-719)) (-719))) (-15 -1925 ((-3 |#1| "failed") (-860) |#1| (-594 (-719)) (-719) (-110))) (-15 -4013 ((-2 (|:| |contp| (-516)) (|:| -2701 (-594 (-2 (|:| |irr| |#1|) (|:| -2421 (-516)))))) |#1| (-110))) (-15 -1915 ((-2 (|:| |contp| (-516)) (|:| -2701 (-594 (-2 (|:| |irr| |#1|) (|:| -2421 (-516)))))) |#1| (-110) (-1023 (-719)) (-719))))
+((-1919 (((-516) |#2|) 48) (((-516) |#2| (-719)) 47)) (-1918 (((-516) |#2|) 55)) (-1920 ((|#3| |#2|) 25)) (-3391 ((|#3| |#2| (-860)) 14)) (-4112 ((|#3| |#2|) 15)) (-1921 ((|#3| |#2|) 9)) (-2863 ((|#3| |#2|) 10)) (-1917 ((|#3| |#2| (-860)) 62) ((|#3| |#2|) 30)) (-1916 (((-516) |#2|) 57)))
+(((-423 |#1| |#2| |#3|) (-10 -7 (-15 -1916 ((-516) |#2|)) (-15 -1917 (|#3| |#2|)) (-15 -1917 (|#3| |#2| (-860))) (-15 -1918 ((-516) |#2|)) (-15 -1919 ((-516) |#2| (-719))) (-15 -1919 ((-516) |#2|)) (-15 -3391 (|#3| |#2| (-860))) (-15 -1920 (|#3| |#2|)) (-15 -1921 (|#3| |#2|)) (-15 -2863 (|#3| |#2|)) (-15 -4112 (|#3| |#2|))) (-984) (-1155 |#1|) (-13 (-385) (-975 |#1|) (-344) (-1120) (-266))) (T -423))
+((-4112 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1120) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1155 *4)))) (-2863 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1120) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1155 *4)))) (-1921 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1120) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1155 *4)))) (-1920 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1120) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1155 *4)))) (-3391 (*1 *2 *3 *4) (-12 (-5 *4 (-860)) (-4 *5 (-984)) (-4 *2 (-13 (-385) (-975 *5) (-344) (-1120) (-266))) (-5 *1 (-423 *5 *3 *2)) (-4 *3 (-1155 *5)))) (-1919 (*1 *2 *3) (-12 (-4 *4 (-984)) (-5 *2 (-516)) (-5 *1 (-423 *4 *3 *5)) (-4 *3 (-1155 *4)) (-4 *5 (-13 (-385) (-975 *4) (-344) (-1120) (-266))))) (-1919 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-984)) (-5 *2 (-516)) (-5 *1 (-423 *5 *3 *6)) (-4 *3 (-1155 *5)) (-4 *6 (-13 (-385) (-975 *5) (-344) (-1120) (-266))))) (-1918 (*1 *2 *3) (-12 (-4 *4 (-984)) (-5 *2 (-516)) (-5 *1 (-423 *4 *3 *5)) (-4 *3 (-1155 *4)) (-4 *5 (-13 (-385) (-975 *4) (-344) (-1120) (-266))))) (-1917 (*1 *2 *3 *4) (-12 (-5 *4 (-860)) (-4 *5 (-984)) (-4 *2 (-13 (-385) (-975 *5) (-344) (-1120) (-266))) (-5 *1 (-423 *5 *3 *2)) (-4 *3 (-1155 *5)))) (-1917 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1120) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1155 *4)))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-984)) (-5 *2 (-516)) (-5 *1 (-423 *4 *3 *5)) (-4 *3 (-1155 *4)) (-4 *5 (-13 (-385) (-975 *4) (-344) (-1120) (-266))))))
+(-10 -7 (-15 -1916 ((-516) |#2|)) (-15 -1917 (|#3| |#2|)) (-15 -1917 (|#3| |#2| (-860))) (-15 -1918 ((-516) |#2|)) (-15 -1919 ((-516) |#2| (-719))) (-15 -1919 ((-516) |#2|)) (-15 -3391 (|#3| |#2| (-860))) (-15 -1920 (|#3| |#2|)) (-15 -1921 (|#3| |#2|)) (-15 -2863 (|#3| |#2|)) (-15 -4112 (|#3| |#2|)))
+((-3632 ((|#2| (-1179 |#1|)) 36)) (-1923 ((|#2| |#2| |#1|) 49)) (-1922 ((|#2| |#2| |#1|) 41)) (-2313 ((|#2| |#2|) 38)) (-3448 (((-110) |#2|) 30)) (-1926 (((-594 |#2|) (-860) (-386 |#2|)) 17)) (-1925 ((|#2| (-860) (-386 |#2|)) 21)) (-1924 (((-685 (-719)) (-386 |#2|)) 25)))
+(((-424 |#1| |#2|) (-10 -7 (-15 -3448 ((-110) |#2|)) (-15 -3632 (|#2| (-1179 |#1|))) (-15 -2313 (|#2| |#2|)) (-15 -1922 (|#2| |#2| |#1|)) (-15 -1923 (|#2| |#2| |#1|)) (-15 -1924 ((-685 (-719)) (-386 |#2|))) (-15 -1925 (|#2| (-860) (-386 |#2|))) (-15 -1926 ((-594 |#2|) (-860) (-386 |#2|)))) (-984) (-1155 |#1|)) (T -424))
+((-1926 (*1 *2 *3 *4) (-12 (-5 *3 (-860)) (-5 *4 (-386 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-984)) (-5 *2 (-594 *6)) (-5 *1 (-424 *5 *6)))) (-1925 (*1 *2 *3 *4) (-12 (-5 *3 (-860)) (-5 *4 (-386 *2)) (-4 *2 (-1155 *5)) (-5 *1 (-424 *5 *2)) (-4 *5 (-984)))) (-1924 (*1 *2 *3) (-12 (-5 *3 (-386 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-984)) (-5 *2 (-685 (-719))) (-5 *1 (-424 *4 *5)))) (-1923 (*1 *2 *2 *3) (-12 (-4 *3 (-984)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1155 *3)))) (-1922 (*1 *2 *2 *3) (-12 (-4 *3 (-984)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1155 *3)))) (-2313 (*1 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1155 *3)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-984)) (-4 *2 (-1155 *4)) (-5 *1 (-424 *4 *2)))) (-3448 (*1 *2 *3) (-12 (-4 *4 (-984)) (-5 *2 (-110)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1155 *4)))))
+(-10 -7 (-15 -3448 ((-110) |#2|)) (-15 -3632 (|#2| (-1179 |#1|))) (-15 -2313 (|#2| |#2|)) (-15 -1922 (|#2| |#2| |#1|)) (-15 -1923 (|#2| |#2| |#1|)) (-15 -1924 ((-685 (-719)) (-386 |#2|))) (-15 -1925 (|#2| (-860) (-386 |#2|))) (-15 -1926 ((-594 |#2|) (-860) (-386 |#2|))))
+((-1929 (((-719)) 41)) (-1933 (((-719)) 23 (|has| |#1| (-385))) (((-719) (-719)) 22 (|has| |#1| (-385)))) (-1932 (((-516) |#1|) 18 (|has| |#1| (-385)))) (-1931 (((-516) |#1|) 20 (|has| |#1| (-385)))) (-1928 (((-719)) 40) (((-719) (-719)) 39)) (-1927 ((|#1| (-719) (-516)) 29)) (-1930 (((-1185)) 43)))
+(((-425 |#1|) (-10 -7 (-15 -1927 (|#1| (-719) (-516))) (-15 -1928 ((-719) (-719))) (-15 -1928 ((-719))) (-15 -1929 ((-719))) (-15 -1930 ((-1185))) (IF (|has| |#1| (-385)) (PROGN (-15 -1931 ((-516) |#1|)) (-15 -1932 ((-516) |#1|)) (-15 -1933 ((-719) (-719))) (-15 -1933 ((-719)))) |%noBranch|)) (-984)) (T -425))
+((-1933 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))) (-1933 (*1 *2 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))) (-1932 (*1 *2 *3) (-12 (-5 *2 (-516)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))) (-1931 (*1 *2 *3) (-12 (-5 *2 (-516)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))) (-1930 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-425 *3)) (-4 *3 (-984)))) (-1929 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-984)))) (-1928 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-984)))) (-1928 (*1 *2 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-984)))) (-1927 (*1 *2 *3 *4) (-12 (-5 *3 (-719)) (-5 *4 (-516)) (-5 *1 (-425 *2)) (-4 *2 (-984)))))
+(-10 -7 (-15 -1927 (|#1| (-719) (-516))) (-15 -1928 ((-719) (-719))) (-15 -1928 ((-719))) (-15 -1929 ((-719))) (-15 -1930 ((-1185))) (IF (|has| |#1| (-385)) (PROGN (-15 -1931 ((-516) |#1|)) (-15 -1932 ((-516) |#1|)) (-15 -1933 ((-719) (-719))) (-15 -1933 ((-719)))) |%noBranch|))
+((-1934 (((-594 (-516)) (-516)) 61)) (-4005 (((-110) (-158 (-516))) 65)) (-4011 (((-386 (-158 (-516))) (-158 (-516))) 60)))
+(((-426) (-10 -7 (-15 -4011 ((-386 (-158 (-516))) (-158 (-516)))) (-15 -1934 ((-594 (-516)) (-516))) (-15 -4005 ((-110) (-158 (-516)))))) (T -426))
+((-4005 (*1 *2 *3) (-12 (-5 *3 (-158 (-516))) (-5 *2 (-110)) (-5 *1 (-426)))) (-1934 (*1 *2 *3) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-426)) (-5 *3 (-516)))) (-4011 (*1 *2 *3) (-12 (-5 *2 (-386 (-158 (-516)))) (-5 *1 (-426)) (-5 *3 (-158 (-516))))))
+(-10 -7 (-15 -4011 ((-386 (-158 (-516))) (-158 (-516)))) (-15 -1934 ((-594 (-516)) (-516))) (-15 -4005 ((-110) (-158 (-516)))))
+((-3210 ((|#4| |#4| (-594 |#4|)) 22 (|has| |#1| (-344)))) (-2269 (((-594 |#4|) (-594 |#4|) (-1081) (-1081)) 41) (((-594 |#4|) (-594 |#4|) (-1081)) 40) (((-594 |#4|) (-594 |#4|)) 35)))
+(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2269 ((-594 |#4|) (-594 |#4|))) (-15 -2269 ((-594 |#4|) (-594 |#4|) (-1081))) (-15 -2269 ((-594 |#4|) (-594 |#4|) (-1081) (-1081))) (IF (|has| |#1| (-344)) (-15 -3210 (|#4| |#4| (-594 |#4|))) |%noBranch|)) (-432) (-741) (-795) (-891 |#1| |#2| |#3|)) (T -427))
+((-3210 (*1 *2 *2 *3) (-12 (-5 *3 (-594 *2)) (-4 *2 (-891 *4 *5 *6)) (-4 *4 (-344)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-427 *4 *5 *6 *2)))) (-2269 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-594 *7)) (-5 *3 (-1081)) (-4 *7 (-891 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-427 *4 *5 *6 *7)))) (-2269 (*1 *2 *2 *3) (-12 (-5 *2 (-594 *7)) (-5 *3 (-1081)) (-4 *7 (-891 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-427 *4 *5 *6 *7)))) (-2269 (*1 *2 *2) (-12 (-5 *2 (-594 *6)) (-4 *6 (-891 *3 *4 *5)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-427 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2269 ((-594 |#4|) (-594 |#4|))) (-15 -2269 ((-594 |#4|) (-594 |#4|) (-1081))) (-15 -2269 ((-594 |#4|) (-594 |#4|) (-1081) (-1081))) (IF (|has| |#1| (-344)) (-15 -3210 (|#4| |#4| (-594 |#4|))) |%noBranch|))
+((-1935 ((|#4| |#4| (-594 |#4|)) 61)) (-1936 (((-594 |#4|) (-594 |#4|) (-1081) (-1081)) 17) (((-594 |#4|) (-594 |#4|) (-1081)) 16) (((-594 |#4|) (-594 |#4|)) 11)))
+(((-428 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1935 (|#4| |#4| (-594 |#4|))) (-15 -1936 ((-594 |#4|) (-594 |#4|))) (-15 -1936 ((-594 |#4|) (-594 |#4|) (-1081))) (-15 -1936 ((-594 |#4|) (-594 |#4|) (-1081) (-1081)))) (-289) (-741) (-795) (-891 |#1| |#2| |#3|)) (T -428))
+((-1936 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-594 *7)) (-5 *3 (-1081)) (-4 *7 (-891 *4 *5 *6)) (-4 *4 (-289)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-428 *4 *5 *6 *7)))) (-1936 (*1 *2 *2 *3) (-12 (-5 *2 (-594 *7)) (-5 *3 (-1081)) (-4 *7 (-891 *4 *5 *6)) (-4 *4 (-289)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-428 *4 *5 *6 *7)))) (-1936 (*1 *2 *2) (-12 (-5 *2 (-594 *6)) (-4 *6 (-891 *3 *4 *5)) (-4 *3 (-289)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-428 *3 *4 *5 *6)))) (-1935 (*1 *2 *2 *3) (-12 (-5 *3 (-594 *2)) (-4 *2 (-891 *4 *5 *6)) (-4 *4 (-289)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-428 *4 *5 *6 *2)))))
+(-10 -7 (-15 -1935 (|#4| |#4| (-594 |#4|))) (-15 -1936 ((-594 |#4|) (-594 |#4|))) (-15 -1936 ((-594 |#4|) (-594 |#4|) (-1081))) (-15 -1936 ((-594 |#4|) (-594 |#4|) (-1081) (-1081))))
+((-1938 (((-594 (-594 |#4|)) (-594 |#4|) (-110)) 73) (((-594 (-594 |#4|)) (-594 |#4|)) 72) (((-594 (-594 |#4|)) (-594 |#4|) (-594 |#4|) (-110)) 66) (((-594 (-594 |#4|)) (-594 |#4|) (-594 |#4|)) 67)) (-1937 (((-594 (-594 |#4|)) (-594 |#4|) (-110)) 42) (((-594 (-594 |#4|)) (-594 |#4|)) 63)))
+(((-429 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1937 ((-594 (-594 |#4|)) (-594 |#4|))) (-15 -1937 ((-594 (-594 |#4|)) (-594 |#4|) (-110))) (-15 -1938 ((-594 (-594 |#4|)) (-594 |#4|) (-594 |#4|))) (-15 -1938 ((-594 (-594 |#4|)) (-594 |#4|) (-594 |#4|) (-110))) (-15 -1938 ((-594 (-594 |#4|)) (-594 |#4|))) (-15 -1938 ((-594 (-594 |#4|)) (-594 |#4|) (-110)))) (-13 (-289) (-140)) (-741) (-795) (-891 |#1| |#2| |#3|)) (T -429))
+((-1938 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-891 *5 *6 *7)) (-5 *2 (-594 (-594 *8))) (-5 *1 (-429 *5 *6 *7 *8)) (-5 *3 (-594 *8)))) (-1938 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-891 *4 *5 *6)) (-5 *2 (-594 (-594 *7))) (-5 *1 (-429 *4 *5 *6 *7)) (-5 *3 (-594 *7)))) (-1938 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-891 *5 *6 *7)) (-5 *2 (-594 (-594 *8))) (-5 *1 (-429 *5 *6 *7 *8)) (-5 *3 (-594 *8)))) (-1938 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-891 *4 *5 *6)) (-5 *2 (-594 (-594 *7))) (-5 *1 (-429 *4 *5 *6 *7)) (-5 *3 (-594 *7)))) (-1937 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-891 *5 *6 *7)) (-5 *2 (-594 (-594 *8))) (-5 *1 (-429 *5 *6 *7 *8)) (-5 *3 (-594 *8)))) (-1937 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-891 *4 *5 *6)) (-5 *2 (-594 (-594 *7))) (-5 *1 (-429 *4 *5 *6 *7)) (-5 *3 (-594 *7)))))
+(-10 -7 (-15 -1937 ((-594 (-594 |#4|)) (-594 |#4|))) (-15 -1937 ((-594 (-594 |#4|)) (-594 |#4|) (-110))) (-15 -1938 ((-594 (-594 |#4|)) (-594 |#4|) (-594 |#4|))) (-15 -1938 ((-594 (-594 |#4|)) (-594 |#4|) (-594 |#4|) (-110))) (-15 -1938 ((-594 (-594 |#4|)) (-594 |#4|))) (-15 -1938 ((-594 (-594 |#4|)) (-594 |#4|) (-110))))
+((-1962 (((-719) |#4|) 12)) (-1950 (((-594 (-2 (|:| |totdeg| (-719)) (|:| -2063 |#4|))) |#4| (-719) (-594 (-2 (|:| |totdeg| (-719)) (|:| -2063 |#4|)))) 31)) (-1952 (((-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-1951 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1940 ((|#4| |#4| (-594 |#4|)) 40)) (-1948 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-594 |#4|)) 70)) (-1955 (((-1185) |#4|) 42)) (-1958 (((-1185) (-594 |#4|)) 51)) (-1956 (((-516) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-516) (-516) (-516)) 48)) (-1959 (((-1185) (-516)) 79)) (-1953 (((-594 |#4|) (-594 |#4|)) 77)) (-1961 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-719)) (|:| -2063 |#4|)) |#4| (-719)) 25)) (-1954 (((-516) |#4|) 78)) (-1949 ((|#4| |#4|) 29)) (-1941 (((-594 |#4|) (-594 |#4|) (-516) (-516)) 56)) (-1957 (((-516) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-516) (-516) (-516) (-516)) 89)) (-1960 (((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-1942 (((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-1947 (((-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-1946 (((-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-1943 (((-110) |#2| |#2|) 57)) (-1945 (((-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-1944 (((-110) |#2| |#2| |#2| |#2|) 60)) (-1939 ((|#4| |#4| (-594 |#4|)) 71)))
+(((-430 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1939 (|#4| |#4| (-594 |#4|))) (-15 -1940 (|#4| |#4| (-594 |#4|))) (-15 -1941 ((-594 |#4|) (-594 |#4|) (-516) (-516))) (-15 -1942 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1943 ((-110) |#2| |#2|)) (-15 -1944 ((-110) |#2| |#2| |#2| |#2|)) (-15 -1945 ((-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1946 ((-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1947 ((-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1948 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-594 |#4|))) (-15 -1949 (|#4| |#4|)) (-15 -1950 ((-594 (-2 (|:| |totdeg| (-719)) (|:| -2063 |#4|))) |#4| (-719) (-594 (-2 (|:| |totdeg| (-719)) (|:| -2063 |#4|))))) (-15 -1951 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1952 ((-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1953 ((-594 |#4|) (-594 |#4|))) (-15 -1954 ((-516) |#4|)) (-15 -1955 ((-1185) |#4|)) (-15 -1956 ((-516) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-516) (-516) (-516))) (-15 -1957 ((-516) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-516) (-516) (-516) (-516))) (-15 -1958 ((-1185) (-594 |#4|))) (-15 -1959 ((-1185) (-516))) (-15 -1960 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1961 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-719)) (|:| -2063 |#4|)) |#4| (-719))) (-15 -1962 ((-719) |#4|))) (-432) (-741) (-795) (-891 |#1| |#2| |#3|)) (T -430))
+((-1962 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-719)) (-5 *1 (-430 *4 *5 *6 *3)) (-4 *3 (-891 *4 *5 *6)))) (-1961 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-719)) (|:| -2063 *4))) (-5 *5 (-719)) (-4 *4 (-891 *6 *7 *8)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-430 *6 *7 *8 *4)))) (-1960 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-741)) (-4 *7 (-891 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-430 *4 *5 *6 *7)))) (-1959 (*1 *2 *3) (-12 (-5 *3 (-516)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1185)) (-5 *1 (-430 *4 *5 *6 *7)) (-4 *7 (-891 *4 *5 *6)))) (-1958 (*1 *2 *3) (-12 (-5 *3 (-594 *7)) (-4 *7 (-891 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1185)) (-5 *1 (-430 *4 *5 *6 *7)))) (-1957 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-516)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-719)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-741)) (-4 *4 (-891 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-795)) (-5 *1 (-430 *5 *6 *7 *4)))) (-1956 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-516)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-719)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-741)) (-4 *4 (-891 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-795)) (-5 *1 (-430 *5 *6 *7 *4)))) (-1955 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1185)) (-5 *1 (-430 *4 *5 *6 *3)) (-4 *3 (-891 *4 *5 *6)))) (-1954 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-516)) (-5 *1 (-430 *4 *5 *6 *3)) (-4 *3 (-891 *4 *5 *6)))) (-1953 (*1 *2 *2) (-12 (-5 *2 (-594 *6)) (-4 *6 (-891 *3 *4 *5)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-430 *3 *4 *5 *6)))) (-1952 (*1 *2 *2 *2) (-12 (-5 *2 (-594 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-719)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-741)) (-4 *6 (-891 *3 *4 *5)) (-4 *3 (-432)) (-4 *5 (-795)) (-5 *1 (-430 *3 *4 *5 *6)))) (-1951 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-741)) (-4 *2 (-891 *4 *5 *6)) (-5 *1 (-430 *4 *5 *6 *2)) (-4 *4 (-432)) (-4 *6 (-795)))) (-1950 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-594 (-2 (|:| |totdeg| (-719)) (|:| -2063 *3)))) (-5 *4 (-719)) (-4 *3 (-891 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-430 *5 *6 *7 *3)))) (-1949 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-430 *3 *4 *5 *2)) (-4 *2 (-891 *3 *4 *5)))) (-1948 (*1 *2 *3 *4) (-12 (-5 *4 (-594 *3)) (-4 *3 (-891 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-430 *5 *6 *7 *3)))) (-1947 (*1 *2 *3 *2) (-12 (-5 *2 (-594 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-719)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-741)) (-4 *6 (-891 *4 *3 *5)) (-4 *4 (-432)) (-4 *5 (-795)) (-5 *1 (-430 *4 *3 *5 *6)))) (-1946 (*1 *2 *2) (-12 (-5 *2 (-594 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-719)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-741)) (-4 *6 (-891 *3 *4 *5)) (-4 *3 (-432)) (-4 *5 (-795)) (-5 *1 (-430 *3 *4 *5 *6)))) (-1945 (*1 *2 *3 *2) (-12 (-5 *2 (-594 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-741)) (-4 *3 (-891 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-795)) (-5 *1 (-430 *4 *5 *6 *3)))) (-1944 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-432)) (-4 *3 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-430 *4 *3 *5 *6)) (-4 *6 (-891 *4 *3 *5)))) (-1943 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *3 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-430 *4 *3 *5 *6)) (-4 *6 (-891 *4 *3 *5)))) (-1942 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-741)) (-4 *7 (-891 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-430 *4 *5 *6 *7)))) (-1941 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-594 *7)) (-5 *3 (-516)) (-4 *7 (-891 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-430 *4 *5 *6 *7)))) (-1940 (*1 *2 *2 *3) (-12 (-5 *3 (-594 *2)) (-4 *2 (-891 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-430 *4 *5 *6 *2)))) (-1939 (*1 *2 *2 *3) (-12 (-5 *3 (-594 *2)) (-4 *2 (-891 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-430 *4 *5 *6 *2)))))
+(-10 -7 (-15 -1939 (|#4| |#4| (-594 |#4|))) (-15 -1940 (|#4| |#4| (-594 |#4|))) (-15 -1941 ((-594 |#4|) (-594 |#4|) (-516) (-516))) (-15 -1942 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1943 ((-110) |#2| |#2|)) (-15 -1944 ((-110) |#2| |#2| |#2| |#2|)) (-15 -1945 ((-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1946 ((-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1947 ((-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1948 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-594 |#4|))) (-15 -1949 (|#4| |#4|)) (-15 -1950 ((-594 (-2 (|:| |totdeg| (-719)) (|:| -2063 |#4|))) |#4| (-719) (-594 (-2 (|:| |totdeg| (-719)) (|:| -2063 |#4|))))) (-15 -1951 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1952 ((-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-594 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1953 ((-594 |#4|) (-594 |#4|))) (-15 -1954 ((-516) |#4|)) (-15 -1955 ((-1185) |#4|)) (-15 -1956 ((-516) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-516) (-516) (-516))) (-15 -1957 ((-516) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-516) (-516) (-516) (-516))) (-15 -1958 ((-1185) (-594 |#4|))) (-15 -1959 ((-1185) (-516))) (-15 -1960 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1961 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-719)) (|:| -2063 |#4|)) |#4| (-719))) (-15 -1962 ((-719) |#4|)))
+((-1963 (($ $ $) 14) (($ (-594 $)) 21)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 41)) (-3419 (($ $ $) NIL) (($ (-594 $)) 22)))
+(((-431 |#1|) (-10 -8 (-15 -2971 ((-1092 |#1|) (-1092 |#1|) (-1092 |#1|))) (-15 -1963 (|#1| (-594 |#1|))) (-15 -1963 (|#1| |#1| |#1|)) (-15 -3419 (|#1| (-594 |#1|))) (-15 -3419 (|#1| |#1| |#1|))) (-432)) (T -431))
+NIL
+(-10 -8 (-15 -2971 ((-1092 |#1|) (-1092 |#1|) (-1092 |#1|))) (-15 -1963 (|#1| (-594 |#1|))) (-15 -1963 (|#1| |#1| |#1|)) (-15 -3419 (|#1| (-594 |#1|))) (-15 -3419 (|#1| |#1| |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 41)) (-2118 (($ $) 40)) (-2116 (((-110) $) 38)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3741 (((-3 $ "failed") $) 34)) (-2436 (((-110) $) 31)) (-1963 (($ $ $) 46) (($ (-594 $)) 45)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 44)) (-3419 (($ $ $) 48) (($ (-594 $)) 47)) (-3740 (((-3 $ "failed") $ $) 42)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ $) 43)) (-3385 (((-719)) 29)) (-2117 (((-110) $ $) 39)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24)))
+(((-432) (-133)) (T -432))
+((-3419 (*1 *1 *1 *1) (-4 *1 (-432))) (-3419 (*1 *1 *2) (-12 (-5 *2 (-594 *1)) (-4 *1 (-432)))) (-1963 (*1 *1 *1 *1) (-4 *1 (-432))) (-1963 (*1 *1 *2) (-12 (-5 *2 (-594 *1)) (-4 *1 (-432)))) (-2971 (*1 *2 *2 *2) (-12 (-5 *2 (-1092 *1)) (-4 *1 (-432)))))
+(-13 (-523) (-10 -8 (-15 -3419 ($ $ $)) (-15 -3419 ($ (-594 $))) (-15 -1963 ($ $ $)) (-15 -1963 ($ (-594 $))) (-15 -2971 ((-1092 $) (-1092 $) (-1092 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-805)) . T) ((-162) . T) ((-272) . T) ((-523) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1842 (((-3 $ #1="failed")) NIL (|has| (-388 (-887 |#1|)) (-523)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-3496 (((-1179 (-637 (-388 (-887 |#1|)))) (-1179 $)) NIL) (((-1179 (-637 (-388 (-887 |#1|))))) NIL)) (-1795 (((-1179 $)) NIL)) (-3815 (($) NIL T CONST)) (-1978 (((-3 (-2 (|:| |particular| $) (|:| -2071 (-594 $))) "failed")) NIL)) (-1769 (((-3 $ #1#)) NIL (|has| (-388 (-887 |#1|)) (-523)))) (-1857 (((-637 (-388 (-887 |#1|))) (-1179 $)) NIL) (((-637 (-388 (-887 |#1|)))) NIL)) (-1793 (((-388 (-887 |#1|)) $) NIL)) (-1855 (((-637 (-388 (-887 |#1|))) $ (-1179 $)) NIL) (((-637 (-388 (-887 |#1|))) $) NIL)) (-2430 (((-3 $ #1#) $) NIL (|has| (-388 (-887 |#1|)) (-523)))) (-1972 (((-1092 (-887 (-388 (-887 |#1|))))) NIL (|has| (-388 (-887 |#1|)) (-344))) (((-1092 (-388 (-887 |#1|)))) 84 (|has| |#1| (-523)))) (-2433 (($ $ (-860)) NIL)) (-1791 (((-388 (-887 |#1|)) $) NIL)) (-1771 (((-1092 (-388 (-887 |#1|))) $) 82 (|has| (-388 (-887 |#1|)) (-523)))) (-1859 (((-388 (-887 |#1|)) (-1179 $)) NIL) (((-388 (-887 |#1|))) NIL)) (-1789 (((-1092 (-388 (-887 |#1|))) $) NIL)) (-1783 (((-110)) NIL)) (-1861 (($ (-1179 (-388 (-887 |#1|))) (-1179 $)) 103) (($ (-1179 (-388 (-887 |#1|)))) NIL)) (-3741 (((-3 $ #1#) $) NIL (|has| (-388 (-887 |#1|)) (-523)))) (-3368 (((-860)) NIL)) (-1780 (((-110)) NIL)) (-2458 (($ $ (-860)) NIL)) (-1776 (((-110)) NIL)) (-1774 (((-110)) NIL)) (-1778 (((-110)) NIL)) (-1979 (((-3 (-2 (|:| |particular| $) (|:| -2071 (-594 $))) "failed")) NIL)) (-1770 (((-3 $ #1#)) NIL (|has| (-388 (-887 |#1|)) (-523)))) (-1858 (((-637 (-388 (-887 |#1|))) (-1179 $)) NIL) (((-637 (-388 (-887 |#1|)))) NIL)) (-1794 (((-388 (-887 |#1|)) $) NIL)) (-1856 (((-637 (-388 (-887 |#1|))) $ (-1179 $)) NIL) (((-637 (-388 (-887 |#1|))) $) NIL)) (-2431 (((-3 $ #1#) $) NIL (|has| (-388 (-887 |#1|)) (-523)))) (-1976 (((-1092 (-887 (-388 (-887 |#1|))))) NIL (|has| (-388 (-887 |#1|)) (-344))) (((-1092 (-388 (-887 |#1|)))) 83 (|has| |#1| (-523)))) (-2432 (($ $ (-860)) NIL)) (-1792 (((-388 (-887 |#1|)) $) NIL)) (-1772 (((-1092 (-388 (-887 |#1|))) $) 77 (|has| (-388 (-887 |#1|)) (-523)))) (-1860 (((-388 (-887 |#1|)) (-1179 $)) NIL) (((-388 (-887 |#1|))) NIL)) (-1790 (((-1092 (-388 (-887 |#1|))) $) NIL)) (-1784 (((-110)) NIL)) (-3513 (((-1081) $) NIL)) (-1775 (((-110)) NIL)) (-1777 (((-110)) NIL)) (-1779 (((-110)) NIL)) (-3514 (((-1045) $) NIL)) (-1966 (((-388 (-887 |#1|)) $ $) 71 (|has| |#1| (-523)))) (-1970 (((-388 (-887 |#1|)) $) 93 (|has| |#1| (-523)))) (-1969 (((-388 (-887 |#1|)) $) 95 (|has| |#1| (-523)))) (-1971 (((-1092 (-388 (-887 |#1|))) $) 88 (|has| |#1| (-523)))) (-1965 (((-388 (-887 |#1|))) 72 (|has| |#1| (-523)))) (-1968 (((-388 (-887 |#1|)) $ $) 64 (|has| |#1| (-523)))) (-1974 (((-388 (-887 |#1|)) $) 92 (|has| |#1| (-523)))) (-1973 (((-388 (-887 |#1|)) $) 94 (|has| |#1| (-523)))) (-1975 (((-1092 (-388 (-887 |#1|))) $) 87 (|has| |#1| (-523)))) (-1967 (((-388 (-887 |#1|))) 68 (|has| |#1| (-523)))) (-1977 (($) 101) (($ (-1098)) 107) (($ (-1179 (-1098))) 106) (($ (-1179 $)) 96) (($ (-1098) (-1179 $)) 105) (($ (-1179 (-1098)) (-1179 $)) 104)) (-1782 (((-110)) NIL)) (-4078 (((-388 (-887 |#1|)) $ (-516)) NIL)) (-3497 (((-1179 (-388 (-887 |#1|))) $ (-1179 $)) 98) (((-637 (-388 (-887 |#1|))) (-1179 $) (-1179 $)) NIL) (((-1179 (-388 (-887 |#1|))) $) 40) (((-637 (-388 (-887 |#1|))) (-1179 $)) NIL)) (-4246 (((-1179 (-388 (-887 |#1|))) $) NIL) (($ (-1179 (-388 (-887 |#1|)))) 37)) (-1964 (((-594 (-887 (-388 (-887 |#1|)))) (-1179 $)) NIL) (((-594 (-887 (-388 (-887 |#1|))))) NIL) (((-594 (-887 |#1|)) (-1179 $)) 99 (|has| |#1| (-523))) (((-594 (-887 |#1|))) 100 (|has| |#1| (-523)))) (-2620 (($ $ $) NIL)) (-1788 (((-110)) NIL)) (-4233 (((-805) $) NIL) (($ (-1179 (-388 (-887 |#1|)))) NIL)) (-2071 (((-1179 $)) 60)) (-1773 (((-594 (-1179 (-388 (-887 |#1|))))) NIL (|has| (-388 (-887 |#1|)) (-523)))) (-2621 (($ $ $ $) NIL)) (-1786 (((-110)) NIL)) (-2814 (($ (-637 (-388 (-887 |#1|))) $) NIL)) (-2619 (($ $ $) NIL)) (-1787 (((-110)) NIL)) (-1785 (((-110)) NIL)) (-1781 (((-110)) NIL)) (-2920 (($) NIL T CONST)) (-3317 (((-110) $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) 97)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 56) (($ $ (-388 (-887 |#1|))) NIL) (($ (-388 (-887 |#1|)) $) NIL) (($ (-1065 |#2| (-388 (-887 |#1|))) $) NIL)))
+(((-433 |#1| |#2| |#3| |#4|) (-13 (-399 (-388 (-887 |#1|))) (-599 (-1065 |#2| (-388 (-887 |#1|)))) (-10 -8 (-15 -4233 ($ (-1179 (-388 (-887 |#1|))))) (-15 -1979 ((-3 (-2 (|:| |particular| $) (|:| -2071 (-594 $))) "failed"))) (-15 -1978 ((-3 (-2 (|:| |particular| $) (|:| -2071 (-594 $))) "failed"))) (-15 -1977 ($)) (-15 -1977 ($ (-1098))) (-15 -1977 ($ (-1179 (-1098)))) (-15 -1977 ($ (-1179 $))) (-15 -1977 ($ (-1098) (-1179 $))) (-15 -1977 ($ (-1179 (-1098)) (-1179 $))) (IF (|has| |#1| (-523)) (PROGN (-15 -1976 ((-1092 (-388 (-887 |#1|))))) (-15 -1975 ((-1092 (-388 (-887 |#1|))) $)) (-15 -1974 ((-388 (-887 |#1|)) $)) (-15 -1973 ((-388 (-887 |#1|)) $)) (-15 -1972 ((-1092 (-388 (-887 |#1|))))) (-15 -1971 ((-1092 (-388 (-887 |#1|))) $)) (-15 -1970 ((-388 (-887 |#1|)) $)) (-15 -1969 ((-388 (-887 |#1|)) $)) (-15 -1968 ((-388 (-887 |#1|)) $ $)) (-15 -1967 ((-388 (-887 |#1|)))) (-15 -1966 ((-388 (-887 |#1|)) $ $)) (-15 -1965 ((-388 (-887 |#1|)))) (-15 -1964 ((-594 (-887 |#1|)) (-1179 $))) (-15 -1964 ((-594 (-887 |#1|))))) |%noBranch|))) (-162) (-860) (-594 (-1098)) (-1179 (-637 |#1|))) (T -433))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1179 (-388 (-887 *3)))) (-4 *3 (-162)) (-14 *6 (-1179 (-637 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-14 *4 (-860)) (-14 *5 (-594 (-1098))))) (-1979 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-433 *3 *4 *5 *6)) (|:| -2071 (-594 (-433 *3 *4 *5 *6))))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098))) (-14 *6 (-1179 (-637 *3))))) (-1978 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-433 *3 *4 *5 *6)) (|:| -2071 (-594 (-433 *3 *4 *5 *6))))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098))) (-14 *6 (-1179 (-637 *3))))) (-1977 (*1 *1) (-12 (-5 *1 (-433 *2 *3 *4 *5)) (-4 *2 (-162)) (-14 *3 (-860)) (-14 *4 (-594 (-1098))) (-14 *5 (-1179 (-637 *2))))) (-1977 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 *2)) (-14 *6 (-1179 (-637 *3))))) (-1977 (*1 *1 *2) (-12 (-5 *2 (-1179 (-1098))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098))) (-14 *6 (-1179 (-637 *3))))) (-1977 (*1 *1 *2) (-12 (-5 *2 (-1179 (-433 *3 *4 *5 *6))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098))) (-14 *6 (-1179 (-637 *3))))) (-1977 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-1179 (-433 *4 *5 *6 *7))) (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-860)) (-14 *6 (-594 *2)) (-14 *7 (-1179 (-637 *4))))) (-1977 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 (-1098))) (-5 *3 (-1179 (-433 *4 *5 *6 *7))) (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-860)) (-14 *6 (-594 (-1098))) (-14 *7 (-1179 (-637 *4))))) (-1976 (*1 *2) (-12 (-5 *2 (-1092 (-388 (-887 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098))) (-14 *6 (-1179 (-637 *3))))) (-1975 (*1 *2 *1) (-12 (-5 *2 (-1092 (-388 (-887 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098))) (-14 *6 (-1179 (-637 *3))))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-388 (-887 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098))) (-14 *6 (-1179 (-637 *3))))) (-1973 (*1 *2 *1) (-12 (-5 *2 (-388 (-887 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098))) (-14 *6 (-1179 (-637 *3))))) (-1972 (*1 *2) (-12 (-5 *2 (-1092 (-388 (-887 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098))) (-14 *6 (-1179 (-637 *3))))) (-1971 (*1 *2 *1) (-12 (-5 *2 (-1092 (-388 (-887 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098))) (-14 *6 (-1179 (-637 *3))))) (-1970 (*1 *2 *1) (-12 (-5 *2 (-388 (-887 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098))) (-14 *6 (-1179 (-637 *3))))) (-1969 (*1 *2 *1) (-12 (-5 *2 (-388 (-887 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098))) (-14 *6 (-1179 (-637 *3))))) (-1968 (*1 *2 *1 *1) (-12 (-5 *2 (-388 (-887 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098))) (-14 *6 (-1179 (-637 *3))))) (-1967 (*1 *2) (-12 (-5 *2 (-388 (-887 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098))) (-14 *6 (-1179 (-637 *3))))) (-1966 (*1 *2 *1 *1) (-12 (-5 *2 (-388 (-887 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098))) (-14 *6 (-1179 (-637 *3))))) (-1965 (*1 *2) (-12 (-5 *2 (-388 (-887 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098))) (-14 *6 (-1179 (-637 *3))))) (-1964 (*1 *2 *3) (-12 (-5 *3 (-1179 (-433 *4 *5 *6 *7))) (-5 *2 (-594 (-887 *4))) (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-523)) (-4 *4 (-162)) (-14 *5 (-860)) (-14 *6 (-594 (-1098))) (-14 *7 (-1179 (-637 *4))))) (-1964 (*1 *2) (-12 (-5 *2 (-594 (-887 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098))) (-14 *6 (-1179 (-637 *3))))))
+(-13 (-399 (-388 (-887 |#1|))) (-599 (-1065 |#2| (-388 (-887 |#1|)))) (-10 -8 (-15 -4233 ($ (-1179 (-388 (-887 |#1|))))) (-15 -1979 ((-3 (-2 (|:| |particular| $) (|:| -2071 (-594 $))) "failed"))) (-15 -1978 ((-3 (-2 (|:| |particular| $) (|:| -2071 (-594 $))) "failed"))) (-15 -1977 ($)) (-15 -1977 ($ (-1098))) (-15 -1977 ($ (-1179 (-1098)))) (-15 -1977 ($ (-1179 $))) (-15 -1977 ($ (-1098) (-1179 $))) (-15 -1977 ($ (-1179 (-1098)) (-1179 $))) (IF (|has| |#1| (-523)) (PROGN (-15 -1976 ((-1092 (-388 (-887 |#1|))))) (-15 -1975 ((-1092 (-388 (-887 |#1|))) $)) (-15 -1974 ((-388 (-887 |#1|)) $)) (-15 -1973 ((-388 (-887 |#1|)) $)) (-15 -1972 ((-1092 (-388 (-887 |#1|))))) (-15 -1971 ((-1092 (-388 (-887 |#1|))) $)) (-15 -1970 ((-388 (-887 |#1|)) $)) (-15 -1969 ((-388 (-887 |#1|)) $)) (-15 -1968 ((-388 (-887 |#1|)) $ $)) (-15 -1967 ((-388 (-887 |#1|)))) (-15 -1966 ((-388 (-887 |#1|)) $ $)) (-15 -1965 ((-388 (-887 |#1|)))) (-15 -1964 ((-594 (-887 |#1|)) (-1179 $))) (-15 -1964 ((-594 (-887 |#1|))))) |%noBranch|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 13)) (-3347 (((-594 (-806 |#1|)) $) 75)) (-3349 (((-1092 $) $ (-806 |#1|)) 46) (((-1092 |#2|) $) 118)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#2| (-523)))) (-2118 (($ $) NIL (|has| |#2| (-523)))) (-2116 (((-110) $) NIL (|has| |#2| (-523)))) (-3083 (((-719) $) 21) (((-719) $ (-594 (-806 |#1|))) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#2| (-851)))) (-4053 (($ $) NIL (|has| |#2| (-432)))) (-4245 (((-386 $) $) NIL (|has| |#2| (-432)))) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (|has| |#2| (-851)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#2| #2="failed") $) 44) (((-3 (-388 (-516)) #2#) $) NIL (|has| |#2| (-975 (-388 (-516))))) (((-3 (-516) #2#) $) NIL (|has| |#2| (-975 (-516)))) (((-3 (-806 |#1|) #2#) $) NIL)) (-3431 ((|#2| $) 42) (((-388 (-516)) $) NIL (|has| |#2| (-975 (-388 (-516))))) (((-516) $) NIL (|has| |#2| (-975 (-516)))) (((-806 |#1|) $) NIL)) (-4035 (($ $ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-2009 (($ $ (-594 (-516))) 80)) (-4235 (($ $) 68)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| |#2| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| |#2| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 $) (-1179 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3777 (($ $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-3082 (((-594 $) $) NIL)) (-4005 (((-110) $) NIL (|has| |#2| (-851)))) (-1671 (($ $ |#2| |#3| $) NIL)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-359))) (|has| |#2| (-827 (-359))))) (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-516))) (|has| |#2| (-827 (-516)))))) (-2436 (((-110) $) NIL)) (-2444 (((-719) $) 58)) (-3350 (($ (-1092 |#2|) (-806 |#1|)) 123) (($ (-1092 $) (-806 |#1|)) 52)) (-3085 (((-594 $) $) NIL)) (-4213 (((-110) $) 59)) (-3157 (($ |#2| |#3|) 28) (($ $ (-806 |#1|) (-719)) 30) (($ $ (-594 (-806 |#1|)) (-594 (-719))) NIL)) (-4041 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $ (-806 |#1|)) NIL)) (-3084 ((|#3| $) NIL) (((-719) $ (-806 |#1|)) 50) (((-594 (-719)) $ (-594 (-806 |#1|))) 57)) (-3596 (($ $ $) NIL (|has| |#2| (-795)))) (-3597 (($ $ $) NIL (|has| |#2| (-795)))) (-1672 (($ (-1 |#3| |#3|) $) NIL)) (-4234 (($ (-1 |#2| |#2|) $) NIL)) (-3348 (((-3 (-806 |#1|) #3="failed") $) 39)) (-3158 (($ $) NIL)) (-3449 ((|#2| $) 41)) (-1963 (($ (-594 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-3513 (((-1081) $) NIL)) (-3087 (((-3 (-594 $) #3#) $) NIL)) (-3086 (((-3 (-594 $) #3#) $) NIL)) (-3088 (((-3 (-2 (|:| |var| (-806 |#1|)) (|:| -2427 (-719))) #3#) $) NIL)) (-3514 (((-1045) $) NIL)) (-1866 (((-110) $) 40)) (-1865 ((|#2| $) 116)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#2| (-432)))) (-3419 (($ (-594 $)) NIL (|has| |#2| (-432))) (($ $ $) 128 (|has| |#2| (-432)))) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#2| (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#2| (-851)))) (-4011 (((-386 $) $) NIL (|has| |#2| (-851)))) (-3740 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-523)))) (-4046 (($ $ (-594 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL) (($ $ (-806 |#1|) |#2|) 87) (($ $ (-594 (-806 |#1|)) (-594 |#2|)) 90) (($ $ (-806 |#1|) $) 85) (($ $ (-594 (-806 |#1|)) (-594 $)) 106)) (-4036 (($ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-4089 (($ $ (-806 |#1|)) 53) (($ $ (-594 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-594 (-806 |#1|)) (-594 (-719))) NIL)) (-4223 ((|#3| $) 67) (((-719) $ (-806 |#1|)) 37) (((-594 (-719)) $ (-594 (-806 |#1|))) 56)) (-4246 (((-831 (-359)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-831 (-359)))) (|has| |#2| (-572 (-831 (-359)))))) (((-831 (-516)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-831 (-516)))) (|has| |#2| (-572 (-831 (-516)))))) (((-505) $) NIL (-12 (|has| (-806 |#1|) (-572 (-505))) (|has| |#2| (-572 (-505)))))) (-3081 ((|#2| $) 125 (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-851))))) (-4233 (((-805) $) 145) (($ (-516)) NIL) (($ |#2|) 86) (($ (-806 |#1|)) 31) (($ (-388 (-516))) NIL (-3810 (|has| |#2| (-37 (-388 (-516)))) (|has| |#2| (-975 (-388 (-516)))))) (($ $) NIL (|has| |#2| (-523)))) (-4096 (((-594 |#2|) $) NIL)) (-3959 ((|#2| $ |#3|) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-594 (-806 |#1|)) (-594 (-719))) NIL)) (-2965 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| $ (-138)) (|has| |#2| (-851))) (|has| |#2| (-138))))) (-3385 (((-719)) NIL)) (-1670 (($ $ $ (-719)) NIL (|has| |#2| (-162)))) (-2117 (((-110) $ $) NIL (|has| |#2| (-523)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 17 T CONST)) (-2927 (($) 25 T CONST)) (-2932 (($ $ (-806 |#1|)) NIL) (($ $ (-594 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-594 (-806 |#1|)) (-594 (-719))) NIL)) (-2826 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#2| (-795)))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#2| (-795)))) (-4224 (($ $ |#2|) 64 (|has| |#2| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) 111)) (** (($ $ (-860)) NIL) (($ $ (-719)) 109)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 29) (($ $ (-388 (-516))) NIL (|has| |#2| (-37 (-388 (-516))))) (($ (-388 (-516)) $) NIL (|has| |#2| (-37 (-388 (-516))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
+(((-434 |#1| |#2| |#3|) (-13 (-891 |#2| |#3| (-806 |#1|)) (-10 -8 (-15 -2009 ($ $ (-594 (-516)))))) (-594 (-1098)) (-984) (-221 (-4232 |#1|) (-719))) (T -434))
+((-2009 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-516))) (-14 *3 (-594 (-1098))) (-5 *1 (-434 *3 *4 *5)) (-4 *4 (-984)) (-4 *5 (-221 (-4232 *3) (-719))))))
+(-13 (-891 |#2| |#3| (-806 |#1|)) (-10 -8 (-15 -2009 ($ $ (-594 (-516))))))
+((-1983 (((-110) |#1| (-594 |#2|)) 69)) (-1981 (((-3 (-1179 (-594 |#2|)) "failed") (-719) |#1| (-594 |#2|)) 78)) (-1982 (((-3 (-594 |#2|) "failed") |#2| |#1| (-1179 (-594 |#2|))) 80)) (-2092 ((|#2| |#2| |#1|) 28)) (-1980 (((-719) |#2| (-594 |#2|)) 20)))
+(((-435 |#1| |#2|) (-10 -7 (-15 -2092 (|#2| |#2| |#1|)) (-15 -1980 ((-719) |#2| (-594 |#2|))) (-15 -1981 ((-3 (-1179 (-594 |#2|)) "failed") (-719) |#1| (-594 |#2|))) (-15 -1982 ((-3 (-594 |#2|) "failed") |#2| |#1| (-1179 (-594 |#2|)))) (-15 -1983 ((-110) |#1| (-594 |#2|)))) (-289) (-1155 |#1|)) (T -435))
+((-1983 (*1 *2 *3 *4) (-12 (-5 *4 (-594 *5)) (-4 *5 (-1155 *3)) (-4 *3 (-289)) (-5 *2 (-110)) (-5 *1 (-435 *3 *5)))) (-1982 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1179 (-594 *3))) (-4 *4 (-289)) (-5 *2 (-594 *3)) (-5 *1 (-435 *4 *3)) (-4 *3 (-1155 *4)))) (-1981 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-719)) (-4 *4 (-289)) (-4 *6 (-1155 *4)) (-5 *2 (-1179 (-594 *6))) (-5 *1 (-435 *4 *6)) (-5 *5 (-594 *6)))) (-1980 (*1 *2 *3 *4) (-12 (-5 *4 (-594 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-289)) (-5 *2 (-719)) (-5 *1 (-435 *5 *3)))) (-2092 (*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1155 *3)))))
+(-10 -7 (-15 -2092 (|#2| |#2| |#1|)) (-15 -1980 ((-719) |#2| (-594 |#2|))) (-15 -1981 ((-3 (-1179 (-594 |#2|)) "failed") (-719) |#1| (-594 |#2|))) (-15 -1982 ((-3 (-594 |#2|) "failed") |#2| |#1| (-1179 (-594 |#2|)))) (-15 -1983 ((-110) |#1| (-594 |#2|))))
+((-4011 (((-386 |#5|) |#5|) 24)))
+(((-436 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4011 ((-386 |#5|) |#5|))) (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $)) (-15 -4110 ((-3 $ "failed") (-1098))))) (-741) (-523) (-523) (-891 |#4| |#2| |#1|)) (T -436))
+((-4011 (*1 *2 *3) (-12 (-4 *4 (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $)) (-15 -4110 ((-3 $ "failed") (-1098)))))) (-4 *5 (-741)) (-4 *7 (-523)) (-5 *2 (-386 *3)) (-5 *1 (-436 *4 *5 *6 *7 *3)) (-4 *6 (-523)) (-4 *3 (-891 *7 *5 *4)))))
+(-10 -7 (-15 -4011 ((-386 |#5|) |#5|)))
+((-2963 ((|#3|) 37)) (-2971 (((-1092 |#4|) (-1092 |#4|) (-1092 |#4|)) 33)))
+(((-437 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2971 ((-1092 |#4|) (-1092 |#4|) (-1092 |#4|))) (-15 -2963 (|#3|))) (-741) (-795) (-851) (-891 |#3| |#1| |#2|)) (T -437))
+((-2963 (*1 *2) (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-851)) (-5 *1 (-437 *3 *4 *2 *5)) (-4 *5 (-891 *2 *3 *4)))) (-2971 (*1 *2 *2 *2) (-12 (-5 *2 (-1092 *6)) (-4 *6 (-891 *5 *3 *4)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-851)) (-5 *1 (-437 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2971 ((-1092 |#4|) (-1092 |#4|) (-1092 |#4|))) (-15 -2963 (|#3|)))
+((-4011 (((-386 (-1092 |#1|)) (-1092 |#1|)) 43)))
+(((-438 |#1|) (-10 -7 (-15 -4011 ((-386 (-1092 |#1|)) (-1092 |#1|)))) (-289)) (T -438))
+((-4011 (*1 *2 *3) (-12 (-4 *4 (-289)) (-5 *2 (-386 (-1092 *4))) (-5 *1 (-438 *4)) (-5 *3 (-1092 *4)))))
+(-10 -7 (-15 -4011 ((-386 (-1092 |#1|)) (-1092 |#1|))))
+((-4008 (((-50) |#2| (-1098) (-275 |#2|) (-1146 (-719))) 42) (((-50) (-1 |#2| (-516)) (-275 |#2|) (-1146 (-719))) 41) (((-50) |#2| (-1098) (-275 |#2|)) 35) (((-50) (-1 |#2| (-516)) (-275 |#2|)) 28)) (-4097 (((-50) |#2| (-1098) (-275 |#2|) (-1146 (-388 (-516))) (-388 (-516))) 80) (((-50) (-1 |#2| (-388 (-516))) (-275 |#2|) (-1146 (-388 (-516))) (-388 (-516))) 79) (((-50) |#2| (-1098) (-275 |#2|) (-1146 (-516))) 78) (((-50) (-1 |#2| (-516)) (-275 |#2|) (-1146 (-516))) 77) (((-50) |#2| (-1098) (-275 |#2|)) 72) (((-50) (-1 |#2| (-516)) (-275 |#2|)) 71)) (-4060 (((-50) |#2| (-1098) (-275 |#2|) (-1146 (-388 (-516))) (-388 (-516))) 66) (((-50) (-1 |#2| (-388 (-516))) (-275 |#2|) (-1146 (-388 (-516))) (-388 (-516))) 64)) (-4057 (((-50) |#2| (-1098) (-275 |#2|) (-1146 (-516))) 48) (((-50) (-1 |#2| (-516)) (-275 |#2|) (-1146 (-516))) 47)))
+(((-439 |#1| |#2|) (-10 -7 (-15 -4008 ((-50) (-1 |#2| (-516)) (-275 |#2|))) (-15 -4008 ((-50) |#2| (-1098) (-275 |#2|))) (-15 -4008 ((-50) (-1 |#2| (-516)) (-275 |#2|) (-1146 (-719)))) (-15 -4008 ((-50) |#2| (-1098) (-275 |#2|) (-1146 (-719)))) (-15 -4057 ((-50) (-1 |#2| (-516)) (-275 |#2|) (-1146 (-516)))) (-15 -4057 ((-50) |#2| (-1098) (-275 |#2|) (-1146 (-516)))) (-15 -4060 ((-50) (-1 |#2| (-388 (-516))) (-275 |#2|) (-1146 (-388 (-516))) (-388 (-516)))) (-15 -4060 ((-50) |#2| (-1098) (-275 |#2|) (-1146 (-388 (-516))) (-388 (-516)))) (-15 -4097 ((-50) (-1 |#2| (-516)) (-275 |#2|))) (-15 -4097 ((-50) |#2| (-1098) (-275 |#2|))) (-15 -4097 ((-50) (-1 |#2| (-516)) (-275 |#2|) (-1146 (-516)))) (-15 -4097 ((-50) |#2| (-1098) (-275 |#2|) (-1146 (-516)))) (-15 -4097 ((-50) (-1 |#2| (-388 (-516))) (-275 |#2|) (-1146 (-388 (-516))) (-388 (-516)))) (-15 -4097 ((-50) |#2| (-1098) (-275 |#2|) (-1146 (-388 (-516))) (-388 (-516))))) (-13 (-523) (-795) (-975 (-516)) (-593 (-516))) (-13 (-27) (-1120) (-402 |#1|))) (T -439))
+((-4097 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1098)) (-5 *5 (-275 *3)) (-5 *6 (-1146 (-388 (-516)))) (-5 *7 (-388 (-516))) (-4 *3 (-13 (-27) (-1120) (-402 *8))) (-4 *8 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-439 *8 *3)))) (-4097 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-388 (-516)))) (-5 *4 (-275 *8)) (-5 *5 (-1146 (-388 (-516)))) (-5 *6 (-388 (-516))) (-4 *8 (-13 (-27) (-1120) (-402 *7))) (-4 *7 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-439 *7 *8)))) (-4097 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1098)) (-5 *5 (-275 *3)) (-5 *6 (-1146 (-516))) (-4 *3 (-13 (-27) (-1120) (-402 *7))) (-4 *7 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-439 *7 *3)))) (-4097 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-516))) (-5 *4 (-275 *7)) (-5 *5 (-1146 (-516))) (-4 *7 (-13 (-27) (-1120) (-402 *6))) (-4 *6 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-439 *6 *7)))) (-4097 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1098)) (-5 *5 (-275 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *6))) (-4 *6 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-439 *6 *3)))) (-4097 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-516))) (-5 *4 (-275 *6)) (-4 *6 (-13 (-27) (-1120) (-402 *5))) (-4 *5 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-439 *5 *6)))) (-4060 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1098)) (-5 *5 (-275 *3)) (-5 *6 (-1146 (-388 (-516)))) (-5 *7 (-388 (-516))) (-4 *3 (-13 (-27) (-1120) (-402 *8))) (-4 *8 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-439 *8 *3)))) (-4060 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-388 (-516)))) (-5 *4 (-275 *8)) (-5 *5 (-1146 (-388 (-516)))) (-5 *6 (-388 (-516))) (-4 *8 (-13 (-27) (-1120) (-402 *7))) (-4 *7 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-439 *7 *8)))) (-4057 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1098)) (-5 *5 (-275 *3)) (-5 *6 (-1146 (-516))) (-4 *3 (-13 (-27) (-1120) (-402 *7))) (-4 *7 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-439 *7 *3)))) (-4057 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-516))) (-5 *4 (-275 *7)) (-5 *5 (-1146 (-516))) (-4 *7 (-13 (-27) (-1120) (-402 *6))) (-4 *6 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-439 *6 *7)))) (-4008 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1098)) (-5 *5 (-275 *3)) (-5 *6 (-1146 (-719))) (-4 *3 (-13 (-27) (-1120) (-402 *7))) (-4 *7 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-439 *7 *3)))) (-4008 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-516))) (-5 *4 (-275 *7)) (-5 *5 (-1146 (-719))) (-4 *7 (-13 (-27) (-1120) (-402 *6))) (-4 *6 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-439 *6 *7)))) (-4008 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1098)) (-5 *5 (-275 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *6))) (-4 *6 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-439 *6 *3)))) (-4008 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-516))) (-5 *4 (-275 *6)) (-4 *6 (-13 (-27) (-1120) (-402 *5))) (-4 *5 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50)) (-5 *1 (-439 *5 *6)))))
+(-10 -7 (-15 -4008 ((-50) (-1 |#2| (-516)) (-275 |#2|))) (-15 -4008 ((-50) |#2| (-1098) (-275 |#2|))) (-15 -4008 ((-50) (-1 |#2| (-516)) (-275 |#2|) (-1146 (-719)))) (-15 -4008 ((-50) |#2| (-1098) (-275 |#2|) (-1146 (-719)))) (-15 -4057 ((-50) (-1 |#2| (-516)) (-275 |#2|) (-1146 (-516)))) (-15 -4057 ((-50) |#2| (-1098) (-275 |#2|) (-1146 (-516)))) (-15 -4060 ((-50) (-1 |#2| (-388 (-516))) (-275 |#2|) (-1146 (-388 (-516))) (-388 (-516)))) (-15 -4060 ((-50) |#2| (-1098) (-275 |#2|) (-1146 (-388 (-516))) (-388 (-516)))) (-15 -4097 ((-50) (-1 |#2| (-516)) (-275 |#2|))) (-15 -4097 ((-50) |#2| (-1098) (-275 |#2|))) (-15 -4097 ((-50) (-1 |#2| (-516)) (-275 |#2|) (-1146 (-516)))) (-15 -4097 ((-50) |#2| (-1098) (-275 |#2|) (-1146 (-516)))) (-15 -4097 ((-50) (-1 |#2| (-388 (-516))) (-275 |#2|) (-1146 (-388 (-516))) (-388 (-516)))) (-15 -4097 ((-50) |#2| (-1098) (-275 |#2|) (-1146 (-388 (-516))) (-388 (-516)))))
+((-2092 ((|#2| |#2| |#1|) 15)) (-1985 (((-594 |#2|) |#2| (-594 |#2|) |#1| (-860)) 69)) (-1984 (((-2 (|:| |plist| (-594 |#2|)) (|:| |modulo| |#1|)) |#2| (-594 |#2|) |#1| (-860)) 60)))
+(((-440 |#1| |#2|) (-10 -7 (-15 -1984 ((-2 (|:| |plist| (-594 |#2|)) (|:| |modulo| |#1|)) |#2| (-594 |#2|) |#1| (-860))) (-15 -1985 ((-594 |#2|) |#2| (-594 |#2|) |#1| (-860))) (-15 -2092 (|#2| |#2| |#1|))) (-289) (-1155 |#1|)) (T -440))
+((-2092 (*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-5 *1 (-440 *3 *2)) (-4 *2 (-1155 *3)))) (-1985 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-594 *3)) (-5 *5 (-860)) (-4 *3 (-1155 *4)) (-4 *4 (-289)) (-5 *1 (-440 *4 *3)))) (-1984 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-860)) (-4 *5 (-289)) (-4 *3 (-1155 *5)) (-5 *2 (-2 (|:| |plist| (-594 *3)) (|:| |modulo| *5))) (-5 *1 (-440 *5 *3)) (-5 *4 (-594 *3)))))
+(-10 -7 (-15 -1984 ((-2 (|:| |plist| (-594 |#2|)) (|:| |modulo| |#1|)) |#2| (-594 |#2|) |#1| (-860))) (-15 -1985 ((-594 |#2|) |#2| (-594 |#2|) |#1| (-860))) (-15 -2092 (|#2| |#2| |#1|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 28)) (-3989 (($ |#3|) 25)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-4235 (($ $) 32)) (-1986 (($ |#2| |#4| $) 33)) (-3157 (($ |#2| (-662 |#3| |#4| |#5|)) 24)) (-3158 (((-662 |#3| |#4| |#5|) $) 15)) (-1988 ((|#3| $) 19)) (-1989 ((|#4| $) 17)) (-3449 ((|#2| $) 29)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-1987 (($ |#2| |#3| |#4|) 26)) (-2920 (($) 36 T CONST)) (-3317 (((-110) $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) 34)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-441 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-666 |#6|) (-666 |#2|) (-10 -8 (-15 -3449 (|#2| $)) (-15 -3158 ((-662 |#3| |#4| |#5|) $)) (-15 -1989 (|#4| $)) (-15 -1988 (|#3| $)) (-15 -4235 ($ $)) (-15 -3157 ($ |#2| (-662 |#3| |#4| |#5|))) (-15 -3989 ($ |#3|)) (-15 -1987 ($ |#2| |#3| |#4|)) (-15 -1986 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-594 (-1098)) (-162) (-795) (-221 (-4232 |#1|) (-719)) (-1 (-110) (-2 (|:| -2426 |#3|) (|:| -2427 |#4|)) (-2 (|:| -2426 |#3|) (|:| -2427 |#4|))) (-891 |#2| |#4| (-806 |#1|))) (T -441))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-594 (-1098))) (-4 *4 (-162)) (-4 *6 (-221 (-4232 *3) (-719))) (-14 *7 (-1 (-110) (-2 (|:| -2426 *5) (|:| -2427 *6)) (-2 (|:| -2426 *5) (|:| -2427 *6)))) (-5 *1 (-441 *3 *4 *5 *6 *7 *2)) (-4 *5 (-795)) (-4 *2 (-891 *4 *6 (-806 *3))))) (-3449 (*1 *2 *1) (-12 (-14 *3 (-594 (-1098))) (-4 *5 (-221 (-4232 *3) (-719))) (-14 *6 (-1 (-110) (-2 (|:| -2426 *4) (|:| -2427 *5)) (-2 (|:| -2426 *4) (|:| -2427 *5)))) (-4 *2 (-162)) (-5 *1 (-441 *3 *2 *4 *5 *6 *7)) (-4 *4 (-795)) (-4 *7 (-891 *2 *5 (-806 *3))))) (-3158 (*1 *2 *1) (-12 (-14 *3 (-594 (-1098))) (-4 *4 (-162)) (-4 *6 (-221 (-4232 *3) (-719))) (-14 *7 (-1 (-110) (-2 (|:| -2426 *5) (|:| -2427 *6)) (-2 (|:| -2426 *5) (|:| -2427 *6)))) (-5 *2 (-662 *5 *6 *7)) (-5 *1 (-441 *3 *4 *5 *6 *7 *8)) (-4 *5 (-795)) (-4 *8 (-891 *4 *6 (-806 *3))))) (-1989 (*1 *2 *1) (-12 (-14 *3 (-594 (-1098))) (-4 *4 (-162)) (-14 *6 (-1 (-110) (-2 (|:| -2426 *5) (|:| -2427 *2)) (-2 (|:| -2426 *5) (|:| -2427 *2)))) (-4 *2 (-221 (-4232 *3) (-719))) (-5 *1 (-441 *3 *4 *5 *2 *6 *7)) (-4 *5 (-795)) (-4 *7 (-891 *4 *2 (-806 *3))))) (-1988 (*1 *2 *1) (-12 (-14 *3 (-594 (-1098))) (-4 *4 (-162)) (-4 *5 (-221 (-4232 *3) (-719))) (-14 *6 (-1 (-110) (-2 (|:| -2426 *2) (|:| -2427 *5)) (-2 (|:| -2426 *2) (|:| -2427 *5)))) (-4 *2 (-795)) (-5 *1 (-441 *3 *4 *2 *5 *6 *7)) (-4 *7 (-891 *4 *5 (-806 *3))))) (-4235 (*1 *1 *1) (-12 (-14 *2 (-594 (-1098))) (-4 *3 (-162)) (-4 *5 (-221 (-4232 *2) (-719))) (-14 *6 (-1 (-110) (-2 (|:| -2426 *4) (|:| -2427 *5)) (-2 (|:| -2426 *4) (|:| -2427 *5)))) (-5 *1 (-441 *2 *3 *4 *5 *6 *7)) (-4 *4 (-795)) (-4 *7 (-891 *3 *5 (-806 *2))))) (-3157 (*1 *1 *2 *3) (-12 (-5 *3 (-662 *5 *6 *7)) (-4 *5 (-795)) (-4 *6 (-221 (-4232 *4) (-719))) (-14 *7 (-1 (-110) (-2 (|:| -2426 *5) (|:| -2427 *6)) (-2 (|:| -2426 *5) (|:| -2427 *6)))) (-14 *4 (-594 (-1098))) (-4 *2 (-162)) (-5 *1 (-441 *4 *2 *5 *6 *7 *8)) (-4 *8 (-891 *2 *6 (-806 *4))))) (-3989 (*1 *1 *2) (-12 (-14 *3 (-594 (-1098))) (-4 *4 (-162)) (-4 *5 (-221 (-4232 *3) (-719))) (-14 *6 (-1 (-110) (-2 (|:| -2426 *2) (|:| -2427 *5)) (-2 (|:| -2426 *2) (|:| -2427 *5)))) (-5 *1 (-441 *3 *4 *2 *5 *6 *7)) (-4 *2 (-795)) (-4 *7 (-891 *4 *5 (-806 *3))))) (-1987 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-594 (-1098))) (-4 *2 (-162)) (-4 *4 (-221 (-4232 *5) (-719))) (-14 *6 (-1 (-110) (-2 (|:| -2426 *3) (|:| -2427 *4)) (-2 (|:| -2426 *3) (|:| -2427 *4)))) (-5 *1 (-441 *5 *2 *3 *4 *6 *7)) (-4 *3 (-795)) (-4 *7 (-891 *2 *4 (-806 *5))))) (-1986 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-594 (-1098))) (-4 *2 (-162)) (-4 *3 (-221 (-4232 *4) (-719))) (-14 *6 (-1 (-110) (-2 (|:| -2426 *5) (|:| -2427 *3)) (-2 (|:| -2426 *5) (|:| -2427 *3)))) (-5 *1 (-441 *4 *2 *5 *3 *6 *7)) (-4 *5 (-795)) (-4 *7 (-891 *2 *3 (-806 *4))))))
+(-13 (-666 |#6|) (-666 |#2|) (-10 -8 (-15 -3449 (|#2| $)) (-15 -3158 ((-662 |#3| |#4| |#5|) $)) (-15 -1989 (|#4| $)) (-15 -1988 (|#3| $)) (-15 -4235 ($ $)) (-15 -3157 ($ |#2| (-662 |#3| |#4| |#5|))) (-15 -3989 ($ |#3|)) (-15 -1987 ($ |#2| |#3| |#4|)) (-15 -1986 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-1990 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37)))
+(((-442 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1990 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-741) (-795) (-523) (-891 |#3| |#1| |#2|) (-13 (-975 (-388 (-516))) (-344) (-10 -8 (-15 -4233 ($ |#4|)) (-15 -3262 (|#4| $)) (-15 -3261 (|#4| $))))) (T -442))
+((-1990 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-795)) (-4 *5 (-741)) (-4 *6 (-523)) (-4 *7 (-891 *6 *5 *3)) (-5 *1 (-442 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-975 (-388 (-516))) (-344) (-10 -8 (-15 -4233 ($ *7)) (-15 -3262 (*7 $)) (-15 -3261 (*7 $))))))))
+(-10 -7 (-15 -1990 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-2828 (((-110) $ $) NIL)) (-3347 (((-594 |#3|) $) 41)) (-3172 (((-110) $) NIL)) (-3163 (((-110) $) NIL (|has| |#1| (-523)))) (-3173 (((-2 (|:| |under| $) (|:| -3389 $) (|:| |upper| $)) $ |#3|) NIL)) (-1217 (((-110) $ (-719)) NIL)) (-3992 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3815 (($) NIL T CONST)) (-3168 (((-110) $) NIL (|has| |#1| (-523)))) (-3170 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3169 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3171 (((-110) $) NIL (|has| |#1| (-523)))) (-3164 (((-594 |#4|) (-594 |#4|) $) NIL (|has| |#1| (-523)))) (-3165 (((-594 |#4|) (-594 |#4|) $) NIL (|has| |#1| (-523)))) (-3432 (((-3 $ "failed") (-594 |#4|)) 47)) (-3431 (($ (-594 |#4|)) NIL)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-3685 (($ |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3166 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-523)))) (-4121 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4269)))) (-2018 (((-594 |#4|) $) 18 (|has| $ (-6 -4269)))) (-3455 ((|#3| $) 45)) (-4001 (((-110) $ (-719)) NIL)) (-2445 (((-594 |#4|) $) 14 (|has| $ (-6 -4269)))) (-3516 (((-110) |#4| $) 26 (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-2022 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#4| |#4|) $) 21)) (-3178 (((-594 |#3|) $) NIL)) (-3177 (((-110) |#3| $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL)) (-3167 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-523)))) (-3514 (((-1045) $) NIL)) (-1350 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-2020 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 |#4|) (-594 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-275 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-594 (-275 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) 39)) (-3847 (($) 17)) (-2019 (((-719) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (((-719) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3678 (($ $) 16)) (-4246 (((-505) $) NIL (|has| |#4| (-572 (-505)))) (($ (-594 |#4|)) 49)) (-3804 (($ (-594 |#4|)) 13)) (-3174 (($ $ |#3|) NIL)) (-3176 (($ $ |#3|) NIL)) (-3175 (($ $ |#3|) NIL)) (-4233 (((-805) $) 38) (((-594 |#4|) $) 48)) (-2021 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 30)) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-443 |#1| |#2| |#3| |#4|) (-13 (-916 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4246 ($ (-594 |#4|))) (-6 -4269) (-6 -4270))) (-984) (-741) (-795) (-997 |#1| |#2| |#3|)) (T -443))
+((-4246 (*1 *1 *2) (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-443 *3 *4 *5 *6)))))
+(-13 (-916 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4246 ($ (-594 |#4|))) (-6 -4269) (-6 -4270)))
+((-2920 (($) 11)) (-2927 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-444 |#1| |#2| |#3|) (-10 -8 (-15 -2927 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2920 (|#1|))) (-445 |#2| |#3|) (-162) (-23)) (T -444))
+NIL
+(-10 -8 (-15 -2927 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2920 (|#1|)))
+((-2828 (((-110) $ $) 7)) (-3432 (((-3 |#1| "failed") $) 26)) (-3431 ((|#1| $) 25)) (-4220 (($ $ $) 23)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4223 ((|#2| $) 19)) (-4233 (((-805) $) 11) (($ |#1|) 27)) (-2920 (($) 18 T CONST)) (-2927 (($) 24 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 15) (($ $ $) 13)) (-4118 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+(((-445 |#1| |#2|) (-133) (-162) (-23)) (T -445))
+((-2927 (*1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-4220 (*1 *1 *1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))))
+(-13 (-450 |t#1| |t#2|) (-975 |t#1|) (-10 -8 (-15 (-2927) ($) -4227) (-15 -4220 ($ $ $))))
+(((-99) . T) ((-571 (-805)) . T) ((-450 |#1| |#2|) . T) ((-975 |#1|) . T) ((-1027) . T))
+((-1991 (((-1179 (-1179 (-516))) (-1179 (-1179 (-516))) (-860)) 18)) (-1992 (((-1179 (-1179 (-516))) (-860)) 16)))
+(((-446) (-10 -7 (-15 -1991 ((-1179 (-1179 (-516))) (-1179 (-1179 (-516))) (-860))) (-15 -1992 ((-1179 (-1179 (-516))) (-860))))) (T -446))
+((-1992 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1179 (-1179 (-516)))) (-5 *1 (-446)))) (-1991 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 (-1179 (-516)))) (-5 *3 (-860)) (-5 *1 (-446)))))
+(-10 -7 (-15 -1991 ((-1179 (-1179 (-516))) (-1179 (-1179 (-516))) (-860))) (-15 -1992 ((-1179 (-1179 (-516))) (-860))))
+((-3034 (((-516) (-516)) 30) (((-516)) 22)) (-3038 (((-516) (-516)) 26) (((-516)) 18)) (-3036 (((-516) (-516)) 28) (((-516)) 20)) (-1994 (((-110) (-110)) 12) (((-110)) 10)) (-1993 (((-110) (-110)) 11) (((-110)) 9)) (-1995 (((-110) (-110)) 24) (((-110)) 15)))
+(((-447) (-10 -7 (-15 -1993 ((-110))) (-15 -1994 ((-110))) (-15 -1993 ((-110) (-110))) (-15 -1994 ((-110) (-110))) (-15 -1995 ((-110))) (-15 -3036 ((-516))) (-15 -3038 ((-516))) (-15 -3034 ((-516))) (-15 -1995 ((-110) (-110))) (-15 -3036 ((-516) (-516))) (-15 -3038 ((-516) (-516))) (-15 -3034 ((-516) (-516))))) (T -447))
+((-3034 (*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-447)))) (-3038 (*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-447)))) (-3036 (*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-447)))) (-1995 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-3034 (*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-447)))) (-3038 (*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-447)))) (-3036 (*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-447)))) (-1995 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-1994 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-1993 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-1994 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-1993 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))))
+(-10 -7 (-15 -1993 ((-110))) (-15 -1994 ((-110))) (-15 -1993 ((-110) (-110))) (-15 -1994 ((-110) (-110))) (-15 -1995 ((-110))) (-15 -3036 ((-516))) (-15 -3038 ((-516))) (-15 -3034 ((-516))) (-15 -1995 ((-110) (-110))) (-15 -3036 ((-516) (-516))) (-15 -3038 ((-516) (-516))) (-15 -3034 ((-516) (-516))))
+((-2828 (((-110) $ $) NIL)) (-4130 (((-594 (-359)) $) 28) (((-594 (-359)) $ (-594 (-359))) 96)) (-2000 (((-594 (-1017 (-359))) $) 16) (((-594 (-1017 (-359))) $ (-594 (-1017 (-359)))) 94)) (-1997 (((-594 (-594 (-884 (-208)))) (-594 (-594 (-884 (-208)))) (-594 (-815))) 45)) (-2001 (((-594 (-594 (-884 (-208)))) $) 90)) (-3988 (((-1185) $ (-884 (-208)) (-815)) 108)) (-2002 (($ $) 89) (($ (-594 (-594 (-884 (-208))))) 99) (($ (-594 (-594 (-884 (-208)))) (-594 (-815)) (-594 (-815)) (-594 (-860))) 98) (($ (-594 (-594 (-884 (-208)))) (-594 (-815)) (-594 (-815)) (-594 (-860)) (-594 (-243))) 100)) (-3513 (((-1081) $) NIL)) (-4139 (((-516) $) 71)) (-3514 (((-1045) $) NIL)) (-2003 (($) 97)) (-1996 (((-594 (-208)) (-594 (-594 (-884 (-208))))) 56)) (-1999 (((-1185) $ (-594 (-884 (-208))) (-815) (-815) (-860)) 102) (((-1185) $ (-884 (-208))) 104) (((-1185) $ (-884 (-208)) (-815) (-815) (-860)) 103)) (-4233 (((-805) $) 114) (($ (-594 (-594 (-884 (-208))))) 109)) (-1998 (((-1185) $ (-884 (-208))) 107)) (-3317 (((-110) $ $) NIL)))
+(((-448) (-13 (-1027) (-10 -8 (-15 -2003 ($)) (-15 -2002 ($ $)) (-15 -2002 ($ (-594 (-594 (-884 (-208)))))) (-15 -2002 ($ (-594 (-594 (-884 (-208)))) (-594 (-815)) (-594 (-815)) (-594 (-860)))) (-15 -2002 ($ (-594 (-594 (-884 (-208)))) (-594 (-815)) (-594 (-815)) (-594 (-860)) (-594 (-243)))) (-15 -2001 ((-594 (-594 (-884 (-208)))) $)) (-15 -4139 ((-516) $)) (-15 -2000 ((-594 (-1017 (-359))) $)) (-15 -2000 ((-594 (-1017 (-359))) $ (-594 (-1017 (-359))))) (-15 -4130 ((-594 (-359)) $)) (-15 -4130 ((-594 (-359)) $ (-594 (-359)))) (-15 -1999 ((-1185) $ (-594 (-884 (-208))) (-815) (-815) (-860))) (-15 -1999 ((-1185) $ (-884 (-208)))) (-15 -1999 ((-1185) $ (-884 (-208)) (-815) (-815) (-860))) (-15 -1998 ((-1185) $ (-884 (-208)))) (-15 -3988 ((-1185) $ (-884 (-208)) (-815))) (-15 -4233 ($ (-594 (-594 (-884 (-208)))))) (-15 -4233 ((-805) $)) (-15 -1997 ((-594 (-594 (-884 (-208)))) (-594 (-594 (-884 (-208)))) (-594 (-815)))) (-15 -1996 ((-594 (-208)) (-594 (-594 (-884 (-208))))))))) (T -448))
+((-4233 (*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-448)))) (-2003 (*1 *1) (-5 *1 (-448))) (-2002 (*1 *1 *1) (-5 *1 (-448))) (-2002 (*1 *1 *2) (-12 (-5 *2 (-594 (-594 (-884 (-208))))) (-5 *1 (-448)))) (-2002 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-594 (-594 (-884 (-208))))) (-5 *3 (-594 (-815))) (-5 *4 (-594 (-860))) (-5 *1 (-448)))) (-2002 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-594 (-594 (-884 (-208))))) (-5 *3 (-594 (-815))) (-5 *4 (-594 (-860))) (-5 *5 (-594 (-243))) (-5 *1 (-448)))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-594 (-594 (-884 (-208))))) (-5 *1 (-448)))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-448)))) (-2000 (*1 *2 *1) (-12 (-5 *2 (-594 (-1017 (-359)))) (-5 *1 (-448)))) (-2000 (*1 *2 *1 *2) (-12 (-5 *2 (-594 (-1017 (-359)))) (-5 *1 (-448)))) (-4130 (*1 *2 *1) (-12 (-5 *2 (-594 (-359))) (-5 *1 (-448)))) (-4130 (*1 *2 *1 *2) (-12 (-5 *2 (-594 (-359))) (-5 *1 (-448)))) (-1999 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-594 (-884 (-208)))) (-5 *4 (-815)) (-5 *5 (-860)) (-5 *2 (-1185)) (-5 *1 (-448)))) (-1999 (*1 *2 *1 *3) (-12 (-5 *3 (-884 (-208))) (-5 *2 (-1185)) (-5 *1 (-448)))) (-1999 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-884 (-208))) (-5 *4 (-815)) (-5 *5 (-860)) (-5 *2 (-1185)) (-5 *1 (-448)))) (-1998 (*1 *2 *1 *3) (-12 (-5 *3 (-884 (-208))) (-5 *2 (-1185)) (-5 *1 (-448)))) (-3988 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-884 (-208))) (-5 *4 (-815)) (-5 *2 (-1185)) (-5 *1 (-448)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-594 (-594 (-884 (-208))))) (-5 *1 (-448)))) (-1997 (*1 *2 *2 *3) (-12 (-5 *2 (-594 (-594 (-884 (-208))))) (-5 *3 (-594 (-815))) (-5 *1 (-448)))) (-1996 (*1 *2 *3) (-12 (-5 *3 (-594 (-594 (-884 (-208))))) (-5 *2 (-594 (-208))) (-5 *1 (-448)))))
+(-13 (-1027) (-10 -8 (-15 -2003 ($)) (-15 -2002 ($ $)) (-15 -2002 ($ (-594 (-594 (-884 (-208)))))) (-15 -2002 ($ (-594 (-594 (-884 (-208)))) (-594 (-815)) (-594 (-815)) (-594 (-860)))) (-15 -2002 ($ (-594 (-594 (-884 (-208)))) (-594 (-815)) (-594 (-815)) (-594 (-860)) (-594 (-243)))) (-15 -2001 ((-594 (-594 (-884 (-208)))) $)) (-15 -4139 ((-516) $)) (-15 -2000 ((-594 (-1017 (-359))) $)) (-15 -2000 ((-594 (-1017 (-359))) $ (-594 (-1017 (-359))))) (-15 -4130 ((-594 (-359)) $)) (-15 -4130 ((-594 (-359)) $ (-594 (-359)))) (-15 -1999 ((-1185) $ (-594 (-884 (-208))) (-815) (-815) (-860))) (-15 -1999 ((-1185) $ (-884 (-208)))) (-15 -1999 ((-1185) $ (-884 (-208)) (-815) (-815) (-860))) (-15 -1998 ((-1185) $ (-884 (-208)))) (-15 -3988 ((-1185) $ (-884 (-208)) (-815))) (-15 -4233 ($ (-594 (-594 (-884 (-208)))))) (-15 -4233 ((-805) $)) (-15 -1997 ((-594 (-594 (-884 (-208)))) (-594 (-594 (-884 (-208)))) (-594 (-815)))) (-15 -1996 ((-594 (-208)) (-594 (-594 (-884 (-208))))))))
+((-4116 (($ $) NIL) (($ $ $) 11)))
+(((-449 |#1| |#2| |#3|) (-10 -8 (-15 -4116 (|#1| |#1| |#1|)) (-15 -4116 (|#1| |#1|))) (-450 |#2| |#3|) (-162) (-23)) (T -449))
+NIL
+(-10 -8 (-15 -4116 (|#1| |#1| |#1|)) (-15 -4116 (|#1| |#1|)))
+((-2828 (((-110) $ $) 7)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4223 ((|#2| $) 19)) (-4233 (((-805) $) 11)) (-2920 (($) 18 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 15) (($ $ $) 13)) (-4118 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+(((-450 |#1| |#2|) (-133) (-162) (-23)) (T -450))
+((-4223 (*1 *2 *1) (-12 (-4 *1 (-450 *3 *2)) (-4 *3 (-162)) (-4 *2 (-23)))) (-2920 (*1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-4116 (*1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-4118 (*1 *1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-4116 (*1 *1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))))
+(-13 (-1027) (-10 -8 (-15 -4223 (|t#2| $)) (-15 (-2920) ($) -4227) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4116 ($ $)) (-15 -4118 ($ $ $)) (-15 -4116 ($ $ $))))
+(((-99) . T) ((-571 (-805)) . T) ((-1027) . T))
+((-2005 (((-3 (-594 (-460 |#1| |#2|)) "failed") (-594 (-460 |#1| |#2|)) (-594 (-806 |#1|))) 93)) (-2004 (((-594 (-594 (-230 |#1| |#2|))) (-594 (-230 |#1| |#2|)) (-594 (-806 |#1|))) 91)) (-2006 (((-2 (|:| |dpolys| (-594 (-230 |#1| |#2|))) (|:| |coords| (-594 (-516)))) (-594 (-230 |#1| |#2|)) (-594 (-806 |#1|))) 61)))
+(((-451 |#1| |#2| |#3|) (-10 -7 (-15 -2004 ((-594 (-594 (-230 |#1| |#2|))) (-594 (-230 |#1| |#2|)) (-594 (-806 |#1|)))) (-15 -2005 ((-3 (-594 (-460 |#1| |#2|)) "failed") (-594 (-460 |#1| |#2|)) (-594 (-806 |#1|)))) (-15 -2006 ((-2 (|:| |dpolys| (-594 (-230 |#1| |#2|))) (|:| |coords| (-594 (-516)))) (-594 (-230 |#1| |#2|)) (-594 (-806 |#1|))))) (-594 (-1098)) (-432) (-432)) (T -451))
+((-2006 (*1 *2 *3 *4) (-12 (-5 *4 (-594 (-806 *5))) (-14 *5 (-594 (-1098))) (-4 *6 (-432)) (-5 *2 (-2 (|:| |dpolys| (-594 (-230 *5 *6))) (|:| |coords| (-594 (-516))))) (-5 *1 (-451 *5 *6 *7)) (-5 *3 (-594 (-230 *5 *6))) (-4 *7 (-432)))) (-2005 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-594 (-460 *4 *5))) (-5 *3 (-594 (-806 *4))) (-14 *4 (-594 (-1098))) (-4 *5 (-432)) (-5 *1 (-451 *4 *5 *6)) (-4 *6 (-432)))) (-2004 (*1 *2 *3 *4) (-12 (-5 *4 (-594 (-806 *5))) (-14 *5 (-594 (-1098))) (-4 *6 (-432)) (-5 *2 (-594 (-594 (-230 *5 *6)))) (-5 *1 (-451 *5 *6 *7)) (-5 *3 (-594 (-230 *5 *6))) (-4 *7 (-432)))))
+(-10 -7 (-15 -2004 ((-594 (-594 (-230 |#1| |#2|))) (-594 (-230 |#1| |#2|)) (-594 (-806 |#1|)))) (-15 -2005 ((-3 (-594 (-460 |#1| |#2|)) "failed") (-594 (-460 |#1| |#2|)) (-594 (-806 |#1|)))) (-15 -2006 ((-2 (|:| |dpolys| (-594 (-230 |#1| |#2|))) (|:| |coords| (-594 (-516)))) (-594 (-230 |#1| |#2|)) (-594 (-806 |#1|)))))
+((-3741 (((-3 $ "failed") $) 11)) (-3273 (($ $ $) 20)) (-2620 (($ $ $) 21)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) 14)) (-4224 (($ $ $) 9)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) 19)))
+(((-452 |#1|) (-10 -8 (-15 -2620 (|#1| |#1| |#1|)) (-15 -3273 (|#1| |#1| |#1|)) (-15 -3581 (|#1| |#1| (-516))) (-15 ** (|#1| |#1| (-516))) (-15 -4224 (|#1| |#1| |#1|)) (-15 -3741 ((-3 |#1| "failed") |#1|)) (-15 -3581 (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-719))) (-15 -3581 (|#1| |#1| (-860))) (-15 ** (|#1| |#1| (-860)))) (-453)) (T -452))
+NIL
+(-10 -8 (-15 -2620 (|#1| |#1| |#1|)) (-15 -3273 (|#1| |#1| |#1|)) (-15 -3581 (|#1| |#1| (-516))) (-15 ** (|#1| |#1| (-516))) (-15 -4224 (|#1| |#1| |#1|)) (-15 -3741 ((-3 |#1| "failed") |#1|)) (-15 -3581 (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-719))) (-15 -3581 (|#1| |#1| (-860))) (-15 ** (|#1| |#1| (-860))))
+((-2828 (((-110) $ $) 7)) (-3815 (($) 20 T CONST)) (-3741 (((-3 $ "failed") $) 16)) (-2436 (((-110) $) 19)) (-3513 (((-1081) $) 9)) (-2668 (($ $) 27)) (-3514 (((-1045) $) 10)) (-3273 (($ $ $) 23)) (-2620 (($ $ $) 22)) (-4233 (((-805) $) 11)) (-3581 (($ $ (-860)) 13) (($ $ (-719)) 17) (($ $ (-516)) 24)) (-2927 (($) 21 T CONST)) (-3317 (((-110) $ $) 6)) (-4224 (($ $ $) 26)) (** (($ $ (-860)) 14) (($ $ (-719)) 18) (($ $ (-516)) 25)) (* (($ $ $) 15)))
+(((-453) (-133)) (T -453))
+((-2668 (*1 *1 *1) (-4 *1 (-453))) (-4224 (*1 *1 *1 *1) (-4 *1 (-453))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-453)) (-5 *2 (-516)))) (-3581 (*1 *1 *1 *2) (-12 (-4 *1 (-453)) (-5 *2 (-516)))) (-3273 (*1 *1 *1 *1) (-4 *1 (-453))) (-2620 (*1 *1 *1 *1) (-4 *1 (-453))))
+(-13 (-675) (-10 -8 (-15 -2668 ($ $)) (-15 -4224 ($ $ $)) (-15 ** ($ $ (-516))) (-15 -3581 ($ $ (-516))) (-6 -4266) (-15 -3273 ($ $ $)) (-15 -2620 ($ $ $))))
+(((-99) . T) ((-571 (-805)) . T) ((-675) . T) ((-1038) . T) ((-1027) . T))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3347 (((-594 (-1011)) $) NIL)) (-4110 (((-1098) $) 17)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-2118 (($ $) NIL (|has| |#1| (-523)))) (-2116 (((-110) $) NIL (|has| |#1| (-523)))) (-4049 (($ $ (-388 (-516))) NIL) (($ $ (-388 (-516)) (-388 (-516))) NIL)) (-4052 (((-1076 (-2 (|:| |k| (-388 (-516))) (|:| |c| |#1|))) $) NIL)) (-3766 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3921 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL (|has| |#1| (-344)))) (-4245 (((-386 $) $) NIL (|has| |#1| (-344)))) (-3301 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-1655 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3764 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3920 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4097 (($ (-719) (-1076 (-2 (|:| |k| (-388 (-516))) (|:| |c| |#1|)))) NIL)) (-3768 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3815 (($) NIL T CONST)) (-2824 (($ $ $) NIL (|has| |#1| (-344)))) (-4235 (($ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-2823 (($ $ $) NIL (|has| |#1| (-344)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL (|has| |#1| (-344)))) (-4005 (((-110) $) NIL (|has| |#1| (-344)))) (-3156 (((-110) $) NIL)) (-3909 (($) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4050 (((-388 (-516)) $) NIL) (((-388 (-516)) $ (-388 (-516))) NIL)) (-2436 (((-110) $) NIL)) (-3275 (($ $ (-516)) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4055 (($ $ (-860)) NIL) (($ $ (-388 (-516))) NIL)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-4213 (((-110) $) NIL)) (-3157 (($ |#1| (-388 (-516))) NIL) (($ $ (-1011) (-388 (-516))) NIL) (($ $ (-594 (-1011)) (-594 (-388 (-516)))) NIL)) (-4234 (($ (-1 |#1| |#1|) $) 22)) (-4218 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3158 (($ $) NIL)) (-3449 ((|#1| $) NIL)) (-1963 (($ (-594 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL (|has| |#1| (-344)))) (-4091 (($ $) 26 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-1098)) 33 (-3810 (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-29 (-516))) (|has| |#1| (-901)) (|has| |#1| (-1120))) (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-15 -4091 (|#1| |#1| (-1098)))) (|has| |#1| (-15 -3347 ((-594 (-1098)) |#1|)))))) (($ $ (-1176 |#2|)) 27 (|has| |#1| (-37 (-388 (-516)))))) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#1| (-344)))) (-3419 (($ (-594 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-4011 (((-386 $) $) NIL (|has| |#1| (-344)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#1| (-344)))) (-4047 (($ $ (-388 (-516))) NIL)) (-3740 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-4219 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4046 (((-1076 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-388 (-516))))))) (-1654 (((-719) $) NIL (|has| |#1| (-344)))) (-4078 ((|#1| $ (-388 (-516))) NIL) (($ $ $) NIL (|has| (-388 (-516)) (-1038)))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-344)))) (-4089 (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098)) 25 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))) (($ $ (-1176 |#2|)) 15)) (-4223 (((-388 (-516)) $) NIL)) (-3769 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3918 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3767 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3917 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3765 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3916 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3155 (($ $) NIL)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1176 |#2|)) NIL) (($ (-1160 |#1| |#2| |#3|)) 9) (($ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $) NIL (|has| |#1| (-523)))) (-3959 ((|#1| $ (-388 (-516))) NIL)) (-2965 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3385 (((-719)) NIL)) (-4051 ((|#1| $) 18)) (-3772 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3760 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-2117 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3770 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3758 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3774 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3762 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4048 ((|#1| $ (-388 (-516))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-516))))) (|has| |#1| (-15 -4233 (|#1| (-1098))))))) (-3775 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3763 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3773 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3761 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3771 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3759 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| |#1| (-344)))) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-4116 (($ $) NIL) (($ $ $) 24)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516)))))) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-388 (-516)) $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516)))))))
+(((-454 |#1| |#2| |#3|) (-13 (-1162 |#1|) (-10 -8 (-15 -4233 ($ (-1176 |#2|))) (-15 -4233 ($ (-1160 |#1| |#2| |#3|))) (-15 -4089 ($ $ (-1176 |#2|))) (IF (|has| |#1| (-37 (-388 (-516)))) (-15 -4091 ($ $ (-1176 |#2|))) |%noBranch|))) (-984) (-1098) |#1|) (T -454))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-454 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-1160 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-1098)) (-14 *5 *3) (-5 *1 (-454 *3 *4 *5)))) (-4089 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-454 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-4091 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-454 *3 *4 *5)) (-4 *3 (-37 (-388 (-516)))) (-4 *3 (-984)) (-14 *5 *3))))
+(-13 (-1162 |#1|) (-10 -8 (-15 -4233 ($ (-1176 |#2|))) (-15 -4233 ($ (-1160 |#1| |#2| |#3|))) (-15 -4089 ($ $ (-1176 |#2|))) (IF (|has| |#1| (-37 (-388 (-516)))) (-15 -4091 ($ $ (-1176 |#2|))) |%noBranch|)))
+((-2828 (((-110) $ $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3879 (($) NIL) (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-2243 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -4270)))) (-1217 (((-110) $ (-719)) NIL)) (-4066 ((|#2| $ |#1| |#2|) 18)) (-1581 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3992 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2251 (((-3 |#2| #1="failed") |#1| $) 19)) (-3815 (($) NIL T CONST)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))))) (-3684 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-3 |#2| #1#) |#1| $) 16)) (-3685 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-4121 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-1587 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4270)))) (-3372 ((|#2| $ |#1|) NIL)) (-2018 (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-594 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) NIL)) (-2245 ((|#1| $) NIL (|has| |#1| (-795)))) (-2445 (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-594 |#2|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2246 ((|#1| $) NIL (|has| |#1| (-795)))) (-2022 (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2678 (((-594 |#1|) $) NIL)) (-2252 (((-110) |#1| $) NIL)) (-1280 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL)) (-3889 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL)) (-2248 (((-594 |#1|) $) NIL)) (-2249 (((-110) |#1| $) NIL)) (-3514 (((-1045) $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-4079 ((|#2| $) NIL (|has| |#1| (-795)))) (-1350 (((-3 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) "failed") (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL)) (-2244 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-1281 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL)) (-2020 (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-275 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-594 |#2|) (-594 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-594 (-275 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2250 (((-594 |#2|) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1473 (($) NIL) (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-2019 (((-719) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) NIL (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-572 (-505))))) (-3804 (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-4233 (((-805) $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-571 (-805))) (|has| |#2| (-571 (-805)))))) (-1282 (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-2021 (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-455 |#1| |#2| |#3| |#4|) (-1111 |#1| |#2|) (-1027) (-1027) (-1111 |#1| |#2|) |#2|) (T -455))
+NIL
+(-1111 |#1| |#2|)
+((-2828 (((-110) $ $) NIL)) (-3963 (((-594 (-2 (|:| -4140 $) (|:| -1768 (-594 |#4|)))) (-594 |#4|)) NIL)) (-3964 (((-594 $) (-594 |#4|)) NIL)) (-3347 (((-594 |#3|) $) NIL)) (-3172 (((-110) $) NIL)) (-3163 (((-110) $) NIL (|has| |#1| (-523)))) (-3975 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3970 ((|#4| |#4| $) NIL)) (-3173 (((-2 (|:| |under| $) (|:| -3389 $) (|:| |upper| $)) $ |#3|) NIL)) (-1217 (((-110) $ (-719)) NIL)) (-3992 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-3815 (($) NIL T CONST)) (-3168 (((-110) $) 26 (|has| |#1| (-523)))) (-3170 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3169 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3171 (((-110) $) NIL (|has| |#1| (-523)))) (-3971 (((-594 |#4|) (-594 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3164 (((-594 |#4|) (-594 |#4|) $) NIL (|has| |#1| (-523)))) (-3165 (((-594 |#4|) (-594 |#4|) $) NIL (|has| |#1| (-523)))) (-3432 (((-3 $ "failed") (-594 |#4|)) NIL)) (-3431 (($ (-594 |#4|)) NIL)) (-4077 (((-3 $ #1#) $) 39)) (-3967 ((|#4| |#4| $) NIL)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-3685 (($ |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3166 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-523)))) (-3976 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-3965 ((|#4| |#4| $) NIL)) (-4121 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3978 (((-2 (|:| -4140 (-594 |#4|)) (|:| -1768 (-594 |#4|))) $) NIL)) (-2018 (((-594 |#4|) $) 16 (|has| $ (-6 -4269)))) (-3977 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3455 ((|#3| $) 33)) (-4001 (((-110) $ (-719)) NIL)) (-2445 (((-594 |#4|) $) 17 (|has| $ (-6 -4269)))) (-3516 (((-110) |#4| $) 25 (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-2022 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#4| |#4|) $) 21)) (-3178 (((-594 |#3|) $) NIL)) (-3177 (((-110) |#3| $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL)) (-4076 (((-3 |#4| #1#) $) 37)) (-3979 (((-594 |#4|) $) NIL)) (-3973 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3968 ((|#4| |#4| $) NIL)) (-3981 (((-110) $ $) NIL)) (-3167 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-523)))) (-3974 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3969 ((|#4| |#4| $) NIL)) (-3514 (((-1045) $) NIL)) (-4079 (((-3 |#4| #1#) $) 35)) (-1350 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-3961 (((-3 $ #1#) $ |#4|) 47)) (-4047 (($ $ |#4|) NIL)) (-2020 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 |#4|) (-594 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-275 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-594 (-275 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) 15)) (-3847 (($) 13)) (-4223 (((-719) $) NIL)) (-2019 (((-719) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (((-719) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3678 (($ $) 12)) (-4246 (((-505) $) NIL (|has| |#4| (-572 (-505))))) (-3804 (($ (-594 |#4|)) 20)) (-3174 (($ $ |#3|) 42)) (-3176 (($ $ |#3|) 44)) (-3966 (($ $) NIL)) (-3175 (($ $ |#3|) NIL)) (-4233 (((-805) $) 31) (((-594 |#4|) $) 40)) (-3960 (((-719) $) NIL (|has| |#3| (-349)))) (-3980 (((-3 (-2 (|:| |bas| $) (|:| -3602 (-594 |#4|))) #1#) (-594 |#4|) (-1 (-110) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3602 (-594 |#4|))) #1#) (-594 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3972 (((-110) $ (-1 (-110) |#4| (-594 |#4|))) NIL)) (-2021 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3962 (((-594 |#3|) $) NIL)) (-4209 (((-110) |#3| $) NIL)) (-3317 (((-110) $ $) NIL)) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-456 |#1| |#2| |#3| |#4|) (-1129 |#1| |#2| |#3| |#4|) (-523) (-741) (-795) (-997 |#1| |#2| |#3|)) (T -456))
+NIL
+(-1129 |#1| |#2| |#3| |#4|)
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-1655 (((-110) $ $) NIL)) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-516) #1="failed") $) NIL) (((-3 (-388 (-516)) #1#) $) NIL)) (-3431 (((-516) $) NIL) (((-388 (-516)) $) NIL)) (-2824 (($ $ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4005 (((-110) $) NIL)) (-3909 (($) 18)) (-2436 (((-110) $) NIL)) (-1652 (((-3 (-594 $) #2="failed") (-594 $) $) NIL)) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-4011 (((-386 $) $) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-4246 (((-359) $) 22) (((-208) $) 25) (((-388 (-1092 (-516))) $) 19) (((-505) $) 52)) (-4233 (((-805) $) 50) (($ (-516)) NIL) (($ $) NIL) (($ (-388 (-516))) NIL) (((-208) $) 24) (((-359) $) 21)) (-3385 (((-719)) NIL)) (-2117 (((-110) $ $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) 36 T CONST)) (-2927 (($) 11 T CONST)) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL)))
+(((-457) (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516))) (-958) (-571 (-208)) (-571 (-359)) (-572 (-388 (-1092 (-516)))) (-572 (-505)) (-10 -8 (-15 -3909 ($))))) (T -457))
+((-3909 (*1 *1) (-5 *1 (-457))))
+(-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516))) (-958) (-571 (-208)) (-571 (-359)) (-572 (-388 (-1092 (-516)))) (-572 (-505)) (-10 -8 (-15 -3909 ($))))
+((-2828 (((-110) $ $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3879 (($) NIL) (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-2243 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -4270)))) (-1217 (((-110) $ (-719)) NIL)) (-4066 ((|#2| $ |#1| |#2|) 16)) (-1581 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3992 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2251 (((-3 |#2| #1="failed") |#1| $) 20)) (-3815 (($) NIL T CONST)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))))) (-3684 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-3 |#2| #1#) |#1| $) 18)) (-3685 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-4121 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-1587 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4270)))) (-3372 ((|#2| $ |#1|) NIL)) (-2018 (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-594 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) NIL)) (-2245 ((|#1| $) NIL (|has| |#1| (-795)))) (-2445 (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-594 |#2|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2246 ((|#1| $) NIL (|has| |#1| (-795)))) (-2022 (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2678 (((-594 |#1|) $) 13)) (-2252 (((-110) |#1| $) NIL)) (-1280 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL)) (-3889 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL)) (-2248 (((-594 |#1|) $) NIL)) (-2249 (((-110) |#1| $) NIL)) (-3514 (((-1045) $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-4079 ((|#2| $) NIL (|has| |#1| (-795)))) (-1350 (((-3 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) "failed") (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL)) (-2244 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-1281 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL)) (-2020 (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-275 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-594 |#2|) (-594 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-594 (-275 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2250 (((-594 |#2|) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) 19)) (-4078 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1473 (($) NIL) (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-2019 (((-719) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) NIL (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-572 (-505))))) (-3804 (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-4233 (((-805) $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-571 (-805))) (|has| |#2| (-571 (-805)))))) (-1282 (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-2021 (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 11 (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-4232 (((-719) $) 15 (|has| $ (-6 -4269)))))
+(((-458 |#1| |#2| |#3|) (-13 (-1111 |#1| |#2|) (-10 -7 (-6 -4269))) (-1027) (-1027) (-1081)) (T -458))
+NIL
+(-13 (-1111 |#1| |#2|) (-10 -7 (-6 -4269)))
+((-2007 (((-516) (-516) (-516)) 7)) (-2008 (((-110) (-516) (-516) (-516) (-516)) 11)) (-3731 (((-1179 (-594 (-516))) (-719) (-719)) 23)))
+(((-459) (-10 -7 (-15 -2007 ((-516) (-516) (-516))) (-15 -2008 ((-110) (-516) (-516) (-516) (-516))) (-15 -3731 ((-1179 (-594 (-516))) (-719) (-719))))) (T -459))
+((-3731 (*1 *2 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1179 (-594 (-516)))) (-5 *1 (-459)))) (-2008 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-516)) (-5 *2 (-110)) (-5 *1 (-459)))) (-2007 (*1 *2 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-459)))))
+(-10 -7 (-15 -2007 ((-516) (-516) (-516))) (-15 -2008 ((-110) (-516) (-516) (-516) (-516))) (-15 -3731 ((-1179 (-594 (-516))) (-719) (-719))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3347 (((-594 (-806 |#1|)) $) NIL)) (-3349 (((-1092 $) $ (-806 |#1|)) NIL) (((-1092 |#2|) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#2| (-523)))) (-2118 (($ $) NIL (|has| |#2| (-523)))) (-2116 (((-110) $) NIL (|has| |#2| (-523)))) (-3083 (((-719) $) NIL) (((-719) $ (-594 (-806 |#1|))) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#2| (-851)))) (-4053 (($ $) NIL (|has| |#2| (-432)))) (-4245 (((-386 $) $) NIL (|has| |#2| (-432)))) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (|has| |#2| (-851)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#2| #2="failed") $) NIL) (((-3 (-388 (-516)) #2#) $) NIL (|has| |#2| (-975 (-388 (-516))))) (((-3 (-516) #2#) $) NIL (|has| |#2| (-975 (-516)))) (((-3 (-806 |#1|) #2#) $) NIL)) (-3431 ((|#2| $) NIL) (((-388 (-516)) $) NIL (|has| |#2| (-975 (-388 (-516))))) (((-516) $) NIL (|has| |#2| (-975 (-516)))) (((-806 |#1|) $) NIL)) (-4035 (($ $ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-2009 (($ $ (-594 (-516))) NIL)) (-4235 (($ $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| |#2| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| |#2| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 $) (-1179 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3777 (($ $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-3082 (((-594 $) $) NIL)) (-4005 (((-110) $) NIL (|has| |#2| (-851)))) (-1671 (($ $ |#2| (-461 (-4232 |#1|) (-719)) $) NIL)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-359))) (|has| |#2| (-827 (-359))))) (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-516))) (|has| |#2| (-827 (-516)))))) (-2436 (((-110) $) NIL)) (-2444 (((-719) $) NIL)) (-3350 (($ (-1092 |#2|) (-806 |#1|)) NIL) (($ (-1092 $) (-806 |#1|)) NIL)) (-3085 (((-594 $) $) NIL)) (-4213 (((-110) $) NIL)) (-3157 (($ |#2| (-461 (-4232 |#1|) (-719))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-594 (-806 |#1|)) (-594 (-719))) NIL)) (-4041 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $ (-806 |#1|)) NIL)) (-3084 (((-461 (-4232 |#1|) (-719)) $) NIL) (((-719) $ (-806 |#1|)) NIL) (((-594 (-719)) $ (-594 (-806 |#1|))) NIL)) (-3596 (($ $ $) NIL (|has| |#2| (-795)))) (-3597 (($ $ $) NIL (|has| |#2| (-795)))) (-1672 (($ (-1 (-461 (-4232 |#1|) (-719)) (-461 (-4232 |#1|) (-719))) $) NIL)) (-4234 (($ (-1 |#2| |#2|) $) NIL)) (-3348 (((-3 (-806 |#1|) #3="failed") $) NIL)) (-3158 (($ $) NIL)) (-3449 ((|#2| $) NIL)) (-1963 (($ (-594 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-3513 (((-1081) $) NIL)) (-3087 (((-3 (-594 $) #3#) $) NIL)) (-3086 (((-3 (-594 $) #3#) $) NIL)) (-3088 (((-3 (-2 (|:| |var| (-806 |#1|)) (|:| -2427 (-719))) #3#) $) NIL)) (-3514 (((-1045) $) NIL)) (-1866 (((-110) $) NIL)) (-1865 ((|#2| $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#2| (-432)))) (-3419 (($ (-594 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#2| (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#2| (-851)))) (-4011 (((-386 $) $) NIL (|has| |#2| (-851)))) (-3740 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-523)))) (-4046 (($ $ (-594 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL) (($ $ (-806 |#1|) |#2|) NIL) (($ $ (-594 (-806 |#1|)) (-594 |#2|)) NIL) (($ $ (-806 |#1|) $) NIL) (($ $ (-594 (-806 |#1|)) (-594 $)) NIL)) (-4036 (($ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-4089 (($ $ (-806 |#1|)) NIL) (($ $ (-594 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-594 (-806 |#1|)) (-594 (-719))) NIL)) (-4223 (((-461 (-4232 |#1|) (-719)) $) NIL) (((-719) $ (-806 |#1|)) NIL) (((-594 (-719)) $ (-594 (-806 |#1|))) NIL)) (-4246 (((-831 (-359)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-831 (-359)))) (|has| |#2| (-572 (-831 (-359)))))) (((-831 (-516)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-831 (-516)))) (|has| |#2| (-572 (-831 (-516)))))) (((-505) $) NIL (-12 (|has| (-806 |#1|) (-572 (-505))) (|has| |#2| (-572 (-505)))))) (-3081 ((|#2| $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-851))))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ |#2|) NIL) (($ (-806 |#1|)) NIL) (($ (-388 (-516))) NIL (-3810 (|has| |#2| (-37 (-388 (-516)))) (|has| |#2| (-975 (-388 (-516)))))) (($ $) NIL (|has| |#2| (-523)))) (-4096 (((-594 |#2|) $) NIL)) (-3959 ((|#2| $ (-461 (-4232 |#1|) (-719))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-594 (-806 |#1|)) (-594 (-719))) NIL)) (-2965 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| $ (-138)) (|has| |#2| (-851))) (|has| |#2| (-138))))) (-3385 (((-719)) NIL)) (-1670 (($ $ $ (-719)) NIL (|has| |#2| (-162)))) (-2117 (((-110) $ $) NIL (|has| |#2| (-523)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($ $ (-806 |#1|)) NIL) (($ $ (-594 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-594 (-806 |#1|)) (-594 (-719))) NIL)) (-2826 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#2| (-795)))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#2| (-795)))) (-4224 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL (|has| |#2| (-37 (-388 (-516))))) (($ (-388 (-516)) $) NIL (|has| |#2| (-37 (-388 (-516))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-460 |#1| |#2|) (-13 (-891 |#2| (-461 (-4232 |#1|) (-719)) (-806 |#1|)) (-10 -8 (-15 -2009 ($ $ (-594 (-516)))))) (-594 (-1098)) (-984)) (T -460))
+((-2009 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-460 *3 *4)) (-14 *3 (-594 (-1098))) (-4 *4 (-984)))))
+(-13 (-891 |#2| (-461 (-4232 |#1|) (-719)) (-806 |#1|)) (-10 -8 (-15 -2009 ($ $ (-594 (-516))))))
+((-2828 (((-110) $ $) NIL (|has| |#2| (-1027)))) (-3462 (((-110) $) NIL (|has| |#2| (-128)))) (-3989 (($ (-860)) NIL (|has| |#2| (-984)))) (-2243 (((-1185) $ (-516) (-516)) NIL (|has| $ (-6 -4270)))) (-2667 (($ $ $) NIL (|has| |#2| (-741)))) (-1319 (((-3 $ "failed") $ $) NIL (|has| |#2| (-128)))) (-1217 (((-110) $ (-719)) NIL)) (-3395 (((-719)) NIL (|has| |#2| (-349)))) (-3905 (((-516) $) NIL (|has| |#2| (-793)))) (-4066 ((|#2| $ (-516) |#2|) NIL (|has| $ (-6 -4270)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-516) #1="failed") $) NIL (-12 (|has| |#2| (-975 (-516))) (|has| |#2| (-1027)))) (((-3 (-388 (-516)) #1#) $) NIL (-12 (|has| |#2| (-975 (-388 (-516)))) (|has| |#2| (-1027)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1027)))) (-3431 (((-516) $) NIL (-12 (|has| |#2| (-975 (-516))) (|has| |#2| (-1027)))) (((-388 (-516)) $) NIL (-12 (|has| |#2| (-975 (-388 (-516)))) (|has| |#2| (-1027)))) ((|#2| $) NIL (|has| |#2| (-1027)))) (-2297 (((-637 (-516)) (-637 $)) NIL (-12 (|has| |#2| (-593 (-516))) (|has| |#2| (-984)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (-12 (|has| |#2| (-593 (-516))) (|has| |#2| (-984)))) (((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 $) (-1179 $)) NIL (|has| |#2| (-984))) (((-637 |#2|) (-637 $)) NIL (|has| |#2| (-984)))) (-3741 (((-3 $ "failed") $) NIL (|has| |#2| (-675)))) (-3258 (($) NIL (|has| |#2| (-349)))) (-1587 ((|#2| $ (-516) |#2|) NIL (|has| $ (-6 -4270)))) (-3372 ((|#2| $ (-516)) 11)) (-3460 (((-110) $) NIL (|has| |#2| (-793)))) (-2018 (((-594 |#2|) $) NIL (|has| $ (-6 -4269)))) (-2436 (((-110) $) NIL (|has| |#2| (-675)))) (-3461 (((-110) $) NIL (|has| |#2| (-793)))) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-516) $) NIL (|has| (-516) (-795)))) (-3596 (($ $ $) NIL (-3810 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2445 (((-594 |#2|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2246 (((-516) $) NIL (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (-3810 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2022 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#2| |#2|) $) NIL)) (-2069 (((-860) $) NIL (|has| |#2| (-349)))) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (|has| |#2| (-1027)))) (-2248 (((-594 (-516)) $) NIL)) (-2249 (((-110) (-516) $) NIL)) (-2426 (($ (-860)) NIL (|has| |#2| (-349)))) (-3514 (((-1045) $) NIL (|has| |#2| (-1027)))) (-4079 ((|#2| $) NIL (|has| (-516) (-795)))) (-2244 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-594 |#2|) (-594 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2250 (((-594 |#2|) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#2| $ (-516) |#2|) NIL) ((|#2| $ (-516)) NIL)) (-4115 ((|#2| $ $) NIL (|has| |#2| (-984)))) (-1475 (($ (-1179 |#2|)) NIL)) (-4190 (((-130)) NIL (|has| |#2| (-344)))) (-4089 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1098)) NIL (-12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-984)))) (-2019 (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-3678 (($ $) NIL)) (-4233 (((-1179 |#2|) $) NIL) (($ (-516)) NIL (-3810 (-12 (|has| |#2| (-975 (-516))) (|has| |#2| (-1027))) (|has| |#2| (-984)))) (($ (-388 (-516))) NIL (-12 (|has| |#2| (-975 (-388 (-516)))) (|has| |#2| (-1027)))) (($ |#2|) NIL (|has| |#2| (-1027))) (((-805) $) NIL (|has| |#2| (-571 (-805))))) (-3385 (((-719)) NIL (|has| |#2| (-984)))) (-2021 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3661 (($ $) NIL (|has| |#2| (-793)))) (-3581 (($ $ (-719)) NIL (|has| |#2| (-675))) (($ $ (-860)) NIL (|has| |#2| (-675)))) (-2920 (($) NIL (|has| |#2| (-128)) CONST)) (-2927 (($) NIL (|has| |#2| (-675)) CONST)) (-2932 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1098)) NIL (-12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-984)))) (-2826 (((-110) $ $) NIL (-3810 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2827 (((-110) $ $) NIL (-3810 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-3317 (((-110) $ $) NIL (|has| |#2| (-1027)))) (-2947 (((-110) $ $) NIL (-3810 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2948 (((-110) $ $) 15 (-3810 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-4224 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-4116 (($ $ $) NIL (|has| |#2| (-984))) (($ $) NIL (|has| |#2| (-984)))) (-4118 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-719)) NIL (|has| |#2| (-675))) (($ $ (-860)) NIL (|has| |#2| (-675)))) (* (($ (-516) $) NIL (|has| |#2| (-984))) (($ $ $) NIL (|has| |#2| (-675))) (($ $ |#2|) NIL (|has| |#2| (-675))) (($ |#2| $) NIL (|has| |#2| (-675))) (($ (-719) $) NIL (|has| |#2| (-128))) (($ (-860) $) NIL (|has| |#2| (-25)))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-461 |#1| |#2|) (-221 |#1| |#2|) (-719) (-741)) (T -461))
+NIL
+(-221 |#1| |#2|)
+((-2828 (((-110) $ $) NIL)) (-2010 (((-594 (-1098)) $) 11)) (-3824 (((-1098) $) 10)) (-3513 (((-1081) $) NIL)) (-2011 (($ (-594 (-1098))) 9)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL) (((-1103) $) NIL)) (-3317 (((-110) $ $) NIL)))
+(((-462) (-13 (-91) (-10 -8 (-15 -2011 ($ (-594 (-1098)))) (-15 -3824 ((-1098) $)) (-15 -2010 ((-594 (-1098)) $))))) (T -462))
+((-2011 (*1 *1 *2) (-12 (-5 *2 (-594 (-1098))) (-5 *1 (-462)))) (-3824 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-462)))) (-2010 (*1 *2 *1) (-12 (-5 *2 (-594 (-1098))) (-5 *1 (-462)))))
+(-13 (-91) (-10 -8 (-15 -2011 ($ (-594 (-1098)))) (-15 -3824 ((-1098) $)) (-15 -2010 ((-594 (-1098)) $))))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1217 (((-110) $ (-719)) NIL)) (-3815 (($) NIL T CONST)) (-2018 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) NIL)) (-3123 (($ $ $) 32)) (-3792 (($ $ $) 31)) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3597 ((|#1| $) 26)) (-2022 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-1280 ((|#1| $) 27)) (-3889 (($ |#1| $) 10)) (-2012 (($ (-594 |#1|)) 12)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-1281 ((|#1| $) 23)) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) 9)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3678 (($ $) NIL)) (-4233 (((-805) $) NIL (|has| |#1| (-571 (-805))))) (-1282 (($ (-594 |#1|)) 29)) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4232 (((-719) $) 21 (|has| $ (-6 -4269)))))
+(((-463 |#1|) (-13 (-909 |#1|) (-10 -8 (-15 -2012 ($ (-594 |#1|))))) (-795)) (T -463))
+((-2012 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-795)) (-5 *1 (-463 *3)))))
+(-13 (-909 |#1|) (-10 -8 (-15 -2012 ($ (-594 |#1|)))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-4121 (($ $) 69)) (-1702 (((-110) $) NIL)) (-3513 (((-1081) $) NIL)) (-2042 (((-394 |#2| (-388 |#2|) |#3| |#4|) $) 44)) (-3514 (((-1045) $) NIL)) (-2435 (((-3 |#4| "failed") $) 107)) (-1703 (($ (-394 |#2| (-388 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-516)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3714 (((-2 (|:| -2351 (-394 |#2| (-388 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-4233 (((-805) $) 102)) (-2920 (($) 33 T CONST)) (-3317 (((-110) $ $) 109)) (-4116 (($ $) 72) (($ $ $) NIL)) (-4118 (($ $ $) 70)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 73)))
+(((-464 |#1| |#2| |#3| |#4|) (-317 |#1| |#2| |#3| |#4|) (-344) (-1155 |#1|) (-1155 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -464))
+NIL
+(-317 |#1| |#2| |#3| |#4|)
+((-2016 (((-516) (-594 (-516))) 30)) (-2013 ((|#1| (-594 |#1|)) 56)) (-2015 (((-594 |#1|) (-594 |#1|)) 57)) (-2014 (((-594 |#1|) (-594 |#1|)) 59)) (-3419 ((|#1| (-594 |#1|)) 58)) (-3081 (((-594 (-516)) (-594 |#1|)) 33)))
+(((-465 |#1|) (-10 -7 (-15 -3419 (|#1| (-594 |#1|))) (-15 -2013 (|#1| (-594 |#1|))) (-15 -2014 ((-594 |#1|) (-594 |#1|))) (-15 -2015 ((-594 |#1|) (-594 |#1|))) (-15 -3081 ((-594 (-516)) (-594 |#1|))) (-15 -2016 ((-516) (-594 (-516))))) (-1155 (-516))) (T -465))
+((-2016 (*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-516)) (-5 *1 (-465 *4)) (-4 *4 (-1155 *2)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-594 *4)) (-4 *4 (-1155 (-516))) (-5 *2 (-594 (-516))) (-5 *1 (-465 *4)))) (-2015 (*1 *2 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1155 (-516))) (-5 *1 (-465 *3)))) (-2014 (*1 *2 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1155 (-516))) (-5 *1 (-465 *3)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-594 *2)) (-5 *1 (-465 *2)) (-4 *2 (-1155 (-516))))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-594 *2)) (-5 *1 (-465 *2)) (-4 *2 (-1155 (-516))))))
+(-10 -7 (-15 -3419 (|#1| (-594 |#1|))) (-15 -2013 (|#1| (-594 |#1|))) (-15 -2014 ((-594 |#1|) (-594 |#1|))) (-15 -2015 ((-594 |#1|) (-594 |#1|))) (-15 -3081 ((-594 (-516)) (-594 |#1|))) (-15 -2016 ((-516) (-594 (-516)))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3388 (((-516) $) NIL (|has| (-516) (-289)))) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (|has| (-516) (-851)))) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (|has| (-516) (-851)))) (-1655 (((-110) $ $) NIL)) (-3905 (((-516) $) NIL (|has| (-516) (-768)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-516) #2="failed") $) NIL) (((-3 (-1098) #2#) $) NIL (|has| (-516) (-975 (-1098)))) (((-3 (-388 (-516)) #2#) $) NIL (|has| (-516) (-975 (-516)))) (((-3 (-516) #2#) $) NIL (|has| (-516) (-975 (-516))))) (-3431 (((-516) $) NIL) (((-1098) $) NIL (|has| (-516) (-975 (-1098)))) (((-388 (-516)) $) NIL (|has| (-516) (-975 (-516)))) (((-516) $) NIL (|has| (-516) (-975 (-516))))) (-2824 (($ $ $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| (-516) (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| (-516) (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL) (((-637 (-516)) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3258 (($) NIL (|has| (-516) (-515)))) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4005 (((-110) $) NIL)) (-3460 (((-110) $) NIL (|has| (-516) (-768)))) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (|has| (-516) (-827 (-516)))) (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (|has| (-516) (-827 (-359))))) (-2436 (((-110) $) NIL)) (-3260 (($ $) NIL)) (-3262 (((-516) $) NIL)) (-3723 (((-3 $ "failed") $) NIL (|has| (-516) (-1074)))) (-3461 (((-110) $) NIL (|has| (-516) (-768)))) (-1652 (((-3 (-594 $) #3="failed") (-594 $) $) NIL)) (-3596 (($ $ $) NIL (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (|has| (-516) (-795)))) (-4234 (($ (-1 (-516) (-516)) $) NIL)) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL)) (-3724 (($) NIL (|has| (-516) (-1074)) CONST)) (-2017 (($ (-388 (-516))) 9)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3387 (($ $) NIL (|has| (-516) (-289))) (((-388 (-516)) $) NIL)) (-3389 (((-516) $) NIL (|has| (-516) (-515)))) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (|has| (-516) (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (|has| (-516) (-851)))) (-4011 (((-386 $) $) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-4046 (($ $ (-594 (-516)) (-594 (-516))) NIL (|has| (-516) (-291 (-516)))) (($ $ (-516) (-516)) NIL (|has| (-516) (-291 (-516)))) (($ $ (-275 (-516))) NIL (|has| (-516) (-291 (-516)))) (($ $ (-594 (-275 (-516)))) NIL (|has| (-516) (-291 (-516)))) (($ $ (-594 (-1098)) (-594 (-516))) NIL (|has| (-516) (-491 (-1098) (-516)))) (($ $ (-1098) (-516)) NIL (|has| (-516) (-491 (-1098) (-516))))) (-1654 (((-719) $) NIL)) (-4078 (($ $ (-516)) NIL (|has| (-516) (-268 (-516) (-516))))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-4089 (($ $) NIL (|has| (-516) (-216))) (($ $ (-719)) NIL (|has| (-516) (-216))) (($ $ (-1098)) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-1 (-516) (-516)) (-719)) NIL) (($ $ (-1 (-516) (-516))) NIL)) (-3259 (($ $) NIL)) (-3261 (((-516) $) NIL)) (-4246 (((-831 (-516)) $) NIL (|has| (-516) (-572 (-831 (-516))))) (((-831 (-359)) $) NIL (|has| (-516) (-572 (-831 (-359))))) (((-505) $) NIL (|has| (-516) (-572 (-505)))) (((-359) $) NIL (|has| (-516) (-958))) (((-208) $) NIL (|has| (-516) (-958)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-516) (-851))))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ $) NIL) (($ (-388 (-516))) 8) (($ (-516)) NIL) (($ (-1098)) NIL (|has| (-516) (-975 (-1098)))) (((-388 (-516)) $) NIL) (((-943 16) $) 10)) (-2965 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| $ (-138)) (|has| (-516) (-851))) (|has| (-516) (-138))))) (-3385 (((-719)) NIL)) (-3390 (((-516) $) NIL (|has| (-516) (-515)))) (-2117 (((-110) $ $) NIL)) (-3661 (($ $) NIL (|has| (-516) (-768)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($ $) NIL (|has| (-516) (-216))) (($ $ (-719)) NIL (|has| (-516) (-216))) (($ $ (-1098)) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-1 (-516) (-516)) (-719)) NIL) (($ $ (-1 (-516) (-516))) NIL)) (-2826 (((-110) $ $) NIL (|has| (-516) (-795)))) (-2827 (((-110) $ $) NIL (|has| (-516) (-795)))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (|has| (-516) (-795)))) (-2948 (((-110) $ $) NIL (|has| (-516) (-795)))) (-4224 (($ $ $) NIL) (($ (-516) (-516)) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL) (($ (-516) $) NIL) (($ $ (-516)) NIL)))
+(((-466) (-13 (-931 (-516)) (-10 -8 (-15 -4233 ((-388 (-516)) $)) (-15 -4233 ((-943 16) $)) (-15 -3387 ((-388 (-516)) $)) (-15 -2017 ($ (-388 (-516))))))) (T -466))
+((-4233 (*1 *2 *1) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-466)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-943 16)) (-5 *1 (-466)))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-466)))) (-2017 (*1 *1 *2) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-466)))))
+(-13 (-931 (-516)) (-10 -8 (-15 -4233 ((-388 (-516)) $)) (-15 -4233 ((-943 16) $)) (-15 -3387 ((-388 (-516)) $)) (-15 -2017 ($ (-388 (-516))))))
+((-2445 (((-594 |#2|) $) 23)) (-3516 (((-110) |#2| $) 28)) (-2020 (((-110) (-1 (-110) |#2|) $) 21)) (-4046 (($ $ (-594 (-275 |#2|))) 13) (($ $ (-275 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-594 |#2|) (-594 |#2|)) NIL)) (-2019 (((-719) (-1 (-110) |#2|) $) 22) (((-719) |#2| $) 26)) (-4233 (((-805) $) 37)) (-2021 (((-110) (-1 (-110) |#2|) $) 20)) (-3317 (((-110) $ $) 31)) (-4232 (((-719) $) 17)))
+(((-467 |#1| |#2|) (-10 -8 (-15 -4233 ((-805) |#1|)) (-15 -3317 ((-110) |#1| |#1|)) (-15 -4046 (|#1| |#1| (-594 |#2|) (-594 |#2|))) (-15 -4046 (|#1| |#1| |#2| |#2|)) (-15 -4046 (|#1| |#1| (-275 |#2|))) (-15 -4046 (|#1| |#1| (-594 (-275 |#2|)))) (-15 -3516 ((-110) |#2| |#1|)) (-15 -2019 ((-719) |#2| |#1|)) (-15 -2445 ((-594 |#2|) |#1|)) (-15 -2019 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -2020 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2021 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -4232 ((-719) |#1|))) (-468 |#2|) (-1134)) (T -467))
+NIL
+(-10 -8 (-15 -4233 ((-805) |#1|)) (-15 -3317 ((-110) |#1| |#1|)) (-15 -4046 (|#1| |#1| (-594 |#2|) (-594 |#2|))) (-15 -4046 (|#1| |#1| |#2| |#2|)) (-15 -4046 (|#1| |#1| (-275 |#2|))) (-15 -4046 (|#1| |#1| (-594 (-275 |#2|)))) (-15 -3516 ((-110) |#2| |#1|)) (-15 -2019 ((-719) |#2| |#1|)) (-15 -2445 ((-594 |#2|) |#1|)) (-15 -2019 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -2020 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2021 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -4232 ((-719) |#1|)))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1217 (((-110) $ (-719)) 8)) (-3815 (($) 7 T CONST)) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) 9)) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35)) (-3998 (((-110) $ (-719)) 10)) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-468 |#1|) (-133) (-1134)) (T -468))
+((-4234 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-468 *3)) (-4 *3 (-1134)))) (-2022 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4270)) (-4 *1 (-468 *3)) (-4 *3 (-1134)))) (-2021 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4269)) (-4 *1 (-468 *4)) (-4 *4 (-1134)) (-5 *2 (-110)))) (-2020 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4269)) (-4 *1 (-468 *4)) (-4 *4 (-1134)) (-5 *2 (-110)))) (-2019 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4269)) (-4 *1 (-468 *4)) (-4 *4 (-1134)) (-5 *2 (-719)))) (-2018 (*1 *2 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-468 *3)) (-4 *3 (-1134)) (-5 *2 (-594 *3)))) (-2445 (*1 *2 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-468 *3)) (-4 *3 (-1134)) (-5 *2 (-594 *3)))) (-2019 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-468 *3)) (-4 *3 (-1134)) (-4 *3 (-1027)) (-5 *2 (-719)))) (-3516 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-468 *3)) (-4 *3 (-1134)) (-4 *3 (-1027)) (-5 *2 (-110)))))
+(-13 (-33) (-10 -8 (IF (|has| |t#1| (-571 (-805))) (-6 (-571 (-805))) |%noBranch|) (IF (|has| |t#1| (-1027)) (-6 (-1027)) |%noBranch|) (IF (|has| |t#1| (-1027)) (IF (|has| |t#1| (-291 |t#1|)) (-6 (-291 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4234 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4270)) (-15 -2022 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4269)) (PROGN (-15 -2021 ((-110) (-1 (-110) |t#1|) $)) (-15 -2020 ((-110) (-1 (-110) |t#1|) $)) (-15 -2019 ((-719) (-1 (-110) |t#1|) $)) (-15 -2018 ((-594 |t#1|) $)) (-15 -2445 ((-594 |t#1|) $)) (IF (|has| |t#1| (-1027)) (PROGN (-15 -2019 ((-719) |t#1| $)) (-15 -3516 ((-110) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-571 (-805)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1134) . T))
+((-2828 (((-110) $ $) NIL)) (-3513 (((-1081) $) NIL)) (-2023 (($ (-1081)) 8)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 14) (((-1081) $) 11)) (-3317 (((-110) $ $) 10)))
+(((-469) (-13 (-1027) (-571 (-1081)) (-10 -8 (-15 -2023 ($ (-1081)))))) (T -469))
+((-2023 (*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-469)))))
+(-13 (-1027) (-571 (-1081)) (-10 -8 (-15 -2023 ($ (-1081)))))
+((-3766 (($ $) 15)) (-3764 (($ $) 24)) (-3768 (($ $) 12)) (-3769 (($ $) 10)) (-3767 (($ $) 17)) (-3765 (($ $) 22)))
+(((-470 |#1|) (-10 -8 (-15 -3765 (|#1| |#1|)) (-15 -3767 (|#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3768 (|#1| |#1|)) (-15 -3764 (|#1| |#1|)) (-15 -3766 (|#1| |#1|))) (-471)) (T -470))
+NIL
+(-10 -8 (-15 -3765 (|#1| |#1|)) (-15 -3767 (|#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3768 (|#1| |#1|)) (-15 -3764 (|#1| |#1|)) (-15 -3766 (|#1| |#1|)))
+((-3766 (($ $) 11)) (-3764 (($ $) 10)) (-3768 (($ $) 9)) (-3769 (($ $) 8)) (-3767 (($ $) 7)) (-3765 (($ $) 6)))
+(((-471) (-133)) (T -471))
+((-3766 (*1 *1 *1) (-4 *1 (-471))) (-3764 (*1 *1 *1) (-4 *1 (-471))) (-3768 (*1 *1 *1) (-4 *1 (-471))) (-3769 (*1 *1 *1) (-4 *1 (-471))) (-3767 (*1 *1 *1) (-4 *1 (-471))) (-3765 (*1 *1 *1) (-4 *1 (-471))))
+(-13 (-10 -8 (-15 -3765 ($ $)) (-15 -3767 ($ $)) (-15 -3769 ($ $)) (-15 -3768 ($ $)) (-15 -3764 ($ $)) (-15 -3766 ($ $))))
+((-4011 (((-386 |#4|) |#4| (-1 (-386 |#2|) |#2|)) 42)))
+(((-472 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4011 ((-386 |#4|) |#4| (-1 (-386 |#2|) |#2|)))) (-344) (-1155 |#1|) (-13 (-344) (-140) (-673 |#1| |#2|)) (-1155 |#3|)) (T -472))
+((-4011 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-386 *6) *6)) (-4 *6 (-1155 *5)) (-4 *5 (-344)) (-4 *7 (-13 (-344) (-140) (-673 *5 *6))) (-5 *2 (-386 *3)) (-5 *1 (-472 *5 *6 *7 *3)) (-4 *3 (-1155 *7)))))
+(-10 -7 (-15 -4011 ((-386 |#4|) |#4| (-1 (-386 |#2|) |#2|))))
+((-2828 (((-110) $ $) NIL)) (-1617 (((-594 $) (-1092 $) (-1098)) NIL) (((-594 $) (-1092 $)) NIL) (((-594 $) (-887 $)) NIL)) (-1211 (($ (-1092 $) (-1098)) NIL) (($ (-1092 $)) NIL) (($ (-887 $)) NIL)) (-3462 (((-110) $) 39)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-2024 (((-110) $ $) 64)) (-1610 (((-594 (-569 $)) $) 48)) (-1319 (((-3 $ "failed") $ $) NIL)) (-1614 (($ $ (-275 $)) NIL) (($ $ (-594 (-275 $))) NIL) (($ $ (-594 (-569 $)) (-594 $)) NIL)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-3301 (($ $) NIL)) (-1655 (((-110) $ $) NIL)) (-3815 (($) NIL T CONST)) (-1212 (((-594 $) (-1092 $) (-1098)) NIL) (((-594 $) (-1092 $)) NIL) (((-594 $) (-887 $)) NIL)) (-3457 (($ (-1092 $) (-1098)) NIL) (($ (-1092 $)) NIL) (($ (-887 $)) NIL)) (-3432 (((-3 (-569 $) #1="failed") $) NIL) (((-3 (-516) #1#) $) NIL) (((-3 (-388 (-516)) #1#) $) NIL)) (-3431 (((-569 $) $) NIL) (((-516) $) NIL) (((-388 (-516)) $) 50)) (-2824 (($ $ $) NIL)) (-2297 (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL) (((-637 (-516)) (-637 $)) NIL) (((-2 (|:| -1650 (-637 (-388 (-516)))) (|:| |vec| (-1179 (-388 (-516))))) (-637 $) (-1179 $)) NIL) (((-637 (-388 (-516))) (-637 $)) NIL)) (-4121 (($ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4005 (((-110) $) NIL)) (-2833 (($ $) NIL) (($ (-594 $)) NIL)) (-1609 (((-594 (-111)) $) NIL)) (-2273 (((-111) (-111)) NIL)) (-2436 (((-110) $) 42)) (-2936 (((-110) $) NIL (|has| $ (-975 (-516))))) (-3262 (((-1050 (-516) (-569 $)) $) 37)) (-3275 (($ $ (-516)) NIL)) (-3391 (((-1092 $) (-1092 $) (-569 $)) 78) (((-1092 $) (-1092 $) (-594 (-569 $))) 55) (($ $ (-569 $)) 67) (($ $ (-594 (-569 $))) 68)) (-1652 (((-3 (-594 $) #2="failed") (-594 $) $) NIL)) (-1607 (((-1092 $) (-569 $)) 65 (|has| $ (-984)))) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-4234 (($ (-1 $ $) (-569 $)) NIL)) (-1612 (((-3 (-569 $) "failed") $) NIL)) (-1963 (($ (-594 $)) NIL) (($ $ $) NIL)) (-3513 (((-1081) $) NIL)) (-1611 (((-594 (-569 $)) $) NIL)) (-2254 (($ (-111) $) NIL) (($ (-111) (-594 $)) NIL)) (-2893 (((-110) $ (-111)) NIL) (((-110) $ (-1098)) NIL)) (-2668 (($ $) NIL)) (-2863 (((-719) $) NIL)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ (-594 $)) NIL) (($ $ $) NIL)) (-1608 (((-110) $ $) NIL) (((-110) $ (-1098)) NIL)) (-4011 (((-386 $) $) NIL)) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-2937 (((-110) $) NIL (|has| $ (-975 (-516))))) (-4046 (($ $ (-569 $) $) NIL) (($ $ (-594 (-569 $)) (-594 $)) NIL) (($ $ (-594 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL) (($ $ (-594 (-1098)) (-594 (-1 $ $))) NIL) (($ $ (-594 (-1098)) (-594 (-1 $ (-594 $)))) NIL) (($ $ (-1098) (-1 $ (-594 $))) NIL) (($ $ (-1098) (-1 $ $)) NIL) (($ $ (-594 (-111)) (-594 (-1 $ $))) NIL) (($ $ (-594 (-111)) (-594 (-1 $ (-594 $)))) NIL) (($ $ (-111) (-1 $ (-594 $))) NIL) (($ $ (-111) (-1 $ $)) NIL)) (-1654 (((-719) $) NIL)) (-4078 (($ (-111) $) NIL) (($ (-111) $ $) NIL) (($ (-111) $ $ $) NIL) (($ (-111) $ $ $ $) NIL) (($ (-111) (-594 $)) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-1613 (($ $) NIL) (($ $ $) NIL)) (-4089 (($ $ (-719)) NIL) (($ $) 36)) (-3261 (((-1050 (-516) (-569 $)) $) 20)) (-3459 (($ $) NIL (|has| $ (-984)))) (-4246 (((-359) $) 92) (((-208) $) 100) (((-158 (-359)) $) 108)) (-4233 (((-805) $) NIL) (($ (-569 $)) NIL) (($ (-388 (-516))) NIL) (($ $) NIL) (($ (-516)) NIL) (($ (-1050 (-516) (-569 $))) 21)) (-3385 (((-719)) NIL)) (-2850 (($ $) NIL) (($ (-594 $)) NIL)) (-2272 (((-110) (-111)) 84)) (-2117 (((-110) $ $) NIL)) (-3581 (($ $ (-516)) NIL) (($ $ (-719)) NIL) (($ $ (-860)) NIL)) (-2920 (($) 10 T CONST)) (-2927 (($) 22 T CONST)) (-2932 (($ $ (-719)) NIL) (($ $) NIL)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 24)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) NIL)) (-4224 (($ $ $) 44)) (-4116 (($ $ $) NIL) (($ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-388 (-516))) NIL) (($ $ (-516)) 46) (($ $ (-719)) NIL) (($ $ (-860)) NIL)) (* (($ (-388 (-516)) $) NIL) (($ $ (-388 (-516))) NIL) (($ $ $) 27) (($ (-516) $) NIL) (($ (-719) $) NIL) (($ (-860) $) NIL)))
+(((-473) (-13 (-280) (-27) (-975 (-516)) (-975 (-388 (-516))) (-593 (-516)) (-958) (-593 (-388 (-516))) (-140) (-572 (-158 (-359))) (-216) (-10 -8 (-15 -4233 ($ (-1050 (-516) (-569 $)))) (-15 -3262 ((-1050 (-516) (-569 $)) $)) (-15 -3261 ((-1050 (-516) (-569 $)) $)) (-15 -4121 ($ $)) (-15 -2024 ((-110) $ $)) (-15 -3391 ((-1092 $) (-1092 $) (-569 $))) (-15 -3391 ((-1092 $) (-1092 $) (-594 (-569 $)))) (-15 -3391 ($ $ (-569 $))) (-15 -3391 ($ $ (-594 (-569 $))))))) (T -473))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1050 (-516) (-569 (-473)))) (-5 *1 (-473)))) (-3262 (*1 *2 *1) (-12 (-5 *2 (-1050 (-516) (-569 (-473)))) (-5 *1 (-473)))) (-3261 (*1 *2 *1) (-12 (-5 *2 (-1050 (-516) (-569 (-473)))) (-5 *1 (-473)))) (-4121 (*1 *1 *1) (-5 *1 (-473))) (-2024 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-473)))) (-3391 (*1 *2 *2 *3) (-12 (-5 *2 (-1092 (-473))) (-5 *3 (-569 (-473))) (-5 *1 (-473)))) (-3391 (*1 *2 *2 *3) (-12 (-5 *2 (-1092 (-473))) (-5 *3 (-594 (-569 (-473)))) (-5 *1 (-473)))) (-3391 (*1 *1 *1 *2) (-12 (-5 *2 (-569 (-473))) (-5 *1 (-473)))) (-3391 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-569 (-473)))) (-5 *1 (-473)))))
+(-13 (-280) (-27) (-975 (-516)) (-975 (-388 (-516))) (-593 (-516)) (-958) (-593 (-388 (-516))) (-140) (-572 (-158 (-359))) (-216) (-10 -8 (-15 -4233 ($ (-1050 (-516) (-569 $)))) (-15 -3262 ((-1050 (-516) (-569 $)) $)) (-15 -3261 ((-1050 (-516) (-569 $)) $)) (-15 -4121 ($ $)) (-15 -2024 ((-110) $ $)) (-15 -3391 ((-1092 $) (-1092 $) (-569 $))) (-15 -3391 ((-1092 $) (-1092 $) (-594 (-569 $)))) (-15 -3391 ($ $ (-569 $))) (-15 -3391 ($ $ (-594 (-569 $))))))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2243 (((-1185) $ (-516) (-516)) NIL (|has| $ (-6 -4270)))) (-1798 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-1796 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795))))) (-3173 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-1217 (((-110) $ (-719)) NIL)) (-4066 ((|#1| $ (-516) |#1|) 25 (|has| $ (-6 -4270))) ((|#1| $ (-1146 (-516)) |#1|) NIL (|has| $ (-6 -4270)))) (-3992 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3815 (($) NIL T CONST)) (-2312 (($ $) NIL (|has| $ (-6 -4270)))) (-2313 (($ $) NIL)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3685 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-1587 ((|#1| $ (-516) |#1|) 22 (|has| $ (-6 -4270)))) (-3372 ((|#1| $ (-516)) 21)) (-3698 (((-516) (-1 (-110) |#1|) $) NIL) (((-516) |#1| $) NIL (|has| |#1| (-1027))) (((-516) |#1| $ (-516)) NIL (|has| |#1| (-1027)))) (-2018 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3896 (($ (-719) |#1|) 14)) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-516) $) 12 (|has| (-516) (-795)))) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3792 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2246 (((-516) $) 23 (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-2022 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-2317 (($ |#1| $ (-516)) NIL) (($ $ $ (-516)) NIL)) (-2248 (((-594 (-516)) $) NIL)) (-2249 (((-110) (-516) $) NIL)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-4079 ((|#1| $) NIL (|has| (-516) (-795)))) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-2244 (($ $ |#1|) 10 (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2250 (((-594 |#1|) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) 13)) (-4078 ((|#1| $ (-516) |#1|) NIL) ((|#1| $ (-516)) 24) (($ $ (-1146 (-516))) NIL)) (-2318 (($ $ (-516)) NIL) (($ $ (-1146 (-516))) NIL)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1797 (($ $ $ (-516)) NIL (|has| $ (-6 -4270)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) NIL (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) NIL)) (-4080 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-594 $)) NIL)) (-4233 (((-805) $) NIL (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#1| (-795)))) (-4232 (((-719) $) 9 (|has| $ (-6 -4269)))))
+(((-474 |#1| |#2|) (-19 |#1|) (-1134) (-516)) (T -474))
NIL
(-19 |#1|)
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3535 (((-110) $ (-717)) NIL)) (-2381 ((|#1| $ (-528) (-528) |#1|) NIL)) (-3898 (($ $ (-528) (-472 |#1| |#3|)) NIL)) (-2542 (($ $ (-528) (-472 |#1| |#2|)) NIL)) (-2816 (($) NIL T CONST)) (-4203 (((-472 |#1| |#3|) $ (-528)) NIL)) (-2812 ((|#1| $ (-528) (-528) |#1|) NIL)) (-2742 ((|#1| $ (-528) (-528)) NIL)) (-3342 (((-595 |#1|) $) NIL)) (-1358 (((-717) $) NIL)) (-3462 (($ (-717) (-717) |#1|) NIL)) (-1370 (((-717) $) NIL)) (-2029 (((-110) $ (-717)) NIL)) (-3065 (((-528) $) NIL)) (-2567 (((-528) $) NIL)) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3224 (((-528) $) NIL)) (-1268 (((-528) $) NIL)) (-2800 (($ (-1 |#1| |#1|) $) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-1332 (($ $ |#1|) NIL)) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#1| $ (-528) (-528)) NIL) ((|#1| $ (-528) (-528) |#1|) NIL)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2406 (($ $) NIL)) (-3946 (((-472 |#1| |#2|) $ (-528)) NIL)) (-2222 (((-802) $) NIL (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-473 |#1| |#2| |#3|) (-55 |#1| (-472 |#1| |#3|) (-472 |#1| |#2|)) (-1131) (-528) (-528)) (T -473))
-NIL
-(-55 |#1| (-472 |#1| |#3|) (-472 |#1| |#2|))
-((-4115 (((-595 (-2 (|:| -1400 (-635 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-635 |#2|)))) (-2 (|:| -1400 (-635 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-635 |#2|))) (-717) (-717)) 27)) (-3858 (((-595 (-1091 |#1|)) |#1| (-717) (-717) (-717)) 34)) (-2490 (((-2 (|:| -1400 (-635 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-635 |#2|))) (-595 |#3|) (-595 (-2 (|:| -1400 (-635 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-635 |#2|)))) (-717)) 85)))
-(((-474 |#1| |#2| |#3|) (-10 -7 (-15 -3858 ((-595 (-1091 |#1|)) |#1| (-717) (-717) (-717))) (-15 -4115 ((-595 (-2 (|:| -1400 (-635 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-635 |#2|)))) (-2 (|:| -1400 (-635 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-635 |#2|))) (-717) (-717))) (-15 -2490 ((-2 (|:| -1400 (-635 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-635 |#2|))) (-595 |#3|) (-595 (-2 (|:| -1400 (-635 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-635 |#2|)))) (-717)))) (-329) (-1153 |#1|) (-1153 |#2|)) (T -474))
-((-2490 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-595 *8)) (-5 *4 (-595 (-2 (|:| -1400 (-635 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-635 *7))))) (-5 *5 (-717)) (-4 *8 (-1153 *7)) (-4 *7 (-1153 *6)) (-4 *6 (-329)) (-5 *2 (-2 (|:| -1400 (-635 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-635 *7)))) (-5 *1 (-474 *6 *7 *8)))) (-4115 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-717)) (-4 *5 (-329)) (-4 *6 (-1153 *5)) (-5 *2 (-595 (-2 (|:| -1400 (-635 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-635 *6))))) (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-2 (|:| -1400 (-635 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-635 *6)))) (-4 *7 (-1153 *6)))) (-3858 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-717)) (-4 *3 (-329)) (-4 *5 (-1153 *3)) (-5 *2 (-595 (-1091 *3))) (-5 *1 (-474 *3 *5 *6)) (-4 *6 (-1153 *5)))))
-(-10 -7 (-15 -3858 ((-595 (-1091 |#1|)) |#1| (-717) (-717) (-717))) (-15 -4115 ((-595 (-2 (|:| -1400 (-635 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-635 |#2|)))) (-2 (|:| -1400 (-635 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-635 |#2|))) (-717) (-717))) (-15 -2490 ((-2 (|:| -1400 (-635 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-635 |#2|))) (-595 |#3|) (-595 (-2 (|:| -1400 (-635 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-635 |#2|)))) (-717))))
-((-4038 (((-2 (|:| -1400 (-635 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-635 |#1|))) (-2 (|:| -1400 (-635 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-635 |#1|))) (-2 (|:| -1400 (-635 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-635 |#1|)))) 62)) (-1452 ((|#1| (-635 |#1|) |#1| (-717)) 25)) (-2590 (((-717) (-717) (-717)) 30)) (-4240 (((-635 |#1|) (-635 |#1|) (-635 |#1|)) 42)) (-3783 (((-635 |#1|) (-635 |#1|) (-635 |#1|) |#1|) 50) (((-635 |#1|) (-635 |#1|) (-635 |#1|)) 47)) (-2332 ((|#1| (-635 |#1|) (-635 |#1|) |#1| (-528)) 29)) (-2255 ((|#1| (-635 |#1|)) 18)))
-(((-475 |#1| |#2| |#3|) (-10 -7 (-15 -2255 (|#1| (-635 |#1|))) (-15 -1452 (|#1| (-635 |#1|) |#1| (-717))) (-15 -2332 (|#1| (-635 |#1|) (-635 |#1|) |#1| (-528))) (-15 -2590 ((-717) (-717) (-717))) (-15 -3783 ((-635 |#1|) (-635 |#1|) (-635 |#1|))) (-15 -3783 ((-635 |#1|) (-635 |#1|) (-635 |#1|) |#1|)) (-15 -4240 ((-635 |#1|) (-635 |#1|) (-635 |#1|))) (-15 -4038 ((-2 (|:| -1400 (-635 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-635 |#1|))) (-2 (|:| -1400 (-635 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-635 |#1|))) (-2 (|:| -1400 (-635 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-635 |#1|)))))) (-13 (-288) (-10 -8 (-15 -2705 ((-398 $) $)))) (-1153 |#1|) (-389 |#1| |#2|)) (T -475))
-((-4038 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1400 (-635 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-635 *3)))) (-4 *3 (-13 (-288) (-10 -8 (-15 -2705 ((-398 $) $))))) (-4 *4 (-1153 *3)) (-5 *1 (-475 *3 *4 *5)) (-4 *5 (-389 *3 *4)))) (-4240 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-13 (-288) (-10 -8 (-15 -2705 ((-398 $) $))))) (-4 *4 (-1153 *3)) (-5 *1 (-475 *3 *4 *5)) (-4 *5 (-389 *3 *4)))) (-3783 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-635 *3)) (-4 *3 (-13 (-288) (-10 -8 (-15 -2705 ((-398 $) $))))) (-4 *4 (-1153 *3)) (-5 *1 (-475 *3 *4 *5)) (-4 *5 (-389 *3 *4)))) (-3783 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-13 (-288) (-10 -8 (-15 -2705 ((-398 $) $))))) (-4 *4 (-1153 *3)) (-5 *1 (-475 *3 *4 *5)) (-4 *5 (-389 *3 *4)))) (-2590 (*1 *2 *2 *2) (-12 (-5 *2 (-717)) (-4 *3 (-13 (-288) (-10 -8 (-15 -2705 ((-398 $) $))))) (-4 *4 (-1153 *3)) (-5 *1 (-475 *3 *4 *5)) (-4 *5 (-389 *3 *4)))) (-2332 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-635 *2)) (-5 *4 (-528)) (-4 *2 (-13 (-288) (-10 -8 (-15 -2705 ((-398 $) $))))) (-4 *5 (-1153 *2)) (-5 *1 (-475 *2 *5 *6)) (-4 *6 (-389 *2 *5)))) (-1452 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-635 *2)) (-5 *4 (-717)) (-4 *2 (-13 (-288) (-10 -8 (-15 -2705 ((-398 $) $))))) (-4 *5 (-1153 *2)) (-5 *1 (-475 *2 *5 *6)) (-4 *6 (-389 *2 *5)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *4 (-1153 *2)) (-4 *2 (-13 (-288) (-10 -8 (-15 -2705 ((-398 $) $))))) (-5 *1 (-475 *2 *4 *5)) (-4 *5 (-389 *2 *4)))))
-(-10 -7 (-15 -2255 (|#1| (-635 |#1|))) (-15 -1452 (|#1| (-635 |#1|) |#1| (-717))) (-15 -2332 (|#1| (-635 |#1|) (-635 |#1|) |#1| (-528))) (-15 -2590 ((-717) (-717) (-717))) (-15 -3783 ((-635 |#1|) (-635 |#1|) (-635 |#1|))) (-15 -3783 ((-635 |#1|) (-635 |#1|) (-635 |#1|) |#1|)) (-15 -4240 ((-635 |#1|) (-635 |#1|) (-635 |#1|))) (-15 -4038 ((-2 (|:| -1400 (-635 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-635 |#1|))) (-2 (|:| -1400 (-635 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-635 |#1|))) (-2 (|:| -1400 (-635 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-635 |#1|))))))
-((-2207 (((-110) $ $) NIL)) (-2355 (($ $) NIL)) (-2993 (($ $ $) 35)) (-1444 (((-1182) $ (-528) (-528)) NIL (|has| $ (-6 -4265)))) (-3608 (((-110) $) NIL (|has| (-110) (-793))) (((-110) (-1 (-110) (-110) (-110)) $) NIL)) (-3863 (($ $) NIL (-12 (|has| $ (-6 -4265)) (|has| (-110) (-793)))) (($ (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4265)))) (-1289 (($ $) NIL (|has| (-110) (-793))) (($ (-1 (-110) (-110) (-110)) $) NIL)) (-3535 (((-110) $ (-717)) NIL)) (-2381 (((-110) $ (-1144 (-528)) (-110)) NIL (|has| $ (-6 -4265))) (((-110) $ (-528) (-110)) 36 (|has| $ (-6 -4265)))) (-1573 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4264)))) (-2816 (($) NIL T CONST)) (-2472 (($ $) NIL (|has| $ (-6 -4265)))) (-3009 (($ $) NIL)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-110) (-1023))))) (-2280 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4264))) (($ (-110) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-110) (-1023))))) (-1422 (((-110) (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) (-110) (-110)) $ (-110)) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) (-110) (-110)) $ (-110) (-110)) NIL (-12 (|has| $ (-6 -4264)) (|has| (-110) (-1023))))) (-2812 (((-110) $ (-528) (-110)) NIL (|has| $ (-6 -4265)))) (-2742 (((-110) $ (-528)) NIL)) (-3140 (((-528) (-110) $ (-528)) NIL (|has| (-110) (-1023))) (((-528) (-110) $) NIL (|has| (-110) (-1023))) (((-528) (-1 (-110) (-110)) $) NIL)) (-3342 (((-595 (-110)) $) NIL (|has| $ (-6 -4264)))) (-2619 (($ $ $) 33)) (-3617 (($ $) NIL)) (-3012 (($ $ $) NIL)) (-3462 (($ (-717) (-110)) 23)) (-4135 (($ $ $) NIL)) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-528) $) 8 (|has| (-528) (-793)))) (-1436 (($ $ $) NIL)) (-1356 (($ $ $) NIL (|has| (-110) (-793))) (($ (-1 (-110) (-110) (-110)) $ $) NIL)) (-2604 (((-595 (-110)) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-110) (-1023))))) (-1709 (((-528) $) NIL (|has| (-528) (-793)))) (-1736 (($ $ $) NIL)) (-2800 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-110) (-110) (-110)) $ $) 30) (($ (-1 (-110) (-110)) $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL)) (-3939 (($ $ $ (-528)) NIL) (($ (-110) $ (-528)) NIL)) (-2084 (((-595 (-528)) $) NIL)) (-3966 (((-110) (-528) $) NIL)) (-2495 (((-1042) $) NIL)) (-2890 (((-110) $) NIL (|has| (-528) (-793)))) (-1734 (((-3 (-110) "failed") (-1 (-110) (-110)) $) NIL)) (-1332 (($ $ (-110)) NIL (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-110)) (-595 (-110))) NIL (-12 (|has| (-110) (-290 (-110))) (|has| (-110) (-1023)))) (($ $ (-110) (-110)) NIL (-12 (|has| (-110) (-290 (-110))) (|has| (-110) (-1023)))) (($ $ (-275 (-110))) NIL (-12 (|has| (-110) (-290 (-110))) (|has| (-110) (-1023)))) (($ $ (-595 (-275 (-110)))) NIL (-12 (|has| (-110) (-290 (-110))) (|has| (-110) (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-110) (-1023))))) (-2861 (((-595 (-110)) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) 24)) (-3043 (($ $ (-1144 (-528))) NIL) (((-110) $ (-528)) 18) (((-110) $ (-528) (-110)) NIL)) (-1745 (($ $ (-1144 (-528))) NIL) (($ $ (-528)) NIL)) (-2507 (((-717) (-110) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-110) (-1023)))) (((-717) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4264)))) (-3761 (($ $ $ (-528)) NIL (|has| $ (-6 -4265)))) (-2406 (($ $) 25)) (-3155 (((-504) $) NIL (|has| (-110) (-570 (-504))))) (-2233 (($ (-595 (-110))) NIL)) (-3400 (($ (-595 $)) NIL) (($ $ $) NIL) (($ (-110) $) NIL) (($ $ (-110)) NIL)) (-2222 (((-802) $) 22)) (-3451 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4264)))) (-3287 (($ $ $) 31)) (-2690 (($ $) NIL)) (-2436 (($ $ $) NIL)) (-1462 (($ $ $) 39)) (-1475 (($ $) 37)) (-1446 (($ $ $) 38)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 26)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 27)) (-2425 (($ $ $) NIL)) (-2138 (((-717) $) 10 (|has| $ (-6 -4264)))))
-(((-476 |#1|) (-13 (-121) (-10 -8 (-15 -1475 ($ $)) (-15 -1462 ($ $ $)) (-15 -1446 ($ $ $)))) (-528)) (T -476))
-((-1475 (*1 *1 *1) (-12 (-5 *1 (-476 *2)) (-14 *2 (-528)))) (-1462 (*1 *1 *1 *1) (-12 (-5 *1 (-476 *2)) (-14 *2 (-528)))) (-1446 (*1 *1 *1 *1) (-12 (-5 *1 (-476 *2)) (-14 *2 (-528)))))
-(-13 (-121) (-10 -8 (-15 -1475 ($ $)) (-15 -1462 ($ $ $)) (-15 -1446 ($ $ $))))
-((-2988 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1091 |#4|)) 35)) (-1798 (((-1091 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1091 |#4|)) 22)) (-1522 (((-3 (-635 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-635 (-1091 |#4|))) 46)) (-2556 (((-1091 (-1091 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
-(((-477 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1798 (|#2| (-1 |#1| |#4|) (-1091 |#4|))) (-15 -1798 ((-1091 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2988 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1091 |#4|))) (-15 -1522 ((-3 (-635 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-635 (-1091 |#4|)))) (-15 -2556 ((-1091 (-1091 |#4|)) (-1 |#4| |#1|) |#3|))) (-981) (-1153 |#1|) (-1153 |#2|) (-981)) (T -477))
-((-2556 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-981)) (-4 *7 (-981)) (-4 *6 (-1153 *5)) (-5 *2 (-1091 (-1091 *7))) (-5 *1 (-477 *5 *6 *4 *7)) (-4 *4 (-1153 *6)))) (-1522 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-635 (-1091 *8))) (-4 *5 (-981)) (-4 *8 (-981)) (-4 *6 (-1153 *5)) (-5 *2 (-635 *6)) (-5 *1 (-477 *5 *6 *7 *8)) (-4 *7 (-1153 *6)))) (-2988 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1091 *7)) (-4 *5 (-981)) (-4 *7 (-981)) (-4 *2 (-1153 *5)) (-5 *1 (-477 *5 *2 *6 *7)) (-4 *6 (-1153 *2)))) (-1798 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-981)) (-4 *7 (-981)) (-4 *4 (-1153 *5)) (-5 *2 (-1091 *7)) (-5 *1 (-477 *5 *4 *6 *7)) (-4 *6 (-1153 *4)))) (-1798 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1091 *7)) (-4 *5 (-981)) (-4 *7 (-981)) (-4 *2 (-1153 *5)) (-5 *1 (-477 *5 *2 *6 *7)) (-4 *6 (-1153 *2)))))
-(-10 -7 (-15 -1798 (|#2| (-1 |#1| |#4|) (-1091 |#4|))) (-15 -1798 ((-1091 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2988 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1091 |#4|))) (-15 -1522 ((-3 (-635 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-635 (-1091 |#4|)))) (-15 -2556 ((-1091 (-1091 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-2207 (((-110) $ $) NIL)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3294 (((-1182) $) 19)) (-3043 (((-1078) $ (-1095)) 23)) (-2273 (((-1182) $) 15)) (-2222 (((-802) $) 21) (($ (-1078)) 20)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 9)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 8)))
-(((-478) (-13 (-793) (-10 -8 (-15 -3043 ((-1078) $ (-1095))) (-15 -2273 ((-1182) $)) (-15 -3294 ((-1182) $)) (-15 -2222 ($ (-1078)))))) (T -478))
-((-3043 (*1 *2 *1 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-1078)) (-5 *1 (-478)))) (-2273 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-478)))) (-3294 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-478)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-478)))))
-(-13 (-793) (-10 -8 (-15 -3043 ((-1078) $ (-1095))) (-15 -2273 ((-1182) $)) (-15 -3294 ((-1182) $)) (-15 -2222 ($ (-1078)))))
-((-3600 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2710 ((|#1| |#4|) 10)) (-2519 ((|#3| |#4|) 17)))
-(((-479 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2710 (|#1| |#4|)) (-15 -2519 (|#3| |#4|)) (-15 -3600 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-520) (-929 |#1|) (-353 |#1|) (-353 |#2|)) (T -479))
-((-3600 (*1 *2 *3) (-12 (-4 *4 (-520)) (-4 *5 (-929 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-479 *4 *5 *6 *3)) (-4 *6 (-353 *4)) (-4 *3 (-353 *5)))) (-2519 (*1 *2 *3) (-12 (-4 *4 (-520)) (-4 *5 (-929 *4)) (-4 *2 (-353 *4)) (-5 *1 (-479 *4 *5 *2 *3)) (-4 *3 (-353 *5)))) (-2710 (*1 *2 *3) (-12 (-4 *4 (-929 *2)) (-4 *2 (-520)) (-5 *1 (-479 *2 *4 *5 *3)) (-4 *5 (-353 *2)) (-4 *3 (-353 *4)))))
-(-10 -7 (-15 -2710 (|#1| |#4|)) (-15 -2519 (|#3| |#4|)) (-15 -3600 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-2207 (((-110) $ $) NIL)) (-1310 (((-110) $ (-595 |#3|)) 105) (((-110) $) 106)) (-1359 (((-110) $) 149)) (-1344 (($ $ |#4|) 97) (($ $ |#4| (-595 |#3|)) 101)) (-2840 (((-1085 (-595 (-891 |#1|)) (-595 (-275 (-891 |#1|)))) (-595 |#4|)) 142 (|has| |#3| (-570 (-1095))))) (-3490 (($ $ $) 91) (($ $ |#4|) 89)) (-1297 (((-110) $) 148)) (-4079 (($ $) 109)) (-3034 (((-1078) $) NIL)) (-3397 (($ $ $) 83) (($ (-595 $)) 85)) (-2085 (((-110) |#4| $) 108)) (-1673 (((-110) $ $) 72)) (-3046 (($ (-595 |#4|)) 90)) (-2495 (((-1042) $) NIL)) (-3063 (($ (-595 |#4|)) 146)) (-3548 (((-110) $) 147)) (-2175 (($ $) 74)) (-2600 (((-595 |#4|) $) 63)) (-1981 (((-2 (|:| |mval| (-635 |#1|)) (|:| |invmval| (-635 |#1|)) (|:| |genIdeal| $)) $ (-595 |#3|)) NIL)) (-4070 (((-110) |#4| $) 77)) (-3017 (((-528) $ (-595 |#3|)) 110) (((-528) $) 111)) (-2222 (((-802) $) 145) (($ (-595 |#4|)) 86)) (-2655 (($ (-2 (|:| |mval| (-635 |#1|)) (|:| |invmval| (-635 |#1|)) (|:| |genIdeal| $))) NIL)) (-2186 (((-110) $ $) 73)) (-2275 (($ $ $) 93)) (** (($ $ (-717)) 96)) (* (($ $ $) 95)))
-(((-480 |#1| |#2| |#3| |#4|) (-13 (-1023) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-717))) (-15 -2275 ($ $ $)) (-15 -1297 ((-110) $)) (-15 -1359 ((-110) $)) (-15 -4070 ((-110) |#4| $)) (-15 -1673 ((-110) $ $)) (-15 -2085 ((-110) |#4| $)) (-15 -1310 ((-110) $ (-595 |#3|))) (-15 -1310 ((-110) $)) (-15 -3397 ($ $ $)) (-15 -3397 ($ (-595 $))) (-15 -3490 ($ $ $)) (-15 -3490 ($ $ |#4|)) (-15 -2175 ($ $)) (-15 -1981 ((-2 (|:| |mval| (-635 |#1|)) (|:| |invmval| (-635 |#1|)) (|:| |genIdeal| $)) $ (-595 |#3|))) (-15 -2655 ($ (-2 (|:| |mval| (-635 |#1|)) (|:| |invmval| (-635 |#1|)) (|:| |genIdeal| $)))) (-15 -3017 ((-528) $ (-595 |#3|))) (-15 -3017 ((-528) $)) (-15 -4079 ($ $)) (-15 -3046 ($ (-595 |#4|))) (-15 -3063 ($ (-595 |#4|))) (-15 -3548 ((-110) $)) (-15 -2600 ((-595 |#4|) $)) (-15 -2222 ($ (-595 |#4|))) (-15 -1344 ($ $ |#4|)) (-15 -1344 ($ $ |#4| (-595 |#3|))) (IF (|has| |#3| (-570 (-1095))) (-15 -2840 ((-1085 (-595 (-891 |#1|)) (-595 (-275 (-891 |#1|)))) (-595 |#4|))) |%noBranch|))) (-343) (-739) (-793) (-888 |#1| |#2| |#3|)) (T -480))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-343)) (-4 *3 (-739)) (-4 *4 (-793)) (-5 *1 (-480 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-480 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-2275 (*1 *1 *1 *1) (-12 (-4 *2 (-343)) (-4 *3 (-739)) (-4 *4 (-793)) (-5 *1 (-480 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4)))) (-1297 (*1 *2 *1) (-12 (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-110)) (-5 *1 (-480 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-1359 (*1 *2 *1) (-12 (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-110)) (-5 *1 (-480 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-4070 (*1 *2 *3 *1) (-12 (-4 *4 (-343)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110)) (-5 *1 (-480 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6)))) (-1673 (*1 *2 *1 *1) (-12 (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-110)) (-5 *1 (-480 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-2085 (*1 *2 *3 *1) (-12 (-4 *4 (-343)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110)) (-5 *1 (-480 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6)))) (-1310 (*1 *2 *1 *3) (-12 (-5 *3 (-595 *6)) (-4 *6 (-793)) (-4 *4 (-343)) (-4 *5 (-739)) (-5 *2 (-110)) (-5 *1 (-480 *4 *5 *6 *7)) (-4 *7 (-888 *4 *5 *6)))) (-1310 (*1 *2 *1) (-12 (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-110)) (-5 *1 (-480 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-3397 (*1 *1 *1 *1) (-12 (-4 *2 (-343)) (-4 *3 (-739)) (-4 *4 (-793)) (-5 *1 (-480 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4)))) (-3397 (*1 *1 *2) (-12 (-5 *2 (-595 (-480 *3 *4 *5 *6))) (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-480 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-3490 (*1 *1 *1 *1) (-12 (-4 *2 (-343)) (-4 *3 (-739)) (-4 *4 (-793)) (-5 *1 (-480 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4)))) (-3490 (*1 *1 *1 *2) (-12 (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-888 *3 *4 *5)))) (-2175 (*1 *1 *1) (-12 (-4 *2 (-343)) (-4 *3 (-739)) (-4 *4 (-793)) (-5 *1 (-480 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4)))) (-1981 (*1 *2 *1 *3) (-12 (-5 *3 (-595 *6)) (-4 *6 (-793)) (-4 *4 (-343)) (-4 *5 (-739)) (-5 *2 (-2 (|:| |mval| (-635 *4)) (|:| |invmval| (-635 *4)) (|:| |genIdeal| (-480 *4 *5 *6 *7)))) (-5 *1 (-480 *4 *5 *6 *7)) (-4 *7 (-888 *4 *5 *6)))) (-2655 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-635 *3)) (|:| |invmval| (-635 *3)) (|:| |genIdeal| (-480 *3 *4 *5 *6)))) (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-480 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-3017 (*1 *2 *1 *3) (-12 (-5 *3 (-595 *6)) (-4 *6 (-793)) (-4 *4 (-343)) (-4 *5 (-739)) (-5 *2 (-528)) (-5 *1 (-480 *4 *5 *6 *7)) (-4 *7 (-888 *4 *5 *6)))) (-3017 (*1 *2 *1) (-12 (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-528)) (-5 *1 (-480 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-4079 (*1 *1 *1) (-12 (-4 *2 (-343)) (-4 *3 (-739)) (-4 *4 (-793)) (-5 *1 (-480 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4)))) (-3046 (*1 *1 *2) (-12 (-5 *2 (-595 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-480 *3 *4 *5 *6)))) (-3063 (*1 *1 *2) (-12 (-5 *2 (-595 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-480 *3 *4 *5 *6)))) (-3548 (*1 *2 *1) (-12 (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-110)) (-5 *1 (-480 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-2600 (*1 *2 *1) (-12 (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-595 *6)) (-5 *1 (-480 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-595 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-480 *3 *4 *5 *6)))) (-1344 (*1 *1 *1 *2) (-12 (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-888 *3 *4 *5)))) (-1344 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-595 *6)) (-4 *6 (-793)) (-4 *4 (-343)) (-4 *5 (-739)) (-5 *1 (-480 *4 *5 *6 *2)) (-4 *2 (-888 *4 *5 *6)))) (-2840 (*1 *2 *3) (-12 (-5 *3 (-595 *7)) (-4 *7 (-888 *4 *5 *6)) (-4 *6 (-570 (-1095))) (-4 *4 (-343)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-1085 (-595 (-891 *4)) (-595 (-275 (-891 *4))))) (-5 *1 (-480 *4 *5 *6 *7)))))
-(-13 (-1023) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-717))) (-15 -2275 ($ $ $)) (-15 -1297 ((-110) $)) (-15 -1359 ((-110) $)) (-15 -4070 ((-110) |#4| $)) (-15 -1673 ((-110) $ $)) (-15 -2085 ((-110) |#4| $)) (-15 -1310 ((-110) $ (-595 |#3|))) (-15 -1310 ((-110) $)) (-15 -3397 ($ $ $)) (-15 -3397 ($ (-595 $))) (-15 -3490 ($ $ $)) (-15 -3490 ($ $ |#4|)) (-15 -2175 ($ $)) (-15 -1981 ((-2 (|:| |mval| (-635 |#1|)) (|:| |invmval| (-635 |#1|)) (|:| |genIdeal| $)) $ (-595 |#3|))) (-15 -2655 ($ (-2 (|:| |mval| (-635 |#1|)) (|:| |invmval| (-635 |#1|)) (|:| |genIdeal| $)))) (-15 -3017 ((-528) $ (-595 |#3|))) (-15 -3017 ((-528) $)) (-15 -4079 ($ $)) (-15 -3046 ($ (-595 |#4|))) (-15 -3063 ($ (-595 |#4|))) (-15 -3548 ((-110) $)) (-15 -2600 ((-595 |#4|) $)) (-15 -2222 ($ (-595 |#4|))) (-15 -1344 ($ $ |#4|)) (-15 -1344 ($ $ |#4| (-595 |#3|))) (IF (|has| |#3| (-570 (-1095))) (-15 -2840 ((-1085 (-595 (-891 |#1|)) (-595 (-275 (-891 |#1|)))) (-595 |#4|))) |%noBranch|)))
-((-3198 (((-110) (-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528))))) 150)) (-4139 (((-110) (-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528))))) 151)) (-1470 (((-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528)))) (-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528))))) 108)) (-2124 (((-110) (-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528))))) NIL)) (-3290 (((-595 (-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528))))) (-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528))))) 153)) (-3856 (((-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528)))) (-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528)))) (-595 (-804 |#1|))) 165)))
-(((-481 |#1| |#2|) (-10 -7 (-15 -3198 ((-110) (-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528)))))) (-15 -4139 ((-110) (-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528)))))) (-15 -2124 ((-110) (-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528)))))) (-15 -1470 ((-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528)))) (-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528)))))) (-15 -3290 ((-595 (-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528))))) (-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528)))))) (-15 -3856 ((-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528)))) (-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528)))) (-595 (-804 |#1|))))) (-595 (-1095)) (-717)) (T -481))
-((-3856 (*1 *2 *2 *3) (-12 (-5 *2 (-480 (-387 (-528)) (-222 *5 (-717)) (-804 *4) (-229 *4 (-387 (-528))))) (-5 *3 (-595 (-804 *4))) (-14 *4 (-595 (-1095))) (-14 *5 (-717)) (-5 *1 (-481 *4 *5)))) (-3290 (*1 *2 *3) (-12 (-14 *4 (-595 (-1095))) (-14 *5 (-717)) (-5 *2 (-595 (-480 (-387 (-528)) (-222 *5 (-717)) (-804 *4) (-229 *4 (-387 (-528)))))) (-5 *1 (-481 *4 *5)) (-5 *3 (-480 (-387 (-528)) (-222 *5 (-717)) (-804 *4) (-229 *4 (-387 (-528))))))) (-1470 (*1 *2 *2) (-12 (-5 *2 (-480 (-387 (-528)) (-222 *4 (-717)) (-804 *3) (-229 *3 (-387 (-528))))) (-14 *3 (-595 (-1095))) (-14 *4 (-717)) (-5 *1 (-481 *3 *4)))) (-2124 (*1 *2 *3) (-12 (-5 *3 (-480 (-387 (-528)) (-222 *5 (-717)) (-804 *4) (-229 *4 (-387 (-528))))) (-14 *4 (-595 (-1095))) (-14 *5 (-717)) (-5 *2 (-110)) (-5 *1 (-481 *4 *5)))) (-4139 (*1 *2 *3) (-12 (-5 *3 (-480 (-387 (-528)) (-222 *5 (-717)) (-804 *4) (-229 *4 (-387 (-528))))) (-14 *4 (-595 (-1095))) (-14 *5 (-717)) (-5 *2 (-110)) (-5 *1 (-481 *4 *5)))) (-3198 (*1 *2 *3) (-12 (-5 *3 (-480 (-387 (-528)) (-222 *5 (-717)) (-804 *4) (-229 *4 (-387 (-528))))) (-14 *4 (-595 (-1095))) (-14 *5 (-717)) (-5 *2 (-110)) (-5 *1 (-481 *4 *5)))))
-(-10 -7 (-15 -3198 ((-110) (-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528)))))) (-15 -4139 ((-110) (-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528)))))) (-15 -2124 ((-110) (-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528)))))) (-15 -1470 ((-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528)))) (-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528)))))) (-15 -3290 ((-595 (-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528))))) (-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528)))))) (-15 -3856 ((-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528)))) (-480 (-387 (-528)) (-222 |#2| (-717)) (-804 |#1|) (-229 |#1| (-387 (-528)))) (-595 (-804 |#1|)))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-2388 (($ $) NIL)) (-2548 (($ |#1| |#2|) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-2787 ((|#2| $) NIL)) (-2697 ((|#1| $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2969 (($) 12 T CONST)) (-2186 (((-110) $ $) NIL)) (-2286 (($ $) 11) (($ $ $) 24)) (-2275 (($ $ $) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 18)))
-(((-482 |#1| |#2|) (-13 (-21) (-484 |#1| |#2|)) (-21) (-793)) (T -482))
-NIL
-(-13 (-21) (-484 |#1| |#2|))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 12)) (-2816 (($) NIL T CONST)) (-2388 (($ $) 28)) (-2548 (($ |#1| |#2|) 25)) (-3106 (($ (-1 |#1| |#1|) $) 27)) (-2787 ((|#2| $) NIL)) (-2697 ((|#1| $) 29)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2969 (($) 10 T CONST)) (-2186 (((-110) $ $) NIL)) (-2275 (($ $ $) 18)) (* (($ (-860) $) NIL) (($ (-717) $) 23)))
-(((-483 |#1| |#2|) (-13 (-23) (-484 |#1| |#2|)) (-23) (-793)) (T -483))
-NIL
-(-13 (-23) (-484 |#1| |#2|))
-((-2207 (((-110) $ $) 7)) (-2388 (($ $) 13)) (-2548 (($ |#1| |#2|) 16)) (-3106 (($ (-1 |#1| |#1|) $) 17)) (-2787 ((|#2| $) 14)) (-2697 ((|#1| $) 15)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2186 (((-110) $ $) 6)))
-(((-484 |#1| |#2|) (-133) (-1023) (-793)) (T -484))
-((-3106 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-484 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-793)))) (-2548 (*1 *1 *2 *3) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-793)))) (-2697 (*1 *2 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1023)))) (-2787 (*1 *2 *1) (-12 (-4 *1 (-484 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-793)))) (-2388 (*1 *1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-793)))))
-(-13 (-1023) (-10 -8 (-15 -3106 ($ (-1 |t#1| |t#1|) $)) (-15 -2548 ($ |t#1| |t#2|)) (-15 -2697 (|t#1| $)) (-15 -2787 (|t#2| $)) (-15 -2388 ($ $))))
-(((-99) . T) ((-569 (-802)) . T) ((-1023) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2816 (($) NIL T CONST)) (-2388 (($ $) NIL)) (-2548 (($ |#1| |#2|) NIL)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-2787 ((|#2| $) NIL)) (-2697 ((|#1| $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2969 (($) NIL T CONST)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 13)) (-2275 (($ $ $) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL)))
-(((-485 |#1| |#2|) (-13 (-738) (-484 |#1| |#2|)) (-738) (-793)) (T -485))
-NIL
-(-13 (-738) (-484 |#1| |#2|))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3622 (($ $ $) 16)) (-3181 (((-3 $ "failed") $ $) 13)) (-2816 (($) NIL T CONST)) (-2388 (($ $) NIL)) (-2548 (($ |#1| |#2|) NIL)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-2787 ((|#2| $) NIL)) (-2697 ((|#1| $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL)) (-2969 (($) NIL T CONST)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) NIL)) (-2275 (($ $ $) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL)))
-(((-486 |#1| |#2|) (-13 (-739) (-484 |#1| |#2|)) (-739) (-793)) (T -486))
-NIL
-(-13 (-739) (-484 |#1| |#2|))
-((-2207 (((-110) $ $) NIL)) (-2388 (($ $) 25)) (-2548 (($ |#1| |#2|) 22)) (-3106 (($ (-1 |#1| |#1|) $) 24)) (-2787 ((|#2| $) 27)) (-2697 ((|#1| $) 26)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 21)) (-2186 (((-110) $ $) 14)))
-(((-487 |#1| |#2|) (-484 |#1| |#2|) (-1023) (-793)) (T -487))
-NIL
-(-484 |#1| |#2|)
-((-4014 (($ $ (-595 |#2|) (-595 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-488 |#1| |#2| |#3|) (-10 -8 (-15 -4014 (|#1| |#1| |#2| |#3|)) (-15 -4014 (|#1| |#1| (-595 |#2|) (-595 |#3|)))) (-489 |#2| |#3|) (-1023) (-1131)) (T -488))
-NIL
-(-10 -8 (-15 -4014 (|#1| |#1| |#2| |#3|)) (-15 -4014 (|#1| |#1| (-595 |#2|) (-595 |#3|))))
-((-4014 (($ $ (-595 |#1|) (-595 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-489 |#1| |#2|) (-133) (-1023) (-1131)) (T -489))
-((-4014 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-595 *4)) (-5 *3 (-595 *5)) (-4 *1 (-489 *4 *5)) (-4 *4 (-1023)) (-4 *5 (-1131)))) (-4014 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-489 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1131)))))
-(-13 (-10 -8 (-15 -4014 ($ $ |t#1| |t#2|)) (-15 -4014 ($ $ (-595 |t#1|) (-595 |t#2|)))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 16)) (-1514 (((-595 (-2 (|:| |gen| |#1|) (|:| -2656 |#2|))) $) 18)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2856 (((-717) $) NIL)) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#1| "failed") $) NIL)) (-2409 ((|#1| $) NIL)) (-2492 ((|#1| $ (-528)) 23)) (-1277 ((|#2| $ (-528)) 21)) (-1333 (($ (-1 |#1| |#1|) $) 46)) (-4041 (($ (-1 |#2| |#2|) $) 43)) (-3034 (((-1078) $) NIL)) (-3556 (($ $ $) 53 (|has| |#2| (-738)))) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 42) (($ |#1|) NIL)) (-3216 ((|#2| |#1| $) 49)) (-2969 (($) 11 T CONST)) (-2186 (((-110) $ $) 29)) (-2275 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-860) $) NIL) (($ (-717) $) 36) (($ |#2| |#1|) 31)))
-(((-490 |#1| |#2| |#3|) (-303 |#1| |#2|) (-1023) (-128) |#2|) (T -490))
-NIL
-(-303 |#1| |#2|)
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-1444 (((-1182) $ (-528) (-528)) NIL (|has| $ (-6 -4265)))) (-3608 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-793)))) (-3863 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4265))) (($ $) NIL (-12 (|has| $ (-6 -4265)) (|has| |#1| (-793))))) (-1289 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-793)))) (-3535 (((-110) $ (-717)) NIL)) (-1449 (((-110) (-110)) 25)) (-2381 ((|#1| $ (-528) |#1|) 28 (|has| $ (-6 -4265))) ((|#1| $ (-1144 (-528)) |#1|) NIL (|has| $ (-6 -4265)))) (-1836 (($ (-1 (-110) |#1|) $) 52)) (-1573 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2816 (($) NIL T CONST)) (-2472 (($ $) NIL (|has| $ (-6 -4265)))) (-3009 (($ $) NIL)) (-2833 (($ $) 56 (|has| |#1| (-1023)))) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3991 (($ |#1| $) NIL (|has| |#1| (-1023))) (($ (-1 (-110) |#1|) $) 44)) (-2280 (($ |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4264)))) (-2812 ((|#1| $ (-528) |#1|) NIL (|has| $ (-6 -4265)))) (-2742 ((|#1| $ (-528)) NIL)) (-3140 (((-528) (-1 (-110) |#1|) $) NIL) (((-528) |#1| $) NIL (|has| |#1| (-1023))) (((-528) |#1| $ (-528)) NIL (|has| |#1| (-1023)))) (-4096 (($ $ (-528)) 13)) (-3538 (((-717) $) 11)) (-3342 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-3462 (($ (-717) |#1|) 23)) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-528) $) 21 (|has| (-528) (-793)))) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-3368 (($ $ $) NIL (|has| |#1| (-793))) (($ (-1 (-110) |#1| |#1|) $ $) 35)) (-1356 (($ (-1 (-110) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-793)))) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-1709 (((-528) $) 20 (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-2800 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-1950 (($ $ $ (-528)) 51) (($ |#1| $ (-528)) 37)) (-3939 (($ |#1| $ (-528)) NIL) (($ $ $ (-528)) NIL)) (-2084 (((-595 (-528)) $) NIL)) (-3966 (((-110) (-528) $) NIL)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-3215 (($ (-595 |#1|)) 29)) (-2890 ((|#1| $) NIL (|has| (-528) (-793)))) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1332 (($ $ |#1|) 19 (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 40)) (-2111 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2861 (((-595 |#1|) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) 16)) (-3043 ((|#1| $ (-528) |#1|) NIL) ((|#1| $ (-528)) 33) (($ $ (-1144 (-528))) NIL)) (-1704 (($ $ (-1144 (-528))) 50) (($ $ (-528)) 45)) (-1745 (($ $ (-528)) NIL) (($ $ (-1144 (-528))) NIL)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3761 (($ $ $ (-528)) 41 (|has| $ (-6 -4265)))) (-2406 (($ $) 32)) (-3155 (((-504) $) NIL (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) NIL)) (-3579 (($ $ $) 42) (($ $ |#1|) 39)) (-3400 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-595 $)) NIL)) (-2222 (((-802) $) NIL (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2138 (((-717) $) 17 (|has| $ (-6 -4264)))))
-(((-491 |#1| |#2|) (-13 (-19 |#1|) (-263 |#1|) (-10 -8 (-15 -3215 ($ (-595 |#1|))) (-15 -3538 ((-717) $)) (-15 -4096 ($ $ (-528))) (-15 -1449 ((-110) (-110))))) (-1131) (-528)) (T -491))
-((-3215 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1131)) (-5 *1 (-491 *3 *4)) (-14 *4 (-528)))) (-3538 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-491 *3 *4)) (-4 *3 (-1131)) (-14 *4 (-528)))) (-4096 (*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-491 *3 *4)) (-4 *3 (-1131)) (-14 *4 *2))) (-1449 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-491 *3 *4)) (-4 *3 (-1131)) (-14 *4 (-528)))))
-(-13 (-19 |#1|) (-263 |#1|) (-10 -8 (-15 -3215 ($ (-595 |#1|))) (-15 -3538 ((-717) $)) (-15 -4096 ($ $ (-528))) (-15 -1449 ((-110) (-110)))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3455 (((-110) $) NIL)) (-3370 (((-717)) NIL)) (-1323 (((-541 |#1|) $) NIL) (($ $ (-860)) NIL (|has| (-541 |#1|) (-348)))) (-2338 (((-1105 (-860) (-717)) (-528)) NIL (|has| (-541 |#1|) (-348)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-2213 (((-110) $ $) NIL)) (-2856 (((-717)) NIL (|has| (-541 |#1|) (-348)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-541 |#1|) "failed") $) NIL)) (-2409 (((-541 |#1|) $) NIL)) (-1945 (($ (-1177 (-541 |#1|))) NIL)) (-2413 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-541 |#1|) (-348)))) (-3519 (($ $ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1338 (($) NIL (|has| (-541 |#1|) (-348)))) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2916 (($) NIL (|has| (-541 |#1|) (-348)))) (-4086 (((-110) $) NIL (|has| (-541 |#1|) (-348)))) (-2790 (($ $ (-717)) NIL (-1463 (|has| (-541 |#1|) (-138)) (|has| (-541 |#1|) (-348)))) (($ $) NIL (-1463 (|has| (-541 |#1|) (-138)) (|has| (-541 |#1|) (-348))))) (-2124 (((-110) $) NIL)) (-3689 (((-860) $) NIL (|has| (-541 |#1|) (-348))) (((-779 (-860)) $) NIL (-1463 (|has| (-541 |#1|) (-138)) (|has| (-541 |#1|) (-348))))) (-1297 (((-110) $) NIL)) (-2339 (($) NIL (|has| (-541 |#1|) (-348)))) (-2581 (((-110) $) NIL (|has| (-541 |#1|) (-348)))) (-3297 (((-541 |#1|) $) NIL) (($ $ (-860)) NIL (|has| (-541 |#1|) (-348)))) (-3296 (((-3 $ "failed") $) NIL (|has| (-541 |#1|) (-348)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3537 (((-1091 (-541 |#1|)) $) NIL) (((-1091 $) $ (-860)) NIL (|has| (-541 |#1|) (-348)))) (-3201 (((-860) $) NIL (|has| (-541 |#1|) (-348)))) (-2304 (((-1091 (-541 |#1|)) $) NIL (|has| (-541 |#1|) (-348)))) (-2143 (((-1091 (-541 |#1|)) $) NIL (|has| (-541 |#1|) (-348))) (((-3 (-1091 (-541 |#1|)) "failed") $ $) NIL (|has| (-541 |#1|) (-348)))) (-3640 (($ $ (-1091 (-541 |#1|))) NIL (|has| (-541 |#1|) (-348)))) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL)) (-4197 (($) NIL (|has| (-541 |#1|) (-348)) CONST)) (-3108 (($ (-860)) NIL (|has| (-541 |#1|) (-348)))) (-3148 (((-110) $) NIL)) (-2495 (((-1042) $) NIL)) (-1261 (($) NIL (|has| (-541 |#1|) (-348)))) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3010 (((-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528))))) NIL (|has| (-541 |#1|) (-348)))) (-2437 (((-398 $) $) NIL)) (-2209 (((-779 (-860))) NIL) (((-860)) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3500 (((-717) $) NIL (|has| (-541 |#1|) (-348))) (((-3 (-717) "failed") $ $) NIL (-1463 (|has| (-541 |#1|) (-138)) (|has| (-541 |#1|) (-348))))) (-3017 (((-130)) NIL)) (-3235 (($ $) NIL (|has| (-541 |#1|) (-348))) (($ $ (-717)) NIL (|has| (-541 |#1|) (-348)))) (-2935 (((-779 (-860)) $) NIL) (((-860) $) NIL)) (-4090 (((-1091 (-541 |#1|))) NIL)) (-1984 (($) NIL (|has| (-541 |#1|) (-348)))) (-1469 (($) NIL (|has| (-541 |#1|) (-348)))) (-4243 (((-1177 (-541 |#1|)) $) NIL) (((-635 (-541 |#1|)) (-1177 $)) NIL)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (|has| (-541 |#1|) (-348)))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ $) NIL) (($ (-387 (-528))) NIL) (($ (-541 |#1|)) NIL)) (-3749 (($ $) NIL (|has| (-541 |#1|) (-348))) (((-3 $ "failed") $) NIL (-1463 (|has| (-541 |#1|) (-138)) (|has| (-541 |#1|) (-348))))) (-3742 (((-717)) NIL)) (-1400 (((-1177 $)) NIL) (((-1177 $) (-860)) NIL)) (-4016 (((-110) $ $) NIL)) (-2190 (((-110) $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-2698 (($ $) NIL (|has| (-541 |#1|) (-348))) (($ $ (-717)) NIL (|has| (-541 |#1|) (-348)))) (-3245 (($ $) NIL (|has| (-541 |#1|) (-348))) (($ $ (-717)) NIL (|has| (-541 |#1|) (-348)))) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ $) NIL) (($ $ (-541 |#1|)) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL) (($ $ (-541 |#1|)) NIL) (($ (-541 |#1|) $) NIL)))
-(((-492 |#1| |#2|) (-309 (-541 |#1|)) (-860) (-860)) (T -492))
-NIL
-(-309 (-541 |#1|))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3535 (((-110) $ (-717)) NIL)) (-2381 ((|#1| $ (-528) (-528) |#1|) 35)) (-3898 (($ $ (-528) |#4|) NIL)) (-2542 (($ $ (-528) |#5|) NIL)) (-2816 (($) NIL T CONST)) (-4203 ((|#4| $ (-528)) NIL)) (-2812 ((|#1| $ (-528) (-528) |#1|) 34)) (-2742 ((|#1| $ (-528) (-528)) 32)) (-3342 (((-595 |#1|) $) NIL)) (-1358 (((-717) $) 28)) (-3462 (($ (-717) (-717) |#1|) 25)) (-1370 (((-717) $) 30)) (-2029 (((-110) $ (-717)) NIL)) (-3065 (((-528) $) 26)) (-2567 (((-528) $) 27)) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3224 (((-528) $) 29)) (-1268 (((-528) $) 31)) (-2800 (($ (-1 |#1| |#1|) $) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) 38 (|has| |#1| (-1023)))) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-1332 (($ $ |#1|) NIL)) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) 14)) (-2147 (($) 16)) (-3043 ((|#1| $ (-528) (-528)) 33) ((|#1| $ (-528) (-528) |#1|) NIL)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2406 (($ $) NIL)) (-3946 ((|#5| $ (-528)) NIL)) (-2222 (((-802) $) NIL (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-493 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1131) (-528) (-528) (-353 |#1|) (-353 |#1|)) (T -493))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1217 (((-110) $ (-719)) NIL)) (-4066 ((|#1| $ (-516) (-516) |#1|) NIL)) (-1256 (($ $ (-516) (-474 |#1| |#3|)) NIL)) (-1255 (($ $ (-516) (-474 |#1| |#2|)) NIL)) (-3815 (($) NIL T CONST)) (-3371 (((-474 |#1| |#3|) $ (-516)) NIL)) (-1587 ((|#1| $ (-516) (-516) |#1|) NIL)) (-3372 ((|#1| $ (-516) (-516)) NIL)) (-2018 (((-594 |#1|) $) NIL)) (-3374 (((-719) $) NIL)) (-3896 (($ (-719) (-719) |#1|) NIL)) (-3373 (((-719) $) NIL)) (-4001 (((-110) $ (-719)) NIL)) (-3378 (((-516) $) NIL)) (-3376 (((-516) $) NIL)) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3377 (((-516) $) NIL)) (-3375 (((-516) $) NIL)) (-2022 (($ (-1 |#1| |#1|) $) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-2244 (($ $ |#1|) NIL)) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#1| $ (-516) (-516)) NIL) ((|#1| $ (-516) (-516) |#1|) NIL)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3678 (($ $) NIL)) (-3370 (((-474 |#1| |#2|) $ (-516)) NIL)) (-4233 (((-805) $) NIL (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-475 |#1| |#2| |#3|) (-55 |#1| (-474 |#1| |#3|) (-474 |#1| |#2|)) (-1134) (-516) (-516)) (T -475))
+NIL
+(-55 |#1| (-474 |#1| |#3|) (-474 |#1| |#2|))
+((-2026 (((-594 (-2 (|:| -2071 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) (-2 (|:| -2071 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) (-719) (-719)) 27)) (-2025 (((-594 (-1092 |#1|)) |#1| (-719) (-719) (-719)) 34)) (-2137 (((-2 (|:| -2071 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) (-594 |#3|) (-594 (-2 (|:| -2071 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) (-719)) 85)))
+(((-476 |#1| |#2| |#3|) (-10 -7 (-15 -2025 ((-594 (-1092 |#1|)) |#1| (-719) (-719) (-719))) (-15 -2026 ((-594 (-2 (|:| -2071 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) (-2 (|:| -2071 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) (-719) (-719))) (-15 -2137 ((-2 (|:| -2071 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) (-594 |#3|) (-594 (-2 (|:| -2071 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) (-719)))) (-331) (-1155 |#1|) (-1155 |#2|)) (T -476))
+((-2137 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-594 *8)) (-5 *4 (-594 (-2 (|:| -2071 (-637 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-637 *7))))) (-5 *5 (-719)) (-4 *8 (-1155 *7)) (-4 *7 (-1155 *6)) (-4 *6 (-331)) (-5 *2 (-2 (|:| -2071 (-637 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-637 *7)))) (-5 *1 (-476 *6 *7 *8)))) (-2026 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-719)) (-4 *5 (-331)) (-4 *6 (-1155 *5)) (-5 *2 (-594 (-2 (|:| -2071 (-637 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-637 *6))))) (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-2 (|:| -2071 (-637 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-637 *6)))) (-4 *7 (-1155 *6)))) (-2025 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-719)) (-4 *3 (-331)) (-4 *5 (-1155 *3)) (-5 *2 (-594 (-1092 *3))) (-5 *1 (-476 *3 *5 *6)) (-4 *6 (-1155 *5)))))
+(-10 -7 (-15 -2025 ((-594 (-1092 |#1|)) |#1| (-719) (-719) (-719))) (-15 -2026 ((-594 (-2 (|:| -2071 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) (-2 (|:| -2071 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) (-719) (-719))) (-15 -2137 ((-2 (|:| -2071 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) (-594 |#3|) (-594 (-2 (|:| -2071 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) (-719))))
+((-2032 (((-2 (|:| -2071 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) (-2 (|:| -2071 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) (-2 (|:| -2071 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|)))) 62)) (-2027 ((|#1| (-637 |#1|) |#1| (-719)) 25)) (-2029 (((-719) (-719) (-719)) 30)) (-2031 (((-637 |#1|) (-637 |#1|) (-637 |#1|)) 42)) (-2030 (((-637 |#1|) (-637 |#1|) (-637 |#1|) |#1|) 50) (((-637 |#1|) (-637 |#1|) (-637 |#1|)) 47)) (-2028 ((|#1| (-637 |#1|) (-637 |#1|) |#1| (-516)) 29)) (-3607 ((|#1| (-637 |#1|)) 18)))
+(((-477 |#1| |#2| |#3|) (-10 -7 (-15 -3607 (|#1| (-637 |#1|))) (-15 -2027 (|#1| (-637 |#1|) |#1| (-719))) (-15 -2028 (|#1| (-637 |#1|) (-637 |#1|) |#1| (-516))) (-15 -2029 ((-719) (-719) (-719))) (-15 -2030 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2030 ((-637 |#1|) (-637 |#1|) (-637 |#1|) |#1|)) (-15 -2031 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2032 ((-2 (|:| -2071 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) (-2 (|:| -2071 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) (-2 (|:| -2071 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|)))))) (-13 (-289) (-10 -8 (-15 -4245 ((-386 $) $)))) (-1155 |#1|) (-391 |#1| |#2|)) (T -477))
+((-2032 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2071 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3)))) (-4 *3 (-13 (-289) (-10 -8 (-15 -4245 ((-386 $) $))))) (-4 *4 (-1155 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-391 *3 *4)))) (-2031 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-13 (-289) (-10 -8 (-15 -4245 ((-386 $) $))))) (-4 *4 (-1155 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-391 *3 *4)))) (-2030 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-13 (-289) (-10 -8 (-15 -4245 ((-386 $) $))))) (-4 *4 (-1155 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-391 *3 *4)))) (-2030 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-13 (-289) (-10 -8 (-15 -4245 ((-386 $) $))))) (-4 *4 (-1155 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-391 *3 *4)))) (-2029 (*1 *2 *2 *2) (-12 (-5 *2 (-719)) (-4 *3 (-13 (-289) (-10 -8 (-15 -4245 ((-386 $) $))))) (-4 *4 (-1155 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-391 *3 *4)))) (-2028 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-637 *2)) (-5 *4 (-516)) (-4 *2 (-13 (-289) (-10 -8 (-15 -4245 ((-386 $) $))))) (-4 *5 (-1155 *2)) (-5 *1 (-477 *2 *5 *6)) (-4 *6 (-391 *2 *5)))) (-2027 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-637 *2)) (-5 *4 (-719)) (-4 *2 (-13 (-289) (-10 -8 (-15 -4245 ((-386 $) $))))) (-4 *5 (-1155 *2)) (-5 *1 (-477 *2 *5 *6)) (-4 *6 (-391 *2 *5)))) (-3607 (*1 *2 *3) (-12 (-5 *3 (-637 *2)) (-4 *4 (-1155 *2)) (-4 *2 (-13 (-289) (-10 -8 (-15 -4245 ((-386 $) $))))) (-5 *1 (-477 *2 *4 *5)) (-4 *5 (-391 *2 *4)))))
+(-10 -7 (-15 -3607 (|#1| (-637 |#1|))) (-15 -2027 (|#1| (-637 |#1|) |#1| (-719))) (-15 -2028 (|#1| (-637 |#1|) (-637 |#1|) |#1| (-516))) (-15 -2029 ((-719) (-719) (-719))) (-15 -2030 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2030 ((-637 |#1|) (-637 |#1|) (-637 |#1|) |#1|)) (-15 -2031 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2032 ((-2 (|:| -2071 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) (-2 (|:| -2071 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) (-2 (|:| -2071 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))))))
+((-2828 (((-110) $ $) NIL)) (-3598 (($ $) NIL)) (-3594 (($ $ $) 35)) (-2243 (((-1185) $ (-516) (-516)) NIL (|has| $ (-6 -4270)))) (-1798 (((-110) $) NIL (|has| (-110) (-795))) (((-110) (-1 (-110) (-110) (-110)) $) NIL)) (-1796 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-110) (-795)))) (($ (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4270)))) (-3173 (($ $) NIL (|has| (-110) (-795))) (($ (-1 (-110) (-110) (-110)) $) NIL)) (-1217 (((-110) $ (-719)) NIL)) (-4066 (((-110) $ (-1146 (-516)) (-110)) NIL (|has| $ (-6 -4270))) (((-110) $ (-516) (-110)) 36 (|has| $ (-6 -4270)))) (-3992 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269)))) (-3815 (($) NIL T CONST)) (-2312 (($ $) NIL (|has| $ (-6 -4270)))) (-2313 (($ $) NIL)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-3685 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269))) (($ (-110) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-4121 (((-110) (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-110) (-110)) $ (-110)) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-110) (-110)) $ (-110) (-110)) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-1587 (((-110) $ (-516) (-110)) NIL (|has| $ (-6 -4270)))) (-3372 (((-110) $ (-516)) NIL)) (-3698 (((-516) (-110) $ (-516)) NIL (|has| (-110) (-1027))) (((-516) (-110) $) NIL (|has| (-110) (-1027))) (((-516) (-1 (-110) (-110)) $) NIL)) (-2018 (((-594 (-110)) $) NIL (|has| $ (-6 -4269)))) (-3120 (($ $ $) 33)) (-3595 (($ $) NIL)) (-1311 (($ $ $) NIL)) (-3896 (($ (-719) (-110)) 23)) (-1312 (($ $ $) NIL)) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-516) $) 8 (|has| (-516) (-795)))) (-3596 (($ $ $) NIL)) (-3792 (($ $ $) NIL (|has| (-110) (-795))) (($ (-1 (-110) (-110) (-110)) $ $) NIL)) (-2445 (((-594 (-110)) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-2246 (((-516) $) NIL (|has| (-516) (-795)))) (-3597 (($ $ $) NIL)) (-2022 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-110) (-110) (-110)) $ $) 30) (($ (-1 (-110) (-110)) $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL)) (-2317 (($ $ $ (-516)) NIL) (($ (-110) $ (-516)) NIL)) (-2248 (((-594 (-516)) $) NIL)) (-2249 (((-110) (-516) $) NIL)) (-3514 (((-1045) $) NIL)) (-4079 (((-110) $) NIL (|has| (-516) (-795)))) (-1350 (((-3 (-110) "failed") (-1 (-110) (-110)) $) NIL)) (-2244 (($ $ (-110)) NIL (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-110)) (-594 (-110))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-110) (-110)) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-275 (-110))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-594 (-275 (-110)))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-2250 (((-594 (-110)) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) 24)) (-4078 (($ $ (-1146 (-516))) NIL) (((-110) $ (-516)) 18) (((-110) $ (-516) (-110)) NIL)) (-2318 (($ $ (-1146 (-516))) NIL) (($ $ (-516)) NIL)) (-2019 (((-719) (-110) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027)))) (((-719) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269)))) (-1797 (($ $ $ (-516)) NIL (|has| $ (-6 -4270)))) (-3678 (($ $) 25)) (-4246 (((-505) $) NIL (|has| (-110) (-572 (-505))))) (-3804 (($ (-594 (-110))) NIL)) (-4080 (($ (-594 $)) NIL) (($ $ $) NIL) (($ (-110) $) NIL) (($ $ (-110)) NIL)) (-4233 (((-805) $) 22)) (-2021 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269)))) (-3119 (($ $ $) 31)) (-3581 (($ $) NIL)) (-3600 (($ $ $) NIL)) (-3591 (($ $ $) 39)) (-3593 (($ $) 37)) (-3592 (($ $ $) 38)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 26)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 27)) (-3599 (($ $ $) NIL)) (-4232 (((-719) $) 10 (|has| $ (-6 -4269)))))
+(((-478 |#1|) (-13 (-121) (-10 -8 (-15 -3593 ($ $)) (-15 -3591 ($ $ $)) (-15 -3592 ($ $ $)))) (-516)) (T -478))
+((-3593 (*1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-516)))) (-3591 (*1 *1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-516)))) (-3592 (*1 *1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-516)))))
+(-13 (-121) (-10 -8 (-15 -3593 ($ $)) (-15 -3591 ($ $ $)) (-15 -3592 ($ $ $))))
+((-2034 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1092 |#4|)) 35)) (-2033 (((-1092 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1092 |#4|)) 22)) (-2035 (((-3 (-637 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-637 (-1092 |#4|))) 46)) (-2036 (((-1092 (-1092 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
+(((-479 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2033 (|#2| (-1 |#1| |#4|) (-1092 |#4|))) (-15 -2033 ((-1092 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2034 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1092 |#4|))) (-15 -2035 ((-3 (-637 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-637 (-1092 |#4|)))) (-15 -2036 ((-1092 (-1092 |#4|)) (-1 |#4| |#1|) |#3|))) (-984) (-1155 |#1|) (-1155 |#2|) (-984)) (T -479))
+((-2036 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-984)) (-4 *7 (-984)) (-4 *6 (-1155 *5)) (-5 *2 (-1092 (-1092 *7))) (-5 *1 (-479 *5 *6 *4 *7)) (-4 *4 (-1155 *6)))) (-2035 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-637 (-1092 *8))) (-4 *5 (-984)) (-4 *8 (-984)) (-4 *6 (-1155 *5)) (-5 *2 (-637 *6)) (-5 *1 (-479 *5 *6 *7 *8)) (-4 *7 (-1155 *6)))) (-2034 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1092 *7)) (-4 *5 (-984)) (-4 *7 (-984)) (-4 *2 (-1155 *5)) (-5 *1 (-479 *5 *2 *6 *7)) (-4 *6 (-1155 *2)))) (-2033 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-984)) (-4 *7 (-984)) (-4 *4 (-1155 *5)) (-5 *2 (-1092 *7)) (-5 *1 (-479 *5 *4 *6 *7)) (-4 *6 (-1155 *4)))) (-2033 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1092 *7)) (-4 *5 (-984)) (-4 *7 (-984)) (-4 *2 (-1155 *5)) (-5 *1 (-479 *5 *2 *6 *7)) (-4 *6 (-1155 *2)))))
+(-10 -7 (-15 -2033 (|#2| (-1 |#1| |#4|) (-1092 |#4|))) (-15 -2033 ((-1092 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2034 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1092 |#4|))) (-15 -2035 ((-3 (-637 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-637 (-1092 |#4|)))) (-15 -2036 ((-1092 (-1092 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-2828 (((-110) $ $) NIL)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-2037 (((-1185) $) 19)) (-4078 (((-1081) $ (-1098)) 23)) (-3899 (((-1185) $) 15)) (-4233 (((-805) $) 21) (($ (-1081)) 20)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 9)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 8)))
+(((-480) (-13 (-795) (-10 -8 (-15 -4078 ((-1081) $ (-1098))) (-15 -3899 ((-1185) $)) (-15 -2037 ((-1185) $)) (-15 -4233 ($ (-1081)))))) (T -480))
+((-4078 (*1 *2 *1 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-1081)) (-5 *1 (-480)))) (-3899 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-480)))) (-2037 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-480)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-480)))))
+(-13 (-795) (-10 -8 (-15 -4078 ((-1081) $ (-1098))) (-15 -3899 ((-1185) $)) (-15 -2037 ((-1185) $)) (-15 -4233 ($ (-1081)))))
+((-4020 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4018 ((|#1| |#4|) 10)) (-4019 ((|#3| |#4|) 17)))
+(((-481 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4018 (|#1| |#4|)) (-15 -4019 (|#3| |#4|)) (-15 -4020 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-523) (-931 |#1|) (-353 |#1|) (-353 |#2|)) (T -481))
+((-4020 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-931 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-481 *4 *5 *6 *3)) (-4 *6 (-353 *4)) (-4 *3 (-353 *5)))) (-4019 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-931 *4)) (-4 *2 (-353 *4)) (-5 *1 (-481 *4 *5 *2 *3)) (-4 *3 (-353 *5)))) (-4018 (*1 *2 *3) (-12 (-4 *4 (-931 *2)) (-4 *2 (-523)) (-5 *1 (-481 *2 *4 *5 *3)) (-4 *5 (-353 *2)) (-4 *3 (-353 *4)))))
+(-10 -7 (-15 -4018 (|#1| |#4|)) (-15 -4019 (|#3| |#4|)) (-15 -4020 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-2828 (((-110) $ $) NIL)) (-2047 (((-110) $ (-594 |#3|)) 105) (((-110) $) 106)) (-3462 (((-110) $) 149)) (-2039 (($ $ |#4|) 97) (($ $ |#4| (-594 |#3|)) 101)) (-2038 (((-1088 (-594 (-887 |#1|)) (-594 (-275 (-887 |#1|)))) (-594 |#4|)) 142 (|has| |#3| (-572 (-1098))))) (-2046 (($ $ $) 91) (($ $ |#4|) 89)) (-2436 (((-110) $) 148)) (-2043 (($ $) 109)) (-3513 (((-1081) $) NIL)) (-3509 (($ $ $) 83) (($ (-594 $)) 85)) (-2048 (((-110) |#4| $) 108)) (-2049 (((-110) $ $) 72)) (-2042 (($ (-594 |#4|)) 90)) (-3514 (((-1045) $) NIL)) (-2041 (($ (-594 |#4|)) 146)) (-2040 (((-110) $) 147)) (-2269 (($ $) 74)) (-2958 (((-594 |#4|) $) 63)) (-2045 (((-2 (|:| |mval| (-637 |#1|)) (|:| |invmval| (-637 |#1|)) (|:| |genIdeal| $)) $ (-594 |#3|)) NIL)) (-2050 (((-110) |#4| $) 77)) (-4190 (((-516) $ (-594 |#3|)) 110) (((-516) $) 111)) (-4233 (((-805) $) 145) (($ (-594 |#4|)) 86)) (-2044 (($ (-2 (|:| |mval| (-637 |#1|)) (|:| |invmval| (-637 |#1|)) (|:| |genIdeal| $))) NIL)) (-3317 (((-110) $ $) 73)) (-4118 (($ $ $) 93)) (** (($ $ (-719)) 96)) (* (($ $ $) 95)))
+(((-482 |#1| |#2| |#3| |#4|) (-13 (-1027) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-719))) (-15 -4118 ($ $ $)) (-15 -2436 ((-110) $)) (-15 -3462 ((-110) $)) (-15 -2050 ((-110) |#4| $)) (-15 -2049 ((-110) $ $)) (-15 -2048 ((-110) |#4| $)) (-15 -2047 ((-110) $ (-594 |#3|))) (-15 -2047 ((-110) $)) (-15 -3509 ($ $ $)) (-15 -3509 ($ (-594 $))) (-15 -2046 ($ $ $)) (-15 -2046 ($ $ |#4|)) (-15 -2269 ($ $)) (-15 -2045 ((-2 (|:| |mval| (-637 |#1|)) (|:| |invmval| (-637 |#1|)) (|:| |genIdeal| $)) $ (-594 |#3|))) (-15 -2044 ($ (-2 (|:| |mval| (-637 |#1|)) (|:| |invmval| (-637 |#1|)) (|:| |genIdeal| $)))) (-15 -4190 ((-516) $ (-594 |#3|))) (-15 -4190 ((-516) $)) (-15 -2043 ($ $)) (-15 -2042 ($ (-594 |#4|))) (-15 -2041 ($ (-594 |#4|))) (-15 -2040 ((-110) $)) (-15 -2958 ((-594 |#4|) $)) (-15 -4233 ($ (-594 |#4|))) (-15 -2039 ($ $ |#4|)) (-15 -2039 ($ $ |#4| (-594 |#3|))) (IF (|has| |#3| (-572 (-1098))) (-15 -2038 ((-1088 (-594 (-887 |#1|)) (-594 (-275 (-887 |#1|)))) (-594 |#4|))) |%noBranch|))) (-344) (-741) (-795) (-891 |#1| |#2| |#3|)) (T -482))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-891 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-891 *3 *4 *5)))) (-4118 (*1 *1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-891 *2 *3 *4)))) (-2436 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-891 *3 *4 *5)))) (-3462 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-891 *3 *4 *5)))) (-2050 (*1 *2 *3 *1) (-12 (-4 *4 (-344)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-891 *4 *5 *6)))) (-2049 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-891 *3 *4 *5)))) (-2048 (*1 *2 *3 *1) (-12 (-4 *4 (-344)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-891 *4 *5 *6)))) (-2047 (*1 *2 *1 *3) (-12 (-5 *3 (-594 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741)) (-5 *2 (-110)) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-891 *4 *5 *6)))) (-2047 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-891 *3 *4 *5)))) (-3509 (*1 *1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-891 *2 *3 *4)))) (-3509 (*1 *1 *2) (-12 (-5 *2 (-594 (-482 *3 *4 *5 *6))) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-891 *3 *4 *5)))) (-2046 (*1 *1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-891 *2 *3 *4)))) (-2046 (*1 *1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-891 *3 *4 *5)))) (-2269 (*1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-891 *2 *3 *4)))) (-2045 (*1 *2 *1 *3) (-12 (-5 *3 (-594 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741)) (-5 *2 (-2 (|:| |mval| (-637 *4)) (|:| |invmval| (-637 *4)) (|:| |genIdeal| (-482 *4 *5 *6 *7)))) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-891 *4 *5 *6)))) (-2044 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-637 *3)) (|:| |invmval| (-637 *3)) (|:| |genIdeal| (-482 *3 *4 *5 *6)))) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-891 *3 *4 *5)))) (-4190 (*1 *2 *1 *3) (-12 (-5 *3 (-594 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741)) (-5 *2 (-516)) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-891 *4 *5 *6)))) (-4190 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-516)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-891 *3 *4 *5)))) (-2043 (*1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-891 *2 *3 *4)))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-594 *6)) (-4 *6 (-891 *3 *4 *5)) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)))) (-2041 (*1 *1 *2) (-12 (-5 *2 (-594 *6)) (-4 *6 (-891 *3 *4 *5)) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)))) (-2040 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-891 *3 *4 *5)))) (-2958 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-594 *6)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-891 *3 *4 *5)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-594 *6)) (-4 *6 (-891 *3 *4 *5)) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)))) (-2039 (*1 *1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-891 *3 *4 *5)))) (-2039 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-594 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741)) (-5 *1 (-482 *4 *5 *6 *2)) (-4 *2 (-891 *4 *5 *6)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-594 *7)) (-4 *7 (-891 *4 *5 *6)) (-4 *6 (-572 (-1098))) (-4 *4 (-344)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1088 (-594 (-887 *4)) (-594 (-275 (-887 *4))))) (-5 *1 (-482 *4 *5 *6 *7)))))
+(-13 (-1027) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-719))) (-15 -4118 ($ $ $)) (-15 -2436 ((-110) $)) (-15 -3462 ((-110) $)) (-15 -2050 ((-110) |#4| $)) (-15 -2049 ((-110) $ $)) (-15 -2048 ((-110) |#4| $)) (-15 -2047 ((-110) $ (-594 |#3|))) (-15 -2047 ((-110) $)) (-15 -3509 ($ $ $)) (-15 -3509 ($ (-594 $))) (-15 -2046 ($ $ $)) (-15 -2046 ($ $ |#4|)) (-15 -2269 ($ $)) (-15 -2045 ((-2 (|:| |mval| (-637 |#1|)) (|:| |invmval| (-637 |#1|)) (|:| |genIdeal| $)) $ (-594 |#3|))) (-15 -2044 ($ (-2 (|:| |mval| (-637 |#1|)) (|:| |invmval| (-637 |#1|)) (|:| |genIdeal| $)))) (-15 -4190 ((-516) $ (-594 |#3|))) (-15 -4190 ((-516) $)) (-15 -2043 ($ $)) (-15 -2042 ($ (-594 |#4|))) (-15 -2041 ($ (-594 |#4|))) (-15 -2040 ((-110) $)) (-15 -2958 ((-594 |#4|) $)) (-15 -4233 ($ (-594 |#4|))) (-15 -2039 ($ $ |#4|)) (-15 -2039 ($ $ |#4| (-594 |#3|))) (IF (|has| |#3| (-572 (-1098))) (-15 -2038 ((-1088 (-594 (-887 |#1|)) (-594 (-275 (-887 |#1|)))) (-594 |#4|))) |%noBranch|)))
+((-2051 (((-110) (-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516))))) 150)) (-2052 (((-110) (-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516))))) 151)) (-2053 (((-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516)))) (-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516))))) 108)) (-4005 (((-110) (-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516))))) NIL)) (-2054 (((-594 (-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516))))) (-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516))))) 153)) (-2055 (((-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516)))) (-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516)))) (-594 (-806 |#1|))) 165)))
+(((-483 |#1| |#2|) (-10 -7 (-15 -2051 ((-110) (-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516)))))) (-15 -2052 ((-110) (-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516)))))) (-15 -4005 ((-110) (-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516)))))) (-15 -2053 ((-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516)))) (-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516)))))) (-15 -2054 ((-594 (-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516))))) (-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516)))))) (-15 -2055 ((-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516)))) (-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516)))) (-594 (-806 |#1|))))) (-594 (-1098)) (-719)) (T -483))
+((-2055 (*1 *2 *2 *3) (-12 (-5 *2 (-482 (-388 (-516)) (-222 *5 (-719)) (-806 *4) (-230 *4 (-388 (-516))))) (-5 *3 (-594 (-806 *4))) (-14 *4 (-594 (-1098))) (-14 *5 (-719)) (-5 *1 (-483 *4 *5)))) (-2054 (*1 *2 *3) (-12 (-14 *4 (-594 (-1098))) (-14 *5 (-719)) (-5 *2 (-594 (-482 (-388 (-516)) (-222 *5 (-719)) (-806 *4) (-230 *4 (-388 (-516)))))) (-5 *1 (-483 *4 *5)) (-5 *3 (-482 (-388 (-516)) (-222 *5 (-719)) (-806 *4) (-230 *4 (-388 (-516))))))) (-2053 (*1 *2 *2) (-12 (-5 *2 (-482 (-388 (-516)) (-222 *4 (-719)) (-806 *3) (-230 *3 (-388 (-516))))) (-14 *3 (-594 (-1098))) (-14 *4 (-719)) (-5 *1 (-483 *3 *4)))) (-4005 (*1 *2 *3) (-12 (-5 *3 (-482 (-388 (-516)) (-222 *5 (-719)) (-806 *4) (-230 *4 (-388 (-516))))) (-14 *4 (-594 (-1098))) (-14 *5 (-719)) (-5 *2 (-110)) (-5 *1 (-483 *4 *5)))) (-2052 (*1 *2 *3) (-12 (-5 *3 (-482 (-388 (-516)) (-222 *5 (-719)) (-806 *4) (-230 *4 (-388 (-516))))) (-14 *4 (-594 (-1098))) (-14 *5 (-719)) (-5 *2 (-110)) (-5 *1 (-483 *4 *5)))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-482 (-388 (-516)) (-222 *5 (-719)) (-806 *4) (-230 *4 (-388 (-516))))) (-14 *4 (-594 (-1098))) (-14 *5 (-719)) (-5 *2 (-110)) (-5 *1 (-483 *4 *5)))))
+(-10 -7 (-15 -2051 ((-110) (-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516)))))) (-15 -2052 ((-110) (-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516)))))) (-15 -4005 ((-110) (-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516)))))) (-15 -2053 ((-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516)))) (-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516)))))) (-15 -2054 ((-594 (-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516))))) (-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516)))))) (-15 -2055 ((-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516)))) (-482 (-388 (-516)) (-222 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-516)))) (-594 (-806 |#1|)))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-4235 (($ $) NIL)) (-3157 (($ |#1| |#2|) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-2056 ((|#2| $) NIL)) (-3449 ((|#1| $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-2920 (($) 12 T CONST)) (-3317 (((-110) $ $) NIL)) (-4116 (($ $) 11) (($ $ $) 24)) (-4118 (($ $ $) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 18)))
+(((-484 |#1| |#2|) (-13 (-21) (-486 |#1| |#2|)) (-21) (-795)) (T -484))
+NIL
+(-13 (-21) (-486 |#1| |#2|))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 12)) (-3815 (($) NIL T CONST)) (-4235 (($ $) 28)) (-3157 (($ |#1| |#2|) 25)) (-4234 (($ (-1 |#1| |#1|) $) 27)) (-2056 ((|#2| $) NIL)) (-3449 ((|#1| $) 29)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-2920 (($) 10 T CONST)) (-3317 (((-110) $ $) NIL)) (-4118 (($ $ $) 18)) (* (($ (-860) $) NIL) (($ (-719) $) 23)))
+(((-485 |#1| |#2|) (-13 (-23) (-486 |#1| |#2|)) (-23) (-795)) (T -485))
+NIL
+(-13 (-23) (-486 |#1| |#2|))
+((-2828 (((-110) $ $) 7)) (-4235 (($ $) 13)) (-3157 (($ |#1| |#2|) 16)) (-4234 (($ (-1 |#1| |#1|) $) 17)) (-2056 ((|#2| $) 14)) (-3449 ((|#1| $) 15)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-3317 (((-110) $ $) 6)))
+(((-486 |#1| |#2|) (-133) (-1027) (-795)) (T -486))
+((-4234 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-486 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-795)))) (-3157 (*1 *1 *2 *3) (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-795)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-486 *2 *3)) (-4 *3 (-795)) (-4 *2 (-1027)))) (-2056 (*1 *2 *1) (-12 (-4 *1 (-486 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-795)))) (-4235 (*1 *1 *1) (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-795)))))
+(-13 (-1027) (-10 -8 (-15 -4234 ($ (-1 |t#1| |t#1|) $)) (-15 -3157 ($ |t#1| |t#2|)) (-15 -3449 (|t#1| $)) (-15 -2056 (|t#2| $)) (-15 -4235 ($ $))))
+(((-99) . T) ((-571 (-805)) . T) ((-1027) . T))
+((-2828 (((-110) $ $) NIL)) (-4235 (($ $) 25)) (-3157 (($ |#1| |#2|) 22)) (-4234 (($ (-1 |#1| |#1|) $) 24)) (-2056 ((|#2| $) 27)) (-3449 ((|#1| $) 26)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 21)) (-3317 (((-110) $ $) 14)))
+(((-487 |#1| |#2|) (-486 |#1| |#2|) (-1027) (-795)) (T -487))
+NIL
+(-486 |#1| |#2|)
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3815 (($) NIL T CONST)) (-4235 (($ $) NIL)) (-3157 (($ |#1| |#2|) NIL)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-2056 ((|#2| $) NIL)) (-3449 ((|#1| $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-2920 (($) NIL T CONST)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 13)) (-4118 (($ $ $) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL)))
+(((-488 |#1| |#2|) (-13 (-740) (-486 |#1| |#2|)) (-740) (-795)) (T -488))
+NIL
+(-13 (-740) (-486 |#1| |#2|))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2667 (($ $ $) 16)) (-1319 (((-3 $ "failed") $ $) 13)) (-3815 (($) NIL T CONST)) (-4235 (($ $) NIL)) (-3157 (($ |#1| |#2|) NIL)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-2056 ((|#2| $) NIL)) (-3449 ((|#1| $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL)) (-2920 (($) NIL T CONST)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) NIL)) (-4118 (($ $ $) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL)))
+(((-489 |#1| |#2|) (-13 (-741) (-486 |#1| |#2|)) (-741) (-795)) (T -489))
+NIL
+(-13 (-741) (-486 |#1| |#2|))
+((-4046 (($ $ (-594 |#2|) (-594 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-490 |#1| |#2| |#3|) (-10 -8 (-15 -4046 (|#1| |#1| |#2| |#3|)) (-15 -4046 (|#1| |#1| (-594 |#2|) (-594 |#3|)))) (-491 |#2| |#3|) (-1027) (-1134)) (T -490))
+NIL
+(-10 -8 (-15 -4046 (|#1| |#1| |#2| |#3|)) (-15 -4046 (|#1| |#1| (-594 |#2|) (-594 |#3|))))
+((-4046 (($ $ (-594 |#1|) (-594 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-491 |#1| |#2|) (-133) (-1027) (-1134)) (T -491))
+((-4046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-594 *4)) (-5 *3 (-594 *5)) (-4 *1 (-491 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1134)))) (-4046 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-491 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1134)))))
+(-13 (-10 -8 (-15 -4046 ($ $ |t#1| |t#2|)) (-15 -4046 ($ $ (-594 |t#1|) (-594 |t#2|)))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 16)) (-4052 (((-594 (-2 (|:| |gen| |#1|) (|:| -4219 |#2|))) $) 18)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3395 (((-719) $) NIL)) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#1| "failed") $) NIL)) (-3431 ((|#1| $) NIL)) (-2702 ((|#1| $ (-516)) 23)) (-1669 ((|#2| $ (-516)) 21)) (-2306 (($ (-1 |#1| |#1|) $) 46)) (-1668 (($ (-1 |#2| |#2|) $) 43)) (-3513 (((-1081) $) NIL)) (-1667 (($ $ $) 53 (|has| |#2| (-740)))) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 42) (($ |#1|) NIL)) (-3959 ((|#2| |#1| $) 49)) (-2920 (($) 11 T CONST)) (-3317 (((-110) $ $) 29)) (-4118 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-860) $) NIL) (($ (-719) $) 36) (($ |#2| |#1|) 31)))
+(((-492 |#1| |#2| |#3|) (-304 |#1| |#2|) (-1027) (-128) |#2|) (T -492))
+NIL
+(-304 |#1| |#2|)
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2243 (((-1185) $ (-516) (-516)) NIL (|has| $ (-6 -4270)))) (-1798 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-1796 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795))))) (-3173 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-1217 (((-110) $ (-719)) NIL)) (-2057 (((-110) (-110)) 25)) (-4066 ((|#1| $ (-516) |#1|) 28 (|has| $ (-6 -4270))) ((|#1| $ (-1146 (-516)) |#1|) NIL (|has| $ (-6 -4270)))) (-1581 (($ (-1 (-110) |#1|) $) 52)) (-3992 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3815 (($) NIL T CONST)) (-2312 (($ $) NIL (|has| $ (-6 -4270)))) (-2313 (($ $) NIL)) (-2389 (($ $) 56 (|has| |#1| (-1027)))) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3684 (($ |#1| $) NIL (|has| |#1| (-1027))) (($ (-1 (-110) |#1|) $) 44)) (-3685 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-1587 ((|#1| $ (-516) |#1|) NIL (|has| $ (-6 -4270)))) (-3372 ((|#1| $ (-516)) NIL)) (-3698 (((-516) (-1 (-110) |#1|) $) NIL) (((-516) |#1| $) NIL (|has| |#1| (-1027))) (((-516) |#1| $ (-516)) NIL (|has| |#1| (-1027)))) (-2058 (($ $ (-516)) 13)) (-2059 (((-719) $) 11)) (-2018 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3896 (($ (-719) |#1|) 23)) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-516) $) 21 (|has| (-516) (-795)))) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3123 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) 35)) (-3792 (($ (-1 (-110) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-795)))) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2246 (((-516) $) 20 (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-2022 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-3889 (($ $ $ (-516)) 51) (($ |#1| $ (-516)) 37)) (-2317 (($ |#1| $ (-516)) NIL) (($ $ $ (-516)) NIL)) (-2248 (((-594 (-516)) $) NIL)) (-2249 (((-110) (-516) $) NIL)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-2060 (($ (-594 |#1|)) 29)) (-4079 ((|#1| $) NIL (|has| (-516) (-795)))) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-2244 (($ $ |#1|) 19 (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 40)) (-2247 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2250 (((-594 |#1|) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) 16)) (-4078 ((|#1| $ (-516) |#1|) NIL) ((|#1| $ (-516)) 33) (($ $ (-1146 (-516))) NIL)) (-1582 (($ $ (-1146 (-516))) 50) (($ $ (-516)) 45)) (-2318 (($ $ (-516)) NIL) (($ $ (-1146 (-516))) NIL)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1797 (($ $ $ (-516)) 41 (|has| $ (-6 -4270)))) (-3678 (($ $) 32)) (-4246 (((-505) $) NIL (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) NIL)) (-4069 (($ $ $) 42) (($ $ |#1|) 39)) (-4080 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-594 $)) NIL)) (-4233 (((-805) $) NIL (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#1| (-795)))) (-4232 (((-719) $) 17 (|has| $ (-6 -4269)))))
+(((-493 |#1| |#2|) (-13 (-19 |#1|) (-264 |#1|) (-10 -8 (-15 -2060 ($ (-594 |#1|))) (-15 -2059 ((-719) $)) (-15 -2058 ($ $ (-516))) (-15 -2057 ((-110) (-110))))) (-1134) (-516)) (T -493))
+((-2060 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1134)) (-5 *1 (-493 *3 *4)) (-14 *4 (-516)))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-493 *3 *4)) (-4 *3 (-1134)) (-14 *4 (-516)))) (-2058 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-493 *3 *4)) (-4 *3 (-1134)) (-14 *4 *2))) (-2057 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-493 *3 *4)) (-4 *3 (-1134)) (-14 *4 (-516)))))
+(-13 (-19 |#1|) (-264 |#1|) (-10 -8 (-15 -2060 ($ (-594 |#1|))) (-15 -2059 ((-719) $)) (-15 -2058 ($ $ (-516))) (-15 -2057 ((-110) (-110)))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-4208 (((-110) $) NIL)) (-4205 (((-719)) NIL)) (-3608 (((-543 |#1|) $) NIL) (($ $ (-860)) NIL (|has| (-543 |#1|) (-349)))) (-1741 (((-1107 (-860) (-719)) (-516)) NIL (|has| (-543 |#1|) (-349)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-1655 (((-110) $ $) NIL)) (-3395 (((-719)) NIL (|has| (-543 |#1|) (-349)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-543 |#1|) "failed") $) NIL)) (-3431 (((-543 |#1|) $) NIL)) (-1861 (($ (-1179 (-543 |#1|))) NIL)) (-1739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-543 |#1|) (-349)))) (-2824 (($ $ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3258 (($) NIL (|has| (-543 |#1|) (-349)))) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-3097 (($) NIL (|has| (-543 |#1|) (-349)))) (-1746 (((-110) $) NIL (|has| (-543 |#1|) (-349)))) (-1836 (($ $ (-719)) NIL (-3810 (|has| (-543 |#1|) (-138)) (|has| (-543 |#1|) (-349)))) (($ $) NIL (-3810 (|has| (-543 |#1|) (-138)) (|has| (-543 |#1|) (-349))))) (-4005 (((-110) $) NIL)) (-4050 (((-860) $) NIL (|has| (-543 |#1|) (-349))) (((-780 (-860)) $) NIL (-3810 (|has| (-543 |#1|) (-138)) (|has| (-543 |#1|) (-349))))) (-2436 (((-110) $) NIL)) (-2072 (($) NIL (|has| (-543 |#1|) (-349)))) (-2070 (((-110) $) NIL (|has| (-543 |#1|) (-349)))) (-3391 (((-543 |#1|) $) NIL) (($ $ (-860)) NIL (|has| (-543 |#1|) (-349)))) (-3723 (((-3 $ "failed") $) NIL (|has| (-543 |#1|) (-349)))) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL)) (-2073 (((-1092 (-543 |#1|)) $) NIL) (((-1092 $) $ (-860)) NIL (|has| (-543 |#1|) (-349)))) (-2069 (((-860) $) NIL (|has| (-543 |#1|) (-349)))) (-1674 (((-1092 (-543 |#1|)) $) NIL (|has| (-543 |#1|) (-349)))) (-1673 (((-1092 (-543 |#1|)) $) NIL (|has| (-543 |#1|) (-349))) (((-3 (-1092 (-543 |#1|)) "failed") $ $) NIL (|has| (-543 |#1|) (-349)))) (-1675 (($ $ (-1092 (-543 |#1|))) NIL (|has| (-543 |#1|) (-349)))) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL)) (-3724 (($) NIL (|has| (-543 |#1|) (-349)) CONST)) (-2426 (($ (-860)) NIL (|has| (-543 |#1|) (-349)))) (-4207 (((-110) $) NIL)) (-3514 (((-1045) $) NIL)) (-2435 (($) NIL (|has| (-543 |#1|) (-349)))) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-1742 (((-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516))))) NIL (|has| (-543 |#1|) (-349)))) (-4011 (((-386 $) $) NIL)) (-4206 (((-780 (-860))) NIL) (((-860)) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-1837 (((-719) $) NIL (|has| (-543 |#1|) (-349))) (((-3 (-719) "failed") $ $) NIL (-3810 (|has| (-543 |#1|) (-138)) (|has| (-543 |#1|) (-349))))) (-4190 (((-130)) NIL)) (-4089 (($ $) NIL (|has| (-543 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-543 |#1|) (-349)))) (-4223 (((-780 (-860)) $) NIL) (((-860) $) NIL)) (-3459 (((-1092 (-543 |#1|))) NIL)) (-1740 (($) NIL (|has| (-543 |#1|) (-349)))) (-1676 (($) NIL (|has| (-543 |#1|) (-349)))) (-3497 (((-1179 (-543 |#1|)) $) NIL) (((-637 (-543 |#1|)) (-1179 $)) NIL)) (-2966 (((-3 (-1179 $) "failed") (-637 $)) NIL (|has| (-543 |#1|) (-349)))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ $) NIL) (($ (-388 (-516))) NIL) (($ (-543 |#1|)) NIL)) (-2965 (($ $) NIL (|has| (-543 |#1|) (-349))) (((-3 $ "failed") $) NIL (-3810 (|has| (-543 |#1|) (-138)) (|has| (-543 |#1|) (-349))))) (-3385 (((-719)) NIL)) (-2071 (((-1179 $)) NIL) (((-1179 $) (-860)) NIL)) (-2117 (((-110) $ $) NIL)) (-4209 (((-110) $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-4204 (($ $) NIL (|has| (-543 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-543 |#1|) (-349)))) (-2932 (($ $) NIL (|has| (-543 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-543 |#1|) (-349)))) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ $) NIL) (($ $ (-543 |#1|)) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL) (($ $ (-543 |#1|)) NIL) (($ (-543 |#1|) $) NIL)))
+(((-494 |#1| |#2|) (-310 (-543 |#1|)) (-860) (-860)) (T -494))
+NIL
+(-310 (-543 |#1|))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1217 (((-110) $ (-719)) NIL)) (-4066 ((|#1| $ (-516) (-516) |#1|) 35)) (-1256 (($ $ (-516) |#4|) NIL)) (-1255 (($ $ (-516) |#5|) NIL)) (-3815 (($) NIL T CONST)) (-3371 ((|#4| $ (-516)) NIL)) (-1587 ((|#1| $ (-516) (-516) |#1|) 34)) (-3372 ((|#1| $ (-516) (-516)) 32)) (-2018 (((-594 |#1|) $) NIL)) (-3374 (((-719) $) 28)) (-3896 (($ (-719) (-719) |#1|) 25)) (-3373 (((-719) $) 30)) (-4001 (((-110) $ (-719)) NIL)) (-3378 (((-516) $) 26)) (-3376 (((-516) $) 27)) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3377 (((-516) $) 29)) (-3375 (((-516) $) 31)) (-2022 (($ (-1 |#1| |#1|) $) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) 38 (|has| |#1| (-1027)))) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-2244 (($ $ |#1|) NIL)) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) 14)) (-3847 (($) 16)) (-4078 ((|#1| $ (-516) (-516)) 33) ((|#1| $ (-516) (-516) |#1|) NIL)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3678 (($ $) NIL)) (-3370 ((|#5| $ (-516)) NIL)) (-4233 (((-805) $) NIL (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-495 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1134) (-516) (-516) (-353 |#1|) (-353 |#1|)) (T -495))
NIL
(-55 |#1| |#4| |#5|)
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3327 ((|#1| $) NIL)) (-2513 ((|#1| $) NIL)) (-2023 (($ $) NIL)) (-1444 (((-1182) $ (-528) (-528)) NIL (|has| $ (-6 -4265)))) (-3084 (($ $ (-528)) 59 (|has| $ (-6 -4265)))) (-3608 (((-110) $) NIL (|has| |#1| (-793))) (((-110) (-1 (-110) |#1| |#1|) $) NIL)) (-3863 (($ $) NIL (-12 (|has| $ (-6 -4265)) (|has| |#1| (-793)))) (($ (-1 (-110) |#1| |#1|) $) 57 (|has| $ (-6 -4265)))) (-1289 (($ $) NIL (|has| |#1| (-793))) (($ (-1 (-110) |#1| |#1|) $) NIL)) (-3535 (((-110) $ (-717)) NIL)) (-2074 ((|#1| $ |#1|) NIL (|has| $ (-6 -4265)))) (-3307 (($ $ $) 23 (|has| $ (-6 -4265)))) (-2624 ((|#1| $ |#1|) NIL (|has| $ (-6 -4265)))) (-2153 ((|#1| $ |#1|) 21 (|has| $ (-6 -4265)))) (-2381 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4265))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4265))) (($ $ "rest" $) 24 (|has| $ (-6 -4265))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4265))) ((|#1| $ (-1144 (-528)) |#1|) NIL (|has| $ (-6 -4265))) ((|#1| $ (-528) |#1|) NIL (|has| $ (-6 -4265)))) (-3409 (($ $ (-595 $)) NIL (|has| $ (-6 -4265)))) (-1836 (($ (-1 (-110) |#1|) $) NIL)) (-1573 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2500 ((|#1| $) NIL)) (-2816 (($) NIL T CONST)) (-2472 (($ $) 28 (|has| $ (-6 -4265)))) (-3009 (($ $) 29)) (-2902 (($ $) 18) (($ $ (-717)) 32)) (-2833 (($ $) 55 (|has| |#1| (-1023)))) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3991 (($ |#1| $) NIL (|has| |#1| (-1023))) (($ (-1 (-110) |#1|) $) NIL)) (-2280 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2812 ((|#1| $ (-528) |#1|) NIL (|has| $ (-6 -4265)))) (-2742 ((|#1| $ (-528)) NIL)) (-3691 (((-110) $) NIL)) (-3140 (((-528) |#1| $ (-528)) NIL (|has| |#1| (-1023))) (((-528) |#1| $) NIL (|has| |#1| (-1023))) (((-528) (-1 (-110) |#1|) $) NIL)) (-3342 (((-595 |#1|) $) 27 (|has| $ (-6 -4264)))) (-1690 (((-595 $) $) NIL)) (-1313 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3462 (($ (-717) |#1|) NIL)) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-528) $) 31 (|has| (-528) (-793)))) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-3368 (($ $ $) NIL (|has| |#1| (-793))) (($ (-1 (-110) |#1| |#1|) $ $) 58)) (-1356 (($ $ $) NIL (|has| |#1| (-793))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 53 (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-1709 (((-528) $) NIL (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-2800 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2759 (($ |#1|) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3298 (((-595 |#1|) $) NIL)) (-2578 (((-110) $) NIL)) (-3034 (((-1078) $) 51 (|has| |#1| (-1023)))) (-2301 ((|#1| $) NIL) (($ $ (-717)) NIL)) (-1950 (($ $ $ (-528)) NIL) (($ |#1| $ (-528)) NIL)) (-3939 (($ $ $ (-528)) NIL) (($ |#1| $ (-528)) NIL)) (-2084 (((-595 (-528)) $) NIL)) (-3966 (((-110) (-528) $) NIL)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-2890 ((|#1| $) 13) (($ $ (-717)) NIL)) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1332 (($ $ |#1|) NIL (|has| $ (-6 -4265)))) (-1441 (((-110) $) NIL)) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 12)) (-2111 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2861 (((-595 |#1|) $) NIL)) (-1972 (((-110) $) 17)) (-2147 (($) 16)) (-3043 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1144 (-528))) NIL) ((|#1| $ (-528)) NIL) ((|#1| $ (-528) |#1|) NIL)) (-3241 (((-528) $ $) NIL)) (-1704 (($ $ (-1144 (-528))) NIL) (($ $ (-528)) NIL)) (-1745 (($ $ (-1144 (-528))) NIL) (($ $ (-528)) NIL)) (-3177 (((-110) $) 34)) (-2185 (($ $) NIL)) (-3821 (($ $) NIL (|has| $ (-6 -4265)))) (-3887 (((-717) $) NIL)) (-3539 (($ $) 36)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3761 (($ $ $ (-528)) NIL (|has| $ (-6 -4265)))) (-2406 (($ $) 35)) (-3155 (((-504) $) NIL (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) 26)) (-3579 (($ $ $) 54) (($ $ |#1|) NIL)) (-3400 (($ $ $) NIL) (($ |#1| $) 10) (($ (-595 $)) NIL) (($ $ |#1|) NIL)) (-2222 (((-802) $) 46 (|has| |#1| (-569 (-802))))) (-3813 (((-595 $) $) NIL)) (-2688 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) 48 (|has| |#1| (-1023)))) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2138 (((-717) $) 9 (|has| $ (-6 -4264)))))
-(((-494 |#1| |#2|) (-615 |#1|) (-1131) (-528)) (T -494))
-NIL
-(-615 |#1|)
-((-2614 ((|#4| |#4|) 27)) (-3090 (((-717) |#4|) 32)) (-1877 (((-717) |#4|) 33)) (-1809 (((-595 |#3|) |#4|) 40 (|has| |#3| (-6 -4265)))) (-1666 (((-3 |#4| "failed") |#4|) 51)) (-1414 ((|#4| |#4|) 44)) (-3166 ((|#1| |#4|) 43)))
-(((-495 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2614 (|#4| |#4|)) (-15 -3090 ((-717) |#4|)) (-15 -1877 ((-717) |#4|)) (IF (|has| |#3| (-6 -4265)) (-15 -1809 ((-595 |#3|) |#4|)) |%noBranch|) (-15 -3166 (|#1| |#4|)) (-15 -1414 (|#4| |#4|)) (-15 -1666 ((-3 |#4| "failed") |#4|))) (-343) (-353 |#1|) (-353 |#1|) (-633 |#1| |#2| |#3|)) (T -495))
-((-1666 (*1 *2 *2) (|partial| -12 (-4 *3 (-343)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-633 *3 *4 *5)))) (-1414 (*1 *2 *2) (-12 (-4 *3 (-343)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-633 *3 *4 *5)))) (-3166 (*1 *2 *3) (-12 (-4 *4 (-353 *2)) (-4 *5 (-353 *2)) (-4 *2 (-343)) (-5 *1 (-495 *2 *4 *5 *3)) (-4 *3 (-633 *2 *4 *5)))) (-1809 (*1 *2 *3) (-12 (|has| *6 (-6 -4265)) (-4 *4 (-343)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-5 *2 (-595 *6)) (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-633 *4 *5 *6)))) (-1877 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-5 *2 (-717)) (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-633 *4 *5 *6)))) (-3090 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-5 *2 (-717)) (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-633 *4 *5 *6)))) (-2614 (*1 *2 *2) (-12 (-4 *3 (-343)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-633 *3 *4 *5)))))
-(-10 -7 (-15 -2614 (|#4| |#4|)) (-15 -3090 ((-717) |#4|)) (-15 -1877 ((-717) |#4|)) (IF (|has| |#3| (-6 -4265)) (-15 -1809 ((-595 |#3|) |#4|)) |%noBranch|) (-15 -3166 (|#1| |#4|)) (-15 -1414 (|#4| |#4|)) (-15 -1666 ((-3 |#4| "failed") |#4|)))
-((-2614 ((|#8| |#4|) 20)) (-1809 (((-595 |#3|) |#4|) 29 (|has| |#7| (-6 -4265)))) (-1666 (((-3 |#8| "failed") |#4|) 23)))
-(((-496 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2614 (|#8| |#4|)) (-15 -1666 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4265)) (-15 -1809 ((-595 |#3|) |#4|)) |%noBranch|)) (-520) (-353 |#1|) (-353 |#1|) (-633 |#1| |#2| |#3|) (-929 |#1|) (-353 |#5|) (-353 |#5|) (-633 |#5| |#6| |#7|)) (T -496))
-((-1809 (*1 *2 *3) (-12 (|has| *9 (-6 -4265)) (-4 *4 (-520)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-4 *7 (-929 *4)) (-4 *8 (-353 *7)) (-4 *9 (-353 *7)) (-5 *2 (-595 *6)) (-5 *1 (-496 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-633 *4 *5 *6)) (-4 *10 (-633 *7 *8 *9)))) (-1666 (*1 *2 *3) (|partial| -12 (-4 *4 (-520)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-4 *7 (-929 *4)) (-4 *2 (-633 *7 *8 *9)) (-5 *1 (-496 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-633 *4 *5 *6)) (-4 *8 (-353 *7)) (-4 *9 (-353 *7)))) (-2614 (*1 *2 *3) (-12 (-4 *4 (-520)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-4 *7 (-929 *4)) (-4 *2 (-633 *7 *8 *9)) (-5 *1 (-496 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-633 *4 *5 *6)) (-4 *8 (-353 *7)) (-4 *9 (-353 *7)))))
-(-10 -7 (-15 -2614 (|#8| |#4|)) (-15 -1666 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4265)) (-15 -1809 ((-595 |#3|) |#4|)) |%noBranch|))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3460 (($ (-717) (-717)) NIL)) (-2313 (($ $ $) NIL)) (-3351 (($ (-559 |#1| |#3|)) NIL) (($ $) NIL)) (-1987 (((-110) $) NIL)) (-3433 (($ $ (-528) (-528)) 12)) (-2087 (($ $ (-528) (-528)) NIL)) (-2530 (($ $ (-528) (-528) (-528) (-528)) NIL)) (-3886 (($ $) NIL)) (-2300 (((-110) $) NIL)) (-3535 (((-110) $ (-717)) NIL)) (-2722 (($ $ (-528) (-528) $) NIL)) (-2381 ((|#1| $ (-528) (-528) |#1|) NIL) (($ $ (-595 (-528)) (-595 (-528)) $) NIL)) (-3898 (($ $ (-528) (-559 |#1| |#3|)) NIL)) (-2542 (($ $ (-528) (-559 |#1| |#2|)) NIL)) (-1626 (($ (-717) |#1|) NIL)) (-2816 (($) NIL T CONST)) (-2614 (($ $) 21 (|has| |#1| (-288)))) (-4203 (((-559 |#1| |#3|) $ (-528)) NIL)) (-3090 (((-717) $) 24 (|has| |#1| (-520)))) (-2812 ((|#1| $ (-528) (-528) |#1|) NIL)) (-2742 ((|#1| $ (-528) (-528)) NIL)) (-3342 (((-595 |#1|) $) NIL)) (-1877 (((-717) $) 26 (|has| |#1| (-520)))) (-1809 (((-595 (-559 |#1| |#2|)) $) 29 (|has| |#1| (-520)))) (-1358 (((-717) $) NIL)) (-3462 (($ (-717) (-717) |#1|) NIL)) (-1370 (((-717) $) NIL)) (-2029 (((-110) $ (-717)) NIL)) (-3997 ((|#1| $) 19 (|has| |#1| (-6 (-4266 "*"))))) (-3065 (((-528) $) 10)) (-2567 (((-528) $) NIL)) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3224 (((-528) $) 11)) (-1268 (((-528) $) NIL)) (-1553 (($ (-595 (-595 |#1|))) NIL)) (-2800 (($ (-1 |#1| |#1|) $) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2062 (((-595 (-595 |#1|)) $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-1666 (((-3 $ "failed") $) 33 (|has| |#1| (-343)))) (-2468 (($ $ $) NIL)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-1332 (($ $ |#1|) NIL)) (-3477 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-520)))) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#1| $ (-528) (-528)) NIL) ((|#1| $ (-528) (-528) |#1|) NIL) (($ $ (-595 (-528)) (-595 (-528))) NIL)) (-3751 (($ (-595 |#1|)) NIL) (($ (-595 $)) NIL)) (-2851 (((-110) $) NIL)) (-3166 ((|#1| $) 17 (|has| |#1| (-6 (-4266 "*"))))) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2406 (($ $) NIL)) (-3946 (((-559 |#1| |#2|) $ (-528)) NIL)) (-2222 (($ (-559 |#1| |#2|)) NIL) (((-802) $) NIL (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-1428 (((-110) $) NIL)) (-2186 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2296 (($ $ |#1|) NIL (|has| |#1| (-343)))) (-2286 (($ $ $) NIL) (($ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| |#1| (-343)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-528) $) NIL) (((-559 |#1| |#2|) $ (-559 |#1| |#2|)) NIL) (((-559 |#1| |#3|) (-559 |#1| |#3|) $) NIL)) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-497 |#1| |#2| |#3|) (-633 |#1| (-559 |#1| |#3|) (-559 |#1| |#2|)) (-981) (-528) (-528)) (T -497))
-NIL
-(-633 |#1| (-559 |#1| |#3|) (-559 |#1| |#2|))
-((-3123 (((-1091 |#1|) (-717)) 76)) (-1323 (((-1177 |#1|) (-1177 |#1|) (-860)) 69)) (-3960 (((-1182) (-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042))))) |#1|) 84)) (-2448 (((-1177 |#1|) (-1177 |#1|) (-717)) 36)) (-1338 (((-1177 |#1|) (-860)) 71)) (-1719 (((-1177 |#1|) (-1177 |#1|) (-528)) 24)) (-3292 (((-1091 |#1|) (-1177 |#1|)) 77)) (-2339 (((-1177 |#1|) (-860)) 95)) (-2581 (((-110) (-1177 |#1|)) 80)) (-3297 (((-1177 |#1|) (-1177 |#1|) (-860)) 62)) (-3537 (((-1091 |#1|) (-1177 |#1|)) 89)) (-3201 (((-860) (-1177 |#1|)) 59)) (-2652 (((-1177 |#1|) (-1177 |#1|)) 30)) (-3108 (((-1177 |#1|) (-860) (-860)) 97)) (-4006 (((-1177 |#1|) (-1177 |#1|) (-1042) (-1042)) 23)) (-1643 (((-1177 |#1|) (-1177 |#1|) (-717) (-1042)) 37)) (-1400 (((-1177 (-1177 |#1|)) (-860)) 94)) (-2296 (((-1177 |#1|) (-1177 |#1|) (-1177 |#1|)) 81)) (** (((-1177 |#1|) (-1177 |#1|) (-528)) 45)) (* (((-1177 |#1|) (-1177 |#1|) (-1177 |#1|)) 25)))
-(((-498 |#1|) (-10 -7 (-15 -3960 ((-1182) (-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042))))) |#1|)) (-15 -1338 ((-1177 |#1|) (-860))) (-15 -3108 ((-1177 |#1|) (-860) (-860))) (-15 -3292 ((-1091 |#1|) (-1177 |#1|))) (-15 -3123 ((-1091 |#1|) (-717))) (-15 -1643 ((-1177 |#1|) (-1177 |#1|) (-717) (-1042))) (-15 -2448 ((-1177 |#1|) (-1177 |#1|) (-717))) (-15 -4006 ((-1177 |#1|) (-1177 |#1|) (-1042) (-1042))) (-15 -1719 ((-1177 |#1|) (-1177 |#1|) (-528))) (-15 ** ((-1177 |#1|) (-1177 |#1|) (-528))) (-15 * ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -2296 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -3297 ((-1177 |#1|) (-1177 |#1|) (-860))) (-15 -1323 ((-1177 |#1|) (-1177 |#1|) (-860))) (-15 -2652 ((-1177 |#1|) (-1177 |#1|))) (-15 -3201 ((-860) (-1177 |#1|))) (-15 -2581 ((-110) (-1177 |#1|))) (-15 -1400 ((-1177 (-1177 |#1|)) (-860))) (-15 -2339 ((-1177 |#1|) (-860))) (-15 -3537 ((-1091 |#1|) (-1177 |#1|)))) (-329)) (T -498))
-((-3537 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-329)) (-5 *2 (-1091 *4)) (-5 *1 (-498 *4)))) (-2339 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1177 *4)) (-5 *1 (-498 *4)) (-4 *4 (-329)))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1177 (-1177 *4))) (-5 *1 (-498 *4)) (-4 *4 (-329)))) (-2581 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-329)) (-5 *2 (-110)) (-5 *1 (-498 *4)))) (-3201 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-329)) (-5 *2 (-860)) (-5 *1 (-498 *4)))) (-2652 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-329)) (-5 *1 (-498 *3)))) (-1323 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-860)) (-4 *4 (-329)) (-5 *1 (-498 *4)))) (-3297 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-860)) (-4 *4 (-329)) (-5 *1 (-498 *4)))) (-2296 (*1 *2 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-329)) (-5 *1 (-498 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-329)) (-5 *1 (-498 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-528)) (-4 *4 (-329)) (-5 *1 (-498 *4)))) (-1719 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-528)) (-4 *4 (-329)) (-5 *1 (-498 *4)))) (-4006 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1042)) (-4 *4 (-329)) (-5 *1 (-498 *4)))) (-2448 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-717)) (-4 *4 (-329)) (-5 *1 (-498 *4)))) (-1643 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1177 *5)) (-5 *3 (-717)) (-5 *4 (-1042)) (-4 *5 (-329)) (-5 *1 (-498 *5)))) (-3123 (*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-1091 *4)) (-5 *1 (-498 *4)) (-4 *4 (-329)))) (-3292 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-329)) (-5 *2 (-1091 *4)) (-5 *1 (-498 *4)))) (-3108 (*1 *2 *3 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1177 *4)) (-5 *1 (-498 *4)) (-4 *4 (-329)))) (-1338 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1177 *4)) (-5 *1 (-498 *4)) (-4 *4 (-329)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1177 (-595 (-2 (|:| -3327 *4) (|:| -3108 (-1042)))))) (-4 *4 (-329)) (-5 *2 (-1182)) (-5 *1 (-498 *4)))))
-(-10 -7 (-15 -3960 ((-1182) (-1177 (-595 (-2 (|:| -3327 |#1|) (|:| -3108 (-1042))))) |#1|)) (-15 -1338 ((-1177 |#1|) (-860))) (-15 -3108 ((-1177 |#1|) (-860) (-860))) (-15 -3292 ((-1091 |#1|) (-1177 |#1|))) (-15 -3123 ((-1091 |#1|) (-717))) (-15 -1643 ((-1177 |#1|) (-1177 |#1|) (-717) (-1042))) (-15 -2448 ((-1177 |#1|) (-1177 |#1|) (-717))) (-15 -4006 ((-1177 |#1|) (-1177 |#1|) (-1042) (-1042))) (-15 -1719 ((-1177 |#1|) (-1177 |#1|) (-528))) (-15 ** ((-1177 |#1|) (-1177 |#1|) (-528))) (-15 * ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -2296 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -3297 ((-1177 |#1|) (-1177 |#1|) (-860))) (-15 -1323 ((-1177 |#1|) (-1177 |#1|) (-860))) (-15 -2652 ((-1177 |#1|) (-1177 |#1|))) (-15 -3201 ((-860) (-1177 |#1|))) (-15 -2581 ((-110) (-1177 |#1|))) (-15 -1400 ((-1177 (-1177 |#1|)) (-860))) (-15 -2339 ((-1177 |#1|) (-860))) (-15 -3537 ((-1091 |#1|) (-1177 |#1|))))
-((-1523 (((-1 |#1| |#1|) |#1|) 11)) (-3942 (((-1 |#1| |#1|)) 10)))
-(((-499 |#1|) (-10 -7 (-15 -3942 ((-1 |#1| |#1|))) (-15 -1523 ((-1 |#1| |#1|) |#1|))) (-13 (-673) (-25))) (T -499))
-((-1523 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-499 *3)) (-4 *3 (-13 (-673) (-25))))) (-3942 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-499 *3)) (-4 *3 (-13 (-673) (-25))))))
-(-10 -7 (-15 -3942 ((-1 |#1| |#1|))) (-15 -1523 ((-1 |#1| |#1|) |#1|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3622 (($ $ $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-2388 (($ $) NIL)) (-2548 (($ (-717) |#1|) NIL)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3106 (($ (-1 (-717) (-717)) $) NIL)) (-2787 ((|#1| $) NIL)) (-2697 (((-717) $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 20)) (-2969 (($) NIL T CONST)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) NIL)) (-2275 (($ $ $) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL)))
-(((-500 |#1|) (-13 (-739) (-484 (-717) |#1|)) (-793)) (T -500))
-NIL
-(-13 (-739) (-484 (-717) |#1|))
-((-3152 (((-595 |#2|) (-1091 |#1|) |#3|) 83)) (-3955 (((-595 (-2 (|:| |outval| |#2|) (|:| |outmult| (-528)) (|:| |outvect| (-595 (-635 |#2|))))) (-635 |#1|) |#3| (-1 (-398 (-1091 |#1|)) (-1091 |#1|))) 100)) (-2020 (((-1091 |#1|) (-635 |#1|)) 95)))
-(((-501 |#1| |#2| |#3|) (-10 -7 (-15 -2020 ((-1091 |#1|) (-635 |#1|))) (-15 -3152 ((-595 |#2|) (-1091 |#1|) |#3|)) (-15 -3955 ((-595 (-2 (|:| |outval| |#2|) (|:| |outmult| (-528)) (|:| |outvect| (-595 (-635 |#2|))))) (-635 |#1|) |#3| (-1 (-398 (-1091 |#1|)) (-1091 |#1|))))) (-343) (-343) (-13 (-343) (-791))) (T -501))
-((-3955 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 *6)) (-5 *5 (-1 (-398 (-1091 *6)) (-1091 *6))) (-4 *6 (-343)) (-5 *2 (-595 (-2 (|:| |outval| *7) (|:| |outmult| (-528)) (|:| |outvect| (-595 (-635 *7)))))) (-5 *1 (-501 *6 *7 *4)) (-4 *7 (-343)) (-4 *4 (-13 (-343) (-791))))) (-3152 (*1 *2 *3 *4) (-12 (-5 *3 (-1091 *5)) (-4 *5 (-343)) (-5 *2 (-595 *6)) (-5 *1 (-501 *5 *6 *4)) (-4 *6 (-343)) (-4 *4 (-13 (-343) (-791))))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-343)) (-5 *2 (-1091 *4)) (-5 *1 (-501 *4 *5 *6)) (-4 *5 (-343)) (-4 *6 (-13 (-343) (-791))))))
-(-10 -7 (-15 -2020 ((-1091 |#1|) (-635 |#1|))) (-15 -3152 ((-595 |#2|) (-1091 |#1|) |#3|)) (-15 -3955 ((-595 (-2 (|:| |outval| |#2|) (|:| |outmult| (-528)) (|:| |outvect| (-595 (-635 |#2|))))) (-635 |#1|) |#3| (-1 (-398 (-1091 |#1|)) (-1091 |#1|)))))
-((-1396 (((-786 (-528))) 12)) (-1407 (((-786 (-528))) 14)) (-1517 (((-779 (-528))) 9)))
-(((-502) (-10 -7 (-15 -1517 ((-779 (-528)))) (-15 -1396 ((-786 (-528)))) (-15 -1407 ((-786 (-528)))))) (T -502))
-((-1407 (*1 *2) (-12 (-5 *2 (-786 (-528))) (-5 *1 (-502)))) (-1396 (*1 *2) (-12 (-5 *2 (-786 (-528))) (-5 *1 (-502)))) (-1517 (*1 *2) (-12 (-5 *2 (-779 (-528))) (-5 *1 (-502)))))
-(-10 -7 (-15 -1517 ((-779 (-528)))) (-15 -1396 ((-786 (-528)))) (-15 -1407 ((-786 (-528)))))
-((-3741 (((-504) (-1095)) 15)) (-3173 ((|#1| (-504)) 20)))
-(((-503 |#1|) (-10 -7 (-15 -3741 ((-504) (-1095))) (-15 -3173 (|#1| (-504)))) (-1131)) (T -503))
-((-3173 (*1 *2 *3) (-12 (-5 *3 (-504)) (-5 *1 (-503 *2)) (-4 *2 (-1131)))) (-3741 (*1 *2 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-504)) (-5 *1 (-503 *4)) (-4 *4 (-1131)))))
-(-10 -7 (-15 -3741 ((-504) (-1095))) (-15 -3173 (|#1| (-504))))
-((-2207 (((-110) $ $) NIL)) (-2514 (((-1078) $) 48)) (-4076 (((-110) $) 43)) (-3682 (((-1095) $) 44)) (-3877 (((-110) $) 41)) (-4193 (((-1078) $) 42)) (-2994 (((-110) $) NIL)) (-3471 (((-110) $) NIL)) (-1804 (((-110) $) NIL)) (-3034 (((-1078) $) NIL)) (-4211 (($ $ (-595 (-1095))) 20)) (-3173 (((-51) $) 22)) (-1485 (((-110) $) NIL)) (-3701 (((-528) $) NIL)) (-2495 (((-1042) $) NIL)) (-3160 (($ $ (-595 (-1095)) (-1095)) 60)) (-2200 (((-110) $) NIL)) (-2849 (((-207) $) NIL)) (-3949 (($ $) 38)) (-2036 (((-802) $) NIL)) (-2589 (((-110) $ $) NIL)) (-3043 (($ $ (-528)) NIL) (($ $ (-595 (-528))) NIL)) (-2508 (((-595 $) $) 28)) (-4150 (((-1095) (-595 $)) 49)) (-3155 (($ (-595 $)) 53) (($ (-1078)) NIL) (($ (-1095)) 18) (($ (-528)) 8) (($ (-207)) 25) (($ (-802)) NIL) (((-1027) $) 11) (($ (-1027)) 12)) (-2108 (((-1095) (-1095) (-595 $)) 52)) (-2222 (((-802) $) 46)) (-2782 (($ $) 51)) (-2771 (($ $) 50)) (-2769 (($ $ (-595 $)) 57)) (-2613 (((-110) $) 27)) (-2969 (($) 9 T CONST)) (-2982 (($) 10 T CONST)) (-2186 (((-110) $ $) 61)) (-2296 (($ $ $) 66)) (-2275 (($ $ $) 62)) (** (($ $ (-717)) 65) (($ $ (-528)) 64)) (* (($ $ $) 63)) (-2138 (((-528) $) NIL)))
-(((-504) (-13 (-1026 (-1078) (-1095) (-528) (-207) (-802)) (-570 (-1027)) (-10 -8 (-15 -3173 ((-51) $)) (-15 -3155 ($ (-1027))) (-15 -2769 ($ $ (-595 $))) (-15 -3160 ($ $ (-595 (-1095)) (-1095))) (-15 -4211 ($ $ (-595 (-1095)))) (-15 -2275 ($ $ $)) (-15 * ($ $ $)) (-15 -2296 ($ $ $)) (-15 ** ($ $ (-717))) (-15 ** ($ $ (-528))) (-15 0 ($) -2636) (-15 1 ($) -2636) (-15 -3949 ($ $)) (-15 -2514 ((-1078) $)) (-15 -4150 ((-1095) (-595 $))) (-15 -2108 ((-1095) (-1095) (-595 $)))))) (T -504))
-((-3173 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-504)))) (-3155 (*1 *1 *2) (-12 (-5 *2 (-1027)) (-5 *1 (-504)))) (-2769 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-504))) (-5 *1 (-504)))) (-3160 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-595 (-1095))) (-5 *3 (-1095)) (-5 *1 (-504)))) (-4211 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-1095))) (-5 *1 (-504)))) (-2275 (*1 *1 *1 *1) (-5 *1 (-504))) (* (*1 *1 *1 *1) (-5 *1 (-504))) (-2296 (*1 *1 *1 *1) (-5 *1 (-504))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-504)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-504)))) (-2969 (*1 *1) (-5 *1 (-504))) (-2982 (*1 *1) (-5 *1 (-504))) (-3949 (*1 *1 *1) (-5 *1 (-504))) (-2514 (*1 *2 *1) (-12 (-5 *2 (-1078)) (-5 *1 (-504)))) (-4150 (*1 *2 *3) (-12 (-5 *3 (-595 (-504))) (-5 *2 (-1095)) (-5 *1 (-504)))) (-2108 (*1 *2 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-595 (-504))) (-5 *1 (-504)))))
-(-13 (-1026 (-1078) (-1095) (-528) (-207) (-802)) (-570 (-1027)) (-10 -8 (-15 -3173 ((-51) $)) (-15 -3155 ($ (-1027))) (-15 -2769 ($ $ (-595 $))) (-15 -3160 ($ $ (-595 (-1095)) (-1095))) (-15 -4211 ($ $ (-595 (-1095)))) (-15 -2275 ($ $ $)) (-15 * ($ $ $)) (-15 -2296 ($ $ $)) (-15 ** ($ $ (-717))) (-15 ** ($ $ (-528))) (-15 (-2969) ($) -2636) (-15 (-2982) ($) -2636) (-15 -3949 ($ $)) (-15 -2514 ((-1078) $)) (-15 -4150 ((-1095) (-595 $))) (-15 -2108 ((-1095) (-1095) (-595 $)))))
-((-3649 ((|#2| |#2|) 17)) (-4082 ((|#2| |#2|) 13)) (-2287 ((|#2| |#2| (-528) (-528)) 20)) (-2807 ((|#2| |#2|) 15)))
-(((-505 |#1| |#2|) (-10 -7 (-15 -4082 (|#2| |#2|)) (-15 -2807 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -2287 (|#2| |#2| (-528) (-528)))) (-13 (-520) (-140)) (-1168 |#1|)) (T -505))
-((-2287 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-528)) (-4 *4 (-13 (-520) (-140))) (-5 *1 (-505 *4 *2)) (-4 *2 (-1168 *4)))) (-3649 (*1 *2 *2) (-12 (-4 *3 (-13 (-520) (-140))) (-5 *1 (-505 *3 *2)) (-4 *2 (-1168 *3)))) (-2807 (*1 *2 *2) (-12 (-4 *3 (-13 (-520) (-140))) (-5 *1 (-505 *3 *2)) (-4 *2 (-1168 *3)))) (-4082 (*1 *2 *2) (-12 (-4 *3 (-13 (-520) (-140))) (-5 *1 (-505 *3 *2)) (-4 *2 (-1168 *3)))))
-(-10 -7 (-15 -4082 (|#2| |#2|)) (-15 -2807 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -2287 (|#2| |#2| (-528) (-528))))
-((-3030 (((-595 (-275 (-891 |#2|))) (-595 |#2|) (-595 (-1095))) 32)) (-1561 (((-595 |#2|) (-891 |#1|) |#3|) 53) (((-595 |#2|) (-1091 |#1|) |#3|) 52)) (-1632 (((-595 (-595 |#2|)) (-595 (-891 |#1|)) (-595 (-891 |#1|)) (-595 (-1095)) |#3|) 91)))
-(((-506 |#1| |#2| |#3|) (-10 -7 (-15 -1561 ((-595 |#2|) (-1091 |#1|) |#3|)) (-15 -1561 ((-595 |#2|) (-891 |#1|) |#3|)) (-15 -1632 ((-595 (-595 |#2|)) (-595 (-891 |#1|)) (-595 (-891 |#1|)) (-595 (-1095)) |#3|)) (-15 -3030 ((-595 (-275 (-891 |#2|))) (-595 |#2|) (-595 (-1095))))) (-431) (-343) (-13 (-343) (-791))) (T -506))
-((-3030 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *6)) (-5 *4 (-595 (-1095))) (-4 *6 (-343)) (-5 *2 (-595 (-275 (-891 *6)))) (-5 *1 (-506 *5 *6 *7)) (-4 *5 (-431)) (-4 *7 (-13 (-343) (-791))))) (-1632 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-595 (-891 *6))) (-5 *4 (-595 (-1095))) (-4 *6 (-431)) (-5 *2 (-595 (-595 *7))) (-5 *1 (-506 *6 *7 *5)) (-4 *7 (-343)) (-4 *5 (-13 (-343) (-791))))) (-1561 (*1 *2 *3 *4) (-12 (-5 *3 (-891 *5)) (-4 *5 (-431)) (-5 *2 (-595 *6)) (-5 *1 (-506 *5 *6 *4)) (-4 *6 (-343)) (-4 *4 (-13 (-343) (-791))))) (-1561 (*1 *2 *3 *4) (-12 (-5 *3 (-1091 *5)) (-4 *5 (-431)) (-5 *2 (-595 *6)) (-5 *1 (-506 *5 *6 *4)) (-4 *6 (-343)) (-4 *4 (-13 (-343) (-791))))))
-(-10 -7 (-15 -1561 ((-595 |#2|) (-1091 |#1|) |#3|)) (-15 -1561 ((-595 |#2|) (-891 |#1|) |#3|)) (-15 -1632 ((-595 (-595 |#2|)) (-595 (-891 |#1|)) (-595 (-891 |#1|)) (-595 (-1095)) |#3|)) (-15 -3030 ((-595 (-275 (-891 |#2|))) (-595 |#2|) (-595 (-1095)))))
-((-2110 ((|#2| |#2| |#1|) 17)) (-3383 ((|#2| (-595 |#2|)) 27)) (-2283 ((|#2| (-595 |#2|)) 46)))
-(((-507 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3383 (|#2| (-595 |#2|))) (-15 -2283 (|#2| (-595 |#2|))) (-15 -2110 (|#2| |#2| |#1|))) (-288) (-1153 |#1|) |#1| (-1 |#1| |#1| (-717))) (T -507))
-((-2110 (*1 *2 *2 *3) (-12 (-4 *3 (-288)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-717))) (-5 *1 (-507 *3 *2 *4 *5)) (-4 *2 (-1153 *3)))) (-2283 (*1 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-507 *4 *2 *5 *6)) (-4 *4 (-288)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-717))))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-507 *4 *2 *5 *6)) (-4 *4 (-288)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-717))))))
-(-10 -7 (-15 -3383 (|#2| (-595 |#2|))) (-15 -2283 (|#2| (-595 |#2|))) (-15 -2110 (|#2| |#2| |#1|)))
-((-2437 (((-398 (-1091 |#4|)) (-1091 |#4|) (-1 (-398 (-1091 |#3|)) (-1091 |#3|))) 80) (((-398 |#4|) |#4| (-1 (-398 (-1091 |#3|)) (-1091 |#3|))) 170)))
-(((-508 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2437 ((-398 |#4|) |#4| (-1 (-398 (-1091 |#3|)) (-1091 |#3|)))) (-15 -2437 ((-398 (-1091 |#4|)) (-1091 |#4|) (-1 (-398 (-1091 |#3|)) (-1091 |#3|))))) (-793) (-739) (-13 (-288) (-140)) (-888 |#3| |#2| |#1|)) (T -508))
-((-2437 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-398 (-1091 *7)) (-1091 *7))) (-4 *7 (-13 (-288) (-140))) (-4 *5 (-793)) (-4 *6 (-739)) (-4 *8 (-888 *7 *6 *5)) (-5 *2 (-398 (-1091 *8))) (-5 *1 (-508 *5 *6 *7 *8)) (-5 *3 (-1091 *8)))) (-2437 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-398 (-1091 *7)) (-1091 *7))) (-4 *7 (-13 (-288) (-140))) (-4 *5 (-793)) (-4 *6 (-739)) (-5 *2 (-398 *3)) (-5 *1 (-508 *5 *6 *7 *3)) (-4 *3 (-888 *7 *6 *5)))))
-(-10 -7 (-15 -2437 ((-398 |#4|) |#4| (-1 (-398 (-1091 |#3|)) (-1091 |#3|)))) (-15 -2437 ((-398 (-1091 |#4|)) (-1091 |#4|) (-1 (-398 (-1091 |#3|)) (-1091 |#3|)))))
-((-3649 ((|#4| |#4|) 74)) (-4082 ((|#4| |#4|) 70)) (-2287 ((|#4| |#4| (-528) (-528)) 76)) (-2807 ((|#4| |#4|) 72)))
-(((-509 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4082 (|#4| |#4|)) (-15 -2807 (|#4| |#4|)) (-15 -3649 (|#4| |#4|)) (-15 -2287 (|#4| |#4| (-528) (-528)))) (-13 (-343) (-348) (-570 (-528))) (-1153 |#1|) (-671 |#1| |#2|) (-1168 |#3|)) (T -509))
-((-2287 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-528)) (-4 *4 (-13 (-343) (-348) (-570 *3))) (-4 *5 (-1153 *4)) (-4 *6 (-671 *4 *5)) (-5 *1 (-509 *4 *5 *6 *2)) (-4 *2 (-1168 *6)))) (-3649 (*1 *2 *2) (-12 (-4 *3 (-13 (-343) (-348) (-570 (-528)))) (-4 *4 (-1153 *3)) (-4 *5 (-671 *3 *4)) (-5 *1 (-509 *3 *4 *5 *2)) (-4 *2 (-1168 *5)))) (-2807 (*1 *2 *2) (-12 (-4 *3 (-13 (-343) (-348) (-570 (-528)))) (-4 *4 (-1153 *3)) (-4 *5 (-671 *3 *4)) (-5 *1 (-509 *3 *4 *5 *2)) (-4 *2 (-1168 *5)))) (-4082 (*1 *2 *2) (-12 (-4 *3 (-13 (-343) (-348) (-570 (-528)))) (-4 *4 (-1153 *3)) (-4 *5 (-671 *3 *4)) (-5 *1 (-509 *3 *4 *5 *2)) (-4 *2 (-1168 *5)))))
-(-10 -7 (-15 -4082 (|#4| |#4|)) (-15 -2807 (|#4| |#4|)) (-15 -3649 (|#4| |#4|)) (-15 -2287 (|#4| |#4| (-528) (-528))))
-((-3649 ((|#2| |#2|) 27)) (-4082 ((|#2| |#2|) 23)) (-2287 ((|#2| |#2| (-528) (-528)) 29)) (-2807 ((|#2| |#2|) 25)))
-(((-510 |#1| |#2|) (-10 -7 (-15 -4082 (|#2| |#2|)) (-15 -2807 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -2287 (|#2| |#2| (-528) (-528)))) (-13 (-343) (-348) (-570 (-528))) (-1168 |#1|)) (T -510))
-((-2287 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-528)) (-4 *4 (-13 (-343) (-348) (-570 *3))) (-5 *1 (-510 *4 *2)) (-4 *2 (-1168 *4)))) (-3649 (*1 *2 *2) (-12 (-4 *3 (-13 (-343) (-348) (-570 (-528)))) (-5 *1 (-510 *3 *2)) (-4 *2 (-1168 *3)))) (-2807 (*1 *2 *2) (-12 (-4 *3 (-13 (-343) (-348) (-570 (-528)))) (-5 *1 (-510 *3 *2)) (-4 *2 (-1168 *3)))) (-4082 (*1 *2 *2) (-12 (-4 *3 (-13 (-343) (-348) (-570 (-528)))) (-5 *1 (-510 *3 *2)) (-4 *2 (-1168 *3)))))
-(-10 -7 (-15 -4082 (|#2| |#2|)) (-15 -2807 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -2287 (|#2| |#2| (-528) (-528))))
-((-3726 (((-3 (-528) "failed") |#2| |#1| (-1 (-3 (-528) "failed") |#1|)) 14) (((-3 (-528) "failed") |#2| |#1| (-528) (-1 (-3 (-528) "failed") |#1|)) 13) (((-3 (-528) "failed") |#2| (-528) (-1 (-3 (-528) "failed") |#1|)) 26)))
-(((-511 |#1| |#2|) (-10 -7 (-15 -3726 ((-3 (-528) "failed") |#2| (-528) (-1 (-3 (-528) "failed") |#1|))) (-15 -3726 ((-3 (-528) "failed") |#2| |#1| (-528) (-1 (-3 (-528) "failed") |#1|))) (-15 -3726 ((-3 (-528) "failed") |#2| |#1| (-1 (-3 (-528) "failed") |#1|)))) (-981) (-1153 |#1|)) (T -511))
-((-3726 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-528) "failed") *4)) (-4 *4 (-981)) (-5 *2 (-528)) (-5 *1 (-511 *4 *3)) (-4 *3 (-1153 *4)))) (-3726 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-528) "failed") *4)) (-4 *4 (-981)) (-5 *2 (-528)) (-5 *1 (-511 *4 *3)) (-4 *3 (-1153 *4)))) (-3726 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-528) "failed") *5)) (-4 *5 (-981)) (-5 *2 (-528)) (-5 *1 (-511 *5 *3)) (-4 *3 (-1153 *5)))))
-(-10 -7 (-15 -3726 ((-3 (-528) "failed") |#2| (-528) (-1 (-3 (-528) "failed") |#1|))) (-15 -3726 ((-3 (-528) "failed") |#2| |#1| (-528) (-1 (-3 (-528) "failed") |#1|))) (-15 -3726 ((-3 (-528) "failed") |#2| |#1| (-1 (-3 (-528) "failed") |#1|))))
-((-3251 (($ $ $) 79)) (-2705 (((-398 $) $) 47)) (-3001 (((-3 (-528) "failed") $) 59)) (-2409 (((-528) $) 37)) (-1793 (((-3 (-387 (-528)) "failed") $) 74)) (-3650 (((-110) $) 24)) (-3099 (((-387 (-528)) $) 72)) (-2124 (((-110) $) 50)) (-2146 (($ $ $ $) 86)) (-3657 (((-110) $) 16)) (-1752 (($ $ $) 57)) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) 69)) (-3296 (((-3 $ "failed") $) 64)) (-3019 (($ $) 23)) (-1627 (($ $ $) 84)) (-4197 (($) 60)) (-3918 (($ $) 53)) (-2437 (((-398 $) $) 45)) (-3578 (((-110) $) 14)) (-3973 (((-717) $) 28)) (-3235 (($ $ (-717)) NIL) (($ $) 10)) (-2406 (($ $) 17)) (-3155 (((-528) $) NIL) (((-504) $) 36) (((-831 (-528)) $) 40) (((-359) $) 31) (((-207) $) 33)) (-3742 (((-717)) 8)) (-2608 (((-110) $ $) 20)) (-3709 (($ $ $) 55)))
-(((-512 |#1|) (-10 -8 (-15 -1627 (|#1| |#1| |#1|)) (-15 -2146 (|#1| |#1| |#1| |#1|)) (-15 -3019 (|#1| |#1|)) (-15 -2406 (|#1| |#1|)) (-15 -1793 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -3099 ((-387 (-528)) |#1|)) (-15 -3650 ((-110) |#1|)) (-15 -3251 (|#1| |#1| |#1|)) (-15 -2608 ((-110) |#1| |#1|)) (-15 -3578 ((-110) |#1|)) (-15 -4197 (|#1|)) (-15 -3296 ((-3 |#1| "failed") |#1|)) (-15 -3155 ((-207) |#1|)) (-15 -3155 ((-359) |#1|)) (-15 -1752 (|#1| |#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3709 (|#1| |#1| |#1|)) (-15 -4181 ((-828 (-528) |#1|) |#1| (-831 (-528)) (-828 (-528) |#1|))) (-15 -3155 ((-831 (-528)) |#1|)) (-15 -3155 ((-504) |#1|)) (-15 -2409 ((-528) |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -3155 ((-528) |#1|)) (-15 -3235 (|#1| |#1|)) (-15 -3235 (|#1| |#1| (-717))) (-15 -3657 ((-110) |#1|)) (-15 -3973 ((-717) |#1|)) (-15 -2437 ((-398 |#1|) |#1|)) (-15 -2705 ((-398 |#1|) |#1|)) (-15 -2124 ((-110) |#1|)) (-15 -3742 ((-717)))) (-513)) (T -512))
-((-3742 (*1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-512 *3)) (-4 *3 (-513)))))
-(-10 -8 (-15 -1627 (|#1| |#1| |#1|)) (-15 -2146 (|#1| |#1| |#1| |#1|)) (-15 -3019 (|#1| |#1|)) (-15 -2406 (|#1| |#1|)) (-15 -1793 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -3099 ((-387 (-528)) |#1|)) (-15 -3650 ((-110) |#1|)) (-15 -3251 (|#1| |#1| |#1|)) (-15 -2608 ((-110) |#1| |#1|)) (-15 -3578 ((-110) |#1|)) (-15 -4197 (|#1|)) (-15 -3296 ((-3 |#1| "failed") |#1|)) (-15 -3155 ((-207) |#1|)) (-15 -3155 ((-359) |#1|)) (-15 -1752 (|#1| |#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3709 (|#1| |#1| |#1|)) (-15 -4181 ((-828 (-528) |#1|) |#1| (-831 (-528)) (-828 (-528) |#1|))) (-15 -3155 ((-831 (-528)) |#1|)) (-15 -3155 ((-504) |#1|)) (-15 -2409 ((-528) |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -3155 ((-528) |#1|)) (-15 -3235 (|#1| |#1|)) (-15 -3235 (|#1| |#1| (-717))) (-15 -3657 ((-110) |#1|)) (-15 -3973 ((-717) |#1|)) (-15 -2437 ((-398 |#1|) |#1|)) (-15 -2705 ((-398 |#1|) |#1|)) (-15 -2124 ((-110) |#1|)) (-15 -3742 ((-717))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 41)) (-1738 (($ $) 40)) (-1811 (((-110) $) 38)) (-3251 (($ $ $) 85)) (-3181 (((-3 $ "failed") $ $) 19)) (-2264 (($ $ $ $) 73)) (-1232 (($ $) 51)) (-2705 (((-398 $) $) 52)) (-2213 (((-110) $ $) 125)) (-3605 (((-528) $) 114)) (-2950 (($ $ $) 88)) (-2816 (($) 17 T CONST)) (-3001 (((-3 (-528) "failed") $) 106)) (-2409 (((-528) $) 105)) (-3519 (($ $ $) 129)) (-2120 (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) 104) (((-635 (-528)) (-635 $)) 103)) (-1312 (((-3 $ "failed") $) 34)) (-1793 (((-3 (-387 (-528)) "failed") $) 82)) (-3650 (((-110) $) 84)) (-3099 (((-387 (-528)) $) 83)) (-1338 (($) 81) (($ $) 80)) (-3498 (($ $ $) 128)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 123)) (-2124 (((-110) $) 53)) (-2146 (($ $ $ $) 71)) (-1841 (($ $ $) 86)) (-3657 (((-110) $) 116)) (-1752 (($ $ $) 97)) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) 100)) (-1297 (((-110) $) 31)) (-2580 (((-110) $) 92)) (-3296 (((-3 $ "failed") $) 94)) (-3710 (((-110) $) 115)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) 132)) (-1575 (($ $ $ $) 72)) (-1436 (($ $ $) 117)) (-1736 (($ $ $) 118)) (-3019 (($ $) 75)) (-1584 (($ $) 89)) (-2057 (($ $ $) 46) (($ (-595 $)) 45)) (-3034 (((-1078) $) 9)) (-1627 (($ $ $) 70)) (-4197 (($) 93 T CONST)) (-3715 (($ $) 77)) (-2495 (((-1042) $) 10) (($ $) 79)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 44)) (-2088 (($ $ $) 48) (($ (-595 $)) 47)) (-3918 (($ $) 98)) (-2437 (((-398 $) $) 50)) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 130)) (-3477 (((-3 $ "failed") $ $) 42)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 124)) (-3578 (((-110) $) 91)) (-3973 (((-717) $) 126)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 127)) (-3235 (($ $ (-717)) 111) (($ $) 109)) (-1691 (($ $) 76)) (-2406 (($ $) 78)) (-3155 (((-528) $) 108) (((-504) $) 102) (((-831 (-528)) $) 101) (((-359) $) 96) (((-207) $) 95)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ $) 43) (($ (-528)) 107)) (-3742 (((-717)) 29)) (-2608 (((-110) $ $) 87)) (-3709 (($ $ $) 99)) (-2911 (($) 90)) (-4016 (((-110) $ $) 39)) (-2901 (($ $ $ $) 74)) (-1775 (($ $) 113)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-3245 (($ $ (-717)) 112) (($ $) 110)) (-2244 (((-110) $ $) 120)) (-2220 (((-110) $ $) 121)) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 119)) (-2208 (((-110) $ $) 122)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24)))
-(((-513) (-133)) (T -513))
-((-2580 (*1 *2 *1) (-12 (-4 *1 (-513)) (-5 *2 (-110)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-513)) (-5 *2 (-110)))) (-2911 (*1 *1) (-4 *1 (-513))) (-1584 (*1 *1 *1) (-4 *1 (-513))) (-2950 (*1 *1 *1 *1) (-4 *1 (-513))) (-2608 (*1 *2 *1 *1) (-12 (-4 *1 (-513)) (-5 *2 (-110)))) (-1841 (*1 *1 *1 *1) (-4 *1 (-513))) (-3251 (*1 *1 *1 *1) (-4 *1 (-513))) (-3650 (*1 *2 *1) (-12 (-4 *1 (-513)) (-5 *2 (-110)))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-513)) (-5 *2 (-387 (-528))))) (-1793 (*1 *2 *1) (|partial| -12 (-4 *1 (-513)) (-5 *2 (-387 (-528))))) (-1338 (*1 *1) (-4 *1 (-513))) (-1338 (*1 *1 *1) (-4 *1 (-513))) (-2495 (*1 *1 *1) (-4 *1 (-513))) (-2406 (*1 *1 *1) (-4 *1 (-513))) (-3715 (*1 *1 *1) (-4 *1 (-513))) (-1691 (*1 *1 *1) (-4 *1 (-513))) (-3019 (*1 *1 *1) (-4 *1 (-513))) (-2901 (*1 *1 *1 *1 *1) (-4 *1 (-513))) (-2264 (*1 *1 *1 *1 *1) (-4 *1 (-513))) (-1575 (*1 *1 *1 *1 *1) (-4 *1 (-513))) (-2146 (*1 *1 *1 *1 *1) (-4 *1 (-513))) (-1627 (*1 *1 *1 *1) (-4 *1 (-513))))
-(-13 (-1135) (-288) (-766) (-215) (-570 (-528)) (-972 (-528)) (-591 (-528)) (-570 (-504)) (-570 (-831 (-528))) (-825 (-528)) (-136) (-957) (-140) (-1071) (-10 -8 (-15 -2580 ((-110) $)) (-15 -3578 ((-110) $)) (-6 -4263) (-15 -2911 ($)) (-15 -1584 ($ $)) (-15 -2950 ($ $ $)) (-15 -2608 ((-110) $ $)) (-15 -1841 ($ $ $)) (-15 -3251 ($ $ $)) (-15 -3650 ((-110) $)) (-15 -3099 ((-387 (-528)) $)) (-15 -1793 ((-3 (-387 (-528)) "failed") $)) (-15 -1338 ($)) (-15 -1338 ($ $)) (-15 -2495 ($ $)) (-15 -2406 ($ $)) (-15 -3715 ($ $)) (-15 -1691 ($ $)) (-15 -3019 ($ $)) (-15 -2901 ($ $ $ $)) (-15 -2264 ($ $ $ $)) (-15 -1575 ($ $ $ $)) (-15 -2146 ($ $ $ $)) (-15 -1627 ($ $ $)) (-6 -4262)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-569 (-802)) . T) ((-136) . T) ((-162) . T) ((-570 (-207)) . T) ((-570 (-359)) . T) ((-570 (-504)) . T) ((-570 (-528)) . T) ((-570 (-831 (-528))) . T) ((-215) . T) ((-271) . T) ((-288) . T) ((-431) . T) ((-520) . T) ((-597 $) . T) ((-591 (-528)) . T) ((-664 $) . T) ((-673) . T) ((-737) . T) ((-738) . T) ((-740) . T) ((-741) . T) ((-766) . T) ((-791) . T) ((-793) . T) ((-825 (-528)) . T) ((-859) . T) ((-957) . T) ((-972 (-528)) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1071) . T) ((-1135) . T))
-((-2207 (((-110) $ $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-3450 (($) NIL) (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-1444 (((-1182) $ |#1| |#1|) NIL (|has| $ (-6 -4265)))) (-3535 (((-110) $ (-717)) NIL)) (-2381 ((|#2| $ |#1| |#2|) NIL)) (-1836 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-1573 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-2582 (((-3 |#2| "failed") |#1| $) NIL)) (-2816 (($) NIL T CONST)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))))) (-3991 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (|has| $ (-6 -4264))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-3 |#2| "failed") |#1| $) NIL)) (-2280 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-1422 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (|has| $ (-6 -4264))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-2812 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4265)))) (-2742 ((|#2| $ |#1|) NIL)) (-3342 (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-595 |#2|) $) NIL (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) NIL)) (-3530 ((|#1| $) NIL (|has| |#1| (-793)))) (-2604 (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-595 |#2|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-1709 ((|#1| $) NIL (|has| |#1| (-793)))) (-2800 (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4265))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-3225 (((-595 |#1|) $) NIL)) (-4024 (((-110) |#1| $) NIL)) (-3934 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL)) (-1950 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL)) (-2084 (((-595 |#1|) $) NIL)) (-3966 (((-110) |#1| $) NIL)) (-2495 (((-1042) $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-2890 ((|#2| $) NIL (|has| |#1| (-793)))) (-1734 (((-3 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) "failed") (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL)) (-1332 (($ $ |#2|) NIL (|has| $ (-6 -4265)))) (-1390 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL)) (-1818 (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-275 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-595 |#2|) (-595 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-595 (-275 |#2|))) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-2861 (((-595 |#2|) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3900 (($) NIL) (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-2507 (((-717) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-717) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (((-717) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023)))) (((-717) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) NIL (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-570 (-504))))) (-2233 (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-2222 (((-802) $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-569 (-802))) (|has| |#2| (-569 (-802)))))) (-2164 (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-3451 (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-514 |#1| |#2| |#3|) (-13 (-1108 |#1| |#2|) (-10 -7 (-6 -4264))) (-1023) (-1023) (-13 (-1108 |#1| |#2|) (-10 -7 (-6 -4264)))) (T -514))
-NIL
-(-13 (-1108 |#1| |#2|) (-10 -7 (-6 -4264)))
-((-3720 (((-545 |#2|) |#2| (-568 |#2|) (-568 |#2|) (-1 (-1091 |#2|) (-1091 |#2|))) 51)))
-(((-515 |#1| |#2|) (-10 -7 (-15 -3720 ((-545 |#2|) |#2| (-568 |#2|) (-568 |#2|) (-1 (-1091 |#2|) (-1091 |#2|))))) (-13 (-793) (-520)) (-13 (-27) (-410 |#1|))) (T -515))
-((-3720 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-568 *3)) (-5 *5 (-1 (-1091 *3) (-1091 *3))) (-4 *3 (-13 (-27) (-410 *6))) (-4 *6 (-13 (-793) (-520))) (-5 *2 (-545 *3)) (-5 *1 (-515 *6 *3)))))
-(-10 -7 (-15 -3720 ((-545 |#2|) |#2| (-568 |#2|) (-568 |#2|) (-1 (-1091 |#2|) (-1091 |#2|)))))
-((-3131 (((-545 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-3596 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-3206 (((-545 |#5|) |#5| (-1 |#3| |#3|)) 202)))
-(((-516 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3206 ((-545 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3131 ((-545 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3596 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-793) (-520) (-972 (-528))) (-13 (-27) (-410 |#1|)) (-1153 |#2|) (-1153 (-387 |#3|)) (-322 |#2| |#3| |#4|)) (T -516))
-((-3596 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-27) (-410 *4))) (-4 *4 (-13 (-793) (-520) (-972 (-528)))) (-4 *7 (-1153 (-387 *6))) (-5 *1 (-516 *4 *5 *6 *7 *2)) (-4 *2 (-322 *5 *6 *7)))) (-3131 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1153 *6)) (-4 *6 (-13 (-27) (-410 *5))) (-4 *5 (-13 (-793) (-520) (-972 (-528)))) (-4 *8 (-1153 (-387 *7))) (-5 *2 (-545 *3)) (-5 *1 (-516 *5 *6 *7 *8 *3)) (-4 *3 (-322 *6 *7 *8)))) (-3206 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1153 *6)) (-4 *6 (-13 (-27) (-410 *5))) (-4 *5 (-13 (-793) (-520) (-972 (-528)))) (-4 *8 (-1153 (-387 *7))) (-5 *2 (-545 *3)) (-5 *1 (-516 *5 *6 *7 *8 *3)) (-4 *3 (-322 *6 *7 *8)))))
-(-10 -7 (-15 -3206 ((-545 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3131 ((-545 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3596 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-1894 (((-110) (-528) (-528)) 10)) (-2983 (((-528) (-528)) 7)) (-2818 (((-528) (-528) (-528)) 8)))
-(((-517) (-10 -7 (-15 -2983 ((-528) (-528))) (-15 -2818 ((-528) (-528) (-528))) (-15 -1894 ((-110) (-528) (-528))))) (T -517))
-((-1894 (*1 *2 *3 *3) (-12 (-5 *3 (-528)) (-5 *2 (-110)) (-5 *1 (-517)))) (-2818 (*1 *2 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-517)))) (-2983 (*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-517)))))
-(-10 -7 (-15 -2983 ((-528) (-528))) (-15 -2818 ((-528) (-528) (-528))) (-15 -1894 ((-110) (-528) (-528))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-1374 ((|#1| $) 61)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 41)) (-1738 (($ $) 40)) (-1811 (((-110) $) 38)) (-2880 (($ $) 91)) (-2735 (($ $) 74)) (-3622 ((|#1| $) 62)) (-3181 (((-3 $ "failed") $ $) 19)) (-2450 (($ $) 73)) (-2859 (($ $) 90)) (-2712 (($ $) 75)) (-2904 (($ $) 89)) (-2761 (($ $) 76)) (-2816 (($) 17 T CONST)) (-3001 (((-3 (-528) "failed") $) 69)) (-2409 (((-528) $) 68)) (-1312 (((-3 $ "failed") $) 34)) (-3039 (($ |#1| |#1|) 66)) (-3657 (((-110) $) 60)) (-1505 (($) 101)) (-1297 (((-110) $) 31)) (-2796 (($ $ (-528)) 72)) (-3710 (((-110) $) 59)) (-1436 (($ $ $) 107)) (-1736 (($ $ $) 106)) (-2097 (($ $) 98)) (-2057 (($ $ $) 46) (($ (-595 $)) 45)) (-3034 (((-1078) $) 9)) (-2243 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-387 (-528))) 64)) (-1472 ((|#1| $) 63)) (-2495 (((-1042) $) 10)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 44)) (-2088 (($ $ $) 48) (($ (-595 $)) 47)) (-3477 (((-3 $ "failed") $ $) 42)) (-2656 (($ $) 99)) (-2917 (($ $) 88)) (-2773 (($ $) 77)) (-2892 (($ $) 87)) (-2749 (($ $) 78)) (-2869 (($ $) 86)) (-2724 (($ $) 79)) (-3049 (((-110) $ |#1|) 58)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ $) 43) (($ (-528)) 70)) (-3742 (((-717)) 29)) (-2953 (($ $) 97)) (-2811 (($ $) 85)) (-4016 (((-110) $ $) 39)) (-2928 (($ $) 96)) (-2784 (($ $) 84)) (-2981 (($ $) 95)) (-2836 (($ $) 83)) (-3592 (($ $) 94)) (-2846 (($ $) 82)) (-2967 (($ $) 93)) (-2825 (($ $) 81)) (-2940 (($ $) 92)) (-2797 (($ $) 80)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2244 (((-110) $ $) 104)) (-2220 (((-110) $ $) 103)) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 105)) (-2208 (((-110) $ $) 102)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32) (($ $ $) 100) (($ $ (-387 (-528))) 71)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24)))
-(((-518 |#1|) (-133) (-13 (-384) (-1117))) (T -518))
-((-2243 (*1 *1 *2 *2) (-12 (-4 *1 (-518 *2)) (-4 *2 (-13 (-384) (-1117))))) (-3039 (*1 *1 *2 *2) (-12 (-4 *1 (-518 *2)) (-4 *2 (-13 (-384) (-1117))))) (-2243 (*1 *1 *2) (-12 (-4 *1 (-518 *2)) (-4 *2 (-13 (-384) (-1117))))) (-2243 (*1 *1 *2) (-12 (-5 *2 (-387 (-528))) (-4 *1 (-518 *3)) (-4 *3 (-13 (-384) (-1117))))) (-1472 (*1 *2 *1) (-12 (-4 *1 (-518 *2)) (-4 *2 (-13 (-384) (-1117))))) (-3622 (*1 *2 *1) (-12 (-4 *1 (-518 *2)) (-4 *2 (-13 (-384) (-1117))))) (-1374 (*1 *2 *1) (-12 (-4 *1 (-518 *2)) (-4 *2 (-13 (-384) (-1117))))) (-3657 (*1 *2 *1) (-12 (-4 *1 (-518 *3)) (-4 *3 (-13 (-384) (-1117))) (-5 *2 (-110)))) (-3710 (*1 *2 *1) (-12 (-4 *1 (-518 *3)) (-4 *3 (-13 (-384) (-1117))) (-5 *2 (-110)))) (-3049 (*1 *2 *1 *3) (-12 (-4 *1 (-518 *3)) (-4 *3 (-13 (-384) (-1117))) (-5 *2 (-110)))))
-(-13 (-431) (-793) (-1117) (-938) (-972 (-528)) (-10 -8 (-6 -4083) (-15 -2243 ($ |t#1| |t#1|)) (-15 -3039 ($ |t#1| |t#1|)) (-15 -2243 ($ |t#1|)) (-15 -2243 ($ (-387 (-528)))) (-15 -1472 (|t#1| $)) (-15 -3622 (|t#1| $)) (-15 -1374 (|t#1| $)) (-15 -3657 ((-110) $)) (-15 -3710 ((-110) $)) (-15 -3049 ((-110) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-93) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-569 (-802)) . T) ((-162) . T) ((-265) . T) ((-271) . T) ((-431) . T) ((-469) . T) ((-520) . T) ((-597 $) . T) ((-664 $) . T) ((-673) . T) ((-793) . T) ((-938) . T) ((-972 (-528)) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1117) . T) ((-1120) . T))
-((-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 9)) (-1738 (($ $) 11)) (-1811 (((-110) $) 18)) (-1312 (((-3 $ "failed") $) 16)) (-4016 (((-110) $ $) 20)))
-(((-519 |#1|) (-10 -8 (-15 -1811 ((-110) |#1|)) (-15 -4016 ((-110) |#1| |#1|)) (-15 -1738 (|#1| |#1|)) (-15 -2142 ((-2 (|:| -2445 |#1|) (|:| -4251 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1312 ((-3 |#1| "failed") |#1|))) (-520)) (T -519))
-NIL
-(-10 -8 (-15 -1811 ((-110) |#1|)) (-15 -4016 ((-110) |#1| |#1|)) (-15 -1738 (|#1| |#1|)) (-15 -2142 ((-2 (|:| -2445 |#1|) (|:| -4251 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1312 ((-3 |#1| "failed") |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 41)) (-1738 (($ $) 40)) (-1811 (((-110) $) 38)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-1312 (((-3 $ "failed") $) 34)) (-1297 (((-110) $) 31)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-3477 (((-3 $ "failed") $ $) 42)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ $) 43)) (-3742 (((-717)) 29)) (-4016 (((-110) $ $) 39)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24)))
-(((-520) (-133)) (T -520))
-((-3477 (*1 *1 *1 *1) (|partial| -4 *1 (-520))) (-2142 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2445 *1) (|:| -4251 *1) (|:| |associate| *1))) (-4 *1 (-520)))) (-1738 (*1 *1 *1) (-4 *1 (-520))) (-4016 (*1 *2 *1 *1) (-12 (-4 *1 (-520)) (-5 *2 (-110)))) (-1811 (*1 *2 *1) (-12 (-4 *1 (-520)) (-5 *2 (-110)))))
-(-13 (-162) (-37 $) (-271) (-10 -8 (-15 -3477 ((-3 $ "failed") $ $)) (-15 -2142 ((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $)) (-15 -1738 ($ $)) (-15 -4016 ((-110) $ $)) (-15 -1811 ((-110) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-569 (-802)) . T) ((-162) . T) ((-271) . T) ((-597 $) . T) ((-664 $) . T) ((-673) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-1904 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1095) (-595 |#2|)) 37)) (-3259 (((-545 |#2|) |#2| (-1095)) 62)) (-3214 (((-3 |#2| "failed") |#2| (-1095)) 154)) (-2962 (((-3 (-2 (|:| -1497 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1095) (-568 |#2|) (-595 (-568 |#2|))) 157)) (-1623 (((-3 (-2 (|:| -1497 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1095) |#2|) 40)))
-(((-521 |#1| |#2|) (-10 -7 (-15 -1623 ((-3 (-2 (|:| -1497 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1095) |#2|)) (-15 -1904 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1095) (-595 |#2|))) (-15 -3214 ((-3 |#2| "failed") |#2| (-1095))) (-15 -3259 ((-545 |#2|) |#2| (-1095))) (-15 -2962 ((-3 (-2 (|:| -1497 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1095) (-568 |#2|) (-595 (-568 |#2|))))) (-13 (-431) (-793) (-140) (-972 (-528)) (-591 (-528))) (-13 (-27) (-1117) (-410 |#1|))) (T -521))
-((-2962 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1095)) (-5 *6 (-595 (-568 *3))) (-5 *5 (-568 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *7))) (-4 *7 (-13 (-431) (-793) (-140) (-972 (-528)) (-591 (-528)))) (-5 *2 (-2 (|:| -1497 *3) (|:| |coeff| *3))) (-5 *1 (-521 *7 *3)))) (-3259 (*1 *2 *3 *4) (-12 (-5 *4 (-1095)) (-4 *5 (-13 (-431) (-793) (-140) (-972 (-528)) (-591 (-528)))) (-5 *2 (-545 *3)) (-5 *1 (-521 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *5))))) (-3214 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1095)) (-4 *4 (-13 (-431) (-793) (-140) (-972 (-528)) (-591 (-528)))) (-5 *1 (-521 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *4))))) (-1904 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1095)) (-5 *5 (-595 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *6))) (-4 *6 (-13 (-431) (-793) (-140) (-972 (-528)) (-591 (-528)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *6 *3)))) (-1623 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1095)) (-4 *5 (-13 (-431) (-793) (-140) (-972 (-528)) (-591 (-528)))) (-5 *2 (-2 (|:| -1497 *3) (|:| |coeff| *3))) (-5 *1 (-521 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *5))))))
-(-10 -7 (-15 -1623 ((-3 (-2 (|:| -1497 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1095) |#2|)) (-15 -1904 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1095) (-595 |#2|))) (-15 -3214 ((-3 |#2| "failed") |#2| (-1095))) (-15 -3259 ((-545 |#2|) |#2| (-1095))) (-15 -2962 ((-3 (-2 (|:| -1497 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1095) (-568 |#2|) (-595 (-568 |#2|)))))
-((-2705 (((-398 |#1|) |#1|) 18)) (-2437 (((-398 |#1|) |#1|) 33)) (-2715 (((-3 |#1| "failed") |#1|) 44)) (-3676 (((-398 |#1|) |#1|) 51)))
-(((-522 |#1|) (-10 -7 (-15 -2437 ((-398 |#1|) |#1|)) (-15 -2705 ((-398 |#1|) |#1|)) (-15 -3676 ((-398 |#1|) |#1|)) (-15 -2715 ((-3 |#1| "failed") |#1|))) (-513)) (T -522))
-((-2715 (*1 *2 *2) (|partial| -12 (-5 *1 (-522 *2)) (-4 *2 (-513)))) (-3676 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-522 *3)) (-4 *3 (-513)))) (-2705 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-522 *3)) (-4 *3 (-513)))) (-2437 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-522 *3)) (-4 *3 (-513)))))
-(-10 -7 (-15 -2437 ((-398 |#1|) |#1|)) (-15 -2705 ((-398 |#1|) |#1|)) (-15 -3676 ((-398 |#1|) |#1|)) (-15 -2715 ((-3 |#1| "failed") |#1|)))
-((-3069 (($) 9)) (-1920 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-207))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2931 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 35)) (-3225 (((-595 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) $) 32)) (-1950 (($ (-2 (|:| -2927 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| -1780 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-207))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2931 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-2664 (($ (-595 (-2 (|:| -2927 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| -1780 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-207))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2931 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-1780 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-207))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2931 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 39)) (-2861 (((-595 (-2 (|:| -2927 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| -1780 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-207))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2931 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-1429 (((-1182)) 12)))
-(((-523) (-10 -8 (-15 -3069 ($)) (-15 -1429 ((-1182))) (-15 -3225 ((-595 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) $)) (-15 -2664 ($ (-595 (-2 (|:| -2927 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| -1780 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-207))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2931 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1950 ($ (-2 (|:| -2927 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| -1780 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-207))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2931 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1920 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-207))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2931 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -2861 ((-595 (-2 (|:| -2927 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| -1780 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-207))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2931 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1780 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-207))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2931 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))))) (T -523))
-((-1780 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-207))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2931 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-523)))) (-2861 (*1 *2 *1) (-12 (-5 *2 (-595 (-2 (|:| -2927 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| -1780 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-207))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2931 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-523)))) (-1920 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-207))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2931 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-523)))) (-1950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2927 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| -1780 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-207))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2931 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-523)))) (-2664 (*1 *1 *2) (-12 (-5 *2 (-595 (-2 (|:| -2927 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| -1780 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-207))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2931 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-523)))) (-3225 (*1 *2 *1) (-12 (-5 *2 (-595 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-5 *1 (-523)))) (-1429 (*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-523)))) (-3069 (*1 *1) (-5 *1 (-523))))
-(-10 -8 (-15 -3069 ($)) (-15 -1429 ((-1182))) (-15 -3225 ((-595 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) $)) (-15 -2664 ($ (-595 (-2 (|:| -2927 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| -1780 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-207))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2931 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1950 ($ (-2 (|:| -2927 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| -1780 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-207))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2931 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1920 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-207))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2931 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -2861 ((-595 (-2 (|:| -2927 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| -1780 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-207))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2931 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1780 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-207))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2931 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))))
-((-2402 (((-1091 (-387 (-1091 |#2|))) |#2| (-568 |#2|) (-568 |#2|) (-1091 |#2|)) 32)) (-3410 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-568 |#2|) (-568 |#2|) (-595 |#2|) (-568 |#2|) |#2| (-387 (-1091 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-568 |#2|) (-568 |#2|) (-595 |#2|) |#2| (-1091 |#2|)) 110)) (-2877 (((-545 |#2|) |#2| (-568 |#2|) (-568 |#2|) (-568 |#2|) |#2| (-387 (-1091 |#2|))) 80) (((-545 |#2|) |#2| (-568 |#2|) (-568 |#2|) |#2| (-1091 |#2|)) 52)) (-1814 (((-3 (-2 (|:| -1497 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-568 |#2|) (-568 |#2|) |#2| (-568 |#2|) |#2| (-387 (-1091 |#2|))) 87) (((-3 (-2 (|:| -1497 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-568 |#2|) (-568 |#2|) |#2| |#2| (-1091 |#2|)) 109)) (-3938 (((-3 |#2| "failed") |#2| |#2| (-568 |#2|) (-568 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1095)) (-568 |#2|) |#2| (-387 (-1091 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-568 |#2|) (-568 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1095)) |#2| (-1091 |#2|)) 111)) (-2132 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1400 (-595 |#2|))) |#3| |#2| (-568 |#2|) (-568 |#2|) (-568 |#2|) |#2| (-387 (-1091 |#2|))) 128 (|has| |#3| (-605 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1400 (-595 |#2|))) |#3| |#2| (-568 |#2|) (-568 |#2|) |#2| (-1091 |#2|)) 127 (|has| |#3| (-605 |#2|)))) (-2557 ((|#2| (-1091 (-387 (-1091 |#2|))) (-568 |#2|) |#2|) 50)) (-1412 (((-1091 (-387 (-1091 |#2|))) (-1091 |#2|) (-568 |#2|)) 31)))
-(((-524 |#1| |#2| |#3|) (-10 -7 (-15 -2877 ((-545 |#2|) |#2| (-568 |#2|) (-568 |#2|) |#2| (-1091 |#2|))) (-15 -2877 ((-545 |#2|) |#2| (-568 |#2|) (-568 |#2|) (-568 |#2|) |#2| (-387 (-1091 |#2|)))) (-15 -1814 ((-3 (-2 (|:| -1497 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-568 |#2|) (-568 |#2|) |#2| |#2| (-1091 |#2|))) (-15 -1814 ((-3 (-2 (|:| -1497 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-568 |#2|) (-568 |#2|) |#2| (-568 |#2|) |#2| (-387 (-1091 |#2|)))) (-15 -3410 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-568 |#2|) (-568 |#2|) (-595 |#2|) |#2| (-1091 |#2|))) (-15 -3410 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-568 |#2|) (-568 |#2|) (-595 |#2|) (-568 |#2|) |#2| (-387 (-1091 |#2|)))) (-15 -3938 ((-3 |#2| "failed") |#2| |#2| (-568 |#2|) (-568 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1095)) |#2| (-1091 |#2|))) (-15 -3938 ((-3 |#2| "failed") |#2| |#2| (-568 |#2|) (-568 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1095)) (-568 |#2|) |#2| (-387 (-1091 |#2|)))) (-15 -2402 ((-1091 (-387 (-1091 |#2|))) |#2| (-568 |#2|) (-568 |#2|) (-1091 |#2|))) (-15 -2557 (|#2| (-1091 (-387 (-1091 |#2|))) (-568 |#2|) |#2|)) (-15 -1412 ((-1091 (-387 (-1091 |#2|))) (-1091 |#2|) (-568 |#2|))) (IF (|has| |#3| (-605 |#2|)) (PROGN (-15 -2132 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1400 (-595 |#2|))) |#3| |#2| (-568 |#2|) (-568 |#2|) |#2| (-1091 |#2|))) (-15 -2132 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1400 (-595 |#2|))) |#3| |#2| (-568 |#2|) (-568 |#2|) (-568 |#2|) |#2| (-387 (-1091 |#2|))))) |%noBranch|)) (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528))) (-13 (-410 |#1|) (-27) (-1117)) (-1023)) (T -524))
-((-2132 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-568 *4)) (-5 *6 (-387 (-1091 *4))) (-4 *4 (-13 (-410 *7) (-27) (-1117))) (-4 *7 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1400 (-595 *4)))) (-5 *1 (-524 *7 *4 *3)) (-4 *3 (-605 *4)) (-4 *3 (-1023)))) (-2132 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-568 *4)) (-5 *6 (-1091 *4)) (-4 *4 (-13 (-410 *7) (-27) (-1117))) (-4 *7 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1400 (-595 *4)))) (-5 *1 (-524 *7 *4 *3)) (-4 *3 (-605 *4)) (-4 *3 (-1023)))) (-1412 (*1 *2 *3 *4) (-12 (-5 *4 (-568 *6)) (-4 *6 (-13 (-410 *5) (-27) (-1117))) (-4 *5 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528)))) (-5 *2 (-1091 (-387 (-1091 *6)))) (-5 *1 (-524 *5 *6 *7)) (-5 *3 (-1091 *6)) (-4 *7 (-1023)))) (-2557 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1091 (-387 (-1091 *2)))) (-5 *4 (-568 *2)) (-4 *2 (-13 (-410 *5) (-27) (-1117))) (-4 *5 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528)))) (-5 *1 (-524 *5 *2 *6)) (-4 *6 (-1023)))) (-2402 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-568 *3)) (-4 *3 (-13 (-410 *6) (-27) (-1117))) (-4 *6 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528)))) (-5 *2 (-1091 (-387 (-1091 *3)))) (-5 *1 (-524 *6 *3 *7)) (-5 *5 (-1091 *3)) (-4 *7 (-1023)))) (-3938 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-568 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1095))) (-5 *5 (-387 (-1091 *2))) (-4 *2 (-13 (-410 *6) (-27) (-1117))) (-4 *6 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528)))) (-5 *1 (-524 *6 *2 *7)) (-4 *7 (-1023)))) (-3938 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-568 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1095))) (-5 *5 (-1091 *2)) (-4 *2 (-13 (-410 *6) (-27) (-1117))) (-4 *6 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528)))) (-5 *1 (-524 *6 *2 *7)) (-4 *7 (-1023)))) (-3410 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-568 *3)) (-5 *5 (-595 *3)) (-5 *6 (-387 (-1091 *3))) (-4 *3 (-13 (-410 *7) (-27) (-1117))) (-4 *7 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-524 *7 *3 *8)) (-4 *8 (-1023)))) (-3410 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-568 *3)) (-5 *5 (-595 *3)) (-5 *6 (-1091 *3)) (-4 *3 (-13 (-410 *7) (-27) (-1117))) (-4 *7 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-524 *7 *3 *8)) (-4 *8 (-1023)))) (-1814 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-568 *3)) (-5 *5 (-387 (-1091 *3))) (-4 *3 (-13 (-410 *6) (-27) (-1117))) (-4 *6 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528)))) (-5 *2 (-2 (|:| -1497 *3) (|:| |coeff| *3))) (-5 *1 (-524 *6 *3 *7)) (-4 *7 (-1023)))) (-1814 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-568 *3)) (-5 *5 (-1091 *3)) (-4 *3 (-13 (-410 *6) (-27) (-1117))) (-4 *6 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528)))) (-5 *2 (-2 (|:| -1497 *3) (|:| |coeff| *3))) (-5 *1 (-524 *6 *3 *7)) (-4 *7 (-1023)))) (-2877 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-568 *3)) (-5 *5 (-387 (-1091 *3))) (-4 *3 (-13 (-410 *6) (-27) (-1117))) (-4 *6 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528)))) (-5 *2 (-545 *3)) (-5 *1 (-524 *6 *3 *7)) (-4 *7 (-1023)))) (-2877 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-568 *3)) (-5 *5 (-1091 *3)) (-4 *3 (-13 (-410 *6) (-27) (-1117))) (-4 *6 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528)))) (-5 *2 (-545 *3)) (-5 *1 (-524 *6 *3 *7)) (-4 *7 (-1023)))))
-(-10 -7 (-15 -2877 ((-545 |#2|) |#2| (-568 |#2|) (-568 |#2|) |#2| (-1091 |#2|))) (-15 -2877 ((-545 |#2|) |#2| (-568 |#2|) (-568 |#2|) (-568 |#2|) |#2| (-387 (-1091 |#2|)))) (-15 -1814 ((-3 (-2 (|:| -1497 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-568 |#2|) (-568 |#2|) |#2| |#2| (-1091 |#2|))) (-15 -1814 ((-3 (-2 (|:| -1497 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-568 |#2|) (-568 |#2|) |#2| (-568 |#2|) |#2| (-387 (-1091 |#2|)))) (-15 -3410 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-568 |#2|) (-568 |#2|) (-595 |#2|) |#2| (-1091 |#2|))) (-15 -3410 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-568 |#2|) (-568 |#2|) (-595 |#2|) (-568 |#2|) |#2| (-387 (-1091 |#2|)))) (-15 -3938 ((-3 |#2| "failed") |#2| |#2| (-568 |#2|) (-568 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1095)) |#2| (-1091 |#2|))) (-15 -3938 ((-3 |#2| "failed") |#2| |#2| (-568 |#2|) (-568 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1095)) (-568 |#2|) |#2| (-387 (-1091 |#2|)))) (-15 -2402 ((-1091 (-387 (-1091 |#2|))) |#2| (-568 |#2|) (-568 |#2|) (-1091 |#2|))) (-15 -2557 (|#2| (-1091 (-387 (-1091 |#2|))) (-568 |#2|) |#2|)) (-15 -1412 ((-1091 (-387 (-1091 |#2|))) (-1091 |#2|) (-568 |#2|))) (IF (|has| |#3| (-605 |#2|)) (PROGN (-15 -2132 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1400 (-595 |#2|))) |#3| |#2| (-568 |#2|) (-568 |#2|) |#2| (-1091 |#2|))) (-15 -2132 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1400 (-595 |#2|))) |#3| |#2| (-568 |#2|) (-568 |#2|) (-568 |#2|) |#2| (-387 (-1091 |#2|))))) |%noBranch|))
-((-1337 (((-528) (-528) (-717)) 66)) (-1766 (((-528) (-528)) 65)) (-1831 (((-528) (-528)) 64)) (-2329 (((-528) (-528)) 69)) (-3058 (((-528) (-528) (-528)) 49)) (-2008 (((-528) (-528) (-528)) 46)) (-2246 (((-387 (-528)) (-528)) 20)) (-3569 (((-528) (-528)) 21)) (-4022 (((-528) (-528)) 58)) (-4147 (((-528) (-528)) 32)) (-4062 (((-595 (-528)) (-528)) 63)) (-2490 (((-528) (-528) (-528) (-528) (-528)) 44)) (-3487 (((-387 (-528)) (-528)) 41)))
-(((-525) (-10 -7 (-15 -3487 ((-387 (-528)) (-528))) (-15 -2490 ((-528) (-528) (-528) (-528) (-528))) (-15 -4062 ((-595 (-528)) (-528))) (-15 -4147 ((-528) (-528))) (-15 -4022 ((-528) (-528))) (-15 -3569 ((-528) (-528))) (-15 -2246 ((-387 (-528)) (-528))) (-15 -2008 ((-528) (-528) (-528))) (-15 -3058 ((-528) (-528) (-528))) (-15 -2329 ((-528) (-528))) (-15 -1831 ((-528) (-528))) (-15 -1766 ((-528) (-528))) (-15 -1337 ((-528) (-528) (-717))))) (T -525))
-((-1337 (*1 *2 *2 *3) (-12 (-5 *2 (-528)) (-5 *3 (-717)) (-5 *1 (-525)))) (-1766 (*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-525)))) (-1831 (*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-525)))) (-2329 (*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-525)))) (-3058 (*1 *2 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-525)))) (-2008 (*1 *2 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-525)))) (-2246 (*1 *2 *3) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-525)) (-5 *3 (-528)))) (-3569 (*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-525)))) (-4022 (*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-525)))) (-4147 (*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-525)))) (-4062 (*1 *2 *3) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-525)) (-5 *3 (-528)))) (-2490 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-525)))) (-3487 (*1 *2 *3) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-525)) (-5 *3 (-528)))))
-(-10 -7 (-15 -3487 ((-387 (-528)) (-528))) (-15 -2490 ((-528) (-528) (-528) (-528) (-528))) (-15 -4062 ((-595 (-528)) (-528))) (-15 -4147 ((-528) (-528))) (-15 -4022 ((-528) (-528))) (-15 -3569 ((-528) (-528))) (-15 -2246 ((-387 (-528)) (-528))) (-15 -2008 ((-528) (-528) (-528))) (-15 -3058 ((-528) (-528) (-528))) (-15 -2329 ((-528) (-528))) (-15 -1831 ((-528) (-528))) (-15 -1766 ((-528) (-528))) (-15 -1337 ((-528) (-528) (-717))))
-((-1379 (((-2 (|:| |answer| |#4|) (|:| -3231 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
-(((-526 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1379 ((-2 (|:| |answer| |#4|) (|:| -3231 |#4|)) |#4| (-1 |#2| |#2|)))) (-343) (-1153 |#1|) (-1153 (-387 |#2|)) (-322 |#1| |#2| |#3|)) (T -526))
-((-1379 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-343)) (-4 *7 (-1153 (-387 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3231 *3))) (-5 *1 (-526 *5 *6 *7 *3)) (-4 *3 (-322 *5 *6 *7)))))
-(-10 -7 (-15 -1379 ((-2 (|:| |answer| |#4|) (|:| -3231 |#4|)) |#4| (-1 |#2| |#2|))))
-((-1379 (((-2 (|:| |answer| (-387 |#2|)) (|:| -3231 (-387 |#2|)) (|:| |specpart| (-387 |#2|)) (|:| |polypart| |#2|)) (-387 |#2|) (-1 |#2| |#2|)) 18)))
-(((-527 |#1| |#2|) (-10 -7 (-15 -1379 ((-2 (|:| |answer| (-387 |#2|)) (|:| -3231 (-387 |#2|)) (|:| |specpart| (-387 |#2|)) (|:| |polypart| |#2|)) (-387 |#2|) (-1 |#2| |#2|)))) (-343) (-1153 |#1|)) (T -527))
-((-1379 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-343)) (-5 *2 (-2 (|:| |answer| (-387 *6)) (|:| -3231 (-387 *6)) (|:| |specpart| (-387 *6)) (|:| |polypart| *6))) (-5 *1 (-527 *5 *6)) (-5 *3 (-387 *6)))))
-(-10 -7 (-15 -1379 ((-2 (|:| |answer| (-387 |#2|)) (|:| -3231 (-387 |#2|)) (|:| |specpart| (-387 |#2|)) (|:| |polypart| |#2|)) (-387 |#2|) (-1 |#2| |#2|))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 25)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 87)) (-1738 (($ $) 88)) (-1811 (((-110) $) NIL)) (-3251 (($ $ $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2264 (($ $ $ $) 42)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-2213 (((-110) $ $) NIL)) (-3605 (((-528) $) NIL)) (-2950 (($ $ $) 81)) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-528) "failed") $) NIL)) (-2409 (((-528) $) NIL)) (-3519 (($ $ $) 80)) (-2120 (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) 61) (((-635 (-528)) (-635 $)) 57)) (-1312 (((-3 $ "failed") $) 84)) (-1793 (((-3 (-387 (-528)) "failed") $) NIL)) (-3650 (((-110) $) NIL)) (-3099 (((-387 (-528)) $) NIL)) (-1338 (($) 63) (($ $) 64)) (-3498 (($ $ $) 79)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2124 (((-110) $) NIL)) (-2146 (($ $ $ $) NIL)) (-1841 (($ $ $) 54)) (-3657 (((-110) $) NIL)) (-1752 (($ $ $) NIL)) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL)) (-1297 (((-110) $) 26)) (-2580 (((-110) $) 74)) (-3296 (((-3 $ "failed") $) NIL)) (-3710 (((-110) $) 34)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-1575 (($ $ $ $) 43)) (-1436 (($ $ $) 76)) (-1736 (($ $ $) 75)) (-3019 (($ $) NIL)) (-1584 (($ $) 40)) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) 53)) (-1627 (($ $ $) NIL)) (-4197 (($) NIL T CONST)) (-3715 (($ $) 31)) (-2495 (((-1042) $) NIL) (($ $) 33)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 118)) (-2088 (($ $ $) 85) (($ (-595 $)) NIL)) (-3918 (($ $) NIL)) (-2437 (((-398 $) $) 104)) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL)) (-3477 (((-3 $ "failed") $ $) 83)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3578 (((-110) $) NIL)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 78)) (-3235 (($ $ (-717)) NIL) (($ $) NIL)) (-1691 (($ $) 32)) (-2406 (($ $) 30)) (-3155 (((-528) $) 39) (((-504) $) 51) (((-831 (-528)) $) NIL) (((-359) $) 46) (((-207) $) 48) (((-1078) $) 52)) (-2222 (((-802) $) 37) (($ (-528)) 38) (($ $) NIL) (($ (-528)) 38)) (-3742 (((-717)) NIL)) (-2608 (((-110) $ $) NIL)) (-3709 (($ $ $) NIL)) (-2911 (($) 29)) (-4016 (((-110) $ $) NIL)) (-2901 (($ $ $ $) 41)) (-1775 (($ $) 62)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 27 T CONST)) (-2982 (($) 28 T CONST)) (-1256 (((-1078) $) 20) (((-1078) $ (-110)) 22) (((-1182) (-768) $) 23) (((-1182) (-768) $ (-110)) 24)) (-3245 (($ $ (-717)) NIL) (($ $) NIL)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 65)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 66)) (-2286 (($ $) 67) (($ $ $) 69)) (-2275 (($ $ $) 68)) (** (($ $ (-860)) NIL) (($ $ (-717)) 73)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 71) (($ $ $) 70)))
-(((-528) (-13 (-513) (-570 (-1078)) (-774) (-10 -8 (-15 -1338 ($ $)) (-6 -4251) (-6 -4256) (-6 -4252) (-6 -4246)))) (T -528))
-((-1338 (*1 *1 *1) (-5 *1 (-528))))
-(-13 (-513) (-570 (-1078)) (-774) (-10 -8 (-15 -1338 ($ $)) (-6 -4251) (-6 -4256) (-6 -4252) (-6 -4246)))
-((-2702 (((-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078))) (|:| |extra| (-970))) (-715) (-992)) 108) (((-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078))) (|:| |extra| (-970))) (-715)) 110)) (-1923 (((-3 (-970) "failed") (-296 (-359)) (-1016 (-786 (-359))) (-1095)) 172) (((-3 (-970) "failed") (-296 (-359)) (-1016 (-786 (-359))) (-1078)) 171) (((-970) (-296 (-359)) (-595 (-1018 (-786 (-359)))) (-359) (-359) (-992)) 176) (((-970) (-296 (-359)) (-595 (-1018 (-786 (-359)))) (-359) (-359)) 177) (((-970) (-296 (-359)) (-595 (-1018 (-786 (-359)))) (-359)) 178) (((-970) (-296 (-359)) (-595 (-1018 (-786 (-359))))) 179) (((-970) (-296 (-359)) (-1018 (-786 (-359)))) 167) (((-970) (-296 (-359)) (-1018 (-786 (-359))) (-359)) 166) (((-970) (-296 (-359)) (-1018 (-786 (-359))) (-359) (-359)) 162) (((-970) (-715)) 155) (((-970) (-296 (-359)) (-1018 (-786 (-359))) (-359) (-359) (-992)) 161)))
-(((-529) (-10 -7 (-15 -1923 ((-970) (-296 (-359)) (-1018 (-786 (-359))) (-359) (-359) (-992))) (-15 -1923 ((-970) (-715))) (-15 -1923 ((-970) (-296 (-359)) (-1018 (-786 (-359))) (-359) (-359))) (-15 -1923 ((-970) (-296 (-359)) (-1018 (-786 (-359))) (-359))) (-15 -1923 ((-970) (-296 (-359)) (-1018 (-786 (-359))))) (-15 -1923 ((-970) (-296 (-359)) (-595 (-1018 (-786 (-359)))))) (-15 -1923 ((-970) (-296 (-359)) (-595 (-1018 (-786 (-359)))) (-359))) (-15 -1923 ((-970) (-296 (-359)) (-595 (-1018 (-786 (-359)))) (-359) (-359))) (-15 -1923 ((-970) (-296 (-359)) (-595 (-1018 (-786 (-359)))) (-359) (-359) (-992))) (-15 -2702 ((-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078))) (|:| |extra| (-970))) (-715))) (-15 -2702 ((-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078))) (|:| |extra| (-970))) (-715) (-992))) (-15 -1923 ((-3 (-970) "failed") (-296 (-359)) (-1016 (-786 (-359))) (-1078))) (-15 -1923 ((-3 (-970) "failed") (-296 (-359)) (-1016 (-786 (-359))) (-1095))))) (T -529))
-((-1923 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-296 (-359))) (-5 *4 (-1016 (-786 (-359)))) (-5 *5 (-1095)) (-5 *2 (-970)) (-5 *1 (-529)))) (-1923 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-296 (-359))) (-5 *4 (-1016 (-786 (-359)))) (-5 *5 (-1078)) (-5 *2 (-970)) (-5 *1 (-529)))) (-2702 (*1 *2 *3 *4) (-12 (-5 *3 (-715)) (-5 *4 (-992)) (-5 *2 (-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078))) (|:| |extra| (-970)))) (-5 *1 (-529)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-715)) (-5 *2 (-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078))) (|:| |extra| (-970)))) (-5 *1 (-529)))) (-1923 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-296 (-359))) (-5 *4 (-595 (-1018 (-786 (-359))))) (-5 *5 (-359)) (-5 *6 (-992)) (-5 *2 (-970)) (-5 *1 (-529)))) (-1923 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-296 (-359))) (-5 *4 (-595 (-1018 (-786 (-359))))) (-5 *5 (-359)) (-5 *2 (-970)) (-5 *1 (-529)))) (-1923 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-296 (-359))) (-5 *4 (-595 (-1018 (-786 (-359))))) (-5 *5 (-359)) (-5 *2 (-970)) (-5 *1 (-529)))) (-1923 (*1 *2 *3 *4) (-12 (-5 *3 (-296 (-359))) (-5 *4 (-595 (-1018 (-786 (-359))))) (-5 *2 (-970)) (-5 *1 (-529)))) (-1923 (*1 *2 *3 *4) (-12 (-5 *3 (-296 (-359))) (-5 *4 (-1018 (-786 (-359)))) (-5 *2 (-970)) (-5 *1 (-529)))) (-1923 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-296 (-359))) (-5 *4 (-1018 (-786 (-359)))) (-5 *5 (-359)) (-5 *2 (-970)) (-5 *1 (-529)))) (-1923 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-296 (-359))) (-5 *4 (-1018 (-786 (-359)))) (-5 *5 (-359)) (-5 *2 (-970)) (-5 *1 (-529)))) (-1923 (*1 *2 *3) (-12 (-5 *3 (-715)) (-5 *2 (-970)) (-5 *1 (-529)))) (-1923 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-296 (-359))) (-5 *4 (-1018 (-786 (-359)))) (-5 *5 (-359)) (-5 *6 (-992)) (-5 *2 (-970)) (-5 *1 (-529)))))
-(-10 -7 (-15 -1923 ((-970) (-296 (-359)) (-1018 (-786 (-359))) (-359) (-359) (-992))) (-15 -1923 ((-970) (-715))) (-15 -1923 ((-970) (-296 (-359)) (-1018 (-786 (-359))) (-359) (-359))) (-15 -1923 ((-970) (-296 (-359)) (-1018 (-786 (-359))) (-359))) (-15 -1923 ((-970) (-296 (-359)) (-1018 (-786 (-359))))) (-15 -1923 ((-970) (-296 (-359)) (-595 (-1018 (-786 (-359)))))) (-15 -1923 ((-970) (-296 (-359)) (-595 (-1018 (-786 (-359)))) (-359))) (-15 -1923 ((-970) (-296 (-359)) (-595 (-1018 (-786 (-359)))) (-359) (-359))) (-15 -1923 ((-970) (-296 (-359)) (-595 (-1018 (-786 (-359)))) (-359) (-359) (-992))) (-15 -2702 ((-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078))) (|:| |extra| (-970))) (-715))) (-15 -2702 ((-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078))) (|:| |extra| (-970))) (-715) (-992))) (-15 -1923 ((-3 (-970) "failed") (-296 (-359)) (-1016 (-786 (-359))) (-1078))) (-15 -1923 ((-3 (-970) "failed") (-296 (-359)) (-1016 (-786 (-359))) (-1095))))
-((-1279 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-568 |#2|) (-568 |#2|) (-595 |#2|)) 184)) (-3799 (((-545 |#2|) |#2| (-568 |#2|) (-568 |#2|)) 98)) (-4110 (((-3 (-2 (|:| -1497 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-568 |#2|) (-568 |#2|) |#2|) 180)) (-2532 (((-3 |#2| "failed") |#2| |#2| |#2| (-568 |#2|) (-568 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1095))) 189)) (-2063 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1400 (-595 |#2|))) |#3| |#2| (-568 |#2|) (-568 |#2|) (-1095)) 197 (|has| |#3| (-605 |#2|)))))
-(((-530 |#1| |#2| |#3|) (-10 -7 (-15 -3799 ((-545 |#2|) |#2| (-568 |#2|) (-568 |#2|))) (-15 -4110 ((-3 (-2 (|:| -1497 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-568 |#2|) (-568 |#2|) |#2|)) (-15 -1279 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-568 |#2|) (-568 |#2|) (-595 |#2|))) (-15 -2532 ((-3 |#2| "failed") |#2| |#2| |#2| (-568 |#2|) (-568 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1095)))) (IF (|has| |#3| (-605 |#2|)) (-15 -2063 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1400 (-595 |#2|))) |#3| |#2| (-568 |#2|) (-568 |#2|) (-1095))) |%noBranch|)) (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528))) (-13 (-410 |#1|) (-27) (-1117)) (-1023)) (T -530))
-((-2063 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-568 *4)) (-5 *6 (-1095)) (-4 *4 (-13 (-410 *7) (-27) (-1117))) (-4 *7 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1400 (-595 *4)))) (-5 *1 (-530 *7 *4 *3)) (-4 *3 (-605 *4)) (-4 *3 (-1023)))) (-2532 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-568 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1095))) (-4 *2 (-13 (-410 *5) (-27) (-1117))) (-4 *5 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528)))) (-5 *1 (-530 *5 *2 *6)) (-4 *6 (-1023)))) (-1279 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-568 *3)) (-5 *5 (-595 *3)) (-4 *3 (-13 (-410 *6) (-27) (-1117))) (-4 *6 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-530 *6 *3 *7)) (-4 *7 (-1023)))) (-4110 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-568 *3)) (-4 *3 (-13 (-410 *5) (-27) (-1117))) (-4 *5 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528)))) (-5 *2 (-2 (|:| -1497 *3) (|:| |coeff| *3))) (-5 *1 (-530 *5 *3 *6)) (-4 *6 (-1023)))) (-3799 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-568 *3)) (-4 *3 (-13 (-410 *5) (-27) (-1117))) (-4 *5 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528)))) (-5 *2 (-545 *3)) (-5 *1 (-530 *5 *3 *6)) (-4 *6 (-1023)))))
-(-10 -7 (-15 -3799 ((-545 |#2|) |#2| (-568 |#2|) (-568 |#2|))) (-15 -4110 ((-3 (-2 (|:| -1497 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-568 |#2|) (-568 |#2|) |#2|)) (-15 -1279 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-568 |#2|) (-568 |#2|) (-595 |#2|))) (-15 -2532 ((-3 |#2| "failed") |#2| |#2| |#2| (-568 |#2|) (-568 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1095)))) (IF (|has| |#3| (-605 |#2|)) (-15 -2063 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1400 (-595 |#2|))) |#3| |#2| (-568 |#2|) (-568 |#2|) (-1095))) |%noBranch|))
-((-3457 (((-2 (|:| -2192 |#2|) (|:| |nconst| |#2|)) |#2| (-1095)) 64)) (-1294 (((-3 |#2| "failed") |#2| (-1095) (-786 |#2|) (-786 |#2|)) 164 (-12 (|has| |#2| (-1059)) (|has| |#1| (-570 (-831 (-528)))) (|has| |#1| (-825 (-528))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1095)) 147 (-12 (|has| |#2| (-581)) (|has| |#1| (-570 (-831 (-528)))) (|has| |#1| (-825 (-528)))))) (-2837 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1095)) 148 (-12 (|has| |#2| (-581)) (|has| |#1| (-570 (-831 (-528)))) (|has| |#1| (-825 (-528)))))))
-(((-531 |#1| |#2|) (-10 -7 (-15 -3457 ((-2 (|:| -2192 |#2|) (|:| |nconst| |#2|)) |#2| (-1095))) (IF (|has| |#1| (-570 (-831 (-528)))) (IF (|has| |#1| (-825 (-528))) (PROGN (IF (|has| |#2| (-581)) (PROGN (-15 -2837 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1095))) (-15 -1294 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1095)))) |%noBranch|) (IF (|has| |#2| (-1059)) (-15 -1294 ((-3 |#2| "failed") |#2| (-1095) (-786 |#2|) (-786 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-793) (-972 (-528)) (-431) (-591 (-528))) (-13 (-27) (-1117) (-410 |#1|))) (T -531))
-((-1294 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1095)) (-5 *4 (-786 *2)) (-4 *2 (-1059)) (-4 *2 (-13 (-27) (-1117) (-410 *5))) (-4 *5 (-570 (-831 (-528)))) (-4 *5 (-825 (-528))) (-4 *5 (-13 (-793) (-972 (-528)) (-431) (-591 (-528)))) (-5 *1 (-531 *5 *2)))) (-1294 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1095)) (-4 *5 (-570 (-831 (-528)))) (-4 *5 (-825 (-528))) (-4 *5 (-13 (-793) (-972 (-528)) (-431) (-591 (-528)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-531 *5 *3)) (-4 *3 (-581)) (-4 *3 (-13 (-27) (-1117) (-410 *5))))) (-2837 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1095)) (-4 *5 (-570 (-831 (-528)))) (-4 *5 (-825 (-528))) (-4 *5 (-13 (-793) (-972 (-528)) (-431) (-591 (-528)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-531 *5 *3)) (-4 *3 (-581)) (-4 *3 (-13 (-27) (-1117) (-410 *5))))) (-3457 (*1 *2 *3 *4) (-12 (-5 *4 (-1095)) (-4 *5 (-13 (-793) (-972 (-528)) (-431) (-591 (-528)))) (-5 *2 (-2 (|:| -2192 *3) (|:| |nconst| *3))) (-5 *1 (-531 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *5))))))
-(-10 -7 (-15 -3457 ((-2 (|:| -2192 |#2|) (|:| |nconst| |#2|)) |#2| (-1095))) (IF (|has| |#1| (-570 (-831 (-528)))) (IF (|has| |#1| (-825 (-528))) (PROGN (IF (|has| |#2| (-581)) (PROGN (-15 -2837 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1095))) (-15 -1294 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1095)))) |%noBranch|) (IF (|has| |#2| (-1059)) (-15 -1294 ((-3 |#2| "failed") |#2| (-1095) (-786 |#2|) (-786 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-2706 (((-3 (-2 (|:| |mainpart| (-387 |#2|)) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| (-387 |#2|)) (|:| |logand| (-387 |#2|)))))) "failed") (-387 |#2|) (-595 (-387 |#2|))) 41)) (-1923 (((-545 (-387 |#2|)) (-387 |#2|)) 28)) (-3660 (((-3 (-387 |#2|) "failed") (-387 |#2|)) 17)) (-3020 (((-3 (-2 (|:| -1497 (-387 |#2|)) (|:| |coeff| (-387 |#2|))) "failed") (-387 |#2|) (-387 |#2|)) 48)))
-(((-532 |#1| |#2|) (-10 -7 (-15 -1923 ((-545 (-387 |#2|)) (-387 |#2|))) (-15 -3660 ((-3 (-387 |#2|) "failed") (-387 |#2|))) (-15 -3020 ((-3 (-2 (|:| -1497 (-387 |#2|)) (|:| |coeff| (-387 |#2|))) "failed") (-387 |#2|) (-387 |#2|))) (-15 -2706 ((-3 (-2 (|:| |mainpart| (-387 |#2|)) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| (-387 |#2|)) (|:| |logand| (-387 |#2|)))))) "failed") (-387 |#2|) (-595 (-387 |#2|))))) (-13 (-343) (-140) (-972 (-528))) (-1153 |#1|)) (T -532))
-((-2706 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-595 (-387 *6))) (-5 *3 (-387 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-343) (-140) (-972 (-528)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-532 *5 *6)))) (-3020 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-343) (-140) (-972 (-528)))) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| -1497 (-387 *5)) (|:| |coeff| (-387 *5)))) (-5 *1 (-532 *4 *5)) (-5 *3 (-387 *5)))) (-3660 (*1 *2 *2) (|partial| -12 (-5 *2 (-387 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-13 (-343) (-140) (-972 (-528)))) (-5 *1 (-532 *3 *4)))) (-1923 (*1 *2 *3) (-12 (-4 *4 (-13 (-343) (-140) (-972 (-528)))) (-4 *5 (-1153 *4)) (-5 *2 (-545 (-387 *5))) (-5 *1 (-532 *4 *5)) (-5 *3 (-387 *5)))))
-(-10 -7 (-15 -1923 ((-545 (-387 |#2|)) (-387 |#2|))) (-15 -3660 ((-3 (-387 |#2|) "failed") (-387 |#2|))) (-15 -3020 ((-3 (-2 (|:| -1497 (-387 |#2|)) (|:| |coeff| (-387 |#2|))) "failed") (-387 |#2|) (-387 |#2|))) (-15 -2706 ((-3 (-2 (|:| |mainpart| (-387 |#2|)) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| (-387 |#2|)) (|:| |logand| (-387 |#2|)))))) "failed") (-387 |#2|) (-595 (-387 |#2|)))))
-((-1347 (((-3 (-528) "failed") |#1|) 14)) (-1485 (((-110) |#1|) 13)) (-3701 (((-528) |#1|) 9)))
-(((-533 |#1|) (-10 -7 (-15 -3701 ((-528) |#1|)) (-15 -1485 ((-110) |#1|)) (-15 -1347 ((-3 (-528) "failed") |#1|))) (-972 (-528))) (T -533))
-((-1347 (*1 *2 *3) (|partial| -12 (-5 *2 (-528)) (-5 *1 (-533 *3)) (-4 *3 (-972 *2)))) (-1485 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-533 *3)) (-4 *3 (-972 (-528))))) (-3701 (*1 *2 *3) (-12 (-5 *2 (-528)) (-5 *1 (-533 *3)) (-4 *3 (-972 *2)))))
-(-10 -7 (-15 -3701 ((-528) |#1|)) (-15 -1485 ((-110) |#1|)) (-15 -1347 ((-3 (-528) "failed") |#1|)))
-((-2865 (((-3 (-2 (|:| |mainpart| (-387 (-891 |#1|))) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| (-387 (-891 |#1|))) (|:| |logand| (-387 (-891 |#1|))))))) "failed") (-387 (-891 |#1|)) (-1095) (-595 (-387 (-891 |#1|)))) 48)) (-2399 (((-545 (-387 (-891 |#1|))) (-387 (-891 |#1|)) (-1095)) 28)) (-2333 (((-3 (-387 (-891 |#1|)) "failed") (-387 (-891 |#1|)) (-1095)) 23)) (-3230 (((-3 (-2 (|:| -1497 (-387 (-891 |#1|))) (|:| |coeff| (-387 (-891 |#1|)))) "failed") (-387 (-891 |#1|)) (-1095) (-387 (-891 |#1|))) 35)))
-(((-534 |#1|) (-10 -7 (-15 -2399 ((-545 (-387 (-891 |#1|))) (-387 (-891 |#1|)) (-1095))) (-15 -2333 ((-3 (-387 (-891 |#1|)) "failed") (-387 (-891 |#1|)) (-1095))) (-15 -2865 ((-3 (-2 (|:| |mainpart| (-387 (-891 |#1|))) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| (-387 (-891 |#1|))) (|:| |logand| (-387 (-891 |#1|))))))) "failed") (-387 (-891 |#1|)) (-1095) (-595 (-387 (-891 |#1|))))) (-15 -3230 ((-3 (-2 (|:| -1497 (-387 (-891 |#1|))) (|:| |coeff| (-387 (-891 |#1|)))) "failed") (-387 (-891 |#1|)) (-1095) (-387 (-891 |#1|))))) (-13 (-520) (-972 (-528)) (-140))) (T -534))
-((-3230 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1095)) (-4 *5 (-13 (-520) (-972 (-528)) (-140))) (-5 *2 (-2 (|:| -1497 (-387 (-891 *5))) (|:| |coeff| (-387 (-891 *5))))) (-5 *1 (-534 *5)) (-5 *3 (-387 (-891 *5))))) (-2865 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1095)) (-5 *5 (-595 (-387 (-891 *6)))) (-5 *3 (-387 (-891 *6))) (-4 *6 (-13 (-520) (-972 (-528)) (-140))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-534 *6)))) (-2333 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-387 (-891 *4))) (-5 *3 (-1095)) (-4 *4 (-13 (-520) (-972 (-528)) (-140))) (-5 *1 (-534 *4)))) (-2399 (*1 *2 *3 *4) (-12 (-5 *4 (-1095)) (-4 *5 (-13 (-520) (-972 (-528)) (-140))) (-5 *2 (-545 (-387 (-891 *5)))) (-5 *1 (-534 *5)) (-5 *3 (-387 (-891 *5))))))
-(-10 -7 (-15 -2399 ((-545 (-387 (-891 |#1|))) (-387 (-891 |#1|)) (-1095))) (-15 -2333 ((-3 (-387 (-891 |#1|)) "failed") (-387 (-891 |#1|)) (-1095))) (-15 -2865 ((-3 (-2 (|:| |mainpart| (-387 (-891 |#1|))) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| (-387 (-891 |#1|))) (|:| |logand| (-387 (-891 |#1|))))))) "failed") (-387 (-891 |#1|)) (-1095) (-595 (-387 (-891 |#1|))))) (-15 -3230 ((-3 (-2 (|:| -1497 (-387 (-891 |#1|))) (|:| |coeff| (-387 (-891 |#1|)))) "failed") (-387 (-891 |#1|)) (-1095) (-387 (-891 |#1|)))))
-((-2207 (((-110) $ $) 59)) (-1359 (((-110) $) 36)) (-1374 ((|#1| $) 30)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) 63)) (-2880 (($ $) 123)) (-2735 (($ $) 103)) (-3622 ((|#1| $) 28)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2450 (($ $) NIL)) (-2859 (($ $) 125)) (-2712 (($ $) 99)) (-2904 (($ $) 127)) (-2761 (($ $) 107)) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-528) "failed") $) 78)) (-2409 (((-528) $) 80)) (-1312 (((-3 $ "failed") $) 62)) (-3039 (($ |#1| |#1|) 26)) (-3657 (((-110) $) 33)) (-1505 (($) 89)) (-1297 (((-110) $) 43)) (-2796 (($ $ (-528)) NIL)) (-3710 (((-110) $) 34)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-2097 (($ $) 91)) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2243 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-387 (-528))) 77)) (-1472 ((|#1| $) 27)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) 65) (($ (-595 $)) NIL)) (-3477 (((-3 $ "failed") $ $) 64)) (-2656 (($ $) 93)) (-2917 (($ $) 131)) (-2773 (($ $) 105)) (-2892 (($ $) 133)) (-2749 (($ $) 109)) (-2869 (($ $) 129)) (-2724 (($ $) 101)) (-3049 (((-110) $ |#1|) 31)) (-2222 (((-802) $) 85) (($ (-528)) 67) (($ $) NIL) (($ (-528)) 67)) (-3742 (((-717)) 87)) (-2953 (($ $) 145)) (-2811 (($ $) 115)) (-4016 (((-110) $ $) NIL)) (-2928 (($ $) 143)) (-2784 (($ $) 111)) (-2981 (($ $) 141)) (-2836 (($ $) 121)) (-3592 (($ $) 139)) (-2846 (($ $) 119)) (-2967 (($ $) 137)) (-2825 (($ $) 117)) (-2940 (($ $) 135)) (-2797 (($ $) 113)) (-2690 (($ $ (-860)) 55) (($ $ (-717)) NIL)) (-2969 (($) 21 T CONST)) (-2982 (($) 10 T CONST)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 37)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 35)) (-2286 (($ $) 41) (($ $ $) 42)) (-2275 (($ $ $) 40)) (** (($ $ (-860)) 54) (($ $ (-717)) NIL) (($ $ $) 95) (($ $ (-387 (-528))) 147)) (* (($ (-860) $) 51) (($ (-717) $) NIL) (($ (-528) $) 50) (($ $ $) 48)))
-(((-535 |#1|) (-518 |#1|) (-13 (-384) (-1117))) (T -535))
-NIL
-(-518 |#1|)
-((-4159 (((-3 (-595 (-1091 (-528))) "failed") (-595 (-1091 (-528))) (-1091 (-528))) 24)))
-(((-536) (-10 -7 (-15 -4159 ((-3 (-595 (-1091 (-528))) "failed") (-595 (-1091 (-528))) (-1091 (-528)))))) (T -536))
-((-4159 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-595 (-1091 (-528)))) (-5 *3 (-1091 (-528))) (-5 *1 (-536)))))
-(-10 -7 (-15 -4159 ((-3 (-595 (-1091 (-528))) "failed") (-595 (-1091 (-528))) (-1091 (-528)))))
-((-2763 (((-595 (-568 |#2|)) (-595 (-568 |#2|)) (-1095)) 19)) (-3416 (((-595 (-568 |#2|)) (-595 |#2|) (-1095)) 23)) (-4123 (((-595 (-568 |#2|)) (-595 (-568 |#2|)) (-595 (-568 |#2|))) 11)) (-2058 ((|#2| |#2| (-1095)) 54 (|has| |#1| (-520)))) (-2559 ((|#2| |#2| (-1095)) 78 (-12 (|has| |#2| (-265)) (|has| |#1| (-431))))) (-4127 (((-568 |#2|) (-568 |#2|) (-595 (-568 |#2|)) (-1095)) 25)) (-3461 (((-568 |#2|) (-595 (-568 |#2|))) 24)) (-2060 (((-545 |#2|) |#2| (-1095) (-1 (-545 |#2|) |#2| (-1095)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1095))) 103 (-12 (|has| |#2| (-265)) (|has| |#2| (-581)) (|has| |#2| (-972 (-1095))) (|has| |#1| (-570 (-831 (-528)))) (|has| |#1| (-431)) (|has| |#1| (-825 (-528)))))))
-(((-537 |#1| |#2|) (-10 -7 (-15 -2763 ((-595 (-568 |#2|)) (-595 (-568 |#2|)) (-1095))) (-15 -3461 ((-568 |#2|) (-595 (-568 |#2|)))) (-15 -4127 ((-568 |#2|) (-568 |#2|) (-595 (-568 |#2|)) (-1095))) (-15 -4123 ((-595 (-568 |#2|)) (-595 (-568 |#2|)) (-595 (-568 |#2|)))) (-15 -3416 ((-595 (-568 |#2|)) (-595 |#2|) (-1095))) (IF (|has| |#1| (-520)) (-15 -2058 (|#2| |#2| (-1095))) |%noBranch|) (IF (|has| |#1| (-431)) (IF (|has| |#2| (-265)) (PROGN (-15 -2559 (|#2| |#2| (-1095))) (IF (|has| |#1| (-570 (-831 (-528)))) (IF (|has| |#1| (-825 (-528))) (IF (|has| |#2| (-581)) (IF (|has| |#2| (-972 (-1095))) (-15 -2060 ((-545 |#2|) |#2| (-1095) (-1 (-545 |#2|) |#2| (-1095)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1095)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-793) (-410 |#1|)) (T -537))
-((-2060 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-545 *3) *3 (-1095))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1095))) (-4 *3 (-265)) (-4 *3 (-581)) (-4 *3 (-972 *4)) (-4 *3 (-410 *7)) (-5 *4 (-1095)) (-4 *7 (-570 (-831 (-528)))) (-4 *7 (-431)) (-4 *7 (-825 (-528))) (-4 *7 (-793)) (-5 *2 (-545 *3)) (-5 *1 (-537 *7 *3)))) (-2559 (*1 *2 *2 *3) (-12 (-5 *3 (-1095)) (-4 *4 (-431)) (-4 *4 (-793)) (-5 *1 (-537 *4 *2)) (-4 *2 (-265)) (-4 *2 (-410 *4)))) (-2058 (*1 *2 *2 *3) (-12 (-5 *3 (-1095)) (-4 *4 (-520)) (-4 *4 (-793)) (-5 *1 (-537 *4 *2)) (-4 *2 (-410 *4)))) (-3416 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *6)) (-5 *4 (-1095)) (-4 *6 (-410 *5)) (-4 *5 (-793)) (-5 *2 (-595 (-568 *6))) (-5 *1 (-537 *5 *6)))) (-4123 (*1 *2 *2 *2) (-12 (-5 *2 (-595 (-568 *4))) (-4 *4 (-410 *3)) (-4 *3 (-793)) (-5 *1 (-537 *3 *4)))) (-4127 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-595 (-568 *6))) (-5 *4 (-1095)) (-5 *2 (-568 *6)) (-4 *6 (-410 *5)) (-4 *5 (-793)) (-5 *1 (-537 *5 *6)))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-595 (-568 *5))) (-4 *4 (-793)) (-5 *2 (-568 *5)) (-5 *1 (-537 *4 *5)) (-4 *5 (-410 *4)))) (-2763 (*1 *2 *2 *3) (-12 (-5 *2 (-595 (-568 *5))) (-5 *3 (-1095)) (-4 *5 (-410 *4)) (-4 *4 (-793)) (-5 *1 (-537 *4 *5)))))
-(-10 -7 (-15 -2763 ((-595 (-568 |#2|)) (-595 (-568 |#2|)) (-1095))) (-15 -3461 ((-568 |#2|) (-595 (-568 |#2|)))) (-15 -4127 ((-568 |#2|) (-568 |#2|) (-595 (-568 |#2|)) (-1095))) (-15 -4123 ((-595 (-568 |#2|)) (-595 (-568 |#2|)) (-595 (-568 |#2|)))) (-15 -3416 ((-595 (-568 |#2|)) (-595 |#2|) (-1095))) (IF (|has| |#1| (-520)) (-15 -2058 (|#2| |#2| (-1095))) |%noBranch|) (IF (|has| |#1| (-431)) (IF (|has| |#2| (-265)) (PROGN (-15 -2559 (|#2| |#2| (-1095))) (IF (|has| |#1| (-570 (-831 (-528)))) (IF (|has| |#1| (-825 (-528))) (IF (|has| |#2| (-581)) (IF (|has| |#2| (-972 (-1095))) (-15 -2060 ((-545 |#2|) |#2| (-1095) (-1 (-545 |#2|) |#2| (-1095)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1095)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-1878 (((-2 (|:| |answer| (-545 (-387 |#2|))) (|:| |a0| |#1|)) (-387 |#2|) (-1 |#2| |#2|) (-1 (-3 (-595 |#1|) "failed") (-528) |#1| |#1|)) 172)) (-2391 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-387 |#2|)) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| (-387 |#2|)) (|:| |logand| (-387 |#2|))))))) (|:| |a0| |#1|)) "failed") (-387 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1497 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-595 (-387 |#2|))) 148)) (-1679 (((-3 (-2 (|:| |mainpart| (-387 |#2|)) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| (-387 |#2|)) (|:| |logand| (-387 |#2|)))))) "failed") (-387 |#2|) (-1 |#2| |#2|) (-595 (-387 |#2|))) 145)) (-2093 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1497 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-3511 (((-2 (|:| |answer| (-545 (-387 |#2|))) (|:| |a0| |#1|)) (-387 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1497 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-3221 (((-3 (-2 (|:| -1497 (-387 |#2|)) (|:| |coeff| (-387 |#2|))) "failed") (-387 |#2|) (-1 |#2| |#2|) (-387 |#2|)) 175)) (-1960 (((-3 (-2 (|:| |answer| (-387 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1497 (-387 |#2|)) (|:| |coeff| (-387 |#2|))) "failed") (-387 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1497 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-387 |#2|)) 178)) (-1559 (((-2 (|:| |ir| (-545 (-387 |#2|))) (|:| |specpart| (-387 |#2|)) (|:| |polypart| |#2|)) (-387 |#2|) (-1 |#2| |#2|)) 84)) (-3454 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-3544 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-387 |#2|)) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| (-387 |#2|)) (|:| |logand| (-387 |#2|))))))) (|:| |a0| |#1|)) "failed") (-387 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3572 |#1|) (|:| |sol?| (-110))) (-528) |#1|) (-595 (-387 |#2|))) 152)) (-3203 (((-3 (-576 |#1| |#2|) "failed") (-576 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3572 |#1|) (|:| |sol?| (-110))) (-528) |#1|)) 137)) (-2896 (((-2 (|:| |answer| (-545 (-387 |#2|))) (|:| |a0| |#1|)) (-387 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3572 |#1|) (|:| |sol?| (-110))) (-528) |#1|)) 162)) (-2824 (((-3 (-2 (|:| |answer| (-387 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1497 (-387 |#2|)) (|:| |coeff| (-387 |#2|))) "failed") (-387 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3572 |#1|) (|:| |sol?| (-110))) (-528) |#1|) (-387 |#2|)) 183)))
-(((-538 |#1| |#2|) (-10 -7 (-15 -3511 ((-2 (|:| |answer| (-545 (-387 |#2|))) (|:| |a0| |#1|)) (-387 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1497 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2896 ((-2 (|:| |answer| (-545 (-387 |#2|))) (|:| |a0| |#1|)) (-387 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3572 |#1|) (|:| |sol?| (-110))) (-528) |#1|))) (-15 -1878 ((-2 (|:| |answer| (-545 (-387 |#2|))) (|:| |a0| |#1|)) (-387 |#2|) (-1 |#2| |#2|) (-1 (-3 (-595 |#1|) "failed") (-528) |#1| |#1|))) (-15 -1960 ((-3 (-2 (|:| |answer| (-387 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1497 (-387 |#2|)) (|:| |coeff| (-387 |#2|))) "failed") (-387 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1497 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-387 |#2|))) (-15 -2824 ((-3 (-2 (|:| |answer| (-387 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1497 (-387 |#2|)) (|:| |coeff| (-387 |#2|))) "failed") (-387 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3572 |#1|) (|:| |sol?| (-110))) (-528) |#1|) (-387 |#2|))) (-15 -2391 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-387 |#2|)) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| (-387 |#2|)) (|:| |logand| (-387 |#2|))))))) (|:| |a0| |#1|)) "failed") (-387 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1497 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-595 (-387 |#2|)))) (-15 -3544 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-387 |#2|)) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| (-387 |#2|)) (|:| |logand| (-387 |#2|))))))) (|:| |a0| |#1|)) "failed") (-387 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3572 |#1|) (|:| |sol?| (-110))) (-528) |#1|) (-595 (-387 |#2|)))) (-15 -3221 ((-3 (-2 (|:| -1497 (-387 |#2|)) (|:| |coeff| (-387 |#2|))) "failed") (-387 |#2|) (-1 |#2| |#2|) (-387 |#2|))) (-15 -1679 ((-3 (-2 (|:| |mainpart| (-387 |#2|)) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| (-387 |#2|)) (|:| |logand| (-387 |#2|)))))) "failed") (-387 |#2|) (-1 |#2| |#2|) (-595 (-387 |#2|)))) (-15 -2093 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1497 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3203 ((-3 (-576 |#1| |#2|) "failed") (-576 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3572 |#1|) (|:| |sol?| (-110))) (-528) |#1|))) (-15 -1559 ((-2 (|:| |ir| (-545 (-387 |#2|))) (|:| |specpart| (-387 |#2|)) (|:| |polypart| |#2|)) (-387 |#2|) (-1 |#2| |#2|))) (-15 -3454 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-343) (-1153 |#1|)) (T -538))
-((-3454 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-343)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-538 *5 *3)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-343)) (-5 *2 (-2 (|:| |ir| (-545 (-387 *6))) (|:| |specpart| (-387 *6)) (|:| |polypart| *6))) (-5 *1 (-538 *5 *6)) (-5 *3 (-387 *6)))) (-3203 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-576 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3572 *4) (|:| |sol?| (-110))) (-528) *4)) (-4 *4 (-343)) (-4 *5 (-1153 *4)) (-5 *1 (-538 *4 *5)))) (-2093 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1497 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-343)) (-5 *1 (-538 *4 *2)) (-4 *2 (-1153 *4)))) (-1679 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-595 (-387 *7))) (-4 *7 (-1153 *6)) (-5 *3 (-387 *7)) (-4 *6 (-343)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-538 *6 *7)))) (-3221 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-343)) (-5 *2 (-2 (|:| -1497 (-387 *6)) (|:| |coeff| (-387 *6)))) (-5 *1 (-538 *5 *6)) (-5 *3 (-387 *6)))) (-3544 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3572 *7) (|:| |sol?| (-110))) (-528) *7)) (-5 *6 (-595 (-387 *8))) (-4 *7 (-343)) (-4 *8 (-1153 *7)) (-5 *3 (-387 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-538 *7 *8)))) (-2391 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1497 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-595 (-387 *8))) (-4 *7 (-343)) (-4 *8 (-1153 *7)) (-5 *3 (-387 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-538 *7 *8)))) (-2824 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3572 *6) (|:| |sol?| (-110))) (-528) *6)) (-4 *6 (-343)) (-4 *7 (-1153 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-387 *7)) (|:| |a0| *6)) (-2 (|:| -1497 (-387 *7)) (|:| |coeff| (-387 *7))) "failed")) (-5 *1 (-538 *6 *7)) (-5 *3 (-387 *7)))) (-1960 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1497 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-343)) (-4 *7 (-1153 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-387 *7)) (|:| |a0| *6)) (-2 (|:| -1497 (-387 *7)) (|:| |coeff| (-387 *7))) "failed")) (-5 *1 (-538 *6 *7)) (-5 *3 (-387 *7)))) (-1878 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-595 *6) "failed") (-528) *6 *6)) (-4 *6 (-343)) (-4 *7 (-1153 *6)) (-5 *2 (-2 (|:| |answer| (-545 (-387 *7))) (|:| |a0| *6))) (-5 *1 (-538 *6 *7)) (-5 *3 (-387 *7)))) (-2896 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3572 *6) (|:| |sol?| (-110))) (-528) *6)) (-4 *6 (-343)) (-4 *7 (-1153 *6)) (-5 *2 (-2 (|:| |answer| (-545 (-387 *7))) (|:| |a0| *6))) (-5 *1 (-538 *6 *7)) (-5 *3 (-387 *7)))) (-3511 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1497 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-343)) (-4 *7 (-1153 *6)) (-5 *2 (-2 (|:| |answer| (-545 (-387 *7))) (|:| |a0| *6))) (-5 *1 (-538 *6 *7)) (-5 *3 (-387 *7)))))
-(-10 -7 (-15 -3511 ((-2 (|:| |answer| (-545 (-387 |#2|))) (|:| |a0| |#1|)) (-387 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1497 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2896 ((-2 (|:| |answer| (-545 (-387 |#2|))) (|:| |a0| |#1|)) (-387 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3572 |#1|) (|:| |sol?| (-110))) (-528) |#1|))) (-15 -1878 ((-2 (|:| |answer| (-545 (-387 |#2|))) (|:| |a0| |#1|)) (-387 |#2|) (-1 |#2| |#2|) (-1 (-3 (-595 |#1|) "failed") (-528) |#1| |#1|))) (-15 -1960 ((-3 (-2 (|:| |answer| (-387 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1497 (-387 |#2|)) (|:| |coeff| (-387 |#2|))) "failed") (-387 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1497 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-387 |#2|))) (-15 -2824 ((-3 (-2 (|:| |answer| (-387 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1497 (-387 |#2|)) (|:| |coeff| (-387 |#2|))) "failed") (-387 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3572 |#1|) (|:| |sol?| (-110))) (-528) |#1|) (-387 |#2|))) (-15 -2391 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-387 |#2|)) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| (-387 |#2|)) (|:| |logand| (-387 |#2|))))))) (|:| |a0| |#1|)) "failed") (-387 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1497 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-595 (-387 |#2|)))) (-15 -3544 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-387 |#2|)) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| (-387 |#2|)) (|:| |logand| (-387 |#2|))))))) (|:| |a0| |#1|)) "failed") (-387 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3572 |#1|) (|:| |sol?| (-110))) (-528) |#1|) (-595 (-387 |#2|)))) (-15 -3221 ((-3 (-2 (|:| -1497 (-387 |#2|)) (|:| |coeff| (-387 |#2|))) "failed") (-387 |#2|) (-1 |#2| |#2|) (-387 |#2|))) (-15 -1679 ((-3 (-2 (|:| |mainpart| (-387 |#2|)) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| (-387 |#2|)) (|:| |logand| (-387 |#2|)))))) "failed") (-387 |#2|) (-1 |#2| |#2|) (-595 (-387 |#2|)))) (-15 -2093 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1497 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3203 ((-3 (-576 |#1| |#2|) "failed") (-576 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3572 |#1|) (|:| |sol?| (-110))) (-528) |#1|))) (-15 -1559 ((-2 (|:| |ir| (-545 (-387 |#2|))) (|:| |specpart| (-387 |#2|)) (|:| |polypart| |#2|)) (-387 |#2|) (-1 |#2| |#2|))) (-15 -3454 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-4140 (((-3 |#2| "failed") |#2| (-1095) (-1095)) 10)))
-(((-539 |#1| |#2|) (-10 -7 (-15 -4140 ((-3 |#2| "failed") |#2| (-1095) (-1095)))) (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528))) (-13 (-1117) (-897) (-1059) (-29 |#1|))) (T -539))
-((-4140 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1095)) (-4 *4 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528)))) (-5 *1 (-539 *4 *2)) (-4 *2 (-13 (-1117) (-897) (-1059) (-29 *4))))))
-(-10 -7 (-15 -4140 ((-3 |#2| "failed") |#2| (-1095) (-1095))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2450 (($ $ (-528)) 66)) (-2213 (((-110) $ $) NIL)) (-2816 (($) NIL T CONST)) (-3333 (($ (-1091 (-528)) (-528)) 72)) (-3519 (($ $ $) NIL)) (-1312 (((-3 $ "failed") $) 58)) (-2006 (($ $) 34)) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-3689 (((-717) $) 15)) (-1297 (((-110) $) NIL)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-2874 (((-528)) 29)) (-2839 (((-528) $) 32)) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3740 (($ $ (-528)) 21)) (-3477 (((-3 $ "failed") $ $) 59)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3973 (((-717) $) 16)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 61)) (-1913 (((-1076 (-528)) $) 18)) (-3534 (($ $) 23)) (-2222 (((-802) $) 87) (($ (-528)) 52) (($ $) NIL)) (-3742 (((-717)) 14)) (-4016 (((-110) $ $) NIL)) (-4083 (((-528) $ (-528)) 36)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 35 T CONST)) (-2982 (($) 19 T CONST)) (-2186 (((-110) $ $) 39)) (-2286 (($ $) 51) (($ $ $) 37)) (-2275 (($ $ $) 50)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 54) (($ $ $) 55)))
-(((-540 |#1| |#2|) (-808 |#1|) (-528) (-110)) (T -540))
-NIL
-(-808 |#1|)
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 21)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3455 (((-110) $) NIL)) (-3370 (((-717)) NIL)) (-1323 (($ $ (-860)) NIL (|has| $ (-348))) (($ $) NIL)) (-2338 (((-1105 (-860) (-717)) (-528)) 47)) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-2213 (((-110) $ $) NIL)) (-2856 (((-717)) NIL)) (-2816 (($) NIL T CONST)) (-3001 (((-3 $ "failed") $) 75)) (-2409 (($ $) 74)) (-1945 (($ (-1177 $)) 73)) (-2413 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-3519 (($ $ $) NIL)) (-1312 (((-3 $ "failed") $) 32)) (-1338 (($) NIL)) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2916 (($) 49)) (-4086 (((-110) $) NIL)) (-2790 (($ $) NIL) (($ $ (-717)) NIL)) (-2124 (((-110) $) NIL)) (-3689 (((-779 (-860)) $) NIL) (((-860) $) NIL)) (-1297 (((-110) $) NIL)) (-2339 (($) 37 (|has| $ (-348)))) (-2581 (((-110) $) NIL (|has| $ (-348)))) (-3297 (($ $ (-860)) NIL (|has| $ (-348))) (($ $) NIL)) (-3296 (((-3 $ "failed") $) NIL)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3537 (((-1091 $) $ (-860)) NIL (|has| $ (-348))) (((-1091 $) $) 83)) (-3201 (((-860) $) 55)) (-2304 (((-1091 $) $) NIL (|has| $ (-348)))) (-2143 (((-3 (-1091 $) "failed") $ $) NIL (|has| $ (-348))) (((-1091 $) $) NIL (|has| $ (-348)))) (-3640 (($ $ (-1091 $)) NIL (|has| $ (-348)))) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL)) (-4197 (($) NIL T CONST)) (-3108 (($ (-860)) 48)) (-3148 (((-110) $) 67)) (-2495 (((-1042) $) NIL)) (-1261 (($) 19 (|has| $ (-348)))) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3010 (((-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528))))) 42)) (-2437 (((-398 $) $) NIL)) (-2209 (((-860)) 66) (((-779 (-860))) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3500 (((-3 (-717) "failed") $ $) NIL) (((-717) $) NIL)) (-3017 (((-130)) NIL)) (-3235 (($ $ (-717)) NIL) (($ $) NIL)) (-2935 (((-860) $) 65) (((-779 (-860)) $) NIL)) (-4090 (((-1091 $)) 82)) (-1984 (($) 54)) (-1469 (($) 38 (|has| $ (-348)))) (-4243 (((-635 $) (-1177 $)) NIL) (((-1177 $) $) 71)) (-3155 (((-528) $) 28)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL)) (-2222 (((-802) $) NIL) (($ (-528)) 30) (($ $) NIL) (($ (-387 (-528))) NIL)) (-3749 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3742 (((-717)) 39)) (-1400 (((-1177 $) (-860)) 77) (((-1177 $)) 76)) (-4016 (((-110) $ $) NIL)) (-2190 (((-110) $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) 22 T CONST)) (-2982 (($) 18 T CONST)) (-2698 (($ $ (-717)) NIL (|has| $ (-348))) (($ $) NIL (|has| $ (-348)))) (-3245 (($ $ (-717)) NIL) (($ $) NIL)) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) 26)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 61) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL)))
-(((-541 |#1|) (-13 (-329) (-309 $) (-570 (-528))) (-860)) (T -541))
-NIL
-(-13 (-329) (-309 $) (-570 (-528)))
-((-1893 (((-1182) (-1078)) 10)))
-(((-542) (-10 -7 (-15 -1893 ((-1182) (-1078))))) (T -542))
-((-1893 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-542)))))
-(-10 -7 (-15 -1893 ((-1182) (-1078))))
-((-2129 (((-545 |#2|) (-545 |#2|)) 40)) (-1535 (((-595 |#2|) (-545 |#2|)) 42)) (-3109 ((|#2| (-545 |#2|)) 48)))
-(((-543 |#1| |#2|) (-10 -7 (-15 -2129 ((-545 |#2|) (-545 |#2|))) (-15 -1535 ((-595 |#2|) (-545 |#2|))) (-15 -3109 (|#2| (-545 |#2|)))) (-13 (-431) (-972 (-528)) (-793) (-591 (-528))) (-13 (-29 |#1|) (-1117))) (T -543))
-((-3109 (*1 *2 *3) (-12 (-5 *3 (-545 *2)) (-4 *2 (-13 (-29 *4) (-1117))) (-5 *1 (-543 *4 *2)) (-4 *4 (-13 (-431) (-972 (-528)) (-793) (-591 (-528)))))) (-1535 (*1 *2 *3) (-12 (-5 *3 (-545 *5)) (-4 *5 (-13 (-29 *4) (-1117))) (-4 *4 (-13 (-431) (-972 (-528)) (-793) (-591 (-528)))) (-5 *2 (-595 *5)) (-5 *1 (-543 *4 *5)))) (-2129 (*1 *2 *2) (-12 (-5 *2 (-545 *4)) (-4 *4 (-13 (-29 *3) (-1117))) (-4 *3 (-13 (-431) (-972 (-528)) (-793) (-591 (-528)))) (-5 *1 (-543 *3 *4)))))
-(-10 -7 (-15 -2129 ((-545 |#2|) (-545 |#2|))) (-15 -1535 ((-595 |#2|) (-545 |#2|))) (-15 -3109 (|#2| (-545 |#2|))))
-((-3106 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1497 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1497 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-545 |#2|) (-1 |#2| |#1|) (-545 |#1|)) 30)))
-(((-544 |#1| |#2|) (-10 -7 (-15 -3106 ((-545 |#2|) (-1 |#2| |#1|) (-545 |#1|))) (-15 -3106 ((-3 (-2 (|:| -1497 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1497 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3106 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3106 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-343) (-343)) (T -544))
-((-3106 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-343)) (-4 *6 (-343)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-544 *5 *6)))) (-3106 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-343)) (-4 *2 (-343)) (-5 *1 (-544 *5 *2)))) (-3106 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1497 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-343)) (-4 *6 (-343)) (-5 *2 (-2 (|:| -1497 *6) (|:| |coeff| *6))) (-5 *1 (-544 *5 *6)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-545 *5)) (-4 *5 (-343)) (-4 *6 (-343)) (-5 *2 (-545 *6)) (-5 *1 (-544 *5 *6)))))
-(-10 -7 (-15 -3106 ((-545 |#2|) (-1 |#2| |#1|) (-545 |#1|))) (-15 -3106 ((-3 (-2 (|:| -1497 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1497 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3106 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3106 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#1| "failed") $) 69)) (-2409 ((|#1| $) NIL)) (-1497 ((|#1| $) 26)) (-3594 (((-595 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-3542 (($ |#1| (-595 (-2 (|:| |scalar| (-387 (-528))) (|:| |coeff| (-1091 |#1|)) (|:| |logand| (-1091 |#1|)))) (-595 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-3231 (((-595 (-2 (|:| |scalar| (-387 (-528))) (|:| |coeff| (-1091 |#1|)) (|:| |logand| (-1091 |#1|)))) $) 27)) (-3034 (((-1078) $) NIL)) (-1375 (($ |#1| |#1|) 33) (($ |#1| (-1095)) 44 (|has| |#1| (-972 (-1095))))) (-2495 (((-1042) $) NIL)) (-2007 (((-110) $) 30)) (-3235 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1095)) 82 (|has| |#1| (-839 (-1095))))) (-2222 (((-802) $) 96) (($ |#1|) 25)) (-2969 (($) 16 T CONST)) (-2186 (((-110) $ $) NIL)) (-2286 (($ $) 15) (($ $ $) NIL)) (-2275 (($ $ $) 78)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 14) (($ (-387 (-528)) $) 36) (($ $ (-387 (-528))) NIL)))
-(((-545 |#1|) (-13 (-664 (-387 (-528))) (-972 |#1|) (-10 -8 (-15 -3542 ($ |#1| (-595 (-2 (|:| |scalar| (-387 (-528))) (|:| |coeff| (-1091 |#1|)) (|:| |logand| (-1091 |#1|)))) (-595 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1497 (|#1| $)) (-15 -3231 ((-595 (-2 (|:| |scalar| (-387 (-528))) (|:| |coeff| (-1091 |#1|)) (|:| |logand| (-1091 |#1|)))) $)) (-15 -3594 ((-595 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2007 ((-110) $)) (-15 -1375 ($ |#1| |#1|)) (-15 -3235 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-839 (-1095))) (-15 -3235 (|#1| $ (-1095))) |%noBranch|) (IF (|has| |#1| (-972 (-1095))) (-15 -1375 ($ |#1| (-1095))) |%noBranch|))) (-343)) (T -545))
-((-3542 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-595 (-2 (|:| |scalar| (-387 (-528))) (|:| |coeff| (-1091 *2)) (|:| |logand| (-1091 *2))))) (-5 *4 (-595 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-343)) (-5 *1 (-545 *2)))) (-1497 (*1 *2 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-343)))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-595 (-2 (|:| |scalar| (-387 (-528))) (|:| |coeff| (-1091 *3)) (|:| |logand| (-1091 *3))))) (-5 *1 (-545 *3)) (-4 *3 (-343)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-595 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-545 *3)) (-4 *3 (-343)))) (-2007 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-545 *3)) (-4 *3 (-343)))) (-1375 (*1 *1 *2 *2) (-12 (-5 *1 (-545 *2)) (-4 *2 (-343)))) (-3235 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-545 *2)) (-4 *2 (-343)))) (-3235 (*1 *2 *1 *3) (-12 (-4 *2 (-343)) (-4 *2 (-839 *3)) (-5 *1 (-545 *2)) (-5 *3 (-1095)))) (-1375 (*1 *1 *2 *3) (-12 (-5 *3 (-1095)) (-5 *1 (-545 *2)) (-4 *2 (-972 *3)) (-4 *2 (-343)))))
-(-13 (-664 (-387 (-528))) (-972 |#1|) (-10 -8 (-15 -3542 ($ |#1| (-595 (-2 (|:| |scalar| (-387 (-528))) (|:| |coeff| (-1091 |#1|)) (|:| |logand| (-1091 |#1|)))) (-595 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1497 (|#1| $)) (-15 -3231 ((-595 (-2 (|:| |scalar| (-387 (-528))) (|:| |coeff| (-1091 |#1|)) (|:| |logand| (-1091 |#1|)))) $)) (-15 -3594 ((-595 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2007 ((-110) $)) (-15 -1375 ($ |#1| |#1|)) (-15 -3235 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-839 (-1095))) (-15 -3235 (|#1| $ (-1095))) |%noBranch|) (IF (|has| |#1| (-972 (-1095))) (-15 -1375 ($ |#1| (-1095))) |%noBranch|)))
-((-2709 (((-110) |#1|) 16)) (-1648 (((-3 |#1| "failed") |#1|) 14)) (-3481 (((-2 (|:| -2911 |#1|) (|:| -2564 (-717))) |#1|) 31) (((-3 |#1| "failed") |#1| (-717)) 18)) (-1670 (((-110) |#1| (-717)) 19)) (-3903 ((|#1| |#1|) 32)) (-3112 ((|#1| |#1| (-717)) 34)))
-(((-546 |#1|) (-10 -7 (-15 -1670 ((-110) |#1| (-717))) (-15 -3481 ((-3 |#1| "failed") |#1| (-717))) (-15 -3481 ((-2 (|:| -2911 |#1|) (|:| -2564 (-717))) |#1|)) (-15 -3112 (|#1| |#1| (-717))) (-15 -2709 ((-110) |#1|)) (-15 -1648 ((-3 |#1| "failed") |#1|)) (-15 -3903 (|#1| |#1|))) (-513)) (T -546))
-((-3903 (*1 *2 *2) (-12 (-5 *1 (-546 *2)) (-4 *2 (-513)))) (-1648 (*1 *2 *2) (|partial| -12 (-5 *1 (-546 *2)) (-4 *2 (-513)))) (-2709 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-546 *3)) (-4 *3 (-513)))) (-3112 (*1 *2 *2 *3) (-12 (-5 *3 (-717)) (-5 *1 (-546 *2)) (-4 *2 (-513)))) (-3481 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2911 *3) (|:| -2564 (-717)))) (-5 *1 (-546 *3)) (-4 *3 (-513)))) (-3481 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-717)) (-5 *1 (-546 *2)) (-4 *2 (-513)))) (-1670 (*1 *2 *3 *4) (-12 (-5 *4 (-717)) (-5 *2 (-110)) (-5 *1 (-546 *3)) (-4 *3 (-513)))))
-(-10 -7 (-15 -1670 ((-110) |#1| (-717))) (-15 -3481 ((-3 |#1| "failed") |#1| (-717))) (-15 -3481 ((-2 (|:| -2911 |#1|) (|:| -2564 (-717))) |#1|)) (-15 -3112 (|#1| |#1| (-717))) (-15 -2709 ((-110) |#1|)) (-15 -1648 ((-3 |#1| "failed") |#1|)) (-15 -3903 (|#1| |#1|)))
-((-3394 (((-1091 |#1|) (-860)) 27)))
-(((-547 |#1|) (-10 -7 (-15 -3394 ((-1091 |#1|) (-860)))) (-329)) (T -547))
-((-3394 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1091 *4)) (-5 *1 (-547 *4)) (-4 *4 (-329)))))
-(-10 -7 (-15 -3394 ((-1091 |#1|) (-860))))
-((-2129 (((-545 (-387 (-891 |#1|))) (-545 (-387 (-891 |#1|)))) 27)) (-1923 (((-3 (-296 |#1|) (-595 (-296 |#1|))) (-387 (-891 |#1|)) (-1095)) 34 (|has| |#1| (-140)))) (-1535 (((-595 (-296 |#1|)) (-545 (-387 (-891 |#1|)))) 19)) (-3247 (((-296 |#1|) (-387 (-891 |#1|)) (-1095)) 32 (|has| |#1| (-140)))) (-3109 (((-296 |#1|) (-545 (-387 (-891 |#1|)))) 21)))
-(((-548 |#1|) (-10 -7 (-15 -2129 ((-545 (-387 (-891 |#1|))) (-545 (-387 (-891 |#1|))))) (-15 -1535 ((-595 (-296 |#1|)) (-545 (-387 (-891 |#1|))))) (-15 -3109 ((-296 |#1|) (-545 (-387 (-891 |#1|))))) (IF (|has| |#1| (-140)) (PROGN (-15 -1923 ((-3 (-296 |#1|) (-595 (-296 |#1|))) (-387 (-891 |#1|)) (-1095))) (-15 -3247 ((-296 |#1|) (-387 (-891 |#1|)) (-1095)))) |%noBranch|)) (-13 (-431) (-972 (-528)) (-793) (-591 (-528)))) (T -548))
-((-3247 (*1 *2 *3 *4) (-12 (-5 *3 (-387 (-891 *5))) (-5 *4 (-1095)) (-4 *5 (-140)) (-4 *5 (-13 (-431) (-972 (-528)) (-793) (-591 (-528)))) (-5 *2 (-296 *5)) (-5 *1 (-548 *5)))) (-1923 (*1 *2 *3 *4) (-12 (-5 *3 (-387 (-891 *5))) (-5 *4 (-1095)) (-4 *5 (-140)) (-4 *5 (-13 (-431) (-972 (-528)) (-793) (-591 (-528)))) (-5 *2 (-3 (-296 *5) (-595 (-296 *5)))) (-5 *1 (-548 *5)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-545 (-387 (-891 *4)))) (-4 *4 (-13 (-431) (-972 (-528)) (-793) (-591 (-528)))) (-5 *2 (-296 *4)) (-5 *1 (-548 *4)))) (-1535 (*1 *2 *3) (-12 (-5 *3 (-545 (-387 (-891 *4)))) (-4 *4 (-13 (-431) (-972 (-528)) (-793) (-591 (-528)))) (-5 *2 (-595 (-296 *4))) (-5 *1 (-548 *4)))) (-2129 (*1 *2 *2) (-12 (-5 *2 (-545 (-387 (-891 *3)))) (-4 *3 (-13 (-431) (-972 (-528)) (-793) (-591 (-528)))) (-5 *1 (-548 *3)))))
-(-10 -7 (-15 -2129 ((-545 (-387 (-891 |#1|))) (-545 (-387 (-891 |#1|))))) (-15 -1535 ((-595 (-296 |#1|)) (-545 (-387 (-891 |#1|))))) (-15 -3109 ((-296 |#1|) (-545 (-387 (-891 |#1|))))) (IF (|has| |#1| (-140)) (PROGN (-15 -1923 ((-3 (-296 |#1|) (-595 (-296 |#1|))) (-387 (-891 |#1|)) (-1095))) (-15 -3247 ((-296 |#1|) (-387 (-891 |#1|)) (-1095)))) |%noBranch|))
-((-2065 (((-595 (-635 (-528))) (-595 (-528)) (-595 (-844 (-528)))) 46) (((-595 (-635 (-528))) (-595 (-528))) 47) (((-635 (-528)) (-595 (-528)) (-844 (-528))) 42)) (-2868 (((-717) (-595 (-528))) 40)))
-(((-549) (-10 -7 (-15 -2868 ((-717) (-595 (-528)))) (-15 -2065 ((-635 (-528)) (-595 (-528)) (-844 (-528)))) (-15 -2065 ((-595 (-635 (-528))) (-595 (-528)))) (-15 -2065 ((-595 (-635 (-528))) (-595 (-528)) (-595 (-844 (-528))))))) (T -549))
-((-2065 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-528))) (-5 *4 (-595 (-844 (-528)))) (-5 *2 (-595 (-635 (-528)))) (-5 *1 (-549)))) (-2065 (*1 *2 *3) (-12 (-5 *3 (-595 (-528))) (-5 *2 (-595 (-635 (-528)))) (-5 *1 (-549)))) (-2065 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-528))) (-5 *4 (-844 (-528))) (-5 *2 (-635 (-528))) (-5 *1 (-549)))) (-2868 (*1 *2 *3) (-12 (-5 *3 (-595 (-528))) (-5 *2 (-717)) (-5 *1 (-549)))))
-(-10 -7 (-15 -2868 ((-717) (-595 (-528)))) (-15 -2065 ((-635 (-528)) (-595 (-528)) (-844 (-528)))) (-15 -2065 ((-595 (-635 (-528))) (-595 (-528)))) (-15 -2065 ((-595 (-635 (-528))) (-595 (-528)) (-595 (-844 (-528))))))
-((-3815 (((-595 |#5|) |#5| (-110)) 73)) (-2383 (((-110) |#5| (-595 |#5|)) 30)))
-(((-550 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3815 ((-595 |#5|) |#5| (-110))) (-15 -2383 ((-110) |#5| (-595 |#5|)))) (-13 (-288) (-140)) (-739) (-793) (-994 |#1| |#2| |#3|) (-1032 |#1| |#2| |#3| |#4|)) (T -550))
-((-2383 (*1 *2 *3 *4) (-12 (-5 *4 (-595 *3)) (-4 *3 (-1032 *5 *6 *7 *8)) (-4 *5 (-13 (-288) (-140))) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *8 (-994 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-550 *5 *6 *7 *8 *3)))) (-3815 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-288) (-140))) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *8 (-994 *5 *6 *7)) (-5 *2 (-595 *3)) (-5 *1 (-550 *5 *6 *7 *8 *3)) (-4 *3 (-1032 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3815 ((-595 |#5|) |#5| (-110))) (-15 -2383 ((-110) |#5| (-595 |#5|))))
-((-2207 (((-110) $ $) NIL (|has| (-137) (-1023)))) (-1538 (($ $) 34)) (-1330 (($ $) NIL)) (-3335 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-1444 (((-1182) $ (-528) (-528)) NIL (|has| $ (-6 -4265)))) (-2905 (((-110) $ $) 51)) (-2881 (((-110) $ $ (-528)) 46)) (-2129 (((-595 $) $ (-137)) 60) (((-595 $) $ (-134)) 61)) (-3608 (((-110) (-1 (-110) (-137) (-137)) $) NIL) (((-110) $) NIL (|has| (-137) (-793)))) (-3863 (($ (-1 (-110) (-137) (-137)) $) NIL (|has| $ (-6 -4265))) (($ $) NIL (-12 (|has| $ (-6 -4265)) (|has| (-137) (-793))))) (-1289 (($ (-1 (-110) (-137) (-137)) $) NIL) (($ $) NIL (|has| (-137) (-793)))) (-3535 (((-110) $ (-717)) NIL)) (-2381 (((-137) $ (-528) (-137)) 45 (|has| $ (-6 -4265))) (((-137) $ (-1144 (-528)) (-137)) NIL (|has| $ (-6 -4265)))) (-1573 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4264)))) (-2816 (($) NIL T CONST)) (-2671 (($ $ (-137)) 64) (($ $ (-134)) 65)) (-2472 (($ $) NIL (|has| $ (-6 -4265)))) (-3009 (($ $) NIL)) (-3988 (($ $ (-1144 (-528)) $) 44)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-137) (-1023))))) (-2280 (($ (-137) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-137) (-1023)))) (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4264)))) (-1422 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) NIL (-12 (|has| $ (-6 -4264)) (|has| (-137) (-1023)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) NIL (|has| $ (-6 -4264))) (((-137) (-1 (-137) (-137) (-137)) $) NIL (|has| $ (-6 -4264)))) (-2812 (((-137) $ (-528) (-137)) NIL (|has| $ (-6 -4265)))) (-2742 (((-137) $ (-528)) NIL)) (-2930 (((-110) $ $) 72)) (-3140 (((-528) (-1 (-110) (-137)) $) NIL) (((-528) (-137) $) NIL (|has| (-137) (-1023))) (((-528) (-137) $ (-528)) 48 (|has| (-137) (-1023))) (((-528) $ $ (-528)) 47) (((-528) (-134) $ (-528)) 50)) (-3342 (((-595 (-137)) $) NIL (|has| $ (-6 -4264)))) (-3462 (($ (-717) (-137)) 9)) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-528) $) 28 (|has| (-528) (-793)))) (-1436 (($ $ $) NIL (|has| (-137) (-793)))) (-1356 (($ (-1 (-110) (-137) (-137)) $ $) NIL) (($ $ $) NIL (|has| (-137) (-793)))) (-2604 (((-595 (-137)) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-137) (-1023))))) (-1709 (((-528) $) 42 (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (|has| (-137) (-793)))) (-1867 (((-110) $ $ (-137)) 73)) (-3917 (((-717) $ $ (-137)) 70)) (-2800 (($ (-1 (-137) (-137)) $) 33 (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-137) (-137)) $) NIL) (($ (-1 (-137) (-137) (-137)) $ $) NIL)) (-2915 (($ $) 37)) (-2491 (($ $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-2682 (($ $ (-137)) 62) (($ $ (-134)) 63)) (-3034 (((-1078) $) 38 (|has| (-137) (-1023)))) (-3939 (($ (-137) $ (-528)) NIL) (($ $ $ (-528)) 23)) (-2084 (((-595 (-528)) $) NIL)) (-3966 (((-110) (-528) $) NIL)) (-2495 (((-528) $) 69) (((-1042) $) NIL (|has| (-137) (-1023)))) (-2890 (((-137) $) NIL (|has| (-528) (-793)))) (-1734 (((-3 (-137) "failed") (-1 (-110) (-137)) $) NIL)) (-1332 (($ $ (-137)) NIL (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 (-137)))) NIL (-12 (|has| (-137) (-290 (-137))) (|has| (-137) (-1023)))) (($ $ (-275 (-137))) NIL (-12 (|has| (-137) (-290 (-137))) (|has| (-137) (-1023)))) (($ $ (-137) (-137)) NIL (-12 (|has| (-137) (-290 (-137))) (|has| (-137) (-1023)))) (($ $ (-595 (-137)) (-595 (-137))) NIL (-12 (|has| (-137) (-290 (-137))) (|has| (-137) (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-137) (-1023))))) (-2861 (((-595 (-137)) $) NIL)) (-1972 (((-110) $) 12)) (-2147 (($) 10)) (-3043 (((-137) $ (-528) (-137)) NIL) (((-137) $ (-528)) 52) (($ $ (-1144 (-528))) 21) (($ $ $) NIL)) (-1745 (($ $ (-528)) NIL) (($ $ (-1144 (-528))) NIL)) (-2507 (((-717) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4264))) (((-717) (-137) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-137) (-1023))))) (-3761 (($ $ $ (-528)) 66 (|has| $ (-6 -4265)))) (-2406 (($ $) 17)) (-3155 (((-504) $) NIL (|has| (-137) (-570 (-504))))) (-2233 (($ (-595 (-137))) NIL)) (-3400 (($ $ (-137)) NIL) (($ (-137) $) NIL) (($ $ $) 16) (($ (-595 $)) 67)) (-2222 (($ (-137)) NIL) (((-802) $) 27 (|has| (-137) (-569 (-802))))) (-3451 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4264)))) (-2244 (((-110) $ $) NIL (|has| (-137) (-793)))) (-2220 (((-110) $ $) NIL (|has| (-137) (-793)))) (-2186 (((-110) $ $) 14 (|has| (-137) (-1023)))) (-2232 (((-110) $ $) NIL (|has| (-137) (-793)))) (-2208 (((-110) $ $) 15 (|has| (-137) (-793)))) (-2138 (((-717) $) 13 (|has| $ (-6 -4264)))))
-(((-551 |#1|) (-13 (-1064) (-10 -8 (-15 -2495 ((-528) $)))) (-528)) (T -551))
-((-2495 (*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-551 *3)) (-14 *3 *2))))
-(-13 (-1064) (-10 -8 (-15 -2495 ((-528) $))))
-((-3907 (((-2 (|:| |num| |#4|) (|:| |den| (-528))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-528))) |#4| |#2| (-1018 |#4|)) 32)))
-(((-552 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3907 ((-2 (|:| |num| |#4|) (|:| |den| (-528))) |#4| |#2| (-1018 |#4|))) (-15 -3907 ((-2 (|:| |num| |#4|) (|:| |den| (-528))) |#4| |#2|))) (-739) (-793) (-520) (-888 |#3| |#1| |#2|)) (T -552))
-((-3907 (*1 *2 *3 *4) (-12 (-4 *5 (-739)) (-4 *4 (-793)) (-4 *6 (-520)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-528)))) (-5 *1 (-552 *5 *4 *6 *3)) (-4 *3 (-888 *6 *5 *4)))) (-3907 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1018 *3)) (-4 *3 (-888 *7 *6 *4)) (-4 *6 (-739)) (-4 *4 (-793)) (-4 *7 (-520)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-528)))) (-5 *1 (-552 *6 *4 *7 *3)))))
-(-10 -7 (-15 -3907 ((-2 (|:| |num| |#4|) (|:| |den| (-528))) |#4| |#2| (-1018 |#4|))) (-15 -3907 ((-2 (|:| |num| |#4|) (|:| |den| (-528))) |#4| |#2|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 63)) (-2565 (((-595 (-1008)) $) NIL)) (-3915 (((-1095) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#1| (-520)))) (-1738 (($ $) NIL (|has| |#1| (-520)))) (-1811 (((-110) $) NIL (|has| |#1| (-520)))) (-1781 (($ $ (-528)) 54) (($ $ (-528) (-528)) 55)) (-1514 (((-1076 (-2 (|:| |k| (-528)) (|:| |c| |#1|))) $) 60)) (-1992 (($ $) 100)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2985 (((-802) (-1076 (-2 (|:| |k| (-528)) (|:| |c| |#1|))) (-961 (-786 (-528))) (-1095) |#1| (-387 (-528))) 224)) (-1397 (($ (-1076 (-2 (|:| |k| (-528)) (|:| |c| |#1|)))) 34)) (-2816 (($) NIL T CONST)) (-2388 (($ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1900 (((-110) $) NIL)) (-3689 (((-528) $) 58) (((-528) $ (-528)) 59)) (-1297 (((-110) $) NIL)) (-1771 (($ $ (-860)) 76)) (-3171 (($ (-1 |#1| (-528)) $) 73)) (-2195 (((-110) $) 25)) (-2548 (($ |#1| (-528)) 22) (($ $ (-1008) (-528)) NIL) (($ $ (-595 (-1008)) (-595 (-528))) NIL)) (-3106 (($ (-1 |#1| |#1|) $) 67)) (-3779 (($ (-961 (-786 (-528))) (-1076 (-2 (|:| |k| (-528)) (|:| |c| |#1|)))) 13)) (-2686 (($ $) NIL)) (-2697 ((|#1| $) NIL)) (-3034 (((-1078) $) NIL)) (-1923 (($ $) 150 (|has| |#1| (-37 (-387 (-528)))))) (-3134 (((-3 $ "failed") $ $ (-110)) 99)) (-4028 (($ $ $) 108)) (-2495 (((-1042) $) NIL)) (-1624 (((-1076 (-2 (|:| |k| (-528)) (|:| |c| |#1|))) $) 15)) (-2180 (((-961 (-786 (-528))) $) 14)) (-3740 (($ $ (-528)) 45)) (-3477 (((-3 $ "failed") $ $) NIL (|has| |#1| (-520)))) (-4014 (((-1076 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-528)))))) (-3043 ((|#1| $ (-528)) 57) (($ $ $) NIL (|has| (-528) (-1035)))) (-3235 (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095)) NIL (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-717)) NIL (|has| |#1| (-15 * (|#1| (-528) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (-2935 (((-528) $) NIL)) (-3534 (($ $) 46)) (-2222 (((-802) $) NIL) (($ (-528)) 28) (($ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $) NIL (|has| |#1| (-520))) (($ |#1|) 27 (|has| |#1| (-162)))) (-3216 ((|#1| $ (-528)) 56)) (-3749 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3742 (((-717)) 37)) (-1884 ((|#1| $) NIL)) (-1655 (($ $) 186 (|has| |#1| (-37 (-387 (-528)))))) (-1502 (($ $) 158 (|has| |#1| (-37 (-387 (-528)))))) (-1394 (($ $) 190 (|has| |#1| (-37 (-387 (-528)))))) (-2328 (($ $) 163 (|has| |#1| (-37 (-387 (-528)))))) (-3437 (($ $) 189 (|has| |#1| (-37 (-387 (-528)))))) (-1530 (($ $) 162 (|has| |#1| (-37 (-387 (-528)))))) (-1963 (($ $ (-387 (-528))) 166 (|has| |#1| (-37 (-387 (-528)))))) (-1753 (($ $ |#1|) 146 (|has| |#1| (-37 (-387 (-528)))))) (-1958 (($ $) 192 (|has| |#1| (-37 (-387 (-528)))))) (-1557 (($ $) 149 (|has| |#1| (-37 (-387 (-528)))))) (-2475 (($ $) 191 (|has| |#1| (-37 (-387 (-528)))))) (-3940 (($ $) 164 (|has| |#1| (-37 (-387 (-528)))))) (-1677 (($ $) 187 (|has| |#1| (-37 (-387 (-528)))))) (-1371 (($ $) 160 (|has| |#1| (-37 (-387 (-528)))))) (-2708 (($ $) 188 (|has| |#1| (-37 (-387 (-528)))))) (-3401 (($ $) 161 (|has| |#1| (-37 (-387 (-528)))))) (-3730 (($ $) 197 (|has| |#1| (-37 (-387 (-528)))))) (-3777 (($ $) 173 (|has| |#1| (-37 (-387 (-528)))))) (-1777 (($ $) 194 (|has| |#1| (-37 (-387 (-528)))))) (-1368 (($ $) 168 (|has| |#1| (-37 (-387 (-528)))))) (-3033 (($ $) 201 (|has| |#1| (-37 (-387 (-528)))))) (-1874 (($ $) 177 (|has| |#1| (-37 (-387 (-528)))))) (-3098 (($ $) 203 (|has| |#1| (-37 (-387 (-528)))))) (-3568 (($ $) 179 (|has| |#1| (-37 (-387 (-528)))))) (-1528 (($ $) 199 (|has| |#1| (-37 (-387 (-528)))))) (-2638 (($ $) 175 (|has| |#1| (-37 (-387 (-528)))))) (-3590 (($ $) 196 (|has| |#1| (-37 (-387 (-528)))))) (-3232 (($ $) 171 (|has| |#1| (-37 (-387 (-528)))))) (-4016 (((-110) $ $) NIL (|has| |#1| (-520)))) (-4083 ((|#1| $ (-528)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-528)))) (|has| |#1| (-15 -2222 (|#1| (-1095))))))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 29 T CONST)) (-2982 (($) 38 T CONST)) (-3245 (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095)) NIL (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-717)) NIL (|has| |#1| (-15 * (|#1| (-528) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (-2186 (((-110) $ $) 65)) (-2296 (($ $ |#1|) NIL (|has| |#1| (-343)))) (-2286 (($ $) 84) (($ $ $) 64)) (-2275 (($ $ $) 81)) (** (($ $ (-860)) NIL) (($ $ (-717)) 103)) (* (($ (-860) $) 89) (($ (-717) $) 87) (($ (-528) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-387 (-528)) $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528)))))))
-(((-553 |#1|) (-13 (-1155 |#1| (-528)) (-10 -8 (-15 -3779 ($ (-961 (-786 (-528))) (-1076 (-2 (|:| |k| (-528)) (|:| |c| |#1|))))) (-15 -2180 ((-961 (-786 (-528))) $)) (-15 -1624 ((-1076 (-2 (|:| |k| (-528)) (|:| |c| |#1|))) $)) (-15 -1397 ($ (-1076 (-2 (|:| |k| (-528)) (|:| |c| |#1|))))) (-15 -2195 ((-110) $)) (-15 -3171 ($ (-1 |#1| (-528)) $)) (-15 -3134 ((-3 $ "failed") $ $ (-110))) (-15 -1992 ($ $)) (-15 -4028 ($ $ $)) (-15 -2985 ((-802) (-1076 (-2 (|:| |k| (-528)) (|:| |c| |#1|))) (-961 (-786 (-528))) (-1095) |#1| (-387 (-528)))) (IF (|has| |#1| (-37 (-387 (-528)))) (PROGN (-15 -1923 ($ $)) (-15 -1753 ($ $ |#1|)) (-15 -1963 ($ $ (-387 (-528)))) (-15 -1557 ($ $)) (-15 -1958 ($ $)) (-15 -2328 ($ $)) (-15 -3401 ($ $)) (-15 -1502 ($ $)) (-15 -1371 ($ $)) (-15 -1530 ($ $)) (-15 -3940 ($ $)) (-15 -1368 ($ $)) (-15 -3232 ($ $)) (-15 -3777 ($ $)) (-15 -2638 ($ $)) (-15 -1874 ($ $)) (-15 -3568 ($ $)) (-15 -1394 ($ $)) (-15 -2708 ($ $)) (-15 -1655 ($ $)) (-15 -1677 ($ $)) (-15 -3437 ($ $)) (-15 -2475 ($ $)) (-15 -1777 ($ $)) (-15 -3590 ($ $)) (-15 -3730 ($ $)) (-15 -1528 ($ $)) (-15 -3033 ($ $)) (-15 -3098 ($ $))) |%noBranch|))) (-981)) (T -553))
-((-2195 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-553 *3)) (-4 *3 (-981)))) (-3779 (*1 *1 *2 *3) (-12 (-5 *2 (-961 (-786 (-528)))) (-5 *3 (-1076 (-2 (|:| |k| (-528)) (|:| |c| *4)))) (-4 *4 (-981)) (-5 *1 (-553 *4)))) (-2180 (*1 *2 *1) (-12 (-5 *2 (-961 (-786 (-528)))) (-5 *1 (-553 *3)) (-4 *3 (-981)))) (-1624 (*1 *2 *1) (-12 (-5 *2 (-1076 (-2 (|:| |k| (-528)) (|:| |c| *3)))) (-5 *1 (-553 *3)) (-4 *3 (-981)))) (-1397 (*1 *1 *2) (-12 (-5 *2 (-1076 (-2 (|:| |k| (-528)) (|:| |c| *3)))) (-4 *3 (-981)) (-5 *1 (-553 *3)))) (-3171 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-528))) (-4 *3 (-981)) (-5 *1 (-553 *3)))) (-3134 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-110)) (-5 *1 (-553 *3)) (-4 *3 (-981)))) (-1992 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-981)))) (-4028 (*1 *1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-981)))) (-2985 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1076 (-2 (|:| |k| (-528)) (|:| |c| *6)))) (-5 *4 (-961 (-786 (-528)))) (-5 *5 (-1095)) (-5 *7 (-387 (-528))) (-4 *6 (-981)) (-5 *2 (-802)) (-5 *1 (-553 *6)))) (-1923 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-1753 (*1 *1 *1 *2) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-1963 (*1 *1 *1 *2) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-553 *3)) (-4 *3 (-37 *2)) (-4 *3 (-981)))) (-1557 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-1958 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-2328 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-3401 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-1502 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-1371 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-1530 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-3940 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-1368 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-3232 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-3777 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-2638 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-1874 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-3568 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-1394 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-2708 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-1655 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-1677 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-3437 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-2475 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-1777 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-3590 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-3730 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-1528 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-3033 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))) (-3098 (*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(-13 (-1155 |#1| (-528)) (-10 -8 (-15 -3779 ($ (-961 (-786 (-528))) (-1076 (-2 (|:| |k| (-528)) (|:| |c| |#1|))))) (-15 -2180 ((-961 (-786 (-528))) $)) (-15 -1624 ((-1076 (-2 (|:| |k| (-528)) (|:| |c| |#1|))) $)) (-15 -1397 ($ (-1076 (-2 (|:| |k| (-528)) (|:| |c| |#1|))))) (-15 -2195 ((-110) $)) (-15 -3171 ($ (-1 |#1| (-528)) $)) (-15 -3134 ((-3 $ "failed") $ $ (-110))) (-15 -1992 ($ $)) (-15 -4028 ($ $ $)) (-15 -2985 ((-802) (-1076 (-2 (|:| |k| (-528)) (|:| |c| |#1|))) (-961 (-786 (-528))) (-1095) |#1| (-387 (-528)))) (IF (|has| |#1| (-37 (-387 (-528)))) (PROGN (-15 -1923 ($ $)) (-15 -1753 ($ $ |#1|)) (-15 -1963 ($ $ (-387 (-528)))) (-15 -1557 ($ $)) (-15 -1958 ($ $)) (-15 -2328 ($ $)) (-15 -3401 ($ $)) (-15 -1502 ($ $)) (-15 -1371 ($ $)) (-15 -1530 ($ $)) (-15 -3940 ($ $)) (-15 -1368 ($ $)) (-15 -3232 ($ $)) (-15 -3777 ($ $)) (-15 -2638 ($ $)) (-15 -1874 ($ $)) (-15 -3568 ($ $)) (-15 -1394 ($ $)) (-15 -2708 ($ $)) (-15 -1655 ($ $)) (-15 -1677 ($ $)) (-15 -3437 ($ $)) (-15 -2475 ($ $)) (-15 -1777 ($ $)) (-15 -3590 ($ $)) (-15 -3730 ($ $)) (-15 -1528 ($ $)) (-15 -3033 ($ $)) (-15 -3098 ($ $))) |%noBranch|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#1| (-520)))) (-1738 (($ $) NIL (|has| |#1| (-520)))) (-1811 (((-110) $) NIL (|has| |#1| (-520)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-1397 (($ (-1076 |#1|)) 9)) (-2816 (($) NIL T CONST)) (-1312 (((-3 $ "failed") $) 42)) (-1900 (((-110) $) 52)) (-3689 (((-717) $) 55) (((-717) $ (-717)) 54)) (-1297 (((-110) $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3477 (((-3 $ "failed") $ $) 44 (|has| |#1| (-520)))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ $) NIL (|has| |#1| (-520)))) (-3348 (((-1076 |#1|) $) 23)) (-3742 (((-717)) 51)) (-4016 (((-110) $ $) NIL (|has| |#1| (-520)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 10 T CONST)) (-2982 (($) 14 T CONST)) (-2186 (((-110) $ $) 22)) (-2286 (($ $) 30) (($ $ $) 16)) (-2275 (($ $ $) 25)) (** (($ $ (-860)) NIL) (($ $ (-717)) 49)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-528)) 36)))
-(((-554 |#1|) (-13 (-981) (-10 -8 (-15 -3348 ((-1076 |#1|) $)) (-15 -1397 ($ (-1076 |#1|))) (-15 -1900 ((-110) $)) (-15 -3689 ((-717) $)) (-15 -3689 ((-717) $ (-717))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-528))) (IF (|has| |#1| (-520)) (-6 (-520)) |%noBranch|))) (-981)) (T -554))
-((-3348 (*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-554 *3)) (-4 *3 (-981)))) (-1397 (*1 *1 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-554 *3)))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-554 *3)) (-4 *3 (-981)))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-554 *3)) (-4 *3 (-981)))) (-3689 (*1 *2 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-554 *3)) (-4 *3 (-981)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-554 *2)) (-4 *2 (-981)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-554 *2)) (-4 *2 (-981)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-554 *3)) (-4 *3 (-981)))))
-(-13 (-981) (-10 -8 (-15 -3348 ((-1076 |#1|) $)) (-15 -1397 ($ (-1076 |#1|))) (-15 -1900 ((-110) $)) (-15 -3689 ((-717) $)) (-15 -3689 ((-717) $ (-717))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-528))) (IF (|has| |#1| (-520)) (-6 (-520)) |%noBranch|)))
-((-3106 (((-558 |#2|) (-1 |#2| |#1|) (-558 |#1|)) 15)))
-(((-555 |#1| |#2|) (-10 -7 (-15 -3106 ((-558 |#2|) (-1 |#2| |#1|) (-558 |#1|)))) (-1131) (-1131)) (T -555))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-558 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-558 *6)) (-5 *1 (-555 *5 *6)))))
-(-10 -7 (-15 -3106 ((-558 |#2|) (-1 |#2| |#1|) (-558 |#1|))))
-((-3106 (((-1076 |#3|) (-1 |#3| |#1| |#2|) (-558 |#1|) (-1076 |#2|)) 20) (((-1076 |#3|) (-1 |#3| |#1| |#2|) (-1076 |#1|) (-558 |#2|)) 19) (((-558 |#3|) (-1 |#3| |#1| |#2|) (-558 |#1|) (-558 |#2|)) 18)))
-(((-556 |#1| |#2| |#3|) (-10 -7 (-15 -3106 ((-558 |#3|) (-1 |#3| |#1| |#2|) (-558 |#1|) (-558 |#2|))) (-15 -3106 ((-1076 |#3|) (-1 |#3| |#1| |#2|) (-1076 |#1|) (-558 |#2|))) (-15 -3106 ((-1076 |#3|) (-1 |#3| |#1| |#2|) (-558 |#1|) (-1076 |#2|)))) (-1131) (-1131) (-1131)) (T -556))
-((-3106 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-558 *6)) (-5 *5 (-1076 *7)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-1076 *8)) (-5 *1 (-556 *6 *7 *8)))) (-3106 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1076 *6)) (-5 *5 (-558 *7)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-1076 *8)) (-5 *1 (-556 *6 *7 *8)))) (-3106 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-558 *6)) (-5 *5 (-558 *7)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-558 *8)) (-5 *1 (-556 *6 *7 *8)))))
-(-10 -7 (-15 -3106 ((-558 |#3|) (-1 |#3| |#1| |#2|) (-558 |#1|) (-558 |#2|))) (-15 -3106 ((-1076 |#3|) (-1 |#3| |#1| |#2|) (-1076 |#1|) (-558 |#2|))) (-15 -3106 ((-1076 |#3|) (-1 |#3| |#1| |#2|) (-558 |#1|) (-1076 |#2|))))
-((-3805 ((|#3| |#3| (-595 (-568 |#3|)) (-595 (-1095))) 55)) (-3227 (((-159 |#2|) |#3|) 117)) (-1507 ((|#3| (-159 |#2|)) 44)) (-3705 ((|#2| |#3|) 19)) (-1571 ((|#3| |#2|) 33)))
-(((-557 |#1| |#2| |#3|) (-10 -7 (-15 -1507 (|#3| (-159 |#2|))) (-15 -3705 (|#2| |#3|)) (-15 -1571 (|#3| |#2|)) (-15 -3227 ((-159 |#2|) |#3|)) (-15 -3805 (|#3| |#3| (-595 (-568 |#3|)) (-595 (-1095))))) (-13 (-520) (-793)) (-13 (-410 |#1|) (-938) (-1117)) (-13 (-410 (-159 |#1|)) (-938) (-1117))) (T -557))
-((-3805 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-595 (-568 *2))) (-5 *4 (-595 (-1095))) (-4 *2 (-13 (-410 (-159 *5)) (-938) (-1117))) (-4 *5 (-13 (-520) (-793))) (-5 *1 (-557 *5 *6 *2)) (-4 *6 (-13 (-410 *5) (-938) (-1117))))) (-3227 (*1 *2 *3) (-12 (-4 *4 (-13 (-520) (-793))) (-5 *2 (-159 *5)) (-5 *1 (-557 *4 *5 *3)) (-4 *5 (-13 (-410 *4) (-938) (-1117))) (-4 *3 (-13 (-410 (-159 *4)) (-938) (-1117))))) (-1571 (*1 *2 *3) (-12 (-4 *4 (-13 (-520) (-793))) (-4 *2 (-13 (-410 (-159 *4)) (-938) (-1117))) (-5 *1 (-557 *4 *3 *2)) (-4 *3 (-13 (-410 *4) (-938) (-1117))))) (-3705 (*1 *2 *3) (-12 (-4 *4 (-13 (-520) (-793))) (-4 *2 (-13 (-410 *4) (-938) (-1117))) (-5 *1 (-557 *4 *2 *3)) (-4 *3 (-13 (-410 (-159 *4)) (-938) (-1117))))) (-1507 (*1 *2 *3) (-12 (-5 *3 (-159 *5)) (-4 *5 (-13 (-410 *4) (-938) (-1117))) (-4 *4 (-13 (-520) (-793))) (-4 *2 (-13 (-410 (-159 *4)) (-938) (-1117))) (-5 *1 (-557 *4 *5 *2)))))
-(-10 -7 (-15 -1507 (|#3| (-159 |#2|))) (-15 -3705 (|#2| |#3|)) (-15 -1571 (|#3| |#2|)) (-15 -3227 ((-159 |#2|) |#3|)) (-15 -3805 (|#3| |#3| (-595 (-568 |#3|)) (-595 (-1095)))))
-((-1573 (($ (-1 (-110) |#1|) $) 17)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-1499 (($ (-1 |#1| |#1|) |#1|) 9)) (-1546 (($ (-1 (-110) |#1|) $) 13)) (-1560 (($ (-1 (-110) |#1|) $) 15)) (-2233 (((-1076 |#1|) $) 18)) (-2222 (((-802) $) NIL)))
-(((-558 |#1|) (-13 (-569 (-802)) (-10 -8 (-15 -3106 ($ (-1 |#1| |#1|) $)) (-15 -1546 ($ (-1 (-110) |#1|) $)) (-15 -1560 ($ (-1 (-110) |#1|) $)) (-15 -1573 ($ (-1 (-110) |#1|) $)) (-15 -1499 ($ (-1 |#1| |#1|) |#1|)) (-15 -2233 ((-1076 |#1|) $)))) (-1131)) (T -558))
-((-3106 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-558 *3)))) (-1546 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1131)) (-5 *1 (-558 *3)))) (-1560 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1131)) (-5 *1 (-558 *3)))) (-1573 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1131)) (-5 *1 (-558 *3)))) (-1499 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-558 *3)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-558 *3)) (-4 *3 (-1131)))))
-(-13 (-569 (-802)) (-10 -8 (-15 -3106 ($ (-1 |#1| |#1|) $)) (-15 -1546 ($ (-1 (-110) |#1|) $)) (-15 -1560 ($ (-1 (-110) |#1|) $)) (-15 -1573 ($ (-1 (-110) |#1|) $)) (-15 -1499 ($ (-1 |#1| |#1|) |#1|)) (-15 -2233 ((-1076 |#1|) $))))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3460 (($ (-717)) NIL (|has| |#1| (-23)))) (-1444 (((-1182) $ (-528) (-528)) NIL (|has| $ (-6 -4265)))) (-3608 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-793)))) (-3863 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4265))) (($ $) NIL (-12 (|has| $ (-6 -4265)) (|has| |#1| (-793))))) (-1289 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-793)))) (-3535 (((-110) $ (-717)) NIL)) (-2381 ((|#1| $ (-528) |#1|) NIL (|has| $ (-6 -4265))) ((|#1| $ (-1144 (-528)) |#1|) NIL (|has| $ (-6 -4265)))) (-1573 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2816 (($) NIL T CONST)) (-2472 (($ $) NIL (|has| $ (-6 -4265)))) (-3009 (($ $) NIL)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2280 (($ |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4264)))) (-2812 ((|#1| $ (-528) |#1|) NIL (|has| $ (-6 -4265)))) (-2742 ((|#1| $ (-528)) NIL)) (-3140 (((-528) (-1 (-110) |#1|) $) NIL) (((-528) |#1| $) NIL (|has| |#1| (-1023))) (((-528) |#1| $ (-528)) NIL (|has| |#1| (-1023)))) (-3342 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-4061 (((-635 |#1|) $ $) NIL (|has| |#1| (-981)))) (-3462 (($ (-717) |#1|) NIL)) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-528) $) NIL (|has| (-528) (-793)))) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-1356 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-793)))) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-1709 (((-528) $) NIL (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-2800 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1817 ((|#1| $) NIL (-12 (|has| |#1| (-938)) (|has| |#1| (-981))))) (-3358 (((-110) $ (-717)) NIL)) (-1584 ((|#1| $) NIL (-12 (|has| |#1| (-938)) (|has| |#1| (-981))))) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-3939 (($ |#1| $ (-528)) NIL) (($ $ $ (-528)) NIL)) (-2084 (((-595 (-528)) $) NIL)) (-3966 (((-110) (-528) $) NIL)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-2890 ((|#1| $) NIL (|has| (-528) (-793)))) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1332 (($ $ |#1|) NIL (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2861 (((-595 |#1|) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#1| $ (-528) |#1|) NIL) ((|#1| $ (-528)) NIL) (($ $ (-1144 (-528))) NIL)) (-3675 ((|#1| $ $) NIL (|has| |#1| (-981)))) (-1745 (($ $ (-528)) NIL) (($ $ (-1144 (-528))) NIL)) (-3996 (($ $ $) NIL (|has| |#1| (-981)))) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3761 (($ $ $ (-528)) NIL (|has| $ (-6 -4265)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) NIL (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) NIL)) (-3400 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-595 $)) NIL)) (-2222 (((-802) $) NIL (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2286 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2275 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-528) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-673))) (($ $ |#1|) NIL (|has| |#1| (-673)))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-559 |#1| |#2|) (-1175 |#1|) (-1131) (-528)) (T -559))
-NIL
-(-1175 |#1|)
-((-1444 (((-1182) $ |#2| |#2|) 36)) (-3530 ((|#2| $) 23)) (-1709 ((|#2| $) 21)) (-2800 (($ (-1 |#3| |#3|) $) 32)) (-3106 (($ (-1 |#3| |#3|) $) 30)) (-2890 ((|#3| $) 26)) (-1332 (($ $ |#3|) 33)) (-2111 (((-110) |#3| $) 17)) (-2861 (((-595 |#3|) $) 15)) (-3043 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-560 |#1| |#2| |#3|) (-10 -8 (-15 -1444 ((-1182) |#1| |#2| |#2|)) (-15 -1332 (|#1| |#1| |#3|)) (-15 -2890 (|#3| |#1|)) (-15 -3530 (|#2| |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -2111 ((-110) |#3| |#1|)) (-15 -2861 ((-595 |#3|) |#1|)) (-15 -3043 (|#3| |#1| |#2|)) (-15 -3043 (|#3| |#1| |#2| |#3|)) (-15 -2800 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3106 (|#1| (-1 |#3| |#3|) |#1|))) (-561 |#2| |#3|) (-1023) (-1131)) (T -560))
-NIL
-(-10 -8 (-15 -1444 ((-1182) |#1| |#2| |#2|)) (-15 -1332 (|#1| |#1| |#3|)) (-15 -2890 (|#3| |#1|)) (-15 -3530 (|#2| |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -2111 ((-110) |#3| |#1|)) (-15 -2861 ((-595 |#3|) |#1|)) (-15 -3043 (|#3| |#1| |#2|)) (-15 -3043 (|#3| |#1| |#2| |#3|)) (-15 -2800 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3106 (|#1| (-1 |#3| |#3|) |#1|)))
-((-2207 (((-110) $ $) 19 (|has| |#2| (-1023)))) (-1444 (((-1182) $ |#1| |#1|) 40 (|has| $ (-6 -4265)))) (-3535 (((-110) $ (-717)) 8)) (-2381 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4265)))) (-2816 (($) 7 T CONST)) (-2812 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4265)))) (-2742 ((|#2| $ |#1|) 51)) (-3342 (((-595 |#2|) $) 30 (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) 9)) (-3530 ((|#1| $) 43 (|has| |#1| (-793)))) (-2604 (((-595 |#2|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#2| $) 27 (-12 (|has| |#2| (-1023)) (|has| $ (-6 -4264))))) (-1709 ((|#1| $) 44 (|has| |#1| (-793)))) (-2800 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#2| |#2|) $) 35)) (-3358 (((-110) $ (-717)) 10)) (-3034 (((-1078) $) 22 (|has| |#2| (-1023)))) (-2084 (((-595 |#1|) $) 46)) (-3966 (((-110) |#1| $) 47)) (-2495 (((-1042) $) 21 (|has| |#2| (-1023)))) (-2890 ((|#2| $) 42 (|has| |#1| (-793)))) (-1332 (($ $ |#2|) 41 (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) |#2|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#2|))) 26 (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-275 |#2|)) 25 (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-595 |#2|) (-595 |#2|)) 23 (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))) (-3744 (((-110) $ $) 14)) (-2111 (((-110) |#2| $) 45 (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-2861 (((-595 |#2|) $) 48)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3043 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2507 (((-717) (-1 (-110) |#2|) $) 31 (|has| $ (-6 -4264))) (((-717) |#2| $) 28 (-12 (|has| |#2| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-2222 (((-802) $) 18 (|has| |#2| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#2|) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20 (|has| |#2| (-1023)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-561 |#1| |#2|) (-133) (-1023) (-1131)) (T -561))
-((-2861 (*1 *2 *1) (-12 (-4 *1 (-561 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1131)) (-5 *2 (-595 *4)))) (-3966 (*1 *2 *3 *1) (-12 (-4 *1 (-561 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1131)) (-5 *2 (-110)))) (-2084 (*1 *2 *1) (-12 (-4 *1 (-561 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1131)) (-5 *2 (-595 *3)))) (-2111 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4264)) (-4 *1 (-561 *4 *3)) (-4 *4 (-1023)) (-4 *3 (-1131)) (-4 *3 (-1023)) (-5 *2 (-110)))) (-1709 (*1 *2 *1) (-12 (-4 *1 (-561 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1023)) (-4 *2 (-793)))) (-3530 (*1 *2 *1) (-12 (-4 *1 (-561 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1023)) (-4 *2 (-793)))) (-2890 (*1 *2 *1) (-12 (-4 *1 (-561 *3 *2)) (-4 *3 (-1023)) (-4 *3 (-793)) (-4 *2 (-1131)))) (-1332 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4265)) (-4 *1 (-561 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1131)))) (-1444 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4265)) (-4 *1 (-561 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1131)) (-5 *2 (-1182)))))
-(-13 (-467 |t#2|) (-269 |t#1| |t#2|) (-10 -8 (-15 -2861 ((-595 |t#2|) $)) (-15 -3966 ((-110) |t#1| $)) (-15 -2084 ((-595 |t#1|) $)) (IF (|has| |t#2| (-1023)) (IF (|has| $ (-6 -4264)) (-15 -2111 ((-110) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-793)) (PROGN (-15 -1709 (|t#1| $)) (-15 -3530 (|t#1| $)) (-15 -2890 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4265)) (PROGN (-15 -1332 ($ $ |t#2|)) (-15 -1444 ((-1182) $ |t#1| |t#1|))) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#2| (-1023)) ((-569 (-802)) -1463 (|has| |#2| (-1023)) (|has| |#2| (-569 (-802)))) ((-267 |#1| |#2|) . T) ((-269 |#1| |#2|) . T) ((-290 |#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))) ((-467 |#2|) . T) ((-489 |#2| |#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))) ((-1023) |has| |#2| (-1023)) ((-1131) . T))
-((-2222 (((-802) $) 19) (((-127) $) 14) (($ (-127)) 13)))
-(((-562) (-13 (-569 (-802)) (-569 (-127)) (-10 -8 (-15 -2222 ($ (-127)))))) (T -562))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-127)) (-5 *1 (-562)))))
-(-13 (-569 (-802)) (-569 (-127)) (-10 -8 (-15 -2222 ($ (-127)))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2445 (((-3 $ "failed")) NIL (-1463 (-12 (|has| |#2| (-347 |#1|)) (|has| |#1| (-520))) (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-520)))))) (-3181 (((-3 $ "failed") $ $) NIL)) (-4023 (((-1177 (-635 |#1|))) NIL (|has| |#2| (-397 |#1|))) (((-1177 (-635 |#1|)) (-1177 $)) NIL (|has| |#2| (-347 |#1|)))) (-1653 (((-1177 $)) NIL (|has| |#2| (-347 |#1|)))) (-2816 (($) NIL T CONST)) (-2202 (((-3 (-2 (|:| |particular| $) (|:| -1400 (-595 $))) "failed")) NIL (-1463 (-12 (|has| |#2| (-347 |#1|)) (|has| |#1| (-520))) (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-520)))))) (-3403 (((-3 $ "failed")) NIL (-1463 (-12 (|has| |#2| (-347 |#1|)) (|has| |#1| (-520))) (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-520)))))) (-3107 (((-635 |#1|)) NIL (|has| |#2| (-397 |#1|))) (((-635 |#1|) (-1177 $)) NIL (|has| |#2| (-347 |#1|)))) (-3913 ((|#1| $) NIL (|has| |#2| (-347 |#1|)))) (-3281 (((-635 |#1|) $) NIL (|has| |#2| (-397 |#1|))) (((-635 |#1|) $ (-1177 $)) NIL (|has| |#2| (-347 |#1|)))) (-3552 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| |#2| (-347 |#1|)) (|has| |#1| (-520))) (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-520)))))) (-2591 (((-1091 (-891 |#1|))) NIL (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-343))))) (-3693 (($ $ (-860)) NIL)) (-2061 ((|#1| $) NIL (|has| |#2| (-347 |#1|)))) (-2466 (((-1091 |#1|) $) NIL (-1463 (-12 (|has| |#2| (-347 |#1|)) (|has| |#1| (-520))) (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-520)))))) (-3326 ((|#1|) NIL (|has| |#2| (-397 |#1|))) ((|#1| (-1177 $)) NIL (|has| |#2| (-347 |#1|)))) (-3922 (((-1091 |#1|) $) NIL (|has| |#2| (-347 |#1|)))) (-2683 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-1945 (($ (-1177 |#1|)) NIL (|has| |#2| (-397 |#1|))) (($ (-1177 |#1|) (-1177 $)) NIL (|has| |#2| (-347 |#1|)))) (-1312 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| |#2| (-347 |#1|)) (|has| |#1| (-520))) (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-520)))))) (-3090 (((-860)) NIL (|has| |#2| (-347 |#1|)))) (-3733 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-2451 (($ $ (-860)) NIL)) (-2854 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-1795 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-1870 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-2481 (((-3 (-2 (|:| |particular| $) (|:| -1400 (-595 $))) "failed")) NIL (-1463 (-12 (|has| |#2| (-347 |#1|)) (|has| |#1| (-520))) (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-520)))))) (-2615 (((-3 $ "failed")) NIL (-1463 (-12 (|has| |#2| (-347 |#1|)) (|has| |#1| (-520))) (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-520)))))) (-2906 (((-635 |#1|)) NIL (|has| |#2| (-397 |#1|))) (((-635 |#1|) (-1177 $)) NIL (|has| |#2| (-347 |#1|)))) (-1948 ((|#1| $) NIL (|has| |#2| (-347 |#1|)))) (-3867 (((-635 |#1|) $) NIL (|has| |#2| (-397 |#1|))) (((-635 |#1|) $ (-1177 $)) NIL (|has| |#2| (-347 |#1|)))) (-1895 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| |#2| (-347 |#1|)) (|has| |#1| (-520))) (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-520)))))) (-2102 (((-1091 (-891 |#1|))) NIL (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-343))))) (-3964 (($ $ (-860)) NIL)) (-4000 ((|#1| $) NIL (|has| |#2| (-347 |#1|)))) (-3549 (((-1091 |#1|) $) NIL (-1463 (-12 (|has| |#2| (-347 |#1|)) (|has| |#1| (-520))) (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-520)))))) (-1991 ((|#1|) NIL (|has| |#2| (-397 |#1|))) ((|#1| (-1177 $)) NIL (|has| |#2| (-347 |#1|)))) (-2732 (((-1091 |#1|) $) NIL (|has| |#2| (-347 |#1|)))) (-4194 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-3034 (((-1078) $) NIL)) (-2044 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-3074 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-1302 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-2495 (((-1042) $) NIL)) (-3176 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-3043 ((|#1| $ (-528)) NIL (|has| |#2| (-397 |#1|)))) (-4243 (((-635 |#1|) (-1177 $)) NIL (|has| |#2| (-397 |#1|))) (((-1177 |#1|) $) NIL (|has| |#2| (-397 |#1|))) (((-635 |#1|) (-1177 $) (-1177 $)) NIL (|has| |#2| (-347 |#1|))) (((-1177 |#1|) $ (-1177 $)) NIL (|has| |#2| (-347 |#1|)))) (-3155 (($ (-1177 |#1|)) NIL (|has| |#2| (-397 |#1|))) (((-1177 |#1|) $) NIL (|has| |#2| (-397 |#1|)))) (-1730 (((-595 (-891 |#1|))) NIL (|has| |#2| (-397 |#1|))) (((-595 (-891 |#1|)) (-1177 $)) NIL (|has| |#2| (-347 |#1|)))) (-2405 (($ $ $) NIL)) (-2643 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-2222 (((-802) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1400 (((-1177 $)) NIL (|has| |#2| (-397 |#1|)))) (-3586 (((-595 (-1177 |#1|))) NIL (-1463 (-12 (|has| |#2| (-347 |#1|)) (|has| |#1| (-520))) (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-520)))))) (-4103 (($ $ $ $) NIL)) (-1461 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-2834 (($ (-635 |#1|) $) NIL (|has| |#2| (-397 |#1|)))) (-3607 (($ $ $) NIL)) (-3047 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-1907 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-3405 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-2969 (($) NIL T CONST)) (-2186 (((-110) $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) 24)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-563 |#1| |#2|) (-13 (-691 |#1|) (-569 |#2|) (-10 -8 (-15 -2222 ($ |#2|)) (IF (|has| |#2| (-397 |#1|)) (-6 (-397 |#1|)) |%noBranch|) (IF (|has| |#2| (-347 |#1|)) (-6 (-347 |#1|)) |%noBranch|))) (-162) (-691 |#1|)) (T -563))
-((-2222 (*1 *1 *2) (-12 (-4 *3 (-162)) (-5 *1 (-563 *3 *2)) (-4 *2 (-691 *3)))))
-(-13 (-691 |#1|) (-569 |#2|) (-10 -8 (-15 -2222 ($ |#2|)) (IF (|has| |#2| (-397 |#1|)) (-6 (-397 |#1|)) |%noBranch|) (IF (|has| |#2| (-347 |#1|)) (-6 (-347 |#1|)) |%noBranch|)))
-((-2207 (((-110) $ $) NIL)) (-2059 (((-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) $ (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) 33)) (-3450 (($ (-595 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)))) NIL) (($) NIL)) (-1444 (((-1182) $ (-1078) (-1078)) NIL (|has| $ (-6 -4265)))) (-3535 (((-110) $ (-717)) NIL)) (-2381 ((|#1| $ (-1078) |#1|) 43)) (-1836 (($ (-1 (-110) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL (|has| $ (-6 -4264)))) (-1573 (($ (-1 (-110) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL (|has| $ (-6 -4264)))) (-2582 (((-3 |#1| "failed") (-1078) $) 46)) (-2816 (($) NIL T CONST)) (-1879 (($ $ (-1078)) 24)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1023))))) (-3991 (((-3 |#1| "failed") (-1078) $) 47) (($ (-1 (-110) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL (|has| $ (-6 -4264))) (($ (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) $) NIL (|has| $ (-6 -4264)))) (-2280 (($ (-1 (-110) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL (|has| $ (-6 -4264))) (($ (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1023))))) (-1422 (((-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL (|has| $ (-6 -4264))) (((-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $ (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) NIL (|has| $ (-6 -4264))) (((-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $ (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1023))))) (-1757 (((-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) $) 32)) (-2812 ((|#1| $ (-1078) |#1|) NIL (|has| $ (-6 -4265)))) (-2742 ((|#1| $ (-1078)) NIL)) (-3342 (((-595 |#1|) $) NIL (|has| $ (-6 -4264))) (((-595 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL (|has| $ (-6 -4264)))) (-2743 (($ $) 48)) (-2378 (($ (-368)) 22) (($ (-368) (-1078)) 21)) (-3814 (((-368) $) 34)) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-1078) $) NIL (|has| (-1078) (-793)))) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264))) (((-595 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) (((-110) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1023))))) (-1709 (((-1078) $) NIL (|has| (-1078) (-793)))) (-2800 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4265))) (($ (-1 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL)) (-3225 (((-595 (-1078)) $) 39)) (-4024 (((-110) (-1078) $) NIL)) (-3978 (((-1078) $) 35)) (-3934 (((-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) $) NIL)) (-1950 (($ (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) $) NIL)) (-2084 (((-595 (-1078)) $) NIL)) (-3966 (((-110) (-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2890 ((|#1| $) NIL (|has| (-1078) (-793)))) (-1734 (((-3 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) "failed") (-1 (-110) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL)) (-1332 (($ $ |#1|) NIL (|has| $ (-6 -4265)))) (-1390 (((-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) $) NIL)) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) (-595 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)))) NIL (-12 (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-290 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)))) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1023)))) (($ $ (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) NIL (-12 (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-290 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)))) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1023)))) (($ $ (-275 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)))) NIL (-12 (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-290 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)))) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1023)))) (($ $ (-595 (-275 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))))) NIL (-12 (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-290 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)))) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2861 (((-595 |#1|) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) 37)) (-3043 ((|#1| $ (-1078) |#1|) NIL) ((|#1| $ (-1078)) 42)) (-3900 (($ (-595 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)))) NIL) (($) NIL)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) (((-717) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1023)))) (((-717) (-1 (-110) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL (|has| $ (-6 -4264)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) NIL (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-570 (-504))))) (-2233 (($ (-595 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)))) NIL)) (-2222 (((-802) $) 20)) (-3250 (($ $) 25)) (-2164 (($ (-595 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)))) NIL)) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 19)) (-2138 (((-717) $) 41 (|has| $ (-6 -4264)))))
-(((-564 |#1|) (-13 (-344 (-368) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) (-1108 (-1078) |#1|) (-10 -8 (-6 -4264) (-15 -2743 ($ $)))) (-1023)) (T -564))
-((-2743 (*1 *1 *1) (-12 (-5 *1 (-564 *2)) (-4 *2 (-1023)))))
-(-13 (-344 (-368) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) (-1108 (-1078) |#1|) (-10 -8 (-6 -4264) (-15 -2743 ($ $))))
-((-2408 (((-110) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) $) 15)) (-3225 (((-595 |#2|) $) 19)) (-4024 (((-110) |#2| $) 12)))
-(((-565 |#1| |#2| |#3|) (-10 -8 (-15 -3225 ((-595 |#2|) |#1|)) (-15 -4024 ((-110) |#2| |#1|)) (-15 -2408 ((-110) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) |#1|))) (-566 |#2| |#3|) (-1023) (-1023)) (T -565))
-NIL
-(-10 -8 (-15 -3225 ((-595 |#2|) |#1|)) (-15 -4024 ((-110) |#2| |#1|)) (-15 -2408 ((-110) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) |#1|)))
-((-2207 (((-110) $ $) 19 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (-3535 (((-110) $ (-717)) 8)) (-1836 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 45 (|has| $ (-6 -4264)))) (-1573 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 55 (|has| $ (-6 -4264)))) (-2582 (((-3 |#2| "failed") |#1| $) 61)) (-2816 (($) 7 T CONST)) (-2923 (($ $) 58 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| $ (-6 -4264))))) (-3991 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 47 (|has| $ (-6 -4264))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 46 (|has| $ (-6 -4264))) (((-3 |#2| "failed") |#1| $) 62)) (-2280 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 54 (|has| $ (-6 -4264)))) (-1422 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 56 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| $ (-6 -4264)))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 53 (|has| $ (-6 -4264))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 52 (|has| $ (-6 -4264)))) (-3342 (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 30 (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) 9)) (-2604 (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| $ (-6 -4264))))) (-2800 (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 35)) (-3358 (((-110) $ (-717)) 10)) (-3034 (((-1078) $) 22 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (-3225 (((-595 |#1|) $) 63)) (-4024 (((-110) |#1| $) 64)) (-3934 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 39)) (-1950 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 40)) (-2495 (((-1042) $) 21 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (-1734 (((-3 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) "failed") (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 51)) (-1390 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 41)) (-1818 (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))))) 26 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-275 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) 25 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 24 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) 23 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))))) (-3744 (((-110) $ $) 14)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3900 (($) 49) (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) 48)) (-2507 (((-717) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 31 (|has| $ (-6 -4264))) (((-717) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-3155 (((-504) $) 59 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-570 (-504))))) (-2233 (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) 50)) (-2222 (((-802) $) 18 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-569 (-802))))) (-2164 (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) 42)) (-3451 (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-566 |#1| |#2|) (-133) (-1023) (-1023)) (T -566))
-((-4024 (*1 *2 *3 *1) (-12 (-4 *1 (-566 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-5 *2 (-110)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-566 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-5 *2 (-595 *3)))) (-3991 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-566 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1023)))) (-2582 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-566 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1023)))))
-(-13 (-211 (-2 (|:| -2927 |t#1|) (|:| -1780 |t#2|))) (-10 -8 (-15 -4024 ((-110) |t#1| $)) (-15 -3225 ((-595 |t#1|) $)) (-15 -3991 ((-3 |t#2| "failed") |t#1| $)) (-15 -2582 ((-3 |t#2| "failed") |t#1| $))))
-(((-33) . T) ((-104 #0=(-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T) ((-99) |has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) ((-569 (-802)) -1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-569 (-802)))) ((-144 #0#) . T) ((-570 (-504)) |has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-570 (-504))) ((-211 #0#) . T) ((-217 #0#) . T) ((-290 #0#) -12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))) ((-467 #0#) . T) ((-489 #0# #0#) -12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))) ((-1023) |has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) ((-1131) . T))
-((-2428 (((-568 |#2|) |#1|) 15)) (-2772 (((-3 |#1| "failed") (-568 |#2|)) 19)))
-(((-567 |#1| |#2|) (-10 -7 (-15 -2428 ((-568 |#2|) |#1|)) (-15 -2772 ((-3 |#1| "failed") (-568 |#2|)))) (-793) (-793)) (T -567))
-((-2772 (*1 *2 *3) (|partial| -12 (-5 *3 (-568 *4)) (-4 *4 (-793)) (-4 *2 (-793)) (-5 *1 (-567 *2 *4)))) (-2428 (*1 *2 *3) (-12 (-5 *2 (-568 *4)) (-5 *1 (-567 *3 *4)) (-4 *3 (-793)) (-4 *4 (-793)))))
-(-10 -7 (-15 -2428 ((-568 |#2|) |#1|)) (-15 -2772 ((-3 |#1| "failed") (-568 |#2|))))
-((-2207 (((-110) $ $) NIL)) (-2238 (((-3 (-1095) "failed") $) 37)) (-2262 (((-1182) $ (-717)) 26)) (-3140 (((-717) $) 25)) (-3748 (((-112) $) 12)) (-3814 (((-1095) $) 20)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3034 (((-1078) $) NIL)) (-1552 (($ (-112) (-595 |#1|) (-717)) 30) (($ (-1095)) 31)) (-2341 (((-110) $ (-112)) 18) (((-110) $ (-1095)) 16)) (-4073 (((-717) $) 22)) (-2495 (((-1042) $) NIL)) (-3155 (((-831 (-528)) $) 77 (|has| |#1| (-570 (-831 (-528))))) (((-831 (-359)) $) 84 (|has| |#1| (-570 (-831 (-359))))) (((-504) $) 69 (|has| |#1| (-570 (-504))))) (-2222 (((-802) $) 55)) (-3625 (((-595 |#1|) $) 24)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 41)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 42)))
-(((-568 |#1|) (-13 (-129) (-823 |#1|) (-10 -8 (-15 -3814 ((-1095) $)) (-15 -3748 ((-112) $)) (-15 -3625 ((-595 |#1|) $)) (-15 -4073 ((-717) $)) (-15 -1552 ($ (-112) (-595 |#1|) (-717))) (-15 -1552 ($ (-1095))) (-15 -2238 ((-3 (-1095) "failed") $)) (-15 -2341 ((-110) $ (-112))) (-15 -2341 ((-110) $ (-1095))) (IF (|has| |#1| (-570 (-504))) (-6 (-570 (-504))) |%noBranch|))) (-793)) (T -568))
-((-3814 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-568 *3)) (-4 *3 (-793)))) (-3748 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-793)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-595 *3)) (-5 *1 (-568 *3)) (-4 *3 (-793)))) (-4073 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-568 *3)) (-4 *3 (-793)))) (-1552 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-112)) (-5 *3 (-595 *5)) (-5 *4 (-717)) (-4 *5 (-793)) (-5 *1 (-568 *5)))) (-1552 (*1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-568 *3)) (-4 *3 (-793)))) (-2238 (*1 *2 *1) (|partial| -12 (-5 *2 (-1095)) (-5 *1 (-568 *3)) (-4 *3 (-793)))) (-2341 (*1 *2 *1 *3) (-12 (-5 *3 (-112)) (-5 *2 (-110)) (-5 *1 (-568 *4)) (-4 *4 (-793)))) (-2341 (*1 *2 *1 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-110)) (-5 *1 (-568 *4)) (-4 *4 (-793)))))
-(-13 (-129) (-823 |#1|) (-10 -8 (-15 -3814 ((-1095) $)) (-15 -3748 ((-112) $)) (-15 -3625 ((-595 |#1|) $)) (-15 -4073 ((-717) $)) (-15 -1552 ($ (-112) (-595 |#1|) (-717))) (-15 -1552 ($ (-1095))) (-15 -2238 ((-3 (-1095) "failed") $)) (-15 -2341 ((-110) $ (-112))) (-15 -2341 ((-110) $ (-1095))) (IF (|has| |#1| (-570 (-504))) (-6 (-570 (-504))) |%noBranch|)))
-((-2222 ((|#1| $) 6)))
-(((-569 |#1|) (-133) (-1131)) (T -569))
-((-2222 (*1 *2 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-1131)))))
-(-13 (-10 -8 (-15 -2222 (|t#1| $))))
-((-3155 ((|#1| $) 6)))
-(((-570 |#1|) (-133) (-1131)) (T -570))
-((-3155 (*1 *2 *1) (-12 (-4 *1 (-570 *2)) (-4 *2 (-1131)))))
-(-13 (-10 -8 (-15 -3155 (|t#1| $))))
-((-2774 (((-3 (-1091 (-387 |#2|)) "failed") (-387 |#2|) (-387 |#2|) (-387 |#2|) (-1 (-398 |#2|) |#2|)) 15) (((-3 (-1091 (-387 |#2|)) "failed") (-387 |#2|) (-387 |#2|) (-387 |#2|)) 16)))
-(((-571 |#1| |#2|) (-10 -7 (-15 -2774 ((-3 (-1091 (-387 |#2|)) "failed") (-387 |#2|) (-387 |#2|) (-387 |#2|))) (-15 -2774 ((-3 (-1091 (-387 |#2|)) "failed") (-387 |#2|) (-387 |#2|) (-387 |#2|) (-1 (-398 |#2|) |#2|)))) (-13 (-140) (-27) (-972 (-528)) (-972 (-387 (-528)))) (-1153 |#1|)) (T -571))
-((-2774 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-140) (-27) (-972 (-528)) (-972 (-387 (-528))))) (-5 *2 (-1091 (-387 *6))) (-5 *1 (-571 *5 *6)) (-5 *3 (-387 *6)))) (-2774 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-140) (-27) (-972 (-528)) (-972 (-387 (-528))))) (-4 *5 (-1153 *4)) (-5 *2 (-1091 (-387 *5))) (-5 *1 (-571 *4 *5)) (-5 *3 (-387 *5)))))
-(-10 -7 (-15 -2774 ((-3 (-1091 (-387 |#2|)) "failed") (-387 |#2|) (-387 |#2|) (-387 |#2|))) (-15 -2774 ((-3 (-1091 (-387 |#2|)) "failed") (-387 |#2|) (-387 |#2|) (-387 |#2|) (-1 (-398 |#2|) |#2|))))
-((-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ |#2|) 10)))
-(((-572 |#1| |#2|) (-10 -8 (-15 -2222 (|#1| |#2|)) (-15 -2222 (|#1| (-528))) (-15 -2222 ((-802) |#1|))) (-573 |#2|) (-981)) (T -572))
-NIL
-(-10 -8 (-15 -2222 (|#1| |#2|)) (-15 -2222 (|#1| (-528))) (-15 -2222 ((-802) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-1312 (((-3 $ "failed") $) 34)) (-1297 (((-110) $) 31)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ |#1|) 36)) (-3742 (((-717)) 29)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
-(((-573 |#1|) (-133) (-981)) (T -573))
-((-2222 (*1 *1 *2) (-12 (-4 *1 (-573 *2)) (-4 *2 (-981)))))
-(-13 (-981) (-597 |t#1|) (-10 -8 (-15 -2222 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-569 (-802)) . T) ((-597 |#1|) . T) ((-597 $) . T) ((-673) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-3605 (((-528) $) NIL (|has| |#1| (-791)))) (-2816 (($) NIL T CONST)) (-1312 (((-3 $ "failed") $) NIL)) (-3657 (((-110) $) NIL (|has| |#1| (-791)))) (-1297 (((-110) $) NIL)) (-3031 ((|#1| $) 13)) (-3710 (((-110) $) NIL (|has| |#1| (-791)))) (-1436 (($ $ $) NIL (|has| |#1| (-791)))) (-1736 (($ $ $) NIL (|has| |#1| (-791)))) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3042 ((|#3| $) 15)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ |#2|) NIL)) (-3742 (((-717)) 20)) (-1775 (($ $) NIL (|has| |#1| (-791)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) 12 T CONST)) (-2244 (((-110) $ $) NIL (|has| |#1| (-791)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-791)))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (|has| |#1| (-791)))) (-2208 (((-110) $ $) NIL (|has| |#1| (-791)))) (-2296 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-574 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-791)) (-6 (-791)) |%noBranch|) (-15 -2296 ($ $ |#3|)) (-15 -2296 ($ |#1| |#3|)) (-15 -3031 (|#1| $)) (-15 -3042 (|#3| $)))) (-37 |#2|) (-162) (|SubsetCategory| (-673) |#2|)) (T -574))
-((-2296 (*1 *1 *1 *2) (-12 (-4 *4 (-162)) (-5 *1 (-574 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-673) *4)))) (-2296 (*1 *1 *2 *3) (-12 (-4 *4 (-162)) (-5 *1 (-574 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-673) *4)))) (-3031 (*1 *2 *1) (-12 (-4 *3 (-162)) (-4 *2 (-37 *3)) (-5 *1 (-574 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-673) *3)))) (-3042 (*1 *2 *1) (-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-673) *4)) (-5 *1 (-574 *3 *4 *2)) (-4 *3 (-37 *4)))))
-(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-791)) (-6 (-791)) |%noBranch|) (-15 -2296 ($ $ |#3|)) (-15 -2296 ($ |#1| |#3|)) (-15 -3031 (|#1| $)) (-15 -3042 (|#3| $))))
-((-2294 ((|#2| |#2| (-1095) (-1095)) 18)))
-(((-575 |#1| |#2|) (-10 -7 (-15 -2294 (|#2| |#2| (-1095) (-1095)))) (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528))) (-13 (-1117) (-897) (-29 |#1|))) (T -575))
-((-2294 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528)))) (-5 *1 (-575 *4 *2)) (-4 *2 (-13 (-1117) (-897) (-29 *4))))))
-(-10 -7 (-15 -2294 (|#2| |#2| (-1095) (-1095))))
-((-2207 (((-110) $ $) 56)) (-1359 (((-110) $) 52)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-1678 ((|#1| $) 49)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2213 (((-110) $ $) NIL (|has| |#1| (-343)))) (-3517 (((-2 (|:| -1226 $) (|:| -3959 (-387 |#2|))) (-387 |#2|)) 97 (|has| |#1| (-343)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-528) "failed") $) NIL (|has| |#1| (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-2409 (((-528) $) NIL (|has| |#1| (-972 (-528)))) (((-387 (-528)) $) NIL (|has| |#1| (-972 (-387 (-528))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3519 (($ $ $) NIL (|has| |#1| (-343)))) (-2388 (($ $) 24)) (-1312 (((-3 $ "failed") $) 75)) (-3498 (($ $ $) NIL (|has| |#1| (-343)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL (|has| |#1| (-343)))) (-3689 (((-528) $) 19)) (-1297 (((-110) $) NIL)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-2195 (((-110) $) 36)) (-2548 (($ |#1| (-528)) 21)) (-2697 ((|#1| $) 51)) (-2057 (($ (-595 $)) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-343)))) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#1| (-343)))) (-2088 (($ (-595 $)) NIL (|has| |#1| (-343))) (($ $ $) 87 (|has| |#1| (-343)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-343))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#1| (-343)))) (-3477 (((-3 $ "failed") $ $) 79)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-3973 (((-717) $) 99 (|has| |#1| (-343)))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 98 (|has| |#1| (-343)))) (-3235 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-717)) NIL) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-1095)) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-717)) NIL (|has| |#2| (-215))) (($ $) NIL (|has| |#2| (-215)))) (-2935 (((-528) $) 34)) (-3155 (((-387 |#2|) $) 42)) (-2222 (((-802) $) 62) (($ (-528)) 32) (($ $) NIL) (($ (-387 (-528))) NIL (|has| |#1| (-972 (-387 (-528))))) (($ |#1|) 31) (($ |#2|) 22)) (-3216 ((|#1| $ (-528)) 63)) (-3749 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3742 (((-717)) 29)) (-4016 (((-110) $ $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 9 T CONST)) (-2982 (($) 12 T CONST)) (-3245 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-717)) NIL) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-1095)) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-717)) NIL (|has| |#2| (-215))) (($ $) NIL (|has| |#2| (-215)))) (-2186 (((-110) $ $) 17)) (-2286 (($ $) 46) (($ $ $) NIL)) (-2275 (($ $ $) 76)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 26) (($ $ $) 44)))
-(((-576 |#1| |#2|) (-13 (-213 |#2|) (-520) (-570 (-387 |#2|)) (-391 |#1|) (-972 |#2|) (-10 -8 (-15 -2195 ((-110) $)) (-15 -2935 ((-528) $)) (-15 -3689 ((-528) $)) (-15 -2388 ($ $)) (-15 -2697 (|#1| $)) (-15 -1678 (|#1| $)) (-15 -3216 (|#1| $ (-528))) (-15 -2548 ($ |#1| (-528))) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-343)) (PROGN (-6 (-288)) (-15 -3517 ((-2 (|:| -1226 $) (|:| -3959 (-387 |#2|))) (-387 |#2|)))) |%noBranch|))) (-520) (-1153 |#1|)) (T -576))
-((-2195 (*1 *2 *1) (-12 (-4 *3 (-520)) (-5 *2 (-110)) (-5 *1 (-576 *3 *4)) (-4 *4 (-1153 *3)))) (-2935 (*1 *2 *1) (-12 (-4 *3 (-520)) (-5 *2 (-528)) (-5 *1 (-576 *3 *4)) (-4 *4 (-1153 *3)))) (-3689 (*1 *2 *1) (-12 (-4 *3 (-520)) (-5 *2 (-528)) (-5 *1 (-576 *3 *4)) (-4 *4 (-1153 *3)))) (-2388 (*1 *1 *1) (-12 (-4 *2 (-520)) (-5 *1 (-576 *2 *3)) (-4 *3 (-1153 *2)))) (-2697 (*1 *2 *1) (-12 (-4 *2 (-520)) (-5 *1 (-576 *2 *3)) (-4 *3 (-1153 *2)))) (-1678 (*1 *2 *1) (-12 (-4 *2 (-520)) (-5 *1 (-576 *2 *3)) (-4 *3 (-1153 *2)))) (-3216 (*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-4 *2 (-520)) (-5 *1 (-576 *2 *4)) (-4 *4 (-1153 *2)))) (-2548 (*1 *1 *2 *3) (-12 (-5 *3 (-528)) (-4 *2 (-520)) (-5 *1 (-576 *2 *4)) (-4 *4 (-1153 *2)))) (-3517 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *4 (-520)) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| -1226 (-576 *4 *5)) (|:| -3959 (-387 *5)))) (-5 *1 (-576 *4 *5)) (-5 *3 (-387 *5)))))
-(-13 (-213 |#2|) (-520) (-570 (-387 |#2|)) (-391 |#1|) (-972 |#2|) (-10 -8 (-15 -2195 ((-110) $)) (-15 -2935 ((-528) $)) (-15 -3689 ((-528) $)) (-15 -2388 ($ $)) (-15 -2697 (|#1| $)) (-15 -1678 (|#1| $)) (-15 -3216 (|#1| $ (-528))) (-15 -2548 ($ |#1| (-528))) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-343)) (PROGN (-6 (-288)) (-15 -3517 ((-2 (|:| -1226 $) (|:| -3959 (-387 |#2|))) (-387 |#2|)))) |%noBranch|)))
-((-1985 (((-595 |#6|) (-595 |#4|) (-110)) 47)) (-2119 ((|#6| |#6|) 40)))
-(((-577 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2119 (|#6| |#6|)) (-15 -1985 ((-595 |#6|) (-595 |#4|) (-110)))) (-431) (-739) (-793) (-994 |#1| |#2| |#3|) (-999 |#1| |#2| |#3| |#4|) (-1032 |#1| |#2| |#3| |#4|)) (T -577))
-((-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *8)) (-5 *4 (-110)) (-4 *8 (-994 *5 *6 *7)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-595 *10)) (-5 *1 (-577 *5 *6 *7 *8 *9 *10)) (-4 *9 (-999 *5 *6 *7 *8)) (-4 *10 (-1032 *5 *6 *7 *8)))) (-2119 (*1 *2 *2) (-12 (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *1 (-577 *3 *4 *5 *6 *7 *2)) (-4 *7 (-999 *3 *4 *5 *6)) (-4 *2 (-1032 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2119 (|#6| |#6|)) (-15 -1985 ((-595 |#6|) (-595 |#4|) (-110))))
-((-1849 (((-110) |#3| (-717) (-595 |#3|)) 23)) (-2505 (((-3 (-2 (|:| |polfac| (-595 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-595 (-1091 |#3|)))) "failed") |#3| (-595 (-1091 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2783 (-595 (-2 (|:| |irr| |#4|) (|:| -2842 (-528)))))) (-595 |#3|) (-595 |#1|) (-595 |#3|)) 55)))
-(((-578 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1849 ((-110) |#3| (-717) (-595 |#3|))) (-15 -2505 ((-3 (-2 (|:| |polfac| (-595 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-595 (-1091 |#3|)))) "failed") |#3| (-595 (-1091 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2783 (-595 (-2 (|:| |irr| |#4|) (|:| -2842 (-528)))))) (-595 |#3|) (-595 |#1|) (-595 |#3|)))) (-793) (-739) (-288) (-888 |#3| |#2| |#1|)) (T -578))
-((-2505 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2783 (-595 (-2 (|:| |irr| *10) (|:| -2842 (-528))))))) (-5 *6 (-595 *3)) (-5 *7 (-595 *8)) (-4 *8 (-793)) (-4 *3 (-288)) (-4 *10 (-888 *3 *9 *8)) (-4 *9 (-739)) (-5 *2 (-2 (|:| |polfac| (-595 *10)) (|:| |correct| *3) (|:| |corrfact| (-595 (-1091 *3))))) (-5 *1 (-578 *8 *9 *3 *10)) (-5 *4 (-595 (-1091 *3))))) (-1849 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-717)) (-5 *5 (-595 *3)) (-4 *3 (-288)) (-4 *6 (-793)) (-4 *7 (-739)) (-5 *2 (-110)) (-5 *1 (-578 *6 *7 *3 *8)) (-4 *8 (-888 *3 *7 *6)))))
-(-10 -7 (-15 -1849 ((-110) |#3| (-717) (-595 |#3|))) (-15 -2505 ((-3 (-2 (|:| |polfac| (-595 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-595 (-1091 |#3|)))) "failed") |#3| (-595 (-1091 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2783 (-595 (-2 (|:| |irr| |#4|) (|:| -2842 (-528)))))) (-595 |#3|) (-595 |#1|) (-595 |#3|))))
-((-2207 (((-110) $ $) NIL)) (-3642 (((-595 |#1|) $) NIL)) (-2816 (($) NIL T CONST)) (-1312 (((-3 $ "failed") $) NIL)) (-1297 (((-110) $) NIL)) (-2091 (($ $) 67)) (-2097 (((-613 |#1| |#2|) $) 52)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) 70)) (-3060 (((-595 (-275 |#2|)) $ $) 33)) (-2495 (((-1042) $) NIL)) (-2656 (($ (-613 |#1| |#2|)) 48)) (-4097 (($ $ $) NIL)) (-2405 (($ $ $) NIL)) (-2222 (((-802) $) 58) (((-1190 |#1| |#2|) $) NIL) (((-1195 |#1| |#2|) $) 66)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2982 (($) 53 T CONST)) (-3422 (((-595 (-2 (|:| |k| (-620 |#1|)) (|:| |c| |#2|))) $) 31)) (-3494 (((-595 (-613 |#1| |#2|)) (-595 |#1|)) 65)) (-2145 (((-595 (-2 (|:| |k| (-832 |#1|)) (|:| |c| |#2|))) $) 37)) (-2186 (((-110) $ $) 54)) (-2296 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (* (($ $ $) 44)))
-(((-579 |#1| |#2| |#3|) (-13 (-452) (-10 -8 (-15 -2656 ($ (-613 |#1| |#2|))) (-15 -2097 ((-613 |#1| |#2|) $)) (-15 -2145 ((-595 (-2 (|:| |k| (-832 |#1|)) (|:| |c| |#2|))) $)) (-15 -2222 ((-1190 |#1| |#2|) $)) (-15 -2222 ((-1195 |#1| |#2|) $)) (-15 -2091 ($ $)) (-15 -3642 ((-595 |#1|) $)) (-15 -3494 ((-595 (-613 |#1| |#2|)) (-595 |#1|))) (-15 -3422 ((-595 (-2 (|:| |k| (-620 |#1|)) (|:| |c| |#2|))) $)) (-15 -3060 ((-595 (-275 |#2|)) $ $)))) (-793) (-13 (-162) (-664 (-387 (-528)))) (-860)) (T -579))
-((-2656 (*1 *1 *2) (-12 (-5 *2 (-613 *3 *4)) (-4 *3 (-793)) (-4 *4 (-13 (-162) (-664 (-387 (-528))))) (-5 *1 (-579 *3 *4 *5)) (-14 *5 (-860)))) (-2097 (*1 *2 *1) (-12 (-5 *2 (-613 *3 *4)) (-5 *1 (-579 *3 *4 *5)) (-4 *3 (-793)) (-4 *4 (-13 (-162) (-664 (-387 (-528))))) (-14 *5 (-860)))) (-2145 (*1 *2 *1) (-12 (-5 *2 (-595 (-2 (|:| |k| (-832 *3)) (|:| |c| *4)))) (-5 *1 (-579 *3 *4 *5)) (-4 *3 (-793)) (-4 *4 (-13 (-162) (-664 (-387 (-528))))) (-14 *5 (-860)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-1190 *3 *4)) (-5 *1 (-579 *3 *4 *5)) (-4 *3 (-793)) (-4 *4 (-13 (-162) (-664 (-387 (-528))))) (-14 *5 (-860)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-1195 *3 *4)) (-5 *1 (-579 *3 *4 *5)) (-4 *3 (-793)) (-4 *4 (-13 (-162) (-664 (-387 (-528))))) (-14 *5 (-860)))) (-2091 (*1 *1 *1) (-12 (-5 *1 (-579 *2 *3 *4)) (-4 *2 (-793)) (-4 *3 (-13 (-162) (-664 (-387 (-528))))) (-14 *4 (-860)))) (-3642 (*1 *2 *1) (-12 (-5 *2 (-595 *3)) (-5 *1 (-579 *3 *4 *5)) (-4 *3 (-793)) (-4 *4 (-13 (-162) (-664 (-387 (-528))))) (-14 *5 (-860)))) (-3494 (*1 *2 *3) (-12 (-5 *3 (-595 *4)) (-4 *4 (-793)) (-5 *2 (-595 (-613 *4 *5))) (-5 *1 (-579 *4 *5 *6)) (-4 *5 (-13 (-162) (-664 (-387 (-528))))) (-14 *6 (-860)))) (-3422 (*1 *2 *1) (-12 (-5 *2 (-595 (-2 (|:| |k| (-620 *3)) (|:| |c| *4)))) (-5 *1 (-579 *3 *4 *5)) (-4 *3 (-793)) (-4 *4 (-13 (-162) (-664 (-387 (-528))))) (-14 *5 (-860)))) (-3060 (*1 *2 *1 *1) (-12 (-5 *2 (-595 (-275 *4))) (-5 *1 (-579 *3 *4 *5)) (-4 *3 (-793)) (-4 *4 (-13 (-162) (-664 (-387 (-528))))) (-14 *5 (-860)))))
-(-13 (-452) (-10 -8 (-15 -2656 ($ (-613 |#1| |#2|))) (-15 -2097 ((-613 |#1| |#2|) $)) (-15 -2145 ((-595 (-2 (|:| |k| (-832 |#1|)) (|:| |c| |#2|))) $)) (-15 -2222 ((-1190 |#1| |#2|) $)) (-15 -2222 ((-1195 |#1| |#2|) $)) (-15 -2091 ($ $)) (-15 -3642 ((-595 |#1|) $)) (-15 -3494 ((-595 (-613 |#1| |#2|)) (-595 |#1|))) (-15 -3422 ((-595 (-2 (|:| |k| (-620 |#1|)) (|:| |c| |#2|))) $)) (-15 -3060 ((-595 (-275 |#2|)) $ $))))
-((-1985 (((-595 (-1066 |#1| (-500 (-804 |#2|)) (-804 |#2|) (-726 |#1| (-804 |#2|)))) (-595 (-726 |#1| (-804 |#2|))) (-110)) 72) (((-595 (-978 |#1| |#2|)) (-595 (-726 |#1| (-804 |#2|))) (-110)) 58)) (-1274 (((-110) (-595 (-726 |#1| (-804 |#2|)))) 23)) (-1404 (((-595 (-1066 |#1| (-500 (-804 |#2|)) (-804 |#2|) (-726 |#1| (-804 |#2|)))) (-595 (-726 |#1| (-804 |#2|))) (-110)) 71)) (-2496 (((-595 (-978 |#1| |#2|)) (-595 (-726 |#1| (-804 |#2|))) (-110)) 57)) (-2175 (((-595 (-726 |#1| (-804 |#2|))) (-595 (-726 |#1| (-804 |#2|)))) 27)) (-3385 (((-3 (-595 (-726 |#1| (-804 |#2|))) "failed") (-595 (-726 |#1| (-804 |#2|)))) 26)))
-(((-580 |#1| |#2|) (-10 -7 (-15 -1274 ((-110) (-595 (-726 |#1| (-804 |#2|))))) (-15 -3385 ((-3 (-595 (-726 |#1| (-804 |#2|))) "failed") (-595 (-726 |#1| (-804 |#2|))))) (-15 -2175 ((-595 (-726 |#1| (-804 |#2|))) (-595 (-726 |#1| (-804 |#2|))))) (-15 -2496 ((-595 (-978 |#1| |#2|)) (-595 (-726 |#1| (-804 |#2|))) (-110))) (-15 -1404 ((-595 (-1066 |#1| (-500 (-804 |#2|)) (-804 |#2|) (-726 |#1| (-804 |#2|)))) (-595 (-726 |#1| (-804 |#2|))) (-110))) (-15 -1985 ((-595 (-978 |#1| |#2|)) (-595 (-726 |#1| (-804 |#2|))) (-110))) (-15 -1985 ((-595 (-1066 |#1| (-500 (-804 |#2|)) (-804 |#2|) (-726 |#1| (-804 |#2|)))) (-595 (-726 |#1| (-804 |#2|))) (-110)))) (-431) (-595 (-1095))) (T -580))
-((-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-726 *5 (-804 *6)))) (-5 *4 (-110)) (-4 *5 (-431)) (-14 *6 (-595 (-1095))) (-5 *2 (-595 (-1066 *5 (-500 (-804 *6)) (-804 *6) (-726 *5 (-804 *6))))) (-5 *1 (-580 *5 *6)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-726 *5 (-804 *6)))) (-5 *4 (-110)) (-4 *5 (-431)) (-14 *6 (-595 (-1095))) (-5 *2 (-595 (-978 *5 *6))) (-5 *1 (-580 *5 *6)))) (-1404 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-726 *5 (-804 *6)))) (-5 *4 (-110)) (-4 *5 (-431)) (-14 *6 (-595 (-1095))) (-5 *2 (-595 (-1066 *5 (-500 (-804 *6)) (-804 *6) (-726 *5 (-804 *6))))) (-5 *1 (-580 *5 *6)))) (-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-726 *5 (-804 *6)))) (-5 *4 (-110)) (-4 *5 (-431)) (-14 *6 (-595 (-1095))) (-5 *2 (-595 (-978 *5 *6))) (-5 *1 (-580 *5 *6)))) (-2175 (*1 *2 *2) (-12 (-5 *2 (-595 (-726 *3 (-804 *4)))) (-4 *3 (-431)) (-14 *4 (-595 (-1095))) (-5 *1 (-580 *3 *4)))) (-3385 (*1 *2 *2) (|partial| -12 (-5 *2 (-595 (-726 *3 (-804 *4)))) (-4 *3 (-431)) (-14 *4 (-595 (-1095))) (-5 *1 (-580 *3 *4)))) (-1274 (*1 *2 *3) (-12 (-5 *3 (-595 (-726 *4 (-804 *5)))) (-4 *4 (-431)) (-14 *5 (-595 (-1095))) (-5 *2 (-110)) (-5 *1 (-580 *4 *5)))))
-(-10 -7 (-15 -1274 ((-110) (-595 (-726 |#1| (-804 |#2|))))) (-15 -3385 ((-3 (-595 (-726 |#1| (-804 |#2|))) "failed") (-595 (-726 |#1| (-804 |#2|))))) (-15 -2175 ((-595 (-726 |#1| (-804 |#2|))) (-595 (-726 |#1| (-804 |#2|))))) (-15 -2496 ((-595 (-978 |#1| |#2|)) (-595 (-726 |#1| (-804 |#2|))) (-110))) (-15 -1404 ((-595 (-1066 |#1| (-500 (-804 |#2|)) (-804 |#2|) (-726 |#1| (-804 |#2|)))) (-595 (-726 |#1| (-804 |#2|))) (-110))) (-15 -1985 ((-595 (-978 |#1| |#2|)) (-595 (-726 |#1| (-804 |#2|))) (-110))) (-15 -1985 ((-595 (-1066 |#1| (-500 (-804 |#2|)) (-804 |#2|) (-726 |#1| (-804 |#2|)))) (-595 (-726 |#1| (-804 |#2|))) (-110))))
-((-2880 (($ $) 38)) (-2735 (($ $) 21)) (-2859 (($ $) 37)) (-2712 (($ $) 22)) (-2904 (($ $) 36)) (-2761 (($ $) 23)) (-1505 (($) 48)) (-2097 (($ $) 45)) (-1799 (($ $) 17)) (-1375 (($ $ (-1016 $)) 7) (($ $ (-1095)) 6)) (-2656 (($ $) 46)) (-2666 (($ $) 15)) (-2700 (($ $) 16)) (-2917 (($ $) 35)) (-2773 (($ $) 24)) (-2892 (($ $) 34)) (-2749 (($ $) 25)) (-2869 (($ $) 33)) (-2724 (($ $) 26)) (-2953 (($ $) 44)) (-2811 (($ $) 32)) (-2928 (($ $) 43)) (-2784 (($ $) 31)) (-2981 (($ $) 42)) (-2836 (($ $) 30)) (-3592 (($ $) 41)) (-2846 (($ $) 29)) (-2967 (($ $) 40)) (-2825 (($ $) 28)) (-2940 (($ $) 39)) (-2797 (($ $) 27)) (-3727 (($ $) 19)) (-3609 (($ $) 20)) (-3114 (($ $) 18)) (** (($ $ $) 47)))
-(((-581) (-133)) (T -581))
-((-3609 (*1 *1 *1) (-4 *1 (-581))) (-3727 (*1 *1 *1) (-4 *1 (-581))) (-3114 (*1 *1 *1) (-4 *1 (-581))) (-1799 (*1 *1 *1) (-4 *1 (-581))) (-2700 (*1 *1 *1) (-4 *1 (-581))) (-2666 (*1 *1 *1) (-4 *1 (-581))))
-(-13 (-897) (-1117) (-10 -8 (-15 -3609 ($ $)) (-15 -3727 ($ $)) (-15 -3114 ($ $)) (-15 -1799 ($ $)) (-15 -2700 ($ $)) (-15 -2666 ($ $))))
-(((-34) . T) ((-93) . T) ((-265) . T) ((-469) . T) ((-897) . T) ((-1117) . T) ((-1120) . T))
-((-3748 (((-112) (-112)) 83)) (-1799 ((|#2| |#2|) 30)) (-1375 ((|#2| |#2| (-1016 |#2|)) 79) ((|#2| |#2| (-1095)) 52)) (-2666 ((|#2| |#2|) 29)) (-2700 ((|#2| |#2|) 31)) (-2042 (((-110) (-112)) 34)) (-3727 ((|#2| |#2|) 26)) (-3609 ((|#2| |#2|) 28)) (-3114 ((|#2| |#2|) 27)))
-(((-582 |#1| |#2|) (-10 -7 (-15 -2042 ((-110) (-112))) (-15 -3748 ((-112) (-112))) (-15 -3609 (|#2| |#2|)) (-15 -3727 (|#2| |#2|)) (-15 -3114 (|#2| |#2|)) (-15 -1799 (|#2| |#2|)) (-15 -2666 (|#2| |#2|)) (-15 -2700 (|#2| |#2|)) (-15 -1375 (|#2| |#2| (-1095))) (-15 -1375 (|#2| |#2| (-1016 |#2|)))) (-13 (-793) (-520)) (-13 (-410 |#1|) (-938) (-1117))) (T -582))
-((-1375 (*1 *2 *2 *3) (-12 (-5 *3 (-1016 *2)) (-4 *2 (-13 (-410 *4) (-938) (-1117))) (-4 *4 (-13 (-793) (-520))) (-5 *1 (-582 *4 *2)))) (-1375 (*1 *2 *2 *3) (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-793) (-520))) (-5 *1 (-582 *4 *2)) (-4 *2 (-13 (-410 *4) (-938) (-1117))))) (-2700 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-582 *3 *2)) (-4 *2 (-13 (-410 *3) (-938) (-1117))))) (-2666 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-582 *3 *2)) (-4 *2 (-13 (-410 *3) (-938) (-1117))))) (-1799 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-582 *3 *2)) (-4 *2 (-13 (-410 *3) (-938) (-1117))))) (-3114 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-582 *3 *2)) (-4 *2 (-13 (-410 *3) (-938) (-1117))))) (-3727 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-582 *3 *2)) (-4 *2 (-13 (-410 *3) (-938) (-1117))))) (-3609 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-582 *3 *2)) (-4 *2 (-13 (-410 *3) (-938) (-1117))))) (-3748 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-793) (-520))) (-5 *1 (-582 *3 *4)) (-4 *4 (-13 (-410 *3) (-938) (-1117))))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-793) (-520))) (-5 *2 (-110)) (-5 *1 (-582 *4 *5)) (-4 *5 (-13 (-410 *4) (-938) (-1117))))))
-(-10 -7 (-15 -2042 ((-110) (-112))) (-15 -3748 ((-112) (-112))) (-15 -3609 (|#2| |#2|)) (-15 -3727 (|#2| |#2|)) (-15 -3114 (|#2| |#2|)) (-15 -1799 (|#2| |#2|)) (-15 -2666 (|#2| |#2|)) (-15 -2700 (|#2| |#2|)) (-15 -1375 (|#2| |#2| (-1095))) (-15 -1375 (|#2| |#2| (-1016 |#2|))))
-((-1830 (((-459 |#1| |#2|) (-229 |#1| |#2|)) 53)) (-2482 (((-595 (-229 |#1| |#2|)) (-595 (-459 |#1| |#2|))) 68)) (-2004 (((-459 |#1| |#2|) (-595 (-459 |#1| |#2|)) (-804 |#1|)) 70) (((-459 |#1| |#2|) (-595 (-459 |#1| |#2|)) (-595 (-459 |#1| |#2|)) (-804 |#1|)) 69)) (-2135 (((-2 (|:| |gblist| (-595 (-229 |#1| |#2|))) (|:| |gvlist| (-595 (-528)))) (-595 (-459 |#1| |#2|))) 108)) (-1642 (((-595 (-459 |#1| |#2|)) (-804 |#1|) (-595 (-459 |#1| |#2|)) (-595 (-459 |#1| |#2|))) 83)) (-1213 (((-2 (|:| |glbase| (-595 (-229 |#1| |#2|))) (|:| |glval| (-595 (-528)))) (-595 (-229 |#1| |#2|))) 118)) (-2721 (((-1177 |#2|) (-459 |#1| |#2|) (-595 (-459 |#1| |#2|))) 58)) (-2319 (((-595 (-459 |#1| |#2|)) (-595 (-459 |#1| |#2|))) 41)) (-4228 (((-229 |#1| |#2|) (-229 |#1| |#2|) (-595 (-229 |#1| |#2|))) 50)) (-1360 (((-229 |#1| |#2|) (-595 |#2|) (-229 |#1| |#2|) (-595 (-229 |#1| |#2|))) 91)))
-(((-583 |#1| |#2|) (-10 -7 (-15 -2135 ((-2 (|:| |gblist| (-595 (-229 |#1| |#2|))) (|:| |gvlist| (-595 (-528)))) (-595 (-459 |#1| |#2|)))) (-15 -1213 ((-2 (|:| |glbase| (-595 (-229 |#1| |#2|))) (|:| |glval| (-595 (-528)))) (-595 (-229 |#1| |#2|)))) (-15 -2482 ((-595 (-229 |#1| |#2|)) (-595 (-459 |#1| |#2|)))) (-15 -2004 ((-459 |#1| |#2|) (-595 (-459 |#1| |#2|)) (-595 (-459 |#1| |#2|)) (-804 |#1|))) (-15 -2004 ((-459 |#1| |#2|) (-595 (-459 |#1| |#2|)) (-804 |#1|))) (-15 -2319 ((-595 (-459 |#1| |#2|)) (-595 (-459 |#1| |#2|)))) (-15 -2721 ((-1177 |#2|) (-459 |#1| |#2|) (-595 (-459 |#1| |#2|)))) (-15 -1360 ((-229 |#1| |#2|) (-595 |#2|) (-229 |#1| |#2|) (-595 (-229 |#1| |#2|)))) (-15 -1642 ((-595 (-459 |#1| |#2|)) (-804 |#1|) (-595 (-459 |#1| |#2|)) (-595 (-459 |#1| |#2|)))) (-15 -4228 ((-229 |#1| |#2|) (-229 |#1| |#2|) (-595 (-229 |#1| |#2|)))) (-15 -1830 ((-459 |#1| |#2|) (-229 |#1| |#2|)))) (-595 (-1095)) (-431)) (T -583))
-((-1830 (*1 *2 *3) (-12 (-5 *3 (-229 *4 *5)) (-14 *4 (-595 (-1095))) (-4 *5 (-431)) (-5 *2 (-459 *4 *5)) (-5 *1 (-583 *4 *5)))) (-4228 (*1 *2 *2 *3) (-12 (-5 *3 (-595 (-229 *4 *5))) (-5 *2 (-229 *4 *5)) (-14 *4 (-595 (-1095))) (-4 *5 (-431)) (-5 *1 (-583 *4 *5)))) (-1642 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-595 (-459 *4 *5))) (-5 *3 (-804 *4)) (-14 *4 (-595 (-1095))) (-4 *5 (-431)) (-5 *1 (-583 *4 *5)))) (-1360 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-595 *6)) (-5 *4 (-595 (-229 *5 *6))) (-4 *6 (-431)) (-5 *2 (-229 *5 *6)) (-14 *5 (-595 (-1095))) (-5 *1 (-583 *5 *6)))) (-2721 (*1 *2 *3 *4) (-12 (-5 *4 (-595 (-459 *5 *6))) (-5 *3 (-459 *5 *6)) (-14 *5 (-595 (-1095))) (-4 *6 (-431)) (-5 *2 (-1177 *6)) (-5 *1 (-583 *5 *6)))) (-2319 (*1 *2 *2) (-12 (-5 *2 (-595 (-459 *3 *4))) (-14 *3 (-595 (-1095))) (-4 *4 (-431)) (-5 *1 (-583 *3 *4)))) (-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-459 *5 *6))) (-5 *4 (-804 *5)) (-14 *5 (-595 (-1095))) (-5 *2 (-459 *5 *6)) (-5 *1 (-583 *5 *6)) (-4 *6 (-431)))) (-2004 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-595 (-459 *5 *6))) (-5 *4 (-804 *5)) (-14 *5 (-595 (-1095))) (-5 *2 (-459 *5 *6)) (-5 *1 (-583 *5 *6)) (-4 *6 (-431)))) (-2482 (*1 *2 *3) (-12 (-5 *3 (-595 (-459 *4 *5))) (-14 *4 (-595 (-1095))) (-4 *5 (-431)) (-5 *2 (-595 (-229 *4 *5))) (-5 *1 (-583 *4 *5)))) (-1213 (*1 *2 *3) (-12 (-14 *4 (-595 (-1095))) (-4 *5 (-431)) (-5 *2 (-2 (|:| |glbase| (-595 (-229 *4 *5))) (|:| |glval| (-595 (-528))))) (-5 *1 (-583 *4 *5)) (-5 *3 (-595 (-229 *4 *5))))) (-2135 (*1 *2 *3) (-12 (-5 *3 (-595 (-459 *4 *5))) (-14 *4 (-595 (-1095))) (-4 *5 (-431)) (-5 *2 (-2 (|:| |gblist| (-595 (-229 *4 *5))) (|:| |gvlist| (-595 (-528))))) (-5 *1 (-583 *4 *5)))))
-(-10 -7 (-15 -2135 ((-2 (|:| |gblist| (-595 (-229 |#1| |#2|))) (|:| |gvlist| (-595 (-528)))) (-595 (-459 |#1| |#2|)))) (-15 -1213 ((-2 (|:| |glbase| (-595 (-229 |#1| |#2|))) (|:| |glval| (-595 (-528)))) (-595 (-229 |#1| |#2|)))) (-15 -2482 ((-595 (-229 |#1| |#2|)) (-595 (-459 |#1| |#2|)))) (-15 -2004 ((-459 |#1| |#2|) (-595 (-459 |#1| |#2|)) (-595 (-459 |#1| |#2|)) (-804 |#1|))) (-15 -2004 ((-459 |#1| |#2|) (-595 (-459 |#1| |#2|)) (-804 |#1|))) (-15 -2319 ((-595 (-459 |#1| |#2|)) (-595 (-459 |#1| |#2|)))) (-15 -2721 ((-1177 |#2|) (-459 |#1| |#2|) (-595 (-459 |#1| |#2|)))) (-15 -1360 ((-229 |#1| |#2|) (-595 |#2|) (-229 |#1| |#2|) (-595 (-229 |#1| |#2|)))) (-15 -1642 ((-595 (-459 |#1| |#2|)) (-804 |#1|) (-595 (-459 |#1| |#2|)) (-595 (-459 |#1| |#2|)))) (-15 -4228 ((-229 |#1| |#2|) (-229 |#1| |#2|) (-595 (-229 |#1| |#2|)))) (-15 -1830 ((-459 |#1| |#2|) (-229 |#1| |#2|))))
-((-2207 (((-110) $ $) NIL (-1463 (|has| (-51) (-1023)) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-1023))))) (-3450 (($) NIL) (($ (-595 (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))))) NIL)) (-1444 (((-1182) $ (-1078) (-1078)) NIL (|has| $ (-6 -4265)))) (-3535 (((-110) $ (-717)) NIL)) (-2381 (((-51) $ (-1078) (-51)) 16) (((-51) $ (-1095) (-51)) 17)) (-1836 (($ (-1 (-110) (-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264)))) (-1573 (($ (-1 (-110) (-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264)))) (-2582 (((-3 (-51) "failed") (-1078) $) NIL)) (-2816 (($) NIL T CONST)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-1023))))) (-3991 (($ (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) $) NIL (|has| $ (-6 -4264))) (($ (-1 (-110) (-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264))) (((-3 (-51) "failed") (-1078) $) NIL)) (-2280 (($ (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-1023)))) (($ (-1 (-110) (-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264)))) (-1422 (((-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-1 (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))) $ (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-1023)))) (((-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-1 (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))) $ (-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))) NIL (|has| $ (-6 -4264))) (((-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-1 (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264)))) (-2812 (((-51) $ (-1078) (-51)) NIL (|has| $ (-6 -4265)))) (-2742 (((-51) $ (-1078)) NIL)) (-3342 (((-595 (-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264))) (((-595 (-51)) $) NIL (|has| $ (-6 -4264)))) (-2743 (($ $) NIL)) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-1078) $) NIL (|has| (-1078) (-793)))) (-2604 (((-595 (-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264))) (((-595 (-51)) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-1023)))) (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-51) (-1023))))) (-1709 (((-1078) $) NIL (|has| (-1078) (-793)))) (-2800 (($ (-1 (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4265))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2336 (($ (-368)) 9)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (-1463 (|has| (-51) (-1023)) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-1023))))) (-3225 (((-595 (-1078)) $) NIL)) (-4024 (((-110) (-1078) $) NIL)) (-3934 (((-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) $) NIL)) (-1950 (($ (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) $) NIL)) (-2084 (((-595 (-1078)) $) NIL)) (-3966 (((-110) (-1078) $) NIL)) (-2495 (((-1042) $) NIL (-1463 (|has| (-51) (-1023)) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-1023))))) (-2890 (((-51) $) NIL (|has| (-1078) (-793)))) (-1734 (((-3 (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) "failed") (-1 (-110) (-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))) $) NIL)) (-1332 (($ $ (-51)) NIL (|has| $ (-6 -4265)))) (-1390 (((-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) $) NIL)) (-1818 (((-110) (-1 (-110) (-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 (-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))))) NIL (-12 (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-290 (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))))) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-1023)))) (($ $ (-275 (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))))) NIL (-12 (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-290 (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))))) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-1023)))) (($ $ (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))) NIL (-12 (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-290 (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))))) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-1023)))) (($ $ (-595 (-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))) (-595 (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))))) NIL (-12 (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-290 (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))))) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-1023)))) (($ $ (-595 (-51)) (-595 (-51))) NIL (-12 (|has| (-51) (-290 (-51))) (|has| (-51) (-1023)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-290 (-51))) (|has| (-51) (-1023)))) (($ $ (-275 (-51))) NIL (-12 (|has| (-51) (-290 (-51))) (|has| (-51) (-1023)))) (($ $ (-595 (-275 (-51)))) NIL (-12 (|has| (-51) (-290 (-51))) (|has| (-51) (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-51) (-1023))))) (-2861 (((-595 (-51)) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 (((-51) $ (-1078)) 14) (((-51) $ (-1078) (-51)) NIL) (((-51) $ (-1095)) 15)) (-3900 (($) NIL) (($ (-595 (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))))) NIL)) (-2507 (((-717) (-1 (-110) (-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264))) (((-717) (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-1023)))) (((-717) (-51) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-51) (-1023)))) (((-717) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4264)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) NIL (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-570 (-504))))) (-2233 (($ (-595 (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))))) NIL)) (-2222 (((-802) $) NIL (-1463 (|has| (-51) (-569 (-802))) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-569 (-802)))))) (-2164 (($ (-595 (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))))) NIL)) (-3451 (((-110) (-1 (-110) (-2 (|:| -2927 (-1078)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) NIL (-1463 (|has| (-51) (-1023)) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 (-51))) (-1023))))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-584) (-13 (-1108 (-1078) (-51)) (-10 -8 (-15 -2336 ($ (-368))) (-15 -2743 ($ $)) (-15 -3043 ((-51) $ (-1095))) (-15 -2381 ((-51) $ (-1095) (-51)))))) (T -584))
-((-2336 (*1 *1 *2) (-12 (-5 *2 (-368)) (-5 *1 (-584)))) (-2743 (*1 *1 *1) (-5 *1 (-584))) (-3043 (*1 *2 *1 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-51)) (-5 *1 (-584)))) (-2381 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1095)) (-5 *1 (-584)))))
-(-13 (-1108 (-1078) (-51)) (-10 -8 (-15 -2336 ($ (-368))) (-15 -2743 ($ $)) (-15 -3043 ((-51) $ (-1095))) (-15 -2381 ((-51) $ (-1095) (-51)))))
-((-2296 (($ $ |#2|) 10)))
-(((-585 |#1| |#2|) (-10 -8 (-15 -2296 (|#1| |#1| |#2|))) (-586 |#2|) (-162)) (T -585))
-NIL
-(-10 -8 (-15 -2296 (|#1| |#1| |#2|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2233 (($ $ $) 29)) (-2222 (((-802) $) 11)) (-2969 (($) 18 T CONST)) (-2186 (((-110) $ $) 6)) (-2296 (($ $ |#1|) 28 (|has| |#1| (-343)))) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-586 |#1|) (-133) (-162)) (T -586))
-((-2233 (*1 *1 *1 *1) (-12 (-4 *1 (-586 *2)) (-4 *2 (-162)))) (-2296 (*1 *1 *1 *2) (-12 (-4 *1 (-586 *2)) (-4 *2 (-162)) (-4 *2 (-343)))))
-(-13 (-664 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2233 ($ $ $)) (IF (|has| |t#1| (-343)) (-15 -2296 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-569 (-802)) . T) ((-597 |#1|) . T) ((-664 |#1|) . T) ((-986 |#1|) . T) ((-1023) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2445 (((-3 $ "failed")) NIL (-1463 (-12 (|has| |#2| (-347 |#1|)) (|has| |#1| (-520))) (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-520)))))) (-3181 (((-3 $ "failed") $ $) NIL)) (-4023 (((-1177 (-635 |#1|))) NIL (|has| |#2| (-397 |#1|))) (((-1177 (-635 |#1|)) (-1177 $)) NIL (|has| |#2| (-347 |#1|)))) (-1653 (((-1177 $)) NIL (|has| |#2| (-347 |#1|)))) (-2816 (($) NIL T CONST)) (-2202 (((-3 (-2 (|:| |particular| $) (|:| -1400 (-595 $))) "failed")) NIL (-1463 (-12 (|has| |#2| (-347 |#1|)) (|has| |#1| (-520))) (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-520)))))) (-3403 (((-3 $ "failed")) NIL (-1463 (-12 (|has| |#2| (-347 |#1|)) (|has| |#1| (-520))) (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-520)))))) (-3107 (((-635 |#1|)) NIL (|has| |#2| (-397 |#1|))) (((-635 |#1|) (-1177 $)) NIL (|has| |#2| (-347 |#1|)))) (-3913 ((|#1| $) NIL (|has| |#2| (-347 |#1|)))) (-3281 (((-635 |#1|) $) NIL (|has| |#2| (-397 |#1|))) (((-635 |#1|) $ (-1177 $)) NIL (|has| |#2| (-347 |#1|)))) (-3552 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| |#2| (-347 |#1|)) (|has| |#1| (-520))) (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-520)))))) (-2591 (((-1091 (-891 |#1|))) NIL (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-343))))) (-3693 (($ $ (-860)) NIL)) (-2061 ((|#1| $) NIL (|has| |#2| (-347 |#1|)))) (-2466 (((-1091 |#1|) $) NIL (-1463 (-12 (|has| |#2| (-347 |#1|)) (|has| |#1| (-520))) (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-520)))))) (-3326 ((|#1|) NIL (|has| |#2| (-397 |#1|))) ((|#1| (-1177 $)) NIL (|has| |#2| (-347 |#1|)))) (-3922 (((-1091 |#1|) $) NIL (|has| |#2| (-347 |#1|)))) (-2683 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-1945 (($ (-1177 |#1|)) NIL (|has| |#2| (-397 |#1|))) (($ (-1177 |#1|) (-1177 $)) NIL (|has| |#2| (-347 |#1|)))) (-1312 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| |#2| (-347 |#1|)) (|has| |#1| (-520))) (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-520)))))) (-3090 (((-860)) NIL (|has| |#2| (-347 |#1|)))) (-3733 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-2451 (($ $ (-860)) NIL)) (-2854 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-1795 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-1870 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-2481 (((-3 (-2 (|:| |particular| $) (|:| -1400 (-595 $))) "failed")) NIL (-1463 (-12 (|has| |#2| (-347 |#1|)) (|has| |#1| (-520))) (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-520)))))) (-2615 (((-3 $ "failed")) NIL (-1463 (-12 (|has| |#2| (-347 |#1|)) (|has| |#1| (-520))) (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-520)))))) (-2906 (((-635 |#1|)) NIL (|has| |#2| (-397 |#1|))) (((-635 |#1|) (-1177 $)) NIL (|has| |#2| (-347 |#1|)))) (-1948 ((|#1| $) NIL (|has| |#2| (-347 |#1|)))) (-3867 (((-635 |#1|) $) NIL (|has| |#2| (-397 |#1|))) (((-635 |#1|) $ (-1177 $)) NIL (|has| |#2| (-347 |#1|)))) (-1895 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| |#2| (-347 |#1|)) (|has| |#1| (-520))) (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-520)))))) (-2102 (((-1091 (-891 |#1|))) NIL (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-343))))) (-3964 (($ $ (-860)) NIL)) (-4000 ((|#1| $) NIL (|has| |#2| (-347 |#1|)))) (-3549 (((-1091 |#1|) $) NIL (-1463 (-12 (|has| |#2| (-347 |#1|)) (|has| |#1| (-520))) (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-520)))))) (-1991 ((|#1|) NIL (|has| |#2| (-397 |#1|))) ((|#1| (-1177 $)) NIL (|has| |#2| (-347 |#1|)))) (-2732 (((-1091 |#1|) $) NIL (|has| |#2| (-347 |#1|)))) (-4194 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-3034 (((-1078) $) NIL)) (-2044 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-3074 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-1302 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-2495 (((-1042) $) NIL)) (-3176 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-3043 ((|#1| $ (-528)) NIL (|has| |#2| (-397 |#1|)))) (-4243 (((-635 |#1|) (-1177 $)) NIL (|has| |#2| (-397 |#1|))) (((-1177 |#1|) $) NIL (|has| |#2| (-397 |#1|))) (((-635 |#1|) (-1177 $) (-1177 $)) NIL (|has| |#2| (-347 |#1|))) (((-1177 |#1|) $ (-1177 $)) NIL (|has| |#2| (-347 |#1|)))) (-3155 (($ (-1177 |#1|)) NIL (|has| |#2| (-397 |#1|))) (((-1177 |#1|) $) NIL (|has| |#2| (-397 |#1|)))) (-1730 (((-595 (-891 |#1|))) NIL (|has| |#2| (-397 |#1|))) (((-595 (-891 |#1|)) (-1177 $)) NIL (|has| |#2| (-347 |#1|)))) (-2405 (($ $ $) NIL)) (-2643 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-2222 (((-802) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1400 (((-1177 $)) NIL (|has| |#2| (-397 |#1|)))) (-3586 (((-595 (-1177 |#1|))) NIL (-1463 (-12 (|has| |#2| (-347 |#1|)) (|has| |#1| (-520))) (-12 (|has| |#2| (-397 |#1|)) (|has| |#1| (-520)))))) (-4103 (($ $ $ $) NIL)) (-1461 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-2834 (($ (-635 |#1|) $) NIL (|has| |#2| (-397 |#1|)))) (-3607 (($ $ $) NIL)) (-3047 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-1907 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-3405 (((-110)) NIL (|has| |#2| (-347 |#1|)))) (-2969 (($) 15 T CONST)) (-2186 (((-110) $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) 17)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-587 |#1| |#2|) (-13 (-691 |#1|) (-569 |#2|) (-10 -8 (-15 -2222 ($ |#2|)) (IF (|has| |#2| (-397 |#1|)) (-6 (-397 |#1|)) |%noBranch|) (IF (|has| |#2| (-347 |#1|)) (-6 (-347 |#1|)) |%noBranch|))) (-162) (-691 |#1|)) (T -587))
-((-2222 (*1 *1 *2) (-12 (-4 *3 (-162)) (-5 *1 (-587 *3 *2)) (-4 *2 (-691 *3)))))
-(-13 (-691 |#1|) (-569 |#2|) (-10 -8 (-15 -2222 ($ |#2|)) (IF (|has| |#2| (-397 |#1|)) (-6 (-397 |#1|)) |%noBranch|) (IF (|has| |#2| (-347 |#1|)) (-6 (-347 |#1|)) |%noBranch|)))
-((-1405 (((-3 (-786 |#2|) "failed") |#2| (-275 |#2|) (-1078)) 82) (((-3 (-786 |#2|) (-2 (|:| |leftHandLimit| (-3 (-786 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-786 |#2|) "failed"))) "failed") |#2| (-275 (-786 |#2|))) 104)) (-3061 (((-3 (-779 |#2|) "failed") |#2| (-275 (-779 |#2|))) 109)))
-(((-588 |#1| |#2|) (-10 -7 (-15 -1405 ((-3 (-786 |#2|) (-2 (|:| |leftHandLimit| (-3 (-786 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-786 |#2|) "failed"))) "failed") |#2| (-275 (-786 |#2|)))) (-15 -3061 ((-3 (-779 |#2|) "failed") |#2| (-275 (-779 |#2|)))) (-15 -1405 ((-3 (-786 |#2|) "failed") |#2| (-275 |#2|) (-1078)))) (-13 (-431) (-793) (-972 (-528)) (-591 (-528))) (-13 (-27) (-1117) (-410 |#1|))) (T -588))
-((-1405 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-275 *3)) (-5 *5 (-1078)) (-4 *3 (-13 (-27) (-1117) (-410 *6))) (-4 *6 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-786 *3)) (-5 *1 (-588 *6 *3)))) (-3061 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-275 (-779 *3))) (-4 *5 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-779 *3)) (-5 *1 (-588 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *5))))) (-1405 (*1 *2 *3 *4) (-12 (-5 *4 (-275 (-786 *3))) (-4 *3 (-13 (-27) (-1117) (-410 *5))) (-4 *5 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-3 (-786 *3) (-2 (|:| |leftHandLimit| (-3 (-786 *3) "failed")) (|:| |rightHandLimit| (-3 (-786 *3) "failed"))) "failed")) (-5 *1 (-588 *5 *3)))))
-(-10 -7 (-15 -1405 ((-3 (-786 |#2|) (-2 (|:| |leftHandLimit| (-3 (-786 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-786 |#2|) "failed"))) "failed") |#2| (-275 (-786 |#2|)))) (-15 -3061 ((-3 (-779 |#2|) "failed") |#2| (-275 (-779 |#2|)))) (-15 -1405 ((-3 (-786 |#2|) "failed") |#2| (-275 |#2|) (-1078))))
-((-1405 (((-3 (-786 (-387 (-891 |#1|))) "failed") (-387 (-891 |#1|)) (-275 (-387 (-891 |#1|))) (-1078)) 80) (((-3 (-786 (-387 (-891 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-786 (-387 (-891 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-786 (-387 (-891 |#1|))) "failed"))) "failed") (-387 (-891 |#1|)) (-275 (-387 (-891 |#1|)))) 20) (((-3 (-786 (-387 (-891 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-786 (-387 (-891 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-786 (-387 (-891 |#1|))) "failed"))) "failed") (-387 (-891 |#1|)) (-275 (-786 (-891 |#1|)))) 35)) (-3061 (((-779 (-387 (-891 |#1|))) (-387 (-891 |#1|)) (-275 (-387 (-891 |#1|)))) 23) (((-779 (-387 (-891 |#1|))) (-387 (-891 |#1|)) (-275 (-779 (-891 |#1|)))) 43)))
-(((-589 |#1|) (-10 -7 (-15 -1405 ((-3 (-786 (-387 (-891 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-786 (-387 (-891 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-786 (-387 (-891 |#1|))) "failed"))) "failed") (-387 (-891 |#1|)) (-275 (-786 (-891 |#1|))))) (-15 -1405 ((-3 (-786 (-387 (-891 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-786 (-387 (-891 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-786 (-387 (-891 |#1|))) "failed"))) "failed") (-387 (-891 |#1|)) (-275 (-387 (-891 |#1|))))) (-15 -3061 ((-779 (-387 (-891 |#1|))) (-387 (-891 |#1|)) (-275 (-779 (-891 |#1|))))) (-15 -3061 ((-779 (-387 (-891 |#1|))) (-387 (-891 |#1|)) (-275 (-387 (-891 |#1|))))) (-15 -1405 ((-3 (-786 (-387 (-891 |#1|))) "failed") (-387 (-891 |#1|)) (-275 (-387 (-891 |#1|))) (-1078)))) (-431)) (T -589))
-((-1405 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-275 (-387 (-891 *6)))) (-5 *5 (-1078)) (-5 *3 (-387 (-891 *6))) (-4 *6 (-431)) (-5 *2 (-786 *3)) (-5 *1 (-589 *6)))) (-3061 (*1 *2 *3 *4) (-12 (-5 *4 (-275 (-387 (-891 *5)))) (-5 *3 (-387 (-891 *5))) (-4 *5 (-431)) (-5 *2 (-779 *3)) (-5 *1 (-589 *5)))) (-3061 (*1 *2 *3 *4) (-12 (-5 *4 (-275 (-779 (-891 *5)))) (-4 *5 (-431)) (-5 *2 (-779 (-387 (-891 *5)))) (-5 *1 (-589 *5)) (-5 *3 (-387 (-891 *5))))) (-1405 (*1 *2 *3 *4) (-12 (-5 *4 (-275 (-387 (-891 *5)))) (-5 *3 (-387 (-891 *5))) (-4 *5 (-431)) (-5 *2 (-3 (-786 *3) (-2 (|:| |leftHandLimit| (-3 (-786 *3) "failed")) (|:| |rightHandLimit| (-3 (-786 *3) "failed"))) "failed")) (-5 *1 (-589 *5)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *4 (-275 (-786 (-891 *5)))) (-4 *5 (-431)) (-5 *2 (-3 (-786 (-387 (-891 *5))) (-2 (|:| |leftHandLimit| (-3 (-786 (-387 (-891 *5))) "failed")) (|:| |rightHandLimit| (-3 (-786 (-387 (-891 *5))) "failed"))) "failed")) (-5 *1 (-589 *5)) (-5 *3 (-387 (-891 *5))))))
-(-10 -7 (-15 -1405 ((-3 (-786 (-387 (-891 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-786 (-387 (-891 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-786 (-387 (-891 |#1|))) "failed"))) "failed") (-387 (-891 |#1|)) (-275 (-786 (-891 |#1|))))) (-15 -1405 ((-3 (-786 (-387 (-891 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-786 (-387 (-891 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-786 (-387 (-891 |#1|))) "failed"))) "failed") (-387 (-891 |#1|)) (-275 (-387 (-891 |#1|))))) (-15 -3061 ((-779 (-387 (-891 |#1|))) (-387 (-891 |#1|)) (-275 (-779 (-891 |#1|))))) (-15 -3061 ((-779 (-387 (-891 |#1|))) (-387 (-891 |#1|)) (-275 (-387 (-891 |#1|))))) (-15 -1405 ((-3 (-786 (-387 (-891 |#1|))) "failed") (-387 (-891 |#1|)) (-275 (-387 (-891 |#1|))) (-1078))))
-((-4088 (((-3 (-1177 (-387 |#1|)) "failed") (-1177 |#2|) |#2|) 57 (-3617 (|has| |#1| (-343)))) (((-3 (-1177 |#1|) "failed") (-1177 |#2|) |#2|) 42 (|has| |#1| (-343)))) (-3027 (((-110) (-1177 |#2|)) 30)) (-3969 (((-3 (-1177 |#1|) "failed") (-1177 |#2|)) 33)))
-(((-590 |#1| |#2|) (-10 -7 (-15 -3027 ((-110) (-1177 |#2|))) (-15 -3969 ((-3 (-1177 |#1|) "failed") (-1177 |#2|))) (IF (|has| |#1| (-343)) (-15 -4088 ((-3 (-1177 |#1|) "failed") (-1177 |#2|) |#2|)) (-15 -4088 ((-3 (-1177 (-387 |#1|)) "failed") (-1177 |#2|) |#2|)))) (-520) (-591 |#1|)) (T -590))
-((-4088 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-591 *5)) (-3617 (-4 *5 (-343))) (-4 *5 (-520)) (-5 *2 (-1177 (-387 *5))) (-5 *1 (-590 *5 *4)))) (-4088 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-591 *5)) (-4 *5 (-343)) (-4 *5 (-520)) (-5 *2 (-1177 *5)) (-5 *1 (-590 *5 *4)))) (-3969 (*1 *2 *3) (|partial| -12 (-5 *3 (-1177 *5)) (-4 *5 (-591 *4)) (-4 *4 (-520)) (-5 *2 (-1177 *4)) (-5 *1 (-590 *4 *5)))) (-3027 (*1 *2 *3) (-12 (-5 *3 (-1177 *5)) (-4 *5 (-591 *4)) (-4 *4 (-520)) (-5 *2 (-110)) (-5 *1 (-590 *4 *5)))))
-(-10 -7 (-15 -3027 ((-110) (-1177 |#2|))) (-15 -3969 ((-3 (-1177 |#1|) "failed") (-1177 |#2|))) (IF (|has| |#1| (-343)) (-15 -4088 ((-3 (-1177 |#1|) "failed") (-1177 |#2|) |#2|)) (-15 -4088 ((-3 (-1177 (-387 |#1|)) "failed") (-1177 |#2|) |#2|))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-2120 (((-635 |#1|) (-635 $)) 36) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) 35)) (-1312 (((-3 $ "failed") $) 34)) (-1297 (((-110) $) 31)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11) (($ (-528)) 28)) (-3742 (((-717)) 29)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24)))
-(((-591 |#1|) (-133) (-981)) (T -591))
-((-2120 (*1 *2 *3) (-12 (-5 *3 (-635 *1)) (-4 *1 (-591 *4)) (-4 *4 (-981)) (-5 *2 (-635 *4)))) (-2120 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *1)) (-5 *4 (-1177 *1)) (-4 *1 (-591 *5)) (-4 *5 (-981)) (-5 *2 (-2 (|:| -2163 (-635 *5)) (|:| |vec| (-1177 *5)))))))
-(-13 (-981) (-10 -8 (-15 -2120 ((-635 |t#1|) (-635 $))) (-15 -2120 ((-2 (|:| -2163 (-635 |t#1|)) (|:| |vec| (-1177 |t#1|))) (-635 $) (-1177 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-569 (-802)) . T) ((-597 $) . T) ((-673) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-3917 ((|#2| (-595 |#1|) (-595 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-595 |#1|) (-595 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-595 |#1|) (-595 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-595 |#1|) (-595 |#2|) |#2|) 17) ((|#2| (-595 |#1|) (-595 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-595 |#1|) (-595 |#2|)) 12)))
-(((-592 |#1| |#2|) (-10 -7 (-15 -3917 ((-1 |#2| |#1|) (-595 |#1|) (-595 |#2|))) (-15 -3917 (|#2| (-595 |#1|) (-595 |#2|) |#1|)) (-15 -3917 ((-1 |#2| |#1|) (-595 |#1|) (-595 |#2|) |#2|)) (-15 -3917 (|#2| (-595 |#1|) (-595 |#2|) |#1| |#2|)) (-15 -3917 ((-1 |#2| |#1|) (-595 |#1|) (-595 |#2|) (-1 |#2| |#1|))) (-15 -3917 (|#2| (-595 |#1|) (-595 |#2|) |#1| (-1 |#2| |#1|)))) (-1023) (-1131)) (T -592))
-((-3917 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-595 *5)) (-5 *4 (-595 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1023)) (-4 *2 (-1131)) (-5 *1 (-592 *5 *2)))) (-3917 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-595 *5)) (-5 *4 (-595 *6)) (-4 *5 (-1023)) (-4 *6 (-1131)) (-5 *1 (-592 *5 *6)))) (-3917 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-595 *5)) (-5 *4 (-595 *2)) (-4 *5 (-1023)) (-4 *2 (-1131)) (-5 *1 (-592 *5 *2)))) (-3917 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-595 *6)) (-5 *4 (-595 *5)) (-4 *6 (-1023)) (-4 *5 (-1131)) (-5 *2 (-1 *5 *6)) (-5 *1 (-592 *6 *5)))) (-3917 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-595 *5)) (-5 *4 (-595 *2)) (-4 *5 (-1023)) (-4 *2 (-1131)) (-5 *1 (-592 *5 *2)))) (-3917 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *5)) (-5 *4 (-595 *6)) (-4 *5 (-1023)) (-4 *6 (-1131)) (-5 *2 (-1 *6 *5)) (-5 *1 (-592 *5 *6)))))
-(-10 -7 (-15 -3917 ((-1 |#2| |#1|) (-595 |#1|) (-595 |#2|))) (-15 -3917 (|#2| (-595 |#1|) (-595 |#2|) |#1|)) (-15 -3917 ((-1 |#2| |#1|) (-595 |#1|) (-595 |#2|) |#2|)) (-15 -3917 (|#2| (-595 |#1|) (-595 |#2|) |#1| |#2|)) (-15 -3917 ((-1 |#2| |#1|) (-595 |#1|) (-595 |#2|) (-1 |#2| |#1|))) (-15 -3917 (|#2| (-595 |#1|) (-595 |#2|) |#1| (-1 |#2| |#1|))))
-((-3718 (((-595 |#2|) (-1 |#2| |#1| |#2|) (-595 |#1|) |#2|) 16)) (-1422 ((|#2| (-1 |#2| |#1| |#2|) (-595 |#1|) |#2|) 18)) (-3106 (((-595 |#2|) (-1 |#2| |#1|) (-595 |#1|)) 13)))
-(((-593 |#1| |#2|) (-10 -7 (-15 -3718 ((-595 |#2|) (-1 |#2| |#1| |#2|) (-595 |#1|) |#2|)) (-15 -1422 (|#2| (-1 |#2| |#1| |#2|) (-595 |#1|) |#2|)) (-15 -3106 ((-595 |#2|) (-1 |#2| |#1|) (-595 |#1|)))) (-1131) (-1131)) (T -593))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-595 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-595 *6)) (-5 *1 (-593 *5 *6)))) (-1422 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-595 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) (-5 *1 (-593 *5 *2)))) (-3718 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-595 *6)) (-4 *6 (-1131)) (-4 *5 (-1131)) (-5 *2 (-595 *5)) (-5 *1 (-593 *6 *5)))))
-(-10 -7 (-15 -3718 ((-595 |#2|) (-1 |#2| |#1| |#2|) (-595 |#1|) |#2|)) (-15 -1422 (|#2| (-1 |#2| |#1| |#2|) (-595 |#1|) |#2|)) (-15 -3106 ((-595 |#2|) (-1 |#2| |#1|) (-595 |#1|))))
-((-3106 (((-595 |#3|) (-1 |#3| |#1| |#2|) (-595 |#1|) (-595 |#2|)) 13)))
-(((-594 |#1| |#2| |#3|) (-10 -7 (-15 -3106 ((-595 |#3|) (-1 |#3| |#1| |#2|) (-595 |#1|) (-595 |#2|)))) (-1131) (-1131) (-1131)) (T -594))
-((-3106 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-595 *6)) (-5 *5 (-595 *7)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-595 *8)) (-5 *1 (-594 *6 *7 *8)))))
-(-10 -7 (-15 -3106 ((-595 |#3|) (-1 |#3| |#1| |#2|) (-595 |#1|) (-595 |#2|))))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3327 ((|#1| $) NIL)) (-2513 ((|#1| $) NIL)) (-2023 (($ $) NIL)) (-1444 (((-1182) $ (-528) (-528)) NIL (|has| $ (-6 -4265)))) (-3084 (($ $ (-528)) NIL (|has| $ (-6 -4265)))) (-3608 (((-110) $) NIL (|has| |#1| (-793))) (((-110) (-1 (-110) |#1| |#1|) $) NIL)) (-3863 (($ $) NIL (-12 (|has| $ (-6 -4265)) (|has| |#1| (-793)))) (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4265)))) (-1289 (($ $) NIL (|has| |#1| (-793))) (($ (-1 (-110) |#1| |#1|) $) NIL)) (-3535 (((-110) $ (-717)) NIL)) (-2074 ((|#1| $ |#1|) NIL (|has| $ (-6 -4265)))) (-3307 (($ $ $) NIL (|has| $ (-6 -4265)))) (-2624 ((|#1| $ |#1|) NIL (|has| $ (-6 -4265)))) (-2153 ((|#1| $ |#1|) NIL (|has| $ (-6 -4265)))) (-2381 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4265))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4265))) (($ $ "rest" $) NIL (|has| $ (-6 -4265))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4265))) ((|#1| $ (-1144 (-528)) |#1|) NIL (|has| $ (-6 -4265))) ((|#1| $ (-528) |#1|) NIL (|has| $ (-6 -4265)))) (-3409 (($ $ (-595 $)) NIL (|has| $ (-6 -4265)))) (-2822 (($ $ $) 32 (|has| |#1| (-1023)))) (-2809 (($ $ $) 34 (|has| |#1| (-1023)))) (-2794 (($ $ $) 37 (|has| |#1| (-1023)))) (-1836 (($ (-1 (-110) |#1|) $) NIL)) (-1573 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2500 ((|#1| $) NIL)) (-2816 (($) NIL T CONST)) (-2472 (($ $) NIL (|has| $ (-6 -4265)))) (-3009 (($ $) NIL)) (-2902 (($ $) NIL) (($ $ (-717)) NIL)) (-2833 (($ $) NIL (|has| |#1| (-1023)))) (-2923 (($ $) 31 (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3991 (($ |#1| $) NIL (|has| |#1| (-1023))) (($ (-1 (-110) |#1|) $) NIL)) (-2280 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2812 ((|#1| $ (-528) |#1|) NIL (|has| $ (-6 -4265)))) (-2742 ((|#1| $ (-528)) NIL)) (-3691 (((-110) $) NIL)) (-3140 (((-528) |#1| $ (-528)) NIL (|has| |#1| (-1023))) (((-528) |#1| $) NIL (|has| |#1| (-1023))) (((-528) (-1 (-110) |#1|) $) NIL)) (-3342 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2941 (((-110) $) 9)) (-1690 (((-595 $) $) NIL)) (-1313 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-4050 (($) 7)) (-3462 (($ (-717) |#1|) NIL)) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-528) $) NIL (|has| (-528) (-793)))) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-3368 (($ $ $) NIL (|has| |#1| (-793))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-1356 (($ $ $) NIL (|has| |#1| (-793))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 33 (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-1709 (((-528) $) NIL (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-2800 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2759 (($ |#1|) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3298 (((-595 |#1|) $) NIL)) (-2578 (((-110) $) NIL)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-2301 ((|#1| $) NIL) (($ $ (-717)) NIL)) (-1950 (($ $ $ (-528)) NIL) (($ |#1| $ (-528)) NIL)) (-3939 (($ $ $ (-528)) NIL) (($ |#1| $ (-528)) NIL)) (-2084 (((-595 (-528)) $) NIL)) (-3966 (((-110) (-528) $) NIL)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-2890 ((|#1| $) NIL) (($ $ (-717)) NIL)) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1332 (($ $ |#1|) NIL (|has| $ (-6 -4265)))) (-1441 (((-110) $) NIL)) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2861 (((-595 |#1|) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1144 (-528))) NIL) ((|#1| $ (-528)) 36) ((|#1| $ (-528) |#1|) NIL)) (-3241 (((-528) $ $) NIL)) (-1704 (($ $ (-1144 (-528))) NIL) (($ $ (-528)) NIL)) (-1745 (($ $ (-1144 (-528))) NIL) (($ $ (-528)) NIL)) (-3177 (((-110) $) NIL)) (-2185 (($ $) NIL)) (-3821 (($ $) NIL (|has| $ (-6 -4265)))) (-3887 (((-717) $) NIL)) (-3539 (($ $) NIL)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3761 (($ $ $ (-528)) NIL (|has| $ (-6 -4265)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) 45 (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) NIL)) (-1555 (($ |#1| $) 10)) (-3579 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3400 (($ $ $) 30) (($ |#1| $) NIL) (($ (-595 $)) NIL) (($ $ |#1|) NIL)) (-2222 (((-802) $) NIL (|has| |#1| (-569 (-802))))) (-3813 (((-595 $) $) NIL)) (-2688 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2077 (($ $ $) 11)) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-1256 (((-1078) $) 26 (|has| |#1| (-774))) (((-1078) $ (-110)) 27 (|has| |#1| (-774))) (((-1182) (-768) $) 28 (|has| |#1| (-774))) (((-1182) (-768) $ (-110)) 29 (|has| |#1| (-774)))) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-595 |#1|) (-13 (-615 |#1|) (-10 -8 (-15 -4050 ($)) (-15 -2941 ((-110) $)) (-15 -1555 ($ |#1| $)) (-15 -2077 ($ $ $)) (IF (|has| |#1| (-1023)) (PROGN (-15 -2822 ($ $ $)) (-15 -2809 ($ $ $)) (-15 -2794 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-774)) (-6 (-774)) |%noBranch|))) (-1131)) (T -595))
-((-4050 (*1 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1131)))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-595 *3)) (-4 *3 (-1131)))) (-1555 (*1 *1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1131)))) (-2077 (*1 *1 *1 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1131)))) (-2822 (*1 *1 *1 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1023)) (-4 *2 (-1131)))) (-2809 (*1 *1 *1 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1023)) (-4 *2 (-1131)))) (-2794 (*1 *1 *1 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1023)) (-4 *2 (-1131)))))
-(-13 (-615 |#1|) (-10 -8 (-15 -4050 ($)) (-15 -2941 ((-110) $)) (-15 -1555 ($ |#1| $)) (-15 -2077 ($ $ $)) (IF (|has| |#1| (-1023)) (PROGN (-15 -2822 ($ $ $)) (-15 -2809 ($ $ $)) (-15 -2794 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-774)) (-6 (-774)) |%noBranch|)))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2912 (($ |#1| |#1| $) 43)) (-3535 (((-110) $ (-717)) NIL)) (-1836 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4264)))) (-1573 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2816 (($) NIL T CONST)) (-2833 (($ $) 45)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3991 (($ |#1| $) 52 (|has| $ (-6 -4264))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4264)))) (-2280 (($ |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4264)))) (-3342 (((-595 |#1|) $) 9 (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) NIL)) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2800 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 37)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-3934 ((|#1| $) 46)) (-1950 (($ |#1| $) 26) (($ |#1| $ (-717)) 42)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1390 ((|#1| $) 48)) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) 21)) (-2147 (($) 25)) (-1234 (((-110) $) 50)) (-2527 (((-595 (-2 (|:| -1780 |#1|) (|:| -2507 (-717)))) $) 59)) (-3900 (($) 23) (($ (-595 |#1|)) 18)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) 56 (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2406 (($ $) 19)) (-3155 (((-504) $) 34 (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) NIL)) (-2222 (((-802) $) 14 (|has| |#1| (-569 (-802))))) (-2164 (($ (-595 |#1|)) 22)) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 61 (|has| |#1| (-1023)))) (-2138 (((-717) $) 16 (|has| $ (-6 -4264)))))
-(((-596 |#1|) (-13 (-641 |#1|) (-10 -8 (-6 -4264) (-15 -1234 ((-110) $)) (-15 -2912 ($ |#1| |#1| $)))) (-1023)) (T -596))
-((-1234 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-596 *3)) (-4 *3 (-1023)))) (-2912 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-1023)))))
-(-13 (-641 |#1|) (-10 -8 (-6 -4264) (-15 -1234 ((-110) $)) (-15 -2912 ($ |#1| |#1| $))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2969 (($) 18 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ |#1| $) 23)))
-(((-597 |#1|) (-133) (-987)) (T -597))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-987)))))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3681 ((|#1| $) NIL)) (-4073 ((|#1| $) NIL)) (-4075 (($ $) NIL)) (-2243 (((-1185) $ (-516) (-516)) NIL (|has| $ (-6 -4270)))) (-4063 (($ $ (-516)) 59 (|has| $ (-6 -4270)))) (-1798 (((-110) $) NIL (|has| |#1| (-795))) (((-110) (-1 (-110) |#1| |#1|) $) NIL)) (-1796 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795)))) (($ (-1 (-110) |#1| |#1|) $) 57 (|has| $ (-6 -4270)))) (-3173 (($ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $) NIL)) (-1217 (((-110) $ (-719)) NIL)) (-3289 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-4065 (($ $ $) 23 (|has| $ (-6 -4270)))) (-4064 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-4067 ((|#1| $ |#1|) 21 (|has| $ (-6 -4270)))) (-4066 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ #2="first" |#1|) 22 (|has| $ (-6 -4270))) (($ $ #3="rest" $) 24 (|has| $ (-6 -4270))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-1146 (-516)) |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-516) |#1|) NIL (|has| $ (-6 -4270)))) (-3290 (($ $ (-594 $)) NIL (|has| $ (-6 -4270)))) (-1581 (($ (-1 (-110) |#1|) $) NIL)) (-3992 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4074 ((|#1| $) NIL)) (-3815 (($) NIL T CONST)) (-2312 (($ $) 28 (|has| $ (-6 -4270)))) (-2313 (($ $) 29)) (-4077 (($ $) 18) (($ $ (-719)) 32)) (-2389 (($ $) 55 (|has| |#1| (-1027)))) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3684 (($ |#1| $) NIL (|has| |#1| (-1027))) (($ (-1 (-110) |#1|) $) NIL)) (-3685 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1587 ((|#1| $ (-516) |#1|) NIL (|has| $ (-6 -4270)))) (-3372 ((|#1| $ (-516)) NIL)) (-3721 (((-110) $) NIL)) (-3698 (((-516) |#1| $ (-516)) NIL (|has| |#1| (-1027))) (((-516) |#1| $) NIL (|has| |#1| (-1027))) (((-516) (-1 (-110) |#1|) $) NIL)) (-2018 (((-594 |#1|) $) 27 (|has| $ (-6 -4269)))) (-3295 (((-594 $) $) NIL)) (-3291 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3896 (($ (-719) |#1|) NIL)) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-516) $) 31 (|has| (-516) (-795)))) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3123 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) 58)) (-3792 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 53 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2246 (((-516) $) NIL (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-2022 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3816 (($ |#1|) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3294 (((-594 |#1|) $) NIL)) (-3801 (((-110) $) NIL)) (-3513 (((-1081) $) 51 (|has| |#1| (-1027)))) (-4076 ((|#1| $) NIL) (($ $ (-719)) NIL)) (-3889 (($ $ $ (-516)) NIL) (($ |#1| $ (-516)) NIL)) (-2317 (($ $ $ (-516)) NIL) (($ |#1| $ (-516)) NIL)) (-2248 (((-594 (-516)) $) NIL)) (-2249 (((-110) (-516) $) NIL)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-4079 ((|#1| $) 13) (($ $ (-719)) NIL)) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-2244 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-3722 (((-110) $) NIL)) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 12)) (-2247 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2250 (((-594 |#1|) $) NIL)) (-3682 (((-110) $) 17)) (-3847 (($) 16)) (-4078 ((|#1| $ #1#) NIL) ((|#1| $ #2#) 15) (($ $ #3#) 20) ((|#1| $ #4#) NIL) (($ $ (-1146 (-516))) NIL) ((|#1| $ (-516)) NIL) ((|#1| $ (-516) |#1|) NIL)) (-3293 (((-516) $ $) NIL)) (-1582 (($ $ (-1146 (-516))) NIL) (($ $ (-516)) NIL)) (-2318 (($ $ (-1146 (-516))) NIL) (($ $ (-516)) NIL)) (-3915 (((-110) $) 34)) (-4070 (($ $) NIL)) (-4068 (($ $) NIL (|has| $ (-6 -4270)))) (-4071 (((-719) $) NIL)) (-4072 (($ $) 36)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1797 (($ $ $ (-516)) NIL (|has| $ (-6 -4270)))) (-3678 (($ $) 35)) (-4246 (((-505) $) NIL (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) 26)) (-4069 (($ $ $) 54) (($ $ |#1|) NIL)) (-4080 (($ $ $) NIL) (($ |#1| $) 10) (($ (-594 $)) NIL) (($ $ |#1|) NIL)) (-4233 (((-805) $) 46 (|has| |#1| (-571 (-805))))) (-3796 (((-594 $) $) NIL)) (-3292 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) 48 (|has| |#1| (-1027)))) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#1| (-795)))) (-4232 (((-719) $) 9 (|has| $ (-6 -4269)))))
+(((-496 |#1| |#2|) (-617 |#1|) (-1134) (-516)) (T -496))
+NIL
+(-617 |#1|)
+((-3369 ((|#4| |#4|) 27)) (-3368 (((-719) |#4|) 32)) (-3367 (((-719) |#4|) 33)) (-3366 (((-594 |#3|) |#4|) 40 (|has| |#3| (-6 -4270)))) (-3871 (((-3 |#4| "failed") |#4|) 51)) (-2061 ((|#4| |#4|) 44)) (-3606 ((|#1| |#4|) 43)))
+(((-497 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3369 (|#4| |#4|)) (-15 -3368 ((-719) |#4|)) (-15 -3367 ((-719) |#4|)) (IF (|has| |#3| (-6 -4270)) (-15 -3366 ((-594 |#3|) |#4|)) |%noBranch|) (-15 -3606 (|#1| |#4|)) (-15 -2061 (|#4| |#4|)) (-15 -3871 ((-3 |#4| "failed") |#4|))) (-344) (-353 |#1|) (-353 |#1|) (-634 |#1| |#2| |#3|)) (T -497))
+((-3871 (*1 *2 *2) (|partial| -12 (-4 *3 (-344)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-634 *3 *4 *5)))) (-2061 (*1 *2 *2) (-12 (-4 *3 (-344)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-634 *3 *4 *5)))) (-3606 (*1 *2 *3) (-12 (-4 *4 (-353 *2)) (-4 *5 (-353 *2)) (-4 *2 (-344)) (-5 *1 (-497 *2 *4 *5 *3)) (-4 *3 (-634 *2 *4 *5)))) (-3366 (*1 *2 *3) (-12 (|has| *6 (-6 -4270)) (-4 *4 (-344)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-5 *2 (-594 *6)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-634 *4 *5 *6)))) (-3367 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-5 *2 (-719)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-634 *4 *5 *6)))) (-3368 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-5 *2 (-719)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-634 *4 *5 *6)))) (-3369 (*1 *2 *2) (-12 (-4 *3 (-344)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-634 *3 *4 *5)))))
+(-10 -7 (-15 -3369 (|#4| |#4|)) (-15 -3368 ((-719) |#4|)) (-15 -3367 ((-719) |#4|)) (IF (|has| |#3| (-6 -4270)) (-15 -3366 ((-594 |#3|) |#4|)) |%noBranch|) (-15 -3606 (|#1| |#4|)) (-15 -2061 (|#4| |#4|)) (-15 -3871 ((-3 |#4| "failed") |#4|)))
+((-3369 ((|#8| |#4|) 20)) (-3366 (((-594 |#3|) |#4|) 29 (|has| |#7| (-6 -4270)))) (-3871 (((-3 |#8| "failed") |#4|) 23)))
+(((-498 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3369 (|#8| |#4|)) (-15 -3871 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4270)) (-15 -3366 ((-594 |#3|) |#4|)) |%noBranch|)) (-523) (-353 |#1|) (-353 |#1|) (-634 |#1| |#2| |#3|) (-931 |#1|) (-353 |#5|) (-353 |#5|) (-634 |#5| |#6| |#7|)) (T -498))
+((-3366 (*1 *2 *3) (-12 (|has| *9 (-6 -4270)) (-4 *4 (-523)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-4 *7 (-931 *4)) (-4 *8 (-353 *7)) (-4 *9 (-353 *7)) (-5 *2 (-594 *6)) (-5 *1 (-498 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-634 *4 *5 *6)) (-4 *10 (-634 *7 *8 *9)))) (-3871 (*1 *2 *3) (|partial| -12 (-4 *4 (-523)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-4 *7 (-931 *4)) (-4 *2 (-634 *7 *8 *9)) (-5 *1 (-498 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-634 *4 *5 *6)) (-4 *8 (-353 *7)) (-4 *9 (-353 *7)))) (-3369 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-4 *7 (-931 *4)) (-4 *2 (-634 *7 *8 *9)) (-5 *1 (-498 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-634 *4 *5 *6)) (-4 *8 (-353 *7)) (-4 *9 (-353 *7)))))
+(-10 -7 (-15 -3369 (|#8| |#4|)) (-15 -3871 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4270)) (-15 -3366 ((-594 |#3|) |#4|)) |%noBranch|))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4117 (($ (-719) (-719)) NIL)) (-2365 (($ $ $) NIL)) (-3693 (($ (-561 |#1| |#3|)) NIL) (($ $) NIL)) (-3380 (((-110) $) NIL)) (-2364 (($ $ (-516) (-516)) 12)) (-2363 (($ $ (-516) (-516)) NIL)) (-2362 (($ $ (-516) (-516) (-516) (-516)) NIL)) (-2367 (($ $) NIL)) (-3382 (((-110) $) NIL)) (-1217 (((-110) $ (-719)) NIL)) (-2361 (($ $ (-516) (-516) $) NIL)) (-4066 ((|#1| $ (-516) (-516) |#1|) NIL) (($ $ (-594 (-516)) (-594 (-516)) $) NIL)) (-1256 (($ $ (-516) (-561 |#1| |#3|)) NIL)) (-1255 (($ $ (-516) (-561 |#1| |#2|)) NIL)) (-3611 (($ (-719) |#1|) NIL)) (-3815 (($) NIL T CONST)) (-3369 (($ $) 21 (|has| |#1| (-289)))) (-3371 (((-561 |#1| |#3|) $ (-516)) NIL)) (-3368 (((-719) $) 24 (|has| |#1| (-523)))) (-1587 ((|#1| $ (-516) (-516) |#1|) NIL)) (-3372 ((|#1| $ (-516) (-516)) NIL)) (-2018 (((-594 |#1|) $) NIL)) (-3367 (((-719) $) 26 (|has| |#1| (-523)))) (-3366 (((-594 (-561 |#1| |#2|)) $) 29 (|has| |#1| (-523)))) (-3374 (((-719) $) NIL)) (-3896 (($ (-719) (-719) |#1|) NIL)) (-3373 (((-719) $) NIL)) (-4001 (((-110) $ (-719)) NIL)) (-3605 ((|#1| $) 19 (|has| |#1| (-6 (-4271 #1="*"))))) (-3378 (((-516) $) 10)) (-3376 (((-516) $) NIL)) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3377 (((-516) $) 11)) (-3375 (((-516) $) NIL)) (-3383 (($ (-594 (-594 |#1|))) NIL)) (-2022 (($ (-1 |#1| |#1|) $) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3875 (((-594 (-594 |#1|)) $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-3871 (((-3 $ #2="failed") $) 33 (|has| |#1| (-344)))) (-2366 (($ $ $) NIL)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-2244 (($ $ |#1|) NIL)) (-3740 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-523)))) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#1| $ (-516) (-516)) NIL) ((|#1| $ (-516) (-516) |#1|) NIL) (($ $ (-594 (-516)) (-594 (-516))) NIL)) (-3610 (($ (-594 |#1|)) NIL) (($ (-594 $)) NIL)) (-3381 (((-110) $) NIL)) (-3606 ((|#1| $) 17 (|has| |#1| (-6 (-4271 #1#))))) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3678 (($ $) NIL)) (-3370 (((-561 |#1| |#2|) $ (-516)) NIL)) (-4233 (($ (-561 |#1| |#2|)) NIL) (((-805) $) NIL (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3379 (((-110) $) NIL)) (-3317 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4224 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-4116 (($ $ $) NIL) (($ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| |#1| (-344)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-516) $) NIL) (((-561 |#1| |#2|) $ (-561 |#1| |#2|)) NIL) (((-561 |#1| |#3|) (-561 |#1| |#3|) $) NIL)) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-499 |#1| |#2| |#3|) (-634 |#1| (-561 |#1| |#3|) (-561 |#1| |#2|)) (-984) (-516) (-516)) (T -499))
+NIL
+(-634 |#1| (-561 |#1| |#3|) (-561 |#1| |#2|))
+((-2064 (((-1092 |#1|) (-719)) 76)) (-3608 (((-1179 |#1|) (-1179 |#1|) (-860)) 69)) (-2062 (((-1185) (-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045))))) |#1|) 84)) (-2066 (((-1179 |#1|) (-1179 |#1|) (-719)) 36)) (-3258 (((-1179 |#1|) (-860)) 71)) (-2068 (((-1179 |#1|) (-1179 |#1|) (-516)) 24)) (-2063 (((-1092 |#1|) (-1179 |#1|)) 77)) (-2072 (((-1179 |#1|) (-860)) 95)) (-2070 (((-110) (-1179 |#1|)) 80)) (-3391 (((-1179 |#1|) (-1179 |#1|) (-860)) 62)) (-2073 (((-1092 |#1|) (-1179 |#1|)) 89)) (-2069 (((-860) (-1179 |#1|)) 59)) (-2668 (((-1179 |#1|) (-1179 |#1|)) 30)) (-2426 (((-1179 |#1|) (-860) (-860)) 97)) (-2067 (((-1179 |#1|) (-1179 |#1|) (-1045) (-1045)) 23)) (-2065 (((-1179 |#1|) (-1179 |#1|) (-719) (-1045)) 37)) (-2071 (((-1179 (-1179 |#1|)) (-860)) 94)) (-4224 (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 81)) (** (((-1179 |#1|) (-1179 |#1|) (-516)) 45)) (* (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 25)))
+(((-500 |#1|) (-10 -7 (-15 -2062 ((-1185) (-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045))))) |#1|)) (-15 -3258 ((-1179 |#1|) (-860))) (-15 -2426 ((-1179 |#1|) (-860) (-860))) (-15 -2063 ((-1092 |#1|) (-1179 |#1|))) (-15 -2064 ((-1092 |#1|) (-719))) (-15 -2065 ((-1179 |#1|) (-1179 |#1|) (-719) (-1045))) (-15 -2066 ((-1179 |#1|) (-1179 |#1|) (-719))) (-15 -2067 ((-1179 |#1|) (-1179 |#1|) (-1045) (-1045))) (-15 -2068 ((-1179 |#1|) (-1179 |#1|) (-516))) (-15 ** ((-1179 |#1|) (-1179 |#1|) (-516))) (-15 * ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -4224 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -3391 ((-1179 |#1|) (-1179 |#1|) (-860))) (-15 -3608 ((-1179 |#1|) (-1179 |#1|) (-860))) (-15 -2668 ((-1179 |#1|) (-1179 |#1|))) (-15 -2069 ((-860) (-1179 |#1|))) (-15 -2070 ((-110) (-1179 |#1|))) (-15 -2071 ((-1179 (-1179 |#1|)) (-860))) (-15 -2072 ((-1179 |#1|) (-860))) (-15 -2073 ((-1092 |#1|) (-1179 |#1|)))) (-331)) (T -500))
+((-2073 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-331)) (-5 *2 (-1092 *4)) (-5 *1 (-500 *4)))) (-2072 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1179 *4)) (-5 *1 (-500 *4)) (-4 *4 (-331)))) (-2071 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1179 (-1179 *4))) (-5 *1 (-500 *4)) (-4 *4 (-331)))) (-2070 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-331)) (-5 *2 (-110)) (-5 *1 (-500 *4)))) (-2069 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-331)) (-5 *2 (-860)) (-5 *1 (-500 *4)))) (-2668 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-331)) (-5 *1 (-500 *3)))) (-3608 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-860)) (-4 *4 (-331)) (-5 *1 (-500 *4)))) (-3391 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-860)) (-4 *4 (-331)) (-5 *1 (-500 *4)))) (-4224 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-331)) (-5 *1 (-500 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-331)) (-5 *1 (-500 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-516)) (-4 *4 (-331)) (-5 *1 (-500 *4)))) (-2068 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-516)) (-4 *4 (-331)) (-5 *1 (-500 *4)))) (-2067 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1045)) (-4 *4 (-331)) (-5 *1 (-500 *4)))) (-2066 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-719)) (-4 *4 (-331)) (-5 *1 (-500 *4)))) (-2065 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1179 *5)) (-5 *3 (-719)) (-5 *4 (-1045)) (-4 *5 (-331)) (-5 *1 (-500 *5)))) (-2064 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1092 *4)) (-5 *1 (-500 *4)) (-4 *4 (-331)))) (-2063 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-331)) (-5 *2 (-1092 *4)) (-5 *1 (-500 *4)))) (-2426 (*1 *2 *3 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1179 *4)) (-5 *1 (-500 *4)) (-4 *4 (-331)))) (-3258 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1179 *4)) (-5 *1 (-500 *4)) (-4 *4 (-331)))) (-2062 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 (-594 (-2 (|:| -3681 *4) (|:| -2426 (-1045)))))) (-4 *4 (-331)) (-5 *2 (-1185)) (-5 *1 (-500 *4)))))
+(-10 -7 (-15 -2062 ((-1185) (-1179 (-594 (-2 (|:| -3681 |#1|) (|:| -2426 (-1045))))) |#1|)) (-15 -3258 ((-1179 |#1|) (-860))) (-15 -2426 ((-1179 |#1|) (-860) (-860))) (-15 -2063 ((-1092 |#1|) (-1179 |#1|))) (-15 -2064 ((-1092 |#1|) (-719))) (-15 -2065 ((-1179 |#1|) (-1179 |#1|) (-719) (-1045))) (-15 -2066 ((-1179 |#1|) (-1179 |#1|) (-719))) (-15 -2067 ((-1179 |#1|) (-1179 |#1|) (-1045) (-1045))) (-15 -2068 ((-1179 |#1|) (-1179 |#1|) (-516))) (-15 ** ((-1179 |#1|) (-1179 |#1|) (-516))) (-15 * ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -4224 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -3391 ((-1179 |#1|) (-1179 |#1|) (-860))) (-15 -3608 ((-1179 |#1|) (-1179 |#1|) (-860))) (-15 -2668 ((-1179 |#1|) (-1179 |#1|))) (-15 -2069 ((-860) (-1179 |#1|))) (-15 -2070 ((-110) (-1179 |#1|))) (-15 -2071 ((-1179 (-1179 |#1|)) (-860))) (-15 -2072 ((-1179 |#1|) (-860))) (-15 -2073 ((-1092 |#1|) (-1179 |#1|))))
+((-2075 (((-1 |#1| |#1|) |#1|) 11)) (-2074 (((-1 |#1| |#1|)) 10)))
+(((-501 |#1|) (-10 -7 (-15 -2074 ((-1 |#1| |#1|))) (-15 -2075 ((-1 |#1| |#1|) |#1|))) (-13 (-675) (-25))) (T -501))
+((-2075 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-501 *3)) (-4 *3 (-13 (-675) (-25))))) (-2074 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-501 *3)) (-4 *3 (-13 (-675) (-25))))))
+(-10 -7 (-15 -2074 ((-1 |#1| |#1|))) (-15 -2075 ((-1 |#1| |#1|) |#1|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2667 (($ $ $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-4235 (($ $) NIL)) (-3157 (($ (-719) |#1|) NIL)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-4234 (($ (-1 (-719) (-719)) $) NIL)) (-2056 ((|#1| $) NIL)) (-3449 (((-719) $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 20)) (-2920 (($) NIL T CONST)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) NIL)) (-4118 (($ $ $) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL)))
+(((-502 |#1|) (-13 (-741) (-486 (-719) |#1|)) (-795)) (T -502))
+NIL
+(-13 (-741) (-486 (-719) |#1|))
+((-2077 (((-594 |#2|) (-1092 |#1|) |#3|) 83)) (-2078 (((-594 (-2 (|:| |outval| |#2|) (|:| |outmult| (-516)) (|:| |outvect| (-594 (-637 |#2|))))) (-637 |#1|) |#3| (-1 (-386 (-1092 |#1|)) (-1092 |#1|))) 100)) (-2076 (((-1092 |#1|) (-637 |#1|)) 95)))
+(((-503 |#1| |#2| |#3|) (-10 -7 (-15 -2076 ((-1092 |#1|) (-637 |#1|))) (-15 -2077 ((-594 |#2|) (-1092 |#1|) |#3|)) (-15 -2078 ((-594 (-2 (|:| |outval| |#2|) (|:| |outmult| (-516)) (|:| |outvect| (-594 (-637 |#2|))))) (-637 |#1|) |#3| (-1 (-386 (-1092 |#1|)) (-1092 |#1|))))) (-344) (-344) (-13 (-344) (-793))) (T -503))
+((-2078 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *6)) (-5 *5 (-1 (-386 (-1092 *6)) (-1092 *6))) (-4 *6 (-344)) (-5 *2 (-594 (-2 (|:| |outval| *7) (|:| |outmult| (-516)) (|:| |outvect| (-594 (-637 *7)))))) (-5 *1 (-503 *6 *7 *4)) (-4 *7 (-344)) (-4 *4 (-13 (-344) (-793))))) (-2077 (*1 *2 *3 *4) (-12 (-5 *3 (-1092 *5)) (-4 *5 (-344)) (-5 *2 (-594 *6)) (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-793))))) (-2076 (*1 *2 *3) (-12 (-5 *3 (-637 *4)) (-4 *4 (-344)) (-5 *2 (-1092 *4)) (-5 *1 (-503 *4 *5 *6)) (-4 *5 (-344)) (-4 *6 (-13 (-344) (-793))))))
+(-10 -7 (-15 -2076 ((-1092 |#1|) (-637 |#1|))) (-15 -2077 ((-594 |#2|) (-1092 |#1|) |#3|)) (-15 -2078 ((-594 (-2 (|:| |outval| |#2|) (|:| |outmult| (-516)) (|:| |outvect| (-594 (-637 |#2|))))) (-637 |#1|) |#3| (-1 (-386 (-1092 |#1|)) (-1092 |#1|)))))
+((-2797 (((-787 (-516))) 12)) (-2796 (((-787 (-516))) 14)) (-2782 (((-780 (-516))) 9)))
+(((-504) (-10 -7 (-15 -2782 ((-780 (-516)))) (-15 -2797 ((-787 (-516)))) (-15 -2796 ((-787 (-516)))))) (T -504))
+((-2796 (*1 *2) (-12 (-5 *2 (-787 (-516))) (-5 *1 (-504)))) (-2797 (*1 *2) (-12 (-5 *2 (-787 (-516))) (-5 *1 (-504)))) (-2782 (*1 *2) (-12 (-5 *2 (-780 (-516))) (-5 *1 (-504)))))
+(-10 -7 (-15 -2782 ((-780 (-516)))) (-15 -2797 ((-787 (-516)))) (-15 -2796 ((-787 (-516)))))
+((-2828 (((-110) $ $) NIL)) (-2081 (((-1081) $) 48)) (-3531 (((-110) $) 43)) (-3527 (((-1098) $) 44)) (-3532 (((-110) $) 41)) (-3817 (((-1081) $) 42)) (-3534 (((-110) $) NIL)) (-3536 (((-110) $) NIL)) (-3533 (((-110) $) NIL)) (-3513 (((-1081) $) NIL)) (-2083 (($ $ (-594 (-1098))) 20)) (-2086 (((-50) $) 22)) (-3530 (((-110) $) NIL)) (-3526 (((-516) $) NIL)) (-3514 (((-1045) $) NIL)) (-2409 (($ $ (-594 (-1098)) (-1098)) 60)) (-3529 (((-110) $) NIL)) (-3525 (((-208) $) NIL)) (-2082 (($ $) 38)) (-3524 (((-805) $) NIL)) (-3537 (((-110) $ $) NIL)) (-4078 (($ $ (-516)) NIL) (($ $ (-594 (-516))) NIL)) (-3528 (((-594 $) $) 28)) (-2080 (((-1098) (-594 $)) 49)) (-4246 (($ (-594 $)) 53) (($ (-1081)) NIL) (($ (-1098)) 18) (($ (-516)) 8) (($ (-208)) 25) (($ (-805)) NIL) (((-1029) $) 11) (($ (-1029)) 12)) (-2079 (((-1098) (-1098) (-594 $)) 52)) (-4233 (((-805) $) 46)) (-3522 (($ $) 51)) (-3523 (($ $) 50)) (-2084 (($ $ (-594 $)) 57)) (-3535 (((-110) $) 27)) (-2920 (($) 9 T CONST)) (-2927 (($) 10 T CONST)) (-3317 (((-110) $ $) 61)) (-4224 (($ $ $) 66)) (-4118 (($ $ $) 62)) (** (($ $ (-719)) 65) (($ $ (-516)) 64)) (* (($ $ $) 63)) (-4232 (((-516) $) NIL)))
+(((-505) (-13 (-1030 (-1081) (-1098) (-516) (-208) (-805)) (-572 (-1029)) (-10 -8 (-15 -2086 ((-50) $)) (-15 -4246 ($ (-1029))) (-15 -2084 ($ $ (-594 $))) (-15 -2409 ($ $ (-594 (-1098)) (-1098))) (-15 -2083 ($ $ (-594 (-1098)))) (-15 -4118 ($ $ $)) (-15 * ($ $ $)) (-15 -4224 ($ $ $)) (-15 ** ($ $ (-719))) (-15 ** ($ $ (-516))) (-15 0 ($) -4227) (-15 1 ($) -4227) (-15 -2082 ($ $)) (-15 -2081 ((-1081) $)) (-15 -2080 ((-1098) (-594 $))) (-15 -2079 ((-1098) (-1098) (-594 $)))))) (T -505))
+((-2086 (*1 *2 *1) (-12 (-5 *2 (-50)) (-5 *1 (-505)))) (-4246 (*1 *1 *2) (-12 (-5 *2 (-1029)) (-5 *1 (-505)))) (-2084 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-505))) (-5 *1 (-505)))) (-2409 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-594 (-1098))) (-5 *3 (-1098)) (-5 *1 (-505)))) (-2083 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-1098))) (-5 *1 (-505)))) (-4118 (*1 *1 *1 *1) (-5 *1 (-505))) (* (*1 *1 *1 *1) (-5 *1 (-505))) (-4224 (*1 *1 *1 *1) (-5 *1 (-505))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-505)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-505)))) (-2920 (*1 *1) (-5 *1 (-505))) (-2927 (*1 *1) (-5 *1 (-505))) (-2082 (*1 *1 *1) (-5 *1 (-505))) (-2081 (*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-505)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-594 (-505))) (-5 *2 (-1098)) (-5 *1 (-505)))) (-2079 (*1 *2 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-594 (-505))) (-5 *1 (-505)))))
+(-13 (-1030 (-1081) (-1098) (-516) (-208) (-805)) (-572 (-1029)) (-10 -8 (-15 -2086 ((-50) $)) (-15 -4246 ($ (-1029))) (-15 -2084 ($ $ (-594 $))) (-15 -2409 ($ $ (-594 (-1098)) (-1098))) (-15 -2083 ($ $ (-594 (-1098)))) (-15 -4118 ($ $ $)) (-15 * ($ $ $)) (-15 -4224 ($ $ $)) (-15 ** ($ $ (-719))) (-15 ** ($ $ (-516))) (-15 (-2920) ($) -4227) (-15 (-2927) ($) -4227) (-15 -2082 ($ $)) (-15 -2081 ((-1081) $)) (-15 -2080 ((-1098) (-594 $))) (-15 -2079 ((-1098) (-1098) (-594 $)))))
+((-2085 (((-505) (-1098)) 15)) (-2086 ((|#1| (-505)) 20)))
+(((-506 |#1|) (-10 -7 (-15 -2085 ((-505) (-1098))) (-15 -2086 (|#1| (-505)))) (-1134)) (T -506))
+((-2086 (*1 *2 *3) (-12 (-5 *3 (-505)) (-5 *1 (-506 *2)) (-4 *2 (-1134)))) (-2085 (*1 *2 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-505)) (-5 *1 (-506 *4)) (-4 *4 (-1134)))))
+(-10 -7 (-15 -2085 ((-505) (-1098))) (-15 -2086 (|#1| (-505))))
+((-3727 ((|#2| |#2|) 17)) (-3725 ((|#2| |#2|) 13)) (-3728 ((|#2| |#2| (-516) (-516)) 20)) (-3726 ((|#2| |#2|) 15)))
+(((-507 |#1| |#2|) (-10 -7 (-15 -3725 (|#2| |#2|)) (-15 -3726 (|#2| |#2|)) (-15 -3727 (|#2| |#2|)) (-15 -3728 (|#2| |#2| (-516) (-516)))) (-13 (-523) (-140)) (-1172 |#1|)) (T -507))
+((-3728 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-516)) (-4 *4 (-13 (-523) (-140))) (-5 *1 (-507 *4 *2)) (-4 *2 (-1172 *4)))) (-3727 (*1 *2 *2) (-12 (-4 *3 (-13 (-523) (-140))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1172 *3)))) (-3726 (*1 *2 *2) (-12 (-4 *3 (-13 (-523) (-140))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1172 *3)))) (-3725 (*1 *2 *2) (-12 (-4 *3 (-13 (-523) (-140))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1172 *3)))))
+(-10 -7 (-15 -3725 (|#2| |#2|)) (-15 -3726 (|#2| |#2|)) (-15 -3727 (|#2| |#2|)) (-15 -3728 (|#2| |#2| (-516) (-516))))
+((-2089 (((-594 (-275 (-887 |#2|))) (-594 |#2|) (-594 (-1098))) 32)) (-2087 (((-594 |#2|) (-887 |#1|) |#3|) 53) (((-594 |#2|) (-1092 |#1|) |#3|) 52)) (-2088 (((-594 (-594 |#2|)) (-594 (-887 |#1|)) (-594 (-887 |#1|)) (-594 (-1098)) |#3|) 91)))
+(((-508 |#1| |#2| |#3|) (-10 -7 (-15 -2087 ((-594 |#2|) (-1092 |#1|) |#3|)) (-15 -2087 ((-594 |#2|) (-887 |#1|) |#3|)) (-15 -2088 ((-594 (-594 |#2|)) (-594 (-887 |#1|)) (-594 (-887 |#1|)) (-594 (-1098)) |#3|)) (-15 -2089 ((-594 (-275 (-887 |#2|))) (-594 |#2|) (-594 (-1098))))) (-432) (-344) (-13 (-344) (-793))) (T -508))
+((-2089 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *6)) (-5 *4 (-594 (-1098))) (-4 *6 (-344)) (-5 *2 (-594 (-275 (-887 *6)))) (-5 *1 (-508 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-13 (-344) (-793))))) (-2088 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-594 (-887 *6))) (-5 *4 (-594 (-1098))) (-4 *6 (-432)) (-5 *2 (-594 (-594 *7))) (-5 *1 (-508 *6 *7 *5)) (-4 *7 (-344)) (-4 *5 (-13 (-344) (-793))))) (-2087 (*1 *2 *3 *4) (-12 (-5 *3 (-887 *5)) (-4 *5 (-432)) (-5 *2 (-594 *6)) (-5 *1 (-508 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-793))))) (-2087 (*1 *2 *3 *4) (-12 (-5 *3 (-1092 *5)) (-4 *5 (-432)) (-5 *2 (-594 *6)) (-5 *1 (-508 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-793))))))
+(-10 -7 (-15 -2087 ((-594 |#2|) (-1092 |#1|) |#3|)) (-15 -2087 ((-594 |#2|) (-887 |#1|) |#3|)) (-15 -2088 ((-594 (-594 |#2|)) (-594 (-887 |#1|)) (-594 (-887 |#1|)) (-594 (-1098)) |#3|)) (-15 -2089 ((-594 (-275 (-887 |#2|))) (-594 |#2|) (-594 (-1098)))))
+((-2092 ((|#2| |#2| |#1|) 17)) (-2090 ((|#2| (-594 |#2|)) 27)) (-2091 ((|#2| (-594 |#2|)) 46)))
+(((-509 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2090 (|#2| (-594 |#2|))) (-15 -2091 (|#2| (-594 |#2|))) (-15 -2092 (|#2| |#2| |#1|))) (-289) (-1155 |#1|) |#1| (-1 |#1| |#1| (-719))) (T -509))
+((-2092 (*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-719))) (-5 *1 (-509 *3 *2 *4 *5)) (-4 *2 (-1155 *3)))) (-2091 (*1 *2 *3) (-12 (-5 *3 (-594 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-509 *4 *2 *5 *6)) (-4 *4 (-289)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-719))))) (-2090 (*1 *2 *3) (-12 (-5 *3 (-594 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-509 *4 *2 *5 *6)) (-4 *4 (-289)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-719))))))
+(-10 -7 (-15 -2090 (|#2| (-594 |#2|))) (-15 -2091 (|#2| (-594 |#2|))) (-15 -2092 (|#2| |#2| |#1|)))
+((-4011 (((-386 (-1092 |#4|)) (-1092 |#4|) (-1 (-386 (-1092 |#3|)) (-1092 |#3|))) 80) (((-386 |#4|) |#4| (-1 (-386 (-1092 |#3|)) (-1092 |#3|))) 170)))
+(((-510 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4011 ((-386 |#4|) |#4| (-1 (-386 (-1092 |#3|)) (-1092 |#3|)))) (-15 -4011 ((-386 (-1092 |#4|)) (-1092 |#4|) (-1 (-386 (-1092 |#3|)) (-1092 |#3|))))) (-795) (-741) (-13 (-289) (-140)) (-891 |#3| |#2| |#1|)) (T -510))
+((-4011 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-386 (-1092 *7)) (-1092 *7))) (-4 *7 (-13 (-289) (-140))) (-4 *5 (-795)) (-4 *6 (-741)) (-4 *8 (-891 *7 *6 *5)) (-5 *2 (-386 (-1092 *8))) (-5 *1 (-510 *5 *6 *7 *8)) (-5 *3 (-1092 *8)))) (-4011 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-386 (-1092 *7)) (-1092 *7))) (-4 *7 (-13 (-289) (-140))) (-4 *5 (-795)) (-4 *6 (-741)) (-5 *2 (-386 *3)) (-5 *1 (-510 *5 *6 *7 *3)) (-4 *3 (-891 *7 *6 *5)))))
+(-10 -7 (-15 -4011 ((-386 |#4|) |#4| (-1 (-386 (-1092 |#3|)) (-1092 |#3|)))) (-15 -4011 ((-386 (-1092 |#4|)) (-1092 |#4|) (-1 (-386 (-1092 |#3|)) (-1092 |#3|)))))
+((-3727 ((|#4| |#4|) 74)) (-3725 ((|#4| |#4|) 70)) (-3728 ((|#4| |#4| (-516) (-516)) 76)) (-3726 ((|#4| |#4|) 72)))
+(((-511 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3725 (|#4| |#4|)) (-15 -3726 (|#4| |#4|)) (-15 -3727 (|#4| |#4|)) (-15 -3728 (|#4| |#4| (-516) (-516)))) (-13 (-344) (-349) (-572 (-516))) (-1155 |#1|) (-673 |#1| |#2|) (-1172 |#3|)) (T -511))
+((-3728 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-516)) (-4 *4 (-13 (-344) (-349) (-572 *3))) (-4 *5 (-1155 *4)) (-4 *6 (-673 *4 *5)) (-5 *1 (-511 *4 *5 *6 *2)) (-4 *2 (-1172 *6)))) (-3727 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-572 (-516)))) (-4 *4 (-1155 *3)) (-4 *5 (-673 *3 *4)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-1172 *5)))) (-3726 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-572 (-516)))) (-4 *4 (-1155 *3)) (-4 *5 (-673 *3 *4)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-1172 *5)))) (-3725 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-572 (-516)))) (-4 *4 (-1155 *3)) (-4 *5 (-673 *3 *4)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-1172 *5)))))
+(-10 -7 (-15 -3725 (|#4| |#4|)) (-15 -3726 (|#4| |#4|)) (-15 -3727 (|#4| |#4|)) (-15 -3728 (|#4| |#4| (-516) (-516))))
+((-3727 ((|#2| |#2|) 27)) (-3725 ((|#2| |#2|) 23)) (-3728 ((|#2| |#2| (-516) (-516)) 29)) (-3726 ((|#2| |#2|) 25)))
+(((-512 |#1| |#2|) (-10 -7 (-15 -3725 (|#2| |#2|)) (-15 -3726 (|#2| |#2|)) (-15 -3727 (|#2| |#2|)) (-15 -3728 (|#2| |#2| (-516) (-516)))) (-13 (-344) (-349) (-572 (-516))) (-1172 |#1|)) (T -512))
+((-3728 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-516)) (-4 *4 (-13 (-344) (-349) (-572 *3))) (-5 *1 (-512 *4 *2)) (-4 *2 (-1172 *4)))) (-3727 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-572 (-516)))) (-5 *1 (-512 *3 *2)) (-4 *2 (-1172 *3)))) (-3726 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-572 (-516)))) (-5 *1 (-512 *3 *2)) (-4 *2 (-1172 *3)))) (-3725 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-572 (-516)))) (-5 *1 (-512 *3 *2)) (-4 *2 (-1172 *3)))))
+(-10 -7 (-15 -3725 (|#2| |#2|)) (-15 -3726 (|#2| |#2|)) (-15 -3727 (|#2| |#2|)) (-15 -3728 (|#2| |#2| (-516) (-516))))
+((-2093 (((-3 (-516) #1="failed") |#2| |#1| (-1 (-3 (-516) #1#) |#1|)) 14) (((-3 (-516) #1#) |#2| |#1| (-516) (-1 (-3 (-516) #1#) |#1|)) 13) (((-3 (-516) #1#) |#2| (-516) (-1 (-3 (-516) #1#) |#1|)) 26)))
+(((-513 |#1| |#2|) (-10 -7 (-15 -2093 ((-3 (-516) #1="failed") |#2| (-516) (-1 (-3 (-516) #1#) |#1|))) (-15 -2093 ((-3 (-516) #1#) |#2| |#1| (-516) (-1 (-3 (-516) #1#) |#1|))) (-15 -2093 ((-3 (-516) #1#) |#2| |#1| (-1 (-3 (-516) #1#) |#1|)))) (-984) (-1155 |#1|)) (T -513))
+((-2093 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-516) #1="failed") *4)) (-4 *4 (-984)) (-5 *2 (-516)) (-5 *1 (-513 *4 *3)) (-4 *3 (-1155 *4)))) (-2093 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-516) #1#) *4)) (-4 *4 (-984)) (-5 *2 (-516)) (-5 *1 (-513 *4 *3)) (-4 *3 (-1155 *4)))) (-2093 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-516) #1#) *5)) (-4 *5 (-984)) (-5 *2 (-516)) (-5 *1 (-513 *5 *3)) (-4 *3 (-1155 *5)))))
+(-10 -7 (-15 -2093 ((-3 (-516) #1="failed") |#2| (-516) (-1 (-3 (-516) #1#) |#1|))) (-15 -2093 ((-3 (-516) #1#) |#2| |#1| (-516) (-1 (-3 (-516) #1#) |#1|))) (-15 -2093 ((-3 (-516) #1#) |#2| |#1| (-1 (-3 (-516) #1#) |#1|))))
+((-2102 (($ $ $) 79)) (-4245 (((-386 $) $) 47)) (-3432 (((-3 (-516) "failed") $) 59)) (-3431 (((-516) $) 37)) (-3288 (((-3 (-388 (-516)) "failed") $) 74)) (-3287 (((-110) $) 24)) (-3286 (((-388 (-516)) $) 72)) (-4005 (((-110) $) 50)) (-2095 (($ $ $ $) 86)) (-3460 (((-110) $) 16)) (-1368 (($ $ $) 57)) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) 69)) (-3723 (((-3 $ "failed") $) 64)) (-2099 (($ $) 23)) (-2094 (($ $ $) 84)) (-3724 (($) 60)) (-1366 (($ $) 53)) (-4011 (((-386 $) $) 45)) (-2937 (((-110) $) 14)) (-1654 (((-719) $) 28)) (-4089 (($ $ (-719)) NIL) (($ $) 10)) (-3678 (($ $) 17)) (-4246 (((-516) $) NIL) (((-505) $) 36) (((-831 (-516)) $) 40) (((-359) $) 31) (((-208) $) 33)) (-3385 (((-719)) 8)) (-2104 (((-110) $ $) 20)) (-3362 (($ $ $) 55)))
+(((-514 |#1|) (-10 -8 (-15 -2094 (|#1| |#1| |#1|)) (-15 -2095 (|#1| |#1| |#1| |#1|)) (-15 -2099 (|#1| |#1|)) (-15 -3678 (|#1| |#1|)) (-15 -3288 ((-3 (-388 (-516)) "failed") |#1|)) (-15 -3286 ((-388 (-516)) |#1|)) (-15 -3287 ((-110) |#1|)) (-15 -2102 (|#1| |#1| |#1|)) (-15 -2104 ((-110) |#1| |#1|)) (-15 -2937 ((-110) |#1|)) (-15 -3724 (|#1|)) (-15 -3723 ((-3 |#1| "failed") |#1|)) (-15 -4246 ((-208) |#1|)) (-15 -4246 ((-359) |#1|)) (-15 -1368 (|#1| |#1| |#1|)) (-15 -1366 (|#1| |#1|)) (-15 -3362 (|#1| |#1| |#1|)) (-15 -3060 ((-829 (-516) |#1|) |#1| (-831 (-516)) (-829 (-516) |#1|))) (-15 -4246 ((-831 (-516)) |#1|)) (-15 -4246 ((-505) |#1|)) (-15 -3431 ((-516) |#1|)) (-15 -3432 ((-3 (-516) "failed") |#1|)) (-15 -4246 ((-516) |#1|)) (-15 -4089 (|#1| |#1|)) (-15 -4089 (|#1| |#1| (-719))) (-15 -3460 ((-110) |#1|)) (-15 -1654 ((-719) |#1|)) (-15 -4011 ((-386 |#1|) |#1|)) (-15 -4245 ((-386 |#1|) |#1|)) (-15 -4005 ((-110) |#1|)) (-15 -3385 ((-719)))) (-515)) (T -514))
+((-3385 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-514 *3)) (-4 *3 (-515)))))
+(-10 -8 (-15 -2094 (|#1| |#1| |#1|)) (-15 -2095 (|#1| |#1| |#1| |#1|)) (-15 -2099 (|#1| |#1|)) (-15 -3678 (|#1| |#1|)) (-15 -3288 ((-3 (-388 (-516)) "failed") |#1|)) (-15 -3286 ((-388 (-516)) |#1|)) (-15 -3287 ((-110) |#1|)) (-15 -2102 (|#1| |#1| |#1|)) (-15 -2104 ((-110) |#1| |#1|)) (-15 -2937 ((-110) |#1|)) (-15 -3724 (|#1|)) (-15 -3723 ((-3 |#1| "failed") |#1|)) (-15 -4246 ((-208) |#1|)) (-15 -4246 ((-359) |#1|)) (-15 -1368 (|#1| |#1| |#1|)) (-15 -1366 (|#1| |#1|)) (-15 -3362 (|#1| |#1| |#1|)) (-15 -3060 ((-829 (-516) |#1|) |#1| (-831 (-516)) (-829 (-516) |#1|))) (-15 -4246 ((-831 (-516)) |#1|)) (-15 -4246 ((-505) |#1|)) (-15 -3431 ((-516) |#1|)) (-15 -3432 ((-3 (-516) "failed") |#1|)) (-15 -4246 ((-516) |#1|)) (-15 -4089 (|#1| |#1|)) (-15 -4089 (|#1| |#1| (-719))) (-15 -3460 ((-110) |#1|)) (-15 -1654 ((-719) |#1|)) (-15 -4011 ((-386 |#1|) |#1|)) (-15 -4245 ((-386 |#1|) |#1|)) (-15 -4005 ((-110) |#1|)) (-15 -3385 ((-719))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 41)) (-2118 (($ $) 40)) (-2116 (((-110) $) 38)) (-2102 (($ $ $) 85)) (-1319 (((-3 $ "failed") $ $) 19)) (-2097 (($ $ $ $) 73)) (-4053 (($ $) 51)) (-4245 (((-386 $) $) 52)) (-1655 (((-110) $ $) 125)) (-3905 (((-516) $) 114)) (-2624 (($ $ $) 88)) (-3815 (($) 17 T CONST)) (-3432 (((-3 (-516) "failed") $) 106)) (-3431 (((-516) $) 105)) (-2824 (($ $ $) 129)) (-2297 (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) 104) (((-637 (-516)) (-637 $)) 103)) (-3741 (((-3 $ "failed") $) 34)) (-3288 (((-3 (-388 (-516)) "failed") $) 82)) (-3287 (((-110) $) 84)) (-3286 (((-388 (-516)) $) 83)) (-3258 (($) 81) (($ $) 80)) (-2823 (($ $ $) 128)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 123)) (-4005 (((-110) $) 53)) (-2095 (($ $ $ $) 71)) (-2103 (($ $ $) 86)) (-3460 (((-110) $) 116)) (-1368 (($ $ $) 97)) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) 100)) (-2436 (((-110) $) 31)) (-2936 (((-110) $) 92)) (-3723 (((-3 $ "failed") $) 94)) (-3461 (((-110) $) 115)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) 132)) (-2096 (($ $ $ $) 72)) (-3596 (($ $ $) 117)) (-3597 (($ $ $) 118)) (-2099 (($ $) 75)) (-4112 (($ $) 89)) (-1963 (($ $ $) 46) (($ (-594 $)) 45)) (-3513 (((-1081) $) 9)) (-2094 (($ $ $) 70)) (-3724 (($) 93 T CONST)) (-2101 (($ $) 77)) (-3514 (((-1045) $) 10) (($ $) 79)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 44)) (-3419 (($ $ $) 48) (($ (-594 $)) 47)) (-1366 (($ $) 98)) (-4011 (((-386 $) $) 50)) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 130)) (-3740 (((-3 $ "failed") $ $) 42)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 124)) (-2937 (((-110) $) 91)) (-1654 (((-719) $) 126)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 127)) (-4089 (($ $ (-719)) 111) (($ $) 109)) (-2100 (($ $) 76)) (-3678 (($ $) 78)) (-4246 (((-516) $) 108) (((-505) $) 102) (((-831 (-516)) $) 101) (((-359) $) 96) (((-208) $) 95)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ $) 43) (($ (-516)) 107)) (-3385 (((-719)) 29)) (-2104 (((-110) $ $) 87)) (-3362 (($ $ $) 99)) (-2957 (($) 90)) (-2117 (((-110) $ $) 39)) (-2098 (($ $ $ $) 74)) (-3661 (($ $) 113)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2932 (($ $ (-719)) 112) (($ $) 110)) (-2826 (((-110) $ $) 120)) (-2827 (((-110) $ $) 121)) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 119)) (-2948 (((-110) $ $) 122)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24)))
+(((-515) (-133)) (T -515))
+((-2936 (*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110)))) (-2937 (*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110)))) (-2957 (*1 *1) (-4 *1 (-515))) (-4112 (*1 *1 *1) (-4 *1 (-515))) (-2624 (*1 *1 *1 *1) (-4 *1 (-515))) (-2104 (*1 *2 *1 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110)))) (-2103 (*1 *1 *1 *1) (-4 *1 (-515))) (-2102 (*1 *1 *1 *1) (-4 *1 (-515))) (-3287 (*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110)))) (-3286 (*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-388 (-516))))) (-3288 (*1 *2 *1) (|partial| -12 (-4 *1 (-515)) (-5 *2 (-388 (-516))))) (-3258 (*1 *1) (-4 *1 (-515))) (-3258 (*1 *1 *1) (-4 *1 (-515))) (-3514 (*1 *1 *1) (-4 *1 (-515))) (-3678 (*1 *1 *1) (-4 *1 (-515))) (-2101 (*1 *1 *1) (-4 *1 (-515))) (-2100 (*1 *1 *1) (-4 *1 (-515))) (-2099 (*1 *1 *1) (-4 *1 (-515))) (-2098 (*1 *1 *1 *1 *1) (-4 *1 (-515))) (-2097 (*1 *1 *1 *1 *1) (-4 *1 (-515))) (-2096 (*1 *1 *1 *1 *1) (-4 *1 (-515))) (-2095 (*1 *1 *1 *1 *1) (-4 *1 (-515))) (-2094 (*1 *1 *1 *1) (-4 *1 (-515))))
+(-13 (-1138) (-289) (-768) (-216) (-572 (-516)) (-975 (-516)) (-593 (-516)) (-572 (-505)) (-572 (-831 (-516))) (-827 (-516)) (-136) (-958) (-140) (-1074) (-10 -8 (-15 -2936 ((-110) $)) (-15 -2937 ((-110) $)) (-6 -4268) (-15 -2957 ($)) (-15 -4112 ($ $)) (-15 -2624 ($ $ $)) (-15 -2104 ((-110) $ $)) (-15 -2103 ($ $ $)) (-15 -2102 ($ $ $)) (-15 -3287 ((-110) $)) (-15 -3286 ((-388 (-516)) $)) (-15 -3288 ((-3 (-388 (-516)) "failed") $)) (-15 -3258 ($)) (-15 -3258 ($ $)) (-15 -3514 ($ $)) (-15 -3678 ($ $)) (-15 -2101 ($ $)) (-15 -2100 ($ $)) (-15 -2099 ($ $)) (-15 -2098 ($ $ $ $)) (-15 -2097 ($ $ $ $)) (-15 -2096 ($ $ $ $)) (-15 -2095 ($ $ $ $)) (-15 -2094 ($ $ $)) (-6 -4267)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-571 (-805)) . T) ((-136) . T) ((-162) . T) ((-572 (-208)) . T) ((-572 (-359)) . T) ((-572 (-505)) . T) ((-572 (-516)) . T) ((-572 (-831 (-516))) . T) ((-216) . T) ((-272) . T) ((-289) . T) ((-432) . T) ((-523) . T) ((-599 $) . T) ((-593 (-516)) . T) ((-666 $) . T) ((-675) . T) ((-739) . T) ((-740) . T) ((-742) . T) ((-745) . T) ((-768) . T) ((-793) . T) ((-795) . T) ((-827 (-516)) . T) ((-862) . T) ((-958) . T) ((-975 (-516)) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1074) . T) ((-1138) . T))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 25)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 87)) (-2118 (($ $) 88)) (-2116 (((-110) $) NIL)) (-2102 (($ $ $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-2097 (($ $ $ $) 42)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-1655 (((-110) $ $) NIL)) (-3905 (((-516) $) NIL)) (-2624 (($ $ $) 81)) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-516) "failed") $) NIL)) (-3431 (((-516) $) NIL)) (-2824 (($ $ $) 80)) (-2297 (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) 61) (((-637 (-516)) (-637 $)) 57)) (-3741 (((-3 $ "failed") $) 84)) (-3288 (((-3 (-388 (-516)) "failed") $) NIL)) (-3287 (((-110) $) NIL)) (-3286 (((-388 (-516)) $) NIL)) (-3258 (($) 63) (($ $) 64)) (-2823 (($ $ $) 79)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4005 (((-110) $) NIL)) (-2095 (($ $ $ $) NIL)) (-2103 (($ $ $) 54)) (-3460 (((-110) $) NIL)) (-1368 (($ $ $) NIL)) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL)) (-2436 (((-110) $) 26)) (-2936 (((-110) $) 74)) (-3723 (((-3 $ "failed") $) NIL)) (-3461 (((-110) $) 34)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL)) (-2096 (($ $ $ $) 43)) (-3596 (($ $ $) 76)) (-3597 (($ $ $) 75)) (-2099 (($ $) NIL)) (-4112 (($ $) 40)) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) 53)) (-2094 (($ $ $) NIL)) (-3724 (($) NIL T CONST)) (-2101 (($ $) 31)) (-3514 (((-1045) $) NIL) (($ $) 33)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 118)) (-3419 (($ $ $) 85) (($ (-594 $)) NIL)) (-1366 (($ $) NIL)) (-4011 (((-386 $) $) 104)) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL)) (-3740 (((-3 $ "failed") $ $) 83)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-2937 (((-110) $) NIL)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 78)) (-4089 (($ $ (-719)) NIL) (($ $) NIL)) (-2100 (($ $) 32)) (-3678 (($ $) 30)) (-4246 (((-516) $) 39) (((-505) $) 51) (((-831 (-516)) $) NIL) (((-359) $) 46) (((-208) $) 48) (((-1081) $) 52)) (-4233 (((-805) $) 37) (($ (-516)) 38) (($ $) NIL) (($ (-516)) 38)) (-3385 (((-719)) NIL)) (-2104 (((-110) $ $) NIL)) (-3362 (($ $ $) NIL)) (-2957 (($) 29)) (-2117 (((-110) $ $) NIL)) (-2098 (($ $ $ $) 41)) (-3661 (($ $) 62)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 27 T CONST)) (-2927 (($) 28 T CONST)) (-2768 (((-1081) $) 20) (((-1081) $ (-110)) 22) (((-1185) (-771) $) 23) (((-1185) (-771) $ (-110)) 24)) (-2932 (($ $ (-719)) NIL) (($ $) NIL)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 65)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 66)) (-4116 (($ $) 67) (($ $ $) 69)) (-4118 (($ $ $) 68)) (** (($ $ (-860)) NIL) (($ $ (-719)) 73)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 71) (($ $ $) 70)))
+(((-516) (-13 (-515) (-572 (-1081)) (-769) (-10 -8 (-15 -3258 ($ $)) (-6 -4256) (-6 -4261) (-6 -4257) (-6 -4251)))) (T -516))
+((-3258 (*1 *1 *1) (-5 *1 (-516))))
+(-13 (-515) (-572 (-1081)) (-769) (-10 -8 (-15 -3258 ($ $)) (-6 -4256) (-6 -4261) (-6 -4257) (-6 -4251)))
+((-2828 (((-110) $ $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3879 (($) NIL) (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-2243 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -4270)))) (-1217 (((-110) $ (-719)) NIL)) (-4066 ((|#2| $ |#1| |#2|) NIL)) (-1581 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3992 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2251 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3815 (($) NIL T CONST)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))))) (-3684 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-3 |#2| #1#) |#1| $) NIL)) (-3685 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-4121 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-1587 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4270)))) (-3372 ((|#2| $ |#1|) NIL)) (-2018 (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-594 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) NIL)) (-2245 ((|#1| $) NIL (|has| |#1| (-795)))) (-2445 (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-594 |#2|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2246 ((|#1| $) NIL (|has| |#1| (-795)))) (-2022 (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2678 (((-594 |#1|) $) NIL)) (-2252 (((-110) |#1| $) NIL)) (-1280 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL)) (-3889 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL)) (-2248 (((-594 |#1|) $) NIL)) (-2249 (((-110) |#1| $) NIL)) (-3514 (((-1045) $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-4079 ((|#2| $) NIL (|has| |#1| (-795)))) (-1350 (((-3 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) "failed") (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL)) (-2244 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-1281 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL)) (-2020 (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-275 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-594 |#2|) (-594 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-594 (-275 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2250 (((-594 |#2|) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1473 (($) NIL) (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-2019 (((-719) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) NIL (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-572 (-505))))) (-3804 (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-4233 (((-805) $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-571 (-805))) (|has| |#2| (-571 (-805)))))) (-1282 (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-2021 (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-517 |#1| |#2| |#3|) (-13 (-1111 |#1| |#2|) (-10 -7 (-6 -4269))) (-1027) (-1027) (-13 (-1111 |#1| |#2|) (-10 -7 (-6 -4269)))) (T -517))
+NIL
+(-13 (-1111 |#1| |#2|) (-10 -7 (-6 -4269)))
+((-2105 (((-545 |#2|) |#2| (-569 |#2|) (-569 |#2|) (-1 (-1092 |#2|) (-1092 |#2|))) 51)))
+(((-518 |#1| |#2|) (-10 -7 (-15 -2105 ((-545 |#2|) |#2| (-569 |#2|) (-569 |#2|) (-1 (-1092 |#2|) (-1092 |#2|))))) (-13 (-795) (-523)) (-13 (-27) (-402 |#1|))) (T -518))
+((-2105 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-569 *3)) (-5 *5 (-1 (-1092 *3) (-1092 *3))) (-4 *3 (-13 (-27) (-402 *6))) (-4 *6 (-13 (-795) (-523))) (-5 *2 (-545 *3)) (-5 *1 (-518 *6 *3)))))
+(-10 -7 (-15 -2105 ((-545 |#2|) |#2| (-569 |#2|) (-569 |#2|) (-1 (-1092 |#2|) (-1092 |#2|)))))
+((-2107 (((-545 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-2108 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-2106 (((-545 |#5|) |#5| (-1 |#3| |#3|)) 202)))
+(((-519 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2106 ((-545 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2107 ((-545 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2108 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-795) (-523) (-975 (-516))) (-13 (-27) (-402 |#1|)) (-1155 |#2|) (-1155 (-388 |#3|)) (-323 |#2| |#3| |#4|)) (T -519))
+((-2108 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-27) (-402 *4))) (-4 *4 (-13 (-795) (-523) (-975 (-516)))) (-4 *7 (-1155 (-388 *6))) (-5 *1 (-519 *4 *5 *6 *7 *2)) (-4 *2 (-323 *5 *6 *7)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1155 *6)) (-4 *6 (-13 (-27) (-402 *5))) (-4 *5 (-13 (-795) (-523) (-975 (-516)))) (-4 *8 (-1155 (-388 *7))) (-5 *2 (-545 *3)) (-5 *1 (-519 *5 *6 *7 *8 *3)) (-4 *3 (-323 *6 *7 *8)))) (-2106 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1155 *6)) (-4 *6 (-13 (-27) (-402 *5))) (-4 *5 (-13 (-795) (-523) (-975 (-516)))) (-4 *8 (-1155 (-388 *7))) (-5 *2 (-545 *3)) (-5 *1 (-519 *5 *6 *7 *8 *3)) (-4 *3 (-323 *6 *7 *8)))))
+(-10 -7 (-15 -2106 ((-545 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2107 ((-545 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2108 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-2111 (((-110) (-516) (-516)) 10)) (-2109 (((-516) (-516)) 7)) (-2110 (((-516) (-516) (-516)) 8)))
+(((-520) (-10 -7 (-15 -2109 ((-516) (-516))) (-15 -2110 ((-516) (-516) (-516))) (-15 -2111 ((-110) (-516) (-516))))) (T -520))
+((-2111 (*1 *2 *3 *3) (-12 (-5 *3 (-516)) (-5 *2 (-110)) (-5 *1 (-520)))) (-2110 (*1 *2 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-520)))) (-2109 (*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-520)))))
+(-10 -7 (-15 -2109 ((-516) (-516))) (-15 -2110 ((-516) (-516) (-516))) (-15 -2111 ((-110) (-516) (-516))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-2864 ((|#1| $) 61)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 41)) (-2118 (($ $) 40)) (-2116 (((-110) $) 38)) (-3766 (($ $) 91)) (-3921 (($ $) 74)) (-2667 ((|#1| $) 62)) (-1319 (((-3 $ "failed") $ $) 19)) (-3301 (($ $) 73)) (-3764 (($ $) 90)) (-3920 (($ $) 75)) (-3768 (($ $) 89)) (-3919 (($ $) 76)) (-3815 (($) 17 T CONST)) (-3432 (((-3 (-516) "failed") $) 69)) (-3431 (((-516) $) 68)) (-3741 (((-3 $ "failed") $) 34)) (-2114 (($ |#1| |#1|) 66)) (-3460 (((-110) $) 60)) (-3909 (($) 101)) (-2436 (((-110) $) 31)) (-3275 (($ $ (-516)) 72)) (-3461 (((-110) $) 59)) (-3596 (($ $ $) 107)) (-3597 (($ $ $) 106)) (-4218 (($ $) 98)) (-1963 (($ $ $) 46) (($ (-594 $)) 45)) (-3513 (((-1081) $) 9)) (-2115 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-388 (-516))) 64)) (-2113 ((|#1| $) 63)) (-3514 (((-1045) $) 10)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 44)) (-3419 (($ $ $) 48) (($ (-594 $)) 47)) (-3740 (((-3 $ "failed") $ $) 42)) (-4219 (($ $) 99)) (-3769 (($ $) 88)) (-3918 (($ $) 77)) (-3767 (($ $) 87)) (-3917 (($ $) 78)) (-3765 (($ $) 86)) (-3916 (($ $) 79)) (-2112 (((-110) $ |#1|) 58)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ $) 43) (($ (-516)) 70)) (-3385 (((-719)) 29)) (-3772 (($ $) 97)) (-3760 (($ $) 85)) (-2117 (((-110) $ $) 39)) (-3770 (($ $) 96)) (-3758 (($ $) 84)) (-3774 (($ $) 95)) (-3762 (($ $) 83)) (-3775 (($ $) 94)) (-3763 (($ $) 82)) (-3773 (($ $) 93)) (-3761 (($ $) 81)) (-3771 (($ $) 92)) (-3759 (($ $) 80)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2826 (((-110) $ $) 104)) (-2827 (((-110) $ $) 103)) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 105)) (-2948 (((-110) $ $) 102)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32) (($ $ $) 100) (($ $ (-388 (-516))) 71)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24)))
+(((-521 |#1|) (-133) (-13 (-385) (-1120))) (T -521))
+((-2115 (*1 *1 *2 *2) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1120))))) (-2114 (*1 *1 *2 *2) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1120))))) (-2115 (*1 *1 *2) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1120))))) (-2115 (*1 *1 *2) (-12 (-5 *2 (-388 (-516))) (-4 *1 (-521 *3)) (-4 *3 (-13 (-385) (-1120))))) (-2113 (*1 *2 *1) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1120))))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1120))))) (-2864 (*1 *2 *1) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1120))))) (-3460 (*1 *2 *1) (-12 (-4 *1 (-521 *3)) (-4 *3 (-13 (-385) (-1120))) (-5 *2 (-110)))) (-3461 (*1 *2 *1) (-12 (-4 *1 (-521 *3)) (-4 *3 (-13 (-385) (-1120))) (-5 *2 (-110)))) (-2112 (*1 *2 *1 *3) (-12 (-4 *1 (-521 *3)) (-4 *3 (-13 (-385) (-1120))) (-5 *2 (-110)))))
+(-13 (-432) (-795) (-1120) (-941) (-975 (-516)) (-10 -8 (-6 -4048) (-15 -2115 ($ |t#1| |t#1|)) (-15 -2114 ($ |t#1| |t#1|)) (-15 -2115 ($ |t#1|)) (-15 -2115 ($ (-388 (-516)))) (-15 -2113 (|t#1| $)) (-15 -2667 (|t#1| $)) (-15 -2864 (|t#1| $)) (-15 -3460 ((-110) $)) (-15 -3461 ((-110) $)) (-15 -2112 ((-110) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-93) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-805)) . T) ((-162) . T) ((-266) . T) ((-272) . T) ((-432) . T) ((-471) . T) ((-523) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-795) . T) ((-941) . T) ((-975 (-516)) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1120) . T) ((-1123) . T))
+((-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 9)) (-2118 (($ $) 11)) (-2116 (((-110) $) 18)) (-3741 (((-3 $ "failed") $) 16)) (-2117 (((-110) $ $) 20)))
+(((-522 |#1|) (-10 -8 (-15 -2116 ((-110) |#1|)) (-15 -2117 ((-110) |#1| |#1|)) (-15 -2118 (|#1| |#1|)) (-15 -2119 ((-2 (|:| -1842 |#1|) (|:| -4256 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3741 ((-3 |#1| "failed") |#1|))) (-523)) (T -522))
+NIL
+(-10 -8 (-15 -2116 ((-110) |#1|)) (-15 -2117 ((-110) |#1| |#1|)) (-15 -2118 (|#1| |#1|)) (-15 -2119 ((-2 (|:| -1842 |#1|) (|:| -4256 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3741 ((-3 |#1| "failed") |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 41)) (-2118 (($ $) 40)) (-2116 (((-110) $) 38)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3741 (((-3 $ "failed") $) 34)) (-2436 (((-110) $) 31)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-3740 (((-3 $ "failed") $ $) 42)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ $) 43)) (-3385 (((-719)) 29)) (-2117 (((-110) $ $) 39)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24)))
+(((-523) (-133)) (T -523))
+((-3740 (*1 *1 *1 *1) (|partial| -4 *1 (-523))) (-2119 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1842 *1) (|:| -4256 *1) (|:| |associate| *1))) (-4 *1 (-523)))) (-2118 (*1 *1 *1) (-4 *1 (-523))) (-2117 (*1 *2 *1 *1) (-12 (-4 *1 (-523)) (-5 *2 (-110)))) (-2116 (*1 *2 *1) (-12 (-4 *1 (-523)) (-5 *2 (-110)))))
+(-13 (-162) (-37 $) (-272) (-10 -8 (-15 -3740 ((-3 $ "failed") $ $)) (-15 -2119 ((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $)) (-15 -2118 ($ $)) (-15 -2117 ((-110) $ $)) (-15 -2116 ((-110) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-805)) . T) ((-162) . T) ((-272) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-2121 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1098) (-594 |#2|)) 37)) (-2123 (((-545 |#2|) |#2| (-1098)) 62)) (-2122 (((-3 |#2| "failed") |#2| (-1098)) 154)) (-2124 (((-3 (-2 (|:| -2189 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1098) (-569 |#2|) (-594 (-569 |#2|))) 157)) (-2120 (((-3 (-2 (|:| -2189 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1098) |#2|) 40)))
+(((-524 |#1| |#2|) (-10 -7 (-15 -2120 ((-3 (-2 (|:| -2189 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1098) |#2|)) (-15 -2121 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1098) (-594 |#2|))) (-15 -2122 ((-3 |#2| "failed") |#2| (-1098))) (-15 -2123 ((-545 |#2|) |#2| (-1098))) (-15 -2124 ((-3 (-2 (|:| -2189 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1098) (-569 |#2|) (-594 (-569 |#2|))))) (-13 (-432) (-795) (-140) (-975 (-516)) (-593 (-516))) (-13 (-27) (-1120) (-402 |#1|))) (T -524))
+((-2124 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1098)) (-5 *6 (-594 (-569 *3))) (-5 *5 (-569 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *7))) (-4 *7 (-13 (-432) (-795) (-140) (-975 (-516)) (-593 (-516)))) (-5 *2 (-2 (|:| -2189 *3) (|:| |coeff| *3))) (-5 *1 (-524 *7 *3)))) (-2123 (*1 *2 *3 *4) (-12 (-5 *4 (-1098)) (-4 *5 (-13 (-432) (-795) (-140) (-975 (-516)) (-593 (-516)))) (-5 *2 (-545 *3)) (-5 *1 (-524 *5 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *5))))) (-2122 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1098)) (-4 *4 (-13 (-432) (-795) (-140) (-975 (-516)) (-593 (-516)))) (-5 *1 (-524 *4 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *4))))) (-2121 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1098)) (-5 *5 (-594 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *6))) (-4 *6 (-13 (-432) (-795) (-140) (-975 (-516)) (-593 (-516)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-524 *6 *3)))) (-2120 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1098)) (-4 *5 (-13 (-432) (-795) (-140) (-975 (-516)) (-593 (-516)))) (-5 *2 (-2 (|:| -2189 *3) (|:| |coeff| *3))) (-5 *1 (-524 *5 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *5))))))
+(-10 -7 (-15 -2120 ((-3 (-2 (|:| -2189 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1098) |#2|)) (-15 -2121 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1098) (-594 |#2|))) (-15 -2122 ((-3 |#2| "failed") |#2| (-1098))) (-15 -2123 ((-545 |#2|) |#2| (-1098))) (-15 -2124 ((-3 (-2 (|:| -2189 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1098) (-569 |#2|) (-594 (-569 |#2|)))))
+((-4245 (((-386 |#1|) |#1|) 18)) (-4011 (((-386 |#1|) |#1|) 33)) (-2126 (((-3 |#1| "failed") |#1|) 44)) (-2125 (((-386 |#1|) |#1|) 51)))
+(((-525 |#1|) (-10 -7 (-15 -4011 ((-386 |#1|) |#1|)) (-15 -4245 ((-386 |#1|) |#1|)) (-15 -2125 ((-386 |#1|) |#1|)) (-15 -2126 ((-3 |#1| "failed") |#1|))) (-515)) (T -525))
+((-2126 (*1 *2 *2) (|partial| -12 (-5 *1 (-525 *2)) (-4 *2 (-515)))) (-2125 (*1 *2 *3) (-12 (-5 *2 (-386 *3)) (-5 *1 (-525 *3)) (-4 *3 (-515)))) (-4245 (*1 *2 *3) (-12 (-5 *2 (-386 *3)) (-5 *1 (-525 *3)) (-4 *3 (-515)))) (-4011 (*1 *2 *3) (-12 (-5 *2 (-386 *3)) (-5 *1 (-525 *3)) (-4 *3 (-515)))))
+(-10 -7 (-15 -4011 ((-386 |#1|) |#1|)) (-15 -4245 ((-386 |#1|) |#1|)) (-15 -2125 ((-386 |#1|) |#1|)) (-15 -2126 ((-3 |#1| "failed") |#1|)))
+((-2127 (($) 9)) (-2130 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-208))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1511 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 35)) (-2678 (((-594 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $) 32)) (-3889 (($ (-2 (|:| -4139 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -2131 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-208))) (|:| |notEvaluated| #6#))) (|:| -1511 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) 29)) (-2129 (($ (-594 (-2 (|:| -4139 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -2131 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-208))) (|:| |notEvaluated| #6#))) (|:| -1511 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) 27)) (-2131 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-208))) (|:| |notEvaluated| #6#))) (|:| -1511 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 39)) (-2250 (((-594 (-2 (|:| -4139 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -2131 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-208))) (|:| |notEvaluated| #6#))) (|:| -1511 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) 37)) (-2128 (((-1185)) 12)))
+(((-526) (-10 -8 (-15 -2127 ($)) (-15 -2128 ((-1185))) (-15 -2678 ((-594 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $)) (-15 -2129 ($ (-594 (-2 (|:| -4139 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -2131 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-208))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1511 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -3889 ($ (-2 (|:| -4139 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -2131 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-208))) (|:| |notEvaluated| #6#))) (|:| -1511 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2130 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-208))) (|:| |notEvaluated| #6#))) (|:| -1511 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2250 ((-594 (-2 (|:| -4139 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -2131 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-208))) (|:| |notEvaluated| #6#))) (|:| -1511 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2131 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-208))) (|:| |notEvaluated| #6#))) (|:| -1511 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (T -526))
+((-2131 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-208))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1511 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))) (-5 *1 (-526)))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-594 (-2 (|:| -4139 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -2131 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-208))) (|:| |notEvaluated| #6#))) (|:| -1511 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-526)))) (-2130 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-208))) (|:| |notEvaluated| #6#))) (|:| -1511 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))) (-5 *1 (-526)))) (-3889 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4139 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -2131 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-208))) (|:| |notEvaluated| #6#))) (|:| -1511 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) (-5 *1 (-526)))) (-2129 (*1 *1 *2) (-12 (-5 *2 (-594 (-2 (|:| -4139 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -2131 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-208))) (|:| |notEvaluated| #6#))) (|:| -1511 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-526)))) (-2678 (*1 *2 *1) (-12 (-5 *2 (-594 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-5 *1 (-526)))) (-2128 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-526)))) (-2127 (*1 *1) (-5 *1 (-526))))
+(-10 -8 (-15 -2127 ($)) (-15 -2128 ((-1185))) (-15 -2678 ((-594 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $)) (-15 -2129 ($ (-594 (-2 (|:| -4139 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -2131 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-208))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1511 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -3889 ($ (-2 (|:| -4139 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -2131 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-208))) (|:| |notEvaluated| #6#))) (|:| -1511 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2130 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-208))) (|:| |notEvaluated| #6#))) (|:| -1511 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2250 ((-594 (-2 (|:| -4139 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -2131 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-208))) (|:| |notEvaluated| #6#))) (|:| -1511 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2131 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1076 (-208))) (|:| |notEvaluated| #6#))) (|:| -1511 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))
+((-3349 (((-1092 (-388 (-1092 |#2|))) |#2| (-569 |#2|) (-569 |#2|) (-1092 |#2|)) 32)) (-2134 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-569 |#2|) (-569 |#2|) (-594 |#2|) (-569 |#2|) |#2| (-388 (-1092 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-569 |#2|) (-569 |#2|) (-594 |#2|) |#2| (-1092 |#2|)) 110)) (-2132 (((-545 |#2|) |#2| (-569 |#2|) (-569 |#2|) (-569 |#2|) |#2| (-388 (-1092 |#2|))) 80) (((-545 |#2|) |#2| (-569 |#2|) (-569 |#2|) |#2| (-1092 |#2|)) 52)) (-2133 (((-3 (-2 (|:| -2189 |#2|) (|:| |coeff| |#2|)) #2="failed") |#2| (-569 |#2|) (-569 |#2|) |#2| (-569 |#2|) |#2| (-388 (-1092 |#2|))) 87) (((-3 (-2 (|:| -2189 |#2|) (|:| |coeff| |#2|)) #2#) |#2| (-569 |#2|) (-569 |#2|) |#2| |#2| (-1092 |#2|)) 109)) (-2135 (((-3 |#2| #3="failed") |#2| |#2| (-569 |#2|) (-569 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1098)) (-569 |#2|) |#2| (-388 (-1092 |#2|))) 105) (((-3 |#2| #3#) |#2| |#2| (-569 |#2|) (-569 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1098)) |#2| (-1092 |#2|)) 111)) (-2136 (((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2071 (-594 |#2|))) |#3| |#2| (-569 |#2|) (-569 |#2|) (-569 |#2|) |#2| (-388 (-1092 |#2|))) 128 (|has| |#3| (-609 |#2|))) (((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2071 (-594 |#2|))) |#3| |#2| (-569 |#2|) (-569 |#2|) |#2| (-1092 |#2|)) 127 (|has| |#3| (-609 |#2|)))) (-3350 ((|#2| (-1092 (-388 (-1092 |#2|))) (-569 |#2|) |#2|) 50)) (-3343 (((-1092 (-388 (-1092 |#2|))) (-1092 |#2|) (-569 |#2|)) 31)))
+(((-527 |#1| |#2| |#3|) (-10 -7 (-15 -2132 ((-545 |#2|) |#2| (-569 |#2|) (-569 |#2|) |#2| (-1092 |#2|))) (-15 -2132 ((-545 |#2|) |#2| (-569 |#2|) (-569 |#2|) (-569 |#2|) |#2| (-388 (-1092 |#2|)))) (-15 -2133 ((-3 (-2 (|:| -2189 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-569 |#2|) (-569 |#2|) |#2| |#2| (-1092 |#2|))) (-15 -2133 ((-3 (-2 (|:| -2189 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-569 |#2|) (-569 |#2|) |#2| (-569 |#2|) |#2| (-388 (-1092 |#2|)))) (-15 -2134 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-569 |#2|) (-569 |#2|) (-594 |#2|) |#2| (-1092 |#2|))) (-15 -2134 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-569 |#2|) (-569 |#2|) (-594 |#2|) (-569 |#2|) |#2| (-388 (-1092 |#2|)))) (-15 -2135 ((-3 |#2| #3="failed") |#2| |#2| (-569 |#2|) (-569 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1098)) |#2| (-1092 |#2|))) (-15 -2135 ((-3 |#2| #3#) |#2| |#2| (-569 |#2|) (-569 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1098)) (-569 |#2|) |#2| (-388 (-1092 |#2|)))) (-15 -3349 ((-1092 (-388 (-1092 |#2|))) |#2| (-569 |#2|) (-569 |#2|) (-1092 |#2|))) (-15 -3350 (|#2| (-1092 (-388 (-1092 |#2|))) (-569 |#2|) |#2|)) (-15 -3343 ((-1092 (-388 (-1092 |#2|))) (-1092 |#2|) (-569 |#2|))) (IF (|has| |#3| (-609 |#2|)) (PROGN (-15 -2136 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2071 (-594 |#2|))) |#3| |#2| (-569 |#2|) (-569 |#2|) |#2| (-1092 |#2|))) (-15 -2136 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2071 (-594 |#2|))) |#3| |#2| (-569 |#2|) (-569 |#2|) (-569 |#2|) |#2| (-388 (-1092 |#2|))))) |%noBranch|)) (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516))) (-13 (-402 |#1|) (-27) (-1120)) (-1027)) (T -527))
+((-2136 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-569 *4)) (-5 *6 (-388 (-1092 *4))) (-4 *4 (-13 (-402 *7) (-27) (-1120))) (-4 *7 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2071 (-594 *4)))) (-5 *1 (-527 *7 *4 *3)) (-4 *3 (-609 *4)) (-4 *3 (-1027)))) (-2136 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-569 *4)) (-5 *6 (-1092 *4)) (-4 *4 (-13 (-402 *7) (-27) (-1120))) (-4 *7 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2071 (-594 *4)))) (-5 *1 (-527 *7 *4 *3)) (-4 *3 (-609 *4)) (-4 *3 (-1027)))) (-3343 (*1 *2 *3 *4) (-12 (-5 *4 (-569 *6)) (-4 *6 (-13 (-402 *5) (-27) (-1120))) (-4 *5 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516)))) (-5 *2 (-1092 (-388 (-1092 *6)))) (-5 *1 (-527 *5 *6 *7)) (-5 *3 (-1092 *6)) (-4 *7 (-1027)))) (-3350 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1092 (-388 (-1092 *2)))) (-5 *4 (-569 *2)) (-4 *2 (-13 (-402 *5) (-27) (-1120))) (-4 *5 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516)))) (-5 *1 (-527 *5 *2 *6)) (-4 *6 (-1027)))) (-3349 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-569 *3)) (-4 *3 (-13 (-402 *6) (-27) (-1120))) (-4 *6 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516)))) (-5 *2 (-1092 (-388 (-1092 *3)))) (-5 *1 (-527 *6 *3 *7)) (-5 *5 (-1092 *3)) (-4 *7 (-1027)))) (-2135 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-569 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1098))) (-5 *5 (-388 (-1092 *2))) (-4 *2 (-13 (-402 *6) (-27) (-1120))) (-4 *6 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516)))) (-5 *1 (-527 *6 *2 *7)) (-4 *7 (-1027)))) (-2135 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-569 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1098))) (-5 *5 (-1092 *2)) (-4 *2 (-13 (-402 *6) (-27) (-1120))) (-4 *6 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516)))) (-5 *1 (-527 *6 *2 *7)) (-4 *7 (-1027)))) (-2134 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-569 *3)) (-5 *5 (-594 *3)) (-5 *6 (-388 (-1092 *3))) (-4 *3 (-13 (-402 *7) (-27) (-1120))) (-4 *7 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *7 *3 *8)) (-4 *8 (-1027)))) (-2134 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-569 *3)) (-5 *5 (-594 *3)) (-5 *6 (-1092 *3)) (-4 *3 (-13 (-402 *7) (-27) (-1120))) (-4 *7 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *7 *3 *8)) (-4 *8 (-1027)))) (-2133 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-569 *3)) (-5 *5 (-388 (-1092 *3))) (-4 *3 (-13 (-402 *6) (-27) (-1120))) (-4 *6 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516)))) (-5 *2 (-2 (|:| -2189 *3) (|:| |coeff| *3))) (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1027)))) (-2133 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-569 *3)) (-5 *5 (-1092 *3)) (-4 *3 (-13 (-402 *6) (-27) (-1120))) (-4 *6 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516)))) (-5 *2 (-2 (|:| -2189 *3) (|:| |coeff| *3))) (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1027)))) (-2132 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-569 *3)) (-5 *5 (-388 (-1092 *3))) (-4 *3 (-13 (-402 *6) (-27) (-1120))) (-4 *6 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516)))) (-5 *2 (-545 *3)) (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1027)))) (-2132 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-569 *3)) (-5 *5 (-1092 *3)) (-4 *3 (-13 (-402 *6) (-27) (-1120))) (-4 *6 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516)))) (-5 *2 (-545 *3)) (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1027)))))
+(-10 -7 (-15 -2132 ((-545 |#2|) |#2| (-569 |#2|) (-569 |#2|) |#2| (-1092 |#2|))) (-15 -2132 ((-545 |#2|) |#2| (-569 |#2|) (-569 |#2|) (-569 |#2|) |#2| (-388 (-1092 |#2|)))) (-15 -2133 ((-3 (-2 (|:| -2189 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-569 |#2|) (-569 |#2|) |#2| |#2| (-1092 |#2|))) (-15 -2133 ((-3 (-2 (|:| -2189 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-569 |#2|) (-569 |#2|) |#2| (-569 |#2|) |#2| (-388 (-1092 |#2|)))) (-15 -2134 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-569 |#2|) (-569 |#2|) (-594 |#2|) |#2| (-1092 |#2|))) (-15 -2134 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-569 |#2|) (-569 |#2|) (-594 |#2|) (-569 |#2|) |#2| (-388 (-1092 |#2|)))) (-15 -2135 ((-3 |#2| #3="failed") |#2| |#2| (-569 |#2|) (-569 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1098)) |#2| (-1092 |#2|))) (-15 -2135 ((-3 |#2| #3#) |#2| |#2| (-569 |#2|) (-569 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1098)) (-569 |#2|) |#2| (-388 (-1092 |#2|)))) (-15 -3349 ((-1092 (-388 (-1092 |#2|))) |#2| (-569 |#2|) (-569 |#2|) (-1092 |#2|))) (-15 -3350 (|#2| (-1092 (-388 (-1092 |#2|))) (-569 |#2|) |#2|)) (-15 -3343 ((-1092 (-388 (-1092 |#2|))) (-1092 |#2|) (-569 |#2|))) (IF (|has| |#3| (-609 |#2|)) (PROGN (-15 -2136 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2071 (-594 |#2|))) |#3| |#2| (-569 |#2|) (-569 |#2|) |#2| (-1092 |#2|))) (-15 -2136 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2071 (-594 |#2|))) |#3| |#2| (-569 |#2|) (-569 |#2|) (-569 |#2|) |#2| (-388 (-1092 |#2|))))) |%noBranch|))
+((-2146 (((-516) (-516) (-719)) 66)) (-2145 (((-516) (-516)) 65)) (-2144 (((-516) (-516)) 64)) (-2143 (((-516) (-516)) 69)) (-3069 (((-516) (-516) (-516)) 49)) (-2142 (((-516) (-516) (-516)) 46)) (-2141 (((-388 (-516)) (-516)) 20)) (-2140 (((-516) (-516)) 21)) (-2139 (((-516) (-516)) 58)) (-3066 (((-516) (-516)) 32)) (-2138 (((-594 (-516)) (-516)) 63)) (-2137 (((-516) (-516) (-516) (-516) (-516)) 44)) (-3062 (((-388 (-516)) (-516)) 41)))
+(((-528) (-10 -7 (-15 -3062 ((-388 (-516)) (-516))) (-15 -2137 ((-516) (-516) (-516) (-516) (-516))) (-15 -2138 ((-594 (-516)) (-516))) (-15 -3066 ((-516) (-516))) (-15 -2139 ((-516) (-516))) (-15 -2140 ((-516) (-516))) (-15 -2141 ((-388 (-516)) (-516))) (-15 -2142 ((-516) (-516) (-516))) (-15 -3069 ((-516) (-516) (-516))) (-15 -2143 ((-516) (-516))) (-15 -2144 ((-516) (-516))) (-15 -2145 ((-516) (-516))) (-15 -2146 ((-516) (-516) (-719))))) (T -528))
+((-2146 (*1 *2 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-719)) (-5 *1 (-528)))) (-2145 (*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-528)))) (-2144 (*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-528)))) (-2143 (*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-528)))) (-3069 (*1 *2 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-528)))) (-2142 (*1 *2 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-528)))) (-2141 (*1 *2 *3) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-528)) (-5 *3 (-516)))) (-2140 (*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-528)))) (-2139 (*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-528)))) (-3066 (*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-528)))) (-2138 (*1 *2 *3) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-528)) (-5 *3 (-516)))) (-2137 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-528)))) (-3062 (*1 *2 *3) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-528)) (-5 *3 (-516)))))
+(-10 -7 (-15 -3062 ((-388 (-516)) (-516))) (-15 -2137 ((-516) (-516) (-516) (-516) (-516))) (-15 -2138 ((-594 (-516)) (-516))) (-15 -3066 ((-516) (-516))) (-15 -2139 ((-516) (-516))) (-15 -2140 ((-516) (-516))) (-15 -2141 ((-388 (-516)) (-516))) (-15 -2142 ((-516) (-516) (-516))) (-15 -3069 ((-516) (-516) (-516))) (-15 -2143 ((-516) (-516))) (-15 -2144 ((-516) (-516))) (-15 -2145 ((-516) (-516))) (-15 -2146 ((-516) (-516) (-719))))
+((-2147 (((-2 (|:| |answer| |#4|) (|:| -2188 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
+(((-529 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2147 ((-2 (|:| |answer| |#4|) (|:| -2188 |#4|)) |#4| (-1 |#2| |#2|)))) (-344) (-1155 |#1|) (-1155 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -529))
+((-2147 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-344)) (-4 *7 (-1155 (-388 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2188 *3))) (-5 *1 (-529 *5 *6 *7 *3)) (-4 *3 (-323 *5 *6 *7)))))
+(-10 -7 (-15 -2147 ((-2 (|:| |answer| |#4|) (|:| -2188 |#4|)) |#4| (-1 |#2| |#2|))))
+((-2147 (((-2 (|:| |answer| (-388 |#2|)) (|:| -2188 (-388 |#2|)) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|)) 18)))
+(((-530 |#1| |#2|) (-10 -7 (-15 -2147 ((-2 (|:| |answer| (-388 |#2|)) (|:| -2188 (-388 |#2|)) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|)))) (-344) (-1155 |#1|)) (T -530))
+((-2147 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |answer| (-388 *6)) (|:| -2188 (-388 *6)) (|:| |specpart| (-388 *6)) (|:| |polypart| *6))) (-5 *1 (-530 *5 *6)) (-5 *3 (-388 *6)))))
+(-10 -7 (-15 -2147 ((-2 (|:| |answer| (-388 |#2|)) (|:| -2188 (-388 |#2|)) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|))))
+((-2931 (((-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081))) (|:| |extra| (-973))) (-717) (-995)) 108) (((-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081))) (|:| |extra| (-973))) (-717)) 110)) (-4091 (((-3 (-973) "failed") (-295 (-359)) (-1019 (-787 (-359))) (-1098)) 172) (((-3 (-973) "failed") (-295 (-359)) (-1019 (-787 (-359))) (-1081)) 171) (((-973) (-295 (-359)) (-594 (-1017 (-787 (-359)))) (-359) (-359) (-995)) 176) (((-973) (-295 (-359)) (-594 (-1017 (-787 (-359)))) (-359) (-359)) 177) (((-973) (-295 (-359)) (-594 (-1017 (-787 (-359)))) (-359)) 178) (((-973) (-295 (-359)) (-594 (-1017 (-787 (-359))))) 179) (((-973) (-295 (-359)) (-1017 (-787 (-359)))) 167) (((-973) (-295 (-359)) (-1017 (-787 (-359))) (-359)) 166) (((-973) (-295 (-359)) (-1017 (-787 (-359))) (-359) (-359)) 162) (((-973) (-717)) 155) (((-973) (-295 (-359)) (-1017 (-787 (-359))) (-359) (-359) (-995)) 161)))
+(((-531) (-10 -7 (-15 -4091 ((-973) (-295 (-359)) (-1017 (-787 (-359))) (-359) (-359) (-995))) (-15 -4091 ((-973) (-717))) (-15 -4091 ((-973) (-295 (-359)) (-1017 (-787 (-359))) (-359) (-359))) (-15 -4091 ((-973) (-295 (-359)) (-1017 (-787 (-359))) (-359))) (-15 -4091 ((-973) (-295 (-359)) (-1017 (-787 (-359))))) (-15 -4091 ((-973) (-295 (-359)) (-594 (-1017 (-787 (-359)))))) (-15 -4091 ((-973) (-295 (-359)) (-594 (-1017 (-787 (-359)))) (-359))) (-15 -4091 ((-973) (-295 (-359)) (-594 (-1017 (-787 (-359)))) (-359) (-359))) (-15 -4091 ((-973) (-295 (-359)) (-594 (-1017 (-787 (-359)))) (-359) (-359) (-995))) (-15 -2931 ((-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081))) (|:| |extra| (-973))) (-717))) (-15 -2931 ((-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081))) (|:| |extra| (-973))) (-717) (-995))) (-15 -4091 ((-3 (-973) "failed") (-295 (-359)) (-1019 (-787 (-359))) (-1081))) (-15 -4091 ((-3 (-973) "failed") (-295 (-359)) (-1019 (-787 (-359))) (-1098))))) (T -531))
+((-4091 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-295 (-359))) (-5 *4 (-1019 (-787 (-359)))) (-5 *5 (-1098)) (-5 *2 (-973)) (-5 *1 (-531)))) (-4091 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-295 (-359))) (-5 *4 (-1019 (-787 (-359)))) (-5 *5 (-1081)) (-5 *2 (-973)) (-5 *1 (-531)))) (-2931 (*1 *2 *3 *4) (-12 (-5 *3 (-717)) (-5 *4 (-995)) (-5 *2 (-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081))) (|:| |extra| (-973)))) (-5 *1 (-531)))) (-2931 (*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081))) (|:| |extra| (-973)))) (-5 *1 (-531)))) (-4091 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-295 (-359))) (-5 *4 (-594 (-1017 (-787 (-359))))) (-5 *5 (-359)) (-5 *6 (-995)) (-5 *2 (-973)) (-5 *1 (-531)))) (-4091 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-295 (-359))) (-5 *4 (-594 (-1017 (-787 (-359))))) (-5 *5 (-359)) (-5 *2 (-973)) (-5 *1 (-531)))) (-4091 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-295 (-359))) (-5 *4 (-594 (-1017 (-787 (-359))))) (-5 *5 (-359)) (-5 *2 (-973)) (-5 *1 (-531)))) (-4091 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-359))) (-5 *4 (-594 (-1017 (-787 (-359))))) (-5 *2 (-973)) (-5 *1 (-531)))) (-4091 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-359))) (-5 *4 (-1017 (-787 (-359)))) (-5 *2 (-973)) (-5 *1 (-531)))) (-4091 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-295 (-359))) (-5 *4 (-1017 (-787 (-359)))) (-5 *5 (-359)) (-5 *2 (-973)) (-5 *1 (-531)))) (-4091 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-295 (-359))) (-5 *4 (-1017 (-787 (-359)))) (-5 *5 (-359)) (-5 *2 (-973)) (-5 *1 (-531)))) (-4091 (*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-973)) (-5 *1 (-531)))) (-4091 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-295 (-359))) (-5 *4 (-1017 (-787 (-359)))) (-5 *5 (-359)) (-5 *6 (-995)) (-5 *2 (-973)) (-5 *1 (-531)))))
+(-10 -7 (-15 -4091 ((-973) (-295 (-359)) (-1017 (-787 (-359))) (-359) (-359) (-995))) (-15 -4091 ((-973) (-717))) (-15 -4091 ((-973) (-295 (-359)) (-1017 (-787 (-359))) (-359) (-359))) (-15 -4091 ((-973) (-295 (-359)) (-1017 (-787 (-359))) (-359))) (-15 -4091 ((-973) (-295 (-359)) (-1017 (-787 (-359))))) (-15 -4091 ((-973) (-295 (-359)) (-594 (-1017 (-787 (-359)))))) (-15 -4091 ((-973) (-295 (-359)) (-594 (-1017 (-787 (-359)))) (-359))) (-15 -4091 ((-973) (-295 (-359)) (-594 (-1017 (-787 (-359)))) (-359) (-359))) (-15 -4091 ((-973) (-295 (-359)) (-594 (-1017 (-787 (-359)))) (-359) (-359) (-995))) (-15 -2931 ((-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081))) (|:| |extra| (-973))) (-717))) (-15 -2931 ((-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081))) (|:| |extra| (-973))) (-717) (-995))) (-15 -4091 ((-3 (-973) "failed") (-295 (-359)) (-1019 (-787 (-359))) (-1081))) (-15 -4091 ((-3 (-973) "failed") (-295 (-359)) (-1019 (-787 (-359))) (-1098))))
+((-2150 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-569 |#2|) (-569 |#2|) (-594 |#2|)) 184)) (-2148 (((-545 |#2|) |#2| (-569 |#2|) (-569 |#2|)) 98)) (-2149 (((-3 (-2 (|:| -2189 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-569 |#2|) (-569 |#2|) |#2|) 180)) (-2151 (((-3 |#2| #1="failed") |#2| |#2| |#2| (-569 |#2|) (-569 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1098))) 189)) (-2152 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2071 (-594 |#2|))) |#3| |#2| (-569 |#2|) (-569 |#2|) (-1098)) 197 (|has| |#3| (-609 |#2|)))))
+(((-532 |#1| |#2| |#3|) (-10 -7 (-15 -2148 ((-545 |#2|) |#2| (-569 |#2|) (-569 |#2|))) (-15 -2149 ((-3 (-2 (|:| -2189 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-569 |#2|) (-569 |#2|) |#2|)) (-15 -2150 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-569 |#2|) (-569 |#2|) (-594 |#2|))) (-15 -2151 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-569 |#2|) (-569 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1098)))) (IF (|has| |#3| (-609 |#2|)) (-15 -2152 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2071 (-594 |#2|))) |#3| |#2| (-569 |#2|) (-569 |#2|) (-1098))) |%noBranch|)) (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516))) (-13 (-402 |#1|) (-27) (-1120)) (-1027)) (T -532))
+((-2152 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-569 *4)) (-5 *6 (-1098)) (-4 *4 (-13 (-402 *7) (-27) (-1120))) (-4 *7 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2071 (-594 *4)))) (-5 *1 (-532 *7 *4 *3)) (-4 *3 (-609 *4)) (-4 *3 (-1027)))) (-2151 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-569 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1098))) (-4 *2 (-13 (-402 *5) (-27) (-1120))) (-4 *5 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516)))) (-5 *1 (-532 *5 *2 *6)) (-4 *6 (-1027)))) (-2150 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-569 *3)) (-5 *5 (-594 *3)) (-4 *3 (-13 (-402 *6) (-27) (-1120))) (-4 *6 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-532 *6 *3 *7)) (-4 *7 (-1027)))) (-2149 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-569 *3)) (-4 *3 (-13 (-402 *5) (-27) (-1120))) (-4 *5 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516)))) (-5 *2 (-2 (|:| -2189 *3) (|:| |coeff| *3))) (-5 *1 (-532 *5 *3 *6)) (-4 *6 (-1027)))) (-2148 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-569 *3)) (-4 *3 (-13 (-402 *5) (-27) (-1120))) (-4 *5 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516)))) (-5 *2 (-545 *3)) (-5 *1 (-532 *5 *3 *6)) (-4 *6 (-1027)))))
+(-10 -7 (-15 -2148 ((-545 |#2|) |#2| (-569 |#2|) (-569 |#2|))) (-15 -2149 ((-3 (-2 (|:| -2189 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-569 |#2|) (-569 |#2|) |#2|)) (-15 -2150 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-569 |#2|) (-569 |#2|) (-594 |#2|))) (-15 -2151 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-569 |#2|) (-569 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1098)))) (IF (|has| |#3| (-609 |#2|)) (-15 -2152 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2071 (-594 |#2|))) |#3| |#2| (-569 |#2|) (-569 |#2|) (-1098))) |%noBranch|))
+((-2153 (((-2 (|:| -2353 |#2|) (|:| |nconst| |#2|)) |#2| (-1098)) 64)) (-2155 (((-3 |#2| "failed") |#2| (-1098) (-787 |#2|) (-787 |#2|)) 164 (-12 (|has| |#2| (-1062)) (|has| |#1| (-572 (-831 (-516)))) (|has| |#1| (-827 (-516))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1098)) 147 (-12 (|has| |#2| (-584)) (|has| |#1| (-572 (-831 (-516)))) (|has| |#1| (-827 (-516)))))) (-2154 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1098)) 148 (-12 (|has| |#2| (-584)) (|has| |#1| (-572 (-831 (-516)))) (|has| |#1| (-827 (-516)))))))
+(((-533 |#1| |#2|) (-10 -7 (-15 -2153 ((-2 (|:| -2353 |#2|) (|:| |nconst| |#2|)) |#2| (-1098))) (IF (|has| |#1| (-572 (-831 (-516)))) (IF (|has| |#1| (-827 (-516))) (PROGN (IF (|has| |#2| (-584)) (PROGN (-15 -2154 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1098))) (-15 -2155 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1098)))) |%noBranch|) (IF (|has| |#2| (-1062)) (-15 -2155 ((-3 |#2| "failed") |#2| (-1098) (-787 |#2|) (-787 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-795) (-975 (-516)) (-432) (-593 (-516))) (-13 (-27) (-1120) (-402 |#1|))) (T -533))
+((-2155 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1098)) (-5 *4 (-787 *2)) (-4 *2 (-1062)) (-4 *2 (-13 (-27) (-1120) (-402 *5))) (-4 *5 (-572 (-831 (-516)))) (-4 *5 (-827 (-516))) (-4 *5 (-13 (-795) (-975 (-516)) (-432) (-593 (-516)))) (-5 *1 (-533 *5 *2)))) (-2155 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1098)) (-4 *5 (-572 (-831 (-516)))) (-4 *5 (-827 (-516))) (-4 *5 (-13 (-795) (-975 (-516)) (-432) (-593 (-516)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-533 *5 *3)) (-4 *3 (-584)) (-4 *3 (-13 (-27) (-1120) (-402 *5))))) (-2154 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1098)) (-4 *5 (-572 (-831 (-516)))) (-4 *5 (-827 (-516))) (-4 *5 (-13 (-795) (-975 (-516)) (-432) (-593 (-516)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-533 *5 *3)) (-4 *3 (-584)) (-4 *3 (-13 (-27) (-1120) (-402 *5))))) (-2153 (*1 *2 *3 *4) (-12 (-5 *4 (-1098)) (-4 *5 (-13 (-795) (-975 (-516)) (-432) (-593 (-516)))) (-5 *2 (-2 (|:| -2353 *3) (|:| |nconst| *3))) (-5 *1 (-533 *5 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *5))))))
+(-10 -7 (-15 -2153 ((-2 (|:| -2353 |#2|) (|:| |nconst| |#2|)) |#2| (-1098))) (IF (|has| |#1| (-572 (-831 (-516)))) (IF (|has| |#1| (-827 (-516))) (PROGN (IF (|has| |#2| (-584)) (PROGN (-15 -2154 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1098))) (-15 -2155 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1098)))) |%noBranch|) (IF (|has| |#2| (-1062)) (-15 -2155 ((-3 |#2| "failed") |#2| (-1098) (-787 |#2|) (-787 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2158 (((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-594 (-388 |#2|))) 41)) (-4091 (((-545 (-388 |#2|)) (-388 |#2|)) 28)) (-2156 (((-3 (-388 |#2|) "failed") (-388 |#2|)) 17)) (-2157 (((-3 (-2 (|:| -2189 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-388 |#2|)) 48)))
+(((-534 |#1| |#2|) (-10 -7 (-15 -4091 ((-545 (-388 |#2|)) (-388 |#2|))) (-15 -2156 ((-3 (-388 |#2|) "failed") (-388 |#2|))) (-15 -2157 ((-3 (-2 (|:| -2189 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-388 |#2|))) (-15 -2158 ((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-594 (-388 |#2|))))) (-13 (-344) (-140) (-975 (-516))) (-1155 |#1|)) (T -534))
+((-2158 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-594 (-388 *6))) (-5 *3 (-388 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-516)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-534 *5 *6)))) (-2157 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-344) (-140) (-975 (-516)))) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| -2189 (-388 *5)) (|:| |coeff| (-388 *5)))) (-5 *1 (-534 *4 *5)) (-5 *3 (-388 *5)))) (-2156 (*1 *2 *2) (|partial| -12 (-5 *2 (-388 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-13 (-344) (-140) (-975 (-516)))) (-5 *1 (-534 *3 *4)))) (-4091 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-975 (-516)))) (-4 *5 (-1155 *4)) (-5 *2 (-545 (-388 *5))) (-5 *1 (-534 *4 *5)) (-5 *3 (-388 *5)))))
+(-10 -7 (-15 -4091 ((-545 (-388 |#2|)) (-388 |#2|))) (-15 -2156 ((-3 (-388 |#2|) "failed") (-388 |#2|))) (-15 -2157 ((-3 (-2 (|:| -2189 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-388 |#2|))) (-15 -2158 ((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-594 (-388 |#2|)))))
+((-2159 (((-3 (-516) "failed") |#1|) 14)) (-3530 (((-110) |#1|) 13)) (-3526 (((-516) |#1|) 9)))
+(((-535 |#1|) (-10 -7 (-15 -3526 ((-516) |#1|)) (-15 -3530 ((-110) |#1|)) (-15 -2159 ((-3 (-516) "failed") |#1|))) (-975 (-516))) (T -535))
+((-2159 (*1 *2 *3) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-535 *3)) (-4 *3 (-975 *2)))) (-3530 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-535 *3)) (-4 *3 (-975 (-516))))) (-3526 (*1 *2 *3) (-12 (-5 *2 (-516)) (-5 *1 (-535 *3)) (-4 *3 (-975 *2)))))
+(-10 -7 (-15 -3526 ((-516) |#1|)) (-15 -3530 ((-110) |#1|)) (-15 -2159 ((-3 (-516) "failed") |#1|)))
+((-2162 (((-3 (-2 (|:| |mainpart| (-388 (-887 |#1|))) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| (-388 (-887 |#1|))) (|:| |logand| (-388 (-887 |#1|))))))) "failed") (-388 (-887 |#1|)) (-1098) (-594 (-388 (-887 |#1|)))) 48)) (-2160 (((-545 (-388 (-887 |#1|))) (-388 (-887 |#1|)) (-1098)) 28)) (-2161 (((-3 (-388 (-887 |#1|)) "failed") (-388 (-887 |#1|)) (-1098)) 23)) (-2163 (((-3 (-2 (|:| -2189 (-388 (-887 |#1|))) (|:| |coeff| (-388 (-887 |#1|)))) "failed") (-388 (-887 |#1|)) (-1098) (-388 (-887 |#1|))) 35)))
+(((-536 |#1|) (-10 -7 (-15 -2160 ((-545 (-388 (-887 |#1|))) (-388 (-887 |#1|)) (-1098))) (-15 -2161 ((-3 (-388 (-887 |#1|)) "failed") (-388 (-887 |#1|)) (-1098))) (-15 -2162 ((-3 (-2 (|:| |mainpart| (-388 (-887 |#1|))) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| (-388 (-887 |#1|))) (|:| |logand| (-388 (-887 |#1|))))))) "failed") (-388 (-887 |#1|)) (-1098) (-594 (-388 (-887 |#1|))))) (-15 -2163 ((-3 (-2 (|:| -2189 (-388 (-887 |#1|))) (|:| |coeff| (-388 (-887 |#1|)))) "failed") (-388 (-887 |#1|)) (-1098) (-388 (-887 |#1|))))) (-13 (-523) (-975 (-516)) (-140))) (T -536))
+((-2163 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1098)) (-4 *5 (-13 (-523) (-975 (-516)) (-140))) (-5 *2 (-2 (|:| -2189 (-388 (-887 *5))) (|:| |coeff| (-388 (-887 *5))))) (-5 *1 (-536 *5)) (-5 *3 (-388 (-887 *5))))) (-2162 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1098)) (-5 *5 (-594 (-388 (-887 *6)))) (-5 *3 (-388 (-887 *6))) (-4 *6 (-13 (-523) (-975 (-516)) (-140))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-536 *6)))) (-2161 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-388 (-887 *4))) (-5 *3 (-1098)) (-4 *4 (-13 (-523) (-975 (-516)) (-140))) (-5 *1 (-536 *4)))) (-2160 (*1 *2 *3 *4) (-12 (-5 *4 (-1098)) (-4 *5 (-13 (-523) (-975 (-516)) (-140))) (-5 *2 (-545 (-388 (-887 *5)))) (-5 *1 (-536 *5)) (-5 *3 (-388 (-887 *5))))))
+(-10 -7 (-15 -2160 ((-545 (-388 (-887 |#1|))) (-388 (-887 |#1|)) (-1098))) (-15 -2161 ((-3 (-388 (-887 |#1|)) "failed") (-388 (-887 |#1|)) (-1098))) (-15 -2162 ((-3 (-2 (|:| |mainpart| (-388 (-887 |#1|))) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| (-388 (-887 |#1|))) (|:| |logand| (-388 (-887 |#1|))))))) "failed") (-388 (-887 |#1|)) (-1098) (-594 (-388 (-887 |#1|))))) (-15 -2163 ((-3 (-2 (|:| -2189 (-388 (-887 |#1|))) (|:| |coeff| (-388 (-887 |#1|)))) "failed") (-388 (-887 |#1|)) (-1098) (-388 (-887 |#1|)))))
+((-2828 (((-110) $ $) 59)) (-3462 (((-110) $) 36)) (-2864 ((|#1| $) 30)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) 63)) (-3766 (($ $) 123)) (-3921 (($ $) 103)) (-2667 ((|#1| $) 28)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3301 (($ $) NIL)) (-3764 (($ $) 125)) (-3920 (($ $) 99)) (-3768 (($ $) 127)) (-3919 (($ $) 107)) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-516) "failed") $) 78)) (-3431 (((-516) $) 80)) (-3741 (((-3 $ "failed") $) 62)) (-2114 (($ |#1| |#1|) 26)) (-3460 (((-110) $) 33)) (-3909 (($) 89)) (-2436 (((-110) $) 43)) (-3275 (($ $ (-516)) NIL)) (-3461 (((-110) $) 34)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-4218 (($ $) 91)) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2115 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-388 (-516))) 77)) (-2113 ((|#1| $) 27)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) 65) (($ (-594 $)) NIL)) (-3740 (((-3 $ "failed") $ $) 64)) (-4219 (($ $) 93)) (-3769 (($ $) 131)) (-3918 (($ $) 105)) (-3767 (($ $) 133)) (-3917 (($ $) 109)) (-3765 (($ $) 129)) (-3916 (($ $) 101)) (-2112 (((-110) $ |#1|) 31)) (-4233 (((-805) $) 85) (($ (-516)) 67) (($ $) NIL) (($ (-516)) 67)) (-3385 (((-719)) 87)) (-3772 (($ $) 145)) (-3760 (($ $) 115)) (-2117 (((-110) $ $) NIL)) (-3770 (($ $) 143)) (-3758 (($ $) 111)) (-3774 (($ $) 141)) (-3762 (($ $) 121)) (-3775 (($ $) 139)) (-3763 (($ $) 119)) (-3773 (($ $) 137)) (-3761 (($ $) 117)) (-3771 (($ $) 135)) (-3759 (($ $) 113)) (-3581 (($ $ (-860)) 55) (($ $ (-719)) NIL)) (-2920 (($) 21 T CONST)) (-2927 (($) 10 T CONST)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 37)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 35)) (-4116 (($ $) 41) (($ $ $) 42)) (-4118 (($ $ $) 40)) (** (($ $ (-860)) 54) (($ $ (-719)) NIL) (($ $ $) 95) (($ $ (-388 (-516))) 147)) (* (($ (-860) $) 51) (($ (-719) $) NIL) (($ (-516) $) 50) (($ $ $) 48)))
+(((-537 |#1|) (-521 |#1|) (-13 (-385) (-1120))) (T -537))
+NIL
+(-521 |#1|)
+((-2967 (((-3 (-594 (-1092 (-516))) "failed") (-594 (-1092 (-516))) (-1092 (-516))) 24)))
+(((-538) (-10 -7 (-15 -2967 ((-3 (-594 (-1092 (-516))) "failed") (-594 (-1092 (-516))) (-1092 (-516)))))) (T -538))
+((-2967 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-594 (-1092 (-516)))) (-5 *3 (-1092 (-516))) (-5 *1 (-538)))))
+(-10 -7 (-15 -2967 ((-3 (-594 (-1092 (-516))) "failed") (-594 (-1092 (-516))) (-1092 (-516)))))
+((-2164 (((-594 (-569 |#2|)) (-594 (-569 |#2|)) (-1098)) 19)) (-2167 (((-594 (-569 |#2|)) (-594 |#2|) (-1098)) 23)) (-3505 (((-594 (-569 |#2|)) (-594 (-569 |#2|)) (-594 (-569 |#2|))) 11)) (-2168 ((|#2| |#2| (-1098)) 54 (|has| |#1| (-523)))) (-2169 ((|#2| |#2| (-1098)) 78 (-12 (|has| |#2| (-266)) (|has| |#1| (-432))))) (-2166 (((-569 |#2|) (-569 |#2|) (-594 (-569 |#2|)) (-1098)) 25)) (-2165 (((-569 |#2|) (-594 (-569 |#2|))) 24)) (-2170 (((-545 |#2|) |#2| (-1098) (-1 (-545 |#2|) |#2| (-1098)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1098))) 103 (-12 (|has| |#2| (-266)) (|has| |#2| (-584)) (|has| |#2| (-975 (-1098))) (|has| |#1| (-572 (-831 (-516)))) (|has| |#1| (-432)) (|has| |#1| (-827 (-516)))))))
+(((-539 |#1| |#2|) (-10 -7 (-15 -2164 ((-594 (-569 |#2|)) (-594 (-569 |#2|)) (-1098))) (-15 -2165 ((-569 |#2|) (-594 (-569 |#2|)))) (-15 -2166 ((-569 |#2|) (-569 |#2|) (-594 (-569 |#2|)) (-1098))) (-15 -3505 ((-594 (-569 |#2|)) (-594 (-569 |#2|)) (-594 (-569 |#2|)))) (-15 -2167 ((-594 (-569 |#2|)) (-594 |#2|) (-1098))) (IF (|has| |#1| (-523)) (-15 -2168 (|#2| |#2| (-1098))) |%noBranch|) (IF (|has| |#1| (-432)) (IF (|has| |#2| (-266)) (PROGN (-15 -2169 (|#2| |#2| (-1098))) (IF (|has| |#1| (-572 (-831 (-516)))) (IF (|has| |#1| (-827 (-516))) (IF (|has| |#2| (-584)) (IF (|has| |#2| (-975 (-1098))) (-15 -2170 ((-545 |#2|) |#2| (-1098) (-1 (-545 |#2|) |#2| (-1098)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1098)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-795) (-402 |#1|)) (T -539))
+((-2170 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-545 *3) *3 (-1098))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1098))) (-4 *3 (-266)) (-4 *3 (-584)) (-4 *3 (-975 *4)) (-4 *3 (-402 *7)) (-5 *4 (-1098)) (-4 *7 (-572 (-831 (-516)))) (-4 *7 (-432)) (-4 *7 (-827 (-516))) (-4 *7 (-795)) (-5 *2 (-545 *3)) (-5 *1 (-539 *7 *3)))) (-2169 (*1 *2 *2 *3) (-12 (-5 *3 (-1098)) (-4 *4 (-432)) (-4 *4 (-795)) (-5 *1 (-539 *4 *2)) (-4 *2 (-266)) (-4 *2 (-402 *4)))) (-2168 (*1 *2 *2 *3) (-12 (-5 *3 (-1098)) (-4 *4 (-523)) (-4 *4 (-795)) (-5 *1 (-539 *4 *2)) (-4 *2 (-402 *4)))) (-2167 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *6)) (-5 *4 (-1098)) (-4 *6 (-402 *5)) (-4 *5 (-795)) (-5 *2 (-594 (-569 *6))) (-5 *1 (-539 *5 *6)))) (-3505 (*1 *2 *2 *2) (-12 (-5 *2 (-594 (-569 *4))) (-4 *4 (-402 *3)) (-4 *3 (-795)) (-5 *1 (-539 *3 *4)))) (-2166 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-594 (-569 *6))) (-5 *4 (-1098)) (-5 *2 (-569 *6)) (-4 *6 (-402 *5)) (-4 *5 (-795)) (-5 *1 (-539 *5 *6)))) (-2165 (*1 *2 *3) (-12 (-5 *3 (-594 (-569 *5))) (-4 *4 (-795)) (-5 *2 (-569 *5)) (-5 *1 (-539 *4 *5)) (-4 *5 (-402 *4)))) (-2164 (*1 *2 *2 *3) (-12 (-5 *2 (-594 (-569 *5))) (-5 *3 (-1098)) (-4 *5 (-402 *4)) (-4 *4 (-795)) (-5 *1 (-539 *4 *5)))))
+(-10 -7 (-15 -2164 ((-594 (-569 |#2|)) (-594 (-569 |#2|)) (-1098))) (-15 -2165 ((-569 |#2|) (-594 (-569 |#2|)))) (-15 -2166 ((-569 |#2|) (-569 |#2|) (-594 (-569 |#2|)) (-1098))) (-15 -3505 ((-594 (-569 |#2|)) (-594 (-569 |#2|)) (-594 (-569 |#2|)))) (-15 -2167 ((-594 (-569 |#2|)) (-594 |#2|) (-1098))) (IF (|has| |#1| (-523)) (-15 -2168 (|#2| |#2| (-1098))) |%noBranch|) (IF (|has| |#1| (-432)) (IF (|has| |#2| (-266)) (PROGN (-15 -2169 (|#2| |#2| (-1098))) (IF (|has| |#1| (-572 (-831 (-516)))) (IF (|has| |#1| (-827 (-516))) (IF (|has| |#2| (-584)) (IF (|has| |#2| (-975 (-1098))) (-15 -2170 ((-545 |#2|) |#2| (-1098) (-1 (-545 |#2|) |#2| (-1098)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1098)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2173 (((-2 (|:| |answer| (-545 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-594 |#1|) "failed") (-516) |#1| |#1|)) 172)) (-2176 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2189 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) (-594 (-388 |#2|))) 148)) (-2179 (((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-594 (-388 |#2|))) 145)) (-2180 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2189 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 133)) (-2171 (((-2 (|:| |answer| (-545 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2189 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 158)) (-2178 (((-3 (-2 (|:| -2189 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-388 |#2|)) 175)) (-2174 (((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2189 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2189 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-388 |#2|)) 178)) (-2182 (((-2 (|:| |ir| (-545 (-388 |#2|))) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|)) 84)) (-2183 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2177 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3396 |#1|) (|:| |sol?| (-110))) (-516) |#1|) (-594 (-388 |#2|))) 152)) (-2181 (((-3 (-578 |#1| |#2|) "failed") (-578 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3396 |#1|) (|:| |sol?| (-110))) (-516) |#1|)) 137)) (-2172 (((-2 (|:| |answer| (-545 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3396 |#1|) (|:| |sol?| (-110))) (-516) |#1|)) 162)) (-2175 (((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2189 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3396 |#1|) (|:| |sol?| (-110))) (-516) |#1|) (-388 |#2|)) 183)))
+(((-540 |#1| |#2|) (-10 -7 (-15 -2171 ((-2 (|:| |answer| (-545 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2189 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2172 ((-2 (|:| |answer| (-545 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3396 |#1|) (|:| |sol?| (-110))) (-516) |#1|))) (-15 -2173 ((-2 (|:| |answer| (-545 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-594 |#1|) "failed") (-516) |#1| |#1|))) (-15 -2174 ((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2189 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2189 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-388 |#2|))) (-15 -2175 ((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2189 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3396 |#1|) (|:| |sol?| (-110))) (-516) |#1|) (-388 |#2|))) (-15 -2176 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2189 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-594 (-388 |#2|)))) (-15 -2177 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3396 |#1|) (|:| |sol?| (-110))) (-516) |#1|) (-594 (-388 |#2|)))) (-15 -2178 ((-3 (-2 (|:| -2189 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-388 |#2|))) (-15 -2179 ((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-594 (-388 |#2|)))) (-15 -2180 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2189 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2181 ((-3 (-578 |#1| |#2|) "failed") (-578 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3396 |#1|) (|:| |sol?| (-110))) (-516) |#1|))) (-15 -2182 ((-2 (|:| |ir| (-545 (-388 |#2|))) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|))) (-15 -2183 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-344) (-1155 |#1|)) (T -540))
+((-2183 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-540 *5 *3)))) (-2182 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |ir| (-545 (-388 *6))) (|:| |specpart| (-388 *6)) (|:| |polypart| *6))) (-5 *1 (-540 *5 *6)) (-5 *3 (-388 *6)))) (-2181 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3396 *4) (|:| |sol?| (-110))) (-516) *4)) (-4 *4 (-344)) (-4 *5 (-1155 *4)) (-5 *1 (-540 *4 *5)))) (-2180 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2189 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-344)) (-5 *1 (-540 *4 *2)) (-4 *2 (-1155 *4)))) (-2179 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-594 (-388 *7))) (-4 *7 (-1155 *6)) (-5 *3 (-388 *7)) (-4 *6 (-344)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-540 *6 *7)))) (-2178 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| -2189 (-388 *6)) (|:| |coeff| (-388 *6)))) (-5 *1 (-540 *5 *6)) (-5 *3 (-388 *6)))) (-2177 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3396 *7) (|:| |sol?| (-110))) (-516) *7)) (-5 *6 (-594 (-388 *8))) (-4 *7 (-344)) (-4 *8 (-1155 *7)) (-5 *3 (-388 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-540 *7 *8)))) (-2176 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2189 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-594 (-388 *8))) (-4 *7 (-344)) (-4 *8 (-1155 *7)) (-5 *3 (-388 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-540 *7 *8)))) (-2175 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3396 *6) (|:| |sol?| (-110))) (-516) *6)) (-4 *6 (-344)) (-4 *7 (-1155 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-388 *7)) (|:| |a0| *6)) (-2 (|:| -2189 (-388 *7)) (|:| |coeff| (-388 *7))) "failed")) (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))) (-2174 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2189 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-344)) (-4 *7 (-1155 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-388 *7)) (|:| |a0| *6)) (-2 (|:| -2189 (-388 *7)) (|:| |coeff| (-388 *7))) "failed")) (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))) (-2173 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-594 *6) "failed") (-516) *6 *6)) (-4 *6 (-344)) (-4 *7 (-1155 *6)) (-5 *2 (-2 (|:| |answer| (-545 (-388 *7))) (|:| |a0| *6))) (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))) (-2172 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3396 *6) (|:| |sol?| (-110))) (-516) *6)) (-4 *6 (-344)) (-4 *7 (-1155 *6)) (-5 *2 (-2 (|:| |answer| (-545 (-388 *7))) (|:| |a0| *6))) (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))) (-2171 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2189 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-344)) (-4 *7 (-1155 *6)) (-5 *2 (-2 (|:| |answer| (-545 (-388 *7))) (|:| |a0| *6))) (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))))
+(-10 -7 (-15 -2171 ((-2 (|:| |answer| (-545 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2189 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2172 ((-2 (|:| |answer| (-545 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3396 |#1|) (|:| |sol?| (-110))) (-516) |#1|))) (-15 -2173 ((-2 (|:| |answer| (-545 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-594 |#1|) "failed") (-516) |#1| |#1|))) (-15 -2174 ((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2189 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2189 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-388 |#2|))) (-15 -2175 ((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2189 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3396 |#1|) (|:| |sol?| (-110))) (-516) |#1|) (-388 |#2|))) (-15 -2176 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2189 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-594 (-388 |#2|)))) (-15 -2177 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3396 |#1|) (|:| |sol?| (-110))) (-516) |#1|) (-594 (-388 |#2|)))) (-15 -2178 ((-3 (-2 (|:| -2189 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-388 |#2|))) (-15 -2179 ((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-594 (-388 |#2|)))) (-15 -2180 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2189 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2181 ((-3 (-578 |#1| |#2|) "failed") (-578 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3396 |#1|) (|:| |sol?| (-110))) (-516) |#1|))) (-15 -2182 ((-2 (|:| |ir| (-545 (-388 |#2|))) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|))) (-15 -2183 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-2184 (((-3 |#2| "failed") |#2| (-1098) (-1098)) 10)))
+(((-541 |#1| |#2|) (-10 -7 (-15 -2184 ((-3 |#2| "failed") |#2| (-1098) (-1098)))) (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516))) (-13 (-1120) (-901) (-1062) (-29 |#1|))) (T -541))
+((-2184 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1098)) (-4 *4 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516)))) (-5 *1 (-541 *4 *2)) (-4 *2 (-13 (-1120) (-901) (-1062) (-29 *4))))))
+(-10 -7 (-15 -2184 ((-3 |#2| "failed") |#2| (-1098) (-1098))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3301 (($ $ (-516)) 66)) (-1655 (((-110) $ $) NIL)) (-3815 (($) NIL T CONST)) (-2869 (($ (-1092 (-516)) (-516)) 72)) (-2824 (($ $ $) NIL)) (-3741 (((-3 $ "failed") $) 58)) (-2870 (($ $) 34)) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4050 (((-719) $) 15)) (-2436 (((-110) $) NIL)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL)) (-2872 (((-516)) 29)) (-2871 (((-516) $) 32)) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4047 (($ $ (-516)) 21)) (-3740 (((-3 $ "failed") $ $) 59)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-1654 (((-719) $) 16)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 61)) (-2873 (((-1076 (-516)) $) 18)) (-3155 (($ $) 23)) (-4233 (((-805) $) 87) (($ (-516)) 52) (($ $) NIL)) (-3385 (((-719)) 14)) (-2117 (((-110) $ $) NIL)) (-4048 (((-516) $ (-516)) 36)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 35 T CONST)) (-2927 (($) 19 T CONST)) (-3317 (((-110) $ $) 39)) (-4116 (($ $) 51) (($ $ $) 37)) (-4118 (($ $ $) 50)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 54) (($ $ $) 55)))
+(((-542 |#1| |#2|) (-811 |#1|) (-516) (-110)) (T -542))
+NIL
+(-811 |#1|)
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 21)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-4208 (((-110) $) NIL)) (-4205 (((-719)) NIL)) (-3608 (($ $ (-860)) NIL (|has| $ (-349))) (($ $) NIL)) (-1741 (((-1107 (-860) (-719)) (-516)) 47)) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-1655 (((-110) $ $) NIL)) (-3395 (((-719)) NIL)) (-3815 (($) NIL T CONST)) (-3432 (((-3 $ "failed") $) 75)) (-3431 (($ $) 74)) (-1861 (($ (-1179 $)) 73)) (-1739 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-2824 (($ $ $) NIL)) (-3741 (((-3 $ "failed") $) 32)) (-3258 (($) NIL)) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-3097 (($) 49)) (-1746 (((-110) $) NIL)) (-1836 (($ $) NIL) (($ $ (-719)) NIL)) (-4005 (((-110) $) NIL)) (-4050 (((-780 (-860)) $) NIL) (((-860) $) NIL)) (-2436 (((-110) $) NIL)) (-2072 (($) 37 (|has| $ (-349)))) (-2070 (((-110) $) NIL (|has| $ (-349)))) (-3391 (($ $ (-860)) NIL (|has| $ (-349))) (($ $) NIL)) (-3723 (((-3 $ "failed") $) NIL)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL)) (-2073 (((-1092 $) $ (-860)) NIL (|has| $ (-349))) (((-1092 $) $) 83)) (-2069 (((-860) $) 55)) (-1674 (((-1092 $) $) NIL (|has| $ (-349)))) (-1673 (((-3 (-1092 $) "failed") $ $) NIL (|has| $ (-349))) (((-1092 $) $) NIL (|has| $ (-349)))) (-1675 (($ $ (-1092 $)) NIL (|has| $ (-349)))) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL)) (-3724 (($) NIL T CONST)) (-2426 (($ (-860)) 48)) (-4207 (((-110) $) 67)) (-3514 (((-1045) $) NIL)) (-2435 (($) 19 (|has| $ (-349)))) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-1742 (((-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516))))) 42)) (-4011 (((-386 $) $) NIL)) (-4206 (((-860)) 66) (((-780 (-860))) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-1837 (((-3 (-719) "failed") $ $) NIL) (((-719) $) NIL)) (-4190 (((-130)) NIL)) (-4089 (($ $ (-719)) NIL) (($ $) NIL)) (-4223 (((-860) $) 65) (((-780 (-860)) $) NIL)) (-3459 (((-1092 $)) 82)) (-1740 (($) 54)) (-1676 (($) 38 (|has| $ (-349)))) (-3497 (((-637 $) (-1179 $)) NIL) (((-1179 $) $) 71)) (-4246 (((-516) $) 28)) (-2966 (((-3 (-1179 $) "failed") (-637 $)) NIL)) (-4233 (((-805) $) NIL) (($ (-516)) 30) (($ $) NIL) (($ (-388 (-516))) NIL)) (-2965 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3385 (((-719)) 39)) (-2071 (((-1179 $) (-860)) 77) (((-1179 $)) 76)) (-2117 (((-110) $ $) NIL)) (-4209 (((-110) $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) 22 T CONST)) (-2927 (($) 18 T CONST)) (-4204 (($ $ (-719)) NIL (|has| $ (-349))) (($ $) NIL (|has| $ (-349)))) (-2932 (($ $ (-719)) NIL) (($ $) NIL)) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) 26)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 61) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL)))
+(((-543 |#1|) (-13 (-331) (-310 $) (-572 (-516))) (-860)) (T -543))
+NIL
+(-13 (-331) (-310 $) (-572 (-516)))
+((-2185 (((-1185) (-1081)) 10)))
+(((-544) (-10 -7 (-15 -2185 ((-1185) (-1081))))) (T -544))
+((-2185 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-544)))))
+(-10 -7 (-15 -2185 ((-1185) (-1081))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#1| "failed") $) 69)) (-3431 ((|#1| $) NIL)) (-2189 ((|#1| $) 26)) (-2187 (((-594 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2190 (($ |#1| (-594 (-2 (|:| |scalar| (-388 (-516))) (|:| |coeff| (-1092 |#1|)) (|:| |logand| (-1092 |#1|)))) (-594 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-2188 (((-594 (-2 (|:| |scalar| (-388 (-516))) (|:| |coeff| (-1092 |#1|)) (|:| |logand| (-1092 |#1|)))) $) 27)) (-3513 (((-1081) $) NIL)) (-3096 (($ |#1| |#1|) 33) (($ |#1| (-1098)) 44 (|has| |#1| (-975 (-1098))))) (-3514 (((-1045) $) NIL)) (-2186 (((-110) $) 30)) (-4089 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1098)) 82 (|has| |#1| (-841 (-1098))))) (-4233 (((-805) $) 96) (($ |#1|) 25)) (-2920 (($) 16 T CONST)) (-3317 (((-110) $ $) NIL)) (-4116 (($ $) 15) (($ $ $) NIL)) (-4118 (($ $ $) 78)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 14) (($ (-388 (-516)) $) 36) (($ $ (-388 (-516))) NIL)))
+(((-545 |#1|) (-13 (-666 (-388 (-516))) (-975 |#1|) (-10 -8 (-15 -2190 ($ |#1| (-594 (-2 (|:| |scalar| (-388 (-516))) (|:| |coeff| (-1092 |#1|)) (|:| |logand| (-1092 |#1|)))) (-594 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2189 (|#1| $)) (-15 -2188 ((-594 (-2 (|:| |scalar| (-388 (-516))) (|:| |coeff| (-1092 |#1|)) (|:| |logand| (-1092 |#1|)))) $)) (-15 -2187 ((-594 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2186 ((-110) $)) (-15 -3096 ($ |#1| |#1|)) (-15 -4089 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-841 (-1098))) (-15 -4089 (|#1| $ (-1098))) |%noBranch|) (IF (|has| |#1| (-975 (-1098))) (-15 -3096 ($ |#1| (-1098))) |%noBranch|))) (-344)) (T -545))
+((-2190 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-594 (-2 (|:| |scalar| (-388 (-516))) (|:| |coeff| (-1092 *2)) (|:| |logand| (-1092 *2))))) (-5 *4 (-594 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-344)) (-5 *1 (-545 *2)))) (-2189 (*1 *2 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-344)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-594 (-2 (|:| |scalar| (-388 (-516))) (|:| |coeff| (-1092 *3)) (|:| |logand| (-1092 *3))))) (-5 *1 (-545 *3)) (-4 *3 (-344)))) (-2187 (*1 *2 *1) (-12 (-5 *2 (-594 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-545 *3)) (-4 *3 (-344)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-545 *3)) (-4 *3 (-344)))) (-3096 (*1 *1 *2 *2) (-12 (-5 *1 (-545 *2)) (-4 *2 (-344)))) (-4089 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-545 *2)) (-4 *2 (-344)))) (-4089 (*1 *2 *1 *3) (-12 (-4 *2 (-344)) (-4 *2 (-841 *3)) (-5 *1 (-545 *2)) (-5 *3 (-1098)))) (-3096 (*1 *1 *2 *3) (-12 (-5 *3 (-1098)) (-5 *1 (-545 *2)) (-4 *2 (-975 *3)) (-4 *2 (-344)))))
+(-13 (-666 (-388 (-516))) (-975 |#1|) (-10 -8 (-15 -2190 ($ |#1| (-594 (-2 (|:| |scalar| (-388 (-516))) (|:| |coeff| (-1092 |#1|)) (|:| |logand| (-1092 |#1|)))) (-594 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2189 (|#1| $)) (-15 -2188 ((-594 (-2 (|:| |scalar| (-388 (-516))) (|:| |coeff| (-1092 |#1|)) (|:| |logand| (-1092 |#1|)))) $)) (-15 -2187 ((-594 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2186 ((-110) $)) (-15 -3096 ($ |#1| |#1|)) (-15 -4089 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-841 (-1098))) (-15 -4089 (|#1| $ (-1098))) |%noBranch|) (IF (|has| |#1| (-975 (-1098))) (-15 -3096 ($ |#1| (-1098))) |%noBranch|)))
+((-4234 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2189 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2189 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-545 |#2|) (-1 |#2| |#1|) (-545 |#1|)) 30)))
+(((-546 |#1| |#2|) (-10 -7 (-15 -4234 ((-545 |#2|) (-1 |#2| |#1|) (-545 |#1|))) (-15 -4234 ((-3 (-2 (|:| -2189 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2189 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4234 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4234 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-344) (-344)) (T -546))
+((-4234 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-344)) (-4 *6 (-344)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-546 *5 *6)))) (-4234 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-344)) (-4 *2 (-344)) (-5 *1 (-546 *5 *2)))) (-4234 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2189 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-344)) (-4 *6 (-344)) (-5 *2 (-2 (|:| -2189 *6) (|:| |coeff| *6))) (-5 *1 (-546 *5 *6)))) (-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-545 *5)) (-4 *5 (-344)) (-4 *6 (-344)) (-5 *2 (-545 *6)) (-5 *1 (-546 *5 *6)))))
+(-10 -7 (-15 -4234 ((-545 |#2|) (-1 |#2| |#1|) (-545 |#1|))) (-15 -4234 ((-3 (-2 (|:| -2189 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2189 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4234 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4234 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-3697 (((-545 |#2|) (-545 |#2|)) 40)) (-4239 (((-594 |#2|) (-545 |#2|)) 42)) (-2198 ((|#2| (-545 |#2|)) 48)))
+(((-547 |#1| |#2|) (-10 -7 (-15 -3697 ((-545 |#2|) (-545 |#2|))) (-15 -4239 ((-594 |#2|) (-545 |#2|))) (-15 -2198 (|#2| (-545 |#2|)))) (-13 (-432) (-975 (-516)) (-795) (-593 (-516))) (-13 (-29 |#1|) (-1120))) (T -547))
+((-2198 (*1 *2 *3) (-12 (-5 *3 (-545 *2)) (-4 *2 (-13 (-29 *4) (-1120))) (-5 *1 (-547 *4 *2)) (-4 *4 (-13 (-432) (-975 (-516)) (-795) (-593 (-516)))))) (-4239 (*1 *2 *3) (-12 (-5 *3 (-545 *5)) (-4 *5 (-13 (-29 *4) (-1120))) (-4 *4 (-13 (-432) (-975 (-516)) (-795) (-593 (-516)))) (-5 *2 (-594 *5)) (-5 *1 (-547 *4 *5)))) (-3697 (*1 *2 *2) (-12 (-5 *2 (-545 *4)) (-4 *4 (-13 (-29 *3) (-1120))) (-4 *3 (-13 (-432) (-975 (-516)) (-795) (-593 (-516)))) (-5 *1 (-547 *3 *4)))))
+(-10 -7 (-15 -3697 ((-545 |#2|) (-545 |#2|))) (-15 -4239 ((-594 |#2|) (-545 |#2|))) (-15 -2198 (|#2| (-545 |#2|))))
+((-2194 (((-110) |#1|) 16)) (-2195 (((-3 |#1| "failed") |#1|) 14)) (-2192 (((-2 (|:| -2957 |#1|) (|:| -2427 (-719))) |#1|) 31) (((-3 |#1| "failed") |#1| (-719)) 18)) (-2191 (((-110) |#1| (-719)) 19)) (-2196 ((|#1| |#1|) 32)) (-2193 ((|#1| |#1| (-719)) 34)))
+(((-548 |#1|) (-10 -7 (-15 -2191 ((-110) |#1| (-719))) (-15 -2192 ((-3 |#1| "failed") |#1| (-719))) (-15 -2192 ((-2 (|:| -2957 |#1|) (|:| -2427 (-719))) |#1|)) (-15 -2193 (|#1| |#1| (-719))) (-15 -2194 ((-110) |#1|)) (-15 -2195 ((-3 |#1| "failed") |#1|)) (-15 -2196 (|#1| |#1|))) (-515)) (T -548))
+((-2196 (*1 *2 *2) (-12 (-5 *1 (-548 *2)) (-4 *2 (-515)))) (-2195 (*1 *2 *2) (|partial| -12 (-5 *1 (-548 *2)) (-4 *2 (-515)))) (-2194 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-548 *3)) (-4 *3 (-515)))) (-2193 (*1 *2 *2 *3) (-12 (-5 *3 (-719)) (-5 *1 (-548 *2)) (-4 *2 (-515)))) (-2192 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2957 *3) (|:| -2427 (-719)))) (-5 *1 (-548 *3)) (-4 *3 (-515)))) (-2192 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-719)) (-5 *1 (-548 *2)) (-4 *2 (-515)))) (-2191 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-5 *2 (-110)) (-5 *1 (-548 *3)) (-4 *3 (-515)))))
+(-10 -7 (-15 -2191 ((-110) |#1| (-719))) (-15 -2192 ((-3 |#1| "failed") |#1| (-719))) (-15 -2192 ((-2 (|:| -2957 |#1|) (|:| -2427 (-719))) |#1|)) (-15 -2193 (|#1| |#1| (-719))) (-15 -2194 ((-110) |#1|)) (-15 -2195 ((-3 |#1| "failed") |#1|)) (-15 -2196 (|#1| |#1|)))
+((-2197 (((-1092 |#1|) (-860)) 27)))
+(((-549 |#1|) (-10 -7 (-15 -2197 ((-1092 |#1|) (-860)))) (-331)) (T -549))
+((-2197 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1092 *4)) (-5 *1 (-549 *4)) (-4 *4 (-331)))))
+(-10 -7 (-15 -2197 ((-1092 |#1|) (-860))))
+((-3697 (((-545 (-388 (-887 |#1|))) (-545 (-388 (-887 |#1|)))) 27)) (-4091 (((-3 (-295 |#1|) (-594 (-295 |#1|))) (-388 (-887 |#1|)) (-1098)) 34 (|has| |#1| (-140)))) (-4239 (((-594 (-295 |#1|)) (-545 (-388 (-887 |#1|)))) 19)) (-2199 (((-295 |#1|) (-388 (-887 |#1|)) (-1098)) 32 (|has| |#1| (-140)))) (-2198 (((-295 |#1|) (-545 (-388 (-887 |#1|)))) 21)))
+(((-550 |#1|) (-10 -7 (-15 -3697 ((-545 (-388 (-887 |#1|))) (-545 (-388 (-887 |#1|))))) (-15 -4239 ((-594 (-295 |#1|)) (-545 (-388 (-887 |#1|))))) (-15 -2198 ((-295 |#1|) (-545 (-388 (-887 |#1|))))) (IF (|has| |#1| (-140)) (PROGN (-15 -4091 ((-3 (-295 |#1|) (-594 (-295 |#1|))) (-388 (-887 |#1|)) (-1098))) (-15 -2199 ((-295 |#1|) (-388 (-887 |#1|)) (-1098)))) |%noBranch|)) (-13 (-432) (-975 (-516)) (-795) (-593 (-516)))) (T -550))
+((-2199 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-887 *5))) (-5 *4 (-1098)) (-4 *5 (-140)) (-4 *5 (-13 (-432) (-975 (-516)) (-795) (-593 (-516)))) (-5 *2 (-295 *5)) (-5 *1 (-550 *5)))) (-4091 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-887 *5))) (-5 *4 (-1098)) (-4 *5 (-140)) (-4 *5 (-13 (-432) (-975 (-516)) (-795) (-593 (-516)))) (-5 *2 (-3 (-295 *5) (-594 (-295 *5)))) (-5 *1 (-550 *5)))) (-2198 (*1 *2 *3) (-12 (-5 *3 (-545 (-388 (-887 *4)))) (-4 *4 (-13 (-432) (-975 (-516)) (-795) (-593 (-516)))) (-5 *2 (-295 *4)) (-5 *1 (-550 *4)))) (-4239 (*1 *2 *3) (-12 (-5 *3 (-545 (-388 (-887 *4)))) (-4 *4 (-13 (-432) (-975 (-516)) (-795) (-593 (-516)))) (-5 *2 (-594 (-295 *4))) (-5 *1 (-550 *4)))) (-3697 (*1 *2 *2) (-12 (-5 *2 (-545 (-388 (-887 *3)))) (-4 *3 (-13 (-432) (-975 (-516)) (-795) (-593 (-516)))) (-5 *1 (-550 *3)))))
+(-10 -7 (-15 -3697 ((-545 (-388 (-887 |#1|))) (-545 (-388 (-887 |#1|))))) (-15 -4239 ((-594 (-295 |#1|)) (-545 (-388 (-887 |#1|))))) (-15 -2198 ((-295 |#1|) (-545 (-388 (-887 |#1|))))) (IF (|has| |#1| (-140)) (PROGN (-15 -4091 ((-3 (-295 |#1|) (-594 (-295 |#1|))) (-388 (-887 |#1|)) (-1098))) (-15 -2199 ((-295 |#1|) (-388 (-887 |#1|)) (-1098)))) |%noBranch|))
+((-2201 (((-594 (-637 (-516))) (-594 (-516)) (-594 (-843 (-516)))) 46) (((-594 (-637 (-516))) (-594 (-516))) 47) (((-637 (-516)) (-594 (-516)) (-843 (-516))) 42)) (-2200 (((-719) (-594 (-516))) 40)))
+(((-551) (-10 -7 (-15 -2200 ((-719) (-594 (-516)))) (-15 -2201 ((-637 (-516)) (-594 (-516)) (-843 (-516)))) (-15 -2201 ((-594 (-637 (-516))) (-594 (-516)))) (-15 -2201 ((-594 (-637 (-516))) (-594 (-516)) (-594 (-843 (-516))))))) (T -551))
+((-2201 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-516))) (-5 *4 (-594 (-843 (-516)))) (-5 *2 (-594 (-637 (-516)))) (-5 *1 (-551)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-594 (-637 (-516)))) (-5 *1 (-551)))) (-2201 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-516))) (-5 *4 (-843 (-516))) (-5 *2 (-637 (-516))) (-5 *1 (-551)))) (-2200 (*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-719)) (-5 *1 (-551)))))
+(-10 -7 (-15 -2200 ((-719) (-594 (-516)))) (-15 -2201 ((-637 (-516)) (-594 (-516)) (-843 (-516)))) (-15 -2201 ((-594 (-637 (-516))) (-594 (-516)))) (-15 -2201 ((-594 (-637 (-516))) (-594 (-516)) (-594 (-843 (-516))))))
+((-3486 (((-594 |#5|) |#5| (-110)) 73)) (-2202 (((-110) |#5| (-594 |#5|)) 30)))
+(((-552 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3486 ((-594 |#5|) |#5| (-110))) (-15 -2202 ((-110) |#5| (-594 |#5|)))) (-13 (-289) (-140)) (-741) (-795) (-997 |#1| |#2| |#3|) (-1035 |#1| |#2| |#3| |#4|)) (T -552))
+((-2202 (*1 *2 *3 *4) (-12 (-5 *4 (-594 *3)) (-4 *3 (-1035 *5 *6 *7 *8)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-997 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-552 *5 *6 *7 *8 *3)))) (-3486 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-997 *5 *6 *7)) (-5 *2 (-594 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-1035 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3486 ((-594 |#5|) |#5| (-110))) (-15 -2202 ((-110) |#5| (-594 |#5|))))
+((-2828 (((-110) $ $) NIL (|has| (-137) (-1027)))) (-3705 (($ $) 34)) (-3706 (($ $) NIL)) (-3696 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-2243 (((-1185) $ (-516) (-516)) NIL (|has| $ (-6 -4270)))) (-3703 (((-110) $ $) 51)) (-3702 (((-110) $ $ (-516)) 46)) (-3697 (((-594 $) $ (-137)) 60) (((-594 $) $ (-134)) 61)) (-1798 (((-110) (-1 (-110) (-137) (-137)) $) NIL) (((-110) $) NIL (|has| (-137) (-795)))) (-1796 (($ (-1 (-110) (-137) (-137)) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-137) (-795))))) (-3173 (($ (-1 (-110) (-137) (-137)) $) NIL) (($ $) NIL (|has| (-137) (-795)))) (-1217 (((-110) $ (-719)) NIL)) (-4066 (((-137) $ (-516) (-137)) 45 (|has| $ (-6 -4270))) (((-137) $ (-1146 (-516)) (-137)) NIL (|has| $ (-6 -4270)))) (-3992 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-3815 (($) NIL T CONST)) (-3694 (($ $ (-137)) 64) (($ $ (-134)) 65)) (-2312 (($ $) NIL (|has| $ (-6 -4270)))) (-2313 (($ $) NIL)) (-3699 (($ $ (-1146 (-516)) $) 44)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-3685 (($ (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027)))) (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-4121 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) NIL (|has| $ (-6 -4269))) (((-137) (-1 (-137) (-137) (-137)) $) NIL (|has| $ (-6 -4269)))) (-1587 (((-137) $ (-516) (-137)) NIL (|has| $ (-6 -4270)))) (-3372 (((-137) $ (-516)) NIL)) (-3704 (((-110) $ $) 72)) (-3698 (((-516) (-1 (-110) (-137)) $) NIL) (((-516) (-137) $) NIL (|has| (-137) (-1027))) (((-516) (-137) $ (-516)) 48 (|has| (-137) (-1027))) (((-516) $ $ (-516)) 47) (((-516) (-134) $ (-516)) 50)) (-2018 (((-594 (-137)) $) NIL (|has| $ (-6 -4269)))) (-3896 (($ (-719) (-137)) 9)) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-516) $) 28 (|has| (-516) (-795)))) (-3596 (($ $ $) NIL (|has| (-137) (-795)))) (-3792 (($ (-1 (-110) (-137) (-137)) $ $) NIL) (($ $ $) NIL (|has| (-137) (-795)))) (-2445 (((-594 (-137)) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-2246 (((-516) $) 42 (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (|has| (-137) (-795)))) (-3700 (((-110) $ $ (-137)) 73)) (-3701 (((-719) $ $ (-137)) 70)) (-2022 (($ (-1 (-137) (-137)) $) 33 (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-137) (-137)) $) NIL) (($ (-1 (-137) (-137) (-137)) $ $) NIL)) (-3707 (($ $) 37)) (-3708 (($ $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3695 (($ $ (-137)) 62) (($ $ (-134)) 63)) (-3513 (((-1081) $) 38 (|has| (-137) (-1027)))) (-2317 (($ (-137) $ (-516)) NIL) (($ $ $ (-516)) 23)) (-2248 (((-594 (-516)) $) NIL)) (-2249 (((-110) (-516) $) NIL)) (-3514 (((-516) $) 69) (((-1045) $) NIL (|has| (-137) (-1027)))) (-4079 (((-137) $) NIL (|has| (-516) (-795)))) (-1350 (((-3 (-137) "failed") (-1 (-110) (-137)) $) NIL)) (-2244 (($ $ (-137)) NIL (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 (-137)))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-275 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-137) (-137)) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-594 (-137)) (-594 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-2250 (((-594 (-137)) $) NIL)) (-3682 (((-110) $) 12)) (-3847 (($) 10)) (-4078 (((-137) $ (-516) (-137)) NIL) (((-137) $ (-516)) 52) (($ $ (-1146 (-516))) 21) (($ $ $) NIL)) (-2318 (($ $ (-516)) NIL) (($ $ (-1146 (-516))) NIL)) (-2019 (((-719) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269))) (((-719) (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-1797 (($ $ $ (-516)) 66 (|has| $ (-6 -4270)))) (-3678 (($ $) 17)) (-4246 (((-505) $) NIL (|has| (-137) (-572 (-505))))) (-3804 (($ (-594 (-137))) NIL)) (-4080 (($ $ (-137)) NIL) (($ (-137) $) NIL) (($ $ $) 16) (($ (-594 $)) 67)) (-4233 (($ (-137)) NIL) (((-805) $) 27 (|has| (-137) (-571 (-805))))) (-2021 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-2826 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2827 (((-110) $ $) NIL (|has| (-137) (-795)))) (-3317 (((-110) $ $) 14 (|has| (-137) (-1027)))) (-2947 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2948 (((-110) $ $) 15 (|has| (-137) (-795)))) (-4232 (((-719) $) 13 (|has| $ (-6 -4269)))))
+(((-553 |#1|) (-13 (-1067) (-10 -8 (-15 -3514 ((-516) $)))) (-516)) (T -553))
+((-3514 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-553 *3)) (-14 *3 *2))))
+(-13 (-1067) (-10 -8 (-15 -3514 ((-516) $))))
+((-3805 (((-2 (|:| |num| |#4|) (|:| |den| (-516))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-516))) |#4| |#2| (-1017 |#4|)) 32)))
+(((-554 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3805 ((-2 (|:| |num| |#4|) (|:| |den| (-516))) |#4| |#2| (-1017 |#4|))) (-15 -3805 ((-2 (|:| |num| |#4|) (|:| |den| (-516))) |#4| |#2|))) (-741) (-795) (-523) (-891 |#3| |#1| |#2|)) (T -554))
+((-3805 (*1 *2 *3 *4) (-12 (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-523)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-516)))) (-5 *1 (-554 *5 *4 *6 *3)) (-4 *3 (-891 *6 *5 *4)))) (-3805 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1017 *3)) (-4 *3 (-891 *7 *6 *4)) (-4 *6 (-741)) (-4 *4 (-795)) (-4 *7 (-523)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-516)))) (-5 *1 (-554 *6 *4 *7 *3)))))
+(-10 -7 (-15 -3805 ((-2 (|:| |num| |#4|) (|:| |den| (-516))) |#4| |#2| (-1017 |#4|))) (-15 -3805 ((-2 (|:| |num| |#4|) (|:| |den| (-516))) |#4| |#2|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 63)) (-3347 (((-594 (-1011)) $) NIL)) (-4110 (((-1098) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-2118 (($ $) NIL (|has| |#1| (-523)))) (-2116 (((-110) $) NIL (|has| |#1| (-523)))) (-4049 (($ $ (-516)) 54) (($ $ (-516) (-516)) 55)) (-4052 (((-1076 (-2 (|:| |k| (-516)) (|:| |c| |#1|))) $) 60)) (-2233 (($ $) 100)) (-1319 (((-3 $ "failed") $ $) NIL)) (-2231 (((-805) (-1076 (-2 (|:| |k| (-516)) (|:| |c| |#1|))) (-964 (-787 (-516))) (-1098) |#1| (-388 (-516))) 224)) (-4097 (($ (-1076 (-2 (|:| |k| (-516)) (|:| |c| |#1|)))) 34)) (-3815 (($) NIL T CONST)) (-4235 (($ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3156 (((-110) $) NIL)) (-4050 (((-516) $) 58) (((-516) $ (-516)) 59)) (-2436 (((-110) $) NIL)) (-4055 (($ $ (-860)) 76)) (-4094 (($ (-1 |#1| (-516)) $) 73)) (-4213 (((-110) $) 25)) (-3157 (($ |#1| (-516)) 22) (($ $ (-1011) (-516)) NIL) (($ $ (-594 (-1011)) (-594 (-516))) NIL)) (-4234 (($ (-1 |#1| |#1|) $) 67)) (-2237 (($ (-964 (-787 (-516))) (-1076 (-2 (|:| |k| (-516)) (|:| |c| |#1|)))) 13)) (-3158 (($ $) NIL)) (-3449 ((|#1| $) NIL)) (-3513 (((-1081) $) NIL)) (-4091 (($ $) 150 (|has| |#1| (-37 (-388 (-516)))))) (-2234 (((-3 $ "failed") $ $ (-110)) 99)) (-2232 (($ $ $) 108)) (-3514 (((-1045) $) NIL)) (-2235 (((-1076 (-2 (|:| |k| (-516)) (|:| |c| |#1|))) $) 15)) (-2236 (((-964 (-787 (-516))) $) 14)) (-4047 (($ $ (-516)) 45)) (-3740 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-4046 (((-1076 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-516)))))) (-4078 ((|#1| $ (-516)) 57) (($ $ $) NIL (|has| (-516) (-1038)))) (-4089 (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $ (-1098)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-516) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (-4223 (((-516) $) NIL)) (-3155 (($ $) 46)) (-4233 (((-805) $) NIL) (($ (-516)) 28) (($ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $) NIL (|has| |#1| (-523))) (($ |#1|) 27 (|has| |#1| (-162)))) (-3959 ((|#1| $ (-516)) 56)) (-2965 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3385 (((-719)) 37)) (-4051 ((|#1| $) NIL)) (-2212 (($ $) 186 (|has| |#1| (-37 (-388 (-516)))))) (-2224 (($ $) 158 (|has| |#1| (-37 (-388 (-516)))))) (-2214 (($ $) 190 (|has| |#1| (-37 (-388 (-516)))))) (-2226 (($ $) 163 (|has| |#1| (-37 (-388 (-516)))))) (-2210 (($ $) 189 (|has| |#1| (-37 (-388 (-516)))))) (-2222 (($ $) 162 (|has| |#1| (-37 (-388 (-516)))))) (-2229 (($ $ (-388 (-516))) 166 (|has| |#1| (-37 (-388 (-516)))))) (-2230 (($ $ |#1|) 146 (|has| |#1| (-37 (-388 (-516)))))) (-2227 (($ $) 192 (|has| |#1| (-37 (-388 (-516)))))) (-2228 (($ $) 149 (|has| |#1| (-37 (-388 (-516)))))) (-2209 (($ $) 191 (|has| |#1| (-37 (-388 (-516)))))) (-2221 (($ $) 164 (|has| |#1| (-37 (-388 (-516)))))) (-2211 (($ $) 187 (|has| |#1| (-37 (-388 (-516)))))) (-2223 (($ $) 160 (|has| |#1| (-37 (-388 (-516)))))) (-2213 (($ $) 188 (|has| |#1| (-37 (-388 (-516)))))) (-2225 (($ $) 161 (|has| |#1| (-37 (-388 (-516)))))) (-2206 (($ $) 197 (|has| |#1| (-37 (-388 (-516)))))) (-2218 (($ $) 173 (|has| |#1| (-37 (-388 (-516)))))) (-2208 (($ $) 194 (|has| |#1| (-37 (-388 (-516)))))) (-2220 (($ $) 168 (|has| |#1| (-37 (-388 (-516)))))) (-2204 (($ $) 201 (|has| |#1| (-37 (-388 (-516)))))) (-2216 (($ $) 177 (|has| |#1| (-37 (-388 (-516)))))) (-2203 (($ $) 203 (|has| |#1| (-37 (-388 (-516)))))) (-2215 (($ $) 179 (|has| |#1| (-37 (-388 (-516)))))) (-2205 (($ $) 199 (|has| |#1| (-37 (-388 (-516)))))) (-2217 (($ $) 175 (|has| |#1| (-37 (-388 (-516)))))) (-2207 (($ $) 196 (|has| |#1| (-37 (-388 (-516)))))) (-2219 (($ $) 171 (|has| |#1| (-37 (-388 (-516)))))) (-2117 (((-110) $ $) NIL (|has| |#1| (-523)))) (-4048 ((|#1| $ (-516)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-516)))) (|has| |#1| (-15 -4233 (|#1| (-1098))))))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 29 T CONST)) (-2927 (($) 38 T CONST)) (-2932 (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $ (-1098)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-516) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (-3317 (((-110) $ $) 65)) (-4224 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-4116 (($ $) 84) (($ $ $) 64)) (-4118 (($ $ $) 81)) (** (($ $ (-860)) NIL) (($ $ (-719)) 103)) (* (($ (-860) $) 89) (($ (-719) $) 87) (($ (-516) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-388 (-516)) $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516)))))))
+(((-555 |#1|) (-13 (-1158 |#1| (-516)) (-10 -8 (-15 -2237 ($ (-964 (-787 (-516))) (-1076 (-2 (|:| |k| (-516)) (|:| |c| |#1|))))) (-15 -2236 ((-964 (-787 (-516))) $)) (-15 -2235 ((-1076 (-2 (|:| |k| (-516)) (|:| |c| |#1|))) $)) (-15 -4097 ($ (-1076 (-2 (|:| |k| (-516)) (|:| |c| |#1|))))) (-15 -4213 ((-110) $)) (-15 -4094 ($ (-1 |#1| (-516)) $)) (-15 -2234 ((-3 $ "failed") $ $ (-110))) (-15 -2233 ($ $)) (-15 -2232 ($ $ $)) (-15 -2231 ((-805) (-1076 (-2 (|:| |k| (-516)) (|:| |c| |#1|))) (-964 (-787 (-516))) (-1098) |#1| (-388 (-516)))) (IF (|has| |#1| (-37 (-388 (-516)))) (PROGN (-15 -4091 ($ $)) (-15 -2230 ($ $ |#1|)) (-15 -2229 ($ $ (-388 (-516)))) (-15 -2228 ($ $)) (-15 -2227 ($ $)) (-15 -2226 ($ $)) (-15 -2225 ($ $)) (-15 -2224 ($ $)) (-15 -2223 ($ $)) (-15 -2222 ($ $)) (-15 -2221 ($ $)) (-15 -2220 ($ $)) (-15 -2219 ($ $)) (-15 -2218 ($ $)) (-15 -2217 ($ $)) (-15 -2216 ($ $)) (-15 -2215 ($ $)) (-15 -2214 ($ $)) (-15 -2213 ($ $)) (-15 -2212 ($ $)) (-15 -2211 ($ $)) (-15 -2210 ($ $)) (-15 -2209 ($ $)) (-15 -2208 ($ $)) (-15 -2207 ($ $)) (-15 -2206 ($ $)) (-15 -2205 ($ $)) (-15 -2204 ($ $)) (-15 -2203 ($ $))) |%noBranch|))) (-984)) (T -555))
+((-4213 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-555 *3)) (-4 *3 (-984)))) (-2237 (*1 *1 *2 *3) (-12 (-5 *2 (-964 (-787 (-516)))) (-5 *3 (-1076 (-2 (|:| |k| (-516)) (|:| |c| *4)))) (-4 *4 (-984)) (-5 *1 (-555 *4)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-964 (-787 (-516)))) (-5 *1 (-555 *3)) (-4 *3 (-984)))) (-2235 (*1 *2 *1) (-12 (-5 *2 (-1076 (-2 (|:| |k| (-516)) (|:| |c| *3)))) (-5 *1 (-555 *3)) (-4 *3 (-984)))) (-4097 (*1 *1 *2) (-12 (-5 *2 (-1076 (-2 (|:| |k| (-516)) (|:| |c| *3)))) (-4 *3 (-984)) (-5 *1 (-555 *3)))) (-4094 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-516))) (-4 *3 (-984)) (-5 *1 (-555 *3)))) (-2234 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-110)) (-5 *1 (-555 *3)) (-4 *3 (-984)))) (-2233 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-984)))) (-2232 (*1 *1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-984)))) (-2231 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1076 (-2 (|:| |k| (-516)) (|:| |c| *6)))) (-5 *4 (-964 (-787 (-516)))) (-5 *5 (-1098)) (-5 *7 (-388 (-516))) (-4 *6 (-984)) (-5 *2 (-805)) (-5 *1 (-555 *6)))) (-4091 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2230 (*1 *1 *1 *2) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2229 (*1 *1 *1 *2) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-555 *3)) (-4 *3 (-37 *2)) (-4 *3 (-984)))) (-2228 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2227 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2226 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2225 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2224 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2223 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2222 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2221 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2220 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2219 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2218 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2217 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2216 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2215 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2214 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2213 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2212 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2211 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2210 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2209 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2208 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2207 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2206 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2205 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2204 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))) (-2203 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(-13 (-1158 |#1| (-516)) (-10 -8 (-15 -2237 ($ (-964 (-787 (-516))) (-1076 (-2 (|:| |k| (-516)) (|:| |c| |#1|))))) (-15 -2236 ((-964 (-787 (-516))) $)) (-15 -2235 ((-1076 (-2 (|:| |k| (-516)) (|:| |c| |#1|))) $)) (-15 -4097 ($ (-1076 (-2 (|:| |k| (-516)) (|:| |c| |#1|))))) (-15 -4213 ((-110) $)) (-15 -4094 ($ (-1 |#1| (-516)) $)) (-15 -2234 ((-3 $ "failed") $ $ (-110))) (-15 -2233 ($ $)) (-15 -2232 ($ $ $)) (-15 -2231 ((-805) (-1076 (-2 (|:| |k| (-516)) (|:| |c| |#1|))) (-964 (-787 (-516))) (-1098) |#1| (-388 (-516)))) (IF (|has| |#1| (-37 (-388 (-516)))) (PROGN (-15 -4091 ($ $)) (-15 -2230 ($ $ |#1|)) (-15 -2229 ($ $ (-388 (-516)))) (-15 -2228 ($ $)) (-15 -2227 ($ $)) (-15 -2226 ($ $)) (-15 -2225 ($ $)) (-15 -2224 ($ $)) (-15 -2223 ($ $)) (-15 -2222 ($ $)) (-15 -2221 ($ $)) (-15 -2220 ($ $)) (-15 -2219 ($ $)) (-15 -2218 ($ $)) (-15 -2217 ($ $)) (-15 -2216 ($ $)) (-15 -2215 ($ $)) (-15 -2214 ($ $)) (-15 -2213 ($ $)) (-15 -2212 ($ $)) (-15 -2211 ($ $)) (-15 -2210 ($ $)) (-15 -2209 ($ $)) (-15 -2208 ($ $)) (-15 -2207 ($ $)) (-15 -2206 ($ $)) (-15 -2205 ($ $)) (-15 -2204 ($ $)) (-15 -2203 ($ $))) |%noBranch|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-2118 (($ $) NIL (|has| |#1| (-523)))) (-2116 (((-110) $) NIL (|has| |#1| (-523)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-4097 (($ (-1076 |#1|)) 9)) (-3815 (($) NIL T CONST)) (-3741 (((-3 $ "failed") $) 42)) (-3156 (((-110) $) 52)) (-4050 (((-719) $) 55) (((-719) $ (-719)) 54)) (-2436 (((-110) $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-3740 (((-3 $ "failed") $ $) 44 (|has| |#1| (-523)))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ $) NIL (|has| |#1| (-523)))) (-4096 (((-1076 |#1|) $) 23)) (-3385 (((-719)) 51)) (-2117 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 10 T CONST)) (-2927 (($) 14 T CONST)) (-3317 (((-110) $ $) 22)) (-4116 (($ $) 30) (($ $ $) 16)) (-4118 (($ $ $) 25)) (** (($ $ (-860)) NIL) (($ $ (-719)) 49)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-516)) 36)))
+(((-556 |#1|) (-13 (-984) (-10 -8 (-15 -4096 ((-1076 |#1|) $)) (-15 -4097 ($ (-1076 |#1|))) (-15 -3156 ((-110) $)) (-15 -4050 ((-719) $)) (-15 -4050 ((-719) $ (-719))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-516))) (IF (|has| |#1| (-523)) (-6 (-523)) |%noBranch|))) (-984)) (T -556))
+((-4096 (*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-556 *3)) (-4 *3 (-984)))) (-4097 (*1 *1 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-556 *3)))) (-3156 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-556 *3)) (-4 *3 (-984)))) (-4050 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-556 *3)) (-4 *3 (-984)))) (-4050 (*1 *2 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-556 *3)) (-4 *3 (-984)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-984)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-556 *2)) (-4 *2 (-984)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-556 *3)) (-4 *3 (-984)))))
+(-13 (-984) (-10 -8 (-15 -4096 ((-1076 |#1|) $)) (-15 -4097 ($ (-1076 |#1|))) (-15 -3156 ((-110) $)) (-15 -4050 ((-719) $)) (-15 -4050 ((-719) $ (-719))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-516))) (IF (|has| |#1| (-523)) (-6 (-523)) |%noBranch|)))
+((-4234 (((-560 |#2|) (-1 |#2| |#1|) (-560 |#1|)) 15)))
+(((-557 |#1| |#2|) (-10 -7 (-15 -4234 ((-560 |#2|) (-1 |#2| |#1|) (-560 |#1|)))) (-1134) (-1134)) (T -557))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-560 *5)) (-4 *5 (-1134)) (-4 *6 (-1134)) (-5 *2 (-560 *6)) (-5 *1 (-557 *5 *6)))))
+(-10 -7 (-15 -4234 ((-560 |#2|) (-1 |#2| |#1|) (-560 |#1|))))
+((-4234 (((-1076 |#3|) (-1 |#3| |#1| |#2|) (-560 |#1|) (-1076 |#2|)) 20) (((-1076 |#3|) (-1 |#3| |#1| |#2|) (-1076 |#1|) (-560 |#2|)) 19) (((-560 |#3|) (-1 |#3| |#1| |#2|) (-560 |#1|) (-560 |#2|)) 18)))
+(((-558 |#1| |#2| |#3|) (-10 -7 (-15 -4234 ((-560 |#3|) (-1 |#3| |#1| |#2|) (-560 |#1|) (-560 |#2|))) (-15 -4234 ((-1076 |#3|) (-1 |#3| |#1| |#2|) (-1076 |#1|) (-560 |#2|))) (-15 -4234 ((-1076 |#3|) (-1 |#3| |#1| |#2|) (-560 |#1|) (-1076 |#2|)))) (-1134) (-1134) (-1134)) (T -558))
+((-4234 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-560 *6)) (-5 *5 (-1076 *7)) (-4 *6 (-1134)) (-4 *7 (-1134)) (-4 *8 (-1134)) (-5 *2 (-1076 *8)) (-5 *1 (-558 *6 *7 *8)))) (-4234 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1076 *6)) (-5 *5 (-560 *7)) (-4 *6 (-1134)) (-4 *7 (-1134)) (-4 *8 (-1134)) (-5 *2 (-1076 *8)) (-5 *1 (-558 *6 *7 *8)))) (-4234 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-560 *6)) (-5 *5 (-560 *7)) (-4 *6 (-1134)) (-4 *7 (-1134)) (-4 *8 (-1134)) (-5 *2 (-560 *8)) (-5 *1 (-558 *6 *7 *8)))))
+(-10 -7 (-15 -4234 ((-560 |#3|) (-1 |#3| |#1| |#2|) (-560 |#1|) (-560 |#2|))) (-15 -4234 ((-1076 |#3|) (-1 |#3| |#1| |#2|) (-1076 |#1|) (-560 |#2|))) (-15 -4234 ((-1076 |#3|) (-1 |#3| |#1| |#2|) (-560 |#1|) (-1076 |#2|))))
+((-2242 ((|#3| |#3| (-594 (-569 |#3|)) (-594 (-1098))) 55)) (-2241 (((-158 |#2|) |#3|) 117)) (-2238 ((|#3| (-158 |#2|)) 44)) (-2239 ((|#2| |#3|) 19)) (-2240 ((|#3| |#2|) 33)))
+(((-559 |#1| |#2| |#3|) (-10 -7 (-15 -2238 (|#3| (-158 |#2|))) (-15 -2239 (|#2| |#3|)) (-15 -2240 (|#3| |#2|)) (-15 -2241 ((-158 |#2|) |#3|)) (-15 -2242 (|#3| |#3| (-594 (-569 |#3|)) (-594 (-1098))))) (-13 (-523) (-795)) (-13 (-402 |#1|) (-941) (-1120)) (-13 (-402 (-158 |#1|)) (-941) (-1120))) (T -559))
+((-2242 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-594 (-569 *2))) (-5 *4 (-594 (-1098))) (-4 *2 (-13 (-402 (-158 *5)) (-941) (-1120))) (-4 *5 (-13 (-523) (-795))) (-5 *1 (-559 *5 *6 *2)) (-4 *6 (-13 (-402 *5) (-941) (-1120))))) (-2241 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-795))) (-5 *2 (-158 *5)) (-5 *1 (-559 *4 *5 *3)) (-4 *5 (-13 (-402 *4) (-941) (-1120))) (-4 *3 (-13 (-402 (-158 *4)) (-941) (-1120))))) (-2240 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-795))) (-4 *2 (-13 (-402 (-158 *4)) (-941) (-1120))) (-5 *1 (-559 *4 *3 *2)) (-4 *3 (-13 (-402 *4) (-941) (-1120))))) (-2239 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-795))) (-4 *2 (-13 (-402 *4) (-941) (-1120))) (-5 *1 (-559 *4 *2 *3)) (-4 *3 (-13 (-402 (-158 *4)) (-941) (-1120))))) (-2238 (*1 *2 *3) (-12 (-5 *3 (-158 *5)) (-4 *5 (-13 (-402 *4) (-941) (-1120))) (-4 *4 (-13 (-523) (-795))) (-4 *2 (-13 (-402 (-158 *4)) (-941) (-1120))) (-5 *1 (-559 *4 *5 *2)))))
+(-10 -7 (-15 -2238 (|#3| (-158 |#2|))) (-15 -2239 (|#2| |#3|)) (-15 -2240 (|#3| |#2|)) (-15 -2241 ((-158 |#2|) |#3|)) (-15 -2242 (|#3| |#3| (-594 (-569 |#3|)) (-594 (-1098)))))
+((-3992 (($ (-1 (-110) |#1|) $) 17)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-3731 (($ (-1 |#1| |#1|) |#1|) 9)) (-3730 (($ (-1 (-110) |#1|) $) 13)) (-3729 (($ (-1 (-110) |#1|) $) 15)) (-3804 (((-1076 |#1|) $) 18)) (-4233 (((-805) $) NIL)))
+(((-560 |#1|) (-13 (-571 (-805)) (-10 -8 (-15 -4234 ($ (-1 |#1| |#1|) $)) (-15 -3730 ($ (-1 (-110) |#1|) $)) (-15 -3729 ($ (-1 (-110) |#1|) $)) (-15 -3992 ($ (-1 (-110) |#1|) $)) (-15 -3731 ($ (-1 |#1| |#1|) |#1|)) (-15 -3804 ((-1076 |#1|) $)))) (-1134)) (T -560))
+((-4234 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1134)) (-5 *1 (-560 *3)))) (-3730 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1134)) (-5 *1 (-560 *3)))) (-3729 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1134)) (-5 *1 (-560 *3)))) (-3992 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1134)) (-5 *1 (-560 *3)))) (-3731 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1134)) (-5 *1 (-560 *3)))) (-3804 (*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-560 *3)) (-4 *3 (-1134)))))
+(-13 (-571 (-805)) (-10 -8 (-15 -4234 ($ (-1 |#1| |#1|) $)) (-15 -3730 ($ (-1 (-110) |#1|) $)) (-15 -3729 ($ (-1 (-110) |#1|) $)) (-15 -3992 ($ (-1 (-110) |#1|) $)) (-15 -3731 ($ (-1 |#1| |#1|) |#1|)) (-15 -3804 ((-1076 |#1|) $))))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4117 (($ (-719)) NIL (|has| |#1| (-23)))) (-2243 (((-1185) $ (-516) (-516)) NIL (|has| $ (-6 -4270)))) (-1798 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-1796 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795))))) (-3173 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-1217 (((-110) $ (-719)) NIL)) (-4066 ((|#1| $ (-516) |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-1146 (-516)) |#1|) NIL (|has| $ (-6 -4270)))) (-3992 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3815 (($) NIL T CONST)) (-2312 (($ $) NIL (|has| $ (-6 -4270)))) (-2313 (($ $) NIL)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3685 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-1587 ((|#1| $ (-516) |#1|) NIL (|has| $ (-6 -4270)))) (-3372 ((|#1| $ (-516)) NIL)) (-3698 (((-516) (-1 (-110) |#1|) $) NIL) (((-516) |#1| $) NIL (|has| |#1| (-1027))) (((-516) |#1| $ (-516)) NIL (|has| |#1| (-1027)))) (-2018 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4114 (((-637 |#1|) $ $) NIL (|has| |#1| (-984)))) (-3896 (($ (-719) |#1|) NIL)) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-516) $) NIL (|has| (-516) (-795)))) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3792 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2246 (((-516) $) NIL (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-2022 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4111 ((|#1| $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-984))))) (-3998 (((-110) $ (-719)) NIL)) (-4112 ((|#1| $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-984))))) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-2317 (($ |#1| $ (-516)) NIL) (($ $ $ (-516)) NIL)) (-2248 (((-594 (-516)) $) NIL)) (-2249 (((-110) (-516) $) NIL)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-4079 ((|#1| $) NIL (|has| (-516) (-795)))) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-2244 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2250 (((-594 |#1|) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#1| $ (-516) |#1|) NIL) ((|#1| $ (-516)) NIL) (($ $ (-1146 (-516))) NIL)) (-4115 ((|#1| $ $) NIL (|has| |#1| (-984)))) (-2318 (($ $ (-516)) NIL) (($ $ (-1146 (-516))) NIL)) (-4113 (($ $ $) NIL (|has| |#1| (-984)))) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1797 (($ $ $ (-516)) NIL (|has| $ (-6 -4270)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) NIL (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) NIL)) (-4080 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-594 $)) NIL)) (-4233 (((-805) $) NIL (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#1| (-795)))) (-4116 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4118 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-516) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-675))) (($ $ |#1|) NIL (|has| |#1| (-675)))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-561 |#1| |#2|) (-1178 |#1|) (-1134) (-516)) (T -561))
+NIL
+(-1178 |#1|)
+((-2243 (((-1185) $ |#2| |#2|) 36)) (-2245 ((|#2| $) 23)) (-2246 ((|#2| $) 21)) (-2022 (($ (-1 |#3| |#3|) $) 32)) (-4234 (($ (-1 |#3| |#3|) $) 30)) (-4079 ((|#3| $) 26)) (-2244 (($ $ |#3|) 33)) (-2247 (((-110) |#3| $) 17)) (-2250 (((-594 |#3|) $) 15)) (-4078 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-562 |#1| |#2| |#3|) (-10 -8 (-15 -2243 ((-1185) |#1| |#2| |#2|)) (-15 -2244 (|#1| |#1| |#3|)) (-15 -4079 (|#3| |#1|)) (-15 -2245 (|#2| |#1|)) (-15 -2246 (|#2| |#1|)) (-15 -2247 ((-110) |#3| |#1|)) (-15 -2250 ((-594 |#3|) |#1|)) (-15 -4078 (|#3| |#1| |#2|)) (-15 -4078 (|#3| |#1| |#2| |#3|)) (-15 -2022 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4234 (|#1| (-1 |#3| |#3|) |#1|))) (-563 |#2| |#3|) (-1027) (-1134)) (T -562))
+NIL
+(-10 -8 (-15 -2243 ((-1185) |#1| |#2| |#2|)) (-15 -2244 (|#1| |#1| |#3|)) (-15 -4079 (|#3| |#1|)) (-15 -2245 (|#2| |#1|)) (-15 -2246 (|#2| |#1|)) (-15 -2247 ((-110) |#3| |#1|)) (-15 -2250 ((-594 |#3|) |#1|)) (-15 -4078 (|#3| |#1| |#2|)) (-15 -4078 (|#3| |#1| |#2| |#3|)) (-15 -2022 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4234 (|#1| (-1 |#3| |#3|) |#1|)))
+((-2828 (((-110) $ $) 19 (|has| |#2| (-1027)))) (-2243 (((-1185) $ |#1| |#1|) 40 (|has| $ (-6 -4270)))) (-1217 (((-110) $ (-719)) 8)) (-4066 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4270)))) (-3815 (($) 7 T CONST)) (-1587 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4270)))) (-3372 ((|#2| $ |#1|) 51)) (-2018 (((-594 |#2|) $) 30 (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) 9)) (-2245 ((|#1| $) 43 (|has| |#1| (-795)))) (-2445 (((-594 |#2|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#2| $) 27 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269))))) (-2246 ((|#1| $) 44 (|has| |#1| (-795)))) (-2022 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#2| |#2|) $) 35)) (-3998 (((-110) $ (-719)) 10)) (-3513 (((-1081) $) 22 (|has| |#2| (-1027)))) (-2248 (((-594 |#1|) $) 46)) (-2249 (((-110) |#1| $) 47)) (-3514 (((-1045) $) 21 (|has| |#2| (-1027)))) (-4079 ((|#2| $) 42 (|has| |#1| (-795)))) (-2244 (($ $ |#2|) 41 (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) |#2|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#2|))) 26 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-275 |#2|)) 25 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-594 |#2|) (-594 |#2|)) 23 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1218 (((-110) $ $) 14)) (-2247 (((-110) |#2| $) 45 (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2250 (((-594 |#2|) $) 48)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-4078 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2019 (((-719) (-1 (-110) |#2|) $) 31 (|has| $ (-6 -4269))) (((-719) |#2| $) 28 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4233 (((-805) $) 18 (|has| |#2| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#2|) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20 (|has| |#2| (-1027)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-563 |#1| |#2|) (-133) (-1027) (-1134)) (T -563))
+((-2250 (*1 *2 *1) (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1134)) (-5 *2 (-594 *4)))) (-2249 (*1 *2 *3 *1) (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1134)) (-5 *2 (-110)))) (-2248 (*1 *2 *1) (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1134)) (-5 *2 (-594 *3)))) (-2247 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-563 *4 *3)) (-4 *4 (-1027)) (-4 *3 (-1134)) (-4 *3 (-1027)) (-5 *2 (-110)))) (-2246 (*1 *2 *1) (-12 (-4 *1 (-563 *2 *3)) (-4 *3 (-1134)) (-4 *2 (-1027)) (-4 *2 (-795)))) (-2245 (*1 *2 *1) (-12 (-4 *1 (-563 *2 *3)) (-4 *3 (-1134)) (-4 *2 (-1027)) (-4 *2 (-795)))) (-4079 (*1 *2 *1) (-12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1027)) (-4 *3 (-795)) (-4 *2 (-1134)))) (-2244 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-563 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1134)))) (-2243 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1134)) (-5 *2 (-1185)))))
+(-13 (-468 |t#2|) (-270 |t#1| |t#2|) (-10 -8 (-15 -2250 ((-594 |t#2|) $)) (-15 -2249 ((-110) |t#1| $)) (-15 -2248 ((-594 |t#1|) $)) (IF (|has| |t#2| (-1027)) (IF (|has| $ (-6 -4269)) (-15 -2247 ((-110) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-795)) (PROGN (-15 -2246 (|t#1| $)) (-15 -2245 (|t#1| $)) (-15 -4079 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4270)) (PROGN (-15 -2244 ($ $ |t#2|)) (-15 -2243 ((-1185) $ |t#1| |t#1|))) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#2| (-1027)) ((-571 (-805)) -3810 (|has| |#2| (-1027)) (|has| |#2| (-571 (-805)))) ((-268 |#1| |#2|) . T) ((-270 |#1| |#2|) . T) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-468 |#2|) . T) ((-491 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-1027) |has| |#2| (-1027)) ((-1134) . T))
+((-4233 (((-805) $) 19) (((-126) $) 14) (($ (-126)) 13)))
+(((-564) (-13 (-571 (-805)) (-571 (-126)) (-10 -8 (-15 -4233 ($ (-126)))))) (T -564))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-126)) (-5 *1 (-564)))))
+(-13 (-571 (-805)) (-571 (-126)) (-10 -8 (-15 -4233 ($ (-126)))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1842 (((-3 $ #1="failed")) NIL (-3810 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-523)))))) (-1319 (((-3 $ "failed") $ $) NIL)) (-3496 (((-1179 (-637 |#1|))) NIL (|has| |#2| (-399 |#1|))) (((-1179 (-637 |#1|)) (-1179 $)) NIL (|has| |#2| (-348 |#1|)))) (-1795 (((-1179 $)) NIL (|has| |#2| (-348 |#1|)))) (-3815 (($) NIL T CONST)) (-1978 (((-3 (-2 (|:| |particular| $) (|:| -2071 (-594 $))) #1#)) NIL (-3810 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-523)))))) (-1769 (((-3 $ #1#)) NIL (-3810 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-523)))))) (-1857 (((-637 |#1|)) NIL (|has| |#2| (-399 |#1|))) (((-637 |#1|) (-1179 $)) NIL (|has| |#2| (-348 |#1|)))) (-1793 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-1855 (((-637 |#1|) $) NIL (|has| |#2| (-399 |#1|))) (((-637 |#1|) $ (-1179 $)) NIL (|has| |#2| (-348 |#1|)))) (-2430 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-523)))))) (-1972 (((-1092 (-887 |#1|))) NIL (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-344))))) (-2433 (($ $ (-860)) NIL)) (-1791 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-1771 (((-1092 |#1|) $) NIL (-3810 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-523)))))) (-1859 ((|#1|) NIL (|has| |#2| (-399 |#1|))) ((|#1| (-1179 $)) NIL (|has| |#2| (-348 |#1|)))) (-1789 (((-1092 |#1|) $) NIL (|has| |#2| (-348 |#1|)))) (-1783 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1861 (($ (-1179 |#1|)) NIL (|has| |#2| (-399 |#1|))) (($ (-1179 |#1|) (-1179 $)) NIL (|has| |#2| (-348 |#1|)))) (-3741 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-523)))))) (-3368 (((-860)) NIL (|has| |#2| (-348 |#1|)))) (-1780 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2458 (($ $ (-860)) NIL)) (-1776 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1774 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1778 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1979 (((-3 (-2 (|:| |particular| $) (|:| -2071 (-594 $))) #1#)) NIL (-3810 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-523)))))) (-1770 (((-3 $ #1#)) NIL (-3810 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-523)))))) (-1858 (((-637 |#1|)) NIL (|has| |#2| (-399 |#1|))) (((-637 |#1|) (-1179 $)) NIL (|has| |#2| (-348 |#1|)))) (-1794 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-1856 (((-637 |#1|) $) NIL (|has| |#2| (-399 |#1|))) (((-637 |#1|) $ (-1179 $)) NIL (|has| |#2| (-348 |#1|)))) (-2431 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-523)))))) (-1976 (((-1092 (-887 |#1|))) NIL (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-344))))) (-2432 (($ $ (-860)) NIL)) (-1792 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-1772 (((-1092 |#1|) $) NIL (-3810 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-523)))))) (-1860 ((|#1|) NIL (|has| |#2| (-399 |#1|))) ((|#1| (-1179 $)) NIL (|has| |#2| (-348 |#1|)))) (-1790 (((-1092 |#1|) $) NIL (|has| |#2| (-348 |#1|)))) (-1784 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3513 (((-1081) $) NIL)) (-1775 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1777 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1779 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3514 (((-1045) $) NIL)) (-1782 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-4078 ((|#1| $ (-516)) NIL (|has| |#2| (-399 |#1|)))) (-3497 (((-637 |#1|) (-1179 $)) NIL (|has| |#2| (-399 |#1|))) (((-1179 |#1|) $) NIL (|has| |#2| (-399 |#1|))) (((-637 |#1|) (-1179 $) (-1179 $)) NIL (|has| |#2| (-348 |#1|))) (((-1179 |#1|) $ (-1179 $)) NIL (|has| |#2| (-348 |#1|)))) (-4246 (($ (-1179 |#1|)) NIL (|has| |#2| (-399 |#1|))) (((-1179 |#1|) $) NIL (|has| |#2| (-399 |#1|)))) (-1964 (((-594 (-887 |#1|))) NIL (|has| |#2| (-399 |#1|))) (((-594 (-887 |#1|)) (-1179 $)) NIL (|has| |#2| (-348 |#1|)))) (-2620 (($ $ $) NIL)) (-1788 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-4233 (((-805) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2071 (((-1179 $)) NIL (|has| |#2| (-399 |#1|)))) (-1773 (((-594 (-1179 |#1|))) NIL (-3810 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-523)))))) (-2621 (($ $ $ $) NIL)) (-1786 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2814 (($ (-637 |#1|) $) NIL (|has| |#2| (-399 |#1|)))) (-2619 (($ $ $) NIL)) (-1787 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1785 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1781 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2920 (($) NIL T CONST)) (-3317 (((-110) $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) 24)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-565 |#1| |#2|) (-13 (-693 |#1|) (-571 |#2|) (-10 -8 (-15 -4233 ($ |#2|)) (IF (|has| |#2| (-399 |#1|)) (-6 (-399 |#1|)) |%noBranch|) (IF (|has| |#2| (-348 |#1|)) (-6 (-348 |#1|)) |%noBranch|))) (-162) (-693 |#1|)) (T -565))
+((-4233 (*1 *1 *2) (-12 (-4 *3 (-162)) (-5 *1 (-565 *3 *2)) (-4 *2 (-693 *3)))))
+(-13 (-693 |#1|) (-571 |#2|) (-10 -8 (-15 -4233 ($ |#2|)) (IF (|has| |#2| (-399 |#1|)) (-6 (-399 |#1|)) |%noBranch|) (IF (|has| |#2| (-348 |#1|)) (-6 (-348 |#1|)) |%noBranch|)))
+((-2828 (((-110) $ $) NIL)) (-1763 (((-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) $ (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) 33)) (-3879 (($ (-594 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)))) NIL) (($) NIL)) (-2243 (((-1185) $ (-1081) (-1081)) NIL (|has| $ (-6 -4270)))) (-1217 (((-110) $ (-719)) NIL)) (-4066 ((|#1| $ (-1081) |#1|) 43)) (-1581 (($ (-1 (-110) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-3992 (($ (-1 (-110) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-2251 (((-3 |#1| #1="failed") (-1081) $) 46)) (-3815 (($) NIL T CONST)) (-1767 (($ $ (-1081)) 24)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1027))))) (-3684 (((-3 |#1| #1#) (-1081) $) 47) (($ (-1 (-110) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL (|has| $ (-6 -4269))) (($ (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) $) NIL (|has| $ (-6 -4269)))) (-3685 (($ (-1 (-110) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL (|has| $ (-6 -4269))) (($ (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1027))))) (-4121 (((-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL (|has| $ (-6 -4269))) (((-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $ (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $ (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1027))))) (-1764 (((-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) $) 32)) (-1587 ((|#1| $ (-1081) |#1|) NIL (|has| $ (-6 -4270)))) (-3372 ((|#1| $ (-1081)) NIL)) (-2018 (((-594 |#1|) $) NIL (|has| $ (-6 -4269))) (((-594 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-2290 (($ $) 48)) (-1768 (($ (-369)) 22) (($ (-369) (-1081)) 21)) (-3824 (((-369) $) 34)) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-1081) $) NIL (|has| (-1081) (-795)))) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269))) (((-594 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (((-110) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1027))))) (-2246 (((-1081) $) NIL (|has| (-1081) (-795)))) (-2022 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL)) (-2678 (((-594 (-1081)) $) 39)) (-2252 (((-110) (-1081) $) NIL)) (-1765 (((-1081) $) 35)) (-1280 (((-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) $) NIL)) (-3889 (($ (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) $) NIL)) (-2248 (((-594 (-1081)) $) NIL)) (-2249 (((-110) (-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4079 ((|#1| $) NIL (|has| (-1081) (-795)))) (-1350 (((-3 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) "failed") (-1 (-110) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL)) (-2244 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-1281 (((-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) $) NIL)) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) (-594 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)))) NIL (-12 (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-291 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)))) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1027)))) (($ $ (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) NIL (-12 (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-291 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)))) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1027)))) (($ $ (-275 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)))) NIL (-12 (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-291 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)))) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1027)))) (($ $ (-594 (-275 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))))) NIL (-12 (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-291 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)))) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2250 (((-594 |#1|) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) 37)) (-4078 ((|#1| $ (-1081) |#1|) NIL) ((|#1| $ (-1081)) 42)) (-1473 (($ (-594 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)))) NIL) (($) NIL)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (((-719) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1027)))) (((-719) (-1 (-110) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) NIL (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-572 (-505))))) (-3804 (($ (-594 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)))) NIL)) (-4233 (((-805) $) 20)) (-1766 (($ $) 25)) (-1282 (($ (-594 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)))) NIL)) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 19)) (-4232 (((-719) $) 41 (|has| $ (-6 -4269)))))
+(((-566 |#1|) (-13 (-346 (-369) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) (-1111 (-1081) |#1|) (-10 -8 (-6 -4269) (-15 -2290 ($ $)))) (-1027)) (T -566))
+((-2290 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-1027)))))
+(-13 (-346 (-369) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) (-1111 (-1081) |#1|) (-10 -8 (-6 -4269) (-15 -2290 ($ $))))
+((-3516 (((-110) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) $) 15)) (-2678 (((-594 |#2|) $) 19)) (-2252 (((-110) |#2| $) 12)))
+(((-567 |#1| |#2| |#3|) (-10 -8 (-15 -2678 ((-594 |#2|) |#1|)) (-15 -2252 ((-110) |#2| |#1|)) (-15 -3516 ((-110) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) |#1|))) (-568 |#2| |#3|) (-1027) (-1027)) (T -567))
+NIL
+(-10 -8 (-15 -2678 ((-594 |#2|) |#1|)) (-15 -2252 ((-110) |#2| |#1|)) (-15 -3516 ((-110) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) |#1|)))
+((-2828 (((-110) $ $) 19 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (-1217 (((-110) $ (-719)) 8)) (-1581 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 45 (|has| $ (-6 -4269)))) (-3992 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 55 (|has| $ (-6 -4269)))) (-2251 (((-3 |#2| "failed") |#1| $) 61)) (-3815 (($) 7 T CONST)) (-1349 (($ $) 58 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| $ (-6 -4269))))) (-3684 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 46 (|has| $ (-6 -4269))) (((-3 |#2| "failed") |#1| $) 62)) (-3685 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 54 (|has| $ (-6 -4269)))) (-4121 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 56 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 53 (|has| $ (-6 -4269))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 52 (|has| $ (-6 -4269)))) (-2018 (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 30 (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) 9)) (-2445 (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| $ (-6 -4269))))) (-2022 (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 35)) (-3998 (((-110) $ (-719)) 10)) (-3513 (((-1081) $) 22 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (-2678 (((-594 |#1|) $) 63)) (-2252 (((-110) |#1| $) 64)) (-1280 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 39)) (-3889 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 40)) (-3514 (((-1045) $) 21 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (-1350 (((-3 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) "failed") (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 51)) (-1281 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 41)) (-2020 (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))))) 26 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-275 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) 25 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 24 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) 23 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))))) (-1218 (((-110) $ $) 14)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-1473 (($) 49) (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) 48)) (-2019 (((-719) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 31 (|has| $ (-6 -4269))) (((-719) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4246 (((-505) $) 59 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-572 (-505))))) (-3804 (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) 50)) (-4233 (((-805) $) 18 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-571 (-805))))) (-1282 (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) 42)) (-2021 (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-568 |#1| |#2|) (-133) (-1027) (-1027)) (T -568))
+((-2252 (*1 *2 *3 *1) (-12 (-4 *1 (-568 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-5 *2 (-110)))) (-2678 (*1 *2 *1) (-12 (-4 *1 (-568 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-5 *2 (-594 *3)))) (-3684 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-568 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))) (-2251 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-568 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))))
+(-13 (-212 (-2 (|:| -4139 |t#1|) (|:| -2131 |t#2|))) (-10 -8 (-15 -2252 ((-110) |t#1| $)) (-15 -2678 ((-594 |t#1|) $)) (-15 -3684 ((-3 |t#2| "failed") |t#1| $)) (-15 -2251 ((-3 |t#2| "failed") |t#1| $))))
+(((-33) . T) ((-104 #1=(-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T) ((-99) |has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) ((-571 (-805)) -3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-571 (-805)))) ((-144 #1#) . T) ((-572 (-505)) |has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-572 (-505))) ((-212 #1#) . T) ((-218 #1#) . T) ((-291 #1#) -12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))) ((-468 #1#) . T) ((-491 #1# #1#) -12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))) ((-1027) |has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) ((-1134) . T))
+((-2828 (((-110) $ $) NIL)) (-2253 (((-3 (-1098) "failed") $) 37)) (-1320 (((-1185) $ (-719)) 26)) (-3698 (((-719) $) 25)) (-2273 (((-111) $) 12)) (-3824 (((-1098) $) 20)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-3513 (((-1081) $) NIL)) (-2254 (($ (-111) (-594 |#1|) (-719)) 30) (($ (-1098)) 31)) (-2893 (((-110) $ (-111)) 18) (((-110) $ (-1098)) 16)) (-2863 (((-719) $) 22)) (-3514 (((-1045) $) NIL)) (-4246 (((-831 (-516)) $) 77 (|has| |#1| (-572 (-831 (-516))))) (((-831 (-359)) $) 84 (|has| |#1| (-572 (-831 (-359))))) (((-505) $) 69 (|has| |#1| (-572 (-505))))) (-4233 (((-805) $) 55)) (-2255 (((-594 |#1|) $) 24)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 41)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 42)))
+(((-569 |#1|) (-13 (-129) (-825 |#1|) (-10 -8 (-15 -3824 ((-1098) $)) (-15 -2273 ((-111) $)) (-15 -2255 ((-594 |#1|) $)) (-15 -2863 ((-719) $)) (-15 -2254 ($ (-111) (-594 |#1|) (-719))) (-15 -2254 ($ (-1098))) (-15 -2253 ((-3 (-1098) "failed") $)) (-15 -2893 ((-110) $ (-111))) (-15 -2893 ((-110) $ (-1098))) (IF (|has| |#1| (-572 (-505))) (-6 (-572 (-505))) |%noBranch|))) (-795)) (T -569))
+((-3824 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-569 *3)) (-4 *3 (-795)))) (-2273 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-569 *3)) (-4 *3 (-795)))) (-2255 (*1 *2 *1) (-12 (-5 *2 (-594 *3)) (-5 *1 (-569 *3)) (-4 *3 (-795)))) (-2863 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-569 *3)) (-4 *3 (-795)))) (-2254 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-111)) (-5 *3 (-594 *5)) (-5 *4 (-719)) (-4 *5 (-795)) (-5 *1 (-569 *5)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-569 *3)) (-4 *3 (-795)))) (-2253 (*1 *2 *1) (|partial| -12 (-5 *2 (-1098)) (-5 *1 (-569 *3)) (-4 *3 (-795)))) (-2893 (*1 *2 *1 *3) (-12 (-5 *3 (-111)) (-5 *2 (-110)) (-5 *1 (-569 *4)) (-4 *4 (-795)))) (-2893 (*1 *2 *1 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-110)) (-5 *1 (-569 *4)) (-4 *4 (-795)))))
+(-13 (-129) (-825 |#1|) (-10 -8 (-15 -3824 ((-1098) $)) (-15 -2273 ((-111) $)) (-15 -2255 ((-594 |#1|) $)) (-15 -2863 ((-719) $)) (-15 -2254 ($ (-111) (-594 |#1|) (-719))) (-15 -2254 ($ (-1098))) (-15 -2253 ((-3 (-1098) "failed") $)) (-15 -2893 ((-110) $ (-111))) (-15 -2893 ((-110) $ (-1098))) (IF (|has| |#1| (-572 (-505))) (-6 (-572 (-505))) |%noBranch|)))
+((-2256 (((-569 |#2|) |#1|) 15)) (-2257 (((-3 |#1| "failed") (-569 |#2|)) 19)))
+(((-570 |#1| |#2|) (-10 -7 (-15 -2256 ((-569 |#2|) |#1|)) (-15 -2257 ((-3 |#1| "failed") (-569 |#2|)))) (-795) (-795)) (T -570))
+((-2257 (*1 *2 *3) (|partial| -12 (-5 *3 (-569 *4)) (-4 *4 (-795)) (-4 *2 (-795)) (-5 *1 (-570 *2 *4)))) (-2256 (*1 *2 *3) (-12 (-5 *2 (-569 *4)) (-5 *1 (-570 *3 *4)) (-4 *3 (-795)) (-4 *4 (-795)))))
+(-10 -7 (-15 -2256 ((-569 |#2|) |#1|)) (-15 -2257 ((-3 |#1| "failed") (-569 |#2|))))
+((-4233 ((|#1| $) 6)))
+(((-571 |#1|) (-133) (-1134)) (T -571))
+((-4233 (*1 *2 *1) (-12 (-4 *1 (-571 *2)) (-4 *2 (-1134)))))
+(-13 (-10 -8 (-15 -4233 (|t#1| $))))
+((-4246 ((|#1| $) 6)))
+(((-572 |#1|) (-133) (-1134)) (T -572))
+((-4246 (*1 *2 *1) (-12 (-4 *1 (-572 *2)) (-4 *2 (-1134)))))
+(-13 (-10 -8 (-15 -4246 (|t#1| $))))
+((-2258 (((-3 (-1092 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 (-386 |#2|) |#2|)) 15) (((-3 (-1092 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|)) 16)))
+(((-573 |#1| |#2|) (-10 -7 (-15 -2258 ((-3 (-1092 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|))) (-15 -2258 ((-3 (-1092 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 (-386 |#2|) |#2|)))) (-13 (-140) (-27) (-975 (-516)) (-975 (-388 (-516)))) (-1155 |#1|)) (T -573))
+((-2258 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-386 *6) *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-140) (-27) (-975 (-516)) (-975 (-388 (-516))))) (-5 *2 (-1092 (-388 *6))) (-5 *1 (-573 *5 *6)) (-5 *3 (-388 *6)))) (-2258 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-140) (-27) (-975 (-516)) (-975 (-388 (-516))))) (-4 *5 (-1155 *4)) (-5 *2 (-1092 (-388 *5))) (-5 *1 (-573 *4 *5)) (-5 *3 (-388 *5)))))
+(-10 -7 (-15 -2258 ((-3 (-1092 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|))) (-15 -2258 ((-3 (-1092 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 (-386 |#2|) |#2|))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3905 (((-516) $) NIL (|has| |#1| (-793)))) (-3815 (($) NIL T CONST)) (-3741 (((-3 $ "failed") $) NIL)) (-3460 (((-110) $) NIL (|has| |#1| (-793)))) (-2436 (((-110) $) NIL)) (-3262 ((|#1| $) 13)) (-3461 (((-110) $) NIL (|has| |#1| (-793)))) (-3596 (($ $ $) NIL (|has| |#1| (-793)))) (-3597 (($ $ $) NIL (|has| |#1| (-793)))) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-3261 ((|#3| $) 15)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ |#2|) NIL)) (-3385 (((-719)) 20)) (-3661 (($ $) NIL (|has| |#1| (-793)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) 12 T CONST)) (-2826 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-793)))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2948 (((-110) $ $) NIL (|has| |#1| (-793)))) (-4224 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-574 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (-15 -4224 ($ $ |#3|)) (-15 -4224 ($ |#1| |#3|)) (-15 -3262 (|#1| $)) (-15 -3261 (|#3| $)))) (-37 |#2|) (-162) (|SubsetCategory| (-675) |#2|)) (T -574))
+((-4224 (*1 *1 *1 *2) (-12 (-4 *4 (-162)) (-5 *1 (-574 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-675) *4)))) (-4224 (*1 *1 *2 *3) (-12 (-4 *4 (-162)) (-5 *1 (-574 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-675) *4)))) (-3262 (*1 *2 *1) (-12 (-4 *3 (-162)) (-4 *2 (-37 *3)) (-5 *1 (-574 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-675) *3)))) (-3261 (*1 *2 *1) (-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-675) *4)) (-5 *1 (-574 *3 *4 *2)) (-4 *3 (-37 *4)))))
+(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (-15 -4224 ($ $ |#3|)) (-15 -4224 ($ |#1| |#3|)) (-15 -3262 (|#1| $)) (-15 -3261 (|#3| $))))
+((-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ |#2|) 10)))
+(((-575 |#1| |#2|) (-10 -8 (-15 -4233 (|#1| |#2|)) (-15 -4233 (|#1| (-516))) (-15 -4233 ((-805) |#1|))) (-576 |#2|) (-984)) (T -575))
+NIL
+(-10 -8 (-15 -4233 (|#1| |#2|)) (-15 -4233 (|#1| (-516))) (-15 -4233 ((-805) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3741 (((-3 $ "failed") $) 34)) (-2436 (((-110) $) 31)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ |#1|) 36)) (-3385 (((-719)) 29)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
+(((-576 |#1|) (-133) (-984)) (T -576))
+((-4233 (*1 *1 *2) (-12 (-4 *1 (-576 *2)) (-4 *2 (-984)))))
+(-13 (-984) (-599 |t#1|) (-10 -8 (-15 -4233 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-805)) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-675) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-2259 ((|#2| |#2| (-1098) (-1098)) 18)))
+(((-577 |#1| |#2|) (-10 -7 (-15 -2259 (|#2| |#2| (-1098) (-1098)))) (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516))) (-13 (-1120) (-901) (-29 |#1|))) (T -577))
+((-2259 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516)))) (-5 *1 (-577 *4 *2)) (-4 *2 (-13 (-1120) (-901) (-29 *4))))))
+(-10 -7 (-15 -2259 (|#2| |#2| (-1098) (-1098))))
+((-2828 (((-110) $ $) 56)) (-3462 (((-110) $) 52)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-2260 ((|#1| $) 49)) (-1319 (((-3 $ "failed") $ $) NIL)) (-1655 (((-110) $ $) NIL (|has| |#1| (-344)))) (-4030 (((-2 (|:| -1834 $) (|:| -1833 (-388 |#2|))) (-388 |#2|)) 97 (|has| |#1| (-344)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-516) #1="failed") $) NIL (|has| |#1| (-975 (-516)))) (((-3 (-388 (-516)) #1#) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-3 |#1| #1#) $) 85) (((-3 |#2| #1#) $) 81)) (-3431 (((-516) $) NIL (|has| |#1| (-975 (-516)))) (((-388 (-516)) $) NIL (|has| |#1| (-975 (-388 (-516))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2824 (($ $ $) NIL (|has| |#1| (-344)))) (-4235 (($ $) 24)) (-3741 (((-3 $ "failed") $) 75)) (-2823 (($ $ $) NIL (|has| |#1| (-344)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL (|has| |#1| (-344)))) (-4050 (((-516) $) 19)) (-2436 (((-110) $) NIL)) (-1652 (((-3 (-594 $) #2="failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-4213 (((-110) $) 36)) (-3157 (($ |#1| (-516)) 21)) (-3449 ((|#1| $) 51)) (-1963 (($ (-594 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#1| (-344)))) (-3419 (($ (-594 $)) NIL (|has| |#1| (-344))) (($ $ $) 87 (|has| |#1| (-344)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 100 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#1| (-344)))) (-3740 (((-3 $ "failed") $ $) 79)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-1654 (((-719) $) 99 (|has| |#1| (-344)))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 98 (|has| |#1| (-344)))) (-4089 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-1098)) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-4223 (((-516) $) 34)) (-4246 (((-388 |#2|) $) 42)) (-4233 (((-805) $) 62) (($ (-516)) 32) (($ $) NIL) (($ (-388 (-516))) NIL (|has| |#1| (-975 (-388 (-516))))) (($ |#1|) 31) (($ |#2|) 22)) (-3959 ((|#1| $ (-516)) 63)) (-2965 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3385 (((-719)) 29)) (-2117 (((-110) $ $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 9 T CONST)) (-2927 (($) 12 T CONST)) (-2932 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-1098)) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-3317 (((-110) $ $) 17)) (-4116 (($ $) 46) (($ $ $) NIL)) (-4118 (($ $ $) 76)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 26) (($ $ $) 44)))
+(((-578 |#1| |#2|) (-13 (-214 |#2|) (-523) (-572 (-388 |#2|)) (-393 |#1|) (-975 |#2|) (-10 -8 (-15 -4213 ((-110) $)) (-15 -4223 ((-516) $)) (-15 -4050 ((-516) $)) (-15 -4235 ($ $)) (-15 -3449 (|#1| $)) (-15 -2260 (|#1| $)) (-15 -3959 (|#1| $ (-516))) (-15 -3157 ($ |#1| (-516))) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-6 (-289)) (-15 -4030 ((-2 (|:| -1834 $) (|:| -1833 (-388 |#2|))) (-388 |#2|)))) |%noBranch|))) (-523) (-1155 |#1|)) (T -578))
+((-4213 (*1 *2 *1) (-12 (-4 *3 (-523)) (-5 *2 (-110)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1155 *3)))) (-4223 (*1 *2 *1) (-12 (-4 *3 (-523)) (-5 *2 (-516)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1155 *3)))) (-4050 (*1 *2 *1) (-12 (-4 *3 (-523)) (-5 *2 (-516)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1155 *3)))) (-4235 (*1 *1 *1) (-12 (-4 *2 (-523)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1155 *2)))) (-3449 (*1 *2 *1) (-12 (-4 *2 (-523)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1155 *2)))) (-2260 (*1 *2 *1) (-12 (-4 *2 (-523)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1155 *2)))) (-3959 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-4 *2 (-523)) (-5 *1 (-578 *2 *4)) (-4 *4 (-1155 *2)))) (-3157 (*1 *1 *2 *3) (-12 (-5 *3 (-516)) (-4 *2 (-523)) (-5 *1 (-578 *2 *4)) (-4 *4 (-1155 *2)))) (-4030 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *4 (-523)) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| -1834 (-578 *4 *5)) (|:| -1833 (-388 *5)))) (-5 *1 (-578 *4 *5)) (-5 *3 (-388 *5)))))
+(-13 (-214 |#2|) (-523) (-572 (-388 |#2|)) (-393 |#1|) (-975 |#2|) (-10 -8 (-15 -4213 ((-110) $)) (-15 -4223 ((-516) $)) (-15 -4050 ((-516) $)) (-15 -4235 ($ $)) (-15 -3449 (|#1| $)) (-15 -2260 (|#1| $)) (-15 -3959 (|#1| $ (-516))) (-15 -3157 ($ |#1| (-516))) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-6 (-289)) (-15 -4030 ((-2 (|:| -1834 $) (|:| -1833 (-388 |#2|))) (-388 |#2|)))) |%noBranch|)))
+((-3964 (((-594 |#6|) (-594 |#4|) (-110)) 47)) (-2261 ((|#6| |#6|) 40)))
+(((-579 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2261 (|#6| |#6|)) (-15 -3964 ((-594 |#6|) (-594 |#4|) (-110)))) (-432) (-741) (-795) (-997 |#1| |#2| |#3|) (-1002 |#1| |#2| |#3| |#4|) (-1035 |#1| |#2| |#3| |#4|)) (T -579))
+((-3964 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *8)) (-5 *4 (-110)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-594 *10)) (-5 *1 (-579 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1002 *5 *6 *7 *8)) (-4 *10 (-1035 *5 *6 *7 *8)))) (-2261 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-5 *1 (-579 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1002 *3 *4 *5 *6)) (-4 *2 (-1035 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2261 (|#6| |#6|)) (-15 -3964 ((-594 |#6|) (-594 |#4|) (-110))))
+((-2262 (((-110) |#3| (-719) (-594 |#3|)) 23)) (-2263 (((-3 (-2 (|:| |polfac| (-594 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-594 (-1092 |#3|)))) "failed") |#3| (-594 (-1092 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2701 (-594 (-2 (|:| |irr| |#4|) (|:| -2421 (-516)))))) (-594 |#3|) (-594 |#1|) (-594 |#3|)) 55)))
+(((-580 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2262 ((-110) |#3| (-719) (-594 |#3|))) (-15 -2263 ((-3 (-2 (|:| |polfac| (-594 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-594 (-1092 |#3|)))) "failed") |#3| (-594 (-1092 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2701 (-594 (-2 (|:| |irr| |#4|) (|:| -2421 (-516)))))) (-594 |#3|) (-594 |#1|) (-594 |#3|)))) (-795) (-741) (-289) (-891 |#3| |#2| |#1|)) (T -580))
+((-2263 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2701 (-594 (-2 (|:| |irr| *10) (|:| -2421 (-516))))))) (-5 *6 (-594 *3)) (-5 *7 (-594 *8)) (-4 *8 (-795)) (-4 *3 (-289)) (-4 *10 (-891 *3 *9 *8)) (-4 *9 (-741)) (-5 *2 (-2 (|:| |polfac| (-594 *10)) (|:| |correct| *3) (|:| |corrfact| (-594 (-1092 *3))))) (-5 *1 (-580 *8 *9 *3 *10)) (-5 *4 (-594 (-1092 *3))))) (-2262 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-719)) (-5 *5 (-594 *3)) (-4 *3 (-289)) (-4 *6 (-795)) (-4 *7 (-741)) (-5 *2 (-110)) (-5 *1 (-580 *6 *7 *3 *8)) (-4 *8 (-891 *3 *7 *6)))))
+(-10 -7 (-15 -2262 ((-110) |#3| (-719) (-594 |#3|))) (-15 -2263 ((-3 (-2 (|:| |polfac| (-594 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-594 (-1092 |#3|)))) "failed") |#3| (-594 (-1092 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2701 (-594 (-2 (|:| |irr| |#4|) (|:| -2421 (-516)))))) (-594 |#3|) (-594 |#1|) (-594 |#3|))))
+((-2828 (((-110) $ $) NIL)) (-4210 (((-594 |#1|) $) NIL)) (-3815 (($) NIL T CONST)) (-3741 (((-3 $ "failed") $) NIL)) (-2436 (((-110) $) NIL)) (-4212 (($ $) 67)) (-4218 (((-615 |#1| |#2|) $) 52)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) 70)) (-2264 (((-594 (-275 |#2|)) $ $) 33)) (-3514 (((-1045) $) NIL)) (-4219 (($ (-615 |#1| |#2|)) 48)) (-3273 (($ $ $) NIL)) (-2620 (($ $ $) NIL)) (-4233 (((-805) $) 58) (((-1193 |#1| |#2|) $) NIL) (((-1198 |#1| |#2|) $) 66)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2927 (($) 53 T CONST)) (-2265 (((-594 (-2 (|:| |k| (-622 |#1|)) (|:| |c| |#2|))) $) 31)) (-2266 (((-594 (-615 |#1| |#2|)) (-594 |#1|)) 65)) (-2926 (((-594 (-2 (|:| |k| (-834 |#1|)) (|:| |c| |#2|))) $) 37)) (-3317 (((-110) $ $) 54)) (-4224 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (* (($ $ $) 44)))
+(((-581 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -4219 ($ (-615 |#1| |#2|))) (-15 -4218 ((-615 |#1| |#2|) $)) (-15 -2926 ((-594 (-2 (|:| |k| (-834 |#1|)) (|:| |c| |#2|))) $)) (-15 -4233 ((-1193 |#1| |#2|) $)) (-15 -4233 ((-1198 |#1| |#2|) $)) (-15 -4212 ($ $)) (-15 -4210 ((-594 |#1|) $)) (-15 -2266 ((-594 (-615 |#1| |#2|)) (-594 |#1|))) (-15 -2265 ((-594 (-2 (|:| |k| (-622 |#1|)) (|:| |c| |#2|))) $)) (-15 -2264 ((-594 (-275 |#2|)) $ $)))) (-795) (-13 (-162) (-666 (-388 (-516)))) (-860)) (T -581))
+((-4219 (*1 *1 *2) (-12 (-5 *2 (-615 *3 *4)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-516))))) (-5 *1 (-581 *3 *4 *5)) (-14 *5 (-860)))) (-4218 (*1 *2 *1) (-12 (-5 *2 (-615 *3 *4)) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-516))))) (-14 *5 (-860)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-594 (-2 (|:| |k| (-834 *3)) (|:| |c| *4)))) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-516))))) (-14 *5 (-860)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-516))))) (-14 *5 (-860)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-1198 *3 *4)) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-516))))) (-14 *5 (-860)))) (-4212 (*1 *1 *1) (-12 (-5 *1 (-581 *2 *3 *4)) (-4 *2 (-795)) (-4 *3 (-13 (-162) (-666 (-388 (-516))))) (-14 *4 (-860)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-594 *3)) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-516))))) (-14 *5 (-860)))) (-2266 (*1 *2 *3) (-12 (-5 *3 (-594 *4)) (-4 *4 (-795)) (-5 *2 (-594 (-615 *4 *5))) (-5 *1 (-581 *4 *5 *6)) (-4 *5 (-13 (-162) (-666 (-388 (-516))))) (-14 *6 (-860)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-594 (-2 (|:| |k| (-622 *3)) (|:| |c| *4)))) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-516))))) (-14 *5 (-860)))) (-2264 (*1 *2 *1 *1) (-12 (-5 *2 (-594 (-275 *4))) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-516))))) (-14 *5 (-860)))))
+(-13 (-453) (-10 -8 (-15 -4219 ($ (-615 |#1| |#2|))) (-15 -4218 ((-615 |#1| |#2|) $)) (-15 -2926 ((-594 (-2 (|:| |k| (-834 |#1|)) (|:| |c| |#2|))) $)) (-15 -4233 ((-1193 |#1| |#2|) $)) (-15 -4233 ((-1198 |#1| |#2|) $)) (-15 -4212 ($ $)) (-15 -4210 ((-594 |#1|) $)) (-15 -2266 ((-594 (-615 |#1| |#2|)) (-594 |#1|))) (-15 -2265 ((-594 (-2 (|:| |k| (-622 |#1|)) (|:| |c| |#2|))) $)) (-15 -2264 ((-594 (-275 |#2|)) $ $))))
+((-3964 (((-594 (-1069 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|)))) (-594 (-728 |#1| (-806 |#2|))) (-110)) 72) (((-594 (-981 |#1| |#2|)) (-594 (-728 |#1| (-806 |#2|))) (-110)) 58)) (-2267 (((-110) (-594 (-728 |#1| (-806 |#2|)))) 23)) (-2271 (((-594 (-1069 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|)))) (-594 (-728 |#1| (-806 |#2|))) (-110)) 71)) (-2270 (((-594 (-981 |#1| |#2|)) (-594 (-728 |#1| (-806 |#2|))) (-110)) 57)) (-2269 (((-594 (-728 |#1| (-806 |#2|))) (-594 (-728 |#1| (-806 |#2|)))) 27)) (-2268 (((-3 (-594 (-728 |#1| (-806 |#2|))) "failed") (-594 (-728 |#1| (-806 |#2|)))) 26)))
+(((-582 |#1| |#2|) (-10 -7 (-15 -2267 ((-110) (-594 (-728 |#1| (-806 |#2|))))) (-15 -2268 ((-3 (-594 (-728 |#1| (-806 |#2|))) "failed") (-594 (-728 |#1| (-806 |#2|))))) (-15 -2269 ((-594 (-728 |#1| (-806 |#2|))) (-594 (-728 |#1| (-806 |#2|))))) (-15 -2270 ((-594 (-981 |#1| |#2|)) (-594 (-728 |#1| (-806 |#2|))) (-110))) (-15 -2271 ((-594 (-1069 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|)))) (-594 (-728 |#1| (-806 |#2|))) (-110))) (-15 -3964 ((-594 (-981 |#1| |#2|)) (-594 (-728 |#1| (-806 |#2|))) (-110))) (-15 -3964 ((-594 (-1069 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|)))) (-594 (-728 |#1| (-806 |#2|))) (-110)))) (-432) (-594 (-1098))) (T -582))
+((-3964 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-594 (-1098))) (-5 *2 (-594 (-1069 *5 (-502 (-806 *6)) (-806 *6) (-728 *5 (-806 *6))))) (-5 *1 (-582 *5 *6)))) (-3964 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-594 (-1098))) (-5 *2 (-594 (-981 *5 *6))) (-5 *1 (-582 *5 *6)))) (-2271 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-594 (-1098))) (-5 *2 (-594 (-1069 *5 (-502 (-806 *6)) (-806 *6) (-728 *5 (-806 *6))))) (-5 *1 (-582 *5 *6)))) (-2270 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-594 (-1098))) (-5 *2 (-594 (-981 *5 *6))) (-5 *1 (-582 *5 *6)))) (-2269 (*1 *2 *2) (-12 (-5 *2 (-594 (-728 *3 (-806 *4)))) (-4 *3 (-432)) (-14 *4 (-594 (-1098))) (-5 *1 (-582 *3 *4)))) (-2268 (*1 *2 *2) (|partial| -12 (-5 *2 (-594 (-728 *3 (-806 *4)))) (-4 *3 (-432)) (-14 *4 (-594 (-1098))) (-5 *1 (-582 *3 *4)))) (-2267 (*1 *2 *3) (-12 (-5 *3 (-594 (-728 *4 (-806 *5)))) (-4 *4 (-432)) (-14 *5 (-594 (-1098))) (-5 *2 (-110)) (-5 *1 (-582 *4 *5)))))
+(-10 -7 (-15 -2267 ((-110) (-594 (-728 |#1| (-806 |#2|))))) (-15 -2268 ((-3 (-594 (-728 |#1| (-806 |#2|))) "failed") (-594 (-728 |#1| (-806 |#2|))))) (-15 -2269 ((-594 (-728 |#1| (-806 |#2|))) (-594 (-728 |#1| (-806 |#2|))))) (-15 -2270 ((-594 (-981 |#1| |#2|)) (-594 (-728 |#1| (-806 |#2|))) (-110))) (-15 -2271 ((-594 (-1069 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|)))) (-594 (-728 |#1| (-806 |#2|))) (-110))) (-15 -3964 ((-594 (-981 |#1| |#2|)) (-594 (-728 |#1| (-806 |#2|))) (-110))) (-15 -3964 ((-594 (-1069 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|)))) (-594 (-728 |#1| (-806 |#2|))) (-110))))
+((-2273 (((-111) (-111)) 83)) (-2276 ((|#2| |#2|) 30)) (-3096 ((|#2| |#2| (-1019 |#2|)) 79) ((|#2| |#2| (-1098)) 52)) (-2274 ((|#2| |#2|) 29)) (-2275 ((|#2| |#2|) 31)) (-2272 (((-110) (-111)) 34)) (-2278 ((|#2| |#2|) 26)) (-2279 ((|#2| |#2|) 28)) (-2277 ((|#2| |#2|) 27)))
+(((-583 |#1| |#2|) (-10 -7 (-15 -2272 ((-110) (-111))) (-15 -2273 ((-111) (-111))) (-15 -2279 (|#2| |#2|)) (-15 -2278 (|#2| |#2|)) (-15 -2277 (|#2| |#2|)) (-15 -2276 (|#2| |#2|)) (-15 -2274 (|#2| |#2|)) (-15 -2275 (|#2| |#2|)) (-15 -3096 (|#2| |#2| (-1098))) (-15 -3096 (|#2| |#2| (-1019 |#2|)))) (-13 (-795) (-523)) (-13 (-402 |#1|) (-941) (-1120))) (T -583))
+((-3096 (*1 *2 *2 *3) (-12 (-5 *3 (-1019 *2)) (-4 *2 (-13 (-402 *4) (-941) (-1120))) (-4 *4 (-13 (-795) (-523))) (-5 *1 (-583 *4 *2)))) (-3096 (*1 *2 *2 *3) (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-795) (-523))) (-5 *1 (-583 *4 *2)) (-4 *2 (-13 (-402 *4) (-941) (-1120))))) (-2275 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-583 *3 *2)) (-4 *2 (-13 (-402 *3) (-941) (-1120))))) (-2274 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-583 *3 *2)) (-4 *2 (-13 (-402 *3) (-941) (-1120))))) (-2276 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-583 *3 *2)) (-4 *2 (-13 (-402 *3) (-941) (-1120))))) (-2277 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-583 *3 *2)) (-4 *2 (-13 (-402 *3) (-941) (-1120))))) (-2278 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-583 *3 *2)) (-4 *2 (-13 (-402 *3) (-941) (-1120))))) (-2279 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-583 *3 *2)) (-4 *2 (-13 (-402 *3) (-941) (-1120))))) (-2273 (*1 *2 *2) (-12 (-5 *2 (-111)) (-4 *3 (-13 (-795) (-523))) (-5 *1 (-583 *3 *4)) (-4 *4 (-13 (-402 *3) (-941) (-1120))))) (-2272 (*1 *2 *3) (-12 (-5 *3 (-111)) (-4 *4 (-13 (-795) (-523))) (-5 *2 (-110)) (-5 *1 (-583 *4 *5)) (-4 *5 (-13 (-402 *4) (-941) (-1120))))))
+(-10 -7 (-15 -2272 ((-110) (-111))) (-15 -2273 ((-111) (-111))) (-15 -2279 (|#2| |#2|)) (-15 -2278 (|#2| |#2|)) (-15 -2277 (|#2| |#2|)) (-15 -2276 (|#2| |#2|)) (-15 -2274 (|#2| |#2|)) (-15 -2275 (|#2| |#2|)) (-15 -3096 (|#2| |#2| (-1098))) (-15 -3096 (|#2| |#2| (-1019 |#2|))))
+((-3766 (($ $) 38)) (-3921 (($ $) 21)) (-3764 (($ $) 37)) (-3920 (($ $) 22)) (-3768 (($ $) 36)) (-3919 (($ $) 23)) (-3909 (($) 48)) (-4218 (($ $) 45)) (-2276 (($ $) 17)) (-3096 (($ $ (-1019 $)) 7) (($ $ (-1098)) 6)) (-4219 (($ $) 46)) (-2274 (($ $) 15)) (-2275 (($ $) 16)) (-3769 (($ $) 35)) (-3918 (($ $) 24)) (-3767 (($ $) 34)) (-3917 (($ $) 25)) (-3765 (($ $) 33)) (-3916 (($ $) 26)) (-3772 (($ $) 44)) (-3760 (($ $) 32)) (-3770 (($ $) 43)) (-3758 (($ $) 31)) (-3774 (($ $) 42)) (-3762 (($ $) 30)) (-3775 (($ $) 41)) (-3763 (($ $) 29)) (-3773 (($ $) 40)) (-3761 (($ $) 28)) (-3771 (($ $) 39)) (-3759 (($ $) 27)) (-2278 (($ $) 19)) (-2279 (($ $) 20)) (-2277 (($ $) 18)) (** (($ $ $) 47)))
+(((-584) (-133)) (T -584))
+((-2279 (*1 *1 *1) (-4 *1 (-584))) (-2278 (*1 *1 *1) (-4 *1 (-584))) (-2277 (*1 *1 *1) (-4 *1 (-584))) (-2276 (*1 *1 *1) (-4 *1 (-584))) (-2275 (*1 *1 *1) (-4 *1 (-584))) (-2274 (*1 *1 *1) (-4 *1 (-584))))
+(-13 (-901) (-1120) (-10 -8 (-15 -2279 ($ $)) (-15 -2278 ($ $)) (-15 -2277 ($ $)) (-15 -2276 ($ $)) (-15 -2275 ($ $)) (-15 -2274 ($ $))))
+(((-34) . T) ((-93) . T) ((-266) . T) ((-471) . T) ((-901) . T) ((-1120) . T) ((-1123) . T))
+((-2289 (((-460 |#1| |#2|) (-230 |#1| |#2|)) 53)) (-2282 (((-594 (-230 |#1| |#2|)) (-594 (-460 |#1| |#2|))) 68)) (-2283 (((-460 |#1| |#2|) (-594 (-460 |#1| |#2|)) (-806 |#1|)) 70) (((-460 |#1| |#2|) (-594 (-460 |#1| |#2|)) (-594 (-460 |#1| |#2|)) (-806 |#1|)) 69)) (-2280 (((-2 (|:| |gblist| (-594 (-230 |#1| |#2|))) (|:| |gvlist| (-594 (-516)))) (-594 (-460 |#1| |#2|))) 108)) (-2287 (((-594 (-460 |#1| |#2|)) (-806 |#1|) (-594 (-460 |#1| |#2|)) (-594 (-460 |#1| |#2|))) 83)) (-2281 (((-2 (|:| |glbase| (-594 (-230 |#1| |#2|))) (|:| |glval| (-594 (-516)))) (-594 (-230 |#1| |#2|))) 118)) (-2285 (((-1179 |#2|) (-460 |#1| |#2|) (-594 (-460 |#1| |#2|))) 58)) (-2284 (((-594 (-460 |#1| |#2|)) (-594 (-460 |#1| |#2|))) 41)) (-2288 (((-230 |#1| |#2|) (-230 |#1| |#2|) (-594 (-230 |#1| |#2|))) 50)) (-2286 (((-230 |#1| |#2|) (-594 |#2|) (-230 |#1| |#2|) (-594 (-230 |#1| |#2|))) 91)))
+(((-585 |#1| |#2|) (-10 -7 (-15 -2280 ((-2 (|:| |gblist| (-594 (-230 |#1| |#2|))) (|:| |gvlist| (-594 (-516)))) (-594 (-460 |#1| |#2|)))) (-15 -2281 ((-2 (|:| |glbase| (-594 (-230 |#1| |#2|))) (|:| |glval| (-594 (-516)))) (-594 (-230 |#1| |#2|)))) (-15 -2282 ((-594 (-230 |#1| |#2|)) (-594 (-460 |#1| |#2|)))) (-15 -2283 ((-460 |#1| |#2|) (-594 (-460 |#1| |#2|)) (-594 (-460 |#1| |#2|)) (-806 |#1|))) (-15 -2283 ((-460 |#1| |#2|) (-594 (-460 |#1| |#2|)) (-806 |#1|))) (-15 -2284 ((-594 (-460 |#1| |#2|)) (-594 (-460 |#1| |#2|)))) (-15 -2285 ((-1179 |#2|) (-460 |#1| |#2|) (-594 (-460 |#1| |#2|)))) (-15 -2286 ((-230 |#1| |#2|) (-594 |#2|) (-230 |#1| |#2|) (-594 (-230 |#1| |#2|)))) (-15 -2287 ((-594 (-460 |#1| |#2|)) (-806 |#1|) (-594 (-460 |#1| |#2|)) (-594 (-460 |#1| |#2|)))) (-15 -2288 ((-230 |#1| |#2|) (-230 |#1| |#2|) (-594 (-230 |#1| |#2|)))) (-15 -2289 ((-460 |#1| |#2|) (-230 |#1| |#2|)))) (-594 (-1098)) (-432)) (T -585))
+((-2289 (*1 *2 *3) (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-594 (-1098))) (-4 *5 (-432)) (-5 *2 (-460 *4 *5)) (-5 *1 (-585 *4 *5)))) (-2288 (*1 *2 *2 *3) (-12 (-5 *3 (-594 (-230 *4 *5))) (-5 *2 (-230 *4 *5)) (-14 *4 (-594 (-1098))) (-4 *5 (-432)) (-5 *1 (-585 *4 *5)))) (-2287 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-594 (-460 *4 *5))) (-5 *3 (-806 *4)) (-14 *4 (-594 (-1098))) (-4 *5 (-432)) (-5 *1 (-585 *4 *5)))) (-2286 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-594 *6)) (-5 *4 (-594 (-230 *5 *6))) (-4 *6 (-432)) (-5 *2 (-230 *5 *6)) (-14 *5 (-594 (-1098))) (-5 *1 (-585 *5 *6)))) (-2285 (*1 *2 *3 *4) (-12 (-5 *4 (-594 (-460 *5 *6))) (-5 *3 (-460 *5 *6)) (-14 *5 (-594 (-1098))) (-4 *6 (-432)) (-5 *2 (-1179 *6)) (-5 *1 (-585 *5 *6)))) (-2284 (*1 *2 *2) (-12 (-5 *2 (-594 (-460 *3 *4))) (-14 *3 (-594 (-1098))) (-4 *4 (-432)) (-5 *1 (-585 *3 *4)))) (-2283 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-460 *5 *6))) (-5 *4 (-806 *5)) (-14 *5 (-594 (-1098))) (-5 *2 (-460 *5 *6)) (-5 *1 (-585 *5 *6)) (-4 *6 (-432)))) (-2283 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-594 (-460 *5 *6))) (-5 *4 (-806 *5)) (-14 *5 (-594 (-1098))) (-5 *2 (-460 *5 *6)) (-5 *1 (-585 *5 *6)) (-4 *6 (-432)))) (-2282 (*1 *2 *3) (-12 (-5 *3 (-594 (-460 *4 *5))) (-14 *4 (-594 (-1098))) (-4 *5 (-432)) (-5 *2 (-594 (-230 *4 *5))) (-5 *1 (-585 *4 *5)))) (-2281 (*1 *2 *3) (-12 (-14 *4 (-594 (-1098))) (-4 *5 (-432)) (-5 *2 (-2 (|:| |glbase| (-594 (-230 *4 *5))) (|:| |glval| (-594 (-516))))) (-5 *1 (-585 *4 *5)) (-5 *3 (-594 (-230 *4 *5))))) (-2280 (*1 *2 *3) (-12 (-5 *3 (-594 (-460 *4 *5))) (-14 *4 (-594 (-1098))) (-4 *5 (-432)) (-5 *2 (-2 (|:| |gblist| (-594 (-230 *4 *5))) (|:| |gvlist| (-594 (-516))))) (-5 *1 (-585 *4 *5)))))
+(-10 -7 (-15 -2280 ((-2 (|:| |gblist| (-594 (-230 |#1| |#2|))) (|:| |gvlist| (-594 (-516)))) (-594 (-460 |#1| |#2|)))) (-15 -2281 ((-2 (|:| |glbase| (-594 (-230 |#1| |#2|))) (|:| |glval| (-594 (-516)))) (-594 (-230 |#1| |#2|)))) (-15 -2282 ((-594 (-230 |#1| |#2|)) (-594 (-460 |#1| |#2|)))) (-15 -2283 ((-460 |#1| |#2|) (-594 (-460 |#1| |#2|)) (-594 (-460 |#1| |#2|)) (-806 |#1|))) (-15 -2283 ((-460 |#1| |#2|) (-594 (-460 |#1| |#2|)) (-806 |#1|))) (-15 -2284 ((-594 (-460 |#1| |#2|)) (-594 (-460 |#1| |#2|)))) (-15 -2285 ((-1179 |#2|) (-460 |#1| |#2|) (-594 (-460 |#1| |#2|)))) (-15 -2286 ((-230 |#1| |#2|) (-594 |#2|) (-230 |#1| |#2|) (-594 (-230 |#1| |#2|)))) (-15 -2287 ((-594 (-460 |#1| |#2|)) (-806 |#1|) (-594 (-460 |#1| |#2|)) (-594 (-460 |#1| |#2|)))) (-15 -2288 ((-230 |#1| |#2|) (-230 |#1| |#2|) (-594 (-230 |#1| |#2|)))) (-15 -2289 ((-460 |#1| |#2|) (-230 |#1| |#2|))))
+((-2828 (((-110) $ $) NIL (-3810 (|has| (-50) (-1027)) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-1027))))) (-3879 (($) NIL) (($ (-594 (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))))) NIL)) (-2243 (((-1185) $ (-1081) (-1081)) NIL (|has| $ (-6 -4270)))) (-1217 (((-110) $ (-719)) NIL)) (-4066 (((-50) $ (-1081) (-50)) 16) (((-50) $ (-1098) (-50)) 17)) (-1581 (($ (-1 (-110) (-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269)))) (-3992 (($ (-1 (-110) (-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269)))) (-2251 (((-3 (-50) #1="failed") (-1081) $) NIL)) (-3815 (($) NIL T CONST)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-1027))))) (-3684 (($ (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269))) (((-3 (-50) #1#) (-1081) $) NIL)) (-3685 (($ (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-1027)))) (($ (-1 (-110) (-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269)))) (-4121 (((-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-1 (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))) $ (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-1027)))) (((-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-1 (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))) $ (-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-1 (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269)))) (-1587 (((-50) $ (-1081) (-50)) NIL (|has| $ (-6 -4270)))) (-3372 (((-50) $ (-1081)) NIL)) (-2018 (((-594 (-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269))) (((-594 (-50)) $) NIL (|has| $ (-6 -4269)))) (-2290 (($ $) NIL)) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-1081) $) NIL (|has| (-1081) (-795)))) (-2445 (((-594 (-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269))) (((-594 (-50)) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-1027)))) (((-110) (-50) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-50) (-1027))))) (-2246 (((-1081) $) NIL (|has| (-1081) (-795)))) (-2022 (($ (-1 (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-50) (-50)) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))) $) NIL) (($ (-1 (-50) (-50)) $) NIL) (($ (-1 (-50) (-50) (-50)) $ $) NIL)) (-2291 (($ (-369)) 9)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (-3810 (|has| (-50) (-1027)) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-1027))))) (-2678 (((-594 (-1081)) $) NIL)) (-2252 (((-110) (-1081) $) NIL)) (-1280 (((-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) $) NIL)) (-3889 (($ (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) $) NIL)) (-2248 (((-594 (-1081)) $) NIL)) (-2249 (((-110) (-1081) $) NIL)) (-3514 (((-1045) $) NIL (-3810 (|has| (-50) (-1027)) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-1027))))) (-4079 (((-50) $) NIL (|has| (-1081) (-795)))) (-1350 (((-3 (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) "failed") (-1 (-110) (-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))) $) NIL)) (-2244 (($ $ (-50)) NIL (|has| $ (-6 -4270)))) (-1281 (((-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) $) NIL)) (-2020 (((-110) (-1 (-110) (-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-50)) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 (-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))))) NIL (-12 (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-291 (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))))) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-1027)))) (($ $ (-275 (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))))) NIL (-12 (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-291 (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))))) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-1027)))) (($ $ (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))) NIL (-12 (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-291 (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))))) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-1027)))) (($ $ (-594 (-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))) (-594 (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))))) NIL (-12 (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-291 (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))))) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-1027)))) (($ $ (-594 (-50)) (-594 (-50))) NIL (-12 (|has| (-50) (-291 (-50))) (|has| (-50) (-1027)))) (($ $ (-50) (-50)) NIL (-12 (|has| (-50) (-291 (-50))) (|has| (-50) (-1027)))) (($ $ (-275 (-50))) NIL (-12 (|has| (-50) (-291 (-50))) (|has| (-50) (-1027)))) (($ $ (-594 (-275 (-50)))) NIL (-12 (|has| (-50) (-291 (-50))) (|has| (-50) (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) (-50) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-50) (-1027))))) (-2250 (((-594 (-50)) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 (((-50) $ (-1081)) 14) (((-50) $ (-1081) (-50)) NIL) (((-50) $ (-1098)) 15)) (-1473 (($) NIL) (($ (-594 (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))))) NIL)) (-2019 (((-719) (-1 (-110) (-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-1027)))) (((-719) (-50) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-50) (-1027)))) (((-719) (-1 (-110) (-50)) $) NIL (|has| $ (-6 -4269)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) NIL (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-572 (-505))))) (-3804 (($ (-594 (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))))) NIL)) (-4233 (((-805) $) NIL (-3810 (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-571 (-805))) (|has| (-50) (-571 (-805)))))) (-1282 (($ (-594 (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))))) NIL)) (-2021 (((-110) (-1 (-110) (-2 (|:| -4139 (-1081)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-50)) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) NIL (-3810 (|has| (-50) (-1027)) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 (-50))) (-1027))))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-586) (-13 (-1111 (-1081) (-50)) (-10 -8 (-15 -2291 ($ (-369))) (-15 -2290 ($ $)) (-15 -4078 ((-50) $ (-1098))) (-15 -4066 ((-50) $ (-1098) (-50)))))) (T -586))
+((-2291 (*1 *1 *2) (-12 (-5 *2 (-369)) (-5 *1 (-586)))) (-2290 (*1 *1 *1) (-5 *1 (-586))) (-4078 (*1 *2 *1 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-50)) (-5 *1 (-586)))) (-4066 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-50)) (-5 *3 (-1098)) (-5 *1 (-586)))))
+(-13 (-1111 (-1081) (-50)) (-10 -8 (-15 -2291 ($ (-369))) (-15 -2290 ($ $)) (-15 -4078 ((-50) $ (-1098))) (-15 -4066 ((-50) $ (-1098) (-50)))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1842 (((-3 $ #1="failed")) NIL (-3810 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-523)))))) (-1319 (((-3 $ "failed") $ $) NIL)) (-3496 (((-1179 (-637 |#1|))) NIL (|has| |#2| (-399 |#1|))) (((-1179 (-637 |#1|)) (-1179 $)) NIL (|has| |#2| (-348 |#1|)))) (-1795 (((-1179 $)) NIL (|has| |#2| (-348 |#1|)))) (-3815 (($) NIL T CONST)) (-1978 (((-3 (-2 (|:| |particular| $) (|:| -2071 (-594 $))) #1#)) NIL (-3810 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-523)))))) (-1769 (((-3 $ #1#)) NIL (-3810 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-523)))))) (-1857 (((-637 |#1|)) NIL (|has| |#2| (-399 |#1|))) (((-637 |#1|) (-1179 $)) NIL (|has| |#2| (-348 |#1|)))) (-1793 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-1855 (((-637 |#1|) $) NIL (|has| |#2| (-399 |#1|))) (((-637 |#1|) $ (-1179 $)) NIL (|has| |#2| (-348 |#1|)))) (-2430 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-523)))))) (-1972 (((-1092 (-887 |#1|))) NIL (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-344))))) (-2433 (($ $ (-860)) NIL)) (-1791 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-1771 (((-1092 |#1|) $) NIL (-3810 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-523)))))) (-1859 ((|#1|) NIL (|has| |#2| (-399 |#1|))) ((|#1| (-1179 $)) NIL (|has| |#2| (-348 |#1|)))) (-1789 (((-1092 |#1|) $) NIL (|has| |#2| (-348 |#1|)))) (-1783 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1861 (($ (-1179 |#1|)) NIL (|has| |#2| (-399 |#1|))) (($ (-1179 |#1|) (-1179 $)) NIL (|has| |#2| (-348 |#1|)))) (-3741 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-523)))))) (-3368 (((-860)) NIL (|has| |#2| (-348 |#1|)))) (-1780 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2458 (($ $ (-860)) NIL)) (-1776 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1774 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1778 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1979 (((-3 (-2 (|:| |particular| $) (|:| -2071 (-594 $))) #1#)) NIL (-3810 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-523)))))) (-1770 (((-3 $ #1#)) NIL (-3810 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-523)))))) (-1858 (((-637 |#1|)) NIL (|has| |#2| (-399 |#1|))) (((-637 |#1|) (-1179 $)) NIL (|has| |#2| (-348 |#1|)))) (-1794 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-1856 (((-637 |#1|) $) NIL (|has| |#2| (-399 |#1|))) (((-637 |#1|) $ (-1179 $)) NIL (|has| |#2| (-348 |#1|)))) (-2431 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-523)))))) (-1976 (((-1092 (-887 |#1|))) NIL (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-344))))) (-2432 (($ $ (-860)) NIL)) (-1792 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-1772 (((-1092 |#1|) $) NIL (-3810 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-523)))))) (-1860 ((|#1|) NIL (|has| |#2| (-399 |#1|))) ((|#1| (-1179 $)) NIL (|has| |#2| (-348 |#1|)))) (-1790 (((-1092 |#1|) $) NIL (|has| |#2| (-348 |#1|)))) (-1784 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3513 (((-1081) $) NIL)) (-1775 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1777 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1779 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3514 (((-1045) $) NIL)) (-1782 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-4078 ((|#1| $ (-516)) NIL (|has| |#2| (-399 |#1|)))) (-3497 (((-637 |#1|) (-1179 $)) NIL (|has| |#2| (-399 |#1|))) (((-1179 |#1|) $) NIL (|has| |#2| (-399 |#1|))) (((-637 |#1|) (-1179 $) (-1179 $)) NIL (|has| |#2| (-348 |#1|))) (((-1179 |#1|) $ (-1179 $)) NIL (|has| |#2| (-348 |#1|)))) (-4246 (($ (-1179 |#1|)) NIL (|has| |#2| (-399 |#1|))) (((-1179 |#1|) $) NIL (|has| |#2| (-399 |#1|)))) (-1964 (((-594 (-887 |#1|))) NIL (|has| |#2| (-399 |#1|))) (((-594 (-887 |#1|)) (-1179 $)) NIL (|has| |#2| (-348 |#1|)))) (-2620 (($ $ $) NIL)) (-1788 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-4233 (((-805) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2071 (((-1179 $)) NIL (|has| |#2| (-399 |#1|)))) (-1773 (((-594 (-1179 |#1|))) NIL (-3810 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-399 |#1|)) (|has| |#1| (-523)))))) (-2621 (($ $ $ $) NIL)) (-1786 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2814 (($ (-637 |#1|) $) NIL (|has| |#2| (-399 |#1|)))) (-2619 (($ $ $) NIL)) (-1787 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1785 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1781 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2920 (($) 15 T CONST)) (-3317 (((-110) $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) 17)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-587 |#1| |#2|) (-13 (-693 |#1|) (-571 |#2|) (-10 -8 (-15 -4233 ($ |#2|)) (IF (|has| |#2| (-399 |#1|)) (-6 (-399 |#1|)) |%noBranch|) (IF (|has| |#2| (-348 |#1|)) (-6 (-348 |#1|)) |%noBranch|))) (-162) (-693 |#1|)) (T -587))
+((-4233 (*1 *1 *2) (-12 (-4 *3 (-162)) (-5 *1 (-587 *3 *2)) (-4 *2 (-693 *3)))))
+(-13 (-693 |#1|) (-571 |#2|) (-10 -8 (-15 -4233 ($ |#2|)) (IF (|has| |#2| (-399 |#1|)) (-6 (-399 |#1|)) |%noBranch|) (IF (|has| |#2| (-348 |#1|)) (-6 (-348 |#1|)) |%noBranch|)))
+((-4224 (($ $ |#2|) 10)))
+(((-588 |#1| |#2|) (-10 -8 (-15 -4224 (|#1| |#1| |#2|))) (-589 |#2|) (-162)) (T -588))
+NIL
+(-10 -8 (-15 -4224 (|#1| |#1| |#2|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-3804 (($ $ $) 29)) (-4233 (((-805) $) 11)) (-2920 (($) 18 T CONST)) (-3317 (((-110) $ $) 6)) (-4224 (($ $ |#1|) 28 (|has| |#1| (-344)))) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-589 |#1|) (-133) (-162)) (T -589))
+((-3804 (*1 *1 *1 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-162)))) (-4224 (*1 *1 *1 *2) (-12 (-4 *1 (-589 *2)) (-4 *2 (-162)) (-4 *2 (-344)))))
+(-13 (-666 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3804 ($ $ $)) (IF (|has| |t#1| (-344)) (-15 -4224 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-805)) . T) ((-599 |#1|) . T) ((-666 |#1|) . T) ((-989 |#1|) . T) ((-1027) . T))
+((-2293 (((-3 (-787 |#2|) #1="failed") |#2| (-275 |#2|) (-1081)) 82) (((-3 (-787 |#2|) (-2 (|:| |leftHandLimit| (-3 (-787 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-787 |#2|) #1#))) "failed") |#2| (-275 (-787 |#2|))) 104)) (-2292 (((-3 (-780 |#2|) "failed") |#2| (-275 (-780 |#2|))) 109)))
+(((-590 |#1| |#2|) (-10 -7 (-15 -2293 ((-3 (-787 |#2|) (-2 (|:| |leftHandLimit| (-3 (-787 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-787 |#2|) #1#))) "failed") |#2| (-275 (-787 |#2|)))) (-15 -2292 ((-3 (-780 |#2|) "failed") |#2| (-275 (-780 |#2|)))) (-15 -2293 ((-3 (-787 |#2|) #1#) |#2| (-275 |#2|) (-1081)))) (-13 (-432) (-795) (-975 (-516)) (-593 (-516))) (-13 (-27) (-1120) (-402 |#1|))) (T -590))
+((-2293 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-275 *3)) (-5 *5 (-1081)) (-4 *3 (-13 (-27) (-1120) (-402 *6))) (-4 *6 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-787 *3)) (-5 *1 (-590 *6 *3)))) (-2292 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-275 (-780 *3))) (-4 *5 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-780 *3)) (-5 *1 (-590 *5 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *5))))) (-2293 (*1 *2 *3 *4) (-12 (-5 *4 (-275 (-787 *3))) (-4 *3 (-13 (-27) (-1120) (-402 *5))) (-4 *5 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-3 (-787 *3) (-2 (|:| |leftHandLimit| (-3 (-787 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-787 *3) #1#))) "failed")) (-5 *1 (-590 *5 *3)))))
+(-10 -7 (-15 -2293 ((-3 (-787 |#2|) (-2 (|:| |leftHandLimit| (-3 (-787 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-787 |#2|) #1#))) "failed") |#2| (-275 (-787 |#2|)))) (-15 -2292 ((-3 (-780 |#2|) "failed") |#2| (-275 (-780 |#2|)))) (-15 -2293 ((-3 (-787 |#2|) #1#) |#2| (-275 |#2|) (-1081))))
+((-2293 (((-3 (-787 (-388 (-887 |#1|))) #1="failed") (-388 (-887 |#1|)) (-275 (-388 (-887 |#1|))) (-1081)) 80) (((-3 (-787 (-388 (-887 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-787 (-388 (-887 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-787 (-388 (-887 |#1|))) #1#))) #2="failed") (-388 (-887 |#1|)) (-275 (-388 (-887 |#1|)))) 20) (((-3 (-787 (-388 (-887 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-787 (-388 (-887 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-787 (-388 (-887 |#1|))) #1#))) #2#) (-388 (-887 |#1|)) (-275 (-787 (-887 |#1|)))) 35)) (-2292 (((-780 (-388 (-887 |#1|))) (-388 (-887 |#1|)) (-275 (-388 (-887 |#1|)))) 23) (((-780 (-388 (-887 |#1|))) (-388 (-887 |#1|)) (-275 (-780 (-887 |#1|)))) 43)))
+(((-591 |#1|) (-10 -7 (-15 -2293 ((-3 (-787 (-388 (-887 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-787 (-388 (-887 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-787 (-388 (-887 |#1|))) #1#))) #2="failed") (-388 (-887 |#1|)) (-275 (-787 (-887 |#1|))))) (-15 -2293 ((-3 (-787 (-388 (-887 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-787 (-388 (-887 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-787 (-388 (-887 |#1|))) #1#))) #2#) (-388 (-887 |#1|)) (-275 (-388 (-887 |#1|))))) (-15 -2292 ((-780 (-388 (-887 |#1|))) (-388 (-887 |#1|)) (-275 (-780 (-887 |#1|))))) (-15 -2292 ((-780 (-388 (-887 |#1|))) (-388 (-887 |#1|)) (-275 (-388 (-887 |#1|))))) (-15 -2293 ((-3 (-787 (-388 (-887 |#1|))) #1#) (-388 (-887 |#1|)) (-275 (-388 (-887 |#1|))) (-1081)))) (-432)) (T -591))
+((-2293 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-275 (-388 (-887 *6)))) (-5 *5 (-1081)) (-5 *3 (-388 (-887 *6))) (-4 *6 (-432)) (-5 *2 (-787 *3)) (-5 *1 (-591 *6)))) (-2292 (*1 *2 *3 *4) (-12 (-5 *4 (-275 (-388 (-887 *5)))) (-5 *3 (-388 (-887 *5))) (-4 *5 (-432)) (-5 *2 (-780 *3)) (-5 *1 (-591 *5)))) (-2292 (*1 *2 *3 *4) (-12 (-5 *4 (-275 (-780 (-887 *5)))) (-4 *5 (-432)) (-5 *2 (-780 (-388 (-887 *5)))) (-5 *1 (-591 *5)) (-5 *3 (-388 (-887 *5))))) (-2293 (*1 *2 *3 *4) (-12 (-5 *4 (-275 (-388 (-887 *5)))) (-5 *3 (-388 (-887 *5))) (-4 *5 (-432)) (-5 *2 (-3 (-787 *3) (-2 (|:| |leftHandLimit| (-3 (-787 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-787 *3) #1#))) #2="failed")) (-5 *1 (-591 *5)))) (-2293 (*1 *2 *3 *4) (-12 (-5 *4 (-275 (-787 (-887 *5)))) (-4 *5 (-432)) (-5 *2 (-3 (-787 (-388 (-887 *5))) (-2 (|:| |leftHandLimit| (-3 (-787 (-388 (-887 *5))) #1#)) (|:| |rightHandLimit| (-3 (-787 (-388 (-887 *5))) #1#))) #2#)) (-5 *1 (-591 *5)) (-5 *3 (-388 (-887 *5))))))
+(-10 -7 (-15 -2293 ((-3 (-787 (-388 (-887 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-787 (-388 (-887 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-787 (-388 (-887 |#1|))) #1#))) #2="failed") (-388 (-887 |#1|)) (-275 (-787 (-887 |#1|))))) (-15 -2293 ((-3 (-787 (-388 (-887 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-787 (-388 (-887 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-787 (-388 (-887 |#1|))) #1#))) #2#) (-388 (-887 |#1|)) (-275 (-388 (-887 |#1|))))) (-15 -2292 ((-780 (-388 (-887 |#1|))) (-388 (-887 |#1|)) (-275 (-780 (-887 |#1|))))) (-15 -2292 ((-780 (-388 (-887 |#1|))) (-388 (-887 |#1|)) (-275 (-388 (-887 |#1|))))) (-15 -2293 ((-3 (-787 (-388 (-887 |#1|))) #1#) (-388 (-887 |#1|)) (-275 (-388 (-887 |#1|))) (-1081))))
+((-2296 (((-3 (-1179 (-388 |#1|)) "failed") (-1179 |#2|) |#2|) 57 (-3595 (|has| |#1| (-344)))) (((-3 (-1179 |#1|) "failed") (-1179 |#2|) |#2|) 42 (|has| |#1| (-344)))) (-2294 (((-110) (-1179 |#2|)) 30)) (-2295 (((-3 (-1179 |#1|) "failed") (-1179 |#2|)) 33)))
+(((-592 |#1| |#2|) (-10 -7 (-15 -2294 ((-110) (-1179 |#2|))) (-15 -2295 ((-3 (-1179 |#1|) "failed") (-1179 |#2|))) (IF (|has| |#1| (-344)) (-15 -2296 ((-3 (-1179 |#1|) "failed") (-1179 |#2|) |#2|)) (-15 -2296 ((-3 (-1179 (-388 |#1|)) "failed") (-1179 |#2|) |#2|)))) (-523) (-593 |#1|)) (T -592))
+((-2296 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-593 *5)) (-3595 (-4 *5 (-344))) (-4 *5 (-523)) (-5 *2 (-1179 (-388 *5))) (-5 *1 (-592 *5 *4)))) (-2296 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-593 *5)) (-4 *5 (-344)) (-4 *5 (-523)) (-5 *2 (-1179 *5)) (-5 *1 (-592 *5 *4)))) (-2295 (*1 *2 *3) (|partial| -12 (-5 *3 (-1179 *5)) (-4 *5 (-593 *4)) (-4 *4 (-523)) (-5 *2 (-1179 *4)) (-5 *1 (-592 *4 *5)))) (-2294 (*1 *2 *3) (-12 (-5 *3 (-1179 *5)) (-4 *5 (-593 *4)) (-4 *4 (-523)) (-5 *2 (-110)) (-5 *1 (-592 *4 *5)))))
+(-10 -7 (-15 -2294 ((-110) (-1179 |#2|))) (-15 -2295 ((-3 (-1179 |#1|) "failed") (-1179 |#2|))) (IF (|has| |#1| (-344)) (-15 -2296 ((-3 (-1179 |#1|) "failed") (-1179 |#2|) |#2|)) (-15 -2296 ((-3 (-1179 (-388 |#1|)) "failed") (-1179 |#2|) |#2|))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-2297 (((-637 |#1|) (-637 $)) 36) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) 35)) (-3741 (((-3 $ "failed") $) 34)) (-2436 (((-110) $) 31)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11) (($ (-516)) 28)) (-3385 (((-719)) 29)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24)))
+(((-593 |#1|) (-133) (-984)) (T -593))
+((-2297 (*1 *2 *3) (-12 (-5 *3 (-637 *1)) (-4 *1 (-593 *4)) (-4 *4 (-984)) (-5 *2 (-637 *4)))) (-2297 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *1)) (-5 *4 (-1179 *1)) (-4 *1 (-593 *5)) (-4 *5 (-984)) (-5 *2 (-2 (|:| -1650 (-637 *5)) (|:| |vec| (-1179 *5)))))))
+(-13 (-984) (-10 -8 (-15 -2297 ((-637 |t#1|) (-637 $))) (-15 -2297 ((-2 (|:| -1650 (-637 |t#1|)) (|:| |vec| (-1179 |t#1|))) (-637 $) (-1179 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-805)) . T) ((-599 $) . T) ((-675) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3681 ((|#1| $) NIL)) (-4073 ((|#1| $) NIL)) (-4075 (($ $) NIL)) (-2243 (((-1185) $ (-516) (-516)) NIL (|has| $ (-6 -4270)))) (-4063 (($ $ (-516)) NIL (|has| $ (-6 -4270)))) (-1798 (((-110) $) NIL (|has| |#1| (-795))) (((-110) (-1 (-110) |#1| |#1|) $) NIL)) (-1796 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795)))) (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3173 (($ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $) NIL)) (-1217 (((-110) $ (-719)) NIL)) (-3289 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-4065 (($ $ $) NIL (|has| $ (-6 -4270)))) (-4064 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-4067 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-4066 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4270))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4270))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-1146 (-516)) |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-516) |#1|) NIL (|has| $ (-6 -4270)))) (-3290 (($ $ (-594 $)) NIL (|has| $ (-6 -4270)))) (-2300 (($ $ $) 32 (|has| |#1| (-1027)))) (-2299 (($ $ $) 34 (|has| |#1| (-1027)))) (-2298 (($ $ $) 37 (|has| |#1| (-1027)))) (-1581 (($ (-1 (-110) |#1|) $) NIL)) (-3992 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4074 ((|#1| $) NIL)) (-3815 (($) NIL T CONST)) (-2312 (($ $) NIL (|has| $ (-6 -4270)))) (-2313 (($ $) NIL)) (-4077 (($ $) NIL) (($ $ (-719)) NIL)) (-2389 (($ $) NIL (|has| |#1| (-1027)))) (-1349 (($ $) 31 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3684 (($ |#1| $) NIL (|has| |#1| (-1027))) (($ (-1 (-110) |#1|) $) NIL)) (-3685 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1587 ((|#1| $ (-516) |#1|) NIL (|has| $ (-6 -4270)))) (-3372 ((|#1| $ (-516)) NIL)) (-3721 (((-110) $) NIL)) (-3698 (((-516) |#1| $ (-516)) NIL (|has| |#1| (-1027))) (((-516) |#1| $) NIL (|has| |#1| (-1027))) (((-516) (-1 (-110) |#1|) $) NIL)) (-2018 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-2302 (((-110) $) 9)) (-3295 (((-594 $) $) NIL)) (-3291 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2303 (($) 7)) (-3896 (($ (-719) |#1|) NIL)) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-516) $) NIL (|has| (-516) (-795)))) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3123 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-3792 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 33 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2246 (((-516) $) NIL (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-2022 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3816 (($ |#1|) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3294 (((-594 |#1|) $) NIL)) (-3801 (((-110) $) NIL)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-4076 ((|#1| $) NIL) (($ $ (-719)) NIL)) (-3889 (($ $ $ (-516)) NIL) (($ |#1| $ (-516)) NIL)) (-2317 (($ $ $ (-516)) NIL) (($ |#1| $ (-516)) NIL)) (-2248 (((-594 (-516)) $) NIL)) (-2249 (((-110) (-516) $) NIL)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-4079 ((|#1| $) NIL) (($ $ (-719)) NIL)) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-2244 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-3722 (((-110) $) NIL)) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2250 (((-594 |#1|) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1146 (-516))) NIL) ((|#1| $ (-516)) 36) ((|#1| $ (-516) |#1|) NIL)) (-3293 (((-516) $ $) NIL)) (-1582 (($ $ (-1146 (-516))) NIL) (($ $ (-516)) NIL)) (-2318 (($ $ (-1146 (-516))) NIL) (($ $ (-516)) NIL)) (-3915 (((-110) $) NIL)) (-4070 (($ $) NIL)) (-4068 (($ $) NIL (|has| $ (-6 -4270)))) (-4071 (((-719) $) NIL)) (-4072 (($ $) NIL)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1797 (($ $ $ (-516)) NIL (|has| $ (-6 -4270)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) 45 (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) NIL)) (-3735 (($ |#1| $) 10)) (-4069 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4080 (($ $ $) 30) (($ |#1| $) NIL) (($ (-594 $)) NIL) (($ $ |#1|) NIL)) (-4233 (((-805) $) NIL (|has| |#1| (-571 (-805))))) (-3796 (((-594 $) $) NIL)) (-3292 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2301 (($ $ $) 11)) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2768 (((-1081) $) 26 (|has| |#1| (-769))) (((-1081) $ (-110)) 27 (|has| |#1| (-769))) (((-1185) (-771) $) 28 (|has| |#1| (-769))) (((-1185) (-771) $ (-110)) 29 (|has| |#1| (-769)))) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#1| (-795)))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-594 |#1|) (-13 (-617 |#1|) (-10 -8 (-15 -2303 ($)) (-15 -2302 ((-110) $)) (-15 -3735 ($ |#1| $)) (-15 -2301 ($ $ $)) (IF (|has| |#1| (-1027)) (PROGN (-15 -2300 ($ $ $)) (-15 -2299 ($ $ $)) (-15 -2298 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-769)) (-6 (-769)) |%noBranch|))) (-1134)) (T -594))
+((-2303 (*1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1134)))) (-2302 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-594 *3)) (-4 *3 (-1134)))) (-3735 (*1 *1 *2 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1134)))) (-2301 (*1 *1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1134)))) (-2300 (*1 *1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1027)) (-4 *2 (-1134)))) (-2299 (*1 *1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1027)) (-4 *2 (-1134)))) (-2298 (*1 *1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1027)) (-4 *2 (-1134)))))
+(-13 (-617 |#1|) (-10 -8 (-15 -2303 ($)) (-15 -2302 ((-110) $)) (-15 -3735 ($ |#1| $)) (-15 -2301 ($ $ $)) (IF (|has| |#1| (-1027)) (PROGN (-15 -2300 ($ $ $)) (-15 -2299 ($ $ $)) (-15 -2298 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-769)) (-6 (-769)) |%noBranch|)))
+((-4120 (((-594 |#2|) (-1 |#2| |#1| |#2|) (-594 |#1|) |#2|) 16)) (-4121 ((|#2| (-1 |#2| |#1| |#2|) (-594 |#1|) |#2|) 18)) (-4234 (((-594 |#2|) (-1 |#2| |#1|) (-594 |#1|)) 13)))
+(((-595 |#1| |#2|) (-10 -7 (-15 -4120 ((-594 |#2|) (-1 |#2| |#1| |#2|) (-594 |#1|) |#2|)) (-15 -4121 (|#2| (-1 |#2| |#1| |#2|) (-594 |#1|) |#2|)) (-15 -4234 ((-594 |#2|) (-1 |#2| |#1|) (-594 |#1|)))) (-1134) (-1134)) (T -595))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-594 *5)) (-4 *5 (-1134)) (-4 *6 (-1134)) (-5 *2 (-594 *6)) (-5 *1 (-595 *5 *6)))) (-4121 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-594 *5)) (-4 *5 (-1134)) (-4 *2 (-1134)) (-5 *1 (-595 *5 *2)))) (-4120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-594 *6)) (-4 *6 (-1134)) (-4 *5 (-1134)) (-5 *2 (-594 *5)) (-5 *1 (-595 *6 *5)))))
+(-10 -7 (-15 -4120 ((-594 |#2|) (-1 |#2| |#1| |#2|) (-594 |#1|) |#2|)) (-15 -4121 (|#2| (-1 |#2| |#1| |#2|) (-594 |#1|) |#2|)) (-15 -4234 ((-594 |#2|) (-1 |#2| |#1|) (-594 |#1|))))
+((-3701 ((|#2| (-594 |#1|) (-594 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-594 |#1|) (-594 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-594 |#1|) (-594 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-594 |#1|) (-594 |#2|) |#2|) 17) ((|#2| (-594 |#1|) (-594 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-594 |#1|) (-594 |#2|)) 12)))
+(((-596 |#1| |#2|) (-10 -7 (-15 -3701 ((-1 |#2| |#1|) (-594 |#1|) (-594 |#2|))) (-15 -3701 (|#2| (-594 |#1|) (-594 |#2|) |#1|)) (-15 -3701 ((-1 |#2| |#1|) (-594 |#1|) (-594 |#2|) |#2|)) (-15 -3701 (|#2| (-594 |#1|) (-594 |#2|) |#1| |#2|)) (-15 -3701 ((-1 |#2| |#1|) (-594 |#1|) (-594 |#2|) (-1 |#2| |#1|))) (-15 -3701 (|#2| (-594 |#1|) (-594 |#2|) |#1| (-1 |#2| |#1|)))) (-1027) (-1134)) (T -596))
+((-3701 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-594 *5)) (-5 *4 (-594 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1027)) (-4 *2 (-1134)) (-5 *1 (-596 *5 *2)))) (-3701 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-594 *5)) (-5 *4 (-594 *6)) (-4 *5 (-1027)) (-4 *6 (-1134)) (-5 *1 (-596 *5 *6)))) (-3701 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-594 *5)) (-5 *4 (-594 *2)) (-4 *5 (-1027)) (-4 *2 (-1134)) (-5 *1 (-596 *5 *2)))) (-3701 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-594 *6)) (-5 *4 (-594 *5)) (-4 *6 (-1027)) (-4 *5 (-1134)) (-5 *2 (-1 *5 *6)) (-5 *1 (-596 *6 *5)))) (-3701 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-594 *5)) (-5 *4 (-594 *2)) (-4 *5 (-1027)) (-4 *2 (-1134)) (-5 *1 (-596 *5 *2)))) (-3701 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *5)) (-5 *4 (-594 *6)) (-4 *5 (-1027)) (-4 *6 (-1134)) (-5 *2 (-1 *6 *5)) (-5 *1 (-596 *5 *6)))))
+(-10 -7 (-15 -3701 ((-1 |#2| |#1|) (-594 |#1|) (-594 |#2|))) (-15 -3701 (|#2| (-594 |#1|) (-594 |#2|) |#1|)) (-15 -3701 ((-1 |#2| |#1|) (-594 |#1|) (-594 |#2|) |#2|)) (-15 -3701 (|#2| (-594 |#1|) (-594 |#2|) |#1| |#2|)) (-15 -3701 ((-1 |#2| |#1|) (-594 |#1|) (-594 |#2|) (-1 |#2| |#1|))) (-15 -3701 (|#2| (-594 |#1|) (-594 |#2|) |#1| (-1 |#2| |#1|))))
+((-4234 (((-594 |#3|) (-1 |#3| |#1| |#2|) (-594 |#1|) (-594 |#2|)) 13)))
+(((-597 |#1| |#2| |#3|) (-10 -7 (-15 -4234 ((-594 |#3|) (-1 |#3| |#1| |#2|) (-594 |#1|) (-594 |#2|)))) (-1134) (-1134) (-1134)) (T -597))
+((-4234 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-594 *6)) (-5 *5 (-594 *7)) (-4 *6 (-1134)) (-4 *7 (-1134)) (-4 *8 (-1134)) (-5 *2 (-594 *8)) (-5 *1 (-597 *6 *7 *8)))))
+(-10 -7 (-15 -4234 ((-594 |#3|) (-1 |#3| |#1| |#2|) (-594 |#1|) (-594 |#2|))))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2304 (($ |#1| |#1| $) 43)) (-1217 (((-110) $ (-719)) NIL)) (-1581 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4269)))) (-3992 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3815 (($) NIL T CONST)) (-2389 (($ $) 45)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3684 (($ |#1| $) 52 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4269)))) (-3685 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-2018 (((-594 |#1|) $) 9 (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) NIL)) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2022 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 37)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-1280 ((|#1| $) 46)) (-3889 (($ |#1| $) 26) (($ |#1| $ (-719)) 42)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1281 ((|#1| $) 48)) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) 21)) (-3847 (($) 25)) (-2305 (((-110) $) 50)) (-2388 (((-594 (-2 (|:| -2131 |#1|) (|:| -2019 (-719)))) $) 59)) (-1473 (($) 23) (($ (-594 |#1|)) 18)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) 56 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3678 (($ $) 19)) (-4246 (((-505) $) 34 (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) NIL)) (-4233 (((-805) $) 14 (|has| |#1| (-571 (-805))))) (-1282 (($ (-594 |#1|)) 22)) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 61 (|has| |#1| (-1027)))) (-4232 (((-719) $) 16 (|has| $ (-6 -4269)))))
+(((-598 |#1|) (-13 (-643 |#1|) (-10 -8 (-6 -4269) (-15 -2305 ((-110) $)) (-15 -2304 ($ |#1| |#1| $)))) (-1027)) (T -598))
+((-2305 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-598 *3)) (-4 *3 (-1027)))) (-2304 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1027)))))
+(-13 (-643 |#1|) (-10 -8 (-6 -4269) (-15 -2305 ((-110) $)) (-15 -2304 ($ |#1| |#1| $))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-2920 (($) 18 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ |#1| $) 23)))
+(((-599 |#1|) (-133) (-990)) (T -599))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-990)))))
(-13 (-21) (-10 -8 (-15 * ($ |t#1| $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-569 (-802)) . T) ((-1023) . T))
-((-2207 (((-110) $ $) NIL)) (-2856 (((-717) $) 15)) (-2096 (($ $ |#1|) 56)) (-2472 (($ $) 32)) (-3009 (($ $) 31)) (-3001 (((-3 |#1| "failed") $) 48)) (-2409 ((|#1| $) NIL)) (-3763 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-2465 (((-802) $ (-1 (-802) (-802) (-802)) (-1 (-802) (-802) (-802)) (-528)) 46)) (-2492 ((|#1| $ (-528)) 30)) (-3442 ((|#2| $ (-528)) 29)) (-1333 (($ (-1 |#1| |#1|) $) 34)) (-3677 (($ (-1 |#2| |#2|) $) 38)) (-3508 (($) 10)) (-1467 (($ |#1| |#2|) 22)) (-1869 (($ (-595 (-2 (|:| |gen| |#1|) (|:| -2656 |#2|)))) 23)) (-4089 (((-595 (-2 (|:| |gen| |#1|) (|:| -2656 |#2|))) $) 13)) (-4060 (($ |#1| $) 57)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3126 (((-110) $ $) 60)) (-2222 (((-802) $) 19) (($ |#1|) 16)) (-2186 (((-110) $ $) 25)))
-(((-598 |#1| |#2| |#3|) (-13 (-1023) (-972 |#1|) (-10 -8 (-15 -2465 ((-802) $ (-1 (-802) (-802) (-802)) (-1 (-802) (-802) (-802)) (-528))) (-15 -4089 ((-595 (-2 (|:| |gen| |#1|) (|:| -2656 |#2|))) $)) (-15 -1467 ($ |#1| |#2|)) (-15 -1869 ($ (-595 (-2 (|:| |gen| |#1|) (|:| -2656 |#2|))))) (-15 -3442 (|#2| $ (-528))) (-15 -2492 (|#1| $ (-528))) (-15 -3009 ($ $)) (-15 -2472 ($ $)) (-15 -2856 ((-717) $)) (-15 -3508 ($)) (-15 -2096 ($ $ |#1|)) (-15 -4060 ($ |#1| $)) (-15 -3763 ($ |#1| |#2| $)) (-15 -3763 ($ $ $)) (-15 -3126 ((-110) $ $)) (-15 -3677 ($ (-1 |#2| |#2|) $)) (-15 -1333 ($ (-1 |#1| |#1|) $)))) (-1023) (-23) |#2|) (T -598))
-((-2465 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-802) (-802) (-802))) (-5 *4 (-528)) (-5 *2 (-802)) (-5 *1 (-598 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-23)) (-14 *7 *6))) (-4089 (*1 *2 *1) (-12 (-5 *2 (-595 (-2 (|:| |gen| *3) (|:| -2656 *4)))) (-5 *1 (-598 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-23)) (-14 *5 *4))) (-1467 (*1 *1 *2 *3) (-12 (-5 *1 (-598 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-23)) (-14 *4 *3))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-595 (-2 (|:| |gen| *3) (|:| -2656 *4)))) (-4 *3 (-1023)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-598 *3 *4 *5)))) (-3442 (*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-4 *2 (-23)) (-5 *1 (-598 *4 *2 *5)) (-4 *4 (-1023)) (-14 *5 *2))) (-2492 (*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-4 *2 (-1023)) (-5 *1 (-598 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3009 (*1 *1 *1) (-12 (-5 *1 (-598 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-23)) (-14 *4 *3))) (-2472 (*1 *1 *1) (-12 (-5 *1 (-598 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-23)) (-14 *4 *3))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-598 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-23)) (-14 *5 *4))) (-3508 (*1 *1) (-12 (-5 *1 (-598 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-23)) (-14 *4 *3))) (-2096 (*1 *1 *1 *2) (-12 (-5 *1 (-598 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-23)) (-14 *4 *3))) (-4060 (*1 *1 *2 *1) (-12 (-5 *1 (-598 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-23)) (-14 *4 *3))) (-3763 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-598 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-23)) (-14 *4 *3))) (-3763 (*1 *1 *1 *1) (-12 (-5 *1 (-598 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-23)) (-14 *4 *3))) (-3126 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-598 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-23)) (-14 *5 *4))) (-3677 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-598 *3 *4 *5)) (-4 *3 (-1023)))) (-1333 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-598 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1023) (-972 |#1|) (-10 -8 (-15 -2465 ((-802) $ (-1 (-802) (-802) (-802)) (-1 (-802) (-802) (-802)) (-528))) (-15 -4089 ((-595 (-2 (|:| |gen| |#1|) (|:| -2656 |#2|))) $)) (-15 -1467 ($ |#1| |#2|)) (-15 -1869 ($ (-595 (-2 (|:| |gen| |#1|) (|:| -2656 |#2|))))) (-15 -3442 (|#2| $ (-528))) (-15 -2492 (|#1| $ (-528))) (-15 -3009 ($ $)) (-15 -2472 ($ $)) (-15 -2856 ((-717) $)) (-15 -3508 ($)) (-15 -2096 ($ $ |#1|)) (-15 -4060 ($ |#1| $)) (-15 -3763 ($ |#1| |#2| $)) (-15 -3763 ($ $ $)) (-15 -3126 ((-110) $ $)) (-15 -3677 ($ (-1 |#2| |#2|) $)) (-15 -1333 ($ (-1 |#1| |#1|) $))))
-((-1709 (((-528) $) 24)) (-3939 (($ |#2| $ (-528)) 22) (($ $ $ (-528)) NIL)) (-2084 (((-595 (-528)) $) 12)) (-3966 (((-110) (-528) $) 15)) (-3400 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-595 $)) NIL)))
-(((-599 |#1| |#2|) (-10 -8 (-15 -3939 (|#1| |#1| |#1| (-528))) (-15 -3939 (|#1| |#2| |#1| (-528))) (-15 -3400 (|#1| (-595 |#1|))) (-15 -3400 (|#1| |#1| |#1|)) (-15 -3400 (|#1| |#2| |#1|)) (-15 -3400 (|#1| |#1| |#2|)) (-15 -1709 ((-528) |#1|)) (-15 -2084 ((-595 (-528)) |#1|)) (-15 -3966 ((-110) (-528) |#1|))) (-600 |#2|) (-1131)) (T -599))
-NIL
-(-10 -8 (-15 -3939 (|#1| |#1| |#1| (-528))) (-15 -3939 (|#1| |#2| |#1| (-528))) (-15 -3400 (|#1| (-595 |#1|))) (-15 -3400 (|#1| |#1| |#1|)) (-15 -3400 (|#1| |#2| |#1|)) (-15 -3400 (|#1| |#1| |#2|)) (-15 -1709 ((-528) |#1|)) (-15 -2084 ((-595 (-528)) |#1|)) (-15 -3966 ((-110) (-528) |#1|)))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-1444 (((-1182) $ (-528) (-528)) 40 (|has| $ (-6 -4265)))) (-3535 (((-110) $ (-717)) 8)) (-2381 ((|#1| $ (-528) |#1|) 52 (|has| $ (-6 -4265))) ((|#1| $ (-1144 (-528)) |#1|) 58 (|has| $ (-6 -4265)))) (-1573 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4264)))) (-2816 (($) 7 T CONST)) (-2923 (($ $) 78 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2280 (($ |#1| $) 77 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4264)))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4264)))) (-2812 ((|#1| $ (-528) |#1|) 53 (|has| $ (-6 -4265)))) (-2742 ((|#1| $ (-528)) 51)) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-3462 (($ (-717) |#1|) 69)) (-2029 (((-110) $ (-717)) 9)) (-3530 (((-528) $) 43 (|has| (-528) (-793)))) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-1709 (((-528) $) 44 (|has| (-528) (-793)))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3358 (((-110) $ (-717)) 10)) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-3939 (($ |#1| $ (-528)) 60) (($ $ $ (-528)) 59)) (-2084 (((-595 (-528)) $) 46)) (-3966 (((-110) (-528) $) 47)) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-2890 ((|#1| $) 42 (|has| (-528) (-793)))) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-1332 (($ $ |#1|) 41 (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-2111 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2861 (((-595 |#1|) $) 48)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3043 ((|#1| $ (-528) |#1|) 50) ((|#1| $ (-528)) 49) (($ $ (-1144 (-528))) 63)) (-1745 (($ $ (-528)) 62) (($ $ (-1144 (-528))) 61)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-3155 (((-504) $) 79 (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) 70)) (-3400 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-595 $)) 65)) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-600 |#1|) (-133) (-1131)) (T -600))
-((-3462 (*1 *1 *2 *3) (-12 (-5 *2 (-717)) (-4 *1 (-600 *3)) (-4 *3 (-1131)))) (-3400 (*1 *1 *1 *2) (-12 (-4 *1 (-600 *2)) (-4 *2 (-1131)))) (-3400 (*1 *1 *2 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-1131)))) (-3400 (*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-1131)))) (-3400 (*1 *1 *2) (-12 (-5 *2 (-595 *1)) (-4 *1 (-600 *3)) (-4 *3 (-1131)))) (-3106 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-600 *3)) (-4 *3 (-1131)))) (-3043 (*1 *1 *1 *2) (-12 (-5 *2 (-1144 (-528))) (-4 *1 (-600 *3)) (-4 *3 (-1131)))) (-1745 (*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-4 *1 (-600 *3)) (-4 *3 (-1131)))) (-1745 (*1 *1 *1 *2) (-12 (-5 *2 (-1144 (-528))) (-4 *1 (-600 *3)) (-4 *3 (-1131)))) (-3939 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-528)) (-4 *1 (-600 *2)) (-4 *2 (-1131)))) (-3939 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-528)) (-4 *1 (-600 *3)) (-4 *3 (-1131)))) (-2381 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1144 (-528))) (|has| *1 (-6 -4265)) (-4 *1 (-600 *2)) (-4 *2 (-1131)))))
-(-13 (-561 (-528) |t#1|) (-144 |t#1|) (-10 -8 (-15 -3462 ($ (-717) |t#1|)) (-15 -3400 ($ $ |t#1|)) (-15 -3400 ($ |t#1| $)) (-15 -3400 ($ $ $)) (-15 -3400 ($ (-595 $))) (-15 -3106 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3043 ($ $ (-1144 (-528)))) (-15 -1745 ($ $ (-528))) (-15 -1745 ($ $ (-1144 (-528)))) (-15 -3939 ($ |t#1| $ (-528))) (-15 -3939 ($ $ $ (-528))) (IF (|has| $ (-6 -4265)) (-15 -2381 (|t#1| $ (-1144 (-528)) |t#1|)) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1023)) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-569 (-802)))) ((-144 |#1|) . T) ((-570 (-504)) |has| |#1| (-570 (-504))) ((-267 #0=(-528) |#1|) . T) ((-269 #0# |#1|) . T) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-467 |#1|) . T) ((-561 #0# |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-1023) |has| |#1| (-1023)) ((-1131) . T))
-((-1651 (((-3 |#2| "failed") |#3| |#2| (-1095) |#2| (-595 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -1400 (-595 |#2|))) "failed") |#3| |#2| (-1095)) 44)))
-(((-601 |#1| |#2| |#3|) (-10 -7 (-15 -1651 ((-3 (-2 (|:| |particular| |#2|) (|:| -1400 (-595 |#2|))) "failed") |#3| |#2| (-1095))) (-15 -1651 ((-3 |#2| "failed") |#3| |#2| (-1095) |#2| (-595 |#2|)))) (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)) (-13 (-29 |#1|) (-1117) (-897)) (-605 |#2|)) (T -601))
-((-1651 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1095)) (-5 *5 (-595 *2)) (-4 *2 (-13 (-29 *6) (-1117) (-897))) (-4 *6 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140))) (-5 *1 (-601 *6 *2 *3)) (-4 *3 (-605 *2)))) (-1651 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1095)) (-4 *6 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140))) (-4 *4 (-13 (-29 *6) (-1117) (-897))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1400 (-595 *4)))) (-5 *1 (-601 *6 *4 *3)) (-4 *3 (-605 *4)))))
-(-10 -7 (-15 -1651 ((-3 (-2 (|:| |particular| |#2|) (|:| -1400 (-595 |#2|))) "failed") |#3| |#2| (-1095))) (-15 -1651 ((-3 |#2| "failed") |#3| |#2| (-1095) |#2| (-595 |#2|))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-1845 (($ $) NIL (|has| |#1| (-343)))) (-1526 (($ $ $) NIL (|has| |#1| (-343)))) (-3957 (($ $ (-717)) NIL (|has| |#1| (-343)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-3211 (($ $ $) NIL (|has| |#1| (-343)))) (-4232 (($ $ $) NIL (|has| |#1| (-343)))) (-1280 (($ $ $) NIL (|has| |#1| (-343)))) (-1815 (($ $ $) NIL (|has| |#1| (-343)))) (-3711 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#1| (-343)))) (-2040 (((-3 $ "failed") $ $) NIL (|has| |#1| (-343)))) (-3843 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-343)))) (-3001 (((-3 (-528) "failed") $) NIL (|has| |#1| (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-3 |#1| "failed") $) NIL)) (-2409 (((-528) $) NIL (|has| |#1| (-972 (-528)))) (((-387 (-528)) $) NIL (|has| |#1| (-972 (-387 (-528))))) ((|#1| $) NIL)) (-2388 (($ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1551 (($ $) NIL (|has| |#1| (-431)))) (-1297 (((-110) $) NIL)) (-2548 (($ |#1| (-717)) NIL)) (-1726 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-520)))) (-3566 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-520)))) (-3499 (((-717) $) NIL)) (-2857 (($ $ $) NIL (|has| |#1| (-343)))) (-3293 (($ $ $) NIL (|has| |#1| (-343)))) (-4058 (($ $ $) NIL (|has| |#1| (-343)))) (-1343 (($ $ $) NIL (|has| |#1| (-343)))) (-1543 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#1| (-343)))) (-3375 (((-3 $ "failed") $ $) NIL (|has| |#1| (-343)))) (-3758 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-343)))) (-2697 ((|#1| $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3477 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-520)))) (-3043 ((|#1| $ |#1|) NIL)) (-4092 (($ $ $) NIL (|has| |#1| (-343)))) (-2935 (((-717) $) NIL)) (-1618 ((|#1| $) NIL (|has| |#1| (-431)))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ (-387 (-528))) NIL (|has| |#1| (-972 (-387 (-528))))) (($ |#1|) NIL)) (-3348 (((-595 |#1|) $) NIL)) (-3216 ((|#1| $ (-717)) NIL)) (-3742 (((-717)) NIL)) (-2834 ((|#1| $ |#1| |#1|) NIL)) (-3154 (($ $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($) NIL)) (-2186 (((-110) $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-602 |#1|) (-605 |#1|) (-215)) (T -602))
-NIL
-(-605 |#1|)
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-1845 (($ $) NIL (|has| |#1| (-343)))) (-1526 (($ $ $) NIL (|has| |#1| (-343)))) (-3957 (($ $ (-717)) NIL (|has| |#1| (-343)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-3211 (($ $ $) NIL (|has| |#1| (-343)))) (-4232 (($ $ $) NIL (|has| |#1| (-343)))) (-1280 (($ $ $) NIL (|has| |#1| (-343)))) (-1815 (($ $ $) NIL (|has| |#1| (-343)))) (-3711 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#1| (-343)))) (-2040 (((-3 $ "failed") $ $) NIL (|has| |#1| (-343)))) (-3843 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-343)))) (-3001 (((-3 (-528) "failed") $) NIL (|has| |#1| (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-3 |#1| "failed") $) NIL)) (-2409 (((-528) $) NIL (|has| |#1| (-972 (-528)))) (((-387 (-528)) $) NIL (|has| |#1| (-972 (-387 (-528))))) ((|#1| $) NIL)) (-2388 (($ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1551 (($ $) NIL (|has| |#1| (-431)))) (-1297 (((-110) $) NIL)) (-2548 (($ |#1| (-717)) NIL)) (-1726 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-520)))) (-3566 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-520)))) (-3499 (((-717) $) NIL)) (-2857 (($ $ $) NIL (|has| |#1| (-343)))) (-3293 (($ $ $) NIL (|has| |#1| (-343)))) (-4058 (($ $ $) NIL (|has| |#1| (-343)))) (-1343 (($ $ $) NIL (|has| |#1| (-343)))) (-1543 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#1| (-343)))) (-3375 (((-3 $ "failed") $ $) NIL (|has| |#1| (-343)))) (-3758 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-343)))) (-2697 ((|#1| $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3477 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-520)))) (-3043 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-4092 (($ $ $) NIL (|has| |#1| (-343)))) (-2935 (((-717) $) NIL)) (-1618 ((|#1| $) NIL (|has| |#1| (-431)))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ (-387 (-528))) NIL (|has| |#1| (-972 (-387 (-528))))) (($ |#1|) NIL)) (-3348 (((-595 |#1|) $) NIL)) (-3216 ((|#1| $ (-717)) NIL)) (-3742 (((-717)) NIL)) (-2834 ((|#1| $ |#1| |#1|) NIL)) (-3154 (($ $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($) NIL)) (-2186 (((-110) $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-603 |#1| |#2|) (-13 (-605 |#1|) (-267 |#2| |#2|)) (-215) (-13 (-597 |#1|) (-10 -8 (-15 -3235 ($ $))))) (T -603))
-NIL
-(-13 (-605 |#1|) (-267 |#2| |#2|))
-((-1845 (($ $) 26)) (-3154 (($ $) 24)) (-3245 (($) 12)))
-(((-604 |#1| |#2|) (-10 -8 (-15 -1845 (|#1| |#1|)) (-15 -3154 (|#1| |#1|)) (-15 -3245 (|#1|))) (-605 |#2|) (-981)) (T -604))
-NIL
-(-10 -8 (-15 -1845 (|#1| |#1|)) (-15 -3154 (|#1| |#1|)) (-15 -3245 (|#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-1845 (($ $) 82 (|has| |#1| (-343)))) (-1526 (($ $ $) 84 (|has| |#1| (-343)))) (-3957 (($ $ (-717)) 83 (|has| |#1| (-343)))) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-3211 (($ $ $) 45 (|has| |#1| (-343)))) (-4232 (($ $ $) 46 (|has| |#1| (-343)))) (-1280 (($ $ $) 48 (|has| |#1| (-343)))) (-1815 (($ $ $) 43 (|has| |#1| (-343)))) (-3711 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 42 (|has| |#1| (-343)))) (-2040 (((-3 $ "failed") $ $) 44 (|has| |#1| (-343)))) (-3843 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 47 (|has| |#1| (-343)))) (-3001 (((-3 (-528) "failed") $) 74 (|has| |#1| (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) 72 (|has| |#1| (-972 (-387 (-528))))) (((-3 |#1| "failed") $) 69)) (-2409 (((-528) $) 75 (|has| |#1| (-972 (-528)))) (((-387 (-528)) $) 73 (|has| |#1| (-972 (-387 (-528))))) ((|#1| $) 68)) (-2388 (($ $) 64)) (-1312 (((-3 $ "failed") $) 34)) (-1551 (($ $) 55 (|has| |#1| (-431)))) (-1297 (((-110) $) 31)) (-2548 (($ |#1| (-717)) 62)) (-1726 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 57 (|has| |#1| (-520)))) (-3566 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 58 (|has| |#1| (-520)))) (-3499 (((-717) $) 66)) (-2857 (($ $ $) 52 (|has| |#1| (-343)))) (-3293 (($ $ $) 53 (|has| |#1| (-343)))) (-4058 (($ $ $) 41 (|has| |#1| (-343)))) (-1343 (($ $ $) 50 (|has| |#1| (-343)))) (-1543 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 49 (|has| |#1| (-343)))) (-3375 (((-3 $ "failed") $ $) 51 (|has| |#1| (-343)))) (-3758 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 54 (|has| |#1| (-343)))) (-2697 ((|#1| $) 65)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-3477 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-520)))) (-3043 ((|#1| $ |#1|) 87)) (-4092 (($ $ $) 81 (|has| |#1| (-343)))) (-2935 (((-717) $) 67)) (-1618 ((|#1| $) 56 (|has| |#1| (-431)))) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ (-387 (-528))) 71 (|has| |#1| (-972 (-387 (-528))))) (($ |#1|) 70)) (-3348 (((-595 |#1|) $) 61)) (-3216 ((|#1| $ (-717)) 63)) (-3742 (((-717)) 29)) (-2834 ((|#1| $ |#1| |#1|) 60)) (-3154 (($ $) 85)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-3245 (($) 86)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
-(((-605 |#1|) (-133) (-981)) (T -605))
-((-3245 (*1 *1) (-12 (-4 *1 (-605 *2)) (-4 *2 (-981)))) (-3154 (*1 *1 *1) (-12 (-4 *1 (-605 *2)) (-4 *2 (-981)))) (-1526 (*1 *1 *1 *1) (-12 (-4 *1 (-605 *2)) (-4 *2 (-981)) (-4 *2 (-343)))) (-3957 (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-605 *3)) (-4 *3 (-981)) (-4 *3 (-343)))) (-1845 (*1 *1 *1) (-12 (-4 *1 (-605 *2)) (-4 *2 (-981)) (-4 *2 (-343)))) (-4092 (*1 *1 *1 *1) (-12 (-4 *1 (-605 *2)) (-4 *2 (-981)) (-4 *2 (-343)))))
-(-13 (-795 |t#1|) (-267 |t#1| |t#1|) (-10 -8 (-15 -3245 ($)) (-15 -3154 ($ $)) (IF (|has| |t#1| (-343)) (PROGN (-15 -1526 ($ $ $)) (-15 -3957 ($ $ (-717))) (-15 -1845 ($ $)) (-15 -4092 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-162)) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-569 (-802)) . T) ((-267 |#1| |#1|) . T) ((-391 |#1|) . T) ((-597 |#1|) . T) ((-597 $) . T) ((-664 |#1|) |has| |#1| (-162)) ((-673) . T) ((-972 (-387 (-528))) |has| |#1| (-972 (-387 (-528)))) ((-972 (-528)) |has| |#1| (-972 (-528))) ((-972 |#1|) . T) ((-986 |#1|) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-795 |#1|) . T))
-((-2442 (((-595 (-602 (-387 |#2|))) (-602 (-387 |#2|))) 74 (|has| |#1| (-27)))) (-2437 (((-595 (-602 (-387 |#2|))) (-602 (-387 |#2|))) 73 (|has| |#1| (-27))) (((-595 (-602 (-387 |#2|))) (-602 (-387 |#2|)) (-1 (-595 |#1|) |#2|)) 17)))
-(((-606 |#1| |#2|) (-10 -7 (-15 -2437 ((-595 (-602 (-387 |#2|))) (-602 (-387 |#2|)) (-1 (-595 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2437 ((-595 (-602 (-387 |#2|))) (-602 (-387 |#2|)))) (-15 -2442 ((-595 (-602 (-387 |#2|))) (-602 (-387 |#2|))))) |%noBranch|)) (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528)))) (-1153 |#1|)) (T -606))
-((-2442 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528))))) (-4 *5 (-1153 *4)) (-5 *2 (-595 (-602 (-387 *5)))) (-5 *1 (-606 *4 *5)) (-5 *3 (-602 (-387 *5))))) (-2437 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528))))) (-4 *5 (-1153 *4)) (-5 *2 (-595 (-602 (-387 *5)))) (-5 *1 (-606 *4 *5)) (-5 *3 (-602 (-387 *5))))) (-2437 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-595 *5) *6)) (-4 *5 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528))))) (-4 *6 (-1153 *5)) (-5 *2 (-595 (-602 (-387 *6)))) (-5 *1 (-606 *5 *6)) (-5 *3 (-602 (-387 *6))))))
-(-10 -7 (-15 -2437 ((-595 (-602 (-387 |#2|))) (-602 (-387 |#2|)) (-1 (-595 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2437 ((-595 (-602 (-387 |#2|))) (-602 (-387 |#2|)))) (-15 -2442 ((-595 (-602 (-387 |#2|))) (-602 (-387 |#2|))))) |%noBranch|))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-1845 (($ $) NIL (|has| |#1| (-343)))) (-1526 (($ $ $) 28 (|has| |#1| (-343)))) (-3957 (($ $ (-717)) 31 (|has| |#1| (-343)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-3211 (($ $ $) NIL (|has| |#1| (-343)))) (-4232 (($ $ $) NIL (|has| |#1| (-343)))) (-1280 (($ $ $) NIL (|has| |#1| (-343)))) (-1815 (($ $ $) NIL (|has| |#1| (-343)))) (-3711 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#1| (-343)))) (-2040 (((-3 $ "failed") $ $) NIL (|has| |#1| (-343)))) (-3843 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-343)))) (-3001 (((-3 (-528) "failed") $) NIL (|has| |#1| (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-3 |#1| "failed") $) NIL)) (-2409 (((-528) $) NIL (|has| |#1| (-972 (-528)))) (((-387 (-528)) $) NIL (|has| |#1| (-972 (-387 (-528))))) ((|#1| $) NIL)) (-2388 (($ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1551 (($ $) NIL (|has| |#1| (-431)))) (-1297 (((-110) $) NIL)) (-2548 (($ |#1| (-717)) NIL)) (-1726 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-520)))) (-3566 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-520)))) (-3499 (((-717) $) NIL)) (-2857 (($ $ $) NIL (|has| |#1| (-343)))) (-3293 (($ $ $) NIL (|has| |#1| (-343)))) (-4058 (($ $ $) NIL (|has| |#1| (-343)))) (-1343 (($ $ $) NIL (|has| |#1| (-343)))) (-1543 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#1| (-343)))) (-3375 (((-3 $ "failed") $ $) NIL (|has| |#1| (-343)))) (-3758 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-343)))) (-2697 ((|#1| $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3477 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-520)))) (-3043 ((|#1| $ |#1|) 24)) (-4092 (($ $ $) 33 (|has| |#1| (-343)))) (-2935 (((-717) $) NIL)) (-1618 ((|#1| $) NIL (|has| |#1| (-431)))) (-2222 (((-802) $) 20) (($ (-528)) NIL) (($ (-387 (-528))) NIL (|has| |#1| (-972 (-387 (-528))))) (($ |#1|) NIL)) (-3348 (((-595 |#1|) $) NIL)) (-3216 ((|#1| $ (-717)) NIL)) (-3742 (((-717)) NIL)) (-2834 ((|#1| $ |#1| |#1|) 23)) (-3154 (($ $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 21 T CONST)) (-2982 (($) 8 T CONST)) (-3245 (($) NIL)) (-2186 (((-110) $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-607 |#1| |#2|) (-605 |#1|) (-981) (-1 |#1| |#1|)) (T -607))
-NIL
-(-605 |#1|)
-((-1526 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-3957 ((|#2| |#2| (-717) (-1 |#1| |#1|)) 40)) (-4092 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)))
-(((-608 |#1| |#2|) (-10 -7 (-15 -1526 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3957 (|#2| |#2| (-717) (-1 |#1| |#1|))) (-15 -4092 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-343) (-605 |#1|)) (T -608))
-((-4092 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-343)) (-5 *1 (-608 *4 *2)) (-4 *2 (-605 *4)))) (-3957 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-717)) (-5 *4 (-1 *5 *5)) (-4 *5 (-343)) (-5 *1 (-608 *5 *2)) (-4 *2 (-605 *5)))) (-1526 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-343)) (-5 *1 (-608 *4 *2)) (-4 *2 (-605 *4)))))
-(-10 -7 (-15 -1526 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3957 (|#2| |#2| (-717) (-1 |#1| |#1|))) (-15 -4092 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-2436 (($ $ $) 9)))
-(((-609 |#1|) (-10 -8 (-15 -2436 (|#1| |#1| |#1|))) (-610)) (T -609))
-NIL
-(-10 -8 (-15 -2436 (|#1| |#1| |#1|)))
-((-2207 (((-110) $ $) 7)) (-2355 (($ $) 10)) (-2436 (($ $ $) 8)) (-2186 (((-110) $ $) 6)) (-2425 (($ $ $) 9)))
-(((-610) (-133)) (T -610))
-((-2355 (*1 *1 *1) (-4 *1 (-610))) (-2425 (*1 *1 *1 *1) (-4 *1 (-610))) (-2436 (*1 *1 *1 *1) (-4 *1 (-610))))
-(-13 (-99) (-10 -8 (-15 -2355 ($ $)) (-15 -2425 ($ $ $)) (-15 -2436 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-805)) . T) ((-1027) . T))
+((-2828 (((-110) $ $) NIL)) (-3395 (((-719) $) 15)) (-2310 (($ $ |#1|) 56)) (-2312 (($ $) 32)) (-2313 (($ $) 31)) (-3432 (((-3 |#1| "failed") $) 48)) (-3431 ((|#1| $) NIL)) (-2342 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3806 (((-805) $ (-1 (-805) (-805) (-805)) (-1 (-805) (-805) (-805)) (-516)) 46)) (-2702 ((|#1| $ (-516)) 30)) (-2703 ((|#2| $ (-516)) 29)) (-2306 (($ (-1 |#1| |#1|) $) 34)) (-2307 (($ (-1 |#2| |#2|) $) 38)) (-2311 (($) 10)) (-2315 (($ |#1| |#2|) 22)) (-2314 (($ (-594 (-2 (|:| |gen| |#1|) (|:| -4219 |#2|)))) 23)) (-2316 (((-594 (-2 (|:| |gen| |#1|) (|:| -4219 |#2|))) $) 13)) (-2309 (($ |#1| $) 57)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-2308 (((-110) $ $) 60)) (-4233 (((-805) $) 19) (($ |#1|) 16)) (-3317 (((-110) $ $) 25)))
+(((-600 |#1| |#2| |#3|) (-13 (-1027) (-975 |#1|) (-10 -8 (-15 -3806 ((-805) $ (-1 (-805) (-805) (-805)) (-1 (-805) (-805) (-805)) (-516))) (-15 -2316 ((-594 (-2 (|:| |gen| |#1|) (|:| -4219 |#2|))) $)) (-15 -2315 ($ |#1| |#2|)) (-15 -2314 ($ (-594 (-2 (|:| |gen| |#1|) (|:| -4219 |#2|))))) (-15 -2703 (|#2| $ (-516))) (-15 -2702 (|#1| $ (-516))) (-15 -2313 ($ $)) (-15 -2312 ($ $)) (-15 -3395 ((-719) $)) (-15 -2311 ($)) (-15 -2310 ($ $ |#1|)) (-15 -2309 ($ |#1| $)) (-15 -2342 ($ |#1| |#2| $)) (-15 -2342 ($ $ $)) (-15 -2308 ((-110) $ $)) (-15 -2307 ($ (-1 |#2| |#2|) $)) (-15 -2306 ($ (-1 |#1| |#1|) $)))) (-1027) (-23) |#2|) (T -600))
+((-3806 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-805) (-805) (-805))) (-5 *4 (-516)) (-5 *2 (-805)) (-5 *1 (-600 *5 *6 *7)) (-4 *5 (-1027)) (-4 *6 (-23)) (-14 *7 *6))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-594 (-2 (|:| |gen| *3) (|:| -4219 *4)))) (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)) (-4 *4 (-23)) (-14 *5 *4))) (-2315 (*1 *1 *2 *3) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-2314 (*1 *1 *2) (-12 (-5 *2 (-594 (-2 (|:| |gen| *3) (|:| -4219 *4)))) (-4 *3 (-1027)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-600 *3 *4 *5)))) (-2703 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-4 *2 (-23)) (-5 *1 (-600 *4 *2 *5)) (-4 *4 (-1027)) (-14 *5 *2))) (-2702 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-4 *2 (-1027)) (-5 *1 (-600 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2313 (*1 *1 *1) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-2312 (*1 *1 *1) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-3395 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)) (-4 *4 (-23)) (-14 *5 *4))) (-2311 (*1 *1) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-2310 (*1 *1 *1 *2) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-2309 (*1 *1 *2 *1) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-2342 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-2342 (*1 *1 *1 *1) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-2308 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)) (-4 *4 (-23)) (-14 *5 *4))) (-2307 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)))) (-2306 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-600 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1027) (-975 |#1|) (-10 -8 (-15 -3806 ((-805) $ (-1 (-805) (-805) (-805)) (-1 (-805) (-805) (-805)) (-516))) (-15 -2316 ((-594 (-2 (|:| |gen| |#1|) (|:| -4219 |#2|))) $)) (-15 -2315 ($ |#1| |#2|)) (-15 -2314 ($ (-594 (-2 (|:| |gen| |#1|) (|:| -4219 |#2|))))) (-15 -2703 (|#2| $ (-516))) (-15 -2702 (|#1| $ (-516))) (-15 -2313 ($ $)) (-15 -2312 ($ $)) (-15 -3395 ((-719) $)) (-15 -2311 ($)) (-15 -2310 ($ $ |#1|)) (-15 -2309 ($ |#1| $)) (-15 -2342 ($ |#1| |#2| $)) (-15 -2342 ($ $ $)) (-15 -2308 ((-110) $ $)) (-15 -2307 ($ (-1 |#2| |#2|) $)) (-15 -2306 ($ (-1 |#1| |#1|) $))))
+((-2246 (((-516) $) 24)) (-2317 (($ |#2| $ (-516)) 22) (($ $ $ (-516)) NIL)) (-2248 (((-594 (-516)) $) 12)) (-2249 (((-110) (-516) $) 15)) (-4080 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-594 $)) NIL)))
+(((-601 |#1| |#2|) (-10 -8 (-15 -2317 (|#1| |#1| |#1| (-516))) (-15 -2317 (|#1| |#2| |#1| (-516))) (-15 -4080 (|#1| (-594 |#1|))) (-15 -4080 (|#1| |#1| |#1|)) (-15 -4080 (|#1| |#2| |#1|)) (-15 -4080 (|#1| |#1| |#2|)) (-15 -2246 ((-516) |#1|)) (-15 -2248 ((-594 (-516)) |#1|)) (-15 -2249 ((-110) (-516) |#1|))) (-602 |#2|) (-1134)) (T -601))
+NIL
+(-10 -8 (-15 -2317 (|#1| |#1| |#1| (-516))) (-15 -2317 (|#1| |#2| |#1| (-516))) (-15 -4080 (|#1| (-594 |#1|))) (-15 -4080 (|#1| |#1| |#1|)) (-15 -4080 (|#1| |#2| |#1|)) (-15 -4080 (|#1| |#1| |#2|)) (-15 -2246 ((-516) |#1|)) (-15 -2248 ((-594 (-516)) |#1|)) (-15 -2249 ((-110) (-516) |#1|)))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-2243 (((-1185) $ (-516) (-516)) 40 (|has| $ (-6 -4270)))) (-1217 (((-110) $ (-719)) 8)) (-4066 ((|#1| $ (-516) |#1|) 52 (|has| $ (-6 -4270))) ((|#1| $ (-1146 (-516)) |#1|) 58 (|has| $ (-6 -4270)))) (-3992 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4269)))) (-3815 (($) 7 T CONST)) (-1349 (($ $) 78 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3685 (($ |#1| $) 77 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4269)))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4269)))) (-1587 ((|#1| $ (-516) |#1|) 53 (|has| $ (-6 -4270)))) (-3372 ((|#1| $ (-516)) 51)) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-3896 (($ (-719) |#1|) 69)) (-4001 (((-110) $ (-719)) 9)) (-2245 (((-516) $) 43 (|has| (-516) (-795)))) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2246 (((-516) $) 44 (|has| (-516) (-795)))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3998 (((-110) $ (-719)) 10)) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-2317 (($ |#1| $ (-516)) 60) (($ $ $ (-516)) 59)) (-2248 (((-594 (-516)) $) 46)) (-2249 (((-110) (-516) $) 47)) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-4079 ((|#1| $) 42 (|has| (-516) (-795)))) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-2244 (($ $ |#1|) 41 (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-2247 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2250 (((-594 |#1|) $) 48)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-4078 ((|#1| $ (-516) |#1|) 50) ((|#1| $ (-516)) 49) (($ $ (-1146 (-516))) 63)) (-2318 (($ $ (-516)) 62) (($ $ (-1146 (-516))) 61)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4246 (((-505) $) 79 (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) 70)) (-4080 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-594 $)) 65)) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-602 |#1|) (-133) (-1134)) (T -602))
+((-3896 (*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-4 *1 (-602 *3)) (-4 *3 (-1134)))) (-4080 (*1 *1 *1 *2) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1134)))) (-4080 (*1 *1 *2 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1134)))) (-4080 (*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1134)))) (-4080 (*1 *1 *2) (-12 (-5 *2 (-594 *1)) (-4 *1 (-602 *3)) (-4 *3 (-1134)))) (-4234 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-602 *3)) (-4 *3 (-1134)))) (-4078 (*1 *1 *1 *2) (-12 (-5 *2 (-1146 (-516))) (-4 *1 (-602 *3)) (-4 *3 (-1134)))) (-2318 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-4 *1 (-602 *3)) (-4 *3 (-1134)))) (-2318 (*1 *1 *1 *2) (-12 (-5 *2 (-1146 (-516))) (-4 *1 (-602 *3)) (-4 *3 (-1134)))) (-2317 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-516)) (-4 *1 (-602 *2)) (-4 *2 (-1134)))) (-2317 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-516)) (-4 *1 (-602 *3)) (-4 *3 (-1134)))) (-4066 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1146 (-516))) (|has| *1 (-6 -4270)) (-4 *1 (-602 *2)) (-4 *2 (-1134)))))
+(-13 (-563 (-516) |t#1|) (-144 |t#1|) (-10 -8 (-15 -3896 ($ (-719) |t#1|)) (-15 -4080 ($ $ |t#1|)) (-15 -4080 ($ |t#1| $)) (-15 -4080 ($ $ $)) (-15 -4080 ($ (-594 $))) (-15 -4234 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4078 ($ $ (-1146 (-516)))) (-15 -2318 ($ $ (-516))) (-15 -2318 ($ $ (-1146 (-516)))) (-15 -2317 ($ |t#1| $ (-516))) (-15 -2317 ($ $ $ (-516))) (IF (|has| $ (-6 -4270)) (-15 -4066 (|t#1| $ (-1146 (-516)) |t#1|)) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-571 (-805)))) ((-144 |#1|) . T) ((-572 (-505)) |has| |#1| (-572 (-505))) ((-268 #1=(-516) |#1|) . T) ((-270 #1# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-563 #1# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1134) . T))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 15)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-3262 ((|#1| $) 21)) (-3596 (($ $ $) NIL (|has| |#1| (-739)))) (-3597 (($ $ $) NIL (|has| |#1| (-739)))) (-3513 (((-1081) $) 46)) (-3514 (((-1045) $) NIL)) (-3261 ((|#3| $) 22)) (-4233 (((-805) $) 42)) (-2920 (($) 10 T CONST)) (-2826 (((-110) $ $) NIL (|has| |#1| (-739)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-739)))) (-3317 (((-110) $ $) 20)) (-2947 (((-110) $ $) NIL (|has| |#1| (-739)))) (-2948 (((-110) $ $) 24 (|has| |#1| (-739)))) (-4224 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-4116 (($ $) 17) (($ $ $) NIL)) (-4118 (($ $ $) 27)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
+(((-603 |#1| |#2| |#3|) (-13 (-666 |#2|) (-10 -8 (IF (|has| |#1| (-739)) (-6 (-739)) |%noBranch|) (-15 -4224 ($ $ |#3|)) (-15 -4224 ($ |#1| |#3|)) (-15 -3262 (|#1| $)) (-15 -3261 (|#3| $)))) (-666 |#2|) (-162) (|SubsetCategory| (-675) |#2|)) (T -603))
+((-4224 (*1 *1 *1 *2) (-12 (-4 *4 (-162)) (-5 *1 (-603 *3 *4 *2)) (-4 *3 (-666 *4)) (-4 *2 (|SubsetCategory| (-675) *4)))) (-4224 (*1 *1 *2 *3) (-12 (-4 *4 (-162)) (-5 *1 (-603 *2 *4 *3)) (-4 *2 (-666 *4)) (-4 *3 (|SubsetCategory| (-675) *4)))) (-3262 (*1 *2 *1) (-12 (-4 *3 (-162)) (-4 *2 (-666 *3)) (-5 *1 (-603 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-675) *3)))) (-3261 (*1 *2 *1) (-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-675) *4)) (-5 *1 (-603 *3 *4 *2)) (-4 *3 (-666 *4)))))
+(-13 (-666 |#2|) (-10 -8 (IF (|has| |#1| (-739)) (-6 (-739)) |%noBranch|) (-15 -4224 ($ $ |#3|)) (-15 -4224 ($ |#1| |#3|)) (-15 -3262 (|#1| $)) (-15 -3261 (|#3| $))))
+((-3855 (((-3 |#2| "failed") |#3| |#2| (-1098) |#2| (-594 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2071 (-594 |#2|))) "failed") |#3| |#2| (-1098)) 44)))
+(((-604 |#1| |#2| |#3|) (-10 -7 (-15 -3855 ((-3 (-2 (|:| |particular| |#2|) (|:| -2071 (-594 |#2|))) "failed") |#3| |#2| (-1098))) (-15 -3855 ((-3 |#2| "failed") |#3| |#2| (-1098) |#2| (-594 |#2|)))) (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)) (-13 (-29 |#1|) (-1120) (-901)) (-609 |#2|)) (T -604))
+((-3855 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1098)) (-5 *5 (-594 *2)) (-4 *2 (-13 (-29 *6) (-1120) (-901))) (-4 *6 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140))) (-5 *1 (-604 *6 *2 *3)) (-4 *3 (-609 *2)))) (-3855 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1098)) (-4 *6 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140))) (-4 *4 (-13 (-29 *6) (-1120) (-901))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2071 (-594 *4)))) (-5 *1 (-604 *6 *4 *3)) (-4 *3 (-609 *4)))))
+(-10 -7 (-15 -3855 ((-3 (-2 (|:| |particular| |#2|) (|:| -2071 (-594 |#2|))) "failed") |#3| |#2| (-1098))) (-15 -3855 ((-3 |#2| "failed") |#3| |#2| (-1098) |#2| (-594 |#2|))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2319 (($ $) NIL (|has| |#1| (-344)))) (-2321 (($ $ $) 28 (|has| |#1| (-344)))) (-2322 (($ $ (-719)) 31 (|has| |#1| (-344)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-2805 (($ $ $) NIL (|has| |#1| (-344)))) (-2806 (($ $ $) NIL (|has| |#1| (-344)))) (-2807 (($ $ $) NIL (|has| |#1| (-344)))) (-2803 (($ $ $) NIL (|has| |#1| (-344)))) (-2802 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#1| (-344)))) (-2804 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-344)))) (-2818 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-344)))) (-3432 (((-3 (-516) #2="failed") $) NIL (|has| |#1| (-975 (-516)))) (((-3 (-388 (-516)) #2#) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-3 |#1| #2#) $) NIL)) (-3431 (((-516) $) NIL (|has| |#1| (-975 (-516)))) (((-388 (-516)) $) NIL (|has| |#1| (-975 (-388 (-516))))) ((|#1| $) NIL)) (-4235 (($ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3777 (($ $) NIL (|has| |#1| (-432)))) (-2436 (((-110) $) NIL)) (-3157 (($ |#1| (-719)) NIL)) (-2816 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-523)))) (-2815 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-523)))) (-3084 (((-719) $) NIL)) (-2811 (($ $ $) NIL (|has| |#1| (-344)))) (-2812 (($ $ $) NIL (|has| |#1| (-344)))) (-2801 (($ $ $) NIL (|has| |#1| (-344)))) (-2809 (($ $ $) NIL (|has| |#1| (-344)))) (-2808 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#1| (-344)))) (-2810 (((-3 $ #1#) $ $) NIL (|has| |#1| (-344)))) (-2817 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-344)))) (-3449 ((|#1| $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-3740 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-523)))) (-4078 ((|#1| $ |#1|) 24)) (-2323 (($ $ $) 33 (|has| |#1| (-344)))) (-4223 (((-719) $) NIL)) (-3081 ((|#1| $) NIL (|has| |#1| (-432)))) (-4233 (((-805) $) 20) (($ (-516)) NIL) (($ (-388 (-516))) NIL (|has| |#1| (-975 (-388 (-516))))) (($ |#1|) NIL)) (-4096 (((-594 |#1|) $) NIL)) (-3959 ((|#1| $ (-719)) NIL)) (-3385 (((-719)) NIL)) (-2814 ((|#1| $ |#1| |#1|) 23)) (-2788 (($ $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 21 T CONST)) (-2927 (($) 8 T CONST)) (-2932 (($) NIL)) (-3317 (((-110) $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-605 |#1| |#2|) (-609 |#1|) (-984) (-1 |#1| |#1|)) (T -605))
+NIL
+(-609 |#1|)
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2319 (($ $) NIL (|has| |#1| (-344)))) (-2321 (($ $ $) NIL (|has| |#1| (-344)))) (-2322 (($ $ (-719)) NIL (|has| |#1| (-344)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-2805 (($ $ $) NIL (|has| |#1| (-344)))) (-2806 (($ $ $) NIL (|has| |#1| (-344)))) (-2807 (($ $ $) NIL (|has| |#1| (-344)))) (-2803 (($ $ $) NIL (|has| |#1| (-344)))) (-2802 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#1| (-344)))) (-2804 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-344)))) (-2818 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-344)))) (-3432 (((-3 (-516) #2="failed") $) NIL (|has| |#1| (-975 (-516)))) (((-3 (-388 (-516)) #2#) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-3 |#1| #2#) $) NIL)) (-3431 (((-516) $) NIL (|has| |#1| (-975 (-516)))) (((-388 (-516)) $) NIL (|has| |#1| (-975 (-388 (-516))))) ((|#1| $) NIL)) (-4235 (($ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3777 (($ $) NIL (|has| |#1| (-432)))) (-2436 (((-110) $) NIL)) (-3157 (($ |#1| (-719)) NIL)) (-2816 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-523)))) (-2815 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-523)))) (-3084 (((-719) $) NIL)) (-2811 (($ $ $) NIL (|has| |#1| (-344)))) (-2812 (($ $ $) NIL (|has| |#1| (-344)))) (-2801 (($ $ $) NIL (|has| |#1| (-344)))) (-2809 (($ $ $) NIL (|has| |#1| (-344)))) (-2808 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#1| (-344)))) (-2810 (((-3 $ #1#) $ $) NIL (|has| |#1| (-344)))) (-2817 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-344)))) (-3449 ((|#1| $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-3740 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-523)))) (-4078 ((|#1| $ |#1|) NIL)) (-2323 (($ $ $) NIL (|has| |#1| (-344)))) (-4223 (((-719) $) NIL)) (-3081 ((|#1| $) NIL (|has| |#1| (-432)))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ (-388 (-516))) NIL (|has| |#1| (-975 (-388 (-516))))) (($ |#1|) NIL)) (-4096 (((-594 |#1|) $) NIL)) (-3959 ((|#1| $ (-719)) NIL)) (-3385 (((-719)) NIL)) (-2814 ((|#1| $ |#1| |#1|) NIL)) (-2788 (($ $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($) NIL)) (-3317 (((-110) $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-606 |#1|) (-609 |#1|) (-216)) (T -606))
+NIL
+(-609 |#1|)
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2319 (($ $) NIL (|has| |#1| (-344)))) (-2321 (($ $ $) NIL (|has| |#1| (-344)))) (-2322 (($ $ (-719)) NIL (|has| |#1| (-344)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-2805 (($ $ $) NIL (|has| |#1| (-344)))) (-2806 (($ $ $) NIL (|has| |#1| (-344)))) (-2807 (($ $ $) NIL (|has| |#1| (-344)))) (-2803 (($ $ $) NIL (|has| |#1| (-344)))) (-2802 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#1| (-344)))) (-2804 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-344)))) (-2818 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-344)))) (-3432 (((-3 (-516) #2="failed") $) NIL (|has| |#1| (-975 (-516)))) (((-3 (-388 (-516)) #2#) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-3 |#1| #2#) $) NIL)) (-3431 (((-516) $) NIL (|has| |#1| (-975 (-516)))) (((-388 (-516)) $) NIL (|has| |#1| (-975 (-388 (-516))))) ((|#1| $) NIL)) (-4235 (($ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3777 (($ $) NIL (|has| |#1| (-432)))) (-2436 (((-110) $) NIL)) (-3157 (($ |#1| (-719)) NIL)) (-2816 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-523)))) (-2815 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-523)))) (-3084 (((-719) $) NIL)) (-2811 (($ $ $) NIL (|has| |#1| (-344)))) (-2812 (($ $ $) NIL (|has| |#1| (-344)))) (-2801 (($ $ $) NIL (|has| |#1| (-344)))) (-2809 (($ $ $) NIL (|has| |#1| (-344)))) (-2808 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#1| (-344)))) (-2810 (((-3 $ #1#) $ $) NIL (|has| |#1| (-344)))) (-2817 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-344)))) (-3449 ((|#1| $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-3740 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-523)))) (-4078 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2323 (($ $ $) NIL (|has| |#1| (-344)))) (-4223 (((-719) $) NIL)) (-3081 ((|#1| $) NIL (|has| |#1| (-432)))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ (-388 (-516))) NIL (|has| |#1| (-975 (-388 (-516))))) (($ |#1|) NIL)) (-4096 (((-594 |#1|) $) NIL)) (-3959 ((|#1| $ (-719)) NIL)) (-3385 (((-719)) NIL)) (-2814 ((|#1| $ |#1| |#1|) NIL)) (-2788 (($ $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($) NIL)) (-3317 (((-110) $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-607 |#1| |#2|) (-13 (-609 |#1|) (-268 |#2| |#2|)) (-216) (-13 (-599 |#1|) (-10 -8 (-15 -4089 ($ $))))) (T -607))
+NIL
+(-13 (-609 |#1|) (-268 |#2| |#2|))
+((-2319 (($ $) 26)) (-2788 (($ $) 24)) (-2932 (($) 12)))
+(((-608 |#1| |#2|) (-10 -8 (-15 -2319 (|#1| |#1|)) (-15 -2788 (|#1| |#1|)) (-15 -2932 (|#1|))) (-609 |#2|) (-984)) (T -608))
+NIL
+(-10 -8 (-15 -2319 (|#1| |#1|)) (-15 -2788 (|#1| |#1|)) (-15 -2932 (|#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-2319 (($ $) 82 (|has| |#1| (-344)))) (-2321 (($ $ $) 84 (|has| |#1| (-344)))) (-2322 (($ $ (-719)) 83 (|has| |#1| (-344)))) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-2805 (($ $ $) 45 (|has| |#1| (-344)))) (-2806 (($ $ $) 46 (|has| |#1| (-344)))) (-2807 (($ $ $) 48 (|has| |#1| (-344)))) (-2803 (($ $ $) 43 (|has| |#1| (-344)))) (-2802 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 42 (|has| |#1| (-344)))) (-2804 (((-3 $ #1="failed") $ $) 44 (|has| |#1| (-344)))) (-2818 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 47 (|has| |#1| (-344)))) (-3432 (((-3 (-516) #2="failed") $) 74 (|has| |#1| (-975 (-516)))) (((-3 (-388 (-516)) #2#) $) 72 (|has| |#1| (-975 (-388 (-516))))) (((-3 |#1| #2#) $) 69)) (-3431 (((-516) $) 75 (|has| |#1| (-975 (-516)))) (((-388 (-516)) $) 73 (|has| |#1| (-975 (-388 (-516))))) ((|#1| $) 68)) (-4235 (($ $) 64)) (-3741 (((-3 $ "failed") $) 34)) (-3777 (($ $) 55 (|has| |#1| (-432)))) (-2436 (((-110) $) 31)) (-3157 (($ |#1| (-719)) 62)) (-2816 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 57 (|has| |#1| (-523)))) (-2815 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 58 (|has| |#1| (-523)))) (-3084 (((-719) $) 66)) (-2811 (($ $ $) 52 (|has| |#1| (-344)))) (-2812 (($ $ $) 53 (|has| |#1| (-344)))) (-2801 (($ $ $) 41 (|has| |#1| (-344)))) (-2809 (($ $ $) 50 (|has| |#1| (-344)))) (-2808 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 49 (|has| |#1| (-344)))) (-2810 (((-3 $ #1#) $ $) 51 (|has| |#1| (-344)))) (-2817 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 54 (|has| |#1| (-344)))) (-3449 ((|#1| $) 65)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-3740 (((-3 $ #1#) $ |#1|) 59 (|has| |#1| (-523)))) (-4078 ((|#1| $ |#1|) 87)) (-2323 (($ $ $) 81 (|has| |#1| (-344)))) (-4223 (((-719) $) 67)) (-3081 ((|#1| $) 56 (|has| |#1| (-432)))) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ (-388 (-516))) 71 (|has| |#1| (-975 (-388 (-516))))) (($ |#1|) 70)) (-4096 (((-594 |#1|) $) 61)) (-3959 ((|#1| $ (-719)) 63)) (-3385 (((-719)) 29)) (-2814 ((|#1| $ |#1| |#1|) 60)) (-2788 (($ $) 85)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2932 (($) 86)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
+(((-609 |#1|) (-133) (-984)) (T -609))
+((-2932 (*1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-984)))) (-2788 (*1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-984)))) (-2321 (*1 *1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2322 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-609 *3)) (-4 *3 (-984)) (-4 *3 (-344)))) (-2319 (*1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2323 (*1 *1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(-13 (-797 |t#1|) (-268 |t#1| |t#1|) (-10 -8 (-15 -2932 ($)) (-15 -2788 ($ $)) (IF (|has| |t#1| (-344)) (PROGN (-15 -2321 ($ $ $)) (-15 -2322 ($ $ (-719))) (-15 -2319 ($ $)) (-15 -2323 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-162)) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-805)) . T) ((-268 |#1| |#1|) . T) ((-393 |#1|) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 |#1|) |has| |#1| (-162)) ((-675) . T) ((-975 (-388 (-516))) |has| |#1| (-975 (-388 (-516)))) ((-975 (-516)) |has| |#1| (-975 (-516))) ((-975 |#1|) . T) ((-989 |#1|) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-797 |#1|) . T))
+((-2320 (((-594 (-606 (-388 |#2|))) (-606 (-388 |#2|))) 74 (|has| |#1| (-27)))) (-4011 (((-594 (-606 (-388 |#2|))) (-606 (-388 |#2|))) 73 (|has| |#1| (-27))) (((-594 (-606 (-388 |#2|))) (-606 (-388 |#2|)) (-1 (-594 |#1|) |#2|)) 17)))
+(((-610 |#1| |#2|) (-10 -7 (-15 -4011 ((-594 (-606 (-388 |#2|))) (-606 (-388 |#2|)) (-1 (-594 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4011 ((-594 (-606 (-388 |#2|))) (-606 (-388 |#2|)))) (-15 -2320 ((-594 (-606 (-388 |#2|))) (-606 (-388 |#2|))))) |%noBranch|)) (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516)))) (-1155 |#1|)) (T -610))
+((-2320 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516))))) (-4 *5 (-1155 *4)) (-5 *2 (-594 (-606 (-388 *5)))) (-5 *1 (-610 *4 *5)) (-5 *3 (-606 (-388 *5))))) (-4011 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516))))) (-4 *5 (-1155 *4)) (-5 *2 (-594 (-606 (-388 *5)))) (-5 *1 (-610 *4 *5)) (-5 *3 (-606 (-388 *5))))) (-4011 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-594 *5) *6)) (-4 *5 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516))))) (-4 *6 (-1155 *5)) (-5 *2 (-594 (-606 (-388 *6)))) (-5 *1 (-610 *5 *6)) (-5 *3 (-606 (-388 *6))))))
+(-10 -7 (-15 -4011 ((-594 (-606 (-388 |#2|))) (-606 (-388 |#2|)) (-1 (-594 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4011 ((-594 (-606 (-388 |#2|))) (-606 (-388 |#2|)))) (-15 -2320 ((-594 (-606 (-388 |#2|))) (-606 (-388 |#2|))))) |%noBranch|))
+((-2321 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-2322 ((|#2| |#2| (-719) (-1 |#1| |#1|)) 40)) (-2323 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)))
+(((-611 |#1| |#2|) (-10 -7 (-15 -2321 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2322 (|#2| |#2| (-719) (-1 |#1| |#1|))) (-15 -2323 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-344) (-609 |#1|)) (T -611))
+((-2323 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-344)) (-5 *1 (-611 *4 *2)) (-4 *2 (-609 *4)))) (-2322 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-719)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344)) (-5 *1 (-611 *5 *2)) (-4 *2 (-609 *5)))) (-2321 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-344)) (-5 *1 (-611 *4 *2)) (-4 *2 (-609 *4)))))
+(-10 -7 (-15 -2321 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2322 (|#2| |#2| (-719) (-1 |#1| |#1|))) (-15 -2323 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-3600 (($ $ $) 9)))
+(((-612 |#1|) (-10 -8 (-15 -3600 (|#1| |#1| |#1|))) (-613)) (T -612))
+NIL
+(-10 -8 (-15 -3600 (|#1| |#1| |#1|)))
+((-2828 (((-110) $ $) 7)) (-3598 (($ $) 10)) (-3600 (($ $ $) 8)) (-3317 (((-110) $ $) 6)) (-3599 (($ $ $) 9)))
+(((-613) (-133)) (T -613))
+((-3598 (*1 *1 *1) (-4 *1 (-613))) (-3599 (*1 *1 *1 *1) (-4 *1 (-613))) (-3600 (*1 *1 *1 *1) (-4 *1 (-613))))
+(-13 (-99) (-10 -8 (-15 -3598 ($ $)) (-15 -3599 ($ $ $)) (-15 -3600 ($ $ $))))
(((-99) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 15)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-3031 ((|#1| $) 21)) (-1436 (($ $ $) NIL (|has| |#1| (-737)))) (-1736 (($ $ $) NIL (|has| |#1| (-737)))) (-3034 (((-1078) $) 46)) (-2495 (((-1042) $) NIL)) (-3042 ((|#3| $) 22)) (-2222 (((-802) $) 42)) (-2969 (($) 10 T CONST)) (-2244 (((-110) $ $) NIL (|has| |#1| (-737)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-737)))) (-2186 (((-110) $ $) 20)) (-2232 (((-110) $ $) NIL (|has| |#1| (-737)))) (-2208 (((-110) $ $) 24 (|has| |#1| (-737)))) (-2296 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-2286 (($ $) 17) (($ $ $) NIL)) (-2275 (($ $ $) 27)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
-(((-611 |#1| |#2| |#3|) (-13 (-664 |#2|) (-10 -8 (IF (|has| |#1| (-737)) (-6 (-737)) |%noBranch|) (-15 -2296 ($ $ |#3|)) (-15 -2296 ($ |#1| |#3|)) (-15 -3031 (|#1| $)) (-15 -3042 (|#3| $)))) (-664 |#2|) (-162) (|SubsetCategory| (-673) |#2|)) (T -611))
-((-2296 (*1 *1 *1 *2) (-12 (-4 *4 (-162)) (-5 *1 (-611 *3 *4 *2)) (-4 *3 (-664 *4)) (-4 *2 (|SubsetCategory| (-673) *4)))) (-2296 (*1 *1 *2 *3) (-12 (-4 *4 (-162)) (-5 *1 (-611 *2 *4 *3)) (-4 *2 (-664 *4)) (-4 *3 (|SubsetCategory| (-673) *4)))) (-3031 (*1 *2 *1) (-12 (-4 *3 (-162)) (-4 *2 (-664 *3)) (-5 *1 (-611 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-673) *3)))) (-3042 (*1 *2 *1) (-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-673) *4)) (-5 *1 (-611 *3 *4 *2)) (-4 *3 (-664 *4)))))
-(-13 (-664 |#2|) (-10 -8 (IF (|has| |#1| (-737)) (-6 (-737)) |%noBranch|) (-15 -2296 ($ $ |#3|)) (-15 -2296 ($ |#1| |#3|)) (-15 -3031 (|#1| $)) (-15 -3042 (|#3| $))))
-((-1321 (((-3 (-595 (-1091 |#1|)) "failed") (-595 (-1091 |#1|)) (-1091 |#1|)) 33)))
-(((-612 |#1|) (-10 -7 (-15 -1321 ((-3 (-595 (-1091 |#1|)) "failed") (-595 (-1091 |#1|)) (-1091 |#1|)))) (-848)) (T -612))
-((-1321 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-595 (-1091 *4))) (-5 *3 (-1091 *4)) (-4 *4 (-848)) (-5 *1 (-612 *4)))))
-(-10 -7 (-15 -1321 ((-3 (-595 (-1091 |#1|)) "failed") (-595 (-1091 |#1|)) (-1091 |#1|))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3642 (((-595 |#1|) $) 82)) (-2086 (($ $ (-717)) 90)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-2650 (((-1199 |#1| |#2|) (-1199 |#1| |#2|) $) 48)) (-3001 (((-3 (-620 |#1|) "failed") $) NIL)) (-2409 (((-620 |#1|) $) NIL)) (-2388 (($ $) 89)) (-1224 (((-717) $) NIL)) (-3737 (((-595 $) $) NIL)) (-2195 (((-110) $) NIL)) (-3841 (($ (-620 |#1|) |#2|) 68)) (-2091 (($ $) 86)) (-3106 (($ (-1 |#2| |#2|) $) NIL)) (-1572 (((-1199 |#1| |#2|) (-1199 |#1| |#2|) $) 47)) (-1868 (((-2 (|:| |k| (-620 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2686 (((-620 |#1|) $) NIL)) (-2697 ((|#2| $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-4014 (($ $ |#1| $) 30) (($ $ (-595 |#1|) (-595 $)) 32)) (-2935 (((-717) $) 88)) (-2233 (($ $ $) 20) (($ (-620 |#1|) (-620 |#1|)) 77) (($ (-620 |#1|) $) 75) (($ $ (-620 |#1|)) 76)) (-2222 (((-802) $) NIL) (($ |#1|) 74) (((-1190 |#1| |#2|) $) 58) (((-1199 |#1| |#2|) $) 41) (($ (-620 |#1|)) 25)) (-3348 (((-595 |#2|) $) NIL)) (-3216 ((|#2| $ (-620 |#1|)) NIL)) (-1641 ((|#2| (-1199 |#1| |#2|) $) 43)) (-2969 (($) 23 T CONST)) (-2145 (((-595 (-2 (|:| |k| (-620 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2236 (((-3 $ "failed") (-1190 |#1| |#2|)) 60)) (-1660 (($ (-620 |#1|)) 14)) (-2186 (((-110) $ $) 44)) (-2296 (($ $ |#2|) NIL (|has| |#2| (-343)))) (-2286 (($ $) 66) (($ $ $) NIL)) (-2275 (($ $ $) 29)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-620 |#1|)) NIL)))
-(((-613 |#1| |#2|) (-13 (-354 |#1| |#2|) (-362 |#2| (-620 |#1|)) (-10 -8 (-15 -2236 ((-3 $ "failed") (-1190 |#1| |#2|))) (-15 -2233 ($ (-620 |#1|) (-620 |#1|))) (-15 -2233 ($ (-620 |#1|) $)) (-15 -2233 ($ $ (-620 |#1|))))) (-793) (-162)) (T -613))
-((-2236 (*1 *1 *2) (|partial| -12 (-5 *2 (-1190 *3 *4)) (-4 *3 (-793)) (-4 *4 (-162)) (-5 *1 (-613 *3 *4)))) (-2233 (*1 *1 *2 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-793)) (-5 *1 (-613 *3 *4)) (-4 *4 (-162)))) (-2233 (*1 *1 *2 *1) (-12 (-5 *2 (-620 *3)) (-4 *3 (-793)) (-5 *1 (-613 *3 *4)) (-4 *4 (-162)))) (-2233 (*1 *1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-793)) (-5 *1 (-613 *3 *4)) (-4 *4 (-162)))))
-(-13 (-354 |#1| |#2|) (-362 |#2| (-620 |#1|)) (-10 -8 (-15 -2236 ((-3 $ "failed") (-1190 |#1| |#2|))) (-15 -2233 ($ (-620 |#1|) (-620 |#1|))) (-15 -2233 ($ (-620 |#1|) $)) (-15 -2233 ($ $ (-620 |#1|)))))
-((-3608 (((-110) $) NIL) (((-110) (-1 (-110) |#2| |#2|) $) 50)) (-3863 (($ $) NIL) (($ (-1 (-110) |#2| |#2|) $) 12)) (-1836 (($ (-1 (-110) |#2|) $) 28)) (-2472 (($ $) 56)) (-2833 (($ $) 64)) (-3991 (($ |#2| $) NIL) (($ (-1 (-110) |#2|) $) 37)) (-1422 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-3140 (((-528) |#2| $ (-528)) 61) (((-528) |#2| $) NIL) (((-528) (-1 (-110) |#2|) $) 47)) (-3462 (($ (-717) |#2|) 54)) (-3368 (($ $ $) NIL) (($ (-1 (-110) |#2| |#2|) $ $) 30)) (-1356 (($ $ $) NIL) (($ (-1 (-110) |#2| |#2|) $ $) 24)) (-3106 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-2759 (($ |#2|) 15)) (-1950 (($ $ $ (-528)) 36) (($ |#2| $ (-528)) 34)) (-1734 (((-3 |#2| "failed") (-1 (-110) |#2|) $) 46)) (-1704 (($ $ (-1144 (-528))) 44) (($ $ (-528)) 38)) (-3761 (($ $ $ (-528)) 60)) (-2406 (($ $) 58)) (-2208 (((-110) $ $) 66)))
-(((-614 |#1| |#2|) (-10 -8 (-15 -2759 (|#1| |#2|)) (-15 -1704 (|#1| |#1| (-528))) (-15 -1704 (|#1| |#1| (-1144 (-528)))) (-15 -3991 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1950 (|#1| |#2| |#1| (-528))) (-15 -1950 (|#1| |#1| |#1| (-528))) (-15 -3368 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -1836 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3991 (|#1| |#2| |#1|)) (-15 -2833 (|#1| |#1|)) (-15 -3368 (|#1| |#1| |#1|)) (-15 -1356 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -3608 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -3140 ((-528) (-1 (-110) |#2|) |#1|)) (-15 -3140 ((-528) |#2| |#1|)) (-15 -3140 ((-528) |#2| |#1| (-528))) (-15 -1356 (|#1| |#1| |#1|)) (-15 -3608 ((-110) |#1|)) (-15 -3761 (|#1| |#1| |#1| (-528))) (-15 -2472 (|#1| |#1|)) (-15 -3863 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -2208 ((-110) |#1| |#1|)) (-15 -1422 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1422 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1422 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1734 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -3462 (|#1| (-717) |#2|)) (-15 -3106 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3106 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2406 (|#1| |#1|))) (-615 |#2|) (-1131)) (T -614))
-NIL
-(-10 -8 (-15 -2759 (|#1| |#2|)) (-15 -1704 (|#1| |#1| (-528))) (-15 -1704 (|#1| |#1| (-1144 (-528)))) (-15 -3991 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1950 (|#1| |#2| |#1| (-528))) (-15 -1950 (|#1| |#1| |#1| (-528))) (-15 -3368 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -1836 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3991 (|#1| |#2| |#1|)) (-15 -2833 (|#1| |#1|)) (-15 -3368 (|#1| |#1| |#1|)) (-15 -1356 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -3608 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -3140 ((-528) (-1 (-110) |#2|) |#1|)) (-15 -3140 ((-528) |#2| |#1|)) (-15 -3140 ((-528) |#2| |#1| (-528))) (-15 -1356 (|#1| |#1| |#1|)) (-15 -3608 ((-110) |#1|)) (-15 -3761 (|#1| |#1| |#1| (-528))) (-15 -2472 (|#1| |#1|)) (-15 -3863 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -2208 ((-110) |#1| |#1|)) (-15 -1422 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1422 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1422 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1734 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -3462 (|#1| (-717) |#2|)) (-15 -3106 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3106 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2406 (|#1| |#1|)))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-3327 ((|#1| $) 48)) (-2513 ((|#1| $) 65)) (-2023 (($ $) 67)) (-1444 (((-1182) $ (-528) (-528)) 97 (|has| $ (-6 -4265)))) (-3084 (($ $ (-528)) 52 (|has| $ (-6 -4265)))) (-3608 (((-110) $) 142 (|has| |#1| (-793))) (((-110) (-1 (-110) |#1| |#1|) $) 136)) (-3863 (($ $) 146 (-12 (|has| |#1| (-793)) (|has| $ (-6 -4265)))) (($ (-1 (-110) |#1| |#1|) $) 145 (|has| $ (-6 -4265)))) (-1289 (($ $) 141 (|has| |#1| (-793))) (($ (-1 (-110) |#1| |#1|) $) 135)) (-3535 (((-110) $ (-717)) 8)) (-2074 ((|#1| $ |#1|) 39 (|has| $ (-6 -4265)))) (-3307 (($ $ $) 56 (|has| $ (-6 -4265)))) (-2624 ((|#1| $ |#1|) 54 (|has| $ (-6 -4265)))) (-2153 ((|#1| $ |#1|) 58 (|has| $ (-6 -4265)))) (-2381 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4265))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4265))) (($ $ "rest" $) 55 (|has| $ (-6 -4265))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4265))) ((|#1| $ (-1144 (-528)) |#1|) 117 (|has| $ (-6 -4265))) ((|#1| $ (-528) |#1|) 86 (|has| $ (-6 -4265)))) (-3409 (($ $ (-595 $)) 41 (|has| $ (-6 -4265)))) (-1836 (($ (-1 (-110) |#1|) $) 129)) (-1573 (($ (-1 (-110) |#1|) $) 102 (|has| $ (-6 -4264)))) (-2500 ((|#1| $) 66)) (-2816 (($) 7 T CONST)) (-2472 (($ $) 144 (|has| $ (-6 -4265)))) (-3009 (($ $) 134)) (-2902 (($ $) 73) (($ $ (-717)) 71)) (-2833 (($ $) 131 (|has| |#1| (-1023)))) (-2923 (($ $) 99 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-3991 (($ |#1| $) 130 (|has| |#1| (-1023))) (($ (-1 (-110) |#1|) $) 125)) (-2280 (($ (-1 (-110) |#1|) $) 103 (|has| $ (-6 -4264))) (($ |#1| $) 100 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2812 ((|#1| $ (-528) |#1|) 85 (|has| $ (-6 -4265)))) (-2742 ((|#1| $ (-528)) 87)) (-3691 (((-110) $) 83)) (-3140 (((-528) |#1| $ (-528)) 139 (|has| |#1| (-1023))) (((-528) |#1| $) 138 (|has| |#1| (-1023))) (((-528) (-1 (-110) |#1|) $) 137)) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-1690 (((-595 $) $) 50)) (-1313 (((-110) $ $) 42 (|has| |#1| (-1023)))) (-3462 (($ (-717) |#1|) 108)) (-2029 (((-110) $ (-717)) 9)) (-3530 (((-528) $) 95 (|has| (-528) (-793)))) (-1436 (($ $ $) 147 (|has| |#1| (-793)))) (-3368 (($ $ $) 132 (|has| |#1| (-793))) (($ (-1 (-110) |#1| |#1|) $ $) 128)) (-1356 (($ $ $) 140 (|has| |#1| (-793))) (($ (-1 (-110) |#1| |#1|) $ $) 133)) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-1709 (((-528) $) 94 (|has| (-528) (-793)))) (-1736 (($ $ $) 148 (|has| |#1| (-793)))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2759 (($ |#1|) 122)) (-3358 (((-110) $ (-717)) 10)) (-3298 (((-595 |#1|) $) 45)) (-2578 (((-110) $) 49)) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-2301 ((|#1| $) 70) (($ $ (-717)) 68)) (-1950 (($ $ $ (-528)) 127) (($ |#1| $ (-528)) 126)) (-3939 (($ $ $ (-528)) 116) (($ |#1| $ (-528)) 115)) (-2084 (((-595 (-528)) $) 92)) (-3966 (((-110) (-528) $) 91)) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-2890 ((|#1| $) 76) (($ $ (-717)) 74)) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 106)) (-1332 (($ $ |#1|) 96 (|has| $ (-6 -4265)))) (-1441 (((-110) $) 84)) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-2111 (((-110) |#1| $) 93 (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2861 (((-595 |#1|) $) 90)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3043 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1144 (-528))) 112) ((|#1| $ (-528)) 89) ((|#1| $ (-528) |#1|) 88)) (-3241 (((-528) $ $) 44)) (-1704 (($ $ (-1144 (-528))) 124) (($ $ (-528)) 123)) (-1745 (($ $ (-1144 (-528))) 114) (($ $ (-528)) 113)) (-3177 (((-110) $) 46)) (-2185 (($ $) 62)) (-3821 (($ $) 59 (|has| $ (-6 -4265)))) (-3887 (((-717) $) 63)) (-3539 (($ $) 64)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-3761 (($ $ $ (-528)) 143 (|has| $ (-6 -4265)))) (-2406 (($ $) 13)) (-3155 (((-504) $) 98 (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) 107)) (-3579 (($ $ $) 61) (($ $ |#1|) 60)) (-3400 (($ $ $) 78) (($ |#1| $) 77) (($ (-595 $)) 110) (($ $ |#1|) 109)) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-3813 (((-595 $) $) 51)) (-2688 (((-110) $ $) 43 (|has| |#1| (-1023)))) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2244 (((-110) $ $) 150 (|has| |#1| (-793)))) (-2220 (((-110) $ $) 151 (|has| |#1| (-793)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2232 (((-110) $ $) 149 (|has| |#1| (-793)))) (-2208 (((-110) $ $) 152 (|has| |#1| (-793)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-615 |#1|) (-133) (-1131)) (T -615))
-((-2759 (*1 *1 *2) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1131)))))
-(-13 (-1069 |t#1|) (-353 |t#1|) (-263 |t#1|) (-10 -8 (-15 -2759 ($ |t#1|))))
-(((-33) . T) ((-99) -1463 (|has| |#1| (-1023)) (|has| |#1| (-793))) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-793)) (|has| |#1| (-569 (-802)))) ((-144 |#1|) . T) ((-570 (-504)) |has| |#1| (-570 (-504))) ((-267 #0=(-528) |#1|) . T) ((-269 #0# |#1|) . T) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-263 |#1|) . T) ((-353 |#1|) . T) ((-467 |#1|) . T) ((-561 #0# |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-600 |#1|) . T) ((-793) |has| |#1| (-793)) ((-946 |#1|) . T) ((-1023) -1463 (|has| |#1| (-1023)) (|has| |#1| (-793))) ((-1069 |#1|) . T) ((-1131) . T) ((-1165 |#1|) . T))
-((-1651 (((-595 (-2 (|:| |particular| (-3 (-1177 |#1|) "failed")) (|:| -1400 (-595 (-1177 |#1|))))) (-595 (-595 |#1|)) (-595 (-1177 |#1|))) 22) (((-595 (-2 (|:| |particular| (-3 (-1177 |#1|) "failed")) (|:| -1400 (-595 (-1177 |#1|))))) (-635 |#1|) (-595 (-1177 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1177 |#1|) "failed")) (|:| -1400 (-595 (-1177 |#1|)))) (-595 (-595 |#1|)) (-1177 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1177 |#1|) "failed")) (|:| -1400 (-595 (-1177 |#1|)))) (-635 |#1|) (-1177 |#1|)) 14)) (-3090 (((-717) (-635 |#1|) (-1177 |#1|)) 30)) (-2265 (((-3 (-1177 |#1|) "failed") (-635 |#1|) (-1177 |#1|)) 24)) (-3854 (((-110) (-635 |#1|) (-1177 |#1|)) 27)))
-(((-616 |#1|) (-10 -7 (-15 -1651 ((-2 (|:| |particular| (-3 (-1177 |#1|) "failed")) (|:| -1400 (-595 (-1177 |#1|)))) (-635 |#1|) (-1177 |#1|))) (-15 -1651 ((-2 (|:| |particular| (-3 (-1177 |#1|) "failed")) (|:| -1400 (-595 (-1177 |#1|)))) (-595 (-595 |#1|)) (-1177 |#1|))) (-15 -1651 ((-595 (-2 (|:| |particular| (-3 (-1177 |#1|) "failed")) (|:| -1400 (-595 (-1177 |#1|))))) (-635 |#1|) (-595 (-1177 |#1|)))) (-15 -1651 ((-595 (-2 (|:| |particular| (-3 (-1177 |#1|) "failed")) (|:| -1400 (-595 (-1177 |#1|))))) (-595 (-595 |#1|)) (-595 (-1177 |#1|)))) (-15 -2265 ((-3 (-1177 |#1|) "failed") (-635 |#1|) (-1177 |#1|))) (-15 -3854 ((-110) (-635 |#1|) (-1177 |#1|))) (-15 -3090 ((-717) (-635 |#1|) (-1177 |#1|)))) (-343)) (T -616))
-((-3090 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-343)) (-5 *2 (-717)) (-5 *1 (-616 *5)))) (-3854 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-343)) (-5 *2 (-110)) (-5 *1 (-616 *5)))) (-2265 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1177 *4)) (-5 *3 (-635 *4)) (-4 *4 (-343)) (-5 *1 (-616 *4)))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-595 *5))) (-4 *5 (-343)) (-5 *2 (-595 (-2 (|:| |particular| (-3 (-1177 *5) "failed")) (|:| -1400 (-595 (-1177 *5)))))) (-5 *1 (-616 *5)) (-5 *4 (-595 (-1177 *5))))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *5)) (-4 *5 (-343)) (-5 *2 (-595 (-2 (|:| |particular| (-3 (-1177 *5) "failed")) (|:| -1400 (-595 (-1177 *5)))))) (-5 *1 (-616 *5)) (-5 *4 (-595 (-1177 *5))))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-595 *5))) (-4 *5 (-343)) (-5 *2 (-2 (|:| |particular| (-3 (-1177 *5) "failed")) (|:| -1400 (-595 (-1177 *5))))) (-5 *1 (-616 *5)) (-5 *4 (-1177 *5)))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *5)) (-4 *5 (-343)) (-5 *2 (-2 (|:| |particular| (-3 (-1177 *5) "failed")) (|:| -1400 (-595 (-1177 *5))))) (-5 *1 (-616 *5)) (-5 *4 (-1177 *5)))))
-(-10 -7 (-15 -1651 ((-2 (|:| |particular| (-3 (-1177 |#1|) "failed")) (|:| -1400 (-595 (-1177 |#1|)))) (-635 |#1|) (-1177 |#1|))) (-15 -1651 ((-2 (|:| |particular| (-3 (-1177 |#1|) "failed")) (|:| -1400 (-595 (-1177 |#1|)))) (-595 (-595 |#1|)) (-1177 |#1|))) (-15 -1651 ((-595 (-2 (|:| |particular| (-3 (-1177 |#1|) "failed")) (|:| -1400 (-595 (-1177 |#1|))))) (-635 |#1|) (-595 (-1177 |#1|)))) (-15 -1651 ((-595 (-2 (|:| |particular| (-3 (-1177 |#1|) "failed")) (|:| -1400 (-595 (-1177 |#1|))))) (-595 (-595 |#1|)) (-595 (-1177 |#1|)))) (-15 -2265 ((-3 (-1177 |#1|) "failed") (-635 |#1|) (-1177 |#1|))) (-15 -3854 ((-110) (-635 |#1|) (-1177 |#1|))) (-15 -3090 ((-717) (-635 |#1|) (-1177 |#1|))))
-((-1651 (((-595 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1400 (-595 |#3|)))) |#4| (-595 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1400 (-595 |#3|))) |#4| |#3|) 45)) (-3090 (((-717) |#4| |#3|) 17)) (-2265 (((-3 |#3| "failed") |#4| |#3|) 20)) (-3854 (((-110) |#4| |#3|) 13)))
-(((-617 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1651 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1400 (-595 |#3|))) |#4| |#3|)) (-15 -1651 ((-595 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1400 (-595 |#3|)))) |#4| (-595 |#3|))) (-15 -2265 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3854 ((-110) |#4| |#3|)) (-15 -3090 ((-717) |#4| |#3|))) (-343) (-13 (-353 |#1|) (-10 -7 (-6 -4265))) (-13 (-353 |#1|) (-10 -7 (-6 -4265))) (-633 |#1| |#2| |#3|)) (T -617))
-((-3090 (*1 *2 *3 *4) (-12 (-4 *5 (-343)) (-4 *6 (-13 (-353 *5) (-10 -7 (-6 -4265)))) (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4265)))) (-5 *2 (-717)) (-5 *1 (-617 *5 *6 *4 *3)) (-4 *3 (-633 *5 *6 *4)))) (-3854 (*1 *2 *3 *4) (-12 (-4 *5 (-343)) (-4 *6 (-13 (-353 *5) (-10 -7 (-6 -4265)))) (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4265)))) (-5 *2 (-110)) (-5 *1 (-617 *5 *6 *4 *3)) (-4 *3 (-633 *5 *6 *4)))) (-2265 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-343)) (-4 *5 (-13 (-353 *4) (-10 -7 (-6 -4265)))) (-4 *2 (-13 (-353 *4) (-10 -7 (-6 -4265)))) (-5 *1 (-617 *4 *5 *2 *3)) (-4 *3 (-633 *4 *5 *2)))) (-1651 (*1 *2 *3 *4) (-12 (-4 *5 (-343)) (-4 *6 (-13 (-353 *5) (-10 -7 (-6 -4265)))) (-4 *7 (-13 (-353 *5) (-10 -7 (-6 -4265)))) (-5 *2 (-595 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1400 (-595 *7))))) (-5 *1 (-617 *5 *6 *7 *3)) (-5 *4 (-595 *7)) (-4 *3 (-633 *5 *6 *7)))) (-1651 (*1 *2 *3 *4) (-12 (-4 *5 (-343)) (-4 *6 (-13 (-353 *5) (-10 -7 (-6 -4265)))) (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4265)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1400 (-595 *4)))) (-5 *1 (-617 *5 *6 *4 *3)) (-4 *3 (-633 *5 *6 *4)))))
-(-10 -7 (-15 -1651 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1400 (-595 |#3|))) |#4| |#3|)) (-15 -1651 ((-595 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1400 (-595 |#3|)))) |#4| (-595 |#3|))) (-15 -2265 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3854 ((-110) |#4| |#3|)) (-15 -3090 ((-717) |#4| |#3|)))
-((-2140 (((-2 (|:| |particular| (-3 (-1177 (-387 |#4|)) "failed")) (|:| -1400 (-595 (-1177 (-387 |#4|))))) (-595 |#4|) (-595 |#3|)) 45)))
-(((-618 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2140 ((-2 (|:| |particular| (-3 (-1177 (-387 |#4|)) "failed")) (|:| -1400 (-595 (-1177 (-387 |#4|))))) (-595 |#4|) (-595 |#3|)))) (-520) (-739) (-793) (-888 |#1| |#2| |#3|)) (T -618))
-((-2140 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *8)) (-5 *4 (-595 *7)) (-4 *7 (-793)) (-4 *8 (-888 *5 *6 *7)) (-4 *5 (-520)) (-4 *6 (-739)) (-5 *2 (-2 (|:| |particular| (-3 (-1177 (-387 *8)) "failed")) (|:| -1400 (-595 (-1177 (-387 *8)))))) (-5 *1 (-618 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2140 ((-2 (|:| |particular| (-3 (-1177 (-387 |#4|)) "failed")) (|:| -1400 (-595 (-1177 (-387 |#4|))))) (-595 |#4|) (-595 |#3|))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2445 (((-3 $ "failed")) NIL (|has| |#2| (-520)))) (-1323 ((|#2| $) NIL)) (-1987 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-4023 (((-1177 (-635 |#2|))) NIL) (((-1177 (-635 |#2|)) (-1177 $)) NIL)) (-2300 (((-110) $) NIL)) (-1653 (((-1177 $)) 37)) (-3535 (((-110) $ (-717)) NIL)) (-1626 (($ |#2|) NIL)) (-2816 (($) NIL T CONST)) (-2614 (($ $) NIL (|has| |#2| (-288)))) (-4203 (((-222 |#1| |#2|) $ (-528)) NIL)) (-2202 (((-3 (-2 (|:| |particular| $) (|:| -1400 (-595 $))) "failed")) NIL (|has| |#2| (-520)))) (-3403 (((-3 $ "failed")) NIL (|has| |#2| (-520)))) (-3107 (((-635 |#2|)) NIL) (((-635 |#2|) (-1177 $)) NIL)) (-3913 ((|#2| $) NIL)) (-3281 (((-635 |#2|) $) NIL) (((-635 |#2|) $ (-1177 $)) NIL)) (-3552 (((-3 $ "failed") $) NIL (|has| |#2| (-520)))) (-2591 (((-1091 (-891 |#2|))) NIL (|has| |#2| (-343)))) (-3693 (($ $ (-860)) NIL)) (-2061 ((|#2| $) NIL)) (-2466 (((-1091 |#2|) $) NIL (|has| |#2| (-520)))) (-3326 ((|#2|) NIL) ((|#2| (-1177 $)) NIL)) (-3922 (((-1091 |#2|) $) NIL)) (-2683 (((-110)) NIL)) (-3001 (((-3 (-528) "failed") $) NIL (|has| |#2| (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#2| (-972 (-387 (-528))))) (((-3 |#2| "failed") $) NIL)) (-2409 (((-528) $) NIL (|has| |#2| (-972 (-528)))) (((-387 (-528)) $) NIL (|has| |#2| (-972 (-387 (-528))))) ((|#2| $) NIL)) (-1945 (($ (-1177 |#2|)) NIL) (($ (-1177 |#2|) (-1177 $)) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| |#2| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| |#2| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 $) (-1177 $)) NIL) (((-635 |#2|) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-3090 (((-717) $) NIL (|has| |#2| (-520))) (((-860)) 38)) (-2742 ((|#2| $ (-528) (-528)) NIL)) (-3733 (((-110)) NIL)) (-2451 (($ $ (-860)) NIL)) (-3342 (((-595 |#2|) $) NIL (|has| $ (-6 -4264)))) (-1297 (((-110) $) NIL)) (-1877 (((-717) $) NIL (|has| |#2| (-520)))) (-1809 (((-595 (-222 |#1| |#2|)) $) NIL (|has| |#2| (-520)))) (-1358 (((-717) $) NIL)) (-2854 (((-110)) NIL)) (-1370 (((-717) $) NIL)) (-2029 (((-110) $ (-717)) NIL)) (-3997 ((|#2| $) NIL (|has| |#2| (-6 (-4266 "*"))))) (-3065 (((-528) $) NIL)) (-2567 (((-528) $) NIL)) (-2604 (((-595 |#2|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-3224 (((-528) $) NIL)) (-1268 (((-528) $) NIL)) (-1553 (($ (-595 (-595 |#2|))) NIL)) (-2800 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2062 (((-595 (-595 |#2|)) $) NIL)) (-1795 (((-110)) NIL)) (-1870 (((-110)) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-2481 (((-3 (-2 (|:| |particular| $) (|:| -1400 (-595 $))) "failed")) NIL (|has| |#2| (-520)))) (-2615 (((-3 $ "failed")) NIL (|has| |#2| (-520)))) (-2906 (((-635 |#2|)) NIL) (((-635 |#2|) (-1177 $)) NIL)) (-1948 ((|#2| $) NIL)) (-3867 (((-635 |#2|) $) NIL) (((-635 |#2|) $ (-1177 $)) NIL)) (-1895 (((-3 $ "failed") $) NIL (|has| |#2| (-520)))) (-2102 (((-1091 (-891 |#2|))) NIL (|has| |#2| (-343)))) (-3964 (($ $ (-860)) NIL)) (-4000 ((|#2| $) NIL)) (-3549 (((-1091 |#2|) $) NIL (|has| |#2| (-520)))) (-1991 ((|#2|) NIL) ((|#2| (-1177 $)) NIL)) (-2732 (((-1091 |#2|) $) NIL)) (-4194 (((-110)) NIL)) (-3034 (((-1078) $) NIL)) (-2044 (((-110)) NIL)) (-3074 (((-110)) NIL)) (-1302 (((-110)) NIL)) (-1666 (((-3 $ "failed") $) NIL (|has| |#2| (-343)))) (-2495 (((-1042) $) NIL)) (-3176 (((-110)) NIL)) (-3477 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-520)))) (-1818 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#2|))) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-595 |#2|) (-595 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#2| $ (-528) (-528) |#2|) NIL) ((|#2| $ (-528) (-528)) 22) ((|#2| $ (-528)) NIL)) (-3235 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-717)) NIL) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-1095)) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-717)) NIL (|has| |#2| (-215))) (($ $) NIL (|has| |#2| (-215)))) (-2255 ((|#2| $) NIL)) (-3751 (($ (-595 |#2|)) NIL)) (-2851 (((-110) $) NIL)) (-1577 (((-222 |#1| |#2|) $) NIL)) (-3166 ((|#2| $) NIL (|has| |#2| (-6 (-4266 "*"))))) (-2507 (((-717) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264))) (((-717) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-2406 (($ $) NIL)) (-4243 (((-635 |#2|) (-1177 $)) NIL) (((-1177 |#2|) $) NIL) (((-635 |#2|) (-1177 $) (-1177 $)) NIL) (((-1177 |#2|) $ (-1177 $)) 25)) (-3155 (($ (-1177 |#2|)) NIL) (((-1177 |#2|) $) NIL)) (-1730 (((-595 (-891 |#2|))) NIL) (((-595 (-891 |#2|)) (-1177 $)) NIL)) (-2405 (($ $ $) NIL)) (-2643 (((-110)) NIL)) (-3946 (((-222 |#1| |#2|) $ (-528)) NIL)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ (-387 (-528))) NIL (|has| |#2| (-972 (-387 (-528))))) (($ |#2|) NIL) (((-635 |#2|) $) NIL)) (-3742 (((-717)) NIL)) (-1400 (((-1177 $)) 36)) (-3586 (((-595 (-1177 |#2|))) NIL (|has| |#2| (-520)))) (-4103 (($ $ $ $) NIL)) (-1461 (((-110)) NIL)) (-2834 (($ (-635 |#2|) $) NIL)) (-3451 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-1428 (((-110) $) NIL)) (-3607 (($ $ $) NIL)) (-3047 (((-110)) NIL)) (-1907 (((-110)) NIL)) (-3405 (((-110)) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-717)) NIL) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-1095)) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-717)) NIL (|has| |#2| (-215))) (($ $) NIL (|has| |#2| (-215)))) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ |#2|) NIL (|has| |#2| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| |#2| (-343)))) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-222 |#1| |#2|) $ (-222 |#1| |#2|)) NIL) (((-222 |#1| |#2|) (-222 |#1| |#2|) $) NIL)) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-619 |#1| |#2|) (-13 (-1045 |#1| |#2| (-222 |#1| |#2|) (-222 |#1| |#2|)) (-569 (-635 |#2|)) (-397 |#2|)) (-860) (-162)) (T -619))
-NIL
-(-13 (-1045 |#1| |#2| (-222 |#1| |#2|) (-222 |#1| |#2|)) (-569 (-635 |#2|)) (-397 |#2|))
-((-2207 (((-110) $ $) NIL)) (-3642 (((-595 |#1|) $) NIL)) (-3572 (($ $) 52)) (-3113 (((-110) $) NIL)) (-3001 (((-3 |#1| "failed") $) NIL)) (-2409 ((|#1| $) NIL)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-1237 (((-3 $ "failed") (-765 |#1|)) 23)) (-2871 (((-110) (-765 |#1|)) 15)) (-3661 (($ (-765 |#1|)) 24)) (-3614 (((-110) $ $) 30)) (-1584 (((-860) $) 37)) (-3562 (($ $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2437 (((-595 $) (-765 |#1|)) 17)) (-2222 (((-802) $) 43) (($ |#1|) 34) (((-765 |#1|) $) 39) (((-624 |#1|) $) 44)) (-2031 (((-57 (-595 $)) (-595 |#1|) (-860)) 57)) (-2622 (((-595 $) (-595 |#1|) (-860)) 60)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 53)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 38)))
-(((-620 |#1|) (-13 (-793) (-972 |#1|) (-10 -8 (-15 -3113 ((-110) $)) (-15 -3562 ($ $)) (-15 -3572 ($ $)) (-15 -1584 ((-860) $)) (-15 -3614 ((-110) $ $)) (-15 -2222 ((-765 |#1|) $)) (-15 -2222 ((-624 |#1|) $)) (-15 -2437 ((-595 $) (-765 |#1|))) (-15 -2871 ((-110) (-765 |#1|))) (-15 -3661 ($ (-765 |#1|))) (-15 -1237 ((-3 $ "failed") (-765 |#1|))) (-15 -3642 ((-595 |#1|) $)) (-15 -2031 ((-57 (-595 $)) (-595 |#1|) (-860))) (-15 -2622 ((-595 $) (-595 |#1|) (-860))))) (-793)) (T -620))
-((-3113 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-620 *3)) (-4 *3 (-793)))) (-3562 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-793)))) (-3572 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-793)))) (-1584 (*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-620 *3)) (-4 *3 (-793)))) (-3614 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-620 *3)) (-4 *3 (-793)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-765 *3)) (-5 *1 (-620 *3)) (-4 *3 (-793)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-624 *3)) (-5 *1 (-620 *3)) (-4 *3 (-793)))) (-2437 (*1 *2 *3) (-12 (-5 *3 (-765 *4)) (-4 *4 (-793)) (-5 *2 (-595 (-620 *4))) (-5 *1 (-620 *4)))) (-2871 (*1 *2 *3) (-12 (-5 *3 (-765 *4)) (-4 *4 (-793)) (-5 *2 (-110)) (-5 *1 (-620 *4)))) (-3661 (*1 *1 *2) (-12 (-5 *2 (-765 *3)) (-4 *3 (-793)) (-5 *1 (-620 *3)))) (-1237 (*1 *1 *2) (|partial| -12 (-5 *2 (-765 *3)) (-4 *3 (-793)) (-5 *1 (-620 *3)))) (-3642 (*1 *2 *1) (-12 (-5 *2 (-595 *3)) (-5 *1 (-620 *3)) (-4 *3 (-793)))) (-2031 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *5)) (-5 *4 (-860)) (-4 *5 (-793)) (-5 *2 (-57 (-595 (-620 *5)))) (-5 *1 (-620 *5)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *5)) (-5 *4 (-860)) (-4 *5 (-793)) (-5 *2 (-595 (-620 *5))) (-5 *1 (-620 *5)))))
-(-13 (-793) (-972 |#1|) (-10 -8 (-15 -3113 ((-110) $)) (-15 -3562 ($ $)) (-15 -3572 ($ $)) (-15 -1584 ((-860) $)) (-15 -3614 ((-110) $ $)) (-15 -2222 ((-765 |#1|) $)) (-15 -2222 ((-624 |#1|) $)) (-15 -2437 ((-595 $) (-765 |#1|))) (-15 -2871 ((-110) (-765 |#1|))) (-15 -3661 ($ (-765 |#1|))) (-15 -1237 ((-3 $ "failed") (-765 |#1|))) (-15 -3642 ((-595 |#1|) $)) (-15 -2031 ((-57 (-595 $)) (-595 |#1|) (-860))) (-15 -2622 ((-595 $) (-595 |#1|) (-860)))))
-((-3327 ((|#2| $) 76)) (-2023 (($ $) 96)) (-3535 (((-110) $ (-717)) 26)) (-2902 (($ $) 85) (($ $ (-717)) 88)) (-3691 (((-110) $) 97)) (-1690 (((-595 $) $) 72)) (-1313 (((-110) $ $) 71)) (-2029 (((-110) $ (-717)) 24)) (-3530 (((-528) $) 46)) (-1709 (((-528) $) 45)) (-3358 (((-110) $ (-717)) 22)) (-2578 (((-110) $) 74)) (-2301 ((|#2| $) 89) (($ $ (-717)) 92)) (-3939 (($ $ $ (-528)) 62) (($ |#2| $ (-528)) 61)) (-2084 (((-595 (-528)) $) 44)) (-3966 (((-110) (-528) $) 42)) (-2890 ((|#2| $) NIL) (($ $ (-717)) 84)) (-3740 (($ $ (-528)) 100)) (-1441 (((-110) $) 99)) (-1818 (((-110) (-1 (-110) |#2|) $) 32)) (-2861 (((-595 |#2|) $) 33)) (-3043 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1144 (-528))) 58) ((|#2| $ (-528)) 40) ((|#2| $ (-528) |#2|) 41)) (-3241 (((-528) $ $) 70)) (-1745 (($ $ (-1144 (-528))) 57) (($ $ (-528)) 51)) (-3177 (((-110) $) 66)) (-2185 (($ $) 81)) (-3887 (((-717) $) 80)) (-3539 (($ $) 79)) (-2233 (($ (-595 |#2|)) 37)) (-3534 (($ $) 101)) (-3813 (((-595 $) $) 69)) (-2688 (((-110) $ $) 68)) (-3451 (((-110) (-1 (-110) |#2|) $) 31)) (-2186 (((-110) $ $) 18)) (-2138 (((-717) $) 29)))
-(((-621 |#1| |#2|) (-10 -8 (-15 -3534 (|#1| |#1|)) (-15 -3740 (|#1| |#1| (-528))) (-15 -3691 ((-110) |#1|)) (-15 -1441 ((-110) |#1|)) (-15 -3043 (|#2| |#1| (-528) |#2|)) (-15 -3043 (|#2| |#1| (-528))) (-15 -2861 ((-595 |#2|) |#1|)) (-15 -3966 ((-110) (-528) |#1|)) (-15 -2084 ((-595 (-528)) |#1|)) (-15 -1709 ((-528) |#1|)) (-15 -3530 ((-528) |#1|)) (-15 -2233 (|#1| (-595 |#2|))) (-15 -3043 (|#1| |#1| (-1144 (-528)))) (-15 -1745 (|#1| |#1| (-528))) (-15 -1745 (|#1| |#1| (-1144 (-528)))) (-15 -3939 (|#1| |#2| |#1| (-528))) (-15 -3939 (|#1| |#1| |#1| (-528))) (-15 -2185 (|#1| |#1|)) (-15 -3887 ((-717) |#1|)) (-15 -3539 (|#1| |#1|)) (-15 -2023 (|#1| |#1|)) (-15 -2301 (|#1| |#1| (-717))) (-15 -3043 (|#2| |#1| "last")) (-15 -2301 (|#2| |#1|)) (-15 -2902 (|#1| |#1| (-717))) (-15 -3043 (|#1| |#1| "rest")) (-15 -2902 (|#1| |#1|)) (-15 -2890 (|#1| |#1| (-717))) (-15 -3043 (|#2| |#1| "first")) (-15 -2890 (|#2| |#1|)) (-15 -1313 ((-110) |#1| |#1|)) (-15 -2688 ((-110) |#1| |#1|)) (-15 -3241 ((-528) |#1| |#1|)) (-15 -3177 ((-110) |#1|)) (-15 -3043 (|#2| |#1| "value")) (-15 -3327 (|#2| |#1|)) (-15 -2578 ((-110) |#1|)) (-15 -1690 ((-595 |#1|) |#1|)) (-15 -3813 ((-595 |#1|) |#1|)) (-15 -2186 ((-110) |#1| |#1|)) (-15 -1818 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3451 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2138 ((-717) |#1|)) (-15 -3535 ((-110) |#1| (-717))) (-15 -2029 ((-110) |#1| (-717))) (-15 -3358 ((-110) |#1| (-717)))) (-622 |#2|) (-1131)) (T -621))
-NIL
-(-10 -8 (-15 -3534 (|#1| |#1|)) (-15 -3740 (|#1| |#1| (-528))) (-15 -3691 ((-110) |#1|)) (-15 -1441 ((-110) |#1|)) (-15 -3043 (|#2| |#1| (-528) |#2|)) (-15 -3043 (|#2| |#1| (-528))) (-15 -2861 ((-595 |#2|) |#1|)) (-15 -3966 ((-110) (-528) |#1|)) (-15 -2084 ((-595 (-528)) |#1|)) (-15 -1709 ((-528) |#1|)) (-15 -3530 ((-528) |#1|)) (-15 -2233 (|#1| (-595 |#2|))) (-15 -3043 (|#1| |#1| (-1144 (-528)))) (-15 -1745 (|#1| |#1| (-528))) (-15 -1745 (|#1| |#1| (-1144 (-528)))) (-15 -3939 (|#1| |#2| |#1| (-528))) (-15 -3939 (|#1| |#1| |#1| (-528))) (-15 -2185 (|#1| |#1|)) (-15 -3887 ((-717) |#1|)) (-15 -3539 (|#1| |#1|)) (-15 -2023 (|#1| |#1|)) (-15 -2301 (|#1| |#1| (-717))) (-15 -3043 (|#2| |#1| "last")) (-15 -2301 (|#2| |#1|)) (-15 -2902 (|#1| |#1| (-717))) (-15 -3043 (|#1| |#1| "rest")) (-15 -2902 (|#1| |#1|)) (-15 -2890 (|#1| |#1| (-717))) (-15 -3043 (|#2| |#1| "first")) (-15 -2890 (|#2| |#1|)) (-15 -1313 ((-110) |#1| |#1|)) (-15 -2688 ((-110) |#1| |#1|)) (-15 -3241 ((-528) |#1| |#1|)) (-15 -3177 ((-110) |#1|)) (-15 -3043 (|#2| |#1| "value")) (-15 -3327 (|#2| |#1|)) (-15 -2578 ((-110) |#1|)) (-15 -1690 ((-595 |#1|) |#1|)) (-15 -3813 ((-595 |#1|) |#1|)) (-15 -2186 ((-110) |#1| |#1|)) (-15 -1818 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3451 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2138 ((-717) |#1|)) (-15 -3535 ((-110) |#1| (-717))) (-15 -2029 ((-110) |#1| (-717))) (-15 -3358 ((-110) |#1| (-717))))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-3327 ((|#1| $) 48)) (-2513 ((|#1| $) 65)) (-2023 (($ $) 67)) (-1444 (((-1182) $ (-528) (-528)) 97 (|has| $ (-6 -4265)))) (-3084 (($ $ (-528)) 52 (|has| $ (-6 -4265)))) (-3535 (((-110) $ (-717)) 8)) (-2074 ((|#1| $ |#1|) 39 (|has| $ (-6 -4265)))) (-3307 (($ $ $) 56 (|has| $ (-6 -4265)))) (-2624 ((|#1| $ |#1|) 54 (|has| $ (-6 -4265)))) (-2153 ((|#1| $ |#1|) 58 (|has| $ (-6 -4265)))) (-2381 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4265))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4265))) (($ $ "rest" $) 55 (|has| $ (-6 -4265))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4265))) ((|#1| $ (-1144 (-528)) |#1|) 117 (|has| $ (-6 -4265))) ((|#1| $ (-528) |#1|) 86 (|has| $ (-6 -4265)))) (-3409 (($ $ (-595 $)) 41 (|has| $ (-6 -4265)))) (-1573 (($ (-1 (-110) |#1|) $) 102)) (-2500 ((|#1| $) 66)) (-2816 (($) 7 T CONST)) (-3703 (($ $) 124)) (-2902 (($ $) 73) (($ $ (-717)) 71)) (-2923 (($ $) 99 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2280 (($ |#1| $) 100 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) |#1|) $) 103)) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2812 ((|#1| $ (-528) |#1|) 85 (|has| $ (-6 -4265)))) (-2742 ((|#1| $ (-528)) 87)) (-3691 (((-110) $) 83)) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-1739 (((-717) $) 123)) (-1690 (((-595 $) $) 50)) (-1313 (((-110) $ $) 42 (|has| |#1| (-1023)))) (-3462 (($ (-717) |#1|) 108)) (-2029 (((-110) $ (-717)) 9)) (-3530 (((-528) $) 95 (|has| (-528) (-793)))) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-1709 (((-528) $) 94 (|has| (-528) (-793)))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3358 (((-110) $ (-717)) 10)) (-3298 (((-595 |#1|) $) 45)) (-2578 (((-110) $) 49)) (-3321 (($ $) 126)) (-1621 (((-110) $) 127)) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-2301 ((|#1| $) 70) (($ $ (-717)) 68)) (-3939 (($ $ $ (-528)) 116) (($ |#1| $ (-528)) 115)) (-2084 (((-595 (-528)) $) 92)) (-3966 (((-110) (-528) $) 91)) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-1471 ((|#1| $) 125)) (-2890 ((|#1| $) 76) (($ $ (-717)) 74)) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 106)) (-1332 (($ $ |#1|) 96 (|has| $ (-6 -4265)))) (-3740 (($ $ (-528)) 122)) (-1441 (((-110) $) 84)) (-3735 (((-110) $) 128)) (-2628 (((-110) $) 129)) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-2111 (((-110) |#1| $) 93 (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2861 (((-595 |#1|) $) 90)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3043 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1144 (-528))) 112) ((|#1| $ (-528)) 89) ((|#1| $ (-528) |#1|) 88)) (-3241 (((-528) $ $) 44)) (-1745 (($ $ (-1144 (-528))) 114) (($ $ (-528)) 113)) (-3177 (((-110) $) 46)) (-2185 (($ $) 62)) (-3821 (($ $) 59 (|has| $ (-6 -4265)))) (-3887 (((-717) $) 63)) (-3539 (($ $) 64)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-3155 (((-504) $) 98 (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) 107)) (-3579 (($ $ $) 61 (|has| $ (-6 -4265))) (($ $ |#1|) 60 (|has| $ (-6 -4265)))) (-3400 (($ $ $) 78) (($ |#1| $) 77) (($ (-595 $)) 110) (($ $ |#1|) 109)) (-3534 (($ $) 121)) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-3813 (((-595 $) $) 51)) (-2688 (((-110) $ $) 43 (|has| |#1| (-1023)))) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-622 |#1|) (-133) (-1131)) (T -622))
-((-2280 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-622 *3)) (-4 *3 (-1131)))) (-1573 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-622 *3)) (-4 *3 (-1131)))) (-2628 (*1 *2 *1) (-12 (-4 *1 (-622 *3)) (-4 *3 (-1131)) (-5 *2 (-110)))) (-3735 (*1 *2 *1) (-12 (-4 *1 (-622 *3)) (-4 *3 (-1131)) (-5 *2 (-110)))) (-1621 (*1 *2 *1) (-12 (-4 *1 (-622 *3)) (-4 *3 (-1131)) (-5 *2 (-110)))) (-3321 (*1 *1 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1131)))) (-1471 (*1 *2 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1131)))) (-3703 (*1 *1 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1131)))) (-1739 (*1 *2 *1) (-12 (-4 *1 (-622 *3)) (-4 *3 (-1131)) (-5 *2 (-717)))) (-3740 (*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-4 *1 (-622 *3)) (-4 *3 (-1131)))) (-3534 (*1 *1 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1131)))))
-(-13 (-1069 |t#1|) (-10 -8 (-15 -2280 ($ (-1 (-110) |t#1|) $)) (-15 -1573 ($ (-1 (-110) |t#1|) $)) (-15 -2628 ((-110) $)) (-15 -3735 ((-110) $)) (-15 -1621 ((-110) $)) (-15 -3321 ($ $)) (-15 -1471 (|t#1| $)) (-15 -3703 ($ $)) (-15 -1739 ((-717) $)) (-15 -3740 ($ $ (-528))) (-15 -3534 ($ $))))
-(((-33) . T) ((-99) |has| |#1| (-1023)) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-569 (-802)))) ((-144 |#1|) . T) ((-570 (-504)) |has| |#1| (-570 (-504))) ((-267 #0=(-528) |#1|) . T) ((-269 #0# |#1|) . T) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-467 |#1|) . T) ((-561 #0# |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-600 |#1|) . T) ((-946 |#1|) . T) ((-1023) |has| |#1| (-1023)) ((-1069 |#1|) . T) ((-1131) . T) ((-1165 |#1|) . T))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2593 (($ (-717) (-717) (-717)) 35 (|has| |#1| (-981)))) (-3535 (((-110) $ (-717)) NIL)) (-3313 ((|#1| $ (-717) (-717) (-717) |#1|) 29)) (-2816 (($) NIL T CONST)) (-3763 (($ $ $) 39 (|has| |#1| (-981)))) (-3342 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) NIL)) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3484 (((-1177 (-717)) $) 11)) (-4223 (($ (-1095) $ $) 24)) (-2800 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-4141 (($ (-717)) 37 (|has| |#1| (-981)))) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#1| $ (-717) (-717) (-717)) 27)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2406 (($ $) NIL)) (-2233 (($ (-595 (-595 (-595 |#1|)))) 46)) (-2222 (($ (-896 (-896 (-896 |#1|)))) 17) (((-896 (-896 (-896 |#1|))) $) 14) (((-802) $) NIL (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-623 |#1|) (-13 (-467 |#1|) (-10 -8 (IF (|has| |#1| (-981)) (PROGN (-15 -2593 ($ (-717) (-717) (-717))) (-15 -4141 ($ (-717))) (-15 -3763 ($ $ $))) |%noBranch|) (-15 -2233 ($ (-595 (-595 (-595 |#1|))))) (-15 -3043 (|#1| $ (-717) (-717) (-717))) (-15 -3313 (|#1| $ (-717) (-717) (-717) |#1|)) (-15 -2222 ($ (-896 (-896 (-896 |#1|))))) (-15 -2222 ((-896 (-896 (-896 |#1|))) $)) (-15 -4223 ($ (-1095) $ $)) (-15 -3484 ((-1177 (-717)) $)))) (-1023)) (T -623))
-((-2593 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-717)) (-5 *1 (-623 *3)) (-4 *3 (-981)) (-4 *3 (-1023)))) (-4141 (*1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-623 *3)) (-4 *3 (-981)) (-4 *3 (-1023)))) (-3763 (*1 *1 *1 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-981)) (-4 *2 (-1023)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-595 (-595 (-595 *3)))) (-4 *3 (-1023)) (-5 *1 (-623 *3)))) (-3043 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-717)) (-5 *1 (-623 *2)) (-4 *2 (-1023)))) (-3313 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-717)) (-5 *1 (-623 *2)) (-4 *2 (-1023)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-896 (-896 (-896 *3)))) (-4 *3 (-1023)) (-5 *1 (-623 *3)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-896 (-896 (-896 *3)))) (-5 *1 (-623 *3)) (-4 *3 (-1023)))) (-4223 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-623 *3)) (-4 *3 (-1023)))) (-3484 (*1 *2 *1) (-12 (-5 *2 (-1177 (-717))) (-5 *1 (-623 *3)) (-4 *3 (-1023)))))
-(-13 (-467 |#1|) (-10 -8 (IF (|has| |#1| (-981)) (PROGN (-15 -2593 ($ (-717) (-717) (-717))) (-15 -4141 ($ (-717))) (-15 -3763 ($ $ $))) |%noBranch|) (-15 -2233 ($ (-595 (-595 (-595 |#1|))))) (-15 -3043 (|#1| $ (-717) (-717) (-717))) (-15 -3313 (|#1| $ (-717) (-717) (-717) |#1|)) (-15 -2222 ($ (-896 (-896 (-896 |#1|))))) (-15 -2222 ((-896 (-896 (-896 |#1|))) $)) (-15 -4223 ($ (-1095) $ $)) (-15 -3484 ((-1177 (-717)) $))))
-((-2207 (((-110) $ $) NIL)) (-3642 (((-595 |#1|) $) 14)) (-3572 (($ $) 18)) (-3113 (((-110) $) 19)) (-3001 (((-3 |#1| "failed") $) 22)) (-2409 ((|#1| $) 20)) (-2902 (($ $) 36)) (-2091 (($ $) 24)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3614 (((-110) $ $) 42)) (-1584 (((-860) $) 38)) (-3562 (($ $) 17)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2890 ((|#1| $) 35)) (-2222 (((-802) $) 31) (($ |#1|) 23) (((-765 |#1|) $) 27)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 12)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 40)) (* (($ $ $) 34)))
-(((-624 |#1|) (-13 (-793) (-972 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2222 ((-765 |#1|) $)) (-15 -2890 (|#1| $)) (-15 -3562 ($ $)) (-15 -1584 ((-860) $)) (-15 -3614 ((-110) $ $)) (-15 -2091 ($ $)) (-15 -2902 ($ $)) (-15 -3113 ((-110) $)) (-15 -3572 ($ $)) (-15 -3642 ((-595 |#1|) $)))) (-793)) (T -624))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-624 *2)) (-4 *2 (-793)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-765 *3)) (-5 *1 (-624 *3)) (-4 *3 (-793)))) (-2890 (*1 *2 *1) (-12 (-5 *1 (-624 *2)) (-4 *2 (-793)))) (-3562 (*1 *1 *1) (-12 (-5 *1 (-624 *2)) (-4 *2 (-793)))) (-1584 (*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-624 *3)) (-4 *3 (-793)))) (-3614 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-624 *3)) (-4 *3 (-793)))) (-2091 (*1 *1 *1) (-12 (-5 *1 (-624 *2)) (-4 *2 (-793)))) (-2902 (*1 *1 *1) (-12 (-5 *1 (-624 *2)) (-4 *2 (-793)))) (-3113 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-624 *3)) (-4 *3 (-793)))) (-3572 (*1 *1 *1) (-12 (-5 *1 (-624 *2)) (-4 *2 (-793)))) (-3642 (*1 *2 *1) (-12 (-5 *2 (-595 *3)) (-5 *1 (-624 *3)) (-4 *3 (-793)))))
-(-13 (-793) (-972 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2222 ((-765 |#1|) $)) (-15 -2890 (|#1| $)) (-15 -3562 ($ $)) (-15 -1584 ((-860) $)) (-15 -3614 ((-110) $ $)) (-15 -2091 ($ $)) (-15 -2902 ($ $)) (-15 -3113 ((-110) $)) (-15 -3572 ($ $)) (-15 -3642 ((-595 |#1|) $))))
-((-3936 ((|#1| (-1 |#1| (-717) |#1|) (-717) |#1|) 11)) (-2597 ((|#1| (-1 |#1| |#1|) (-717) |#1|) 9)))
-(((-625 |#1|) (-10 -7 (-15 -2597 (|#1| (-1 |#1| |#1|) (-717) |#1|)) (-15 -3936 (|#1| (-1 |#1| (-717) |#1|) (-717) |#1|))) (-1023)) (T -625))
-((-3936 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-717) *2)) (-5 *4 (-717)) (-4 *2 (-1023)) (-5 *1 (-625 *2)))) (-2597 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-717)) (-4 *2 (-1023)) (-5 *1 (-625 *2)))))
-(-10 -7 (-15 -2597 (|#1| (-1 |#1| |#1|) (-717) |#1|)) (-15 -3936 (|#1| (-1 |#1| (-717) |#1|) (-717) |#1|)))
-((-3879 ((|#2| |#1| |#2|) 9)) (-3866 ((|#1| |#1| |#2|) 8)))
-(((-626 |#1| |#2|) (-10 -7 (-15 -3866 (|#1| |#1| |#2|)) (-15 -3879 (|#2| |#1| |#2|))) (-1023) (-1023)) (T -626))
-((-3879 (*1 *2 *3 *2) (-12 (-5 *1 (-626 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1023)))) (-3866 (*1 *2 *2 *3) (-12 (-5 *1 (-626 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1023)))))
-(-10 -7 (-15 -3866 (|#1| |#1| |#2|)) (-15 -3879 (|#2| |#1| |#2|)))
-((-1938 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-627 |#1| |#2| |#3|) (-10 -7 (-15 -1938 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1023) (-1023) (-1023)) (T -627))
-((-1938 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *2 (-1023)) (-5 *1 (-627 *5 *6 *2)))))
-(-10 -7 (-15 -1938 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-3936 (((-1 |#1| (-717) |#1|) (-1 |#1| (-717) |#1|)) 23)) (-4098 (((-1 |#1|) |#1|) 8)) (-3431 ((|#1| |#1|) 16)) (-3300 (((-595 |#1|) (-1 (-595 |#1|) (-595 |#1|)) (-528)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2222 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-717)) 20)))
-(((-628 |#1|) (-10 -7 (-15 -4098 ((-1 |#1|) |#1|)) (-15 -2222 ((-1 |#1|) |#1|)) (-15 -3300 (|#1| (-1 |#1| |#1|))) (-15 -3300 ((-595 |#1|) (-1 (-595 |#1|) (-595 |#1|)) (-528))) (-15 -3431 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-717))) (-15 -3936 ((-1 |#1| (-717) |#1|) (-1 |#1| (-717) |#1|)))) (-1023)) (T -628))
-((-3936 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-717) *3)) (-4 *3 (-1023)) (-5 *1 (-628 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-717)) (-4 *4 (-1023)) (-5 *1 (-628 *4)))) (-3431 (*1 *2 *2) (-12 (-5 *1 (-628 *2)) (-4 *2 (-1023)))) (-3300 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-595 *5) (-595 *5))) (-5 *4 (-528)) (-5 *2 (-595 *5)) (-5 *1 (-628 *5)) (-4 *5 (-1023)))) (-3300 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-628 *2)) (-4 *2 (-1023)))) (-2222 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-628 *3)) (-4 *3 (-1023)))) (-4098 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-628 *3)) (-4 *3 (-1023)))))
-(-10 -7 (-15 -4098 ((-1 |#1|) |#1|)) (-15 -2222 ((-1 |#1|) |#1|)) (-15 -3300 (|#1| (-1 |#1| |#1|))) (-15 -3300 ((-595 |#1|) (-1 (-595 |#1|) (-595 |#1|)) (-528))) (-15 -3431 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-717))) (-15 -3936 ((-1 |#1| (-717) |#1|) (-1 |#1| (-717) |#1|))))
-((-2068 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2932 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2636 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2192 (((-1 |#2| |#1|) |#2|) 11)))
-(((-629 |#1| |#2|) (-10 -7 (-15 -2192 ((-1 |#2| |#1|) |#2|)) (-15 -2932 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2636 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2068 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1023) (-1023)) (T -629))
-((-2068 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-5 *2 (-1 *5 *4)) (-5 *1 (-629 *4 *5)))) (-2636 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1023)) (-5 *2 (-1 *5 *4)) (-5 *1 (-629 *4 *5)) (-4 *4 (-1023)))) (-2932 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-5 *2 (-1 *5)) (-5 *1 (-629 *4 *5)))) (-2192 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-629 *4 *3)) (-4 *4 (-1023)) (-4 *3 (-1023)))))
-(-10 -7 (-15 -2192 ((-1 |#2| |#1|) |#2|)) (-15 -2932 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2636 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2068 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-3529 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3778 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1416 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3849 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-4119 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-630 |#1| |#2| |#3|) (-10 -7 (-15 -3778 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1416 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3849 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4119 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3529 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1023) (-1023) (-1023)) (T -630))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-1 *7 *5)) (-5 *1 (-630 *5 *6 *7)))) (-3529 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-630 *4 *5 *6)))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-630 *4 *5 *6)) (-4 *4 (-1023)))) (-3849 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1023)) (-4 *6 (-1023)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-630 *4 *5 *6)) (-4 *5 (-1023)))) (-1416 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-5 *2 (-1 *6 *5)) (-5 *1 (-630 *4 *5 *6)))) (-3778 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1023)) (-4 *4 (-1023)) (-4 *6 (-1023)) (-5 *2 (-1 *6 *5)) (-5 *1 (-630 *5 *4 *6)))))
-(-10 -7 (-15 -3778 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1416 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3849 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4119 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3529 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-1422 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3106 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-631 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3106 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3106 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1422 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-981) (-353 |#1|) (-353 |#1|) (-633 |#1| |#2| |#3|) (-981) (-353 |#5|) (-353 |#5|) (-633 |#5| |#6| |#7|)) (T -631))
-((-1422 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-981)) (-4 *2 (-981)) (-4 *6 (-353 *5)) (-4 *7 (-353 *5)) (-4 *8 (-353 *2)) (-4 *9 (-353 *2)) (-5 *1 (-631 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-633 *5 *6 *7)) (-4 *10 (-633 *2 *8 *9)))) (-3106 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-981)) (-4 *8 (-981)) (-4 *6 (-353 *5)) (-4 *7 (-353 *5)) (-4 *2 (-633 *8 *9 *10)) (-5 *1 (-631 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-633 *5 *6 *7)) (-4 *9 (-353 *8)) (-4 *10 (-353 *8)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-981)) (-4 *8 (-981)) (-4 *6 (-353 *5)) (-4 *7 (-353 *5)) (-4 *2 (-633 *8 *9 *10)) (-5 *1 (-631 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-633 *5 *6 *7)) (-4 *9 (-353 *8)) (-4 *10 (-353 *8)))))
-(-10 -7 (-15 -3106 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3106 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1422 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-3460 (($ (-717) (-717)) 33)) (-2313 (($ $ $) 56)) (-3351 (($ |#3|) 52) (($ $) 53)) (-1987 (((-110) $) 28)) (-3433 (($ $ (-528) (-528)) 58)) (-2087 (($ $ (-528) (-528)) 59)) (-2530 (($ $ (-528) (-528) (-528) (-528)) 63)) (-3886 (($ $) 54)) (-2300 (((-110) $) 14)) (-2722 (($ $ (-528) (-528) $) 64)) (-2381 ((|#2| $ (-528) (-528) |#2|) NIL) (($ $ (-595 (-528)) (-595 (-528)) $) 62)) (-1626 (($ (-717) |#2|) 39)) (-1553 (($ (-595 (-595 |#2|))) 37)) (-2062 (((-595 (-595 |#2|)) $) 57)) (-2468 (($ $ $) 55)) (-3477 (((-3 $ "failed") $ |#2|) 91)) (-3043 ((|#2| $ (-528) (-528)) NIL) ((|#2| $ (-528) (-528) |#2|) NIL) (($ $ (-595 (-528)) (-595 (-528))) 61)) (-3751 (($ (-595 |#2|)) 40) (($ (-595 $)) 42)) (-2851 (((-110) $) 24)) (-2222 (($ |#4|) 47) (((-802) $) NIL)) (-1428 (((-110) $) 30)) (-2296 (($ $ |#2|) 93)) (-2286 (($ $ $) 68) (($ $) 71)) (-2275 (($ $ $) 66)) (** (($ $ (-717)) 80) (($ $ (-528)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-528) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88)))
-(((-632 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2222 ((-802) |#1|)) (-15 ** (|#1| |#1| (-528))) (-15 -2296 (|#1| |#1| |#2|)) (-15 -3477 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-717))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-528) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 -2286 (|#1| |#1| |#1|)) (-15 -2275 (|#1| |#1| |#1|)) (-15 -2722 (|#1| |#1| (-528) (-528) |#1|)) (-15 -2530 (|#1| |#1| (-528) (-528) (-528) (-528))) (-15 -2087 (|#1| |#1| (-528) (-528))) (-15 -3433 (|#1| |#1| (-528) (-528))) (-15 -2381 (|#1| |#1| (-595 (-528)) (-595 (-528)) |#1|)) (-15 -3043 (|#1| |#1| (-595 (-528)) (-595 (-528)))) (-15 -2062 ((-595 (-595 |#2|)) |#1|)) (-15 -2313 (|#1| |#1| |#1|)) (-15 -2468 (|#1| |#1| |#1|)) (-15 -3886 (|#1| |#1|)) (-15 -3351 (|#1| |#1|)) (-15 -3351 (|#1| |#3|)) (-15 -2222 (|#1| |#4|)) (-15 -3751 (|#1| (-595 |#1|))) (-15 -3751 (|#1| (-595 |#2|))) (-15 -1626 (|#1| (-717) |#2|)) (-15 -1553 (|#1| (-595 (-595 |#2|)))) (-15 -3460 (|#1| (-717) (-717))) (-15 -1428 ((-110) |#1|)) (-15 -1987 ((-110) |#1|)) (-15 -2851 ((-110) |#1|)) (-15 -2300 ((-110) |#1|)) (-15 -2381 (|#2| |#1| (-528) (-528) |#2|)) (-15 -3043 (|#2| |#1| (-528) (-528) |#2|)) (-15 -3043 (|#2| |#1| (-528) (-528)))) (-633 |#2| |#3| |#4|) (-981) (-353 |#2|) (-353 |#2|)) (T -632))
-NIL
-(-10 -8 (-15 -2222 ((-802) |#1|)) (-15 ** (|#1| |#1| (-528))) (-15 -2296 (|#1| |#1| |#2|)) (-15 -3477 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-717))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-528) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 -2286 (|#1| |#1| |#1|)) (-15 -2275 (|#1| |#1| |#1|)) (-15 -2722 (|#1| |#1| (-528) (-528) |#1|)) (-15 -2530 (|#1| |#1| (-528) (-528) (-528) (-528))) (-15 -2087 (|#1| |#1| (-528) (-528))) (-15 -3433 (|#1| |#1| (-528) (-528))) (-15 -2381 (|#1| |#1| (-595 (-528)) (-595 (-528)) |#1|)) (-15 -3043 (|#1| |#1| (-595 (-528)) (-595 (-528)))) (-15 -2062 ((-595 (-595 |#2|)) |#1|)) (-15 -2313 (|#1| |#1| |#1|)) (-15 -2468 (|#1| |#1| |#1|)) (-15 -3886 (|#1| |#1|)) (-15 -3351 (|#1| |#1|)) (-15 -3351 (|#1| |#3|)) (-15 -2222 (|#1| |#4|)) (-15 -3751 (|#1| (-595 |#1|))) (-15 -3751 (|#1| (-595 |#2|))) (-15 -1626 (|#1| (-717) |#2|)) (-15 -1553 (|#1| (-595 (-595 |#2|)))) (-15 -3460 (|#1| (-717) (-717))) (-15 -1428 ((-110) |#1|)) (-15 -1987 ((-110) |#1|)) (-15 -2851 ((-110) |#1|)) (-15 -2300 ((-110) |#1|)) (-15 -2381 (|#2| |#1| (-528) (-528) |#2|)) (-15 -3043 (|#2| |#1| (-528) (-528) |#2|)) (-15 -3043 (|#2| |#1| (-528) (-528))))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-3460 (($ (-717) (-717)) 97)) (-2313 (($ $ $) 87)) (-3351 (($ |#2|) 91) (($ $) 90)) (-1987 (((-110) $) 99)) (-3433 (($ $ (-528) (-528)) 83)) (-2087 (($ $ (-528) (-528)) 82)) (-2530 (($ $ (-528) (-528) (-528) (-528)) 81)) (-3886 (($ $) 89)) (-2300 (((-110) $) 101)) (-3535 (((-110) $ (-717)) 8)) (-2722 (($ $ (-528) (-528) $) 80)) (-2381 ((|#1| $ (-528) (-528) |#1|) 44) (($ $ (-595 (-528)) (-595 (-528)) $) 84)) (-3898 (($ $ (-528) |#2|) 42)) (-2542 (($ $ (-528) |#3|) 41)) (-1626 (($ (-717) |#1|) 95)) (-2816 (($) 7 T CONST)) (-2614 (($ $) 67 (|has| |#1| (-288)))) (-4203 ((|#2| $ (-528)) 46)) (-3090 (((-717) $) 66 (|has| |#1| (-520)))) (-2812 ((|#1| $ (-528) (-528) |#1|) 43)) (-2742 ((|#1| $ (-528) (-528)) 48)) (-3342 (((-595 |#1|) $) 30)) (-1877 (((-717) $) 65 (|has| |#1| (-520)))) (-1809 (((-595 |#3|) $) 64 (|has| |#1| (-520)))) (-1358 (((-717) $) 51)) (-3462 (($ (-717) (-717) |#1|) 57)) (-1370 (((-717) $) 50)) (-2029 (((-110) $ (-717)) 9)) (-3997 ((|#1| $) 62 (|has| |#1| (-6 (-4266 "*"))))) (-3065 (((-528) $) 55)) (-2567 (((-528) $) 53)) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-3224 (((-528) $) 54)) (-1268 (((-528) $) 52)) (-1553 (($ (-595 (-595 |#1|))) 96)) (-2800 (($ (-1 |#1| |#1|) $) 34)) (-3106 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2062 (((-595 (-595 |#1|)) $) 86)) (-3358 (((-110) $ (-717)) 10)) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-1666 (((-3 $ "failed") $) 61 (|has| |#1| (-343)))) (-2468 (($ $ $) 88)) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-1332 (($ $ |#1|) 56)) (-3477 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-520)))) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3043 ((|#1| $ (-528) (-528)) 49) ((|#1| $ (-528) (-528) |#1|) 47) (($ $ (-595 (-528)) (-595 (-528))) 85)) (-3751 (($ (-595 |#1|)) 94) (($ (-595 $)) 93)) (-2851 (((-110) $) 100)) (-3166 ((|#1| $) 63 (|has| |#1| (-6 (-4266 "*"))))) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-3946 ((|#3| $ (-528)) 45)) (-2222 (($ |#3|) 92) (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-1428 (((-110) $) 98)) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2296 (($ $ |#1|) 68 (|has| |#1| (-343)))) (-2286 (($ $ $) 78) (($ $) 77)) (-2275 (($ $ $) 79)) (** (($ $ (-717)) 70) (($ $ (-528)) 60 (|has| |#1| (-343)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-528) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-633 |#1| |#2| |#3|) (-133) (-981) (-353 |t#1|) (-353 |t#1|)) (T -633))
-((-2300 (*1 *2 *1) (-12 (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-110)))) (-2851 (*1 *2 *1) (-12 (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-110)))) (-1987 (*1 *2 *1) (-12 (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-110)))) (-1428 (*1 *2 *1) (-12 (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-110)))) (-3460 (*1 *1 *2 *2) (-12 (-5 *2 (-717)) (-4 *3 (-981)) (-4 *1 (-633 *3 *4 *5)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-1553 (*1 *1 *2) (-12 (-5 *2 (-595 (-595 *3))) (-4 *3 (-981)) (-4 *1 (-633 *3 *4 *5)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-1626 (*1 *1 *2 *3) (-12 (-5 *2 (-717)) (-4 *3 (-981)) (-4 *1 (-633 *3 *4 *5)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-3751 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-981)) (-4 *1 (-633 *3 *4 *5)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-3751 (*1 *1 *2) (-12 (-5 *2 (-595 *1)) (-4 *3 (-981)) (-4 *1 (-633 *3 *4 *5)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-2222 (*1 *1 *2) (-12 (-4 *3 (-981)) (-4 *1 (-633 *3 *4 *2)) (-4 *4 (-353 *3)) (-4 *2 (-353 *3)))) (-3351 (*1 *1 *2) (-12 (-4 *3 (-981)) (-4 *1 (-633 *3 *2 *4)) (-4 *2 (-353 *3)) (-4 *4 (-353 *3)))) (-3351 (*1 *1 *1) (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)))) (-3886 (*1 *1 *1) (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)))) (-2468 (*1 *1 *1 *1) (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)))) (-2313 (*1 *1 *1 *1) (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)))) (-2062 (*1 *2 *1) (-12 (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-595 (-595 *3))))) (-3043 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-595 (-528))) (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-2381 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-595 (-528))) (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-3433 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-528)) (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-2087 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-528)) (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-2530 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-528)) (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-2722 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-528)) (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-2275 (*1 *1 *1 *1) (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)))) (-2286 (*1 *1 *1 *1) (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)))) (-2286 (*1 *1 *1) (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-528)) (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-633 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-353 *3)) (-4 *2 (-353 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-633 *3 *2 *4)) (-4 *3 (-981)) (-4 *2 (-353 *3)) (-4 *4 (-353 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-3477 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)) (-4 *2 (-520)))) (-2296 (*1 *1 *1 *2) (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)) (-4 *2 (-343)))) (-2614 (*1 *1 *1) (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)) (-4 *2 (-288)))) (-3090 (*1 *2 *1) (-12 (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-4 *3 (-520)) (-5 *2 (-717)))) (-1877 (*1 *2 *1) (-12 (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-4 *3 (-520)) (-5 *2 (-717)))) (-1809 (*1 *2 *1) (-12 (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-4 *3 (-520)) (-5 *2 (-595 *5)))) (-3166 (*1 *2 *1) (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)) (|has| *2 (-6 (-4266 "*"))) (-4 *2 (-981)))) (-3997 (*1 *2 *1) (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)) (|has| *2 (-6 (-4266 "*"))) (-4 *2 (-981)))) (-1666 (*1 *1 *1) (|partial| -12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)) (-4 *2 (-343)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-4 *3 (-343)))))
-(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4265) (-6 -4264) (-15 -2300 ((-110) $)) (-15 -2851 ((-110) $)) (-15 -1987 ((-110) $)) (-15 -1428 ((-110) $)) (-15 -3460 ($ (-717) (-717))) (-15 -1553 ($ (-595 (-595 |t#1|)))) (-15 -1626 ($ (-717) |t#1|)) (-15 -3751 ($ (-595 |t#1|))) (-15 -3751 ($ (-595 $))) (-15 -2222 ($ |t#3|)) (-15 -3351 ($ |t#2|)) (-15 -3351 ($ $)) (-15 -3886 ($ $)) (-15 -2468 ($ $ $)) (-15 -2313 ($ $ $)) (-15 -2062 ((-595 (-595 |t#1|)) $)) (-15 -3043 ($ $ (-595 (-528)) (-595 (-528)))) (-15 -2381 ($ $ (-595 (-528)) (-595 (-528)) $)) (-15 -3433 ($ $ (-528) (-528))) (-15 -2087 ($ $ (-528) (-528))) (-15 -2530 ($ $ (-528) (-528) (-528) (-528))) (-15 -2722 ($ $ (-528) (-528) $)) (-15 -2275 ($ $ $)) (-15 -2286 ($ $ $)) (-15 -2286 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-528) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-717))) (IF (|has| |t#1| (-520)) (-15 -3477 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-343)) (-15 -2296 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-288)) (-15 -2614 ($ $)) |%noBranch|) (IF (|has| |t#1| (-520)) (PROGN (-15 -3090 ((-717) $)) (-15 -1877 ((-717) $)) (-15 -1809 ((-595 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4266 "*"))) (PROGN (-15 -3166 (|t#1| $)) (-15 -3997 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-343)) (PROGN (-15 -1666 ((-3 $ "failed") $)) (-15 ** ($ $ (-528)))) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1023)) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-569 (-802)))) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-467 |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-1023) |has| |#1| (-1023)) ((-55 |#1| |#2| |#3|) . T) ((-1131) . T))
-((-2614 ((|#4| |#4|) 72 (|has| |#1| (-288)))) (-3090 (((-717) |#4|) 99 (|has| |#1| (-520)))) (-1877 (((-717) |#4|) 76 (|has| |#1| (-520)))) (-1809 (((-595 |#3|) |#4|) 83 (|has| |#1| (-520)))) (-1933 (((-2 (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1|) 111 (|has| |#1| (-288)))) (-3997 ((|#1| |#4|) 35)) (-3827 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-520)))) (-1666 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-343)))) (-1676 ((|#4| |#4|) 68 (|has| |#1| (-520)))) (-1929 ((|#4| |#4| |#1| (-528) (-528)) 43)) (-2458 ((|#4| |#4| (-528) (-528)) 38)) (-2510 ((|#4| |#4| |#1| (-528) (-528)) 48)) (-3166 ((|#1| |#4|) 78)) (-3154 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-520)))))
-(((-634 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3166 (|#1| |#4|)) (-15 -3997 (|#1| |#4|)) (-15 -2458 (|#4| |#4| (-528) (-528))) (-15 -1929 (|#4| |#4| |#1| (-528) (-528))) (-15 -2510 (|#4| |#4| |#1| (-528) (-528))) (IF (|has| |#1| (-520)) (PROGN (-15 -3090 ((-717) |#4|)) (-15 -1877 ((-717) |#4|)) (-15 -1809 ((-595 |#3|) |#4|)) (-15 -1676 (|#4| |#4|)) (-15 -3827 ((-3 |#4| "failed") |#4|)) (-15 -3154 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-288)) (PROGN (-15 -2614 (|#4| |#4|)) (-15 -1933 ((-2 (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-343)) (-15 -1666 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-162) (-353 |#1|) (-353 |#1|) (-633 |#1| |#2| |#3|)) (T -634))
-((-1666 (*1 *2 *2) (|partial| -12 (-4 *3 (-343)) (-4 *3 (-162)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *1 (-634 *3 *4 *5 *2)) (-4 *2 (-633 *3 *4 *5)))) (-1933 (*1 *2 *3 *3) (-12 (-4 *3 (-288)) (-4 *3 (-162)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-2 (|:| -3490 *3) (|:| -2537 *3))) (-5 *1 (-634 *3 *4 *5 *6)) (-4 *6 (-633 *3 *4 *5)))) (-2614 (*1 *2 *2) (-12 (-4 *3 (-288)) (-4 *3 (-162)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *1 (-634 *3 *4 *5 *2)) (-4 *2 (-633 *3 *4 *5)))) (-3154 (*1 *2 *3) (-12 (-4 *4 (-520)) (-4 *4 (-162)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-634 *4 *5 *6 *3)) (-4 *3 (-633 *4 *5 *6)))) (-3827 (*1 *2 *2) (|partial| -12 (-4 *3 (-520)) (-4 *3 (-162)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *1 (-634 *3 *4 *5 *2)) (-4 *2 (-633 *3 *4 *5)))) (-1676 (*1 *2 *2) (-12 (-4 *3 (-520)) (-4 *3 (-162)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *1 (-634 *3 *4 *5 *2)) (-4 *2 (-633 *3 *4 *5)))) (-1809 (*1 *2 *3) (-12 (-4 *4 (-520)) (-4 *4 (-162)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-5 *2 (-595 *6)) (-5 *1 (-634 *4 *5 *6 *3)) (-4 *3 (-633 *4 *5 *6)))) (-1877 (*1 *2 *3) (-12 (-4 *4 (-520)) (-4 *4 (-162)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-5 *2 (-717)) (-5 *1 (-634 *4 *5 *6 *3)) (-4 *3 (-633 *4 *5 *6)))) (-3090 (*1 *2 *3) (-12 (-4 *4 (-520)) (-4 *4 (-162)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-5 *2 (-717)) (-5 *1 (-634 *4 *5 *6 *3)) (-4 *3 (-633 *4 *5 *6)))) (-2510 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-528)) (-4 *3 (-162)) (-4 *5 (-353 *3)) (-4 *6 (-353 *3)) (-5 *1 (-634 *3 *5 *6 *2)) (-4 *2 (-633 *3 *5 *6)))) (-1929 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-528)) (-4 *3 (-162)) (-4 *5 (-353 *3)) (-4 *6 (-353 *3)) (-5 *1 (-634 *3 *5 *6 *2)) (-4 *2 (-633 *3 *5 *6)))) (-2458 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-528)) (-4 *4 (-162)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-5 *1 (-634 *4 *5 *6 *2)) (-4 *2 (-633 *4 *5 *6)))) (-3997 (*1 *2 *3) (-12 (-4 *4 (-353 *2)) (-4 *5 (-353 *2)) (-4 *2 (-162)) (-5 *1 (-634 *2 *4 *5 *3)) (-4 *3 (-633 *2 *4 *5)))) (-3166 (*1 *2 *3) (-12 (-4 *4 (-353 *2)) (-4 *5 (-353 *2)) (-4 *2 (-162)) (-5 *1 (-634 *2 *4 *5 *3)) (-4 *3 (-633 *2 *4 *5)))))
-(-10 -7 (-15 -3166 (|#1| |#4|)) (-15 -3997 (|#1| |#4|)) (-15 -2458 (|#4| |#4| (-528) (-528))) (-15 -1929 (|#4| |#4| |#1| (-528) (-528))) (-15 -2510 (|#4| |#4| |#1| (-528) (-528))) (IF (|has| |#1| (-520)) (PROGN (-15 -3090 ((-717) |#4|)) (-15 -1877 ((-717) |#4|)) (-15 -1809 ((-595 |#3|) |#4|)) (-15 -1676 (|#4| |#4|)) (-15 -3827 ((-3 |#4| "failed") |#4|)) (-15 -3154 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-288)) (PROGN (-15 -2614 (|#4| |#4|)) (-15 -1933 ((-2 (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-343)) (-15 -1666 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3460 (($ (-717) (-717)) 47)) (-2313 (($ $ $) NIL)) (-3351 (($ (-1177 |#1|)) NIL) (($ $) NIL)) (-1987 (((-110) $) NIL)) (-3433 (($ $ (-528) (-528)) 12)) (-2087 (($ $ (-528) (-528)) NIL)) (-2530 (($ $ (-528) (-528) (-528) (-528)) NIL)) (-3886 (($ $) NIL)) (-2300 (((-110) $) NIL)) (-3535 (((-110) $ (-717)) NIL)) (-2722 (($ $ (-528) (-528) $) NIL)) (-2381 ((|#1| $ (-528) (-528) |#1|) NIL) (($ $ (-595 (-528)) (-595 (-528)) $) NIL)) (-3898 (($ $ (-528) (-1177 |#1|)) NIL)) (-2542 (($ $ (-528) (-1177 |#1|)) NIL)) (-1626 (($ (-717) |#1|) 22)) (-2816 (($) NIL T CONST)) (-2614 (($ $) 31 (|has| |#1| (-288)))) (-4203 (((-1177 |#1|) $ (-528)) NIL)) (-3090 (((-717) $) 33 (|has| |#1| (-520)))) (-2812 ((|#1| $ (-528) (-528) |#1|) 51)) (-2742 ((|#1| $ (-528) (-528)) NIL)) (-3342 (((-595 |#1|) $) NIL)) (-1877 (((-717) $) 35 (|has| |#1| (-520)))) (-1809 (((-595 (-1177 |#1|)) $) 38 (|has| |#1| (-520)))) (-1358 (((-717) $) 20)) (-3462 (($ (-717) (-717) |#1|) 16)) (-1370 (((-717) $) 21)) (-2029 (((-110) $ (-717)) NIL)) (-3997 ((|#1| $) 29 (|has| |#1| (-6 (-4266 "*"))))) (-3065 (((-528) $) 9)) (-2567 (((-528) $) 10)) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3224 (((-528) $) 11)) (-1268 (((-528) $) 48)) (-1553 (($ (-595 (-595 |#1|))) NIL)) (-2800 (($ (-1 |#1| |#1|) $) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2062 (((-595 (-595 |#1|)) $) 60)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-1666 (((-3 $ "failed") $) 45 (|has| |#1| (-343)))) (-2468 (($ $ $) NIL)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-1332 (($ $ |#1|) NIL)) (-3477 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-520)))) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#1| $ (-528) (-528)) NIL) ((|#1| $ (-528) (-528) |#1|) NIL) (($ $ (-595 (-528)) (-595 (-528))) NIL)) (-3751 (($ (-595 |#1|)) NIL) (($ (-595 $)) NIL) (($ (-1177 |#1|)) 52)) (-2851 (((-110) $) NIL)) (-3166 ((|#1| $) 27 (|has| |#1| (-6 (-4266 "*"))))) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2406 (($ $) NIL)) (-3155 (((-504) $) 64 (|has| |#1| (-570 (-504))))) (-3946 (((-1177 |#1|) $ (-528)) NIL)) (-2222 (($ (-1177 |#1|)) NIL) (((-802) $) NIL (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-1428 (((-110) $) NIL)) (-2186 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2296 (($ $ |#1|) NIL (|has| |#1| (-343)))) (-2286 (($ $ $) NIL) (($ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-717)) 23) (($ $ (-528)) 46 (|has| |#1| (-343)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-528) $) NIL) (((-1177 |#1|) $ (-1177 |#1|)) NIL) (((-1177 |#1|) (-1177 |#1|) $) NIL)) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-635 |#1|) (-13 (-633 |#1| (-1177 |#1|) (-1177 |#1|)) (-10 -8 (-15 -3751 ($ (-1177 |#1|))) (IF (|has| |#1| (-570 (-504))) (-6 (-570 (-504))) |%noBranch|) (IF (|has| |#1| (-343)) (-15 -1666 ((-3 $ "failed") $)) |%noBranch|))) (-981)) (T -635))
-((-1666 (*1 *1 *1) (|partial| -12 (-5 *1 (-635 *2)) (-4 *2 (-343)) (-4 *2 (-981)))) (-3751 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-981)) (-5 *1 (-635 *3)))))
-(-13 (-633 |#1| (-1177 |#1|) (-1177 |#1|)) (-10 -8 (-15 -3751 ($ (-1177 |#1|))) (IF (|has| |#1| (-570 (-504))) (-6 (-570 (-504))) |%noBranch|) (IF (|has| |#1| (-343)) (-15 -1666 ((-3 $ "failed") $)) |%noBranch|)))
-((-1529 (((-635 |#1|) (-635 |#1|) (-635 |#1|) (-635 |#1|)) 25)) (-3690 (((-635 |#1|) (-635 |#1|) (-635 |#1|) |#1|) 21)) (-3706 (((-635 |#1|) (-635 |#1|) (-635 |#1|) (-635 |#1|) (-635 |#1|) (-717)) 26)) (-1600 (((-635 |#1|) (-635 |#1|) (-635 |#1|) (-635 |#1|)) 14)) (-2914 (((-635 |#1|) (-635 |#1|) (-635 |#1|) (-635 |#1|)) 18) (((-635 |#1|) (-635 |#1|) (-635 |#1|)) 16)) (-2160 (((-635 |#1|) (-635 |#1|) |#1| (-635 |#1|)) 20)) (-2433 (((-635 |#1|) (-635 |#1|) (-635 |#1|)) 12)) (** (((-635 |#1|) (-635 |#1|) (-717)) 30)))
-(((-636 |#1|) (-10 -7 (-15 -2433 ((-635 |#1|) (-635 |#1|) (-635 |#1|))) (-15 -1600 ((-635 |#1|) (-635 |#1|) (-635 |#1|) (-635 |#1|))) (-15 -2914 ((-635 |#1|) (-635 |#1|) (-635 |#1|))) (-15 -2914 ((-635 |#1|) (-635 |#1|) (-635 |#1|) (-635 |#1|))) (-15 -2160 ((-635 |#1|) (-635 |#1|) |#1| (-635 |#1|))) (-15 -3690 ((-635 |#1|) (-635 |#1|) (-635 |#1|) |#1|)) (-15 -1529 ((-635 |#1|) (-635 |#1|) (-635 |#1|) (-635 |#1|))) (-15 -3706 ((-635 |#1|) (-635 |#1|) (-635 |#1|) (-635 |#1|) (-635 |#1|) (-717))) (-15 ** ((-635 |#1|) (-635 |#1|) (-717)))) (-981)) (T -636))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-635 *4)) (-5 *3 (-717)) (-4 *4 (-981)) (-5 *1 (-636 *4)))) (-3706 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-635 *4)) (-5 *3 (-717)) (-4 *4 (-981)) (-5 *1 (-636 *4)))) (-1529 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-981)) (-5 *1 (-636 *3)))) (-3690 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-635 *3)) (-4 *3 (-981)) (-5 *1 (-636 *3)))) (-2160 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-981)) (-5 *1 (-636 *3)))) (-2914 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-981)) (-5 *1 (-636 *3)))) (-2914 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-981)) (-5 *1 (-636 *3)))) (-1600 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-981)) (-5 *1 (-636 *3)))) (-2433 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-981)) (-5 *1 (-636 *3)))))
-(-10 -7 (-15 -2433 ((-635 |#1|) (-635 |#1|) (-635 |#1|))) (-15 -1600 ((-635 |#1|) (-635 |#1|) (-635 |#1|) (-635 |#1|))) (-15 -2914 ((-635 |#1|) (-635 |#1|) (-635 |#1|))) (-15 -2914 ((-635 |#1|) (-635 |#1|) (-635 |#1|) (-635 |#1|))) (-15 -2160 ((-635 |#1|) (-635 |#1|) |#1| (-635 |#1|))) (-15 -3690 ((-635 |#1|) (-635 |#1|) (-635 |#1|) |#1|)) (-15 -1529 ((-635 |#1|) (-635 |#1|) (-635 |#1|) (-635 |#1|))) (-15 -3706 ((-635 |#1|) (-635 |#1|) (-635 |#1|) (-635 |#1|) (-635 |#1|) (-717))) (-15 ** ((-635 |#1|) (-635 |#1|) (-717))))
-((-2000 (($) 8 T CONST)) (-2222 (((-802) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-2955 (((-110) $ (|[\|\|]| |#1|)) 14) (((-110) $ (|[\|\|]| -2000)) 16)) (-2440 ((|#1| $) 11)))
-(((-637 |#1|) (-13 (-1172) (-569 (-802)) (-10 -8 (-15 -2955 ((-110) $ (|[\|\|]| |#1|))) (-15 -2955 ((-110) $ (|[\|\|]| -2000))) (-15 -2222 ($ |#1|)) (-15 -2222 (|#1| $)) (-15 -2440 (|#1| $)) (-15 -2000 ($) -2636))) (-569 (-802))) (T -637))
-((-2955 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-569 (-802))) (-5 *2 (-110)) (-5 *1 (-637 *4)))) (-2955 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2000)) (-5 *2 (-110)) (-5 *1 (-637 *4)) (-4 *4 (-569 (-802))))) (-2222 (*1 *1 *2) (-12 (-5 *1 (-637 *2)) (-4 *2 (-569 (-802))))) (-2222 (*1 *2 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-569 (-802))))) (-2440 (*1 *2 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-569 (-802))))) (-2000 (*1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-569 (-802))))))
-(-13 (-1172) (-569 (-802)) (-10 -8 (-15 -2955 ((-110) $ (|[\|\|]| |#1|))) (-15 -2955 ((-110) $ (|[\|\|]| -2000))) (-15 -2222 ($ |#1|)) (-15 -2222 (|#1| $)) (-15 -2440 (|#1| $)) (-15 -2000 ($) -2636)))
-((-3993 ((|#2| |#2| |#4|) 25)) (-3301 (((-635 |#2|) |#3| |#4|) 31)) (-2423 (((-635 |#2|) |#2| |#4|) 30)) (-3603 (((-1177 |#2|) |#2| |#4|) 16)) (-3096 ((|#2| |#3| |#4|) 24)) (-3127 (((-635 |#2|) |#3| |#4| (-717) (-717)) 38)) (-2634 (((-635 |#2|) |#2| |#4| (-717)) 37)))
-(((-638 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3603 ((-1177 |#2|) |#2| |#4|)) (-15 -3096 (|#2| |#3| |#4|)) (-15 -3993 (|#2| |#2| |#4|)) (-15 -2423 ((-635 |#2|) |#2| |#4|)) (-15 -2634 ((-635 |#2|) |#2| |#4| (-717))) (-15 -3301 ((-635 |#2|) |#3| |#4|)) (-15 -3127 ((-635 |#2|) |#3| |#4| (-717) (-717)))) (-1023) (-839 |#1|) (-353 |#2|) (-13 (-353 |#1|) (-10 -7 (-6 -4264)))) (T -638))
-((-3127 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-717)) (-4 *6 (-1023)) (-4 *7 (-839 *6)) (-5 *2 (-635 *7)) (-5 *1 (-638 *6 *7 *3 *4)) (-4 *3 (-353 *7)) (-4 *4 (-13 (-353 *6) (-10 -7 (-6 -4264)))))) (-3301 (*1 *2 *3 *4) (-12 (-4 *5 (-1023)) (-4 *6 (-839 *5)) (-5 *2 (-635 *6)) (-5 *1 (-638 *5 *6 *3 *4)) (-4 *3 (-353 *6)) (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4264)))))) (-2634 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-717)) (-4 *6 (-1023)) (-4 *3 (-839 *6)) (-5 *2 (-635 *3)) (-5 *1 (-638 *6 *3 *7 *4)) (-4 *7 (-353 *3)) (-4 *4 (-13 (-353 *6) (-10 -7 (-6 -4264)))))) (-2423 (*1 *2 *3 *4) (-12 (-4 *5 (-1023)) (-4 *3 (-839 *5)) (-5 *2 (-635 *3)) (-5 *1 (-638 *5 *3 *6 *4)) (-4 *6 (-353 *3)) (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4264)))))) (-3993 (*1 *2 *2 *3) (-12 (-4 *4 (-1023)) (-4 *2 (-839 *4)) (-5 *1 (-638 *4 *2 *5 *3)) (-4 *5 (-353 *2)) (-4 *3 (-13 (-353 *4) (-10 -7 (-6 -4264)))))) (-3096 (*1 *2 *3 *4) (-12 (-4 *5 (-1023)) (-4 *2 (-839 *5)) (-5 *1 (-638 *5 *2 *3 *4)) (-4 *3 (-353 *2)) (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4264)))))) (-3603 (*1 *2 *3 *4) (-12 (-4 *5 (-1023)) (-4 *3 (-839 *5)) (-5 *2 (-1177 *3)) (-5 *1 (-638 *5 *3 *6 *4)) (-4 *6 (-353 *3)) (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4264)))))))
-(-10 -7 (-15 -3603 ((-1177 |#2|) |#2| |#4|)) (-15 -3096 (|#2| |#3| |#4|)) (-15 -3993 (|#2| |#2| |#4|)) (-15 -2423 ((-635 |#2|) |#2| |#4|)) (-15 -2634 ((-635 |#2|) |#2| |#4| (-717))) (-15 -3301 ((-635 |#2|) |#3| |#4|)) (-15 -3127 ((-635 |#2|) |#3| |#4| (-717) (-717))))
-((-3600 (((-2 (|:| |num| (-635 |#1|)) (|:| |den| |#1|)) (-635 |#2|)) 20)) (-2710 ((|#1| (-635 |#2|)) 9)) (-2519 (((-635 |#1|) (-635 |#2|)) 18)))
-(((-639 |#1| |#2|) (-10 -7 (-15 -2710 (|#1| (-635 |#2|))) (-15 -2519 ((-635 |#1|) (-635 |#2|))) (-15 -3600 ((-2 (|:| |num| (-635 |#1|)) (|:| |den| |#1|)) (-635 |#2|)))) (-520) (-929 |#1|)) (T -639))
-((-3600 (*1 *2 *3) (-12 (-5 *3 (-635 *5)) (-4 *5 (-929 *4)) (-4 *4 (-520)) (-5 *2 (-2 (|:| |num| (-635 *4)) (|:| |den| *4))) (-5 *1 (-639 *4 *5)))) (-2519 (*1 *2 *3) (-12 (-5 *3 (-635 *5)) (-4 *5 (-929 *4)) (-4 *4 (-520)) (-5 *2 (-635 *4)) (-5 *1 (-639 *4 *5)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-929 *2)) (-4 *2 (-520)) (-5 *1 (-639 *2 *4)))))
-(-10 -7 (-15 -2710 (|#1| (-635 |#2|))) (-15 -2519 ((-635 |#1|) (-635 |#2|))) (-15 -3600 ((-2 (|:| |num| (-635 |#1|)) (|:| |den| |#1|)) (-635 |#2|))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-2486 (((-635 (-645))) NIL) (((-635 (-645)) (-1177 $)) NIL)) (-1323 (((-645) $) NIL)) (-2880 (($ $) NIL (|has| (-645) (-1117)))) (-2735 (($ $) NIL (|has| (-645) (-1117)))) (-2338 (((-1105 (-860) (-717)) (-528)) NIL (|has| (-645) (-329)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (-12 (|has| (-645) (-288)) (|has| (-645) (-848))))) (-1232 (($ $) NIL (-1463 (-12 (|has| (-645) (-288)) (|has| (-645) (-848))) (|has| (-645) (-343))))) (-2705 (((-398 $) $) NIL (-1463 (-12 (|has| (-645) (-288)) (|has| (-645) (-848))) (|has| (-645) (-343))))) (-2450 (($ $) NIL (-12 (|has| (-645) (-938)) (|has| (-645) (-1117))))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (-12 (|has| (-645) (-288)) (|has| (-645) (-848))))) (-2213 (((-110) $ $) NIL (|has| (-645) (-288)))) (-2856 (((-717)) NIL (|has| (-645) (-348)))) (-2859 (($ $) NIL (|has| (-645) (-1117)))) (-2712 (($ $) NIL (|has| (-645) (-1117)))) (-2904 (($ $) NIL (|has| (-645) (-1117)))) (-2761 (($ $) NIL (|has| (-645) (-1117)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-528) "failed") $) NIL) (((-3 (-645) "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL (|has| (-645) (-972 (-387 (-528)))))) (-2409 (((-528) $) NIL) (((-645) $) NIL) (((-387 (-528)) $) NIL (|has| (-645) (-972 (-387 (-528)))))) (-1945 (($ (-1177 (-645))) NIL) (($ (-1177 (-645)) (-1177 $)) NIL)) (-2413 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-645) (-329)))) (-3519 (($ $ $) NIL (|has| (-645) (-288)))) (-3847 (((-635 (-645)) $) NIL) (((-635 (-645)) $ (-1177 $)) NIL)) (-2120 (((-635 (-645)) (-635 $)) NIL) (((-2 (|:| -2163 (-635 (-645))) (|:| |vec| (-1177 (-645)))) (-635 $) (-1177 $)) NIL) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| (-645) (-591 (-528)))) (((-635 (-528)) (-635 $)) NIL (|has| (-645) (-591 (-528))))) (-1422 (((-3 $ "failed") (-387 (-1091 (-645)))) NIL (|has| (-645) (-343))) (($ (-1091 (-645))) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-2461 (((-645) $) 29)) (-1793 (((-3 (-387 (-528)) "failed") $) NIL (|has| (-645) (-513)))) (-3650 (((-110) $) NIL (|has| (-645) (-513)))) (-3099 (((-387 (-528)) $) NIL (|has| (-645) (-513)))) (-3090 (((-860)) NIL)) (-1338 (($) NIL (|has| (-645) (-348)))) (-3498 (($ $ $) NIL (|has| (-645) (-288)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL (|has| (-645) (-288)))) (-2916 (($) NIL (|has| (-645) (-329)))) (-4086 (((-110) $) NIL (|has| (-645) (-329)))) (-2790 (($ $) NIL (|has| (-645) (-329))) (($ $ (-717)) NIL (|has| (-645) (-329)))) (-2124 (((-110) $) NIL (-1463 (-12 (|has| (-645) (-288)) (|has| (-645) (-848))) (|has| (-645) (-343))))) (-3810 (((-2 (|:| |r| (-645)) (|:| |phi| (-645))) $) NIL (-12 (|has| (-645) (-989)) (|has| (-645) (-1117))))) (-1505 (($) NIL (|has| (-645) (-1117)))) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (|has| (-645) (-825 (-359)))) (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (|has| (-645) (-825 (-528))))) (-3689 (((-779 (-860)) $) NIL (|has| (-645) (-329))) (((-860) $) NIL (|has| (-645) (-329)))) (-1297 (((-110) $) NIL)) (-2796 (($ $ (-528)) NIL (-12 (|has| (-645) (-938)) (|has| (-645) (-1117))))) (-3297 (((-645) $) NIL)) (-3296 (((-3 $ "failed") $) NIL (|has| (-645) (-329)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| (-645) (-288)))) (-3537 (((-1091 (-645)) $) NIL (|has| (-645) (-343)))) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3106 (($ (-1 (-645) (-645)) $) NIL)) (-3201 (((-860) $) NIL (|has| (-645) (-348)))) (-2097 (($ $) NIL (|has| (-645) (-1117)))) (-1412 (((-1091 (-645)) $) NIL)) (-2057 (($ (-595 $)) NIL (|has| (-645) (-288))) (($ $ $) NIL (|has| (-645) (-288)))) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL (|has| (-645) (-343)))) (-4197 (($) NIL (|has| (-645) (-329)) CONST)) (-3108 (($ (-860)) NIL (|has| (-645) (-348)))) (-1225 (($) NIL)) (-2473 (((-645) $) 31)) (-2495 (((-1042) $) NIL)) (-1261 (($) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| (-645) (-288)))) (-2088 (($ (-595 $)) NIL (|has| (-645) (-288))) (($ $ $) NIL (|has| (-645) (-288)))) (-3010 (((-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528))))) NIL (|has| (-645) (-329)))) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (-12 (|has| (-645) (-288)) (|has| (-645) (-848))))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (-12 (|has| (-645) (-288)) (|has| (-645) (-848))))) (-2437 (((-398 $) $) NIL (-1463 (-12 (|has| (-645) (-288)) (|has| (-645) (-848))) (|has| (-645) (-343))))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-645) (-288))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| (-645) (-288)))) (-3477 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-645)) NIL (|has| (-645) (-520)))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| (-645) (-288)))) (-2656 (($ $) NIL (|has| (-645) (-1117)))) (-4014 (($ $ (-1095) (-645)) NIL (|has| (-645) (-489 (-1095) (-645)))) (($ $ (-595 (-1095)) (-595 (-645))) NIL (|has| (-645) (-489 (-1095) (-645)))) (($ $ (-595 (-275 (-645)))) NIL (|has| (-645) (-290 (-645)))) (($ $ (-275 (-645))) NIL (|has| (-645) (-290 (-645)))) (($ $ (-645) (-645)) NIL (|has| (-645) (-290 (-645)))) (($ $ (-595 (-645)) (-595 (-645))) NIL (|has| (-645) (-290 (-645))))) (-3973 (((-717) $) NIL (|has| (-645) (-288)))) (-3043 (($ $ (-645)) NIL (|has| (-645) (-267 (-645) (-645))))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| (-645) (-288)))) (-1372 (((-645)) NIL) (((-645) (-1177 $)) NIL)) (-3500 (((-3 (-717) "failed") $ $) NIL (|has| (-645) (-329))) (((-717) $) NIL (|has| (-645) (-329)))) (-3235 (($ $ (-1 (-645) (-645))) NIL) (($ $ (-1 (-645) (-645)) (-717)) NIL) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| (-645) (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| (-645) (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| (-645) (-839 (-1095)))) (($ $ (-1095)) NIL (|has| (-645) (-839 (-1095)))) (($ $ (-717)) NIL (|has| (-645) (-215))) (($ $) NIL (|has| (-645) (-215)))) (-2348 (((-635 (-645)) (-1177 $) (-1 (-645) (-645))) NIL (|has| (-645) (-343)))) (-4090 (((-1091 (-645))) NIL)) (-2917 (($ $) NIL (|has| (-645) (-1117)))) (-2773 (($ $) NIL (|has| (-645) (-1117)))) (-1984 (($) NIL (|has| (-645) (-329)))) (-2892 (($ $) NIL (|has| (-645) (-1117)))) (-2749 (($ $) NIL (|has| (-645) (-1117)))) (-2869 (($ $) NIL (|has| (-645) (-1117)))) (-2724 (($ $) NIL (|has| (-645) (-1117)))) (-4243 (((-635 (-645)) (-1177 $)) NIL) (((-1177 (-645)) $) NIL) (((-635 (-645)) (-1177 $) (-1177 $)) NIL) (((-1177 (-645)) $ (-1177 $)) NIL)) (-3155 (((-504) $) NIL (|has| (-645) (-570 (-504)))) (((-159 (-207)) $) NIL (|has| (-645) (-957))) (((-159 (-359)) $) NIL (|has| (-645) (-957))) (((-831 (-359)) $) NIL (|has| (-645) (-570 (-831 (-359))))) (((-831 (-528)) $) NIL (|has| (-645) (-570 (-831 (-528))))) (($ (-1091 (-645))) NIL) (((-1091 (-645)) $) NIL) (($ (-1177 (-645))) NIL) (((-1177 (-645)) $) NIL)) (-4097 (($ $) NIL)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-1463 (-12 (|has| (-645) (-288)) (|has| $ (-138)) (|has| (-645) (-848))) (|has| (-645) (-329))))) (-4095 (($ (-645) (-645)) 12)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ $) NIL) (($ (-528)) NIL) (($ (-645)) NIL) (($ (-159 (-359))) 13) (($ (-159 (-528))) 19) (($ (-159 (-645))) 28) (($ (-159 (-647))) 25) (((-159 (-359)) $) 33) (($ (-387 (-528))) NIL (-1463 (|has| (-645) (-972 (-387 (-528)))) (|has| (-645) (-343))))) (-3749 (($ $) NIL (|has| (-645) (-329))) (((-3 $ "failed") $) NIL (-1463 (-12 (|has| (-645) (-288)) (|has| $ (-138)) (|has| (-645) (-848))) (|has| (-645) (-138))))) (-2516 (((-1091 (-645)) $) NIL)) (-3742 (((-717)) NIL)) (-1400 (((-1177 $)) NIL)) (-2953 (($ $) NIL (|has| (-645) (-1117)))) (-2811 (($ $) NIL (|has| (-645) (-1117)))) (-4016 (((-110) $ $) NIL)) (-2928 (($ $) NIL (|has| (-645) (-1117)))) (-2784 (($ $) NIL (|has| (-645) (-1117)))) (-2981 (($ $) NIL (|has| (-645) (-1117)))) (-2836 (($ $) NIL (|has| (-645) (-1117)))) (-3625 (((-645) $) NIL (|has| (-645) (-1117)))) (-3592 (($ $) NIL (|has| (-645) (-1117)))) (-2846 (($ $) NIL (|has| (-645) (-1117)))) (-2967 (($ $) NIL (|has| (-645) (-1117)))) (-2825 (($ $) NIL (|has| (-645) (-1117)))) (-2940 (($ $) NIL (|has| (-645) (-1117)))) (-2797 (($ $) NIL (|has| (-645) (-1117)))) (-1775 (($ $) NIL (|has| (-645) (-989)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| (-645) (-343)))) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($ $ (-1 (-645) (-645))) NIL) (($ $ (-1 (-645) (-645)) (-717)) NIL) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| (-645) (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| (-645) (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| (-645) (-839 (-1095)))) (($ $ (-1095)) NIL (|has| (-645) (-839 (-1095)))) (($ $ (-717)) NIL (|has| (-645) (-215))) (($ $) NIL (|has| (-645) (-215)))) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) NIL)) (-2296 (($ $ $) NIL (|has| (-645) (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ $) NIL (|has| (-645) (-1117))) (($ $ (-387 (-528))) NIL (-12 (|has| (-645) (-938)) (|has| (-645) (-1117)))) (($ $ (-528)) NIL (|has| (-645) (-343)))) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ (-645) $) NIL) (($ $ (-645)) NIL) (($ (-387 (-528)) $) NIL (|has| (-645) (-343))) (($ $ (-387 (-528))) NIL (|has| (-645) (-343)))))
-(((-640) (-13 (-367) (-156 (-645)) (-10 -8 (-15 -2222 ($ (-159 (-359)))) (-15 -2222 ($ (-159 (-528)))) (-15 -2222 ($ (-159 (-645)))) (-15 -2222 ($ (-159 (-647)))) (-15 -2222 ((-159 (-359)) $))))) (T -640))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-159 (-359))) (-5 *1 (-640)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-159 (-528))) (-5 *1 (-640)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-159 (-645))) (-5 *1 (-640)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-159 (-647))) (-5 *1 (-640)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-159 (-359))) (-5 *1 (-640)))))
-(-13 (-367) (-156 (-645)) (-10 -8 (-15 -2222 ($ (-159 (-359)))) (-15 -2222 ($ (-159 (-528)))) (-15 -2222 ($ (-159 (-645)))) (-15 -2222 ($ (-159 (-647)))) (-15 -2222 ((-159 (-359)) $))))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-3535 (((-110) $ (-717)) 8)) (-1836 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4264)))) (-1573 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4264)))) (-2816 (($) 7 T CONST)) (-2833 (($ $) 62)) (-2923 (($ $) 58 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-3991 (($ |#1| $) 47 (|has| $ (-6 -4264))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4264)))) (-2280 (($ |#1| $) 57 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4264)))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4264)))) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) 9)) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35)) (-3358 (((-110) $ (-717)) 10)) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-3934 ((|#1| $) 39)) (-1950 (($ |#1| $) 40) (($ |#1| $ (-717)) 63)) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-1390 ((|#1| $) 41)) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-2527 (((-595 (-2 (|:| -1780 |#1|) (|:| -2507 (-717)))) $) 61)) (-3900 (($) 49) (($ (-595 |#1|)) 48)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-3155 (((-504) $) 59 (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) 50)) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-2164 (($ (-595 |#1|)) 42)) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-641 |#1|) (-133) (-1023)) (T -641))
-((-1950 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-717)) (-4 *1 (-641 *2)) (-4 *2 (-1023)))) (-2833 (*1 *1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1023)))) (-2527 (*1 *2 *1) (-12 (-4 *1 (-641 *3)) (-4 *3 (-1023)) (-5 *2 (-595 (-2 (|:| -1780 *3) (|:| -2507 (-717))))))))
-(-13 (-217 |t#1|) (-10 -8 (-15 -1950 ($ |t#1| $ (-717))) (-15 -2833 ($ $)) (-15 -2527 ((-595 (-2 (|:| -1780 |t#1|) (|:| -2507 (-717)))) $))))
-(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1023)) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-569 (-802)))) ((-144 |#1|) . T) ((-570 (-504)) |has| |#1| (-570 (-504))) ((-217 |#1|) . T) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-467 |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-1023) |has| |#1| (-1023)) ((-1131) . T))
-((-2470 (((-595 |#1|) (-595 (-2 (|:| -2437 |#1|) (|:| -2935 (-528)))) (-528)) 47)) (-2206 ((|#1| |#1| (-528)) 46)) (-2088 ((|#1| |#1| |#1| (-528)) 36)) (-2437 (((-595 |#1|) |#1| (-528)) 39)) (-3797 ((|#1| |#1| (-528) |#1| (-528)) 32)) (-2984 (((-595 (-2 (|:| -2437 |#1|) (|:| -2935 (-528)))) |#1| (-528)) 45)))
-(((-642 |#1|) (-10 -7 (-15 -2088 (|#1| |#1| |#1| (-528))) (-15 -2206 (|#1| |#1| (-528))) (-15 -2437 ((-595 |#1|) |#1| (-528))) (-15 -2984 ((-595 (-2 (|:| -2437 |#1|) (|:| -2935 (-528)))) |#1| (-528))) (-15 -2470 ((-595 |#1|) (-595 (-2 (|:| -2437 |#1|) (|:| -2935 (-528)))) (-528))) (-15 -3797 (|#1| |#1| (-528) |#1| (-528)))) (-1153 (-528))) (T -642))
-((-3797 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-642 *2)) (-4 *2 (-1153 *3)))) (-2470 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-2 (|:| -2437 *5) (|:| -2935 (-528))))) (-5 *4 (-528)) (-4 *5 (-1153 *4)) (-5 *2 (-595 *5)) (-5 *1 (-642 *5)))) (-2984 (*1 *2 *3 *4) (-12 (-5 *4 (-528)) (-5 *2 (-595 (-2 (|:| -2437 *3) (|:| -2935 *4)))) (-5 *1 (-642 *3)) (-4 *3 (-1153 *4)))) (-2437 (*1 *2 *3 *4) (-12 (-5 *4 (-528)) (-5 *2 (-595 *3)) (-5 *1 (-642 *3)) (-4 *3 (-1153 *4)))) (-2206 (*1 *2 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-642 *2)) (-4 *2 (-1153 *3)))) (-2088 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-642 *2)) (-4 *2 (-1153 *3)))))
-(-10 -7 (-15 -2088 (|#1| |#1| |#1| (-528))) (-15 -2206 (|#1| |#1| (-528))) (-15 -2437 ((-595 |#1|) |#1| (-528))) (-15 -2984 ((-595 (-2 (|:| -2437 |#1|) (|:| -2935 (-528)))) |#1| (-528))) (-15 -2470 ((-595 |#1|) (-595 (-2 (|:| -2437 |#1|) (|:| -2935 (-528)))) (-528))) (-15 -3797 (|#1| |#1| (-528) |#1| (-528))))
-((-3518 (((-1 (-882 (-207)) (-207) (-207)) (-1 (-207) (-207) (-207)) (-1 (-207) (-207) (-207)) (-1 (-207) (-207) (-207)) (-1 (-207) (-207) (-207) (-207))) 17)) (-2651 (((-1055 (-207)) (-1055 (-207)) (-1 (-882 (-207)) (-207) (-207)) (-1018 (-207)) (-1018 (-207)) (-595 (-244))) 40) (((-1055 (-207)) (-1 (-882 (-207)) (-207) (-207)) (-1018 (-207)) (-1018 (-207)) (-595 (-244))) 42) (((-1055 (-207)) (-1 (-207) (-207) (-207)) (-1 (-207) (-207) (-207)) (-1 (-207) (-207) (-207)) (-3 (-1 (-207) (-207) (-207) (-207)) "undefined") (-1018 (-207)) (-1018 (-207)) (-595 (-244))) 44)) (-2963 (((-1055 (-207)) (-296 (-528)) (-296 (-528)) (-296 (-528)) (-1 (-207) (-207)) (-1018 (-207)) (-595 (-244))) NIL)) (-2463 (((-1055 (-207)) (-1 (-207) (-207) (-207)) (-3 (-1 (-207) (-207) (-207) (-207)) "undefined") (-1018 (-207)) (-1018 (-207)) (-595 (-244))) 45)))
-(((-643) (-10 -7 (-15 -2651 ((-1055 (-207)) (-1 (-207) (-207) (-207)) (-1 (-207) (-207) (-207)) (-1 (-207) (-207) (-207)) (-3 (-1 (-207) (-207) (-207) (-207)) "undefined") (-1018 (-207)) (-1018 (-207)) (-595 (-244)))) (-15 -2651 ((-1055 (-207)) (-1 (-882 (-207)) (-207) (-207)) (-1018 (-207)) (-1018 (-207)) (-595 (-244)))) (-15 -2651 ((-1055 (-207)) (-1055 (-207)) (-1 (-882 (-207)) (-207) (-207)) (-1018 (-207)) (-1018 (-207)) (-595 (-244)))) (-15 -2463 ((-1055 (-207)) (-1 (-207) (-207) (-207)) (-3 (-1 (-207) (-207) (-207) (-207)) "undefined") (-1018 (-207)) (-1018 (-207)) (-595 (-244)))) (-15 -2963 ((-1055 (-207)) (-296 (-528)) (-296 (-528)) (-296 (-528)) (-1 (-207) (-207)) (-1018 (-207)) (-595 (-244)))) (-15 -3518 ((-1 (-882 (-207)) (-207) (-207)) (-1 (-207) (-207) (-207)) (-1 (-207) (-207) (-207)) (-1 (-207) (-207) (-207)) (-1 (-207) (-207) (-207) (-207)))))) (T -643))
-((-3518 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-207) (-207) (-207))) (-5 *4 (-1 (-207) (-207) (-207) (-207))) (-5 *2 (-1 (-882 (-207)) (-207) (-207))) (-5 *1 (-643)))) (-2963 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-296 (-528))) (-5 *4 (-1 (-207) (-207))) (-5 *5 (-1018 (-207))) (-5 *6 (-595 (-244))) (-5 *2 (-1055 (-207))) (-5 *1 (-643)))) (-2463 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-207) (-207) (-207))) (-5 *4 (-3 (-1 (-207) (-207) (-207) (-207)) "undefined")) (-5 *5 (-1018 (-207))) (-5 *6 (-595 (-244))) (-5 *2 (-1055 (-207))) (-5 *1 (-643)))) (-2651 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1055 (-207))) (-5 *3 (-1 (-882 (-207)) (-207) (-207))) (-5 *4 (-1018 (-207))) (-5 *5 (-595 (-244))) (-5 *1 (-643)))) (-2651 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-882 (-207)) (-207) (-207))) (-5 *4 (-1018 (-207))) (-5 *5 (-595 (-244))) (-5 *2 (-1055 (-207))) (-5 *1 (-643)))) (-2651 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-207) (-207) (-207))) (-5 *4 (-3 (-1 (-207) (-207) (-207) (-207)) "undefined")) (-5 *5 (-1018 (-207))) (-5 *6 (-595 (-244))) (-5 *2 (-1055 (-207))) (-5 *1 (-643)))))
-(-10 -7 (-15 -2651 ((-1055 (-207)) (-1 (-207) (-207) (-207)) (-1 (-207) (-207) (-207)) (-1 (-207) (-207) (-207)) (-3 (-1 (-207) (-207) (-207) (-207)) "undefined") (-1018 (-207)) (-1018 (-207)) (-595 (-244)))) (-15 -2651 ((-1055 (-207)) (-1 (-882 (-207)) (-207) (-207)) (-1018 (-207)) (-1018 (-207)) (-595 (-244)))) (-15 -2651 ((-1055 (-207)) (-1055 (-207)) (-1 (-882 (-207)) (-207) (-207)) (-1018 (-207)) (-1018 (-207)) (-595 (-244)))) (-15 -2463 ((-1055 (-207)) (-1 (-207) (-207) (-207)) (-3 (-1 (-207) (-207) (-207) (-207)) "undefined") (-1018 (-207)) (-1018 (-207)) (-595 (-244)))) (-15 -2963 ((-1055 (-207)) (-296 (-528)) (-296 (-528)) (-296 (-528)) (-1 (-207) (-207)) (-1018 (-207)) (-595 (-244)))) (-15 -3518 ((-1 (-882 (-207)) (-207) (-207)) (-1 (-207) (-207) (-207)) (-1 (-207) (-207) (-207)) (-1 (-207) (-207) (-207)) (-1 (-207) (-207) (-207) (-207)))))
-((-2437 (((-398 (-1091 |#4|)) (-1091 |#4|)) 73) (((-398 |#4|) |#4|) 222)))
-(((-644 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2437 ((-398 |#4|) |#4|)) (-15 -2437 ((-398 (-1091 |#4|)) (-1091 |#4|)))) (-793) (-739) (-329) (-888 |#3| |#2| |#1|)) (T -644))
-((-2437 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-739)) (-4 *6 (-329)) (-4 *7 (-888 *6 *5 *4)) (-5 *2 (-398 (-1091 *7))) (-5 *1 (-644 *4 *5 *6 *7)) (-5 *3 (-1091 *7)))) (-2437 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-739)) (-4 *6 (-329)) (-5 *2 (-398 *3)) (-5 *1 (-644 *4 *5 *6 *3)) (-4 *3 (-888 *6 *5 *4)))))
-(-10 -7 (-15 -2437 ((-398 |#4|) |#4|)) (-15 -2437 ((-398 (-1091 |#4|)) (-1091 |#4|))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 84)) (-3598 (((-528) $) 30)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-1781 (($ $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-2450 (($ $) NIL)) (-2213 (((-110) $ $) NIL)) (-3605 (((-528) $) NIL)) (-2816 (($) NIL T CONST)) (-2212 (($ $) NIL)) (-3001 (((-3 (-528) "failed") $) 73) (((-3 (-387 (-528)) "failed") $) 26) (((-3 (-359) "failed") $) 70)) (-2409 (((-528) $) 75) (((-387 (-528)) $) 67) (((-359) $) 68)) (-3519 (($ $ $) 96)) (-1312 (((-3 $ "failed") $) 87)) (-3498 (($ $ $) 95)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2124 (((-110) $) NIL)) (-1239 (((-860)) 77) (((-860) (-860)) 76)) (-3657 (((-110) $) NIL)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL)) (-3689 (((-528) $) NIL)) (-1297 (((-110) $) NIL)) (-2796 (($ $ (-528)) NIL)) (-3297 (($ $) NIL)) (-3710 (((-110) $) NIL)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-2681 (((-528) (-528)) 81) (((-528)) 82)) (-1436 (($ $ $) NIL) (($) NIL (-12 (-3617 (|has| $ (-6 -4247))) (-3617 (|has| $ (-6 -4255)))))) (-3021 (((-528) (-528)) 79) (((-528)) 80)) (-1736 (($ $ $) NIL) (($) NIL (-12 (-3617 (|has| $ (-6 -4247))) (-3617 (|has| $ (-6 -4255)))))) (-3095 (((-528) $) 16)) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) 91)) (-3144 (((-860) (-528)) NIL (|has| $ (-6 -4255)))) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3270 (($ $) NIL)) (-2925 (($ $) NIL)) (-2849 (($ (-528) (-528)) NIL) (($ (-528) (-528) (-860)) NIL)) (-2437 (((-398 $) $) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) 92)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-2564 (((-528) $) 22)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 94)) (-1913 (((-860)) NIL) (((-860) (-860)) NIL (|has| $ (-6 -4255)))) (-2166 (((-860) (-528)) NIL (|has| $ (-6 -4255)))) (-3155 (((-359) $) NIL) (((-207) $) NIL) (((-831 (-359)) $) NIL)) (-2222 (((-802) $) 52) (($ (-528)) 63) (($ $) NIL) (($ (-387 (-528))) 66) (($ (-528)) 63) (($ (-387 (-528))) 66) (($ (-359)) 60) (((-359) $) 50) (($ (-647)) 55)) (-3742 (((-717)) 103)) (-1286 (($ (-528) (-528) (-860)) 44)) (-1769 (($ $) NIL)) (-3341 (((-860)) NIL) (((-860) (-860)) NIL (|has| $ (-6 -4255)))) (-2911 (((-860)) 35) (((-860) (-860)) 78)) (-4016 (((-110) $ $) NIL)) (-1775 (($ $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) 32 T CONST)) (-2982 (($) 17 T CONST)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 83)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 101)) (-2296 (($ $ $) 65)) (-2286 (($ $) 99) (($ $ $) 100)) (-2275 (($ $ $) 98)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL) (($ $ (-387 (-528))) 90)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 97) (($ $ $) 88) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL)))
-(((-645) (-13 (-384) (-367) (-343) (-972 (-359)) (-972 (-387 (-528))) (-140) (-10 -8 (-15 -1239 ((-860) (-860))) (-15 -1239 ((-860))) (-15 -2911 ((-860) (-860))) (-15 -2911 ((-860))) (-15 -3021 ((-528) (-528))) (-15 -3021 ((-528))) (-15 -2681 ((-528) (-528))) (-15 -2681 ((-528))) (-15 -2222 ((-359) $)) (-15 -2222 ($ (-647))) (-15 -3095 ((-528) $)) (-15 -2564 ((-528) $)) (-15 -1286 ($ (-528) (-528) (-860)))))) (T -645))
-((-2911 (*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-645)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-645)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-645)))) (-1239 (*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-645)))) (-1239 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-645)))) (-2911 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-645)))) (-3021 (*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-645)))) (-3021 (*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-645)))) (-2681 (*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-645)))) (-2681 (*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-645)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-359)) (-5 *1 (-645)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-647)) (-5 *1 (-645)))) (-1286 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-528)) (-5 *3 (-860)) (-5 *1 (-645)))))
-(-13 (-384) (-367) (-343) (-972 (-359)) (-972 (-387 (-528))) (-140) (-10 -8 (-15 -1239 ((-860) (-860))) (-15 -1239 ((-860))) (-15 -2911 ((-860) (-860))) (-15 -2911 ((-860))) (-15 -3021 ((-528) (-528))) (-15 -3021 ((-528))) (-15 -2681 ((-528) (-528))) (-15 -2681 ((-528))) (-15 -2222 ((-359) $)) (-15 -2222 ($ (-647))) (-15 -3095 ((-528) $)) (-15 -2564 ((-528) $)) (-15 -1286 ($ (-528) (-528) (-860)))))
-((-2157 (((-635 |#1|) (-635 |#1|) |#1| |#1|) 65)) (-2614 (((-635 |#1|) (-635 |#1|) |#1|) 48)) (-3994 (((-635 |#1|) (-635 |#1|) |#1|) 66)) (-1926 (((-635 |#1|) (-635 |#1|)) 49)) (-1933 (((-2 (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1|) 64)))
-(((-646 |#1|) (-10 -7 (-15 -1926 ((-635 |#1|) (-635 |#1|))) (-15 -2614 ((-635 |#1|) (-635 |#1|) |#1|)) (-15 -3994 ((-635 |#1|) (-635 |#1|) |#1|)) (-15 -2157 ((-635 |#1|) (-635 |#1|) |#1| |#1|)) (-15 -1933 ((-2 (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1|))) (-288)) (T -646))
-((-1933 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3490 *3) (|:| -2537 *3))) (-5 *1 (-646 *3)) (-4 *3 (-288)))) (-2157 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-635 *3)) (-4 *3 (-288)) (-5 *1 (-646 *3)))) (-3994 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *3)) (-4 *3 (-288)) (-5 *1 (-646 *3)))) (-2614 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *3)) (-4 *3 (-288)) (-5 *1 (-646 *3)))) (-1926 (*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-288)) (-5 *1 (-646 *3)))))
-(-10 -7 (-15 -1926 ((-635 |#1|) (-635 |#1|))) (-15 -2614 ((-635 |#1|) (-635 |#1|) |#1|)) (-15 -3994 ((-635 |#1|) (-635 |#1|) |#1|)) (-15 -2157 ((-635 |#1|) (-635 |#1|) |#1| |#1|)) (-15 -1933 ((-2 (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3251 (($ $ $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2264 (($ $ $ $) NIL)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-2213 (((-110) $ $) NIL)) (-3605 (((-528) $) NIL)) (-2950 (($ $ $) NIL)) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-528) "failed") $) 27)) (-2409 (((-528) $) 25)) (-3519 (($ $ $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1793 (((-3 (-387 (-528)) "failed") $) NIL)) (-3650 (((-110) $) NIL)) (-3099 (((-387 (-528)) $) NIL)) (-1338 (($ $) NIL) (($) NIL)) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2124 (((-110) $) NIL)) (-2146 (($ $ $ $) NIL)) (-1841 (($ $ $) NIL)) (-3657 (((-110) $) NIL)) (-1752 (($ $ $) NIL)) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL)) (-1297 (((-110) $) NIL)) (-2580 (((-110) $) NIL)) (-3296 (((-3 $ "failed") $) NIL)) (-3710 (((-110) $) NIL)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-1575 (($ $ $ $) NIL)) (-1436 (($ $ $) NIL)) (-2271 (((-860) (-860)) 10) (((-860)) 9)) (-1736 (($ $ $) NIL)) (-3019 (($ $) NIL)) (-1584 (($ $) NIL)) (-2057 (($ (-595 $)) NIL) (($ $ $) NIL)) (-3034 (((-1078) $) NIL)) (-1627 (($ $ $) NIL)) (-4197 (($) NIL T CONST)) (-3715 (($ $) NIL)) (-2495 (((-1042) $) NIL) (($ $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ (-595 $)) NIL) (($ $ $) NIL)) (-3918 (($ $) NIL)) (-2437 (((-398 $) $) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3578 (((-110) $) NIL)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3235 (($ $) NIL) (($ $ (-717)) NIL)) (-1691 (($ $) NIL)) (-2406 (($ $) NIL)) (-3155 (((-207) $) NIL) (((-359) $) NIL) (((-831 (-528)) $) NIL) (((-504) $) NIL) (((-528) $) NIL)) (-2222 (((-802) $) NIL) (($ (-528)) 24) (($ $) NIL) (($ (-528)) 24) (((-296 $) (-296 (-528))) 18)) (-3742 (((-717)) NIL)) (-2608 (((-110) $ $) NIL)) (-3709 (($ $ $) NIL)) (-2911 (($) NIL)) (-4016 (((-110) $ $) NIL)) (-2901 (($ $ $ $) NIL)) (-1775 (($ $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($ $) NIL) (($ $ (-717)) NIL)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL)))
-(((-647) (-13 (-367) (-513) (-10 -8 (-15 -2271 ((-860) (-860))) (-15 -2271 ((-860))) (-15 -2222 ((-296 $) (-296 (-528))))))) (T -647))
-((-2271 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-647)))) (-2271 (*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-647)))) (-2222 (*1 *2 *3) (-12 (-5 *3 (-296 (-528))) (-5 *2 (-296 (-647))) (-5 *1 (-647)))))
-(-13 (-367) (-513) (-10 -8 (-15 -2271 ((-860) (-860))) (-15 -2271 ((-860))) (-15 -2222 ((-296 $) (-296 (-528))))))
-((-1634 (((-1 |#4| |#2| |#3|) |#1| (-1095) (-1095)) 19)) (-2639 (((-1 |#4| |#2| |#3|) (-1095)) 12)))
-(((-648 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2639 ((-1 |#4| |#2| |#3|) (-1095))) (-15 -1634 ((-1 |#4| |#2| |#3|) |#1| (-1095) (-1095)))) (-570 (-504)) (-1131) (-1131) (-1131)) (T -648))
-((-1634 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1095)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-648 *3 *5 *6 *7)) (-4 *3 (-570 (-504))) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)))) (-2639 (*1 *2 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-648 *4 *5 *6 *7)) (-4 *4 (-570 (-504))) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)))))
-(-10 -7 (-15 -2639 ((-1 |#4| |#2| |#3|) (-1095))) (-15 -1634 ((-1 |#4| |#2| |#3|) |#1| (-1095) (-1095))))
-((-2207 (((-110) $ $) NIL)) (-2262 (((-1182) $ (-717)) 14)) (-3140 (((-717) $) 12)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 25)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 24)))
-(((-649 |#1|) (-13 (-129) (-569 |#1|) (-10 -8 (-15 -2222 ($ |#1|)))) (-1023)) (T -649))
-((-2222 (*1 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1023)))))
-(-13 (-129) (-569 |#1|) (-10 -8 (-15 -2222 ($ |#1|))))
-((-2005 (((-1 (-207) (-207) (-207)) |#1| (-1095) (-1095)) 34) (((-1 (-207) (-207)) |#1| (-1095)) 39)))
-(((-650 |#1|) (-10 -7 (-15 -2005 ((-1 (-207) (-207)) |#1| (-1095))) (-15 -2005 ((-1 (-207) (-207) (-207)) |#1| (-1095) (-1095)))) (-570 (-504))) (T -650))
-((-2005 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1095)) (-5 *2 (-1 (-207) (-207) (-207))) (-5 *1 (-650 *3)) (-4 *3 (-570 (-504))))) (-2005 (*1 *2 *3 *4) (-12 (-5 *4 (-1095)) (-5 *2 (-1 (-207) (-207))) (-5 *1 (-650 *3)) (-4 *3 (-570 (-504))))))
-(-10 -7 (-15 -2005 ((-1 (-207) (-207)) |#1| (-1095))) (-15 -2005 ((-1 (-207) (-207) (-207)) |#1| (-1095) (-1095))))
-((-3160 (((-1095) |#1| (-1095) (-595 (-1095))) 9) (((-1095) |#1| (-1095) (-1095) (-1095)) 12) (((-1095) |#1| (-1095) (-1095)) 11) (((-1095) |#1| (-1095)) 10)))
-(((-651 |#1|) (-10 -7 (-15 -3160 ((-1095) |#1| (-1095))) (-15 -3160 ((-1095) |#1| (-1095) (-1095))) (-15 -3160 ((-1095) |#1| (-1095) (-1095) (-1095))) (-15 -3160 ((-1095) |#1| (-1095) (-595 (-1095))))) (-570 (-504))) (T -651))
-((-3160 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-595 (-1095))) (-5 *2 (-1095)) (-5 *1 (-651 *3)) (-4 *3 (-570 (-504))))) (-3160 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-651 *3)) (-4 *3 (-570 (-504))))) (-3160 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-651 *3)) (-4 *3 (-570 (-504))))) (-3160 (*1 *2 *3 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-651 *3)) (-4 *3 (-570 (-504))))))
-(-10 -7 (-15 -3160 ((-1095) |#1| (-1095))) (-15 -3160 ((-1095) |#1| (-1095) (-1095))) (-15 -3160 ((-1095) |#1| (-1095) (-1095) (-1095))) (-15 -3160 ((-1095) |#1| (-1095) (-595 (-1095)))))
-((-1647 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-652 |#1| |#2|) (-10 -7 (-15 -1647 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1131) (-1131)) (T -652))
-((-1647 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-652 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)))))
-(-10 -7 (-15 -1647 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-4117 (((-1 |#3| |#2|) (-1095)) 11)) (-1634 (((-1 |#3| |#2|) |#1| (-1095)) 21)))
-(((-653 |#1| |#2| |#3|) (-10 -7 (-15 -4117 ((-1 |#3| |#2|) (-1095))) (-15 -1634 ((-1 |#3| |#2|) |#1| (-1095)))) (-570 (-504)) (-1131) (-1131)) (T -653))
-((-1634 (*1 *2 *3 *4) (-12 (-5 *4 (-1095)) (-5 *2 (-1 *6 *5)) (-5 *1 (-653 *3 *5 *6)) (-4 *3 (-570 (-504))) (-4 *5 (-1131)) (-4 *6 (-1131)))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-1 *6 *5)) (-5 *1 (-653 *4 *5 *6)) (-4 *4 (-570 (-504))) (-4 *5 (-1131)) (-4 *6 (-1131)))))
-(-10 -7 (-15 -4117 ((-1 |#3| |#2|) (-1095))) (-15 -1634 ((-1 |#3| |#2|) |#1| (-1095))))
-((-3165 (((-3 (-595 (-1091 |#4|)) "failed") (-1091 |#4|) (-595 |#2|) (-595 (-1091 |#4|)) (-595 |#3|) (-595 |#4|) (-595 (-595 (-2 (|:| -3254 (-717)) (|:| |pcoef| |#4|)))) (-595 (-717)) (-1177 (-595 (-1091 |#3|))) |#3|) 62)) (-1430 (((-3 (-595 (-1091 |#4|)) "failed") (-1091 |#4|) (-595 |#2|) (-595 (-1091 |#3|)) (-595 |#3|) (-595 |#4|) (-595 (-717)) |#3|) 75)) (-1249 (((-3 (-595 (-1091 |#4|)) "failed") (-1091 |#4|) (-595 |#2|) (-595 |#3|) (-595 (-717)) (-595 (-1091 |#4|)) (-1177 (-595 (-1091 |#3|))) |#3|) 34)))
-(((-654 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1249 ((-3 (-595 (-1091 |#4|)) "failed") (-1091 |#4|) (-595 |#2|) (-595 |#3|) (-595 (-717)) (-595 (-1091 |#4|)) (-1177 (-595 (-1091 |#3|))) |#3|)) (-15 -1430 ((-3 (-595 (-1091 |#4|)) "failed") (-1091 |#4|) (-595 |#2|) (-595 (-1091 |#3|)) (-595 |#3|) (-595 |#4|) (-595 (-717)) |#3|)) (-15 -3165 ((-3 (-595 (-1091 |#4|)) "failed") (-1091 |#4|) (-595 |#2|) (-595 (-1091 |#4|)) (-595 |#3|) (-595 |#4|) (-595 (-595 (-2 (|:| -3254 (-717)) (|:| |pcoef| |#4|)))) (-595 (-717)) (-1177 (-595 (-1091 |#3|))) |#3|))) (-739) (-793) (-288) (-888 |#3| |#1| |#2|)) (T -654))
-((-3165 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-595 (-1091 *13))) (-5 *3 (-1091 *13)) (-5 *4 (-595 *12)) (-5 *5 (-595 *10)) (-5 *6 (-595 *13)) (-5 *7 (-595 (-595 (-2 (|:| -3254 (-717)) (|:| |pcoef| *13))))) (-5 *8 (-595 (-717))) (-5 *9 (-1177 (-595 (-1091 *10)))) (-4 *12 (-793)) (-4 *10 (-288)) (-4 *13 (-888 *10 *11 *12)) (-4 *11 (-739)) (-5 *1 (-654 *11 *12 *10 *13)))) (-1430 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-595 *11)) (-5 *5 (-595 (-1091 *9))) (-5 *6 (-595 *9)) (-5 *7 (-595 *12)) (-5 *8 (-595 (-717))) (-4 *11 (-793)) (-4 *9 (-288)) (-4 *12 (-888 *9 *10 *11)) (-4 *10 (-739)) (-5 *2 (-595 (-1091 *12))) (-5 *1 (-654 *10 *11 *9 *12)) (-5 *3 (-1091 *12)))) (-1249 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-595 (-1091 *11))) (-5 *3 (-1091 *11)) (-5 *4 (-595 *10)) (-5 *5 (-595 *8)) (-5 *6 (-595 (-717))) (-5 *7 (-1177 (-595 (-1091 *8)))) (-4 *10 (-793)) (-4 *8 (-288)) (-4 *11 (-888 *8 *9 *10)) (-4 *9 (-739)) (-5 *1 (-654 *9 *10 *8 *11)))))
-(-10 -7 (-15 -1249 ((-3 (-595 (-1091 |#4|)) "failed") (-1091 |#4|) (-595 |#2|) (-595 |#3|) (-595 (-717)) (-595 (-1091 |#4|)) (-1177 (-595 (-1091 |#3|))) |#3|)) (-15 -1430 ((-3 (-595 (-1091 |#4|)) "failed") (-1091 |#4|) (-595 |#2|) (-595 (-1091 |#3|)) (-595 |#3|) (-595 |#4|) (-595 (-717)) |#3|)) (-15 -3165 ((-3 (-595 (-1091 |#4|)) "failed") (-1091 |#4|) (-595 |#2|) (-595 (-1091 |#4|)) (-595 |#3|) (-595 |#4|) (-595 (-595 (-2 (|:| -3254 (-717)) (|:| |pcoef| |#4|)))) (-595 (-717)) (-1177 (-595 (-1091 |#3|))) |#3|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-2388 (($ $) 41)) (-1312 (((-3 $ "failed") $) 34)) (-1297 (((-110) $) 31)) (-2548 (($ |#1| (-717)) 39)) (-3499 (((-717) $) 43)) (-2697 ((|#1| $) 42)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2935 (((-717) $) 44)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ |#1|) 38 (|has| |#1| (-162)))) (-3216 ((|#1| $ (-717)) 40)) (-3742 (((-717)) 29)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-655 |#1|) (-133) (-981)) (T -655))
-((-2935 (*1 *2 *1) (-12 (-4 *1 (-655 *3)) (-4 *3 (-981)) (-5 *2 (-717)))) (-3499 (*1 *2 *1) (-12 (-4 *1 (-655 *3)) (-4 *3 (-981)) (-5 *2 (-717)))) (-2697 (*1 *2 *1) (-12 (-4 *1 (-655 *2)) (-4 *2 (-981)))) (-2388 (*1 *1 *1) (-12 (-4 *1 (-655 *2)) (-4 *2 (-981)))) (-3216 (*1 *2 *1 *3) (-12 (-5 *3 (-717)) (-4 *1 (-655 *2)) (-4 *2 (-981)))) (-2548 (*1 *1 *2 *3) (-12 (-5 *3 (-717)) (-4 *1 (-655 *2)) (-4 *2 (-981)))))
-(-13 (-981) (-109 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -2935 ((-717) $)) (-15 -3499 ((-717) $)) (-15 -2697 (|t#1| $)) (-15 -2388 ($ $)) (-15 -3216 (|t#1| $ (-717))) (-15 -2548 ($ |t#1| (-717)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-162)) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-569 (-802)) . T) ((-597 |#1|) . T) ((-597 $) . T) ((-664 |#1|) |has| |#1| (-162)) ((-673) . T) ((-986 |#1|) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-3106 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-656 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3106 (|#6| (-1 |#4| |#1|) |#3|))) (-520) (-1153 |#1|) (-1153 (-387 |#2|)) (-520) (-1153 |#4|) (-1153 (-387 |#5|))) (T -656))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-520)) (-4 *7 (-520)) (-4 *6 (-1153 *5)) (-4 *2 (-1153 (-387 *8))) (-5 *1 (-656 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1153 (-387 *6))) (-4 *8 (-1153 *7)))))
-(-10 -7 (-15 -3106 (|#6| (-1 |#4| |#1|) |#3|)))
-((-2207 (((-110) $ $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-4031 (((-1078) (-802)) 31)) (-2273 (((-1182) (-1078)) 28)) (-4021 (((-1078) (-802)) 24)) (-3136 (((-1078) (-802)) 25)) (-2222 (((-802) $) NIL) (((-1078) (-802)) 23)) (-2186 (((-110) $ $) NIL)))
-(((-657) (-13 (-1023) (-10 -7 (-15 -2222 ((-1078) (-802))) (-15 -4021 ((-1078) (-802))) (-15 -3136 ((-1078) (-802))) (-15 -4031 ((-1078) (-802))) (-15 -2273 ((-1182) (-1078)))))) (T -657))
-((-2222 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1078)) (-5 *1 (-657)))) (-4021 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1078)) (-5 *1 (-657)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1078)) (-5 *1 (-657)))) (-4031 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1078)) (-5 *1 (-657)))) (-2273 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-657)))))
-(-13 (-1023) (-10 -7 (-15 -2222 ((-1078) (-802))) (-15 -4021 ((-1078) (-802))) (-15 -3136 ((-1078) (-802))) (-15 -4031 ((-1078) (-802))) (-15 -2273 ((-1182) (-1078)))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-2213 (((-110) $ $) NIL)) (-2816 (($) NIL T CONST)) (-3519 (($ $ $) NIL)) (-1422 (($ |#1| |#2|) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2124 (((-110) $) NIL)) (-1297 (((-110) $) NIL)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-2874 ((|#2| $) NIL)) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-2437 (((-398 $) $) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-2515 (((-3 $ "failed") $ $) NIL)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ $) NIL) (($ (-387 (-528))) NIL) ((|#1| $) NIL)) (-3742 (((-717)) NIL)) (-4016 (((-110) $ $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL)))
-(((-658 |#1| |#2| |#3| |#4| |#5|) (-13 (-343) (-10 -8 (-15 -2874 (|#2| $)) (-15 -2222 (|#1| $)) (-15 -1422 ($ |#1| |#2|)) (-15 -2515 ((-3 $ "failed") $ $)))) (-162) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -658))
-((-2874 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-658 *3 *2 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2222 (*1 *2 *1) (-12 (-4 *2 (-162)) (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1422 (*1 *1 *2 *3) (-12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2515 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-343) (-10 -8 (-15 -2874 (|#2| $)) (-15 -2222 (|#1| $)) (-15 -1422 ($ |#1| |#2|)) (-15 -2515 ((-3 $ "failed") $ $))))
-((-2207 (((-110) $ $) 78)) (-1359 (((-110) $) 30)) (-3695 (((-1177 |#1|) $ (-717)) NIL)) (-2565 (((-595 (-1008)) $) NIL)) (-1378 (($ (-1091 |#1|)) NIL)) (-2402 (((-1091 $) $ (-1008)) NIL) (((-1091 |#1|) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#1| (-520)))) (-1738 (($ $) NIL (|has| |#1| (-520)))) (-1811 (((-110) $) NIL (|has| |#1| (-520)))) (-4042 (((-717) $) NIL) (((-717) $ (-595 (-1008))) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-1355 (($ $ $) NIL (|has| |#1| (-520)))) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-1232 (($ $) NIL (|has| |#1| (-431)))) (-2705 (((-398 $) $) NIL (|has| |#1| (-431)))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2213 (((-110) $ $) NIL (|has| |#1| (-343)))) (-2856 (((-717)) 47 (|has| |#1| (-348)))) (-2646 (($ $ (-717)) NIL)) (-1919 (($ $ (-717)) NIL)) (-2066 ((|#2| |#2|) 44)) (-3517 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-431)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#1| "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-3 (-528) "failed") $) NIL (|has| |#1| (-972 (-528)))) (((-3 (-1008) "failed") $) NIL)) (-2409 ((|#1| $) NIL) (((-387 (-528)) $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-528) $) NIL (|has| |#1| (-972 (-528)))) (((-1008) $) NIL)) (-1606 (($ $ $ (-1008)) NIL (|has| |#1| (-162))) ((|#1| $ $) NIL (|has| |#1| (-162)))) (-3519 (($ $ $) NIL (|has| |#1| (-343)))) (-2388 (($ $) 34)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) NIL) (((-635 |#1|) (-635 $)) NIL)) (-1422 (($ |#2|) 42)) (-1312 (((-3 $ "failed") $) 86)) (-1338 (($) 51 (|has| |#1| (-348)))) (-3498 (($ $ $) NIL (|has| |#1| (-343)))) (-2325 (($ $ $) NIL)) (-4233 (($ $ $) NIL (|has| |#1| (-520)))) (-3291 (((-2 (|:| -1641 |#1|) (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-520)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL (|has| |#1| (-343)))) (-1551 (($ $) NIL (|has| |#1| (-431))) (($ $ (-1008)) NIL (|has| |#1| (-431)))) (-2376 (((-595 $) $) NIL)) (-2124 (((-110) $) NIL (|has| |#1| (-848)))) (-2842 (((-896 $)) 80)) (-4047 (($ $ |#1| (-717) $) NIL)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (-12 (|has| (-1008) (-825 (-359))) (|has| |#1| (-825 (-359))))) (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (-12 (|has| (-1008) (-825 (-528))) (|has| |#1| (-825 (-528)))))) (-3689 (((-717) $ $) NIL (|has| |#1| (-520)))) (-1297 (((-110) $) NIL)) (-1224 (((-717) $) NIL)) (-3296 (((-3 $ "failed") $) NIL (|has| |#1| (-1071)))) (-2557 (($ (-1091 |#1|) (-1008)) NIL) (($ (-1091 $) (-1008)) NIL)) (-1771 (($ $ (-717)) NIL)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-3737 (((-595 $) $) NIL)) (-2195 (((-110) $) NIL)) (-2548 (($ |#1| (-717)) 77) (($ $ (-1008) (-717)) NIL) (($ $ (-595 (-1008)) (-595 (-717))) NIL)) (-3275 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $ (-1008)) NIL) (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-2874 ((|#2|) 45)) (-3499 (((-717) $) NIL) (((-717) $ (-1008)) NIL) (((-595 (-717)) $ (-595 (-1008))) NIL)) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-1264 (($ (-1 (-717) (-717)) $) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-2151 (((-1091 |#1|) $) NIL)) (-3288 (((-3 (-1008) "failed") $) NIL)) (-3201 (((-860) $) NIL (|has| |#1| (-348)))) (-1412 ((|#2| $) 41)) (-2686 (($ $) NIL)) (-2697 ((|#1| $) 28)) (-2057 (($ (-595 $)) NIL (|has| |#1| (-431))) (($ $ $) NIL (|has| |#1| (-431)))) (-3034 (((-1078) $) NIL)) (-3830 (((-2 (|:| -3490 $) (|:| -2537 $)) $ (-717)) NIL)) (-3024 (((-3 (-595 $) "failed") $) NIL)) (-1281 (((-3 (-595 $) "failed") $) NIL)) (-3352 (((-3 (-2 (|:| |var| (-1008)) (|:| -2564 (-717))) "failed") $) NIL)) (-1923 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4197 (($) NIL (|has| |#1| (-1071)) CONST)) (-3108 (($ (-860)) NIL (|has| |#1| (-348)))) (-2495 (((-1042) $) NIL)) (-2662 (((-110) $) NIL)) (-2675 ((|#1| $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#1| (-431)))) (-2088 (($ (-595 $)) NIL (|has| |#1| (-431))) (($ $ $) NIL (|has| |#1| (-431)))) (-3186 (($ $) 79 (|has| |#1| (-329)))) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2437 (((-398 $) $) NIL (|has| |#1| (-848)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-343))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#1| (-343)))) (-3477 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-520))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-520)))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-4014 (($ $ (-595 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL) (($ $ (-1008) |#1|) NIL) (($ $ (-595 (-1008)) (-595 |#1|)) NIL) (($ $ (-1008) $) NIL) (($ $ (-595 (-1008)) (-595 $)) NIL)) (-3973 (((-717) $) NIL (|has| |#1| (-343)))) (-3043 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-387 $) (-387 $) (-387 $)) NIL (|has| |#1| (-520))) ((|#1| (-387 $) |#1|) NIL (|has| |#1| (-343))) (((-387 $) $ (-387 $)) NIL (|has| |#1| (-520)))) (-1886 (((-3 $ "failed") $ (-717)) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 87 (|has| |#1| (-343)))) (-1372 (($ $ (-1008)) NIL (|has| |#1| (-162))) ((|#1| $) NIL (|has| |#1| (-162)))) (-3235 (($ $ (-1008)) NIL) (($ $ (-595 (-1008))) NIL) (($ $ (-1008) (-717)) NIL) (($ $ (-595 (-1008)) (-595 (-717))) NIL) (($ $ (-717)) NIL) (($ $) NIL) (($ $ (-1095)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2935 (((-717) $) 32) (((-717) $ (-1008)) NIL) (((-595 (-717)) $ (-595 (-1008))) NIL)) (-3155 (((-831 (-359)) $) NIL (-12 (|has| (-1008) (-570 (-831 (-359)))) (|has| |#1| (-570 (-831 (-359)))))) (((-831 (-528)) $) NIL (-12 (|has| (-1008) (-570 (-831 (-528)))) (|has| |#1| (-570 (-831 (-528)))))) (((-504) $) NIL (-12 (|has| (-1008) (-570 (-504))) (|has| |#1| (-570 (-504)))))) (-1618 ((|#1| $) NIL (|has| |#1| (-431))) (($ $ (-1008)) NIL (|has| |#1| (-431)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-848))))) (-1386 (((-896 $)) 36)) (-4106 (((-3 $ "failed") $ $) NIL (|has| |#1| (-520))) (((-3 (-387 $) "failed") (-387 $) $) NIL (|has| |#1| (-520)))) (-2222 (((-802) $) 61) (($ (-528)) NIL) (($ |#1|) 58) (($ (-1008)) NIL) (($ |#2|) 68) (($ (-387 (-528))) NIL (-1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-972 (-387 (-528)))))) (($ $) NIL (|has| |#1| (-520)))) (-3348 (((-595 |#1|) $) NIL)) (-3216 ((|#1| $ (-717)) 63) (($ $ (-1008) (-717)) NIL) (($ $ (-595 (-1008)) (-595 (-717))) NIL)) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| |#1| (-848))) (|has| |#1| (-138))))) (-3742 (((-717)) NIL)) (-1997 (($ $ $ (-717)) NIL (|has| |#1| (-162)))) (-4016 (((-110) $ $) NIL (|has| |#1| (-520)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 20 T CONST)) (-2434 (((-1177 |#1|) $) 75)) (-2990 (($ (-1177 |#1|)) 50)) (-2982 (($) 8 T CONST)) (-3245 (($ $ (-1008)) NIL) (($ $ (-595 (-1008))) NIL) (($ $ (-1008) (-717)) NIL) (($ $ (-595 (-1008)) (-595 (-717))) NIL) (($ $ (-717)) NIL) (($ $) NIL) (($ $ (-1095)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3087 (((-1177 |#1|) $) NIL)) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) 69)) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2296 (($ $ |#1|) NIL (|has| |#1| (-343)))) (-2286 (($ $) 72) (($ $ $) NIL)) (-2275 (($ $ $) 33)) (** (($ $ (-860)) NIL) (($ $ (-717)) 81)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 57) (($ $ $) 74) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528))))) (($ (-387 (-528)) $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ |#1| $) 55) (($ $ |#1|) NIL)))
-(((-659 |#1| |#2|) (-13 (-1153 |#1|) (-10 -8 (-15 -2066 (|#2| |#2|)) (-15 -2874 (|#2|)) (-15 -1422 ($ |#2|)) (-15 -1412 (|#2| $)) (-15 -2222 ($ |#2|)) (-15 -2434 ((-1177 |#1|) $)) (-15 -2990 ($ (-1177 |#1|))) (-15 -3087 ((-1177 |#1|) $)) (-15 -2842 ((-896 $))) (-15 -1386 ((-896 $))) (IF (|has| |#1| (-329)) (-15 -3186 ($ $)) |%noBranch|) (IF (|has| |#1| (-348)) (-6 (-348)) |%noBranch|))) (-981) (-1153 |#1|)) (T -659))
-((-2066 (*1 *2 *2) (-12 (-4 *3 (-981)) (-5 *1 (-659 *3 *2)) (-4 *2 (-1153 *3)))) (-2874 (*1 *2) (-12 (-4 *2 (-1153 *3)) (-5 *1 (-659 *3 *2)) (-4 *3 (-981)))) (-1422 (*1 *1 *2) (-12 (-4 *3 (-981)) (-5 *1 (-659 *3 *2)) (-4 *2 (-1153 *3)))) (-1412 (*1 *2 *1) (-12 (-4 *2 (-1153 *3)) (-5 *1 (-659 *3 *2)) (-4 *3 (-981)))) (-2222 (*1 *1 *2) (-12 (-4 *3 (-981)) (-5 *1 (-659 *3 *2)) (-4 *2 (-1153 *3)))) (-2434 (*1 *2 *1) (-12 (-4 *3 (-981)) (-5 *2 (-1177 *3)) (-5 *1 (-659 *3 *4)) (-4 *4 (-1153 *3)))) (-2990 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-981)) (-5 *1 (-659 *3 *4)) (-4 *4 (-1153 *3)))) (-3087 (*1 *2 *1) (-12 (-4 *3 (-981)) (-5 *2 (-1177 *3)) (-5 *1 (-659 *3 *4)) (-4 *4 (-1153 *3)))) (-2842 (*1 *2) (-12 (-4 *3 (-981)) (-5 *2 (-896 (-659 *3 *4))) (-5 *1 (-659 *3 *4)) (-4 *4 (-1153 *3)))) (-1386 (*1 *2) (-12 (-4 *3 (-981)) (-5 *2 (-896 (-659 *3 *4))) (-5 *1 (-659 *3 *4)) (-4 *4 (-1153 *3)))) (-3186 (*1 *1 *1) (-12 (-4 *2 (-329)) (-4 *2 (-981)) (-5 *1 (-659 *2 *3)) (-4 *3 (-1153 *2)))))
-(-13 (-1153 |#1|) (-10 -8 (-15 -2066 (|#2| |#2|)) (-15 -2874 (|#2|)) (-15 -1422 ($ |#2|)) (-15 -1412 (|#2| $)) (-15 -2222 ($ |#2|)) (-15 -2434 ((-1177 |#1|) $)) (-15 -2990 ($ (-1177 |#1|))) (-15 -3087 ((-1177 |#1|) $)) (-15 -2842 ((-896 $))) (-15 -1386 ((-896 $))) (IF (|has| |#1| (-329)) (-15 -3186 ($ $)) |%noBranch|) (IF (|has| |#1| (-348)) (-6 (-348)) |%noBranch|)))
-((-2207 (((-110) $ $) NIL)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3034 (((-1078) $) NIL)) (-3108 ((|#1| $) 13)) (-2495 (((-1042) $) NIL)) (-2564 ((|#2| $) 12)) (-2233 (($ |#1| |#2|) 16)) (-2222 (((-802) $) NIL) (($ (-2 (|:| -3108 |#1|) (|:| -2564 |#2|))) 15) (((-2 (|:| -3108 |#1|) (|:| -2564 |#2|)) $) 14)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 11)))
-(((-660 |#1| |#2| |#3|) (-13 (-793) (-10 -8 (-15 -2564 (|#2| $)) (-15 -3108 (|#1| $)) (-15 -2222 ($ (-2 (|:| -3108 |#1|) (|:| -2564 |#2|)))) (-15 -2222 ((-2 (|:| -3108 |#1|) (|:| -2564 |#2|)) $)) (-15 -2233 ($ |#1| |#2|)))) (-793) (-1023) (-1 (-110) (-2 (|:| -3108 |#1|) (|:| -2564 |#2|)) (-2 (|:| -3108 |#1|) (|:| -2564 |#2|)))) (T -660))
-((-2564 (*1 *2 *1) (-12 (-4 *2 (-1023)) (-5 *1 (-660 *3 *2 *4)) (-4 *3 (-793)) (-14 *4 (-1 (-110) (-2 (|:| -3108 *3) (|:| -2564 *2)) (-2 (|:| -3108 *3) (|:| -2564 *2)))))) (-3108 (*1 *2 *1) (-12 (-4 *2 (-793)) (-5 *1 (-660 *2 *3 *4)) (-4 *3 (-1023)) (-14 *4 (-1 (-110) (-2 (|:| -3108 *2) (|:| -2564 *3)) (-2 (|:| -3108 *2) (|:| -2564 *3)))))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3108 *3) (|:| -2564 *4))) (-4 *3 (-793)) (-4 *4 (-1023)) (-5 *1 (-660 *3 *4 *5)) (-14 *5 (-1 (-110) *2 *2)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3108 *3) (|:| -2564 *4))) (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-793)) (-4 *4 (-1023)) (-14 *5 (-1 (-110) *2 *2)))) (-2233 (*1 *1 *2 *3) (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-793)) (-4 *3 (-1023)) (-14 *4 (-1 (-110) (-2 (|:| -3108 *2) (|:| -2564 *3)) (-2 (|:| -3108 *2) (|:| -2564 *3)))))))
-(-13 (-793) (-10 -8 (-15 -2564 (|#2| $)) (-15 -3108 (|#1| $)) (-15 -2222 ($ (-2 (|:| -3108 |#1|) (|:| -2564 |#2|)))) (-15 -2222 ((-2 (|:| -3108 |#1|) (|:| -2564 |#2|)) $)) (-15 -2233 ($ |#1| |#2|))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 59)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#1| "failed") $) 89) (((-3 (-112) "failed") $) 95)) (-2409 ((|#1| $) NIL) (((-112) $) 39)) (-1312 (((-3 $ "failed") $) 90)) (-3824 ((|#2| (-112) |#2|) 82)) (-1297 (((-110) $) NIL)) (-1644 (($ |#1| (-341 (-112))) 14)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2377 (($ $ (-1 |#2| |#2|)) 58)) (-1612 (($ $ (-1 |#2| |#2|)) 44)) (-3043 ((|#2| $ |#2|) 33)) (-3132 ((|#1| |#1|) 105 (|has| |#1| (-162)))) (-2222 (((-802) $) 66) (($ (-528)) 18) (($ |#1|) 17) (($ (-112)) 23)) (-3749 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3742 (((-717)) 37)) (-3154 (($ $) 99 (|has| |#1| (-162))) (($ $ $) 103 (|has| |#1| (-162)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 21 T CONST)) (-2982 (($) 9 T CONST)) (-2186 (((-110) $ $) NIL)) (-2286 (($ $) 48) (($ $ $) NIL)) (-2275 (($ $ $) 73)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ (-112) (-528)) NIL) (($ $ (-528)) 57)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-162))) (($ $ |#1|) 97 (|has| |#1| (-162)))))
-(((-661 |#1| |#2|) (-13 (-981) (-972 |#1|) (-972 (-112)) (-267 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -3154 ($ $)) (-15 -3154 ($ $ $)) (-15 -3132 (|#1| |#1|))) |%noBranch|) (-15 -1612 ($ $ (-1 |#2| |#2|))) (-15 -2377 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-112) (-528))) (-15 ** ($ $ (-528))) (-15 -3824 (|#2| (-112) |#2|)) (-15 -1644 ($ |#1| (-341 (-112)))))) (-981) (-597 |#1|)) (T -661))
-((-3154 (*1 *1 *1) (-12 (-4 *2 (-162)) (-4 *2 (-981)) (-5 *1 (-661 *2 *3)) (-4 *3 (-597 *2)))) (-3154 (*1 *1 *1 *1) (-12 (-4 *2 (-162)) (-4 *2 (-981)) (-5 *1 (-661 *2 *3)) (-4 *3 (-597 *2)))) (-3132 (*1 *2 *2) (-12 (-4 *2 (-162)) (-4 *2 (-981)) (-5 *1 (-661 *2 *3)) (-4 *3 (-597 *2)))) (-1612 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-597 *3)) (-4 *3 (-981)) (-5 *1 (-661 *3 *4)))) (-2377 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-597 *3)) (-4 *3 (-981)) (-5 *1 (-661 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-528)) (-4 *4 (-981)) (-5 *1 (-661 *4 *5)) (-4 *5 (-597 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-4 *3 (-981)) (-5 *1 (-661 *3 *4)) (-4 *4 (-597 *3)))) (-3824 (*1 *2 *3 *2) (-12 (-5 *3 (-112)) (-4 *4 (-981)) (-5 *1 (-661 *4 *2)) (-4 *2 (-597 *4)))) (-1644 (*1 *1 *2 *3) (-12 (-5 *3 (-341 (-112))) (-4 *2 (-981)) (-5 *1 (-661 *2 *4)) (-4 *4 (-597 *2)))))
-(-13 (-981) (-972 |#1|) (-972 (-112)) (-267 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -3154 ($ $)) (-15 -3154 ($ $ $)) (-15 -3132 (|#1| |#1|))) |%noBranch|) (-15 -1612 ($ $ (-1 |#2| |#2|))) (-15 -2377 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-112) (-528))) (-15 ** ($ $ (-528))) (-15 -3824 (|#2| (-112) |#2|)) (-15 -1644 ($ |#1| (-341 (-112))))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 33)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-1422 (($ |#1| |#2|) 25)) (-1312 (((-3 $ "failed") $) 48)) (-1297 (((-110) $) 35)) (-2874 ((|#2| $) 12)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) 49)) (-2495 (((-1042) $) NIL)) (-2515 (((-3 $ "failed") $ $) 47)) (-2222 (((-802) $) 24) (($ (-528)) 19) ((|#1| $) 13)) (-3742 (((-717)) 28)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 16 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 38)) (-2286 (($ $) 43) (($ $ $) 37)) (-2275 (($ $ $) 40)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 21) (($ $ $) 20)))
-(((-662 |#1| |#2| |#3| |#4| |#5|) (-13 (-981) (-10 -8 (-15 -2874 (|#2| $)) (-15 -2222 (|#1| $)) (-15 -1422 ($ |#1| |#2|)) (-15 -2515 ((-3 $ "failed") $ $)) (-15 -1312 ((-3 $ "failed") $)) (-15 -2652 ($ $)))) (-162) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -662))
-((-1312 (*1 *1 *1) (|partial| -12 (-5 *1 (-662 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2874 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-662 *3 *2 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2222 (*1 *2 *1) (-12 (-4 *2 (-162)) (-5 *1 (-662 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1422 (*1 *1 *2 *3) (-12 (-5 *1 (-662 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2515 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-662 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2652 (*1 *1 *1) (-12 (-5 *1 (-662 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-981) (-10 -8 (-15 -2874 (|#2| $)) (-15 -2222 (|#1| $)) (-15 -1422 ($ |#1| |#2|)) (-15 -2515 ((-3 $ "failed") $ $)) (-15 -1312 ((-3 $ "failed") $)) (-15 -2652 ($ $))))
-((* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
-(((-663 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-528) |#1|)) (-15 * (|#1| (-717) |#1|)) (-15 * (|#1| (-860) |#1|))) (-664 |#2|) (-162)) (T -663))
-NIL
-(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-528) |#1|)) (-15 * (|#1| (-717) |#1|)) (-15 * (|#1| (-860) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2969 (($) 18 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-664 |#1|) (-133) (-162)) (T -664))
+((-2324 (((-3 (-594 (-1092 |#1|)) "failed") (-594 (-1092 |#1|)) (-1092 |#1|)) 33)))
+(((-614 |#1|) (-10 -7 (-15 -2324 ((-3 (-594 (-1092 |#1|)) "failed") (-594 (-1092 |#1|)) (-1092 |#1|)))) (-851)) (T -614))
+((-2324 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-594 (-1092 *4))) (-5 *3 (-1092 *4)) (-4 *4 (-851)) (-5 *1 (-614 *4)))))
+(-10 -7 (-15 -2324 ((-3 (-594 (-1092 |#1|)) "failed") (-594 (-1092 |#1|)) (-1092 |#1|))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-4210 (((-594 |#1|) $) 82)) (-4222 (($ $ (-719)) 90)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-4215 (((-1202 |#1| |#2|) (-1202 |#1| |#2|) $) 48)) (-3432 (((-3 (-622 |#1|) "failed") $) NIL)) (-3431 (((-622 |#1|) $) NIL)) (-4235 (($ $) 89)) (-2444 (((-719) $) NIL)) (-3085 (((-594 $) $) NIL)) (-4213 (((-110) $) NIL)) (-4214 (($ (-622 |#1|) |#2|) 68)) (-4212 (($ $) 86)) (-4234 (($ (-1 |#2| |#2|) $) NIL)) (-4216 (((-1202 |#1| |#2|) (-1202 |#1| |#2|) $) 47)) (-1815 (((-2 (|:| |k| (-622 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3158 (((-622 |#1|) $) NIL)) (-3449 ((|#2| $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4046 (($ $ |#1| $) 30) (($ $ (-594 |#1|) (-594 $)) 32)) (-4223 (((-719) $) 88)) (-3804 (($ $ $) 20) (($ (-622 |#1|) (-622 |#1|)) 77) (($ (-622 |#1|) $) 75) (($ $ (-622 |#1|)) 76)) (-4233 (((-805) $) NIL) (($ |#1|) 74) (((-1193 |#1| |#2|) $) 58) (((-1202 |#1| |#2|) $) 41) (($ (-622 |#1|)) 25)) (-4096 (((-594 |#2|) $) NIL)) (-3959 ((|#2| $ (-622 |#1|)) NIL)) (-4229 ((|#2| (-1202 |#1| |#2|) $) 43)) (-2920 (($) 23 T CONST)) (-2926 (((-594 (-2 (|:| |k| (-622 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4221 (((-3 $ "failed") (-1193 |#1| |#2|)) 60)) (-1799 (($ (-622 |#1|)) 14)) (-3317 (((-110) $ $) 44)) (-4224 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-4116 (($ $) 66) (($ $ $) NIL)) (-4118 (($ $ $) 29)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-622 |#1|)) NIL)))
+(((-615 |#1| |#2|) (-13 (-355 |#1| |#2|) (-365 |#2| (-622 |#1|)) (-10 -8 (-15 -4221 ((-3 $ "failed") (-1193 |#1| |#2|))) (-15 -3804 ($ (-622 |#1|) (-622 |#1|))) (-15 -3804 ($ (-622 |#1|) $)) (-15 -3804 ($ $ (-622 |#1|))))) (-795) (-162)) (T -615))
+((-4221 (*1 *1 *2) (|partial| -12 (-5 *2 (-1193 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *1 (-615 *3 *4)))) (-3804 (*1 *1 *2 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-5 *1 (-615 *3 *4)) (-4 *4 (-162)))) (-3804 (*1 *1 *2 *1) (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-5 *1 (-615 *3 *4)) (-4 *4 (-162)))) (-3804 (*1 *1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-5 *1 (-615 *3 *4)) (-4 *4 (-162)))))
+(-13 (-355 |#1| |#2|) (-365 |#2| (-622 |#1|)) (-10 -8 (-15 -4221 ((-3 $ "failed") (-1193 |#1| |#2|))) (-15 -3804 ($ (-622 |#1|) (-622 |#1|))) (-15 -3804 ($ (-622 |#1|) $)) (-15 -3804 ($ $ (-622 |#1|)))))
+((-1798 (((-110) $) NIL) (((-110) (-1 (-110) |#2| |#2|) $) 50)) (-1796 (($ $) NIL) (($ (-1 (-110) |#2| |#2|) $) 12)) (-1581 (($ (-1 (-110) |#2|) $) 28)) (-2312 (($ $) 56)) (-2389 (($ $) 64)) (-3684 (($ |#2| $) NIL) (($ (-1 (-110) |#2|) $) 37)) (-4121 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-3698 (((-516) |#2| $ (-516)) 61) (((-516) |#2| $) NIL) (((-516) (-1 (-110) |#2|) $) 47)) (-3896 (($ (-719) |#2|) 54)) (-3123 (($ $ $) NIL) (($ (-1 (-110) |#2| |#2|) $ $) 30)) (-3792 (($ $ $) NIL) (($ (-1 (-110) |#2| |#2|) $ $) 24)) (-4234 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-3816 (($ |#2|) 15)) (-3889 (($ $ $ (-516)) 36) (($ |#2| $ (-516)) 34)) (-1350 (((-3 |#2| "failed") (-1 (-110) |#2|) $) 46)) (-1582 (($ $ (-1146 (-516))) 44) (($ $ (-516)) 38)) (-1797 (($ $ $ (-516)) 60)) (-3678 (($ $) 58)) (-2948 (((-110) $ $) 66)))
+(((-616 |#1| |#2|) (-10 -8 (-15 -3816 (|#1| |#2|)) (-15 -1582 (|#1| |#1| (-516))) (-15 -1582 (|#1| |#1| (-1146 (-516)))) (-15 -3684 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3889 (|#1| |#2| |#1| (-516))) (-15 -3889 (|#1| |#1| |#1| (-516))) (-15 -3123 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -1581 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3684 (|#1| |#2| |#1|)) (-15 -2389 (|#1| |#1|)) (-15 -3123 (|#1| |#1| |#1|)) (-15 -3792 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -1798 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -3698 ((-516) (-1 (-110) |#2|) |#1|)) (-15 -3698 ((-516) |#2| |#1|)) (-15 -3698 ((-516) |#2| |#1| (-516))) (-15 -3792 (|#1| |#1| |#1|)) (-15 -1798 ((-110) |#1|)) (-15 -1797 (|#1| |#1| |#1| (-516))) (-15 -2312 (|#1| |#1|)) (-15 -1796 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -1796 (|#1| |#1|)) (-15 -2948 ((-110) |#1| |#1|)) (-15 -4121 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4121 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4121 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1350 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -3896 (|#1| (-719) |#2|)) (-15 -4234 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4234 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3678 (|#1| |#1|))) (-617 |#2|) (-1134)) (T -616))
+NIL
+(-10 -8 (-15 -3816 (|#1| |#2|)) (-15 -1582 (|#1| |#1| (-516))) (-15 -1582 (|#1| |#1| (-1146 (-516)))) (-15 -3684 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3889 (|#1| |#2| |#1| (-516))) (-15 -3889 (|#1| |#1| |#1| (-516))) (-15 -3123 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -1581 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3684 (|#1| |#2| |#1|)) (-15 -2389 (|#1| |#1|)) (-15 -3123 (|#1| |#1| |#1|)) (-15 -3792 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -1798 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -3698 ((-516) (-1 (-110) |#2|) |#1|)) (-15 -3698 ((-516) |#2| |#1|)) (-15 -3698 ((-516) |#2| |#1| (-516))) (-15 -3792 (|#1| |#1| |#1|)) (-15 -1798 ((-110) |#1|)) (-15 -1797 (|#1| |#1| |#1| (-516))) (-15 -2312 (|#1| |#1|)) (-15 -1796 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -1796 (|#1| |#1|)) (-15 -2948 ((-110) |#1| |#1|)) (-15 -4121 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4121 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4121 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1350 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -3896 (|#1| (-719) |#2|)) (-15 -4234 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4234 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3678 (|#1| |#1|)))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3681 ((|#1| $) 48)) (-4073 ((|#1| $) 65)) (-4075 (($ $) 67)) (-2243 (((-1185) $ (-516) (-516)) 97 (|has| $ (-6 -4270)))) (-4063 (($ $ (-516)) 52 (|has| $ (-6 -4270)))) (-1798 (((-110) $) 142 (|has| |#1| (-795))) (((-110) (-1 (-110) |#1| |#1|) $) 136)) (-1796 (($ $) 146 (-12 (|has| |#1| (-795)) (|has| $ (-6 -4270)))) (($ (-1 (-110) |#1| |#1|) $) 145 (|has| $ (-6 -4270)))) (-3173 (($ $) 141 (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $) 135)) (-1217 (((-110) $ (-719)) 8)) (-3289 ((|#1| $ |#1|) 39 (|has| $ (-6 -4270)))) (-4065 (($ $ $) 56 (|has| $ (-6 -4270)))) (-4064 ((|#1| $ |#1|) 54 (|has| $ (-6 -4270)))) (-4067 ((|#1| $ |#1|) 58 (|has| $ (-6 -4270)))) (-4066 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4270))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4270))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4270))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4270))) ((|#1| $ (-1146 (-516)) |#1|) 117 (|has| $ (-6 -4270))) ((|#1| $ (-516) |#1|) 86 (|has| $ (-6 -4270)))) (-3290 (($ $ (-594 $)) 41 (|has| $ (-6 -4270)))) (-1581 (($ (-1 (-110) |#1|) $) 129)) (-3992 (($ (-1 (-110) |#1|) $) 102 (|has| $ (-6 -4269)))) (-4074 ((|#1| $) 66)) (-3815 (($) 7 T CONST)) (-2312 (($ $) 144 (|has| $ (-6 -4270)))) (-2313 (($ $) 134)) (-4077 (($ $) 73) (($ $ (-719)) 71)) (-2389 (($ $) 131 (|has| |#1| (-1027)))) (-1349 (($ $) 99 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3684 (($ |#1| $) 130 (|has| |#1| (-1027))) (($ (-1 (-110) |#1|) $) 125)) (-3685 (($ (-1 (-110) |#1|) $) 103 (|has| $ (-6 -4269))) (($ |#1| $) 100 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1587 ((|#1| $ (-516) |#1|) 85 (|has| $ (-6 -4270)))) (-3372 ((|#1| $ (-516)) 87)) (-3721 (((-110) $) 83)) (-3698 (((-516) |#1| $ (-516)) 139 (|has| |#1| (-1027))) (((-516) |#1| $) 138 (|has| |#1| (-1027))) (((-516) (-1 (-110) |#1|) $) 137)) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-3295 (((-594 $) $) 50)) (-3291 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-3896 (($ (-719) |#1|) 108)) (-4001 (((-110) $ (-719)) 9)) (-2245 (((-516) $) 95 (|has| (-516) (-795)))) (-3596 (($ $ $) 147 (|has| |#1| (-795)))) (-3123 (($ $ $) 132 (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) 128)) (-3792 (($ $ $) 140 (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) 133)) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2246 (((-516) $) 94 (|has| (-516) (-795)))) (-3597 (($ $ $) 148 (|has| |#1| (-795)))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3816 (($ |#1|) 122)) (-3998 (((-110) $ (-719)) 10)) (-3294 (((-594 |#1|) $) 45)) (-3801 (((-110) $) 49)) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-4076 ((|#1| $) 70) (($ $ (-719)) 68)) (-3889 (($ $ $ (-516)) 127) (($ |#1| $ (-516)) 126)) (-2317 (($ $ $ (-516)) 116) (($ |#1| $ (-516)) 115)) (-2248 (((-594 (-516)) $) 92)) (-2249 (((-110) (-516) $) 91)) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-4079 ((|#1| $) 76) (($ $ (-719)) 74)) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 106)) (-2244 (($ $ |#1|) 96 (|has| $ (-6 -4270)))) (-3722 (((-110) $) 84)) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-2247 (((-110) |#1| $) 93 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2250 (((-594 |#1|) $) 90)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-4078 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1146 (-516))) 112) ((|#1| $ (-516)) 89) ((|#1| $ (-516) |#1|) 88)) (-3293 (((-516) $ $) 44)) (-1582 (($ $ (-1146 (-516))) 124) (($ $ (-516)) 123)) (-2318 (($ $ (-1146 (-516))) 114) (($ $ (-516)) 113)) (-3915 (((-110) $) 46)) (-4070 (($ $) 62)) (-4068 (($ $) 59 (|has| $ (-6 -4270)))) (-4071 (((-719) $) 63)) (-4072 (($ $) 64)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1797 (($ $ $ (-516)) 143 (|has| $ (-6 -4270)))) (-3678 (($ $) 13)) (-4246 (((-505) $) 98 (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) 107)) (-4069 (($ $ $) 61) (($ $ |#1|) 60)) (-4080 (($ $ $) 78) (($ |#1| $) 77) (($ (-594 $)) 110) (($ $ |#1|) 109)) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-3796 (((-594 $) $) 51)) (-3292 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2826 (((-110) $ $) 150 (|has| |#1| (-795)))) (-2827 (((-110) $ $) 151 (|has| |#1| (-795)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2947 (((-110) $ $) 149 (|has| |#1| (-795)))) (-2948 (((-110) $ $) 152 (|has| |#1| (-795)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-617 |#1|) (-133) (-1134)) (T -617))
+((-3816 (*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1134)))))
+(-13 (-1072 |t#1|) (-353 |t#1|) (-264 |t#1|) (-10 -8 (-15 -3816 ($ |t#1|))))
+(((-33) . T) ((-99) -3810 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-795)) (|has| |#1| (-571 (-805)))) ((-144 |#1|) . T) ((-572 (-505)) |has| |#1| (-572 (-505))) ((-268 #1=(-516) |#1|) . T) ((-270 #1# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-264 |#1|) . T) ((-353 |#1|) . T) ((-468 |#1|) . T) ((-563 #1# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-795) |has| |#1| (-795)) ((-949 |#1|) . T) ((-1027) -3810 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-1072 |#1|) . T) ((-1134) . T) ((-1168 |#1|) . T))
+((-3855 (((-594 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2071 (-594 |#3|)))) |#4| (-594 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2071 (-594 |#3|))) |#4| |#3|) 45)) (-3368 (((-719) |#4| |#3|) 17)) (-3618 (((-3 |#3| #1#) |#4| |#3|) 20)) (-2325 (((-110) |#4| |#3|) 13)))
+(((-618 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3855 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2071 (-594 |#3|))) |#4| |#3|)) (-15 -3855 ((-594 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2071 (-594 |#3|)))) |#4| (-594 |#3|))) (-15 -3618 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2325 ((-110) |#4| |#3|)) (-15 -3368 ((-719) |#4| |#3|))) (-344) (-13 (-353 |#1|) (-10 -7 (-6 -4270))) (-13 (-353 |#1|) (-10 -7 (-6 -4270))) (-634 |#1| |#2| |#3|)) (T -618))
+((-3368 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-13 (-353 *5) (-10 -7 (-6 -4270)))) (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4270)))) (-5 *2 (-719)) (-5 *1 (-618 *5 *6 *4 *3)) (-4 *3 (-634 *5 *6 *4)))) (-2325 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-13 (-353 *5) (-10 -7 (-6 -4270)))) (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4270)))) (-5 *2 (-110)) (-5 *1 (-618 *5 *6 *4 *3)) (-4 *3 (-634 *5 *6 *4)))) (-3618 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-344)) (-4 *5 (-13 (-353 *4) (-10 -7 (-6 -4270)))) (-4 *2 (-13 (-353 *4) (-10 -7 (-6 -4270)))) (-5 *1 (-618 *4 *5 *2 *3)) (-4 *3 (-634 *4 *5 *2)))) (-3855 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-13 (-353 *5) (-10 -7 (-6 -4270)))) (-4 *7 (-13 (-353 *5) (-10 -7 (-6 -4270)))) (-5 *2 (-594 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2071 (-594 *7))))) (-5 *1 (-618 *5 *6 *7 *3)) (-5 *4 (-594 *7)) (-4 *3 (-634 *5 *6 *7)))) (-3855 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-13 (-353 *5) (-10 -7 (-6 -4270)))) (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4270)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2071 (-594 *4)))) (-5 *1 (-618 *5 *6 *4 *3)) (-4 *3 (-634 *5 *6 *4)))))
+(-10 -7 (-15 -3855 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2071 (-594 |#3|))) |#4| |#3|)) (-15 -3855 ((-594 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2071 (-594 |#3|)))) |#4| (-594 |#3|))) (-15 -3618 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2325 ((-110) |#4| |#3|)) (-15 -3368 ((-719) |#4| |#3|)))
+((-3855 (((-594 (-2 (|:| |particular| (-3 (-1179 |#1|) #1="failed")) (|:| -2071 (-594 (-1179 |#1|))))) (-594 (-594 |#1|)) (-594 (-1179 |#1|))) 22) (((-594 (-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2071 (-594 (-1179 |#1|))))) (-637 |#1|) (-594 (-1179 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2071 (-594 (-1179 |#1|)))) (-594 (-594 |#1|)) (-1179 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2071 (-594 (-1179 |#1|)))) (-637 |#1|) (-1179 |#1|)) 14)) (-3368 (((-719) (-637 |#1|) (-1179 |#1|)) 30)) (-3618 (((-3 (-1179 |#1|) #1#) (-637 |#1|) (-1179 |#1|)) 24)) (-2325 (((-110) (-637 |#1|) (-1179 |#1|)) 27)))
+(((-619 |#1|) (-10 -7 (-15 -3855 ((-2 (|:| |particular| (-3 (-1179 |#1|) #1="failed")) (|:| -2071 (-594 (-1179 |#1|)))) (-637 |#1|) (-1179 |#1|))) (-15 -3855 ((-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2071 (-594 (-1179 |#1|)))) (-594 (-594 |#1|)) (-1179 |#1|))) (-15 -3855 ((-594 (-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2071 (-594 (-1179 |#1|))))) (-637 |#1|) (-594 (-1179 |#1|)))) (-15 -3855 ((-594 (-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2071 (-594 (-1179 |#1|))))) (-594 (-594 |#1|)) (-594 (-1179 |#1|)))) (-15 -3618 ((-3 (-1179 |#1|) #1#) (-637 |#1|) (-1179 |#1|))) (-15 -2325 ((-110) (-637 |#1|) (-1179 |#1|))) (-15 -3368 ((-719) (-637 |#1|) (-1179 |#1|)))) (-344)) (T -619))
+((-3368 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-344)) (-5 *2 (-719)) (-5 *1 (-619 *5)))) (-2325 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-344)) (-5 *2 (-110)) (-5 *1 (-619 *5)))) (-3618 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1179 *4)) (-5 *3 (-637 *4)) (-4 *4 (-344)) (-5 *1 (-619 *4)))) (-3855 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-594 *5))) (-4 *5 (-344)) (-5 *2 (-594 (-2 (|:| |particular| (-3 (-1179 *5) #1="failed")) (|:| -2071 (-594 (-1179 *5)))))) (-5 *1 (-619 *5)) (-5 *4 (-594 (-1179 *5))))) (-3855 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *5)) (-4 *5 (-344)) (-5 *2 (-594 (-2 (|:| |particular| (-3 (-1179 *5) #1#)) (|:| -2071 (-594 (-1179 *5)))))) (-5 *1 (-619 *5)) (-5 *4 (-594 (-1179 *5))))) (-3855 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-594 *5))) (-4 *5 (-344)) (-5 *2 (-2 (|:| |particular| (-3 (-1179 *5) #1#)) (|:| -2071 (-594 (-1179 *5))))) (-5 *1 (-619 *5)) (-5 *4 (-1179 *5)))) (-3855 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |particular| (-3 (-1179 *5) #1#)) (|:| -2071 (-594 (-1179 *5))))) (-5 *1 (-619 *5)) (-5 *4 (-1179 *5)))))
+(-10 -7 (-15 -3855 ((-2 (|:| |particular| (-3 (-1179 |#1|) #1="failed")) (|:| -2071 (-594 (-1179 |#1|)))) (-637 |#1|) (-1179 |#1|))) (-15 -3855 ((-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2071 (-594 (-1179 |#1|)))) (-594 (-594 |#1|)) (-1179 |#1|))) (-15 -3855 ((-594 (-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2071 (-594 (-1179 |#1|))))) (-637 |#1|) (-594 (-1179 |#1|)))) (-15 -3855 ((-594 (-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2071 (-594 (-1179 |#1|))))) (-594 (-594 |#1|)) (-594 (-1179 |#1|)))) (-15 -3618 ((-3 (-1179 |#1|) #1#) (-637 |#1|) (-1179 |#1|))) (-15 -2325 ((-110) (-637 |#1|) (-1179 |#1|))) (-15 -3368 ((-719) (-637 |#1|) (-1179 |#1|))))
+((-2326 (((-2 (|:| |particular| (-3 (-1179 (-388 |#4|)) "failed")) (|:| -2071 (-594 (-1179 (-388 |#4|))))) (-594 |#4|) (-594 |#3|)) 45)))
+(((-620 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2326 ((-2 (|:| |particular| (-3 (-1179 (-388 |#4|)) "failed")) (|:| -2071 (-594 (-1179 (-388 |#4|))))) (-594 |#4|) (-594 |#3|)))) (-523) (-741) (-795) (-891 |#1| |#2| |#3|)) (T -620))
+((-2326 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *8)) (-5 *4 (-594 *7)) (-4 *7 (-795)) (-4 *8 (-891 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-741)) (-5 *2 (-2 (|:| |particular| (-3 (-1179 (-388 *8)) "failed")) (|:| -2071 (-594 (-1179 (-388 *8)))))) (-5 *1 (-620 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2326 ((-2 (|:| |particular| (-3 (-1179 (-388 |#4|)) "failed")) (|:| -2071 (-594 (-1179 (-388 |#4|))))) (-594 |#4|) (-594 |#3|))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1842 (((-3 $ #1="failed")) NIL (|has| |#2| (-523)))) (-3608 ((|#2| $) NIL)) (-3380 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3496 (((-1179 (-637 |#2|))) NIL) (((-1179 (-637 |#2|)) (-1179 $)) NIL)) (-3382 (((-110) $) NIL)) (-1795 (((-1179 $)) 37)) (-1217 (((-110) $ (-719)) NIL)) (-3611 (($ |#2|) NIL)) (-3815 (($) NIL T CONST)) (-3369 (($ $) NIL (|has| |#2| (-289)))) (-3371 (((-222 |#1| |#2|) $ (-516)) NIL)) (-1978 (((-3 (-2 (|:| |particular| $) (|:| -2071 (-594 $))) #1#)) NIL (|has| |#2| (-523)))) (-1769 (((-3 $ #1#)) NIL (|has| |#2| (-523)))) (-1857 (((-637 |#2|)) NIL) (((-637 |#2|) (-1179 $)) NIL)) (-1793 ((|#2| $) NIL)) (-1855 (((-637 |#2|) $) NIL) (((-637 |#2|) $ (-1179 $)) NIL)) (-2430 (((-3 $ #1#) $) NIL (|has| |#2| (-523)))) (-1972 (((-1092 (-887 |#2|))) NIL (|has| |#2| (-344)))) (-2433 (($ $ (-860)) NIL)) (-1791 ((|#2| $) NIL)) (-1771 (((-1092 |#2|) $) NIL (|has| |#2| (-523)))) (-1859 ((|#2|) NIL) ((|#2| (-1179 $)) NIL)) (-1789 (((-1092 |#2|) $) NIL)) (-1783 (((-110)) NIL)) (-3432 (((-3 (-516) #2="failed") $) NIL (|has| |#2| (-975 (-516)))) (((-3 (-388 (-516)) #2#) $) NIL (|has| |#2| (-975 (-388 (-516))))) (((-3 |#2| #2#) $) NIL)) (-3431 (((-516) $) NIL (|has| |#2| (-975 (-516)))) (((-388 (-516)) $) NIL (|has| |#2| (-975 (-388 (-516))))) ((|#2| $) NIL)) (-1861 (($ (-1179 |#2|)) NIL) (($ (-1179 |#2|) (-1179 $)) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| |#2| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| |#2| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 $) (-1179 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3368 (((-719) $) NIL (|has| |#2| (-523))) (((-860)) 38)) (-3372 ((|#2| $ (-516) (-516)) NIL)) (-1780 (((-110)) NIL)) (-2458 (($ $ (-860)) NIL)) (-2018 (((-594 |#2|) $) NIL (|has| $ (-6 -4269)))) (-2436 (((-110) $) NIL)) (-3367 (((-719) $) NIL (|has| |#2| (-523)))) (-3366 (((-594 (-222 |#1| |#2|)) $) NIL (|has| |#2| (-523)))) (-3374 (((-719) $) NIL)) (-1776 (((-110)) NIL)) (-3373 (((-719) $) NIL)) (-4001 (((-110) $ (-719)) NIL)) (-3605 ((|#2| $) NIL (|has| |#2| (-6 (-4271 #3="*"))))) (-3378 (((-516) $) NIL)) (-3376 (((-516) $) NIL)) (-2445 (((-594 |#2|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-3377 (((-516) $) NIL)) (-3375 (((-516) $) NIL)) (-3383 (($ (-594 (-594 |#2|))) NIL)) (-2022 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3875 (((-594 (-594 |#2|)) $) NIL)) (-1774 (((-110)) NIL)) (-1778 (((-110)) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-1979 (((-3 (-2 (|:| |particular| $) (|:| -2071 (-594 $))) #1#)) NIL (|has| |#2| (-523)))) (-1770 (((-3 $ #1#)) NIL (|has| |#2| (-523)))) (-1858 (((-637 |#2|)) NIL) (((-637 |#2|) (-1179 $)) NIL)) (-1794 ((|#2| $) NIL)) (-1856 (((-637 |#2|) $) NIL) (((-637 |#2|) $ (-1179 $)) NIL)) (-2431 (((-3 $ #1#) $) NIL (|has| |#2| (-523)))) (-1976 (((-1092 (-887 |#2|))) NIL (|has| |#2| (-344)))) (-2432 (($ $ (-860)) NIL)) (-1792 ((|#2| $) NIL)) (-1772 (((-1092 |#2|) $) NIL (|has| |#2| (-523)))) (-1860 ((|#2|) NIL) ((|#2| (-1179 $)) NIL)) (-1790 (((-1092 |#2|) $) NIL)) (-1784 (((-110)) NIL)) (-3513 (((-1081) $) NIL)) (-1775 (((-110)) NIL)) (-1777 (((-110)) NIL)) (-1779 (((-110)) NIL)) (-3871 (((-3 $ "failed") $) NIL (|has| |#2| (-344)))) (-3514 (((-1045) $) NIL)) (-1782 (((-110)) NIL)) (-3740 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-523)))) (-2020 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-594 |#2|) (-594 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#2| $ (-516) (-516) |#2|) NIL) ((|#2| $ (-516) (-516)) 22) ((|#2| $ (-516)) NIL)) (-4089 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-1098)) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-3607 ((|#2| $) NIL)) (-3610 (($ (-594 |#2|)) NIL)) (-3381 (((-110) $) NIL)) (-3609 (((-222 |#1| |#2|) $) NIL)) (-3606 ((|#2| $) NIL (|has| |#2| (-6 (-4271 #3#))))) (-2019 (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-3678 (($ $) NIL)) (-3497 (((-637 |#2|) (-1179 $)) NIL) (((-1179 |#2|) $) NIL) (((-637 |#2|) (-1179 $) (-1179 $)) NIL) (((-1179 |#2|) $ (-1179 $)) 25)) (-4246 (($ (-1179 |#2|)) NIL) (((-1179 |#2|) $) NIL)) (-1964 (((-594 (-887 |#2|))) NIL) (((-594 (-887 |#2|)) (-1179 $)) NIL)) (-2620 (($ $ $) NIL)) (-1788 (((-110)) NIL)) (-3370 (((-222 |#1| |#2|) $ (-516)) NIL)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ (-388 (-516))) NIL (|has| |#2| (-975 (-388 (-516))))) (($ |#2|) NIL) (((-637 |#2|) $) NIL)) (-3385 (((-719)) NIL)) (-2071 (((-1179 $)) 36)) (-1773 (((-594 (-1179 |#2|))) NIL (|has| |#2| (-523)))) (-2621 (($ $ $ $) NIL)) (-1786 (((-110)) NIL)) (-2814 (($ (-637 |#2|) $) NIL)) (-2021 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3379 (((-110) $) NIL)) (-2619 (($ $ $) NIL)) (-1787 (((-110)) NIL)) (-1785 (((-110)) NIL)) (-1781 (((-110)) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-1098)) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| |#2| (-344)))) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-222 |#1| |#2|) $ (-222 |#1| |#2|)) NIL) (((-222 |#1| |#2|) (-222 |#1| |#2|) $) NIL)) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-621 |#1| |#2|) (-13 (-1048 |#1| |#2| (-222 |#1| |#2|) (-222 |#1| |#2|)) (-571 (-637 |#2|)) (-399 |#2|)) (-860) (-162)) (T -621))
+NIL
+(-13 (-1048 |#1| |#2| (-222 |#1| |#2|) (-222 |#1| |#2|)) (-571 (-637 |#2|)) (-399 |#2|))
+((-2828 (((-110) $ $) NIL)) (-4210 (((-594 |#1|) $) NIL)) (-3396 (($ $) 52)) (-2925 (((-110) $) NIL)) (-3432 (((-3 |#1| "failed") $) NIL)) (-3431 ((|#1| $) NIL)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-2329 (((-3 $ "failed") (-767 |#1|)) 23)) (-2331 (((-110) (-767 |#1|)) 15)) (-2330 (($ (-767 |#1|)) 24)) (-2707 (((-110) $ $) 30)) (-4112 (((-860) $) 37)) (-3397 (($ $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4011 (((-594 $) (-767 |#1|)) 17)) (-4233 (((-805) $) 43) (($ |#1|) 34) (((-767 |#1|) $) 39) (((-626 |#1|) $) 44)) (-2328 (((-56 (-594 $)) (-594 |#1|) (-860)) 57)) (-2327 (((-594 $) (-594 |#1|) (-860)) 60)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 53)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 38)))
+(((-622 |#1|) (-13 (-795) (-975 |#1|) (-10 -8 (-15 -2925 ((-110) $)) (-15 -3397 ($ $)) (-15 -3396 ($ $)) (-15 -4112 ((-860) $)) (-15 -2707 ((-110) $ $)) (-15 -4233 ((-767 |#1|) $)) (-15 -4233 ((-626 |#1|) $)) (-15 -4011 ((-594 $) (-767 |#1|))) (-15 -2331 ((-110) (-767 |#1|))) (-15 -2330 ($ (-767 |#1|))) (-15 -2329 ((-3 $ "failed") (-767 |#1|))) (-15 -4210 ((-594 |#1|) $)) (-15 -2328 ((-56 (-594 $)) (-594 |#1|) (-860))) (-15 -2327 ((-594 $) (-594 |#1|) (-860))))) (-795)) (T -622))
+((-2925 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-622 *3)) (-4 *3 (-795)))) (-3397 (*1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-795)))) (-3396 (*1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-795)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-622 *3)) (-4 *3 (-795)))) (-2707 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-622 *3)) (-4 *3 (-795)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-767 *3)) (-5 *1 (-622 *3)) (-4 *3 (-795)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-622 *3)) (-4 *3 (-795)))) (-4011 (*1 *2 *3) (-12 (-5 *3 (-767 *4)) (-4 *4 (-795)) (-5 *2 (-594 (-622 *4))) (-5 *1 (-622 *4)))) (-2331 (*1 *2 *3) (-12 (-5 *3 (-767 *4)) (-4 *4 (-795)) (-5 *2 (-110)) (-5 *1 (-622 *4)))) (-2330 (*1 *1 *2) (-12 (-5 *2 (-767 *3)) (-4 *3 (-795)) (-5 *1 (-622 *3)))) (-2329 (*1 *1 *2) (|partial| -12 (-5 *2 (-767 *3)) (-4 *3 (-795)) (-5 *1 (-622 *3)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-594 *3)) (-5 *1 (-622 *3)) (-4 *3 (-795)))) (-2328 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *5)) (-5 *4 (-860)) (-4 *5 (-795)) (-5 *2 (-56 (-594 (-622 *5)))) (-5 *1 (-622 *5)))) (-2327 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *5)) (-5 *4 (-860)) (-4 *5 (-795)) (-5 *2 (-594 (-622 *5))) (-5 *1 (-622 *5)))))
+(-13 (-795) (-975 |#1|) (-10 -8 (-15 -2925 ((-110) $)) (-15 -3397 ($ $)) (-15 -3396 ($ $)) (-15 -4112 ((-860) $)) (-15 -2707 ((-110) $ $)) (-15 -4233 ((-767 |#1|) $)) (-15 -4233 ((-626 |#1|) $)) (-15 -4011 ((-594 $) (-767 |#1|))) (-15 -2331 ((-110) (-767 |#1|))) (-15 -2330 ($ (-767 |#1|))) (-15 -2329 ((-3 $ "failed") (-767 |#1|))) (-15 -4210 ((-594 |#1|) $)) (-15 -2328 ((-56 (-594 $)) (-594 |#1|) (-860))) (-15 -2327 ((-594 $) (-594 |#1|) (-860)))))
+((-3681 ((|#2| $) 76)) (-4075 (($ $) 96)) (-1217 (((-110) $ (-719)) 26)) (-4077 (($ $) 85) (($ $ (-719)) 88)) (-3721 (((-110) $) 97)) (-3295 (((-594 $) $) 72)) (-3291 (((-110) $ $) 71)) (-4001 (((-110) $ (-719)) 24)) (-2245 (((-516) $) 46)) (-2246 (((-516) $) 45)) (-3998 (((-110) $ (-719)) 22)) (-3801 (((-110) $) 74)) (-4076 ((|#2| $) 89) (($ $ (-719)) 92)) (-2317 (($ $ $ (-516)) 62) (($ |#2| $ (-516)) 61)) (-2248 (((-594 (-516)) $) 44)) (-2249 (((-110) (-516) $) 42)) (-4079 ((|#2| $) NIL) (($ $ (-719)) 84)) (-4047 (($ $ (-516)) 100)) (-3722 (((-110) $) 99)) (-2020 (((-110) (-1 (-110) |#2|) $) 32)) (-2250 (((-594 |#2|) $) 33)) (-4078 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1146 (-516))) 58) ((|#2| $ (-516)) 40) ((|#2| $ (-516) |#2|) 41)) (-3293 (((-516) $ $) 70)) (-2318 (($ $ (-1146 (-516))) 57) (($ $ (-516)) 51)) (-3915 (((-110) $) 66)) (-4070 (($ $) 81)) (-4071 (((-719) $) 80)) (-4072 (($ $) 79)) (-3804 (($ (-594 |#2|)) 37)) (-3155 (($ $) 101)) (-3796 (((-594 $) $) 69)) (-3292 (((-110) $ $) 68)) (-2021 (((-110) (-1 (-110) |#2|) $) 31)) (-3317 (((-110) $ $) 18)) (-4232 (((-719) $) 29)))
+(((-623 |#1| |#2|) (-10 -8 (-15 -3155 (|#1| |#1|)) (-15 -4047 (|#1| |#1| (-516))) (-15 -3721 ((-110) |#1|)) (-15 -3722 ((-110) |#1|)) (-15 -4078 (|#2| |#1| (-516) |#2|)) (-15 -4078 (|#2| |#1| (-516))) (-15 -2250 ((-594 |#2|) |#1|)) (-15 -2249 ((-110) (-516) |#1|)) (-15 -2248 ((-594 (-516)) |#1|)) (-15 -2246 ((-516) |#1|)) (-15 -2245 ((-516) |#1|)) (-15 -3804 (|#1| (-594 |#2|))) (-15 -4078 (|#1| |#1| (-1146 (-516)))) (-15 -2318 (|#1| |#1| (-516))) (-15 -2318 (|#1| |#1| (-1146 (-516)))) (-15 -2317 (|#1| |#2| |#1| (-516))) (-15 -2317 (|#1| |#1| |#1| (-516))) (-15 -4070 (|#1| |#1|)) (-15 -4071 ((-719) |#1|)) (-15 -4072 (|#1| |#1|)) (-15 -4075 (|#1| |#1|)) (-15 -4076 (|#1| |#1| (-719))) (-15 -4078 (|#2| |#1| "last")) (-15 -4076 (|#2| |#1|)) (-15 -4077 (|#1| |#1| (-719))) (-15 -4078 (|#1| |#1| "rest")) (-15 -4077 (|#1| |#1|)) (-15 -4079 (|#1| |#1| (-719))) (-15 -4078 (|#2| |#1| "first")) (-15 -4079 (|#2| |#1|)) (-15 -3291 ((-110) |#1| |#1|)) (-15 -3292 ((-110) |#1| |#1|)) (-15 -3293 ((-516) |#1| |#1|)) (-15 -3915 ((-110) |#1|)) (-15 -4078 (|#2| |#1| "value")) (-15 -3681 (|#2| |#1|)) (-15 -3801 ((-110) |#1|)) (-15 -3295 ((-594 |#1|) |#1|)) (-15 -3796 ((-594 |#1|) |#1|)) (-15 -3317 ((-110) |#1| |#1|)) (-15 -2020 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2021 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -4232 ((-719) |#1|)) (-15 -1217 ((-110) |#1| (-719))) (-15 -4001 ((-110) |#1| (-719))) (-15 -3998 ((-110) |#1| (-719)))) (-624 |#2|) (-1134)) (T -623))
+NIL
+(-10 -8 (-15 -3155 (|#1| |#1|)) (-15 -4047 (|#1| |#1| (-516))) (-15 -3721 ((-110) |#1|)) (-15 -3722 ((-110) |#1|)) (-15 -4078 (|#2| |#1| (-516) |#2|)) (-15 -4078 (|#2| |#1| (-516))) (-15 -2250 ((-594 |#2|) |#1|)) (-15 -2249 ((-110) (-516) |#1|)) (-15 -2248 ((-594 (-516)) |#1|)) (-15 -2246 ((-516) |#1|)) (-15 -2245 ((-516) |#1|)) (-15 -3804 (|#1| (-594 |#2|))) (-15 -4078 (|#1| |#1| (-1146 (-516)))) (-15 -2318 (|#1| |#1| (-516))) (-15 -2318 (|#1| |#1| (-1146 (-516)))) (-15 -2317 (|#1| |#2| |#1| (-516))) (-15 -2317 (|#1| |#1| |#1| (-516))) (-15 -4070 (|#1| |#1|)) (-15 -4071 ((-719) |#1|)) (-15 -4072 (|#1| |#1|)) (-15 -4075 (|#1| |#1|)) (-15 -4076 (|#1| |#1| (-719))) (-15 -4078 (|#2| |#1| "last")) (-15 -4076 (|#2| |#1|)) (-15 -4077 (|#1| |#1| (-719))) (-15 -4078 (|#1| |#1| "rest")) (-15 -4077 (|#1| |#1|)) (-15 -4079 (|#1| |#1| (-719))) (-15 -4078 (|#2| |#1| "first")) (-15 -4079 (|#2| |#1|)) (-15 -3291 ((-110) |#1| |#1|)) (-15 -3292 ((-110) |#1| |#1|)) (-15 -3293 ((-516) |#1| |#1|)) (-15 -3915 ((-110) |#1|)) (-15 -4078 (|#2| |#1| "value")) (-15 -3681 (|#2| |#1|)) (-15 -3801 ((-110) |#1|)) (-15 -3295 ((-594 |#1|) |#1|)) (-15 -3796 ((-594 |#1|) |#1|)) (-15 -3317 ((-110) |#1| |#1|)) (-15 -2020 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2021 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -4232 ((-719) |#1|)) (-15 -1217 ((-110) |#1| (-719))) (-15 -4001 ((-110) |#1| (-719))) (-15 -3998 ((-110) |#1| (-719))))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3681 ((|#1| $) 48)) (-4073 ((|#1| $) 65)) (-4075 (($ $) 67)) (-2243 (((-1185) $ (-516) (-516)) 97 (|has| $ (-6 -4270)))) (-4063 (($ $ (-516)) 52 (|has| $ (-6 -4270)))) (-1217 (((-110) $ (-719)) 8)) (-3289 ((|#1| $ |#1|) 39 (|has| $ (-6 -4270)))) (-4065 (($ $ $) 56 (|has| $ (-6 -4270)))) (-4064 ((|#1| $ |#1|) 54 (|has| $ (-6 -4270)))) (-4067 ((|#1| $ |#1|) 58 (|has| $ (-6 -4270)))) (-4066 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4270))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4270))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4270))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4270))) ((|#1| $ (-1146 (-516)) |#1|) 117 (|has| $ (-6 -4270))) ((|#1| $ (-516) |#1|) 86 (|has| $ (-6 -4270)))) (-3290 (($ $ (-594 $)) 41 (|has| $ (-6 -4270)))) (-3992 (($ (-1 (-110) |#1|) $) 102)) (-4074 ((|#1| $) 66)) (-3815 (($) 7 T CONST)) (-2333 (($ $) 124)) (-4077 (($ $) 73) (($ $ (-719)) 71)) (-1349 (($ $) 99 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3685 (($ |#1| $) 100 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 103)) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1587 ((|#1| $ (-516) |#1|) 85 (|has| $ (-6 -4270)))) (-3372 ((|#1| $ (-516)) 87)) (-3721 (((-110) $) 83)) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-2332 (((-719) $) 123)) (-3295 (((-594 $) $) 50)) (-3291 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-3896 (($ (-719) |#1|) 108)) (-4001 (((-110) $ (-719)) 9)) (-2245 (((-516) $) 95 (|has| (-516) (-795)))) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2246 (((-516) $) 94 (|has| (-516) (-795)))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3998 (((-110) $ (-719)) 10)) (-3294 (((-594 |#1|) $) 45)) (-3801 (((-110) $) 49)) (-2335 (($ $) 126)) (-2336 (((-110) $) 127)) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-4076 ((|#1| $) 70) (($ $ (-719)) 68)) (-2317 (($ $ $ (-516)) 116) (($ |#1| $ (-516)) 115)) (-2248 (((-594 (-516)) $) 92)) (-2249 (((-110) (-516) $) 91)) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-2334 ((|#1| $) 125)) (-4079 ((|#1| $) 76) (($ $ (-719)) 74)) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 106)) (-2244 (($ $ |#1|) 96 (|has| $ (-6 -4270)))) (-4047 (($ $ (-516)) 122)) (-3722 (((-110) $) 84)) (-2337 (((-110) $) 128)) (-2338 (((-110) $) 129)) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-2247 (((-110) |#1| $) 93 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2250 (((-594 |#1|) $) 90)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-4078 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1146 (-516))) 112) ((|#1| $ (-516)) 89) ((|#1| $ (-516) |#1|) 88)) (-3293 (((-516) $ $) 44)) (-2318 (($ $ (-1146 (-516))) 114) (($ $ (-516)) 113)) (-3915 (((-110) $) 46)) (-4070 (($ $) 62)) (-4068 (($ $) 59 (|has| $ (-6 -4270)))) (-4071 (((-719) $) 63)) (-4072 (($ $) 64)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4246 (((-505) $) 98 (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) 107)) (-4069 (($ $ $) 61 (|has| $ (-6 -4270))) (($ $ |#1|) 60 (|has| $ (-6 -4270)))) (-4080 (($ $ $) 78) (($ |#1| $) 77) (($ (-594 $)) 110) (($ $ |#1|) 109)) (-3155 (($ $) 121)) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-3796 (((-594 $) $) 51)) (-3292 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-624 |#1|) (-133) (-1134)) (T -624))
+((-3685 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-624 *3)) (-4 *3 (-1134)))) (-3992 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-624 *3)) (-4 *3 (-1134)))) (-2338 (*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1134)) (-5 *2 (-110)))) (-2337 (*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1134)) (-5 *2 (-110)))) (-2336 (*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1134)) (-5 *2 (-110)))) (-2335 (*1 *1 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1134)))) (-2334 (*1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1134)))) (-2333 (*1 *1 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1134)))) (-2332 (*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1134)) (-5 *2 (-719)))) (-4047 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-4 *1 (-624 *3)) (-4 *3 (-1134)))) (-3155 (*1 *1 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1134)))))
+(-13 (-1072 |t#1|) (-10 -8 (-15 -3685 ($ (-1 (-110) |t#1|) $)) (-15 -3992 ($ (-1 (-110) |t#1|) $)) (-15 -2338 ((-110) $)) (-15 -2337 ((-110) $)) (-15 -2336 ((-110) $)) (-15 -2335 ($ $)) (-15 -2334 (|t#1| $)) (-15 -2333 ($ $)) (-15 -2332 ((-719) $)) (-15 -4047 ($ $ (-516))) (-15 -3155 ($ $))))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-571 (-805)))) ((-144 |#1|) . T) ((-572 (-505)) |has| |#1| (-572 (-505))) ((-268 #1=(-516) |#1|) . T) ((-270 #1# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-563 #1# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-949 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1072 |#1|) . T) ((-1134) . T) ((-1168 |#1|) . T))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2344 (($ (-719) (-719) (-719)) 35 (|has| |#1| (-984)))) (-1217 (((-110) $ (-719)) NIL)) (-2341 ((|#1| $ (-719) (-719) (-719) |#1|) 29)) (-3815 (($) NIL T CONST)) (-2342 (($ $ $) 39 (|has| |#1| (-984)))) (-2018 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) NIL)) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2339 (((-1179 (-719)) $) 11)) (-2340 (($ (-1098) $ $) 24)) (-2022 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-2343 (($ (-719)) 37 (|has| |#1| (-984)))) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#1| $ (-719) (-719) (-719)) 27)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3678 (($ $) NIL)) (-3804 (($ (-594 (-594 (-594 |#1|)))) 46)) (-4233 (($ (-899 (-899 (-899 |#1|)))) 17) (((-899 (-899 (-899 |#1|))) $) 14) (((-805) $) NIL (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-625 |#1|) (-13 (-468 |#1|) (-10 -8 (IF (|has| |#1| (-984)) (PROGN (-15 -2344 ($ (-719) (-719) (-719))) (-15 -2343 ($ (-719))) (-15 -2342 ($ $ $))) |%noBranch|) (-15 -3804 ($ (-594 (-594 (-594 |#1|))))) (-15 -4078 (|#1| $ (-719) (-719) (-719))) (-15 -2341 (|#1| $ (-719) (-719) (-719) |#1|)) (-15 -4233 ($ (-899 (-899 (-899 |#1|))))) (-15 -4233 ((-899 (-899 (-899 |#1|))) $)) (-15 -2340 ($ (-1098) $ $)) (-15 -2339 ((-1179 (-719)) $)))) (-1027)) (T -625))
+((-2344 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-719)) (-5 *1 (-625 *3)) (-4 *3 (-984)) (-4 *3 (-1027)))) (-2343 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-625 *3)) (-4 *3 (-984)) (-4 *3 (-1027)))) (-2342 (*1 *1 *1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-984)) (-4 *2 (-1027)))) (-3804 (*1 *1 *2) (-12 (-5 *2 (-594 (-594 (-594 *3)))) (-4 *3 (-1027)) (-5 *1 (-625 *3)))) (-4078 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-719)) (-5 *1 (-625 *2)) (-4 *2 (-1027)))) (-2341 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-625 *2)) (-4 *2 (-1027)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-899 (-899 (-899 *3)))) (-4 *3 (-1027)) (-5 *1 (-625 *3)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-899 (-899 (-899 *3)))) (-5 *1 (-625 *3)) (-4 *3 (-1027)))) (-2340 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-625 *3)) (-4 *3 (-1027)))) (-2339 (*1 *2 *1) (-12 (-5 *2 (-1179 (-719))) (-5 *1 (-625 *3)) (-4 *3 (-1027)))))
+(-13 (-468 |#1|) (-10 -8 (IF (|has| |#1| (-984)) (PROGN (-15 -2344 ($ (-719) (-719) (-719))) (-15 -2343 ($ (-719))) (-15 -2342 ($ $ $))) |%noBranch|) (-15 -3804 ($ (-594 (-594 (-594 |#1|))))) (-15 -4078 (|#1| $ (-719) (-719) (-719))) (-15 -2341 (|#1| $ (-719) (-719) (-719) |#1|)) (-15 -4233 ($ (-899 (-899 (-899 |#1|))))) (-15 -4233 ((-899 (-899 (-899 |#1|))) $)) (-15 -2340 ($ (-1098) $ $)) (-15 -2339 ((-1179 (-719)) $))))
+((-2828 (((-110) $ $) NIL)) (-4210 (((-594 |#1|) $) 14)) (-3396 (($ $) 18)) (-2925 (((-110) $) 19)) (-3432 (((-3 |#1| "failed") $) 22)) (-3431 ((|#1| $) 20)) (-4077 (($ $) 36)) (-4212 (($ $) 24)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-2707 (((-110) $ $) 42)) (-4112 (((-860) $) 38)) (-3397 (($ $) 17)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4079 ((|#1| $) 35)) (-4233 (((-805) $) 31) (($ |#1|) 23) (((-767 |#1|) $) 27)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 12)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 40)) (* (($ $ $) 34)))
+(((-626 |#1|) (-13 (-795) (-975 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4233 ((-767 |#1|) $)) (-15 -4079 (|#1| $)) (-15 -3397 ($ $)) (-15 -4112 ((-860) $)) (-15 -2707 ((-110) $ $)) (-15 -4212 ($ $)) (-15 -4077 ($ $)) (-15 -2925 ((-110) $)) (-15 -3396 ($ $)) (-15 -4210 ((-594 |#1|) $)))) (-795)) (T -626))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-767 *3)) (-5 *1 (-626 *3)) (-4 *3 (-795)))) (-4079 (*1 *2 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795)))) (-3397 (*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-626 *3)) (-4 *3 (-795)))) (-2707 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-626 *3)) (-4 *3 (-795)))) (-4212 (*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795)))) (-4077 (*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795)))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-626 *3)) (-4 *3 (-795)))) (-3396 (*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-594 *3)) (-5 *1 (-626 *3)) (-4 *3 (-795)))))
+(-13 (-795) (-975 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4233 ((-767 |#1|) $)) (-15 -4079 (|#1| $)) (-15 -3397 ($ $)) (-15 -4112 ((-860) $)) (-15 -2707 ((-110) $ $)) (-15 -4212 ($ $)) (-15 -4077 ($ $)) (-15 -2925 ((-110) $)) (-15 -3396 ($ $)) (-15 -4210 ((-594 |#1|) $))))
+((-2352 ((|#1| (-1 |#1| (-719) |#1|) (-719) |#1|) 11)) (-2345 ((|#1| (-1 |#1| |#1|) (-719) |#1|) 9)))
+(((-627 |#1|) (-10 -7 (-15 -2345 (|#1| (-1 |#1| |#1|) (-719) |#1|)) (-15 -2352 (|#1| (-1 |#1| (-719) |#1|) (-719) |#1|))) (-1027)) (T -627))
+((-2352 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-719) *2)) (-5 *4 (-719)) (-4 *2 (-1027)) (-5 *1 (-627 *2)))) (-2345 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-719)) (-4 *2 (-1027)) (-5 *1 (-627 *2)))))
+(-10 -7 (-15 -2345 (|#1| (-1 |#1| |#1|) (-719) |#1|)) (-15 -2352 (|#1| (-1 |#1| (-719) |#1|) (-719) |#1|)))
+((-2347 ((|#2| |#1| |#2|) 9)) (-2346 ((|#1| |#1| |#2|) 8)))
+(((-628 |#1| |#2|) (-10 -7 (-15 -2346 (|#1| |#1| |#2|)) (-15 -2347 (|#2| |#1| |#2|))) (-1027) (-1027)) (T -628))
+((-2347 (*1 *2 *3 *2) (-12 (-5 *1 (-628 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))) (-2346 (*1 *2 *2 *3) (-12 (-5 *1 (-628 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
+(-10 -7 (-15 -2346 (|#1| |#1| |#2|)) (-15 -2347 (|#2| |#1| |#2|)))
+((-2348 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-629 |#1| |#2| |#3|) (-10 -7 (-15 -2348 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1027) (-1027) (-1027)) (T -629))
+((-2348 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)) (-5 *1 (-629 *5 *6 *2)))))
+(-10 -7 (-15 -2348 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-2352 (((-1 |#1| (-719) |#1|) (-1 |#1| (-719) |#1|)) 23)) (-2349 (((-1 |#1|) |#1|) 8)) (-2351 ((|#1| |#1|) 16)) (-2350 (((-594 |#1|) (-1 (-594 |#1|) (-594 |#1|)) (-516)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-4233 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-719)) 20)))
+(((-630 |#1|) (-10 -7 (-15 -2349 ((-1 |#1|) |#1|)) (-15 -4233 ((-1 |#1|) |#1|)) (-15 -2350 (|#1| (-1 |#1| |#1|))) (-15 -2350 ((-594 |#1|) (-1 (-594 |#1|) (-594 |#1|)) (-516))) (-15 -2351 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-719))) (-15 -2352 ((-1 |#1| (-719) |#1|) (-1 |#1| (-719) |#1|)))) (-1027)) (T -630))
+((-2352 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-719) *3)) (-4 *3 (-1027)) (-5 *1 (-630 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-719)) (-4 *4 (-1027)) (-5 *1 (-630 *4)))) (-2351 (*1 *2 *2) (-12 (-5 *1 (-630 *2)) (-4 *2 (-1027)))) (-2350 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-594 *5) (-594 *5))) (-5 *4 (-516)) (-5 *2 (-594 *5)) (-5 *1 (-630 *5)) (-4 *5 (-1027)))) (-2350 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-630 *2)) (-4 *2 (-1027)))) (-4233 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1027)))) (-2349 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1027)))))
+(-10 -7 (-15 -2349 ((-1 |#1|) |#1|)) (-15 -4233 ((-1 |#1|) |#1|)) (-15 -2350 (|#1| (-1 |#1| |#1|))) (-15 -2350 ((-594 |#1|) (-1 (-594 |#1|) (-594 |#1|)) (-516))) (-15 -2351 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-719))) (-15 -2352 ((-1 |#1| (-719) |#1|) (-1 |#1| (-719) |#1|))))
+((-2355 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2354 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-4227 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2353 (((-1 |#2| |#1|) |#2|) 11)))
+(((-631 |#1| |#2|) (-10 -7 (-15 -2353 ((-1 |#2| |#1|) |#2|)) (-15 -2354 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4227 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2355 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1027) (-1027)) (T -631))
+((-2355 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-5 *2 (-1 *5 *4)) (-5 *1 (-631 *4 *5)))) (-4227 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1027)) (-5 *2 (-1 *5 *4)) (-5 *1 (-631 *4 *5)) (-4 *4 (-1027)))) (-2354 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-5 *2 (-1 *5)) (-5 *1 (-631 *4 *5)))) (-2353 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-631 *4 *3)) (-4 *4 (-1027)) (-4 *3 (-1027)))))
+(-10 -7 (-15 -2353 ((-1 |#2| |#1|) |#2|)) (-15 -2354 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4227 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2355 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-2360 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2356 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2357 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2358 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2359 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-632 |#1| |#2| |#3|) (-10 -7 (-15 -2356 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2357 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2358 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2359 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2360 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1027) (-1027) (-1027)) (T -632))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-1 *7 *5)) (-5 *1 (-632 *5 *6 *7)))) (-2360 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-632 *4 *5 *6)))) (-2359 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-632 *4 *5 *6)) (-4 *4 (-1027)))) (-2358 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1027)) (-4 *6 (-1027)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-632 *4 *5 *6)) (-4 *5 (-1027)))) (-2357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-1 *6 *5)) (-5 *1 (-632 *4 *5 *6)))) (-2356 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1027)) (-4 *4 (-1027)) (-4 *6 (-1027)) (-5 *2 (-1 *6 *5)) (-5 *1 (-632 *5 *4 *6)))))
+(-10 -7 (-15 -2356 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2357 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2358 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2359 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2360 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-4117 (($ (-719) (-719)) 33)) (-2365 (($ $ $) 56)) (-3693 (($ |#3|) 52) (($ $) 53)) (-3380 (((-110) $) 28)) (-2364 (($ $ (-516) (-516)) 58)) (-2363 (($ $ (-516) (-516)) 59)) (-2362 (($ $ (-516) (-516) (-516) (-516)) 63)) (-2367 (($ $) 54)) (-3382 (((-110) $) 14)) (-2361 (($ $ (-516) (-516) $) 64)) (-4066 ((|#2| $ (-516) (-516) |#2|) NIL) (($ $ (-594 (-516)) (-594 (-516)) $) 62)) (-3611 (($ (-719) |#2|) 39)) (-3383 (($ (-594 (-594 |#2|))) 37)) (-3875 (((-594 (-594 |#2|)) $) 57)) (-2366 (($ $ $) 55)) (-3740 (((-3 $ "failed") $ |#2|) 91)) (-4078 ((|#2| $ (-516) (-516)) NIL) ((|#2| $ (-516) (-516) |#2|) NIL) (($ $ (-594 (-516)) (-594 (-516))) 61)) (-3610 (($ (-594 |#2|)) 40) (($ (-594 $)) 42)) (-3381 (((-110) $) 24)) (-4233 (($ |#4|) 47) (((-805) $) NIL)) (-3379 (((-110) $) 30)) (-4224 (($ $ |#2|) 93)) (-4116 (($ $ $) 68) (($ $) 71)) (-4118 (($ $ $) 66)) (** (($ $ (-719)) 80) (($ $ (-516)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-516) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88)))
+(((-633 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4233 ((-805) |#1|)) (-15 ** (|#1| |#1| (-516))) (-15 -4224 (|#1| |#1| |#2|)) (-15 -3740 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-719))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-516) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4116 (|#1| |#1|)) (-15 -4116 (|#1| |#1| |#1|)) (-15 -4118 (|#1| |#1| |#1|)) (-15 -2361 (|#1| |#1| (-516) (-516) |#1|)) (-15 -2362 (|#1| |#1| (-516) (-516) (-516) (-516))) (-15 -2363 (|#1| |#1| (-516) (-516))) (-15 -2364 (|#1| |#1| (-516) (-516))) (-15 -4066 (|#1| |#1| (-594 (-516)) (-594 (-516)) |#1|)) (-15 -4078 (|#1| |#1| (-594 (-516)) (-594 (-516)))) (-15 -3875 ((-594 (-594 |#2|)) |#1|)) (-15 -2365 (|#1| |#1| |#1|)) (-15 -2366 (|#1| |#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -3693 (|#1| |#1|)) (-15 -3693 (|#1| |#3|)) (-15 -4233 (|#1| |#4|)) (-15 -3610 (|#1| (-594 |#1|))) (-15 -3610 (|#1| (-594 |#2|))) (-15 -3611 (|#1| (-719) |#2|)) (-15 -3383 (|#1| (-594 (-594 |#2|)))) (-15 -4117 (|#1| (-719) (-719))) (-15 -3379 ((-110) |#1|)) (-15 -3380 ((-110) |#1|)) (-15 -3381 ((-110) |#1|)) (-15 -3382 ((-110) |#1|)) (-15 -4066 (|#2| |#1| (-516) (-516) |#2|)) (-15 -4078 (|#2| |#1| (-516) (-516) |#2|)) (-15 -4078 (|#2| |#1| (-516) (-516)))) (-634 |#2| |#3| |#4|) (-984) (-353 |#2|) (-353 |#2|)) (T -633))
+NIL
+(-10 -8 (-15 -4233 ((-805) |#1|)) (-15 ** (|#1| |#1| (-516))) (-15 -4224 (|#1| |#1| |#2|)) (-15 -3740 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-719))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-516) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4116 (|#1| |#1|)) (-15 -4116 (|#1| |#1| |#1|)) (-15 -4118 (|#1| |#1| |#1|)) (-15 -2361 (|#1| |#1| (-516) (-516) |#1|)) (-15 -2362 (|#1| |#1| (-516) (-516) (-516) (-516))) (-15 -2363 (|#1| |#1| (-516) (-516))) (-15 -2364 (|#1| |#1| (-516) (-516))) (-15 -4066 (|#1| |#1| (-594 (-516)) (-594 (-516)) |#1|)) (-15 -4078 (|#1| |#1| (-594 (-516)) (-594 (-516)))) (-15 -3875 ((-594 (-594 |#2|)) |#1|)) (-15 -2365 (|#1| |#1| |#1|)) (-15 -2366 (|#1| |#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -3693 (|#1| |#1|)) (-15 -3693 (|#1| |#3|)) (-15 -4233 (|#1| |#4|)) (-15 -3610 (|#1| (-594 |#1|))) (-15 -3610 (|#1| (-594 |#2|))) (-15 -3611 (|#1| (-719) |#2|)) (-15 -3383 (|#1| (-594 (-594 |#2|)))) (-15 -4117 (|#1| (-719) (-719))) (-15 -3379 ((-110) |#1|)) (-15 -3380 ((-110) |#1|)) (-15 -3381 ((-110) |#1|)) (-15 -3382 ((-110) |#1|)) (-15 -4066 (|#2| |#1| (-516) (-516) |#2|)) (-15 -4078 (|#2| |#1| (-516) (-516) |#2|)) (-15 -4078 (|#2| |#1| (-516) (-516))))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-4117 (($ (-719) (-719)) 97)) (-2365 (($ $ $) 87)) (-3693 (($ |#2|) 91) (($ $) 90)) (-3380 (((-110) $) 99)) (-2364 (($ $ (-516) (-516)) 83)) (-2363 (($ $ (-516) (-516)) 82)) (-2362 (($ $ (-516) (-516) (-516) (-516)) 81)) (-2367 (($ $) 89)) (-3382 (((-110) $) 101)) (-1217 (((-110) $ (-719)) 8)) (-2361 (($ $ (-516) (-516) $) 80)) (-4066 ((|#1| $ (-516) (-516) |#1|) 44) (($ $ (-594 (-516)) (-594 (-516)) $) 84)) (-1256 (($ $ (-516) |#2|) 42)) (-1255 (($ $ (-516) |#3|) 41)) (-3611 (($ (-719) |#1|) 95)) (-3815 (($) 7 T CONST)) (-3369 (($ $) 67 (|has| |#1| (-289)))) (-3371 ((|#2| $ (-516)) 46)) (-3368 (((-719) $) 66 (|has| |#1| (-523)))) (-1587 ((|#1| $ (-516) (-516) |#1|) 43)) (-3372 ((|#1| $ (-516) (-516)) 48)) (-2018 (((-594 |#1|) $) 30)) (-3367 (((-719) $) 65 (|has| |#1| (-523)))) (-3366 (((-594 |#3|) $) 64 (|has| |#1| (-523)))) (-3374 (((-719) $) 51)) (-3896 (($ (-719) (-719) |#1|) 57)) (-3373 (((-719) $) 50)) (-4001 (((-110) $ (-719)) 9)) (-3605 ((|#1| $) 62 (|has| |#1| (-6 (-4271 #1="*"))))) (-3378 (((-516) $) 55)) (-3376 (((-516) $) 53)) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3377 (((-516) $) 54)) (-3375 (((-516) $) 52)) (-3383 (($ (-594 (-594 |#1|))) 96)) (-2022 (($ (-1 |#1| |#1|) $) 34)) (-4234 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3875 (((-594 (-594 |#1|)) $) 86)) (-3998 (((-110) $ (-719)) 10)) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-3871 (((-3 $ "failed") $) 61 (|has| |#1| (-344)))) (-2366 (($ $ $) 88)) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-2244 (($ $ |#1|) 56)) (-3740 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-523)))) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-4078 ((|#1| $ (-516) (-516)) 49) ((|#1| $ (-516) (-516) |#1|) 47) (($ $ (-594 (-516)) (-594 (-516))) 85)) (-3610 (($ (-594 |#1|)) 94) (($ (-594 $)) 93)) (-3381 (((-110) $) 100)) (-3606 ((|#1| $) 63 (|has| |#1| (-6 (-4271 #1#))))) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-3370 ((|#3| $ (-516)) 45)) (-4233 (($ |#3|) 92) (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3379 (((-110) $) 98)) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-4224 (($ $ |#1|) 68 (|has| |#1| (-344)))) (-4116 (($ $ $) 78) (($ $) 77)) (-4118 (($ $ $) 79)) (** (($ $ (-719)) 70) (($ $ (-516)) 60 (|has| |#1| (-344)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-516) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-634 |#1| |#2| |#3|) (-133) (-984) (-353 |t#1|) (-353 |t#1|)) (T -634))
+((-3382 (*1 *2 *1) (-12 (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-110)))) (-3381 (*1 *2 *1) (-12 (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-110)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-110)))) (-3379 (*1 *2 *1) (-12 (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-110)))) (-4117 (*1 *1 *2 *2) (-12 (-5 *2 (-719)) (-4 *3 (-984)) (-4 *1 (-634 *3 *4 *5)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-3383 (*1 *1 *2) (-12 (-5 *2 (-594 (-594 *3))) (-4 *3 (-984)) (-4 *1 (-634 *3 *4 *5)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-3611 (*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-4 *3 (-984)) (-4 *1 (-634 *3 *4 *5)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-3610 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-984)) (-4 *1 (-634 *3 *4 *5)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-3610 (*1 *1 *2) (-12 (-5 *2 (-594 *1)) (-4 *3 (-984)) (-4 *1 (-634 *3 *4 *5)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-4233 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *1 (-634 *3 *4 *2)) (-4 *4 (-353 *3)) (-4 *2 (-353 *3)))) (-3693 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *1 (-634 *3 *2 *4)) (-4 *2 (-353 *3)) (-4 *4 (-353 *3)))) (-3693 (*1 *1 *1) (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)))) (-2367 (*1 *1 *1) (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)))) (-2366 (*1 *1 *1 *1) (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)))) (-2365 (*1 *1 *1 *1) (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)))) (-3875 (*1 *2 *1) (-12 (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-594 (-594 *3))))) (-4078 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-594 (-516))) (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-4066 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-594 (-516))) (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-2364 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-516)) (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-2363 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-516)) (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-2362 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-516)) (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-2361 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-516)) (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-4118 (*1 *1 *1 *1) (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)))) (-4116 (*1 *1 *1 *1) (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)))) (-4116 (*1 *1 *1) (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-516)) (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-634 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-353 *3)) (-4 *2 (-353 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-634 *3 *2 *4)) (-4 *3 (-984)) (-4 *2 (-353 *3)) (-4 *4 (-353 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))) (-3740 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)) (-4 *2 (-523)))) (-4224 (*1 *1 *1 *2) (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)) (-4 *2 (-344)))) (-3369 (*1 *1 *1) (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)) (-4 *2 (-289)))) (-3368 (*1 *2 *1) (-12 (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-4 *3 (-523)) (-5 *2 (-719)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-4 *3 (-523)) (-5 *2 (-719)))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-4 *3 (-523)) (-5 *2 (-594 *5)))) (-3606 (*1 *2 *1) (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)) (|has| *2 (-6 (-4271 #1="*"))) (-4 *2 (-984)))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)) (|has| *2 (-6 (-4271 #1#))) (-4 *2 (-984)))) (-3871 (*1 *1 *1) (|partial| -12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2)) (-4 *2 (-344)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-4 *3 (-344)))))
+(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4270) (-6 -4269) (-15 -3382 ((-110) $)) (-15 -3381 ((-110) $)) (-15 -3380 ((-110) $)) (-15 -3379 ((-110) $)) (-15 -4117 ($ (-719) (-719))) (-15 -3383 ($ (-594 (-594 |t#1|)))) (-15 -3611 ($ (-719) |t#1|)) (-15 -3610 ($ (-594 |t#1|))) (-15 -3610 ($ (-594 $))) (-15 -4233 ($ |t#3|)) (-15 -3693 ($ |t#2|)) (-15 -3693 ($ $)) (-15 -2367 ($ $)) (-15 -2366 ($ $ $)) (-15 -2365 ($ $ $)) (-15 -3875 ((-594 (-594 |t#1|)) $)) (-15 -4078 ($ $ (-594 (-516)) (-594 (-516)))) (-15 -4066 ($ $ (-594 (-516)) (-594 (-516)) $)) (-15 -2364 ($ $ (-516) (-516))) (-15 -2363 ($ $ (-516) (-516))) (-15 -2362 ($ $ (-516) (-516) (-516) (-516))) (-15 -2361 ($ $ (-516) (-516) $)) (-15 -4118 ($ $ $)) (-15 -4116 ($ $ $)) (-15 -4116 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-516) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-719))) (IF (|has| |t#1| (-523)) (-15 -3740 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-344)) (-15 -4224 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-289)) (-15 -3369 ($ $)) |%noBranch|) (IF (|has| |t#1| (-523)) (PROGN (-15 -3368 ((-719) $)) (-15 -3367 ((-719) $)) (-15 -3366 ((-594 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4271 "*"))) (PROGN (-15 -3606 (|t#1| $)) (-15 -3605 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-344)) (PROGN (-15 -3871 ((-3 $ "failed") $)) (-15 ** ($ $ (-516)))) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-571 (-805)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-55 |#1| |#2| |#3|) . T) ((-1134) . T))
+((-4121 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4234 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-635 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4234 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4234 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4121 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-984) (-353 |#1|) (-353 |#1|) (-634 |#1| |#2| |#3|) (-984) (-353 |#5|) (-353 |#5|) (-634 |#5| |#6| |#7|)) (T -635))
+((-4121 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-984)) (-4 *2 (-984)) (-4 *6 (-353 *5)) (-4 *7 (-353 *5)) (-4 *8 (-353 *2)) (-4 *9 (-353 *2)) (-5 *1 (-635 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-634 *5 *6 *7)) (-4 *10 (-634 *2 *8 *9)))) (-4234 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-984)) (-4 *8 (-984)) (-4 *6 (-353 *5)) (-4 *7 (-353 *5)) (-4 *2 (-634 *8 *9 *10)) (-5 *1 (-635 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-634 *5 *6 *7)) (-4 *9 (-353 *8)) (-4 *10 (-353 *8)))) (-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-984)) (-4 *8 (-984)) (-4 *6 (-353 *5)) (-4 *7 (-353 *5)) (-4 *2 (-634 *8 *9 *10)) (-5 *1 (-635 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-634 *5 *6 *7)) (-4 *9 (-353 *8)) (-4 *10 (-353 *8)))))
+(-10 -7 (-15 -4234 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4234 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4121 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-3369 ((|#4| |#4|) 72 (|has| |#1| (-289)))) (-3368 (((-719) |#4|) 99 (|has| |#1| (-523)))) (-3367 (((-719) |#4|) 76 (|has| |#1| (-523)))) (-3366 (((-594 |#3|) |#4|) 83 (|has| |#1| (-523)))) (-2405 (((-2 (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1|) 111 (|has| |#1| (-289)))) (-3605 ((|#1| |#4|) 35)) (-2372 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-523)))) (-3871 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-344)))) (-2371 ((|#4| |#4|) 68 (|has| |#1| (-523)))) (-2369 ((|#4| |#4| |#1| (-516) (-516)) 43)) (-2368 ((|#4| |#4| (-516) (-516)) 38)) (-2370 ((|#4| |#4| |#1| (-516) (-516)) 48)) (-3606 ((|#1| |#4|) 78)) (-2788 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-523)))))
+(((-636 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3606 (|#1| |#4|)) (-15 -3605 (|#1| |#4|)) (-15 -2368 (|#4| |#4| (-516) (-516))) (-15 -2369 (|#4| |#4| |#1| (-516) (-516))) (-15 -2370 (|#4| |#4| |#1| (-516) (-516))) (IF (|has| |#1| (-523)) (PROGN (-15 -3368 ((-719) |#4|)) (-15 -3367 ((-719) |#4|)) (-15 -3366 ((-594 |#3|) |#4|)) (-15 -2371 (|#4| |#4|)) (-15 -2372 ((-3 |#4| "failed") |#4|)) (-15 -2788 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-289)) (PROGN (-15 -3369 (|#4| |#4|)) (-15 -2405 ((-2 (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-344)) (-15 -3871 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-162) (-353 |#1|) (-353 |#1|) (-634 |#1| |#2| |#3|)) (T -636))
+((-3871 (*1 *2 *2) (|partial| -12 (-4 *3 (-344)) (-4 *3 (-162)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *1 (-636 *3 *4 *5 *2)) (-4 *2 (-634 *3 *4 *5)))) (-2405 (*1 *2 *3 *3) (-12 (-4 *3 (-289)) (-4 *3 (-162)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *2 (-2 (|:| -2046 *3) (|:| -3166 *3))) (-5 *1 (-636 *3 *4 *5 *6)) (-4 *6 (-634 *3 *4 *5)))) (-3369 (*1 *2 *2) (-12 (-4 *3 (-289)) (-4 *3 (-162)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *1 (-636 *3 *4 *5 *2)) (-4 *2 (-634 *3 *4 *5)))) (-2788 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *4 (-162)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-634 *4 *5 *6)))) (-2372 (*1 *2 *2) (|partial| -12 (-4 *3 (-523)) (-4 *3 (-162)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *1 (-636 *3 *4 *5 *2)) (-4 *2 (-634 *3 *4 *5)))) (-2371 (*1 *2 *2) (-12 (-4 *3 (-523)) (-4 *3 (-162)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *1 (-636 *3 *4 *5 *2)) (-4 *2 (-634 *3 *4 *5)))) (-3366 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *4 (-162)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-5 *2 (-594 *6)) (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-634 *4 *5 *6)))) (-3367 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *4 (-162)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-5 *2 (-719)) (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-634 *4 *5 *6)))) (-3368 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *4 (-162)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-5 *2 (-719)) (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-634 *4 *5 *6)))) (-2370 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-516)) (-4 *3 (-162)) (-4 *5 (-353 *3)) (-4 *6 (-353 *3)) (-5 *1 (-636 *3 *5 *6 *2)) (-4 *2 (-634 *3 *5 *6)))) (-2369 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-516)) (-4 *3 (-162)) (-4 *5 (-353 *3)) (-4 *6 (-353 *3)) (-5 *1 (-636 *3 *5 *6 *2)) (-4 *2 (-634 *3 *5 *6)))) (-2368 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-516)) (-4 *4 (-162)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-5 *1 (-636 *4 *5 *6 *2)) (-4 *2 (-634 *4 *5 *6)))) (-3605 (*1 *2 *3) (-12 (-4 *4 (-353 *2)) (-4 *5 (-353 *2)) (-4 *2 (-162)) (-5 *1 (-636 *2 *4 *5 *3)) (-4 *3 (-634 *2 *4 *5)))) (-3606 (*1 *2 *3) (-12 (-4 *4 (-353 *2)) (-4 *5 (-353 *2)) (-4 *2 (-162)) (-5 *1 (-636 *2 *4 *5 *3)) (-4 *3 (-634 *2 *4 *5)))))
+(-10 -7 (-15 -3606 (|#1| |#4|)) (-15 -3605 (|#1| |#4|)) (-15 -2368 (|#4| |#4| (-516) (-516))) (-15 -2369 (|#4| |#4| |#1| (-516) (-516))) (-15 -2370 (|#4| |#4| |#1| (-516) (-516))) (IF (|has| |#1| (-523)) (PROGN (-15 -3368 ((-719) |#4|)) (-15 -3367 ((-719) |#4|)) (-15 -3366 ((-594 |#3|) |#4|)) (-15 -2371 (|#4| |#4|)) (-15 -2372 ((-3 |#4| "failed") |#4|)) (-15 -2788 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-289)) (PROGN (-15 -3369 (|#4| |#4|)) (-15 -2405 ((-2 (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-344)) (-15 -3871 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4117 (($ (-719) (-719)) 47)) (-2365 (($ $ $) NIL)) (-3693 (($ (-1179 |#1|)) NIL) (($ $) NIL)) (-3380 (((-110) $) NIL)) (-2364 (($ $ (-516) (-516)) 12)) (-2363 (($ $ (-516) (-516)) NIL)) (-2362 (($ $ (-516) (-516) (-516) (-516)) NIL)) (-2367 (($ $) NIL)) (-3382 (((-110) $) NIL)) (-1217 (((-110) $ (-719)) NIL)) (-2361 (($ $ (-516) (-516) $) NIL)) (-4066 ((|#1| $ (-516) (-516) |#1|) NIL) (($ $ (-594 (-516)) (-594 (-516)) $) NIL)) (-1256 (($ $ (-516) (-1179 |#1|)) NIL)) (-1255 (($ $ (-516) (-1179 |#1|)) NIL)) (-3611 (($ (-719) |#1|) 22)) (-3815 (($) NIL T CONST)) (-3369 (($ $) 31 (|has| |#1| (-289)))) (-3371 (((-1179 |#1|) $ (-516)) NIL)) (-3368 (((-719) $) 33 (|has| |#1| (-523)))) (-1587 ((|#1| $ (-516) (-516) |#1|) 51)) (-3372 ((|#1| $ (-516) (-516)) NIL)) (-2018 (((-594 |#1|) $) NIL)) (-3367 (((-719) $) 35 (|has| |#1| (-523)))) (-3366 (((-594 (-1179 |#1|)) $) 38 (|has| |#1| (-523)))) (-3374 (((-719) $) 20)) (-3896 (($ (-719) (-719) |#1|) 16)) (-3373 (((-719) $) 21)) (-4001 (((-110) $ (-719)) NIL)) (-3605 ((|#1| $) 29 (|has| |#1| (-6 (-4271 #1="*"))))) (-3378 (((-516) $) 9)) (-3376 (((-516) $) 10)) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3377 (((-516) $) 11)) (-3375 (((-516) $) 48)) (-3383 (($ (-594 (-594 |#1|))) NIL)) (-2022 (($ (-1 |#1| |#1|) $) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3875 (((-594 (-594 |#1|)) $) 60)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-3871 (((-3 $ #2="failed") $) 45 (|has| |#1| (-344)))) (-2366 (($ $ $) NIL)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-2244 (($ $ |#1|) NIL)) (-3740 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-523)))) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#1| $ (-516) (-516)) NIL) ((|#1| $ (-516) (-516) |#1|) NIL) (($ $ (-594 (-516)) (-594 (-516))) NIL)) (-3610 (($ (-594 |#1|)) NIL) (($ (-594 $)) NIL) (($ (-1179 |#1|)) 52)) (-3381 (((-110) $) NIL)) (-3606 ((|#1| $) 27 (|has| |#1| (-6 (-4271 #1#))))) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3678 (($ $) NIL)) (-4246 (((-505) $) 64 (|has| |#1| (-572 (-505))))) (-3370 (((-1179 |#1|) $ (-516)) NIL)) (-4233 (($ (-1179 |#1|)) NIL) (((-805) $) NIL (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3379 (((-110) $) NIL)) (-3317 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4224 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-4116 (($ $ $) NIL) (($ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-719)) 23) (($ $ (-516)) 46 (|has| |#1| (-344)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-516) $) NIL) (((-1179 |#1|) $ (-1179 |#1|)) NIL) (((-1179 |#1|) (-1179 |#1|) $) NIL)) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-637 |#1|) (-13 (-634 |#1| (-1179 |#1|) (-1179 |#1|)) (-10 -8 (-15 -3610 ($ (-1179 |#1|))) (IF (|has| |#1| (-572 (-505))) (-6 (-572 (-505))) |%noBranch|) (IF (|has| |#1| (-344)) (-15 -3871 ((-3 $ "failed") $)) |%noBranch|))) (-984)) (T -637))
+((-3871 (*1 *1 *1) (|partial| -12 (-5 *1 (-637 *2)) (-4 *2 (-344)) (-4 *2 (-984)))) (-3610 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-984)) (-5 *1 (-637 *3)))))
+(-13 (-634 |#1| (-1179 |#1|) (-1179 |#1|)) (-10 -8 (-15 -3610 ($ (-1179 |#1|))) (IF (|has| |#1| (-572 (-505))) (-6 (-572 (-505))) |%noBranch|) (IF (|has| |#1| (-344)) (-15 -3871 ((-3 $ "failed") $)) |%noBranch|)))
+((-2378 (((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|)) 25)) (-2377 (((-637 |#1|) (-637 |#1|) (-637 |#1|) |#1|) 21)) (-2379 (((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|) (-719)) 26)) (-2374 (((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|)) 14)) (-2375 (((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|)) 18) (((-637 |#1|) (-637 |#1|) (-637 |#1|)) 16)) (-2376 (((-637 |#1|) (-637 |#1|) |#1| (-637 |#1|)) 20)) (-2373 (((-637 |#1|) (-637 |#1|) (-637 |#1|)) 12)) (** (((-637 |#1|) (-637 |#1|) (-719)) 30)))
+(((-638 |#1|) (-10 -7 (-15 -2373 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2374 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2375 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2375 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2376 ((-637 |#1|) (-637 |#1|) |#1| (-637 |#1|))) (-15 -2377 ((-637 |#1|) (-637 |#1|) (-637 |#1|) |#1|)) (-15 -2378 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2379 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|) (-719))) (-15 ** ((-637 |#1|) (-637 |#1|) (-719)))) (-984)) (T -638))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-637 *4)) (-5 *3 (-719)) (-4 *4 (-984)) (-5 *1 (-638 *4)))) (-2379 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-637 *4)) (-5 *3 (-719)) (-4 *4 (-984)) (-5 *1 (-638 *4)))) (-2378 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))) (-2377 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))) (-2376 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))) (-2375 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))) (-2375 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))) (-2374 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))) (-2373 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
+(-10 -7 (-15 -2373 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2374 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2375 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2375 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2376 ((-637 |#1|) (-637 |#1|) |#1| (-637 |#1|))) (-15 -2377 ((-637 |#1|) (-637 |#1|) (-637 |#1|) |#1|)) (-15 -2378 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2379 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|) (-719))) (-15 ** ((-637 |#1|) (-637 |#1|) (-719))))
+((-2380 (($) 8 T CONST)) (-4233 (((-805) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-3848 (((-110) $ (|[\|\|]| |#1|)) 14) (((-110) $ (|[\|\|]| -2380)) 16)) (-3854 ((|#1| $) 11)))
+(((-639 |#1|) (-13 (-1175) (-571 (-805)) (-10 -8 (-15 -3848 ((-110) $ (|[\|\|]| |#1|))) (-15 -3848 ((-110) $ (|[\|\|]| -2380))) (-15 -4233 ($ |#1|)) (-15 -4233 (|#1| $)) (-15 -3854 (|#1| $)) (-15 -2380 ($) -4227))) (-571 (-805))) (T -639))
+((-3848 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-571 (-805))) (-5 *2 (-110)) (-5 *1 (-639 *4)))) (-3848 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2380)) (-5 *2 (-110)) (-5 *1 (-639 *4)) (-4 *4 (-571 (-805))))) (-4233 (*1 *1 *2) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-805))))) (-4233 (*1 *2 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-805))))) (-3854 (*1 *2 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-805))))) (-2380 (*1 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-805))))))
+(-13 (-1175) (-571 (-805)) (-10 -8 (-15 -3848 ((-110) $ (|[\|\|]| |#1|))) (-15 -3848 ((-110) $ (|[\|\|]| -2380))) (-15 -4233 ($ |#1|)) (-15 -4233 (|#1| $)) (-15 -3854 (|#1| $)) (-15 -2380 ($) -4227)))
+((-2383 ((|#2| |#2| |#4|) 25)) (-2386 (((-637 |#2|) |#3| |#4|) 31)) (-2384 (((-637 |#2|) |#2| |#4|) 30)) (-2381 (((-1179 |#2|) |#2| |#4|) 16)) (-2382 ((|#2| |#3| |#4|) 24)) (-2387 (((-637 |#2|) |#3| |#4| (-719) (-719)) 38)) (-2385 (((-637 |#2|) |#2| |#4| (-719)) 37)))
+(((-640 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2381 ((-1179 |#2|) |#2| |#4|)) (-15 -2382 (|#2| |#3| |#4|)) (-15 -2383 (|#2| |#2| |#4|)) (-15 -2384 ((-637 |#2|) |#2| |#4|)) (-15 -2385 ((-637 |#2|) |#2| |#4| (-719))) (-15 -2386 ((-637 |#2|) |#3| |#4|)) (-15 -2387 ((-637 |#2|) |#3| |#4| (-719) (-719)))) (-1027) (-841 |#1|) (-353 |#2|) (-13 (-353 |#1|) (-10 -7 (-6 -4269)))) (T -640))
+((-2387 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-719)) (-4 *6 (-1027)) (-4 *7 (-841 *6)) (-5 *2 (-637 *7)) (-5 *1 (-640 *6 *7 *3 *4)) (-4 *3 (-353 *7)) (-4 *4 (-13 (-353 *6) (-10 -7 (-6 -4269)))))) (-2386 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-4 *6 (-841 *5)) (-5 *2 (-637 *6)) (-5 *1 (-640 *5 *6 *3 *4)) (-4 *3 (-353 *6)) (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4269)))))) (-2385 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-719)) (-4 *6 (-1027)) (-4 *3 (-841 *6)) (-5 *2 (-637 *3)) (-5 *1 (-640 *6 *3 *7 *4)) (-4 *7 (-353 *3)) (-4 *4 (-13 (-353 *6) (-10 -7 (-6 -4269)))))) (-2384 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-4 *3 (-841 *5)) (-5 *2 (-637 *3)) (-5 *1 (-640 *5 *3 *6 *4)) (-4 *6 (-353 *3)) (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4269)))))) (-2383 (*1 *2 *2 *3) (-12 (-4 *4 (-1027)) (-4 *2 (-841 *4)) (-5 *1 (-640 *4 *2 *5 *3)) (-4 *5 (-353 *2)) (-4 *3 (-13 (-353 *4) (-10 -7 (-6 -4269)))))) (-2382 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-4 *2 (-841 *5)) (-5 *1 (-640 *5 *2 *3 *4)) (-4 *3 (-353 *2)) (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4269)))))) (-2381 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-4 *3 (-841 *5)) (-5 *2 (-1179 *3)) (-5 *1 (-640 *5 *3 *6 *4)) (-4 *6 (-353 *3)) (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4269)))))))
+(-10 -7 (-15 -2381 ((-1179 |#2|) |#2| |#4|)) (-15 -2382 (|#2| |#3| |#4|)) (-15 -2383 (|#2| |#2| |#4|)) (-15 -2384 ((-637 |#2|) |#2| |#4|)) (-15 -2385 ((-637 |#2|) |#2| |#4| (-719))) (-15 -2386 ((-637 |#2|) |#3| |#4|)) (-15 -2387 ((-637 |#2|) |#3| |#4| (-719) (-719))))
+((-4020 (((-2 (|:| |num| (-637 |#1|)) (|:| |den| |#1|)) (-637 |#2|)) 20)) (-4018 ((|#1| (-637 |#2|)) 9)) (-4019 (((-637 |#1|) (-637 |#2|)) 18)))
+(((-641 |#1| |#2|) (-10 -7 (-15 -4018 (|#1| (-637 |#2|))) (-15 -4019 ((-637 |#1|) (-637 |#2|))) (-15 -4020 ((-2 (|:| |num| (-637 |#1|)) (|:| |den| |#1|)) (-637 |#2|)))) (-523) (-931 |#1|)) (T -641))
+((-4020 (*1 *2 *3) (-12 (-5 *3 (-637 *5)) (-4 *5 (-931 *4)) (-4 *4 (-523)) (-5 *2 (-2 (|:| |num| (-637 *4)) (|:| |den| *4))) (-5 *1 (-641 *4 *5)))) (-4019 (*1 *2 *3) (-12 (-5 *3 (-637 *5)) (-4 *5 (-931 *4)) (-4 *4 (-523)) (-5 *2 (-637 *4)) (-5 *1 (-641 *4 *5)))) (-4018 (*1 *2 *3) (-12 (-5 *3 (-637 *4)) (-4 *4 (-931 *2)) (-4 *2 (-523)) (-5 *1 (-641 *2 *4)))))
+(-10 -7 (-15 -4018 (|#1| (-637 |#2|))) (-15 -4019 ((-637 |#1|) (-637 |#2|))) (-15 -4020 ((-2 (|:| |num| (-637 |#1|)) (|:| |den| |#1|)) (-637 |#2|))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-1851 (((-637 (-647))) NIL) (((-637 (-647)) (-1179 $)) NIL)) (-3608 (((-647) $) NIL)) (-3766 (($ $) NIL (|has| (-647) (-1120)))) (-3921 (($ $) NIL (|has| (-647) (-1120)))) (-1741 (((-1107 (-860) (-719)) (-516)) NIL (|has| (-647) (-331)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (-12 (|has| (-647) (-289)) (|has| (-647) (-851))))) (-4053 (($ $) NIL (-3810 (-12 (|has| (-647) (-289)) (|has| (-647) (-851))) (|has| (-647) (-344))))) (-4245 (((-386 $) $) NIL (-3810 (-12 (|has| (-647) (-289)) (|has| (-647) (-851))) (|has| (-647) (-344))))) (-3301 (($ $) NIL (-12 (|has| (-647) (-941)) (|has| (-647) (-1120))))) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (-12 (|has| (-647) (-289)) (|has| (-647) (-851))))) (-1655 (((-110) $ $) NIL (|has| (-647) (-289)))) (-3395 (((-719)) NIL (|has| (-647) (-349)))) (-3764 (($ $) NIL (|has| (-647) (-1120)))) (-3920 (($ $) NIL (|has| (-647) (-1120)))) (-3768 (($ $) NIL (|has| (-647) (-1120)))) (-3919 (($ $) NIL (|has| (-647) (-1120)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-516) #2="failed") $) NIL) (((-3 (-647) #2#) $) NIL) (((-3 (-388 (-516)) #2#) $) NIL (|has| (-647) (-975 (-388 (-516)))))) (-3431 (((-516) $) NIL) (((-647) $) NIL) (((-388 (-516)) $) NIL (|has| (-647) (-975 (-388 (-516)))))) (-1861 (($ (-1179 (-647))) NIL) (($ (-1179 (-647)) (-1179 $)) NIL)) (-1739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-647) (-331)))) (-2824 (($ $ $) NIL (|has| (-647) (-289)))) (-1850 (((-637 (-647)) $) NIL) (((-637 (-647)) $ (-1179 $)) NIL)) (-2297 (((-637 (-647)) (-637 $)) NIL) (((-2 (|:| -1650 (-637 (-647))) (|:| |vec| (-1179 (-647)))) (-637 $) (-1179 $)) NIL) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| (-647) (-593 (-516)))) (((-637 (-516)) (-637 $)) NIL (|has| (-647) (-593 (-516))))) (-4121 (((-3 $ "failed") (-388 (-1092 (-647)))) NIL (|has| (-647) (-344))) (($ (-1092 (-647))) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3925 (((-647) $) 29)) (-3288 (((-3 (-388 (-516)) #3="failed") $) NIL (|has| (-647) (-515)))) (-3287 (((-110) $) NIL (|has| (-647) (-515)))) (-3286 (((-388 (-516)) $) NIL (|has| (-647) (-515)))) (-3368 (((-860)) NIL)) (-3258 (($) NIL (|has| (-647) (-349)))) (-2823 (($ $ $) NIL (|has| (-647) (-289)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL (|has| (-647) (-289)))) (-3097 (($) NIL (|has| (-647) (-331)))) (-1746 (((-110) $) NIL (|has| (-647) (-331)))) (-1836 (($ $) NIL (|has| (-647) (-331))) (($ $ (-719)) NIL (|has| (-647) (-331)))) (-4005 (((-110) $) NIL (-3810 (-12 (|has| (-647) (-289)) (|has| (-647) (-851))) (|has| (-647) (-344))))) (-1374 (((-2 (|:| |r| (-647)) (|:| |phi| (-647))) $) NIL (-12 (|has| (-647) (-992)) (|has| (-647) (-1120))))) (-3909 (($) NIL (|has| (-647) (-1120)))) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (|has| (-647) (-827 (-359)))) (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (|has| (-647) (-827 (-516))))) (-4050 (((-780 (-860)) $) NIL (|has| (-647) (-331))) (((-860) $) NIL (|has| (-647) (-331)))) (-2436 (((-110) $) NIL)) (-3275 (($ $ (-516)) NIL (-12 (|has| (-647) (-941)) (|has| (-647) (-1120))))) (-3391 (((-647) $) NIL)) (-3723 (((-3 $ "failed") $) NIL (|has| (-647) (-331)))) (-1652 (((-3 (-594 $) #4="failed") (-594 $) $) NIL (|has| (-647) (-289)))) (-2073 (((-1092 (-647)) $) NIL (|has| (-647) (-344)))) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-4234 (($ (-1 (-647) (-647)) $) NIL)) (-2069 (((-860) $) NIL (|has| (-647) (-349)))) (-4218 (($ $) NIL (|has| (-647) (-1120)))) (-3343 (((-1092 (-647)) $) NIL)) (-1963 (($ (-594 $)) NIL (|has| (-647) (-289))) (($ $ $) NIL (|has| (-647) (-289)))) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL (|has| (-647) (-344)))) (-3724 (($) NIL (|has| (-647) (-331)) CONST)) (-2426 (($ (-860)) NIL (|has| (-647) (-349)))) (-1376 (($) NIL)) (-3926 (((-647) $) 31)) (-3514 (((-1045) $) NIL)) (-2435 (($) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| (-647) (-289)))) (-3419 (($ (-594 $)) NIL (|has| (-647) (-289))) (($ $ $) NIL (|has| (-647) (-289)))) (-1742 (((-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516))))) NIL (|has| (-647) (-331)))) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (-12 (|has| (-647) (-289)) (|has| (-647) (-851))))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (-12 (|has| (-647) (-289)) (|has| (-647) (-851))))) (-4011 (((-386 $) $) NIL (-3810 (-12 (|has| (-647) (-289)) (|has| (-647) (-851))) (|has| (-647) (-344))))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| (-647) (-289))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| (-647) (-289)))) (-3740 (((-3 $ "failed") $ $) NIL) (((-3 $ #3#) $ (-647)) NIL (|has| (-647) (-523)))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL (|has| (-647) (-289)))) (-4219 (($ $) NIL (|has| (-647) (-1120)))) (-4046 (($ $ (-1098) (-647)) NIL (|has| (-647) (-491 (-1098) (-647)))) (($ $ (-594 (-1098)) (-594 (-647))) NIL (|has| (-647) (-491 (-1098) (-647)))) (($ $ (-594 (-275 (-647)))) NIL (|has| (-647) (-291 (-647)))) (($ $ (-275 (-647))) NIL (|has| (-647) (-291 (-647)))) (($ $ (-647) (-647)) NIL (|has| (-647) (-291 (-647)))) (($ $ (-594 (-647)) (-594 (-647))) NIL (|has| (-647) (-291 (-647))))) (-1654 (((-719) $) NIL (|has| (-647) (-289)))) (-4078 (($ $ (-647)) NIL (|has| (-647) (-268 (-647) (-647))))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| (-647) (-289)))) (-4036 (((-647)) NIL) (((-647) (-1179 $)) NIL)) (-1837 (((-3 (-719) "failed") $ $) NIL (|has| (-647) (-331))) (((-719) $) NIL (|has| (-647) (-331)))) (-4089 (($ $ (-1 (-647) (-647))) NIL) (($ $ (-1 (-647) (-647)) (-719)) NIL) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| (-647) (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| (-647) (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| (-647) (-841 (-1098)))) (($ $ (-1098)) NIL (|has| (-647) (-841 (-1098)))) (($ $ (-719)) NIL (|has| (-647) (-216))) (($ $) NIL (|has| (-647) (-216)))) (-2434 (((-637 (-647)) (-1179 $) (-1 (-647) (-647))) NIL (|has| (-647) (-344)))) (-3459 (((-1092 (-647))) NIL)) (-3769 (($ $) NIL (|has| (-647) (-1120)))) (-3918 (($ $) NIL (|has| (-647) (-1120)))) (-1740 (($) NIL (|has| (-647) (-331)))) (-3767 (($ $) NIL (|has| (-647) (-1120)))) (-3917 (($ $) NIL (|has| (-647) (-1120)))) (-3765 (($ $) NIL (|has| (-647) (-1120)))) (-3916 (($ $) NIL (|has| (-647) (-1120)))) (-3497 (((-637 (-647)) (-1179 $)) NIL) (((-1179 (-647)) $) NIL) (((-637 (-647)) (-1179 $) (-1179 $)) NIL) (((-1179 (-647)) $ (-1179 $)) NIL)) (-4246 (((-505) $) NIL (|has| (-647) (-572 (-505)))) (((-158 (-208)) $) NIL (|has| (-647) (-958))) (((-158 (-359)) $) NIL (|has| (-647) (-958))) (((-831 (-359)) $) NIL (|has| (-647) (-572 (-831 (-359))))) (((-831 (-516)) $) NIL (|has| (-647) (-572 (-831 (-516))))) (($ (-1092 (-647))) NIL) (((-1092 (-647)) $) NIL) (($ (-1179 (-647))) NIL) (((-1179 (-647)) $) NIL)) (-3273 (($ $) NIL)) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-3810 (-12 (|has| (-647) (-289)) (|has| $ (-138)) (|has| (-647) (-851))) (|has| (-647) (-331))))) (-1375 (($ (-647) (-647)) 12)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ $) NIL) (($ (-516)) NIL) (($ (-647)) NIL) (($ (-158 (-359))) 13) (($ (-158 (-516))) 19) (($ (-158 (-647))) 28) (($ (-158 (-649))) 25) (((-158 (-359)) $) 33) (($ (-388 (-516))) NIL (-3810 (|has| (-647) (-344)) (|has| (-647) (-975 (-388 (-516))))))) (-2965 (($ $) NIL (|has| (-647) (-331))) (((-3 $ #1#) $) NIL (-3810 (-12 (|has| (-647) (-289)) (|has| $ (-138)) (|has| (-647) (-851))) (|has| (-647) (-138))))) (-2632 (((-1092 (-647)) $) NIL)) (-3385 (((-719)) NIL)) (-2071 (((-1179 $)) NIL)) (-3772 (($ $) NIL (|has| (-647) (-1120)))) (-3760 (($ $) NIL (|has| (-647) (-1120)))) (-2117 (((-110) $ $) NIL)) (-3770 (($ $) NIL (|has| (-647) (-1120)))) (-3758 (($ $) NIL (|has| (-647) (-1120)))) (-3774 (($ $) NIL (|has| (-647) (-1120)))) (-3762 (($ $) NIL (|has| (-647) (-1120)))) (-2255 (((-647) $) NIL (|has| (-647) (-1120)))) (-3775 (($ $) NIL (|has| (-647) (-1120)))) (-3763 (($ $) NIL (|has| (-647) (-1120)))) (-3773 (($ $) NIL (|has| (-647) (-1120)))) (-3761 (($ $) NIL (|has| (-647) (-1120)))) (-3771 (($ $) NIL (|has| (-647) (-1120)))) (-3759 (($ $) NIL (|has| (-647) (-1120)))) (-3661 (($ $) NIL (|has| (-647) (-992)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| (-647) (-344)))) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($ $ (-1 (-647) (-647))) NIL) (($ $ (-1 (-647) (-647)) (-719)) NIL) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| (-647) (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| (-647) (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| (-647) (-841 (-1098)))) (($ $ (-1098)) NIL (|has| (-647) (-841 (-1098)))) (($ $ (-719)) NIL (|has| (-647) (-216))) (($ $) NIL (|has| (-647) (-216)))) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) NIL)) (-4224 (($ $ $) NIL (|has| (-647) (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ $) NIL (|has| (-647) (-1120))) (($ $ (-388 (-516))) NIL (-12 (|has| (-647) (-941)) (|has| (-647) (-1120)))) (($ $ (-516)) NIL (|has| (-647) (-344)))) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ (-647) $) NIL) (($ $ (-647)) NIL) (($ (-388 (-516)) $) NIL (|has| (-647) (-344))) (($ $ (-388 (-516))) NIL (|has| (-647) (-344)))))
+(((-642) (-13 (-368) (-156 (-647)) (-10 -8 (-15 -4233 ($ (-158 (-359)))) (-15 -4233 ($ (-158 (-516)))) (-15 -4233 ($ (-158 (-647)))) (-15 -4233 ($ (-158 (-649)))) (-15 -4233 ((-158 (-359)) $))))) (T -642))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-158 (-359))) (-5 *1 (-642)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-158 (-516))) (-5 *1 (-642)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-158 (-647))) (-5 *1 (-642)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-158 (-649))) (-5 *1 (-642)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-158 (-359))) (-5 *1 (-642)))))
+(-13 (-368) (-156 (-647)) (-10 -8 (-15 -4233 ($ (-158 (-359)))) (-15 -4233 ($ (-158 (-516)))) (-15 -4233 ($ (-158 (-647)))) (-15 -4233 ($ (-158 (-649)))) (-15 -4233 ((-158 (-359)) $))))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1217 (((-110) $ (-719)) 8)) (-1581 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4269)))) (-3992 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4269)))) (-3815 (($) 7 T CONST)) (-2389 (($ $) 62)) (-1349 (($ $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3684 (($ |#1| $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4269)))) (-3685 (($ |#1| $) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4269)))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4269)))) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) 9)) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35)) (-3998 (((-110) $ (-719)) 10)) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-1280 ((|#1| $) 39)) (-3889 (($ |#1| $) 40) (($ |#1| $ (-719)) 63)) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-1281 ((|#1| $) 41)) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-2388 (((-594 (-2 (|:| -2131 |#1|) (|:| -2019 (-719)))) $) 61)) (-1473 (($) 49) (($ (-594 |#1|)) 48)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4246 (((-505) $) 59 (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) 50)) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-1282 (($ (-594 |#1|)) 42)) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-643 |#1|) (-133) (-1027)) (T -643))
+((-3889 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-643 *2)) (-4 *2 (-1027)))) (-2389 (*1 *1 *1) (-12 (-4 *1 (-643 *2)) (-4 *2 (-1027)))) (-2388 (*1 *2 *1) (-12 (-4 *1 (-643 *3)) (-4 *3 (-1027)) (-5 *2 (-594 (-2 (|:| -2131 *3) (|:| -2019 (-719))))))))
+(-13 (-218 |t#1|) (-10 -8 (-15 -3889 ($ |t#1| $ (-719))) (-15 -2389 ($ $)) (-15 -2388 ((-594 (-2 (|:| -2131 |t#1|) (|:| -2019 (-719)))) $))))
+(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-571 (-805)))) ((-144 |#1|) . T) ((-572 (-505)) |has| |#1| (-572 (-505))) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1134) . T))
+((-2392 (((-594 |#1|) (-594 (-2 (|:| -4011 |#1|) (|:| -4223 (-516)))) (-516)) 47)) (-2390 ((|#1| |#1| (-516)) 46)) (-3419 ((|#1| |#1| |#1| (-516)) 36)) (-4011 (((-594 |#1|) |#1| (-516)) 39)) (-2393 ((|#1| |#1| (-516) |#1| (-516)) 32)) (-2391 (((-594 (-2 (|:| -4011 |#1|) (|:| -4223 (-516)))) |#1| (-516)) 45)))
+(((-644 |#1|) (-10 -7 (-15 -3419 (|#1| |#1| |#1| (-516))) (-15 -2390 (|#1| |#1| (-516))) (-15 -4011 ((-594 |#1|) |#1| (-516))) (-15 -2391 ((-594 (-2 (|:| -4011 |#1|) (|:| -4223 (-516)))) |#1| (-516))) (-15 -2392 ((-594 |#1|) (-594 (-2 (|:| -4011 |#1|) (|:| -4223 (-516)))) (-516))) (-15 -2393 (|#1| |#1| (-516) |#1| (-516)))) (-1155 (-516))) (T -644))
+((-2393 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-516)) (-5 *1 (-644 *2)) (-4 *2 (-1155 *3)))) (-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-2 (|:| -4011 *5) (|:| -4223 (-516))))) (-5 *4 (-516)) (-4 *5 (-1155 *4)) (-5 *2 (-594 *5)) (-5 *1 (-644 *5)))) (-2391 (*1 *2 *3 *4) (-12 (-5 *4 (-516)) (-5 *2 (-594 (-2 (|:| -4011 *3) (|:| -4223 *4)))) (-5 *1 (-644 *3)) (-4 *3 (-1155 *4)))) (-4011 (*1 *2 *3 *4) (-12 (-5 *4 (-516)) (-5 *2 (-594 *3)) (-5 *1 (-644 *3)) (-4 *3 (-1155 *4)))) (-2390 (*1 *2 *2 *3) (-12 (-5 *3 (-516)) (-5 *1 (-644 *2)) (-4 *2 (-1155 *3)))) (-3419 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-516)) (-5 *1 (-644 *2)) (-4 *2 (-1155 *3)))))
+(-10 -7 (-15 -3419 (|#1| |#1| |#1| (-516))) (-15 -2390 (|#1| |#1| (-516))) (-15 -4011 ((-594 |#1|) |#1| (-516))) (-15 -2391 ((-594 (-2 (|:| -4011 |#1|) (|:| -4223 (-516)))) |#1| (-516))) (-15 -2392 ((-594 |#1|) (-594 (-2 (|:| -4011 |#1|) (|:| -4223 (-516)))) (-516))) (-15 -2393 (|#1| |#1| (-516) |#1| (-516))))
+((-2397 (((-1 (-884 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208) (-208))) 17)) (-2394 (((-1058 (-208)) (-1058 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1017 (-208)) (-1017 (-208)) (-594 (-243))) 40) (((-1058 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1017 (-208)) (-1017 (-208)) (-594 (-243))) 42) (((-1058 (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) #1="undefined") (-1017 (-208)) (-1017 (-208)) (-594 (-243))) 44)) (-2396 (((-1058 (-208)) (-295 (-516)) (-295 (-516)) (-295 (-516)) (-1 (-208) (-208)) (-1017 (-208)) (-594 (-243))) NIL)) (-2395 (((-1058 (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) #1#) (-1017 (-208)) (-1017 (-208)) (-594 (-243))) 45)))
+(((-645) (-10 -7 (-15 -2394 ((-1058 (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) #1="undefined") (-1017 (-208)) (-1017 (-208)) (-594 (-243)))) (-15 -2394 ((-1058 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1017 (-208)) (-1017 (-208)) (-594 (-243)))) (-15 -2394 ((-1058 (-208)) (-1058 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1017 (-208)) (-1017 (-208)) (-594 (-243)))) (-15 -2395 ((-1058 (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) #1#) (-1017 (-208)) (-1017 (-208)) (-594 (-243)))) (-15 -2396 ((-1058 (-208)) (-295 (-516)) (-295 (-516)) (-295 (-516)) (-1 (-208) (-208)) (-1017 (-208)) (-594 (-243)))) (-15 -2397 ((-1 (-884 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208) (-208)))))) (T -645))
+((-2397 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1 (-208) (-208) (-208) (-208))) (-5 *2 (-1 (-884 (-208)) (-208) (-208))) (-5 *1 (-645)))) (-2396 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-295 (-516))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1017 (-208))) (-5 *6 (-594 (-243))) (-5 *2 (-1058 (-208))) (-5 *1 (-645)))) (-2395 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-3 (-1 (-208) (-208) (-208) (-208)) #1="undefined")) (-5 *5 (-1017 (-208))) (-5 *6 (-594 (-243))) (-5 *2 (-1058 (-208))) (-5 *1 (-645)))) (-2394 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1058 (-208))) (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1017 (-208))) (-5 *5 (-594 (-243))) (-5 *1 (-645)))) (-2394 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1017 (-208))) (-5 *5 (-594 (-243))) (-5 *2 (-1058 (-208))) (-5 *1 (-645)))) (-2394 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-3 (-1 (-208) (-208) (-208) (-208)) #1#)) (-5 *5 (-1017 (-208))) (-5 *6 (-594 (-243))) (-5 *2 (-1058 (-208))) (-5 *1 (-645)))))
+(-10 -7 (-15 -2394 ((-1058 (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) #1="undefined") (-1017 (-208)) (-1017 (-208)) (-594 (-243)))) (-15 -2394 ((-1058 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1017 (-208)) (-1017 (-208)) (-594 (-243)))) (-15 -2394 ((-1058 (-208)) (-1058 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1017 (-208)) (-1017 (-208)) (-594 (-243)))) (-15 -2395 ((-1058 (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) #1#) (-1017 (-208)) (-1017 (-208)) (-594 (-243)))) (-15 -2396 ((-1058 (-208)) (-295 (-516)) (-295 (-516)) (-295 (-516)) (-1 (-208) (-208)) (-1017 (-208)) (-594 (-243)))) (-15 -2397 ((-1 (-884 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208) (-208)))))
+((-4011 (((-386 (-1092 |#4|)) (-1092 |#4|)) 73) (((-386 |#4|) |#4|) 222)))
+(((-646 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4011 ((-386 |#4|) |#4|)) (-15 -4011 ((-386 (-1092 |#4|)) (-1092 |#4|)))) (-795) (-741) (-331) (-891 |#3| |#2| |#1|)) (T -646))
+((-4011 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-331)) (-4 *7 (-891 *6 *5 *4)) (-5 *2 (-386 (-1092 *7))) (-5 *1 (-646 *4 *5 *6 *7)) (-5 *3 (-1092 *7)))) (-4011 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-331)) (-5 *2 (-386 *3)) (-5 *1 (-646 *4 *5 *6 *3)) (-4 *3 (-891 *6 *5 *4)))))
+(-10 -7 (-15 -4011 ((-386 |#4|) |#4|)) (-15 -4011 ((-386 (-1092 |#4|)) (-1092 |#4|))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 84)) (-3388 (((-516) $) 30)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-4049 (($ $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-3301 (($ $) NIL)) (-1655 (((-110) $ $) NIL)) (-3905 (((-516) $) NIL)) (-3815 (($) NIL T CONST)) (-3386 (($ $) NIL)) (-3432 (((-3 (-516) #1="failed") $) 73) (((-3 (-388 (-516)) #1#) $) 26) (((-3 (-359) #1#) $) 70)) (-3431 (((-516) $) 75) (((-388 (-516)) $) 67) (((-359) $) 68)) (-2824 (($ $ $) 96)) (-3741 (((-3 $ "failed") $) 87)) (-2823 (($ $ $) 95)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4005 (((-110) $) NIL)) (-2400 (((-860)) 77) (((-860) (-860)) 76)) (-3460 (((-110) $) NIL)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL)) (-4050 (((-516) $) NIL)) (-2436 (((-110) $) NIL)) (-3275 (($ $ (-516)) NIL)) (-3391 (($ $) NIL)) (-3461 (((-110) $) NIL)) (-1652 (((-3 (-594 $) #2="failed") (-594 $) $) NIL)) (-2398 (((-516) (-516)) 81) (((-516)) 82)) (-3596 (($ $ $) NIL) (($) NIL (-12 (-3595 (|has| $ (-6 -4252))) (-3595 (|has| $ (-6 -4260)))))) (-2399 (((-516) (-516)) 79) (((-516)) 80)) (-3597 (($ $ $) NIL) (($) NIL (-12 (-3595 (|has| $ (-6 -4252))) (-3595 (|has| $ (-6 -4260)))))) (-2401 (((-516) $) 16)) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) 91)) (-1839 (((-860) (-516)) NIL (|has| $ (-6 -4260)))) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3387 (($ $) NIL)) (-3389 (($ $) NIL)) (-3525 (($ (-516) (-516)) NIL) (($ (-516) (-516) (-860)) NIL)) (-4011 (((-386 $) $) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) 92)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-2427 (((-516) $) 22)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 94)) (-2873 (((-860)) NIL) (((-860) (-860)) NIL (|has| $ (-6 -4260)))) (-1838 (((-860) (-516)) NIL (|has| $ (-6 -4260)))) (-4246 (((-359) $) NIL) (((-208) $) NIL) (((-831 (-359)) $) NIL)) (-4233 (((-805) $) 52) (($ (-516)) 63) (($ $) NIL) (($ (-388 (-516))) 66) (($ (-516)) 63) (($ (-388 (-516))) 66) (($ (-359)) 60) (((-359) $) 50) (($ (-649)) 55)) (-3385 (((-719)) 103)) (-3211 (($ (-516) (-516) (-860)) 44)) (-3390 (($ $) NIL)) (-1840 (((-860)) NIL) (((-860) (-860)) NIL (|has| $ (-6 -4260)))) (-2957 (((-860)) 35) (((-860) (-860)) 78)) (-2117 (((-110) $ $) NIL)) (-3661 (($ $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) 32 T CONST)) (-2927 (($) 17 T CONST)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 83)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 101)) (-4224 (($ $ $) 65)) (-4116 (($ $) 99) (($ $ $) 100)) (-4118 (($ $ $) 98)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL) (($ $ (-388 (-516))) 90)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 97) (($ $ $) 88) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL)))
+(((-647) (-13 (-385) (-368) (-344) (-975 (-359)) (-975 (-388 (-516))) (-140) (-10 -8 (-15 -2400 ((-860) (-860))) (-15 -2400 ((-860))) (-15 -2957 ((-860) (-860))) (-15 -2957 ((-860))) (-15 -2399 ((-516) (-516))) (-15 -2399 ((-516))) (-15 -2398 ((-516) (-516))) (-15 -2398 ((-516))) (-15 -4233 ((-359) $)) (-15 -4233 ($ (-649))) (-15 -2401 ((-516) $)) (-15 -2427 ((-516) $)) (-15 -3211 ($ (-516) (-516) (-860)))))) (T -647))
+((-2957 (*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-647)))) (-2427 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-647)))) (-2401 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-647)))) (-2400 (*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-647)))) (-2400 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-647)))) (-2957 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-647)))) (-2399 (*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-647)))) (-2399 (*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-647)))) (-2398 (*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-647)))) (-2398 (*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-647)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-359)) (-5 *1 (-647)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-649)) (-5 *1 (-647)))) (-3211 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-860)) (-5 *1 (-647)))))
+(-13 (-385) (-368) (-344) (-975 (-359)) (-975 (-388 (-516))) (-140) (-10 -8 (-15 -2400 ((-860) (-860))) (-15 -2400 ((-860))) (-15 -2957 ((-860) (-860))) (-15 -2957 ((-860))) (-15 -2399 ((-516) (-516))) (-15 -2399 ((-516))) (-15 -2398 ((-516) (-516))) (-15 -2398 ((-516))) (-15 -4233 ((-359) $)) (-15 -4233 ($ (-649))) (-15 -2401 ((-516) $)) (-15 -2427 ((-516) $)) (-15 -3211 ($ (-516) (-516) (-860)))))
+((-2404 (((-637 |#1|) (-637 |#1|) |#1| |#1|) 65)) (-3369 (((-637 |#1|) (-637 |#1|) |#1|) 48)) (-2403 (((-637 |#1|) (-637 |#1|) |#1|) 66)) (-2402 (((-637 |#1|) (-637 |#1|)) 49)) (-2405 (((-2 (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1|) 64)))
+(((-648 |#1|) (-10 -7 (-15 -2402 ((-637 |#1|) (-637 |#1|))) (-15 -3369 ((-637 |#1|) (-637 |#1|) |#1|)) (-15 -2403 ((-637 |#1|) (-637 |#1|) |#1|)) (-15 -2404 ((-637 |#1|) (-637 |#1|) |#1| |#1|)) (-15 -2405 ((-2 (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1|))) (-289)) (T -648))
+((-2405 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2046 *3) (|:| -3166 *3))) (-5 *1 (-648 *3)) (-4 *3 (-289)))) (-2404 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))) (-2403 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))) (-3369 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))) (-2402 (*1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))))
+(-10 -7 (-15 -2402 ((-637 |#1|) (-637 |#1|))) (-15 -3369 ((-637 |#1|) (-637 |#1|) |#1|)) (-15 -2403 ((-637 |#1|) (-637 |#1|) |#1|)) (-15 -2404 ((-637 |#1|) (-637 |#1|) |#1| |#1|)) (-15 -2405 ((-2 (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-2102 (($ $ $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-2097 (($ $ $ $) NIL)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-1655 (((-110) $ $) NIL)) (-3905 (((-516) $) NIL)) (-2624 (($ $ $) NIL)) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-516) "failed") $) 27)) (-3431 (((-516) $) 25)) (-2824 (($ $ $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3288 (((-3 (-388 (-516)) "failed") $) NIL)) (-3287 (((-110) $) NIL)) (-3286 (((-388 (-516)) $) NIL)) (-3258 (($ $) NIL) (($) NIL)) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4005 (((-110) $) NIL)) (-2095 (($ $ $ $) NIL)) (-2103 (($ $ $) NIL)) (-3460 (((-110) $) NIL)) (-1368 (($ $ $) NIL)) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL)) (-2436 (((-110) $) NIL)) (-2936 (((-110) $) NIL)) (-3723 (((-3 $ "failed") $) NIL)) (-3461 (((-110) $) NIL)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL)) (-2096 (($ $ $ $) NIL)) (-3596 (($ $ $) NIL)) (-2406 (((-860) (-860)) 10) (((-860)) 9)) (-3597 (($ $ $) NIL)) (-2099 (($ $) NIL)) (-4112 (($ $) NIL)) (-1963 (($ (-594 $)) NIL) (($ $ $) NIL)) (-3513 (((-1081) $) NIL)) (-2094 (($ $ $) NIL)) (-3724 (($) NIL T CONST)) (-2101 (($ $) NIL)) (-3514 (((-1045) $) NIL) (($ $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ (-594 $)) NIL) (($ $ $) NIL)) (-1366 (($ $) NIL)) (-4011 (((-386 $) $) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-2937 (((-110) $) NIL)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-4089 (($ $) NIL) (($ $ (-719)) NIL)) (-2100 (($ $) NIL)) (-3678 (($ $) NIL)) (-4246 (((-208) $) NIL) (((-359) $) NIL) (((-831 (-516)) $) NIL) (((-505) $) NIL) (((-516) $) NIL)) (-4233 (((-805) $) NIL) (($ (-516)) 24) (($ $) NIL) (($ (-516)) 24) (((-295 $) (-295 (-516))) 18)) (-3385 (((-719)) NIL)) (-2104 (((-110) $ $) NIL)) (-3362 (($ $ $) NIL)) (-2957 (($) NIL)) (-2117 (((-110) $ $) NIL)) (-2098 (($ $ $ $) NIL)) (-3661 (($ $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($ $) NIL) (($ $ (-719)) NIL)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL)))
+(((-649) (-13 (-368) (-515) (-10 -8 (-15 -2406 ((-860) (-860))) (-15 -2406 ((-860))) (-15 -4233 ((-295 $) (-295 (-516))))))) (T -649))
+((-2406 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-649)))) (-2406 (*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-649)))) (-4233 (*1 *2 *3) (-12 (-5 *3 (-295 (-516))) (-5 *2 (-295 (-649))) (-5 *1 (-649)))))
+(-13 (-368) (-515) (-10 -8 (-15 -2406 ((-860) (-860))) (-15 -2406 ((-860))) (-15 -4233 ((-295 $) (-295 (-516))))))
+((-2412 (((-1 |#4| |#2| |#3|) |#1| (-1098) (-1098)) 19)) (-2407 (((-1 |#4| |#2| |#3|) (-1098)) 12)))
+(((-650 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2407 ((-1 |#4| |#2| |#3|) (-1098))) (-15 -2412 ((-1 |#4| |#2| |#3|) |#1| (-1098) (-1098)))) (-572 (-505)) (-1134) (-1134) (-1134)) (T -650))
+((-2412 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1098)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-650 *3 *5 *6 *7)) (-4 *3 (-572 (-505))) (-4 *5 (-1134)) (-4 *6 (-1134)) (-4 *7 (-1134)))) (-2407 (*1 *2 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-650 *4 *5 *6 *7)) (-4 *4 (-572 (-505))) (-4 *5 (-1134)) (-4 *6 (-1134)) (-4 *7 (-1134)))))
+(-10 -7 (-15 -2407 ((-1 |#4| |#2| |#3|) (-1098))) (-15 -2412 ((-1 |#4| |#2| |#3|) |#1| (-1098) (-1098))))
+((-2828 (((-110) $ $) NIL)) (-1320 (((-1185) $ (-719)) 14)) (-3698 (((-719) $) 12)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 25)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 24)))
+(((-651 |#1|) (-13 (-129) (-571 |#1|) (-10 -8 (-15 -4233 ($ |#1|)))) (-1027)) (T -651))
+((-4233 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-1027)))))
+(-13 (-129) (-571 |#1|) (-10 -8 (-15 -4233 ($ |#1|))))
+((-2408 (((-1 (-208) (-208) (-208)) |#1| (-1098) (-1098)) 34) (((-1 (-208) (-208)) |#1| (-1098)) 39)))
+(((-652 |#1|) (-10 -7 (-15 -2408 ((-1 (-208) (-208)) |#1| (-1098))) (-15 -2408 ((-1 (-208) (-208) (-208)) |#1| (-1098) (-1098)))) (-572 (-505))) (T -652))
+((-2408 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1098)) (-5 *2 (-1 (-208) (-208) (-208))) (-5 *1 (-652 *3)) (-4 *3 (-572 (-505))))) (-2408 (*1 *2 *3 *4) (-12 (-5 *4 (-1098)) (-5 *2 (-1 (-208) (-208))) (-5 *1 (-652 *3)) (-4 *3 (-572 (-505))))))
+(-10 -7 (-15 -2408 ((-1 (-208) (-208)) |#1| (-1098))) (-15 -2408 ((-1 (-208) (-208) (-208)) |#1| (-1098) (-1098))))
+((-2409 (((-1098) |#1| (-1098) (-594 (-1098))) 9) (((-1098) |#1| (-1098) (-1098) (-1098)) 12) (((-1098) |#1| (-1098) (-1098)) 11) (((-1098) |#1| (-1098)) 10)))
+(((-653 |#1|) (-10 -7 (-15 -2409 ((-1098) |#1| (-1098))) (-15 -2409 ((-1098) |#1| (-1098) (-1098))) (-15 -2409 ((-1098) |#1| (-1098) (-1098) (-1098))) (-15 -2409 ((-1098) |#1| (-1098) (-594 (-1098))))) (-572 (-505))) (T -653))
+((-2409 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-594 (-1098))) (-5 *2 (-1098)) (-5 *1 (-653 *3)) (-4 *3 (-572 (-505))))) (-2409 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-653 *3)) (-4 *3 (-572 (-505))))) (-2409 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-653 *3)) (-4 *3 (-572 (-505))))) (-2409 (*1 *2 *3 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-653 *3)) (-4 *3 (-572 (-505))))))
+(-10 -7 (-15 -2409 ((-1098) |#1| (-1098))) (-15 -2409 ((-1098) |#1| (-1098) (-1098))) (-15 -2409 ((-1098) |#1| (-1098) (-1098) (-1098))) (-15 -2409 ((-1098) |#1| (-1098) (-594 (-1098)))))
+((-2410 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-654 |#1| |#2|) (-10 -7 (-15 -2410 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1134) (-1134)) (T -654))
+((-2410 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-654 *3 *4)) (-4 *3 (-1134)) (-4 *4 (-1134)))))
+(-10 -7 (-15 -2410 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-2411 (((-1 |#3| |#2|) (-1098)) 11)) (-2412 (((-1 |#3| |#2|) |#1| (-1098)) 21)))
+(((-655 |#1| |#2| |#3|) (-10 -7 (-15 -2411 ((-1 |#3| |#2|) (-1098))) (-15 -2412 ((-1 |#3| |#2|) |#1| (-1098)))) (-572 (-505)) (-1134) (-1134)) (T -655))
+((-2412 (*1 *2 *3 *4) (-12 (-5 *4 (-1098)) (-5 *2 (-1 *6 *5)) (-5 *1 (-655 *3 *5 *6)) (-4 *3 (-572 (-505))) (-4 *5 (-1134)) (-4 *6 (-1134)))) (-2411 (*1 *2 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-1 *6 *5)) (-5 *1 (-655 *4 *5 *6)) (-4 *4 (-572 (-505))) (-4 *5 (-1134)) (-4 *6 (-1134)))))
+(-10 -7 (-15 -2411 ((-1 |#3| |#2|) (-1098))) (-15 -2412 ((-1 |#3| |#2|) |#1| (-1098))))
+((-2415 (((-3 (-594 (-1092 |#4|)) "failed") (-1092 |#4|) (-594 |#2|) (-594 (-1092 |#4|)) (-594 |#3|) (-594 |#4|) (-594 (-594 (-2 (|:| -3342 (-719)) (|:| |pcoef| |#4|)))) (-594 (-719)) (-1179 (-594 (-1092 |#3|))) |#3|) 62)) (-2414 (((-3 (-594 (-1092 |#4|)) "failed") (-1092 |#4|) (-594 |#2|) (-594 (-1092 |#3|)) (-594 |#3|) (-594 |#4|) (-594 (-719)) |#3|) 75)) (-2413 (((-3 (-594 (-1092 |#4|)) "failed") (-1092 |#4|) (-594 |#2|) (-594 |#3|) (-594 (-719)) (-594 (-1092 |#4|)) (-1179 (-594 (-1092 |#3|))) |#3|) 34)))
+(((-656 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2413 ((-3 (-594 (-1092 |#4|)) "failed") (-1092 |#4|) (-594 |#2|) (-594 |#3|) (-594 (-719)) (-594 (-1092 |#4|)) (-1179 (-594 (-1092 |#3|))) |#3|)) (-15 -2414 ((-3 (-594 (-1092 |#4|)) "failed") (-1092 |#4|) (-594 |#2|) (-594 (-1092 |#3|)) (-594 |#3|) (-594 |#4|) (-594 (-719)) |#3|)) (-15 -2415 ((-3 (-594 (-1092 |#4|)) "failed") (-1092 |#4|) (-594 |#2|) (-594 (-1092 |#4|)) (-594 |#3|) (-594 |#4|) (-594 (-594 (-2 (|:| -3342 (-719)) (|:| |pcoef| |#4|)))) (-594 (-719)) (-1179 (-594 (-1092 |#3|))) |#3|))) (-741) (-795) (-289) (-891 |#3| |#1| |#2|)) (T -656))
+((-2415 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-594 (-1092 *13))) (-5 *3 (-1092 *13)) (-5 *4 (-594 *12)) (-5 *5 (-594 *10)) (-5 *6 (-594 *13)) (-5 *7 (-594 (-594 (-2 (|:| -3342 (-719)) (|:| |pcoef| *13))))) (-5 *8 (-594 (-719))) (-5 *9 (-1179 (-594 (-1092 *10)))) (-4 *12 (-795)) (-4 *10 (-289)) (-4 *13 (-891 *10 *11 *12)) (-4 *11 (-741)) (-5 *1 (-656 *11 *12 *10 *13)))) (-2414 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-594 *11)) (-5 *5 (-594 (-1092 *9))) (-5 *6 (-594 *9)) (-5 *7 (-594 *12)) (-5 *8 (-594 (-719))) (-4 *11 (-795)) (-4 *9 (-289)) (-4 *12 (-891 *9 *10 *11)) (-4 *10 (-741)) (-5 *2 (-594 (-1092 *12))) (-5 *1 (-656 *10 *11 *9 *12)) (-5 *3 (-1092 *12)))) (-2413 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-594 (-1092 *11))) (-5 *3 (-1092 *11)) (-5 *4 (-594 *10)) (-5 *5 (-594 *8)) (-5 *6 (-594 (-719))) (-5 *7 (-1179 (-594 (-1092 *8)))) (-4 *10 (-795)) (-4 *8 (-289)) (-4 *11 (-891 *8 *9 *10)) (-4 *9 (-741)) (-5 *1 (-656 *9 *10 *8 *11)))))
+(-10 -7 (-15 -2413 ((-3 (-594 (-1092 |#4|)) "failed") (-1092 |#4|) (-594 |#2|) (-594 |#3|) (-594 (-719)) (-594 (-1092 |#4|)) (-1179 (-594 (-1092 |#3|))) |#3|)) (-15 -2414 ((-3 (-594 (-1092 |#4|)) "failed") (-1092 |#4|) (-594 |#2|) (-594 (-1092 |#3|)) (-594 |#3|) (-594 |#4|) (-594 (-719)) |#3|)) (-15 -2415 ((-3 (-594 (-1092 |#4|)) "failed") (-1092 |#4|) (-594 |#2|) (-594 (-1092 |#4|)) (-594 |#3|) (-594 |#4|) (-594 (-594 (-2 (|:| -3342 (-719)) (|:| |pcoef| |#4|)))) (-594 (-719)) (-1179 (-594 (-1092 |#3|))) |#3|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-4235 (($ $) 41)) (-3741 (((-3 $ "failed") $) 34)) (-2436 (((-110) $) 31)) (-3157 (($ |#1| (-719)) 39)) (-3084 (((-719) $) 43)) (-3449 ((|#1| $) 42)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4223 (((-719) $) 44)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ |#1|) 38 (|has| |#1| (-162)))) (-3959 ((|#1| $ (-719)) 40)) (-3385 (((-719)) 29)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-657 |#1|) (-133) (-984)) (T -657))
+((-4223 (*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-984)) (-5 *2 (-719)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-984)) (-5 *2 (-719)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-984)))) (-4235 (*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-984)))) (-3959 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-657 *2)) (-4 *2 (-984)))) (-3157 (*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-657 *2)) (-4 *2 (-984)))))
+(-13 (-984) (-109 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -4223 ((-719) $)) (-15 -3084 ((-719) $)) (-15 -3449 (|t#1| $)) (-15 -4235 ($ $)) (-15 -3959 (|t#1| $ (-719))) (-15 -3157 ($ |t#1| (-719)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-162)) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-805)) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 |#1|) |has| |#1| (-162)) ((-675) . T) ((-989 |#1|) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-4234 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-658 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4234 (|#6| (-1 |#4| |#1|) |#3|))) (-523) (-1155 |#1|) (-1155 (-388 |#2|)) (-523) (-1155 |#4|) (-1155 (-388 |#5|))) (T -658))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-523)) (-4 *7 (-523)) (-4 *6 (-1155 *5)) (-4 *2 (-1155 (-388 *8))) (-5 *1 (-658 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1155 (-388 *6))) (-4 *8 (-1155 *7)))))
+(-10 -7 (-15 -4234 (|#6| (-1 |#4| |#1|) |#3|)))
+((-2828 (((-110) $ $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-2416 (((-1081) (-805)) 31)) (-3899 (((-1185) (-1081)) 28)) (-2418 (((-1081) (-805)) 24)) (-2417 (((-1081) (-805)) 25)) (-4233 (((-805) $) NIL) (((-1081) (-805)) 23)) (-3317 (((-110) $ $) NIL)))
+(((-659) (-13 (-1027) (-10 -7 (-15 -4233 ((-1081) (-805))) (-15 -2418 ((-1081) (-805))) (-15 -2417 ((-1081) (-805))) (-15 -2416 ((-1081) (-805))) (-15 -3899 ((-1185) (-1081)))))) (T -659))
+((-4233 (*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1081)) (-5 *1 (-659)))) (-2418 (*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1081)) (-5 *1 (-659)))) (-2417 (*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1081)) (-5 *1 (-659)))) (-2416 (*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1081)) (-5 *1 (-659)))) (-3899 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-659)))))
+(-13 (-1027) (-10 -7 (-15 -4233 ((-1081) (-805))) (-15 -2418 ((-1081) (-805))) (-15 -2417 ((-1081) (-805))) (-15 -2416 ((-1081) (-805))) (-15 -3899 ((-1185) (-1081)))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-1655 (((-110) $ $) NIL)) (-3815 (($) NIL T CONST)) (-2824 (($ $ $) NIL)) (-4121 (($ |#1| |#2|) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4005 (((-110) $) NIL)) (-2436 (((-110) $) NIL)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL)) (-2872 ((|#2| $) NIL)) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-4011 (((-386 $) $) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-2428 (((-3 $ "failed") $ $) NIL)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ $) NIL) (($ (-388 (-516))) NIL) ((|#1| $) NIL)) (-3385 (((-719)) NIL)) (-2117 (((-110) $ $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL)))
+(((-660 |#1| |#2| |#3| |#4| |#5|) (-13 (-344) (-10 -8 (-15 -2872 (|#2| $)) (-15 -4233 (|#1| $)) (-15 -4121 ($ |#1| |#2|)) (-15 -2428 ((-3 $ "failed") $ $)))) (-162) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -660))
+((-2872 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-660 *3 *2 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-4233 (*1 *2 *1) (-12 (-4 *2 (-162)) (-5 *1 (-660 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4121 (*1 *1 *2 *3) (-12 (-5 *1 (-660 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2428 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-660 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))))
+(-13 (-344) (-10 -8 (-15 -2872 (|#2| $)) (-15 -4233 (|#1| $)) (-15 -4121 ($ |#1| |#2|)) (-15 -2428 ((-3 $ "failed") $ $))))
+((-2828 (((-110) $ $) 78)) (-3462 (((-110) $) 30)) (-4045 (((-1179 |#1|) $ (-719)) NIL)) (-3347 (((-594 (-1011)) $) NIL)) (-4043 (($ (-1092 |#1|)) NIL)) (-3349 (((-1092 $) $ (-1011)) NIL) (((-1092 |#1|) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-2118 (($ $) NIL (|has| |#1| (-523)))) (-2116 (((-110) $) NIL (|has| |#1| (-523)))) (-3083 (((-719) $) NIL) (((-719) $ (-594 (-1011))) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-4034 (($ $ $) NIL (|has| |#1| (-523)))) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-4053 (($ $) NIL (|has| |#1| (-432)))) (-4245 (((-386 $) $) NIL (|has| |#1| (-432)))) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-1655 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3395 (((-719)) 47 (|has| |#1| (-349)))) (-4039 (($ $ (-719)) NIL)) (-4038 (($ $ (-719)) NIL)) (-2425 ((|#2| |#2|) 44)) (-4030 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-432)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#1| #2="failed") $) NIL) (((-3 (-388 (-516)) #2#) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-3 (-516) #2#) $) NIL (|has| |#1| (-975 (-516)))) (((-3 (-1011) #2#) $) NIL)) (-3431 ((|#1| $) NIL) (((-388 (-516)) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-516) $) NIL (|has| |#1| (-975 (-516)))) (((-1011) $) NIL)) (-4035 (($ $ $ (-1011)) NIL (|has| |#1| (-162))) ((|#1| $ $) NIL (|has| |#1| (-162)))) (-2824 (($ $ $) NIL (|has| |#1| (-344)))) (-4235 (($ $) 34)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-4121 (($ |#2|) 42)) (-3741 (((-3 $ "failed") $) 86)) (-3258 (($) 51 (|has| |#1| (-349)))) (-2823 (($ $ $) NIL (|has| |#1| (-344)))) (-4037 (($ $ $) NIL)) (-4032 (($ $ $) NIL (|has| |#1| (-523)))) (-4031 (((-2 (|:| -4229 |#1|) (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-523)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL (|has| |#1| (-344)))) (-3777 (($ $) NIL (|has| |#1| (-432))) (($ $ (-1011)) NIL (|has| |#1| (-432)))) (-3082 (((-594 $) $) NIL)) (-4005 (((-110) $) NIL (|has| |#1| (-851)))) (-2421 (((-899 $)) 80)) (-1671 (($ $ |#1| (-719) $) NIL)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (-12 (|has| (-1011) (-827 (-359))) (|has| |#1| (-827 (-359))))) (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (-12 (|has| (-1011) (-827 (-516))) (|has| |#1| (-827 (-516)))))) (-4050 (((-719) $ $) NIL (|has| |#1| (-523)))) (-2436 (((-110) $) NIL)) (-2444 (((-719) $) NIL)) (-3723 (((-3 $ "failed") $) NIL (|has| |#1| (-1074)))) (-3350 (($ (-1092 |#1|) (-1011)) NIL) (($ (-1092 $) (-1011)) NIL)) (-4055 (($ $ (-719)) NIL)) (-1652 (((-3 (-594 $) #3="failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-3085 (((-594 $) $) NIL)) (-4213 (((-110) $) NIL)) (-3157 (($ |#1| (-719)) 77) (($ $ (-1011) (-719)) NIL) (($ $ (-594 (-1011)) (-594 (-719))) NIL)) (-4041 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $ (-1011)) NIL) (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-2872 ((|#2|) 45)) (-3084 (((-719) $) NIL) (((-719) $ (-1011)) NIL) (((-594 (-719)) $ (-594 (-1011))) NIL)) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-1672 (($ (-1 (-719) (-719)) $) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-4044 (((-1092 |#1|) $) NIL)) (-3348 (((-3 (-1011) #4="failed") $) NIL)) (-2069 (((-860) $) NIL (|has| |#1| (-349)))) (-3343 ((|#2| $) 41)) (-3158 (($ $) NIL)) (-3449 ((|#1| $) 28)) (-1963 (($ (-594 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3513 (((-1081) $) NIL)) (-4040 (((-2 (|:| -2046 $) (|:| -3166 $)) $ (-719)) NIL)) (-3087 (((-3 (-594 $) #4#) $) NIL)) (-3086 (((-3 (-594 $) #4#) $) NIL)) (-3088 (((-3 (-2 (|:| |var| (-1011)) (|:| -2427 (-719))) #4#) $) NIL)) (-4091 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3724 (($) NIL (|has| |#1| (-1074)) CONST)) (-2426 (($ (-860)) NIL (|has| |#1| (-349)))) (-3514 (((-1045) $) NIL)) (-1866 (((-110) $) NIL)) (-1865 ((|#1| $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#1| (-432)))) (-3419 (($ (-594 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-2419 (($ $) 79 (|has| |#1| (-331)))) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-4011 (((-386 $) $) NIL (|has| |#1| (-851)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#1| (-344)))) (-3740 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-523)))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-4046 (($ $ (-594 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL) (($ $ (-1011) |#1|) NIL) (($ $ (-594 (-1011)) (-594 |#1|)) NIL) (($ $ (-1011) $) NIL) (($ $ (-594 (-1011)) (-594 $)) NIL)) (-1654 (((-719) $) NIL (|has| |#1| (-344)))) (-4078 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-388 $) (-388 $) (-388 $)) NIL (|has| |#1| (-523))) ((|#1| (-388 $) |#1|) NIL (|has| |#1| (-344))) (((-388 $) $ (-388 $)) NIL (|has| |#1| (-523)))) (-4042 (((-3 $ #5="failed") $ (-719)) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 87 (|has| |#1| (-344)))) (-4036 (($ $ (-1011)) NIL (|has| |#1| (-162))) ((|#1| $) NIL (|has| |#1| (-162)))) (-4089 (($ $ (-1011)) NIL) (($ $ (-594 (-1011))) NIL) (($ $ (-1011) (-719)) NIL) (($ $ (-594 (-1011)) (-594 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1098)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4223 (((-719) $) 32) (((-719) $ (-1011)) NIL) (((-594 (-719)) $ (-594 (-1011))) NIL)) (-4246 (((-831 (-359)) $) NIL (-12 (|has| (-1011) (-572 (-831 (-359)))) (|has| |#1| (-572 (-831 (-359)))))) (((-831 (-516)) $) NIL (-12 (|has| (-1011) (-572 (-831 (-516)))) (|has| |#1| (-572 (-831 (-516)))))) (((-505) $) NIL (-12 (|has| (-1011) (-572 (-505))) (|has| |#1| (-572 (-505)))))) (-3081 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-1011)) NIL (|has| |#1| (-432)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-851))))) (-2420 (((-899 $)) 36)) (-4033 (((-3 $ #5#) $ $) NIL (|has| |#1| (-523))) (((-3 (-388 $) #5#) (-388 $) $) NIL (|has| |#1| (-523)))) (-4233 (((-805) $) 61) (($ (-516)) NIL) (($ |#1|) 58) (($ (-1011)) NIL) (($ |#2|) 68) (($ (-388 (-516))) NIL (-3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-975 (-388 (-516)))))) (($ $) NIL (|has| |#1| (-523)))) (-4096 (((-594 |#1|) $) NIL)) (-3959 ((|#1| $ (-719)) 63) (($ $ (-1011) (-719)) NIL) (($ $ (-594 (-1011)) (-594 (-719))) NIL)) (-2965 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| $ (-138)) (|has| |#1| (-851))) (|has| |#1| (-138))))) (-3385 (((-719)) NIL)) (-1670 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-2117 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 20 T CONST)) (-2424 (((-1179 |#1|) $) 75)) (-2423 (($ (-1179 |#1|)) 50)) (-2927 (($) 8 T CONST)) (-2932 (($ $ (-1011)) NIL) (($ $ (-594 (-1011))) NIL) (($ $ (-1011) (-719)) NIL) (($ $ (-594 (-1011)) (-594 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1098)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2422 (((-1179 |#1|) $) NIL)) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) 69)) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#1| (-795)))) (-4224 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-4116 (($ $) 72) (($ $ $) NIL)) (-4118 (($ $ $) 33)) (** (($ $ (-860)) NIL) (($ $ (-719)) 81)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 57) (($ $ $) 74) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516))))) (($ (-388 (-516)) $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ |#1| $) 55) (($ $ |#1|) NIL)))
+(((-661 |#1| |#2|) (-13 (-1155 |#1|) (-10 -8 (-15 -2425 (|#2| |#2|)) (-15 -2872 (|#2|)) (-15 -4121 ($ |#2|)) (-15 -3343 (|#2| $)) (-15 -4233 ($ |#2|)) (-15 -2424 ((-1179 |#1|) $)) (-15 -2423 ($ (-1179 |#1|))) (-15 -2422 ((-1179 |#1|) $)) (-15 -2421 ((-899 $))) (-15 -2420 ((-899 $))) (IF (|has| |#1| (-331)) (-15 -2419 ($ $)) |%noBranch|) (IF (|has| |#1| (-349)) (-6 (-349)) |%noBranch|))) (-984) (-1155 |#1|)) (T -661))
+((-2425 (*1 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-661 *3 *2)) (-4 *2 (-1155 *3)))) (-2872 (*1 *2) (-12 (-4 *2 (-1155 *3)) (-5 *1 (-661 *3 *2)) (-4 *3 (-984)))) (-4121 (*1 *1 *2) (-12 (-4 *3 (-984)) (-5 *1 (-661 *3 *2)) (-4 *2 (-1155 *3)))) (-3343 (*1 *2 *1) (-12 (-4 *2 (-1155 *3)) (-5 *1 (-661 *3 *2)) (-4 *3 (-984)))) (-4233 (*1 *1 *2) (-12 (-4 *3 (-984)) (-5 *1 (-661 *3 *2)) (-4 *2 (-1155 *3)))) (-2424 (*1 *2 *1) (-12 (-4 *3 (-984)) (-5 *2 (-1179 *3)) (-5 *1 (-661 *3 *4)) (-4 *4 (-1155 *3)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-984)) (-5 *1 (-661 *3 *4)) (-4 *4 (-1155 *3)))) (-2422 (*1 *2 *1) (-12 (-4 *3 (-984)) (-5 *2 (-1179 *3)) (-5 *1 (-661 *3 *4)) (-4 *4 (-1155 *3)))) (-2421 (*1 *2) (-12 (-4 *3 (-984)) (-5 *2 (-899 (-661 *3 *4))) (-5 *1 (-661 *3 *4)) (-4 *4 (-1155 *3)))) (-2420 (*1 *2) (-12 (-4 *3 (-984)) (-5 *2 (-899 (-661 *3 *4))) (-5 *1 (-661 *3 *4)) (-4 *4 (-1155 *3)))) (-2419 (*1 *1 *1) (-12 (-4 *2 (-331)) (-4 *2 (-984)) (-5 *1 (-661 *2 *3)) (-4 *3 (-1155 *2)))))
+(-13 (-1155 |#1|) (-10 -8 (-15 -2425 (|#2| |#2|)) (-15 -2872 (|#2|)) (-15 -4121 ($ |#2|)) (-15 -3343 (|#2| $)) (-15 -4233 ($ |#2|)) (-15 -2424 ((-1179 |#1|) $)) (-15 -2423 ($ (-1179 |#1|))) (-15 -2422 ((-1179 |#1|) $)) (-15 -2421 ((-899 $))) (-15 -2420 ((-899 $))) (IF (|has| |#1| (-331)) (-15 -2419 ($ $)) |%noBranch|) (IF (|has| |#1| (-349)) (-6 (-349)) |%noBranch|)))
+((-2828 (((-110) $ $) NIL)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-3513 (((-1081) $) NIL)) (-2426 ((|#1| $) 13)) (-3514 (((-1045) $) NIL)) (-2427 ((|#2| $) 12)) (-3804 (($ |#1| |#2|) 16)) (-4233 (((-805) $) NIL) (($ (-2 (|:| -2426 |#1|) (|:| -2427 |#2|))) 15) (((-2 (|:| -2426 |#1|) (|:| -2427 |#2|)) $) 14)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 11)))
+(((-662 |#1| |#2| |#3|) (-13 (-795) (-10 -8 (-15 -2427 (|#2| $)) (-15 -2426 (|#1| $)) (-15 -4233 ($ (-2 (|:| -2426 |#1|) (|:| -2427 |#2|)))) (-15 -4233 ((-2 (|:| -2426 |#1|) (|:| -2427 |#2|)) $)) (-15 -3804 ($ |#1| |#2|)))) (-795) (-1027) (-1 (-110) (-2 (|:| -2426 |#1|) (|:| -2427 |#2|)) (-2 (|:| -2426 |#1|) (|:| -2427 |#2|)))) (T -662))
+((-2427 (*1 *2 *1) (-12 (-4 *2 (-1027)) (-5 *1 (-662 *3 *2 *4)) (-4 *3 (-795)) (-14 *4 (-1 (-110) (-2 (|:| -2426 *3) (|:| -2427 *2)) (-2 (|:| -2426 *3) (|:| -2427 *2)))))) (-2426 (*1 *2 *1) (-12 (-4 *2 (-795)) (-5 *1 (-662 *2 *3 *4)) (-4 *3 (-1027)) (-14 *4 (-1 (-110) (-2 (|:| -2426 *2) (|:| -2427 *3)) (-2 (|:| -2426 *2) (|:| -2427 *3)))))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2426 *3) (|:| -2427 *4))) (-4 *3 (-795)) (-4 *4 (-1027)) (-5 *1 (-662 *3 *4 *5)) (-14 *5 (-1 (-110) *2 *2)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2426 *3) (|:| -2427 *4))) (-5 *1 (-662 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-1027)) (-14 *5 (-1 (-110) *2 *2)))) (-3804 (*1 *1 *2 *3) (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-795)) (-4 *3 (-1027)) (-14 *4 (-1 (-110) (-2 (|:| -2426 *2) (|:| -2427 *3)) (-2 (|:| -2426 *2) (|:| -2427 *3)))))))
+(-13 (-795) (-10 -8 (-15 -2427 (|#2| $)) (-15 -2426 (|#1| $)) (-15 -4233 ($ (-2 (|:| -2426 |#1|) (|:| -2427 |#2|)))) (-15 -4233 ((-2 (|:| -2426 |#1|) (|:| -2427 |#2|)) $)) (-15 -3804 ($ |#1| |#2|))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 59)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#1| #1="failed") $) 89) (((-3 (-111) #1#) $) 95)) (-3431 ((|#1| $) NIL) (((-111) $) 39)) (-3741 (((-3 $ "failed") $) 90)) (-2784 ((|#2| (-111) |#2|) 82)) (-2436 (((-110) $) NIL)) (-2783 (($ |#1| (-342 (-111))) 14)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-2785 (($ $ (-1 |#2| |#2|)) 58)) (-2786 (($ $ (-1 |#2| |#2|)) 44)) (-4078 ((|#2| $ |#2|) 33)) (-2787 ((|#1| |#1|) 105 (|has| |#1| (-162)))) (-4233 (((-805) $) 66) (($ (-516)) 18) (($ |#1|) 17) (($ (-111)) 23)) (-2965 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3385 (((-719)) 37)) (-2788 (($ $) 99 (|has| |#1| (-162))) (($ $ $) 103 (|has| |#1| (-162)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 21 T CONST)) (-2927 (($) 9 T CONST)) (-3317 (((-110) $ $) NIL)) (-4116 (($ $) 48) (($ $ $) NIL)) (-4118 (($ $ $) 73)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ (-111) (-516)) NIL) (($ $ (-516)) 57)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-162))) (($ $ |#1|) 97 (|has| |#1| (-162)))))
+(((-663 |#1| |#2|) (-13 (-984) (-975 |#1|) (-975 (-111)) (-268 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -2788 ($ $)) (-15 -2788 ($ $ $)) (-15 -2787 (|#1| |#1|))) |%noBranch|) (-15 -2786 ($ $ (-1 |#2| |#2|))) (-15 -2785 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-111) (-516))) (-15 ** ($ $ (-516))) (-15 -2784 (|#2| (-111) |#2|)) (-15 -2783 ($ |#1| (-342 (-111)))))) (-984) (-599 |#1|)) (T -663))
+((-2788 (*1 *1 *1) (-12 (-4 *2 (-162)) (-4 *2 (-984)) (-5 *1 (-663 *2 *3)) (-4 *3 (-599 *2)))) (-2788 (*1 *1 *1 *1) (-12 (-4 *2 (-162)) (-4 *2 (-984)) (-5 *1 (-663 *2 *3)) (-4 *3 (-599 *2)))) (-2787 (*1 *2 *2) (-12 (-4 *2 (-162)) (-4 *2 (-984)) (-5 *1 (-663 *2 *3)) (-4 *3 (-599 *2)))) (-2786 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-599 *3)) (-4 *3 (-984)) (-5 *1 (-663 *3 *4)))) (-2785 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-599 *3)) (-4 *3 (-984)) (-5 *1 (-663 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-111)) (-5 *3 (-516)) (-4 *4 (-984)) (-5 *1 (-663 *4 *5)) (-4 *5 (-599 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-4 *3 (-984)) (-5 *1 (-663 *3 *4)) (-4 *4 (-599 *3)))) (-2784 (*1 *2 *3 *2) (-12 (-5 *3 (-111)) (-4 *4 (-984)) (-5 *1 (-663 *4 *2)) (-4 *2 (-599 *4)))) (-2783 (*1 *1 *2 *3) (-12 (-5 *3 (-342 (-111))) (-4 *2 (-984)) (-5 *1 (-663 *2 *4)) (-4 *4 (-599 *2)))))
+(-13 (-984) (-975 |#1|) (-975 (-111)) (-268 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -2788 ($ $)) (-15 -2788 ($ $ $)) (-15 -2787 (|#1| |#1|))) |%noBranch|) (-15 -2786 ($ $ (-1 |#2| |#2|))) (-15 -2785 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-111) (-516))) (-15 ** ($ $ (-516))) (-15 -2784 (|#2| (-111) |#2|)) (-15 -2783 ($ |#1| (-342 (-111))))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 33)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-4121 (($ |#1| |#2|) 25)) (-3741 (((-3 $ "failed") $) 48)) (-2436 (((-110) $) 35)) (-2872 ((|#2| $) 12)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) 49)) (-3514 (((-1045) $) NIL)) (-2428 (((-3 $ "failed") $ $) 47)) (-4233 (((-805) $) 24) (($ (-516)) 19) ((|#1| $) 13)) (-3385 (((-719)) 28)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 16 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 38)) (-4116 (($ $) 43) (($ $ $) 37)) (-4118 (($ $ $) 40)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 21) (($ $ $) 20)))
+(((-664 |#1| |#2| |#3| |#4| |#5|) (-13 (-984) (-10 -8 (-15 -2872 (|#2| $)) (-15 -4233 (|#1| $)) (-15 -4121 ($ |#1| |#2|)) (-15 -2428 ((-3 $ "failed") $ $)) (-15 -3741 ((-3 $ "failed") $)) (-15 -2668 ($ $)))) (-162) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -664))
+((-3741 (*1 *1 *1) (|partial| -12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2872 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-664 *3 *2 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-4233 (*1 *2 *1) (-12 (-4 *2 (-162)) (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4121 (*1 *1 *2 *3) (-12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2428 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2668 (*1 *1 *1) (-12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))))
+(-13 (-984) (-10 -8 (-15 -2872 (|#2| $)) (-15 -4233 (|#1| $)) (-15 -4121 ($ |#1| |#2|)) (-15 -2428 ((-3 $ "failed") $ $)) (-15 -3741 ((-3 $ "failed") $)) (-15 -2668 ($ $))))
+((* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
+(((-665 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-516) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-860) |#1|))) (-666 |#2|) (-162)) (T -665))
+NIL
+(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-516) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-860) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-2920 (($) 18 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-666 |#1|) (-133) (-162)) (T -666))
NIL
(-13 (-109 |t#1| |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-569 (-802)) . T) ((-597 |#1|) . T) ((-986 |#1|) . T) ((-1023) . T))
-((-2207 (((-110) $ $) NIL)) (-2950 (($ |#1|) 17) (($ $ |#1|) 20)) (-3721 (($ |#1|) 18) (($ $ |#1|) 21)) (-2816 (($) NIL T CONST)) (-1312 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1297 (((-110) $) NIL)) (-1966 (($ |#1| |#1| |#1| |#1|) 8)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) 16)) (-2495 (((-1042) $) NIL)) (-4014 ((|#1| $ |#1|) 24) (((-779 |#1|) $ (-779 |#1|)) 32)) (-4097 (($ $ $) NIL)) (-2405 (($ $ $) NIL)) (-2222 (((-802) $) 39)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2982 (($) 9 T CONST)) (-2186 (((-110) $ $) 44)) (-2296 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (* (($ $ $) 14)))
-(((-665 |#1|) (-13 (-452) (-10 -8 (-15 -1966 ($ |#1| |#1| |#1| |#1|)) (-15 -2950 ($ |#1|)) (-15 -3721 ($ |#1|)) (-15 -1312 ($)) (-15 -2950 ($ $ |#1|)) (-15 -3721 ($ $ |#1|)) (-15 -1312 ($ $)) (-15 -4014 (|#1| $ |#1|)) (-15 -4014 ((-779 |#1|) $ (-779 |#1|))))) (-343)) (T -665))
-((-1966 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-665 *2)) (-4 *2 (-343)))) (-2950 (*1 *1 *2) (-12 (-5 *1 (-665 *2)) (-4 *2 (-343)))) (-3721 (*1 *1 *2) (-12 (-5 *1 (-665 *2)) (-4 *2 (-343)))) (-1312 (*1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-343)))) (-2950 (*1 *1 *1 *2) (-12 (-5 *1 (-665 *2)) (-4 *2 (-343)))) (-3721 (*1 *1 *1 *2) (-12 (-5 *1 (-665 *2)) (-4 *2 (-343)))) (-1312 (*1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-343)))) (-4014 (*1 *2 *1 *2) (-12 (-5 *1 (-665 *2)) (-4 *2 (-343)))) (-4014 (*1 *2 *1 *2) (-12 (-5 *2 (-779 *3)) (-4 *3 (-343)) (-5 *1 (-665 *3)))))
-(-13 (-452) (-10 -8 (-15 -1966 ($ |#1| |#1| |#1| |#1|)) (-15 -2950 ($ |#1|)) (-15 -3721 ($ |#1|)) (-15 -1312 ($)) (-15 -2950 ($ $ |#1|)) (-15 -3721 ($ $ |#1|)) (-15 -1312 ($ $)) (-15 -4014 (|#1| $ |#1|)) (-15 -4014 ((-779 |#1|) $ (-779 |#1|)))))
-((-3693 (($ $ (-860)) 12)) (-3964 (($ $ (-860)) 13)) (** (($ $ (-860)) 10)))
-(((-666 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-860))) (-15 -3964 (|#1| |#1| (-860))) (-15 -3693 (|#1| |#1| (-860)))) (-667)) (T -666))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-860))) (-15 -3964 (|#1| |#1| (-860))) (-15 -3693 (|#1| |#1| (-860))))
-((-2207 (((-110) $ $) 7)) (-3693 (($ $ (-860)) 15)) (-3964 (($ $ (-860)) 14)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2186 (((-110) $ $) 6)) (** (($ $ (-860)) 13)) (* (($ $ $) 16)))
-(((-667) (-133)) (T -667))
-((* (*1 *1 *1 *1) (-4 *1 (-667))) (-3693 (*1 *1 *1 *2) (-12 (-4 *1 (-667)) (-5 *2 (-860)))) (-3964 (*1 *1 *1 *2) (-12 (-4 *1 (-667)) (-5 *2 (-860)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-667)) (-5 *2 (-860)))))
-(-13 (-1023) (-10 -8 (-15 * ($ $ $)) (-15 -3693 ($ $ (-860))) (-15 -3964 ($ $ (-860))) (-15 ** ($ $ (-860)))))
-(((-99) . T) ((-569 (-802)) . T) ((-1023) . T))
-((-3693 (($ $ (-860)) NIL) (($ $ (-717)) 17)) (-1297 (((-110) $) 10)) (-3964 (($ $ (-860)) NIL) (($ $ (-717)) 18)) (** (($ $ (-860)) NIL) (($ $ (-717)) 15)))
-(((-668 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-717))) (-15 -3964 (|#1| |#1| (-717))) (-15 -3693 (|#1| |#1| (-717))) (-15 -1297 ((-110) |#1|)) (-15 ** (|#1| |#1| (-860))) (-15 -3964 (|#1| |#1| (-860))) (-15 -3693 (|#1| |#1| (-860)))) (-669)) (T -668))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-717))) (-15 -3964 (|#1| |#1| (-717))) (-15 -3693 (|#1| |#1| (-717))) (-15 -1297 ((-110) |#1|)) (-15 ** (|#1| |#1| (-860))) (-15 -3964 (|#1| |#1| (-860))) (-15 -3693 (|#1| |#1| (-860))))
-((-2207 (((-110) $ $) 7)) (-3552 (((-3 $ "failed") $) 17)) (-3693 (($ $ (-860)) 15) (($ $ (-717)) 22)) (-1312 (((-3 $ "failed") $) 19)) (-1297 (((-110) $) 23)) (-1895 (((-3 $ "failed") $) 18)) (-3964 (($ $ (-860)) 14) (($ $ (-717)) 21)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2982 (($) 24 T CONST)) (-2186 (((-110) $ $) 6)) (** (($ $ (-860)) 13) (($ $ (-717)) 20)) (* (($ $ $) 16)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-805)) . T) ((-599 |#1|) . T) ((-989 |#1|) . T) ((-1027) . T))
+((-2828 (((-110) $ $) NIL)) (-2624 (($ |#1|) 17) (($ $ |#1|) 20)) (-4126 (($ |#1|) 18) (($ $ |#1|) 21)) (-3815 (($) NIL T CONST)) (-3741 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2436 (((-110) $) NIL)) (-2429 (($ |#1| |#1| |#1| |#1|) 8)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) 16)) (-3514 (((-1045) $) NIL)) (-4046 ((|#1| $ |#1|) 24) (((-780 |#1|) $ (-780 |#1|)) 32)) (-3273 (($ $ $) NIL)) (-2620 (($ $ $) NIL)) (-4233 (((-805) $) 39)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2927 (($) 9 T CONST)) (-3317 (((-110) $ $) 44)) (-4224 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (* (($ $ $) 14)))
+(((-667 |#1|) (-13 (-453) (-10 -8 (-15 -2429 ($ |#1| |#1| |#1| |#1|)) (-15 -2624 ($ |#1|)) (-15 -4126 ($ |#1|)) (-15 -3741 ($)) (-15 -2624 ($ $ |#1|)) (-15 -4126 ($ $ |#1|)) (-15 -3741 ($ $)) (-15 -4046 (|#1| $ |#1|)) (-15 -4046 ((-780 |#1|) $ (-780 |#1|))))) (-344)) (T -667))
+((-2429 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-2624 (*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-4126 (*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-3741 (*1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-2624 (*1 *1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-4126 (*1 *1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-3741 (*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-4046 (*1 *2 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-4046 (*1 *2 *1 *2) (-12 (-5 *2 (-780 *3)) (-4 *3 (-344)) (-5 *1 (-667 *3)))))
+(-13 (-453) (-10 -8 (-15 -2429 ($ |#1| |#1| |#1| |#1|)) (-15 -2624 ($ |#1|)) (-15 -4126 ($ |#1|)) (-15 -3741 ($)) (-15 -2624 ($ $ |#1|)) (-15 -4126 ($ $ |#1|)) (-15 -3741 ($ $)) (-15 -4046 (|#1| $ |#1|)) (-15 -4046 ((-780 |#1|) $ (-780 |#1|)))))
+((-2433 (($ $ (-860)) 12)) (-2432 (($ $ (-860)) 13)) (** (($ $ (-860)) 10)))
+(((-668 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-860))) (-15 -2432 (|#1| |#1| (-860))) (-15 -2433 (|#1| |#1| (-860)))) (-669)) (T -668))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-860))) (-15 -2432 (|#1| |#1| (-860))) (-15 -2433 (|#1| |#1| (-860))))
+((-2828 (((-110) $ $) 7)) (-2433 (($ $ (-860)) 15)) (-2432 (($ $ (-860)) 14)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-3317 (((-110) $ $) 6)) (** (($ $ (-860)) 13)) (* (($ $ $) 16)))
(((-669) (-133)) (T -669))
-((-2982 (*1 *1) (-4 *1 (-669))) (-1297 (*1 *2 *1) (-12 (-4 *1 (-669)) (-5 *2 (-110)))) (-3693 (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-717)))) (-3964 (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-717)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-717)))) (-1312 (*1 *1 *1) (|partial| -4 *1 (-669))) (-1895 (*1 *1 *1) (|partial| -4 *1 (-669))) (-3552 (*1 *1 *1) (|partial| -4 *1 (-669))))
-(-13 (-667) (-10 -8 (-15 (-2982) ($) -2636) (-15 -1297 ((-110) $)) (-15 -3693 ($ $ (-717))) (-15 -3964 ($ $ (-717))) (-15 ** ($ $ (-717))) (-15 -1312 ((-3 $ "failed") $)) (-15 -1895 ((-3 $ "failed") $)) (-15 -3552 ((-3 $ "failed") $))))
-(((-99) . T) ((-569 (-802)) . T) ((-667) . T) ((-1023) . T))
-((-2856 (((-717)) 34)) (-3001 (((-3 (-528) "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2409 (((-528) $) NIL) (((-387 (-528)) $) NIL) ((|#2| $) 22)) (-1422 (($ |#3|) NIL) (((-3 $ "failed") (-387 |#3|)) 44)) (-1312 (((-3 $ "failed") $) 64)) (-1338 (($) 38)) (-3297 ((|#2| $) 20)) (-1261 (($) 17)) (-3235 (($ $ (-1 |#2| |#2|) (-717)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-595 (-1095)) (-595 (-717))) NIL) (($ $ (-1095) (-717)) NIL) (($ $ (-595 (-1095))) NIL) (($ $ (-1095)) NIL) (($ $ (-717)) NIL) (($ $) NIL)) (-2348 (((-635 |#2|) (-1177 $) (-1 |#2| |#2|)) 59)) (-3155 (((-1177 |#2|) $) NIL) (($ (-1177 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2516 ((|#3| $) 32)) (-1400 (((-1177 $)) 29)))
-(((-670 |#1| |#2| |#3|) (-10 -8 (-15 -3235 (|#1| |#1|)) (-15 -3235 (|#1| |#1| (-717))) (-15 -3235 (|#1| |#1| (-1095))) (-15 -3235 (|#1| |#1| (-595 (-1095)))) (-15 -3235 (|#1| |#1| (-1095) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)) (-595 (-717)))) (-15 -1338 (|#1|)) (-15 -2856 ((-717))) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|) (-717))) (-15 -2348 ((-635 |#2|) (-1177 |#1|) (-1 |#2| |#2|))) (-15 -1422 ((-3 |#1| "failed") (-387 |#3|))) (-15 -3155 (|#1| |#3|)) (-15 -1422 (|#1| |#3|)) (-15 -1261 (|#1|)) (-15 -2409 (|#2| |#1|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -2409 ((-387 (-528)) |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -2409 ((-528) |#1|)) (-15 -3155 (|#3| |#1|)) (-15 -3155 (|#1| (-1177 |#2|))) (-15 -3155 ((-1177 |#2|) |#1|)) (-15 -1400 ((-1177 |#1|))) (-15 -2516 (|#3| |#1|)) (-15 -3297 (|#2| |#1|)) (-15 -1312 ((-3 |#1| "failed") |#1|))) (-671 |#2| |#3|) (-162) (-1153 |#2|)) (T -670))
-((-2856 (*1 *2) (-12 (-4 *4 (-162)) (-4 *5 (-1153 *4)) (-5 *2 (-717)) (-5 *1 (-670 *3 *4 *5)) (-4 *3 (-671 *4 *5)))))
-(-10 -8 (-15 -3235 (|#1| |#1|)) (-15 -3235 (|#1| |#1| (-717))) (-15 -3235 (|#1| |#1| (-1095))) (-15 -3235 (|#1| |#1| (-595 (-1095)))) (-15 -3235 (|#1| |#1| (-1095) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)) (-595 (-717)))) (-15 -1338 (|#1|)) (-15 -2856 ((-717))) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|) (-717))) (-15 -2348 ((-635 |#2|) (-1177 |#1|) (-1 |#2| |#2|))) (-15 -1422 ((-3 |#1| "failed") (-387 |#3|))) (-15 -3155 (|#1| |#3|)) (-15 -1422 (|#1| |#3|)) (-15 -1261 (|#1|)) (-15 -2409 (|#2| |#1|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -2409 ((-387 (-528)) |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -2409 ((-528) |#1|)) (-15 -3155 (|#3| |#1|)) (-15 -3155 (|#1| (-1177 |#2|))) (-15 -3155 ((-1177 |#2|) |#1|)) (-15 -1400 ((-1177 |#1|))) (-15 -2516 (|#3| |#1|)) (-15 -3297 (|#2| |#1|)) (-15 -1312 ((-3 |#1| "failed") |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 93 (|has| |#1| (-343)))) (-1738 (($ $) 94 (|has| |#1| (-343)))) (-1811 (((-110) $) 96 (|has| |#1| (-343)))) (-2486 (((-635 |#1|) (-1177 $)) 46) (((-635 |#1|)) 61)) (-1323 ((|#1| $) 52)) (-2338 (((-1105 (-860) (-717)) (-528)) 147 (|has| |#1| (-329)))) (-3181 (((-3 $ "failed") $ $) 19)) (-1232 (($ $) 113 (|has| |#1| (-343)))) (-2705 (((-398 $) $) 114 (|has| |#1| (-343)))) (-2213 (((-110) $ $) 104 (|has| |#1| (-343)))) (-2856 (((-717)) 87 (|has| |#1| (-348)))) (-2816 (($) 17 T CONST)) (-3001 (((-3 (-528) "failed") $) 169 (|has| |#1| (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) 167 (|has| |#1| (-972 (-387 (-528))))) (((-3 |#1| "failed") $) 166)) (-2409 (((-528) $) 170 (|has| |#1| (-972 (-528)))) (((-387 (-528)) $) 168 (|has| |#1| (-972 (-387 (-528))))) ((|#1| $) 165)) (-1945 (($ (-1177 |#1|) (-1177 $)) 48) (($ (-1177 |#1|)) 64)) (-2413 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-329)))) (-3519 (($ $ $) 108 (|has| |#1| (-343)))) (-3847 (((-635 |#1|) $ (-1177 $)) 53) (((-635 |#1|) $) 59)) (-2120 (((-635 (-528)) (-635 $)) 164 (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) 163 (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) 162) (((-635 |#1|) (-635 $)) 161)) (-1422 (($ |#2|) 158) (((-3 $ "failed") (-387 |#2|)) 155 (|has| |#1| (-343)))) (-1312 (((-3 $ "failed") $) 34)) (-3090 (((-860)) 54)) (-1338 (($) 90 (|has| |#1| (-348)))) (-3498 (($ $ $) 107 (|has| |#1| (-343)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 102 (|has| |#1| (-343)))) (-2916 (($) 149 (|has| |#1| (-329)))) (-4086 (((-110) $) 150 (|has| |#1| (-329)))) (-2790 (($ $ (-717)) 141 (|has| |#1| (-329))) (($ $) 140 (|has| |#1| (-329)))) (-2124 (((-110) $) 115 (|has| |#1| (-343)))) (-3689 (((-860) $) 152 (|has| |#1| (-329))) (((-779 (-860)) $) 138 (|has| |#1| (-329)))) (-1297 (((-110) $) 31)) (-3297 ((|#1| $) 51)) (-3296 (((-3 $ "failed") $) 142 (|has| |#1| (-329)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) 111 (|has| |#1| (-343)))) (-3537 ((|#2| $) 44 (|has| |#1| (-343)))) (-3201 (((-860) $) 89 (|has| |#1| (-348)))) (-1412 ((|#2| $) 156)) (-2057 (($ (-595 $)) 100 (|has| |#1| (-343))) (($ $ $) 99 (|has| |#1| (-343)))) (-3034 (((-1078) $) 9)) (-2652 (($ $) 116 (|has| |#1| (-343)))) (-4197 (($) 143 (|has| |#1| (-329)) CONST)) (-3108 (($ (-860)) 88 (|has| |#1| (-348)))) (-2495 (((-1042) $) 10)) (-1261 (($) 160)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 101 (|has| |#1| (-343)))) (-2088 (($ (-595 $)) 98 (|has| |#1| (-343))) (($ $ $) 97 (|has| |#1| (-343)))) (-3010 (((-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528))))) 146 (|has| |#1| (-329)))) (-2437 (((-398 $) $) 112 (|has| |#1| (-343)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-343))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 109 (|has| |#1| (-343)))) (-3477 (((-3 $ "failed") $ $) 92 (|has| |#1| (-343)))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 103 (|has| |#1| (-343)))) (-3973 (((-717) $) 105 (|has| |#1| (-343)))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 106 (|has| |#1| (-343)))) (-1372 ((|#1| (-1177 $)) 47) ((|#1|) 60)) (-3500 (((-717) $) 151 (|has| |#1| (-329))) (((-3 (-717) "failed") $ $) 139 (|has| |#1| (-329)))) (-3235 (($ $) 137 (-1463 (-3287 (|has| |#1| (-215)) (|has| |#1| (-343))) (|has| |#1| (-329)))) (($ $ (-717)) 135 (-1463 (-3287 (|has| |#1| (-215)) (|has| |#1| (-343))) (|has| |#1| (-329)))) (($ $ (-1095)) 133 (-3287 (|has| |#1| (-839 (-1095))) (|has| |#1| (-343)))) (($ $ (-595 (-1095))) 132 (-3287 (|has| |#1| (-839 (-1095))) (|has| |#1| (-343)))) (($ $ (-1095) (-717)) 131 (-3287 (|has| |#1| (-839 (-1095))) (|has| |#1| (-343)))) (($ $ (-595 (-1095)) (-595 (-717))) 130 (-3287 (|has| |#1| (-839 (-1095))) (|has| |#1| (-343)))) (($ $ (-1 |#1| |#1|) (-717)) 123 (|has| |#1| (-343))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-343)))) (-2348 (((-635 |#1|) (-1177 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-343)))) (-4090 ((|#2|) 159)) (-1984 (($) 148 (|has| |#1| (-329)))) (-4243 (((-1177 |#1|) $ (-1177 $)) 50) (((-635 |#1|) (-1177 $) (-1177 $)) 49) (((-1177 |#1|) $) 66) (((-635 |#1|) (-1177 $)) 65)) (-3155 (((-1177 |#1|) $) 63) (($ (-1177 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) 145 (|has| |#1| (-329)))) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-343))) (($ (-387 (-528))) 86 (-1463 (|has| |#1| (-343)) (|has| |#1| (-972 (-387 (-528))))))) (-3749 (($ $) 144 (|has| |#1| (-329))) (((-3 $ "failed") $) 43 (|has| |#1| (-138)))) (-2516 ((|#2| $) 45)) (-3742 (((-717)) 29)) (-1400 (((-1177 $)) 67)) (-4016 (((-110) $ $) 95 (|has| |#1| (-343)))) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33) (($ $ (-528)) 117 (|has| |#1| (-343)))) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-3245 (($ $) 136 (-1463 (-3287 (|has| |#1| (-215)) (|has| |#1| (-343))) (|has| |#1| (-329)))) (($ $ (-717)) 134 (-1463 (-3287 (|has| |#1| (-215)) (|has| |#1| (-343))) (|has| |#1| (-329)))) (($ $ (-1095)) 129 (-3287 (|has| |#1| (-839 (-1095))) (|has| |#1| (-343)))) (($ $ (-595 (-1095))) 128 (-3287 (|has| |#1| (-839 (-1095))) (|has| |#1| (-343)))) (($ $ (-1095) (-717)) 127 (-3287 (|has| |#1| (-839 (-1095))) (|has| |#1| (-343)))) (($ $ (-595 (-1095)) (-595 (-717))) 126 (-3287 (|has| |#1| (-839 (-1095))) (|has| |#1| (-343)))) (($ $ (-1 |#1| |#1|) (-717)) 125 (|has| |#1| (-343))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-343)))) (-2186 (((-110) $ $) 6)) (-2296 (($ $ $) 121 (|has| |#1| (-343)))) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32) (($ $ (-528)) 118 (|has| |#1| (-343)))) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-387 (-528)) $) 120 (|has| |#1| (-343))) (($ $ (-387 (-528))) 119 (|has| |#1| (-343)))))
-(((-671 |#1| |#2|) (-133) (-162) (-1153 |t#1|)) (T -671))
-((-1261 (*1 *1) (-12 (-4 *2 (-162)) (-4 *1 (-671 *2 *3)) (-4 *3 (-1153 *2)))) (-4090 (*1 *2) (-12 (-4 *1 (-671 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1153 *3)))) (-1422 (*1 *1 *2) (-12 (-4 *3 (-162)) (-4 *1 (-671 *3 *2)) (-4 *2 (-1153 *3)))) (-3155 (*1 *1 *2) (-12 (-4 *3 (-162)) (-4 *1 (-671 *3 *2)) (-4 *2 (-1153 *3)))) (-1412 (*1 *2 *1) (-12 (-4 *1 (-671 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1153 *3)))) (-1422 (*1 *1 *2) (|partial| -12 (-5 *2 (-387 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-343)) (-4 *3 (-162)) (-4 *1 (-671 *3 *4)))) (-2348 (*1 *2 *3 *4) (-12 (-5 *3 (-1177 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-343)) (-4 *1 (-671 *5 *6)) (-4 *5 (-162)) (-4 *6 (-1153 *5)) (-5 *2 (-635 *5)))))
-(-13 (-389 |t#1| |t#2|) (-162) (-570 |t#2|) (-391 |t#1|) (-357 |t#1|) (-10 -8 (-15 -1261 ($)) (-15 -4090 (|t#2|)) (-15 -1422 ($ |t#2|)) (-15 -3155 ($ |t#2|)) (-15 -1412 (|t#2| $)) (IF (|has| |t#1| (-348)) (-6 (-348)) |%noBranch|) (IF (|has| |t#1| (-343)) (PROGN (-6 (-343)) (-6 (-213 |t#1|)) (-15 -1422 ((-3 $ "failed") (-387 |t#2|))) (-15 -2348 ((-635 |t#1|) (-1177 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-329)) (-6 (-329)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-387 (-528))) -1463 (|has| |#1| (-329)) (|has| |#1| (-343))) ((-37 |#1|) . T) ((-37 $) -1463 (|has| |#1| (-329)) (|has| |#1| (-343))) ((-99) . T) ((-109 #0# #0#) -1463 (|has| |#1| (-329)) (|has| |#1| (-343))) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1463 (|has| |#1| (-329)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-569 (-802)) . T) ((-162) . T) ((-570 |#2|) . T) ((-213 |#1|) |has| |#1| (-343)) ((-215) -1463 (|has| |#1| (-329)) (-12 (|has| |#1| (-215)) (|has| |#1| (-343)))) ((-225) -1463 (|has| |#1| (-329)) (|has| |#1| (-343))) ((-271) -1463 (|has| |#1| (-329)) (|has| |#1| (-343))) ((-288) -1463 (|has| |#1| (-329)) (|has| |#1| (-343))) ((-343) -1463 (|has| |#1| (-329)) (|has| |#1| (-343))) ((-382) |has| |#1| (-329)) ((-348) -1463 (|has| |#1| (-348)) (|has| |#1| (-329))) ((-329) |has| |#1| (-329)) ((-350 |#1| |#2|) . T) ((-389 |#1| |#2|) . T) ((-357 |#1|) . T) ((-391 |#1|) . T) ((-431) -1463 (|has| |#1| (-329)) (|has| |#1| (-343))) ((-520) -1463 (|has| |#1| (-329)) (|has| |#1| (-343))) ((-597 #0#) -1463 (|has| |#1| (-329)) (|has| |#1| (-343))) ((-597 |#1|) . T) ((-597 $) . T) ((-591 (-528)) |has| |#1| (-591 (-528))) ((-591 |#1|) . T) ((-664 #0#) -1463 (|has| |#1| (-329)) (|has| |#1| (-343))) ((-664 |#1|) . T) ((-664 $) -1463 (|has| |#1| (-329)) (|has| |#1| (-343))) ((-673) . T) ((-839 (-1095)) -12 (|has| |#1| (-343)) (|has| |#1| (-839 (-1095)))) ((-859) -1463 (|has| |#1| (-329)) (|has| |#1| (-343))) ((-972 (-387 (-528))) |has| |#1| (-972 (-387 (-528)))) ((-972 (-528)) |has| |#1| (-972 (-528))) ((-972 |#1|) . T) ((-986 #0#) -1463 (|has| |#1| (-329)) (|has| |#1| (-343))) ((-986 |#1|) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1071) |has| |#1| (-329)) ((-1135) -1463 (|has| |#1| (-329)) (|has| |#1| (-343))))
-((-2816 (($) 14)) (-1312 (((-3 $ "failed") $) 16)) (-1297 (((-110) $) 13)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) 9)) (** (($ $ (-860)) NIL) (($ $ (-717)) 20)))
-(((-672 |#1|) (-10 -8 (-15 -1312 ((-3 |#1| "failed") |#1|)) (-15 -2690 (|#1| |#1| (-717))) (-15 ** (|#1| |#1| (-717))) (-15 -1297 ((-110) |#1|)) (-15 -2816 (|#1|)) (-15 -2690 (|#1| |#1| (-860))) (-15 ** (|#1| |#1| (-860)))) (-673)) (T -672))
-NIL
-(-10 -8 (-15 -1312 ((-3 |#1| "failed") |#1|)) (-15 -2690 (|#1| |#1| (-717))) (-15 ** (|#1| |#1| (-717))) (-15 -1297 ((-110) |#1|)) (-15 -2816 (|#1|)) (-15 -2690 (|#1| |#1| (-860))) (-15 ** (|#1| |#1| (-860))))
-((-2207 (((-110) $ $) 7)) (-2816 (($) 20 T CONST)) (-1312 (((-3 $ "failed") $) 16)) (-1297 (((-110) $) 19)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2690 (($ $ (-860)) 13) (($ $ (-717)) 17)) (-2982 (($) 21 T CONST)) (-2186 (((-110) $ $) 6)) (** (($ $ (-860)) 14) (($ $ (-717)) 18)) (* (($ $ $) 15)))
-(((-673) (-133)) (T -673))
-((-2982 (*1 *1) (-4 *1 (-673))) (-2816 (*1 *1) (-4 *1 (-673))) (-1297 (*1 *2 *1) (-12 (-4 *1 (-673)) (-5 *2 (-110)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-673)) (-5 *2 (-717)))) (-2690 (*1 *1 *1 *2) (-12 (-4 *1 (-673)) (-5 *2 (-717)))) (-1312 (*1 *1 *1) (|partial| -4 *1 (-673))))
-(-13 (-1035) (-10 -8 (-15 (-2982) ($) -2636) (-15 -2816 ($) -2636) (-15 -1297 ((-110) $)) (-15 ** ($ $ (-717))) (-15 -2690 ($ $ (-717))) (-15 -1312 ((-3 $ "failed") $))))
-(((-99) . T) ((-569 (-802)) . T) ((-1035) . T) ((-1023) . T))
-((-1615 (((-2 (|:| -4099 (-398 |#2|)) (|:| |special| (-398 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-2129 (((-2 (|:| -4099 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2711 ((|#2| (-387 |#2|) (-1 |#2| |#2|)) 13)) (-1208 (((-2 (|:| |poly| |#2|) (|:| -4099 (-387 |#2|)) (|:| |special| (-387 |#2|))) (-387 |#2|) (-1 |#2| |#2|)) 47)))
-(((-674 |#1| |#2|) (-10 -7 (-15 -2129 ((-2 (|:| -4099 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1615 ((-2 (|:| -4099 (-398 |#2|)) (|:| |special| (-398 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2711 (|#2| (-387 |#2|) (-1 |#2| |#2|))) (-15 -1208 ((-2 (|:| |poly| |#2|) (|:| -4099 (-387 |#2|)) (|:| |special| (-387 |#2|))) (-387 |#2|) (-1 |#2| |#2|)))) (-343) (-1153 |#1|)) (T -674))
-((-1208 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-343)) (-5 *2 (-2 (|:| |poly| *6) (|:| -4099 (-387 *6)) (|:| |special| (-387 *6)))) (-5 *1 (-674 *5 *6)) (-5 *3 (-387 *6)))) (-2711 (*1 *2 *3 *4) (-12 (-5 *3 (-387 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1153 *5)) (-5 *1 (-674 *5 *2)) (-4 *5 (-343)))) (-1615 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-343)) (-5 *2 (-2 (|:| -4099 (-398 *3)) (|:| |special| (-398 *3)))) (-5 *1 (-674 *5 *3)))) (-2129 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-343)) (-5 *2 (-2 (|:| -4099 *3) (|:| |special| *3))) (-5 *1 (-674 *5 *3)))))
-(-10 -7 (-15 -2129 ((-2 (|:| -4099 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1615 ((-2 (|:| -4099 (-398 |#2|)) (|:| |special| (-398 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2711 (|#2| (-387 |#2|) (-1 |#2| |#2|))) (-15 -1208 ((-2 (|:| |poly| |#2|) (|:| -4099 (-387 |#2|)) (|:| |special| (-387 |#2|))) (-387 |#2|) (-1 |#2| |#2|))))
-((-3023 ((|#7| (-595 |#5|) |#6|) NIL)) (-3106 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
-(((-675 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3106 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3023 (|#7| (-595 |#5|) |#6|))) (-793) (-739) (-739) (-981) (-981) (-888 |#4| |#2| |#1|) (-888 |#5| |#3| |#1|)) (T -675))
-((-3023 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *9)) (-4 *9 (-981)) (-4 *5 (-793)) (-4 *6 (-739)) (-4 *8 (-981)) (-4 *2 (-888 *9 *7 *5)) (-5 *1 (-675 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-739)) (-4 *4 (-888 *8 *6 *5)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-981)) (-4 *9 (-981)) (-4 *5 (-793)) (-4 *6 (-739)) (-4 *2 (-888 *9 *7 *5)) (-5 *1 (-675 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-739)) (-4 *4 (-888 *8 *6 *5)))))
-(-10 -7 (-15 -3106 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3023 (|#7| (-595 |#5|) |#6|)))
-((-3106 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-676 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3106 (|#7| (-1 |#2| |#1|) |#6|))) (-793) (-793) (-739) (-739) (-981) (-888 |#5| |#3| |#1|) (-888 |#5| |#4| |#2|)) (T -676))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-793)) (-4 *6 (-793)) (-4 *7 (-739)) (-4 *9 (-981)) (-4 *2 (-888 *9 *8 *6)) (-5 *1 (-676 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-739)) (-4 *4 (-888 *9 *7 *5)))))
-(-10 -7 (-15 -3106 (|#7| (-1 |#2| |#1|) |#6|)))
-((-2437 (((-398 |#4|) |#4|) 41)))
-(((-677 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2437 ((-398 |#4|) |#4|))) (-739) (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $)) (-15 -3915 ((-3 $ "failed") (-1095))))) (-288) (-888 (-891 |#3|) |#1| |#2|)) (T -677))
-((-2437 (*1 *2 *3) (-12 (-4 *4 (-739)) (-4 *5 (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $)) (-15 -3915 ((-3 $ "failed") (-1095)))))) (-4 *6 (-288)) (-5 *2 (-398 *3)) (-5 *1 (-677 *4 *5 *6 *3)) (-4 *3 (-888 (-891 *6) *4 *5)))))
-(-10 -7 (-15 -2437 ((-398 |#4|) |#4|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2565 (((-595 (-804 |#1|)) $) NIL)) (-2402 (((-1091 $) $ (-804 |#1|)) NIL) (((-1091 |#2|) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#2| (-520)))) (-1738 (($ $) NIL (|has| |#2| (-520)))) (-1811 (((-110) $) NIL (|has| |#2| (-520)))) (-4042 (((-717) $) NIL) (((-717) $ (-595 (-804 |#1|))) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#2| (-848)))) (-1232 (($ $) NIL (|has| |#2| (-431)))) (-2705 (((-398 $) $) NIL (|has| |#2| (-431)))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (|has| |#2| (-848)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#2| "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#2| (-972 (-387 (-528))))) (((-3 (-528) "failed") $) NIL (|has| |#2| (-972 (-528)))) (((-3 (-804 |#1|) "failed") $) NIL)) (-2409 ((|#2| $) NIL) (((-387 (-528)) $) NIL (|has| |#2| (-972 (-387 (-528))))) (((-528) $) NIL (|has| |#2| (-972 (-528)))) (((-804 |#1|) $) NIL)) (-1606 (($ $ $ (-804 |#1|)) NIL (|has| |#2| (-162)))) (-2388 (($ $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| |#2| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| |#2| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 $) (-1177 $)) NIL) (((-635 |#2|) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1551 (($ $) NIL (|has| |#2| (-431))) (($ $ (-804 |#1|)) NIL (|has| |#2| (-431)))) (-2376 (((-595 $) $) NIL)) (-2124 (((-110) $) NIL (|has| |#2| (-848)))) (-4047 (($ $ |#2| (-500 (-804 |#1|)) $) NIL)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (-12 (|has| (-804 |#1|) (-825 (-359))) (|has| |#2| (-825 (-359))))) (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (-12 (|has| (-804 |#1|) (-825 (-528))) (|has| |#2| (-825 (-528)))))) (-1297 (((-110) $) NIL)) (-1224 (((-717) $) NIL)) (-2557 (($ (-1091 |#2|) (-804 |#1|)) NIL) (($ (-1091 $) (-804 |#1|)) NIL)) (-3737 (((-595 $) $) NIL)) (-2195 (((-110) $) NIL)) (-2548 (($ |#2| (-500 (-804 |#1|))) NIL) (($ $ (-804 |#1|) (-717)) NIL) (($ $ (-595 (-804 |#1|)) (-595 (-717))) NIL)) (-3275 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $ (-804 |#1|)) NIL)) (-3499 (((-500 (-804 |#1|)) $) NIL) (((-717) $ (-804 |#1|)) NIL) (((-595 (-717)) $ (-595 (-804 |#1|))) NIL)) (-1436 (($ $ $) NIL (|has| |#2| (-793)))) (-1736 (($ $ $) NIL (|has| |#2| (-793)))) (-1264 (($ (-1 (-500 (-804 |#1|)) (-500 (-804 |#1|))) $) NIL)) (-3106 (($ (-1 |#2| |#2|) $) NIL)) (-3288 (((-3 (-804 |#1|) "failed") $) NIL)) (-2686 (($ $) NIL)) (-2697 ((|#2| $) NIL)) (-2057 (($ (-595 $)) NIL (|has| |#2| (-431))) (($ $ $) NIL (|has| |#2| (-431)))) (-3034 (((-1078) $) NIL)) (-3024 (((-3 (-595 $) "failed") $) NIL)) (-1281 (((-3 (-595 $) "failed") $) NIL)) (-3352 (((-3 (-2 (|:| |var| (-804 |#1|)) (|:| -2564 (-717))) "failed") $) NIL)) (-2495 (((-1042) $) NIL)) (-2662 (((-110) $) NIL)) (-2675 ((|#2| $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#2| (-431)))) (-2088 (($ (-595 $)) NIL (|has| |#2| (-431))) (($ $ $) NIL (|has| |#2| (-431)))) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#2| (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#2| (-848)))) (-2437 (((-398 $) $) NIL (|has| |#2| (-848)))) (-3477 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-520))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-520)))) (-4014 (($ $ (-595 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL) (($ $ (-804 |#1|) |#2|) NIL) (($ $ (-595 (-804 |#1|)) (-595 |#2|)) NIL) (($ $ (-804 |#1|) $) NIL) (($ $ (-595 (-804 |#1|)) (-595 $)) NIL)) (-1372 (($ $ (-804 |#1|)) NIL (|has| |#2| (-162)))) (-3235 (($ $ (-804 |#1|)) NIL) (($ $ (-595 (-804 |#1|))) NIL) (($ $ (-804 |#1|) (-717)) NIL) (($ $ (-595 (-804 |#1|)) (-595 (-717))) NIL)) (-2935 (((-500 (-804 |#1|)) $) NIL) (((-717) $ (-804 |#1|)) NIL) (((-595 (-717)) $ (-595 (-804 |#1|))) NIL)) (-3155 (((-831 (-359)) $) NIL (-12 (|has| (-804 |#1|) (-570 (-831 (-359)))) (|has| |#2| (-570 (-831 (-359)))))) (((-831 (-528)) $) NIL (-12 (|has| (-804 |#1|) (-570 (-831 (-528)))) (|has| |#2| (-570 (-831 (-528)))))) (((-504) $) NIL (-12 (|has| (-804 |#1|) (-570 (-504))) (|has| |#2| (-570 (-504)))))) (-1618 ((|#2| $) NIL (|has| |#2| (-431))) (($ $ (-804 |#1|)) NIL (|has| |#2| (-431)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-848))))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ |#2|) NIL) (($ (-804 |#1|)) NIL) (($ $) NIL (|has| |#2| (-520))) (($ (-387 (-528))) NIL (-1463 (|has| |#2| (-37 (-387 (-528)))) (|has| |#2| (-972 (-387 (-528))))))) (-3348 (((-595 |#2|) $) NIL)) (-3216 ((|#2| $ (-500 (-804 |#1|))) NIL) (($ $ (-804 |#1|) (-717)) NIL) (($ $ (-595 (-804 |#1|)) (-595 (-717))) NIL)) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| |#2| (-848))) (|has| |#2| (-138))))) (-3742 (((-717)) NIL)) (-1997 (($ $ $ (-717)) NIL (|has| |#2| (-162)))) (-4016 (((-110) $ $) NIL (|has| |#2| (-520)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($ $ (-804 |#1|)) NIL) (($ $ (-595 (-804 |#1|))) NIL) (($ $ (-804 |#1|) (-717)) NIL) (($ $ (-595 (-804 |#1|)) (-595 (-717))) NIL)) (-2244 (((-110) $ $) NIL (|has| |#2| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#2| (-793)))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (|has| |#2| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#2| (-793)))) (-2296 (($ $ |#2|) NIL (|has| |#2| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL (|has| |#2| (-37 (-387 (-528))))) (($ (-387 (-528)) $) NIL (|has| |#2| (-37 (-387 (-528))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-678 |#1| |#2|) (-888 |#2| (-500 (-804 |#1|)) (-804 |#1|)) (-595 (-1095)) (-981)) (T -678))
-NIL
-(-888 |#2| (-500 (-804 |#1|)) (-804 |#1|))
-((-3788 (((-2 (|:| -3622 (-891 |#3|)) (|:| -1472 (-891 |#3|))) |#4|) 14)) (-2844 ((|#4| |#4| |#2|) 33)) (-3920 ((|#4| (-387 (-891 |#3|)) |#2|) 64)) (-3347 ((|#4| (-1091 (-891 |#3|)) |#2|) 77)) (-3868 ((|#4| (-1091 |#4|) |#2|) 51)) (-2235 ((|#4| |#4| |#2|) 54)) (-2437 (((-398 |#4|) |#4|) 40)))
-(((-679 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3788 ((-2 (|:| -3622 (-891 |#3|)) (|:| -1472 (-891 |#3|))) |#4|)) (-15 -2235 (|#4| |#4| |#2|)) (-15 -3868 (|#4| (-1091 |#4|) |#2|)) (-15 -2844 (|#4| |#4| |#2|)) (-15 -3347 (|#4| (-1091 (-891 |#3|)) |#2|)) (-15 -3920 (|#4| (-387 (-891 |#3|)) |#2|)) (-15 -2437 ((-398 |#4|) |#4|))) (-739) (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $)))) (-520) (-888 (-387 (-891 |#3|)) |#1| |#2|)) (T -679))
-((-2437 (*1 *2 *3) (-12 (-4 *4 (-739)) (-4 *5 (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $))))) (-4 *6 (-520)) (-5 *2 (-398 *3)) (-5 *1 (-679 *4 *5 *6 *3)) (-4 *3 (-888 (-387 (-891 *6)) *4 *5)))) (-3920 (*1 *2 *3 *4) (-12 (-4 *6 (-520)) (-4 *2 (-888 *3 *5 *4)) (-5 *1 (-679 *5 *4 *6 *2)) (-5 *3 (-387 (-891 *6))) (-4 *5 (-739)) (-4 *4 (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $))))))) (-3347 (*1 *2 *3 *4) (-12 (-5 *3 (-1091 (-891 *6))) (-4 *6 (-520)) (-4 *2 (-888 (-387 (-891 *6)) *5 *4)) (-5 *1 (-679 *5 *4 *6 *2)) (-4 *5 (-739)) (-4 *4 (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $))))))) (-2844 (*1 *2 *2 *3) (-12 (-4 *4 (-739)) (-4 *3 (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $))))) (-4 *5 (-520)) (-5 *1 (-679 *4 *3 *5 *2)) (-4 *2 (-888 (-387 (-891 *5)) *4 *3)))) (-3868 (*1 *2 *3 *4) (-12 (-5 *3 (-1091 *2)) (-4 *2 (-888 (-387 (-891 *6)) *5 *4)) (-5 *1 (-679 *5 *4 *6 *2)) (-4 *5 (-739)) (-4 *4 (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $))))) (-4 *6 (-520)))) (-2235 (*1 *2 *2 *3) (-12 (-4 *4 (-739)) (-4 *3 (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $))))) (-4 *5 (-520)) (-5 *1 (-679 *4 *3 *5 *2)) (-4 *2 (-888 (-387 (-891 *5)) *4 *3)))) (-3788 (*1 *2 *3) (-12 (-4 *4 (-739)) (-4 *5 (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $))))) (-4 *6 (-520)) (-5 *2 (-2 (|:| -3622 (-891 *6)) (|:| -1472 (-891 *6)))) (-5 *1 (-679 *4 *5 *6 *3)) (-4 *3 (-888 (-387 (-891 *6)) *4 *5)))))
-(-10 -7 (-15 -3788 ((-2 (|:| -3622 (-891 |#3|)) (|:| -1472 (-891 |#3|))) |#4|)) (-15 -2235 (|#4| |#4| |#2|)) (-15 -3868 (|#4| (-1091 |#4|) |#2|)) (-15 -2844 (|#4| |#4| |#2|)) (-15 -3347 (|#4| (-1091 (-891 |#3|)) |#2|)) (-15 -3920 (|#4| (-387 (-891 |#3|)) |#2|)) (-15 -2437 ((-398 |#4|) |#4|)))
-((-2437 (((-398 |#4|) |#4|) 52)))
-(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2437 ((-398 |#4|) |#4|))) (-739) (-793) (-13 (-288) (-140)) (-888 (-387 |#3|) |#1| |#2|)) (T -680))
-((-2437 (*1 *2 *3) (-12 (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-13 (-288) (-140))) (-5 *2 (-398 *3)) (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-888 (-387 *6) *4 *5)))))
-(-10 -7 (-15 -2437 ((-398 |#4|) |#4|)))
-((-3106 (((-682 |#2| |#3|) (-1 |#2| |#1|) (-682 |#1| |#3|)) 18)))
-(((-681 |#1| |#2| |#3|) (-10 -7 (-15 -3106 ((-682 |#2| |#3|) (-1 |#2| |#1|) (-682 |#1| |#3|)))) (-981) (-981) (-673)) (T -681))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-682 *5 *7)) (-4 *5 (-981)) (-4 *6 (-981)) (-4 *7 (-673)) (-5 *2 (-682 *6 *7)) (-5 *1 (-681 *5 *6 *7)))))
-(-10 -7 (-15 -3106 ((-682 |#2| |#3|) (-1 |#2| |#1|) (-682 |#1| |#3|))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 28)) (-1514 (((-595 (-2 (|:| -1641 |#1|) (|:| -3841 |#2|))) $) 29)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2856 (((-717)) 20 (-12 (|has| |#2| (-348)) (|has| |#1| (-348))))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-2409 ((|#2| $) NIL) ((|#1| $) NIL)) (-2388 (($ $) 79 (|has| |#2| (-793)))) (-1312 (((-3 $ "failed") $) 65)) (-1338 (($) 35 (-12 (|has| |#2| (-348)) (|has| |#1| (-348))))) (-1297 (((-110) $) NIL)) (-1224 (((-717) $) 55)) (-3737 (((-595 $) $) 39)) (-2195 (((-110) $) NIL)) (-2548 (($ |#1| |#2|) 16)) (-3106 (($ (-1 |#1| |#1|) $) 54)) (-3201 (((-860) $) 32 (-12 (|has| |#2| (-348)) (|has| |#1| (-348))))) (-2686 ((|#2| $) 78 (|has| |#2| (-793)))) (-2697 ((|#1| $) 77 (|has| |#2| (-793)))) (-3034 (((-1078) $) NIL)) (-3108 (($ (-860)) 27 (-12 (|has| |#2| (-348)) (|has| |#1| (-348))))) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 76) (($ (-528)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-595 (-2 (|:| -1641 |#1|) (|:| -3841 |#2|)))) 11)) (-3348 (((-595 |#1|) $) 41)) (-3216 ((|#1| $ |#2|) 88)) (-3749 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3742 (((-717)) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 12 T CONST)) (-2982 (($) 33 T CONST)) (-2186 (((-110) $ $) 80)) (-2286 (($ $) 47) (($ $ $) NIL)) (-2275 (($ $ $) 26)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162)))))
-(((-682 |#1| |#2|) (-13 (-981) (-972 |#2|) (-972 |#1|) (-10 -8 (-15 -2548 ($ |#1| |#2|)) (-15 -3216 (|#1| $ |#2|)) (-15 -2222 ($ (-595 (-2 (|:| -1641 |#1|) (|:| -3841 |#2|))))) (-15 -1514 ((-595 (-2 (|:| -1641 |#1|) (|:| -3841 |#2|))) $)) (-15 -3106 ($ (-1 |#1| |#1|) $)) (-15 -2195 ((-110) $)) (-15 -3348 ((-595 |#1|) $)) (-15 -3737 ((-595 $) $)) (-15 -1224 ((-717) $)) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-348)) (IF (|has| |#2| (-348)) (-6 (-348)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-793)) (PROGN (-15 -2686 (|#2| $)) (-15 -2697 (|#1| $)) (-15 -2388 ($ $))) |%noBranch|))) (-981) (-673)) (T -682))
-((-2548 (*1 *1 *2 *3) (-12 (-5 *1 (-682 *2 *3)) (-4 *2 (-981)) (-4 *3 (-673)))) (-3216 (*1 *2 *1 *3) (-12 (-4 *2 (-981)) (-5 *1 (-682 *2 *3)) (-4 *3 (-673)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-595 (-2 (|:| -1641 *3) (|:| -3841 *4)))) (-4 *3 (-981)) (-4 *4 (-673)) (-5 *1 (-682 *3 *4)))) (-1514 (*1 *2 *1) (-12 (-5 *2 (-595 (-2 (|:| -1641 *3) (|:| -3841 *4)))) (-5 *1 (-682 *3 *4)) (-4 *3 (-981)) (-4 *4 (-673)))) (-3106 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-981)) (-5 *1 (-682 *3 *4)) (-4 *4 (-673)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-682 *3 *4)) (-4 *3 (-981)) (-4 *4 (-673)))) (-3348 (*1 *2 *1) (-12 (-5 *2 (-595 *3)) (-5 *1 (-682 *3 *4)) (-4 *3 (-981)) (-4 *4 (-673)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-595 (-682 *3 *4))) (-5 *1 (-682 *3 *4)) (-4 *3 (-981)) (-4 *4 (-673)))) (-1224 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-682 *3 *4)) (-4 *3 (-981)) (-4 *4 (-673)))) (-2686 (*1 *2 *1) (-12 (-4 *2 (-673)) (-4 *2 (-793)) (-5 *1 (-682 *3 *2)) (-4 *3 (-981)))) (-2697 (*1 *2 *1) (-12 (-4 *2 (-981)) (-5 *1 (-682 *2 *3)) (-4 *3 (-793)) (-4 *3 (-673)))) (-2388 (*1 *1 *1) (-12 (-5 *1 (-682 *2 *3)) (-4 *3 (-793)) (-4 *2 (-981)) (-4 *3 (-673)))))
-(-13 (-981) (-972 |#2|) (-972 |#1|) (-10 -8 (-15 -2548 ($ |#1| |#2|)) (-15 -3216 (|#1| $ |#2|)) (-15 -2222 ($ (-595 (-2 (|:| -1641 |#1|) (|:| -3841 |#2|))))) (-15 -1514 ((-595 (-2 (|:| -1641 |#1|) (|:| -3841 |#2|))) $)) (-15 -3106 ($ (-1 |#1| |#1|) $)) (-15 -2195 ((-110) $)) (-15 -3348 ((-595 |#1|) $)) (-15 -3737 ((-595 $) $)) (-15 -1224 ((-717) $)) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-348)) (IF (|has| |#2| (-348)) (-6 (-348)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-793)) (PROGN (-15 -2686 (|#2| $)) (-15 -2697 (|#1| $)) (-15 -2388 ($ $))) |%noBranch|)))
-((-2207 (((-110) $ $) 19)) (-4123 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2352 (($ $ $) 72)) (-1316 (((-110) $ $) 73)) (-3535 (((-110) $ (-717)) 8)) (-4237 (($ (-595 |#1|)) 68) (($) 67)) (-1836 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4264)))) (-1573 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4264)))) (-2816 (($) 7 T CONST)) (-2833 (($ $) 62)) (-2923 (($ $) 58 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-3991 (($ |#1| $) 47 (|has| $ (-6 -4264))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4264)))) (-2280 (($ |#1| $) 57 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4264)))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4264)))) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-4242 (((-110) $ $) 64)) (-2029 (((-110) $ (-717)) 9)) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35)) (-3358 (((-110) $ (-717)) 10)) (-3034 (((-1078) $) 22)) (-3397 (($ $ $) 69)) (-3934 ((|#1| $) 39)) (-1950 (($ |#1| $) 40) (($ |#1| $ (-717)) 63)) (-2495 (((-1042) $) 21)) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-1390 ((|#1| $) 41)) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-2527 (((-595 (-2 (|:| -1780 |#1|) (|:| -2507 (-717)))) $) 61)) (-2183 (($ $ |#1|) 71) (($ $ $) 70)) (-3900 (($) 49) (($ (-595 |#1|)) 48)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-3155 (((-504) $) 59 (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) 50)) (-2222 (((-802) $) 18)) (-3289 (($ (-595 |#1|)) 66) (($) 65)) (-2164 (($ (-595 |#1|)) 42)) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20)) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-683 |#1|) (-133) (-1023)) (T -683))
-NIL
-(-13 (-641 |t#1|) (-1021 |t#1|))
-(((-33) . T) ((-104 |#1|) . T) ((-99) . T) ((-569 (-802)) . T) ((-144 |#1|) . T) ((-570 (-504)) |has| |#1| (-570 (-504))) ((-217 |#1|) . T) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-467 |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-641 |#1|) . T) ((-1021 |#1|) . T) ((-1023) . T) ((-1131) . T))
-((-2207 (((-110) $ $) NIL)) (-4123 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-2352 (($ $ $) 79)) (-1316 (((-110) $ $) 83)) (-3535 (((-110) $ (-717)) NIL)) (-4237 (($ (-595 |#1|)) 24) (($) 16)) (-1836 (($ (-1 (-110) |#1|) $) 70 (|has| $ (-6 -4264)))) (-1573 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2816 (($) NIL T CONST)) (-2833 (($ $) 71)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3991 (($ |#1| $) 61 (|has| $ (-6 -4264))) (($ (-1 (-110) |#1|) $) 64 (|has| $ (-6 -4264))) (($ |#1| $ (-528)) 62) (($ (-1 (-110) |#1|) $ (-528)) 65)) (-2280 (($ |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (($ |#1| $ (-528)) 67) (($ (-1 (-110) |#1|) $ (-528)) 68)) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4264)))) (-3342 (((-595 |#1|) $) 32 (|has| $ (-6 -4264)))) (-4242 (((-110) $ $) 82)) (-3892 (($) 14) (($ |#1|) 26) (($ (-595 |#1|)) 21)) (-2029 (((-110) $ (-717)) NIL)) (-2604 (((-595 |#1|) $) 38)) (-2408 (((-110) |#1| $) 58 (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2800 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 75)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL)) (-3397 (($ $ $) 77)) (-3934 ((|#1| $) 55)) (-1950 (($ |#1| $) 56) (($ |#1| $ (-717)) 72)) (-2495 (((-1042) $) NIL)) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1390 ((|#1| $) 54)) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) 50)) (-2147 (($) 13)) (-2527 (((-595 (-2 (|:| -1780 |#1|) (|:| -2507 (-717)))) $) 48)) (-2183 (($ $ |#1|) NIL) (($ $ $) 78)) (-3900 (($) 15) (($ (-595 |#1|)) 23)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) 60 (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2406 (($ $) 66)) (-3155 (((-504) $) 36 (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) 20)) (-2222 (((-802) $) 44)) (-3289 (($ (-595 |#1|)) 25) (($) 17)) (-2164 (($ (-595 |#1|)) 22)) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 81)) (-2138 (((-717) $) 59 (|has| $ (-6 -4264)))))
-(((-684 |#1|) (-13 (-683 |#1|) (-10 -8 (-6 -4264) (-6 -4265) (-15 -3892 ($)) (-15 -3892 ($ |#1|)) (-15 -3892 ($ (-595 |#1|))) (-15 -2604 ((-595 |#1|) $)) (-15 -2280 ($ |#1| $ (-528))) (-15 -2280 ($ (-1 (-110) |#1|) $ (-528))) (-15 -3991 ($ |#1| $ (-528))) (-15 -3991 ($ (-1 (-110) |#1|) $ (-528))))) (-1023)) (T -684))
-((-3892 (*1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-1023)))) (-3892 (*1 *1 *2) (-12 (-5 *1 (-684 *2)) (-4 *2 (-1023)))) (-3892 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1023)) (-5 *1 (-684 *3)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-595 *3)) (-5 *1 (-684 *3)) (-4 *3 (-1023)))) (-2280 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-528)) (-5 *1 (-684 *2)) (-4 *2 (-1023)))) (-2280 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-528)) (-4 *4 (-1023)) (-5 *1 (-684 *4)))) (-3991 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-528)) (-5 *1 (-684 *2)) (-4 *2 (-1023)))) (-3991 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-528)) (-4 *4 (-1023)) (-5 *1 (-684 *4)))))
-(-13 (-683 |#1|) (-10 -8 (-6 -4264) (-6 -4265) (-15 -3892 ($)) (-15 -3892 ($ |#1|)) (-15 -3892 ($ (-595 |#1|))) (-15 -2604 ((-595 |#1|) $)) (-15 -2280 ($ |#1| $ (-528))) (-15 -2280 ($ (-1 (-110) |#1|) $ (-528))) (-15 -3991 ($ |#1| $ (-528))) (-15 -3991 ($ (-1 (-110) |#1|) $ (-528)))))
-((-4063 (((-1182) (-1078)) 8)))
-(((-685) (-10 -7 (-15 -4063 ((-1182) (-1078))))) (T -685))
-((-4063 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-685)))))
-(-10 -7 (-15 -4063 ((-1182) (-1078))))
-((-2723 (((-595 |#1|) (-595 |#1|) (-595 |#1|)) 10)))
-(((-686 |#1|) (-10 -7 (-15 -2723 ((-595 |#1|) (-595 |#1|) (-595 |#1|)))) (-793)) (T -686))
-((-2723 (*1 *2 *2 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-793)) (-5 *1 (-686 *3)))))
-(-10 -7 (-15 -2723 ((-595 |#1|) (-595 |#1|) (-595 |#1|))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2565 (((-595 |#2|) $) 136)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 129 (|has| |#1| (-520)))) (-1738 (($ $) 128 (|has| |#1| (-520)))) (-1811 (((-110) $) 126 (|has| |#1| (-520)))) (-2880 (($ $) 85 (|has| |#1| (-37 (-387 (-528)))))) (-2735 (($ $) 68 (|has| |#1| (-37 (-387 (-528)))))) (-3181 (((-3 $ "failed") $ $) 19)) (-2450 (($ $) 67 (|has| |#1| (-37 (-387 (-528)))))) (-2859 (($ $) 84 (|has| |#1| (-37 (-387 (-528)))))) (-2712 (($ $) 69 (|has| |#1| (-37 (-387 (-528)))))) (-2904 (($ $) 83 (|has| |#1| (-37 (-387 (-528)))))) (-2761 (($ $) 70 (|has| |#1| (-37 (-387 (-528)))))) (-2816 (($) 17 T CONST)) (-2388 (($ $) 120)) (-1312 (((-3 $ "failed") $) 34)) (-1872 (((-891 |#1|) $ (-717)) 98) (((-891 |#1|) $ (-717) (-717)) 97)) (-1900 (((-110) $) 137)) (-1505 (($) 95 (|has| |#1| (-37 (-387 (-528)))))) (-3689 (((-717) $ |#2|) 100) (((-717) $ |#2| (-717)) 99)) (-1297 (((-110) $) 31)) (-2796 (($ $ (-528)) 66 (|has| |#1| (-37 (-387 (-528)))))) (-2195 (((-110) $) 118)) (-2548 (($ $ (-595 |#2|) (-595 (-500 |#2|))) 135) (($ $ |#2| (-500 |#2|)) 134) (($ |#1| (-500 |#2|)) 119) (($ $ |#2| (-717)) 102) (($ $ (-595 |#2|) (-595 (-717))) 101)) (-3106 (($ (-1 |#1| |#1|) $) 117)) (-2097 (($ $) 92 (|has| |#1| (-37 (-387 (-528)))))) (-2686 (($ $) 115)) (-2697 ((|#1| $) 114)) (-3034 (((-1078) $) 9)) (-1923 (($ $ |#2|) 96 (|has| |#1| (-37 (-387 (-528)))))) (-2495 (((-1042) $) 10)) (-3740 (($ $ (-717)) 103)) (-3477 (((-3 $ "failed") $ $) 130 (|has| |#1| (-520)))) (-2656 (($ $) 93 (|has| |#1| (-37 (-387 (-528)))))) (-4014 (($ $ |#2| $) 111) (($ $ (-595 |#2|) (-595 $)) 110) (($ $ (-595 (-275 $))) 109) (($ $ (-275 $)) 108) (($ $ $ $) 107) (($ $ (-595 $) (-595 $)) 106)) (-3235 (($ $ |#2|) 42) (($ $ (-595 |#2|)) 41) (($ $ |#2| (-717)) 40) (($ $ (-595 |#2|) (-595 (-717))) 39)) (-2935 (((-500 |#2|) $) 116)) (-2917 (($ $) 82 (|has| |#1| (-37 (-387 (-528)))))) (-2773 (($ $) 71 (|has| |#1| (-37 (-387 (-528)))))) (-2892 (($ $) 81 (|has| |#1| (-37 (-387 (-528)))))) (-2749 (($ $) 72 (|has| |#1| (-37 (-387 (-528)))))) (-2869 (($ $) 80 (|has| |#1| (-37 (-387 (-528)))))) (-2724 (($ $) 73 (|has| |#1| (-37 (-387 (-528)))))) (-3534 (($ $) 138)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ |#1|) 133 (|has| |#1| (-162))) (($ $) 131 (|has| |#1| (-520))) (($ (-387 (-528))) 123 (|has| |#1| (-37 (-387 (-528)))))) (-3216 ((|#1| $ (-500 |#2|)) 121) (($ $ |#2| (-717)) 105) (($ $ (-595 |#2|) (-595 (-717))) 104)) (-3749 (((-3 $ "failed") $) 132 (|has| |#1| (-138)))) (-3742 (((-717)) 29)) (-2953 (($ $) 91 (|has| |#1| (-37 (-387 (-528)))))) (-2811 (($ $) 79 (|has| |#1| (-37 (-387 (-528)))))) (-4016 (((-110) $ $) 127 (|has| |#1| (-520)))) (-2928 (($ $) 90 (|has| |#1| (-37 (-387 (-528)))))) (-2784 (($ $) 78 (|has| |#1| (-37 (-387 (-528)))))) (-2981 (($ $) 89 (|has| |#1| (-37 (-387 (-528)))))) (-2836 (($ $) 77 (|has| |#1| (-37 (-387 (-528)))))) (-3592 (($ $) 88 (|has| |#1| (-37 (-387 (-528)))))) (-2846 (($ $) 76 (|has| |#1| (-37 (-387 (-528)))))) (-2967 (($ $) 87 (|has| |#1| (-37 (-387 (-528)))))) (-2825 (($ $) 75 (|has| |#1| (-37 (-387 (-528)))))) (-2940 (($ $) 86 (|has| |#1| (-37 (-387 (-528)))))) (-2797 (($ $) 74 (|has| |#1| (-37 (-387 (-528)))))) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-3245 (($ $ |#2|) 38) (($ $ (-595 |#2|)) 37) (($ $ |#2| (-717)) 36) (($ $ (-595 |#2|) (-595 (-717))) 35)) (-2186 (((-110) $ $) 6)) (-2296 (($ $ |#1|) 122 (|has| |#1| (-343)))) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32) (($ $ $) 94 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) 65 (|has| |#1| (-37 (-387 (-528)))))) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ (-387 (-528))) 125 (|has| |#1| (-37 (-387 (-528))))) (($ (-387 (-528)) $) 124 (|has| |#1| (-37 (-387 (-528))))) (($ |#1| $) 113) (($ $ |#1|) 112)))
-(((-687 |#1| |#2|) (-133) (-981) (-793)) (T -687))
-((-3216 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-717)) (-4 *1 (-687 *4 *2)) (-4 *4 (-981)) (-4 *2 (-793)))) (-3216 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-595 *5)) (-5 *3 (-595 (-717))) (-4 *1 (-687 *4 *5)) (-4 *4 (-981)) (-4 *5 (-793)))) (-3740 (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-687 *3 *4)) (-4 *3 (-981)) (-4 *4 (-793)))) (-2548 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-717)) (-4 *1 (-687 *4 *2)) (-4 *4 (-981)) (-4 *2 (-793)))) (-2548 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-595 *5)) (-5 *3 (-595 (-717))) (-4 *1 (-687 *4 *5)) (-4 *4 (-981)) (-4 *5 (-793)))) (-3689 (*1 *2 *1 *3) (-12 (-4 *1 (-687 *4 *3)) (-4 *4 (-981)) (-4 *3 (-793)) (-5 *2 (-717)))) (-3689 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-717)) (-4 *1 (-687 *4 *3)) (-4 *4 (-981)) (-4 *3 (-793)))) (-1872 (*1 *2 *1 *3) (-12 (-5 *3 (-717)) (-4 *1 (-687 *4 *5)) (-4 *4 (-981)) (-4 *5 (-793)) (-5 *2 (-891 *4)))) (-1872 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-717)) (-4 *1 (-687 *4 *5)) (-4 *4 (-981)) (-4 *5 (-793)) (-5 *2 (-891 *4)))) (-1923 (*1 *1 *1 *2) (-12 (-4 *1 (-687 *3 *2)) (-4 *3 (-981)) (-4 *2 (-793)) (-4 *3 (-37 (-387 (-528)))))))
-(-13 (-839 |t#2|) (-910 |t#1| (-500 |t#2|) |t#2|) (-489 |t#2| $) (-290 $) (-10 -8 (-15 -3216 ($ $ |t#2| (-717))) (-15 -3216 ($ $ (-595 |t#2|) (-595 (-717)))) (-15 -3740 ($ $ (-717))) (-15 -2548 ($ $ |t#2| (-717))) (-15 -2548 ($ $ (-595 |t#2|) (-595 (-717)))) (-15 -3689 ((-717) $ |t#2|)) (-15 -3689 ((-717) $ |t#2| (-717))) (-15 -1872 ((-891 |t#1|) $ (-717))) (-15 -1872 ((-891 |t#1|) $ (-717) (-717))) (IF (|has| |t#1| (-37 (-387 (-528)))) (PROGN (-15 -1923 ($ $ |t#2|)) (-6 (-938)) (-6 (-1117))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-500 |#2|)) . T) ((-25) . T) ((-37 #1=(-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-520)) ((-34) |has| |#1| (-37 (-387 (-528)))) ((-93) |has| |#1| (-37 (-387 (-528)))) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-387 (-528)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1463 (|has| |#1| (-520)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-569 (-802)) . T) ((-162) -1463 (|has| |#1| (-520)) (|has| |#1| (-162))) ((-265) |has| |#1| (-37 (-387 (-528)))) ((-271) |has| |#1| (-520)) ((-290 $) . T) ((-469) |has| |#1| (-37 (-387 (-528)))) ((-489 |#2| $) . T) ((-489 $ $) . T) ((-520) |has| |#1| (-520)) ((-597 #1#) |has| |#1| (-37 (-387 (-528)))) ((-597 |#1|) . T) ((-597 $) . T) ((-664 #1#) |has| |#1| (-37 (-387 (-528)))) ((-664 |#1|) |has| |#1| (-162)) ((-664 $) |has| |#1| (-520)) ((-673) . T) ((-839 |#2|) . T) ((-910 |#1| #0# |#2|) . T) ((-938) |has| |#1| (-37 (-387 (-528)))) ((-986 #1#) |has| |#1| (-37 (-387 (-528)))) ((-986 |#1|) . T) ((-986 $) -1463 (|has| |#1| (-520)) (|has| |#1| (-162))) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1117) |has| |#1| (-37 (-387 (-528)))) ((-1120) |has| |#1| (-37 (-387 (-528)))))
-((-2437 (((-398 (-1091 |#4|)) (-1091 |#4|)) 30) (((-398 |#4|) |#4|) 26)))
-(((-688 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2437 ((-398 |#4|) |#4|)) (-15 -2437 ((-398 (-1091 |#4|)) (-1091 |#4|)))) (-793) (-739) (-13 (-288) (-140)) (-888 |#3| |#2| |#1|)) (T -688))
-((-2437 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-739)) (-4 *6 (-13 (-288) (-140))) (-4 *7 (-888 *6 *5 *4)) (-5 *2 (-398 (-1091 *7))) (-5 *1 (-688 *4 *5 *6 *7)) (-5 *3 (-1091 *7)))) (-2437 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-739)) (-4 *6 (-13 (-288) (-140))) (-5 *2 (-398 *3)) (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-888 *6 *5 *4)))))
-(-10 -7 (-15 -2437 ((-398 |#4|) |#4|)) (-15 -2437 ((-398 (-1091 |#4|)) (-1091 |#4|))))
-((-1283 (((-398 |#4|) |#4| |#2|) 120)) (-3764 (((-398 |#4|) |#4|) NIL)) (-2705 (((-398 (-1091 |#4|)) (-1091 |#4|)) 111) (((-398 |#4|) |#4|) 41)) (-2872 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-595 (-2 (|:| -2437 (-1091 |#4|)) (|:| -2564 (-528)))))) (-1091 |#4|) (-595 |#2|) (-595 (-595 |#3|))) 69)) (-3736 (((-1091 |#3|) (-1091 |#3|) (-528)) 139)) (-2823 (((-595 (-717)) (-1091 |#4|) (-595 |#2|) (-717)) 61)) (-1412 (((-3 (-595 (-1091 |#4|)) "failed") (-1091 |#4|) (-1091 |#3|) (-1091 |#3|) |#4| (-595 |#2|) (-595 (-717)) (-595 |#3|)) 65)) (-3645 (((-2 (|:| |upol| (-1091 |#3|)) (|:| |Lval| (-595 |#3|)) (|:| |Lfact| (-595 (-2 (|:| -2437 (-1091 |#3|)) (|:| -2564 (-528))))) (|:| |ctpol| |#3|)) (-1091 |#4|) (-595 |#2|) (-595 (-595 |#3|))) 26)) (-3412 (((-2 (|:| -3292 (-1091 |#4|)) (|:| |polval| (-1091 |#3|))) (-1091 |#4|) (-1091 |#3|) (-528)) 57)) (-4102 (((-528) (-595 (-2 (|:| -2437 (-1091 |#3|)) (|:| -2564 (-528))))) 136)) (-2893 ((|#4| (-528) (-398 |#4|)) 58)) (-3832 (((-110) (-595 (-2 (|:| -2437 (-1091 |#3|)) (|:| -2564 (-528)))) (-595 (-2 (|:| -2437 (-1091 |#3|)) (|:| -2564 (-528))))) NIL)))
-(((-689 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2705 ((-398 |#4|) |#4|)) (-15 -2705 ((-398 (-1091 |#4|)) (-1091 |#4|))) (-15 -3764 ((-398 |#4|) |#4|)) (-15 -4102 ((-528) (-595 (-2 (|:| -2437 (-1091 |#3|)) (|:| -2564 (-528)))))) (-15 -1283 ((-398 |#4|) |#4| |#2|)) (-15 -3412 ((-2 (|:| -3292 (-1091 |#4|)) (|:| |polval| (-1091 |#3|))) (-1091 |#4|) (-1091 |#3|) (-528))) (-15 -2872 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-595 (-2 (|:| -2437 (-1091 |#4|)) (|:| -2564 (-528)))))) (-1091 |#4|) (-595 |#2|) (-595 (-595 |#3|)))) (-15 -3645 ((-2 (|:| |upol| (-1091 |#3|)) (|:| |Lval| (-595 |#3|)) (|:| |Lfact| (-595 (-2 (|:| -2437 (-1091 |#3|)) (|:| -2564 (-528))))) (|:| |ctpol| |#3|)) (-1091 |#4|) (-595 |#2|) (-595 (-595 |#3|)))) (-15 -2893 (|#4| (-528) (-398 |#4|))) (-15 -3832 ((-110) (-595 (-2 (|:| -2437 (-1091 |#3|)) (|:| -2564 (-528)))) (-595 (-2 (|:| -2437 (-1091 |#3|)) (|:| -2564 (-528)))))) (-15 -1412 ((-3 (-595 (-1091 |#4|)) "failed") (-1091 |#4|) (-1091 |#3|) (-1091 |#3|) |#4| (-595 |#2|) (-595 (-717)) (-595 |#3|))) (-15 -2823 ((-595 (-717)) (-1091 |#4|) (-595 |#2|) (-717))) (-15 -3736 ((-1091 |#3|) (-1091 |#3|) (-528)))) (-739) (-793) (-288) (-888 |#3| |#1| |#2|)) (T -689))
-((-3736 (*1 *2 *2 *3) (-12 (-5 *2 (-1091 *6)) (-5 *3 (-528)) (-4 *6 (-288)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-689 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5)))) (-2823 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1091 *9)) (-5 *4 (-595 *7)) (-4 *7 (-793)) (-4 *9 (-888 *8 *6 *7)) (-4 *6 (-739)) (-4 *8 (-288)) (-5 *2 (-595 (-717))) (-5 *1 (-689 *6 *7 *8 *9)) (-5 *5 (-717)))) (-1412 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1091 *11)) (-5 *6 (-595 *10)) (-5 *7 (-595 (-717))) (-5 *8 (-595 *11)) (-4 *10 (-793)) (-4 *11 (-288)) (-4 *9 (-739)) (-4 *5 (-888 *11 *9 *10)) (-5 *2 (-595 (-1091 *5))) (-5 *1 (-689 *9 *10 *11 *5)) (-5 *3 (-1091 *5)))) (-3832 (*1 *2 *3 *3) (-12 (-5 *3 (-595 (-2 (|:| -2437 (-1091 *6)) (|:| -2564 (-528))))) (-4 *6 (-288)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-110)) (-5 *1 (-689 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5)))) (-2893 (*1 *2 *3 *4) (-12 (-5 *3 (-528)) (-5 *4 (-398 *2)) (-4 *2 (-888 *7 *5 *6)) (-5 *1 (-689 *5 *6 *7 *2)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-288)))) (-3645 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1091 *9)) (-5 *4 (-595 *7)) (-5 *5 (-595 (-595 *8))) (-4 *7 (-793)) (-4 *8 (-288)) (-4 *9 (-888 *8 *6 *7)) (-4 *6 (-739)) (-5 *2 (-2 (|:| |upol| (-1091 *8)) (|:| |Lval| (-595 *8)) (|:| |Lfact| (-595 (-2 (|:| -2437 (-1091 *8)) (|:| -2564 (-528))))) (|:| |ctpol| *8))) (-5 *1 (-689 *6 *7 *8 *9)))) (-2872 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-595 *7)) (-5 *5 (-595 (-595 *8))) (-4 *7 (-793)) (-4 *8 (-288)) (-4 *6 (-739)) (-4 *9 (-888 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-595 (-2 (|:| -2437 (-1091 *9)) (|:| -2564 (-528))))))) (-5 *1 (-689 *6 *7 *8 *9)) (-5 *3 (-1091 *9)))) (-3412 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-528)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *8 (-288)) (-4 *9 (-888 *8 *6 *7)) (-5 *2 (-2 (|:| -3292 (-1091 *9)) (|:| |polval| (-1091 *8)))) (-5 *1 (-689 *6 *7 *8 *9)) (-5 *3 (-1091 *9)) (-5 *4 (-1091 *8)))) (-1283 (*1 *2 *3 *4) (-12 (-4 *5 (-739)) (-4 *4 (-793)) (-4 *6 (-288)) (-5 *2 (-398 *3)) (-5 *1 (-689 *5 *4 *6 *3)) (-4 *3 (-888 *6 *5 *4)))) (-4102 (*1 *2 *3) (-12 (-5 *3 (-595 (-2 (|:| -2437 (-1091 *6)) (|:| -2564 (-528))))) (-4 *6 (-288)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-528)) (-5 *1 (-689 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5)))) (-3764 (*1 *2 *3) (-12 (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-288)) (-5 *2 (-398 *3)) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-888 *6 *4 *5)))) (-2705 (*1 *2 *3) (-12 (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-288)) (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-398 (-1091 *7))) (-5 *1 (-689 *4 *5 *6 *7)) (-5 *3 (-1091 *7)))) (-2705 (*1 *2 *3) (-12 (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-288)) (-5 *2 (-398 *3)) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-888 *6 *4 *5)))))
-(-10 -7 (-15 -2705 ((-398 |#4|) |#4|)) (-15 -2705 ((-398 (-1091 |#4|)) (-1091 |#4|))) (-15 -3764 ((-398 |#4|) |#4|)) (-15 -4102 ((-528) (-595 (-2 (|:| -2437 (-1091 |#3|)) (|:| -2564 (-528)))))) (-15 -1283 ((-398 |#4|) |#4| |#2|)) (-15 -3412 ((-2 (|:| -3292 (-1091 |#4|)) (|:| |polval| (-1091 |#3|))) (-1091 |#4|) (-1091 |#3|) (-528))) (-15 -2872 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-595 (-2 (|:| -2437 (-1091 |#4|)) (|:| -2564 (-528)))))) (-1091 |#4|) (-595 |#2|) (-595 (-595 |#3|)))) (-15 -3645 ((-2 (|:| |upol| (-1091 |#3|)) (|:| |Lval| (-595 |#3|)) (|:| |Lfact| (-595 (-2 (|:| -2437 (-1091 |#3|)) (|:| -2564 (-528))))) (|:| |ctpol| |#3|)) (-1091 |#4|) (-595 |#2|) (-595 (-595 |#3|)))) (-15 -2893 (|#4| (-528) (-398 |#4|))) (-15 -3832 ((-110) (-595 (-2 (|:| -2437 (-1091 |#3|)) (|:| -2564 (-528)))) (-595 (-2 (|:| -2437 (-1091 |#3|)) (|:| -2564 (-528)))))) (-15 -1412 ((-3 (-595 (-1091 |#4|)) "failed") (-1091 |#4|) (-1091 |#3|) (-1091 |#3|) |#4| (-595 |#2|) (-595 (-717)) (-595 |#3|))) (-15 -2823 ((-595 (-717)) (-1091 |#4|) (-595 |#2|) (-717))) (-15 -3736 ((-1091 |#3|) (-1091 |#3|) (-528))))
-((-2451 (($ $ (-860)) 12)))
-(((-690 |#1| |#2|) (-10 -8 (-15 -2451 (|#1| |#1| (-860)))) (-691 |#2|) (-162)) (T -690))
-NIL
-(-10 -8 (-15 -2451 (|#1| |#1| (-860))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-3693 (($ $ (-860)) 28)) (-2451 (($ $ (-860)) 33)) (-3964 (($ $ (-860)) 29)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2405 (($ $ $) 25)) (-2222 (((-802) $) 11)) (-4103 (($ $ $ $) 26)) (-3607 (($ $ $) 24)) (-2969 (($) 18 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 30)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-691 |#1|) (-133) (-162)) (T -691))
-((-2451 (*1 *1 *1 *2) (-12 (-5 *2 (-860)) (-4 *1 (-691 *3)) (-4 *3 (-162)))))
-(-13 (-708) (-664 |t#1|) (-10 -8 (-15 -2451 ($ $ (-860)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-569 (-802)) . T) ((-597 |#1|) . T) ((-664 |#1|) . T) ((-667) . T) ((-708) . T) ((-986 |#1|) . T) ((-1023) . T))
-((-3469 (((-970) (-635 (-207)) (-528) (-110) (-528)) 25)) (-3055 (((-970) (-635 (-207)) (-528) (-110) (-528)) 24)))
-(((-692) (-10 -7 (-15 -3055 ((-970) (-635 (-207)) (-528) (-110) (-528))) (-15 -3469 ((-970) (-635 (-207)) (-528) (-110) (-528))))) (T -692))
-((-3469 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-635 (-207))) (-5 *4 (-528)) (-5 *5 (-110)) (-5 *2 (-970)) (-5 *1 (-692)))) (-3055 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-635 (-207))) (-5 *4 (-528)) (-5 *5 (-110)) (-5 *2 (-970)) (-5 *1 (-692)))))
-(-10 -7 (-15 -3055 ((-970) (-635 (-207)) (-528) (-110) (-528))) (-15 -3469 ((-970) (-635 (-207)) (-528) (-110) (-528))))
-((-2677 (((-970) (-528) (-528) (-528) (-635 (-207)) (-207) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-72 FCN)))) 43)) (-2585 (((-970) (-528) (-528) (-635 (-207)) (-207) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-79 FCN)))) 39)) (-2635 (((-970) (-207) (-207) (-207) (-207) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305)))) 32)))
-(((-693) (-10 -7 (-15 -2635 ((-970) (-207) (-207) (-207) (-207) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305))))) (-15 -2585 ((-970) (-528) (-528) (-635 (-207)) (-207) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-79 FCN))))) (-15 -2677 ((-970) (-528) (-528) (-528) (-635 (-207)) (-207) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-72 FCN))))))) (T -693))
-((-2677 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-207)) (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-72 FCN)))) (-5 *2 (-970)) (-5 *1 (-693)))) (-2585 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-207)) (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-79 FCN)))) (-5 *2 (-970)) (-5 *1 (-693)))) (-2635 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *5 (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305)))) (-5 *2 (-970)) (-5 *1 (-693)))))
-(-10 -7 (-15 -2635 ((-970) (-207) (-207) (-207) (-207) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305))))) (-15 -2585 ((-970) (-528) (-528) (-635 (-207)) (-207) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-79 FCN))))) (-15 -2677 ((-970) (-528) (-528) (-528) (-635 (-207)) (-207) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-72 FCN))))))
-((-2216 (((-970) (-528) (-528) (-635 (-207)) (-528)) 34)) (-4180 (((-970) (-528) (-528) (-635 (-207)) (-528)) 33)) (-1373 (((-970) (-528) (-635 (-207)) (-528)) 32)) (-3806 (((-970) (-528) (-635 (-207)) (-528)) 31)) (-2315 (((-970) (-528) (-528) (-1078) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528)) 30)) (-3781 (((-970) (-528) (-528) (-1078) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528)) 29)) (-3613 (((-970) (-528) (-528) (-1078) (-635 (-207)) (-635 (-207)) (-528)) 28)) (-2933 (((-970) (-528) (-528) (-1078) (-635 (-207)) (-635 (-207)) (-528)) 27)) (-2263 (((-970) (-528) (-528) (-635 (-207)) (-635 (-207)) (-528)) 24)) (-2909 (((-970) (-528) (-635 (-207)) (-635 (-207)) (-528)) 23)) (-3279 (((-970) (-528) (-635 (-207)) (-528)) 22)) (-3142 (((-970) (-528) (-635 (-207)) (-528)) 21)))
-(((-694) (-10 -7 (-15 -3142 ((-970) (-528) (-635 (-207)) (-528))) (-15 -3279 ((-970) (-528) (-635 (-207)) (-528))) (-15 -2909 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -2263 ((-970) (-528) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -2933 ((-970) (-528) (-528) (-1078) (-635 (-207)) (-635 (-207)) (-528))) (-15 -3613 ((-970) (-528) (-528) (-1078) (-635 (-207)) (-635 (-207)) (-528))) (-15 -3781 ((-970) (-528) (-528) (-1078) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528))) (-15 -2315 ((-970) (-528) (-528) (-1078) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528))) (-15 -3806 ((-970) (-528) (-635 (-207)) (-528))) (-15 -1373 ((-970) (-528) (-635 (-207)) (-528))) (-15 -4180 ((-970) (-528) (-528) (-635 (-207)) (-528))) (-15 -2216 ((-970) (-528) (-528) (-635 (-207)) (-528))))) (T -694))
-((-2216 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-694)))) (-4180 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-694)))) (-1373 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-694)))) (-3806 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-694)))) (-2315 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-528)) (-5 *4 (-1078)) (-5 *5 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-694)))) (-3781 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-528)) (-5 *4 (-1078)) (-5 *5 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-694)))) (-3613 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-528)) (-5 *4 (-1078)) (-5 *5 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-694)))) (-2933 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-528)) (-5 *4 (-1078)) (-5 *5 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-694)))) (-2263 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-694)))) (-2909 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-694)))) (-3279 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-694)))) (-3142 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-694)))))
-(-10 -7 (-15 -3142 ((-970) (-528) (-635 (-207)) (-528))) (-15 -3279 ((-970) (-528) (-635 (-207)) (-528))) (-15 -2909 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -2263 ((-970) (-528) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -2933 ((-970) (-528) (-528) (-1078) (-635 (-207)) (-635 (-207)) (-528))) (-15 -3613 ((-970) (-528) (-528) (-1078) (-635 (-207)) (-635 (-207)) (-528))) (-15 -3781 ((-970) (-528) (-528) (-1078) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528))) (-15 -2315 ((-970) (-528) (-528) (-1078) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528))) (-15 -3806 ((-970) (-528) (-635 (-207)) (-528))) (-15 -1373 ((-970) (-528) (-635 (-207)) (-528))) (-15 -4180 ((-970) (-528) (-528) (-635 (-207)) (-528))) (-15 -2216 ((-970) (-528) (-528) (-635 (-207)) (-528))))
-((-2229 (((-970) (-528) (-635 (-207)) (-635 (-207)) (-528) (-207) (-528) (-528) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-76 FUNCTN)))) 52)) (-1705 (((-970) (-635 (-207)) (-635 (-207)) (-528) (-528)) 51)) (-3671 (((-970) (-528) (-635 (-207)) (-635 (-207)) (-528) (-207) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-76 FUNCTN)))) 50)) (-2830 (((-970) (-207) (-207) (-528) (-528) (-528) (-528)) 46)) (-4168 (((-970) (-207) (-207) (-528) (-207) (-528) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 G)))) 45)) (-1541 (((-970) (-207) (-207) (-207) (-207) (-207) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 G)))) 44)) (-3546 (((-970) (-207) (-207) (-207) (-207) (-528) (-207) (-207) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 G)))) 43)) (-3679 (((-970) (-207) (-207) (-207) (-528) (-207) (-207) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 G)))) 42)) (-2178 (((-970) (-207) (-528) (-207) (-207) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305)))) 38)) (-2435 (((-970) (-207) (-207) (-528) (-635 (-207)) (-207) (-207) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305)))) 37)) (-1353 (((-970) (-207) (-207) (-207) (-207) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305)))) 33)) (-3380 (((-970) (-207) (-207) (-207) (-207) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305)))) 32)))
-(((-695) (-10 -7 (-15 -3380 ((-970) (-207) (-207) (-207) (-207) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305))))) (-15 -1353 ((-970) (-207) (-207) (-207) (-207) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305))))) (-15 -2435 ((-970) (-207) (-207) (-528) (-635 (-207)) (-207) (-207) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305))))) (-15 -2178 ((-970) (-207) (-528) (-207) (-207) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305))))) (-15 -3679 ((-970) (-207) (-207) (-207) (-528) (-207) (-207) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 G))))) (-15 -3546 ((-970) (-207) (-207) (-207) (-207) (-528) (-207) (-207) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 G))))) (-15 -1541 ((-970) (-207) (-207) (-207) (-207) (-207) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 G))))) (-15 -4168 ((-970) (-207) (-207) (-528) (-207) (-528) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 G))))) (-15 -2830 ((-970) (-207) (-207) (-528) (-528) (-528) (-528))) (-15 -3671 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-528) (-207) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-76 FUNCTN))))) (-15 -1705 ((-970) (-635 (-207)) (-635 (-207)) (-528) (-528))) (-15 -2229 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-528) (-207) (-528) (-528) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-76 FUNCTN))))))) (T -695))
-((-2229 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-207)) (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-970)) (-5 *1 (-695)))) (-1705 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-635 (-207))) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-695)))) (-3671 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-207)) (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-970)) (-5 *1 (-695)))) (-2830 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-695)))) (-4168 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *5 (-3 (|:| |fn| (-368)) (|:| |fp| (-62 G)))) (-5 *2 (-970)) (-5 *1 (-695)))) (-1541 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *5 (-3 (|:| |fn| (-368)) (|:| |fp| (-62 G)))) (-5 *2 (-970)) (-5 *1 (-695)))) (-3546 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *5 (-3 (|:| |fn| (-368)) (|:| |fp| (-62 G)))) (-5 *2 (-970)) (-5 *1 (-695)))) (-3679 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *5 (-3 (|:| |fn| (-368)) (|:| |fp| (-62 G)))) (-5 *2 (-970)) (-5 *1 (-695)))) (-2178 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *5 (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305)))) (-5 *2 (-970)) (-5 *1 (-695)))) (-2435 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-528)) (-5 *5 (-635 (-207))) (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305)))) (-5 *3 (-207)) (-5 *2 (-970)) (-5 *1 (-695)))) (-1353 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *5 (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305)))) (-5 *2 (-970)) (-5 *1 (-695)))) (-3380 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *5 (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305)))) (-5 *2 (-970)) (-5 *1 (-695)))))
-(-10 -7 (-15 -3380 ((-970) (-207) (-207) (-207) (-207) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305))))) (-15 -1353 ((-970) (-207) (-207) (-207) (-207) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305))))) (-15 -2435 ((-970) (-207) (-207) (-528) (-635 (-207)) (-207) (-207) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305))))) (-15 -2178 ((-970) (-207) (-528) (-207) (-207) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305))))) (-15 -3679 ((-970) (-207) (-207) (-207) (-528) (-207) (-207) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 G))))) (-15 -3546 ((-970) (-207) (-207) (-207) (-207) (-528) (-207) (-207) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 G))))) (-15 -1541 ((-970) (-207) (-207) (-207) (-207) (-207) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 G))))) (-15 -4168 ((-970) (-207) (-207) (-528) (-207) (-528) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-62 G))))) (-15 -2830 ((-970) (-207) (-207) (-528) (-528) (-528) (-528))) (-15 -3671 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-528) (-207) (-528) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-76 FUNCTN))))) (-15 -1705 ((-970) (-635 (-207)) (-635 (-207)) (-528) (-528))) (-15 -2229 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-528) (-207) (-528) (-528) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-76 FUNCTN))))))
-((-1649 (((-970) (-528) (-528) (-528) (-528) (-207) (-528) (-528) (-528) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-207) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-368)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-2693 (((-970) (-635 (-207)) (-528) (-528) (-207) (-528) (-528) (-207) (-207) (-635 (-207)) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-368)) (|:| |fp| (-85 BDYVAL))) (-368) (-368)) 69) (((-970) (-635 (-207)) (-528) (-528) (-207) (-528) (-528) (-207) (-207) (-635 (-207)) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-368)) (|:| |fp| (-85 BDYVAL)))) 68)) (-2252 (((-970) (-207) (-207) (-528) (-207) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-368)) (|:| |fp| (-83 FCNG)))) 57)) (-2176 (((-970) (-635 (-207)) (-635 (-207)) (-528) (-207) (-207) (-207) (-528) (-528) (-528) (-635 (-207)) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN)))) 50)) (-3149 (((-970) (-207) (-528) (-528) (-1078) (-528) (-207) (-635 (-207)) (-207) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-368)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-368)) (|:| |fp| (-86 OUTPUT)))) 49)) (-1639 (((-970) (-207) (-528) (-528) (-207) (-1078) (-207) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-368)) (|:| |fp| (-86 OUTPUT)))) 45)) (-2903 (((-970) (-207) (-528) (-528) (-207) (-207) (-635 (-207)) (-207) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN)))) 42)) (-3883 (((-970) (-207) (-528) (-528) (-528) (-207) (-635 (-207)) (-207) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-368)) (|:| |fp| (-86 OUTPUT)))) 38)))
-(((-696) (-10 -7 (-15 -3883 ((-970) (-207) (-528) (-528) (-528) (-207) (-635 (-207)) (-207) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-368)) (|:| |fp| (-86 OUTPUT))))) (-15 -2903 ((-970) (-207) (-528) (-528) (-207) (-207) (-635 (-207)) (-207) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN))))) (-15 -1639 ((-970) (-207) (-528) (-528) (-207) (-1078) (-207) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-368)) (|:| |fp| (-86 OUTPUT))))) (-15 -3149 ((-970) (-207) (-528) (-528) (-1078) (-528) (-207) (-635 (-207)) (-207) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-368)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-368)) (|:| |fp| (-86 OUTPUT))))) (-15 -2176 ((-970) (-635 (-207)) (-635 (-207)) (-528) (-207) (-207) (-207) (-528) (-528) (-528) (-635 (-207)) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN))))) (-15 -2252 ((-970) (-207) (-207) (-528) (-207) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-368)) (|:| |fp| (-83 FCNG))))) (-15 -2693 ((-970) (-635 (-207)) (-528) (-528) (-207) (-528) (-528) (-207) (-207) (-635 (-207)) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-368)) (|:| |fp| (-85 BDYVAL))))) (-15 -2693 ((-970) (-635 (-207)) (-528) (-528) (-207) (-528) (-528) (-207) (-207) (-635 (-207)) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-368)) (|:| |fp| (-85 BDYVAL))) (-368) (-368))) (-15 -1649 ((-970) (-528) (-528) (-528) (-528) (-207) (-528) (-528) (-528) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-207) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-368)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -696))
-((-1649 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-528)) (-5 *5 (-635 (-207))) (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-207)) (-5 *2 (-970)) (-5 *1 (-696)))) (-2693 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-635 (-207))) (-5 *4 (-528)) (-5 *5 (-207)) (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-368)) (-5 *2 (-970)) (-5 *1 (-696)))) (-2693 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-635 (-207))) (-5 *4 (-528)) (-5 *5 (-207)) (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-970)) (-5 *1 (-696)))) (-2252 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-528)) (-5 *5 (-635 (-207))) (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-207)) (-5 *2 (-970)) (-5 *1 (-696)))) (-2176 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-635 (-207))) (-5 *4 (-528)) (-5 *5 (-207)) (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN)))) (-5 *2 (-970)) (-5 *1 (-696)))) (-3149 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-528)) (-5 *5 (-1078)) (-5 *6 (-635 (-207))) (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-368)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-368)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-207)) (-5 *2 (-970)) (-5 *1 (-696)))) (-1639 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-528)) (-5 *5 (-1078)) (-5 *6 (-635 (-207))) (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-368)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-207)) (-5 *2 (-970)) (-5 *1 (-696)))) (-2903 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-528)) (-5 *5 (-635 (-207))) (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN)))) (-5 *3 (-207)) (-5 *2 (-970)) (-5 *1 (-696)))) (-3883 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-528)) (-5 *5 (-635 (-207))) (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-207)) (-5 *2 (-970)) (-5 *1 (-696)))))
-(-10 -7 (-15 -3883 ((-970) (-207) (-528) (-528) (-528) (-207) (-635 (-207)) (-207) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-368)) (|:| |fp| (-86 OUTPUT))))) (-15 -2903 ((-970) (-207) (-528) (-528) (-207) (-207) (-635 (-207)) (-207) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN))))) (-15 -1639 ((-970) (-207) (-528) (-528) (-207) (-1078) (-207) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-368)) (|:| |fp| (-86 OUTPUT))))) (-15 -3149 ((-970) (-207) (-528) (-528) (-1078) (-528) (-207) (-635 (-207)) (-207) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-368)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-368)) (|:| |fp| (-86 OUTPUT))))) (-15 -2176 ((-970) (-635 (-207)) (-635 (-207)) (-528) (-207) (-207) (-207) (-528) (-528) (-528) (-635 (-207)) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN))))) (-15 -2252 ((-970) (-207) (-207) (-528) (-207) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-368)) (|:| |fp| (-83 FCNG))))) (-15 -2693 ((-970) (-635 (-207)) (-528) (-528) (-207) (-528) (-528) (-207) (-207) (-635 (-207)) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-368)) (|:| |fp| (-85 BDYVAL))))) (-15 -2693 ((-970) (-635 (-207)) (-528) (-528) (-207) (-528) (-528) (-207) (-207) (-635 (-207)) (-528) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-368)) (|:| |fp| (-85 BDYVAL))) (-368) (-368))) (-15 -1649 ((-970) (-528) (-528) (-528) (-528) (-207) (-528) (-528) (-528) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-207) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-368)) (|:| |fp| (-74 G JACOBG JACGEP))))))
-((-1589 (((-970) (-207) (-207) (-528) (-528) (-635 (-207)) (-635 (-207)) (-207) (-207) (-528) (-528) (-635 (-207)) (-635 (-207)) (-207) (-207) (-528) (-528) (-635 (-207)) (-635 (-207)) (-207) (-528) (-528) (-528) (-623 (-207)) (-528)) 45)) (-1856 (((-970) (-207) (-207) (-207) (-207) (-528) (-528) (-528) (-1078) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-368)) (|:| |fp| (-81 BNDY)))) 41)) (-2883 (((-970) (-528) (-528) (-528) (-528) (-207) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528)) 23)))
-(((-697) (-10 -7 (-15 -2883 ((-970) (-528) (-528) (-528) (-528) (-207) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528))) (-15 -1856 ((-970) (-207) (-207) (-207) (-207) (-528) (-528) (-528) (-1078) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-368)) (|:| |fp| (-81 BNDY))))) (-15 -1589 ((-970) (-207) (-207) (-528) (-528) (-635 (-207)) (-635 (-207)) (-207) (-207) (-528) (-528) (-635 (-207)) (-635 (-207)) (-207) (-207) (-528) (-528) (-635 (-207)) (-635 (-207)) (-207) (-528) (-528) (-528) (-623 (-207)) (-528))))) (T -697))
-((-1589 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-528)) (-5 *5 (-635 (-207))) (-5 *6 (-623 (-207))) (-5 *3 (-207)) (-5 *2 (-970)) (-5 *1 (-697)))) (-1856 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *5 (-1078)) (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-970)) (-5 *1 (-697)))) (-2883 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-528)) (-5 *5 (-635 (-207))) (-5 *4 (-207)) (-5 *2 (-970)) (-5 *1 (-697)))))
-(-10 -7 (-15 -2883 ((-970) (-528) (-528) (-528) (-528) (-207) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528))) (-15 -1856 ((-970) (-207) (-207) (-207) (-207) (-528) (-528) (-528) (-1078) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-368)) (|:| |fp| (-81 BNDY))))) (-15 -1589 ((-970) (-207) (-207) (-528) (-528) (-635 (-207)) (-635 (-207)) (-207) (-207) (-528) (-528) (-635 (-207)) (-635 (-207)) (-207) (-207) (-528) (-528) (-635 (-207)) (-635 (-207)) (-207) (-528) (-528) (-528) (-623 (-207)) (-528))))
-((-2540 (((-970) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-207) (-635 (-207)) (-207) (-207) (-528)) 35)) (-1564 (((-970) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-528) (-207) (-207) (-528)) 34)) (-4215 (((-970) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-528)) (-635 (-207)) (-207) (-207) (-528)) 33)) (-3762 (((-970) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528)) 29)) (-2030 (((-970) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528)) 28)) (-1246 (((-970) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-207) (-207) (-528)) 27)) (-1607 (((-970) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-635 (-207)) (-528)) 24)) (-3738 (((-970) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-635 (-207)) (-528)) 23)) (-2920 (((-970) (-528) (-635 (-207)) (-635 (-207)) (-528)) 22)) (-3485 (((-970) (-528) (-635 (-207)) (-635 (-207)) (-528) (-528) (-528)) 21)))
-(((-698) (-10 -7 (-15 -3485 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-528) (-528) (-528))) (-15 -2920 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -3738 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-635 (-207)) (-528))) (-15 -1607 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-635 (-207)) (-528))) (-15 -1246 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-207) (-207) (-528))) (-15 -2030 ((-970) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528))) (-15 -3762 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528))) (-15 -4215 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-528)) (-635 (-207)) (-207) (-207) (-528))) (-15 -1564 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-528) (-207) (-207) (-528))) (-15 -2540 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-207) (-635 (-207)) (-207) (-207) (-528))))) (T -698))
-((-2540 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-207)) (-5 *2 (-970)) (-5 *1 (-698)))) (-1564 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-207)) (-5 *2 (-970)) (-5 *1 (-698)))) (-4215 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-635 (-207))) (-5 *5 (-635 (-528))) (-5 *6 (-207)) (-5 *3 (-528)) (-5 *2 (-970)) (-5 *1 (-698)))) (-3762 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-698)))) (-2030 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-698)))) (-1246 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-207)) (-5 *2 (-970)) (-5 *1 (-698)))) (-1607 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-698)))) (-3738 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-698)))) (-2920 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-698)))) (-3485 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-698)))))
-(-10 -7 (-15 -3485 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-528) (-528) (-528))) (-15 -2920 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -3738 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-635 (-207)) (-528))) (-15 -1607 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-635 (-207)) (-528))) (-15 -1246 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-207) (-207) (-528))) (-15 -2030 ((-970) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528))) (-15 -3762 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528))) (-15 -4215 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-528)) (-635 (-207)) (-207) (-207) (-528))) (-15 -1564 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-528) (-207) (-207) (-528))) (-15 -2540 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-207) (-635 (-207)) (-207) (-207) (-528))))
-((-3367 (((-970) (-528) (-528) (-635 (-207)) (-635 (-207)) (-528) (-635 (-207)) (-635 (-207)) (-528) (-528) (-528)) 45)) (-2257 (((-970) (-528) (-528) (-528) (-207) (-635 (-207)) (-635 (-207)) (-528)) 44)) (-2009 (((-970) (-528) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-528) (-528)) 43)) (-2400 (((-970) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528)) 42)) (-3555 (((-970) (-1078) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-207) (-528) (-528) (-528) (-528) (-528) (-635 (-207)) (-528) (-635 (-207)) (-635 (-207)) (-528)) 41)) (-2657 (((-970) (-1078) (-528) (-635 (-207)) (-528) (-635 (-207)) (-635 (-207)) (-207) (-528) (-528) (-528) (-528) (-528) (-635 (-207)) (-528) (-635 (-207)) (-635 (-207)) (-635 (-528)) (-528)) 40)) (-2018 (((-970) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-528)) (-528) (-528) (-528) (-207) (-635 (-207)) (-528)) 39)) (-3359 (((-970) (-1078) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-207) (-528) (-528) (-528) (-635 (-207)) (-528) (-635 (-207)) (-635 (-528))) 38)) (-1876 (((-970) (-528) (-635 (-207)) (-635 (-207)) (-528)) 35)) (-1437 (((-970) (-528) (-635 (-207)) (-635 (-207)) (-207) (-528) (-528)) 34)) (-1939 (((-970) (-528) (-635 (-207)) (-635 (-207)) (-207) (-528)) 33)) (-3175 (((-970) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528)) 32)) (-3604 (((-970) (-528) (-207) (-207) (-635 (-207)) (-528) (-528) (-207) (-528)) 31)) (-3968 (((-970) (-528) (-207) (-207) (-635 (-207)) (-528) (-528) (-207) (-528) (-528) (-528)) 30)) (-3158 (((-970) (-528) (-207) (-207) (-635 (-207)) (-528) (-528) (-528) (-528) (-528)) 29)) (-1350 (((-970) (-528) (-528) (-528) (-207) (-207) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-635 (-207)) (-635 (-207)) (-528) (-635 (-528)) (-528) (-528) (-528)) 28)) (-2956 (((-970) (-528) (-635 (-207)) (-207) (-528)) 24)) (-2517 (((-970) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528)) 21)))
-(((-699) (-10 -7 (-15 -2517 ((-970) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528))) (-15 -2956 ((-970) (-528) (-635 (-207)) (-207) (-528))) (-15 -1350 ((-970) (-528) (-528) (-528) (-207) (-207) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-635 (-207)) (-635 (-207)) (-528) (-635 (-528)) (-528) (-528) (-528))) (-15 -3158 ((-970) (-528) (-207) (-207) (-635 (-207)) (-528) (-528) (-528) (-528) (-528))) (-15 -3968 ((-970) (-528) (-207) (-207) (-635 (-207)) (-528) (-528) (-207) (-528) (-528) (-528))) (-15 -3604 ((-970) (-528) (-207) (-207) (-635 (-207)) (-528) (-528) (-207) (-528))) (-15 -3175 ((-970) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528))) (-15 -1939 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-207) (-528))) (-15 -1437 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-207) (-528) (-528))) (-15 -1876 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -3359 ((-970) (-1078) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-207) (-528) (-528) (-528) (-635 (-207)) (-528) (-635 (-207)) (-635 (-528)))) (-15 -2018 ((-970) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-528)) (-528) (-528) (-528) (-207) (-635 (-207)) (-528))) (-15 -2657 ((-970) (-1078) (-528) (-635 (-207)) (-528) (-635 (-207)) (-635 (-207)) (-207) (-528) (-528) (-528) (-528) (-528) (-635 (-207)) (-528) (-635 (-207)) (-635 (-207)) (-635 (-528)) (-528))) (-15 -3555 ((-970) (-1078) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-207) (-528) (-528) (-528) (-528) (-528) (-635 (-207)) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -2400 ((-970) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528))) (-15 -2009 ((-970) (-528) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-528) (-528))) (-15 -2257 ((-970) (-528) (-528) (-528) (-207) (-635 (-207)) (-635 (-207)) (-528))) (-15 -3367 ((-970) (-528) (-528) (-635 (-207)) (-635 (-207)) (-528) (-635 (-207)) (-635 (-207)) (-528) (-528) (-528))))) (T -699))
-((-3367 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-699)))) (-2257 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-528)) (-5 *5 (-635 (-207))) (-5 *4 (-207)) (-5 *2 (-970)) (-5 *1 (-699)))) (-2009 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-699)))) (-2400 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-699)))) (-3555 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1078)) (-5 *4 (-528)) (-5 *5 (-635 (-207))) (-5 *6 (-207)) (-5 *2 (-970)) (-5 *1 (-699)))) (-2657 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1078)) (-5 *5 (-635 (-207))) (-5 *6 (-207)) (-5 *7 (-635 (-528))) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-699)))) (-2018 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-635 (-207))) (-5 *5 (-635 (-528))) (-5 *6 (-207)) (-5 *3 (-528)) (-5 *2 (-970)) (-5 *1 (-699)))) (-3359 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1078)) (-5 *5 (-635 (-207))) (-5 *6 (-207)) (-5 *7 (-635 (-528))) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-699)))) (-1876 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-699)))) (-1437 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-207)) (-5 *2 (-970)) (-5 *1 (-699)))) (-1939 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-207)) (-5 *2 (-970)) (-5 *1 (-699)))) (-3175 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-699)))) (-3604 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-528)) (-5 *5 (-635 (-207))) (-5 *4 (-207)) (-5 *2 (-970)) (-5 *1 (-699)))) (-3968 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-528)) (-5 *5 (-635 (-207))) (-5 *4 (-207)) (-5 *2 (-970)) (-5 *1 (-699)))) (-3158 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-528)) (-5 *5 (-635 (-207))) (-5 *4 (-207)) (-5 *2 (-970)) (-5 *1 (-699)))) (-1350 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-635 (-207))) (-5 *6 (-635 (-528))) (-5 *3 (-528)) (-5 *4 (-207)) (-5 *2 (-970)) (-5 *1 (-699)))) (-2956 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-207)) (-5 *2 (-970)) (-5 *1 (-699)))) (-2517 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-699)))))
-(-10 -7 (-15 -2517 ((-970) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528))) (-15 -2956 ((-970) (-528) (-635 (-207)) (-207) (-528))) (-15 -1350 ((-970) (-528) (-528) (-528) (-207) (-207) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-635 (-207)) (-635 (-207)) (-528) (-635 (-528)) (-528) (-528) (-528))) (-15 -3158 ((-970) (-528) (-207) (-207) (-635 (-207)) (-528) (-528) (-528) (-528) (-528))) (-15 -3968 ((-970) (-528) (-207) (-207) (-635 (-207)) (-528) (-528) (-207) (-528) (-528) (-528))) (-15 -3604 ((-970) (-528) (-207) (-207) (-635 (-207)) (-528) (-528) (-207) (-528))) (-15 -3175 ((-970) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528))) (-15 -1939 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-207) (-528))) (-15 -1437 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-207) (-528) (-528))) (-15 -1876 ((-970) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -3359 ((-970) (-1078) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-207) (-528) (-528) (-528) (-635 (-207)) (-528) (-635 (-207)) (-635 (-528)))) (-15 -2018 ((-970) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-528)) (-528) (-528) (-528) (-207) (-635 (-207)) (-528))) (-15 -2657 ((-970) (-1078) (-528) (-635 (-207)) (-528) (-635 (-207)) (-635 (-207)) (-207) (-528) (-528) (-528) (-528) (-528) (-635 (-207)) (-528) (-635 (-207)) (-635 (-207)) (-635 (-528)) (-528))) (-15 -3555 ((-970) (-1078) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-207) (-528) (-528) (-528) (-528) (-528) (-635 (-207)) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -2400 ((-970) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528))) (-15 -2009 ((-970) (-528) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-528) (-528))) (-15 -2257 ((-970) (-528) (-528) (-528) (-207) (-635 (-207)) (-635 (-207)) (-528))) (-15 -3367 ((-970) (-528) (-528) (-635 (-207)) (-635 (-207)) (-528) (-635 (-207)) (-635 (-207)) (-528) (-528) (-528))))
-((-2250 (((-970) (-528) (-528) (-528) (-207) (-635 (-207)) (-528) (-635 (-207)) (-528)) 63)) (-2921 (((-970) (-528) (-528) (-528) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-528) (-110) (-207) (-528) (-207) (-207) (-110) (-207) (-207) (-207) (-207) (-110) (-528) (-528) (-528) (-528) (-528) (-207) (-207) (-207) (-528) (-528) (-528) (-528) (-528) (-635 (-528)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-368)) (|:| |fp| (-75 OBJFUN)))) 62)) (-1880 (((-970) (-528) (-528) (-528) (-528) (-528) (-528) (-528) (-528) (-207) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-110) (-110) (-110) (-528) (-528) (-635 (-207)) (-635 (-528)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-63 QPHESS)))) 58)) (-1801 (((-970) (-528) (-528) (-528) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-110) (-528) (-528) (-635 (-207)) (-528)) 51)) (-4032 (((-970) (-528) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-64 FUNCT1)))) 50)) (-2746 (((-970) (-528) (-528) (-528) (-528) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-61 LSFUN2)))) 46)) (-1887 (((-970) (-528) (-528) (-528) (-528) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-77 LSFUN1)))) 42)) (-4005 (((-970) (-528) (-207) (-207) (-528) (-207) (-110) (-207) (-207) (-528) (-528) (-528) (-528) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-75 OBJFUN)))) 38)))
-(((-700) (-10 -7 (-15 -4005 ((-970) (-528) (-207) (-207) (-528) (-207) (-110) (-207) (-207) (-528) (-528) (-528) (-528) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-75 OBJFUN))))) (-15 -1887 ((-970) (-528) (-528) (-528) (-528) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-77 LSFUN1))))) (-15 -2746 ((-970) (-528) (-528) (-528) (-528) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-61 LSFUN2))))) (-15 -4032 ((-970) (-528) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-64 FUNCT1))))) (-15 -1801 ((-970) (-528) (-528) (-528) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-110) (-528) (-528) (-635 (-207)) (-528))) (-15 -1880 ((-970) (-528) (-528) (-528) (-528) (-528) (-528) (-528) (-528) (-207) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-110) (-110) (-110) (-528) (-528) (-635 (-207)) (-635 (-528)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-63 QPHESS))))) (-15 -2921 ((-970) (-528) (-528) (-528) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-528) (-110) (-207) (-528) (-207) (-207) (-110) (-207) (-207) (-207) (-207) (-110) (-528) (-528) (-528) (-528) (-528) (-207) (-207) (-207) (-528) (-528) (-528) (-528) (-528) (-635 (-528)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-368)) (|:| |fp| (-75 OBJFUN))))) (-15 -2250 ((-970) (-528) (-528) (-528) (-207) (-635 (-207)) (-528) (-635 (-207)) (-528))))) (T -700))
-((-2250 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-528)) (-5 *5 (-635 (-207))) (-5 *4 (-207)) (-5 *2 (-970)) (-5 *1 (-700)))) (-2921 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-635 (-207))) (-5 *5 (-110)) (-5 *6 (-207)) (-5 *7 (-635 (-528))) (-5 *8 (-3 (|:| |fn| (-368)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-368)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-528)) (-5 *2 (-970)) (-5 *1 (-700)))) (-1880 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-635 (-207))) (-5 *6 (-110)) (-5 *7 (-635 (-528))) (-5 *8 (-3 (|:| |fn| (-368)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-528)) (-5 *4 (-207)) (-5 *2 (-970)) (-5 *1 (-700)))) (-1801 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-110)) (-5 *2 (-970)) (-5 *1 (-700)))) (-4032 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-3 (|:| |fn| (-368)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-970)) (-5 *1 (-700)))) (-2746 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-3 (|:| |fn| (-368)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-970)) (-5 *1 (-700)))) (-1887 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-3 (|:| |fn| (-368)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-970)) (-5 *1 (-700)))) (-4005 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-528)) (-5 *5 (-110)) (-5 *6 (-635 (-207))) (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-207)) (-5 *2 (-970)) (-5 *1 (-700)))))
-(-10 -7 (-15 -4005 ((-970) (-528) (-207) (-207) (-528) (-207) (-110) (-207) (-207) (-528) (-528) (-528) (-528) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-75 OBJFUN))))) (-15 -1887 ((-970) (-528) (-528) (-528) (-528) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-77 LSFUN1))))) (-15 -2746 ((-970) (-528) (-528) (-528) (-528) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-61 LSFUN2))))) (-15 -4032 ((-970) (-528) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-64 FUNCT1))))) (-15 -1801 ((-970) (-528) (-528) (-528) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-110) (-528) (-528) (-635 (-207)) (-528))) (-15 -1880 ((-970) (-528) (-528) (-528) (-528) (-528) (-528) (-528) (-528) (-207) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-110) (-110) (-110) (-528) (-528) (-635 (-207)) (-635 (-528)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-63 QPHESS))))) (-15 -2921 ((-970) (-528) (-528) (-528) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-528) (-110) (-207) (-528) (-207) (-207) (-110) (-207) (-207) (-207) (-207) (-110) (-528) (-528) (-528) (-528) (-528) (-207) (-207) (-207) (-528) (-528) (-528) (-528) (-528) (-635 (-528)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-368)) (|:| |fp| (-75 OBJFUN))))) (-15 -2250 ((-970) (-528) (-528) (-528) (-207) (-635 (-207)) (-528) (-635 (-207)) (-528))))
-((-3888 (((-970) (-1078) (-528) (-528) (-528) (-528) (-635 (-159 (-207))) (-635 (-159 (-207))) (-528)) 47)) (-1635 (((-970) (-1078) (-1078) (-528) (-528) (-635 (-159 (-207))) (-528) (-635 (-159 (-207))) (-528) (-528) (-635 (-159 (-207))) (-528)) 46)) (-3708 (((-970) (-528) (-528) (-528) (-635 (-159 (-207))) (-528)) 45)) (-1842 (((-970) (-1078) (-528) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-528)) 40)) (-1915 (((-970) (-1078) (-1078) (-528) (-528) (-635 (-207)) (-528) (-635 (-207)) (-528) (-528) (-635 (-207)) (-528)) 39)) (-3767 (((-970) (-528) (-528) (-528) (-635 (-207)) (-528)) 36)) (-3249 (((-970) (-528) (-635 (-207)) (-528) (-635 (-528)) (-528)) 35)) (-2191 (((-970) (-528) (-528) (-528) (-528) (-595 (-110)) (-635 (-207)) (-635 (-528)) (-635 (-528)) (-207) (-207) (-528)) 34)) (-2801 (((-970) (-528) (-528) (-528) (-635 (-528)) (-635 (-528)) (-635 (-528)) (-635 (-528)) (-110) (-207) (-110) (-635 (-528)) (-635 (-207)) (-528)) 33)) (-1747 (((-970) (-528) (-528) (-528) (-528) (-207) (-110) (-110) (-595 (-110)) (-635 (-207)) (-635 (-528)) (-635 (-528)) (-528)) 32)))
-(((-701) (-10 -7 (-15 -1747 ((-970) (-528) (-528) (-528) (-528) (-207) (-110) (-110) (-595 (-110)) (-635 (-207)) (-635 (-528)) (-635 (-528)) (-528))) (-15 -2801 ((-970) (-528) (-528) (-528) (-635 (-528)) (-635 (-528)) (-635 (-528)) (-635 (-528)) (-110) (-207) (-110) (-635 (-528)) (-635 (-207)) (-528))) (-15 -2191 ((-970) (-528) (-528) (-528) (-528) (-595 (-110)) (-635 (-207)) (-635 (-528)) (-635 (-528)) (-207) (-207) (-528))) (-15 -3249 ((-970) (-528) (-635 (-207)) (-528) (-635 (-528)) (-528))) (-15 -3767 ((-970) (-528) (-528) (-528) (-635 (-207)) (-528))) (-15 -1915 ((-970) (-1078) (-1078) (-528) (-528) (-635 (-207)) (-528) (-635 (-207)) (-528) (-528) (-635 (-207)) (-528))) (-15 -1842 ((-970) (-1078) (-528) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -3708 ((-970) (-528) (-528) (-528) (-635 (-159 (-207))) (-528))) (-15 -1635 ((-970) (-1078) (-1078) (-528) (-528) (-635 (-159 (-207))) (-528) (-635 (-159 (-207))) (-528) (-528) (-635 (-159 (-207))) (-528))) (-15 -3888 ((-970) (-1078) (-528) (-528) (-528) (-528) (-635 (-159 (-207))) (-635 (-159 (-207))) (-528))))) (T -701))
-((-3888 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1078)) (-5 *4 (-528)) (-5 *5 (-635 (-159 (-207)))) (-5 *2 (-970)) (-5 *1 (-701)))) (-1635 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1078)) (-5 *4 (-528)) (-5 *5 (-635 (-159 (-207)))) (-5 *2 (-970)) (-5 *1 (-701)))) (-3708 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-159 (-207)))) (-5 *2 (-970)) (-5 *1 (-701)))) (-1842 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1078)) (-5 *4 (-528)) (-5 *5 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-701)))) (-1915 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1078)) (-5 *4 (-528)) (-5 *5 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-701)))) (-3767 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-701)))) (-3249 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-635 (-207))) (-5 *5 (-635 (-528))) (-5 *3 (-528)) (-5 *2 (-970)) (-5 *1 (-701)))) (-2191 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-595 (-110))) (-5 *5 (-635 (-207))) (-5 *6 (-635 (-528))) (-5 *7 (-207)) (-5 *3 (-528)) (-5 *2 (-970)) (-5 *1 (-701)))) (-2801 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-635 (-528))) (-5 *5 (-110)) (-5 *7 (-635 (-207))) (-5 *3 (-528)) (-5 *6 (-207)) (-5 *2 (-970)) (-5 *1 (-701)))) (-1747 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-595 (-110))) (-5 *7 (-635 (-207))) (-5 *8 (-635 (-528))) (-5 *3 (-528)) (-5 *4 (-207)) (-5 *5 (-110)) (-5 *2 (-970)) (-5 *1 (-701)))))
-(-10 -7 (-15 -1747 ((-970) (-528) (-528) (-528) (-528) (-207) (-110) (-110) (-595 (-110)) (-635 (-207)) (-635 (-528)) (-635 (-528)) (-528))) (-15 -2801 ((-970) (-528) (-528) (-528) (-635 (-528)) (-635 (-528)) (-635 (-528)) (-635 (-528)) (-110) (-207) (-110) (-635 (-528)) (-635 (-207)) (-528))) (-15 -2191 ((-970) (-528) (-528) (-528) (-528) (-595 (-110)) (-635 (-207)) (-635 (-528)) (-635 (-528)) (-207) (-207) (-528))) (-15 -3249 ((-970) (-528) (-635 (-207)) (-528) (-635 (-528)) (-528))) (-15 -3767 ((-970) (-528) (-528) (-528) (-635 (-207)) (-528))) (-15 -1915 ((-970) (-1078) (-1078) (-528) (-528) (-635 (-207)) (-528) (-635 (-207)) (-528) (-528) (-635 (-207)) (-528))) (-15 -1842 ((-970) (-1078) (-528) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -3708 ((-970) (-528) (-528) (-528) (-635 (-159 (-207))) (-528))) (-15 -1635 ((-970) (-1078) (-1078) (-528) (-528) (-635 (-159 (-207))) (-528) (-635 (-159 (-207))) (-528) (-528) (-635 (-159 (-207))) (-528))) (-15 -3888 ((-970) (-1078) (-528) (-528) (-528) (-528) (-635 (-159 (-207))) (-635 (-159 (-207))) (-528))))
-((-2841 (((-970) (-528) (-528) (-528) (-528) (-528) (-110) (-528) (-110) (-528) (-635 (-159 (-207))) (-635 (-159 (-207))) (-528)) 65)) (-2888 (((-970) (-528) (-528) (-528) (-528) (-528) (-110) (-528) (-110) (-528) (-635 (-207)) (-635 (-207)) (-528)) 60)) (-3032 (((-970) (-528) (-528) (-207) (-528) (-528) (-528) (-528) (-528) (-528) (-528) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-368)) (|:| |fp| (-66 IMAGE))) (-368)) 56) (((-970) (-528) (-528) (-207) (-528) (-528) (-528) (-528) (-528) (-528) (-528) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-368)) (|:| |fp| (-66 IMAGE)))) 55)) (-2536 (((-970) (-528) (-528) (-528) (-207) (-110) (-528) (-635 (-207)) (-635 (-207)) (-528)) 37)) (-4216 (((-970) (-528) (-528) (-207) (-207) (-528) (-528) (-635 (-207)) (-528)) 33)) (-4189 (((-970) (-635 (-207)) (-528) (-635 (-207)) (-528) (-528) (-528) (-528) (-528)) 30)) (-3927 (((-970) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-528)) 29)) (-2616 (((-970) (-528) (-528) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-528)) 28)) (-3022 (((-970) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-528)) 27)) (-2453 (((-970) (-528) (-528) (-528) (-528) (-635 (-207)) (-528)) 26)) (-3373 (((-970) (-528) (-528) (-635 (-207)) (-528)) 25)) (-2778 (((-970) (-528) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-528)) 24)) (-2780 (((-970) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-528)) 23)) (-3441 (((-970) (-635 (-207)) (-528) (-528) (-528) (-528)) 22)) (-2716 (((-970) (-528) (-528) (-635 (-207)) (-528)) 21)))
-(((-702) (-10 -7 (-15 -2716 ((-970) (-528) (-528) (-635 (-207)) (-528))) (-15 -3441 ((-970) (-635 (-207)) (-528) (-528) (-528) (-528))) (-15 -2780 ((-970) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -2778 ((-970) (-528) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -3373 ((-970) (-528) (-528) (-635 (-207)) (-528))) (-15 -2453 ((-970) (-528) (-528) (-528) (-528) (-635 (-207)) (-528))) (-15 -3022 ((-970) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -2616 ((-970) (-528) (-528) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -3927 ((-970) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -4189 ((-970) (-635 (-207)) (-528) (-635 (-207)) (-528) (-528) (-528) (-528) (-528))) (-15 -4216 ((-970) (-528) (-528) (-207) (-207) (-528) (-528) (-635 (-207)) (-528))) (-15 -2536 ((-970) (-528) (-528) (-528) (-207) (-110) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -3032 ((-970) (-528) (-528) (-207) (-528) (-528) (-528) (-528) (-528) (-528) (-528) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-368)) (|:| |fp| (-66 IMAGE))))) (-15 -3032 ((-970) (-528) (-528) (-207) (-528) (-528) (-528) (-528) (-528) (-528) (-528) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-368)) (|:| |fp| (-66 IMAGE))) (-368))) (-15 -2888 ((-970) (-528) (-528) (-528) (-528) (-528) (-110) (-528) (-110) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -2841 ((-970) (-528) (-528) (-528) (-528) (-528) (-110) (-528) (-110) (-528) (-635 (-159 (-207))) (-635 (-159 (-207))) (-528))))) (T -702))
-((-2841 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-528)) (-5 *4 (-110)) (-5 *5 (-635 (-159 (-207)))) (-5 *2 (-970)) (-5 *1 (-702)))) (-2888 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-528)) (-5 *4 (-110)) (-5 *5 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-702)))) (-3032 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-528)) (-5 *5 (-635 (-207))) (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-368)) (-5 *4 (-207)) (-5 *2 (-970)) (-5 *1 (-702)))) (-3032 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-528)) (-5 *5 (-635 (-207))) (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-207)) (-5 *2 (-970)) (-5 *1 (-702)))) (-2536 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-528)) (-5 *5 (-110)) (-5 *6 (-635 (-207))) (-5 *4 (-207)) (-5 *2 (-970)) (-5 *1 (-702)))) (-4216 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-528)) (-5 *5 (-635 (-207))) (-5 *4 (-207)) (-5 *2 (-970)) (-5 *1 (-702)))) (-4189 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-635 (-207))) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-702)))) (-3927 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-702)))) (-2616 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-702)))) (-3022 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-702)))) (-2453 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-702)))) (-3373 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-702)))) (-2778 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-702)))) (-2780 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-702)))) (-3441 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-635 (-207))) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-702)))) (-2716 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-702)))))
-(-10 -7 (-15 -2716 ((-970) (-528) (-528) (-635 (-207)) (-528))) (-15 -3441 ((-970) (-635 (-207)) (-528) (-528) (-528) (-528))) (-15 -2780 ((-970) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -2778 ((-970) (-528) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -3373 ((-970) (-528) (-528) (-635 (-207)) (-528))) (-15 -2453 ((-970) (-528) (-528) (-528) (-528) (-635 (-207)) (-528))) (-15 -3022 ((-970) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -2616 ((-970) (-528) (-528) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -3927 ((-970) (-528) (-528) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -4189 ((-970) (-635 (-207)) (-528) (-635 (-207)) (-528) (-528) (-528) (-528) (-528))) (-15 -4216 ((-970) (-528) (-528) (-207) (-207) (-528) (-528) (-635 (-207)) (-528))) (-15 -2536 ((-970) (-528) (-528) (-528) (-207) (-110) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -3032 ((-970) (-528) (-528) (-207) (-528) (-528) (-528) (-528) (-528) (-528) (-528) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-368)) (|:| |fp| (-66 IMAGE))))) (-15 -3032 ((-970) (-528) (-528) (-207) (-528) (-528) (-528) (-528) (-528) (-528) (-528) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-368)) (|:| |fp| (-66 IMAGE))) (-368))) (-15 -2888 ((-970) (-528) (-528) (-528) (-528) (-528) (-110) (-528) (-110) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -2841 ((-970) (-528) (-528) (-528) (-528) (-528) (-110) (-528) (-110) (-528) (-635 (-159 (-207))) (-635 (-159 (-207))) (-528))))
-((-3354 (((-970) (-528) (-528) (-207) (-207) (-207) (-207) (-528) (-528) (-528) (-528) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-68 APROD)))) 61)) (-2155 (((-970) (-528) (-635 (-207)) (-528) (-635 (-207)) (-635 (-528)) (-528) (-635 (-207)) (-528) (-528) (-528) (-528)) 57)) (-2573 (((-970) (-528) (-635 (-207)) (-110) (-207) (-528) (-528) (-528) (-528) (-207) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-368)) (|:| |fp| (-71 MSOLVE)))) 56)) (-3376 (((-970) (-528) (-528) (-635 (-207)) (-528) (-635 (-528)) (-528) (-635 (-528)) (-635 (-207)) (-635 (-528)) (-635 (-528)) (-635 (-207)) (-635 (-207)) (-635 (-528)) (-528)) 37)) (-2426 (((-970) (-528) (-528) (-528) (-207) (-528) (-635 (-207)) (-635 (-207)) (-528)) 36)) (-3459 (((-970) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528)) 33)) (-2568 (((-970) (-528) (-635 (-207)) (-528) (-635 (-528)) (-635 (-528)) (-528) (-635 (-528)) (-635 (-207))) 32)) (-1861 (((-970) (-635 (-207)) (-528) (-635 (-207)) (-528) (-528) (-528)) 28)) (-4105 (((-970) (-528) (-635 (-207)) (-528) (-635 (-207)) (-528)) 27)) (-2900 (((-970) (-528) (-635 (-207)) (-528) (-635 (-207)) (-528)) 26)) (-3670 (((-970) (-528) (-635 (-159 (-207))) (-528) (-528) (-528) (-528) (-635 (-159 (-207))) (-528)) 22)))
-(((-703) (-10 -7 (-15 -3670 ((-970) (-528) (-635 (-159 (-207))) (-528) (-528) (-528) (-528) (-635 (-159 (-207))) (-528))) (-15 -2900 ((-970) (-528) (-635 (-207)) (-528) (-635 (-207)) (-528))) (-15 -4105 ((-970) (-528) (-635 (-207)) (-528) (-635 (-207)) (-528))) (-15 -1861 ((-970) (-635 (-207)) (-528) (-635 (-207)) (-528) (-528) (-528))) (-15 -2568 ((-970) (-528) (-635 (-207)) (-528) (-635 (-528)) (-635 (-528)) (-528) (-635 (-528)) (-635 (-207)))) (-15 -3459 ((-970) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528))) (-15 -2426 ((-970) (-528) (-528) (-528) (-207) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -3376 ((-970) (-528) (-528) (-635 (-207)) (-528) (-635 (-528)) (-528) (-635 (-528)) (-635 (-207)) (-635 (-528)) (-635 (-528)) (-635 (-207)) (-635 (-207)) (-635 (-528)) (-528))) (-15 -2573 ((-970) (-528) (-635 (-207)) (-110) (-207) (-528) (-528) (-528) (-528) (-207) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-368)) (|:| |fp| (-71 MSOLVE))))) (-15 -2155 ((-970) (-528) (-635 (-207)) (-528) (-635 (-207)) (-635 (-528)) (-528) (-635 (-207)) (-528) (-528) (-528) (-528))) (-15 -3354 ((-970) (-528) (-528) (-207) (-207) (-207) (-207) (-528) (-528) (-528) (-528) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-68 APROD))))))) (T -703))
-((-3354 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-528)) (-5 *5 (-635 (-207))) (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-68 APROD)))) (-5 *4 (-207)) (-5 *2 (-970)) (-5 *1 (-703)))) (-2155 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-635 (-207))) (-5 *5 (-635 (-528))) (-5 *3 (-528)) (-5 *2 (-970)) (-5 *1 (-703)))) (-2573 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-110)) (-5 *6 (-207)) (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-368)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-970)) (-5 *1 (-703)))) (-3376 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-635 (-207))) (-5 *5 (-635 (-528))) (-5 *3 (-528)) (-5 *2 (-970)) (-5 *1 (-703)))) (-2426 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-528)) (-5 *5 (-635 (-207))) (-5 *4 (-207)) (-5 *2 (-970)) (-5 *1 (-703)))) (-3459 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-703)))) (-2568 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-635 (-207))) (-5 *5 (-635 (-528))) (-5 *3 (-528)) (-5 *2 (-970)) (-5 *1 (-703)))) (-1861 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-635 (-207))) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-703)))) (-4105 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-703)))) (-2900 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-703)))) (-3670 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-159 (-207)))) (-5 *2 (-970)) (-5 *1 (-703)))))
-(-10 -7 (-15 -3670 ((-970) (-528) (-635 (-159 (-207))) (-528) (-528) (-528) (-528) (-635 (-159 (-207))) (-528))) (-15 -2900 ((-970) (-528) (-635 (-207)) (-528) (-635 (-207)) (-528))) (-15 -4105 ((-970) (-528) (-635 (-207)) (-528) (-635 (-207)) (-528))) (-15 -1861 ((-970) (-635 (-207)) (-528) (-635 (-207)) (-528) (-528) (-528))) (-15 -2568 ((-970) (-528) (-635 (-207)) (-528) (-635 (-528)) (-635 (-528)) (-528) (-635 (-528)) (-635 (-207)))) (-15 -3459 ((-970) (-528) (-528) (-635 (-207)) (-635 (-207)) (-635 (-207)) (-528))) (-15 -2426 ((-970) (-528) (-528) (-528) (-207) (-528) (-635 (-207)) (-635 (-207)) (-528))) (-15 -3376 ((-970) (-528) (-528) (-635 (-207)) (-528) (-635 (-528)) (-528) (-635 (-528)) (-635 (-207)) (-635 (-528)) (-635 (-528)) (-635 (-207)) (-635 (-207)) (-635 (-528)) (-528))) (-15 -2573 ((-970) (-528) (-635 (-207)) (-110) (-207) (-528) (-528) (-528) (-528) (-207) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-368)) (|:| |fp| (-71 MSOLVE))))) (-15 -2155 ((-970) (-528) (-635 (-207)) (-528) (-635 (-207)) (-635 (-528)) (-528) (-635 (-207)) (-528) (-528) (-528) (-528))) (-15 -3354 ((-970) (-528) (-528) (-207) (-207) (-207) (-207) (-528) (-528) (-528) (-528) (-635 (-207)) (-528) (-3 (|:| |fn| (-368)) (|:| |fp| (-68 APROD))))))
-((-4165 (((-970) (-1078) (-528) (-528) (-635 (-207)) (-528) (-528) (-635 (-207))) 29)) (-2957 (((-970) (-1078) (-528) (-528) (-635 (-207))) 28)) (-3680 (((-970) (-1078) (-528) (-528) (-635 (-207)) (-528) (-635 (-528)) (-528) (-635 (-207))) 27)) (-1423 (((-970) (-528) (-528) (-528) (-635 (-207))) 21)))
-(((-704) (-10 -7 (-15 -1423 ((-970) (-528) (-528) (-528) (-635 (-207)))) (-15 -3680 ((-970) (-1078) (-528) (-528) (-635 (-207)) (-528) (-635 (-528)) (-528) (-635 (-207)))) (-15 -2957 ((-970) (-1078) (-528) (-528) (-635 (-207)))) (-15 -4165 ((-970) (-1078) (-528) (-528) (-635 (-207)) (-528) (-528) (-635 (-207)))))) (T -704))
-((-4165 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1078)) (-5 *4 (-528)) (-5 *5 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-704)))) (-2957 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1078)) (-5 *4 (-528)) (-5 *5 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-704)))) (-3680 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1078)) (-5 *5 (-635 (-207))) (-5 *6 (-635 (-528))) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-704)))) (-1423 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970)) (-5 *1 (-704)))))
-(-10 -7 (-15 -1423 ((-970) (-528) (-528) (-528) (-635 (-207)))) (-15 -3680 ((-970) (-1078) (-528) (-528) (-635 (-207)) (-528) (-635 (-528)) (-528) (-635 (-207)))) (-15 -2957 ((-970) (-1078) (-528) (-528) (-635 (-207)))) (-15 -4165 ((-970) (-1078) (-528) (-528) (-635 (-207)) (-528) (-528) (-635 (-207)))))
-((-2873 (((-970) (-207) (-207) (-207) (-207) (-528)) 62)) (-2172 (((-970) (-207) (-207) (-207) (-528)) 61)) (-1859 (((-970) (-207) (-207) (-207) (-528)) 60)) (-3435 (((-970) (-207) (-207) (-528)) 59)) (-3419 (((-970) (-207) (-528)) 58)) (-2346 (((-970) (-207) (-528)) 57)) (-1605 (((-970) (-207) (-528)) 56)) (-3078 (((-970) (-207) (-528)) 55)) (-3774 (((-970) (-207) (-528)) 54)) (-1908 (((-970) (-207) (-528)) 53)) (-1531 (((-970) (-207) (-159 (-207)) (-528) (-1078) (-528)) 52)) (-3699 (((-970) (-207) (-159 (-207)) (-528) (-1078) (-528)) 51)) (-3599 (((-970) (-207) (-528)) 50)) (-4093 (((-970) (-207) (-528)) 49)) (-2701 (((-970) (-207) (-528)) 48)) (-1498 (((-970) (-207) (-528)) 47)) (-4185 (((-970) (-528) (-207) (-159 (-207)) (-528) (-1078) (-528)) 46)) (-2148 (((-970) (-1078) (-159 (-207)) (-1078) (-528)) 45)) (-3125 (((-970) (-1078) (-159 (-207)) (-1078) (-528)) 44)) (-1562 (((-970) (-207) (-159 (-207)) (-528) (-1078) (-528)) 43)) (-1601 (((-970) (-207) (-159 (-207)) (-528) (-1078) (-528)) 42)) (-1774 (((-970) (-207) (-528)) 39)) (-3561 (((-970) (-207) (-528)) 38)) (-1803 (((-970) (-207) (-528)) 37)) (-1890 (((-970) (-207) (-528)) 36)) (-3116 (((-970) (-207) (-528)) 35)) (-2913 (((-970) (-207) (-528)) 34)) (-3372 (((-970) (-207) (-528)) 33)) (-1489 (((-970) (-207) (-528)) 32)) (-2601 (((-970) (-207) (-528)) 31)) (-1758 (((-970) (-207) (-528)) 30)) (-1896 (((-970) (-207) (-207) (-207) (-528)) 29)) (-2618 (((-970) (-207) (-528)) 28)) (-2599 (((-970) (-207) (-528)) 27)) (-1832 (((-970) (-207) (-528)) 26)) (-2607 (((-970) (-207) (-528)) 25)) (-3264 (((-970) (-207) (-528)) 24)) (-1569 (((-970) (-159 (-207)) (-528)) 21)))
-(((-705) (-10 -7 (-15 -1569 ((-970) (-159 (-207)) (-528))) (-15 -3264 ((-970) (-207) (-528))) (-15 -2607 ((-970) (-207) (-528))) (-15 -1832 ((-970) (-207) (-528))) (-15 -2599 ((-970) (-207) (-528))) (-15 -2618 ((-970) (-207) (-528))) (-15 -1896 ((-970) (-207) (-207) (-207) (-528))) (-15 -1758 ((-970) (-207) (-528))) (-15 -2601 ((-970) (-207) (-528))) (-15 -1489 ((-970) (-207) (-528))) (-15 -3372 ((-970) (-207) (-528))) (-15 -2913 ((-970) (-207) (-528))) (-15 -3116 ((-970) (-207) (-528))) (-15 -1890 ((-970) (-207) (-528))) (-15 -1803 ((-970) (-207) (-528))) (-15 -3561 ((-970) (-207) (-528))) (-15 -1774 ((-970) (-207) (-528))) (-15 -1601 ((-970) (-207) (-159 (-207)) (-528) (-1078) (-528))) (-15 -1562 ((-970) (-207) (-159 (-207)) (-528) (-1078) (-528))) (-15 -3125 ((-970) (-1078) (-159 (-207)) (-1078) (-528))) (-15 -2148 ((-970) (-1078) (-159 (-207)) (-1078) (-528))) (-15 -4185 ((-970) (-528) (-207) (-159 (-207)) (-528) (-1078) (-528))) (-15 -1498 ((-970) (-207) (-528))) (-15 -2701 ((-970) (-207) (-528))) (-15 -4093 ((-970) (-207) (-528))) (-15 -3599 ((-970) (-207) (-528))) (-15 -3699 ((-970) (-207) (-159 (-207)) (-528) (-1078) (-528))) (-15 -1531 ((-970) (-207) (-159 (-207)) (-528) (-1078) (-528))) (-15 -1908 ((-970) (-207) (-528))) (-15 -3774 ((-970) (-207) (-528))) (-15 -3078 ((-970) (-207) (-528))) (-15 -1605 ((-970) (-207) (-528))) (-15 -2346 ((-970) (-207) (-528))) (-15 -3419 ((-970) (-207) (-528))) (-15 -3435 ((-970) (-207) (-207) (-528))) (-15 -1859 ((-970) (-207) (-207) (-207) (-528))) (-15 -2172 ((-970) (-207) (-207) (-207) (-528))) (-15 -2873 ((-970) (-207) (-207) (-207) (-207) (-528))))) (T -705))
-((-2873 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-2172 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-1859 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-3435 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-3419 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-2346 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-3078 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-3774 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-1908 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-1531 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-207))) (-5 *5 (-528)) (-5 *6 (-1078)) (-5 *3 (-207)) (-5 *2 (-970)) (-5 *1 (-705)))) (-3699 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-207))) (-5 *5 (-528)) (-5 *6 (-1078)) (-5 *3 (-207)) (-5 *2 (-970)) (-5 *1 (-705)))) (-3599 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-4093 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-4185 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-528)) (-5 *5 (-159 (-207))) (-5 *6 (-1078)) (-5 *4 (-207)) (-5 *2 (-970)) (-5 *1 (-705)))) (-2148 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1078)) (-5 *4 (-159 (-207))) (-5 *5 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-3125 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1078)) (-5 *4 (-159 (-207))) (-5 *5 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-1562 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-207))) (-5 *5 (-528)) (-5 *6 (-1078)) (-5 *3 (-207)) (-5 *2 (-970)) (-5 *1 (-705)))) (-1601 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-207))) (-5 *5 (-528)) (-5 *6 (-1078)) (-5 *3 (-207)) (-5 *2 (-970)) (-5 *1 (-705)))) (-1774 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-3561 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-1803 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-1890 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-3116 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-2913 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-3372 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-1489 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-2601 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-1758 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-1896 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-2618 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-2599 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-1832 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-2607 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-3264 (*1 *2 *3 *4) (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))) (-1569 (*1 *2 *3 *4) (-12 (-5 *3 (-159 (-207))) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(-10 -7 (-15 -1569 ((-970) (-159 (-207)) (-528))) (-15 -3264 ((-970) (-207) (-528))) (-15 -2607 ((-970) (-207) (-528))) (-15 -1832 ((-970) (-207) (-528))) (-15 -2599 ((-970) (-207) (-528))) (-15 -2618 ((-970) (-207) (-528))) (-15 -1896 ((-970) (-207) (-207) (-207) (-528))) (-15 -1758 ((-970) (-207) (-528))) (-15 -2601 ((-970) (-207) (-528))) (-15 -1489 ((-970) (-207) (-528))) (-15 -3372 ((-970) (-207) (-528))) (-15 -2913 ((-970) (-207) (-528))) (-15 -3116 ((-970) (-207) (-528))) (-15 -1890 ((-970) (-207) (-528))) (-15 -1803 ((-970) (-207) (-528))) (-15 -3561 ((-970) (-207) (-528))) (-15 -1774 ((-970) (-207) (-528))) (-15 -1601 ((-970) (-207) (-159 (-207)) (-528) (-1078) (-528))) (-15 -1562 ((-970) (-207) (-159 (-207)) (-528) (-1078) (-528))) (-15 -3125 ((-970) (-1078) (-159 (-207)) (-1078) (-528))) (-15 -2148 ((-970) (-1078) (-159 (-207)) (-1078) (-528))) (-15 -4185 ((-970) (-528) (-207) (-159 (-207)) (-528) (-1078) (-528))) (-15 -1498 ((-970) (-207) (-528))) (-15 -2701 ((-970) (-207) (-528))) (-15 -4093 ((-970) (-207) (-528))) (-15 -3599 ((-970) (-207) (-528))) (-15 -3699 ((-970) (-207) (-159 (-207)) (-528) (-1078) (-528))) (-15 -1531 ((-970) (-207) (-159 (-207)) (-528) (-1078) (-528))) (-15 -1908 ((-970) (-207) (-528))) (-15 -3774 ((-970) (-207) (-528))) (-15 -3078 ((-970) (-207) (-528))) (-15 -1605 ((-970) (-207) (-528))) (-15 -2346 ((-970) (-207) (-528))) (-15 -3419 ((-970) (-207) (-528))) (-15 -3435 ((-970) (-207) (-207) (-528))) (-15 -1859 ((-970) (-207) (-207) (-207) (-528))) (-15 -2172 ((-970) (-207) (-207) (-207) (-528))) (-15 -2873 ((-970) (-207) (-207) (-207) (-207) (-528))))
-((-3655 (((-1182)) 18)) (-3076 (((-1078)) 22)) (-1729 (((-1078)) 21)) (-2324 (((-1027) (-1095) (-635 (-528))) 37) (((-1027) (-1095) (-635 (-207))) 32)) (-1702 (((-110)) 16)) (-3574 (((-1078) (-1078)) 25)))
-(((-706) (-10 -7 (-15 -1729 ((-1078))) (-15 -3076 ((-1078))) (-15 -3574 ((-1078) (-1078))) (-15 -2324 ((-1027) (-1095) (-635 (-207)))) (-15 -2324 ((-1027) (-1095) (-635 (-528)))) (-15 -1702 ((-110))) (-15 -3655 ((-1182))))) (T -706))
-((-3655 (*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-706)))) (-1702 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-706)))) (-2324 (*1 *2 *3 *4) (-12 (-5 *3 (-1095)) (-5 *4 (-635 (-528))) (-5 *2 (-1027)) (-5 *1 (-706)))) (-2324 (*1 *2 *3 *4) (-12 (-5 *3 (-1095)) (-5 *4 (-635 (-207))) (-5 *2 (-1027)) (-5 *1 (-706)))) (-3574 (*1 *2 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-706)))) (-3076 (*1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-706)))) (-1729 (*1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-706)))))
-(-10 -7 (-15 -1729 ((-1078))) (-15 -3076 ((-1078))) (-15 -3574 ((-1078) (-1078))) (-15 -2324 ((-1027) (-1095) (-635 (-207)))) (-15 -2324 ((-1027) (-1095) (-635 (-528)))) (-15 -1702 ((-110))) (-15 -3655 ((-1182))))
-((-2405 (($ $ $) 10)) (-4103 (($ $ $ $) 9)) (-3607 (($ $ $) 12)))
-(((-707 |#1|) (-10 -8 (-15 -3607 (|#1| |#1| |#1|)) (-15 -2405 (|#1| |#1| |#1|)) (-15 -4103 (|#1| |#1| |#1| |#1|))) (-708)) (T -707))
-NIL
-(-10 -8 (-15 -3607 (|#1| |#1| |#1|)) (-15 -2405 (|#1| |#1| |#1|)) (-15 -4103 (|#1| |#1| |#1| |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-3693 (($ $ (-860)) 28)) (-3964 (($ $ (-860)) 29)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2405 (($ $ $) 25)) (-2222 (((-802) $) 11)) (-4103 (($ $ $ $) 26)) (-3607 (($ $ $) 24)) (-2969 (($) 18 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 30)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 27)))
-(((-708) (-133)) (T -708))
-((-4103 (*1 *1 *1 *1 *1) (-4 *1 (-708))) (-2405 (*1 *1 *1 *1) (-4 *1 (-708))) (-3607 (*1 *1 *1 *1) (-4 *1 (-708))))
-(-13 (-21) (-667) (-10 -8 (-15 -4103 ($ $ $ $)) (-15 -2405 ($ $ $)) (-15 -3607 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-569 (-802)) . T) ((-667) . T) ((-1023) . T))
-((-2222 (((-802) $) NIL) (($ (-528)) 10)))
-(((-709 |#1|) (-10 -8 (-15 -2222 (|#1| (-528))) (-15 -2222 ((-802) |#1|))) (-710)) (T -709))
-NIL
-(-10 -8 (-15 -2222 (|#1| (-528))) (-15 -2222 ((-802) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-3552 (((-3 $ "failed") $) 40)) (-3693 (($ $ (-860)) 28) (($ $ (-717)) 35)) (-1312 (((-3 $ "failed") $) 38)) (-1297 (((-110) $) 34)) (-1895 (((-3 $ "failed") $) 39)) (-3964 (($ $ (-860)) 29) (($ $ (-717)) 36)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2405 (($ $ $) 25)) (-2222 (((-802) $) 11) (($ (-528)) 31)) (-3742 (((-717)) 32)) (-4103 (($ $ $ $) 26)) (-3607 (($ $ $) 24)) (-2969 (($) 18 T CONST)) (-2982 (($) 33 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 30) (($ $ (-717)) 37)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 27)))
+((* (*1 *1 *1 *1) (-4 *1 (-669))) (-2433 (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-860)))) (-2432 (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-860)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-860)))))
+(-13 (-1027) (-10 -8 (-15 * ($ $ $)) (-15 -2433 ($ $ (-860))) (-15 -2432 ($ $ (-860))) (-15 ** ($ $ (-860)))))
+(((-99) . T) ((-571 (-805)) . T) ((-1027) . T))
+((-2433 (($ $ (-860)) NIL) (($ $ (-719)) 17)) (-2436 (((-110) $) 10)) (-2432 (($ $ (-860)) NIL) (($ $ (-719)) 18)) (** (($ $ (-860)) NIL) (($ $ (-719)) 15)))
+(((-670 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-719))) (-15 -2432 (|#1| |#1| (-719))) (-15 -2433 (|#1| |#1| (-719))) (-15 -2436 ((-110) |#1|)) (-15 ** (|#1| |#1| (-860))) (-15 -2432 (|#1| |#1| (-860))) (-15 -2433 (|#1| |#1| (-860)))) (-671)) (T -670))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-719))) (-15 -2432 (|#1| |#1| (-719))) (-15 -2433 (|#1| |#1| (-719))) (-15 -2436 ((-110) |#1|)) (-15 ** (|#1| |#1| (-860))) (-15 -2432 (|#1| |#1| (-860))) (-15 -2433 (|#1| |#1| (-860))))
+((-2828 (((-110) $ $) 7)) (-2430 (((-3 $ "failed") $) 17)) (-2433 (($ $ (-860)) 15) (($ $ (-719)) 22)) (-3741 (((-3 $ "failed") $) 19)) (-2436 (((-110) $) 23)) (-2431 (((-3 $ "failed") $) 18)) (-2432 (($ $ (-860)) 14) (($ $ (-719)) 21)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-2927 (($) 24 T CONST)) (-3317 (((-110) $ $) 6)) (** (($ $ (-860)) 13) (($ $ (-719)) 20)) (* (($ $ $) 16)))
+(((-671) (-133)) (T -671))
+((-2927 (*1 *1) (-4 *1 (-671))) (-2436 (*1 *2 *1) (-12 (-4 *1 (-671)) (-5 *2 (-110)))) (-2433 (*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-719)))) (-2432 (*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-719)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-719)))) (-3741 (*1 *1 *1) (|partial| -4 *1 (-671))) (-2431 (*1 *1 *1) (|partial| -4 *1 (-671))) (-2430 (*1 *1 *1) (|partial| -4 *1 (-671))))
+(-13 (-669) (-10 -8 (-15 (-2927) ($) -4227) (-15 -2436 ((-110) $)) (-15 -2433 ($ $ (-719))) (-15 -2432 ($ $ (-719))) (-15 ** ($ $ (-719))) (-15 -3741 ((-3 $ "failed") $)) (-15 -2431 ((-3 $ "failed") $)) (-15 -2430 ((-3 $ "failed") $))))
+(((-99) . T) ((-571 (-805)) . T) ((-669) . T) ((-1027) . T))
+((-3395 (((-719)) 34)) (-3432 (((-3 (-516) #1="failed") $) NIL) (((-3 (-388 (-516)) #1#) $) NIL) (((-3 |#2| #1#) $) 25)) (-3431 (((-516) $) NIL) (((-388 (-516)) $) NIL) ((|#2| $) 22)) (-4121 (($ |#3|) NIL) (((-3 $ "failed") (-388 |#3|)) 44)) (-3741 (((-3 $ "failed") $) 64)) (-3258 (($) 38)) (-3391 ((|#2| $) 20)) (-2435 (($) 17)) (-4089 (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-594 (-1098)) (-594 (-719))) NIL) (($ $ (-1098) (-719)) NIL) (($ $ (-594 (-1098))) NIL) (($ $ (-1098)) NIL) (($ $ (-719)) NIL) (($ $) NIL)) (-2434 (((-637 |#2|) (-1179 $) (-1 |#2| |#2|)) 59)) (-4246 (((-1179 |#2|) $) NIL) (($ (-1179 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2632 ((|#3| $) 32)) (-2071 (((-1179 $)) 29)))
+(((-672 |#1| |#2| |#3|) (-10 -8 (-15 -4089 (|#1| |#1|)) (-15 -4089 (|#1| |#1| (-719))) (-15 -4089 (|#1| |#1| (-1098))) (-15 -4089 (|#1| |#1| (-594 (-1098)))) (-15 -4089 (|#1| |#1| (-1098) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)) (-594 (-719)))) (-15 -3258 (|#1|)) (-15 -3395 ((-719))) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -2434 ((-637 |#2|) (-1179 |#1|) (-1 |#2| |#2|))) (-15 -4121 ((-3 |#1| "failed") (-388 |#3|))) (-15 -4246 (|#1| |#3|)) (-15 -4121 (|#1| |#3|)) (-15 -2435 (|#1|)) (-15 -3431 (|#2| |#1|)) (-15 -3432 ((-3 |#2| #1="failed") |#1|)) (-15 -3432 ((-3 (-388 (-516)) #1#) |#1|)) (-15 -3431 ((-388 (-516)) |#1|)) (-15 -3432 ((-3 (-516) #1#) |#1|)) (-15 -3431 ((-516) |#1|)) (-15 -4246 (|#3| |#1|)) (-15 -4246 (|#1| (-1179 |#2|))) (-15 -4246 ((-1179 |#2|) |#1|)) (-15 -2071 ((-1179 |#1|))) (-15 -2632 (|#3| |#1|)) (-15 -3391 (|#2| |#1|)) (-15 -3741 ((-3 |#1| "failed") |#1|))) (-673 |#2| |#3|) (-162) (-1155 |#2|)) (T -672))
+((-3395 (*1 *2) (-12 (-4 *4 (-162)) (-4 *5 (-1155 *4)) (-5 *2 (-719)) (-5 *1 (-672 *3 *4 *5)) (-4 *3 (-673 *4 *5)))))
+(-10 -8 (-15 -4089 (|#1| |#1|)) (-15 -4089 (|#1| |#1| (-719))) (-15 -4089 (|#1| |#1| (-1098))) (-15 -4089 (|#1| |#1| (-594 (-1098)))) (-15 -4089 (|#1| |#1| (-1098) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)) (-594 (-719)))) (-15 -3258 (|#1|)) (-15 -3395 ((-719))) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -2434 ((-637 |#2|) (-1179 |#1|) (-1 |#2| |#2|))) (-15 -4121 ((-3 |#1| "failed") (-388 |#3|))) (-15 -4246 (|#1| |#3|)) (-15 -4121 (|#1| |#3|)) (-15 -2435 (|#1|)) (-15 -3431 (|#2| |#1|)) (-15 -3432 ((-3 |#2| #1="failed") |#1|)) (-15 -3432 ((-3 (-388 (-516)) #1#) |#1|)) (-15 -3431 ((-388 (-516)) |#1|)) (-15 -3432 ((-3 (-516) #1#) |#1|)) (-15 -3431 ((-516) |#1|)) (-15 -4246 (|#3| |#1|)) (-15 -4246 (|#1| (-1179 |#2|))) (-15 -4246 ((-1179 |#2|) |#1|)) (-15 -2071 ((-1179 |#1|))) (-15 -2632 (|#3| |#1|)) (-15 -3391 (|#2| |#1|)) (-15 -3741 ((-3 |#1| "failed") |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 93 (|has| |#1| (-344)))) (-2118 (($ $) 94 (|has| |#1| (-344)))) (-2116 (((-110) $) 96 (|has| |#1| (-344)))) (-1851 (((-637 |#1|) (-1179 $)) 46) (((-637 |#1|)) 61)) (-3608 ((|#1| $) 52)) (-1741 (((-1107 (-860) (-719)) (-516)) 147 (|has| |#1| (-331)))) (-1319 (((-3 $ "failed") $ $) 19)) (-4053 (($ $) 113 (|has| |#1| (-344)))) (-4245 (((-386 $) $) 114 (|has| |#1| (-344)))) (-1655 (((-110) $ $) 104 (|has| |#1| (-344)))) (-3395 (((-719)) 87 (|has| |#1| (-349)))) (-3815 (($) 17 T CONST)) (-3432 (((-3 (-516) #1="failed") $) 169 (|has| |#1| (-975 (-516)))) (((-3 (-388 (-516)) #1#) $) 167 (|has| |#1| (-975 (-388 (-516))))) (((-3 |#1| #1#) $) 166)) (-3431 (((-516) $) 170 (|has| |#1| (-975 (-516)))) (((-388 (-516)) $) 168 (|has| |#1| (-975 (-388 (-516))))) ((|#1| $) 165)) (-1861 (($ (-1179 |#1|) (-1179 $)) 48) (($ (-1179 |#1|)) 64)) (-1739 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-331)))) (-2824 (($ $ $) 108 (|has| |#1| (-344)))) (-1850 (((-637 |#1|) $ (-1179 $)) 53) (((-637 |#1|) $) 59)) (-2297 (((-637 (-516)) (-637 $)) 164 (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) 163 (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) 162) (((-637 |#1|) (-637 $)) 161)) (-4121 (($ |#2|) 158) (((-3 $ "failed") (-388 |#2|)) 155 (|has| |#1| (-344)))) (-3741 (((-3 $ "failed") $) 34)) (-3368 (((-860)) 54)) (-3258 (($) 90 (|has| |#1| (-349)))) (-2823 (($ $ $) 107 (|has| |#1| (-344)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 102 (|has| |#1| (-344)))) (-3097 (($) 149 (|has| |#1| (-331)))) (-1746 (((-110) $) 150 (|has| |#1| (-331)))) (-1836 (($ $ (-719)) 141 (|has| |#1| (-331))) (($ $) 140 (|has| |#1| (-331)))) (-4005 (((-110) $) 115 (|has| |#1| (-344)))) (-4050 (((-860) $) 152 (|has| |#1| (-331))) (((-780 (-860)) $) 138 (|has| |#1| (-331)))) (-2436 (((-110) $) 31)) (-3391 ((|#1| $) 51)) (-3723 (((-3 $ "failed") $) 142 (|has| |#1| (-331)))) (-1652 (((-3 (-594 $) #2="failed") (-594 $) $) 111 (|has| |#1| (-344)))) (-2073 ((|#2| $) 44 (|has| |#1| (-344)))) (-2069 (((-860) $) 89 (|has| |#1| (-349)))) (-3343 ((|#2| $) 156)) (-1963 (($ (-594 $)) 100 (|has| |#1| (-344))) (($ $ $) 99 (|has| |#1| (-344)))) (-3513 (((-1081) $) 9)) (-2668 (($ $) 116 (|has| |#1| (-344)))) (-3724 (($) 143 (|has| |#1| (-331)) CONST)) (-2426 (($ (-860)) 88 (|has| |#1| (-349)))) (-3514 (((-1045) $) 10)) (-2435 (($) 160)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 101 (|has| |#1| (-344)))) (-3419 (($ (-594 $)) 98 (|has| |#1| (-344))) (($ $ $) 97 (|has| |#1| (-344)))) (-1742 (((-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516))))) 146 (|has| |#1| (-331)))) (-4011 (((-386 $) $) 112 (|has| |#1| (-344)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 110 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 109 (|has| |#1| (-344)))) (-3740 (((-3 $ "failed") $ $) 92 (|has| |#1| (-344)))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 103 (|has| |#1| (-344)))) (-1654 (((-719) $) 105 (|has| |#1| (-344)))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 106 (|has| |#1| (-344)))) (-4036 ((|#1| (-1179 $)) 47) ((|#1|) 60)) (-1837 (((-719) $) 151 (|has| |#1| (-331))) (((-3 (-719) "failed") $ $) 139 (|has| |#1| (-331)))) (-4089 (($ $) 137 (-3810 (-3119 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-331)))) (($ $ (-719)) 135 (-3810 (-3119 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-331)))) (($ $ (-1098)) 133 (-3119 (|has| |#1| (-841 (-1098))) (|has| |#1| (-344)))) (($ $ (-594 (-1098))) 132 (-3119 (|has| |#1| (-841 (-1098))) (|has| |#1| (-344)))) (($ $ (-1098) (-719)) 131 (-3119 (|has| |#1| (-841 (-1098))) (|has| |#1| (-344)))) (($ $ (-594 (-1098)) (-594 (-719))) 130 (-3119 (|has| |#1| (-841 (-1098))) (|has| |#1| (-344)))) (($ $ (-1 |#1| |#1|) (-719)) 123 (|has| |#1| (-344))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-344)))) (-2434 (((-637 |#1|) (-1179 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-344)))) (-3459 ((|#2|) 159)) (-1740 (($) 148 (|has| |#1| (-331)))) (-3497 (((-1179 |#1|) $ (-1179 $)) 50) (((-637 |#1|) (-1179 $) (-1179 $)) 49) (((-1179 |#1|) $) 66) (((-637 |#1|) (-1179 $)) 65)) (-4246 (((-1179 |#1|) $) 63) (($ (-1179 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-2966 (((-3 (-1179 $) "failed") (-637 $)) 145 (|has| |#1| (-331)))) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-344))) (($ (-388 (-516))) 86 (-3810 (|has| |#1| (-344)) (|has| |#1| (-975 (-388 (-516))))))) (-2965 (($ $) 144 (|has| |#1| (-331))) (((-3 $ "failed") $) 43 (|has| |#1| (-138)))) (-2632 ((|#2| $) 45)) (-3385 (((-719)) 29)) (-2071 (((-1179 $)) 67)) (-2117 (((-110) $ $) 95 (|has| |#1| (-344)))) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33) (($ $ (-516)) 117 (|has| |#1| (-344)))) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2932 (($ $) 136 (-3810 (-3119 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-331)))) (($ $ (-719)) 134 (-3810 (-3119 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-331)))) (($ $ (-1098)) 129 (-3119 (|has| |#1| (-841 (-1098))) (|has| |#1| (-344)))) (($ $ (-594 (-1098))) 128 (-3119 (|has| |#1| (-841 (-1098))) (|has| |#1| (-344)))) (($ $ (-1098) (-719)) 127 (-3119 (|has| |#1| (-841 (-1098))) (|has| |#1| (-344)))) (($ $ (-594 (-1098)) (-594 (-719))) 126 (-3119 (|has| |#1| (-841 (-1098))) (|has| |#1| (-344)))) (($ $ (-1 |#1| |#1|) (-719)) 125 (|has| |#1| (-344))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-344)))) (-3317 (((-110) $ $) 6)) (-4224 (($ $ $) 121 (|has| |#1| (-344)))) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32) (($ $ (-516)) 118 (|has| |#1| (-344)))) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-388 (-516)) $) 120 (|has| |#1| (-344))) (($ $ (-388 (-516))) 119 (|has| |#1| (-344)))))
+(((-673 |#1| |#2|) (-133) (-162) (-1155 |t#1|)) (T -673))
+((-2435 (*1 *1) (-12 (-4 *2 (-162)) (-4 *1 (-673 *2 *3)) (-4 *3 (-1155 *2)))) (-3459 (*1 *2) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1155 *3)))) (-4121 (*1 *1 *2) (-12 (-4 *3 (-162)) (-4 *1 (-673 *3 *2)) (-4 *2 (-1155 *3)))) (-4246 (*1 *1 *2) (-12 (-4 *3 (-162)) (-4 *1 (-673 *3 *2)) (-4 *2 (-1155 *3)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1155 *3)))) (-4121 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-344)) (-4 *3 (-162)) (-4 *1 (-673 *3 *4)))) (-2434 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344)) (-4 *1 (-673 *5 *6)) (-4 *5 (-162)) (-4 *6 (-1155 *5)) (-5 *2 (-637 *5)))))
+(-13 (-391 |t#1| |t#2|) (-162) (-572 |t#2|) (-393 |t#1|) (-358 |t#1|) (-10 -8 (-15 -2435 ($)) (-15 -3459 (|t#2|)) (-15 -4121 ($ |t#2|)) (-15 -4246 ($ |t#2|)) (-15 -3343 (|t#2| $)) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|) (IF (|has| |t#1| (-344)) (PROGN (-6 (-344)) (-6 (-214 |t#1|)) (-15 -4121 ((-3 $ "failed") (-388 |t#2|))) (-15 -2434 ((-637 |t#1|) (-1179 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-331)) (-6 (-331)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-388 (-516))) -3810 (|has| |#1| (-331)) (|has| |#1| (-344))) ((-37 |#1|) . T) ((-37 $) -3810 (|has| |#1| (-331)) (|has| |#1| (-344))) ((-99) . T) ((-109 #1# #1#) -3810 (|has| |#1| (-331)) (|has| |#1| (-344))) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -3810 (|has| |#1| (-331)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-571 (-805)) . T) ((-162) . T) ((-572 |#2|) . T) ((-214 |#1|) |has| |#1| (-344)) ((-216) -3810 (|has| |#1| (-331)) (-12 (|has| |#1| (-216)) (|has| |#1| (-344)))) ((-226) -3810 (|has| |#1| (-331)) (|has| |#1| (-344))) ((-272) -3810 (|has| |#1| (-331)) (|has| |#1| (-344))) ((-289) -3810 (|has| |#1| (-331)) (|has| |#1| (-344))) ((-344) -3810 (|has| |#1| (-331)) (|has| |#1| (-344))) ((-383) |has| |#1| (-331)) ((-349) -3810 (|has| |#1| (-331)) (|has| |#1| (-349))) ((-331) |has| |#1| (-331)) ((-351 |#1| |#2|) . T) ((-391 |#1| |#2|) . T) ((-358 |#1|) . T) ((-393 |#1|) . T) ((-432) -3810 (|has| |#1| (-331)) (|has| |#1| (-344))) ((-523) -3810 (|has| |#1| (-331)) (|has| |#1| (-344))) ((-599 #1#) -3810 (|has| |#1| (-331)) (|has| |#1| (-344))) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-516)) |has| |#1| (-593 (-516))) ((-593 |#1|) . T) ((-666 #1#) -3810 (|has| |#1| (-331)) (|has| |#1| (-344))) ((-666 |#1|) . T) ((-666 $) -3810 (|has| |#1| (-331)) (|has| |#1| (-344))) ((-675) . T) ((-841 (-1098)) -12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1098)))) ((-862) -3810 (|has| |#1| (-331)) (|has| |#1| (-344))) ((-975 (-388 (-516))) |has| |#1| (-975 (-388 (-516)))) ((-975 (-516)) |has| |#1| (-975 (-516))) ((-975 |#1|) . T) ((-989 #1#) -3810 (|has| |#1| (-331)) (|has| |#1| (-344))) ((-989 |#1|) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1074) |has| |#1| (-331)) ((-1138) -3810 (|has| |#1| (-331)) (|has| |#1| (-344))))
+((-3815 (($) 14)) (-3741 (((-3 $ "failed") $) 16)) (-2436 (((-110) $) 13)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) 9)) (** (($ $ (-860)) NIL) (($ $ (-719)) 20)))
+(((-674 |#1|) (-10 -8 (-15 -3741 ((-3 |#1| "failed") |#1|)) (-15 -3581 (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-719))) (-15 -2436 ((-110) |#1|)) (-15 -3815 (|#1|)) (-15 -3581 (|#1| |#1| (-860))) (-15 ** (|#1| |#1| (-860)))) (-675)) (T -674))
+NIL
+(-10 -8 (-15 -3741 ((-3 |#1| "failed") |#1|)) (-15 -3581 (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-719))) (-15 -2436 ((-110) |#1|)) (-15 -3815 (|#1|)) (-15 -3581 (|#1| |#1| (-860))) (-15 ** (|#1| |#1| (-860))))
+((-2828 (((-110) $ $) 7)) (-3815 (($) 20 T CONST)) (-3741 (((-3 $ "failed") $) 16)) (-2436 (((-110) $) 19)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-3581 (($ $ (-860)) 13) (($ $ (-719)) 17)) (-2927 (($) 21 T CONST)) (-3317 (((-110) $ $) 6)) (** (($ $ (-860)) 14) (($ $ (-719)) 18)) (* (($ $ $) 15)))
+(((-675) (-133)) (T -675))
+((-2927 (*1 *1) (-4 *1 (-675))) (-3815 (*1 *1) (-4 *1 (-675))) (-2436 (*1 *2 *1) (-12 (-4 *1 (-675)) (-5 *2 (-110)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-675)) (-5 *2 (-719)))) (-3581 (*1 *1 *1 *2) (-12 (-4 *1 (-675)) (-5 *2 (-719)))) (-3741 (*1 *1 *1) (|partial| -4 *1 (-675))))
+(-13 (-1038) (-10 -8 (-15 (-2927) ($) -4227) (-15 -3815 ($) -4227) (-15 -2436 ((-110) $)) (-15 ** ($ $ (-719))) (-15 -3581 ($ $ (-719))) (-15 -3741 ((-3 $ "failed") $))))
+(((-99) . T) ((-571 (-805)) . T) ((-1038) . T) ((-1027) . T))
+((-2437 (((-2 (|:| -3355 (-386 |#2|)) (|:| |special| (-386 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3697 (((-2 (|:| -3355 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2438 ((|#2| (-388 |#2|) (-1 |#2| |#2|)) 13)) (-3714 (((-2 (|:| |poly| |#2|) (|:| -3355 (-388 |#2|)) (|:| |special| (-388 |#2|))) (-388 |#2|) (-1 |#2| |#2|)) 47)))
+(((-676 |#1| |#2|) (-10 -7 (-15 -3697 ((-2 (|:| -3355 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2437 ((-2 (|:| -3355 (-386 |#2|)) (|:| |special| (-386 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2438 (|#2| (-388 |#2|) (-1 |#2| |#2|))) (-15 -3714 ((-2 (|:| |poly| |#2|) (|:| -3355 (-388 |#2|)) (|:| |special| (-388 |#2|))) (-388 |#2|) (-1 |#2| |#2|)))) (-344) (-1155 |#1|)) (T -676))
+((-3714 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3355 (-388 *6)) (|:| |special| (-388 *6)))) (-5 *1 (-676 *5 *6)) (-5 *3 (-388 *6)))) (-2438 (*1 *2 *3 *4) (-12 (-5 *3 (-388 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1155 *5)) (-5 *1 (-676 *5 *2)) (-4 *5 (-344)))) (-2437 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| -3355 (-386 *3)) (|:| |special| (-386 *3)))) (-5 *1 (-676 *5 *3)))) (-3697 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| -3355 *3) (|:| |special| *3))) (-5 *1 (-676 *5 *3)))))
+(-10 -7 (-15 -3697 ((-2 (|:| -3355 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2437 ((-2 (|:| -3355 (-386 |#2|)) (|:| |special| (-386 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2438 (|#2| (-388 |#2|) (-1 |#2| |#2|))) (-15 -3714 ((-2 (|:| |poly| |#2|) (|:| -3355 (-388 |#2|)) (|:| |special| (-388 |#2|))) (-388 |#2|) (-1 |#2| |#2|))))
+((-2439 ((|#7| (-594 |#5|) |#6|) NIL)) (-4234 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
+(((-677 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4234 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2439 (|#7| (-594 |#5|) |#6|))) (-795) (-741) (-741) (-984) (-984) (-891 |#4| |#2| |#1|) (-891 |#5| |#3| |#1|)) (T -677))
+((-2439 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *9)) (-4 *9 (-984)) (-4 *5 (-795)) (-4 *6 (-741)) (-4 *8 (-984)) (-4 *2 (-891 *9 *7 *5)) (-5 *1 (-677 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-741)) (-4 *4 (-891 *8 *6 *5)))) (-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-984)) (-4 *9 (-984)) (-4 *5 (-795)) (-4 *6 (-741)) (-4 *2 (-891 *9 *7 *5)) (-5 *1 (-677 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-741)) (-4 *4 (-891 *8 *6 *5)))))
+(-10 -7 (-15 -4234 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2439 (|#7| (-594 |#5|) |#6|)))
+((-4234 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
+(((-678 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4234 (|#7| (-1 |#2| |#1|) |#6|))) (-795) (-795) (-741) (-741) (-984) (-891 |#5| |#3| |#1|) (-891 |#5| |#4| |#2|)) (T -678))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-795)) (-4 *6 (-795)) (-4 *7 (-741)) (-4 *9 (-984)) (-4 *2 (-891 *9 *8 *6)) (-5 *1 (-678 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-741)) (-4 *4 (-891 *9 *7 *5)))))
+(-10 -7 (-15 -4234 (|#7| (-1 |#2| |#1|) |#6|)))
+((-4011 (((-386 |#4|) |#4|) 41)))
+(((-679 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4011 ((-386 |#4|) |#4|))) (-741) (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $)) (-15 -4110 ((-3 $ "failed") (-1098))))) (-289) (-891 (-887 |#3|) |#1| |#2|)) (T -679))
+((-4011 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $)) (-15 -4110 ((-3 $ "failed") (-1098)))))) (-4 *6 (-289)) (-5 *2 (-386 *3)) (-5 *1 (-679 *4 *5 *6 *3)) (-4 *3 (-891 (-887 *6) *4 *5)))))
+(-10 -7 (-15 -4011 ((-386 |#4|) |#4|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3347 (((-594 (-806 |#1|)) $) NIL)) (-3349 (((-1092 $) $ (-806 |#1|)) NIL) (((-1092 |#2|) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#2| (-523)))) (-2118 (($ $) NIL (|has| |#2| (-523)))) (-2116 (((-110) $) NIL (|has| |#2| (-523)))) (-3083 (((-719) $) NIL) (((-719) $ (-594 (-806 |#1|))) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#2| (-851)))) (-4053 (($ $) NIL (|has| |#2| (-432)))) (-4245 (((-386 $) $) NIL (|has| |#2| (-432)))) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (|has| |#2| (-851)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#2| #2="failed") $) NIL) (((-3 (-388 (-516)) #2#) $) NIL (|has| |#2| (-975 (-388 (-516))))) (((-3 (-516) #2#) $) NIL (|has| |#2| (-975 (-516)))) (((-3 (-806 |#1|) #2#) $) NIL)) (-3431 ((|#2| $) NIL) (((-388 (-516)) $) NIL (|has| |#2| (-975 (-388 (-516))))) (((-516) $) NIL (|has| |#2| (-975 (-516)))) (((-806 |#1|) $) NIL)) (-4035 (($ $ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-4235 (($ $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| |#2| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| |#2| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 $) (-1179 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3777 (($ $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-3082 (((-594 $) $) NIL)) (-4005 (((-110) $) NIL (|has| |#2| (-851)))) (-1671 (($ $ |#2| (-502 (-806 |#1|)) $) NIL)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-359))) (|has| |#2| (-827 (-359))))) (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-516))) (|has| |#2| (-827 (-516)))))) (-2436 (((-110) $) NIL)) (-2444 (((-719) $) NIL)) (-3350 (($ (-1092 |#2|) (-806 |#1|)) NIL) (($ (-1092 $) (-806 |#1|)) NIL)) (-3085 (((-594 $) $) NIL)) (-4213 (((-110) $) NIL)) (-3157 (($ |#2| (-502 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-594 (-806 |#1|)) (-594 (-719))) NIL)) (-4041 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $ (-806 |#1|)) NIL)) (-3084 (((-502 (-806 |#1|)) $) NIL) (((-719) $ (-806 |#1|)) NIL) (((-594 (-719)) $ (-594 (-806 |#1|))) NIL)) (-3596 (($ $ $) NIL (|has| |#2| (-795)))) (-3597 (($ $ $) NIL (|has| |#2| (-795)))) (-1672 (($ (-1 (-502 (-806 |#1|)) (-502 (-806 |#1|))) $) NIL)) (-4234 (($ (-1 |#2| |#2|) $) NIL)) (-3348 (((-3 (-806 |#1|) #3="failed") $) NIL)) (-3158 (($ $) NIL)) (-3449 ((|#2| $) NIL)) (-1963 (($ (-594 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-3513 (((-1081) $) NIL)) (-3087 (((-3 (-594 $) #3#) $) NIL)) (-3086 (((-3 (-594 $) #3#) $) NIL)) (-3088 (((-3 (-2 (|:| |var| (-806 |#1|)) (|:| -2427 (-719))) #3#) $) NIL)) (-3514 (((-1045) $) NIL)) (-1866 (((-110) $) NIL)) (-1865 ((|#2| $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#2| (-432)))) (-3419 (($ (-594 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#2| (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#2| (-851)))) (-4011 (((-386 $) $) NIL (|has| |#2| (-851)))) (-3740 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-523)))) (-4046 (($ $ (-594 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL) (($ $ (-806 |#1|) |#2|) NIL) (($ $ (-594 (-806 |#1|)) (-594 |#2|)) NIL) (($ $ (-806 |#1|) $) NIL) (($ $ (-594 (-806 |#1|)) (-594 $)) NIL)) (-4036 (($ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-4089 (($ $ (-806 |#1|)) NIL) (($ $ (-594 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-594 (-806 |#1|)) (-594 (-719))) NIL)) (-4223 (((-502 (-806 |#1|)) $) NIL) (((-719) $ (-806 |#1|)) NIL) (((-594 (-719)) $ (-594 (-806 |#1|))) NIL)) (-4246 (((-831 (-359)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-831 (-359)))) (|has| |#2| (-572 (-831 (-359)))))) (((-831 (-516)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-831 (-516)))) (|has| |#2| (-572 (-831 (-516)))))) (((-505) $) NIL (-12 (|has| (-806 |#1|) (-572 (-505))) (|has| |#2| (-572 (-505)))))) (-3081 ((|#2| $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-851))))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ |#2|) NIL) (($ (-806 |#1|)) NIL) (($ $) NIL (|has| |#2| (-523))) (($ (-388 (-516))) NIL (-3810 (|has| |#2| (-37 (-388 (-516)))) (|has| |#2| (-975 (-388 (-516))))))) (-4096 (((-594 |#2|) $) NIL)) (-3959 ((|#2| $ (-502 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-594 (-806 |#1|)) (-594 (-719))) NIL)) (-2965 (((-3 $ "failed") $) NIL (-3810 (-12 (|has| $ (-138)) (|has| |#2| (-851))) (|has| |#2| (-138))))) (-3385 (((-719)) NIL)) (-1670 (($ $ $ (-719)) NIL (|has| |#2| (-162)))) (-2117 (((-110) $ $) NIL (|has| |#2| (-523)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($ $ (-806 |#1|)) NIL) (($ $ (-594 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-594 (-806 |#1|)) (-594 (-719))) NIL)) (-2826 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#2| (-795)))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#2| (-795)))) (-4224 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL (|has| |#2| (-37 (-388 (-516))))) (($ (-388 (-516)) $) NIL (|has| |#2| (-37 (-388 (-516))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-680 |#1| |#2|) (-891 |#2| (-502 (-806 |#1|)) (-806 |#1|)) (-594 (-1098)) (-984)) (T -680))
+NIL
+(-891 |#2| (-502 (-806 |#1|)) (-806 |#1|))
+((-2440 (((-2 (|:| -2667 (-887 |#3|)) (|:| -2113 (-887 |#3|))) |#4|) 14)) (-3250 ((|#4| |#4| |#2|) 33)) (-2443 ((|#4| (-388 (-887 |#3|)) |#2|) 64)) (-2442 ((|#4| (-1092 (-887 |#3|)) |#2|) 77)) (-2441 ((|#4| (-1092 |#4|) |#2|) 51)) (-3249 ((|#4| |#4| |#2|) 54)) (-4011 (((-386 |#4|) |#4|) 40)))
+(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2440 ((-2 (|:| -2667 (-887 |#3|)) (|:| -2113 (-887 |#3|))) |#4|)) (-15 -3249 (|#4| |#4| |#2|)) (-15 -2441 (|#4| (-1092 |#4|) |#2|)) (-15 -3250 (|#4| |#4| |#2|)) (-15 -2442 (|#4| (-1092 (-887 |#3|)) |#2|)) (-15 -2443 (|#4| (-388 (-887 |#3|)) |#2|)) (-15 -4011 ((-386 |#4|) |#4|))) (-741) (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $)))) (-523) (-891 (-388 (-887 |#3|)) |#1| |#2|)) (T -681))
+((-4011 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $))))) (-4 *6 (-523)) (-5 *2 (-386 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-891 (-388 (-887 *6)) *4 *5)))) (-2443 (*1 *2 *3 *4) (-12 (-4 *6 (-523)) (-4 *2 (-891 *3 *5 *4)) (-5 *1 (-681 *5 *4 *6 *2)) (-5 *3 (-388 (-887 *6))) (-4 *5 (-741)) (-4 *4 (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $))))))) (-2442 (*1 *2 *3 *4) (-12 (-5 *3 (-1092 (-887 *6))) (-4 *6 (-523)) (-4 *2 (-891 (-388 (-887 *6)) *5 *4)) (-5 *1 (-681 *5 *4 *6 *2)) (-4 *5 (-741)) (-4 *4 (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $))))))) (-3250 (*1 *2 *2 *3) (-12 (-4 *4 (-741)) (-4 *3 (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $))))) (-4 *5 (-523)) (-5 *1 (-681 *4 *3 *5 *2)) (-4 *2 (-891 (-388 (-887 *5)) *4 *3)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-1092 *2)) (-4 *2 (-891 (-388 (-887 *6)) *5 *4)) (-5 *1 (-681 *5 *4 *6 *2)) (-4 *5 (-741)) (-4 *4 (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $))))) (-4 *6 (-523)))) (-3249 (*1 *2 *2 *3) (-12 (-4 *4 (-741)) (-4 *3 (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $))))) (-4 *5 (-523)) (-5 *1 (-681 *4 *3 *5 *2)) (-4 *2 (-891 (-388 (-887 *5)) *4 *3)))) (-2440 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $))))) (-4 *6 (-523)) (-5 *2 (-2 (|:| -2667 (-887 *6)) (|:| -2113 (-887 *6)))) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-891 (-388 (-887 *6)) *4 *5)))))
+(-10 -7 (-15 -2440 ((-2 (|:| -2667 (-887 |#3|)) (|:| -2113 (-887 |#3|))) |#4|)) (-15 -3249 (|#4| |#4| |#2|)) (-15 -2441 (|#4| (-1092 |#4|) |#2|)) (-15 -3250 (|#4| |#4| |#2|)) (-15 -2442 (|#4| (-1092 (-887 |#3|)) |#2|)) (-15 -2443 (|#4| (-388 (-887 |#3|)) |#2|)) (-15 -4011 ((-386 |#4|) |#4|)))
+((-4011 (((-386 |#4|) |#4|) 52)))
+(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4011 ((-386 |#4|) |#4|))) (-741) (-795) (-13 (-289) (-140)) (-891 (-388 |#3|) |#1| |#2|)) (T -682))
+((-4011 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-13 (-289) (-140))) (-5 *2 (-386 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-891 (-388 *6) *4 *5)))))
+(-10 -7 (-15 -4011 ((-386 |#4|) |#4|)))
+((-4234 (((-684 |#2| |#3|) (-1 |#2| |#1|) (-684 |#1| |#3|)) 18)))
+(((-683 |#1| |#2| |#3|) (-10 -7 (-15 -4234 ((-684 |#2| |#3|) (-1 |#2| |#1|) (-684 |#1| |#3|)))) (-984) (-984) (-675)) (T -683))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-684 *5 *7)) (-4 *5 (-984)) (-4 *6 (-984)) (-4 *7 (-675)) (-5 *2 (-684 *6 *7)) (-5 *1 (-683 *5 *6 *7)))))
+(-10 -7 (-15 -4234 ((-684 |#2| |#3|) (-1 |#2| |#1|) (-684 |#1| |#3|))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 28)) (-4052 (((-594 (-2 (|:| -4229 |#1|) (|:| -4214 |#2|))) $) 29)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3395 (((-719)) 20 (-12 (|has| |#2| (-349)) (|has| |#1| (-349))))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#2| #1="failed") $) 57) (((-3 |#1| #1#) $) 60)) (-3431 ((|#2| $) NIL) ((|#1| $) NIL)) (-4235 (($ $) 79 (|has| |#2| (-795)))) (-3741 (((-3 $ "failed") $) 65)) (-3258 (($) 35 (-12 (|has| |#2| (-349)) (|has| |#1| (-349))))) (-2436 (((-110) $) NIL)) (-2444 (((-719) $) 55)) (-3085 (((-594 $) $) 39)) (-4213 (((-110) $) NIL)) (-3157 (($ |#1| |#2|) 16)) (-4234 (($ (-1 |#1| |#1|) $) 54)) (-2069 (((-860) $) 32 (-12 (|has| |#2| (-349)) (|has| |#1| (-349))))) (-3158 ((|#2| $) 78 (|has| |#2| (-795)))) (-3449 ((|#1| $) 77 (|has| |#2| (-795)))) (-3513 (((-1081) $) NIL)) (-2426 (($ (-860)) 27 (-12 (|has| |#2| (-349)) (|has| |#1| (-349))))) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 76) (($ (-516)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-594 (-2 (|:| -4229 |#1|) (|:| -4214 |#2|)))) 11)) (-4096 (((-594 |#1|) $) 41)) (-3959 ((|#1| $ |#2|) 88)) (-2965 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3385 (((-719)) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 12 T CONST)) (-2927 (($) 33 T CONST)) (-3317 (((-110) $ $) 80)) (-4116 (($ $) 47) (($ $ $) NIL)) (-4118 (($ $ $) 26)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162)))))
+(((-684 |#1| |#2|) (-13 (-984) (-975 |#2|) (-975 |#1|) (-10 -8 (-15 -3157 ($ |#1| |#2|)) (-15 -3959 (|#1| $ |#2|)) (-15 -4233 ($ (-594 (-2 (|:| -4229 |#1|) (|:| -4214 |#2|))))) (-15 -4052 ((-594 (-2 (|:| -4229 |#1|) (|:| -4214 |#2|))) $)) (-15 -4234 ($ (-1 |#1| |#1|) $)) (-15 -4213 ((-110) $)) (-15 -4096 ((-594 |#1|) $)) (-15 -3085 ((-594 $) $)) (-15 -2444 ((-719) $)) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-349)) (IF (|has| |#2| (-349)) (-6 (-349)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-795)) (PROGN (-15 -3158 (|#2| $)) (-15 -3449 (|#1| $)) (-15 -4235 ($ $))) |%noBranch|))) (-984) (-675)) (T -684))
+((-3157 (*1 *1 *2 *3) (-12 (-5 *1 (-684 *2 *3)) (-4 *2 (-984)) (-4 *3 (-675)))) (-3959 (*1 *2 *1 *3) (-12 (-4 *2 (-984)) (-5 *1 (-684 *2 *3)) (-4 *3 (-675)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-594 (-2 (|:| -4229 *3) (|:| -4214 *4)))) (-4 *3 (-984)) (-4 *4 (-675)) (-5 *1 (-684 *3 *4)))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-594 (-2 (|:| -4229 *3) (|:| -4214 *4)))) (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675)))) (-4234 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-684 *3 *4)) (-4 *4 (-675)))) (-4213 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-594 *3)) (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675)))) (-3085 (*1 *2 *1) (-12 (-5 *2 (-594 (-684 *3 *4))) (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675)))) (-2444 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675)))) (-3158 (*1 *2 *1) (-12 (-4 *2 (-675)) (-4 *2 (-795)) (-5 *1 (-684 *3 *2)) (-4 *3 (-984)))) (-3449 (*1 *2 *1) (-12 (-4 *2 (-984)) (-5 *1 (-684 *2 *3)) (-4 *3 (-795)) (-4 *3 (-675)))) (-4235 (*1 *1 *1) (-12 (-5 *1 (-684 *2 *3)) (-4 *3 (-795)) (-4 *2 (-984)) (-4 *3 (-675)))))
+(-13 (-984) (-975 |#2|) (-975 |#1|) (-10 -8 (-15 -3157 ($ |#1| |#2|)) (-15 -3959 (|#1| $ |#2|)) (-15 -4233 ($ (-594 (-2 (|:| -4229 |#1|) (|:| -4214 |#2|))))) (-15 -4052 ((-594 (-2 (|:| -4229 |#1|) (|:| -4214 |#2|))) $)) (-15 -4234 ($ (-1 |#1| |#1|) $)) (-15 -4213 ((-110) $)) (-15 -4096 ((-594 |#1|) $)) (-15 -3085 ((-594 $) $)) (-15 -2444 ((-719) $)) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-349)) (IF (|has| |#2| (-349)) (-6 (-349)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-795)) (PROGN (-15 -3158 (|#2| $)) (-15 -3449 (|#1| $)) (-15 -4235 ($ $))) |%noBranch|)))
+((-2828 (((-110) $ $) NIL)) (-3505 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-3507 (($ $ $) 79)) (-3506 (((-110) $ $) 83)) (-1217 (((-110) $ (-719)) NIL)) (-3510 (($ (-594 |#1|)) 24) (($) 16)) (-1581 (($ (-1 (-110) |#1|) $) 70 (|has| $ (-6 -4269)))) (-3992 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3815 (($) NIL T CONST)) (-2389 (($ $) 71)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3684 (($ |#1| $) 61 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) 64 (|has| $ (-6 -4269))) (($ |#1| $ (-516)) 62) (($ (-1 (-110) |#1|) $ (-516)) 65)) (-3685 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (($ |#1| $ (-516)) 67) (($ (-1 (-110) |#1|) $ (-516)) 68)) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-2018 (((-594 |#1|) $) 32 (|has| $ (-6 -4269)))) (-3512 (((-110) $ $) 82)) (-2446 (($) 14) (($ |#1|) 26) (($ (-594 |#1|)) 21)) (-4001 (((-110) $ (-719)) NIL)) (-2445 (((-594 |#1|) $) 38)) (-3516 (((-110) |#1| $) 58 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2022 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 75)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL)) (-3509 (($ $ $) 77)) (-1280 ((|#1| $) 55)) (-3889 (($ |#1| $) 56) (($ |#1| $ (-719)) 72)) (-3514 (((-1045) $) NIL)) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1281 ((|#1| $) 54)) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) 50)) (-3847 (($) 13)) (-2388 (((-594 (-2 (|:| -2131 |#1|) (|:| -2019 (-719)))) $) 48)) (-3508 (($ $ |#1|) NIL) (($ $ $) 78)) (-1473 (($) 15) (($ (-594 |#1|)) 23)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) 60 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3678 (($ $) 66)) (-4246 (((-505) $) 36 (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) 20)) (-4233 (((-805) $) 44)) (-3511 (($ (-594 |#1|)) 25) (($) 17)) (-1282 (($ (-594 |#1|)) 22)) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 81)) (-4232 (((-719) $) 59 (|has| $ (-6 -4269)))))
+(((-685 |#1|) (-13 (-686 |#1|) (-10 -8 (-6 -4269) (-6 -4270) (-15 -2446 ($)) (-15 -2446 ($ |#1|)) (-15 -2446 ($ (-594 |#1|))) (-15 -2445 ((-594 |#1|) $)) (-15 -3685 ($ |#1| $ (-516))) (-15 -3685 ($ (-1 (-110) |#1|) $ (-516))) (-15 -3684 ($ |#1| $ (-516))) (-15 -3684 ($ (-1 (-110) |#1|) $ (-516))))) (-1027)) (T -685))
+((-2446 (*1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-1027)))) (-2446 (*1 *1 *2) (-12 (-5 *1 (-685 *2)) (-4 *2 (-1027)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1027)) (-5 *1 (-685 *3)))) (-2445 (*1 *2 *1) (-12 (-5 *2 (-594 *3)) (-5 *1 (-685 *3)) (-4 *3 (-1027)))) (-3685 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *1 (-685 *2)) (-4 *2 (-1027)))) (-3685 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-516)) (-4 *4 (-1027)) (-5 *1 (-685 *4)))) (-3684 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *1 (-685 *2)) (-4 *2 (-1027)))) (-3684 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-516)) (-4 *4 (-1027)) (-5 *1 (-685 *4)))))
+(-13 (-686 |#1|) (-10 -8 (-6 -4269) (-6 -4270) (-15 -2446 ($)) (-15 -2446 ($ |#1|)) (-15 -2446 ($ (-594 |#1|))) (-15 -2445 ((-594 |#1|) $)) (-15 -3685 ($ |#1| $ (-516))) (-15 -3685 ($ (-1 (-110) |#1|) $ (-516))) (-15 -3684 ($ |#1| $ (-516))) (-15 -3684 ($ (-1 (-110) |#1|) $ (-516)))))
+((-2828 (((-110) $ $) 19)) (-3505 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3507 (($ $ $) 72)) (-3506 (((-110) $ $) 73)) (-1217 (((-110) $ (-719)) 8)) (-3510 (($ (-594 |#1|)) 68) (($) 67)) (-1581 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4269)))) (-3992 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4269)))) (-3815 (($) 7 T CONST)) (-2389 (($ $) 62)) (-1349 (($ $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3684 (($ |#1| $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4269)))) (-3685 (($ |#1| $) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4269)))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4269)))) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-3512 (((-110) $ $) 64)) (-4001 (((-110) $ (-719)) 9)) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35)) (-3998 (((-110) $ (-719)) 10)) (-3513 (((-1081) $) 22)) (-3509 (($ $ $) 69)) (-1280 ((|#1| $) 39)) (-3889 (($ |#1| $) 40) (($ |#1| $ (-719)) 63)) (-3514 (((-1045) $) 21)) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-1281 ((|#1| $) 41)) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-2388 (((-594 (-2 (|:| -2131 |#1|) (|:| -2019 (-719)))) $) 61)) (-3508 (($ $ |#1|) 71) (($ $ $) 70)) (-1473 (($) 49) (($ (-594 |#1|)) 48)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4246 (((-505) $) 59 (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) 50)) (-4233 (((-805) $) 18)) (-3511 (($ (-594 |#1|)) 66) (($) 65)) (-1282 (($ (-594 |#1|)) 42)) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20)) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-686 |#1|) (-133) (-1027)) (T -686))
+NIL
+(-13 (-643 |t#1|) (-1025 |t#1|))
+(((-33) . T) ((-104 |#1|) . T) ((-99) . T) ((-571 (-805)) . T) ((-144 |#1|) . T) ((-572 (-505)) |has| |#1| (-572 (-505))) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-643 |#1|) . T) ((-1025 |#1|) . T) ((-1027) . T) ((-1134) . T))
+((-2447 (((-1185) (-1081)) 8)))
+(((-687) (-10 -7 (-15 -2447 ((-1185) (-1081))))) (T -687))
+((-2447 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-687)))))
+(-10 -7 (-15 -2447 ((-1185) (-1081))))
+((-2448 (((-594 |#1|) (-594 |#1|) (-594 |#1|)) 10)))
+(((-688 |#1|) (-10 -7 (-15 -2448 ((-594 |#1|) (-594 |#1|) (-594 |#1|)))) (-795)) (T -688))
+((-2448 (*1 *2 *2 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-795)) (-5 *1 (-688 *3)))))
+(-10 -7 (-15 -2448 ((-594 |#1|) (-594 |#1|) (-594 |#1|))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-3347 (((-594 |#2|) $) 136)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 129 (|has| |#1| (-523)))) (-2118 (($ $) 128 (|has| |#1| (-523)))) (-2116 (((-110) $) 126 (|has| |#1| (-523)))) (-3766 (($ $) 85 (|has| |#1| (-37 (-388 (-516)))))) (-3921 (($ $) 68 (|has| |#1| (-37 (-388 (-516)))))) (-1319 (((-3 $ "failed") $ $) 19)) (-3301 (($ $) 67 (|has| |#1| (-37 (-388 (-516)))))) (-3764 (($ $) 84 (|has| |#1| (-37 (-388 (-516)))))) (-3920 (($ $) 69 (|has| |#1| (-37 (-388 (-516)))))) (-3768 (($ $) 83 (|has| |#1| (-37 (-388 (-516)))))) (-3919 (($ $) 70 (|has| |#1| (-37 (-388 (-516)))))) (-3815 (($) 17 T CONST)) (-4235 (($ $) 120)) (-3741 (((-3 $ "failed") $) 34)) (-4093 (((-887 |#1|) $ (-719)) 98) (((-887 |#1|) $ (-719) (-719)) 97)) (-3156 (((-110) $) 137)) (-3909 (($) 95 (|has| |#1| (-37 (-388 (-516)))))) (-4050 (((-719) $ |#2|) 100) (((-719) $ |#2| (-719)) 99)) (-2436 (((-110) $) 31)) (-3275 (($ $ (-516)) 66 (|has| |#1| (-37 (-388 (-516)))))) (-4213 (((-110) $) 118)) (-3157 (($ $ (-594 |#2|) (-594 (-502 |#2|))) 135) (($ $ |#2| (-502 |#2|)) 134) (($ |#1| (-502 |#2|)) 119) (($ $ |#2| (-719)) 102) (($ $ (-594 |#2|) (-594 (-719))) 101)) (-4234 (($ (-1 |#1| |#1|) $) 117)) (-4218 (($ $) 92 (|has| |#1| (-37 (-388 (-516)))))) (-3158 (($ $) 115)) (-3449 ((|#1| $) 114)) (-3513 (((-1081) $) 9)) (-4091 (($ $ |#2|) 96 (|has| |#1| (-37 (-388 (-516)))))) (-3514 (((-1045) $) 10)) (-4047 (($ $ (-719)) 103)) (-3740 (((-3 $ "failed") $ $) 130 (|has| |#1| (-523)))) (-4219 (($ $) 93 (|has| |#1| (-37 (-388 (-516)))))) (-4046 (($ $ |#2| $) 111) (($ $ (-594 |#2|) (-594 $)) 110) (($ $ (-594 (-275 $))) 109) (($ $ (-275 $)) 108) (($ $ $ $) 107) (($ $ (-594 $) (-594 $)) 106)) (-4089 (($ $ |#2|) 42) (($ $ (-594 |#2|)) 41) (($ $ |#2| (-719)) 40) (($ $ (-594 |#2|) (-594 (-719))) 39)) (-4223 (((-502 |#2|) $) 116)) (-3769 (($ $) 82 (|has| |#1| (-37 (-388 (-516)))))) (-3918 (($ $) 71 (|has| |#1| (-37 (-388 (-516)))))) (-3767 (($ $) 81 (|has| |#1| (-37 (-388 (-516)))))) (-3917 (($ $) 72 (|has| |#1| (-37 (-388 (-516)))))) (-3765 (($ $) 80 (|has| |#1| (-37 (-388 (-516)))))) (-3916 (($ $) 73 (|has| |#1| (-37 (-388 (-516)))))) (-3155 (($ $) 138)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ |#1|) 133 (|has| |#1| (-162))) (($ $) 131 (|has| |#1| (-523))) (($ (-388 (-516))) 123 (|has| |#1| (-37 (-388 (-516)))))) (-3959 ((|#1| $ (-502 |#2|)) 121) (($ $ |#2| (-719)) 105) (($ $ (-594 |#2|) (-594 (-719))) 104)) (-2965 (((-3 $ "failed") $) 132 (|has| |#1| (-138)))) (-3385 (((-719)) 29)) (-3772 (($ $) 91 (|has| |#1| (-37 (-388 (-516)))))) (-3760 (($ $) 79 (|has| |#1| (-37 (-388 (-516)))))) (-2117 (((-110) $ $) 127 (|has| |#1| (-523)))) (-3770 (($ $) 90 (|has| |#1| (-37 (-388 (-516)))))) (-3758 (($ $) 78 (|has| |#1| (-37 (-388 (-516)))))) (-3774 (($ $) 89 (|has| |#1| (-37 (-388 (-516)))))) (-3762 (($ $) 77 (|has| |#1| (-37 (-388 (-516)))))) (-3775 (($ $) 88 (|has| |#1| (-37 (-388 (-516)))))) (-3763 (($ $) 76 (|has| |#1| (-37 (-388 (-516)))))) (-3773 (($ $) 87 (|has| |#1| (-37 (-388 (-516)))))) (-3761 (($ $) 75 (|has| |#1| (-37 (-388 (-516)))))) (-3771 (($ $) 86 (|has| |#1| (-37 (-388 (-516)))))) (-3759 (($ $) 74 (|has| |#1| (-37 (-388 (-516)))))) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2932 (($ $ |#2|) 38) (($ $ (-594 |#2|)) 37) (($ $ |#2| (-719)) 36) (($ $ (-594 |#2|) (-594 (-719))) 35)) (-3317 (((-110) $ $) 6)) (-4224 (($ $ |#1|) 122 (|has| |#1| (-344)))) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32) (($ $ $) 94 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) 65 (|has| |#1| (-37 (-388 (-516)))))) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ (-388 (-516))) 125 (|has| |#1| (-37 (-388 (-516))))) (($ (-388 (-516)) $) 124 (|has| |#1| (-37 (-388 (-516))))) (($ |#1| $) 113) (($ $ |#1|) 112)))
+(((-689 |#1| |#2|) (-133) (-984) (-795)) (T -689))
+((-3959 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *2)) (-4 *4 (-984)) (-4 *2 (-795)))) (-3959 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-594 *5)) (-5 *3 (-594 (-719))) (-4 *1 (-689 *4 *5)) (-4 *4 (-984)) (-4 *5 (-795)))) (-4047 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-689 *3 *4)) (-4 *3 (-984)) (-4 *4 (-795)))) (-3157 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *2)) (-4 *4 (-984)) (-4 *2 (-795)))) (-3157 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-594 *5)) (-5 *3 (-594 (-719))) (-4 *1 (-689 *4 *5)) (-4 *4 (-984)) (-4 *5 (-795)))) (-4050 (*1 *2 *1 *3) (-12 (-4 *1 (-689 *4 *3)) (-4 *4 (-984)) (-4 *3 (-795)) (-5 *2 (-719)))) (-4050 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-719)) (-4 *1 (-689 *4 *3)) (-4 *4 (-984)) (-4 *3 (-795)))) (-4093 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *5)) (-4 *4 (-984)) (-4 *5 (-795)) (-5 *2 (-887 *4)))) (-4093 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *5)) (-4 *4 (-984)) (-4 *5 (-795)) (-5 *2 (-887 *4)))) (-4091 (*1 *1 *1 *2) (-12 (-4 *1 (-689 *3 *2)) (-4 *3 (-984)) (-4 *2 (-795)) (-4 *3 (-37 (-388 (-516)))))))
+(-13 (-841 |t#2|) (-913 |t#1| (-502 |t#2|) |t#2|) (-491 |t#2| $) (-291 $) (-10 -8 (-15 -3959 ($ $ |t#2| (-719))) (-15 -3959 ($ $ (-594 |t#2|) (-594 (-719)))) (-15 -4047 ($ $ (-719))) (-15 -3157 ($ $ |t#2| (-719))) (-15 -3157 ($ $ (-594 |t#2|) (-594 (-719)))) (-15 -4050 ((-719) $ |t#2|)) (-15 -4050 ((-719) $ |t#2| (-719))) (-15 -4093 ((-887 |t#1|) $ (-719))) (-15 -4093 ((-887 |t#1|) $ (-719) (-719))) (IF (|has| |t#1| (-37 (-388 (-516)))) (PROGN (-15 -4091 ($ $ |t#2|)) (-6 (-941)) (-6 (-1120))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #1=(-502 |#2|)) . T) ((-25) . T) ((-37 #2=(-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-523)) ((-34) |has| |#1| (-37 (-388 (-516)))) ((-93) |has| |#1| (-37 (-388 (-516)))) ((-99) . T) ((-109 #2# #2#) |has| |#1| (-37 (-388 (-516)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -3810 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-805)) . T) ((-162) -3810 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-266) |has| |#1| (-37 (-388 (-516)))) ((-272) |has| |#1| (-523)) ((-291 $) . T) ((-471) |has| |#1| (-37 (-388 (-516)))) ((-491 |#2| $) . T) ((-491 $ $) . T) ((-523) |has| |#1| (-523)) ((-599 #2#) |has| |#1| (-37 (-388 (-516)))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #2#) |has| |#1| (-37 (-388 (-516)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-523)) ((-675) . T) ((-841 |#2|) . T) ((-913 |#1| #1# |#2|) . T) ((-941) |has| |#1| (-37 (-388 (-516)))) ((-989 #2#) |has| |#1| (-37 (-388 (-516)))) ((-989 |#1|) . T) ((-989 $) -3810 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1120) |has| |#1| (-37 (-388 (-516)))) ((-1123) |has| |#1| (-37 (-388 (-516)))))
+((-4011 (((-386 (-1092 |#4|)) (-1092 |#4|)) 30) (((-386 |#4|) |#4|) 26)))
+(((-690 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4011 ((-386 |#4|) |#4|)) (-15 -4011 ((-386 (-1092 |#4|)) (-1092 |#4|)))) (-795) (-741) (-13 (-289) (-140)) (-891 |#3| |#2| |#1|)) (T -690))
+((-4011 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-891 *6 *5 *4)) (-5 *2 (-386 (-1092 *7))) (-5 *1 (-690 *4 *5 *6 *7)) (-5 *3 (-1092 *7)))) (-4011 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-13 (-289) (-140))) (-5 *2 (-386 *3)) (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-891 *6 *5 *4)))))
+(-10 -7 (-15 -4011 ((-386 |#4|) |#4|)) (-15 -4011 ((-386 (-1092 |#4|)) (-1092 |#4|))))
+((-2451 (((-386 |#4|) |#4| |#2|) 120)) (-2449 (((-386 |#4|) |#4|) NIL)) (-4245 (((-386 (-1092 |#4|)) (-1092 |#4|)) 111) (((-386 |#4|) |#4|) 41)) (-2453 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-594 (-2 (|:| -4011 (-1092 |#4|)) (|:| -2427 (-516)))))) (-1092 |#4|) (-594 |#2|) (-594 (-594 |#3|))) 69)) (-2457 (((-1092 |#3|) (-1092 |#3|) (-516)) 139)) (-2456 (((-594 (-719)) (-1092 |#4|) (-594 |#2|) (-719)) 61)) (-3343 (((-3 (-594 (-1092 |#4|)) "failed") (-1092 |#4|) (-1092 |#3|) (-1092 |#3|) |#4| (-594 |#2|) (-594 (-719)) (-594 |#3|)) 65)) (-2454 (((-2 (|:| |upol| (-1092 |#3|)) (|:| |Lval| (-594 |#3|)) (|:| |Lfact| (-594 (-2 (|:| -4011 (-1092 |#3|)) (|:| -2427 (-516))))) (|:| |ctpol| |#3|)) (-1092 |#4|) (-594 |#2|) (-594 (-594 |#3|))) 26)) (-2452 (((-2 (|:| -2063 (-1092 |#4|)) (|:| |polval| (-1092 |#3|))) (-1092 |#4|) (-1092 |#3|) (-516)) 57)) (-2450 (((-516) (-594 (-2 (|:| -4011 (-1092 |#3|)) (|:| -2427 (-516))))) 136)) (-2455 ((|#4| (-516) (-386 |#4|)) 58)) (-3635 (((-110) (-594 (-2 (|:| -4011 (-1092 |#3|)) (|:| -2427 (-516)))) (-594 (-2 (|:| -4011 (-1092 |#3|)) (|:| -2427 (-516))))) NIL)))
+(((-691 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4245 ((-386 |#4|) |#4|)) (-15 -4245 ((-386 (-1092 |#4|)) (-1092 |#4|))) (-15 -2449 ((-386 |#4|) |#4|)) (-15 -2450 ((-516) (-594 (-2 (|:| -4011 (-1092 |#3|)) (|:| -2427 (-516)))))) (-15 -2451 ((-386 |#4|) |#4| |#2|)) (-15 -2452 ((-2 (|:| -2063 (-1092 |#4|)) (|:| |polval| (-1092 |#3|))) (-1092 |#4|) (-1092 |#3|) (-516))) (-15 -2453 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-594 (-2 (|:| -4011 (-1092 |#4|)) (|:| -2427 (-516)))))) (-1092 |#4|) (-594 |#2|) (-594 (-594 |#3|)))) (-15 -2454 ((-2 (|:| |upol| (-1092 |#3|)) (|:| |Lval| (-594 |#3|)) (|:| |Lfact| (-594 (-2 (|:| -4011 (-1092 |#3|)) (|:| -2427 (-516))))) (|:| |ctpol| |#3|)) (-1092 |#4|) (-594 |#2|) (-594 (-594 |#3|)))) (-15 -2455 (|#4| (-516) (-386 |#4|))) (-15 -3635 ((-110) (-594 (-2 (|:| -4011 (-1092 |#3|)) (|:| -2427 (-516)))) (-594 (-2 (|:| -4011 (-1092 |#3|)) (|:| -2427 (-516)))))) (-15 -3343 ((-3 (-594 (-1092 |#4|)) "failed") (-1092 |#4|) (-1092 |#3|) (-1092 |#3|) |#4| (-594 |#2|) (-594 (-719)) (-594 |#3|))) (-15 -2456 ((-594 (-719)) (-1092 |#4|) (-594 |#2|) (-719))) (-15 -2457 ((-1092 |#3|) (-1092 |#3|) (-516)))) (-741) (-795) (-289) (-891 |#3| |#1| |#2|)) (T -691))
+((-2457 (*1 *2 *2 *3) (-12 (-5 *2 (-1092 *6)) (-5 *3 (-516)) (-4 *6 (-289)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-691 *4 *5 *6 *7)) (-4 *7 (-891 *6 *4 *5)))) (-2456 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1092 *9)) (-5 *4 (-594 *7)) (-4 *7 (-795)) (-4 *9 (-891 *8 *6 *7)) (-4 *6 (-741)) (-4 *8 (-289)) (-5 *2 (-594 (-719))) (-5 *1 (-691 *6 *7 *8 *9)) (-5 *5 (-719)))) (-3343 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1092 *11)) (-5 *6 (-594 *10)) (-5 *7 (-594 (-719))) (-5 *8 (-594 *11)) (-4 *10 (-795)) (-4 *11 (-289)) (-4 *9 (-741)) (-4 *5 (-891 *11 *9 *10)) (-5 *2 (-594 (-1092 *5))) (-5 *1 (-691 *9 *10 *11 *5)) (-5 *3 (-1092 *5)))) (-3635 (*1 *2 *3 *3) (-12 (-5 *3 (-594 (-2 (|:| -4011 (-1092 *6)) (|:| -2427 (-516))))) (-4 *6 (-289)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-691 *4 *5 *6 *7)) (-4 *7 (-891 *6 *4 *5)))) (-2455 (*1 *2 *3 *4) (-12 (-5 *3 (-516)) (-5 *4 (-386 *2)) (-4 *2 (-891 *7 *5 *6)) (-5 *1 (-691 *5 *6 *7 *2)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-289)))) (-2454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1092 *9)) (-5 *4 (-594 *7)) (-5 *5 (-594 (-594 *8))) (-4 *7 (-795)) (-4 *8 (-289)) (-4 *9 (-891 *8 *6 *7)) (-4 *6 (-741)) (-5 *2 (-2 (|:| |upol| (-1092 *8)) (|:| |Lval| (-594 *8)) (|:| |Lfact| (-594 (-2 (|:| -4011 (-1092 *8)) (|:| -2427 (-516))))) (|:| |ctpol| *8))) (-5 *1 (-691 *6 *7 *8 *9)))) (-2453 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-594 *7)) (-5 *5 (-594 (-594 *8))) (-4 *7 (-795)) (-4 *8 (-289)) (-4 *6 (-741)) (-4 *9 (-891 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-594 (-2 (|:| -4011 (-1092 *9)) (|:| -2427 (-516))))))) (-5 *1 (-691 *6 *7 *8 *9)) (-5 *3 (-1092 *9)))) (-2452 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-516)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-289)) (-4 *9 (-891 *8 *6 *7)) (-5 *2 (-2 (|:| -2063 (-1092 *9)) (|:| |polval| (-1092 *8)))) (-5 *1 (-691 *6 *7 *8 *9)) (-5 *3 (-1092 *9)) (-5 *4 (-1092 *8)))) (-2451 (*1 *2 *3 *4) (-12 (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-289)) (-5 *2 (-386 *3)) (-5 *1 (-691 *5 *4 *6 *3)) (-4 *3 (-891 *6 *5 *4)))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-594 (-2 (|:| -4011 (-1092 *6)) (|:| -2427 (-516))))) (-4 *6 (-289)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-516)) (-5 *1 (-691 *4 *5 *6 *7)) (-4 *7 (-891 *6 *4 *5)))) (-2449 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-386 *3)) (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-891 *6 *4 *5)))) (-4245 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-4 *7 (-891 *6 *4 *5)) (-5 *2 (-386 (-1092 *7))) (-5 *1 (-691 *4 *5 *6 *7)) (-5 *3 (-1092 *7)))) (-4245 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-386 *3)) (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-891 *6 *4 *5)))))
+(-10 -7 (-15 -4245 ((-386 |#4|) |#4|)) (-15 -4245 ((-386 (-1092 |#4|)) (-1092 |#4|))) (-15 -2449 ((-386 |#4|) |#4|)) (-15 -2450 ((-516) (-594 (-2 (|:| -4011 (-1092 |#3|)) (|:| -2427 (-516)))))) (-15 -2451 ((-386 |#4|) |#4| |#2|)) (-15 -2452 ((-2 (|:| -2063 (-1092 |#4|)) (|:| |polval| (-1092 |#3|))) (-1092 |#4|) (-1092 |#3|) (-516))) (-15 -2453 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-594 (-2 (|:| -4011 (-1092 |#4|)) (|:| -2427 (-516)))))) (-1092 |#4|) (-594 |#2|) (-594 (-594 |#3|)))) (-15 -2454 ((-2 (|:| |upol| (-1092 |#3|)) (|:| |Lval| (-594 |#3|)) (|:| |Lfact| (-594 (-2 (|:| -4011 (-1092 |#3|)) (|:| -2427 (-516))))) (|:| |ctpol| |#3|)) (-1092 |#4|) (-594 |#2|) (-594 (-594 |#3|)))) (-15 -2455 (|#4| (-516) (-386 |#4|))) (-15 -3635 ((-110) (-594 (-2 (|:| -4011 (-1092 |#3|)) (|:| -2427 (-516)))) (-594 (-2 (|:| -4011 (-1092 |#3|)) (|:| -2427 (-516)))))) (-15 -3343 ((-3 (-594 (-1092 |#4|)) "failed") (-1092 |#4|) (-1092 |#3|) (-1092 |#3|) |#4| (-594 |#2|) (-594 (-719)) (-594 |#3|))) (-15 -2456 ((-594 (-719)) (-1092 |#4|) (-594 |#2|) (-719))) (-15 -2457 ((-1092 |#3|) (-1092 |#3|) (-516))))
+((-2458 (($ $ (-860)) 12)))
+(((-692 |#1| |#2|) (-10 -8 (-15 -2458 (|#1| |#1| (-860)))) (-693 |#2|) (-162)) (T -692))
+NIL
+(-10 -8 (-15 -2458 (|#1| |#1| (-860))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-2433 (($ $ (-860)) 28)) (-2458 (($ $ (-860)) 33)) (-2432 (($ $ (-860)) 29)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-2620 (($ $ $) 25)) (-4233 (((-805) $) 11)) (-2621 (($ $ $ $) 26)) (-2619 (($ $ $) 24)) (-2920 (($) 18 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 30)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-693 |#1|) (-133) (-162)) (T -693))
+((-2458 (*1 *1 *1 *2) (-12 (-5 *2 (-860)) (-4 *1 (-693 *3)) (-4 *3 (-162)))))
+(-13 (-710) (-666 |t#1|) (-10 -8 (-15 -2458 ($ $ (-860)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-805)) . T) ((-599 |#1|) . T) ((-666 |#1|) . T) ((-669) . T) ((-710) . T) ((-989 |#1|) . T) ((-1027) . T))
+((-2460 (((-973) (-637 (-208)) (-516) (-110) (-516)) 25)) (-2459 (((-973) (-637 (-208)) (-516) (-110) (-516)) 24)))
+(((-694) (-10 -7 (-15 -2459 ((-973) (-637 (-208)) (-516) (-110) (-516))) (-15 -2460 ((-973) (-637 (-208)) (-516) (-110) (-516))))) (T -694))
+((-2460 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-516)) (-5 *5 (-110)) (-5 *2 (-973)) (-5 *1 (-694)))) (-2459 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-516)) (-5 *5 (-110)) (-5 *2 (-973)) (-5 *1 (-694)))))
+(-10 -7 (-15 -2459 ((-973) (-637 (-208)) (-516) (-110) (-516))) (-15 -2460 ((-973) (-637 (-208)) (-516) (-110) (-516))))
+((-2463 (((-973) (-516) (-516) (-516) (-637 (-208)) (-208) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN)))) 43)) (-2462 (((-973) (-516) (-516) (-637 (-208)) (-208) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN)))) 39)) (-2461 (((-973) (-208) (-208) (-208) (-208) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358)))) 32)))
+(((-695) (-10 -7 (-15 -2461 ((-973) (-208) (-208) (-208) (-208) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358))))) (-15 -2462 ((-973) (-516) (-516) (-637 (-208)) (-208) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN))))) (-15 -2463 ((-973) (-516) (-516) (-516) (-637 (-208)) (-208) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN))))))) (T -695))
+((-2463 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN)))) (-5 *2 (-973)) (-5 *1 (-695)))) (-2462 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN)))) (-5 *2 (-973)) (-5 *1 (-695)))) (-2461 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358)))) (-5 *2 (-973)) (-5 *1 (-695)))))
+(-10 -7 (-15 -2461 ((-973) (-208) (-208) (-208) (-208) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358))))) (-15 -2462 ((-973) (-516) (-516) (-637 (-208)) (-208) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN))))) (-15 -2463 ((-973) (-516) (-516) (-516) (-637 (-208)) (-208) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN))))))
+((-2475 (((-973) (-516) (-516) (-637 (-208)) (-516)) 34)) (-2474 (((-973) (-516) (-516) (-637 (-208)) (-516)) 33)) (-2473 (((-973) (-516) (-637 (-208)) (-516)) 32)) (-2472 (((-973) (-516) (-637 (-208)) (-516)) 31)) (-2471 (((-973) (-516) (-516) (-1081) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516)) 30)) (-2470 (((-973) (-516) (-516) (-1081) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516)) 29)) (-2469 (((-973) (-516) (-516) (-1081) (-637 (-208)) (-637 (-208)) (-516)) 28)) (-2468 (((-973) (-516) (-516) (-1081) (-637 (-208)) (-637 (-208)) (-516)) 27)) (-2467 (((-973) (-516) (-516) (-637 (-208)) (-637 (-208)) (-516)) 24)) (-2466 (((-973) (-516) (-637 (-208)) (-637 (-208)) (-516)) 23)) (-2465 (((-973) (-516) (-637 (-208)) (-516)) 22)) (-2464 (((-973) (-516) (-637 (-208)) (-516)) 21)))
+(((-696) (-10 -7 (-15 -2464 ((-973) (-516) (-637 (-208)) (-516))) (-15 -2465 ((-973) (-516) (-637 (-208)) (-516))) (-15 -2466 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2467 ((-973) (-516) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2468 ((-973) (-516) (-516) (-1081) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2469 ((-973) (-516) (-516) (-1081) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2470 ((-973) (-516) (-516) (-1081) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2471 ((-973) (-516) (-516) (-1081) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2472 ((-973) (-516) (-637 (-208)) (-516))) (-15 -2473 ((-973) (-516) (-637 (-208)) (-516))) (-15 -2474 ((-973) (-516) (-516) (-637 (-208)) (-516))) (-15 -2475 ((-973) (-516) (-516) (-637 (-208)) (-516))))) (T -696))
+((-2475 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-2474 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-2473 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-2472 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-2471 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-516)) (-5 *4 (-1081)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-2470 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-516)) (-5 *4 (-1081)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-2469 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-516)) (-5 *4 (-1081)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-2468 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-516)) (-5 *4 (-1081)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-2467 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-2466 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-2465 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-2464 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))))
+(-10 -7 (-15 -2464 ((-973) (-516) (-637 (-208)) (-516))) (-15 -2465 ((-973) (-516) (-637 (-208)) (-516))) (-15 -2466 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2467 ((-973) (-516) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2468 ((-973) (-516) (-516) (-1081) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2469 ((-973) (-516) (-516) (-1081) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2470 ((-973) (-516) (-516) (-1081) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2471 ((-973) (-516) (-516) (-1081) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2472 ((-973) (-516) (-637 (-208)) (-516))) (-15 -2473 ((-973) (-516) (-637 (-208)) (-516))) (-15 -2474 ((-973) (-516) (-516) (-637 (-208)) (-516))) (-15 -2475 ((-973) (-516) (-516) (-637 (-208)) (-516))))
+((-2487 (((-973) (-516) (-637 (-208)) (-637 (-208)) (-516) (-208) (-516) (-516) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FUNCTN)))) 52)) (-2486 (((-973) (-637 (-208)) (-637 (-208)) (-516) (-516)) 51)) (-2485 (((-973) (-516) (-637 (-208)) (-637 (-208)) (-516) (-208) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FUNCTN)))) 50)) (-2484 (((-973) (-208) (-208) (-516) (-516) (-516) (-516)) 46)) (-2483 (((-973) (-208) (-208) (-516) (-208) (-516) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 G)))) 45)) (-2482 (((-973) (-208) (-208) (-208) (-208) (-208) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 G)))) 44)) (-2481 (((-973) (-208) (-208) (-208) (-208) (-516) (-208) (-208) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 G)))) 43)) (-2480 (((-973) (-208) (-208) (-208) (-516) (-208) (-208) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 G)))) 42)) (-2479 (((-973) (-208) (-516) (-208) (-208) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358)))) 38)) (-2478 (((-973) (-208) (-208) (-516) (-637 (-208)) (-208) (-208) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358)))) 37)) (-2477 (((-973) (-208) (-208) (-208) (-208) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358)))) 33)) (-2476 (((-973) (-208) (-208) (-208) (-208) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358)))) 32)))
+(((-697) (-10 -7 (-15 -2476 ((-973) (-208) (-208) (-208) (-208) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358))))) (-15 -2477 ((-973) (-208) (-208) (-208) (-208) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358))))) (-15 -2478 ((-973) (-208) (-208) (-516) (-637 (-208)) (-208) (-208) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358))))) (-15 -2479 ((-973) (-208) (-516) (-208) (-208) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358))))) (-15 -2480 ((-973) (-208) (-208) (-208) (-516) (-208) (-208) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 G))))) (-15 -2481 ((-973) (-208) (-208) (-208) (-208) (-516) (-208) (-208) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 G))))) (-15 -2482 ((-973) (-208) (-208) (-208) (-208) (-208) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 G))))) (-15 -2483 ((-973) (-208) (-208) (-516) (-208) (-516) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 G))))) (-15 -2484 ((-973) (-208) (-208) (-516) (-516) (-516) (-516))) (-15 -2485 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-516) (-208) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FUNCTN))))) (-15 -2486 ((-973) (-637 (-208)) (-637 (-208)) (-516) (-516))) (-15 -2487 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-516) (-208) (-516) (-516) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FUNCTN))))))) (T -697))
+((-2487 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FUNCTN)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-2486 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-697)))) (-2485 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FUNCTN)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-2484 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-697)))) (-2483 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 G)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-2482 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 G)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-2481 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 G)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-2480 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 G)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-2479 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-2478 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-516)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358)))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-697)))) (-2477 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-2476 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358)))) (-5 *2 (-973)) (-5 *1 (-697)))))
+(-10 -7 (-15 -2476 ((-973) (-208) (-208) (-208) (-208) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358))))) (-15 -2477 ((-973) (-208) (-208) (-208) (-208) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358))))) (-15 -2478 ((-973) (-208) (-208) (-516) (-637 (-208)) (-208) (-208) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358))))) (-15 -2479 ((-973) (-208) (-516) (-208) (-208) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358))))) (-15 -2480 ((-973) (-208) (-208) (-208) (-516) (-208) (-208) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 G))))) (-15 -2481 ((-973) (-208) (-208) (-208) (-208) (-516) (-208) (-208) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 G))))) (-15 -2482 ((-973) (-208) (-208) (-208) (-208) (-208) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 G))))) (-15 -2483 ((-973) (-208) (-208) (-516) (-208) (-516) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 G))))) (-15 -2484 ((-973) (-208) (-208) (-516) (-516) (-516) (-516))) (-15 -2485 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-516) (-208) (-516) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FUNCTN))))) (-15 -2486 ((-973) (-637 (-208)) (-637 (-208)) (-516) (-516))) (-15 -2487 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-516) (-208) (-516) (-516) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FUNCTN))))))
+((-2495 (((-973) (-516) (-516) (-516) (-516) (-208) (-516) (-516) (-516) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-208) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 G JACOBG JACGEP)))) 76)) (-2494 (((-973) (-637 (-208)) (-516) (-516) (-208) (-516) (-516) (-208) (-208) (-637 (-208)) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 BDYVAL))) (-369) (-369)) 69) (((-973) (-637 (-208)) (-516) (-516) (-208) (-516) (-516) (-208) (-208) (-637 (-208)) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 BDYVAL)))) 68)) (-2493 (((-973) (-208) (-208) (-516) (-208) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCNG)))) 57)) (-2492 (((-973) (-637 (-208)) (-637 (-208)) (-516) (-208) (-208) (-208) (-516) (-516) (-516) (-637 (-208)) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN)))) 50)) (-2491 (((-973) (-208) (-516) (-516) (-1081) (-516) (-208) (-637 (-208)) (-208) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 OUTPUT)))) 49)) (-2490 (((-973) (-208) (-516) (-516) (-208) (-1081) (-208) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 OUTPUT)))) 45)) (-2489 (((-973) (-208) (-516) (-516) (-208) (-208) (-637 (-208)) (-208) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN)))) 42)) (-2488 (((-973) (-208) (-516) (-516) (-516) (-208) (-637 (-208)) (-208) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 OUTPUT)))) 38)))
+(((-698) (-10 -7 (-15 -2488 ((-973) (-208) (-516) (-516) (-516) (-208) (-637 (-208)) (-208) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 OUTPUT))))) (-15 -2489 ((-973) (-208) (-516) (-516) (-208) (-208) (-637 (-208)) (-208) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN))))) (-15 -2490 ((-973) (-208) (-516) (-516) (-208) (-1081) (-208) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 OUTPUT))))) (-15 -2491 ((-973) (-208) (-516) (-516) (-1081) (-516) (-208) (-637 (-208)) (-208) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 OUTPUT))))) (-15 -2492 ((-973) (-637 (-208)) (-637 (-208)) (-516) (-208) (-208) (-208) (-516) (-516) (-516) (-637 (-208)) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN))))) (-15 -2493 ((-973) (-208) (-208) (-516) (-208) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCNG))))) (-15 -2494 ((-973) (-637 (-208)) (-516) (-516) (-208) (-516) (-516) (-208) (-208) (-637 (-208)) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 BDYVAL))))) (-15 -2494 ((-973) (-637 (-208)) (-516) (-516) (-208) (-516) (-516) (-208) (-208) (-637 (-208)) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 BDYVAL))) (-369) (-369))) (-15 -2495 ((-973) (-516) (-516) (-516) (-516) (-208) (-516) (-516) (-516) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-208) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 G JACOBG JACGEP))))))) (T -698))
+((-2495 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-516)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-75 G JACOBG JACGEP)))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))) (-2494 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-516)) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 BDYVAL)))) (-5 *8 (-369)) (-5 *2 (-973)) (-5 *1 (-698)))) (-2494 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-516)) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 BDYVAL)))) (-5 *2 (-973)) (-5 *1 (-698)))) (-2493 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-516)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNF)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))) (-2492 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-516)) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN)))) (-5 *2 (-973)) (-5 *1 (-698)))) (-2491 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-516)) (-5 *5 (-1081)) (-5 *6 (-637 (-208))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN)))) (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))) (-2490 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-516)) (-5 *5 (-1081)) (-5 *6 (-637 (-208))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN)))) (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))) (-2489 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-516)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN)))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))) (-2488 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-516)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))))
+(-10 -7 (-15 -2488 ((-973) (-208) (-516) (-516) (-516) (-208) (-637 (-208)) (-208) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 OUTPUT))))) (-15 -2489 ((-973) (-208) (-516) (-516) (-208) (-208) (-637 (-208)) (-208) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN))))) (-15 -2490 ((-973) (-208) (-516) (-516) (-208) (-1081) (-208) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 OUTPUT))))) (-15 -2491 ((-973) (-208) (-516) (-516) (-1081) (-516) (-208) (-637 (-208)) (-208) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 OUTPUT))))) (-15 -2492 ((-973) (-637 (-208)) (-637 (-208)) (-516) (-208) (-208) (-208) (-516) (-516) (-516) (-637 (-208)) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN))))) (-15 -2493 ((-973) (-208) (-208) (-516) (-208) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCNG))))) (-15 -2494 ((-973) (-637 (-208)) (-516) (-516) (-208) (-516) (-516) (-208) (-208) (-637 (-208)) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 BDYVAL))))) (-15 -2494 ((-973) (-637 (-208)) (-516) (-516) (-208) (-516) (-516) (-208) (-208) (-637 (-208)) (-516) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 BDYVAL))) (-369) (-369))) (-15 -2495 ((-973) (-516) (-516) (-516) (-516) (-208) (-516) (-516) (-516) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-208) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 G JACOBG JACGEP))))))
+((-2498 (((-973) (-208) (-208) (-516) (-516) (-637 (-208)) (-637 (-208)) (-208) (-208) (-516) (-516) (-637 (-208)) (-637 (-208)) (-208) (-208) (-516) (-516) (-637 (-208)) (-637 (-208)) (-208) (-516) (-516) (-516) (-625 (-208)) (-516)) 45)) (-2497 (((-973) (-208) (-208) (-208) (-208) (-516) (-516) (-516) (-1081) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-82 BNDY)))) 41)) (-2496 (((-973) (-516) (-516) (-516) (-516) (-208) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516)) 23)))
+(((-699) (-10 -7 (-15 -2496 ((-973) (-516) (-516) (-516) (-516) (-208) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2497 ((-973) (-208) (-208) (-208) (-208) (-516) (-516) (-516) (-1081) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-82 BNDY))))) (-15 -2498 ((-973) (-208) (-208) (-516) (-516) (-637 (-208)) (-637 (-208)) (-208) (-208) (-516) (-516) (-637 (-208)) (-637 (-208)) (-208) (-208) (-516) (-516) (-637 (-208)) (-637 (-208)) (-208) (-516) (-516) (-516) (-625 (-208)) (-516))))) (T -699))
+((-2498 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-516)) (-5 *5 (-637 (-208))) (-5 *6 (-625 (-208))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-699)))) (-2497 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *5 (-1081)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-81 PDEF)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-973)) (-5 *1 (-699)))) (-2496 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-516)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-699)))))
+(-10 -7 (-15 -2496 ((-973) (-516) (-516) (-516) (-516) (-208) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2497 ((-973) (-208) (-208) (-208) (-208) (-516) (-516) (-516) (-1081) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-82 BNDY))))) (-15 -2498 ((-973) (-208) (-208) (-516) (-516) (-637 (-208)) (-637 (-208)) (-208) (-208) (-516) (-516) (-637 (-208)) (-637 (-208)) (-208) (-208) (-516) (-516) (-637 (-208)) (-637 (-208)) (-208) (-516) (-516) (-516) (-625 (-208)) (-516))))
+((-2508 (((-973) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-637 (-208)) (-208) (-208) (-516)) 35)) (-2507 (((-973) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-516) (-208) (-208) (-516)) 34)) (-2506 (((-973) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-516)) (-637 (-208)) (-208) (-208) (-516)) 33)) (-2505 (((-973) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516)) 29)) (-2504 (((-973) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516)) 28)) (-2503 (((-973) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-208) (-516)) 27)) (-2502 (((-973) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-637 (-208)) (-516)) 24)) (-2501 (((-973) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-637 (-208)) (-516)) 23)) (-2500 (((-973) (-516) (-637 (-208)) (-637 (-208)) (-516)) 22)) (-2499 (((-973) (-516) (-637 (-208)) (-637 (-208)) (-516) (-516) (-516)) 21)))
+(((-700) (-10 -7 (-15 -2499 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-516) (-516) (-516))) (-15 -2500 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2501 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-637 (-208)) (-516))) (-15 -2502 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-637 (-208)) (-516))) (-15 -2503 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-208) (-516))) (-15 -2504 ((-973) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2505 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2506 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-516)) (-637 (-208)) (-208) (-208) (-516))) (-15 -2507 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-516) (-208) (-208) (-516))) (-15 -2508 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-637 (-208)) (-208) (-208) (-516))))) (T -700))
+((-2508 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973)) (-5 *1 (-700)))) (-2507 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973)) (-5 *1 (-700)))) (-2506 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-516))) (-5 *6 (-208)) (-5 *3 (-516)) (-5 *2 (-973)) (-5 *1 (-700)))) (-2505 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))) (-2504 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))) (-2503 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973)) (-5 *1 (-700)))) (-2502 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))) (-2501 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))) (-2500 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))) (-2499 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))))
+(-10 -7 (-15 -2499 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-516) (-516) (-516))) (-15 -2500 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2501 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-637 (-208)) (-516))) (-15 -2502 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-637 (-208)) (-516))) (-15 -2503 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-208) (-516))) (-15 -2504 ((-973) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2505 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2506 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-516)) (-637 (-208)) (-208) (-208) (-516))) (-15 -2507 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-516) (-208) (-208) (-516))) (-15 -2508 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-637 (-208)) (-208) (-208) (-516))))
+((-2526 (((-973) (-516) (-516) (-637 (-208)) (-637 (-208)) (-516) (-637 (-208)) (-637 (-208)) (-516) (-516) (-516)) 45)) (-2525 (((-973) (-516) (-516) (-516) (-208) (-637 (-208)) (-637 (-208)) (-516)) 44)) (-2524 (((-973) (-516) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-516) (-516)) 43)) (-2523 (((-973) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516)) 42)) (-2522 (((-973) (-1081) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-516) (-516) (-516) (-516) (-516) (-637 (-208)) (-516) (-637 (-208)) (-637 (-208)) (-516)) 41)) (-2521 (((-973) (-1081) (-516) (-637 (-208)) (-516) (-637 (-208)) (-637 (-208)) (-208) (-516) (-516) (-516) (-516) (-516) (-637 (-208)) (-516) (-637 (-208)) (-637 (-208)) (-637 (-516)) (-516)) 40)) (-2520 (((-973) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-516)) (-516) (-516) (-516) (-208) (-637 (-208)) (-516)) 39)) (-2519 (((-973) (-1081) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-516) (-516) (-516) (-637 (-208)) (-516) (-637 (-208)) (-637 (-516))) 38)) (-2518 (((-973) (-516) (-637 (-208)) (-637 (-208)) (-516)) 35)) (-2517 (((-973) (-516) (-637 (-208)) (-637 (-208)) (-208) (-516) (-516)) 34)) (-2516 (((-973) (-516) (-637 (-208)) (-637 (-208)) (-208) (-516)) 33)) (-2515 (((-973) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516)) 32)) (-2514 (((-973) (-516) (-208) (-208) (-637 (-208)) (-516) (-516) (-208) (-516)) 31)) (-2513 (((-973) (-516) (-208) (-208) (-637 (-208)) (-516) (-516) (-208) (-516) (-516) (-516)) 30)) (-2512 (((-973) (-516) (-208) (-208) (-637 (-208)) (-516) (-516) (-516) (-516) (-516)) 29)) (-2511 (((-973) (-516) (-516) (-516) (-208) (-208) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-637 (-208)) (-637 (-208)) (-516) (-637 (-516)) (-516) (-516) (-516)) 28)) (-2510 (((-973) (-516) (-637 (-208)) (-208) (-516)) 24)) (-2509 (((-973) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516)) 21)))
+(((-701) (-10 -7 (-15 -2509 ((-973) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2510 ((-973) (-516) (-637 (-208)) (-208) (-516))) (-15 -2511 ((-973) (-516) (-516) (-516) (-208) (-208) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-637 (-208)) (-637 (-208)) (-516) (-637 (-516)) (-516) (-516) (-516))) (-15 -2512 ((-973) (-516) (-208) (-208) (-637 (-208)) (-516) (-516) (-516) (-516) (-516))) (-15 -2513 ((-973) (-516) (-208) (-208) (-637 (-208)) (-516) (-516) (-208) (-516) (-516) (-516))) (-15 -2514 ((-973) (-516) (-208) (-208) (-637 (-208)) (-516) (-516) (-208) (-516))) (-15 -2515 ((-973) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2516 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-208) (-516))) (-15 -2517 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-208) (-516) (-516))) (-15 -2518 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2519 ((-973) (-1081) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-516) (-516) (-516) (-637 (-208)) (-516) (-637 (-208)) (-637 (-516)))) (-15 -2520 ((-973) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-516)) (-516) (-516) (-516) (-208) (-637 (-208)) (-516))) (-15 -2521 ((-973) (-1081) (-516) (-637 (-208)) (-516) (-637 (-208)) (-637 (-208)) (-208) (-516) (-516) (-516) (-516) (-516) (-637 (-208)) (-516) (-637 (-208)) (-637 (-208)) (-637 (-516)) (-516))) (-15 -2522 ((-973) (-1081) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-516) (-516) (-516) (-516) (-516) (-637 (-208)) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2523 ((-973) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2524 ((-973) (-516) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-516) (-516))) (-15 -2525 ((-973) (-516) (-516) (-516) (-208) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2526 ((-973) (-516) (-516) (-637 (-208)) (-637 (-208)) (-516) (-637 (-208)) (-637 (-208)) (-516) (-516) (-516))))) (T -701))
+((-2526 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))) (-2525 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-516)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2524 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))) (-2523 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))) (-2522 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1081)) (-5 *4 (-516)) (-5 *5 (-637 (-208))) (-5 *6 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2521 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1081)) (-5 *5 (-637 (-208))) (-5 *6 (-208)) (-5 *7 (-637 (-516))) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2520 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-516))) (-5 *6 (-208)) (-5 *3 (-516)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2519 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1081)) (-5 *5 (-637 (-208))) (-5 *6 (-208)) (-5 *7 (-637 (-516))) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2518 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))) (-2517 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2516 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2515 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))) (-2514 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-516)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2513 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-516)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2512 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-516)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2511 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-637 (-208))) (-5 *6 (-637 (-516))) (-5 *3 (-516)) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2510 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2509 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))))
+(-10 -7 (-15 -2509 ((-973) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2510 ((-973) (-516) (-637 (-208)) (-208) (-516))) (-15 -2511 ((-973) (-516) (-516) (-516) (-208) (-208) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-637 (-208)) (-637 (-208)) (-516) (-637 (-516)) (-516) (-516) (-516))) (-15 -2512 ((-973) (-516) (-208) (-208) (-637 (-208)) (-516) (-516) (-516) (-516) (-516))) (-15 -2513 ((-973) (-516) (-208) (-208) (-637 (-208)) (-516) (-516) (-208) (-516) (-516) (-516))) (-15 -2514 ((-973) (-516) (-208) (-208) (-637 (-208)) (-516) (-516) (-208) (-516))) (-15 -2515 ((-973) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2516 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-208) (-516))) (-15 -2517 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-208) (-516) (-516))) (-15 -2518 ((-973) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2519 ((-973) (-1081) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-516) (-516) (-516) (-637 (-208)) (-516) (-637 (-208)) (-637 (-516)))) (-15 -2520 ((-973) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-516)) (-516) (-516) (-516) (-208) (-637 (-208)) (-516))) (-15 -2521 ((-973) (-1081) (-516) (-637 (-208)) (-516) (-637 (-208)) (-637 (-208)) (-208) (-516) (-516) (-516) (-516) (-516) (-637 (-208)) (-516) (-637 (-208)) (-637 (-208)) (-637 (-516)) (-516))) (-15 -2522 ((-973) (-1081) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-516) (-516) (-516) (-516) (-516) (-637 (-208)) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2523 ((-973) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2524 ((-973) (-516) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-516) (-516))) (-15 -2525 ((-973) (-516) (-516) (-516) (-208) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2526 ((-973) (-516) (-516) (-637 (-208)) (-637 (-208)) (-516) (-637 (-208)) (-637 (-208)) (-516) (-516) (-516))))
+((-2534 (((-973) (-516) (-516) (-516) (-208) (-637 (-208)) (-516) (-637 (-208)) (-516)) 63)) (-2533 (((-973) (-516) (-516) (-516) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-516) (-110) (-208) (-516) (-208) (-208) (-110) (-208) (-208) (-208) (-208) (-110) (-516) (-516) (-516) (-516) (-516) (-208) (-208) (-208) (-516) (-516) (-516) (-516) (-516) (-637 (-516)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 OBJFUN)))) 62)) (-2532 (((-973) (-516) (-516) (-516) (-516) (-516) (-516) (-516) (-516) (-208) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-110) (-110) (-110) (-516) (-516) (-637 (-208)) (-637 (-516)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS)))) 58)) (-2531 (((-973) (-516) (-516) (-516) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-110) (-516) (-516) (-637 (-208)) (-516)) 51)) (-2530 (((-973) (-516) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1)))) 50)) (-2529 (((-973) (-516) (-516) (-516) (-516) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 LSFUN2)))) 46)) (-2528 (((-973) (-516) (-516) (-516) (-516) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1)))) 42)) (-2527 (((-973) (-516) (-208) (-208) (-516) (-208) (-110) (-208) (-208) (-516) (-516) (-516) (-516) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 OBJFUN)))) 38)))
+(((-702) (-10 -7 (-15 -2527 ((-973) (-516) (-208) (-208) (-516) (-208) (-110) (-208) (-208) (-516) (-516) (-516) (-516) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 OBJFUN))))) (-15 -2528 ((-973) (-516) (-516) (-516) (-516) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1))))) (-15 -2529 ((-973) (-516) (-516) (-516) (-516) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 LSFUN2))))) (-15 -2530 ((-973) (-516) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1))))) (-15 -2531 ((-973) (-516) (-516) (-516) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-110) (-516) (-516) (-637 (-208)) (-516))) (-15 -2532 ((-973) (-516) (-516) (-516) (-516) (-516) (-516) (-516) (-516) (-208) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-110) (-110) (-110) (-516) (-516) (-637 (-208)) (-637 (-516)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS))))) (-15 -2533 ((-973) (-516) (-516) (-516) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-516) (-110) (-208) (-516) (-208) (-208) (-110) (-208) (-208) (-208) (-208) (-110) (-516) (-516) (-516) (-516) (-516) (-208) (-208) (-208) (-516) (-516) (-516) (-516) (-516) (-637 (-516)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 OBJFUN))))) (-15 -2534 ((-973) (-516) (-516) (-516) (-208) (-637 (-208)) (-516) (-637 (-208)) (-516))))) (T -702))
+((-2534 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-516)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-702)))) (-2533 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-110)) (-5 *6 (-208)) (-5 *7 (-637 (-516))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-76 OBJFUN)))) (-5 *3 (-516)) (-5 *2 (-973)) (-5 *1 (-702)))) (-2532 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-637 (-208))) (-5 *6 (-110)) (-5 *7 (-637 (-516))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-516)) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-702)))) (-2531 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-110)) (-5 *2 (-973)) (-5 *1 (-702)))) (-2530 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-973)) (-5 *1 (-702)))) (-2529 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 LSFUN2)))) (-5 *2 (-973)) (-5 *1 (-702)))) (-2528 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-973)) (-5 *1 (-702)))) (-2527 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-516)) (-5 *5 (-110)) (-5 *6 (-637 (-208))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-76 OBJFUN)))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-702)))))
+(-10 -7 (-15 -2527 ((-973) (-516) (-208) (-208) (-516) (-208) (-110) (-208) (-208) (-516) (-516) (-516) (-516) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 OBJFUN))))) (-15 -2528 ((-973) (-516) (-516) (-516) (-516) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1))))) (-15 -2529 ((-973) (-516) (-516) (-516) (-516) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 LSFUN2))))) (-15 -2530 ((-973) (-516) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1))))) (-15 -2531 ((-973) (-516) (-516) (-516) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-110) (-516) (-516) (-637 (-208)) (-516))) (-15 -2532 ((-973) (-516) (-516) (-516) (-516) (-516) (-516) (-516) (-516) (-208) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-110) (-110) (-110) (-516) (-516) (-637 (-208)) (-637 (-516)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS))))) (-15 -2533 ((-973) (-516) (-516) (-516) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-516) (-110) (-208) (-516) (-208) (-208) (-110) (-208) (-208) (-208) (-208) (-110) (-516) (-516) (-516) (-516) (-516) (-208) (-208) (-208) (-516) (-516) (-516) (-516) (-516) (-637 (-516)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 OBJFUN))))) (-15 -2534 ((-973) (-516) (-516) (-516) (-208) (-637 (-208)) (-516) (-637 (-208)) (-516))))
+((-2544 (((-973) (-1081) (-516) (-516) (-516) (-516) (-637 (-158 (-208))) (-637 (-158 (-208))) (-516)) 47)) (-2543 (((-973) (-1081) (-1081) (-516) (-516) (-637 (-158 (-208))) (-516) (-637 (-158 (-208))) (-516) (-516) (-637 (-158 (-208))) (-516)) 46)) (-2542 (((-973) (-516) (-516) (-516) (-637 (-158 (-208))) (-516)) 45)) (-2541 (((-973) (-1081) (-516) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-516)) 40)) (-2540 (((-973) (-1081) (-1081) (-516) (-516) (-637 (-208)) (-516) (-637 (-208)) (-516) (-516) (-637 (-208)) (-516)) 39)) (-2539 (((-973) (-516) (-516) (-516) (-637 (-208)) (-516)) 36)) (-2538 (((-973) (-516) (-637 (-208)) (-516) (-637 (-516)) (-516)) 35)) (-2537 (((-973) (-516) (-516) (-516) (-516) (-594 (-110)) (-637 (-208)) (-637 (-516)) (-637 (-516)) (-208) (-208) (-516)) 34)) (-2536 (((-973) (-516) (-516) (-516) (-637 (-516)) (-637 (-516)) (-637 (-516)) (-637 (-516)) (-110) (-208) (-110) (-637 (-516)) (-637 (-208)) (-516)) 33)) (-2535 (((-973) (-516) (-516) (-516) (-516) (-208) (-110) (-110) (-594 (-110)) (-637 (-208)) (-637 (-516)) (-637 (-516)) (-516)) 32)))
+(((-703) (-10 -7 (-15 -2535 ((-973) (-516) (-516) (-516) (-516) (-208) (-110) (-110) (-594 (-110)) (-637 (-208)) (-637 (-516)) (-637 (-516)) (-516))) (-15 -2536 ((-973) (-516) (-516) (-516) (-637 (-516)) (-637 (-516)) (-637 (-516)) (-637 (-516)) (-110) (-208) (-110) (-637 (-516)) (-637 (-208)) (-516))) (-15 -2537 ((-973) (-516) (-516) (-516) (-516) (-594 (-110)) (-637 (-208)) (-637 (-516)) (-637 (-516)) (-208) (-208) (-516))) (-15 -2538 ((-973) (-516) (-637 (-208)) (-516) (-637 (-516)) (-516))) (-15 -2539 ((-973) (-516) (-516) (-516) (-637 (-208)) (-516))) (-15 -2540 ((-973) (-1081) (-1081) (-516) (-516) (-637 (-208)) (-516) (-637 (-208)) (-516) (-516) (-637 (-208)) (-516))) (-15 -2541 ((-973) (-1081) (-516) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2542 ((-973) (-516) (-516) (-516) (-637 (-158 (-208))) (-516))) (-15 -2543 ((-973) (-1081) (-1081) (-516) (-516) (-637 (-158 (-208))) (-516) (-637 (-158 (-208))) (-516) (-516) (-637 (-158 (-208))) (-516))) (-15 -2544 ((-973) (-1081) (-516) (-516) (-516) (-516) (-637 (-158 (-208))) (-637 (-158 (-208))) (-516))))) (T -703))
+((-2544 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1081)) (-5 *4 (-516)) (-5 *5 (-637 (-158 (-208)))) (-5 *2 (-973)) (-5 *1 (-703)))) (-2543 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1081)) (-5 *4 (-516)) (-5 *5 (-637 (-158 (-208)))) (-5 *2 (-973)) (-5 *1 (-703)))) (-2542 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-158 (-208)))) (-5 *2 (-973)) (-5 *1 (-703)))) (-2541 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1081)) (-5 *4 (-516)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-703)))) (-2540 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1081)) (-5 *4 (-516)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-703)))) (-2539 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-703)))) (-2538 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-516))) (-5 *3 (-516)) (-5 *2 (-973)) (-5 *1 (-703)))) (-2537 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-594 (-110))) (-5 *5 (-637 (-208))) (-5 *6 (-637 (-516))) (-5 *7 (-208)) (-5 *3 (-516)) (-5 *2 (-973)) (-5 *1 (-703)))) (-2536 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-637 (-516))) (-5 *5 (-110)) (-5 *7 (-637 (-208))) (-5 *3 (-516)) (-5 *6 (-208)) (-5 *2 (-973)) (-5 *1 (-703)))) (-2535 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-594 (-110))) (-5 *7 (-637 (-208))) (-5 *8 (-637 (-516))) (-5 *3 (-516)) (-5 *4 (-208)) (-5 *5 (-110)) (-5 *2 (-973)) (-5 *1 (-703)))))
+(-10 -7 (-15 -2535 ((-973) (-516) (-516) (-516) (-516) (-208) (-110) (-110) (-594 (-110)) (-637 (-208)) (-637 (-516)) (-637 (-516)) (-516))) (-15 -2536 ((-973) (-516) (-516) (-516) (-637 (-516)) (-637 (-516)) (-637 (-516)) (-637 (-516)) (-110) (-208) (-110) (-637 (-516)) (-637 (-208)) (-516))) (-15 -2537 ((-973) (-516) (-516) (-516) (-516) (-594 (-110)) (-637 (-208)) (-637 (-516)) (-637 (-516)) (-208) (-208) (-516))) (-15 -2538 ((-973) (-516) (-637 (-208)) (-516) (-637 (-516)) (-516))) (-15 -2539 ((-973) (-516) (-516) (-516) (-637 (-208)) (-516))) (-15 -2540 ((-973) (-1081) (-1081) (-516) (-516) (-637 (-208)) (-516) (-637 (-208)) (-516) (-516) (-637 (-208)) (-516))) (-15 -2541 ((-973) (-1081) (-516) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2542 ((-973) (-516) (-516) (-516) (-637 (-158 (-208))) (-516))) (-15 -2543 ((-973) (-1081) (-1081) (-516) (-516) (-637 (-158 (-208))) (-516) (-637 (-158 (-208))) (-516) (-516) (-637 (-158 (-208))) (-516))) (-15 -2544 ((-973) (-1081) (-516) (-516) (-516) (-516) (-637 (-158 (-208))) (-637 (-158 (-208))) (-516))))
+((-2559 (((-973) (-516) (-516) (-516) (-516) (-516) (-110) (-516) (-110) (-516) (-637 (-158 (-208))) (-637 (-158 (-208))) (-516)) 65)) (-2558 (((-973) (-516) (-516) (-516) (-516) (-516) (-110) (-516) (-110) (-516) (-637 (-208)) (-637 (-208)) (-516)) 60)) (-2557 (((-973) (-516) (-516) (-208) (-516) (-516) (-516) (-516) (-516) (-516) (-516) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))) (-369)) 56) (((-973) (-516) (-516) (-208) (-516) (-516) (-516) (-516) (-516) (-516) (-516) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) 55)) (-2556 (((-973) (-516) (-516) (-516) (-208) (-110) (-516) (-637 (-208)) (-637 (-208)) (-516)) 37)) (-2555 (((-973) (-516) (-516) (-208) (-208) (-516) (-516) (-637 (-208)) (-516)) 33)) (-2554 (((-973) (-637 (-208)) (-516) (-637 (-208)) (-516) (-516) (-516) (-516) (-516)) 30)) (-2553 (((-973) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-516)) 29)) (-2552 (((-973) (-516) (-516) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-516)) 28)) (-2551 (((-973) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-516)) 27)) (-2550 (((-973) (-516) (-516) (-516) (-516) (-637 (-208)) (-516)) 26)) (-2549 (((-973) (-516) (-516) (-637 (-208)) (-516)) 25)) (-2548 (((-973) (-516) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-516)) 24)) (-2547 (((-973) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-516)) 23)) (-2546 (((-973) (-637 (-208)) (-516) (-516) (-516) (-516)) 22)) (-2545 (((-973) (-516) (-516) (-637 (-208)) (-516)) 21)))
+(((-704) (-10 -7 (-15 -2545 ((-973) (-516) (-516) (-637 (-208)) (-516))) (-15 -2546 ((-973) (-637 (-208)) (-516) (-516) (-516) (-516))) (-15 -2547 ((-973) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2548 ((-973) (-516) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2549 ((-973) (-516) (-516) (-637 (-208)) (-516))) (-15 -2550 ((-973) (-516) (-516) (-516) (-516) (-637 (-208)) (-516))) (-15 -2551 ((-973) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2552 ((-973) (-516) (-516) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2553 ((-973) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2554 ((-973) (-637 (-208)) (-516) (-637 (-208)) (-516) (-516) (-516) (-516) (-516))) (-15 -2555 ((-973) (-516) (-516) (-208) (-208) (-516) (-516) (-637 (-208)) (-516))) (-15 -2556 ((-973) (-516) (-516) (-516) (-208) (-110) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2557 ((-973) (-516) (-516) (-208) (-516) (-516) (-516) (-516) (-516) (-516) (-516) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))))) (-15 -2557 ((-973) (-516) (-516) (-208) (-516) (-516) (-516) (-516) (-516) (-516) (-516) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))) (-369))) (-15 -2558 ((-973) (-516) (-516) (-516) (-516) (-516) (-110) (-516) (-110) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2559 ((-973) (-516) (-516) (-516) (-516) (-516) (-110) (-516) (-110) (-516) (-637 (-158 (-208))) (-637 (-158 (-208))) (-516))))) (T -704))
+((-2559 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-516)) (-5 *4 (-110)) (-5 *5 (-637 (-158 (-208)))) (-5 *2 (-973)) (-5 *1 (-704)))) (-2558 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-516)) (-5 *4 (-110)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-2557 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-516)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-369)) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-704)))) (-2557 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-516)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-704)))) (-2556 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-516)) (-5 *5 (-110)) (-5 *6 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-704)))) (-2555 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-516)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-704)))) (-2554 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-704)))) (-2553 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-2552 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-2551 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-2550 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-2549 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-2548 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-2547 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-2546 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-704)))) (-2545 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))))
+(-10 -7 (-15 -2545 ((-973) (-516) (-516) (-637 (-208)) (-516))) (-15 -2546 ((-973) (-637 (-208)) (-516) (-516) (-516) (-516))) (-15 -2547 ((-973) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2548 ((-973) (-516) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2549 ((-973) (-516) (-516) (-637 (-208)) (-516))) (-15 -2550 ((-973) (-516) (-516) (-516) (-516) (-637 (-208)) (-516))) (-15 -2551 ((-973) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2552 ((-973) (-516) (-516) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2553 ((-973) (-516) (-516) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2554 ((-973) (-637 (-208)) (-516) (-637 (-208)) (-516) (-516) (-516) (-516) (-516))) (-15 -2555 ((-973) (-516) (-516) (-208) (-208) (-516) (-516) (-637 (-208)) (-516))) (-15 -2556 ((-973) (-516) (-516) (-516) (-208) (-110) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2557 ((-973) (-516) (-516) (-208) (-516) (-516) (-516) (-516) (-516) (-516) (-516) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))))) (-15 -2557 ((-973) (-516) (-516) (-208) (-516) (-516) (-516) (-516) (-516) (-516) (-516) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))) (-369))) (-15 -2558 ((-973) (-516) (-516) (-516) (-516) (-516) (-110) (-516) (-110) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2559 ((-973) (-516) (-516) (-516) (-516) (-516) (-110) (-516) (-110) (-516) (-637 (-158 (-208))) (-637 (-158 (-208))) (-516))))
+((-2570 (((-973) (-516) (-516) (-208) (-208) (-208) (-208) (-516) (-516) (-516) (-516) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD)))) 61)) (-2569 (((-973) (-516) (-637 (-208)) (-516) (-637 (-208)) (-637 (-516)) (-516) (-637 (-208)) (-516) (-516) (-516) (-516)) 57)) (-2568 (((-973) (-516) (-637 (-208)) (-110) (-208) (-516) (-516) (-516) (-516) (-208) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE)))) 56)) (-2567 (((-973) (-516) (-516) (-637 (-208)) (-516) (-637 (-516)) (-516) (-637 (-516)) (-637 (-208)) (-637 (-516)) (-637 (-516)) (-637 (-208)) (-637 (-208)) (-637 (-516)) (-516)) 37)) (-2566 (((-973) (-516) (-516) (-516) (-208) (-516) (-637 (-208)) (-637 (-208)) (-516)) 36)) (-2565 (((-973) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516)) 33)) (-2564 (((-973) (-516) (-637 (-208)) (-516) (-637 (-516)) (-637 (-516)) (-516) (-637 (-516)) (-637 (-208))) 32)) (-2563 (((-973) (-637 (-208)) (-516) (-637 (-208)) (-516) (-516) (-516)) 28)) (-2562 (((-973) (-516) (-637 (-208)) (-516) (-637 (-208)) (-516)) 27)) (-2561 (((-973) (-516) (-637 (-208)) (-516) (-637 (-208)) (-516)) 26)) (-2560 (((-973) (-516) (-637 (-158 (-208))) (-516) (-516) (-516) (-516) (-637 (-158 (-208))) (-516)) 22)))
+(((-705) (-10 -7 (-15 -2560 ((-973) (-516) (-637 (-158 (-208))) (-516) (-516) (-516) (-516) (-637 (-158 (-208))) (-516))) (-15 -2561 ((-973) (-516) (-637 (-208)) (-516) (-637 (-208)) (-516))) (-15 -2562 ((-973) (-516) (-637 (-208)) (-516) (-637 (-208)) (-516))) (-15 -2563 ((-973) (-637 (-208)) (-516) (-637 (-208)) (-516) (-516) (-516))) (-15 -2564 ((-973) (-516) (-637 (-208)) (-516) (-637 (-516)) (-637 (-516)) (-516) (-637 (-516)) (-637 (-208)))) (-15 -2565 ((-973) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2566 ((-973) (-516) (-516) (-516) (-208) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2567 ((-973) (-516) (-516) (-637 (-208)) (-516) (-637 (-516)) (-516) (-637 (-516)) (-637 (-208)) (-637 (-516)) (-637 (-516)) (-637 (-208)) (-637 (-208)) (-637 (-516)) (-516))) (-15 -2568 ((-973) (-516) (-637 (-208)) (-110) (-208) (-516) (-516) (-516) (-516) (-208) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE))))) (-15 -2569 ((-973) (-516) (-637 (-208)) (-516) (-637 (-208)) (-637 (-516)) (-516) (-637 (-208)) (-516) (-516) (-516) (-516))) (-15 -2570 ((-973) (-516) (-516) (-208) (-208) (-208) (-208) (-516) (-516) (-516) (-516) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD))))))) (T -705))
+((-2570 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-516)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD)))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-705)))) (-2569 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-516))) (-5 *3 (-516)) (-5 *2 (-973)) (-5 *1 (-705)))) (-2568 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-110)) (-5 *6 (-208)) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-973)) (-5 *1 (-705)))) (-2567 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-516))) (-5 *3 (-516)) (-5 *2 (-973)) (-5 *1 (-705)))) (-2566 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-516)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-705)))) (-2565 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-705)))) (-2564 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-516))) (-5 *3 (-516)) (-5 *2 (-973)) (-5 *1 (-705)))) (-2563 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-705)))) (-2562 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-705)))) (-2561 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-705)))) (-2560 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-158 (-208)))) (-5 *2 (-973)) (-5 *1 (-705)))))
+(-10 -7 (-15 -2560 ((-973) (-516) (-637 (-158 (-208))) (-516) (-516) (-516) (-516) (-637 (-158 (-208))) (-516))) (-15 -2561 ((-973) (-516) (-637 (-208)) (-516) (-637 (-208)) (-516))) (-15 -2562 ((-973) (-516) (-637 (-208)) (-516) (-637 (-208)) (-516))) (-15 -2563 ((-973) (-637 (-208)) (-516) (-637 (-208)) (-516) (-516) (-516))) (-15 -2564 ((-973) (-516) (-637 (-208)) (-516) (-637 (-516)) (-637 (-516)) (-516) (-637 (-516)) (-637 (-208)))) (-15 -2565 ((-973) (-516) (-516) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2566 ((-973) (-516) (-516) (-516) (-208) (-516) (-637 (-208)) (-637 (-208)) (-516))) (-15 -2567 ((-973) (-516) (-516) (-637 (-208)) (-516) (-637 (-516)) (-516) (-637 (-516)) (-637 (-208)) (-637 (-516)) (-637 (-516)) (-637 (-208)) (-637 (-208)) (-637 (-516)) (-516))) (-15 -2568 ((-973) (-516) (-637 (-208)) (-110) (-208) (-516) (-516) (-516) (-516) (-208) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE))))) (-15 -2569 ((-973) (-516) (-637 (-208)) (-516) (-637 (-208)) (-637 (-516)) (-516) (-637 (-208)) (-516) (-516) (-516) (-516))) (-15 -2570 ((-973) (-516) (-516) (-208) (-208) (-208) (-208) (-516) (-516) (-516) (-516) (-637 (-208)) (-516) (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD))))))
+((-2574 (((-973) (-1081) (-516) (-516) (-637 (-208)) (-516) (-516) (-637 (-208))) 29)) (-2573 (((-973) (-1081) (-516) (-516) (-637 (-208))) 28)) (-2572 (((-973) (-1081) (-516) (-516) (-637 (-208)) (-516) (-637 (-516)) (-516) (-637 (-208))) 27)) (-2571 (((-973) (-516) (-516) (-516) (-637 (-208))) 21)))
+(((-706) (-10 -7 (-15 -2571 ((-973) (-516) (-516) (-516) (-637 (-208)))) (-15 -2572 ((-973) (-1081) (-516) (-516) (-637 (-208)) (-516) (-637 (-516)) (-516) (-637 (-208)))) (-15 -2573 ((-973) (-1081) (-516) (-516) (-637 (-208)))) (-15 -2574 ((-973) (-1081) (-516) (-516) (-637 (-208)) (-516) (-516) (-637 (-208)))))) (T -706))
+((-2574 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1081)) (-5 *4 (-516)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-706)))) (-2573 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1081)) (-5 *4 (-516)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-706)))) (-2572 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1081)) (-5 *5 (-637 (-208))) (-5 *6 (-637 (-516))) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-706)))) (-2571 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-706)))))
+(-10 -7 (-15 -2571 ((-973) (-516) (-516) (-516) (-637 (-208)))) (-15 -2572 ((-973) (-1081) (-516) (-516) (-637 (-208)) (-516) (-637 (-516)) (-516) (-637 (-208)))) (-15 -2573 ((-973) (-1081) (-516) (-516) (-637 (-208)))) (-15 -2574 ((-973) (-1081) (-516) (-516) (-637 (-208)) (-516) (-516) (-637 (-208)))))
+((-2612 (((-973) (-208) (-208) (-208) (-208) (-516)) 62)) (-2611 (((-973) (-208) (-208) (-208) (-516)) 61)) (-2610 (((-973) (-208) (-208) (-208) (-516)) 60)) (-2609 (((-973) (-208) (-208) (-516)) 59)) (-2608 (((-973) (-208) (-516)) 58)) (-2607 (((-973) (-208) (-516)) 57)) (-2606 (((-973) (-208) (-516)) 56)) (-2605 (((-973) (-208) (-516)) 55)) (-2604 (((-973) (-208) (-516)) 54)) (-2603 (((-973) (-208) (-516)) 53)) (-2602 (((-973) (-208) (-158 (-208)) (-516) (-1081) (-516)) 52)) (-2601 (((-973) (-208) (-158 (-208)) (-516) (-1081) (-516)) 51)) (-2600 (((-973) (-208) (-516)) 50)) (-2599 (((-973) (-208) (-516)) 49)) (-2598 (((-973) (-208) (-516)) 48)) (-2597 (((-973) (-208) (-516)) 47)) (-2596 (((-973) (-516) (-208) (-158 (-208)) (-516) (-1081) (-516)) 46)) (-2595 (((-973) (-1081) (-158 (-208)) (-1081) (-516)) 45)) (-2594 (((-973) (-1081) (-158 (-208)) (-1081) (-516)) 44)) (-2593 (((-973) (-208) (-158 (-208)) (-516) (-1081) (-516)) 43)) (-2592 (((-973) (-208) (-158 (-208)) (-516) (-1081) (-516)) 42)) (-2591 (((-973) (-208) (-516)) 39)) (-2590 (((-973) (-208) (-516)) 38)) (-2589 (((-973) (-208) (-516)) 37)) (-2588 (((-973) (-208) (-516)) 36)) (-2587 (((-973) (-208) (-516)) 35)) (-2586 (((-973) (-208) (-516)) 34)) (-2585 (((-973) (-208) (-516)) 33)) (-2584 (((-973) (-208) (-516)) 32)) (-2583 (((-973) (-208) (-516)) 31)) (-2582 (((-973) (-208) (-516)) 30)) (-2581 (((-973) (-208) (-208) (-208) (-516)) 29)) (-2580 (((-973) (-208) (-516)) 28)) (-2579 (((-973) (-208) (-516)) 27)) (-2578 (((-973) (-208) (-516)) 26)) (-2577 (((-973) (-208) (-516)) 25)) (-2576 (((-973) (-208) (-516)) 24)) (-2575 (((-973) (-158 (-208)) (-516)) 21)))
+(((-707) (-10 -7 (-15 -2575 ((-973) (-158 (-208)) (-516))) (-15 -2576 ((-973) (-208) (-516))) (-15 -2577 ((-973) (-208) (-516))) (-15 -2578 ((-973) (-208) (-516))) (-15 -2579 ((-973) (-208) (-516))) (-15 -2580 ((-973) (-208) (-516))) (-15 -2581 ((-973) (-208) (-208) (-208) (-516))) (-15 -2582 ((-973) (-208) (-516))) (-15 -2583 ((-973) (-208) (-516))) (-15 -2584 ((-973) (-208) (-516))) (-15 -2585 ((-973) (-208) (-516))) (-15 -2586 ((-973) (-208) (-516))) (-15 -2587 ((-973) (-208) (-516))) (-15 -2588 ((-973) (-208) (-516))) (-15 -2589 ((-973) (-208) (-516))) (-15 -2590 ((-973) (-208) (-516))) (-15 -2591 ((-973) (-208) (-516))) (-15 -2592 ((-973) (-208) (-158 (-208)) (-516) (-1081) (-516))) (-15 -2593 ((-973) (-208) (-158 (-208)) (-516) (-1081) (-516))) (-15 -2594 ((-973) (-1081) (-158 (-208)) (-1081) (-516))) (-15 -2595 ((-973) (-1081) (-158 (-208)) (-1081) (-516))) (-15 -2596 ((-973) (-516) (-208) (-158 (-208)) (-516) (-1081) (-516))) (-15 -2597 ((-973) (-208) (-516))) (-15 -2598 ((-973) (-208) (-516))) (-15 -2599 ((-973) (-208) (-516))) (-15 -2600 ((-973) (-208) (-516))) (-15 -2601 ((-973) (-208) (-158 (-208)) (-516) (-1081) (-516))) (-15 -2602 ((-973) (-208) (-158 (-208)) (-516) (-1081) (-516))) (-15 -2603 ((-973) (-208) (-516))) (-15 -2604 ((-973) (-208) (-516))) (-15 -2605 ((-973) (-208) (-516))) (-15 -2606 ((-973) (-208) (-516))) (-15 -2607 ((-973) (-208) (-516))) (-15 -2608 ((-973) (-208) (-516))) (-15 -2609 ((-973) (-208) (-208) (-516))) (-15 -2610 ((-973) (-208) (-208) (-208) (-516))) (-15 -2611 ((-973) (-208) (-208) (-208) (-516))) (-15 -2612 ((-973) (-208) (-208) (-208) (-208) (-516))))) (T -707))
+((-2612 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2611 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2610 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2609 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2608 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2607 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2605 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2604 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2603 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2602 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-158 (-208))) (-5 *5 (-516)) (-5 *6 (-1081)) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2601 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-158 (-208))) (-5 *5 (-516)) (-5 *6 (-1081)) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2600 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2599 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2598 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2597 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2596 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-516)) (-5 *5 (-158 (-208))) (-5 *6 (-1081)) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2595 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1081)) (-5 *4 (-158 (-208))) (-5 *5 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2594 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1081)) (-5 *4 (-158 (-208))) (-5 *5 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2593 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-158 (-208))) (-5 *5 (-516)) (-5 *6 (-1081)) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2592 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-158 (-208))) (-5 *5 (-516)) (-5 *6 (-1081)) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2591 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2590 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2589 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2588 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2587 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2586 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2585 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2584 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2583 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2582 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2581 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2580 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2579 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2578 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2576 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2575 (*1 *2 *3 *4) (-12 (-5 *3 (-158 (-208))) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(-10 -7 (-15 -2575 ((-973) (-158 (-208)) (-516))) (-15 -2576 ((-973) (-208) (-516))) (-15 -2577 ((-973) (-208) (-516))) (-15 -2578 ((-973) (-208) (-516))) (-15 -2579 ((-973) (-208) (-516))) (-15 -2580 ((-973) (-208) (-516))) (-15 -2581 ((-973) (-208) (-208) (-208) (-516))) (-15 -2582 ((-973) (-208) (-516))) (-15 -2583 ((-973) (-208) (-516))) (-15 -2584 ((-973) (-208) (-516))) (-15 -2585 ((-973) (-208) (-516))) (-15 -2586 ((-973) (-208) (-516))) (-15 -2587 ((-973) (-208) (-516))) (-15 -2588 ((-973) (-208) (-516))) (-15 -2589 ((-973) (-208) (-516))) (-15 -2590 ((-973) (-208) (-516))) (-15 -2591 ((-973) (-208) (-516))) (-15 -2592 ((-973) (-208) (-158 (-208)) (-516) (-1081) (-516))) (-15 -2593 ((-973) (-208) (-158 (-208)) (-516) (-1081) (-516))) (-15 -2594 ((-973) (-1081) (-158 (-208)) (-1081) (-516))) (-15 -2595 ((-973) (-1081) (-158 (-208)) (-1081) (-516))) (-15 -2596 ((-973) (-516) (-208) (-158 (-208)) (-516) (-1081) (-516))) (-15 -2597 ((-973) (-208) (-516))) (-15 -2598 ((-973) (-208) (-516))) (-15 -2599 ((-973) (-208) (-516))) (-15 -2600 ((-973) (-208) (-516))) (-15 -2601 ((-973) (-208) (-158 (-208)) (-516) (-1081) (-516))) (-15 -2602 ((-973) (-208) (-158 (-208)) (-516) (-1081) (-516))) (-15 -2603 ((-973) (-208) (-516))) (-15 -2604 ((-973) (-208) (-516))) (-15 -2605 ((-973) (-208) (-516))) (-15 -2606 ((-973) (-208) (-516))) (-15 -2607 ((-973) (-208) (-516))) (-15 -2608 ((-973) (-208) (-516))) (-15 -2609 ((-973) (-208) (-208) (-516))) (-15 -2610 ((-973) (-208) (-208) (-208) (-516))) (-15 -2611 ((-973) (-208) (-208) (-208) (-516))) (-15 -2612 ((-973) (-208) (-208) (-208) (-208) (-516))))
+((-2618 (((-1185)) 18)) (-2614 (((-1081)) 22)) (-2613 (((-1081)) 21)) (-2616 (((-1029) (-1098) (-637 (-516))) 37) (((-1029) (-1098) (-637 (-208))) 32)) (-2617 (((-110)) 16)) (-2615 (((-1081) (-1081)) 25)))
+(((-708) (-10 -7 (-15 -2613 ((-1081))) (-15 -2614 ((-1081))) (-15 -2615 ((-1081) (-1081))) (-15 -2616 ((-1029) (-1098) (-637 (-208)))) (-15 -2616 ((-1029) (-1098) (-637 (-516)))) (-15 -2617 ((-110))) (-15 -2618 ((-1185))))) (T -708))
+((-2618 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-708)))) (-2617 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-708)))) (-2616 (*1 *2 *3 *4) (-12 (-5 *3 (-1098)) (-5 *4 (-637 (-516))) (-5 *2 (-1029)) (-5 *1 (-708)))) (-2616 (*1 *2 *3 *4) (-12 (-5 *3 (-1098)) (-5 *4 (-637 (-208))) (-5 *2 (-1029)) (-5 *1 (-708)))) (-2615 (*1 *2 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-708)))) (-2614 (*1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-708)))) (-2613 (*1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-708)))))
+(-10 -7 (-15 -2613 ((-1081))) (-15 -2614 ((-1081))) (-15 -2615 ((-1081) (-1081))) (-15 -2616 ((-1029) (-1098) (-637 (-208)))) (-15 -2616 ((-1029) (-1098) (-637 (-516)))) (-15 -2617 ((-110))) (-15 -2618 ((-1185))))
+((-2620 (($ $ $) 10)) (-2621 (($ $ $ $) 9)) (-2619 (($ $ $) 12)))
+(((-709 |#1|) (-10 -8 (-15 -2619 (|#1| |#1| |#1|)) (-15 -2620 (|#1| |#1| |#1|)) (-15 -2621 (|#1| |#1| |#1| |#1|))) (-710)) (T -709))
+NIL
+(-10 -8 (-15 -2619 (|#1| |#1| |#1|)) (-15 -2620 (|#1| |#1| |#1|)) (-15 -2621 (|#1| |#1| |#1| |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-2433 (($ $ (-860)) 28)) (-2432 (($ $ (-860)) 29)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-2620 (($ $ $) 25)) (-4233 (((-805) $) 11)) (-2621 (($ $ $ $) 26)) (-2619 (($ $ $) 24)) (-2920 (($) 18 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 30)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 27)))
(((-710) (-133)) (T -710))
-((-3742 (*1 *2) (-12 (-4 *1 (-710)) (-5 *2 (-717)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-528)) (-4 *1 (-710)))))
-(-13 (-708) (-669) (-10 -8 (-15 -3742 ((-717))) (-15 -2222 ($ (-528)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-569 (-802)) . T) ((-667) . T) ((-669) . T) ((-708) . T) ((-1023) . T))
-((-3122 (((-595 (-2 (|:| |outval| (-159 |#1|)) (|:| |outmult| (-528)) (|:| |outvect| (-595 (-635 (-159 |#1|)))))) (-635 (-159 (-387 (-528)))) |#1|) 33)) (-2968 (((-595 (-159 |#1|)) (-635 (-159 (-387 (-528)))) |#1|) 23)) (-2516 (((-891 (-159 (-387 (-528)))) (-635 (-159 (-387 (-528)))) (-1095)) 20) (((-891 (-159 (-387 (-528)))) (-635 (-159 (-387 (-528))))) 19)))
-(((-711 |#1|) (-10 -7 (-15 -2516 ((-891 (-159 (-387 (-528)))) (-635 (-159 (-387 (-528)))))) (-15 -2516 ((-891 (-159 (-387 (-528)))) (-635 (-159 (-387 (-528)))) (-1095))) (-15 -2968 ((-595 (-159 |#1|)) (-635 (-159 (-387 (-528)))) |#1|)) (-15 -3122 ((-595 (-2 (|:| |outval| (-159 |#1|)) (|:| |outmult| (-528)) (|:| |outvect| (-595 (-635 (-159 |#1|)))))) (-635 (-159 (-387 (-528)))) |#1|))) (-13 (-343) (-791))) (T -711))
-((-3122 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-159 (-387 (-528))))) (-5 *2 (-595 (-2 (|:| |outval| (-159 *4)) (|:| |outmult| (-528)) (|:| |outvect| (-595 (-635 (-159 *4))))))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-343) (-791))))) (-2968 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-159 (-387 (-528))))) (-5 *2 (-595 (-159 *4))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-343) (-791))))) (-2516 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-159 (-387 (-528))))) (-5 *4 (-1095)) (-5 *2 (-891 (-159 (-387 (-528))))) (-5 *1 (-711 *5)) (-4 *5 (-13 (-343) (-791))))) (-2516 (*1 *2 *3) (-12 (-5 *3 (-635 (-159 (-387 (-528))))) (-5 *2 (-891 (-159 (-387 (-528))))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-343) (-791))))))
-(-10 -7 (-15 -2516 ((-891 (-159 (-387 (-528)))) (-635 (-159 (-387 (-528)))))) (-15 -2516 ((-891 (-159 (-387 (-528)))) (-635 (-159 (-387 (-528)))) (-1095))) (-15 -2968 ((-595 (-159 |#1|)) (-635 (-159 (-387 (-528)))) |#1|)) (-15 -3122 ((-595 (-2 (|:| |outval| (-159 |#1|)) (|:| |outmult| (-528)) (|:| |outvect| (-595 (-635 (-159 |#1|)))))) (-635 (-159 (-387 (-528)))) |#1|)))
-((-2356 (((-163 (-528)) |#1|) 25)))
-(((-712 |#1|) (-10 -7 (-15 -2356 ((-163 (-528)) |#1|))) (-384)) (T -712))
-((-2356 (*1 *2 *3) (-12 (-5 *2 (-163 (-528))) (-5 *1 (-712 *3)) (-4 *3 (-384)))))
-(-10 -7 (-15 -2356 ((-163 (-528)) |#1|)))
-((-2857 ((|#1| |#1| |#1|) 24)) (-3293 ((|#1| |#1| |#1|) 23)) (-4058 ((|#1| |#1| |#1|) 32)) (-1343 ((|#1| |#1| |#1|) 28)) (-3375 (((-3 |#1| "failed") |#1| |#1|) 27)) (-3758 (((-2 (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1|) 22)))
-(((-713 |#1| |#2|) (-10 -7 (-15 -3758 ((-2 (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1|)) (-15 -3293 (|#1| |#1| |#1|)) (-15 -2857 (|#1| |#1| |#1|)) (-15 -3375 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1343 (|#1| |#1| |#1|)) (-15 -4058 (|#1| |#1| |#1|))) (-655 |#2|) (-343)) (T -713))
-((-4058 (*1 *2 *2 *2) (-12 (-4 *3 (-343)) (-5 *1 (-713 *2 *3)) (-4 *2 (-655 *3)))) (-1343 (*1 *2 *2 *2) (-12 (-4 *3 (-343)) (-5 *1 (-713 *2 *3)) (-4 *2 (-655 *3)))) (-3375 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-343)) (-5 *1 (-713 *2 *3)) (-4 *2 (-655 *3)))) (-2857 (*1 *2 *2 *2) (-12 (-4 *3 (-343)) (-5 *1 (-713 *2 *3)) (-4 *2 (-655 *3)))) (-3293 (*1 *2 *2 *2) (-12 (-4 *3 (-343)) (-5 *1 (-713 *2 *3)) (-4 *2 (-655 *3)))) (-3758 (*1 *2 *3 *3) (-12 (-4 *4 (-343)) (-5 *2 (-2 (|:| -3490 *3) (|:| -2537 *3))) (-5 *1 (-713 *3 *4)) (-4 *3 (-655 *4)))))
-(-10 -7 (-15 -3758 ((-2 (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1|)) (-15 -3293 (|#1| |#1| |#1|)) (-15 -2857 (|#1| |#1| |#1|)) (-15 -3375 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1343 (|#1| |#1| |#1|)) (-15 -4058 (|#1| |#1| |#1|)))
-((-2954 (((-2 (|:| -1400 (-635 (-528))) (|:| |basisDen| (-528)) (|:| |basisInv| (-635 (-528)))) (-528)) 59)) (-3882 (((-2 (|:| -1400 (-635 (-528))) (|:| |basisDen| (-528)) (|:| |basisInv| (-635 (-528))))) 57)) (-1372 (((-528)) 71)))
-(((-714 |#1| |#2|) (-10 -7 (-15 -1372 ((-528))) (-15 -3882 ((-2 (|:| -1400 (-635 (-528))) (|:| |basisDen| (-528)) (|:| |basisInv| (-635 (-528)))))) (-15 -2954 ((-2 (|:| -1400 (-635 (-528))) (|:| |basisDen| (-528)) (|:| |basisInv| (-635 (-528)))) (-528)))) (-1153 (-528)) (-389 (-528) |#1|)) (T -714))
-((-2954 (*1 *2 *3) (-12 (-5 *3 (-528)) (-4 *4 (-1153 *3)) (-5 *2 (-2 (|:| -1400 (-635 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-635 *3)))) (-5 *1 (-714 *4 *5)) (-4 *5 (-389 *3 *4)))) (-3882 (*1 *2) (-12 (-4 *3 (-1153 (-528))) (-5 *2 (-2 (|:| -1400 (-635 (-528))) (|:| |basisDen| (-528)) (|:| |basisInv| (-635 (-528))))) (-5 *1 (-714 *3 *4)) (-4 *4 (-389 (-528) *3)))) (-1372 (*1 *2) (-12 (-4 *3 (-1153 *2)) (-5 *2 (-528)) (-5 *1 (-714 *3 *4)) (-4 *4 (-389 *2 *3)))))
-(-10 -7 (-15 -1372 ((-528))) (-15 -3882 ((-2 (|:| -1400 (-635 (-528))) (|:| |basisDen| (-528)) (|:| |basisInv| (-635 (-528)))))) (-15 -2954 ((-2 (|:| -1400 (-635 (-528))) (|:| |basisDen| (-528)) (|:| |basisInv| (-635 (-528)))) (-528))))
-((-2207 (((-110) $ $) NIL)) (-2409 (((-3 (|:| |nia| (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| |mdnia| (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) $) 21)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 20) (($ (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 13) (($ (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| |mdnia| (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))))) 18)) (-2186 (((-110) $ $) NIL)))
-(((-715) (-13 (-1023) (-10 -8 (-15 -2222 ($ (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -2222 ($ (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -2222 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| |mdnia| (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))))) (-15 -2222 ((-802) $)) (-15 -2409 ((-3 (|:| |nia| (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| |mdnia| (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) $))))) (T -715))
-((-2222 (*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-715)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (-5 *1 (-715)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (-5 *1 (-715)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| |mdnia| (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))))) (-5 *1 (-715)))) (-2409 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| |mdnia| (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))))) (-5 *1 (-715)))))
-(-13 (-1023) (-10 -8 (-15 -2222 ($ (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -2222 ($ (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -2222 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| |mdnia| (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))))) (-15 -2222 ((-802) $)) (-15 -2409 ((-3 (|:| |nia| (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| |mdnia| (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) $))))
-((-4206 (((-595 (-595 (-275 (-387 (-891 |#1|))))) (-595 (-891 |#1|))) 18) (((-595 (-595 (-275 (-387 (-891 |#1|))))) (-595 (-891 |#1|)) (-595 (-1095))) 17)) (-1651 (((-595 (-595 (-275 (-387 (-891 |#1|))))) (-595 (-891 |#1|))) 20) (((-595 (-595 (-275 (-387 (-891 |#1|))))) (-595 (-891 |#1|)) (-595 (-1095))) 19)))
-(((-716 |#1|) (-10 -7 (-15 -4206 ((-595 (-595 (-275 (-387 (-891 |#1|))))) (-595 (-891 |#1|)) (-595 (-1095)))) (-15 -4206 ((-595 (-595 (-275 (-387 (-891 |#1|))))) (-595 (-891 |#1|)))) (-15 -1651 ((-595 (-595 (-275 (-387 (-891 |#1|))))) (-595 (-891 |#1|)) (-595 (-1095)))) (-15 -1651 ((-595 (-595 (-275 (-387 (-891 |#1|))))) (-595 (-891 |#1|))))) (-520)) (T -716))
-((-1651 (*1 *2 *3) (-12 (-5 *3 (-595 (-891 *4))) (-4 *4 (-520)) (-5 *2 (-595 (-595 (-275 (-387 (-891 *4)))))) (-5 *1 (-716 *4)))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-891 *5))) (-5 *4 (-595 (-1095))) (-4 *5 (-520)) (-5 *2 (-595 (-595 (-275 (-387 (-891 *5)))))) (-5 *1 (-716 *5)))) (-4206 (*1 *2 *3) (-12 (-5 *3 (-595 (-891 *4))) (-4 *4 (-520)) (-5 *2 (-595 (-595 (-275 (-387 (-891 *4)))))) (-5 *1 (-716 *4)))) (-4206 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-891 *5))) (-5 *4 (-595 (-1095))) (-4 *5 (-520)) (-5 *2 (-595 (-595 (-275 (-387 (-891 *5)))))) (-5 *1 (-716 *5)))))
-(-10 -7 (-15 -4206 ((-595 (-595 (-275 (-387 (-891 |#1|))))) (-595 (-891 |#1|)) (-595 (-1095)))) (-15 -4206 ((-595 (-595 (-275 (-387 (-891 |#1|))))) (-595 (-891 |#1|)))) (-15 -1651 ((-595 (-595 (-275 (-387 (-891 |#1|))))) (-595 (-891 |#1|)) (-595 (-1095)))) (-15 -1651 ((-595 (-595 (-275 (-387 (-891 |#1|))))) (-595 (-891 |#1|)))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3622 (($ $ $) 6)) (-3181 (((-3 $ "failed") $ $) 9)) (-2950 (($ $ (-528)) 7)) (-2816 (($) NIL T CONST)) (-3519 (($ $ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1338 (($ $) NIL)) (-3498 (($ $ $) NIL)) (-1297 (((-110) $) NIL)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2088 (($ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-2222 (((-802) $) NIL)) (-2690 (($ $ (-717)) NIL) (($ $ (-860)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-717)) NIL) (($ $ (-860)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ $ $) NIL)))
-(((-717) (-13 (-739) (-673) (-10 -8 (-15 -3498 ($ $ $)) (-15 -3519 ($ $ $)) (-15 -2088 ($ $ $)) (-15 -1512 ((-2 (|:| -3490 $) (|:| -2537 $)) $ $)) (-15 -3477 ((-3 $ "failed") $ $)) (-15 -2950 ($ $ (-528))) (-15 -1338 ($ $)) (-6 (-4266 "*"))))) (T -717))
-((-3498 (*1 *1 *1 *1) (-5 *1 (-717))) (-3519 (*1 *1 *1 *1) (-5 *1 (-717))) (-2088 (*1 *1 *1 *1) (-5 *1 (-717))) (-1512 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3490 (-717)) (|:| -2537 (-717)))) (-5 *1 (-717)))) (-3477 (*1 *1 *1 *1) (|partial| -5 *1 (-717))) (-2950 (*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-717)))) (-1338 (*1 *1 *1) (-5 *1 (-717))))
-(-13 (-739) (-673) (-10 -8 (-15 -3498 ($ $ $)) (-15 -3519 ($ $ $)) (-15 -2088 ($ $ $)) (-15 -1512 ((-2 (|:| -3490 $) (|:| -2537 $)) $ $)) (-15 -3477 ((-3 $ "failed") $ $)) (-15 -2950 ($ $ (-528))) (-15 -1338 ($ $)) (-6 (-4266 "*"))))
-((-1651 (((-3 |#2| "failed") |#2| |#2| (-112) (-1095)) 35)))
-(((-718 |#1| |#2|) (-10 -7 (-15 -1651 ((-3 |#2| "failed") |#2| |#2| (-112) (-1095)))) (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)) (-13 (-29 |#1|) (-1117) (-897))) (T -718))
-((-1651 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-112)) (-5 *4 (-1095)) (-4 *5 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140))) (-5 *1 (-718 *5 *2)) (-4 *2 (-13 (-29 *5) (-1117) (-897))))))
-(-10 -7 (-15 -1651 ((-3 |#2| "failed") |#2| |#2| (-112) (-1095))))
-((-2222 (((-720) |#1|) 8)))
-(((-719 |#1|) (-10 -7 (-15 -2222 ((-720) |#1|))) (-1131)) (T -719))
-((-2222 (*1 *2 *3) (-12 (-5 *2 (-720)) (-5 *1 (-719 *3)) (-4 *3 (-1131)))))
-(-10 -7 (-15 -2222 ((-720) |#1|)))
-((-2207 (((-110) $ $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 7)) (-2186 (((-110) $ $) 9)))
-(((-720) (-1023)) (T -720))
-NIL
-(-1023)
-((-3297 ((|#2| |#4|) 35)))
-(((-721 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3297 (|#2| |#4|))) (-431) (-1153 |#1|) (-671 |#1| |#2|) (-1153 |#3|)) (T -721))
-((-3297 (*1 *2 *3) (-12 (-4 *4 (-431)) (-4 *5 (-671 *4 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-721 *4 *2 *5 *3)) (-4 *3 (-1153 *5)))))
-(-10 -7 (-15 -3297 (|#2| |#4|)))
-((-1312 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-4143 (((-1182) (-1078) (-1078) |#4| |#5|) 33)) (-3975 ((|#4| |#4| |#5|) 73)) (-1837 (((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#5|) 77)) (-2170 (((-595 (-2 (|:| |val| (-110)) (|:| -2316 |#5|))) |#4| |#5|) 16)))
-(((-722 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1312 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3975 (|#4| |#4| |#5|)) (-15 -1837 ((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#5|)) (-15 -4143 ((-1182) (-1078) (-1078) |#4| |#5|)) (-15 -2170 ((-595 (-2 (|:| |val| (-110)) (|:| -2316 |#5|))) |#4| |#5|))) (-431) (-739) (-793) (-994 |#1| |#2| |#3|) (-999 |#1| |#2| |#3| |#4|)) (T -722))
-((-2170 (*1 *2 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-595 (-2 (|:| |val| (-110)) (|:| -2316 *4)))) (-5 *1 (-722 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))) (-4143 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1078)) (-4 *6 (-431)) (-4 *7 (-739)) (-4 *8 (-793)) (-4 *4 (-994 *6 *7 *8)) (-5 *2 (-1182)) (-5 *1 (-722 *6 *7 *8 *4 *5)) (-4 *5 (-999 *6 *7 *8 *4)))) (-1837 (*1 *2 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-595 (-2 (|:| |val| *3) (|:| -2316 *4)))) (-5 *1 (-722 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))) (-3975 (*1 *2 *2 *3) (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *2 (-994 *4 *5 *6)) (-5 *1 (-722 *4 *5 *6 *2 *3)) (-4 *3 (-999 *4 *5 *6 *2)))) (-1312 (*1 *2 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-722 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))))
-(-10 -7 (-15 -1312 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3975 (|#4| |#4| |#5|)) (-15 -1837 ((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#5|)) (-15 -4143 ((-1182) (-1078) (-1078) |#4| |#5|)) (-15 -2170 ((-595 (-2 (|:| |val| (-110)) (|:| -2316 |#5|))) |#4| |#5|)))
-((-3001 (((-3 (-1091 (-1091 |#1|)) "failed") |#4|) 43)) (-3873 (((-595 |#4|) |#4|) 15)) (-2698 ((|#4| |#4|) 11)))
-(((-723 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3873 ((-595 |#4|) |#4|)) (-15 -3001 ((-3 (-1091 (-1091 |#1|)) "failed") |#4|)) (-15 -2698 (|#4| |#4|))) (-329) (-309 |#1|) (-1153 |#2|) (-1153 |#3|) (-860)) (T -723))
-((-2698 (*1 *2 *2) (-12 (-4 *3 (-329)) (-4 *4 (-309 *3)) (-4 *5 (-1153 *4)) (-5 *1 (-723 *3 *4 *5 *2 *6)) (-4 *2 (-1153 *5)) (-14 *6 (-860)))) (-3001 (*1 *2 *3) (|partial| -12 (-4 *4 (-329)) (-4 *5 (-309 *4)) (-4 *6 (-1153 *5)) (-5 *2 (-1091 (-1091 *4))) (-5 *1 (-723 *4 *5 *6 *3 *7)) (-4 *3 (-1153 *6)) (-14 *7 (-860)))) (-3873 (*1 *2 *3) (-12 (-4 *4 (-329)) (-4 *5 (-309 *4)) (-4 *6 (-1153 *5)) (-5 *2 (-595 *3)) (-5 *1 (-723 *4 *5 *6 *3 *7)) (-4 *3 (-1153 *6)) (-14 *7 (-860)))))
-(-10 -7 (-15 -3873 ((-595 |#4|) |#4|)) (-15 -3001 ((-3 (-1091 (-1091 |#1|)) "failed") |#4|)) (-15 -2698 (|#4| |#4|)))
-((-2050 (((-2 (|:| |deter| (-595 (-1091 |#5|))) (|:| |dterm| (-595 (-595 (-2 (|:| -3254 (-717)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-595 |#1|)) (|:| |nlead| (-595 |#5|))) (-1091 |#5|) (-595 |#1|) (-595 |#5|)) 54)) (-2231 (((-595 (-717)) |#1|) 13)))
-(((-724 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2050 ((-2 (|:| |deter| (-595 (-1091 |#5|))) (|:| |dterm| (-595 (-595 (-2 (|:| -3254 (-717)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-595 |#1|)) (|:| |nlead| (-595 |#5|))) (-1091 |#5|) (-595 |#1|) (-595 |#5|))) (-15 -2231 ((-595 (-717)) |#1|))) (-1153 |#4|) (-739) (-793) (-288) (-888 |#4| |#2| |#3|)) (T -724))
-((-2231 (*1 *2 *3) (-12 (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-288)) (-5 *2 (-595 (-717))) (-5 *1 (-724 *3 *4 *5 *6 *7)) (-4 *3 (-1153 *6)) (-4 *7 (-888 *6 *4 *5)))) (-2050 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1153 *9)) (-4 *7 (-739)) (-4 *8 (-793)) (-4 *9 (-288)) (-4 *10 (-888 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-595 (-1091 *10))) (|:| |dterm| (-595 (-595 (-2 (|:| -3254 (-717)) (|:| |pcoef| *10))))) (|:| |nfacts| (-595 *6)) (|:| |nlead| (-595 *10)))) (-5 *1 (-724 *6 *7 *8 *9 *10)) (-5 *3 (-1091 *10)) (-5 *4 (-595 *6)) (-5 *5 (-595 *10)))))
-(-10 -7 (-15 -2050 ((-2 (|:| |deter| (-595 (-1091 |#5|))) (|:| |dterm| (-595 (-595 (-2 (|:| -3254 (-717)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-595 |#1|)) (|:| |nlead| (-595 |#5|))) (-1091 |#5|) (-595 |#1|) (-595 |#5|))) (-15 -2231 ((-595 (-717)) |#1|)))
-((-2653 (((-595 (-2 (|:| |outval| |#1|) (|:| |outmult| (-528)) (|:| |outvect| (-595 (-635 |#1|))))) (-635 (-387 (-528))) |#1|) 31)) (-3875 (((-595 |#1|) (-635 (-387 (-528))) |#1|) 21)) (-2516 (((-891 (-387 (-528))) (-635 (-387 (-528))) (-1095)) 18) (((-891 (-387 (-528))) (-635 (-387 (-528)))) 17)))
-(((-725 |#1|) (-10 -7 (-15 -2516 ((-891 (-387 (-528))) (-635 (-387 (-528))))) (-15 -2516 ((-891 (-387 (-528))) (-635 (-387 (-528))) (-1095))) (-15 -3875 ((-595 |#1|) (-635 (-387 (-528))) |#1|)) (-15 -2653 ((-595 (-2 (|:| |outval| |#1|) (|:| |outmult| (-528)) (|:| |outvect| (-595 (-635 |#1|))))) (-635 (-387 (-528))) |#1|))) (-13 (-343) (-791))) (T -725))
-((-2653 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-387 (-528)))) (-5 *2 (-595 (-2 (|:| |outval| *4) (|:| |outmult| (-528)) (|:| |outvect| (-595 (-635 *4)))))) (-5 *1 (-725 *4)) (-4 *4 (-13 (-343) (-791))))) (-3875 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-387 (-528)))) (-5 *2 (-595 *4)) (-5 *1 (-725 *4)) (-4 *4 (-13 (-343) (-791))))) (-2516 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-387 (-528)))) (-5 *4 (-1095)) (-5 *2 (-891 (-387 (-528)))) (-5 *1 (-725 *5)) (-4 *5 (-13 (-343) (-791))))) (-2516 (*1 *2 *3) (-12 (-5 *3 (-635 (-387 (-528)))) (-5 *2 (-891 (-387 (-528)))) (-5 *1 (-725 *4)) (-4 *4 (-13 (-343) (-791))))))
-(-10 -7 (-15 -2516 ((-891 (-387 (-528))) (-635 (-387 (-528))))) (-15 -2516 ((-891 (-387 (-528))) (-635 (-387 (-528))) (-1095))) (-15 -3875 ((-595 |#1|) (-635 (-387 (-528))) |#1|)) (-15 -2653 ((-595 (-2 (|:| |outval| |#1|) (|:| |outmult| (-528)) (|:| |outvect| (-595 (-635 |#1|))))) (-635 (-387 (-528))) |#1|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 34)) (-2565 (((-595 |#2|) $) NIL)) (-2402 (((-1091 $) $ |#2|) NIL) (((-1091 |#1|) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#1| (-520)))) (-1738 (($ $) NIL (|has| |#1| (-520)))) (-1811 (((-110) $) NIL (|has| |#1| (-520)))) (-4042 (((-717) $) NIL) (((-717) $ (-595 |#2|)) NIL)) (-2023 (($ $) 28)) (-1875 (((-110) $ $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-1355 (($ $ $) 93 (|has| |#1| (-520)))) (-1545 (((-595 $) $ $) 106 (|has| |#1| (-520)))) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-1232 (($ $) NIL (|has| |#1| (-431)))) (-2705 (((-398 $) $) NIL (|has| |#1| (-431)))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#1| "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-3 (-528) "failed") $) NIL (|has| |#1| (-972 (-528)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-891 (-387 (-528)))) NIL (-12 (|has| |#1| (-37 (-387 (-528)))) (|has| |#2| (-570 (-1095))))) (((-3 $ "failed") (-891 (-528))) NIL (-1463 (-12 (|has| |#1| (-37 (-528))) (|has| |#2| (-570 (-1095))) (-3617 (|has| |#1| (-37 (-387 (-528)))))) (-12 (|has| |#1| (-37 (-387 (-528)))) (|has| |#2| (-570 (-1095)))))) (((-3 $ "failed") (-891 |#1|)) NIL (-1463 (-12 (|has| |#2| (-570 (-1095))) (-3617 (|has| |#1| (-37 (-387 (-528))))) (-3617 (|has| |#1| (-37 (-528))))) (-12 (|has| |#1| (-37 (-528))) (|has| |#2| (-570 (-1095))) (-3617 (|has| |#1| (-37 (-387 (-528))))) (-3617 (|has| |#1| (-513)))) (-12 (|has| |#1| (-37 (-387 (-528)))) (|has| |#2| (-570 (-1095))) (-3617 (|has| |#1| (-929 (-528))))))) (((-3 (-1047 |#1| |#2|) "failed") $) 18)) (-2409 ((|#1| $) NIL) (((-387 (-528)) $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-528) $) NIL (|has| |#1| (-972 (-528)))) ((|#2| $) NIL) (($ (-891 (-387 (-528)))) NIL (-12 (|has| |#1| (-37 (-387 (-528)))) (|has| |#2| (-570 (-1095))))) (($ (-891 (-528))) NIL (-1463 (-12 (|has| |#1| (-37 (-528))) (|has| |#2| (-570 (-1095))) (-3617 (|has| |#1| (-37 (-387 (-528)))))) (-12 (|has| |#1| (-37 (-387 (-528)))) (|has| |#2| (-570 (-1095)))))) (($ (-891 |#1|)) NIL (-1463 (-12 (|has| |#2| (-570 (-1095))) (-3617 (|has| |#1| (-37 (-387 (-528))))) (-3617 (|has| |#1| (-37 (-528))))) (-12 (|has| |#1| (-37 (-528))) (|has| |#2| (-570 (-1095))) (-3617 (|has| |#1| (-37 (-387 (-528))))) (-3617 (|has| |#1| (-513)))) (-12 (|has| |#1| (-37 (-387 (-528)))) (|has| |#2| (-570 (-1095))) (-3617 (|has| |#1| (-929 (-528))))))) (((-1047 |#1| |#2|) $) NIL)) (-1606 (($ $ $ |#2|) NIL (|has| |#1| (-162))) (($ $ $) 104 (|has| |#1| (-520)))) (-2388 (($ $) NIL) (($ $ |#2|) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) NIL) (((-635 |#1|) (-635 $)) NIL)) (-1927 (((-110) $ $) NIL) (((-110) $ (-595 $)) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-2779 (((-110) $) NIL)) (-3291 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 70)) (-1768 (($ $) 119 (|has| |#1| (-431)))) (-1551 (($ $) NIL (|has| |#1| (-431))) (($ $ |#2|) NIL (|has| |#1| (-431)))) (-2376 (((-595 $) $) NIL)) (-2124 (((-110) $) NIL (|has| |#1| (-848)))) (-4087 (($ $) NIL (|has| |#1| (-520)))) (-2015 (($ $) NIL (|has| |#1| (-520)))) (-3025 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3540 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-4047 (($ $ |#1| (-500 |#2|) $) NIL)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (-12 (|has| |#1| (-825 (-359))) (|has| |#2| (-825 (-359))))) (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (-12 (|has| |#1| (-825 (-528))) (|has| |#2| (-825 (-528)))))) (-1297 (((-110) $) NIL)) (-1224 (((-717) $) NIL)) (-3092 (((-110) $ $) NIL) (((-110) $ (-595 $)) NIL)) (-3253 (($ $ $ $ $) 90 (|has| |#1| (-520)))) (-1761 ((|#2| $) 19)) (-2557 (($ (-1091 |#1|) |#2|) NIL) (($ (-1091 $) |#2|) NIL)) (-3737 (((-595 $) $) NIL)) (-2195 (((-110) $) NIL)) (-2548 (($ |#1| (-500 |#2|)) NIL) (($ $ |#2| (-717)) 36) (($ $ (-595 |#2|) (-595 (-717))) NIL)) (-2362 (($ $ $) 60)) (-3275 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $ |#2|) NIL)) (-1586 (((-110) $) NIL)) (-3499 (((-500 |#2|) $) NIL) (((-717) $ |#2|) NIL) (((-595 (-717)) $ (-595 |#2|)) NIL)) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-2910 (((-717) $) 20)) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-1264 (($ (-1 (-500 |#2|) (-500 |#2|)) $) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-3288 (((-3 |#2| "failed") $) NIL)) (-3389 (($ $) NIL (|has| |#1| (-431)))) (-3218 (($ $) NIL (|has| |#1| (-431)))) (-1718 (((-595 $) $) NIL)) (-2663 (($ $) 37)) (-3935 (($ $) NIL (|has| |#1| (-431)))) (-2848 (((-595 $) $) 41)) (-3616 (($ $) 39)) (-2686 (($ $) NIL)) (-2697 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2057 (($ (-595 $)) NIL (|has| |#1| (-431))) (($ $ $) NIL (|has| |#1| (-431)))) (-2267 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3906 (-717))) $ $) 82)) (-2467 (((-2 (|:| -1641 $) (|:| |gap| (-717)) (|:| -3490 $) (|:| -2537 $)) $ $) 67) (((-2 (|:| -1641 $) (|:| |gap| (-717)) (|:| -3490 $) (|:| -2537 $)) $ $ |#2|) NIL)) (-2538 (((-2 (|:| -1641 $) (|:| |gap| (-717)) (|:| -2537 $)) $ $) NIL) (((-2 (|:| -1641 $) (|:| |gap| (-717)) (|:| -2537 $)) $ $ |#2|) NIL)) (-3340 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-1986 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-3034 (((-1078) $) NIL)) (-2272 (($ $ $) 108 (|has| |#1| (-520)))) (-1954 (((-595 $) $) 30)) (-3024 (((-3 (-595 $) "failed") $) NIL)) (-1281 (((-3 (-595 $) "failed") $) NIL)) (-3352 (((-3 (-2 (|:| |var| |#2|) (|:| -2564 (-717))) "failed") $) NIL)) (-2127 (((-110) $ $) NIL) (((-110) $ (-595 $)) NIL)) (-3436 (($ $ $) NIL)) (-4197 (($ $) 21)) (-3664 (((-110) $ $) NIL)) (-1906 (((-110) $ $) NIL) (((-110) $ (-595 $)) NIL)) (-2001 (($ $ $) NIL)) (-2996 (($ $) 23)) (-2495 (((-1042) $) NIL)) (-2099 (((-2 (|:| -2088 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-520)))) (-1787 (((-2 (|:| -2088 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-520)))) (-2662 (((-110) $) 52)) (-2675 ((|#1| $) 55)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#1| (-431)))) (-2088 ((|#1| |#1| $) 116 (|has| |#1| (-431))) (($ (-595 $)) NIL (|has| |#1| (-431))) (($ $ $) NIL (|has| |#1| (-431)))) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2437 (((-398 $) $) NIL (|has| |#1| (-848)))) (-1252 (((-2 (|:| -2088 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-520)))) (-3477 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-520))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-520)))) (-3766 (($ $ |#1|) 112 (|has| |#1| (-520))) (($ $ $) NIL (|has| |#1| (-520)))) (-3859 (($ $ |#1|) 111 (|has| |#1| (-520))) (($ $ $) NIL (|has| |#1| (-520)))) (-4014 (($ $ (-595 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-595 |#2|) (-595 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-595 |#2|) (-595 $)) NIL)) (-1372 (($ $ |#2|) NIL (|has| |#1| (-162)))) (-3235 (($ $ |#2|) NIL) (($ $ (-595 |#2|)) NIL) (($ $ |#2| (-717)) NIL) (($ $ (-595 |#2|) (-595 (-717))) NIL)) (-2935 (((-500 |#2|) $) NIL) (((-717) $ |#2|) 43) (((-595 (-717)) $ (-595 |#2|)) NIL)) (-3083 (($ $) NIL)) (-2826 (($ $) 33)) (-3155 (((-831 (-359)) $) NIL (-12 (|has| |#1| (-570 (-831 (-359)))) (|has| |#2| (-570 (-831 (-359)))))) (((-831 (-528)) $) NIL (-12 (|has| |#1| (-570 (-831 (-528)))) (|has| |#2| (-570 (-831 (-528)))))) (((-504) $) NIL (-12 (|has| |#1| (-570 (-504))) (|has| |#2| (-570 (-504))))) (($ (-891 (-387 (-528)))) NIL (-12 (|has| |#1| (-37 (-387 (-528)))) (|has| |#2| (-570 (-1095))))) (($ (-891 (-528))) NIL (-1463 (-12 (|has| |#1| (-37 (-528))) (|has| |#2| (-570 (-1095))) (-3617 (|has| |#1| (-37 (-387 (-528)))))) (-12 (|has| |#1| (-37 (-387 (-528)))) (|has| |#2| (-570 (-1095)))))) (($ (-891 |#1|)) NIL (|has| |#2| (-570 (-1095)))) (((-1078) $) NIL (-12 (|has| |#1| (-972 (-528))) (|has| |#2| (-570 (-1095))))) (((-891 |#1|) $) NIL (|has| |#2| (-570 (-1095))))) (-1618 ((|#1| $) 115 (|has| |#1| (-431))) (($ $ |#2|) NIL (|has| |#1| (-431)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-848))))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-891 |#1|) $) NIL (|has| |#2| (-570 (-1095)))) (((-1047 |#1| |#2|) $) 15) (($ (-1047 |#1| |#2|)) 16) (($ (-387 (-528))) NIL (-1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-972 (-387 (-528)))))) (($ $) NIL (|has| |#1| (-520)))) (-3348 (((-595 |#1|) $) NIL)) (-3216 ((|#1| $ (-500 |#2|)) NIL) (($ $ |#2| (-717)) 44) (($ $ (-595 |#2|) (-595 (-717))) NIL)) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| |#1| (-848))) (|has| |#1| (-138))))) (-3742 (((-717)) NIL)) (-1997 (($ $ $ (-717)) NIL (|has| |#1| (-162)))) (-4016 (((-110) $ $) NIL (|has| |#1| (-520)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 13 T CONST)) (-1418 (((-3 (-110) "failed") $ $) NIL)) (-2982 (($) 35 T CONST)) (-3463 (($ $ $ $ (-717)) 88 (|has| |#1| (-520)))) (-1854 (($ $ $ (-717)) 87 (|has| |#1| (-520)))) (-3245 (($ $ |#2|) NIL) (($ $ (-595 |#2|)) NIL) (($ $ |#2| (-717)) NIL) (($ $ (-595 |#2|) (-595 (-717))) NIL)) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) 54)) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2296 (($ $ |#1|) NIL (|has| |#1| (-343)))) (-2286 (($ $) NIL) (($ $ $) 64)) (-2275 (($ $ $) 74)) (** (($ $ (-860)) NIL) (($ $ (-717)) 61)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 59) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528))))) (($ (-387 (-528)) $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
-(((-726 |#1| |#2|) (-13 (-994 |#1| (-500 |#2|) |#2|) (-569 (-1047 |#1| |#2|)) (-972 (-1047 |#1| |#2|))) (-981) (-793)) (T -726))
-NIL
-(-13 (-994 |#1| (-500 |#2|) |#2|) (-569 (-1047 |#1| |#2|)) (-972 (-1047 |#1| |#2|)))
-((-3106 (((-728 |#2|) (-1 |#2| |#1|) (-728 |#1|)) 13)))
-(((-727 |#1| |#2|) (-10 -7 (-15 -3106 ((-728 |#2|) (-1 |#2| |#1|) (-728 |#1|)))) (-981) (-981)) (T -727))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-728 *5)) (-4 *5 (-981)) (-4 *6 (-981)) (-5 *2 (-728 *6)) (-5 *1 (-727 *5 *6)))))
-(-10 -7 (-15 -3106 ((-728 |#2|) (-1 |#2| |#1|) (-728 |#1|))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 12)) (-3695 (((-1177 |#1|) $ (-717)) NIL)) (-2565 (((-595 (-1008)) $) NIL)) (-1378 (($ (-1091 |#1|)) NIL)) (-2402 (((-1091 $) $ (-1008)) NIL) (((-1091 |#1|) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#1| (-520)))) (-1738 (($ $) NIL (|has| |#1| (-520)))) (-1811 (((-110) $) NIL (|has| |#1| (-520)))) (-4042 (((-717) $) NIL) (((-717) $ (-595 (-1008))) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-4170 (((-595 $) $ $) 39 (|has| |#1| (-520)))) (-1355 (($ $ $) 35 (|has| |#1| (-520)))) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-1232 (($ $) NIL (|has| |#1| (-431)))) (-2705 (((-398 $) $) NIL (|has| |#1| (-431)))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2213 (((-110) $ $) NIL (|has| |#1| (-343)))) (-2646 (($ $ (-717)) NIL)) (-1919 (($ $ (-717)) NIL)) (-3517 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-431)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#1| "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-3 (-528) "failed") $) NIL (|has| |#1| (-972 (-528)))) (((-3 (-1008) "failed") $) NIL) (((-3 (-1091 |#1|) "failed") $) 10)) (-2409 ((|#1| $) NIL) (((-387 (-528)) $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-528) $) NIL (|has| |#1| (-972 (-528)))) (((-1008) $) NIL) (((-1091 |#1|) $) NIL)) (-1606 (($ $ $ (-1008)) NIL (|has| |#1| (-162))) ((|#1| $ $) 43 (|has| |#1| (-162)))) (-3519 (($ $ $) NIL (|has| |#1| (-343)))) (-2388 (($ $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) NIL) (((-635 |#1|) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-3498 (($ $ $) NIL (|has| |#1| (-343)))) (-2325 (($ $ $) NIL)) (-4233 (($ $ $) 71 (|has| |#1| (-520)))) (-3291 (((-2 (|:| -1641 |#1|) (|:| -3490 $) (|:| -2537 $)) $ $) 70 (|has| |#1| (-520)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL (|has| |#1| (-343)))) (-1551 (($ $) NIL (|has| |#1| (-431))) (($ $ (-1008)) NIL (|has| |#1| (-431)))) (-2376 (((-595 $) $) NIL)) (-2124 (((-110) $) NIL (|has| |#1| (-848)))) (-4047 (($ $ |#1| (-717) $) NIL)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (-12 (|has| (-1008) (-825 (-359))) (|has| |#1| (-825 (-359))))) (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (-12 (|has| (-1008) (-825 (-528))) (|has| |#1| (-825 (-528)))))) (-3689 (((-717) $ $) NIL (|has| |#1| (-520)))) (-1297 (((-110) $) NIL)) (-1224 (((-717) $) NIL)) (-3296 (((-3 $ "failed") $) NIL (|has| |#1| (-1071)))) (-2557 (($ (-1091 |#1|) (-1008)) NIL) (($ (-1091 $) (-1008)) NIL)) (-1771 (($ $ (-717)) NIL)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-3737 (((-595 $) $) NIL)) (-2195 (((-110) $) NIL)) (-2548 (($ |#1| (-717)) NIL) (($ $ (-1008) (-717)) NIL) (($ $ (-595 (-1008)) (-595 (-717))) NIL)) (-2362 (($ $ $) 20)) (-3275 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $ (-1008)) NIL) (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3499 (((-717) $) NIL) (((-717) $ (-1008)) NIL) (((-595 (-717)) $ (-595 (-1008))) NIL)) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-1264 (($ (-1 (-717) (-717)) $) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-2151 (((-1091 |#1|) $) NIL)) (-3288 (((-3 (-1008) "failed") $) NIL)) (-2686 (($ $) NIL)) (-2697 ((|#1| $) NIL)) (-2057 (($ (-595 $)) NIL (|has| |#1| (-431))) (($ $ $) NIL (|has| |#1| (-431)))) (-2267 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3906 (-717))) $ $) 26)) (-3399 (($ $ $) 29)) (-3402 (($ $ $) 32)) (-2467 (((-2 (|:| -1641 |#1|) (|:| |gap| (-717)) (|:| -3490 $) (|:| -2537 $)) $ $) 31)) (-3034 (((-1078) $) NIL)) (-2272 (($ $ $) 41 (|has| |#1| (-520)))) (-3830 (((-2 (|:| -3490 $) (|:| -2537 $)) $ (-717)) NIL)) (-3024 (((-3 (-595 $) "failed") $) NIL)) (-1281 (((-3 (-595 $) "failed") $) NIL)) (-3352 (((-3 (-2 (|:| |var| (-1008)) (|:| -2564 (-717))) "failed") $) NIL)) (-1923 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4197 (($) NIL (|has| |#1| (-1071)) CONST)) (-2495 (((-1042) $) NIL)) (-2099 (((-2 (|:| -2088 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-520)))) (-1787 (((-2 (|:| -2088 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-520)))) (-1725 (((-2 (|:| -1606 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-520)))) (-1790 (((-2 (|:| -1606 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-520)))) (-2662 (((-110) $) 13)) (-2675 ((|#1| $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#1| (-431)))) (-2088 (($ (-595 $)) NIL (|has| |#1| (-431))) (($ $ $) NIL (|has| |#1| (-431)))) (-1855 (($ $ (-717) |#1| $) 19)) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2437 (((-398 $) $) NIL (|has| |#1| (-848)))) (-1252 (((-2 (|:| -2088 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-520)))) (-3591 (((-2 (|:| -1606 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-520)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-343))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#1| (-343)))) (-3477 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-520))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-520)))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-4014 (($ $ (-595 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL) (($ $ (-1008) |#1|) NIL) (($ $ (-595 (-1008)) (-595 |#1|)) NIL) (($ $ (-1008) $) NIL) (($ $ (-595 (-1008)) (-595 $)) NIL)) (-3973 (((-717) $) NIL (|has| |#1| (-343)))) (-3043 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-387 $) (-387 $) (-387 $)) NIL (|has| |#1| (-520))) ((|#1| (-387 $) |#1|) NIL (|has| |#1| (-343))) (((-387 $) $ (-387 $)) NIL (|has| |#1| (-520)))) (-1886 (((-3 $ "failed") $ (-717)) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-343)))) (-1372 (($ $ (-1008)) NIL (|has| |#1| (-162))) ((|#1| $) NIL (|has| |#1| (-162)))) (-3235 (($ $ (-1008)) NIL) (($ $ (-595 (-1008))) NIL) (($ $ (-1008) (-717)) NIL) (($ $ (-595 (-1008)) (-595 (-717))) NIL) (($ $ (-717)) NIL) (($ $) NIL) (($ $ (-1095)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2935 (((-717) $) NIL) (((-717) $ (-1008)) NIL) (((-595 (-717)) $ (-595 (-1008))) NIL)) (-3155 (((-831 (-359)) $) NIL (-12 (|has| (-1008) (-570 (-831 (-359)))) (|has| |#1| (-570 (-831 (-359)))))) (((-831 (-528)) $) NIL (-12 (|has| (-1008) (-570 (-831 (-528)))) (|has| |#1| (-570 (-831 (-528)))))) (((-504) $) NIL (-12 (|has| (-1008) (-570 (-504))) (|has| |#1| (-570 (-504)))))) (-1618 ((|#1| $) NIL (|has| |#1| (-431))) (($ $ (-1008)) NIL (|has| |#1| (-431)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-848))))) (-4106 (((-3 $ "failed") $ $) NIL (|has| |#1| (-520))) (((-3 (-387 $) "failed") (-387 $) $) NIL (|has| |#1| (-520)))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ |#1|) NIL) (($ (-1008)) NIL) (((-1091 |#1|) $) 7) (($ (-1091 |#1|)) 8) (($ (-387 (-528))) NIL (-1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-972 (-387 (-528)))))) (($ $) NIL (|has| |#1| (-520)))) (-3348 (((-595 |#1|) $) NIL)) (-3216 ((|#1| $ (-717)) NIL) (($ $ (-1008) (-717)) NIL) (($ $ (-595 (-1008)) (-595 (-717))) NIL)) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| |#1| (-848))) (|has| |#1| (-138))))) (-3742 (((-717)) NIL)) (-1997 (($ $ $ (-717)) NIL (|has| |#1| (-162)))) (-4016 (((-110) $ $) NIL (|has| |#1| (-520)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 21 T CONST)) (-2982 (($) 24 T CONST)) (-3245 (($ $ (-1008)) NIL) (($ $ (-595 (-1008))) NIL) (($ $ (-1008) (-717)) NIL) (($ $ (-595 (-1008)) (-595 (-717))) NIL) (($ $ (-717)) NIL) (($ $) NIL) (($ $ (-1095)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2296 (($ $ |#1|) NIL (|has| |#1| (-343)))) (-2286 (($ $) 28) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528))))) (($ (-387 (-528)) $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
-(((-728 |#1|) (-13 (-1153 |#1|) (-569 (-1091 |#1|)) (-972 (-1091 |#1|)) (-10 -8 (-15 -1855 ($ $ (-717) |#1| $)) (-15 -2362 ($ $ $)) (-15 -2267 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3906 (-717))) $ $)) (-15 -3399 ($ $ $)) (-15 -2467 ((-2 (|:| -1641 |#1|) (|:| |gap| (-717)) (|:| -3490 $) (|:| -2537 $)) $ $)) (-15 -3402 ($ $ $)) (IF (|has| |#1| (-520)) (PROGN (-15 -4170 ((-595 $) $ $)) (-15 -2272 ($ $ $)) (-15 -1252 ((-2 (|:| -2088 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1787 ((-2 (|:| -2088 $) (|:| |coef1| $)) $ $)) (-15 -2099 ((-2 (|:| -2088 $) (|:| |coef2| $)) $ $)) (-15 -3591 ((-2 (|:| -1606 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1790 ((-2 (|:| -1606 |#1|) (|:| |coef1| $)) $ $)) (-15 -1725 ((-2 (|:| -1606 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-981)) (T -728))
-((-1855 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-717)) (-5 *1 (-728 *3)) (-4 *3 (-981)))) (-2362 (*1 *1 *1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-981)))) (-2267 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-728 *3)) (|:| |polden| *3) (|:| -3906 (-717)))) (-5 *1 (-728 *3)) (-4 *3 (-981)))) (-3399 (*1 *1 *1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-981)))) (-2467 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1641 *3) (|:| |gap| (-717)) (|:| -3490 (-728 *3)) (|:| -2537 (-728 *3)))) (-5 *1 (-728 *3)) (-4 *3 (-981)))) (-3402 (*1 *1 *1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-981)))) (-4170 (*1 *2 *1 *1) (-12 (-5 *2 (-595 (-728 *3))) (-5 *1 (-728 *3)) (-4 *3 (-520)) (-4 *3 (-981)))) (-2272 (*1 *1 *1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-520)) (-4 *2 (-981)))) (-1252 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2088 (-728 *3)) (|:| |coef1| (-728 *3)) (|:| |coef2| (-728 *3)))) (-5 *1 (-728 *3)) (-4 *3 (-520)) (-4 *3 (-981)))) (-1787 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2088 (-728 *3)) (|:| |coef1| (-728 *3)))) (-5 *1 (-728 *3)) (-4 *3 (-520)) (-4 *3 (-981)))) (-2099 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2088 (-728 *3)) (|:| |coef2| (-728 *3)))) (-5 *1 (-728 *3)) (-4 *3 (-520)) (-4 *3 (-981)))) (-3591 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1606 *3) (|:| |coef1| (-728 *3)) (|:| |coef2| (-728 *3)))) (-5 *1 (-728 *3)) (-4 *3 (-520)) (-4 *3 (-981)))) (-1790 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1606 *3) (|:| |coef1| (-728 *3)))) (-5 *1 (-728 *3)) (-4 *3 (-520)) (-4 *3 (-981)))) (-1725 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1606 *3) (|:| |coef2| (-728 *3)))) (-5 *1 (-728 *3)) (-4 *3 (-520)) (-4 *3 (-981)))))
-(-13 (-1153 |#1|) (-569 (-1091 |#1|)) (-972 (-1091 |#1|)) (-10 -8 (-15 -1855 ($ $ (-717) |#1| $)) (-15 -2362 ($ $ $)) (-15 -2267 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3906 (-717))) $ $)) (-15 -3399 ($ $ $)) (-15 -2467 ((-2 (|:| -1641 |#1|) (|:| |gap| (-717)) (|:| -3490 $) (|:| -2537 $)) $ $)) (-15 -3402 ($ $ $)) (IF (|has| |#1| (-520)) (PROGN (-15 -4170 ((-595 $) $ $)) (-15 -2272 ($ $ $)) (-15 -1252 ((-2 (|:| -2088 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1787 ((-2 (|:| -2088 $) (|:| |coef1| $)) $ $)) (-15 -2099 ((-2 (|:| -2088 $) (|:| |coef2| $)) $ $)) (-15 -3591 ((-2 (|:| -1606 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1790 ((-2 (|:| -1606 |#1|) (|:| |coef1| $)) $ $)) (-15 -1725 ((-2 (|:| -1606 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-1665 ((|#1| (-717) |#1|) 32 (|has| |#1| (-37 (-387 (-528)))))) (-2438 ((|#1| (-717) |#1|) 22)) (-3164 ((|#1| (-717) |#1|) 34 (|has| |#1| (-37 (-387 (-528)))))))
-(((-729 |#1|) (-10 -7 (-15 -2438 (|#1| (-717) |#1|)) (IF (|has| |#1| (-37 (-387 (-528)))) (PROGN (-15 -3164 (|#1| (-717) |#1|)) (-15 -1665 (|#1| (-717) |#1|))) |%noBranch|)) (-162)) (T -729))
-((-1665 (*1 *2 *3 *2) (-12 (-5 *3 (-717)) (-5 *1 (-729 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-162)))) (-3164 (*1 *2 *3 *2) (-12 (-5 *3 (-717)) (-5 *1 (-729 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-162)))) (-2438 (*1 *2 *3 *2) (-12 (-5 *3 (-717)) (-5 *1 (-729 *2)) (-4 *2 (-162)))))
-(-10 -7 (-15 -2438 (|#1| (-717) |#1|)) (IF (|has| |#1| (-37 (-387 (-528)))) (PROGN (-15 -3164 (|#1| (-717) |#1|)) (-15 -1665 (|#1| (-717) |#1|))) |%noBranch|))
-((-2207 (((-110) $ $) 7)) (-2785 (((-595 (-2 (|:| -2254 $) (|:| -2378 (-595 |#4|)))) (-595 |#4|)) 85)) (-1985 (((-595 $) (-595 |#4|)) 86) (((-595 $) (-595 |#4|) (-110)) 111)) (-2565 (((-595 |#3|) $) 33)) (-3812 (((-110) $) 26)) (-2414 (((-110) $) 17 (|has| |#1| (-520)))) (-3759 (((-110) |#4| $) 101) (((-110) $) 97)) (-1728 ((|#4| |#4| $) 92)) (-1232 (((-595 (-2 (|:| |val| |#4|) (|:| -2316 $))) |#4| $) 126)) (-1289 (((-2 (|:| |under| $) (|:| -2925 $) (|:| |upper| $)) $ |#3|) 27)) (-3535 (((-110) $ (-717)) 44)) (-1573 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4264))) (((-3 |#4| "failed") $ |#3|) 79)) (-2816 (($) 45 T CONST)) (-1689 (((-110) $) 22 (|has| |#1| (-520)))) (-2584 (((-110) $ $) 24 (|has| |#1| (-520)))) (-3168 (((-110) $ $) 23 (|has| |#1| (-520)))) (-1924 (((-110) $) 25 (|has| |#1| (-520)))) (-1658 (((-595 |#4|) (-595 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-1891 (((-595 |#4|) (-595 |#4|) $) 18 (|has| |#1| (-520)))) (-3794 (((-595 |#4|) (-595 |#4|) $) 19 (|has| |#1| (-520)))) (-3001 (((-3 $ "failed") (-595 |#4|)) 36)) (-2409 (($ (-595 |#4|)) 35)) (-2902 (((-3 $ "failed") $) 82)) (-1592 ((|#4| |#4| $) 89)) (-2923 (($ $) 68 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264))))) (-2280 (($ |#4| $) 67 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4264)))) (-2537 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-520)))) (-1927 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-3345 ((|#4| |#4| $) 87)) (-1422 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4264))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4264))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-4049 (((-2 (|:| -2254 (-595 |#4|)) (|:| -2378 (-595 |#4|))) $) 105)) (-1640 (((-110) |#4| $) 136)) (-4184 (((-110) |#4| $) 133)) (-2667 (((-110) |#4| $) 137) (((-110) $) 134)) (-3342 (((-595 |#4|) $) 52 (|has| $ (-6 -4264)))) (-3092 (((-110) |#4| $) 104) (((-110) $) 103)) (-1761 ((|#3| $) 34)) (-2029 (((-110) $ (-717)) 43)) (-2604 (((-595 |#4|) $) 53 (|has| $ (-6 -4264)))) (-2408 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264))))) (-2800 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#4| |#4|) $) 47)) (-3558 (((-595 |#3|) $) 32)) (-3472 (((-110) |#3| $) 31)) (-3358 (((-110) $ (-717)) 42)) (-3034 (((-1078) $) 9)) (-4192 (((-3 |#4| (-595 $)) |#4| |#4| $) 128)) (-2272 (((-595 (-2 (|:| |val| |#4|) (|:| -2316 $))) |#4| |#4| $) 127)) (-2301 (((-3 |#4| "failed") $) 83)) (-2078 (((-595 $) |#4| $) 129)) (-1307 (((-3 (-110) (-595 $)) |#4| $) 132)) (-3346 (((-595 (-2 (|:| |val| (-110)) (|:| -2316 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-3397 (((-595 $) |#4| $) 125) (((-595 $) (-595 |#4|) $) 124) (((-595 $) (-595 |#4|) (-595 $)) 123) (((-595 $) |#4| (-595 $)) 122)) (-1325 (($ |#4| $) 117) (($ (-595 |#4|) $) 116)) (-3923 (((-595 |#4|) $) 107)) (-2127 (((-110) |#4| $) 99) (((-110) $) 95)) (-3436 ((|#4| |#4| $) 90)) (-3664 (((-110) $ $) 110)) (-1827 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-520)))) (-1906 (((-110) |#4| $) 100) (((-110) $) 96)) (-2001 ((|#4| |#4| $) 91)) (-2495 (((-1042) $) 10)) (-2890 (((-3 |#4| "failed") $) 84)) (-1734 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-3912 (((-3 $ "failed") $ |#4|) 78)) (-3740 (($ $ |#4|) 77) (((-595 $) |#4| $) 115) (((-595 $) |#4| (-595 $)) 114) (((-595 $) (-595 |#4|) $) 113) (((-595 $) (-595 |#4|) (-595 $)) 112)) (-1818 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 |#4|) (-595 |#4|)) 59 (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ (-275 |#4|)) 57 (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ (-595 (-275 |#4|))) 56 (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))))) (-3744 (((-110) $ $) 38)) (-1972 (((-110) $) 41)) (-2147 (($) 40)) (-2935 (((-717) $) 106)) (-2507 (((-717) |#4| $) 54 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264)))) (((-717) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4264)))) (-2406 (($ $) 39)) (-3155 (((-504) $) 69 (|has| |#4| (-570 (-504))))) (-2233 (($ (-595 |#4|)) 60)) (-2649 (($ $ |#3|) 28)) (-3597 (($ $ |#3|) 30)) (-3311 (($ $) 88)) (-1812 (($ $ |#3|) 29)) (-2222 (((-802) $) 11) (((-595 |#4|) $) 37)) (-2459 (((-717) $) 76 (|has| |#3| (-348)))) (-1411 (((-3 (-2 (|:| |bas| $) (|:| -1513 (-595 |#4|))) "failed") (-595 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1513 (-595 |#4|))) "failed") (-595 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-1622 (((-110) $ (-1 (-110) |#4| (-595 |#4|))) 98)) (-4053 (((-595 $) |#4| $) 121) (((-595 $) |#4| (-595 $)) 120) (((-595 $) (-595 |#4|) $) 119) (((-595 $) (-595 |#4|) (-595 $)) 118)) (-3451 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4264)))) (-1490 (((-595 |#3|) $) 81)) (-3207 (((-110) |#4| $) 135)) (-2190 (((-110) |#3| $) 80)) (-2186 (((-110) $ $) 6)) (-2138 (((-717) $) 46 (|has| $ (-6 -4264)))))
-(((-730 |#1| |#2| |#3| |#4|) (-133) (-431) (-739) (-793) (-994 |t#1| |t#2| |t#3|)) (T -730))
-NIL
-(-13 (-999 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-99) . T) ((-569 (-595 |#4|)) . T) ((-569 (-802)) . T) ((-144 |#4|) . T) ((-570 (-504)) |has| |#4| (-570 (-504))) ((-290 |#4|) -12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))) ((-467 |#4|) . T) ((-489 |#4| |#4|) -12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))) ((-913 |#1| |#2| |#3| |#4|) . T) ((-999 |#1| |#2| |#3| |#4|) . T) ((-1023) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1131) . T))
-((-2162 (((-3 (-359) "failed") (-296 |#1|) (-860)) 62 (-12 (|has| |#1| (-520)) (|has| |#1| (-793)))) (((-3 (-359) "failed") (-296 |#1|)) 54 (-12 (|has| |#1| (-520)) (|has| |#1| (-793)))) (((-3 (-359) "failed") (-387 (-891 |#1|)) (-860)) 41 (|has| |#1| (-520))) (((-3 (-359) "failed") (-387 (-891 |#1|))) 40 (|has| |#1| (-520))) (((-3 (-359) "failed") (-891 |#1|) (-860)) 31 (|has| |#1| (-981))) (((-3 (-359) "failed") (-891 |#1|)) 30 (|has| |#1| (-981)))) (-1458 (((-359) (-296 |#1|) (-860)) 99 (-12 (|has| |#1| (-520)) (|has| |#1| (-793)))) (((-359) (-296 |#1|)) 94 (-12 (|has| |#1| (-520)) (|has| |#1| (-793)))) (((-359) (-387 (-891 |#1|)) (-860)) 91 (|has| |#1| (-520))) (((-359) (-387 (-891 |#1|))) 90 (|has| |#1| (-520))) (((-359) (-891 |#1|) (-860)) 86 (|has| |#1| (-981))) (((-359) (-891 |#1|)) 85 (|has| |#1| (-981))) (((-359) |#1| (-860)) 76) (((-359) |#1|) 22)) (-2028 (((-3 (-159 (-359)) "failed") (-296 (-159 |#1|)) (-860)) 71 (-12 (|has| |#1| (-520)) (|has| |#1| (-793)))) (((-3 (-159 (-359)) "failed") (-296 (-159 |#1|))) 70 (-12 (|has| |#1| (-520)) (|has| |#1| (-793)))) (((-3 (-159 (-359)) "failed") (-296 |#1|) (-860)) 63 (-12 (|has| |#1| (-520)) (|has| |#1| (-793)))) (((-3 (-159 (-359)) "failed") (-296 |#1|)) 61 (-12 (|has| |#1| (-520)) (|has| |#1| (-793)))) (((-3 (-159 (-359)) "failed") (-387 (-891 (-159 |#1|))) (-860)) 46 (|has| |#1| (-520))) (((-3 (-159 (-359)) "failed") (-387 (-891 (-159 |#1|)))) 45 (|has| |#1| (-520))) (((-3 (-159 (-359)) "failed") (-387 (-891 |#1|)) (-860)) 39 (|has| |#1| (-520))) (((-3 (-159 (-359)) "failed") (-387 (-891 |#1|))) 38 (|has| |#1| (-520))) (((-3 (-159 (-359)) "failed") (-891 |#1|) (-860)) 28 (|has| |#1| (-981))) (((-3 (-159 (-359)) "failed") (-891 |#1|)) 26 (|has| |#1| (-981))) (((-3 (-159 (-359)) "failed") (-891 (-159 |#1|)) (-860)) 18 (|has| |#1| (-162))) (((-3 (-159 (-359)) "failed") (-891 (-159 |#1|))) 15 (|has| |#1| (-162)))) (-2366 (((-159 (-359)) (-296 (-159 |#1|)) (-860)) 102 (-12 (|has| |#1| (-520)) (|has| |#1| (-793)))) (((-159 (-359)) (-296 (-159 |#1|))) 101 (-12 (|has| |#1| (-520)) (|has| |#1| (-793)))) (((-159 (-359)) (-296 |#1|) (-860)) 100 (-12 (|has| |#1| (-520)) (|has| |#1| (-793)))) (((-159 (-359)) (-296 |#1|)) 98 (-12 (|has| |#1| (-520)) (|has| |#1| (-793)))) (((-159 (-359)) (-387 (-891 (-159 |#1|))) (-860)) 93 (|has| |#1| (-520))) (((-159 (-359)) (-387 (-891 (-159 |#1|)))) 92 (|has| |#1| (-520))) (((-159 (-359)) (-387 (-891 |#1|)) (-860)) 89 (|has| |#1| (-520))) (((-159 (-359)) (-387 (-891 |#1|))) 88 (|has| |#1| (-520))) (((-159 (-359)) (-891 |#1|) (-860)) 84 (|has| |#1| (-981))) (((-159 (-359)) (-891 |#1|)) 83 (|has| |#1| (-981))) (((-159 (-359)) (-891 (-159 |#1|)) (-860)) 78 (|has| |#1| (-162))) (((-159 (-359)) (-891 (-159 |#1|))) 77 (|has| |#1| (-162))) (((-159 (-359)) (-159 |#1|) (-860)) 80 (|has| |#1| (-162))) (((-159 (-359)) (-159 |#1|)) 79 (|has| |#1| (-162))) (((-159 (-359)) |#1| (-860)) 27) (((-159 (-359)) |#1|) 25)))
-(((-731 |#1|) (-10 -7 (-15 -1458 ((-359) |#1|)) (-15 -1458 ((-359) |#1| (-860))) (-15 -2366 ((-159 (-359)) |#1|)) (-15 -2366 ((-159 (-359)) |#1| (-860))) (IF (|has| |#1| (-162)) (PROGN (-15 -2366 ((-159 (-359)) (-159 |#1|))) (-15 -2366 ((-159 (-359)) (-159 |#1|) (-860))) (-15 -2366 ((-159 (-359)) (-891 (-159 |#1|)))) (-15 -2366 ((-159 (-359)) (-891 (-159 |#1|)) (-860)))) |%noBranch|) (IF (|has| |#1| (-981)) (PROGN (-15 -1458 ((-359) (-891 |#1|))) (-15 -1458 ((-359) (-891 |#1|) (-860))) (-15 -2366 ((-159 (-359)) (-891 |#1|))) (-15 -2366 ((-159 (-359)) (-891 |#1|) (-860)))) |%noBranch|) (IF (|has| |#1| (-520)) (PROGN (-15 -1458 ((-359) (-387 (-891 |#1|)))) (-15 -1458 ((-359) (-387 (-891 |#1|)) (-860))) (-15 -2366 ((-159 (-359)) (-387 (-891 |#1|)))) (-15 -2366 ((-159 (-359)) (-387 (-891 |#1|)) (-860))) (-15 -2366 ((-159 (-359)) (-387 (-891 (-159 |#1|))))) (-15 -2366 ((-159 (-359)) (-387 (-891 (-159 |#1|))) (-860))) (IF (|has| |#1| (-793)) (PROGN (-15 -1458 ((-359) (-296 |#1|))) (-15 -1458 ((-359) (-296 |#1|) (-860))) (-15 -2366 ((-159 (-359)) (-296 |#1|))) (-15 -2366 ((-159 (-359)) (-296 |#1|) (-860))) (-15 -2366 ((-159 (-359)) (-296 (-159 |#1|)))) (-15 -2366 ((-159 (-359)) (-296 (-159 |#1|)) (-860)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-15 -2028 ((-3 (-159 (-359)) "failed") (-891 (-159 |#1|)))) (-15 -2028 ((-3 (-159 (-359)) "failed") (-891 (-159 |#1|)) (-860)))) |%noBranch|) (IF (|has| |#1| (-981)) (PROGN (-15 -2162 ((-3 (-359) "failed") (-891 |#1|))) (-15 -2162 ((-3 (-359) "failed") (-891 |#1|) (-860))) (-15 -2028 ((-3 (-159 (-359)) "failed") (-891 |#1|))) (-15 -2028 ((-3 (-159 (-359)) "failed") (-891 |#1|) (-860)))) |%noBranch|) (IF (|has| |#1| (-520)) (PROGN (-15 -2162 ((-3 (-359) "failed") (-387 (-891 |#1|)))) (-15 -2162 ((-3 (-359) "failed") (-387 (-891 |#1|)) (-860))) (-15 -2028 ((-3 (-159 (-359)) "failed") (-387 (-891 |#1|)))) (-15 -2028 ((-3 (-159 (-359)) "failed") (-387 (-891 |#1|)) (-860))) (-15 -2028 ((-3 (-159 (-359)) "failed") (-387 (-891 (-159 |#1|))))) (-15 -2028 ((-3 (-159 (-359)) "failed") (-387 (-891 (-159 |#1|))) (-860))) (IF (|has| |#1| (-793)) (PROGN (-15 -2162 ((-3 (-359) "failed") (-296 |#1|))) (-15 -2162 ((-3 (-359) "failed") (-296 |#1|) (-860))) (-15 -2028 ((-3 (-159 (-359)) "failed") (-296 |#1|))) (-15 -2028 ((-3 (-159 (-359)) "failed") (-296 |#1|) (-860))) (-15 -2028 ((-3 (-159 (-359)) "failed") (-296 (-159 |#1|)))) (-15 -2028 ((-3 (-159 (-359)) "failed") (-296 (-159 |#1|)) (-860)))) |%noBranch|)) |%noBranch|)) (-570 (-359))) (T -731))
-((-2028 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-296 (-159 *5))) (-5 *4 (-860)) (-4 *5 (-520)) (-4 *5 (-793)) (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *5)))) (-2028 (*1 *2 *3) (|partial| -12 (-5 *3 (-296 (-159 *4))) (-4 *4 (-520)) (-4 *4 (-793)) (-4 *4 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *4)))) (-2028 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-296 *5)) (-5 *4 (-860)) (-4 *5 (-520)) (-4 *5 (-793)) (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *5)))) (-2028 (*1 *2 *3) (|partial| -12 (-5 *3 (-296 *4)) (-4 *4 (-520)) (-4 *4 (-793)) (-4 *4 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *4)))) (-2162 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-296 *5)) (-5 *4 (-860)) (-4 *5 (-520)) (-4 *5 (-793)) (-4 *5 (-570 *2)) (-5 *2 (-359)) (-5 *1 (-731 *5)))) (-2162 (*1 *2 *3) (|partial| -12 (-5 *3 (-296 *4)) (-4 *4 (-520)) (-4 *4 (-793)) (-4 *4 (-570 *2)) (-5 *2 (-359)) (-5 *1 (-731 *4)))) (-2028 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-387 (-891 (-159 *5)))) (-5 *4 (-860)) (-4 *5 (-520)) (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *5)))) (-2028 (*1 *2 *3) (|partial| -12 (-5 *3 (-387 (-891 (-159 *4)))) (-4 *4 (-520)) (-4 *4 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *4)))) (-2028 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-387 (-891 *5))) (-5 *4 (-860)) (-4 *5 (-520)) (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *5)))) (-2028 (*1 *2 *3) (|partial| -12 (-5 *3 (-387 (-891 *4))) (-4 *4 (-520)) (-4 *4 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *4)))) (-2162 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-387 (-891 *5))) (-5 *4 (-860)) (-4 *5 (-520)) (-4 *5 (-570 *2)) (-5 *2 (-359)) (-5 *1 (-731 *5)))) (-2162 (*1 *2 *3) (|partial| -12 (-5 *3 (-387 (-891 *4))) (-4 *4 (-520)) (-4 *4 (-570 *2)) (-5 *2 (-359)) (-5 *1 (-731 *4)))) (-2028 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-891 *5)) (-5 *4 (-860)) (-4 *5 (-981)) (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *5)))) (-2028 (*1 *2 *3) (|partial| -12 (-5 *3 (-891 *4)) (-4 *4 (-981)) (-4 *4 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *4)))) (-2162 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-891 *5)) (-5 *4 (-860)) (-4 *5 (-981)) (-4 *5 (-570 *2)) (-5 *2 (-359)) (-5 *1 (-731 *5)))) (-2162 (*1 *2 *3) (|partial| -12 (-5 *3 (-891 *4)) (-4 *4 (-981)) (-4 *4 (-570 *2)) (-5 *2 (-359)) (-5 *1 (-731 *4)))) (-2028 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-891 (-159 *5))) (-5 *4 (-860)) (-4 *5 (-162)) (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *5)))) (-2028 (*1 *2 *3) (|partial| -12 (-5 *3 (-891 (-159 *4))) (-4 *4 (-162)) (-4 *4 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *4)))) (-2366 (*1 *2 *3 *4) (-12 (-5 *3 (-296 (-159 *5))) (-5 *4 (-860)) (-4 *5 (-520)) (-4 *5 (-793)) (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *5)))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-296 (-159 *4))) (-4 *4 (-520)) (-4 *4 (-793)) (-4 *4 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *4)))) (-2366 (*1 *2 *3 *4) (-12 (-5 *3 (-296 *5)) (-5 *4 (-860)) (-4 *5 (-520)) (-4 *5 (-793)) (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *5)))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-296 *4)) (-4 *4 (-520)) (-4 *4 (-793)) (-4 *4 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *4)))) (-1458 (*1 *2 *3 *4) (-12 (-5 *3 (-296 *5)) (-5 *4 (-860)) (-4 *5 (-520)) (-4 *5 (-793)) (-4 *5 (-570 *2)) (-5 *2 (-359)) (-5 *1 (-731 *5)))) (-1458 (*1 *2 *3) (-12 (-5 *3 (-296 *4)) (-4 *4 (-520)) (-4 *4 (-793)) (-4 *4 (-570 *2)) (-5 *2 (-359)) (-5 *1 (-731 *4)))) (-2366 (*1 *2 *3 *4) (-12 (-5 *3 (-387 (-891 (-159 *5)))) (-5 *4 (-860)) (-4 *5 (-520)) (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *5)))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-387 (-891 (-159 *4)))) (-4 *4 (-520)) (-4 *4 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *4)))) (-2366 (*1 *2 *3 *4) (-12 (-5 *3 (-387 (-891 *5))) (-5 *4 (-860)) (-4 *5 (-520)) (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *5)))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-387 (-891 *4))) (-4 *4 (-520)) (-4 *4 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *4)))) (-1458 (*1 *2 *3 *4) (-12 (-5 *3 (-387 (-891 *5))) (-5 *4 (-860)) (-4 *5 (-520)) (-4 *5 (-570 *2)) (-5 *2 (-359)) (-5 *1 (-731 *5)))) (-1458 (*1 *2 *3) (-12 (-5 *3 (-387 (-891 *4))) (-4 *4 (-520)) (-4 *4 (-570 *2)) (-5 *2 (-359)) (-5 *1 (-731 *4)))) (-2366 (*1 *2 *3 *4) (-12 (-5 *3 (-891 *5)) (-5 *4 (-860)) (-4 *5 (-981)) (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *5)))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-891 *4)) (-4 *4 (-981)) (-4 *4 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *4)))) (-1458 (*1 *2 *3 *4) (-12 (-5 *3 (-891 *5)) (-5 *4 (-860)) (-4 *5 (-981)) (-4 *5 (-570 *2)) (-5 *2 (-359)) (-5 *1 (-731 *5)))) (-1458 (*1 *2 *3) (-12 (-5 *3 (-891 *4)) (-4 *4 (-981)) (-4 *4 (-570 *2)) (-5 *2 (-359)) (-5 *1 (-731 *4)))) (-2366 (*1 *2 *3 *4) (-12 (-5 *3 (-891 (-159 *5))) (-5 *4 (-860)) (-4 *5 (-162)) (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *5)))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-891 (-159 *4))) (-4 *4 (-162)) (-4 *4 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *4)))) (-2366 (*1 *2 *3 *4) (-12 (-5 *3 (-159 *5)) (-5 *4 (-860)) (-4 *5 (-162)) (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *5)))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-159 *4)) (-4 *4 (-162)) (-4 *4 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *4)))) (-2366 (*1 *2 *3 *4) (-12 (-5 *4 (-860)) (-5 *2 (-159 (-359))) (-5 *1 (-731 *3)) (-4 *3 (-570 (-359))))) (-2366 (*1 *2 *3) (-12 (-5 *2 (-159 (-359))) (-5 *1 (-731 *3)) (-4 *3 (-570 (-359))))) (-1458 (*1 *2 *3 *4) (-12 (-5 *4 (-860)) (-5 *2 (-359)) (-5 *1 (-731 *3)) (-4 *3 (-570 *2)))) (-1458 (*1 *2 *3) (-12 (-5 *2 (-359)) (-5 *1 (-731 *3)) (-4 *3 (-570 *2)))))
-(-10 -7 (-15 -1458 ((-359) |#1|)) (-15 -1458 ((-359) |#1| (-860))) (-15 -2366 ((-159 (-359)) |#1|)) (-15 -2366 ((-159 (-359)) |#1| (-860))) (IF (|has| |#1| (-162)) (PROGN (-15 -2366 ((-159 (-359)) (-159 |#1|))) (-15 -2366 ((-159 (-359)) (-159 |#1|) (-860))) (-15 -2366 ((-159 (-359)) (-891 (-159 |#1|)))) (-15 -2366 ((-159 (-359)) (-891 (-159 |#1|)) (-860)))) |%noBranch|) (IF (|has| |#1| (-981)) (PROGN (-15 -1458 ((-359) (-891 |#1|))) (-15 -1458 ((-359) (-891 |#1|) (-860))) (-15 -2366 ((-159 (-359)) (-891 |#1|))) (-15 -2366 ((-159 (-359)) (-891 |#1|) (-860)))) |%noBranch|) (IF (|has| |#1| (-520)) (PROGN (-15 -1458 ((-359) (-387 (-891 |#1|)))) (-15 -1458 ((-359) (-387 (-891 |#1|)) (-860))) (-15 -2366 ((-159 (-359)) (-387 (-891 |#1|)))) (-15 -2366 ((-159 (-359)) (-387 (-891 |#1|)) (-860))) (-15 -2366 ((-159 (-359)) (-387 (-891 (-159 |#1|))))) (-15 -2366 ((-159 (-359)) (-387 (-891 (-159 |#1|))) (-860))) (IF (|has| |#1| (-793)) (PROGN (-15 -1458 ((-359) (-296 |#1|))) (-15 -1458 ((-359) (-296 |#1|) (-860))) (-15 -2366 ((-159 (-359)) (-296 |#1|))) (-15 -2366 ((-159 (-359)) (-296 |#1|) (-860))) (-15 -2366 ((-159 (-359)) (-296 (-159 |#1|)))) (-15 -2366 ((-159 (-359)) (-296 (-159 |#1|)) (-860)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-15 -2028 ((-3 (-159 (-359)) "failed") (-891 (-159 |#1|)))) (-15 -2028 ((-3 (-159 (-359)) "failed") (-891 (-159 |#1|)) (-860)))) |%noBranch|) (IF (|has| |#1| (-981)) (PROGN (-15 -2162 ((-3 (-359) "failed") (-891 |#1|))) (-15 -2162 ((-3 (-359) "failed") (-891 |#1|) (-860))) (-15 -2028 ((-3 (-159 (-359)) "failed") (-891 |#1|))) (-15 -2028 ((-3 (-159 (-359)) "failed") (-891 |#1|) (-860)))) |%noBranch|) (IF (|has| |#1| (-520)) (PROGN (-15 -2162 ((-3 (-359) "failed") (-387 (-891 |#1|)))) (-15 -2162 ((-3 (-359) "failed") (-387 (-891 |#1|)) (-860))) (-15 -2028 ((-3 (-159 (-359)) "failed") (-387 (-891 |#1|)))) (-15 -2028 ((-3 (-159 (-359)) "failed") (-387 (-891 |#1|)) (-860))) (-15 -2028 ((-3 (-159 (-359)) "failed") (-387 (-891 (-159 |#1|))))) (-15 -2028 ((-3 (-159 (-359)) "failed") (-387 (-891 (-159 |#1|))) (-860))) (IF (|has| |#1| (-793)) (PROGN (-15 -2162 ((-3 (-359) "failed") (-296 |#1|))) (-15 -2162 ((-3 (-359) "failed") (-296 |#1|) (-860))) (-15 -2028 ((-3 (-159 (-359)) "failed") (-296 |#1|))) (-15 -2028 ((-3 (-159 (-359)) "failed") (-296 |#1|) (-860))) (-15 -2028 ((-3 (-159 (-359)) "failed") (-296 (-159 |#1|)))) (-15 -2028 ((-3 (-159 (-359)) "failed") (-296 (-159 |#1|)) (-860)))) |%noBranch|)) |%noBranch|))
-((-1287 (((-860) (-1078)) 66)) (-2543 (((-3 (-359) "failed") (-1078)) 33)) (-3304 (((-359) (-1078)) 31)) (-1537 (((-860) (-1078)) 54)) (-4108 (((-1078) (-860)) 56)) (-3391 (((-1078) (-860)) 53)))
-(((-732) (-10 -7 (-15 -3391 ((-1078) (-860))) (-15 -1537 ((-860) (-1078))) (-15 -4108 ((-1078) (-860))) (-15 -1287 ((-860) (-1078))) (-15 -3304 ((-359) (-1078))) (-15 -2543 ((-3 (-359) "failed") (-1078))))) (T -732))
-((-2543 (*1 *2 *3) (|partial| -12 (-5 *3 (-1078)) (-5 *2 (-359)) (-5 *1 (-732)))) (-3304 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-359)) (-5 *1 (-732)))) (-1287 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-860)) (-5 *1 (-732)))) (-4108 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1078)) (-5 *1 (-732)))) (-1537 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-860)) (-5 *1 (-732)))) (-3391 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1078)) (-5 *1 (-732)))))
-(-10 -7 (-15 -3391 ((-1078) (-860))) (-15 -1537 ((-860) (-1078))) (-15 -4108 ((-1078) (-860))) (-15 -1287 ((-860) (-1078))) (-15 -3304 ((-359) (-1078))) (-15 -2543 ((-3 (-359) "failed") (-1078))))
-((-2207 (((-110) $ $) 7)) (-1542 (((-970) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)) 15) (((-970) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)) 13)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 16) (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 14)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2186 (((-110) $ $) 6)))
-(((-733) (-133)) (T -733))
-((-2702 (*1 *2 *3 *4) (-12 (-4 *1 (-733)) (-5 *3 (-992)) (-5 *4 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (-5 *2 (-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970)))))) (-1542 (*1 *2 *3 *2) (-12 (-4 *1 (-733)) (-5 *2 (-970)) (-5 *3 (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))))) (-2702 (*1 *2 *3 *4) (-12 (-4 *1 (-733)) (-5 *3 (-992)) (-5 *4 (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (-5 *2 (-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970)))))) (-1542 (*1 *2 *3 *2) (-12 (-4 *1 (-733)) (-5 *2 (-970)) (-5 *3 (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))))))
-(-13 (-1023) (-10 -7 (-15 -2702 ((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -1542 ((-970) (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207))) (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970))) (-15 -2702 ((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)) (|:| |extra| (-970))) (-992) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -1542 ((-970) (-2 (|:| |fn| (-296 (-207))) (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) (-970)))))
-(((-99) . T) ((-569 (-802)) . T) ((-1023) . T))
-((-3252 (((-1182) (-1177 (-359)) (-528) (-359) (-2 (|:| |try| (-359)) (|:| |did| (-359)) (|:| -2719 (-359))) (-359) (-1177 (-359)) (-1 (-1182) (-1177 (-359)) (-1177 (-359)) (-359)) (-1177 (-359)) (-1177 (-359)) (-1177 (-359)) (-1177 (-359)) (-1177 (-359)) (-1177 (-359)) (-1177 (-359))) 44) (((-1182) (-1177 (-359)) (-528) (-359) (-2 (|:| |try| (-359)) (|:| |did| (-359)) (|:| -2719 (-359))) (-359) (-1177 (-359)) (-1 (-1182) (-1177 (-359)) (-1177 (-359)) (-359))) 43)) (-4154 (((-1182) (-1177 (-359)) (-528) (-359) (-359) (-528) (-1 (-1182) (-1177 (-359)) (-1177 (-359)) (-359))) 50)) (-3174 (((-1182) (-1177 (-359)) (-528) (-359) (-359) (-359) (-359) (-528) (-1 (-1182) (-1177 (-359)) (-1177 (-359)) (-359))) 41)) (-1417 (((-1182) (-1177 (-359)) (-528) (-359) (-359) (-1 (-1182) (-1177 (-359)) (-1177 (-359)) (-359)) (-1177 (-359)) (-1177 (-359)) (-1177 (-359)) (-1177 (-359))) 52) (((-1182) (-1177 (-359)) (-528) (-359) (-359) (-1 (-1182) (-1177 (-359)) (-1177 (-359)) (-359))) 51)))
-(((-734) (-10 -7 (-15 -1417 ((-1182) (-1177 (-359)) (-528) (-359) (-359) (-1 (-1182) (-1177 (-359)) (-1177 (-359)) (-359)))) (-15 -1417 ((-1182) (-1177 (-359)) (-528) (-359) (-359) (-1 (-1182) (-1177 (-359)) (-1177 (-359)) (-359)) (-1177 (-359)) (-1177 (-359)) (-1177 (-359)) (-1177 (-359)))) (-15 -3174 ((-1182) (-1177 (-359)) (-528) (-359) (-359) (-359) (-359) (-528) (-1 (-1182) (-1177 (-359)) (-1177 (-359)) (-359)))) (-15 -3252 ((-1182) (-1177 (-359)) (-528) (-359) (-2 (|:| |try| (-359)) (|:| |did| (-359)) (|:| -2719 (-359))) (-359) (-1177 (-359)) (-1 (-1182) (-1177 (-359)) (-1177 (-359)) (-359)))) (-15 -3252 ((-1182) (-1177 (-359)) (-528) (-359) (-2 (|:| |try| (-359)) (|:| |did| (-359)) (|:| -2719 (-359))) (-359) (-1177 (-359)) (-1 (-1182) (-1177 (-359)) (-1177 (-359)) (-359)) (-1177 (-359)) (-1177 (-359)) (-1177 (-359)) (-1177 (-359)) (-1177 (-359)) (-1177 (-359)) (-1177 (-359)))) (-15 -4154 ((-1182) (-1177 (-359)) (-528) (-359) (-359) (-528) (-1 (-1182) (-1177 (-359)) (-1177 (-359)) (-359)))))) (T -734))
-((-4154 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-528)) (-5 *6 (-1 (-1182) (-1177 *5) (-1177 *5) (-359))) (-5 *3 (-1177 (-359))) (-5 *5 (-359)) (-5 *2 (-1182)) (-5 *1 (-734)))) (-3252 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-528)) (-5 *6 (-2 (|:| |try| (-359)) (|:| |did| (-359)) (|:| -2719 (-359)))) (-5 *7 (-1 (-1182) (-1177 *5) (-1177 *5) (-359))) (-5 *3 (-1177 (-359))) (-5 *5 (-359)) (-5 *2 (-1182)) (-5 *1 (-734)))) (-3252 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-528)) (-5 *6 (-2 (|:| |try| (-359)) (|:| |did| (-359)) (|:| -2719 (-359)))) (-5 *7 (-1 (-1182) (-1177 *5) (-1177 *5) (-359))) (-5 *3 (-1177 (-359))) (-5 *5 (-359)) (-5 *2 (-1182)) (-5 *1 (-734)))) (-3174 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-528)) (-5 *6 (-1 (-1182) (-1177 *5) (-1177 *5) (-359))) (-5 *3 (-1177 (-359))) (-5 *5 (-359)) (-5 *2 (-1182)) (-5 *1 (-734)))) (-1417 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-528)) (-5 *6 (-1 (-1182) (-1177 *5) (-1177 *5) (-359))) (-5 *3 (-1177 (-359))) (-5 *5 (-359)) (-5 *2 (-1182)) (-5 *1 (-734)))) (-1417 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-528)) (-5 *6 (-1 (-1182) (-1177 *5) (-1177 *5) (-359))) (-5 *3 (-1177 (-359))) (-5 *5 (-359)) (-5 *2 (-1182)) (-5 *1 (-734)))))
-(-10 -7 (-15 -1417 ((-1182) (-1177 (-359)) (-528) (-359) (-359) (-1 (-1182) (-1177 (-359)) (-1177 (-359)) (-359)))) (-15 -1417 ((-1182) (-1177 (-359)) (-528) (-359) (-359) (-1 (-1182) (-1177 (-359)) (-1177 (-359)) (-359)) (-1177 (-359)) (-1177 (-359)) (-1177 (-359)) (-1177 (-359)))) (-15 -3174 ((-1182) (-1177 (-359)) (-528) (-359) (-359) (-359) (-359) (-528) (-1 (-1182) (-1177 (-359)) (-1177 (-359)) (-359)))) (-15 -3252 ((-1182) (-1177 (-359)) (-528) (-359) (-2 (|:| |try| (-359)) (|:| |did| (-359)) (|:| -2719 (-359))) (-359) (-1177 (-359)) (-1 (-1182) (-1177 (-359)) (-1177 (-359)) (-359)))) (-15 -3252 ((-1182) (-1177 (-359)) (-528) (-359) (-2 (|:| |try| (-359)) (|:| |did| (-359)) (|:| -2719 (-359))) (-359) (-1177 (-359)) (-1 (-1182) (-1177 (-359)) (-1177 (-359)) (-359)) (-1177 (-359)) (-1177 (-359)) (-1177 (-359)) (-1177 (-359)) (-1177 (-359)) (-1177 (-359)) (-1177 (-359)))) (-15 -4154 ((-1182) (-1177 (-359)) (-528) (-359) (-359) (-528) (-1 (-1182) (-1177 (-359)) (-1177 (-359)) (-359)))))
-((-2353 (((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528)) 53)) (-2730 (((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528)) 31)) (-2136 (((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528)) 52)) (-1967 (((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528)) 29)) (-2226 (((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528)) 51)) (-3619 (((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528)) 19)) (-2210 (((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528) (-528)) 32)) (-3933 (((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528) (-528)) 30)) (-3480 (((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528) (-528)) 28)))
-(((-735) (-10 -7 (-15 -3480 ((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528) (-528))) (-15 -3933 ((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528) (-528))) (-15 -2210 ((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528) (-528))) (-15 -3619 ((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528))) (-15 -1967 ((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528))) (-15 -2730 ((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528))) (-15 -2226 ((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528))) (-15 -2136 ((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528))) (-15 -2353 ((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528))))) (T -735))
-((-2353 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359)) (-5 *2 (-2 (|:| -3327 *4) (|:| -3817 *4) (|:| |totalpts| (-528)) (|:| |success| (-110)))) (-5 *1 (-735)) (-5 *5 (-528)))) (-2136 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359)) (-5 *2 (-2 (|:| -3327 *4) (|:| -3817 *4) (|:| |totalpts| (-528)) (|:| |success| (-110)))) (-5 *1 (-735)) (-5 *5 (-528)))) (-2226 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359)) (-5 *2 (-2 (|:| -3327 *4) (|:| -3817 *4) (|:| |totalpts| (-528)) (|:| |success| (-110)))) (-5 *1 (-735)) (-5 *5 (-528)))) (-2730 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359)) (-5 *2 (-2 (|:| -3327 *4) (|:| -3817 *4) (|:| |totalpts| (-528)) (|:| |success| (-110)))) (-5 *1 (-735)) (-5 *5 (-528)))) (-1967 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359)) (-5 *2 (-2 (|:| -3327 *4) (|:| -3817 *4) (|:| |totalpts| (-528)) (|:| |success| (-110)))) (-5 *1 (-735)) (-5 *5 (-528)))) (-3619 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359)) (-5 *2 (-2 (|:| -3327 *4) (|:| -3817 *4) (|:| |totalpts| (-528)) (|:| |success| (-110)))) (-5 *1 (-735)) (-5 *5 (-528)))) (-2210 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359)) (-5 *2 (-2 (|:| -3327 *4) (|:| -3817 *4) (|:| |totalpts| (-528)) (|:| |success| (-110)))) (-5 *1 (-735)) (-5 *5 (-528)))) (-3933 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359)) (-5 *2 (-2 (|:| -3327 *4) (|:| -3817 *4) (|:| |totalpts| (-528)) (|:| |success| (-110)))) (-5 *1 (-735)) (-5 *5 (-528)))) (-3480 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359)) (-5 *2 (-2 (|:| -3327 *4) (|:| -3817 *4) (|:| |totalpts| (-528)) (|:| |success| (-110)))) (-5 *1 (-735)) (-5 *5 (-528)))))
-(-10 -7 (-15 -3480 ((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528) (-528))) (-15 -3933 ((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528) (-528))) (-15 -2210 ((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528) (-528))) (-15 -3619 ((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528))) (-15 -1967 ((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528))) (-15 -2730 ((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528))) (-15 -2226 ((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528))) (-15 -2136 ((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528))) (-15 -2353 ((-2 (|:| -3327 (-359)) (|:| -3817 (-359)) (|:| |totalpts| (-528)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-528) (-528))))
-((-3731 (((-1127 |#1|) |#1| (-207) (-528)) 46)))
-(((-736 |#1|) (-10 -7 (-15 -3731 ((-1127 |#1|) |#1| (-207) (-528)))) (-911)) (T -736))
-((-3731 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-207)) (-5 *5 (-528)) (-5 *2 (-1127 *3)) (-5 *1 (-736 *3)) (-4 *3 (-911)))))
-(-10 -7 (-15 -3731 ((-1127 |#1|) |#1| (-207) (-528))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 24)) (-3181 (((-3 $ "failed") $ $) 26)) (-2816 (($) 23 T CONST)) (-1436 (($ $ $) 13)) (-1736 (($ $ $) 14)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2969 (($) 22 T CONST)) (-2244 (((-110) $ $) 16)) (-2220 (((-110) $ $) 17)) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 15)) (-2208 (((-110) $ $) 18)) (-2286 (($ $ $) 28) (($ $) 27)) (-2275 (($ $ $) 20)) (* (($ (-860) $) 21) (($ (-717) $) 25) (($ (-528) $) 29)))
-(((-737) (-133)) (T -737))
-NIL
-(-13 (-741) (-21))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-569 (-802)) . T) ((-738) . T) ((-740) . T) ((-741) . T) ((-793) . T) ((-1023) . T))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 24)) (-2816 (($) 23 T CONST)) (-1436 (($ $ $) 13)) (-1736 (($ $ $) 14)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2969 (($) 22 T CONST)) (-2244 (((-110) $ $) 16)) (-2220 (((-110) $ $) 17)) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 15)) (-2208 (((-110) $ $) 18)) (-2275 (($ $ $) 20)) (* (($ (-860) $) 21) (($ (-717) $) 25)))
-(((-738) (-133)) (T -738))
-NIL
-(-13 (-740) (-23))
-(((-23) . T) ((-25) . T) ((-99) . T) ((-569 (-802)) . T) ((-740) . T) ((-793) . T) ((-1023) . T))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 24)) (-3622 (($ $ $) 27)) (-3181 (((-3 $ "failed") $ $) 26)) (-2816 (($) 23 T CONST)) (-1436 (($ $ $) 13)) (-1736 (($ $ $) 14)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2969 (($) 22 T CONST)) (-2244 (((-110) $ $) 16)) (-2220 (((-110) $ $) 17)) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 15)) (-2208 (((-110) $ $) 18)) (-2275 (($ $ $) 20)) (* (($ (-860) $) 21) (($ (-717) $) 25)))
+((-2621 (*1 *1 *1 *1 *1) (-4 *1 (-710))) (-2620 (*1 *1 *1 *1) (-4 *1 (-710))) (-2619 (*1 *1 *1 *1) (-4 *1 (-710))))
+(-13 (-21) (-669) (-10 -8 (-15 -2621 ($ $ $ $)) (-15 -2620 ($ $ $)) (-15 -2619 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-805)) . T) ((-669) . T) ((-1027) . T))
+((-4233 (((-805) $) NIL) (($ (-516)) 10)))
+(((-711 |#1|) (-10 -8 (-15 -4233 (|#1| (-516))) (-15 -4233 ((-805) |#1|))) (-712)) (T -711))
+NIL
+(-10 -8 (-15 -4233 (|#1| (-516))) (-15 -4233 ((-805) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-2430 (((-3 $ #1="failed") $) 40)) (-2433 (($ $ (-860)) 28) (($ $ (-719)) 35)) (-3741 (((-3 $ #1#) $) 38)) (-2436 (((-110) $) 34)) (-2431 (((-3 $ #1#) $) 39)) (-2432 (($ $ (-860)) 29) (($ $ (-719)) 36)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-2620 (($ $ $) 25)) (-4233 (((-805) $) 11) (($ (-516)) 31)) (-3385 (((-719)) 32)) (-2621 (($ $ $ $) 26)) (-2619 (($ $ $) 24)) (-2920 (($) 18 T CONST)) (-2927 (($) 33 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 30) (($ $ (-719)) 37)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 27)))
+(((-712) (-133)) (T -712))
+((-3385 (*1 *2) (-12 (-4 *1 (-712)) (-5 *2 (-719)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-516)) (-4 *1 (-712)))))
+(-13 (-710) (-671) (-10 -8 (-15 -3385 ((-719))) (-15 -4233 ($ (-516)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-805)) . T) ((-669) . T) ((-671) . T) ((-710) . T) ((-1027) . T))
+((-2623 (((-594 (-2 (|:| |outval| (-158 |#1|)) (|:| |outmult| (-516)) (|:| |outvect| (-594 (-637 (-158 |#1|)))))) (-637 (-158 (-388 (-516)))) |#1|) 33)) (-2622 (((-594 (-158 |#1|)) (-637 (-158 (-388 (-516)))) |#1|) 23)) (-2632 (((-887 (-158 (-388 (-516)))) (-637 (-158 (-388 (-516)))) (-1098)) 20) (((-887 (-158 (-388 (-516)))) (-637 (-158 (-388 (-516))))) 19)))
+(((-713 |#1|) (-10 -7 (-15 -2632 ((-887 (-158 (-388 (-516)))) (-637 (-158 (-388 (-516)))))) (-15 -2632 ((-887 (-158 (-388 (-516)))) (-637 (-158 (-388 (-516)))) (-1098))) (-15 -2622 ((-594 (-158 |#1|)) (-637 (-158 (-388 (-516)))) |#1|)) (-15 -2623 ((-594 (-2 (|:| |outval| (-158 |#1|)) (|:| |outmult| (-516)) (|:| |outvect| (-594 (-637 (-158 |#1|)))))) (-637 (-158 (-388 (-516)))) |#1|))) (-13 (-344) (-793))) (T -713))
+((-2623 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-158 (-388 (-516))))) (-5 *2 (-594 (-2 (|:| |outval| (-158 *4)) (|:| |outmult| (-516)) (|:| |outvect| (-594 (-637 (-158 *4))))))) (-5 *1 (-713 *4)) (-4 *4 (-13 (-344) (-793))))) (-2622 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-158 (-388 (-516))))) (-5 *2 (-594 (-158 *4))) (-5 *1 (-713 *4)) (-4 *4 (-13 (-344) (-793))))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-158 (-388 (-516))))) (-5 *4 (-1098)) (-5 *2 (-887 (-158 (-388 (-516))))) (-5 *1 (-713 *5)) (-4 *5 (-13 (-344) (-793))))) (-2632 (*1 *2 *3) (-12 (-5 *3 (-637 (-158 (-388 (-516))))) (-5 *2 (-887 (-158 (-388 (-516))))) (-5 *1 (-713 *4)) (-4 *4 (-13 (-344) (-793))))))
+(-10 -7 (-15 -2632 ((-887 (-158 (-388 (-516)))) (-637 (-158 (-388 (-516)))))) (-15 -2632 ((-887 (-158 (-388 (-516)))) (-637 (-158 (-388 (-516)))) (-1098))) (-15 -2622 ((-594 (-158 |#1|)) (-637 (-158 (-388 (-516)))) |#1|)) (-15 -2623 ((-594 (-2 (|:| |outval| (-158 |#1|)) (|:| |outmult| (-516)) (|:| |outvect| (-594 (-637 (-158 |#1|)))))) (-637 (-158 (-388 (-516)))) |#1|)))
+((-2874 (((-163 (-516)) |#1|) 25)))
+(((-714 |#1|) (-10 -7 (-15 -2874 ((-163 (-516)) |#1|))) (-385)) (T -714))
+((-2874 (*1 *2 *3) (-12 (-5 *2 (-163 (-516))) (-5 *1 (-714 *3)) (-4 *3 (-385)))))
+(-10 -7 (-15 -2874 ((-163 (-516)) |#1|)))
+((-2811 ((|#1| |#1| |#1|) 24)) (-2812 ((|#1| |#1| |#1|) 23)) (-2801 ((|#1| |#1| |#1|) 32)) (-2809 ((|#1| |#1| |#1|) 28)) (-2810 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2817 (((-2 (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1|) 22)))
+(((-715 |#1| |#2|) (-10 -7 (-15 -2817 ((-2 (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1|)) (-15 -2812 (|#1| |#1| |#1|)) (-15 -2811 (|#1| |#1| |#1|)) (-15 -2810 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2809 (|#1| |#1| |#1|)) (-15 -2801 (|#1| |#1| |#1|))) (-657 |#2|) (-344)) (T -715))
+((-2801 (*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3)))) (-2809 (*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3)))) (-2810 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3)))) (-2811 (*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3)))) (-2812 (*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3)))) (-2817 (*1 *2 *3 *3) (-12 (-4 *4 (-344)) (-5 *2 (-2 (|:| -2046 *3) (|:| -3166 *3))) (-5 *1 (-715 *3 *4)) (-4 *3 (-657 *4)))))
+(-10 -7 (-15 -2817 ((-2 (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1|)) (-15 -2812 (|#1| |#1| |#1|)) (-15 -2811 (|#1| |#1| |#1|)) (-15 -2810 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2809 (|#1| |#1| |#1|)) (-15 -2801 (|#1| |#1| |#1|)))
+((-4198 (((-2 (|:| -2071 (-637 (-516))) (|:| |basisDen| (-516)) (|:| |basisInv| (-637 (-516)))) (-516)) 59)) (-4197 (((-2 (|:| -2071 (-637 (-516))) (|:| |basisDen| (-516)) (|:| |basisInv| (-637 (-516))))) 57)) (-4036 (((-516)) 71)))
+(((-716 |#1| |#2|) (-10 -7 (-15 -4036 ((-516))) (-15 -4197 ((-2 (|:| -2071 (-637 (-516))) (|:| |basisDen| (-516)) (|:| |basisInv| (-637 (-516)))))) (-15 -4198 ((-2 (|:| -2071 (-637 (-516))) (|:| |basisDen| (-516)) (|:| |basisInv| (-637 (-516)))) (-516)))) (-1155 (-516)) (-391 (-516) |#1|)) (T -716))
+((-4198 (*1 *2 *3) (-12 (-5 *3 (-516)) (-4 *4 (-1155 *3)) (-5 *2 (-2 (|:| -2071 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3)))) (-5 *1 (-716 *4 *5)) (-4 *5 (-391 *3 *4)))) (-4197 (*1 *2) (-12 (-4 *3 (-1155 (-516))) (-5 *2 (-2 (|:| -2071 (-637 (-516))) (|:| |basisDen| (-516)) (|:| |basisInv| (-637 (-516))))) (-5 *1 (-716 *3 *4)) (-4 *4 (-391 (-516) *3)))) (-4036 (*1 *2) (-12 (-4 *3 (-1155 *2)) (-5 *2 (-516)) (-5 *1 (-716 *3 *4)) (-4 *4 (-391 *2 *3)))))
+(-10 -7 (-15 -4036 ((-516))) (-15 -4197 ((-2 (|:| -2071 (-637 (-516))) (|:| |basisDen| (-516)) (|:| |basisInv| (-637 (-516)))))) (-15 -4198 ((-2 (|:| -2071 (-637 (-516))) (|:| |basisDen| (-516)) (|:| |basisInv| (-637 (-516)))) (-516))))
+((-2828 (((-110) $ $) NIL)) (-3431 (((-3 (|:| |nia| (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) $) 21)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 20) (($ (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 13) (($ (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) 18)) (-3317 (((-110) $ $) NIL)))
+(((-717) (-13 (-1027) (-10 -8 (-15 -4233 ($ (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -4233 ($ (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -4233 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (-15 -4233 ((-805) $)) (-15 -3431 ((-3 (|:| |nia| (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) $))))) (T -717))
+((-4233 (*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-717)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *1 (-717)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *1 (-717)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) (-5 *1 (-717)))) (-3431 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) (-5 *1 (-717)))))
+(-13 (-1027) (-10 -8 (-15 -4233 ($ (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -4233 ($ (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -4233 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (-15 -4233 ((-805) $)) (-15 -3431 ((-3 (|:| |nia| (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) $))))
+((-2698 (((-594 (-594 (-275 (-388 (-887 |#1|))))) (-594 (-887 |#1|))) 18) (((-594 (-594 (-275 (-388 (-887 |#1|))))) (-594 (-887 |#1|)) (-594 (-1098))) 17)) (-3855 (((-594 (-594 (-275 (-388 (-887 |#1|))))) (-594 (-887 |#1|))) 20) (((-594 (-594 (-275 (-388 (-887 |#1|))))) (-594 (-887 |#1|)) (-594 (-1098))) 19)))
+(((-718 |#1|) (-10 -7 (-15 -2698 ((-594 (-594 (-275 (-388 (-887 |#1|))))) (-594 (-887 |#1|)) (-594 (-1098)))) (-15 -2698 ((-594 (-594 (-275 (-388 (-887 |#1|))))) (-594 (-887 |#1|)))) (-15 -3855 ((-594 (-594 (-275 (-388 (-887 |#1|))))) (-594 (-887 |#1|)) (-594 (-1098)))) (-15 -3855 ((-594 (-594 (-275 (-388 (-887 |#1|))))) (-594 (-887 |#1|))))) (-523)) (T -718))
+((-3855 (*1 *2 *3) (-12 (-5 *3 (-594 (-887 *4))) (-4 *4 (-523)) (-5 *2 (-594 (-594 (-275 (-388 (-887 *4)))))) (-5 *1 (-718 *4)))) (-3855 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-887 *5))) (-5 *4 (-594 (-1098))) (-4 *5 (-523)) (-5 *2 (-594 (-594 (-275 (-388 (-887 *5)))))) (-5 *1 (-718 *5)))) (-2698 (*1 *2 *3) (-12 (-5 *3 (-594 (-887 *4))) (-4 *4 (-523)) (-5 *2 (-594 (-594 (-275 (-388 (-887 *4)))))) (-5 *1 (-718 *4)))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-887 *5))) (-5 *4 (-594 (-1098))) (-4 *5 (-523)) (-5 *2 (-594 (-594 (-275 (-388 (-887 *5)))))) (-5 *1 (-718 *5)))))
+(-10 -7 (-15 -2698 ((-594 (-594 (-275 (-388 (-887 |#1|))))) (-594 (-887 |#1|)) (-594 (-1098)))) (-15 -2698 ((-594 (-594 (-275 (-388 (-887 |#1|))))) (-594 (-887 |#1|)))) (-15 -3855 ((-594 (-594 (-275 (-388 (-887 |#1|))))) (-594 (-887 |#1|)) (-594 (-1098)))) (-15 -3855 ((-594 (-594 (-275 (-388 (-887 |#1|))))) (-594 (-887 |#1|)))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2667 (($ $ $) 6)) (-1319 (((-3 $ "failed") $ $) 9)) (-2624 (($ $ (-516)) 7)) (-3815 (($) NIL T CONST)) (-2824 (($ $ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3258 (($ $) NIL)) (-2823 (($ $ $) NIL)) (-2436 (((-110) $) NIL)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-3419 (($ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-4233 (((-805) $) NIL)) (-3581 (($ $ (-719)) NIL) (($ $ (-860)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-719)) NIL) (($ $ (-860)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ $ $) NIL)))
+(((-719) (-13 (-741) (-675) (-10 -8 (-15 -2823 ($ $ $)) (-15 -2824 ($ $ $)) (-15 -3419 ($ $ $)) (-15 -3145 ((-2 (|:| -2046 $) (|:| -3166 $)) $ $)) (-15 -3740 ((-3 $ "failed") $ $)) (-15 -2624 ($ $ (-516))) (-15 -3258 ($ $)) (-6 (-4271 "*"))))) (T -719))
+((-2823 (*1 *1 *1 *1) (-5 *1 (-719))) (-2824 (*1 *1 *1 *1) (-5 *1 (-719))) (-3419 (*1 *1 *1 *1) (-5 *1 (-719))) (-3145 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2046 (-719)) (|:| -3166 (-719)))) (-5 *1 (-719)))) (-3740 (*1 *1 *1 *1) (|partial| -5 *1 (-719))) (-2624 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-719)))) (-3258 (*1 *1 *1) (-5 *1 (-719))))
+(-13 (-741) (-675) (-10 -8 (-15 -2823 ($ $ $)) (-15 -2824 ($ $ $)) (-15 -3419 ($ $ $)) (-15 -3145 ((-2 (|:| -2046 $) (|:| -3166 $)) $ $)) (-15 -3740 ((-3 $ "failed") $ $)) (-15 -2624 ($ $ (-516))) (-15 -3258 ($ $)) (-6 (-4271 "*"))))
+((-3855 (((-3 |#2| "failed") |#2| |#2| (-111) (-1098)) 35)))
+(((-720 |#1| |#2|) (-10 -7 (-15 -3855 ((-3 |#2| "failed") |#2| |#2| (-111) (-1098)))) (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)) (-13 (-29 |#1|) (-1120) (-901))) (T -720))
+((-3855 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-111)) (-5 *4 (-1098)) (-4 *5 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140))) (-5 *1 (-720 *5 *2)) (-4 *2 (-13 (-29 *5) (-1120) (-901))))))
+(-10 -7 (-15 -3855 ((-3 |#2| "failed") |#2| |#2| (-111) (-1098))))
+((-2828 (((-110) $ $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 7)) (-3317 (((-110) $ $) 9)))
+(((-721) (-1027)) (T -721))
+NIL
+(-1027)
+((-4233 (((-721) |#1|) 8)))
+(((-722 |#1|) (-10 -7 (-15 -4233 ((-721) |#1|))) (-1134)) (T -722))
+((-4233 (*1 *2 *3) (-12 (-5 *2 (-721)) (-5 *1 (-722 *3)) (-4 *3 (-1134)))))
+(-10 -7 (-15 -4233 ((-721) |#1|)))
+((-3391 ((|#2| |#4|) 35)))
+(((-723 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3391 (|#2| |#4|))) (-432) (-1155 |#1|) (-673 |#1| |#2|) (-1155 |#3|)) (T -723))
+((-3391 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-673 *4 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-723 *4 *2 *5 *3)) (-4 *3 (-1155 *5)))))
+(-10 -7 (-15 -3391 (|#2| |#4|)))
+((-3741 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2627 (((-1185) (-1081) (-1081) |#4| |#5|) 33)) (-2625 ((|#4| |#4| |#5|) 73)) (-2626 (((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#5|) 77)) (-2628 (((-594 (-2 (|:| |val| (-110)) (|:| -1610 |#5|))) |#4| |#5|) 16)))
+(((-724 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3741 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2625 (|#4| |#4| |#5|)) (-15 -2626 ((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#5|)) (-15 -2627 ((-1185) (-1081) (-1081) |#4| |#5|)) (-15 -2628 ((-594 (-2 (|:| |val| (-110)) (|:| -1610 |#5|))) |#4| |#5|))) (-432) (-741) (-795) (-997 |#1| |#2| |#3|) (-1002 |#1| |#2| |#3| |#4|)) (T -724))
+((-2628 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-594 (-2 (|:| |val| (-110)) (|:| -1610 *4)))) (-5 *1 (-724 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))) (-2627 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1081)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *4 (-997 *6 *7 *8)) (-5 *2 (-1185)) (-5 *1 (-724 *6 *7 *8 *4 *5)) (-4 *5 (-1002 *6 *7 *8 *4)))) (-2626 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-594 (-2 (|:| |val| *3) (|:| -1610 *4)))) (-5 *1 (-724 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))) (-2625 (*1 *2 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *2 (-997 *4 *5 *6)) (-5 *1 (-724 *4 *5 *6 *2 *3)) (-4 *3 (-1002 *4 *5 *6 *2)))) (-3741 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-724 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))))
+(-10 -7 (-15 -3741 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2625 (|#4| |#4| |#5|)) (-15 -2626 ((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#5|)) (-15 -2627 ((-1185) (-1081) (-1081) |#4| |#5|)) (-15 -2628 ((-594 (-2 (|:| |val| (-110)) (|:| -1610 |#5|))) |#4| |#5|)))
+((-3432 (((-3 (-1092 (-1092 |#1|)) "failed") |#4|) 43)) (-2629 (((-594 |#4|) |#4|) 15)) (-4204 ((|#4| |#4|) 11)))
+(((-725 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2629 ((-594 |#4|) |#4|)) (-15 -3432 ((-3 (-1092 (-1092 |#1|)) "failed") |#4|)) (-15 -4204 (|#4| |#4|))) (-331) (-310 |#1|) (-1155 |#2|) (-1155 |#3|) (-860)) (T -725))
+((-4204 (*1 *2 *2) (-12 (-4 *3 (-331)) (-4 *4 (-310 *3)) (-4 *5 (-1155 *4)) (-5 *1 (-725 *3 *4 *5 *2 *6)) (-4 *2 (-1155 *5)) (-14 *6 (-860)))) (-3432 (*1 *2 *3) (|partial| -12 (-4 *4 (-331)) (-4 *5 (-310 *4)) (-4 *6 (-1155 *5)) (-5 *2 (-1092 (-1092 *4))) (-5 *1 (-725 *4 *5 *6 *3 *7)) (-4 *3 (-1155 *6)) (-14 *7 (-860)))) (-2629 (*1 *2 *3) (-12 (-4 *4 (-331)) (-4 *5 (-310 *4)) (-4 *6 (-1155 *5)) (-5 *2 (-594 *3)) (-5 *1 (-725 *4 *5 *6 *3 *7)) (-4 *3 (-1155 *6)) (-14 *7 (-860)))))
+(-10 -7 (-15 -2629 ((-594 |#4|) |#4|)) (-15 -3432 ((-3 (-1092 (-1092 |#1|)) "failed") |#4|)) (-15 -4204 (|#4| |#4|)))
+((-2630 (((-2 (|:| |deter| (-594 (-1092 |#5|))) (|:| |dterm| (-594 (-594 (-2 (|:| -3342 (-719)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-594 |#1|)) (|:| |nlead| (-594 |#5|))) (-1092 |#5|) (-594 |#1|) (-594 |#5|)) 54)) (-2631 (((-594 (-719)) |#1|) 13)))
+(((-726 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2630 ((-2 (|:| |deter| (-594 (-1092 |#5|))) (|:| |dterm| (-594 (-594 (-2 (|:| -3342 (-719)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-594 |#1|)) (|:| |nlead| (-594 |#5|))) (-1092 |#5|) (-594 |#1|) (-594 |#5|))) (-15 -2631 ((-594 (-719)) |#1|))) (-1155 |#4|) (-741) (-795) (-289) (-891 |#4| |#2| |#3|)) (T -726))
+((-2631 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-594 (-719))) (-5 *1 (-726 *3 *4 *5 *6 *7)) (-4 *3 (-1155 *6)) (-4 *7 (-891 *6 *4 *5)))) (-2630 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1155 *9)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-289)) (-4 *10 (-891 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-594 (-1092 *10))) (|:| |dterm| (-594 (-594 (-2 (|:| -3342 (-719)) (|:| |pcoef| *10))))) (|:| |nfacts| (-594 *6)) (|:| |nlead| (-594 *10)))) (-5 *1 (-726 *6 *7 *8 *9 *10)) (-5 *3 (-1092 *10)) (-5 *4 (-594 *6)) (-5 *5 (-594 *10)))))
+(-10 -7 (-15 -2630 ((-2 (|:| |deter| (-594 (-1092 |#5|))) (|:| |dterm| (-594 (-594 (-2 (|:| -3342 (-719)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-594 |#1|)) (|:| |nlead| (-594 |#5|))) (-1092 |#5|) (-594 |#1|) (-594 |#5|))) (-15 -2631 ((-594 (-719)) |#1|)))
+((-2634 (((-594 (-2 (|:| |outval| |#1|) (|:| |outmult| (-516)) (|:| |outvect| (-594 (-637 |#1|))))) (-637 (-388 (-516))) |#1|) 31)) (-2633 (((-594 |#1|) (-637 (-388 (-516))) |#1|) 21)) (-2632 (((-887 (-388 (-516))) (-637 (-388 (-516))) (-1098)) 18) (((-887 (-388 (-516))) (-637 (-388 (-516)))) 17)))
+(((-727 |#1|) (-10 -7 (-15 -2632 ((-887 (-388 (-516))) (-637 (-388 (-516))))) (-15 -2632 ((-887 (-388 (-516))) (-637 (-388 (-516))) (-1098))) (-15 -2633 ((-594 |#1|) (-637 (-388 (-516))) |#1|)) (-15 -2634 ((-594 (-2 (|:| |outval| |#1|) (|:| |outmult| (-516)) (|:| |outvect| (-594 (-637 |#1|))))) (-637 (-388 (-516))) |#1|))) (-13 (-344) (-793))) (T -727))
+((-2634 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-388 (-516)))) (-5 *2 (-594 (-2 (|:| |outval| *4) (|:| |outmult| (-516)) (|:| |outvect| (-594 (-637 *4)))))) (-5 *1 (-727 *4)) (-4 *4 (-13 (-344) (-793))))) (-2633 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-388 (-516)))) (-5 *2 (-594 *4)) (-5 *1 (-727 *4)) (-4 *4 (-13 (-344) (-793))))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-388 (-516)))) (-5 *4 (-1098)) (-5 *2 (-887 (-388 (-516)))) (-5 *1 (-727 *5)) (-4 *5 (-13 (-344) (-793))))) (-2632 (*1 *2 *3) (-12 (-5 *3 (-637 (-388 (-516)))) (-5 *2 (-887 (-388 (-516)))) (-5 *1 (-727 *4)) (-4 *4 (-13 (-344) (-793))))))
+(-10 -7 (-15 -2632 ((-887 (-388 (-516))) (-637 (-388 (-516))))) (-15 -2632 ((-887 (-388 (-516))) (-637 (-388 (-516))) (-1098))) (-15 -2633 ((-594 |#1|) (-637 (-388 (-516))) |#1|)) (-15 -2634 ((-594 (-2 (|:| |outval| |#1|) (|:| |outmult| (-516)) (|:| |outvect| (-594 (-637 |#1|))))) (-637 (-388 (-516))) |#1|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 34)) (-3347 (((-594 |#2|) $) NIL)) (-3349 (((-1092 $) $ |#2|) NIL) (((-1092 |#1|) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-2118 (($ $) NIL (|has| |#1| (-523)))) (-2116 (((-110) $) NIL (|has| |#1| (-523)))) (-3083 (((-719) $) NIL) (((-719) $ (-594 |#2|)) NIL)) (-4075 (($ $) 28)) (-3441 (((-110) $ $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-4034 (($ $ $) 93 (|has| |#1| (-523)))) (-3423 (((-594 $) $ $) 106 (|has| |#1| (-523)))) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-4053 (($ $) NIL (|has| |#1| (-432)))) (-4245 (((-386 $) $) NIL (|has| |#1| (-432)))) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#1| #2="failed") $) NIL) (((-3 (-388 (-516)) #2#) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-3 (-516) #2#) $) NIL (|has| |#1| (-975 (-516)))) (((-3 |#2| #2#) $) NIL) (((-3 $ #3="failed") (-887 (-388 (-516)))) NIL (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#2| (-572 (-1098))))) (((-3 $ #3#) (-887 (-516))) NIL (-3810 (-12 (|has| |#1| (-37 (-516))) (|has| |#2| (-572 (-1098))) (-3595 (|has| |#1| (-37 (-388 (-516)))))) (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#2| (-572 (-1098)))))) (((-3 $ #3#) (-887 |#1|)) NIL (-3810 (-12 (|has| |#2| (-572 (-1098))) (-3595 (|has| |#1| (-37 (-388 (-516))))) (-3595 (|has| |#1| (-37 (-516))))) (-12 (|has| |#1| (-37 (-516))) (|has| |#2| (-572 (-1098))) (-3595 (|has| |#1| (-37 (-388 (-516))))) (-3595 (|has| |#1| (-515)))) (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#2| (-572 (-1098))) (-3595 (|has| |#1| (-931 (-516))))))) (((-3 (-1050 |#1| |#2|) #2#) $) 18)) (-3431 ((|#1| $) NIL) (((-388 (-516)) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-516) $) NIL (|has| |#1| (-975 (-516)))) ((|#2| $) NIL) (($ (-887 (-388 (-516)))) NIL (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#2| (-572 (-1098))))) (($ (-887 (-516))) NIL (-3810 (-12 (|has| |#1| (-37 (-516))) (|has| |#2| (-572 (-1098))) (-3595 (|has| |#1| (-37 (-388 (-516)))))) (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#2| (-572 (-1098)))))) (($ (-887 |#1|)) NIL (-3810 (-12 (|has| |#2| (-572 (-1098))) (-3595 (|has| |#1| (-37 (-388 (-516))))) (-3595 (|has| |#1| (-37 (-516))))) (-12 (|has| |#1| (-37 (-516))) (|has| |#2| (-572 (-1098))) (-3595 (|has| |#1| (-37 (-388 (-516))))) (-3595 (|has| |#1| (-515)))) (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#2| (-572 (-1098))) (-3595 (|has| |#1| (-931 (-516))))))) (((-1050 |#1| |#2|) $) NIL)) (-4035 (($ $ $ |#2|) NIL (|has| |#1| (-162))) (($ $ $) 104 (|has| |#1| (-523)))) (-4235 (($ $) NIL) (($ $ |#2|) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-3976 (((-110) $ $) NIL) (((-110) $ (-594 $)) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3447 (((-110) $) NIL)) (-4031 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 70)) (-3418 (($ $) 119 (|has| |#1| (-432)))) (-3777 (($ $) NIL (|has| |#1| (-432))) (($ $ |#2|) NIL (|has| |#1| (-432)))) (-3082 (((-594 $) $) NIL)) (-4005 (((-110) $) NIL (|has| |#1| (-851)))) (-3429 (($ $) NIL (|has| |#1| (-523)))) (-3430 (($ $) NIL (|has| |#1| (-523)))) (-3440 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3439 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-1671 (($ $ |#1| (-502 |#2|) $) NIL)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (-12 (|has| |#1| (-827 (-359))) (|has| |#2| (-827 (-359))))) (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (-12 (|has| |#1| (-827 (-516))) (|has| |#2| (-827 (-516)))))) (-2436 (((-110) $) NIL)) (-2444 (((-719) $) NIL)) (-3977 (((-110) $ $) NIL) (((-110) $ (-594 $)) NIL)) (-3420 (($ $ $ $ $) 90 (|has| |#1| (-523)))) (-3455 ((|#2| $) 19)) (-3350 (($ (-1092 |#1|) |#2|) NIL) (($ (-1092 $) |#2|) NIL)) (-3085 (((-594 $) $) NIL)) (-4213 (((-110) $) NIL)) (-3157 (($ |#1| (-502 |#2|)) NIL) (($ $ |#2| (-719)) 36) (($ $ (-594 |#2|) (-594 (-719))) NIL)) (-3434 (($ $ $) 60)) (-4041 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $ |#2|) NIL)) (-3448 (((-110) $) NIL)) (-3084 (((-502 |#2|) $) NIL) (((-719) $ |#2|) NIL) (((-594 (-719)) $ (-594 |#2|)) NIL)) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3454 (((-719) $) 20)) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-1672 (($ (-1 (-502 |#2|) (-502 |#2|)) $) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-3348 (((-3 |#2| #4="failed") $) NIL)) (-3415 (($ $) NIL (|has| |#1| (-432)))) (-3416 (($ $) NIL (|has| |#1| (-432)))) (-3443 (((-594 $) $) NIL)) (-3446 (($ $) 37)) (-3417 (($ $) NIL (|has| |#1| (-432)))) (-3444 (((-594 $) $) 41)) (-3445 (($ $) 39)) (-3158 (($ $) NIL)) (-3449 ((|#1| $) NIL) (($ $ |#2|) 45)) (-1963 (($ (-594 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3433 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3755 (-719))) $ $) 82)) (-3435 (((-2 (|:| -4229 $) (|:| |gap| (-719)) (|:| -2046 $) (|:| -3166 $)) $ $) 67) (((-2 (|:| -4229 $) (|:| |gap| (-719)) (|:| -2046 $) (|:| -3166 $)) $ $ |#2|) NIL)) (-3436 (((-2 (|:| -4229 $) (|:| |gap| (-719)) (|:| -3166 $)) $ $) NIL) (((-2 (|:| -4229 $) (|:| |gap| (-719)) (|:| -3166 $)) $ $ |#2|) NIL)) (-3438 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-3437 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-3513 (((-1081) $) NIL)) (-3464 (($ $ $) 108 (|has| |#1| (-523)))) (-3451 (((-594 $) $) 30)) (-3087 (((-3 (-594 $) #4#) $) NIL)) (-3086 (((-3 (-594 $) #4#) $) NIL)) (-3088 (((-3 (-2 (|:| |var| |#2|) (|:| -2427 (-719))) #4#) $) NIL)) (-3973 (((-110) $ $) NIL) (((-110) $ (-594 $)) NIL)) (-3968 (($ $ $) NIL)) (-3724 (($ $) 21)) (-3981 (((-110) $ $) NIL)) (-3974 (((-110) $ $) NIL) (((-110) $ (-594 $)) NIL)) (-3969 (($ $ $) NIL)) (-3453 (($ $) 23)) (-3514 (((-1045) $) NIL)) (-3424 (((-2 (|:| -3419 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-523)))) (-3425 (((-2 (|:| -3419 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-523)))) (-1866 (((-110) $) 52)) (-1865 ((|#1| $) 55)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#1| (-432)))) (-3419 ((|#1| |#1| $) 116 (|has| |#1| (-432))) (($ (-594 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-4011 (((-386 $) $) NIL (|has| |#1| (-851)))) (-3426 (((-2 (|:| -3419 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-523)))) (-3740 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-523)))) (-3427 (($ $ |#1|) 112 (|has| |#1| (-523))) (($ $ $) NIL (|has| |#1| (-523)))) (-3428 (($ $ |#1|) 111 (|has| |#1| (-523))) (($ $ $) NIL (|has| |#1| (-523)))) (-4046 (($ $ (-594 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-594 |#2|) (-594 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-594 |#2|) (-594 $)) NIL)) (-4036 (($ $ |#2|) NIL (|has| |#1| (-162)))) (-4089 (($ $ |#2|) NIL) (($ $ (-594 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-594 |#2|) (-594 (-719))) NIL)) (-4223 (((-502 |#2|) $) NIL) (((-719) $ |#2|) 43) (((-594 (-719)) $ (-594 |#2|)) NIL)) (-3452 (($ $) NIL)) (-3450 (($ $) 33)) (-4246 (((-831 (-359)) $) NIL (-12 (|has| |#1| (-572 (-831 (-359)))) (|has| |#2| (-572 (-831 (-359)))))) (((-831 (-516)) $) NIL (-12 (|has| |#1| (-572 (-831 (-516)))) (|has| |#2| (-572 (-831 (-516)))))) (((-505) $) NIL (-12 (|has| |#1| (-572 (-505))) (|has| |#2| (-572 (-505))))) (($ (-887 (-388 (-516)))) NIL (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#2| (-572 (-1098))))) (($ (-887 (-516))) NIL (-3810 (-12 (|has| |#1| (-37 (-516))) (|has| |#2| (-572 (-1098))) (-3595 (|has| |#1| (-37 (-388 (-516)))))) (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#2| (-572 (-1098)))))) (($ (-887 |#1|)) NIL (|has| |#2| (-572 (-1098)))) (((-1081) $) NIL (-12 (|has| |#1| (-975 (-516))) (|has| |#2| (-572 (-1098))))) (((-887 |#1|) $) NIL (|has| |#2| (-572 (-1098))))) (-3081 ((|#1| $) 115 (|has| |#1| (-432))) (($ $ |#2|) NIL (|has| |#1| (-432)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-851))))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-887 |#1|) $) NIL (|has| |#2| (-572 (-1098)))) (((-1050 |#1| |#2|) $) 15) (($ (-1050 |#1| |#2|)) 16) (($ (-388 (-516))) NIL (-3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-975 (-388 (-516)))))) (($ $) NIL (|has| |#1| (-523)))) (-4096 (((-594 |#1|) $) NIL)) (-3959 ((|#1| $ (-502 |#2|)) NIL) (($ $ |#2| (-719)) 44) (($ $ (-594 |#2|) (-594 (-719))) NIL)) (-2965 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| $ (-138)) (|has| |#1| (-851))) (|has| |#1| (-138))))) (-3385 (((-719)) NIL)) (-1670 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-2117 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 13 T CONST)) (-3442 (((-3 (-110) #3#) $ $) NIL)) (-2927 (($) 35 T CONST)) (-3421 (($ $ $ $ (-719)) 88 (|has| |#1| (-523)))) (-3422 (($ $ $ (-719)) 87 (|has| |#1| (-523)))) (-2932 (($ $ |#2|) NIL) (($ $ (-594 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-594 |#2|) (-594 (-719))) NIL)) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) 54)) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#1| (-795)))) (-4224 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-4116 (($ $) NIL) (($ $ $) 64)) (-4118 (($ $ $) 74)) (** (($ $ (-860)) NIL) (($ $ (-719)) 61)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 59) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516))))) (($ (-388 (-516)) $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
+(((-728 |#1| |#2|) (-13 (-997 |#1| (-502 |#2|) |#2|) (-571 (-1050 |#1| |#2|)) (-975 (-1050 |#1| |#2|))) (-984) (-795)) (T -728))
+NIL
+(-13 (-997 |#1| (-502 |#2|) |#2|) (-571 (-1050 |#1| |#2|)) (-975 (-1050 |#1| |#2|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 12)) (-4045 (((-1179 |#1|) $ (-719)) NIL)) (-3347 (((-594 (-1011)) $) NIL)) (-4043 (($ (-1092 |#1|)) NIL)) (-3349 (((-1092 $) $ (-1011)) NIL) (((-1092 |#1|) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-2118 (($ $) NIL (|has| |#1| (-523)))) (-2116 (((-110) $) NIL (|has| |#1| (-523)))) (-3083 (((-719) $) NIL) (((-719) $ (-594 (-1011))) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-2638 (((-594 $) $ $) 39 (|has| |#1| (-523)))) (-4034 (($ $ $) 35 (|has| |#1| (-523)))) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-4053 (($ $) NIL (|has| |#1| (-432)))) (-4245 (((-386 $) $) NIL (|has| |#1| (-432)))) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-1655 (((-110) $ $) NIL (|has| |#1| (-344)))) (-4039 (($ $ (-719)) NIL)) (-4038 (($ $ (-719)) NIL)) (-4030 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-432)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#1| #2="failed") $) NIL) (((-3 (-388 (-516)) #2#) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-3 (-516) #2#) $) NIL (|has| |#1| (-975 (-516)))) (((-3 (-1011) #2#) $) NIL) (((-3 (-1092 |#1|) #2#) $) 10)) (-3431 ((|#1| $) NIL) (((-388 (-516)) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-516) $) NIL (|has| |#1| (-975 (-516)))) (((-1011) $) NIL) (((-1092 |#1|) $) NIL)) (-4035 (($ $ $ (-1011)) NIL (|has| |#1| (-162))) ((|#1| $ $) 43 (|has| |#1| (-162)))) (-2824 (($ $ $) NIL (|has| |#1| (-344)))) (-4235 (($ $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-2823 (($ $ $) NIL (|has| |#1| (-344)))) (-4037 (($ $ $) NIL)) (-4032 (($ $ $) 71 (|has| |#1| (-523)))) (-4031 (((-2 (|:| -4229 |#1|) (|:| -2046 $) (|:| -3166 $)) $ $) 70 (|has| |#1| (-523)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL (|has| |#1| (-344)))) (-3777 (($ $) NIL (|has| |#1| (-432))) (($ $ (-1011)) NIL (|has| |#1| (-432)))) (-3082 (((-594 $) $) NIL)) (-4005 (((-110) $) NIL (|has| |#1| (-851)))) (-1671 (($ $ |#1| (-719) $) NIL)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (-12 (|has| (-1011) (-827 (-359))) (|has| |#1| (-827 (-359))))) (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (-12 (|has| (-1011) (-827 (-516))) (|has| |#1| (-827 (-516)))))) (-4050 (((-719) $ $) NIL (|has| |#1| (-523)))) (-2436 (((-110) $) NIL)) (-2444 (((-719) $) NIL)) (-3723 (((-3 $ "failed") $) NIL (|has| |#1| (-1074)))) (-3350 (($ (-1092 |#1|) (-1011)) NIL) (($ (-1092 $) (-1011)) NIL)) (-4055 (($ $ (-719)) NIL)) (-1652 (((-3 (-594 $) #3="failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-3085 (((-594 $) $) NIL)) (-4213 (((-110) $) NIL)) (-3157 (($ |#1| (-719)) NIL) (($ $ (-1011) (-719)) NIL) (($ $ (-594 (-1011)) (-594 (-719))) NIL)) (-3434 (($ $ $) 20)) (-4041 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $ (-1011)) NIL) (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-3084 (((-719) $) NIL) (((-719) $ (-1011)) NIL) (((-594 (-719)) $ (-594 (-1011))) NIL)) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-1672 (($ (-1 (-719) (-719)) $) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-4044 (((-1092 |#1|) $) NIL)) (-3348 (((-3 (-1011) #4="failed") $) NIL)) (-3158 (($ $) NIL)) (-3449 ((|#1| $) NIL)) (-1963 (($ (-594 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3433 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3755 (-719))) $ $) 26)) (-2640 (($ $ $) 29)) (-2639 (($ $ $) 32)) (-3435 (((-2 (|:| -4229 |#1|) (|:| |gap| (-719)) (|:| -2046 $) (|:| -3166 $)) $ $) 31)) (-3513 (((-1081) $) NIL)) (-3464 (($ $ $) 41 (|has| |#1| (-523)))) (-4040 (((-2 (|:| -2046 $) (|:| -3166 $)) $ (-719)) NIL)) (-3087 (((-3 (-594 $) #4#) $) NIL)) (-3086 (((-3 (-594 $) #4#) $) NIL)) (-3088 (((-3 (-2 (|:| |var| (-1011)) (|:| -2427 (-719))) #4#) $) NIL)) (-4091 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3724 (($) NIL (|has| |#1| (-1074)) CONST)) (-3514 (((-1045) $) NIL)) (-3424 (((-2 (|:| -3419 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-523)))) (-3425 (((-2 (|:| -3419 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-523)))) (-2635 (((-2 (|:| -4035 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-523)))) (-2636 (((-2 (|:| -4035 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-523)))) (-1866 (((-110) $) 13)) (-1865 ((|#1| $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#1| (-432)))) (-3419 (($ (-594 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-4017 (($ $ (-719) |#1| $) 19)) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-4011 (((-386 $) $) NIL (|has| |#1| (-851)))) (-3426 (((-2 (|:| -3419 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-523)))) (-2637 (((-2 (|:| -4035 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-523)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#1| (-344)))) (-3740 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-4046 (($ $ (-594 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL) (($ $ (-1011) |#1|) NIL) (($ $ (-594 (-1011)) (-594 |#1|)) NIL) (($ $ (-1011) $) NIL) (($ $ (-594 (-1011)) (-594 $)) NIL)) (-1654 (((-719) $) NIL (|has| |#1| (-344)))) (-4078 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-388 $) (-388 $) (-388 $)) NIL (|has| |#1| (-523))) ((|#1| (-388 $) |#1|) NIL (|has| |#1| (-344))) (((-388 $) $ (-388 $)) NIL (|has| |#1| (-523)))) (-4042 (((-3 $ #5="failed") $ (-719)) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-344)))) (-4036 (($ $ (-1011)) NIL (|has| |#1| (-162))) ((|#1| $) NIL (|has| |#1| (-162)))) (-4089 (($ $ (-1011)) NIL) (($ $ (-594 (-1011))) NIL) (($ $ (-1011) (-719)) NIL) (($ $ (-594 (-1011)) (-594 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1098)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4223 (((-719) $) NIL) (((-719) $ (-1011)) NIL) (((-594 (-719)) $ (-594 (-1011))) NIL)) (-4246 (((-831 (-359)) $) NIL (-12 (|has| (-1011) (-572 (-831 (-359)))) (|has| |#1| (-572 (-831 (-359)))))) (((-831 (-516)) $) NIL (-12 (|has| (-1011) (-572 (-831 (-516)))) (|has| |#1| (-572 (-831 (-516)))))) (((-505) $) NIL (-12 (|has| (-1011) (-572 (-505))) (|has| |#1| (-572 (-505)))))) (-3081 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-1011)) NIL (|has| |#1| (-432)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-851))))) (-4033 (((-3 $ #5#) $ $) NIL (|has| |#1| (-523))) (((-3 (-388 $) #5#) (-388 $) $) NIL (|has| |#1| (-523)))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ |#1|) NIL) (($ (-1011)) NIL) (((-1092 |#1|) $) 7) (($ (-1092 |#1|)) 8) (($ (-388 (-516))) NIL (-3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-975 (-388 (-516)))))) (($ $) NIL (|has| |#1| (-523)))) (-4096 (((-594 |#1|) $) NIL)) (-3959 ((|#1| $ (-719)) NIL) (($ $ (-1011) (-719)) NIL) (($ $ (-594 (-1011)) (-594 (-719))) NIL)) (-2965 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| $ (-138)) (|has| |#1| (-851))) (|has| |#1| (-138))))) (-3385 (((-719)) NIL)) (-1670 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-2117 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 21 T CONST)) (-2927 (($) 24 T CONST)) (-2932 (($ $ (-1011)) NIL) (($ $ (-594 (-1011))) NIL) (($ $ (-1011) (-719)) NIL) (($ $ (-594 (-1011)) (-594 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1098)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#1| (-795)))) (-4224 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-4116 (($ $) 28) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516))))) (($ (-388 (-516)) $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
+(((-729 |#1|) (-13 (-1155 |#1|) (-571 (-1092 |#1|)) (-975 (-1092 |#1|)) (-10 -8 (-15 -4017 ($ $ (-719) |#1| $)) (-15 -3434 ($ $ $)) (-15 -3433 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3755 (-719))) $ $)) (-15 -2640 ($ $ $)) (-15 -3435 ((-2 (|:| -4229 |#1|) (|:| |gap| (-719)) (|:| -2046 $) (|:| -3166 $)) $ $)) (-15 -2639 ($ $ $)) (IF (|has| |#1| (-523)) (PROGN (-15 -2638 ((-594 $) $ $)) (-15 -3464 ($ $ $)) (-15 -3426 ((-2 (|:| -3419 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3425 ((-2 (|:| -3419 $) (|:| |coef1| $)) $ $)) (-15 -3424 ((-2 (|:| -3419 $) (|:| |coef2| $)) $ $)) (-15 -2637 ((-2 (|:| -4035 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2636 ((-2 (|:| -4035 |#1|) (|:| |coef1| $)) $ $)) (-15 -2635 ((-2 (|:| -4035 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-984)) (T -729))
+((-4017 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-719)) (-5 *1 (-729 *3)) (-4 *3 (-984)))) (-3434 (*1 *1 *1 *1) (-12 (-5 *1 (-729 *2)) (-4 *2 (-984)))) (-3433 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-729 *3)) (|:| |polden| *3) (|:| -3755 (-719)))) (-5 *1 (-729 *3)) (-4 *3 (-984)))) (-2640 (*1 *1 *1 *1) (-12 (-5 *1 (-729 *2)) (-4 *2 (-984)))) (-3435 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4229 *3) (|:| |gap| (-719)) (|:| -2046 (-729 *3)) (|:| -3166 (-729 *3)))) (-5 *1 (-729 *3)) (-4 *3 (-984)))) (-2639 (*1 *1 *1 *1) (-12 (-5 *1 (-729 *2)) (-4 *2 (-984)))) (-2638 (*1 *2 *1 *1) (-12 (-5 *2 (-594 (-729 *3))) (-5 *1 (-729 *3)) (-4 *3 (-523)) (-4 *3 (-984)))) (-3464 (*1 *1 *1 *1) (-12 (-5 *1 (-729 *2)) (-4 *2 (-523)) (-4 *2 (-984)))) (-3426 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3419 (-729 *3)) (|:| |coef1| (-729 *3)) (|:| |coef2| (-729 *3)))) (-5 *1 (-729 *3)) (-4 *3 (-523)) (-4 *3 (-984)))) (-3425 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3419 (-729 *3)) (|:| |coef1| (-729 *3)))) (-5 *1 (-729 *3)) (-4 *3 (-523)) (-4 *3 (-984)))) (-3424 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3419 (-729 *3)) (|:| |coef2| (-729 *3)))) (-5 *1 (-729 *3)) (-4 *3 (-523)) (-4 *3 (-984)))) (-2637 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4035 *3) (|:| |coef1| (-729 *3)) (|:| |coef2| (-729 *3)))) (-5 *1 (-729 *3)) (-4 *3 (-523)) (-4 *3 (-984)))) (-2636 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4035 *3) (|:| |coef1| (-729 *3)))) (-5 *1 (-729 *3)) (-4 *3 (-523)) (-4 *3 (-984)))) (-2635 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4035 *3) (|:| |coef2| (-729 *3)))) (-5 *1 (-729 *3)) (-4 *3 (-523)) (-4 *3 (-984)))))
+(-13 (-1155 |#1|) (-571 (-1092 |#1|)) (-975 (-1092 |#1|)) (-10 -8 (-15 -4017 ($ $ (-719) |#1| $)) (-15 -3434 ($ $ $)) (-15 -3433 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3755 (-719))) $ $)) (-15 -2640 ($ $ $)) (-15 -3435 ((-2 (|:| -4229 |#1|) (|:| |gap| (-719)) (|:| -2046 $) (|:| -3166 $)) $ $)) (-15 -2639 ($ $ $)) (IF (|has| |#1| (-523)) (PROGN (-15 -2638 ((-594 $) $ $)) (-15 -3464 ($ $ $)) (-15 -3426 ((-2 (|:| -3419 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3425 ((-2 (|:| -3419 $) (|:| |coef1| $)) $ $)) (-15 -3424 ((-2 (|:| -3419 $) (|:| |coef2| $)) $ $)) (-15 -2637 ((-2 (|:| -4035 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2636 ((-2 (|:| -4035 |#1|) (|:| |coef1| $)) $ $)) (-15 -2635 ((-2 (|:| -4035 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-4234 (((-729 |#2|) (-1 |#2| |#1|) (-729 |#1|)) 13)))
+(((-730 |#1| |#2|) (-10 -7 (-15 -4234 ((-729 |#2|) (-1 |#2| |#1|) (-729 |#1|)))) (-984) (-984)) (T -730))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-729 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-5 *2 (-729 *6)) (-5 *1 (-730 *5 *6)))))
+(-10 -7 (-15 -4234 ((-729 |#2|) (-1 |#2| |#1|) (-729 |#1|))))
+((-2642 ((|#1| (-719) |#1|) 32 (|has| |#1| (-37 (-388 (-516)))))) (-3065 ((|#1| (-719) |#1|) 22)) (-2641 ((|#1| (-719) |#1|) 34 (|has| |#1| (-37 (-388 (-516)))))))
+(((-731 |#1|) (-10 -7 (-15 -3065 (|#1| (-719) |#1|)) (IF (|has| |#1| (-37 (-388 (-516)))) (PROGN (-15 -2641 (|#1| (-719) |#1|)) (-15 -2642 (|#1| (-719) |#1|))) |%noBranch|)) (-162)) (T -731))
+((-2642 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-731 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-162)))) (-2641 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-731 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-162)))) (-3065 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-731 *2)) (-4 *2 (-162)))))
+(-10 -7 (-15 -3065 (|#1| (-719) |#1|)) (IF (|has| |#1| (-37 (-388 (-516)))) (PROGN (-15 -2641 (|#1| (-719) |#1|)) (-15 -2642 (|#1| (-719) |#1|))) |%noBranch|))
+((-2828 (((-110) $ $) 7)) (-3963 (((-594 (-2 (|:| -4140 $) (|:| -1768 (-594 |#4|)))) (-594 |#4|)) 85)) (-3964 (((-594 $) (-594 |#4|)) 86) (((-594 $) (-594 |#4|) (-110)) 111)) (-3347 (((-594 |#3|) $) 33)) (-3172 (((-110) $) 26)) (-3163 (((-110) $) 17 (|has| |#1| (-523)))) (-3975 (((-110) |#4| $) 101) (((-110) $) 97)) (-3970 ((|#4| |#4| $) 92)) (-4053 (((-594 (-2 (|:| |val| |#4|) (|:| -1610 $))) |#4| $) 126)) (-3173 (((-2 (|:| |under| $) (|:| -3389 $) (|:| |upper| $)) $ |#3|) 27)) (-1217 (((-110) $ (-719)) 44)) (-3992 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4269))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3815 (($) 45 T CONST)) (-3168 (((-110) $) 22 (|has| |#1| (-523)))) (-3170 (((-110) $ $) 24 (|has| |#1| (-523)))) (-3169 (((-110) $ $) 23 (|has| |#1| (-523)))) (-3171 (((-110) $) 25 (|has| |#1| (-523)))) (-3971 (((-594 |#4|) (-594 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-3164 (((-594 |#4|) (-594 |#4|) $) 18 (|has| |#1| (-523)))) (-3165 (((-594 |#4|) (-594 |#4|) $) 19 (|has| |#1| (-523)))) (-3432 (((-3 $ "failed") (-594 |#4|)) 36)) (-3431 (($ (-594 |#4|)) 35)) (-4077 (((-3 $ #1#) $) 82)) (-3967 ((|#4| |#4| $) 89)) (-1349 (($ $) 68 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-3685 (($ |#4| $) 67 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4269)))) (-3166 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-523)))) (-3976 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-3965 ((|#4| |#4| $) 87)) (-4121 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-3978 (((-2 (|:| -4140 (-594 |#4|)) (|:| -1768 (-594 |#4|))) $) 105)) (-3471 (((-110) |#4| $) 136)) (-3469 (((-110) |#4| $) 133)) (-3472 (((-110) |#4| $) 137) (((-110) $) 134)) (-2018 (((-594 |#4|) $) 52 (|has| $ (-6 -4269)))) (-3977 (((-110) |#4| $) 104) (((-110) $) 103)) (-3455 ((|#3| $) 34)) (-4001 (((-110) $ (-719)) 43)) (-2445 (((-594 |#4|) $) 53 (|has| $ (-6 -4269)))) (-3516 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-2022 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#4| |#4|) $) 47)) (-3178 (((-594 |#3|) $) 32)) (-3177 (((-110) |#3| $) 31)) (-3998 (((-110) $ (-719)) 42)) (-3513 (((-1081) $) 9)) (-3465 (((-3 |#4| (-594 $)) |#4| |#4| $) 128)) (-3464 (((-594 (-2 (|:| |val| |#4|) (|:| -1610 $))) |#4| |#4| $) 127)) (-4076 (((-3 |#4| #1#) $) 83)) (-3466 (((-594 $) |#4| $) 129)) (-3468 (((-3 (-110) (-594 $)) |#4| $) 132)) (-3467 (((-594 (-2 (|:| |val| (-110)) (|:| -1610 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-3509 (((-594 $) |#4| $) 125) (((-594 $) (-594 |#4|) $) 124) (((-594 $) (-594 |#4|) (-594 $)) 123) (((-594 $) |#4| (-594 $)) 122)) (-3719 (($ |#4| $) 117) (($ (-594 |#4|) $) 116)) (-3979 (((-594 |#4|) $) 107)) (-3973 (((-110) |#4| $) 99) (((-110) $) 95)) (-3968 ((|#4| |#4| $) 90)) (-3981 (((-110) $ $) 110)) (-3167 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-523)))) (-3974 (((-110) |#4| $) 100) (((-110) $) 96)) (-3969 ((|#4| |#4| $) 91)) (-3514 (((-1045) $) 10)) (-4079 (((-3 |#4| #1#) $) 84)) (-1350 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-3961 (((-3 $ #1#) $ |#4|) 78)) (-4047 (($ $ |#4|) 77) (((-594 $) |#4| $) 115) (((-594 $) |#4| (-594 $)) 114) (((-594 $) (-594 |#4|) $) 113) (((-594 $) (-594 |#4|) (-594 $)) 112)) (-2020 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 |#4|) (-594 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-275 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-594 (-275 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-1218 (((-110) $ $) 38)) (-3682 (((-110) $) 41)) (-3847 (($) 40)) (-4223 (((-719) $) 106)) (-2019 (((-719) |#4| $) 54 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4269)))) (-3678 (($ $) 39)) (-4246 (((-505) $) 69 (|has| |#4| (-572 (-505))))) (-3804 (($ (-594 |#4|)) 60)) (-3174 (($ $ |#3|) 28)) (-3176 (($ $ |#3|) 30)) (-3966 (($ $) 88)) (-3175 (($ $ |#3|) 29)) (-4233 (((-805) $) 11) (((-594 |#4|) $) 37)) (-3960 (((-719) $) 76 (|has| |#3| (-349)))) (-3980 (((-3 (-2 (|:| |bas| $) (|:| -3602 (-594 |#4|))) #1#) (-594 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3602 (-594 |#4|))) #1#) (-594 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-3972 (((-110) $ (-1 (-110) |#4| (-594 |#4|))) 98)) (-3463 (((-594 $) |#4| $) 121) (((-594 $) |#4| (-594 $)) 120) (((-594 $) (-594 |#4|) $) 119) (((-594 $) (-594 |#4|) (-594 $)) 118)) (-2021 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4269)))) (-3962 (((-594 |#3|) $) 81)) (-3470 (((-110) |#4| $) 135)) (-4209 (((-110) |#3| $) 80)) (-3317 (((-110) $ $) 6)) (-4232 (((-719) $) 46 (|has| $ (-6 -4269)))))
+(((-732 |#1| |#2| |#3| |#4|) (-133) (-432) (-741) (-795) (-997 |t#1| |t#2| |t#3|)) (T -732))
+NIL
+(-13 (-1002 |t#1| |t#2| |t#3| |t#4|))
+(((-33) . T) ((-99) . T) ((-571 (-594 |#4|)) . T) ((-571 (-805)) . T) ((-144 |#4|) . T) ((-572 (-505)) |has| |#4| (-572 (-505))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-468 |#4|) . T) ((-491 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1002 |#1| |#2| |#3| |#4|) . T) ((-1027) . T) ((-1129 |#1| |#2| |#3| |#4|) . T) ((-1134) . T))
+((-2645 (((-3 (-359) "failed") (-295 |#1|) (-860)) 62 (-12 (|has| |#1| (-523)) (|has| |#1| (-795)))) (((-3 (-359) "failed") (-295 |#1|)) 54 (-12 (|has| |#1| (-523)) (|has| |#1| (-795)))) (((-3 (-359) "failed") (-388 (-887 |#1|)) (-860)) 41 (|has| |#1| (-523))) (((-3 (-359) "failed") (-388 (-887 |#1|))) 40 (|has| |#1| (-523))) (((-3 (-359) "failed") (-887 |#1|) (-860)) 31 (|has| |#1| (-984))) (((-3 (-359) "failed") (-887 |#1|)) 30 (|has| |#1| (-984)))) (-2643 (((-359) (-295 |#1|) (-860)) 99 (-12 (|has| |#1| (-523)) (|has| |#1| (-795)))) (((-359) (-295 |#1|)) 94 (-12 (|has| |#1| (-523)) (|has| |#1| (-795)))) (((-359) (-388 (-887 |#1|)) (-860)) 91 (|has| |#1| (-523))) (((-359) (-388 (-887 |#1|))) 90 (|has| |#1| (-523))) (((-359) (-887 |#1|) (-860)) 86 (|has| |#1| (-984))) (((-359) (-887 |#1|)) 85 (|has| |#1| (-984))) (((-359) |#1| (-860)) 76) (((-359) |#1|) 22)) (-2646 (((-3 (-158 (-359)) "failed") (-295 (-158 |#1|)) (-860)) 71 (-12 (|has| |#1| (-523)) (|has| |#1| (-795)))) (((-3 (-158 (-359)) "failed") (-295 (-158 |#1|))) 70 (-12 (|has| |#1| (-523)) (|has| |#1| (-795)))) (((-3 (-158 (-359)) "failed") (-295 |#1|) (-860)) 63 (-12 (|has| |#1| (-523)) (|has| |#1| (-795)))) (((-3 (-158 (-359)) "failed") (-295 |#1|)) 61 (-12 (|has| |#1| (-523)) (|has| |#1| (-795)))) (((-3 (-158 (-359)) "failed") (-388 (-887 (-158 |#1|))) (-860)) 46 (|has| |#1| (-523))) (((-3 (-158 (-359)) "failed") (-388 (-887 (-158 |#1|)))) 45 (|has| |#1| (-523))) (((-3 (-158 (-359)) "failed") (-388 (-887 |#1|)) (-860)) 39 (|has| |#1| (-523))) (((-3 (-158 (-359)) "failed") (-388 (-887 |#1|))) 38 (|has| |#1| (-523))) (((-3 (-158 (-359)) "failed") (-887 |#1|) (-860)) 28 (|has| |#1| (-984))) (((-3 (-158 (-359)) "failed") (-887 |#1|)) 26 (|has| |#1| (-984))) (((-3 (-158 (-359)) "failed") (-887 (-158 |#1|)) (-860)) 18 (|has| |#1| (-162))) (((-3 (-158 (-359)) "failed") (-887 (-158 |#1|))) 15 (|has| |#1| (-162)))) (-2644 (((-158 (-359)) (-295 (-158 |#1|)) (-860)) 102 (-12 (|has| |#1| (-523)) (|has| |#1| (-795)))) (((-158 (-359)) (-295 (-158 |#1|))) 101 (-12 (|has| |#1| (-523)) (|has| |#1| (-795)))) (((-158 (-359)) (-295 |#1|) (-860)) 100 (-12 (|has| |#1| (-523)) (|has| |#1| (-795)))) (((-158 (-359)) (-295 |#1|)) 98 (-12 (|has| |#1| (-523)) (|has| |#1| (-795)))) (((-158 (-359)) (-388 (-887 (-158 |#1|))) (-860)) 93 (|has| |#1| (-523))) (((-158 (-359)) (-388 (-887 (-158 |#1|)))) 92 (|has| |#1| (-523))) (((-158 (-359)) (-388 (-887 |#1|)) (-860)) 89 (|has| |#1| (-523))) (((-158 (-359)) (-388 (-887 |#1|))) 88 (|has| |#1| (-523))) (((-158 (-359)) (-887 |#1|) (-860)) 84 (|has| |#1| (-984))) (((-158 (-359)) (-887 |#1|)) 83 (|has| |#1| (-984))) (((-158 (-359)) (-887 (-158 |#1|)) (-860)) 78 (|has| |#1| (-162))) (((-158 (-359)) (-887 (-158 |#1|))) 77 (|has| |#1| (-162))) (((-158 (-359)) (-158 |#1|) (-860)) 80 (|has| |#1| (-162))) (((-158 (-359)) (-158 |#1|)) 79 (|has| |#1| (-162))) (((-158 (-359)) |#1| (-860)) 27) (((-158 (-359)) |#1|) 25)))
+(((-733 |#1|) (-10 -7 (-15 -2643 ((-359) |#1|)) (-15 -2643 ((-359) |#1| (-860))) (-15 -2644 ((-158 (-359)) |#1|)) (-15 -2644 ((-158 (-359)) |#1| (-860))) (IF (|has| |#1| (-162)) (PROGN (-15 -2644 ((-158 (-359)) (-158 |#1|))) (-15 -2644 ((-158 (-359)) (-158 |#1|) (-860))) (-15 -2644 ((-158 (-359)) (-887 (-158 |#1|)))) (-15 -2644 ((-158 (-359)) (-887 (-158 |#1|)) (-860)))) |%noBranch|) (IF (|has| |#1| (-984)) (PROGN (-15 -2643 ((-359) (-887 |#1|))) (-15 -2643 ((-359) (-887 |#1|) (-860))) (-15 -2644 ((-158 (-359)) (-887 |#1|))) (-15 -2644 ((-158 (-359)) (-887 |#1|) (-860)))) |%noBranch|) (IF (|has| |#1| (-523)) (PROGN (-15 -2643 ((-359) (-388 (-887 |#1|)))) (-15 -2643 ((-359) (-388 (-887 |#1|)) (-860))) (-15 -2644 ((-158 (-359)) (-388 (-887 |#1|)))) (-15 -2644 ((-158 (-359)) (-388 (-887 |#1|)) (-860))) (-15 -2644 ((-158 (-359)) (-388 (-887 (-158 |#1|))))) (-15 -2644 ((-158 (-359)) (-388 (-887 (-158 |#1|))) (-860))) (IF (|has| |#1| (-795)) (PROGN (-15 -2643 ((-359) (-295 |#1|))) (-15 -2643 ((-359) (-295 |#1|) (-860))) (-15 -2644 ((-158 (-359)) (-295 |#1|))) (-15 -2644 ((-158 (-359)) (-295 |#1|) (-860))) (-15 -2644 ((-158 (-359)) (-295 (-158 |#1|)))) (-15 -2644 ((-158 (-359)) (-295 (-158 |#1|)) (-860)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-15 -2646 ((-3 (-158 (-359)) "failed") (-887 (-158 |#1|)))) (-15 -2646 ((-3 (-158 (-359)) "failed") (-887 (-158 |#1|)) (-860)))) |%noBranch|) (IF (|has| |#1| (-984)) (PROGN (-15 -2645 ((-3 (-359) "failed") (-887 |#1|))) (-15 -2645 ((-3 (-359) "failed") (-887 |#1|) (-860))) (-15 -2646 ((-3 (-158 (-359)) "failed") (-887 |#1|))) (-15 -2646 ((-3 (-158 (-359)) "failed") (-887 |#1|) (-860)))) |%noBranch|) (IF (|has| |#1| (-523)) (PROGN (-15 -2645 ((-3 (-359) "failed") (-388 (-887 |#1|)))) (-15 -2645 ((-3 (-359) "failed") (-388 (-887 |#1|)) (-860))) (-15 -2646 ((-3 (-158 (-359)) "failed") (-388 (-887 |#1|)))) (-15 -2646 ((-3 (-158 (-359)) "failed") (-388 (-887 |#1|)) (-860))) (-15 -2646 ((-3 (-158 (-359)) "failed") (-388 (-887 (-158 |#1|))))) (-15 -2646 ((-3 (-158 (-359)) "failed") (-388 (-887 (-158 |#1|))) (-860))) (IF (|has| |#1| (-795)) (PROGN (-15 -2645 ((-3 (-359) "failed") (-295 |#1|))) (-15 -2645 ((-3 (-359) "failed") (-295 |#1|) (-860))) (-15 -2646 ((-3 (-158 (-359)) "failed") (-295 |#1|))) (-15 -2646 ((-3 (-158 (-359)) "failed") (-295 |#1|) (-860))) (-15 -2646 ((-3 (-158 (-359)) "failed") (-295 (-158 |#1|)))) (-15 -2646 ((-3 (-158 (-359)) "failed") (-295 (-158 |#1|)) (-860)))) |%noBranch|)) |%noBranch|)) (-572 (-359))) (T -733))
+((-2646 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-295 (-158 *5))) (-5 *4 (-860)) (-4 *5 (-523)) (-4 *5 (-795)) (-4 *5 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *5)))) (-2646 (*1 *2 *3) (|partial| -12 (-5 *3 (-295 (-158 *4))) (-4 *4 (-523)) (-4 *4 (-795)) (-4 *4 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *4)))) (-2646 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-295 *5)) (-5 *4 (-860)) (-4 *5 (-523)) (-4 *5 (-795)) (-4 *5 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *5)))) (-2646 (*1 *2 *3) (|partial| -12 (-5 *3 (-295 *4)) (-4 *4 (-523)) (-4 *4 (-795)) (-4 *4 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *4)))) (-2645 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-295 *5)) (-5 *4 (-860)) (-4 *5 (-523)) (-4 *5 (-795)) (-4 *5 (-572 *2)) (-5 *2 (-359)) (-5 *1 (-733 *5)))) (-2645 (*1 *2 *3) (|partial| -12 (-5 *3 (-295 *4)) (-4 *4 (-523)) (-4 *4 (-795)) (-4 *4 (-572 *2)) (-5 *2 (-359)) (-5 *1 (-733 *4)))) (-2646 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-388 (-887 (-158 *5)))) (-5 *4 (-860)) (-4 *5 (-523)) (-4 *5 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *5)))) (-2646 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-887 (-158 *4)))) (-4 *4 (-523)) (-4 *4 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *4)))) (-2646 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-388 (-887 *5))) (-5 *4 (-860)) (-4 *5 (-523)) (-4 *5 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *5)))) (-2646 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-887 *4))) (-4 *4 (-523)) (-4 *4 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *4)))) (-2645 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-388 (-887 *5))) (-5 *4 (-860)) (-4 *5 (-523)) (-4 *5 (-572 *2)) (-5 *2 (-359)) (-5 *1 (-733 *5)))) (-2645 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-887 *4))) (-4 *4 (-523)) (-4 *4 (-572 *2)) (-5 *2 (-359)) (-5 *1 (-733 *4)))) (-2646 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-887 *5)) (-5 *4 (-860)) (-4 *5 (-984)) (-4 *5 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *5)))) (-2646 (*1 *2 *3) (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-984)) (-4 *4 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *4)))) (-2645 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-887 *5)) (-5 *4 (-860)) (-4 *5 (-984)) (-4 *5 (-572 *2)) (-5 *2 (-359)) (-5 *1 (-733 *5)))) (-2645 (*1 *2 *3) (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-984)) (-4 *4 (-572 *2)) (-5 *2 (-359)) (-5 *1 (-733 *4)))) (-2646 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-887 (-158 *5))) (-5 *4 (-860)) (-4 *5 (-162)) (-4 *5 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *5)))) (-2646 (*1 *2 *3) (|partial| -12 (-5 *3 (-887 (-158 *4))) (-4 *4 (-162)) (-4 *4 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *4)))) (-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-158 *5))) (-5 *4 (-860)) (-4 *5 (-523)) (-4 *5 (-795)) (-4 *5 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *5)))) (-2644 (*1 *2 *3) (-12 (-5 *3 (-295 (-158 *4))) (-4 *4 (-523)) (-4 *4 (-795)) (-4 *4 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *4)))) (-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-295 *5)) (-5 *4 (-860)) (-4 *5 (-523)) (-4 *5 (-795)) (-4 *5 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *5)))) (-2644 (*1 *2 *3) (-12 (-5 *3 (-295 *4)) (-4 *4 (-523)) (-4 *4 (-795)) (-4 *4 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *4)))) (-2643 (*1 *2 *3 *4) (-12 (-5 *3 (-295 *5)) (-5 *4 (-860)) (-4 *5 (-523)) (-4 *5 (-795)) (-4 *5 (-572 *2)) (-5 *2 (-359)) (-5 *1 (-733 *5)))) (-2643 (*1 *2 *3) (-12 (-5 *3 (-295 *4)) (-4 *4 (-523)) (-4 *4 (-795)) (-4 *4 (-572 *2)) (-5 *2 (-359)) (-5 *1 (-733 *4)))) (-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-887 (-158 *5)))) (-5 *4 (-860)) (-4 *5 (-523)) (-4 *5 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *5)))) (-2644 (*1 *2 *3) (-12 (-5 *3 (-388 (-887 (-158 *4)))) (-4 *4 (-523)) (-4 *4 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *4)))) (-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-887 *5))) (-5 *4 (-860)) (-4 *5 (-523)) (-4 *5 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *5)))) (-2644 (*1 *2 *3) (-12 (-5 *3 (-388 (-887 *4))) (-4 *4 (-523)) (-4 *4 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *4)))) (-2643 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-887 *5))) (-5 *4 (-860)) (-4 *5 (-523)) (-4 *5 (-572 *2)) (-5 *2 (-359)) (-5 *1 (-733 *5)))) (-2643 (*1 *2 *3) (-12 (-5 *3 (-388 (-887 *4))) (-4 *4 (-523)) (-4 *4 (-572 *2)) (-5 *2 (-359)) (-5 *1 (-733 *4)))) (-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-887 *5)) (-5 *4 (-860)) (-4 *5 (-984)) (-4 *5 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *5)))) (-2644 (*1 *2 *3) (-12 (-5 *3 (-887 *4)) (-4 *4 (-984)) (-4 *4 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *4)))) (-2643 (*1 *2 *3 *4) (-12 (-5 *3 (-887 *5)) (-5 *4 (-860)) (-4 *5 (-984)) (-4 *5 (-572 *2)) (-5 *2 (-359)) (-5 *1 (-733 *5)))) (-2643 (*1 *2 *3) (-12 (-5 *3 (-887 *4)) (-4 *4 (-984)) (-4 *4 (-572 *2)) (-5 *2 (-359)) (-5 *1 (-733 *4)))) (-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-887 (-158 *5))) (-5 *4 (-860)) (-4 *5 (-162)) (-4 *5 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *5)))) (-2644 (*1 *2 *3) (-12 (-5 *3 (-887 (-158 *4))) (-4 *4 (-162)) (-4 *4 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *4)))) (-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-158 *5)) (-5 *4 (-860)) (-4 *5 (-162)) (-4 *5 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *5)))) (-2644 (*1 *2 *3) (-12 (-5 *3 (-158 *4)) (-4 *4 (-162)) (-4 *4 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *4)))) (-2644 (*1 *2 *3 *4) (-12 (-5 *4 (-860)) (-5 *2 (-158 (-359))) (-5 *1 (-733 *3)) (-4 *3 (-572 (-359))))) (-2644 (*1 *2 *3) (-12 (-5 *2 (-158 (-359))) (-5 *1 (-733 *3)) (-4 *3 (-572 (-359))))) (-2643 (*1 *2 *3 *4) (-12 (-5 *4 (-860)) (-5 *2 (-359)) (-5 *1 (-733 *3)) (-4 *3 (-572 *2)))) (-2643 (*1 *2 *3) (-12 (-5 *2 (-359)) (-5 *1 (-733 *3)) (-4 *3 (-572 *2)))))
+(-10 -7 (-15 -2643 ((-359) |#1|)) (-15 -2643 ((-359) |#1| (-860))) (-15 -2644 ((-158 (-359)) |#1|)) (-15 -2644 ((-158 (-359)) |#1| (-860))) (IF (|has| |#1| (-162)) (PROGN (-15 -2644 ((-158 (-359)) (-158 |#1|))) (-15 -2644 ((-158 (-359)) (-158 |#1|) (-860))) (-15 -2644 ((-158 (-359)) (-887 (-158 |#1|)))) (-15 -2644 ((-158 (-359)) (-887 (-158 |#1|)) (-860)))) |%noBranch|) (IF (|has| |#1| (-984)) (PROGN (-15 -2643 ((-359) (-887 |#1|))) (-15 -2643 ((-359) (-887 |#1|) (-860))) (-15 -2644 ((-158 (-359)) (-887 |#1|))) (-15 -2644 ((-158 (-359)) (-887 |#1|) (-860)))) |%noBranch|) (IF (|has| |#1| (-523)) (PROGN (-15 -2643 ((-359) (-388 (-887 |#1|)))) (-15 -2643 ((-359) (-388 (-887 |#1|)) (-860))) (-15 -2644 ((-158 (-359)) (-388 (-887 |#1|)))) (-15 -2644 ((-158 (-359)) (-388 (-887 |#1|)) (-860))) (-15 -2644 ((-158 (-359)) (-388 (-887 (-158 |#1|))))) (-15 -2644 ((-158 (-359)) (-388 (-887 (-158 |#1|))) (-860))) (IF (|has| |#1| (-795)) (PROGN (-15 -2643 ((-359) (-295 |#1|))) (-15 -2643 ((-359) (-295 |#1|) (-860))) (-15 -2644 ((-158 (-359)) (-295 |#1|))) (-15 -2644 ((-158 (-359)) (-295 |#1|) (-860))) (-15 -2644 ((-158 (-359)) (-295 (-158 |#1|)))) (-15 -2644 ((-158 (-359)) (-295 (-158 |#1|)) (-860)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-15 -2646 ((-3 (-158 (-359)) "failed") (-887 (-158 |#1|)))) (-15 -2646 ((-3 (-158 (-359)) "failed") (-887 (-158 |#1|)) (-860)))) |%noBranch|) (IF (|has| |#1| (-984)) (PROGN (-15 -2645 ((-3 (-359) "failed") (-887 |#1|))) (-15 -2645 ((-3 (-359) "failed") (-887 |#1|) (-860))) (-15 -2646 ((-3 (-158 (-359)) "failed") (-887 |#1|))) (-15 -2646 ((-3 (-158 (-359)) "failed") (-887 |#1|) (-860)))) |%noBranch|) (IF (|has| |#1| (-523)) (PROGN (-15 -2645 ((-3 (-359) "failed") (-388 (-887 |#1|)))) (-15 -2645 ((-3 (-359) "failed") (-388 (-887 |#1|)) (-860))) (-15 -2646 ((-3 (-158 (-359)) "failed") (-388 (-887 |#1|)))) (-15 -2646 ((-3 (-158 (-359)) "failed") (-388 (-887 |#1|)) (-860))) (-15 -2646 ((-3 (-158 (-359)) "failed") (-388 (-887 (-158 |#1|))))) (-15 -2646 ((-3 (-158 (-359)) "failed") (-388 (-887 (-158 |#1|))) (-860))) (IF (|has| |#1| (-795)) (PROGN (-15 -2645 ((-3 (-359) "failed") (-295 |#1|))) (-15 -2645 ((-3 (-359) "failed") (-295 |#1|) (-860))) (-15 -2646 ((-3 (-158 (-359)) "failed") (-295 |#1|))) (-15 -2646 ((-3 (-158 (-359)) "failed") (-295 |#1|) (-860))) (-15 -2646 ((-3 (-158 (-359)) "failed") (-295 (-158 |#1|)))) (-15 -2646 ((-3 (-158 (-359)) "failed") (-295 (-158 |#1|)) (-860)))) |%noBranch|)) |%noBranch|))
+((-2650 (((-860) (-1081)) 66)) (-2652 (((-3 (-359) "failed") (-1081)) 33)) (-2651 (((-359) (-1081)) 31)) (-2648 (((-860) (-1081)) 54)) (-2649 (((-1081) (-860)) 56)) (-2647 (((-1081) (-860)) 53)))
+(((-734) (-10 -7 (-15 -2647 ((-1081) (-860))) (-15 -2648 ((-860) (-1081))) (-15 -2649 ((-1081) (-860))) (-15 -2650 ((-860) (-1081))) (-15 -2651 ((-359) (-1081))) (-15 -2652 ((-3 (-359) "failed") (-1081))))) (T -734))
+((-2652 (*1 *2 *3) (|partial| -12 (-5 *3 (-1081)) (-5 *2 (-359)) (-5 *1 (-734)))) (-2651 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-359)) (-5 *1 (-734)))) (-2650 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-860)) (-5 *1 (-734)))) (-2649 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1081)) (-5 *1 (-734)))) (-2648 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-860)) (-5 *1 (-734)))) (-2647 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1081)) (-5 *1 (-734)))))
+(-10 -7 (-15 -2647 ((-1081) (-860))) (-15 -2648 ((-860) (-1081))) (-15 -2649 ((-1081) (-860))) (-15 -2650 ((-860) (-1081))) (-15 -2651 ((-359) (-1081))) (-15 -2652 ((-3 (-359) "failed") (-1081))))
+((-2828 (((-110) $ $) 7)) (-2653 (((-973) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 15) (((-973) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 13)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 16) (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 14)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-3317 (((-110) $ $) 6)))
+(((-735) (-133)) (T -735))
+((-2931 (*1 *2 *3 *4) (-12 (-4 *1 (-735)) (-5 *3 (-995)) (-5 *4 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973)))))) (-2653 (*1 *2 *3 *2) (-12 (-4 *1 (-735)) (-5 *2 (-973)) (-5 *3 (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) (-2931 (*1 *2 *3 *4) (-12 (-4 *1 (-735)) (-5 *3 (-995)) (-5 *4 (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973)))))) (-2653 (*1 *2 *3 *2) (-12 (-4 *1 (-735)) (-5 *2 (-973)) (-5 *3 (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))))
+(-13 (-1027) (-10 -7 (-15 -2931 ((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2653 ((-973) (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208))) (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973))) (-15 -2931 ((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)) (|:| |extra| (-973))) (-995) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2653 ((-973) (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)))))
+(((-99) . T) ((-571 (-805)) . T) ((-1027) . T))
+((-2656 (((-1185) (-1179 (-359)) (-516) (-359) (-2 (|:| |try| (-359)) (|:| |did| (-359)) (|:| -1482 (-359))) (-359) (-1179 (-359)) (-1 (-1185) (-1179 (-359)) (-1179 (-359)) (-359)) (-1179 (-359)) (-1179 (-359)) (-1179 (-359)) (-1179 (-359)) (-1179 (-359)) (-1179 (-359)) (-1179 (-359))) 44) (((-1185) (-1179 (-359)) (-516) (-359) (-2 (|:| |try| (-359)) (|:| |did| (-359)) (|:| -1482 (-359))) (-359) (-1179 (-359)) (-1 (-1185) (-1179 (-359)) (-1179 (-359)) (-359))) 43)) (-2657 (((-1185) (-1179 (-359)) (-516) (-359) (-359) (-516) (-1 (-1185) (-1179 (-359)) (-1179 (-359)) (-359))) 50)) (-2655 (((-1185) (-1179 (-359)) (-516) (-359) (-359) (-359) (-359) (-516) (-1 (-1185) (-1179 (-359)) (-1179 (-359)) (-359))) 41)) (-2654 (((-1185) (-1179 (-359)) (-516) (-359) (-359) (-1 (-1185) (-1179 (-359)) (-1179 (-359)) (-359)) (-1179 (-359)) (-1179 (-359)) (-1179 (-359)) (-1179 (-359))) 52) (((-1185) (-1179 (-359)) (-516) (-359) (-359) (-1 (-1185) (-1179 (-359)) (-1179 (-359)) (-359))) 51)))
+(((-736) (-10 -7 (-15 -2654 ((-1185) (-1179 (-359)) (-516) (-359) (-359) (-1 (-1185) (-1179 (-359)) (-1179 (-359)) (-359)))) (-15 -2654 ((-1185) (-1179 (-359)) (-516) (-359) (-359) (-1 (-1185) (-1179 (-359)) (-1179 (-359)) (-359)) (-1179 (-359)) (-1179 (-359)) (-1179 (-359)) (-1179 (-359)))) (-15 -2655 ((-1185) (-1179 (-359)) (-516) (-359) (-359) (-359) (-359) (-516) (-1 (-1185) (-1179 (-359)) (-1179 (-359)) (-359)))) (-15 -2656 ((-1185) (-1179 (-359)) (-516) (-359) (-2 (|:| |try| (-359)) (|:| |did| (-359)) (|:| -1482 (-359))) (-359) (-1179 (-359)) (-1 (-1185) (-1179 (-359)) (-1179 (-359)) (-359)))) (-15 -2656 ((-1185) (-1179 (-359)) (-516) (-359) (-2 (|:| |try| (-359)) (|:| |did| (-359)) (|:| -1482 (-359))) (-359) (-1179 (-359)) (-1 (-1185) (-1179 (-359)) (-1179 (-359)) (-359)) (-1179 (-359)) (-1179 (-359)) (-1179 (-359)) (-1179 (-359)) (-1179 (-359)) (-1179 (-359)) (-1179 (-359)))) (-15 -2657 ((-1185) (-1179 (-359)) (-516) (-359) (-359) (-516) (-1 (-1185) (-1179 (-359)) (-1179 (-359)) (-359)))))) (T -736))
+((-2657 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-516)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-359))) (-5 *3 (-1179 (-359))) (-5 *5 (-359)) (-5 *2 (-1185)) (-5 *1 (-736)))) (-2656 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-516)) (-5 *6 (-2 (|:| |try| (-359)) (|:| |did| (-359)) (|:| -1482 (-359)))) (-5 *7 (-1 (-1185) (-1179 *5) (-1179 *5) (-359))) (-5 *3 (-1179 (-359))) (-5 *5 (-359)) (-5 *2 (-1185)) (-5 *1 (-736)))) (-2656 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-516)) (-5 *6 (-2 (|:| |try| (-359)) (|:| |did| (-359)) (|:| -1482 (-359)))) (-5 *7 (-1 (-1185) (-1179 *5) (-1179 *5) (-359))) (-5 *3 (-1179 (-359))) (-5 *5 (-359)) (-5 *2 (-1185)) (-5 *1 (-736)))) (-2655 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-516)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-359))) (-5 *3 (-1179 (-359))) (-5 *5 (-359)) (-5 *2 (-1185)) (-5 *1 (-736)))) (-2654 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-516)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-359))) (-5 *3 (-1179 (-359))) (-5 *5 (-359)) (-5 *2 (-1185)) (-5 *1 (-736)))) (-2654 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-516)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-359))) (-5 *3 (-1179 (-359))) (-5 *5 (-359)) (-5 *2 (-1185)) (-5 *1 (-736)))))
+(-10 -7 (-15 -2654 ((-1185) (-1179 (-359)) (-516) (-359) (-359) (-1 (-1185) (-1179 (-359)) (-1179 (-359)) (-359)))) (-15 -2654 ((-1185) (-1179 (-359)) (-516) (-359) (-359) (-1 (-1185) (-1179 (-359)) (-1179 (-359)) (-359)) (-1179 (-359)) (-1179 (-359)) (-1179 (-359)) (-1179 (-359)))) (-15 -2655 ((-1185) (-1179 (-359)) (-516) (-359) (-359) (-359) (-359) (-516) (-1 (-1185) (-1179 (-359)) (-1179 (-359)) (-359)))) (-15 -2656 ((-1185) (-1179 (-359)) (-516) (-359) (-2 (|:| |try| (-359)) (|:| |did| (-359)) (|:| -1482 (-359))) (-359) (-1179 (-359)) (-1 (-1185) (-1179 (-359)) (-1179 (-359)) (-359)))) (-15 -2656 ((-1185) (-1179 (-359)) (-516) (-359) (-2 (|:| |try| (-359)) (|:| |did| (-359)) (|:| -1482 (-359))) (-359) (-1179 (-359)) (-1 (-1185) (-1179 (-359)) (-1179 (-359)) (-359)) (-1179 (-359)) (-1179 (-359)) (-1179 (-359)) (-1179 (-359)) (-1179 (-359)) (-1179 (-359)) (-1179 (-359)))) (-15 -2657 ((-1185) (-1179 (-359)) (-516) (-359) (-359) (-516) (-1 (-1185) (-1179 (-359)) (-1179 (-359)) (-359)))))
+((-2666 (((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516)) 53)) (-2663 (((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516)) 31)) (-2665 (((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516)) 52)) (-2662 (((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516)) 29)) (-2664 (((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516)) 51)) (-2661 (((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516)) 19)) (-2660 (((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516) (-516)) 32)) (-2659 (((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516) (-516)) 30)) (-2658 (((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516) (-516)) 28)))
+(((-737) (-10 -7 (-15 -2658 ((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516) (-516))) (-15 -2659 ((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516) (-516))) (-15 -2660 ((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516) (-516))) (-15 -2661 ((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516))) (-15 -2662 ((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516))) (-15 -2663 ((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516))) (-15 -2664 ((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516))) (-15 -2665 ((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516))) (-15 -2666 ((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516))))) (T -737))
+((-2666 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359)) (-5 *2 (-2 (|:| -3681 *4) (|:| -1606 *4) (|:| |totalpts| (-516)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-516)))) (-2665 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359)) (-5 *2 (-2 (|:| -3681 *4) (|:| -1606 *4) (|:| |totalpts| (-516)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-516)))) (-2664 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359)) (-5 *2 (-2 (|:| -3681 *4) (|:| -1606 *4) (|:| |totalpts| (-516)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-516)))) (-2663 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359)) (-5 *2 (-2 (|:| -3681 *4) (|:| -1606 *4) (|:| |totalpts| (-516)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-516)))) (-2662 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359)) (-5 *2 (-2 (|:| -3681 *4) (|:| -1606 *4) (|:| |totalpts| (-516)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-516)))) (-2661 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359)) (-5 *2 (-2 (|:| -3681 *4) (|:| -1606 *4) (|:| |totalpts| (-516)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-516)))) (-2660 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359)) (-5 *2 (-2 (|:| -3681 *4) (|:| -1606 *4) (|:| |totalpts| (-516)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-516)))) (-2659 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359)) (-5 *2 (-2 (|:| -3681 *4) (|:| -1606 *4) (|:| |totalpts| (-516)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-516)))) (-2658 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359)) (-5 *2 (-2 (|:| -3681 *4) (|:| -1606 *4) (|:| |totalpts| (-516)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-516)))))
+(-10 -7 (-15 -2658 ((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516) (-516))) (-15 -2659 ((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516) (-516))) (-15 -2660 ((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516) (-516))) (-15 -2661 ((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516))) (-15 -2662 ((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516))) (-15 -2663 ((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516))) (-15 -2664 ((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516))) (-15 -2665 ((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516))) (-15 -2666 ((-2 (|:| -3681 (-359)) (|:| -1606 (-359)) (|:| |totalpts| (-516)) (|:| |success| (-110))) (-1 (-359) (-359)) (-359) (-359) (-359) (-359) (-516) (-516))))
+((-3987 (((-1130 |#1|) |#1| (-208) (-516)) 46)))
+(((-738 |#1|) (-10 -7 (-15 -3987 ((-1130 |#1|) |#1| (-208) (-516)))) (-914)) (T -738))
+((-3987 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-208)) (-5 *5 (-516)) (-5 *2 (-1130 *3)) (-5 *1 (-738 *3)) (-4 *3 (-914)))))
+(-10 -7 (-15 -3987 ((-1130 |#1|) |#1| (-208) (-516))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 24)) (-1319 (((-3 $ "failed") $ $) 26)) (-3815 (($) 23 T CONST)) (-3596 (($ $ $) 13)) (-3597 (($ $ $) 14)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-2920 (($) 22 T CONST)) (-2826 (((-110) $ $) 16)) (-2827 (((-110) $ $) 17)) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 15)) (-2948 (((-110) $ $) 18)) (-4116 (($ $ $) 28) (($ $) 27)) (-4118 (($ $ $) 20)) (* (($ (-860) $) 21) (($ (-719) $) 25) (($ (-516) $) 29)))
(((-739) (-133)) (T -739))
-((-3622 (*1 *1 *1 *1) (-4 *1 (-739))))
-(-13 (-741) (-10 -8 (-15 -3622 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-569 (-802)) . T) ((-738) . T) ((-740) . T) ((-741) . T) ((-793) . T) ((-1023) . T))
-((-2207 (((-110) $ $) 7)) (-1436 (($ $ $) 13)) (-1736 (($ $ $) 14)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2244 (((-110) $ $) 16)) (-2220 (((-110) $ $) 17)) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 15)) (-2208 (((-110) $ $) 18)) (-2275 (($ $ $) 20)) (* (($ (-860) $) 21)))
+NIL
+(-13 (-745) (-21))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-805)) . T) ((-740) . T) ((-742) . T) ((-745) . T) ((-795) . T) ((-1027) . T))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 24)) (-3815 (($) 23 T CONST)) (-3596 (($ $ $) 13)) (-3597 (($ $ $) 14)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-2920 (($) 22 T CONST)) (-2826 (((-110) $ $) 16)) (-2827 (((-110) $ $) 17)) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 15)) (-2948 (((-110) $ $) 18)) (-4118 (($ $ $) 20)) (* (($ (-860) $) 21) (($ (-719) $) 25)))
(((-740) (-133)) (T -740))
NIL
-(-13 (-793) (-25))
-(((-25) . T) ((-99) . T) ((-569 (-802)) . T) ((-793) . T) ((-1023) . T))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 24)) (-3181 (((-3 $ "failed") $ $) 26)) (-2816 (($) 23 T CONST)) (-1436 (($ $ $) 13)) (-1736 (($ $ $) 14)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2969 (($) 22 T CONST)) (-2244 (((-110) $ $) 16)) (-2220 (((-110) $ $) 17)) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 15)) (-2208 (((-110) $ $) 18)) (-2275 (($ $ $) 20)) (* (($ (-860) $) 21) (($ (-717) $) 25)))
+(-13 (-742) (-23))
+(((-23) . T) ((-25) . T) ((-99) . T) ((-571 (-805)) . T) ((-742) . T) ((-795) . T) ((-1027) . T))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 24)) (-2667 (($ $ $) 27)) (-1319 (((-3 $ "failed") $ $) 26)) (-3815 (($) 23 T CONST)) (-3596 (($ $ $) 13)) (-3597 (($ $ $) 14)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-2920 (($) 22 T CONST)) (-2826 (((-110) $ $) 16)) (-2827 (((-110) $ $) 17)) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 15)) (-2948 (((-110) $ $) 18)) (-4118 (($ $ $) 20)) (* (($ (-860) $) 21) (($ (-719) $) 25)))
(((-741) (-133)) (T -741))
-NIL
-(-13 (-738) (-128))
-(((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-569 (-802)) . T) ((-738) . T) ((-740) . T) ((-793) . T) ((-1023) . T))
-((-1359 (((-110) $) 41)) (-3001 (((-3 (-528) "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-2409 (((-528) $) NIL) (((-387 (-528)) $) NIL) ((|#2| $) 42)) (-1793 (((-3 (-387 (-528)) "failed") $) 78)) (-3650 (((-110) $) 72)) (-3099 (((-387 (-528)) $) 76)) (-3297 ((|#2| $) 26)) (-3106 (($ (-1 |#2| |#2|) $) 23)) (-2652 (($ $) 61)) (-3155 (((-504) $) 67)) (-4097 (($ $) 21)) (-2222 (((-802) $) 56) (($ (-528)) 39) (($ |#2|) 37) (($ (-387 (-528))) NIL)) (-3742 (((-717)) 10)) (-1775 ((|#2| $) 71)) (-2186 (((-110) $ $) 29)) (-2208 (((-110) $ $) 69)) (-2286 (($ $) 31) (($ $ $) NIL)) (-2275 (($ $ $) 30)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
-(((-742 |#1| |#2|) (-10 -8 (-15 -2208 ((-110) |#1| |#1|)) (-15 -3155 ((-504) |#1|)) (-15 -2652 (|#1| |#1|)) (-15 -1793 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -3099 ((-387 (-528)) |#1|)) (-15 -3650 ((-110) |#1|)) (-15 -1775 (|#2| |#1|)) (-15 -3297 (|#2| |#1|)) (-15 -4097 (|#1| |#1|)) (-15 -3106 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2409 (|#2| |#1|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -2222 (|#1| (-387 (-528)))) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -2409 ((-387 (-528)) |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -2409 ((-528) |#1|)) (-15 -2222 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2222 (|#1| (-528))) (-15 -3742 ((-717))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-528) |#1|)) (-15 -2286 (|#1| |#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 * (|#1| (-717) |#1|)) (-15 -1359 ((-110) |#1|)) (-15 * (|#1| (-860) |#1|)) (-15 -2275 (|#1| |#1| |#1|)) (-15 -2222 ((-802) |#1|)) (-15 -2186 ((-110) |#1| |#1|))) (-743 |#2|) (-162)) (T -742))
-((-3742 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-717)) (-5 *1 (-742 *3 *4)) (-4 *3 (-743 *4)))))
-(-10 -8 (-15 -2208 ((-110) |#1| |#1|)) (-15 -3155 ((-504) |#1|)) (-15 -2652 (|#1| |#1|)) (-15 -1793 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -3099 ((-387 (-528)) |#1|)) (-15 -3650 ((-110) |#1|)) (-15 -1775 (|#2| |#1|)) (-15 -3297 (|#2| |#1|)) (-15 -4097 (|#1| |#1|)) (-15 -3106 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2409 (|#2| |#1|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -2222 (|#1| (-387 (-528)))) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -2409 ((-387 (-528)) |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -2409 ((-528) |#1|)) (-15 -2222 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2222 (|#1| (-528))) (-15 -3742 ((-717))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-528) |#1|)) (-15 -2286 (|#1| |#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 * (|#1| (-717) |#1|)) (-15 -1359 ((-110) |#1|)) (-15 * (|#1| (-860) |#1|)) (-15 -2275 (|#1| |#1| |#1|)) (-15 -2222 ((-802) |#1|)) (-15 -2186 ((-110) |#1| |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2856 (((-717)) 53 (|has| |#1| (-348)))) (-2816 (($) 17 T CONST)) (-3001 (((-3 (-528) "failed") $) 94 (|has| |#1| (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) 92 (|has| |#1| (-972 (-387 (-528))))) (((-3 |#1| "failed") $) 90)) (-2409 (((-528) $) 95 (|has| |#1| (-972 (-528)))) (((-387 (-528)) $) 93 (|has| |#1| (-972 (-387 (-528))))) ((|#1| $) 89)) (-1312 (((-3 $ "failed") $) 34)) (-2461 ((|#1| $) 79)) (-1793 (((-3 (-387 (-528)) "failed") $) 66 (|has| |#1| (-513)))) (-3650 (((-110) $) 68 (|has| |#1| (-513)))) (-3099 (((-387 (-528)) $) 67 (|has| |#1| (-513)))) (-1338 (($) 56 (|has| |#1| (-348)))) (-1297 (((-110) $) 31)) (-2625 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-3297 ((|#1| $) 71)) (-1436 (($ $ $) 62 (|has| |#1| (-793)))) (-1736 (($ $ $) 61 (|has| |#1| (-793)))) (-3106 (($ (-1 |#1| |#1|) $) 81)) (-3201 (((-860) $) 55 (|has| |#1| (-348)))) (-3034 (((-1078) $) 9)) (-2652 (($ $) 65 (|has| |#1| (-343)))) (-3108 (($ (-860)) 54 (|has| |#1| (-348)))) (-2878 ((|#1| $) 76)) (-1322 ((|#1| $) 77)) (-2101 ((|#1| $) 78)) (-3219 ((|#1| $) 72)) (-1733 ((|#1| $) 73)) (-3178 ((|#1| $) 74)) (-4104 ((|#1| $) 75)) (-2495 (((-1042) $) 10)) (-4014 (($ $ (-595 |#1|) (-595 |#1|)) 87 (|has| |#1| (-290 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-290 |#1|))) (($ $ (-275 |#1|)) 85 (|has| |#1| (-290 |#1|))) (($ $ (-595 (-275 |#1|))) 84 (|has| |#1| (-290 |#1|))) (($ $ (-595 (-1095)) (-595 |#1|)) 83 (|has| |#1| (-489 (-1095) |#1|))) (($ $ (-1095) |#1|) 82 (|has| |#1| (-489 (-1095) |#1|)))) (-3043 (($ $ |#1|) 88 (|has| |#1| (-267 |#1| |#1|)))) (-3155 (((-504) $) 63 (|has| |#1| (-570 (-504))))) (-4097 (($ $) 80)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ |#1|) 37) (($ (-387 (-528))) 91 (|has| |#1| (-972 (-387 (-528)))))) (-3749 (((-3 $ "failed") $) 64 (|has| |#1| (-138)))) (-3742 (((-717)) 29)) (-1775 ((|#1| $) 69 (|has| |#1| (-989)))) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2244 (((-110) $ $) 59 (|has| |#1| (-793)))) (-2220 (((-110) $ $) 58 (|has| |#1| (-793)))) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 60 (|has| |#1| (-793)))) (-2208 (((-110) $ $) 57 (|has| |#1| (-793)))) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-743 |#1|) (-133) (-162)) (T -743))
-((-4097 (*1 *1 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162)))) (-2461 (*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162)))) (-2101 (*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162)))) (-1322 (*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162)))) (-2878 (*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162)))) (-4104 (*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162)))) (-3178 (*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162)))) (-1733 (*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162)))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162)))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162)))) (-2625 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162)) (-4 *2 (-989)))) (-3650 (*1 *2 *1) (-12 (-4 *1 (-743 *3)) (-4 *3 (-162)) (-4 *3 (-513)) (-5 *2 (-110)))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-743 *3)) (-4 *3 (-162)) (-4 *3 (-513)) (-5 *2 (-387 (-528))))) (-1793 (*1 *2 *1) (|partial| -12 (-4 *1 (-743 *3)) (-4 *3 (-162)) (-4 *3 (-513)) (-5 *2 (-387 (-528))))) (-2652 (*1 *1 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162)) (-4 *2 (-343)))))
-(-13 (-37 |t#1|) (-391 |t#1|) (-318 |t#1|) (-10 -8 (-15 -4097 ($ $)) (-15 -2461 (|t#1| $)) (-15 -2101 (|t#1| $)) (-15 -1322 (|t#1| $)) (-15 -2878 (|t#1| $)) (-15 -4104 (|t#1| $)) (-15 -3178 (|t#1| $)) (-15 -1733 (|t#1| $)) (-15 -3219 (|t#1| $)) (-15 -3297 (|t#1| $)) (-15 -2625 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-348)) (-6 (-348)) |%noBranch|) (IF (|has| |t#1| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |t#1| (-570 (-504))) (-6 (-570 (-504))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-989)) (-15 -1775 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-513)) (PROGN (-15 -3650 ((-110) $)) (-15 -3099 ((-387 (-528)) $)) (-15 -1793 ((-3 (-387 (-528)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-343)) (-15 -2652 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-569 (-802)) . T) ((-570 (-504)) |has| |#1| (-570 (-504))) ((-267 |#1| $) |has| |#1| (-267 |#1| |#1|)) ((-290 |#1|) |has| |#1| (-290 |#1|)) ((-348) |has| |#1| (-348)) ((-318 |#1|) . T) ((-391 |#1|) . T) ((-489 (-1095) |#1|) |has| |#1| (-489 (-1095) |#1|)) ((-489 |#1| |#1|) |has| |#1| (-290 |#1|)) ((-597 |#1|) . T) ((-597 $) . T) ((-664 |#1|) . T) ((-673) . T) ((-793) |has| |#1| (-793)) ((-972 (-387 (-528))) |has| |#1| (-972 (-387 (-528)))) ((-972 (-528)) |has| |#1| (-972 (-528))) ((-972 |#1|) . T) ((-986 |#1|) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-3106 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-744 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3106 (|#3| (-1 |#4| |#2|) |#1|))) (-743 |#2|) (-162) (-743 |#4|) (-162)) (T -744))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-4 *2 (-743 *6)) (-5 *1 (-744 *4 *5 *2 *6)) (-4 *4 (-743 *5)))))
-(-10 -7 (-15 -3106 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2856 (((-717)) NIL (|has| |#1| (-348)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#1| "failed") $) NIL) (((-3 (-935 |#1|) "failed") $) 35) (((-3 (-528) "failed") $) NIL (-1463 (|has| (-935 |#1|) (-972 (-528))) (|has| |#1| (-972 (-528))))) (((-3 (-387 (-528)) "failed") $) NIL (-1463 (|has| (-935 |#1|) (-972 (-387 (-528)))) (|has| |#1| (-972 (-387 (-528))))))) (-2409 ((|#1| $) NIL) (((-935 |#1|) $) 33) (((-528) $) NIL (-1463 (|has| (-935 |#1|) (-972 (-528))) (|has| |#1| (-972 (-528))))) (((-387 (-528)) $) NIL (-1463 (|has| (-935 |#1|) (-972 (-387 (-528)))) (|has| |#1| (-972 (-387 (-528))))))) (-1312 (((-3 $ "failed") $) NIL)) (-2461 ((|#1| $) 16)) (-1793 (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-513)))) (-3650 (((-110) $) NIL (|has| |#1| (-513)))) (-3099 (((-387 (-528)) $) NIL (|has| |#1| (-513)))) (-1338 (($) NIL (|has| |#1| (-348)))) (-1297 (((-110) $) NIL)) (-2625 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-935 |#1|) (-935 |#1|)) 29)) (-3297 ((|#1| $) NIL)) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-3201 (((-860) $) NIL (|has| |#1| (-348)))) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL (|has| |#1| (-343)))) (-3108 (($ (-860)) NIL (|has| |#1| (-348)))) (-2878 ((|#1| $) 22)) (-1322 ((|#1| $) 20)) (-2101 ((|#1| $) 18)) (-3219 ((|#1| $) 26)) (-1733 ((|#1| $) 25)) (-3178 ((|#1| $) 24)) (-4104 ((|#1| $) 23)) (-2495 (((-1042) $) NIL)) (-4014 (($ $ (-595 |#1|) (-595 |#1|)) NIL (|has| |#1| (-290 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-290 |#1|))) (($ $ (-275 |#1|)) NIL (|has| |#1| (-290 |#1|))) (($ $ (-595 (-275 |#1|))) NIL (|has| |#1| (-290 |#1|))) (($ $ (-595 (-1095)) (-595 |#1|)) NIL (|has| |#1| (-489 (-1095) |#1|))) (($ $ (-1095) |#1|) NIL (|has| |#1| (-489 (-1095) |#1|)))) (-3043 (($ $ |#1|) NIL (|has| |#1| (-267 |#1| |#1|)))) (-3155 (((-504) $) NIL (|has| |#1| (-570 (-504))))) (-4097 (($ $) NIL)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ |#1|) NIL) (($ (-935 |#1|)) 30) (($ (-387 (-528))) NIL (-1463 (|has| (-935 |#1|) (-972 (-387 (-528)))) (|has| |#1| (-972 (-387 (-528))))))) (-3749 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3742 (((-717)) NIL)) (-1775 ((|#1| $) NIL (|has| |#1| (-989)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 8 T CONST)) (-2982 (($) 12 T CONST)) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-745 |#1|) (-13 (-743 |#1|) (-391 (-935 |#1|)) (-10 -8 (-15 -2625 ($ (-935 |#1|) (-935 |#1|))))) (-162)) (T -745))
-((-2625 (*1 *1 *2 *2) (-12 (-5 *2 (-935 *3)) (-4 *3 (-162)) (-5 *1 (-745 *3)))))
-(-13 (-743 |#1|) (-391 (-935 |#1|)) (-10 -8 (-15 -2625 ($ (-935 |#1|) (-935 |#1|)))))
-((-2207 (((-110) $ $) 7)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 14)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2288 (((-970) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 13)) (-2186 (((-110) $ $) 6)))
-(((-746) (-133)) (T -746))
-((-2702 (*1 *2 *3 *4) (-12 (-4 *1 (-746)) (-5 *3 (-992)) (-5 *4 (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (-5 *2 (-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)))))) (-2288 (*1 *2 *3) (-12 (-4 *1 (-746)) (-5 *3 (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (-5 *2 (-970)))))
-(-13 (-1023) (-10 -7 (-15 -2702 ((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -2288 ((-970) (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))))))
-(((-99) . T) ((-569 (-802)) . T) ((-1023) . T))
-((-1949 (((-2 (|:| |particular| |#2|) (|:| -1400 (-595 |#2|))) |#3| |#2| (-1095)) 19)))
-(((-747 |#1| |#2| |#3|) (-10 -7 (-15 -1949 ((-2 (|:| |particular| |#2|) (|:| -1400 (-595 |#2|))) |#3| |#2| (-1095)))) (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)) (-13 (-29 |#1|) (-1117) (-897)) (-605 |#2|)) (T -747))
-((-1949 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1095)) (-4 *6 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140))) (-4 *4 (-13 (-29 *6) (-1117) (-897))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1400 (-595 *4)))) (-5 *1 (-747 *6 *4 *3)) (-4 *3 (-605 *4)))))
-(-10 -7 (-15 -1949 ((-2 (|:| |particular| |#2|) (|:| -1400 (-595 |#2|))) |#3| |#2| (-1095))))
-((-1651 (((-3 |#2| "failed") |#2| (-112) (-275 |#2|) (-595 |#2|)) 28) (((-3 |#2| "failed") (-275 |#2|) (-112) (-275 |#2|) (-595 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -1400 (-595 |#2|))) |#2| "failed") |#2| (-112) (-1095)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -1400 (-595 |#2|))) |#2| "failed") (-275 |#2|) (-112) (-1095)) 18) (((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -1400 (-595 (-1177 |#2|)))) "failed") (-595 |#2|) (-595 (-112)) (-1095)) 24) (((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -1400 (-595 (-1177 |#2|)))) "failed") (-595 (-275 |#2|)) (-595 (-112)) (-1095)) 26) (((-3 (-595 (-1177 |#2|)) "failed") (-635 |#2|) (-1095)) 37) (((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -1400 (-595 (-1177 |#2|)))) "failed") (-635 |#2|) (-1177 |#2|) (-1095)) 35)))
-(((-748 |#1| |#2|) (-10 -7 (-15 -1651 ((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -1400 (-595 (-1177 |#2|)))) "failed") (-635 |#2|) (-1177 |#2|) (-1095))) (-15 -1651 ((-3 (-595 (-1177 |#2|)) "failed") (-635 |#2|) (-1095))) (-15 -1651 ((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -1400 (-595 (-1177 |#2|)))) "failed") (-595 (-275 |#2|)) (-595 (-112)) (-1095))) (-15 -1651 ((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -1400 (-595 (-1177 |#2|)))) "failed") (-595 |#2|) (-595 (-112)) (-1095))) (-15 -1651 ((-3 (-2 (|:| |particular| |#2|) (|:| -1400 (-595 |#2|))) |#2| "failed") (-275 |#2|) (-112) (-1095))) (-15 -1651 ((-3 (-2 (|:| |particular| |#2|) (|:| -1400 (-595 |#2|))) |#2| "failed") |#2| (-112) (-1095))) (-15 -1651 ((-3 |#2| "failed") (-275 |#2|) (-112) (-275 |#2|) (-595 |#2|))) (-15 -1651 ((-3 |#2| "failed") |#2| (-112) (-275 |#2|) (-595 |#2|)))) (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)) (-13 (-29 |#1|) (-1117) (-897))) (T -748))
-((-1651 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-112)) (-5 *4 (-275 *2)) (-5 *5 (-595 *2)) (-4 *2 (-13 (-29 *6) (-1117) (-897))) (-4 *6 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140))) (-5 *1 (-748 *6 *2)))) (-1651 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-275 *2)) (-5 *4 (-112)) (-5 *5 (-595 *2)) (-4 *2 (-13 (-29 *6) (-1117) (-897))) (-5 *1 (-748 *6 *2)) (-4 *6 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140))))) (-1651 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-5 *5 (-1095)) (-4 *6 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1400 (-595 *3))) *3 "failed")) (-5 *1 (-748 *6 *3)) (-4 *3 (-13 (-29 *6) (-1117) (-897))))) (-1651 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-275 *7)) (-5 *4 (-112)) (-5 *5 (-1095)) (-4 *7 (-13 (-29 *6) (-1117) (-897))) (-4 *6 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1400 (-595 *7))) *7 "failed")) (-5 *1 (-748 *6 *7)))) (-1651 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-595 *7)) (-5 *4 (-595 (-112))) (-5 *5 (-1095)) (-4 *7 (-13 (-29 *6) (-1117) (-897))) (-4 *6 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140))) (-5 *2 (-2 (|:| |particular| (-1177 *7)) (|:| -1400 (-595 (-1177 *7))))) (-5 *1 (-748 *6 *7)))) (-1651 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-595 (-275 *7))) (-5 *4 (-595 (-112))) (-5 *5 (-1095)) (-4 *7 (-13 (-29 *6) (-1117) (-897))) (-4 *6 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140))) (-5 *2 (-2 (|:| |particular| (-1177 *7)) (|:| -1400 (-595 (-1177 *7))))) (-5 *1 (-748 *6 *7)))) (-1651 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-635 *6)) (-5 *4 (-1095)) (-4 *6 (-13 (-29 *5) (-1117) (-897))) (-4 *5 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140))) (-5 *2 (-595 (-1177 *6))) (-5 *1 (-748 *5 *6)))) (-1651 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-635 *7)) (-5 *5 (-1095)) (-4 *7 (-13 (-29 *6) (-1117) (-897))) (-4 *6 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140))) (-5 *2 (-2 (|:| |particular| (-1177 *7)) (|:| -1400 (-595 (-1177 *7))))) (-5 *1 (-748 *6 *7)) (-5 *4 (-1177 *7)))))
-(-10 -7 (-15 -1651 ((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -1400 (-595 (-1177 |#2|)))) "failed") (-635 |#2|) (-1177 |#2|) (-1095))) (-15 -1651 ((-3 (-595 (-1177 |#2|)) "failed") (-635 |#2|) (-1095))) (-15 -1651 ((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -1400 (-595 (-1177 |#2|)))) "failed") (-595 (-275 |#2|)) (-595 (-112)) (-1095))) (-15 -1651 ((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -1400 (-595 (-1177 |#2|)))) "failed") (-595 |#2|) (-595 (-112)) (-1095))) (-15 -1651 ((-3 (-2 (|:| |particular| |#2|) (|:| -1400 (-595 |#2|))) |#2| "failed") (-275 |#2|) (-112) (-1095))) (-15 -1651 ((-3 (-2 (|:| |particular| |#2|) (|:| -1400 (-595 |#2|))) |#2| "failed") |#2| (-112) (-1095))) (-15 -1651 ((-3 |#2| "failed") (-275 |#2|) (-112) (-275 |#2|) (-595 |#2|))) (-15 -1651 ((-3 |#2| "failed") |#2| (-112) (-275 |#2|) (-595 |#2|))))
-((-2224 (($) 9)) (-3129 (((-3 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359))) "failed") (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 31)) (-3225 (((-595 (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) $) 28)) (-1950 (($ (-2 (|:| -2927 (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| -1780 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359)))))) 25)) (-1721 (($ (-595 (-2 (|:| -2927 (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| -1780 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359))))))) 23)) (-2595 (((-1182)) 12)))
-(((-749) (-10 -8 (-15 -2224 ($)) (-15 -2595 ((-1182))) (-15 -3225 ((-595 (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) $)) (-15 -1721 ($ (-595 (-2 (|:| -2927 (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| -1780 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359)))))))) (-15 -1950 ($ (-2 (|:| -2927 (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| -1780 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359))))))) (-15 -3129 ((-3 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359))) "failed") (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))))) (T -749))
-((-3129 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (-5 *2 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359)))) (-5 *1 (-749)))) (-1950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2927 (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| -1780 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359)))))) (-5 *1 (-749)))) (-1721 (*1 *1 *2) (-12 (-5 *2 (-595 (-2 (|:| -2927 (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| -1780 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359))))))) (-5 *1 (-749)))) (-3225 (*1 *2 *1) (-12 (-5 *2 (-595 (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-5 *1 (-749)))) (-2595 (*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-749)))) (-2224 (*1 *1) (-5 *1 (-749))))
-(-10 -8 (-15 -2224 ($)) (-15 -2595 ((-1182))) (-15 -3225 ((-595 (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) $)) (-15 -1721 ($ (-595 (-2 (|:| -2927 (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| -1780 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359)))))))) (-15 -1950 ($ (-2 (|:| -2927 (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (|:| -1780 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359))))))) (-15 -3129 ((-3 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359))) "failed") (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))))
-((-3626 ((|#2| |#2| (-1095)) 16)) (-2168 ((|#2| |#2| (-1095)) 51)) (-3495 (((-1 |#2| |#2|) (-1095)) 11)))
-(((-750 |#1| |#2|) (-10 -7 (-15 -3626 (|#2| |#2| (-1095))) (-15 -2168 (|#2| |#2| (-1095))) (-15 -3495 ((-1 |#2| |#2|) (-1095)))) (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)) (-13 (-29 |#1|) (-1117) (-897))) (T -750))
-((-3495 (*1 *2 *3) (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140))) (-5 *2 (-1 *5 *5)) (-5 *1 (-750 *4 *5)) (-4 *5 (-13 (-29 *4) (-1117) (-897))))) (-2168 (*1 *2 *2 *3) (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140))) (-5 *1 (-750 *4 *2)) (-4 *2 (-13 (-29 *4) (-1117) (-897))))) (-3626 (*1 *2 *2 *3) (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140))) (-5 *1 (-750 *4 *2)) (-4 *2 (-13 (-29 *4) (-1117) (-897))))))
-(-10 -7 (-15 -3626 (|#2| |#2| (-1095))) (-15 -2168 (|#2| |#2| (-1095))) (-15 -3495 ((-1 |#2| |#2|) (-1095))))
-((-1651 (((-970) (-1177 (-296 (-359))) (-359) (-359) (-595 (-359)) (-296 (-359)) (-595 (-359)) (-359) (-359)) 116) (((-970) (-1177 (-296 (-359))) (-359) (-359) (-595 (-359)) (-296 (-359)) (-595 (-359)) (-359)) 117) (((-970) (-1177 (-296 (-359))) (-359) (-359) (-595 (-359)) (-595 (-359)) (-359)) 119) (((-970) (-1177 (-296 (-359))) (-359) (-359) (-595 (-359)) (-296 (-359)) (-359)) 120) (((-970) (-1177 (-296 (-359))) (-359) (-359) (-595 (-359)) (-359)) 121) (((-970) (-1177 (-296 (-359))) (-359) (-359) (-595 (-359))) 122) (((-970) (-754) (-992)) 108) (((-970) (-754)) 109)) (-2702 (((-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078)))) (-754) (-992)) 75) (((-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078)))) (-754)) 77)))
-(((-751) (-10 -7 (-15 -1651 ((-970) (-754))) (-15 -1651 ((-970) (-754) (-992))) (-15 -1651 ((-970) (-1177 (-296 (-359))) (-359) (-359) (-595 (-359)))) (-15 -1651 ((-970) (-1177 (-296 (-359))) (-359) (-359) (-595 (-359)) (-359))) (-15 -1651 ((-970) (-1177 (-296 (-359))) (-359) (-359) (-595 (-359)) (-296 (-359)) (-359))) (-15 -1651 ((-970) (-1177 (-296 (-359))) (-359) (-359) (-595 (-359)) (-595 (-359)) (-359))) (-15 -1651 ((-970) (-1177 (-296 (-359))) (-359) (-359) (-595 (-359)) (-296 (-359)) (-595 (-359)) (-359))) (-15 -1651 ((-970) (-1177 (-296 (-359))) (-359) (-359) (-595 (-359)) (-296 (-359)) (-595 (-359)) (-359) (-359))) (-15 -2702 ((-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078)))) (-754))) (-15 -2702 ((-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078)))) (-754) (-992))))) (T -751))
-((-2702 (*1 *2 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-992)) (-5 *2 (-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078))))) (-5 *1 (-751)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078))))) (-5 *1 (-751)))) (-1651 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1177 (-296 *4))) (-5 *5 (-595 (-359))) (-5 *6 (-296 (-359))) (-5 *4 (-359)) (-5 *2 (-970)) (-5 *1 (-751)))) (-1651 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1177 (-296 *4))) (-5 *5 (-595 (-359))) (-5 *6 (-296 (-359))) (-5 *4 (-359)) (-5 *2 (-970)) (-5 *1 (-751)))) (-1651 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1177 (-296 (-359)))) (-5 *4 (-359)) (-5 *5 (-595 *4)) (-5 *2 (-970)) (-5 *1 (-751)))) (-1651 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1177 (-296 *4))) (-5 *5 (-595 (-359))) (-5 *6 (-296 (-359))) (-5 *4 (-359)) (-5 *2 (-970)) (-5 *1 (-751)))) (-1651 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1177 (-296 (-359)))) (-5 *4 (-359)) (-5 *5 (-595 *4)) (-5 *2 (-970)) (-5 *1 (-751)))) (-1651 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1177 (-296 (-359)))) (-5 *4 (-359)) (-5 *5 (-595 *4)) (-5 *2 (-970)) (-5 *1 (-751)))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-992)) (-5 *2 (-970)) (-5 *1 (-751)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-970)) (-5 *1 (-751)))))
-(-10 -7 (-15 -1651 ((-970) (-754))) (-15 -1651 ((-970) (-754) (-992))) (-15 -1651 ((-970) (-1177 (-296 (-359))) (-359) (-359) (-595 (-359)))) (-15 -1651 ((-970) (-1177 (-296 (-359))) (-359) (-359) (-595 (-359)) (-359))) (-15 -1651 ((-970) (-1177 (-296 (-359))) (-359) (-359) (-595 (-359)) (-296 (-359)) (-359))) (-15 -1651 ((-970) (-1177 (-296 (-359))) (-359) (-359) (-595 (-359)) (-595 (-359)) (-359))) (-15 -1651 ((-970) (-1177 (-296 (-359))) (-359) (-359) (-595 (-359)) (-296 (-359)) (-595 (-359)) (-359))) (-15 -1651 ((-970) (-1177 (-296 (-359))) (-359) (-359) (-595 (-359)) (-296 (-359)) (-595 (-359)) (-359) (-359))) (-15 -2702 ((-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078)))) (-754))) (-15 -2702 ((-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078)))) (-754) (-992))))
-((-3056 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1400 (-595 |#4|))) (-602 |#4|) |#4|) 35)))
-(((-752 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3056 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1400 (-595 |#4|))) (-602 |#4|) |#4|))) (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528)))) (-1153 |#1|) (-1153 (-387 |#2|)) (-322 |#1| |#2| |#3|)) (T -752))
-((-3056 (*1 *2 *3 *4) (-12 (-5 *3 (-602 *4)) (-4 *4 (-322 *5 *6 *7)) (-4 *5 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528))))) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-387 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1400 (-595 *4)))) (-5 *1 (-752 *5 *6 *7 *4)))))
-(-10 -7 (-15 -3056 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1400 (-595 |#4|))) (-602 |#4|) |#4|)))
-((-3600 (((-2 (|:| -2589 |#3|) (|:| |rh| (-595 (-387 |#2|)))) |#4| (-595 (-387 |#2|))) 52)) (-1352 (((-595 (-2 (|:| -1884 |#2|) (|:| -1596 |#2|))) |#4| |#2|) 60) (((-595 (-2 (|:| -1884 |#2|) (|:| -1596 |#2|))) |#4|) 59) (((-595 (-2 (|:| -1884 |#2|) (|:| -1596 |#2|))) |#3| |#2|) 20) (((-595 (-2 (|:| -1884 |#2|) (|:| -1596 |#2|))) |#3|) 21)) (-3979 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2561 ((|#2| |#3| (-595 (-387 |#2|))) 93) (((-3 |#2| "failed") |#3| (-387 |#2|)) 90)))
-(((-753 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2561 ((-3 |#2| "failed") |#3| (-387 |#2|))) (-15 -2561 (|#2| |#3| (-595 (-387 |#2|)))) (-15 -1352 ((-595 (-2 (|:| -1884 |#2|) (|:| -1596 |#2|))) |#3|)) (-15 -1352 ((-595 (-2 (|:| -1884 |#2|) (|:| -1596 |#2|))) |#3| |#2|)) (-15 -3979 (|#2| |#3| |#1|)) (-15 -1352 ((-595 (-2 (|:| -1884 |#2|) (|:| -1596 |#2|))) |#4|)) (-15 -1352 ((-595 (-2 (|:| -1884 |#2|) (|:| -1596 |#2|))) |#4| |#2|)) (-15 -3979 (|#2| |#4| |#1|)) (-15 -3600 ((-2 (|:| -2589 |#3|) (|:| |rh| (-595 (-387 |#2|)))) |#4| (-595 (-387 |#2|))))) (-13 (-343) (-140) (-972 (-387 (-528)))) (-1153 |#1|) (-605 |#2|) (-605 (-387 |#2|))) (T -753))
-((-3600 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-343) (-140) (-972 (-387 (-528))))) (-4 *6 (-1153 *5)) (-5 *2 (-2 (|:| -2589 *7) (|:| |rh| (-595 (-387 *6))))) (-5 *1 (-753 *5 *6 *7 *3)) (-5 *4 (-595 (-387 *6))) (-4 *7 (-605 *6)) (-4 *3 (-605 (-387 *6))))) (-3979 (*1 *2 *3 *4) (-12 (-4 *2 (-1153 *4)) (-5 *1 (-753 *4 *2 *5 *3)) (-4 *4 (-13 (-343) (-140) (-972 (-387 (-528))))) (-4 *5 (-605 *2)) (-4 *3 (-605 (-387 *2))))) (-1352 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-343) (-140) (-972 (-387 (-528))))) (-4 *4 (-1153 *5)) (-5 *2 (-595 (-2 (|:| -1884 *4) (|:| -1596 *4)))) (-5 *1 (-753 *5 *4 *6 *3)) (-4 *6 (-605 *4)) (-4 *3 (-605 (-387 *4))))) (-1352 (*1 *2 *3) (-12 (-4 *4 (-13 (-343) (-140) (-972 (-387 (-528))))) (-4 *5 (-1153 *4)) (-5 *2 (-595 (-2 (|:| -1884 *5) (|:| -1596 *5)))) (-5 *1 (-753 *4 *5 *6 *3)) (-4 *6 (-605 *5)) (-4 *3 (-605 (-387 *5))))) (-3979 (*1 *2 *3 *4) (-12 (-4 *2 (-1153 *4)) (-5 *1 (-753 *4 *2 *3 *5)) (-4 *4 (-13 (-343) (-140) (-972 (-387 (-528))))) (-4 *3 (-605 *2)) (-4 *5 (-605 (-387 *2))))) (-1352 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-343) (-140) (-972 (-387 (-528))))) (-4 *4 (-1153 *5)) (-5 *2 (-595 (-2 (|:| -1884 *4) (|:| -1596 *4)))) (-5 *1 (-753 *5 *4 *3 *6)) (-4 *3 (-605 *4)) (-4 *6 (-605 (-387 *4))))) (-1352 (*1 *2 *3) (-12 (-4 *4 (-13 (-343) (-140) (-972 (-387 (-528))))) (-4 *5 (-1153 *4)) (-5 *2 (-595 (-2 (|:| -1884 *5) (|:| -1596 *5)))) (-5 *1 (-753 *4 *5 *3 *6)) (-4 *3 (-605 *5)) (-4 *6 (-605 (-387 *5))))) (-2561 (*1 *2 *3 *4) (-12 (-5 *4 (-595 (-387 *2))) (-4 *2 (-1153 *5)) (-5 *1 (-753 *5 *2 *3 *6)) (-4 *5 (-13 (-343) (-140) (-972 (-387 (-528))))) (-4 *3 (-605 *2)) (-4 *6 (-605 (-387 *2))))) (-2561 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-387 *2)) (-4 *2 (-1153 *5)) (-5 *1 (-753 *5 *2 *3 *6)) (-4 *5 (-13 (-343) (-140) (-972 (-387 (-528))))) (-4 *3 (-605 *2)) (-4 *6 (-605 *4)))))
-(-10 -7 (-15 -2561 ((-3 |#2| "failed") |#3| (-387 |#2|))) (-15 -2561 (|#2| |#3| (-595 (-387 |#2|)))) (-15 -1352 ((-595 (-2 (|:| -1884 |#2|) (|:| -1596 |#2|))) |#3|)) (-15 -1352 ((-595 (-2 (|:| -1884 |#2|) (|:| -1596 |#2|))) |#3| |#2|)) (-15 -3979 (|#2| |#3| |#1|)) (-15 -1352 ((-595 (-2 (|:| -1884 |#2|) (|:| -1596 |#2|))) |#4|)) (-15 -1352 ((-595 (-2 (|:| -1884 |#2|) (|:| -1596 |#2|))) |#4| |#2|)) (-15 -3979 (|#2| |#4| |#1|)) (-15 -3600 ((-2 (|:| -2589 |#3|) (|:| |rh| (-595 (-387 |#2|)))) |#4| (-595 (-387 |#2|)))))
-((-2207 (((-110) $ $) NIL)) (-2409 (((-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) $) 13)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 15) (($ (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) 12)) (-2186 (((-110) $ $) NIL)))
-(((-754) (-13 (-1023) (-10 -8 (-15 -2222 ($ (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -2222 ((-802) $)) (-15 -2409 ((-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) $))))) (T -754))
-((-2222 (*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-754)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (-5 *1 (-754)))) (-2409 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207)))) (-5 *1 (-754)))))
-(-13 (-1023) (-10 -8 (-15 -2222 ($ (-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207))))) (-15 -2222 ((-802) $)) (-15 -2409 ((-2 (|:| |xinit| (-207)) (|:| |xend| (-207)) (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207))) (|:| |abserr| (-207)) (|:| |relerr| (-207))) $))))
-((-4100 (((-595 (-2 (|:| |frac| (-387 |#2|)) (|:| -2589 |#3|))) |#3| (-1 (-595 |#2|) |#2| (-1091 |#2|)) (-1 (-398 |#2|) |#2|)) 118)) (-3937 (((-595 (-2 (|:| |poly| |#2|) (|:| -2589 |#3|))) |#3| (-1 (-595 |#1|) |#2|)) 46)) (-3842 (((-595 (-2 (|:| |deg| (-717)) (|:| -2589 |#2|))) |#3|) 95)) (-3026 ((|#2| |#3|) 37)) (-2572 (((-595 (-2 (|:| -2636 |#1|) (|:| -2589 |#3|))) |#3| (-1 (-595 |#1|) |#2|)) 82)) (-2894 ((|#3| |#3| (-387 |#2|)) 63) ((|#3| |#3| |#2|) 79)))
-(((-755 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3026 (|#2| |#3|)) (-15 -3842 ((-595 (-2 (|:| |deg| (-717)) (|:| -2589 |#2|))) |#3|)) (-15 -2572 ((-595 (-2 (|:| -2636 |#1|) (|:| -2589 |#3|))) |#3| (-1 (-595 |#1|) |#2|))) (-15 -3937 ((-595 (-2 (|:| |poly| |#2|) (|:| -2589 |#3|))) |#3| (-1 (-595 |#1|) |#2|))) (-15 -4100 ((-595 (-2 (|:| |frac| (-387 |#2|)) (|:| -2589 |#3|))) |#3| (-1 (-595 |#2|) |#2| (-1091 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2894 (|#3| |#3| |#2|)) (-15 -2894 (|#3| |#3| (-387 |#2|)))) (-13 (-343) (-140) (-972 (-387 (-528)))) (-1153 |#1|) (-605 |#2|) (-605 (-387 |#2|))) (T -755))
-((-2894 (*1 *2 *2 *3) (-12 (-5 *3 (-387 *5)) (-4 *4 (-13 (-343) (-140) (-972 (-387 (-528))))) (-4 *5 (-1153 *4)) (-5 *1 (-755 *4 *5 *2 *6)) (-4 *2 (-605 *5)) (-4 *6 (-605 *3)))) (-2894 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-343) (-140) (-972 (-387 (-528))))) (-4 *3 (-1153 *4)) (-5 *1 (-755 *4 *3 *2 *5)) (-4 *2 (-605 *3)) (-4 *5 (-605 (-387 *3))))) (-4100 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-595 *7) *7 (-1091 *7))) (-5 *5 (-1 (-398 *7) *7)) (-4 *7 (-1153 *6)) (-4 *6 (-13 (-343) (-140) (-972 (-387 (-528))))) (-5 *2 (-595 (-2 (|:| |frac| (-387 *7)) (|:| -2589 *3)))) (-5 *1 (-755 *6 *7 *3 *8)) (-4 *3 (-605 *7)) (-4 *8 (-605 (-387 *7))))) (-3937 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-595 *5) *6)) (-4 *5 (-13 (-343) (-140) (-972 (-387 (-528))))) (-4 *6 (-1153 *5)) (-5 *2 (-595 (-2 (|:| |poly| *6) (|:| -2589 *3)))) (-5 *1 (-755 *5 *6 *3 *7)) (-4 *3 (-605 *6)) (-4 *7 (-605 (-387 *6))))) (-2572 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-595 *5) *6)) (-4 *5 (-13 (-343) (-140) (-972 (-387 (-528))))) (-4 *6 (-1153 *5)) (-5 *2 (-595 (-2 (|:| -2636 *5) (|:| -2589 *3)))) (-5 *1 (-755 *5 *6 *3 *7)) (-4 *3 (-605 *6)) (-4 *7 (-605 (-387 *6))))) (-3842 (*1 *2 *3) (-12 (-4 *4 (-13 (-343) (-140) (-972 (-387 (-528))))) (-4 *5 (-1153 *4)) (-5 *2 (-595 (-2 (|:| |deg| (-717)) (|:| -2589 *5)))) (-5 *1 (-755 *4 *5 *3 *6)) (-4 *3 (-605 *5)) (-4 *6 (-605 (-387 *5))))) (-3026 (*1 *2 *3) (-12 (-4 *2 (-1153 *4)) (-5 *1 (-755 *4 *2 *3 *5)) (-4 *4 (-13 (-343) (-140) (-972 (-387 (-528))))) (-4 *3 (-605 *2)) (-4 *5 (-605 (-387 *2))))))
-(-10 -7 (-15 -3026 (|#2| |#3|)) (-15 -3842 ((-595 (-2 (|:| |deg| (-717)) (|:| -2589 |#2|))) |#3|)) (-15 -2572 ((-595 (-2 (|:| -2636 |#1|) (|:| -2589 |#3|))) |#3| (-1 (-595 |#1|) |#2|))) (-15 -3937 ((-595 (-2 (|:| |poly| |#2|) (|:| -2589 |#3|))) |#3| (-1 (-595 |#1|) |#2|))) (-15 -4100 ((-595 (-2 (|:| |frac| (-387 |#2|)) (|:| -2589 |#3|))) |#3| (-1 (-595 |#2|) |#2| (-1091 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2894 (|#3| |#3| |#2|)) (-15 -2894 (|#3| |#3| (-387 |#2|))))
-((-3520 (((-2 (|:| -1400 (-595 (-387 |#2|))) (|:| -2163 (-635 |#1|))) (-603 |#2| (-387 |#2|)) (-595 (-387 |#2|))) 121) (((-2 (|:| |particular| (-3 (-387 |#2|) "failed")) (|:| -1400 (-595 (-387 |#2|)))) (-603 |#2| (-387 |#2|)) (-387 |#2|)) 120) (((-2 (|:| -1400 (-595 (-387 |#2|))) (|:| -2163 (-635 |#1|))) (-602 (-387 |#2|)) (-595 (-387 |#2|))) 115) (((-2 (|:| |particular| (-3 (-387 |#2|) "failed")) (|:| -1400 (-595 (-387 |#2|)))) (-602 (-387 |#2|)) (-387 |#2|)) 113)) (-3323 ((|#2| (-603 |#2| (-387 |#2|))) 80) ((|#2| (-602 (-387 |#2|))) 83)))
-(((-756 |#1| |#2|) (-10 -7 (-15 -3520 ((-2 (|:| |particular| (-3 (-387 |#2|) "failed")) (|:| -1400 (-595 (-387 |#2|)))) (-602 (-387 |#2|)) (-387 |#2|))) (-15 -3520 ((-2 (|:| -1400 (-595 (-387 |#2|))) (|:| -2163 (-635 |#1|))) (-602 (-387 |#2|)) (-595 (-387 |#2|)))) (-15 -3520 ((-2 (|:| |particular| (-3 (-387 |#2|) "failed")) (|:| -1400 (-595 (-387 |#2|)))) (-603 |#2| (-387 |#2|)) (-387 |#2|))) (-15 -3520 ((-2 (|:| -1400 (-595 (-387 |#2|))) (|:| -2163 (-635 |#1|))) (-603 |#2| (-387 |#2|)) (-595 (-387 |#2|)))) (-15 -3323 (|#2| (-602 (-387 |#2|)))) (-15 -3323 (|#2| (-603 |#2| (-387 |#2|))))) (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528)))) (-1153 |#1|)) (T -756))
-((-3323 (*1 *2 *3) (-12 (-5 *3 (-603 *2 (-387 *2))) (-4 *2 (-1153 *4)) (-5 *1 (-756 *4 *2)) (-4 *4 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528))))))) (-3323 (*1 *2 *3) (-12 (-5 *3 (-602 (-387 *2))) (-4 *2 (-1153 *4)) (-5 *1 (-756 *4 *2)) (-4 *4 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528))))))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-603 *6 (-387 *6))) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528))))) (-5 *2 (-2 (|:| -1400 (-595 (-387 *6))) (|:| -2163 (-635 *5)))) (-5 *1 (-756 *5 *6)) (-5 *4 (-595 (-387 *6))))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-603 *6 (-387 *6))) (-5 *4 (-387 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1400 (-595 *4)))) (-5 *1 (-756 *5 *6)))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-602 (-387 *6))) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528))))) (-5 *2 (-2 (|:| -1400 (-595 (-387 *6))) (|:| -2163 (-635 *5)))) (-5 *1 (-756 *5 *6)) (-5 *4 (-595 (-387 *6))))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-602 (-387 *6))) (-5 *4 (-387 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1400 (-595 *4)))) (-5 *1 (-756 *5 *6)))))
-(-10 -7 (-15 -3520 ((-2 (|:| |particular| (-3 (-387 |#2|) "failed")) (|:| -1400 (-595 (-387 |#2|)))) (-602 (-387 |#2|)) (-387 |#2|))) (-15 -3520 ((-2 (|:| -1400 (-595 (-387 |#2|))) (|:| -2163 (-635 |#1|))) (-602 (-387 |#2|)) (-595 (-387 |#2|)))) (-15 -3520 ((-2 (|:| |particular| (-3 (-387 |#2|) "failed")) (|:| -1400 (-595 (-387 |#2|)))) (-603 |#2| (-387 |#2|)) (-387 |#2|))) (-15 -3520 ((-2 (|:| -1400 (-595 (-387 |#2|))) (|:| -2163 (-635 |#1|))) (-603 |#2| (-387 |#2|)) (-595 (-387 |#2|)))) (-15 -3323 (|#2| (-602 (-387 |#2|)))) (-15 -3323 (|#2| (-603 |#2| (-387 |#2|)))))
-((-2227 (((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#1|))) |#5| |#4|) 48)))
-(((-757 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2227 ((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#1|))) |#5| |#4|))) (-343) (-605 |#1|) (-1153 |#1|) (-671 |#1| |#3|) (-605 |#4|)) (T -757))
-((-2227 (*1 *2 *3 *4) (-12 (-4 *5 (-343)) (-4 *7 (-1153 *5)) (-4 *4 (-671 *5 *7)) (-5 *2 (-2 (|:| -2163 (-635 *6)) (|:| |vec| (-1177 *5)))) (-5 *1 (-757 *5 *6 *7 *4 *3)) (-4 *6 (-605 *5)) (-4 *3 (-605 *4)))))
-(-10 -7 (-15 -2227 ((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#1|))) |#5| |#4|)))
-((-4100 (((-595 (-2 (|:| |frac| (-387 |#2|)) (|:| -2589 (-603 |#2| (-387 |#2|))))) (-603 |#2| (-387 |#2|)) (-1 (-398 |#2|) |#2|)) 47)) (-1889 (((-595 (-387 |#2|)) (-603 |#2| (-387 |#2|)) (-1 (-398 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-595 (-387 |#2|)) (-603 |#2| (-387 |#2|))) 138 (|has| |#1| (-27))) (((-595 (-387 |#2|)) (-602 (-387 |#2|)) (-1 (-398 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-595 (-387 |#2|)) (-602 (-387 |#2|))) 140 (|has| |#1| (-27))) (((-595 (-387 |#2|)) (-603 |#2| (-387 |#2|)) (-1 (-595 |#1|) |#2|) (-1 (-398 |#2|) |#2|)) 38) (((-595 (-387 |#2|)) (-603 |#2| (-387 |#2|)) (-1 (-595 |#1|) |#2|)) 39) (((-595 (-387 |#2|)) (-602 (-387 |#2|)) (-1 (-595 |#1|) |#2|) (-1 (-398 |#2|) |#2|)) 36) (((-595 (-387 |#2|)) (-602 (-387 |#2|)) (-1 (-595 |#1|) |#2|)) 37)) (-3937 (((-595 (-2 (|:| |poly| |#2|) (|:| -2589 (-603 |#2| (-387 |#2|))))) (-603 |#2| (-387 |#2|)) (-1 (-595 |#1|) |#2|)) 83)))
-(((-758 |#1| |#2|) (-10 -7 (-15 -1889 ((-595 (-387 |#2|)) (-602 (-387 |#2|)) (-1 (-595 |#1|) |#2|))) (-15 -1889 ((-595 (-387 |#2|)) (-602 (-387 |#2|)) (-1 (-595 |#1|) |#2|) (-1 (-398 |#2|) |#2|))) (-15 -1889 ((-595 (-387 |#2|)) (-603 |#2| (-387 |#2|)) (-1 (-595 |#1|) |#2|))) (-15 -1889 ((-595 (-387 |#2|)) (-603 |#2| (-387 |#2|)) (-1 (-595 |#1|) |#2|) (-1 (-398 |#2|) |#2|))) (-15 -4100 ((-595 (-2 (|:| |frac| (-387 |#2|)) (|:| -2589 (-603 |#2| (-387 |#2|))))) (-603 |#2| (-387 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -3937 ((-595 (-2 (|:| |poly| |#2|) (|:| -2589 (-603 |#2| (-387 |#2|))))) (-603 |#2| (-387 |#2|)) (-1 (-595 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1889 ((-595 (-387 |#2|)) (-602 (-387 |#2|)))) (-15 -1889 ((-595 (-387 |#2|)) (-602 (-387 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -1889 ((-595 (-387 |#2|)) (-603 |#2| (-387 |#2|)))) (-15 -1889 ((-595 (-387 |#2|)) (-603 |#2| (-387 |#2|)) (-1 (-398 |#2|) |#2|)))) |%noBranch|)) (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528)))) (-1153 |#1|)) (T -758))
-((-1889 (*1 *2 *3 *4) (-12 (-5 *3 (-603 *6 (-387 *6))) (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1153 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528))))) (-5 *2 (-595 (-387 *6))) (-5 *1 (-758 *5 *6)))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-603 *5 (-387 *5))) (-4 *5 (-1153 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528))))) (-5 *2 (-595 (-387 *5))) (-5 *1 (-758 *4 *5)))) (-1889 (*1 *2 *3 *4) (-12 (-5 *3 (-602 (-387 *6))) (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1153 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528))))) (-5 *2 (-595 (-387 *6))) (-5 *1 (-758 *5 *6)))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-602 (-387 *5))) (-4 *5 (-1153 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528))))) (-5 *2 (-595 (-387 *5))) (-5 *1 (-758 *4 *5)))) (-3937 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-595 *5) *6)) (-4 *5 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528))))) (-4 *6 (-1153 *5)) (-5 *2 (-595 (-2 (|:| |poly| *6) (|:| -2589 (-603 *6 (-387 *6)))))) (-5 *1 (-758 *5 *6)) (-5 *3 (-603 *6 (-387 *6))))) (-4100 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528))))) (-5 *2 (-595 (-2 (|:| |frac| (-387 *6)) (|:| -2589 (-603 *6 (-387 *6)))))) (-5 *1 (-758 *5 *6)) (-5 *3 (-603 *6 (-387 *6))))) (-1889 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-603 *7 (-387 *7))) (-5 *4 (-1 (-595 *6) *7)) (-5 *5 (-1 (-398 *7) *7)) (-4 *6 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528))))) (-4 *7 (-1153 *6)) (-5 *2 (-595 (-387 *7))) (-5 *1 (-758 *6 *7)))) (-1889 (*1 *2 *3 *4) (-12 (-5 *3 (-603 *6 (-387 *6))) (-5 *4 (-1 (-595 *5) *6)) (-4 *5 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528))))) (-4 *6 (-1153 *5)) (-5 *2 (-595 (-387 *6))) (-5 *1 (-758 *5 *6)))) (-1889 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-602 (-387 *7))) (-5 *4 (-1 (-595 *6) *7)) (-5 *5 (-1 (-398 *7) *7)) (-4 *6 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528))))) (-4 *7 (-1153 *6)) (-5 *2 (-595 (-387 *7))) (-5 *1 (-758 *6 *7)))) (-1889 (*1 *2 *3 *4) (-12 (-5 *3 (-602 (-387 *6))) (-5 *4 (-1 (-595 *5) *6)) (-4 *5 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528))))) (-4 *6 (-1153 *5)) (-5 *2 (-595 (-387 *6))) (-5 *1 (-758 *5 *6)))))
-(-10 -7 (-15 -1889 ((-595 (-387 |#2|)) (-602 (-387 |#2|)) (-1 (-595 |#1|) |#2|))) (-15 -1889 ((-595 (-387 |#2|)) (-602 (-387 |#2|)) (-1 (-595 |#1|) |#2|) (-1 (-398 |#2|) |#2|))) (-15 -1889 ((-595 (-387 |#2|)) (-603 |#2| (-387 |#2|)) (-1 (-595 |#1|) |#2|))) (-15 -1889 ((-595 (-387 |#2|)) (-603 |#2| (-387 |#2|)) (-1 (-595 |#1|) |#2|) (-1 (-398 |#2|) |#2|))) (-15 -4100 ((-595 (-2 (|:| |frac| (-387 |#2|)) (|:| -2589 (-603 |#2| (-387 |#2|))))) (-603 |#2| (-387 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -3937 ((-595 (-2 (|:| |poly| |#2|) (|:| -2589 (-603 |#2| (-387 |#2|))))) (-603 |#2| (-387 |#2|)) (-1 (-595 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1889 ((-595 (-387 |#2|)) (-602 (-387 |#2|)))) (-15 -1889 ((-595 (-387 |#2|)) (-602 (-387 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -1889 ((-595 (-387 |#2|)) (-603 |#2| (-387 |#2|)))) (-15 -1889 ((-595 (-387 |#2|)) (-603 |#2| (-387 |#2|)) (-1 (-398 |#2|) |#2|)))) |%noBranch|))
-((-3255 (((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#1|))) (-635 |#2|) (-1177 |#1|)) 85) (((-2 (|:| A (-635 |#1|)) (|:| |eqs| (-595 (-2 (|:| C (-635 |#1|)) (|:| |g| (-1177 |#1|)) (|:| -2589 |#2|) (|:| |rh| |#1|))))) (-635 |#1|) (-1177 |#1|)) 15)) (-4206 (((-2 (|:| |particular| (-3 (-1177 |#1|) "failed")) (|:| -1400 (-595 (-1177 |#1|)))) (-635 |#2|) (-1177 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1400 (-595 |#1|))) |#2| |#1|)) 92)) (-1651 (((-3 (-2 (|:| |particular| (-1177 |#1|)) (|:| -1400 (-635 |#1|))) "failed") (-635 |#1|) (-1177 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1400 (-595 |#1|))) "failed") |#2| |#1|)) 43)))
-(((-759 |#1| |#2|) (-10 -7 (-15 -3255 ((-2 (|:| A (-635 |#1|)) (|:| |eqs| (-595 (-2 (|:| C (-635 |#1|)) (|:| |g| (-1177 |#1|)) (|:| -2589 |#2|) (|:| |rh| |#1|))))) (-635 |#1|) (-1177 |#1|))) (-15 -3255 ((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#1|))) (-635 |#2|) (-1177 |#1|))) (-15 -1651 ((-3 (-2 (|:| |particular| (-1177 |#1|)) (|:| -1400 (-635 |#1|))) "failed") (-635 |#1|) (-1177 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1400 (-595 |#1|))) "failed") |#2| |#1|))) (-15 -4206 ((-2 (|:| |particular| (-3 (-1177 |#1|) "failed")) (|:| -1400 (-595 (-1177 |#1|)))) (-635 |#2|) (-1177 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1400 (-595 |#1|))) |#2| |#1|)))) (-343) (-605 |#1|)) (T -759))
-((-4206 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1400 (-595 *6))) *7 *6)) (-4 *6 (-343)) (-4 *7 (-605 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1177 *6) "failed")) (|:| -1400 (-595 (-1177 *6))))) (-5 *1 (-759 *6 *7)) (-5 *4 (-1177 *6)))) (-1651 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1400 (-595 *6))) "failed") *7 *6)) (-4 *6 (-343)) (-4 *7 (-605 *6)) (-5 *2 (-2 (|:| |particular| (-1177 *6)) (|:| -1400 (-635 *6)))) (-5 *1 (-759 *6 *7)) (-5 *3 (-635 *6)) (-5 *4 (-1177 *6)))) (-3255 (*1 *2 *3 *4) (-12 (-4 *5 (-343)) (-4 *6 (-605 *5)) (-5 *2 (-2 (|:| -2163 (-635 *6)) (|:| |vec| (-1177 *5)))) (-5 *1 (-759 *5 *6)) (-5 *3 (-635 *6)) (-5 *4 (-1177 *5)))) (-3255 (*1 *2 *3 *4) (-12 (-4 *5 (-343)) (-5 *2 (-2 (|:| A (-635 *5)) (|:| |eqs| (-595 (-2 (|:| C (-635 *5)) (|:| |g| (-1177 *5)) (|:| -2589 *6) (|:| |rh| *5)))))) (-5 *1 (-759 *5 *6)) (-5 *3 (-635 *5)) (-5 *4 (-1177 *5)) (-4 *6 (-605 *5)))))
-(-10 -7 (-15 -3255 ((-2 (|:| A (-635 |#1|)) (|:| |eqs| (-595 (-2 (|:| C (-635 |#1|)) (|:| |g| (-1177 |#1|)) (|:| -2589 |#2|) (|:| |rh| |#1|))))) (-635 |#1|) (-1177 |#1|))) (-15 -3255 ((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#1|))) (-635 |#2|) (-1177 |#1|))) (-15 -1651 ((-3 (-2 (|:| |particular| (-1177 |#1|)) (|:| -1400 (-635 |#1|))) "failed") (-635 |#1|) (-1177 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1400 (-595 |#1|))) "failed") |#2| |#1|))) (-15 -4206 ((-2 (|:| |particular| (-3 (-1177 |#1|) "failed")) (|:| -1400 (-595 (-1177 |#1|)))) (-635 |#2|) (-1177 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1400 (-595 |#1|))) |#2| |#1|))))
-((-3723 (((-635 |#1|) (-595 |#1|) (-717)) 13) (((-635 |#1|) (-595 |#1|)) 14)) (-1536 (((-3 (-1177 |#1|) "failed") |#2| |#1| (-595 |#1|)) 34)) (-2265 (((-3 |#1| "failed") |#2| |#1| (-595 |#1|) (-1 |#1| |#1|)) 42)))
-(((-760 |#1| |#2|) (-10 -7 (-15 -3723 ((-635 |#1|) (-595 |#1|))) (-15 -3723 ((-635 |#1|) (-595 |#1|) (-717))) (-15 -1536 ((-3 (-1177 |#1|) "failed") |#2| |#1| (-595 |#1|))) (-15 -2265 ((-3 |#1| "failed") |#2| |#1| (-595 |#1|) (-1 |#1| |#1|)))) (-343) (-605 |#1|)) (T -760))
-((-2265 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-595 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-343)) (-5 *1 (-760 *2 *3)) (-4 *3 (-605 *2)))) (-1536 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-595 *4)) (-4 *4 (-343)) (-5 *2 (-1177 *4)) (-5 *1 (-760 *4 *3)) (-4 *3 (-605 *4)))) (-3723 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *5)) (-5 *4 (-717)) (-4 *5 (-343)) (-5 *2 (-635 *5)) (-5 *1 (-760 *5 *6)) (-4 *6 (-605 *5)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-595 *4)) (-4 *4 (-343)) (-5 *2 (-635 *4)) (-5 *1 (-760 *4 *5)) (-4 *5 (-605 *4)))))
-(-10 -7 (-15 -3723 ((-635 |#1|) (-595 |#1|))) (-15 -3723 ((-635 |#1|) (-595 |#1|) (-717))) (-15 -1536 ((-3 (-1177 |#1|) "failed") |#2| |#1| (-595 |#1|))) (-15 -2265 ((-3 |#1| "failed") |#2| |#1| (-595 |#1|) (-1 |#1| |#1|))))
-((-2207 (((-110) $ $) NIL (|has| |#2| (-1023)))) (-1359 (((-110) $) NIL (|has| |#2| (-128)))) (-2562 (($ (-860)) NIL (|has| |#2| (-981)))) (-1444 (((-1182) $ (-528) (-528)) NIL (|has| $ (-6 -4265)))) (-3622 (($ $ $) NIL (|has| |#2| (-739)))) (-3181 (((-3 $ "failed") $ $) NIL (|has| |#2| (-128)))) (-3535 (((-110) $ (-717)) NIL)) (-2856 (((-717)) NIL (|has| |#2| (-348)))) (-3605 (((-528) $) NIL (|has| |#2| (-791)))) (-2381 ((|#2| $ (-528) |#2|) NIL (|has| $ (-6 -4265)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-528) "failed") $) NIL (-12 (|has| |#2| (-972 (-528))) (|has| |#2| (-1023)))) (((-3 (-387 (-528)) "failed") $) NIL (-12 (|has| |#2| (-972 (-387 (-528)))) (|has| |#2| (-1023)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1023)))) (-2409 (((-528) $) NIL (-12 (|has| |#2| (-972 (-528))) (|has| |#2| (-1023)))) (((-387 (-528)) $) NIL (-12 (|has| |#2| (-972 (-387 (-528)))) (|has| |#2| (-1023)))) ((|#2| $) NIL (|has| |#2| (-1023)))) (-2120 (((-635 (-528)) (-635 $)) NIL (-12 (|has| |#2| (-591 (-528))) (|has| |#2| (-981)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (-12 (|has| |#2| (-591 (-528))) (|has| |#2| (-981)))) (((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 $) (-1177 $)) NIL (|has| |#2| (-981))) (((-635 |#2|) (-635 $)) NIL (|has| |#2| (-981)))) (-1312 (((-3 $ "failed") $) NIL (|has| |#2| (-673)))) (-1338 (($) NIL (|has| |#2| (-348)))) (-2812 ((|#2| $ (-528) |#2|) NIL (|has| $ (-6 -4265)))) (-2742 ((|#2| $ (-528)) NIL)) (-3657 (((-110) $) NIL (|has| |#2| (-791)))) (-3342 (((-595 |#2|) $) NIL (|has| $ (-6 -4264)))) (-1297 (((-110) $) NIL (|has| |#2| (-673)))) (-3710 (((-110) $) NIL (|has| |#2| (-791)))) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-528) $) NIL (|has| (-528) (-793)))) (-1436 (($ $ $) NIL (-1463 (|has| |#2| (-739)) (|has| |#2| (-791))))) (-2604 (((-595 |#2|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-1709 (((-528) $) NIL (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (-1463 (|has| |#2| (-739)) (|has| |#2| (-791))))) (-2800 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#2| |#2|) $) NIL)) (-3201 (((-860) $) NIL (|has| |#2| (-348)))) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (|has| |#2| (-1023)))) (-2084 (((-595 (-528)) $) NIL)) (-3966 (((-110) (-528) $) NIL)) (-3108 (($ (-860)) NIL (|has| |#2| (-348)))) (-2495 (((-1042) $) NIL (|has| |#2| (-1023)))) (-2890 ((|#2| $) NIL (|has| (-528) (-793)))) (-1332 (($ $ |#2|) NIL (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#2|))) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-595 |#2|) (-595 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-2861 (((-595 |#2|) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#2| $ (-528) |#2|) NIL) ((|#2| $ (-528)) NIL)) (-3675 ((|#2| $ $) NIL (|has| |#2| (-981)))) (-2484 (($ (-1177 |#2|)) NIL)) (-3017 (((-130)) NIL (|has| |#2| (-343)))) (-3235 (($ $) NIL (-12 (|has| |#2| (-215)) (|has| |#2| (-981)))) (($ $ (-717)) NIL (-12 (|has| |#2| (-215)) (|has| |#2| (-981)))) (($ $ (-1095)) NIL (-12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-1 |#2| |#2|) (-717)) NIL (|has| |#2| (-981))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-981)))) (-2507 (((-717) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264))) (((-717) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-2406 (($ $) NIL)) (-2222 (((-1177 |#2|) $) NIL) (($ (-528)) NIL (-1463 (-12 (|has| |#2| (-972 (-528))) (|has| |#2| (-1023))) (|has| |#2| (-981)))) (($ (-387 (-528))) NIL (-12 (|has| |#2| (-972 (-387 (-528)))) (|has| |#2| (-1023)))) (($ |#2|) NIL (|has| |#2| (-1023))) (((-802) $) NIL (|has| |#2| (-569 (-802))))) (-3742 (((-717)) NIL (|has| |#2| (-981)))) (-3451 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-1775 (($ $) NIL (|has| |#2| (-791)))) (-2690 (($ $ (-717)) NIL (|has| |#2| (-673))) (($ $ (-860)) NIL (|has| |#2| (-673)))) (-2969 (($) NIL (|has| |#2| (-128)) CONST)) (-2982 (($) NIL (|has| |#2| (-673)) CONST)) (-3245 (($ $) NIL (-12 (|has| |#2| (-215)) (|has| |#2| (-981)))) (($ $ (-717)) NIL (-12 (|has| |#2| (-215)) (|has| |#2| (-981)))) (($ $ (-1095)) NIL (-12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#2| (-839 (-1095))) (|has| |#2| (-981)))) (($ $ (-1 |#2| |#2|) (-717)) NIL (|has| |#2| (-981))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-981)))) (-2244 (((-110) $ $) NIL (-1463 (|has| |#2| (-739)) (|has| |#2| (-791))))) (-2220 (((-110) $ $) NIL (-1463 (|has| |#2| (-739)) (|has| |#2| (-791))))) (-2186 (((-110) $ $) NIL (|has| |#2| (-1023)))) (-2232 (((-110) $ $) NIL (-1463 (|has| |#2| (-739)) (|has| |#2| (-791))))) (-2208 (((-110) $ $) 11 (-1463 (|has| |#2| (-739)) (|has| |#2| (-791))))) (-2296 (($ $ |#2|) NIL (|has| |#2| (-343)))) (-2286 (($ $ $) NIL (|has| |#2| (-981))) (($ $) NIL (|has| |#2| (-981)))) (-2275 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-717)) NIL (|has| |#2| (-673))) (($ $ (-860)) NIL (|has| |#2| (-673)))) (* (($ (-528) $) NIL (|has| |#2| (-981))) (($ $ $) NIL (|has| |#2| (-673))) (($ $ |#2|) NIL (|has| |#2| (-673))) (($ |#2| $) NIL (|has| |#2| (-673))) (($ (-717) $) NIL (|has| |#2| (-128))) (($ (-860) $) NIL (|has| |#2| (-25)))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-761 |#1| |#2| |#3|) (-220 |#1| |#2|) (-717) (-739) (-1 (-110) (-1177 |#2|) (-1177 |#2|))) (T -761))
-NIL
-(-220 |#1| |#2|)
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-4055 (((-595 (-717)) $) NIL) (((-595 (-717)) $ (-1095)) NIL)) (-1479 (((-717) $) NIL) (((-717) $ (-1095)) NIL)) (-2565 (((-595 (-764 (-1095))) $) NIL)) (-2402 (((-1091 $) $ (-764 (-1095))) NIL) (((-1091 |#1|) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#1| (-520)))) (-1738 (($ $) NIL (|has| |#1| (-520)))) (-1811 (((-110) $) NIL (|has| |#1| (-520)))) (-4042 (((-717) $) NIL) (((-717) $ (-595 (-764 (-1095)))) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-1232 (($ $) NIL (|has| |#1| (-431)))) (-2705 (((-398 $) $) NIL (|has| |#1| (-431)))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2745 (($ $) NIL)) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#1| "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-3 (-528) "failed") $) NIL (|has| |#1| (-972 (-528)))) (((-3 (-764 (-1095)) "failed") $) NIL) (((-3 (-1095) "failed") $) NIL) (((-3 (-1047 |#1| (-1095)) "failed") $) NIL)) (-2409 ((|#1| $) NIL) (((-387 (-528)) $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-528) $) NIL (|has| |#1| (-972 (-528)))) (((-764 (-1095)) $) NIL) (((-1095) $) NIL) (((-1047 |#1| (-1095)) $) NIL)) (-1606 (($ $ $ (-764 (-1095))) NIL (|has| |#1| (-162)))) (-2388 (($ $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) NIL) (((-635 |#1|) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1551 (($ $) NIL (|has| |#1| (-431))) (($ $ (-764 (-1095))) NIL (|has| |#1| (-431)))) (-2376 (((-595 $) $) NIL)) (-2124 (((-110) $) NIL (|has| |#1| (-848)))) (-4047 (($ $ |#1| (-500 (-764 (-1095))) $) NIL)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (-12 (|has| (-764 (-1095)) (-825 (-359))) (|has| |#1| (-825 (-359))))) (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (-12 (|has| (-764 (-1095)) (-825 (-528))) (|has| |#1| (-825 (-528)))))) (-3689 (((-717) $ (-1095)) NIL) (((-717) $) NIL)) (-1297 (((-110) $) NIL)) (-1224 (((-717) $) NIL)) (-2557 (($ (-1091 |#1|) (-764 (-1095))) NIL) (($ (-1091 $) (-764 (-1095))) NIL)) (-3737 (((-595 $) $) NIL)) (-2195 (((-110) $) NIL)) (-2548 (($ |#1| (-500 (-764 (-1095)))) NIL) (($ $ (-764 (-1095)) (-717)) NIL) (($ $ (-595 (-764 (-1095))) (-595 (-717))) NIL)) (-3275 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $ (-764 (-1095))) NIL)) (-3499 (((-500 (-764 (-1095))) $) NIL) (((-717) $ (-764 (-1095))) NIL) (((-595 (-717)) $ (-595 (-764 (-1095)))) NIL)) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-1264 (($ (-1 (-500 (-764 (-1095))) (-500 (-764 (-1095)))) $) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-4161 (((-1 $ (-717)) (-1095)) NIL) (((-1 $ (-717)) $) NIL (|has| |#1| (-215)))) (-3288 (((-3 (-764 (-1095)) "failed") $) NIL)) (-2686 (($ $) NIL)) (-2697 ((|#1| $) NIL)) (-4018 (((-764 (-1095)) $) NIL)) (-2057 (($ (-595 $)) NIL (|has| |#1| (-431))) (($ $ $) NIL (|has| |#1| (-431)))) (-3034 (((-1078) $) NIL)) (-4071 (((-110) $) NIL)) (-3024 (((-3 (-595 $) "failed") $) NIL)) (-1281 (((-3 (-595 $) "failed") $) NIL)) (-3352 (((-3 (-2 (|:| |var| (-764 (-1095))) (|:| -2564 (-717))) "failed") $) NIL)) (-2237 (($ $) NIL)) (-2495 (((-1042) $) NIL)) (-2662 (((-110) $) NIL)) (-2675 ((|#1| $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#1| (-431)))) (-2088 (($ (-595 $)) NIL (|has| |#1| (-431))) (($ $ $) NIL (|has| |#1| (-431)))) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2437 (((-398 $) $) NIL (|has| |#1| (-848)))) (-3477 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-520))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-520)))) (-4014 (($ $ (-595 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL) (($ $ (-764 (-1095)) |#1|) NIL) (($ $ (-595 (-764 (-1095))) (-595 |#1|)) NIL) (($ $ (-764 (-1095)) $) NIL) (($ $ (-595 (-764 (-1095))) (-595 $)) NIL) (($ $ (-1095) $) NIL (|has| |#1| (-215))) (($ $ (-595 (-1095)) (-595 $)) NIL (|has| |#1| (-215))) (($ $ (-1095) |#1|) NIL (|has| |#1| (-215))) (($ $ (-595 (-1095)) (-595 |#1|)) NIL (|has| |#1| (-215)))) (-1372 (($ $ (-764 (-1095))) NIL (|has| |#1| (-162)))) (-3235 (($ $ (-764 (-1095))) NIL) (($ $ (-595 (-764 (-1095)))) NIL) (($ $ (-764 (-1095)) (-717)) NIL) (($ $ (-595 (-764 (-1095))) (-595 (-717))) NIL) (($ $) NIL (|has| |#1| (-215))) (($ $ (-717)) NIL (|has| |#1| (-215))) (($ $ (-1095)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3553 (((-595 (-1095)) $) NIL)) (-2935 (((-500 (-764 (-1095))) $) NIL) (((-717) $ (-764 (-1095))) NIL) (((-595 (-717)) $ (-595 (-764 (-1095)))) NIL) (((-717) $ (-1095)) NIL)) (-3155 (((-831 (-359)) $) NIL (-12 (|has| (-764 (-1095)) (-570 (-831 (-359)))) (|has| |#1| (-570 (-831 (-359)))))) (((-831 (-528)) $) NIL (-12 (|has| (-764 (-1095)) (-570 (-831 (-528)))) (|has| |#1| (-570 (-831 (-528)))))) (((-504) $) NIL (-12 (|has| (-764 (-1095)) (-570 (-504))) (|has| |#1| (-570 (-504)))))) (-1618 ((|#1| $) NIL (|has| |#1| (-431))) (($ $ (-764 (-1095))) NIL (|has| |#1| (-431)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-848))))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ |#1|) NIL) (($ (-764 (-1095))) NIL) (($ (-1095)) NIL) (($ (-1047 |#1| (-1095))) NIL) (($ (-387 (-528))) NIL (-1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-972 (-387 (-528)))))) (($ $) NIL (|has| |#1| (-520)))) (-3348 (((-595 |#1|) $) NIL)) (-3216 ((|#1| $ (-500 (-764 (-1095)))) NIL) (($ $ (-764 (-1095)) (-717)) NIL) (($ $ (-595 (-764 (-1095))) (-595 (-717))) NIL)) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| |#1| (-848))) (|has| |#1| (-138))))) (-3742 (((-717)) NIL)) (-1997 (($ $ $ (-717)) NIL (|has| |#1| (-162)))) (-4016 (((-110) $ $) NIL (|has| |#1| (-520)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($ $ (-764 (-1095))) NIL) (($ $ (-595 (-764 (-1095)))) NIL) (($ $ (-764 (-1095)) (-717)) NIL) (($ $ (-595 (-764 (-1095))) (-595 (-717))) NIL) (($ $) NIL (|has| |#1| (-215))) (($ $ (-717)) NIL (|has| |#1| (-215))) (($ $ (-1095)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2296 (($ $ |#1|) NIL (|has| |#1| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528))))) (($ (-387 (-528)) $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-762 |#1|) (-13 (-234 |#1| (-1095) (-764 (-1095)) (-500 (-764 (-1095)))) (-972 (-1047 |#1| (-1095)))) (-981)) (T -762))
-NIL
-(-13 (-234 |#1| (-1095) (-764 (-1095)) (-500 (-764 (-1095)))) (-972 (-1047 |#1| (-1095))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#2| (-343)))) (-1738 (($ $) NIL (|has| |#2| (-343)))) (-1811 (((-110) $) NIL (|has| |#2| (-343)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL (|has| |#2| (-343)))) (-2705 (((-398 $) $) NIL (|has| |#2| (-343)))) (-2213 (((-110) $ $) NIL (|has| |#2| (-343)))) (-2816 (($) NIL T CONST)) (-3519 (($ $ $) NIL (|has| |#2| (-343)))) (-1312 (((-3 $ "failed") $) NIL)) (-3498 (($ $ $) NIL (|has| |#2| (-343)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL (|has| |#2| (-343)))) (-2124 (((-110) $) NIL (|has| |#2| (-343)))) (-1297 (((-110) $) NIL)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#2| (-343)))) (-2057 (($ (-595 $)) NIL (|has| |#2| (-343))) (($ $ $) NIL (|has| |#2| (-343)))) (-3034 (((-1078) $) NIL)) (-2652 (($ $) 20 (|has| |#2| (-343)))) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#2| (-343)))) (-2088 (($ (-595 $)) NIL (|has| |#2| (-343))) (($ $ $) NIL (|has| |#2| (-343)))) (-2437 (((-398 $) $) NIL (|has| |#2| (-343)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-343))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#2| (-343)))) (-3477 (((-3 $ "failed") $ $) NIL (|has| |#2| (-343)))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#2| (-343)))) (-3973 (((-717) $) NIL (|has| |#2| (-343)))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#2| (-343)))) (-3235 (($ $ (-717)) NIL) (($ $) 13)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-387 (-528))) NIL (|has| |#2| (-343))) (($ $) NIL (|has| |#2| (-343)))) (-3742 (((-717)) NIL)) (-4016 (((-110) $ $) NIL (|has| |#2| (-343)))) (-2690 (($ $ (-717)) NIL) (($ $ (-860)) NIL) (($ $ (-528)) NIL (|has| |#2| (-343)))) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($ $ (-717)) NIL) (($ $) NIL)) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ $) 15 (|has| |#2| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-717)) NIL) (($ $ (-860)) NIL) (($ $ (-528)) 18 (|has| |#2| (-343)))) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-387 (-528)) $) NIL (|has| |#2| (-343))) (($ $ (-387 (-528))) NIL (|has| |#2| (-343)))))
-(((-763 |#1| |#2| |#3|) (-13 (-109 $ $) (-215) (-10 -8 (IF (|has| |#2| (-343)) (-6 (-343)) |%noBranch|) (-15 -2222 ($ |#2|)) (-15 -2222 (|#2| $)))) (-1023) (-839 |#1|) |#1|) (T -763))
-((-2222 (*1 *1 *2) (-12 (-4 *3 (-1023)) (-14 *4 *3) (-5 *1 (-763 *3 *2 *4)) (-4 *2 (-839 *3)))) (-2222 (*1 *2 *1) (-12 (-4 *2 (-839 *3)) (-5 *1 (-763 *3 *2 *4)) (-4 *3 (-1023)) (-14 *4 *3))))
-(-13 (-109 $ $) (-215) (-10 -8 (IF (|has| |#2| (-343)) (-6 (-343)) |%noBranch|) (-15 -2222 ($ |#2|)) (-15 -2222 (|#2| $))))
-((-2207 (((-110) $ $) NIL)) (-1479 (((-717) $) NIL)) (-3915 ((|#1| $) 10)) (-3001 (((-3 |#1| "failed") $) NIL)) (-2409 ((|#1| $) NIL)) (-3689 (((-717) $) 11)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-4161 (($ |#1| (-717)) 9)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3235 (($ $) NIL) (($ $ (-717)) NIL)) (-2222 (((-802) $) NIL) (($ |#1|) NIL)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) NIL)))
-(((-764 |#1|) (-247 |#1|) (-793)) (T -764))
-NIL
-(-247 |#1|)
-((-2207 (((-110) $ $) NIL)) (-3642 (((-595 |#1|) $) 29)) (-2856 (((-717) $) NIL)) (-2816 (($) NIL T CONST)) (-2650 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-3001 (((-3 |#1| "failed") $) NIL)) (-2409 ((|#1| $) NIL)) (-2902 (($ $) 31)) (-1312 (((-3 $ "failed") $) NIL)) (-3588 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1297 (((-110) $) NIL)) (-2492 ((|#1| $ (-528)) NIL)) (-3442 (((-717) $ (-528)) NIL)) (-2091 (($ $) 36)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-1572 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-3614 (((-110) $ $) 34)) (-1584 (((-717) $) 25)) (-3034 (((-1078) $) NIL)) (-3944 (($ $ $) NIL)) (-2577 (($ $ $) NIL)) (-2495 (((-1042) $) NIL)) (-2890 ((|#1| $) 30)) (-2783 (((-595 (-2 (|:| |gen| |#1|) (|:| -2656 (-717)))) $) NIL)) (-3486 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2222 (((-802) $) NIL) (($ |#1|) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2982 (($) 15 T CONST)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 35)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ |#1| (-717)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-765 |#1|) (-13 (-789) (-972 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-717))) (-15 -2890 (|#1| $)) (-15 -2902 ($ $)) (-15 -2091 ($ $)) (-15 -3614 ((-110) $ $)) (-15 -2577 ($ $ $)) (-15 -3944 ($ $ $)) (-15 -1572 ((-3 $ "failed") $ $)) (-15 -2650 ((-3 $ "failed") $ $)) (-15 -1572 ((-3 $ "failed") $ |#1|)) (-15 -2650 ((-3 $ "failed") $ |#1|)) (-15 -3486 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3588 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2856 ((-717) $)) (-15 -3442 ((-717) $ (-528))) (-15 -2492 (|#1| $ (-528))) (-15 -2783 ((-595 (-2 (|:| |gen| |#1|) (|:| -2656 (-717)))) $)) (-15 -1584 ((-717) $)) (-15 -3642 ((-595 |#1|) $)))) (-793)) (T -765))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-793)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-765 *2)) (-4 *2 (-793)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-717)) (-5 *1 (-765 *2)) (-4 *2 (-793)))) (-2890 (*1 *2 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-793)))) (-2902 (*1 *1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-793)))) (-2091 (*1 *1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-793)))) (-3614 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-765 *3)) (-4 *3 (-793)))) (-2577 (*1 *1 *1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-793)))) (-3944 (*1 *1 *1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-793)))) (-1572 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-765 *2)) (-4 *2 (-793)))) (-2650 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-765 *2)) (-4 *2 (-793)))) (-1572 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-765 *2)) (-4 *2 (-793)))) (-2650 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-765 *2)) (-4 *2 (-793)))) (-3486 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-765 *3)) (|:| |rm| (-765 *3)))) (-5 *1 (-765 *3)) (-4 *3 (-793)))) (-3588 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-765 *3)) (|:| |mm| (-765 *3)) (|:| |rm| (-765 *3)))) (-5 *1 (-765 *3)) (-4 *3 (-793)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-765 *3)) (-4 *3 (-793)))) (-3442 (*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-5 *2 (-717)) (-5 *1 (-765 *4)) (-4 *4 (-793)))) (-2492 (*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-5 *1 (-765 *2)) (-4 *2 (-793)))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-595 (-2 (|:| |gen| *3) (|:| -2656 (-717))))) (-5 *1 (-765 *3)) (-4 *3 (-793)))) (-1584 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-765 *3)) (-4 *3 (-793)))) (-3642 (*1 *2 *1) (-12 (-5 *2 (-595 *3)) (-5 *1 (-765 *3)) (-4 *3 (-793)))))
-(-13 (-789) (-972 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-717))) (-15 -2890 (|#1| $)) (-15 -2902 ($ $)) (-15 -2091 ($ $)) (-15 -3614 ((-110) $ $)) (-15 -2577 ($ $ $)) (-15 -3944 ($ $ $)) (-15 -1572 ((-3 $ "failed") $ $)) (-15 -2650 ((-3 $ "failed") $ $)) (-15 -1572 ((-3 $ "failed") $ |#1|)) (-15 -2650 ((-3 $ "failed") $ |#1|)) (-15 -3486 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3588 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2856 ((-717) $)) (-15 -3442 ((-717) $ (-528))) (-15 -2492 (|#1| $ (-528))) (-15 -2783 ((-595 (-2 (|:| |gen| |#1|) (|:| -2656 (-717)))) $)) (-15 -1584 ((-717) $)) (-15 -3642 ((-595 |#1|) $))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 41)) (-1738 (($ $) 40)) (-1811 (((-110) $) 38)) (-3181 (((-3 $ "failed") $ $) 19)) (-3605 (((-528) $) 53)) (-2816 (($) 17 T CONST)) (-1312 (((-3 $ "failed") $) 34)) (-3657 (((-110) $) 51)) (-1297 (((-110) $) 31)) (-3710 (((-110) $) 52)) (-1436 (($ $ $) 50)) (-1736 (($ $ $) 49)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-3477 (((-3 $ "failed") $ $) 42)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ $) 43)) (-3742 (((-717)) 29)) (-4016 (((-110) $ $) 39)) (-1775 (($ $) 54)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2244 (((-110) $ $) 47)) (-2220 (((-110) $ $) 46)) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 48)) (-2208 (((-110) $ $) 45)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24)))
-(((-766) (-133)) (T -766))
-NIL
-(-13 (-520) (-791))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-569 (-802)) . T) ((-162) . T) ((-271) . T) ((-520) . T) ((-597 $) . T) ((-664 $) . T) ((-673) . T) ((-737) . T) ((-738) . T) ((-740) . T) ((-741) . T) ((-791) . T) ((-793) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-3101 (($ (-1042)) 7)) (-4112 (((-110) $ (-1078) (-1042)) 15)) (-1828 (((-768) $) 12)) (-2670 (((-768) $) 11)) (-2879 (((-1182) $) 9)) (-4151 (((-110) $ (-1042)) 16)))
-(((-767) (-10 -8 (-15 -3101 ($ (-1042))) (-15 -2879 ((-1182) $)) (-15 -2670 ((-768) $)) (-15 -1828 ((-768) $)) (-15 -4112 ((-110) $ (-1078) (-1042))) (-15 -4151 ((-110) $ (-1042))))) (T -767))
-((-4151 (*1 *2 *1 *3) (-12 (-5 *3 (-1042)) (-5 *2 (-110)) (-5 *1 (-767)))) (-4112 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1078)) (-5 *4 (-1042)) (-5 *2 (-110)) (-5 *1 (-767)))) (-1828 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-767)))) (-2670 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-767)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-767)))) (-3101 (*1 *1 *2) (-12 (-5 *2 (-1042)) (-5 *1 (-767)))))
-(-10 -8 (-15 -3101 ($ (-1042))) (-15 -2879 ((-1182) $)) (-15 -2670 ((-768) $)) (-15 -1828 ((-768) $)) (-15 -4112 ((-110) $ (-1078) (-1042))) (-15 -4151 ((-110) $ (-1042))))
-((-3786 (((-1182) $ (-769)) 12)) (-3563 (((-1182) $ (-1095)) 32)) (-3269 (((-1182) $ (-1078) (-1078)) 34)) (-3637 (((-1182) $ (-1078)) 33)) (-3097 (((-1182) $) 19)) (-4084 (((-1182) $ (-528)) 28)) (-1453 (((-1182) $ (-207)) 30)) (-2810 (((-1182) $) 18)) (-4121 (((-1182) $) 26)) (-4037 (((-1182) $) 25)) (-3331 (((-1182) $) 23)) (-1843 (((-1182) $) 24)) (-2603 (((-1182) $) 22)) (-4080 (((-1182) $) 21)) (-3784 (((-1182) $) 20)) (-3663 (((-1182) $) 16)) (-4111 (((-1182) $) 17)) (-2687 (((-1182) $) 15)) (-2863 (((-1182) $) 14)) (-3589 (((-1182) $) 13)) (-3739 (($ (-1078) (-769)) 9)) (-3557 (($ (-1078) (-1078) (-769)) 8)) (-3890 (((-1095) $) 51)) (-3559 (((-1095) $) 55)) (-1816 (((-2 (|:| |cd| (-1078)) (|:| -3814 (-1078))) $) 54)) (-2017 (((-1078) $) 52)) (-1930 (((-1182) $) 41)) (-3222 (((-528) $) 49)) (-1839 (((-207) $) 50)) (-3467 (((-1182) $) 40)) (-1850 (((-1182) $) 48)) (-1910 (((-1182) $) 47)) (-3128 (((-1182) $) 45)) (-1590 (((-1182) $) 46)) (-2322 (((-1182) $) 44)) (-3424 (((-1182) $) 43)) (-3624 (((-1182) $) 42)) (-2003 (((-1182) $) 38)) (-2728 (((-1182) $) 39)) (-2330 (((-1182) $) 37)) (-2511 (((-1182) $) 36)) (-3525 (((-1182) $) 35)) (-3244 (((-1182) $) 11)))
-(((-768) (-10 -8 (-15 -3557 ($ (-1078) (-1078) (-769))) (-15 -3739 ($ (-1078) (-769))) (-15 -3244 ((-1182) $)) (-15 -3786 ((-1182) $ (-769))) (-15 -3589 ((-1182) $)) (-15 -2863 ((-1182) $)) (-15 -2687 ((-1182) $)) (-15 -3663 ((-1182) $)) (-15 -4111 ((-1182) $)) (-15 -2810 ((-1182) $)) (-15 -3097 ((-1182) $)) (-15 -3784 ((-1182) $)) (-15 -4080 ((-1182) $)) (-15 -2603 ((-1182) $)) (-15 -3331 ((-1182) $)) (-15 -1843 ((-1182) $)) (-15 -4037 ((-1182) $)) (-15 -4121 ((-1182) $)) (-15 -4084 ((-1182) $ (-528))) (-15 -1453 ((-1182) $ (-207))) (-15 -3563 ((-1182) $ (-1095))) (-15 -3637 ((-1182) $ (-1078))) (-15 -3269 ((-1182) $ (-1078) (-1078))) (-15 -3525 ((-1182) $)) (-15 -2511 ((-1182) $)) (-15 -2330 ((-1182) $)) (-15 -2003 ((-1182) $)) (-15 -2728 ((-1182) $)) (-15 -3467 ((-1182) $)) (-15 -1930 ((-1182) $)) (-15 -3624 ((-1182) $)) (-15 -3424 ((-1182) $)) (-15 -2322 ((-1182) $)) (-15 -3128 ((-1182) $)) (-15 -1590 ((-1182) $)) (-15 -1910 ((-1182) $)) (-15 -1850 ((-1182) $)) (-15 -3222 ((-528) $)) (-15 -1839 ((-207) $)) (-15 -3890 ((-1095) $)) (-15 -2017 ((-1078) $)) (-15 -1816 ((-2 (|:| |cd| (-1078)) (|:| -3814 (-1078))) $)) (-15 -3559 ((-1095) $)))) (T -768))
-((-3559 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-768)))) (-1816 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1078)) (|:| -3814 (-1078)))) (-5 *1 (-768)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-1078)) (-5 *1 (-768)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-768)))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-207)) (-5 *1 (-768)))) (-3222 (*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-768)))) (-1850 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-1910 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-1590 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-3128 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-3424 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-1930 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-3467 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-2728 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-2330 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-2511 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-3269 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-768)))) (-3637 (*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-768)))) (-3563 (*1 *2 *1 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-1182)) (-5 *1 (-768)))) (-1453 (*1 *2 *1 *3) (-12 (-5 *3 (-207)) (-5 *2 (-1182)) (-5 *1 (-768)))) (-4084 (*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-5 *2 (-1182)) (-5 *1 (-768)))) (-4121 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-4037 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-4080 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-3784 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-3097 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-2810 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-4111 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-3663 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-2863 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-3589 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-3786 (*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1182)) (-5 *1 (-768)))) (-3244 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))) (-3739 (*1 *1 *2 *3) (-12 (-5 *2 (-1078)) (-5 *3 (-769)) (-5 *1 (-768)))) (-3557 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1078)) (-5 *3 (-769)) (-5 *1 (-768)))))
-(-10 -8 (-15 -3557 ($ (-1078) (-1078) (-769))) (-15 -3739 ($ (-1078) (-769))) (-15 -3244 ((-1182) $)) (-15 -3786 ((-1182) $ (-769))) (-15 -3589 ((-1182) $)) (-15 -2863 ((-1182) $)) (-15 -2687 ((-1182) $)) (-15 -3663 ((-1182) $)) (-15 -4111 ((-1182) $)) (-15 -2810 ((-1182) $)) (-15 -3097 ((-1182) $)) (-15 -3784 ((-1182) $)) (-15 -4080 ((-1182) $)) (-15 -2603 ((-1182) $)) (-15 -3331 ((-1182) $)) (-15 -1843 ((-1182) $)) (-15 -4037 ((-1182) $)) (-15 -4121 ((-1182) $)) (-15 -4084 ((-1182) $ (-528))) (-15 -1453 ((-1182) $ (-207))) (-15 -3563 ((-1182) $ (-1095))) (-15 -3637 ((-1182) $ (-1078))) (-15 -3269 ((-1182) $ (-1078) (-1078))) (-15 -3525 ((-1182) $)) (-15 -2511 ((-1182) $)) (-15 -2330 ((-1182) $)) (-15 -2003 ((-1182) $)) (-15 -2728 ((-1182) $)) (-15 -3467 ((-1182) $)) (-15 -1930 ((-1182) $)) (-15 -3624 ((-1182) $)) (-15 -3424 ((-1182) $)) (-15 -2322 ((-1182) $)) (-15 -3128 ((-1182) $)) (-15 -1590 ((-1182) $)) (-15 -1910 ((-1182) $)) (-15 -1850 ((-1182) $)) (-15 -3222 ((-528) $)) (-15 -1839 ((-207) $)) (-15 -3890 ((-1095) $)) (-15 -2017 ((-1078) $)) (-15 -1816 ((-2 (|:| |cd| (-1078)) (|:| -3814 (-1078))) $)) (-15 -3559 ((-1095) $)))
-((-2207 (((-110) $ $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 12)) (-3575 (($) 15)) (-1336 (($) 13)) (-1308 (($) 16)) (-2073 (($) 14)) (-2186 (((-110) $ $) 8)))
-(((-769) (-13 (-1023) (-10 -8 (-15 -1336 ($)) (-15 -3575 ($)) (-15 -1308 ($)) (-15 -2073 ($))))) (T -769))
-((-1336 (*1 *1) (-5 *1 (-769))) (-3575 (*1 *1) (-5 *1 (-769))) (-1308 (*1 *1) (-5 *1 (-769))) (-2073 (*1 *1) (-5 *1 (-769))))
-(-13 (-1023) (-10 -8 (-15 -1336 ($)) (-15 -3575 ($)) (-15 -1308 ($)) (-15 -2073 ($))))
-((-2207 (((-110) $ $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 21) (($ (-1095)) 17)) (-3081 (((-110) $) 10)) (-1750 (((-110) $) 9)) (-2637 (((-110) $) 11)) (-1402 (((-110) $) 8)) (-2186 (((-110) $ $) 19)))
-(((-770) (-13 (-1023) (-10 -8 (-15 -2222 ($ (-1095))) (-15 -1402 ((-110) $)) (-15 -1750 ((-110) $)) (-15 -3081 ((-110) $)) (-15 -2637 ((-110) $))))) (T -770))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-770)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-770)))) (-1750 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-770)))) (-3081 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-770)))) (-2637 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-770)))))
-(-13 (-1023) (-10 -8 (-15 -2222 ($ (-1095))) (-15 -1402 ((-110) $)) (-15 -1750 ((-110) $)) (-15 -3081 ((-110) $)) (-15 -2637 ((-110) $))))
-((-2207 (((-110) $ $) NIL)) (-2397 (($ (-770) (-595 (-1095))) 24)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2648 (((-770) $) 25)) (-2997 (((-595 (-1095)) $) 26)) (-2222 (((-802) $) 23)) (-2186 (((-110) $ $) NIL)))
-(((-771) (-13 (-1023) (-10 -8 (-15 -2648 ((-770) $)) (-15 -2997 ((-595 (-1095)) $)) (-15 -2397 ($ (-770) (-595 (-1095))))))) (T -771))
-((-2648 (*1 *2 *1) (-12 (-5 *2 (-770)) (-5 *1 (-771)))) (-2997 (*1 *2 *1) (-12 (-5 *2 (-595 (-1095))) (-5 *1 (-771)))) (-2397 (*1 *1 *2 *3) (-12 (-5 *2 (-770)) (-5 *3 (-595 (-1095))) (-5 *1 (-771)))))
-(-13 (-1023) (-10 -8 (-15 -2648 ((-770) $)) (-15 -2997 ((-595 (-1095)) $)) (-15 -2397 ($ (-770) (-595 (-1095))))))
-((-1256 (((-1182) (-768) (-296 |#1|) (-110)) 23) (((-1182) (-768) (-296 |#1|)) 79) (((-1078) (-296 |#1|) (-110)) 78) (((-1078) (-296 |#1|)) 77)))
-(((-772 |#1|) (-10 -7 (-15 -1256 ((-1078) (-296 |#1|))) (-15 -1256 ((-1078) (-296 |#1|) (-110))) (-15 -1256 ((-1182) (-768) (-296 |#1|))) (-15 -1256 ((-1182) (-768) (-296 |#1|) (-110)))) (-13 (-774) (-793) (-981))) (T -772))
-((-1256 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-768)) (-5 *4 (-296 *6)) (-5 *5 (-110)) (-4 *6 (-13 (-774) (-793) (-981))) (-5 *2 (-1182)) (-5 *1 (-772 *6)))) (-1256 (*1 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-296 *5)) (-4 *5 (-13 (-774) (-793) (-981))) (-5 *2 (-1182)) (-5 *1 (-772 *5)))) (-1256 (*1 *2 *3 *4) (-12 (-5 *3 (-296 *5)) (-5 *4 (-110)) (-4 *5 (-13 (-774) (-793) (-981))) (-5 *2 (-1078)) (-5 *1 (-772 *5)))) (-1256 (*1 *2 *3) (-12 (-5 *3 (-296 *4)) (-4 *4 (-13 (-774) (-793) (-981))) (-5 *2 (-1078)) (-5 *1 (-772 *4)))))
-(-10 -7 (-15 -1256 ((-1078) (-296 |#1|))) (-15 -1256 ((-1078) (-296 |#1|) (-110))) (-15 -1256 ((-1182) (-768) (-296 |#1|))) (-15 -1256 ((-1182) (-768) (-296 |#1|) (-110))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-2388 (($ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-3443 ((|#1| $) 10)) (-4057 (($ |#1|) 9)) (-1297 (((-110) $) NIL)) (-2548 (($ |#2| (-717)) NIL)) (-3499 (((-717) $) NIL)) (-2697 ((|#2| $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3235 (($ $ (-717)) NIL (|has| |#1| (-215))) (($ $) NIL (|has| |#1| (-215)))) (-2935 (((-717) $) NIL)) (-2222 (((-802) $) 17) (($ (-528)) NIL) (($ |#2|) NIL (|has| |#2| (-162)))) (-3216 ((|#2| $ (-717)) NIL)) (-3742 (((-717)) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($ $ (-717)) NIL (|has| |#1| (-215))) (($ $) NIL (|has| |#1| (-215)))) (-2186 (((-110) $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-773 |#1| |#2|) (-13 (-655 |#2|) (-10 -8 (IF (|has| |#1| (-215)) (-6 (-215)) |%noBranch|) (-15 -4057 ($ |#1|)) (-15 -3443 (|#1| $)))) (-655 |#2|) (-981)) (T -773))
-((-4057 (*1 *1 *2) (-12 (-4 *3 (-981)) (-5 *1 (-773 *2 *3)) (-4 *2 (-655 *3)))) (-3443 (*1 *2 *1) (-12 (-4 *2 (-655 *3)) (-5 *1 (-773 *2 *3)) (-4 *3 (-981)))))
-(-13 (-655 |#2|) (-10 -8 (IF (|has| |#1| (-215)) (-6 (-215)) |%noBranch|) (-15 -4057 ($ |#1|)) (-15 -3443 (|#1| $))))
-((-1256 (((-1182) (-768) $ (-110)) 9) (((-1182) (-768) $) 8) (((-1078) $ (-110)) 7) (((-1078) $) 6)))
-(((-774) (-133)) (T -774))
-((-1256 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-774)) (-5 *3 (-768)) (-5 *4 (-110)) (-5 *2 (-1182)))) (-1256 (*1 *2 *3 *1) (-12 (-4 *1 (-774)) (-5 *3 (-768)) (-5 *2 (-1182)))) (-1256 (*1 *2 *1 *3) (-12 (-4 *1 (-774)) (-5 *3 (-110)) (-5 *2 (-1078)))) (-1256 (*1 *2 *1) (-12 (-4 *1 (-774)) (-5 *2 (-1078)))))
-(-13 (-10 -8 (-15 -1256 ((-1078) $)) (-15 -1256 ((-1078) $ (-110))) (-15 -1256 ((-1182) (-768) $)) (-15 -1256 ((-1182) (-768) $ (-110)))))
-((-1720 (((-292) (-1078) (-1078)) 12)) (-2992 (((-110) (-1078) (-1078)) 34)) (-2144 (((-110) (-1078)) 33)) (-1937 (((-51) (-1078)) 25)) (-2767 (((-51) (-1078)) 23)) (-3908 (((-51) (-768)) 17)) (-3150 (((-595 (-1078)) (-1078)) 28)) (-1438 (((-595 (-1078))) 27)))
-(((-775) (-10 -7 (-15 -3908 ((-51) (-768))) (-15 -2767 ((-51) (-1078))) (-15 -1937 ((-51) (-1078))) (-15 -1438 ((-595 (-1078)))) (-15 -3150 ((-595 (-1078)) (-1078))) (-15 -2144 ((-110) (-1078))) (-15 -2992 ((-110) (-1078) (-1078))) (-15 -1720 ((-292) (-1078) (-1078))))) (T -775))
-((-1720 (*1 *2 *3 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-292)) (-5 *1 (-775)))) (-2992 (*1 *2 *3 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-110)) (-5 *1 (-775)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-110)) (-5 *1 (-775)))) (-3150 (*1 *2 *3) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-775)) (-5 *3 (-1078)))) (-1438 (*1 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-775)))) (-1937 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-51)) (-5 *1 (-775)))) (-2767 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-51)) (-5 *1 (-775)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-51)) (-5 *1 (-775)))))
-(-10 -7 (-15 -3908 ((-51) (-768))) (-15 -2767 ((-51) (-1078))) (-15 -1937 ((-51) (-1078))) (-15 -1438 ((-595 (-1078)))) (-15 -3150 ((-595 (-1078)) (-1078))) (-15 -2144 ((-110) (-1078))) (-15 -2992 ((-110) (-1078) (-1078))) (-15 -1720 ((-292) (-1078) (-1078))))
-((-2207 (((-110) $ $) 19)) (-4123 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2352 (($ $ $) 72)) (-1316 (((-110) $ $) 73)) (-3535 (((-110) $ (-717)) 8)) (-4237 (($ (-595 |#1|)) 68) (($) 67)) (-1836 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4264)))) (-1573 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4264)))) (-2816 (($) 7 T CONST)) (-2833 (($ $) 62)) (-2923 (($ $) 58 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-3991 (($ |#1| $) 47 (|has| $ (-6 -4264))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4264)))) (-2280 (($ |#1| $) 57 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4264)))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4264)))) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-4242 (((-110) $ $) 64)) (-2029 (((-110) $ (-717)) 9)) (-1436 ((|#1| $) 78)) (-3368 (($ $ $) 81)) (-1356 (($ $ $) 80)) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-1736 ((|#1| $) 79)) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35)) (-3358 (((-110) $ (-717)) 10)) (-3034 (((-1078) $) 22)) (-3397 (($ $ $) 69)) (-3934 ((|#1| $) 39)) (-1950 (($ |#1| $) 40) (($ |#1| $ (-717)) 63)) (-2495 (((-1042) $) 21)) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-1390 ((|#1| $) 41)) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-2527 (((-595 (-2 (|:| -1780 |#1|) (|:| -2507 (-717)))) $) 61)) (-2183 (($ $ |#1|) 71) (($ $ $) 70)) (-3900 (($) 49) (($ (-595 |#1|)) 48)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-3155 (((-504) $) 59 (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) 50)) (-2222 (((-802) $) 18)) (-3289 (($ (-595 |#1|)) 66) (($) 65)) (-2164 (($ (-595 |#1|)) 42)) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20)) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-776 |#1|) (-133) (-793)) (T -776))
-((-1436 (*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-793)))))
-(-13 (-683 |t#1|) (-906 |t#1|) (-10 -8 (-15 -1436 (|t#1| $))))
-(((-33) . T) ((-104 |#1|) . T) ((-99) . T) ((-569 (-802)) . T) ((-144 |#1|) . T) ((-570 (-504)) |has| |#1| (-570 (-504))) ((-217 |#1|) . T) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-467 |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-641 |#1|) . T) ((-683 |#1|) . T) ((-906 |#1|) . T) ((-1021 |#1|) . T) ((-1023) . T) ((-1131) . T))
-((-4152 (((-1182) (-1042) (-1042)) 47)) (-4001 (((-1182) (-767) (-51)) 44)) (-1549 (((-51) (-767)) 16)))
-(((-777) (-10 -7 (-15 -1549 ((-51) (-767))) (-15 -4001 ((-1182) (-767) (-51))) (-15 -4152 ((-1182) (-1042) (-1042))))) (T -777))
-((-4152 (*1 *2 *3 *3) (-12 (-5 *3 (-1042)) (-5 *2 (-1182)) (-5 *1 (-777)))) (-4001 (*1 *2 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-51)) (-5 *2 (-1182)) (-5 *1 (-777)))) (-1549 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-51)) (-5 *1 (-777)))))
-(-10 -7 (-15 -1549 ((-51) (-767))) (-15 -4001 ((-1182) (-767) (-51))) (-15 -4152 ((-1182) (-1042) (-1042))))
-((-3106 (((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|) (-779 |#2|)) 12) (((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|)) 13)))
-(((-778 |#1| |#2|) (-10 -7 (-15 -3106 ((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|))) (-15 -3106 ((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|) (-779 |#2|)))) (-1023) (-1023)) (T -778))
-((-3106 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-779 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-779 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-5 *1 (-778 *5 *6)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-779 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-5 *2 (-779 *6)) (-5 *1 (-778 *5 *6)))))
-(-10 -7 (-15 -3106 ((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|))) (-15 -3106 ((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|) (-779 |#2|))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL (|has| |#1| (-21)))) (-3181 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3605 (((-528) $) NIL (|has| |#1| (-791)))) (-2816 (($) NIL (|has| |#1| (-21)) CONST)) (-3001 (((-3 (-528) "failed") $) NIL (|has| |#1| (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-3 |#1| "failed") $) 15)) (-2409 (((-528) $) NIL (|has| |#1| (-972 (-528)))) (((-387 (-528)) $) NIL (|has| |#1| (-972 (-387 (-528))))) ((|#1| $) 9)) (-1312 (((-3 $ "failed") $) 40 (|has| |#1| (-791)))) (-1793 (((-3 (-387 (-528)) "failed") $) 49 (|has| |#1| (-513)))) (-3650 (((-110) $) 43 (|has| |#1| (-513)))) (-3099 (((-387 (-528)) $) 46 (|has| |#1| (-513)))) (-3657 (((-110) $) NIL (|has| |#1| (-791)))) (-1297 (((-110) $) NIL (|has| |#1| (-791)))) (-3710 (((-110) $) NIL (|has| |#1| (-791)))) (-1436 (($ $ $) NIL (|has| |#1| (-791)))) (-1736 (($ $ $) NIL (|has| |#1| (-791)))) (-3034 (((-1078) $) NIL)) (-1517 (($) 13)) (-4144 (((-110) $) 12)) (-2495 (((-1042) $) NIL)) (-2891 (((-110) $) 11)) (-2222 (((-802) $) 18) (($ (-387 (-528))) NIL (|has| |#1| (-972 (-387 (-528))))) (($ |#1|) 8) (($ (-528)) NIL (-1463 (|has| |#1| (-791)) (|has| |#1| (-972 (-528)))))) (-3742 (((-717)) 34 (|has| |#1| (-791)))) (-1775 (($ $) NIL (|has| |#1| (-791)))) (-2690 (($ $ (-860)) NIL (|has| |#1| (-791))) (($ $ (-717)) NIL (|has| |#1| (-791)))) (-2969 (($) 22 (|has| |#1| (-21)) CONST)) (-2982 (($) 31 (|has| |#1| (-791)) CONST)) (-2244 (((-110) $ $) NIL (|has| |#1| (-791)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-791)))) (-2186 (((-110) $ $) 20)) (-2232 (((-110) $ $) NIL (|has| |#1| (-791)))) (-2208 (((-110) $ $) 42 (|has| |#1| (-791)))) (-2286 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-2275 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-860)) NIL (|has| |#1| (-791))) (($ $ (-717)) NIL (|has| |#1| (-791)))) (* (($ $ $) 37 (|has| |#1| (-791))) (($ (-528) $) 25 (|has| |#1| (-21))) (($ (-717) $) NIL (|has| |#1| (-21))) (($ (-860) $) NIL (|has| |#1| (-21)))))
-(((-779 |#1|) (-13 (-1023) (-391 |#1|) (-10 -8 (-15 -1517 ($)) (-15 -2891 ((-110) $)) (-15 -4144 ((-110) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-791)) (-6 (-791)) |%noBranch|) (IF (|has| |#1| (-513)) (PROGN (-15 -3650 ((-110) $)) (-15 -3099 ((-387 (-528)) $)) (-15 -1793 ((-3 (-387 (-528)) "failed") $))) |%noBranch|))) (-1023)) (T -779))
-((-1517 (*1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1023)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-779 *3)) (-4 *3 (-1023)))) (-4144 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-779 *3)) (-4 *3 (-1023)))) (-3650 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-779 *3)) (-4 *3 (-513)) (-4 *3 (-1023)))) (-3099 (*1 *2 *1) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-779 *3)) (-4 *3 (-513)) (-4 *3 (-1023)))) (-1793 (*1 *2 *1) (|partial| -12 (-5 *2 (-387 (-528))) (-5 *1 (-779 *3)) (-4 *3 (-513)) (-4 *3 (-1023)))))
-(-13 (-1023) (-391 |#1|) (-10 -8 (-15 -1517 ($)) (-15 -2891 ((-110) $)) (-15 -4144 ((-110) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-791)) (-6 (-791)) |%noBranch|) (IF (|has| |#1| (-513)) (PROGN (-15 -3650 ((-110) $)) (-15 -3099 ((-387 (-528)) $)) (-15 -1793 ((-3 (-387 (-528)) "failed") $))) |%noBranch|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#1| "failed") $) NIL) (((-3 (-112) "failed") $) NIL)) (-2409 ((|#1| $) NIL) (((-112) $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-3824 ((|#1| (-112) |#1|) NIL)) (-1297 (((-110) $) NIL)) (-1644 (($ |#1| (-341 (-112))) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2377 (($ $ (-1 |#1| |#1|)) NIL)) (-1612 (($ $ (-1 |#1| |#1|)) NIL)) (-3043 ((|#1| $ |#1|) NIL)) (-3132 ((|#1| |#1|) NIL (|has| |#1| (-162)))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ |#1|) NIL) (($ (-112)) NIL)) (-3749 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3742 (((-717)) NIL)) (-3154 (($ $) NIL (|has| |#1| (-162))) (($ $ $) NIL (|has| |#1| (-162)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-2186 (((-110) $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ (-112) (-528)) NIL) (($ $ (-528)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162)))))
-(((-780 |#1|) (-13 (-981) (-972 |#1|) (-972 (-112)) (-267 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -3154 ($ $)) (-15 -3154 ($ $ $)) (-15 -3132 (|#1| |#1|))) |%noBranch|) (-15 -1612 ($ $ (-1 |#1| |#1|))) (-15 -2377 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-112) (-528))) (-15 ** ($ $ (-528))) (-15 -3824 (|#1| (-112) |#1|)) (-15 -1644 ($ |#1| (-341 (-112)))))) (-981)) (T -780))
-((-3154 (*1 *1 *1) (-12 (-5 *1 (-780 *2)) (-4 *2 (-162)) (-4 *2 (-981)))) (-3154 (*1 *1 *1 *1) (-12 (-5 *1 (-780 *2)) (-4 *2 (-162)) (-4 *2 (-981)))) (-3132 (*1 *2 *2) (-12 (-5 *1 (-780 *2)) (-4 *2 (-162)) (-4 *2 (-981)))) (-1612 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-981)) (-5 *1 (-780 *3)))) (-2377 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-981)) (-5 *1 (-780 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-528)) (-5 *1 (-780 *4)) (-4 *4 (-981)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-780 *3)) (-4 *3 (-981)))) (-3824 (*1 *2 *3 *2) (-12 (-5 *3 (-112)) (-5 *1 (-780 *2)) (-4 *2 (-981)))) (-1644 (*1 *1 *2 *3) (-12 (-5 *3 (-341 (-112))) (-5 *1 (-780 *2)) (-4 *2 (-981)))))
-(-13 (-981) (-972 |#1|) (-972 (-112)) (-267 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -3154 ($ $)) (-15 -3154 ($ $ $)) (-15 -3132 (|#1| |#1|))) |%noBranch|) (-15 -1612 ($ $ (-1 |#1| |#1|))) (-15 -2377 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-112) (-528))) (-15 ** ($ $ (-528))) (-15 -3824 (|#1| (-112) |#1|)) (-15 -1644 ($ |#1| (-341 (-112))))))
-((-3648 (((-197 (-478)) (-1078)) 9)))
-(((-781) (-10 -7 (-15 -3648 ((-197 (-478)) (-1078))))) (T -781))
-((-3648 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-197 (-478))) (-5 *1 (-781)))))
-(-10 -7 (-15 -3648 ((-197 (-478)) (-1078))))
-((-2207 (((-110) $ $) 7)) (-2203 (((-970) (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))) 14) (((-970) (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) 13)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) 16) (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))) 15)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2186 (((-110) $ $) 6)))
-(((-782) (-133)) (T -782))
-((-2702 (*1 *2 *3 *4) (-12 (-4 *1 (-782)) (-5 *3 (-992)) (-5 *4 (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) (-5 *2 (-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)))))) (-2702 (*1 *2 *3 *4) (-12 (-4 *1 (-782)) (-5 *3 (-992)) (-5 *4 (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))) (-5 *2 (-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)))))) (-2203 (*1 *2 *3) (-12 (-4 *1 (-782)) (-5 *3 (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))) (-5 *2 (-970)))) (-2203 (*1 *2 *3) (-12 (-4 *1 (-782)) (-5 *3 (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) (-5 *2 (-970)))))
-(-13 (-1023) (-10 -7 (-15 -2702 ((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207))))))) (-15 -2702 ((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207)))))) (-15 -2203 ((-970) (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207)))))) (-15 -2203 ((-970) (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))))))
-(((-99) . T) ((-569 (-802)) . T) ((-1023) . T))
-((-3833 (((-970) (-595 (-296 (-359))) (-595 (-359))) 147) (((-970) (-296 (-359)) (-595 (-359))) 145) (((-970) (-296 (-359)) (-595 (-359)) (-595 (-786 (-359))) (-595 (-786 (-359)))) 144) (((-970) (-296 (-359)) (-595 (-359)) (-595 (-786 (-359))) (-595 (-296 (-359))) (-595 (-786 (-359)))) 143) (((-970) (-784)) 117) (((-970) (-784) (-992)) 116)) (-2702 (((-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078)))) (-784) (-992)) 82) (((-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078)))) (-784)) 84)) (-2173 (((-970) (-595 (-296 (-359))) (-595 (-359))) 148) (((-970) (-784)) 133)))
-(((-783) (-10 -7 (-15 -2702 ((-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078)))) (-784))) (-15 -2702 ((-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078)))) (-784) (-992))) (-15 -3833 ((-970) (-784) (-992))) (-15 -3833 ((-970) (-784))) (-15 -2173 ((-970) (-784))) (-15 -3833 ((-970) (-296 (-359)) (-595 (-359)) (-595 (-786 (-359))) (-595 (-296 (-359))) (-595 (-786 (-359))))) (-15 -3833 ((-970) (-296 (-359)) (-595 (-359)) (-595 (-786 (-359))) (-595 (-786 (-359))))) (-15 -3833 ((-970) (-296 (-359)) (-595 (-359)))) (-15 -3833 ((-970) (-595 (-296 (-359))) (-595 (-359)))) (-15 -2173 ((-970) (-595 (-296 (-359))) (-595 (-359)))))) (T -783))
-((-2173 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-296 (-359)))) (-5 *4 (-595 (-359))) (-5 *2 (-970)) (-5 *1 (-783)))) (-3833 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-296 (-359)))) (-5 *4 (-595 (-359))) (-5 *2 (-970)) (-5 *1 (-783)))) (-3833 (*1 *2 *3 *4) (-12 (-5 *3 (-296 (-359))) (-5 *4 (-595 (-359))) (-5 *2 (-970)) (-5 *1 (-783)))) (-3833 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-296 (-359))) (-5 *4 (-595 (-359))) (-5 *5 (-595 (-786 (-359)))) (-5 *2 (-970)) (-5 *1 (-783)))) (-3833 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-595 (-359))) (-5 *5 (-595 (-786 (-359)))) (-5 *6 (-595 (-296 (-359)))) (-5 *3 (-296 (-359))) (-5 *2 (-970)) (-5 *1 (-783)))) (-2173 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-970)) (-5 *1 (-783)))) (-3833 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-970)) (-5 *1 (-783)))) (-3833 (*1 *2 *3 *4) (-12 (-5 *3 (-784)) (-5 *4 (-992)) (-5 *2 (-970)) (-5 *1 (-783)))) (-2702 (*1 *2 *3 *4) (-12 (-5 *3 (-784)) (-5 *4 (-992)) (-5 *2 (-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078))))) (-5 *1 (-783)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078))))) (-5 *1 (-783)))))
-(-10 -7 (-15 -2702 ((-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078)))) (-784))) (-15 -2702 ((-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078)))) (-784) (-992))) (-15 -3833 ((-970) (-784) (-992))) (-15 -3833 ((-970) (-784))) (-15 -2173 ((-970) (-784))) (-15 -3833 ((-970) (-296 (-359)) (-595 (-359)) (-595 (-786 (-359))) (-595 (-296 (-359))) (-595 (-786 (-359))))) (-15 -3833 ((-970) (-296 (-359)) (-595 (-359)) (-595 (-786 (-359))) (-595 (-786 (-359))))) (-15 -3833 ((-970) (-296 (-359)) (-595 (-359)))) (-15 -3833 ((-970) (-595 (-296 (-359))) (-595 (-359)))) (-15 -2173 ((-970) (-595 (-296 (-359))) (-595 (-359)))))
-((-2207 (((-110) $ $) NIL)) (-2409 (((-3 (|:| |noa| (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) (|:| |lsa| (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207)))))) $) 21)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 20) (($ (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) 14) (($ (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) (|:| |lsa| (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))))) 18)) (-2186 (((-110) $ $) NIL)))
-(((-784) (-13 (-1023) (-10 -8 (-15 -2222 ($ (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207))))))) (-15 -2222 ($ (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207)))))) (-15 -2222 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) (|:| |lsa| (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207)))))))) (-15 -2222 ((-802) $)) (-15 -2409 ((-3 (|:| |noa| (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) (|:| |lsa| (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207)))))) $))))) (T -784))
-((-2222 (*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-784)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) (-5 *1 (-784)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))) (-5 *1 (-784)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) (|:| |lsa| (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))))) (-5 *1 (-784)))) (-2409 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) (|:| |lsa| (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207))))))) (-5 *1 (-784)))))
-(-13 (-1023) (-10 -8 (-15 -2222 ($ (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207))))))) (-15 -2222 ($ (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207)))))) (-15 -2222 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) (|:| |lsa| (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207)))))))) (-15 -2222 ((-802) $)) (-15 -2409 ((-3 (|:| |noa| (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207))) (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207)))) (|:| |ub| (-595 (-786 (-207)))))) (|:| |lsa| (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207)))))) $))))
-((-3106 (((-786 |#2|) (-1 |#2| |#1|) (-786 |#1|) (-786 |#2|) (-786 |#2|)) 13) (((-786 |#2|) (-1 |#2| |#1|) (-786 |#1|)) 14)))
-(((-785 |#1| |#2|) (-10 -7 (-15 -3106 ((-786 |#2|) (-1 |#2| |#1|) (-786 |#1|))) (-15 -3106 ((-786 |#2|) (-1 |#2| |#1|) (-786 |#1|) (-786 |#2|) (-786 |#2|)))) (-1023) (-1023)) (T -785))
-((-3106 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-786 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-786 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-5 *1 (-785 *5 *6)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-786 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-5 *2 (-786 *6)) (-5 *1 (-785 *5 *6)))))
-(-10 -7 (-15 -3106 ((-786 |#2|) (-1 |#2| |#1|) (-786 |#1|))) (-15 -3106 ((-786 |#2|) (-1 |#2| |#1|) (-786 |#1|) (-786 |#2|) (-786 |#2|))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL (|has| |#1| (-21)))) (-2193 (((-1042) $) 24)) (-3181 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3605 (((-528) $) NIL (|has| |#1| (-791)))) (-2816 (($) NIL (|has| |#1| (-21)) CONST)) (-3001 (((-3 (-528) "failed") $) NIL (|has| |#1| (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-3 |#1| "failed") $) 16)) (-2409 (((-528) $) NIL (|has| |#1| (-972 (-528)))) (((-387 (-528)) $) NIL (|has| |#1| (-972 (-387 (-528))))) ((|#1| $) 9)) (-1312 (((-3 $ "failed") $) 47 (|has| |#1| (-791)))) (-1793 (((-3 (-387 (-528)) "failed") $) 54 (|has| |#1| (-513)))) (-3650 (((-110) $) 49 (|has| |#1| (-513)))) (-3099 (((-387 (-528)) $) 52 (|has| |#1| (-513)))) (-3657 (((-110) $) NIL (|has| |#1| (-791)))) (-1396 (($) 13)) (-1297 (((-110) $) NIL (|has| |#1| (-791)))) (-3710 (((-110) $) NIL (|has| |#1| (-791)))) (-1407 (($) 14)) (-1436 (($ $ $) NIL (|has| |#1| (-791)))) (-1736 (($ $ $) NIL (|has| |#1| (-791)))) (-3034 (((-1078) $) NIL)) (-4144 (((-110) $) 12)) (-2495 (((-1042) $) NIL)) (-2891 (((-110) $) 11)) (-2222 (((-802) $) 22) (($ (-387 (-528))) NIL (|has| |#1| (-972 (-387 (-528))))) (($ |#1|) 8) (($ (-528)) NIL (-1463 (|has| |#1| (-791)) (|has| |#1| (-972 (-528)))))) (-3742 (((-717)) 41 (|has| |#1| (-791)))) (-1775 (($ $) NIL (|has| |#1| (-791)))) (-2690 (($ $ (-860)) NIL (|has| |#1| (-791))) (($ $ (-717)) NIL (|has| |#1| (-791)))) (-2969 (($) 29 (|has| |#1| (-21)) CONST)) (-2982 (($) 38 (|has| |#1| (-791)) CONST)) (-2244 (((-110) $ $) NIL (|has| |#1| (-791)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-791)))) (-2186 (((-110) $ $) 27)) (-2232 (((-110) $ $) NIL (|has| |#1| (-791)))) (-2208 (((-110) $ $) 48 (|has| |#1| (-791)))) (-2286 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-2275 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-860)) NIL (|has| |#1| (-791))) (($ $ (-717)) NIL (|has| |#1| (-791)))) (* (($ $ $) 44 (|has| |#1| (-791))) (($ (-528) $) 32 (|has| |#1| (-21))) (($ (-717) $) NIL (|has| |#1| (-21))) (($ (-860) $) NIL (|has| |#1| (-21)))))
-(((-786 |#1|) (-13 (-1023) (-391 |#1|) (-10 -8 (-15 -1396 ($)) (-15 -1407 ($)) (-15 -2891 ((-110) $)) (-15 -4144 ((-110) $)) (-15 -2193 ((-1042) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-791)) (-6 (-791)) |%noBranch|) (IF (|has| |#1| (-513)) (PROGN (-15 -3650 ((-110) $)) (-15 -3099 ((-387 (-528)) $)) (-15 -1793 ((-3 (-387 (-528)) "failed") $))) |%noBranch|))) (-1023)) (T -786))
-((-1396 (*1 *1) (-12 (-5 *1 (-786 *2)) (-4 *2 (-1023)))) (-1407 (*1 *1) (-12 (-5 *1 (-786 *2)) (-4 *2 (-1023)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-786 *3)) (-4 *3 (-1023)))) (-4144 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-786 *3)) (-4 *3 (-1023)))) (-2193 (*1 *2 *1) (-12 (-5 *2 (-1042)) (-5 *1 (-786 *3)) (-4 *3 (-1023)))) (-3650 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-786 *3)) (-4 *3 (-513)) (-4 *3 (-1023)))) (-3099 (*1 *2 *1) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-786 *3)) (-4 *3 (-513)) (-4 *3 (-1023)))) (-1793 (*1 *2 *1) (|partial| -12 (-5 *2 (-387 (-528))) (-5 *1 (-786 *3)) (-4 *3 (-513)) (-4 *3 (-1023)))))
-(-13 (-1023) (-391 |#1|) (-10 -8 (-15 -1396 ($)) (-15 -1407 ($)) (-15 -2891 ((-110) $)) (-15 -4144 ((-110) $)) (-15 -2193 ((-1042) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-791)) (-6 (-791)) |%noBranch|) (IF (|has| |#1| (-513)) (PROGN (-15 -3650 ((-110) $)) (-15 -3099 ((-387 (-528)) $)) (-15 -1793 ((-3 (-387 (-528)) "failed") $))) |%noBranch|)))
-((-2207 (((-110) $ $) 7)) (-2856 (((-717)) 20)) (-1338 (($) 23)) (-1436 (($ $ $) 13)) (-1736 (($ $ $) 14)) (-3201 (((-860) $) 22)) (-3034 (((-1078) $) 9)) (-3108 (($ (-860)) 21)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2244 (((-110) $ $) 16)) (-2220 (((-110) $ $) 17)) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 15)) (-2208 (((-110) $ $) 18)))
-(((-787) (-133)) (T -787))
-NIL
-(-13 (-793) (-348))
-(((-99) . T) ((-569 (-802)) . T) ((-348) . T) ((-793) . T) ((-1023) . T))
-((-1362 (((-110) (-1177 |#2|) (-1177 |#2|)) 17)) (-1273 (((-110) (-1177 |#2|) (-1177 |#2|)) 18)) (-4163 (((-110) (-1177 |#2|) (-1177 |#2|)) 14)))
-(((-788 |#1| |#2|) (-10 -7 (-15 -4163 ((-110) (-1177 |#2|) (-1177 |#2|))) (-15 -1362 ((-110) (-1177 |#2|) (-1177 |#2|))) (-15 -1273 ((-110) (-1177 |#2|) (-1177 |#2|)))) (-717) (-738)) (T -788))
-((-1273 (*1 *2 *3 *3) (-12 (-5 *3 (-1177 *5)) (-4 *5 (-738)) (-5 *2 (-110)) (-5 *1 (-788 *4 *5)) (-14 *4 (-717)))) (-1362 (*1 *2 *3 *3) (-12 (-5 *3 (-1177 *5)) (-4 *5 (-738)) (-5 *2 (-110)) (-5 *1 (-788 *4 *5)) (-14 *4 (-717)))) (-4163 (*1 *2 *3 *3) (-12 (-5 *3 (-1177 *5)) (-4 *5 (-738)) (-5 *2 (-110)) (-5 *1 (-788 *4 *5)) (-14 *4 (-717)))))
-(-10 -7 (-15 -4163 ((-110) (-1177 |#2|) (-1177 |#2|))) (-15 -1362 ((-110) (-1177 |#2|) (-1177 |#2|))) (-15 -1273 ((-110) (-1177 |#2|) (-1177 |#2|))))
-((-2207 (((-110) $ $) 7)) (-2816 (($) 24 T CONST)) (-1312 (((-3 $ "failed") $) 28)) (-1297 (((-110) $) 25)) (-1436 (($ $ $) 13)) (-1736 (($ $ $) 14)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2690 (($ $ (-860)) 22) (($ $ (-717)) 27)) (-2982 (($) 23 T CONST)) (-2244 (((-110) $ $) 16)) (-2220 (((-110) $ $) 17)) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 15)) (-2208 (((-110) $ $) 18)) (** (($ $ (-860)) 21) (($ $ (-717)) 26)) (* (($ $ $) 20)))
+((-2667 (*1 *1 *1 *1) (-4 *1 (-741))))
+(-13 (-745) (-10 -8 (-15 -2667 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-805)) . T) ((-740) . T) ((-742) . T) ((-745) . T) ((-795) . T) ((-1027) . T))
+((-2828 (((-110) $ $) 7)) (-3596 (($ $ $) 13)) (-3597 (($ $ $) 14)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-2826 (((-110) $ $) 16)) (-2827 (((-110) $ $) 17)) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 15)) (-2948 (((-110) $ $) 18)) (-4118 (($ $ $) 20)) (* (($ (-860) $) 21)))
+(((-742) (-133)) (T -742))
+NIL
+(-13 (-795) (-25))
+(((-25) . T) ((-99) . T) ((-571 (-805)) . T) ((-795) . T) ((-1027) . T))
+((-3462 (((-110) $) 41)) (-3432 (((-3 (-516) #1="failed") $) NIL) (((-3 (-388 (-516)) #1#) $) NIL) (((-3 |#2| #1#) $) 44)) (-3431 (((-516) $) NIL) (((-388 (-516)) $) NIL) ((|#2| $) 42)) (-3288 (((-3 (-388 (-516)) "failed") $) 78)) (-3287 (((-110) $) 72)) (-3286 (((-388 (-516)) $) 76)) (-3391 ((|#2| $) 26)) (-4234 (($ (-1 |#2| |#2|) $) 23)) (-2668 (($ $) 61)) (-4246 (((-505) $) 67)) (-3273 (($ $) 21)) (-4233 (((-805) $) 56) (($ (-516)) 39) (($ |#2|) 37) (($ (-388 (-516))) NIL)) (-3385 (((-719)) 10)) (-3661 ((|#2| $) 71)) (-3317 (((-110) $ $) 29)) (-2948 (((-110) $ $) 69)) (-4116 (($ $) 31) (($ $ $) NIL)) (-4118 (($ $ $) 30)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
+(((-743 |#1| |#2|) (-10 -8 (-15 -2948 ((-110) |#1| |#1|)) (-15 -4246 ((-505) |#1|)) (-15 -2668 (|#1| |#1|)) (-15 -3288 ((-3 (-388 (-516)) "failed") |#1|)) (-15 -3286 ((-388 (-516)) |#1|)) (-15 -3287 ((-110) |#1|)) (-15 -3661 (|#2| |#1|)) (-15 -3391 (|#2| |#1|)) (-15 -3273 (|#1| |#1|)) (-15 -4234 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3431 (|#2| |#1|)) (-15 -3432 ((-3 |#2| #1="failed") |#1|)) (-15 -4233 (|#1| (-388 (-516)))) (-15 -3432 ((-3 (-388 (-516)) #1#) |#1|)) (-15 -3431 ((-388 (-516)) |#1|)) (-15 -3432 ((-3 (-516) #1#) |#1|)) (-15 -3431 ((-516) |#1|)) (-15 -4233 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4233 (|#1| (-516))) (-15 -3385 ((-719))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-516) |#1|)) (-15 -4116 (|#1| |#1| |#1|)) (-15 -4116 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 -3462 ((-110) |#1|)) (-15 * (|#1| (-860) |#1|)) (-15 -4118 (|#1| |#1| |#1|)) (-15 -4233 ((-805) |#1|)) (-15 -3317 ((-110) |#1| |#1|))) (-744 |#2|) (-162)) (T -743))
+((-3385 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-719)) (-5 *1 (-743 *3 *4)) (-4 *3 (-744 *4)))))
+(-10 -8 (-15 -2948 ((-110) |#1| |#1|)) (-15 -4246 ((-505) |#1|)) (-15 -2668 (|#1| |#1|)) (-15 -3288 ((-3 (-388 (-516)) "failed") |#1|)) (-15 -3286 ((-388 (-516)) |#1|)) (-15 -3287 ((-110) |#1|)) (-15 -3661 (|#2| |#1|)) (-15 -3391 (|#2| |#1|)) (-15 -3273 (|#1| |#1|)) (-15 -4234 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3431 (|#2| |#1|)) (-15 -3432 ((-3 |#2| #1="failed") |#1|)) (-15 -4233 (|#1| (-388 (-516)))) (-15 -3432 ((-3 (-388 (-516)) #1#) |#1|)) (-15 -3431 ((-388 (-516)) |#1|)) (-15 -3432 ((-3 (-516) #1#) |#1|)) (-15 -3431 ((-516) |#1|)) (-15 -4233 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4233 (|#1| (-516))) (-15 -3385 ((-719))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-516) |#1|)) (-15 -4116 (|#1| |#1| |#1|)) (-15 -4116 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 -3462 ((-110) |#1|)) (-15 * (|#1| (-860) |#1|)) (-15 -4118 (|#1| |#1| |#1|)) (-15 -4233 ((-805) |#1|)) (-15 -3317 ((-110) |#1| |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3395 (((-719)) 53 (|has| |#1| (-349)))) (-3815 (($) 17 T CONST)) (-3432 (((-3 (-516) #1="failed") $) 94 (|has| |#1| (-975 (-516)))) (((-3 (-388 (-516)) #1#) $) 92 (|has| |#1| (-975 (-388 (-516))))) (((-3 |#1| #1#) $) 90)) (-3431 (((-516) $) 95 (|has| |#1| (-975 (-516)))) (((-388 (-516)) $) 93 (|has| |#1| (-975 (-388 (-516))))) ((|#1| $) 89)) (-3741 (((-3 $ "failed") $) 34)) (-3925 ((|#1| $) 79)) (-3288 (((-3 (-388 (-516)) "failed") $) 66 (|has| |#1| (-515)))) (-3287 (((-110) $) 68 (|has| |#1| (-515)))) (-3286 (((-388 (-516)) $) 67 (|has| |#1| (-515)))) (-3258 (($) 56 (|has| |#1| (-349)))) (-2436 (((-110) $) 31)) (-2673 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-3391 ((|#1| $) 71)) (-3596 (($ $ $) 62 (|has| |#1| (-795)))) (-3597 (($ $ $) 61 (|has| |#1| (-795)))) (-4234 (($ (-1 |#1| |#1|) $) 81)) (-2069 (((-860) $) 55 (|has| |#1| (-349)))) (-3513 (((-1081) $) 9)) (-2668 (($ $) 65 (|has| |#1| (-344)))) (-2426 (($ (-860)) 54 (|has| |#1| (-349)))) (-2670 ((|#1| $) 76)) (-2671 ((|#1| $) 77)) (-2672 ((|#1| $) 78)) (-3270 ((|#1| $) 72)) (-3271 ((|#1| $) 73)) (-3272 ((|#1| $) 74)) (-2669 ((|#1| $) 75)) (-3514 (((-1045) $) 10)) (-4046 (($ $ (-594 |#1|) (-594 |#1|)) 87 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-291 |#1|))) (($ $ (-275 |#1|)) 85 (|has| |#1| (-291 |#1|))) (($ $ (-594 (-275 |#1|))) 84 (|has| |#1| (-291 |#1|))) (($ $ (-594 (-1098)) (-594 |#1|)) 83 (|has| |#1| (-491 (-1098) |#1|))) (($ $ (-1098) |#1|) 82 (|has| |#1| (-491 (-1098) |#1|)))) (-4078 (($ $ |#1|) 88 (|has| |#1| (-268 |#1| |#1|)))) (-4246 (((-505) $) 63 (|has| |#1| (-572 (-505))))) (-3273 (($ $) 80)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ |#1|) 37) (($ (-388 (-516))) 91 (|has| |#1| (-975 (-388 (-516)))))) (-2965 (((-3 $ "failed") $) 64 (|has| |#1| (-138)))) (-3385 (((-719)) 29)) (-3661 ((|#1| $) 69 (|has| |#1| (-992)))) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2826 (((-110) $ $) 59 (|has| |#1| (-795)))) (-2827 (((-110) $ $) 58 (|has| |#1| (-795)))) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 60 (|has| |#1| (-795)))) (-2948 (((-110) $ $) 57 (|has| |#1| (-795)))) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-744 |#1|) (-133) (-162)) (T -744))
+((-3273 (*1 *1 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162)))) (-3925 (*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162)))) (-2672 (*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162)))) (-2670 (*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162)))) (-2669 (*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162)))) (-3272 (*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162)))) (-3271 (*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162)))) (-3270 (*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162)))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162)))) (-2673 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162)) (-4 *2 (-992)))) (-3287 (*1 *2 *1) (-12 (-4 *1 (-744 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-110)))) (-3286 (*1 *2 *1) (-12 (-4 *1 (-744 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-516))))) (-3288 (*1 *2 *1) (|partial| -12 (-4 *1 (-744 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-516))))) (-2668 (*1 *1 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162)) (-4 *2 (-344)))))
+(-13 (-37 |t#1|) (-393 |t#1|) (-319 |t#1|) (-10 -8 (-15 -3273 ($ $)) (-15 -3925 (|t#1| $)) (-15 -2672 (|t#1| $)) (-15 -2671 (|t#1| $)) (-15 -2670 (|t#1| $)) (-15 -2669 (|t#1| $)) (-15 -3272 (|t#1| $)) (-15 -3271 (|t#1| $)) (-15 -3270 (|t#1| $)) (-15 -3391 (|t#1| $)) (-15 -2673 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|) (IF (|has| |t#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#1| (-572 (-505))) (-6 (-572 (-505))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-992)) (-15 -3661 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -3287 ((-110) $)) (-15 -3286 ((-388 (-516)) $)) (-15 -3288 ((-3 (-388 (-516)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-344)) (-15 -2668 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-805)) . T) ((-572 (-505)) |has| |#1| (-572 (-505))) ((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-349) |has| |#1| (-349)) ((-319 |#1|) . T) ((-393 |#1|) . T) ((-491 (-1098) |#1|) |has| |#1| (-491 (-1098) |#1|)) ((-491 |#1| |#1|) |has| |#1| (-291 |#1|)) ((-599 |#1|) . T) ((-599 $) . T) ((-666 |#1|) . T) ((-675) . T) ((-795) |has| |#1| (-795)) ((-975 (-388 (-516))) |has| |#1| (-975 (-388 (-516)))) ((-975 (-516)) |has| |#1| (-975 (-516))) ((-975 |#1|) . T) ((-989 |#1|) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 24)) (-1319 (((-3 $ "failed") $ $) 26)) (-3815 (($) 23 T CONST)) (-3596 (($ $ $) 13)) (-3597 (($ $ $) 14)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-2920 (($) 22 T CONST)) (-2826 (((-110) $ $) 16)) (-2827 (((-110) $ $) 17)) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 15)) (-2948 (((-110) $ $) 18)) (-4118 (($ $ $) 20)) (* (($ (-860) $) 21) (($ (-719) $) 25)))
+(((-745) (-133)) (T -745))
+NIL
+(-13 (-740) (-128))
+(((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-805)) . T) ((-740) . T) ((-742) . T) ((-795) . T) ((-1027) . T))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3395 (((-719)) NIL (|has| |#1| (-349)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#1| #1="failed") $) NIL) (((-3 (-935 |#1|) #1#) $) 35) (((-3 (-516) #1#) $) NIL (-3810 (|has| (-935 |#1|) (-975 (-516))) (|has| |#1| (-975 (-516))))) (((-3 (-388 (-516)) #1#) $) NIL (-3810 (|has| (-935 |#1|) (-975 (-388 (-516)))) (|has| |#1| (-975 (-388 (-516))))))) (-3431 ((|#1| $) NIL) (((-935 |#1|) $) 33) (((-516) $) NIL (-3810 (|has| (-935 |#1|) (-975 (-516))) (|has| |#1| (-975 (-516))))) (((-388 (-516)) $) NIL (-3810 (|has| (-935 |#1|) (-975 (-388 (-516)))) (|has| |#1| (-975 (-388 (-516))))))) (-3741 (((-3 $ "failed") $) NIL)) (-3925 ((|#1| $) 16)) (-3288 (((-3 (-388 (-516)) "failed") $) NIL (|has| |#1| (-515)))) (-3287 (((-110) $) NIL (|has| |#1| (-515)))) (-3286 (((-388 (-516)) $) NIL (|has| |#1| (-515)))) (-3258 (($) NIL (|has| |#1| (-349)))) (-2436 (((-110) $) NIL)) (-2673 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-935 |#1|) (-935 |#1|)) 29)) (-3391 ((|#1| $) NIL)) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-2069 (((-860) $) NIL (|has| |#1| (-349)))) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL (|has| |#1| (-344)))) (-2426 (($ (-860)) NIL (|has| |#1| (-349)))) (-2670 ((|#1| $) 22)) (-2671 ((|#1| $) 20)) (-2672 ((|#1| $) 18)) (-3270 ((|#1| $) 26)) (-3271 ((|#1| $) 25)) (-3272 ((|#1| $) 24)) (-2669 ((|#1| $) 23)) (-3514 (((-1045) $) NIL)) (-4046 (($ $ (-594 |#1|) (-594 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-275 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-594 (-275 |#1|))) NIL (|has| |#1| (-291 |#1|))) (($ $ (-594 (-1098)) (-594 |#1|)) NIL (|has| |#1| (-491 (-1098) |#1|))) (($ $ (-1098) |#1|) NIL (|has| |#1| (-491 (-1098) |#1|)))) (-4078 (($ $ |#1|) NIL (|has| |#1| (-268 |#1| |#1|)))) (-4246 (((-505) $) NIL (|has| |#1| (-572 (-505))))) (-3273 (($ $) NIL)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ |#1|) NIL) (($ (-935 |#1|)) 30) (($ (-388 (-516))) NIL (-3810 (|has| (-935 |#1|) (-975 (-388 (-516)))) (|has| |#1| (-975 (-388 (-516))))))) (-2965 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3385 (((-719)) NIL)) (-3661 ((|#1| $) NIL (|has| |#1| (-992)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 8 T CONST)) (-2927 (($) 12 T CONST)) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#1| (-795)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-746 |#1|) (-13 (-744 |#1|) (-393 (-935 |#1|)) (-10 -8 (-15 -2673 ($ (-935 |#1|) (-935 |#1|))))) (-162)) (T -746))
+((-2673 (*1 *1 *2 *2) (-12 (-5 *2 (-935 *3)) (-4 *3 (-162)) (-5 *1 (-746 *3)))))
+(-13 (-744 |#1|) (-393 (-935 |#1|)) (-10 -8 (-15 -2673 ($ (-935 |#1|) (-935 |#1|)))))
+((-4234 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-747 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4234 (|#3| (-1 |#4| |#2|) |#1|))) (-744 |#2|) (-162) (-744 |#4|) (-162)) (T -747))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-4 *2 (-744 *6)) (-5 *1 (-747 *4 *5 *2 *6)) (-4 *4 (-744 *5)))))
+(-10 -7 (-15 -4234 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2828 (((-110) $ $) 7)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 14)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-2674 (((-973) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 13)) (-3317 (((-110) $ $) 6)))
+(((-748) (-133)) (T -748))
+((-2931 (*1 *2 *3 *4) (-12 (-4 *1 (-748)) (-5 *3 (-995)) (-5 *4 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)))))) (-2674 (*1 *2 *3) (-12 (-4 *1 (-748)) (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-973)))))
+(-13 (-1027) (-10 -7 (-15 -2931 ((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2674 ((-973) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))))
+(((-99) . T) ((-571 (-805)) . T) ((-1027) . T))
+((-2675 (((-2 (|:| |particular| |#2|) (|:| -2071 (-594 |#2|))) |#3| |#2| (-1098)) 19)))
+(((-749 |#1| |#2| |#3|) (-10 -7 (-15 -2675 ((-2 (|:| |particular| |#2|) (|:| -2071 (-594 |#2|))) |#3| |#2| (-1098)))) (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)) (-13 (-29 |#1|) (-1120) (-901)) (-609 |#2|)) (T -749))
+((-2675 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1098)) (-4 *6 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140))) (-4 *4 (-13 (-29 *6) (-1120) (-901))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2071 (-594 *4)))) (-5 *1 (-749 *6 *4 *3)) (-4 *3 (-609 *4)))))
+(-10 -7 (-15 -2675 ((-2 (|:| |particular| |#2|) (|:| -2071 (-594 |#2|))) |#3| |#2| (-1098))))
+((-3855 (((-3 |#2| #1="failed") |#2| (-111) (-275 |#2|) (-594 |#2|)) 28) (((-3 |#2| #1#) (-275 |#2|) (-111) (-275 |#2|) (-594 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2071 (-594 |#2|))) |#2| #2="failed") |#2| (-111) (-1098)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2071 (-594 |#2|))) |#2| #2#) (-275 |#2|) (-111) (-1098)) 18) (((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2071 (-594 (-1179 |#2|)))) "failed") (-594 |#2|) (-594 (-111)) (-1098)) 24) (((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2071 (-594 (-1179 |#2|)))) "failed") (-594 (-275 |#2|)) (-594 (-111)) (-1098)) 26) (((-3 (-594 (-1179 |#2|)) "failed") (-637 |#2|) (-1098)) 37) (((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2071 (-594 (-1179 |#2|)))) "failed") (-637 |#2|) (-1179 |#2|) (-1098)) 35)))
+(((-750 |#1| |#2|) (-10 -7 (-15 -3855 ((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2071 (-594 (-1179 |#2|)))) "failed") (-637 |#2|) (-1179 |#2|) (-1098))) (-15 -3855 ((-3 (-594 (-1179 |#2|)) "failed") (-637 |#2|) (-1098))) (-15 -3855 ((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2071 (-594 (-1179 |#2|)))) "failed") (-594 (-275 |#2|)) (-594 (-111)) (-1098))) (-15 -3855 ((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2071 (-594 (-1179 |#2|)))) "failed") (-594 |#2|) (-594 (-111)) (-1098))) (-15 -3855 ((-3 (-2 (|:| |particular| |#2|) (|:| -2071 (-594 |#2|))) |#2| #1="failed") (-275 |#2|) (-111) (-1098))) (-15 -3855 ((-3 (-2 (|:| |particular| |#2|) (|:| -2071 (-594 |#2|))) |#2| #1#) |#2| (-111) (-1098))) (-15 -3855 ((-3 |#2| #2="failed") (-275 |#2|) (-111) (-275 |#2|) (-594 |#2|))) (-15 -3855 ((-3 |#2| #2#) |#2| (-111) (-275 |#2|) (-594 |#2|)))) (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)) (-13 (-29 |#1|) (-1120) (-901))) (T -750))
+((-3855 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-111)) (-5 *4 (-275 *2)) (-5 *5 (-594 *2)) (-4 *2 (-13 (-29 *6) (-1120) (-901))) (-4 *6 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140))) (-5 *1 (-750 *6 *2)))) (-3855 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-275 *2)) (-5 *4 (-111)) (-5 *5 (-594 *2)) (-4 *2 (-13 (-29 *6) (-1120) (-901))) (-5 *1 (-750 *6 *2)) (-4 *6 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140))))) (-3855 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-111)) (-5 *5 (-1098)) (-4 *6 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2071 (-594 *3))) *3 #1="failed")) (-5 *1 (-750 *6 *3)) (-4 *3 (-13 (-29 *6) (-1120) (-901))))) (-3855 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-275 *7)) (-5 *4 (-111)) (-5 *5 (-1098)) (-4 *7 (-13 (-29 *6) (-1120) (-901))) (-4 *6 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2071 (-594 *7))) *7 #1#)) (-5 *1 (-750 *6 *7)))) (-3855 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-594 *7)) (-5 *4 (-594 (-111))) (-5 *5 (-1098)) (-4 *7 (-13 (-29 *6) (-1120) (-901))) (-4 *6 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140))) (-5 *2 (-2 (|:| |particular| (-1179 *7)) (|:| -2071 (-594 (-1179 *7))))) (-5 *1 (-750 *6 *7)))) (-3855 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-594 (-275 *7))) (-5 *4 (-594 (-111))) (-5 *5 (-1098)) (-4 *7 (-13 (-29 *6) (-1120) (-901))) (-4 *6 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140))) (-5 *2 (-2 (|:| |particular| (-1179 *7)) (|:| -2071 (-594 (-1179 *7))))) (-5 *1 (-750 *6 *7)))) (-3855 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-637 *6)) (-5 *4 (-1098)) (-4 *6 (-13 (-29 *5) (-1120) (-901))) (-4 *5 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140))) (-5 *2 (-594 (-1179 *6))) (-5 *1 (-750 *5 *6)))) (-3855 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-637 *7)) (-5 *5 (-1098)) (-4 *7 (-13 (-29 *6) (-1120) (-901))) (-4 *6 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140))) (-5 *2 (-2 (|:| |particular| (-1179 *7)) (|:| -2071 (-594 (-1179 *7))))) (-5 *1 (-750 *6 *7)) (-5 *4 (-1179 *7)))))
+(-10 -7 (-15 -3855 ((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2071 (-594 (-1179 |#2|)))) "failed") (-637 |#2|) (-1179 |#2|) (-1098))) (-15 -3855 ((-3 (-594 (-1179 |#2|)) "failed") (-637 |#2|) (-1098))) (-15 -3855 ((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2071 (-594 (-1179 |#2|)))) "failed") (-594 (-275 |#2|)) (-594 (-111)) (-1098))) (-15 -3855 ((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2071 (-594 (-1179 |#2|)))) "failed") (-594 |#2|) (-594 (-111)) (-1098))) (-15 -3855 ((-3 (-2 (|:| |particular| |#2|) (|:| -2071 (-594 |#2|))) |#2| #1="failed") (-275 |#2|) (-111) (-1098))) (-15 -3855 ((-3 (-2 (|:| |particular| |#2|) (|:| -2071 (-594 |#2|))) |#2| #1#) |#2| (-111) (-1098))) (-15 -3855 ((-3 |#2| #2="failed") (-275 |#2|) (-111) (-275 |#2|) (-594 |#2|))) (-15 -3855 ((-3 |#2| #2#) |#2| (-111) (-275 |#2|) (-594 |#2|))))
+((-2676 (($) 9)) (-2680 (((-3 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359))) "failed") (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 31)) (-2678 (((-594 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $) 28)) (-3889 (($ (-2 (|:| -4139 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -2131 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359)))))) 25)) (-2679 (($ (-594 (-2 (|:| -4139 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -2131 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359))))))) 23)) (-2677 (((-1185)) 12)))
+(((-751) (-10 -8 (-15 -2676 ($)) (-15 -2677 ((-1185))) (-15 -2678 ((-594 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $)) (-15 -2679 ($ (-594 (-2 (|:| -4139 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -2131 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359)))))))) (-15 -3889 ($ (-2 (|:| -4139 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -2131 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359))))))) (-15 -2680 ((-3 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359))) "failed") (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (T -751))
+((-2680 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359)))) (-5 *1 (-751)))) (-3889 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4139 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -2131 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359)))))) (-5 *1 (-751)))) (-2679 (*1 *1 *2) (-12 (-5 *2 (-594 (-2 (|:| -4139 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -2131 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359))))))) (-5 *1 (-751)))) (-2678 (*1 *2 *1) (-12 (-5 *2 (-594 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-5 *1 (-751)))) (-2677 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-751)))) (-2676 (*1 *1) (-5 *1 (-751))))
+(-10 -8 (-15 -2676 ($)) (-15 -2677 ((-1185))) (-15 -2678 ((-594 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $)) (-15 -2679 ($ (-594 (-2 (|:| -4139 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -2131 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359)))))))) (-15 -3889 ($ (-2 (|:| -4139 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -2131 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359))))))) (-15 -2680 ((-3 (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359)) (|:| |expense| (-359)) (|:| |accuracy| (-359)) (|:| |intermediateResults| (-359))) "failed") (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))
+((-3744 ((|#2| |#2| (-1098)) 16)) (-2681 ((|#2| |#2| (-1098)) 51)) (-2682 (((-1 |#2| |#2|) (-1098)) 11)))
+(((-752 |#1| |#2|) (-10 -7 (-15 -3744 (|#2| |#2| (-1098))) (-15 -2681 (|#2| |#2| (-1098))) (-15 -2682 ((-1 |#2| |#2|) (-1098)))) (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)) (-13 (-29 |#1|) (-1120) (-901))) (T -752))
+((-2682 (*1 *2 *3) (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140))) (-5 *2 (-1 *5 *5)) (-5 *1 (-752 *4 *5)) (-4 *5 (-13 (-29 *4) (-1120) (-901))))) (-2681 (*1 *2 *2 *3) (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140))) (-5 *1 (-752 *4 *2)) (-4 *2 (-13 (-29 *4) (-1120) (-901))))) (-3744 (*1 *2 *2 *3) (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140))) (-5 *1 (-752 *4 *2)) (-4 *2 (-13 (-29 *4) (-1120) (-901))))))
+(-10 -7 (-15 -3744 (|#2| |#2| (-1098))) (-15 -2681 (|#2| |#2| (-1098))) (-15 -2682 ((-1 |#2| |#2|) (-1098))))
+((-3855 (((-973) (-1179 (-295 (-359))) (-359) (-359) (-594 (-359)) (-295 (-359)) (-594 (-359)) (-359) (-359)) 116) (((-973) (-1179 (-295 (-359))) (-359) (-359) (-594 (-359)) (-295 (-359)) (-594 (-359)) (-359)) 117) (((-973) (-1179 (-295 (-359))) (-359) (-359) (-594 (-359)) (-594 (-359)) (-359)) 119) (((-973) (-1179 (-295 (-359))) (-359) (-359) (-594 (-359)) (-295 (-359)) (-359)) 120) (((-973) (-1179 (-295 (-359))) (-359) (-359) (-594 (-359)) (-359)) 121) (((-973) (-1179 (-295 (-359))) (-359) (-359) (-594 (-359))) 122) (((-973) (-756) (-995)) 108) (((-973) (-756)) 109)) (-2931 (((-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081)))) (-756) (-995)) 75) (((-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081)))) (-756)) 77)))
+(((-753) (-10 -7 (-15 -3855 ((-973) (-756))) (-15 -3855 ((-973) (-756) (-995))) (-15 -3855 ((-973) (-1179 (-295 (-359))) (-359) (-359) (-594 (-359)))) (-15 -3855 ((-973) (-1179 (-295 (-359))) (-359) (-359) (-594 (-359)) (-359))) (-15 -3855 ((-973) (-1179 (-295 (-359))) (-359) (-359) (-594 (-359)) (-295 (-359)) (-359))) (-15 -3855 ((-973) (-1179 (-295 (-359))) (-359) (-359) (-594 (-359)) (-594 (-359)) (-359))) (-15 -3855 ((-973) (-1179 (-295 (-359))) (-359) (-359) (-594 (-359)) (-295 (-359)) (-594 (-359)) (-359))) (-15 -3855 ((-973) (-1179 (-295 (-359))) (-359) (-359) (-594 (-359)) (-295 (-359)) (-594 (-359)) (-359) (-359))) (-15 -2931 ((-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081)))) (-756))) (-15 -2931 ((-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081)))) (-756) (-995))))) (T -753))
+((-2931 (*1 *2 *3 *4) (-12 (-5 *3 (-756)) (-5 *4 (-995)) (-5 *2 (-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081))))) (-5 *1 (-753)))) (-2931 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081))))) (-5 *1 (-753)))) (-3855 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1179 (-295 *4))) (-5 *5 (-594 (-359))) (-5 *6 (-295 (-359))) (-5 *4 (-359)) (-5 *2 (-973)) (-5 *1 (-753)))) (-3855 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1179 (-295 *4))) (-5 *5 (-594 (-359))) (-5 *6 (-295 (-359))) (-5 *4 (-359)) (-5 *2 (-973)) (-5 *1 (-753)))) (-3855 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1179 (-295 (-359)))) (-5 *4 (-359)) (-5 *5 (-594 *4)) (-5 *2 (-973)) (-5 *1 (-753)))) (-3855 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1179 (-295 *4))) (-5 *5 (-594 (-359))) (-5 *6 (-295 (-359))) (-5 *4 (-359)) (-5 *2 (-973)) (-5 *1 (-753)))) (-3855 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1179 (-295 (-359)))) (-5 *4 (-359)) (-5 *5 (-594 *4)) (-5 *2 (-973)) (-5 *1 (-753)))) (-3855 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1179 (-295 (-359)))) (-5 *4 (-359)) (-5 *5 (-594 *4)) (-5 *2 (-973)) (-5 *1 (-753)))) (-3855 (*1 *2 *3 *4) (-12 (-5 *3 (-756)) (-5 *4 (-995)) (-5 *2 (-973)) (-5 *1 (-753)))) (-3855 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-973)) (-5 *1 (-753)))))
+(-10 -7 (-15 -3855 ((-973) (-756))) (-15 -3855 ((-973) (-756) (-995))) (-15 -3855 ((-973) (-1179 (-295 (-359))) (-359) (-359) (-594 (-359)))) (-15 -3855 ((-973) (-1179 (-295 (-359))) (-359) (-359) (-594 (-359)) (-359))) (-15 -3855 ((-973) (-1179 (-295 (-359))) (-359) (-359) (-594 (-359)) (-295 (-359)) (-359))) (-15 -3855 ((-973) (-1179 (-295 (-359))) (-359) (-359) (-594 (-359)) (-594 (-359)) (-359))) (-15 -3855 ((-973) (-1179 (-295 (-359))) (-359) (-359) (-594 (-359)) (-295 (-359)) (-594 (-359)) (-359))) (-15 -3855 ((-973) (-1179 (-295 (-359))) (-359) (-359) (-594 (-359)) (-295 (-359)) (-594 (-359)) (-359) (-359))) (-15 -2931 ((-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081)))) (-756))) (-15 -2931 ((-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081)))) (-756) (-995))))
+((-2683 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2071 (-594 |#4|))) (-606 |#4|) |#4|) 35)))
+(((-754 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2683 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2071 (-594 |#4|))) (-606 |#4|) |#4|))) (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516)))) (-1155 |#1|) (-1155 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -754))
+((-2683 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *4)) (-4 *4 (-323 *5 *6 *7)) (-4 *5 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516))))) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-388 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2071 (-594 *4)))) (-5 *1 (-754 *5 *6 *7 *4)))))
+(-10 -7 (-15 -2683 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2071 (-594 |#4|))) (-606 |#4|) |#4|)))
+((-4020 (((-2 (|:| -3537 |#3|) (|:| |rh| (-594 (-388 |#2|)))) |#4| (-594 (-388 |#2|))) 52)) (-2685 (((-594 (-2 (|:| -4051 |#2|) (|:| -3498 |#2|))) |#4| |#2|) 60) (((-594 (-2 (|:| -4051 |#2|) (|:| -3498 |#2|))) |#4|) 59) (((-594 (-2 (|:| -4051 |#2|) (|:| -3498 |#2|))) |#3| |#2|) 20) (((-594 (-2 (|:| -4051 |#2|) (|:| -3498 |#2|))) |#3|) 21)) (-2686 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2684 ((|#2| |#3| (-594 (-388 |#2|))) 93) (((-3 |#2| "failed") |#3| (-388 |#2|)) 90)))
+(((-755 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2684 ((-3 |#2| "failed") |#3| (-388 |#2|))) (-15 -2684 (|#2| |#3| (-594 (-388 |#2|)))) (-15 -2685 ((-594 (-2 (|:| -4051 |#2|) (|:| -3498 |#2|))) |#3|)) (-15 -2685 ((-594 (-2 (|:| -4051 |#2|) (|:| -3498 |#2|))) |#3| |#2|)) (-15 -2686 (|#2| |#3| |#1|)) (-15 -2685 ((-594 (-2 (|:| -4051 |#2|) (|:| -3498 |#2|))) |#4|)) (-15 -2685 ((-594 (-2 (|:| -4051 |#2|) (|:| -3498 |#2|))) |#4| |#2|)) (-15 -2686 (|#2| |#4| |#1|)) (-15 -4020 ((-2 (|:| -3537 |#3|) (|:| |rh| (-594 (-388 |#2|)))) |#4| (-594 (-388 |#2|))))) (-13 (-344) (-140) (-975 (-388 (-516)))) (-1155 |#1|) (-609 |#2|) (-609 (-388 |#2|))) (T -755))
+((-4020 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *6 (-1155 *5)) (-5 *2 (-2 (|:| -3537 *7) (|:| |rh| (-594 (-388 *6))))) (-5 *1 (-755 *5 *6 *7 *3)) (-5 *4 (-594 (-388 *6))) (-4 *7 (-609 *6)) (-4 *3 (-609 (-388 *6))))) (-2686 (*1 *2 *3 *4) (-12 (-4 *2 (-1155 *4)) (-5 *1 (-755 *4 *2 *5 *3)) (-4 *4 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *5 (-609 *2)) (-4 *3 (-609 (-388 *2))))) (-2685 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *4 (-1155 *5)) (-5 *2 (-594 (-2 (|:| -4051 *4) (|:| -3498 *4)))) (-5 *1 (-755 *5 *4 *6 *3)) (-4 *6 (-609 *4)) (-4 *3 (-609 (-388 *4))))) (-2685 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *5 (-1155 *4)) (-5 *2 (-594 (-2 (|:| -4051 *5) (|:| -3498 *5)))) (-5 *1 (-755 *4 *5 *6 *3)) (-4 *6 (-609 *5)) (-4 *3 (-609 (-388 *5))))) (-2686 (*1 *2 *3 *4) (-12 (-4 *2 (-1155 *4)) (-5 *1 (-755 *4 *2 *3 *5)) (-4 *4 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *3 (-609 *2)) (-4 *5 (-609 (-388 *2))))) (-2685 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *4 (-1155 *5)) (-5 *2 (-594 (-2 (|:| -4051 *4) (|:| -3498 *4)))) (-5 *1 (-755 *5 *4 *3 *6)) (-4 *3 (-609 *4)) (-4 *6 (-609 (-388 *4))))) (-2685 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *5 (-1155 *4)) (-5 *2 (-594 (-2 (|:| -4051 *5) (|:| -3498 *5)))) (-5 *1 (-755 *4 *5 *3 *6)) (-4 *3 (-609 *5)) (-4 *6 (-609 (-388 *5))))) (-2684 (*1 *2 *3 *4) (-12 (-5 *4 (-594 (-388 *2))) (-4 *2 (-1155 *5)) (-5 *1 (-755 *5 *2 *3 *6)) (-4 *5 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *3 (-609 *2)) (-4 *6 (-609 (-388 *2))))) (-2684 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-388 *2)) (-4 *2 (-1155 *5)) (-5 *1 (-755 *5 *2 *3 *6)) (-4 *5 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *3 (-609 *2)) (-4 *6 (-609 *4)))))
+(-10 -7 (-15 -2684 ((-3 |#2| "failed") |#3| (-388 |#2|))) (-15 -2684 (|#2| |#3| (-594 (-388 |#2|)))) (-15 -2685 ((-594 (-2 (|:| -4051 |#2|) (|:| -3498 |#2|))) |#3|)) (-15 -2685 ((-594 (-2 (|:| -4051 |#2|) (|:| -3498 |#2|))) |#3| |#2|)) (-15 -2686 (|#2| |#3| |#1|)) (-15 -2685 ((-594 (-2 (|:| -4051 |#2|) (|:| -3498 |#2|))) |#4|)) (-15 -2685 ((-594 (-2 (|:| -4051 |#2|) (|:| -3498 |#2|))) |#4| |#2|)) (-15 -2686 (|#2| |#4| |#1|)) (-15 -4020 ((-2 (|:| -3537 |#3|) (|:| |rh| (-594 (-388 |#2|)))) |#4| (-594 (-388 |#2|)))))
+((-2828 (((-110) $ $) NIL)) (-3431 (((-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) $) 13)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 15) (($ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 12)) (-3317 (((-110) $ $) NIL)))
+(((-756) (-13 (-1027) (-10 -8 (-15 -4233 ($ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -4233 ((-805) $)) (-15 -3431 ((-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) $))))) (T -756))
+((-4233 (*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-756)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *1 (-756)))) (-3431 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *1 (-756)))))
+(-13 (-1027) (-10 -8 (-15 -4233 ($ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -4233 ((-805) $)) (-15 -3431 ((-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208))) (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) $))))
+((-2694 (((-594 (-2 (|:| |frac| (-388 |#2|)) (|:| -3537 |#3|))) |#3| (-1 (-594 |#2|) |#2| (-1092 |#2|)) (-1 (-386 |#2|) |#2|)) 118)) (-2695 (((-594 (-2 (|:| |poly| |#2|) (|:| -3537 |#3|))) |#3| (-1 (-594 |#1|) |#2|)) 46)) (-2688 (((-594 (-2 (|:| |deg| (-719)) (|:| -3537 |#2|))) |#3|) 95)) (-2687 ((|#2| |#3|) 37)) (-2689 (((-594 (-2 (|:| -4227 |#1|) (|:| -3537 |#3|))) |#3| (-1 (-594 |#1|) |#2|)) 82)) (-2690 ((|#3| |#3| (-388 |#2|)) 63) ((|#3| |#3| |#2|) 79)))
+(((-757 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2687 (|#2| |#3|)) (-15 -2688 ((-594 (-2 (|:| |deg| (-719)) (|:| -3537 |#2|))) |#3|)) (-15 -2689 ((-594 (-2 (|:| -4227 |#1|) (|:| -3537 |#3|))) |#3| (-1 (-594 |#1|) |#2|))) (-15 -2695 ((-594 (-2 (|:| |poly| |#2|) (|:| -3537 |#3|))) |#3| (-1 (-594 |#1|) |#2|))) (-15 -2694 ((-594 (-2 (|:| |frac| (-388 |#2|)) (|:| -3537 |#3|))) |#3| (-1 (-594 |#2|) |#2| (-1092 |#2|)) (-1 (-386 |#2|) |#2|))) (-15 -2690 (|#3| |#3| |#2|)) (-15 -2690 (|#3| |#3| (-388 |#2|)))) (-13 (-344) (-140) (-975 (-388 (-516)))) (-1155 |#1|) (-609 |#2|) (-609 (-388 |#2|))) (T -757))
+((-2690 (*1 *2 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *4 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *5 (-1155 *4)) (-5 *1 (-757 *4 *5 *2 *6)) (-4 *2 (-609 *5)) (-4 *6 (-609 *3)))) (-2690 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *3 (-1155 *4)) (-5 *1 (-757 *4 *3 *2 *5)) (-4 *2 (-609 *3)) (-4 *5 (-609 (-388 *3))))) (-2694 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-594 *7) *7 (-1092 *7))) (-5 *5 (-1 (-386 *7) *7)) (-4 *7 (-1155 *6)) (-4 *6 (-13 (-344) (-140) (-975 (-388 (-516))))) (-5 *2 (-594 (-2 (|:| |frac| (-388 *7)) (|:| -3537 *3)))) (-5 *1 (-757 *6 *7 *3 *8)) (-4 *3 (-609 *7)) (-4 *8 (-609 (-388 *7))))) (-2695 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-594 *5) *6)) (-4 *5 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *6 (-1155 *5)) (-5 *2 (-594 (-2 (|:| |poly| *6) (|:| -3537 *3)))) (-5 *1 (-757 *5 *6 *3 *7)) (-4 *3 (-609 *6)) (-4 *7 (-609 (-388 *6))))) (-2689 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-594 *5) *6)) (-4 *5 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *6 (-1155 *5)) (-5 *2 (-594 (-2 (|:| -4227 *5) (|:| -3537 *3)))) (-5 *1 (-757 *5 *6 *3 *7)) (-4 *3 (-609 *6)) (-4 *7 (-609 (-388 *6))))) (-2688 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *5 (-1155 *4)) (-5 *2 (-594 (-2 (|:| |deg| (-719)) (|:| -3537 *5)))) (-5 *1 (-757 *4 *5 *3 *6)) (-4 *3 (-609 *5)) (-4 *6 (-609 (-388 *5))))) (-2687 (*1 *2 *3) (-12 (-4 *2 (-1155 *4)) (-5 *1 (-757 *4 *2 *3 *5)) (-4 *4 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *3 (-609 *2)) (-4 *5 (-609 (-388 *2))))))
+(-10 -7 (-15 -2687 (|#2| |#3|)) (-15 -2688 ((-594 (-2 (|:| |deg| (-719)) (|:| -3537 |#2|))) |#3|)) (-15 -2689 ((-594 (-2 (|:| -4227 |#1|) (|:| -3537 |#3|))) |#3| (-1 (-594 |#1|) |#2|))) (-15 -2695 ((-594 (-2 (|:| |poly| |#2|) (|:| -3537 |#3|))) |#3| (-1 (-594 |#1|) |#2|))) (-15 -2694 ((-594 (-2 (|:| |frac| (-388 |#2|)) (|:| -3537 |#3|))) |#3| (-1 (-594 |#2|) |#2| (-1092 |#2|)) (-1 (-386 |#2|) |#2|))) (-15 -2690 (|#3| |#3| |#2|)) (-15 -2690 (|#3| |#3| (-388 |#2|))))
+((-2691 (((-2 (|:| -2071 (-594 (-388 |#2|))) (|:| -1650 (-637 |#1|))) (-607 |#2| (-388 |#2|)) (-594 (-388 |#2|))) 121) (((-2 (|:| |particular| (-3 (-388 |#2|) #1="failed")) (|:| -2071 (-594 (-388 |#2|)))) (-607 |#2| (-388 |#2|)) (-388 |#2|)) 120) (((-2 (|:| -2071 (-594 (-388 |#2|))) (|:| -1650 (-637 |#1|))) (-606 (-388 |#2|)) (-594 (-388 |#2|))) 115) (((-2 (|:| |particular| (-3 (-388 |#2|) #1#)) (|:| -2071 (-594 (-388 |#2|)))) (-606 (-388 |#2|)) (-388 |#2|)) 113)) (-2692 ((|#2| (-607 |#2| (-388 |#2|))) 80) ((|#2| (-606 (-388 |#2|))) 83)))
+(((-758 |#1| |#2|) (-10 -7 (-15 -2691 ((-2 (|:| |particular| (-3 (-388 |#2|) #1="failed")) (|:| -2071 (-594 (-388 |#2|)))) (-606 (-388 |#2|)) (-388 |#2|))) (-15 -2691 ((-2 (|:| -2071 (-594 (-388 |#2|))) (|:| -1650 (-637 |#1|))) (-606 (-388 |#2|)) (-594 (-388 |#2|)))) (-15 -2691 ((-2 (|:| |particular| (-3 (-388 |#2|) #1#)) (|:| -2071 (-594 (-388 |#2|)))) (-607 |#2| (-388 |#2|)) (-388 |#2|))) (-15 -2691 ((-2 (|:| -2071 (-594 (-388 |#2|))) (|:| -1650 (-637 |#1|))) (-607 |#2| (-388 |#2|)) (-594 (-388 |#2|)))) (-15 -2692 (|#2| (-606 (-388 |#2|)))) (-15 -2692 (|#2| (-607 |#2| (-388 |#2|))))) (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516)))) (-1155 |#1|)) (T -758))
+((-2692 (*1 *2 *3) (-12 (-5 *3 (-607 *2 (-388 *2))) (-4 *2 (-1155 *4)) (-5 *1 (-758 *4 *2)) (-4 *4 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516))))))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-606 (-388 *2))) (-4 *2 (-1155 *4)) (-5 *1 (-758 *4 *2)) (-4 *4 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516))))))) (-2691 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *6 (-388 *6))) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516))))) (-5 *2 (-2 (|:| -2071 (-594 (-388 *6))) (|:| -1650 (-637 *5)))) (-5 *1 (-758 *5 *6)) (-5 *4 (-594 (-388 *6))))) (-2691 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *6 (-388 *6))) (-5 *4 (-388 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2071 (-594 *4)))) (-5 *1 (-758 *5 *6)))) (-2691 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-388 *6))) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516))))) (-5 *2 (-2 (|:| -2071 (-594 (-388 *6))) (|:| -1650 (-637 *5)))) (-5 *1 (-758 *5 *6)) (-5 *4 (-594 (-388 *6))))) (-2691 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-388 *6))) (-5 *4 (-388 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2071 (-594 *4)))) (-5 *1 (-758 *5 *6)))))
+(-10 -7 (-15 -2691 ((-2 (|:| |particular| (-3 (-388 |#2|) #1="failed")) (|:| -2071 (-594 (-388 |#2|)))) (-606 (-388 |#2|)) (-388 |#2|))) (-15 -2691 ((-2 (|:| -2071 (-594 (-388 |#2|))) (|:| -1650 (-637 |#1|))) (-606 (-388 |#2|)) (-594 (-388 |#2|)))) (-15 -2691 ((-2 (|:| |particular| (-3 (-388 |#2|) #1#)) (|:| -2071 (-594 (-388 |#2|)))) (-607 |#2| (-388 |#2|)) (-388 |#2|))) (-15 -2691 ((-2 (|:| -2071 (-594 (-388 |#2|))) (|:| -1650 (-637 |#1|))) (-607 |#2| (-388 |#2|)) (-594 (-388 |#2|)))) (-15 -2692 (|#2| (-606 (-388 |#2|)))) (-15 -2692 (|#2| (-607 |#2| (-388 |#2|)))))
+((-2693 (((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#1|))) |#5| |#4|) 48)))
+(((-759 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2693 ((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#1|))) |#5| |#4|))) (-344) (-609 |#1|) (-1155 |#1|) (-673 |#1| |#3|) (-609 |#4|)) (T -759))
+((-2693 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *7 (-1155 *5)) (-4 *4 (-673 *5 *7)) (-5 *2 (-2 (|:| -1650 (-637 *6)) (|:| |vec| (-1179 *5)))) (-5 *1 (-759 *5 *6 *7 *4 *3)) (-4 *6 (-609 *5)) (-4 *3 (-609 *4)))))
+(-10 -7 (-15 -2693 ((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#1|))) |#5| |#4|)))
+((-2694 (((-594 (-2 (|:| |frac| (-388 |#2|)) (|:| -3537 (-607 |#2| (-388 |#2|))))) (-607 |#2| (-388 |#2|)) (-1 (-386 |#2|) |#2|)) 47)) (-2696 (((-594 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-386 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-594 (-388 |#2|)) (-607 |#2| (-388 |#2|))) 138 (|has| |#1| (-27))) (((-594 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-386 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-594 (-388 |#2|)) (-606 (-388 |#2|))) 140 (|has| |#1| (-27))) (((-594 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-594 |#1|) |#2|) (-1 (-386 |#2|) |#2|)) 38) (((-594 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-594 |#1|) |#2|)) 39) (((-594 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-594 |#1|) |#2|) (-1 (-386 |#2|) |#2|)) 36) (((-594 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-594 |#1|) |#2|)) 37)) (-2695 (((-594 (-2 (|:| |poly| |#2|) (|:| -3537 (-607 |#2| (-388 |#2|))))) (-607 |#2| (-388 |#2|)) (-1 (-594 |#1|) |#2|)) 83)))
+(((-760 |#1| |#2|) (-10 -7 (-15 -2696 ((-594 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-594 |#1|) |#2|))) (-15 -2696 ((-594 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-594 |#1|) |#2|) (-1 (-386 |#2|) |#2|))) (-15 -2696 ((-594 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-594 |#1|) |#2|))) (-15 -2696 ((-594 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-594 |#1|) |#2|) (-1 (-386 |#2|) |#2|))) (-15 -2694 ((-594 (-2 (|:| |frac| (-388 |#2|)) (|:| -3537 (-607 |#2| (-388 |#2|))))) (-607 |#2| (-388 |#2|)) (-1 (-386 |#2|) |#2|))) (-15 -2695 ((-594 (-2 (|:| |poly| |#2|) (|:| -3537 (-607 |#2| (-388 |#2|))))) (-607 |#2| (-388 |#2|)) (-1 (-594 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2696 ((-594 (-388 |#2|)) (-606 (-388 |#2|)))) (-15 -2696 ((-594 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-386 |#2|) |#2|))) (-15 -2696 ((-594 (-388 |#2|)) (-607 |#2| (-388 |#2|)))) (-15 -2696 ((-594 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-386 |#2|) |#2|)))) |%noBranch|)) (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516)))) (-1155 |#1|)) (T -760))
+((-2696 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *6 (-388 *6))) (-5 *4 (-1 (-386 *6) *6)) (-4 *6 (-1155 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516))))) (-5 *2 (-594 (-388 *6))) (-5 *1 (-760 *5 *6)))) (-2696 (*1 *2 *3) (-12 (-5 *3 (-607 *5 (-388 *5))) (-4 *5 (-1155 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516))))) (-5 *2 (-594 (-388 *5))) (-5 *1 (-760 *4 *5)))) (-2696 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-388 *6))) (-5 *4 (-1 (-386 *6) *6)) (-4 *6 (-1155 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516))))) (-5 *2 (-594 (-388 *6))) (-5 *1 (-760 *5 *6)))) (-2696 (*1 *2 *3) (-12 (-5 *3 (-606 (-388 *5))) (-4 *5 (-1155 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516))))) (-5 *2 (-594 (-388 *5))) (-5 *1 (-760 *4 *5)))) (-2695 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-594 *5) *6)) (-4 *5 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516))))) (-4 *6 (-1155 *5)) (-5 *2 (-594 (-2 (|:| |poly| *6) (|:| -3537 (-607 *6 (-388 *6)))))) (-5 *1 (-760 *5 *6)) (-5 *3 (-607 *6 (-388 *6))))) (-2694 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-386 *6) *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516))))) (-5 *2 (-594 (-2 (|:| |frac| (-388 *6)) (|:| -3537 (-607 *6 (-388 *6)))))) (-5 *1 (-760 *5 *6)) (-5 *3 (-607 *6 (-388 *6))))) (-2696 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-607 *7 (-388 *7))) (-5 *4 (-1 (-594 *6) *7)) (-5 *5 (-1 (-386 *7) *7)) (-4 *6 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516))))) (-4 *7 (-1155 *6)) (-5 *2 (-594 (-388 *7))) (-5 *1 (-760 *6 *7)))) (-2696 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *6 (-388 *6))) (-5 *4 (-1 (-594 *5) *6)) (-4 *5 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516))))) (-4 *6 (-1155 *5)) (-5 *2 (-594 (-388 *6))) (-5 *1 (-760 *5 *6)))) (-2696 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-606 (-388 *7))) (-5 *4 (-1 (-594 *6) *7)) (-5 *5 (-1 (-386 *7) *7)) (-4 *6 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516))))) (-4 *7 (-1155 *6)) (-5 *2 (-594 (-388 *7))) (-5 *1 (-760 *6 *7)))) (-2696 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-388 *6))) (-5 *4 (-1 (-594 *5) *6)) (-4 *5 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516))))) (-4 *6 (-1155 *5)) (-5 *2 (-594 (-388 *6))) (-5 *1 (-760 *5 *6)))))
+(-10 -7 (-15 -2696 ((-594 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-594 |#1|) |#2|))) (-15 -2696 ((-594 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-594 |#1|) |#2|) (-1 (-386 |#2|) |#2|))) (-15 -2696 ((-594 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-594 |#1|) |#2|))) (-15 -2696 ((-594 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-594 |#1|) |#2|) (-1 (-386 |#2|) |#2|))) (-15 -2694 ((-594 (-2 (|:| |frac| (-388 |#2|)) (|:| -3537 (-607 |#2| (-388 |#2|))))) (-607 |#2| (-388 |#2|)) (-1 (-386 |#2|) |#2|))) (-15 -2695 ((-594 (-2 (|:| |poly| |#2|) (|:| -3537 (-607 |#2| (-388 |#2|))))) (-607 |#2| (-388 |#2|)) (-1 (-594 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2696 ((-594 (-388 |#2|)) (-606 (-388 |#2|)))) (-15 -2696 ((-594 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-386 |#2|) |#2|))) (-15 -2696 ((-594 (-388 |#2|)) (-607 |#2| (-388 |#2|)))) (-15 -2696 ((-594 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-386 |#2|) |#2|)))) |%noBranch|))
+((-2697 (((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#1|))) (-637 |#2|) (-1179 |#1|)) 85) (((-2 (|:| A (-637 |#1|)) (|:| |eqs| (-594 (-2 (|:| C (-637 |#1|)) (|:| |g| (-1179 |#1|)) (|:| -3537 |#2|) (|:| |rh| |#1|))))) (-637 |#1|) (-1179 |#1|)) 15)) (-2698 (((-2 (|:| |particular| (-3 (-1179 |#1|) "failed")) (|:| -2071 (-594 (-1179 |#1|)))) (-637 |#2|) (-1179 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2071 (-594 |#1|))) |#2| |#1|)) 92)) (-3855 (((-3 (-2 (|:| |particular| (-1179 |#1|)) (|:| -2071 (-637 |#1|))) "failed") (-637 |#1|) (-1179 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2071 (-594 |#1|))) "failed") |#2| |#1|)) 43)))
+(((-761 |#1| |#2|) (-10 -7 (-15 -2697 ((-2 (|:| A (-637 |#1|)) (|:| |eqs| (-594 (-2 (|:| C (-637 |#1|)) (|:| |g| (-1179 |#1|)) (|:| -3537 |#2|) (|:| |rh| |#1|))))) (-637 |#1|) (-1179 |#1|))) (-15 -2697 ((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#1|))) (-637 |#2|) (-1179 |#1|))) (-15 -3855 ((-3 (-2 (|:| |particular| (-1179 |#1|)) (|:| -2071 (-637 |#1|))) "failed") (-637 |#1|) (-1179 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2071 (-594 |#1|))) "failed") |#2| |#1|))) (-15 -2698 ((-2 (|:| |particular| (-3 (-1179 |#1|) "failed")) (|:| -2071 (-594 (-1179 |#1|)))) (-637 |#2|) (-1179 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2071 (-594 |#1|))) |#2| |#1|)))) (-344) (-609 |#1|)) (T -761))
+((-2698 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2071 (-594 *6))) *7 *6)) (-4 *6 (-344)) (-4 *7 (-609 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1179 *6) "failed")) (|:| -2071 (-594 (-1179 *6))))) (-5 *1 (-761 *6 *7)) (-5 *4 (-1179 *6)))) (-3855 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2071 (-594 *6))) "failed") *7 *6)) (-4 *6 (-344)) (-4 *7 (-609 *6)) (-5 *2 (-2 (|:| |particular| (-1179 *6)) (|:| -2071 (-637 *6)))) (-5 *1 (-761 *6 *7)) (-5 *3 (-637 *6)) (-5 *4 (-1179 *6)))) (-2697 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-609 *5)) (-5 *2 (-2 (|:| -1650 (-637 *6)) (|:| |vec| (-1179 *5)))) (-5 *1 (-761 *5 *6)) (-5 *3 (-637 *6)) (-5 *4 (-1179 *5)))) (-2697 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-5 *2 (-2 (|:| A (-637 *5)) (|:| |eqs| (-594 (-2 (|:| C (-637 *5)) (|:| |g| (-1179 *5)) (|:| -3537 *6) (|:| |rh| *5)))))) (-5 *1 (-761 *5 *6)) (-5 *3 (-637 *5)) (-5 *4 (-1179 *5)) (-4 *6 (-609 *5)))))
+(-10 -7 (-15 -2697 ((-2 (|:| A (-637 |#1|)) (|:| |eqs| (-594 (-2 (|:| C (-637 |#1|)) (|:| |g| (-1179 |#1|)) (|:| -3537 |#2|) (|:| |rh| |#1|))))) (-637 |#1|) (-1179 |#1|))) (-15 -2697 ((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#1|))) (-637 |#2|) (-1179 |#1|))) (-15 -3855 ((-3 (-2 (|:| |particular| (-1179 |#1|)) (|:| -2071 (-637 |#1|))) "failed") (-637 |#1|) (-1179 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2071 (-594 |#1|))) "failed") |#2| |#1|))) (-15 -2698 ((-2 (|:| |particular| (-3 (-1179 |#1|) "failed")) (|:| -2071 (-594 (-1179 |#1|)))) (-637 |#2|) (-1179 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2071 (-594 |#1|))) |#2| |#1|))))
+((-2699 (((-637 |#1|) (-594 |#1|) (-719)) 13) (((-637 |#1|) (-594 |#1|)) 14)) (-2700 (((-3 (-1179 |#1|) "failed") |#2| |#1| (-594 |#1|)) 34)) (-3618 (((-3 |#1| "failed") |#2| |#1| (-594 |#1|) (-1 |#1| |#1|)) 42)))
+(((-762 |#1| |#2|) (-10 -7 (-15 -2699 ((-637 |#1|) (-594 |#1|))) (-15 -2699 ((-637 |#1|) (-594 |#1|) (-719))) (-15 -2700 ((-3 (-1179 |#1|) "failed") |#2| |#1| (-594 |#1|))) (-15 -3618 ((-3 |#1| "failed") |#2| |#1| (-594 |#1|) (-1 |#1| |#1|)))) (-344) (-609 |#1|)) (T -762))
+((-3618 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-594 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-344)) (-5 *1 (-762 *2 *3)) (-4 *3 (-609 *2)))) (-2700 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-594 *4)) (-4 *4 (-344)) (-5 *2 (-1179 *4)) (-5 *1 (-762 *4 *3)) (-4 *3 (-609 *4)))) (-2699 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *5)) (-5 *4 (-719)) (-4 *5 (-344)) (-5 *2 (-637 *5)) (-5 *1 (-762 *5 *6)) (-4 *6 (-609 *5)))) (-2699 (*1 *2 *3) (-12 (-5 *3 (-594 *4)) (-4 *4 (-344)) (-5 *2 (-637 *4)) (-5 *1 (-762 *4 *5)) (-4 *5 (-609 *4)))))
+(-10 -7 (-15 -2699 ((-637 |#1|) (-594 |#1|))) (-15 -2699 ((-637 |#1|) (-594 |#1|) (-719))) (-15 -2700 ((-3 (-1179 |#1|) "failed") |#2| |#1| (-594 |#1|))) (-15 -3618 ((-3 |#1| "failed") |#2| |#1| (-594 |#1|) (-1 |#1| |#1|))))
+((-2828 (((-110) $ $) NIL (|has| |#2| (-1027)))) (-3462 (((-110) $) NIL (|has| |#2| (-128)))) (-3989 (($ (-860)) NIL (|has| |#2| (-984)))) (-2243 (((-1185) $ (-516) (-516)) NIL (|has| $ (-6 -4270)))) (-2667 (($ $ $) NIL (|has| |#2| (-741)))) (-1319 (((-3 $ "failed") $ $) NIL (|has| |#2| (-128)))) (-1217 (((-110) $ (-719)) NIL)) (-3395 (((-719)) NIL (|has| |#2| (-349)))) (-3905 (((-516) $) NIL (|has| |#2| (-793)))) (-4066 ((|#2| $ (-516) |#2|) NIL (|has| $ (-6 -4270)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-516) #1="failed") $) NIL (-12 (|has| |#2| (-975 (-516))) (|has| |#2| (-1027)))) (((-3 (-388 (-516)) #1#) $) NIL (-12 (|has| |#2| (-975 (-388 (-516)))) (|has| |#2| (-1027)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1027)))) (-3431 (((-516) $) NIL (-12 (|has| |#2| (-975 (-516))) (|has| |#2| (-1027)))) (((-388 (-516)) $) NIL (-12 (|has| |#2| (-975 (-388 (-516)))) (|has| |#2| (-1027)))) ((|#2| $) NIL (|has| |#2| (-1027)))) (-2297 (((-637 (-516)) (-637 $)) NIL (-12 (|has| |#2| (-593 (-516))) (|has| |#2| (-984)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (-12 (|has| |#2| (-593 (-516))) (|has| |#2| (-984)))) (((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 $) (-1179 $)) NIL (|has| |#2| (-984))) (((-637 |#2|) (-637 $)) NIL (|has| |#2| (-984)))) (-3741 (((-3 $ "failed") $) NIL (|has| |#2| (-675)))) (-3258 (($) NIL (|has| |#2| (-349)))) (-1587 ((|#2| $ (-516) |#2|) NIL (|has| $ (-6 -4270)))) (-3372 ((|#2| $ (-516)) NIL)) (-3460 (((-110) $) NIL (|has| |#2| (-793)))) (-2018 (((-594 |#2|) $) NIL (|has| $ (-6 -4269)))) (-2436 (((-110) $) NIL (|has| |#2| (-675)))) (-3461 (((-110) $) NIL (|has| |#2| (-793)))) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-516) $) NIL (|has| (-516) (-795)))) (-3596 (($ $ $) NIL (-3810 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2445 (((-594 |#2|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2246 (((-516) $) NIL (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (-3810 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2022 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#2| |#2|) $) NIL)) (-2069 (((-860) $) NIL (|has| |#2| (-349)))) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (|has| |#2| (-1027)))) (-2248 (((-594 (-516)) $) NIL)) (-2249 (((-110) (-516) $) NIL)) (-2426 (($ (-860)) NIL (|has| |#2| (-349)))) (-3514 (((-1045) $) NIL (|has| |#2| (-1027)))) (-4079 ((|#2| $) NIL (|has| (-516) (-795)))) (-2244 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-594 |#2|) (-594 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2250 (((-594 |#2|) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#2| $ (-516) |#2|) NIL) ((|#2| $ (-516)) NIL)) (-4115 ((|#2| $ $) NIL (|has| |#2| (-984)))) (-1475 (($ (-1179 |#2|)) NIL)) (-4190 (((-130)) NIL (|has| |#2| (-344)))) (-4089 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1098)) NIL (-12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-984)))) (-2019 (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-3678 (($ $) NIL)) (-4233 (((-1179 |#2|) $) NIL) (($ (-516)) NIL (-3810 (-12 (|has| |#2| (-975 (-516))) (|has| |#2| (-1027))) (|has| |#2| (-984)))) (($ (-388 (-516))) NIL (-12 (|has| |#2| (-975 (-388 (-516)))) (|has| |#2| (-1027)))) (($ |#2|) NIL (|has| |#2| (-1027))) (((-805) $) NIL (|has| |#2| (-571 (-805))))) (-3385 (((-719)) NIL (|has| |#2| (-984)))) (-2021 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3661 (($ $) NIL (|has| |#2| (-793)))) (-3581 (($ $ (-719)) NIL (|has| |#2| (-675))) (($ $ (-860)) NIL (|has| |#2| (-675)))) (-2920 (($) NIL (|has| |#2| (-128)) CONST)) (-2927 (($) NIL (|has| |#2| (-675)) CONST)) (-2932 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1098)) NIL (-12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#2| (-841 (-1098))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-984)))) (-2826 (((-110) $ $) NIL (-3810 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2827 (((-110) $ $) NIL (-3810 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-3317 (((-110) $ $) NIL (|has| |#2| (-1027)))) (-2947 (((-110) $ $) NIL (-3810 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2948 (((-110) $ $) 11 (-3810 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-4224 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-4116 (($ $ $) NIL (|has| |#2| (-984))) (($ $) NIL (|has| |#2| (-984)))) (-4118 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-719)) NIL (|has| |#2| (-675))) (($ $ (-860)) NIL (|has| |#2| (-675)))) (* (($ (-516) $) NIL (|has| |#2| (-984))) (($ $ $) NIL (|has| |#2| (-675))) (($ $ |#2|) NIL (|has| |#2| (-675))) (($ |#2| $) NIL (|has| |#2| (-675))) (($ (-719) $) NIL (|has| |#2| (-128))) (($ (-860) $) NIL (|has| |#2| (-25)))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-763 |#1| |#2| |#3|) (-221 |#1| |#2|) (-719) (-741) (-1 (-110) (-1179 |#2|) (-1179 |#2|))) (T -763))
+NIL
+(-221 |#1| |#2|)
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1493 (((-594 (-719)) $) NIL) (((-594 (-719)) $ (-1098)) NIL)) (-1527 (((-719) $) NIL) (((-719) $ (-1098)) NIL)) (-3347 (((-594 (-766 (-1098))) $) NIL)) (-3349 (((-1092 $) $ (-766 (-1098))) NIL) (((-1092 |#1|) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-2118 (($ $) NIL (|has| |#1| (-523)))) (-2116 (((-110) $) NIL (|has| |#1| (-523)))) (-3083 (((-719) $) NIL) (((-719) $ (-594 (-766 (-1098)))) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-4053 (($ $) NIL (|has| |#1| (-432)))) (-4245 (((-386 $) $) NIL (|has| |#1| (-432)))) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-1489 (($ $) NIL)) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#1| #2="failed") $) NIL) (((-3 (-388 (-516)) #2#) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-3 (-516) #2#) $) NIL (|has| |#1| (-975 (-516)))) (((-3 (-766 (-1098)) #2#) $) NIL) (((-3 (-1098) #2#) $) NIL) (((-3 (-1050 |#1| (-1098)) #2#) $) NIL)) (-3431 ((|#1| $) NIL) (((-388 (-516)) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-516) $) NIL (|has| |#1| (-975 (-516)))) (((-766 (-1098)) $) NIL) (((-1098) $) NIL) (((-1050 |#1| (-1098)) $) NIL)) (-4035 (($ $ $ (-766 (-1098))) NIL (|has| |#1| (-162)))) (-4235 (($ $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3777 (($ $) NIL (|has| |#1| (-432))) (($ $ (-766 (-1098))) NIL (|has| |#1| (-432)))) (-3082 (((-594 $) $) NIL)) (-4005 (((-110) $) NIL (|has| |#1| (-851)))) (-1671 (($ $ |#1| (-502 (-766 (-1098))) $) NIL)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (-12 (|has| (-766 (-1098)) (-827 (-359))) (|has| |#1| (-827 (-359))))) (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (-12 (|has| (-766 (-1098)) (-827 (-516))) (|has| |#1| (-827 (-516)))))) (-4050 (((-719) $ (-1098)) NIL) (((-719) $) NIL)) (-2436 (((-110) $) NIL)) (-2444 (((-719) $) NIL)) (-3350 (($ (-1092 |#1|) (-766 (-1098))) NIL) (($ (-1092 $) (-766 (-1098))) NIL)) (-3085 (((-594 $) $) NIL)) (-4213 (((-110) $) NIL)) (-3157 (($ |#1| (-502 (-766 (-1098)))) NIL) (($ $ (-766 (-1098)) (-719)) NIL) (($ $ (-594 (-766 (-1098))) (-594 (-719))) NIL)) (-4041 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $ (-766 (-1098))) NIL)) (-3084 (((-502 (-766 (-1098))) $) NIL) (((-719) $ (-766 (-1098))) NIL) (((-594 (-719)) $ (-594 (-766 (-1098)))) NIL)) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-1672 (($ (-1 (-502 (-766 (-1098))) (-502 (-766 (-1098)))) $) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-1528 (((-1 $ (-719)) (-1098)) NIL) (((-1 $ (-719)) $) NIL (|has| |#1| (-216)))) (-3348 (((-3 (-766 (-1098)) #3="failed") $) NIL)) (-3158 (($ $) NIL)) (-3449 ((|#1| $) NIL)) (-1491 (((-766 (-1098)) $) NIL)) (-1963 (($ (-594 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3513 (((-1081) $) NIL)) (-1492 (((-110) $) NIL)) (-3087 (((-3 (-594 $) #3#) $) NIL)) (-3086 (((-3 (-594 $) #3#) $) NIL)) (-3088 (((-3 (-2 (|:| |var| (-766 (-1098))) (|:| -2427 (-719))) #3#) $) NIL)) (-1490 (($ $) NIL)) (-3514 (((-1045) $) NIL)) (-1866 (((-110) $) NIL)) (-1865 ((|#1| $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#1| (-432)))) (-3419 (($ (-594 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-4011 (((-386 $) $) NIL (|has| |#1| (-851)))) (-3740 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-4046 (($ $ (-594 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL) (($ $ (-766 (-1098)) |#1|) NIL) (($ $ (-594 (-766 (-1098))) (-594 |#1|)) NIL) (($ $ (-766 (-1098)) $) NIL) (($ $ (-594 (-766 (-1098))) (-594 $)) NIL) (($ $ (-1098) $) NIL (|has| |#1| (-216))) (($ $ (-594 (-1098)) (-594 $)) NIL (|has| |#1| (-216))) (($ $ (-1098) |#1|) NIL (|has| |#1| (-216))) (($ $ (-594 (-1098)) (-594 |#1|)) NIL (|has| |#1| (-216)))) (-4036 (($ $ (-766 (-1098))) NIL (|has| |#1| (-162)))) (-4089 (($ $ (-766 (-1098))) NIL) (($ $ (-594 (-766 (-1098)))) NIL) (($ $ (-766 (-1098)) (-719)) NIL) (($ $ (-594 (-766 (-1098))) (-594 (-719))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1098)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1494 (((-594 (-1098)) $) NIL)) (-4223 (((-502 (-766 (-1098))) $) NIL) (((-719) $ (-766 (-1098))) NIL) (((-594 (-719)) $ (-594 (-766 (-1098)))) NIL) (((-719) $ (-1098)) NIL)) (-4246 (((-831 (-359)) $) NIL (-12 (|has| (-766 (-1098)) (-572 (-831 (-359)))) (|has| |#1| (-572 (-831 (-359)))))) (((-831 (-516)) $) NIL (-12 (|has| (-766 (-1098)) (-572 (-831 (-516)))) (|has| |#1| (-572 (-831 (-516)))))) (((-505) $) NIL (-12 (|has| (-766 (-1098)) (-572 (-505))) (|has| |#1| (-572 (-505)))))) (-3081 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-766 (-1098))) NIL (|has| |#1| (-432)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-851))))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ |#1|) NIL) (($ (-766 (-1098))) NIL) (($ (-1098)) NIL) (($ (-1050 |#1| (-1098))) NIL) (($ (-388 (-516))) NIL (-3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-975 (-388 (-516)))))) (($ $) NIL (|has| |#1| (-523)))) (-4096 (((-594 |#1|) $) NIL)) (-3959 ((|#1| $ (-502 (-766 (-1098)))) NIL) (($ $ (-766 (-1098)) (-719)) NIL) (($ $ (-594 (-766 (-1098))) (-594 (-719))) NIL)) (-2965 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| $ (-138)) (|has| |#1| (-851))) (|has| |#1| (-138))))) (-3385 (((-719)) NIL)) (-1670 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-2117 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($ $ (-766 (-1098))) NIL) (($ $ (-594 (-766 (-1098)))) NIL) (($ $ (-766 (-1098)) (-719)) NIL) (($ $ (-594 (-766 (-1098))) (-594 (-719))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1098)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#1| (-795)))) (-4224 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516))))) (($ (-388 (-516)) $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-764 |#1|) (-13 (-235 |#1| (-1098) (-766 (-1098)) (-502 (-766 (-1098)))) (-975 (-1050 |#1| (-1098)))) (-984)) (T -764))
+NIL
+(-13 (-235 |#1| (-1098) (-766 (-1098)) (-502 (-766 (-1098)))) (-975 (-1050 |#1| (-1098))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#2| (-344)))) (-2118 (($ $) NIL (|has| |#2| (-344)))) (-2116 (((-110) $) NIL (|has| |#2| (-344)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL (|has| |#2| (-344)))) (-4245 (((-386 $) $) NIL (|has| |#2| (-344)))) (-1655 (((-110) $ $) NIL (|has| |#2| (-344)))) (-3815 (($) NIL T CONST)) (-2824 (($ $ $) NIL (|has| |#2| (-344)))) (-3741 (((-3 $ "failed") $) NIL)) (-2823 (($ $ $) NIL (|has| |#2| (-344)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL (|has| |#2| (-344)))) (-4005 (((-110) $) NIL (|has| |#2| (-344)))) (-2436 (((-110) $) NIL)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL (|has| |#2| (-344)))) (-1963 (($ (-594 $)) NIL (|has| |#2| (-344))) (($ $ $) NIL (|has| |#2| (-344)))) (-3513 (((-1081) $) NIL)) (-2668 (($ $) 20 (|has| |#2| (-344)))) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#2| (-344)))) (-3419 (($ (-594 $)) NIL (|has| |#2| (-344))) (($ $ $) NIL (|has| |#2| (-344)))) (-4011 (((-386 $) $) NIL (|has| |#2| (-344)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#2| (-344)))) (-3740 (((-3 $ "failed") $ $) NIL (|has| |#2| (-344)))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL (|has| |#2| (-344)))) (-1654 (((-719) $) NIL (|has| |#2| (-344)))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#2| (-344)))) (-4089 (($ $ (-719)) NIL) (($ $) 13)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-388 (-516))) NIL (|has| |#2| (-344))) (($ $) NIL (|has| |#2| (-344)))) (-3385 (((-719)) NIL)) (-2117 (((-110) $ $) NIL (|has| |#2| (-344)))) (-3581 (($ $ (-719)) NIL) (($ $ (-860)) NIL) (($ $ (-516)) NIL (|has| |#2| (-344)))) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($ $ (-719)) NIL) (($ $) NIL)) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ $) 15 (|has| |#2| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-719)) NIL) (($ $ (-860)) NIL) (($ $ (-516)) 18 (|has| |#2| (-344)))) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-388 (-516)) $) NIL (|has| |#2| (-344))) (($ $ (-388 (-516))) NIL (|has| |#2| (-344)))))
+(((-765 |#1| |#2| |#3|) (-13 (-109 $ $) (-216) (-10 -8 (IF (|has| |#2| (-344)) (-6 (-344)) |%noBranch|) (-15 -4233 ($ |#2|)) (-15 -4233 (|#2| $)))) (-1027) (-841 |#1|) |#1|) (T -765))
+((-4233 (*1 *1 *2) (-12 (-4 *3 (-1027)) (-14 *4 *3) (-5 *1 (-765 *3 *2 *4)) (-4 *2 (-841 *3)))) (-4233 (*1 *2 *1) (-12 (-4 *2 (-841 *3)) (-5 *1 (-765 *3 *2 *4)) (-4 *3 (-1027)) (-14 *4 *3))))
+(-13 (-109 $ $) (-216) (-10 -8 (IF (|has| |#2| (-344)) (-6 (-344)) |%noBranch|) (-15 -4233 ($ |#2|)) (-15 -4233 (|#2| $))))
+((-2828 (((-110) $ $) NIL)) (-1527 (((-719) $) NIL)) (-4110 ((|#1| $) 10)) (-3432 (((-3 |#1| "failed") $) NIL)) (-3431 ((|#1| $) NIL)) (-4050 (((-719) $) 11)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-1528 (($ |#1| (-719)) 9)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4089 (($ $) NIL) (($ $ (-719)) NIL)) (-4233 (((-805) $) NIL) (($ |#1|) NIL)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) NIL)))
+(((-766 |#1|) (-248 |#1|) (-795)) (T -766))
+NIL
+(-248 |#1|)
+((-2828 (((-110) $ $) NIL)) (-4210 (((-594 |#1|) $) 29)) (-3395 (((-719) $) NIL)) (-3815 (($) NIL T CONST)) (-4215 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-3432 (((-3 |#1| "failed") $) NIL)) (-3431 ((|#1| $) NIL)) (-4077 (($ $) 31)) (-3741 (((-3 $ "failed") $) NIL)) (-2704 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2436 (((-110) $) NIL)) (-2702 ((|#1| $ (-516)) NIL)) (-2703 (((-719) $ (-516)) NIL)) (-4212 (($ $) 36)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-4216 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-2707 (((-110) $ $) 34)) (-4112 (((-719) $) 25)) (-3513 (((-1081) $) NIL)) (-2705 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-3514 (((-1045) $) NIL)) (-4079 ((|#1| $) 30)) (-2701 (((-594 (-2 (|:| |gen| |#1|) (|:| -4219 (-719)))) $) NIL)) (-2825 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4233 (((-805) $) NIL) (($ |#1|) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2927 (($) 15 T CONST)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 35)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ |#1| (-719)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-767 |#1|) (-13 (-791) (-975 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-719))) (-15 -4079 (|#1| $)) (-15 -4077 ($ $)) (-15 -4212 ($ $)) (-15 -2707 ((-110) $ $)) (-15 -2706 ($ $ $)) (-15 -2705 ($ $ $)) (-15 -4216 ((-3 $ "failed") $ $)) (-15 -4215 ((-3 $ "failed") $ $)) (-15 -4216 ((-3 $ "failed") $ |#1|)) (-15 -4215 ((-3 $ "failed") $ |#1|)) (-15 -2825 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2704 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3395 ((-719) $)) (-15 -2703 ((-719) $ (-516))) (-15 -2702 (|#1| $ (-516))) (-15 -2701 ((-594 (-2 (|:| |gen| |#1|) (|:| -4219 (-719)))) $)) (-15 -4112 ((-719) $)) (-15 -4210 ((-594 |#1|) $)))) (-795)) (T -767))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-4079 (*1 *2 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-4077 (*1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-4212 (*1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-2707 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-767 *3)) (-4 *3 (-795)))) (-2706 (*1 *1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-2705 (*1 *1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-4216 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-4215 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-4216 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-4215 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-2825 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-767 *3)) (|:| |rm| (-767 *3)))) (-5 *1 (-767 *3)) (-4 *3 (-795)))) (-2704 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-767 *3)) (|:| |mm| (-767 *3)) (|:| |rm| (-767 *3)))) (-5 *1 (-767 *3)) (-4 *3 (-795)))) (-3395 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-767 *3)) (-4 *3 (-795)))) (-2703 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-719)) (-5 *1 (-767 *4)) (-4 *4 (-795)))) (-2702 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-2701 (*1 *2 *1) (-12 (-5 *2 (-594 (-2 (|:| |gen| *3) (|:| -4219 (-719))))) (-5 *1 (-767 *3)) (-4 *3 (-795)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-767 *3)) (-4 *3 (-795)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-594 *3)) (-5 *1 (-767 *3)) (-4 *3 (-795)))))
+(-13 (-791) (-975 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-719))) (-15 -4079 (|#1| $)) (-15 -4077 ($ $)) (-15 -4212 ($ $)) (-15 -2707 ((-110) $ $)) (-15 -2706 ($ $ $)) (-15 -2705 ($ $ $)) (-15 -4216 ((-3 $ "failed") $ $)) (-15 -4215 ((-3 $ "failed") $ $)) (-15 -4216 ((-3 $ "failed") $ |#1|)) (-15 -4215 ((-3 $ "failed") $ |#1|)) (-15 -2825 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2704 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3395 ((-719) $)) (-15 -2703 ((-719) $ (-516))) (-15 -2702 (|#1| $ (-516))) (-15 -2701 ((-594 (-2 (|:| |gen| |#1|) (|:| -4219 (-719)))) $)) (-15 -4112 ((-719) $)) (-15 -4210 ((-594 |#1|) $))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 41)) (-2118 (($ $) 40)) (-2116 (((-110) $) 38)) (-1319 (((-3 $ "failed") $ $) 19)) (-3905 (((-516) $) 53)) (-3815 (($) 17 T CONST)) (-3741 (((-3 $ "failed") $) 34)) (-3460 (((-110) $) 51)) (-2436 (((-110) $) 31)) (-3461 (((-110) $) 52)) (-3596 (($ $ $) 50)) (-3597 (($ $ $) 49)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-3740 (((-3 $ "failed") $ $) 42)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ $) 43)) (-3385 (((-719)) 29)) (-2117 (((-110) $ $) 39)) (-3661 (($ $) 54)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2826 (((-110) $ $) 47)) (-2827 (((-110) $ $) 46)) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 48)) (-2948 (((-110) $ $) 45)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24)))
+(((-768) (-133)) (T -768))
+NIL
+(-13 (-523) (-793))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-805)) . T) ((-162) . T) ((-272) . T) ((-523) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-739) . T) ((-740) . T) ((-742) . T) ((-745) . T) ((-793) . T) ((-795) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-2768 (((-1185) (-771) $ (-110)) 9) (((-1185) (-771) $) 8) (((-1081) $ (-110)) 7) (((-1081) $) 6)))
+(((-769) (-133)) (T -769))
+((-2768 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-769)) (-5 *3 (-771)) (-5 *4 (-110)) (-5 *2 (-1185)))) (-2768 (*1 *2 *3 *1) (-12 (-4 *1 (-769)) (-5 *3 (-771)) (-5 *2 (-1185)))) (-2768 (*1 *2 *1 *3) (-12 (-4 *1 (-769)) (-5 *3 (-110)) (-5 *2 (-1081)))) (-2768 (*1 *2 *1) (-12 (-4 *1 (-769)) (-5 *2 (-1081)))))
+(-13 (-10 -8 (-15 -2768 ((-1081) $)) (-15 -2768 ((-1081) $ (-110))) (-15 -2768 ((-1185) (-771) $)) (-15 -2768 ((-1185) (-771) $ (-110)))))
+((-2708 (($ (-1045)) 7)) (-2712 (((-110) $ (-1081) (-1045)) 15)) (-2711 (((-771) $) 12)) (-2710 (((-771) $) 11)) (-2709 (((-1185) $) 9)) (-2713 (((-110) $ (-1045)) 16)))
+(((-770) (-10 -8 (-15 -2708 ($ (-1045))) (-15 -2709 ((-1185) $)) (-15 -2710 ((-771) $)) (-15 -2711 ((-771) $)) (-15 -2712 ((-110) $ (-1081) (-1045))) (-15 -2713 ((-110) $ (-1045))))) (T -770))
+((-2713 (*1 *2 *1 *3) (-12 (-5 *3 (-1045)) (-5 *2 (-110)) (-5 *1 (-770)))) (-2712 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1081)) (-5 *4 (-1045)) (-5 *2 (-110)) (-5 *1 (-770)))) (-2711 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-770)))) (-2710 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-770)))) (-2709 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-770)))) (-2708 (*1 *1 *2) (-12 (-5 *2 (-1045)) (-5 *1 (-770)))))
+(-10 -8 (-15 -2708 ($ (-1045))) (-15 -2709 ((-1185) $)) (-15 -2710 ((-771) $)) (-15 -2711 ((-771) $)) (-15 -2712 ((-110) $ (-1081) (-1045))) (-15 -2713 ((-110) $ (-1045))))
+((-2717 (((-1185) $ (-772)) 12)) (-2734 (((-1185) $ (-1098)) 32)) (-2736 (((-1185) $ (-1081) (-1081)) 34)) (-2735 (((-1185) $ (-1081)) 33)) (-2724 (((-1185) $) 19)) (-2732 (((-1185) $ (-516)) 28)) (-2733 (((-1185) $ (-208)) 30)) (-2723 (((-1185) $) 18)) (-2731 (((-1185) $) 26)) (-2730 (((-1185) $) 25)) (-2728 (((-1185) $) 23)) (-2729 (((-1185) $) 24)) (-2727 (((-1185) $) 22)) (-2726 (((-1185) $) 21)) (-2725 (((-1185) $) 20)) (-2721 (((-1185) $) 16)) (-2722 (((-1185) $) 17)) (-2720 (((-1185) $) 15)) (-2719 (((-1185) $) 14)) (-2718 (((-1185) $) 13)) (-2715 (($ (-1081) (-772)) 9)) (-2714 (($ (-1081) (-1081) (-772)) 8)) (-2753 (((-1098) $) 51)) (-2756 (((-1098) $) 55)) (-2755 (((-2 (|:| |cd| (-1081)) (|:| -3824 (-1081))) $) 54)) (-2754 (((-1081) $) 52)) (-2743 (((-1185) $) 41)) (-2751 (((-516) $) 49)) (-2752 (((-208) $) 50)) (-2742 (((-1185) $) 40)) (-2750 (((-1185) $) 48)) (-2749 (((-1185) $) 47)) (-2747 (((-1185) $) 45)) (-2748 (((-1185) $) 46)) (-2746 (((-1185) $) 44)) (-2745 (((-1185) $) 43)) (-2744 (((-1185) $) 42)) (-2740 (((-1185) $) 38)) (-2741 (((-1185) $) 39)) (-2739 (((-1185) $) 37)) (-2738 (((-1185) $) 36)) (-2737 (((-1185) $) 35)) (-2716 (((-1185) $) 11)))
+(((-771) (-10 -8 (-15 -2714 ($ (-1081) (-1081) (-772))) (-15 -2715 ($ (-1081) (-772))) (-15 -2716 ((-1185) $)) (-15 -2717 ((-1185) $ (-772))) (-15 -2718 ((-1185) $)) (-15 -2719 ((-1185) $)) (-15 -2720 ((-1185) $)) (-15 -2721 ((-1185) $)) (-15 -2722 ((-1185) $)) (-15 -2723 ((-1185) $)) (-15 -2724 ((-1185) $)) (-15 -2725 ((-1185) $)) (-15 -2726 ((-1185) $)) (-15 -2727 ((-1185) $)) (-15 -2728 ((-1185) $)) (-15 -2729 ((-1185) $)) (-15 -2730 ((-1185) $)) (-15 -2731 ((-1185) $)) (-15 -2732 ((-1185) $ (-516))) (-15 -2733 ((-1185) $ (-208))) (-15 -2734 ((-1185) $ (-1098))) (-15 -2735 ((-1185) $ (-1081))) (-15 -2736 ((-1185) $ (-1081) (-1081))) (-15 -2737 ((-1185) $)) (-15 -2738 ((-1185) $)) (-15 -2739 ((-1185) $)) (-15 -2740 ((-1185) $)) (-15 -2741 ((-1185) $)) (-15 -2742 ((-1185) $)) (-15 -2743 ((-1185) $)) (-15 -2744 ((-1185) $)) (-15 -2745 ((-1185) $)) (-15 -2746 ((-1185) $)) (-15 -2747 ((-1185) $)) (-15 -2748 ((-1185) $)) (-15 -2749 ((-1185) $)) (-15 -2750 ((-1185) $)) (-15 -2751 ((-516) $)) (-15 -2752 ((-208) $)) (-15 -2753 ((-1098) $)) (-15 -2754 ((-1081) $)) (-15 -2755 ((-2 (|:| |cd| (-1081)) (|:| -3824 (-1081))) $)) (-15 -2756 ((-1098) $)))) (T -771))
+((-2756 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-771)))) (-2755 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1081)) (|:| -3824 (-1081)))) (-5 *1 (-771)))) (-2754 (*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-771)))) (-2753 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-771)))) (-2752 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-771)))) (-2751 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-771)))) (-2750 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2749 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2748 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2747 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2746 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2744 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2743 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2742 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2741 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2740 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2739 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2738 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2737 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2736 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-771)))) (-2735 (*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-771)))) (-2734 (*1 *2 *1 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-1185)) (-5 *1 (-771)))) (-2733 (*1 *2 *1 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1185)) (-5 *1 (-771)))) (-2732 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-1185)) (-5 *1 (-771)))) (-2731 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2730 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2729 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2728 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2723 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2720 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2718 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2717 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1185)) (-5 *1 (-771)))) (-2716 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))) (-2715 (*1 *1 *2 *3) (-12 (-5 *2 (-1081)) (-5 *3 (-772)) (-5 *1 (-771)))) (-2714 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1081)) (-5 *3 (-772)) (-5 *1 (-771)))))
+(-10 -8 (-15 -2714 ($ (-1081) (-1081) (-772))) (-15 -2715 ($ (-1081) (-772))) (-15 -2716 ((-1185) $)) (-15 -2717 ((-1185) $ (-772))) (-15 -2718 ((-1185) $)) (-15 -2719 ((-1185) $)) (-15 -2720 ((-1185) $)) (-15 -2721 ((-1185) $)) (-15 -2722 ((-1185) $)) (-15 -2723 ((-1185) $)) (-15 -2724 ((-1185) $)) (-15 -2725 ((-1185) $)) (-15 -2726 ((-1185) $)) (-15 -2727 ((-1185) $)) (-15 -2728 ((-1185) $)) (-15 -2729 ((-1185) $)) (-15 -2730 ((-1185) $)) (-15 -2731 ((-1185) $)) (-15 -2732 ((-1185) $ (-516))) (-15 -2733 ((-1185) $ (-208))) (-15 -2734 ((-1185) $ (-1098))) (-15 -2735 ((-1185) $ (-1081))) (-15 -2736 ((-1185) $ (-1081) (-1081))) (-15 -2737 ((-1185) $)) (-15 -2738 ((-1185) $)) (-15 -2739 ((-1185) $)) (-15 -2740 ((-1185) $)) (-15 -2741 ((-1185) $)) (-15 -2742 ((-1185) $)) (-15 -2743 ((-1185) $)) (-15 -2744 ((-1185) $)) (-15 -2745 ((-1185) $)) (-15 -2746 ((-1185) $)) (-15 -2747 ((-1185) $)) (-15 -2748 ((-1185) $)) (-15 -2749 ((-1185) $)) (-15 -2750 ((-1185) $)) (-15 -2751 ((-516) $)) (-15 -2752 ((-208) $)) (-15 -2753 ((-1098) $)) (-15 -2754 ((-1081) $)) (-15 -2755 ((-2 (|:| |cd| (-1081)) (|:| -3824 (-1081))) $)) (-15 -2756 ((-1098) $)))
+((-2828 (((-110) $ $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 12)) (-2759 (($) 15)) (-2760 (($) 13)) (-2758 (($) 16)) (-2757 (($) 14)) (-3317 (((-110) $ $) 8)))
+(((-772) (-13 (-1027) (-10 -8 (-15 -2760 ($)) (-15 -2759 ($)) (-15 -2758 ($)) (-15 -2757 ($))))) (T -772))
+((-2760 (*1 *1) (-5 *1 (-772))) (-2759 (*1 *1) (-5 *1 (-772))) (-2758 (*1 *1) (-5 *1 (-772))) (-2757 (*1 *1) (-5 *1 (-772))))
+(-13 (-1027) (-10 -8 (-15 -2760 ($)) (-15 -2759 ($)) (-15 -2758 ($)) (-15 -2757 ($))))
+((-2828 (((-110) $ $) NIL)) (-2761 (($ (-774) (-594 (-1098))) 24)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-2763 (((-774) $) 25)) (-2762 (((-594 (-1098)) $) 26)) (-4233 (((-805) $) 23)) (-3317 (((-110) $ $) NIL)))
+(((-773) (-13 (-1027) (-10 -8 (-15 -2763 ((-774) $)) (-15 -2762 ((-594 (-1098)) $)) (-15 -2761 ($ (-774) (-594 (-1098))))))) (T -773))
+((-2763 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-773)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-594 (-1098))) (-5 *1 (-773)))) (-2761 (*1 *1 *2 *3) (-12 (-5 *2 (-774)) (-5 *3 (-594 (-1098))) (-5 *1 (-773)))))
+(-13 (-1027) (-10 -8 (-15 -2763 ((-774) $)) (-15 -2762 ((-594 (-1098)) $)) (-15 -2761 ($ (-774) (-594 (-1098))))))
+((-2828 (((-110) $ $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 21) (($ (-1098)) 17)) (-2765 (((-110) $) 10)) (-2766 (((-110) $) 9)) (-2764 (((-110) $) 11)) (-2767 (((-110) $) 8)) (-3317 (((-110) $ $) 19)))
+(((-774) (-13 (-1027) (-10 -8 (-15 -4233 ($ (-1098))) (-15 -2767 ((-110) $)) (-15 -2766 ((-110) $)) (-15 -2765 ((-110) $)) (-15 -2764 ((-110) $))))) (T -774))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-774)))) (-2767 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-774)))) (-2766 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-774)))) (-2765 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-774)))) (-2764 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-774)))))
+(-13 (-1027) (-10 -8 (-15 -4233 ($ (-1098))) (-15 -2767 ((-110) $)) (-15 -2766 ((-110) $)) (-15 -2765 ((-110) $)) (-15 -2764 ((-110) $))))
+((-2768 (((-1185) (-771) (-295 |#1|) (-110)) 23) (((-1185) (-771) (-295 |#1|)) 79) (((-1081) (-295 |#1|) (-110)) 78) (((-1081) (-295 |#1|)) 77)))
+(((-775 |#1|) (-10 -7 (-15 -2768 ((-1081) (-295 |#1|))) (-15 -2768 ((-1081) (-295 |#1|) (-110))) (-15 -2768 ((-1185) (-771) (-295 |#1|))) (-15 -2768 ((-1185) (-771) (-295 |#1|) (-110)))) (-13 (-769) (-795) (-984))) (T -775))
+((-2768 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-771)) (-5 *4 (-295 *6)) (-5 *5 (-110)) (-4 *6 (-13 (-769) (-795) (-984))) (-5 *2 (-1185)) (-5 *1 (-775 *6)))) (-2768 (*1 *2 *3 *4) (-12 (-5 *3 (-771)) (-5 *4 (-295 *5)) (-4 *5 (-13 (-769) (-795) (-984))) (-5 *2 (-1185)) (-5 *1 (-775 *5)))) (-2768 (*1 *2 *3 *4) (-12 (-5 *3 (-295 *5)) (-5 *4 (-110)) (-4 *5 (-13 (-769) (-795) (-984))) (-5 *2 (-1081)) (-5 *1 (-775 *5)))) (-2768 (*1 *2 *3) (-12 (-5 *3 (-295 *4)) (-4 *4 (-13 (-769) (-795) (-984))) (-5 *2 (-1081)) (-5 *1 (-775 *4)))))
+(-10 -7 (-15 -2768 ((-1081) (-295 |#1|))) (-15 -2768 ((-1081) (-295 |#1|) (-110))) (-15 -2768 ((-1185) (-771) (-295 |#1|))) (-15 -2768 ((-1185) (-771) (-295 |#1|) (-110))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-4235 (($ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-2769 ((|#1| $) 10)) (-2770 (($ |#1|) 9)) (-2436 (((-110) $) NIL)) (-3157 (($ |#2| (-719)) NIL)) (-3084 (((-719) $) NIL)) (-3449 ((|#2| $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4089 (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $) NIL (|has| |#1| (-216)))) (-4223 (((-719) $) NIL)) (-4233 (((-805) $) 17) (($ (-516)) NIL) (($ |#2|) NIL (|has| |#2| (-162)))) (-3959 ((|#2| $ (-719)) NIL)) (-3385 (((-719)) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $) NIL (|has| |#1| (-216)))) (-3317 (((-110) $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-776 |#1| |#2|) (-13 (-657 |#2|) (-10 -8 (IF (|has| |#1| (-216)) (-6 (-216)) |%noBranch|) (-15 -2770 ($ |#1|)) (-15 -2769 (|#1| $)))) (-657 |#2|) (-984)) (T -776))
+((-2770 (*1 *1 *2) (-12 (-4 *3 (-984)) (-5 *1 (-776 *2 *3)) (-4 *2 (-657 *3)))) (-2769 (*1 *2 *1) (-12 (-4 *2 (-657 *3)) (-5 *1 (-776 *2 *3)) (-4 *3 (-984)))))
+(-13 (-657 |#2|) (-10 -8 (IF (|has| |#1| (-216)) (-6 (-216)) |%noBranch|) (-15 -2770 ($ |#1|)) (-15 -2769 (|#1| $))))
+((-2778 (((-293) (-1081) (-1081)) 12)) (-2777 (((-110) (-1081) (-1081)) 34)) (-2776 (((-110) (-1081)) 33)) (-2773 (((-50) (-1081)) 25)) (-2772 (((-50) (-1081)) 23)) (-2771 (((-50) (-771)) 17)) (-2775 (((-594 (-1081)) (-1081)) 28)) (-2774 (((-594 (-1081))) 27)))
+(((-777) (-10 -7 (-15 -2771 ((-50) (-771))) (-15 -2772 ((-50) (-1081))) (-15 -2773 ((-50) (-1081))) (-15 -2774 ((-594 (-1081)))) (-15 -2775 ((-594 (-1081)) (-1081))) (-15 -2776 ((-110) (-1081))) (-15 -2777 ((-110) (-1081) (-1081))) (-15 -2778 ((-293) (-1081) (-1081))))) (T -777))
+((-2778 (*1 *2 *3 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-293)) (-5 *1 (-777)))) (-2777 (*1 *2 *3 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-110)) (-5 *1 (-777)))) (-2776 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-110)) (-5 *1 (-777)))) (-2775 (*1 *2 *3) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-777)) (-5 *3 (-1081)))) (-2774 (*1 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-777)))) (-2773 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-50)) (-5 *1 (-777)))) (-2772 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-50)) (-5 *1 (-777)))) (-2771 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-50)) (-5 *1 (-777)))))
+(-10 -7 (-15 -2771 ((-50) (-771))) (-15 -2772 ((-50) (-1081))) (-15 -2773 ((-50) (-1081))) (-15 -2774 ((-594 (-1081)))) (-15 -2775 ((-594 (-1081)) (-1081))) (-15 -2776 ((-110) (-1081))) (-15 -2777 ((-110) (-1081) (-1081))) (-15 -2778 ((-293) (-1081) (-1081))))
+((-2828 (((-110) $ $) 19)) (-3505 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3507 (($ $ $) 72)) (-3506 (((-110) $ $) 73)) (-1217 (((-110) $ (-719)) 8)) (-3510 (($ (-594 |#1|)) 68) (($) 67)) (-1581 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4269)))) (-3992 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4269)))) (-3815 (($) 7 T CONST)) (-2389 (($ $) 62)) (-1349 (($ $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3684 (($ |#1| $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4269)))) (-3685 (($ |#1| $) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4269)))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4269)))) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-3512 (((-110) $ $) 64)) (-4001 (((-110) $ (-719)) 9)) (-3596 ((|#1| $) 78)) (-3123 (($ $ $) 81)) (-3792 (($ $ $) 80)) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3597 ((|#1| $) 79)) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35)) (-3998 (((-110) $ (-719)) 10)) (-3513 (((-1081) $) 22)) (-3509 (($ $ $) 69)) (-1280 ((|#1| $) 39)) (-3889 (($ |#1| $) 40) (($ |#1| $ (-719)) 63)) (-3514 (((-1045) $) 21)) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-1281 ((|#1| $) 41)) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-2388 (((-594 (-2 (|:| -2131 |#1|) (|:| -2019 (-719)))) $) 61)) (-3508 (($ $ |#1|) 71) (($ $ $) 70)) (-1473 (($) 49) (($ (-594 |#1|)) 48)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4246 (((-505) $) 59 (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) 50)) (-4233 (((-805) $) 18)) (-3511 (($ (-594 |#1|)) 66) (($) 65)) (-1282 (($ (-594 |#1|)) 42)) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20)) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-778 |#1|) (-133) (-795)) (T -778))
+((-3596 (*1 *2 *1) (-12 (-4 *1 (-778 *2)) (-4 *2 (-795)))))
+(-13 (-686 |t#1|) (-909 |t#1|) (-10 -8 (-15 -3596 (|t#1| $))))
+(((-33) . T) ((-104 |#1|) . T) ((-99) . T) ((-571 (-805)) . T) ((-144 |#1|) . T) ((-572 (-505)) |has| |#1| (-572 (-505))) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-643 |#1|) . T) ((-686 |#1|) . T) ((-909 |#1|) . T) ((-1025 |#1|) . T) ((-1027) . T) ((-1134) . T))
+((-2781 (((-1185) (-1045) (-1045)) 47)) (-2780 (((-1185) (-770) (-50)) 44)) (-2779 (((-50) (-770)) 16)))
+(((-779) (-10 -7 (-15 -2779 ((-50) (-770))) (-15 -2780 ((-1185) (-770) (-50))) (-15 -2781 ((-1185) (-1045) (-1045))))) (T -779))
+((-2781 (*1 *2 *3 *3) (-12 (-5 *3 (-1045)) (-5 *2 (-1185)) (-5 *1 (-779)))) (-2780 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-50)) (-5 *2 (-1185)) (-5 *1 (-779)))) (-2779 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-50)) (-5 *1 (-779)))))
+(-10 -7 (-15 -2779 ((-50) (-770))) (-15 -2780 ((-1185) (-770) (-50))) (-15 -2781 ((-1185) (-1045) (-1045))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL (|has| |#1| (-21)))) (-1319 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3905 (((-516) $) NIL (|has| |#1| (-793)))) (-3815 (($) NIL (|has| |#1| (-21)) CONST)) (-3432 (((-3 (-516) #1="failed") $) NIL (|has| |#1| (-975 (-516)))) (((-3 (-388 (-516)) #1#) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-3 |#1| #1#) $) 15)) (-3431 (((-516) $) NIL (|has| |#1| (-975 (-516)))) (((-388 (-516)) $) NIL (|has| |#1| (-975 (-388 (-516))))) ((|#1| $) 9)) (-3741 (((-3 $ "failed") $) 40 (|has| |#1| (-793)))) (-3288 (((-3 (-388 (-516)) "failed") $) 49 (|has| |#1| (-515)))) (-3287 (((-110) $) 43 (|has| |#1| (-515)))) (-3286 (((-388 (-516)) $) 46 (|has| |#1| (-515)))) (-3460 (((-110) $) NIL (|has| |#1| (-793)))) (-2436 (((-110) $) NIL (|has| |#1| (-793)))) (-3461 (((-110) $) NIL (|has| |#1| (-793)))) (-3596 (($ $ $) NIL (|has| |#1| (-793)))) (-3597 (($ $ $) NIL (|has| |#1| (-793)))) (-3513 (((-1081) $) NIL)) (-2782 (($) 13)) (-2794 (((-110) $) 12)) (-3514 (((-1045) $) NIL)) (-2795 (((-110) $) 11)) (-4233 (((-805) $) 18) (($ (-388 (-516))) NIL (|has| |#1| (-975 (-388 (-516))))) (($ |#1|) 8) (($ (-516)) NIL (-3810 (|has| |#1| (-793)) (|has| |#1| (-975 (-516)))))) (-3385 (((-719)) 34 (|has| |#1| (-793)))) (-3661 (($ $) NIL (|has| |#1| (-793)))) (-3581 (($ $ (-860)) NIL (|has| |#1| (-793))) (($ $ (-719)) NIL (|has| |#1| (-793)))) (-2920 (($) 22 (|has| |#1| (-21)) CONST)) (-2927 (($) 31 (|has| |#1| (-793)) CONST)) (-2826 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-793)))) (-3317 (((-110) $ $) 20)) (-2947 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2948 (((-110) $ $) 42 (|has| |#1| (-793)))) (-4116 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-4118 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-860)) NIL (|has| |#1| (-793))) (($ $ (-719)) NIL (|has| |#1| (-793)))) (* (($ $ $) 37 (|has| |#1| (-793))) (($ (-516) $) 25 (|has| |#1| (-21))) (($ (-719) $) NIL (|has| |#1| (-21))) (($ (-860) $) NIL (|has| |#1| (-21)))))
+(((-780 |#1|) (-13 (-1027) (-393 |#1|) (-10 -8 (-15 -2782 ($)) (-15 -2795 ((-110) $)) (-15 -2794 ((-110) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -3287 ((-110) $)) (-15 -3286 ((-388 (-516)) $)) (-15 -3288 ((-3 (-388 (-516)) "failed") $))) |%noBranch|))) (-1027)) (T -780))
+((-2782 (*1 *1) (-12 (-5 *1 (-780 *2)) (-4 *2 (-1027)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-780 *3)) (-4 *3 (-1027)))) (-2794 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-780 *3)) (-4 *3 (-1027)))) (-3287 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-780 *3)) (-4 *3 (-515)) (-4 *3 (-1027)))) (-3286 (*1 *2 *1) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-780 *3)) (-4 *3 (-515)) (-4 *3 (-1027)))) (-3288 (*1 *2 *1) (|partial| -12 (-5 *2 (-388 (-516))) (-5 *1 (-780 *3)) (-4 *3 (-515)) (-4 *3 (-1027)))))
+(-13 (-1027) (-393 |#1|) (-10 -8 (-15 -2782 ($)) (-15 -2795 ((-110) $)) (-15 -2794 ((-110) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -3287 ((-110) $)) (-15 -3286 ((-388 (-516)) $)) (-15 -3288 ((-3 (-388 (-516)) "failed") $))) |%noBranch|)))
+((-4234 (((-780 |#2|) (-1 |#2| |#1|) (-780 |#1|) (-780 |#2|)) 12) (((-780 |#2|) (-1 |#2| |#1|) (-780 |#1|)) 13)))
+(((-781 |#1| |#2|) (-10 -7 (-15 -4234 ((-780 |#2|) (-1 |#2| |#1|) (-780 |#1|))) (-15 -4234 ((-780 |#2|) (-1 |#2| |#1|) (-780 |#1|) (-780 |#2|)))) (-1027) (-1027)) (T -781))
+((-4234 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-780 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-780 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *1 (-781 *5 *6)))) (-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-780 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-780 *6)) (-5 *1 (-781 *5 *6)))))
+(-10 -7 (-15 -4234 ((-780 |#2|) (-1 |#2| |#1|) (-780 |#1|))) (-15 -4234 ((-780 |#2|) (-1 |#2| |#1|) (-780 |#1|) (-780 |#2|))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#1| #1="failed") $) NIL) (((-3 (-111) #1#) $) NIL)) (-3431 ((|#1| $) NIL) (((-111) $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-2784 ((|#1| (-111) |#1|) NIL)) (-2436 (((-110) $) NIL)) (-2783 (($ |#1| (-342 (-111))) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-2785 (($ $ (-1 |#1| |#1|)) NIL)) (-2786 (($ $ (-1 |#1| |#1|)) NIL)) (-4078 ((|#1| $ |#1|) NIL)) (-2787 ((|#1| |#1|) NIL (|has| |#1| (-162)))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ |#1|) NIL) (($ (-111)) NIL)) (-2965 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3385 (((-719)) NIL)) (-2788 (($ $) NIL (|has| |#1| (-162))) (($ $ $) NIL (|has| |#1| (-162)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-3317 (((-110) $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ (-111) (-516)) NIL) (($ $ (-516)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162)))))
+(((-782 |#1|) (-13 (-984) (-975 |#1|) (-975 (-111)) (-268 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -2788 ($ $)) (-15 -2788 ($ $ $)) (-15 -2787 (|#1| |#1|))) |%noBranch|) (-15 -2786 ($ $ (-1 |#1| |#1|))) (-15 -2785 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-111) (-516))) (-15 ** ($ $ (-516))) (-15 -2784 (|#1| (-111) |#1|)) (-15 -2783 ($ |#1| (-342 (-111)))))) (-984)) (T -782))
+((-2788 (*1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-162)) (-4 *2 (-984)))) (-2788 (*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-162)) (-4 *2 (-984)))) (-2787 (*1 *2 *2) (-12 (-5 *1 (-782 *2)) (-4 *2 (-162)) (-4 *2 (-984)))) (-2786 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-782 *3)))) (-2785 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-782 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-111)) (-5 *3 (-516)) (-5 *1 (-782 *4)) (-4 *4 (-984)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-782 *3)) (-4 *3 (-984)))) (-2784 (*1 *2 *3 *2) (-12 (-5 *3 (-111)) (-5 *1 (-782 *2)) (-4 *2 (-984)))) (-2783 (*1 *1 *2 *3) (-12 (-5 *3 (-342 (-111))) (-5 *1 (-782 *2)) (-4 *2 (-984)))))
+(-13 (-984) (-975 |#1|) (-975 (-111)) (-268 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -2788 ($ $)) (-15 -2788 ($ $ $)) (-15 -2787 (|#1| |#1|))) |%noBranch|) (-15 -2786 ($ $ (-1 |#1| |#1|))) (-15 -2785 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-111) (-516))) (-15 ** ($ $ (-516))) (-15 -2784 (|#1| (-111) |#1|)) (-15 -2783 ($ |#1| (-342 (-111))))))
+((-2789 (((-198 (-480)) (-1081)) 9)))
+(((-783) (-10 -7 (-15 -2789 ((-198 (-480)) (-1081))))) (T -783))
+((-2789 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-198 (-480))) (-5 *1 (-783)))))
+(-10 -7 (-15 -2789 ((-198 (-480)) (-1081))))
+((-2828 (((-110) $ $) 7)) (-2790 (((-973) (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))) 14) (((-973) (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) 13)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) 16) (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))) 15)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-3317 (((-110) $ $) 6)))
+(((-784) (-133)) (T -784))
+((-2931 (*1 *2 *3 *4) (-12 (-4 *1 (-784)) (-5 *3 (-995)) (-5 *4 (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) (-5 *2 (-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)))))) (-2931 (*1 *2 *3 *4) (-12 (-4 *1 (-784)) (-5 *3 (-995)) (-5 *4 (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))) (-5 *2 (-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)))))) (-2790 (*1 *2 *3) (-12 (-4 *1 (-784)) (-5 *3 (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))) (-5 *2 (-973)))) (-2790 (*1 *2 *3) (-12 (-4 *1 (-784)) (-5 *3 (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) (-5 *2 (-973)))))
+(-13 (-1027) (-10 -7 (-15 -2931 ((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208))))))) (-15 -2931 ((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208)))))) (-15 -2790 ((-973) (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208)))))) (-15 -2790 ((-973) (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))))))
+(((-99) . T) ((-571 (-805)) . T) ((-1027) . T))
+((-2791 (((-973) (-594 (-295 (-359))) (-594 (-359))) 147) (((-973) (-295 (-359)) (-594 (-359))) 145) (((-973) (-295 (-359)) (-594 (-359)) (-594 (-787 (-359))) (-594 (-787 (-359)))) 144) (((-973) (-295 (-359)) (-594 (-359)) (-594 (-787 (-359))) (-594 (-295 (-359))) (-594 (-787 (-359)))) 143) (((-973) (-786)) 117) (((-973) (-786) (-995)) 116)) (-2931 (((-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081)))) (-786) (-995)) 82) (((-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081)))) (-786)) 84)) (-2792 (((-973) (-594 (-295 (-359))) (-594 (-359))) 148) (((-973) (-786)) 133)))
+(((-785) (-10 -7 (-15 -2931 ((-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081)))) (-786))) (-15 -2931 ((-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081)))) (-786) (-995))) (-15 -2791 ((-973) (-786) (-995))) (-15 -2791 ((-973) (-786))) (-15 -2792 ((-973) (-786))) (-15 -2791 ((-973) (-295 (-359)) (-594 (-359)) (-594 (-787 (-359))) (-594 (-295 (-359))) (-594 (-787 (-359))))) (-15 -2791 ((-973) (-295 (-359)) (-594 (-359)) (-594 (-787 (-359))) (-594 (-787 (-359))))) (-15 -2791 ((-973) (-295 (-359)) (-594 (-359)))) (-15 -2791 ((-973) (-594 (-295 (-359))) (-594 (-359)))) (-15 -2792 ((-973) (-594 (-295 (-359))) (-594 (-359)))))) (T -785))
+((-2792 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-295 (-359)))) (-5 *4 (-594 (-359))) (-5 *2 (-973)) (-5 *1 (-785)))) (-2791 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-295 (-359)))) (-5 *4 (-594 (-359))) (-5 *2 (-973)) (-5 *1 (-785)))) (-2791 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-359))) (-5 *4 (-594 (-359))) (-5 *2 (-973)) (-5 *1 (-785)))) (-2791 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-295 (-359))) (-5 *4 (-594 (-359))) (-5 *5 (-594 (-787 (-359)))) (-5 *2 (-973)) (-5 *1 (-785)))) (-2791 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-594 (-359))) (-5 *5 (-594 (-787 (-359)))) (-5 *6 (-594 (-295 (-359)))) (-5 *3 (-295 (-359))) (-5 *2 (-973)) (-5 *1 (-785)))) (-2792 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-973)) (-5 *1 (-785)))) (-2791 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-973)) (-5 *1 (-785)))) (-2791 (*1 *2 *3 *4) (-12 (-5 *3 (-786)) (-5 *4 (-995)) (-5 *2 (-973)) (-5 *1 (-785)))) (-2931 (*1 *2 *3 *4) (-12 (-5 *3 (-786)) (-5 *4 (-995)) (-5 *2 (-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081))))) (-5 *1 (-785)))) (-2931 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081))))) (-5 *1 (-785)))))
+(-10 -7 (-15 -2931 ((-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081)))) (-786))) (-15 -2931 ((-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081)))) (-786) (-995))) (-15 -2791 ((-973) (-786) (-995))) (-15 -2791 ((-973) (-786))) (-15 -2792 ((-973) (-786))) (-15 -2791 ((-973) (-295 (-359)) (-594 (-359)) (-594 (-787 (-359))) (-594 (-295 (-359))) (-594 (-787 (-359))))) (-15 -2791 ((-973) (-295 (-359)) (-594 (-359)) (-594 (-787 (-359))) (-594 (-787 (-359))))) (-15 -2791 ((-973) (-295 (-359)) (-594 (-359)))) (-15 -2791 ((-973) (-594 (-295 (-359))) (-594 (-359)))) (-15 -2792 ((-973) (-594 (-295 (-359))) (-594 (-359)))))
+((-2828 (((-110) $ $) NIL)) (-3431 (((-3 (|:| |noa| (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208)))))) $) 21)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 20) (($ (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) 14) (($ (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))))) 18)) (-3317 (((-110) $ $) NIL)))
+(((-786) (-13 (-1027) (-10 -8 (-15 -4233 ($ (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208))))))) (-15 -4233 ($ (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208)))))) (-15 -4233 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208)))))))) (-15 -4233 ((-805) $)) (-15 -3431 ((-3 (|:| |noa| (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208)))))) $))))) (T -786))
+((-4233 (*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-786)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) (-5 *1 (-786)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))) (-5 *1 (-786)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))))) (-5 *1 (-786)))) (-3431 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208))))))) (-5 *1 (-786)))))
+(-13 (-1027) (-10 -8 (-15 -4233 ($ (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208))))))) (-15 -4233 ($ (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208)))))) (-15 -4233 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208)))))))) (-15 -4233 ((-805) $)) (-15 -3431 ((-3 (|:| |noa| (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208))) (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208)))) (|:| |ub| (-594 (-787 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208)))))) $))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL (|has| |#1| (-21)))) (-2793 (((-1045) $) 24)) (-1319 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3905 (((-516) $) NIL (|has| |#1| (-793)))) (-3815 (($) NIL (|has| |#1| (-21)) CONST)) (-3432 (((-3 (-516) #1="failed") $) NIL (|has| |#1| (-975 (-516)))) (((-3 (-388 (-516)) #1#) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-3 |#1| #1#) $) 16)) (-3431 (((-516) $) NIL (|has| |#1| (-975 (-516)))) (((-388 (-516)) $) NIL (|has| |#1| (-975 (-388 (-516))))) ((|#1| $) 9)) (-3741 (((-3 $ "failed") $) 47 (|has| |#1| (-793)))) (-3288 (((-3 (-388 (-516)) "failed") $) 54 (|has| |#1| (-515)))) (-3287 (((-110) $) 49 (|has| |#1| (-515)))) (-3286 (((-388 (-516)) $) 52 (|has| |#1| (-515)))) (-3460 (((-110) $) NIL (|has| |#1| (-793)))) (-2797 (($) 13)) (-2436 (((-110) $) NIL (|has| |#1| (-793)))) (-3461 (((-110) $) NIL (|has| |#1| (-793)))) (-2796 (($) 14)) (-3596 (($ $ $) NIL (|has| |#1| (-793)))) (-3597 (($ $ $) NIL (|has| |#1| (-793)))) (-3513 (((-1081) $) NIL)) (-2794 (((-110) $) 12)) (-3514 (((-1045) $) NIL)) (-2795 (((-110) $) 11)) (-4233 (((-805) $) 22) (($ (-388 (-516))) NIL (|has| |#1| (-975 (-388 (-516))))) (($ |#1|) 8) (($ (-516)) NIL (-3810 (|has| |#1| (-793)) (|has| |#1| (-975 (-516)))))) (-3385 (((-719)) 41 (|has| |#1| (-793)))) (-3661 (($ $) NIL (|has| |#1| (-793)))) (-3581 (($ $ (-860)) NIL (|has| |#1| (-793))) (($ $ (-719)) NIL (|has| |#1| (-793)))) (-2920 (($) 29 (|has| |#1| (-21)) CONST)) (-2927 (($) 38 (|has| |#1| (-793)) CONST)) (-2826 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-793)))) (-3317 (((-110) $ $) 27)) (-2947 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2948 (((-110) $ $) 48 (|has| |#1| (-793)))) (-4116 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-4118 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-860)) NIL (|has| |#1| (-793))) (($ $ (-719)) NIL (|has| |#1| (-793)))) (* (($ $ $) 44 (|has| |#1| (-793))) (($ (-516) $) 32 (|has| |#1| (-21))) (($ (-719) $) NIL (|has| |#1| (-21))) (($ (-860) $) NIL (|has| |#1| (-21)))))
+(((-787 |#1|) (-13 (-1027) (-393 |#1|) (-10 -8 (-15 -2797 ($)) (-15 -2796 ($)) (-15 -2795 ((-110) $)) (-15 -2794 ((-110) $)) (-15 -2793 ((-1045) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -3287 ((-110) $)) (-15 -3286 ((-388 (-516)) $)) (-15 -3288 ((-3 (-388 (-516)) "failed") $))) |%noBranch|))) (-1027)) (T -787))
+((-2797 (*1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1027)))) (-2796 (*1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1027)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-787 *3)) (-4 *3 (-1027)))) (-2794 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-787 *3)) (-4 *3 (-1027)))) (-2793 (*1 *2 *1) (-12 (-5 *2 (-1045)) (-5 *1 (-787 *3)) (-4 *3 (-1027)))) (-3287 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-787 *3)) (-4 *3 (-515)) (-4 *3 (-1027)))) (-3286 (*1 *2 *1) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-787 *3)) (-4 *3 (-515)) (-4 *3 (-1027)))) (-3288 (*1 *2 *1) (|partial| -12 (-5 *2 (-388 (-516))) (-5 *1 (-787 *3)) (-4 *3 (-515)) (-4 *3 (-1027)))))
+(-13 (-1027) (-393 |#1|) (-10 -8 (-15 -2797 ($)) (-15 -2796 ($)) (-15 -2795 ((-110) $)) (-15 -2794 ((-110) $)) (-15 -2793 ((-1045) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -3287 ((-110) $)) (-15 -3286 ((-388 (-516)) $)) (-15 -3288 ((-3 (-388 (-516)) "failed") $))) |%noBranch|)))
+((-4234 (((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|) (-787 |#2|) (-787 |#2|)) 13) (((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|)) 14)))
+(((-788 |#1| |#2|) (-10 -7 (-15 -4234 ((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|))) (-15 -4234 ((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|) (-787 |#2|) (-787 |#2|)))) (-1027) (-1027)) (T -788))
+((-4234 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-787 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *1 (-788 *5 *6)))) (-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-787 *6)) (-5 *1 (-788 *5 *6)))))
+(-10 -7 (-15 -4234 ((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|))) (-15 -4234 ((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|) (-787 |#2|) (-787 |#2|))))
+((-2828 (((-110) $ $) 7)) (-3395 (((-719)) 20)) (-3258 (($) 23)) (-3596 (($ $ $) 13)) (-3597 (($ $ $) 14)) (-2069 (((-860) $) 22)) (-3513 (((-1081) $) 9)) (-2426 (($ (-860)) 21)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-2826 (((-110) $ $) 16)) (-2827 (((-110) $ $) 17)) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 15)) (-2948 (((-110) $ $) 18)))
(((-789) (-133)) (T -789))
NIL
-(-13 (-800) (-673))
-(((-99) . T) ((-569 (-802)) . T) ((-673) . T) ((-800) . T) ((-793) . T) ((-1035) . T) ((-1023) . T))
-((-3605 (((-528) $) 17)) (-3657 (((-110) $) 10)) (-3710 (((-110) $) 11)) (-1775 (($ $) 19)))
-(((-790 |#1|) (-10 -8 (-15 -1775 (|#1| |#1|)) (-15 -3605 ((-528) |#1|)) (-15 -3710 ((-110) |#1|)) (-15 -3657 ((-110) |#1|))) (-791)) (T -790))
-NIL
-(-10 -8 (-15 -1775 (|#1| |#1|)) (-15 -3605 ((-528) |#1|)) (-15 -3710 ((-110) |#1|)) (-15 -3657 ((-110) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 24)) (-3181 (((-3 $ "failed") $ $) 26)) (-3605 (((-528) $) 33)) (-2816 (($) 23 T CONST)) (-1312 (((-3 $ "failed") $) 39)) (-3657 (((-110) $) 35)) (-1297 (((-110) $) 42)) (-3710 (((-110) $) 34)) (-1436 (($ $ $) 13)) (-1736 (($ $ $) 14)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11) (($ (-528)) 45)) (-3742 (((-717)) 44)) (-1775 (($ $) 32)) (-2690 (($ $ (-717)) 40) (($ $ (-860)) 36)) (-2969 (($) 22 T CONST)) (-2982 (($) 43 T CONST)) (-2244 (((-110) $ $) 16)) (-2220 (((-110) $ $) 17)) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 15)) (-2208 (((-110) $ $) 18)) (-2286 (($ $ $) 28) (($ $) 27)) (-2275 (($ $ $) 20)) (** (($ $ (-717)) 41) (($ $ (-860)) 37)) (* (($ (-860) $) 21) (($ (-717) $) 25) (($ (-528) $) 29) (($ $ $) 38)))
+(-13 (-795) (-349))
+(((-99) . T) ((-571 (-805)) . T) ((-349) . T) ((-795) . T) ((-1027) . T))
+((-2799 (((-110) (-1179 |#2|) (-1179 |#2|)) 17)) (-2800 (((-110) (-1179 |#2|) (-1179 |#2|)) 18)) (-2798 (((-110) (-1179 |#2|) (-1179 |#2|)) 14)))
+(((-790 |#1| |#2|) (-10 -7 (-15 -2798 ((-110) (-1179 |#2|) (-1179 |#2|))) (-15 -2799 ((-110) (-1179 |#2|) (-1179 |#2|))) (-15 -2800 ((-110) (-1179 |#2|) (-1179 |#2|)))) (-719) (-740)) (T -790))
+((-2800 (*1 *2 *3 *3) (-12 (-5 *3 (-1179 *5)) (-4 *5 (-740)) (-5 *2 (-110)) (-5 *1 (-790 *4 *5)) (-14 *4 (-719)))) (-2799 (*1 *2 *3 *3) (-12 (-5 *3 (-1179 *5)) (-4 *5 (-740)) (-5 *2 (-110)) (-5 *1 (-790 *4 *5)) (-14 *4 (-719)))) (-2798 (*1 *2 *3 *3) (-12 (-5 *3 (-1179 *5)) (-4 *5 (-740)) (-5 *2 (-110)) (-5 *1 (-790 *4 *5)) (-14 *4 (-719)))))
+(-10 -7 (-15 -2798 ((-110) (-1179 |#2|) (-1179 |#2|))) (-15 -2799 ((-110) (-1179 |#2|) (-1179 |#2|))) (-15 -2800 ((-110) (-1179 |#2|) (-1179 |#2|))))
+((-2828 (((-110) $ $) 7)) (-3815 (($) 24 T CONST)) (-3741 (((-3 $ "failed") $) 28)) (-2436 (((-110) $) 25)) (-3596 (($ $ $) 13)) (-3597 (($ $ $) 14)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-3581 (($ $ (-860)) 22) (($ $ (-719)) 27)) (-2927 (($) 23 T CONST)) (-2826 (((-110) $ $) 16)) (-2827 (((-110) $ $) 17)) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 15)) (-2948 (((-110) $ $) 18)) (** (($ $ (-860)) 21) (($ $ (-719)) 26)) (* (($ $ $) 20)))
(((-791) (-133)) (T -791))
-((-3657 (*1 *2 *1) (-12 (-4 *1 (-791)) (-5 *2 (-110)))) (-3710 (*1 *2 *1) (-12 (-4 *1 (-791)) (-5 *2 (-110)))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-791)) (-5 *2 (-528)))) (-1775 (*1 *1 *1) (-4 *1 (-791))))
-(-13 (-737) (-981) (-673) (-10 -8 (-15 -3657 ((-110) $)) (-15 -3710 ((-110) $)) (-15 -3605 ((-528) $)) (-15 -1775 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-569 (-802)) . T) ((-597 $) . T) ((-673) . T) ((-737) . T) ((-738) . T) ((-740) . T) ((-741) . T) ((-793) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-1436 (($ $ $) 10)) (-1736 (($ $ $) 9)) (-2244 (((-110) $ $) 13)) (-2220 (((-110) $ $) 11)) (-2232 (((-110) $ $) 14)))
-(((-792 |#1|) (-10 -8 (-15 -1436 (|#1| |#1| |#1|)) (-15 -1736 (|#1| |#1| |#1|)) (-15 -2232 ((-110) |#1| |#1|)) (-15 -2244 ((-110) |#1| |#1|)) (-15 -2220 ((-110) |#1| |#1|))) (-793)) (T -792))
-NIL
-(-10 -8 (-15 -1436 (|#1| |#1| |#1|)) (-15 -1736 (|#1| |#1| |#1|)) (-15 -2232 ((-110) |#1| |#1|)) (-15 -2244 ((-110) |#1| |#1|)) (-15 -2220 ((-110) |#1| |#1|)))
-((-2207 (((-110) $ $) 7)) (-1436 (($ $ $) 13)) (-1736 (($ $ $) 14)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2244 (((-110) $ $) 16)) (-2220 (((-110) $ $) 17)) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 15)) (-2208 (((-110) $ $) 18)))
+NIL
+(-13 (-802) (-675))
+(((-99) . T) ((-571 (-805)) . T) ((-675) . T) ((-802) . T) ((-795) . T) ((-1038) . T) ((-1027) . T))
+((-3905 (((-516) $) 17)) (-3460 (((-110) $) 10)) (-3461 (((-110) $) 11)) (-3661 (($ $) 19)))
+(((-792 |#1|) (-10 -8 (-15 -3661 (|#1| |#1|)) (-15 -3905 ((-516) |#1|)) (-15 -3461 ((-110) |#1|)) (-15 -3460 ((-110) |#1|))) (-793)) (T -792))
+NIL
+(-10 -8 (-15 -3661 (|#1| |#1|)) (-15 -3905 ((-516) |#1|)) (-15 -3461 ((-110) |#1|)) (-15 -3460 ((-110) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 24)) (-1319 (((-3 $ "failed") $ $) 26)) (-3905 (((-516) $) 33)) (-3815 (($) 23 T CONST)) (-3741 (((-3 $ "failed") $) 39)) (-3460 (((-110) $) 35)) (-2436 (((-110) $) 42)) (-3461 (((-110) $) 34)) (-3596 (($ $ $) 13)) (-3597 (($ $ $) 14)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11) (($ (-516)) 45)) (-3385 (((-719)) 44)) (-3661 (($ $) 32)) (-3581 (($ $ (-719)) 40) (($ $ (-860)) 36)) (-2920 (($) 22 T CONST)) (-2927 (($) 43 T CONST)) (-2826 (((-110) $ $) 16)) (-2827 (((-110) $ $) 17)) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 15)) (-2948 (((-110) $ $) 18)) (-4116 (($ $ $) 28) (($ $) 27)) (-4118 (($ $ $) 20)) (** (($ $ (-719)) 41) (($ $ (-860)) 37)) (* (($ (-860) $) 21) (($ (-719) $) 25) (($ (-516) $) 29) (($ $ $) 38)))
(((-793) (-133)) (T -793))
-((-2208 (*1 *2 *1 *1) (-12 (-4 *1 (-793)) (-5 *2 (-110)))) (-2220 (*1 *2 *1 *1) (-12 (-4 *1 (-793)) (-5 *2 (-110)))) (-2244 (*1 *2 *1 *1) (-12 (-4 *1 (-793)) (-5 *2 (-110)))) (-2232 (*1 *2 *1 *1) (-12 (-4 *1 (-793)) (-5 *2 (-110)))) (-1736 (*1 *1 *1 *1) (-4 *1 (-793))) (-1436 (*1 *1 *1 *1) (-4 *1 (-793))))
-(-13 (-1023) (-10 -8 (-15 -2208 ((-110) $ $)) (-15 -2220 ((-110) $ $)) (-15 -2244 ((-110) $ $)) (-15 -2232 ((-110) $ $)) (-15 -1736 ($ $ $)) (-15 -1436 ($ $ $))))
-(((-99) . T) ((-569 (-802)) . T) ((-1023) . T))
-((-3211 (($ $ $) 45)) (-4232 (($ $ $) 44)) (-1280 (($ $ $) 42)) (-1815 (($ $ $) 51)) (-3711 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 46)) (-2040 (((-3 $ "failed") $ $) 49)) (-3001 (((-3 (-528) "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1551 (($ $) 35)) (-2857 (($ $ $) 39)) (-3293 (($ $ $) 38)) (-4058 (($ $ $) 47)) (-1343 (($ $ $) 53)) (-1543 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 41)) (-3375 (((-3 $ "failed") $ $) 48)) (-3477 (((-3 $ "failed") $ |#2|) 28)) (-1618 ((|#2| $) 32)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ (-387 (-528))) NIL) (($ |#2|) 12)) (-3348 (((-595 |#2|) $) 18)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
-(((-794 |#1| |#2|) (-10 -8 (-15 -4058 (|#1| |#1| |#1|)) (-15 -3711 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1261 |#1|)) |#1| |#1|)) (-15 -1815 (|#1| |#1| |#1|)) (-15 -2040 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3211 (|#1| |#1| |#1|)) (-15 -4232 (|#1| |#1| |#1|)) (-15 -1280 (|#1| |#1| |#1|)) (-15 -1543 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1261 |#1|)) |#1| |#1|)) (-15 -1343 (|#1| |#1| |#1|)) (-15 -3375 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2857 (|#1| |#1| |#1|)) (-15 -3293 (|#1| |#1| |#1|)) (-15 -1551 (|#1| |#1|)) (-15 -1618 (|#2| |#1|)) (-15 -3477 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3348 ((-595 |#2|) |#1|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -2222 (|#1| |#2|)) (-15 -2222 (|#1| (-387 (-528)))) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2222 (|#1| (-528))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-528) |#1|)) (-15 * (|#1| (-717) |#1|)) (-15 * (|#1| (-860) |#1|)) (-15 -2222 ((-802) |#1|))) (-795 |#2|) (-981)) (T -794))
-NIL
-(-10 -8 (-15 -4058 (|#1| |#1| |#1|)) (-15 -3711 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1261 |#1|)) |#1| |#1|)) (-15 -1815 (|#1| |#1| |#1|)) (-15 -2040 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3211 (|#1| |#1| |#1|)) (-15 -4232 (|#1| |#1| |#1|)) (-15 -1280 (|#1| |#1| |#1|)) (-15 -1543 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1261 |#1|)) |#1| |#1|)) (-15 -1343 (|#1| |#1| |#1|)) (-15 -3375 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2857 (|#1| |#1| |#1|)) (-15 -3293 (|#1| |#1| |#1|)) (-15 -1551 (|#1| |#1|)) (-15 -1618 (|#2| |#1|)) (-15 -3477 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3348 ((-595 |#2|) |#1|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -2222 (|#1| |#2|)) (-15 -2222 (|#1| (-387 (-528)))) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2222 (|#1| (-528))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-528) |#1|)) (-15 * (|#1| (-717) |#1|)) (-15 * (|#1| (-860) |#1|)) (-15 -2222 ((-802) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-3211 (($ $ $) 45 (|has| |#1| (-343)))) (-4232 (($ $ $) 46 (|has| |#1| (-343)))) (-1280 (($ $ $) 48 (|has| |#1| (-343)))) (-1815 (($ $ $) 43 (|has| |#1| (-343)))) (-3711 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 42 (|has| |#1| (-343)))) (-2040 (((-3 $ "failed") $ $) 44 (|has| |#1| (-343)))) (-3843 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 47 (|has| |#1| (-343)))) (-3001 (((-3 (-528) "failed") $) 74 (|has| |#1| (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) 72 (|has| |#1| (-972 (-387 (-528))))) (((-3 |#1| "failed") $) 69)) (-2409 (((-528) $) 75 (|has| |#1| (-972 (-528)))) (((-387 (-528)) $) 73 (|has| |#1| (-972 (-387 (-528))))) ((|#1| $) 68)) (-2388 (($ $) 64)) (-1312 (((-3 $ "failed") $) 34)) (-1551 (($ $) 55 (|has| |#1| (-431)))) (-1297 (((-110) $) 31)) (-2548 (($ |#1| (-717)) 62)) (-1726 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 57 (|has| |#1| (-520)))) (-3566 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 58 (|has| |#1| (-520)))) (-3499 (((-717) $) 66)) (-2857 (($ $ $) 52 (|has| |#1| (-343)))) (-3293 (($ $ $) 53 (|has| |#1| (-343)))) (-4058 (($ $ $) 41 (|has| |#1| (-343)))) (-1343 (($ $ $) 50 (|has| |#1| (-343)))) (-1543 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 49 (|has| |#1| (-343)))) (-3375 (((-3 $ "failed") $ $) 51 (|has| |#1| (-343)))) (-3758 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 54 (|has| |#1| (-343)))) (-2697 ((|#1| $) 65)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-3477 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-520)))) (-2935 (((-717) $) 67)) (-1618 ((|#1| $) 56 (|has| |#1| (-431)))) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ (-387 (-528))) 71 (|has| |#1| (-972 (-387 (-528))))) (($ |#1|) 70)) (-3348 (((-595 |#1|) $) 61)) (-3216 ((|#1| $ (-717)) 63)) (-3742 (((-717)) 29)) (-2834 ((|#1| $ |#1| |#1|) 60)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
-(((-795 |#1|) (-133) (-981)) (T -795))
-((-2935 (*1 *2 *1) (-12 (-4 *1 (-795 *3)) (-4 *3 (-981)) (-5 *2 (-717)))) (-3499 (*1 *2 *1) (-12 (-4 *1 (-795 *3)) (-4 *3 (-981)) (-5 *2 (-717)))) (-2697 (*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981)))) (-2388 (*1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981)))) (-3216 (*1 *2 *1 *3) (-12 (-5 *3 (-717)) (-4 *1 (-795 *2)) (-4 *2 (-981)))) (-2548 (*1 *1 *2 *3) (-12 (-5 *3 (-717)) (-4 *1 (-795 *2)) (-4 *2 (-981)))) (-3348 (*1 *2 *1) (-12 (-4 *1 (-795 *3)) (-4 *3 (-981)) (-5 *2 (-595 *3)))) (-2834 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981)))) (-3477 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-520)))) (-3566 (*1 *2 *1 *1) (-12 (-4 *3 (-520)) (-4 *3 (-981)) (-5 *2 (-2 (|:| -3490 *1) (|:| -2537 *1))) (-4 *1 (-795 *3)))) (-1726 (*1 *2 *1 *1) (-12 (-4 *3 (-520)) (-4 *3 (-981)) (-5 *2 (-2 (|:| -3490 *1) (|:| -2537 *1))) (-4 *1 (-795 *3)))) (-1618 (*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-431)))) (-1551 (*1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-431)))) (-3758 (*1 *2 *1 *1) (-12 (-4 *3 (-343)) (-4 *3 (-981)) (-5 *2 (-2 (|:| -3490 *1) (|:| -2537 *1))) (-4 *1 (-795 *3)))) (-3293 (*1 *1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-343)))) (-2857 (*1 *1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-343)))) (-3375 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-343)))) (-1343 (*1 *1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-343)))) (-1543 (*1 *2 *1 *1) (-12 (-4 *3 (-343)) (-4 *3 (-981)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1261 *1))) (-4 *1 (-795 *3)))) (-1280 (*1 *1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-343)))) (-3843 (*1 *2 *1 *1) (-12 (-4 *3 (-343)) (-4 *3 (-981)) (-5 *2 (-2 (|:| -3490 *1) (|:| -2537 *1))) (-4 *1 (-795 *3)))) (-4232 (*1 *1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-343)))) (-3211 (*1 *1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-343)))) (-2040 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-343)))) (-1815 (*1 *1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-343)))) (-3711 (*1 *2 *1 *1) (-12 (-4 *3 (-343)) (-4 *3 (-981)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1261 *1))) (-4 *1 (-795 *3)))) (-4058 (*1 *1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-343)))))
-(-13 (-981) (-109 |t#1| |t#1|) (-391 |t#1|) (-10 -8 (-15 -2935 ((-717) $)) (-15 -3499 ((-717) $)) (-15 -2697 (|t#1| $)) (-15 -2388 ($ $)) (-15 -3216 (|t#1| $ (-717))) (-15 -2548 ($ |t#1| (-717))) (-15 -3348 ((-595 |t#1|) $)) (-15 -2834 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-520)) (PROGN (-15 -3477 ((-3 $ "failed") $ |t#1|)) (-15 -3566 ((-2 (|:| -3490 $) (|:| -2537 $)) $ $)) (-15 -1726 ((-2 (|:| -3490 $) (|:| -2537 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-431)) (PROGN (-15 -1618 (|t#1| $)) (-15 -1551 ($ $))) |%noBranch|) (IF (|has| |t#1| (-343)) (PROGN (-15 -3758 ((-2 (|:| -3490 $) (|:| -2537 $)) $ $)) (-15 -3293 ($ $ $)) (-15 -2857 ($ $ $)) (-15 -3375 ((-3 $ "failed") $ $)) (-15 -1343 ($ $ $)) (-15 -1543 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $)) (-15 -1280 ($ $ $)) (-15 -3843 ((-2 (|:| -3490 $) (|:| -2537 $)) $ $)) (-15 -4232 ($ $ $)) (-15 -3211 ($ $ $)) (-15 -2040 ((-3 $ "failed") $ $)) (-15 -1815 ($ $ $)) (-15 -3711 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $)) (-15 -4058 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-162)) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-569 (-802)) . T) ((-391 |#1|) . T) ((-597 |#1|) . T) ((-597 $) . T) ((-664 |#1|) |has| |#1| (-162)) ((-673) . T) ((-972 (-387 (-528))) |has| |#1| (-972 (-387 (-528)))) ((-972 (-528)) |has| |#1| (-972 (-528))) ((-972 |#1|) . T) ((-986 |#1|) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-3801 ((|#2| |#2| |#2| (-96 |#1|) (-1 |#1| |#1|)) 20)) (-3843 (((-2 (|:| -3490 |#2|) (|:| -2537 |#2|)) |#2| |#2| (-96 |#1|)) 43 (|has| |#1| (-343)))) (-1726 (((-2 (|:| -3490 |#2|) (|:| -2537 |#2|)) |#2| |#2| (-96 |#1|)) 40 (|has| |#1| (-520)))) (-3566 (((-2 (|:| -3490 |#2|) (|:| -2537 |#2|)) |#2| |#2| (-96 |#1|)) 39 (|has| |#1| (-520)))) (-3758 (((-2 (|:| -3490 |#2|) (|:| -2537 |#2|)) |#2| |#2| (-96 |#1|)) 42 (|has| |#1| (-343)))) (-2834 ((|#1| |#2| |#1| |#1| (-96 |#1|) (-1 |#1| |#1|)) 31)))
-(((-796 |#1| |#2|) (-10 -7 (-15 -3801 (|#2| |#2| |#2| (-96 |#1|) (-1 |#1| |#1|))) (-15 -2834 (|#1| |#2| |#1| |#1| (-96 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-520)) (PROGN (-15 -3566 ((-2 (|:| -3490 |#2|) (|:| -2537 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -1726 ((-2 (|:| -3490 |#2|) (|:| -2537 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|) (IF (|has| |#1| (-343)) (PROGN (-15 -3758 ((-2 (|:| -3490 |#2|) (|:| -2537 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -3843 ((-2 (|:| -3490 |#2|) (|:| -2537 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|)) (-981) (-795 |#1|)) (T -796))
-((-3843 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-343)) (-4 *5 (-981)) (-5 *2 (-2 (|:| -3490 *3) (|:| -2537 *3))) (-5 *1 (-796 *5 *3)) (-4 *3 (-795 *5)))) (-3758 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-343)) (-4 *5 (-981)) (-5 *2 (-2 (|:| -3490 *3) (|:| -2537 *3))) (-5 *1 (-796 *5 *3)) (-4 *3 (-795 *5)))) (-1726 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-520)) (-4 *5 (-981)) (-5 *2 (-2 (|:| -3490 *3) (|:| -2537 *3))) (-5 *1 (-796 *5 *3)) (-4 *3 (-795 *5)))) (-3566 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-520)) (-4 *5 (-981)) (-5 *2 (-2 (|:| -3490 *3) (|:| -2537 *3))) (-5 *1 (-796 *5 *3)) (-4 *3 (-795 *5)))) (-2834 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-96 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-981)) (-5 *1 (-796 *2 *3)) (-4 *3 (-795 *2)))) (-3801 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-981)) (-5 *1 (-796 *5 *2)) (-4 *2 (-795 *5)))))
-(-10 -7 (-15 -3801 (|#2| |#2| |#2| (-96 |#1|) (-1 |#1| |#1|))) (-15 -2834 (|#1| |#2| |#1| |#1| (-96 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-520)) (PROGN (-15 -3566 ((-2 (|:| -3490 |#2|) (|:| -2537 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -1726 ((-2 (|:| -3490 |#2|) (|:| -2537 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|) (IF (|has| |#1| (-343)) (PROGN (-15 -3758 ((-2 (|:| -3490 |#2|) (|:| -2537 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -3843 ((-2 (|:| -3490 |#2|) (|:| -2537 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-3211 (($ $ $) NIL (|has| |#1| (-343)))) (-4232 (($ $ $) NIL (|has| |#1| (-343)))) (-1280 (($ $ $) NIL (|has| |#1| (-343)))) (-1815 (($ $ $) NIL (|has| |#1| (-343)))) (-3711 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#1| (-343)))) (-2040 (((-3 $ "failed") $ $) NIL (|has| |#1| (-343)))) (-3843 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 25 (|has| |#1| (-343)))) (-3001 (((-3 (-528) "failed") $) NIL (|has| |#1| (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-3 |#1| "failed") $) NIL)) (-2409 (((-528) $) NIL (|has| |#1| (-972 (-528)))) (((-387 (-528)) $) NIL (|has| |#1| (-972 (-387 (-528))))) ((|#1| $) NIL)) (-2388 (($ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1551 (($ $) NIL (|has| |#1| (-431)))) (-2465 (((-802) $ (-802)) NIL)) (-1297 (((-110) $) NIL)) (-2548 (($ |#1| (-717)) NIL)) (-1726 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 21 (|has| |#1| (-520)))) (-3566 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 19 (|has| |#1| (-520)))) (-3499 (((-717) $) NIL)) (-2857 (($ $ $) NIL (|has| |#1| (-343)))) (-3293 (($ $ $) NIL (|has| |#1| (-343)))) (-4058 (($ $ $) NIL (|has| |#1| (-343)))) (-1343 (($ $ $) NIL (|has| |#1| (-343)))) (-1543 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#1| (-343)))) (-3375 (((-3 $ "failed") $ $) NIL (|has| |#1| (-343)))) (-3758 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 23 (|has| |#1| (-343)))) (-2697 ((|#1| $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3477 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-520)))) (-2935 (((-717) $) NIL)) (-1618 ((|#1| $) NIL (|has| |#1| (-431)))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ (-387 (-528))) NIL (|has| |#1| (-972 (-387 (-528))))) (($ |#1|) NIL)) (-3348 (((-595 |#1|) $) NIL)) (-3216 ((|#1| $ (-717)) NIL)) (-3742 (((-717)) NIL)) (-2834 ((|#1| $ |#1| |#1|) 15)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-2186 (((-110) $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-797 |#1| |#2| |#3|) (-13 (-795 |#1|) (-10 -8 (-15 -2465 ((-802) $ (-802))))) (-981) (-96 |#1|) (-1 |#1| |#1|)) (T -797))
-((-2465 (*1 *2 *1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-797 *3 *4 *5)) (-4 *3 (-981)) (-14 *4 (-96 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-795 |#1|) (-10 -8 (-15 -2465 ((-802) $ (-802)))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-3211 (($ $ $) NIL (|has| |#2| (-343)))) (-4232 (($ $ $) NIL (|has| |#2| (-343)))) (-1280 (($ $ $) NIL (|has| |#2| (-343)))) (-1815 (($ $ $) NIL (|has| |#2| (-343)))) (-3711 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#2| (-343)))) (-2040 (((-3 $ "failed") $ $) NIL (|has| |#2| (-343)))) (-3843 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#2| (-343)))) (-3001 (((-3 (-528) "failed") $) NIL (|has| |#2| (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#2| (-972 (-387 (-528))))) (((-3 |#2| "failed") $) NIL)) (-2409 (((-528) $) NIL (|has| |#2| (-972 (-528)))) (((-387 (-528)) $) NIL (|has| |#2| (-972 (-387 (-528))))) ((|#2| $) NIL)) (-2388 (($ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1551 (($ $) NIL (|has| |#2| (-431)))) (-1297 (((-110) $) NIL)) (-2548 (($ |#2| (-717)) 16)) (-1726 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#2| (-520)))) (-3566 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#2| (-520)))) (-3499 (((-717) $) NIL)) (-2857 (($ $ $) NIL (|has| |#2| (-343)))) (-3293 (($ $ $) NIL (|has| |#2| (-343)))) (-4058 (($ $ $) NIL (|has| |#2| (-343)))) (-1343 (($ $ $) NIL (|has| |#2| (-343)))) (-1543 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#2| (-343)))) (-3375 (((-3 $ "failed") $ $) NIL (|has| |#2| (-343)))) (-3758 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#2| (-343)))) (-2697 ((|#2| $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3477 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-520)))) (-2935 (((-717) $) NIL)) (-1618 ((|#2| $) NIL (|has| |#2| (-431)))) (-2222 (((-802) $) 23) (($ (-528)) NIL) (($ (-387 (-528))) NIL (|has| |#2| (-972 (-387 (-528))))) (($ |#2|) NIL) (($ (-1173 |#1|)) 18)) (-3348 (((-595 |#2|) $) NIL)) (-3216 ((|#2| $ (-717)) NIL)) (-3742 (((-717)) NIL)) (-2834 ((|#2| $ |#2| |#2|) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) 13 T CONST)) (-2186 (((-110) $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-798 |#1| |#2| |#3| |#4|) (-13 (-795 |#2|) (-10 -8 (-15 -2222 ($ (-1173 |#1|))))) (-1095) (-981) (-96 |#2|) (-1 |#2| |#2|)) (T -798))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1173 *3)) (-14 *3 (-1095)) (-5 *1 (-798 *3 *4 *5 *6)) (-4 *4 (-981)) (-14 *5 (-96 *4)) (-14 *6 (-1 *4 *4)))))
-(-13 (-795 |#2|) (-10 -8 (-15 -2222 ($ (-1173 |#1|)))))
-((-2740 ((|#1| (-717) |#1|) 35 (|has| |#1| (-37 (-387 (-528)))))) (-2389 ((|#1| (-717) (-717) |#1|) 27) ((|#1| (-717) |#1|) 20)) (-4164 ((|#1| (-717) |#1|) 31)) (-1940 ((|#1| (-717) |#1|) 29)) (-1932 ((|#1| (-717) |#1|) 28)))
-(((-799 |#1|) (-10 -7 (-15 -1932 (|#1| (-717) |#1|)) (-15 -1940 (|#1| (-717) |#1|)) (-15 -4164 (|#1| (-717) |#1|)) (-15 -2389 (|#1| (-717) |#1|)) (-15 -2389 (|#1| (-717) (-717) |#1|)) (IF (|has| |#1| (-37 (-387 (-528)))) (-15 -2740 (|#1| (-717) |#1|)) |%noBranch|)) (-162)) (T -799))
-((-2740 (*1 *2 *3 *2) (-12 (-5 *3 (-717)) (-5 *1 (-799 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-162)))) (-2389 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-717)) (-5 *1 (-799 *2)) (-4 *2 (-162)))) (-2389 (*1 *2 *3 *2) (-12 (-5 *3 (-717)) (-5 *1 (-799 *2)) (-4 *2 (-162)))) (-4164 (*1 *2 *3 *2) (-12 (-5 *3 (-717)) (-5 *1 (-799 *2)) (-4 *2 (-162)))) (-1940 (*1 *2 *3 *2) (-12 (-5 *3 (-717)) (-5 *1 (-799 *2)) (-4 *2 (-162)))) (-1932 (*1 *2 *3 *2) (-12 (-5 *3 (-717)) (-5 *1 (-799 *2)) (-4 *2 (-162)))))
-(-10 -7 (-15 -1932 (|#1| (-717) |#1|)) (-15 -1940 (|#1| (-717) |#1|)) (-15 -4164 (|#1| (-717) |#1|)) (-15 -2389 (|#1| (-717) |#1|)) (-15 -2389 (|#1| (-717) (-717) |#1|)) (IF (|has| |#1| (-37 (-387 (-528)))) (-15 -2740 (|#1| (-717) |#1|)) |%noBranch|))
-((-2207 (((-110) $ $) 7)) (-1436 (($ $ $) 13)) (-1736 (($ $ $) 14)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2690 (($ $ (-860)) 22)) (-2244 (((-110) $ $) 16)) (-2220 (((-110) $ $) 17)) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 15)) (-2208 (((-110) $ $) 18)) (** (($ $ (-860)) 21)) (* (($ $ $) 20)))
-(((-800) (-133)) (T -800))
-NIL
-(-13 (-793) (-1035))
-(((-99) . T) ((-569 (-802)) . T) ((-793) . T) ((-1035) . T) ((-1023) . T))
-((-2207 (((-110) $ $) NIL)) (-3327 (((-528) $) 12)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 18) (($ (-528)) 11)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 8)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 9)))
-(((-801) (-13 (-793) (-10 -8 (-15 -2222 ($ (-528))) (-15 -3327 ((-528) $))))) (T -801))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-801)))) (-3327 (*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-801)))))
-(-13 (-793) (-10 -8 (-15 -2222 ($ (-528))) (-15 -3327 ((-528) $))))
-((-2207 (((-110) $ $) NIL) (($ $ $) 77)) (-1392 (($ $ $) 115)) (-1374 (((-528) $) 30) (((-528)) 35)) (-4230 (($ (-528)) 44)) (-2471 (($ $ $) 45) (($ (-595 $)) 76)) (-2067 (($ $ (-595 $)) 74)) (-3852 (((-528) $) 33)) (-3316 (($ $ $) 63)) (-3907 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-2525 (((-528) $) 32)) (-3324 (($ $ $) 62)) (-4193 (($ $) 105)) (-3423 (($ $ $) 119)) (-4190 (($ (-595 $)) 52)) (-1597 (($ $ (-595 $)) 69)) (-3170 (($ (-528) (-528)) 46)) (-3333 (($ $) 116) (($ $ $) 117)) (-3572 (($ $ (-528)) 40) (($ $) 43)) (-3519 (($ $ $) 89)) (-3310 (($ $ $) 122)) (-3119 (($ $) 106)) (-3498 (($ $ $) 90)) (-3891 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-3332 (((-1182) $) 8)) (-1759 (($ $) 109) (($ $ (-717)) 112)) (-1508 (($ $ $) 65)) (-3884 (($ $ $) 64)) (-1953 (($ $ (-595 $)) 100)) (-2541 (($ $ $) 104)) (-2149 (($ (-595 $)) 50)) (-4130 (($ $) 60) (($ (-595 $)) 61)) (-3243 (($ $ $) 113)) (-3496 (($ $) 107)) (-3567 (($ $ $) 118)) (-2465 (($ (-528)) 20) (($ (-1095)) 22) (($ (-1078)) 29) (($ (-207)) 24)) (-2619 (($ $ $) 93)) (-3617 (($ $) 94)) (-2027 (((-1182) (-1078)) 14)) (-2070 (($ (-1078)) 13)) (-1553 (($ (-595 (-595 $))) 49)) (-3562 (($ $ (-528)) 39) (($ $) 42)) (-3034 (((-1078) $) NIL)) (-3000 (($ $ $) 121)) (-3626 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-3007 (((-110) $) 98)) (-1687 (($ $ (-595 $)) 102) (($ $ $ $) 103)) (-2609 (($ (-528)) 36)) (-4073 (((-528) $) 31) (((-528)) 34)) (-1306 (($ $ $) 37) (($ (-595 $)) 75)) (-2495 (((-1042) $) NIL)) (-3477 (($ $ $) 91)) (-2147 (($) 12)) (-3043 (($ $ (-595 $)) 99)) (-3675 (($ $) 108) (($ $ (-717)) 111)) (-3486 (($ $ $) 88)) (-3235 (($ $ (-717)) 127)) (-2717 (($ (-595 $)) 51)) (-2222 (((-802) $) 18)) (-1884 (($ $ (-528)) 38) (($ $) 41)) (-3627 (($ $) 58) (($ (-595 $)) 59)) (-3289 (($ $) 56) (($ (-595 $)) 57)) (-1491 (($ $) 114)) (-4229 (($ (-595 $)) 55)) (-3709 (($ $ $) 97)) (-2707 (($ $ $) 120)) (-3287 (($ $ $) 92)) (-2713 (($ $ $) 95) (($ $) 96)) (-2244 (($ $ $) 81)) (-2220 (($ $ $) 79)) (-2186 (((-110) $ $) 15) (($ $ $) 16)) (-2232 (($ $ $) 80)) (-2208 (($ $ $) 78)) (-2296 (($ $ $) 86)) (-2286 (($ $ $) 83) (($ $) 84)) (-2275 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
-(((-802) (-13 (-1023) (-10 -8 (-15 -3332 ((-1182) $)) (-15 -2070 ($ (-1078))) (-15 -2027 ((-1182) (-1078))) (-15 -2465 ($ (-528))) (-15 -2465 ($ (-1095))) (-15 -2465 ($ (-1078))) (-15 -2465 ($ (-207))) (-15 -2147 ($)) (-15 -1374 ((-528) $)) (-15 -4073 ((-528) $)) (-15 -1374 ((-528))) (-15 -4073 ((-528))) (-15 -2525 ((-528) $)) (-15 -3852 ((-528) $)) (-15 -2609 ($ (-528))) (-15 -4230 ($ (-528))) (-15 -3170 ($ (-528) (-528))) (-15 -3562 ($ $ (-528))) (-15 -3572 ($ $ (-528))) (-15 -1884 ($ $ (-528))) (-15 -3562 ($ $)) (-15 -3572 ($ $)) (-15 -1884 ($ $)) (-15 -1306 ($ $ $)) (-15 -2471 ($ $ $)) (-15 -1306 ($ (-595 $))) (-15 -2471 ($ (-595 $))) (-15 -1953 ($ $ (-595 $))) (-15 -1687 ($ $ (-595 $))) (-15 -1687 ($ $ $ $)) (-15 -2541 ($ $ $)) (-15 -3007 ((-110) $)) (-15 -3043 ($ $ (-595 $))) (-15 -4193 ($ $)) (-15 -3000 ($ $ $)) (-15 -1491 ($ $)) (-15 -1553 ($ (-595 (-595 $)))) (-15 -1392 ($ $ $)) (-15 -3333 ($ $)) (-15 -3333 ($ $ $)) (-15 -3567 ($ $ $)) (-15 -3423 ($ $ $)) (-15 -2707 ($ $ $)) (-15 -3310 ($ $ $)) (-15 -3235 ($ $ (-717))) (-15 -3709 ($ $ $)) (-15 -3324 ($ $ $)) (-15 -3316 ($ $ $)) (-15 -3884 ($ $ $)) (-15 -1508 ($ $ $)) (-15 -1597 ($ $ (-595 $))) (-15 -2067 ($ $ (-595 $))) (-15 -3119 ($ $)) (-15 -3675 ($ $)) (-15 -3675 ($ $ (-717))) (-15 -1759 ($ $)) (-15 -1759 ($ $ (-717))) (-15 -3496 ($ $)) (-15 -3243 ($ $ $)) (-15 -3907 ($ $)) (-15 -3907 ($ $ $)) (-15 -3907 ($ $ $ $)) (-15 -3891 ($ $)) (-15 -3891 ($ $ $)) (-15 -3891 ($ $ $ $)) (-15 -3626 ($ $)) (-15 -3626 ($ $ $)) (-15 -3626 ($ $ $ $)) (-15 -3289 ($ $)) (-15 -3289 ($ (-595 $))) (-15 -3627 ($ $)) (-15 -3627 ($ (-595 $))) (-15 -4130 ($ $)) (-15 -4130 ($ (-595 $))) (-15 -2149 ($ (-595 $))) (-15 -2717 ($ (-595 $))) (-15 -4190 ($ (-595 $))) (-15 -4229 ($ (-595 $))) (-15 -2186 ($ $ $)) (-15 -2207 ($ $ $)) (-15 -2208 ($ $ $)) (-15 -2220 ($ $ $)) (-15 -2232 ($ $ $)) (-15 -2244 ($ $ $)) (-15 -2275 ($ $ $)) (-15 -2286 ($ $ $)) (-15 -2286 ($ $)) (-15 * ($ $ $)) (-15 -2296 ($ $ $)) (-15 ** ($ $ $)) (-15 -3486 ($ $ $)) (-15 -3519 ($ $ $)) (-15 -3498 ($ $ $)) (-15 -3477 ($ $ $)) (-15 -3287 ($ $ $)) (-15 -2619 ($ $ $)) (-15 -3617 ($ $)) (-15 -2713 ($ $ $)) (-15 -2713 ($ $))))) (T -802))
-((-3332 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-802)))) (-2070 (*1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-802)))) (-2027 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-802)))) (-2465 (*1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-802)))) (-2465 (*1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-802)))) (-2465 (*1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-802)))) (-2465 (*1 *1 *2) (-12 (-5 *2 (-207)) (-5 *1 (-802)))) (-2147 (*1 *1) (-5 *1 (-802))) (-1374 (*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-802)))) (-4073 (*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-802)))) (-1374 (*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-802)))) (-4073 (*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-802)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-802)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-802)))) (-2609 (*1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-802)))) (-4230 (*1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-802)))) (-3170 (*1 *1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-802)))) (-3562 (*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-802)))) (-3572 (*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-802)))) (-1884 (*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-802)))) (-3562 (*1 *1 *1) (-5 *1 (-802))) (-3572 (*1 *1 *1) (-5 *1 (-802))) (-1884 (*1 *1 *1) (-5 *1 (-802))) (-1306 (*1 *1 *1 *1) (-5 *1 (-802))) (-2471 (*1 *1 *1 *1) (-5 *1 (-802))) (-1306 (*1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802)))) (-2471 (*1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802)))) (-1953 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802)))) (-1687 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802)))) (-1687 (*1 *1 *1 *1 *1) (-5 *1 (-802))) (-2541 (*1 *1 *1 *1) (-5 *1 (-802))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-802)))) (-3043 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802)))) (-4193 (*1 *1 *1) (-5 *1 (-802))) (-3000 (*1 *1 *1 *1) (-5 *1 (-802))) (-1491 (*1 *1 *1) (-5 *1 (-802))) (-1553 (*1 *1 *2) (-12 (-5 *2 (-595 (-595 (-802)))) (-5 *1 (-802)))) (-1392 (*1 *1 *1 *1) (-5 *1 (-802))) (-3333 (*1 *1 *1) (-5 *1 (-802))) (-3333 (*1 *1 *1 *1) (-5 *1 (-802))) (-3567 (*1 *1 *1 *1) (-5 *1 (-802))) (-3423 (*1 *1 *1 *1) (-5 *1 (-802))) (-2707 (*1 *1 *1 *1) (-5 *1 (-802))) (-3310 (*1 *1 *1 *1) (-5 *1 (-802))) (-3235 (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-802)))) (-3709 (*1 *1 *1 *1) (-5 *1 (-802))) (-3324 (*1 *1 *1 *1) (-5 *1 (-802))) (-3316 (*1 *1 *1 *1) (-5 *1 (-802))) (-3884 (*1 *1 *1 *1) (-5 *1 (-802))) (-1508 (*1 *1 *1 *1) (-5 *1 (-802))) (-1597 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802)))) (-2067 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802)))) (-3119 (*1 *1 *1) (-5 *1 (-802))) (-3675 (*1 *1 *1) (-5 *1 (-802))) (-3675 (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-802)))) (-1759 (*1 *1 *1) (-5 *1 (-802))) (-1759 (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-802)))) (-3496 (*1 *1 *1) (-5 *1 (-802))) (-3243 (*1 *1 *1 *1) (-5 *1 (-802))) (-3907 (*1 *1 *1) (-5 *1 (-802))) (-3907 (*1 *1 *1 *1) (-5 *1 (-802))) (-3907 (*1 *1 *1 *1 *1) (-5 *1 (-802))) (-3891 (*1 *1 *1) (-5 *1 (-802))) (-3891 (*1 *1 *1 *1) (-5 *1 (-802))) (-3891 (*1 *1 *1 *1 *1) (-5 *1 (-802))) (-3626 (*1 *1 *1) (-5 *1 (-802))) (-3626 (*1 *1 *1 *1) (-5 *1 (-802))) (-3626 (*1 *1 *1 *1 *1) (-5 *1 (-802))) (-3289 (*1 *1 *1) (-5 *1 (-802))) (-3289 (*1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802)))) (-3627 (*1 *1 *1) (-5 *1 (-802))) (-3627 (*1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802)))) (-4130 (*1 *1 *1) (-5 *1 (-802))) (-4130 (*1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802)))) (-2149 (*1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802)))) (-2717 (*1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802)))) (-4190 (*1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802)))) (-4229 (*1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802)))) (-2186 (*1 *1 *1 *1) (-5 *1 (-802))) (-2207 (*1 *1 *1 *1) (-5 *1 (-802))) (-2208 (*1 *1 *1 *1) (-5 *1 (-802))) (-2220 (*1 *1 *1 *1) (-5 *1 (-802))) (-2232 (*1 *1 *1 *1) (-5 *1 (-802))) (-2244 (*1 *1 *1 *1) (-5 *1 (-802))) (-2275 (*1 *1 *1 *1) (-5 *1 (-802))) (-2286 (*1 *1 *1 *1) (-5 *1 (-802))) (-2286 (*1 *1 *1) (-5 *1 (-802))) (* (*1 *1 *1 *1) (-5 *1 (-802))) (-2296 (*1 *1 *1 *1) (-5 *1 (-802))) (** (*1 *1 *1 *1) (-5 *1 (-802))) (-3486 (*1 *1 *1 *1) (-5 *1 (-802))) (-3519 (*1 *1 *1 *1) (-5 *1 (-802))) (-3498 (*1 *1 *1 *1) (-5 *1 (-802))) (-3477 (*1 *1 *1 *1) (-5 *1 (-802))) (-3287 (*1 *1 *1 *1) (-5 *1 (-802))) (-2619 (*1 *1 *1 *1) (-5 *1 (-802))) (-3617 (*1 *1 *1) (-5 *1 (-802))) (-2713 (*1 *1 *1 *1) (-5 *1 (-802))) (-2713 (*1 *1 *1) (-5 *1 (-802))))
-(-13 (-1023) (-10 -8 (-15 -3332 ((-1182) $)) (-15 -2070 ($ (-1078))) (-15 -2027 ((-1182) (-1078))) (-15 -2465 ($ (-528))) (-15 -2465 ($ (-1095))) (-15 -2465 ($ (-1078))) (-15 -2465 ($ (-207))) (-15 -2147 ($)) (-15 -1374 ((-528) $)) (-15 -4073 ((-528) $)) (-15 -1374 ((-528))) (-15 -4073 ((-528))) (-15 -2525 ((-528) $)) (-15 -3852 ((-528) $)) (-15 -2609 ($ (-528))) (-15 -4230 ($ (-528))) (-15 -3170 ($ (-528) (-528))) (-15 -3562 ($ $ (-528))) (-15 -3572 ($ $ (-528))) (-15 -1884 ($ $ (-528))) (-15 -3562 ($ $)) (-15 -3572 ($ $)) (-15 -1884 ($ $)) (-15 -1306 ($ $ $)) (-15 -2471 ($ $ $)) (-15 -1306 ($ (-595 $))) (-15 -2471 ($ (-595 $))) (-15 -1953 ($ $ (-595 $))) (-15 -1687 ($ $ (-595 $))) (-15 -1687 ($ $ $ $)) (-15 -2541 ($ $ $)) (-15 -3007 ((-110) $)) (-15 -3043 ($ $ (-595 $))) (-15 -4193 ($ $)) (-15 -3000 ($ $ $)) (-15 -1491 ($ $)) (-15 -1553 ($ (-595 (-595 $)))) (-15 -1392 ($ $ $)) (-15 -3333 ($ $)) (-15 -3333 ($ $ $)) (-15 -3567 ($ $ $)) (-15 -3423 ($ $ $)) (-15 -2707 ($ $ $)) (-15 -3310 ($ $ $)) (-15 -3235 ($ $ (-717))) (-15 -3709 ($ $ $)) (-15 -3324 ($ $ $)) (-15 -3316 ($ $ $)) (-15 -3884 ($ $ $)) (-15 -1508 ($ $ $)) (-15 -1597 ($ $ (-595 $))) (-15 -2067 ($ $ (-595 $))) (-15 -3119 ($ $)) (-15 -3675 ($ $)) (-15 -3675 ($ $ (-717))) (-15 -1759 ($ $)) (-15 -1759 ($ $ (-717))) (-15 -3496 ($ $)) (-15 -3243 ($ $ $)) (-15 -3907 ($ $)) (-15 -3907 ($ $ $)) (-15 -3907 ($ $ $ $)) (-15 -3891 ($ $)) (-15 -3891 ($ $ $)) (-15 -3891 ($ $ $ $)) (-15 -3626 ($ $)) (-15 -3626 ($ $ $)) (-15 -3626 ($ $ $ $)) (-15 -3289 ($ $)) (-15 -3289 ($ (-595 $))) (-15 -3627 ($ $)) (-15 -3627 ($ (-595 $))) (-15 -4130 ($ $)) (-15 -4130 ($ (-595 $))) (-15 -2149 ($ (-595 $))) (-15 -2717 ($ (-595 $))) (-15 -4190 ($ (-595 $))) (-15 -4229 ($ (-595 $))) (-15 -2186 ($ $ $)) (-15 -2207 ($ $ $)) (-15 -2208 ($ $ $)) (-15 -2220 ($ $ $)) (-15 -2232 ($ $ $)) (-15 -2244 ($ $ $)) (-15 -2275 ($ $ $)) (-15 -2286 ($ $ $)) (-15 -2286 ($ $)) (-15 * ($ $ $)) (-15 -2296 ($ $ $)) (-15 ** ($ $ $)) (-15 -3486 ($ $ $)) (-15 -3519 ($ $ $)) (-15 -3498 ($ $ $)) (-15 -3477 ($ $ $)) (-15 -3287 ($ $ $)) (-15 -2619 ($ $ $)) (-15 -3617 ($ $)) (-15 -2713 ($ $ $)) (-15 -2713 ($ $))))
-((-3928 (((-1182) (-595 (-51))) 24)) (-1835 (((-1182) (-1078) (-802)) 14) (((-1182) (-802)) 9) (((-1182) (-1078)) 11)))
-(((-803) (-10 -7 (-15 -1835 ((-1182) (-1078))) (-15 -1835 ((-1182) (-802))) (-15 -1835 ((-1182) (-1078) (-802))) (-15 -3928 ((-1182) (-595 (-51)))))) (T -803))
-((-3928 (*1 *2 *3) (-12 (-5 *3 (-595 (-51))) (-5 *2 (-1182)) (-5 *1 (-803)))) (-1835 (*1 *2 *3 *4) (-12 (-5 *3 (-1078)) (-5 *4 (-802)) (-5 *2 (-1182)) (-5 *1 (-803)))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1182)) (-5 *1 (-803)))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-803)))))
-(-10 -7 (-15 -1835 ((-1182) (-1078))) (-15 -1835 ((-1182) (-802))) (-15 -1835 ((-1182) (-1078) (-802))) (-15 -3928 ((-1182) (-595 (-51)))))
-((-2207 (((-110) $ $) NIL)) (-3915 (((-3 $ "failed") (-1095)) 33)) (-2856 (((-717)) 31)) (-1338 (($) NIL)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3201 (((-860) $) 29)) (-3034 (((-1078) $) 39)) (-3108 (($ (-860)) 28)) (-2495 (((-1042) $) NIL)) (-3155 (((-1095) $) 13) (((-504) $) 19) (((-831 (-359)) $) 26) (((-831 (-528)) $) 22)) (-2222 (((-802) $) 16)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 36)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 35)))
-(((-804 |#1|) (-13 (-787) (-570 (-1095)) (-570 (-504)) (-570 (-831 (-359))) (-570 (-831 (-528))) (-10 -8 (-15 -3915 ((-3 $ "failed") (-1095))))) (-595 (-1095))) (T -804))
-((-3915 (*1 *1 *2) (|partial| -12 (-5 *2 (-1095)) (-5 *1 (-804 *3)) (-14 *3 (-595 *2)))))
-(-13 (-787) (-570 (-1095)) (-570 (-504)) (-570 (-831 (-359))) (-570 (-831 (-528))) (-10 -8 (-15 -3915 ((-3 $ "failed") (-1095)))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-1312 (((-3 $ "failed") $) NIL)) (-1297 (((-110) $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (((-891 |#1|) $) NIL) (($ (-891 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-162)))) (-3742 (((-717)) NIL)) (-2973 (((-1182) (-717)) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-2186 (((-110) $ $) NIL)) (-2296 (((-3 $ "failed") $ $) NIL (|has| |#1| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162)))))
-(((-805 |#1| |#2| |#3| |#4|) (-13 (-981) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2222 ((-891 |#1|) $)) (-15 -2222 ($ (-891 |#1|))) (IF (|has| |#1| (-343)) (-15 -2296 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2973 ((-1182) (-717))))) (-981) (-595 (-1095)) (-595 (-717)) (-717)) (T -805))
-((-2222 (*1 *2 *1) (-12 (-5 *2 (-891 *3)) (-5 *1 (-805 *3 *4 *5 *6)) (-4 *3 (-981)) (-14 *4 (-595 (-1095))) (-14 *5 (-595 (-717))) (-14 *6 (-717)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-891 *3)) (-4 *3 (-981)) (-5 *1 (-805 *3 *4 *5 *6)) (-14 *4 (-595 (-1095))) (-14 *5 (-595 (-717))) (-14 *6 (-717)))) (-2296 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-805 *2 *3 *4 *5)) (-4 *2 (-343)) (-4 *2 (-981)) (-14 *3 (-595 (-1095))) (-14 *4 (-595 (-717))) (-14 *5 (-717)))) (-2973 (*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-1182)) (-5 *1 (-805 *4 *5 *6 *7)) (-4 *4 (-981)) (-14 *5 (-595 (-1095))) (-14 *6 (-595 *3)) (-14 *7 *3))))
-(-13 (-981) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2222 ((-891 |#1|) $)) (-15 -2222 ($ (-891 |#1|))) (IF (|has| |#1| (-343)) (-15 -2296 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2973 ((-1182) (-717)))))
-((-2167 (((-3 (-163 |#3|) "failed") (-717) (-717) |#2| |#2|) 31)) (-2907 (((-3 (-387 |#3|) "failed") (-717) (-717) |#2| |#2|) 24)))
-(((-806 |#1| |#2| |#3|) (-10 -7 (-15 -2907 ((-3 (-387 |#3|) "failed") (-717) (-717) |#2| |#2|)) (-15 -2167 ((-3 (-163 |#3|) "failed") (-717) (-717) |#2| |#2|))) (-343) (-1168 |#1|) (-1153 |#1|)) (T -806))
-((-2167 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-717)) (-4 *5 (-343)) (-5 *2 (-163 *6)) (-5 *1 (-806 *5 *4 *6)) (-4 *4 (-1168 *5)) (-4 *6 (-1153 *5)))) (-2907 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-717)) (-4 *5 (-343)) (-5 *2 (-387 *6)) (-5 *1 (-806 *5 *4 *6)) (-4 *4 (-1168 *5)) (-4 *6 (-1153 *5)))))
-(-10 -7 (-15 -2907 ((-3 (-387 |#3|) "failed") (-717) (-717) |#2| |#2|)) (-15 -2167 ((-3 (-163 |#3|) "failed") (-717) (-717) |#2| |#2|)))
-((-2907 (((-3 (-387 (-1150 |#2| |#1|)) "failed") (-717) (-717) (-1169 |#1| |#2| |#3|)) 28) (((-3 (-387 (-1150 |#2| |#1|)) "failed") (-717) (-717) (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) 26)))
-(((-807 |#1| |#2| |#3|) (-10 -7 (-15 -2907 ((-3 (-387 (-1150 |#2| |#1|)) "failed") (-717) (-717) (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|))) (-15 -2907 ((-3 (-387 (-1150 |#2| |#1|)) "failed") (-717) (-717) (-1169 |#1| |#2| |#3|)))) (-343) (-1095) |#1|) (T -807))
-((-2907 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-717)) (-5 *4 (-1169 *5 *6 *7)) (-4 *5 (-343)) (-14 *6 (-1095)) (-14 *7 *5) (-5 *2 (-387 (-1150 *6 *5))) (-5 *1 (-807 *5 *6 *7)))) (-2907 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-717)) (-5 *4 (-1169 *5 *6 *7)) (-4 *5 (-343)) (-14 *6 (-1095)) (-14 *7 *5) (-5 *2 (-387 (-1150 *6 *5))) (-5 *1 (-807 *5 *6 *7)))))
-(-10 -7 (-15 -2907 ((-3 (-387 (-1150 |#2| |#1|)) "failed") (-717) (-717) (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|))) (-15 -2907 ((-3 (-387 (-1150 |#2| |#1|)) "failed") (-717) (-717) (-1169 |#1| |#2| |#3|))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 41)) (-1738 (($ $) 40)) (-1811 (((-110) $) 38)) (-3181 (((-3 $ "failed") $ $) 19)) (-2450 (($ $ (-528)) 62)) (-2213 (((-110) $ $) 59)) (-2816 (($) 17 T CONST)) (-3333 (($ (-1091 (-528)) (-528)) 61)) (-3519 (($ $ $) 55)) (-1312 (((-3 $ "failed") $) 34)) (-2006 (($ $) 64)) (-3498 (($ $ $) 56)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 51)) (-3689 (((-717) $) 69)) (-1297 (((-110) $) 31)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) 52)) (-2874 (((-528)) 66)) (-2839 (((-528) $) 65)) (-2057 (($ $ $) 46) (($ (-595 $)) 45)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 44)) (-2088 (($ $ $) 48) (($ (-595 $)) 47)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3740 (($ $ (-528)) 68)) (-3477 (((-3 $ "failed") $ $) 42)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 50)) (-3973 (((-717) $) 58)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 57)) (-1913 (((-1076 (-528)) $) 70)) (-3534 (($ $) 67)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ $) 43)) (-3742 (((-717)) 29)) (-4016 (((-110) $ $) 39)) (-4083 (((-528) $ (-528)) 63)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24)))
-(((-808 |#1|) (-133) (-528)) (T -808))
-((-1913 (*1 *2 *1) (-12 (-4 *1 (-808 *3)) (-5 *2 (-1076 (-528))))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-808 *3)) (-5 *2 (-717)))) (-3740 (*1 *1 *1 *2) (-12 (-4 *1 (-808 *3)) (-5 *2 (-528)))) (-3534 (*1 *1 *1) (-4 *1 (-808 *2))) (-2874 (*1 *2) (-12 (-4 *1 (-808 *3)) (-5 *2 (-528)))) (-2839 (*1 *2 *1) (-12 (-4 *1 (-808 *3)) (-5 *2 (-528)))) (-2006 (*1 *1 *1) (-4 *1 (-808 *2))) (-4083 (*1 *2 *1 *2) (-12 (-4 *1 (-808 *3)) (-5 *2 (-528)))) (-2450 (*1 *1 *1 *2) (-12 (-4 *1 (-808 *3)) (-5 *2 (-528)))) (-3333 (*1 *1 *2 *3) (-12 (-5 *2 (-1091 (-528))) (-5 *3 (-528)) (-4 *1 (-808 *4)))))
-(-13 (-288) (-140) (-10 -8 (-15 -1913 ((-1076 (-528)) $)) (-15 -3689 ((-717) $)) (-15 -3740 ($ $ (-528))) (-15 -3534 ($ $)) (-15 -2874 ((-528))) (-15 -2839 ((-528) $)) (-15 -2006 ($ $)) (-15 -4083 ((-528) $ (-528))) (-15 -2450 ($ $ (-528))) (-15 -3333 ($ (-1091 (-528)) (-528)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-569 (-802)) . T) ((-162) . T) ((-271) . T) ((-288) . T) ((-431) . T) ((-520) . T) ((-597 $) . T) ((-664 $) . T) ((-673) . T) ((-859) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2450 (($ $ (-528)) NIL)) (-2213 (((-110) $ $) NIL)) (-2816 (($) NIL T CONST)) (-3333 (($ (-1091 (-528)) (-528)) NIL)) (-3519 (($ $ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-2006 (($ $) NIL)) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-3689 (((-717) $) NIL)) (-1297 (((-110) $) NIL)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-2874 (((-528)) NIL)) (-2839 (((-528) $) NIL)) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3740 (($ $ (-528)) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-1913 (((-1076 (-528)) $) NIL)) (-3534 (($ $) NIL)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ $) NIL)) (-3742 (((-717)) NIL)) (-4016 (((-110) $ $) NIL)) (-4083 (((-528) $ (-528)) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-2186 (((-110) $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL)))
-(((-809 |#1|) (-808 |#1|) (-528)) (T -809))
-NIL
-(-808 |#1|)
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3598 (((-809 |#1|) $) NIL (|has| (-809 |#1|) (-288)))) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (|has| (-809 |#1|) (-848)))) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (|has| (-809 |#1|) (-848)))) (-2213 (((-110) $ $) NIL)) (-3605 (((-528) $) NIL (|has| (-809 |#1|) (-766)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-809 |#1|) "failed") $) NIL) (((-3 (-1095) "failed") $) NIL (|has| (-809 |#1|) (-972 (-1095)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| (-809 |#1|) (-972 (-528)))) (((-3 (-528) "failed") $) NIL (|has| (-809 |#1|) (-972 (-528))))) (-2409 (((-809 |#1|) $) NIL) (((-1095) $) NIL (|has| (-809 |#1|) (-972 (-1095)))) (((-387 (-528)) $) NIL (|has| (-809 |#1|) (-972 (-528)))) (((-528) $) NIL (|has| (-809 |#1|) (-972 (-528))))) (-2736 (($ $) NIL) (($ (-528) $) NIL)) (-3519 (($ $ $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| (-809 |#1|) (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| (-809 |#1|) (-591 (-528)))) (((-2 (|:| -2163 (-635 (-809 |#1|))) (|:| |vec| (-1177 (-809 |#1|)))) (-635 $) (-1177 $)) NIL) (((-635 (-809 |#1|)) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1338 (($) NIL (|has| (-809 |#1|) (-513)))) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2124 (((-110) $) NIL)) (-3657 (((-110) $) NIL (|has| (-809 |#1|) (-766)))) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (|has| (-809 |#1|) (-825 (-528)))) (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (|has| (-809 |#1|) (-825 (-359))))) (-1297 (((-110) $) NIL)) (-3037 (($ $) NIL)) (-3031 (((-809 |#1|) $) NIL)) (-3296 (((-3 $ "failed") $) NIL (|has| (-809 |#1|) (-1071)))) (-3710 (((-110) $) NIL (|has| (-809 |#1|) (-766)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-1436 (($ $ $) NIL (|has| (-809 |#1|) (-793)))) (-1736 (($ $ $) NIL (|has| (-809 |#1|) (-793)))) (-3106 (($ (-1 (-809 |#1|) (-809 |#1|)) $) NIL)) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL)) (-4197 (($) NIL (|has| (-809 |#1|) (-1071)) CONST)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3270 (($ $) NIL (|has| (-809 |#1|) (-288)))) (-2925 (((-809 |#1|) $) NIL (|has| (-809 |#1|) (-513)))) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (|has| (-809 |#1|) (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (|has| (-809 |#1|) (-848)))) (-2437 (((-398 $) $) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-4014 (($ $ (-595 (-809 |#1|)) (-595 (-809 |#1|))) NIL (|has| (-809 |#1|) (-290 (-809 |#1|)))) (($ $ (-809 |#1|) (-809 |#1|)) NIL (|has| (-809 |#1|) (-290 (-809 |#1|)))) (($ $ (-275 (-809 |#1|))) NIL (|has| (-809 |#1|) (-290 (-809 |#1|)))) (($ $ (-595 (-275 (-809 |#1|)))) NIL (|has| (-809 |#1|) (-290 (-809 |#1|)))) (($ $ (-595 (-1095)) (-595 (-809 |#1|))) NIL (|has| (-809 |#1|) (-489 (-1095) (-809 |#1|)))) (($ $ (-1095) (-809 |#1|)) NIL (|has| (-809 |#1|) (-489 (-1095) (-809 |#1|))))) (-3973 (((-717) $) NIL)) (-3043 (($ $ (-809 |#1|)) NIL (|has| (-809 |#1|) (-267 (-809 |#1|) (-809 |#1|))))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3235 (($ $) NIL (|has| (-809 |#1|) (-215))) (($ $ (-717)) NIL (|has| (-809 |#1|) (-215))) (($ $ (-1095)) NIL (|has| (-809 |#1|) (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| (-809 |#1|) (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| (-809 |#1|) (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| (-809 |#1|) (-839 (-1095)))) (($ $ (-1 (-809 |#1|) (-809 |#1|)) (-717)) NIL) (($ $ (-1 (-809 |#1|) (-809 |#1|))) NIL)) (-4118 (($ $) NIL)) (-3042 (((-809 |#1|) $) NIL)) (-3155 (((-831 (-528)) $) NIL (|has| (-809 |#1|) (-570 (-831 (-528))))) (((-831 (-359)) $) NIL (|has| (-809 |#1|) (-570 (-831 (-359))))) (((-504) $) NIL (|has| (-809 |#1|) (-570 (-504)))) (((-359) $) NIL (|has| (-809 |#1|) (-957))) (((-207) $) NIL (|has| (-809 |#1|) (-957)))) (-2356 (((-163 (-387 (-528))) $) NIL)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| (-809 |#1|) (-848))))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ $) NIL) (($ (-387 (-528))) NIL) (($ (-809 |#1|)) NIL) (($ (-1095)) NIL (|has| (-809 |#1|) (-972 (-1095))))) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| (-809 |#1|) (-848))) (|has| (-809 |#1|) (-138))))) (-3742 (((-717)) NIL)) (-1769 (((-809 |#1|) $) NIL (|has| (-809 |#1|) (-513)))) (-4016 (((-110) $ $) NIL)) (-4083 (((-387 (-528)) $ (-528)) NIL)) (-1775 (($ $) NIL (|has| (-809 |#1|) (-766)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($ $) NIL (|has| (-809 |#1|) (-215))) (($ $ (-717)) NIL (|has| (-809 |#1|) (-215))) (($ $ (-1095)) NIL (|has| (-809 |#1|) (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| (-809 |#1|) (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| (-809 |#1|) (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| (-809 |#1|) (-839 (-1095)))) (($ $ (-1 (-809 |#1|) (-809 |#1|)) (-717)) NIL) (($ $ (-1 (-809 |#1|) (-809 |#1|))) NIL)) (-2244 (((-110) $ $) NIL (|has| (-809 |#1|) (-793)))) (-2220 (((-110) $ $) NIL (|has| (-809 |#1|) (-793)))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (|has| (-809 |#1|) (-793)))) (-2208 (((-110) $ $) NIL (|has| (-809 |#1|) (-793)))) (-2296 (($ $ $) NIL) (($ (-809 |#1|) (-809 |#1|)) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL) (($ (-809 |#1|) $) NIL) (($ $ (-809 |#1|)) NIL)))
-(((-810 |#1|) (-13 (-929 (-809 |#1|)) (-10 -8 (-15 -4083 ((-387 (-528)) $ (-528))) (-15 -2356 ((-163 (-387 (-528))) $)) (-15 -2736 ($ $)) (-15 -2736 ($ (-528) $)))) (-528)) (T -810))
-((-4083 (*1 *2 *1 *3) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-810 *4)) (-14 *4 *3) (-5 *3 (-528)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-163 (-387 (-528)))) (-5 *1 (-810 *3)) (-14 *3 (-528)))) (-2736 (*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-14 *2 (-528)))) (-2736 (*1 *1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-810 *3)) (-14 *3 *2))))
-(-13 (-929 (-809 |#1|)) (-10 -8 (-15 -4083 ((-387 (-528)) $ (-528))) (-15 -2356 ((-163 (-387 (-528))) $)) (-15 -2736 ($ $)) (-15 -2736 ($ (-528) $))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3598 ((|#2| $) NIL (|has| |#2| (-288)))) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#2| (-848)))) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (|has| |#2| (-848)))) (-2213 (((-110) $ $) NIL)) (-3605 (((-528) $) NIL (|has| |#2| (-766)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#2| "failed") $) NIL) (((-3 (-1095) "failed") $) NIL (|has| |#2| (-972 (-1095)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#2| (-972 (-528)))) (((-3 (-528) "failed") $) NIL (|has| |#2| (-972 (-528))))) (-2409 ((|#2| $) NIL) (((-1095) $) NIL (|has| |#2| (-972 (-1095)))) (((-387 (-528)) $) NIL (|has| |#2| (-972 (-528)))) (((-528) $) NIL (|has| |#2| (-972 (-528))))) (-2736 (($ $) 31) (($ (-528) $) 32)) (-3519 (($ $ $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| |#2| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| |#2| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 $) (-1177 $)) NIL) (((-635 |#2|) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) 53)) (-1338 (($) NIL (|has| |#2| (-513)))) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2124 (((-110) $) NIL)) (-3657 (((-110) $) NIL (|has| |#2| (-766)))) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (|has| |#2| (-825 (-528)))) (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (|has| |#2| (-825 (-359))))) (-1297 (((-110) $) NIL)) (-3037 (($ $) NIL)) (-3031 ((|#2| $) NIL)) (-3296 (((-3 $ "failed") $) NIL (|has| |#2| (-1071)))) (-3710 (((-110) $) NIL (|has| |#2| (-766)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-1436 (($ $ $) NIL (|has| |#2| (-793)))) (-1736 (($ $ $) NIL (|has| |#2| (-793)))) (-3106 (($ (-1 |#2| |#2|) $) NIL)) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) 49)) (-4197 (($) NIL (|has| |#2| (-1071)) CONST)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3270 (($ $) NIL (|has| |#2| (-288)))) (-2925 ((|#2| $) NIL (|has| |#2| (-513)))) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#2| (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#2| (-848)))) (-2437 (((-398 $) $) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-4014 (($ $ (-595 |#2|) (-595 |#2|)) NIL (|has| |#2| (-290 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-290 |#2|))) (($ $ (-275 |#2|)) NIL (|has| |#2| (-290 |#2|))) (($ $ (-595 (-275 |#2|))) NIL (|has| |#2| (-290 |#2|))) (($ $ (-595 (-1095)) (-595 |#2|)) NIL (|has| |#2| (-489 (-1095) |#2|))) (($ $ (-1095) |#2|) NIL (|has| |#2| (-489 (-1095) |#2|)))) (-3973 (((-717) $) NIL)) (-3043 (($ $ |#2|) NIL (|has| |#2| (-267 |#2| |#2|)))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3235 (($ $) NIL (|has| |#2| (-215))) (($ $ (-717)) NIL (|has| |#2| (-215))) (($ $ (-1095)) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-1 |#2| |#2|) (-717)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-4118 (($ $) NIL)) (-3042 ((|#2| $) NIL)) (-3155 (((-831 (-528)) $) NIL (|has| |#2| (-570 (-831 (-528))))) (((-831 (-359)) $) NIL (|has| |#2| (-570 (-831 (-359))))) (((-504) $) NIL (|has| |#2| (-570 (-504)))) (((-359) $) NIL (|has| |#2| (-957))) (((-207) $) NIL (|has| |#2| (-957)))) (-2356 (((-163 (-387 (-528))) $) 68)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-848))))) (-2222 (((-802) $) 87) (($ (-528)) 19) (($ $) NIL) (($ (-387 (-528))) 24) (($ |#2|) 18) (($ (-1095)) NIL (|has| |#2| (-972 (-1095))))) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| |#2| (-848))) (|has| |#2| (-138))))) (-3742 (((-717)) NIL)) (-1769 ((|#2| $) NIL (|has| |#2| (-513)))) (-4016 (((-110) $ $) NIL)) (-4083 (((-387 (-528)) $ (-528)) 60)) (-1775 (($ $) NIL (|has| |#2| (-766)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) 14 T CONST)) (-2982 (($) 16 T CONST)) (-3245 (($ $) NIL (|has| |#2| (-215))) (($ $ (-717)) NIL (|has| |#2| (-215))) (($ $ (-1095)) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-1 |#2| |#2|) (-717)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2244 (((-110) $ $) NIL (|has| |#2| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#2| (-793)))) (-2186 (((-110) $ $) 35)) (-2232 (((-110) $ $) NIL (|has| |#2| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#2| (-793)))) (-2296 (($ $ $) 23) (($ |#2| |#2|) 54)) (-2286 (($ $) 39) (($ $ $) 41)) (-2275 (($ $ $) 37)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) 50)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 42) (($ $ $) 44) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
-(((-811 |#1| |#2|) (-13 (-929 |#2|) (-10 -8 (-15 -4083 ((-387 (-528)) $ (-528))) (-15 -2356 ((-163 (-387 (-528))) $)) (-15 -2736 ($ $)) (-15 -2736 ($ (-528) $)))) (-528) (-808 |#1|)) (T -811))
-((-4083 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-387 (-528))) (-5 *1 (-811 *4 *5)) (-5 *3 (-528)) (-4 *5 (-808 *4)))) (-2356 (*1 *2 *1) (-12 (-14 *3 (-528)) (-5 *2 (-163 (-387 (-528)))) (-5 *1 (-811 *3 *4)) (-4 *4 (-808 *3)))) (-2736 (*1 *1 *1) (-12 (-14 *2 (-528)) (-5 *1 (-811 *2 *3)) (-4 *3 (-808 *2)))) (-2736 (*1 *1 *2 *1) (-12 (-5 *2 (-528)) (-14 *3 *2) (-5 *1 (-811 *3 *4)) (-4 *4 (-808 *3)))))
-(-13 (-929 |#2|) (-10 -8 (-15 -4083 ((-387 (-528)) $ (-528))) (-15 -2356 ((-163 (-387 (-528))) $)) (-15 -2736 ($ $)) (-15 -2736 ($ (-528) $))))
-((-2207 (((-110) $ $) NIL (-12 (|has| |#1| (-1023)) (|has| |#2| (-1023))))) (-2500 ((|#2| $) 12)) (-3135 (($ |#1| |#2|) 9)) (-3034 (((-1078) $) NIL (-12 (|has| |#1| (-1023)) (|has| |#2| (-1023))))) (-2495 (((-1042) $) NIL (-12 (|has| |#1| (-1023)) (|has| |#2| (-1023))))) (-2890 ((|#1| $) 11)) (-2233 (($ |#1| |#2|) 10)) (-2222 (((-802) $) 18 (-1463 (-12 (|has| |#1| (-569 (-802))) (|has| |#2| (-569 (-802)))) (-12 (|has| |#1| (-1023)) (|has| |#2| (-1023)))))) (-2186 (((-110) $ $) 22 (-12 (|has| |#1| (-1023)) (|has| |#2| (-1023))))))
-(((-812 |#1| |#2|) (-13 (-1131) (-10 -8 (IF (|has| |#1| (-569 (-802))) (IF (|has| |#2| (-569 (-802))) (-6 (-569 (-802))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1023)) (IF (|has| |#2| (-1023)) (-6 (-1023)) |%noBranch|) |%noBranch|) (-15 -3135 ($ |#1| |#2|)) (-15 -2233 ($ |#1| |#2|)) (-15 -2890 (|#1| $)) (-15 -2500 (|#2| $)))) (-1131) (-1131)) (T -812))
-((-3135 (*1 *1 *2 *3) (-12 (-5 *1 (-812 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) (-2233 (*1 *1 *2 *3) (-12 (-5 *1 (-812 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) (-2890 (*1 *2 *1) (-12 (-4 *2 (-1131)) (-5 *1 (-812 *2 *3)) (-4 *3 (-1131)))) (-2500 (*1 *2 *1) (-12 (-4 *2 (-1131)) (-5 *1 (-812 *3 *2)) (-4 *3 (-1131)))))
-(-13 (-1131) (-10 -8 (IF (|has| |#1| (-569 (-802))) (IF (|has| |#2| (-569 (-802))) (-6 (-569 (-802))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1023)) (IF (|has| |#2| (-1023)) (-6 (-1023)) |%noBranch|) |%noBranch|) (-15 -3135 ($ |#1| |#2|)) (-15 -2233 ($ |#1| |#2|)) (-15 -2890 (|#1| $)) (-15 -2500 (|#2| $))))
-((-2207 (((-110) $ $) NIL)) (-3229 (((-528) $) 15)) (-3681 (($ (-148)) 11)) (-2596 (($ (-148)) 12)) (-3034 (((-1078) $) NIL)) (-2704 (((-148) $) 13)) (-2495 (((-1042) $) NIL)) (-4174 (($ (-148)) 9)) (-3418 (($ (-148)) 8)) (-2222 (((-802) $) 23) (($ (-148)) 16)) (-1681 (($ (-148)) 10)) (-2186 (((-110) $ $) NIL)))
-(((-813) (-13 (-1023) (-10 -8 (-15 -3418 ($ (-148))) (-15 -4174 ($ (-148))) (-15 -1681 ($ (-148))) (-15 -3681 ($ (-148))) (-15 -2596 ($ (-148))) (-15 -2704 ((-148) $)) (-15 -3229 ((-528) $)) (-15 -2222 ($ (-148)))))) (T -813))
-((-3418 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-813)))) (-4174 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-813)))) (-1681 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-813)))) (-3681 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-813)))) (-2596 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-813)))) (-2704 (*1 *2 *1) (-12 (-5 *2 (-148)) (-5 *1 (-813)))) (-3229 (*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-813)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-813)))))
-(-13 (-1023) (-10 -8 (-15 -3418 ($ (-148))) (-15 -4174 ($ (-148))) (-15 -1681 ($ (-148))) (-15 -3681 ($ (-148))) (-15 -2596 ($ (-148))) (-15 -2704 ((-148) $)) (-15 -3229 ((-528) $)) (-15 -2222 ($ (-148)))))
-((-2222 (((-296 (-528)) (-387 (-891 (-47)))) 23) (((-296 (-528)) (-891 (-47))) 18)))
-(((-814) (-10 -7 (-15 -2222 ((-296 (-528)) (-891 (-47)))) (-15 -2222 ((-296 (-528)) (-387 (-891 (-47))))))) (T -814))
-((-2222 (*1 *2 *3) (-12 (-5 *3 (-387 (-891 (-47)))) (-5 *2 (-296 (-528))) (-5 *1 (-814)))) (-2222 (*1 *2 *3) (-12 (-5 *3 (-891 (-47))) (-5 *2 (-296 (-528))) (-5 *1 (-814)))))
-(-10 -7 (-15 -2222 ((-296 (-528)) (-891 (-47)))) (-15 -2222 ((-296 (-528)) (-387 (-891 (-47))))))
-((-3106 (((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|)) 14)))
-(((-815 |#1| |#2|) (-10 -7 (-15 -3106 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|)))) (-1131) (-1131)) (T -815))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-816 *6)) (-5 *1 (-815 *5 *6)))))
-(-10 -7 (-15 -3106 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|))))
-((-3374 (($ |#1| |#1|) 8)) (-1445 ((|#1| $ (-717)) 10)))
-(((-816 |#1|) (-10 -8 (-15 -3374 ($ |#1| |#1|)) (-15 -1445 (|#1| $ (-717)))) (-1131)) (T -816))
-((-1445 (*1 *2 *1 *3) (-12 (-5 *3 (-717)) (-5 *1 (-816 *2)) (-4 *2 (-1131)))) (-3374 (*1 *1 *2 *2) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1131)))))
-(-10 -8 (-15 -3374 ($ |#1| |#1|)) (-15 -1445 (|#1| $ (-717))))
-((-3106 (((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|)) 14)))
-(((-817 |#1| |#2|) (-10 -7 (-15 -3106 ((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|)))) (-1131) (-1131)) (T -817))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-818 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-818 *6)) (-5 *1 (-817 *5 *6)))))
-(-10 -7 (-15 -3106 ((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|))))
-((-3374 (($ |#1| |#1| |#1|) 8)) (-1445 ((|#1| $ (-717)) 10)))
-(((-818 |#1|) (-10 -8 (-15 -3374 ($ |#1| |#1| |#1|)) (-15 -1445 (|#1| $ (-717)))) (-1131)) (T -818))
-((-1445 (*1 *2 *1 *3) (-12 (-5 *3 (-717)) (-5 *1 (-818 *2)) (-4 *2 (-1131)))) (-3374 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-818 *2)) (-4 *2 (-1131)))))
-(-10 -8 (-15 -3374 ($ |#1| |#1| |#1|)) (-15 -1445 (|#1| $ (-717))))
-((-4176 (((-595 (-1100)) (-1078)) 9)))
-(((-819) (-10 -7 (-15 -4176 ((-595 (-1100)) (-1078))))) (T -819))
-((-4176 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-595 (-1100))) (-5 *1 (-819)))))
-(-10 -7 (-15 -4176 ((-595 (-1100)) (-1078))))
-((-3106 (((-821 |#2|) (-1 |#2| |#1|) (-821 |#1|)) 14)))
-(((-820 |#1| |#2|) (-10 -7 (-15 -3106 ((-821 |#2|) (-1 |#2| |#1|) (-821 |#1|)))) (-1131) (-1131)) (T -820))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-821 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-821 *6)) (-5 *1 (-820 *5 *6)))))
-(-10 -7 (-15 -3106 ((-821 |#2|) (-1 |#2| |#1|) (-821 |#1|))))
-((-1565 (($ |#1| |#1| |#1|) 8)) (-1445 ((|#1| $ (-717)) 10)))
-(((-821 |#1|) (-10 -8 (-15 -1565 ($ |#1| |#1| |#1|)) (-15 -1445 (|#1| $ (-717)))) (-1131)) (T -821))
-((-1445 (*1 *2 *1 *3) (-12 (-5 *3 (-717)) (-5 *1 (-821 *2)) (-4 *2 (-1131)))) (-1565 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1131)))))
-(-10 -8 (-15 -1565 ($ |#1| |#1| |#1|)) (-15 -1445 (|#1| $ (-717))))
-((-3110 (((-1076 (-595 (-528))) (-595 (-528)) (-1076 (-595 (-528)))) 32)) (-3901 (((-1076 (-595 (-528))) (-595 (-528)) (-595 (-528))) 28)) (-1582 (((-1076 (-595 (-528))) (-595 (-528))) 41) (((-1076 (-595 (-528))) (-595 (-528)) (-595 (-528))) 40)) (-3379 (((-1076 (-595 (-528))) (-528)) 42)) (-1706 (((-1076 (-595 (-528))) (-528) (-528)) 22) (((-1076 (-595 (-528))) (-528)) 16) (((-1076 (-595 (-528))) (-528) (-528) (-528)) 12)) (-1570 (((-1076 (-595 (-528))) (-1076 (-595 (-528)))) 26)) (-4097 (((-595 (-528)) (-595 (-528))) 25)))
-(((-822) (-10 -7 (-15 -1706 ((-1076 (-595 (-528))) (-528) (-528) (-528))) (-15 -1706 ((-1076 (-595 (-528))) (-528))) (-15 -1706 ((-1076 (-595 (-528))) (-528) (-528))) (-15 -4097 ((-595 (-528)) (-595 (-528)))) (-15 -1570 ((-1076 (-595 (-528))) (-1076 (-595 (-528))))) (-15 -3901 ((-1076 (-595 (-528))) (-595 (-528)) (-595 (-528)))) (-15 -3110 ((-1076 (-595 (-528))) (-595 (-528)) (-1076 (-595 (-528))))) (-15 -1582 ((-1076 (-595 (-528))) (-595 (-528)) (-595 (-528)))) (-15 -1582 ((-1076 (-595 (-528))) (-595 (-528)))) (-15 -3379 ((-1076 (-595 (-528))) (-528))))) (T -822))
-((-3379 (*1 *2 *3) (-12 (-5 *2 (-1076 (-595 (-528)))) (-5 *1 (-822)) (-5 *3 (-528)))) (-1582 (*1 *2 *3) (-12 (-5 *2 (-1076 (-595 (-528)))) (-5 *1 (-822)) (-5 *3 (-595 (-528))))) (-1582 (*1 *2 *3 *3) (-12 (-5 *2 (-1076 (-595 (-528)))) (-5 *1 (-822)) (-5 *3 (-595 (-528))))) (-3110 (*1 *2 *3 *2) (-12 (-5 *2 (-1076 (-595 (-528)))) (-5 *3 (-595 (-528))) (-5 *1 (-822)))) (-3901 (*1 *2 *3 *3) (-12 (-5 *2 (-1076 (-595 (-528)))) (-5 *1 (-822)) (-5 *3 (-595 (-528))))) (-1570 (*1 *2 *2) (-12 (-5 *2 (-1076 (-595 (-528)))) (-5 *1 (-822)))) (-4097 (*1 *2 *2) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-822)))) (-1706 (*1 *2 *3 *3) (-12 (-5 *2 (-1076 (-595 (-528)))) (-5 *1 (-822)) (-5 *3 (-528)))) (-1706 (*1 *2 *3) (-12 (-5 *2 (-1076 (-595 (-528)))) (-5 *1 (-822)) (-5 *3 (-528)))) (-1706 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1076 (-595 (-528)))) (-5 *1 (-822)) (-5 *3 (-528)))))
-(-10 -7 (-15 -1706 ((-1076 (-595 (-528))) (-528) (-528) (-528))) (-15 -1706 ((-1076 (-595 (-528))) (-528))) (-15 -1706 ((-1076 (-595 (-528))) (-528) (-528))) (-15 -4097 ((-595 (-528)) (-595 (-528)))) (-15 -1570 ((-1076 (-595 (-528))) (-1076 (-595 (-528))))) (-15 -3901 ((-1076 (-595 (-528))) (-595 (-528)) (-595 (-528)))) (-15 -3110 ((-1076 (-595 (-528))) (-595 (-528)) (-1076 (-595 (-528))))) (-15 -1582 ((-1076 (-595 (-528))) (-595 (-528)) (-595 (-528)))) (-15 -1582 ((-1076 (-595 (-528))) (-595 (-528)))) (-15 -3379 ((-1076 (-595 (-528))) (-528))))
-((-3155 (((-831 (-359)) $) 9 (|has| |#1| (-570 (-831 (-359))))) (((-831 (-528)) $) 8 (|has| |#1| (-570 (-831 (-528)))))))
-(((-823 |#1|) (-133) (-1131)) (T -823))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-570 (-831 (-528)))) (-6 (-570 (-831 (-528)))) |%noBranch|) (IF (|has| |t#1| (-570 (-831 (-359)))) (-6 (-570 (-831 (-359)))) |%noBranch|)))
-(((-570 (-831 (-359))) |has| |#1| (-570 (-831 (-359)))) ((-570 (-831 (-528))) |has| |#1| (-570 (-831 (-528)))))
-((-2207 (((-110) $ $) NIL)) (-3462 (($) 14)) (-1707 (($ (-828 |#1| |#2|) (-828 |#1| |#3|)) 27)) (-3151 (((-828 |#1| |#3|) $) 16)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2658 (((-110) $) 22)) (-3987 (($) 19)) (-2222 (((-802) $) 30)) (-1218 (((-828 |#1| |#2|) $) 15)) (-2186 (((-110) $ $) 25)))
-(((-824 |#1| |#2| |#3|) (-13 (-1023) (-10 -8 (-15 -2658 ((-110) $)) (-15 -3987 ($)) (-15 -3462 ($)) (-15 -1707 ($ (-828 |#1| |#2|) (-828 |#1| |#3|))) (-15 -1218 ((-828 |#1| |#2|) $)) (-15 -3151 ((-828 |#1| |#3|) $)))) (-1023) (-1023) (-615 |#2|)) (T -824))
-((-2658 (*1 *2 *1) (-12 (-4 *4 (-1023)) (-5 *2 (-110)) (-5 *1 (-824 *3 *4 *5)) (-4 *3 (-1023)) (-4 *5 (-615 *4)))) (-3987 (*1 *1) (-12 (-4 *3 (-1023)) (-5 *1 (-824 *2 *3 *4)) (-4 *2 (-1023)) (-4 *4 (-615 *3)))) (-3462 (*1 *1) (-12 (-4 *3 (-1023)) (-5 *1 (-824 *2 *3 *4)) (-4 *2 (-1023)) (-4 *4 (-615 *3)))) (-1707 (*1 *1 *2 *3) (-12 (-5 *2 (-828 *4 *5)) (-5 *3 (-828 *4 *6)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-615 *5)) (-5 *1 (-824 *4 *5 *6)))) (-1218 (*1 *2 *1) (-12 (-4 *4 (-1023)) (-5 *2 (-828 *3 *4)) (-5 *1 (-824 *3 *4 *5)) (-4 *3 (-1023)) (-4 *5 (-615 *4)))) (-3151 (*1 *2 *1) (-12 (-4 *4 (-1023)) (-5 *2 (-828 *3 *5)) (-5 *1 (-824 *3 *4 *5)) (-4 *3 (-1023)) (-4 *5 (-615 *4)))))
-(-13 (-1023) (-10 -8 (-15 -2658 ((-110) $)) (-15 -3987 ($)) (-15 -3462 ($)) (-15 -1707 ($ (-828 |#1| |#2|) (-828 |#1| |#3|))) (-15 -1218 ((-828 |#1| |#2|) $)) (-15 -3151 ((-828 |#1| |#3|) $))))
-((-2207 (((-110) $ $) 7)) (-4181 (((-828 |#1| $) $ (-831 |#1|) (-828 |#1| $)) 13)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2186 (((-110) $ $) 6)))
-(((-825 |#1|) (-133) (-1023)) (T -825))
-((-4181 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-828 *4 *1)) (-5 *3 (-831 *4)) (-4 *1 (-825 *4)) (-4 *4 (-1023)))))
-(-13 (-1023) (-10 -8 (-15 -4181 ((-828 |t#1| $) $ (-831 |t#1|) (-828 |t#1| $)))))
-(((-99) . T) ((-569 (-802)) . T) ((-1023) . T))
-((-2341 (((-110) (-595 |#2|) |#3|) 23) (((-110) |#2| |#3|) 18)) (-1267 (((-828 |#1| |#2|) |#2| |#3|) 43 (-12 (-3617 (|has| |#2| (-972 (-1095)))) (-3617 (|has| |#2| (-981))))) (((-595 (-275 (-891 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-981)) (-3617 (|has| |#2| (-972 (-1095)))))) (((-595 (-275 |#2|)) |#2| |#3|) 35 (|has| |#2| (-972 (-1095)))) (((-824 |#1| |#2| (-595 |#2|)) (-595 |#2|) |#3|) 21)))
-(((-826 |#1| |#2| |#3|) (-10 -7 (-15 -2341 ((-110) |#2| |#3|)) (-15 -2341 ((-110) (-595 |#2|) |#3|)) (-15 -1267 ((-824 |#1| |#2| (-595 |#2|)) (-595 |#2|) |#3|)) (IF (|has| |#2| (-972 (-1095))) (-15 -1267 ((-595 (-275 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-981)) (-15 -1267 ((-595 (-275 (-891 |#2|))) |#2| |#3|)) (-15 -1267 ((-828 |#1| |#2|) |#2| |#3|))))) (-1023) (-825 |#1|) (-570 (-831 |#1|))) (T -826))
-((-1267 (*1 *2 *3 *4) (-12 (-4 *5 (-1023)) (-5 *2 (-828 *5 *3)) (-5 *1 (-826 *5 *3 *4)) (-3617 (-4 *3 (-972 (-1095)))) (-3617 (-4 *3 (-981))) (-4 *3 (-825 *5)) (-4 *4 (-570 (-831 *5))))) (-1267 (*1 *2 *3 *4) (-12 (-4 *5 (-1023)) (-5 *2 (-595 (-275 (-891 *3)))) (-5 *1 (-826 *5 *3 *4)) (-4 *3 (-981)) (-3617 (-4 *3 (-972 (-1095)))) (-4 *3 (-825 *5)) (-4 *4 (-570 (-831 *5))))) (-1267 (*1 *2 *3 *4) (-12 (-4 *5 (-1023)) (-5 *2 (-595 (-275 *3))) (-5 *1 (-826 *5 *3 *4)) (-4 *3 (-972 (-1095))) (-4 *3 (-825 *5)) (-4 *4 (-570 (-831 *5))))) (-1267 (*1 *2 *3 *4) (-12 (-4 *5 (-1023)) (-4 *6 (-825 *5)) (-5 *2 (-824 *5 *6 (-595 *6))) (-5 *1 (-826 *5 *6 *4)) (-5 *3 (-595 *6)) (-4 *4 (-570 (-831 *5))))) (-2341 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *6)) (-4 *6 (-825 *5)) (-4 *5 (-1023)) (-5 *2 (-110)) (-5 *1 (-826 *5 *6 *4)) (-4 *4 (-570 (-831 *5))))) (-2341 (*1 *2 *3 *4) (-12 (-4 *5 (-1023)) (-5 *2 (-110)) (-5 *1 (-826 *5 *3 *4)) (-4 *3 (-825 *5)) (-4 *4 (-570 (-831 *5))))))
-(-10 -7 (-15 -2341 ((-110) |#2| |#3|)) (-15 -2341 ((-110) (-595 |#2|) |#3|)) (-15 -1267 ((-824 |#1| |#2| (-595 |#2|)) (-595 |#2|) |#3|)) (IF (|has| |#2| (-972 (-1095))) (-15 -1267 ((-595 (-275 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-981)) (-15 -1267 ((-595 (-275 (-891 |#2|))) |#2| |#3|)) (-15 -1267 ((-828 |#1| |#2|) |#2| |#3|)))))
-((-3106 (((-828 |#1| |#3|) (-1 |#3| |#2|) (-828 |#1| |#2|)) 22)))
-(((-827 |#1| |#2| |#3|) (-10 -7 (-15 -3106 ((-828 |#1| |#3|) (-1 |#3| |#2|) (-828 |#1| |#2|)))) (-1023) (-1023) (-1023)) (T -827))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-828 *5 *6)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-828 *5 *7)) (-5 *1 (-827 *5 *6 *7)))))
-(-10 -7 (-15 -3106 ((-828 |#1| |#3|) (-1 |#3| |#2|) (-828 |#1| |#2|))))
-((-2207 (((-110) $ $) NIL)) (-4123 (($ $ $) 39)) (-4182 (((-3 (-110) "failed") $ (-831 |#1|)) 36)) (-3462 (($) 12)) (-3034 (((-1078) $) NIL)) (-2739 (($ (-831 |#1|) |#2| $) 20)) (-2495 (((-1042) $) NIL)) (-3453 (((-3 |#2| "failed") (-831 |#1|) $) 50)) (-2658 (((-110) $) 15)) (-3987 (($) 13)) (-2508 (((-595 (-2 (|:| -2927 (-1095)) (|:| -1780 |#2|))) $) 25)) (-2233 (($ (-595 (-2 (|:| -2927 (-1095)) (|:| -1780 |#2|)))) 23)) (-2222 (((-802) $) 44)) (-2476 (($ (-831 |#1|) |#2| $ |#2|) 48)) (-1315 (($ (-831 |#1|) |#2| $) 47)) (-2186 (((-110) $ $) 41)))
-(((-828 |#1| |#2|) (-13 (-1023) (-10 -8 (-15 -2658 ((-110) $)) (-15 -3987 ($)) (-15 -3462 ($)) (-15 -4123 ($ $ $)) (-15 -3453 ((-3 |#2| "failed") (-831 |#1|) $)) (-15 -1315 ($ (-831 |#1|) |#2| $)) (-15 -2739 ($ (-831 |#1|) |#2| $)) (-15 -2476 ($ (-831 |#1|) |#2| $ |#2|)) (-15 -2508 ((-595 (-2 (|:| -2927 (-1095)) (|:| -1780 |#2|))) $)) (-15 -2233 ($ (-595 (-2 (|:| -2927 (-1095)) (|:| -1780 |#2|))))) (-15 -4182 ((-3 (-110) "failed") $ (-831 |#1|))))) (-1023) (-1023)) (T -828))
-((-2658 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-828 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1023)))) (-3987 (*1 *1) (-12 (-5 *1 (-828 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1023)))) (-3462 (*1 *1) (-12 (-5 *1 (-828 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1023)))) (-4123 (*1 *1 *1 *1) (-12 (-5 *1 (-828 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1023)))) (-3453 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-831 *4)) (-4 *4 (-1023)) (-4 *2 (-1023)) (-5 *1 (-828 *4 *2)))) (-1315 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-831 *4)) (-4 *4 (-1023)) (-5 *1 (-828 *4 *3)) (-4 *3 (-1023)))) (-2739 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-831 *4)) (-4 *4 (-1023)) (-5 *1 (-828 *4 *3)) (-4 *3 (-1023)))) (-2476 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-831 *4)) (-4 *4 (-1023)) (-5 *1 (-828 *4 *3)) (-4 *3 (-1023)))) (-2508 (*1 *2 *1) (-12 (-5 *2 (-595 (-2 (|:| -2927 (-1095)) (|:| -1780 *4)))) (-5 *1 (-828 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1023)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-595 (-2 (|:| -2927 (-1095)) (|:| -1780 *4)))) (-4 *4 (-1023)) (-5 *1 (-828 *3 *4)) (-4 *3 (-1023)))) (-4182 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-831 *4)) (-4 *4 (-1023)) (-5 *2 (-110)) (-5 *1 (-828 *4 *5)) (-4 *5 (-1023)))))
-(-13 (-1023) (-10 -8 (-15 -2658 ((-110) $)) (-15 -3987 ($)) (-15 -3462 ($)) (-15 -4123 ($ $ $)) (-15 -3453 ((-3 |#2| "failed") (-831 |#1|) $)) (-15 -1315 ($ (-831 |#1|) |#2| $)) (-15 -2739 ($ (-831 |#1|) |#2| $)) (-15 -2476 ($ (-831 |#1|) |#2| $ |#2|)) (-15 -2508 ((-595 (-2 (|:| -2927 (-1095)) (|:| -1780 |#2|))) $)) (-15 -2233 ($ (-595 (-2 (|:| -2927 (-1095)) (|:| -1780 |#2|))))) (-15 -4182 ((-3 (-110) "failed") $ (-831 |#1|)))))
-((-3082 (((-831 |#1|) (-831 |#1|) (-595 (-1095)) (-1 (-110) (-595 |#2|))) 32) (((-831 |#1|) (-831 |#1|) (-595 (-1 (-110) |#2|))) 43) (((-831 |#1|) (-831 |#1|) (-1 (-110) |#2|)) 35)) (-4182 (((-110) (-595 |#2|) (-831 |#1|)) 40) (((-110) |#2| (-831 |#1|)) 36)) (-2056 (((-1 (-110) |#2|) (-831 |#1|)) 16)) (-3004 (((-595 |#2|) (-831 |#1|)) 24)) (-3668 (((-831 |#1|) (-831 |#1|) |#2|) 20)))
-(((-829 |#1| |#2|) (-10 -7 (-15 -3082 ((-831 |#1|) (-831 |#1|) (-1 (-110) |#2|))) (-15 -3082 ((-831 |#1|) (-831 |#1|) (-595 (-1 (-110) |#2|)))) (-15 -3082 ((-831 |#1|) (-831 |#1|) (-595 (-1095)) (-1 (-110) (-595 |#2|)))) (-15 -2056 ((-1 (-110) |#2|) (-831 |#1|))) (-15 -4182 ((-110) |#2| (-831 |#1|))) (-15 -4182 ((-110) (-595 |#2|) (-831 |#1|))) (-15 -3668 ((-831 |#1|) (-831 |#1|) |#2|)) (-15 -3004 ((-595 |#2|) (-831 |#1|)))) (-1023) (-1131)) (T -829))
-((-3004 (*1 *2 *3) (-12 (-5 *3 (-831 *4)) (-4 *4 (-1023)) (-5 *2 (-595 *5)) (-5 *1 (-829 *4 *5)) (-4 *5 (-1131)))) (-3668 (*1 *2 *2 *3) (-12 (-5 *2 (-831 *4)) (-4 *4 (-1023)) (-5 *1 (-829 *4 *3)) (-4 *3 (-1131)))) (-4182 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *6)) (-5 *4 (-831 *5)) (-4 *5 (-1023)) (-4 *6 (-1131)) (-5 *2 (-110)) (-5 *1 (-829 *5 *6)))) (-4182 (*1 *2 *3 *4) (-12 (-5 *4 (-831 *5)) (-4 *5 (-1023)) (-5 *2 (-110)) (-5 *1 (-829 *5 *3)) (-4 *3 (-1131)))) (-2056 (*1 *2 *3) (-12 (-5 *3 (-831 *4)) (-4 *4 (-1023)) (-5 *2 (-1 (-110) *5)) (-5 *1 (-829 *4 *5)) (-4 *5 (-1131)))) (-3082 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-831 *5)) (-5 *3 (-595 (-1095))) (-5 *4 (-1 (-110) (-595 *6))) (-4 *5 (-1023)) (-4 *6 (-1131)) (-5 *1 (-829 *5 *6)))) (-3082 (*1 *2 *2 *3) (-12 (-5 *2 (-831 *4)) (-5 *3 (-595 (-1 (-110) *5))) (-4 *4 (-1023)) (-4 *5 (-1131)) (-5 *1 (-829 *4 *5)))) (-3082 (*1 *2 *2 *3) (-12 (-5 *2 (-831 *4)) (-5 *3 (-1 (-110) *5)) (-4 *4 (-1023)) (-4 *5 (-1131)) (-5 *1 (-829 *4 *5)))))
-(-10 -7 (-15 -3082 ((-831 |#1|) (-831 |#1|) (-1 (-110) |#2|))) (-15 -3082 ((-831 |#1|) (-831 |#1|) (-595 (-1 (-110) |#2|)))) (-15 -3082 ((-831 |#1|) (-831 |#1|) (-595 (-1095)) (-1 (-110) (-595 |#2|)))) (-15 -2056 ((-1 (-110) |#2|) (-831 |#1|))) (-15 -4182 ((-110) |#2| (-831 |#1|))) (-15 -4182 ((-110) (-595 |#2|) (-831 |#1|))) (-15 -3668 ((-831 |#1|) (-831 |#1|) |#2|)) (-15 -3004 ((-595 |#2|) (-831 |#1|))))
-((-3106 (((-831 |#2|) (-1 |#2| |#1|) (-831 |#1|)) 19)))
-(((-830 |#1| |#2|) (-10 -7 (-15 -3106 ((-831 |#2|) (-1 |#2| |#1|) (-831 |#1|)))) (-1023) (-1023)) (T -830))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-831 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-5 *2 (-831 *6)) (-5 *1 (-830 *5 *6)))))
-(-10 -7 (-15 -3106 ((-831 |#2|) (-1 |#2| |#1|) (-831 |#1|))))
-((-2207 (((-110) $ $) NIL)) (-1700 (($ $ (-595 (-51))) 64)) (-2565 (((-595 $) $) 118)) (-3541 (((-2 (|:| |var| (-595 (-1095))) (|:| |pred| (-51))) $) 24)) (-4076 (((-110) $) 30)) (-4009 (($ $ (-595 (-1095)) (-51)) 25)) (-3381 (($ $ (-595 (-51))) 63)) (-3001 (((-3 |#1| "failed") $) 61) (((-3 (-1095) "failed") $) 140)) (-2409 ((|#1| $) 58) (((-1095) $) NIL)) (-2107 (($ $) 108)) (-3156 (((-110) $) 47)) (-4064 (((-595 (-51)) $) 45)) (-2089 (($ (-1095) (-110) (-110) (-110)) 65)) (-1608 (((-3 (-595 $) "failed") (-595 $)) 72)) (-1983 (((-110) $) 50)) (-1384 (((-110) $) 49)) (-3034 (((-1078) $) NIL)) (-3024 (((-3 (-595 $) "failed") $) 36)) (-4017 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-1956 (((-3 (-2 (|:| |val| $) (|:| -2564 $)) "failed") $) 83)) (-1281 (((-3 (-595 $) "failed") $) 33)) (-2788 (((-3 (-595 $) "failed") $ (-112)) 107) (((-3 (-2 (|:| -4057 (-112)) (|:| |arg| (-595 $))) "failed") $) 95)) (-2109 (((-3 (-595 $) "failed") $) 37)) (-3352 (((-3 (-2 (|:| |val| $) (|:| -2564 (-717))) "failed") $) 40)) (-1503 (((-110) $) 29)) (-2495 (((-1042) $) NIL)) (-1863 (((-110) $) 21)) (-3844 (((-110) $) 46)) (-2864 (((-595 (-51)) $) 111)) (-3577 (((-110) $) 48)) (-3043 (($ (-112) (-595 $)) 92)) (-3972 (((-717) $) 28)) (-2406 (($ $) 62)) (-3155 (($ (-595 $)) 59)) (-4217 (((-110) $) 26)) (-2222 (((-802) $) 53) (($ |#1|) 18) (($ (-1095)) 66)) (-3668 (($ $ (-51)) 110)) (-2969 (($) 91 T CONST)) (-2982 (($) 73 T CONST)) (-2186 (((-110) $ $) 79)) (-2296 (($ $ $) 100)) (-2275 (($ $ $) 104)) (** (($ $ (-717)) 99) (($ $ $) 54)) (* (($ $ $) 105)))
-(((-831 |#1|) (-13 (-1023) (-972 |#1|) (-972 (-1095)) (-10 -8 (-15 0 ($) -2636) (-15 1 ($) -2636) (-15 -1281 ((-3 (-595 $) "failed") $)) (-15 -3024 ((-3 (-595 $) "failed") $)) (-15 -2788 ((-3 (-595 $) "failed") $ (-112))) (-15 -2788 ((-3 (-2 (|:| -4057 (-112)) (|:| |arg| (-595 $))) "failed") $)) (-15 -3352 ((-3 (-2 (|:| |val| $) (|:| -2564 (-717))) "failed") $)) (-15 -4017 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2109 ((-3 (-595 $) "failed") $)) (-15 -1956 ((-3 (-2 (|:| |val| $) (|:| -2564 $)) "failed") $)) (-15 -3043 ($ (-112) (-595 $))) (-15 -2275 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-717))) (-15 ** ($ $ $)) (-15 -2296 ($ $ $)) (-15 -3972 ((-717) $)) (-15 -3155 ($ (-595 $))) (-15 -2406 ($ $)) (-15 -1503 ((-110) $)) (-15 -3156 ((-110) $)) (-15 -4076 ((-110) $)) (-15 -4217 ((-110) $)) (-15 -3577 ((-110) $)) (-15 -1384 ((-110) $)) (-15 -1983 ((-110) $)) (-15 -3844 ((-110) $)) (-15 -4064 ((-595 (-51)) $)) (-15 -3381 ($ $ (-595 (-51)))) (-15 -1700 ($ $ (-595 (-51)))) (-15 -2089 ($ (-1095) (-110) (-110) (-110))) (-15 -4009 ($ $ (-595 (-1095)) (-51))) (-15 -3541 ((-2 (|:| |var| (-595 (-1095))) (|:| |pred| (-51))) $)) (-15 -1863 ((-110) $)) (-15 -2107 ($ $)) (-15 -3668 ($ $ (-51))) (-15 -2864 ((-595 (-51)) $)) (-15 -2565 ((-595 $) $)) (-15 -1608 ((-3 (-595 $) "failed") (-595 $))))) (-1023)) (T -831))
-((-2969 (*1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1023)))) (-2982 (*1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1023)))) (-1281 (*1 *2 *1) (|partial| -12 (-5 *2 (-595 (-831 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-3024 (*1 *2 *1) (|partial| -12 (-5 *2 (-595 (-831 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-2788 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-112)) (-5 *2 (-595 (-831 *4))) (-5 *1 (-831 *4)) (-4 *4 (-1023)))) (-2788 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4057 (-112)) (|:| |arg| (-595 (-831 *3))))) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-3352 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-831 *3)) (|:| -2564 (-717)))) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-4017 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-831 *3)) (|:| |den| (-831 *3)))) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-2109 (*1 *2 *1) (|partial| -12 (-5 *2 (-595 (-831 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-1956 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-831 *3)) (|:| -2564 (-831 *3)))) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-3043 (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-595 (-831 *4))) (-5 *1 (-831 *4)) (-4 *4 (-1023)))) (-2275 (*1 *1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1023)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1023)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1023)))) (-2296 (*1 *1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1023)))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-3155 (*1 *1 *2) (-12 (-5 *2 (-595 (-831 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-2406 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1023)))) (-1503 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-3156 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-4076 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-4217 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-1983 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-3844 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-595 (-51))) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-3381 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-51))) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-1700 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-51))) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-2089 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-110)) (-5 *1 (-831 *4)) (-4 *4 (-1023)))) (-4009 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-595 (-1095))) (-5 *3 (-51)) (-5 *1 (-831 *4)) (-4 *4 (-1023)))) (-3541 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-595 (-1095))) (|:| |pred| (-51)))) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-1863 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-2107 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1023)))) (-3668 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-2864 (*1 *2 *1) (-12 (-5 *2 (-595 (-51))) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-595 (-831 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1023)))) (-1608 (*1 *2 *2) (|partial| -12 (-5 *2 (-595 (-831 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1023)))))
-(-13 (-1023) (-972 |#1|) (-972 (-1095)) (-10 -8 (-15 (-2969) ($) -2636) (-15 (-2982) ($) -2636) (-15 -1281 ((-3 (-595 $) "failed") $)) (-15 -3024 ((-3 (-595 $) "failed") $)) (-15 -2788 ((-3 (-595 $) "failed") $ (-112))) (-15 -2788 ((-3 (-2 (|:| -4057 (-112)) (|:| |arg| (-595 $))) "failed") $)) (-15 -3352 ((-3 (-2 (|:| |val| $) (|:| -2564 (-717))) "failed") $)) (-15 -4017 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2109 ((-3 (-595 $) "failed") $)) (-15 -1956 ((-3 (-2 (|:| |val| $) (|:| -2564 $)) "failed") $)) (-15 -3043 ($ (-112) (-595 $))) (-15 -2275 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-717))) (-15 ** ($ $ $)) (-15 -2296 ($ $ $)) (-15 -3972 ((-717) $)) (-15 -3155 ($ (-595 $))) (-15 -2406 ($ $)) (-15 -1503 ((-110) $)) (-15 -3156 ((-110) $)) (-15 -4076 ((-110) $)) (-15 -4217 ((-110) $)) (-15 -3577 ((-110) $)) (-15 -1384 ((-110) $)) (-15 -1983 ((-110) $)) (-15 -3844 ((-110) $)) (-15 -4064 ((-595 (-51)) $)) (-15 -3381 ($ $ (-595 (-51)))) (-15 -1700 ($ $ (-595 (-51)))) (-15 -2089 ($ (-1095) (-110) (-110) (-110))) (-15 -4009 ($ $ (-595 (-1095)) (-51))) (-15 -3541 ((-2 (|:| |var| (-595 (-1095))) (|:| |pred| (-51))) $)) (-15 -1863 ((-110) $)) (-15 -2107 ($ $)) (-15 -3668 ($ $ (-51))) (-15 -2864 ((-595 (-51)) $)) (-15 -2565 ((-595 $) $)) (-15 -1608 ((-3 (-595 $) "failed") (-595 $)))))
-((-2207 (((-110) $ $) NIL)) (-3642 (((-595 |#1|) $) 16)) (-3113 (((-110) $) 38)) (-3001 (((-3 (-620 |#1|) "failed") $) 43)) (-2409 (((-620 |#1|) $) 41)) (-2902 (($ $) 18)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-1584 (((-717) $) 46)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2890 (((-620 |#1|) $) 17)) (-2222 (((-802) $) 37) (($ (-620 |#1|)) 21) (((-765 |#1|) $) 27) (($ |#1|) 20)) (-2982 (($) 8 T CONST)) (-2145 (((-595 (-620 |#1|)) $) 23)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 11)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 49)))
-(((-832 |#1|) (-13 (-793) (-972 (-620 |#1|)) (-10 -8 (-15 1 ($) -2636) (-15 -2222 ((-765 |#1|) $)) (-15 -2222 ($ |#1|)) (-15 -2890 ((-620 |#1|) $)) (-15 -1584 ((-717) $)) (-15 -2145 ((-595 (-620 |#1|)) $)) (-15 -2902 ($ $)) (-15 -3113 ((-110) $)) (-15 -3642 ((-595 |#1|) $)))) (-793)) (T -832))
-((-2982 (*1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-793)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-765 *3)) (-5 *1 (-832 *3)) (-4 *3 (-793)))) (-2222 (*1 *1 *2) (-12 (-5 *1 (-832 *2)) (-4 *2 (-793)))) (-2890 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-832 *3)) (-4 *3 (-793)))) (-1584 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-832 *3)) (-4 *3 (-793)))) (-2145 (*1 *2 *1) (-12 (-5 *2 (-595 (-620 *3))) (-5 *1 (-832 *3)) (-4 *3 (-793)))) (-2902 (*1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-793)))) (-3113 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-832 *3)) (-4 *3 (-793)))) (-3642 (*1 *2 *1) (-12 (-5 *2 (-595 *3)) (-5 *1 (-832 *3)) (-4 *3 (-793)))))
-(-13 (-793) (-972 (-620 |#1|)) (-10 -8 (-15 (-2982) ($) -2636) (-15 -2222 ((-765 |#1|) $)) (-15 -2222 ($ |#1|)) (-15 -2890 ((-620 |#1|) $)) (-15 -1584 ((-717) $)) (-15 -2145 ((-595 (-620 |#1|)) $)) (-15 -2902 ($ $)) (-15 -3113 ((-110) $)) (-15 -3642 ((-595 |#1|) $))))
-((-2958 ((|#1| |#1| |#1|) 19)))
-(((-833 |#1| |#2|) (-10 -7 (-15 -2958 (|#1| |#1| |#1|))) (-1153 |#2|) (-981)) (T -833))
-((-2958 (*1 *2 *2 *2) (-12 (-4 *3 (-981)) (-5 *1 (-833 *2 *3)) (-4 *2 (-1153 *3)))))
-(-10 -7 (-15 -2958 (|#1| |#1| |#1|)))
-((-2207 (((-110) $ $) 7)) (-2702 (((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |pde| (-595 (-296 (-207)))) (|:| |constraints| (-595 (-2 (|:| |start| (-207)) (|:| |finish| (-207)) (|:| |grid| (-717)) (|:| |boundaryType| (-528)) (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207)))))) (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078)) (|:| |tol| (-207)))) 14)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-3447 (((-970) (-2 (|:| |pde| (-595 (-296 (-207)))) (|:| |constraints| (-595 (-2 (|:| |start| (-207)) (|:| |finish| (-207)) (|:| |grid| (-717)) (|:| |boundaryType| (-528)) (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207)))))) (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078)) (|:| |tol| (-207)))) 13)) (-2186 (((-110) $ $) 6)))
-(((-834) (-133)) (T -834))
-((-2702 (*1 *2 *3 *4) (-12 (-4 *1 (-834)) (-5 *3 (-992)) (-5 *4 (-2 (|:| |pde| (-595 (-296 (-207)))) (|:| |constraints| (-595 (-2 (|:| |start| (-207)) (|:| |finish| (-207)) (|:| |grid| (-717)) (|:| |boundaryType| (-528)) (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207)))))) (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078)) (|:| |tol| (-207)))) (-5 *2 (-2 (|:| -2702 (-359)) (|:| |explanations| (-1078)))))) (-3447 (*1 *2 *3) (-12 (-4 *1 (-834)) (-5 *3 (-2 (|:| |pde| (-595 (-296 (-207)))) (|:| |constraints| (-595 (-2 (|:| |start| (-207)) (|:| |finish| (-207)) (|:| |grid| (-717)) (|:| |boundaryType| (-528)) (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207)))))) (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078)) (|:| |tol| (-207)))) (-5 *2 (-970)))))
-(-13 (-1023) (-10 -7 (-15 -2702 ((-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))) (-992) (-2 (|:| |pde| (-595 (-296 (-207)))) (|:| |constraints| (-595 (-2 (|:| |start| (-207)) (|:| |finish| (-207)) (|:| |grid| (-717)) (|:| |boundaryType| (-528)) (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207)))))) (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078)) (|:| |tol| (-207))))) (-15 -3447 ((-970) (-2 (|:| |pde| (-595 (-296 (-207)))) (|:| |constraints| (-595 (-2 (|:| |start| (-207)) (|:| |finish| (-207)) (|:| |grid| (-717)) (|:| |boundaryType| (-528)) (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207)))))) (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078)) (|:| |tol| (-207)))))))
-(((-99) . T) ((-569 (-802)) . T) ((-1023) . T))
-((-1539 ((|#1| |#1| (-717)) 24)) (-3980 (((-3 |#1| "failed") |#1| |#1|) 22)) (-1208 (((-3 (-2 (|:| -3562 |#1|) (|:| -3572 |#1|)) "failed") |#1| (-717) (-717)) 27) (((-595 |#1|) |#1|) 29)))
-(((-835 |#1| |#2|) (-10 -7 (-15 -1208 ((-595 |#1|) |#1|)) (-15 -1208 ((-3 (-2 (|:| -3562 |#1|) (|:| -3572 |#1|)) "failed") |#1| (-717) (-717))) (-15 -3980 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1539 (|#1| |#1| (-717)))) (-1153 |#2|) (-343)) (T -835))
-((-1539 (*1 *2 *2 *3) (-12 (-5 *3 (-717)) (-4 *4 (-343)) (-5 *1 (-835 *2 *4)) (-4 *2 (-1153 *4)))) (-3980 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-343)) (-5 *1 (-835 *2 *3)) (-4 *2 (-1153 *3)))) (-1208 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-717)) (-4 *5 (-343)) (-5 *2 (-2 (|:| -3562 *3) (|:| -3572 *3))) (-5 *1 (-835 *3 *5)) (-4 *3 (-1153 *5)))) (-1208 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-595 *3)) (-5 *1 (-835 *3 *4)) (-4 *3 (-1153 *4)))))
-(-10 -7 (-15 -1208 ((-595 |#1|) |#1|)) (-15 -1208 ((-3 (-2 (|:| -3562 |#1|) (|:| -3572 |#1|)) "failed") |#1| (-717) (-717))) (-15 -3980 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1539 (|#1| |#1| (-717))))
-((-1651 (((-970) (-359) (-359) (-359) (-359) (-717) (-717) (-595 (-296 (-359))) (-595 (-595 (-296 (-359)))) (-1078)) 96) (((-970) (-359) (-359) (-359) (-359) (-717) (-717) (-595 (-296 (-359))) (-595 (-595 (-296 (-359)))) (-1078) (-207)) 91) (((-970) (-837) (-992)) 83) (((-970) (-837)) 84)) (-2702 (((-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078)))) (-837) (-992)) 59) (((-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078)))) (-837)) 61)))
-(((-836) (-10 -7 (-15 -1651 ((-970) (-837))) (-15 -1651 ((-970) (-837) (-992))) (-15 -1651 ((-970) (-359) (-359) (-359) (-359) (-717) (-717) (-595 (-296 (-359))) (-595 (-595 (-296 (-359)))) (-1078) (-207))) (-15 -1651 ((-970) (-359) (-359) (-359) (-359) (-717) (-717) (-595 (-296 (-359))) (-595 (-595 (-296 (-359)))) (-1078))) (-15 -2702 ((-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078)))) (-837))) (-15 -2702 ((-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078)))) (-837) (-992))))) (T -836))
-((-2702 (*1 *2 *3 *4) (-12 (-5 *3 (-837)) (-5 *4 (-992)) (-5 *2 (-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078))))) (-5 *1 (-836)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078))))) (-5 *1 (-836)))) (-1651 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-717)) (-5 *6 (-595 (-595 (-296 *3)))) (-5 *7 (-1078)) (-5 *5 (-595 (-296 (-359)))) (-5 *3 (-359)) (-5 *2 (-970)) (-5 *1 (-836)))) (-1651 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-717)) (-5 *6 (-595 (-595 (-296 *3)))) (-5 *7 (-1078)) (-5 *8 (-207)) (-5 *5 (-595 (-296 (-359)))) (-5 *3 (-359)) (-5 *2 (-970)) (-5 *1 (-836)))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-837)) (-5 *4 (-992)) (-5 *2 (-970)) (-5 *1 (-836)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-970)) (-5 *1 (-836)))))
-(-10 -7 (-15 -1651 ((-970) (-837))) (-15 -1651 ((-970) (-837) (-992))) (-15 -1651 ((-970) (-359) (-359) (-359) (-359) (-717) (-717) (-595 (-296 (-359))) (-595 (-595 (-296 (-359)))) (-1078) (-207))) (-15 -1651 ((-970) (-359) (-359) (-359) (-359) (-717) (-717) (-595 (-296 (-359))) (-595 (-595 (-296 (-359)))) (-1078))) (-15 -2702 ((-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078)))) (-837))) (-15 -2702 ((-2 (|:| -2702 (-359)) (|:| -3814 (-1078)) (|:| |explanations| (-595 (-1078)))) (-837) (-992))))
-((-2207 (((-110) $ $) NIL)) (-2409 (((-2 (|:| |pde| (-595 (-296 (-207)))) (|:| |constraints| (-595 (-2 (|:| |start| (-207)) (|:| |finish| (-207)) (|:| |grid| (-717)) (|:| |boundaryType| (-528)) (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207)))))) (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078)) (|:| |tol| (-207))) $) 19)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 21) (($ (-2 (|:| |pde| (-595 (-296 (-207)))) (|:| |constraints| (-595 (-2 (|:| |start| (-207)) (|:| |finish| (-207)) (|:| |grid| (-717)) (|:| |boundaryType| (-528)) (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207)))))) (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078)) (|:| |tol| (-207)))) 18)) (-2186 (((-110) $ $) NIL)))
-(((-837) (-13 (-1023) (-10 -8 (-15 -2222 ($ (-2 (|:| |pde| (-595 (-296 (-207)))) (|:| |constraints| (-595 (-2 (|:| |start| (-207)) (|:| |finish| (-207)) (|:| |grid| (-717)) (|:| |boundaryType| (-528)) (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207)))))) (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078)) (|:| |tol| (-207))))) (-15 -2222 ((-802) $)) (-15 -2409 ((-2 (|:| |pde| (-595 (-296 (-207)))) (|:| |constraints| (-595 (-2 (|:| |start| (-207)) (|:| |finish| (-207)) (|:| |grid| (-717)) (|:| |boundaryType| (-528)) (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207)))))) (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078)) (|:| |tol| (-207))) $))))) (T -837))
-((-2222 (*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-837)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-595 (-296 (-207)))) (|:| |constraints| (-595 (-2 (|:| |start| (-207)) (|:| |finish| (-207)) (|:| |grid| (-717)) (|:| |boundaryType| (-528)) (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207)))))) (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078)) (|:| |tol| (-207)))) (-5 *1 (-837)))) (-2409 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-595 (-296 (-207)))) (|:| |constraints| (-595 (-2 (|:| |start| (-207)) (|:| |finish| (-207)) (|:| |grid| (-717)) (|:| |boundaryType| (-528)) (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207)))))) (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078)) (|:| |tol| (-207)))) (-5 *1 (-837)))))
-(-13 (-1023) (-10 -8 (-15 -2222 ($ (-2 (|:| |pde| (-595 (-296 (-207)))) (|:| |constraints| (-595 (-2 (|:| |start| (-207)) (|:| |finish| (-207)) (|:| |grid| (-717)) (|:| |boundaryType| (-528)) (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207)))))) (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078)) (|:| |tol| (-207))))) (-15 -2222 ((-802) $)) (-15 -2409 ((-2 (|:| |pde| (-595 (-296 (-207)))) (|:| |constraints| (-595 (-2 (|:| |start| (-207)) (|:| |finish| (-207)) (|:| |grid| (-717)) (|:| |boundaryType| (-528)) (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207)))))) (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078)) (|:| |tol| (-207))) $))))
-((-3235 (($ $ |#2|) NIL) (($ $ (-595 |#2|)) 10) (($ $ |#2| (-717)) 12) (($ $ (-595 |#2|) (-595 (-717))) 15)) (-3245 (($ $ |#2|) 16) (($ $ (-595 |#2|)) 18) (($ $ |#2| (-717)) 19) (($ $ (-595 |#2|) (-595 (-717))) 21)))
-(((-838 |#1| |#2|) (-10 -8 (-15 -3245 (|#1| |#1| (-595 |#2|) (-595 (-717)))) (-15 -3245 (|#1| |#1| |#2| (-717))) (-15 -3245 (|#1| |#1| (-595 |#2|))) (-15 -3245 (|#1| |#1| |#2|)) (-15 -3235 (|#1| |#1| (-595 |#2|) (-595 (-717)))) (-15 -3235 (|#1| |#1| |#2| (-717))) (-15 -3235 (|#1| |#1| (-595 |#2|))) (-15 -3235 (|#1| |#1| |#2|))) (-839 |#2|) (-1023)) (T -838))
-NIL
-(-10 -8 (-15 -3245 (|#1| |#1| (-595 |#2|) (-595 (-717)))) (-15 -3245 (|#1| |#1| |#2| (-717))) (-15 -3245 (|#1| |#1| (-595 |#2|))) (-15 -3245 (|#1| |#1| |#2|)) (-15 -3235 (|#1| |#1| (-595 |#2|) (-595 (-717)))) (-15 -3235 (|#1| |#1| |#2| (-717))) (-15 -3235 (|#1| |#1| (-595 |#2|))) (-15 -3235 (|#1| |#1| |#2|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-1312 (((-3 $ "failed") $) 34)) (-1297 (((-110) $) 31)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-3235 (($ $ |#1|) 42) (($ $ (-595 |#1|)) 41) (($ $ |#1| (-717)) 40) (($ $ (-595 |#1|) (-595 (-717))) 39)) (-2222 (((-802) $) 11) (($ (-528)) 28)) (-3742 (((-717)) 29)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-3245 (($ $ |#1|) 38) (($ $ (-595 |#1|)) 37) (($ $ |#1| (-717)) 36) (($ $ (-595 |#1|) (-595 (-717))) 35)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24)))
-(((-839 |#1|) (-133) (-1023)) (T -839))
-((-3235 (*1 *1 *1 *2) (-12 (-4 *1 (-839 *2)) (-4 *2 (-1023)))) (-3235 (*1 *1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *1 (-839 *3)) (-4 *3 (-1023)))) (-3235 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-717)) (-4 *1 (-839 *2)) (-4 *2 (-1023)))) (-3235 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-595 *4)) (-5 *3 (-595 (-717))) (-4 *1 (-839 *4)) (-4 *4 (-1023)))) (-3245 (*1 *1 *1 *2) (-12 (-4 *1 (-839 *2)) (-4 *2 (-1023)))) (-3245 (*1 *1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *1 (-839 *3)) (-4 *3 (-1023)))) (-3245 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-717)) (-4 *1 (-839 *2)) (-4 *2 (-1023)))) (-3245 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-595 *4)) (-5 *3 (-595 (-717))) (-4 *1 (-839 *4)) (-4 *4 (-1023)))))
-(-13 (-981) (-10 -8 (-15 -3235 ($ $ |t#1|)) (-15 -3235 ($ $ (-595 |t#1|))) (-15 -3235 ($ $ |t#1| (-717))) (-15 -3235 ($ $ (-595 |t#1|) (-595 (-717)))) (-15 -3245 ($ $ |t#1|)) (-15 -3245 ($ $ (-595 |t#1|))) (-15 -3245 ($ $ |t#1| (-717))) (-15 -3245 ($ $ (-595 |t#1|) (-595 (-717))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-569 (-802)) . T) ((-597 $) . T) ((-673) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3327 ((|#1| $) 26)) (-3535 (((-110) $ (-717)) NIL)) (-2074 ((|#1| $ |#1|) NIL (|has| $ (-6 -4265)))) (-2033 (($ $ $) NIL (|has| $ (-6 -4265)))) (-3187 (($ $ $) NIL (|has| $ (-6 -4265)))) (-2381 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4265))) (($ $ "left" $) NIL (|has| $ (-6 -4265))) (($ $ "right" $) NIL (|has| $ (-6 -4265)))) (-3409 (($ $ (-595 $)) NIL (|has| $ (-6 -4265)))) (-2816 (($) NIL T CONST)) (-3572 (($ $) 25)) (-2737 (($ |#1|) 12) (($ $ $) 17)) (-3342 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-1690 (((-595 $) $) NIL)) (-1313 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2029 (((-110) $ (-717)) NIL)) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2800 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3562 (($ $) 23)) (-3298 (((-595 |#1|) $) NIL)) (-2578 (((-110) $) 20)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3241 (((-528) $ $) NIL)) (-3177 (((-110) $) NIL)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2406 (($ $) NIL)) (-2222 (((-1118 |#1|) $) 9) (((-802) $) 29 (|has| |#1| (-569 (-802))))) (-3813 (((-595 $) $) NIL)) (-2688 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 21 (|has| |#1| (-1023)))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-840 |#1|) (-13 (-117 |#1|) (-10 -8 (-15 -2737 ($ |#1|)) (-15 -2737 ($ $ $)) (-15 -2222 ((-1118 |#1|) $)))) (-1023)) (T -840))
-((-2737 (*1 *1 *2) (-12 (-5 *1 (-840 *2)) (-4 *2 (-1023)))) (-2737 (*1 *1 *1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-1023)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-1118 *3)) (-5 *1 (-840 *3)) (-4 *3 (-1023)))))
-(-13 (-117 |#1|) (-10 -8 (-15 -2737 ($ |#1|)) (-15 -2737 ($ $ $)) (-15 -2222 ((-1118 |#1|) $))))
-((-2485 ((|#2| (-1062 |#1| |#2|)) 40)))
-(((-841 |#1| |#2|) (-10 -7 (-15 -2485 (|#2| (-1062 |#1| |#2|)))) (-860) (-13 (-981) (-10 -7 (-6 (-4266 "*"))))) (T -841))
-((-2485 (*1 *2 *3) (-12 (-5 *3 (-1062 *4 *2)) (-14 *4 (-860)) (-4 *2 (-13 (-981) (-10 -7 (-6 (-4266 "*"))))) (-5 *1 (-841 *4 *2)))))
-(-10 -7 (-15 -2485 (|#2| (-1062 |#1| |#2|))))
-((-2207 (((-110) $ $) 7)) (-2816 (($) 20 T CONST)) (-1312 (((-3 $ "failed") $) 16)) (-2427 (((-1025 |#1|) $ |#1|) 35)) (-1297 (((-110) $) 19)) (-1436 (($ $ $) 33 (-1463 (|has| |#1| (-793)) (|has| |#1| (-348))))) (-1736 (($ $ $) 32 (-1463 (|has| |#1| (-793)) (|has| |#1| (-348))))) (-3034 (((-1078) $) 9)) (-2652 (($ $) 27)) (-2495 (((-1042) $) 10)) (-4014 ((|#1| $ |#1|) 37)) (-3043 ((|#1| $ |#1|) 36)) (-2884 (($ (-595 (-595 |#1|))) 38)) (-1473 (($ (-595 |#1|)) 39)) (-4097 (($ $ $) 23)) (-2405 (($ $ $) 22)) (-2222 (((-802) $) 11)) (-2690 (($ $ (-860)) 13) (($ $ (-717)) 17) (($ $ (-528)) 24)) (-2982 (($) 21 T CONST)) (-2244 (((-110) $ $) 30 (-1463 (|has| |#1| (-793)) (|has| |#1| (-348))))) (-2220 (((-110) $ $) 29 (-1463 (|has| |#1| (-793)) (|has| |#1| (-348))))) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 31 (-1463 (|has| |#1| (-793)) (|has| |#1| (-348))))) (-2208 (((-110) $ $) 34)) (-2296 (($ $ $) 26)) (** (($ $ (-860)) 14) (($ $ (-717)) 18) (($ $ (-528)) 25)) (* (($ $ $) 15)))
-(((-842 |#1|) (-133) (-1023)) (T -842))
-((-1473 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1023)) (-4 *1 (-842 *3)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-595 (-595 *3))) (-4 *3 (-1023)) (-4 *1 (-842 *3)))) (-4014 (*1 *2 *1 *2) (-12 (-4 *1 (-842 *2)) (-4 *2 (-1023)))) (-3043 (*1 *2 *1 *2) (-12 (-4 *1 (-842 *2)) (-4 *2 (-1023)))) (-2427 (*1 *2 *1 *3) (-12 (-4 *1 (-842 *3)) (-4 *3 (-1023)) (-5 *2 (-1025 *3)))) (-2208 (*1 *2 *1 *1) (-12 (-4 *1 (-842 *3)) (-4 *3 (-1023)) (-5 *2 (-110)))))
-(-13 (-452) (-10 -8 (-15 -1473 ($ (-595 |t#1|))) (-15 -2884 ($ (-595 (-595 |t#1|)))) (-15 -4014 (|t#1| $ |t#1|)) (-15 -3043 (|t#1| $ |t#1|)) (-15 -2427 ((-1025 |t#1|) $ |t#1|)) (-15 -2208 ((-110) $ $)) (IF (|has| |t#1| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |t#1| (-348)) (-6 (-793)) |%noBranch|)))
-(((-99) . T) ((-569 (-802)) . T) ((-452) . T) ((-673) . T) ((-793) -1463 (|has| |#1| (-793)) (|has| |#1| (-348))) ((-1035) . T) ((-1023) . T))
-((-2207 (((-110) $ $) NIL)) (-2754 (((-595 (-595 (-717))) $) 109)) (-4196 (((-595 (-717)) (-844 |#1|) $) 131)) (-1732 (((-595 (-717)) (-844 |#1|) $) 132)) (-1989 (((-595 (-844 |#1|)) $) 99)) (-1338 (((-844 |#1|) $ (-528)) 104) (((-844 |#1|) $) 105)) (-1420 (($ (-595 (-844 |#1|))) 111)) (-3689 (((-717) $) 106)) (-4145 (((-1025 (-1025 |#1|)) $) 129)) (-2427 (((-1025 |#1|) $ |#1|) 122) (((-1025 (-1025 |#1|)) $ (-1025 |#1|)) 140) (((-1025 (-595 |#1|)) $ (-595 |#1|)) 143)) (-1882 (((-1025 |#1|) $) 102)) (-2408 (((-110) (-844 |#1|) $) 93)) (-3034 (((-1078) $) NIL)) (-2334 (((-1182) $) 96) (((-1182) $ (-528) (-528)) 144)) (-2495 (((-1042) $) NIL)) (-2600 (((-595 (-844 |#1|)) $) 97)) (-3043 (((-844 |#1|) $ (-717)) 100)) (-2935 (((-717) $) 107)) (-2222 (((-802) $) 120) (((-595 (-844 |#1|)) $) 23) (($ (-595 (-844 |#1|))) 110)) (-2911 (((-595 |#1|) $) 108)) (-2186 (((-110) $ $) 137)) (-2232 (((-110) $ $) 135)) (-2208 (((-110) $ $) 134)))
-(((-843 |#1|) (-13 (-1023) (-10 -8 (-15 -2222 ((-595 (-844 |#1|)) $)) (-15 -2600 ((-595 (-844 |#1|)) $)) (-15 -3043 ((-844 |#1|) $ (-717))) (-15 -1338 ((-844 |#1|) $ (-528))) (-15 -1338 ((-844 |#1|) $)) (-15 -3689 ((-717) $)) (-15 -2935 ((-717) $)) (-15 -2911 ((-595 |#1|) $)) (-15 -1989 ((-595 (-844 |#1|)) $)) (-15 -2754 ((-595 (-595 (-717))) $)) (-15 -2222 ($ (-595 (-844 |#1|)))) (-15 -1420 ($ (-595 (-844 |#1|)))) (-15 -2427 ((-1025 |#1|) $ |#1|)) (-15 -4145 ((-1025 (-1025 |#1|)) $)) (-15 -2427 ((-1025 (-1025 |#1|)) $ (-1025 |#1|))) (-15 -2427 ((-1025 (-595 |#1|)) $ (-595 |#1|))) (-15 -2408 ((-110) (-844 |#1|) $)) (-15 -4196 ((-595 (-717)) (-844 |#1|) $)) (-15 -1732 ((-595 (-717)) (-844 |#1|) $)) (-15 -1882 ((-1025 |#1|) $)) (-15 -2208 ((-110) $ $)) (-15 -2232 ((-110) $ $)) (-15 -2334 ((-1182) $)) (-15 -2334 ((-1182) $ (-528) (-528))))) (-1023)) (T -843))
-((-2222 (*1 *2 *1) (-12 (-5 *2 (-595 (-844 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1023)))) (-2600 (*1 *2 *1) (-12 (-5 *2 (-595 (-844 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1023)))) (-3043 (*1 *2 *1 *3) (-12 (-5 *3 (-717)) (-5 *2 (-844 *4)) (-5 *1 (-843 *4)) (-4 *4 (-1023)))) (-1338 (*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-5 *2 (-844 *4)) (-5 *1 (-843 *4)) (-4 *4 (-1023)))) (-1338 (*1 *2 *1) (-12 (-5 *2 (-844 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1023)))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-843 *3)) (-4 *3 (-1023)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-843 *3)) (-4 *3 (-1023)))) (-2911 (*1 *2 *1) (-12 (-5 *2 (-595 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1023)))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-595 (-844 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1023)))) (-2754 (*1 *2 *1) (-12 (-5 *2 (-595 (-595 (-717)))) (-5 *1 (-843 *3)) (-4 *3 (-1023)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-595 (-844 *3))) (-4 *3 (-1023)) (-5 *1 (-843 *3)))) (-1420 (*1 *1 *2) (-12 (-5 *2 (-595 (-844 *3))) (-4 *3 (-1023)) (-5 *1 (-843 *3)))) (-2427 (*1 *2 *1 *3) (-12 (-5 *2 (-1025 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1023)))) (-4145 (*1 *2 *1) (-12 (-5 *2 (-1025 (-1025 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1023)))) (-2427 (*1 *2 *1 *3) (-12 (-4 *4 (-1023)) (-5 *2 (-1025 (-1025 *4))) (-5 *1 (-843 *4)) (-5 *3 (-1025 *4)))) (-2427 (*1 *2 *1 *3) (-12 (-4 *4 (-1023)) (-5 *2 (-1025 (-595 *4))) (-5 *1 (-843 *4)) (-5 *3 (-595 *4)))) (-2408 (*1 *2 *3 *1) (-12 (-5 *3 (-844 *4)) (-4 *4 (-1023)) (-5 *2 (-110)) (-5 *1 (-843 *4)))) (-4196 (*1 *2 *3 *1) (-12 (-5 *3 (-844 *4)) (-4 *4 (-1023)) (-5 *2 (-595 (-717))) (-5 *1 (-843 *4)))) (-1732 (*1 *2 *3 *1) (-12 (-5 *3 (-844 *4)) (-4 *4 (-1023)) (-5 *2 (-595 (-717))) (-5 *1 (-843 *4)))) (-1882 (*1 *2 *1) (-12 (-5 *2 (-1025 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1023)))) (-2208 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-843 *3)) (-4 *3 (-1023)))) (-2232 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-843 *3)) (-4 *3 (-1023)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-843 *3)) (-4 *3 (-1023)))) (-2334 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-528)) (-5 *2 (-1182)) (-5 *1 (-843 *4)) (-4 *4 (-1023)))))
-(-13 (-1023) (-10 -8 (-15 -2222 ((-595 (-844 |#1|)) $)) (-15 -2600 ((-595 (-844 |#1|)) $)) (-15 -3043 ((-844 |#1|) $ (-717))) (-15 -1338 ((-844 |#1|) $ (-528))) (-15 -1338 ((-844 |#1|) $)) (-15 -3689 ((-717) $)) (-15 -2935 ((-717) $)) (-15 -2911 ((-595 |#1|) $)) (-15 -1989 ((-595 (-844 |#1|)) $)) (-15 -2754 ((-595 (-595 (-717))) $)) (-15 -2222 ($ (-595 (-844 |#1|)))) (-15 -1420 ($ (-595 (-844 |#1|)))) (-15 -2427 ((-1025 |#1|) $ |#1|)) (-15 -4145 ((-1025 (-1025 |#1|)) $)) (-15 -2427 ((-1025 (-1025 |#1|)) $ (-1025 |#1|))) (-15 -2427 ((-1025 (-595 |#1|)) $ (-595 |#1|))) (-15 -2408 ((-110) (-844 |#1|) $)) (-15 -4196 ((-595 (-717)) (-844 |#1|) $)) (-15 -1732 ((-595 (-717)) (-844 |#1|) $)) (-15 -1882 ((-1025 |#1|) $)) (-15 -2208 ((-110) $ $)) (-15 -2232 ((-110) $ $)) (-15 -2334 ((-1182) $)) (-15 -2334 ((-1182) $ (-528) (-528)))))
-((-2207 (((-110) $ $) NIL)) (-1289 (((-595 $) (-595 $)) 77)) (-3605 (((-528) $) 60)) (-2816 (($) NIL T CONST)) (-1312 (((-3 $ "failed") $) NIL)) (-3689 (((-717) $) 58)) (-2427 (((-1025 |#1|) $ |#1|) 49)) (-1297 (((-110) $) NIL)) (-2580 (((-110) $) 63)) (-2051 (((-717) $) 61)) (-1882 (((-1025 |#1|) $) 42)) (-1436 (($ $ $) NIL (-1463 (|has| |#1| (-348)) (|has| |#1| (-793))))) (-1736 (($ $ $) NIL (-1463 (|has| |#1| (-348)) (|has| |#1| (-793))))) (-2813 (((-2 (|:| |preimage| (-595 |#1|)) (|:| |image| (-595 |#1|))) $) 37)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) 93)) (-2495 (((-1042) $) NIL)) (-2253 (((-1025 |#1|) $) 100 (|has| |#1| (-348)))) (-3578 (((-110) $) 59)) (-4014 ((|#1| $ |#1|) 47)) (-3043 ((|#1| $ |#1|) 94)) (-2935 (((-717) $) 44)) (-2884 (($ (-595 (-595 |#1|))) 85)) (-1683 (((-908) $) 53)) (-1473 (($ (-595 |#1|)) 21)) (-4097 (($ $ $) NIL)) (-2405 (($ $ $) NIL)) (-3687 (($ (-595 (-595 |#1|))) 39)) (-1483 (($ (-595 (-595 |#1|))) 88)) (-2673 (($ (-595 |#1|)) 96)) (-2222 (((-802) $) 84) (($ (-595 (-595 |#1|))) 66) (($ (-595 |#1|)) 67)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2982 (($) 16 T CONST)) (-2244 (((-110) $ $) NIL (-1463 (|has| |#1| (-348)) (|has| |#1| (-793))))) (-2220 (((-110) $ $) NIL (-1463 (|has| |#1| (-348)) (|has| |#1| (-793))))) (-2186 (((-110) $ $) 45)) (-2232 (((-110) $ $) NIL (-1463 (|has| |#1| (-348)) (|has| |#1| (-793))))) (-2208 (((-110) $ $) 65)) (-2296 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (* (($ $ $) 22)))
-(((-844 |#1|) (-13 (-842 |#1|) (-10 -8 (-15 -2813 ((-2 (|:| |preimage| (-595 |#1|)) (|:| |image| (-595 |#1|))) $)) (-15 -3687 ($ (-595 (-595 |#1|)))) (-15 -2222 ($ (-595 (-595 |#1|)))) (-15 -2222 ($ (-595 |#1|))) (-15 -1483 ($ (-595 (-595 |#1|)))) (-15 -2935 ((-717) $)) (-15 -1882 ((-1025 |#1|) $)) (-15 -1683 ((-908) $)) (-15 -3689 ((-717) $)) (-15 -2051 ((-717) $)) (-15 -3605 ((-528) $)) (-15 -3578 ((-110) $)) (-15 -2580 ((-110) $)) (-15 -1289 ((-595 $) (-595 $))) (IF (|has| |#1| (-348)) (-15 -2253 ((-1025 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-513)) (-15 -2673 ($ (-595 |#1|))) (IF (|has| |#1| (-348)) (-15 -2673 ($ (-595 |#1|))) |%noBranch|)))) (-1023)) (T -844))
-((-2813 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-595 *3)) (|:| |image| (-595 *3)))) (-5 *1 (-844 *3)) (-4 *3 (-1023)))) (-3687 (*1 *1 *2) (-12 (-5 *2 (-595 (-595 *3))) (-4 *3 (-1023)) (-5 *1 (-844 *3)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-595 (-595 *3))) (-4 *3 (-1023)) (-5 *1 (-844 *3)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1023)) (-5 *1 (-844 *3)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-595 (-595 *3))) (-4 *3 (-1023)) (-5 *1 (-844 *3)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-844 *3)) (-4 *3 (-1023)))) (-1882 (*1 *2 *1) (-12 (-5 *2 (-1025 *3)) (-5 *1 (-844 *3)) (-4 *3 (-1023)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-908)) (-5 *1 (-844 *3)) (-4 *3 (-1023)))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-844 *3)) (-4 *3 (-1023)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-844 *3)) (-4 *3 (-1023)))) (-3605 (*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-844 *3)) (-4 *3 (-1023)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-844 *3)) (-4 *3 (-1023)))) (-2580 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-844 *3)) (-4 *3 (-1023)))) (-1289 (*1 *2 *2) (-12 (-5 *2 (-595 (-844 *3))) (-5 *1 (-844 *3)) (-4 *3 (-1023)))) (-2253 (*1 *2 *1) (-12 (-5 *2 (-1025 *3)) (-5 *1 (-844 *3)) (-4 *3 (-348)) (-4 *3 (-1023)))) (-2673 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1023)) (-5 *1 (-844 *3)))))
-(-13 (-842 |#1|) (-10 -8 (-15 -2813 ((-2 (|:| |preimage| (-595 |#1|)) (|:| |image| (-595 |#1|))) $)) (-15 -3687 ($ (-595 (-595 |#1|)))) (-15 -2222 ($ (-595 (-595 |#1|)))) (-15 -2222 ($ (-595 |#1|))) (-15 -1483 ($ (-595 (-595 |#1|)))) (-15 -2935 ((-717) $)) (-15 -1882 ((-1025 |#1|) $)) (-15 -1683 ((-908) $)) (-15 -3689 ((-717) $)) (-15 -2051 ((-717) $)) (-15 -3605 ((-528) $)) (-15 -3578 ((-110) $)) (-15 -2580 ((-110) $)) (-15 -1289 ((-595 $) (-595 $))) (IF (|has| |#1| (-348)) (-15 -2253 ((-1025 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-513)) (-15 -2673 ($ (-595 |#1|))) (IF (|has| |#1| (-348)) (-15 -2673 ($ (-595 |#1|))) |%noBranch|))))
-((-2361 (((-3 (-595 (-1091 |#4|)) "failed") (-595 (-1091 |#4|)) (-1091 |#4|)) 128)) (-2349 ((|#1|) 77)) (-3851 (((-398 (-1091 |#4|)) (-1091 |#4|)) 137)) (-2770 (((-398 (-1091 |#4|)) (-595 |#3|) (-1091 |#4|)) 69)) (-3337 (((-398 (-1091 |#4|)) (-1091 |#4|)) 147)) (-3523 (((-3 (-595 (-1091 |#4|)) "failed") (-595 (-1091 |#4|)) (-1091 |#4|) |#3|) 92)))
-(((-845 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2361 ((-3 (-595 (-1091 |#4|)) "failed") (-595 (-1091 |#4|)) (-1091 |#4|))) (-15 -3337 ((-398 (-1091 |#4|)) (-1091 |#4|))) (-15 -3851 ((-398 (-1091 |#4|)) (-1091 |#4|))) (-15 -2349 (|#1|)) (-15 -3523 ((-3 (-595 (-1091 |#4|)) "failed") (-595 (-1091 |#4|)) (-1091 |#4|) |#3|)) (-15 -2770 ((-398 (-1091 |#4|)) (-595 |#3|) (-1091 |#4|)))) (-848) (-739) (-793) (-888 |#1| |#2| |#3|)) (T -845))
-((-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *7)) (-4 *7 (-793)) (-4 *5 (-848)) (-4 *6 (-739)) (-4 *8 (-888 *5 *6 *7)) (-5 *2 (-398 (-1091 *8))) (-5 *1 (-845 *5 *6 *7 *8)) (-5 *4 (-1091 *8)))) (-3523 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-595 (-1091 *7))) (-5 *3 (-1091 *7)) (-4 *7 (-888 *5 *6 *4)) (-4 *5 (-848)) (-4 *6 (-739)) (-4 *4 (-793)) (-5 *1 (-845 *5 *6 *4 *7)))) (-2349 (*1 *2) (-12 (-4 *3 (-739)) (-4 *4 (-793)) (-4 *2 (-848)) (-5 *1 (-845 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4)))) (-3851 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-398 (-1091 *7))) (-5 *1 (-845 *4 *5 *6 *7)) (-5 *3 (-1091 *7)))) (-3337 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-398 (-1091 *7))) (-5 *1 (-845 *4 *5 *6 *7)) (-5 *3 (-1091 *7)))) (-2361 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-595 (-1091 *7))) (-5 *3 (-1091 *7)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-848)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *1 (-845 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2361 ((-3 (-595 (-1091 |#4|)) "failed") (-595 (-1091 |#4|)) (-1091 |#4|))) (-15 -3337 ((-398 (-1091 |#4|)) (-1091 |#4|))) (-15 -3851 ((-398 (-1091 |#4|)) (-1091 |#4|))) (-15 -2349 (|#1|)) (-15 -3523 ((-3 (-595 (-1091 |#4|)) "failed") (-595 (-1091 |#4|)) (-1091 |#4|) |#3|)) (-15 -2770 ((-398 (-1091 |#4|)) (-595 |#3|) (-1091 |#4|))))
-((-2361 (((-3 (-595 (-1091 |#2|)) "failed") (-595 (-1091 |#2|)) (-1091 |#2|)) 36)) (-2349 ((|#1|) 54)) (-3851 (((-398 (-1091 |#2|)) (-1091 |#2|)) 102)) (-2770 (((-398 (-1091 |#2|)) (-1091 |#2|)) 90)) (-3337 (((-398 (-1091 |#2|)) (-1091 |#2|)) 113)))
-(((-846 |#1| |#2|) (-10 -7 (-15 -2361 ((-3 (-595 (-1091 |#2|)) "failed") (-595 (-1091 |#2|)) (-1091 |#2|))) (-15 -3337 ((-398 (-1091 |#2|)) (-1091 |#2|))) (-15 -3851 ((-398 (-1091 |#2|)) (-1091 |#2|))) (-15 -2349 (|#1|)) (-15 -2770 ((-398 (-1091 |#2|)) (-1091 |#2|)))) (-848) (-1153 |#1|)) (T -846))
-((-2770 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-1153 *4)) (-5 *2 (-398 (-1091 *5))) (-5 *1 (-846 *4 *5)) (-5 *3 (-1091 *5)))) (-2349 (*1 *2) (-12 (-4 *2 (-848)) (-5 *1 (-846 *2 *3)) (-4 *3 (-1153 *2)))) (-3851 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-1153 *4)) (-5 *2 (-398 (-1091 *5))) (-5 *1 (-846 *4 *5)) (-5 *3 (-1091 *5)))) (-3337 (*1 *2 *3) (-12 (-4 *4 (-848)) (-4 *5 (-1153 *4)) (-5 *2 (-398 (-1091 *5))) (-5 *1 (-846 *4 *5)) (-5 *3 (-1091 *5)))) (-2361 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-595 (-1091 *5))) (-5 *3 (-1091 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-848)) (-5 *1 (-846 *4 *5)))))
-(-10 -7 (-15 -2361 ((-3 (-595 (-1091 |#2|)) "failed") (-595 (-1091 |#2|)) (-1091 |#2|))) (-15 -3337 ((-398 (-1091 |#2|)) (-1091 |#2|))) (-15 -3851 ((-398 (-1091 |#2|)) (-1091 |#2|))) (-15 -2349 (|#1|)) (-15 -2770 ((-398 (-1091 |#2|)) (-1091 |#2|))))
-((-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) 41)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 18)) (-3749 (((-3 $ "failed") $) 35)))
-(((-847 |#1|) (-10 -8 (-15 -3749 ((-3 |#1| "failed") |#1|)) (-15 -4159 ((-3 (-595 (-1091 |#1|)) "failed") (-595 (-1091 |#1|)) (-1091 |#1|))) (-15 -3550 ((-1091 |#1|) (-1091 |#1|) (-1091 |#1|)))) (-848)) (T -847))
-NIL
-(-10 -8 (-15 -3749 ((-3 |#1| "failed") |#1|)) (-15 -4159 ((-3 (-595 (-1091 |#1|)) "failed") (-595 (-1091 |#1|)) (-1091 |#1|))) (-15 -3550 ((-1091 |#1|) (-1091 |#1|) (-1091 |#1|))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 41)) (-1738 (($ $) 40)) (-1811 (((-110) $) 38)) (-3181 (((-3 $ "failed") $ $) 19)) (-2152 (((-398 (-1091 $)) (-1091 $)) 60)) (-1232 (($ $) 51)) (-2705 (((-398 $) $) 52)) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) 57)) (-2816 (($) 17 T CONST)) (-1312 (((-3 $ "failed") $) 34)) (-2124 (((-110) $) 53)) (-1297 (((-110) $) 31)) (-2057 (($ $ $) 46) (($ (-595 $)) 45)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 44)) (-2088 (($ $ $) 48) (($ (-595 $)) 47)) (-3261 (((-398 (-1091 $)) (-1091 $)) 58)) (-2394 (((-398 (-1091 $)) (-1091 $)) 59)) (-2437 (((-398 $) $) 50)) (-3477 (((-3 $ "failed") $ $) 42)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) 56 (|has| $ (-138)))) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ $) 43)) (-3749 (((-3 $ "failed") $) 55 (|has| $ (-138)))) (-3742 (((-717)) 29)) (-4016 (((-110) $ $) 39)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24)))
-(((-848) (-133)) (T -848))
-((-3550 (*1 *2 *2 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-848)))) (-2152 (*1 *2 *3) (-12 (-4 *1 (-848)) (-5 *2 (-398 (-1091 *1))) (-5 *3 (-1091 *1)))) (-2394 (*1 *2 *3) (-12 (-4 *1 (-848)) (-5 *2 (-398 (-1091 *1))) (-5 *3 (-1091 *1)))) (-3261 (*1 *2 *3) (-12 (-4 *1 (-848)) (-5 *2 (-398 (-1091 *1))) (-5 *3 (-1091 *1)))) (-4159 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-595 (-1091 *1))) (-5 *3 (-1091 *1)) (-4 *1 (-848)))) (-1495 (*1 *2 *3) (|partial| -12 (-5 *3 (-635 *1)) (-4 *1 (-138)) (-4 *1 (-848)) (-5 *2 (-1177 *1)))) (-3749 (*1 *1 *1) (|partial| -12 (-4 *1 (-138)) (-4 *1 (-848)))))
-(-13 (-1135) (-10 -8 (-15 -2152 ((-398 (-1091 $)) (-1091 $))) (-15 -2394 ((-398 (-1091 $)) (-1091 $))) (-15 -3261 ((-398 (-1091 $)) (-1091 $))) (-15 -3550 ((-1091 $) (-1091 $) (-1091 $))) (-15 -4159 ((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $))) (IF (|has| $ (-138)) (PROGN (-15 -1495 ((-3 (-1177 $) "failed") (-635 $))) (-15 -3749 ((-3 $ "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-569 (-802)) . T) ((-162) . T) ((-271) . T) ((-431) . T) ((-520) . T) ((-597 $) . T) ((-664 $) . T) ((-673) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1135) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3455 (((-110) $) NIL)) (-3370 (((-717)) NIL)) (-1323 (($ $ (-860)) NIL (|has| $ (-348))) (($ $) NIL)) (-2338 (((-1105 (-860) (-717)) (-528)) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-2213 (((-110) $ $) NIL)) (-2856 (((-717)) NIL)) (-2816 (($) NIL T CONST)) (-3001 (((-3 $ "failed") $) NIL)) (-2409 (($ $) NIL)) (-1945 (($ (-1177 $)) NIL)) (-2413 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3519 (($ $ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1338 (($) NIL)) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2916 (($) NIL)) (-4086 (((-110) $) NIL)) (-2790 (($ $) NIL) (($ $ (-717)) NIL)) (-2124 (((-110) $) NIL)) (-3689 (((-779 (-860)) $) NIL) (((-860) $) NIL)) (-1297 (((-110) $) NIL)) (-2339 (($) NIL (|has| $ (-348)))) (-2581 (((-110) $) NIL (|has| $ (-348)))) (-3297 (($ $ (-860)) NIL (|has| $ (-348))) (($ $) NIL)) (-3296 (((-3 $ "failed") $) NIL)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3537 (((-1091 $) $ (-860)) NIL (|has| $ (-348))) (((-1091 $) $) NIL)) (-3201 (((-860) $) NIL)) (-2304 (((-1091 $) $) NIL (|has| $ (-348)))) (-2143 (((-3 (-1091 $) "failed") $ $) NIL (|has| $ (-348))) (((-1091 $) $) NIL (|has| $ (-348)))) (-3640 (($ $ (-1091 $)) NIL (|has| $ (-348)))) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL)) (-4197 (($) NIL T CONST)) (-3108 (($ (-860)) NIL)) (-3148 (((-110) $) NIL)) (-2495 (((-1042) $) NIL)) (-1261 (($) NIL (|has| $ (-348)))) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3010 (((-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528))))) NIL)) (-2437 (((-398 $) $) NIL)) (-2209 (((-860)) NIL) (((-779 (-860))) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3500 (((-3 (-717) "failed") $ $) NIL) (((-717) $) NIL)) (-3017 (((-130)) NIL)) (-3235 (($ $ (-717)) NIL) (($ $) NIL)) (-2935 (((-860) $) NIL) (((-779 (-860)) $) NIL)) (-4090 (((-1091 $)) NIL)) (-1984 (($) NIL)) (-1469 (($) NIL (|has| $ (-348)))) (-4243 (((-635 $) (-1177 $)) NIL) (((-1177 $) $) NIL)) (-3155 (((-528) $) NIL)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ $) NIL) (($ (-387 (-528))) NIL)) (-3749 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3742 (((-717)) NIL)) (-1400 (((-1177 $) (-860)) NIL) (((-1177 $)) NIL)) (-4016 (((-110) $ $) NIL)) (-2190 (((-110) $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-2698 (($ $ (-717)) NIL (|has| $ (-348))) (($ $) NIL (|has| $ (-348)))) (-3245 (($ $ (-717)) NIL) (($ $) NIL)) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL)))
-(((-849 |#1|) (-13 (-329) (-309 $) (-570 (-528))) (-860)) (T -849))
-NIL
-(-13 (-329) (-309 $) (-570 (-528)))
-((-3962 (((-3 (-2 (|:| -3689 (-717)) (|:| -3160 |#5|)) "failed") (-316 |#2| |#3| |#4| |#5|)) 79)) (-3035 (((-110) (-316 |#2| |#3| |#4| |#5|)) 17)) (-3689 (((-3 (-717) "failed") (-316 |#2| |#3| |#4| |#5|)) 15)))
-(((-850 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3689 ((-3 (-717) "failed") (-316 |#2| |#3| |#4| |#5|))) (-15 -3035 ((-110) (-316 |#2| |#3| |#4| |#5|))) (-15 -3962 ((-3 (-2 (|:| -3689 (-717)) (|:| -3160 |#5|)) "failed") (-316 |#2| |#3| |#4| |#5|)))) (-13 (-793) (-520) (-972 (-528))) (-410 |#1|) (-1153 |#2|) (-1153 (-387 |#3|)) (-322 |#2| |#3| |#4|)) (T -850))
-((-3962 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *5 *6 *7 *8)) (-4 *5 (-410 *4)) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-387 *6))) (-4 *8 (-322 *5 *6 *7)) (-4 *4 (-13 (-793) (-520) (-972 (-528)))) (-5 *2 (-2 (|:| -3689 (-717)) (|:| -3160 *8))) (-5 *1 (-850 *4 *5 *6 *7 *8)))) (-3035 (*1 *2 *3) (-12 (-5 *3 (-316 *5 *6 *7 *8)) (-4 *5 (-410 *4)) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-387 *6))) (-4 *8 (-322 *5 *6 *7)) (-4 *4 (-13 (-793) (-520) (-972 (-528)))) (-5 *2 (-110)) (-5 *1 (-850 *4 *5 *6 *7 *8)))) (-3689 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *5 *6 *7 *8)) (-4 *5 (-410 *4)) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-387 *6))) (-4 *8 (-322 *5 *6 *7)) (-4 *4 (-13 (-793) (-520) (-972 (-528)))) (-5 *2 (-717)) (-5 *1 (-850 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3689 ((-3 (-717) "failed") (-316 |#2| |#3| |#4| |#5|))) (-15 -3035 ((-110) (-316 |#2| |#3| |#4| |#5|))) (-15 -3962 ((-3 (-2 (|:| -3689 (-717)) (|:| -3160 |#5|)) "failed") (-316 |#2| |#3| |#4| |#5|))))
-((-3962 (((-3 (-2 (|:| -3689 (-717)) (|:| -3160 |#3|)) "failed") (-316 (-387 (-528)) |#1| |#2| |#3|)) 56)) (-3035 (((-110) (-316 (-387 (-528)) |#1| |#2| |#3|)) 16)) (-3689 (((-3 (-717) "failed") (-316 (-387 (-528)) |#1| |#2| |#3|)) 14)))
-(((-851 |#1| |#2| |#3|) (-10 -7 (-15 -3689 ((-3 (-717) "failed") (-316 (-387 (-528)) |#1| |#2| |#3|))) (-15 -3035 ((-110) (-316 (-387 (-528)) |#1| |#2| |#3|))) (-15 -3962 ((-3 (-2 (|:| -3689 (-717)) (|:| -3160 |#3|)) "failed") (-316 (-387 (-528)) |#1| |#2| |#3|)))) (-1153 (-387 (-528))) (-1153 (-387 |#1|)) (-322 (-387 (-528)) |#1| |#2|)) (T -851))
-((-3962 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 (-387 (-528)) *4 *5 *6)) (-4 *4 (-1153 (-387 (-528)))) (-4 *5 (-1153 (-387 *4))) (-4 *6 (-322 (-387 (-528)) *4 *5)) (-5 *2 (-2 (|:| -3689 (-717)) (|:| -3160 *6))) (-5 *1 (-851 *4 *5 *6)))) (-3035 (*1 *2 *3) (-12 (-5 *3 (-316 (-387 (-528)) *4 *5 *6)) (-4 *4 (-1153 (-387 (-528)))) (-4 *5 (-1153 (-387 *4))) (-4 *6 (-322 (-387 (-528)) *4 *5)) (-5 *2 (-110)) (-5 *1 (-851 *4 *5 *6)))) (-3689 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 (-387 (-528)) *4 *5 *6)) (-4 *4 (-1153 (-387 (-528)))) (-4 *5 (-1153 (-387 *4))) (-4 *6 (-322 (-387 (-528)) *4 *5)) (-5 *2 (-717)) (-5 *1 (-851 *4 *5 *6)))))
-(-10 -7 (-15 -3689 ((-3 (-717) "failed") (-316 (-387 (-528)) |#1| |#2| |#3|))) (-15 -3035 ((-110) (-316 (-387 (-528)) |#1| |#2| |#3|))) (-15 -3962 ((-3 (-2 (|:| -3689 (-717)) (|:| -3160 |#3|)) "failed") (-316 (-387 (-528)) |#1| |#2| |#3|))))
-((-2046 ((|#2| |#2|) 26)) (-1609 (((-528) (-595 (-2 (|:| |den| (-528)) (|:| |gcdnum| (-528))))) 15)) (-3633 (((-860) (-528)) 35)) (-1588 (((-528) |#2|) 42)) (-2278 (((-528) |#2|) 21) (((-2 (|:| |den| (-528)) (|:| |gcdnum| (-528))) |#1|) 20)))
-(((-852 |#1| |#2|) (-10 -7 (-15 -3633 ((-860) (-528))) (-15 -2278 ((-2 (|:| |den| (-528)) (|:| |gcdnum| (-528))) |#1|)) (-15 -2278 ((-528) |#2|)) (-15 -1609 ((-528) (-595 (-2 (|:| |den| (-528)) (|:| |gcdnum| (-528)))))) (-15 -1588 ((-528) |#2|)) (-15 -2046 (|#2| |#2|))) (-1153 (-387 (-528))) (-1153 (-387 |#1|))) (T -852))
-((-2046 (*1 *2 *2) (-12 (-4 *3 (-1153 (-387 (-528)))) (-5 *1 (-852 *3 *2)) (-4 *2 (-1153 (-387 *3))))) (-1588 (*1 *2 *3) (-12 (-4 *4 (-1153 (-387 *2))) (-5 *2 (-528)) (-5 *1 (-852 *4 *3)) (-4 *3 (-1153 (-387 *4))))) (-1609 (*1 *2 *3) (-12 (-5 *3 (-595 (-2 (|:| |den| (-528)) (|:| |gcdnum| (-528))))) (-4 *4 (-1153 (-387 *2))) (-5 *2 (-528)) (-5 *1 (-852 *4 *5)) (-4 *5 (-1153 (-387 *4))))) (-2278 (*1 *2 *3) (-12 (-4 *4 (-1153 (-387 *2))) (-5 *2 (-528)) (-5 *1 (-852 *4 *3)) (-4 *3 (-1153 (-387 *4))))) (-2278 (*1 *2 *3) (-12 (-4 *3 (-1153 (-387 (-528)))) (-5 *2 (-2 (|:| |den| (-528)) (|:| |gcdnum| (-528)))) (-5 *1 (-852 *3 *4)) (-4 *4 (-1153 (-387 *3))))) (-3633 (*1 *2 *3) (-12 (-5 *3 (-528)) (-4 *4 (-1153 (-387 *3))) (-5 *2 (-860)) (-5 *1 (-852 *4 *5)) (-4 *5 (-1153 (-387 *4))))))
-(-10 -7 (-15 -3633 ((-860) (-528))) (-15 -2278 ((-2 (|:| |den| (-528)) (|:| |gcdnum| (-528))) |#1|)) (-15 -2278 ((-528) |#2|)) (-15 -1609 ((-528) (-595 (-2 (|:| |den| (-528)) (|:| |gcdnum| (-528)))))) (-15 -1588 ((-528) |#2|)) (-15 -2046 (|#2| |#2|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3598 ((|#1| $) 81)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-2213 (((-110) $ $) NIL)) (-2816 (($) NIL T CONST)) (-3519 (($ $ $) NIL)) (-1312 (((-3 $ "failed") $) 75)) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2124 (((-110) $) NIL)) (-2234 (($ |#1| (-398 |#1|)) 73)) (-3395 (((-1091 |#1|) |#1| |#1|) 41)) (-3159 (($ $) 49)) (-1297 (((-110) $) NIL)) (-2452 (((-528) $) 78)) (-1435 (($ $ (-528)) 80)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3618 ((|#1| $) 77)) (-2418 (((-398 |#1|) $) 76)) (-2437 (((-398 $) $) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) 74)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-2290 (($ $) 39)) (-2222 (((-802) $) 99) (($ (-528)) 54) (($ $) NIL) (($ (-387 (-528))) NIL) (($ |#1|) 31) (((-387 |#1|) $) 59) (($ (-387 (-398 |#1|))) 67)) (-3742 (((-717)) 52)) (-4016 (((-110) $ $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) 23 T CONST)) (-2982 (($) 12 T CONST)) (-2186 (((-110) $ $) 68)) (-2296 (($ $ $) NIL)) (-2286 (($ $) 88) (($ $ $) NIL)) (-2275 (($ $ $) 38)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 90) (($ $ $) 37) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
-(((-853 |#1|) (-13 (-343) (-37 |#1|) (-10 -8 (-15 -2222 ((-387 |#1|) $)) (-15 -2222 ($ (-387 (-398 |#1|)))) (-15 -2290 ($ $)) (-15 -2418 ((-398 |#1|) $)) (-15 -3618 (|#1| $)) (-15 -1435 ($ $ (-528))) (-15 -2452 ((-528) $)) (-15 -3395 ((-1091 |#1|) |#1| |#1|)) (-15 -3159 ($ $)) (-15 -2234 ($ |#1| (-398 |#1|))) (-15 -3598 (|#1| $)))) (-288)) (T -853))
-((-2222 (*1 *2 *1) (-12 (-5 *2 (-387 *3)) (-5 *1 (-853 *3)) (-4 *3 (-288)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-387 (-398 *3))) (-4 *3 (-288)) (-5 *1 (-853 *3)))) (-2290 (*1 *1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-288)))) (-2418 (*1 *2 *1) (-12 (-5 *2 (-398 *3)) (-5 *1 (-853 *3)) (-4 *3 (-288)))) (-3618 (*1 *2 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-288)))) (-1435 (*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-853 *3)) (-4 *3 (-288)))) (-2452 (*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-853 *3)) (-4 *3 (-288)))) (-3395 (*1 *2 *3 *3) (-12 (-5 *2 (-1091 *3)) (-5 *1 (-853 *3)) (-4 *3 (-288)))) (-3159 (*1 *1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-288)))) (-2234 (*1 *1 *2 *3) (-12 (-5 *3 (-398 *2)) (-4 *2 (-288)) (-5 *1 (-853 *2)))) (-3598 (*1 *2 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-288)))))
-(-13 (-343) (-37 |#1|) (-10 -8 (-15 -2222 ((-387 |#1|) $)) (-15 -2222 ($ (-387 (-398 |#1|)))) (-15 -2290 ($ $)) (-15 -2418 ((-398 |#1|) $)) (-15 -3618 (|#1| $)) (-15 -1435 ($ $ (-528))) (-15 -2452 ((-528) $)) (-15 -3395 ((-1091 |#1|) |#1| |#1|)) (-15 -3159 ($ $)) (-15 -2234 ($ |#1| (-398 |#1|))) (-15 -3598 (|#1| $))))
-((-2234 (((-51) (-891 |#1|) (-398 (-891 |#1|)) (-1095)) 17) (((-51) (-387 (-891 |#1|)) (-1095)) 18)))
-(((-854 |#1|) (-10 -7 (-15 -2234 ((-51) (-387 (-891 |#1|)) (-1095))) (-15 -2234 ((-51) (-891 |#1|) (-398 (-891 |#1|)) (-1095)))) (-13 (-288) (-140))) (T -854))
-((-2234 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-398 (-891 *6))) (-5 *5 (-1095)) (-5 *3 (-891 *6)) (-4 *6 (-13 (-288) (-140))) (-5 *2 (-51)) (-5 *1 (-854 *6)))) (-2234 (*1 *2 *3 *4) (-12 (-5 *3 (-387 (-891 *5))) (-5 *4 (-1095)) (-4 *5 (-13 (-288) (-140))) (-5 *2 (-51)) (-5 *1 (-854 *5)))))
-(-10 -7 (-15 -2234 ((-51) (-387 (-891 |#1|)) (-1095))) (-15 -2234 ((-51) (-891 |#1|) (-398 (-891 |#1|)) (-1095))))
-((-1783 ((|#4| (-595 |#4|)) 122) (((-1091 |#4|) (-1091 |#4|) (-1091 |#4|)) 68) ((|#4| |#4| |#4|) 121)) (-2088 (((-1091 |#4|) (-595 (-1091 |#4|))) 115) (((-1091 |#4|) (-1091 |#4|) (-1091 |#4|)) 51) ((|#4| (-595 |#4|)) 56) ((|#4| |#4| |#4|) 85)))
-(((-855 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2088 (|#4| |#4| |#4|)) (-15 -2088 (|#4| (-595 |#4|))) (-15 -2088 ((-1091 |#4|) (-1091 |#4|) (-1091 |#4|))) (-15 -2088 ((-1091 |#4|) (-595 (-1091 |#4|)))) (-15 -1783 (|#4| |#4| |#4|)) (-15 -1783 ((-1091 |#4|) (-1091 |#4|) (-1091 |#4|))) (-15 -1783 (|#4| (-595 |#4|)))) (-739) (-793) (-288) (-888 |#3| |#1| |#2|)) (T -855))
-((-1783 (*1 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-888 *6 *4 *5)) (-5 *1 (-855 *4 *5 *6 *2)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-288)))) (-1783 (*1 *2 *2 *2) (-12 (-5 *2 (-1091 *6)) (-4 *6 (-888 *5 *3 *4)) (-4 *3 (-739)) (-4 *4 (-793)) (-4 *5 (-288)) (-5 *1 (-855 *3 *4 *5 *6)))) (-1783 (*1 *2 *2 *2) (-12 (-4 *3 (-739)) (-4 *4 (-793)) (-4 *5 (-288)) (-5 *1 (-855 *3 *4 *5 *2)) (-4 *2 (-888 *5 *3 *4)))) (-2088 (*1 *2 *3) (-12 (-5 *3 (-595 (-1091 *7))) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-288)) (-5 *2 (-1091 *7)) (-5 *1 (-855 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5)))) (-2088 (*1 *2 *2 *2) (-12 (-5 *2 (-1091 *6)) (-4 *6 (-888 *5 *3 *4)) (-4 *3 (-739)) (-4 *4 (-793)) (-4 *5 (-288)) (-5 *1 (-855 *3 *4 *5 *6)))) (-2088 (*1 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-888 *6 *4 *5)) (-5 *1 (-855 *4 *5 *6 *2)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-288)))) (-2088 (*1 *2 *2 *2) (-12 (-4 *3 (-739)) (-4 *4 (-793)) (-4 *5 (-288)) (-5 *1 (-855 *3 *4 *5 *2)) (-4 *2 (-888 *5 *3 *4)))))
-(-10 -7 (-15 -2088 (|#4| |#4| |#4|)) (-15 -2088 (|#4| (-595 |#4|))) (-15 -2088 ((-1091 |#4|) (-1091 |#4|) (-1091 |#4|))) (-15 -2088 ((-1091 |#4|) (-595 (-1091 |#4|)))) (-15 -1783 (|#4| |#4| |#4|)) (-15 -1783 ((-1091 |#4|) (-1091 |#4|) (-1091 |#4|))) (-15 -1783 (|#4| (-595 |#4|))))
-((-3213 (((-843 (-528)) (-908)) 23) (((-843 (-528)) (-595 (-528))) 20)) (-3646 (((-843 (-528)) (-595 (-528))) 48) (((-843 (-528)) (-860)) 49)) (-2105 (((-843 (-528))) 24)) (-3143 (((-843 (-528))) 38) (((-843 (-528)) (-595 (-528))) 37)) (-2995 (((-843 (-528))) 36) (((-843 (-528)) (-595 (-528))) 35)) (-1993 (((-843 (-528))) 34) (((-843 (-528)) (-595 (-528))) 33)) (-3803 (((-843 (-528))) 32) (((-843 (-528)) (-595 (-528))) 31)) (-1973 (((-843 (-528))) 30) (((-843 (-528)) (-595 (-528))) 29)) (-3439 (((-843 (-528))) 40) (((-843 (-528)) (-595 (-528))) 39)) (-1518 (((-843 (-528)) (-595 (-528))) 52) (((-843 (-528)) (-860)) 53)) (-2758 (((-843 (-528)) (-595 (-528))) 50) (((-843 (-528)) (-860)) 51)) (-2034 (((-843 (-528)) (-595 (-528))) 46) (((-843 (-528)) (-860)) 47)) (-2014 (((-843 (-528)) (-595 (-860))) 43)))
-(((-856) (-10 -7 (-15 -3646 ((-843 (-528)) (-860))) (-15 -3646 ((-843 (-528)) (-595 (-528)))) (-15 -2034 ((-843 (-528)) (-860))) (-15 -2034 ((-843 (-528)) (-595 (-528)))) (-15 -2014 ((-843 (-528)) (-595 (-860)))) (-15 -2758 ((-843 (-528)) (-860))) (-15 -2758 ((-843 (-528)) (-595 (-528)))) (-15 -1518 ((-843 (-528)) (-860))) (-15 -1518 ((-843 (-528)) (-595 (-528)))) (-15 -1973 ((-843 (-528)) (-595 (-528)))) (-15 -1973 ((-843 (-528)))) (-15 -3803 ((-843 (-528)) (-595 (-528)))) (-15 -3803 ((-843 (-528)))) (-15 -1993 ((-843 (-528)) (-595 (-528)))) (-15 -1993 ((-843 (-528)))) (-15 -2995 ((-843 (-528)) (-595 (-528)))) (-15 -2995 ((-843 (-528)))) (-15 -3143 ((-843 (-528)) (-595 (-528)))) (-15 -3143 ((-843 (-528)))) (-15 -3439 ((-843 (-528)) (-595 (-528)))) (-15 -3439 ((-843 (-528)))) (-15 -2105 ((-843 (-528)))) (-15 -3213 ((-843 (-528)) (-595 (-528)))) (-15 -3213 ((-843 (-528)) (-908))))) (T -856))
-((-3213 (*1 *2 *3) (-12 (-5 *3 (-908)) (-5 *2 (-843 (-528))) (-5 *1 (-856)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-595 (-528))) (-5 *2 (-843 (-528))) (-5 *1 (-856)))) (-2105 (*1 *2) (-12 (-5 *2 (-843 (-528))) (-5 *1 (-856)))) (-3439 (*1 *2) (-12 (-5 *2 (-843 (-528))) (-5 *1 (-856)))) (-3439 (*1 *2 *3) (-12 (-5 *3 (-595 (-528))) (-5 *2 (-843 (-528))) (-5 *1 (-856)))) (-3143 (*1 *2) (-12 (-5 *2 (-843 (-528))) (-5 *1 (-856)))) (-3143 (*1 *2 *3) (-12 (-5 *3 (-595 (-528))) (-5 *2 (-843 (-528))) (-5 *1 (-856)))) (-2995 (*1 *2) (-12 (-5 *2 (-843 (-528))) (-5 *1 (-856)))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-595 (-528))) (-5 *2 (-843 (-528))) (-5 *1 (-856)))) (-1993 (*1 *2) (-12 (-5 *2 (-843 (-528))) (-5 *1 (-856)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-595 (-528))) (-5 *2 (-843 (-528))) (-5 *1 (-856)))) (-3803 (*1 *2) (-12 (-5 *2 (-843 (-528))) (-5 *1 (-856)))) (-3803 (*1 *2 *3) (-12 (-5 *3 (-595 (-528))) (-5 *2 (-843 (-528))) (-5 *1 (-856)))) (-1973 (*1 *2) (-12 (-5 *2 (-843 (-528))) (-5 *1 (-856)))) (-1973 (*1 *2 *3) (-12 (-5 *3 (-595 (-528))) (-5 *2 (-843 (-528))) (-5 *1 (-856)))) (-1518 (*1 *2 *3) (-12 (-5 *3 (-595 (-528))) (-5 *2 (-843 (-528))) (-5 *1 (-856)))) (-1518 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-843 (-528))) (-5 *1 (-856)))) (-2758 (*1 *2 *3) (-12 (-5 *3 (-595 (-528))) (-5 *2 (-843 (-528))) (-5 *1 (-856)))) (-2758 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-843 (-528))) (-5 *1 (-856)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-595 (-860))) (-5 *2 (-843 (-528))) (-5 *1 (-856)))) (-2034 (*1 *2 *3) (-12 (-5 *3 (-595 (-528))) (-5 *2 (-843 (-528))) (-5 *1 (-856)))) (-2034 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-843 (-528))) (-5 *1 (-856)))) (-3646 (*1 *2 *3) (-12 (-5 *3 (-595 (-528))) (-5 *2 (-843 (-528))) (-5 *1 (-856)))) (-3646 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-843 (-528))) (-5 *1 (-856)))))
-(-10 -7 (-15 -3646 ((-843 (-528)) (-860))) (-15 -3646 ((-843 (-528)) (-595 (-528)))) (-15 -2034 ((-843 (-528)) (-860))) (-15 -2034 ((-843 (-528)) (-595 (-528)))) (-15 -2014 ((-843 (-528)) (-595 (-860)))) (-15 -2758 ((-843 (-528)) (-860))) (-15 -2758 ((-843 (-528)) (-595 (-528)))) (-15 -1518 ((-843 (-528)) (-860))) (-15 -1518 ((-843 (-528)) (-595 (-528)))) (-15 -1973 ((-843 (-528)) (-595 (-528)))) (-15 -1973 ((-843 (-528)))) (-15 -3803 ((-843 (-528)) (-595 (-528)))) (-15 -3803 ((-843 (-528)))) (-15 -1993 ((-843 (-528)) (-595 (-528)))) (-15 -1993 ((-843 (-528)))) (-15 -2995 ((-843 (-528)) (-595 (-528)))) (-15 -2995 ((-843 (-528)))) (-15 -3143 ((-843 (-528)) (-595 (-528)))) (-15 -3143 ((-843 (-528)))) (-15 -3439 ((-843 (-528)) (-595 (-528)))) (-15 -3439 ((-843 (-528)))) (-15 -2105 ((-843 (-528)))) (-15 -3213 ((-843 (-528)) (-595 (-528)))) (-15 -3213 ((-843 (-528)) (-908))))
-((-2011 (((-595 (-891 |#1|)) (-595 (-891 |#1|)) (-595 (-1095))) 12)) (-3584 (((-595 (-891 |#1|)) (-595 (-891 |#1|)) (-595 (-1095))) 11)))
-(((-857 |#1|) (-10 -7 (-15 -3584 ((-595 (-891 |#1|)) (-595 (-891 |#1|)) (-595 (-1095)))) (-15 -2011 ((-595 (-891 |#1|)) (-595 (-891 |#1|)) (-595 (-1095))))) (-431)) (T -857))
-((-2011 (*1 *2 *2 *3) (-12 (-5 *2 (-595 (-891 *4))) (-5 *3 (-595 (-1095))) (-4 *4 (-431)) (-5 *1 (-857 *4)))) (-3584 (*1 *2 *2 *3) (-12 (-5 *2 (-595 (-891 *4))) (-5 *3 (-595 (-1095))) (-4 *4 (-431)) (-5 *1 (-857 *4)))))
-(-10 -7 (-15 -3584 ((-595 (-891 |#1|)) (-595 (-891 |#1|)) (-595 (-1095)))) (-15 -2011 ((-595 (-891 |#1|)) (-595 (-891 |#1|)) (-595 (-1095)))))
-((-2222 (((-296 |#1|) (-456)) 16)))
-(((-858 |#1|) (-10 -7 (-15 -2222 ((-296 |#1|) (-456)))) (-13 (-793) (-520))) (T -858))
-((-2222 (*1 *2 *3) (-12 (-5 *3 (-456)) (-5 *2 (-296 *4)) (-5 *1 (-858 *4)) (-4 *4 (-13 (-793) (-520))))))
-(-10 -7 (-15 -2222 ((-296 |#1|) (-456))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 41)) (-1738 (($ $) 40)) (-1811 (((-110) $) 38)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-1312 (((-3 $ "failed") $) 34)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 51)) (-1297 (((-110) $) 31)) (-2057 (($ $ $) 46) (($ (-595 $)) 45)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 44)) (-2088 (($ $ $) 48) (($ (-595 $)) 47)) (-3477 (((-3 $ "failed") $ $) 42)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 50)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ $) 43)) (-3742 (((-717)) 29)) (-4016 (((-110) $ $) 39)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24)))
-(((-859) (-133)) (T -859))
-((-2403 (*1 *2 *3) (-12 (-4 *1 (-859)) (-5 *2 (-2 (|:| -1641 (-595 *1)) (|:| -1261 *1))) (-5 *3 (-595 *1)))) (-1253 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-595 *1)) (-4 *1 (-859)))))
-(-13 (-431) (-10 -8 (-15 -2403 ((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $))) (-15 -1253 ((-3 (-595 $) "failed") (-595 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-569 (-802)) . T) ((-162) . T) ((-271) . T) ((-431) . T) ((-520) . T) ((-597 $) . T) ((-664 $) . T) ((-673) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-2207 (((-110) $ $) NIL)) (-2816 (($) NIL T CONST)) (-1312 (((-3 $ "failed") $) NIL)) (-1297 (((-110) $) NIL)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2088 (($ $ $) NIL)) (-2222 (((-802) $) NIL)) (-2690 (($ $ (-717)) NIL) (($ $ (-860)) NIL)) (-2982 (($) NIL T CONST)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-717)) NIL) (($ $ (-860)) NIL)) (* (($ (-860) $) NIL) (($ $ $) NIL)))
-(((-860) (-13 (-740) (-673) (-10 -8 (-15 -2088 ($ $ $)) (-6 (-4266 "*"))))) (T -860))
-((-2088 (*1 *1 *1 *1) (-5 *1 (-860))))
-(-13 (-740) (-673) (-10 -8 (-15 -2088 ($ $ $)) (-6 (-4266 "*"))))
-((-1247 ((|#2| (-595 |#1|) (-595 |#1|)) 24)))
-(((-861 |#1| |#2|) (-10 -7 (-15 -1247 (|#2| (-595 |#1|) (-595 |#1|)))) (-343) (-1153 |#1|)) (T -861))
-((-1247 (*1 *2 *3 *3) (-12 (-5 *3 (-595 *4)) (-4 *4 (-343)) (-4 *2 (-1153 *4)) (-5 *1 (-861 *4 *2)))))
-(-10 -7 (-15 -1247 (|#2| (-595 |#1|) (-595 |#1|))))
-((-1918 (((-1091 |#2|) (-595 |#2|) (-595 |#2|)) 17) (((-1150 |#1| |#2|) (-1150 |#1| |#2|) (-595 |#2|) (-595 |#2|)) 13)))
-(((-862 |#1| |#2|) (-10 -7 (-15 -1918 ((-1150 |#1| |#2|) (-1150 |#1| |#2|) (-595 |#2|) (-595 |#2|))) (-15 -1918 ((-1091 |#2|) (-595 |#2|) (-595 |#2|)))) (-1095) (-343)) (T -862))
-((-1918 (*1 *2 *3 *3) (-12 (-5 *3 (-595 *5)) (-4 *5 (-343)) (-5 *2 (-1091 *5)) (-5 *1 (-862 *4 *5)) (-14 *4 (-1095)))) (-1918 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1150 *4 *5)) (-5 *3 (-595 *5)) (-14 *4 (-1095)) (-4 *5 (-343)) (-5 *1 (-862 *4 *5)))))
-(-10 -7 (-15 -1918 ((-1150 |#1| |#2|) (-1150 |#1| |#2|) (-595 |#2|) (-595 |#2|))) (-15 -1918 ((-1091 |#2|) (-595 |#2|) (-595 |#2|))))
-((-3011 (((-528) (-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|))))))))) (-1078)) 139)) (-1251 ((|#4| |#4|) 155)) (-1614 (((-595 (-387 (-891 |#1|))) (-595 (-1095))) 119)) (-1504 (((-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528)))) (-635 |#4|) (-595 (-387 (-891 |#1|))) (-595 (-595 |#4|)) (-717) (-717) (-528)) 75)) (-3233 (((-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|)))))) (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|)))))) (-595 |#4|)) 59)) (-3585 (((-635 |#4|) (-635 |#4|) (-595 |#4|)) 55)) (-3961 (((-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|))))))))) (-1078)) 151)) (-4137 (((-528) (-635 |#4|) (-860) (-1078)) 133) (((-528) (-635 |#4|) (-595 (-1095)) (-860) (-1078)) 132) (((-528) (-635 |#4|) (-595 |#4|) (-860) (-1078)) 131) (((-528) (-635 |#4|) (-1078)) 128) (((-528) (-635 |#4|) (-595 (-1095)) (-1078)) 127) (((-528) (-635 |#4|) (-595 |#4|) (-1078)) 126) (((-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|))))))))) (-635 |#4|) (-860)) 125) (((-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|))))))))) (-635 |#4|) (-595 (-1095)) (-860)) 124) (((-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|))))))))) (-635 |#4|) (-595 |#4|) (-860)) 123) (((-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|))))))))) (-635 |#4|)) 121) (((-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|))))))))) (-635 |#4|) (-595 (-1095))) 120) (((-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|))))))))) (-635 |#4|) (-595 |#4|)) 116)) (-4227 ((|#4| (-891 |#1|)) 68)) (-1348 (((-110) (-595 |#4|) (-595 (-595 |#4|))) 152)) (-2269 (((-595 (-595 (-528))) (-528) (-528)) 130)) (-4072 (((-595 (-595 |#4|)) (-595 (-595 |#4|))) 88)) (-3130 (((-717) (-595 (-2 (|:| -3090 (-717)) (|:| |eqns| (-595 (-2 (|:| |det| |#4|) (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528)))))) (|:| |fgb| (-595 |#4|))))) 86)) (-3238 (((-717) (-595 (-2 (|:| -3090 (-717)) (|:| |eqns| (-595 (-2 (|:| |det| |#4|) (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528)))))) (|:| |fgb| (-595 |#4|))))) 85)) (-3434 (((-110) (-595 (-891 |#1|))) 17) (((-110) (-595 |#4|)) 13)) (-3998 (((-2 (|:| |sysok| (-110)) (|:| |z0| (-595 |#4|)) (|:| |n0| (-595 |#4|))) (-595 |#4|) (-595 |#4|)) 71)) (-1786 (((-595 |#4|) |#4|) 49)) (-3509 (((-595 (-387 (-891 |#1|))) (-595 |#4|)) 115) (((-635 (-387 (-891 |#1|))) (-635 |#4|)) 56) (((-387 (-891 |#1|)) |#4|) 112)) (-3237 (((-2 (|:| |rgl| (-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|)))))))))) (|:| |rgsz| (-528))) (-635 |#4|) (-595 (-387 (-891 |#1|))) (-717) (-1078) (-528)) 93)) (-2627 (((-595 (-2 (|:| -3090 (-717)) (|:| |eqns| (-595 (-2 (|:| |det| |#4|) (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528)))))) (|:| |fgb| (-595 |#4|)))) (-635 |#4|) (-717)) 84)) (-2512 (((-595 (-2 (|:| |det| |#4|) (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528))))) (-635 |#4|) (-717)) 101)) (-3750 (((-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|)))))) (-2 (|:| -2163 (-635 (-387 (-891 |#1|)))) (|:| |vec| (-595 (-387 (-891 |#1|)))) (|:| -3090 (-717)) (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528))))) 48)))
-(((-863 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4137 ((-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|))))))))) (-635 |#4|) (-595 |#4|))) (-15 -4137 ((-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|))))))))) (-635 |#4|) (-595 (-1095)))) (-15 -4137 ((-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|))))))))) (-635 |#4|))) (-15 -4137 ((-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|))))))))) (-635 |#4|) (-595 |#4|) (-860))) (-15 -4137 ((-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|))))))))) (-635 |#4|) (-595 (-1095)) (-860))) (-15 -4137 ((-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|))))))))) (-635 |#4|) (-860))) (-15 -4137 ((-528) (-635 |#4|) (-595 |#4|) (-1078))) (-15 -4137 ((-528) (-635 |#4|) (-595 (-1095)) (-1078))) (-15 -4137 ((-528) (-635 |#4|) (-1078))) (-15 -4137 ((-528) (-635 |#4|) (-595 |#4|) (-860) (-1078))) (-15 -4137 ((-528) (-635 |#4|) (-595 (-1095)) (-860) (-1078))) (-15 -4137 ((-528) (-635 |#4|) (-860) (-1078))) (-15 -3011 ((-528) (-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|))))))))) (-1078))) (-15 -3961 ((-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|))))))))) (-1078))) (-15 -3237 ((-2 (|:| |rgl| (-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|)))))))))) (|:| |rgsz| (-528))) (-635 |#4|) (-595 (-387 (-891 |#1|))) (-717) (-1078) (-528))) (-15 -3509 ((-387 (-891 |#1|)) |#4|)) (-15 -3509 ((-635 (-387 (-891 |#1|))) (-635 |#4|))) (-15 -3509 ((-595 (-387 (-891 |#1|))) (-595 |#4|))) (-15 -1614 ((-595 (-387 (-891 |#1|))) (-595 (-1095)))) (-15 -4227 (|#4| (-891 |#1|))) (-15 -3998 ((-2 (|:| |sysok| (-110)) (|:| |z0| (-595 |#4|)) (|:| |n0| (-595 |#4|))) (-595 |#4|) (-595 |#4|))) (-15 -2627 ((-595 (-2 (|:| -3090 (-717)) (|:| |eqns| (-595 (-2 (|:| |det| |#4|) (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528)))))) (|:| |fgb| (-595 |#4|)))) (-635 |#4|) (-717))) (-15 -3233 ((-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|)))))) (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|)))))) (-595 |#4|))) (-15 -3750 ((-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|)))))) (-2 (|:| -2163 (-635 (-387 (-891 |#1|)))) (|:| |vec| (-595 (-387 (-891 |#1|)))) (|:| -3090 (-717)) (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528)))))) (-15 -1786 ((-595 |#4|) |#4|)) (-15 -3238 ((-717) (-595 (-2 (|:| -3090 (-717)) (|:| |eqns| (-595 (-2 (|:| |det| |#4|) (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528)))))) (|:| |fgb| (-595 |#4|)))))) (-15 -3130 ((-717) (-595 (-2 (|:| -3090 (-717)) (|:| |eqns| (-595 (-2 (|:| |det| |#4|) (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528)))))) (|:| |fgb| (-595 |#4|)))))) (-15 -4072 ((-595 (-595 |#4|)) (-595 (-595 |#4|)))) (-15 -2269 ((-595 (-595 (-528))) (-528) (-528))) (-15 -1348 ((-110) (-595 |#4|) (-595 (-595 |#4|)))) (-15 -2512 ((-595 (-2 (|:| |det| |#4|) (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528))))) (-635 |#4|) (-717))) (-15 -3585 ((-635 |#4|) (-635 |#4|) (-595 |#4|))) (-15 -1504 ((-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528)))) (-635 |#4|) (-595 (-387 (-891 |#1|))) (-595 (-595 |#4|)) (-717) (-717) (-528))) (-15 -1251 (|#4| |#4|)) (-15 -3434 ((-110) (-595 |#4|))) (-15 -3434 ((-110) (-595 (-891 |#1|))))) (-13 (-288) (-140)) (-13 (-793) (-570 (-1095))) (-739) (-888 |#1| |#3| |#2|)) (T -863))
-((-3434 (*1 *2 *3) (-12 (-5 *3 (-595 (-891 *4))) (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095)))) (-4 *6 (-739)) (-5 *2 (-110)) (-5 *1 (-863 *4 *5 *6 *7)) (-4 *7 (-888 *4 *6 *5)))) (-3434 (*1 *2 *3) (-12 (-5 *3 (-595 *7)) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095)))) (-4 *6 (-739)) (-5 *2 (-110)) (-5 *1 (-863 *4 *5 *6 *7)))) (-1251 (*1 *2 *2) (-12 (-4 *3 (-13 (-288) (-140))) (-4 *4 (-13 (-793) (-570 (-1095)))) (-4 *5 (-739)) (-5 *1 (-863 *3 *4 *5 *2)) (-4 *2 (-888 *3 *5 *4)))) (-1504 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528))))) (-5 *4 (-635 *12)) (-5 *5 (-595 (-387 (-891 *9)))) (-5 *6 (-595 (-595 *12))) (-5 *7 (-717)) (-5 *8 (-528)) (-4 *9 (-13 (-288) (-140))) (-4 *12 (-888 *9 *11 *10)) (-4 *10 (-13 (-793) (-570 (-1095)))) (-4 *11 (-739)) (-5 *2 (-2 (|:| |eqzro| (-595 *12)) (|:| |neqzro| (-595 *12)) (|:| |wcond| (-595 (-891 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 *9)))) (|:| -1400 (-595 (-1177 (-387 (-891 *9))))))))) (-5 *1 (-863 *9 *10 *11 *12)))) (-3585 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-595 *7)) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095)))) (-4 *6 (-739)) (-5 *1 (-863 *4 *5 *6 *7)))) (-2512 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-717)) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-288) (-140))) (-4 *6 (-13 (-793) (-570 (-1095)))) (-4 *7 (-739)) (-5 *2 (-595 (-2 (|:| |det| *8) (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528)))))) (-5 *1 (-863 *5 *6 *7 *8)))) (-1348 (*1 *2 *3 *4) (-12 (-5 *4 (-595 (-595 *8))) (-5 *3 (-595 *8)) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-288) (-140))) (-4 *6 (-13 (-793) (-570 (-1095)))) (-4 *7 (-739)) (-5 *2 (-110)) (-5 *1 (-863 *5 *6 *7 *8)))) (-2269 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095)))) (-4 *6 (-739)) (-5 *2 (-595 (-595 (-528)))) (-5 *1 (-863 *4 *5 *6 *7)) (-5 *3 (-528)) (-4 *7 (-888 *4 *6 *5)))) (-4072 (*1 *2 *2) (-12 (-5 *2 (-595 (-595 *6))) (-4 *6 (-888 *3 *5 *4)) (-4 *3 (-13 (-288) (-140))) (-4 *4 (-13 (-793) (-570 (-1095)))) (-4 *5 (-739)) (-5 *1 (-863 *3 *4 *5 *6)))) (-3130 (*1 *2 *3) (-12 (-5 *3 (-595 (-2 (|:| -3090 (-717)) (|:| |eqns| (-595 (-2 (|:| |det| *7) (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528)))))) (|:| |fgb| (-595 *7))))) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095)))) (-4 *6 (-739)) (-5 *2 (-717)) (-5 *1 (-863 *4 *5 *6 *7)))) (-3238 (*1 *2 *3) (-12 (-5 *3 (-595 (-2 (|:| -3090 (-717)) (|:| |eqns| (-595 (-2 (|:| |det| *7) (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528)))))) (|:| |fgb| (-595 *7))))) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095)))) (-4 *6 (-739)) (-5 *2 (-717)) (-5 *1 (-863 *4 *5 *6 *7)))) (-1786 (*1 *2 *3) (-12 (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095)))) (-4 *6 (-739)) (-5 *2 (-595 *3)) (-5 *1 (-863 *4 *5 *6 *3)) (-4 *3 (-888 *4 *6 *5)))) (-3750 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2163 (-635 (-387 (-891 *4)))) (|:| |vec| (-595 (-387 (-891 *4)))) (|:| -3090 (-717)) (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528))))) (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095)))) (-4 *6 (-739)) (-5 *2 (-2 (|:| |partsol| (-1177 (-387 (-891 *4)))) (|:| -1400 (-595 (-1177 (-387 (-891 *4))))))) (-5 *1 (-863 *4 *5 *6 *7)) (-4 *7 (-888 *4 *6 *5)))) (-3233 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1177 (-387 (-891 *4)))) (|:| -1400 (-595 (-1177 (-387 (-891 *4))))))) (-5 *3 (-595 *7)) (-4 *4 (-13 (-288) (-140))) (-4 *7 (-888 *4 *6 *5)) (-4 *5 (-13 (-793) (-570 (-1095)))) (-4 *6 (-739)) (-5 *1 (-863 *4 *5 *6 *7)))) (-2627 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-288) (-140))) (-4 *6 (-13 (-793) (-570 (-1095)))) (-4 *7 (-739)) (-5 *2 (-595 (-2 (|:| -3090 (-717)) (|:| |eqns| (-595 (-2 (|:| |det| *8) (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528)))))) (|:| |fgb| (-595 *8))))) (-5 *1 (-863 *5 *6 *7 *8)) (-5 *4 (-717)))) (-3998 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095)))) (-4 *6 (-739)) (-4 *7 (-888 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-110)) (|:| |z0| (-595 *7)) (|:| |n0| (-595 *7)))) (-5 *1 (-863 *4 *5 *6 *7)) (-5 *3 (-595 *7)))) (-4227 (*1 *2 *3) (-12 (-5 *3 (-891 *4)) (-4 *4 (-13 (-288) (-140))) (-4 *2 (-888 *4 *6 *5)) (-5 *1 (-863 *4 *5 *6 *2)) (-4 *5 (-13 (-793) (-570 (-1095)))) (-4 *6 (-739)))) (-1614 (*1 *2 *3) (-12 (-5 *3 (-595 (-1095))) (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095)))) (-4 *6 (-739)) (-5 *2 (-595 (-387 (-891 *4)))) (-5 *1 (-863 *4 *5 *6 *7)) (-4 *7 (-888 *4 *6 *5)))) (-3509 (*1 *2 *3) (-12 (-5 *3 (-595 *7)) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095)))) (-4 *6 (-739)) (-5 *2 (-595 (-387 (-891 *4)))) (-5 *1 (-863 *4 *5 *6 *7)))) (-3509 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095)))) (-4 *6 (-739)) (-5 *2 (-635 (-387 (-891 *4)))) (-5 *1 (-863 *4 *5 *6 *7)))) (-3509 (*1 *2 *3) (-12 (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095)))) (-4 *6 (-739)) (-5 *2 (-387 (-891 *4))) (-5 *1 (-863 *4 *5 *6 *3)) (-4 *3 (-888 *4 *6 *5)))) (-3237 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-635 *11)) (-5 *4 (-595 (-387 (-891 *8)))) (-5 *5 (-717)) (-5 *6 (-1078)) (-4 *8 (-13 (-288) (-140))) (-4 *11 (-888 *8 *10 *9)) (-4 *9 (-13 (-793) (-570 (-1095)))) (-4 *10 (-739)) (-5 *2 (-2 (|:| |rgl| (-595 (-2 (|:| |eqzro| (-595 *11)) (|:| |neqzro| (-595 *11)) (|:| |wcond| (-595 (-891 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 *8)))) (|:| -1400 (-595 (-1177 (-387 (-891 *8)))))))))) (|:| |rgsz| (-528)))) (-5 *1 (-863 *8 *9 *10 *11)) (-5 *7 (-528)))) (-3961 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095)))) (-4 *6 (-739)) (-5 *2 (-595 (-2 (|:| |eqzro| (-595 *7)) (|:| |neqzro| (-595 *7)) (|:| |wcond| (-595 (-891 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 *4)))) (|:| -1400 (-595 (-1177 (-387 (-891 *4)))))))))) (-5 *1 (-863 *4 *5 *6 *7)) (-4 *7 (-888 *4 *6 *5)))) (-3011 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-2 (|:| |eqzro| (-595 *8)) (|:| |neqzro| (-595 *8)) (|:| |wcond| (-595 (-891 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 *5)))) (|:| -1400 (-595 (-1177 (-387 (-891 *5)))))))))) (-5 *4 (-1078)) (-4 *5 (-13 (-288) (-140))) (-4 *8 (-888 *5 *7 *6)) (-4 *6 (-13 (-793) (-570 (-1095)))) (-4 *7 (-739)) (-5 *2 (-528)) (-5 *1 (-863 *5 *6 *7 *8)))) (-4137 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 *9)) (-5 *4 (-860)) (-5 *5 (-1078)) (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-288) (-140))) (-4 *7 (-13 (-793) (-570 (-1095)))) (-4 *8 (-739)) (-5 *2 (-528)) (-5 *1 (-863 *6 *7 *8 *9)))) (-4137 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-635 *10)) (-5 *4 (-595 (-1095))) (-5 *5 (-860)) (-5 *6 (-1078)) (-4 *10 (-888 *7 *9 *8)) (-4 *7 (-13 (-288) (-140))) (-4 *8 (-13 (-793) (-570 (-1095)))) (-4 *9 (-739)) (-5 *2 (-528)) (-5 *1 (-863 *7 *8 *9 *10)))) (-4137 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-635 *10)) (-5 *4 (-595 *10)) (-5 *5 (-860)) (-5 *6 (-1078)) (-4 *10 (-888 *7 *9 *8)) (-4 *7 (-13 (-288) (-140))) (-4 *8 (-13 (-793) (-570 (-1095)))) (-4 *9 (-739)) (-5 *2 (-528)) (-5 *1 (-863 *7 *8 *9 *10)))) (-4137 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-1078)) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-288) (-140))) (-4 *6 (-13 (-793) (-570 (-1095)))) (-4 *7 (-739)) (-5 *2 (-528)) (-5 *1 (-863 *5 *6 *7 *8)))) (-4137 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 *9)) (-5 *4 (-595 (-1095))) (-5 *5 (-1078)) (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-288) (-140))) (-4 *7 (-13 (-793) (-570 (-1095)))) (-4 *8 (-739)) (-5 *2 (-528)) (-5 *1 (-863 *6 *7 *8 *9)))) (-4137 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 *9)) (-5 *4 (-595 *9)) (-5 *5 (-1078)) (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-288) (-140))) (-4 *7 (-13 (-793) (-570 (-1095)))) (-4 *8 (-739)) (-5 *2 (-528)) (-5 *1 (-863 *6 *7 *8 *9)))) (-4137 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-860)) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-288) (-140))) (-4 *6 (-13 (-793) (-570 (-1095)))) (-4 *7 (-739)) (-5 *2 (-595 (-2 (|:| |eqzro| (-595 *8)) (|:| |neqzro| (-595 *8)) (|:| |wcond| (-595 (-891 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 *5)))) (|:| -1400 (-595 (-1177 (-387 (-891 *5)))))))))) (-5 *1 (-863 *5 *6 *7 *8)))) (-4137 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 *9)) (-5 *4 (-595 (-1095))) (-5 *5 (-860)) (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-288) (-140))) (-4 *7 (-13 (-793) (-570 (-1095)))) (-4 *8 (-739)) (-5 *2 (-595 (-2 (|:| |eqzro| (-595 *9)) (|:| |neqzro| (-595 *9)) (|:| |wcond| (-595 (-891 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 *6)))) (|:| -1400 (-595 (-1177 (-387 (-891 *6)))))))))) (-5 *1 (-863 *6 *7 *8 *9)))) (-4137 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 *9)) (-5 *5 (-860)) (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-288) (-140))) (-4 *7 (-13 (-793) (-570 (-1095)))) (-4 *8 (-739)) (-5 *2 (-595 (-2 (|:| |eqzro| (-595 *9)) (|:| |neqzro| (-595 *9)) (|:| |wcond| (-595 (-891 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 *6)))) (|:| -1400 (-595 (-1177 (-387 (-891 *6)))))))))) (-5 *1 (-863 *6 *7 *8 *9)) (-5 *4 (-595 *9)))) (-4137 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095)))) (-4 *6 (-739)) (-5 *2 (-595 (-2 (|:| |eqzro| (-595 *7)) (|:| |neqzro| (-595 *7)) (|:| |wcond| (-595 (-891 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 *4)))) (|:| -1400 (-595 (-1177 (-387 (-891 *4)))))))))) (-5 *1 (-863 *4 *5 *6 *7)))) (-4137 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-595 (-1095))) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-288) (-140))) (-4 *6 (-13 (-793) (-570 (-1095)))) (-4 *7 (-739)) (-5 *2 (-595 (-2 (|:| |eqzro| (-595 *8)) (|:| |neqzro| (-595 *8)) (|:| |wcond| (-595 (-891 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 *5)))) (|:| -1400 (-595 (-1177 (-387 (-891 *5)))))))))) (-5 *1 (-863 *5 *6 *7 *8)))) (-4137 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-288) (-140))) (-4 *6 (-13 (-793) (-570 (-1095)))) (-4 *7 (-739)) (-5 *2 (-595 (-2 (|:| |eqzro| (-595 *8)) (|:| |neqzro| (-595 *8)) (|:| |wcond| (-595 (-891 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 *5)))) (|:| -1400 (-595 (-1177 (-387 (-891 *5)))))))))) (-5 *1 (-863 *5 *6 *7 *8)) (-5 *4 (-595 *8)))))
-(-10 -7 (-15 -4137 ((-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|))))))))) (-635 |#4|) (-595 |#4|))) (-15 -4137 ((-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|))))))))) (-635 |#4|) (-595 (-1095)))) (-15 -4137 ((-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|))))))))) (-635 |#4|))) (-15 -4137 ((-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|))))))))) (-635 |#4|) (-595 |#4|) (-860))) (-15 -4137 ((-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|))))))))) (-635 |#4|) (-595 (-1095)) (-860))) (-15 -4137 ((-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|))))))))) (-635 |#4|) (-860))) (-15 -4137 ((-528) (-635 |#4|) (-595 |#4|) (-1078))) (-15 -4137 ((-528) (-635 |#4|) (-595 (-1095)) (-1078))) (-15 -4137 ((-528) (-635 |#4|) (-1078))) (-15 -4137 ((-528) (-635 |#4|) (-595 |#4|) (-860) (-1078))) (-15 -4137 ((-528) (-635 |#4|) (-595 (-1095)) (-860) (-1078))) (-15 -4137 ((-528) (-635 |#4|) (-860) (-1078))) (-15 -3011 ((-528) (-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|))))))))) (-1078))) (-15 -3961 ((-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|))))))))) (-1078))) (-15 -3237 ((-2 (|:| |rgl| (-595 (-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|)))))))))) (|:| |rgsz| (-528))) (-635 |#4|) (-595 (-387 (-891 |#1|))) (-717) (-1078) (-528))) (-15 -3509 ((-387 (-891 |#1|)) |#4|)) (-15 -3509 ((-635 (-387 (-891 |#1|))) (-635 |#4|))) (-15 -3509 ((-595 (-387 (-891 |#1|))) (-595 |#4|))) (-15 -1614 ((-595 (-387 (-891 |#1|))) (-595 (-1095)))) (-15 -4227 (|#4| (-891 |#1|))) (-15 -3998 ((-2 (|:| |sysok| (-110)) (|:| |z0| (-595 |#4|)) (|:| |n0| (-595 |#4|))) (-595 |#4|) (-595 |#4|))) (-15 -2627 ((-595 (-2 (|:| -3090 (-717)) (|:| |eqns| (-595 (-2 (|:| |det| |#4|) (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528)))))) (|:| |fgb| (-595 |#4|)))) (-635 |#4|) (-717))) (-15 -3233 ((-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|)))))) (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|)))))) (-595 |#4|))) (-15 -3750 ((-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|)))))) (-2 (|:| -2163 (-635 (-387 (-891 |#1|)))) (|:| |vec| (-595 (-387 (-891 |#1|)))) (|:| -3090 (-717)) (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528)))))) (-15 -1786 ((-595 |#4|) |#4|)) (-15 -3238 ((-717) (-595 (-2 (|:| -3090 (-717)) (|:| |eqns| (-595 (-2 (|:| |det| |#4|) (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528)))))) (|:| |fgb| (-595 |#4|)))))) (-15 -3130 ((-717) (-595 (-2 (|:| -3090 (-717)) (|:| |eqns| (-595 (-2 (|:| |det| |#4|) (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528)))))) (|:| |fgb| (-595 |#4|)))))) (-15 -4072 ((-595 (-595 |#4|)) (-595 (-595 |#4|)))) (-15 -2269 ((-595 (-595 (-528))) (-528) (-528))) (-15 -1348 ((-110) (-595 |#4|) (-595 (-595 |#4|)))) (-15 -2512 ((-595 (-2 (|:| |det| |#4|) (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528))))) (-635 |#4|) (-717))) (-15 -3585 ((-635 |#4|) (-635 |#4|) (-595 |#4|))) (-15 -1504 ((-2 (|:| |eqzro| (-595 |#4|)) (|:| |neqzro| (-595 |#4|)) (|:| |wcond| (-595 (-891 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-387 (-891 |#1|)))) (|:| -1400 (-595 (-1177 (-387 (-891 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528)))) (-635 |#4|) (-595 (-387 (-891 |#1|))) (-595 (-595 |#4|)) (-717) (-717) (-528))) (-15 -1251 (|#4| |#4|)) (-15 -3434 ((-110) (-595 |#4|))) (-15 -3434 ((-110) (-595 (-891 |#1|)))))
-((-2260 (((-866) |#1| (-1095)) 17) (((-866) |#1| (-1095) (-1018 (-207))) 21)) (-2764 (((-866) |#1| |#1| (-1095) (-1018 (-207))) 19) (((-866) |#1| (-1095) (-1018 (-207))) 15)))
-(((-864 |#1|) (-10 -7 (-15 -2764 ((-866) |#1| (-1095) (-1018 (-207)))) (-15 -2764 ((-866) |#1| |#1| (-1095) (-1018 (-207)))) (-15 -2260 ((-866) |#1| (-1095) (-1018 (-207)))) (-15 -2260 ((-866) |#1| (-1095)))) (-570 (-504))) (T -864))
-((-2260 (*1 *2 *3 *4) (-12 (-5 *4 (-1095)) (-5 *2 (-866)) (-5 *1 (-864 *3)) (-4 *3 (-570 (-504))))) (-2260 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1095)) (-5 *5 (-1018 (-207))) (-5 *2 (-866)) (-5 *1 (-864 *3)) (-4 *3 (-570 (-504))))) (-2764 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1095)) (-5 *5 (-1018 (-207))) (-5 *2 (-866)) (-5 *1 (-864 *3)) (-4 *3 (-570 (-504))))) (-2764 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1095)) (-5 *5 (-1018 (-207))) (-5 *2 (-866)) (-5 *1 (-864 *3)) (-4 *3 (-570 (-504))))))
-(-10 -7 (-15 -2764 ((-866) |#1| (-1095) (-1018 (-207)))) (-15 -2764 ((-866) |#1| |#1| (-1095) (-1018 (-207)))) (-15 -2260 ((-866) |#1| (-1095) (-1018 (-207)))) (-15 -2260 ((-866) |#1| (-1095))))
-((-2158 (($ $ (-1018 (-207)) (-1018 (-207)) (-1018 (-207))) 70)) (-2789 (((-1018 (-207)) $) 40)) (-2777 (((-1018 (-207)) $) 39)) (-2765 (((-1018 (-207)) $) 38)) (-3601 (((-595 (-595 (-207))) $) 43)) (-2368 (((-1018 (-207)) $) 41)) (-3593 (((-528) (-528)) 32)) (-1905 (((-528) (-528)) 28)) (-2775 (((-528) (-528)) 30)) (-2926 (((-110) (-110)) 35)) (-2497 (((-528)) 31)) (-2760 (($ $ (-1018 (-207))) 73) (($ $) 74)) (-2373 (($ (-1 (-882 (-207)) (-207)) (-1018 (-207))) 78) (($ (-1 (-882 (-207)) (-207)) (-1018 (-207)) (-1018 (-207)) (-1018 (-207)) (-1018 (-207))) 79)) (-2764 (($ (-1 (-207) (-207)) (-1 (-207) (-207)) (-1 (-207) (-207)) (-1 (-207) (-207)) (-1018 (-207))) 81) (($ (-1 (-207) (-207)) (-1 (-207) (-207)) (-1 (-207) (-207)) (-1 (-207) (-207)) (-1018 (-207)) (-1018 (-207)) (-1018 (-207)) (-1018 (-207))) 82) (($ $ (-1018 (-207))) 76)) (-1540 (((-528)) 36)) (-3488 (((-528)) 27)) (-1550 (((-528)) 29)) (-3632 (((-595 (-595 (-882 (-207)))) $) 95)) (-2821 (((-110) (-110)) 37)) (-2222 (((-802) $) 94)) (-3371 (((-110)) 34)))
-(((-865) (-13 (-911) (-10 -8 (-15 -2373 ($ (-1 (-882 (-207)) (-207)) (-1018 (-207)))) (-15 -2373 ($ (-1 (-882 (-207)) (-207)) (-1018 (-207)) (-1018 (-207)) (-1018 (-207)) (-1018 (-207)))) (-15 -2764 ($ (-1 (-207) (-207)) (-1 (-207) (-207)) (-1 (-207) (-207)) (-1 (-207) (-207)) (-1018 (-207)))) (-15 -2764 ($ (-1 (-207) (-207)) (-1 (-207) (-207)) (-1 (-207) (-207)) (-1 (-207) (-207)) (-1018 (-207)) (-1018 (-207)) (-1018 (-207)) (-1018 (-207)))) (-15 -2764 ($ $ (-1018 (-207)))) (-15 -2158 ($ $ (-1018 (-207)) (-1018 (-207)) (-1018 (-207)))) (-15 -2760 ($ $ (-1018 (-207)))) (-15 -2760 ($ $)) (-15 -2368 ((-1018 (-207)) $)) (-15 -3601 ((-595 (-595 (-207))) $)) (-15 -3488 ((-528))) (-15 -1905 ((-528) (-528))) (-15 -1550 ((-528))) (-15 -2775 ((-528) (-528))) (-15 -2497 ((-528))) (-15 -3593 ((-528) (-528))) (-15 -3371 ((-110))) (-15 -2926 ((-110) (-110))) (-15 -1540 ((-528))) (-15 -2821 ((-110) (-110)))))) (T -865))
-((-2373 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-882 (-207)) (-207))) (-5 *3 (-1018 (-207))) (-5 *1 (-865)))) (-2373 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-882 (-207)) (-207))) (-5 *3 (-1018 (-207))) (-5 *1 (-865)))) (-2764 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-207) (-207))) (-5 *3 (-1018 (-207))) (-5 *1 (-865)))) (-2764 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-207) (-207))) (-5 *3 (-1018 (-207))) (-5 *1 (-865)))) (-2764 (*1 *1 *1 *2) (-12 (-5 *2 (-1018 (-207))) (-5 *1 (-865)))) (-2158 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1018 (-207))) (-5 *1 (-865)))) (-2760 (*1 *1 *1 *2) (-12 (-5 *2 (-1018 (-207))) (-5 *1 (-865)))) (-2760 (*1 *1 *1) (-5 *1 (-865))) (-2368 (*1 *2 *1) (-12 (-5 *2 (-1018 (-207))) (-5 *1 (-865)))) (-3601 (*1 *2 *1) (-12 (-5 *2 (-595 (-595 (-207)))) (-5 *1 (-865)))) (-3488 (*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-865)))) (-1905 (*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-865)))) (-1550 (*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-865)))) (-2775 (*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-865)))) (-2497 (*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-865)))) (-3593 (*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-865)))) (-3371 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-865)))) (-2926 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-865)))) (-1540 (*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-865)))) (-2821 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-865)))))
-(-13 (-911) (-10 -8 (-15 -2373 ($ (-1 (-882 (-207)) (-207)) (-1018 (-207)))) (-15 -2373 ($ (-1 (-882 (-207)) (-207)) (-1018 (-207)) (-1018 (-207)) (-1018 (-207)) (-1018 (-207)))) (-15 -2764 ($ (-1 (-207) (-207)) (-1 (-207) (-207)) (-1 (-207) (-207)) (-1 (-207) (-207)) (-1018 (-207)))) (-15 -2764 ($ (-1 (-207) (-207)) (-1 (-207) (-207)) (-1 (-207) (-207)) (-1 (-207) (-207)) (-1018 (-207)) (-1018 (-207)) (-1018 (-207)) (-1018 (-207)))) (-15 -2764 ($ $ (-1018 (-207)))) (-15 -2158 ($ $ (-1018 (-207)) (-1018 (-207)) (-1018 (-207)))) (-15 -2760 ($ $ (-1018 (-207)))) (-15 -2760 ($ $)) (-15 -2368 ((-1018 (-207)) $)) (-15 -3601 ((-595 (-595 (-207))) $)) (-15 -3488 ((-528))) (-15 -1905 ((-528) (-528))) (-15 -1550 ((-528))) (-15 -2775 ((-528) (-528))) (-15 -2497 ((-528))) (-15 -3593 ((-528) (-528))) (-15 -3371 ((-110))) (-15 -2926 ((-110) (-110))) (-15 -1540 ((-528))) (-15 -2821 ((-110) (-110)))))
-((-2158 (($ $ (-1018 (-207))) 70) (($ $ (-1018 (-207)) (-1018 (-207))) 71)) (-2777 (((-1018 (-207)) $) 44)) (-2765 (((-1018 (-207)) $) 43)) (-2368 (((-1018 (-207)) $) 45)) (-2885 (((-528) (-528)) 37)) (-2446 (((-528) (-528)) 33)) (-4051 (((-528) (-528)) 35)) (-3489 (((-110) (-110)) 39)) (-3685 (((-528)) 36)) (-2760 (($ $ (-1018 (-207))) 74) (($ $) 75)) (-2373 (($ (-1 (-882 (-207)) (-207)) (-1018 (-207))) 84) (($ (-1 (-882 (-207)) (-207)) (-1018 (-207)) (-1018 (-207)) (-1018 (-207))) 85)) (-2260 (($ (-1 (-207) (-207)) (-1018 (-207))) 92) (($ (-1 (-207) (-207))) 95)) (-2764 (($ (-1 (-207) (-207)) (-1018 (-207))) 79) (($ (-1 (-207) (-207)) (-1018 (-207)) (-1018 (-207))) 80) (($ (-595 (-1 (-207) (-207))) (-1018 (-207))) 87) (($ (-595 (-1 (-207) (-207))) (-1018 (-207)) (-1018 (-207))) 88) (($ (-1 (-207) (-207)) (-1 (-207) (-207)) (-1018 (-207))) 81) (($ (-1 (-207) (-207)) (-1 (-207) (-207)) (-1018 (-207)) (-1018 (-207)) (-1018 (-207))) 82) (($ $ (-1018 (-207))) 76)) (-3860 (((-110) $) 40)) (-3161 (((-528)) 41)) (-2952 (((-528)) 32)) (-1899 (((-528)) 34)) (-3632 (((-595 (-595 (-882 (-207)))) $) 23)) (-3234 (((-110) (-110)) 42)) (-2222 (((-802) $) 106)) (-3521 (((-110)) 38)))
-(((-866) (-13 (-893) (-10 -8 (-15 -2764 ($ (-1 (-207) (-207)) (-1018 (-207)))) (-15 -2764 ($ (-1 (-207) (-207)) (-1018 (-207)) (-1018 (-207)))) (-15 -2764 ($ (-595 (-1 (-207) (-207))) (-1018 (-207)))) (-15 -2764 ($ (-595 (-1 (-207) (-207))) (-1018 (-207)) (-1018 (-207)))) (-15 -2764 ($ (-1 (-207) (-207)) (-1 (-207) (-207)) (-1018 (-207)))) (-15 -2764 ($ (-1 (-207) (-207)) (-1 (-207) (-207)) (-1018 (-207)) (-1018 (-207)) (-1018 (-207)))) (-15 -2373 ($ (-1 (-882 (-207)) (-207)) (-1018 (-207)))) (-15 -2373 ($ (-1 (-882 (-207)) (-207)) (-1018 (-207)) (-1018 (-207)) (-1018 (-207)))) (-15 -2260 ($ (-1 (-207) (-207)) (-1018 (-207)))) (-15 -2260 ($ (-1 (-207) (-207)))) (-15 -2764 ($ $ (-1018 (-207)))) (-15 -3860 ((-110) $)) (-15 -2158 ($ $ (-1018 (-207)))) (-15 -2158 ($ $ (-1018 (-207)) (-1018 (-207)))) (-15 -2760 ($ $ (-1018 (-207)))) (-15 -2760 ($ $)) (-15 -2368 ((-1018 (-207)) $)) (-15 -2952 ((-528))) (-15 -2446 ((-528) (-528))) (-15 -1899 ((-528))) (-15 -4051 ((-528) (-528))) (-15 -3685 ((-528))) (-15 -2885 ((-528) (-528))) (-15 -3521 ((-110))) (-15 -3489 ((-110) (-110))) (-15 -3161 ((-528))) (-15 -3234 ((-110) (-110)))))) (T -866))
-((-2764 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-207) (-207))) (-5 *3 (-1018 (-207))) (-5 *1 (-866)))) (-2764 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-207) (-207))) (-5 *3 (-1018 (-207))) (-5 *1 (-866)))) (-2764 (*1 *1 *2 *3) (-12 (-5 *2 (-595 (-1 (-207) (-207)))) (-5 *3 (-1018 (-207))) (-5 *1 (-866)))) (-2764 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-595 (-1 (-207) (-207)))) (-5 *3 (-1018 (-207))) (-5 *1 (-866)))) (-2764 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-207) (-207))) (-5 *3 (-1018 (-207))) (-5 *1 (-866)))) (-2764 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-207) (-207))) (-5 *3 (-1018 (-207))) (-5 *1 (-866)))) (-2373 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-882 (-207)) (-207))) (-5 *3 (-1018 (-207))) (-5 *1 (-866)))) (-2373 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-882 (-207)) (-207))) (-5 *3 (-1018 (-207))) (-5 *1 (-866)))) (-2260 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-207) (-207))) (-5 *3 (-1018 (-207))) (-5 *1 (-866)))) (-2260 (*1 *1 *2) (-12 (-5 *2 (-1 (-207) (-207))) (-5 *1 (-866)))) (-2764 (*1 *1 *1 *2) (-12 (-5 *2 (-1018 (-207))) (-5 *1 (-866)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-866)))) (-2158 (*1 *1 *1 *2) (-12 (-5 *2 (-1018 (-207))) (-5 *1 (-866)))) (-2158 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1018 (-207))) (-5 *1 (-866)))) (-2760 (*1 *1 *1 *2) (-12 (-5 *2 (-1018 (-207))) (-5 *1 (-866)))) (-2760 (*1 *1 *1) (-5 *1 (-866))) (-2368 (*1 *2 *1) (-12 (-5 *2 (-1018 (-207))) (-5 *1 (-866)))) (-2952 (*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-866)))) (-2446 (*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-866)))) (-1899 (*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-866)))) (-4051 (*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-866)))) (-3685 (*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-866)))) (-2885 (*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-866)))) (-3521 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-866)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-866)))) (-3161 (*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-866)))) (-3234 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-866)))))
-(-13 (-893) (-10 -8 (-15 -2764 ($ (-1 (-207) (-207)) (-1018 (-207)))) (-15 -2764 ($ (-1 (-207) (-207)) (-1018 (-207)) (-1018 (-207)))) (-15 -2764 ($ (-595 (-1 (-207) (-207))) (-1018 (-207)))) (-15 -2764 ($ (-595 (-1 (-207) (-207))) (-1018 (-207)) (-1018 (-207)))) (-15 -2764 ($ (-1 (-207) (-207)) (-1 (-207) (-207)) (-1018 (-207)))) (-15 -2764 ($ (-1 (-207) (-207)) (-1 (-207) (-207)) (-1018 (-207)) (-1018 (-207)) (-1018 (-207)))) (-15 -2373 ($ (-1 (-882 (-207)) (-207)) (-1018 (-207)))) (-15 -2373 ($ (-1 (-882 (-207)) (-207)) (-1018 (-207)) (-1018 (-207)) (-1018 (-207)))) (-15 -2260 ($ (-1 (-207) (-207)) (-1018 (-207)))) (-15 -2260 ($ (-1 (-207) (-207)))) (-15 -2764 ($ $ (-1018 (-207)))) (-15 -3860 ((-110) $)) (-15 -2158 ($ $ (-1018 (-207)))) (-15 -2158 ($ $ (-1018 (-207)) (-1018 (-207)))) (-15 -2760 ($ $ (-1018 (-207)))) (-15 -2760 ($ $)) (-15 -2368 ((-1018 (-207)) $)) (-15 -2952 ((-528))) (-15 -2446 ((-528) (-528))) (-15 -1899 ((-528))) (-15 -4051 ((-528) (-528))) (-15 -3685 ((-528))) (-15 -2885 ((-528) (-528))) (-15 -3521 ((-110))) (-15 -3489 ((-110) (-110))) (-15 -3161 ((-528))) (-15 -3234 ((-110) (-110)))))
-((-1844 (((-595 (-1018 (-207))) (-595 (-595 (-882 (-207))))) 24)))
-(((-867) (-10 -7 (-15 -1844 ((-595 (-1018 (-207))) (-595 (-595 (-882 (-207)))))))) (T -867))
-((-1844 (*1 *2 *3) (-12 (-5 *3 (-595 (-595 (-882 (-207))))) (-5 *2 (-595 (-1018 (-207)))) (-5 *1 (-867)))))
-(-10 -7 (-15 -1844 ((-595 (-1018 (-207))) (-595 (-595 (-882 (-207)))))))
-((-1433 ((|#2| |#2|) 26)) (-3005 ((|#2| |#2|) 27)) (-2636 ((|#2| |#2|) 25)) (-3828 ((|#2| |#2| (-1078)) 24)))
-(((-868 |#1| |#2|) (-10 -7 (-15 -3828 (|#2| |#2| (-1078))) (-15 -2636 (|#2| |#2|)) (-15 -1433 (|#2| |#2|)) (-15 -3005 (|#2| |#2|))) (-793) (-410 |#1|)) (T -868))
-((-3005 (*1 *2 *2) (-12 (-4 *3 (-793)) (-5 *1 (-868 *3 *2)) (-4 *2 (-410 *3)))) (-1433 (*1 *2 *2) (-12 (-4 *3 (-793)) (-5 *1 (-868 *3 *2)) (-4 *2 (-410 *3)))) (-2636 (*1 *2 *2) (-12 (-4 *3 (-793)) (-5 *1 (-868 *3 *2)) (-4 *2 (-410 *3)))) (-3828 (*1 *2 *2 *3) (-12 (-5 *3 (-1078)) (-4 *4 (-793)) (-5 *1 (-868 *4 *2)) (-4 *2 (-410 *4)))))
-(-10 -7 (-15 -3828 (|#2| |#2| (-1078))) (-15 -2636 (|#2| |#2|)) (-15 -1433 (|#2| |#2|)) (-15 -3005 (|#2| |#2|)))
-((-1433 (((-296 (-528)) (-1095)) 16)) (-3005 (((-296 (-528)) (-1095)) 14)) (-2636 (((-296 (-528)) (-1095)) 12)) (-3828 (((-296 (-528)) (-1095) (-1078)) 19)))
-(((-869) (-10 -7 (-15 -3828 ((-296 (-528)) (-1095) (-1078))) (-15 -2636 ((-296 (-528)) (-1095))) (-15 -1433 ((-296 (-528)) (-1095))) (-15 -3005 ((-296 (-528)) (-1095))))) (T -869))
-((-3005 (*1 *2 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-296 (-528))) (-5 *1 (-869)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-296 (-528))) (-5 *1 (-869)))) (-2636 (*1 *2 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-296 (-528))) (-5 *1 (-869)))) (-3828 (*1 *2 *3 *4) (-12 (-5 *3 (-1095)) (-5 *4 (-1078)) (-5 *2 (-296 (-528))) (-5 *1 (-869)))))
-(-10 -7 (-15 -3828 ((-296 (-528)) (-1095) (-1078))) (-15 -2636 ((-296 (-528)) (-1095))) (-15 -1433 ((-296 (-528)) (-1095))) (-15 -3005 ((-296 (-528)) (-1095))))
-((-4181 (((-828 |#1| |#3|) |#2| (-831 |#1|) (-828 |#1| |#3|)) 25)) (-2493 (((-1 (-110) |#2|) (-1 (-110) |#3|)) 13)))
-(((-870 |#1| |#2| |#3|) (-10 -7 (-15 -2493 ((-1 (-110) |#2|) (-1 (-110) |#3|))) (-15 -4181 ((-828 |#1| |#3|) |#2| (-831 |#1|) (-828 |#1| |#3|)))) (-1023) (-825 |#1|) (-13 (-1023) (-972 |#2|))) (T -870))
-((-4181 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-828 *5 *6)) (-5 *4 (-831 *5)) (-4 *5 (-1023)) (-4 *6 (-13 (-1023) (-972 *3))) (-4 *3 (-825 *5)) (-5 *1 (-870 *5 *3 *6)))) (-2493 (*1 *2 *3) (-12 (-5 *3 (-1 (-110) *6)) (-4 *6 (-13 (-1023) (-972 *5))) (-4 *5 (-825 *4)) (-4 *4 (-1023)) (-5 *2 (-1 (-110) *5)) (-5 *1 (-870 *4 *5 *6)))))
-(-10 -7 (-15 -2493 ((-1 (-110) |#2|) (-1 (-110) |#3|))) (-15 -4181 ((-828 |#1| |#3|) |#2| (-831 |#1|) (-828 |#1| |#3|))))
-((-4181 (((-828 |#1| |#3|) |#3| (-831 |#1|) (-828 |#1| |#3|)) 30)))
-(((-871 |#1| |#2| |#3|) (-10 -7 (-15 -4181 ((-828 |#1| |#3|) |#3| (-831 |#1|) (-828 |#1| |#3|)))) (-1023) (-13 (-520) (-793) (-825 |#1|)) (-13 (-410 |#2|) (-570 (-831 |#1|)) (-825 |#1|) (-972 (-568 $)))) (T -871))
-((-4181 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-828 *5 *3)) (-4 *5 (-1023)) (-4 *3 (-13 (-410 *6) (-570 *4) (-825 *5) (-972 (-568 $)))) (-5 *4 (-831 *5)) (-4 *6 (-13 (-520) (-793) (-825 *5))) (-5 *1 (-871 *5 *6 *3)))))
-(-10 -7 (-15 -4181 ((-828 |#1| |#3|) |#3| (-831 |#1|) (-828 |#1| |#3|))))
-((-4181 (((-828 (-528) |#1|) |#1| (-831 (-528)) (-828 (-528) |#1|)) 13)))
-(((-872 |#1|) (-10 -7 (-15 -4181 ((-828 (-528) |#1|) |#1| (-831 (-528)) (-828 (-528) |#1|)))) (-513)) (T -872))
-((-4181 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-828 (-528) *3)) (-5 *4 (-831 (-528))) (-4 *3 (-513)) (-5 *1 (-872 *3)))))
-(-10 -7 (-15 -4181 ((-828 (-528) |#1|) |#1| (-831 (-528)) (-828 (-528) |#1|))))
-((-4181 (((-828 |#1| |#2|) (-568 |#2|) (-831 |#1|) (-828 |#1| |#2|)) 54)))
-(((-873 |#1| |#2|) (-10 -7 (-15 -4181 ((-828 |#1| |#2|) (-568 |#2|) (-831 |#1|) (-828 |#1| |#2|)))) (-1023) (-13 (-793) (-972 (-568 $)) (-570 (-831 |#1|)) (-825 |#1|))) (T -873))
-((-4181 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-828 *5 *6)) (-5 *3 (-568 *6)) (-4 *5 (-1023)) (-4 *6 (-13 (-793) (-972 (-568 $)) (-570 *4) (-825 *5))) (-5 *4 (-831 *5)) (-5 *1 (-873 *5 *6)))))
-(-10 -7 (-15 -4181 ((-828 |#1| |#2|) (-568 |#2|) (-831 |#1|) (-828 |#1| |#2|))))
-((-4181 (((-824 |#1| |#2| |#3|) |#3| (-831 |#1|) (-824 |#1| |#2| |#3|)) 15)))
-(((-874 |#1| |#2| |#3|) (-10 -7 (-15 -4181 ((-824 |#1| |#2| |#3|) |#3| (-831 |#1|) (-824 |#1| |#2| |#3|)))) (-1023) (-825 |#1|) (-615 |#2|)) (T -874))
-((-4181 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 *5 *6 *3)) (-5 *4 (-831 *5)) (-4 *5 (-1023)) (-4 *6 (-825 *5)) (-4 *3 (-615 *6)) (-5 *1 (-874 *5 *6 *3)))))
-(-10 -7 (-15 -4181 ((-824 |#1| |#2| |#3|) |#3| (-831 |#1|) (-824 |#1| |#2| |#3|))))
-((-4181 (((-828 |#1| |#5|) |#5| (-831 |#1|) (-828 |#1| |#5|)) 17 (|has| |#3| (-825 |#1|))) (((-828 |#1| |#5|) |#5| (-831 |#1|) (-828 |#1| |#5|) (-1 (-828 |#1| |#5|) |#3| (-831 |#1|) (-828 |#1| |#5|))) 16)))
-(((-875 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4181 ((-828 |#1| |#5|) |#5| (-831 |#1|) (-828 |#1| |#5|) (-1 (-828 |#1| |#5|) |#3| (-831 |#1|) (-828 |#1| |#5|)))) (IF (|has| |#3| (-825 |#1|)) (-15 -4181 ((-828 |#1| |#5|) |#5| (-831 |#1|) (-828 |#1| |#5|))) |%noBranch|)) (-1023) (-739) (-793) (-13 (-981) (-793) (-825 |#1|)) (-13 (-888 |#4| |#2| |#3|) (-570 (-831 |#1|)))) (T -875))
-((-4181 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-828 *5 *3)) (-4 *5 (-1023)) (-4 *3 (-13 (-888 *8 *6 *7) (-570 *4))) (-5 *4 (-831 *5)) (-4 *7 (-825 *5)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *8 (-13 (-981) (-793) (-825 *5))) (-5 *1 (-875 *5 *6 *7 *8 *3)))) (-4181 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-828 *6 *3) *8 (-831 *6) (-828 *6 *3))) (-4 *8 (-793)) (-5 *2 (-828 *6 *3)) (-5 *4 (-831 *6)) (-4 *6 (-1023)) (-4 *3 (-13 (-888 *9 *7 *8) (-570 *4))) (-4 *7 (-739)) (-4 *9 (-13 (-981) (-793) (-825 *6))) (-5 *1 (-875 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -4181 ((-828 |#1| |#5|) |#5| (-831 |#1|) (-828 |#1| |#5|) (-1 (-828 |#1| |#5|) |#3| (-831 |#1|) (-828 |#1| |#5|)))) (IF (|has| |#3| (-825 |#1|)) (-15 -4181 ((-828 |#1| |#5|) |#5| (-831 |#1|) (-828 |#1| |#5|))) |%noBranch|))
-((-3082 ((|#2| |#2| (-595 (-1 (-110) |#3|))) 12) ((|#2| |#2| (-1 (-110) |#3|)) 13)))
-(((-876 |#1| |#2| |#3|) (-10 -7 (-15 -3082 (|#2| |#2| (-1 (-110) |#3|))) (-15 -3082 (|#2| |#2| (-595 (-1 (-110) |#3|))))) (-793) (-410 |#1|) (-1131)) (T -876))
-((-3082 (*1 *2 *2 *3) (-12 (-5 *3 (-595 (-1 (-110) *5))) (-4 *5 (-1131)) (-4 *4 (-793)) (-5 *1 (-876 *4 *2 *5)) (-4 *2 (-410 *4)))) (-3082 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *5)) (-4 *5 (-1131)) (-4 *4 (-793)) (-5 *1 (-876 *4 *2 *5)) (-4 *2 (-410 *4)))))
-(-10 -7 (-15 -3082 (|#2| |#2| (-1 (-110) |#3|))) (-15 -3082 (|#2| |#2| (-595 (-1 (-110) |#3|)))))
-((-3082 (((-296 (-528)) (-1095) (-595 (-1 (-110) |#1|))) 18) (((-296 (-528)) (-1095) (-1 (-110) |#1|)) 15)))
-(((-877 |#1|) (-10 -7 (-15 -3082 ((-296 (-528)) (-1095) (-1 (-110) |#1|))) (-15 -3082 ((-296 (-528)) (-1095) (-595 (-1 (-110) |#1|))))) (-1131)) (T -877))
-((-3082 (*1 *2 *3 *4) (-12 (-5 *3 (-1095)) (-5 *4 (-595 (-1 (-110) *5))) (-4 *5 (-1131)) (-5 *2 (-296 (-528))) (-5 *1 (-877 *5)))) (-3082 (*1 *2 *3 *4) (-12 (-5 *3 (-1095)) (-5 *4 (-1 (-110) *5)) (-4 *5 (-1131)) (-5 *2 (-296 (-528))) (-5 *1 (-877 *5)))))
-(-10 -7 (-15 -3082 ((-296 (-528)) (-1095) (-1 (-110) |#1|))) (-15 -3082 ((-296 (-528)) (-1095) (-595 (-1 (-110) |#1|)))))
-((-4181 (((-828 |#1| |#3|) |#3| (-831 |#1|) (-828 |#1| |#3|)) 25)))
-(((-878 |#1| |#2| |#3|) (-10 -7 (-15 -4181 ((-828 |#1| |#3|) |#3| (-831 |#1|) (-828 |#1| |#3|)))) (-1023) (-13 (-520) (-825 |#1|) (-570 (-831 |#1|))) (-929 |#2|)) (T -878))
-((-4181 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-828 *5 *3)) (-4 *5 (-1023)) (-4 *3 (-929 *6)) (-4 *6 (-13 (-520) (-825 *5) (-570 *4))) (-5 *4 (-831 *5)) (-5 *1 (-878 *5 *6 *3)))))
-(-10 -7 (-15 -4181 ((-828 |#1| |#3|) |#3| (-831 |#1|) (-828 |#1| |#3|))))
-((-4181 (((-828 |#1| (-1095)) (-1095) (-831 |#1|) (-828 |#1| (-1095))) 17)))
-(((-879 |#1|) (-10 -7 (-15 -4181 ((-828 |#1| (-1095)) (-1095) (-831 |#1|) (-828 |#1| (-1095))))) (-1023)) (T -879))
-((-4181 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-828 *5 (-1095))) (-5 *3 (-1095)) (-5 *4 (-831 *5)) (-4 *5 (-1023)) (-5 *1 (-879 *5)))))
-(-10 -7 (-15 -4181 ((-828 |#1| (-1095)) (-1095) (-831 |#1|) (-828 |#1| (-1095)))))
-((-1819 (((-828 |#1| |#3|) (-595 |#3|) (-595 (-831 |#1|)) (-828 |#1| |#3|) (-1 (-828 |#1| |#3|) |#3| (-831 |#1|) (-828 |#1| |#3|))) 33)) (-4181 (((-828 |#1| |#3|) (-595 |#3|) (-595 (-831 |#1|)) (-1 |#3| (-595 |#3|)) (-828 |#1| |#3|) (-1 (-828 |#1| |#3|) |#3| (-831 |#1|) (-828 |#1| |#3|))) 32)))
-(((-880 |#1| |#2| |#3|) (-10 -7 (-15 -4181 ((-828 |#1| |#3|) (-595 |#3|) (-595 (-831 |#1|)) (-1 |#3| (-595 |#3|)) (-828 |#1| |#3|) (-1 (-828 |#1| |#3|) |#3| (-831 |#1|) (-828 |#1| |#3|)))) (-15 -1819 ((-828 |#1| |#3|) (-595 |#3|) (-595 (-831 |#1|)) (-828 |#1| |#3|) (-1 (-828 |#1| |#3|) |#3| (-831 |#1|) (-828 |#1| |#3|))))) (-1023) (-13 (-981) (-793)) (-13 (-981) (-570 (-831 |#1|)) (-972 |#2|))) (T -880))
-((-1819 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-595 *8)) (-5 *4 (-595 (-831 *6))) (-5 *5 (-1 (-828 *6 *8) *8 (-831 *6) (-828 *6 *8))) (-4 *6 (-1023)) (-4 *8 (-13 (-981) (-570 (-831 *6)) (-972 *7))) (-5 *2 (-828 *6 *8)) (-4 *7 (-13 (-981) (-793))) (-5 *1 (-880 *6 *7 *8)))) (-4181 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-595 (-831 *7))) (-5 *5 (-1 *9 (-595 *9))) (-5 *6 (-1 (-828 *7 *9) *9 (-831 *7) (-828 *7 *9))) (-4 *7 (-1023)) (-4 *9 (-13 (-981) (-570 (-831 *7)) (-972 *8))) (-5 *2 (-828 *7 *9)) (-5 *3 (-595 *9)) (-4 *8 (-13 (-981) (-793))) (-5 *1 (-880 *7 *8 *9)))))
-(-10 -7 (-15 -4181 ((-828 |#1| |#3|) (-595 |#3|) (-595 (-831 |#1|)) (-1 |#3| (-595 |#3|)) (-828 |#1| |#3|) (-1 (-828 |#1| |#3|) |#3| (-831 |#1|) (-828 |#1| |#3|)))) (-15 -1819 ((-828 |#1| |#3|) (-595 |#3|) (-595 (-831 |#1|)) (-828 |#1| |#3|) (-1 (-828 |#1| |#3|) |#3| (-831 |#1|) (-828 |#1| |#3|)))))
-((-3058 (((-1091 (-387 (-528))) (-528)) 63)) (-2364 (((-1091 (-528)) (-528)) 66)) (-1936 (((-1091 (-528)) (-528)) 60)) (-2112 (((-528) (-1091 (-528))) 55)) (-4147 (((-1091 (-387 (-528))) (-528)) 49)) (-2438 (((-1091 (-528)) (-528)) 38)) (-1940 (((-1091 (-528)) (-528)) 68)) (-1932 (((-1091 (-528)) (-528)) 67)) (-3487 (((-1091 (-387 (-528))) (-528)) 51)))
-(((-881) (-10 -7 (-15 -3487 ((-1091 (-387 (-528))) (-528))) (-15 -1932 ((-1091 (-528)) (-528))) (-15 -1940 ((-1091 (-528)) (-528))) (-15 -2438 ((-1091 (-528)) (-528))) (-15 -4147 ((-1091 (-387 (-528))) (-528))) (-15 -2112 ((-528) (-1091 (-528)))) (-15 -1936 ((-1091 (-528)) (-528))) (-15 -2364 ((-1091 (-528)) (-528))) (-15 -3058 ((-1091 (-387 (-528))) (-528))))) (T -881))
-((-3058 (*1 *2 *3) (-12 (-5 *2 (-1091 (-387 (-528)))) (-5 *1 (-881)) (-5 *3 (-528)))) (-2364 (*1 *2 *3) (-12 (-5 *2 (-1091 (-528))) (-5 *1 (-881)) (-5 *3 (-528)))) (-1936 (*1 *2 *3) (-12 (-5 *2 (-1091 (-528))) (-5 *1 (-881)) (-5 *3 (-528)))) (-2112 (*1 *2 *3) (-12 (-5 *3 (-1091 (-528))) (-5 *2 (-528)) (-5 *1 (-881)))) (-4147 (*1 *2 *3) (-12 (-5 *2 (-1091 (-387 (-528)))) (-5 *1 (-881)) (-5 *3 (-528)))) (-2438 (*1 *2 *3) (-12 (-5 *2 (-1091 (-528))) (-5 *1 (-881)) (-5 *3 (-528)))) (-1940 (*1 *2 *3) (-12 (-5 *2 (-1091 (-528))) (-5 *1 (-881)) (-5 *3 (-528)))) (-1932 (*1 *2 *3) (-12 (-5 *2 (-1091 (-528))) (-5 *1 (-881)) (-5 *3 (-528)))) (-3487 (*1 *2 *3) (-12 (-5 *2 (-1091 (-387 (-528)))) (-5 *1 (-881)) (-5 *3 (-528)))))
-(-10 -7 (-15 -3487 ((-1091 (-387 (-528))) (-528))) (-15 -1932 ((-1091 (-528)) (-528))) (-15 -1940 ((-1091 (-528)) (-528))) (-15 -2438 ((-1091 (-528)) (-528))) (-15 -4147 ((-1091 (-387 (-528))) (-528))) (-15 -2112 ((-528) (-1091 (-528)))) (-15 -1936 ((-1091 (-528)) (-528))) (-15 -2364 ((-1091 (-528)) (-528))) (-15 -3058 ((-1091 (-387 (-528))) (-528))))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3460 (($ (-717)) NIL (|has| |#1| (-23)))) (-1444 (((-1182) $ (-528) (-528)) NIL (|has| $ (-6 -4265)))) (-3608 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-793)))) (-3863 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4265))) (($ $) NIL (-12 (|has| $ (-6 -4265)) (|has| |#1| (-793))))) (-1289 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-793)))) (-3535 (((-110) $ (-717)) NIL)) (-2381 ((|#1| $ (-528) |#1|) 11 (|has| $ (-6 -4265))) ((|#1| $ (-1144 (-528)) |#1|) NIL (|has| $ (-6 -4265)))) (-1573 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2816 (($) NIL T CONST)) (-2472 (($ $) NIL (|has| $ (-6 -4265)))) (-3009 (($ $) NIL)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2280 (($ |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4264)))) (-2812 ((|#1| $ (-528) |#1|) NIL (|has| $ (-6 -4265)))) (-2742 ((|#1| $ (-528)) NIL)) (-3140 (((-528) (-1 (-110) |#1|) $) NIL) (((-528) |#1| $) NIL (|has| |#1| (-1023))) (((-528) |#1| $ (-528)) NIL (|has| |#1| (-1023)))) (-1363 (($ (-595 |#1|)) 13)) (-3342 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-4061 (((-635 |#1|) $ $) NIL (|has| |#1| (-981)))) (-3462 (($ (-717) |#1|) 8)) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-528) $) 10 (|has| (-528) (-793)))) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-1356 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-793)))) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-1709 (((-528) $) NIL (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-2800 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1817 ((|#1| $) NIL (-12 (|has| |#1| (-938)) (|has| |#1| (-981))))) (-3358 (((-110) $ (-717)) NIL)) (-1584 ((|#1| $) NIL (-12 (|has| |#1| (-938)) (|has| |#1| (-981))))) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-3939 (($ |#1| $ (-528)) NIL) (($ $ $ (-528)) NIL)) (-2084 (((-595 (-528)) $) NIL)) (-3966 (((-110) (-528) $) NIL)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-2890 ((|#1| $) NIL (|has| (-528) (-793)))) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1332 (($ $ |#1|) NIL (|has| $ (-6 -4265)))) (-3740 (($ $ (-595 |#1|)) 26)) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2861 (((-595 |#1|) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#1| $ (-528) |#1|) NIL) ((|#1| $ (-528)) 20) (($ $ (-1144 (-528))) NIL)) (-3675 ((|#1| $ $) NIL (|has| |#1| (-981)))) (-3017 (((-860) $) 16)) (-1745 (($ $ (-528)) NIL) (($ $ (-1144 (-528))) NIL)) (-3996 (($ $ $) 24)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3761 (($ $ $ (-528)) NIL (|has| $ (-6 -4265)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) NIL (|has| |#1| (-570 (-504)))) (($ (-595 |#1|)) 17)) (-2233 (($ (-595 |#1|)) NIL)) (-3400 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-595 $)) NIL)) (-2222 (((-802) $) NIL (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2286 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2275 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-528) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-673))) (($ $ |#1|) NIL (|has| |#1| (-673)))) (-2138 (((-717) $) 14 (|has| $ (-6 -4264)))))
-(((-882 |#1|) (-917 |#1|) (-981)) (T -882))
-NIL
-(-917 |#1|)
-((-2522 (((-459 |#1| |#2|) (-891 |#2|)) 20)) (-2116 (((-229 |#1| |#2|) (-891 |#2|)) 33)) (-3985 (((-891 |#2|) (-459 |#1| |#2|)) 25)) (-3864 (((-229 |#1| |#2|) (-459 |#1| |#2|)) 55)) (-3789 (((-891 |#2|) (-229 |#1| |#2|)) 30)) (-2439 (((-459 |#1| |#2|) (-229 |#1| |#2|)) 46)))
-(((-883 |#1| |#2|) (-10 -7 (-15 -2439 ((-459 |#1| |#2|) (-229 |#1| |#2|))) (-15 -3864 ((-229 |#1| |#2|) (-459 |#1| |#2|))) (-15 -2522 ((-459 |#1| |#2|) (-891 |#2|))) (-15 -3985 ((-891 |#2|) (-459 |#1| |#2|))) (-15 -3789 ((-891 |#2|) (-229 |#1| |#2|))) (-15 -2116 ((-229 |#1| |#2|) (-891 |#2|)))) (-595 (-1095)) (-981)) (T -883))
-((-2116 (*1 *2 *3) (-12 (-5 *3 (-891 *5)) (-4 *5 (-981)) (-5 *2 (-229 *4 *5)) (-5 *1 (-883 *4 *5)) (-14 *4 (-595 (-1095))))) (-3789 (*1 *2 *3) (-12 (-5 *3 (-229 *4 *5)) (-14 *4 (-595 (-1095))) (-4 *5 (-981)) (-5 *2 (-891 *5)) (-5 *1 (-883 *4 *5)))) (-3985 (*1 *2 *3) (-12 (-5 *3 (-459 *4 *5)) (-14 *4 (-595 (-1095))) (-4 *5 (-981)) (-5 *2 (-891 *5)) (-5 *1 (-883 *4 *5)))) (-2522 (*1 *2 *3) (-12 (-5 *3 (-891 *5)) (-4 *5 (-981)) (-5 *2 (-459 *4 *5)) (-5 *1 (-883 *4 *5)) (-14 *4 (-595 (-1095))))) (-3864 (*1 *2 *3) (-12 (-5 *3 (-459 *4 *5)) (-14 *4 (-595 (-1095))) (-4 *5 (-981)) (-5 *2 (-229 *4 *5)) (-5 *1 (-883 *4 *5)))) (-2439 (*1 *2 *3) (-12 (-5 *3 (-229 *4 *5)) (-14 *4 (-595 (-1095))) (-4 *5 (-981)) (-5 *2 (-459 *4 *5)) (-5 *1 (-883 *4 *5)))))
-(-10 -7 (-15 -2439 ((-459 |#1| |#2|) (-229 |#1| |#2|))) (-15 -3864 ((-229 |#1| |#2|) (-459 |#1| |#2|))) (-15 -2522 ((-459 |#1| |#2|) (-891 |#2|))) (-15 -3985 ((-891 |#2|) (-459 |#1| |#2|))) (-15 -3789 ((-891 |#2|) (-229 |#1| |#2|))) (-15 -2116 ((-229 |#1| |#2|) (-891 |#2|))))
-((-1969 (((-595 |#2|) |#2| |#2|) 10)) (-1278 (((-717) (-595 |#1|)) 37 (|has| |#1| (-791)))) (-1646 (((-595 |#2|) |#2|) 11)) (-1636 (((-717) (-595 |#1|) (-528) (-528)) 39 (|has| |#1| (-791)))) (-1387 ((|#1| |#2|) 32 (|has| |#1| (-791)))))
-(((-884 |#1| |#2|) (-10 -7 (-15 -1969 ((-595 |#2|) |#2| |#2|)) (-15 -1646 ((-595 |#2|) |#2|)) (IF (|has| |#1| (-791)) (PROGN (-15 -1387 (|#1| |#2|)) (-15 -1278 ((-717) (-595 |#1|))) (-15 -1636 ((-717) (-595 |#1|) (-528) (-528)))) |%noBranch|)) (-343) (-1153 |#1|)) (T -884))
-((-1636 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-595 *5)) (-5 *4 (-528)) (-4 *5 (-791)) (-4 *5 (-343)) (-5 *2 (-717)) (-5 *1 (-884 *5 *6)) (-4 *6 (-1153 *5)))) (-1278 (*1 *2 *3) (-12 (-5 *3 (-595 *4)) (-4 *4 (-791)) (-4 *4 (-343)) (-5 *2 (-717)) (-5 *1 (-884 *4 *5)) (-4 *5 (-1153 *4)))) (-1387 (*1 *2 *3) (-12 (-4 *2 (-343)) (-4 *2 (-791)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1153 *2)))) (-1646 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-595 *3)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1153 *4)))) (-1969 (*1 *2 *3 *3) (-12 (-4 *4 (-343)) (-5 *2 (-595 *3)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1153 *4)))))
-(-10 -7 (-15 -1969 ((-595 |#2|) |#2| |#2|)) (-15 -1646 ((-595 |#2|) |#2|)) (IF (|has| |#1| (-791)) (PROGN (-15 -1387 (|#1| |#2|)) (-15 -1278 ((-717) (-595 |#1|))) (-15 -1636 ((-717) (-595 |#1|) (-528) (-528)))) |%noBranch|))
-((-3106 (((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|)) 19)))
-(((-885 |#1| |#2|) (-10 -7 (-15 -3106 ((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|)))) (-981) (-981)) (T -885))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-891 *5)) (-4 *5 (-981)) (-4 *6 (-981)) (-5 *2 (-891 *6)) (-5 *1 (-885 *5 *6)))))
-(-10 -7 (-15 -3106 ((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|))))
-((-2402 (((-1150 |#1| (-891 |#2|)) (-891 |#2|) (-1173 |#1|)) 18)))
-(((-886 |#1| |#2|) (-10 -7 (-15 -2402 ((-1150 |#1| (-891 |#2|)) (-891 |#2|) (-1173 |#1|)))) (-1095) (-981)) (T -886))
-((-2402 (*1 *2 *3 *4) (-12 (-5 *4 (-1173 *5)) (-14 *5 (-1095)) (-4 *6 (-981)) (-5 *2 (-1150 *5 (-891 *6))) (-5 *1 (-886 *5 *6)) (-5 *3 (-891 *6)))))
-(-10 -7 (-15 -2402 ((-1150 |#1| (-891 |#2|)) (-891 |#2|) (-1173 |#1|))))
-((-4042 (((-717) $) 71) (((-717) $ (-595 |#4|)) 74)) (-1232 (($ $) 173)) (-2705 (((-398 $) $) 165)) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) 116)) (-3001 (((-3 |#2| "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL) (((-3 (-528) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-2409 ((|#2| $) NIL) (((-387 (-528)) $) NIL) (((-528) $) NIL) ((|#4| $) 59)) (-1606 (($ $ $ |#4|) 76)) (-2120 (((-635 (-528)) (-635 $)) NIL) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL) (((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 $) (-1177 $)) 106) (((-635 |#2|) (-635 $)) 99)) (-1551 (($ $) 180) (($ $ |#4|) 183)) (-2376 (((-595 $) $) 63)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) 199) (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) 192)) (-3737 (((-595 $) $) 28)) (-2548 (($ |#2| |#3|) NIL) (($ $ |#4| (-717)) NIL) (($ $ (-595 |#4|) (-595 (-717))) 57)) (-3275 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $ |#4|) 162)) (-3024 (((-3 (-595 $) "failed") $) 42)) (-1281 (((-3 (-595 $) "failed") $) 31)) (-3352 (((-3 (-2 (|:| |var| |#4|) (|:| -2564 (-717))) "failed") $) 47)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 109)) (-3261 (((-398 (-1091 $)) (-1091 $)) 122)) (-2394 (((-398 (-1091 $)) (-1091 $)) 120)) (-2437 (((-398 $) $) 140)) (-4014 (($ $ (-595 (-275 $))) 21) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-595 |#4|) (-595 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-595 |#4|) (-595 $)) NIL)) (-1372 (($ $ |#4|) 78)) (-3155 (((-831 (-359)) $) 213) (((-831 (-528)) $) 206) (((-504) $) 221)) (-1618 ((|#2| $) NIL) (($ $ |#4|) 175)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) 154)) (-3216 ((|#2| $ |#3|) NIL) (($ $ |#4| (-717)) 52) (($ $ (-595 |#4|) (-595 (-717))) 55)) (-3749 (((-3 $ "failed") $) 156)) (-2208 (((-110) $ $) 186)))
-(((-887 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3550 ((-1091 |#1|) (-1091 |#1|) (-1091 |#1|))) (-15 -2705 ((-398 |#1|) |#1|)) (-15 -1232 (|#1| |#1|)) (-15 -3749 ((-3 |#1| "failed") |#1|)) (-15 -2208 ((-110) |#1| |#1|)) (-15 -3155 ((-504) |#1|)) (-15 -3155 ((-831 (-528)) |#1|)) (-15 -3155 ((-831 (-359)) |#1|)) (-15 -4181 ((-828 (-528) |#1|) |#1| (-831 (-528)) (-828 (-528) |#1|))) (-15 -4181 ((-828 (-359) |#1|) |#1| (-831 (-359)) (-828 (-359) |#1|))) (-15 -2437 ((-398 |#1|) |#1|)) (-15 -2394 ((-398 (-1091 |#1|)) (-1091 |#1|))) (-15 -3261 ((-398 (-1091 |#1|)) (-1091 |#1|))) (-15 -4159 ((-3 (-595 (-1091 |#1|)) "failed") (-595 (-1091 |#1|)) (-1091 |#1|))) (-15 -1495 ((-3 (-1177 |#1|) "failed") (-635 |#1|))) (-15 -1551 (|#1| |#1| |#4|)) (-15 -1618 (|#1| |#1| |#4|)) (-15 -1372 (|#1| |#1| |#4|)) (-15 -1606 (|#1| |#1| |#1| |#4|)) (-15 -2376 ((-595 |#1|) |#1|)) (-15 -4042 ((-717) |#1| (-595 |#4|))) (-15 -4042 ((-717) |#1|)) (-15 -3352 ((-3 (-2 (|:| |var| |#4|) (|:| -2564 (-717))) "failed") |#1|)) (-15 -3024 ((-3 (-595 |#1|) "failed") |#1|)) (-15 -1281 ((-3 (-595 |#1|) "failed") |#1|)) (-15 -2548 (|#1| |#1| (-595 |#4|) (-595 (-717)))) (-15 -2548 (|#1| |#1| |#4| (-717))) (-15 -3275 ((-2 (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1| |#4|)) (-15 -3737 ((-595 |#1|) |#1|)) (-15 -3216 (|#1| |#1| (-595 |#4|) (-595 (-717)))) (-15 -3216 (|#1| |#1| |#4| (-717))) (-15 -2120 ((-635 |#2|) (-635 |#1|))) (-15 -2120 ((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 |#1|) (-1177 |#1|))) (-15 -2120 ((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 |#1|) (-1177 |#1|))) (-15 -2120 ((-635 (-528)) (-635 |#1|))) (-15 -2409 (|#4| |#1|)) (-15 -3001 ((-3 |#4| "failed") |#1|)) (-15 -4014 (|#1| |#1| (-595 |#4|) (-595 |#1|))) (-15 -4014 (|#1| |#1| |#4| |#1|)) (-15 -4014 (|#1| |#1| (-595 |#4|) (-595 |#2|))) (-15 -4014 (|#1| |#1| |#4| |#2|)) (-15 -4014 (|#1| |#1| (-595 |#1|) (-595 |#1|))) (-15 -4014 (|#1| |#1| |#1| |#1|)) (-15 -4014 (|#1| |#1| (-275 |#1|))) (-15 -4014 (|#1| |#1| (-595 (-275 |#1|)))) (-15 -2548 (|#1| |#2| |#3|)) (-15 -3216 (|#2| |#1| |#3|)) (-15 -2409 ((-528) |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -2409 ((-387 (-528)) |#1|)) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -2409 (|#2| |#1|)) (-15 -1618 (|#2| |#1|)) (-15 -1551 (|#1| |#1|))) (-888 |#2| |#3| |#4|) (-981) (-739) (-793)) (T -887))
-NIL
-(-10 -8 (-15 -3550 ((-1091 |#1|) (-1091 |#1|) (-1091 |#1|))) (-15 -2705 ((-398 |#1|) |#1|)) (-15 -1232 (|#1| |#1|)) (-15 -3749 ((-3 |#1| "failed") |#1|)) (-15 -2208 ((-110) |#1| |#1|)) (-15 -3155 ((-504) |#1|)) (-15 -3155 ((-831 (-528)) |#1|)) (-15 -3155 ((-831 (-359)) |#1|)) (-15 -4181 ((-828 (-528) |#1|) |#1| (-831 (-528)) (-828 (-528) |#1|))) (-15 -4181 ((-828 (-359) |#1|) |#1| (-831 (-359)) (-828 (-359) |#1|))) (-15 -2437 ((-398 |#1|) |#1|)) (-15 -2394 ((-398 (-1091 |#1|)) (-1091 |#1|))) (-15 -3261 ((-398 (-1091 |#1|)) (-1091 |#1|))) (-15 -4159 ((-3 (-595 (-1091 |#1|)) "failed") (-595 (-1091 |#1|)) (-1091 |#1|))) (-15 -1495 ((-3 (-1177 |#1|) "failed") (-635 |#1|))) (-15 -1551 (|#1| |#1| |#4|)) (-15 -1618 (|#1| |#1| |#4|)) (-15 -1372 (|#1| |#1| |#4|)) (-15 -1606 (|#1| |#1| |#1| |#4|)) (-15 -2376 ((-595 |#1|) |#1|)) (-15 -4042 ((-717) |#1| (-595 |#4|))) (-15 -4042 ((-717) |#1|)) (-15 -3352 ((-3 (-2 (|:| |var| |#4|) (|:| -2564 (-717))) "failed") |#1|)) (-15 -3024 ((-3 (-595 |#1|) "failed") |#1|)) (-15 -1281 ((-3 (-595 |#1|) "failed") |#1|)) (-15 -2548 (|#1| |#1| (-595 |#4|) (-595 (-717)))) (-15 -2548 (|#1| |#1| |#4| (-717))) (-15 -3275 ((-2 (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1| |#4|)) (-15 -3737 ((-595 |#1|) |#1|)) (-15 -3216 (|#1| |#1| (-595 |#4|) (-595 (-717)))) (-15 -3216 (|#1| |#1| |#4| (-717))) (-15 -2120 ((-635 |#2|) (-635 |#1|))) (-15 -2120 ((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 |#1|) (-1177 |#1|))) (-15 -2120 ((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 |#1|) (-1177 |#1|))) (-15 -2120 ((-635 (-528)) (-635 |#1|))) (-15 -2409 (|#4| |#1|)) (-15 -3001 ((-3 |#4| "failed") |#1|)) (-15 -4014 (|#1| |#1| (-595 |#4|) (-595 |#1|))) (-15 -4014 (|#1| |#1| |#4| |#1|)) (-15 -4014 (|#1| |#1| (-595 |#4|) (-595 |#2|))) (-15 -4014 (|#1| |#1| |#4| |#2|)) (-15 -4014 (|#1| |#1| (-595 |#1|) (-595 |#1|))) (-15 -4014 (|#1| |#1| |#1| |#1|)) (-15 -4014 (|#1| |#1| (-275 |#1|))) (-15 -4014 (|#1| |#1| (-595 (-275 |#1|)))) (-15 -2548 (|#1| |#2| |#3|)) (-15 -3216 (|#2| |#1| |#3|)) (-15 -2409 ((-528) |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -2409 ((-387 (-528)) |#1|)) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -2409 (|#2| |#1|)) (-15 -1618 (|#2| |#1|)) (-15 -1551 (|#1| |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2565 (((-595 |#3|) $) 110)) (-2402 (((-1091 $) $ |#3|) 125) (((-1091 |#1|) $) 124)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 87 (|has| |#1| (-520)))) (-1738 (($ $) 88 (|has| |#1| (-520)))) (-1811 (((-110) $) 90 (|has| |#1| (-520)))) (-4042 (((-717) $) 112) (((-717) $ (-595 |#3|)) 111)) (-3181 (((-3 $ "failed") $ $) 19)) (-2152 (((-398 (-1091 $)) (-1091 $)) 100 (|has| |#1| (-848)))) (-1232 (($ $) 98 (|has| |#1| (-431)))) (-2705 (((-398 $) $) 97 (|has| |#1| (-431)))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) 103 (|has| |#1| (-848)))) (-2816 (($) 17 T CONST)) (-3001 (((-3 |#1| "failed") $) 164) (((-3 (-387 (-528)) "failed") $) 162 (|has| |#1| (-972 (-387 (-528))))) (((-3 (-528) "failed") $) 160 (|has| |#1| (-972 (-528)))) (((-3 |#3| "failed") $) 136)) (-2409 ((|#1| $) 165) (((-387 (-528)) $) 161 (|has| |#1| (-972 (-387 (-528))))) (((-528) $) 159 (|has| |#1| (-972 (-528)))) ((|#3| $) 135)) (-1606 (($ $ $ |#3|) 108 (|has| |#1| (-162)))) (-2388 (($ $) 154)) (-2120 (((-635 (-528)) (-635 $)) 134 (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) 133 (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) 132) (((-635 |#1|) (-635 $)) 131)) (-1312 (((-3 $ "failed") $) 34)) (-1551 (($ $) 176 (|has| |#1| (-431))) (($ $ |#3|) 105 (|has| |#1| (-431)))) (-2376 (((-595 $) $) 109)) (-2124 (((-110) $) 96 (|has| |#1| (-848)))) (-4047 (($ $ |#1| |#2| $) 172)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) 84 (-12 (|has| |#3| (-825 (-359))) (|has| |#1| (-825 (-359))))) (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) 83 (-12 (|has| |#3| (-825 (-528))) (|has| |#1| (-825 (-528)))))) (-1297 (((-110) $) 31)) (-1224 (((-717) $) 169)) (-2557 (($ (-1091 |#1|) |#3|) 117) (($ (-1091 $) |#3|) 116)) (-3737 (((-595 $) $) 126)) (-2195 (((-110) $) 152)) (-2548 (($ |#1| |#2|) 153) (($ $ |#3| (-717)) 119) (($ $ (-595 |#3|) (-595 (-717))) 118)) (-3275 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $ |#3|) 120)) (-3499 ((|#2| $) 170) (((-717) $ |#3|) 122) (((-595 (-717)) $ (-595 |#3|)) 121)) (-1436 (($ $ $) 79 (|has| |#1| (-793)))) (-1736 (($ $ $) 78 (|has| |#1| (-793)))) (-1264 (($ (-1 |#2| |#2|) $) 171)) (-3106 (($ (-1 |#1| |#1|) $) 151)) (-3288 (((-3 |#3| "failed") $) 123)) (-2686 (($ $) 149)) (-2697 ((|#1| $) 148)) (-2057 (($ (-595 $)) 94 (|has| |#1| (-431))) (($ $ $) 93 (|has| |#1| (-431)))) (-3034 (((-1078) $) 9)) (-3024 (((-3 (-595 $) "failed") $) 114)) (-1281 (((-3 (-595 $) "failed") $) 115)) (-3352 (((-3 (-2 (|:| |var| |#3|) (|:| -2564 (-717))) "failed") $) 113)) (-2495 (((-1042) $) 10)) (-2662 (((-110) $) 166)) (-2675 ((|#1| $) 167)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 95 (|has| |#1| (-431)))) (-2088 (($ (-595 $)) 92 (|has| |#1| (-431))) (($ $ $) 91 (|has| |#1| (-431)))) (-3261 (((-398 (-1091 $)) (-1091 $)) 102 (|has| |#1| (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) 101 (|has| |#1| (-848)))) (-2437 (((-398 $) $) 99 (|has| |#1| (-848)))) (-3477 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-520))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-520)))) (-4014 (($ $ (-595 (-275 $))) 145) (($ $ (-275 $)) 144) (($ $ $ $) 143) (($ $ (-595 $) (-595 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-595 |#3|) (-595 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-595 |#3|) (-595 $)) 138)) (-1372 (($ $ |#3|) 107 (|has| |#1| (-162)))) (-3235 (($ $ |#3|) 42) (($ $ (-595 |#3|)) 41) (($ $ |#3| (-717)) 40) (($ $ (-595 |#3|) (-595 (-717))) 39)) (-2935 ((|#2| $) 150) (((-717) $ |#3|) 130) (((-595 (-717)) $ (-595 |#3|)) 129)) (-3155 (((-831 (-359)) $) 82 (-12 (|has| |#3| (-570 (-831 (-359)))) (|has| |#1| (-570 (-831 (-359)))))) (((-831 (-528)) $) 81 (-12 (|has| |#3| (-570 (-831 (-528)))) (|has| |#1| (-570 (-831 (-528)))))) (((-504) $) 80 (-12 (|has| |#3| (-570 (-504))) (|has| |#1| (-570 (-504)))))) (-1618 ((|#1| $) 175 (|has| |#1| (-431))) (($ $ |#3|) 106 (|has| |#1| (-431)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) 104 (-3287 (|has| $ (-138)) (|has| |#1| (-848))))) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-520))) (($ (-387 (-528))) 72 (-1463 (|has| |#1| (-972 (-387 (-528)))) (|has| |#1| (-37 (-387 (-528))))))) (-3348 (((-595 |#1|) $) 168)) (-3216 ((|#1| $ |#2|) 155) (($ $ |#3| (-717)) 128) (($ $ (-595 |#3|) (-595 (-717))) 127)) (-3749 (((-3 $ "failed") $) 73 (-1463 (-3287 (|has| $ (-138)) (|has| |#1| (-848))) (|has| |#1| (-138))))) (-3742 (((-717)) 29)) (-1997 (($ $ $ (-717)) 173 (|has| |#1| (-162)))) (-4016 (((-110) $ $) 89 (|has| |#1| (-520)))) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-3245 (($ $ |#3|) 38) (($ $ (-595 |#3|)) 37) (($ $ |#3| (-717)) 36) (($ $ (-595 |#3|) (-595 (-717))) 35)) (-2244 (((-110) $ $) 76 (|has| |#1| (-793)))) (-2220 (((-110) $ $) 75 (|has| |#1| (-793)))) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 77 (|has| |#1| (-793)))) (-2208 (((-110) $ $) 74 (|has| |#1| (-793)))) (-2296 (($ $ |#1|) 156 (|has| |#1| (-343)))) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ (-387 (-528))) 158 (|has| |#1| (-37 (-387 (-528))))) (($ (-387 (-528)) $) 157 (|has| |#1| (-37 (-387 (-528))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-888 |#1| |#2| |#3|) (-133) (-981) (-739) (-793)) (T -888))
-((-1551 (*1 *1 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)) (-4 *2 (-431)))) (-2935 (*1 *2 *1 *3) (-12 (-4 *1 (-888 *4 *5 *3)) (-4 *4 (-981)) (-4 *5 (-739)) (-4 *3 (-793)) (-5 *2 (-717)))) (-2935 (*1 *2 *1 *3) (-12 (-5 *3 (-595 *6)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-981)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-595 (-717))))) (-3216 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-717)) (-4 *1 (-888 *4 *5 *2)) (-4 *4 (-981)) (-4 *5 (-739)) (-4 *2 (-793)))) (-3216 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-595 *6)) (-5 *3 (-595 (-717))) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-981)) (-4 *5 (-739)) (-4 *6 (-793)))) (-3737 (*1 *2 *1) (-12 (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-595 *1)) (-4 *1 (-888 *3 *4 *5)))) (-2402 (*1 *2 *1 *3) (-12 (-4 *4 (-981)) (-4 *5 (-739)) (-4 *3 (-793)) (-5 *2 (-1091 *1)) (-4 *1 (-888 *4 *5 *3)))) (-2402 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-1091 *3)))) (-3288 (*1 *2 *1) (|partial| -12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *2 (-793)))) (-3499 (*1 *2 *1 *3) (-12 (-4 *1 (-888 *4 *5 *3)) (-4 *4 (-981)) (-4 *5 (-739)) (-4 *3 (-793)) (-5 *2 (-717)))) (-3499 (*1 *2 *1 *3) (-12 (-5 *3 (-595 *6)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-981)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-595 (-717))))) (-3275 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-981)) (-4 *5 (-739)) (-4 *3 (-793)) (-5 *2 (-2 (|:| -3490 *1) (|:| -2537 *1))) (-4 *1 (-888 *4 *5 *3)))) (-2548 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-717)) (-4 *1 (-888 *4 *5 *2)) (-4 *4 (-981)) (-4 *5 (-739)) (-4 *2 (-793)))) (-2548 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-595 *6)) (-5 *3 (-595 (-717))) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-981)) (-4 *5 (-739)) (-4 *6 (-793)))) (-2557 (*1 *1 *2 *3) (-12 (-5 *2 (-1091 *4)) (-4 *4 (-981)) (-4 *1 (-888 *4 *5 *3)) (-4 *5 (-739)) (-4 *3 (-793)))) (-2557 (*1 *1 *2 *3) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-888 *4 *5 *3)) (-4 *4 (-981)) (-4 *5 (-739)) (-4 *3 (-793)))) (-1281 (*1 *2 *1) (|partial| -12 (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-595 *1)) (-4 *1 (-888 *3 *4 *5)))) (-3024 (*1 *2 *1) (|partial| -12 (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-595 *1)) (-4 *1 (-888 *3 *4 *5)))) (-3352 (*1 *2 *1) (|partial| -12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-2 (|:| |var| *5) (|:| -2564 (-717)))))) (-4042 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-717)))) (-4042 (*1 *2 *1 *3) (-12 (-5 *3 (-595 *6)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-981)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-717)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-595 *5)))) (-2376 (*1 *2 *1) (-12 (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-595 *1)) (-4 *1 (-888 *3 *4 *5)))) (-1606 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *2 (-793)) (-4 *3 (-162)))) (-1372 (*1 *1 *1 *2) (-12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *2 (-793)) (-4 *3 (-162)))) (-1618 (*1 *1 *1 *2) (-12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *2 (-793)) (-4 *3 (-431)))) (-1551 (*1 *1 *1 *2) (-12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *2 (-793)) (-4 *3 (-431)))) (-1232 (*1 *1 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)) (-4 *2 (-431)))) (-2705 (*1 *2 *1) (-12 (-4 *3 (-431)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-398 *1)) (-4 *1 (-888 *3 *4 *5)))))
-(-13 (-839 |t#3|) (-306 |t#1| |t#2|) (-290 $) (-489 |t#3| |t#1|) (-489 |t#3| $) (-972 |t#3|) (-357 |t#1|) (-10 -8 (-15 -2935 ((-717) $ |t#3|)) (-15 -2935 ((-595 (-717)) $ (-595 |t#3|))) (-15 -3216 ($ $ |t#3| (-717))) (-15 -3216 ($ $ (-595 |t#3|) (-595 (-717)))) (-15 -3737 ((-595 $) $)) (-15 -2402 ((-1091 $) $ |t#3|)) (-15 -2402 ((-1091 |t#1|) $)) (-15 -3288 ((-3 |t#3| "failed") $)) (-15 -3499 ((-717) $ |t#3|)) (-15 -3499 ((-595 (-717)) $ (-595 |t#3|))) (-15 -3275 ((-2 (|:| -3490 $) (|:| -2537 $)) $ $ |t#3|)) (-15 -2548 ($ $ |t#3| (-717))) (-15 -2548 ($ $ (-595 |t#3|) (-595 (-717)))) (-15 -2557 ($ (-1091 |t#1|) |t#3|)) (-15 -2557 ($ (-1091 $) |t#3|)) (-15 -1281 ((-3 (-595 $) "failed") $)) (-15 -3024 ((-3 (-595 $) "failed") $)) (-15 -3352 ((-3 (-2 (|:| |var| |t#3|) (|:| -2564 (-717))) "failed") $)) (-15 -4042 ((-717) $)) (-15 -4042 ((-717) $ (-595 |t#3|))) (-15 -2565 ((-595 |t#3|) $)) (-15 -2376 ((-595 $) $)) (IF (|has| |t#1| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |t#1| (-570 (-504))) (IF (|has| |t#3| (-570 (-504))) (-6 (-570 (-504))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-570 (-831 (-528)))) (IF (|has| |t#3| (-570 (-831 (-528)))) (-6 (-570 (-831 (-528)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-570 (-831 (-359)))) (IF (|has| |t#3| (-570 (-831 (-359)))) (-6 (-570 (-831 (-359)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-825 (-528))) (IF (|has| |t#3| (-825 (-528))) (-6 (-825 (-528))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-825 (-359))) (IF (|has| |t#3| (-825 (-359))) (-6 (-825 (-359))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-162)) (PROGN (-15 -1606 ($ $ $ |t#3|)) (-15 -1372 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-431)) (PROGN (-6 (-431)) (-15 -1618 ($ $ |t#3|)) (-15 -1551 ($ $)) (-15 -1551 ($ $ |t#3|)) (-15 -2705 ((-398 $) $)) (-15 -1232 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4262)) (-6 -4262) |%noBranch|) (IF (|has| |t#1| (-848)) (-6 (-848)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431))) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-387 (-528)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-569 (-802)) . T) ((-162) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431)) (|has| |#1| (-162))) ((-570 (-504)) -12 (|has| |#1| (-570 (-504))) (|has| |#3| (-570 (-504)))) ((-570 (-831 (-359))) -12 (|has| |#1| (-570 (-831 (-359)))) (|has| |#3| (-570 (-831 (-359))))) ((-570 (-831 (-528))) -12 (|has| |#1| (-570 (-831 (-528)))) (|has| |#3| (-570 (-831 (-528))))) ((-271) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431))) ((-290 $) . T) ((-306 |#1| |#2|) . T) ((-357 |#1|) . T) ((-391 |#1|) . T) ((-431) -1463 (|has| |#1| (-848)) (|has| |#1| (-431))) ((-489 |#3| |#1|) . T) ((-489 |#3| $) . T) ((-489 $ $) . T) ((-520) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431))) ((-597 #0#) |has| |#1| (-37 (-387 (-528)))) ((-597 |#1|) . T) ((-597 $) . T) ((-591 (-528)) |has| |#1| (-591 (-528))) ((-591 |#1|) . T) ((-664 #0#) |has| |#1| (-37 (-387 (-528)))) ((-664 |#1|) |has| |#1| (-162)) ((-664 $) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431))) ((-673) . T) ((-793) |has| |#1| (-793)) ((-839 |#3|) . T) ((-825 (-359)) -12 (|has| |#1| (-825 (-359))) (|has| |#3| (-825 (-359)))) ((-825 (-528)) -12 (|has| |#1| (-825 (-528))) (|has| |#3| (-825 (-528)))) ((-848) |has| |#1| (-848)) ((-972 (-387 (-528))) |has| |#1| (-972 (-387 (-528)))) ((-972 (-528)) |has| |#1| (-972 (-528))) ((-972 |#1|) . T) ((-972 |#3|) . T) ((-986 #0#) |has| |#1| (-37 (-387 (-528)))) ((-986 |#1|) . T) ((-986 $) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431)) (|has| |#1| (-162))) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1135) |has| |#1| (-848)))
-((-2565 (((-595 |#2|) |#5|) 36)) (-2402 (((-1091 |#5|) |#5| |#2| (-1091 |#5|)) 23) (((-387 (-1091 |#5|)) |#5| |#2|) 16)) (-2557 ((|#5| (-387 (-1091 |#5|)) |#2|) 30)) (-3288 (((-3 |#2| "failed") |#5|) 65)) (-3024 (((-3 (-595 |#5|) "failed") |#5|) 59)) (-1956 (((-3 (-2 (|:| |val| |#5|) (|:| -2564 (-528))) "failed") |#5|) 47)) (-1281 (((-3 (-595 |#5|) "failed") |#5|) 61)) (-3352 (((-3 (-2 (|:| |var| |#2|) (|:| -2564 (-528))) "failed") |#5|) 51)))
-(((-889 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2565 ((-595 |#2|) |#5|)) (-15 -3288 ((-3 |#2| "failed") |#5|)) (-15 -2402 ((-387 (-1091 |#5|)) |#5| |#2|)) (-15 -2557 (|#5| (-387 (-1091 |#5|)) |#2|)) (-15 -2402 ((-1091 |#5|) |#5| |#2| (-1091 |#5|))) (-15 -1281 ((-3 (-595 |#5|) "failed") |#5|)) (-15 -3024 ((-3 (-595 |#5|) "failed") |#5|)) (-15 -3352 ((-3 (-2 (|:| |var| |#2|) (|:| -2564 (-528))) "failed") |#5|)) (-15 -1956 ((-3 (-2 (|:| |val| |#5|) (|:| -2564 (-528))) "failed") |#5|))) (-739) (-793) (-981) (-888 |#3| |#1| |#2|) (-13 (-343) (-10 -8 (-15 -2222 ($ |#4|)) (-15 -3031 (|#4| $)) (-15 -3042 (|#4| $))))) (T -889))
-((-1956 (*1 *2 *3) (|partial| -12 (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-981)) (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2564 (-528)))) (-5 *1 (-889 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-343) (-10 -8 (-15 -2222 ($ *7)) (-15 -3031 (*7 $)) (-15 -3042 (*7 $))))))) (-3352 (*1 *2 *3) (|partial| -12 (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-981)) (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2564 (-528)))) (-5 *1 (-889 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-343) (-10 -8 (-15 -2222 ($ *7)) (-15 -3031 (*7 $)) (-15 -3042 (*7 $))))))) (-3024 (*1 *2 *3) (|partial| -12 (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-981)) (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-595 *3)) (-5 *1 (-889 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-343) (-10 -8 (-15 -2222 ($ *7)) (-15 -3031 (*7 $)) (-15 -3042 (*7 $))))))) (-1281 (*1 *2 *3) (|partial| -12 (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-981)) (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-595 *3)) (-5 *1 (-889 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-343) (-10 -8 (-15 -2222 ($ *7)) (-15 -3031 (*7 $)) (-15 -3042 (*7 $))))))) (-2402 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1091 *3)) (-4 *3 (-13 (-343) (-10 -8 (-15 -2222 ($ *7)) (-15 -3031 (*7 $)) (-15 -3042 (*7 $))))) (-4 *7 (-888 *6 *5 *4)) (-4 *5 (-739)) (-4 *4 (-793)) (-4 *6 (-981)) (-5 *1 (-889 *5 *4 *6 *7 *3)))) (-2557 (*1 *2 *3 *4) (-12 (-5 *3 (-387 (-1091 *2))) (-4 *5 (-739)) (-4 *4 (-793)) (-4 *6 (-981)) (-4 *2 (-13 (-343) (-10 -8 (-15 -2222 ($ *7)) (-15 -3031 (*7 $)) (-15 -3042 (*7 $))))) (-5 *1 (-889 *5 *4 *6 *7 *2)) (-4 *7 (-888 *6 *5 *4)))) (-2402 (*1 *2 *3 *4) (-12 (-4 *5 (-739)) (-4 *4 (-793)) (-4 *6 (-981)) (-4 *7 (-888 *6 *5 *4)) (-5 *2 (-387 (-1091 *3))) (-5 *1 (-889 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-343) (-10 -8 (-15 -2222 ($ *7)) (-15 -3031 (*7 $)) (-15 -3042 (*7 $))))))) (-3288 (*1 *2 *3) (|partial| -12 (-4 *4 (-739)) (-4 *5 (-981)) (-4 *6 (-888 *5 *4 *2)) (-4 *2 (-793)) (-5 *1 (-889 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-343) (-10 -8 (-15 -2222 ($ *6)) (-15 -3031 (*6 $)) (-15 -3042 (*6 $))))))) (-2565 (*1 *2 *3) (-12 (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-981)) (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-595 *5)) (-5 *1 (-889 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-343) (-10 -8 (-15 -2222 ($ *7)) (-15 -3031 (*7 $)) (-15 -3042 (*7 $))))))))
-(-10 -7 (-15 -2565 ((-595 |#2|) |#5|)) (-15 -3288 ((-3 |#2| "failed") |#5|)) (-15 -2402 ((-387 (-1091 |#5|)) |#5| |#2|)) (-15 -2557 (|#5| (-387 (-1091 |#5|)) |#2|)) (-15 -2402 ((-1091 |#5|) |#5| |#2| (-1091 |#5|))) (-15 -1281 ((-3 (-595 |#5|) "failed") |#5|)) (-15 -3024 ((-3 (-595 |#5|) "failed") |#5|)) (-15 -3352 ((-3 (-2 (|:| |var| |#2|) (|:| -2564 (-528))) "failed") |#5|)) (-15 -1956 ((-3 (-2 (|:| |val| |#5|) (|:| -2564 (-528))) "failed") |#5|)))
-((-3106 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
-(((-890 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3106 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-739) (-793) (-981) (-888 |#3| |#1| |#2|) (-13 (-1023) (-10 -8 (-15 -2275 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-717)))))) (T -890))
-((-3106 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-793)) (-4 *8 (-981)) (-4 *6 (-739)) (-4 *2 (-13 (-1023) (-10 -8 (-15 -2275 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-717)))))) (-5 *1 (-890 *6 *7 *8 *5 *2)) (-4 *5 (-888 *8 *6 *7)))))
-(-10 -7 (-15 -3106 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2565 (((-595 (-1095)) $) 16)) (-2402 (((-1091 $) $ (-1095)) 21) (((-1091 |#1|) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#1| (-520)))) (-1738 (($ $) NIL (|has| |#1| (-520)))) (-1811 (((-110) $) NIL (|has| |#1| (-520)))) (-4042 (((-717) $) NIL) (((-717) $ (-595 (-1095))) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-1232 (($ $) NIL (|has| |#1| (-431)))) (-2705 (((-398 $) $) NIL (|has| |#1| (-431)))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#1| "failed") $) 8) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-3 (-528) "failed") $) NIL (|has| |#1| (-972 (-528)))) (((-3 (-1095) "failed") $) NIL)) (-2409 ((|#1| $) NIL) (((-387 (-528)) $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-528) $) NIL (|has| |#1| (-972 (-528)))) (((-1095) $) NIL)) (-1606 (($ $ $ (-1095)) NIL (|has| |#1| (-162)))) (-2388 (($ $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) NIL) (((-635 |#1|) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1551 (($ $) NIL (|has| |#1| (-431))) (($ $ (-1095)) NIL (|has| |#1| (-431)))) (-2376 (((-595 $) $) NIL)) (-2124 (((-110) $) NIL (|has| |#1| (-848)))) (-4047 (($ $ |#1| (-500 (-1095)) $) NIL)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (-12 (|has| (-1095) (-825 (-359))) (|has| |#1| (-825 (-359))))) (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (-12 (|has| (-1095) (-825 (-528))) (|has| |#1| (-825 (-528)))))) (-1297 (((-110) $) NIL)) (-1224 (((-717) $) NIL)) (-2557 (($ (-1091 |#1|) (-1095)) NIL) (($ (-1091 $) (-1095)) NIL)) (-3737 (((-595 $) $) NIL)) (-2195 (((-110) $) NIL)) (-2548 (($ |#1| (-500 (-1095))) NIL) (($ $ (-1095) (-717)) NIL) (($ $ (-595 (-1095)) (-595 (-717))) NIL)) (-3275 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $ (-1095)) NIL)) (-3499 (((-500 (-1095)) $) NIL) (((-717) $ (-1095)) NIL) (((-595 (-717)) $ (-595 (-1095))) NIL)) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-1264 (($ (-1 (-500 (-1095)) (-500 (-1095))) $) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-3288 (((-3 (-1095) "failed") $) 19)) (-2686 (($ $) NIL)) (-2697 ((|#1| $) NIL)) (-2057 (($ (-595 $)) NIL (|has| |#1| (-431))) (($ $ $) NIL (|has| |#1| (-431)))) (-3034 (((-1078) $) NIL)) (-3024 (((-3 (-595 $) "failed") $) NIL)) (-1281 (((-3 (-595 $) "failed") $) NIL)) (-3352 (((-3 (-2 (|:| |var| (-1095)) (|:| -2564 (-717))) "failed") $) NIL)) (-1923 (($ $ (-1095)) 29 (|has| |#1| (-37 (-387 (-528)))))) (-2495 (((-1042) $) NIL)) (-2662 (((-110) $) NIL)) (-2675 ((|#1| $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#1| (-431)))) (-2088 (($ (-595 $)) NIL (|has| |#1| (-431))) (($ $ $) NIL (|has| |#1| (-431)))) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2437 (((-398 $) $) NIL (|has| |#1| (-848)))) (-3477 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-520))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-520)))) (-4014 (($ $ (-595 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL) (($ $ (-1095) |#1|) NIL) (($ $ (-595 (-1095)) (-595 |#1|)) NIL) (($ $ (-1095) $) NIL) (($ $ (-595 (-1095)) (-595 $)) NIL)) (-1372 (($ $ (-1095)) NIL (|has| |#1| (-162)))) (-3235 (($ $ (-1095)) NIL) (($ $ (-595 (-1095))) NIL) (($ $ (-1095) (-717)) NIL) (($ $ (-595 (-1095)) (-595 (-717))) NIL)) (-2935 (((-500 (-1095)) $) NIL) (((-717) $ (-1095)) NIL) (((-595 (-717)) $ (-595 (-1095))) NIL)) (-3155 (((-831 (-359)) $) NIL (-12 (|has| (-1095) (-570 (-831 (-359)))) (|has| |#1| (-570 (-831 (-359)))))) (((-831 (-528)) $) NIL (-12 (|has| (-1095) (-570 (-831 (-528)))) (|has| |#1| (-570 (-831 (-528)))))) (((-504) $) NIL (-12 (|has| (-1095) (-570 (-504))) (|has| |#1| (-570 (-504)))))) (-1618 ((|#1| $) NIL (|has| |#1| (-431))) (($ $ (-1095)) NIL (|has| |#1| (-431)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-848))))) (-2222 (((-802) $) 25) (($ (-528)) NIL) (($ |#1|) NIL) (($ (-1095)) 27) (($ (-387 (-528))) NIL (-1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-972 (-387 (-528)))))) (($ $) NIL (|has| |#1| (-520)))) (-3348 (((-595 |#1|) $) NIL)) (-3216 ((|#1| $ (-500 (-1095))) NIL) (($ $ (-1095) (-717)) NIL) (($ $ (-595 (-1095)) (-595 (-717))) NIL)) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| |#1| (-848))) (|has| |#1| (-138))))) (-3742 (((-717)) NIL)) (-1997 (($ $ $ (-717)) NIL (|has| |#1| (-162)))) (-4016 (((-110) $ $) NIL (|has| |#1| (-520)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($ $ (-1095)) NIL) (($ $ (-595 (-1095))) NIL) (($ $ (-1095) (-717)) NIL) (($ $ (-595 (-1095)) (-595 (-717))) NIL)) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2296 (($ $ |#1|) NIL (|has| |#1| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528))))) (($ (-387 (-528)) $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-891 |#1|) (-13 (-888 |#1| (-500 (-1095)) (-1095)) (-10 -8 (IF (|has| |#1| (-37 (-387 (-528)))) (-15 -1923 ($ $ (-1095))) |%noBranch|))) (-981)) (T -891))
-((-1923 (*1 *1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-891 *3)) (-4 *3 (-37 (-387 (-528)))) (-4 *3 (-981)))))
-(-13 (-888 |#1| (-500 (-1095)) (-1095)) (-10 -8 (IF (|has| |#1| (-37 (-387 (-528)))) (-15 -1923 ($ $ (-1095))) |%noBranch|)))
-((-1474 (((-2 (|:| -2564 (-717)) (|:| -1641 |#5|) (|:| |radicand| |#5|)) |#3| (-717)) 38)) (-2947 (((-2 (|:| -2564 (-717)) (|:| -1641 |#5|) (|:| |radicand| |#5|)) (-387 (-528)) (-717)) 34)) (-1934 (((-2 (|:| -2564 (-717)) (|:| -1641 |#4|) (|:| |radicand| (-595 |#4|))) |#4| (-717)) 54)) (-1698 (((-2 (|:| -2564 (-717)) (|:| -1641 |#5|) (|:| |radicand| |#5|)) |#5| (-717)) 64 (|has| |#3| (-431)))))
-(((-892 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1474 ((-2 (|:| -2564 (-717)) (|:| -1641 |#5|) (|:| |radicand| |#5|)) |#3| (-717))) (-15 -2947 ((-2 (|:| -2564 (-717)) (|:| -1641 |#5|) (|:| |radicand| |#5|)) (-387 (-528)) (-717))) (IF (|has| |#3| (-431)) (-15 -1698 ((-2 (|:| -2564 (-717)) (|:| -1641 |#5|) (|:| |radicand| |#5|)) |#5| (-717))) |%noBranch|) (-15 -1934 ((-2 (|:| -2564 (-717)) (|:| -1641 |#4|) (|:| |radicand| (-595 |#4|))) |#4| (-717)))) (-739) (-793) (-520) (-888 |#3| |#1| |#2|) (-13 (-343) (-10 -8 (-15 -3031 (|#4| $)) (-15 -3042 (|#4| $)) (-15 -2222 ($ |#4|))))) (T -892))
-((-1934 (*1 *2 *3 *4) (-12 (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-520)) (-4 *3 (-888 *7 *5 *6)) (-5 *2 (-2 (|:| -2564 (-717)) (|:| -1641 *3) (|:| |radicand| (-595 *3)))) (-5 *1 (-892 *5 *6 *7 *3 *8)) (-5 *4 (-717)) (-4 *8 (-13 (-343) (-10 -8 (-15 -3031 (*3 $)) (-15 -3042 (*3 $)) (-15 -2222 ($ *3))))))) (-1698 (*1 *2 *3 *4) (-12 (-4 *7 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-520)) (-4 *8 (-888 *7 *5 *6)) (-5 *2 (-2 (|:| -2564 (-717)) (|:| -1641 *3) (|:| |radicand| *3))) (-5 *1 (-892 *5 *6 *7 *8 *3)) (-5 *4 (-717)) (-4 *3 (-13 (-343) (-10 -8 (-15 -3031 (*8 $)) (-15 -3042 (*8 $)) (-15 -2222 ($ *8))))))) (-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-387 (-528))) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-520)) (-4 *8 (-888 *7 *5 *6)) (-5 *2 (-2 (|:| -2564 (-717)) (|:| -1641 *9) (|:| |radicand| *9))) (-5 *1 (-892 *5 *6 *7 *8 *9)) (-5 *4 (-717)) (-4 *9 (-13 (-343) (-10 -8 (-15 -3031 (*8 $)) (-15 -3042 (*8 $)) (-15 -2222 ($ *8))))))) (-1474 (*1 *2 *3 *4) (-12 (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-520)) (-4 *7 (-888 *3 *5 *6)) (-5 *2 (-2 (|:| -2564 (-717)) (|:| -1641 *8) (|:| |radicand| *8))) (-5 *1 (-892 *5 *6 *3 *7 *8)) (-5 *4 (-717)) (-4 *8 (-13 (-343) (-10 -8 (-15 -3031 (*7 $)) (-15 -3042 (*7 $)) (-15 -2222 ($ *7))))))))
-(-10 -7 (-15 -1474 ((-2 (|:| -2564 (-717)) (|:| -1641 |#5|) (|:| |radicand| |#5|)) |#3| (-717))) (-15 -2947 ((-2 (|:| -2564 (-717)) (|:| -1641 |#5|) (|:| |radicand| |#5|)) (-387 (-528)) (-717))) (IF (|has| |#3| (-431)) (-15 -1698 ((-2 (|:| -2564 (-717)) (|:| -1641 |#5|) (|:| |radicand| |#5|)) |#5| (-717))) |%noBranch|) (-15 -1934 ((-2 (|:| -2564 (-717)) (|:| -1641 |#4|) (|:| |radicand| (-595 |#4|))) |#4| (-717))))
-((-2777 (((-1018 (-207)) $) 8)) (-2765 (((-1018 (-207)) $) 9)) (-3632 (((-595 (-595 (-882 (-207)))) $) 10)) (-2222 (((-802) $) 6)))
-(((-893) (-133)) (T -893))
-((-3632 (*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-595 (-595 (-882 (-207))))))) (-2765 (*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-1018 (-207))))) (-2777 (*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-1018 (-207))))))
-(-13 (-569 (-802)) (-10 -8 (-15 -3632 ((-595 (-595 (-882 (-207)))) $)) (-15 -2765 ((-1018 (-207)) $)) (-15 -2777 ((-1018 (-207)) $))))
-(((-569 (-802)) . T))
-((-2669 (((-3 (-635 |#1|) "failed") |#2| (-860)) 15)))
-(((-894 |#1| |#2|) (-10 -7 (-15 -2669 ((-3 (-635 |#1|) "failed") |#2| (-860)))) (-520) (-605 |#1|)) (T -894))
-((-2669 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-860)) (-4 *5 (-520)) (-5 *2 (-635 *5)) (-5 *1 (-894 *5 *3)) (-4 *3 (-605 *5)))))
-(-10 -7 (-15 -2669 ((-3 (-635 |#1|) "failed") |#2| (-860))))
-((-3718 (((-896 |#2|) (-1 |#2| |#1| |#2|) (-896 |#1|) |#2|) 16)) (-1422 ((|#2| (-1 |#2| |#1| |#2|) (-896 |#1|) |#2|) 18)) (-3106 (((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)) 13)))
-(((-895 |#1| |#2|) (-10 -7 (-15 -3718 ((-896 |#2|) (-1 |#2| |#1| |#2|) (-896 |#1|) |#2|)) (-15 -1422 (|#2| (-1 |#2| |#1| |#2|) (-896 |#1|) |#2|)) (-15 -3106 ((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)))) (-1131) (-1131)) (T -895))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-896 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-896 *6)) (-5 *1 (-895 *5 *6)))) (-1422 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-896 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) (-5 *1 (-895 *5 *2)))) (-3718 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-896 *6)) (-4 *6 (-1131)) (-4 *5 (-1131)) (-5 *2 (-896 *5)) (-5 *1 (-895 *6 *5)))))
-(-10 -7 (-15 -3718 ((-896 |#2|) (-1 |#2| |#1| |#2|) (-896 |#1|) |#2|)) (-15 -1422 (|#2| (-1 |#2| |#1| |#2|) (-896 |#1|) |#2|)) (-15 -3106 ((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|))))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-1444 (((-1182) $ (-528) (-528)) NIL (|has| $ (-6 -4265)))) (-3608 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-793)))) (-3863 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4265))) (($ $) NIL (-12 (|has| $ (-6 -4265)) (|has| |#1| (-793))))) (-1289 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-793)))) (-3535 (((-110) $ (-717)) NIL)) (-2381 ((|#1| $ (-528) |#1|) 16 (|has| $ (-6 -4265))) ((|#1| $ (-1144 (-528)) |#1|) NIL (|has| $ (-6 -4265)))) (-1573 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2816 (($) NIL T CONST)) (-2472 (($ $) NIL (|has| $ (-6 -4265)))) (-3009 (($ $) NIL)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2280 (($ |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4264)))) (-2812 ((|#1| $ (-528) |#1|) 15 (|has| $ (-6 -4265)))) (-2742 ((|#1| $ (-528)) 13)) (-3140 (((-528) (-1 (-110) |#1|) $) NIL) (((-528) |#1| $) NIL (|has| |#1| (-1023))) (((-528) |#1| $ (-528)) NIL (|has| |#1| (-1023)))) (-3342 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-3462 (($ (-717) |#1|) 12)) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-528) $) 10 (|has| (-528) (-793)))) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-1356 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-793)))) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-1709 (((-528) $) NIL (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-2800 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-3939 (($ |#1| $ (-528)) NIL) (($ $ $ (-528)) NIL)) (-2084 (((-595 (-528)) $) NIL)) (-3966 (((-110) (-528) $) NIL)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-2890 ((|#1| $) NIL (|has| (-528) (-793)))) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1332 (($ $ |#1|) 17 (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2861 (((-595 |#1|) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) 11)) (-3043 ((|#1| $ (-528) |#1|) NIL) ((|#1| $ (-528)) 14) (($ $ (-1144 (-528))) NIL)) (-1745 (($ $ (-528)) NIL) (($ $ (-1144 (-528))) NIL)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3761 (($ $ $ (-528)) NIL (|has| $ (-6 -4265)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) NIL (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) NIL)) (-3400 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-595 $)) NIL)) (-2222 (((-802) $) NIL (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2138 (((-717) $) 8 (|has| $ (-6 -4264)))))
-(((-896 |#1|) (-19 |#1|) (-1131)) (T -896))
+((-3460 (*1 *2 *1) (-12 (-4 *1 (-793)) (-5 *2 (-110)))) (-3461 (*1 *2 *1) (-12 (-4 *1 (-793)) (-5 *2 (-110)))) (-3905 (*1 *2 *1) (-12 (-4 *1 (-793)) (-5 *2 (-516)))) (-3661 (*1 *1 *1) (-4 *1 (-793))))
+(-13 (-739) (-984) (-675) (-10 -8 (-15 -3460 ((-110) $)) (-15 -3461 ((-110) $)) (-15 -3905 ((-516) $)) (-15 -3661 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-805)) . T) ((-599 $) . T) ((-675) . T) ((-739) . T) ((-740) . T) ((-742) . T) ((-745) . T) ((-795) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-3596 (($ $ $) 10)) (-3597 (($ $ $) 9)) (-2826 (((-110) $ $) 13)) (-2827 (((-110) $ $) 11)) (-2947 (((-110) $ $) 14)))
+(((-794 |#1|) (-10 -8 (-15 -3596 (|#1| |#1| |#1|)) (-15 -3597 (|#1| |#1| |#1|)) (-15 -2947 ((-110) |#1| |#1|)) (-15 -2826 ((-110) |#1| |#1|)) (-15 -2827 ((-110) |#1| |#1|))) (-795)) (T -794))
+NIL
+(-10 -8 (-15 -3596 (|#1| |#1| |#1|)) (-15 -3597 (|#1| |#1| |#1|)) (-15 -2947 ((-110) |#1| |#1|)) (-15 -2826 ((-110) |#1| |#1|)) (-15 -2827 ((-110) |#1| |#1|)))
+((-2828 (((-110) $ $) 7)) (-3596 (($ $ $) 13)) (-3597 (($ $ $) 14)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-2826 (((-110) $ $) 16)) (-2827 (((-110) $ $) 17)) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 15)) (-2948 (((-110) $ $) 18)))
+(((-795) (-133)) (T -795))
+((-2948 (*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110)))) (-2827 (*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110)))) (-2826 (*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110)))) (-2947 (*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110)))) (-3597 (*1 *1 *1 *1) (-4 *1 (-795))) (-3596 (*1 *1 *1 *1) (-4 *1 (-795))))
+(-13 (-1027) (-10 -8 (-15 -2948 ((-110) $ $)) (-15 -2827 ((-110) $ $)) (-15 -2826 ((-110) $ $)) (-15 -2947 ((-110) $ $)) (-15 -3597 ($ $ $)) (-15 -3596 ($ $ $))))
+(((-99) . T) ((-571 (-805)) . T) ((-1027) . T))
+((-2805 (($ $ $) 45)) (-2806 (($ $ $) 44)) (-2807 (($ $ $) 42)) (-2803 (($ $ $) 51)) (-2802 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 46)) (-2804 (((-3 $ "failed") $ $) 49)) (-3432 (((-3 (-516) #1="failed") $) NIL) (((-3 (-388 (-516)) #1#) $) NIL) (((-3 |#2| #1#) $) 25)) (-3777 (($ $) 35)) (-2811 (($ $ $) 39)) (-2812 (($ $ $) 38)) (-2801 (($ $ $) 47)) (-2809 (($ $ $) 53)) (-2808 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 41)) (-2810 (((-3 $ "failed") $ $) 48)) (-3740 (((-3 $ "failed") $ |#2|) 28)) (-3081 ((|#2| $) 32)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ (-388 (-516))) NIL) (($ |#2|) 12)) (-4096 (((-594 |#2|) $) 18)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
+(((-796 |#1| |#2|) (-10 -8 (-15 -2801 (|#1| |#1| |#1|)) (-15 -2802 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2435 |#1|)) |#1| |#1|)) (-15 -2803 (|#1| |#1| |#1|)) (-15 -2804 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2805 (|#1| |#1| |#1|)) (-15 -2806 (|#1| |#1| |#1|)) (-15 -2807 (|#1| |#1| |#1|)) (-15 -2808 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2435 |#1|)) |#1| |#1|)) (-15 -2809 (|#1| |#1| |#1|)) (-15 -2810 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2811 (|#1| |#1| |#1|)) (-15 -2812 (|#1| |#1| |#1|)) (-15 -3777 (|#1| |#1|)) (-15 -3081 (|#2| |#1|)) (-15 -3740 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4096 ((-594 |#2|) |#1|)) (-15 -3432 ((-3 |#2| #1="failed") |#1|)) (-15 -4233 (|#1| |#2|)) (-15 -4233 (|#1| (-388 (-516)))) (-15 -3432 ((-3 (-388 (-516)) #1#) |#1|)) (-15 -3432 ((-3 (-516) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4233 (|#1| (-516))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-516) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-860) |#1|)) (-15 -4233 ((-805) |#1|))) (-797 |#2|) (-984)) (T -796))
+NIL
+(-10 -8 (-15 -2801 (|#1| |#1| |#1|)) (-15 -2802 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2435 |#1|)) |#1| |#1|)) (-15 -2803 (|#1| |#1| |#1|)) (-15 -2804 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2805 (|#1| |#1| |#1|)) (-15 -2806 (|#1| |#1| |#1|)) (-15 -2807 (|#1| |#1| |#1|)) (-15 -2808 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2435 |#1|)) |#1| |#1|)) (-15 -2809 (|#1| |#1| |#1|)) (-15 -2810 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2811 (|#1| |#1| |#1|)) (-15 -2812 (|#1| |#1| |#1|)) (-15 -3777 (|#1| |#1|)) (-15 -3081 (|#2| |#1|)) (-15 -3740 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4096 ((-594 |#2|) |#1|)) (-15 -3432 ((-3 |#2| #1="failed") |#1|)) (-15 -4233 (|#1| |#2|)) (-15 -4233 (|#1| (-388 (-516)))) (-15 -3432 ((-3 (-388 (-516)) #1#) |#1|)) (-15 -3432 ((-3 (-516) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4233 (|#1| (-516))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-516) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-860) |#1|)) (-15 -4233 ((-805) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-2805 (($ $ $) 45 (|has| |#1| (-344)))) (-2806 (($ $ $) 46 (|has| |#1| (-344)))) (-2807 (($ $ $) 48 (|has| |#1| (-344)))) (-2803 (($ $ $) 43 (|has| |#1| (-344)))) (-2802 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 42 (|has| |#1| (-344)))) (-2804 (((-3 $ "failed") $ $) 44 (|has| |#1| (-344)))) (-2818 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 47 (|has| |#1| (-344)))) (-3432 (((-3 (-516) #1="failed") $) 74 (|has| |#1| (-975 (-516)))) (((-3 (-388 (-516)) #1#) $) 72 (|has| |#1| (-975 (-388 (-516))))) (((-3 |#1| #1#) $) 69)) (-3431 (((-516) $) 75 (|has| |#1| (-975 (-516)))) (((-388 (-516)) $) 73 (|has| |#1| (-975 (-388 (-516))))) ((|#1| $) 68)) (-4235 (($ $) 64)) (-3741 (((-3 $ "failed") $) 34)) (-3777 (($ $) 55 (|has| |#1| (-432)))) (-2436 (((-110) $) 31)) (-3157 (($ |#1| (-719)) 62)) (-2816 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 57 (|has| |#1| (-523)))) (-2815 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 58 (|has| |#1| (-523)))) (-3084 (((-719) $) 66)) (-2811 (($ $ $) 52 (|has| |#1| (-344)))) (-2812 (($ $ $) 53 (|has| |#1| (-344)))) (-2801 (($ $ $) 41 (|has| |#1| (-344)))) (-2809 (($ $ $) 50 (|has| |#1| (-344)))) (-2808 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 49 (|has| |#1| (-344)))) (-2810 (((-3 $ "failed") $ $) 51 (|has| |#1| (-344)))) (-2817 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 54 (|has| |#1| (-344)))) (-3449 ((|#1| $) 65)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-3740 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-523)))) (-4223 (((-719) $) 67)) (-3081 ((|#1| $) 56 (|has| |#1| (-432)))) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ (-388 (-516))) 71 (|has| |#1| (-975 (-388 (-516))))) (($ |#1|) 70)) (-4096 (((-594 |#1|) $) 61)) (-3959 ((|#1| $ (-719)) 63)) (-3385 (((-719)) 29)) (-2814 ((|#1| $ |#1| |#1|) 60)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
+(((-797 |#1|) (-133) (-984)) (T -797))
+((-4223 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-984)) (-5 *2 (-719)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-984)) (-5 *2 (-719)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)))) (-4235 (*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)))) (-3959 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-797 *2)) (-4 *2 (-984)))) (-3157 (*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-797 *2)) (-4 *2 (-984)))) (-4096 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-984)) (-5 *2 (-594 *3)))) (-2814 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)))) (-3740 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-523)))) (-2815 (*1 *2 *1 *1) (-12 (-4 *3 (-523)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -2046 *1) (|:| -3166 *1))) (-4 *1 (-797 *3)))) (-2816 (*1 *2 *1 *1) (-12 (-4 *3 (-523)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -2046 *1) (|:| -3166 *1))) (-4 *1 (-797 *3)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-432)))) (-3777 (*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-432)))) (-2817 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -2046 *1) (|:| -3166 *1))) (-4 *1 (-797 *3)))) (-2812 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2811 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2810 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2809 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2808 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *3 (-984)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2435 *1))) (-4 *1 (-797 *3)))) (-2807 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2818 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -2046 *1) (|:| -3166 *1))) (-4 *1 (-797 *3)))) (-2806 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2805 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2804 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2803 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2802 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *3 (-984)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2435 *1))) (-4 *1 (-797 *3)))) (-2801 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(-13 (-984) (-109 |t#1| |t#1|) (-393 |t#1|) (-10 -8 (-15 -4223 ((-719) $)) (-15 -3084 ((-719) $)) (-15 -3449 (|t#1| $)) (-15 -4235 ($ $)) (-15 -3959 (|t#1| $ (-719))) (-15 -3157 ($ |t#1| (-719))) (-15 -4096 ((-594 |t#1|) $)) (-15 -2814 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-523)) (PROGN (-15 -3740 ((-3 $ "failed") $ |t#1|)) (-15 -2815 ((-2 (|:| -2046 $) (|:| -3166 $)) $ $)) (-15 -2816 ((-2 (|:| -2046 $) (|:| -3166 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-432)) (PROGN (-15 -3081 (|t#1| $)) (-15 -3777 ($ $))) |%noBranch|) (IF (|has| |t#1| (-344)) (PROGN (-15 -2817 ((-2 (|:| -2046 $) (|:| -3166 $)) $ $)) (-15 -2812 ($ $ $)) (-15 -2811 ($ $ $)) (-15 -2810 ((-3 $ "failed") $ $)) (-15 -2809 ($ $ $)) (-15 -2808 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $)) (-15 -2807 ($ $ $)) (-15 -2818 ((-2 (|:| -2046 $) (|:| -3166 $)) $ $)) (-15 -2806 ($ $ $)) (-15 -2805 ($ $ $)) (-15 -2804 ((-3 $ "failed") $ $)) (-15 -2803 ($ $ $)) (-15 -2802 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $)) (-15 -2801 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-162)) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-805)) . T) ((-393 |#1|) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 |#1|) |has| |#1| (-162)) ((-675) . T) ((-975 (-388 (-516))) |has| |#1| (-975 (-388 (-516)))) ((-975 (-516)) |has| |#1| (-975 (-516))) ((-975 |#1|) . T) ((-989 |#1|) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-2813 ((|#2| |#2| |#2| (-96 |#1|) (-1 |#1| |#1|)) 20)) (-2818 (((-2 (|:| -2046 |#2|) (|:| -3166 |#2|)) |#2| |#2| (-96 |#1|)) 43 (|has| |#1| (-344)))) (-2816 (((-2 (|:| -2046 |#2|) (|:| -3166 |#2|)) |#2| |#2| (-96 |#1|)) 40 (|has| |#1| (-523)))) (-2815 (((-2 (|:| -2046 |#2|) (|:| -3166 |#2|)) |#2| |#2| (-96 |#1|)) 39 (|has| |#1| (-523)))) (-2817 (((-2 (|:| -2046 |#2|) (|:| -3166 |#2|)) |#2| |#2| (-96 |#1|)) 42 (|has| |#1| (-344)))) (-2814 ((|#1| |#2| |#1| |#1| (-96 |#1|) (-1 |#1| |#1|)) 31)))
+(((-798 |#1| |#2|) (-10 -7 (-15 -2813 (|#2| |#2| |#2| (-96 |#1|) (-1 |#1| |#1|))) (-15 -2814 (|#1| |#2| |#1| |#1| (-96 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-523)) (PROGN (-15 -2815 ((-2 (|:| -2046 |#2|) (|:| -3166 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -2816 ((-2 (|:| -2046 |#2|) (|:| -3166 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -2817 ((-2 (|:| -2046 |#2|) (|:| -3166 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -2818 ((-2 (|:| -2046 |#2|) (|:| -3166 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|)) (-984) (-797 |#1|)) (T -798))
+((-2818 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-344)) (-4 *5 (-984)) (-5 *2 (-2 (|:| -2046 *3) (|:| -3166 *3))) (-5 *1 (-798 *5 *3)) (-4 *3 (-797 *5)))) (-2817 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-344)) (-4 *5 (-984)) (-5 *2 (-2 (|:| -2046 *3) (|:| -3166 *3))) (-5 *1 (-798 *5 *3)) (-4 *3 (-797 *5)))) (-2816 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-523)) (-4 *5 (-984)) (-5 *2 (-2 (|:| -2046 *3) (|:| -3166 *3))) (-5 *1 (-798 *5 *3)) (-4 *3 (-797 *5)))) (-2815 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-523)) (-4 *5 (-984)) (-5 *2 (-2 (|:| -2046 *3) (|:| -3166 *3))) (-5 *1 (-798 *5 *3)) (-4 *3 (-797 *5)))) (-2814 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-96 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-984)) (-5 *1 (-798 *2 *3)) (-4 *3 (-797 *2)))) (-2813 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-984)) (-5 *1 (-798 *5 *2)) (-4 *2 (-797 *5)))))
+(-10 -7 (-15 -2813 (|#2| |#2| |#2| (-96 |#1|) (-1 |#1| |#1|))) (-15 -2814 (|#1| |#2| |#1| |#1| (-96 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-523)) (PROGN (-15 -2815 ((-2 (|:| -2046 |#2|) (|:| -3166 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -2816 ((-2 (|:| -2046 |#2|) (|:| -3166 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -2817 ((-2 (|:| -2046 |#2|) (|:| -3166 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -2818 ((-2 (|:| -2046 |#2|) (|:| -3166 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-2805 (($ $ $) NIL (|has| |#1| (-344)))) (-2806 (($ $ $) NIL (|has| |#1| (-344)))) (-2807 (($ $ $) NIL (|has| |#1| (-344)))) (-2803 (($ $ $) NIL (|has| |#1| (-344)))) (-2802 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#1| (-344)))) (-2804 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-344)))) (-2818 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 25 (|has| |#1| (-344)))) (-3432 (((-3 (-516) #2="failed") $) NIL (|has| |#1| (-975 (-516)))) (((-3 (-388 (-516)) #2#) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-3 |#1| #2#) $) NIL)) (-3431 (((-516) $) NIL (|has| |#1| (-975 (-516)))) (((-388 (-516)) $) NIL (|has| |#1| (-975 (-388 (-516))))) ((|#1| $) NIL)) (-4235 (($ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3777 (($ $) NIL (|has| |#1| (-432)))) (-3806 (((-805) $ (-805)) NIL)) (-2436 (((-110) $) NIL)) (-3157 (($ |#1| (-719)) NIL)) (-2816 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 21 (|has| |#1| (-523)))) (-2815 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 19 (|has| |#1| (-523)))) (-3084 (((-719) $) NIL)) (-2811 (($ $ $) NIL (|has| |#1| (-344)))) (-2812 (($ $ $) NIL (|has| |#1| (-344)))) (-2801 (($ $ $) NIL (|has| |#1| (-344)))) (-2809 (($ $ $) NIL (|has| |#1| (-344)))) (-2808 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#1| (-344)))) (-2810 (((-3 $ #1#) $ $) NIL (|has| |#1| (-344)))) (-2817 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 23 (|has| |#1| (-344)))) (-3449 ((|#1| $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-3740 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-523)))) (-4223 (((-719) $) NIL)) (-3081 ((|#1| $) NIL (|has| |#1| (-432)))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ (-388 (-516))) NIL (|has| |#1| (-975 (-388 (-516))))) (($ |#1|) NIL)) (-4096 (((-594 |#1|) $) NIL)) (-3959 ((|#1| $ (-719)) NIL)) (-3385 (((-719)) NIL)) (-2814 ((|#1| $ |#1| |#1|) 15)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-3317 (((-110) $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-799 |#1| |#2| |#3|) (-13 (-797 |#1|) (-10 -8 (-15 -3806 ((-805) $ (-805))))) (-984) (-96 |#1|) (-1 |#1| |#1|)) (T -799))
+((-3806 (*1 *2 *1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-799 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-96 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-797 |#1|) (-10 -8 (-15 -3806 ((-805) $ (-805)))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-2805 (($ $ $) NIL (|has| |#2| (-344)))) (-2806 (($ $ $) NIL (|has| |#2| (-344)))) (-2807 (($ $ $) NIL (|has| |#2| (-344)))) (-2803 (($ $ $) NIL (|has| |#2| (-344)))) (-2802 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#2| (-344)))) (-2804 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-344)))) (-2818 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#2| (-344)))) (-3432 (((-3 (-516) #2="failed") $) NIL (|has| |#2| (-975 (-516)))) (((-3 (-388 (-516)) #2#) $) NIL (|has| |#2| (-975 (-388 (-516))))) (((-3 |#2| #2#) $) NIL)) (-3431 (((-516) $) NIL (|has| |#2| (-975 (-516)))) (((-388 (-516)) $) NIL (|has| |#2| (-975 (-388 (-516))))) ((|#2| $) NIL)) (-4235 (($ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3777 (($ $) NIL (|has| |#2| (-432)))) (-2436 (((-110) $) NIL)) (-3157 (($ |#2| (-719)) 16)) (-2816 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#2| (-523)))) (-2815 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#2| (-523)))) (-3084 (((-719) $) NIL)) (-2811 (($ $ $) NIL (|has| |#2| (-344)))) (-2812 (($ $ $) NIL (|has| |#2| (-344)))) (-2801 (($ $ $) NIL (|has| |#2| (-344)))) (-2809 (($ $ $) NIL (|has| |#2| (-344)))) (-2808 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#2| (-344)))) (-2810 (((-3 $ #1#) $ $) NIL (|has| |#2| (-344)))) (-2817 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#2| (-344)))) (-3449 ((|#2| $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-3740 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-523)))) (-4223 (((-719) $) NIL)) (-3081 ((|#2| $) NIL (|has| |#2| (-432)))) (-4233 (((-805) $) 23) (($ (-516)) NIL) (($ (-388 (-516))) NIL (|has| |#2| (-975 (-388 (-516))))) (($ |#2|) NIL) (($ (-1176 |#1|)) 18)) (-4096 (((-594 |#2|) $) NIL)) (-3959 ((|#2| $ (-719)) NIL)) (-3385 (((-719)) NIL)) (-2814 ((|#2| $ |#2| |#2|) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) 13 T CONST)) (-3317 (((-110) $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-800 |#1| |#2| |#3| |#4|) (-13 (-797 |#2|) (-10 -8 (-15 -4233 ($ (-1176 |#1|))))) (-1098) (-984) (-96 |#2|) (-1 |#2| |#2|)) (T -800))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1176 *3)) (-14 *3 (-1098)) (-5 *1 (-800 *3 *4 *5 *6)) (-4 *4 (-984)) (-14 *5 (-96 *4)) (-14 *6 (-1 *4 *4)))))
+(-13 (-797 |#2|) (-10 -8 (-15 -4233 ($ (-1176 |#1|)))))
+((-2821 ((|#1| (-719) |#1|) 35 (|has| |#1| (-37 (-388 (-516)))))) (-2820 ((|#1| (-719) (-719) |#1|) 27) ((|#1| (-719) |#1|) 20)) (-2819 ((|#1| (-719) |#1|) 31)) (-3064 ((|#1| (-719) |#1|) 29)) (-3063 ((|#1| (-719) |#1|) 28)))
+(((-801 |#1|) (-10 -7 (-15 -3063 (|#1| (-719) |#1|)) (-15 -3064 (|#1| (-719) |#1|)) (-15 -2819 (|#1| (-719) |#1|)) (-15 -2820 (|#1| (-719) |#1|)) (-15 -2820 (|#1| (-719) (-719) |#1|)) (IF (|has| |#1| (-37 (-388 (-516)))) (-15 -2821 (|#1| (-719) |#1|)) |%noBranch|)) (-162)) (T -801))
+((-2821 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-162)))) (-2820 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))) (-2820 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))) (-2819 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))) (-3064 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))) (-3063 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))))
+(-10 -7 (-15 -3063 (|#1| (-719) |#1|)) (-15 -3064 (|#1| (-719) |#1|)) (-15 -2819 (|#1| (-719) |#1|)) (-15 -2820 (|#1| (-719) |#1|)) (-15 -2820 (|#1| (-719) (-719) |#1|)) (IF (|has| |#1| (-37 (-388 (-516)))) (-15 -2821 (|#1| (-719) |#1|)) |%noBranch|))
+((-2828 (((-110) $ $) 7)) (-3596 (($ $ $) 13)) (-3597 (($ $ $) 14)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-3581 (($ $ (-860)) 22)) (-2826 (((-110) $ $) 16)) (-2827 (((-110) $ $) 17)) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 15)) (-2948 (((-110) $ $) 18)) (** (($ $ (-860)) 21)) (* (($ $ $) 20)))
+(((-802) (-133)) (T -802))
+NIL
+(-13 (-795) (-1038))
+(((-99) . T) ((-571 (-805)) . T) ((-795) . T) ((-1038) . T) ((-1027) . T))
+((-2828 (((-110) $ $) NIL)) (-3681 (((-516) $) 12)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 18) (($ (-516)) 11)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 8)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 9)))
+(((-803) (-13 (-795) (-10 -8 (-15 -4233 ($ (-516))) (-15 -3681 ((-516) $))))) (T -803))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-803)))) (-3681 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-803)))))
+(-13 (-795) (-10 -8 (-15 -4233 ($ (-516))) (-15 -3681 ((-516) $))))
+((-2822 (((-1185) (-594 (-50))) 24)) (-3734 (((-1185) (-1081) (-805)) 14) (((-1185) (-805)) 9) (((-1185) (-1081)) 11)))
+(((-804) (-10 -7 (-15 -3734 ((-1185) (-1081))) (-15 -3734 ((-1185) (-805))) (-15 -3734 ((-1185) (-1081) (-805))) (-15 -2822 ((-1185) (-594 (-50)))))) (T -804))
+((-2822 (*1 *2 *3) (-12 (-5 *3 (-594 (-50))) (-5 *2 (-1185)) (-5 *1 (-804)))) (-3734 (*1 *2 *3 *4) (-12 (-5 *3 (-1081)) (-5 *4 (-805)) (-5 *2 (-1185)) (-5 *1 (-804)))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1185)) (-5 *1 (-804)))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-804)))))
+(-10 -7 (-15 -3734 ((-1185) (-1081))) (-15 -3734 ((-1185) (-805))) (-15 -3734 ((-1185) (-1081) (-805))) (-15 -2822 ((-1185) (-594 (-50)))))
+((-2828 (((-110) $ $) NIL) (($ $ $) 77)) (-2849 (($ $ $) 115)) (-2864 (((-516) $) 30) (((-516)) 35)) (-2859 (($ (-516)) 44)) (-2856 (($ $ $) 45) (($ (-594 $)) 76)) (-2840 (($ $ (-594 $)) 74)) (-2861 (((-516) $) 33)) (-2843 (($ $ $) 63)) (-3805 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-2862 (((-516) $) 32)) (-2844 (($ $ $) 62)) (-3817 (($ $) 105)) (-2847 (($ $ $) 119)) (-2830 (($ (-594 $)) 52)) (-3822 (($ $ (-594 $)) 69)) (-2858 (($ (-516) (-516)) 46)) (-2869 (($ $) 116) (($ $ $) 117)) (-3396 (($ $ (-516)) 40) (($ $) 43)) (-2824 (($ $ $) 89)) (-2845 (($ $ $) 122)) (-2839 (($ $) 106)) (-2823 (($ $ $) 90)) (-2835 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-3101 (((-1185) $) 8)) (-2838 (($ $) 109) (($ $ (-719)) 112)) (-2841 (($ $ $) 65)) (-2842 (($ $ $) 64)) (-2855 (($ $ (-594 $)) 100)) (-2853 (($ $ $) 104)) (-2832 (($ (-594 $)) 50)) (-2833 (($ $) 60) (($ (-594 $)) 61)) (-2836 (($ $ $) 113)) (-2837 (($ $) 107)) (-2848 (($ $ $) 118)) (-3806 (($ (-516)) 20) (($ (-1098)) 22) (($ (-1081)) 29) (($ (-208)) 24)) (-3120 (($ $ $) 93)) (-3595 (($ $) 94)) (-2865 (((-1185) (-1081)) 14)) (-2866 (($ (-1081)) 13)) (-3383 (($ (-594 (-594 $))) 49)) (-3397 (($ $ (-516)) 39) (($ $) 42)) (-3513 (((-1081) $) NIL)) (-2851 (($ $ $) 121)) (-3744 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-2852 (((-110) $) 98)) (-2854 (($ $ (-594 $)) 102) (($ $ $ $) 103)) (-2860 (($ (-516)) 36)) (-2863 (((-516) $) 31) (((-516)) 34)) (-2857 (($ $ $) 37) (($ (-594 $)) 75)) (-3514 (((-1045) $) NIL)) (-3740 (($ $ $) 91)) (-3847 (($) 12)) (-4078 (($ $ (-594 $)) 99)) (-4115 (($ $) 108) (($ $ (-719)) 111)) (-2825 (($ $ $) 88)) (-4089 (($ $ (-719)) 127)) (-2831 (($ (-594 $)) 51)) (-4233 (((-805) $) 18)) (-4051 (($ $ (-516)) 38) (($ $) 41)) (-2834 (($ $) 58) (($ (-594 $)) 59)) (-3511 (($ $) 56) (($ (-594 $)) 57)) (-2850 (($ $) 114)) (-2829 (($ (-594 $)) 55)) (-3362 (($ $ $) 97)) (-2846 (($ $ $) 120)) (-3119 (($ $ $) 92)) (-4016 (($ $ $) 95) (($ $) 96)) (-2826 (($ $ $) 81)) (-2827 (($ $ $) 79)) (-3317 (((-110) $ $) 15) (($ $ $) 16)) (-2947 (($ $ $) 80)) (-2948 (($ $ $) 78)) (-4224 (($ $ $) 86)) (-4116 (($ $ $) 83) (($ $) 84)) (-4118 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
+(((-805) (-13 (-1027) (-10 -8 (-15 -3101 ((-1185) $)) (-15 -2866 ($ (-1081))) (-15 -2865 ((-1185) (-1081))) (-15 -3806 ($ (-516))) (-15 -3806 ($ (-1098))) (-15 -3806 ($ (-1081))) (-15 -3806 ($ (-208))) (-15 -3847 ($)) (-15 -2864 ((-516) $)) (-15 -2863 ((-516) $)) (-15 -2864 ((-516))) (-15 -2863 ((-516))) (-15 -2862 ((-516) $)) (-15 -2861 ((-516) $)) (-15 -2860 ($ (-516))) (-15 -2859 ($ (-516))) (-15 -2858 ($ (-516) (-516))) (-15 -3397 ($ $ (-516))) (-15 -3396 ($ $ (-516))) (-15 -4051 ($ $ (-516))) (-15 -3397 ($ $)) (-15 -3396 ($ $)) (-15 -4051 ($ $)) (-15 -2857 ($ $ $)) (-15 -2856 ($ $ $)) (-15 -2857 ($ (-594 $))) (-15 -2856 ($ (-594 $))) (-15 -2855 ($ $ (-594 $))) (-15 -2854 ($ $ (-594 $))) (-15 -2854 ($ $ $ $)) (-15 -2853 ($ $ $)) (-15 -2852 ((-110) $)) (-15 -4078 ($ $ (-594 $))) (-15 -3817 ($ $)) (-15 -2851 ($ $ $)) (-15 -2850 ($ $)) (-15 -3383 ($ (-594 (-594 $)))) (-15 -2849 ($ $ $)) (-15 -2869 ($ $)) (-15 -2869 ($ $ $)) (-15 -2848 ($ $ $)) (-15 -2847 ($ $ $)) (-15 -2846 ($ $ $)) (-15 -2845 ($ $ $)) (-15 -4089 ($ $ (-719))) (-15 -3362 ($ $ $)) (-15 -2844 ($ $ $)) (-15 -2843 ($ $ $)) (-15 -2842 ($ $ $)) (-15 -2841 ($ $ $)) (-15 -3822 ($ $ (-594 $))) (-15 -2840 ($ $ (-594 $))) (-15 -2839 ($ $)) (-15 -4115 ($ $)) (-15 -4115 ($ $ (-719))) (-15 -2838 ($ $)) (-15 -2838 ($ $ (-719))) (-15 -2837 ($ $)) (-15 -2836 ($ $ $)) (-15 -3805 ($ $)) (-15 -3805 ($ $ $)) (-15 -3805 ($ $ $ $)) (-15 -2835 ($ $)) (-15 -2835 ($ $ $)) (-15 -2835 ($ $ $ $)) (-15 -3744 ($ $)) (-15 -3744 ($ $ $)) (-15 -3744 ($ $ $ $)) (-15 -3511 ($ $)) (-15 -3511 ($ (-594 $))) (-15 -2834 ($ $)) (-15 -2834 ($ (-594 $))) (-15 -2833 ($ $)) (-15 -2833 ($ (-594 $))) (-15 -2832 ($ (-594 $))) (-15 -2831 ($ (-594 $))) (-15 -2830 ($ (-594 $))) (-15 -2829 ($ (-594 $))) (-15 -3317 ($ $ $)) (-15 -2828 ($ $ $)) (-15 -2948 ($ $ $)) (-15 -2827 ($ $ $)) (-15 -2947 ($ $ $)) (-15 -2826 ($ $ $)) (-15 -4118 ($ $ $)) (-15 -4116 ($ $ $)) (-15 -4116 ($ $)) (-15 * ($ $ $)) (-15 -4224 ($ $ $)) (-15 ** ($ $ $)) (-15 -2825 ($ $ $)) (-15 -2824 ($ $ $)) (-15 -2823 ($ $ $)) (-15 -3740 ($ $ $)) (-15 -3119 ($ $ $)) (-15 -3120 ($ $ $)) (-15 -3595 ($ $)) (-15 -4016 ($ $ $)) (-15 -4016 ($ $))))) (T -805))
+((-3101 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-805)))) (-2866 (*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-805)))) (-2865 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-805)))) (-3806 (*1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-805)))) (-3806 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-805)))) (-3806 (*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-805)))) (-3806 (*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-805)))) (-3847 (*1 *1) (-5 *1 (-805))) (-2864 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-805)))) (-2863 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-805)))) (-2864 (*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-805)))) (-2863 (*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-805)))) (-2862 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-805)))) (-2861 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-805)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-805)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-805)))) (-2858 (*1 *1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-805)))) (-3397 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-805)))) (-3396 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-805)))) (-4051 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-805)))) (-3397 (*1 *1 *1) (-5 *1 (-805))) (-3396 (*1 *1 *1) (-5 *1 (-805))) (-4051 (*1 *1 *1) (-5 *1 (-805))) (-2857 (*1 *1 *1 *1) (-5 *1 (-805))) (-2856 (*1 *1 *1 *1) (-5 *1 (-805))) (-2857 (*1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805)))) (-2856 (*1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805)))) (-2855 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805)))) (-2854 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805)))) (-2854 (*1 *1 *1 *1 *1) (-5 *1 (-805))) (-2853 (*1 *1 *1 *1) (-5 *1 (-805))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-805)))) (-4078 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805)))) (-3817 (*1 *1 *1) (-5 *1 (-805))) (-2851 (*1 *1 *1 *1) (-5 *1 (-805))) (-2850 (*1 *1 *1) (-5 *1 (-805))) (-3383 (*1 *1 *2) (-12 (-5 *2 (-594 (-594 (-805)))) (-5 *1 (-805)))) (-2849 (*1 *1 *1 *1) (-5 *1 (-805))) (-2869 (*1 *1 *1) (-5 *1 (-805))) (-2869 (*1 *1 *1 *1) (-5 *1 (-805))) (-2848 (*1 *1 *1 *1) (-5 *1 (-805))) (-2847 (*1 *1 *1 *1) (-5 *1 (-805))) (-2846 (*1 *1 *1 *1) (-5 *1 (-805))) (-2845 (*1 *1 *1 *1) (-5 *1 (-805))) (-4089 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-805)))) (-3362 (*1 *1 *1 *1) (-5 *1 (-805))) (-2844 (*1 *1 *1 *1) (-5 *1 (-805))) (-2843 (*1 *1 *1 *1) (-5 *1 (-805))) (-2842 (*1 *1 *1 *1) (-5 *1 (-805))) (-2841 (*1 *1 *1 *1) (-5 *1 (-805))) (-3822 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805)))) (-2840 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805)))) (-2839 (*1 *1 *1) (-5 *1 (-805))) (-4115 (*1 *1 *1) (-5 *1 (-805))) (-4115 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-805)))) (-2838 (*1 *1 *1) (-5 *1 (-805))) (-2838 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-805)))) (-2837 (*1 *1 *1) (-5 *1 (-805))) (-2836 (*1 *1 *1 *1) (-5 *1 (-805))) (-3805 (*1 *1 *1) (-5 *1 (-805))) (-3805 (*1 *1 *1 *1) (-5 *1 (-805))) (-3805 (*1 *1 *1 *1 *1) (-5 *1 (-805))) (-2835 (*1 *1 *1) (-5 *1 (-805))) (-2835 (*1 *1 *1 *1) (-5 *1 (-805))) (-2835 (*1 *1 *1 *1 *1) (-5 *1 (-805))) (-3744 (*1 *1 *1) (-5 *1 (-805))) (-3744 (*1 *1 *1 *1) (-5 *1 (-805))) (-3744 (*1 *1 *1 *1 *1) (-5 *1 (-805))) (-3511 (*1 *1 *1) (-5 *1 (-805))) (-3511 (*1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805)))) (-2834 (*1 *1 *1) (-5 *1 (-805))) (-2834 (*1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805)))) (-2833 (*1 *1 *1) (-5 *1 (-805))) (-2833 (*1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805)))) (-2829 (*1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805)))) (-3317 (*1 *1 *1 *1) (-5 *1 (-805))) (-2828 (*1 *1 *1 *1) (-5 *1 (-805))) (-2948 (*1 *1 *1 *1) (-5 *1 (-805))) (-2827 (*1 *1 *1 *1) (-5 *1 (-805))) (-2947 (*1 *1 *1 *1) (-5 *1 (-805))) (-2826 (*1 *1 *1 *1) (-5 *1 (-805))) (-4118 (*1 *1 *1 *1) (-5 *1 (-805))) (-4116 (*1 *1 *1 *1) (-5 *1 (-805))) (-4116 (*1 *1 *1) (-5 *1 (-805))) (* (*1 *1 *1 *1) (-5 *1 (-805))) (-4224 (*1 *1 *1 *1) (-5 *1 (-805))) (** (*1 *1 *1 *1) (-5 *1 (-805))) (-2825 (*1 *1 *1 *1) (-5 *1 (-805))) (-2824 (*1 *1 *1 *1) (-5 *1 (-805))) (-2823 (*1 *1 *1 *1) (-5 *1 (-805))) (-3740 (*1 *1 *1 *1) (-5 *1 (-805))) (-3119 (*1 *1 *1 *1) (-5 *1 (-805))) (-3120 (*1 *1 *1 *1) (-5 *1 (-805))) (-3595 (*1 *1 *1) (-5 *1 (-805))) (-4016 (*1 *1 *1 *1) (-5 *1 (-805))) (-4016 (*1 *1 *1) (-5 *1 (-805))))
+(-13 (-1027) (-10 -8 (-15 -3101 ((-1185) $)) (-15 -2866 ($ (-1081))) (-15 -2865 ((-1185) (-1081))) (-15 -3806 ($ (-516))) (-15 -3806 ($ (-1098))) (-15 -3806 ($ (-1081))) (-15 -3806 ($ (-208))) (-15 -3847 ($)) (-15 -2864 ((-516) $)) (-15 -2863 ((-516) $)) (-15 -2864 ((-516))) (-15 -2863 ((-516))) (-15 -2862 ((-516) $)) (-15 -2861 ((-516) $)) (-15 -2860 ($ (-516))) (-15 -2859 ($ (-516))) (-15 -2858 ($ (-516) (-516))) (-15 -3397 ($ $ (-516))) (-15 -3396 ($ $ (-516))) (-15 -4051 ($ $ (-516))) (-15 -3397 ($ $)) (-15 -3396 ($ $)) (-15 -4051 ($ $)) (-15 -2857 ($ $ $)) (-15 -2856 ($ $ $)) (-15 -2857 ($ (-594 $))) (-15 -2856 ($ (-594 $))) (-15 -2855 ($ $ (-594 $))) (-15 -2854 ($ $ (-594 $))) (-15 -2854 ($ $ $ $)) (-15 -2853 ($ $ $)) (-15 -2852 ((-110) $)) (-15 -4078 ($ $ (-594 $))) (-15 -3817 ($ $)) (-15 -2851 ($ $ $)) (-15 -2850 ($ $)) (-15 -3383 ($ (-594 (-594 $)))) (-15 -2849 ($ $ $)) (-15 -2869 ($ $)) (-15 -2869 ($ $ $)) (-15 -2848 ($ $ $)) (-15 -2847 ($ $ $)) (-15 -2846 ($ $ $)) (-15 -2845 ($ $ $)) (-15 -4089 ($ $ (-719))) (-15 -3362 ($ $ $)) (-15 -2844 ($ $ $)) (-15 -2843 ($ $ $)) (-15 -2842 ($ $ $)) (-15 -2841 ($ $ $)) (-15 -3822 ($ $ (-594 $))) (-15 -2840 ($ $ (-594 $))) (-15 -2839 ($ $)) (-15 -4115 ($ $)) (-15 -4115 ($ $ (-719))) (-15 -2838 ($ $)) (-15 -2838 ($ $ (-719))) (-15 -2837 ($ $)) (-15 -2836 ($ $ $)) (-15 -3805 ($ $)) (-15 -3805 ($ $ $)) (-15 -3805 ($ $ $ $)) (-15 -2835 ($ $)) (-15 -2835 ($ $ $)) (-15 -2835 ($ $ $ $)) (-15 -3744 ($ $)) (-15 -3744 ($ $ $)) (-15 -3744 ($ $ $ $)) (-15 -3511 ($ $)) (-15 -3511 ($ (-594 $))) (-15 -2834 ($ $)) (-15 -2834 ($ (-594 $))) (-15 -2833 ($ $)) (-15 -2833 ($ (-594 $))) (-15 -2832 ($ (-594 $))) (-15 -2831 ($ (-594 $))) (-15 -2830 ($ (-594 $))) (-15 -2829 ($ (-594 $))) (-15 -3317 ($ $ $)) (-15 -2828 ($ $ $)) (-15 -2948 ($ $ $)) (-15 -2827 ($ $ $)) (-15 -2947 ($ $ $)) (-15 -2826 ($ $ $)) (-15 -4118 ($ $ $)) (-15 -4116 ($ $ $)) (-15 -4116 ($ $)) (-15 * ($ $ $)) (-15 -4224 ($ $ $)) (-15 ** ($ $ $)) (-15 -2825 ($ $ $)) (-15 -2824 ($ $ $)) (-15 -2823 ($ $ $)) (-15 -3740 ($ $ $)) (-15 -3119 ($ $ $)) (-15 -3120 ($ $ $)) (-15 -3595 ($ $)) (-15 -4016 ($ $ $)) (-15 -4016 ($ $))))
+((-2828 (((-110) $ $) NIL)) (-4110 (((-3 $ "failed") (-1098)) 33)) (-3395 (((-719)) 31)) (-3258 (($) NIL)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-2069 (((-860) $) 29)) (-3513 (((-1081) $) 39)) (-2426 (($ (-860)) 28)) (-3514 (((-1045) $) NIL)) (-4246 (((-1098) $) 13) (((-505) $) 19) (((-831 (-359)) $) 26) (((-831 (-516)) $) 22)) (-4233 (((-805) $) 16)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 36)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 35)))
+(((-806 |#1|) (-13 (-789) (-572 (-1098)) (-572 (-505)) (-572 (-831 (-359))) (-572 (-831 (-516))) (-10 -8 (-15 -4110 ((-3 $ "failed") (-1098))))) (-594 (-1098))) (T -806))
+((-4110 (*1 *1 *2) (|partial| -12 (-5 *2 (-1098)) (-5 *1 (-806 *3)) (-14 *3 (-594 *2)))))
+(-13 (-789) (-572 (-1098)) (-572 (-505)) (-572 (-831 (-359))) (-572 (-831 (-516))) (-10 -8 (-15 -4110 ((-3 $ "failed") (-1098)))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-3741 (((-3 $ "failed") $) NIL)) (-2436 (((-110) $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (((-887 |#1|) $) NIL) (($ (-887 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-162)))) (-3385 (((-719)) NIL)) (-4199 (((-1185) (-719)) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-3317 (((-110) $ $) NIL)) (-4224 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162)))))
+(((-807 |#1| |#2| |#3| |#4|) (-13 (-984) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -4233 ((-887 |#1|) $)) (-15 -4233 ($ (-887 |#1|))) (IF (|has| |#1| (-344)) (-15 -4224 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4199 ((-1185) (-719))))) (-984) (-594 (-1098)) (-594 (-719)) (-719)) (T -807))
+((-4233 (*1 *2 *1) (-12 (-5 *2 (-887 *3)) (-5 *1 (-807 *3 *4 *5 *6)) (-4 *3 (-984)) (-14 *4 (-594 (-1098))) (-14 *5 (-594 (-719))) (-14 *6 (-719)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-887 *3)) (-4 *3 (-984)) (-5 *1 (-807 *3 *4 *5 *6)) (-14 *4 (-594 (-1098))) (-14 *5 (-594 (-719))) (-14 *6 (-719)))) (-4224 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-807 *2 *3 *4 *5)) (-4 *2 (-344)) (-4 *2 (-984)) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-719))) (-14 *5 (-719)))) (-4199 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1185)) (-5 *1 (-807 *4 *5 *6 *7)) (-4 *4 (-984)) (-14 *5 (-594 (-1098))) (-14 *6 (-594 *3)) (-14 *7 *3))))
+(-13 (-984) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -4233 ((-887 |#1|) $)) (-15 -4233 ($ (-887 |#1|))) (IF (|has| |#1| (-344)) (-15 -4224 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4199 ((-1185) (-719)))))
+((-2867 (((-3 (-163 |#3|) "failed") (-719) (-719) |#2| |#2|) 31)) (-2868 (((-3 (-388 |#3|) "failed") (-719) (-719) |#2| |#2|) 24)))
+(((-808 |#1| |#2| |#3|) (-10 -7 (-15 -2868 ((-3 (-388 |#3|) "failed") (-719) (-719) |#2| |#2|)) (-15 -2867 ((-3 (-163 |#3|) "failed") (-719) (-719) |#2| |#2|))) (-344) (-1172 |#1|) (-1155 |#1|)) (T -808))
+((-2867 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-719)) (-4 *5 (-344)) (-5 *2 (-163 *6)) (-5 *1 (-808 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1155 *5)))) (-2868 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-719)) (-4 *5 (-344)) (-5 *2 (-388 *6)) (-5 *1 (-808 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1155 *5)))))
+(-10 -7 (-15 -2868 ((-3 (-388 |#3|) "failed") (-719) (-719) |#2| |#2|)) (-15 -2867 ((-3 (-163 |#3|) "failed") (-719) (-719) |#2| |#2|)))
+((-2868 (((-3 (-388 (-1148 |#2| |#1|)) "failed") (-719) (-719) (-1169 |#1| |#2| |#3|)) 28) (((-3 (-388 (-1148 |#2| |#1|)) "failed") (-719) (-719) (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) 26)))
+(((-809 |#1| |#2| |#3|) (-10 -7 (-15 -2868 ((-3 (-388 (-1148 |#2| |#1|)) "failed") (-719) (-719) (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|))) (-15 -2868 ((-3 (-388 (-1148 |#2| |#1|)) "failed") (-719) (-719) (-1169 |#1| |#2| |#3|)))) (-344) (-1098) |#1|) (T -809))
+((-2868 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-719)) (-5 *4 (-1169 *5 *6 *7)) (-4 *5 (-344)) (-14 *6 (-1098)) (-14 *7 *5) (-5 *2 (-388 (-1148 *6 *5))) (-5 *1 (-809 *5 *6 *7)))) (-2868 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-719)) (-5 *4 (-1169 *5 *6 *7)) (-4 *5 (-344)) (-14 *6 (-1098)) (-14 *7 *5) (-5 *2 (-388 (-1148 *6 *5))) (-5 *1 (-809 *5 *6 *7)))))
+(-10 -7 (-15 -2868 ((-3 (-388 (-1148 |#2| |#1|)) "failed") (-719) (-719) (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|))) (-15 -2868 ((-3 (-388 (-1148 |#2| |#1|)) "failed") (-719) (-719) (-1169 |#1| |#2| |#3|))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3301 (($ $ (-516)) NIL)) (-1655 (((-110) $ $) NIL)) (-3815 (($) NIL T CONST)) (-2869 (($ (-1092 (-516)) (-516)) NIL)) (-2824 (($ $ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-2870 (($ $) NIL)) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4050 (((-719) $) NIL)) (-2436 (((-110) $) NIL)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL)) (-2872 (((-516)) NIL)) (-2871 (((-516) $) NIL)) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4047 (($ $ (-516)) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-2873 (((-1076 (-516)) $) NIL)) (-3155 (($ $) NIL)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ $) NIL)) (-3385 (((-719)) NIL)) (-2117 (((-110) $ $) NIL)) (-4048 (((-516) $ (-516)) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-3317 (((-110) $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL)))
+(((-810 |#1|) (-811 |#1|) (-516)) (T -810))
+NIL
+(-811 |#1|)
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 41)) (-2118 (($ $) 40)) (-2116 (((-110) $) 38)) (-1319 (((-3 $ "failed") $ $) 19)) (-3301 (($ $ (-516)) 62)) (-1655 (((-110) $ $) 59)) (-3815 (($) 17 T CONST)) (-2869 (($ (-1092 (-516)) (-516)) 61)) (-2824 (($ $ $) 55)) (-3741 (((-3 $ "failed") $) 34)) (-2870 (($ $) 64)) (-2823 (($ $ $) 56)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 51)) (-4050 (((-719) $) 69)) (-2436 (((-110) $) 31)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) 52)) (-2872 (((-516)) 66)) (-2871 (((-516) $) 65)) (-1963 (($ $ $) 46) (($ (-594 $)) 45)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 44)) (-3419 (($ $ $) 48) (($ (-594 $)) 47)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 53)) (-4047 (($ $ (-516)) 68)) (-3740 (((-3 $ "failed") $ $) 42)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 50)) (-1654 (((-719) $) 58)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 57)) (-2873 (((-1076 (-516)) $) 70)) (-3155 (($ $) 67)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ $) 43)) (-3385 (((-719)) 29)) (-2117 (((-110) $ $) 39)) (-4048 (((-516) $ (-516)) 63)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24)))
+(((-811 |#1|) (-133) (-516)) (T -811))
+((-2873 (*1 *2 *1) (-12 (-4 *1 (-811 *3)) (-5 *2 (-1076 (-516))))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-811 *3)) (-5 *2 (-719)))) (-4047 (*1 *1 *1 *2) (-12 (-4 *1 (-811 *3)) (-5 *2 (-516)))) (-3155 (*1 *1 *1) (-4 *1 (-811 *2))) (-2872 (*1 *2) (-12 (-4 *1 (-811 *3)) (-5 *2 (-516)))) (-2871 (*1 *2 *1) (-12 (-4 *1 (-811 *3)) (-5 *2 (-516)))) (-2870 (*1 *1 *1) (-4 *1 (-811 *2))) (-4048 (*1 *2 *1 *2) (-12 (-4 *1 (-811 *3)) (-5 *2 (-516)))) (-3301 (*1 *1 *1 *2) (-12 (-4 *1 (-811 *3)) (-5 *2 (-516)))) (-2869 (*1 *1 *2 *3) (-12 (-5 *2 (-1092 (-516))) (-5 *3 (-516)) (-4 *1 (-811 *4)))))
+(-13 (-289) (-140) (-10 -8 (-15 -2873 ((-1076 (-516)) $)) (-15 -4050 ((-719) $)) (-15 -4047 ($ $ (-516))) (-15 -3155 ($ $)) (-15 -2872 ((-516))) (-15 -2871 ((-516) $)) (-15 -2870 ($ $)) (-15 -4048 ((-516) $ (-516))) (-15 -3301 ($ $ (-516))) (-15 -2869 ($ (-1092 (-516)) (-516)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-571 (-805)) . T) ((-162) . T) ((-272) . T) ((-289) . T) ((-432) . T) ((-523) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-862) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3388 (((-810 |#1|) $) NIL (|has| (-810 |#1|) (-289)))) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (|has| (-810 |#1|) (-851)))) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (|has| (-810 |#1|) (-851)))) (-1655 (((-110) $ $) NIL)) (-3905 (((-516) $) NIL (|has| (-810 |#1|) (-768)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-810 |#1|) #2="failed") $) NIL) (((-3 (-1098) #2#) $) NIL (|has| (-810 |#1|) (-975 (-1098)))) (((-3 (-388 (-516)) #2#) $) NIL (|has| (-810 |#1|) (-975 (-516)))) (((-3 (-516) #2#) $) NIL (|has| (-810 |#1|) (-975 (-516))))) (-3431 (((-810 |#1|) $) NIL) (((-1098) $) NIL (|has| (-810 |#1|) (-975 (-1098)))) (((-388 (-516)) $) NIL (|has| (-810 |#1|) (-975 (-516)))) (((-516) $) NIL (|has| (-810 |#1|) (-975 (-516))))) (-4009 (($ $) NIL) (($ (-516) $) NIL)) (-2824 (($ $ $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| (-810 |#1|) (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| (-810 |#1|) (-593 (-516)))) (((-2 (|:| -1650 (-637 (-810 |#1|))) (|:| |vec| (-1179 (-810 |#1|)))) (-637 $) (-1179 $)) NIL) (((-637 (-810 |#1|)) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3258 (($) NIL (|has| (-810 |#1|) (-515)))) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4005 (((-110) $) NIL)) (-3460 (((-110) $) NIL (|has| (-810 |#1|) (-768)))) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (|has| (-810 |#1|) (-827 (-516)))) (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (|has| (-810 |#1|) (-827 (-359))))) (-2436 (((-110) $) NIL)) (-3260 (($ $) NIL)) (-3262 (((-810 |#1|) $) NIL)) (-3723 (((-3 $ "failed") $) NIL (|has| (-810 |#1|) (-1074)))) (-3461 (((-110) $) NIL (|has| (-810 |#1|) (-768)))) (-1652 (((-3 (-594 $) #3="failed") (-594 $) $) NIL)) (-3596 (($ $ $) NIL (|has| (-810 |#1|) (-795)))) (-3597 (($ $ $) NIL (|has| (-810 |#1|) (-795)))) (-4234 (($ (-1 (-810 |#1|) (-810 |#1|)) $) NIL)) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL)) (-3724 (($) NIL (|has| (-810 |#1|) (-1074)) CONST)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3387 (($ $) NIL (|has| (-810 |#1|) (-289)))) (-3389 (((-810 |#1|) $) NIL (|has| (-810 |#1|) (-515)))) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (|has| (-810 |#1|) (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (|has| (-810 |#1|) (-851)))) (-4011 (((-386 $) $) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-4046 (($ $ (-594 (-810 |#1|)) (-594 (-810 |#1|))) NIL (|has| (-810 |#1|) (-291 (-810 |#1|)))) (($ $ (-810 |#1|) (-810 |#1|)) NIL (|has| (-810 |#1|) (-291 (-810 |#1|)))) (($ $ (-275 (-810 |#1|))) NIL (|has| (-810 |#1|) (-291 (-810 |#1|)))) (($ $ (-594 (-275 (-810 |#1|)))) NIL (|has| (-810 |#1|) (-291 (-810 |#1|)))) (($ $ (-594 (-1098)) (-594 (-810 |#1|))) NIL (|has| (-810 |#1|) (-491 (-1098) (-810 |#1|)))) (($ $ (-1098) (-810 |#1|)) NIL (|has| (-810 |#1|) (-491 (-1098) (-810 |#1|))))) (-1654 (((-719) $) NIL)) (-4078 (($ $ (-810 |#1|)) NIL (|has| (-810 |#1|) (-268 (-810 |#1|) (-810 |#1|))))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-4089 (($ $) NIL (|has| (-810 |#1|) (-216))) (($ $ (-719)) NIL (|has| (-810 |#1|) (-216))) (($ $ (-1098)) NIL (|has| (-810 |#1|) (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| (-810 |#1|) (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| (-810 |#1|) (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| (-810 |#1|) (-841 (-1098)))) (($ $ (-1 (-810 |#1|) (-810 |#1|)) (-719)) NIL) (($ $ (-1 (-810 |#1|) (-810 |#1|))) NIL)) (-3259 (($ $) NIL)) (-3261 (((-810 |#1|) $) NIL)) (-4246 (((-831 (-516)) $) NIL (|has| (-810 |#1|) (-572 (-831 (-516))))) (((-831 (-359)) $) NIL (|has| (-810 |#1|) (-572 (-831 (-359))))) (((-505) $) NIL (|has| (-810 |#1|) (-572 (-505)))) (((-359) $) NIL (|has| (-810 |#1|) (-958))) (((-208) $) NIL (|has| (-810 |#1|) (-958)))) (-2874 (((-163 (-388 (-516))) $) NIL)) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-810 |#1|) (-851))))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ $) NIL) (($ (-388 (-516))) NIL) (($ (-810 |#1|)) NIL) (($ (-1098)) NIL (|has| (-810 |#1|) (-975 (-1098))))) (-2965 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| $ (-138)) (|has| (-810 |#1|) (-851))) (|has| (-810 |#1|) (-138))))) (-3385 (((-719)) NIL)) (-3390 (((-810 |#1|) $) NIL (|has| (-810 |#1|) (-515)))) (-2117 (((-110) $ $) NIL)) (-4048 (((-388 (-516)) $ (-516)) NIL)) (-3661 (($ $) NIL (|has| (-810 |#1|) (-768)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($ $) NIL (|has| (-810 |#1|) (-216))) (($ $ (-719)) NIL (|has| (-810 |#1|) (-216))) (($ $ (-1098)) NIL (|has| (-810 |#1|) (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| (-810 |#1|) (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| (-810 |#1|) (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| (-810 |#1|) (-841 (-1098)))) (($ $ (-1 (-810 |#1|) (-810 |#1|)) (-719)) NIL) (($ $ (-1 (-810 |#1|) (-810 |#1|))) NIL)) (-2826 (((-110) $ $) NIL (|has| (-810 |#1|) (-795)))) (-2827 (((-110) $ $) NIL (|has| (-810 |#1|) (-795)))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (|has| (-810 |#1|) (-795)))) (-2948 (((-110) $ $) NIL (|has| (-810 |#1|) (-795)))) (-4224 (($ $ $) NIL) (($ (-810 |#1|) (-810 |#1|)) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL) (($ (-810 |#1|) $) NIL) (($ $ (-810 |#1|)) NIL)))
+(((-812 |#1|) (-13 (-931 (-810 |#1|)) (-10 -8 (-15 -4048 ((-388 (-516)) $ (-516))) (-15 -2874 ((-163 (-388 (-516))) $)) (-15 -4009 ($ $)) (-15 -4009 ($ (-516) $)))) (-516)) (T -812))
+((-4048 (*1 *2 *1 *3) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-812 *4)) (-14 *4 *3) (-5 *3 (-516)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-163 (-388 (-516)))) (-5 *1 (-812 *3)) (-14 *3 (-516)))) (-4009 (*1 *1 *1) (-12 (-5 *1 (-812 *2)) (-14 *2 (-516)))) (-4009 (*1 *1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-812 *3)) (-14 *3 *2))))
+(-13 (-931 (-810 |#1|)) (-10 -8 (-15 -4048 ((-388 (-516)) $ (-516))) (-15 -2874 ((-163 (-388 (-516))) $)) (-15 -4009 ($ $)) (-15 -4009 ($ (-516) $))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3388 ((|#2| $) NIL (|has| |#2| (-289)))) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#2| (-851)))) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (|has| |#2| (-851)))) (-1655 (((-110) $ $) NIL)) (-3905 (((-516) $) NIL (|has| |#2| (-768)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#2| #2="failed") $) NIL) (((-3 (-1098) #2#) $) NIL (|has| |#2| (-975 (-1098)))) (((-3 (-388 (-516)) #2#) $) NIL (|has| |#2| (-975 (-516)))) (((-3 (-516) #2#) $) NIL (|has| |#2| (-975 (-516))))) (-3431 ((|#2| $) NIL) (((-1098) $) NIL (|has| |#2| (-975 (-1098)))) (((-388 (-516)) $) NIL (|has| |#2| (-975 (-516)))) (((-516) $) NIL (|has| |#2| (-975 (-516))))) (-4009 (($ $) 31) (($ (-516) $) 32)) (-2824 (($ $ $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| |#2| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| |#2| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 $) (-1179 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) 53)) (-3258 (($) NIL (|has| |#2| (-515)))) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4005 (((-110) $) NIL)) (-3460 (((-110) $) NIL (|has| |#2| (-768)))) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (|has| |#2| (-827 (-516)))) (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (|has| |#2| (-827 (-359))))) (-2436 (((-110) $) NIL)) (-3260 (($ $) NIL)) (-3262 ((|#2| $) NIL)) (-3723 (((-3 $ "failed") $) NIL (|has| |#2| (-1074)))) (-3461 (((-110) $) NIL (|has| |#2| (-768)))) (-1652 (((-3 (-594 $) #3="failed") (-594 $) $) NIL)) (-3596 (($ $ $) NIL (|has| |#2| (-795)))) (-3597 (($ $ $) NIL (|has| |#2| (-795)))) (-4234 (($ (-1 |#2| |#2|) $) NIL)) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) 49)) (-3724 (($) NIL (|has| |#2| (-1074)) CONST)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3387 (($ $) NIL (|has| |#2| (-289)))) (-3389 ((|#2| $) NIL (|has| |#2| (-515)))) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#2| (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#2| (-851)))) (-4011 (((-386 $) $) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-4046 (($ $ (-594 |#2|) (-594 |#2|)) NIL (|has| |#2| (-291 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-291 |#2|))) (($ $ (-275 |#2|)) NIL (|has| |#2| (-291 |#2|))) (($ $ (-594 (-275 |#2|))) NIL (|has| |#2| (-291 |#2|))) (($ $ (-594 (-1098)) (-594 |#2|)) NIL (|has| |#2| (-491 (-1098) |#2|))) (($ $ (-1098) |#2|) NIL (|has| |#2| (-491 (-1098) |#2|)))) (-1654 (((-719) $) NIL)) (-4078 (($ $ |#2|) NIL (|has| |#2| (-268 |#2| |#2|)))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-4089 (($ $) NIL (|has| |#2| (-216))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $ (-1098)) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3259 (($ $) NIL)) (-3261 ((|#2| $) NIL)) (-4246 (((-831 (-516)) $) NIL (|has| |#2| (-572 (-831 (-516))))) (((-831 (-359)) $) NIL (|has| |#2| (-572 (-831 (-359))))) (((-505) $) NIL (|has| |#2| (-572 (-505)))) (((-359) $) NIL (|has| |#2| (-958))) (((-208) $) NIL (|has| |#2| (-958)))) (-2874 (((-163 (-388 (-516))) $) 68)) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-851))))) (-4233 (((-805) $) 87) (($ (-516)) 19) (($ $) NIL) (($ (-388 (-516))) 24) (($ |#2|) 18) (($ (-1098)) NIL (|has| |#2| (-975 (-1098))))) (-2965 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| $ (-138)) (|has| |#2| (-851))) (|has| |#2| (-138))))) (-3385 (((-719)) NIL)) (-3390 ((|#2| $) NIL (|has| |#2| (-515)))) (-2117 (((-110) $ $) NIL)) (-4048 (((-388 (-516)) $ (-516)) 60)) (-3661 (($ $) NIL (|has| |#2| (-768)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) 14 T CONST)) (-2927 (($) 16 T CONST)) (-2932 (($ $) NIL (|has| |#2| (-216))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $ (-1098)) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2826 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#2| (-795)))) (-3317 (((-110) $ $) 35)) (-2947 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#2| (-795)))) (-4224 (($ $ $) 23) (($ |#2| |#2|) 54)) (-4116 (($ $) 39) (($ $ $) 41)) (-4118 (($ $ $) 37)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) 50)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 42) (($ $ $) 44) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
+(((-813 |#1| |#2|) (-13 (-931 |#2|) (-10 -8 (-15 -4048 ((-388 (-516)) $ (-516))) (-15 -2874 ((-163 (-388 (-516))) $)) (-15 -4009 ($ $)) (-15 -4009 ($ (-516) $)))) (-516) (-811 |#1|)) (T -813))
+((-4048 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-388 (-516))) (-5 *1 (-813 *4 *5)) (-5 *3 (-516)) (-4 *5 (-811 *4)))) (-2874 (*1 *2 *1) (-12 (-14 *3 (-516)) (-5 *2 (-163 (-388 (-516)))) (-5 *1 (-813 *3 *4)) (-4 *4 (-811 *3)))) (-4009 (*1 *1 *1) (-12 (-14 *2 (-516)) (-5 *1 (-813 *2 *3)) (-4 *3 (-811 *2)))) (-4009 (*1 *1 *2 *1) (-12 (-5 *2 (-516)) (-14 *3 *2) (-5 *1 (-813 *3 *4)) (-4 *4 (-811 *3)))))
+(-13 (-931 |#2|) (-10 -8 (-15 -4048 ((-388 (-516)) $ (-516))) (-15 -2874 ((-163 (-388 (-516))) $)) (-15 -4009 ($ $)) (-15 -4009 ($ (-516) $))))
+((-2828 (((-110) $ $) NIL (-12 (|has| |#1| (-1027)) (|has| |#2| (-1027))))) (-4074 ((|#2| $) 12)) (-2875 (($ |#1| |#2|) 9)) (-3513 (((-1081) $) NIL (-12 (|has| |#1| (-1027)) (|has| |#2| (-1027))))) (-3514 (((-1045) $) NIL (-12 (|has| |#1| (-1027)) (|has| |#2| (-1027))))) (-4079 ((|#1| $) 11)) (-3804 (($ |#1| |#2|) 10)) (-4233 (((-805) $) 18 (-3810 (-12 (|has| |#1| (-571 (-805))) (|has| |#2| (-571 (-805)))) (-12 (|has| |#1| (-1027)) (|has| |#2| (-1027)))))) (-3317 (((-110) $ $) 22 (-12 (|has| |#1| (-1027)) (|has| |#2| (-1027))))))
+(((-814 |#1| |#2|) (-13 (-1134) (-10 -8 (IF (|has| |#1| (-571 (-805))) (IF (|has| |#2| (-571 (-805))) (-6 (-571 (-805))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1027)) (IF (|has| |#2| (-1027)) (-6 (-1027)) |%noBranch|) |%noBranch|) (-15 -2875 ($ |#1| |#2|)) (-15 -3804 ($ |#1| |#2|)) (-15 -4079 (|#1| $)) (-15 -4074 (|#2| $)))) (-1134) (-1134)) (T -814))
+((-2875 (*1 *1 *2 *3) (-12 (-5 *1 (-814 *2 *3)) (-4 *2 (-1134)) (-4 *3 (-1134)))) (-3804 (*1 *1 *2 *3) (-12 (-5 *1 (-814 *2 *3)) (-4 *2 (-1134)) (-4 *3 (-1134)))) (-4079 (*1 *2 *1) (-12 (-4 *2 (-1134)) (-5 *1 (-814 *2 *3)) (-4 *3 (-1134)))) (-4074 (*1 *2 *1) (-12 (-4 *2 (-1134)) (-5 *1 (-814 *3 *2)) (-4 *3 (-1134)))))
+(-13 (-1134) (-10 -8 (IF (|has| |#1| (-571 (-805))) (IF (|has| |#2| (-571 (-805))) (-6 (-571 (-805))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1027)) (IF (|has| |#2| (-1027)) (-6 (-1027)) |%noBranch|) |%noBranch|) (-15 -2875 ($ |#1| |#2|)) (-15 -3804 ($ |#1| |#2|)) (-15 -4079 (|#1| $)) (-15 -4074 (|#2| $))))
+((-2828 (((-110) $ $) NIL)) (-3221 (((-516) $) 15)) (-2877 (($ (-148)) 11)) (-2876 (($ (-148)) 12)) (-3513 (((-1081) $) NIL)) (-3220 (((-148) $) 13)) (-3514 (((-1045) $) NIL)) (-2879 (($ (-148)) 9)) (-2880 (($ (-148)) 8)) (-4233 (((-805) $) 23) (($ (-148)) 16)) (-2878 (($ (-148)) 10)) (-3317 (((-110) $ $) NIL)))
+(((-815) (-13 (-1027) (-10 -8 (-15 -2880 ($ (-148))) (-15 -2879 ($ (-148))) (-15 -2878 ($ (-148))) (-15 -2877 ($ (-148))) (-15 -2876 ($ (-148))) (-15 -3220 ((-148) $)) (-15 -3221 ((-516) $)) (-15 -4233 ($ (-148)))))) (T -815))
+((-2880 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))) (-2879 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))) (-2878 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))) (-2877 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))) (-2876 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-148)) (-5 *1 (-815)))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-815)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))))
+(-13 (-1027) (-10 -8 (-15 -2880 ($ (-148))) (-15 -2879 ($ (-148))) (-15 -2878 ($ (-148))) (-15 -2877 ($ (-148))) (-15 -2876 ($ (-148))) (-15 -3220 ((-148) $)) (-15 -3221 ((-516) $)) (-15 -4233 ($ (-148)))))
+((-4233 (((-295 (-516)) (-388 (-887 (-47)))) 23) (((-295 (-516)) (-887 (-47))) 18)))
+(((-816) (-10 -7 (-15 -4233 ((-295 (-516)) (-887 (-47)))) (-15 -4233 ((-295 (-516)) (-388 (-887 (-47))))))) (T -816))
+((-4233 (*1 *2 *3) (-12 (-5 *3 (-388 (-887 (-47)))) (-5 *2 (-295 (-516))) (-5 *1 (-816)))) (-4233 (*1 *2 *3) (-12 (-5 *3 (-887 (-47))) (-5 *2 (-295 (-516))) (-5 *1 (-816)))))
+(-10 -7 (-15 -4233 ((-295 (-516)) (-887 (-47)))) (-15 -4233 ((-295 (-516)) (-388 (-887 (-47))))))
+((-4234 (((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|)) 14)))
+(((-817 |#1| |#2|) (-10 -7 (-15 -4234 ((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|)))) (-1134) (-1134)) (T -817))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-818 *5)) (-4 *5 (-1134)) (-4 *6 (-1134)) (-5 *2 (-818 *6)) (-5 *1 (-817 *5 *6)))))
+(-10 -7 (-15 -4234 ((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|))))
+((-3649 (($ |#1| |#1|) 8)) (-2883 ((|#1| $ (-719)) 10)))
+(((-818 |#1|) (-10 -8 (-15 -3649 ($ |#1| |#1|)) (-15 -2883 (|#1| $ (-719)))) (-1134)) (T -818))
+((-2883 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-818 *2)) (-4 *2 (-1134)))) (-3649 (*1 *1 *2 *2) (-12 (-5 *1 (-818 *2)) (-4 *2 (-1134)))))
+(-10 -8 (-15 -3649 ($ |#1| |#1|)) (-15 -2883 (|#1| $ (-719))))
+((-4234 (((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|)) 14)))
+(((-819 |#1| |#2|) (-10 -7 (-15 -4234 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|)))) (-1134) (-1134)) (T -819))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1134)) (-4 *6 (-1134)) (-5 *2 (-820 *6)) (-5 *1 (-819 *5 *6)))))
+(-10 -7 (-15 -4234 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|))))
+((-3649 (($ |#1| |#1| |#1|) 8)) (-2883 ((|#1| $ (-719)) 10)))
+(((-820 |#1|) (-10 -8 (-15 -3649 ($ |#1| |#1| |#1|)) (-15 -2883 (|#1| $ (-719)))) (-1134)) (T -820))
+((-2883 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-820 *2)) (-4 *2 (-1134)))) (-3649 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1134)))))
+(-10 -8 (-15 -3649 ($ |#1| |#1| |#1|)) (-15 -2883 (|#1| $ (-719))))
+((-2881 (((-594 (-1103)) (-1081)) 9)))
+(((-821) (-10 -7 (-15 -2881 ((-594 (-1103)) (-1081))))) (T -821))
+((-2881 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-594 (-1103))) (-5 *1 (-821)))))
+(-10 -7 (-15 -2881 ((-594 (-1103)) (-1081))))
+((-4234 (((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|)) 14)))
+(((-822 |#1| |#2|) (-10 -7 (-15 -4234 ((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|)))) (-1134) (-1134)) (T -822))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-823 *5)) (-4 *5 (-1134)) (-4 *6 (-1134)) (-5 *2 (-823 *6)) (-5 *1 (-822 *5 *6)))))
+(-10 -7 (-15 -4234 ((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|))))
+((-2882 (($ |#1| |#1| |#1|) 8)) (-2883 ((|#1| $ (-719)) 10)))
+(((-823 |#1|) (-10 -8 (-15 -2882 ($ |#1| |#1| |#1|)) (-15 -2883 (|#1| $ (-719)))) (-1134)) (T -823))
+((-2883 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-823 *2)) (-4 *2 (-1134)))) (-2882 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1134)))))
+(-10 -8 (-15 -2882 ($ |#1| |#1| |#1|)) (-15 -2883 (|#1| $ (-719))))
+((-2887 (((-1076 (-594 (-516))) (-594 (-516)) (-1076 (-594 (-516)))) 32)) (-2886 (((-1076 (-594 (-516))) (-594 (-516)) (-594 (-516))) 28)) (-2888 (((-1076 (-594 (-516))) (-594 (-516))) 41) (((-1076 (-594 (-516))) (-594 (-516)) (-594 (-516))) 40)) (-2889 (((-1076 (-594 (-516))) (-516)) 42)) (-2884 (((-1076 (-594 (-516))) (-516) (-516)) 22) (((-1076 (-594 (-516))) (-516)) 16) (((-1076 (-594 (-516))) (-516) (-516) (-516)) 12)) (-2885 (((-1076 (-594 (-516))) (-1076 (-594 (-516)))) 26)) (-3273 (((-594 (-516)) (-594 (-516))) 25)))
+(((-824) (-10 -7 (-15 -2884 ((-1076 (-594 (-516))) (-516) (-516) (-516))) (-15 -2884 ((-1076 (-594 (-516))) (-516))) (-15 -2884 ((-1076 (-594 (-516))) (-516) (-516))) (-15 -3273 ((-594 (-516)) (-594 (-516)))) (-15 -2885 ((-1076 (-594 (-516))) (-1076 (-594 (-516))))) (-15 -2886 ((-1076 (-594 (-516))) (-594 (-516)) (-594 (-516)))) (-15 -2887 ((-1076 (-594 (-516))) (-594 (-516)) (-1076 (-594 (-516))))) (-15 -2888 ((-1076 (-594 (-516))) (-594 (-516)) (-594 (-516)))) (-15 -2888 ((-1076 (-594 (-516))) (-594 (-516)))) (-15 -2889 ((-1076 (-594 (-516))) (-516))))) (T -824))
+((-2889 (*1 *2 *3) (-12 (-5 *2 (-1076 (-594 (-516)))) (-5 *1 (-824)) (-5 *3 (-516)))) (-2888 (*1 *2 *3) (-12 (-5 *2 (-1076 (-594 (-516)))) (-5 *1 (-824)) (-5 *3 (-594 (-516))))) (-2888 (*1 *2 *3 *3) (-12 (-5 *2 (-1076 (-594 (-516)))) (-5 *1 (-824)) (-5 *3 (-594 (-516))))) (-2887 (*1 *2 *3 *2) (-12 (-5 *2 (-1076 (-594 (-516)))) (-5 *3 (-594 (-516))) (-5 *1 (-824)))) (-2886 (*1 *2 *3 *3) (-12 (-5 *2 (-1076 (-594 (-516)))) (-5 *1 (-824)) (-5 *3 (-594 (-516))))) (-2885 (*1 *2 *2) (-12 (-5 *2 (-1076 (-594 (-516)))) (-5 *1 (-824)))) (-3273 (*1 *2 *2) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-824)))) (-2884 (*1 *2 *3 *3) (-12 (-5 *2 (-1076 (-594 (-516)))) (-5 *1 (-824)) (-5 *3 (-516)))) (-2884 (*1 *2 *3) (-12 (-5 *2 (-1076 (-594 (-516)))) (-5 *1 (-824)) (-5 *3 (-516)))) (-2884 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1076 (-594 (-516)))) (-5 *1 (-824)) (-5 *3 (-516)))))
+(-10 -7 (-15 -2884 ((-1076 (-594 (-516))) (-516) (-516) (-516))) (-15 -2884 ((-1076 (-594 (-516))) (-516))) (-15 -2884 ((-1076 (-594 (-516))) (-516) (-516))) (-15 -3273 ((-594 (-516)) (-594 (-516)))) (-15 -2885 ((-1076 (-594 (-516))) (-1076 (-594 (-516))))) (-15 -2886 ((-1076 (-594 (-516))) (-594 (-516)) (-594 (-516)))) (-15 -2887 ((-1076 (-594 (-516))) (-594 (-516)) (-1076 (-594 (-516))))) (-15 -2888 ((-1076 (-594 (-516))) (-594 (-516)) (-594 (-516)))) (-15 -2888 ((-1076 (-594 (-516))) (-594 (-516)))) (-15 -2889 ((-1076 (-594 (-516))) (-516))))
+((-4246 (((-831 (-359)) $) 9 (|has| |#1| (-572 (-831 (-359))))) (((-831 (-516)) $) 8 (|has| |#1| (-572 (-831 (-516)))))))
+(((-825 |#1|) (-133) (-1134)) (T -825))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-572 (-831 (-516)))) (-6 (-572 (-831 (-516)))) |%noBranch|) (IF (|has| |t#1| (-572 (-831 (-359)))) (-6 (-572 (-831 (-359)))) |%noBranch|)))
+(((-572 (-831 (-359))) |has| |#1| (-572 (-831 (-359)))) ((-572 (-831 (-516))) |has| |#1| (-572 (-831 (-516)))))
+((-2828 (((-110) $ $) NIL)) (-3896 (($) 14)) (-2892 (($ (-829 |#1| |#2|) (-829 |#1| |#3|)) 27)) (-2890 (((-829 |#1| |#3|) $) 16)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-2900 (((-110) $) 22)) (-2899 (($) 19)) (-4233 (((-805) $) 30)) (-2891 (((-829 |#1| |#2|) $) 15)) (-3317 (((-110) $ $) 25)))
+(((-826 |#1| |#2| |#3|) (-13 (-1027) (-10 -8 (-15 -2900 ((-110) $)) (-15 -2899 ($)) (-15 -3896 ($)) (-15 -2892 ($ (-829 |#1| |#2|) (-829 |#1| |#3|))) (-15 -2891 ((-829 |#1| |#2|) $)) (-15 -2890 ((-829 |#1| |#3|) $)))) (-1027) (-1027) (-617 |#2|)) (T -826))
+((-2900 (*1 *2 *1) (-12 (-4 *4 (-1027)) (-5 *2 (-110)) (-5 *1 (-826 *3 *4 *5)) (-4 *3 (-1027)) (-4 *5 (-617 *4)))) (-2899 (*1 *1) (-12 (-4 *3 (-1027)) (-5 *1 (-826 *2 *3 *4)) (-4 *2 (-1027)) (-4 *4 (-617 *3)))) (-3896 (*1 *1) (-12 (-4 *3 (-1027)) (-5 *1 (-826 *2 *3 *4)) (-4 *2 (-1027)) (-4 *4 (-617 *3)))) (-2892 (*1 *1 *2 *3) (-12 (-5 *2 (-829 *4 *5)) (-5 *3 (-829 *4 *6)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-617 *5)) (-5 *1 (-826 *4 *5 *6)))) (-2891 (*1 *2 *1) (-12 (-4 *4 (-1027)) (-5 *2 (-829 *3 *4)) (-5 *1 (-826 *3 *4 *5)) (-4 *3 (-1027)) (-4 *5 (-617 *4)))) (-2890 (*1 *2 *1) (-12 (-4 *4 (-1027)) (-5 *2 (-829 *3 *5)) (-5 *1 (-826 *3 *4 *5)) (-4 *3 (-1027)) (-4 *5 (-617 *4)))))
+(-13 (-1027) (-10 -8 (-15 -2900 ((-110) $)) (-15 -2899 ($)) (-15 -3896 ($)) (-15 -2892 ($ (-829 |#1| |#2|) (-829 |#1| |#3|))) (-15 -2891 ((-829 |#1| |#2|) $)) (-15 -2890 ((-829 |#1| |#3|) $))))
+((-2828 (((-110) $ $) 7)) (-3060 (((-829 |#1| $) $ (-831 |#1|) (-829 |#1| $)) 13)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-3317 (((-110) $ $) 6)))
+(((-827 |#1|) (-133) (-1027)) (T -827))
+((-3060 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-829 *4 *1)) (-5 *3 (-831 *4)) (-4 *1 (-827 *4)) (-4 *4 (-1027)))))
+(-13 (-1027) (-10 -8 (-15 -3060 ((-829 |t#1| $) $ (-831 |t#1|) (-829 |t#1| $)))))
+(((-99) . T) ((-571 (-805)) . T) ((-1027) . T))
+((-2893 (((-110) (-594 |#2|) |#3|) 23) (((-110) |#2| |#3|) 18)) (-2894 (((-829 |#1| |#2|) |#2| |#3|) 43 (-12 (-3595 (|has| |#2| (-975 (-1098)))) (-3595 (|has| |#2| (-984))))) (((-594 (-275 (-887 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-984)) (-3595 (|has| |#2| (-975 (-1098)))))) (((-594 (-275 |#2|)) |#2| |#3|) 35 (|has| |#2| (-975 (-1098)))) (((-826 |#1| |#2| (-594 |#2|)) (-594 |#2|) |#3|) 21)))
+(((-828 |#1| |#2| |#3|) (-10 -7 (-15 -2893 ((-110) |#2| |#3|)) (-15 -2893 ((-110) (-594 |#2|) |#3|)) (-15 -2894 ((-826 |#1| |#2| (-594 |#2|)) (-594 |#2|) |#3|)) (IF (|has| |#2| (-975 (-1098))) (-15 -2894 ((-594 (-275 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-984)) (-15 -2894 ((-594 (-275 (-887 |#2|))) |#2| |#3|)) (-15 -2894 ((-829 |#1| |#2|) |#2| |#3|))))) (-1027) (-827 |#1|) (-572 (-831 |#1|))) (T -828))
+((-2894 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-5 *2 (-829 *5 *3)) (-5 *1 (-828 *5 *3 *4)) (-3595 (-4 *3 (-975 (-1098)))) (-3595 (-4 *3 (-984))) (-4 *3 (-827 *5)) (-4 *4 (-572 (-831 *5))))) (-2894 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-5 *2 (-594 (-275 (-887 *3)))) (-5 *1 (-828 *5 *3 *4)) (-4 *3 (-984)) (-3595 (-4 *3 (-975 (-1098)))) (-4 *3 (-827 *5)) (-4 *4 (-572 (-831 *5))))) (-2894 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-5 *2 (-594 (-275 *3))) (-5 *1 (-828 *5 *3 *4)) (-4 *3 (-975 (-1098))) (-4 *3 (-827 *5)) (-4 *4 (-572 (-831 *5))))) (-2894 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-4 *6 (-827 *5)) (-5 *2 (-826 *5 *6 (-594 *6))) (-5 *1 (-828 *5 *6 *4)) (-5 *3 (-594 *6)) (-4 *4 (-572 (-831 *5))))) (-2893 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *6)) (-4 *6 (-827 *5)) (-4 *5 (-1027)) (-5 *2 (-110)) (-5 *1 (-828 *5 *6 *4)) (-4 *4 (-572 (-831 *5))))) (-2893 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-5 *2 (-110)) (-5 *1 (-828 *5 *3 *4)) (-4 *3 (-827 *5)) (-4 *4 (-572 (-831 *5))))))
+(-10 -7 (-15 -2893 ((-110) |#2| |#3|)) (-15 -2893 ((-110) (-594 |#2|) |#3|)) (-15 -2894 ((-826 |#1| |#2| (-594 |#2|)) (-594 |#2|) |#3|)) (IF (|has| |#2| (-975 (-1098))) (-15 -2894 ((-594 (-275 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-984)) (-15 -2894 ((-594 (-275 (-887 |#2|))) |#2| |#3|)) (-15 -2894 ((-829 |#1| |#2|) |#2| |#3|)))))
+((-2828 (((-110) $ $) NIL)) (-3505 (($ $ $) 39)) (-2922 (((-3 (-110) "failed") $ (-831 |#1|)) 36)) (-3896 (($) 12)) (-3513 (((-1081) $) NIL)) (-2896 (($ (-831 |#1|) |#2| $) 20)) (-3514 (((-1045) $) NIL)) (-2898 (((-3 |#2| "failed") (-831 |#1|) $) 50)) (-2900 (((-110) $) 15)) (-2899 (($) 13)) (-3528 (((-594 (-2 (|:| -4139 (-1098)) (|:| -2131 |#2|))) $) 25)) (-3804 (($ (-594 (-2 (|:| -4139 (-1098)) (|:| -2131 |#2|)))) 23)) (-4233 (((-805) $) 44)) (-2895 (($ (-831 |#1|) |#2| $ |#2|) 48)) (-2897 (($ (-831 |#1|) |#2| $) 47)) (-3317 (((-110) $ $) 41)))
+(((-829 |#1| |#2|) (-13 (-1027) (-10 -8 (-15 -2900 ((-110) $)) (-15 -2899 ($)) (-15 -3896 ($)) (-15 -3505 ($ $ $)) (-15 -2898 ((-3 |#2| "failed") (-831 |#1|) $)) (-15 -2897 ($ (-831 |#1|) |#2| $)) (-15 -2896 ($ (-831 |#1|) |#2| $)) (-15 -2895 ($ (-831 |#1|) |#2| $ |#2|)) (-15 -3528 ((-594 (-2 (|:| -4139 (-1098)) (|:| -2131 |#2|))) $)) (-15 -3804 ($ (-594 (-2 (|:| -4139 (-1098)) (|:| -2131 |#2|))))) (-15 -2922 ((-3 (-110) "failed") $ (-831 |#1|))))) (-1027) (-1027)) (T -829))
+((-2900 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-829 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-2899 (*1 *1) (-12 (-5 *1 (-829 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-3896 (*1 *1) (-12 (-5 *1 (-829 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-3505 (*1 *1 *1 *1) (-12 (-5 *1 (-829 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-2898 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-831 *4)) (-4 *4 (-1027)) (-4 *2 (-1027)) (-5 *1 (-829 *4 *2)))) (-2897 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-831 *4)) (-4 *4 (-1027)) (-5 *1 (-829 *4 *3)) (-4 *3 (-1027)))) (-2896 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-831 *4)) (-4 *4 (-1027)) (-5 *1 (-829 *4 *3)) (-4 *3 (-1027)))) (-2895 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-831 *4)) (-4 *4 (-1027)) (-5 *1 (-829 *4 *3)) (-4 *3 (-1027)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-594 (-2 (|:| -4139 (-1098)) (|:| -2131 *4)))) (-5 *1 (-829 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-3804 (*1 *1 *2) (-12 (-5 *2 (-594 (-2 (|:| -4139 (-1098)) (|:| -2131 *4)))) (-4 *4 (-1027)) (-5 *1 (-829 *3 *4)) (-4 *3 (-1027)))) (-2922 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-831 *4)) (-4 *4 (-1027)) (-5 *2 (-110)) (-5 *1 (-829 *4 *5)) (-4 *5 (-1027)))))
+(-13 (-1027) (-10 -8 (-15 -2900 ((-110) $)) (-15 -2899 ($)) (-15 -3896 ($)) (-15 -3505 ($ $ $)) (-15 -2898 ((-3 |#2| "failed") (-831 |#1|) $)) (-15 -2897 ($ (-831 |#1|) |#2| $)) (-15 -2896 ($ (-831 |#1|) |#2| $)) (-15 -2895 ($ (-831 |#1|) |#2| $ |#2|)) (-15 -3528 ((-594 (-2 (|:| -4139 (-1098)) (|:| -2131 |#2|))) $)) (-15 -3804 ($ (-594 (-2 (|:| -4139 (-1098)) (|:| -2131 |#2|))))) (-15 -2922 ((-3 (-110) "failed") $ (-831 |#1|)))))
+((-4234 (((-829 |#1| |#3|) (-1 |#3| |#2|) (-829 |#1| |#2|)) 22)))
+(((-830 |#1| |#2| |#3|) (-10 -7 (-15 -4234 ((-829 |#1| |#3|) (-1 |#3| |#2|) (-829 |#1| |#2|)))) (-1027) (-1027) (-1027)) (T -830))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-829 *5 *6)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-829 *5 *7)) (-5 *1 (-830 *5 *6 *7)))))
+(-10 -7 (-15 -4234 ((-829 |#1| |#3|) (-1 |#3| |#2|) (-829 |#1| |#2|))))
+((-2828 (((-110) $ $) NIL)) (-2908 (($ $ (-594 (-50))) 64)) (-3347 (((-594 $) $) 118)) (-2905 (((-2 (|:| |var| (-594 (-1098))) (|:| |pred| (-50))) $) 24)) (-3531 (((-110) $) 30)) (-2906 (($ $ (-594 (-1098)) (-50)) 25)) (-2909 (($ $ (-594 (-50))) 63)) (-3432 (((-3 |#1| #1="failed") $) 61) (((-3 (-1098) #1#) $) 140)) (-3431 ((|#1| $) 58) (((-1098) $) NIL)) (-2903 (($ $) 108)) (-2915 (((-110) $) 47)) (-2910 (((-594 (-50)) $) 45)) (-2907 (($ (-1098) (-110) (-110) (-110)) 65)) (-2901 (((-3 (-594 $) "failed") (-594 $)) 72)) (-2912 (((-110) $) 50)) (-2913 (((-110) $) 49)) (-3513 (((-1081) $) NIL)) (-3087 (((-3 (-594 $) "failed") $) 36)) (-2918 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-3089 (((-3 (-2 (|:| |val| $) (|:| -2427 $)) "failed") $) 83)) (-3086 (((-3 (-594 $) "failed") $) 33)) (-2919 (((-3 (-594 $) "failed") $ (-111)) 107) (((-3 (-2 (|:| -2770 (-111)) (|:| |arg| (-594 $))) "failed") $) 95)) (-2917 (((-3 (-594 $) "failed") $) 37)) (-3088 (((-3 (-2 (|:| |val| $) (|:| -2427 (-719))) "failed") $) 40)) (-2916 (((-110) $) 29)) (-3514 (((-1045) $) NIL)) (-2904 (((-110) $) 21)) (-2911 (((-110) $) 46)) (-2902 (((-594 (-50)) $) 111)) (-2914 (((-110) $) 48)) (-4078 (($ (-111) (-594 $)) 92)) (-3601 (((-719) $) 28)) (-3678 (($ $) 62)) (-4246 (($ (-594 $)) 59)) (-4228 (((-110) $) 26)) (-4233 (((-805) $) 53) (($ |#1|) 18) (($ (-1098)) 66)) (-2923 (($ $ (-50)) 110)) (-2920 (($) 91 T CONST)) (-2927 (($) 73 T CONST)) (-3317 (((-110) $ $) 79)) (-4224 (($ $ $) 100)) (-4118 (($ $ $) 104)) (** (($ $ (-719)) 99) (($ $ $) 54)) (* (($ $ $) 105)))
+(((-831 |#1|) (-13 (-1027) (-975 |#1|) (-975 (-1098)) (-10 -8 (-15 0 ($) -4227) (-15 1 ($) -4227) (-15 -3086 ((-3 (-594 $) "failed") $)) (-15 -3087 ((-3 (-594 $) "failed") $)) (-15 -2919 ((-3 (-594 $) "failed") $ (-111))) (-15 -2919 ((-3 (-2 (|:| -2770 (-111)) (|:| |arg| (-594 $))) "failed") $)) (-15 -3088 ((-3 (-2 (|:| |val| $) (|:| -2427 (-719))) "failed") $)) (-15 -2918 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2917 ((-3 (-594 $) "failed") $)) (-15 -3089 ((-3 (-2 (|:| |val| $) (|:| -2427 $)) "failed") $)) (-15 -4078 ($ (-111) (-594 $))) (-15 -4118 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-719))) (-15 ** ($ $ $)) (-15 -4224 ($ $ $)) (-15 -3601 ((-719) $)) (-15 -4246 ($ (-594 $))) (-15 -3678 ($ $)) (-15 -2916 ((-110) $)) (-15 -2915 ((-110) $)) (-15 -3531 ((-110) $)) (-15 -4228 ((-110) $)) (-15 -2914 ((-110) $)) (-15 -2913 ((-110) $)) (-15 -2912 ((-110) $)) (-15 -2911 ((-110) $)) (-15 -2910 ((-594 (-50)) $)) (-15 -2909 ($ $ (-594 (-50)))) (-15 -2908 ($ $ (-594 (-50)))) (-15 -2907 ($ (-1098) (-110) (-110) (-110))) (-15 -2906 ($ $ (-594 (-1098)) (-50))) (-15 -2905 ((-2 (|:| |var| (-594 (-1098))) (|:| |pred| (-50))) $)) (-15 -2904 ((-110) $)) (-15 -2903 ($ $)) (-15 -2923 ($ $ (-50))) (-15 -2902 ((-594 (-50)) $)) (-15 -3347 ((-594 $) $)) (-15 -2901 ((-3 (-594 $) "failed") (-594 $))))) (-1027)) (T -831))
+((-2920 (*1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1027)))) (-2927 (*1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1027)))) (-3086 (*1 *2 *1) (|partial| -12 (-5 *2 (-594 (-831 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-3087 (*1 *2 *1) (|partial| -12 (-5 *2 (-594 (-831 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-2919 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-111)) (-5 *2 (-594 (-831 *4))) (-5 *1 (-831 *4)) (-4 *4 (-1027)))) (-2919 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2770 (-111)) (|:| |arg| (-594 (-831 *3))))) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-3088 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-831 *3)) (|:| -2427 (-719)))) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-2918 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-831 *3)) (|:| |den| (-831 *3)))) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-2917 (*1 *2 *1) (|partial| -12 (-5 *2 (-594 (-831 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-3089 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-831 *3)) (|:| -2427 (-831 *3)))) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-4078 (*1 *1 *2 *3) (-12 (-5 *2 (-111)) (-5 *3 (-594 (-831 *4))) (-5 *1 (-831 *4)) (-4 *4 (-1027)))) (-4118 (*1 *1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1027)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1027)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1027)))) (-4224 (*1 *1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1027)))) (-3601 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-4246 (*1 *1 *2) (-12 (-5 *2 (-594 (-831 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-3678 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1027)))) (-2916 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-2915 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-4228 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-2914 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-2913 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-2911 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-2910 (*1 *2 *1) (-12 (-5 *2 (-594 (-50))) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-2909 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-50))) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-2908 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-50))) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-2907 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-110)) (-5 *1 (-831 *4)) (-4 *4 (-1027)))) (-2906 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-594 (-1098))) (-5 *3 (-50)) (-5 *1 (-831 *4)) (-4 *4 (-1027)))) (-2905 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-594 (-1098))) (|:| |pred| (-50)))) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-2904 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-2903 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1027)))) (-2923 (*1 *1 *1 *2) (-12 (-5 *2 (-50)) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-2902 (*1 *2 *1) (-12 (-5 *2 (-594 (-50))) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-3347 (*1 *2 *1) (-12 (-5 *2 (-594 (-831 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1027)))) (-2901 (*1 *2 *2) (|partial| -12 (-5 *2 (-594 (-831 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1027)))))
+(-13 (-1027) (-975 |#1|) (-975 (-1098)) (-10 -8 (-15 (-2920) ($) -4227) (-15 (-2927) ($) -4227) (-15 -3086 ((-3 (-594 $) "failed") $)) (-15 -3087 ((-3 (-594 $) "failed") $)) (-15 -2919 ((-3 (-594 $) "failed") $ (-111))) (-15 -2919 ((-3 (-2 (|:| -2770 (-111)) (|:| |arg| (-594 $))) "failed") $)) (-15 -3088 ((-3 (-2 (|:| |val| $) (|:| -2427 (-719))) "failed") $)) (-15 -2918 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2917 ((-3 (-594 $) "failed") $)) (-15 -3089 ((-3 (-2 (|:| |val| $) (|:| -2427 $)) "failed") $)) (-15 -4078 ($ (-111) (-594 $))) (-15 -4118 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-719))) (-15 ** ($ $ $)) (-15 -4224 ($ $ $)) (-15 -3601 ((-719) $)) (-15 -4246 ($ (-594 $))) (-15 -3678 ($ $)) (-15 -2916 ((-110) $)) (-15 -2915 ((-110) $)) (-15 -3531 ((-110) $)) (-15 -4228 ((-110) $)) (-15 -2914 ((-110) $)) (-15 -2913 ((-110) $)) (-15 -2912 ((-110) $)) (-15 -2911 ((-110) $)) (-15 -2910 ((-594 (-50)) $)) (-15 -2909 ($ $ (-594 (-50)))) (-15 -2908 ($ $ (-594 (-50)))) (-15 -2907 ($ (-1098) (-110) (-110) (-110))) (-15 -2906 ($ $ (-594 (-1098)) (-50))) (-15 -2905 ((-2 (|:| |var| (-594 (-1098))) (|:| |pred| (-50))) $)) (-15 -2904 ((-110) $)) (-15 -2903 ($ $)) (-15 -2923 ($ $ (-50))) (-15 -2902 ((-594 (-50)) $)) (-15 -3347 ((-594 $) $)) (-15 -2901 ((-3 (-594 $) "failed") (-594 $)))))
+((-3482 (((-831 |#1|) (-831 |#1|) (-594 (-1098)) (-1 (-110) (-594 |#2|))) 32) (((-831 |#1|) (-831 |#1|) (-594 (-1 (-110) |#2|))) 43) (((-831 |#1|) (-831 |#1|) (-1 (-110) |#2|)) 35)) (-2922 (((-110) (-594 |#2|) (-831 |#1|)) 40) (((-110) |#2| (-831 |#1|)) 36)) (-2921 (((-1 (-110) |#2|) (-831 |#1|)) 16)) (-2924 (((-594 |#2|) (-831 |#1|)) 24)) (-2923 (((-831 |#1|) (-831 |#1|) |#2|) 20)))
+(((-832 |#1| |#2|) (-10 -7 (-15 -3482 ((-831 |#1|) (-831 |#1|) (-1 (-110) |#2|))) (-15 -3482 ((-831 |#1|) (-831 |#1|) (-594 (-1 (-110) |#2|)))) (-15 -3482 ((-831 |#1|) (-831 |#1|) (-594 (-1098)) (-1 (-110) (-594 |#2|)))) (-15 -2921 ((-1 (-110) |#2|) (-831 |#1|))) (-15 -2922 ((-110) |#2| (-831 |#1|))) (-15 -2922 ((-110) (-594 |#2|) (-831 |#1|))) (-15 -2923 ((-831 |#1|) (-831 |#1|) |#2|)) (-15 -2924 ((-594 |#2|) (-831 |#1|)))) (-1027) (-1134)) (T -832))
+((-2924 (*1 *2 *3) (-12 (-5 *3 (-831 *4)) (-4 *4 (-1027)) (-5 *2 (-594 *5)) (-5 *1 (-832 *4 *5)) (-4 *5 (-1134)))) (-2923 (*1 *2 *2 *3) (-12 (-5 *2 (-831 *4)) (-4 *4 (-1027)) (-5 *1 (-832 *4 *3)) (-4 *3 (-1134)))) (-2922 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *6)) (-5 *4 (-831 *5)) (-4 *5 (-1027)) (-4 *6 (-1134)) (-5 *2 (-110)) (-5 *1 (-832 *5 *6)))) (-2922 (*1 *2 *3 *4) (-12 (-5 *4 (-831 *5)) (-4 *5 (-1027)) (-5 *2 (-110)) (-5 *1 (-832 *5 *3)) (-4 *3 (-1134)))) (-2921 (*1 *2 *3) (-12 (-5 *3 (-831 *4)) (-4 *4 (-1027)) (-5 *2 (-1 (-110) *5)) (-5 *1 (-832 *4 *5)) (-4 *5 (-1134)))) (-3482 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-831 *5)) (-5 *3 (-594 (-1098))) (-5 *4 (-1 (-110) (-594 *6))) (-4 *5 (-1027)) (-4 *6 (-1134)) (-5 *1 (-832 *5 *6)))) (-3482 (*1 *2 *2 *3) (-12 (-5 *2 (-831 *4)) (-5 *3 (-594 (-1 (-110) *5))) (-4 *4 (-1027)) (-4 *5 (-1134)) (-5 *1 (-832 *4 *5)))) (-3482 (*1 *2 *2 *3) (-12 (-5 *2 (-831 *4)) (-5 *3 (-1 (-110) *5)) (-4 *4 (-1027)) (-4 *5 (-1134)) (-5 *1 (-832 *4 *5)))))
+(-10 -7 (-15 -3482 ((-831 |#1|) (-831 |#1|) (-1 (-110) |#2|))) (-15 -3482 ((-831 |#1|) (-831 |#1|) (-594 (-1 (-110) |#2|)))) (-15 -3482 ((-831 |#1|) (-831 |#1|) (-594 (-1098)) (-1 (-110) (-594 |#2|)))) (-15 -2921 ((-1 (-110) |#2|) (-831 |#1|))) (-15 -2922 ((-110) |#2| (-831 |#1|))) (-15 -2922 ((-110) (-594 |#2|) (-831 |#1|))) (-15 -2923 ((-831 |#1|) (-831 |#1|) |#2|)) (-15 -2924 ((-594 |#2|) (-831 |#1|))))
+((-4234 (((-831 |#2|) (-1 |#2| |#1|) (-831 |#1|)) 19)))
+(((-833 |#1| |#2|) (-10 -7 (-15 -4234 ((-831 |#2|) (-1 |#2| |#1|) (-831 |#1|)))) (-1027) (-1027)) (T -833))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-831 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-831 *6)) (-5 *1 (-833 *5 *6)))))
+(-10 -7 (-15 -4234 ((-831 |#2|) (-1 |#2| |#1|) (-831 |#1|))))
+((-2828 (((-110) $ $) NIL)) (-4210 (((-594 |#1|) $) 16)) (-2925 (((-110) $) 38)) (-3432 (((-3 (-622 |#1|) "failed") $) 43)) (-3431 (((-622 |#1|) $) 41)) (-4077 (($ $) 18)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-4112 (((-719) $) 46)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4079 (((-622 |#1|) $) 17)) (-4233 (((-805) $) 37) (($ (-622 |#1|)) 21) (((-767 |#1|) $) 27) (($ |#1|) 20)) (-2927 (($) 8 T CONST)) (-2926 (((-594 (-622 |#1|)) $) 23)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 11)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 49)))
+(((-834 |#1|) (-13 (-795) (-975 (-622 |#1|)) (-10 -8 (-15 1 ($) -4227) (-15 -4233 ((-767 |#1|) $)) (-15 -4233 ($ |#1|)) (-15 -4079 ((-622 |#1|) $)) (-15 -4112 ((-719) $)) (-15 -2926 ((-594 (-622 |#1|)) $)) (-15 -4077 ($ $)) (-15 -2925 ((-110) $)) (-15 -4210 ((-594 |#1|) $)))) (-795)) (T -834))
+((-2927 (*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-795)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-767 *3)) (-5 *1 (-834 *3)) (-4 *3 (-795)))) (-4233 (*1 *1 *2) (-12 (-5 *1 (-834 *2)) (-4 *2 (-795)))) (-4079 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-834 *3)) (-4 *3 (-795)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-834 *3)) (-4 *3 (-795)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-594 (-622 *3))) (-5 *1 (-834 *3)) (-4 *3 (-795)))) (-4077 (*1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-795)))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-834 *3)) (-4 *3 (-795)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-594 *3)) (-5 *1 (-834 *3)) (-4 *3 (-795)))))
+(-13 (-795) (-975 (-622 |#1|)) (-10 -8 (-15 (-2927) ($) -4227) (-15 -4233 ((-767 |#1|) $)) (-15 -4233 ($ |#1|)) (-15 -4079 ((-622 |#1|) $)) (-15 -4112 ((-719) $)) (-15 -2926 ((-594 (-622 |#1|)) $)) (-15 -4077 ($ $)) (-15 -2925 ((-110) $)) (-15 -4210 ((-594 |#1|) $))))
+((-3748 ((|#1| |#1| |#1|) 19)))
+(((-835 |#1| |#2|) (-10 -7 (-15 -3748 (|#1| |#1| |#1|))) (-1155 |#2|) (-984)) (T -835))
+((-3748 (*1 *2 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-835 *2 *3)) (-4 *2 (-1155 *3)))))
+(-10 -7 (-15 -3748 (|#1| |#1| |#1|)))
+((-2828 (((-110) $ $) 7)) (-2931 (((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |pde| (-594 (-295 (-208)))) (|:| |constraints| (-594 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081)) (|:| |tol| (-208)))) 14)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-2928 (((-973) (-2 (|:| |pde| (-594 (-295 (-208)))) (|:| |constraints| (-594 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081)) (|:| |tol| (-208)))) 13)) (-3317 (((-110) $ $) 6)))
+(((-836) (-133)) (T -836))
+((-2931 (*1 *2 *3 *4) (-12 (-4 *1 (-836)) (-5 *3 (-995)) (-5 *4 (-2 (|:| |pde| (-594 (-295 (-208)))) (|:| |constraints| (-594 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081)) (|:| |tol| (-208)))) (-5 *2 (-2 (|:| -2931 (-359)) (|:| |explanations| (-1081)))))) (-2928 (*1 *2 *3) (-12 (-4 *1 (-836)) (-5 *3 (-2 (|:| |pde| (-594 (-295 (-208)))) (|:| |constraints| (-594 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081)) (|:| |tol| (-208)))) (-5 *2 (-973)))))
+(-13 (-1027) (-10 -7 (-15 -2931 ((-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))) (-995) (-2 (|:| |pde| (-594 (-295 (-208)))) (|:| |constraints| (-594 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081)) (|:| |tol| (-208))))) (-15 -2928 ((-973) (-2 (|:| |pde| (-594 (-295 (-208)))) (|:| |constraints| (-594 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081)) (|:| |tol| (-208)))))))
+(((-99) . T) ((-571 (-805)) . T) ((-1027) . T))
+((-2930 ((|#1| |#1| (-719)) 24)) (-2929 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3714 (((-3 (-2 (|:| -3397 |#1|) (|:| -3396 |#1|)) "failed") |#1| (-719) (-719)) 27) (((-594 |#1|) |#1|) 29)))
+(((-837 |#1| |#2|) (-10 -7 (-15 -3714 ((-594 |#1|) |#1|)) (-15 -3714 ((-3 (-2 (|:| -3397 |#1|) (|:| -3396 |#1|)) "failed") |#1| (-719) (-719))) (-15 -2929 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2930 (|#1| |#1| (-719)))) (-1155 |#2|) (-344)) (T -837))
+((-2930 (*1 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-344)) (-5 *1 (-837 *2 *4)) (-4 *2 (-1155 *4)))) (-2929 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-344)) (-5 *1 (-837 *2 *3)) (-4 *2 (-1155 *3)))) (-3714 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-719)) (-4 *5 (-344)) (-5 *2 (-2 (|:| -3397 *3) (|:| -3396 *3))) (-5 *1 (-837 *3 *5)) (-4 *3 (-1155 *5)))) (-3714 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-594 *3)) (-5 *1 (-837 *3 *4)) (-4 *3 (-1155 *4)))))
+(-10 -7 (-15 -3714 ((-594 |#1|) |#1|)) (-15 -3714 ((-3 (-2 (|:| -3397 |#1|) (|:| -3396 |#1|)) "failed") |#1| (-719) (-719))) (-15 -2929 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2930 (|#1| |#1| (-719))))
+((-3855 (((-973) (-359) (-359) (-359) (-359) (-719) (-719) (-594 (-295 (-359))) (-594 (-594 (-295 (-359)))) (-1081)) 96) (((-973) (-359) (-359) (-359) (-359) (-719) (-719) (-594 (-295 (-359))) (-594 (-594 (-295 (-359)))) (-1081) (-208)) 91) (((-973) (-839) (-995)) 83) (((-973) (-839)) 84)) (-2931 (((-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081)))) (-839) (-995)) 59) (((-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081)))) (-839)) 61)))
+(((-838) (-10 -7 (-15 -3855 ((-973) (-839))) (-15 -3855 ((-973) (-839) (-995))) (-15 -3855 ((-973) (-359) (-359) (-359) (-359) (-719) (-719) (-594 (-295 (-359))) (-594 (-594 (-295 (-359)))) (-1081) (-208))) (-15 -3855 ((-973) (-359) (-359) (-359) (-359) (-719) (-719) (-594 (-295 (-359))) (-594 (-594 (-295 (-359)))) (-1081))) (-15 -2931 ((-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081)))) (-839))) (-15 -2931 ((-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081)))) (-839) (-995))))) (T -838))
+((-2931 (*1 *2 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-995)) (-5 *2 (-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081))))) (-5 *1 (-838)))) (-2931 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081))))) (-5 *1 (-838)))) (-3855 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-719)) (-5 *6 (-594 (-594 (-295 *3)))) (-5 *7 (-1081)) (-5 *5 (-594 (-295 (-359)))) (-5 *3 (-359)) (-5 *2 (-973)) (-5 *1 (-838)))) (-3855 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-719)) (-5 *6 (-594 (-594 (-295 *3)))) (-5 *7 (-1081)) (-5 *8 (-208)) (-5 *5 (-594 (-295 (-359)))) (-5 *3 (-359)) (-5 *2 (-973)) (-5 *1 (-838)))) (-3855 (*1 *2 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-995)) (-5 *2 (-973)) (-5 *1 (-838)))) (-3855 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-973)) (-5 *1 (-838)))))
+(-10 -7 (-15 -3855 ((-973) (-839))) (-15 -3855 ((-973) (-839) (-995))) (-15 -3855 ((-973) (-359) (-359) (-359) (-359) (-719) (-719) (-594 (-295 (-359))) (-594 (-594 (-295 (-359)))) (-1081) (-208))) (-15 -3855 ((-973) (-359) (-359) (-359) (-359) (-719) (-719) (-594 (-295 (-359))) (-594 (-594 (-295 (-359)))) (-1081))) (-15 -2931 ((-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081)))) (-839))) (-15 -2931 ((-2 (|:| -2931 (-359)) (|:| -3824 (-1081)) (|:| |explanations| (-594 (-1081)))) (-839) (-995))))
+((-2828 (((-110) $ $) NIL)) (-3431 (((-2 (|:| |pde| (-594 (-295 (-208)))) (|:| |constraints| (-594 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081)) (|:| |tol| (-208))) $) 19)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 21) (($ (-2 (|:| |pde| (-594 (-295 (-208)))) (|:| |constraints| (-594 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081)) (|:| |tol| (-208)))) 18)) (-3317 (((-110) $ $) NIL)))
+(((-839) (-13 (-1027) (-10 -8 (-15 -4233 ($ (-2 (|:| |pde| (-594 (-295 (-208)))) (|:| |constraints| (-594 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081)) (|:| |tol| (-208))))) (-15 -4233 ((-805) $)) (-15 -3431 ((-2 (|:| |pde| (-594 (-295 (-208)))) (|:| |constraints| (-594 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081)) (|:| |tol| (-208))) $))))) (T -839))
+((-4233 (*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-839)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-594 (-295 (-208)))) (|:| |constraints| (-594 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081)) (|:| |tol| (-208)))) (-5 *1 (-839)))) (-3431 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-594 (-295 (-208)))) (|:| |constraints| (-594 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081)) (|:| |tol| (-208)))) (-5 *1 (-839)))))
+(-13 (-1027) (-10 -8 (-15 -4233 ($ (-2 (|:| |pde| (-594 (-295 (-208)))) (|:| |constraints| (-594 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081)) (|:| |tol| (-208))))) (-15 -4233 ((-805) $)) (-15 -3431 ((-2 (|:| |pde| (-594 (-295 (-208)))) (|:| |constraints| (-594 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081)) (|:| |tol| (-208))) $))))
+((-4089 (($ $ |#2|) NIL) (($ $ (-594 |#2|)) 10) (($ $ |#2| (-719)) 12) (($ $ (-594 |#2|) (-594 (-719))) 15)) (-2932 (($ $ |#2|) 16) (($ $ (-594 |#2|)) 18) (($ $ |#2| (-719)) 19) (($ $ (-594 |#2|) (-594 (-719))) 21)))
+(((-840 |#1| |#2|) (-10 -8 (-15 -2932 (|#1| |#1| (-594 |#2|) (-594 (-719)))) (-15 -2932 (|#1| |#1| |#2| (-719))) (-15 -2932 (|#1| |#1| (-594 |#2|))) (-15 -2932 (|#1| |#1| |#2|)) (-15 -4089 (|#1| |#1| (-594 |#2|) (-594 (-719)))) (-15 -4089 (|#1| |#1| |#2| (-719))) (-15 -4089 (|#1| |#1| (-594 |#2|))) (-15 -4089 (|#1| |#1| |#2|))) (-841 |#2|) (-1027)) (T -840))
+NIL
+(-10 -8 (-15 -2932 (|#1| |#1| (-594 |#2|) (-594 (-719)))) (-15 -2932 (|#1| |#1| |#2| (-719))) (-15 -2932 (|#1| |#1| (-594 |#2|))) (-15 -2932 (|#1| |#1| |#2|)) (-15 -4089 (|#1| |#1| (-594 |#2|) (-594 (-719)))) (-15 -4089 (|#1| |#1| |#2| (-719))) (-15 -4089 (|#1| |#1| (-594 |#2|))) (-15 -4089 (|#1| |#1| |#2|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3741 (((-3 $ "failed") $) 34)) (-2436 (((-110) $) 31)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4089 (($ $ |#1|) 42) (($ $ (-594 |#1|)) 41) (($ $ |#1| (-719)) 40) (($ $ (-594 |#1|) (-594 (-719))) 39)) (-4233 (((-805) $) 11) (($ (-516)) 28)) (-3385 (((-719)) 29)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2932 (($ $ |#1|) 38) (($ $ (-594 |#1|)) 37) (($ $ |#1| (-719)) 36) (($ $ (-594 |#1|) (-594 (-719))) 35)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24)))
+(((-841 |#1|) (-133) (-1027)) (T -841))
+((-4089 (*1 *1 *1 *2) (-12 (-4 *1 (-841 *2)) (-4 *2 (-1027)))) (-4089 (*1 *1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *1 (-841 *3)) (-4 *3 (-1027)))) (-4089 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-841 *2)) (-4 *2 (-1027)))) (-4089 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-594 *4)) (-5 *3 (-594 (-719))) (-4 *1 (-841 *4)) (-4 *4 (-1027)))) (-2932 (*1 *1 *1 *2) (-12 (-4 *1 (-841 *2)) (-4 *2 (-1027)))) (-2932 (*1 *1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *1 (-841 *3)) (-4 *3 (-1027)))) (-2932 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-841 *2)) (-4 *2 (-1027)))) (-2932 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-594 *4)) (-5 *3 (-594 (-719))) (-4 *1 (-841 *4)) (-4 *4 (-1027)))))
+(-13 (-984) (-10 -8 (-15 -4089 ($ $ |t#1|)) (-15 -4089 ($ $ (-594 |t#1|))) (-15 -4089 ($ $ |t#1| (-719))) (-15 -4089 ($ $ (-594 |t#1|) (-594 (-719)))) (-15 -2932 ($ $ |t#1|)) (-15 -2932 ($ $ (-594 |t#1|))) (-15 -2932 ($ $ |t#1| (-719))) (-15 -2932 ($ $ (-594 |t#1|) (-594 (-719))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-805)) . T) ((-599 $) . T) ((-675) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3681 ((|#1| $) 26)) (-1217 (((-110) $ (-719)) NIL)) (-3289 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-1304 (($ $ $) NIL (|has| $ (-6 -4270)))) (-1305 (($ $ $) NIL (|has| $ (-6 -4270)))) (-4066 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4270))) (($ $ #2="left" $) NIL (|has| $ (-6 -4270))) (($ $ #3="right" $) NIL (|has| $ (-6 -4270)))) (-3290 (($ $ (-594 $)) NIL (|has| $ (-6 -4270)))) (-3815 (($) NIL T CONST)) (-3396 (($ $) 25)) (-2933 (($ |#1|) 12) (($ $ $) 17)) (-2018 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3295 (((-594 $) $) NIL)) (-3291 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4001 (((-110) $ (-719)) NIL)) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2022 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3397 (($ $) 23)) (-3294 (((-594 |#1|) $) NIL)) (-3801 (((-110) $) 20)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3293 (((-516) $ $) NIL)) (-3915 (((-110) $) NIL)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3678 (($ $) NIL)) (-4233 (((-1121 |#1|) $) 9) (((-805) $) 29 (|has| |#1| (-571 (-805))))) (-3796 (((-594 $) $) NIL)) (-3292 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 21 (|has| |#1| (-1027)))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-842 |#1|) (-13 (-117 |#1|) (-10 -8 (-15 -2933 ($ |#1|)) (-15 -2933 ($ $ $)) (-15 -4233 ((-1121 |#1|) $)))) (-1027)) (T -842))
+((-2933 (*1 *1 *2) (-12 (-5 *1 (-842 *2)) (-4 *2 (-1027)))) (-2933 (*1 *1 *1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-1027)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-1121 *3)) (-5 *1 (-842 *3)) (-4 *3 (-1027)))))
+(-13 (-117 |#1|) (-10 -8 (-15 -2933 ($ |#1|)) (-15 -2933 ($ $ $)) (-15 -4233 ((-1121 |#1|) $))))
+((-2828 (((-110) $ $) NIL)) (-3173 (((-594 $) (-594 $)) 77)) (-3905 (((-516) $) 60)) (-3815 (($) NIL T CONST)) (-3741 (((-3 $ "failed") $) NIL)) (-4050 (((-719) $) 58)) (-2953 (((-1023 |#1|) $ |#1|) 49)) (-2436 (((-110) $) NIL)) (-2936 (((-110) $) 63)) (-2938 (((-719) $) 61)) (-2949 (((-1023 |#1|) $) 42)) (-3596 (($ $ $) NIL (-3810 (|has| |#1| (-349)) (|has| |#1| (-795))))) (-3597 (($ $ $) NIL (-3810 (|has| |#1| (-349)) (|has| |#1| (-795))))) (-2942 (((-2 (|:| |preimage| (-594 |#1|)) (|:| |image| (-594 |#1|))) $) 37)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) 93)) (-3514 (((-1045) $) NIL)) (-2935 (((-1023 |#1|) $) 100 (|has| |#1| (-349)))) (-2937 (((-110) $) 59)) (-4046 ((|#1| $ |#1|) 47)) (-4078 ((|#1| $ |#1|) 94)) (-4223 (((-719) $) 44)) (-2944 (($ (-594 (-594 |#1|))) 85)) (-2939 (((-911) $) 53)) (-2945 (($ (-594 |#1|)) 21)) (-3273 (($ $ $) NIL)) (-2620 (($ $ $) NIL)) (-2941 (($ (-594 (-594 |#1|))) 39)) (-2940 (($ (-594 (-594 |#1|))) 88)) (-2934 (($ (-594 |#1|)) 96)) (-4233 (((-805) $) 84) (($ (-594 (-594 |#1|))) 66) (($ (-594 |#1|)) 67)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2927 (($) 16 T CONST)) (-2826 (((-110) $ $) NIL (-3810 (|has| |#1| (-349)) (|has| |#1| (-795))))) (-2827 (((-110) $ $) NIL (-3810 (|has| |#1| (-349)) (|has| |#1| (-795))))) (-3317 (((-110) $ $) 45)) (-2947 (((-110) $ $) NIL (-3810 (|has| |#1| (-349)) (|has| |#1| (-795))))) (-2948 (((-110) $ $) 65)) (-4224 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (* (($ $ $) 22)))
+(((-843 |#1|) (-13 (-845 |#1|) (-10 -8 (-15 -2942 ((-2 (|:| |preimage| (-594 |#1|)) (|:| |image| (-594 |#1|))) $)) (-15 -2941 ($ (-594 (-594 |#1|)))) (-15 -4233 ($ (-594 (-594 |#1|)))) (-15 -4233 ($ (-594 |#1|))) (-15 -2940 ($ (-594 (-594 |#1|)))) (-15 -4223 ((-719) $)) (-15 -2949 ((-1023 |#1|) $)) (-15 -2939 ((-911) $)) (-15 -4050 ((-719) $)) (-15 -2938 ((-719) $)) (-15 -3905 ((-516) $)) (-15 -2937 ((-110) $)) (-15 -2936 ((-110) $)) (-15 -3173 ((-594 $) (-594 $))) (IF (|has| |#1| (-349)) (-15 -2935 ((-1023 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-515)) (-15 -2934 ($ (-594 |#1|))) (IF (|has| |#1| (-349)) (-15 -2934 ($ (-594 |#1|))) |%noBranch|)))) (-1027)) (T -843))
+((-2942 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-594 *3)) (|:| |image| (-594 *3)))) (-5 *1 (-843 *3)) (-4 *3 (-1027)))) (-2941 (*1 *1 *2) (-12 (-5 *2 (-594 (-594 *3))) (-4 *3 (-1027)) (-5 *1 (-843 *3)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-594 (-594 *3))) (-4 *3 (-1027)) (-5 *1 (-843 *3)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1027)) (-5 *1 (-843 *3)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-594 (-594 *3))) (-4 *3 (-1027)) (-5 *1 (-843 *3)))) (-4223 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-843 *3)) (-4 *3 (-1027)))) (-2949 (*1 *2 *1) (-12 (-5 *2 (-1023 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1027)))) (-2939 (*1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-843 *3)) (-4 *3 (-1027)))) (-4050 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-843 *3)) (-4 *3 (-1027)))) (-2938 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-843 *3)) (-4 *3 (-1027)))) (-3905 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-843 *3)) (-4 *3 (-1027)))) (-2937 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-843 *3)) (-4 *3 (-1027)))) (-2936 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-843 *3)) (-4 *3 (-1027)))) (-3173 (*1 *2 *2) (-12 (-5 *2 (-594 (-843 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1027)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-1023 *3)) (-5 *1 (-843 *3)) (-4 *3 (-349)) (-4 *3 (-1027)))) (-2934 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1027)) (-5 *1 (-843 *3)))))
+(-13 (-845 |#1|) (-10 -8 (-15 -2942 ((-2 (|:| |preimage| (-594 |#1|)) (|:| |image| (-594 |#1|))) $)) (-15 -2941 ($ (-594 (-594 |#1|)))) (-15 -4233 ($ (-594 (-594 |#1|)))) (-15 -4233 ($ (-594 |#1|))) (-15 -2940 ($ (-594 (-594 |#1|)))) (-15 -4223 ((-719) $)) (-15 -2949 ((-1023 |#1|) $)) (-15 -2939 ((-911) $)) (-15 -4050 ((-719) $)) (-15 -2938 ((-719) $)) (-15 -3905 ((-516) $)) (-15 -2937 ((-110) $)) (-15 -2936 ((-110) $)) (-15 -3173 ((-594 $) (-594 $))) (IF (|has| |#1| (-349)) (-15 -2935 ((-1023 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-515)) (-15 -2934 ($ (-594 |#1|))) (IF (|has| |#1| (-349)) (-15 -2934 ($ (-594 |#1|))) |%noBranch|))))
+((-2943 ((|#2| (-1065 |#1| |#2|)) 40)))
+(((-844 |#1| |#2|) (-10 -7 (-15 -2943 (|#2| (-1065 |#1| |#2|)))) (-860) (-13 (-984) (-10 -7 (-6 (-4271 "*"))))) (T -844))
+((-2943 (*1 *2 *3) (-12 (-5 *3 (-1065 *4 *2)) (-14 *4 (-860)) (-4 *2 (-13 (-984) (-10 -7 (-6 (-4271 "*"))))) (-5 *1 (-844 *4 *2)))))
+(-10 -7 (-15 -2943 (|#2| (-1065 |#1| |#2|))))
+((-2828 (((-110) $ $) 7)) (-3815 (($) 20 T CONST)) (-3741 (((-3 $ "failed") $) 16)) (-2953 (((-1023 |#1|) $ |#1|) 35)) (-2436 (((-110) $) 19)) (-3596 (($ $ $) 33 (-3810 (|has| |#1| (-795)) (|has| |#1| (-349))))) (-3597 (($ $ $) 32 (-3810 (|has| |#1| (-795)) (|has| |#1| (-349))))) (-3513 (((-1081) $) 9)) (-2668 (($ $) 27)) (-3514 (((-1045) $) 10)) (-4046 ((|#1| $ |#1|) 37)) (-4078 ((|#1| $ |#1|) 36)) (-2944 (($ (-594 (-594 |#1|))) 38)) (-2945 (($ (-594 |#1|)) 39)) (-3273 (($ $ $) 23)) (-2620 (($ $ $) 22)) (-4233 (((-805) $) 11)) (-3581 (($ $ (-860)) 13) (($ $ (-719)) 17) (($ $ (-516)) 24)) (-2927 (($) 21 T CONST)) (-2826 (((-110) $ $) 30 (-3810 (|has| |#1| (-795)) (|has| |#1| (-349))))) (-2827 (((-110) $ $) 29 (-3810 (|has| |#1| (-795)) (|has| |#1| (-349))))) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 31 (-3810 (|has| |#1| (-795)) (|has| |#1| (-349))))) (-2948 (((-110) $ $) 34)) (-4224 (($ $ $) 26)) (** (($ $ (-860)) 14) (($ $ (-719)) 18) (($ $ (-516)) 25)) (* (($ $ $) 15)))
+(((-845 |#1|) (-133) (-1027)) (T -845))
+((-2945 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1027)) (-4 *1 (-845 *3)))) (-2944 (*1 *1 *2) (-12 (-5 *2 (-594 (-594 *3))) (-4 *3 (-1027)) (-4 *1 (-845 *3)))) (-4046 (*1 *2 *1 *2) (-12 (-4 *1 (-845 *2)) (-4 *2 (-1027)))) (-4078 (*1 *2 *1 *2) (-12 (-4 *1 (-845 *2)) (-4 *2 (-1027)))) (-2953 (*1 *2 *1 *3) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1027)) (-5 *2 (-1023 *3)))) (-2948 (*1 *2 *1 *1) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1027)) (-5 *2 (-110)))))
+(-13 (-453) (-10 -8 (-15 -2945 ($ (-594 |t#1|))) (-15 -2944 ($ (-594 (-594 |t#1|)))) (-15 -4046 (|t#1| $ |t#1|)) (-15 -4078 (|t#1| $ |t#1|)) (-15 -2953 ((-1023 |t#1|) $ |t#1|)) (-15 -2948 ((-110) $ $)) (IF (|has| |t#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#1| (-349)) (-6 (-795)) |%noBranch|)))
+(((-99) . T) ((-571 (-805)) . T) ((-453) . T) ((-675) . T) ((-795) -3810 (|has| |#1| (-795)) (|has| |#1| (-349))) ((-1038) . T) ((-1027) . T))
+((-2828 (((-110) $ $) NIL)) (-2955 (((-594 (-594 (-719))) $) 109)) (-2951 (((-594 (-719)) (-843 |#1|) $) 131)) (-2950 (((-594 (-719)) (-843 |#1|) $) 132)) (-2956 (((-594 (-843 |#1|)) $) 99)) (-3258 (((-843 |#1|) $ (-516)) 104) (((-843 |#1|) $) 105)) (-2954 (($ (-594 (-843 |#1|))) 111)) (-4050 (((-719) $) 106)) (-2952 (((-1023 (-1023 |#1|)) $) 129)) (-2953 (((-1023 |#1|) $ |#1|) 122) (((-1023 (-1023 |#1|)) $ (-1023 |#1|)) 140) (((-1023 (-594 |#1|)) $ (-594 |#1|)) 143)) (-2949 (((-1023 |#1|) $) 102)) (-3516 (((-110) (-843 |#1|) $) 93)) (-3513 (((-1081) $) NIL)) (-2946 (((-1185) $) 96) (((-1185) $ (-516) (-516)) 144)) (-3514 (((-1045) $) NIL)) (-2958 (((-594 (-843 |#1|)) $) 97)) (-4078 (((-843 |#1|) $ (-719)) 100)) (-4223 (((-719) $) 107)) (-4233 (((-805) $) 120) (((-594 (-843 |#1|)) $) 23) (($ (-594 (-843 |#1|))) 110)) (-2957 (((-594 |#1|) $) 108)) (-3317 (((-110) $ $) 137)) (-2947 (((-110) $ $) 135)) (-2948 (((-110) $ $) 134)))
+(((-846 |#1|) (-13 (-1027) (-10 -8 (-15 -4233 ((-594 (-843 |#1|)) $)) (-15 -2958 ((-594 (-843 |#1|)) $)) (-15 -4078 ((-843 |#1|) $ (-719))) (-15 -3258 ((-843 |#1|) $ (-516))) (-15 -3258 ((-843 |#1|) $)) (-15 -4050 ((-719) $)) (-15 -4223 ((-719) $)) (-15 -2957 ((-594 |#1|) $)) (-15 -2956 ((-594 (-843 |#1|)) $)) (-15 -2955 ((-594 (-594 (-719))) $)) (-15 -4233 ($ (-594 (-843 |#1|)))) (-15 -2954 ($ (-594 (-843 |#1|)))) (-15 -2953 ((-1023 |#1|) $ |#1|)) (-15 -2952 ((-1023 (-1023 |#1|)) $)) (-15 -2953 ((-1023 (-1023 |#1|)) $ (-1023 |#1|))) (-15 -2953 ((-1023 (-594 |#1|)) $ (-594 |#1|))) (-15 -3516 ((-110) (-843 |#1|) $)) (-15 -2951 ((-594 (-719)) (-843 |#1|) $)) (-15 -2950 ((-594 (-719)) (-843 |#1|) $)) (-15 -2949 ((-1023 |#1|) $)) (-15 -2948 ((-110) $ $)) (-15 -2947 ((-110) $ $)) (-15 -2946 ((-1185) $)) (-15 -2946 ((-1185) $ (-516) (-516))))) (-1027)) (T -846))
+((-4233 (*1 *2 *1) (-12 (-5 *2 (-594 (-843 *3))) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-594 (-843 *3))) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-4078 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-843 *4)) (-5 *1 (-846 *4)) (-4 *4 (-1027)))) (-3258 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-843 *4)) (-5 *1 (-846 *4)) (-4 *4 (-1027)))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-843 *3)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-4050 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-4223 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-2957 (*1 *2 *1) (-12 (-5 *2 (-594 *3)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-594 (-843 *3))) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-2955 (*1 *2 *1) (-12 (-5 *2 (-594 (-594 (-719)))) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-594 (-843 *3))) (-4 *3 (-1027)) (-5 *1 (-846 *3)))) (-2954 (*1 *1 *2) (-12 (-5 *2 (-594 (-843 *3))) (-4 *3 (-1027)) (-5 *1 (-846 *3)))) (-2953 (*1 *2 *1 *3) (-12 (-5 *2 (-1023 *3)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-2952 (*1 *2 *1) (-12 (-5 *2 (-1023 (-1023 *3))) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-2953 (*1 *2 *1 *3) (-12 (-4 *4 (-1027)) (-5 *2 (-1023 (-1023 *4))) (-5 *1 (-846 *4)) (-5 *3 (-1023 *4)))) (-2953 (*1 *2 *1 *3) (-12 (-4 *4 (-1027)) (-5 *2 (-1023 (-594 *4))) (-5 *1 (-846 *4)) (-5 *3 (-594 *4)))) (-3516 (*1 *2 *3 *1) (-12 (-5 *3 (-843 *4)) (-4 *4 (-1027)) (-5 *2 (-110)) (-5 *1 (-846 *4)))) (-2951 (*1 *2 *3 *1) (-12 (-5 *3 (-843 *4)) (-4 *4 (-1027)) (-5 *2 (-594 (-719))) (-5 *1 (-846 *4)))) (-2950 (*1 *2 *3 *1) (-12 (-5 *3 (-843 *4)) (-4 *4 (-1027)) (-5 *2 (-594 (-719))) (-5 *1 (-846 *4)))) (-2949 (*1 *2 *1) (-12 (-5 *2 (-1023 *3)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-2948 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-2947 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-2946 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-516)) (-5 *2 (-1185)) (-5 *1 (-846 *4)) (-4 *4 (-1027)))))
+(-13 (-1027) (-10 -8 (-15 -4233 ((-594 (-843 |#1|)) $)) (-15 -2958 ((-594 (-843 |#1|)) $)) (-15 -4078 ((-843 |#1|) $ (-719))) (-15 -3258 ((-843 |#1|) $ (-516))) (-15 -3258 ((-843 |#1|) $)) (-15 -4050 ((-719) $)) (-15 -4223 ((-719) $)) (-15 -2957 ((-594 |#1|) $)) (-15 -2956 ((-594 (-843 |#1|)) $)) (-15 -2955 ((-594 (-594 (-719))) $)) (-15 -4233 ($ (-594 (-843 |#1|)))) (-15 -2954 ($ (-594 (-843 |#1|)))) (-15 -2953 ((-1023 |#1|) $ |#1|)) (-15 -2952 ((-1023 (-1023 |#1|)) $)) (-15 -2953 ((-1023 (-1023 |#1|)) $ (-1023 |#1|))) (-15 -2953 ((-1023 (-594 |#1|)) $ (-594 |#1|))) (-15 -3516 ((-110) (-843 |#1|) $)) (-15 -2951 ((-594 (-719)) (-843 |#1|) $)) (-15 -2950 ((-594 (-719)) (-843 |#1|) $)) (-15 -2949 ((-1023 |#1|) $)) (-15 -2948 ((-110) $ $)) (-15 -2947 ((-110) $ $)) (-15 -2946 ((-1185) $)) (-15 -2946 ((-1185) $ (-516) (-516)))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-4208 (((-110) $) NIL)) (-4205 (((-719)) NIL)) (-3608 (($ $ (-860)) NIL (|has| $ (-349))) (($ $) NIL)) (-1741 (((-1107 (-860) (-719)) (-516)) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-1655 (((-110) $ $) NIL)) (-3395 (((-719)) NIL)) (-3815 (($) NIL T CONST)) (-3432 (((-3 $ "failed") $) NIL)) (-3431 (($ $) NIL)) (-1861 (($ (-1179 $)) NIL)) (-1739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2824 (($ $ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3258 (($) NIL)) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-3097 (($) NIL)) (-1746 (((-110) $) NIL)) (-1836 (($ $) NIL) (($ $ (-719)) NIL)) (-4005 (((-110) $) NIL)) (-4050 (((-780 (-860)) $) NIL) (((-860) $) NIL)) (-2436 (((-110) $) NIL)) (-2072 (($) NIL (|has| $ (-349)))) (-2070 (((-110) $) NIL (|has| $ (-349)))) (-3391 (($ $ (-860)) NIL (|has| $ (-349))) (($ $) NIL)) (-3723 (((-3 $ "failed") $) NIL)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL)) (-2073 (((-1092 $) $ (-860)) NIL (|has| $ (-349))) (((-1092 $) $) NIL)) (-2069 (((-860) $) NIL)) (-1674 (((-1092 $) $) NIL (|has| $ (-349)))) (-1673 (((-3 (-1092 $) "failed") $ $) NIL (|has| $ (-349))) (((-1092 $) $) NIL (|has| $ (-349)))) (-1675 (($ $ (-1092 $)) NIL (|has| $ (-349)))) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL)) (-3724 (($) NIL T CONST)) (-2426 (($ (-860)) NIL)) (-4207 (((-110) $) NIL)) (-3514 (((-1045) $) NIL)) (-2435 (($) NIL (|has| $ (-349)))) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-1742 (((-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516))))) NIL)) (-4011 (((-386 $) $) NIL)) (-4206 (((-860)) NIL) (((-780 (-860))) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-1837 (((-3 (-719) "failed") $ $) NIL) (((-719) $) NIL)) (-4190 (((-130)) NIL)) (-4089 (($ $ (-719)) NIL) (($ $) NIL)) (-4223 (((-860) $) NIL) (((-780 (-860)) $) NIL)) (-3459 (((-1092 $)) NIL)) (-1740 (($) NIL)) (-1676 (($) NIL (|has| $ (-349)))) (-3497 (((-637 $) (-1179 $)) NIL) (((-1179 $) $) NIL)) (-4246 (((-516) $) NIL)) (-2966 (((-3 (-1179 $) "failed") (-637 $)) NIL)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ $) NIL) (($ (-388 (-516))) NIL)) (-2965 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3385 (((-719)) NIL)) (-2071 (((-1179 $) (-860)) NIL) (((-1179 $)) NIL)) (-2117 (((-110) $ $) NIL)) (-4209 (((-110) $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-4204 (($ $ (-719)) NIL (|has| $ (-349))) (($ $) NIL (|has| $ (-349)))) (-2932 (($ $ (-719)) NIL) (($ $) NIL)) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL)))
+(((-847 |#1|) (-13 (-331) (-310 $) (-572 (-516))) (-860)) (T -847))
+NIL
+(-13 (-331) (-310 $) (-572 (-516)))
+((-2960 (((-3 (-594 (-1092 |#4|)) "failed") (-594 (-1092 |#4|)) (-1092 |#4|)) 128)) (-2963 ((|#1|) 77)) (-2962 (((-386 (-1092 |#4|)) (-1092 |#4|)) 137)) (-2964 (((-386 (-1092 |#4|)) (-594 |#3|) (-1092 |#4|)) 69)) (-2961 (((-386 (-1092 |#4|)) (-1092 |#4|)) 147)) (-2959 (((-3 (-594 (-1092 |#4|)) "failed") (-594 (-1092 |#4|)) (-1092 |#4|) |#3|) 92)))
+(((-848 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2960 ((-3 (-594 (-1092 |#4|)) "failed") (-594 (-1092 |#4|)) (-1092 |#4|))) (-15 -2961 ((-386 (-1092 |#4|)) (-1092 |#4|))) (-15 -2962 ((-386 (-1092 |#4|)) (-1092 |#4|))) (-15 -2963 (|#1|)) (-15 -2959 ((-3 (-594 (-1092 |#4|)) "failed") (-594 (-1092 |#4|)) (-1092 |#4|) |#3|)) (-15 -2964 ((-386 (-1092 |#4|)) (-594 |#3|) (-1092 |#4|)))) (-851) (-741) (-795) (-891 |#1| |#2| |#3|)) (T -848))
+((-2964 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *7)) (-4 *7 (-795)) (-4 *5 (-851)) (-4 *6 (-741)) (-4 *8 (-891 *5 *6 *7)) (-5 *2 (-386 (-1092 *8))) (-5 *1 (-848 *5 *6 *7 *8)) (-5 *4 (-1092 *8)))) (-2959 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-594 (-1092 *7))) (-5 *3 (-1092 *7)) (-4 *7 (-891 *5 *6 *4)) (-4 *5 (-851)) (-4 *6 (-741)) (-4 *4 (-795)) (-5 *1 (-848 *5 *6 *4 *7)))) (-2963 (*1 *2) (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-851)) (-5 *1 (-848 *2 *3 *4 *5)) (-4 *5 (-891 *2 *3 *4)))) (-2962 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-891 *4 *5 *6)) (-5 *2 (-386 (-1092 *7))) (-5 *1 (-848 *4 *5 *6 *7)) (-5 *3 (-1092 *7)))) (-2961 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-891 *4 *5 *6)) (-5 *2 (-386 (-1092 *7))) (-5 *1 (-848 *4 *5 *6 *7)) (-5 *3 (-1092 *7)))) (-2960 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-594 (-1092 *7))) (-5 *3 (-1092 *7)) (-4 *7 (-891 *4 *5 *6)) (-4 *4 (-851)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-848 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2960 ((-3 (-594 (-1092 |#4|)) "failed") (-594 (-1092 |#4|)) (-1092 |#4|))) (-15 -2961 ((-386 (-1092 |#4|)) (-1092 |#4|))) (-15 -2962 ((-386 (-1092 |#4|)) (-1092 |#4|))) (-15 -2963 (|#1|)) (-15 -2959 ((-3 (-594 (-1092 |#4|)) "failed") (-594 (-1092 |#4|)) (-1092 |#4|) |#3|)) (-15 -2964 ((-386 (-1092 |#4|)) (-594 |#3|) (-1092 |#4|))))
+((-2960 (((-3 (-594 (-1092 |#2|)) "failed") (-594 (-1092 |#2|)) (-1092 |#2|)) 36)) (-2963 ((|#1|) 54)) (-2962 (((-386 (-1092 |#2|)) (-1092 |#2|)) 102)) (-2964 (((-386 (-1092 |#2|)) (-1092 |#2|)) 90)) (-2961 (((-386 (-1092 |#2|)) (-1092 |#2|)) 113)))
+(((-849 |#1| |#2|) (-10 -7 (-15 -2960 ((-3 (-594 (-1092 |#2|)) "failed") (-594 (-1092 |#2|)) (-1092 |#2|))) (-15 -2961 ((-386 (-1092 |#2|)) (-1092 |#2|))) (-15 -2962 ((-386 (-1092 |#2|)) (-1092 |#2|))) (-15 -2963 (|#1|)) (-15 -2964 ((-386 (-1092 |#2|)) (-1092 |#2|)))) (-851) (-1155 |#1|)) (T -849))
+((-2964 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-1155 *4)) (-5 *2 (-386 (-1092 *5))) (-5 *1 (-849 *4 *5)) (-5 *3 (-1092 *5)))) (-2963 (*1 *2) (-12 (-4 *2 (-851)) (-5 *1 (-849 *2 *3)) (-4 *3 (-1155 *2)))) (-2962 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-1155 *4)) (-5 *2 (-386 (-1092 *5))) (-5 *1 (-849 *4 *5)) (-5 *3 (-1092 *5)))) (-2961 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-1155 *4)) (-5 *2 (-386 (-1092 *5))) (-5 *1 (-849 *4 *5)) (-5 *3 (-1092 *5)))) (-2960 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-594 (-1092 *5))) (-5 *3 (-1092 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-851)) (-5 *1 (-849 *4 *5)))))
+(-10 -7 (-15 -2960 ((-3 (-594 (-1092 |#2|)) "failed") (-594 (-1092 |#2|)) (-1092 |#2|))) (-15 -2961 ((-386 (-1092 |#2|)) (-1092 |#2|))) (-15 -2962 ((-386 (-1092 |#2|)) (-1092 |#2|))) (-15 -2963 (|#1|)) (-15 -2964 ((-386 (-1092 |#2|)) (-1092 |#2|))))
+((-2967 (((-3 (-594 (-1092 $)) "failed") (-594 (-1092 $)) (-1092 $)) 41)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 18)) (-2965 (((-3 $ "failed") $) 35)))
+(((-850 |#1|) (-10 -8 (-15 -2965 ((-3 |#1| "failed") |#1|)) (-15 -2967 ((-3 (-594 (-1092 |#1|)) "failed") (-594 (-1092 |#1|)) (-1092 |#1|))) (-15 -2971 ((-1092 |#1|) (-1092 |#1|) (-1092 |#1|)))) (-851)) (T -850))
+NIL
+(-10 -8 (-15 -2965 ((-3 |#1| "failed") |#1|)) (-15 -2967 ((-3 (-594 (-1092 |#1|)) "failed") (-594 (-1092 |#1|)) (-1092 |#1|))) (-15 -2971 ((-1092 |#1|) (-1092 |#1|) (-1092 |#1|))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 41)) (-2118 (($ $) 40)) (-2116 (((-110) $) 38)) (-1319 (((-3 $ "failed") $ $) 19)) (-2970 (((-386 (-1092 $)) (-1092 $)) 60)) (-4053 (($ $) 51)) (-4245 (((-386 $) $) 52)) (-2967 (((-3 (-594 (-1092 $)) "failed") (-594 (-1092 $)) (-1092 $)) 57)) (-3815 (($) 17 T CONST)) (-3741 (((-3 $ "failed") $) 34)) (-4005 (((-110) $) 53)) (-2436 (((-110) $) 31)) (-1963 (($ $ $) 46) (($ (-594 $)) 45)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 44)) (-3419 (($ $ $) 48) (($ (-594 $)) 47)) (-2968 (((-386 (-1092 $)) (-1092 $)) 58)) (-2969 (((-386 (-1092 $)) (-1092 $)) 59)) (-4011 (((-386 $) $) 50)) (-3740 (((-3 $ "failed") $ $) 42)) (-2966 (((-3 (-1179 $) "failed") (-637 $)) 56 (|has| $ (-138)))) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ $) 43)) (-2965 (((-3 $ "failed") $) 55 (|has| $ (-138)))) (-3385 (((-719)) 29)) (-2117 (((-110) $ $) 39)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24)))
+(((-851) (-133)) (T -851))
+((-2971 (*1 *2 *2 *2) (-12 (-5 *2 (-1092 *1)) (-4 *1 (-851)))) (-2970 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *2 (-386 (-1092 *1))) (-5 *3 (-1092 *1)))) (-2969 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *2 (-386 (-1092 *1))) (-5 *3 (-1092 *1)))) (-2968 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *2 (-386 (-1092 *1))) (-5 *3 (-1092 *1)))) (-2967 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-594 (-1092 *1))) (-5 *3 (-1092 *1)) (-4 *1 (-851)))) (-2966 (*1 *2 *3) (|partial| -12 (-5 *3 (-637 *1)) (-4 *1 (-138)) (-4 *1 (-851)) (-5 *2 (-1179 *1)))) (-2965 (*1 *1 *1) (|partial| -12 (-4 *1 (-138)) (-4 *1 (-851)))))
+(-13 (-1138) (-10 -8 (-15 -2970 ((-386 (-1092 $)) (-1092 $))) (-15 -2969 ((-386 (-1092 $)) (-1092 $))) (-15 -2968 ((-386 (-1092 $)) (-1092 $))) (-15 -2971 ((-1092 $) (-1092 $) (-1092 $))) (-15 -2967 ((-3 (-594 (-1092 $)) "failed") (-594 (-1092 $)) (-1092 $))) (IF (|has| $ (-138)) (PROGN (-15 -2966 ((-3 (-1179 $) "failed") (-637 $))) (-15 -2965 ((-3 $ "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-805)) . T) ((-162) . T) ((-272) . T) ((-432) . T) ((-523) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1138) . T))
+((-2973 (((-3 (-2 (|:| -4050 (-719)) (|:| -2409 |#5|)) "failed") (-314 |#2| |#3| |#4| |#5|)) 79)) (-2972 (((-110) (-314 |#2| |#3| |#4| |#5|)) 17)) (-4050 (((-3 (-719) "failed") (-314 |#2| |#3| |#4| |#5|)) 15)))
+(((-852 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4050 ((-3 (-719) "failed") (-314 |#2| |#3| |#4| |#5|))) (-15 -2972 ((-110) (-314 |#2| |#3| |#4| |#5|))) (-15 -2973 ((-3 (-2 (|:| -4050 (-719)) (|:| -2409 |#5|)) "failed") (-314 |#2| |#3| |#4| |#5|)))) (-13 (-795) (-523) (-975 (-516))) (-402 |#1|) (-1155 |#2|) (-1155 (-388 |#3|)) (-323 |#2| |#3| |#4|)) (T -852))
+((-2973 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-402 *4)) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-795) (-523) (-975 (-516)))) (-5 *2 (-2 (|:| -4050 (-719)) (|:| -2409 *8))) (-5 *1 (-852 *4 *5 *6 *7 *8)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-402 *4)) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-795) (-523) (-975 (-516)))) (-5 *2 (-110)) (-5 *1 (-852 *4 *5 *6 *7 *8)))) (-4050 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-402 *4)) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-795) (-523) (-975 (-516)))) (-5 *2 (-719)) (-5 *1 (-852 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -4050 ((-3 (-719) "failed") (-314 |#2| |#3| |#4| |#5|))) (-15 -2972 ((-110) (-314 |#2| |#3| |#4| |#5|))) (-15 -2973 ((-3 (-2 (|:| -4050 (-719)) (|:| -2409 |#5|)) "failed") (-314 |#2| |#3| |#4| |#5|))))
+((-2973 (((-3 (-2 (|:| -4050 (-719)) (|:| -2409 |#3|)) "failed") (-314 (-388 (-516)) |#1| |#2| |#3|)) 56)) (-2972 (((-110) (-314 (-388 (-516)) |#1| |#2| |#3|)) 16)) (-4050 (((-3 (-719) "failed") (-314 (-388 (-516)) |#1| |#2| |#3|)) 14)))
+(((-853 |#1| |#2| |#3|) (-10 -7 (-15 -4050 ((-3 (-719) "failed") (-314 (-388 (-516)) |#1| |#2| |#3|))) (-15 -2972 ((-110) (-314 (-388 (-516)) |#1| |#2| |#3|))) (-15 -2973 ((-3 (-2 (|:| -4050 (-719)) (|:| -2409 |#3|)) "failed") (-314 (-388 (-516)) |#1| |#2| |#3|)))) (-1155 (-388 (-516))) (-1155 (-388 |#1|)) (-323 (-388 (-516)) |#1| |#2|)) (T -853))
+((-2973 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 (-388 (-516)) *4 *5 *6)) (-4 *4 (-1155 (-388 (-516)))) (-4 *5 (-1155 (-388 *4))) (-4 *6 (-323 (-388 (-516)) *4 *5)) (-5 *2 (-2 (|:| -4050 (-719)) (|:| -2409 *6))) (-5 *1 (-853 *4 *5 *6)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-314 (-388 (-516)) *4 *5 *6)) (-4 *4 (-1155 (-388 (-516)))) (-4 *5 (-1155 (-388 *4))) (-4 *6 (-323 (-388 (-516)) *4 *5)) (-5 *2 (-110)) (-5 *1 (-853 *4 *5 *6)))) (-4050 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 (-388 (-516)) *4 *5 *6)) (-4 *4 (-1155 (-388 (-516)))) (-4 *5 (-1155 (-388 *4))) (-4 *6 (-323 (-388 (-516)) *4 *5)) (-5 *2 (-719)) (-5 *1 (-853 *4 *5 *6)))))
+(-10 -7 (-15 -4050 ((-3 (-719) "failed") (-314 (-388 (-516)) |#1| |#2| |#3|))) (-15 -2972 ((-110) (-314 (-388 (-516)) |#1| |#2| |#3|))) (-15 -2973 ((-3 (-2 (|:| -4050 (-719)) (|:| -2409 |#3|)) "failed") (-314 (-388 (-516)) |#1| |#2| |#3|))))
+((-2978 ((|#2| |#2|) 26)) (-2976 (((-516) (-594 (-2 (|:| |den| (-516)) (|:| |gcdnum| (-516))))) 15)) (-2974 (((-860) (-516)) 35)) (-2977 (((-516) |#2|) 42)) (-2975 (((-516) |#2|) 21) (((-2 (|:| |den| (-516)) (|:| |gcdnum| (-516))) |#1|) 20)))
+(((-854 |#1| |#2|) (-10 -7 (-15 -2974 ((-860) (-516))) (-15 -2975 ((-2 (|:| |den| (-516)) (|:| |gcdnum| (-516))) |#1|)) (-15 -2975 ((-516) |#2|)) (-15 -2976 ((-516) (-594 (-2 (|:| |den| (-516)) (|:| |gcdnum| (-516)))))) (-15 -2977 ((-516) |#2|)) (-15 -2978 (|#2| |#2|))) (-1155 (-388 (-516))) (-1155 (-388 |#1|))) (T -854))
+((-2978 (*1 *2 *2) (-12 (-4 *3 (-1155 (-388 (-516)))) (-5 *1 (-854 *3 *2)) (-4 *2 (-1155 (-388 *3))))) (-2977 (*1 *2 *3) (-12 (-4 *4 (-1155 (-388 *2))) (-5 *2 (-516)) (-5 *1 (-854 *4 *3)) (-4 *3 (-1155 (-388 *4))))) (-2976 (*1 *2 *3) (-12 (-5 *3 (-594 (-2 (|:| |den| (-516)) (|:| |gcdnum| (-516))))) (-4 *4 (-1155 (-388 *2))) (-5 *2 (-516)) (-5 *1 (-854 *4 *5)) (-4 *5 (-1155 (-388 *4))))) (-2975 (*1 *2 *3) (-12 (-4 *4 (-1155 (-388 *2))) (-5 *2 (-516)) (-5 *1 (-854 *4 *3)) (-4 *3 (-1155 (-388 *4))))) (-2975 (*1 *2 *3) (-12 (-4 *3 (-1155 (-388 (-516)))) (-5 *2 (-2 (|:| |den| (-516)) (|:| |gcdnum| (-516)))) (-5 *1 (-854 *3 *4)) (-4 *4 (-1155 (-388 *3))))) (-2974 (*1 *2 *3) (-12 (-5 *3 (-516)) (-4 *4 (-1155 (-388 *3))) (-5 *2 (-860)) (-5 *1 (-854 *4 *5)) (-4 *5 (-1155 (-388 *4))))))
+(-10 -7 (-15 -2974 ((-860) (-516))) (-15 -2975 ((-2 (|:| |den| (-516)) (|:| |gcdnum| (-516))) |#1|)) (-15 -2975 ((-516) |#2|)) (-15 -2976 ((-516) (-594 (-2 (|:| |den| (-516)) (|:| |gcdnum| (-516)))))) (-15 -2977 ((-516) |#2|)) (-15 -2978 (|#2| |#2|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3388 ((|#1| $) 81)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-1655 (((-110) $ $) NIL)) (-3815 (($) NIL T CONST)) (-2824 (($ $ $) NIL)) (-3741 (((-3 $ "failed") $) 75)) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4005 (((-110) $) NIL)) (-2986 (($ |#1| (-386 |#1|)) 73)) (-2980 (((-1092 |#1|) |#1| |#1|) 41)) (-2979 (($ $) 49)) (-2436 (((-110) $) NIL)) (-2981 (((-516) $) 78)) (-2982 (($ $ (-516)) 80)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL)) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-2983 ((|#1| $) 77)) (-2984 (((-386 |#1|) $) 76)) (-4011 (((-386 $) $) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) 74)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-2985 (($ $) 39)) (-4233 (((-805) $) 99) (($ (-516)) 54) (($ $) NIL) (($ (-388 (-516))) NIL) (($ |#1|) 31) (((-388 |#1|) $) 59) (($ (-388 (-386 |#1|))) 67)) (-3385 (((-719)) 52)) (-2117 (((-110) $ $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) 23 T CONST)) (-2927 (($) 12 T CONST)) (-3317 (((-110) $ $) 68)) (-4224 (($ $ $) NIL)) (-4116 (($ $) 88) (($ $ $) NIL)) (-4118 (($ $ $) 38)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 90) (($ $ $) 37) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
+(((-855 |#1|) (-13 (-344) (-37 |#1|) (-10 -8 (-15 -4233 ((-388 |#1|) $)) (-15 -4233 ($ (-388 (-386 |#1|)))) (-15 -2985 ($ $)) (-15 -2984 ((-386 |#1|) $)) (-15 -2983 (|#1| $)) (-15 -2982 ($ $ (-516))) (-15 -2981 ((-516) $)) (-15 -2980 ((-1092 |#1|) |#1| |#1|)) (-15 -2979 ($ $)) (-15 -2986 ($ |#1| (-386 |#1|))) (-15 -3388 (|#1| $)))) (-289)) (T -855))
+((-4233 (*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-855 *3)) (-4 *3 (-289)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-388 (-386 *3))) (-4 *3 (-289)) (-5 *1 (-855 *3)))) (-2985 (*1 *1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))) (-2984 (*1 *2 *1) (-12 (-5 *2 (-386 *3)) (-5 *1 (-855 *3)) (-4 *3 (-289)))) (-2983 (*1 *2 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))) (-2982 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-855 *3)) (-4 *3 (-289)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-855 *3)) (-4 *3 (-289)))) (-2980 (*1 *2 *3 *3) (-12 (-5 *2 (-1092 *3)) (-5 *1 (-855 *3)) (-4 *3 (-289)))) (-2979 (*1 *1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *3 (-386 *2)) (-4 *2 (-289)) (-5 *1 (-855 *2)))) (-3388 (*1 *2 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))))
+(-13 (-344) (-37 |#1|) (-10 -8 (-15 -4233 ((-388 |#1|) $)) (-15 -4233 ($ (-388 (-386 |#1|)))) (-15 -2985 ($ $)) (-15 -2984 ((-386 |#1|) $)) (-15 -2983 (|#1| $)) (-15 -2982 ($ $ (-516))) (-15 -2981 ((-516) $)) (-15 -2980 ((-1092 |#1|) |#1| |#1|)) (-15 -2979 ($ $)) (-15 -2986 ($ |#1| (-386 |#1|))) (-15 -3388 (|#1| $))))
+((-2986 (((-50) (-887 |#1|) (-386 (-887 |#1|)) (-1098)) 17) (((-50) (-388 (-887 |#1|)) (-1098)) 18)))
+(((-856 |#1|) (-10 -7 (-15 -2986 ((-50) (-388 (-887 |#1|)) (-1098))) (-15 -2986 ((-50) (-887 |#1|) (-386 (-887 |#1|)) (-1098)))) (-13 (-289) (-140))) (T -856))
+((-2986 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-386 (-887 *6))) (-5 *5 (-1098)) (-5 *3 (-887 *6)) (-4 *6 (-13 (-289) (-140))) (-5 *2 (-50)) (-5 *1 (-856 *6)))) (-2986 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-887 *5))) (-5 *4 (-1098)) (-4 *5 (-13 (-289) (-140))) (-5 *2 (-50)) (-5 *1 (-856 *5)))))
+(-10 -7 (-15 -2986 ((-50) (-388 (-887 |#1|)) (-1098))) (-15 -2986 ((-50) (-887 |#1|) (-386 (-887 |#1|)) (-1098))))
+((-2987 ((|#4| (-594 |#4|)) 122) (((-1092 |#4|) (-1092 |#4|) (-1092 |#4|)) 68) ((|#4| |#4| |#4|) 121)) (-3419 (((-1092 |#4|) (-594 (-1092 |#4|))) 115) (((-1092 |#4|) (-1092 |#4|) (-1092 |#4|)) 51) ((|#4| (-594 |#4|)) 56) ((|#4| |#4| |#4|) 85)))
+(((-857 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3419 (|#4| |#4| |#4|)) (-15 -3419 (|#4| (-594 |#4|))) (-15 -3419 ((-1092 |#4|) (-1092 |#4|) (-1092 |#4|))) (-15 -3419 ((-1092 |#4|) (-594 (-1092 |#4|)))) (-15 -2987 (|#4| |#4| |#4|)) (-15 -2987 ((-1092 |#4|) (-1092 |#4|) (-1092 |#4|))) (-15 -2987 (|#4| (-594 |#4|)))) (-741) (-795) (-289) (-891 |#3| |#1| |#2|)) (T -857))
+((-2987 (*1 *2 *3) (-12 (-5 *3 (-594 *2)) (-4 *2 (-891 *6 *4 *5)) (-5 *1 (-857 *4 *5 *6 *2)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)))) (-2987 (*1 *2 *2 *2) (-12 (-5 *2 (-1092 *6)) (-4 *6 (-891 *5 *3 *4)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-289)) (-5 *1 (-857 *3 *4 *5 *6)))) (-2987 (*1 *2 *2 *2) (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-289)) (-5 *1 (-857 *3 *4 *5 *2)) (-4 *2 (-891 *5 *3 *4)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-594 (-1092 *7))) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-1092 *7)) (-5 *1 (-857 *4 *5 *6 *7)) (-4 *7 (-891 *6 *4 *5)))) (-3419 (*1 *2 *2 *2) (-12 (-5 *2 (-1092 *6)) (-4 *6 (-891 *5 *3 *4)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-289)) (-5 *1 (-857 *3 *4 *5 *6)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-594 *2)) (-4 *2 (-891 *6 *4 *5)) (-5 *1 (-857 *4 *5 *6 *2)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)))) (-3419 (*1 *2 *2 *2) (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-289)) (-5 *1 (-857 *3 *4 *5 *2)) (-4 *2 (-891 *5 *3 *4)))))
+(-10 -7 (-15 -3419 (|#4| |#4| |#4|)) (-15 -3419 (|#4| (-594 |#4|))) (-15 -3419 ((-1092 |#4|) (-1092 |#4|) (-1092 |#4|))) (-15 -3419 ((-1092 |#4|) (-594 (-1092 |#4|)))) (-15 -2987 (|#4| |#4| |#4|)) (-15 -2987 ((-1092 |#4|) (-1092 |#4|) (-1092 |#4|))) (-15 -2987 (|#4| (-594 |#4|))))
+((-3000 (((-846 (-516)) (-911)) 23) (((-846 (-516)) (-594 (-516))) 20)) (-2988 (((-846 (-516)) (-594 (-516))) 48) (((-846 (-516)) (-860)) 49)) (-2999 (((-846 (-516))) 24)) (-2997 (((-846 (-516))) 38) (((-846 (-516)) (-594 (-516))) 37)) (-2996 (((-846 (-516))) 36) (((-846 (-516)) (-594 (-516))) 35)) (-2995 (((-846 (-516))) 34) (((-846 (-516)) (-594 (-516))) 33)) (-2994 (((-846 (-516))) 32) (((-846 (-516)) (-594 (-516))) 31)) (-2993 (((-846 (-516))) 30) (((-846 (-516)) (-594 (-516))) 29)) (-2998 (((-846 (-516))) 40) (((-846 (-516)) (-594 (-516))) 39)) (-2992 (((-846 (-516)) (-594 (-516))) 52) (((-846 (-516)) (-860)) 53)) (-2991 (((-846 (-516)) (-594 (-516))) 50) (((-846 (-516)) (-860)) 51)) (-2989 (((-846 (-516)) (-594 (-516))) 46) (((-846 (-516)) (-860)) 47)) (-2990 (((-846 (-516)) (-594 (-860))) 43)))
+(((-858) (-10 -7 (-15 -2988 ((-846 (-516)) (-860))) (-15 -2988 ((-846 (-516)) (-594 (-516)))) (-15 -2989 ((-846 (-516)) (-860))) (-15 -2989 ((-846 (-516)) (-594 (-516)))) (-15 -2990 ((-846 (-516)) (-594 (-860)))) (-15 -2991 ((-846 (-516)) (-860))) (-15 -2991 ((-846 (-516)) (-594 (-516)))) (-15 -2992 ((-846 (-516)) (-860))) (-15 -2992 ((-846 (-516)) (-594 (-516)))) (-15 -2993 ((-846 (-516)) (-594 (-516)))) (-15 -2993 ((-846 (-516)))) (-15 -2994 ((-846 (-516)) (-594 (-516)))) (-15 -2994 ((-846 (-516)))) (-15 -2995 ((-846 (-516)) (-594 (-516)))) (-15 -2995 ((-846 (-516)))) (-15 -2996 ((-846 (-516)) (-594 (-516)))) (-15 -2996 ((-846 (-516)))) (-15 -2997 ((-846 (-516)) (-594 (-516)))) (-15 -2997 ((-846 (-516)))) (-15 -2998 ((-846 (-516)) (-594 (-516)))) (-15 -2998 ((-846 (-516)))) (-15 -2999 ((-846 (-516)))) (-15 -3000 ((-846 (-516)) (-594 (-516)))) (-15 -3000 ((-846 (-516)) (-911))))) (T -858))
+((-3000 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-846 (-516))) (-5 *1 (-858)))) (-3000 (*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-846 (-516))) (-5 *1 (-858)))) (-2999 (*1 *2) (-12 (-5 *2 (-846 (-516))) (-5 *1 (-858)))) (-2998 (*1 *2) (-12 (-5 *2 (-846 (-516))) (-5 *1 (-858)))) (-2998 (*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-846 (-516))) (-5 *1 (-858)))) (-2997 (*1 *2) (-12 (-5 *2 (-846 (-516))) (-5 *1 (-858)))) (-2997 (*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-846 (-516))) (-5 *1 (-858)))) (-2996 (*1 *2) (-12 (-5 *2 (-846 (-516))) (-5 *1 (-858)))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-846 (-516))) (-5 *1 (-858)))) (-2995 (*1 *2) (-12 (-5 *2 (-846 (-516))) (-5 *1 (-858)))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-846 (-516))) (-5 *1 (-858)))) (-2994 (*1 *2) (-12 (-5 *2 (-846 (-516))) (-5 *1 (-858)))) (-2994 (*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-846 (-516))) (-5 *1 (-858)))) (-2993 (*1 *2) (-12 (-5 *2 (-846 (-516))) (-5 *1 (-858)))) (-2993 (*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-846 (-516))) (-5 *1 (-858)))) (-2992 (*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-846 (-516))) (-5 *1 (-858)))) (-2992 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-846 (-516))) (-5 *1 (-858)))) (-2991 (*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-846 (-516))) (-5 *1 (-858)))) (-2991 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-846 (-516))) (-5 *1 (-858)))) (-2990 (*1 *2 *3) (-12 (-5 *3 (-594 (-860))) (-5 *2 (-846 (-516))) (-5 *1 (-858)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-846 (-516))) (-5 *1 (-858)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-846 (-516))) (-5 *1 (-858)))) (-2988 (*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-846 (-516))) (-5 *1 (-858)))) (-2988 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-846 (-516))) (-5 *1 (-858)))))
+(-10 -7 (-15 -2988 ((-846 (-516)) (-860))) (-15 -2988 ((-846 (-516)) (-594 (-516)))) (-15 -2989 ((-846 (-516)) (-860))) (-15 -2989 ((-846 (-516)) (-594 (-516)))) (-15 -2990 ((-846 (-516)) (-594 (-860)))) (-15 -2991 ((-846 (-516)) (-860))) (-15 -2991 ((-846 (-516)) (-594 (-516)))) (-15 -2992 ((-846 (-516)) (-860))) (-15 -2992 ((-846 (-516)) (-594 (-516)))) (-15 -2993 ((-846 (-516)) (-594 (-516)))) (-15 -2993 ((-846 (-516)))) (-15 -2994 ((-846 (-516)) (-594 (-516)))) (-15 -2994 ((-846 (-516)))) (-15 -2995 ((-846 (-516)) (-594 (-516)))) (-15 -2995 ((-846 (-516)))) (-15 -2996 ((-846 (-516)) (-594 (-516)))) (-15 -2996 ((-846 (-516)))) (-15 -2997 ((-846 (-516)) (-594 (-516)))) (-15 -2997 ((-846 (-516)))) (-15 -2998 ((-846 (-516)) (-594 (-516)))) (-15 -2998 ((-846 (-516)))) (-15 -2999 ((-846 (-516)))) (-15 -3000 ((-846 (-516)) (-594 (-516)))) (-15 -3000 ((-846 (-516)) (-911))))
+((-3002 (((-594 (-887 |#1|)) (-594 (-887 |#1|)) (-594 (-1098))) 12)) (-3001 (((-594 (-887 |#1|)) (-594 (-887 |#1|)) (-594 (-1098))) 11)))
+(((-859 |#1|) (-10 -7 (-15 -3001 ((-594 (-887 |#1|)) (-594 (-887 |#1|)) (-594 (-1098)))) (-15 -3002 ((-594 (-887 |#1|)) (-594 (-887 |#1|)) (-594 (-1098))))) (-432)) (T -859))
+((-3002 (*1 *2 *2 *3) (-12 (-5 *2 (-594 (-887 *4))) (-5 *3 (-594 (-1098))) (-4 *4 (-432)) (-5 *1 (-859 *4)))) (-3001 (*1 *2 *2 *3) (-12 (-5 *2 (-594 (-887 *4))) (-5 *3 (-594 (-1098))) (-4 *4 (-432)) (-5 *1 (-859 *4)))))
+(-10 -7 (-15 -3001 ((-594 (-887 |#1|)) (-594 (-887 |#1|)) (-594 (-1098)))) (-15 -3002 ((-594 (-887 |#1|)) (-594 (-887 |#1|)) (-594 (-1098)))))
+((-2828 (((-110) $ $) NIL)) (-3815 (($) NIL T CONST)) (-3741 (((-3 $ "failed") $) NIL)) (-2436 (((-110) $) NIL)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-3419 (($ $ $) NIL)) (-4233 (((-805) $) NIL)) (-3581 (($ $ (-719)) NIL) (($ $ (-860)) NIL)) (-2927 (($) NIL T CONST)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-719)) NIL) (($ $ (-860)) NIL)) (* (($ (-860) $) NIL) (($ $ $) NIL)))
+(((-860) (-13 (-742) (-675) (-10 -8 (-15 -3419 ($ $ $)) (-6 (-4271 "*"))))) (T -860))
+((-3419 (*1 *1 *1 *1) (-5 *1 (-860))))
+(-13 (-742) (-675) (-10 -8 (-15 -3419 ($ $ $)) (-6 (-4271 "*"))))
+((-4233 (((-295 |#1|) (-457)) 16)))
+(((-861 |#1|) (-10 -7 (-15 -4233 ((-295 |#1|) (-457)))) (-13 (-795) (-523))) (T -861))
+((-4233 (*1 *2 *3) (-12 (-5 *3 (-457)) (-5 *2 (-295 *4)) (-5 *1 (-861 *4)) (-4 *4 (-13 (-795) (-523))))))
+(-10 -7 (-15 -4233 ((-295 |#1|) (-457))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 41)) (-2118 (($ $) 40)) (-2116 (((-110) $) 38)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3741 (((-3 $ "failed") $) 34)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 51)) (-2436 (((-110) $) 31)) (-1963 (($ $ $) 46) (($ (-594 $)) 45)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 44)) (-3419 (($ $ $) 48) (($ (-594 $)) 47)) (-3740 (((-3 $ "failed") $ $) 42)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 50)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ $) 43)) (-3385 (((-719)) 29)) (-2117 (((-110) $ $) 39)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24)))
+(((-862) (-133)) (T -862))
+((-3004 (*1 *2 *3) (-12 (-4 *1 (-862)) (-5 *2 (-2 (|:| -4229 (-594 *1)) (|:| -2435 *1))) (-5 *3 (-594 *1)))) (-3003 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-594 *1)) (-4 *1 (-862)))))
+(-13 (-432) (-10 -8 (-15 -3004 ((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $))) (-15 -3003 ((-3 (-594 $) "failed") (-594 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-805)) . T) ((-162) . T) ((-272) . T) ((-432) . T) ((-523) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-3005 (((-1092 |#2|) (-594 |#2|) (-594 |#2|)) 17) (((-1148 |#1| |#2|) (-1148 |#1| |#2|) (-594 |#2|) (-594 |#2|)) 13)))
+(((-863 |#1| |#2|) (-10 -7 (-15 -3005 ((-1148 |#1| |#2|) (-1148 |#1| |#2|) (-594 |#2|) (-594 |#2|))) (-15 -3005 ((-1092 |#2|) (-594 |#2|) (-594 |#2|)))) (-1098) (-344)) (T -863))
+((-3005 (*1 *2 *3 *3) (-12 (-5 *3 (-594 *5)) (-4 *5 (-344)) (-5 *2 (-1092 *5)) (-5 *1 (-863 *4 *5)) (-14 *4 (-1098)))) (-3005 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1148 *4 *5)) (-5 *3 (-594 *5)) (-14 *4 (-1098)) (-4 *5 (-344)) (-5 *1 (-863 *4 *5)))))
+(-10 -7 (-15 -3005 ((-1148 |#1| |#2|) (-1148 |#1| |#2|) (-594 |#2|) (-594 |#2|))) (-15 -3005 ((-1092 |#2|) (-594 |#2|) (-594 |#2|))))
+((-3006 ((|#2| (-594 |#1|) (-594 |#1|)) 24)))
+(((-864 |#1| |#2|) (-10 -7 (-15 -3006 (|#2| (-594 |#1|) (-594 |#1|)))) (-344) (-1155 |#1|)) (T -864))
+((-3006 (*1 *2 *3 *3) (-12 (-5 *3 (-594 *4)) (-4 *4 (-344)) (-4 *2 (-1155 *4)) (-5 *1 (-864 *4 *2)))))
+(-10 -7 (-15 -3006 (|#2| (-594 |#1|) (-594 |#1|))))
+((-3008 (((-516) (-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|))))))))) (-1081)) 139)) (-3027 ((|#4| |#4|) 155)) (-3012 (((-594 (-388 (-887 |#1|))) (-594 (-1098))) 119)) (-3026 (((-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516)))) (-637 |#4|) (-594 (-388 (-887 |#1|))) (-594 (-594 |#4|)) (-719) (-719) (-516)) 75)) (-3016 (((-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|)))))) (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|)))))) (-594 |#4|)) 59)) (-3025 (((-637 |#4|) (-637 |#4|) (-594 |#4|)) 55)) (-3009 (((-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|))))))))) (-1081)) 151)) (-3007 (((-516) (-637 |#4|) (-860) (-1081)) 133) (((-516) (-637 |#4|) (-594 (-1098)) (-860) (-1081)) 132) (((-516) (-637 |#4|) (-594 |#4|) (-860) (-1081)) 131) (((-516) (-637 |#4|) (-1081)) 128) (((-516) (-637 |#4|) (-594 (-1098)) (-1081)) 127) (((-516) (-637 |#4|) (-594 |#4|) (-1081)) 126) (((-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|))))))))) (-637 |#4|) (-860)) 125) (((-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|))))))))) (-637 |#4|) (-594 (-1098)) (-860)) 124) (((-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|))))))))) (-637 |#4|) (-594 |#4|) (-860)) 123) (((-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|))))))))) (-637 |#4|)) 121) (((-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|))))))))) (-637 |#4|) (-594 (-1098))) 120) (((-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|))))))))) (-637 |#4|) (-594 |#4|)) 116)) (-3013 ((|#4| (-887 |#1|)) 68)) (-3023 (((-110) (-594 |#4|) (-594 (-594 |#4|))) 152)) (-3022 (((-594 (-594 (-516))) (-516) (-516)) 130)) (-3021 (((-594 (-594 |#4|)) (-594 (-594 |#4|))) 88)) (-3020 (((-719) (-594 (-2 (|:| -3368 (-719)) (|:| |eqns| (-594 (-2 (|:| |det| |#4|) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516)))))) (|:| |fgb| (-594 |#4|))))) 86)) (-3019 (((-719) (-594 (-2 (|:| -3368 (-719)) (|:| |eqns| (-594 (-2 (|:| |det| |#4|) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516)))))) (|:| |fgb| (-594 |#4|))))) 85)) (-3028 (((-110) (-594 (-887 |#1|))) 17) (((-110) (-594 |#4|)) 13)) (-3014 (((-2 (|:| |sysok| (-110)) (|:| |z0| (-594 |#4|)) (|:| |n0| (-594 |#4|))) (-594 |#4|) (-594 |#4|)) 71)) (-3018 (((-594 |#4|) |#4|) 49)) (-3011 (((-594 (-388 (-887 |#1|))) (-594 |#4|)) 115) (((-637 (-388 (-887 |#1|))) (-637 |#4|)) 56) (((-388 (-887 |#1|)) |#4|) 112)) (-3010 (((-2 (|:| |rgl| (-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|)))))))))) (|:| |rgsz| (-516))) (-637 |#4|) (-594 (-388 (-887 |#1|))) (-719) (-1081) (-516)) 93)) (-3015 (((-594 (-2 (|:| -3368 (-719)) (|:| |eqns| (-594 (-2 (|:| |det| |#4|) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516)))))) (|:| |fgb| (-594 |#4|)))) (-637 |#4|) (-719)) 84)) (-3024 (((-594 (-2 (|:| |det| |#4|) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516))))) (-637 |#4|) (-719)) 101)) (-3017 (((-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|)))))) (-2 (|:| -1650 (-637 (-388 (-887 |#1|)))) (|:| |vec| (-594 (-388 (-887 |#1|)))) (|:| -3368 (-719)) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516))))) 48)))
+(((-865 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3007 ((-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|))))))))) (-637 |#4|) (-594 |#4|))) (-15 -3007 ((-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|))))))))) (-637 |#4|) (-594 (-1098)))) (-15 -3007 ((-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|))))))))) (-637 |#4|))) (-15 -3007 ((-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|))))))))) (-637 |#4|) (-594 |#4|) (-860))) (-15 -3007 ((-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|))))))))) (-637 |#4|) (-594 (-1098)) (-860))) (-15 -3007 ((-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|))))))))) (-637 |#4|) (-860))) (-15 -3007 ((-516) (-637 |#4|) (-594 |#4|) (-1081))) (-15 -3007 ((-516) (-637 |#4|) (-594 (-1098)) (-1081))) (-15 -3007 ((-516) (-637 |#4|) (-1081))) (-15 -3007 ((-516) (-637 |#4|) (-594 |#4|) (-860) (-1081))) (-15 -3007 ((-516) (-637 |#4|) (-594 (-1098)) (-860) (-1081))) (-15 -3007 ((-516) (-637 |#4|) (-860) (-1081))) (-15 -3008 ((-516) (-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|))))))))) (-1081))) (-15 -3009 ((-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|))))))))) (-1081))) (-15 -3010 ((-2 (|:| |rgl| (-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|)))))))))) (|:| |rgsz| (-516))) (-637 |#4|) (-594 (-388 (-887 |#1|))) (-719) (-1081) (-516))) (-15 -3011 ((-388 (-887 |#1|)) |#4|)) (-15 -3011 ((-637 (-388 (-887 |#1|))) (-637 |#4|))) (-15 -3011 ((-594 (-388 (-887 |#1|))) (-594 |#4|))) (-15 -3012 ((-594 (-388 (-887 |#1|))) (-594 (-1098)))) (-15 -3013 (|#4| (-887 |#1|))) (-15 -3014 ((-2 (|:| |sysok| (-110)) (|:| |z0| (-594 |#4|)) (|:| |n0| (-594 |#4|))) (-594 |#4|) (-594 |#4|))) (-15 -3015 ((-594 (-2 (|:| -3368 (-719)) (|:| |eqns| (-594 (-2 (|:| |det| |#4|) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516)))))) (|:| |fgb| (-594 |#4|)))) (-637 |#4|) (-719))) (-15 -3016 ((-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|)))))) (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|)))))) (-594 |#4|))) (-15 -3017 ((-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|)))))) (-2 (|:| -1650 (-637 (-388 (-887 |#1|)))) (|:| |vec| (-594 (-388 (-887 |#1|)))) (|:| -3368 (-719)) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516)))))) (-15 -3018 ((-594 |#4|) |#4|)) (-15 -3019 ((-719) (-594 (-2 (|:| -3368 (-719)) (|:| |eqns| (-594 (-2 (|:| |det| |#4|) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516)))))) (|:| |fgb| (-594 |#4|)))))) (-15 -3020 ((-719) (-594 (-2 (|:| -3368 (-719)) (|:| |eqns| (-594 (-2 (|:| |det| |#4|) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516)))))) (|:| |fgb| (-594 |#4|)))))) (-15 -3021 ((-594 (-594 |#4|)) (-594 (-594 |#4|)))) (-15 -3022 ((-594 (-594 (-516))) (-516) (-516))) (-15 -3023 ((-110) (-594 |#4|) (-594 (-594 |#4|)))) (-15 -3024 ((-594 (-2 (|:| |det| |#4|) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516))))) (-637 |#4|) (-719))) (-15 -3025 ((-637 |#4|) (-637 |#4|) (-594 |#4|))) (-15 -3026 ((-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516)))) (-637 |#4|) (-594 (-388 (-887 |#1|))) (-594 (-594 |#4|)) (-719) (-719) (-516))) (-15 -3027 (|#4| |#4|)) (-15 -3028 ((-110) (-594 |#4|))) (-15 -3028 ((-110) (-594 (-887 |#1|))))) (-13 (-289) (-140)) (-13 (-795) (-572 (-1098))) (-741) (-891 |#1| |#3| |#2|)) (T -865))
+((-3028 (*1 *2 *3) (-12 (-5 *3 (-594 (-887 *4))) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741)) (-5 *2 (-110)) (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-891 *4 *6 *5)))) (-3028 (*1 *2 *3) (-12 (-5 *3 (-594 *7)) (-4 *7 (-891 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741)) (-5 *2 (-110)) (-5 *1 (-865 *4 *5 *6 *7)))) (-3027 (*1 *2 *2) (-12 (-4 *3 (-13 (-289) (-140))) (-4 *4 (-13 (-795) (-572 (-1098)))) (-4 *5 (-741)) (-5 *1 (-865 *3 *4 *5 *2)) (-4 *2 (-891 *3 *5 *4)))) (-3026 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516))))) (-5 *4 (-637 *12)) (-5 *5 (-594 (-388 (-887 *9)))) (-5 *6 (-594 (-594 *12))) (-5 *7 (-719)) (-5 *8 (-516)) (-4 *9 (-13 (-289) (-140))) (-4 *12 (-891 *9 *11 *10)) (-4 *10 (-13 (-795) (-572 (-1098)))) (-4 *11 (-741)) (-5 *2 (-2 (|:| |eqzro| (-594 *12)) (|:| |neqzro| (-594 *12)) (|:| |wcond| (-594 (-887 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 *9)))) (|:| -2071 (-594 (-1179 (-388 (-887 *9))))))))) (-5 *1 (-865 *9 *10 *11 *12)))) (-3025 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *7)) (-5 *3 (-594 *7)) (-4 *7 (-891 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741)) (-5 *1 (-865 *4 *5 *6 *7)))) (-3024 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-719)) (-4 *8 (-891 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1098)))) (-4 *7 (-741)) (-5 *2 (-594 (-2 (|:| |det| *8) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516)))))) (-5 *1 (-865 *5 *6 *7 *8)))) (-3023 (*1 *2 *3 *4) (-12 (-5 *4 (-594 (-594 *8))) (-5 *3 (-594 *8)) (-4 *8 (-891 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1098)))) (-4 *7 (-741)) (-5 *2 (-110)) (-5 *1 (-865 *5 *6 *7 *8)))) (-3022 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741)) (-5 *2 (-594 (-594 (-516)))) (-5 *1 (-865 *4 *5 *6 *7)) (-5 *3 (-516)) (-4 *7 (-891 *4 *6 *5)))) (-3021 (*1 *2 *2) (-12 (-5 *2 (-594 (-594 *6))) (-4 *6 (-891 *3 *5 *4)) (-4 *3 (-13 (-289) (-140))) (-4 *4 (-13 (-795) (-572 (-1098)))) (-4 *5 (-741)) (-5 *1 (-865 *3 *4 *5 *6)))) (-3020 (*1 *2 *3) (-12 (-5 *3 (-594 (-2 (|:| -3368 (-719)) (|:| |eqns| (-594 (-2 (|:| |det| *7) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516)))))) (|:| |fgb| (-594 *7))))) (-4 *7 (-891 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741)) (-5 *2 (-719)) (-5 *1 (-865 *4 *5 *6 *7)))) (-3019 (*1 *2 *3) (-12 (-5 *3 (-594 (-2 (|:| -3368 (-719)) (|:| |eqns| (-594 (-2 (|:| |det| *7) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516)))))) (|:| |fgb| (-594 *7))))) (-4 *7 (-891 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741)) (-5 *2 (-719)) (-5 *1 (-865 *4 *5 *6 *7)))) (-3018 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741)) (-5 *2 (-594 *3)) (-5 *1 (-865 *4 *5 *6 *3)) (-4 *3 (-891 *4 *6 *5)))) (-3017 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1650 (-637 (-388 (-887 *4)))) (|:| |vec| (-594 (-388 (-887 *4)))) (|:| -3368 (-719)) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516))))) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741)) (-5 *2 (-2 (|:| |partsol| (-1179 (-388 (-887 *4)))) (|:| -2071 (-594 (-1179 (-388 (-887 *4))))))) (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-891 *4 *6 *5)))) (-3016 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1179 (-388 (-887 *4)))) (|:| -2071 (-594 (-1179 (-388 (-887 *4))))))) (-5 *3 (-594 *7)) (-4 *4 (-13 (-289) (-140))) (-4 *7 (-891 *4 *6 *5)) (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741)) (-5 *1 (-865 *4 *5 *6 *7)))) (-3015 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-4 *8 (-891 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1098)))) (-4 *7 (-741)) (-5 *2 (-594 (-2 (|:| -3368 (-719)) (|:| |eqns| (-594 (-2 (|:| |det| *8) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516)))))) (|:| |fgb| (-594 *8))))) (-5 *1 (-865 *5 *6 *7 *8)) (-5 *4 (-719)))) (-3014 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741)) (-4 *7 (-891 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-110)) (|:| |z0| (-594 *7)) (|:| |n0| (-594 *7)))) (-5 *1 (-865 *4 *5 *6 *7)) (-5 *3 (-594 *7)))) (-3013 (*1 *2 *3) (-12 (-5 *3 (-887 *4)) (-4 *4 (-13 (-289) (-140))) (-4 *2 (-891 *4 *6 *5)) (-5 *1 (-865 *4 *5 *6 *2)) (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741)))) (-3012 (*1 *2 *3) (-12 (-5 *3 (-594 (-1098))) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741)) (-5 *2 (-594 (-388 (-887 *4)))) (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-891 *4 *6 *5)))) (-3011 (*1 *2 *3) (-12 (-5 *3 (-594 *7)) (-4 *7 (-891 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741)) (-5 *2 (-594 (-388 (-887 *4)))) (-5 *1 (-865 *4 *5 *6 *7)))) (-3011 (*1 *2 *3) (-12 (-5 *3 (-637 *7)) (-4 *7 (-891 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741)) (-5 *2 (-637 (-388 (-887 *4)))) (-5 *1 (-865 *4 *5 *6 *7)))) (-3011 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741)) (-5 *2 (-388 (-887 *4))) (-5 *1 (-865 *4 *5 *6 *3)) (-4 *3 (-891 *4 *6 *5)))) (-3010 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-637 *11)) (-5 *4 (-594 (-388 (-887 *8)))) (-5 *5 (-719)) (-5 *6 (-1081)) (-4 *8 (-13 (-289) (-140))) (-4 *11 (-891 *8 *10 *9)) (-4 *9 (-13 (-795) (-572 (-1098)))) (-4 *10 (-741)) (-5 *2 (-2 (|:| |rgl| (-594 (-2 (|:| |eqzro| (-594 *11)) (|:| |neqzro| (-594 *11)) (|:| |wcond| (-594 (-887 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 *8)))) (|:| -2071 (-594 (-1179 (-388 (-887 *8)))))))))) (|:| |rgsz| (-516)))) (-5 *1 (-865 *8 *9 *10 *11)) (-5 *7 (-516)))) (-3009 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741)) (-5 *2 (-594 (-2 (|:| |eqzro| (-594 *7)) (|:| |neqzro| (-594 *7)) (|:| |wcond| (-594 (-887 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 *4)))) (|:| -2071 (-594 (-1179 (-388 (-887 *4)))))))))) (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-891 *4 *6 *5)))) (-3008 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-2 (|:| |eqzro| (-594 *8)) (|:| |neqzro| (-594 *8)) (|:| |wcond| (-594 (-887 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 *5)))) (|:| -2071 (-594 (-1179 (-388 (-887 *5)))))))))) (-5 *4 (-1081)) (-4 *5 (-13 (-289) (-140))) (-4 *8 (-891 *5 *7 *6)) (-4 *6 (-13 (-795) (-572 (-1098)))) (-4 *7 (-741)) (-5 *2 (-516)) (-5 *1 (-865 *5 *6 *7 *8)))) (-3007 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *9)) (-5 *4 (-860)) (-5 *5 (-1081)) (-4 *9 (-891 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1098)))) (-4 *8 (-741)) (-5 *2 (-516)) (-5 *1 (-865 *6 *7 *8 *9)))) (-3007 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-637 *10)) (-5 *4 (-594 (-1098))) (-5 *5 (-860)) (-5 *6 (-1081)) (-4 *10 (-891 *7 *9 *8)) (-4 *7 (-13 (-289) (-140))) (-4 *8 (-13 (-795) (-572 (-1098)))) (-4 *9 (-741)) (-5 *2 (-516)) (-5 *1 (-865 *7 *8 *9 *10)))) (-3007 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-637 *10)) (-5 *4 (-594 *10)) (-5 *5 (-860)) (-5 *6 (-1081)) (-4 *10 (-891 *7 *9 *8)) (-4 *7 (-13 (-289) (-140))) (-4 *8 (-13 (-795) (-572 (-1098)))) (-4 *9 (-741)) (-5 *2 (-516)) (-5 *1 (-865 *7 *8 *9 *10)))) (-3007 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-1081)) (-4 *8 (-891 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1098)))) (-4 *7 (-741)) (-5 *2 (-516)) (-5 *1 (-865 *5 *6 *7 *8)))) (-3007 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *9)) (-5 *4 (-594 (-1098))) (-5 *5 (-1081)) (-4 *9 (-891 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1098)))) (-4 *8 (-741)) (-5 *2 (-516)) (-5 *1 (-865 *6 *7 *8 *9)))) (-3007 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *9)) (-5 *4 (-594 *9)) (-5 *5 (-1081)) (-4 *9 (-891 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1098)))) (-4 *8 (-741)) (-5 *2 (-516)) (-5 *1 (-865 *6 *7 *8 *9)))) (-3007 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-860)) (-4 *8 (-891 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1098)))) (-4 *7 (-741)) (-5 *2 (-594 (-2 (|:| |eqzro| (-594 *8)) (|:| |neqzro| (-594 *8)) (|:| |wcond| (-594 (-887 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 *5)))) (|:| -2071 (-594 (-1179 (-388 (-887 *5)))))))))) (-5 *1 (-865 *5 *6 *7 *8)))) (-3007 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *9)) (-5 *4 (-594 (-1098))) (-5 *5 (-860)) (-4 *9 (-891 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1098)))) (-4 *8 (-741)) (-5 *2 (-594 (-2 (|:| |eqzro| (-594 *9)) (|:| |neqzro| (-594 *9)) (|:| |wcond| (-594 (-887 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 *6)))) (|:| -2071 (-594 (-1179 (-388 (-887 *6)))))))))) (-5 *1 (-865 *6 *7 *8 *9)))) (-3007 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *9)) (-5 *5 (-860)) (-4 *9 (-891 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1098)))) (-4 *8 (-741)) (-5 *2 (-594 (-2 (|:| |eqzro| (-594 *9)) (|:| |neqzro| (-594 *9)) (|:| |wcond| (-594 (-887 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 *6)))) (|:| -2071 (-594 (-1179 (-388 (-887 *6)))))))))) (-5 *1 (-865 *6 *7 *8 *9)) (-5 *4 (-594 *9)))) (-3007 (*1 *2 *3) (-12 (-5 *3 (-637 *7)) (-4 *7 (-891 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741)) (-5 *2 (-594 (-2 (|:| |eqzro| (-594 *7)) (|:| |neqzro| (-594 *7)) (|:| |wcond| (-594 (-887 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 *4)))) (|:| -2071 (-594 (-1179 (-388 (-887 *4)))))))))) (-5 *1 (-865 *4 *5 *6 *7)))) (-3007 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-594 (-1098))) (-4 *8 (-891 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1098)))) (-4 *7 (-741)) (-5 *2 (-594 (-2 (|:| |eqzro| (-594 *8)) (|:| |neqzro| (-594 *8)) (|:| |wcond| (-594 (-887 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 *5)))) (|:| -2071 (-594 (-1179 (-388 (-887 *5)))))))))) (-5 *1 (-865 *5 *6 *7 *8)))) (-3007 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-4 *8 (-891 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1098)))) (-4 *7 (-741)) (-5 *2 (-594 (-2 (|:| |eqzro| (-594 *8)) (|:| |neqzro| (-594 *8)) (|:| |wcond| (-594 (-887 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 *5)))) (|:| -2071 (-594 (-1179 (-388 (-887 *5)))))))))) (-5 *1 (-865 *5 *6 *7 *8)) (-5 *4 (-594 *8)))))
+(-10 -7 (-15 -3007 ((-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|))))))))) (-637 |#4|) (-594 |#4|))) (-15 -3007 ((-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|))))))))) (-637 |#4|) (-594 (-1098)))) (-15 -3007 ((-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|))))))))) (-637 |#4|))) (-15 -3007 ((-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|))))))))) (-637 |#4|) (-594 |#4|) (-860))) (-15 -3007 ((-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|))))))))) (-637 |#4|) (-594 (-1098)) (-860))) (-15 -3007 ((-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|))))))))) (-637 |#4|) (-860))) (-15 -3007 ((-516) (-637 |#4|) (-594 |#4|) (-1081))) (-15 -3007 ((-516) (-637 |#4|) (-594 (-1098)) (-1081))) (-15 -3007 ((-516) (-637 |#4|) (-1081))) (-15 -3007 ((-516) (-637 |#4|) (-594 |#4|) (-860) (-1081))) (-15 -3007 ((-516) (-637 |#4|) (-594 (-1098)) (-860) (-1081))) (-15 -3007 ((-516) (-637 |#4|) (-860) (-1081))) (-15 -3008 ((-516) (-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|))))))))) (-1081))) (-15 -3009 ((-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|))))))))) (-1081))) (-15 -3010 ((-2 (|:| |rgl| (-594 (-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|)))))))))) (|:| |rgsz| (-516))) (-637 |#4|) (-594 (-388 (-887 |#1|))) (-719) (-1081) (-516))) (-15 -3011 ((-388 (-887 |#1|)) |#4|)) (-15 -3011 ((-637 (-388 (-887 |#1|))) (-637 |#4|))) (-15 -3011 ((-594 (-388 (-887 |#1|))) (-594 |#4|))) (-15 -3012 ((-594 (-388 (-887 |#1|))) (-594 (-1098)))) (-15 -3013 (|#4| (-887 |#1|))) (-15 -3014 ((-2 (|:| |sysok| (-110)) (|:| |z0| (-594 |#4|)) (|:| |n0| (-594 |#4|))) (-594 |#4|) (-594 |#4|))) (-15 -3015 ((-594 (-2 (|:| -3368 (-719)) (|:| |eqns| (-594 (-2 (|:| |det| |#4|) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516)))))) (|:| |fgb| (-594 |#4|)))) (-637 |#4|) (-719))) (-15 -3016 ((-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|)))))) (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|)))))) (-594 |#4|))) (-15 -3017 ((-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|)))))) (-2 (|:| -1650 (-637 (-388 (-887 |#1|)))) (|:| |vec| (-594 (-388 (-887 |#1|)))) (|:| -3368 (-719)) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516)))))) (-15 -3018 ((-594 |#4|) |#4|)) (-15 -3019 ((-719) (-594 (-2 (|:| -3368 (-719)) (|:| |eqns| (-594 (-2 (|:| |det| |#4|) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516)))))) (|:| |fgb| (-594 |#4|)))))) (-15 -3020 ((-719) (-594 (-2 (|:| -3368 (-719)) (|:| |eqns| (-594 (-2 (|:| |det| |#4|) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516)))))) (|:| |fgb| (-594 |#4|)))))) (-15 -3021 ((-594 (-594 |#4|)) (-594 (-594 |#4|)))) (-15 -3022 ((-594 (-594 (-516))) (-516) (-516))) (-15 -3023 ((-110) (-594 |#4|) (-594 (-594 |#4|)))) (-15 -3024 ((-594 (-2 (|:| |det| |#4|) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516))))) (-637 |#4|) (-719))) (-15 -3025 ((-637 |#4|) (-637 |#4|) (-594 |#4|))) (-15 -3026 ((-2 (|:| |eqzro| (-594 |#4|)) (|:| |neqzro| (-594 |#4|)) (|:| |wcond| (-594 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-388 (-887 |#1|)))) (|:| -2071 (-594 (-1179 (-388 (-887 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516)))) (-637 |#4|) (-594 (-388 (-887 |#1|))) (-594 (-594 |#4|)) (-719) (-719) (-516))) (-15 -3027 (|#4| |#4|)) (-15 -3028 ((-110) (-594 |#4|))) (-15 -3028 ((-110) (-594 (-887 |#1|)))))
+((-4153 (($ $ (-1017 (-208))) 70) (($ $ (-1017 (-208)) (-1017 (-208))) 71)) (-3160 (((-1017 (-208)) $) 44)) (-3161 (((-1017 (-208)) $) 43)) (-3052 (((-1017 (-208)) $) 45)) (-3033 (((-516) (-516)) 37)) (-3037 (((-516) (-516)) 33)) (-3035 (((-516) (-516)) 35)) (-3031 (((-110) (-110)) 39)) (-3034 (((-516)) 36)) (-3393 (($ $ (-1017 (-208))) 74) (($ $) 75)) (-3054 (($ (-1 (-884 (-208)) (-208)) (-1017 (-208))) 84) (($ (-1 (-884 (-208)) (-208)) (-1017 (-208)) (-1017 (-208)) (-1017 (-208))) 85)) (-3040 (($ (-1 (-208) (-208)) (-1017 (-208))) 92) (($ (-1 (-208) (-208))) 95)) (-3053 (($ (-1 (-208) (-208)) (-1017 (-208))) 79) (($ (-1 (-208) (-208)) (-1017 (-208)) (-1017 (-208))) 80) (($ (-594 (-1 (-208) (-208))) (-1017 (-208))) 87) (($ (-594 (-1 (-208) (-208))) (-1017 (-208)) (-1017 (-208))) 88) (($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1017 (-208))) 81) (($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1017 (-208)) (-1017 (-208)) (-1017 (-208))) 82) (($ $ (-1017 (-208))) 76)) (-3039 (((-110) $) 40)) (-3030 (((-516)) 41)) (-3038 (((-516)) 32)) (-3036 (((-516)) 34)) (-3162 (((-594 (-594 (-884 (-208)))) $) 23)) (-3029 (((-110) (-110)) 42)) (-4233 (((-805) $) 106)) (-3032 (((-110)) 38)))
+(((-866) (-13 (-896) (-10 -8 (-15 -3053 ($ (-1 (-208) (-208)) (-1017 (-208)))) (-15 -3053 ($ (-1 (-208) (-208)) (-1017 (-208)) (-1017 (-208)))) (-15 -3053 ($ (-594 (-1 (-208) (-208))) (-1017 (-208)))) (-15 -3053 ($ (-594 (-1 (-208) (-208))) (-1017 (-208)) (-1017 (-208)))) (-15 -3053 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1017 (-208)))) (-15 -3053 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1017 (-208)) (-1017 (-208)) (-1017 (-208)))) (-15 -3054 ($ (-1 (-884 (-208)) (-208)) (-1017 (-208)))) (-15 -3054 ($ (-1 (-884 (-208)) (-208)) (-1017 (-208)) (-1017 (-208)) (-1017 (-208)))) (-15 -3040 ($ (-1 (-208) (-208)) (-1017 (-208)))) (-15 -3040 ($ (-1 (-208) (-208)))) (-15 -3053 ($ $ (-1017 (-208)))) (-15 -3039 ((-110) $)) (-15 -4153 ($ $ (-1017 (-208)))) (-15 -4153 ($ $ (-1017 (-208)) (-1017 (-208)))) (-15 -3393 ($ $ (-1017 (-208)))) (-15 -3393 ($ $)) (-15 -3052 ((-1017 (-208)) $)) (-15 -3038 ((-516))) (-15 -3037 ((-516) (-516))) (-15 -3036 ((-516))) (-15 -3035 ((-516) (-516))) (-15 -3034 ((-516))) (-15 -3033 ((-516) (-516))) (-15 -3032 ((-110))) (-15 -3031 ((-110) (-110))) (-15 -3030 ((-516))) (-15 -3029 ((-110) (-110)))))) (T -866))
+((-3053 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1017 (-208))) (-5 *1 (-866)))) (-3053 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1017 (-208))) (-5 *1 (-866)))) (-3053 (*1 *1 *2 *3) (-12 (-5 *2 (-594 (-1 (-208) (-208)))) (-5 *3 (-1017 (-208))) (-5 *1 (-866)))) (-3053 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-594 (-1 (-208) (-208)))) (-5 *3 (-1017 (-208))) (-5 *1 (-866)))) (-3053 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1017 (-208))) (-5 *1 (-866)))) (-3053 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1017 (-208))) (-5 *1 (-866)))) (-3054 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1017 (-208))) (-5 *1 (-866)))) (-3054 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1017 (-208))) (-5 *1 (-866)))) (-3040 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1017 (-208))) (-5 *1 (-866)))) (-3040 (*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-866)))) (-3053 (*1 *1 *1 *2) (-12 (-5 *2 (-1017 (-208))) (-5 *1 (-866)))) (-3039 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-866)))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-1017 (-208))) (-5 *1 (-866)))) (-4153 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1017 (-208))) (-5 *1 (-866)))) (-3393 (*1 *1 *1 *2) (-12 (-5 *2 (-1017 (-208))) (-5 *1 (-866)))) (-3393 (*1 *1 *1) (-5 *1 (-866))) (-3052 (*1 *2 *1) (-12 (-5 *2 (-1017 (-208))) (-5 *1 (-866)))) (-3038 (*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-866)))) (-3037 (*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-866)))) (-3036 (*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-866)))) (-3035 (*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-866)))) (-3034 (*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-866)))) (-3033 (*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-866)))) (-3032 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-866)))) (-3031 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-866)))) (-3030 (*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-866)))) (-3029 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-866)))))
+(-13 (-896) (-10 -8 (-15 -3053 ($ (-1 (-208) (-208)) (-1017 (-208)))) (-15 -3053 ($ (-1 (-208) (-208)) (-1017 (-208)) (-1017 (-208)))) (-15 -3053 ($ (-594 (-1 (-208) (-208))) (-1017 (-208)))) (-15 -3053 ($ (-594 (-1 (-208) (-208))) (-1017 (-208)) (-1017 (-208)))) (-15 -3053 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1017 (-208)))) (-15 -3053 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1017 (-208)) (-1017 (-208)) (-1017 (-208)))) (-15 -3054 ($ (-1 (-884 (-208)) (-208)) (-1017 (-208)))) (-15 -3054 ($ (-1 (-884 (-208)) (-208)) (-1017 (-208)) (-1017 (-208)) (-1017 (-208)))) (-15 -3040 ($ (-1 (-208) (-208)) (-1017 (-208)))) (-15 -3040 ($ (-1 (-208) (-208)))) (-15 -3053 ($ $ (-1017 (-208)))) (-15 -3039 ((-110) $)) (-15 -4153 ($ $ (-1017 (-208)))) (-15 -4153 ($ $ (-1017 (-208)) (-1017 (-208)))) (-15 -3393 ($ $ (-1017 (-208)))) (-15 -3393 ($ $)) (-15 -3052 ((-1017 (-208)) $)) (-15 -3038 ((-516))) (-15 -3037 ((-516) (-516))) (-15 -3036 ((-516))) (-15 -3035 ((-516) (-516))) (-15 -3034 ((-516))) (-15 -3033 ((-516) (-516))) (-15 -3032 ((-110))) (-15 -3031 ((-110) (-110))) (-15 -3030 ((-516))) (-15 -3029 ((-110) (-110)))))
+((-3040 (((-866) |#1| (-1098)) 17) (((-866) |#1| (-1098) (-1017 (-208))) 21)) (-3053 (((-866) |#1| |#1| (-1098) (-1017 (-208))) 19) (((-866) |#1| (-1098) (-1017 (-208))) 15)))
+(((-867 |#1|) (-10 -7 (-15 -3053 ((-866) |#1| (-1098) (-1017 (-208)))) (-15 -3053 ((-866) |#1| |#1| (-1098) (-1017 (-208)))) (-15 -3040 ((-866) |#1| (-1098) (-1017 (-208)))) (-15 -3040 ((-866) |#1| (-1098)))) (-572 (-505))) (T -867))
+((-3040 (*1 *2 *3 *4) (-12 (-5 *4 (-1098)) (-5 *2 (-866)) (-5 *1 (-867 *3)) (-4 *3 (-572 (-505))))) (-3040 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1098)) (-5 *5 (-1017 (-208))) (-5 *2 (-866)) (-5 *1 (-867 *3)) (-4 *3 (-572 (-505))))) (-3053 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1098)) (-5 *5 (-1017 (-208))) (-5 *2 (-866)) (-5 *1 (-867 *3)) (-4 *3 (-572 (-505))))) (-3053 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1098)) (-5 *5 (-1017 (-208))) (-5 *2 (-866)) (-5 *1 (-867 *3)) (-4 *3 (-572 (-505))))))
+(-10 -7 (-15 -3053 ((-866) |#1| (-1098) (-1017 (-208)))) (-15 -3053 ((-866) |#1| |#1| (-1098) (-1017 (-208)))) (-15 -3040 ((-866) |#1| (-1098) (-1017 (-208)))) (-15 -3040 ((-866) |#1| (-1098))))
+((-4153 (($ $ (-1017 (-208)) (-1017 (-208)) (-1017 (-208))) 70)) (-3159 (((-1017 (-208)) $) 40)) (-3160 (((-1017 (-208)) $) 39)) (-3161 (((-1017 (-208)) $) 38)) (-3051 (((-594 (-594 (-208))) $) 43)) (-3052 (((-1017 (-208)) $) 41)) (-3045 (((-516) (-516)) 32)) (-3049 (((-516) (-516)) 28)) (-3047 (((-516) (-516)) 30)) (-3043 (((-110) (-110)) 35)) (-3046 (((-516)) 31)) (-3393 (($ $ (-1017 (-208))) 73) (($ $) 74)) (-3054 (($ (-1 (-884 (-208)) (-208)) (-1017 (-208))) 78) (($ (-1 (-884 (-208)) (-208)) (-1017 (-208)) (-1017 (-208)) (-1017 (-208)) (-1017 (-208))) 79)) (-3053 (($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1017 (-208))) 81) (($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1017 (-208)) (-1017 (-208)) (-1017 (-208)) (-1017 (-208))) 82) (($ $ (-1017 (-208))) 76)) (-3042 (((-516)) 36)) (-3050 (((-516)) 27)) (-3048 (((-516)) 29)) (-3162 (((-594 (-594 (-884 (-208)))) $) 95)) (-3041 (((-110) (-110)) 37)) (-4233 (((-805) $) 94)) (-3044 (((-110)) 34)))
+(((-868) (-13 (-914) (-10 -8 (-15 -3054 ($ (-1 (-884 (-208)) (-208)) (-1017 (-208)))) (-15 -3054 ($ (-1 (-884 (-208)) (-208)) (-1017 (-208)) (-1017 (-208)) (-1017 (-208)) (-1017 (-208)))) (-15 -3053 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1017 (-208)))) (-15 -3053 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1017 (-208)) (-1017 (-208)) (-1017 (-208)) (-1017 (-208)))) (-15 -3053 ($ $ (-1017 (-208)))) (-15 -4153 ($ $ (-1017 (-208)) (-1017 (-208)) (-1017 (-208)))) (-15 -3393 ($ $ (-1017 (-208)))) (-15 -3393 ($ $)) (-15 -3052 ((-1017 (-208)) $)) (-15 -3051 ((-594 (-594 (-208))) $)) (-15 -3050 ((-516))) (-15 -3049 ((-516) (-516))) (-15 -3048 ((-516))) (-15 -3047 ((-516) (-516))) (-15 -3046 ((-516))) (-15 -3045 ((-516) (-516))) (-15 -3044 ((-110))) (-15 -3043 ((-110) (-110))) (-15 -3042 ((-516))) (-15 -3041 ((-110) (-110)))))) (T -868))
+((-3054 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1017 (-208))) (-5 *1 (-868)))) (-3054 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1017 (-208))) (-5 *1 (-868)))) (-3053 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1017 (-208))) (-5 *1 (-868)))) (-3053 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1017 (-208))) (-5 *1 (-868)))) (-3053 (*1 *1 *1 *2) (-12 (-5 *2 (-1017 (-208))) (-5 *1 (-868)))) (-4153 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1017 (-208))) (-5 *1 (-868)))) (-3393 (*1 *1 *1 *2) (-12 (-5 *2 (-1017 (-208))) (-5 *1 (-868)))) (-3393 (*1 *1 *1) (-5 *1 (-868))) (-3052 (*1 *2 *1) (-12 (-5 *2 (-1017 (-208))) (-5 *1 (-868)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-594 (-594 (-208)))) (-5 *1 (-868)))) (-3050 (*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-868)))) (-3049 (*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-868)))) (-3048 (*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-868)))) (-3047 (*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-868)))) (-3046 (*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-868)))) (-3045 (*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-868)))) (-3044 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-868)))) (-3043 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-868)))) (-3042 (*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-868)))) (-3041 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-868)))))
+(-13 (-914) (-10 -8 (-15 -3054 ($ (-1 (-884 (-208)) (-208)) (-1017 (-208)))) (-15 -3054 ($ (-1 (-884 (-208)) (-208)) (-1017 (-208)) (-1017 (-208)) (-1017 (-208)) (-1017 (-208)))) (-15 -3053 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1017 (-208)))) (-15 -3053 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1017 (-208)) (-1017 (-208)) (-1017 (-208)) (-1017 (-208)))) (-15 -3053 ($ $ (-1017 (-208)))) (-15 -4153 ($ $ (-1017 (-208)) (-1017 (-208)) (-1017 (-208)))) (-15 -3393 ($ $ (-1017 (-208)))) (-15 -3393 ($ $)) (-15 -3052 ((-1017 (-208)) $)) (-15 -3051 ((-594 (-594 (-208))) $)) (-15 -3050 ((-516))) (-15 -3049 ((-516) (-516))) (-15 -3048 ((-516))) (-15 -3047 ((-516) (-516))) (-15 -3046 ((-516))) (-15 -3045 ((-516) (-516))) (-15 -3044 ((-110))) (-15 -3043 ((-110) (-110))) (-15 -3042 ((-516))) (-15 -3041 ((-110) (-110)))))
+((-3055 (((-594 (-1017 (-208))) (-594 (-594 (-884 (-208))))) 24)))
+(((-869) (-10 -7 (-15 -3055 ((-594 (-1017 (-208))) (-594 (-594 (-884 (-208)))))))) (T -869))
+((-3055 (*1 *2 *3) (-12 (-5 *3 (-594 (-594 (-884 (-208))))) (-5 *2 (-594 (-1017 (-208)))) (-5 *1 (-869)))))
+(-10 -7 (-15 -3055 ((-594 (-1017 (-208))) (-594 (-594 (-884 (-208)))))))
+((-3057 (((-295 (-516)) (-1098)) 16)) (-3058 (((-295 (-516)) (-1098)) 14)) (-4227 (((-295 (-516)) (-1098)) 12)) (-3056 (((-295 (-516)) (-1098) (-1081)) 19)))
+(((-870) (-10 -7 (-15 -3056 ((-295 (-516)) (-1098) (-1081))) (-15 -4227 ((-295 (-516)) (-1098))) (-15 -3057 ((-295 (-516)) (-1098))) (-15 -3058 ((-295 (-516)) (-1098))))) (T -870))
+((-3058 (*1 *2 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-295 (-516))) (-5 *1 (-870)))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-295 (-516))) (-5 *1 (-870)))) (-4227 (*1 *2 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-295 (-516))) (-5 *1 (-870)))) (-3056 (*1 *2 *3 *4) (-12 (-5 *3 (-1098)) (-5 *4 (-1081)) (-5 *2 (-295 (-516))) (-5 *1 (-870)))))
+(-10 -7 (-15 -3056 ((-295 (-516)) (-1098) (-1081))) (-15 -4227 ((-295 (-516)) (-1098))) (-15 -3057 ((-295 (-516)) (-1098))) (-15 -3058 ((-295 (-516)) (-1098))))
+((-3057 ((|#2| |#2|) 26)) (-3058 ((|#2| |#2|) 27)) (-4227 ((|#2| |#2|) 25)) (-3056 ((|#2| |#2| (-1081)) 24)))
+(((-871 |#1| |#2|) (-10 -7 (-15 -3056 (|#2| |#2| (-1081))) (-15 -4227 (|#2| |#2|)) (-15 -3057 (|#2| |#2|)) (-15 -3058 (|#2| |#2|))) (-795) (-402 |#1|)) (T -871))
+((-3058 (*1 *2 *2) (-12 (-4 *3 (-795)) (-5 *1 (-871 *3 *2)) (-4 *2 (-402 *3)))) (-3057 (*1 *2 *2) (-12 (-4 *3 (-795)) (-5 *1 (-871 *3 *2)) (-4 *2 (-402 *3)))) (-4227 (*1 *2 *2) (-12 (-4 *3 (-795)) (-5 *1 (-871 *3 *2)) (-4 *2 (-402 *3)))) (-3056 (*1 *2 *2 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-795)) (-5 *1 (-871 *4 *2)) (-4 *2 (-402 *4)))))
+(-10 -7 (-15 -3056 (|#2| |#2| (-1081))) (-15 -4227 (|#2| |#2|)) (-15 -3057 (|#2| |#2|)) (-15 -3058 (|#2| |#2|)))
+((-3060 (((-829 |#1| |#3|) |#2| (-831 |#1|) (-829 |#1| |#3|)) 25)) (-3059 (((-1 (-110) |#2|) (-1 (-110) |#3|)) 13)))
+(((-872 |#1| |#2| |#3|) (-10 -7 (-15 -3059 ((-1 (-110) |#2|) (-1 (-110) |#3|))) (-15 -3060 ((-829 |#1| |#3|) |#2| (-831 |#1|) (-829 |#1| |#3|)))) (-1027) (-827 |#1|) (-13 (-1027) (-975 |#2|))) (T -872))
+((-3060 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-829 *5 *6)) (-5 *4 (-831 *5)) (-4 *5 (-1027)) (-4 *6 (-13 (-1027) (-975 *3))) (-4 *3 (-827 *5)) (-5 *1 (-872 *5 *3 *6)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-1 (-110) *6)) (-4 *6 (-13 (-1027) (-975 *5))) (-4 *5 (-827 *4)) (-4 *4 (-1027)) (-5 *2 (-1 (-110) *5)) (-5 *1 (-872 *4 *5 *6)))))
+(-10 -7 (-15 -3059 ((-1 (-110) |#2|) (-1 (-110) |#3|))) (-15 -3060 ((-829 |#1| |#3|) |#2| (-831 |#1|) (-829 |#1| |#3|))))
+((-3060 (((-829 |#1| |#3|) |#3| (-831 |#1|) (-829 |#1| |#3|)) 30)))
+(((-873 |#1| |#2| |#3|) (-10 -7 (-15 -3060 ((-829 |#1| |#3|) |#3| (-831 |#1|) (-829 |#1| |#3|)))) (-1027) (-13 (-523) (-795) (-827 |#1|)) (-13 (-402 |#2|) (-572 (-831 |#1|)) (-827 |#1|) (-975 (-569 $)))) (T -873))
+((-3060 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-829 *5 *3)) (-4 *5 (-1027)) (-4 *3 (-13 (-402 *6) (-572 *4) (-827 *5) (-975 (-569 $)))) (-5 *4 (-831 *5)) (-4 *6 (-13 (-523) (-795) (-827 *5))) (-5 *1 (-873 *5 *6 *3)))))
+(-10 -7 (-15 -3060 ((-829 |#1| |#3|) |#3| (-831 |#1|) (-829 |#1| |#3|))))
+((-3060 (((-829 (-516) |#1|) |#1| (-831 (-516)) (-829 (-516) |#1|)) 13)))
+(((-874 |#1|) (-10 -7 (-15 -3060 ((-829 (-516) |#1|) |#1| (-831 (-516)) (-829 (-516) |#1|)))) (-515)) (T -874))
+((-3060 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-829 (-516) *3)) (-5 *4 (-831 (-516))) (-4 *3 (-515)) (-5 *1 (-874 *3)))))
+(-10 -7 (-15 -3060 ((-829 (-516) |#1|) |#1| (-831 (-516)) (-829 (-516) |#1|))))
+((-3060 (((-829 |#1| |#2|) (-569 |#2|) (-831 |#1|) (-829 |#1| |#2|)) 54)))
+(((-875 |#1| |#2|) (-10 -7 (-15 -3060 ((-829 |#1| |#2|) (-569 |#2|) (-831 |#1|) (-829 |#1| |#2|)))) (-1027) (-13 (-795) (-975 (-569 $)) (-572 (-831 |#1|)) (-827 |#1|))) (T -875))
+((-3060 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-829 *5 *6)) (-5 *3 (-569 *6)) (-4 *5 (-1027)) (-4 *6 (-13 (-795) (-975 (-569 $)) (-572 *4) (-827 *5))) (-5 *4 (-831 *5)) (-5 *1 (-875 *5 *6)))))
+(-10 -7 (-15 -3060 ((-829 |#1| |#2|) (-569 |#2|) (-831 |#1|) (-829 |#1| |#2|))))
+((-3060 (((-826 |#1| |#2| |#3|) |#3| (-831 |#1|) (-826 |#1| |#2| |#3|)) 15)))
+(((-876 |#1| |#2| |#3|) (-10 -7 (-15 -3060 ((-826 |#1| |#2| |#3|) |#3| (-831 |#1|) (-826 |#1| |#2| |#3|)))) (-1027) (-827 |#1|) (-617 |#2|)) (T -876))
+((-3060 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-826 *5 *6 *3)) (-5 *4 (-831 *5)) (-4 *5 (-1027)) (-4 *6 (-827 *5)) (-4 *3 (-617 *6)) (-5 *1 (-876 *5 *6 *3)))))
+(-10 -7 (-15 -3060 ((-826 |#1| |#2| |#3|) |#3| (-831 |#1|) (-826 |#1| |#2| |#3|))))
+((-3060 (((-829 |#1| |#5|) |#5| (-831 |#1|) (-829 |#1| |#5|)) 17 (|has| |#3| (-827 |#1|))) (((-829 |#1| |#5|) |#5| (-831 |#1|) (-829 |#1| |#5|) (-1 (-829 |#1| |#5|) |#3| (-831 |#1|) (-829 |#1| |#5|))) 16)))
+(((-877 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3060 ((-829 |#1| |#5|) |#5| (-831 |#1|) (-829 |#1| |#5|) (-1 (-829 |#1| |#5|) |#3| (-831 |#1|) (-829 |#1| |#5|)))) (IF (|has| |#3| (-827 |#1|)) (-15 -3060 ((-829 |#1| |#5|) |#5| (-831 |#1|) (-829 |#1| |#5|))) |%noBranch|)) (-1027) (-741) (-795) (-13 (-984) (-795) (-827 |#1|)) (-13 (-891 |#4| |#2| |#3|) (-572 (-831 |#1|)))) (T -877))
+((-3060 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-829 *5 *3)) (-4 *5 (-1027)) (-4 *3 (-13 (-891 *8 *6 *7) (-572 *4))) (-5 *4 (-831 *5)) (-4 *7 (-827 *5)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-13 (-984) (-795) (-827 *5))) (-5 *1 (-877 *5 *6 *7 *8 *3)))) (-3060 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-829 *6 *3) *8 (-831 *6) (-829 *6 *3))) (-4 *8 (-795)) (-5 *2 (-829 *6 *3)) (-5 *4 (-831 *6)) (-4 *6 (-1027)) (-4 *3 (-13 (-891 *9 *7 *8) (-572 *4))) (-4 *7 (-741)) (-4 *9 (-13 (-984) (-795) (-827 *6))) (-5 *1 (-877 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -3060 ((-829 |#1| |#5|) |#5| (-831 |#1|) (-829 |#1| |#5|) (-1 (-829 |#1| |#5|) |#3| (-831 |#1|) (-829 |#1| |#5|)))) (IF (|has| |#3| (-827 |#1|)) (-15 -3060 ((-829 |#1| |#5|) |#5| (-831 |#1|) (-829 |#1| |#5|))) |%noBranch|))
+((-3482 (((-295 (-516)) (-1098) (-594 (-1 (-110) |#1|))) 18) (((-295 (-516)) (-1098) (-1 (-110) |#1|)) 15)))
+(((-878 |#1|) (-10 -7 (-15 -3482 ((-295 (-516)) (-1098) (-1 (-110) |#1|))) (-15 -3482 ((-295 (-516)) (-1098) (-594 (-1 (-110) |#1|))))) (-1134)) (T -878))
+((-3482 (*1 *2 *3 *4) (-12 (-5 *3 (-1098)) (-5 *4 (-594 (-1 (-110) *5))) (-4 *5 (-1134)) (-5 *2 (-295 (-516))) (-5 *1 (-878 *5)))) (-3482 (*1 *2 *3 *4) (-12 (-5 *3 (-1098)) (-5 *4 (-1 (-110) *5)) (-4 *5 (-1134)) (-5 *2 (-295 (-516))) (-5 *1 (-878 *5)))))
+(-10 -7 (-15 -3482 ((-295 (-516)) (-1098) (-1 (-110) |#1|))) (-15 -3482 ((-295 (-516)) (-1098) (-594 (-1 (-110) |#1|)))))
+((-3482 ((|#2| |#2| (-594 (-1 (-110) |#3|))) 12) ((|#2| |#2| (-1 (-110) |#3|)) 13)))
+(((-879 |#1| |#2| |#3|) (-10 -7 (-15 -3482 (|#2| |#2| (-1 (-110) |#3|))) (-15 -3482 (|#2| |#2| (-594 (-1 (-110) |#3|))))) (-795) (-402 |#1|) (-1134)) (T -879))
+((-3482 (*1 *2 *2 *3) (-12 (-5 *3 (-594 (-1 (-110) *5))) (-4 *5 (-1134)) (-4 *4 (-795)) (-5 *1 (-879 *4 *2 *5)) (-4 *2 (-402 *4)))) (-3482 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *5)) (-4 *5 (-1134)) (-4 *4 (-795)) (-5 *1 (-879 *4 *2 *5)) (-4 *2 (-402 *4)))))
+(-10 -7 (-15 -3482 (|#2| |#2| (-1 (-110) |#3|))) (-15 -3482 (|#2| |#2| (-594 (-1 (-110) |#3|)))))
+((-3060 (((-829 |#1| |#3|) |#3| (-831 |#1|) (-829 |#1| |#3|)) 25)))
+(((-880 |#1| |#2| |#3|) (-10 -7 (-15 -3060 ((-829 |#1| |#3|) |#3| (-831 |#1|) (-829 |#1| |#3|)))) (-1027) (-13 (-523) (-827 |#1|) (-572 (-831 |#1|))) (-931 |#2|)) (T -880))
+((-3060 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-829 *5 *3)) (-4 *5 (-1027)) (-4 *3 (-931 *6)) (-4 *6 (-13 (-523) (-827 *5) (-572 *4))) (-5 *4 (-831 *5)) (-5 *1 (-880 *5 *6 *3)))))
+(-10 -7 (-15 -3060 ((-829 |#1| |#3|) |#3| (-831 |#1|) (-829 |#1| |#3|))))
+((-3060 (((-829 |#1| (-1098)) (-1098) (-831 |#1|) (-829 |#1| (-1098))) 17)))
+(((-881 |#1|) (-10 -7 (-15 -3060 ((-829 |#1| (-1098)) (-1098) (-831 |#1|) (-829 |#1| (-1098))))) (-1027)) (T -881))
+((-3060 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-829 *5 (-1098))) (-5 *3 (-1098)) (-5 *4 (-831 *5)) (-4 *5 (-1027)) (-5 *1 (-881 *5)))))
+(-10 -7 (-15 -3060 ((-829 |#1| (-1098)) (-1098) (-831 |#1|) (-829 |#1| (-1098)))))
+((-3061 (((-829 |#1| |#3|) (-594 |#3|) (-594 (-831 |#1|)) (-829 |#1| |#3|) (-1 (-829 |#1| |#3|) |#3| (-831 |#1|) (-829 |#1| |#3|))) 33)) (-3060 (((-829 |#1| |#3|) (-594 |#3|) (-594 (-831 |#1|)) (-1 |#3| (-594 |#3|)) (-829 |#1| |#3|) (-1 (-829 |#1| |#3|) |#3| (-831 |#1|) (-829 |#1| |#3|))) 32)))
+(((-882 |#1| |#2| |#3|) (-10 -7 (-15 -3060 ((-829 |#1| |#3|) (-594 |#3|) (-594 (-831 |#1|)) (-1 |#3| (-594 |#3|)) (-829 |#1| |#3|) (-1 (-829 |#1| |#3|) |#3| (-831 |#1|) (-829 |#1| |#3|)))) (-15 -3061 ((-829 |#1| |#3|) (-594 |#3|) (-594 (-831 |#1|)) (-829 |#1| |#3|) (-1 (-829 |#1| |#3|) |#3| (-831 |#1|) (-829 |#1| |#3|))))) (-1027) (-13 (-984) (-795)) (-13 (-984) (-572 (-831 |#1|)) (-975 |#2|))) (T -882))
+((-3061 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-594 *8)) (-5 *4 (-594 (-831 *6))) (-5 *5 (-1 (-829 *6 *8) *8 (-831 *6) (-829 *6 *8))) (-4 *6 (-1027)) (-4 *8 (-13 (-984) (-572 (-831 *6)) (-975 *7))) (-5 *2 (-829 *6 *8)) (-4 *7 (-13 (-984) (-795))) (-5 *1 (-882 *6 *7 *8)))) (-3060 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-594 (-831 *7))) (-5 *5 (-1 *9 (-594 *9))) (-5 *6 (-1 (-829 *7 *9) *9 (-831 *7) (-829 *7 *9))) (-4 *7 (-1027)) (-4 *9 (-13 (-984) (-572 (-831 *7)) (-975 *8))) (-5 *2 (-829 *7 *9)) (-5 *3 (-594 *9)) (-4 *8 (-13 (-984) (-795))) (-5 *1 (-882 *7 *8 *9)))))
+(-10 -7 (-15 -3060 ((-829 |#1| |#3|) (-594 |#3|) (-594 (-831 |#1|)) (-1 |#3| (-594 |#3|)) (-829 |#1| |#3|) (-1 (-829 |#1| |#3|) |#3| (-831 |#1|) (-829 |#1| |#3|)))) (-15 -3061 ((-829 |#1| |#3|) (-594 |#3|) (-594 (-831 |#1|)) (-829 |#1| |#3|) (-1 (-829 |#1| |#3|) |#3| (-831 |#1|) (-829 |#1| |#3|)))))
+((-3069 (((-1092 (-388 (-516))) (-516)) 63)) (-3068 (((-1092 (-516)) (-516)) 66)) (-3612 (((-1092 (-516)) (-516)) 60)) (-3067 (((-516) (-1092 (-516))) 55)) (-3066 (((-1092 (-388 (-516))) (-516)) 49)) (-3065 (((-1092 (-516)) (-516)) 38)) (-3064 (((-1092 (-516)) (-516)) 68)) (-3063 (((-1092 (-516)) (-516)) 67)) (-3062 (((-1092 (-388 (-516))) (-516)) 51)))
+(((-883) (-10 -7 (-15 -3062 ((-1092 (-388 (-516))) (-516))) (-15 -3063 ((-1092 (-516)) (-516))) (-15 -3064 ((-1092 (-516)) (-516))) (-15 -3065 ((-1092 (-516)) (-516))) (-15 -3066 ((-1092 (-388 (-516))) (-516))) (-15 -3067 ((-516) (-1092 (-516)))) (-15 -3612 ((-1092 (-516)) (-516))) (-15 -3068 ((-1092 (-516)) (-516))) (-15 -3069 ((-1092 (-388 (-516))) (-516))))) (T -883))
+((-3069 (*1 *2 *3) (-12 (-5 *2 (-1092 (-388 (-516)))) (-5 *1 (-883)) (-5 *3 (-516)))) (-3068 (*1 *2 *3) (-12 (-5 *2 (-1092 (-516))) (-5 *1 (-883)) (-5 *3 (-516)))) (-3612 (*1 *2 *3) (-12 (-5 *2 (-1092 (-516))) (-5 *1 (-883)) (-5 *3 (-516)))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-1092 (-516))) (-5 *2 (-516)) (-5 *1 (-883)))) (-3066 (*1 *2 *3) (-12 (-5 *2 (-1092 (-388 (-516)))) (-5 *1 (-883)) (-5 *3 (-516)))) (-3065 (*1 *2 *3) (-12 (-5 *2 (-1092 (-516))) (-5 *1 (-883)) (-5 *3 (-516)))) (-3064 (*1 *2 *3) (-12 (-5 *2 (-1092 (-516))) (-5 *1 (-883)) (-5 *3 (-516)))) (-3063 (*1 *2 *3) (-12 (-5 *2 (-1092 (-516))) (-5 *1 (-883)) (-5 *3 (-516)))) (-3062 (*1 *2 *3) (-12 (-5 *2 (-1092 (-388 (-516)))) (-5 *1 (-883)) (-5 *3 (-516)))))
+(-10 -7 (-15 -3062 ((-1092 (-388 (-516))) (-516))) (-15 -3063 ((-1092 (-516)) (-516))) (-15 -3064 ((-1092 (-516)) (-516))) (-15 -3065 ((-1092 (-516)) (-516))) (-15 -3066 ((-1092 (-388 (-516))) (-516))) (-15 -3067 ((-516) (-1092 (-516)))) (-15 -3612 ((-1092 (-516)) (-516))) (-15 -3068 ((-1092 (-516)) (-516))) (-15 -3069 ((-1092 (-388 (-516))) (-516))))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4117 (($ (-719)) NIL (|has| |#1| (-23)))) (-2243 (((-1185) $ (-516) (-516)) NIL (|has| $ (-6 -4270)))) (-1798 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-1796 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795))))) (-3173 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-1217 (((-110) $ (-719)) NIL)) (-4066 ((|#1| $ (-516) |#1|) 11 (|has| $ (-6 -4270))) ((|#1| $ (-1146 (-516)) |#1|) NIL (|has| $ (-6 -4270)))) (-3992 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3815 (($) NIL T CONST)) (-2312 (($ $) NIL (|has| $ (-6 -4270)))) (-2313 (($ $) NIL)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3685 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-1587 ((|#1| $ (-516) |#1|) NIL (|has| $ (-6 -4270)))) (-3372 ((|#1| $ (-516)) NIL)) (-3698 (((-516) (-1 (-110) |#1|) $) NIL) (((-516) |#1| $) NIL (|has| |#1| (-1027))) (((-516) |#1| $ (-516)) NIL (|has| |#1| (-1027)))) (-3988 (($ (-594 |#1|)) 13)) (-2018 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4114 (((-637 |#1|) $ $) NIL (|has| |#1| (-984)))) (-3896 (($ (-719) |#1|) 8)) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-516) $) 10 (|has| (-516) (-795)))) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3792 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2246 (((-516) $) NIL (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-2022 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4111 ((|#1| $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-984))))) (-3998 (((-110) $ (-719)) NIL)) (-4112 ((|#1| $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-984))))) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-2317 (($ |#1| $ (-516)) NIL) (($ $ $ (-516)) NIL)) (-2248 (((-594 (-516)) $) NIL)) (-2249 (((-110) (-516) $) NIL)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-4079 ((|#1| $) NIL (|has| (-516) (-795)))) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-2244 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-4047 (($ $ (-594 |#1|)) 26)) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2250 (((-594 |#1|) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#1| $ (-516) |#1|) NIL) ((|#1| $ (-516)) 20) (($ $ (-1146 (-516))) NIL)) (-4115 ((|#1| $ $) NIL (|has| |#1| (-984)))) (-4190 (((-860) $) 16)) (-2318 (($ $ (-516)) NIL) (($ $ (-1146 (-516))) NIL)) (-4113 (($ $ $) 24)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1797 (($ $ $ (-516)) NIL (|has| $ (-6 -4270)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) NIL (|has| |#1| (-572 (-505)))) (($ (-594 |#1|)) 17)) (-3804 (($ (-594 |#1|)) NIL)) (-4080 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-594 $)) NIL)) (-4233 (((-805) $) NIL (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#1| (-795)))) (-4116 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4118 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-516) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-675))) (($ $ |#1|) NIL (|has| |#1| (-675)))) (-4232 (((-719) $) 14 (|has| $ (-6 -4269)))))
+(((-884 |#1|) (-920 |#1|) (-984)) (T -884))
+NIL
+(-920 |#1|)
+((-3072 (((-460 |#1| |#2|) (-887 |#2|)) 20)) (-3075 (((-230 |#1| |#2|) (-887 |#2|)) 33)) (-3073 (((-887 |#2|) (-460 |#1| |#2|)) 25)) (-3071 (((-230 |#1| |#2|) (-460 |#1| |#2|)) 55)) (-3074 (((-887 |#2|) (-230 |#1| |#2|)) 30)) (-3070 (((-460 |#1| |#2|) (-230 |#1| |#2|)) 46)))
+(((-885 |#1| |#2|) (-10 -7 (-15 -3070 ((-460 |#1| |#2|) (-230 |#1| |#2|))) (-15 -3071 ((-230 |#1| |#2|) (-460 |#1| |#2|))) (-15 -3072 ((-460 |#1| |#2|) (-887 |#2|))) (-15 -3073 ((-887 |#2|) (-460 |#1| |#2|))) (-15 -3074 ((-887 |#2|) (-230 |#1| |#2|))) (-15 -3075 ((-230 |#1| |#2|) (-887 |#2|)))) (-594 (-1098)) (-984)) (T -885))
+((-3075 (*1 *2 *3) (-12 (-5 *3 (-887 *5)) (-4 *5 (-984)) (-5 *2 (-230 *4 *5)) (-5 *1 (-885 *4 *5)) (-14 *4 (-594 (-1098))))) (-3074 (*1 *2 *3) (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-594 (-1098))) (-4 *5 (-984)) (-5 *2 (-887 *5)) (-5 *1 (-885 *4 *5)))) (-3073 (*1 *2 *3) (-12 (-5 *3 (-460 *4 *5)) (-14 *4 (-594 (-1098))) (-4 *5 (-984)) (-5 *2 (-887 *5)) (-5 *1 (-885 *4 *5)))) (-3072 (*1 *2 *3) (-12 (-5 *3 (-887 *5)) (-4 *5 (-984)) (-5 *2 (-460 *4 *5)) (-5 *1 (-885 *4 *5)) (-14 *4 (-594 (-1098))))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-460 *4 *5)) (-14 *4 (-594 (-1098))) (-4 *5 (-984)) (-5 *2 (-230 *4 *5)) (-5 *1 (-885 *4 *5)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-594 (-1098))) (-4 *5 (-984)) (-5 *2 (-460 *4 *5)) (-5 *1 (-885 *4 *5)))))
+(-10 -7 (-15 -3070 ((-460 |#1| |#2|) (-230 |#1| |#2|))) (-15 -3071 ((-230 |#1| |#2|) (-460 |#1| |#2|))) (-15 -3072 ((-460 |#1| |#2|) (-887 |#2|))) (-15 -3073 ((-887 |#2|) (-460 |#1| |#2|))) (-15 -3074 ((-887 |#2|) (-230 |#1| |#2|))) (-15 -3075 ((-230 |#1| |#2|) (-887 |#2|))))
+((-3076 (((-594 |#2|) |#2| |#2|) 10)) (-3079 (((-719) (-594 |#1|)) 37 (|has| |#1| (-793)))) (-3077 (((-594 |#2|) |#2|) 11)) (-3080 (((-719) (-594 |#1|) (-516) (-516)) 39 (|has| |#1| (-793)))) (-3078 ((|#1| |#2|) 32 (|has| |#1| (-793)))))
+(((-886 |#1| |#2|) (-10 -7 (-15 -3076 ((-594 |#2|) |#2| |#2|)) (-15 -3077 ((-594 |#2|) |#2|)) (IF (|has| |#1| (-793)) (PROGN (-15 -3078 (|#1| |#2|)) (-15 -3079 ((-719) (-594 |#1|))) (-15 -3080 ((-719) (-594 |#1|) (-516) (-516)))) |%noBranch|)) (-344) (-1155 |#1|)) (T -886))
+((-3080 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-594 *5)) (-5 *4 (-516)) (-4 *5 (-793)) (-4 *5 (-344)) (-5 *2 (-719)) (-5 *1 (-886 *5 *6)) (-4 *6 (-1155 *5)))) (-3079 (*1 *2 *3) (-12 (-5 *3 (-594 *4)) (-4 *4 (-793)) (-4 *4 (-344)) (-5 *2 (-719)) (-5 *1 (-886 *4 *5)) (-4 *5 (-1155 *4)))) (-3078 (*1 *2 *3) (-12 (-4 *2 (-344)) (-4 *2 (-793)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1155 *2)))) (-3077 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-594 *3)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1155 *4)))) (-3076 (*1 *2 *3 *3) (-12 (-4 *4 (-344)) (-5 *2 (-594 *3)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1155 *4)))))
+(-10 -7 (-15 -3076 ((-594 |#2|) |#2| |#2|)) (-15 -3077 ((-594 |#2|) |#2|)) (IF (|has| |#1| (-793)) (PROGN (-15 -3078 (|#1| |#2|)) (-15 -3079 ((-719) (-594 |#1|))) (-15 -3080 ((-719) (-594 |#1|) (-516) (-516)))) |%noBranch|))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3347 (((-594 (-1098)) $) 16)) (-3349 (((-1092 $) $ (-1098)) 21) (((-1092 |#1|) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-2118 (($ $) NIL (|has| |#1| (-523)))) (-2116 (((-110) $) NIL (|has| |#1| (-523)))) (-3083 (((-719) $) NIL) (((-719) $ (-594 (-1098))) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-4053 (($ $) NIL (|has| |#1| (-432)))) (-4245 (((-386 $) $) NIL (|has| |#1| (-432)))) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#1| #2="failed") $) 8) (((-3 (-388 (-516)) #2#) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-3 (-516) #2#) $) NIL (|has| |#1| (-975 (-516)))) (((-3 (-1098) #2#) $) NIL)) (-3431 ((|#1| $) NIL) (((-388 (-516)) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-516) $) NIL (|has| |#1| (-975 (-516)))) (((-1098) $) NIL)) (-4035 (($ $ $ (-1098)) NIL (|has| |#1| (-162)))) (-4235 (($ $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3777 (($ $) NIL (|has| |#1| (-432))) (($ $ (-1098)) NIL (|has| |#1| (-432)))) (-3082 (((-594 $) $) NIL)) (-4005 (((-110) $) NIL (|has| |#1| (-851)))) (-1671 (($ $ |#1| (-502 (-1098)) $) NIL)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (-12 (|has| (-1098) (-827 (-359))) (|has| |#1| (-827 (-359))))) (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (-12 (|has| (-1098) (-827 (-516))) (|has| |#1| (-827 (-516)))))) (-2436 (((-110) $) NIL)) (-2444 (((-719) $) NIL)) (-3350 (($ (-1092 |#1|) (-1098)) NIL) (($ (-1092 $) (-1098)) NIL)) (-3085 (((-594 $) $) NIL)) (-4213 (((-110) $) NIL)) (-3157 (($ |#1| (-502 (-1098))) NIL) (($ $ (-1098) (-719)) NIL) (($ $ (-594 (-1098)) (-594 (-719))) NIL)) (-4041 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $ (-1098)) NIL)) (-3084 (((-502 (-1098)) $) NIL) (((-719) $ (-1098)) NIL) (((-594 (-719)) $ (-594 (-1098))) NIL)) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-1672 (($ (-1 (-502 (-1098)) (-502 (-1098))) $) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-3348 (((-3 (-1098) #3="failed") $) 19)) (-3158 (($ $) NIL)) (-3449 ((|#1| $) NIL)) (-1963 (($ (-594 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3513 (((-1081) $) NIL)) (-3087 (((-3 (-594 $) #3#) $) NIL)) (-3086 (((-3 (-594 $) #3#) $) NIL)) (-3088 (((-3 (-2 (|:| |var| (-1098)) (|:| -2427 (-719))) #3#) $) NIL)) (-4091 (($ $ (-1098)) 29 (|has| |#1| (-37 (-388 (-516)))))) (-3514 (((-1045) $) NIL)) (-1866 (((-110) $) NIL)) (-1865 ((|#1| $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#1| (-432)))) (-3419 (($ (-594 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-4011 (((-386 $) $) NIL (|has| |#1| (-851)))) (-3740 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-4046 (($ $ (-594 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL) (($ $ (-1098) |#1|) NIL) (($ $ (-594 (-1098)) (-594 |#1|)) NIL) (($ $ (-1098) $) NIL) (($ $ (-594 (-1098)) (-594 $)) NIL)) (-4036 (($ $ (-1098)) NIL (|has| |#1| (-162)))) (-4089 (($ $ (-1098)) NIL) (($ $ (-594 (-1098))) NIL) (($ $ (-1098) (-719)) NIL) (($ $ (-594 (-1098)) (-594 (-719))) NIL)) (-4223 (((-502 (-1098)) $) NIL) (((-719) $ (-1098)) NIL) (((-594 (-719)) $ (-594 (-1098))) NIL)) (-4246 (((-831 (-359)) $) NIL (-12 (|has| (-1098) (-572 (-831 (-359)))) (|has| |#1| (-572 (-831 (-359)))))) (((-831 (-516)) $) NIL (-12 (|has| (-1098) (-572 (-831 (-516)))) (|has| |#1| (-572 (-831 (-516)))))) (((-505) $) NIL (-12 (|has| (-1098) (-572 (-505))) (|has| |#1| (-572 (-505)))))) (-3081 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-1098)) NIL (|has| |#1| (-432)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-851))))) (-4233 (((-805) $) 25) (($ (-516)) NIL) (($ |#1|) NIL) (($ (-1098)) 27) (($ (-388 (-516))) NIL (-3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-975 (-388 (-516)))))) (($ $) NIL (|has| |#1| (-523)))) (-4096 (((-594 |#1|) $) NIL)) (-3959 ((|#1| $ (-502 (-1098))) NIL) (($ $ (-1098) (-719)) NIL) (($ $ (-594 (-1098)) (-594 (-719))) NIL)) (-2965 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| $ (-138)) (|has| |#1| (-851))) (|has| |#1| (-138))))) (-3385 (((-719)) NIL)) (-1670 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-2117 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($ $ (-1098)) NIL) (($ $ (-594 (-1098))) NIL) (($ $ (-1098) (-719)) NIL) (($ $ (-594 (-1098)) (-594 (-719))) NIL)) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#1| (-795)))) (-4224 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516))))) (($ (-388 (-516)) $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-887 |#1|) (-13 (-891 |#1| (-502 (-1098)) (-1098)) (-10 -8 (IF (|has| |#1| (-37 (-388 (-516)))) (-15 -4091 ($ $ (-1098))) |%noBranch|))) (-984)) (T -887))
+((-4091 (*1 *1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-887 *3)) (-4 *3 (-37 (-388 (-516)))) (-4 *3 (-984)))))
+(-13 (-891 |#1| (-502 (-1098)) (-1098)) (-10 -8 (IF (|has| |#1| (-37 (-388 (-516)))) (-15 -4091 ($ $ (-1098))) |%noBranch|)))
+((-4234 (((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|)) 19)))
+(((-888 |#1| |#2|) (-10 -7 (-15 -4234 ((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|)))) (-984) (-984)) (T -888))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-887 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-5 *2 (-887 *6)) (-5 *1 (-888 *5 *6)))))
+(-10 -7 (-15 -4234 ((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|))))
+((-3349 (((-1148 |#1| (-887 |#2|)) (-887 |#2|) (-1176 |#1|)) 18)))
+(((-889 |#1| |#2|) (-10 -7 (-15 -3349 ((-1148 |#1| (-887 |#2|)) (-887 |#2|) (-1176 |#1|)))) (-1098) (-984)) (T -889))
+((-3349 (*1 *2 *3 *4) (-12 (-5 *4 (-1176 *5)) (-14 *5 (-1098)) (-4 *6 (-984)) (-5 *2 (-1148 *5 (-887 *6))) (-5 *1 (-889 *5 *6)) (-5 *3 (-887 *6)))))
+(-10 -7 (-15 -3349 ((-1148 |#1| (-887 |#2|)) (-887 |#2|) (-1176 |#1|))))
+((-3083 (((-719) $) 71) (((-719) $ (-594 |#4|)) 74)) (-4053 (($ $) 173)) (-4245 (((-386 $) $) 165)) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) 116)) (-3432 (((-3 |#2| #2="failed") $) NIL) (((-3 (-388 (-516)) #2#) $) NIL) (((-3 (-516) #2#) $) NIL) (((-3 |#4| #2#) $) 60)) (-3431 ((|#2| $) NIL) (((-388 (-516)) $) NIL) (((-516) $) NIL) ((|#4| $) 59)) (-4035 (($ $ $ |#4|) 76)) (-2297 (((-637 (-516)) (-637 $)) NIL) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL) (((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 $) (-1179 $)) 106) (((-637 |#2|) (-637 $)) 99)) (-3777 (($ $) 180) (($ $ |#4|) 183)) (-3082 (((-594 $) $) 63)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) 199) (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) 192)) (-3085 (((-594 $) $) 28)) (-3157 (($ |#2| |#3|) NIL) (($ $ |#4| (-719)) NIL) (($ $ (-594 |#4|) (-594 (-719))) 57)) (-4041 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $ |#4|) 162)) (-3087 (((-3 (-594 $) "failed") $) 42)) (-3086 (((-3 (-594 $) "failed") $) 31)) (-3088 (((-3 (-2 (|:| |var| |#4|) (|:| -2427 (-719))) "failed") $) 47)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 109)) (-2968 (((-386 (-1092 $)) (-1092 $)) 122)) (-2969 (((-386 (-1092 $)) (-1092 $)) 120)) (-4011 (((-386 $) $) 140)) (-4046 (($ $ (-594 (-275 $))) 21) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-594 |#4|) (-594 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-594 |#4|) (-594 $)) NIL)) (-4036 (($ $ |#4|) 78)) (-4246 (((-831 (-359)) $) 213) (((-831 (-516)) $) 206) (((-505) $) 221)) (-3081 ((|#2| $) NIL) (($ $ |#4|) 175)) (-2966 (((-3 (-1179 $) #1#) (-637 $)) 154)) (-3959 ((|#2| $ |#3|) NIL) (($ $ |#4| (-719)) 52) (($ $ (-594 |#4|) (-594 (-719))) 55)) (-2965 (((-3 $ #1#) $) 156)) (-2948 (((-110) $ $) 186)))
+(((-890 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2971 ((-1092 |#1|) (-1092 |#1|) (-1092 |#1|))) (-15 -4245 ((-386 |#1|) |#1|)) (-15 -4053 (|#1| |#1|)) (-15 -2965 ((-3 |#1| #1="failed") |#1|)) (-15 -2948 ((-110) |#1| |#1|)) (-15 -4246 ((-505) |#1|)) (-15 -4246 ((-831 (-516)) |#1|)) (-15 -4246 ((-831 (-359)) |#1|)) (-15 -3060 ((-829 (-516) |#1|) |#1| (-831 (-516)) (-829 (-516) |#1|))) (-15 -3060 ((-829 (-359) |#1|) |#1| (-831 (-359)) (-829 (-359) |#1|))) (-15 -4011 ((-386 |#1|) |#1|)) (-15 -2969 ((-386 (-1092 |#1|)) (-1092 |#1|))) (-15 -2968 ((-386 (-1092 |#1|)) (-1092 |#1|))) (-15 -2967 ((-3 (-594 (-1092 |#1|)) #1#) (-594 (-1092 |#1|)) (-1092 |#1|))) (-15 -2966 ((-3 (-1179 |#1|) #1#) (-637 |#1|))) (-15 -3777 (|#1| |#1| |#4|)) (-15 -3081 (|#1| |#1| |#4|)) (-15 -4036 (|#1| |#1| |#4|)) (-15 -4035 (|#1| |#1| |#1| |#4|)) (-15 -3082 ((-594 |#1|) |#1|)) (-15 -3083 ((-719) |#1| (-594 |#4|))) (-15 -3083 ((-719) |#1|)) (-15 -3088 ((-3 (-2 (|:| |var| |#4|) (|:| -2427 (-719))) "failed") |#1|)) (-15 -3087 ((-3 (-594 |#1|) "failed") |#1|)) (-15 -3086 ((-3 (-594 |#1|) "failed") |#1|)) (-15 -3157 (|#1| |#1| (-594 |#4|) (-594 (-719)))) (-15 -3157 (|#1| |#1| |#4| (-719))) (-15 -4041 ((-2 (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1| |#4|)) (-15 -3085 ((-594 |#1|) |#1|)) (-15 -3959 (|#1| |#1| (-594 |#4|) (-594 (-719)))) (-15 -3959 (|#1| |#1| |#4| (-719))) (-15 -2297 ((-637 |#2|) (-637 |#1|))) (-15 -2297 ((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 |#1|) (-1179 |#1|))) (-15 -2297 ((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 |#1|) (-1179 |#1|))) (-15 -2297 ((-637 (-516)) (-637 |#1|))) (-15 -3431 (|#4| |#1|)) (-15 -3432 ((-3 |#4| #2="failed") |#1|)) (-15 -4046 (|#1| |#1| (-594 |#4|) (-594 |#1|))) (-15 -4046 (|#1| |#1| |#4| |#1|)) (-15 -4046 (|#1| |#1| (-594 |#4|) (-594 |#2|))) (-15 -4046 (|#1| |#1| |#4| |#2|)) (-15 -4046 (|#1| |#1| (-594 |#1|) (-594 |#1|))) (-15 -4046 (|#1| |#1| |#1| |#1|)) (-15 -4046 (|#1| |#1| (-275 |#1|))) (-15 -4046 (|#1| |#1| (-594 (-275 |#1|)))) (-15 -3157 (|#1| |#2| |#3|)) (-15 -3959 (|#2| |#1| |#3|)) (-15 -3431 ((-516) |#1|)) (-15 -3432 ((-3 (-516) #2#) |#1|)) (-15 -3431 ((-388 (-516)) |#1|)) (-15 -3432 ((-3 (-388 (-516)) #2#) |#1|)) (-15 -3432 ((-3 |#2| #2#) |#1|)) (-15 -3431 (|#2| |#1|)) (-15 -3081 (|#2| |#1|)) (-15 -3777 (|#1| |#1|))) (-891 |#2| |#3| |#4|) (-984) (-741) (-795)) (T -890))
+NIL
+(-10 -8 (-15 -2971 ((-1092 |#1|) (-1092 |#1|) (-1092 |#1|))) (-15 -4245 ((-386 |#1|) |#1|)) (-15 -4053 (|#1| |#1|)) (-15 -2965 ((-3 |#1| #1="failed") |#1|)) (-15 -2948 ((-110) |#1| |#1|)) (-15 -4246 ((-505) |#1|)) (-15 -4246 ((-831 (-516)) |#1|)) (-15 -4246 ((-831 (-359)) |#1|)) (-15 -3060 ((-829 (-516) |#1|) |#1| (-831 (-516)) (-829 (-516) |#1|))) (-15 -3060 ((-829 (-359) |#1|) |#1| (-831 (-359)) (-829 (-359) |#1|))) (-15 -4011 ((-386 |#1|) |#1|)) (-15 -2969 ((-386 (-1092 |#1|)) (-1092 |#1|))) (-15 -2968 ((-386 (-1092 |#1|)) (-1092 |#1|))) (-15 -2967 ((-3 (-594 (-1092 |#1|)) #1#) (-594 (-1092 |#1|)) (-1092 |#1|))) (-15 -2966 ((-3 (-1179 |#1|) #1#) (-637 |#1|))) (-15 -3777 (|#1| |#1| |#4|)) (-15 -3081 (|#1| |#1| |#4|)) (-15 -4036 (|#1| |#1| |#4|)) (-15 -4035 (|#1| |#1| |#1| |#4|)) (-15 -3082 ((-594 |#1|) |#1|)) (-15 -3083 ((-719) |#1| (-594 |#4|))) (-15 -3083 ((-719) |#1|)) (-15 -3088 ((-3 (-2 (|:| |var| |#4|) (|:| -2427 (-719))) "failed") |#1|)) (-15 -3087 ((-3 (-594 |#1|) "failed") |#1|)) (-15 -3086 ((-3 (-594 |#1|) "failed") |#1|)) (-15 -3157 (|#1| |#1| (-594 |#4|) (-594 (-719)))) (-15 -3157 (|#1| |#1| |#4| (-719))) (-15 -4041 ((-2 (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1| |#4|)) (-15 -3085 ((-594 |#1|) |#1|)) (-15 -3959 (|#1| |#1| (-594 |#4|) (-594 (-719)))) (-15 -3959 (|#1| |#1| |#4| (-719))) (-15 -2297 ((-637 |#2|) (-637 |#1|))) (-15 -2297 ((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 |#1|) (-1179 |#1|))) (-15 -2297 ((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 |#1|) (-1179 |#1|))) (-15 -2297 ((-637 (-516)) (-637 |#1|))) (-15 -3431 (|#4| |#1|)) (-15 -3432 ((-3 |#4| #2="failed") |#1|)) (-15 -4046 (|#1| |#1| (-594 |#4|) (-594 |#1|))) (-15 -4046 (|#1| |#1| |#4| |#1|)) (-15 -4046 (|#1| |#1| (-594 |#4|) (-594 |#2|))) (-15 -4046 (|#1| |#1| |#4| |#2|)) (-15 -4046 (|#1| |#1| (-594 |#1|) (-594 |#1|))) (-15 -4046 (|#1| |#1| |#1| |#1|)) (-15 -4046 (|#1| |#1| (-275 |#1|))) (-15 -4046 (|#1| |#1| (-594 (-275 |#1|)))) (-15 -3157 (|#1| |#2| |#3|)) (-15 -3959 (|#2| |#1| |#3|)) (-15 -3431 ((-516) |#1|)) (-15 -3432 ((-3 (-516) #2#) |#1|)) (-15 -3431 ((-388 (-516)) |#1|)) (-15 -3432 ((-3 (-388 (-516)) #2#) |#1|)) (-15 -3432 ((-3 |#2| #2#) |#1|)) (-15 -3431 (|#2| |#1|)) (-15 -3081 (|#2| |#1|)) (-15 -3777 (|#1| |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-3347 (((-594 |#3|) $) 110)) (-3349 (((-1092 $) $ |#3|) 125) (((-1092 |#1|) $) 124)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 87 (|has| |#1| (-523)))) (-2118 (($ $) 88 (|has| |#1| (-523)))) (-2116 (((-110) $) 90 (|has| |#1| (-523)))) (-3083 (((-719) $) 112) (((-719) $ (-594 |#3|)) 111)) (-1319 (((-3 $ "failed") $ $) 19)) (-2970 (((-386 (-1092 $)) (-1092 $)) 100 (|has| |#1| (-851)))) (-4053 (($ $) 98 (|has| |#1| (-432)))) (-4245 (((-386 $) $) 97 (|has| |#1| (-432)))) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) 103 (|has| |#1| (-851)))) (-3815 (($) 17 T CONST)) (-3432 (((-3 |#1| #2="failed") $) 164) (((-3 (-388 (-516)) #2#) $) 162 (|has| |#1| (-975 (-388 (-516))))) (((-3 (-516) #2#) $) 160 (|has| |#1| (-975 (-516)))) (((-3 |#3| #2#) $) 136)) (-3431 ((|#1| $) 165) (((-388 (-516)) $) 161 (|has| |#1| (-975 (-388 (-516))))) (((-516) $) 159 (|has| |#1| (-975 (-516)))) ((|#3| $) 135)) (-4035 (($ $ $ |#3|) 108 (|has| |#1| (-162)))) (-4235 (($ $) 154)) (-2297 (((-637 (-516)) (-637 $)) 134 (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) 133 (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) 132) (((-637 |#1|) (-637 $)) 131)) (-3741 (((-3 $ "failed") $) 34)) (-3777 (($ $) 176 (|has| |#1| (-432))) (($ $ |#3|) 105 (|has| |#1| (-432)))) (-3082 (((-594 $) $) 109)) (-4005 (((-110) $) 96 (|has| |#1| (-851)))) (-1671 (($ $ |#1| |#2| $) 172)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) 84 (-12 (|has| |#3| (-827 (-359))) (|has| |#1| (-827 (-359))))) (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) 83 (-12 (|has| |#3| (-827 (-516))) (|has| |#1| (-827 (-516)))))) (-2436 (((-110) $) 31)) (-2444 (((-719) $) 169)) (-3350 (($ (-1092 |#1|) |#3|) 117) (($ (-1092 $) |#3|) 116)) (-3085 (((-594 $) $) 126)) (-4213 (((-110) $) 152)) (-3157 (($ |#1| |#2|) 153) (($ $ |#3| (-719)) 119) (($ $ (-594 |#3|) (-594 (-719))) 118)) (-4041 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $ |#3|) 120)) (-3084 ((|#2| $) 170) (((-719) $ |#3|) 122) (((-594 (-719)) $ (-594 |#3|)) 121)) (-3596 (($ $ $) 79 (|has| |#1| (-795)))) (-3597 (($ $ $) 78 (|has| |#1| (-795)))) (-1672 (($ (-1 |#2| |#2|) $) 171)) (-4234 (($ (-1 |#1| |#1|) $) 151)) (-3348 (((-3 |#3| "failed") $) 123)) (-3158 (($ $) 149)) (-3449 ((|#1| $) 148)) (-1963 (($ (-594 $)) 94 (|has| |#1| (-432))) (($ $ $) 93 (|has| |#1| (-432)))) (-3513 (((-1081) $) 9)) (-3087 (((-3 (-594 $) "failed") $) 114)) (-3086 (((-3 (-594 $) "failed") $) 115)) (-3088 (((-3 (-2 (|:| |var| |#3|) (|:| -2427 (-719))) "failed") $) 113)) (-3514 (((-1045) $) 10)) (-1866 (((-110) $) 166)) (-1865 ((|#1| $) 167)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 95 (|has| |#1| (-432)))) (-3419 (($ (-594 $)) 92 (|has| |#1| (-432))) (($ $ $) 91 (|has| |#1| (-432)))) (-2968 (((-386 (-1092 $)) (-1092 $)) 102 (|has| |#1| (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) 101 (|has| |#1| (-851)))) (-4011 (((-386 $) $) 99 (|has| |#1| (-851)))) (-3740 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-523))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-523)))) (-4046 (($ $ (-594 (-275 $))) 145) (($ $ (-275 $)) 144) (($ $ $ $) 143) (($ $ (-594 $) (-594 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-594 |#3|) (-594 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-594 |#3|) (-594 $)) 138)) (-4036 (($ $ |#3|) 107 (|has| |#1| (-162)))) (-4089 (($ $ |#3|) 42) (($ $ (-594 |#3|)) 41) (($ $ |#3| (-719)) 40) (($ $ (-594 |#3|) (-594 (-719))) 39)) (-4223 ((|#2| $) 150) (((-719) $ |#3|) 130) (((-594 (-719)) $ (-594 |#3|)) 129)) (-4246 (((-831 (-359)) $) 82 (-12 (|has| |#3| (-572 (-831 (-359)))) (|has| |#1| (-572 (-831 (-359)))))) (((-831 (-516)) $) 81 (-12 (|has| |#3| (-572 (-831 (-516)))) (|has| |#1| (-572 (-831 (-516)))))) (((-505) $) 80 (-12 (|has| |#3| (-572 (-505))) (|has| |#1| (-572 (-505)))))) (-3081 ((|#1| $) 175 (|has| |#1| (-432))) (($ $ |#3|) 106 (|has| |#1| (-432)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) 104 (-3119 (|has| $ (-138)) (|has| |#1| (-851))))) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-523))) (($ (-388 (-516))) 72 (-3810 (|has| |#1| (-975 (-388 (-516)))) (|has| |#1| (-37 (-388 (-516))))))) (-4096 (((-594 |#1|) $) 168)) (-3959 ((|#1| $ |#2|) 155) (($ $ |#3| (-719)) 128) (($ $ (-594 |#3|) (-594 (-719))) 127)) (-2965 (((-3 $ "failed") $) 73 (-3810 (-3119 (|has| $ (-138)) (|has| |#1| (-851))) (|has| |#1| (-138))))) (-3385 (((-719)) 29)) (-1670 (($ $ $ (-719)) 173 (|has| |#1| (-162)))) (-2117 (((-110) $ $) 89 (|has| |#1| (-523)))) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2932 (($ $ |#3|) 38) (($ $ (-594 |#3|)) 37) (($ $ |#3| (-719)) 36) (($ $ (-594 |#3|) (-594 (-719))) 35)) (-2826 (((-110) $ $) 76 (|has| |#1| (-795)))) (-2827 (((-110) $ $) 75 (|has| |#1| (-795)))) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 77 (|has| |#1| (-795)))) (-2948 (((-110) $ $) 74 (|has| |#1| (-795)))) (-4224 (($ $ |#1|) 156 (|has| |#1| (-344)))) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ (-388 (-516))) 158 (|has| |#1| (-37 (-388 (-516))))) (($ (-388 (-516)) $) 157 (|has| |#1| (-37 (-388 (-516))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-891 |#1| |#2| |#3|) (-133) (-984) (-741) (-795)) (T -891))
+((-3777 (*1 *1 *1) (-12 (-4 *1 (-891 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))) (-4223 (*1 *2 *1 *3) (-12 (-4 *1 (-891 *4 *5 *3)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-719)))) (-4223 (*1 *2 *1 *3) (-12 (-5 *3 (-594 *6)) (-4 *1 (-891 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-594 (-719))))) (-3959 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-891 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *2 (-795)))) (-3959 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-594 *6)) (-5 *3 (-594 (-719))) (-4 *1 (-891 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)))) (-3085 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-594 *1)) (-4 *1 (-891 *3 *4 *5)))) (-3349 (*1 *2 *1 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-1092 *1)) (-4 *1 (-891 *4 *5 *3)))) (-3349 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-1092 *3)))) (-3348 (*1 *2 *1) (|partial| -12 (-4 *1 (-891 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-3084 (*1 *2 *1 *3) (-12 (-4 *1 (-891 *4 *5 *3)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-719)))) (-3084 (*1 *2 *1 *3) (-12 (-5 *3 (-594 *6)) (-4 *1 (-891 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-594 (-719))))) (-4041 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-2 (|:| -2046 *1) (|:| -3166 *1))) (-4 *1 (-891 *4 *5 *3)))) (-3157 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-891 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *2 (-795)))) (-3157 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-594 *6)) (-5 *3 (-594 (-719))) (-4 *1 (-891 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)))) (-3350 (*1 *1 *2 *3) (-12 (-5 *2 (-1092 *4)) (-4 *4 (-984)) (-4 *1 (-891 *4 *5 *3)) (-4 *5 (-741)) (-4 *3 (-795)))) (-3350 (*1 *1 *2 *3) (-12 (-5 *2 (-1092 *1)) (-4 *1 (-891 *4 *5 *3)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)))) (-3086 (*1 *2 *1) (|partial| -12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-594 *1)) (-4 *1 (-891 *3 *4 *5)))) (-3087 (*1 *2 *1) (|partial| -12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-594 *1)) (-4 *1 (-891 *3 *4 *5)))) (-3088 (*1 *2 *1) (|partial| -12 (-4 *1 (-891 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| |var| *5) (|:| -2427 (-719)))))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-719)))) (-3083 (*1 *2 *1 *3) (-12 (-5 *3 (-594 *6)) (-4 *1 (-891 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-719)))) (-3347 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-594 *5)))) (-3082 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-594 *1)) (-4 *1 (-891 *3 *4 *5)))) (-4035 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *3 (-162)))) (-4036 (*1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *3 (-162)))) (-3081 (*1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *3 (-432)))) (-3777 (*1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *3 (-432)))) (-4053 (*1 *1 *1) (-12 (-4 *1 (-891 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))) (-4245 (*1 *2 *1) (-12 (-4 *3 (-432)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-386 *1)) (-4 *1 (-891 *3 *4 *5)))))
+(-13 (-841 |t#3|) (-307 |t#1| |t#2|) (-291 $) (-491 |t#3| |t#1|) (-491 |t#3| $) (-975 |t#3|) (-358 |t#1|) (-10 -8 (-15 -4223 ((-719) $ |t#3|)) (-15 -4223 ((-594 (-719)) $ (-594 |t#3|))) (-15 -3959 ($ $ |t#3| (-719))) (-15 -3959 ($ $ (-594 |t#3|) (-594 (-719)))) (-15 -3085 ((-594 $) $)) (-15 -3349 ((-1092 $) $ |t#3|)) (-15 -3349 ((-1092 |t#1|) $)) (-15 -3348 ((-3 |t#3| "failed") $)) (-15 -3084 ((-719) $ |t#3|)) (-15 -3084 ((-594 (-719)) $ (-594 |t#3|))) (-15 -4041 ((-2 (|:| -2046 $) (|:| -3166 $)) $ $ |t#3|)) (-15 -3157 ($ $ |t#3| (-719))) (-15 -3157 ($ $ (-594 |t#3|) (-594 (-719)))) (-15 -3350 ($ (-1092 |t#1|) |t#3|)) (-15 -3350 ($ (-1092 $) |t#3|)) (-15 -3086 ((-3 (-594 $) "failed") $)) (-15 -3087 ((-3 (-594 $) "failed") $)) (-15 -3088 ((-3 (-2 (|:| |var| |t#3|) (|:| -2427 (-719))) "failed") $)) (-15 -3083 ((-719) $)) (-15 -3083 ((-719) $ (-594 |t#3|))) (-15 -3347 ((-594 |t#3|) $)) (-15 -3082 ((-594 $) $)) (IF (|has| |t#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#1| (-572 (-505))) (IF (|has| |t#3| (-572 (-505))) (-6 (-572 (-505))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-572 (-831 (-516)))) (IF (|has| |t#3| (-572 (-831 (-516)))) (-6 (-572 (-831 (-516)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-572 (-831 (-359)))) (IF (|has| |t#3| (-572 (-831 (-359)))) (-6 (-572 (-831 (-359)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-827 (-516))) (IF (|has| |t#3| (-827 (-516))) (-6 (-827 (-516))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-827 (-359))) (IF (|has| |t#3| (-827 (-359))) (-6 (-827 (-359))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-162)) (PROGN (-15 -4035 ($ $ $ |t#3|)) (-15 -4036 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-432)) (PROGN (-6 (-432)) (-15 -3081 ($ $ |t#3|)) (-15 -3777 ($ $)) (-15 -3777 ($ $ |t#3|)) (-15 -4245 ((-386 $) $)) (-15 -4053 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4267)) (-6 -4267) |%noBranch|) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #1=(-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-388 (-516)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-805)) . T) ((-162) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-572 (-505)) -12 (|has| |#1| (-572 (-505))) (|has| |#3| (-572 (-505)))) ((-572 (-831 (-359))) -12 (|has| |#1| (-572 (-831 (-359)))) (|has| |#3| (-572 (-831 (-359))))) ((-572 (-831 (-516))) -12 (|has| |#1| (-572 (-831 (-516)))) (|has| |#3| (-572 (-831 (-516))))) ((-272) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-291 $) . T) ((-307 |#1| |#2|) . T) ((-358 |#1|) . T) ((-393 |#1|) . T) ((-432) -3810 (|has| |#1| (-851)) (|has| |#1| (-432))) ((-491 |#3| |#1|) . T) ((-491 |#3| $) . T) ((-491 $ $) . T) ((-523) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-599 #1#) |has| |#1| (-37 (-388 (-516)))) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-516)) |has| |#1| (-593 (-516))) ((-593 |#1|) . T) ((-666 #1#) |has| |#1| (-37 (-388 (-516)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-675) . T) ((-795) |has| |#1| (-795)) ((-841 |#3|) . T) ((-827 (-359)) -12 (|has| |#1| (-827 (-359))) (|has| |#3| (-827 (-359)))) ((-827 (-516)) -12 (|has| |#1| (-827 (-516))) (|has| |#3| (-827 (-516)))) ((-851) |has| |#1| (-851)) ((-975 (-388 (-516))) |has| |#1| (-975 (-388 (-516)))) ((-975 (-516)) |has| |#1| (-975 (-516))) ((-975 |#1|) . T) ((-975 |#3|) . T) ((-989 #1#) |has| |#1| (-37 (-388 (-516)))) ((-989 |#1|) . T) ((-989 $) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1138) |has| |#1| (-851)))
+((-3347 (((-594 |#2|) |#5|) 36)) (-3349 (((-1092 |#5|) |#5| |#2| (-1092 |#5|)) 23) (((-388 (-1092 |#5|)) |#5| |#2|) 16)) (-3350 ((|#5| (-388 (-1092 |#5|)) |#2|) 30)) (-3348 (((-3 |#2| "failed") |#5|) 65)) (-3087 (((-3 (-594 |#5|) "failed") |#5|) 59)) (-3089 (((-3 (-2 (|:| |val| |#5|) (|:| -2427 (-516))) "failed") |#5|) 47)) (-3086 (((-3 (-594 |#5|) "failed") |#5|) 61)) (-3088 (((-3 (-2 (|:| |var| |#2|) (|:| -2427 (-516))) "failed") |#5|) 51)))
+(((-892 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3347 ((-594 |#2|) |#5|)) (-15 -3348 ((-3 |#2| "failed") |#5|)) (-15 -3349 ((-388 (-1092 |#5|)) |#5| |#2|)) (-15 -3350 (|#5| (-388 (-1092 |#5|)) |#2|)) (-15 -3349 ((-1092 |#5|) |#5| |#2| (-1092 |#5|))) (-15 -3086 ((-3 (-594 |#5|) "failed") |#5|)) (-15 -3087 ((-3 (-594 |#5|) "failed") |#5|)) (-15 -3088 ((-3 (-2 (|:| |var| |#2|) (|:| -2427 (-516))) "failed") |#5|)) (-15 -3089 ((-3 (-2 (|:| |val| |#5|) (|:| -2427 (-516))) "failed") |#5|))) (-741) (-795) (-984) (-891 |#3| |#1| |#2|) (-13 (-344) (-10 -8 (-15 -4233 ($ |#4|)) (-15 -3262 (|#4| $)) (-15 -3261 (|#4| $))))) (T -892))
+((-3089 (*1 *2 *3) (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-4 *7 (-891 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2427 (-516)))) (-5 *1 (-892 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -4233 ($ *7)) (-15 -3262 (*7 $)) (-15 -3261 (*7 $))))))) (-3088 (*1 *2 *3) (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-4 *7 (-891 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2427 (-516)))) (-5 *1 (-892 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -4233 ($ *7)) (-15 -3262 (*7 $)) (-15 -3261 (*7 $))))))) (-3087 (*1 *2 *3) (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-4 *7 (-891 *6 *4 *5)) (-5 *2 (-594 *3)) (-5 *1 (-892 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -4233 ($ *7)) (-15 -3262 (*7 $)) (-15 -3261 (*7 $))))))) (-3086 (*1 *2 *3) (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-4 *7 (-891 *6 *4 *5)) (-5 *2 (-594 *3)) (-5 *1 (-892 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -4233 ($ *7)) (-15 -3262 (*7 $)) (-15 -3261 (*7 $))))))) (-3349 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1092 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -4233 ($ *7)) (-15 -3262 (*7 $)) (-15 -3261 (*7 $))))) (-4 *7 (-891 *6 *5 *4)) (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-984)) (-5 *1 (-892 *5 *4 *6 *7 *3)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-1092 *2))) (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-984)) (-4 *2 (-13 (-344) (-10 -8 (-15 -4233 ($ *7)) (-15 -3262 (*7 $)) (-15 -3261 (*7 $))))) (-5 *1 (-892 *5 *4 *6 *7 *2)) (-4 *7 (-891 *6 *5 *4)))) (-3349 (*1 *2 *3 *4) (-12 (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-984)) (-4 *7 (-891 *6 *5 *4)) (-5 *2 (-388 (-1092 *3))) (-5 *1 (-892 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -4233 ($ *7)) (-15 -3262 (*7 $)) (-15 -3261 (*7 $))))))) (-3348 (*1 *2 *3) (|partial| -12 (-4 *4 (-741)) (-4 *5 (-984)) (-4 *6 (-891 *5 *4 *2)) (-4 *2 (-795)) (-5 *1 (-892 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -4233 ($ *6)) (-15 -3262 (*6 $)) (-15 -3261 (*6 $))))))) (-3347 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-4 *7 (-891 *6 *4 *5)) (-5 *2 (-594 *5)) (-5 *1 (-892 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -4233 ($ *7)) (-15 -3262 (*7 $)) (-15 -3261 (*7 $))))))))
+(-10 -7 (-15 -3347 ((-594 |#2|) |#5|)) (-15 -3348 ((-3 |#2| "failed") |#5|)) (-15 -3349 ((-388 (-1092 |#5|)) |#5| |#2|)) (-15 -3350 (|#5| (-388 (-1092 |#5|)) |#2|)) (-15 -3349 ((-1092 |#5|) |#5| |#2| (-1092 |#5|))) (-15 -3086 ((-3 (-594 |#5|) "failed") |#5|)) (-15 -3087 ((-3 (-594 |#5|) "failed") |#5|)) (-15 -3088 ((-3 (-2 (|:| |var| |#2|) (|:| -2427 (-516))) "failed") |#5|)) (-15 -3089 ((-3 (-2 (|:| |val| |#5|) (|:| -2427 (-516))) "failed") |#5|)))
+((-4234 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
+(((-893 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4234 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-741) (-795) (-984) (-891 |#3| |#1| |#2|) (-13 (-1027) (-10 -8 (-15 -4118 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-719)))))) (T -893))
+((-4234 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-795)) (-4 *8 (-984)) (-4 *6 (-741)) (-4 *2 (-13 (-1027) (-10 -8 (-15 -4118 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-719)))))) (-5 *1 (-893 *6 *7 *8 *5 *2)) (-4 *5 (-891 *8 *6 *7)))))
+(-10 -7 (-15 -4234 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-3090 (((-2 (|:| -2427 (-719)) (|:| -4229 |#5|) (|:| |radicand| |#5|)) |#3| (-719)) 38)) (-3091 (((-2 (|:| -2427 (-719)) (|:| -4229 |#5|) (|:| |radicand| |#5|)) (-388 (-516)) (-719)) 34)) (-3093 (((-2 (|:| -2427 (-719)) (|:| -4229 |#4|) (|:| |radicand| (-594 |#4|))) |#4| (-719)) 54)) (-3092 (((-2 (|:| -2427 (-719)) (|:| -4229 |#5|) (|:| |radicand| |#5|)) |#5| (-719)) 64 (|has| |#3| (-432)))))
+(((-894 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3090 ((-2 (|:| -2427 (-719)) (|:| -4229 |#5|) (|:| |radicand| |#5|)) |#3| (-719))) (-15 -3091 ((-2 (|:| -2427 (-719)) (|:| -4229 |#5|) (|:| |radicand| |#5|)) (-388 (-516)) (-719))) (IF (|has| |#3| (-432)) (-15 -3092 ((-2 (|:| -2427 (-719)) (|:| -4229 |#5|) (|:| |radicand| |#5|)) |#5| (-719))) |%noBranch|) (-15 -3093 ((-2 (|:| -2427 (-719)) (|:| -4229 |#4|) (|:| |radicand| (-594 |#4|))) |#4| (-719)))) (-741) (-795) (-523) (-891 |#3| |#1| |#2|) (-13 (-344) (-10 -8 (-15 -3262 (|#4| $)) (-15 -3261 (|#4| $)) (-15 -4233 ($ |#4|))))) (T -894))
+((-3093 (*1 *2 *3 *4) (-12 (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-523)) (-4 *3 (-891 *7 *5 *6)) (-5 *2 (-2 (|:| -2427 (-719)) (|:| -4229 *3) (|:| |radicand| (-594 *3)))) (-5 *1 (-894 *5 *6 *7 *3 *8)) (-5 *4 (-719)) (-4 *8 (-13 (-344) (-10 -8 (-15 -3262 (*3 $)) (-15 -3261 (*3 $)) (-15 -4233 ($ *3))))))) (-3092 (*1 *2 *3 *4) (-12 (-4 *7 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-523)) (-4 *8 (-891 *7 *5 *6)) (-5 *2 (-2 (|:| -2427 (-719)) (|:| -4229 *3) (|:| |radicand| *3))) (-5 *1 (-894 *5 *6 *7 *8 *3)) (-5 *4 (-719)) (-4 *3 (-13 (-344) (-10 -8 (-15 -3262 (*8 $)) (-15 -3261 (*8 $)) (-15 -4233 ($ *8))))))) (-3091 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-516))) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-523)) (-4 *8 (-891 *7 *5 *6)) (-5 *2 (-2 (|:| -2427 (-719)) (|:| -4229 *9) (|:| |radicand| *9))) (-5 *1 (-894 *5 *6 *7 *8 *9)) (-5 *4 (-719)) (-4 *9 (-13 (-344) (-10 -8 (-15 -3262 (*8 $)) (-15 -3261 (*8 $)) (-15 -4233 ($ *8))))))) (-3090 (*1 *2 *3 *4) (-12 (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-523)) (-4 *7 (-891 *3 *5 *6)) (-5 *2 (-2 (|:| -2427 (-719)) (|:| -4229 *8) (|:| |radicand| *8))) (-5 *1 (-894 *5 *6 *3 *7 *8)) (-5 *4 (-719)) (-4 *8 (-13 (-344) (-10 -8 (-15 -3262 (*7 $)) (-15 -3261 (*7 $)) (-15 -4233 ($ *7))))))))
+(-10 -7 (-15 -3090 ((-2 (|:| -2427 (-719)) (|:| -4229 |#5|) (|:| |radicand| |#5|)) |#3| (-719))) (-15 -3091 ((-2 (|:| -2427 (-719)) (|:| -4229 |#5|) (|:| |radicand| |#5|)) (-388 (-516)) (-719))) (IF (|has| |#3| (-432)) (-15 -3092 ((-2 (|:| -2427 (-719)) (|:| -4229 |#5|) (|:| |radicand| |#5|)) |#5| (-719))) |%noBranch|) (-15 -3093 ((-2 (|:| -2427 (-719)) (|:| -4229 |#4|) (|:| |radicand| (-594 |#4|))) |#4| (-719))))
+((-2828 (((-110) $ $) NIL)) (-3094 (($ (-1045)) 8)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 14) (((-1045) $) 11)) (-3317 (((-110) $ $) 10)))
+(((-895) (-13 (-1027) (-571 (-1045)) (-10 -8 (-15 -3094 ($ (-1045)))))) (T -895))
+((-3094 (*1 *1 *2) (-12 (-5 *2 (-1045)) (-5 *1 (-895)))))
+(-13 (-1027) (-571 (-1045)) (-10 -8 (-15 -3094 ($ (-1045)))))
+((-3160 (((-1017 (-208)) $) 8)) (-3161 (((-1017 (-208)) $) 9)) (-3162 (((-594 (-594 (-884 (-208)))) $) 10)) (-4233 (((-805) $) 6)))
+(((-896) (-133)) (T -896))
+((-3162 (*1 *2 *1) (-12 (-4 *1 (-896)) (-5 *2 (-594 (-594 (-884 (-208))))))) (-3161 (*1 *2 *1) (-12 (-4 *1 (-896)) (-5 *2 (-1017 (-208))))) (-3160 (*1 *2 *1) (-12 (-4 *1 (-896)) (-5 *2 (-1017 (-208))))))
+(-13 (-571 (-805)) (-10 -8 (-15 -3162 ((-594 (-594 (-884 (-208)))) $)) (-15 -3161 ((-1017 (-208)) $)) (-15 -3160 ((-1017 (-208)) $))))
+(((-571 (-805)) . T))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 63 (|has| |#1| (-523)))) (-2118 (($ $) 64 (|has| |#1| (-523)))) (-2116 (((-110) $) NIL (|has| |#1| (-523)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-516) #1="failed") $) NIL (|has| |#1| (-975 (-516)))) (((-3 (-388 (-516)) #1#) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-3 |#1| #1#) $) 28)) (-3431 (((-516) $) NIL (|has| |#1| (-975 (-516)))) (((-388 (-516)) $) NIL (|has| |#1| (-975 (-388 (-516))))) ((|#1| $) NIL)) (-4235 (($ $) 24)) (-3741 (((-3 $ "failed") $) 35)) (-3777 (($ $) NIL (|has| |#1| (-432)))) (-1671 (($ $ |#1| |#2| $) 48)) (-2436 (((-110) $) NIL)) (-2444 (((-719) $) 16)) (-4213 (((-110) $) NIL)) (-3157 (($ |#1| |#2|) NIL)) (-3084 ((|#2| $) 19)) (-1672 (($ (-1 |#2| |#2|) $) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-3158 (($ $) 23)) (-3449 ((|#1| $) 21)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-1866 (((-110) $) 40)) (-1865 ((|#1| $) NIL)) (-4017 (($ $ |#2| |#1| $) 75 (-12 (|has| |#2| (-128)) (|has| |#1| (-523))))) (-3740 (((-3 $ "failed") $ $) 76 (|has| |#1| (-523))) (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-523)))) (-4223 ((|#2| $) 17)) (-3081 ((|#1| $) NIL (|has| |#1| (-432)))) (-4233 (((-805) $) NIL) (($ (-516)) 39) (($ $) NIL (|has| |#1| (-523))) (($ |#1|) 34) (($ (-388 (-516))) NIL (-3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-975 (-388 (-516))))))) (-4096 (((-594 |#1|) $) NIL)) (-3959 ((|#1| $ |#2|) 31)) (-2965 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3385 (((-719)) 15)) (-1670 (($ $ $ (-719)) 59 (|has| |#1| (-162)))) (-2117 (((-110) $ $) 69 (|has| |#1| (-523)))) (-3581 (($ $ (-860)) 55) (($ $ (-719)) 56)) (-2920 (($) 22 T CONST)) (-2927 (($) 12 T CONST)) (-3317 (((-110) $ $) 68)) (-4224 (($ $ |#1|) 77 (|has| |#1| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) 54) (($ $ (-719)) 52)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-388 (-516)) $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516)))))))
+(((-897 |#1| |#2|) (-13 (-307 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-523)) (IF (|has| |#2| (-128)) (-15 -4017 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4267)) (-6 -4267) |%noBranch|))) (-984) (-740)) (T -897))
+((-4017 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-897 *3 *2)) (-4 *2 (-128)) (-4 *3 (-523)) (-4 *3 (-984)) (-4 *2 (-740)))))
+(-13 (-307 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-523)) (IF (|has| |#2| (-128)) (-15 -4017 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4267)) (-6 -4267) |%noBranch|)))
+((-3095 (((-3 (-637 |#1|) "failed") |#2| (-860)) 15)))
+(((-898 |#1| |#2|) (-10 -7 (-15 -3095 ((-3 (-637 |#1|) "failed") |#2| (-860)))) (-523) (-609 |#1|)) (T -898))
+((-3095 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-860)) (-4 *5 (-523)) (-5 *2 (-637 *5)) (-5 *1 (-898 *5 *3)) (-4 *3 (-609 *5)))))
+(-10 -7 (-15 -3095 ((-3 (-637 |#1|) "failed") |#2| (-860))))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2243 (((-1185) $ (-516) (-516)) NIL (|has| $ (-6 -4270)))) (-1798 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-1796 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795))))) (-3173 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-1217 (((-110) $ (-719)) NIL)) (-4066 ((|#1| $ (-516) |#1|) 16 (|has| $ (-6 -4270))) ((|#1| $ (-1146 (-516)) |#1|) NIL (|has| $ (-6 -4270)))) (-3992 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3815 (($) NIL T CONST)) (-2312 (($ $) NIL (|has| $ (-6 -4270)))) (-2313 (($ $) NIL)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3685 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-1587 ((|#1| $ (-516) |#1|) 15 (|has| $ (-6 -4270)))) (-3372 ((|#1| $ (-516)) 13)) (-3698 (((-516) (-1 (-110) |#1|) $) NIL) (((-516) |#1| $) NIL (|has| |#1| (-1027))) (((-516) |#1| $ (-516)) NIL (|has| |#1| (-1027)))) (-2018 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3896 (($ (-719) |#1|) 12)) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-516) $) 10 (|has| (-516) (-795)))) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3792 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2246 (((-516) $) NIL (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-2022 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-2317 (($ |#1| $ (-516)) NIL) (($ $ $ (-516)) NIL)) (-2248 (((-594 (-516)) $) NIL)) (-2249 (((-110) (-516) $) NIL)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-4079 ((|#1| $) NIL (|has| (-516) (-795)))) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-2244 (($ $ |#1|) 17 (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2250 (((-594 |#1|) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) 11)) (-4078 ((|#1| $ (-516) |#1|) NIL) ((|#1| $ (-516)) 14) (($ $ (-1146 (-516))) NIL)) (-2318 (($ $ (-516)) NIL) (($ $ (-1146 (-516))) NIL)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1797 (($ $ $ (-516)) NIL (|has| $ (-6 -4270)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) NIL (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) NIL)) (-4080 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-594 $)) NIL)) (-4233 (((-805) $) NIL (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#1| (-795)))) (-4232 (((-719) $) 8 (|has| $ (-6 -4269)))))
+(((-899 |#1|) (-19 |#1|) (-1134)) (T -899))
NIL
(-19 |#1|)
-((-1375 (($ $ (-1016 $)) 7) (($ $ (-1095)) 6)))
-(((-897) (-133)) (T -897))
-((-1375 (*1 *1 *1 *2) (-12 (-5 *2 (-1016 *1)) (-4 *1 (-897)))) (-1375 (*1 *1 *1 *2) (-12 (-4 *1 (-897)) (-5 *2 (-1095)))))
-(-13 (-10 -8 (-15 -1375 ($ $ (-1095))) (-15 -1375 ($ $ (-1016 $)))))
-((-2916 (((-2 (|:| -1641 (-595 (-528))) (|:| |poly| (-595 (-1091 |#1|))) (|:| |prim| (-1091 |#1|))) (-595 (-891 |#1|)) (-595 (-1095)) (-1095)) 25) (((-2 (|:| -1641 (-595 (-528))) (|:| |poly| (-595 (-1091 |#1|))) (|:| |prim| (-1091 |#1|))) (-595 (-891 |#1|)) (-595 (-1095))) 26) (((-2 (|:| |coef1| (-528)) (|:| |coef2| (-528)) (|:| |prim| (-1091 |#1|))) (-891 |#1|) (-1095) (-891 |#1|) (-1095)) 43)))
-(((-898 |#1|) (-10 -7 (-15 -2916 ((-2 (|:| |coef1| (-528)) (|:| |coef2| (-528)) (|:| |prim| (-1091 |#1|))) (-891 |#1|) (-1095) (-891 |#1|) (-1095))) (-15 -2916 ((-2 (|:| -1641 (-595 (-528))) (|:| |poly| (-595 (-1091 |#1|))) (|:| |prim| (-1091 |#1|))) (-595 (-891 |#1|)) (-595 (-1095)))) (-15 -2916 ((-2 (|:| -1641 (-595 (-528))) (|:| |poly| (-595 (-1091 |#1|))) (|:| |prim| (-1091 |#1|))) (-595 (-891 |#1|)) (-595 (-1095)) (-1095)))) (-13 (-343) (-140))) (T -898))
-((-2916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-595 (-891 *6))) (-5 *4 (-595 (-1095))) (-5 *5 (-1095)) (-4 *6 (-13 (-343) (-140))) (-5 *2 (-2 (|:| -1641 (-595 (-528))) (|:| |poly| (-595 (-1091 *6))) (|:| |prim| (-1091 *6)))) (-5 *1 (-898 *6)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-891 *5))) (-5 *4 (-595 (-1095))) (-4 *5 (-13 (-343) (-140))) (-5 *2 (-2 (|:| -1641 (-595 (-528))) (|:| |poly| (-595 (-1091 *5))) (|:| |prim| (-1091 *5)))) (-5 *1 (-898 *5)))) (-2916 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-891 *5)) (-5 *4 (-1095)) (-4 *5 (-13 (-343) (-140))) (-5 *2 (-2 (|:| |coef1| (-528)) (|:| |coef2| (-528)) (|:| |prim| (-1091 *5)))) (-5 *1 (-898 *5)))))
-(-10 -7 (-15 -2916 ((-2 (|:| |coef1| (-528)) (|:| |coef2| (-528)) (|:| |prim| (-1091 |#1|))) (-891 |#1|) (-1095) (-891 |#1|) (-1095))) (-15 -2916 ((-2 (|:| -1641 (-595 (-528))) (|:| |poly| (-595 (-1091 |#1|))) (|:| |prim| (-1091 |#1|))) (-595 (-891 |#1|)) (-595 (-1095)))) (-15 -2916 ((-2 (|:| -1641 (-595 (-528))) (|:| |poly| (-595 (-1091 |#1|))) (|:| |prim| (-1091 |#1|))) (-595 (-891 |#1|)) (-595 (-1095)) (-1095))))
-((-3271 (((-595 |#1|) |#1| |#1|) 42)) (-2124 (((-110) |#1|) 39)) (-1881 ((|#1| |#1|) 65)) (-3573 ((|#1| |#1|) 64)))
-(((-899 |#1|) (-10 -7 (-15 -2124 ((-110) |#1|)) (-15 -3573 (|#1| |#1|)) (-15 -1881 (|#1| |#1|)) (-15 -3271 ((-595 |#1|) |#1| |#1|))) (-513)) (T -899))
-((-3271 (*1 *2 *3 *3) (-12 (-5 *2 (-595 *3)) (-5 *1 (-899 *3)) (-4 *3 (-513)))) (-1881 (*1 *2 *2) (-12 (-5 *1 (-899 *2)) (-4 *2 (-513)))) (-3573 (*1 *2 *2) (-12 (-5 *1 (-899 *2)) (-4 *2 (-513)))) (-2124 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-899 *3)) (-4 *3 (-513)))))
-(-10 -7 (-15 -2124 ((-110) |#1|)) (-15 -3573 (|#1| |#1|)) (-15 -1881 (|#1| |#1|)) (-15 -3271 ((-595 |#1|) |#1| |#1|)))
-((-3332 (((-1182) (-802)) 9)))
-(((-900) (-10 -7 (-15 -3332 ((-1182) (-802))))) (T -900))
-((-3332 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1182)) (-5 *1 (-900)))))
-(-10 -7 (-15 -3332 ((-1182) (-802))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 63 (|has| |#1| (-520)))) (-1738 (($ $) 64 (|has| |#1| (-520)))) (-1811 (((-110) $) NIL (|has| |#1| (-520)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-528) "failed") $) NIL (|has| |#1| (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-3 |#1| "failed") $) 28)) (-2409 (((-528) $) NIL (|has| |#1| (-972 (-528)))) (((-387 (-528)) $) NIL (|has| |#1| (-972 (-387 (-528))))) ((|#1| $) NIL)) (-2388 (($ $) 24)) (-1312 (((-3 $ "failed") $) 35)) (-1551 (($ $) NIL (|has| |#1| (-431)))) (-4047 (($ $ |#1| |#2| $) 48)) (-1297 (((-110) $) NIL)) (-1224 (((-717) $) 16)) (-2195 (((-110) $) NIL)) (-2548 (($ |#1| |#2|) NIL)) (-3499 ((|#2| $) 19)) (-1264 (($ (-1 |#2| |#2|) $) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-2686 (($ $) 23)) (-2697 ((|#1| $) 21)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2662 (((-110) $) 40)) (-2675 ((|#1| $) NIL)) (-1855 (($ $ |#2| |#1| $) 75 (-12 (|has| |#2| (-128)) (|has| |#1| (-520))))) (-3477 (((-3 $ "failed") $ $) 76 (|has| |#1| (-520))) (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-520)))) (-2935 ((|#2| $) 17)) (-1618 ((|#1| $) NIL (|has| |#1| (-431)))) (-2222 (((-802) $) NIL) (($ (-528)) 39) (($ $) NIL (|has| |#1| (-520))) (($ |#1|) 34) (($ (-387 (-528))) NIL (-1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-972 (-387 (-528))))))) (-3348 (((-595 |#1|) $) NIL)) (-3216 ((|#1| $ |#2|) 31)) (-3749 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3742 (((-717)) 15)) (-1997 (($ $ $ (-717)) 59 (|has| |#1| (-162)))) (-4016 (((-110) $ $) 69 (|has| |#1| (-520)))) (-2690 (($ $ (-860)) 55) (($ $ (-717)) 56)) (-2969 (($) 22 T CONST)) (-2982 (($) 12 T CONST)) (-2186 (((-110) $ $) 68)) (-2296 (($ $ |#1|) 77 (|has| |#1| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) 54) (($ $ (-717)) 52)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-387 (-528)) $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528)))))))
-(((-901 |#1| |#2|) (-13 (-306 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-520)) (IF (|has| |#2| (-128)) (-15 -1855 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4262)) (-6 -4262) |%noBranch|))) (-981) (-738)) (T -901))
-((-1855 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-901 *3 *2)) (-4 *2 (-128)) (-4 *3 (-520)) (-4 *3 (-981)) (-4 *2 (-738)))))
-(-13 (-306 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-520)) (IF (|has| |#2| (-128)) (-15 -1855 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4262)) (-6 -4262) |%noBranch|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL (-1463 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739)))))) (-3622 (($ $ $) 63 (-12 (|has| |#1| (-739)) (|has| |#2| (-739))))) (-3181 (((-3 $ "failed") $ $) 50 (-1463 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739)))))) (-2856 (((-717)) 34 (-12 (|has| |#1| (-348)) (|has| |#2| (-348))))) (-3914 ((|#2| $) 21)) (-1304 ((|#1| $) 20)) (-2816 (($) NIL (-1463 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-452)) (|has| |#2| (-452))) (-12 (|has| |#1| (-673)) (|has| |#2| (-673))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739)))) CONST)) (-1312 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| |#1| (-452)) (|has| |#2| (-452))) (-12 (|has| |#1| (-673)) (|has| |#2| (-673)))))) (-1338 (($) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-348))))) (-1297 (((-110) $) NIL (-1463 (-12 (|has| |#1| (-452)) (|has| |#2| (-452))) (-12 (|has| |#1| (-673)) (|has| |#2| (-673)))))) (-1436 (($ $ $) NIL (-1463 (-12 (|has| |#1| (-739)) (|has| |#2| (-739))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))))) (-1736 (($ $ $) NIL (-1463 (-12 (|has| |#1| (-739)) (|has| |#2| (-739))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))))) (-2259 (($ |#1| |#2|) 19)) (-3201 (((-860) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-348))))) (-3034 (((-1078) $) NIL)) (-2652 (($ $) 37 (-12 (|has| |#1| (-452)) (|has| |#2| (-452))))) (-3108 (($ (-860)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-348))))) (-2495 (((-1042) $) NIL)) (-4097 (($ $ $) NIL (-12 (|has| |#1| (-452)) (|has| |#2| (-452))))) (-2405 (($ $ $) NIL (-12 (|has| |#1| (-452)) (|has| |#2| (-452))))) (-2222 (((-802) $) 14)) (-2690 (($ $ (-528)) NIL (-12 (|has| |#1| (-452)) (|has| |#2| (-452)))) (($ $ (-717)) NIL (-1463 (-12 (|has| |#1| (-452)) (|has| |#2| (-452))) (-12 (|has| |#1| (-673)) (|has| |#2| (-673))))) (($ $ (-860)) NIL (-1463 (-12 (|has| |#1| (-452)) (|has| |#2| (-452))) (-12 (|has| |#1| (-673)) (|has| |#2| (-673)))))) (-2969 (($) 40 (-1463 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739)))) CONST)) (-2982 (($) 24 (-1463 (-12 (|has| |#1| (-452)) (|has| |#2| (-452))) (-12 (|has| |#1| (-673)) (|has| |#2| (-673)))) CONST)) (-2244 (((-110) $ $) NIL (-1463 (-12 (|has| |#1| (-739)) (|has| |#2| (-739))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))))) (-2220 (((-110) $ $) NIL (-1463 (-12 (|has| |#1| (-739)) (|has| |#2| (-739))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))))) (-2186 (((-110) $ $) 18)) (-2232 (((-110) $ $) NIL (-1463 (-12 (|has| |#1| (-739)) (|has| |#2| (-739))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))))) (-2208 (((-110) $ $) 66 (-1463 (-12 (|has| |#1| (-739)) (|has| |#2| (-739))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))))) (-2296 (($ $ $) NIL (-12 (|has| |#1| (-452)) (|has| |#2| (-452))))) (-2286 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2275 (($ $ $) 43 (-1463 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739)))))) (** (($ $ (-528)) NIL (-12 (|has| |#1| (-452)) (|has| |#2| (-452)))) (($ $ (-717)) 31 (-1463 (-12 (|has| |#1| (-452)) (|has| |#2| (-452))) (-12 (|has| |#1| (-673)) (|has| |#2| (-673))))) (($ $ (-860)) NIL (-1463 (-12 (|has| |#1| (-452)) (|has| |#2| (-452))) (-12 (|has| |#1| (-673)) (|has| |#2| (-673)))))) (* (($ (-528) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-717) $) 46 (-1463 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739))))) (($ (-860) $) NIL (-1463 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739))))) (($ $ $) 27 (-1463 (-12 (|has| |#1| (-452)) (|has| |#2| (-452))) (-12 (|has| |#1| (-673)) (|has| |#2| (-673)))))))
-(((-902 |#1| |#2|) (-13 (-1023) (-10 -8 (IF (|has| |#1| (-348)) (IF (|has| |#2| (-348)) (-6 (-348)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-673)) (IF (|has| |#2| (-673)) (-6 (-673)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-128)) (IF (|has| |#2| (-128)) (-6 (-128)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-452)) (-6 (-452)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-739)) (IF (|has| |#2| (-739)) (-6 (-739)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-793)) (IF (|has| |#2| (-793)) (-6 (-793)) |%noBranch|) |%noBranch|) (-15 -2259 ($ |#1| |#2|)) (-15 -1304 (|#1| $)) (-15 -3914 (|#2| $)))) (-1023) (-1023)) (T -902))
-((-2259 (*1 *1 *2 *3) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1023)))) (-1304 (*1 *2 *1) (-12 (-4 *2 (-1023)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1023)))) (-3914 (*1 *2 *1) (-12 (-4 *2 (-1023)) (-5 *1 (-902 *3 *2)) (-4 *3 (-1023)))))
-(-13 (-1023) (-10 -8 (IF (|has| |#1| (-348)) (IF (|has| |#2| (-348)) (-6 (-348)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-673)) (IF (|has| |#2| (-673)) (-6 (-673)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-128)) (IF (|has| |#2| (-128)) (-6 (-128)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-452)) (-6 (-452)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-739)) (IF (|has| |#2| (-739)) (-6 (-739)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-793)) (IF (|has| |#2| (-793)) (-6 (-793)) |%noBranch|) |%noBranch|) (-15 -2259 ($ |#1| |#2|)) (-15 -1304 (|#1| $)) (-15 -3914 (|#2| $))))
-((-3327 (((-1027) $) 12)) (-1723 (($ (-1095) (-1027)) 13)) (-3814 (((-1095) $) 10)) (-2222 (((-802) $) 22)))
-(((-903) (-13 (-569 (-802)) (-10 -8 (-15 -3814 ((-1095) $)) (-15 -3327 ((-1027) $)) (-15 -1723 ($ (-1095) (-1027)))))) (T -903))
-((-3814 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-903)))) (-3327 (*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-903)))) (-1723 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-1027)) (-5 *1 (-903)))))
-(-13 (-569 (-802)) (-10 -8 (-15 -3814 ((-1095) $)) (-15 -3327 ((-1027) $)) (-15 -1723 ($ (-1095) (-1027)))))
-((-2565 (((-1025 (-1095)) $) 19)) (-2416 (((-110) $) 26)) (-3915 (((-1095) $) 27)) (-1664 (((-110) $) 24)) (-2010 ((|#1| $) 25)) (-2483 (((-812 $ $) $) 34)) (-3282 (((-110) $) 33)) (-2619 (($ $ $) 12)) (-1329 (($ $) 29)) (-2964 (((-110) $) 28)) (-3617 (($ $) 10)) (-1735 (((-812 $ $) $) 36)) (-2248 (((-110) $) 35)) (-2970 (($ $ $) 13)) (-4220 (((-812 $ $) $) 38)) (-4007 (((-110) $) 37)) (-2118 (($ $ $) 14)) (-2222 (($ |#1|) 7) (($ (-1095)) 9) (((-802) $) 40 (|has| |#1| (-569 (-802))))) (-2847 (((-812 $ $) $) 32)) (-3610 (((-110) $) 30)) (-3287 (($ $ $) 11)))
-(((-904 |#1|) (-13 (-905) (-10 -8 (IF (|has| |#1| (-569 (-802))) (-6 (-569 (-802))) |%noBranch|) (-15 -2222 ($ |#1|)) (-15 -2222 ($ (-1095))) (-15 -2565 ((-1025 (-1095)) $)) (-15 -1664 ((-110) $)) (-15 -2010 (|#1| $)) (-15 -2416 ((-110) $)) (-15 -3915 ((-1095) $)) (-15 -2964 ((-110) $)) (-15 -1329 ($ $)) (-15 -3610 ((-110) $)) (-15 -2847 ((-812 $ $) $)) (-15 -3282 ((-110) $)) (-15 -2483 ((-812 $ $) $)) (-15 -2248 ((-110) $)) (-15 -1735 ((-812 $ $) $)) (-15 -4007 ((-110) $)) (-15 -4220 ((-812 $ $) $)))) (-905)) (T -904))
-((-2222 (*1 *1 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-905)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-904 *3)) (-4 *3 (-905)))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-1025 (-1095))) (-5 *1 (-904 *3)) (-4 *3 (-905)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-904 *3)) (-4 *3 (-905)))) (-2010 (*1 *2 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-905)))) (-2416 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-904 *3)) (-4 *3 (-905)))) (-3915 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-904 *3)) (-4 *3 (-905)))) (-2964 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-904 *3)) (-4 *3 (-905)))) (-1329 (*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-905)))) (-3610 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-904 *3)) (-4 *3 (-905)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-812 (-904 *3) (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-905)))) (-3282 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-904 *3)) (-4 *3 (-905)))) (-2483 (*1 *2 *1) (-12 (-5 *2 (-812 (-904 *3) (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-905)))) (-2248 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-904 *3)) (-4 *3 (-905)))) (-1735 (*1 *2 *1) (-12 (-5 *2 (-812 (-904 *3) (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-905)))) (-4007 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-904 *3)) (-4 *3 (-905)))) (-4220 (*1 *2 *1) (-12 (-5 *2 (-812 (-904 *3) (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-905)))))
-(-13 (-905) (-10 -8 (IF (|has| |#1| (-569 (-802))) (-6 (-569 (-802))) |%noBranch|) (-15 -2222 ($ |#1|)) (-15 -2222 ($ (-1095))) (-15 -2565 ((-1025 (-1095)) $)) (-15 -1664 ((-110) $)) (-15 -2010 (|#1| $)) (-15 -2416 ((-110) $)) (-15 -3915 ((-1095) $)) (-15 -2964 ((-110) $)) (-15 -1329 ($ $)) (-15 -3610 ((-110) $)) (-15 -2847 ((-812 $ $) $)) (-15 -3282 ((-110) $)) (-15 -2483 ((-812 $ $) $)) (-15 -2248 ((-110) $)) (-15 -1735 ((-812 $ $) $)) (-15 -4007 ((-110) $)) (-15 -4220 ((-812 $ $) $))))
-((-2619 (($ $ $) 8)) (-3617 (($ $) 6)) (-2970 (($ $ $) 9)) (-2118 (($ $ $) 10)) (-3287 (($ $ $) 7)))
-(((-905) (-133)) (T -905))
-((-2118 (*1 *1 *1 *1) (-4 *1 (-905))) (-2970 (*1 *1 *1 *1) (-4 *1 (-905))) (-2619 (*1 *1 *1 *1) (-4 *1 (-905))) (-3287 (*1 *1 *1 *1) (-4 *1 (-905))) (-3617 (*1 *1 *1) (-4 *1 (-905))))
-(-13 (-10 -8 (-15 -3617 ($ $)) (-15 -3287 ($ $ $)) (-15 -2619 ($ $ $)) (-15 -2970 ($ $ $)) (-15 -2118 ($ $ $))))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-3535 (((-110) $ (-717)) 8)) (-2816 (($) 7 T CONST)) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) 9)) (-3368 (($ $ $) 43)) (-1356 (($ $ $) 44)) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-1736 ((|#1| $) 45)) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35)) (-3358 (((-110) $ (-717)) 10)) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-3934 ((|#1| $) 39)) (-1950 (($ |#1| $) 40)) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-1390 ((|#1| $) 41)) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-2164 (($ (-595 |#1|)) 42)) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-906 |#1|) (-133) (-793)) (T -906))
-((-1736 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-793)))) (-1356 (*1 *1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-793)))) (-3368 (*1 *1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-793)))))
-(-13 (-104 |t#1|) (-10 -8 (-6 -4264) (-15 -1736 (|t#1| $)) (-15 -1356 ($ $ $)) (-15 -3368 ($ $ $))))
-(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1023)) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-569 (-802)))) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-467 |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-1023) |has| |#1| (-1023)) ((-1131) . T))
-((-3390 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2088 |#2|)) |#2| |#2|) 85)) (-1355 ((|#2| |#2| |#2|) 83)) (-3943 (((-2 (|:| |coef2| |#2|) (|:| -2088 |#2|)) |#2| |#2|) 87)) (-1767 (((-2 (|:| |coef1| |#2|) (|:| -2088 |#2|)) |#2| |#2|) 89)) (-2506 (((-2 (|:| |coef2| |#2|) (|:| -2021 |#1|)) |#2| |#2|) 107 (|has| |#1| (-431)))) (-1311 (((-2 (|:| |coef2| |#2|) (|:| -1606 |#1|)) |#2| |#2|) 46)) (-1554 (((-2 (|:| |coef2| |#2|) (|:| -1606 |#1|)) |#2| |#2|) 64)) (-1527 (((-2 (|:| |coef1| |#2|) (|:| -1606 |#1|)) |#2| |#2|) 66)) (-3707 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-2645 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-717)) 71)) (-3365 (((-2 (|:| |coef2| |#2|) (|:| -1372 |#1|)) |#2|) 97)) (-1656 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-717)) 74)) (-1434 (((-595 (-717)) |#2| |#2|) 82)) (-2569 ((|#1| |#2| |#2|) 42)) (-1217 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2021 |#1|)) |#2| |#2|) 105 (|has| |#1| (-431)))) (-2021 ((|#1| |#2| |#2|) 103 (|has| |#1| (-431)))) (-1779 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1606 |#1|)) |#2| |#2|) 44)) (-2342 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1606 |#1|)) |#2| |#2|) 63)) (-1606 ((|#1| |#2| |#2|) 61)) (-3291 (((-2 (|:| -1641 |#1|) (|:| -3490 |#2|) (|:| -2537 |#2|)) |#2| |#2|) 35)) (-2504 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-1602 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-2272 ((|#2| |#2| |#2|) 75)) (-3976 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-717)) 69)) (-2201 ((|#2| |#2| |#2| (-717)) 67)) (-2088 ((|#2| |#2| |#2|) 111 (|has| |#1| (-431)))) (-3477 (((-1177 |#2|) (-1177 |#2|) |#1|) 21)) (-1512 (((-2 (|:| -3490 |#2|) (|:| -2537 |#2|)) |#2| |#2|) 39)) (-1425 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1372 |#1|)) |#2|) 95)) (-1372 ((|#1| |#2|) 92)) (-1717 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-717)) 73)) (-1580 ((|#2| |#2| |#2| (-717)) 72)) (-4225 (((-595 |#2|) |#2| |#2|) 80)) (-1688 ((|#2| |#2| |#1| |#1| (-717)) 50)) (-1299 ((|#1| |#1| |#1| (-717)) 49)) (* (((-1177 |#2|) |#1| (-1177 |#2|)) 16)))
-(((-907 |#1| |#2|) (-10 -7 (-15 -1606 (|#1| |#2| |#2|)) (-15 -2342 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1606 |#1|)) |#2| |#2|)) (-15 -1554 ((-2 (|:| |coef2| |#2|) (|:| -1606 |#1|)) |#2| |#2|)) (-15 -1527 ((-2 (|:| |coef1| |#2|) (|:| -1606 |#1|)) |#2| |#2|)) (-15 -2201 (|#2| |#2| |#2| (-717))) (-15 -3976 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-717))) (-15 -2645 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-717))) (-15 -1580 (|#2| |#2| |#2| (-717))) (-15 -1717 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-717))) (-15 -1656 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-717))) (-15 -2272 (|#2| |#2| |#2|)) (-15 -1602 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3707 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1355 (|#2| |#2| |#2|)) (-15 -3390 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2088 |#2|)) |#2| |#2|)) (-15 -3943 ((-2 (|:| |coef2| |#2|) (|:| -2088 |#2|)) |#2| |#2|)) (-15 -1767 ((-2 (|:| |coef1| |#2|) (|:| -2088 |#2|)) |#2| |#2|)) (-15 -1372 (|#1| |#2|)) (-15 -1425 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1372 |#1|)) |#2|)) (-15 -3365 ((-2 (|:| |coef2| |#2|) (|:| -1372 |#1|)) |#2|)) (-15 -4225 ((-595 |#2|) |#2| |#2|)) (-15 -1434 ((-595 (-717)) |#2| |#2|)) (IF (|has| |#1| (-431)) (PROGN (-15 -2021 (|#1| |#2| |#2|)) (-15 -1217 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2021 |#1|)) |#2| |#2|)) (-15 -2506 ((-2 (|:| |coef2| |#2|) (|:| -2021 |#1|)) |#2| |#2|)) (-15 -2088 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1177 |#2|) |#1| (-1177 |#2|))) (-15 -3477 ((-1177 |#2|) (-1177 |#2|) |#1|)) (-15 -3291 ((-2 (|:| -1641 |#1|) (|:| -3490 |#2|) (|:| -2537 |#2|)) |#2| |#2|)) (-15 -1512 ((-2 (|:| -3490 |#2|) (|:| -2537 |#2|)) |#2| |#2|)) (-15 -1299 (|#1| |#1| |#1| (-717))) (-15 -1688 (|#2| |#2| |#1| |#1| (-717))) (-15 -2504 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2569 (|#1| |#2| |#2|)) (-15 -1779 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1606 |#1|)) |#2| |#2|)) (-15 -1311 ((-2 (|:| |coef2| |#2|) (|:| -1606 |#1|)) |#2| |#2|))) (-520) (-1153 |#1|)) (T -907))
-((-1311 (*1 *2 *3 *3) (-12 (-4 *4 (-520)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1606 *4))) (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))) (-1779 (*1 *2 *3 *3) (-12 (-4 *4 (-520)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1606 *4))) (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))) (-2569 (*1 *2 *3 *3) (-12 (-4 *2 (-520)) (-5 *1 (-907 *2 *3)) (-4 *3 (-1153 *2)))) (-2504 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-520)) (-5 *1 (-907 *3 *2)) (-4 *2 (-1153 *3)))) (-1688 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-717)) (-4 *3 (-520)) (-5 *1 (-907 *3 *2)) (-4 *2 (-1153 *3)))) (-1299 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-717)) (-4 *2 (-520)) (-5 *1 (-907 *2 *4)) (-4 *4 (-1153 *2)))) (-1512 (*1 *2 *3 *3) (-12 (-4 *4 (-520)) (-5 *2 (-2 (|:| -3490 *3) (|:| -2537 *3))) (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))) (-3291 (*1 *2 *3 *3) (-12 (-4 *4 (-520)) (-5 *2 (-2 (|:| -1641 *4) (|:| -3490 *3) (|:| -2537 *3))) (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))) (-3477 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-520)) (-5 *1 (-907 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-520)) (-5 *1 (-907 *3 *4)))) (-2088 (*1 *2 *2 *2) (-12 (-4 *3 (-431)) (-4 *3 (-520)) (-5 *1 (-907 *3 *2)) (-4 *2 (-1153 *3)))) (-2506 (*1 *2 *3 *3) (-12 (-4 *4 (-431)) (-4 *4 (-520)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2021 *4))) (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))) (-1217 (*1 *2 *3 *3) (-12 (-4 *4 (-431)) (-4 *4 (-520)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2021 *4))) (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))) (-2021 (*1 *2 *3 *3) (-12 (-4 *2 (-520)) (-4 *2 (-431)) (-5 *1 (-907 *2 *3)) (-4 *3 (-1153 *2)))) (-1434 (*1 *2 *3 *3) (-12 (-4 *4 (-520)) (-5 *2 (-595 (-717))) (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))) (-4225 (*1 *2 *3 *3) (-12 (-4 *4 (-520)) (-5 *2 (-595 *3)) (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))) (-3365 (*1 *2 *3) (-12 (-4 *4 (-520)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1372 *4))) (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))) (-1425 (*1 *2 *3) (-12 (-4 *4 (-520)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1372 *4))) (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))) (-1372 (*1 *2 *3) (-12 (-4 *2 (-520)) (-5 *1 (-907 *2 *3)) (-4 *3 (-1153 *2)))) (-1767 (*1 *2 *3 *3) (-12 (-4 *4 (-520)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2088 *3))) (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))) (-3943 (*1 *2 *3 *3) (-12 (-4 *4 (-520)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2088 *3))) (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))) (-3390 (*1 *2 *3 *3) (-12 (-4 *4 (-520)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2088 *3))) (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))) (-1355 (*1 *2 *2 *2) (-12 (-4 *3 (-520)) (-5 *1 (-907 *3 *2)) (-4 *2 (-1153 *3)))) (-3707 (*1 *2 *3 *3) (-12 (-4 *4 (-520)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))) (-1602 (*1 *2 *3 *3) (-12 (-4 *4 (-520)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))) (-2272 (*1 *2 *2 *2) (-12 (-4 *3 (-520)) (-5 *1 (-907 *3 *2)) (-4 *2 (-1153 *3)))) (-1656 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-717)) (-4 *5 (-520)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-907 *5 *3)) (-4 *3 (-1153 *5)))) (-1717 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-717)) (-4 *5 (-520)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-907 *5 *3)) (-4 *3 (-1153 *5)))) (-1580 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-717)) (-4 *4 (-520)) (-5 *1 (-907 *4 *2)) (-4 *2 (-1153 *4)))) (-2645 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-717)) (-4 *5 (-520)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-907 *5 *3)) (-4 *3 (-1153 *5)))) (-3976 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-717)) (-4 *5 (-520)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-907 *5 *3)) (-4 *3 (-1153 *5)))) (-2201 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-717)) (-4 *4 (-520)) (-5 *1 (-907 *4 *2)) (-4 *2 (-1153 *4)))) (-1527 (*1 *2 *3 *3) (-12 (-4 *4 (-520)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1606 *4))) (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))) (-1554 (*1 *2 *3 *3) (-12 (-4 *4 (-520)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1606 *4))) (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))) (-2342 (*1 *2 *3 *3) (-12 (-4 *4 (-520)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1606 *4))) (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))) (-1606 (*1 *2 *3 *3) (-12 (-4 *2 (-520)) (-5 *1 (-907 *2 *3)) (-4 *3 (-1153 *2)))))
-(-10 -7 (-15 -1606 (|#1| |#2| |#2|)) (-15 -2342 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1606 |#1|)) |#2| |#2|)) (-15 -1554 ((-2 (|:| |coef2| |#2|) (|:| -1606 |#1|)) |#2| |#2|)) (-15 -1527 ((-2 (|:| |coef1| |#2|) (|:| -1606 |#1|)) |#2| |#2|)) (-15 -2201 (|#2| |#2| |#2| (-717))) (-15 -3976 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-717))) (-15 -2645 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-717))) (-15 -1580 (|#2| |#2| |#2| (-717))) (-15 -1717 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-717))) (-15 -1656 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-717))) (-15 -2272 (|#2| |#2| |#2|)) (-15 -1602 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3707 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1355 (|#2| |#2| |#2|)) (-15 -3390 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2088 |#2|)) |#2| |#2|)) (-15 -3943 ((-2 (|:| |coef2| |#2|) (|:| -2088 |#2|)) |#2| |#2|)) (-15 -1767 ((-2 (|:| |coef1| |#2|) (|:| -2088 |#2|)) |#2| |#2|)) (-15 -1372 (|#1| |#2|)) (-15 -1425 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1372 |#1|)) |#2|)) (-15 -3365 ((-2 (|:| |coef2| |#2|) (|:| -1372 |#1|)) |#2|)) (-15 -4225 ((-595 |#2|) |#2| |#2|)) (-15 -1434 ((-595 (-717)) |#2| |#2|)) (IF (|has| |#1| (-431)) (PROGN (-15 -2021 (|#1| |#2| |#2|)) (-15 -1217 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2021 |#1|)) |#2| |#2|)) (-15 -2506 ((-2 (|:| |coef2| |#2|) (|:| -2021 |#1|)) |#2| |#2|)) (-15 -2088 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1177 |#2|) |#1| (-1177 |#2|))) (-15 -3477 ((-1177 |#2|) (-1177 |#2|) |#1|)) (-15 -3291 ((-2 (|:| -1641 |#1|) (|:| -3490 |#2|) (|:| -2537 |#2|)) |#2| |#2|)) (-15 -1512 ((-2 (|:| -3490 |#2|) (|:| -2537 |#2|)) |#2| |#2|)) (-15 -1299 (|#1| |#1| |#1| (-717))) (-15 -1688 (|#2| |#2| |#1| |#1| (-717))) (-15 -2504 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2569 (|#1| |#2| |#2|)) (-15 -1779 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1606 |#1|)) |#2| |#2|)) (-15 -1311 ((-2 (|:| |coef2| |#2|) (|:| -1606 |#1|)) |#2| |#2|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) 27)) (-2816 (($) NIL T CONST)) (-2748 (((-595 (-595 (-528))) (-595 (-528))) 29)) (-3153 (((-528) $) 45)) (-2198 (($ (-595 (-528))) 17)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3155 (((-595 (-528)) $) 12)) (-4097 (($ $) 32)) (-2222 (((-802) $) 43) (((-595 (-528)) $) 10)) (-2969 (($) 7 T CONST)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 20)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 19)) (-2275 (($ $ $) 21)) (* (($ (-860) $) NIL) (($ (-717) $) 25)))
-(((-908) (-13 (-741) (-570 (-595 (-528))) (-10 -8 (-15 -2198 ($ (-595 (-528)))) (-15 -2748 ((-595 (-595 (-528))) (-595 (-528)))) (-15 -3153 ((-528) $)) (-15 -4097 ($ $)) (-15 -2222 ((-595 (-528)) $))))) (T -908))
-((-2198 (*1 *1 *2) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-908)))) (-2748 (*1 *2 *3) (-12 (-5 *2 (-595 (-595 (-528)))) (-5 *1 (-908)) (-5 *3 (-595 (-528))))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-908)))) (-4097 (*1 *1 *1) (-5 *1 (-908))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-908)))))
-(-13 (-741) (-570 (-595 (-528))) (-10 -8 (-15 -2198 ($ (-595 (-528)))) (-15 -2748 ((-595 (-595 (-528))) (-595 (-528)))) (-15 -3153 ((-528) $)) (-15 -4097 ($ $)) (-15 -2222 ((-595 (-528)) $))))
-((-2296 (($ $ |#2|) 30)) (-2286 (($ $) 22) (($ $ $) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-387 (-528)) $) 26) (($ $ (-387 (-528))) 28)))
-(((-909 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-387 (-528)))) (-15 * (|#1| (-387 (-528)) |#1|)) (-15 -2296 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-528) |#1|)) (-15 -2286 (|#1| |#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 * (|#1| (-717) |#1|)) (-15 * (|#1| (-860) |#1|))) (-910 |#2| |#3| |#4|) (-981) (-738) (-793)) (T -909))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-387 (-528)))) (-15 * (|#1| (-387 (-528)) |#1|)) (-15 -2296 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-528) |#1|)) (-15 -2286 (|#1| |#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 * (|#1| (-717) |#1|)) (-15 * (|#1| (-860) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2565 (((-595 |#3|) $) 74)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 51 (|has| |#1| (-520)))) (-1738 (($ $) 52 (|has| |#1| (-520)))) (-1811 (((-110) $) 54 (|has| |#1| (-520)))) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-2388 (($ $) 60)) (-1312 (((-3 $ "failed") $) 34)) (-1900 (((-110) $) 73)) (-1297 (((-110) $) 31)) (-2195 (((-110) $) 62)) (-2548 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-595 |#3|) (-595 |#2|)) 75)) (-3106 (($ (-1 |#1| |#1|) $) 63)) (-2686 (($ $) 65)) (-2697 ((|#1| $) 66)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-3477 (((-3 $ "failed") $ $) 50 (|has| |#1| (-520)))) (-2935 ((|#2| $) 64)) (-3534 (($ $) 72)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ (-387 (-528))) 57 (|has| |#1| (-37 (-387 (-528))))) (($ $) 49 (|has| |#1| (-520))) (($ |#1|) 47 (|has| |#1| (-162)))) (-3216 ((|#1| $ |#2|) 59)) (-3749 (((-3 $ "failed") $) 48 (|has| |#1| (-138)))) (-3742 (((-717)) 29)) (-4016 (((-110) $ $) 53 (|has| |#1| (-520)))) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2296 (($ $ |#1|) 58 (|has| |#1| (-343)))) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-387 (-528)) $) 56 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) 55 (|has| |#1| (-37 (-387 (-528)))))))
-(((-910 |#1| |#2| |#3|) (-133) (-981) (-738) (-793)) (T -910))
-((-2697 (*1 *2 *1) (-12 (-4 *1 (-910 *2 *3 *4)) (-4 *3 (-738)) (-4 *4 (-793)) (-4 *2 (-981)))) (-2686 (*1 *1 *1) (-12 (-4 *1 (-910 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-738)) (-4 *4 (-793)))) (-2935 (*1 *2 *1) (-12 (-4 *1 (-910 *3 *2 *4)) (-4 *3 (-981)) (-4 *4 (-793)) (-4 *2 (-738)))) (-2548 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-910 *4 *3 *2)) (-4 *4 (-981)) (-4 *3 (-738)) (-4 *2 (-793)))) (-2548 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-595 *6)) (-5 *3 (-595 *5)) (-4 *1 (-910 *4 *5 *6)) (-4 *4 (-981)) (-4 *5 (-738)) (-4 *6 (-793)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-910 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-738)) (-4 *5 (-793)) (-5 *2 (-595 *5)))) (-1900 (*1 *2 *1) (-12 (-4 *1 (-910 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-738)) (-4 *5 (-793)) (-5 *2 (-110)))) (-3534 (*1 *1 *1) (-12 (-4 *1 (-910 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-738)) (-4 *4 (-793)))))
-(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -2548 ($ $ |t#3| |t#2|)) (-15 -2548 ($ $ (-595 |t#3|) (-595 |t#2|))) (-15 -2686 ($ $)) (-15 -2697 (|t#1| $)) (-15 -2935 (|t#2| $)) (-15 -2565 ((-595 |t#3|) $)) (-15 -1900 ((-110) $)) (-15 -3534 ($ $))))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-520)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-387 (-528)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1463 (|has| |#1| (-520)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-569 (-802)) . T) ((-162) -1463 (|has| |#1| (-520)) (|has| |#1| (-162))) ((-271) |has| |#1| (-520)) ((-520) |has| |#1| (-520)) ((-597 #0#) |has| |#1| (-37 (-387 (-528)))) ((-597 |#1|) . T) ((-597 $) . T) ((-664 #0#) |has| |#1| (-37 (-387 (-528)))) ((-664 |#1|) |has| |#1| (-162)) ((-664 $) |has| |#1| (-520)) ((-673) . T) ((-986 #0#) |has| |#1| (-37 (-387 (-528)))) ((-986 |#1|) . T) ((-986 $) -1463 (|has| |#1| (-520)) (|has| |#1| (-162))) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-2789 (((-1018 (-207)) $) 8)) (-2777 (((-1018 (-207)) $) 9)) (-2765 (((-1018 (-207)) $) 10)) (-3632 (((-595 (-595 (-882 (-207)))) $) 11)) (-2222 (((-802) $) 6)))
-(((-911) (-133)) (T -911))
-((-3632 (*1 *2 *1) (-12 (-4 *1 (-911)) (-5 *2 (-595 (-595 (-882 (-207))))))) (-2765 (*1 *2 *1) (-12 (-4 *1 (-911)) (-5 *2 (-1018 (-207))))) (-2777 (*1 *2 *1) (-12 (-4 *1 (-911)) (-5 *2 (-1018 (-207))))) (-2789 (*1 *2 *1) (-12 (-4 *1 (-911)) (-5 *2 (-1018 (-207))))))
-(-13 (-569 (-802)) (-10 -8 (-15 -3632 ((-595 (-595 (-882 (-207)))) $)) (-15 -2765 ((-1018 (-207)) $)) (-15 -2777 ((-1018 (-207)) $)) (-15 -2789 ((-1018 (-207)) $))))
-(((-569 (-802)) . T))
-((-2565 (((-595 |#4|) $) 23)) (-3812 (((-110) $) 48)) (-2414 (((-110) $) 47)) (-1289 (((-2 (|:| |under| $) (|:| -2925 $) (|:| |upper| $)) $ |#4|) 36)) (-1689 (((-110) $) 49)) (-2584 (((-110) $ $) 55)) (-3168 (((-110) $ $) 58)) (-1924 (((-110) $) 53)) (-1891 (((-595 |#5|) (-595 |#5|) $) 90)) (-3794 (((-595 |#5|) (-595 |#5|) $) 87)) (-2537 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3558 (((-595 |#4|) $) 27)) (-3472 (((-110) |#4| $) 30)) (-1827 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-2649 (($ $ |#4|) 33)) (-3597 (($ $ |#4|) 32)) (-1812 (($ $ |#4|) 34)) (-2186 (((-110) $ $) 40)))
-(((-912 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2414 ((-110) |#1|)) (-15 -1891 ((-595 |#5|) (-595 |#5|) |#1|)) (-15 -3794 ((-595 |#5|) (-595 |#5|) |#1|)) (-15 -2537 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1827 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1689 ((-110) |#1|)) (-15 -3168 ((-110) |#1| |#1|)) (-15 -2584 ((-110) |#1| |#1|)) (-15 -1924 ((-110) |#1|)) (-15 -3812 ((-110) |#1|)) (-15 -1289 ((-2 (|:| |under| |#1|) (|:| -2925 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2649 (|#1| |#1| |#4|)) (-15 -1812 (|#1| |#1| |#4|)) (-15 -3597 (|#1| |#1| |#4|)) (-15 -3472 ((-110) |#4| |#1|)) (-15 -3558 ((-595 |#4|) |#1|)) (-15 -2565 ((-595 |#4|) |#1|)) (-15 -2186 ((-110) |#1| |#1|))) (-913 |#2| |#3| |#4| |#5|) (-981) (-739) (-793) (-994 |#2| |#3| |#4|)) (T -912))
-NIL
-(-10 -8 (-15 -2414 ((-110) |#1|)) (-15 -1891 ((-595 |#5|) (-595 |#5|) |#1|)) (-15 -3794 ((-595 |#5|) (-595 |#5|) |#1|)) (-15 -2537 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1827 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1689 ((-110) |#1|)) (-15 -3168 ((-110) |#1| |#1|)) (-15 -2584 ((-110) |#1| |#1|)) (-15 -1924 ((-110) |#1|)) (-15 -3812 ((-110) |#1|)) (-15 -1289 ((-2 (|:| |under| |#1|) (|:| -2925 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2649 (|#1| |#1| |#4|)) (-15 -1812 (|#1| |#1| |#4|)) (-15 -3597 (|#1| |#1| |#4|)) (-15 -3472 ((-110) |#4| |#1|)) (-15 -3558 ((-595 |#4|) |#1|)) (-15 -2565 ((-595 |#4|) |#1|)) (-15 -2186 ((-110) |#1| |#1|)))
-((-2207 (((-110) $ $) 7)) (-2565 (((-595 |#3|) $) 33)) (-3812 (((-110) $) 26)) (-2414 (((-110) $) 17 (|has| |#1| (-520)))) (-1289 (((-2 (|:| |under| $) (|:| -2925 $) (|:| |upper| $)) $ |#3|) 27)) (-3535 (((-110) $ (-717)) 44)) (-1573 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4264)))) (-2816 (($) 45 T CONST)) (-1689 (((-110) $) 22 (|has| |#1| (-520)))) (-2584 (((-110) $ $) 24 (|has| |#1| (-520)))) (-3168 (((-110) $ $) 23 (|has| |#1| (-520)))) (-1924 (((-110) $) 25 (|has| |#1| (-520)))) (-1891 (((-595 |#4|) (-595 |#4|) $) 18 (|has| |#1| (-520)))) (-3794 (((-595 |#4|) (-595 |#4|) $) 19 (|has| |#1| (-520)))) (-3001 (((-3 $ "failed") (-595 |#4|)) 36)) (-2409 (($ (-595 |#4|)) 35)) (-2923 (($ $) 68 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264))))) (-2280 (($ |#4| $) 67 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4264)))) (-2537 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-520)))) (-1422 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4264))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4264)))) (-3342 (((-595 |#4|) $) 52 (|has| $ (-6 -4264)))) (-1761 ((|#3| $) 34)) (-2029 (((-110) $ (-717)) 43)) (-2604 (((-595 |#4|) $) 53 (|has| $ (-6 -4264)))) (-2408 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264))))) (-2800 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#4| |#4|) $) 47)) (-3558 (((-595 |#3|) $) 32)) (-3472 (((-110) |#3| $) 31)) (-3358 (((-110) $ (-717)) 42)) (-3034 (((-1078) $) 9)) (-1827 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-520)))) (-2495 (((-1042) $) 10)) (-1734 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-1818 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 |#4|) (-595 |#4|)) 59 (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ (-275 |#4|)) 57 (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ (-595 (-275 |#4|))) 56 (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))))) (-3744 (((-110) $ $) 38)) (-1972 (((-110) $) 41)) (-2147 (($) 40)) (-2507 (((-717) |#4| $) 54 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264)))) (((-717) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4264)))) (-2406 (($ $) 39)) (-3155 (((-504) $) 69 (|has| |#4| (-570 (-504))))) (-2233 (($ (-595 |#4|)) 60)) (-2649 (($ $ |#3|) 28)) (-3597 (($ $ |#3|) 30)) (-1812 (($ $ |#3|) 29)) (-2222 (((-802) $) 11) (((-595 |#4|) $) 37)) (-3451 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 6)) (-2138 (((-717) $) 46 (|has| $ (-6 -4264)))))
-(((-913 |#1| |#2| |#3| |#4|) (-133) (-981) (-739) (-793) (-994 |t#1| |t#2| |t#3|)) (T -913))
-((-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *1 (-913 *3 *4 *5 *6)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *1 (-913 *3 *4 *5 *6)))) (-1761 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *4 *2 *5)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-994 *3 *4 *2)) (-4 *2 (-793)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-595 *5)))) (-3558 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-595 *5)))) (-3472 (*1 *2 *3 *1) (-12 (-4 *1 (-913 *4 *5 *3 *6)) (-4 *4 (-981)) (-4 *5 (-739)) (-4 *3 (-793)) (-4 *6 (-994 *4 *5 *3)) (-5 *2 (-110)))) (-3597 (*1 *1 *1 *2) (-12 (-4 *1 (-913 *3 *4 *2 *5)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *2 (-793)) (-4 *5 (-994 *3 *4 *2)))) (-1812 (*1 *1 *1 *2) (-12 (-4 *1 (-913 *3 *4 *2 *5)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *2 (-793)) (-4 *5 (-994 *3 *4 *2)))) (-2649 (*1 *1 *1 *2) (-12 (-4 *1 (-913 *3 *4 *2 *5)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *2 (-793)) (-4 *5 (-994 *3 *4 *2)))) (-1289 (*1 *2 *1 *3) (-12 (-4 *4 (-981)) (-4 *5 (-739)) (-4 *3 (-793)) (-4 *6 (-994 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2925 *1) (|:| |upper| *1))) (-4 *1 (-913 *4 *5 *3 *6)))) (-3812 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-110)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520)) (-5 *2 (-110)))) (-2584 (*1 *2 *1 *1) (-12 (-4 *1 (-913 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520)) (-5 *2 (-110)))) (-3168 (*1 *2 *1 *1) (-12 (-4 *1 (-913 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520)) (-5 *2 (-110)))) (-1689 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520)) (-5 *2 (-110)))) (-1827 (*1 *2 *3 *1) (-12 (-4 *1 (-913 *4 *5 *6 *3)) (-4 *4 (-981)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-4 *4 (-520)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2537 (*1 *2 *3 *1) (-12 (-4 *1 (-913 *4 *5 *6 *3)) (-4 *4 (-981)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-4 *4 (-520)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3794 (*1 *2 *2 *1) (-12 (-5 *2 (-595 *6)) (-4 *1 (-913 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520)))) (-1891 (*1 *2 *2 *1) (-12 (-5 *2 (-595 *6)) (-4 *1 (-913 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520)))) (-2414 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520)) (-5 *2 (-110)))))
-(-13 (-1023) (-144 |t#4|) (-569 (-595 |t#4|)) (-10 -8 (-6 -4264) (-15 -3001 ((-3 $ "failed") (-595 |t#4|))) (-15 -2409 ($ (-595 |t#4|))) (-15 -1761 (|t#3| $)) (-15 -2565 ((-595 |t#3|) $)) (-15 -3558 ((-595 |t#3|) $)) (-15 -3472 ((-110) |t#3| $)) (-15 -3597 ($ $ |t#3|)) (-15 -1812 ($ $ |t#3|)) (-15 -2649 ($ $ |t#3|)) (-15 -1289 ((-2 (|:| |under| $) (|:| -2925 $) (|:| |upper| $)) $ |t#3|)) (-15 -3812 ((-110) $)) (IF (|has| |t#1| (-520)) (PROGN (-15 -1924 ((-110) $)) (-15 -2584 ((-110) $ $)) (-15 -3168 ((-110) $ $)) (-15 -1689 ((-110) $)) (-15 -1827 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2537 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3794 ((-595 |t#4|) (-595 |t#4|) $)) (-15 -1891 ((-595 |t#4|) (-595 |t#4|) $)) (-15 -2414 ((-110) $))) |%noBranch|)))
-(((-33) . T) ((-99) . T) ((-569 (-595 |#4|)) . T) ((-569 (-802)) . T) ((-144 |#4|) . T) ((-570 (-504)) |has| |#4| (-570 (-504))) ((-290 |#4|) -12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))) ((-467 |#4|) . T) ((-489 |#4| |#4|) -12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))) ((-1023) . T) ((-1131) . T))
-((-3853 (((-595 |#4|) |#4| |#4|) 118)) (-1324 (((-595 |#4|) (-595 |#4|) (-110)) 107 (|has| |#1| (-431))) (((-595 |#4|) (-595 |#4|)) 108 (|has| |#1| (-431)))) (-1610 (((-2 (|:| |goodPols| (-595 |#4|)) (|:| |badPols| (-595 |#4|))) (-595 |#4|)) 35)) (-3981 (((-110) |#4|) 34)) (-4231 (((-595 |#4|) |#4|) 103 (|has| |#1| (-431)))) (-2171 (((-2 (|:| |goodPols| (-595 |#4|)) (|:| |badPols| (-595 |#4|))) (-1 (-110) |#4|) (-595 |#4|)) 20)) (-3479 (((-2 (|:| |goodPols| (-595 |#4|)) (|:| |badPols| (-595 |#4|))) (-595 (-1 (-110) |#4|)) (-595 |#4|)) 22)) (-2835 (((-2 (|:| |goodPols| (-595 |#4|)) (|:| |badPols| (-595 |#4|))) (-595 (-1 (-110) |#4|)) (-595 |#4|)) 23)) (-4136 (((-3 (-2 (|:| |bas| (-455 |#1| |#2| |#3| |#4|)) (|:| -1513 (-595 |#4|))) "failed") (-595 |#4|)) 73)) (-1318 (((-595 |#4|) (-595 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-3565 (((-595 |#4|) (-595 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-4205 (((-595 |#4|) (-595 |#4|)) 110)) (-1292 (((-595 |#4|) (-595 |#4|) (-595 |#4|) (-110)) 48) (((-595 |#4|) (-595 |#4|) (-595 |#4|)) 50)) (-2499 ((|#4| |#4| (-595 |#4|)) 49)) (-2419 (((-595 |#4|) (-595 |#4|) (-595 |#4|)) 114 (|has| |#1| (-431)))) (-2729 (((-595 |#4|) (-595 |#4|) (-595 |#4|)) 117 (|has| |#1| (-431)))) (-2358 (((-595 |#4|) (-595 |#4|) (-595 |#4|)) 116 (|has| |#1| (-431)))) (-3745 (((-595 |#4|) (-595 |#4|) (-595 |#4|) (-1 (-595 |#4|) (-595 |#4|))) 87) (((-595 |#4|) (-595 |#4|) (-595 |#4|)) 89) (((-595 |#4|) (-595 |#4|) |#4|) 121) (((-595 |#4|) |#4| |#4|) 119) (((-595 |#4|) (-595 |#4|)) 88)) (-4128 (((-595 |#4|) (-595 |#4|) (-595 |#4|)) 100 (-12 (|has| |#1| (-140)) (|has| |#1| (-288))))) (-2249 (((-2 (|:| |goodPols| (-595 |#4|)) (|:| |badPols| (-595 |#4|))) (-595 |#4|)) 41)) (-2449 (((-110) (-595 |#4|)) 62)) (-1235 (((-110) (-595 |#4|) (-595 (-595 |#4|))) 53)) (-1464 (((-2 (|:| |goodPols| (-595 |#4|)) (|:| |badPols| (-595 |#4|))) (-595 |#4|)) 29)) (-2081 (((-110) |#4|) 28)) (-3392 (((-595 |#4|) (-595 |#4|)) 98 (-12 (|has| |#1| (-140)) (|has| |#1| (-288))))) (-3834 (((-595 |#4|) (-595 |#4|)) 99 (-12 (|has| |#1| (-140)) (|has| |#1| (-288))))) (-3840 (((-595 |#4|) (-595 |#4|)) 66)) (-2558 (((-595 |#4|) (-595 |#4|)) 79)) (-3089 (((-110) (-595 |#4|) (-595 |#4|)) 51)) (-3602 (((-2 (|:| |goodPols| (-595 |#4|)) (|:| |badPols| (-595 |#4|))) (-595 |#4|)) 39)) (-1866 (((-110) |#4|) 36)))
-(((-914 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3745 ((-595 |#4|) (-595 |#4|))) (-15 -3745 ((-595 |#4|) |#4| |#4|)) (-15 -4205 ((-595 |#4|) (-595 |#4|))) (-15 -3853 ((-595 |#4|) |#4| |#4|)) (-15 -3745 ((-595 |#4|) (-595 |#4|) |#4|)) (-15 -3745 ((-595 |#4|) (-595 |#4|) (-595 |#4|))) (-15 -3745 ((-595 |#4|) (-595 |#4|) (-595 |#4|) (-1 (-595 |#4|) (-595 |#4|)))) (-15 -3089 ((-110) (-595 |#4|) (-595 |#4|))) (-15 -1235 ((-110) (-595 |#4|) (-595 (-595 |#4|)))) (-15 -2449 ((-110) (-595 |#4|))) (-15 -2171 ((-2 (|:| |goodPols| (-595 |#4|)) (|:| |badPols| (-595 |#4|))) (-1 (-110) |#4|) (-595 |#4|))) (-15 -3479 ((-2 (|:| |goodPols| (-595 |#4|)) (|:| |badPols| (-595 |#4|))) (-595 (-1 (-110) |#4|)) (-595 |#4|))) (-15 -2835 ((-2 (|:| |goodPols| (-595 |#4|)) (|:| |badPols| (-595 |#4|))) (-595 (-1 (-110) |#4|)) (-595 |#4|))) (-15 -2249 ((-2 (|:| |goodPols| (-595 |#4|)) (|:| |badPols| (-595 |#4|))) (-595 |#4|))) (-15 -3981 ((-110) |#4|)) (-15 -1610 ((-2 (|:| |goodPols| (-595 |#4|)) (|:| |badPols| (-595 |#4|))) (-595 |#4|))) (-15 -2081 ((-110) |#4|)) (-15 -1464 ((-2 (|:| |goodPols| (-595 |#4|)) (|:| |badPols| (-595 |#4|))) (-595 |#4|))) (-15 -1866 ((-110) |#4|)) (-15 -3602 ((-2 (|:| |goodPols| (-595 |#4|)) (|:| |badPols| (-595 |#4|))) (-595 |#4|))) (-15 -1292 ((-595 |#4|) (-595 |#4|) (-595 |#4|))) (-15 -1292 ((-595 |#4|) (-595 |#4|) (-595 |#4|) (-110))) (-15 -2499 (|#4| |#4| (-595 |#4|))) (-15 -3840 ((-595 |#4|) (-595 |#4|))) (-15 -4136 ((-3 (-2 (|:| |bas| (-455 |#1| |#2| |#3| |#4|)) (|:| -1513 (-595 |#4|))) "failed") (-595 |#4|))) (-15 -2558 ((-595 |#4|) (-595 |#4|))) (-15 -1318 ((-595 |#4|) (-595 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3565 ((-595 |#4|) (-595 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-431)) (PROGN (-15 -4231 ((-595 |#4|) |#4|)) (-15 -1324 ((-595 |#4|) (-595 |#4|))) (-15 -1324 ((-595 |#4|) (-595 |#4|) (-110))) (-15 -2419 ((-595 |#4|) (-595 |#4|) (-595 |#4|))) (-15 -2358 ((-595 |#4|) (-595 |#4|) (-595 |#4|))) (-15 -2729 ((-595 |#4|) (-595 |#4|) (-595 |#4|)))) |%noBranch|) (IF (|has| |#1| (-288)) (IF (|has| |#1| (-140)) (PROGN (-15 -3834 ((-595 |#4|) (-595 |#4|))) (-15 -3392 ((-595 |#4|) (-595 |#4|))) (-15 -4128 ((-595 |#4|) (-595 |#4|) (-595 |#4|)))) |%noBranch|) |%noBranch|)) (-520) (-739) (-793) (-994 |#1| |#2| |#3|)) (T -914))
-((-4128 (*1 *2 *2 *2) (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-140)) (-4 *3 (-288)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-914 *3 *4 *5 *6)))) (-3392 (*1 *2 *2) (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-140)) (-4 *3 (-288)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-914 *3 *4 *5 *6)))) (-3834 (*1 *2 *2) (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-140)) (-4 *3 (-288)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-914 *3 *4 *5 *6)))) (-2729 (*1 *2 *2 *2) (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-431)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-914 *3 *4 *5 *6)))) (-2358 (*1 *2 *2 *2) (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-431)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-914 *3 *4 *5 *6)))) (-2419 (*1 *2 *2 *2) (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-431)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-914 *3 *4 *5 *6)))) (-1324 (*1 *2 *2 *3) (-12 (-5 *2 (-595 *7)) (-5 *3 (-110)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-431)) (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *1 (-914 *4 *5 *6 *7)))) (-1324 (*1 *2 *2) (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-431)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-914 *3 *4 *5 *6)))) (-4231 (*1 *2 *3) (-12 (-4 *4 (-431)) (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-595 *3)) (-5 *1 (-914 *4 *5 *6 *3)) (-4 *3 (-994 *4 *5 *6)))) (-3565 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-595 *8)) (-5 *3 (-1 (-110) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-994 *5 *6 *7)) (-4 *5 (-520)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *1 (-914 *5 *6 *7 *8)))) (-1318 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-595 *9)) (-5 *3 (-1 (-110) *9)) (-5 *4 (-1 (-110) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-994 *6 *7 *8)) (-4 *6 (-520)) (-4 *7 (-739)) (-4 *8 (-793)) (-5 *1 (-914 *6 *7 *8 *9)))) (-2558 (*1 *2 *2) (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-914 *3 *4 *5 *6)))) (-4136 (*1 *2 *3) (|partial| -12 (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-455 *4 *5 *6 *7)) (|:| -1513 (-595 *7)))) (-5 *1 (-914 *4 *5 *6 *7)) (-5 *3 (-595 *7)))) (-3840 (*1 *2 *2) (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-914 *3 *4 *5 *6)))) (-2499 (*1 *2 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-994 *4 *5 *6)) (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *1 (-914 *4 *5 *6 *2)))) (-1292 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-595 *7)) (-5 *3 (-110)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *1 (-914 *4 *5 *6 *7)))) (-1292 (*1 *2 *2 *2) (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-914 *3 *4 *5 *6)))) (-3602 (*1 *2 *3) (-12 (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-595 *7)) (|:| |badPols| (-595 *7)))) (-5 *1 (-914 *4 *5 *6 *7)) (-5 *3 (-595 *7)))) (-1866 (*1 *2 *3) (-12 (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110)) (-5 *1 (-914 *4 *5 *6 *3)) (-4 *3 (-994 *4 *5 *6)))) (-1464 (*1 *2 *3) (-12 (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-595 *7)) (|:| |badPols| (-595 *7)))) (-5 *1 (-914 *4 *5 *6 *7)) (-5 *3 (-595 *7)))) (-2081 (*1 *2 *3) (-12 (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110)) (-5 *1 (-914 *4 *5 *6 *3)) (-4 *3 (-994 *4 *5 *6)))) (-1610 (*1 *2 *3) (-12 (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-595 *7)) (|:| |badPols| (-595 *7)))) (-5 *1 (-914 *4 *5 *6 *7)) (-5 *3 (-595 *7)))) (-3981 (*1 *2 *3) (-12 (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110)) (-5 *1 (-914 *4 *5 *6 *3)) (-4 *3 (-994 *4 *5 *6)))) (-2249 (*1 *2 *3) (-12 (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-595 *7)) (|:| |badPols| (-595 *7)))) (-5 *1 (-914 *4 *5 *6 *7)) (-5 *3 (-595 *7)))) (-2835 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-1 (-110) *8))) (-4 *8 (-994 *5 *6 *7)) (-4 *5 (-520)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-2 (|:| |goodPols| (-595 *8)) (|:| |badPols| (-595 *8)))) (-5 *1 (-914 *5 *6 *7 *8)) (-5 *4 (-595 *8)))) (-3479 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-1 (-110) *8))) (-4 *8 (-994 *5 *6 *7)) (-4 *5 (-520)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-2 (|:| |goodPols| (-595 *8)) (|:| |badPols| (-595 *8)))) (-5 *1 (-914 *5 *6 *7 *8)) (-5 *4 (-595 *8)))) (-2171 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-110) *8)) (-4 *8 (-994 *5 *6 *7)) (-4 *5 (-520)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-2 (|:| |goodPols| (-595 *8)) (|:| |badPols| (-595 *8)))) (-5 *1 (-914 *5 *6 *7 *8)) (-5 *4 (-595 *8)))) (-2449 (*1 *2 *3) (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110)) (-5 *1 (-914 *4 *5 *6 *7)))) (-1235 (*1 *2 *3 *4) (-12 (-5 *4 (-595 (-595 *8))) (-5 *3 (-595 *8)) (-4 *8 (-994 *5 *6 *7)) (-4 *5 (-520)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-110)) (-5 *1 (-914 *5 *6 *7 *8)))) (-3089 (*1 *2 *3 *3) (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110)) (-5 *1 (-914 *4 *5 *6 *7)))) (-3745 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-595 *7) (-595 *7))) (-5 *2 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *1 (-914 *4 *5 *6 *7)))) (-3745 (*1 *2 *2 *2) (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-914 *3 *4 *5 *6)))) (-3745 (*1 *2 *2 *3) (-12 (-5 *2 (-595 *3)) (-4 *3 (-994 *4 *5 *6)) (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *1 (-914 *4 *5 *6 *3)))) (-3853 (*1 *2 *3 *3) (-12 (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-595 *3)) (-5 *1 (-914 *4 *5 *6 *3)) (-4 *3 (-994 *4 *5 *6)))) (-4205 (*1 *2 *2) (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-914 *3 *4 *5 *6)))) (-3745 (*1 *2 *3 *3) (-12 (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-595 *3)) (-5 *1 (-914 *4 *5 *6 *3)) (-4 *3 (-994 *4 *5 *6)))) (-3745 (*1 *2 *2) (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-914 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3745 ((-595 |#4|) (-595 |#4|))) (-15 -3745 ((-595 |#4|) |#4| |#4|)) (-15 -4205 ((-595 |#4|) (-595 |#4|))) (-15 -3853 ((-595 |#4|) |#4| |#4|)) (-15 -3745 ((-595 |#4|) (-595 |#4|) |#4|)) (-15 -3745 ((-595 |#4|) (-595 |#4|) (-595 |#4|))) (-15 -3745 ((-595 |#4|) (-595 |#4|) (-595 |#4|) (-1 (-595 |#4|) (-595 |#4|)))) (-15 -3089 ((-110) (-595 |#4|) (-595 |#4|))) (-15 -1235 ((-110) (-595 |#4|) (-595 (-595 |#4|)))) (-15 -2449 ((-110) (-595 |#4|))) (-15 -2171 ((-2 (|:| |goodPols| (-595 |#4|)) (|:| |badPols| (-595 |#4|))) (-1 (-110) |#4|) (-595 |#4|))) (-15 -3479 ((-2 (|:| |goodPols| (-595 |#4|)) (|:| |badPols| (-595 |#4|))) (-595 (-1 (-110) |#4|)) (-595 |#4|))) (-15 -2835 ((-2 (|:| |goodPols| (-595 |#4|)) (|:| |badPols| (-595 |#4|))) (-595 (-1 (-110) |#4|)) (-595 |#4|))) (-15 -2249 ((-2 (|:| |goodPols| (-595 |#4|)) (|:| |badPols| (-595 |#4|))) (-595 |#4|))) (-15 -3981 ((-110) |#4|)) (-15 -1610 ((-2 (|:| |goodPols| (-595 |#4|)) (|:| |badPols| (-595 |#4|))) (-595 |#4|))) (-15 -2081 ((-110) |#4|)) (-15 -1464 ((-2 (|:| |goodPols| (-595 |#4|)) (|:| |badPols| (-595 |#4|))) (-595 |#4|))) (-15 -1866 ((-110) |#4|)) (-15 -3602 ((-2 (|:| |goodPols| (-595 |#4|)) (|:| |badPols| (-595 |#4|))) (-595 |#4|))) (-15 -1292 ((-595 |#4|) (-595 |#4|) (-595 |#4|))) (-15 -1292 ((-595 |#4|) (-595 |#4|) (-595 |#4|) (-110))) (-15 -2499 (|#4| |#4| (-595 |#4|))) (-15 -3840 ((-595 |#4|) (-595 |#4|))) (-15 -4136 ((-3 (-2 (|:| |bas| (-455 |#1| |#2| |#3| |#4|)) (|:| -1513 (-595 |#4|))) "failed") (-595 |#4|))) (-15 -2558 ((-595 |#4|) (-595 |#4|))) (-15 -1318 ((-595 |#4|) (-595 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3565 ((-595 |#4|) (-595 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-431)) (PROGN (-15 -4231 ((-595 |#4|) |#4|)) (-15 -1324 ((-595 |#4|) (-595 |#4|))) (-15 -1324 ((-595 |#4|) (-595 |#4|) (-110))) (-15 -2419 ((-595 |#4|) (-595 |#4|) (-595 |#4|))) (-15 -2358 ((-595 |#4|) (-595 |#4|) (-595 |#4|))) (-15 -2729 ((-595 |#4|) (-595 |#4|) (-595 |#4|)))) |%noBranch|) (IF (|has| |#1| (-288)) (IF (|has| |#1| (-140)) (PROGN (-15 -3834 ((-595 |#4|) (-595 |#4|))) (-15 -3392 ((-595 |#4|) (-595 |#4|))) (-15 -4128 ((-595 |#4|) (-595 |#4|) (-595 |#4|)))) |%noBranch|) |%noBranch|))
-((-3072 (((-2 (|:| R (-635 |#1|)) (|:| A (-635 |#1|)) (|:| |Ainv| (-635 |#1|))) (-635 |#1|) (-96 |#1|) (-1 |#1| |#1|)) 19)) (-2897 (((-595 (-2 (|:| C (-635 |#1|)) (|:| |g| (-1177 |#1|)))) (-635 |#1|) (-1177 |#1|)) 36)) (-1286 (((-635 |#1|) (-635 |#1|) (-635 |#1|) (-96 |#1|) (-1 |#1| |#1|)) 16)))
-(((-915 |#1|) (-10 -7 (-15 -3072 ((-2 (|:| R (-635 |#1|)) (|:| A (-635 |#1|)) (|:| |Ainv| (-635 |#1|))) (-635 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -1286 ((-635 |#1|) (-635 |#1|) (-635 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -2897 ((-595 (-2 (|:| C (-635 |#1|)) (|:| |g| (-1177 |#1|)))) (-635 |#1|) (-1177 |#1|)))) (-343)) (T -915))
-((-2897 (*1 *2 *3 *4) (-12 (-4 *5 (-343)) (-5 *2 (-595 (-2 (|:| C (-635 *5)) (|:| |g| (-1177 *5))))) (-5 *1 (-915 *5)) (-5 *3 (-635 *5)) (-5 *4 (-1177 *5)))) (-1286 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-635 *5)) (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-343)) (-5 *1 (-915 *5)))) (-3072 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-96 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-343)) (-5 *2 (-2 (|:| R (-635 *6)) (|:| A (-635 *6)) (|:| |Ainv| (-635 *6)))) (-5 *1 (-915 *6)) (-5 *3 (-635 *6)))))
-(-10 -7 (-15 -3072 ((-2 (|:| R (-635 |#1|)) (|:| A (-635 |#1|)) (|:| |Ainv| (-635 |#1|))) (-635 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -1286 ((-635 |#1|) (-635 |#1|) (-635 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -2897 ((-595 (-2 (|:| C (-635 |#1|)) (|:| |g| (-1177 |#1|)))) (-635 |#1|) (-1177 |#1|))))
-((-2705 (((-398 |#4|) |#4|) 48)))
-(((-916 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2705 ((-398 |#4|) |#4|))) (-793) (-739) (-431) (-888 |#3| |#2| |#1|)) (T -916))
-((-2705 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-739)) (-4 *6 (-431)) (-5 *2 (-398 *3)) (-5 *1 (-916 *4 *5 *6 *3)) (-4 *3 (-888 *6 *5 *4)))))
-(-10 -7 (-15 -2705 ((-398 |#4|) |#4|)))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-3460 (($ (-717)) 112 (|has| |#1| (-23)))) (-1444 (((-1182) $ (-528) (-528)) 40 (|has| $ (-6 -4265)))) (-3608 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-793)))) (-3863 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4265))) (($ $) 88 (-12 (|has| |#1| (-793)) (|has| $ (-6 -4265))))) (-1289 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-793)))) (-3535 (((-110) $ (-717)) 8)) (-2381 ((|#1| $ (-528) |#1|) 52 (|has| $ (-6 -4265))) ((|#1| $ (-1144 (-528)) |#1|) 58 (|has| $ (-6 -4265)))) (-1573 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4264)))) (-2816 (($) 7 T CONST)) (-2472 (($ $) 90 (|has| $ (-6 -4265)))) (-3009 (($ $) 100)) (-2923 (($ $) 78 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2280 (($ |#1| $) 77 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4264)))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4264)))) (-2812 ((|#1| $ (-528) |#1|) 53 (|has| $ (-6 -4265)))) (-2742 ((|#1| $ (-528)) 51)) (-3140 (((-528) (-1 (-110) |#1|) $) 97) (((-528) |#1| $) 96 (|has| |#1| (-1023))) (((-528) |#1| $ (-528)) 95 (|has| |#1| (-1023)))) (-1363 (($ (-595 |#1|)) 118)) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-4061 (((-635 |#1|) $ $) 105 (|has| |#1| (-981)))) (-3462 (($ (-717) |#1|) 69)) (-2029 (((-110) $ (-717)) 9)) (-3530 (((-528) $) 43 (|has| (-528) (-793)))) (-1436 (($ $ $) 87 (|has| |#1| (-793)))) (-1356 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-793)))) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-1709 (((-528) $) 44 (|has| (-528) (-793)))) (-1736 (($ $ $) 86 (|has| |#1| (-793)))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1817 ((|#1| $) 102 (-12 (|has| |#1| (-981)) (|has| |#1| (-938))))) (-3358 (((-110) $ (-717)) 10)) (-1584 ((|#1| $) 103 (-12 (|has| |#1| (-981)) (|has| |#1| (-938))))) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-3939 (($ |#1| $ (-528)) 60) (($ $ $ (-528)) 59)) (-2084 (((-595 (-528)) $) 46)) (-3966 (((-110) (-528) $) 47)) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-2890 ((|#1| $) 42 (|has| (-528) (-793)))) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-1332 (($ $ |#1|) 41 (|has| $ (-6 -4265)))) (-3740 (($ $ (-595 |#1|)) 115)) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-2111 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2861 (((-595 |#1|) $) 48)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3043 ((|#1| $ (-528) |#1|) 50) ((|#1| $ (-528)) 49) (($ $ (-1144 (-528))) 63)) (-3675 ((|#1| $ $) 106 (|has| |#1| (-981)))) (-3017 (((-860) $) 117)) (-1745 (($ $ (-528)) 62) (($ $ (-1144 (-528))) 61)) (-3996 (($ $ $) 104)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-3761 (($ $ $ (-528)) 91 (|has| $ (-6 -4265)))) (-2406 (($ $) 13)) (-3155 (((-504) $) 79 (|has| |#1| (-570 (-504)))) (($ (-595 |#1|)) 116)) (-2233 (($ (-595 |#1|)) 70)) (-3400 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-595 $)) 65)) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2244 (((-110) $ $) 84 (|has| |#1| (-793)))) (-2220 (((-110) $ $) 83 (|has| |#1| (-793)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2232 (((-110) $ $) 85 (|has| |#1| (-793)))) (-2208 (((-110) $ $) 82 (|has| |#1| (-793)))) (-2286 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2275 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-528) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-673))) (($ $ |#1|) 107 (|has| |#1| (-673)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-917 |#1|) (-133) (-981)) (T -917))
-((-1363 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-981)) (-4 *1 (-917 *3)))) (-3017 (*1 *2 *1) (-12 (-4 *1 (-917 *3)) (-4 *3 (-981)) (-5 *2 (-860)))) (-3155 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-981)) (-4 *1 (-917 *3)))) (-3996 (*1 *1 *1 *1) (-12 (-4 *1 (-917 *2)) (-4 *2 (-981)))) (-3740 (*1 *1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *1 (-917 *3)) (-4 *3 (-981)))))
-(-13 (-1175 |t#1|) (-10 -8 (-15 -1363 ($ (-595 |t#1|))) (-15 -3017 ((-860) $)) (-15 -3155 ($ (-595 |t#1|))) (-15 -3996 ($ $ $)) (-15 -3740 ($ $ (-595 |t#1|)))))
-(((-33) . T) ((-99) -1463 (|has| |#1| (-1023)) (|has| |#1| (-793))) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-793)) (|has| |#1| (-569 (-802)))) ((-144 |#1|) . T) ((-570 (-504)) |has| |#1| (-570 (-504))) ((-267 #0=(-528) |#1|) . T) ((-269 #0# |#1|) . T) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-353 |#1|) . T) ((-467 |#1|) . T) ((-561 #0# |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-600 |#1|) . T) ((-19 |#1|) . T) ((-793) |has| |#1| (-793)) ((-1023) -1463 (|has| |#1| (-1023)) (|has| |#1| (-793))) ((-1131) . T) ((-1175 |#1|) . T))
-((-3106 (((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|)) 17)))
-(((-918 |#1| |#2|) (-10 -7 (-15 -3106 ((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|)))) (-981) (-981)) (T -918))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-882 *5)) (-4 *5 (-981)) (-4 *6 (-981)) (-5 *2 (-882 *6)) (-5 *1 (-918 *5 *6)))))
-(-10 -7 (-15 -3106 ((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|))))
-((-3088 ((|#1| (-882 |#1|)) 13)) (-1928 ((|#1| (-882 |#1|)) 12)) (-2395 ((|#1| (-882 |#1|)) 11)) (-2048 ((|#1| (-882 |#1|)) 15)) (-3229 ((|#1| (-882 |#1|)) 21)) (-2181 ((|#1| (-882 |#1|)) 14)) (-2943 ((|#1| (-882 |#1|)) 16)) (-2704 ((|#1| (-882 |#1|)) 20)) (-2703 ((|#1| (-882 |#1|)) 19)))
-(((-919 |#1|) (-10 -7 (-15 -2395 (|#1| (-882 |#1|))) (-15 -1928 (|#1| (-882 |#1|))) (-15 -3088 (|#1| (-882 |#1|))) (-15 -2181 (|#1| (-882 |#1|))) (-15 -2048 (|#1| (-882 |#1|))) (-15 -2943 (|#1| (-882 |#1|))) (-15 -2703 (|#1| (-882 |#1|))) (-15 -2704 (|#1| (-882 |#1|))) (-15 -3229 (|#1| (-882 |#1|)))) (-981)) (T -919))
-((-3229 (*1 *2 *3) (-12 (-5 *3 (-882 *2)) (-5 *1 (-919 *2)) (-4 *2 (-981)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-882 *2)) (-5 *1 (-919 *2)) (-4 *2 (-981)))) (-2703 (*1 *2 *3) (-12 (-5 *3 (-882 *2)) (-5 *1 (-919 *2)) (-4 *2 (-981)))) (-2943 (*1 *2 *3) (-12 (-5 *3 (-882 *2)) (-5 *1 (-919 *2)) (-4 *2 (-981)))) (-2048 (*1 *2 *3) (-12 (-5 *3 (-882 *2)) (-5 *1 (-919 *2)) (-4 *2 (-981)))) (-2181 (*1 *2 *3) (-12 (-5 *3 (-882 *2)) (-5 *1 (-919 *2)) (-4 *2 (-981)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-882 *2)) (-5 *1 (-919 *2)) (-4 *2 (-981)))) (-1928 (*1 *2 *3) (-12 (-5 *3 (-882 *2)) (-5 *1 (-919 *2)) (-4 *2 (-981)))) (-2395 (*1 *2 *3) (-12 (-5 *3 (-882 *2)) (-5 *1 (-919 *2)) (-4 *2 (-981)))))
-(-10 -7 (-15 -2395 (|#1| (-882 |#1|))) (-15 -1928 (|#1| (-882 |#1|))) (-15 -3088 (|#1| (-882 |#1|))) (-15 -2181 (|#1| (-882 |#1|))) (-15 -2048 (|#1| (-882 |#1|))) (-15 -2943 (|#1| (-882 |#1|))) (-15 -2703 (|#1| (-882 |#1|))) (-15 -2704 (|#1| (-882 |#1|))) (-15 -3229 (|#1| (-882 |#1|))))
-((-2606 (((-3 |#1| "failed") |#1|) 18)) (-1746 (((-3 |#1| "failed") |#1|) 6)) (-2574 (((-3 |#1| "failed") |#1|) 16)) (-1885 (((-3 |#1| "failed") |#1|) 4)) (-1389 (((-3 |#1| "failed") |#1|) 20)) (-3308 (((-3 |#1| "failed") |#1|) 8)) (-1911 (((-3 |#1| "failed") |#1| (-717)) 1)) (-1838 (((-3 |#1| "failed") |#1|) 3)) (-2566 (((-3 |#1| "failed") |#1|) 2)) (-2454 (((-3 |#1| "failed") |#1|) 21)) (-4241 (((-3 |#1| "failed") |#1|) 9)) (-3983 (((-3 |#1| "failed") |#1|) 19)) (-3111 (((-3 |#1| "failed") |#1|) 7)) (-1568 (((-3 |#1| "failed") |#1|) 17)) (-2975 (((-3 |#1| "failed") |#1|) 5)) (-3446 (((-3 |#1| "failed") |#1|) 24)) (-2350 (((-3 |#1| "failed") |#1|) 12)) (-1591 (((-3 |#1| "failed") |#1|) 22)) (-3820 (((-3 |#1| "failed") |#1|) 10)) (-3364 (((-3 |#1| "failed") |#1|) 26)) (-2247 (((-3 |#1| "failed") |#1|) 14)) (-3407 (((-3 |#1| "failed") |#1|) 27)) (-1534 (((-3 |#1| "failed") |#1|) 15)) (-1961 (((-3 |#1| "failed") |#1|) 25)) (-3615 (((-3 |#1| "failed") |#1|) 13)) (-2862 (((-3 |#1| "failed") |#1|) 23)) (-2781 (((-3 |#1| "failed") |#1|) 11)))
-(((-920 |#1|) (-133) (-1117)) (T -920))
-((-3407 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-3364 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-1961 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-3446 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-2862 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-1591 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-2454 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-1389 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-3983 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-2606 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-1568 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-2574 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-1534 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-2247 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-3615 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-2350 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-2781 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-3820 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-4241 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-3308 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-3111 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-1746 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-2975 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-1885 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-1838 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-2566 (*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))) (-1911 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-717)) (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(-13 (-10 -7 (-15 -1911 ((-3 |t#1| "failed") |t#1| (-717))) (-15 -2566 ((-3 |t#1| "failed") |t#1|)) (-15 -1838 ((-3 |t#1| "failed") |t#1|)) (-15 -1885 ((-3 |t#1| "failed") |t#1|)) (-15 -2975 ((-3 |t#1| "failed") |t#1|)) (-15 -1746 ((-3 |t#1| "failed") |t#1|)) (-15 -3111 ((-3 |t#1| "failed") |t#1|)) (-15 -3308 ((-3 |t#1| "failed") |t#1|)) (-15 -4241 ((-3 |t#1| "failed") |t#1|)) (-15 -3820 ((-3 |t#1| "failed") |t#1|)) (-15 -2781 ((-3 |t#1| "failed") |t#1|)) (-15 -2350 ((-3 |t#1| "failed") |t#1|)) (-15 -3615 ((-3 |t#1| "failed") |t#1|)) (-15 -2247 ((-3 |t#1| "failed") |t#1|)) (-15 -1534 ((-3 |t#1| "failed") |t#1|)) (-15 -2574 ((-3 |t#1| "failed") |t#1|)) (-15 -1568 ((-3 |t#1| "failed") |t#1|)) (-15 -2606 ((-3 |t#1| "failed") |t#1|)) (-15 -3983 ((-3 |t#1| "failed") |t#1|)) (-15 -1389 ((-3 |t#1| "failed") |t#1|)) (-15 -2454 ((-3 |t#1| "failed") |t#1|)) (-15 -1591 ((-3 |t#1| "failed") |t#1|)) (-15 -2862 ((-3 |t#1| "failed") |t#1|)) (-15 -3446 ((-3 |t#1| "failed") |t#1|)) (-15 -1961 ((-3 |t#1| "failed") |t#1|)) (-15 -3364 ((-3 |t#1| "failed") |t#1|)) (-15 -3407 ((-3 |t#1| "failed") |t#1|))))
-((-2844 ((|#4| |#4| (-595 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-2235 ((|#4| |#4| (-595 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-3106 ((|#4| (-1 |#4| (-891 |#1|)) |#4|) 30)))
-(((-921 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2235 (|#4| |#4| |#3|)) (-15 -2235 (|#4| |#4| (-595 |#3|))) (-15 -2844 (|#4| |#4| |#3|)) (-15 -2844 (|#4| |#4| (-595 |#3|))) (-15 -3106 (|#4| (-1 |#4| (-891 |#1|)) |#4|))) (-981) (-739) (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $)) (-15 -3915 ((-3 $ "failed") (-1095))))) (-888 (-891 |#1|) |#2| |#3|)) (T -921))
-((-3106 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-891 *4))) (-4 *4 (-981)) (-4 *2 (-888 (-891 *4) *5 *6)) (-4 *5 (-739)) (-4 *6 (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $)) (-15 -3915 ((-3 $ "failed") (-1095)))))) (-5 *1 (-921 *4 *5 *6 *2)))) (-2844 (*1 *2 *2 *3) (-12 (-5 *3 (-595 *6)) (-4 *6 (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $)) (-15 -3915 ((-3 $ "failed") (-1095)))))) (-4 *4 (-981)) (-4 *5 (-739)) (-5 *1 (-921 *4 *5 *6 *2)) (-4 *2 (-888 (-891 *4) *5 *6)))) (-2844 (*1 *2 *2 *3) (-12 (-4 *4 (-981)) (-4 *5 (-739)) (-4 *3 (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $)) (-15 -3915 ((-3 $ "failed") (-1095)))))) (-5 *1 (-921 *4 *5 *3 *2)) (-4 *2 (-888 (-891 *4) *5 *3)))) (-2235 (*1 *2 *2 *3) (-12 (-5 *3 (-595 *6)) (-4 *6 (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $)) (-15 -3915 ((-3 $ "failed") (-1095)))))) (-4 *4 (-981)) (-4 *5 (-739)) (-5 *1 (-921 *4 *5 *6 *2)) (-4 *2 (-888 (-891 *4) *5 *6)))) (-2235 (*1 *2 *2 *3) (-12 (-4 *4 (-981)) (-4 *5 (-739)) (-4 *3 (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $)) (-15 -3915 ((-3 $ "failed") (-1095)))))) (-5 *1 (-921 *4 *5 *3 *2)) (-4 *2 (-888 (-891 *4) *5 *3)))))
-(-10 -7 (-15 -2235 (|#4| |#4| |#3|)) (-15 -2235 (|#4| |#4| (-595 |#3|))) (-15 -2844 (|#4| |#4| |#3|)) (-15 -2844 (|#4| |#4| (-595 |#3|))) (-15 -3106 (|#4| (-1 |#4| (-891 |#1|)) |#4|)))
-((-1701 ((|#2| |#3|) 35)) (-2954 (((-2 (|:| -1400 (-635 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-635 |#2|))) |#2|) 73)) (-3882 (((-2 (|:| -1400 (-635 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-635 |#2|)))) 89)))
-(((-922 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3882 ((-2 (|:| -1400 (-635 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-635 |#2|))))) (-15 -2954 ((-2 (|:| -1400 (-635 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-635 |#2|))) |#2|)) (-15 -1701 (|#2| |#3|))) (-329) (-1153 |#1|) (-1153 |#2|) (-671 |#2| |#3|)) (T -922))
-((-1701 (*1 *2 *3) (-12 (-4 *3 (-1153 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-922 *4 *2 *3 *5)) (-4 *4 (-329)) (-4 *5 (-671 *2 *3)))) (-2954 (*1 *2 *3) (-12 (-4 *4 (-329)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 *3)) (-5 *2 (-2 (|:| -1400 (-635 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-635 *3)))) (-5 *1 (-922 *4 *3 *5 *6)) (-4 *6 (-671 *3 *5)))) (-3882 (*1 *2) (-12 (-4 *3 (-329)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| -1400 (-635 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-635 *4)))) (-5 *1 (-922 *3 *4 *5 *6)) (-4 *6 (-671 *4 *5)))))
-(-10 -7 (-15 -3882 ((-2 (|:| -1400 (-635 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-635 |#2|))))) (-15 -2954 ((-2 (|:| -1400 (-635 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-635 |#2|))) |#2|)) (-15 -1701 (|#2| |#3|)))
-((-4221 (((-924 (-387 (-528)) (-804 |#1|) (-222 |#2| (-717)) (-229 |#1| (-387 (-528)))) (-924 (-387 (-528)) (-804 |#1|) (-222 |#2| (-717)) (-229 |#1| (-387 (-528))))) 69)))
-(((-923 |#1| |#2|) (-10 -7 (-15 -4221 ((-924 (-387 (-528)) (-804 |#1|) (-222 |#2| (-717)) (-229 |#1| (-387 (-528)))) (-924 (-387 (-528)) (-804 |#1|) (-222 |#2| (-717)) (-229 |#1| (-387 (-528))))))) (-595 (-1095)) (-717)) (T -923))
-((-4221 (*1 *2 *2) (-12 (-5 *2 (-924 (-387 (-528)) (-804 *3) (-222 *4 (-717)) (-229 *3 (-387 (-528))))) (-14 *3 (-595 (-1095))) (-14 *4 (-717)) (-5 *1 (-923 *3 *4)))))
-(-10 -7 (-15 -4221 ((-924 (-387 (-528)) (-804 |#1|) (-222 |#2| (-717)) (-229 |#1| (-387 (-528)))) (-924 (-387 (-528)) (-804 |#1|) (-222 |#2| (-717)) (-229 |#1| (-387 (-528)))))))
-((-2207 (((-110) $ $) NIL)) (-2694 (((-3 (-110) "failed") $) 69)) (-1506 (($ $) 36 (-12 (|has| |#1| (-140)) (|has| |#1| (-288))))) (-1731 (($ $ (-3 (-110) "failed")) 70)) (-3507 (($ (-595 |#4|) |#4|) 25)) (-3034 (((-1078) $) NIL)) (-3734 (($ $) 67)) (-2495 (((-1042) $) NIL)) (-1972 (((-110) $) 68)) (-2147 (($) 30)) (-4035 ((|#4| $) 72)) (-3662 (((-595 |#4|) $) 71)) (-2222 (((-802) $) 66)) (-2186 (((-110) $ $) NIL)))
-(((-924 |#1| |#2| |#3| |#4|) (-13 (-1023) (-569 (-802)) (-10 -8 (-15 -2147 ($)) (-15 -3507 ($ (-595 |#4|) |#4|)) (-15 -2694 ((-3 (-110) "failed") $)) (-15 -1731 ($ $ (-3 (-110) "failed"))) (-15 -1972 ((-110) $)) (-15 -3662 ((-595 |#4|) $)) (-15 -4035 (|#4| $)) (-15 -3734 ($ $)) (IF (|has| |#1| (-288)) (IF (|has| |#1| (-140)) (-15 -1506 ($ $)) |%noBranch|) |%noBranch|))) (-431) (-793) (-739) (-888 |#1| |#3| |#2|)) (T -924))
-((-2147 (*1 *1) (-12 (-4 *2 (-431)) (-4 *3 (-793)) (-4 *4 (-739)) (-5 *1 (-924 *2 *3 *4 *5)) (-4 *5 (-888 *2 *4 *3)))) (-3507 (*1 *1 *2 *3) (-12 (-5 *2 (-595 *3)) (-4 *3 (-888 *4 *6 *5)) (-4 *4 (-431)) (-4 *5 (-793)) (-4 *6 (-739)) (-5 *1 (-924 *4 *5 *6 *3)))) (-2694 (*1 *2 *1) (|partial| -12 (-4 *3 (-431)) (-4 *4 (-793)) (-4 *5 (-739)) (-5 *2 (-110)) (-5 *1 (-924 *3 *4 *5 *6)) (-4 *6 (-888 *3 *5 *4)))) (-1731 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-110) "failed")) (-4 *3 (-431)) (-4 *4 (-793)) (-4 *5 (-739)) (-5 *1 (-924 *3 *4 *5 *6)) (-4 *6 (-888 *3 *5 *4)))) (-1972 (*1 *2 *1) (-12 (-4 *3 (-431)) (-4 *4 (-793)) (-4 *5 (-739)) (-5 *2 (-110)) (-5 *1 (-924 *3 *4 *5 *6)) (-4 *6 (-888 *3 *5 *4)))) (-3662 (*1 *2 *1) (-12 (-4 *3 (-431)) (-4 *4 (-793)) (-4 *5 (-739)) (-5 *2 (-595 *6)) (-5 *1 (-924 *3 *4 *5 *6)) (-4 *6 (-888 *3 *5 *4)))) (-4035 (*1 *2 *1) (-12 (-4 *2 (-888 *3 *5 *4)) (-5 *1 (-924 *3 *4 *5 *2)) (-4 *3 (-431)) (-4 *4 (-793)) (-4 *5 (-739)))) (-3734 (*1 *1 *1) (-12 (-4 *2 (-431)) (-4 *3 (-793)) (-4 *4 (-739)) (-5 *1 (-924 *2 *3 *4 *5)) (-4 *5 (-888 *2 *4 *3)))) (-1506 (*1 *1 *1) (-12 (-4 *2 (-140)) (-4 *2 (-288)) (-4 *2 (-431)) (-4 *3 (-793)) (-4 *4 (-739)) (-5 *1 (-924 *2 *3 *4 *5)) (-4 *5 (-888 *2 *4 *3)))))
-(-13 (-1023) (-569 (-802)) (-10 -8 (-15 -2147 ($)) (-15 -3507 ($ (-595 |#4|) |#4|)) (-15 -2694 ((-3 (-110) "failed") $)) (-15 -1731 ($ $ (-3 (-110) "failed"))) (-15 -1972 ((-110) $)) (-15 -3662 ((-595 |#4|) $)) (-15 -4035 (|#4| $)) (-15 -3734 ($ $)) (IF (|has| |#1| (-288)) (IF (|has| |#1| (-140)) (-15 -1506 ($ $)) |%noBranch|) |%noBranch|)))
-((-3639 (((-110) |#5| |#5|) 38)) (-1254 (((-110) |#5| |#5|) 52)) (-3336 (((-110) |#5| (-595 |#5|)) 74) (((-110) |#5| |#5|) 61)) (-2524 (((-110) (-595 |#4|) (-595 |#4|)) 58)) (-3104 (((-110) (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|)) (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) 63)) (-2886 (((-1182)) 33)) (-1694 (((-1182) (-1078) (-1078) (-1078)) 29)) (-1209 (((-595 |#5|) (-595 |#5|)) 81)) (-4044 (((-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|)))) 79)) (-1943 (((-595 (-2 (|:| -2589 (-595 |#4|)) (|:| -2316 |#5|) (|:| |ineq| (-595 |#4|)))) (-595 |#4|) (-595 |#5|) (-110) (-110)) 101)) (-2354 (((-110) |#5| |#5|) 47)) (-2156 (((-3 (-110) "failed") |#5| |#5|) 71)) (-2320 (((-110) (-595 |#4|) (-595 |#4|)) 57)) (-2464 (((-110) (-595 |#4|) (-595 |#4|)) 59)) (-3664 (((-110) (-595 |#4|) (-595 |#4|)) 60)) (-1295 (((-3 (-2 (|:| -2589 (-595 |#4|)) (|:| -2316 |#5|) (|:| |ineq| (-595 |#4|))) "failed") (-595 |#4|) |#5| (-595 |#4|) (-110) (-110) (-110) (-110) (-110)) 97)) (-2307 (((-595 |#5|) (-595 |#5|)) 43)))
-(((-925 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1694 ((-1182) (-1078) (-1078) (-1078))) (-15 -2886 ((-1182))) (-15 -3639 ((-110) |#5| |#5|)) (-15 -2307 ((-595 |#5|) (-595 |#5|))) (-15 -2354 ((-110) |#5| |#5|)) (-15 -1254 ((-110) |#5| |#5|)) (-15 -2524 ((-110) (-595 |#4|) (-595 |#4|))) (-15 -2320 ((-110) (-595 |#4|) (-595 |#4|))) (-15 -2464 ((-110) (-595 |#4|) (-595 |#4|))) (-15 -3664 ((-110) (-595 |#4|) (-595 |#4|))) (-15 -2156 ((-3 (-110) "failed") |#5| |#5|)) (-15 -3336 ((-110) |#5| |#5|)) (-15 -3336 ((-110) |#5| (-595 |#5|))) (-15 -1209 ((-595 |#5|) (-595 |#5|))) (-15 -3104 ((-110) (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|)) (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|)))) (-15 -4044 ((-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) (-15 -1943 ((-595 (-2 (|:| -2589 (-595 |#4|)) (|:| -2316 |#5|) (|:| |ineq| (-595 |#4|)))) (-595 |#4|) (-595 |#5|) (-110) (-110))) (-15 -1295 ((-3 (-2 (|:| -2589 (-595 |#4|)) (|:| -2316 |#5|) (|:| |ineq| (-595 |#4|))) "failed") (-595 |#4|) |#5| (-595 |#4|) (-110) (-110) (-110) (-110) (-110)))) (-431) (-739) (-793) (-994 |#1| |#2| |#3|) (-999 |#1| |#2| |#3| |#4|)) (T -925))
-((-1295 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-110)) (-4 *6 (-431)) (-4 *7 (-739)) (-4 *8 (-793)) (-4 *9 (-994 *6 *7 *8)) (-5 *2 (-2 (|:| -2589 (-595 *9)) (|:| -2316 *4) (|:| |ineq| (-595 *9)))) (-5 *1 (-925 *6 *7 *8 *9 *4)) (-5 *3 (-595 *9)) (-4 *4 (-999 *6 *7 *8 *9)))) (-1943 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-595 *10)) (-5 *5 (-110)) (-4 *10 (-999 *6 *7 *8 *9)) (-4 *6 (-431)) (-4 *7 (-739)) (-4 *8 (-793)) (-4 *9 (-994 *6 *7 *8)) (-5 *2 (-595 (-2 (|:| -2589 (-595 *9)) (|:| -2316 *10) (|:| |ineq| (-595 *9))))) (-5 *1 (-925 *6 *7 *8 *9 *10)) (-5 *3 (-595 *9)))) (-4044 (*1 *2 *2) (-12 (-5 *2 (-595 (-2 (|:| |val| (-595 *6)) (|:| -2316 *7)))) (-4 *6 (-994 *3 *4 *5)) (-4 *7 (-999 *3 *4 *5 *6)) (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-925 *3 *4 *5 *6 *7)))) (-3104 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-595 *7)) (|:| -2316 *8))) (-4 *7 (-994 *4 *5 *6)) (-4 *8 (-999 *4 *5 *6 *7)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110)) (-5 *1 (-925 *4 *5 *6 *7 *8)))) (-1209 (*1 *2 *2) (-12 (-5 *2 (-595 *7)) (-4 *7 (-999 *3 *4 *5 *6)) (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *1 (-925 *3 *4 *5 *6 *7)))) (-3336 (*1 *2 *3 *4) (-12 (-5 *4 (-595 *3)) (-4 *3 (-999 *5 *6 *7 *8)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *8 (-994 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-925 *5 *6 *7 *8 *3)))) (-3336 (*1 *2 *3 *3) (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-925 *4 *5 *6 *7 *3)) (-4 *3 (-999 *4 *5 *6 *7)))) (-2156 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-925 *4 *5 *6 *7 *3)) (-4 *3 (-999 *4 *5 *6 *7)))) (-3664 (*1 *2 *3 *3) (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110)) (-5 *1 (-925 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7)))) (-2464 (*1 *2 *3 *3) (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110)) (-5 *1 (-925 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7)))) (-2320 (*1 *2 *3 *3) (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110)) (-5 *1 (-925 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7)))) (-2524 (*1 *2 *3 *3) (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110)) (-5 *1 (-925 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7)))) (-1254 (*1 *2 *3 *3) (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-925 *4 *5 *6 *7 *3)) (-4 *3 (-999 *4 *5 *6 *7)))) (-2354 (*1 *2 *3 *3) (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-925 *4 *5 *6 *7 *3)) (-4 *3 (-999 *4 *5 *6 *7)))) (-2307 (*1 *2 *2) (-12 (-5 *2 (-595 *7)) (-4 *7 (-999 *3 *4 *5 *6)) (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *1 (-925 *3 *4 *5 *6 *7)))) (-3639 (*1 *2 *3 *3) (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-925 *4 *5 *6 *7 *3)) (-4 *3 (-999 *4 *5 *6 *7)))) (-2886 (*1 *2) (-12 (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-1182)) (-5 *1 (-925 *3 *4 *5 *6 *7)) (-4 *7 (-999 *3 *4 *5 *6)))) (-1694 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1078)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-1182)) (-5 *1 (-925 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1694 ((-1182) (-1078) (-1078) (-1078))) (-15 -2886 ((-1182))) (-15 -3639 ((-110) |#5| |#5|)) (-15 -2307 ((-595 |#5|) (-595 |#5|))) (-15 -2354 ((-110) |#5| |#5|)) (-15 -1254 ((-110) |#5| |#5|)) (-15 -2524 ((-110) (-595 |#4|) (-595 |#4|))) (-15 -2320 ((-110) (-595 |#4|) (-595 |#4|))) (-15 -2464 ((-110) (-595 |#4|) (-595 |#4|))) (-15 -3664 ((-110) (-595 |#4|) (-595 |#4|))) (-15 -2156 ((-3 (-110) "failed") |#5| |#5|)) (-15 -3336 ((-110) |#5| |#5|)) (-15 -3336 ((-110) |#5| (-595 |#5|))) (-15 -1209 ((-595 |#5|) (-595 |#5|))) (-15 -3104 ((-110) (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|)) (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|)))) (-15 -4044 ((-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) (-15 -1943 ((-595 (-2 (|:| -2589 (-595 |#4|)) (|:| -2316 |#5|) (|:| |ineq| (-595 |#4|)))) (-595 |#4|) (-595 |#5|) (-110) (-110))) (-15 -1295 ((-3 (-2 (|:| -2589 (-595 |#4|)) (|:| -2316 |#5|) (|:| |ineq| (-595 |#4|))) "failed") (-595 |#4|) |#5| (-595 |#4|) (-110) (-110) (-110) (-110) (-110))))
-((-3915 (((-1095) $) 15)) (-3327 (((-1078) $) 16)) (-1596 (($ (-1095) (-1078)) 14)) (-2222 (((-802) $) 13)))
-(((-926) (-13 (-569 (-802)) (-10 -8 (-15 -1596 ($ (-1095) (-1078))) (-15 -3915 ((-1095) $)) (-15 -3327 ((-1078) $))))) (T -926))
-((-1596 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-1078)) (-5 *1 (-926)))) (-3915 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-926)))) (-3327 (*1 *2 *1) (-12 (-5 *2 (-1078)) (-5 *1 (-926)))))
-(-13 (-569 (-802)) (-10 -8 (-15 -1596 ($ (-1095) (-1078))) (-15 -3915 ((-1095) $)) (-15 -3327 ((-1078) $))))
-((-3106 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-927 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3106 (|#4| (-1 |#2| |#1|) |#3|))) (-520) (-520) (-929 |#1|) (-929 |#2|)) (T -927))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-520)) (-4 *6 (-520)) (-4 *2 (-929 *6)) (-5 *1 (-927 *5 *6 *4 *2)) (-4 *4 (-929 *5)))))
-(-10 -7 (-15 -3106 (|#4| (-1 |#2| |#1|) |#3|)))
-((-3001 (((-3 |#2| "failed") $) NIL) (((-3 (-1095) "failed") $) 65) (((-3 (-387 (-528)) "failed") $) NIL) (((-3 (-528) "failed") $) 95)) (-2409 ((|#2| $) NIL) (((-1095) $) 60) (((-387 (-528)) $) NIL) (((-528) $) 92)) (-2120 (((-635 (-528)) (-635 $)) NIL) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL) (((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 $) (-1177 $)) 112) (((-635 |#2|) (-635 $)) 28)) (-1338 (($) 98)) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) 75) (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) 84)) (-3037 (($ $) 10)) (-3296 (((-3 $ "failed") $) 20)) (-3106 (($ (-1 |#2| |#2|) $) 22)) (-4197 (($) 16)) (-3270 (($ $) 54)) (-3235 (($ $) NIL) (($ $ (-717)) NIL) (($ $ (-1095)) NIL) (($ $ (-595 (-1095))) NIL) (($ $ (-1095) (-717)) NIL) (($ $ (-595 (-1095)) (-595 (-717))) NIL) (($ $ (-1 |#2| |#2|) (-717)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-4118 (($ $) 12)) (-3155 (((-831 (-528)) $) 70) (((-831 (-359)) $) 79) (((-504) $) 40) (((-359) $) 44) (((-207) $) 47)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ $) NIL) (($ (-387 (-528))) 90) (($ |#2|) NIL) (($ (-1095)) 57)) (-3742 (((-717)) 31)) (-2208 (((-110) $ $) 50)))
-(((-928 |#1| |#2|) (-10 -8 (-15 -2208 ((-110) |#1| |#1|)) (-15 -4197 (|#1|)) (-15 -3296 ((-3 |#1| "failed") |#1|)) (-15 -2409 ((-528) |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -2409 ((-387 (-528)) |#1|)) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -3155 ((-207) |#1|)) (-15 -3155 ((-359) |#1|)) (-15 -3155 ((-504) |#1|)) (-15 -2409 ((-1095) |#1|)) (-15 -3001 ((-3 (-1095) "failed") |#1|)) (-15 -2222 (|#1| (-1095))) (-15 -1338 (|#1|)) (-15 -3270 (|#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -3037 (|#1| |#1|)) (-15 -4181 ((-828 (-359) |#1|) |#1| (-831 (-359)) (-828 (-359) |#1|))) (-15 -4181 ((-828 (-528) |#1|) |#1| (-831 (-528)) (-828 (-528) |#1|))) (-15 -3155 ((-831 (-359)) |#1|)) (-15 -3155 ((-831 (-528)) |#1|)) (-15 -2120 ((-635 |#2|) (-635 |#1|))) (-15 -2120 ((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 |#1|) (-1177 |#1|))) (-15 -2120 ((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 |#1|) (-1177 |#1|))) (-15 -2120 ((-635 (-528)) (-635 |#1|))) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)) (-595 (-717)))) (-15 -3235 (|#1| |#1| (-1095) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)))) (-15 -3235 (|#1| |#1| (-1095))) (-15 -3235 (|#1| |#1| (-717))) (-15 -3235 (|#1| |#1|)) (-15 -3106 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2409 (|#2| |#1|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -2222 (|#1| |#2|)) (-15 -2222 (|#1| (-387 (-528)))) (-15 -2222 (|#1| |#1|)) (-15 -2222 (|#1| (-528))) (-15 -3742 ((-717))) (-15 -2222 ((-802) |#1|))) (-929 |#2|) (-520)) (T -928))
-((-3742 (*1 *2) (-12 (-4 *4 (-520)) (-5 *2 (-717)) (-5 *1 (-928 *3 *4)) (-4 *3 (-929 *4)))))
-(-10 -8 (-15 -2208 ((-110) |#1| |#1|)) (-15 -4197 (|#1|)) (-15 -3296 ((-3 |#1| "failed") |#1|)) (-15 -2409 ((-528) |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -2409 ((-387 (-528)) |#1|)) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -3155 ((-207) |#1|)) (-15 -3155 ((-359) |#1|)) (-15 -3155 ((-504) |#1|)) (-15 -2409 ((-1095) |#1|)) (-15 -3001 ((-3 (-1095) "failed") |#1|)) (-15 -2222 (|#1| (-1095))) (-15 -1338 (|#1|)) (-15 -3270 (|#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -3037 (|#1| |#1|)) (-15 -4181 ((-828 (-359) |#1|) |#1| (-831 (-359)) (-828 (-359) |#1|))) (-15 -4181 ((-828 (-528) |#1|) |#1| (-831 (-528)) (-828 (-528) |#1|))) (-15 -3155 ((-831 (-359)) |#1|)) (-15 -3155 ((-831 (-528)) |#1|)) (-15 -2120 ((-635 |#2|) (-635 |#1|))) (-15 -2120 ((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 |#1|) (-1177 |#1|))) (-15 -2120 ((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 |#1|) (-1177 |#1|))) (-15 -2120 ((-635 (-528)) (-635 |#1|))) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)) (-595 (-717)))) (-15 -3235 (|#1| |#1| (-1095) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)))) (-15 -3235 (|#1| |#1| (-1095))) (-15 -3235 (|#1| |#1| (-717))) (-15 -3235 (|#1| |#1|)) (-15 -3106 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2409 (|#2| |#1|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -2222 (|#1| |#2|)) (-15 -2222 (|#1| (-387 (-528)))) (-15 -2222 (|#1| |#1|)) (-15 -2222 (|#1| (-528))) (-15 -3742 ((-717))) (-15 -2222 ((-802) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3598 ((|#1| $) 139 (|has| |#1| (-288)))) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 41)) (-1738 (($ $) 40)) (-1811 (((-110) $) 38)) (-3181 (((-3 $ "failed") $ $) 19)) (-2152 (((-398 (-1091 $)) (-1091 $)) 130 (|has| |#1| (-848)))) (-1232 (($ $) 73)) (-2705 (((-398 $) $) 72)) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) 133 (|has| |#1| (-848)))) (-2213 (((-110) $ $) 59)) (-3605 (((-528) $) 120 (|has| |#1| (-766)))) (-2816 (($) 17 T CONST)) (-3001 (((-3 |#1| "failed") $) 178) (((-3 (-1095) "failed") $) 128 (|has| |#1| (-972 (-1095)))) (((-3 (-387 (-528)) "failed") $) 112 (|has| |#1| (-972 (-528)))) (((-3 (-528) "failed") $) 110 (|has| |#1| (-972 (-528))))) (-2409 ((|#1| $) 177) (((-1095) $) 127 (|has| |#1| (-972 (-1095)))) (((-387 (-528)) $) 111 (|has| |#1| (-972 (-528)))) (((-528) $) 109 (|has| |#1| (-972 (-528))))) (-3519 (($ $ $) 55)) (-2120 (((-635 (-528)) (-635 $)) 152 (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) 151 (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) 150) (((-635 |#1|) (-635 $)) 149)) (-1312 (((-3 $ "failed") $) 34)) (-1338 (($) 137 (|has| |#1| (-513)))) (-3498 (($ $ $) 56)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 51)) (-2124 (((-110) $) 71)) (-3657 (((-110) $) 122 (|has| |#1| (-766)))) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) 146 (|has| |#1| (-825 (-528)))) (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) 145 (|has| |#1| (-825 (-359))))) (-1297 (((-110) $) 31)) (-3037 (($ $) 141)) (-3031 ((|#1| $) 143)) (-3296 (((-3 $ "failed") $) 108 (|has| |#1| (-1071)))) (-3710 (((-110) $) 121 (|has| |#1| (-766)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) 52)) (-1436 (($ $ $) 118 (|has| |#1| (-793)))) (-1736 (($ $ $) 117 (|has| |#1| (-793)))) (-3106 (($ (-1 |#1| |#1|) $) 169)) (-2057 (($ $ $) 46) (($ (-595 $)) 45)) (-3034 (((-1078) $) 9)) (-2652 (($ $) 70)) (-4197 (($) 107 (|has| |#1| (-1071)) CONST)) (-2495 (((-1042) $) 10)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 44)) (-2088 (($ $ $) 48) (($ (-595 $)) 47)) (-3270 (($ $) 138 (|has| |#1| (-288)))) (-2925 ((|#1| $) 135 (|has| |#1| (-513)))) (-3261 (((-398 (-1091 $)) (-1091 $)) 132 (|has| |#1| (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) 131 (|has| |#1| (-848)))) (-2437 (((-398 $) $) 74)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3477 (((-3 $ "failed") $ $) 42)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 50)) (-4014 (($ $ (-595 |#1|) (-595 |#1|)) 175 (|has| |#1| (-290 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-290 |#1|))) (($ $ (-275 |#1|)) 173 (|has| |#1| (-290 |#1|))) (($ $ (-595 (-275 |#1|))) 172 (|has| |#1| (-290 |#1|))) (($ $ (-595 (-1095)) (-595 |#1|)) 171 (|has| |#1| (-489 (-1095) |#1|))) (($ $ (-1095) |#1|) 170 (|has| |#1| (-489 (-1095) |#1|)))) (-3973 (((-717) $) 58)) (-3043 (($ $ |#1|) 176 (|has| |#1| (-267 |#1| |#1|)))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 57)) (-3235 (($ $) 168 (|has| |#1| (-215))) (($ $ (-717)) 166 (|has| |#1| (-215))) (($ $ (-1095)) 164 (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) 163 (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) 162 (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) 161 (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-4118 (($ $) 140)) (-3042 ((|#1| $) 142)) (-3155 (((-831 (-528)) $) 148 (|has| |#1| (-570 (-831 (-528))))) (((-831 (-359)) $) 147 (|has| |#1| (-570 (-831 (-359))))) (((-504) $) 125 (|has| |#1| (-570 (-504)))) (((-359) $) 124 (|has| |#1| (-957))) (((-207) $) 123 (|has| |#1| (-957)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) 134 (-3287 (|has| $ (-138)) (|has| |#1| (-848))))) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ $) 43) (($ (-387 (-528))) 65) (($ |#1|) 181) (($ (-1095)) 129 (|has| |#1| (-972 (-1095))))) (-3749 (((-3 $ "failed") $) 126 (-1463 (|has| |#1| (-138)) (-3287 (|has| $ (-138)) (|has| |#1| (-848)))))) (-3742 (((-717)) 29)) (-1769 ((|#1| $) 136 (|has| |#1| (-513)))) (-4016 (((-110) $ $) 39)) (-1775 (($ $) 119 (|has| |#1| (-766)))) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33) (($ $ (-528)) 69)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-3245 (($ $) 167 (|has| |#1| (-215))) (($ $ (-717)) 165 (|has| |#1| (-215))) (($ $ (-1095)) 160 (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) 159 (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) 158 (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) 157 (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-2244 (((-110) $ $) 115 (|has| |#1| (-793)))) (-2220 (((-110) $ $) 114 (|has| |#1| (-793)))) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 116 (|has| |#1| (-793)))) (-2208 (((-110) $ $) 113 (|has| |#1| (-793)))) (-2296 (($ $ $) 64) (($ |#1| |#1|) 144)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32) (($ $ (-528)) 68)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ (-387 (-528))) 67) (($ (-387 (-528)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179)))
-(((-929 |#1|) (-133) (-520)) (T -929))
-((-2296 (*1 *1 *2 *2) (-12 (-4 *1 (-929 *2)) (-4 *2 (-520)))) (-3031 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-520)))) (-3042 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-520)))) (-3037 (*1 *1 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-520)))) (-4118 (*1 *1 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-520)))) (-3598 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-520)) (-4 *2 (-288)))) (-3270 (*1 *1 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-520)) (-4 *2 (-288)))) (-1338 (*1 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-513)) (-4 *2 (-520)))) (-1769 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-520)) (-4 *2 (-513)))) (-2925 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-520)) (-4 *2 (-513)))))
-(-13 (-343) (-37 |t#1|) (-972 |t#1|) (-318 |t#1|) (-213 |t#1|) (-357 |t#1|) (-823 |t#1|) (-380 |t#1|) (-10 -8 (-15 -2296 ($ |t#1| |t#1|)) (-15 -3031 (|t#1| $)) (-15 -3042 (|t#1| $)) (-15 -3037 ($ $)) (-15 -4118 ($ $)) (IF (|has| |t#1| (-1071)) (-6 (-1071)) |%noBranch|) (IF (|has| |t#1| (-972 (-528))) (PROGN (-6 (-972 (-528))) (-6 (-972 (-387 (-528))))) |%noBranch|) (IF (|has| |t#1| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |t#1| (-766)) (-6 (-766)) |%noBranch|) (IF (|has| |t#1| (-957)) (-6 (-957)) |%noBranch|) (IF (|has| |t#1| (-570 (-504))) (-6 (-570 (-504))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-972 (-1095))) (-6 (-972 (-1095))) |%noBranch|) (IF (|has| |t#1| (-288)) (PROGN (-15 -3598 (|t#1| $)) (-15 -3270 ($ $))) |%noBranch|) (IF (|has| |t#1| (-513)) (PROGN (-15 -1338 ($)) (-15 -1769 (|t#1| $)) (-15 -2925 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-848)) (-6 (-848)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-387 (-528))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-569 (-802)) . T) ((-162) . T) ((-570 (-207)) |has| |#1| (-957)) ((-570 (-359)) |has| |#1| (-957)) ((-570 (-504)) |has| |#1| (-570 (-504))) ((-570 (-831 (-359))) |has| |#1| (-570 (-831 (-359)))) ((-570 (-831 (-528))) |has| |#1| (-570 (-831 (-528)))) ((-213 |#1|) . T) ((-215) |has| |#1| (-215)) ((-225) . T) ((-267 |#1| $) |has| |#1| (-267 |#1| |#1|)) ((-271) . T) ((-288) . T) ((-290 |#1|) |has| |#1| (-290 |#1|)) ((-343) . T) ((-318 |#1|) . T) ((-357 |#1|) . T) ((-380 |#1|) . T) ((-431) . T) ((-489 (-1095) |#1|) |has| |#1| (-489 (-1095) |#1|)) ((-489 |#1| |#1|) |has| |#1| (-290 |#1|)) ((-520) . T) ((-597 #0#) . T) ((-597 |#1|) . T) ((-597 $) . T) ((-591 (-528)) |has| |#1| (-591 (-528))) ((-591 |#1|) . T) ((-664 #0#) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-673) . T) ((-737) |has| |#1| (-766)) ((-738) |has| |#1| (-766)) ((-740) |has| |#1| (-766)) ((-741) |has| |#1| (-766)) ((-766) |has| |#1| (-766)) ((-791) |has| |#1| (-766)) ((-793) -1463 (|has| |#1| (-793)) (|has| |#1| (-766))) ((-839 (-1095)) |has| |#1| (-839 (-1095))) ((-825 (-359)) |has| |#1| (-825 (-359))) ((-825 (-528)) |has| |#1| (-825 (-528))) ((-823 |#1|) . T) ((-848) |has| |#1| (-848)) ((-859) . T) ((-957) |has| |#1| (-957)) ((-972 (-387 (-528))) |has| |#1| (-972 (-528))) ((-972 (-528)) |has| |#1| (-972 (-528))) ((-972 (-1095)) |has| |#1| (-972 (-1095))) ((-972 |#1|) . T) ((-986 #0#) . T) ((-986 |#1|) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1071) |has| |#1| (-1071)) ((-1131) . T) ((-1135) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-3263 (($ (-1062 |#1| |#2|)) 11)) (-1553 (((-1062 |#1| |#2|) $) 12)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3043 ((|#2| $ (-222 |#1| |#2|)) 16)) (-2222 (((-802) $) NIL)) (-2969 (($) NIL T CONST)) (-2186 (((-110) $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL)))
-(((-930 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3263 ($ (-1062 |#1| |#2|))) (-15 -1553 ((-1062 |#1| |#2|) $)) (-15 -3043 (|#2| $ (-222 |#1| |#2|))))) (-860) (-343)) (T -930))
-((-3263 (*1 *1 *2) (-12 (-5 *2 (-1062 *3 *4)) (-14 *3 (-860)) (-4 *4 (-343)) (-5 *1 (-930 *3 *4)))) (-1553 (*1 *2 *1) (-12 (-5 *2 (-1062 *3 *4)) (-5 *1 (-930 *3 *4)) (-14 *3 (-860)) (-4 *4 (-343)))) (-3043 (*1 *2 *1 *3) (-12 (-5 *3 (-222 *4 *2)) (-14 *4 (-860)) (-4 *2 (-343)) (-5 *1 (-930 *4 *2)))))
-(-13 (-21) (-10 -8 (-15 -3263 ($ (-1062 |#1| |#2|))) (-15 -1553 ((-1062 |#1| |#2|) $)) (-15 -3043 (|#2| $ (-222 |#1| |#2|)))))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-3535 (((-110) $ (-717)) 8)) (-2816 (($) 7 T CONST)) (-4202 (($ $) 46)) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) 9)) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35)) (-3358 (((-110) $ (-717)) 10)) (-1584 (((-717) $) 45)) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-3934 ((|#1| $) 39)) (-1950 (($ |#1| $) 40)) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-1703 ((|#1| $) 44)) (-1390 ((|#1| $) 41)) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-3825 ((|#1| |#1| $) 48)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3634 ((|#1| $) 47)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-2164 (($ (-595 |#1|)) 42)) (-3770 ((|#1| $) 43)) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-931 |#1|) (-133) (-1131)) (T -931))
-((-3825 (*1 *2 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-1131)))) (-3634 (*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-1131)))) (-4202 (*1 *1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-1131)))) (-1584 (*1 *2 *1) (-12 (-4 *1 (-931 *3)) (-4 *3 (-1131)) (-5 *2 (-717)))) (-1703 (*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-1131)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-1131)))))
-(-13 (-104 |t#1|) (-10 -8 (-6 -4264) (-15 -3825 (|t#1| |t#1| $)) (-15 -3634 (|t#1| $)) (-15 -4202 ($ $)) (-15 -1584 ((-717) $)) (-15 -1703 (|t#1| $)) (-15 -3770 (|t#1| $))))
-(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1023)) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-569 (-802)))) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-467 |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-1023) |has| |#1| (-1023)) ((-1131) . T))
-((-1359 (((-110) $) 42)) (-3001 (((-3 (-528) "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2409 (((-528) $) NIL) (((-387 (-528)) $) NIL) ((|#2| $) 43)) (-1793 (((-3 (-387 (-528)) "failed") $) 78)) (-3650 (((-110) $) 72)) (-3099 (((-387 (-528)) $) 76)) (-1297 (((-110) $) 41)) (-3297 ((|#2| $) 22)) (-3106 (($ (-1 |#2| |#2|) $) 19)) (-2652 (($ $) 61)) (-3235 (($ $) NIL) (($ $ (-717)) NIL) (($ $ (-1095)) NIL) (($ $ (-595 (-1095))) NIL) (($ $ (-1095) (-717)) NIL) (($ $ (-595 (-1095)) (-595 (-717))) NIL) (($ $ (-1 |#2| |#2|) (-717)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3155 (((-504) $) 67)) (-4097 (($ $) 17)) (-2222 (((-802) $) 56) (($ (-528)) 38) (($ |#2|) 36) (($ (-387 (-528))) NIL)) (-3742 (((-717)) 10)) (-1775 ((|#2| $) 71)) (-2186 (((-110) $ $) 25)) (-2208 (((-110) $ $) 69)) (-2286 (($ $) 29) (($ $ $) 28)) (-2275 (($ $ $) 26)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL)))
-(((-932 |#1| |#2|) (-10 -8 (-15 -2222 (|#1| (-387 (-528)))) (-15 -2208 ((-110) |#1| |#1|)) (-15 * (|#1| (-387 (-528)) |#1|)) (-15 * (|#1| |#1| (-387 (-528)))) (-15 -2652 (|#1| |#1|)) (-15 -3155 ((-504) |#1|)) (-15 -1793 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -3099 ((-387 (-528)) |#1|)) (-15 -3650 ((-110) |#1|)) (-15 -1775 (|#2| |#1|)) (-15 -3297 (|#2| |#1|)) (-15 -4097 (|#1| |#1|)) (-15 -3106 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)) (-595 (-717)))) (-15 -3235 (|#1| |#1| (-1095) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)))) (-15 -3235 (|#1| |#1| (-1095))) (-15 -3235 (|#1| |#1| (-717))) (-15 -3235 (|#1| |#1|)) (-15 -2409 (|#2| |#1|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -2409 ((-387 (-528)) |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -2409 ((-528) |#1|)) (-15 -2222 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2222 (|#1| (-528))) (-15 -3742 ((-717))) (-15 -1297 ((-110) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-528) |#1|)) (-15 -2286 (|#1| |#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 * (|#1| (-717) |#1|)) (-15 -1359 ((-110) |#1|)) (-15 * (|#1| (-860) |#1|)) (-15 -2275 (|#1| |#1| |#1|)) (-15 -2222 ((-802) |#1|)) (-15 -2186 ((-110) |#1| |#1|))) (-933 |#2|) (-162)) (T -932))
-((-3742 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-717)) (-5 *1 (-932 *3 *4)) (-4 *3 (-933 *4)))))
-(-10 -8 (-15 -2222 (|#1| (-387 (-528)))) (-15 -2208 ((-110) |#1| |#1|)) (-15 * (|#1| (-387 (-528)) |#1|)) (-15 * (|#1| |#1| (-387 (-528)))) (-15 -2652 (|#1| |#1|)) (-15 -3155 ((-504) |#1|)) (-15 -1793 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -3099 ((-387 (-528)) |#1|)) (-15 -3650 ((-110) |#1|)) (-15 -1775 (|#2| |#1|)) (-15 -3297 (|#2| |#1|)) (-15 -4097 (|#1| |#1|)) (-15 -3106 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)) (-595 (-717)))) (-15 -3235 (|#1| |#1| (-1095) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)))) (-15 -3235 (|#1| |#1| (-1095))) (-15 -3235 (|#1| |#1| (-717))) (-15 -3235 (|#1| |#1|)) (-15 -2409 (|#2| |#1|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -2409 ((-387 (-528)) |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -2409 ((-528) |#1|)) (-15 -2222 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2222 (|#1| (-528))) (-15 -3742 ((-717))) (-15 -1297 ((-110) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-528) |#1|)) (-15 -2286 (|#1| |#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 * (|#1| (-717) |#1|)) (-15 -1359 ((-110) |#1|)) (-15 * (|#1| (-860) |#1|)) (-15 -2275 (|#1| |#1| |#1|)) (-15 -2222 ((-802) |#1|)) (-15 -2186 ((-110) |#1| |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-3001 (((-3 (-528) "failed") $) 119 (|has| |#1| (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) 117 (|has| |#1| (-972 (-387 (-528))))) (((-3 |#1| "failed") $) 116)) (-2409 (((-528) $) 120 (|has| |#1| (-972 (-528)))) (((-387 (-528)) $) 118 (|has| |#1| (-972 (-387 (-528))))) ((|#1| $) 115)) (-2120 (((-635 (-528)) (-635 $)) 90 (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) 89 (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) 88) (((-635 |#1|) (-635 $)) 87)) (-1312 (((-3 $ "failed") $) 34)) (-2461 ((|#1| $) 80)) (-1793 (((-3 (-387 (-528)) "failed") $) 76 (|has| |#1| (-513)))) (-3650 (((-110) $) 78 (|has| |#1| (-513)))) (-3099 (((-387 (-528)) $) 77 (|has| |#1| (-513)))) (-2121 (($ |#1| |#1| |#1| |#1|) 81)) (-1297 (((-110) $) 31)) (-3297 ((|#1| $) 82)) (-1436 (($ $ $) 68 (|has| |#1| (-793)))) (-1736 (($ $ $) 67 (|has| |#1| (-793)))) (-3106 (($ (-1 |#1| |#1|) $) 91)) (-3034 (((-1078) $) 9)) (-2652 (($ $) 73 (|has| |#1| (-343)))) (-3219 ((|#1| $) 83)) (-1733 ((|#1| $) 84)) (-3178 ((|#1| $) 85)) (-2495 (((-1042) $) 10)) (-4014 (($ $ (-595 |#1|) (-595 |#1|)) 97 (|has| |#1| (-290 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-290 |#1|))) (($ $ (-275 |#1|)) 95 (|has| |#1| (-290 |#1|))) (($ $ (-595 (-275 |#1|))) 94 (|has| |#1| (-290 |#1|))) (($ $ (-595 (-1095)) (-595 |#1|)) 93 (|has| |#1| (-489 (-1095) |#1|))) (($ $ (-1095) |#1|) 92 (|has| |#1| (-489 (-1095) |#1|)))) (-3043 (($ $ |#1|) 98 (|has| |#1| (-267 |#1| |#1|)))) (-3235 (($ $) 114 (|has| |#1| (-215))) (($ $ (-717)) 112 (|has| |#1| (-215))) (($ $ (-1095)) 110 (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) 109 (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) 108 (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) 107 (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-3155 (((-504) $) 74 (|has| |#1| (-570 (-504))))) (-4097 (($ $) 86)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ |#1|) 37) (($ (-387 (-528))) 62 (-1463 (|has| |#1| (-343)) (|has| |#1| (-972 (-387 (-528))))))) (-3749 (((-3 $ "failed") $) 75 (|has| |#1| (-138)))) (-3742 (((-717)) 29)) (-1775 ((|#1| $) 79 (|has| |#1| (-989)))) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33) (($ $ (-528)) 72 (|has| |#1| (-343)))) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-3245 (($ $) 113 (|has| |#1| (-215))) (($ $ (-717)) 111 (|has| |#1| (-215))) (($ $ (-1095)) 106 (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) 105 (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) 104 (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) 103 (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-2244 (((-110) $ $) 65 (|has| |#1| (-793)))) (-2220 (((-110) $ $) 64 (|has| |#1| (-793)))) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 66 (|has| |#1| (-793)))) (-2208 (((-110) $ $) 63 (|has| |#1| (-793)))) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32) (($ $ (-528)) 71 (|has| |#1| (-343)))) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-387 (-528))) 70 (|has| |#1| (-343))) (($ (-387 (-528)) $) 69 (|has| |#1| (-343)))))
-(((-933 |#1|) (-133) (-162)) (T -933))
-((-4097 (*1 *1 *1) (-12 (-4 *1 (-933 *2)) (-4 *2 (-162)))) (-3178 (*1 *2 *1) (-12 (-4 *1 (-933 *2)) (-4 *2 (-162)))) (-1733 (*1 *2 *1) (-12 (-4 *1 (-933 *2)) (-4 *2 (-162)))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-933 *2)) (-4 *2 (-162)))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-933 *2)) (-4 *2 (-162)))) (-2121 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-933 *2)) (-4 *2 (-162)))) (-2461 (*1 *2 *1) (-12 (-4 *1 (-933 *2)) (-4 *2 (-162)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-933 *2)) (-4 *2 (-162)) (-4 *2 (-989)))) (-3650 (*1 *2 *1) (-12 (-4 *1 (-933 *3)) (-4 *3 (-162)) (-4 *3 (-513)) (-5 *2 (-110)))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-933 *3)) (-4 *3 (-162)) (-4 *3 (-513)) (-5 *2 (-387 (-528))))) (-1793 (*1 *2 *1) (|partial| -12 (-4 *1 (-933 *3)) (-4 *3 (-162)) (-4 *3 (-513)) (-5 *2 (-387 (-528))))))
-(-13 (-37 |t#1|) (-391 |t#1|) (-213 |t#1|) (-318 |t#1|) (-357 |t#1|) (-10 -8 (-15 -4097 ($ $)) (-15 -3178 (|t#1| $)) (-15 -1733 (|t#1| $)) (-15 -3219 (|t#1| $)) (-15 -3297 (|t#1| $)) (-15 -2121 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2461 (|t#1| $)) (IF (|has| |t#1| (-271)) (-6 (-271)) |%noBranch|) (IF (|has| |t#1| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |t#1| (-343)) (-6 (-225)) |%noBranch|) (IF (|has| |t#1| (-570 (-504))) (-6 (-570 (-504))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-989)) (-15 -1775 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-513)) (PROGN (-15 -3650 ((-110) $)) (-15 -3099 ((-387 (-528)) $)) (-15 -1793 ((-3 (-387 (-528)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-387 (-528))) |has| |#1| (-343)) ((-37 |#1|) . T) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-343)) ((-109 |#1| |#1|) . T) ((-109 $ $) -1463 (|has| |#1| (-343)) (|has| |#1| (-271))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-569 (-802)) . T) ((-570 (-504)) |has| |#1| (-570 (-504))) ((-213 |#1|) . T) ((-215) |has| |#1| (-215)) ((-225) |has| |#1| (-343)) ((-267 |#1| $) |has| |#1| (-267 |#1| |#1|)) ((-271) -1463 (|has| |#1| (-343)) (|has| |#1| (-271))) ((-290 |#1|) |has| |#1| (-290 |#1|)) ((-318 |#1|) . T) ((-357 |#1|) . T) ((-391 |#1|) . T) ((-489 (-1095) |#1|) |has| |#1| (-489 (-1095) |#1|)) ((-489 |#1| |#1|) |has| |#1| (-290 |#1|)) ((-597 #0#) |has| |#1| (-343)) ((-597 |#1|) . T) ((-597 $) . T) ((-591 (-528)) |has| |#1| (-591 (-528))) ((-591 |#1|) . T) ((-664 #0#) |has| |#1| (-343)) ((-664 |#1|) . T) ((-673) . T) ((-793) |has| |#1| (-793)) ((-839 (-1095)) |has| |#1| (-839 (-1095))) ((-972 (-387 (-528))) |has| |#1| (-972 (-387 (-528)))) ((-972 (-528)) |has| |#1| (-972 (-528))) ((-972 |#1|) . T) ((-986 #0#) |has| |#1| (-343)) ((-986 |#1|) . T) ((-986 $) -1463 (|has| |#1| (-343)) (|has| |#1| (-271))) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-3106 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-934 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3106 (|#3| (-1 |#4| |#2|) |#1|))) (-933 |#2|) (-162) (-933 |#4|) (-162)) (T -934))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-4 *2 (-933 *6)) (-5 *1 (-934 *4 *5 *2 *6)) (-4 *4 (-933 *5)))))
-(-10 -7 (-15 -3106 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-528) "failed") $) NIL (|has| |#1| (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-3 |#1| "failed") $) NIL)) (-2409 (((-528) $) NIL (|has| |#1| (-972 (-528)))) (((-387 (-528)) $) NIL (|has| |#1| (-972 (-387 (-528))))) ((|#1| $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) NIL) (((-635 |#1|) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-2461 ((|#1| $) 12)) (-1793 (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-513)))) (-3650 (((-110) $) NIL (|has| |#1| (-513)))) (-3099 (((-387 (-528)) $) NIL (|has| |#1| (-513)))) (-2121 (($ |#1| |#1| |#1| |#1|) 16)) (-1297 (((-110) $) NIL)) (-3297 ((|#1| $) NIL)) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL (|has| |#1| (-343)))) (-3219 ((|#1| $) 15)) (-1733 ((|#1| $) 14)) (-3178 ((|#1| $) 13)) (-2495 (((-1042) $) NIL)) (-4014 (($ $ (-595 |#1|) (-595 |#1|)) NIL (|has| |#1| (-290 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-290 |#1|))) (($ $ (-275 |#1|)) NIL (|has| |#1| (-290 |#1|))) (($ $ (-595 (-275 |#1|))) NIL (|has| |#1| (-290 |#1|))) (($ $ (-595 (-1095)) (-595 |#1|)) NIL (|has| |#1| (-489 (-1095) |#1|))) (($ $ (-1095) |#1|) NIL (|has| |#1| (-489 (-1095) |#1|)))) (-3043 (($ $ |#1|) NIL (|has| |#1| (-267 |#1| |#1|)))) (-3235 (($ $) NIL (|has| |#1| (-215))) (($ $ (-717)) NIL (|has| |#1| (-215))) (($ $ (-1095)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3155 (((-504) $) NIL (|has| |#1| (-570 (-504))))) (-4097 (($ $) NIL)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ |#1|) NIL) (($ (-387 (-528))) NIL (-1463 (|has| |#1| (-343)) (|has| |#1| (-972 (-387 (-528))))))) (-3749 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3742 (((-717)) NIL)) (-1775 ((|#1| $) NIL (|has| |#1| (-989)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| |#1| (-343)))) (-2969 (($) 8 T CONST)) (-2982 (($) 10 T CONST)) (-3245 (($ $) NIL (|has| |#1| (-215))) (($ $ (-717)) NIL (|has| |#1| (-215))) (($ $ (-1095)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| |#1| (-343)))) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-387 (-528))) NIL (|has| |#1| (-343))) (($ (-387 (-528)) $) NIL (|has| |#1| (-343)))))
-(((-935 |#1|) (-933 |#1|) (-162)) (T -935))
-NIL
-(-933 |#1|)
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3535 (((-110) $ (-717)) NIL)) (-2816 (($) NIL T CONST)) (-4202 (($ $) 20)) (-1840 (($ (-595 |#1|)) 29)) (-3342 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) NIL)) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2800 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-1584 (((-717) $) 22)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-3934 ((|#1| $) 24)) (-1950 (($ |#1| $) 15)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-1703 ((|#1| $) 23)) (-1390 ((|#1| $) 19)) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-3825 ((|#1| |#1| $) 14)) (-1972 (((-110) $) 17)) (-2147 (($) NIL)) (-3634 ((|#1| $) 18)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2406 (($ $) NIL)) (-2222 (((-802) $) NIL (|has| |#1| (-569 (-802))))) (-2164 (($ (-595 |#1|)) NIL)) (-3770 ((|#1| $) 26)) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-936 |#1|) (-13 (-931 |#1|) (-10 -8 (-15 -1840 ($ (-595 |#1|))))) (-1023)) (T -936))
-((-1840 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1023)) (-5 *1 (-936 *3)))))
-(-13 (-931 |#1|) (-10 -8 (-15 -1840 ($ (-595 |#1|)))))
-((-2450 (($ $) 12)) (-2796 (($ $ (-528)) 13)))
-(((-937 |#1|) (-10 -8 (-15 -2450 (|#1| |#1|)) (-15 -2796 (|#1| |#1| (-528)))) (-938)) (T -937))
-NIL
-(-10 -8 (-15 -2450 (|#1| |#1|)) (-15 -2796 (|#1| |#1| (-528))))
-((-2450 (($ $) 6)) (-2796 (($ $ (-528)) 7)) (** (($ $ (-387 (-528))) 8)))
-(((-938) (-133)) (T -938))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-938)) (-5 *2 (-387 (-528))))) (-2796 (*1 *1 *1 *2) (-12 (-4 *1 (-938)) (-5 *2 (-528)))) (-2450 (*1 *1 *1) (-4 *1 (-938))))
-(-13 (-10 -8 (-15 -2450 ($ $)) (-15 -2796 ($ $ (-528))) (-15 ** ($ $ (-387 (-528))))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-4026 (((-2 (|:| |num| (-1177 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| (-387 |#2|) (-343)))) (-1738 (($ $) NIL (|has| (-387 |#2|) (-343)))) (-1811 (((-110) $) NIL (|has| (-387 |#2|) (-343)))) (-2486 (((-635 (-387 |#2|)) (-1177 $)) NIL) (((-635 (-387 |#2|))) NIL)) (-1323 (((-387 |#2|) $) NIL)) (-2338 (((-1105 (-860) (-717)) (-528)) NIL (|has| (-387 |#2|) (-329)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL (|has| (-387 |#2|) (-343)))) (-2705 (((-398 $) $) NIL (|has| (-387 |#2|) (-343)))) (-2213 (((-110) $ $) NIL (|has| (-387 |#2|) (-343)))) (-2856 (((-717)) NIL (|has| (-387 |#2|) (-348)))) (-1824 (((-110)) NIL)) (-2161 (((-110) |#1|) 144) (((-110) |#2|) 149)) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-528) "failed") $) NIL (|has| (-387 |#2|) (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| (-387 |#2|) (-972 (-387 (-528))))) (((-3 (-387 |#2|) "failed") $) NIL)) (-2409 (((-528) $) NIL (|has| (-387 |#2|) (-972 (-528)))) (((-387 (-528)) $) NIL (|has| (-387 |#2|) (-972 (-387 (-528))))) (((-387 |#2|) $) NIL)) (-1945 (($ (-1177 (-387 |#2|)) (-1177 $)) NIL) (($ (-1177 (-387 |#2|))) 70) (($ (-1177 |#2|) |#2|) NIL)) (-2413 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-387 |#2|) (-329)))) (-3519 (($ $ $) NIL (|has| (-387 |#2|) (-343)))) (-3847 (((-635 (-387 |#2|)) $ (-1177 $)) NIL) (((-635 (-387 |#2|)) $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| (-387 |#2|) (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| (-387 |#2|) (-591 (-528)))) (((-2 (|:| -2163 (-635 (-387 |#2|))) (|:| |vec| (-1177 (-387 |#2|)))) (-635 $) (-1177 $)) NIL) (((-635 (-387 |#2|)) (-635 $)) NIL)) (-2115 (((-1177 $) (-1177 $)) NIL)) (-1422 (($ |#3|) 65) (((-3 $ "failed") (-387 |#3|)) NIL (|has| (-387 |#2|) (-343)))) (-1312 (((-3 $ "failed") $) NIL)) (-1727 (((-595 (-595 |#1|))) NIL (|has| |#1| (-348)))) (-3008 (((-110) |#1| |#1|) NIL)) (-3090 (((-860)) NIL)) (-1338 (($) NIL (|has| (-387 |#2|) (-348)))) (-2327 (((-110)) NIL)) (-3665 (((-110) |#1|) 56) (((-110) |#2|) 146)) (-3498 (($ $ $) NIL (|has| (-387 |#2|) (-343)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL (|has| (-387 |#2|) (-343)))) (-1551 (($ $) NIL)) (-2916 (($) NIL (|has| (-387 |#2|) (-329)))) (-4086 (((-110) $) NIL (|has| (-387 |#2|) (-329)))) (-2790 (($ $ (-717)) NIL (|has| (-387 |#2|) (-329))) (($ $) NIL (|has| (-387 |#2|) (-329)))) (-2124 (((-110) $) NIL (|has| (-387 |#2|) (-343)))) (-3689 (((-860) $) NIL (|has| (-387 |#2|) (-329))) (((-779 (-860)) $) NIL (|has| (-387 |#2|) (-329)))) (-1297 (((-110) $) NIL)) (-2531 (((-717)) NIL)) (-3652 (((-1177 $) (-1177 $)) NIL)) (-3297 (((-387 |#2|) $) NIL)) (-3515 (((-595 (-891 |#1|)) (-1095)) NIL (|has| |#1| (-343)))) (-3296 (((-3 $ "failed") $) NIL (|has| (-387 |#2|) (-329)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| (-387 |#2|) (-343)))) (-3537 ((|#3| $) NIL (|has| (-387 |#2|) (-343)))) (-3201 (((-860) $) NIL (|has| (-387 |#2|) (-348)))) (-1412 ((|#3| $) NIL)) (-2057 (($ (-595 $)) NIL (|has| (-387 |#2|) (-343))) (($ $ $) NIL (|has| (-387 |#2|) (-343)))) (-3034 (((-1078) $) NIL)) (-3139 (((-635 (-387 |#2|))) 52)) (-1955 (((-635 (-387 |#2|))) 51)) (-2652 (($ $) NIL (|has| (-387 |#2|) (-343)))) (-2460 (($ (-1177 |#2|) |#2|) 71)) (-2547 (((-635 (-387 |#2|))) 50)) (-2832 (((-635 (-387 |#2|))) 49)) (-1326 (((-2 (|:| |num| (-635 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1749 (((-2 (|:| |num| (-1177 |#2|)) (|:| |den| |#2|)) $) 77)) (-2079 (((-1177 $)) 46)) (-3882 (((-1177 $)) 45)) (-2277 (((-110) $) NIL)) (-3697 (((-110) $) NIL) (((-110) $ |#1|) NIL) (((-110) $ |#2|) NIL)) (-4197 (($) NIL (|has| (-387 |#2|) (-329)) CONST)) (-3108 (($ (-860)) NIL (|has| (-387 |#2|) (-348)))) (-3743 (((-3 |#2| "failed")) 63)) (-2495 (((-1042) $) NIL)) (-1755 (((-717)) NIL)) (-1261 (($) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| (-387 |#2|) (-343)))) (-2088 (($ (-595 $)) NIL (|has| (-387 |#2|) (-343))) (($ $ $) NIL (|has| (-387 |#2|) (-343)))) (-3010 (((-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528))))) NIL (|has| (-387 |#2|) (-329)))) (-2437 (((-398 $) $) NIL (|has| (-387 |#2|) (-343)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-387 |#2|) (-343))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| (-387 |#2|) (-343)))) (-3477 (((-3 $ "failed") $ $) NIL (|has| (-387 |#2|) (-343)))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| (-387 |#2|) (-343)))) (-3973 (((-717) $) NIL (|has| (-387 |#2|) (-343)))) (-3043 ((|#1| $ |#1| |#1|) NIL)) (-2165 (((-3 |#2| "failed")) 62)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| (-387 |#2|) (-343)))) (-1372 (((-387 |#2|) (-1177 $)) NIL) (((-387 |#2|)) 42)) (-3500 (((-717) $) NIL (|has| (-387 |#2|) (-329))) (((-3 (-717) "failed") $ $) NIL (|has| (-387 |#2|) (-329)))) (-3235 (($ $ (-1 (-387 |#2|) (-387 |#2|)) (-717)) NIL (|has| (-387 |#2|) (-343))) (($ $ (-1 (-387 |#2|) (-387 |#2|))) NIL (|has| (-387 |#2|) (-343))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095))))) (($ $ (-1095) (-717)) NIL (-12 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095))))) (($ $ (-595 (-1095))) NIL (-12 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095))))) (($ $ (-1095)) NIL (-12 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095))))) (($ $ (-717)) NIL (-1463 (-12 (|has| (-387 |#2|) (-215)) (|has| (-387 |#2|) (-343))) (|has| (-387 |#2|) (-329)))) (($ $) NIL (-1463 (-12 (|has| (-387 |#2|) (-215)) (|has| (-387 |#2|) (-343))) (|has| (-387 |#2|) (-329))))) (-2348 (((-635 (-387 |#2|)) (-1177 $) (-1 (-387 |#2|) (-387 |#2|))) NIL (|has| (-387 |#2|) (-343)))) (-4090 ((|#3|) 53)) (-1984 (($) NIL (|has| (-387 |#2|) (-329)))) (-4243 (((-1177 (-387 |#2|)) $ (-1177 $)) NIL) (((-635 (-387 |#2|)) (-1177 $) (-1177 $)) NIL) (((-1177 (-387 |#2|)) $) 72) (((-635 (-387 |#2|)) (-1177 $)) NIL)) (-3155 (((-1177 (-387 |#2|)) $) NIL) (($ (-1177 (-387 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (|has| (-387 |#2|) (-329)))) (-3295 (((-1177 $) (-1177 $)) NIL)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ (-387 |#2|)) NIL) (($ (-387 (-528))) NIL (-1463 (|has| (-387 |#2|) (-972 (-387 (-528)))) (|has| (-387 |#2|) (-343)))) (($ $) NIL (|has| (-387 |#2|) (-343)))) (-3749 (($ $) NIL (|has| (-387 |#2|) (-329))) (((-3 $ "failed") $) NIL (|has| (-387 |#2|) (-138)))) (-2516 ((|#3| $) NIL)) (-3742 (((-717)) NIL)) (-3470 (((-110)) 60)) (-3527 (((-110) |#1|) 150) (((-110) |#2|) 151)) (-1400 (((-1177 $)) 121)) (-4016 (((-110) $ $) NIL (|has| (-387 |#2|) (-343)))) (-2245 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3753 (((-110)) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| (-387 |#2|) (-343)))) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($ $ (-1 (-387 |#2|) (-387 |#2|)) (-717)) NIL (|has| (-387 |#2|) (-343))) (($ $ (-1 (-387 |#2|) (-387 |#2|))) NIL (|has| (-387 |#2|) (-343))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095))))) (($ $ (-1095) (-717)) NIL (-12 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095))))) (($ $ (-595 (-1095))) NIL (-12 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095))))) (($ $ (-1095)) NIL (-12 (|has| (-387 |#2|) (-343)) (|has| (-387 |#2|) (-839 (-1095))))) (($ $ (-717)) NIL (-1463 (-12 (|has| (-387 |#2|) (-215)) (|has| (-387 |#2|) (-343))) (|has| (-387 |#2|) (-329)))) (($ $) NIL (-1463 (-12 (|has| (-387 |#2|) (-215)) (|has| (-387 |#2|) (-343))) (|has| (-387 |#2|) (-329))))) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ $) NIL (|has| (-387 |#2|) (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| (-387 |#2|) (-343)))) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 |#2|)) NIL) (($ (-387 |#2|) $) NIL) (($ (-387 (-528)) $) NIL (|has| (-387 |#2|) (-343))) (($ $ (-387 (-528))) NIL (|has| (-387 |#2|) (-343)))))
-(((-939 |#1| |#2| |#3| |#4| |#5|) (-322 |#1| |#2| |#3|) (-1135) (-1153 |#1|) (-1153 (-387 |#2|)) (-387 |#2|) (-717)) (T -939))
-NIL
-(-322 |#1| |#2| |#3|)
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3199 (((-595 (-528)) $) 54)) (-1345 (($ (-595 (-528))) 62)) (-3598 (((-528) $) 40 (|has| (-528) (-288)))) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (|has| (-528) (-848)))) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (|has| (-528) (-848)))) (-2213 (((-110) $ $) NIL)) (-3605 (((-528) $) NIL (|has| (-528) (-766)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-528) "failed") $) 49) (((-3 (-1095) "failed") $) NIL (|has| (-528) (-972 (-1095)))) (((-3 (-387 (-528)) "failed") $) 47 (|has| (-528) (-972 (-528)))) (((-3 (-528) "failed") $) 49 (|has| (-528) (-972 (-528))))) (-2409 (((-528) $) NIL) (((-1095) $) NIL (|has| (-528) (-972 (-1095)))) (((-387 (-528)) $) NIL (|has| (-528) (-972 (-528)))) (((-528) $) NIL (|has| (-528) (-972 (-528))))) (-3519 (($ $ $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| (-528) (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| (-528) (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL) (((-635 (-528)) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1338 (($) NIL (|has| (-528) (-513)))) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2124 (((-110) $) NIL)) (-3102 (((-595 (-528)) $) 60)) (-3657 (((-110) $) NIL (|has| (-528) (-766)))) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (|has| (-528) (-825 (-528)))) (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (|has| (-528) (-825 (-359))))) (-1297 (((-110) $) NIL)) (-3037 (($ $) NIL)) (-3031 (((-528) $) 37)) (-3296 (((-3 $ "failed") $) NIL (|has| (-528) (-1071)))) (-3710 (((-110) $) NIL (|has| (-528) (-766)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-1436 (($ $ $) NIL (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (|has| (-528) (-793)))) (-3106 (($ (-1 (-528) (-528)) $) NIL)) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL)) (-4197 (($) NIL (|has| (-528) (-1071)) CONST)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3270 (($ $) NIL (|has| (-528) (-288))) (((-387 (-528)) $) 42)) (-3366 (((-1076 (-528)) $) 59)) (-1901 (($ (-595 (-528)) (-595 (-528))) 63)) (-2925 (((-528) $) 53 (|has| (-528) (-513)))) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (|has| (-528) (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (|has| (-528) (-848)))) (-2437 (((-398 $) $) NIL)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-4014 (($ $ (-595 (-528)) (-595 (-528))) NIL (|has| (-528) (-290 (-528)))) (($ $ (-528) (-528)) NIL (|has| (-528) (-290 (-528)))) (($ $ (-275 (-528))) NIL (|has| (-528) (-290 (-528)))) (($ $ (-595 (-275 (-528)))) NIL (|has| (-528) (-290 (-528)))) (($ $ (-595 (-1095)) (-595 (-528))) NIL (|has| (-528) (-489 (-1095) (-528)))) (($ $ (-1095) (-528)) NIL (|has| (-528) (-489 (-1095) (-528))))) (-3973 (((-717) $) NIL)) (-3043 (($ $ (-528)) NIL (|has| (-528) (-267 (-528) (-528))))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3235 (($ $) 11 (|has| (-528) (-215))) (($ $ (-717)) NIL (|has| (-528) (-215))) (($ $ (-1095)) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-1 (-528) (-528)) (-717)) NIL) (($ $ (-1 (-528) (-528))) NIL)) (-4118 (($ $) NIL)) (-3042 (((-528) $) 39)) (-2998 (((-595 (-528)) $) 61)) (-3155 (((-831 (-528)) $) NIL (|has| (-528) (-570 (-831 (-528))))) (((-831 (-359)) $) NIL (|has| (-528) (-570 (-831 (-359))))) (((-504) $) NIL (|has| (-528) (-570 (-504)))) (((-359) $) NIL (|has| (-528) (-957))) (((-207) $) NIL (|has| (-528) (-957)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| (-528) (-848))))) (-2222 (((-802) $) 77) (($ (-528)) 43) (($ $) NIL) (($ (-387 (-528))) 20) (($ (-528)) 43) (($ (-1095)) NIL (|has| (-528) (-972 (-1095)))) (((-387 (-528)) $) 18)) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| (-528) (-848))) (|has| (-528) (-138))))) (-3742 (((-717)) 9)) (-1769 (((-528) $) 51 (|has| (-528) (-513)))) (-4016 (((-110) $ $) NIL)) (-1775 (($ $) NIL (|has| (-528) (-766)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) 10 T CONST)) (-2982 (($) 12 T CONST)) (-3245 (($ $) NIL (|has| (-528) (-215))) (($ $ (-717)) NIL (|has| (-528) (-215))) (($ $ (-1095)) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| (-528) (-839 (-1095)))) (($ $ (-1 (-528) (-528)) (-717)) NIL) (($ $ (-1 (-528) (-528))) NIL)) (-2244 (((-110) $ $) NIL (|has| (-528) (-793)))) (-2220 (((-110) $ $) NIL (|has| (-528) (-793)))) (-2186 (((-110) $ $) 14)) (-2232 (((-110) $ $) NIL (|has| (-528) (-793)))) (-2208 (((-110) $ $) 33 (|has| (-528) (-793)))) (-2296 (($ $ $) 29) (($ (-528) (-528)) 31)) (-2286 (($ $) 15) (($ $ $) 23)) (-2275 (($ $ $) 21)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 25) (($ $ $) 27) (($ $ (-387 (-528))) NIL) (($ (-387 (-528)) $) NIL) (($ (-528) $) 25) (($ $ (-528)) NIL)))
-(((-940 |#1|) (-13 (-929 (-528)) (-10 -8 (-15 -2222 ((-387 (-528)) $)) (-15 -3270 ((-387 (-528)) $)) (-15 -3199 ((-595 (-528)) $)) (-15 -3366 ((-1076 (-528)) $)) (-15 -3102 ((-595 (-528)) $)) (-15 -2998 ((-595 (-528)) $)) (-15 -1345 ($ (-595 (-528)))) (-15 -1901 ($ (-595 (-528)) (-595 (-528)))))) (-528)) (T -940))
-((-2222 (*1 *2 *1) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-940 *3)) (-14 *3 (-528)))) (-3270 (*1 *2 *1) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-940 *3)) (-14 *3 (-528)))) (-3199 (*1 *2 *1) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-940 *3)) (-14 *3 (-528)))) (-3366 (*1 *2 *1) (-12 (-5 *2 (-1076 (-528))) (-5 *1 (-940 *3)) (-14 *3 (-528)))) (-3102 (*1 *2 *1) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-940 *3)) (-14 *3 (-528)))) (-2998 (*1 *2 *1) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-940 *3)) (-14 *3 (-528)))) (-1345 (*1 *1 *2) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-940 *3)) (-14 *3 (-528)))) (-1901 (*1 *1 *2 *2) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-940 *3)) (-14 *3 (-528)))))
-(-13 (-929 (-528)) (-10 -8 (-15 -2222 ((-387 (-528)) $)) (-15 -3270 ((-387 (-528)) $)) (-15 -3199 ((-595 (-528)) $)) (-15 -3366 ((-1076 (-528)) $)) (-15 -3102 ((-595 (-528)) $)) (-15 -2998 ((-595 (-528)) $)) (-15 -1345 ($ (-595 (-528)))) (-15 -1901 ($ (-595 (-528)) (-595 (-528))))))
-((-1222 (((-51) (-387 (-528)) (-528)) 9)))
-(((-941) (-10 -7 (-15 -1222 ((-51) (-387 (-528)) (-528))))) (T -941))
-((-1222 (*1 *2 *3 *4) (-12 (-5 *3 (-387 (-528))) (-5 *4 (-528)) (-5 *2 (-51)) (-5 *1 (-941)))))
-(-10 -7 (-15 -1222 ((-51) (-387 (-528)) (-528))))
-((-2856 (((-528)) 13)) (-1625 (((-528)) 16)) (-4178 (((-1182) (-528)) 15)) (-2094 (((-528) (-528)) 17) (((-528)) 12)))
-(((-942) (-10 -7 (-15 -2094 ((-528))) (-15 -2856 ((-528))) (-15 -2094 ((-528) (-528))) (-15 -4178 ((-1182) (-528))) (-15 -1625 ((-528))))) (T -942))
-((-1625 (*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-942)))) (-4178 (*1 *2 *3) (-12 (-5 *3 (-528)) (-5 *2 (-1182)) (-5 *1 (-942)))) (-2094 (*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-942)))) (-2856 (*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-942)))) (-2094 (*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-942)))))
-(-10 -7 (-15 -2094 ((-528))) (-15 -2856 ((-528))) (-15 -2094 ((-528) (-528))) (-15 -4178 ((-1182) (-528))) (-15 -1625 ((-528))))
-((-1668 (((-398 |#1|) |#1|) 41)) (-2437 (((-398 |#1|) |#1|) 40)))
-(((-943 |#1|) (-10 -7 (-15 -2437 ((-398 |#1|) |#1|)) (-15 -1668 ((-398 |#1|) |#1|))) (-1153 (-387 (-528)))) (T -943))
-((-1668 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-943 *3)) (-4 *3 (-1153 (-387 (-528)))))) (-2437 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-943 *3)) (-4 *3 (-1153 (-387 (-528)))))))
-(-10 -7 (-15 -2437 ((-398 |#1|) |#1|)) (-15 -1668 ((-398 |#1|) |#1|)))
-((-1793 (((-3 (-387 (-528)) "failed") |#1|) 15)) (-3650 (((-110) |#1|) 14)) (-3099 (((-387 (-528)) |#1|) 10)))
-(((-944 |#1|) (-10 -7 (-15 -3099 ((-387 (-528)) |#1|)) (-15 -3650 ((-110) |#1|)) (-15 -1793 ((-3 (-387 (-528)) "failed") |#1|))) (-972 (-387 (-528)))) (T -944))
-((-1793 (*1 *2 *3) (|partial| -12 (-5 *2 (-387 (-528))) (-5 *1 (-944 *3)) (-4 *3 (-972 *2)))) (-3650 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-944 *3)) (-4 *3 (-972 (-387 (-528)))))) (-3099 (*1 *2 *3) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-944 *3)) (-4 *3 (-972 *2)))))
-(-10 -7 (-15 -3099 ((-387 (-528)) |#1|)) (-15 -3650 ((-110) |#1|)) (-15 -1793 ((-3 (-387 (-528)) "failed") |#1|)))
-((-2381 ((|#2| $ "value" |#2|) 12)) (-3043 ((|#2| $ "value") 10)) (-2688 (((-110) $ $) 18)))
-(((-945 |#1| |#2|) (-10 -8 (-15 -2381 (|#2| |#1| "value" |#2|)) (-15 -2688 ((-110) |#1| |#1|)) (-15 -3043 (|#2| |#1| "value"))) (-946 |#2|) (-1131)) (T -945))
-NIL
-(-10 -8 (-15 -2381 (|#2| |#1| "value" |#2|)) (-15 -2688 ((-110) |#1| |#1|)) (-15 -3043 (|#2| |#1| "value")))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-3327 ((|#1| $) 48)) (-3535 (((-110) $ (-717)) 8)) (-2074 ((|#1| $ |#1|) 39 (|has| $ (-6 -4265)))) (-2381 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4265)))) (-3409 (($ $ (-595 $)) 41 (|has| $ (-6 -4265)))) (-2816 (($) 7 T CONST)) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-1690 (((-595 $) $) 50)) (-1313 (((-110) $ $) 42 (|has| |#1| (-1023)))) (-2029 (((-110) $ (-717)) 9)) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35)) (-3358 (((-110) $ (-717)) 10)) (-3298 (((-595 |#1|) $) 45)) (-2578 (((-110) $) 49)) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3043 ((|#1| $ "value") 47)) (-3241 (((-528) $ $) 44)) (-3177 (((-110) $) 46)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-3813 (((-595 $) $) 51)) (-2688 (((-110) $ $) 43 (|has| |#1| (-1023)))) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-946 |#1|) (-133) (-1131)) (T -946))
-((-3813 (*1 *2 *1) (-12 (-4 *3 (-1131)) (-5 *2 (-595 *1)) (-4 *1 (-946 *3)))) (-1690 (*1 *2 *1) (-12 (-4 *3 (-1131)) (-5 *2 (-595 *1)) (-4 *1 (-946 *3)))) (-2578 (*1 *2 *1) (-12 (-4 *1 (-946 *3)) (-4 *3 (-1131)) (-5 *2 (-110)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-946 *2)) (-4 *2 (-1131)))) (-3043 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-946 *2)) (-4 *2 (-1131)))) (-3177 (*1 *2 *1) (-12 (-4 *1 (-946 *3)) (-4 *3 (-1131)) (-5 *2 (-110)))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-946 *3)) (-4 *3 (-1131)) (-5 *2 (-595 *3)))) (-3241 (*1 *2 *1 *1) (-12 (-4 *1 (-946 *3)) (-4 *3 (-1131)) (-5 *2 (-528)))) (-2688 (*1 *2 *1 *1) (-12 (-4 *1 (-946 *3)) (-4 *3 (-1131)) (-4 *3 (-1023)) (-5 *2 (-110)))) (-1313 (*1 *2 *1 *1) (-12 (-4 *1 (-946 *3)) (-4 *3 (-1131)) (-4 *3 (-1023)) (-5 *2 (-110)))) (-3409 (*1 *1 *1 *2) (-12 (-5 *2 (-595 *1)) (|has| *1 (-6 -4265)) (-4 *1 (-946 *3)) (-4 *3 (-1131)))) (-2381 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4265)) (-4 *1 (-946 *2)) (-4 *2 (-1131)))) (-2074 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4265)) (-4 *1 (-946 *2)) (-4 *2 (-1131)))))
-(-13 (-467 |t#1|) (-10 -8 (-15 -3813 ((-595 $) $)) (-15 -1690 ((-595 $) $)) (-15 -2578 ((-110) $)) (-15 -3327 (|t#1| $)) (-15 -3043 (|t#1| $ "value")) (-15 -3177 ((-110) $)) (-15 -3298 ((-595 |t#1|) $)) (-15 -3241 ((-528) $ $)) (IF (|has| |t#1| (-1023)) (PROGN (-15 -2688 ((-110) $ $)) (-15 -1313 ((-110) $ $))) |%noBranch|) (IF (|has| $ (-6 -4265)) (PROGN (-15 -3409 ($ $ (-595 $))) (-15 -2381 (|t#1| $ "value" |t#1|)) (-15 -2074 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1023)) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-569 (-802)))) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-467 |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-1023) |has| |#1| (-1023)) ((-1131) . T))
-((-2450 (($ $) 9) (($ $ (-860)) 43) (($ (-387 (-528))) 13) (($ (-528)) 15)) (-1230 (((-3 $ "failed") (-1091 $) (-860) (-802)) 23) (((-3 $ "failed") (-1091 $) (-860)) 28)) (-2796 (($ $ (-528)) 49)) (-3742 (((-717)) 17)) (-3350 (((-595 $) (-1091 $)) NIL) (((-595 $) (-1091 (-387 (-528)))) 54) (((-595 $) (-1091 (-528))) 59) (((-595 $) (-891 $)) 63) (((-595 $) (-891 (-387 (-528)))) 67) (((-595 $) (-891 (-528))) 71)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL) (($ $ (-387 (-528))) 47)))
-(((-947 |#1|) (-10 -8 (-15 -2450 (|#1| (-528))) (-15 -2450 (|#1| (-387 (-528)))) (-15 -2450 (|#1| |#1| (-860))) (-15 -3350 ((-595 |#1|) (-891 (-528)))) (-15 -3350 ((-595 |#1|) (-891 (-387 (-528))))) (-15 -3350 ((-595 |#1|) (-891 |#1|))) (-15 -3350 ((-595 |#1|) (-1091 (-528)))) (-15 -3350 ((-595 |#1|) (-1091 (-387 (-528))))) (-15 -3350 ((-595 |#1|) (-1091 |#1|))) (-15 -1230 ((-3 |#1| "failed") (-1091 |#1|) (-860))) (-15 -1230 ((-3 |#1| "failed") (-1091 |#1|) (-860) (-802))) (-15 ** (|#1| |#1| (-387 (-528)))) (-15 -2796 (|#1| |#1| (-528))) (-15 -2450 (|#1| |#1|)) (-15 ** (|#1| |#1| (-528))) (-15 -3742 ((-717))) (-15 ** (|#1| |#1| (-717))) (-15 ** (|#1| |#1| (-860)))) (-948)) (T -947))
-((-3742 (*1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-947 *3)) (-4 *3 (-948)))))
-(-10 -8 (-15 -2450 (|#1| (-528))) (-15 -2450 (|#1| (-387 (-528)))) (-15 -2450 (|#1| |#1| (-860))) (-15 -3350 ((-595 |#1|) (-891 (-528)))) (-15 -3350 ((-595 |#1|) (-891 (-387 (-528))))) (-15 -3350 ((-595 |#1|) (-891 |#1|))) (-15 -3350 ((-595 |#1|) (-1091 (-528)))) (-15 -3350 ((-595 |#1|) (-1091 (-387 (-528))))) (-15 -3350 ((-595 |#1|) (-1091 |#1|))) (-15 -1230 ((-3 |#1| "failed") (-1091 |#1|) (-860))) (-15 -1230 ((-3 |#1| "failed") (-1091 |#1|) (-860) (-802))) (-15 ** (|#1| |#1| (-387 (-528)))) (-15 -2796 (|#1| |#1| (-528))) (-15 -2450 (|#1| |#1|)) (-15 ** (|#1| |#1| (-528))) (-15 -3742 ((-717))) (-15 ** (|#1| |#1| (-717))) (-15 ** (|#1| |#1| (-860))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 89)) (-1738 (($ $) 90)) (-1811 (((-110) $) 92)) (-3181 (((-3 $ "failed") $ $) 19)) (-1232 (($ $) 109)) (-2705 (((-398 $) $) 110)) (-2450 (($ $) 73) (($ $ (-860)) 59) (($ (-387 (-528))) 58) (($ (-528)) 57)) (-2213 (((-110) $ $) 100)) (-3605 (((-528) $) 127)) (-2816 (($) 17 T CONST)) (-1230 (((-3 $ "failed") (-1091 $) (-860) (-802)) 67) (((-3 $ "failed") (-1091 $) (-860)) 66)) (-3001 (((-3 (-528) "failed") $) 85 (|has| (-387 (-528)) (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) 83 (|has| (-387 (-528)) (-972 (-387 (-528))))) (((-3 (-387 (-528)) "failed") $) 81)) (-2409 (((-528) $) 86 (|has| (-387 (-528)) (-972 (-528)))) (((-387 (-528)) $) 84 (|has| (-387 (-528)) (-972 (-387 (-528))))) (((-387 (-528)) $) 80)) (-2284 (($ $ (-802)) 56)) (-3044 (($ $ (-802)) 55)) (-3519 (($ $ $) 104)) (-1312 (((-3 $ "failed") $) 34)) (-3498 (($ $ $) 103)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 98)) (-2124 (((-110) $) 111)) (-3657 (((-110) $) 125)) (-1297 (((-110) $) 31)) (-2796 (($ $ (-528)) 72)) (-3710 (((-110) $) 126)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) 107)) (-1436 (($ $ $) 124)) (-1736 (($ $ $) 123)) (-3103 (((-3 (-1091 $) "failed") $) 68)) (-1834 (((-3 (-802) "failed") $) 70)) (-3516 (((-3 (-1091 $) "failed") $) 69)) (-2057 (($ (-595 $)) 96) (($ $ $) 95)) (-3034 (((-1078) $) 9)) (-2652 (($ $) 112)) (-2495 (((-1042) $) 10)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 97)) (-2088 (($ (-595 $)) 94) (($ $ $) 93)) (-2437 (((-398 $) $) 108)) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 105)) (-3477 (((-3 $ "failed") $ $) 88)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 99)) (-3973 (((-717) $) 101)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 102)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ (-387 (-528))) 117) (($ $) 87) (($ (-387 (-528))) 82) (($ (-528)) 79) (($ (-387 (-528))) 76)) (-3742 (((-717)) 29)) (-4016 (((-110) $ $) 91)) (-4083 (((-387 (-528)) $ $) 54)) (-3350 (((-595 $) (-1091 $)) 65) (((-595 $) (-1091 (-387 (-528)))) 64) (((-595 $) (-1091 (-528))) 63) (((-595 $) (-891 $)) 62) (((-595 $) (-891 (-387 (-528)))) 61) (((-595 $) (-891 (-528))) 60)) (-1775 (($ $) 128)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33) (($ $ (-528)) 113)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2244 (((-110) $ $) 121)) (-2220 (((-110) $ $) 120)) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 122)) (-2208 (((-110) $ $) 119)) (-2296 (($ $ $) 118)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32) (($ $ (-528)) 114) (($ $ (-387 (-528))) 71)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ (-387 (-528)) $) 116) (($ $ (-387 (-528))) 115) (($ (-528) $) 78) (($ $ (-528)) 77) (($ (-387 (-528)) $) 75) (($ $ (-387 (-528))) 74)))
-(((-948) (-133)) (T -948))
-((-2450 (*1 *1 *1) (-4 *1 (-948))) (-1834 (*1 *2 *1) (|partial| -12 (-4 *1 (-948)) (-5 *2 (-802)))) (-3516 (*1 *2 *1) (|partial| -12 (-5 *2 (-1091 *1)) (-4 *1 (-948)))) (-3103 (*1 *2 *1) (|partial| -12 (-5 *2 (-1091 *1)) (-4 *1 (-948)))) (-1230 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1091 *1)) (-5 *3 (-860)) (-5 *4 (-802)) (-4 *1 (-948)))) (-1230 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1091 *1)) (-5 *3 (-860)) (-4 *1 (-948)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-1091 *1)) (-4 *1 (-948)) (-5 *2 (-595 *1)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-1091 (-387 (-528)))) (-5 *2 (-595 *1)) (-4 *1 (-948)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-1091 (-528))) (-5 *2 (-595 *1)) (-4 *1 (-948)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-891 *1)) (-4 *1 (-948)) (-5 *2 (-595 *1)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-891 (-387 (-528)))) (-5 *2 (-595 *1)) (-4 *1 (-948)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-891 (-528))) (-5 *2 (-595 *1)) (-4 *1 (-948)))) (-2450 (*1 *1 *1 *2) (-12 (-4 *1 (-948)) (-5 *2 (-860)))) (-2450 (*1 *1 *2) (-12 (-5 *2 (-387 (-528))) (-4 *1 (-948)))) (-2450 (*1 *1 *2) (-12 (-5 *2 (-528)) (-4 *1 (-948)))) (-2284 (*1 *1 *1 *2) (-12 (-4 *1 (-948)) (-5 *2 (-802)))) (-3044 (*1 *1 *1 *2) (-12 (-4 *1 (-948)) (-5 *2 (-802)))) (-4083 (*1 *2 *1 *1) (-12 (-4 *1 (-948)) (-5 *2 (-387 (-528))))))
-(-13 (-140) (-791) (-162) (-343) (-391 (-387 (-528))) (-37 (-528)) (-37 (-387 (-528))) (-938) (-10 -8 (-15 -1834 ((-3 (-802) "failed") $)) (-15 -3516 ((-3 (-1091 $) "failed") $)) (-15 -3103 ((-3 (-1091 $) "failed") $)) (-15 -1230 ((-3 $ "failed") (-1091 $) (-860) (-802))) (-15 -1230 ((-3 $ "failed") (-1091 $) (-860))) (-15 -3350 ((-595 $) (-1091 $))) (-15 -3350 ((-595 $) (-1091 (-387 (-528))))) (-15 -3350 ((-595 $) (-1091 (-528)))) (-15 -3350 ((-595 $) (-891 $))) (-15 -3350 ((-595 $) (-891 (-387 (-528))))) (-15 -3350 ((-595 $) (-891 (-528)))) (-15 -2450 ($ $ (-860))) (-15 -2450 ($ $)) (-15 -2450 ($ (-387 (-528)))) (-15 -2450 ($ (-528))) (-15 -2284 ($ $ (-802))) (-15 -3044 ($ $ (-802))) (-15 -4083 ((-387 (-528)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-387 (-528))) . T) ((-37 #1=(-528)) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 #1# #1#) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-569 (-802)) . T) ((-162) . T) ((-225) . T) ((-271) . T) ((-288) . T) ((-343) . T) ((-391 (-387 (-528))) . T) ((-431) . T) ((-520) . T) ((-597 #0#) . T) ((-597 #1#) . T) ((-597 $) . T) ((-664 #0#) . T) ((-664 #1#) . T) ((-664 $) . T) ((-673) . T) ((-737) . T) ((-738) . T) ((-740) . T) ((-741) . T) ((-791) . T) ((-793) . T) ((-859) . T) ((-938) . T) ((-972 (-387 (-528))) . T) ((-972 (-528)) |has| (-387 (-528)) (-972 (-528))) ((-986 #0#) . T) ((-986 #1#) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1135) . T))
-((-3673 (((-2 (|:| |ans| |#2|) (|:| -3572 |#2|) (|:| |sol?| (-110))) (-528) |#2| |#2| (-1095) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-595 |#2|)) (-1 (-3 (-2 (|:| -1497 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66)))
-(((-949 |#1| |#2|) (-10 -7 (-15 -3673 ((-2 (|:| |ans| |#2|) (|:| -3572 |#2|) (|:| |sol?| (-110))) (-528) |#2| |#2| (-1095) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-595 |#2|)) (-1 (-3 (-2 (|:| -1497 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-431) (-793) (-140) (-972 (-528)) (-591 (-528))) (-13 (-1117) (-27) (-410 |#1|))) (T -949))
-((-3673 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1095)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-595 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1497 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1117) (-27) (-410 *8))) (-4 *8 (-13 (-431) (-793) (-140) (-972 *3) (-591 *3))) (-5 *3 (-528)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3572 *4) (|:| |sol?| (-110)))) (-5 *1 (-949 *8 *4)))))
-(-10 -7 (-15 -3673 ((-2 (|:| |ans| |#2|) (|:| -3572 |#2|) (|:| |sol?| (-110))) (-528) |#2| |#2| (-1095) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-595 |#2|)) (-1 (-3 (-2 (|:| -1497 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-2039 (((-3 (-595 |#2|) "failed") (-528) |#2| |#2| |#2| (-1095) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-595 |#2|)) (-1 (-3 (-2 (|:| -1497 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53)))
-(((-950 |#1| |#2|) (-10 -7 (-15 -2039 ((-3 (-595 |#2|) "failed") (-528) |#2| |#2| |#2| (-1095) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-595 |#2|)) (-1 (-3 (-2 (|:| -1497 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-431) (-793) (-140) (-972 (-528)) (-591 (-528))) (-13 (-1117) (-27) (-410 |#1|))) (T -950))
-((-2039 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1095)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-595 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1497 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1117) (-27) (-410 *8))) (-4 *8 (-13 (-431) (-793) (-140) (-972 *3) (-591 *3))) (-5 *3 (-528)) (-5 *2 (-595 *4)) (-5 *1 (-950 *8 *4)))))
-(-10 -7 (-15 -2039 ((-3 (-595 |#2|) "failed") (-528) |#2| |#2| |#2| (-1095) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-595 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-595 |#2|)) (-1 (-3 (-2 (|:| -1497 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-4148 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-110)))) (|:| -2589 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-528)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-528) (-1 |#2| |#2|)) 30)) (-2676 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-387 |#2|)) (|:| |c| (-387 |#2|)) (|:| -3956 |#2|)) "failed") (-387 |#2|) (-387 |#2|) (-1 |#2| |#2|)) 58)) (-3476 (((-2 (|:| |ans| (-387 |#2|)) (|:| |nosol| (-110))) (-387 |#2|) (-387 |#2|)) 63)))
-(((-951 |#1| |#2|) (-10 -7 (-15 -2676 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-387 |#2|)) (|:| |c| (-387 |#2|)) (|:| -3956 |#2|)) "failed") (-387 |#2|) (-387 |#2|) (-1 |#2| |#2|))) (-15 -3476 ((-2 (|:| |ans| (-387 |#2|)) (|:| |nosol| (-110))) (-387 |#2|) (-387 |#2|))) (-15 -4148 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-110)))) (|:| -2589 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-528)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-528) (-1 |#2| |#2|)))) (-13 (-343) (-140) (-972 (-528))) (-1153 |#1|)) (T -951))
-((-4148 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1153 *6)) (-4 *6 (-13 (-343) (-140) (-972 *4))) (-5 *4 (-528)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-110)))) (|:| -2589 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-951 *6 *3)))) (-3476 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-343) (-140) (-972 (-528)))) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| |ans| (-387 *5)) (|:| |nosol| (-110)))) (-5 *1 (-951 *4 *5)) (-5 *3 (-387 *5)))) (-2676 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-343) (-140) (-972 (-528)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-387 *6)) (|:| |c| (-387 *6)) (|:| -3956 *6))) (-5 *1 (-951 *5 *6)) (-5 *3 (-387 *6)))))
-(-10 -7 (-15 -2676 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-387 |#2|)) (|:| |c| (-387 |#2|)) (|:| -3956 |#2|)) "failed") (-387 |#2|) (-387 |#2|) (-1 |#2| |#2|))) (-15 -3476 ((-2 (|:| |ans| (-387 |#2|)) (|:| |nosol| (-110))) (-387 |#2|) (-387 |#2|))) (-15 -4148 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-110)))) (|:| -2589 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-528)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-528) (-1 |#2| |#2|))))
-((-1637 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-387 |#2|)) (|:| |h| |#2|) (|:| |c1| (-387 |#2|)) (|:| |c2| (-387 |#2|)) (|:| -3956 |#2|)) "failed") (-387 |#2|) (-387 |#2|) (-387 |#2|) (-1 |#2| |#2|)) 22)) (-4109 (((-3 (-595 (-387 |#2|)) "failed") (-387 |#2|) (-387 |#2|) (-387 |#2|)) 33)))
-(((-952 |#1| |#2|) (-10 -7 (-15 -1637 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-387 |#2|)) (|:| |h| |#2|) (|:| |c1| (-387 |#2|)) (|:| |c2| (-387 |#2|)) (|:| -3956 |#2|)) "failed") (-387 |#2|) (-387 |#2|) (-387 |#2|) (-1 |#2| |#2|))) (-15 -4109 ((-3 (-595 (-387 |#2|)) "failed") (-387 |#2|) (-387 |#2|) (-387 |#2|)))) (-13 (-343) (-140) (-972 (-528))) (-1153 |#1|)) (T -952))
-((-4109 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-343) (-140) (-972 (-528)))) (-4 *5 (-1153 *4)) (-5 *2 (-595 (-387 *5))) (-5 *1 (-952 *4 *5)) (-5 *3 (-387 *5)))) (-1637 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-343) (-140) (-972 (-528)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-387 *6)) (|:| |h| *6) (|:| |c1| (-387 *6)) (|:| |c2| (-387 *6)) (|:| -3956 *6))) (-5 *1 (-952 *5 *6)) (-5 *3 (-387 *6)))))
-(-10 -7 (-15 -1637 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-387 |#2|)) (|:| |h| |#2|) (|:| |c1| (-387 |#2|)) (|:| |c2| (-387 |#2|)) (|:| -3956 |#2|)) "failed") (-387 |#2|) (-387 |#2|) (-387 |#2|) (-1 |#2| |#2|))) (-15 -4109 ((-3 (-595 (-387 |#2|)) "failed") (-387 |#2|) (-387 |#2|) (-387 |#2|))))
-((-2965 (((-1 |#1|) (-595 (-2 (|:| -3327 |#1|) (|:| -1479 (-528))))) 37)) (-2795 (((-1 |#1|) (-1025 |#1|)) 45)) (-1257 (((-1 |#1|) (-1177 |#1|) (-1177 (-528)) (-528)) 34)))
-(((-953 |#1|) (-10 -7 (-15 -2795 ((-1 |#1|) (-1025 |#1|))) (-15 -2965 ((-1 |#1|) (-595 (-2 (|:| -3327 |#1|) (|:| -1479 (-528)))))) (-15 -1257 ((-1 |#1|) (-1177 |#1|) (-1177 (-528)) (-528)))) (-1023)) (T -953))
-((-1257 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1177 *6)) (-5 *4 (-1177 (-528))) (-5 *5 (-528)) (-4 *6 (-1023)) (-5 *2 (-1 *6)) (-5 *1 (-953 *6)))) (-2965 (*1 *2 *3) (-12 (-5 *3 (-595 (-2 (|:| -3327 *4) (|:| -1479 (-528))))) (-4 *4 (-1023)) (-5 *2 (-1 *4)) (-5 *1 (-953 *4)))) (-2795 (*1 *2 *3) (-12 (-5 *3 (-1025 *4)) (-4 *4 (-1023)) (-5 *2 (-1 *4)) (-5 *1 (-953 *4)))))
-(-10 -7 (-15 -2795 ((-1 |#1|) (-1025 |#1|))) (-15 -2965 ((-1 |#1|) (-595 (-2 (|:| -3327 |#1|) (|:| -1479 (-528)))))) (-15 -1257 ((-1 |#1|) (-1177 |#1|) (-1177 (-528)) (-528))))
-((-3689 (((-717) (-316 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-954 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3689 ((-717) (-316 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-343) (-1153 |#1|) (-1153 (-387 |#2|)) (-322 |#1| |#2| |#3|) (-13 (-348) (-343))) (T -954))
-((-3689 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-343)) (-4 *7 (-1153 *6)) (-4 *4 (-1153 (-387 *7))) (-4 *8 (-322 *6 *7 *4)) (-4 *9 (-13 (-348) (-343))) (-5 *2 (-717)) (-5 *1 (-954 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -3689 ((-717) (-316 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-2760 (((-3 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) "failed") |#1| (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) 31) (((-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) |#1| (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) (-387 (-528))) 28)) (-1680 (((-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) |#1| (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) (-387 (-528))) 33) (((-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) |#1| (-387 (-528))) 29) (((-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) |#1| (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) 32) (((-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) |#1|) 27)) (-1293 (((-595 (-387 (-528))) (-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))) 19)) (-3145 (((-387 (-528)) (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) 16)))
-(((-955 |#1|) (-10 -7 (-15 -1680 ((-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) |#1|)) (-15 -1680 ((-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) |#1| (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))) (-15 -1680 ((-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) |#1| (-387 (-528)))) (-15 -1680 ((-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) |#1| (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) (-387 (-528)))) (-15 -2760 ((-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) |#1| (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) (-387 (-528)))) (-15 -2760 ((-3 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) "failed") |#1| (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))) (-15 -3145 ((-387 (-528)) (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))) (-15 -1293 ((-595 (-387 (-528))) (-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))))) (-1153 (-528))) (T -955))
-((-1293 (*1 *2 *3) (-12 (-5 *3 (-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))) (-5 *2 (-595 (-387 (-528)))) (-5 *1 (-955 *4)) (-4 *4 (-1153 (-528))))) (-3145 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) (-5 *2 (-387 (-528))) (-5 *1 (-955 *4)) (-4 *4 (-1153 (-528))))) (-2760 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) (-5 *1 (-955 *3)) (-4 *3 (-1153 (-528))))) (-2760 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) (-5 *4 (-387 (-528))) (-5 *1 (-955 *3)) (-4 *3 (-1153 (-528))))) (-1680 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-387 (-528))) (-5 *2 (-595 (-2 (|:| -3562 *5) (|:| -3572 *5)))) (-5 *1 (-955 *3)) (-4 *3 (-1153 (-528))) (-5 *4 (-2 (|:| -3562 *5) (|:| -3572 *5))))) (-1680 (*1 *2 *3 *4) (-12 (-5 *2 (-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))) (-5 *1 (-955 *3)) (-4 *3 (-1153 (-528))) (-5 *4 (-387 (-528))))) (-1680 (*1 *2 *3 *4) (-12 (-5 *2 (-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))) (-5 *1 (-955 *3)) (-4 *3 (-1153 (-528))) (-5 *4 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))))) (-1680 (*1 *2 *3) (-12 (-5 *2 (-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))) (-5 *1 (-955 *3)) (-4 *3 (-1153 (-528))))))
-(-10 -7 (-15 -1680 ((-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) |#1|)) (-15 -1680 ((-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) |#1| (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))) (-15 -1680 ((-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) |#1| (-387 (-528)))) (-15 -1680 ((-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) |#1| (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) (-387 (-528)))) (-15 -2760 ((-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) |#1| (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) (-387 (-528)))) (-15 -2760 ((-3 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) "failed") |#1| (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))) (-15 -3145 ((-387 (-528)) (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))) (-15 -1293 ((-595 (-387 (-528))) (-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))))))
-((-2760 (((-3 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) "failed") |#1| (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) 35) (((-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) |#1| (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) (-387 (-528))) 32)) (-1680 (((-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) |#1| (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) (-387 (-528))) 30) (((-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) |#1| (-387 (-528))) 26) (((-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) |#1| (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) 28) (((-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) |#1|) 24)))
-(((-956 |#1|) (-10 -7 (-15 -1680 ((-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) |#1|)) (-15 -1680 ((-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) |#1| (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))) (-15 -1680 ((-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) |#1| (-387 (-528)))) (-15 -1680 ((-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) |#1| (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) (-387 (-528)))) (-15 -2760 ((-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) |#1| (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) (-387 (-528)))) (-15 -2760 ((-3 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) "failed") |#1| (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))))) (-1153 (-387 (-528)))) (T -956))
-((-2760 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) (-5 *1 (-956 *3)) (-4 *3 (-1153 (-387 (-528)))))) (-2760 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) (-5 *4 (-387 (-528))) (-5 *1 (-956 *3)) (-4 *3 (-1153 *4)))) (-1680 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-387 (-528))) (-5 *2 (-595 (-2 (|:| -3562 *5) (|:| -3572 *5)))) (-5 *1 (-956 *3)) (-4 *3 (-1153 *5)) (-5 *4 (-2 (|:| -3562 *5) (|:| -3572 *5))))) (-1680 (*1 *2 *3 *4) (-12 (-5 *4 (-387 (-528))) (-5 *2 (-595 (-2 (|:| -3562 *4) (|:| -3572 *4)))) (-5 *1 (-956 *3)) (-4 *3 (-1153 *4)))) (-1680 (*1 *2 *3 *4) (-12 (-5 *2 (-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))) (-5 *1 (-956 *3)) (-4 *3 (-1153 (-387 (-528)))) (-5 *4 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))))) (-1680 (*1 *2 *3) (-12 (-5 *2 (-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))) (-5 *1 (-956 *3)) (-4 *3 (-1153 (-387 (-528)))))))
-(-10 -7 (-15 -1680 ((-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) |#1|)) (-15 -1680 ((-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) |#1| (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))) (-15 -1680 ((-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) |#1| (-387 (-528)))) (-15 -1680 ((-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))) |#1| (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) (-387 (-528)))) (-15 -2760 ((-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) |#1| (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) (-387 (-528)))) (-15 -2760 ((-3 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) "failed") |#1| (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))) (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))))
-((-3155 (((-207) $) 6) (((-359) $) 9)))
-(((-957) (-133)) (T -957))
-NIL
-(-13 (-570 (-207)) (-570 (-359)))
-(((-570 (-207)) . T) ((-570 (-359)) . T))
-((-1651 (((-595 (-359)) (-891 (-528)) (-359)) 28) (((-595 (-359)) (-891 (-387 (-528))) (-359)) 27)) (-3018 (((-595 (-595 (-359))) (-595 (-891 (-528))) (-595 (-1095)) (-359)) 37)))
-(((-958) (-10 -7 (-15 -1651 ((-595 (-359)) (-891 (-387 (-528))) (-359))) (-15 -1651 ((-595 (-359)) (-891 (-528)) (-359))) (-15 -3018 ((-595 (-595 (-359))) (-595 (-891 (-528))) (-595 (-1095)) (-359))))) (T -958))
-((-3018 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-595 (-891 (-528)))) (-5 *4 (-595 (-1095))) (-5 *2 (-595 (-595 (-359)))) (-5 *1 (-958)) (-5 *5 (-359)))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-891 (-528))) (-5 *2 (-595 (-359))) (-5 *1 (-958)) (-5 *4 (-359)))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-891 (-387 (-528)))) (-5 *2 (-595 (-359))) (-5 *1 (-958)) (-5 *4 (-359)))))
-(-10 -7 (-15 -1651 ((-595 (-359)) (-891 (-387 (-528))) (-359))) (-15 -1651 ((-595 (-359)) (-891 (-528)) (-359))) (-15 -3018 ((-595 (-595 (-359))) (-595 (-891 (-528))) (-595 (-1095)) (-359))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 70)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-2450 (($ $) NIL) (($ $ (-860)) NIL) (($ (-387 (-528))) NIL) (($ (-528)) NIL)) (-2213 (((-110) $ $) NIL)) (-3605 (((-528) $) 65)) (-2816 (($) NIL T CONST)) (-1230 (((-3 $ "failed") (-1091 $) (-860) (-802)) NIL) (((-3 $ "failed") (-1091 $) (-860)) 50)) (-3001 (((-3 (-387 (-528)) "failed") $) NIL (|has| (-387 (-528)) (-972 (-387 (-528))))) (((-3 (-387 (-528)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-528) "failed") $) NIL (-1463 (|has| (-387 (-528)) (-972 (-528))) (|has| |#1| (-972 (-528)))))) (-2409 (((-387 (-528)) $) 15 (|has| (-387 (-528)) (-972 (-387 (-528))))) (((-387 (-528)) $) 15) ((|#1| $) 108) (((-528) $) NIL (-1463 (|has| (-387 (-528)) (-972 (-528))) (|has| |#1| (-972 (-528)))))) (-2284 (($ $ (-802)) 42)) (-3044 (($ $ (-802)) 43)) (-3519 (($ $ $) NIL)) (-1459 (((-387 (-528)) $ $) 19)) (-1312 (((-3 $ "failed") $) 83)) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2124 (((-110) $) NIL)) (-3657 (((-110) $) 61)) (-1297 (((-110) $) NIL)) (-2796 (($ $ (-528)) NIL)) (-3710 (((-110) $) 64)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3103 (((-3 (-1091 $) "failed") $) 78)) (-1834 (((-3 (-802) "failed") $) 77)) (-3516 (((-3 (-1091 $) "failed") $) 75)) (-2550 (((-3 (-990 $ (-1091 $)) "failed") $) 73)) (-2057 (($ (-595 $)) NIL) (($ $ $) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) 84)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ (-595 $)) NIL) (($ $ $) NIL)) (-2437 (((-398 $) $) NIL)) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-2222 (((-802) $) 82) (($ (-528)) NIL) (($ (-387 (-528))) NIL) (($ $) 58) (($ (-387 (-528))) NIL) (($ (-528)) NIL) (($ (-387 (-528))) NIL) (($ |#1|) 110)) (-3742 (((-717)) NIL)) (-4016 (((-110) $ $) NIL)) (-4083 (((-387 (-528)) $ $) 25)) (-3350 (((-595 $) (-1091 $)) 56) (((-595 $) (-1091 (-387 (-528)))) NIL) (((-595 $) (-1091 (-528))) NIL) (((-595 $) (-891 $)) NIL) (((-595 $) (-891 (-387 (-528)))) NIL) (((-595 $) (-891 (-528))) NIL)) (-3260 (($ (-990 $ (-1091 $)) (-802)) 41)) (-1775 (($ $) 20)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL)) (-2969 (($) 29 T CONST)) (-2982 (($) 35 T CONST)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 71)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 22)) (-2296 (($ $ $) 33)) (-2286 (($ $) 34) (($ $ $) 69)) (-2275 (($ $ $) 103)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL) (($ $ (-387 (-528))) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 91) (($ $ $) 96) (($ (-387 (-528)) $) NIL) (($ $ (-387 (-528))) NIL) (($ (-528) $) 91) (($ $ (-528)) NIL) (($ (-387 (-528)) $) NIL) (($ $ (-387 (-528))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
-(((-959 |#1|) (-13 (-948) (-391 |#1|) (-37 |#1|) (-10 -8 (-15 -3260 ($ (-990 $ (-1091 $)) (-802))) (-15 -2550 ((-3 (-990 $ (-1091 $)) "failed") $)) (-15 -1459 ((-387 (-528)) $ $)))) (-13 (-791) (-343) (-957))) (T -959))
-((-3260 (*1 *1 *2 *3) (-12 (-5 *2 (-990 (-959 *4) (-1091 (-959 *4)))) (-5 *3 (-802)) (-5 *1 (-959 *4)) (-4 *4 (-13 (-791) (-343) (-957))))) (-2550 (*1 *2 *1) (|partial| -12 (-5 *2 (-990 (-959 *3) (-1091 (-959 *3)))) (-5 *1 (-959 *3)) (-4 *3 (-13 (-791) (-343) (-957))))) (-1459 (*1 *2 *1 *1) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-959 *3)) (-4 *3 (-13 (-791) (-343) (-957))))))
-(-13 (-948) (-391 |#1|) (-37 |#1|) (-10 -8 (-15 -3260 ($ (-990 $ (-1091 $)) (-802))) (-15 -2550 ((-3 (-990 $ (-1091 $)) "failed") $)) (-15 -1459 ((-387 (-528)) $ $))))
-((-3876 (((-2 (|:| -2589 |#2|) (|:| -4057 (-595 |#1|))) |#2| (-595 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
-(((-960 |#1| |#2|) (-10 -7 (-15 -3876 (|#2| |#2| |#1|)) (-15 -3876 ((-2 (|:| -2589 |#2|) (|:| -4057 (-595 |#1|))) |#2| (-595 |#1|)))) (-343) (-605 |#1|)) (T -960))
-((-3876 (*1 *2 *3 *4) (-12 (-4 *5 (-343)) (-5 *2 (-2 (|:| -2589 *3) (|:| -4057 (-595 *5)))) (-5 *1 (-960 *5 *3)) (-5 *4 (-595 *5)) (-4 *3 (-605 *5)))) (-3876 (*1 *2 *2 *3) (-12 (-4 *3 (-343)) (-5 *1 (-960 *3 *2)) (-4 *2 (-605 *3)))))
-(-10 -7 (-15 -3876 (|#2| |#2| |#1|)) (-15 -3876 ((-2 (|:| -2589 |#2|) (|:| -4057 (-595 |#1|))) |#2| (-595 |#1|))))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3793 ((|#1| $ |#1|) 14)) (-2381 ((|#1| $ |#1|) 12)) (-2791 (($ |#1|) 10)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-3043 ((|#1| $) 11)) (-1314 ((|#1| $) 13)) (-2222 (((-802) $) 21 (|has| |#1| (-1023)))) (-2186 (((-110) $ $) 9)))
-(((-961 |#1|) (-13 (-1131) (-10 -8 (-15 -2791 ($ |#1|)) (-15 -3043 (|#1| $)) (-15 -2381 (|#1| $ |#1|)) (-15 -1314 (|#1| $)) (-15 -3793 (|#1| $ |#1|)) (-15 -2186 ((-110) $ $)) (IF (|has| |#1| (-1023)) (-6 (-1023)) |%noBranch|))) (-1131)) (T -961))
-((-2791 (*1 *1 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-1131)))) (-3043 (*1 *2 *1) (-12 (-5 *1 (-961 *2)) (-4 *2 (-1131)))) (-2381 (*1 *2 *1 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-1131)))) (-1314 (*1 *2 *1) (-12 (-5 *1 (-961 *2)) (-4 *2 (-1131)))) (-3793 (*1 *2 *1 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-1131)))) (-2186 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-961 *3)) (-4 *3 (-1131)))))
-(-13 (-1131) (-10 -8 (-15 -2791 ($ |#1|)) (-15 -3043 (|#1| $)) (-15 -2381 (|#1| $ |#1|)) (-15 -1314 (|#1| $)) (-15 -3793 (|#1| $ |#1|)) (-15 -2186 ((-110) $ $)) (IF (|has| |#1| (-1023)) (-6 (-1023)) |%noBranch|)))
-((-2207 (((-110) $ $) NIL)) (-2785 (((-595 (-2 (|:| -2254 $) (|:| -2378 (-595 |#4|)))) (-595 |#4|)) NIL)) (-1985 (((-595 $) (-595 |#4|)) 105) (((-595 $) (-595 |#4|) (-110)) 106) (((-595 $) (-595 |#4|) (-110) (-110)) 104) (((-595 $) (-595 |#4|) (-110) (-110) (-110) (-110)) 107)) (-2565 (((-595 |#3|) $) NIL)) (-3812 (((-110) $) NIL)) (-2414 (((-110) $) NIL (|has| |#1| (-520)))) (-3759 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1728 ((|#4| |#4| $) NIL)) (-1232 (((-595 (-2 (|:| |val| |#4|) (|:| -2316 $))) |#4| $) 99)) (-1289 (((-2 (|:| |under| $) (|:| -2925 $) (|:| |upper| $)) $ |#3|) NIL)) (-3535 (((-110) $ (-717)) NIL)) (-1573 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264))) (((-3 |#4| "failed") $ |#3|) 54)) (-2816 (($) NIL T CONST)) (-1689 (((-110) $) 26 (|has| |#1| (-520)))) (-2584 (((-110) $ $) NIL (|has| |#1| (-520)))) (-3168 (((-110) $ $) NIL (|has| |#1| (-520)))) (-1924 (((-110) $) NIL (|has| |#1| (-520)))) (-1658 (((-595 |#4|) (-595 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-1891 (((-595 |#4|) (-595 |#4|) $) NIL (|has| |#1| (-520)))) (-3794 (((-595 |#4|) (-595 |#4|) $) NIL (|has| |#1| (-520)))) (-3001 (((-3 $ "failed") (-595 |#4|)) NIL)) (-2409 (($ (-595 |#4|)) NIL)) (-2902 (((-3 $ "failed") $) 39)) (-1592 ((|#4| |#4| $) 57)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023))))) (-2280 (($ |#4| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264)))) (-2537 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-520)))) (-1927 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-3345 ((|#4| |#4| $) NIL)) (-1422 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4264))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4264))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-4049 (((-2 (|:| -2254 (-595 |#4|)) (|:| -2378 (-595 |#4|))) $) NIL)) (-1640 (((-110) |#4| $) NIL)) (-4184 (((-110) |#4| $) NIL)) (-2667 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3948 (((-2 (|:| |val| (-595 |#4|)) (|:| |towers| (-595 $))) (-595 |#4|) (-110) (-110)) 119)) (-3342 (((-595 |#4|) $) 16 (|has| $ (-6 -4264)))) (-3092 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1761 ((|#3| $) 33)) (-2029 (((-110) $ (-717)) NIL)) (-2604 (((-595 |#4|) $) 17 (|has| $ (-6 -4264)))) (-2408 (((-110) |#4| $) 25 (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023))))) (-2800 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#4| |#4|) $) 21)) (-3558 (((-595 |#3|) $) NIL)) (-3472 (((-110) |#3| $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL)) (-4192 (((-3 |#4| (-595 $)) |#4| |#4| $) NIL)) (-2272 (((-595 (-2 (|:| |val| |#4|) (|:| -2316 $))) |#4| |#4| $) 97)) (-2301 (((-3 |#4| "failed") $) 37)) (-2078 (((-595 $) |#4| $) 80)) (-1307 (((-3 (-110) (-595 $)) |#4| $) NIL)) (-3346 (((-595 (-2 (|:| |val| (-110)) (|:| -2316 $))) |#4| $) 90) (((-110) |#4| $) 52)) (-3397 (((-595 $) |#4| $) 102) (((-595 $) (-595 |#4|) $) NIL) (((-595 $) (-595 |#4|) (-595 $)) 103) (((-595 $) |#4| (-595 $)) NIL)) (-2695 (((-595 $) (-595 |#4|) (-110) (-110) (-110)) 114)) (-1325 (($ |#4| $) 70) (($ (-595 |#4|) $) 71) (((-595 $) |#4| $ (-110) (-110) (-110) (-110) (-110)) 67)) (-3923 (((-595 |#4|) $) NIL)) (-2127 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3436 ((|#4| |#4| $) NIL)) (-3664 (((-110) $ $) NIL)) (-1827 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-520)))) (-1906 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-2001 ((|#4| |#4| $) NIL)) (-2495 (((-1042) $) NIL)) (-2890 (((-3 |#4| "failed") $) 35)) (-1734 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-3912 (((-3 $ "failed") $ |#4|) 48)) (-3740 (($ $ |#4|) NIL) (((-595 $) |#4| $) 82) (((-595 $) |#4| (-595 $)) NIL) (((-595 $) (-595 |#4|) $) NIL) (((-595 $) (-595 |#4|) (-595 $)) 77)) (-1818 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 |#4|) (-595 |#4|)) NIL (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ (-275 |#4|)) NIL (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ (-595 (-275 |#4|))) NIL (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) 15)) (-2147 (($) 13)) (-2935 (((-717) $) NIL)) (-2507 (((-717) |#4| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023)))) (((-717) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264)))) (-2406 (($ $) 12)) (-3155 (((-504) $) NIL (|has| |#4| (-570 (-504))))) (-2233 (($ (-595 |#4|)) 20)) (-2649 (($ $ |#3|) 42)) (-3597 (($ $ |#3|) 44)) (-3311 (($ $) NIL)) (-1812 (($ $ |#3|) NIL)) (-2222 (((-802) $) 31) (((-595 |#4|) $) 40)) (-2459 (((-717) $) NIL (|has| |#3| (-348)))) (-1411 (((-3 (-2 (|:| |bas| $) (|:| -1513 (-595 |#4|))) "failed") (-595 |#4|) (-1 (-110) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1513 (-595 |#4|))) "failed") (-595 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-1622 (((-110) $ (-1 (-110) |#4| (-595 |#4|))) NIL)) (-4053 (((-595 $) |#4| $) 79) (((-595 $) |#4| (-595 $)) NIL) (((-595 $) (-595 |#4|) $) NIL) (((-595 $) (-595 |#4|) (-595 $)) NIL)) (-3451 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264)))) (-1490 (((-595 |#3|) $) NIL)) (-3207 (((-110) |#4| $) NIL)) (-2190 (((-110) |#3| $) 53)) (-2186 (((-110) $ $) NIL)) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-962 |#1| |#2| |#3| |#4|) (-13 (-999 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1325 ((-595 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -1985 ((-595 $) (-595 |#4|) (-110) (-110))) (-15 -1985 ((-595 $) (-595 |#4|) (-110) (-110) (-110) (-110))) (-15 -2695 ((-595 $) (-595 |#4|) (-110) (-110) (-110))) (-15 -3948 ((-2 (|:| |val| (-595 |#4|)) (|:| |towers| (-595 $))) (-595 |#4|) (-110) (-110))))) (-431) (-739) (-793) (-994 |#1| |#2| |#3|)) (T -962))
-((-1325 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-595 (-962 *5 *6 *7 *3))) (-5 *1 (-962 *5 *6 *7 *3)) (-4 *3 (-994 *5 *6 *7)))) (-1985 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-595 *8)) (-5 *4 (-110)) (-4 *8 (-994 *5 *6 *7)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-595 (-962 *5 *6 *7 *8))) (-5 *1 (-962 *5 *6 *7 *8)))) (-1985 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-595 *8)) (-5 *4 (-110)) (-4 *8 (-994 *5 *6 *7)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-595 (-962 *5 *6 *7 *8))) (-5 *1 (-962 *5 *6 *7 *8)))) (-2695 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-595 *8)) (-5 *4 (-110)) (-4 *8 (-994 *5 *6 *7)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-595 (-962 *5 *6 *7 *8))) (-5 *1 (-962 *5 *6 *7 *8)))) (-3948 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *8 (-994 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-595 *8)) (|:| |towers| (-595 (-962 *5 *6 *7 *8))))) (-5 *1 (-962 *5 *6 *7 *8)) (-5 *3 (-595 *8)))))
-(-13 (-999 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1325 ((-595 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -1985 ((-595 $) (-595 |#4|) (-110) (-110))) (-15 -1985 ((-595 $) (-595 |#4|) (-110) (-110) (-110) (-110))) (-15 -2695 ((-595 $) (-595 |#4|) (-110) (-110) (-110))) (-15 -3948 ((-2 (|:| |val| (-595 |#4|)) (|:| |towers| (-595 $))) (-595 |#4|) (-110) (-110)))))
-((-4081 (((-595 (-635 |#1|)) (-595 (-635 |#1|))) 58) (((-635 |#1|) (-635 |#1|)) 57) (((-595 (-635 |#1|)) (-595 (-635 |#1|)) (-595 (-635 |#1|))) 56) (((-635 |#1|) (-635 |#1|) (-635 |#1|)) 53)) (-3194 (((-595 (-635 |#1|)) (-595 (-635 |#1|)) (-860)) 52) (((-635 |#1|) (-635 |#1|) (-860)) 51)) (-1238 (((-595 (-635 (-528))) (-595 (-595 (-528)))) 68) (((-595 (-635 (-528))) (-595 (-844 (-528))) (-528)) 67) (((-635 (-528)) (-595 (-528))) 64) (((-635 (-528)) (-844 (-528)) (-528)) 63)) (-2718 (((-635 (-891 |#1|)) (-717)) 81)) (-1619 (((-595 (-635 |#1|)) (-595 (-635 |#1|)) (-860)) 37 (|has| |#1| (-6 (-4266 "*")))) (((-635 |#1|) (-635 |#1|) (-860)) 35 (|has| |#1| (-6 (-4266 "*"))))))
-(((-963 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4266 "*"))) (-15 -1619 ((-635 |#1|) (-635 |#1|) (-860))) |%noBranch|) (IF (|has| |#1| (-6 (-4266 "*"))) (-15 -1619 ((-595 (-635 |#1|)) (-595 (-635 |#1|)) (-860))) |%noBranch|) (-15 -2718 ((-635 (-891 |#1|)) (-717))) (-15 -3194 ((-635 |#1|) (-635 |#1|) (-860))) (-15 -3194 ((-595 (-635 |#1|)) (-595 (-635 |#1|)) (-860))) (-15 -4081 ((-635 |#1|) (-635 |#1|) (-635 |#1|))) (-15 -4081 ((-595 (-635 |#1|)) (-595 (-635 |#1|)) (-595 (-635 |#1|)))) (-15 -4081 ((-635 |#1|) (-635 |#1|))) (-15 -4081 ((-595 (-635 |#1|)) (-595 (-635 |#1|)))) (-15 -1238 ((-635 (-528)) (-844 (-528)) (-528))) (-15 -1238 ((-635 (-528)) (-595 (-528)))) (-15 -1238 ((-595 (-635 (-528))) (-595 (-844 (-528))) (-528))) (-15 -1238 ((-595 (-635 (-528))) (-595 (-595 (-528)))))) (-981)) (T -963))
-((-1238 (*1 *2 *3) (-12 (-5 *3 (-595 (-595 (-528)))) (-5 *2 (-595 (-635 (-528)))) (-5 *1 (-963 *4)) (-4 *4 (-981)))) (-1238 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-844 (-528)))) (-5 *4 (-528)) (-5 *2 (-595 (-635 *4))) (-5 *1 (-963 *5)) (-4 *5 (-981)))) (-1238 (*1 *2 *3) (-12 (-5 *3 (-595 (-528))) (-5 *2 (-635 (-528))) (-5 *1 (-963 *4)) (-4 *4 (-981)))) (-1238 (*1 *2 *3 *4) (-12 (-5 *3 (-844 (-528))) (-5 *4 (-528)) (-5 *2 (-635 *4)) (-5 *1 (-963 *5)) (-4 *5 (-981)))) (-4081 (*1 *2 *2) (-12 (-5 *2 (-595 (-635 *3))) (-4 *3 (-981)) (-5 *1 (-963 *3)))) (-4081 (*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-981)) (-5 *1 (-963 *3)))) (-4081 (*1 *2 *2 *2) (-12 (-5 *2 (-595 (-635 *3))) (-4 *3 (-981)) (-5 *1 (-963 *3)))) (-4081 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-981)) (-5 *1 (-963 *3)))) (-3194 (*1 *2 *2 *3) (-12 (-5 *2 (-595 (-635 *4))) (-5 *3 (-860)) (-4 *4 (-981)) (-5 *1 (-963 *4)))) (-3194 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *4)) (-5 *3 (-860)) (-4 *4 (-981)) (-5 *1 (-963 *4)))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-635 (-891 *4))) (-5 *1 (-963 *4)) (-4 *4 (-981)))) (-1619 (*1 *2 *2 *3) (-12 (-5 *2 (-595 (-635 *4))) (-5 *3 (-860)) (|has| *4 (-6 (-4266 "*"))) (-4 *4 (-981)) (-5 *1 (-963 *4)))) (-1619 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *4)) (-5 *3 (-860)) (|has| *4 (-6 (-4266 "*"))) (-4 *4 (-981)) (-5 *1 (-963 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4266 "*"))) (-15 -1619 ((-635 |#1|) (-635 |#1|) (-860))) |%noBranch|) (IF (|has| |#1| (-6 (-4266 "*"))) (-15 -1619 ((-595 (-635 |#1|)) (-595 (-635 |#1|)) (-860))) |%noBranch|) (-15 -2718 ((-635 (-891 |#1|)) (-717))) (-15 -3194 ((-635 |#1|) (-635 |#1|) (-860))) (-15 -3194 ((-595 (-635 |#1|)) (-595 (-635 |#1|)) (-860))) (-15 -4081 ((-635 |#1|) (-635 |#1|) (-635 |#1|))) (-15 -4081 ((-595 (-635 |#1|)) (-595 (-635 |#1|)) (-595 (-635 |#1|)))) (-15 -4081 ((-635 |#1|) (-635 |#1|))) (-15 -4081 ((-595 (-635 |#1|)) (-595 (-635 |#1|)))) (-15 -1238 ((-635 (-528)) (-844 (-528)) (-528))) (-15 -1238 ((-635 (-528)) (-595 (-528)))) (-15 -1238 ((-595 (-635 (-528))) (-595 (-844 (-528))) (-528))) (-15 -1238 ((-595 (-635 (-528))) (-595 (-595 (-528))))))
-((-2544 (((-635 |#1|) (-595 (-635 |#1|)) (-1177 |#1|)) 51 (|has| |#1| (-288)))) (-2129 (((-595 (-595 (-635 |#1|))) (-595 (-635 |#1|)) (-1177 (-1177 |#1|))) 77 (|has| |#1| (-343))) (((-595 (-595 (-635 |#1|))) (-595 (-635 |#1|)) (-1177 |#1|)) 80 (|has| |#1| (-343)))) (-2103 (((-1177 |#1|) (-595 (-1177 |#1|)) (-528)) 94 (-12 (|has| |#1| (-343)) (|has| |#1| (-348))))) (-2035 (((-595 (-595 (-635 |#1|))) (-595 (-635 |#1|)) (-860)) 86 (-12 (|has| |#1| (-343)) (|has| |#1| (-348)))) (((-595 (-595 (-635 |#1|))) (-595 (-635 |#1|)) (-110)) 84 (-12 (|has| |#1| (-343)) (|has| |#1| (-348)))) (((-595 (-595 (-635 |#1|))) (-595 (-635 |#1|))) 83 (-12 (|has| |#1| (-343)) (|has| |#1| (-348)))) (((-595 (-595 (-635 |#1|))) (-595 (-635 |#1|)) (-110) (-528) (-528)) 82 (-12 (|has| |#1| (-343)) (|has| |#1| (-348))))) (-3386 (((-110) (-595 (-635 |#1|))) 72 (|has| |#1| (-343))) (((-110) (-595 (-635 |#1|)) (-528)) 74 (|has| |#1| (-343)))) (-2793 (((-1177 (-1177 |#1|)) (-595 (-635 |#1|)) (-1177 |#1|)) 49 (|has| |#1| (-288)))) (-2520 (((-635 |#1|) (-595 (-635 |#1|)) (-635 |#1|)) 34)) (-3411 (((-635 |#1|) (-1177 (-1177 |#1|))) 31)) (-3700 (((-635 |#1|) (-595 (-635 |#1|)) (-595 (-635 |#1|)) (-528)) 66 (|has| |#1| (-343))) (((-635 |#1|) (-595 (-635 |#1|)) (-595 (-635 |#1|))) 65 (|has| |#1| (-343))) (((-635 |#1|) (-595 (-635 |#1|)) (-595 (-635 |#1|)) (-110) (-528)) 70 (|has| |#1| (-343)))))
-(((-964 |#1|) (-10 -7 (-15 -3411 ((-635 |#1|) (-1177 (-1177 |#1|)))) (-15 -2520 ((-635 |#1|) (-595 (-635 |#1|)) (-635 |#1|))) (IF (|has| |#1| (-288)) (PROGN (-15 -2793 ((-1177 (-1177 |#1|)) (-595 (-635 |#1|)) (-1177 |#1|))) (-15 -2544 ((-635 |#1|) (-595 (-635 |#1|)) (-1177 |#1|)))) |%noBranch|) (IF (|has| |#1| (-343)) (PROGN (-15 -3700 ((-635 |#1|) (-595 (-635 |#1|)) (-595 (-635 |#1|)) (-110) (-528))) (-15 -3700 ((-635 |#1|) (-595 (-635 |#1|)) (-595 (-635 |#1|)))) (-15 -3700 ((-635 |#1|) (-595 (-635 |#1|)) (-595 (-635 |#1|)) (-528))) (-15 -3386 ((-110) (-595 (-635 |#1|)) (-528))) (-15 -3386 ((-110) (-595 (-635 |#1|)))) (-15 -2129 ((-595 (-595 (-635 |#1|))) (-595 (-635 |#1|)) (-1177 |#1|))) (-15 -2129 ((-595 (-595 (-635 |#1|))) (-595 (-635 |#1|)) (-1177 (-1177 |#1|))))) |%noBranch|) (IF (|has| |#1| (-348)) (IF (|has| |#1| (-343)) (PROGN (-15 -2035 ((-595 (-595 (-635 |#1|))) (-595 (-635 |#1|)) (-110) (-528) (-528))) (-15 -2035 ((-595 (-595 (-635 |#1|))) (-595 (-635 |#1|)))) (-15 -2035 ((-595 (-595 (-635 |#1|))) (-595 (-635 |#1|)) (-110))) (-15 -2035 ((-595 (-595 (-635 |#1|))) (-595 (-635 |#1|)) (-860))) (-15 -2103 ((-1177 |#1|) (-595 (-1177 |#1|)) (-528)))) |%noBranch|) |%noBranch|)) (-981)) (T -964))
-((-2103 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-1177 *5))) (-5 *4 (-528)) (-5 *2 (-1177 *5)) (-5 *1 (-964 *5)) (-4 *5 (-343)) (-4 *5 (-348)) (-4 *5 (-981)))) (-2035 (*1 *2 *3 *4) (-12 (-5 *4 (-860)) (-4 *5 (-343)) (-4 *5 (-348)) (-4 *5 (-981)) (-5 *2 (-595 (-595 (-635 *5)))) (-5 *1 (-964 *5)) (-5 *3 (-595 (-635 *5))))) (-2035 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-343)) (-4 *5 (-348)) (-4 *5 (-981)) (-5 *2 (-595 (-595 (-635 *5)))) (-5 *1 (-964 *5)) (-5 *3 (-595 (-635 *5))))) (-2035 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *4 (-348)) (-4 *4 (-981)) (-5 *2 (-595 (-595 (-635 *4)))) (-5 *1 (-964 *4)) (-5 *3 (-595 (-635 *4))))) (-2035 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-110)) (-5 *5 (-528)) (-4 *6 (-343)) (-4 *6 (-348)) (-4 *6 (-981)) (-5 *2 (-595 (-595 (-635 *6)))) (-5 *1 (-964 *6)) (-5 *3 (-595 (-635 *6))))) (-2129 (*1 *2 *3 *4) (-12 (-5 *4 (-1177 (-1177 *5))) (-4 *5 (-343)) (-4 *5 (-981)) (-5 *2 (-595 (-595 (-635 *5)))) (-5 *1 (-964 *5)) (-5 *3 (-595 (-635 *5))))) (-2129 (*1 *2 *3 *4) (-12 (-5 *4 (-1177 *5)) (-4 *5 (-343)) (-4 *5 (-981)) (-5 *2 (-595 (-595 (-635 *5)))) (-5 *1 (-964 *5)) (-5 *3 (-595 (-635 *5))))) (-3386 (*1 *2 *3) (-12 (-5 *3 (-595 (-635 *4))) (-4 *4 (-343)) (-4 *4 (-981)) (-5 *2 (-110)) (-5 *1 (-964 *4)))) (-3386 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-635 *5))) (-5 *4 (-528)) (-4 *5 (-343)) (-4 *5 (-981)) (-5 *2 (-110)) (-5 *1 (-964 *5)))) (-3700 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-595 (-635 *5))) (-5 *4 (-528)) (-5 *2 (-635 *5)) (-5 *1 (-964 *5)) (-4 *5 (-343)) (-4 *5 (-981)))) (-3700 (*1 *2 *3 *3) (-12 (-5 *3 (-595 (-635 *4))) (-5 *2 (-635 *4)) (-5 *1 (-964 *4)) (-4 *4 (-343)) (-4 *4 (-981)))) (-3700 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-595 (-635 *6))) (-5 *4 (-110)) (-5 *5 (-528)) (-5 *2 (-635 *6)) (-5 *1 (-964 *6)) (-4 *6 (-343)) (-4 *6 (-981)))) (-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-635 *5))) (-5 *4 (-1177 *5)) (-4 *5 (-288)) (-4 *5 (-981)) (-5 *2 (-635 *5)) (-5 *1 (-964 *5)))) (-2793 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-635 *5))) (-4 *5 (-288)) (-4 *5 (-981)) (-5 *2 (-1177 (-1177 *5))) (-5 *1 (-964 *5)) (-5 *4 (-1177 *5)))) (-2520 (*1 *2 *3 *2) (-12 (-5 *3 (-595 (-635 *4))) (-5 *2 (-635 *4)) (-4 *4 (-981)) (-5 *1 (-964 *4)))) (-3411 (*1 *2 *3) (-12 (-5 *3 (-1177 (-1177 *4))) (-4 *4 (-981)) (-5 *2 (-635 *4)) (-5 *1 (-964 *4)))))
-(-10 -7 (-15 -3411 ((-635 |#1|) (-1177 (-1177 |#1|)))) (-15 -2520 ((-635 |#1|) (-595 (-635 |#1|)) (-635 |#1|))) (IF (|has| |#1| (-288)) (PROGN (-15 -2793 ((-1177 (-1177 |#1|)) (-595 (-635 |#1|)) (-1177 |#1|))) (-15 -2544 ((-635 |#1|) (-595 (-635 |#1|)) (-1177 |#1|)))) |%noBranch|) (IF (|has| |#1| (-343)) (PROGN (-15 -3700 ((-635 |#1|) (-595 (-635 |#1|)) (-595 (-635 |#1|)) (-110) (-528))) (-15 -3700 ((-635 |#1|) (-595 (-635 |#1|)) (-595 (-635 |#1|)))) (-15 -3700 ((-635 |#1|) (-595 (-635 |#1|)) (-595 (-635 |#1|)) (-528))) (-15 -3386 ((-110) (-595 (-635 |#1|)) (-528))) (-15 -3386 ((-110) (-595 (-635 |#1|)))) (-15 -2129 ((-595 (-595 (-635 |#1|))) (-595 (-635 |#1|)) (-1177 |#1|))) (-15 -2129 ((-595 (-595 (-635 |#1|))) (-595 (-635 |#1|)) (-1177 (-1177 |#1|))))) |%noBranch|) (IF (|has| |#1| (-348)) (IF (|has| |#1| (-343)) (PROGN (-15 -2035 ((-595 (-595 (-635 |#1|))) (-595 (-635 |#1|)) (-110) (-528) (-528))) (-15 -2035 ((-595 (-595 (-635 |#1|))) (-595 (-635 |#1|)))) (-15 -2035 ((-595 (-595 (-635 |#1|))) (-595 (-635 |#1|)) (-110))) (-15 -2035 ((-595 (-595 (-635 |#1|))) (-595 (-635 |#1|)) (-860))) (-15 -2103 ((-1177 |#1|) (-595 (-1177 |#1|)) (-528)))) |%noBranch|) |%noBranch|))
-((-3426 ((|#1| (-860) |#1|) 9)))
-(((-965 |#1|) (-10 -7 (-15 -3426 (|#1| (-860) |#1|))) (-13 (-1023) (-10 -8 (-15 -2275 ($ $ $))))) (T -965))
-((-3426 (*1 *2 *3 *2) (-12 (-5 *3 (-860)) (-5 *1 (-965 *2)) (-4 *2 (-13 (-1023) (-10 -8 (-15 -2275 ($ $ $))))))))
-(-10 -7 (-15 -3426 (|#1| (-860) |#1|)))
-((-3456 (((-595 (-2 (|:| |radval| (-296 (-528))) (|:| |radmult| (-528)) (|:| |radvect| (-595 (-635 (-296 (-528))))))) (-635 (-387 (-891 (-528))))) 59)) (-2939 (((-595 (-635 (-296 (-528)))) (-296 (-528)) (-635 (-387 (-891 (-528))))) 48)) (-1381 (((-595 (-296 (-528))) (-635 (-387 (-891 (-528))))) 41)) (-2545 (((-595 (-635 (-296 (-528)))) (-635 (-387 (-891 (-528))))) 69)) (-4124 (((-635 (-296 (-528))) (-635 (-296 (-528)))) 34)) (-2240 (((-595 (-635 (-296 (-528)))) (-595 (-635 (-296 (-528))))) 62)) (-3771 (((-3 (-635 (-296 (-528))) "failed") (-635 (-387 (-891 (-528))))) 66)))
-(((-966) (-10 -7 (-15 -3456 ((-595 (-2 (|:| |radval| (-296 (-528))) (|:| |radmult| (-528)) (|:| |radvect| (-595 (-635 (-296 (-528))))))) (-635 (-387 (-891 (-528)))))) (-15 -2939 ((-595 (-635 (-296 (-528)))) (-296 (-528)) (-635 (-387 (-891 (-528)))))) (-15 -1381 ((-595 (-296 (-528))) (-635 (-387 (-891 (-528)))))) (-15 -3771 ((-3 (-635 (-296 (-528))) "failed") (-635 (-387 (-891 (-528)))))) (-15 -4124 ((-635 (-296 (-528))) (-635 (-296 (-528))))) (-15 -2240 ((-595 (-635 (-296 (-528)))) (-595 (-635 (-296 (-528)))))) (-15 -2545 ((-595 (-635 (-296 (-528)))) (-635 (-387 (-891 (-528)))))))) (T -966))
-((-2545 (*1 *2 *3) (-12 (-5 *3 (-635 (-387 (-891 (-528))))) (-5 *2 (-595 (-635 (-296 (-528))))) (-5 *1 (-966)))) (-2240 (*1 *2 *2) (-12 (-5 *2 (-595 (-635 (-296 (-528))))) (-5 *1 (-966)))) (-4124 (*1 *2 *2) (-12 (-5 *2 (-635 (-296 (-528)))) (-5 *1 (-966)))) (-3771 (*1 *2 *3) (|partial| -12 (-5 *3 (-635 (-387 (-891 (-528))))) (-5 *2 (-635 (-296 (-528)))) (-5 *1 (-966)))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-635 (-387 (-891 (-528))))) (-5 *2 (-595 (-296 (-528)))) (-5 *1 (-966)))) (-2939 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-387 (-891 (-528))))) (-5 *2 (-595 (-635 (-296 (-528))))) (-5 *1 (-966)) (-5 *3 (-296 (-528))))) (-3456 (*1 *2 *3) (-12 (-5 *3 (-635 (-387 (-891 (-528))))) (-5 *2 (-595 (-2 (|:| |radval| (-296 (-528))) (|:| |radmult| (-528)) (|:| |radvect| (-595 (-635 (-296 (-528)))))))) (-5 *1 (-966)))))
-(-10 -7 (-15 -3456 ((-595 (-2 (|:| |radval| (-296 (-528))) (|:| |radmult| (-528)) (|:| |radvect| (-595 (-635 (-296 (-528))))))) (-635 (-387 (-891 (-528)))))) (-15 -2939 ((-595 (-635 (-296 (-528)))) (-296 (-528)) (-635 (-387 (-891 (-528)))))) (-15 -1381 ((-595 (-296 (-528))) (-635 (-387 (-891 (-528)))))) (-15 -3771 ((-3 (-635 (-296 (-528))) "failed") (-635 (-387 (-891 (-528)))))) (-15 -4124 ((-635 (-296 (-528))) (-635 (-296 (-528))))) (-15 -2240 ((-595 (-635 (-296 (-528)))) (-595 (-635 (-296 (-528)))))) (-15 -2545 ((-595 (-635 (-296 (-528)))) (-635 (-387 (-891 (-528)))))))
-((-3254 ((|#1| |#1| (-860)) 9)))
-(((-967 |#1|) (-10 -7 (-15 -3254 (|#1| |#1| (-860)))) (-13 (-1023) (-10 -8 (-15 * ($ $ $))))) (T -967))
-((-3254 (*1 *2 *2 *3) (-12 (-5 *3 (-860)) (-5 *1 (-967 *2)) (-4 *2 (-13 (-1023) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -3254 (|#1| |#1| (-860))))
-((-2222 ((|#1| (-292)) 11) (((-1182) |#1|) 9)))
-(((-968 |#1|) (-10 -7 (-15 -2222 ((-1182) |#1|)) (-15 -2222 (|#1| (-292)))) (-1131)) (T -968))
-((-2222 (*1 *2 *3) (-12 (-5 *3 (-292)) (-5 *1 (-968 *2)) (-4 *2 (-1131)))) (-2222 (*1 *2 *3) (-12 (-5 *2 (-1182)) (-5 *1 (-968 *3)) (-4 *3 (-1131)))))
-(-10 -7 (-15 -2222 ((-1182) |#1|)) (-15 -2222 (|#1| (-292))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-1422 (($ |#4|) 25)) (-1312 (((-3 $ "failed") $) NIL)) (-1297 (((-110) $) NIL)) (-1412 ((|#4| $) 27)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 46) (($ (-528)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3742 (((-717)) 43)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 21 T CONST)) (-2982 (($) 23 T CONST)) (-2186 (((-110) $ $) 40)) (-2286 (($ $) 31) (($ $ $) NIL)) (-2275 (($ $ $) 29)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-969 |#1| |#2| |#3| |#4| |#5|) (-13 (-162) (-37 |#1|) (-10 -8 (-15 -1422 ($ |#4|)) (-15 -2222 ($ |#4|)) (-15 -1412 (|#4| $)))) (-343) (-739) (-793) (-888 |#1| |#2| |#3|) (-595 |#4|)) (T -969))
-((-1422 (*1 *1 *2) (-12 (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-969 *3 *4 *5 *2 *6)) (-4 *2 (-888 *3 *4 *5)) (-14 *6 (-595 *2)))) (-2222 (*1 *1 *2) (-12 (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-969 *3 *4 *5 *2 *6)) (-4 *2 (-888 *3 *4 *5)) (-14 *6 (-595 *2)))) (-1412 (*1 *2 *1) (-12 (-4 *2 (-888 *3 *4 *5)) (-5 *1 (-969 *3 *4 *5 *2 *6)) (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-14 *6 (-595 *2)))))
-(-13 (-162) (-37 |#1|) (-10 -8 (-15 -1422 ($ |#4|)) (-15 -2222 ($ |#4|)) (-15 -1412 (|#4| $))))
-((-2207 (((-110) $ $) NIL (-1463 (|has| (-51) (-1023)) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023))))) (-3450 (($) NIL) (($ (-595 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))))) NIL)) (-1444 (((-1182) $ (-1095) (-1095)) NIL (|has| $ (-6 -4265)))) (-3535 (((-110) $ (-717)) NIL)) (-3258 (((-110) (-110)) 39)) (-1951 (((-110) (-110)) 38)) (-2381 (((-51) $ (-1095) (-51)) NIL)) (-1836 (($ (-1 (-110) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264)))) (-1573 (($ (-1 (-110) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264)))) (-2582 (((-3 (-51) "failed") (-1095) $) NIL)) (-2816 (($) NIL T CONST)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023))))) (-3991 (($ (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) $) NIL (|has| $ (-6 -4264))) (($ (-1 (-110) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264))) (((-3 (-51) "failed") (-1095) $) NIL)) (-2280 (($ (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023)))) (($ (-1 (-110) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264)))) (-1422 (((-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $ (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023)))) (((-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $ (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) NIL (|has| $ (-6 -4264))) (((-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264)))) (-2812 (((-51) $ (-1095) (-51)) NIL (|has| $ (-6 -4265)))) (-2742 (((-51) $ (-1095)) NIL)) (-3342 (((-595 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264))) (((-595 (-51)) $) NIL (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-1095) $) NIL (|has| (-1095) (-793)))) (-2604 (((-595 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264))) (((-595 (-51)) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023)))) (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-51) (-1023))))) (-1709 (((-1095) $) NIL (|has| (-1095) (-793)))) (-2800 (($ (-1 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4265))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (-1463 (|has| (-51) (-1023)) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023))))) (-3225 (((-595 (-1095)) $) 34)) (-4024 (((-110) (-1095) $) NIL)) (-3934 (((-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) $) NIL)) (-1950 (($ (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) $) NIL)) (-2084 (((-595 (-1095)) $) NIL)) (-3966 (((-110) (-1095) $) NIL)) (-2495 (((-1042) $) NIL (-1463 (|has| (-51) (-1023)) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023))))) (-2890 (((-51) $) NIL (|has| (-1095) (-793)))) (-1734 (((-3 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) "failed") (-1 (-110) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) NIL)) (-1332 (($ $ (-51)) NIL (|has| $ (-6 -4265)))) (-1390 (((-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) $) NIL)) (-1818 (((-110) (-1 (-110) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))))) NIL (-12 (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-290 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))))) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023)))) (($ $ (-275 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))))) NIL (-12 (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-290 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))))) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023)))) (($ $ (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) NIL (-12 (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-290 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))))) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023)))) (($ $ (-595 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) (-595 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))))) NIL (-12 (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-290 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))))) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023)))) (($ $ (-595 (-51)) (-595 (-51))) NIL (-12 (|has| (-51) (-290 (-51))) (|has| (-51) (-1023)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-290 (-51))) (|has| (-51) (-1023)))) (($ $ (-275 (-51))) NIL (-12 (|has| (-51) (-290 (-51))) (|has| (-51) (-1023)))) (($ $ (-595 (-275 (-51)))) NIL (-12 (|has| (-51) (-290 (-51))) (|has| (-51) (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-51) (-1023))))) (-2861 (((-595 (-51)) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 (((-51) $ (-1095)) 35) (((-51) $ (-1095) (-51)) NIL)) (-3900 (($) NIL) (($ (-595 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))))) NIL)) (-2507 (((-717) (-1 (-110) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264))) (((-717) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023)))) (((-717) (-51) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-51) (-1023)))) (((-717) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4264)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) NIL (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-570 (-504))))) (-2233 (($ (-595 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))))) NIL)) (-2222 (((-802) $) 37 (-1463 (|has| (-51) (-569 (-802))) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-569 (-802)))))) (-2164 (($ (-595 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))))) NIL)) (-3451 (((-110) (-1 (-110) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) NIL (-1463 (|has| (-51) (-1023)) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023))))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-970) (-13 (-1108 (-1095) (-51)) (-10 -7 (-15 -3258 ((-110) (-110))) (-15 -1951 ((-110) (-110))) (-6 -4264)))) (T -970))
-((-3258 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-970)))) (-1951 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-970)))))
-(-13 (-1108 (-1095) (-51)) (-10 -7 (-15 -3258 ((-110) (-110))) (-15 -1951 ((-110) (-110))) (-6 -4264)))
-((-2409 ((|#2| $) 10)))
-(((-971 |#1| |#2|) (-10 -8 (-15 -2409 (|#2| |#1|))) (-972 |#2|) (-1131)) (T -971))
-NIL
-(-10 -8 (-15 -2409 (|#2| |#1|)))
-((-3001 (((-3 |#1| "failed") $) 7)) (-2409 ((|#1| $) 8)) (-2222 (($ |#1|) 6)))
-(((-972 |#1|) (-133) (-1131)) (T -972))
-((-2409 (*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-1131)))) (-3001 (*1 *2 *1) (|partial| -12 (-4 *1 (-972 *2)) (-4 *2 (-1131)))) (-2222 (*1 *1 *2) (-12 (-4 *1 (-972 *2)) (-4 *2 (-1131)))))
-(-13 (-10 -8 (-15 -2222 ($ |t#1|)) (-15 -3001 ((-3 |t#1| "failed") $)) (-15 -2409 (|t#1| $))))
-((-2814 (((-595 (-595 (-275 (-387 (-891 |#2|))))) (-595 (-891 |#2|)) (-595 (-1095))) 38)))
-(((-973 |#1| |#2|) (-10 -7 (-15 -2814 ((-595 (-595 (-275 (-387 (-891 |#2|))))) (-595 (-891 |#2|)) (-595 (-1095))))) (-520) (-13 (-520) (-972 |#1|))) (T -973))
-((-2814 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-891 *6))) (-5 *4 (-595 (-1095))) (-4 *6 (-13 (-520) (-972 *5))) (-4 *5 (-520)) (-5 *2 (-595 (-595 (-275 (-387 (-891 *6)))))) (-5 *1 (-973 *5 *6)))))
-(-10 -7 (-15 -2814 ((-595 (-595 (-275 (-387 (-891 |#2|))))) (-595 (-891 |#2|)) (-595 (-1095)))))
-((-1784 (((-359)) 15)) (-2795 (((-1 (-359)) (-359) (-359)) 20)) (-3956 (((-1 (-359)) (-717)) 43)) (-2295 (((-359)) 34)) (-4099 (((-1 (-359)) (-359) (-359)) 35)) (-1975 (((-359)) 26)) (-4238 (((-1 (-359)) (-359)) 27)) (-1662 (((-359) (-717)) 38)) (-1696 (((-1 (-359)) (-717)) 39)) (-1305 (((-1 (-359)) (-717) (-717)) 42)) (-3167 (((-1 (-359)) (-717) (-717)) 40)))
-(((-974) (-10 -7 (-15 -1784 ((-359))) (-15 -2295 ((-359))) (-15 -1975 ((-359))) (-15 -1662 ((-359) (-717))) (-15 -2795 ((-1 (-359)) (-359) (-359))) (-15 -4099 ((-1 (-359)) (-359) (-359))) (-15 -4238 ((-1 (-359)) (-359))) (-15 -1696 ((-1 (-359)) (-717))) (-15 -3167 ((-1 (-359)) (-717) (-717))) (-15 -1305 ((-1 (-359)) (-717) (-717))) (-15 -3956 ((-1 (-359)) (-717))))) (T -974))
-((-3956 (*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-1 (-359))) (-5 *1 (-974)))) (-1305 (*1 *2 *3 *3) (-12 (-5 *3 (-717)) (-5 *2 (-1 (-359))) (-5 *1 (-974)))) (-3167 (*1 *2 *3 *3) (-12 (-5 *3 (-717)) (-5 *2 (-1 (-359))) (-5 *1 (-974)))) (-1696 (*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-1 (-359))) (-5 *1 (-974)))) (-4238 (*1 *2 *3) (-12 (-5 *2 (-1 (-359))) (-5 *1 (-974)) (-5 *3 (-359)))) (-4099 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-359))) (-5 *1 (-974)) (-5 *3 (-359)))) (-2795 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-359))) (-5 *1 (-974)) (-5 *3 (-359)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-359)) (-5 *1 (-974)))) (-1975 (*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-974)))) (-2295 (*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-974)))) (-1784 (*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-974)))))
-(-10 -7 (-15 -1784 ((-359))) (-15 -2295 ((-359))) (-15 -1975 ((-359))) (-15 -1662 ((-359) (-717))) (-15 -2795 ((-1 (-359)) (-359) (-359))) (-15 -4099 ((-1 (-359)) (-359) (-359))) (-15 -4238 ((-1 (-359)) (-359))) (-15 -1696 ((-1 (-359)) (-717))) (-15 -3167 ((-1 (-359)) (-717) (-717))) (-15 -1305 ((-1 (-359)) (-717) (-717))) (-15 -3956 ((-1 (-359)) (-717))))
-((-2437 (((-398 |#1|) |#1|) 33)))
-(((-975 |#1|) (-10 -7 (-15 -2437 ((-398 |#1|) |#1|))) (-1153 (-387 (-891 (-528))))) (T -975))
-((-2437 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-975 *3)) (-4 *3 (-1153 (-387 (-891 (-528))))))))
-(-10 -7 (-15 -2437 ((-398 |#1|) |#1|)))
-((-1426 (((-387 (-398 (-891 |#1|))) (-387 (-891 |#1|))) 14)))
-(((-976 |#1|) (-10 -7 (-15 -1426 ((-387 (-398 (-891 |#1|))) (-387 (-891 |#1|))))) (-288)) (T -976))
-((-1426 (*1 *2 *3) (-12 (-5 *3 (-387 (-891 *4))) (-4 *4 (-288)) (-5 *2 (-387 (-398 (-891 *4)))) (-5 *1 (-976 *4)))))
-(-10 -7 (-15 -1426 ((-387 (-398 (-891 |#1|))) (-387 (-891 |#1|)))))
-((-2565 (((-595 (-1095)) (-387 (-891 |#1|))) 17)) (-2402 (((-387 (-1091 (-387 (-891 |#1|)))) (-387 (-891 |#1|)) (-1095)) 24)) (-2557 (((-387 (-891 |#1|)) (-387 (-1091 (-387 (-891 |#1|)))) (-1095)) 26)) (-3288 (((-3 (-1095) "failed") (-387 (-891 |#1|))) 20)) (-4014 (((-387 (-891 |#1|)) (-387 (-891 |#1|)) (-595 (-275 (-387 (-891 |#1|))))) 32) (((-387 (-891 |#1|)) (-387 (-891 |#1|)) (-275 (-387 (-891 |#1|)))) 33) (((-387 (-891 |#1|)) (-387 (-891 |#1|)) (-595 (-1095)) (-595 (-387 (-891 |#1|)))) 28) (((-387 (-891 |#1|)) (-387 (-891 |#1|)) (-1095) (-387 (-891 |#1|))) 29)) (-2222 (((-387 (-891 |#1|)) |#1|) 11)))
-(((-977 |#1|) (-10 -7 (-15 -2565 ((-595 (-1095)) (-387 (-891 |#1|)))) (-15 -3288 ((-3 (-1095) "failed") (-387 (-891 |#1|)))) (-15 -2402 ((-387 (-1091 (-387 (-891 |#1|)))) (-387 (-891 |#1|)) (-1095))) (-15 -2557 ((-387 (-891 |#1|)) (-387 (-1091 (-387 (-891 |#1|)))) (-1095))) (-15 -4014 ((-387 (-891 |#1|)) (-387 (-891 |#1|)) (-1095) (-387 (-891 |#1|)))) (-15 -4014 ((-387 (-891 |#1|)) (-387 (-891 |#1|)) (-595 (-1095)) (-595 (-387 (-891 |#1|))))) (-15 -4014 ((-387 (-891 |#1|)) (-387 (-891 |#1|)) (-275 (-387 (-891 |#1|))))) (-15 -4014 ((-387 (-891 |#1|)) (-387 (-891 |#1|)) (-595 (-275 (-387 (-891 |#1|)))))) (-15 -2222 ((-387 (-891 |#1|)) |#1|))) (-520)) (T -977))
-((-2222 (*1 *2 *3) (-12 (-5 *2 (-387 (-891 *3))) (-5 *1 (-977 *3)) (-4 *3 (-520)))) (-4014 (*1 *2 *2 *3) (-12 (-5 *3 (-595 (-275 (-387 (-891 *4))))) (-5 *2 (-387 (-891 *4))) (-4 *4 (-520)) (-5 *1 (-977 *4)))) (-4014 (*1 *2 *2 *3) (-12 (-5 *3 (-275 (-387 (-891 *4)))) (-5 *2 (-387 (-891 *4))) (-4 *4 (-520)) (-5 *1 (-977 *4)))) (-4014 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-595 (-1095))) (-5 *4 (-595 (-387 (-891 *5)))) (-5 *2 (-387 (-891 *5))) (-4 *5 (-520)) (-5 *1 (-977 *5)))) (-4014 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-387 (-891 *4))) (-5 *3 (-1095)) (-4 *4 (-520)) (-5 *1 (-977 *4)))) (-2557 (*1 *2 *3 *4) (-12 (-5 *3 (-387 (-1091 (-387 (-891 *5))))) (-5 *4 (-1095)) (-5 *2 (-387 (-891 *5))) (-5 *1 (-977 *5)) (-4 *5 (-520)))) (-2402 (*1 *2 *3 *4) (-12 (-5 *4 (-1095)) (-4 *5 (-520)) (-5 *2 (-387 (-1091 (-387 (-891 *5))))) (-5 *1 (-977 *5)) (-5 *3 (-387 (-891 *5))))) (-3288 (*1 *2 *3) (|partial| -12 (-5 *3 (-387 (-891 *4))) (-4 *4 (-520)) (-5 *2 (-1095)) (-5 *1 (-977 *4)))) (-2565 (*1 *2 *3) (-12 (-5 *3 (-387 (-891 *4))) (-4 *4 (-520)) (-5 *2 (-595 (-1095))) (-5 *1 (-977 *4)))))
-(-10 -7 (-15 -2565 ((-595 (-1095)) (-387 (-891 |#1|)))) (-15 -3288 ((-3 (-1095) "failed") (-387 (-891 |#1|)))) (-15 -2402 ((-387 (-1091 (-387 (-891 |#1|)))) (-387 (-891 |#1|)) (-1095))) (-15 -2557 ((-387 (-891 |#1|)) (-387 (-1091 (-387 (-891 |#1|)))) (-1095))) (-15 -4014 ((-387 (-891 |#1|)) (-387 (-891 |#1|)) (-1095) (-387 (-891 |#1|)))) (-15 -4014 ((-387 (-891 |#1|)) (-387 (-891 |#1|)) (-595 (-1095)) (-595 (-387 (-891 |#1|))))) (-15 -4014 ((-387 (-891 |#1|)) (-387 (-891 |#1|)) (-275 (-387 (-891 |#1|))))) (-15 -4014 ((-387 (-891 |#1|)) (-387 (-891 |#1|)) (-595 (-275 (-387 (-891 |#1|)))))) (-15 -2222 ((-387 (-891 |#1|)) |#1|)))
-((-2207 (((-110) $ $) NIL)) (-2785 (((-595 (-2 (|:| -2254 $) (|:| -2378 (-595 (-726 |#1| (-804 |#2|)))))) (-595 (-726 |#1| (-804 |#2|)))) NIL)) (-1985 (((-595 $) (-595 (-726 |#1| (-804 |#2|)))) NIL) (((-595 $) (-595 (-726 |#1| (-804 |#2|))) (-110)) NIL) (((-595 $) (-595 (-726 |#1| (-804 |#2|))) (-110) (-110)) NIL)) (-2565 (((-595 (-804 |#2|)) $) NIL)) (-3812 (((-110) $) NIL)) (-2414 (((-110) $) NIL (|has| |#1| (-520)))) (-3759 (((-110) (-726 |#1| (-804 |#2|)) $) NIL) (((-110) $) NIL)) (-1728 (((-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|)) $) NIL)) (-1232 (((-595 (-2 (|:| |val| (-726 |#1| (-804 |#2|))) (|:| -2316 $))) (-726 |#1| (-804 |#2|)) $) NIL)) (-1289 (((-2 (|:| |under| $) (|:| -2925 $) (|:| |upper| $)) $ (-804 |#2|)) NIL)) (-3535 (((-110) $ (-717)) NIL)) (-1573 (($ (-1 (-110) (-726 |#1| (-804 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-3 (-726 |#1| (-804 |#2|)) "failed") $ (-804 |#2|)) NIL)) (-2816 (($) NIL T CONST)) (-1689 (((-110) $) NIL (|has| |#1| (-520)))) (-2584 (((-110) $ $) NIL (|has| |#1| (-520)))) (-3168 (((-110) $ $) NIL (|has| |#1| (-520)))) (-1924 (((-110) $) NIL (|has| |#1| (-520)))) (-1658 (((-595 (-726 |#1| (-804 |#2|))) (-595 (-726 |#1| (-804 |#2|))) $ (-1 (-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|))) (-1 (-110) (-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|)))) NIL)) (-1891 (((-595 (-726 |#1| (-804 |#2|))) (-595 (-726 |#1| (-804 |#2|))) $) NIL (|has| |#1| (-520)))) (-3794 (((-595 (-726 |#1| (-804 |#2|))) (-595 (-726 |#1| (-804 |#2|))) $) NIL (|has| |#1| (-520)))) (-3001 (((-3 $ "failed") (-595 (-726 |#1| (-804 |#2|)))) NIL)) (-2409 (($ (-595 (-726 |#1| (-804 |#2|)))) NIL)) (-2902 (((-3 $ "failed") $) NIL)) (-1592 (((-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|)) $) NIL)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-726 |#1| (-804 |#2|)) (-1023))))) (-2280 (($ (-726 |#1| (-804 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-726 |#1| (-804 |#2|)) (-1023)))) (($ (-1 (-110) (-726 |#1| (-804 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-2537 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-726 |#1| (-804 |#2|))) (|:| |den| |#1|)) (-726 |#1| (-804 |#2|)) $) NIL (|has| |#1| (-520)))) (-1927 (((-110) (-726 |#1| (-804 |#2|)) $ (-1 (-110) (-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|)))) NIL)) (-3345 (((-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|)) $) NIL)) (-1422 (((-726 |#1| (-804 |#2|)) (-1 (-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|))) $ (-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|))) NIL (-12 (|has| $ (-6 -4264)) (|has| (-726 |#1| (-804 |#2|)) (-1023)))) (((-726 |#1| (-804 |#2|)) (-1 (-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|))) $ (-726 |#1| (-804 |#2|))) NIL (|has| $ (-6 -4264))) (((-726 |#1| (-804 |#2|)) (-1 (-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|)) $ (-1 (-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|))) (-1 (-110) (-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|)))) NIL)) (-4049 (((-2 (|:| -2254 (-595 (-726 |#1| (-804 |#2|)))) (|:| -2378 (-595 (-726 |#1| (-804 |#2|))))) $) NIL)) (-1640 (((-110) (-726 |#1| (-804 |#2|)) $) NIL)) (-4184 (((-110) (-726 |#1| (-804 |#2|)) $) NIL)) (-2667 (((-110) (-726 |#1| (-804 |#2|)) $) NIL) (((-110) $) NIL)) (-3342 (((-595 (-726 |#1| (-804 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-3092 (((-110) (-726 |#1| (-804 |#2|)) $) NIL) (((-110) $) NIL)) (-1761 (((-804 |#2|) $) NIL)) (-2029 (((-110) $ (-717)) NIL)) (-2604 (((-595 (-726 |#1| (-804 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) (-726 |#1| (-804 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-726 |#1| (-804 |#2|)) (-1023))))) (-2800 (($ (-1 (-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|))) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|))) $) NIL)) (-3558 (((-595 (-804 |#2|)) $) NIL)) (-3472 (((-110) (-804 |#2|) $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL)) (-4192 (((-3 (-726 |#1| (-804 |#2|)) (-595 $)) (-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|)) $) NIL)) (-2272 (((-595 (-2 (|:| |val| (-726 |#1| (-804 |#2|))) (|:| -2316 $))) (-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|)) $) NIL)) (-2301 (((-3 (-726 |#1| (-804 |#2|)) "failed") $) NIL)) (-2078 (((-595 $) (-726 |#1| (-804 |#2|)) $) NIL)) (-1307 (((-3 (-110) (-595 $)) (-726 |#1| (-804 |#2|)) $) NIL)) (-3346 (((-595 (-2 (|:| |val| (-110)) (|:| -2316 $))) (-726 |#1| (-804 |#2|)) $) NIL) (((-110) (-726 |#1| (-804 |#2|)) $) NIL)) (-3397 (((-595 $) (-726 |#1| (-804 |#2|)) $) NIL) (((-595 $) (-595 (-726 |#1| (-804 |#2|))) $) NIL) (((-595 $) (-595 (-726 |#1| (-804 |#2|))) (-595 $)) NIL) (((-595 $) (-726 |#1| (-804 |#2|)) (-595 $)) NIL)) (-1325 (($ (-726 |#1| (-804 |#2|)) $) NIL) (($ (-595 (-726 |#1| (-804 |#2|))) $) NIL)) (-3923 (((-595 (-726 |#1| (-804 |#2|))) $) NIL)) (-2127 (((-110) (-726 |#1| (-804 |#2|)) $) NIL) (((-110) $) NIL)) (-3436 (((-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|)) $) NIL)) (-3664 (((-110) $ $) NIL)) (-1827 (((-2 (|:| |num| (-726 |#1| (-804 |#2|))) (|:| |den| |#1|)) (-726 |#1| (-804 |#2|)) $) NIL (|has| |#1| (-520)))) (-1906 (((-110) (-726 |#1| (-804 |#2|)) $) NIL) (((-110) $) NIL)) (-2001 (((-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|)) $) NIL)) (-2495 (((-1042) $) NIL)) (-2890 (((-3 (-726 |#1| (-804 |#2|)) "failed") $) NIL)) (-1734 (((-3 (-726 |#1| (-804 |#2|)) "failed") (-1 (-110) (-726 |#1| (-804 |#2|))) $) NIL)) (-3912 (((-3 $ "failed") $ (-726 |#1| (-804 |#2|))) NIL)) (-3740 (($ $ (-726 |#1| (-804 |#2|))) NIL) (((-595 $) (-726 |#1| (-804 |#2|)) $) NIL) (((-595 $) (-726 |#1| (-804 |#2|)) (-595 $)) NIL) (((-595 $) (-595 (-726 |#1| (-804 |#2|))) $) NIL) (((-595 $) (-595 (-726 |#1| (-804 |#2|))) (-595 $)) NIL)) (-1818 (((-110) (-1 (-110) (-726 |#1| (-804 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-726 |#1| (-804 |#2|))) (-595 (-726 |#1| (-804 |#2|)))) NIL (-12 (|has| (-726 |#1| (-804 |#2|)) (-290 (-726 |#1| (-804 |#2|)))) (|has| (-726 |#1| (-804 |#2|)) (-1023)))) (($ $ (-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|))) NIL (-12 (|has| (-726 |#1| (-804 |#2|)) (-290 (-726 |#1| (-804 |#2|)))) (|has| (-726 |#1| (-804 |#2|)) (-1023)))) (($ $ (-275 (-726 |#1| (-804 |#2|)))) NIL (-12 (|has| (-726 |#1| (-804 |#2|)) (-290 (-726 |#1| (-804 |#2|)))) (|has| (-726 |#1| (-804 |#2|)) (-1023)))) (($ $ (-595 (-275 (-726 |#1| (-804 |#2|))))) NIL (-12 (|has| (-726 |#1| (-804 |#2|)) (-290 (-726 |#1| (-804 |#2|)))) (|has| (-726 |#1| (-804 |#2|)) (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-2935 (((-717) $) NIL)) (-2507 (((-717) (-726 |#1| (-804 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-726 |#1| (-804 |#2|)) (-1023)))) (((-717) (-1 (-110) (-726 |#1| (-804 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) NIL (|has| (-726 |#1| (-804 |#2|)) (-570 (-504))))) (-2233 (($ (-595 (-726 |#1| (-804 |#2|)))) NIL)) (-2649 (($ $ (-804 |#2|)) NIL)) (-3597 (($ $ (-804 |#2|)) NIL)) (-3311 (($ $) NIL)) (-1812 (($ $ (-804 |#2|)) NIL)) (-2222 (((-802) $) NIL) (((-595 (-726 |#1| (-804 |#2|))) $) NIL)) (-2459 (((-717) $) NIL (|has| (-804 |#2|) (-348)))) (-1411 (((-3 (-2 (|:| |bas| $) (|:| -1513 (-595 (-726 |#1| (-804 |#2|))))) "failed") (-595 (-726 |#1| (-804 |#2|))) (-1 (-110) (-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1513 (-595 (-726 |#1| (-804 |#2|))))) "failed") (-595 (-726 |#1| (-804 |#2|))) (-1 (-110) (-726 |#1| (-804 |#2|))) (-1 (-110) (-726 |#1| (-804 |#2|)) (-726 |#1| (-804 |#2|)))) NIL)) (-1622 (((-110) $ (-1 (-110) (-726 |#1| (-804 |#2|)) (-595 (-726 |#1| (-804 |#2|))))) NIL)) (-4053 (((-595 $) (-726 |#1| (-804 |#2|)) $) NIL) (((-595 $) (-726 |#1| (-804 |#2|)) (-595 $)) NIL) (((-595 $) (-595 (-726 |#1| (-804 |#2|))) $) NIL) (((-595 $) (-595 (-726 |#1| (-804 |#2|))) (-595 $)) NIL)) (-3451 (((-110) (-1 (-110) (-726 |#1| (-804 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-1490 (((-595 (-804 |#2|)) $) NIL)) (-3207 (((-110) (-726 |#1| (-804 |#2|)) $) NIL)) (-2190 (((-110) (-804 |#2|) $) NIL)) (-2186 (((-110) $ $) NIL)) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-978 |#1| |#2|) (-13 (-999 |#1| (-500 (-804 |#2|)) (-804 |#2|) (-726 |#1| (-804 |#2|))) (-10 -8 (-15 -1985 ((-595 $) (-595 (-726 |#1| (-804 |#2|))) (-110) (-110))))) (-431) (-595 (-1095))) (T -978))
-((-1985 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-595 (-726 *5 (-804 *6)))) (-5 *4 (-110)) (-4 *5 (-431)) (-14 *6 (-595 (-1095))) (-5 *2 (-595 (-978 *5 *6))) (-5 *1 (-978 *5 *6)))))
-(-13 (-999 |#1| (-500 (-804 |#2|)) (-804 |#2|) (-726 |#1| (-804 |#2|))) (-10 -8 (-15 -1985 ((-595 $) (-595 (-726 |#1| (-804 |#2|))) (-110) (-110)))))
-((-2795 (((-1 (-528)) (-1018 (-528))) 33)) (-1763 (((-528) (-528) (-528) (-528) (-528)) 30)) (-3377 (((-1 (-528)) |RationalNumber|) NIL)) (-1309 (((-1 (-528)) |RationalNumber|) NIL)) (-3709 (((-1 (-528)) (-528) |RationalNumber|) NIL)))
-(((-979) (-10 -7 (-15 -2795 ((-1 (-528)) (-1018 (-528)))) (-15 -3709 ((-1 (-528)) (-528) |RationalNumber|)) (-15 -3377 ((-1 (-528)) |RationalNumber|)) (-15 -1309 ((-1 (-528)) |RationalNumber|)) (-15 -1763 ((-528) (-528) (-528) (-528) (-528))))) (T -979))
-((-1763 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-979)))) (-1309 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-528))) (-5 *1 (-979)))) (-3377 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-528))) (-5 *1 (-979)))) (-3709 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-528))) (-5 *1 (-979)) (-5 *3 (-528)))) (-2795 (*1 *2 *3) (-12 (-5 *3 (-1018 (-528))) (-5 *2 (-1 (-528))) (-5 *1 (-979)))))
-(-10 -7 (-15 -2795 ((-1 (-528)) (-1018 (-528)))) (-15 -3709 ((-1 (-528)) (-528) |RationalNumber|)) (-15 -3377 ((-1 (-528)) |RationalNumber|)) (-15 -1309 ((-1 (-528)) |RationalNumber|)) (-15 -1763 ((-528) (-528) (-528) (-528) (-528))))
-((-2222 (((-802) $) NIL) (($ (-528)) 10)))
-(((-980 |#1|) (-10 -8 (-15 -2222 (|#1| (-528))) (-15 -2222 ((-802) |#1|))) (-981)) (T -980))
-NIL
-(-10 -8 (-15 -2222 (|#1| (-528))) (-15 -2222 ((-802) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-1312 (((-3 $ "failed") $) 34)) (-1297 (((-110) $) 31)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11) (($ (-528)) 28)) (-3742 (((-717)) 29)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24)))
-(((-981) (-133)) (T -981))
-((-3742 (*1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-717)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-528)) (-4 *1 (-981)))))
-(-13 (-987) (-673) (-597 $) (-10 -8 (-15 -3742 ((-717))) (-15 -2222 ($ (-528))) (-6 -4261)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-569 (-802)) . T) ((-597 $) . T) ((-673) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-1987 (((-110) $) 29)) (-2300 (((-110) $) 16)) (-1358 (((-717) $) 13)) (-1370 (((-717) $) 14)) (-2851 (((-110) $) 26)) (-1428 (((-110) $) 31)))
-(((-982 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1370 ((-717) |#1|)) (-15 -1358 ((-717) |#1|)) (-15 -1428 ((-110) |#1|)) (-15 -1987 ((-110) |#1|)) (-15 -2851 ((-110) |#1|)) (-15 -2300 ((-110) |#1|))) (-983 |#2| |#3| |#4| |#5| |#6|) (-717) (-717) (-981) (-220 |#3| |#4|) (-220 |#2| |#4|)) (T -982))
-NIL
-(-10 -8 (-15 -1370 ((-717) |#1|)) (-15 -1358 ((-717) |#1|)) (-15 -1428 ((-110) |#1|)) (-15 -1987 ((-110) |#1|)) (-15 -2851 ((-110) |#1|)) (-15 -2300 ((-110) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-1987 (((-110) $) 51)) (-3181 (((-3 $ "failed") $ $) 19)) (-2300 (((-110) $) 53)) (-3535 (((-110) $ (-717)) 61)) (-2816 (($) 17 T CONST)) (-2614 (($ $) 34 (|has| |#3| (-288)))) (-4203 ((|#4| $ (-528)) 39)) (-3090 (((-717) $) 33 (|has| |#3| (-520)))) (-2742 ((|#3| $ (-528) (-528)) 41)) (-3342 (((-595 |#3|) $) 68 (|has| $ (-6 -4264)))) (-1877 (((-717) $) 32 (|has| |#3| (-520)))) (-1809 (((-595 |#5|) $) 31 (|has| |#3| (-520)))) (-1358 (((-717) $) 45)) (-1370 (((-717) $) 44)) (-2029 (((-110) $ (-717)) 60)) (-3065 (((-528) $) 49)) (-2567 (((-528) $) 47)) (-2604 (((-595 |#3|) $) 69 (|has| $ (-6 -4264)))) (-2408 (((-110) |#3| $) 71 (-12 (|has| |#3| (-1023)) (|has| $ (-6 -4264))))) (-3224 (((-528) $) 48)) (-1268 (((-528) $) 46)) (-1553 (($ (-595 (-595 |#3|))) 54)) (-2800 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-2062 (((-595 (-595 |#3|)) $) 43)) (-3358 (((-110) $ (-717)) 59)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-3477 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-520)))) (-1818 (((-110) (-1 (-110) |#3|) $) 66 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 |#3|) (-595 |#3|)) 75 (-12 (|has| |#3| (-290 |#3|)) (|has| |#3| (-1023)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-290 |#3|)) (|has| |#3| (-1023)))) (($ $ (-275 |#3|)) 73 (-12 (|has| |#3| (-290 |#3|)) (|has| |#3| (-1023)))) (($ $ (-595 (-275 |#3|))) 72 (-12 (|has| |#3| (-290 |#3|)) (|has| |#3| (-1023))))) (-3744 (((-110) $ $) 55)) (-1972 (((-110) $) 58)) (-2147 (($) 57)) (-3043 ((|#3| $ (-528) (-528)) 42) ((|#3| $ (-528) (-528) |#3|) 40)) (-2851 (((-110) $) 52)) (-2507 (((-717) |#3| $) 70 (-12 (|has| |#3| (-1023)) (|has| $ (-6 -4264)))) (((-717) (-1 (-110) |#3|) $) 67 (|has| $ (-6 -4264)))) (-2406 (($ $) 56)) (-3946 ((|#5| $ (-528)) 38)) (-2222 (((-802) $) 11)) (-3451 (((-110) (-1 (-110) |#3|) $) 65 (|has| $ (-6 -4264)))) (-1428 (((-110) $) 50)) (-2969 (($) 18 T CONST)) (-2186 (((-110) $ $) 6)) (-2296 (($ $ |#3|) 35 (|has| |#3| (-343)))) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2138 (((-717) $) 62 (|has| $ (-6 -4264)))))
-(((-983 |#1| |#2| |#3| |#4| |#5|) (-133) (-717) (-717) (-981) (-220 |t#2| |t#3|) (-220 |t#1| |t#3|)) (T -983))
-((-3106 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981)) (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)))) (-1553 (*1 *1 *2) (-12 (-5 *2 (-595 (-595 *5))) (-4 *5 (-981)) (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)))) (-2300 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981)) (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-5 *2 (-110)))) (-2851 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981)) (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-5 *2 (-110)))) (-1987 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981)) (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-5 *2 (-110)))) (-1428 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981)) (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-5 *2 (-110)))) (-3065 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981)) (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-5 *2 (-528)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981)) (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-5 *2 (-528)))) (-2567 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981)) (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-5 *2 (-528)))) (-1268 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981)) (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-5 *2 (-528)))) (-1358 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981)) (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-5 *2 (-717)))) (-1370 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981)) (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-5 *2 (-717)))) (-2062 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981)) (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-5 *2 (-595 (-595 *5))))) (-3043 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-528)) (-4 *1 (-983 *4 *5 *2 *6 *7)) (-4 *6 (-220 *5 *2)) (-4 *7 (-220 *4 *2)) (-4 *2 (-981)))) (-2742 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-528)) (-4 *1 (-983 *4 *5 *2 *6 *7)) (-4 *6 (-220 *5 *2)) (-4 *7 (-220 *4 *2)) (-4 *2 (-981)))) (-3043 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-528)) (-4 *1 (-983 *4 *5 *2 *6 *7)) (-4 *2 (-981)) (-4 *6 (-220 *5 *2)) (-4 *7 (-220 *4 *2)))) (-4203 (*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-4 *1 (-983 *4 *5 *6 *2 *7)) (-4 *6 (-981)) (-4 *7 (-220 *4 *6)) (-4 *2 (-220 *5 *6)))) (-3946 (*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-4 *1 (-983 *4 *5 *6 *7 *2)) (-4 *6 (-981)) (-4 *7 (-220 *5 *6)) (-4 *2 (-220 *4 *6)))) (-3106 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981)) (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)))) (-3477 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-983 *3 *4 *2 *5 *6)) (-4 *2 (-981)) (-4 *5 (-220 *4 *2)) (-4 *6 (-220 *3 *2)) (-4 *2 (-520)))) (-2296 (*1 *1 *1 *2) (-12 (-4 *1 (-983 *3 *4 *2 *5 *6)) (-4 *2 (-981)) (-4 *5 (-220 *4 *2)) (-4 *6 (-220 *3 *2)) (-4 *2 (-343)))) (-2614 (*1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4 *5 *6)) (-4 *4 (-981)) (-4 *5 (-220 *3 *4)) (-4 *6 (-220 *2 *4)) (-4 *4 (-288)))) (-3090 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981)) (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-4 *5 (-520)) (-5 *2 (-717)))) (-1877 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981)) (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-4 *5 (-520)) (-5 *2 (-717)))) (-1809 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981)) (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-4 *5 (-520)) (-5 *2 (-595 *7)))))
-(-13 (-109 |t#3| |t#3|) (-467 |t#3|) (-10 -8 (-6 -4264) (IF (|has| |t#3| (-162)) (-6 (-664 |t#3|)) |%noBranch|) (-15 -1553 ($ (-595 (-595 |t#3|)))) (-15 -2300 ((-110) $)) (-15 -2851 ((-110) $)) (-15 -1987 ((-110) $)) (-15 -1428 ((-110) $)) (-15 -3065 ((-528) $)) (-15 -3224 ((-528) $)) (-15 -2567 ((-528) $)) (-15 -1268 ((-528) $)) (-15 -1358 ((-717) $)) (-15 -1370 ((-717) $)) (-15 -2062 ((-595 (-595 |t#3|)) $)) (-15 -3043 (|t#3| $ (-528) (-528))) (-15 -2742 (|t#3| $ (-528) (-528))) (-15 -3043 (|t#3| $ (-528) (-528) |t#3|)) (-15 -4203 (|t#4| $ (-528))) (-15 -3946 (|t#5| $ (-528))) (-15 -3106 ($ (-1 |t#3| |t#3|) $)) (-15 -3106 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-520)) (-15 -3477 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-343)) (-15 -2296 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-288)) (-15 -2614 ($ $)) |%noBranch|) (IF (|has| |t#3| (-520)) (PROGN (-15 -3090 ((-717) $)) (-15 -1877 ((-717) $)) (-15 -1809 ((-595 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-99) . T) ((-109 |#3| |#3|) . T) ((-128) . T) ((-569 (-802)) . T) ((-290 |#3|) -12 (|has| |#3| (-290 |#3|)) (|has| |#3| (-1023))) ((-467 |#3|) . T) ((-489 |#3| |#3|) -12 (|has| |#3| (-290 |#3|)) (|has| |#3| (-1023))) ((-597 |#3|) . T) ((-664 |#3|) |has| |#3| (-162)) ((-986 |#3|) . T) ((-1023) . T) ((-1131) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-1987 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2300 (((-110) $) NIL)) (-3535 (((-110) $ (-717)) NIL)) (-2816 (($) NIL T CONST)) (-2614 (($ $) 43 (|has| |#3| (-288)))) (-4203 (((-222 |#2| |#3|) $ (-528)) 32)) (-3464 (($ (-635 |#3|)) 41)) (-3090 (((-717) $) 45 (|has| |#3| (-520)))) (-2742 ((|#3| $ (-528) (-528)) NIL)) (-3342 (((-595 |#3|) $) NIL (|has| $ (-6 -4264)))) (-1877 (((-717) $) 47 (|has| |#3| (-520)))) (-1809 (((-595 (-222 |#1| |#3|)) $) 51 (|has| |#3| (-520)))) (-1358 (((-717) $) NIL)) (-1370 (((-717) $) NIL)) (-2029 (((-110) $ (-717)) NIL)) (-3065 (((-528) $) NIL)) (-2567 (((-528) $) NIL)) (-2604 (((-595 |#3|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#3| (-1023))))) (-3224 (((-528) $) NIL)) (-1268 (((-528) $) NIL)) (-1553 (($ (-595 (-595 |#3|))) 27)) (-2800 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2062 (((-595 (-595 |#3|)) $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3477 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-520)))) (-1818 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 |#3|) (-595 |#3|)) NIL (-12 (|has| |#3| (-290 |#3|)) (|has| |#3| (-1023)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-290 |#3|)) (|has| |#3| (-1023)))) (($ $ (-275 |#3|)) NIL (-12 (|has| |#3| (-290 |#3|)) (|has| |#3| (-1023)))) (($ $ (-595 (-275 |#3|))) NIL (-12 (|has| |#3| (-290 |#3|)) (|has| |#3| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#3| $ (-528) (-528)) NIL) ((|#3| $ (-528) (-528) |#3|) NIL)) (-3017 (((-130)) 54 (|has| |#3| (-343)))) (-2851 (((-110) $) NIL)) (-2507 (((-717) |#3| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#3| (-1023)))) (((-717) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4264)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) 63 (|has| |#3| (-570 (-504))))) (-3946 (((-222 |#1| |#3|) $ (-528)) 36)) (-2222 (((-802) $) 16) (((-635 |#3|) $) 38)) (-3451 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4264)))) (-1428 (((-110) $) NIL)) (-2969 (($) 13 T CONST)) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ |#3|) NIL (|has| |#3| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-984 |#1| |#2| |#3|) (-13 (-983 |#1| |#2| |#3| (-222 |#2| |#3|) (-222 |#1| |#3|)) (-569 (-635 |#3|)) (-10 -8 (IF (|has| |#3| (-343)) (-6 (-1184 |#3|)) |%noBranch|) (IF (|has| |#3| (-570 (-504))) (-6 (-570 (-504))) |%noBranch|) (-15 -3464 ($ (-635 |#3|))) (-15 -2222 ((-635 |#3|) $)))) (-717) (-717) (-981)) (T -984))
-((-2222 (*1 *2 *1) (-12 (-5 *2 (-635 *5)) (-5 *1 (-984 *3 *4 *5)) (-14 *3 (-717)) (-14 *4 (-717)) (-4 *5 (-981)))) (-3464 (*1 *1 *2) (-12 (-5 *2 (-635 *5)) (-4 *5 (-981)) (-5 *1 (-984 *3 *4 *5)) (-14 *3 (-717)) (-14 *4 (-717)))))
-(-13 (-983 |#1| |#2| |#3| (-222 |#2| |#3|) (-222 |#1| |#3|)) (-569 (-635 |#3|)) (-10 -8 (IF (|has| |#3| (-343)) (-6 (-1184 |#3|)) |%noBranch|) (IF (|has| |#3| (-570 (-504))) (-6 (-570 (-504))) |%noBranch|) (-15 -3464 ($ (-635 |#3|))) (-15 -2222 ((-635 |#3|) $))))
-((-1422 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-3106 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
-(((-985 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3106 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1422 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-717) (-717) (-981) (-220 |#2| |#3|) (-220 |#1| |#3|) (-983 |#1| |#2| |#3| |#4| |#5|) (-981) (-220 |#2| |#7|) (-220 |#1| |#7|) (-983 |#1| |#2| |#7| |#8| |#9|)) (T -985))
-((-1422 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-981)) (-4 *2 (-981)) (-14 *5 (-717)) (-14 *6 (-717)) (-4 *8 (-220 *6 *7)) (-4 *9 (-220 *5 *7)) (-4 *10 (-220 *6 *2)) (-4 *11 (-220 *5 *2)) (-5 *1 (-985 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-983 *5 *6 *7 *8 *9)) (-4 *12 (-983 *5 *6 *2 *10 *11)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-981)) (-4 *10 (-981)) (-14 *5 (-717)) (-14 *6 (-717)) (-4 *8 (-220 *6 *7)) (-4 *9 (-220 *5 *7)) (-4 *2 (-983 *5 *6 *10 *11 *12)) (-5 *1 (-985 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-983 *5 *6 *7 *8 *9)) (-4 *11 (-220 *6 *10)) (-4 *12 (-220 *5 *10)))))
-(-10 -7 (-15 -3106 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1422 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2969 (($) 18 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ |#1|) 23)))
-(((-986 |#1|) (-133) (-987)) (T -986))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-986 *2)) (-4 *2 (-987)))))
+((-4120 (((-899 |#2|) (-1 |#2| |#1| |#2|) (-899 |#1|) |#2|) 16)) (-4121 ((|#2| (-1 |#2| |#1| |#2|) (-899 |#1|) |#2|) 18)) (-4234 (((-899 |#2|) (-1 |#2| |#1|) (-899 |#1|)) 13)))
+(((-900 |#1| |#2|) (-10 -7 (-15 -4120 ((-899 |#2|) (-1 |#2| |#1| |#2|) (-899 |#1|) |#2|)) (-15 -4121 (|#2| (-1 |#2| |#1| |#2|) (-899 |#1|) |#2|)) (-15 -4234 ((-899 |#2|) (-1 |#2| |#1|) (-899 |#1|)))) (-1134) (-1134)) (T -900))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-899 *5)) (-4 *5 (-1134)) (-4 *6 (-1134)) (-5 *2 (-899 *6)) (-5 *1 (-900 *5 *6)))) (-4121 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-899 *5)) (-4 *5 (-1134)) (-4 *2 (-1134)) (-5 *1 (-900 *5 *2)))) (-4120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-899 *6)) (-4 *6 (-1134)) (-4 *5 (-1134)) (-5 *2 (-899 *5)) (-5 *1 (-900 *6 *5)))))
+(-10 -7 (-15 -4120 ((-899 |#2|) (-1 |#2| |#1| |#2|) (-899 |#1|) |#2|)) (-15 -4121 (|#2| (-1 |#2| |#1| |#2|) (-899 |#1|) |#2|)) (-15 -4234 ((-899 |#2|) (-1 |#2| |#1|) (-899 |#1|))))
+((-3096 (($ $ (-1019 $)) 7) (($ $ (-1098)) 6)))
+(((-901) (-133)) (T -901))
+((-3096 (*1 *1 *1 *2) (-12 (-5 *2 (-1019 *1)) (-4 *1 (-901)))) (-3096 (*1 *1 *1 *2) (-12 (-4 *1 (-901)) (-5 *2 (-1098)))))
+(-13 (-10 -8 (-15 -3096 ($ $ (-1098))) (-15 -3096 ($ $ (-1019 $)))))
+((-3097 (((-2 (|:| -4229 (-594 (-516))) (|:| |poly| (-594 (-1092 |#1|))) (|:| |prim| (-1092 |#1|))) (-594 (-887 |#1|)) (-594 (-1098)) (-1098)) 25) (((-2 (|:| -4229 (-594 (-516))) (|:| |poly| (-594 (-1092 |#1|))) (|:| |prim| (-1092 |#1|))) (-594 (-887 |#1|)) (-594 (-1098))) 26) (((-2 (|:| |coef1| (-516)) (|:| |coef2| (-516)) (|:| |prim| (-1092 |#1|))) (-887 |#1|) (-1098) (-887 |#1|) (-1098)) 43)))
+(((-902 |#1|) (-10 -7 (-15 -3097 ((-2 (|:| |coef1| (-516)) (|:| |coef2| (-516)) (|:| |prim| (-1092 |#1|))) (-887 |#1|) (-1098) (-887 |#1|) (-1098))) (-15 -3097 ((-2 (|:| -4229 (-594 (-516))) (|:| |poly| (-594 (-1092 |#1|))) (|:| |prim| (-1092 |#1|))) (-594 (-887 |#1|)) (-594 (-1098)))) (-15 -3097 ((-2 (|:| -4229 (-594 (-516))) (|:| |poly| (-594 (-1092 |#1|))) (|:| |prim| (-1092 |#1|))) (-594 (-887 |#1|)) (-594 (-1098)) (-1098)))) (-13 (-344) (-140))) (T -902))
+((-3097 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-594 (-887 *6))) (-5 *4 (-594 (-1098))) (-5 *5 (-1098)) (-4 *6 (-13 (-344) (-140))) (-5 *2 (-2 (|:| -4229 (-594 (-516))) (|:| |poly| (-594 (-1092 *6))) (|:| |prim| (-1092 *6)))) (-5 *1 (-902 *6)))) (-3097 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-887 *5))) (-5 *4 (-594 (-1098))) (-4 *5 (-13 (-344) (-140))) (-5 *2 (-2 (|:| -4229 (-594 (-516))) (|:| |poly| (-594 (-1092 *5))) (|:| |prim| (-1092 *5)))) (-5 *1 (-902 *5)))) (-3097 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-887 *5)) (-5 *4 (-1098)) (-4 *5 (-13 (-344) (-140))) (-5 *2 (-2 (|:| |coef1| (-516)) (|:| |coef2| (-516)) (|:| |prim| (-1092 *5)))) (-5 *1 (-902 *5)))))
+(-10 -7 (-15 -3097 ((-2 (|:| |coef1| (-516)) (|:| |coef2| (-516)) (|:| |prim| (-1092 |#1|))) (-887 |#1|) (-1098) (-887 |#1|) (-1098))) (-15 -3097 ((-2 (|:| -4229 (-594 (-516))) (|:| |poly| (-594 (-1092 |#1|))) (|:| |prim| (-1092 |#1|))) (-594 (-887 |#1|)) (-594 (-1098)))) (-15 -3097 ((-2 (|:| -4229 (-594 (-516))) (|:| |poly| (-594 (-1092 |#1|))) (|:| |prim| (-1092 |#1|))) (-594 (-887 |#1|)) (-594 (-1098)) (-1098))))
+((-3100 (((-594 |#1|) |#1| |#1|) 42)) (-4005 (((-110) |#1|) 39)) (-3099 ((|#1| |#1|) 65)) (-3098 ((|#1| |#1|) 64)))
+(((-903 |#1|) (-10 -7 (-15 -4005 ((-110) |#1|)) (-15 -3098 (|#1| |#1|)) (-15 -3099 (|#1| |#1|)) (-15 -3100 ((-594 |#1|) |#1| |#1|))) (-515)) (T -903))
+((-3100 (*1 *2 *3 *3) (-12 (-5 *2 (-594 *3)) (-5 *1 (-903 *3)) (-4 *3 (-515)))) (-3099 (*1 *2 *2) (-12 (-5 *1 (-903 *2)) (-4 *2 (-515)))) (-3098 (*1 *2 *2) (-12 (-5 *1 (-903 *2)) (-4 *2 (-515)))) (-4005 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-903 *3)) (-4 *3 (-515)))))
+(-10 -7 (-15 -4005 ((-110) |#1|)) (-15 -3098 (|#1| |#1|)) (-15 -3099 (|#1| |#1|)) (-15 -3100 ((-594 |#1|) |#1| |#1|)))
+((-3101 (((-1185) (-805)) 9)))
+(((-904) (-10 -7 (-15 -3101 ((-1185) (-805))))) (T -904))
+((-3101 (*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1185)) (-5 *1 (-904)))))
+(-10 -7 (-15 -3101 ((-1185) (-805))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL (-3810 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741)))))) (-2667 (($ $ $) 63 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))))) (-1319 (((-3 $ "failed") $ $) 50 (-3810 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741)))))) (-3395 (((-719)) 34 (-12 (|has| |#1| (-349)) (|has| |#2| (-349))))) (-3102 ((|#2| $) 21)) (-3103 ((|#1| $) 20)) (-3815 (($) NIL (-3810 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741)))) CONST)) (-3741 (((-3 $ "failed") $) NIL (-3810 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675)))))) (-3258 (($) NIL (-12 (|has| |#1| (-349)) (|has| |#2| (-349))))) (-2436 (((-110) $) NIL (-3810 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675)))))) (-3596 (($ $ $) NIL (-3810 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-3597 (($ $ $) NIL (-3810 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-3104 (($ |#1| |#2|) 19)) (-2069 (((-860) $) NIL (-12 (|has| |#1| (-349)) (|has| |#2| (-349))))) (-3513 (((-1081) $) NIL)) (-2668 (($ $) 37 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))))) (-2426 (($ (-860)) NIL (-12 (|has| |#1| (-349)) (|has| |#2| (-349))))) (-3514 (((-1045) $) NIL)) (-3273 (($ $ $) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453))))) (-2620 (($ $ $) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453))))) (-4233 (((-805) $) 14)) (-3581 (($ $ (-516)) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453)))) (($ $ (-719)) NIL (-3810 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675))))) (($ $ (-860)) NIL (-3810 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675)))))) (-2920 (($) 40 (-3810 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741)))) CONST)) (-2927 (($) 24 (-3810 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675)))) CONST)) (-2826 (((-110) $ $) NIL (-3810 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-2827 (((-110) $ $) NIL (-3810 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-3317 (((-110) $ $) 18)) (-2947 (((-110) $ $) NIL (-3810 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-2948 (((-110) $ $) 66 (-3810 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-4224 (($ $ $) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453))))) (-4116 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4118 (($ $ $) 43 (-3810 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741)))))) (** (($ $ (-516)) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453)))) (($ $ (-719)) 31 (-3810 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675))))) (($ $ (-860)) NIL (-3810 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675)))))) (* (($ (-516) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-719) $) 46 (-3810 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741))))) (($ (-860) $) NIL (-3810 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741))))) (($ $ $) 27 (-3810 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675)))))))
+(((-905 |#1| |#2|) (-13 (-1027) (-10 -8 (IF (|has| |#1| (-349)) (IF (|has| |#2| (-349)) (-6 (-349)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-675)) (IF (|has| |#2| (-675)) (-6 (-675)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-128)) (IF (|has| |#2| (-128)) (-6 (-128)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-453)) (IF (|has| |#2| (-453)) (-6 (-453)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-741)) (IF (|has| |#2| (-741)) (-6 (-741)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-795)) (IF (|has| |#2| (-795)) (-6 (-795)) |%noBranch|) |%noBranch|) (-15 -3104 ($ |#1| |#2|)) (-15 -3103 (|#1| $)) (-15 -3102 (|#2| $)))) (-1027) (-1027)) (T -905))
+((-3104 (*1 *1 *2 *3) (-12 (-5 *1 (-905 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-3103 (*1 *2 *1) (-12 (-4 *2 (-1027)) (-5 *1 (-905 *2 *3)) (-4 *3 (-1027)))) (-3102 (*1 *2 *1) (-12 (-4 *2 (-1027)) (-5 *1 (-905 *3 *2)) (-4 *3 (-1027)))))
+(-13 (-1027) (-10 -8 (IF (|has| |#1| (-349)) (IF (|has| |#2| (-349)) (-6 (-349)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-675)) (IF (|has| |#2| (-675)) (-6 (-675)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-128)) (IF (|has| |#2| (-128)) (-6 (-128)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-453)) (IF (|has| |#2| (-453)) (-6 (-453)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-741)) (IF (|has| |#2| (-741)) (-6 (-741)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-795)) (IF (|has| |#2| (-795)) (-6 (-795)) |%noBranch|) |%noBranch|) (-15 -3104 ($ |#1| |#2|)) (-15 -3103 (|#1| $)) (-15 -3102 (|#2| $))))
+((-3681 (((-1029) $) 12)) (-3105 (($ (-1098) (-1029)) 13)) (-3824 (((-1098) $) 10)) (-4233 (((-805) $) 22)))
+(((-906) (-13 (-571 (-805)) (-10 -8 (-15 -3824 ((-1098) $)) (-15 -3681 ((-1029) $)) (-15 -3105 ($ (-1098) (-1029)))))) (T -906))
+((-3824 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-906)))) (-3681 (*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-906)))) (-3105 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-1029)) (-5 *1 (-906)))))
+(-13 (-571 (-805)) (-10 -8 (-15 -3824 ((-1098) $)) (-15 -3681 ((-1029) $)) (-15 -3105 ($ (-1098) (-1029)))))
+((-3347 (((-1023 (-1098)) $) 19)) (-3116 (((-110) $) 26)) (-4110 (((-1098) $) 27)) (-3118 (((-110) $) 24)) (-3117 ((|#1| $) 25)) (-3110 (((-814 $ $) $) 34)) (-3111 (((-110) $) 33)) (-3120 (($ $ $) 12)) (-3114 (($ $) 29)) (-3115 (((-110) $) 28)) (-3595 (($ $) 10)) (-3108 (((-814 $ $) $) 36)) (-3109 (((-110) $) 35)) (-3121 (($ $ $) 13)) (-3106 (((-814 $ $) $) 38)) (-3107 (((-110) $) 37)) (-3122 (($ $ $) 14)) (-4233 (($ |#1|) 7) (($ (-1098)) 9) (((-805) $) 40 (|has| |#1| (-571 (-805))))) (-3112 (((-814 $ $) $) 32)) (-3113 (((-110) $) 30)) (-3119 (($ $ $) 11)))
+(((-907 |#1|) (-13 (-908) (-10 -8 (IF (|has| |#1| (-571 (-805))) (-6 (-571 (-805))) |%noBranch|) (-15 -4233 ($ |#1|)) (-15 -4233 ($ (-1098))) (-15 -3347 ((-1023 (-1098)) $)) (-15 -3118 ((-110) $)) (-15 -3117 (|#1| $)) (-15 -3116 ((-110) $)) (-15 -4110 ((-1098) $)) (-15 -3115 ((-110) $)) (-15 -3114 ($ $)) (-15 -3113 ((-110) $)) (-15 -3112 ((-814 $ $) $)) (-15 -3111 ((-110) $)) (-15 -3110 ((-814 $ $) $)) (-15 -3109 ((-110) $)) (-15 -3108 ((-814 $ $) $)) (-15 -3107 ((-110) $)) (-15 -3106 ((-814 $ $) $)))) (-908)) (T -907))
+((-4233 (*1 *1 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-908)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-3347 (*1 *2 *1) (-12 (-5 *2 (-1023 (-1098))) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-3118 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-3117 (*1 *2 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-908)))) (-3116 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-3115 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-3114 (*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-908)))) (-3113 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-3112 (*1 *2 *1) (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-3111 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-3109 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-3106 (*1 *2 *1) (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
+(-13 (-908) (-10 -8 (IF (|has| |#1| (-571 (-805))) (-6 (-571 (-805))) |%noBranch|) (-15 -4233 ($ |#1|)) (-15 -4233 ($ (-1098))) (-15 -3347 ((-1023 (-1098)) $)) (-15 -3118 ((-110) $)) (-15 -3117 (|#1| $)) (-15 -3116 ((-110) $)) (-15 -4110 ((-1098) $)) (-15 -3115 ((-110) $)) (-15 -3114 ($ $)) (-15 -3113 ((-110) $)) (-15 -3112 ((-814 $ $) $)) (-15 -3111 ((-110) $)) (-15 -3110 ((-814 $ $) $)) (-15 -3109 ((-110) $)) (-15 -3108 ((-814 $ $) $)) (-15 -3107 ((-110) $)) (-15 -3106 ((-814 $ $) $))))
+((-3120 (($ $ $) 8)) (-3595 (($ $) 6)) (-3121 (($ $ $) 9)) (-3122 (($ $ $) 10)) (-3119 (($ $ $) 7)))
+(((-908) (-133)) (T -908))
+((-3122 (*1 *1 *1 *1) (-4 *1 (-908))) (-3121 (*1 *1 *1 *1) (-4 *1 (-908))) (-3120 (*1 *1 *1 *1) (-4 *1 (-908))) (-3119 (*1 *1 *1 *1) (-4 *1 (-908))) (-3595 (*1 *1 *1) (-4 *1 (-908))))
+(-13 (-10 -8 (-15 -3595 ($ $)) (-15 -3119 ($ $ $)) (-15 -3120 ($ $ $)) (-15 -3121 ($ $ $)) (-15 -3122 ($ $ $))))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1217 (((-110) $ (-719)) 8)) (-3815 (($) 7 T CONST)) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) 9)) (-3123 (($ $ $) 43)) (-3792 (($ $ $) 44)) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3597 ((|#1| $) 45)) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35)) (-3998 (((-110) $ (-719)) 10)) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-1280 ((|#1| $) 39)) (-3889 (($ |#1| $) 40)) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-1281 ((|#1| $) 41)) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-1282 (($ (-594 |#1|)) 42)) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-909 |#1|) (-133) (-795)) (T -909))
+((-3597 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-795)))) (-3792 (*1 *1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-795)))) (-3123 (*1 *1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-795)))))
+(-13 (-104 |t#1|) (-10 -8 (-6 -4269) (-15 -3597 (|t#1| $)) (-15 -3792 ($ $ $)) (-15 -3123 ($ $ $))))
+(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-571 (-805)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1134) . T))
+((-3135 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3419 |#2|)) |#2| |#2|) 85)) (-4034 ((|#2| |#2| |#2|) 83)) (-3136 (((-2 (|:| |coef2| |#2|) (|:| -3419 |#2|)) |#2| |#2|) 87)) (-3137 (((-2 (|:| |coef1| |#2|) (|:| -3419 |#2|)) |#2| |#2|) 89)) (-3144 (((-2 (|:| |coef2| |#2|) (|:| -3142 |#1|)) |#2| |#2|) 107 (|has| |#1| (-432)))) (-3151 (((-2 (|:| |coef2| |#2|) (|:| -4035 |#1|)) |#2| |#2|) 46)) (-3125 (((-2 (|:| |coef2| |#2|) (|:| -4035 |#1|)) |#2| |#2|) 64)) (-3126 (((-2 (|:| |coef1| |#2|) (|:| -4035 |#1|)) |#2| |#2|) 66)) (-3134 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-3129 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719)) 71)) (-3139 (((-2 (|:| |coef2| |#2|) (|:| -4036 |#1|)) |#2|) 97)) (-3132 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719)) 74)) (-3141 (((-594 (-719)) |#2| |#2|) 82)) (-3149 ((|#1| |#2| |#2|) 42)) (-3143 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3142 |#1|)) |#2| |#2|) 105 (|has| |#1| (-432)))) (-3142 ((|#1| |#2| |#2|) 103 (|has| |#1| (-432)))) (-3150 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4035 |#1|)) |#2| |#2|) 44)) (-3124 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4035 |#1|)) |#2| |#2|) 63)) (-4035 ((|#1| |#2| |#2|) 61)) (-4031 (((-2 (|:| -4229 |#1|) (|:| -2046 |#2|) (|:| -3166 |#2|)) |#2| |#2|) 35)) (-3148 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3133 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-3464 ((|#2| |#2| |#2|) 75)) (-3128 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719)) 69)) (-3127 ((|#2| |#2| |#2| (-719)) 67)) (-3419 ((|#2| |#2| |#2|) 111 (|has| |#1| (-432)))) (-3740 (((-1179 |#2|) (-1179 |#2|) |#1|) 21)) (-3145 (((-2 (|:| -2046 |#2|) (|:| -3166 |#2|)) |#2| |#2|) 39)) (-3138 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4036 |#1|)) |#2|) 95)) (-4036 ((|#1| |#2|) 92)) (-3131 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719)) 73)) (-3130 ((|#2| |#2| |#2| (-719)) 72)) (-3140 (((-594 |#2|) |#2| |#2|) 80)) (-3147 ((|#2| |#2| |#1| |#1| (-719)) 50)) (-3146 ((|#1| |#1| |#1| (-719)) 49)) (* (((-1179 |#2|) |#1| (-1179 |#2|)) 16)))
+(((-910 |#1| |#2|) (-10 -7 (-15 -4035 (|#1| |#2| |#2|)) (-15 -3124 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4035 |#1|)) |#2| |#2|)) (-15 -3125 ((-2 (|:| |coef2| |#2|) (|:| -4035 |#1|)) |#2| |#2|)) (-15 -3126 ((-2 (|:| |coef1| |#2|) (|:| -4035 |#1|)) |#2| |#2|)) (-15 -3127 (|#2| |#2| |#2| (-719))) (-15 -3128 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -3129 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -3130 (|#2| |#2| |#2| (-719))) (-15 -3131 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -3132 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -3464 (|#2| |#2| |#2|)) (-15 -3133 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3134 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4034 (|#2| |#2| |#2|)) (-15 -3135 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3419 |#2|)) |#2| |#2|)) (-15 -3136 ((-2 (|:| |coef2| |#2|) (|:| -3419 |#2|)) |#2| |#2|)) (-15 -3137 ((-2 (|:| |coef1| |#2|) (|:| -3419 |#2|)) |#2| |#2|)) (-15 -4036 (|#1| |#2|)) (-15 -3138 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4036 |#1|)) |#2|)) (-15 -3139 ((-2 (|:| |coef2| |#2|) (|:| -4036 |#1|)) |#2|)) (-15 -3140 ((-594 |#2|) |#2| |#2|)) (-15 -3141 ((-594 (-719)) |#2| |#2|)) (IF (|has| |#1| (-432)) (PROGN (-15 -3142 (|#1| |#2| |#2|)) (-15 -3143 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3142 |#1|)) |#2| |#2|)) (-15 -3144 ((-2 (|:| |coef2| |#2|) (|:| -3142 |#1|)) |#2| |#2|)) (-15 -3419 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1179 |#2|) |#1| (-1179 |#2|))) (-15 -3740 ((-1179 |#2|) (-1179 |#2|) |#1|)) (-15 -4031 ((-2 (|:| -4229 |#1|) (|:| -2046 |#2|) (|:| -3166 |#2|)) |#2| |#2|)) (-15 -3145 ((-2 (|:| -2046 |#2|) (|:| -3166 |#2|)) |#2| |#2|)) (-15 -3146 (|#1| |#1| |#1| (-719))) (-15 -3147 (|#2| |#2| |#1| |#1| (-719))) (-15 -3148 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3149 (|#1| |#2| |#2|)) (-15 -3150 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4035 |#1|)) |#2| |#2|)) (-15 -3151 ((-2 (|:| |coef2| |#2|) (|:| -4035 |#1|)) |#2| |#2|))) (-523) (-1155 |#1|)) (T -910))
+((-3151 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4035 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))) (-3150 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4035 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))) (-3149 (*1 *2 *3 *3) (-12 (-4 *2 (-523)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1155 *2)))) (-3148 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-523)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1155 *3)))) (-3147 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-719)) (-4 *3 (-523)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1155 *3)))) (-3146 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *2 (-523)) (-5 *1 (-910 *2 *4)) (-4 *4 (-1155 *2)))) (-3145 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| -2046 *3) (|:| -3166 *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))) (-4031 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| -4229 *4) (|:| -2046 *3) (|:| -3166 *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))) (-3740 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-523)) (-5 *1 (-910 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-523)) (-5 *1 (-910 *3 *4)))) (-3419 (*1 *2 *2 *2) (-12 (-4 *3 (-432)) (-4 *3 (-523)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1155 *3)))) (-3144 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3142 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))) (-3143 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3142 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))) (-3142 (*1 *2 *3 *3) (-12 (-4 *2 (-523)) (-4 *2 (-432)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1155 *2)))) (-3141 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-594 (-719))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))) (-3140 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-594 *3)) (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))) (-3139 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4036 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))) (-3138 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4036 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))) (-4036 (*1 *2 *3) (-12 (-4 *2 (-523)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1155 *2)))) (-3137 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3419 *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))) (-3136 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3419 *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))) (-3135 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3419 *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))) (-4034 (*1 *2 *2 *2) (-12 (-4 *3 (-523)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1155 *3)))) (-3134 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))) (-3133 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))) (-3464 (*1 *2 *2 *2) (-12 (-4 *3 (-523)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1155 *3)))) (-3132 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *5 *3)) (-4 *3 (-1155 *5)))) (-3131 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *5 *3)) (-4 *3 (-1155 *5)))) (-3130 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-523)) (-5 *1 (-910 *4 *2)) (-4 *2 (-1155 *4)))) (-3129 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *5 *3)) (-4 *3 (-1155 *5)))) (-3128 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *5 *3)) (-4 *3 (-1155 *5)))) (-3127 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-523)) (-5 *1 (-910 *4 *2)) (-4 *2 (-1155 *4)))) (-3126 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4035 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))) (-3125 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4035 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))) (-3124 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4035 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))) (-4035 (*1 *2 *3 *3) (-12 (-4 *2 (-523)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1155 *2)))))
+(-10 -7 (-15 -4035 (|#1| |#2| |#2|)) (-15 -3124 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4035 |#1|)) |#2| |#2|)) (-15 -3125 ((-2 (|:| |coef2| |#2|) (|:| -4035 |#1|)) |#2| |#2|)) (-15 -3126 ((-2 (|:| |coef1| |#2|) (|:| -4035 |#1|)) |#2| |#2|)) (-15 -3127 (|#2| |#2| |#2| (-719))) (-15 -3128 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -3129 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -3130 (|#2| |#2| |#2| (-719))) (-15 -3131 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -3132 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -3464 (|#2| |#2| |#2|)) (-15 -3133 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3134 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4034 (|#2| |#2| |#2|)) (-15 -3135 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3419 |#2|)) |#2| |#2|)) (-15 -3136 ((-2 (|:| |coef2| |#2|) (|:| -3419 |#2|)) |#2| |#2|)) (-15 -3137 ((-2 (|:| |coef1| |#2|) (|:| -3419 |#2|)) |#2| |#2|)) (-15 -4036 (|#1| |#2|)) (-15 -3138 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4036 |#1|)) |#2|)) (-15 -3139 ((-2 (|:| |coef2| |#2|) (|:| -4036 |#1|)) |#2|)) (-15 -3140 ((-594 |#2|) |#2| |#2|)) (-15 -3141 ((-594 (-719)) |#2| |#2|)) (IF (|has| |#1| (-432)) (PROGN (-15 -3142 (|#1| |#2| |#2|)) (-15 -3143 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3142 |#1|)) |#2| |#2|)) (-15 -3144 ((-2 (|:| |coef2| |#2|) (|:| -3142 |#1|)) |#2| |#2|)) (-15 -3419 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1179 |#2|) |#1| (-1179 |#2|))) (-15 -3740 ((-1179 |#2|) (-1179 |#2|) |#1|)) (-15 -4031 ((-2 (|:| -4229 |#1|) (|:| -2046 |#2|) (|:| -3166 |#2|)) |#2| |#2|)) (-15 -3145 ((-2 (|:| -2046 |#2|) (|:| -3166 |#2|)) |#2| |#2|)) (-15 -3146 (|#1| |#1| |#1| (-719))) (-15 -3147 (|#2| |#2| |#1| |#1| (-719))) (-15 -3148 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3149 (|#1| |#2| |#2|)) (-15 -3150 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4035 |#1|)) |#2| |#2|)) (-15 -3151 ((-2 (|:| |coef2| |#2|) (|:| -4035 |#1|)) |#2| |#2|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) 27)) (-3815 (($) NIL T CONST)) (-3153 (((-594 (-594 (-516))) (-594 (-516))) 29)) (-3152 (((-516) $) 45)) (-3154 (($ (-594 (-516))) 17)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4246 (((-594 (-516)) $) 12)) (-3273 (($ $) 32)) (-4233 (((-805) $) 43) (((-594 (-516)) $) 10)) (-2920 (($) 7 T CONST)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 20)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 19)) (-4118 (($ $ $) 21)) (* (($ (-860) $) NIL) (($ (-719) $) 25)))
+(((-911) (-13 (-745) (-572 (-594 (-516))) (-10 -8 (-15 -3154 ($ (-594 (-516)))) (-15 -3153 ((-594 (-594 (-516))) (-594 (-516)))) (-15 -3152 ((-516) $)) (-15 -3273 ($ $)) (-15 -4233 ((-594 (-516)) $))))) (T -911))
+((-3154 (*1 *1 *2) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-911)))) (-3153 (*1 *2 *3) (-12 (-5 *2 (-594 (-594 (-516)))) (-5 *1 (-911)) (-5 *3 (-594 (-516))))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-911)))) (-3273 (*1 *1 *1) (-5 *1 (-911))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-911)))))
+(-13 (-745) (-572 (-594 (-516))) (-10 -8 (-15 -3154 ($ (-594 (-516)))) (-15 -3153 ((-594 (-594 (-516))) (-594 (-516)))) (-15 -3152 ((-516) $)) (-15 -3273 ($ $)) (-15 -4233 ((-594 (-516)) $))))
+((-4224 (($ $ |#2|) 30)) (-4116 (($ $) 22) (($ $ $) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-388 (-516)) $) 26) (($ $ (-388 (-516))) 28)))
+(((-912 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-388 (-516)))) (-15 * (|#1| (-388 (-516)) |#1|)) (-15 -4224 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-516) |#1|)) (-15 -4116 (|#1| |#1| |#1|)) (-15 -4116 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-860) |#1|))) (-913 |#2| |#3| |#4|) (-984) (-740) (-795)) (T -912))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-388 (-516)))) (-15 * (|#1| (-388 (-516)) |#1|)) (-15 -4224 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-516) |#1|)) (-15 -4116 (|#1| |#1| |#1|)) (-15 -4116 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-860) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-3347 (((-594 |#3|) $) 74)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 51 (|has| |#1| (-523)))) (-2118 (($ $) 52 (|has| |#1| (-523)))) (-2116 (((-110) $) 54 (|has| |#1| (-523)))) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-4235 (($ $) 60)) (-3741 (((-3 $ "failed") $) 34)) (-3156 (((-110) $) 73)) (-2436 (((-110) $) 31)) (-4213 (((-110) $) 62)) (-3157 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-594 |#3|) (-594 |#2|)) 75)) (-4234 (($ (-1 |#1| |#1|) $) 63)) (-3158 (($ $) 65)) (-3449 ((|#1| $) 66)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-3740 (((-3 $ "failed") $ $) 50 (|has| |#1| (-523)))) (-4223 ((|#2| $) 64)) (-3155 (($ $) 72)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ (-388 (-516))) 57 (|has| |#1| (-37 (-388 (-516))))) (($ $) 49 (|has| |#1| (-523))) (($ |#1|) 47 (|has| |#1| (-162)))) (-3959 ((|#1| $ |#2|) 59)) (-2965 (((-3 $ "failed") $) 48 (|has| |#1| (-138)))) (-3385 (((-719)) 29)) (-2117 (((-110) $ $) 53 (|has| |#1| (-523)))) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4224 (($ $ |#1|) 58 (|has| |#1| (-344)))) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-388 (-516)) $) 56 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) 55 (|has| |#1| (-37 (-388 (-516)))))))
+(((-913 |#1| |#2| |#3|) (-133) (-984) (-740) (-795)) (T -913))
+((-3449 (*1 *2 *1) (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *3 (-740)) (-4 *4 (-795)) (-4 *2 (-984)))) (-3158 (*1 *1 *1) (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-740)) (-4 *4 (-795)))) (-4223 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *2 *4)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *2 (-740)))) (-3157 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-913 *4 *3 *2)) (-4 *4 (-984)) (-4 *3 (-740)) (-4 *2 (-795)))) (-3157 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-594 *6)) (-5 *3 (-594 *5)) (-4 *1 (-913 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-740)) (-4 *6 (-795)))) (-3347 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-740)) (-4 *5 (-795)) (-5 *2 (-594 *5)))) (-3156 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-740)) (-4 *5 (-795)) (-5 *2 (-110)))) (-3155 (*1 *1 *1) (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-740)) (-4 *4 (-795)))))
+(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -3157 ($ $ |t#3| |t#2|)) (-15 -3157 ($ $ (-594 |t#3|) (-594 |t#2|))) (-15 -3158 ($ $)) (-15 -3449 (|t#1| $)) (-15 -4223 (|t#2| $)) (-15 -3347 ((-594 |t#3|) $)) (-15 -3156 ((-110) $)) (-15 -3155 ($ $))))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #1=(-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-523)) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-388 (-516)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -3810 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-805)) . T) ((-162) -3810 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-272) |has| |#1| (-523)) ((-523) |has| |#1| (-523)) ((-599 #1#) |has| |#1| (-37 (-388 (-516)))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #1#) |has| |#1| (-37 (-388 (-516)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-523)) ((-675) . T) ((-989 #1#) |has| |#1| (-37 (-388 (-516)))) ((-989 |#1|) . T) ((-989 $) -3810 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-3159 (((-1017 (-208)) $) 8)) (-3160 (((-1017 (-208)) $) 9)) (-3161 (((-1017 (-208)) $) 10)) (-3162 (((-594 (-594 (-884 (-208)))) $) 11)) (-4233 (((-805) $) 6)))
+(((-914) (-133)) (T -914))
+((-3162 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-594 (-594 (-884 (-208))))))) (-3161 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1017 (-208))))) (-3160 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1017 (-208))))) (-3159 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1017 (-208))))))
+(-13 (-571 (-805)) (-10 -8 (-15 -3162 ((-594 (-594 (-884 (-208)))) $)) (-15 -3161 ((-1017 (-208)) $)) (-15 -3160 ((-1017 (-208)) $)) (-15 -3159 ((-1017 (-208)) $))))
+(((-571 (-805)) . T))
+((-3347 (((-594 |#4|) $) 23)) (-3172 (((-110) $) 48)) (-3163 (((-110) $) 47)) (-3173 (((-2 (|:| |under| $) (|:| -3389 $) (|:| |upper| $)) $ |#4|) 36)) (-3168 (((-110) $) 49)) (-3170 (((-110) $ $) 55)) (-3169 (((-110) $ $) 58)) (-3171 (((-110) $) 53)) (-3164 (((-594 |#5|) (-594 |#5|) $) 90)) (-3165 (((-594 |#5|) (-594 |#5|) $) 87)) (-3166 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3178 (((-594 |#4|) $) 27)) (-3177 (((-110) |#4| $) 30)) (-3167 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3174 (($ $ |#4|) 33)) (-3176 (($ $ |#4|) 32)) (-3175 (($ $ |#4|) 34)) (-3317 (((-110) $ $) 40)))
+(((-915 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3163 ((-110) |#1|)) (-15 -3164 ((-594 |#5|) (-594 |#5|) |#1|)) (-15 -3165 ((-594 |#5|) (-594 |#5|) |#1|)) (-15 -3166 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3167 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3168 ((-110) |#1|)) (-15 -3169 ((-110) |#1| |#1|)) (-15 -3170 ((-110) |#1| |#1|)) (-15 -3171 ((-110) |#1|)) (-15 -3172 ((-110) |#1|)) (-15 -3173 ((-2 (|:| |under| |#1|) (|:| -3389 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3174 (|#1| |#1| |#4|)) (-15 -3175 (|#1| |#1| |#4|)) (-15 -3176 (|#1| |#1| |#4|)) (-15 -3177 ((-110) |#4| |#1|)) (-15 -3178 ((-594 |#4|) |#1|)) (-15 -3347 ((-594 |#4|) |#1|)) (-15 -3317 ((-110) |#1| |#1|))) (-916 |#2| |#3| |#4| |#5|) (-984) (-741) (-795) (-997 |#2| |#3| |#4|)) (T -915))
+NIL
+(-10 -8 (-15 -3163 ((-110) |#1|)) (-15 -3164 ((-594 |#5|) (-594 |#5|) |#1|)) (-15 -3165 ((-594 |#5|) (-594 |#5|) |#1|)) (-15 -3166 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3167 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3168 ((-110) |#1|)) (-15 -3169 ((-110) |#1| |#1|)) (-15 -3170 ((-110) |#1| |#1|)) (-15 -3171 ((-110) |#1|)) (-15 -3172 ((-110) |#1|)) (-15 -3173 ((-2 (|:| |under| |#1|) (|:| -3389 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3174 (|#1| |#1| |#4|)) (-15 -3175 (|#1| |#1| |#4|)) (-15 -3176 (|#1| |#1| |#4|)) (-15 -3177 ((-110) |#4| |#1|)) (-15 -3178 ((-594 |#4|) |#1|)) (-15 -3347 ((-594 |#4|) |#1|)) (-15 -3317 ((-110) |#1| |#1|)))
+((-2828 (((-110) $ $) 7)) (-3347 (((-594 |#3|) $) 33)) (-3172 (((-110) $) 26)) (-3163 (((-110) $) 17 (|has| |#1| (-523)))) (-3173 (((-2 (|:| |under| $) (|:| -3389 $) (|:| |upper| $)) $ |#3|) 27)) (-1217 (((-110) $ (-719)) 44)) (-3992 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4269)))) (-3815 (($) 45 T CONST)) (-3168 (((-110) $) 22 (|has| |#1| (-523)))) (-3170 (((-110) $ $) 24 (|has| |#1| (-523)))) (-3169 (((-110) $ $) 23 (|has| |#1| (-523)))) (-3171 (((-110) $) 25 (|has| |#1| (-523)))) (-3164 (((-594 |#4|) (-594 |#4|) $) 18 (|has| |#1| (-523)))) (-3165 (((-594 |#4|) (-594 |#4|) $) 19 (|has| |#1| (-523)))) (-3432 (((-3 $ "failed") (-594 |#4|)) 36)) (-3431 (($ (-594 |#4|)) 35)) (-1349 (($ $) 68 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-3685 (($ |#4| $) 67 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4269)))) (-3166 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-523)))) (-4121 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4269)))) (-2018 (((-594 |#4|) $) 52 (|has| $ (-6 -4269)))) (-3455 ((|#3| $) 34)) (-4001 (((-110) $ (-719)) 43)) (-2445 (((-594 |#4|) $) 53 (|has| $ (-6 -4269)))) (-3516 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-2022 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#4| |#4|) $) 47)) (-3178 (((-594 |#3|) $) 32)) (-3177 (((-110) |#3| $) 31)) (-3998 (((-110) $ (-719)) 42)) (-3513 (((-1081) $) 9)) (-3167 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-523)))) (-3514 (((-1045) $) 10)) (-1350 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-2020 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 |#4|) (-594 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-275 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-594 (-275 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-1218 (((-110) $ $) 38)) (-3682 (((-110) $) 41)) (-3847 (($) 40)) (-2019 (((-719) |#4| $) 54 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4269)))) (-3678 (($ $) 39)) (-4246 (((-505) $) 69 (|has| |#4| (-572 (-505))))) (-3804 (($ (-594 |#4|)) 60)) (-3174 (($ $ |#3|) 28)) (-3176 (($ $ |#3|) 30)) (-3175 (($ $ |#3|) 29)) (-4233 (((-805) $) 11) (((-594 |#4|) $) 37)) (-2021 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 6)) (-4232 (((-719) $) 46 (|has| $ (-6 -4269)))))
+(((-916 |#1| |#2| |#3| |#4|) (-133) (-984) (-741) (-795) (-997 |t#1| |t#2| |t#3|)) (T -916))
+((-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *1 (-916 *3 *4 *5 *6)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *1 (-916 *3 *4 *5 *6)))) (-3455 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-997 *3 *4 *2)) (-4 *2 (-795)))) (-3347 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-594 *5)))) (-3178 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-594 *5)))) (-3177 (*1 *2 *3 *1) (-12 (-4 *1 (-916 *4 *5 *3 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-4 *6 (-997 *4 *5 *3)) (-5 *2 (-110)))) (-3176 (*1 *1 *1 *2) (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *5 (-997 *3 *4 *2)))) (-3175 (*1 *1 *1 *2) (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *5 (-997 *3 *4 *2)))) (-3174 (*1 *1 *1 *2) (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *5 (-997 *3 *4 *2)))) (-3173 (*1 *2 *1 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-4 *6 (-997 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3389 *1) (|:| |upper| *1))) (-4 *1 (-916 *4 *5 *3 *6)))) (-3172 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-110)))) (-3171 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)) (-5 *2 (-110)))) (-3170 (*1 *2 *1 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)) (-5 *2 (-110)))) (-3169 (*1 *2 *1 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)) (-5 *2 (-110)))) (-3168 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)) (-5 *2 (-110)))) (-3167 (*1 *2 *3 *1) (-12 (-4 *1 (-916 *4 *5 *6 *3)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6)) (-4 *4 (-523)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3166 (*1 *2 *3 *1) (-12 (-4 *1 (-916 *4 *5 *6 *3)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6)) (-4 *4 (-523)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3165 (*1 *2 *2 *1) (-12 (-5 *2 (-594 *6)) (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)))) (-3164 (*1 *2 *2 *1) (-12 (-5 *2 (-594 *6)) (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)))) (-3163 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)) (-5 *2 (-110)))))
+(-13 (-1027) (-144 |t#4|) (-571 (-594 |t#4|)) (-10 -8 (-6 -4269) (-15 -3432 ((-3 $ "failed") (-594 |t#4|))) (-15 -3431 ($ (-594 |t#4|))) (-15 -3455 (|t#3| $)) (-15 -3347 ((-594 |t#3|) $)) (-15 -3178 ((-594 |t#3|) $)) (-15 -3177 ((-110) |t#3| $)) (-15 -3176 ($ $ |t#3|)) (-15 -3175 ($ $ |t#3|)) (-15 -3174 ($ $ |t#3|)) (-15 -3173 ((-2 (|:| |under| $) (|:| -3389 $) (|:| |upper| $)) $ |t#3|)) (-15 -3172 ((-110) $)) (IF (|has| |t#1| (-523)) (PROGN (-15 -3171 ((-110) $)) (-15 -3170 ((-110) $ $)) (-15 -3169 ((-110) $ $)) (-15 -3168 ((-110) $)) (-15 -3167 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3166 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3165 ((-594 |t#4|) (-594 |t#4|) $)) (-15 -3164 ((-594 |t#4|) (-594 |t#4|) $)) (-15 -3163 ((-110) $))) |%noBranch|)))
+(((-33) . T) ((-99) . T) ((-571 (-594 |#4|)) . T) ((-571 (-805)) . T) ((-144 |#4|) . T) ((-572 (-505)) |has| |#4| (-572 (-505))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-468 |#4|) . T) ((-491 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-1027) . T) ((-1134) . T))
+((-3180 (((-594 |#4|) |#4| |#4|) 118)) (-3203 (((-594 |#4|) (-594 |#4|) (-110)) 107 (|has| |#1| (-432))) (((-594 |#4|) (-594 |#4|)) 108 (|has| |#1| (-432)))) (-3190 (((-2 (|:| |goodPols| (-594 |#4|)) (|:| |badPols| (-594 |#4|))) (-594 |#4|)) 35)) (-3189 (((-110) |#4|) 34)) (-3202 (((-594 |#4|) |#4|) 103 (|has| |#1| (-432)))) (-3185 (((-2 (|:| |goodPols| (-594 |#4|)) (|:| |badPols| (-594 |#4|))) (-1 (-110) |#4|) (-594 |#4|)) 20)) (-3186 (((-2 (|:| |goodPols| (-594 |#4|)) (|:| |badPols| (-594 |#4|))) (-594 (-1 (-110) |#4|)) (-594 |#4|)) 22)) (-3187 (((-2 (|:| |goodPols| (-594 |#4|)) (|:| |badPols| (-594 |#4|))) (-594 (-1 (-110) |#4|)) (-594 |#4|)) 23)) (-3198 (((-3 (-2 (|:| |bas| (-456 |#1| |#2| |#3| |#4|)) (|:| -3602 (-594 |#4|))) "failed") (-594 |#4|)) 73)) (-3200 (((-594 |#4|) (-594 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-3201 (((-594 |#4|) (-594 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-3179 (((-594 |#4|) (-594 |#4|)) 110)) (-3195 (((-594 |#4|) (-594 |#4|) (-594 |#4|) (-110)) 48) (((-594 |#4|) (-594 |#4|) (-594 |#4|)) 50)) (-3196 ((|#4| |#4| (-594 |#4|)) 49)) (-3204 (((-594 |#4|) (-594 |#4|) (-594 |#4|)) 114 (|has| |#1| (-432)))) (-3206 (((-594 |#4|) (-594 |#4|) (-594 |#4|)) 117 (|has| |#1| (-432)))) (-3205 (((-594 |#4|) (-594 |#4|) (-594 |#4|)) 116 (|has| |#1| (-432)))) (-3181 (((-594 |#4|) (-594 |#4|) (-594 |#4|) (-1 (-594 |#4|) (-594 |#4|))) 87) (((-594 |#4|) (-594 |#4|) (-594 |#4|)) 89) (((-594 |#4|) (-594 |#4|) |#4|) 121) (((-594 |#4|) |#4| |#4|) 119) (((-594 |#4|) (-594 |#4|)) 88)) (-3209 (((-594 |#4|) (-594 |#4|) (-594 |#4|)) 100 (-12 (|has| |#1| (-140)) (|has| |#1| (-289))))) (-3188 (((-2 (|:| |goodPols| (-594 |#4|)) (|:| |badPols| (-594 |#4|))) (-594 |#4|)) 41)) (-3184 (((-110) (-594 |#4|)) 62)) (-3183 (((-110) (-594 |#4|) (-594 (-594 |#4|))) 53)) (-3192 (((-2 (|:| |goodPols| (-594 |#4|)) (|:| |badPols| (-594 |#4|))) (-594 |#4|)) 29)) (-3191 (((-110) |#4|) 28)) (-3208 (((-594 |#4|) (-594 |#4|)) 98 (-12 (|has| |#1| (-140)) (|has| |#1| (-289))))) (-3207 (((-594 |#4|) (-594 |#4|)) 99 (-12 (|has| |#1| (-140)) (|has| |#1| (-289))))) (-3197 (((-594 |#4|) (-594 |#4|)) 66)) (-3199 (((-594 |#4|) (-594 |#4|)) 79)) (-3182 (((-110) (-594 |#4|) (-594 |#4|)) 51)) (-3194 (((-2 (|:| |goodPols| (-594 |#4|)) (|:| |badPols| (-594 |#4|))) (-594 |#4|)) 39)) (-3193 (((-110) |#4|) 36)))
+(((-917 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3181 ((-594 |#4|) (-594 |#4|))) (-15 -3181 ((-594 |#4|) |#4| |#4|)) (-15 -3179 ((-594 |#4|) (-594 |#4|))) (-15 -3180 ((-594 |#4|) |#4| |#4|)) (-15 -3181 ((-594 |#4|) (-594 |#4|) |#4|)) (-15 -3181 ((-594 |#4|) (-594 |#4|) (-594 |#4|))) (-15 -3181 ((-594 |#4|) (-594 |#4|) (-594 |#4|) (-1 (-594 |#4|) (-594 |#4|)))) (-15 -3182 ((-110) (-594 |#4|) (-594 |#4|))) (-15 -3183 ((-110) (-594 |#4|) (-594 (-594 |#4|)))) (-15 -3184 ((-110) (-594 |#4|))) (-15 -3185 ((-2 (|:| |goodPols| (-594 |#4|)) (|:| |badPols| (-594 |#4|))) (-1 (-110) |#4|) (-594 |#4|))) (-15 -3186 ((-2 (|:| |goodPols| (-594 |#4|)) (|:| |badPols| (-594 |#4|))) (-594 (-1 (-110) |#4|)) (-594 |#4|))) (-15 -3187 ((-2 (|:| |goodPols| (-594 |#4|)) (|:| |badPols| (-594 |#4|))) (-594 (-1 (-110) |#4|)) (-594 |#4|))) (-15 -3188 ((-2 (|:| |goodPols| (-594 |#4|)) (|:| |badPols| (-594 |#4|))) (-594 |#4|))) (-15 -3189 ((-110) |#4|)) (-15 -3190 ((-2 (|:| |goodPols| (-594 |#4|)) (|:| |badPols| (-594 |#4|))) (-594 |#4|))) (-15 -3191 ((-110) |#4|)) (-15 -3192 ((-2 (|:| |goodPols| (-594 |#4|)) (|:| |badPols| (-594 |#4|))) (-594 |#4|))) (-15 -3193 ((-110) |#4|)) (-15 -3194 ((-2 (|:| |goodPols| (-594 |#4|)) (|:| |badPols| (-594 |#4|))) (-594 |#4|))) (-15 -3195 ((-594 |#4|) (-594 |#4|) (-594 |#4|))) (-15 -3195 ((-594 |#4|) (-594 |#4|) (-594 |#4|) (-110))) (-15 -3196 (|#4| |#4| (-594 |#4|))) (-15 -3197 ((-594 |#4|) (-594 |#4|))) (-15 -3198 ((-3 (-2 (|:| |bas| (-456 |#1| |#2| |#3| |#4|)) (|:| -3602 (-594 |#4|))) "failed") (-594 |#4|))) (-15 -3199 ((-594 |#4|) (-594 |#4|))) (-15 -3200 ((-594 |#4|) (-594 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3201 ((-594 |#4|) (-594 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-432)) (PROGN (-15 -3202 ((-594 |#4|) |#4|)) (-15 -3203 ((-594 |#4|) (-594 |#4|))) (-15 -3203 ((-594 |#4|) (-594 |#4|) (-110))) (-15 -3204 ((-594 |#4|) (-594 |#4|) (-594 |#4|))) (-15 -3205 ((-594 |#4|) (-594 |#4|) (-594 |#4|))) (-15 -3206 ((-594 |#4|) (-594 |#4|) (-594 |#4|)))) |%noBranch|) (IF (|has| |#1| (-289)) (IF (|has| |#1| (-140)) (PROGN (-15 -3207 ((-594 |#4|) (-594 |#4|))) (-15 -3208 ((-594 |#4|) (-594 |#4|))) (-15 -3209 ((-594 |#4|) (-594 |#4|) (-594 |#4|)))) |%noBranch|) |%noBranch|)) (-523) (-741) (-795) (-997 |#1| |#2| |#3|)) (T -917))
+((-3209 (*1 *2 *2 *2) (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-140)) (-4 *3 (-289)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3208 (*1 *2 *2) (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-140)) (-4 *3 (-289)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3207 (*1 *2 *2) (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-140)) (-4 *3 (-289)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3206 (*1 *2 *2 *2) (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3205 (*1 *2 *2 *2) (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3204 (*1 *2 *2 *2) (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3203 (*1 *2 *2 *3) (-12 (-5 *2 (-594 *7)) (-5 *3 (-110)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-432)) (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3203 (*1 *2 *2) (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3202 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-594 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-997 *4 *5 *6)))) (-3201 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-594 *8)) (-5 *3 (-1 (-110) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-917 *5 *6 *7 *8)))) (-3200 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-594 *9)) (-5 *3 (-1 (-110) *9)) (-5 *4 (-1 (-110) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-997 *6 *7 *8)) (-4 *6 (-523)) (-4 *7 (-741)) (-4 *8 (-795)) (-5 *1 (-917 *6 *7 *8 *9)))) (-3199 (*1 *2 *2) (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3198 (*1 *2 *3) (|partial| -12 (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-456 *4 *5 *6 *7)) (|:| -3602 (-594 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-594 *7)))) (-3197 (*1 *2 *2) (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3196 (*1 *2 *2 *3) (-12 (-5 *3 (-594 *2)) (-4 *2 (-997 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *2)))) (-3195 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-594 *7)) (-5 *3 (-110)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3195 (*1 *2 *2 *2) (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3194 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-594 *7)) (|:| |badPols| (-594 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-594 *7)))) (-3193 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-997 *4 *5 *6)))) (-3192 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-594 *7)) (|:| |badPols| (-594 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-594 *7)))) (-3191 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-997 *4 *5 *6)))) (-3190 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-594 *7)) (|:| |badPols| (-594 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-594 *7)))) (-3189 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-997 *4 *5 *6)))) (-3188 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-594 *7)) (|:| |badPols| (-594 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-594 *7)))) (-3187 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-1 (-110) *8))) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-2 (|:| |goodPols| (-594 *8)) (|:| |badPols| (-594 *8)))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-594 *8)))) (-3186 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-1 (-110) *8))) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-2 (|:| |goodPols| (-594 *8)) (|:| |badPols| (-594 *8)))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-594 *8)))) (-3185 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-110) *8)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-2 (|:| |goodPols| (-594 *8)) (|:| |badPols| (-594 *8)))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-594 *8)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3183 (*1 *2 *3 *4) (-12 (-5 *4 (-594 (-594 *8))) (-5 *3 (-594 *8)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *5 *6 *7 *8)))) (-3182 (*1 *2 *3 *3) (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3181 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-594 *7) (-594 *7))) (-5 *2 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3181 (*1 *2 *2 *2) (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3181 (*1 *2 *2 *3) (-12 (-5 *2 (-594 *3)) (-4 *3 (-997 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *3)))) (-3180 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-594 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-997 *4 *5 *6)))) (-3179 (*1 *2 *2) (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3181 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-594 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-997 *4 *5 *6)))) (-3181 (*1 *2 *2) (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3181 ((-594 |#4|) (-594 |#4|))) (-15 -3181 ((-594 |#4|) |#4| |#4|)) (-15 -3179 ((-594 |#4|) (-594 |#4|))) (-15 -3180 ((-594 |#4|) |#4| |#4|)) (-15 -3181 ((-594 |#4|) (-594 |#4|) |#4|)) (-15 -3181 ((-594 |#4|) (-594 |#4|) (-594 |#4|))) (-15 -3181 ((-594 |#4|) (-594 |#4|) (-594 |#4|) (-1 (-594 |#4|) (-594 |#4|)))) (-15 -3182 ((-110) (-594 |#4|) (-594 |#4|))) (-15 -3183 ((-110) (-594 |#4|) (-594 (-594 |#4|)))) (-15 -3184 ((-110) (-594 |#4|))) (-15 -3185 ((-2 (|:| |goodPols| (-594 |#4|)) (|:| |badPols| (-594 |#4|))) (-1 (-110) |#4|) (-594 |#4|))) (-15 -3186 ((-2 (|:| |goodPols| (-594 |#4|)) (|:| |badPols| (-594 |#4|))) (-594 (-1 (-110) |#4|)) (-594 |#4|))) (-15 -3187 ((-2 (|:| |goodPols| (-594 |#4|)) (|:| |badPols| (-594 |#4|))) (-594 (-1 (-110) |#4|)) (-594 |#4|))) (-15 -3188 ((-2 (|:| |goodPols| (-594 |#4|)) (|:| |badPols| (-594 |#4|))) (-594 |#4|))) (-15 -3189 ((-110) |#4|)) (-15 -3190 ((-2 (|:| |goodPols| (-594 |#4|)) (|:| |badPols| (-594 |#4|))) (-594 |#4|))) (-15 -3191 ((-110) |#4|)) (-15 -3192 ((-2 (|:| |goodPols| (-594 |#4|)) (|:| |badPols| (-594 |#4|))) (-594 |#4|))) (-15 -3193 ((-110) |#4|)) (-15 -3194 ((-2 (|:| |goodPols| (-594 |#4|)) (|:| |badPols| (-594 |#4|))) (-594 |#4|))) (-15 -3195 ((-594 |#4|) (-594 |#4|) (-594 |#4|))) (-15 -3195 ((-594 |#4|) (-594 |#4|) (-594 |#4|) (-110))) (-15 -3196 (|#4| |#4| (-594 |#4|))) (-15 -3197 ((-594 |#4|) (-594 |#4|))) (-15 -3198 ((-3 (-2 (|:| |bas| (-456 |#1| |#2| |#3| |#4|)) (|:| -3602 (-594 |#4|))) "failed") (-594 |#4|))) (-15 -3199 ((-594 |#4|) (-594 |#4|))) (-15 -3200 ((-594 |#4|) (-594 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3201 ((-594 |#4|) (-594 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-432)) (PROGN (-15 -3202 ((-594 |#4|) |#4|)) (-15 -3203 ((-594 |#4|) (-594 |#4|))) (-15 -3203 ((-594 |#4|) (-594 |#4|) (-110))) (-15 -3204 ((-594 |#4|) (-594 |#4|) (-594 |#4|))) (-15 -3205 ((-594 |#4|) (-594 |#4|) (-594 |#4|))) (-15 -3206 ((-594 |#4|) (-594 |#4|) (-594 |#4|)))) |%noBranch|) (IF (|has| |#1| (-289)) (IF (|has| |#1| (-140)) (PROGN (-15 -3207 ((-594 |#4|) (-594 |#4|))) (-15 -3208 ((-594 |#4|) (-594 |#4|))) (-15 -3209 ((-594 |#4|) (-594 |#4|) (-594 |#4|)))) |%noBranch|) |%noBranch|))
+((-3210 (((-2 (|:| R (-637 |#1|)) (|:| A (-637 |#1|)) (|:| |Ainv| (-637 |#1|))) (-637 |#1|) (-96 |#1|) (-1 |#1| |#1|)) 19)) (-3212 (((-594 (-2 (|:| C (-637 |#1|)) (|:| |g| (-1179 |#1|)))) (-637 |#1|) (-1179 |#1|)) 36)) (-3211 (((-637 |#1|) (-637 |#1|) (-637 |#1|) (-96 |#1|) (-1 |#1| |#1|)) 16)))
+(((-918 |#1|) (-10 -7 (-15 -3210 ((-2 (|:| R (-637 |#1|)) (|:| A (-637 |#1|)) (|:| |Ainv| (-637 |#1|))) (-637 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -3211 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -3212 ((-594 (-2 (|:| C (-637 |#1|)) (|:| |g| (-1179 |#1|)))) (-637 |#1|) (-1179 |#1|)))) (-344)) (T -918))
+((-3212 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-5 *2 (-594 (-2 (|:| C (-637 *5)) (|:| |g| (-1179 *5))))) (-5 *1 (-918 *5)) (-5 *3 (-637 *5)) (-5 *4 (-1179 *5)))) (-3211 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-637 *5)) (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344)) (-5 *1 (-918 *5)))) (-3210 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-96 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-344)) (-5 *2 (-2 (|:| R (-637 *6)) (|:| A (-637 *6)) (|:| |Ainv| (-637 *6)))) (-5 *1 (-918 *6)) (-5 *3 (-637 *6)))))
+(-10 -7 (-15 -3210 ((-2 (|:| R (-637 |#1|)) (|:| A (-637 |#1|)) (|:| |Ainv| (-637 |#1|))) (-637 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -3211 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -3212 ((-594 (-2 (|:| C (-637 |#1|)) (|:| |g| (-1179 |#1|)))) (-637 |#1|) (-1179 |#1|))))
+((-4245 (((-386 |#4|) |#4|) 48)))
+(((-919 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4245 ((-386 |#4|) |#4|))) (-795) (-741) (-432) (-891 |#3| |#2| |#1|)) (T -919))
+((-4245 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-432)) (-5 *2 (-386 *3)) (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-891 *6 *5 *4)))))
+(-10 -7 (-15 -4245 ((-386 |#4|) |#4|)))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-4117 (($ (-719)) 112 (|has| |#1| (-23)))) (-2243 (((-1185) $ (-516) (-516)) 40 (|has| $ (-6 -4270)))) (-1798 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-795)))) (-1796 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4270))) (($ $) 88 (-12 (|has| |#1| (-795)) (|has| $ (-6 -4270))))) (-3173 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-795)))) (-1217 (((-110) $ (-719)) 8)) (-4066 ((|#1| $ (-516) |#1|) 52 (|has| $ (-6 -4270))) ((|#1| $ (-1146 (-516)) |#1|) 58 (|has| $ (-6 -4270)))) (-3992 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4269)))) (-3815 (($) 7 T CONST)) (-2312 (($ $) 90 (|has| $ (-6 -4270)))) (-2313 (($ $) 100)) (-1349 (($ $) 78 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3685 (($ |#1| $) 77 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4269)))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4269)))) (-1587 ((|#1| $ (-516) |#1|) 53 (|has| $ (-6 -4270)))) (-3372 ((|#1| $ (-516)) 51)) (-3698 (((-516) (-1 (-110) |#1|) $) 97) (((-516) |#1| $) 96 (|has| |#1| (-1027))) (((-516) |#1| $ (-516)) 95 (|has| |#1| (-1027)))) (-3988 (($ (-594 |#1|)) 118)) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4114 (((-637 |#1|) $ $) 105 (|has| |#1| (-984)))) (-3896 (($ (-719) |#1|) 69)) (-4001 (((-110) $ (-719)) 9)) (-2245 (((-516) $) 43 (|has| (-516) (-795)))) (-3596 (($ $ $) 87 (|has| |#1| (-795)))) (-3792 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-795)))) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2246 (((-516) $) 44 (|has| (-516) (-795)))) (-3597 (($ $ $) 86 (|has| |#1| (-795)))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4111 ((|#1| $) 102 (-12 (|has| |#1| (-984)) (|has| |#1| (-941))))) (-3998 (((-110) $ (-719)) 10)) (-4112 ((|#1| $) 103 (-12 (|has| |#1| (-984)) (|has| |#1| (-941))))) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-2317 (($ |#1| $ (-516)) 60) (($ $ $ (-516)) 59)) (-2248 (((-594 (-516)) $) 46)) (-2249 (((-110) (-516) $) 47)) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-4079 ((|#1| $) 42 (|has| (-516) (-795)))) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-2244 (($ $ |#1|) 41 (|has| $ (-6 -4270)))) (-4047 (($ $ (-594 |#1|)) 115)) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-2247 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2250 (((-594 |#1|) $) 48)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-4078 ((|#1| $ (-516) |#1|) 50) ((|#1| $ (-516)) 49) (($ $ (-1146 (-516))) 63)) (-4115 ((|#1| $ $) 106 (|has| |#1| (-984)))) (-4190 (((-860) $) 117)) (-2318 (($ $ (-516)) 62) (($ $ (-1146 (-516))) 61)) (-4113 (($ $ $) 104)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1797 (($ $ $ (-516)) 91 (|has| $ (-6 -4270)))) (-3678 (($ $) 13)) (-4246 (((-505) $) 79 (|has| |#1| (-572 (-505)))) (($ (-594 |#1|)) 116)) (-3804 (($ (-594 |#1|)) 70)) (-4080 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-594 $)) 65)) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2826 (((-110) $ $) 84 (|has| |#1| (-795)))) (-2827 (((-110) $ $) 83 (|has| |#1| (-795)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2947 (((-110) $ $) 85 (|has| |#1| (-795)))) (-2948 (((-110) $ $) 82 (|has| |#1| (-795)))) (-4116 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4118 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-516) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-675))) (($ $ |#1|) 107 (|has| |#1| (-675)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-920 |#1|) (-133) (-984)) (T -920))
+((-3988 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-984)) (-4 *1 (-920 *3)))) (-4190 (*1 *2 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-984)) (-5 *2 (-860)))) (-4246 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-984)) (-4 *1 (-920 *3)))) (-4113 (*1 *1 *1 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-984)))) (-4047 (*1 *1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *1 (-920 *3)) (-4 *3 (-984)))))
+(-13 (-1178 |t#1|) (-10 -8 (-15 -3988 ($ (-594 |t#1|))) (-15 -4190 ((-860) $)) (-15 -4246 ($ (-594 |t#1|))) (-15 -4113 ($ $ $)) (-15 -4047 ($ $ (-594 |t#1|)))))
+(((-33) . T) ((-99) -3810 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-795)) (|has| |#1| (-571 (-805)))) ((-144 |#1|) . T) ((-572 (-505)) |has| |#1| (-572 (-505))) ((-268 #1=(-516) |#1|) . T) ((-270 #1# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-353 |#1|) . T) ((-468 |#1|) . T) ((-563 #1# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-19 |#1|) . T) ((-795) |has| |#1| (-795)) ((-1027) -3810 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-1134) . T) ((-1178 |#1|) . T))
+((-4234 (((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)) 17)))
+(((-921 |#1| |#2|) (-10 -7 (-15 -4234 ((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)))) (-984) (-984)) (T -921))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-884 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-5 *2 (-884 *6)) (-5 *1 (-921 *5 *6)))))
+(-10 -7 (-15 -4234 ((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|))))
+((-3215 ((|#1| (-884 |#1|)) 13)) (-3214 ((|#1| (-884 |#1|)) 12)) (-3213 ((|#1| (-884 |#1|)) 11)) (-3217 ((|#1| (-884 |#1|)) 15)) (-3221 ((|#1| (-884 |#1|)) 21)) (-3216 ((|#1| (-884 |#1|)) 14)) (-3218 ((|#1| (-884 |#1|)) 16)) (-3220 ((|#1| (-884 |#1|)) 20)) (-3219 ((|#1| (-884 |#1|)) 19)))
+(((-922 |#1|) (-10 -7 (-15 -3213 (|#1| (-884 |#1|))) (-15 -3214 (|#1| (-884 |#1|))) (-15 -3215 (|#1| (-884 |#1|))) (-15 -3216 (|#1| (-884 |#1|))) (-15 -3217 (|#1| (-884 |#1|))) (-15 -3218 (|#1| (-884 |#1|))) (-15 -3219 (|#1| (-884 |#1|))) (-15 -3220 (|#1| (-884 |#1|))) (-15 -3221 (|#1| (-884 |#1|)))) (-984)) (T -922))
+((-3221 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-3217 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-3215 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
+(-10 -7 (-15 -3213 (|#1| (-884 |#1|))) (-15 -3214 (|#1| (-884 |#1|))) (-15 -3215 (|#1| (-884 |#1|))) (-15 -3216 (|#1| (-884 |#1|))) (-15 -3217 (|#1| (-884 |#1|))) (-15 -3218 (|#1| (-884 |#1|))) (-15 -3219 (|#1| (-884 |#1|))) (-15 -3220 (|#1| (-884 |#1|))) (-15 -3221 (|#1| (-884 |#1|))))
+((-3239 (((-3 |#1| "failed") |#1|) 18)) (-3227 (((-3 |#1| "failed") |#1|) 6)) (-3237 (((-3 |#1| "failed") |#1|) 16)) (-3225 (((-3 |#1| "failed") |#1|) 4)) (-3241 (((-3 |#1| "failed") |#1|) 20)) (-3229 (((-3 |#1| "failed") |#1|) 8)) (-3222 (((-3 |#1| "failed") |#1| (-719)) 1)) (-3224 (((-3 |#1| "failed") |#1|) 3)) (-3223 (((-3 |#1| "failed") |#1|) 2)) (-3242 (((-3 |#1| "failed") |#1|) 21)) (-3230 (((-3 |#1| "failed") |#1|) 9)) (-3240 (((-3 |#1| "failed") |#1|) 19)) (-3228 (((-3 |#1| "failed") |#1|) 7)) (-3238 (((-3 |#1| "failed") |#1|) 17)) (-3226 (((-3 |#1| "failed") |#1|) 5)) (-3245 (((-3 |#1| "failed") |#1|) 24)) (-3233 (((-3 |#1| "failed") |#1|) 12)) (-3243 (((-3 |#1| "failed") |#1|) 22)) (-3231 (((-3 |#1| "failed") |#1|) 10)) (-3247 (((-3 |#1| "failed") |#1|) 26)) (-3235 (((-3 |#1| "failed") |#1|) 14)) (-3248 (((-3 |#1| "failed") |#1|) 27)) (-3236 (((-3 |#1| "failed") |#1|) 15)) (-3246 (((-3 |#1| "failed") |#1|) 25)) (-3234 (((-3 |#1| "failed") |#1|) 13)) (-3244 (((-3 |#1| "failed") |#1|) 23)) (-3232 (((-3 |#1| "failed") |#1|) 11)))
+(((-923 |#1|) (-133) (-1120)) (T -923))
+((-3248 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3247 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3246 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3245 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3244 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3243 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3242 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3241 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3240 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3239 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3238 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3237 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3236 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3235 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3234 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3233 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3232 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3231 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3230 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3229 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3228 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3227 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3226 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3225 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3224 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3223 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))) (-3222 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-719)) (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(-13 (-10 -7 (-15 -3222 ((-3 |t#1| "failed") |t#1| (-719))) (-15 -3223 ((-3 |t#1| "failed") |t#1|)) (-15 -3224 ((-3 |t#1| "failed") |t#1|)) (-15 -3225 ((-3 |t#1| "failed") |t#1|)) (-15 -3226 ((-3 |t#1| "failed") |t#1|)) (-15 -3227 ((-3 |t#1| "failed") |t#1|)) (-15 -3228 ((-3 |t#1| "failed") |t#1|)) (-15 -3229 ((-3 |t#1| "failed") |t#1|)) (-15 -3230 ((-3 |t#1| "failed") |t#1|)) (-15 -3231 ((-3 |t#1| "failed") |t#1|)) (-15 -3232 ((-3 |t#1| "failed") |t#1|)) (-15 -3233 ((-3 |t#1| "failed") |t#1|)) (-15 -3234 ((-3 |t#1| "failed") |t#1|)) (-15 -3235 ((-3 |t#1| "failed") |t#1|)) (-15 -3236 ((-3 |t#1| "failed") |t#1|)) (-15 -3237 ((-3 |t#1| "failed") |t#1|)) (-15 -3238 ((-3 |t#1| "failed") |t#1|)) (-15 -3239 ((-3 |t#1| "failed") |t#1|)) (-15 -3240 ((-3 |t#1| "failed") |t#1|)) (-15 -3241 ((-3 |t#1| "failed") |t#1|)) (-15 -3242 ((-3 |t#1| "failed") |t#1|)) (-15 -3243 ((-3 |t#1| "failed") |t#1|)) (-15 -3244 ((-3 |t#1| "failed") |t#1|)) (-15 -3245 ((-3 |t#1| "failed") |t#1|)) (-15 -3246 ((-3 |t#1| "failed") |t#1|)) (-15 -3247 ((-3 |t#1| "failed") |t#1|)) (-15 -3248 ((-3 |t#1| "failed") |t#1|))))
+((-3250 ((|#4| |#4| (-594 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-3249 ((|#4| |#4| (-594 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-4234 ((|#4| (-1 |#4| (-887 |#1|)) |#4|) 30)))
+(((-924 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3249 (|#4| |#4| |#3|)) (-15 -3249 (|#4| |#4| (-594 |#3|))) (-15 -3250 (|#4| |#4| |#3|)) (-15 -3250 (|#4| |#4| (-594 |#3|))) (-15 -4234 (|#4| (-1 |#4| (-887 |#1|)) |#4|))) (-984) (-741) (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $)) (-15 -4110 ((-3 $ "failed") (-1098))))) (-891 (-887 |#1|) |#2| |#3|)) (T -924))
+((-4234 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-887 *4))) (-4 *4 (-984)) (-4 *2 (-891 (-887 *4) *5 *6)) (-4 *5 (-741)) (-4 *6 (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $)) (-15 -4110 ((-3 $ #1="failed") (-1098)))))) (-5 *1 (-924 *4 *5 *6 *2)))) (-3250 (*1 *2 *2 *3) (-12 (-5 *3 (-594 *6)) (-4 *6 (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $)) (-15 -4110 ((-3 $ #1#) (-1098)))))) (-4 *4 (-984)) (-4 *5 (-741)) (-5 *1 (-924 *4 *5 *6 *2)) (-4 *2 (-891 (-887 *4) *5 *6)))) (-3250 (*1 *2 *2 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $)) (-15 -4110 ((-3 $ #1#) (-1098)))))) (-5 *1 (-924 *4 *5 *3 *2)) (-4 *2 (-891 (-887 *4) *5 *3)))) (-3249 (*1 *2 *2 *3) (-12 (-5 *3 (-594 *6)) (-4 *6 (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $)) (-15 -4110 ((-3 $ #1#) (-1098)))))) (-4 *4 (-984)) (-4 *5 (-741)) (-5 *1 (-924 *4 *5 *6 *2)) (-4 *2 (-891 (-887 *4) *5 *6)))) (-3249 (*1 *2 *2 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $)) (-15 -4110 ((-3 $ #1#) (-1098)))))) (-5 *1 (-924 *4 *5 *3 *2)) (-4 *2 (-891 (-887 *4) *5 *3)))))
+(-10 -7 (-15 -3249 (|#4| |#4| |#3|)) (-15 -3249 (|#4| |#4| (-594 |#3|))) (-15 -3250 (|#4| |#4| |#3|)) (-15 -3250 (|#4| |#4| (-594 |#3|))) (-15 -4234 (|#4| (-1 |#4| (-887 |#1|)) |#4|)))
+((-3251 ((|#2| |#3|) 35)) (-4198 (((-2 (|:| -2071 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) |#2|) 73)) (-4197 (((-2 (|:| -2071 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) 89)))
+(((-925 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4197 ((-2 (|:| -2071 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))))) (-15 -4198 ((-2 (|:| -2071 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) |#2|)) (-15 -3251 (|#2| |#3|))) (-331) (-1155 |#1|) (-1155 |#2|) (-673 |#2| |#3|)) (T -925))
+((-3251 (*1 *2 *3) (-12 (-4 *3 (-1155 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-925 *4 *2 *3 *5)) (-4 *4 (-331)) (-4 *5 (-673 *2 *3)))) (-4198 (*1 *2 *3) (-12 (-4 *4 (-331)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 *3)) (-5 *2 (-2 (|:| -2071 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3)))) (-5 *1 (-925 *4 *3 *5 *6)) (-4 *6 (-673 *3 *5)))) (-4197 (*1 *2) (-12 (-4 *3 (-331)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| -2071 (-637 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-637 *4)))) (-5 *1 (-925 *3 *4 *5 *6)) (-4 *6 (-673 *4 *5)))))
+(-10 -7 (-15 -4197 ((-2 (|:| -2071 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))))) (-15 -4198 ((-2 (|:| -2071 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) |#2|)) (-15 -3251 (|#2| |#3|)))
+((-2828 (((-110) $ $) NIL)) (-3679 (((-3 (-110) #1="failed") $) 69)) (-3931 (($ $) 36 (-12 (|has| |#1| (-140)) (|has| |#1| (-289))))) (-3255 (($ $ (-3 (-110) #1#)) 70)) (-3256 (($ (-594 |#4|) |#4|) 25)) (-3513 (((-1081) $) NIL)) (-3252 (($ $) 67)) (-3514 (((-1045) $) NIL)) (-3682 (((-110) $) 68)) (-3847 (($) 30)) (-3253 ((|#4| $) 72)) (-3254 (((-594 |#4|) $) 71)) (-4233 (((-805) $) 66)) (-3317 (((-110) $ $) NIL)))
+(((-926 |#1| |#2| |#3| |#4|) (-13 (-1027) (-571 (-805)) (-10 -8 (-15 -3847 ($)) (-15 -3256 ($ (-594 |#4|) |#4|)) (-15 -3679 ((-3 (-110) #1="failed") $)) (-15 -3255 ($ $ (-3 (-110) #1#))) (-15 -3682 ((-110) $)) (-15 -3254 ((-594 |#4|) $)) (-15 -3253 (|#4| $)) (-15 -3252 ($ $)) (IF (|has| |#1| (-289)) (IF (|has| |#1| (-140)) (-15 -3931 ($ $)) |%noBranch|) |%noBranch|))) (-432) (-795) (-741) (-891 |#1| |#3| |#2|)) (T -926))
+((-3847 (*1 *1) (-12 (-4 *2 (-432)) (-4 *3 (-795)) (-4 *4 (-741)) (-5 *1 (-926 *2 *3 *4 *5)) (-4 *5 (-891 *2 *4 *3)))) (-3256 (*1 *1 *2 *3) (-12 (-5 *2 (-594 *3)) (-4 *3 (-891 *4 *6 *5)) (-4 *4 (-432)) (-4 *5 (-795)) (-4 *6 (-741)) (-5 *1 (-926 *4 *5 *6 *3)))) (-3679 (*1 *2 *1) (|partial| -12 (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *2 (-110)) (-5 *1 (-926 *3 *4 *5 *6)) (-4 *6 (-891 *3 *5 *4)))) (-3255 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-110) "failed")) (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *1 (-926 *3 *4 *5 *6)) (-4 *6 (-891 *3 *5 *4)))) (-3682 (*1 *2 *1) (-12 (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *2 (-110)) (-5 *1 (-926 *3 *4 *5 *6)) (-4 *6 (-891 *3 *5 *4)))) (-3254 (*1 *2 *1) (-12 (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *2 (-594 *6)) (-5 *1 (-926 *3 *4 *5 *6)) (-4 *6 (-891 *3 *5 *4)))) (-3253 (*1 *2 *1) (-12 (-4 *2 (-891 *3 *5 *4)) (-5 *1 (-926 *3 *4 *5 *2)) (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)))) (-3252 (*1 *1 *1) (-12 (-4 *2 (-432)) (-4 *3 (-795)) (-4 *4 (-741)) (-5 *1 (-926 *2 *3 *4 *5)) (-4 *5 (-891 *2 *4 *3)))) (-3931 (*1 *1 *1) (-12 (-4 *2 (-140)) (-4 *2 (-289)) (-4 *2 (-432)) (-4 *3 (-795)) (-4 *4 (-741)) (-5 *1 (-926 *2 *3 *4 *5)) (-4 *5 (-891 *2 *4 *3)))))
+(-13 (-1027) (-571 (-805)) (-10 -8 (-15 -3847 ($)) (-15 -3256 ($ (-594 |#4|) |#4|)) (-15 -3679 ((-3 (-110) #1="failed") $)) (-15 -3255 ($ $ (-3 (-110) #1#))) (-15 -3682 ((-110) $)) (-15 -3254 ((-594 |#4|) $)) (-15 -3253 (|#4| $)) (-15 -3252 ($ $)) (IF (|has| |#1| (-289)) (IF (|has| |#1| (-140)) (-15 -3931 ($ $)) |%noBranch|) |%noBranch|)))
+((-3257 (((-926 (-388 (-516)) (-806 |#1|) (-222 |#2| (-719)) (-230 |#1| (-388 (-516)))) (-926 (-388 (-516)) (-806 |#1|) (-222 |#2| (-719)) (-230 |#1| (-388 (-516))))) 69)))
+(((-927 |#1| |#2|) (-10 -7 (-15 -3257 ((-926 (-388 (-516)) (-806 |#1|) (-222 |#2| (-719)) (-230 |#1| (-388 (-516)))) (-926 (-388 (-516)) (-806 |#1|) (-222 |#2| (-719)) (-230 |#1| (-388 (-516))))))) (-594 (-1098)) (-719)) (T -927))
+((-3257 (*1 *2 *2) (-12 (-5 *2 (-926 (-388 (-516)) (-806 *3) (-222 *4 (-719)) (-230 *3 (-388 (-516))))) (-14 *3 (-594 (-1098))) (-14 *4 (-719)) (-5 *1 (-927 *3 *4)))))
+(-10 -7 (-15 -3257 ((-926 (-388 (-516)) (-806 |#1|) (-222 |#2| (-719)) (-230 |#1| (-388 (-516)))) (-926 (-388 (-516)) (-806 |#1|) (-222 |#2| (-719)) (-230 |#1| (-388 (-516)))))))
+((-3541 (((-110) |#5| |#5|) 38)) (-3544 (((-110) |#5| |#5|) 52)) (-3549 (((-110) |#5| (-594 |#5|)) 74) (((-110) |#5| |#5|) 61)) (-3545 (((-110) (-594 |#4|) (-594 |#4|)) 58)) (-3551 (((-110) (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|)) (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) 63)) (-3540 (((-1185)) 33)) (-3539 (((-1185) (-1081) (-1081) (-1081)) 29)) (-3550 (((-594 |#5|) (-594 |#5|)) 81)) (-3552 (((-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|)))) 79)) (-3553 (((-594 (-2 (|:| -3537 (-594 |#4|)) (|:| -1610 |#5|) (|:| |ineq| (-594 |#4|)))) (-594 |#4|) (-594 |#5|) (-110) (-110)) 101)) (-3543 (((-110) |#5| |#5|) 47)) (-3548 (((-3 (-110) "failed") |#5| |#5|) 71)) (-3546 (((-110) (-594 |#4|) (-594 |#4|)) 57)) (-3547 (((-110) (-594 |#4|) (-594 |#4|)) 59)) (-3981 (((-110) (-594 |#4|) (-594 |#4|)) 60)) (-3554 (((-3 (-2 (|:| -3537 (-594 |#4|)) (|:| -1610 |#5|) (|:| |ineq| (-594 |#4|))) "failed") (-594 |#4|) |#5| (-594 |#4|) (-110) (-110) (-110) (-110) (-110)) 97)) (-3542 (((-594 |#5|) (-594 |#5|)) 43)))
+(((-928 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3539 ((-1185) (-1081) (-1081) (-1081))) (-15 -3540 ((-1185))) (-15 -3541 ((-110) |#5| |#5|)) (-15 -3542 ((-594 |#5|) (-594 |#5|))) (-15 -3543 ((-110) |#5| |#5|)) (-15 -3544 ((-110) |#5| |#5|)) (-15 -3545 ((-110) (-594 |#4|) (-594 |#4|))) (-15 -3546 ((-110) (-594 |#4|) (-594 |#4|))) (-15 -3547 ((-110) (-594 |#4|) (-594 |#4|))) (-15 -3981 ((-110) (-594 |#4|) (-594 |#4|))) (-15 -3548 ((-3 (-110) "failed") |#5| |#5|)) (-15 -3549 ((-110) |#5| |#5|)) (-15 -3549 ((-110) |#5| (-594 |#5|))) (-15 -3550 ((-594 |#5|) (-594 |#5|))) (-15 -3551 ((-110) (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|)) (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|)))) (-15 -3552 ((-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) (-15 -3553 ((-594 (-2 (|:| -3537 (-594 |#4|)) (|:| -1610 |#5|) (|:| |ineq| (-594 |#4|)))) (-594 |#4|) (-594 |#5|) (-110) (-110))) (-15 -3554 ((-3 (-2 (|:| -3537 (-594 |#4|)) (|:| -1610 |#5|) (|:| |ineq| (-594 |#4|))) "failed") (-594 |#4|) |#5| (-594 |#4|) (-110) (-110) (-110) (-110) (-110)))) (-432) (-741) (-795) (-997 |#1| |#2| |#3|) (-1002 |#1| |#2| |#3| |#4|)) (T -928))
+((-3554 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-997 *6 *7 *8)) (-5 *2 (-2 (|:| -3537 (-594 *9)) (|:| -1610 *4) (|:| |ineq| (-594 *9)))) (-5 *1 (-928 *6 *7 *8 *9 *4)) (-5 *3 (-594 *9)) (-4 *4 (-1002 *6 *7 *8 *9)))) (-3553 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-594 *10)) (-5 *5 (-110)) (-4 *10 (-1002 *6 *7 *8 *9)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-997 *6 *7 *8)) (-5 *2 (-594 (-2 (|:| -3537 (-594 *9)) (|:| -1610 *10) (|:| |ineq| (-594 *9))))) (-5 *1 (-928 *6 *7 *8 *9 *10)) (-5 *3 (-594 *9)))) (-3552 (*1 *2 *2) (-12 (-5 *2 (-594 (-2 (|:| |val| (-594 *6)) (|:| -1610 *7)))) (-4 *6 (-997 *3 *4 *5)) (-4 *7 (-1002 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-928 *3 *4 *5 *6 *7)))) (-3551 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-594 *7)) (|:| -1610 *8))) (-4 *7 (-997 *4 *5 *6)) (-4 *8 (-1002 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8)))) (-3550 (*1 *2 *2) (-12 (-5 *2 (-594 *7)) (-4 *7 (-1002 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-5 *1 (-928 *3 *4 *5 *6 *7)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *4 (-594 *3)) (-4 *3 (-1002 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-997 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-928 *5 *6 *7 *8 *3)))) (-3549 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1002 *4 *5 *6 *7)))) (-3548 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1002 *4 *5 *6 *7)))) (-3981 (*1 *2 *3 *3) (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1002 *4 *5 *6 *7)))) (-3547 (*1 *2 *3 *3) (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1002 *4 *5 *6 *7)))) (-3546 (*1 *2 *3 *3) (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1002 *4 *5 *6 *7)))) (-3545 (*1 *2 *3 *3) (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1002 *4 *5 *6 *7)))) (-3544 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1002 *4 *5 *6 *7)))) (-3543 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1002 *4 *5 *6 *7)))) (-3542 (*1 *2 *2) (-12 (-5 *2 (-594 *7)) (-4 *7 (-1002 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-5 *1 (-928 *3 *4 *5 *6 *7)))) (-3541 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1002 *4 *5 *6 *7)))) (-3540 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-1185)) (-5 *1 (-928 *3 *4 *5 *6 *7)) (-4 *7 (-1002 *3 *4 *5 *6)))) (-3539 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1002 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3539 ((-1185) (-1081) (-1081) (-1081))) (-15 -3540 ((-1185))) (-15 -3541 ((-110) |#5| |#5|)) (-15 -3542 ((-594 |#5|) (-594 |#5|))) (-15 -3543 ((-110) |#5| |#5|)) (-15 -3544 ((-110) |#5| |#5|)) (-15 -3545 ((-110) (-594 |#4|) (-594 |#4|))) (-15 -3546 ((-110) (-594 |#4|) (-594 |#4|))) (-15 -3547 ((-110) (-594 |#4|) (-594 |#4|))) (-15 -3981 ((-110) (-594 |#4|) (-594 |#4|))) (-15 -3548 ((-3 (-110) "failed") |#5| |#5|)) (-15 -3549 ((-110) |#5| |#5|)) (-15 -3549 ((-110) |#5| (-594 |#5|))) (-15 -3550 ((-594 |#5|) (-594 |#5|))) (-15 -3551 ((-110) (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|)) (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|)))) (-15 -3552 ((-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) (-15 -3553 ((-594 (-2 (|:| -3537 (-594 |#4|)) (|:| -1610 |#5|) (|:| |ineq| (-594 |#4|)))) (-594 |#4|) (-594 |#5|) (-110) (-110))) (-15 -3554 ((-3 (-2 (|:| -3537 (-594 |#4|)) (|:| -1610 |#5|) (|:| |ineq| (-594 |#4|))) "failed") (-594 |#4|) |#5| (-594 |#4|) (-110) (-110) (-110) (-110) (-110))))
+((-4110 (((-1098) $) 15)) (-3681 (((-1081) $) 16)) (-3498 (($ (-1098) (-1081)) 14)) (-4233 (((-805) $) 13)))
+(((-929) (-13 (-571 (-805)) (-10 -8 (-15 -3498 ($ (-1098) (-1081))) (-15 -4110 ((-1098) $)) (-15 -3681 ((-1081) $))))) (T -929))
+((-3498 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-1081)) (-5 *1 (-929)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-929)))) (-3681 (*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-929)))))
+(-13 (-571 (-805)) (-10 -8 (-15 -3498 ($ (-1098) (-1081))) (-15 -4110 ((-1098) $)) (-15 -3681 ((-1081) $))))
+((-3432 (((-3 |#2| #1="failed") $) NIL) (((-3 (-1098) #1#) $) 65) (((-3 (-388 (-516)) #1#) $) NIL) (((-3 (-516) #1#) $) 95)) (-3431 ((|#2| $) NIL) (((-1098) $) 60) (((-388 (-516)) $) NIL) (((-516) $) 92)) (-2297 (((-637 (-516)) (-637 $)) NIL) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL) (((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 $) (-1179 $)) 112) (((-637 |#2|) (-637 $)) 28)) (-3258 (($) 98)) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) 75) (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) 84)) (-3260 (($ $) 10)) (-3723 (((-3 $ "failed") $) 20)) (-4234 (($ (-1 |#2| |#2|) $) 22)) (-3724 (($) 16)) (-3387 (($ $) 54)) (-4089 (($ $) NIL) (($ $ (-719)) NIL) (($ $ (-1098)) NIL) (($ $ (-594 (-1098))) NIL) (($ $ (-1098) (-719)) NIL) (($ $ (-594 (-1098)) (-594 (-719))) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3259 (($ $) 12)) (-4246 (((-831 (-516)) $) 70) (((-831 (-359)) $) 79) (((-505) $) 40) (((-359) $) 44) (((-208) $) 47)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ $) NIL) (($ (-388 (-516))) 90) (($ |#2|) NIL) (($ (-1098)) 57)) (-3385 (((-719)) 31)) (-2948 (((-110) $ $) 50)))
+(((-930 |#1| |#2|) (-10 -8 (-15 -2948 ((-110) |#1| |#1|)) (-15 -3724 (|#1|)) (-15 -3723 ((-3 |#1| "failed") |#1|)) (-15 -3431 ((-516) |#1|)) (-15 -3432 ((-3 (-516) #1="failed") |#1|)) (-15 -3431 ((-388 (-516)) |#1|)) (-15 -3432 ((-3 (-388 (-516)) #1#) |#1|)) (-15 -4246 ((-208) |#1|)) (-15 -4246 ((-359) |#1|)) (-15 -4246 ((-505) |#1|)) (-15 -3431 ((-1098) |#1|)) (-15 -3432 ((-3 (-1098) #1#) |#1|)) (-15 -4233 (|#1| (-1098))) (-15 -3258 (|#1|)) (-15 -3387 (|#1| |#1|)) (-15 -3259 (|#1| |#1|)) (-15 -3260 (|#1| |#1|)) (-15 -3060 ((-829 (-359) |#1|) |#1| (-831 (-359)) (-829 (-359) |#1|))) (-15 -3060 ((-829 (-516) |#1|) |#1| (-831 (-516)) (-829 (-516) |#1|))) (-15 -4246 ((-831 (-359)) |#1|)) (-15 -4246 ((-831 (-516)) |#1|)) (-15 -2297 ((-637 |#2|) (-637 |#1|))) (-15 -2297 ((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 |#1|) (-1179 |#1|))) (-15 -2297 ((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 |#1|) (-1179 |#1|))) (-15 -2297 ((-637 (-516)) (-637 |#1|))) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)) (-594 (-719)))) (-15 -4089 (|#1| |#1| (-1098) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)))) (-15 -4089 (|#1| |#1| (-1098))) (-15 -4089 (|#1| |#1| (-719))) (-15 -4089 (|#1| |#1|)) (-15 -4234 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3431 (|#2| |#1|)) (-15 -3432 ((-3 |#2| #1#) |#1|)) (-15 -4233 (|#1| |#2|)) (-15 -4233 (|#1| (-388 (-516)))) (-15 -4233 (|#1| |#1|)) (-15 -4233 (|#1| (-516))) (-15 -3385 ((-719))) (-15 -4233 ((-805) |#1|))) (-931 |#2|) (-523)) (T -930))
+((-3385 (*1 *2) (-12 (-4 *4 (-523)) (-5 *2 (-719)) (-5 *1 (-930 *3 *4)) (-4 *3 (-931 *4)))))
+(-10 -8 (-15 -2948 ((-110) |#1| |#1|)) (-15 -3724 (|#1|)) (-15 -3723 ((-3 |#1| "failed") |#1|)) (-15 -3431 ((-516) |#1|)) (-15 -3432 ((-3 (-516) #1="failed") |#1|)) (-15 -3431 ((-388 (-516)) |#1|)) (-15 -3432 ((-3 (-388 (-516)) #1#) |#1|)) (-15 -4246 ((-208) |#1|)) (-15 -4246 ((-359) |#1|)) (-15 -4246 ((-505) |#1|)) (-15 -3431 ((-1098) |#1|)) (-15 -3432 ((-3 (-1098) #1#) |#1|)) (-15 -4233 (|#1| (-1098))) (-15 -3258 (|#1|)) (-15 -3387 (|#1| |#1|)) (-15 -3259 (|#1| |#1|)) (-15 -3260 (|#1| |#1|)) (-15 -3060 ((-829 (-359) |#1|) |#1| (-831 (-359)) (-829 (-359) |#1|))) (-15 -3060 ((-829 (-516) |#1|) |#1| (-831 (-516)) (-829 (-516) |#1|))) (-15 -4246 ((-831 (-359)) |#1|)) (-15 -4246 ((-831 (-516)) |#1|)) (-15 -2297 ((-637 |#2|) (-637 |#1|))) (-15 -2297 ((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 |#1|) (-1179 |#1|))) (-15 -2297 ((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 |#1|) (-1179 |#1|))) (-15 -2297 ((-637 (-516)) (-637 |#1|))) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)) (-594 (-719)))) (-15 -4089 (|#1| |#1| (-1098) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)))) (-15 -4089 (|#1| |#1| (-1098))) (-15 -4089 (|#1| |#1| (-719))) (-15 -4089 (|#1| |#1|)) (-15 -4234 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3431 (|#2| |#1|)) (-15 -3432 ((-3 |#2| #1#) |#1|)) (-15 -4233 (|#1| |#2|)) (-15 -4233 (|#1| (-388 (-516)))) (-15 -4233 (|#1| |#1|)) (-15 -4233 (|#1| (-516))) (-15 -3385 ((-719))) (-15 -4233 ((-805) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-3388 ((|#1| $) 139 (|has| |#1| (-289)))) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 41)) (-2118 (($ $) 40)) (-2116 (((-110) $) 38)) (-1319 (((-3 $ "failed") $ $) 19)) (-2970 (((-386 (-1092 $)) (-1092 $)) 130 (|has| |#1| (-851)))) (-4053 (($ $) 73)) (-4245 (((-386 $) $) 72)) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) 133 (|has| |#1| (-851)))) (-1655 (((-110) $ $) 59)) (-3905 (((-516) $) 120 (|has| |#1| (-768)))) (-3815 (($) 17 T CONST)) (-3432 (((-3 |#1| #2="failed") $) 178) (((-3 (-1098) #2#) $) 128 (|has| |#1| (-975 (-1098)))) (((-3 (-388 (-516)) #2#) $) 112 (|has| |#1| (-975 (-516)))) (((-3 (-516) #2#) $) 110 (|has| |#1| (-975 (-516))))) (-3431 ((|#1| $) 177) (((-1098) $) 127 (|has| |#1| (-975 (-1098)))) (((-388 (-516)) $) 111 (|has| |#1| (-975 (-516)))) (((-516) $) 109 (|has| |#1| (-975 (-516))))) (-2824 (($ $ $) 55)) (-2297 (((-637 (-516)) (-637 $)) 152 (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) 151 (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) 150) (((-637 |#1|) (-637 $)) 149)) (-3741 (((-3 $ "failed") $) 34)) (-3258 (($) 137 (|has| |#1| (-515)))) (-2823 (($ $ $) 56)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 51)) (-4005 (((-110) $) 71)) (-3460 (((-110) $) 122 (|has| |#1| (-768)))) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) 146 (|has| |#1| (-827 (-516)))) (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) 145 (|has| |#1| (-827 (-359))))) (-2436 (((-110) $) 31)) (-3260 (($ $) 141)) (-3262 ((|#1| $) 143)) (-3723 (((-3 $ "failed") $) 108 (|has| |#1| (-1074)))) (-3461 (((-110) $) 121 (|has| |#1| (-768)))) (-1652 (((-3 (-594 $) #3="failed") (-594 $) $) 52)) (-3596 (($ $ $) 118 (|has| |#1| (-795)))) (-3597 (($ $ $) 117 (|has| |#1| (-795)))) (-4234 (($ (-1 |#1| |#1|) $) 169)) (-1963 (($ $ $) 46) (($ (-594 $)) 45)) (-3513 (((-1081) $) 9)) (-2668 (($ $) 70)) (-3724 (($) 107 (|has| |#1| (-1074)) CONST)) (-3514 (((-1045) $) 10)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 44)) (-3419 (($ $ $) 48) (($ (-594 $)) 47)) (-3387 (($ $) 138 (|has| |#1| (-289)))) (-3389 ((|#1| $) 135 (|has| |#1| (-515)))) (-2968 (((-386 (-1092 $)) (-1092 $)) 132 (|has| |#1| (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) 131 (|has| |#1| (-851)))) (-4011 (((-386 $) $) 74)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 53)) (-3740 (((-3 $ "failed") $ $) 42)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 50)) (-4046 (($ $ (-594 |#1|) (-594 |#1|)) 175 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-291 |#1|))) (($ $ (-275 |#1|)) 173 (|has| |#1| (-291 |#1|))) (($ $ (-594 (-275 |#1|))) 172 (|has| |#1| (-291 |#1|))) (($ $ (-594 (-1098)) (-594 |#1|)) 171 (|has| |#1| (-491 (-1098) |#1|))) (($ $ (-1098) |#1|) 170 (|has| |#1| (-491 (-1098) |#1|)))) (-1654 (((-719) $) 58)) (-4078 (($ $ |#1|) 176 (|has| |#1| (-268 |#1| |#1|)))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 57)) (-4089 (($ $) 168 (|has| |#1| (-216))) (($ $ (-719)) 166 (|has| |#1| (-216))) (($ $ (-1098)) 164 (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) 163 (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) 162 (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) 161 (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-3259 (($ $) 140)) (-3261 ((|#1| $) 142)) (-4246 (((-831 (-516)) $) 148 (|has| |#1| (-572 (-831 (-516))))) (((-831 (-359)) $) 147 (|has| |#1| (-572 (-831 (-359))))) (((-505) $) 125 (|has| |#1| (-572 (-505)))) (((-359) $) 124 (|has| |#1| (-958))) (((-208) $) 123 (|has| |#1| (-958)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) 134 (-3119 (|has| $ (-138)) (|has| |#1| (-851))))) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ $) 43) (($ (-388 (-516))) 65) (($ |#1|) 181) (($ (-1098)) 129 (|has| |#1| (-975 (-1098))))) (-2965 (((-3 $ "failed") $) 126 (-3810 (|has| |#1| (-138)) (-3119 (|has| $ (-138)) (|has| |#1| (-851)))))) (-3385 (((-719)) 29)) (-3390 ((|#1| $) 136 (|has| |#1| (-515)))) (-2117 (((-110) $ $) 39)) (-3661 (($ $) 119 (|has| |#1| (-768)))) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33) (($ $ (-516)) 69)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2932 (($ $) 167 (|has| |#1| (-216))) (($ $ (-719)) 165 (|has| |#1| (-216))) (($ $ (-1098)) 160 (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) 159 (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) 158 (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) 157 (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-2826 (((-110) $ $) 115 (|has| |#1| (-795)))) (-2827 (((-110) $ $) 114 (|has| |#1| (-795)))) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 116 (|has| |#1| (-795)))) (-2948 (((-110) $ $) 113 (|has| |#1| (-795)))) (-4224 (($ $ $) 64) (($ |#1| |#1|) 144)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32) (($ $ (-516)) 68)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ (-388 (-516))) 67) (($ (-388 (-516)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179)))
+(((-931 |#1|) (-133) (-523)) (T -931))
+((-4224 (*1 *1 *2 *2) (-12 (-4 *1 (-931 *2)) (-4 *2 (-523)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-523)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-523)))) (-3260 (*1 *1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-523)))) (-3259 (*1 *1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-523)))) (-3388 (*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-523)) (-4 *2 (-289)))) (-3387 (*1 *1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-523)) (-4 *2 (-289)))) (-3258 (*1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-515)) (-4 *2 (-523)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-523)) (-4 *2 (-515)))) (-3389 (*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-523)) (-4 *2 (-515)))))
+(-13 (-344) (-37 |t#1|) (-975 |t#1|) (-319 |t#1|) (-214 |t#1|) (-358 |t#1|) (-825 |t#1|) (-381 |t#1|) (-10 -8 (-15 -4224 ($ |t#1| |t#1|)) (-15 -3262 (|t#1| $)) (-15 -3261 (|t#1| $)) (-15 -3260 ($ $)) (-15 -3259 ($ $)) (IF (|has| |t#1| (-1074)) (-6 (-1074)) |%noBranch|) (IF (|has| |t#1| (-975 (-516))) (PROGN (-6 (-975 (-516))) (-6 (-975 (-388 (-516))))) |%noBranch|) (IF (|has| |t#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#1| (-768)) (-6 (-768)) |%noBranch|) (IF (|has| |t#1| (-958)) (-6 (-958)) |%noBranch|) (IF (|has| |t#1| (-572 (-505))) (-6 (-572 (-505))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-975 (-1098))) (-6 (-975 (-1098))) |%noBranch|) (IF (|has| |t#1| (-289)) (PROGN (-15 -3388 (|t#1| $)) (-15 -3387 ($ $))) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -3258 ($)) (-15 -3390 (|t#1| $)) (-15 -3389 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-388 (-516))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-99) . T) ((-109 #1# #1#) . T) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-805)) . T) ((-162) . T) ((-572 (-208)) |has| |#1| (-958)) ((-572 (-359)) |has| |#1| (-958)) ((-572 (-505)) |has| |#1| (-572 (-505))) ((-572 (-831 (-359))) |has| |#1| (-572 (-831 (-359)))) ((-572 (-831 (-516))) |has| |#1| (-572 (-831 (-516)))) ((-214 |#1|) . T) ((-216) |has| |#1| (-216)) ((-226) . T) ((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-272) . T) ((-289) . T) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-344) . T) ((-319 |#1|) . T) ((-358 |#1|) . T) ((-381 |#1|) . T) ((-432) . T) ((-491 (-1098) |#1|) |has| |#1| (-491 (-1098) |#1|)) ((-491 |#1| |#1|) |has| |#1| (-291 |#1|)) ((-523) . T) ((-599 #1#) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-516)) |has| |#1| (-593 (-516))) ((-593 |#1|) . T) ((-666 #1#) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-675) . T) ((-739) |has| |#1| (-768)) ((-740) |has| |#1| (-768)) ((-742) |has| |#1| (-768)) ((-745) |has| |#1| (-768)) ((-768) |has| |#1| (-768)) ((-793) |has| |#1| (-768)) ((-795) -3810 (|has| |#1| (-795)) (|has| |#1| (-768))) ((-841 (-1098)) |has| |#1| (-841 (-1098))) ((-827 (-359)) |has| |#1| (-827 (-359))) ((-827 (-516)) |has| |#1| (-827 (-516))) ((-825 |#1|) . T) ((-851) |has| |#1| (-851)) ((-862) . T) ((-958) |has| |#1| (-958)) ((-975 (-388 (-516))) |has| |#1| (-975 (-516))) ((-975 (-516)) |has| |#1| (-975 (-516))) ((-975 (-1098)) |has| |#1| (-975 (-1098))) ((-975 |#1|) . T) ((-989 #1#) . T) ((-989 |#1|) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1074) |has| |#1| (-1074)) ((-1134) . T) ((-1138) . T))
+((-4234 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-932 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4234 (|#4| (-1 |#2| |#1|) |#3|))) (-523) (-523) (-931 |#1|) (-931 |#2|)) (T -932))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-523)) (-4 *6 (-523)) (-4 *2 (-931 *6)) (-5 *1 (-932 *5 *6 *4 *2)) (-4 *4 (-931 *5)))))
+(-10 -7 (-15 -4234 (|#4| (-1 |#2| |#1|) |#3|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-3263 (($ (-1065 |#1| |#2|)) 11)) (-3383 (((-1065 |#1| |#2|) $) 12)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4078 ((|#2| $ (-222 |#1| |#2|)) 16)) (-4233 (((-805) $) NIL)) (-2920 (($) NIL T CONST)) (-3317 (((-110) $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL)))
+(((-933 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3263 ($ (-1065 |#1| |#2|))) (-15 -3383 ((-1065 |#1| |#2|) $)) (-15 -4078 (|#2| $ (-222 |#1| |#2|))))) (-860) (-344)) (T -933))
+((-3263 (*1 *1 *2) (-12 (-5 *2 (-1065 *3 *4)) (-14 *3 (-860)) (-4 *4 (-344)) (-5 *1 (-933 *3 *4)))) (-3383 (*1 *2 *1) (-12 (-5 *2 (-1065 *3 *4)) (-5 *1 (-933 *3 *4)) (-14 *3 (-860)) (-4 *4 (-344)))) (-4078 (*1 *2 *1 *3) (-12 (-5 *3 (-222 *4 *2)) (-14 *4 (-860)) (-4 *2 (-344)) (-5 *1 (-933 *4 *2)))))
+(-13 (-21) (-10 -8 (-15 -3263 ($ (-1065 |#1| |#2|))) (-15 -3383 ((-1065 |#1| |#2|) $)) (-15 -4078 (|#2| $ (-222 |#1| |#2|)))))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1217 (((-110) $ (-719)) 8)) (-3815 (($) 7 T CONST)) (-3266 (($ $) 46)) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) 9)) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35)) (-3998 (((-110) $ (-719)) 10)) (-4112 (((-719) $) 45)) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-1280 ((|#1| $) 39)) (-3889 (($ |#1| $) 40)) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-3265 ((|#1| $) 44)) (-1281 ((|#1| $) 41)) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-3268 ((|#1| |#1| $) 48)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-3267 ((|#1| $) 47)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-1282 (($ (-594 |#1|)) 42)) (-3264 ((|#1| $) 43)) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-934 |#1|) (-133) (-1134)) (T -934))
+((-3268 (*1 *2 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1134)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1134)))) (-3266 (*1 *1 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1134)))) (-4112 (*1 *2 *1) (-12 (-4 *1 (-934 *3)) (-4 *3 (-1134)) (-5 *2 (-719)))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1134)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1134)))))
+(-13 (-104 |t#1|) (-10 -8 (-6 -4269) (-15 -3268 (|t#1| |t#1| $)) (-15 -3267 (|t#1| $)) (-15 -3266 ($ $)) (-15 -4112 ((-719) $)) (-15 -3265 (|t#1| $)) (-15 -3264 (|t#1| $))))
+(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-571 (-805)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1134) . T))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-516) #1="failed") $) NIL (|has| |#1| (-975 (-516)))) (((-3 (-388 (-516)) #1#) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-3 |#1| #1#) $) NIL)) (-3431 (((-516) $) NIL (|has| |#1| (-975 (-516)))) (((-388 (-516)) $) NIL (|has| |#1| (-975 (-388 (-516))))) ((|#1| $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3925 ((|#1| $) 12)) (-3288 (((-3 (-388 (-516)) "failed") $) NIL (|has| |#1| (-515)))) (-3287 (((-110) $) NIL (|has| |#1| (-515)))) (-3286 (((-388 (-516)) $) NIL (|has| |#1| (-515)))) (-3269 (($ |#1| |#1| |#1| |#1|) 16)) (-2436 (((-110) $) NIL)) (-3391 ((|#1| $) NIL)) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL (|has| |#1| (-344)))) (-3270 ((|#1| $) 15)) (-3271 ((|#1| $) 14)) (-3272 ((|#1| $) 13)) (-3514 (((-1045) $) NIL)) (-4046 (($ $ (-594 |#1|) (-594 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-275 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-594 (-275 |#1|))) NIL (|has| |#1| (-291 |#1|))) (($ $ (-594 (-1098)) (-594 |#1|)) NIL (|has| |#1| (-491 (-1098) |#1|))) (($ $ (-1098) |#1|) NIL (|has| |#1| (-491 (-1098) |#1|)))) (-4078 (($ $ |#1|) NIL (|has| |#1| (-268 |#1| |#1|)))) (-4089 (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1098)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4246 (((-505) $) NIL (|has| |#1| (-572 (-505))))) (-3273 (($ $) NIL)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ |#1|) NIL) (($ (-388 (-516))) NIL (-3810 (|has| |#1| (-344)) (|has| |#1| (-975 (-388 (-516))))))) (-2965 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3385 (((-719)) NIL)) (-3661 ((|#1| $) NIL (|has| |#1| (-992)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| |#1| (-344)))) (-2920 (($) 8 T CONST)) (-2927 (($) 10 T CONST)) (-2932 (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1098)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#1| (-795)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| |#1| (-344)))) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-388 (-516))) NIL (|has| |#1| (-344))) (($ (-388 (-516)) $) NIL (|has| |#1| (-344)))))
+(((-935 |#1|) (-937 |#1|) (-162)) (T -935))
+NIL
+(-937 |#1|)
+((-3462 (((-110) $) 42)) (-3432 (((-3 (-516) #1="failed") $) NIL) (((-3 (-388 (-516)) #1#) $) NIL) (((-3 |#2| #1#) $) 45)) (-3431 (((-516) $) NIL) (((-388 (-516)) $) NIL) ((|#2| $) 43)) (-3288 (((-3 (-388 (-516)) "failed") $) 78)) (-3287 (((-110) $) 72)) (-3286 (((-388 (-516)) $) 76)) (-2436 (((-110) $) 41)) (-3391 ((|#2| $) 22)) (-4234 (($ (-1 |#2| |#2|) $) 19)) (-2668 (($ $) 61)) (-4089 (($ $) NIL) (($ $ (-719)) NIL) (($ $ (-1098)) NIL) (($ $ (-594 (-1098))) NIL) (($ $ (-1098) (-719)) NIL) (($ $ (-594 (-1098)) (-594 (-719))) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-4246 (((-505) $) 67)) (-3273 (($ $) 17)) (-4233 (((-805) $) 56) (($ (-516)) 38) (($ |#2|) 36) (($ (-388 (-516))) NIL)) (-3385 (((-719)) 10)) (-3661 ((|#2| $) 71)) (-3317 (((-110) $ $) 25)) (-2948 (((-110) $ $) 69)) (-4116 (($ $) 29) (($ $ $) 28)) (-4118 (($ $ $) 26)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL)))
+(((-936 |#1| |#2|) (-10 -8 (-15 -4233 (|#1| (-388 (-516)))) (-15 -2948 ((-110) |#1| |#1|)) (-15 * (|#1| (-388 (-516)) |#1|)) (-15 * (|#1| |#1| (-388 (-516)))) (-15 -2668 (|#1| |#1|)) (-15 -4246 ((-505) |#1|)) (-15 -3288 ((-3 (-388 (-516)) "failed") |#1|)) (-15 -3286 ((-388 (-516)) |#1|)) (-15 -3287 ((-110) |#1|)) (-15 -3661 (|#2| |#1|)) (-15 -3391 (|#2| |#1|)) (-15 -3273 (|#1| |#1|)) (-15 -4234 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)) (-594 (-719)))) (-15 -4089 (|#1| |#1| (-1098) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)))) (-15 -4089 (|#1| |#1| (-1098))) (-15 -4089 (|#1| |#1| (-719))) (-15 -4089 (|#1| |#1|)) (-15 -3431 (|#2| |#1|)) (-15 -3432 ((-3 |#2| #1="failed") |#1|)) (-15 -3432 ((-3 (-388 (-516)) #1#) |#1|)) (-15 -3431 ((-388 (-516)) |#1|)) (-15 -3432 ((-3 (-516) #1#) |#1|)) (-15 -3431 ((-516) |#1|)) (-15 -4233 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4233 (|#1| (-516))) (-15 -3385 ((-719))) (-15 -2436 ((-110) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-516) |#1|)) (-15 -4116 (|#1| |#1| |#1|)) (-15 -4116 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 -3462 ((-110) |#1|)) (-15 * (|#1| (-860) |#1|)) (-15 -4118 (|#1| |#1| |#1|)) (-15 -4233 ((-805) |#1|)) (-15 -3317 ((-110) |#1| |#1|))) (-937 |#2|) (-162)) (T -936))
+((-3385 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-719)) (-5 *1 (-936 *3 *4)) (-4 *3 (-937 *4)))))
+(-10 -8 (-15 -4233 (|#1| (-388 (-516)))) (-15 -2948 ((-110) |#1| |#1|)) (-15 * (|#1| (-388 (-516)) |#1|)) (-15 * (|#1| |#1| (-388 (-516)))) (-15 -2668 (|#1| |#1|)) (-15 -4246 ((-505) |#1|)) (-15 -3288 ((-3 (-388 (-516)) "failed") |#1|)) (-15 -3286 ((-388 (-516)) |#1|)) (-15 -3287 ((-110) |#1|)) (-15 -3661 (|#2| |#1|)) (-15 -3391 (|#2| |#1|)) (-15 -3273 (|#1| |#1|)) (-15 -4234 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)) (-594 (-719)))) (-15 -4089 (|#1| |#1| (-1098) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)))) (-15 -4089 (|#1| |#1| (-1098))) (-15 -4089 (|#1| |#1| (-719))) (-15 -4089 (|#1| |#1|)) (-15 -3431 (|#2| |#1|)) (-15 -3432 ((-3 |#2| #1="failed") |#1|)) (-15 -3432 ((-3 (-388 (-516)) #1#) |#1|)) (-15 -3431 ((-388 (-516)) |#1|)) (-15 -3432 ((-3 (-516) #1#) |#1|)) (-15 -3431 ((-516) |#1|)) (-15 -4233 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4233 (|#1| (-516))) (-15 -3385 ((-719))) (-15 -2436 ((-110) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-516) |#1|)) (-15 -4116 (|#1| |#1| |#1|)) (-15 -4116 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 -3462 ((-110) |#1|)) (-15 * (|#1| (-860) |#1|)) (-15 -4118 (|#1| |#1| |#1|)) (-15 -4233 ((-805) |#1|)) (-15 -3317 ((-110) |#1| |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3432 (((-3 (-516) #1="failed") $) 119 (|has| |#1| (-975 (-516)))) (((-3 (-388 (-516)) #1#) $) 117 (|has| |#1| (-975 (-388 (-516))))) (((-3 |#1| #1#) $) 116)) (-3431 (((-516) $) 120 (|has| |#1| (-975 (-516)))) (((-388 (-516)) $) 118 (|has| |#1| (-975 (-388 (-516))))) ((|#1| $) 115)) (-2297 (((-637 (-516)) (-637 $)) 90 (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) 89 (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) 88) (((-637 |#1|) (-637 $)) 87)) (-3741 (((-3 $ "failed") $) 34)) (-3925 ((|#1| $) 80)) (-3288 (((-3 (-388 (-516)) "failed") $) 76 (|has| |#1| (-515)))) (-3287 (((-110) $) 78 (|has| |#1| (-515)))) (-3286 (((-388 (-516)) $) 77 (|has| |#1| (-515)))) (-3269 (($ |#1| |#1| |#1| |#1|) 81)) (-2436 (((-110) $) 31)) (-3391 ((|#1| $) 82)) (-3596 (($ $ $) 68 (|has| |#1| (-795)))) (-3597 (($ $ $) 67 (|has| |#1| (-795)))) (-4234 (($ (-1 |#1| |#1|) $) 91)) (-3513 (((-1081) $) 9)) (-2668 (($ $) 73 (|has| |#1| (-344)))) (-3270 ((|#1| $) 83)) (-3271 ((|#1| $) 84)) (-3272 ((|#1| $) 85)) (-3514 (((-1045) $) 10)) (-4046 (($ $ (-594 |#1|) (-594 |#1|)) 97 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-291 |#1|))) (($ $ (-275 |#1|)) 95 (|has| |#1| (-291 |#1|))) (($ $ (-594 (-275 |#1|))) 94 (|has| |#1| (-291 |#1|))) (($ $ (-594 (-1098)) (-594 |#1|)) 93 (|has| |#1| (-491 (-1098) |#1|))) (($ $ (-1098) |#1|) 92 (|has| |#1| (-491 (-1098) |#1|)))) (-4078 (($ $ |#1|) 98 (|has| |#1| (-268 |#1| |#1|)))) (-4089 (($ $) 114 (|has| |#1| (-216))) (($ $ (-719)) 112 (|has| |#1| (-216))) (($ $ (-1098)) 110 (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) 109 (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) 108 (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) 107 (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-4246 (((-505) $) 74 (|has| |#1| (-572 (-505))))) (-3273 (($ $) 86)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ |#1|) 37) (($ (-388 (-516))) 62 (-3810 (|has| |#1| (-344)) (|has| |#1| (-975 (-388 (-516))))))) (-2965 (((-3 $ "failed") $) 75 (|has| |#1| (-138)))) (-3385 (((-719)) 29)) (-3661 ((|#1| $) 79 (|has| |#1| (-992)))) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33) (($ $ (-516)) 72 (|has| |#1| (-344)))) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2932 (($ $) 113 (|has| |#1| (-216))) (($ $ (-719)) 111 (|has| |#1| (-216))) (($ $ (-1098)) 106 (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) 105 (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) 104 (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) 103 (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-2826 (((-110) $ $) 65 (|has| |#1| (-795)))) (-2827 (((-110) $ $) 64 (|has| |#1| (-795)))) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 66 (|has| |#1| (-795)))) (-2948 (((-110) $ $) 63 (|has| |#1| (-795)))) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32) (($ $ (-516)) 71 (|has| |#1| (-344)))) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-388 (-516))) 70 (|has| |#1| (-344))) (($ (-388 (-516)) $) 69 (|has| |#1| (-344)))))
+(((-937 |#1|) (-133) (-162)) (T -937))
+((-3273 (*1 *1 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-162)))) (-3272 (*1 *2 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-162)))) (-3271 (*1 *2 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-162)))) (-3270 (*1 *2 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-162)))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-162)))) (-3269 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-937 *2)) (-4 *2 (-162)))) (-3925 (*1 *2 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-162)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-162)) (-4 *2 (-992)))) (-3287 (*1 *2 *1) (-12 (-4 *1 (-937 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-110)))) (-3286 (*1 *2 *1) (-12 (-4 *1 (-937 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-516))))) (-3288 (*1 *2 *1) (|partial| -12 (-4 *1 (-937 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-516))))))
+(-13 (-37 |t#1|) (-393 |t#1|) (-214 |t#1|) (-319 |t#1|) (-358 |t#1|) (-10 -8 (-15 -3273 ($ $)) (-15 -3272 (|t#1| $)) (-15 -3271 (|t#1| $)) (-15 -3270 (|t#1| $)) (-15 -3391 (|t#1| $)) (-15 -3269 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3925 (|t#1| $)) (IF (|has| |t#1| (-272)) (-6 (-272)) |%noBranch|) (IF (|has| |t#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-226)) |%noBranch|) (IF (|has| |t#1| (-572 (-505))) (-6 (-572 (-505))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-992)) (-15 -3661 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -3287 ((-110) $)) (-15 -3286 ((-388 (-516)) $)) (-15 -3288 ((-3 (-388 (-516)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-388 (-516))) |has| |#1| (-344)) ((-37 |#1|) . T) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-344)) ((-109 |#1| |#1|) . T) ((-109 $ $) -3810 (|has| |#1| (-344)) (|has| |#1| (-272))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-805)) . T) ((-572 (-505)) |has| |#1| (-572 (-505))) ((-214 |#1|) . T) ((-216) |has| |#1| (-216)) ((-226) |has| |#1| (-344)) ((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-272) -3810 (|has| |#1| (-344)) (|has| |#1| (-272))) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-319 |#1|) . T) ((-358 |#1|) . T) ((-393 |#1|) . T) ((-491 (-1098) |#1|) |has| |#1| (-491 (-1098) |#1|)) ((-491 |#1| |#1|) |has| |#1| (-291 |#1|)) ((-599 #1#) |has| |#1| (-344)) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-516)) |has| |#1| (-593 (-516))) ((-593 |#1|) . T) ((-666 #1#) |has| |#1| (-344)) ((-666 |#1|) . T) ((-675) . T) ((-795) |has| |#1| (-795)) ((-841 (-1098)) |has| |#1| (-841 (-1098))) ((-975 (-388 (-516))) |has| |#1| (-975 (-388 (-516)))) ((-975 (-516)) |has| |#1| (-975 (-516))) ((-975 |#1|) . T) ((-989 #1#) |has| |#1| (-344)) ((-989 |#1|) . T) ((-989 $) -3810 (|has| |#1| (-344)) (|has| |#1| (-272))) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-4234 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-938 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4234 (|#3| (-1 |#4| |#2|) |#1|))) (-937 |#2|) (-162) (-937 |#4|) (-162)) (T -938))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-4 *2 (-937 *6)) (-5 *1 (-938 *4 *5 *2 *6)) (-4 *4 (-937 *5)))))
+(-10 -7 (-15 -4234 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1217 (((-110) $ (-719)) NIL)) (-3815 (($) NIL T CONST)) (-3266 (($ $) 20)) (-3274 (($ (-594 |#1|)) 29)) (-2018 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) NIL)) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2022 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-4112 (((-719) $) 22)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-1280 ((|#1| $) 24)) (-3889 (($ |#1| $) 15)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-3265 ((|#1| $) 23)) (-1281 ((|#1| $) 19)) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3268 ((|#1| |#1| $) 14)) (-3682 (((-110) $) 17)) (-3847 (($) NIL)) (-3267 ((|#1| $) 18)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3678 (($ $) NIL)) (-4233 (((-805) $) NIL (|has| |#1| (-571 (-805))))) (-1282 (($ (-594 |#1|)) NIL)) (-3264 ((|#1| $) 26)) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-939 |#1|) (-13 (-934 |#1|) (-10 -8 (-15 -3274 ($ (-594 |#1|))))) (-1027)) (T -939))
+((-3274 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1027)) (-5 *1 (-939 *3)))))
+(-13 (-934 |#1|) (-10 -8 (-15 -3274 ($ (-594 |#1|)))))
+((-3301 (($ $) 12)) (-3275 (($ $ (-516)) 13)))
+(((-940 |#1|) (-10 -8 (-15 -3301 (|#1| |#1|)) (-15 -3275 (|#1| |#1| (-516)))) (-941)) (T -940))
+NIL
+(-10 -8 (-15 -3301 (|#1| |#1|)) (-15 -3275 (|#1| |#1| (-516))))
+((-3301 (($ $) 6)) (-3275 (($ $ (-516)) 7)) (** (($ $ (-388 (-516))) 8)))
+(((-941) (-133)) (T -941))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-941)) (-5 *2 (-388 (-516))))) (-3275 (*1 *1 *1 *2) (-12 (-4 *1 (-941)) (-5 *2 (-516)))) (-3301 (*1 *1 *1) (-4 *1 (-941))))
+(-13 (-10 -8 (-15 -3301 ($ $)) (-15 -3275 ($ $ (-516))) (-15 ** ($ $ (-388 (-516))))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1713 (((-2 (|:| |num| (-1179 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| (-388 |#2|) (-344)))) (-2118 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-2116 (((-110) $) NIL (|has| (-388 |#2|) (-344)))) (-1851 (((-637 (-388 |#2|)) (-1179 $)) NIL) (((-637 (-388 |#2|))) NIL)) (-3608 (((-388 |#2|) $) NIL)) (-1741 (((-1107 (-860) (-719)) (-516)) NIL (|has| (-388 |#2|) (-331)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-4245 (((-386 $) $) NIL (|has| (-388 |#2|) (-344)))) (-1655 (((-110) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3395 (((-719)) NIL (|has| (-388 |#2|) (-349)))) (-1727 (((-110)) NIL)) (-1726 (((-110) |#1|) 144) (((-110) |#2|) 149)) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-516) #1="failed") $) NIL (|has| (-388 |#2|) (-975 (-516)))) (((-3 (-388 (-516)) #1#) $) NIL (|has| (-388 |#2|) (-975 (-388 (-516))))) (((-3 (-388 |#2|) #1#) $) NIL)) (-3431 (((-516) $) NIL (|has| (-388 |#2|) (-975 (-516)))) (((-388 (-516)) $) NIL (|has| (-388 |#2|) (-975 (-388 (-516))))) (((-388 |#2|) $) NIL)) (-1861 (($ (-1179 (-388 |#2|)) (-1179 $)) NIL) (($ (-1179 (-388 |#2|))) 70) (($ (-1179 |#2|) |#2|) NIL)) (-1739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-388 |#2|) (-331)))) (-2824 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-1850 (((-637 (-388 |#2|)) $ (-1179 $)) NIL) (((-637 (-388 |#2|)) $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| (-388 |#2|) (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| (-388 |#2|) (-593 (-516)))) (((-2 (|:| -1650 (-637 (-388 |#2|))) (|:| |vec| (-1179 (-388 |#2|)))) (-637 $) (-1179 $)) NIL) (((-637 (-388 |#2|)) (-637 $)) NIL)) (-1718 (((-1179 $) (-1179 $)) NIL)) (-4121 (($ |#3|) 65) (((-3 $ "failed") (-388 |#3|)) NIL (|has| (-388 |#2|) (-344)))) (-3741 (((-3 $ "failed") $) NIL)) (-1705 (((-594 (-594 |#1|))) NIL (|has| |#1| (-349)))) (-1730 (((-110) |#1| |#1|) NIL)) (-3368 (((-860)) NIL)) (-3258 (($) NIL (|has| (-388 |#2|) (-349)))) (-1725 (((-110)) NIL)) (-1724 (((-110) |#1|) 56) (((-110) |#2|) 146)) (-2823 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL (|has| (-388 |#2|) (-344)))) (-3777 (($ $) NIL)) (-3097 (($) NIL (|has| (-388 |#2|) (-331)))) (-1746 (((-110) $) NIL (|has| (-388 |#2|) (-331)))) (-1836 (($ $ (-719)) NIL (|has| (-388 |#2|) (-331))) (($ $) NIL (|has| (-388 |#2|) (-331)))) (-4005 (((-110) $) NIL (|has| (-388 |#2|) (-344)))) (-4050 (((-860) $) NIL (|has| (-388 |#2|) (-331))) (((-780 (-860)) $) NIL (|has| (-388 |#2|) (-331)))) (-2436 (((-110) $) NIL)) (-3655 (((-719)) NIL)) (-1719 (((-1179 $) (-1179 $)) NIL)) (-3391 (((-388 |#2|) $) NIL)) (-1706 (((-594 (-887 |#1|)) (-1098)) NIL (|has| |#1| (-344)))) (-3723 (((-3 $ "failed") $) NIL (|has| (-388 |#2|) (-331)))) (-1652 (((-3 (-594 $) #2="failed") (-594 $) $) NIL (|has| (-388 |#2|) (-344)))) (-2073 ((|#3| $) NIL (|has| (-388 |#2|) (-344)))) (-2069 (((-860) $) NIL (|has| (-388 |#2|) (-349)))) (-3343 ((|#3| $) NIL)) (-1963 (($ (-594 $)) NIL (|has| (-388 |#2|) (-344))) (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-3513 (((-1081) $) NIL)) (-1714 (((-637 (-388 |#2|))) 52)) (-1716 (((-637 (-388 |#2|))) 51)) (-2668 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-1711 (($ (-1179 |#2|) |#2|) 71)) (-1715 (((-637 (-388 |#2|))) 50)) (-1717 (((-637 (-388 |#2|))) 49)) (-1710 (((-2 (|:| |num| (-637 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1712 (((-2 (|:| |num| (-1179 |#2|)) (|:| |den| |#2|)) $) 77)) (-1723 (((-1179 $)) 46)) (-4197 (((-1179 $)) 45)) (-1722 (((-110) $) NIL)) (-1721 (((-110) $) NIL) (((-110) $ |#1|) NIL) (((-110) $ |#2|) NIL)) (-3724 (($) NIL (|has| (-388 |#2|) (-331)) CONST)) (-2426 (($ (-860)) NIL (|has| (-388 |#2|) (-349)))) (-1708 (((-3 |#2| #3="failed")) 63)) (-3514 (((-1045) $) NIL)) (-1732 (((-719)) NIL)) (-2435 (($) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| (-388 |#2|) (-344)))) (-3419 (($ (-594 $)) NIL (|has| (-388 |#2|) (-344))) (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-1742 (((-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516))))) NIL (|has| (-388 |#2|) (-331)))) (-4011 (((-386 $) $) NIL (|has| (-388 |#2|) (-344)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-388 |#2|) (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3740 (((-3 $ "failed") $ $) NIL (|has| (-388 |#2|) (-344)))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL (|has| (-388 |#2|) (-344)))) (-1654 (((-719) $) NIL (|has| (-388 |#2|) (-344)))) (-4078 ((|#1| $ |#1| |#1|) NIL)) (-1709 (((-3 |#2| #3#)) 62)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| (-388 |#2|) (-344)))) (-4036 (((-388 |#2|) (-1179 $)) NIL) (((-388 |#2|)) 42)) (-1837 (((-719) $) NIL (|has| (-388 |#2|) (-331))) (((-3 (-719) "failed") $ $) NIL (|has| (-388 |#2|) (-331)))) (-4089 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-719)) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098))))) (($ $ (-1098) (-719)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098))))) (($ $ (-594 (-1098))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098))))) (($ $ (-1098)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098))))) (($ $ (-719)) NIL (-3810 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-331)))) (($ $) NIL (-3810 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-331))))) (-2434 (((-637 (-388 |#2|)) (-1179 $) (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344)))) (-3459 ((|#3|) 53)) (-1740 (($) NIL (|has| (-388 |#2|) (-331)))) (-3497 (((-1179 (-388 |#2|)) $ (-1179 $)) NIL) (((-637 (-388 |#2|)) (-1179 $) (-1179 $)) NIL) (((-1179 (-388 |#2|)) $) 72) (((-637 (-388 |#2|)) (-1179 $)) NIL)) (-4246 (((-1179 (-388 |#2|)) $) NIL) (($ (-1179 (-388 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2966 (((-3 (-1179 $) "failed") (-637 $)) NIL (|has| (-388 |#2|) (-331)))) (-1720 (((-1179 $) (-1179 $)) NIL)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ (-388 |#2|)) NIL) (($ (-388 (-516))) NIL (-3810 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-975 (-388 (-516)))))) (($ $) NIL (|has| (-388 |#2|) (-344)))) (-2965 (($ $) NIL (|has| (-388 |#2|) (-331))) (((-3 $ "failed") $) NIL (|has| (-388 |#2|) (-138)))) (-2632 ((|#3| $) NIL)) (-3385 (((-719)) NIL)) (-1729 (((-110)) 60)) (-1728 (((-110) |#1|) 150) (((-110) |#2|) 151)) (-2071 (((-1179 $)) 121)) (-2117 (((-110) $ $) NIL (|has| (-388 |#2|) (-344)))) (-1707 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1731 (((-110)) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| (-388 |#2|) (-344)))) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-719)) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098))))) (($ $ (-1098) (-719)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098))))) (($ $ (-594 (-1098))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098))))) (($ $ (-1098)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1098))))) (($ $ (-719)) NIL (-3810 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-331)))) (($ $) NIL (-3810 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-331))))) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| (-388 |#2|) (-344)))) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 |#2|)) NIL) (($ (-388 |#2|) $) NIL) (($ (-388 (-516)) $) NIL (|has| (-388 |#2|) (-344))) (($ $ (-388 (-516))) NIL (|has| (-388 |#2|) (-344)))))
+(((-942 |#1| |#2| |#3| |#4| |#5|) (-323 |#1| |#2| |#3|) (-1138) (-1155 |#1|) (-1155 (-388 |#2|)) (-388 |#2|) (-719)) (T -942))
+NIL
+(-323 |#1| |#2| |#3|)
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3281 (((-594 (-516)) $) 54)) (-3277 (($ (-594 (-516))) 62)) (-3388 (((-516) $) 40 (|has| (-516) (-289)))) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (|has| (-516) (-851)))) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (|has| (-516) (-851)))) (-1655 (((-110) $ $) NIL)) (-3905 (((-516) $) NIL (|has| (-516) (-768)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-516) #2="failed") $) 49) (((-3 (-1098) #2#) $) NIL (|has| (-516) (-975 (-1098)))) (((-3 (-388 (-516)) #2#) $) 47 (|has| (-516) (-975 (-516)))) (((-3 (-516) #2#) $) 49 (|has| (-516) (-975 (-516))))) (-3431 (((-516) $) NIL) (((-1098) $) NIL (|has| (-516) (-975 (-1098)))) (((-388 (-516)) $) NIL (|has| (-516) (-975 (-516)))) (((-516) $) NIL (|has| (-516) (-975 (-516))))) (-2824 (($ $ $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| (-516) (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| (-516) (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL) (((-637 (-516)) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3258 (($) NIL (|has| (-516) (-515)))) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4005 (((-110) $) NIL)) (-3279 (((-594 (-516)) $) 60)) (-3460 (((-110) $) NIL (|has| (-516) (-768)))) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (|has| (-516) (-827 (-516)))) (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (|has| (-516) (-827 (-359))))) (-2436 (((-110) $) NIL)) (-3260 (($ $) NIL)) (-3262 (((-516) $) 37)) (-3723 (((-3 $ "failed") $) NIL (|has| (-516) (-1074)))) (-3461 (((-110) $) NIL (|has| (-516) (-768)))) (-1652 (((-3 (-594 $) #3="failed") (-594 $) $) NIL)) (-3596 (($ $ $) NIL (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (|has| (-516) (-795)))) (-4234 (($ (-1 (-516) (-516)) $) NIL)) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL)) (-3724 (($) NIL (|has| (-516) (-1074)) CONST)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3387 (($ $) NIL (|has| (-516) (-289))) (((-388 (-516)) $) 42)) (-3280 (((-1076 (-516)) $) 59)) (-3276 (($ (-594 (-516)) (-594 (-516))) 63)) (-3389 (((-516) $) 53 (|has| (-516) (-515)))) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (|has| (-516) (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (|has| (-516) (-851)))) (-4011 (((-386 $) $) NIL)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-4046 (($ $ (-594 (-516)) (-594 (-516))) NIL (|has| (-516) (-291 (-516)))) (($ $ (-516) (-516)) NIL (|has| (-516) (-291 (-516)))) (($ $ (-275 (-516))) NIL (|has| (-516) (-291 (-516)))) (($ $ (-594 (-275 (-516)))) NIL (|has| (-516) (-291 (-516)))) (($ $ (-594 (-1098)) (-594 (-516))) NIL (|has| (-516) (-491 (-1098) (-516)))) (($ $ (-1098) (-516)) NIL (|has| (-516) (-491 (-1098) (-516))))) (-1654 (((-719) $) NIL)) (-4078 (($ $ (-516)) NIL (|has| (-516) (-268 (-516) (-516))))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-4089 (($ $) 11 (|has| (-516) (-216))) (($ $ (-719)) NIL (|has| (-516) (-216))) (($ $ (-1098)) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-1 (-516) (-516)) (-719)) NIL) (($ $ (-1 (-516) (-516))) NIL)) (-3259 (($ $) NIL)) (-3261 (((-516) $) 39)) (-3278 (((-594 (-516)) $) 61)) (-4246 (((-831 (-516)) $) NIL (|has| (-516) (-572 (-831 (-516))))) (((-831 (-359)) $) NIL (|has| (-516) (-572 (-831 (-359))))) (((-505) $) NIL (|has| (-516) (-572 (-505)))) (((-359) $) NIL (|has| (-516) (-958))) (((-208) $) NIL (|has| (-516) (-958)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-516) (-851))))) (-4233 (((-805) $) 77) (($ (-516)) 43) (($ $) NIL) (($ (-388 (-516))) 20) (($ (-516)) 43) (($ (-1098)) NIL (|has| (-516) (-975 (-1098)))) (((-388 (-516)) $) 18)) (-2965 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| $ (-138)) (|has| (-516) (-851))) (|has| (-516) (-138))))) (-3385 (((-719)) 9)) (-3390 (((-516) $) 51 (|has| (-516) (-515)))) (-2117 (((-110) $ $) NIL)) (-3661 (($ $) NIL (|has| (-516) (-768)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) 10 T CONST)) (-2927 (($) 12 T CONST)) (-2932 (($ $) NIL (|has| (-516) (-216))) (($ $ (-719)) NIL (|has| (-516) (-216))) (($ $ (-1098)) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| (-516) (-841 (-1098)))) (($ $ (-1 (-516) (-516)) (-719)) NIL) (($ $ (-1 (-516) (-516))) NIL)) (-2826 (((-110) $ $) NIL (|has| (-516) (-795)))) (-2827 (((-110) $ $) NIL (|has| (-516) (-795)))) (-3317 (((-110) $ $) 14)) (-2947 (((-110) $ $) NIL (|has| (-516) (-795)))) (-2948 (((-110) $ $) 33 (|has| (-516) (-795)))) (-4224 (($ $ $) 29) (($ (-516) (-516)) 31)) (-4116 (($ $) 15) (($ $ $) 23)) (-4118 (($ $ $) 21)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 25) (($ $ $) 27) (($ $ (-388 (-516))) NIL) (($ (-388 (-516)) $) NIL) (($ (-516) $) 25) (($ $ (-516)) NIL)))
+(((-943 |#1|) (-13 (-931 (-516)) (-10 -8 (-15 -4233 ((-388 (-516)) $)) (-15 -3387 ((-388 (-516)) $)) (-15 -3281 ((-594 (-516)) $)) (-15 -3280 ((-1076 (-516)) $)) (-15 -3279 ((-594 (-516)) $)) (-15 -3278 ((-594 (-516)) $)) (-15 -3277 ($ (-594 (-516)))) (-15 -3276 ($ (-594 (-516)) (-594 (-516)))))) (-516)) (T -943))
+((-4233 (*1 *2 *1) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-943 *3)) (-14 *3 (-516)))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-943 *3)) (-14 *3 (-516)))) (-3281 (*1 *2 *1) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-943 *3)) (-14 *3 (-516)))) (-3280 (*1 *2 *1) (-12 (-5 *2 (-1076 (-516))) (-5 *1 (-943 *3)) (-14 *3 (-516)))) (-3279 (*1 *2 *1) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-943 *3)) (-14 *3 (-516)))) (-3278 (*1 *2 *1) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-943 *3)) (-14 *3 (-516)))) (-3277 (*1 *1 *2) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-943 *3)) (-14 *3 (-516)))) (-3276 (*1 *1 *2 *2) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-943 *3)) (-14 *3 (-516)))))
+(-13 (-931 (-516)) (-10 -8 (-15 -4233 ((-388 (-516)) $)) (-15 -3387 ((-388 (-516)) $)) (-15 -3281 ((-594 (-516)) $)) (-15 -3280 ((-1076 (-516)) $)) (-15 -3279 ((-594 (-516)) $)) (-15 -3278 ((-594 (-516)) $)) (-15 -3277 ($ (-594 (-516)))) (-15 -3276 ($ (-594 (-516)) (-594 (-516))))))
+((-3282 (((-50) (-388 (-516)) (-516)) 9)))
+(((-944) (-10 -7 (-15 -3282 ((-50) (-388 (-516)) (-516))))) (T -944))
+((-3282 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-516))) (-5 *4 (-516)) (-5 *2 (-50)) (-5 *1 (-944)))))
+(-10 -7 (-15 -3282 ((-50) (-388 (-516)) (-516))))
+((-3395 (((-516)) 13)) (-3285 (((-516)) 16)) (-3284 (((-1185) (-516)) 15)) (-3283 (((-516) (-516)) 17) (((-516)) 12)))
+(((-945) (-10 -7 (-15 -3283 ((-516))) (-15 -3395 ((-516))) (-15 -3283 ((-516) (-516))) (-15 -3284 ((-1185) (-516))) (-15 -3285 ((-516))))) (T -945))
+((-3285 (*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-945)))) (-3284 (*1 *2 *3) (-12 (-5 *3 (-516)) (-5 *2 (-1185)) (-5 *1 (-945)))) (-3283 (*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-945)))) (-3395 (*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-945)))) (-3283 (*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-945)))))
+(-10 -7 (-15 -3283 ((-516))) (-15 -3395 ((-516))) (-15 -3283 ((-516) (-516))) (-15 -3284 ((-1185) (-516))) (-15 -3285 ((-516))))
+((-4012 (((-386 |#1|) |#1|) 41)) (-4011 (((-386 |#1|) |#1|) 40)))
+(((-946 |#1|) (-10 -7 (-15 -4011 ((-386 |#1|) |#1|)) (-15 -4012 ((-386 |#1|) |#1|))) (-1155 (-388 (-516)))) (T -946))
+((-4012 (*1 *2 *3) (-12 (-5 *2 (-386 *3)) (-5 *1 (-946 *3)) (-4 *3 (-1155 (-388 (-516)))))) (-4011 (*1 *2 *3) (-12 (-5 *2 (-386 *3)) (-5 *1 (-946 *3)) (-4 *3 (-1155 (-388 (-516)))))))
+(-10 -7 (-15 -4011 ((-386 |#1|) |#1|)) (-15 -4012 ((-386 |#1|) |#1|)))
+((-3288 (((-3 (-388 (-516)) "failed") |#1|) 15)) (-3287 (((-110) |#1|) 14)) (-3286 (((-388 (-516)) |#1|) 10)))
+(((-947 |#1|) (-10 -7 (-15 -3286 ((-388 (-516)) |#1|)) (-15 -3287 ((-110) |#1|)) (-15 -3288 ((-3 (-388 (-516)) "failed") |#1|))) (-975 (-388 (-516)))) (T -947))
+((-3288 (*1 *2 *3) (|partial| -12 (-5 *2 (-388 (-516))) (-5 *1 (-947 *3)) (-4 *3 (-975 *2)))) (-3287 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-947 *3)) (-4 *3 (-975 (-388 (-516)))))) (-3286 (*1 *2 *3) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-947 *3)) (-4 *3 (-975 *2)))))
+(-10 -7 (-15 -3286 ((-388 (-516)) |#1|)) (-15 -3287 ((-110) |#1|)) (-15 -3288 ((-3 (-388 (-516)) "failed") |#1|)))
+((-4066 ((|#2| $ "value" |#2|) 12)) (-4078 ((|#2| $ "value") 10)) (-3292 (((-110) $ $) 18)))
+(((-948 |#1| |#2|) (-10 -8 (-15 -4066 (|#2| |#1| "value" |#2|)) (-15 -3292 ((-110) |#1| |#1|)) (-15 -4078 (|#2| |#1| "value"))) (-949 |#2|) (-1134)) (T -948))
+NIL
+(-10 -8 (-15 -4066 (|#2| |#1| "value" |#2|)) (-15 -3292 ((-110) |#1| |#1|)) (-15 -4078 (|#2| |#1| "value")))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3681 ((|#1| $) 48)) (-1217 (((-110) $ (-719)) 8)) (-3289 ((|#1| $ |#1|) 39 (|has| $ (-6 -4270)))) (-4066 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4270)))) (-3290 (($ $ (-594 $)) 41 (|has| $ (-6 -4270)))) (-3815 (($) 7 T CONST)) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-3295 (((-594 $) $) 50)) (-3291 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-4001 (((-110) $ (-719)) 9)) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35)) (-3998 (((-110) $ (-719)) 10)) (-3294 (((-594 |#1|) $) 45)) (-3801 (((-110) $) 49)) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-4078 ((|#1| $ "value") 47)) (-3293 (((-516) $ $) 44)) (-3915 (((-110) $) 46)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-3796 (((-594 $) $) 51)) (-3292 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-949 |#1|) (-133) (-1134)) (T -949))
+((-3796 (*1 *2 *1) (-12 (-4 *3 (-1134)) (-5 *2 (-594 *1)) (-4 *1 (-949 *3)))) (-3295 (*1 *2 *1) (-12 (-4 *3 (-1134)) (-5 *2 (-594 *1)) (-4 *1 (-949 *3)))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1134)) (-5 *2 (-110)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-1134)))) (-4078 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-949 *2)) (-4 *2 (-1134)))) (-3915 (*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1134)) (-5 *2 (-110)))) (-3294 (*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1134)) (-5 *2 (-594 *3)))) (-3293 (*1 *2 *1 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1134)) (-5 *2 (-516)))) (-3292 (*1 *2 *1 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1134)) (-4 *3 (-1027)) (-5 *2 (-110)))) (-3291 (*1 *2 *1 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1134)) (-4 *3 (-1027)) (-5 *2 (-110)))) (-3290 (*1 *1 *1 *2) (-12 (-5 *2 (-594 *1)) (|has| *1 (-6 -4270)) (-4 *1 (-949 *3)) (-4 *3 (-1134)))) (-4066 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4270)) (-4 *1 (-949 *2)) (-4 *2 (-1134)))) (-3289 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-949 *2)) (-4 *2 (-1134)))))
+(-13 (-468 |t#1|) (-10 -8 (-15 -3796 ((-594 $) $)) (-15 -3295 ((-594 $) $)) (-15 -3801 ((-110) $)) (-15 -3681 (|t#1| $)) (-15 -4078 (|t#1| $ "value")) (-15 -3915 ((-110) $)) (-15 -3294 ((-594 |t#1|) $)) (-15 -3293 ((-516) $ $)) (IF (|has| |t#1| (-1027)) (PROGN (-15 -3292 ((-110) $ $)) (-15 -3291 ((-110) $ $))) |%noBranch|) (IF (|has| $ (-6 -4270)) (PROGN (-15 -3290 ($ $ (-594 $))) (-15 -4066 (|t#1| $ "value" |t#1|)) (-15 -3289 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-571 (-805)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1134) . T))
+((-3301 (($ $) 9) (($ $ (-860)) 43) (($ (-388 (-516))) 13) (($ (-516)) 15)) (-3457 (((-3 $ "failed") (-1092 $) (-860) (-805)) 23) (((-3 $ "failed") (-1092 $) (-860)) 28)) (-3275 (($ $ (-516)) 49)) (-3385 (((-719)) 17)) (-3458 (((-594 $) (-1092 $)) NIL) (((-594 $) (-1092 (-388 (-516)))) 54) (((-594 $) (-1092 (-516))) 59) (((-594 $) (-887 $)) 63) (((-594 $) (-887 (-388 (-516)))) 67) (((-594 $) (-887 (-516))) 71)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL) (($ $ (-388 (-516))) 47)))
+(((-950 |#1|) (-10 -8 (-15 -3301 (|#1| (-516))) (-15 -3301 (|#1| (-388 (-516)))) (-15 -3301 (|#1| |#1| (-860))) (-15 -3458 ((-594 |#1|) (-887 (-516)))) (-15 -3458 ((-594 |#1|) (-887 (-388 (-516))))) (-15 -3458 ((-594 |#1|) (-887 |#1|))) (-15 -3458 ((-594 |#1|) (-1092 (-516)))) (-15 -3458 ((-594 |#1|) (-1092 (-388 (-516))))) (-15 -3458 ((-594 |#1|) (-1092 |#1|))) (-15 -3457 ((-3 |#1| "failed") (-1092 |#1|) (-860))) (-15 -3457 ((-3 |#1| "failed") (-1092 |#1|) (-860) (-805))) (-15 ** (|#1| |#1| (-388 (-516)))) (-15 -3275 (|#1| |#1| (-516))) (-15 -3301 (|#1| |#1|)) (-15 ** (|#1| |#1| (-516))) (-15 -3385 ((-719))) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-860)))) (-951)) (T -950))
+((-3385 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-950 *3)) (-4 *3 (-951)))))
+(-10 -8 (-15 -3301 (|#1| (-516))) (-15 -3301 (|#1| (-388 (-516)))) (-15 -3301 (|#1| |#1| (-860))) (-15 -3458 ((-594 |#1|) (-887 (-516)))) (-15 -3458 ((-594 |#1|) (-887 (-388 (-516))))) (-15 -3458 ((-594 |#1|) (-887 |#1|))) (-15 -3458 ((-594 |#1|) (-1092 (-516)))) (-15 -3458 ((-594 |#1|) (-1092 (-388 (-516))))) (-15 -3458 ((-594 |#1|) (-1092 |#1|))) (-15 -3457 ((-3 |#1| "failed") (-1092 |#1|) (-860))) (-15 -3457 ((-3 |#1| "failed") (-1092 |#1|) (-860) (-805))) (-15 ** (|#1| |#1| (-388 (-516)))) (-15 -3275 (|#1| |#1| (-516))) (-15 -3301 (|#1| |#1|)) (-15 ** (|#1| |#1| (-516))) (-15 -3385 ((-719))) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-860))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 89)) (-2118 (($ $) 90)) (-2116 (((-110) $) 92)) (-1319 (((-3 $ "failed") $ $) 19)) (-4053 (($ $) 109)) (-4245 (((-386 $) $) 110)) (-3301 (($ $) 73) (($ $ (-860)) 59) (($ (-388 (-516))) 58) (($ (-516)) 57)) (-1655 (((-110) $ $) 100)) (-3905 (((-516) $) 127)) (-3815 (($) 17 T CONST)) (-3457 (((-3 $ "failed") (-1092 $) (-860) (-805)) 67) (((-3 $ "failed") (-1092 $) (-860)) 66)) (-3432 (((-3 (-516) #1="failed") $) 85 (|has| (-388 (-516)) (-975 (-516)))) (((-3 (-388 (-516)) #1#) $) 83 (|has| (-388 (-516)) (-975 (-388 (-516))))) (((-3 (-388 (-516)) #1#) $) 81)) (-3431 (((-516) $) 86 (|has| (-388 (-516)) (-975 (-516)))) (((-388 (-516)) $) 84 (|has| (-388 (-516)) (-975 (-388 (-516))))) (((-388 (-516)) $) 80)) (-3297 (($ $ (-805)) 56)) (-3296 (($ $ (-805)) 55)) (-2824 (($ $ $) 104)) (-3741 (((-3 $ "failed") $) 34)) (-2823 (($ $ $) 103)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 98)) (-4005 (((-110) $) 111)) (-3460 (((-110) $) 125)) (-2436 (((-110) $) 31)) (-3275 (($ $ (-516)) 72)) (-3461 (((-110) $) 126)) (-1652 (((-3 (-594 $) #2="failed") (-594 $) $) 107)) (-3596 (($ $ $) 124)) (-3597 (($ $ $) 123)) (-3298 (((-3 (-1092 $) "failed") $) 68)) (-3300 (((-3 (-805) "failed") $) 70)) (-3299 (((-3 (-1092 $) "failed") $) 69)) (-1963 (($ (-594 $)) 96) (($ $ $) 95)) (-3513 (((-1081) $) 9)) (-2668 (($ $) 112)) (-3514 (((-1045) $) 10)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 97)) (-3419 (($ (-594 $)) 94) (($ $ $) 93)) (-4011 (((-386 $) $) 108)) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 105)) (-3740 (((-3 $ "failed") $ $) 88)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 99)) (-1654 (((-719) $) 101)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 102)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ (-388 (-516))) 117) (($ $) 87) (($ (-388 (-516))) 82) (($ (-516)) 79) (($ (-388 (-516))) 76)) (-3385 (((-719)) 29)) (-2117 (((-110) $ $) 91)) (-4048 (((-388 (-516)) $ $) 54)) (-3458 (((-594 $) (-1092 $)) 65) (((-594 $) (-1092 (-388 (-516)))) 64) (((-594 $) (-1092 (-516))) 63) (((-594 $) (-887 $)) 62) (((-594 $) (-887 (-388 (-516)))) 61) (((-594 $) (-887 (-516))) 60)) (-3661 (($ $) 128)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33) (($ $ (-516)) 113)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2826 (((-110) $ $) 121)) (-2827 (((-110) $ $) 120)) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 122)) (-2948 (((-110) $ $) 119)) (-4224 (($ $ $) 118)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32) (($ $ (-516)) 114) (($ $ (-388 (-516))) 71)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ (-388 (-516)) $) 116) (($ $ (-388 (-516))) 115) (($ (-516) $) 78) (($ $ (-516)) 77) (($ (-388 (-516)) $) 75) (($ $ (-388 (-516))) 74)))
+(((-951) (-133)) (T -951))
+((-3301 (*1 *1 *1) (-4 *1 (-951))) (-3300 (*1 *2 *1) (|partial| -12 (-4 *1 (-951)) (-5 *2 (-805)))) (-3299 (*1 *2 *1) (|partial| -12 (-5 *2 (-1092 *1)) (-4 *1 (-951)))) (-3298 (*1 *2 *1) (|partial| -12 (-5 *2 (-1092 *1)) (-4 *1 (-951)))) (-3457 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1092 *1)) (-5 *3 (-860)) (-5 *4 (-805)) (-4 *1 (-951)))) (-3457 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1092 *1)) (-5 *3 (-860)) (-4 *1 (-951)))) (-3458 (*1 *2 *3) (-12 (-5 *3 (-1092 *1)) (-4 *1 (-951)) (-5 *2 (-594 *1)))) (-3458 (*1 *2 *3) (-12 (-5 *3 (-1092 (-388 (-516)))) (-5 *2 (-594 *1)) (-4 *1 (-951)))) (-3458 (*1 *2 *3) (-12 (-5 *3 (-1092 (-516))) (-5 *2 (-594 *1)) (-4 *1 (-951)))) (-3458 (*1 *2 *3) (-12 (-5 *3 (-887 *1)) (-4 *1 (-951)) (-5 *2 (-594 *1)))) (-3458 (*1 *2 *3) (-12 (-5 *3 (-887 (-388 (-516)))) (-5 *2 (-594 *1)) (-4 *1 (-951)))) (-3458 (*1 *2 *3) (-12 (-5 *3 (-887 (-516))) (-5 *2 (-594 *1)) (-4 *1 (-951)))) (-3301 (*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-860)))) (-3301 (*1 *1 *2) (-12 (-5 *2 (-388 (-516))) (-4 *1 (-951)))) (-3301 (*1 *1 *2) (-12 (-5 *2 (-516)) (-4 *1 (-951)))) (-3297 (*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-805)))) (-3296 (*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-805)))) (-4048 (*1 *2 *1 *1) (-12 (-4 *1 (-951)) (-5 *2 (-388 (-516))))))
+(-13 (-140) (-793) (-162) (-344) (-393 (-388 (-516))) (-37 (-516)) (-37 (-388 (-516))) (-941) (-10 -8 (-15 -3300 ((-3 (-805) "failed") $)) (-15 -3299 ((-3 (-1092 $) "failed") $)) (-15 -3298 ((-3 (-1092 $) "failed") $)) (-15 -3457 ((-3 $ "failed") (-1092 $) (-860) (-805))) (-15 -3457 ((-3 $ "failed") (-1092 $) (-860))) (-15 -3458 ((-594 $) (-1092 $))) (-15 -3458 ((-594 $) (-1092 (-388 (-516))))) (-15 -3458 ((-594 $) (-1092 (-516)))) (-15 -3458 ((-594 $) (-887 $))) (-15 -3458 ((-594 $) (-887 (-388 (-516))))) (-15 -3458 ((-594 $) (-887 (-516)))) (-15 -3301 ($ $ (-860))) (-15 -3301 ($ $)) (-15 -3301 ($ (-388 (-516)))) (-15 -3301 ($ (-516))) (-15 -3297 ($ $ (-805))) (-15 -3296 ($ $ (-805))) (-15 -4048 ((-388 (-516)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-388 (-516))) . T) ((-37 #2=(-516)) . T) ((-37 $) . T) ((-99) . T) ((-109 #1# #1#) . T) ((-109 #2# #2#) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-571 (-805)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-393 (-388 (-516))) . T) ((-432) . T) ((-523) . T) ((-599 #1#) . T) ((-599 #2#) . T) ((-599 $) . T) ((-666 #1#) . T) ((-666 #2#) . T) ((-666 $) . T) ((-675) . T) ((-739) . T) ((-740) . T) ((-742) . T) ((-745) . T) ((-793) . T) ((-795) . T) ((-862) . T) ((-941) . T) ((-975 (-388 (-516))) . T) ((-975 (-516)) |has| (-388 (-516)) (-975 (-516))) ((-989 #1#) . T) ((-989 #2#) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1138) . T))
+((-3302 (((-2 (|:| |ans| |#2|) (|:| -3396 |#2|) (|:| |sol?| (-110))) (-516) |#2| |#2| (-1098) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-594 |#2|)) (-1 (-3 (-2 (|:| -2189 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66)))
+(((-952 |#1| |#2|) (-10 -7 (-15 -3302 ((-2 (|:| |ans| |#2|) (|:| -3396 |#2|) (|:| |sol?| (-110))) (-516) |#2| |#2| (-1098) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-594 |#2|)) (-1 (-3 (-2 (|:| -2189 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-432) (-795) (-140) (-975 (-516)) (-593 (-516))) (-13 (-1120) (-27) (-402 |#1|))) (T -952))
+((-3302 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1098)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-594 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2189 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1120) (-27) (-402 *8))) (-4 *8 (-13 (-432) (-795) (-140) (-975 *3) (-593 *3))) (-5 *3 (-516)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3396 *4) (|:| |sol?| (-110)))) (-5 *1 (-952 *8 *4)))))
+(-10 -7 (-15 -3302 ((-2 (|:| |ans| |#2|) (|:| -3396 |#2|) (|:| |sol?| (-110))) (-516) |#2| |#2| (-1098) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-594 |#2|)) (-1 (-3 (-2 (|:| -2189 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-3303 (((-3 (-594 |#2|) "failed") (-516) |#2| |#2| |#2| (-1098) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-594 |#2|)) (-1 (-3 (-2 (|:| -2189 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53)))
+(((-953 |#1| |#2|) (-10 -7 (-15 -3303 ((-3 (-594 |#2|) "failed") (-516) |#2| |#2| |#2| (-1098) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-594 |#2|)) (-1 (-3 (-2 (|:| -2189 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-432) (-795) (-140) (-975 (-516)) (-593 (-516))) (-13 (-1120) (-27) (-402 |#1|))) (T -953))
+((-3303 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1098)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-594 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2189 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1120) (-27) (-402 *8))) (-4 *8 (-13 (-432) (-795) (-140) (-975 *3) (-593 *3))) (-5 *3 (-516)) (-5 *2 (-594 *4)) (-5 *1 (-953 *8 *4)))))
+(-10 -7 (-15 -3303 ((-3 (-594 |#2|) "failed") (-516) |#2| |#2| |#2| (-1098) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-594 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-594 |#2|)) (-1 (-3 (-2 (|:| -2189 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-3306 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-110)))) (|:| -3537 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-516)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-516) (-1 |#2| |#2|)) 30)) (-3304 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |c| (-388 |#2|)) (|:| -3359 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|)) 58)) (-3305 (((-2 (|:| |ans| (-388 |#2|)) (|:| |nosol| (-110))) (-388 |#2|) (-388 |#2|)) 63)))
+(((-954 |#1| |#2|) (-10 -7 (-15 -3304 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |c| (-388 |#2|)) (|:| -3359 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|))) (-15 -3305 ((-2 (|:| |ans| (-388 |#2|)) (|:| |nosol| (-110))) (-388 |#2|) (-388 |#2|))) (-15 -3306 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-110)))) (|:| -3537 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-516)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-516) (-1 |#2| |#2|)))) (-13 (-344) (-140) (-975 (-516))) (-1155 |#1|)) (T -954))
+((-3306 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1155 *6)) (-4 *6 (-13 (-344) (-140) (-975 *4))) (-5 *4 (-516)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-110)))) (|:| -3537 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-954 *6 *3)))) (-3305 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-344) (-140) (-975 (-516)))) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| |ans| (-388 *5)) (|:| |nosol| (-110)))) (-5 *1 (-954 *4 *5)) (-5 *3 (-388 *5)))) (-3304 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-516)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-388 *6)) (|:| |c| (-388 *6)) (|:| -3359 *6))) (-5 *1 (-954 *5 *6)) (-5 *3 (-388 *6)))))
+(-10 -7 (-15 -3304 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |c| (-388 |#2|)) (|:| -3359 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|))) (-15 -3305 ((-2 (|:| |ans| (-388 |#2|)) (|:| |nosol| (-110))) (-388 |#2|) (-388 |#2|))) (-15 -3306 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-110)))) (|:| -3537 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-516)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-516) (-1 |#2| |#2|))))
+((-3307 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |h| |#2|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| -3359 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|)) 22)) (-3308 (((-3 (-594 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|)) 33)))
+(((-955 |#1| |#2|) (-10 -7 (-15 -3307 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |h| |#2|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| -3359 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|))) (-15 -3308 ((-3 (-594 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|)))) (-13 (-344) (-140) (-975 (-516))) (-1155 |#1|)) (T -955))
+((-3308 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-344) (-140) (-975 (-516)))) (-4 *5 (-1155 *4)) (-5 *2 (-594 (-388 *5))) (-5 *1 (-955 *4 *5)) (-5 *3 (-388 *5)))) (-3307 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-516)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-388 *6)) (|:| |h| *6) (|:| |c1| (-388 *6)) (|:| |c2| (-388 *6)) (|:| -3359 *6))) (-5 *1 (-955 *5 *6)) (-5 *3 (-388 *6)))))
+(-10 -7 (-15 -3307 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |h| |#2|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| -3359 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|))) (-15 -3308 ((-3 (-594 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|))))
+((-3309 (((-1 |#1|) (-594 (-2 (|:| -3681 |#1|) (|:| -1527 (-516))))) 37)) (-3361 (((-1 |#1|) (-1023 |#1|)) 45)) (-3310 (((-1 |#1|) (-1179 |#1|) (-1179 (-516)) (-516)) 34)))
+(((-956 |#1|) (-10 -7 (-15 -3361 ((-1 |#1|) (-1023 |#1|))) (-15 -3309 ((-1 |#1|) (-594 (-2 (|:| -3681 |#1|) (|:| -1527 (-516)))))) (-15 -3310 ((-1 |#1|) (-1179 |#1|) (-1179 (-516)) (-516)))) (-1027)) (T -956))
+((-3310 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1179 *6)) (-5 *4 (-1179 (-516))) (-5 *5 (-516)) (-4 *6 (-1027)) (-5 *2 (-1 *6)) (-5 *1 (-956 *6)))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-594 (-2 (|:| -3681 *4) (|:| -1527 (-516))))) (-4 *4 (-1027)) (-5 *2 (-1 *4)) (-5 *1 (-956 *4)))) (-3361 (*1 *2 *3) (-12 (-5 *3 (-1023 *4)) (-4 *4 (-1027)) (-5 *2 (-1 *4)) (-5 *1 (-956 *4)))))
+(-10 -7 (-15 -3361 ((-1 |#1|) (-1023 |#1|))) (-15 -3309 ((-1 |#1|) (-594 (-2 (|:| -3681 |#1|) (|:| -1527 (-516)))))) (-15 -3310 ((-1 |#1|) (-1179 |#1|) (-1179 (-516)) (-516))))
+((-4050 (((-719) (-314 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-957 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4050 ((-719) (-314 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-344) (-1155 |#1|) (-1155 (-388 |#2|)) (-323 |#1| |#2| |#3|) (-13 (-349) (-344))) (T -957))
+((-4050 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-314 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-344)) (-4 *7 (-1155 *6)) (-4 *4 (-1155 (-388 *7))) (-4 *8 (-323 *6 *7 *4)) (-4 *9 (-13 (-349) (-344))) (-5 *2 (-719)) (-5 *1 (-957 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -4050 ((-719) (-314 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-4246 (((-208) $) 6) (((-359) $) 9)))
+(((-958) (-133)) (T -958))
+NIL
+(-13 (-572 (-208)) (-572 (-359)))
+(((-572 (-208)) . T) ((-572 (-359)) . T))
+((-3393 (((-3 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) "failed") |#1| (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) 31) (((-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) |#1| (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) (-388 (-516))) 28)) (-3313 (((-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) |#1| (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) (-388 (-516))) 33) (((-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) |#1| (-388 (-516))) 29) (((-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) |#1| (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) 32) (((-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) |#1|) 27)) (-3312 (((-594 (-388 (-516))) (-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))) 19)) (-3311 (((-388 (-516)) (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) 16)))
+(((-959 |#1|) (-10 -7 (-15 -3313 ((-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) |#1|)) (-15 -3313 ((-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) |#1| (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))) (-15 -3313 ((-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) |#1| (-388 (-516)))) (-15 -3313 ((-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) |#1| (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) (-388 (-516)))) (-15 -3393 ((-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) |#1| (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) (-388 (-516)))) (-15 -3393 ((-3 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) "failed") |#1| (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))) (-15 -3311 ((-388 (-516)) (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))) (-15 -3312 ((-594 (-388 (-516))) (-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))))) (-1155 (-516))) (T -959))
+((-3312 (*1 *2 *3) (-12 (-5 *3 (-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))) (-5 *2 (-594 (-388 (-516)))) (-5 *1 (-959 *4)) (-4 *4 (-1155 (-516))))) (-3311 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) (-5 *2 (-388 (-516))) (-5 *1 (-959 *4)) (-4 *4 (-1155 (-516))))) (-3393 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) (-5 *1 (-959 *3)) (-4 *3 (-1155 (-516))))) (-3393 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) (-5 *4 (-388 (-516))) (-5 *1 (-959 *3)) (-4 *3 (-1155 (-516))))) (-3313 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-388 (-516))) (-5 *2 (-594 (-2 (|:| -3397 *5) (|:| -3396 *5)))) (-5 *1 (-959 *3)) (-4 *3 (-1155 (-516))) (-5 *4 (-2 (|:| -3397 *5) (|:| -3396 *5))))) (-3313 (*1 *2 *3 *4) (-12 (-5 *2 (-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))) (-5 *1 (-959 *3)) (-4 *3 (-1155 (-516))) (-5 *4 (-388 (-516))))) (-3313 (*1 *2 *3 *4) (-12 (-5 *2 (-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))) (-5 *1 (-959 *3)) (-4 *3 (-1155 (-516))) (-5 *4 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))))) (-3313 (*1 *2 *3) (-12 (-5 *2 (-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))) (-5 *1 (-959 *3)) (-4 *3 (-1155 (-516))))))
+(-10 -7 (-15 -3313 ((-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) |#1|)) (-15 -3313 ((-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) |#1| (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))) (-15 -3313 ((-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) |#1| (-388 (-516)))) (-15 -3313 ((-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) |#1| (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) (-388 (-516)))) (-15 -3393 ((-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) |#1| (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) (-388 (-516)))) (-15 -3393 ((-3 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) "failed") |#1| (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))) (-15 -3311 ((-388 (-516)) (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))) (-15 -3312 ((-594 (-388 (-516))) (-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))))))
+((-3393 (((-3 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) "failed") |#1| (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) 35) (((-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) |#1| (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) (-388 (-516))) 32)) (-3313 (((-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) |#1| (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) (-388 (-516))) 30) (((-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) |#1| (-388 (-516))) 26) (((-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) |#1| (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) 28) (((-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) |#1|) 24)))
+(((-960 |#1|) (-10 -7 (-15 -3313 ((-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) |#1|)) (-15 -3313 ((-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) |#1| (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))) (-15 -3313 ((-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) |#1| (-388 (-516)))) (-15 -3313 ((-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) |#1| (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) (-388 (-516)))) (-15 -3393 ((-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) |#1| (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) (-388 (-516)))) (-15 -3393 ((-3 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) "failed") |#1| (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))))) (-1155 (-388 (-516)))) (T -960))
+((-3393 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) (-5 *1 (-960 *3)) (-4 *3 (-1155 (-388 (-516)))))) (-3393 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) (-5 *4 (-388 (-516))) (-5 *1 (-960 *3)) (-4 *3 (-1155 *4)))) (-3313 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-388 (-516))) (-5 *2 (-594 (-2 (|:| -3397 *5) (|:| -3396 *5)))) (-5 *1 (-960 *3)) (-4 *3 (-1155 *5)) (-5 *4 (-2 (|:| -3397 *5) (|:| -3396 *5))))) (-3313 (*1 *2 *3 *4) (-12 (-5 *4 (-388 (-516))) (-5 *2 (-594 (-2 (|:| -3397 *4) (|:| -3396 *4)))) (-5 *1 (-960 *3)) (-4 *3 (-1155 *4)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *2 (-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))) (-5 *1 (-960 *3)) (-4 *3 (-1155 (-388 (-516)))) (-5 *4 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))))) (-3313 (*1 *2 *3) (-12 (-5 *2 (-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))) (-5 *1 (-960 *3)) (-4 *3 (-1155 (-388 (-516)))))))
+(-10 -7 (-15 -3313 ((-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) |#1|)) (-15 -3313 ((-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) |#1| (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))) (-15 -3313 ((-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) |#1| (-388 (-516)))) (-15 -3313 ((-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))) |#1| (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) (-388 (-516)))) (-15 -3393 ((-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) |#1| (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) (-388 (-516)))) (-15 -3393 ((-3 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) "failed") |#1| (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))) (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))))
+((-3855 (((-594 (-359)) (-887 (-516)) (-359)) 28) (((-594 (-359)) (-887 (-388 (-516))) (-359)) 27)) (-4243 (((-594 (-594 (-359))) (-594 (-887 (-516))) (-594 (-1098)) (-359)) 37)))
+(((-961) (-10 -7 (-15 -3855 ((-594 (-359)) (-887 (-388 (-516))) (-359))) (-15 -3855 ((-594 (-359)) (-887 (-516)) (-359))) (-15 -4243 ((-594 (-594 (-359))) (-594 (-887 (-516))) (-594 (-1098)) (-359))))) (T -961))
+((-4243 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-594 (-887 (-516)))) (-5 *4 (-594 (-1098))) (-5 *2 (-594 (-594 (-359)))) (-5 *1 (-961)) (-5 *5 (-359)))) (-3855 (*1 *2 *3 *4) (-12 (-5 *3 (-887 (-516))) (-5 *2 (-594 (-359))) (-5 *1 (-961)) (-5 *4 (-359)))) (-3855 (*1 *2 *3 *4) (-12 (-5 *3 (-887 (-388 (-516)))) (-5 *2 (-594 (-359))) (-5 *1 (-961)) (-5 *4 (-359)))))
+(-10 -7 (-15 -3855 ((-594 (-359)) (-887 (-388 (-516))) (-359))) (-15 -3855 ((-594 (-359)) (-887 (-516)) (-359))) (-15 -4243 ((-594 (-594 (-359))) (-594 (-887 (-516))) (-594 (-1098)) (-359))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 70)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-3301 (($ $) NIL) (($ $ (-860)) NIL) (($ (-388 (-516))) NIL) (($ (-516)) NIL)) (-1655 (((-110) $ $) NIL)) (-3905 (((-516) $) 65)) (-3815 (($) NIL T CONST)) (-3457 (((-3 $ #1="failed") (-1092 $) (-860) (-805)) NIL) (((-3 $ #1#) (-1092 $) (-860)) 50)) (-3432 (((-3 (-388 (-516)) #2="failed") $) NIL (|has| (-388 (-516)) (-975 (-388 (-516))))) (((-3 (-388 (-516)) #2#) $) NIL) (((-3 |#1| #2#) $) 107) (((-3 (-516) #2#) $) NIL (-3810 (|has| (-388 (-516)) (-975 (-516))) (|has| |#1| (-975 (-516)))))) (-3431 (((-388 (-516)) $) 15 (|has| (-388 (-516)) (-975 (-388 (-516))))) (((-388 (-516)) $) 15) ((|#1| $) 108) (((-516) $) NIL (-3810 (|has| (-388 (-516)) (-975 (-516))) (|has| |#1| (-975 (-516)))))) (-3297 (($ $ (-805)) 42)) (-3296 (($ $ (-805)) 43)) (-2824 (($ $ $) NIL)) (-3456 (((-388 (-516)) $ $) 19)) (-3741 (((-3 $ "failed") $) 83)) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4005 (((-110) $) NIL)) (-3460 (((-110) $) 61)) (-2436 (((-110) $) NIL)) (-3275 (($ $ (-516)) NIL)) (-3461 (((-110) $) 64)) (-1652 (((-3 (-594 $) #3="failed") (-594 $) $) NIL)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-3298 (((-3 (-1092 $) #1#) $) 78)) (-3300 (((-3 (-805) #1#) $) 77)) (-3299 (((-3 (-1092 $) #1#) $) 75)) (-3314 (((-3 (-993 $ (-1092 $)) "failed") $) 73)) (-1963 (($ (-594 $)) NIL) (($ $ $) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) 84)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ (-594 $)) NIL) (($ $ $) NIL)) (-4011 (((-386 $) $) NIL)) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-4233 (((-805) $) 82) (($ (-516)) NIL) (($ (-388 (-516))) NIL) (($ $) 58) (($ (-388 (-516))) NIL) (($ (-516)) NIL) (($ (-388 (-516))) NIL) (($ |#1|) 110)) (-3385 (((-719)) NIL)) (-2117 (((-110) $ $) NIL)) (-4048 (((-388 (-516)) $ $) 25)) (-3458 (((-594 $) (-1092 $)) 56) (((-594 $) (-1092 (-388 (-516)))) NIL) (((-594 $) (-1092 (-516))) NIL) (((-594 $) (-887 $)) NIL) (((-594 $) (-887 (-388 (-516)))) NIL) (((-594 $) (-887 (-516))) NIL)) (-3315 (($ (-993 $ (-1092 $)) (-805)) 41)) (-3661 (($ $) 20)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL)) (-2920 (($) 29 T CONST)) (-2927 (($) 35 T CONST)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 71)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 22)) (-4224 (($ $ $) 33)) (-4116 (($ $) 34) (($ $ $) 69)) (-4118 (($ $ $) 103)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL) (($ $ (-388 (-516))) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 91) (($ $ $) 96) (($ (-388 (-516)) $) NIL) (($ $ (-388 (-516))) NIL) (($ (-516) $) 91) (($ $ (-516)) NIL) (($ (-388 (-516)) $) NIL) (($ $ (-388 (-516))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
+(((-962 |#1|) (-13 (-951) (-393 |#1|) (-37 |#1|) (-10 -8 (-15 -3315 ($ (-993 $ (-1092 $)) (-805))) (-15 -3314 ((-3 (-993 $ (-1092 $)) "failed") $)) (-15 -3456 ((-388 (-516)) $ $)))) (-13 (-793) (-344) (-958))) (T -962))
+((-3315 (*1 *1 *2 *3) (-12 (-5 *2 (-993 (-962 *4) (-1092 (-962 *4)))) (-5 *3 (-805)) (-5 *1 (-962 *4)) (-4 *4 (-13 (-793) (-344) (-958))))) (-3314 (*1 *2 *1) (|partial| -12 (-5 *2 (-993 (-962 *3) (-1092 (-962 *3)))) (-5 *1 (-962 *3)) (-4 *3 (-13 (-793) (-344) (-958))))) (-3456 (*1 *2 *1 *1) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-962 *3)) (-4 *3 (-13 (-793) (-344) (-958))))))
+(-13 (-951) (-393 |#1|) (-37 |#1|) (-10 -8 (-15 -3315 ($ (-993 $ (-1092 $)) (-805))) (-15 -3314 ((-3 (-993 $ (-1092 $)) "failed") $)) (-15 -3456 ((-388 (-516)) $ $))))
+((-3316 (((-2 (|:| -3537 |#2|) (|:| -2770 (-594 |#1|))) |#2| (-594 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
+(((-963 |#1| |#2|) (-10 -7 (-15 -3316 (|#2| |#2| |#1|)) (-15 -3316 ((-2 (|:| -3537 |#2|) (|:| -2770 (-594 |#1|))) |#2| (-594 |#1|)))) (-344) (-609 |#1|)) (T -963))
+((-3316 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-5 *2 (-2 (|:| -3537 *3) (|:| -2770 (-594 *5)))) (-5 *1 (-963 *5 *3)) (-5 *4 (-594 *5)) (-4 *3 (-609 *5)))) (-3316 (*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-963 *3 *2)) (-4 *2 (-609 *3)))))
+(-10 -7 (-15 -3316 (|#2| |#2| |#1|)) (-15 -3316 ((-2 (|:| -3537 |#2|) (|:| -2770 (-594 |#1|))) |#2| (-594 |#1|))))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3318 ((|#1| $ |#1|) 14)) (-4066 ((|#1| $ |#1|) 12)) (-3320 (($ |#1|) 10)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-4078 ((|#1| $) 11)) (-3319 ((|#1| $) 13)) (-4233 (((-805) $) 21 (|has| |#1| (-1027)))) (-3317 (((-110) $ $) 9)))
+(((-964 |#1|) (-13 (-1134) (-10 -8 (-15 -3320 ($ |#1|)) (-15 -4078 (|#1| $)) (-15 -4066 (|#1| $ |#1|)) (-15 -3319 (|#1| $)) (-15 -3318 (|#1| $ |#1|)) (-15 -3317 ((-110) $ $)) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|))) (-1134)) (T -964))
+((-3320 (*1 *1 *2) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1134)))) (-4078 (*1 *2 *1) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1134)))) (-4066 (*1 *2 *1 *2) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1134)))) (-3319 (*1 *2 *1) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1134)))) (-3318 (*1 *2 *1 *2) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1134)))) (-3317 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-964 *3)) (-4 *3 (-1134)))))
+(-13 (-1134) (-10 -8 (-15 -3320 ($ |#1|)) (-15 -4078 (|#1| $)) (-15 -4066 (|#1| $ |#1|)) (-15 -3319 (|#1| $)) (-15 -3318 (|#1| $ |#1|)) (-15 -3317 ((-110) $ $)) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|)))
+((-2828 (((-110) $ $) NIL)) (-3963 (((-594 (-2 (|:| -4140 $) (|:| -1768 (-594 |#4|)))) (-594 |#4|)) NIL)) (-3964 (((-594 $) (-594 |#4|)) 105) (((-594 $) (-594 |#4|) (-110)) 106) (((-594 $) (-594 |#4|) (-110) (-110)) 104) (((-594 $) (-594 |#4|) (-110) (-110) (-110) (-110)) 107)) (-3347 (((-594 |#3|) $) NIL)) (-3172 (((-110) $) NIL)) (-3163 (((-110) $) NIL (|has| |#1| (-523)))) (-3975 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3970 ((|#4| |#4| $) NIL)) (-4053 (((-594 (-2 (|:| |val| |#4|) (|:| -1610 $))) |#4| $) 99)) (-3173 (((-2 (|:| |under| $) (|:| -3389 $) (|:| |upper| $)) $ |#3|) NIL)) (-1217 (((-110) $ (-719)) NIL)) (-3992 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269))) (((-3 |#4| #1="failed") $ |#3|) 54)) (-3815 (($) NIL T CONST)) (-3168 (((-110) $) 26 (|has| |#1| (-523)))) (-3170 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3169 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3171 (((-110) $) NIL (|has| |#1| (-523)))) (-3971 (((-594 |#4|) (-594 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3164 (((-594 |#4|) (-594 |#4|) $) NIL (|has| |#1| (-523)))) (-3165 (((-594 |#4|) (-594 |#4|) $) NIL (|has| |#1| (-523)))) (-3432 (((-3 $ "failed") (-594 |#4|)) NIL)) (-3431 (($ (-594 |#4|)) NIL)) (-4077 (((-3 $ #1#) $) 39)) (-3967 ((|#4| |#4| $) 57)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-3685 (($ |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3166 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-523)))) (-3976 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-3965 ((|#4| |#4| $) NIL)) (-4121 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3978 (((-2 (|:| -4140 (-594 |#4|)) (|:| -1768 (-594 |#4|))) $) NIL)) (-3471 (((-110) |#4| $) NIL)) (-3469 (((-110) |#4| $) NIL)) (-3472 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3717 (((-2 (|:| |val| (-594 |#4|)) (|:| |towers| (-594 $))) (-594 |#4|) (-110) (-110)) 119)) (-2018 (((-594 |#4|) $) 16 (|has| $ (-6 -4269)))) (-3977 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3455 ((|#3| $) 33)) (-4001 (((-110) $ (-719)) NIL)) (-2445 (((-594 |#4|) $) 17 (|has| $ (-6 -4269)))) (-3516 (((-110) |#4| $) 25 (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-2022 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#4| |#4|) $) 21)) (-3178 (((-594 |#3|) $) NIL)) (-3177 (((-110) |#3| $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL)) (-3465 (((-3 |#4| (-594 $)) |#4| |#4| $) NIL)) (-3464 (((-594 (-2 (|:| |val| |#4|) (|:| -1610 $))) |#4| |#4| $) 97)) (-4076 (((-3 |#4| #1#) $) 37)) (-3466 (((-594 $) |#4| $) 80)) (-3468 (((-3 (-110) (-594 $)) |#4| $) NIL)) (-3467 (((-594 (-2 (|:| |val| (-110)) (|:| -1610 $))) |#4| $) 90) (((-110) |#4| $) 52)) (-3509 (((-594 $) |#4| $) 102) (((-594 $) (-594 |#4|) $) NIL) (((-594 $) (-594 |#4|) (-594 $)) 103) (((-594 $) |#4| (-594 $)) NIL)) (-3718 (((-594 $) (-594 |#4|) (-110) (-110) (-110)) 114)) (-3719 (($ |#4| $) 70) (($ (-594 |#4|) $) 71) (((-594 $) |#4| $ (-110) (-110) (-110) (-110) (-110)) 67)) (-3979 (((-594 |#4|) $) NIL)) (-3973 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3968 ((|#4| |#4| $) NIL)) (-3981 (((-110) $ $) NIL)) (-3167 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-523)))) (-3974 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3969 ((|#4| |#4| $) NIL)) (-3514 (((-1045) $) NIL)) (-4079 (((-3 |#4| #1#) $) 35)) (-1350 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-3961 (((-3 $ #1#) $ |#4|) 48)) (-4047 (($ $ |#4|) NIL) (((-594 $) |#4| $) 82) (((-594 $) |#4| (-594 $)) NIL) (((-594 $) (-594 |#4|) $) NIL) (((-594 $) (-594 |#4|) (-594 $)) 77)) (-2020 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 |#4|) (-594 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-275 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-594 (-275 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) 15)) (-3847 (($) 13)) (-4223 (((-719) $) NIL)) (-2019 (((-719) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (((-719) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3678 (($ $) 12)) (-4246 (((-505) $) NIL (|has| |#4| (-572 (-505))))) (-3804 (($ (-594 |#4|)) 20)) (-3174 (($ $ |#3|) 42)) (-3176 (($ $ |#3|) 44)) (-3966 (($ $) NIL)) (-3175 (($ $ |#3|) NIL)) (-4233 (((-805) $) 31) (((-594 |#4|) $) 40)) (-3960 (((-719) $) NIL (|has| |#3| (-349)))) (-3980 (((-3 (-2 (|:| |bas| $) (|:| -3602 (-594 |#4|))) #1#) (-594 |#4|) (-1 (-110) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3602 (-594 |#4|))) #1#) (-594 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3972 (((-110) $ (-1 (-110) |#4| (-594 |#4|))) NIL)) (-3463 (((-594 $) |#4| $) 79) (((-594 $) |#4| (-594 $)) NIL) (((-594 $) (-594 |#4|) $) NIL) (((-594 $) (-594 |#4|) (-594 $)) NIL)) (-2021 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3962 (((-594 |#3|) $) NIL)) (-3470 (((-110) |#4| $) NIL)) (-4209 (((-110) |#3| $) 53)) (-3317 (((-110) $ $) NIL)) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-965 |#1| |#2| |#3| |#4|) (-13 (-1002 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3719 ((-594 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -3964 ((-594 $) (-594 |#4|) (-110) (-110))) (-15 -3964 ((-594 $) (-594 |#4|) (-110) (-110) (-110) (-110))) (-15 -3718 ((-594 $) (-594 |#4|) (-110) (-110) (-110))) (-15 -3717 ((-2 (|:| |val| (-594 |#4|)) (|:| |towers| (-594 $))) (-594 |#4|) (-110) (-110))))) (-432) (-741) (-795) (-997 |#1| |#2| |#3|)) (T -965))
+((-3719 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-594 (-965 *5 *6 *7 *3))) (-5 *1 (-965 *5 *6 *7 *3)) (-4 *3 (-997 *5 *6 *7)))) (-3964 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-594 *8)) (-5 *4 (-110)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-594 (-965 *5 *6 *7 *8))) (-5 *1 (-965 *5 *6 *7 *8)))) (-3964 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-594 *8)) (-5 *4 (-110)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-594 (-965 *5 *6 *7 *8))) (-5 *1 (-965 *5 *6 *7 *8)))) (-3718 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-594 *8)) (-5 *4 (-110)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-594 (-965 *5 *6 *7 *8))) (-5 *1 (-965 *5 *6 *7 *8)))) (-3717 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-997 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-594 *8)) (|:| |towers| (-594 (-965 *5 *6 *7 *8))))) (-5 *1 (-965 *5 *6 *7 *8)) (-5 *3 (-594 *8)))))
+(-13 (-1002 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3719 ((-594 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -3964 ((-594 $) (-594 |#4|) (-110) (-110))) (-15 -3964 ((-594 $) (-594 |#4|) (-110) (-110) (-110) (-110))) (-15 -3718 ((-594 $) (-594 |#4|) (-110) (-110) (-110))) (-15 -3717 ((-2 (|:| |val| (-594 |#4|)) (|:| |towers| (-594 $))) (-594 |#4|) (-110) (-110)))))
+((-3321 (((-594 (-2 (|:| |radval| (-295 (-516))) (|:| |radmult| (-516)) (|:| |radvect| (-594 (-637 (-295 (-516))))))) (-637 (-388 (-887 (-516))))) 59)) (-3322 (((-594 (-637 (-295 (-516)))) (-295 (-516)) (-637 (-388 (-887 (-516))))) 48)) (-3323 (((-594 (-295 (-516))) (-637 (-388 (-887 (-516))))) 41)) (-3327 (((-594 (-637 (-295 (-516)))) (-637 (-388 (-887 (-516))))) 69)) (-3325 (((-637 (-295 (-516))) (-637 (-295 (-516)))) 34)) (-3326 (((-594 (-637 (-295 (-516)))) (-594 (-637 (-295 (-516))))) 62)) (-3324 (((-3 (-637 (-295 (-516))) "failed") (-637 (-388 (-887 (-516))))) 66)))
+(((-966) (-10 -7 (-15 -3321 ((-594 (-2 (|:| |radval| (-295 (-516))) (|:| |radmult| (-516)) (|:| |radvect| (-594 (-637 (-295 (-516))))))) (-637 (-388 (-887 (-516)))))) (-15 -3322 ((-594 (-637 (-295 (-516)))) (-295 (-516)) (-637 (-388 (-887 (-516)))))) (-15 -3323 ((-594 (-295 (-516))) (-637 (-388 (-887 (-516)))))) (-15 -3324 ((-3 (-637 (-295 (-516))) "failed") (-637 (-388 (-887 (-516)))))) (-15 -3325 ((-637 (-295 (-516))) (-637 (-295 (-516))))) (-15 -3326 ((-594 (-637 (-295 (-516)))) (-594 (-637 (-295 (-516)))))) (-15 -3327 ((-594 (-637 (-295 (-516)))) (-637 (-388 (-887 (-516)))))))) (T -966))
+((-3327 (*1 *2 *3) (-12 (-5 *3 (-637 (-388 (-887 (-516))))) (-5 *2 (-594 (-637 (-295 (-516))))) (-5 *1 (-966)))) (-3326 (*1 *2 *2) (-12 (-5 *2 (-594 (-637 (-295 (-516))))) (-5 *1 (-966)))) (-3325 (*1 *2 *2) (-12 (-5 *2 (-637 (-295 (-516)))) (-5 *1 (-966)))) (-3324 (*1 *2 *3) (|partial| -12 (-5 *3 (-637 (-388 (-887 (-516))))) (-5 *2 (-637 (-295 (-516)))) (-5 *1 (-966)))) (-3323 (*1 *2 *3) (-12 (-5 *3 (-637 (-388 (-887 (-516))))) (-5 *2 (-594 (-295 (-516)))) (-5 *1 (-966)))) (-3322 (*1 *2 *3 *4) (-12 (-5 *4 (-637 (-388 (-887 (-516))))) (-5 *2 (-594 (-637 (-295 (-516))))) (-5 *1 (-966)) (-5 *3 (-295 (-516))))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-637 (-388 (-887 (-516))))) (-5 *2 (-594 (-2 (|:| |radval| (-295 (-516))) (|:| |radmult| (-516)) (|:| |radvect| (-594 (-637 (-295 (-516)))))))) (-5 *1 (-966)))))
+(-10 -7 (-15 -3321 ((-594 (-2 (|:| |radval| (-295 (-516))) (|:| |radmult| (-516)) (|:| |radvect| (-594 (-637 (-295 (-516))))))) (-637 (-388 (-887 (-516)))))) (-15 -3322 ((-594 (-637 (-295 (-516)))) (-295 (-516)) (-637 (-388 (-887 (-516)))))) (-15 -3323 ((-594 (-295 (-516))) (-637 (-388 (-887 (-516)))))) (-15 -3324 ((-3 (-637 (-295 (-516))) "failed") (-637 (-388 (-887 (-516)))))) (-15 -3325 ((-637 (-295 (-516))) (-637 (-295 (-516))))) (-15 -3326 ((-594 (-637 (-295 (-516)))) (-594 (-637 (-295 (-516)))))) (-15 -3327 ((-594 (-637 (-295 (-516)))) (-637 (-388 (-887 (-516)))))))
+((-3331 (((-594 (-637 |#1|)) (-594 (-637 |#1|))) 58) (((-637 |#1|) (-637 |#1|)) 57) (((-594 (-637 |#1|)) (-594 (-637 |#1|)) (-594 (-637 |#1|))) 56) (((-637 |#1|) (-637 |#1|) (-637 |#1|)) 53)) (-3330 (((-594 (-637 |#1|)) (-594 (-637 |#1|)) (-860)) 52) (((-637 |#1|) (-637 |#1|) (-860)) 51)) (-3332 (((-594 (-637 (-516))) (-594 (-594 (-516)))) 68) (((-594 (-637 (-516))) (-594 (-843 (-516))) (-516)) 67) (((-637 (-516)) (-594 (-516))) 64) (((-637 (-516)) (-843 (-516)) (-516)) 63)) (-3329 (((-637 (-887 |#1|)) (-719)) 81)) (-3328 (((-594 (-637 |#1|)) (-594 (-637 |#1|)) (-860)) 37 (|has| |#1| (-6 (-4271 "*")))) (((-637 |#1|) (-637 |#1|) (-860)) 35 (|has| |#1| (-6 (-4271 "*"))))))
+(((-967 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4271 "*"))) (-15 -3328 ((-637 |#1|) (-637 |#1|) (-860))) |%noBranch|) (IF (|has| |#1| (-6 (-4271 "*"))) (-15 -3328 ((-594 (-637 |#1|)) (-594 (-637 |#1|)) (-860))) |%noBranch|) (-15 -3329 ((-637 (-887 |#1|)) (-719))) (-15 -3330 ((-637 |#1|) (-637 |#1|) (-860))) (-15 -3330 ((-594 (-637 |#1|)) (-594 (-637 |#1|)) (-860))) (-15 -3331 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -3331 ((-594 (-637 |#1|)) (-594 (-637 |#1|)) (-594 (-637 |#1|)))) (-15 -3331 ((-637 |#1|) (-637 |#1|))) (-15 -3331 ((-594 (-637 |#1|)) (-594 (-637 |#1|)))) (-15 -3332 ((-637 (-516)) (-843 (-516)) (-516))) (-15 -3332 ((-637 (-516)) (-594 (-516)))) (-15 -3332 ((-594 (-637 (-516))) (-594 (-843 (-516))) (-516))) (-15 -3332 ((-594 (-637 (-516))) (-594 (-594 (-516)))))) (-984)) (T -967))
+((-3332 (*1 *2 *3) (-12 (-5 *3 (-594 (-594 (-516)))) (-5 *2 (-594 (-637 (-516)))) (-5 *1 (-967 *4)) (-4 *4 (-984)))) (-3332 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-843 (-516)))) (-5 *4 (-516)) (-5 *2 (-594 (-637 *4))) (-5 *1 (-967 *5)) (-4 *5 (-984)))) (-3332 (*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-637 (-516))) (-5 *1 (-967 *4)) (-4 *4 (-984)))) (-3332 (*1 *2 *3 *4) (-12 (-5 *3 (-843 (-516))) (-5 *4 (-516)) (-5 *2 (-637 *4)) (-5 *1 (-967 *5)) (-4 *5 (-984)))) (-3331 (*1 *2 *2) (-12 (-5 *2 (-594 (-637 *3))) (-4 *3 (-984)) (-5 *1 (-967 *3)))) (-3331 (*1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-967 *3)))) (-3331 (*1 *2 *2 *2) (-12 (-5 *2 (-594 (-637 *3))) (-4 *3 (-984)) (-5 *1 (-967 *3)))) (-3331 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-967 *3)))) (-3330 (*1 *2 *2 *3) (-12 (-5 *2 (-594 (-637 *4))) (-5 *3 (-860)) (-4 *4 (-984)) (-5 *1 (-967 *4)))) (-3330 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *4)) (-5 *3 (-860)) (-4 *4 (-984)) (-5 *1 (-967 *4)))) (-3329 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-637 (-887 *4))) (-5 *1 (-967 *4)) (-4 *4 (-984)))) (-3328 (*1 *2 *2 *3) (-12 (-5 *2 (-594 (-637 *4))) (-5 *3 (-860)) (|has| *4 (-6 (-4271 "*"))) (-4 *4 (-984)) (-5 *1 (-967 *4)))) (-3328 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *4)) (-5 *3 (-860)) (|has| *4 (-6 (-4271 "*"))) (-4 *4 (-984)) (-5 *1 (-967 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4271 "*"))) (-15 -3328 ((-637 |#1|) (-637 |#1|) (-860))) |%noBranch|) (IF (|has| |#1| (-6 (-4271 "*"))) (-15 -3328 ((-594 (-637 |#1|)) (-594 (-637 |#1|)) (-860))) |%noBranch|) (-15 -3329 ((-637 (-887 |#1|)) (-719))) (-15 -3330 ((-637 |#1|) (-637 |#1|) (-860))) (-15 -3330 ((-594 (-637 |#1|)) (-594 (-637 |#1|)) (-860))) (-15 -3331 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -3331 ((-594 (-637 |#1|)) (-594 (-637 |#1|)) (-594 (-637 |#1|)))) (-15 -3331 ((-637 |#1|) (-637 |#1|))) (-15 -3331 ((-594 (-637 |#1|)) (-594 (-637 |#1|)))) (-15 -3332 ((-637 (-516)) (-843 (-516)) (-516))) (-15 -3332 ((-637 (-516)) (-594 (-516)))) (-15 -3332 ((-594 (-637 (-516))) (-594 (-843 (-516))) (-516))) (-15 -3332 ((-594 (-637 (-516))) (-594 (-594 (-516))))))
+((-3336 (((-637 |#1|) (-594 (-637 |#1|)) (-1179 |#1|)) 51 (|has| |#1| (-289)))) (-3697 (((-594 (-594 (-637 |#1|))) (-594 (-637 |#1|)) (-1179 (-1179 |#1|))) 77 (|has| |#1| (-344))) (((-594 (-594 (-637 |#1|))) (-594 (-637 |#1|)) (-1179 |#1|)) 80 (|has| |#1| (-344)))) (-3340 (((-1179 |#1|) (-594 (-1179 |#1|)) (-516)) 94 (-12 (|has| |#1| (-344)) (|has| |#1| (-349))))) (-3339 (((-594 (-594 (-637 |#1|))) (-594 (-637 |#1|)) (-860)) 86 (-12 (|has| |#1| (-344)) (|has| |#1| (-349)))) (((-594 (-594 (-637 |#1|))) (-594 (-637 |#1|)) (-110)) 84 (-12 (|has| |#1| (-344)) (|has| |#1| (-349)))) (((-594 (-594 (-637 |#1|))) (-594 (-637 |#1|))) 83 (-12 (|has| |#1| (-344)) (|has| |#1| (-349)))) (((-594 (-594 (-637 |#1|))) (-594 (-637 |#1|)) (-110) (-516) (-516)) 82 (-12 (|has| |#1| (-344)) (|has| |#1| (-349))))) (-3338 (((-110) (-594 (-637 |#1|))) 72 (|has| |#1| (-344))) (((-110) (-594 (-637 |#1|)) (-516)) 74 (|has| |#1| (-344)))) (-3335 (((-1179 (-1179 |#1|)) (-594 (-637 |#1|)) (-1179 |#1|)) 49 (|has| |#1| (-289)))) (-3334 (((-637 |#1|) (-594 (-637 |#1|)) (-637 |#1|)) 34)) (-3333 (((-637 |#1|) (-1179 (-1179 |#1|))) 31)) (-3337 (((-637 |#1|) (-594 (-637 |#1|)) (-594 (-637 |#1|)) (-516)) 66 (|has| |#1| (-344))) (((-637 |#1|) (-594 (-637 |#1|)) (-594 (-637 |#1|))) 65 (|has| |#1| (-344))) (((-637 |#1|) (-594 (-637 |#1|)) (-594 (-637 |#1|)) (-110) (-516)) 70 (|has| |#1| (-344)))))
+(((-968 |#1|) (-10 -7 (-15 -3333 ((-637 |#1|) (-1179 (-1179 |#1|)))) (-15 -3334 ((-637 |#1|) (-594 (-637 |#1|)) (-637 |#1|))) (IF (|has| |#1| (-289)) (PROGN (-15 -3335 ((-1179 (-1179 |#1|)) (-594 (-637 |#1|)) (-1179 |#1|))) (-15 -3336 ((-637 |#1|) (-594 (-637 |#1|)) (-1179 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -3337 ((-637 |#1|) (-594 (-637 |#1|)) (-594 (-637 |#1|)) (-110) (-516))) (-15 -3337 ((-637 |#1|) (-594 (-637 |#1|)) (-594 (-637 |#1|)))) (-15 -3337 ((-637 |#1|) (-594 (-637 |#1|)) (-594 (-637 |#1|)) (-516))) (-15 -3338 ((-110) (-594 (-637 |#1|)) (-516))) (-15 -3338 ((-110) (-594 (-637 |#1|)))) (-15 -3697 ((-594 (-594 (-637 |#1|))) (-594 (-637 |#1|)) (-1179 |#1|))) (-15 -3697 ((-594 (-594 (-637 |#1|))) (-594 (-637 |#1|)) (-1179 (-1179 |#1|))))) |%noBranch|) (IF (|has| |#1| (-349)) (IF (|has| |#1| (-344)) (PROGN (-15 -3339 ((-594 (-594 (-637 |#1|))) (-594 (-637 |#1|)) (-110) (-516) (-516))) (-15 -3339 ((-594 (-594 (-637 |#1|))) (-594 (-637 |#1|)))) (-15 -3339 ((-594 (-594 (-637 |#1|))) (-594 (-637 |#1|)) (-110))) (-15 -3339 ((-594 (-594 (-637 |#1|))) (-594 (-637 |#1|)) (-860))) (-15 -3340 ((-1179 |#1|) (-594 (-1179 |#1|)) (-516)))) |%noBranch|) |%noBranch|)) (-984)) (T -968))
+((-3340 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-1179 *5))) (-5 *4 (-516)) (-5 *2 (-1179 *5)) (-5 *1 (-968 *5)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-984)))) (-3339 (*1 *2 *3 *4) (-12 (-5 *4 (-860)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-984)) (-5 *2 (-594 (-594 (-637 *5)))) (-5 *1 (-968 *5)) (-5 *3 (-594 (-637 *5))))) (-3339 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-984)) (-5 *2 (-594 (-594 (-637 *5)))) (-5 *1 (-968 *5)) (-5 *3 (-594 (-637 *5))))) (-3339 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *4 (-349)) (-4 *4 (-984)) (-5 *2 (-594 (-594 (-637 *4)))) (-5 *1 (-968 *4)) (-5 *3 (-594 (-637 *4))))) (-3339 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-110)) (-5 *5 (-516)) (-4 *6 (-344)) (-4 *6 (-349)) (-4 *6 (-984)) (-5 *2 (-594 (-594 (-637 *6)))) (-5 *1 (-968 *6)) (-5 *3 (-594 (-637 *6))))) (-3697 (*1 *2 *3 *4) (-12 (-5 *4 (-1179 (-1179 *5))) (-4 *5 (-344)) (-4 *5 (-984)) (-5 *2 (-594 (-594 (-637 *5)))) (-5 *1 (-968 *5)) (-5 *3 (-594 (-637 *5))))) (-3697 (*1 *2 *3 *4) (-12 (-5 *4 (-1179 *5)) (-4 *5 (-344)) (-4 *5 (-984)) (-5 *2 (-594 (-594 (-637 *5)))) (-5 *1 (-968 *5)) (-5 *3 (-594 (-637 *5))))) (-3338 (*1 *2 *3) (-12 (-5 *3 (-594 (-637 *4))) (-4 *4 (-344)) (-4 *4 (-984)) (-5 *2 (-110)) (-5 *1 (-968 *4)))) (-3338 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-637 *5))) (-5 *4 (-516)) (-4 *5 (-344)) (-4 *5 (-984)) (-5 *2 (-110)) (-5 *1 (-968 *5)))) (-3337 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-594 (-637 *5))) (-5 *4 (-516)) (-5 *2 (-637 *5)) (-5 *1 (-968 *5)) (-4 *5 (-344)) (-4 *5 (-984)))) (-3337 (*1 *2 *3 *3) (-12 (-5 *3 (-594 (-637 *4))) (-5 *2 (-637 *4)) (-5 *1 (-968 *4)) (-4 *4 (-344)) (-4 *4 (-984)))) (-3337 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-594 (-637 *6))) (-5 *4 (-110)) (-5 *5 (-516)) (-5 *2 (-637 *6)) (-5 *1 (-968 *6)) (-4 *6 (-344)) (-4 *6 (-984)))) (-3336 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-637 *5))) (-5 *4 (-1179 *5)) (-4 *5 (-289)) (-4 *5 (-984)) (-5 *2 (-637 *5)) (-5 *1 (-968 *5)))) (-3335 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-637 *5))) (-4 *5 (-289)) (-4 *5 (-984)) (-5 *2 (-1179 (-1179 *5))) (-5 *1 (-968 *5)) (-5 *4 (-1179 *5)))) (-3334 (*1 *2 *3 *2) (-12 (-5 *3 (-594 (-637 *4))) (-5 *2 (-637 *4)) (-4 *4 (-984)) (-5 *1 (-968 *4)))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-1179 (-1179 *4))) (-4 *4 (-984)) (-5 *2 (-637 *4)) (-5 *1 (-968 *4)))))
+(-10 -7 (-15 -3333 ((-637 |#1|) (-1179 (-1179 |#1|)))) (-15 -3334 ((-637 |#1|) (-594 (-637 |#1|)) (-637 |#1|))) (IF (|has| |#1| (-289)) (PROGN (-15 -3335 ((-1179 (-1179 |#1|)) (-594 (-637 |#1|)) (-1179 |#1|))) (-15 -3336 ((-637 |#1|) (-594 (-637 |#1|)) (-1179 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -3337 ((-637 |#1|) (-594 (-637 |#1|)) (-594 (-637 |#1|)) (-110) (-516))) (-15 -3337 ((-637 |#1|) (-594 (-637 |#1|)) (-594 (-637 |#1|)))) (-15 -3337 ((-637 |#1|) (-594 (-637 |#1|)) (-594 (-637 |#1|)) (-516))) (-15 -3338 ((-110) (-594 (-637 |#1|)) (-516))) (-15 -3338 ((-110) (-594 (-637 |#1|)))) (-15 -3697 ((-594 (-594 (-637 |#1|))) (-594 (-637 |#1|)) (-1179 |#1|))) (-15 -3697 ((-594 (-594 (-637 |#1|))) (-594 (-637 |#1|)) (-1179 (-1179 |#1|))))) |%noBranch|) (IF (|has| |#1| (-349)) (IF (|has| |#1| (-344)) (PROGN (-15 -3339 ((-594 (-594 (-637 |#1|))) (-594 (-637 |#1|)) (-110) (-516) (-516))) (-15 -3339 ((-594 (-594 (-637 |#1|))) (-594 (-637 |#1|)))) (-15 -3339 ((-594 (-594 (-637 |#1|))) (-594 (-637 |#1|)) (-110))) (-15 -3339 ((-594 (-594 (-637 |#1|))) (-594 (-637 |#1|)) (-860))) (-15 -3340 ((-1179 |#1|) (-594 (-1179 |#1|)) (-516)))) |%noBranch|) |%noBranch|))
+((-3341 ((|#1| (-860) |#1|) 9)))
+(((-969 |#1|) (-10 -7 (-15 -3341 (|#1| (-860) |#1|))) (-13 (-1027) (-10 -8 (-15 -4118 ($ $ $))))) (T -969))
+((-3341 (*1 *2 *3 *2) (-12 (-5 *3 (-860)) (-5 *1 (-969 *2)) (-4 *2 (-13 (-1027) (-10 -8 (-15 -4118 ($ $ $))))))))
+(-10 -7 (-15 -3341 (|#1| (-860) |#1|)))
+((-3342 ((|#1| |#1| (-860)) 9)))
+(((-970 |#1|) (-10 -7 (-15 -3342 (|#1| |#1| (-860)))) (-13 (-1027) (-10 -8 (-15 * ($ $ $))))) (T -970))
+((-3342 (*1 *2 *2 *3) (-12 (-5 *3 (-860)) (-5 *1 (-970 *2)) (-4 *2 (-13 (-1027) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -3342 (|#1| |#1| (-860))))
+((-4233 ((|#1| (-293)) 11) (((-1185) |#1|) 9)))
+(((-971 |#1|) (-10 -7 (-15 -4233 ((-1185) |#1|)) (-15 -4233 (|#1| (-293)))) (-1134)) (T -971))
+((-4233 (*1 *2 *3) (-12 (-5 *3 (-293)) (-5 *1 (-971 *2)) (-4 *2 (-1134)))) (-4233 (*1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *1 (-971 *3)) (-4 *3 (-1134)))))
+(-10 -7 (-15 -4233 ((-1185) |#1|)) (-15 -4233 (|#1| (-293))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-4121 (($ |#4|) 25)) (-3741 (((-3 $ "failed") $) NIL)) (-2436 (((-110) $) NIL)) (-3343 ((|#4| $) 27)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 46) (($ (-516)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3385 (((-719)) 43)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 21 T CONST)) (-2927 (($) 23 T CONST)) (-3317 (((-110) $ $) 40)) (-4116 (($ $) 31) (($ $ $) NIL)) (-4118 (($ $ $) 29)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-972 |#1| |#2| |#3| |#4| |#5|) (-13 (-162) (-37 |#1|) (-10 -8 (-15 -4121 ($ |#4|)) (-15 -4233 ($ |#4|)) (-15 -3343 (|#4| $)))) (-344) (-741) (-795) (-891 |#1| |#2| |#3|) (-594 |#4|)) (T -972))
+((-4121 (*1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-972 *3 *4 *5 *2 *6)) (-4 *2 (-891 *3 *4 *5)) (-14 *6 (-594 *2)))) (-4233 (*1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-972 *3 *4 *5 *2 *6)) (-4 *2 (-891 *3 *4 *5)) (-14 *6 (-594 *2)))) (-3343 (*1 *2 *1) (-12 (-4 *2 (-891 *3 *4 *5)) (-5 *1 (-972 *3 *4 *5 *2 *6)) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-14 *6 (-594 *2)))))
+(-13 (-162) (-37 |#1|) (-10 -8 (-15 -4121 ($ |#4|)) (-15 -4233 ($ |#4|)) (-15 -3343 (|#4| $))))
+((-2828 (((-110) $ $) NIL (-3810 (|has| (-50) (-1027)) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027))))) (-3879 (($) NIL) (($ (-594 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))))) NIL)) (-2243 (((-1185) $ (-1098) (-1098)) NIL (|has| $ (-6 -4270)))) (-1217 (((-110) $ (-719)) NIL)) (-3345 (((-110) (-110)) 39)) (-3344 (((-110) (-110)) 38)) (-4066 (((-50) $ (-1098) (-50)) NIL)) (-1581 (($ (-1 (-110) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269)))) (-3992 (($ (-1 (-110) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269)))) (-2251 (((-3 (-50) #1="failed") (-1098) $) NIL)) (-3815 (($) NIL T CONST)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027))))) (-3684 (($ (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269))) (((-3 (-50) #1#) (-1098) $) NIL)) (-3685 (($ (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027)))) (($ (-1 (-110) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269)))) (-4121 (((-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $ (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027)))) (((-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $ (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269)))) (-1587 (((-50) $ (-1098) (-50)) NIL (|has| $ (-6 -4270)))) (-3372 (((-50) $ (-1098)) NIL)) (-2018 (((-594 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269))) (((-594 (-50)) $) NIL (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-1098) $) NIL (|has| (-1098) (-795)))) (-2445 (((-594 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269))) (((-594 (-50)) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027)))) (((-110) (-50) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-50) (-1027))))) (-2246 (((-1098) $) NIL (|has| (-1098) (-795)))) (-2022 (($ (-1 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-50) (-50)) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) NIL) (($ (-1 (-50) (-50)) $) NIL) (($ (-1 (-50) (-50) (-50)) $ $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (-3810 (|has| (-50) (-1027)) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027))))) (-2678 (((-594 (-1098)) $) 34)) (-2252 (((-110) (-1098) $) NIL)) (-1280 (((-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) $) NIL)) (-3889 (($ (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) $) NIL)) (-2248 (((-594 (-1098)) $) NIL)) (-2249 (((-110) (-1098) $) NIL)) (-3514 (((-1045) $) NIL (-3810 (|has| (-50) (-1027)) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027))))) (-4079 (((-50) $) NIL (|has| (-1098) (-795)))) (-1350 (((-3 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) "failed") (-1 (-110) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) NIL)) (-2244 (($ $ (-50)) NIL (|has| $ (-6 -4270)))) (-1281 (((-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) $) NIL)) (-2020 (((-110) (-1 (-110) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-50)) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))))) NIL (-12 (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-291 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))))) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027)))) (($ $ (-275 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))))) NIL (-12 (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-291 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))))) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027)))) (($ $ (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) NIL (-12 (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-291 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))))) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027)))) (($ $ (-594 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) (-594 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))))) NIL (-12 (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-291 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))))) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027)))) (($ $ (-594 (-50)) (-594 (-50))) NIL (-12 (|has| (-50) (-291 (-50))) (|has| (-50) (-1027)))) (($ $ (-50) (-50)) NIL (-12 (|has| (-50) (-291 (-50))) (|has| (-50) (-1027)))) (($ $ (-275 (-50))) NIL (-12 (|has| (-50) (-291 (-50))) (|has| (-50) (-1027)))) (($ $ (-594 (-275 (-50)))) NIL (-12 (|has| (-50) (-291 (-50))) (|has| (-50) (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) (-50) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-50) (-1027))))) (-2250 (((-594 (-50)) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 (((-50) $ (-1098)) 35) (((-50) $ (-1098) (-50)) NIL)) (-1473 (($) NIL) (($ (-594 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))))) NIL)) (-2019 (((-719) (-1 (-110) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027)))) (((-719) (-50) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-50) (-1027)))) (((-719) (-1 (-110) (-50)) $) NIL (|has| $ (-6 -4269)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) NIL (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-572 (-505))))) (-3804 (($ (-594 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))))) NIL)) (-4233 (((-805) $) 37 (-3810 (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-571 (-805))) (|has| (-50) (-571 (-805)))))) (-1282 (($ (-594 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))))) NIL)) (-2021 (((-110) (-1 (-110) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-50)) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) NIL (-3810 (|has| (-50) (-1027)) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027))))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-973) (-13 (-1111 (-1098) (-50)) (-10 -7 (-15 -3345 ((-110) (-110))) (-15 -3344 ((-110) (-110))) (-6 -4269)))) (T -973))
+((-3345 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-973)))) (-3344 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-973)))))
+(-13 (-1111 (-1098) (-50)) (-10 -7 (-15 -3345 ((-110) (-110))) (-15 -3344 ((-110) (-110))) (-6 -4269)))
+((-3431 ((|#2| $) 10)))
+(((-974 |#1| |#2|) (-10 -8 (-15 -3431 (|#2| |#1|))) (-975 |#2|) (-1134)) (T -974))
+NIL
+(-10 -8 (-15 -3431 (|#2| |#1|)))
+((-3432 (((-3 |#1| "failed") $) 7)) (-3431 ((|#1| $) 8)) (-4233 (($ |#1|) 6)))
+(((-975 |#1|) (-133) (-1134)) (T -975))
+((-3431 (*1 *2 *1) (-12 (-4 *1 (-975 *2)) (-4 *2 (-1134)))) (-3432 (*1 *2 *1) (|partial| -12 (-4 *1 (-975 *2)) (-4 *2 (-1134)))) (-4233 (*1 *1 *2) (-12 (-4 *1 (-975 *2)) (-4 *2 (-1134)))))
+(-13 (-10 -8 (-15 -4233 ($ |t#1|)) (-15 -3432 ((-3 |t#1| "failed") $)) (-15 -3431 (|t#1| $))))
+((-3346 (((-594 (-594 (-275 (-388 (-887 |#2|))))) (-594 (-887 |#2|)) (-594 (-1098))) 38)))
+(((-976 |#1| |#2|) (-10 -7 (-15 -3346 ((-594 (-594 (-275 (-388 (-887 |#2|))))) (-594 (-887 |#2|)) (-594 (-1098))))) (-523) (-13 (-523) (-975 |#1|))) (T -976))
+((-3346 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-887 *6))) (-5 *4 (-594 (-1098))) (-4 *6 (-13 (-523) (-975 *5))) (-4 *5 (-523)) (-5 *2 (-594 (-594 (-275 (-388 (-887 *6)))))) (-5 *1 (-976 *5 *6)))))
+(-10 -7 (-15 -3346 ((-594 (-594 (-275 (-388 (-887 |#2|))))) (-594 (-887 |#2|)) (-594 (-1098)))))
+((-3347 (((-594 (-1098)) (-388 (-887 |#1|))) 17)) (-3349 (((-388 (-1092 (-388 (-887 |#1|)))) (-388 (-887 |#1|)) (-1098)) 24)) (-3350 (((-388 (-887 |#1|)) (-388 (-1092 (-388 (-887 |#1|)))) (-1098)) 26)) (-3348 (((-3 (-1098) "failed") (-388 (-887 |#1|))) 20)) (-4046 (((-388 (-887 |#1|)) (-388 (-887 |#1|)) (-594 (-275 (-388 (-887 |#1|))))) 32) (((-388 (-887 |#1|)) (-388 (-887 |#1|)) (-275 (-388 (-887 |#1|)))) 33) (((-388 (-887 |#1|)) (-388 (-887 |#1|)) (-594 (-1098)) (-594 (-388 (-887 |#1|)))) 28) (((-388 (-887 |#1|)) (-388 (-887 |#1|)) (-1098) (-388 (-887 |#1|))) 29)) (-4233 (((-388 (-887 |#1|)) |#1|) 11)))
+(((-977 |#1|) (-10 -7 (-15 -3347 ((-594 (-1098)) (-388 (-887 |#1|)))) (-15 -3348 ((-3 (-1098) "failed") (-388 (-887 |#1|)))) (-15 -3349 ((-388 (-1092 (-388 (-887 |#1|)))) (-388 (-887 |#1|)) (-1098))) (-15 -3350 ((-388 (-887 |#1|)) (-388 (-1092 (-388 (-887 |#1|)))) (-1098))) (-15 -4046 ((-388 (-887 |#1|)) (-388 (-887 |#1|)) (-1098) (-388 (-887 |#1|)))) (-15 -4046 ((-388 (-887 |#1|)) (-388 (-887 |#1|)) (-594 (-1098)) (-594 (-388 (-887 |#1|))))) (-15 -4046 ((-388 (-887 |#1|)) (-388 (-887 |#1|)) (-275 (-388 (-887 |#1|))))) (-15 -4046 ((-388 (-887 |#1|)) (-388 (-887 |#1|)) (-594 (-275 (-388 (-887 |#1|)))))) (-15 -4233 ((-388 (-887 |#1|)) |#1|))) (-523)) (T -977))
+((-4233 (*1 *2 *3) (-12 (-5 *2 (-388 (-887 *3))) (-5 *1 (-977 *3)) (-4 *3 (-523)))) (-4046 (*1 *2 *2 *3) (-12 (-5 *3 (-594 (-275 (-388 (-887 *4))))) (-5 *2 (-388 (-887 *4))) (-4 *4 (-523)) (-5 *1 (-977 *4)))) (-4046 (*1 *2 *2 *3) (-12 (-5 *3 (-275 (-388 (-887 *4)))) (-5 *2 (-388 (-887 *4))) (-4 *4 (-523)) (-5 *1 (-977 *4)))) (-4046 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-594 (-1098))) (-5 *4 (-594 (-388 (-887 *5)))) (-5 *2 (-388 (-887 *5))) (-4 *5 (-523)) (-5 *1 (-977 *5)))) (-4046 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-388 (-887 *4))) (-5 *3 (-1098)) (-4 *4 (-523)) (-5 *1 (-977 *4)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-1092 (-388 (-887 *5))))) (-5 *4 (-1098)) (-5 *2 (-388 (-887 *5))) (-5 *1 (-977 *5)) (-4 *5 (-523)))) (-3349 (*1 *2 *3 *4) (-12 (-5 *4 (-1098)) (-4 *5 (-523)) (-5 *2 (-388 (-1092 (-388 (-887 *5))))) (-5 *1 (-977 *5)) (-5 *3 (-388 (-887 *5))))) (-3348 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-887 *4))) (-4 *4 (-523)) (-5 *2 (-1098)) (-5 *1 (-977 *4)))) (-3347 (*1 *2 *3) (-12 (-5 *3 (-388 (-887 *4))) (-4 *4 (-523)) (-5 *2 (-594 (-1098))) (-5 *1 (-977 *4)))))
+(-10 -7 (-15 -3347 ((-594 (-1098)) (-388 (-887 |#1|)))) (-15 -3348 ((-3 (-1098) "failed") (-388 (-887 |#1|)))) (-15 -3349 ((-388 (-1092 (-388 (-887 |#1|)))) (-388 (-887 |#1|)) (-1098))) (-15 -3350 ((-388 (-887 |#1|)) (-388 (-1092 (-388 (-887 |#1|)))) (-1098))) (-15 -4046 ((-388 (-887 |#1|)) (-388 (-887 |#1|)) (-1098) (-388 (-887 |#1|)))) (-15 -4046 ((-388 (-887 |#1|)) (-388 (-887 |#1|)) (-594 (-1098)) (-594 (-388 (-887 |#1|))))) (-15 -4046 ((-388 (-887 |#1|)) (-388 (-887 |#1|)) (-275 (-388 (-887 |#1|))))) (-15 -4046 ((-388 (-887 |#1|)) (-388 (-887 |#1|)) (-594 (-275 (-388 (-887 |#1|)))))) (-15 -4233 ((-388 (-887 |#1|)) |#1|)))
+((-3351 (((-359)) 15)) (-3361 (((-1 (-359)) (-359) (-359)) 20)) (-3359 (((-1 (-359)) (-719)) 43)) (-3352 (((-359)) 34)) (-3355 (((-1 (-359)) (-359) (-359)) 35)) (-3353 (((-359)) 26)) (-3356 (((-1 (-359)) (-359)) 27)) (-3354 (((-359) (-719)) 38)) (-3357 (((-1 (-359)) (-719)) 39)) (-3358 (((-1 (-359)) (-719) (-719)) 42)) (-3662 (((-1 (-359)) (-719) (-719)) 40)))
+(((-978) (-10 -7 (-15 -3351 ((-359))) (-15 -3352 ((-359))) (-15 -3353 ((-359))) (-15 -3354 ((-359) (-719))) (-15 -3361 ((-1 (-359)) (-359) (-359))) (-15 -3355 ((-1 (-359)) (-359) (-359))) (-15 -3356 ((-1 (-359)) (-359))) (-15 -3357 ((-1 (-359)) (-719))) (-15 -3662 ((-1 (-359)) (-719) (-719))) (-15 -3358 ((-1 (-359)) (-719) (-719))) (-15 -3359 ((-1 (-359)) (-719))))) (T -978))
+((-3359 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-359))) (-5 *1 (-978)))) (-3358 (*1 *2 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-359))) (-5 *1 (-978)))) (-3662 (*1 *2 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-359))) (-5 *1 (-978)))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-359))) (-5 *1 (-978)))) (-3356 (*1 *2 *3) (-12 (-5 *2 (-1 (-359))) (-5 *1 (-978)) (-5 *3 (-359)))) (-3355 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-359))) (-5 *1 (-978)) (-5 *3 (-359)))) (-3361 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-359))) (-5 *1 (-978)) (-5 *3 (-359)))) (-3354 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-359)) (-5 *1 (-978)))) (-3353 (*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-978)))) (-3352 (*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-978)))) (-3351 (*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-978)))))
+(-10 -7 (-15 -3351 ((-359))) (-15 -3352 ((-359))) (-15 -3353 ((-359))) (-15 -3354 ((-359) (-719))) (-15 -3361 ((-1 (-359)) (-359) (-359))) (-15 -3355 ((-1 (-359)) (-359) (-359))) (-15 -3356 ((-1 (-359)) (-359))) (-15 -3357 ((-1 (-359)) (-719))) (-15 -3662 ((-1 (-359)) (-719) (-719))) (-15 -3358 ((-1 (-359)) (-719) (-719))) (-15 -3359 ((-1 (-359)) (-719))))
+((-4011 (((-386 |#1|) |#1|) 33)))
+(((-979 |#1|) (-10 -7 (-15 -4011 ((-386 |#1|) |#1|))) (-1155 (-388 (-887 (-516))))) (T -979))
+((-4011 (*1 *2 *3) (-12 (-5 *2 (-386 *3)) (-5 *1 (-979 *3)) (-4 *3 (-1155 (-388 (-887 (-516))))))))
+(-10 -7 (-15 -4011 ((-386 |#1|) |#1|)))
+((-3360 (((-388 (-386 (-887 |#1|))) (-388 (-887 |#1|))) 14)))
+(((-980 |#1|) (-10 -7 (-15 -3360 ((-388 (-386 (-887 |#1|))) (-388 (-887 |#1|))))) (-289)) (T -980))
+((-3360 (*1 *2 *3) (-12 (-5 *3 (-388 (-887 *4))) (-4 *4 (-289)) (-5 *2 (-388 (-386 (-887 *4)))) (-5 *1 (-980 *4)))))
+(-10 -7 (-15 -3360 ((-388 (-386 (-887 |#1|))) (-388 (-887 |#1|)))))
+((-2828 (((-110) $ $) NIL)) (-3963 (((-594 (-2 (|:| -4140 $) (|:| -1768 (-594 (-728 |#1| (-806 |#2|)))))) (-594 (-728 |#1| (-806 |#2|)))) NIL)) (-3964 (((-594 $) (-594 (-728 |#1| (-806 |#2|)))) NIL) (((-594 $) (-594 (-728 |#1| (-806 |#2|))) (-110)) NIL) (((-594 $) (-594 (-728 |#1| (-806 |#2|))) (-110) (-110)) NIL)) (-3347 (((-594 (-806 |#2|)) $) NIL)) (-3172 (((-110) $) NIL)) (-3163 (((-110) $) NIL (|has| |#1| (-523)))) (-3975 (((-110) (-728 |#1| (-806 |#2|)) $) NIL) (((-110) $) NIL)) (-3970 (((-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-4053 (((-594 (-2 (|:| |val| (-728 |#1| (-806 |#2|))) (|:| -1610 $))) (-728 |#1| (-806 |#2|)) $) NIL)) (-3173 (((-2 (|:| |under| $) (|:| -3389 $) (|:| |upper| $)) $ (-806 |#2|)) NIL)) (-1217 (((-110) $ (-719)) NIL)) (-3992 (($ (-1 (-110) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-3 (-728 |#1| (-806 |#2|)) #1="failed") $ (-806 |#2|)) NIL)) (-3815 (($) NIL T CONST)) (-3168 (((-110) $) NIL (|has| |#1| (-523)))) (-3170 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3169 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3171 (((-110) $) NIL (|has| |#1| (-523)))) (-3971 (((-594 (-728 |#1| (-806 |#2|))) (-594 (-728 |#1| (-806 |#2|))) $ (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) (-1 (-110) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)))) NIL)) (-3164 (((-594 (-728 |#1| (-806 |#2|))) (-594 (-728 |#1| (-806 |#2|))) $) NIL (|has| |#1| (-523)))) (-3165 (((-594 (-728 |#1| (-806 |#2|))) (-594 (-728 |#1| (-806 |#2|))) $) NIL (|has| |#1| (-523)))) (-3432 (((-3 $ "failed") (-594 (-728 |#1| (-806 |#2|)))) NIL)) (-3431 (($ (-594 (-728 |#1| (-806 |#2|)))) NIL)) (-4077 (((-3 $ #1#) $) NIL)) (-3967 (((-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-728 |#1| (-806 |#2|)) (-1027))))) (-3685 (($ (-728 |#1| (-806 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-728 |#1| (-806 |#2|)) (-1027)))) (($ (-1 (-110) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3166 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-728 |#1| (-806 |#2|))) (|:| |den| |#1|)) (-728 |#1| (-806 |#2|)) $) NIL (|has| |#1| (-523)))) (-3976 (((-110) (-728 |#1| (-806 |#2|)) $ (-1 (-110) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)))) NIL)) (-3965 (((-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-4121 (((-728 |#1| (-806 |#2|)) (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) $ (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-728 |#1| (-806 |#2|)) (-1027)))) (((-728 |#1| (-806 |#2|)) (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) $ (-728 |#1| (-806 |#2|))) NIL (|has| $ (-6 -4269))) (((-728 |#1| (-806 |#2|)) (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $ (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) (-1 (-110) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)))) NIL)) (-3978 (((-2 (|:| -4140 (-594 (-728 |#1| (-806 |#2|)))) (|:| -1768 (-594 (-728 |#1| (-806 |#2|))))) $) NIL)) (-3471 (((-110) (-728 |#1| (-806 |#2|)) $) NIL)) (-3469 (((-110) (-728 |#1| (-806 |#2|)) $) NIL)) (-3472 (((-110) (-728 |#1| (-806 |#2|)) $) NIL) (((-110) $) NIL)) (-2018 (((-594 (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3977 (((-110) (-728 |#1| (-806 |#2|)) $) NIL) (((-110) $) NIL)) (-3455 (((-806 |#2|) $) NIL)) (-4001 (((-110) $ (-719)) NIL)) (-2445 (((-594 (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) (-728 |#1| (-806 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-728 |#1| (-806 |#2|)) (-1027))))) (-2022 (($ (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) $) NIL)) (-3178 (((-594 (-806 |#2|)) $) NIL)) (-3177 (((-110) (-806 |#2|) $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL)) (-3465 (((-3 (-728 |#1| (-806 |#2|)) (-594 $)) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-3464 (((-594 (-2 (|:| |val| (-728 |#1| (-806 |#2|))) (|:| -1610 $))) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-4076 (((-3 (-728 |#1| (-806 |#2|)) #1#) $) NIL)) (-3466 (((-594 $) (-728 |#1| (-806 |#2|)) $) NIL)) (-3468 (((-3 (-110) (-594 $)) (-728 |#1| (-806 |#2|)) $) NIL)) (-3467 (((-594 (-2 (|:| |val| (-110)) (|:| -1610 $))) (-728 |#1| (-806 |#2|)) $) NIL) (((-110) (-728 |#1| (-806 |#2|)) $) NIL)) (-3509 (((-594 $) (-728 |#1| (-806 |#2|)) $) NIL) (((-594 $) (-594 (-728 |#1| (-806 |#2|))) $) NIL) (((-594 $) (-594 (-728 |#1| (-806 |#2|))) (-594 $)) NIL) (((-594 $) (-728 |#1| (-806 |#2|)) (-594 $)) NIL)) (-3719 (($ (-728 |#1| (-806 |#2|)) $) NIL) (($ (-594 (-728 |#1| (-806 |#2|))) $) NIL)) (-3979 (((-594 (-728 |#1| (-806 |#2|))) $) NIL)) (-3973 (((-110) (-728 |#1| (-806 |#2|)) $) NIL) (((-110) $) NIL)) (-3968 (((-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-3981 (((-110) $ $) NIL)) (-3167 (((-2 (|:| |num| (-728 |#1| (-806 |#2|))) (|:| |den| |#1|)) (-728 |#1| (-806 |#2|)) $) NIL (|has| |#1| (-523)))) (-3974 (((-110) (-728 |#1| (-806 |#2|)) $) NIL) (((-110) $) NIL)) (-3969 (((-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-3514 (((-1045) $) NIL)) (-4079 (((-3 (-728 |#1| (-806 |#2|)) #1#) $) NIL)) (-1350 (((-3 (-728 |#1| (-806 |#2|)) "failed") (-1 (-110) (-728 |#1| (-806 |#2|))) $) NIL)) (-3961 (((-3 $ #1#) $ (-728 |#1| (-806 |#2|))) NIL)) (-4047 (($ $ (-728 |#1| (-806 |#2|))) NIL) (((-594 $) (-728 |#1| (-806 |#2|)) $) NIL) (((-594 $) (-728 |#1| (-806 |#2|)) (-594 $)) NIL) (((-594 $) (-594 (-728 |#1| (-806 |#2|))) $) NIL) (((-594 $) (-594 (-728 |#1| (-806 |#2|))) (-594 $)) NIL)) (-2020 (((-110) (-1 (-110) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-728 |#1| (-806 |#2|))) (-594 (-728 |#1| (-806 |#2|)))) NIL (-12 (|has| (-728 |#1| (-806 |#2|)) (-291 (-728 |#1| (-806 |#2|)))) (|has| (-728 |#1| (-806 |#2|)) (-1027)))) (($ $ (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) NIL (-12 (|has| (-728 |#1| (-806 |#2|)) (-291 (-728 |#1| (-806 |#2|)))) (|has| (-728 |#1| (-806 |#2|)) (-1027)))) (($ $ (-275 (-728 |#1| (-806 |#2|)))) NIL (-12 (|has| (-728 |#1| (-806 |#2|)) (-291 (-728 |#1| (-806 |#2|)))) (|has| (-728 |#1| (-806 |#2|)) (-1027)))) (($ $ (-594 (-275 (-728 |#1| (-806 |#2|))))) NIL (-12 (|has| (-728 |#1| (-806 |#2|)) (-291 (-728 |#1| (-806 |#2|)))) (|has| (-728 |#1| (-806 |#2|)) (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4223 (((-719) $) NIL)) (-2019 (((-719) (-728 |#1| (-806 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-728 |#1| (-806 |#2|)) (-1027)))) (((-719) (-1 (-110) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) NIL (|has| (-728 |#1| (-806 |#2|)) (-572 (-505))))) (-3804 (($ (-594 (-728 |#1| (-806 |#2|)))) NIL)) (-3174 (($ $ (-806 |#2|)) NIL)) (-3176 (($ $ (-806 |#2|)) NIL)) (-3966 (($ $) NIL)) (-3175 (($ $ (-806 |#2|)) NIL)) (-4233 (((-805) $) NIL) (((-594 (-728 |#1| (-806 |#2|))) $) NIL)) (-3960 (((-719) $) NIL (|has| (-806 |#2|) (-349)))) (-3980 (((-3 (-2 (|:| |bas| $) (|:| -3602 (-594 (-728 |#1| (-806 |#2|))))) #1#) (-594 (-728 |#1| (-806 |#2|))) (-1 (-110) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3602 (-594 (-728 |#1| (-806 |#2|))))) #1#) (-594 (-728 |#1| (-806 |#2|))) (-1 (-110) (-728 |#1| (-806 |#2|))) (-1 (-110) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)))) NIL)) (-3972 (((-110) $ (-1 (-110) (-728 |#1| (-806 |#2|)) (-594 (-728 |#1| (-806 |#2|))))) NIL)) (-3463 (((-594 $) (-728 |#1| (-806 |#2|)) $) NIL) (((-594 $) (-728 |#1| (-806 |#2|)) (-594 $)) NIL) (((-594 $) (-594 (-728 |#1| (-806 |#2|))) $) NIL) (((-594 $) (-594 (-728 |#1| (-806 |#2|))) (-594 $)) NIL)) (-2021 (((-110) (-1 (-110) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3962 (((-594 (-806 |#2|)) $) NIL)) (-3470 (((-110) (-728 |#1| (-806 |#2|)) $) NIL)) (-4209 (((-110) (-806 |#2|) $) NIL)) (-3317 (((-110) $ $) NIL)) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-981 |#1| |#2|) (-13 (-1002 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|))) (-10 -8 (-15 -3964 ((-594 $) (-594 (-728 |#1| (-806 |#2|))) (-110) (-110))))) (-432) (-594 (-1098))) (T -981))
+((-3964 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-594 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-594 (-1098))) (-5 *2 (-594 (-981 *5 *6))) (-5 *1 (-981 *5 *6)))))
+(-13 (-1002 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|))) (-10 -8 (-15 -3964 ((-594 $) (-594 (-728 |#1| (-806 |#2|))) (-110) (-110)))))
+((-3361 (((-1 (-516)) (-1017 (-516))) 33)) (-3365 (((-516) (-516) (-516) (-516) (-516)) 30)) (-3363 (((-1 (-516)) |RationalNumber|) NIL)) (-3364 (((-1 (-516)) |RationalNumber|) NIL)) (-3362 (((-1 (-516)) (-516) |RationalNumber|) NIL)))
+(((-982) (-10 -7 (-15 -3361 ((-1 (-516)) (-1017 (-516)))) (-15 -3362 ((-1 (-516)) (-516) |RationalNumber|)) (-15 -3363 ((-1 (-516)) |RationalNumber|)) (-15 -3364 ((-1 (-516)) |RationalNumber|)) (-15 -3365 ((-516) (-516) (-516) (-516) (-516))))) (T -982))
+((-3365 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-982)))) (-3364 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-516))) (-5 *1 (-982)))) (-3363 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-516))) (-5 *1 (-982)))) (-3362 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-516))) (-5 *1 (-982)) (-5 *3 (-516)))) (-3361 (*1 *2 *3) (-12 (-5 *3 (-1017 (-516))) (-5 *2 (-1 (-516))) (-5 *1 (-982)))))
+(-10 -7 (-15 -3361 ((-1 (-516)) (-1017 (-516)))) (-15 -3362 ((-1 (-516)) (-516) |RationalNumber|)) (-15 -3363 ((-1 (-516)) |RationalNumber|)) (-15 -3364 ((-1 (-516)) |RationalNumber|)) (-15 -3365 ((-516) (-516) (-516) (-516) (-516))))
+((-4233 (((-805) $) NIL) (($ (-516)) 10)))
+(((-983 |#1|) (-10 -8 (-15 -4233 (|#1| (-516))) (-15 -4233 ((-805) |#1|))) (-984)) (T -983))
+NIL
+(-10 -8 (-15 -4233 (|#1| (-516))) (-15 -4233 ((-805) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3741 (((-3 $ "failed") $) 34)) (-2436 (((-110) $) 31)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11) (($ (-516)) 28)) (-3385 (((-719)) 29)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24)))
+(((-984) (-133)) (T -984))
+((-3385 (*1 *2) (-12 (-4 *1 (-984)) (-5 *2 (-719)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-516)) (-4 *1 (-984)))))
+(-13 (-990) (-675) (-599 $) (-10 -8 (-15 -3385 ((-719))) (-15 -4233 ($ (-516))) (-6 -4266)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-805)) . T) ((-599 $) . T) ((-675) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-3380 (((-110) $) 29)) (-3382 (((-110) $) 16)) (-3374 (((-719) $) 13)) (-3373 (((-719) $) 14)) (-3381 (((-110) $) 26)) (-3379 (((-110) $) 31)))
+(((-985 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3373 ((-719) |#1|)) (-15 -3374 ((-719) |#1|)) (-15 -3379 ((-110) |#1|)) (-15 -3380 ((-110) |#1|)) (-15 -3381 ((-110) |#1|)) (-15 -3382 ((-110) |#1|))) (-986 |#2| |#3| |#4| |#5| |#6|) (-719) (-719) (-984) (-221 |#3| |#4|) (-221 |#2| |#4|)) (T -985))
+NIL
+(-10 -8 (-15 -3373 ((-719) |#1|)) (-15 -3374 ((-719) |#1|)) (-15 -3379 ((-110) |#1|)) (-15 -3380 ((-110) |#1|)) (-15 -3381 ((-110) |#1|)) (-15 -3382 ((-110) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-3380 (((-110) $) 51)) (-1319 (((-3 $ "failed") $ $) 19)) (-3382 (((-110) $) 53)) (-1217 (((-110) $ (-719)) 61)) (-3815 (($) 17 T CONST)) (-3369 (($ $) 34 (|has| |#3| (-289)))) (-3371 ((|#4| $ (-516)) 39)) (-3368 (((-719) $) 33 (|has| |#3| (-523)))) (-3372 ((|#3| $ (-516) (-516)) 41)) (-2018 (((-594 |#3|) $) 68 (|has| $ (-6 -4269)))) (-3367 (((-719) $) 32 (|has| |#3| (-523)))) (-3366 (((-594 |#5|) $) 31 (|has| |#3| (-523)))) (-3374 (((-719) $) 45)) (-3373 (((-719) $) 44)) (-4001 (((-110) $ (-719)) 60)) (-3378 (((-516) $) 49)) (-3376 (((-516) $) 47)) (-2445 (((-594 |#3|) $) 69 (|has| $ (-6 -4269)))) (-3516 (((-110) |#3| $) 71 (-12 (|has| |#3| (-1027)) (|has| $ (-6 -4269))))) (-3377 (((-516) $) 48)) (-3375 (((-516) $) 46)) (-3383 (($ (-594 (-594 |#3|))) 54)) (-2022 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3875 (((-594 (-594 |#3|)) $) 43)) (-3998 (((-110) $ (-719)) 59)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-3740 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-523)))) (-2020 (((-110) (-1 (-110) |#3|) $) 66 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 |#3|) (-594 |#3|)) 75 (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-275 |#3|)) 73 (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-594 (-275 |#3|))) 72 (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))) (-1218 (((-110) $ $) 55)) (-3682 (((-110) $) 58)) (-3847 (($) 57)) (-4078 ((|#3| $ (-516) (-516)) 42) ((|#3| $ (-516) (-516) |#3|) 40)) (-3381 (((-110) $) 52)) (-2019 (((-719) |#3| $) 70 (-12 (|has| |#3| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#3|) $) 67 (|has| $ (-6 -4269)))) (-3678 (($ $) 56)) (-3370 ((|#5| $ (-516)) 38)) (-4233 (((-805) $) 11)) (-2021 (((-110) (-1 (-110) |#3|) $) 65 (|has| $ (-6 -4269)))) (-3379 (((-110) $) 50)) (-2920 (($) 18 T CONST)) (-3317 (((-110) $ $) 6)) (-4224 (($ $ |#3|) 35 (|has| |#3| (-344)))) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-4232 (((-719) $) 62 (|has| $ (-6 -4269)))))
+(((-986 |#1| |#2| |#3| |#4| |#5|) (-133) (-719) (-719) (-984) (-221 |t#2| |t#3|) (-221 |t#1| |t#3|)) (T -986))
+((-4234 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)))) (-3383 (*1 *1 *2) (-12 (-5 *2 (-594 (-594 *5))) (-4 *5 (-984)) (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)))) (-3382 (*1 *2 *1) (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))) (-3381 (*1 *2 *1) (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))) (-3379 (*1 *2 *1) (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))) (-3378 (*1 *2 *1) (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-516)))) (-3377 (*1 *2 *1) (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-516)))) (-3376 (*1 *2 *1) (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-516)))) (-3375 (*1 *2 *1) (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-516)))) (-3374 (*1 *2 *1) (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-719)))) (-3373 (*1 *2 *1) (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-719)))) (-3875 (*1 *2 *1) (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-594 (-594 *5))))) (-4078 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-516)) (-4 *1 (-986 *4 *5 *2 *6 *7)) (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)) (-4 *2 (-984)))) (-3372 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-516)) (-4 *1 (-986 *4 *5 *2 *6 *7)) (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)) (-4 *2 (-984)))) (-4078 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-516)) (-4 *1 (-986 *4 *5 *2 *6 *7)) (-4 *2 (-984)) (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)))) (-3371 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-4 *1 (-986 *4 *5 *6 *2 *7)) (-4 *6 (-984)) (-4 *7 (-221 *4 *6)) (-4 *2 (-221 *5 *6)))) (-3370 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-4 *1 (-986 *4 *5 *6 *7 *2)) (-4 *6 (-984)) (-4 *7 (-221 *5 *6)) (-4 *2 (-221 *4 *6)))) (-4234 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)))) (-3740 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-986 *3 *4 *2 *5 *6)) (-4 *2 (-984)) (-4 *5 (-221 *4 *2)) (-4 *6 (-221 *3 *2)) (-4 *2 (-523)))) (-4224 (*1 *1 *1 *2) (-12 (-4 *1 (-986 *3 *4 *2 *5 *6)) (-4 *2 (-984)) (-4 *5 (-221 *4 *2)) (-4 *6 (-221 *3 *2)) (-4 *2 (-344)))) (-3369 (*1 *1 *1) (-12 (-4 *1 (-986 *2 *3 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *2 *4)) (-4 *4 (-289)))) (-3368 (*1 *2 *1) (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-523)) (-5 *2 (-719)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-523)) (-5 *2 (-719)))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-523)) (-5 *2 (-594 *7)))))
+(-13 (-109 |t#3| |t#3|) (-468 |t#3|) (-10 -8 (-6 -4269) (IF (|has| |t#3| (-162)) (-6 (-666 |t#3|)) |%noBranch|) (-15 -3383 ($ (-594 (-594 |t#3|)))) (-15 -3382 ((-110) $)) (-15 -3381 ((-110) $)) (-15 -3380 ((-110) $)) (-15 -3379 ((-110) $)) (-15 -3378 ((-516) $)) (-15 -3377 ((-516) $)) (-15 -3376 ((-516) $)) (-15 -3375 ((-516) $)) (-15 -3374 ((-719) $)) (-15 -3373 ((-719) $)) (-15 -3875 ((-594 (-594 |t#3|)) $)) (-15 -4078 (|t#3| $ (-516) (-516))) (-15 -3372 (|t#3| $ (-516) (-516))) (-15 -4078 (|t#3| $ (-516) (-516) |t#3|)) (-15 -3371 (|t#4| $ (-516))) (-15 -3370 (|t#5| $ (-516))) (-15 -4234 ($ (-1 |t#3| |t#3|) $)) (-15 -4234 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-523)) (-15 -3740 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-344)) (-15 -4224 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-289)) (-15 -3369 ($ $)) |%noBranch|) (IF (|has| |t#3| (-523)) (PROGN (-15 -3368 ((-719) $)) (-15 -3367 ((-719) $)) (-15 -3366 ((-594 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-99) . T) ((-109 |#3| |#3|) . T) ((-128) . T) ((-571 (-805)) . T) ((-291 |#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))) ((-468 |#3|) . T) ((-491 |#3| |#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))) ((-599 |#3|) . T) ((-666 |#3|) |has| |#3| (-162)) ((-989 |#3|) . T) ((-1027) . T) ((-1134) . T))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3380 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3382 (((-110) $) NIL)) (-1217 (((-110) $ (-719)) NIL)) (-3815 (($) NIL T CONST)) (-3369 (($ $) 43 (|has| |#3| (-289)))) (-3371 (((-222 |#2| |#3|) $ (-516)) 32)) (-3384 (($ (-637 |#3|)) 41)) (-3368 (((-719) $) 45 (|has| |#3| (-523)))) (-3372 ((|#3| $ (-516) (-516)) NIL)) (-2018 (((-594 |#3|) $) NIL (|has| $ (-6 -4269)))) (-3367 (((-719) $) 47 (|has| |#3| (-523)))) (-3366 (((-594 (-222 |#1| |#3|)) $) 51 (|has| |#3| (-523)))) (-3374 (((-719) $) NIL)) (-3373 (((-719) $) NIL)) (-4001 (((-110) $ (-719)) NIL)) (-3378 (((-516) $) NIL)) (-3376 (((-516) $) NIL)) (-2445 (((-594 |#3|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#3| (-1027))))) (-3377 (((-516) $) NIL)) (-3375 (((-516) $) NIL)) (-3383 (($ (-594 (-594 |#3|))) 27)) (-2022 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3875 (((-594 (-594 |#3|)) $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-3740 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-523)))) (-2020 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 |#3|) (-594 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-275 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-594 (-275 |#3|))) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#3| $ (-516) (-516)) NIL) ((|#3| $ (-516) (-516) |#3|) NIL)) (-4190 (((-130)) 54 (|has| |#3| (-344)))) (-3381 (((-110) $) NIL)) (-2019 (((-719) |#3| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#3| (-1027)))) (((-719) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) 63 (|has| |#3| (-572 (-505))))) (-3370 (((-222 |#1| |#3|) $ (-516)) 36)) (-4233 (((-805) $) 16) (((-637 |#3|) $) 38)) (-2021 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269)))) (-3379 (((-110) $) NIL)) (-2920 (($) 13 T CONST)) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ |#3|) NIL (|has| |#3| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-987 |#1| |#2| |#3|) (-13 (-986 |#1| |#2| |#3| (-222 |#2| |#3|) (-222 |#1| |#3|)) (-571 (-637 |#3|)) (-10 -8 (IF (|has| |#3| (-344)) (-6 (-1187 |#3|)) |%noBranch|) (IF (|has| |#3| (-572 (-505))) (-6 (-572 (-505))) |%noBranch|) (-15 -3384 ($ (-637 |#3|))) (-15 -4233 ((-637 |#3|) $)))) (-719) (-719) (-984)) (T -987))
+((-4233 (*1 *2 *1) (-12 (-5 *2 (-637 *5)) (-5 *1 (-987 *3 *4 *5)) (-14 *3 (-719)) (-14 *4 (-719)) (-4 *5 (-984)))) (-3384 (*1 *1 *2) (-12 (-5 *2 (-637 *5)) (-4 *5 (-984)) (-5 *1 (-987 *3 *4 *5)) (-14 *3 (-719)) (-14 *4 (-719)))))
+(-13 (-986 |#1| |#2| |#3| (-222 |#2| |#3|) (-222 |#1| |#3|)) (-571 (-637 |#3|)) (-10 -8 (IF (|has| |#3| (-344)) (-6 (-1187 |#3|)) |%noBranch|) (IF (|has| |#3| (-572 (-505))) (-6 (-572 (-505))) |%noBranch|) (-15 -3384 ($ (-637 |#3|))) (-15 -4233 ((-637 |#3|) $))))
+((-4121 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-4234 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
+(((-988 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4234 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4121 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-719) (-719) (-984) (-221 |#2| |#3|) (-221 |#1| |#3|) (-986 |#1| |#2| |#3| |#4| |#5|) (-984) (-221 |#2| |#7|) (-221 |#1| |#7|) (-986 |#1| |#2| |#7| |#8| |#9|)) (T -988))
+((-4121 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-984)) (-4 *2 (-984)) (-14 *5 (-719)) (-14 *6 (-719)) (-4 *8 (-221 *6 *7)) (-4 *9 (-221 *5 *7)) (-4 *10 (-221 *6 *2)) (-4 *11 (-221 *5 *2)) (-5 *1 (-988 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-986 *5 *6 *7 *8 *9)) (-4 *12 (-986 *5 *6 *2 *10 *11)))) (-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-984)) (-4 *10 (-984)) (-14 *5 (-719)) (-14 *6 (-719)) (-4 *8 (-221 *6 *7)) (-4 *9 (-221 *5 *7)) (-4 *2 (-986 *5 *6 *10 *11 *12)) (-5 *1 (-988 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-986 *5 *6 *7 *8 *9)) (-4 *11 (-221 *6 *10)) (-4 *12 (-221 *5 *10)))))
+(-10 -7 (-15 -4234 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4121 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-2920 (($) 18 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ |#1|) 23)))
+(((-989 |#1|) (-133) (-990)) (T -989))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-989 *2)) (-4 *2 (-990)))))
(-13 (-21) (-10 -8 (-15 * ($ $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-569 (-802)) . T) ((-1023) . T))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2690 (($ $ (-860)) 26)) (-2969 (($) 18 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24)))
-(((-987) (-133)) (T -987))
-NIL
-(-13 (-21) (-1035))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-569 (-802)) . T) ((-1035) . T) ((-1023) . T))
-((-1781 (($ $) 16)) (-2212 (($ $) 22)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) 49)) (-3297 (($ $) 24)) (-3270 (($ $) 11)) (-2925 (($ $) 38)) (-3155 (((-359) $) NIL) (((-207) $) NIL) (((-831 (-359)) $) 33)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ $) NIL) (($ (-387 (-528))) 28) (($ (-528)) NIL) (($ (-387 (-528))) 28)) (-3742 (((-717)) 8)) (-1769 (($ $) 39)))
-(((-988 |#1|) (-10 -8 (-15 -2212 (|#1| |#1|)) (-15 -1781 (|#1| |#1|)) (-15 -3270 (|#1| |#1|)) (-15 -2925 (|#1| |#1|)) (-15 -1769 (|#1| |#1|)) (-15 -3297 (|#1| |#1|)) (-15 -4181 ((-828 (-359) |#1|) |#1| (-831 (-359)) (-828 (-359) |#1|))) (-15 -3155 ((-831 (-359)) |#1|)) (-15 -2222 (|#1| (-387 (-528)))) (-15 -2222 (|#1| (-528))) (-15 -3155 ((-207) |#1|)) (-15 -3155 ((-359) |#1|)) (-15 -2222 (|#1| (-387 (-528)))) (-15 -2222 (|#1| |#1|)) (-15 -2222 (|#1| (-528))) (-15 -3742 ((-717))) (-15 -2222 ((-802) |#1|))) (-989)) (T -988))
-((-3742 (*1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-988 *3)) (-4 *3 (-989)))))
-(-10 -8 (-15 -2212 (|#1| |#1|)) (-15 -1781 (|#1| |#1|)) (-15 -3270 (|#1| |#1|)) (-15 -2925 (|#1| |#1|)) (-15 -1769 (|#1| |#1|)) (-15 -3297 (|#1| |#1|)) (-15 -4181 ((-828 (-359) |#1|) |#1| (-831 (-359)) (-828 (-359) |#1|))) (-15 -3155 ((-831 (-359)) |#1|)) (-15 -2222 (|#1| (-387 (-528)))) (-15 -2222 (|#1| (-528))) (-15 -3155 ((-207) |#1|)) (-15 -3155 ((-359) |#1|)) (-15 -2222 (|#1| (-387 (-528)))) (-15 -2222 (|#1| |#1|)) (-15 -2222 (|#1| (-528))) (-15 -3742 ((-717))) (-15 -2222 ((-802) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3598 (((-528) $) 89)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 41)) (-1738 (($ $) 40)) (-1811 (((-110) $) 38)) (-1781 (($ $) 87)) (-3181 (((-3 $ "failed") $ $) 19)) (-1232 (($ $) 73)) (-2705 (((-398 $) $) 72)) (-2450 (($ $) 97)) (-2213 (((-110) $ $) 59)) (-3605 (((-528) $) 114)) (-2816 (($) 17 T CONST)) (-2212 (($ $) 86)) (-3001 (((-3 (-528) "failed") $) 102) (((-3 (-387 (-528)) "failed") $) 99)) (-2409 (((-528) $) 101) (((-387 (-528)) $) 98)) (-3519 (($ $ $) 55)) (-1312 (((-3 $ "failed") $) 34)) (-3498 (($ $ $) 56)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 51)) (-2124 (((-110) $) 71)) (-3657 (((-110) $) 112)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) 93)) (-1297 (((-110) $) 31)) (-2796 (($ $ (-528)) 96)) (-3297 (($ $) 92)) (-3710 (((-110) $) 113)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) 52)) (-1436 (($ $ $) 111)) (-1736 (($ $ $) 110)) (-2057 (($ $ $) 46) (($ (-595 $)) 45)) (-3034 (((-1078) $) 9)) (-2652 (($ $) 70)) (-2495 (((-1042) $) 10)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 44)) (-2088 (($ $ $) 48) (($ (-595 $)) 47)) (-3270 (($ $) 88)) (-2925 (($ $) 90)) (-2437 (((-398 $) $) 74)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3477 (((-3 $ "failed") $ $) 42)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 50)) (-3973 (((-717) $) 58)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 57)) (-3155 (((-359) $) 105) (((-207) $) 104) (((-831 (-359)) $) 94)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ $) 43) (($ (-387 (-528))) 65) (($ (-528)) 103) (($ (-387 (-528))) 100)) (-3742 (((-717)) 29)) (-1769 (($ $) 91)) (-4016 (((-110) $ $) 39)) (-1775 (($ $) 115)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33) (($ $ (-528)) 69)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2244 (((-110) $ $) 108)) (-2220 (((-110) $ $) 107)) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 109)) (-2208 (((-110) $ $) 106)) (-2296 (($ $ $) 64)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32) (($ $ (-528)) 68) (($ $ (-387 (-528))) 95)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ (-387 (-528))) 67) (($ (-387 (-528)) $) 66)))
-(((-989) (-133)) (T -989))
-((-1775 (*1 *1 *1) (-4 *1 (-989))) (-3297 (*1 *1 *1) (-4 *1 (-989))) (-1769 (*1 *1 *1) (-4 *1 (-989))) (-2925 (*1 *1 *1) (-4 *1 (-989))) (-3598 (*1 *2 *1) (-12 (-4 *1 (-989)) (-5 *2 (-528)))) (-3270 (*1 *1 *1) (-4 *1 (-989))) (-1781 (*1 *1 *1) (-4 *1 (-989))) (-2212 (*1 *1 *1) (-4 *1 (-989))))
-(-13 (-343) (-791) (-957) (-972 (-528)) (-972 (-387 (-528))) (-938) (-570 (-831 (-359))) (-825 (-359)) (-140) (-10 -8 (-15 -3297 ($ $)) (-15 -1769 ($ $)) (-15 -2925 ($ $)) (-15 -3598 ((-528) $)) (-15 -3270 ($ $)) (-15 -1781 ($ $)) (-15 -2212 ($ $)) (-15 -1775 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-387 (-528))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-569 (-802)) . T) ((-162) . T) ((-570 (-207)) . T) ((-570 (-359)) . T) ((-570 (-831 (-359))) . T) ((-225) . T) ((-271) . T) ((-288) . T) ((-343) . T) ((-431) . T) ((-520) . T) ((-597 #0#) . T) ((-597 $) . T) ((-664 #0#) . T) ((-664 $) . T) ((-673) . T) ((-737) . T) ((-738) . T) ((-740) . T) ((-741) . T) ((-791) . T) ((-793) . T) ((-825 (-359)) . T) ((-859) . T) ((-938) . T) ((-957) . T) ((-972 (-387 (-528))) . T) ((-972 (-528)) . T) ((-986 #0#) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1135) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) |#2| $) 23)) (-2856 ((|#1| $) 10)) (-3605 (((-528) |#2| $) 88)) (-1230 (((-3 $ "failed") |#2| (-860)) 57)) (-3572 ((|#1| $) 28)) (-1459 ((|#1| |#2| $ |#1|) 37)) (-2760 (($ $) 25)) (-1312 (((-3 |#2| "failed") |#2| $) 87)) (-3657 (((-110) |#2| $) NIL)) (-3710 (((-110) |#2| $) NIL)) (-1233 (((-110) |#2| $) 24)) (-1800 ((|#1| $) 89)) (-3562 ((|#1| $) 27)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-4090 ((|#2| $) 79)) (-2222 (((-802) $) 70)) (-4083 ((|#1| |#2| $ |#1|) 38)) (-3350 (((-595 $) |#2|) 59)) (-2186 (((-110) $ $) 74)))
-(((-990 |#1| |#2|) (-13 (-996 |#1| |#2|) (-10 -8 (-15 -3562 (|#1| $)) (-15 -3572 (|#1| $)) (-15 -2856 (|#1| $)) (-15 -1800 (|#1| $)) (-15 -2760 ($ $)) (-15 -1233 ((-110) |#2| $)) (-15 -1459 (|#1| |#2| $ |#1|)))) (-13 (-791) (-343)) (-1153 |#1|)) (T -990))
-((-1459 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-791) (-343))) (-5 *1 (-990 *2 *3)) (-4 *3 (-1153 *2)))) (-3562 (*1 *2 *1) (-12 (-4 *2 (-13 (-791) (-343))) (-5 *1 (-990 *2 *3)) (-4 *3 (-1153 *2)))) (-3572 (*1 *2 *1) (-12 (-4 *2 (-13 (-791) (-343))) (-5 *1 (-990 *2 *3)) (-4 *3 (-1153 *2)))) (-2856 (*1 *2 *1) (-12 (-4 *2 (-13 (-791) (-343))) (-5 *1 (-990 *2 *3)) (-4 *3 (-1153 *2)))) (-1800 (*1 *2 *1) (-12 (-4 *2 (-13 (-791) (-343))) (-5 *1 (-990 *2 *3)) (-4 *3 (-1153 *2)))) (-2760 (*1 *1 *1) (-12 (-4 *2 (-13 (-791) (-343))) (-5 *1 (-990 *2 *3)) (-4 *3 (-1153 *2)))) (-1233 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-791) (-343))) (-5 *2 (-110)) (-5 *1 (-990 *4 *3)) (-4 *3 (-1153 *4)))))
-(-13 (-996 |#1| |#2|) (-10 -8 (-15 -3562 (|#1| $)) (-15 -3572 (|#1| $)) (-15 -2856 (|#1| $)) (-15 -1800 (|#1| $)) (-15 -2760 ($ $)) (-15 -1233 ((-110) |#2| $)) (-15 -1459 (|#1| |#2| $ |#1|))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3251 (($ $ $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2264 (($ $ $ $) NIL)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-2213 (((-110) $ $) NIL)) (-3605 (((-528) $) NIL)) (-2950 (($ $ $) NIL)) (-2816 (($) NIL T CONST)) (-3445 (($ (-1095)) 10) (($ (-528)) 7)) (-3001 (((-3 (-528) "failed") $) NIL)) (-2409 (((-528) $) NIL)) (-3519 (($ $ $) NIL)) (-2120 (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL) (((-635 (-528)) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1793 (((-3 (-387 (-528)) "failed") $) NIL)) (-3650 (((-110) $) NIL)) (-3099 (((-387 (-528)) $) NIL)) (-1338 (($) NIL) (($ $) NIL)) (-3498 (($ $ $) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2124 (((-110) $) NIL)) (-2146 (($ $ $ $) NIL)) (-1841 (($ $ $) NIL)) (-3657 (((-110) $) NIL)) (-1752 (($ $ $) NIL)) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL)) (-1297 (((-110) $) NIL)) (-2580 (((-110) $) NIL)) (-3296 (((-3 $ "failed") $) NIL)) (-3710 (((-110) $) NIL)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-1575 (($ $ $ $) NIL)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-3019 (($ $) NIL)) (-1584 (($ $) NIL)) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-1627 (($ $ $) NIL)) (-4197 (($) NIL T CONST)) (-3715 (($ $) NIL)) (-2495 (((-1042) $) NIL) (($ $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3918 (($ $) NIL)) (-2437 (((-398 $) $) NIL)) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3578 (((-110) $) NIL)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3235 (($ $ (-717)) NIL) (($ $) NIL)) (-1691 (($ $) NIL)) (-2406 (($ $) NIL)) (-3155 (((-528) $) 16) (((-504) $) NIL) (((-831 (-528)) $) NIL) (((-359) $) NIL) (((-207) $) NIL) (($ (-1095)) 9)) (-2222 (((-802) $) 20) (($ (-528)) 6) (($ $) NIL) (($ (-528)) 6)) (-3742 (((-717)) NIL)) (-2608 (((-110) $ $) NIL)) (-3709 (($ $ $) NIL)) (-2911 (($) NIL)) (-4016 (((-110) $ $) NIL)) (-2901 (($ $ $ $) NIL)) (-1775 (($ $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($ $ (-717)) NIL) (($ $) NIL)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) NIL)) (-2286 (($ $) 19) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL)))
-(((-991) (-13 (-513) (-10 -8 (-6 -4251) (-6 -4256) (-6 -4252) (-15 -3155 ($ (-1095))) (-15 -3445 ($ (-1095))) (-15 -3445 ($ (-528)))))) (T -991))
-((-3155 (*1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-991)))) (-3445 (*1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-991)))) (-3445 (*1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-991)))))
-(-13 (-513) (-10 -8 (-6 -4251) (-6 -4256) (-6 -4252) (-15 -3155 ($ (-1095))) (-15 -3445 ($ (-1095))) (-15 -3445 ($ (-528)))))
-((-2207 (((-110) $ $) NIL (-1463 (|has| (-51) (-1023)) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023))))) (-3450 (($) NIL) (($ (-595 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))))) NIL)) (-1444 (((-1182) $ (-1095) (-1095)) NIL (|has| $ (-6 -4265)))) (-3535 (((-110) $ (-717)) NIL)) (-1654 (($) 9)) (-2381 (((-51) $ (-1095) (-51)) NIL)) (-1941 (($ $) 30)) (-1544 (($ $) 28)) (-2281 (($ $) 27)) (-2076 (($ $) 29)) (-2494 (($ $) 32)) (-2215 (($ $) 33)) (-3791 (($ $) 26)) (-1509 (($ $) 31)) (-1836 (($ (-1 (-110) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264)))) (-1573 (($ (-1 (-110) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) 25 (|has| $ (-6 -4264)))) (-2582 (((-3 (-51) "failed") (-1095) $) 40)) (-2816 (($) NIL T CONST)) (-3414 (($) 7)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023))))) (-3991 (($ (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) $) 50 (|has| $ (-6 -4264))) (($ (-1 (-110) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264))) (((-3 (-51) "failed") (-1095) $) NIL)) (-2280 (($ (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023)))) (($ (-1 (-110) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264)))) (-1422 (((-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $ (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023)))) (((-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $ (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) NIL (|has| $ (-6 -4264))) (((-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264)))) (-1585 (((-3 (-1078) "failed") $ (-1078) (-528)) 59)) (-2812 (((-51) $ (-1095) (-51)) NIL (|has| $ (-6 -4265)))) (-2742 (((-51) $ (-1095)) NIL)) (-3342 (((-595 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264))) (((-595 (-51)) $) NIL (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-1095) $) NIL (|has| (-1095) (-793)))) (-2604 (((-595 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) 35 (|has| $ (-6 -4264))) (((-595 (-51)) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023)))) (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-51) (-1023))))) (-1709 (((-1095) $) NIL (|has| (-1095) (-793)))) (-2800 (($ (-1 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4265))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (-1463 (|has| (-51) (-1023)) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023))))) (-3225 (((-595 (-1095)) $) NIL)) (-4024 (((-110) (-1095) $) NIL)) (-3934 (((-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) $) NIL)) (-1950 (($ (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) $) 43)) (-2084 (((-595 (-1095)) $) NIL)) (-3966 (((-110) (-1095) $) NIL)) (-2495 (((-1042) $) NIL (-1463 (|has| (-51) (-1023)) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023))))) (-1802 (((-359) $ (-1095)) 49)) (-3388 (((-595 (-1078)) $ (-1078)) 60)) (-2890 (((-51) $) NIL (|has| (-1095) (-793)))) (-1734 (((-3 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) "failed") (-1 (-110) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) NIL)) (-1332 (($ $ (-51)) NIL (|has| $ (-6 -4265)))) (-1390 (((-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) $) NIL)) (-1818 (((-110) (-1 (-110) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))))) NIL (-12 (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-290 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))))) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023)))) (($ $ (-275 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))))) NIL (-12 (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-290 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))))) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023)))) (($ $ (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) NIL (-12 (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-290 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))))) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023)))) (($ $ (-595 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) (-595 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))))) NIL (-12 (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-290 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))))) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023)))) (($ $ (-595 (-51)) (-595 (-51))) NIL (-12 (|has| (-51) (-290 (-51))) (|has| (-51) (-1023)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-290 (-51))) (|has| (-51) (-1023)))) (($ $ (-275 (-51))) NIL (-12 (|has| (-51) (-290 (-51))) (|has| (-51) (-1023)))) (($ $ (-595 (-275 (-51)))) NIL (-12 (|has| (-51) (-290 (-51))) (|has| (-51) (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-51) (-1023))))) (-2861 (((-595 (-51)) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 (((-51) $ (-1095)) NIL) (((-51) $ (-1095) (-51)) NIL)) (-3900 (($) NIL) (($ (-595 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))))) NIL)) (-4077 (($ $ (-1095)) 51)) (-2507 (((-717) (-1 (-110) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264))) (((-717) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023)))) (((-717) (-51) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-51) (-1023)))) (((-717) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4264)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) NIL (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-570 (-504))))) (-2233 (($ (-595 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))))) 37)) (-3400 (($ $ $) 38)) (-2222 (((-802) $) NIL (-1463 (|has| (-51) (-569 (-802))) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-569 (-802)))))) (-2071 (($ $ (-1095) (-359)) 47)) (-2549 (($ $ (-1095) (-359)) 48)) (-2164 (($ (-595 (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))))) NIL)) (-3451 (((-110) (-1 (-110) (-2 (|:| -2927 (-1095)) (|:| -1780 (-51)))) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) NIL (-1463 (|has| (-51) (-1023)) (|has| (-2 (|:| -2927 (-1095)) (|:| -1780 (-51))) (-1023))))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-992) (-13 (-1108 (-1095) (-51)) (-10 -8 (-15 -3400 ($ $ $)) (-15 -3414 ($)) (-15 -3791 ($ $)) (-15 -2281 ($ $)) (-15 -1544 ($ $)) (-15 -2076 ($ $)) (-15 -1509 ($ $)) (-15 -1941 ($ $)) (-15 -2494 ($ $)) (-15 -2215 ($ $)) (-15 -2071 ($ $ (-1095) (-359))) (-15 -2549 ($ $ (-1095) (-359))) (-15 -1802 ((-359) $ (-1095))) (-15 -3388 ((-595 (-1078)) $ (-1078))) (-15 -4077 ($ $ (-1095))) (-15 -1654 ($)) (-15 -1585 ((-3 (-1078) "failed") $ (-1078) (-528))) (-6 -4264)))) (T -992))
-((-3400 (*1 *1 *1 *1) (-5 *1 (-992))) (-3414 (*1 *1) (-5 *1 (-992))) (-3791 (*1 *1 *1) (-5 *1 (-992))) (-2281 (*1 *1 *1) (-5 *1 (-992))) (-1544 (*1 *1 *1) (-5 *1 (-992))) (-2076 (*1 *1 *1) (-5 *1 (-992))) (-1509 (*1 *1 *1) (-5 *1 (-992))) (-1941 (*1 *1 *1) (-5 *1 (-992))) (-2494 (*1 *1 *1) (-5 *1 (-992))) (-2215 (*1 *1 *1) (-5 *1 (-992))) (-2071 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-359)) (-5 *1 (-992)))) (-2549 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-359)) (-5 *1 (-992)))) (-1802 (*1 *2 *1 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-359)) (-5 *1 (-992)))) (-3388 (*1 *2 *1 *3) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-992)) (-5 *3 (-1078)))) (-4077 (*1 *1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-992)))) (-1654 (*1 *1) (-5 *1 (-992))) (-1585 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1078)) (-5 *3 (-528)) (-5 *1 (-992)))))
-(-13 (-1108 (-1095) (-51)) (-10 -8 (-15 -3400 ($ $ $)) (-15 -3414 ($)) (-15 -3791 ($ $)) (-15 -2281 ($ $)) (-15 -1544 ($ $)) (-15 -2076 ($ $)) (-15 -1509 ($ $)) (-15 -1941 ($ $)) (-15 -2494 ($ $)) (-15 -2215 ($ $)) (-15 -2071 ($ $ (-1095) (-359))) (-15 -2549 ($ $ (-1095) (-359))) (-15 -1802 ((-359) $ (-1095))) (-15 -3388 ((-595 (-1078)) $ (-1078))) (-15 -4077 ($ $ (-1095))) (-15 -1654 ($)) (-15 -1585 ((-3 (-1078) "failed") $ (-1078) (-528))) (-6 -4264)))
-((-2023 (($ $) 45)) (-1875 (((-110) $ $) 74)) (-3001 (((-3 |#2| "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL) (((-3 (-528) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-891 (-387 (-528)))) 227) (((-3 $ "failed") (-891 (-528))) 226) (((-3 $ "failed") (-891 |#2|)) 229)) (-2409 ((|#2| $) NIL) (((-387 (-528)) $) NIL) (((-528) $) NIL) ((|#4| $) NIL) (($ (-891 (-387 (-528)))) 215) (($ (-891 (-528))) 211) (($ (-891 |#2|)) 231)) (-2388 (($ $) NIL) (($ $ |#4|) 43)) (-1927 (((-110) $ $) 112) (((-110) $ (-595 $)) 113)) (-2779 (((-110) $) 56)) (-3291 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 107)) (-1768 (($ $) 138)) (-4087 (($ $) 134)) (-2015 (($ $) 133)) (-3025 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3540 (($ $ $) 82) (($ $ $ |#4|) 86)) (-3092 (((-110) $ $) 121) (((-110) $ (-595 $)) 122)) (-1761 ((|#4| $) 33)) (-2362 (($ $ $) 110)) (-1586 (((-110) $) 55)) (-2910 (((-717) $) 35)) (-3389 (($ $) 152)) (-3218 (($ $) 149)) (-1718 (((-595 $) $) 68)) (-2663 (($ $) 57)) (-3935 (($ $) 145)) (-2848 (((-595 $) $) 65)) (-3616 (($ $) 59)) (-2697 ((|#2| $) NIL) (($ $ |#4|) 38)) (-2267 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3906 (-717))) $ $) 111)) (-2467 (((-2 (|:| -1641 $) (|:| |gap| (-717)) (|:| -3490 $) (|:| -2537 $)) $ $) 108) (((-2 (|:| -1641 $) (|:| |gap| (-717)) (|:| -3490 $) (|:| -2537 $)) $ $ |#4|) 109)) (-2538 (((-2 (|:| -1641 $) (|:| |gap| (-717)) (|:| -2537 $)) $ $) 104) (((-2 (|:| -1641 $) (|:| |gap| (-717)) (|:| -2537 $)) $ $ |#4|) 105)) (-3340 (($ $ $) 89) (($ $ $ |#4|) 95)) (-1986 (($ $ $) 90) (($ $ $ |#4|) 96)) (-1954 (((-595 $) $) 51)) (-2127 (((-110) $ $) 118) (((-110) $ (-595 $)) 119)) (-3436 (($ $ $) 103)) (-4197 (($ $) 37)) (-3664 (((-110) $ $) 72)) (-1906 (((-110) $ $) 114) (((-110) $ (-595 $)) 116)) (-2001 (($ $ $) 101)) (-2996 (($ $) 40)) (-2088 ((|#2| |#2| $) 142) (($ (-595 $)) NIL) (($ $ $) NIL)) (-3766 (($ $ |#2|) NIL) (($ $ $) 131)) (-3859 (($ $ |#2|) 126) (($ $ $) 129)) (-3083 (($ $) 48)) (-2826 (($ $) 52)) (-3155 (((-831 (-359)) $) NIL) (((-831 (-528)) $) NIL) (((-504) $) NIL) (($ (-891 (-387 (-528)))) 217) (($ (-891 (-528))) 213) (($ (-891 |#2|)) 228) (((-1078) $) 250) (((-891 |#2|) $) 162)) (-2222 (((-802) $) 30) (($ (-528)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-891 |#2|) $) 163) (($ (-387 (-528))) NIL) (($ $) NIL)) (-1418 (((-3 (-110) "failed") $ $) 71)))
-(((-993 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2222 (|#1| |#1|)) (-15 -2088 (|#1| |#1| |#1|)) (-15 -2088 (|#1| (-595 |#1|))) (-15 -2222 (|#1| (-387 (-528)))) (-15 -2222 ((-891 |#2|) |#1|)) (-15 -3155 ((-891 |#2|) |#1|)) (-15 -3155 ((-1078) |#1|)) (-15 -3389 (|#1| |#1|)) (-15 -3218 (|#1| |#1|)) (-15 -3935 (|#1| |#1|)) (-15 -1768 (|#1| |#1|)) (-15 -2088 (|#2| |#2| |#1|)) (-15 -3766 (|#1| |#1| |#1|)) (-15 -3859 (|#1| |#1| |#1|)) (-15 -3766 (|#1| |#1| |#2|)) (-15 -3859 (|#1| |#1| |#2|)) (-15 -4087 (|#1| |#1|)) (-15 -2015 (|#1| |#1|)) (-15 -3155 (|#1| (-891 |#2|))) (-15 -2409 (|#1| (-891 |#2|))) (-15 -3001 ((-3 |#1| "failed") (-891 |#2|))) (-15 -3155 (|#1| (-891 (-528)))) (-15 -2409 (|#1| (-891 (-528)))) (-15 -3001 ((-3 |#1| "failed") (-891 (-528)))) (-15 -3155 (|#1| (-891 (-387 (-528))))) (-15 -2409 (|#1| (-891 (-387 (-528))))) (-15 -3001 ((-3 |#1| "failed") (-891 (-387 (-528))))) (-15 -3436 (|#1| |#1| |#1|)) (-15 -2001 (|#1| |#1| |#1|)) (-15 -2267 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3906 (-717))) |#1| |#1|)) (-15 -2362 (|#1| |#1| |#1|)) (-15 -3291 ((-2 (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1|)) (-15 -2467 ((-2 (|:| -1641 |#1|) (|:| |gap| (-717)) (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1| |#4|)) (-15 -2467 ((-2 (|:| -1641 |#1|) (|:| |gap| (-717)) (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1|)) (-15 -2538 ((-2 (|:| -1641 |#1|) (|:| |gap| (-717)) (|:| -2537 |#1|)) |#1| |#1| |#4|)) (-15 -2538 ((-2 (|:| -1641 |#1|) (|:| |gap| (-717)) (|:| -2537 |#1|)) |#1| |#1|)) (-15 -1986 (|#1| |#1| |#1| |#4|)) (-15 -3340 (|#1| |#1| |#1| |#4|)) (-15 -1986 (|#1| |#1| |#1|)) (-15 -3340 (|#1| |#1| |#1|)) (-15 -3540 (|#1| |#1| |#1| |#4|)) (-15 -3025 (|#1| |#1| |#1| |#4|)) (-15 -3540 (|#1| |#1| |#1|)) (-15 -3025 (|#1| |#1| |#1|)) (-15 -3092 ((-110) |#1| (-595 |#1|))) (-15 -3092 ((-110) |#1| |#1|)) (-15 -2127 ((-110) |#1| (-595 |#1|))) (-15 -2127 ((-110) |#1| |#1|)) (-15 -1906 ((-110) |#1| (-595 |#1|))) (-15 -1906 ((-110) |#1| |#1|)) (-15 -1927 ((-110) |#1| (-595 |#1|))) (-15 -1927 ((-110) |#1| |#1|)) (-15 -1875 ((-110) |#1| |#1|)) (-15 -3664 ((-110) |#1| |#1|)) (-15 -1418 ((-3 (-110) "failed") |#1| |#1|)) (-15 -1718 ((-595 |#1|) |#1|)) (-15 -2848 ((-595 |#1|) |#1|)) (-15 -3616 (|#1| |#1|)) (-15 -2663 (|#1| |#1|)) (-15 -2779 ((-110) |#1|)) (-15 -1586 ((-110) |#1|)) (-15 -2388 (|#1| |#1| |#4|)) (-15 -2697 (|#1| |#1| |#4|)) (-15 -2826 (|#1| |#1|)) (-15 -1954 ((-595 |#1|) |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -2023 (|#1| |#1|)) (-15 -2996 (|#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 -2910 ((-717) |#1|)) (-15 -1761 (|#4| |#1|)) (-15 -3155 ((-504) |#1|)) (-15 -3155 ((-831 (-528)) |#1|)) (-15 -3155 ((-831 (-359)) |#1|)) (-15 -2409 (|#4| |#1|)) (-15 -3001 ((-3 |#4| "failed") |#1|)) (-15 -2222 (|#1| |#4|)) (-15 -2697 (|#2| |#1|)) (-15 -2388 (|#1| |#1|)) (-15 -2409 ((-528) |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -2409 ((-387 (-528)) |#1|)) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -2222 (|#1| |#2|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -2409 (|#2| |#1|)) (-15 -2222 (|#1| (-528))) (-15 -2222 ((-802) |#1|))) (-994 |#2| |#3| |#4|) (-981) (-739) (-793)) (T -993))
-NIL
-(-10 -8 (-15 -2222 (|#1| |#1|)) (-15 -2088 (|#1| |#1| |#1|)) (-15 -2088 (|#1| (-595 |#1|))) (-15 -2222 (|#1| (-387 (-528)))) (-15 -2222 ((-891 |#2|) |#1|)) (-15 -3155 ((-891 |#2|) |#1|)) (-15 -3155 ((-1078) |#1|)) (-15 -3389 (|#1| |#1|)) (-15 -3218 (|#1| |#1|)) (-15 -3935 (|#1| |#1|)) (-15 -1768 (|#1| |#1|)) (-15 -2088 (|#2| |#2| |#1|)) (-15 -3766 (|#1| |#1| |#1|)) (-15 -3859 (|#1| |#1| |#1|)) (-15 -3766 (|#1| |#1| |#2|)) (-15 -3859 (|#1| |#1| |#2|)) (-15 -4087 (|#1| |#1|)) (-15 -2015 (|#1| |#1|)) (-15 -3155 (|#1| (-891 |#2|))) (-15 -2409 (|#1| (-891 |#2|))) (-15 -3001 ((-3 |#1| "failed") (-891 |#2|))) (-15 -3155 (|#1| (-891 (-528)))) (-15 -2409 (|#1| (-891 (-528)))) (-15 -3001 ((-3 |#1| "failed") (-891 (-528)))) (-15 -3155 (|#1| (-891 (-387 (-528))))) (-15 -2409 (|#1| (-891 (-387 (-528))))) (-15 -3001 ((-3 |#1| "failed") (-891 (-387 (-528))))) (-15 -3436 (|#1| |#1| |#1|)) (-15 -2001 (|#1| |#1| |#1|)) (-15 -2267 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3906 (-717))) |#1| |#1|)) (-15 -2362 (|#1| |#1| |#1|)) (-15 -3291 ((-2 (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1|)) (-15 -2467 ((-2 (|:| -1641 |#1|) (|:| |gap| (-717)) (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1| |#4|)) (-15 -2467 ((-2 (|:| -1641 |#1|) (|:| |gap| (-717)) (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1|)) (-15 -2538 ((-2 (|:| -1641 |#1|) (|:| |gap| (-717)) (|:| -2537 |#1|)) |#1| |#1| |#4|)) (-15 -2538 ((-2 (|:| -1641 |#1|) (|:| |gap| (-717)) (|:| -2537 |#1|)) |#1| |#1|)) (-15 -1986 (|#1| |#1| |#1| |#4|)) (-15 -3340 (|#1| |#1| |#1| |#4|)) (-15 -1986 (|#1| |#1| |#1|)) (-15 -3340 (|#1| |#1| |#1|)) (-15 -3540 (|#1| |#1| |#1| |#4|)) (-15 -3025 (|#1| |#1| |#1| |#4|)) (-15 -3540 (|#1| |#1| |#1|)) (-15 -3025 (|#1| |#1| |#1|)) (-15 -3092 ((-110) |#1| (-595 |#1|))) (-15 -3092 ((-110) |#1| |#1|)) (-15 -2127 ((-110) |#1| (-595 |#1|))) (-15 -2127 ((-110) |#1| |#1|)) (-15 -1906 ((-110) |#1| (-595 |#1|))) (-15 -1906 ((-110) |#1| |#1|)) (-15 -1927 ((-110) |#1| (-595 |#1|))) (-15 -1927 ((-110) |#1| |#1|)) (-15 -1875 ((-110) |#1| |#1|)) (-15 -3664 ((-110) |#1| |#1|)) (-15 -1418 ((-3 (-110) "failed") |#1| |#1|)) (-15 -1718 ((-595 |#1|) |#1|)) (-15 -2848 ((-595 |#1|) |#1|)) (-15 -3616 (|#1| |#1|)) (-15 -2663 (|#1| |#1|)) (-15 -2779 ((-110) |#1|)) (-15 -1586 ((-110) |#1|)) (-15 -2388 (|#1| |#1| |#4|)) (-15 -2697 (|#1| |#1| |#4|)) (-15 -2826 (|#1| |#1|)) (-15 -1954 ((-595 |#1|) |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -2023 (|#1| |#1|)) (-15 -2996 (|#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 -2910 ((-717) |#1|)) (-15 -1761 (|#4| |#1|)) (-15 -3155 ((-504) |#1|)) (-15 -3155 ((-831 (-528)) |#1|)) (-15 -3155 ((-831 (-359)) |#1|)) (-15 -2409 (|#4| |#1|)) (-15 -3001 ((-3 |#4| "failed") |#1|)) (-15 -2222 (|#1| |#4|)) (-15 -2697 (|#2| |#1|)) (-15 -2388 (|#1| |#1|)) (-15 -2409 ((-528) |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -2409 ((-387 (-528)) |#1|)) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -2222 (|#1| |#2|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -2409 (|#2| |#1|)) (-15 -2222 (|#1| (-528))) (-15 -2222 ((-802) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2565 (((-595 |#3|) $) 110)) (-2402 (((-1091 $) $ |#3|) 125) (((-1091 |#1|) $) 124)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 87 (|has| |#1| (-520)))) (-1738 (($ $) 88 (|has| |#1| (-520)))) (-1811 (((-110) $) 90 (|has| |#1| (-520)))) (-4042 (((-717) $) 112) (((-717) $ (-595 |#3|)) 111)) (-2023 (($ $) 271)) (-1875 (((-110) $ $) 257)) (-3181 (((-3 $ "failed") $ $) 19)) (-1355 (($ $ $) 216 (|has| |#1| (-520)))) (-1545 (((-595 $) $ $) 211 (|has| |#1| (-520)))) (-2152 (((-398 (-1091 $)) (-1091 $)) 100 (|has| |#1| (-848)))) (-1232 (($ $) 98 (|has| |#1| (-431)))) (-2705 (((-398 $) $) 97 (|has| |#1| (-431)))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) 103 (|has| |#1| (-848)))) (-2816 (($) 17 T CONST)) (-3001 (((-3 |#1| "failed") $) 164) (((-3 (-387 (-528)) "failed") $) 162 (|has| |#1| (-972 (-387 (-528))))) (((-3 (-528) "failed") $) 160 (|has| |#1| (-972 (-528)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-891 (-387 (-528)))) 231 (-12 (|has| |#1| (-37 (-387 (-528)))) (|has| |#3| (-570 (-1095))))) (((-3 $ "failed") (-891 (-528))) 228 (-1463 (-12 (-3617 (|has| |#1| (-37 (-387 (-528))))) (|has| |#1| (-37 (-528))) (|has| |#3| (-570 (-1095)))) (-12 (|has| |#1| (-37 (-387 (-528)))) (|has| |#3| (-570 (-1095)))))) (((-3 $ "failed") (-891 |#1|)) 225 (-1463 (-12 (-3617 (|has| |#1| (-37 (-387 (-528))))) (-3617 (|has| |#1| (-37 (-528)))) (|has| |#3| (-570 (-1095)))) (-12 (-3617 (|has| |#1| (-513))) (-3617 (|has| |#1| (-37 (-387 (-528))))) (|has| |#1| (-37 (-528))) (|has| |#3| (-570 (-1095)))) (-12 (-3617 (|has| |#1| (-929 (-528)))) (|has| |#1| (-37 (-387 (-528)))) (|has| |#3| (-570 (-1095))))))) (-2409 ((|#1| $) 165) (((-387 (-528)) $) 161 (|has| |#1| (-972 (-387 (-528))))) (((-528) $) 159 (|has| |#1| (-972 (-528)))) ((|#3| $) 135) (($ (-891 (-387 (-528)))) 230 (-12 (|has| |#1| (-37 (-387 (-528)))) (|has| |#3| (-570 (-1095))))) (($ (-891 (-528))) 227 (-1463 (-12 (-3617 (|has| |#1| (-37 (-387 (-528))))) (|has| |#1| (-37 (-528))) (|has| |#3| (-570 (-1095)))) (-12 (|has| |#1| (-37 (-387 (-528)))) (|has| |#3| (-570 (-1095)))))) (($ (-891 |#1|)) 224 (-1463 (-12 (-3617 (|has| |#1| (-37 (-387 (-528))))) (-3617 (|has| |#1| (-37 (-528)))) (|has| |#3| (-570 (-1095)))) (-12 (-3617 (|has| |#1| (-513))) (-3617 (|has| |#1| (-37 (-387 (-528))))) (|has| |#1| (-37 (-528))) (|has| |#3| (-570 (-1095)))) (-12 (-3617 (|has| |#1| (-929 (-528)))) (|has| |#1| (-37 (-387 (-528)))) (|has| |#3| (-570 (-1095))))))) (-1606 (($ $ $ |#3|) 108 (|has| |#1| (-162))) (($ $ $) 212 (|has| |#1| (-520)))) (-2388 (($ $) 154) (($ $ |#3|) 266)) (-2120 (((-635 (-528)) (-635 $)) 134 (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) 133 (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) 132) (((-635 |#1|) (-635 $)) 131)) (-1927 (((-110) $ $) 256) (((-110) $ (-595 $)) 255)) (-1312 (((-3 $ "failed") $) 34)) (-2779 (((-110) $) 264)) (-3291 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 236)) (-1768 (($ $) 205 (|has| |#1| (-431)))) (-1551 (($ $) 176 (|has| |#1| (-431))) (($ $ |#3|) 105 (|has| |#1| (-431)))) (-2376 (((-595 $) $) 109)) (-2124 (((-110) $) 96 (|has| |#1| (-848)))) (-4087 (($ $) 221 (|has| |#1| (-520)))) (-2015 (($ $) 222 (|has| |#1| (-520)))) (-3025 (($ $ $) 248) (($ $ $ |#3|) 246)) (-3540 (($ $ $) 247) (($ $ $ |#3|) 245)) (-4047 (($ $ |#1| |#2| $) 172)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) 84 (-12 (|has| |#3| (-825 (-359))) (|has| |#1| (-825 (-359))))) (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) 83 (-12 (|has| |#3| (-825 (-528))) (|has| |#1| (-825 (-528)))))) (-1297 (((-110) $) 31)) (-1224 (((-717) $) 169)) (-3092 (((-110) $ $) 250) (((-110) $ (-595 $)) 249)) (-3253 (($ $ $ $ $) 207 (|has| |#1| (-520)))) (-1761 ((|#3| $) 275)) (-2557 (($ (-1091 |#1|) |#3|) 117) (($ (-1091 $) |#3|) 116)) (-3737 (((-595 $) $) 126)) (-2195 (((-110) $) 152)) (-2548 (($ |#1| |#2|) 153) (($ $ |#3| (-717)) 119) (($ $ (-595 |#3|) (-595 (-717))) 118)) (-2362 (($ $ $) 235)) (-3275 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $ |#3|) 120)) (-1586 (((-110) $) 265)) (-3499 ((|#2| $) 170) (((-717) $ |#3|) 122) (((-595 (-717)) $ (-595 |#3|)) 121)) (-1436 (($ $ $) 79 (|has| |#1| (-793)))) (-2910 (((-717) $) 274)) (-1736 (($ $ $) 78 (|has| |#1| (-793)))) (-1264 (($ (-1 |#2| |#2|) $) 171)) (-3106 (($ (-1 |#1| |#1|) $) 151)) (-3288 (((-3 |#3| "failed") $) 123)) (-3389 (($ $) 202 (|has| |#1| (-431)))) (-3218 (($ $) 203 (|has| |#1| (-431)))) (-1718 (((-595 $) $) 260)) (-2663 (($ $) 263)) (-3935 (($ $) 204 (|has| |#1| (-431)))) (-2848 (((-595 $) $) 261)) (-3616 (($ $) 262)) (-2686 (($ $) 149)) (-2697 ((|#1| $) 148) (($ $ |#3|) 267)) (-2057 (($ (-595 $)) 94 (|has| |#1| (-431))) (($ $ $) 93 (|has| |#1| (-431)))) (-2267 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3906 (-717))) $ $) 234)) (-2467 (((-2 (|:| -1641 $) (|:| |gap| (-717)) (|:| -3490 $) (|:| -2537 $)) $ $) 238) (((-2 (|:| -1641 $) (|:| |gap| (-717)) (|:| -3490 $) (|:| -2537 $)) $ $ |#3|) 237)) (-2538 (((-2 (|:| -1641 $) (|:| |gap| (-717)) (|:| -2537 $)) $ $) 240) (((-2 (|:| -1641 $) (|:| |gap| (-717)) (|:| -2537 $)) $ $ |#3|) 239)) (-3340 (($ $ $) 244) (($ $ $ |#3|) 242)) (-1986 (($ $ $) 243) (($ $ $ |#3|) 241)) (-3034 (((-1078) $) 9)) (-2272 (($ $ $) 210 (|has| |#1| (-520)))) (-1954 (((-595 $) $) 269)) (-3024 (((-3 (-595 $) "failed") $) 114)) (-1281 (((-3 (-595 $) "failed") $) 115)) (-3352 (((-3 (-2 (|:| |var| |#3|) (|:| -2564 (-717))) "failed") $) 113)) (-2127 (((-110) $ $) 252) (((-110) $ (-595 $)) 251)) (-3436 (($ $ $) 232)) (-4197 (($ $) 273)) (-3664 (((-110) $ $) 258)) (-1906 (((-110) $ $) 254) (((-110) $ (-595 $)) 253)) (-2001 (($ $ $) 233)) (-2996 (($ $) 272)) (-2495 (((-1042) $) 10)) (-2099 (((-2 (|:| -2088 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-520)))) (-1787 (((-2 (|:| -2088 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-520)))) (-2662 (((-110) $) 166)) (-2675 ((|#1| $) 167)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 95 (|has| |#1| (-431)))) (-2088 ((|#1| |#1| $) 206 (|has| |#1| (-431))) (($ (-595 $)) 92 (|has| |#1| (-431))) (($ $ $) 91 (|has| |#1| (-431)))) (-3261 (((-398 (-1091 $)) (-1091 $)) 102 (|has| |#1| (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) 101 (|has| |#1| (-848)))) (-2437 (((-398 $) $) 99 (|has| |#1| (-848)))) (-1252 (((-2 (|:| -2088 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-520)))) (-3477 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-520))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-520)))) (-3766 (($ $ |#1|) 219 (|has| |#1| (-520))) (($ $ $) 217 (|has| |#1| (-520)))) (-3859 (($ $ |#1|) 220 (|has| |#1| (-520))) (($ $ $) 218 (|has| |#1| (-520)))) (-4014 (($ $ (-595 (-275 $))) 145) (($ $ (-275 $)) 144) (($ $ $ $) 143) (($ $ (-595 $) (-595 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-595 |#3|) (-595 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-595 |#3|) (-595 $)) 138)) (-1372 (($ $ |#3|) 107 (|has| |#1| (-162)))) (-3235 (($ $ |#3|) 42) (($ $ (-595 |#3|)) 41) (($ $ |#3| (-717)) 40) (($ $ (-595 |#3|) (-595 (-717))) 39)) (-2935 ((|#2| $) 150) (((-717) $ |#3|) 130) (((-595 (-717)) $ (-595 |#3|)) 129)) (-3083 (($ $) 270)) (-2826 (($ $) 268)) (-3155 (((-831 (-359)) $) 82 (-12 (|has| |#3| (-570 (-831 (-359)))) (|has| |#1| (-570 (-831 (-359)))))) (((-831 (-528)) $) 81 (-12 (|has| |#3| (-570 (-831 (-528)))) (|has| |#1| (-570 (-831 (-528)))))) (((-504) $) 80 (-12 (|has| |#3| (-570 (-504))) (|has| |#1| (-570 (-504))))) (($ (-891 (-387 (-528)))) 229 (-12 (|has| |#1| (-37 (-387 (-528)))) (|has| |#3| (-570 (-1095))))) (($ (-891 (-528))) 226 (-1463 (-12 (-3617 (|has| |#1| (-37 (-387 (-528))))) (|has| |#1| (-37 (-528))) (|has| |#3| (-570 (-1095)))) (-12 (|has| |#1| (-37 (-387 (-528)))) (|has| |#3| (-570 (-1095)))))) (($ (-891 |#1|)) 223 (|has| |#3| (-570 (-1095)))) (((-1078) $) 201 (-12 (|has| |#1| (-972 (-528))) (|has| |#3| (-570 (-1095))))) (((-891 |#1|) $) 200 (|has| |#3| (-570 (-1095))))) (-1618 ((|#1| $) 175 (|has| |#1| (-431))) (($ $ |#3|) 106 (|has| |#1| (-431)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) 104 (-3287 (|has| $ (-138)) (|has| |#1| (-848))))) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-891 |#1|) $) 199 (|has| |#3| (-570 (-1095)))) (($ (-387 (-528))) 72 (-1463 (|has| |#1| (-972 (-387 (-528)))) (|has| |#1| (-37 (-387 (-528)))))) (($ $) 85 (|has| |#1| (-520)))) (-3348 (((-595 |#1|) $) 168)) (-3216 ((|#1| $ |#2|) 155) (($ $ |#3| (-717)) 128) (($ $ (-595 |#3|) (-595 (-717))) 127)) (-3749 (((-3 $ "failed") $) 73 (-1463 (-3287 (|has| $ (-138)) (|has| |#1| (-848))) (|has| |#1| (-138))))) (-3742 (((-717)) 29)) (-1997 (($ $ $ (-717)) 173 (|has| |#1| (-162)))) (-4016 (((-110) $ $) 89 (|has| |#1| (-520)))) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-1418 (((-3 (-110) "failed") $ $) 259)) (-2982 (($) 30 T CONST)) (-3463 (($ $ $ $ (-717)) 208 (|has| |#1| (-520)))) (-1854 (($ $ $ (-717)) 209 (|has| |#1| (-520)))) (-3245 (($ $ |#3|) 38) (($ $ (-595 |#3|)) 37) (($ $ |#3| (-717)) 36) (($ $ (-595 |#3|) (-595 (-717))) 35)) (-2244 (((-110) $ $) 76 (|has| |#1| (-793)))) (-2220 (((-110) $ $) 75 (|has| |#1| (-793)))) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 77 (|has| |#1| (-793)))) (-2208 (((-110) $ $) 74 (|has| |#1| (-793)))) (-2296 (($ $ |#1|) 156 (|has| |#1| (-343)))) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ (-387 (-528))) 158 (|has| |#1| (-37 (-387 (-528))))) (($ (-387 (-528)) $) 157 (|has| |#1| (-37 (-387 (-528))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-994 |#1| |#2| |#3|) (-133) (-981) (-739) (-793)) (T -994))
-((-1761 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *2 (-793)))) (-2910 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-717)))) (-4197 (*1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)))) (-2996 (*1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)))) (-2023 (*1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)))) (-3083 (*1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)))) (-1954 (*1 *2 *1) (-12 (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-595 *1)) (-4 *1 (-994 *3 *4 *5)))) (-2826 (*1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)))) (-2697 (*1 *1 *1 *2) (-12 (-4 *1 (-994 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *2 (-793)))) (-2388 (*1 *1 *1 *2) (-12 (-4 *1 (-994 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *2 (-793)))) (-1586 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-110)))) (-2779 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-110)))) (-2663 (*1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)))) (-3616 (*1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)))) (-2848 (*1 *2 *1) (-12 (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-595 *1)) (-4 *1 (-994 *3 *4 *5)))) (-1718 (*1 *2 *1) (-12 (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-595 *1)) (-4 *1 (-994 *3 *4 *5)))) (-1418 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-110)))) (-3664 (*1 *2 *1 *1) (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-110)))) (-1875 (*1 *2 *1 *1) (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-110)))) (-1927 (*1 *2 *1 *1) (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-110)))) (-1927 (*1 *2 *1 *3) (-12 (-5 *3 (-595 *1)) (-4 *1 (-994 *4 *5 *6)) (-4 *4 (-981)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110)))) (-1906 (*1 *2 *1 *1) (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-110)))) (-1906 (*1 *2 *1 *3) (-12 (-5 *3 (-595 *1)) (-4 *1 (-994 *4 *5 *6)) (-4 *4 (-981)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110)))) (-2127 (*1 *2 *1 *1) (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-110)))) (-2127 (*1 *2 *1 *3) (-12 (-5 *3 (-595 *1)) (-4 *1 (-994 *4 *5 *6)) (-4 *4 (-981)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110)))) (-3092 (*1 *2 *1 *1) (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-110)))) (-3092 (*1 *2 *1 *3) (-12 (-5 *3 (-595 *1)) (-4 *1 (-994 *4 *5 *6)) (-4 *4 (-981)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110)))) (-3025 (*1 *1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)))) (-3540 (*1 *1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)))) (-3025 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-994 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *2 (-793)))) (-3540 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-994 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *2 (-793)))) (-3340 (*1 *1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)))) (-1986 (*1 *1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)))) (-3340 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-994 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *2 (-793)))) (-1986 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-994 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *2 (-793)))) (-2538 (*1 *2 *1 *1) (-12 (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-2 (|:| -1641 *1) (|:| |gap| (-717)) (|:| -2537 *1))) (-4 *1 (-994 *3 *4 *5)))) (-2538 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-981)) (-4 *5 (-739)) (-4 *3 (-793)) (-5 *2 (-2 (|:| -1641 *1) (|:| |gap| (-717)) (|:| -2537 *1))) (-4 *1 (-994 *4 *5 *3)))) (-2467 (*1 *2 *1 *1) (-12 (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-2 (|:| -1641 *1) (|:| |gap| (-717)) (|:| -3490 *1) (|:| -2537 *1))) (-4 *1 (-994 *3 *4 *5)))) (-2467 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-981)) (-4 *5 (-739)) (-4 *3 (-793)) (-5 *2 (-2 (|:| -1641 *1) (|:| |gap| (-717)) (|:| -3490 *1) (|:| -2537 *1))) (-4 *1 (-994 *4 *5 *3)))) (-3291 (*1 *2 *1 *1) (-12 (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-2 (|:| -3490 *1) (|:| -2537 *1))) (-4 *1 (-994 *3 *4 *5)))) (-2362 (*1 *1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)))) (-2267 (*1 *2 *1 *1) (-12 (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3906 (-717)))) (-4 *1 (-994 *3 *4 *5)))) (-2001 (*1 *1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)))) (-3436 (*1 *1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)))) (-3001 (*1 *1 *2) (|partial| -12 (-5 *2 (-891 (-387 (-528)))) (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-37 (-387 (-528)))) (-4 *5 (-570 (-1095))) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-891 (-387 (-528)))) (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-37 (-387 (-528)))) (-4 *5 (-570 (-1095))) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)))) (-3155 (*1 *1 *2) (-12 (-5 *2 (-891 (-387 (-528)))) (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-37 (-387 (-528)))) (-4 *5 (-570 (-1095))) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)))) (-3001 (*1 *1 *2) (|partial| -1463 (-12 (-5 *2 (-891 (-528))) (-4 *1 (-994 *3 *4 *5)) (-12 (-3617 (-4 *3 (-37 (-387 (-528))))) (-4 *3 (-37 (-528))) (-4 *5 (-570 (-1095)))) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793))) (-12 (-5 *2 (-891 (-528))) (-4 *1 (-994 *3 *4 *5)) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *5 (-570 (-1095)))) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793))))) (-2409 (*1 *1 *2) (-1463 (-12 (-5 *2 (-891 (-528))) (-4 *1 (-994 *3 *4 *5)) (-12 (-3617 (-4 *3 (-37 (-387 (-528))))) (-4 *3 (-37 (-528))) (-4 *5 (-570 (-1095)))) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793))) (-12 (-5 *2 (-891 (-528))) (-4 *1 (-994 *3 *4 *5)) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *5 (-570 (-1095)))) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793))))) (-3155 (*1 *1 *2) (-1463 (-12 (-5 *2 (-891 (-528))) (-4 *1 (-994 *3 *4 *5)) (-12 (-3617 (-4 *3 (-37 (-387 (-528))))) (-4 *3 (-37 (-528))) (-4 *5 (-570 (-1095)))) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793))) (-12 (-5 *2 (-891 (-528))) (-4 *1 (-994 *3 *4 *5)) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *5 (-570 (-1095)))) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793))))) (-3001 (*1 *1 *2) (|partial| -1463 (-12 (-5 *2 (-891 *3)) (-12 (-3617 (-4 *3 (-37 (-387 (-528))))) (-3617 (-4 *3 (-37 (-528)))) (-4 *5 (-570 (-1095)))) (-4 *3 (-981)) (-4 *1 (-994 *3 *4 *5)) (-4 *4 (-739)) (-4 *5 (-793))) (-12 (-5 *2 (-891 *3)) (-12 (-3617 (-4 *3 (-513))) (-3617 (-4 *3 (-37 (-387 (-528))))) (-4 *3 (-37 (-528))) (-4 *5 (-570 (-1095)))) (-4 *3 (-981)) (-4 *1 (-994 *3 *4 *5)) (-4 *4 (-739)) (-4 *5 (-793))) (-12 (-5 *2 (-891 *3)) (-12 (-3617 (-4 *3 (-929 (-528)))) (-4 *3 (-37 (-387 (-528)))) (-4 *5 (-570 (-1095)))) (-4 *3 (-981)) (-4 *1 (-994 *3 *4 *5)) (-4 *4 (-739)) (-4 *5 (-793))))) (-2409 (*1 *1 *2) (-1463 (-12 (-5 *2 (-891 *3)) (-12 (-3617 (-4 *3 (-37 (-387 (-528))))) (-3617 (-4 *3 (-37 (-528)))) (-4 *5 (-570 (-1095)))) (-4 *3 (-981)) (-4 *1 (-994 *3 *4 *5)) (-4 *4 (-739)) (-4 *5 (-793))) (-12 (-5 *2 (-891 *3)) (-12 (-3617 (-4 *3 (-513))) (-3617 (-4 *3 (-37 (-387 (-528))))) (-4 *3 (-37 (-528))) (-4 *5 (-570 (-1095)))) (-4 *3 (-981)) (-4 *1 (-994 *3 *4 *5)) (-4 *4 (-739)) (-4 *5 (-793))) (-12 (-5 *2 (-891 *3)) (-12 (-3617 (-4 *3 (-929 (-528)))) (-4 *3 (-37 (-387 (-528)))) (-4 *5 (-570 (-1095)))) (-4 *3 (-981)) (-4 *1 (-994 *3 *4 *5)) (-4 *4 (-739)) (-4 *5 (-793))))) (-3155 (*1 *1 *2) (-12 (-5 *2 (-891 *3)) (-4 *3 (-981)) (-4 *1 (-994 *3 *4 *5)) (-4 *5 (-570 (-1095))) (-4 *4 (-739)) (-4 *5 (-793)))) (-2015 (*1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)) (-4 *2 (-520)))) (-4087 (*1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)) (-4 *2 (-520)))) (-3859 (*1 *1 *1 *2) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)) (-4 *2 (-520)))) (-3766 (*1 *1 *1 *2) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)) (-4 *2 (-520)))) (-3859 (*1 *1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)) (-4 *2 (-520)))) (-3766 (*1 *1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)) (-4 *2 (-520)))) (-1355 (*1 *1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)) (-4 *2 (-520)))) (-1252 (*1 *2 *1 *1) (-12 (-4 *3 (-520)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-2 (|:| -2088 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-994 *3 *4 *5)))) (-1787 (*1 *2 *1 *1) (-12 (-4 *3 (-520)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-2 (|:| -2088 *1) (|:| |coef1| *1))) (-4 *1 (-994 *3 *4 *5)))) (-2099 (*1 *2 *1 *1) (-12 (-4 *3 (-520)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-2 (|:| -2088 *1) (|:| |coef2| *1))) (-4 *1 (-994 *3 *4 *5)))) (-1606 (*1 *1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)) (-4 *2 (-520)))) (-1545 (*1 *2 *1 *1) (-12 (-4 *3 (-520)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-595 *1)) (-4 *1 (-994 *3 *4 *5)))) (-2272 (*1 *1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)) (-4 *2 (-520)))) (-1854 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *3 (-520)))) (-3463 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *3 (-520)))) (-3253 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)) (-4 *2 (-520)))) (-2088 (*1 *2 *2 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)) (-4 *2 (-431)))) (-1768 (*1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)) (-4 *2 (-431)))) (-3935 (*1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)) (-4 *2 (-431)))) (-3218 (*1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)) (-4 *2 (-431)))) (-3389 (*1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739)) (-4 *4 (-793)) (-4 *2 (-431)))))
-(-13 (-888 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1761 (|t#3| $)) (-15 -2910 ((-717) $)) (-15 -4197 ($ $)) (-15 -2996 ($ $)) (-15 -2023 ($ $)) (-15 -3083 ($ $)) (-15 -1954 ((-595 $) $)) (-15 -2826 ($ $)) (-15 -2697 ($ $ |t#3|)) (-15 -2388 ($ $ |t#3|)) (-15 -1586 ((-110) $)) (-15 -2779 ((-110) $)) (-15 -2663 ($ $)) (-15 -3616 ($ $)) (-15 -2848 ((-595 $) $)) (-15 -1718 ((-595 $) $)) (-15 -1418 ((-3 (-110) "failed") $ $)) (-15 -3664 ((-110) $ $)) (-15 -1875 ((-110) $ $)) (-15 -1927 ((-110) $ $)) (-15 -1927 ((-110) $ (-595 $))) (-15 -1906 ((-110) $ $)) (-15 -1906 ((-110) $ (-595 $))) (-15 -2127 ((-110) $ $)) (-15 -2127 ((-110) $ (-595 $))) (-15 -3092 ((-110) $ $)) (-15 -3092 ((-110) $ (-595 $))) (-15 -3025 ($ $ $)) (-15 -3540 ($ $ $)) (-15 -3025 ($ $ $ |t#3|)) (-15 -3540 ($ $ $ |t#3|)) (-15 -3340 ($ $ $)) (-15 -1986 ($ $ $)) (-15 -3340 ($ $ $ |t#3|)) (-15 -1986 ($ $ $ |t#3|)) (-15 -2538 ((-2 (|:| -1641 $) (|:| |gap| (-717)) (|:| -2537 $)) $ $)) (-15 -2538 ((-2 (|:| -1641 $) (|:| |gap| (-717)) (|:| -2537 $)) $ $ |t#3|)) (-15 -2467 ((-2 (|:| -1641 $) (|:| |gap| (-717)) (|:| -3490 $) (|:| -2537 $)) $ $)) (-15 -2467 ((-2 (|:| -1641 $) (|:| |gap| (-717)) (|:| -3490 $) (|:| -2537 $)) $ $ |t#3|)) (-15 -3291 ((-2 (|:| -3490 $) (|:| -2537 $)) $ $)) (-15 -2362 ($ $ $)) (-15 -2267 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3906 (-717))) $ $)) (-15 -2001 ($ $ $)) (-15 -3436 ($ $ $)) (IF (|has| |t#3| (-570 (-1095))) (PROGN (-6 (-569 (-891 |t#1|))) (-6 (-570 (-891 |t#1|))) (IF (|has| |t#1| (-37 (-387 (-528)))) (PROGN (-15 -3001 ((-3 $ "failed") (-891 (-387 (-528))))) (-15 -2409 ($ (-891 (-387 (-528))))) (-15 -3155 ($ (-891 (-387 (-528))))) (-15 -3001 ((-3 $ "failed") (-891 (-528)))) (-15 -2409 ($ (-891 (-528)))) (-15 -3155 ($ (-891 (-528)))) (IF (|has| |t#1| (-929 (-528))) |%noBranch| (PROGN (-15 -3001 ((-3 $ "failed") (-891 |t#1|))) (-15 -2409 ($ (-891 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-528))) (IF (|has| |t#1| (-37 (-387 (-528)))) |%noBranch| (PROGN (-15 -3001 ((-3 $ "failed") (-891 (-528)))) (-15 -2409 ($ (-891 (-528)))) (-15 -3155 ($ (-891 (-528)))) (IF (|has| |t#1| (-513)) |%noBranch| (PROGN (-15 -3001 ((-3 $ "failed") (-891 |t#1|))) (-15 -2409 ($ (-891 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-528))) |%noBranch| (IF (|has| |t#1| (-37 (-387 (-528)))) |%noBranch| (PROGN (-15 -3001 ((-3 $ "failed") (-891 |t#1|))) (-15 -2409 ($ (-891 |t#1|)))))) (-15 -3155 ($ (-891 |t#1|))) (IF (|has| |t#1| (-972 (-528))) (-6 (-570 (-1078))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-520)) (PROGN (-15 -2015 ($ $)) (-15 -4087 ($ $)) (-15 -3859 ($ $ |t#1|)) (-15 -3766 ($ $ |t#1|)) (-15 -3859 ($ $ $)) (-15 -3766 ($ $ $)) (-15 -1355 ($ $ $)) (-15 -1252 ((-2 (|:| -2088 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1787 ((-2 (|:| -2088 $) (|:| |coef1| $)) $ $)) (-15 -2099 ((-2 (|:| -2088 $) (|:| |coef2| $)) $ $)) (-15 -1606 ($ $ $)) (-15 -1545 ((-595 $) $ $)) (-15 -2272 ($ $ $)) (-15 -1854 ($ $ $ (-717))) (-15 -3463 ($ $ $ $ (-717))) (-15 -3253 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-431)) (PROGN (-15 -2088 (|t#1| |t#1| $)) (-15 -1768 ($ $)) (-15 -3935 ($ $)) (-15 -3218 ($ $)) (-15 -3389 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431))) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-387 (-528)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-569 (-802)) . T) ((-569 (-891 |#1|)) |has| |#3| (-570 (-1095))) ((-162) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431)) (|has| |#1| (-162))) ((-570 (-504)) -12 (|has| |#1| (-570 (-504))) (|has| |#3| (-570 (-504)))) ((-570 (-831 (-359))) -12 (|has| |#1| (-570 (-831 (-359)))) (|has| |#3| (-570 (-831 (-359))))) ((-570 (-831 (-528))) -12 (|has| |#1| (-570 (-831 (-528)))) (|has| |#3| (-570 (-831 (-528))))) ((-570 (-891 |#1|)) |has| |#3| (-570 (-1095))) ((-570 (-1078)) -12 (|has| |#1| (-972 (-528))) (|has| |#3| (-570 (-1095)))) ((-271) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431))) ((-290 $) . T) ((-306 |#1| |#2|) . T) ((-357 |#1|) . T) ((-391 |#1|) . T) ((-431) -1463 (|has| |#1| (-848)) (|has| |#1| (-431))) ((-489 |#3| |#1|) . T) ((-489 |#3| $) . T) ((-489 $ $) . T) ((-520) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431))) ((-597 #0#) |has| |#1| (-37 (-387 (-528)))) ((-597 |#1|) . T) ((-597 $) . T) ((-591 (-528)) |has| |#1| (-591 (-528))) ((-591 |#1|) . T) ((-664 #0#) |has| |#1| (-37 (-387 (-528)))) ((-664 |#1|) |has| |#1| (-162)) ((-664 $) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431))) ((-673) . T) ((-793) |has| |#1| (-793)) ((-839 |#3|) . T) ((-825 (-359)) -12 (|has| |#1| (-825 (-359))) (|has| |#3| (-825 (-359)))) ((-825 (-528)) -12 (|has| |#1| (-825 (-528))) (|has| |#3| (-825 (-528)))) ((-888 |#1| |#2| |#3|) . T) ((-848) |has| |#1| (-848)) ((-972 (-387 (-528))) |has| |#1| (-972 (-387 (-528)))) ((-972 (-528)) |has| |#1| (-972 (-528))) ((-972 |#1|) . T) ((-972 |#3|) . T) ((-986 #0#) |has| |#1| (-37 (-387 (-528)))) ((-986 |#1|) . T) ((-986 $) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431)) (|has| |#1| (-162))) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1135) |has| |#1| (-848)))
-((-1359 (((-110) |#3| $) 13)) (-1230 (((-3 $ "failed") |#3| (-860)) 23)) (-1312 (((-3 |#3| "failed") |#3| $) 38)) (-3657 (((-110) |#3| $) 16)) (-3710 (((-110) |#3| $) 14)))
-(((-995 |#1| |#2| |#3|) (-10 -8 (-15 -1230 ((-3 |#1| "failed") |#3| (-860))) (-15 -1312 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3657 ((-110) |#3| |#1|)) (-15 -3710 ((-110) |#3| |#1|)) (-15 -1359 ((-110) |#3| |#1|))) (-996 |#2| |#3|) (-13 (-791) (-343)) (-1153 |#2|)) (T -995))
-NIL
-(-10 -8 (-15 -1230 ((-3 |#1| "failed") |#3| (-860))) (-15 -1312 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3657 ((-110) |#3| |#1|)) (-15 -3710 ((-110) |#3| |#1|)) (-15 -1359 ((-110) |#3| |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) |#2| $) 21)) (-3605 (((-528) |#2| $) 22)) (-1230 (((-3 $ "failed") |#2| (-860)) 15)) (-1459 ((|#1| |#2| $ |#1|) 13)) (-1312 (((-3 |#2| "failed") |#2| $) 18)) (-3657 (((-110) |#2| $) 19)) (-3710 (((-110) |#2| $) 20)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-4090 ((|#2| $) 17)) (-2222 (((-802) $) 11)) (-4083 ((|#1| |#2| $ |#1|) 14)) (-3350 (((-595 $) |#2|) 16)) (-2186 (((-110) $ $) 6)))
-(((-996 |#1| |#2|) (-133) (-13 (-791) (-343)) (-1153 |t#1|)) (T -996))
-((-3605 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *3)) (-4 *4 (-13 (-791) (-343))) (-4 *3 (-1153 *4)) (-5 *2 (-528)))) (-1359 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *3)) (-4 *4 (-13 (-791) (-343))) (-4 *3 (-1153 *4)) (-5 *2 (-110)))) (-3710 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *3)) (-4 *4 (-13 (-791) (-343))) (-4 *3 (-1153 *4)) (-5 *2 (-110)))) (-3657 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *3)) (-4 *4 (-13 (-791) (-343))) (-4 *3 (-1153 *4)) (-5 *2 (-110)))) (-1312 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-996 *3 *2)) (-4 *3 (-13 (-791) (-343))) (-4 *2 (-1153 *3)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-996 *3 *2)) (-4 *3 (-13 (-791) (-343))) (-4 *2 (-1153 *3)))) (-3350 (*1 *2 *3) (-12 (-4 *4 (-13 (-791) (-343))) (-4 *3 (-1153 *4)) (-5 *2 (-595 *1)) (-4 *1 (-996 *4 *3)))) (-1230 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-860)) (-4 *4 (-13 (-791) (-343))) (-4 *1 (-996 *4 *2)) (-4 *2 (-1153 *4)))) (-4083 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-996 *2 *3)) (-4 *2 (-13 (-791) (-343))) (-4 *3 (-1153 *2)))) (-1459 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-996 *2 *3)) (-4 *2 (-13 (-791) (-343))) (-4 *3 (-1153 *2)))))
-(-13 (-1023) (-10 -8 (-15 -3605 ((-528) |t#2| $)) (-15 -1359 ((-110) |t#2| $)) (-15 -3710 ((-110) |t#2| $)) (-15 -3657 ((-110) |t#2| $)) (-15 -1312 ((-3 |t#2| "failed") |t#2| $)) (-15 -4090 (|t#2| $)) (-15 -3350 ((-595 $) |t#2|)) (-15 -1230 ((-3 $ "failed") |t#2| (-860))) (-15 -4083 (|t#1| |t#2| $ |t#1|)) (-15 -1459 (|t#1| |t#2| $ |t#1|))))
-(((-99) . T) ((-569 (-802)) . T) ((-1023) . T))
-((-3647 (((-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) (-595 |#4|) (-595 |#5|) (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) (-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) (-717)) 96)) (-2944 (((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5| (-717)) 56)) (-4101 (((-1182) (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) (-717)) 87)) (-1493 (((-717) (-595 |#4|) (-595 |#5|)) 27)) (-4210 (((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5| (-717)) 58) (((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5| (-717) (-110)) 60)) (-1208 (((-595 |#5|) (-595 |#4|) (-595 |#5|) (-110) (-110) (-110) (-110) (-110)) 78) (((-595 |#5|) (-595 |#4|) (-595 |#5|) (-110) (-110)) 79)) (-3155 (((-1078) (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) 82)) (-3902 (((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5| (-110)) 55)) (-2602 (((-717) (-595 |#4|) (-595 |#5|)) 19)))
-(((-997 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2602 ((-717) (-595 |#4|) (-595 |#5|))) (-15 -1493 ((-717) (-595 |#4|) (-595 |#5|))) (-15 -3902 ((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5| (-110))) (-15 -2944 ((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5| (-717))) (-15 -2944 ((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5|)) (-15 -4210 ((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5| (-717) (-110))) (-15 -4210 ((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5| (-717))) (-15 -4210 ((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5|)) (-15 -1208 ((-595 |#5|) (-595 |#4|) (-595 |#5|) (-110) (-110))) (-15 -1208 ((-595 |#5|) (-595 |#4|) (-595 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -3647 ((-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) (-595 |#4|) (-595 |#5|) (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) (-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) (-717))) (-15 -3155 ((-1078) (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|)))) (-15 -4101 ((-1182) (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) (-717)))) (-431) (-739) (-793) (-994 |#1| |#2| |#3|) (-999 |#1| |#2| |#3| |#4|)) (T -997))
-((-4101 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-2 (|:| |val| (-595 *8)) (|:| -2316 *9)))) (-5 *4 (-717)) (-4 *8 (-994 *5 *6 *7)) (-4 *9 (-999 *5 *6 *7 *8)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-1182)) (-5 *1 (-997 *5 *6 *7 *8 *9)))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-595 *7)) (|:| -2316 *8))) (-4 *7 (-994 *4 *5 *6)) (-4 *8 (-999 *4 *5 *6 *7)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-1078)) (-5 *1 (-997 *4 *5 *6 *7 *8)))) (-3647 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-595 *11)) (|:| |todo| (-595 (-2 (|:| |val| *3) (|:| -2316 *11)))))) (-5 *6 (-717)) (-5 *2 (-595 (-2 (|:| |val| (-595 *10)) (|:| -2316 *11)))) (-5 *3 (-595 *10)) (-5 *4 (-595 *11)) (-4 *10 (-994 *7 *8 *9)) (-4 *11 (-999 *7 *8 *9 *10)) (-4 *7 (-431)) (-4 *8 (-739)) (-4 *9 (-793)) (-5 *1 (-997 *7 *8 *9 *10 *11)))) (-1208 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-595 *9)) (-5 *3 (-595 *8)) (-5 *4 (-110)) (-4 *8 (-994 *5 *6 *7)) (-4 *9 (-999 *5 *6 *7 *8)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *1 (-997 *5 *6 *7 *8 *9)))) (-1208 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-595 *9)) (-5 *3 (-595 *8)) (-5 *4 (-110)) (-4 *8 (-994 *5 *6 *7)) (-4 *9 (-999 *5 *6 *7 *8)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *1 (-997 *5 *6 *7 *8 *9)))) (-4210 (*1 *2 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-595 *4)) (|:| |todo| (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4)))))) (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))) (-4210 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-717)) (-4 *6 (-431)) (-4 *7 (-739)) (-4 *8 (-793)) (-4 *3 (-994 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-595 *4)) (|:| |todo| (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4)))))) (-5 *1 (-997 *6 *7 *8 *3 *4)) (-4 *4 (-999 *6 *7 *8 *3)))) (-4210 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-717)) (-5 *6 (-110)) (-4 *7 (-431)) (-4 *8 (-739)) (-4 *9 (-793)) (-4 *3 (-994 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-595 *4)) (|:| |todo| (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4)))))) (-5 *1 (-997 *7 *8 *9 *3 *4)) (-4 *4 (-999 *7 *8 *9 *3)))) (-2944 (*1 *2 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-595 *4)) (|:| |todo| (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4)))))) (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))) (-2944 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-717)) (-4 *6 (-431)) (-4 *7 (-739)) (-4 *8 (-793)) (-4 *3 (-994 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-595 *4)) (|:| |todo| (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4)))))) (-5 *1 (-997 *6 *7 *8 *3 *4)) (-4 *4 (-999 *6 *7 *8 *3)))) (-3902 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-110)) (-4 *6 (-431)) (-4 *7 (-739)) (-4 *8 (-793)) (-4 *3 (-994 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-595 *4)) (|:| |todo| (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4)))))) (-5 *1 (-997 *6 *7 *8 *3 *4)) (-4 *4 (-999 *6 *7 *8 *3)))) (-1493 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *8)) (-5 *4 (-595 *9)) (-4 *8 (-994 *5 *6 *7)) (-4 *9 (-999 *5 *6 *7 *8)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-717)) (-5 *1 (-997 *5 *6 *7 *8 *9)))) (-2602 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *8)) (-5 *4 (-595 *9)) (-4 *8 (-994 *5 *6 *7)) (-4 *9 (-999 *5 *6 *7 *8)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-717)) (-5 *1 (-997 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2602 ((-717) (-595 |#4|) (-595 |#5|))) (-15 -1493 ((-717) (-595 |#4|) (-595 |#5|))) (-15 -3902 ((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5| (-110))) (-15 -2944 ((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5| (-717))) (-15 -2944 ((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5|)) (-15 -4210 ((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5| (-717) (-110))) (-15 -4210 ((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5| (-717))) (-15 -4210 ((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5|)) (-15 -1208 ((-595 |#5|) (-595 |#4|) (-595 |#5|) (-110) (-110))) (-15 -1208 ((-595 |#5|) (-595 |#4|) (-595 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -3647 ((-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) (-595 |#4|) (-595 |#5|) (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) (-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) (-717))) (-15 -3155 ((-1078) (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|)))) (-15 -4101 ((-1182) (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) (-717))))
-((-1640 (((-110) |#5| $) 21)) (-4184 (((-110) |#5| $) 24)) (-2667 (((-110) |#5| $) 16) (((-110) $) 45)) (-3397 (((-595 $) |#5| $) NIL) (((-595 $) (-595 |#5|) $) 77) (((-595 $) (-595 |#5|) (-595 $)) 75) (((-595 $) |#5| (-595 $)) 78)) (-3740 (($ $ |#5|) NIL) (((-595 $) |#5| $) NIL) (((-595 $) |#5| (-595 $)) 60) (((-595 $) (-595 |#5|) $) 62) (((-595 $) (-595 |#5|) (-595 $)) 64)) (-4053 (((-595 $) |#5| $) NIL) (((-595 $) |#5| (-595 $)) 54) (((-595 $) (-595 |#5|) $) 56) (((-595 $) (-595 |#5|) (-595 $)) 58)) (-3207 (((-110) |#5| $) 27)))
-(((-998 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3740 ((-595 |#1|) (-595 |#5|) (-595 |#1|))) (-15 -3740 ((-595 |#1|) (-595 |#5|) |#1|)) (-15 -3740 ((-595 |#1|) |#5| (-595 |#1|))) (-15 -3740 ((-595 |#1|) |#5| |#1|)) (-15 -4053 ((-595 |#1|) (-595 |#5|) (-595 |#1|))) (-15 -4053 ((-595 |#1|) (-595 |#5|) |#1|)) (-15 -4053 ((-595 |#1|) |#5| (-595 |#1|))) (-15 -4053 ((-595 |#1|) |#5| |#1|)) (-15 -3397 ((-595 |#1|) |#5| (-595 |#1|))) (-15 -3397 ((-595 |#1|) (-595 |#5|) (-595 |#1|))) (-15 -3397 ((-595 |#1|) (-595 |#5|) |#1|)) (-15 -3397 ((-595 |#1|) |#5| |#1|)) (-15 -4184 ((-110) |#5| |#1|)) (-15 -2667 ((-110) |#1|)) (-15 -3207 ((-110) |#5| |#1|)) (-15 -1640 ((-110) |#5| |#1|)) (-15 -2667 ((-110) |#5| |#1|)) (-15 -3740 (|#1| |#1| |#5|))) (-999 |#2| |#3| |#4| |#5|) (-431) (-739) (-793) (-994 |#2| |#3| |#4|)) (T -998))
-NIL
-(-10 -8 (-15 -3740 ((-595 |#1|) (-595 |#5|) (-595 |#1|))) (-15 -3740 ((-595 |#1|) (-595 |#5|) |#1|)) (-15 -3740 ((-595 |#1|) |#5| (-595 |#1|))) (-15 -3740 ((-595 |#1|) |#5| |#1|)) (-15 -4053 ((-595 |#1|) (-595 |#5|) (-595 |#1|))) (-15 -4053 ((-595 |#1|) (-595 |#5|) |#1|)) (-15 -4053 ((-595 |#1|) |#5| (-595 |#1|))) (-15 -4053 ((-595 |#1|) |#5| |#1|)) (-15 -3397 ((-595 |#1|) |#5| (-595 |#1|))) (-15 -3397 ((-595 |#1|) (-595 |#5|) (-595 |#1|))) (-15 -3397 ((-595 |#1|) (-595 |#5|) |#1|)) (-15 -3397 ((-595 |#1|) |#5| |#1|)) (-15 -4184 ((-110) |#5| |#1|)) (-15 -2667 ((-110) |#1|)) (-15 -3207 ((-110) |#5| |#1|)) (-15 -1640 ((-110) |#5| |#1|)) (-15 -2667 ((-110) |#5| |#1|)) (-15 -3740 (|#1| |#1| |#5|)))
-((-2207 (((-110) $ $) 7)) (-2785 (((-595 (-2 (|:| -2254 $) (|:| -2378 (-595 |#4|)))) (-595 |#4|)) 85)) (-1985 (((-595 $) (-595 |#4|)) 86) (((-595 $) (-595 |#4|) (-110)) 111)) (-2565 (((-595 |#3|) $) 33)) (-3812 (((-110) $) 26)) (-2414 (((-110) $) 17 (|has| |#1| (-520)))) (-3759 (((-110) |#4| $) 101) (((-110) $) 97)) (-1728 ((|#4| |#4| $) 92)) (-1232 (((-595 (-2 (|:| |val| |#4|) (|:| -2316 $))) |#4| $) 126)) (-1289 (((-2 (|:| |under| $) (|:| -2925 $) (|:| |upper| $)) $ |#3|) 27)) (-3535 (((-110) $ (-717)) 44)) (-1573 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4264))) (((-3 |#4| "failed") $ |#3|) 79)) (-2816 (($) 45 T CONST)) (-1689 (((-110) $) 22 (|has| |#1| (-520)))) (-2584 (((-110) $ $) 24 (|has| |#1| (-520)))) (-3168 (((-110) $ $) 23 (|has| |#1| (-520)))) (-1924 (((-110) $) 25 (|has| |#1| (-520)))) (-1658 (((-595 |#4|) (-595 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-1891 (((-595 |#4|) (-595 |#4|) $) 18 (|has| |#1| (-520)))) (-3794 (((-595 |#4|) (-595 |#4|) $) 19 (|has| |#1| (-520)))) (-3001 (((-3 $ "failed") (-595 |#4|)) 36)) (-2409 (($ (-595 |#4|)) 35)) (-2902 (((-3 $ "failed") $) 82)) (-1592 ((|#4| |#4| $) 89)) (-2923 (($ $) 68 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264))))) (-2280 (($ |#4| $) 67 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4264)))) (-2537 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-520)))) (-1927 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-3345 ((|#4| |#4| $) 87)) (-1422 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4264))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4264))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-4049 (((-2 (|:| -2254 (-595 |#4|)) (|:| -2378 (-595 |#4|))) $) 105)) (-1640 (((-110) |#4| $) 136)) (-4184 (((-110) |#4| $) 133)) (-2667 (((-110) |#4| $) 137) (((-110) $) 134)) (-3342 (((-595 |#4|) $) 52 (|has| $ (-6 -4264)))) (-3092 (((-110) |#4| $) 104) (((-110) $) 103)) (-1761 ((|#3| $) 34)) (-2029 (((-110) $ (-717)) 43)) (-2604 (((-595 |#4|) $) 53 (|has| $ (-6 -4264)))) (-2408 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264))))) (-2800 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#4| |#4|) $) 47)) (-3558 (((-595 |#3|) $) 32)) (-3472 (((-110) |#3| $) 31)) (-3358 (((-110) $ (-717)) 42)) (-3034 (((-1078) $) 9)) (-4192 (((-3 |#4| (-595 $)) |#4| |#4| $) 128)) (-2272 (((-595 (-2 (|:| |val| |#4|) (|:| -2316 $))) |#4| |#4| $) 127)) (-2301 (((-3 |#4| "failed") $) 83)) (-2078 (((-595 $) |#4| $) 129)) (-1307 (((-3 (-110) (-595 $)) |#4| $) 132)) (-3346 (((-595 (-2 (|:| |val| (-110)) (|:| -2316 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-3397 (((-595 $) |#4| $) 125) (((-595 $) (-595 |#4|) $) 124) (((-595 $) (-595 |#4|) (-595 $)) 123) (((-595 $) |#4| (-595 $)) 122)) (-1325 (($ |#4| $) 117) (($ (-595 |#4|) $) 116)) (-3923 (((-595 |#4|) $) 107)) (-2127 (((-110) |#4| $) 99) (((-110) $) 95)) (-3436 ((|#4| |#4| $) 90)) (-3664 (((-110) $ $) 110)) (-1827 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-520)))) (-1906 (((-110) |#4| $) 100) (((-110) $) 96)) (-2001 ((|#4| |#4| $) 91)) (-2495 (((-1042) $) 10)) (-2890 (((-3 |#4| "failed") $) 84)) (-1734 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-3912 (((-3 $ "failed") $ |#4|) 78)) (-3740 (($ $ |#4|) 77) (((-595 $) |#4| $) 115) (((-595 $) |#4| (-595 $)) 114) (((-595 $) (-595 |#4|) $) 113) (((-595 $) (-595 |#4|) (-595 $)) 112)) (-1818 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 |#4|) (-595 |#4|)) 59 (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ (-275 |#4|)) 57 (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ (-595 (-275 |#4|))) 56 (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))))) (-3744 (((-110) $ $) 38)) (-1972 (((-110) $) 41)) (-2147 (($) 40)) (-2935 (((-717) $) 106)) (-2507 (((-717) |#4| $) 54 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264)))) (((-717) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4264)))) (-2406 (($ $) 39)) (-3155 (((-504) $) 69 (|has| |#4| (-570 (-504))))) (-2233 (($ (-595 |#4|)) 60)) (-2649 (($ $ |#3|) 28)) (-3597 (($ $ |#3|) 30)) (-3311 (($ $) 88)) (-1812 (($ $ |#3|) 29)) (-2222 (((-802) $) 11) (((-595 |#4|) $) 37)) (-2459 (((-717) $) 76 (|has| |#3| (-348)))) (-1411 (((-3 (-2 (|:| |bas| $) (|:| -1513 (-595 |#4|))) "failed") (-595 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1513 (-595 |#4|))) "failed") (-595 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-1622 (((-110) $ (-1 (-110) |#4| (-595 |#4|))) 98)) (-4053 (((-595 $) |#4| $) 121) (((-595 $) |#4| (-595 $)) 120) (((-595 $) (-595 |#4|) $) 119) (((-595 $) (-595 |#4|) (-595 $)) 118)) (-3451 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4264)))) (-1490 (((-595 |#3|) $) 81)) (-3207 (((-110) |#4| $) 135)) (-2190 (((-110) |#3| $) 80)) (-2186 (((-110) $ $) 6)) (-2138 (((-717) $) 46 (|has| $ (-6 -4264)))))
-(((-999 |#1| |#2| |#3| |#4|) (-133) (-431) (-739) (-793) (-994 |t#1| |t#2| |t#3|)) (T -999))
-((-2667 (*1 *2 *3 *1) (-12 (-4 *1 (-999 *4 *5 *6 *3)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-110)))) (-1640 (*1 *2 *3 *1) (-12 (-4 *1 (-999 *4 *5 *6 *3)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-110)))) (-3207 (*1 *2 *3 *1) (-12 (-4 *1 (-999 *4 *5 *6 *3)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-110)))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-999 *3 *4 *5 *6)) (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-110)))) (-4184 (*1 *2 *3 *1) (-12 (-4 *1 (-999 *4 *5 *6 *3)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-110)))) (-1307 (*1 *2 *3 *1) (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-3 (-110) (-595 *1))) (-4 *1 (-999 *4 *5 *6 *3)))) (-3346 (*1 *2 *3 *1) (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-595 (-2 (|:| |val| (-110)) (|:| -2316 *1)))) (-4 *1 (-999 *4 *5 *6 *3)))) (-3346 (*1 *2 *3 *1) (-12 (-4 *1 (-999 *4 *5 *6 *3)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-110)))) (-2078 (*1 *2 *3 *1) (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-595 *1)) (-4 *1 (-999 *4 *5 *6 *3)))) (-4192 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-3 *3 (-595 *1))) (-4 *1 (-999 *4 *5 *6 *3)))) (-2272 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-595 (-2 (|:| |val| *3) (|:| -2316 *1)))) (-4 *1 (-999 *4 *5 *6 *3)))) (-1232 (*1 *2 *3 *1) (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-595 (-2 (|:| |val| *3) (|:| -2316 *1)))) (-4 *1 (-999 *4 *5 *6 *3)))) (-3397 (*1 *2 *3 *1) (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-595 *1)) (-4 *1 (-999 *4 *5 *6 *3)))) (-3397 (*1 *2 *3 *1) (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-595 *1)) (-4 *1 (-999 *4 *5 *6 *7)))) (-3397 (*1 *2 *3 *2) (-12 (-5 *2 (-595 *1)) (-5 *3 (-595 *7)) (-4 *1 (-999 *4 *5 *6 *7)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)))) (-3397 (*1 *2 *3 *2) (-12 (-5 *2 (-595 *1)) (-4 *1 (-999 *4 *5 *6 *3)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)))) (-4053 (*1 *2 *3 *1) (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-595 *1)) (-4 *1 (-999 *4 *5 *6 *3)))) (-4053 (*1 *2 *3 *2) (-12 (-5 *2 (-595 *1)) (-4 *1 (-999 *4 *5 *6 *3)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)))) (-4053 (*1 *2 *3 *1) (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-595 *1)) (-4 *1 (-999 *4 *5 *6 *7)))) (-4053 (*1 *2 *3 *2) (-12 (-5 *2 (-595 *1)) (-5 *3 (-595 *7)) (-4 *1 (-999 *4 *5 *6 *7)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)))) (-1325 (*1 *1 *2 *1) (-12 (-4 *1 (-999 *3 *4 *5 *2)) (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *2 (-994 *3 *4 *5)))) (-1325 (*1 *1 *2 *1) (-12 (-5 *2 (-595 *6)) (-4 *1 (-999 *3 *4 *5 *6)) (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)))) (-3740 (*1 *2 *3 *1) (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-595 *1)) (-4 *1 (-999 *4 *5 *6 *3)))) (-3740 (*1 *2 *3 *2) (-12 (-5 *2 (-595 *1)) (-4 *1 (-999 *4 *5 *6 *3)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)))) (-3740 (*1 *2 *3 *1) (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-595 *1)) (-4 *1 (-999 *4 *5 *6 *7)))) (-3740 (*1 *2 *3 *2) (-12 (-5 *2 (-595 *1)) (-5 *3 (-595 *7)) (-4 *1 (-999 *4 *5 *6 *7)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *8)) (-5 *4 (-110)) (-4 *8 (-994 *5 *6 *7)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-595 *1)) (-4 *1 (-999 *5 *6 *7 *8)))))
-(-13 (-1125 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2667 ((-110) |t#4| $)) (-15 -1640 ((-110) |t#4| $)) (-15 -3207 ((-110) |t#4| $)) (-15 -2667 ((-110) $)) (-15 -4184 ((-110) |t#4| $)) (-15 -1307 ((-3 (-110) (-595 $)) |t#4| $)) (-15 -3346 ((-595 (-2 (|:| |val| (-110)) (|:| -2316 $))) |t#4| $)) (-15 -3346 ((-110) |t#4| $)) (-15 -2078 ((-595 $) |t#4| $)) (-15 -4192 ((-3 |t#4| (-595 $)) |t#4| |t#4| $)) (-15 -2272 ((-595 (-2 (|:| |val| |t#4|) (|:| -2316 $))) |t#4| |t#4| $)) (-15 -1232 ((-595 (-2 (|:| |val| |t#4|) (|:| -2316 $))) |t#4| $)) (-15 -3397 ((-595 $) |t#4| $)) (-15 -3397 ((-595 $) (-595 |t#4|) $)) (-15 -3397 ((-595 $) (-595 |t#4|) (-595 $))) (-15 -3397 ((-595 $) |t#4| (-595 $))) (-15 -4053 ((-595 $) |t#4| $)) (-15 -4053 ((-595 $) |t#4| (-595 $))) (-15 -4053 ((-595 $) (-595 |t#4|) $)) (-15 -4053 ((-595 $) (-595 |t#4|) (-595 $))) (-15 -1325 ($ |t#4| $)) (-15 -1325 ($ (-595 |t#4|) $)) (-15 -3740 ((-595 $) |t#4| $)) (-15 -3740 ((-595 $) |t#4| (-595 $))) (-15 -3740 ((-595 $) (-595 |t#4|) $)) (-15 -3740 ((-595 $) (-595 |t#4|) (-595 $))) (-15 -1985 ((-595 $) (-595 |t#4|) (-110)))))
-(((-33) . T) ((-99) . T) ((-569 (-595 |#4|)) . T) ((-569 (-802)) . T) ((-144 |#4|) . T) ((-570 (-504)) |has| |#4| (-570 (-504))) ((-290 |#4|) -12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))) ((-467 |#4|) . T) ((-489 |#4| |#4|) -12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))) ((-913 |#1| |#2| |#3| |#4|) . T) ((-1023) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1131) . T))
-((-2375 (((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#5|) 81)) (-1888 (((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#4| |#5|) 113)) (-1581 (((-595 |#5|) |#4| |#5|) 70)) (-2546 (((-595 (-2 (|:| |val| (-110)) (|:| -2316 |#5|))) |#4| |#5|) 46) (((-110) |#4| |#5|) 53)) (-3283 (((-1182)) 37)) (-3273 (((-1182)) 26)) (-2128 (((-1182) (-1078) (-1078) (-1078)) 33)) (-3772 (((-1182) (-1078) (-1078) (-1078)) 22)) (-1988 (((-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) |#4| |#4| |#5|) 96)) (-1494 (((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) |#3| (-110)) 107) (((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#4| |#5| (-110) (-110)) 50)) (-2090 (((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#4| |#5|) 102)))
-(((-1000 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3772 ((-1182) (-1078) (-1078) (-1078))) (-15 -3273 ((-1182))) (-15 -2128 ((-1182) (-1078) (-1078) (-1078))) (-15 -3283 ((-1182))) (-15 -1988 ((-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) |#4| |#4| |#5|)) (-15 -1494 ((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -1494 ((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) |#3| (-110))) (-15 -2090 ((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#4| |#5|)) (-15 -1888 ((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#4| |#5|)) (-15 -2546 ((-110) |#4| |#5|)) (-15 -2546 ((-595 (-2 (|:| |val| (-110)) (|:| -2316 |#5|))) |#4| |#5|)) (-15 -1581 ((-595 |#5|) |#4| |#5|)) (-15 -2375 ((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#5|))) (-431) (-739) (-793) (-994 |#1| |#2| |#3|) (-999 |#1| |#2| |#3| |#4|)) (T -1000))
-((-2375 (*1 *2 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-595 (-2 (|:| |val| *3) (|:| -2316 *4)))) (-5 *1 (-1000 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))) (-1581 (*1 *2 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-595 *4)) (-5 *1 (-1000 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))) (-2546 (*1 *2 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-595 (-2 (|:| |val| (-110)) (|:| -2316 *4)))) (-5 *1 (-1000 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))) (-2546 (*1 *2 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-1000 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))) (-1888 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-595 (-2 (|:| |val| *3) (|:| -2316 *4)))) (-5 *1 (-1000 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))) (-2090 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-595 (-2 (|:| |val| *3) (|:| -2316 *4)))) (-5 *1 (-1000 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))) (-1494 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-595 (-2 (|:| |val| (-595 *8)) (|:| -2316 *9)))) (-5 *5 (-110)) (-4 *8 (-994 *6 *7 *4)) (-4 *9 (-999 *6 *7 *4 *8)) (-4 *6 (-431)) (-4 *7 (-739)) (-4 *4 (-793)) (-5 *2 (-595 (-2 (|:| |val| *8) (|:| -2316 *9)))) (-5 *1 (-1000 *6 *7 *4 *8 *9)))) (-1494 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-110)) (-4 *6 (-431)) (-4 *7 (-739)) (-4 *8 (-793)) (-4 *3 (-994 *6 *7 *8)) (-5 *2 (-595 (-2 (|:| |val| *3) (|:| -2316 *4)))) (-5 *1 (-1000 *6 *7 *8 *3 *4)) (-4 *4 (-999 *6 *7 *8 *3)))) (-1988 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4)))) (-5 *1 (-1000 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))) (-3283 (*1 *2) (-12 (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-1182)) (-5 *1 (-1000 *3 *4 *5 *6 *7)) (-4 *7 (-999 *3 *4 *5 *6)))) (-2128 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1078)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-1182)) (-5 *1 (-1000 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7)))) (-3273 (*1 *2) (-12 (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-1182)) (-5 *1 (-1000 *3 *4 *5 *6 *7)) (-4 *7 (-999 *3 *4 *5 *6)))) (-3772 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1078)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-1182)) (-5 *1 (-1000 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3772 ((-1182) (-1078) (-1078) (-1078))) (-15 -3273 ((-1182))) (-15 -2128 ((-1182) (-1078) (-1078) (-1078))) (-15 -3283 ((-1182))) (-15 -1988 ((-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) |#4| |#4| |#5|)) (-15 -1494 ((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -1494 ((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) |#3| (-110))) (-15 -2090 ((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#4| |#5|)) (-15 -1888 ((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#4| |#5|)) (-15 -2546 ((-110) |#4| |#5|)) (-15 -2546 ((-595 (-2 (|:| |val| (-110)) (|:| -2316 |#5|))) |#4| |#5|)) (-15 -1581 ((-595 |#5|) |#4| |#5|)) (-15 -2375 ((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#5|)))
-((-2207 (((-110) $ $) NIL)) (-3814 (((-1095) $) 8)) (-3034 (((-1078) $) 16)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 11)) (-2186 (((-110) $ $) 13)))
-(((-1001 |#1|) (-13 (-1023) (-10 -8 (-15 -3814 ((-1095) $)))) (-1095)) (T -1001))
-((-3814 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-1001 *3)) (-14 *3 *2))))
-(-13 (-1023) (-10 -8 (-15 -3814 ((-1095) $))))
-((-2207 (((-110) $ $) NIL)) (-3082 (($ $ (-595 (-1095)) (-1 (-110) (-595 |#3|))) 33)) (-1228 (($ |#3| |#3|) 22) (($ |#3| |#3| (-595 (-1095))) 20)) (-1408 ((|#3| $) 13)) (-3001 (((-3 (-275 |#3|) "failed") $) 58)) (-2409 (((-275 |#3|) $) NIL)) (-2526 (((-595 (-1095)) $) 16)) (-2032 (((-831 |#1|) $) 11)) (-1398 ((|#3| $) 12)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3043 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-860)) 39)) (-2222 (((-802) $) 86) (($ (-275 |#3|)) 21)) (-2186 (((-110) $ $) 36)))
-(((-1002 |#1| |#2| |#3|) (-13 (-1023) (-267 |#3| |#3|) (-972 (-275 |#3|)) (-10 -8 (-15 -1228 ($ |#3| |#3|)) (-15 -1228 ($ |#3| |#3| (-595 (-1095)))) (-15 -3082 ($ $ (-595 (-1095)) (-1 (-110) (-595 |#3|)))) (-15 -2032 ((-831 |#1|) $)) (-15 -1398 (|#3| $)) (-15 -1408 (|#3| $)) (-15 -3043 (|#3| $ |#3| (-860))) (-15 -2526 ((-595 (-1095)) $)))) (-1023) (-13 (-981) (-825 |#1|) (-793) (-570 (-831 |#1|))) (-13 (-410 |#2|) (-825 |#1|) (-570 (-831 |#1|)))) (T -1002))
-((-1228 (*1 *1 *2 *2) (-12 (-4 *3 (-1023)) (-4 *4 (-13 (-981) (-825 *3) (-793) (-570 (-831 *3)))) (-5 *1 (-1002 *3 *4 *2)) (-4 *2 (-13 (-410 *4) (-825 *3) (-570 (-831 *3)))))) (-1228 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-595 (-1095))) (-4 *4 (-1023)) (-4 *5 (-13 (-981) (-825 *4) (-793) (-570 (-831 *4)))) (-5 *1 (-1002 *4 *5 *2)) (-4 *2 (-13 (-410 *5) (-825 *4) (-570 (-831 *4)))))) (-3082 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-595 (-1095))) (-5 *3 (-1 (-110) (-595 *6))) (-4 *6 (-13 (-410 *5) (-825 *4) (-570 (-831 *4)))) (-4 *4 (-1023)) (-4 *5 (-13 (-981) (-825 *4) (-793) (-570 (-831 *4)))) (-5 *1 (-1002 *4 *5 *6)))) (-2032 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-13 (-981) (-825 *3) (-793) (-570 *2))) (-5 *2 (-831 *3)) (-5 *1 (-1002 *3 *4 *5)) (-4 *5 (-13 (-410 *4) (-825 *3) (-570 *2))))) (-1398 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-4 *2 (-13 (-410 *4) (-825 *3) (-570 (-831 *3)))) (-5 *1 (-1002 *3 *4 *2)) (-4 *4 (-13 (-981) (-825 *3) (-793) (-570 (-831 *3)))))) (-1408 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-4 *2 (-13 (-410 *4) (-825 *3) (-570 (-831 *3)))) (-5 *1 (-1002 *3 *4 *2)) (-4 *4 (-13 (-981) (-825 *3) (-793) (-570 (-831 *3)))))) (-3043 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-860)) (-4 *4 (-1023)) (-4 *5 (-13 (-981) (-825 *4) (-793) (-570 (-831 *4)))) (-5 *1 (-1002 *4 *5 *2)) (-4 *2 (-13 (-410 *5) (-825 *4) (-570 (-831 *4)))))) (-2526 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-13 (-981) (-825 *3) (-793) (-570 (-831 *3)))) (-5 *2 (-595 (-1095))) (-5 *1 (-1002 *3 *4 *5)) (-4 *5 (-13 (-410 *4) (-825 *3) (-570 (-831 *3)))))))
-(-13 (-1023) (-267 |#3| |#3|) (-972 (-275 |#3|)) (-10 -8 (-15 -1228 ($ |#3| |#3|)) (-15 -1228 ($ |#3| |#3| (-595 (-1095)))) (-15 -3082 ($ $ (-595 (-1095)) (-1 (-110) (-595 |#3|)))) (-15 -2032 ((-831 |#1|) $)) (-15 -1398 (|#3| $)) (-15 -1408 (|#3| $)) (-15 -3043 (|#3| $ |#3| (-860))) (-15 -2526 ((-595 (-1095)) $))))
-((-2207 (((-110) $ $) NIL)) (-3052 (($ (-595 (-1002 |#1| |#2| |#3|))) 13)) (-3643 (((-595 (-1002 |#1| |#2| |#3|)) $) 20)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3043 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-860)) 26)) (-2222 (((-802) $) 16)) (-2186 (((-110) $ $) 19)))
-(((-1003 |#1| |#2| |#3|) (-13 (-1023) (-267 |#3| |#3|) (-10 -8 (-15 -3052 ($ (-595 (-1002 |#1| |#2| |#3|)))) (-15 -3643 ((-595 (-1002 |#1| |#2| |#3|)) $)) (-15 -3043 (|#3| $ |#3| (-860))))) (-1023) (-13 (-981) (-825 |#1|) (-793) (-570 (-831 |#1|))) (-13 (-410 |#2|) (-825 |#1|) (-570 (-831 |#1|)))) (T -1003))
-((-3052 (*1 *1 *2) (-12 (-5 *2 (-595 (-1002 *3 *4 *5))) (-4 *3 (-1023)) (-4 *4 (-13 (-981) (-825 *3) (-793) (-570 (-831 *3)))) (-4 *5 (-13 (-410 *4) (-825 *3) (-570 (-831 *3)))) (-5 *1 (-1003 *3 *4 *5)))) (-3643 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-13 (-981) (-825 *3) (-793) (-570 (-831 *3)))) (-5 *2 (-595 (-1002 *3 *4 *5))) (-5 *1 (-1003 *3 *4 *5)) (-4 *5 (-13 (-410 *4) (-825 *3) (-570 (-831 *3)))))) (-3043 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-860)) (-4 *4 (-1023)) (-4 *5 (-13 (-981) (-825 *4) (-793) (-570 (-831 *4)))) (-5 *1 (-1003 *4 *5 *2)) (-4 *2 (-13 (-410 *5) (-825 *4) (-570 (-831 *4)))))))
-(-13 (-1023) (-267 |#3| |#3|) (-10 -8 (-15 -3052 ($ (-595 (-1002 |#1| |#2| |#3|)))) (-15 -3643 ((-595 (-1002 |#1| |#2| |#3|)) $)) (-15 -3043 (|#3| $ |#3| (-860)))))
-((-3815 (((-595 (-2 (|:| -1697 (-1091 |#1|)) (|:| -4243 (-595 (-891 |#1|))))) (-595 (-891 |#1|)) (-110) (-110)) 75) (((-595 (-2 (|:| -1697 (-1091 |#1|)) (|:| -4243 (-595 (-891 |#1|))))) (-595 (-891 |#1|))) 77) (((-595 (-2 (|:| -1697 (-1091 |#1|)) (|:| -4243 (-595 (-891 |#1|))))) (-595 (-891 |#1|)) (-110)) 76)))
-(((-1004 |#1| |#2|) (-10 -7 (-15 -3815 ((-595 (-2 (|:| -1697 (-1091 |#1|)) (|:| -4243 (-595 (-891 |#1|))))) (-595 (-891 |#1|)) (-110))) (-15 -3815 ((-595 (-2 (|:| -1697 (-1091 |#1|)) (|:| -4243 (-595 (-891 |#1|))))) (-595 (-891 |#1|)))) (-15 -3815 ((-595 (-2 (|:| -1697 (-1091 |#1|)) (|:| -4243 (-595 (-891 |#1|))))) (-595 (-891 |#1|)) (-110) (-110)))) (-13 (-288) (-140)) (-595 (-1095))) (T -1004))
-((-3815 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-288) (-140))) (-5 *2 (-595 (-2 (|:| -1697 (-1091 *5)) (|:| -4243 (-595 (-891 *5)))))) (-5 *1 (-1004 *5 *6)) (-5 *3 (-595 (-891 *5))) (-14 *6 (-595 (-1095))))) (-3815 (*1 *2 *3) (-12 (-4 *4 (-13 (-288) (-140))) (-5 *2 (-595 (-2 (|:| -1697 (-1091 *4)) (|:| -4243 (-595 (-891 *4)))))) (-5 *1 (-1004 *4 *5)) (-5 *3 (-595 (-891 *4))) (-14 *5 (-595 (-1095))))) (-3815 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-288) (-140))) (-5 *2 (-595 (-2 (|:| -1697 (-1091 *5)) (|:| -4243 (-595 (-891 *5)))))) (-5 *1 (-1004 *5 *6)) (-5 *3 (-595 (-891 *5))) (-14 *6 (-595 (-1095))))))
-(-10 -7 (-15 -3815 ((-595 (-2 (|:| -1697 (-1091 |#1|)) (|:| -4243 (-595 (-891 |#1|))))) (-595 (-891 |#1|)) (-110))) (-15 -3815 ((-595 (-2 (|:| -1697 (-1091 |#1|)) (|:| -4243 (-595 (-891 |#1|))))) (-595 (-891 |#1|)))) (-15 -3815 ((-595 (-2 (|:| -1697 (-1091 |#1|)) (|:| -4243 (-595 (-891 |#1|))))) (-595 (-891 |#1|)) (-110) (-110))))
-((-2437 (((-398 |#3|) |#3|) 18)))
-(((-1005 |#1| |#2| |#3|) (-10 -7 (-15 -2437 ((-398 |#3|) |#3|))) (-1153 (-387 (-528))) (-13 (-343) (-140) (-671 (-387 (-528)) |#1|)) (-1153 |#2|)) (T -1005))
-((-2437 (*1 *2 *3) (-12 (-4 *4 (-1153 (-387 (-528)))) (-4 *5 (-13 (-343) (-140) (-671 (-387 (-528)) *4))) (-5 *2 (-398 *3)) (-5 *1 (-1005 *4 *5 *3)) (-4 *3 (-1153 *5)))))
-(-10 -7 (-15 -2437 ((-398 |#3|) |#3|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 126)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#1| (-343)))) (-1738 (($ $) NIL (|has| |#1| (-343)))) (-1811 (((-110) $) NIL (|has| |#1| (-343)))) (-2486 (((-635 |#1|) (-1177 $)) NIL) (((-635 |#1|)) 115)) (-1323 ((|#1| $) 119)) (-2338 (((-1105 (-860) (-717)) (-528)) NIL (|has| |#1| (-329)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL (|has| |#1| (-343)))) (-2705 (((-398 $) $) NIL (|has| |#1| (-343)))) (-2213 (((-110) $ $) NIL (|has| |#1| (-343)))) (-2856 (((-717)) 40 (|has| |#1| (-348)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-528) "failed") $) NIL (|has| |#1| (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-3 |#1| "failed") $) NIL)) (-2409 (((-528) $) NIL (|has| |#1| (-972 (-528)))) (((-387 (-528)) $) NIL (|has| |#1| (-972 (-387 (-528))))) ((|#1| $) NIL)) (-1945 (($ (-1177 |#1|) (-1177 $)) NIL) (($ (-1177 |#1|)) 43)) (-2413 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-329)))) (-3519 (($ $ $) NIL (|has| |#1| (-343)))) (-3847 (((-635 |#1|) $ (-1177 $)) NIL) (((-635 |#1|) $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) 106) (((-635 |#1|) (-635 $)) 101)) (-1422 (($ |#2|) 61) (((-3 $ "failed") (-387 |#2|)) NIL (|has| |#1| (-343)))) (-1312 (((-3 $ "failed") $) NIL)) (-3090 (((-860)) 77)) (-1338 (($) 44 (|has| |#1| (-348)))) (-3498 (($ $ $) NIL (|has| |#1| (-343)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL (|has| |#1| (-343)))) (-2916 (($) NIL (|has| |#1| (-329)))) (-4086 (((-110) $) NIL (|has| |#1| (-329)))) (-2790 (($ $ (-717)) NIL (|has| |#1| (-329))) (($ $) NIL (|has| |#1| (-329)))) (-2124 (((-110) $) NIL (|has| |#1| (-343)))) (-3689 (((-860) $) NIL (|has| |#1| (-329))) (((-779 (-860)) $) NIL (|has| |#1| (-329)))) (-1297 (((-110) $) NIL)) (-3297 ((|#1| $) NIL)) (-3296 (((-3 $ "failed") $) NIL (|has| |#1| (-329)))) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-3537 ((|#2| $) 84 (|has| |#1| (-343)))) (-3201 (((-860) $) 131 (|has| |#1| (-348)))) (-1412 ((|#2| $) 58)) (-2057 (($ (-595 $)) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-343)))) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL (|has| |#1| (-343)))) (-4197 (($) NIL (|has| |#1| (-329)) CONST)) (-3108 (($ (-860)) 125 (|has| |#1| (-348)))) (-2495 (((-1042) $) NIL)) (-1261 (($) 121)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#1| (-343)))) (-2088 (($ (-595 $)) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-343)))) (-3010 (((-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528))))) NIL (|has| |#1| (-329)))) (-2437 (((-398 $) $) NIL (|has| |#1| (-343)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-343))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#1| (-343)))) (-3477 (((-3 $ "failed") $ $) NIL (|has| |#1| (-343)))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-3973 (((-717) $) NIL (|has| |#1| (-343)))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-343)))) (-1372 ((|#1| (-1177 $)) NIL) ((|#1|) 109)) (-3500 (((-717) $) NIL (|has| |#1| (-329))) (((-3 (-717) "failed") $ $) NIL (|has| |#1| (-329)))) (-3235 (($ $) NIL (-1463 (-12 (|has| |#1| (-215)) (|has| |#1| (-343))) (|has| |#1| (-329)))) (($ $ (-717)) NIL (-1463 (-12 (|has| |#1| (-215)) (|has| |#1| (-343))) (|has| |#1| (-329)))) (($ $ (-1095)) NIL (-12 (|has| |#1| (-343)) (|has| |#1| (-839 (-1095))))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#1| (-343)) (|has| |#1| (-839 (-1095))))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#1| (-343)) (|has| |#1| (-839 (-1095))))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#1| (-343)) (|has| |#1| (-839 (-1095))))) (($ $ (-1 |#1| |#1|) (-717)) NIL (|has| |#1| (-343))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-343)))) (-2348 (((-635 |#1|) (-1177 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-343)))) (-4090 ((|#2|) 73)) (-1984 (($) NIL (|has| |#1| (-329)))) (-4243 (((-1177 |#1|) $ (-1177 $)) 89) (((-635 |#1|) (-1177 $) (-1177 $)) NIL) (((-1177 |#1|) $) 71) (((-635 |#1|) (-1177 $)) 85)) (-3155 (((-1177 |#1|) $) NIL) (($ (-1177 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (|has| |#1| (-329)))) (-2222 (((-802) $) 57) (($ (-528)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-343))) (($ (-387 (-528))) NIL (-1463 (|has| |#1| (-343)) (|has| |#1| (-972 (-387 (-528))))))) (-3749 (($ $) NIL (|has| |#1| (-329))) (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2516 ((|#2| $) 82)) (-3742 (((-717)) 75)) (-1400 (((-1177 $)) 81)) (-4016 (((-110) $ $) NIL (|has| |#1| (-343)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| |#1| (-343)))) (-2969 (($) 30 T CONST)) (-2982 (($) 19 T CONST)) (-3245 (($ $) NIL (-1463 (-12 (|has| |#1| (-215)) (|has| |#1| (-343))) (|has| |#1| (-329)))) (($ $ (-717)) NIL (-1463 (-12 (|has| |#1| (-215)) (|has| |#1| (-343))) (|has| |#1| (-329)))) (($ $ (-1095)) NIL (-12 (|has| |#1| (-343)) (|has| |#1| (-839 (-1095))))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#1| (-343)) (|has| |#1| (-839 (-1095))))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#1| (-343)) (|has| |#1| (-839 (-1095))))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#1| (-343)) (|has| |#1| (-839 (-1095))))) (($ $ (-1 |#1| |#1|) (-717)) NIL (|has| |#1| (-343))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-343)))) (-2186 (((-110) $ $) 63)) (-2296 (($ $ $) NIL (|has| |#1| (-343)))) (-2286 (($ $) 67) (($ $ $) NIL)) (-2275 (($ $ $) 65)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| |#1| (-343)))) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-387 (-528)) $) NIL (|has| |#1| (-343))) (($ $ (-387 (-528))) NIL (|has| |#1| (-343)))))
-(((-1006 |#1| |#2| |#3|) (-671 |#1| |#2|) (-162) (-1153 |#1|) |#2|) (T -1006))
-NIL
-(-671 |#1| |#2|)
-((-2437 (((-398 |#3|) |#3|) 19)))
-(((-1007 |#1| |#2| |#3|) (-10 -7 (-15 -2437 ((-398 |#3|) |#3|))) (-1153 (-387 (-891 (-528)))) (-13 (-343) (-140) (-671 (-387 (-891 (-528))) |#1|)) (-1153 |#2|)) (T -1007))
-((-2437 (*1 *2 *3) (-12 (-4 *4 (-1153 (-387 (-891 (-528))))) (-4 *5 (-13 (-343) (-140) (-671 (-387 (-891 (-528))) *4))) (-5 *2 (-398 *3)) (-5 *1 (-1007 *4 *5 *3)) (-4 *3 (-1153 *5)))))
-(-10 -7 (-15 -2437 ((-398 |#3|) |#3|)))
-((-2207 (((-110) $ $) NIL)) (-1436 (($ $ $) 14)) (-1736 (($ $ $) 15)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-4173 (($) 6)) (-3155 (((-1095) $) 18)) (-2222 (((-802) $) 12)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 13)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 8)))
-(((-1008) (-13 (-793) (-10 -8 (-15 -4173 ($)) (-15 -3155 ((-1095) $))))) (T -1008))
-((-4173 (*1 *1) (-5 *1 (-1008))) (-3155 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-1008)))))
-(-13 (-793) (-10 -8 (-15 -4173 ($)) (-15 -3155 ((-1095) $))))
-((-3265 ((|#1| |#1| (-1 (-528) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-110) |#1|)) 20)) (-1810 (((-1182)) 15)) (-2407 (((-595 |#1|)) 9)))
-(((-1009 |#1|) (-10 -7 (-15 -1810 ((-1182))) (-15 -2407 ((-595 |#1|))) (-15 -3265 (|#1| |#1| (-1 (-110) |#1|))) (-15 -3265 (|#1| |#1| (-1 (-528) |#1| |#1|)))) (-129)) (T -1009))
-((-3265 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-528) *2 *2)) (-4 *2 (-129)) (-5 *1 (-1009 *2)))) (-3265 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *2)) (-4 *2 (-129)) (-5 *1 (-1009 *2)))) (-2407 (*1 *2) (-12 (-5 *2 (-595 *3)) (-5 *1 (-1009 *3)) (-4 *3 (-129)))) (-1810 (*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-1009 *3)) (-4 *3 (-129)))))
-(-10 -7 (-15 -1810 ((-1182))) (-15 -2407 ((-595 |#1|))) (-15 -3265 (|#1| |#1| (-1 (-110) |#1|))) (-15 -3265 (|#1| |#1| (-1 (-528) |#1| |#1|))))
-((-2069 (($ (-106) $) 16)) (-4204 (((-3 (-106) "failed") (-1095) $) 15)) (-2147 (($) 7)) (-2479 (($) 17)) (-3965 (($) 18)) (-3787 (((-595 (-164)) $) 10)) (-2222 (((-802) $) 21)))
-(((-1010) (-13 (-569 (-802)) (-10 -8 (-15 -2147 ($)) (-15 -3787 ((-595 (-164)) $)) (-15 -4204 ((-3 (-106) "failed") (-1095) $)) (-15 -2069 ($ (-106) $)) (-15 -2479 ($)) (-15 -3965 ($))))) (T -1010))
-((-2147 (*1 *1) (-5 *1 (-1010))) (-3787 (*1 *2 *1) (-12 (-5 *2 (-595 (-164))) (-5 *1 (-1010)))) (-4204 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1095)) (-5 *2 (-106)) (-5 *1 (-1010)))) (-2069 (*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-1010)))) (-2479 (*1 *1) (-5 *1 (-1010))) (-3965 (*1 *1) (-5 *1 (-1010))))
-(-13 (-569 (-802)) (-10 -8 (-15 -2147 ($)) (-15 -3787 ((-595 (-164)) $)) (-15 -4204 ((-3 (-106) "failed") (-1095) $)) (-15 -2069 ($ (-106) $)) (-15 -2479 ($)) (-15 -3965 ($))))
-((-4023 (((-1177 (-635 |#1|)) (-595 (-635 |#1|))) 42) (((-1177 (-635 (-891 |#1|))) (-595 (-1095)) (-635 (-891 |#1|))) 63) (((-1177 (-635 (-387 (-891 |#1|)))) (-595 (-1095)) (-635 (-387 (-891 |#1|)))) 79)) (-4243 (((-1177 |#1|) (-635 |#1|) (-595 (-635 |#1|))) 36)))
-(((-1011 |#1|) (-10 -7 (-15 -4023 ((-1177 (-635 (-387 (-891 |#1|)))) (-595 (-1095)) (-635 (-387 (-891 |#1|))))) (-15 -4023 ((-1177 (-635 (-891 |#1|))) (-595 (-1095)) (-635 (-891 |#1|)))) (-15 -4023 ((-1177 (-635 |#1|)) (-595 (-635 |#1|)))) (-15 -4243 ((-1177 |#1|) (-635 |#1|) (-595 (-635 |#1|))))) (-343)) (T -1011))
-((-4243 (*1 *2 *3 *4) (-12 (-5 *4 (-595 (-635 *5))) (-5 *3 (-635 *5)) (-4 *5 (-343)) (-5 *2 (-1177 *5)) (-5 *1 (-1011 *5)))) (-4023 (*1 *2 *3) (-12 (-5 *3 (-595 (-635 *4))) (-4 *4 (-343)) (-5 *2 (-1177 (-635 *4))) (-5 *1 (-1011 *4)))) (-4023 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-1095))) (-4 *5 (-343)) (-5 *2 (-1177 (-635 (-891 *5)))) (-5 *1 (-1011 *5)) (-5 *4 (-635 (-891 *5))))) (-4023 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-1095))) (-4 *5 (-343)) (-5 *2 (-1177 (-635 (-387 (-891 *5))))) (-5 *1 (-1011 *5)) (-5 *4 (-635 (-387 (-891 *5)))))))
-(-10 -7 (-15 -4023 ((-1177 (-635 (-387 (-891 |#1|)))) (-595 (-1095)) (-635 (-387 (-891 |#1|))))) (-15 -4023 ((-1177 (-635 (-891 |#1|))) (-595 (-1095)) (-635 (-891 |#1|)))) (-15 -4023 ((-1177 (-635 |#1|)) (-595 (-635 |#1|)))) (-15 -4243 ((-1177 |#1|) (-635 |#1|) (-595 (-635 |#1|)))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-4055 (((-595 (-717)) $) NIL) (((-595 (-717)) $ (-1095)) NIL)) (-1479 (((-717) $) NIL) (((-717) $ (-1095)) NIL)) (-2565 (((-595 (-1013 (-1095))) $) NIL)) (-2402 (((-1091 $) $ (-1013 (-1095))) NIL) (((-1091 |#1|) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#1| (-520)))) (-1738 (($ $) NIL (|has| |#1| (-520)))) (-1811 (((-110) $) NIL (|has| |#1| (-520)))) (-4042 (((-717) $) NIL) (((-717) $ (-595 (-1013 (-1095)))) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-1232 (($ $) NIL (|has| |#1| (-431)))) (-2705 (((-398 $) $) NIL (|has| |#1| (-431)))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2745 (($ $) NIL)) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#1| "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-3 (-528) "failed") $) NIL (|has| |#1| (-972 (-528)))) (((-3 (-1013 (-1095)) "failed") $) NIL) (((-3 (-1095) "failed") $) NIL) (((-3 (-1047 |#1| (-1095)) "failed") $) NIL)) (-2409 ((|#1| $) NIL) (((-387 (-528)) $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-528) $) NIL (|has| |#1| (-972 (-528)))) (((-1013 (-1095)) $) NIL) (((-1095) $) NIL) (((-1047 |#1| (-1095)) $) NIL)) (-1606 (($ $ $ (-1013 (-1095))) NIL (|has| |#1| (-162)))) (-2388 (($ $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) NIL) (((-635 |#1|) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1551 (($ $) NIL (|has| |#1| (-431))) (($ $ (-1013 (-1095))) NIL (|has| |#1| (-431)))) (-2376 (((-595 $) $) NIL)) (-2124 (((-110) $) NIL (|has| |#1| (-848)))) (-4047 (($ $ |#1| (-500 (-1013 (-1095))) $) NIL)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (-12 (|has| (-1013 (-1095)) (-825 (-359))) (|has| |#1| (-825 (-359))))) (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (-12 (|has| (-1013 (-1095)) (-825 (-528))) (|has| |#1| (-825 (-528)))))) (-3689 (((-717) $ (-1095)) NIL) (((-717) $) NIL)) (-1297 (((-110) $) NIL)) (-1224 (((-717) $) NIL)) (-2557 (($ (-1091 |#1|) (-1013 (-1095))) NIL) (($ (-1091 $) (-1013 (-1095))) NIL)) (-3737 (((-595 $) $) NIL)) (-2195 (((-110) $) NIL)) (-2548 (($ |#1| (-500 (-1013 (-1095)))) NIL) (($ $ (-1013 (-1095)) (-717)) NIL) (($ $ (-595 (-1013 (-1095))) (-595 (-717))) NIL)) (-3275 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $ (-1013 (-1095))) NIL)) (-3499 (((-500 (-1013 (-1095))) $) NIL) (((-717) $ (-1013 (-1095))) NIL) (((-595 (-717)) $ (-595 (-1013 (-1095)))) NIL)) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-1264 (($ (-1 (-500 (-1013 (-1095))) (-500 (-1013 (-1095)))) $) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-4161 (((-1 $ (-717)) (-1095)) NIL) (((-1 $ (-717)) $) NIL (|has| |#1| (-215)))) (-3288 (((-3 (-1013 (-1095)) "failed") $) NIL)) (-2686 (($ $) NIL)) (-2697 ((|#1| $) NIL)) (-4018 (((-1013 (-1095)) $) NIL)) (-2057 (($ (-595 $)) NIL (|has| |#1| (-431))) (($ $ $) NIL (|has| |#1| (-431)))) (-3034 (((-1078) $) NIL)) (-4071 (((-110) $) NIL)) (-3024 (((-3 (-595 $) "failed") $) NIL)) (-1281 (((-3 (-595 $) "failed") $) NIL)) (-3352 (((-3 (-2 (|:| |var| (-1013 (-1095))) (|:| -2564 (-717))) "failed") $) NIL)) (-2237 (($ $) NIL)) (-2495 (((-1042) $) NIL)) (-2662 (((-110) $) NIL)) (-2675 ((|#1| $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#1| (-431)))) (-2088 (($ (-595 $)) NIL (|has| |#1| (-431))) (($ $ $) NIL (|has| |#1| (-431)))) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2437 (((-398 $) $) NIL (|has| |#1| (-848)))) (-3477 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-520))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-520)))) (-4014 (($ $ (-595 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL) (($ $ (-1013 (-1095)) |#1|) NIL) (($ $ (-595 (-1013 (-1095))) (-595 |#1|)) NIL) (($ $ (-1013 (-1095)) $) NIL) (($ $ (-595 (-1013 (-1095))) (-595 $)) NIL) (($ $ (-1095) $) NIL (|has| |#1| (-215))) (($ $ (-595 (-1095)) (-595 $)) NIL (|has| |#1| (-215))) (($ $ (-1095) |#1|) NIL (|has| |#1| (-215))) (($ $ (-595 (-1095)) (-595 |#1|)) NIL (|has| |#1| (-215)))) (-1372 (($ $ (-1013 (-1095))) NIL (|has| |#1| (-162)))) (-3235 (($ $ (-1013 (-1095))) NIL) (($ $ (-595 (-1013 (-1095)))) NIL) (($ $ (-1013 (-1095)) (-717)) NIL) (($ $ (-595 (-1013 (-1095))) (-595 (-717))) NIL) (($ $) NIL (|has| |#1| (-215))) (($ $ (-717)) NIL (|has| |#1| (-215))) (($ $ (-1095)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3553 (((-595 (-1095)) $) NIL)) (-2935 (((-500 (-1013 (-1095))) $) NIL) (((-717) $ (-1013 (-1095))) NIL) (((-595 (-717)) $ (-595 (-1013 (-1095)))) NIL) (((-717) $ (-1095)) NIL)) (-3155 (((-831 (-359)) $) NIL (-12 (|has| (-1013 (-1095)) (-570 (-831 (-359)))) (|has| |#1| (-570 (-831 (-359)))))) (((-831 (-528)) $) NIL (-12 (|has| (-1013 (-1095)) (-570 (-831 (-528)))) (|has| |#1| (-570 (-831 (-528)))))) (((-504) $) NIL (-12 (|has| (-1013 (-1095)) (-570 (-504))) (|has| |#1| (-570 (-504)))))) (-1618 ((|#1| $) NIL (|has| |#1| (-431))) (($ $ (-1013 (-1095))) NIL (|has| |#1| (-431)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-848))))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ |#1|) NIL) (($ (-1013 (-1095))) NIL) (($ (-1095)) NIL) (($ (-1047 |#1| (-1095))) NIL) (($ (-387 (-528))) NIL (-1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-972 (-387 (-528)))))) (($ $) NIL (|has| |#1| (-520)))) (-3348 (((-595 |#1|) $) NIL)) (-3216 ((|#1| $ (-500 (-1013 (-1095)))) NIL) (($ $ (-1013 (-1095)) (-717)) NIL) (($ $ (-595 (-1013 (-1095))) (-595 (-717))) NIL)) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| |#1| (-848))) (|has| |#1| (-138))))) (-3742 (((-717)) NIL)) (-1997 (($ $ $ (-717)) NIL (|has| |#1| (-162)))) (-4016 (((-110) $ $) NIL (|has| |#1| (-520)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($ $ (-1013 (-1095))) NIL) (($ $ (-595 (-1013 (-1095)))) NIL) (($ $ (-1013 (-1095)) (-717)) NIL) (($ $ (-595 (-1013 (-1095))) (-595 (-717))) NIL) (($ $) NIL (|has| |#1| (-215))) (($ $ (-717)) NIL (|has| |#1| (-215))) (($ $ (-1095)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2296 (($ $ |#1|) NIL (|has| |#1| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528))))) (($ (-387 (-528)) $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1012 |#1|) (-13 (-234 |#1| (-1095) (-1013 (-1095)) (-500 (-1013 (-1095)))) (-972 (-1047 |#1| (-1095)))) (-981)) (T -1012))
-NIL
-(-13 (-234 |#1| (-1095) (-1013 (-1095)) (-500 (-1013 (-1095)))) (-972 (-1047 |#1| (-1095))))
-((-2207 (((-110) $ $) NIL)) (-1479 (((-717) $) NIL)) (-3915 ((|#1| $) 10)) (-3001 (((-3 |#1| "failed") $) NIL)) (-2409 ((|#1| $) NIL)) (-3689 (((-717) $) 11)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-4161 (($ |#1| (-717)) 9)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3235 (($ $) NIL) (($ $ (-717)) NIL)) (-2222 (((-802) $) NIL) (($ |#1|) NIL)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 15)))
-(((-1013 |#1|) (-247 |#1|) (-793)) (T -1013))
-NIL
-(-247 |#1|)
-((-3106 (((-595 |#2|) (-1 |#2| |#1|) (-1018 |#1|)) 24 (|has| |#1| (-791))) (((-1018 |#2|) (-1 |#2| |#1|) (-1018 |#1|)) 14)))
-(((-1014 |#1| |#2|) (-10 -7 (-15 -3106 ((-1018 |#2|) (-1 |#2| |#1|) (-1018 |#1|))) (IF (|has| |#1| (-791)) (-15 -3106 ((-595 |#2|) (-1 |#2| |#1|) (-1018 |#1|))) |%noBranch|)) (-1131) (-1131)) (T -1014))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1018 *5)) (-4 *5 (-791)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-595 *6)) (-5 *1 (-1014 *5 *6)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1018 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1018 *6)) (-5 *1 (-1014 *5 *6)))))
-(-10 -7 (-15 -3106 ((-1018 |#2|) (-1 |#2| |#1|) (-1018 |#1|))) (IF (|has| |#1| (-791)) (-15 -3106 ((-595 |#2|) (-1 |#2| |#1|) (-1018 |#1|))) |%noBranch|))
-((-3106 (((-1016 |#2|) (-1 |#2| |#1|) (-1016 |#1|)) 19)))
-(((-1015 |#1| |#2|) (-10 -7 (-15 -3106 ((-1016 |#2|) (-1 |#2| |#1|) (-1016 |#1|)))) (-1131) (-1131)) (T -1015))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1016 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1016 *6)) (-5 *1 (-1015 *5 *6)))))
-(-10 -7 (-15 -3106 ((-1016 |#2|) (-1 |#2| |#1|) (-1016 |#1|))))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3915 (((-1095) $) 11)) (-3628 (((-1018 |#1|) $) 12)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-1596 (($ (-1095) (-1018 |#1|)) 10)) (-2222 (((-802) $) 20 (|has| |#1| (-1023)))) (-2186 (((-110) $ $) 15 (|has| |#1| (-1023)))))
-(((-1016 |#1|) (-13 (-1131) (-10 -8 (-15 -1596 ($ (-1095) (-1018 |#1|))) (-15 -3915 ((-1095) $)) (-15 -3628 ((-1018 |#1|) $)) (IF (|has| |#1| (-1023)) (-6 (-1023)) |%noBranch|))) (-1131)) (T -1016))
-((-1596 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-1018 *4)) (-4 *4 (-1131)) (-5 *1 (-1016 *4)))) (-3915 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-1016 *3)) (-4 *3 (-1131)))) (-3628 (*1 *2 *1) (-12 (-5 *2 (-1018 *3)) (-5 *1 (-1016 *3)) (-4 *3 (-1131)))))
-(-13 (-1131) (-10 -8 (-15 -1596 ($ (-1095) (-1018 |#1|))) (-15 -3915 ((-1095) $)) (-15 -3628 ((-1018 |#1|) $)) (IF (|has| |#1| (-1023)) (-6 (-1023)) |%noBranch|)))
-((-3628 (($ |#1| |#1|) 7)) (-2398 ((|#1| $) 10)) (-1342 ((|#1| $) 12)) (-1351 (((-528) $) 8)) (-1482 ((|#1| $) 9)) (-1361 ((|#1| $) 11)) (-3155 (($ |#1|) 6)) (-2713 (($ |#1| |#1|) 14)) (-1994 (($ $ (-528)) 13)))
-(((-1017 |#1|) (-133) (-1131)) (T -1017))
-((-2713 (*1 *1 *2 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1131)))) (-1994 (*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-4 *1 (-1017 *3)) (-4 *3 (-1131)))) (-1342 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1131)))) (-1361 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1131)))) (-2398 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1131)))) (-1482 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1131)))) (-1351 (*1 *2 *1) (-12 (-4 *1 (-1017 *3)) (-4 *3 (-1131)) (-5 *2 (-528)))) (-3628 (*1 *1 *2 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1131)))) (-3155 (*1 *1 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1131)))))
-(-13 (-1131) (-10 -8 (-15 -2713 ($ |t#1| |t#1|)) (-15 -1994 ($ $ (-528))) (-15 -1342 (|t#1| $)) (-15 -1361 (|t#1| $)) (-15 -2398 (|t#1| $)) (-15 -1482 (|t#1| $)) (-15 -1351 ((-528) $)) (-15 -3628 ($ |t#1| |t#1|)) (-15 -3155 ($ |t#1|))))
-(((-1131) . T))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3628 (($ |#1| |#1|) 15)) (-3106 (((-595 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-791)))) (-2398 ((|#1| $) 10)) (-1342 ((|#1| $) 9)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-1351 (((-528) $) 14)) (-1482 ((|#1| $) 12)) (-1361 ((|#1| $) 11)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-1535 (((-595 |#1|) $) 36 (|has| |#1| (-791))) (((-595 |#1|) (-595 $)) 35 (|has| |#1| (-791)))) (-3155 (($ |#1|) 26)) (-2222 (((-802) $) 25 (|has| |#1| (-1023)))) (-2713 (($ |#1| |#1|) 8)) (-1994 (($ $ (-528)) 16)) (-2186 (((-110) $ $) 19 (|has| |#1| (-1023)))))
-(((-1018 |#1|) (-13 (-1017 |#1|) (-10 -7 (IF (|has| |#1| (-1023)) (-6 (-1023)) |%noBranch|) (IF (|has| |#1| (-791)) (-6 (-1019 |#1| (-595 |#1|))) |%noBranch|))) (-1131)) (T -1018))
-NIL
-(-13 (-1017 |#1|) (-10 -7 (IF (|has| |#1| (-1023)) (-6 (-1023)) |%noBranch|) (IF (|has| |#1| (-791)) (-6 (-1019 |#1| (-595 |#1|))) |%noBranch|)))
-((-3628 (($ |#1| |#1|) 7)) (-3106 ((|#2| (-1 |#1| |#1|) $) 16)) (-2398 ((|#1| $) 10)) (-1342 ((|#1| $) 12)) (-1351 (((-528) $) 8)) (-1482 ((|#1| $) 9)) (-1361 ((|#1| $) 11)) (-1535 ((|#2| (-595 $)) 18) ((|#2| $) 17)) (-3155 (($ |#1|) 6)) (-2713 (($ |#1| |#1|) 14)) (-1994 (($ $ (-528)) 13)))
-(((-1019 |#1| |#2|) (-133) (-791) (-1069 |t#1|)) (T -1019))
-((-1535 (*1 *2 *3) (-12 (-5 *3 (-595 *1)) (-4 *1 (-1019 *4 *2)) (-4 *4 (-791)) (-4 *2 (-1069 *4)))) (-1535 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *2)) (-4 *3 (-791)) (-4 *2 (-1069 *3)))) (-3106 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1019 *4 *2)) (-4 *4 (-791)) (-4 *2 (-1069 *4)))))
-(-13 (-1017 |t#1|) (-10 -8 (-15 -1535 (|t#2| (-595 $))) (-15 -1535 (|t#2| $)) (-15 -3106 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-1017 |#1|) . T) ((-1131) . T))
-((-4123 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2352 (($ $ $) 10)) (-2183 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1020 |#1| |#2|) (-10 -8 (-15 -4123 (|#1| |#2| |#1|)) (-15 -4123 (|#1| |#1| |#2|)) (-15 -4123 (|#1| |#1| |#1|)) (-15 -2352 (|#1| |#1| |#1|)) (-15 -2183 (|#1| |#1| |#2|)) (-15 -2183 (|#1| |#1| |#1|))) (-1021 |#2|) (-1023)) (T -1020))
-NIL
-(-10 -8 (-15 -4123 (|#1| |#2| |#1|)) (-15 -4123 (|#1| |#1| |#2|)) (-15 -4123 (|#1| |#1| |#1|)) (-15 -2352 (|#1| |#1| |#1|)) (-15 -2183 (|#1| |#1| |#2|)) (-15 -2183 (|#1| |#1| |#1|)))
-((-2207 (((-110) $ $) 7)) (-4123 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-2352 (($ $ $) 20)) (-1316 (((-110) $ $) 19)) (-3535 (((-110) $ (-717)) 35)) (-4237 (($) 25) (($ (-595 |#1|)) 24)) (-1573 (($ (-1 (-110) |#1|) $) 56 (|has| $ (-6 -4264)))) (-2816 (($) 36 T CONST)) (-2923 (($ $) 59 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2280 (($ |#1| $) 58 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4264)))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4264)))) (-3342 (((-595 |#1|) $) 43 (|has| $ (-6 -4264)))) (-4242 (((-110) $ $) 28)) (-2029 (((-110) $ (-717)) 34)) (-2604 (((-595 |#1|) $) 44 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 46 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2800 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 38)) (-3358 (((-110) $ (-717)) 33)) (-3034 (((-1078) $) 9)) (-3397 (($ $ $) 23)) (-2495 (((-1042) $) 10)) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 52)) (-1818 (((-110) (-1 (-110) |#1|) $) 41 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 |#1|) (-595 |#1|)) 50 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 48 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 (-275 |#1|))) 47 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 29)) (-1972 (((-110) $) 32)) (-2147 (($) 31)) (-2183 (($ $ $) 22) (($ $ |#1|) 21)) (-2507 (((-717) |#1| $) 45 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) (((-717) (-1 (-110) |#1|) $) 42 (|has| $ (-6 -4264)))) (-2406 (($ $) 30)) (-3155 (((-504) $) 60 (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) 51)) (-2222 (((-802) $) 11)) (-3289 (($) 27) (($ (-595 |#1|)) 26)) (-3451 (((-110) (-1 (-110) |#1|) $) 40 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 6)) (-2138 (((-717) $) 37 (|has| $ (-6 -4264)))))
-(((-1021 |#1|) (-133) (-1023)) (T -1021))
-((-4242 (*1 *2 *1 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1023)) (-5 *2 (-110)))) (-3289 (*1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1023)))) (-3289 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1023)) (-4 *1 (-1021 *3)))) (-4237 (*1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1023)))) (-4237 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1023)) (-4 *1 (-1021 *3)))) (-3397 (*1 *1 *1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1023)))) (-2183 (*1 *1 *1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1023)))) (-2183 (*1 *1 *1 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1023)))) (-2352 (*1 *1 *1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1023)))) (-1316 (*1 *2 *1 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1023)) (-5 *2 (-110)))) (-4123 (*1 *1 *1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1023)))) (-4123 (*1 *1 *1 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1023)))) (-4123 (*1 *1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1023)))))
-(-13 (-1023) (-144 |t#1|) (-10 -8 (-6 -4254) (-15 -4242 ((-110) $ $)) (-15 -3289 ($)) (-15 -3289 ($ (-595 |t#1|))) (-15 -4237 ($)) (-15 -4237 ($ (-595 |t#1|))) (-15 -3397 ($ $ $)) (-15 -2183 ($ $ $)) (-15 -2183 ($ $ |t#1|)) (-15 -2352 ($ $ $)) (-15 -1316 ((-110) $ $)) (-15 -4123 ($ $ $)) (-15 -4123 ($ $ |t#1|)) (-15 -4123 ($ |t#1| $))))
-(((-33) . T) ((-99) . T) ((-569 (-802)) . T) ((-144 |#1|) . T) ((-570 (-504)) |has| |#1| (-570 (-504))) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-467 |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-1023) . T) ((-1131) . T))
-((-3034 (((-1078) $) 10)) (-2495 (((-1042) $) 8)))
-(((-1022 |#1|) (-10 -8 (-15 -3034 ((-1078) |#1|)) (-15 -2495 ((-1042) |#1|))) (-1023)) (T -1022))
-NIL
-(-10 -8 (-15 -3034 ((-1078) |#1|)) (-15 -2495 ((-1042) |#1|)))
-((-2207 (((-110) $ $) 7)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2186 (((-110) $ $) 6)))
-(((-1023) (-133)) (T -1023))
-((-2495 (*1 *2 *1) (-12 (-4 *1 (-1023)) (-5 *2 (-1042)))) (-3034 (*1 *2 *1) (-12 (-4 *1 (-1023)) (-5 *2 (-1078)))))
-(-13 (-99) (-569 (-802)) (-10 -8 (-15 -2495 ((-1042) $)) (-15 -3034 ((-1078) $))))
-(((-99) . T) ((-569 (-802)) . T))
-((-2207 (((-110) $ $) NIL)) (-2856 (((-717)) 30)) (-2274 (($ (-595 (-860))) 52)) (-2159 (((-3 $ "failed") $ (-860) (-860)) 58)) (-1338 (($) 32)) (-2408 (((-110) (-860) $) 35)) (-3201 (((-860) $) 50)) (-3034 (((-1078) $) NIL)) (-3108 (($ (-860)) 31)) (-2594 (((-3 $ "failed") $ (-860)) 55)) (-2495 (((-1042) $) NIL)) (-3963 (((-1177 $)) 40)) (-3421 (((-595 (-860)) $) 24)) (-4133 (((-717) $ (-860) (-860)) 56)) (-2222 (((-802) $) 29)) (-2186 (((-110) $ $) 21)))
-(((-1024 |#1| |#2|) (-13 (-348) (-10 -8 (-15 -2594 ((-3 $ "failed") $ (-860))) (-15 -2159 ((-3 $ "failed") $ (-860) (-860))) (-15 -3421 ((-595 (-860)) $)) (-15 -2274 ($ (-595 (-860)))) (-15 -3963 ((-1177 $))) (-15 -2408 ((-110) (-860) $)) (-15 -4133 ((-717) $ (-860) (-860))))) (-860) (-860)) (T -1024))
-((-2594 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-860)) (-5 *1 (-1024 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2159 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-860)) (-5 *1 (-1024 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3421 (*1 *2 *1) (-12 (-5 *2 (-595 (-860))) (-5 *1 (-1024 *3 *4)) (-14 *3 (-860)) (-14 *4 (-860)))) (-2274 (*1 *1 *2) (-12 (-5 *2 (-595 (-860))) (-5 *1 (-1024 *3 *4)) (-14 *3 (-860)) (-14 *4 (-860)))) (-3963 (*1 *2) (-12 (-5 *2 (-1177 (-1024 *3 *4))) (-5 *1 (-1024 *3 *4)) (-14 *3 (-860)) (-14 *4 (-860)))) (-2408 (*1 *2 *3 *1) (-12 (-5 *3 (-860)) (-5 *2 (-110)) (-5 *1 (-1024 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-4133 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-860)) (-5 *2 (-717)) (-5 *1 (-1024 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-348) (-10 -8 (-15 -2594 ((-3 $ "failed") $ (-860))) (-15 -2159 ((-3 $ "failed") $ (-860) (-860))) (-15 -3421 ((-595 (-860)) $)) (-15 -2274 ($ (-595 (-860)))) (-15 -3963 ((-1177 $))) (-15 -2408 ((-110) (-860) $)) (-15 -4133 ((-717) $ (-860) (-860)))))
-((-2207 (((-110) $ $) NIL)) (-2805 (($) NIL (|has| |#1| (-348)))) (-4123 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-2352 (($ $ $) 72)) (-1316 (((-110) $ $) 73)) (-3535 (((-110) $ (-717)) NIL)) (-2856 (((-717)) NIL (|has| |#1| (-348)))) (-4237 (($ (-595 |#1|)) NIL) (($) 13)) (-1836 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-1573 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2816 (($) NIL T CONST)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3991 (($ |#1| $) 67 (|has| $ (-6 -4264))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2280 (($ |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4264)))) (-1338 (($) NIL (|has| |#1| (-348)))) (-3342 (((-595 |#1|) $) 19 (|has| $ (-6 -4264)))) (-4242 (((-110) $ $) NIL)) (-2029 (((-110) $ (-717)) NIL)) (-1436 ((|#1| $) 57 (|has| |#1| (-793)))) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 66 (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-1736 ((|#1| $) 55 (|has| |#1| (-793)))) (-2800 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 34)) (-3201 (((-860) $) NIL (|has| |#1| (-348)))) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL)) (-3397 (($ $ $) 70)) (-3934 ((|#1| $) 25)) (-1950 (($ |#1| $) 65)) (-3108 (($ (-860)) NIL (|has| |#1| (-348)))) (-2495 (((-1042) $) NIL)) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 31)) (-1390 ((|#1| $) 27)) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) 21)) (-2147 (($) 11)) (-2183 (($ $ |#1|) NIL) (($ $ $) 71)) (-3900 (($) NIL) (($ (-595 |#1|)) NIL)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2406 (($ $) 16)) (-3155 (((-504) $) 52 (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) 61)) (-2792 (($ $) NIL (|has| |#1| (-348)))) (-2222 (((-802) $) NIL)) (-3713 (((-717) $) NIL)) (-3289 (($ (-595 |#1|)) NIL) (($) 12)) (-2164 (($ (-595 |#1|)) NIL)) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 54)) (-2138 (((-717) $) 10 (|has| $ (-6 -4264)))))
-(((-1025 |#1|) (-405 |#1|) (-1023)) (T -1025))
-NIL
-(-405 |#1|)
-((-2207 (((-110) $ $) 7)) (-4076 (((-110) $) 32)) (-3682 ((|#2| $) 27)) (-3877 (((-110) $) 33)) (-4193 ((|#1| $) 28)) (-2994 (((-110) $) 35)) (-3471 (((-110) $) 37)) (-1804 (((-110) $) 34)) (-3034 (((-1078) $) 9)) (-1485 (((-110) $) 31)) (-3701 ((|#3| $) 26)) (-2495 (((-1042) $) 10)) (-2200 (((-110) $) 30)) (-2849 ((|#4| $) 25)) (-2036 ((|#5| $) 24)) (-2589 (((-110) $ $) 38)) (-3043 (($ $ (-528)) 14) (($ $ (-595 (-528))) 13)) (-2508 (((-595 $) $) 29)) (-3155 (($ (-595 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2222 (((-802) $) 11)) (-2782 (($ $) 16)) (-2771 (($ $) 17)) (-2613 (((-110) $) 36)) (-2186 (((-110) $ $) 6)) (-2138 (((-528) $) 15)))
-(((-1026 |#1| |#2| |#3| |#4| |#5|) (-133) (-1023) (-1023) (-1023) (-1023) (-1023)) (T -1026))
-((-2589 (*1 *2 *1 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-110)))) (-3471 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-110)))) (-2613 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-110)))) (-2994 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-110)))) (-1804 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-110)))) (-3877 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-110)))) (-4076 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-110)))) (-1485 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-110)))) (-2200 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-110)))) (-2508 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-595 *1)) (-4 *1 (-1026 *3 *4 *5 *6 *7)))) (-4193 (*1 *2 *1) (-12 (-4 *1 (-1026 *2 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *2 (-1023)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *2 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *2 (-1023)))) (-3701 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *2 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *2 (-1023)))) (-2849 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *2 *6)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *2 (-1023)))) (-2036 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *2)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *2 (-1023)))) (-3155 (*1 *1 *2) (-12 (-5 *2 (-595 *1)) (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)))) (-3155 (*1 *1 *2) (-12 (-4 *1 (-1026 *2 *3 *4 *5 *6)) (-4 *2 (-1023)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)))) (-3155 (*1 *1 *2) (-12 (-4 *1 (-1026 *3 *2 *4 *5 *6)) (-4 *3 (-1023)) (-4 *2 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)))) (-3155 (*1 *1 *2) (-12 (-4 *1 (-1026 *3 *4 *2 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *2 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)))) (-3155 (*1 *1 *2) (-12 (-4 *1 (-1026 *3 *4 *5 *2 *6)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *2 (-1023)) (-4 *6 (-1023)))) (-3155 (*1 *1 *2) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *2)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *2 (-1023)))) (-2771 (*1 *1 *1) (-12 (-4 *1 (-1026 *2 *3 *4 *5 *6)) (-4 *2 (-1023)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)))) (-2782 (*1 *1 *1) (-12 (-4 *1 (-1026 *2 *3 *4 *5 *6)) (-4 *2 (-1023)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)))) (-2138 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-528)))) (-3043 (*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)))) (-3043 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-528))) (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)))))
-(-13 (-1023) (-10 -8 (-15 -2589 ((-110) $ $)) (-15 -3471 ((-110) $)) (-15 -2613 ((-110) $)) (-15 -2994 ((-110) $)) (-15 -1804 ((-110) $)) (-15 -3877 ((-110) $)) (-15 -4076 ((-110) $)) (-15 -1485 ((-110) $)) (-15 -2200 ((-110) $)) (-15 -2508 ((-595 $) $)) (-15 -4193 (|t#1| $)) (-15 -3682 (|t#2| $)) (-15 -3701 (|t#3| $)) (-15 -2849 (|t#4| $)) (-15 -2036 (|t#5| $)) (-15 -3155 ($ (-595 $))) (-15 -3155 ($ |t#1|)) (-15 -3155 ($ |t#2|)) (-15 -3155 ($ |t#3|)) (-15 -3155 ($ |t#4|)) (-15 -3155 ($ |t#5|)) (-15 -2771 ($ $)) (-15 -2782 ($ $)) (-15 -2138 ((-528) $)) (-15 -3043 ($ $ (-528))) (-15 -3043 ($ $ (-595 (-528))))))
-(((-99) . T) ((-569 (-802)) . T) ((-1023) . T))
-((-2207 (((-110) $ $) NIL)) (-4076 (((-110) $) NIL)) (-3682 (((-1095) $) NIL)) (-3877 (((-110) $) NIL)) (-4193 (((-1078) $) NIL)) (-2994 (((-110) $) NIL)) (-3471 (((-110) $) NIL)) (-1804 (((-110) $) NIL)) (-3034 (((-1078) $) NIL)) (-1485 (((-110) $) NIL)) (-3701 (((-528) $) NIL)) (-2495 (((-1042) $) NIL)) (-2200 (((-110) $) NIL)) (-2849 (((-207) $) NIL)) (-2036 (((-802) $) NIL)) (-2589 (((-110) $ $) NIL)) (-3043 (($ $ (-528)) NIL) (($ $ (-595 (-528))) NIL)) (-2508 (((-595 $) $) NIL)) (-3155 (($ (-595 $)) NIL) (($ (-1078)) NIL) (($ (-1095)) NIL) (($ (-528)) NIL) (($ (-207)) NIL) (($ (-802)) NIL)) (-2222 (((-802) $) NIL)) (-2782 (($ $) NIL)) (-2771 (($ $) NIL)) (-2613 (((-110) $) NIL)) (-2186 (((-110) $ $) NIL)) (-2138 (((-528) $) NIL)))
-(((-1027) (-1026 (-1078) (-1095) (-528) (-207) (-802))) (T -1027))
-NIL
-(-1026 (-1078) (-1095) (-528) (-207) (-802))
-((-2207 (((-110) $ $) NIL)) (-4076 (((-110) $) 38)) (-3682 ((|#2| $) 42)) (-3877 (((-110) $) 37)) (-4193 ((|#1| $) 41)) (-2994 (((-110) $) 35)) (-3471 (((-110) $) 14)) (-1804 (((-110) $) 36)) (-3034 (((-1078) $) NIL)) (-1485 (((-110) $) 39)) (-3701 ((|#3| $) 44)) (-2495 (((-1042) $) NIL)) (-2200 (((-110) $) 40)) (-2849 ((|#4| $) 43)) (-2036 ((|#5| $) 45)) (-2589 (((-110) $ $) 34)) (-3043 (($ $ (-528)) 56) (($ $ (-595 (-528))) 58)) (-2508 (((-595 $) $) 22)) (-3155 (($ (-595 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-2222 (((-802) $) 23)) (-2782 (($ $) 21)) (-2771 (($ $) 52)) (-2613 (((-110) $) 18)) (-2186 (((-110) $ $) 33)) (-2138 (((-528) $) 54)))
-(((-1028 |#1| |#2| |#3| |#4| |#5|) (-1026 |#1| |#2| |#3| |#4| |#5|) (-1023) (-1023) (-1023) (-1023) (-1023)) (T -1028))
-NIL
-(-1026 |#1| |#2| |#3| |#4| |#5|)
-((-3105 (((-1182) $) 23)) (-3038 (($ (-1095) (-414) |#2|) 11)) (-2222 (((-802) $) 16)))
-(((-1029 |#1| |#2|) (-13 (-375) (-10 -8 (-15 -3038 ($ (-1095) (-414) |#2|)))) (-793) (-410 |#1|)) (T -1029))
-((-3038 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1095)) (-5 *3 (-414)) (-4 *5 (-793)) (-5 *1 (-1029 *5 *4)) (-4 *4 (-410 *5)))))
-(-13 (-375) (-10 -8 (-15 -3038 ($ (-1095) (-414) |#2|))))
-((-3639 (((-110) |#5| |#5|) 38)) (-1254 (((-110) |#5| |#5|) 52)) (-3336 (((-110) |#5| (-595 |#5|)) 75) (((-110) |#5| |#5|) 61)) (-2524 (((-110) (-595 |#4|) (-595 |#4|)) 58)) (-3104 (((-110) (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|)) (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) 63)) (-2886 (((-1182)) 33)) (-1694 (((-1182) (-1078) (-1078) (-1078)) 29)) (-1209 (((-595 |#5|) (-595 |#5|)) 82)) (-4044 (((-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|)))) 80)) (-1943 (((-595 (-2 (|:| -2589 (-595 |#4|)) (|:| -2316 |#5|) (|:| |ineq| (-595 |#4|)))) (-595 |#4|) (-595 |#5|) (-110) (-110)) 102)) (-2354 (((-110) |#5| |#5|) 47)) (-2156 (((-3 (-110) "failed") |#5| |#5|) 71)) (-2320 (((-110) (-595 |#4|) (-595 |#4|)) 57)) (-2464 (((-110) (-595 |#4|) (-595 |#4|)) 59)) (-3664 (((-110) (-595 |#4|) (-595 |#4|)) 60)) (-1295 (((-3 (-2 (|:| -2589 (-595 |#4|)) (|:| -2316 |#5|) (|:| |ineq| (-595 |#4|))) "failed") (-595 |#4|) |#5| (-595 |#4|) (-110) (-110) (-110) (-110) (-110)) 98)) (-2307 (((-595 |#5|) (-595 |#5|)) 43)))
-(((-1030 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1694 ((-1182) (-1078) (-1078) (-1078))) (-15 -2886 ((-1182))) (-15 -3639 ((-110) |#5| |#5|)) (-15 -2307 ((-595 |#5|) (-595 |#5|))) (-15 -2354 ((-110) |#5| |#5|)) (-15 -1254 ((-110) |#5| |#5|)) (-15 -2524 ((-110) (-595 |#4|) (-595 |#4|))) (-15 -2320 ((-110) (-595 |#4|) (-595 |#4|))) (-15 -2464 ((-110) (-595 |#4|) (-595 |#4|))) (-15 -3664 ((-110) (-595 |#4|) (-595 |#4|))) (-15 -2156 ((-3 (-110) "failed") |#5| |#5|)) (-15 -3336 ((-110) |#5| |#5|)) (-15 -3336 ((-110) |#5| (-595 |#5|))) (-15 -1209 ((-595 |#5|) (-595 |#5|))) (-15 -3104 ((-110) (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|)) (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|)))) (-15 -4044 ((-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) (-15 -1943 ((-595 (-2 (|:| -2589 (-595 |#4|)) (|:| -2316 |#5|) (|:| |ineq| (-595 |#4|)))) (-595 |#4|) (-595 |#5|) (-110) (-110))) (-15 -1295 ((-3 (-2 (|:| -2589 (-595 |#4|)) (|:| -2316 |#5|) (|:| |ineq| (-595 |#4|))) "failed") (-595 |#4|) |#5| (-595 |#4|) (-110) (-110) (-110) (-110) (-110)))) (-431) (-739) (-793) (-994 |#1| |#2| |#3|) (-999 |#1| |#2| |#3| |#4|)) (T -1030))
-((-1295 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-110)) (-4 *6 (-431)) (-4 *7 (-739)) (-4 *8 (-793)) (-4 *9 (-994 *6 *7 *8)) (-5 *2 (-2 (|:| -2589 (-595 *9)) (|:| -2316 *4) (|:| |ineq| (-595 *9)))) (-5 *1 (-1030 *6 *7 *8 *9 *4)) (-5 *3 (-595 *9)) (-4 *4 (-999 *6 *7 *8 *9)))) (-1943 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-595 *10)) (-5 *5 (-110)) (-4 *10 (-999 *6 *7 *8 *9)) (-4 *6 (-431)) (-4 *7 (-739)) (-4 *8 (-793)) (-4 *9 (-994 *6 *7 *8)) (-5 *2 (-595 (-2 (|:| -2589 (-595 *9)) (|:| -2316 *10) (|:| |ineq| (-595 *9))))) (-5 *1 (-1030 *6 *7 *8 *9 *10)) (-5 *3 (-595 *9)))) (-4044 (*1 *2 *2) (-12 (-5 *2 (-595 (-2 (|:| |val| (-595 *6)) (|:| -2316 *7)))) (-4 *6 (-994 *3 *4 *5)) (-4 *7 (-999 *3 *4 *5 *6)) (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-1030 *3 *4 *5 *6 *7)))) (-3104 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-595 *7)) (|:| -2316 *8))) (-4 *7 (-994 *4 *5 *6)) (-4 *8 (-999 *4 *5 *6 *7)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110)) (-5 *1 (-1030 *4 *5 *6 *7 *8)))) (-1209 (*1 *2 *2) (-12 (-5 *2 (-595 *7)) (-4 *7 (-999 *3 *4 *5 *6)) (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *1 (-1030 *3 *4 *5 *6 *7)))) (-3336 (*1 *2 *3 *4) (-12 (-5 *4 (-595 *3)) (-4 *3 (-999 *5 *6 *7 *8)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *8 (-994 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-1030 *5 *6 *7 *8 *3)))) (-3336 (*1 *2 *3 *3) (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1030 *4 *5 *6 *7 *3)) (-4 *3 (-999 *4 *5 *6 *7)))) (-2156 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1030 *4 *5 *6 *7 *3)) (-4 *3 (-999 *4 *5 *6 *7)))) (-3664 (*1 *2 *3 *3) (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110)) (-5 *1 (-1030 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7)))) (-2464 (*1 *2 *3 *3) (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110)) (-5 *1 (-1030 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7)))) (-2320 (*1 *2 *3 *3) (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110)) (-5 *1 (-1030 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7)))) (-2524 (*1 *2 *3 *3) (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110)) (-5 *1 (-1030 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7)))) (-1254 (*1 *2 *3 *3) (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1030 *4 *5 *6 *7 *3)) (-4 *3 (-999 *4 *5 *6 *7)))) (-2354 (*1 *2 *3 *3) (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1030 *4 *5 *6 *7 *3)) (-4 *3 (-999 *4 *5 *6 *7)))) (-2307 (*1 *2 *2) (-12 (-5 *2 (-595 *7)) (-4 *7 (-999 *3 *4 *5 *6)) (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *1 (-1030 *3 *4 *5 *6 *7)))) (-3639 (*1 *2 *3 *3) (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1030 *4 *5 *6 *7 *3)) (-4 *3 (-999 *4 *5 *6 *7)))) (-2886 (*1 *2) (-12 (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-1182)) (-5 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *7 (-999 *3 *4 *5 *6)))) (-1694 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1078)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-1182)) (-5 *1 (-1030 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1694 ((-1182) (-1078) (-1078) (-1078))) (-15 -2886 ((-1182))) (-15 -3639 ((-110) |#5| |#5|)) (-15 -2307 ((-595 |#5|) (-595 |#5|))) (-15 -2354 ((-110) |#5| |#5|)) (-15 -1254 ((-110) |#5| |#5|)) (-15 -2524 ((-110) (-595 |#4|) (-595 |#4|))) (-15 -2320 ((-110) (-595 |#4|) (-595 |#4|))) (-15 -2464 ((-110) (-595 |#4|) (-595 |#4|))) (-15 -3664 ((-110) (-595 |#4|) (-595 |#4|))) (-15 -2156 ((-3 (-110) "failed") |#5| |#5|)) (-15 -3336 ((-110) |#5| |#5|)) (-15 -3336 ((-110) |#5| (-595 |#5|))) (-15 -1209 ((-595 |#5|) (-595 |#5|))) (-15 -3104 ((-110) (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|)) (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|)))) (-15 -4044 ((-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) (-15 -1943 ((-595 (-2 (|:| -2589 (-595 |#4|)) (|:| -2316 |#5|) (|:| |ineq| (-595 |#4|)))) (-595 |#4|) (-595 |#5|) (-110) (-110))) (-15 -1295 ((-3 (-2 (|:| -2589 (-595 |#4|)) (|:| -2316 |#5|) (|:| |ineq| (-595 |#4|))) "failed") (-595 |#4|) |#5| (-595 |#4|) (-110) (-110) (-110) (-110) (-110))))
-((-1563 (((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#5|) 96)) (-1692 (((-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) |#4| |#4| |#5|) 72)) (-3800 (((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#4| |#5|) 91)) (-2858 (((-595 |#5|) |#4| |#5|) 110)) (-1710 (((-595 |#5|) |#4| |#5|) 117)) (-2744 (((-595 |#5|) |#4| |#5|) 118)) (-3512 (((-595 (-2 (|:| |val| (-110)) (|:| -2316 |#5|))) |#4| |#5|) 97)) (-4218 (((-595 (-2 (|:| |val| (-110)) (|:| -2316 |#5|))) |#4| |#5|) 116)) (-3041 (((-595 (-2 (|:| |val| (-110)) (|:| -2316 |#5|))) |#4| |#5|) 46) (((-110) |#4| |#5|) 53)) (-2980 (((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) |#3| (-110)) 84) (((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#4| |#5| (-110) (-110)) 50)) (-4158 (((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#4| |#5|) 79)) (-3283 (((-1182)) 37)) (-3273 (((-1182)) 26)) (-2128 (((-1182) (-1078) (-1078) (-1078)) 33)) (-3772 (((-1182) (-1078) (-1078) (-1078)) 22)))
-(((-1031 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3772 ((-1182) (-1078) (-1078) (-1078))) (-15 -3273 ((-1182))) (-15 -2128 ((-1182) (-1078) (-1078) (-1078))) (-15 -3283 ((-1182))) (-15 -1692 ((-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) |#4| |#4| |#5|)) (-15 -2980 ((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -2980 ((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) |#3| (-110))) (-15 -4158 ((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#4| |#5|)) (-15 -3800 ((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#4| |#5|)) (-15 -3041 ((-110) |#4| |#5|)) (-15 -3512 ((-595 (-2 (|:| |val| (-110)) (|:| -2316 |#5|))) |#4| |#5|)) (-15 -2858 ((-595 |#5|) |#4| |#5|)) (-15 -4218 ((-595 (-2 (|:| |val| (-110)) (|:| -2316 |#5|))) |#4| |#5|)) (-15 -1710 ((-595 |#5|) |#4| |#5|)) (-15 -3041 ((-595 (-2 (|:| |val| (-110)) (|:| -2316 |#5|))) |#4| |#5|)) (-15 -2744 ((-595 |#5|) |#4| |#5|)) (-15 -1563 ((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#5|))) (-431) (-739) (-793) (-994 |#1| |#2| |#3|) (-999 |#1| |#2| |#3| |#4|)) (T -1031))
-((-1563 (*1 *2 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-595 (-2 (|:| |val| *3) (|:| -2316 *4)))) (-5 *1 (-1031 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))) (-2744 (*1 *2 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-595 *4)) (-5 *1 (-1031 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))) (-3041 (*1 *2 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-595 (-2 (|:| |val| (-110)) (|:| -2316 *4)))) (-5 *1 (-1031 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))) (-1710 (*1 *2 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-595 *4)) (-5 *1 (-1031 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))) (-4218 (*1 *2 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-595 (-2 (|:| |val| (-110)) (|:| -2316 *4)))) (-5 *1 (-1031 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))) (-2858 (*1 *2 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-595 *4)) (-5 *1 (-1031 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))) (-3512 (*1 *2 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-595 (-2 (|:| |val| (-110)) (|:| -2316 *4)))) (-5 *1 (-1031 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))) (-3041 (*1 *2 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-1031 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))) (-3800 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-595 (-2 (|:| |val| *3) (|:| -2316 *4)))) (-5 *1 (-1031 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))) (-4158 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-595 (-2 (|:| |val| *3) (|:| -2316 *4)))) (-5 *1 (-1031 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))) (-2980 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-595 (-2 (|:| |val| (-595 *8)) (|:| -2316 *9)))) (-5 *5 (-110)) (-4 *8 (-994 *6 *7 *4)) (-4 *9 (-999 *6 *7 *4 *8)) (-4 *6 (-431)) (-4 *7 (-739)) (-4 *4 (-793)) (-5 *2 (-595 (-2 (|:| |val| *8) (|:| -2316 *9)))) (-5 *1 (-1031 *6 *7 *4 *8 *9)))) (-2980 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-110)) (-4 *6 (-431)) (-4 *7 (-739)) (-4 *8 (-793)) (-4 *3 (-994 *6 *7 *8)) (-5 *2 (-595 (-2 (|:| |val| *3) (|:| -2316 *4)))) (-5 *1 (-1031 *6 *7 *8 *3 *4)) (-4 *4 (-999 *6 *7 *8 *3)))) (-1692 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4)))) (-5 *1 (-1031 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))) (-3283 (*1 *2) (-12 (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-1182)) (-5 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *7 (-999 *3 *4 *5 *6)))) (-2128 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1078)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-1182)) (-5 *1 (-1031 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7)))) (-3273 (*1 *2) (-12 (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-1182)) (-5 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *7 (-999 *3 *4 *5 *6)))) (-3772 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1078)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-1182)) (-5 *1 (-1031 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3772 ((-1182) (-1078) (-1078) (-1078))) (-15 -3273 ((-1182))) (-15 -2128 ((-1182) (-1078) (-1078) (-1078))) (-15 -3283 ((-1182))) (-15 -1692 ((-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) |#4| |#4| |#5|)) (-15 -2980 ((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -2980 ((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) |#3| (-110))) (-15 -4158 ((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#4| |#5|)) (-15 -3800 ((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#4| |#5|)) (-15 -3041 ((-110) |#4| |#5|)) (-15 -3512 ((-595 (-2 (|:| |val| (-110)) (|:| -2316 |#5|))) |#4| |#5|)) (-15 -2858 ((-595 |#5|) |#4| |#5|)) (-15 -4218 ((-595 (-2 (|:| |val| (-110)) (|:| -2316 |#5|))) |#4| |#5|)) (-15 -1710 ((-595 |#5|) |#4| |#5|)) (-15 -3041 ((-595 (-2 (|:| |val| (-110)) (|:| -2316 |#5|))) |#4| |#5|)) (-15 -2744 ((-595 |#5|) |#4| |#5|)) (-15 -1563 ((-595 (-2 (|:| |val| |#4|) (|:| -2316 |#5|))) |#4| |#5|)))
-((-2207 (((-110) $ $) 7)) (-2785 (((-595 (-2 (|:| -2254 $) (|:| -2378 (-595 |#4|)))) (-595 |#4|)) 85)) (-1985 (((-595 $) (-595 |#4|)) 86) (((-595 $) (-595 |#4|) (-110)) 111)) (-2565 (((-595 |#3|) $) 33)) (-3812 (((-110) $) 26)) (-2414 (((-110) $) 17 (|has| |#1| (-520)))) (-3759 (((-110) |#4| $) 101) (((-110) $) 97)) (-1728 ((|#4| |#4| $) 92)) (-1232 (((-595 (-2 (|:| |val| |#4|) (|:| -2316 $))) |#4| $) 126)) (-1289 (((-2 (|:| |under| $) (|:| -2925 $) (|:| |upper| $)) $ |#3|) 27)) (-3535 (((-110) $ (-717)) 44)) (-1573 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4264))) (((-3 |#4| "failed") $ |#3|) 79)) (-2816 (($) 45 T CONST)) (-1689 (((-110) $) 22 (|has| |#1| (-520)))) (-2584 (((-110) $ $) 24 (|has| |#1| (-520)))) (-3168 (((-110) $ $) 23 (|has| |#1| (-520)))) (-1924 (((-110) $) 25 (|has| |#1| (-520)))) (-1658 (((-595 |#4|) (-595 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-1891 (((-595 |#4|) (-595 |#4|) $) 18 (|has| |#1| (-520)))) (-3794 (((-595 |#4|) (-595 |#4|) $) 19 (|has| |#1| (-520)))) (-3001 (((-3 $ "failed") (-595 |#4|)) 36)) (-2409 (($ (-595 |#4|)) 35)) (-2902 (((-3 $ "failed") $) 82)) (-1592 ((|#4| |#4| $) 89)) (-2923 (($ $) 68 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264))))) (-2280 (($ |#4| $) 67 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4264)))) (-2537 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-520)))) (-1927 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-3345 ((|#4| |#4| $) 87)) (-1422 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4264))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4264))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-4049 (((-2 (|:| -2254 (-595 |#4|)) (|:| -2378 (-595 |#4|))) $) 105)) (-1640 (((-110) |#4| $) 136)) (-4184 (((-110) |#4| $) 133)) (-2667 (((-110) |#4| $) 137) (((-110) $) 134)) (-3342 (((-595 |#4|) $) 52 (|has| $ (-6 -4264)))) (-3092 (((-110) |#4| $) 104) (((-110) $) 103)) (-1761 ((|#3| $) 34)) (-2029 (((-110) $ (-717)) 43)) (-2604 (((-595 |#4|) $) 53 (|has| $ (-6 -4264)))) (-2408 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264))))) (-2800 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#4| |#4|) $) 47)) (-3558 (((-595 |#3|) $) 32)) (-3472 (((-110) |#3| $) 31)) (-3358 (((-110) $ (-717)) 42)) (-3034 (((-1078) $) 9)) (-4192 (((-3 |#4| (-595 $)) |#4| |#4| $) 128)) (-2272 (((-595 (-2 (|:| |val| |#4|) (|:| -2316 $))) |#4| |#4| $) 127)) (-2301 (((-3 |#4| "failed") $) 83)) (-2078 (((-595 $) |#4| $) 129)) (-1307 (((-3 (-110) (-595 $)) |#4| $) 132)) (-3346 (((-595 (-2 (|:| |val| (-110)) (|:| -2316 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-3397 (((-595 $) |#4| $) 125) (((-595 $) (-595 |#4|) $) 124) (((-595 $) (-595 |#4|) (-595 $)) 123) (((-595 $) |#4| (-595 $)) 122)) (-1325 (($ |#4| $) 117) (($ (-595 |#4|) $) 116)) (-3923 (((-595 |#4|) $) 107)) (-2127 (((-110) |#4| $) 99) (((-110) $) 95)) (-3436 ((|#4| |#4| $) 90)) (-3664 (((-110) $ $) 110)) (-1827 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-520)))) (-1906 (((-110) |#4| $) 100) (((-110) $) 96)) (-2001 ((|#4| |#4| $) 91)) (-2495 (((-1042) $) 10)) (-2890 (((-3 |#4| "failed") $) 84)) (-1734 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-3912 (((-3 $ "failed") $ |#4|) 78)) (-3740 (($ $ |#4|) 77) (((-595 $) |#4| $) 115) (((-595 $) |#4| (-595 $)) 114) (((-595 $) (-595 |#4|) $) 113) (((-595 $) (-595 |#4|) (-595 $)) 112)) (-1818 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 |#4|) (-595 |#4|)) 59 (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ (-275 |#4|)) 57 (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ (-595 (-275 |#4|))) 56 (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))))) (-3744 (((-110) $ $) 38)) (-1972 (((-110) $) 41)) (-2147 (($) 40)) (-2935 (((-717) $) 106)) (-2507 (((-717) |#4| $) 54 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264)))) (((-717) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4264)))) (-2406 (($ $) 39)) (-3155 (((-504) $) 69 (|has| |#4| (-570 (-504))))) (-2233 (($ (-595 |#4|)) 60)) (-2649 (($ $ |#3|) 28)) (-3597 (($ $ |#3|) 30)) (-3311 (($ $) 88)) (-1812 (($ $ |#3|) 29)) (-2222 (((-802) $) 11) (((-595 |#4|) $) 37)) (-2459 (((-717) $) 76 (|has| |#3| (-348)))) (-1411 (((-3 (-2 (|:| |bas| $) (|:| -1513 (-595 |#4|))) "failed") (-595 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1513 (-595 |#4|))) "failed") (-595 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-1622 (((-110) $ (-1 (-110) |#4| (-595 |#4|))) 98)) (-4053 (((-595 $) |#4| $) 121) (((-595 $) |#4| (-595 $)) 120) (((-595 $) (-595 |#4|) $) 119) (((-595 $) (-595 |#4|) (-595 $)) 118)) (-3451 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4264)))) (-1490 (((-595 |#3|) $) 81)) (-3207 (((-110) |#4| $) 135)) (-2190 (((-110) |#3| $) 80)) (-2186 (((-110) $ $) 6)) (-2138 (((-717) $) 46 (|has| $ (-6 -4264)))))
-(((-1032 |#1| |#2| |#3| |#4|) (-133) (-431) (-739) (-793) (-994 |t#1| |t#2| |t#3|)) (T -1032))
-NIL
-(-13 (-999 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-99) . T) ((-569 (-595 |#4|)) . T) ((-569 (-802)) . T) ((-144 |#4|) . T) ((-570 (-504)) |has| |#4| (-570 (-504))) ((-290 |#4|) -12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))) ((-467 |#4|) . T) ((-489 |#4| |#4|) -12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))) ((-913 |#1| |#2| |#3| |#4|) . T) ((-999 |#1| |#2| |#3| |#4|) . T) ((-1023) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1131) . T))
-((-3438 (((-595 (-528)) (-528) (-528) (-528)) 22)) (-3360 (((-595 (-528)) (-528) (-528) (-528)) 12)) (-3905 (((-595 (-528)) (-528) (-528) (-528)) 18)) (-3013 (((-528) (-528) (-528)) 9)) (-2189 (((-1177 (-528)) (-595 (-528)) (-1177 (-528)) (-528)) 46) (((-1177 (-528)) (-1177 (-528)) (-1177 (-528)) (-528)) 41)) (-2305 (((-595 (-528)) (-595 (-528)) (-595 (-528)) (-110)) 28)) (-3196 (((-635 (-528)) (-595 (-528)) (-595 (-528)) (-635 (-528))) 45)) (-1260 (((-635 (-528)) (-595 (-528)) (-595 (-528))) 33)) (-2125 (((-595 (-635 (-528))) (-595 (-528))) 35)) (-3816 (((-595 (-528)) (-595 (-528)) (-595 (-528)) (-635 (-528))) 49)) (-3133 (((-635 (-528)) (-595 (-528)) (-595 (-528)) (-595 (-528))) 57)))
-(((-1033) (-10 -7 (-15 -3133 ((-635 (-528)) (-595 (-528)) (-595 (-528)) (-595 (-528)))) (-15 -3816 ((-595 (-528)) (-595 (-528)) (-595 (-528)) (-635 (-528)))) (-15 -2125 ((-595 (-635 (-528))) (-595 (-528)))) (-15 -1260 ((-635 (-528)) (-595 (-528)) (-595 (-528)))) (-15 -3196 ((-635 (-528)) (-595 (-528)) (-595 (-528)) (-635 (-528)))) (-15 -2305 ((-595 (-528)) (-595 (-528)) (-595 (-528)) (-110))) (-15 -2189 ((-1177 (-528)) (-1177 (-528)) (-1177 (-528)) (-528))) (-15 -2189 ((-1177 (-528)) (-595 (-528)) (-1177 (-528)) (-528))) (-15 -3013 ((-528) (-528) (-528))) (-15 -3905 ((-595 (-528)) (-528) (-528) (-528))) (-15 -3360 ((-595 (-528)) (-528) (-528) (-528))) (-15 -3438 ((-595 (-528)) (-528) (-528) (-528))))) (T -1033))
-((-3438 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-1033)) (-5 *3 (-528)))) (-3360 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-1033)) (-5 *3 (-528)))) (-3905 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-1033)) (-5 *3 (-528)))) (-3013 (*1 *2 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-1033)))) (-2189 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1177 (-528))) (-5 *3 (-595 (-528))) (-5 *4 (-528)) (-5 *1 (-1033)))) (-2189 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1177 (-528))) (-5 *3 (-528)) (-5 *1 (-1033)))) (-2305 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-595 (-528))) (-5 *3 (-110)) (-5 *1 (-1033)))) (-3196 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-635 (-528))) (-5 *3 (-595 (-528))) (-5 *1 (-1033)))) (-1260 (*1 *2 *3 *3) (-12 (-5 *3 (-595 (-528))) (-5 *2 (-635 (-528))) (-5 *1 (-1033)))) (-2125 (*1 *2 *3) (-12 (-5 *3 (-595 (-528))) (-5 *2 (-595 (-635 (-528)))) (-5 *1 (-1033)))) (-3816 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-595 (-528))) (-5 *3 (-635 (-528))) (-5 *1 (-1033)))) (-3133 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-595 (-528))) (-5 *2 (-635 (-528))) (-5 *1 (-1033)))))
-(-10 -7 (-15 -3133 ((-635 (-528)) (-595 (-528)) (-595 (-528)) (-595 (-528)))) (-15 -3816 ((-595 (-528)) (-595 (-528)) (-595 (-528)) (-635 (-528)))) (-15 -2125 ((-595 (-635 (-528))) (-595 (-528)))) (-15 -1260 ((-635 (-528)) (-595 (-528)) (-595 (-528)))) (-15 -3196 ((-635 (-528)) (-595 (-528)) (-595 (-528)) (-635 (-528)))) (-15 -2305 ((-595 (-528)) (-595 (-528)) (-595 (-528)) (-110))) (-15 -2189 ((-1177 (-528)) (-1177 (-528)) (-1177 (-528)) (-528))) (-15 -2189 ((-1177 (-528)) (-595 (-528)) (-1177 (-528)) (-528))) (-15 -3013 ((-528) (-528) (-528))) (-15 -3905 ((-595 (-528)) (-528) (-528) (-528))) (-15 -3360 ((-595 (-528)) (-528) (-528) (-528))) (-15 -3438 ((-595 (-528)) (-528) (-528) (-528))))
-((-2690 (($ $ (-860)) 12)) (** (($ $ (-860)) 10)))
-(((-1034 |#1|) (-10 -8 (-15 -2690 (|#1| |#1| (-860))) (-15 ** (|#1| |#1| (-860)))) (-1035)) (T -1034))
-NIL
-(-10 -8 (-15 -2690 (|#1| |#1| (-860))) (-15 ** (|#1| |#1| (-860))))
-((-2207 (((-110) $ $) 7)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2690 (($ $ (-860)) 13)) (-2186 (((-110) $ $) 6)) (** (($ $ (-860)) 14)) (* (($ $ $) 15)))
-(((-1035) (-133)) (T -1035))
-((* (*1 *1 *1 *1) (-4 *1 (-1035))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1035)) (-5 *2 (-860)))) (-2690 (*1 *1 *1 *2) (-12 (-4 *1 (-1035)) (-5 *2 (-860)))))
-(-13 (-1023) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-860))) (-15 -2690 ($ $ (-860)))))
-(((-99) . T) ((-569 (-802)) . T) ((-1023) . T))
-((-2207 (((-110) $ $) NIL (|has| |#3| (-1023)))) (-1359 (((-110) $) NIL (|has| |#3| (-128)))) (-2562 (($ (-860)) NIL (|has| |#3| (-981)))) (-1444 (((-1182) $ (-528) (-528)) NIL (|has| $ (-6 -4265)))) (-3622 (($ $ $) NIL (|has| |#3| (-739)))) (-3181 (((-3 $ "failed") $ $) NIL (|has| |#3| (-128)))) (-3535 (((-110) $ (-717)) NIL)) (-2856 (((-717)) NIL (|has| |#3| (-348)))) (-3605 (((-528) $) NIL (|has| |#3| (-791)))) (-2381 ((|#3| $ (-528) |#3|) NIL (|has| $ (-6 -4265)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-528) "failed") $) NIL (-12 (|has| |#3| (-972 (-528))) (|has| |#3| (-1023)))) (((-3 (-387 (-528)) "failed") $) NIL (-12 (|has| |#3| (-972 (-387 (-528)))) (|has| |#3| (-1023)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1023)))) (-2409 (((-528) $) NIL (-12 (|has| |#3| (-972 (-528))) (|has| |#3| (-1023)))) (((-387 (-528)) $) NIL (-12 (|has| |#3| (-972 (-387 (-528)))) (|has| |#3| (-1023)))) ((|#3| $) NIL (|has| |#3| (-1023)))) (-2120 (((-635 (-528)) (-635 $)) NIL (-12 (|has| |#3| (-591 (-528))) (|has| |#3| (-981)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (-12 (|has| |#3| (-591 (-528))) (|has| |#3| (-981)))) (((-2 (|:| -2163 (-635 |#3|)) (|:| |vec| (-1177 |#3|))) (-635 $) (-1177 $)) NIL (|has| |#3| (-981))) (((-635 |#3|) (-635 $)) NIL (|has| |#3| (-981)))) (-1312 (((-3 $ "failed") $) NIL (|has| |#3| (-673)))) (-1338 (($) NIL (|has| |#3| (-348)))) (-2812 ((|#3| $ (-528) |#3|) NIL (|has| $ (-6 -4265)))) (-2742 ((|#3| $ (-528)) 12)) (-3657 (((-110) $) NIL (|has| |#3| (-791)))) (-3342 (((-595 |#3|) $) NIL (|has| $ (-6 -4264)))) (-1297 (((-110) $) NIL (|has| |#3| (-673)))) (-3710 (((-110) $) NIL (|has| |#3| (-791)))) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-528) $) NIL (|has| (-528) (-793)))) (-1436 (($ $ $) NIL (-1463 (|has| |#3| (-739)) (|has| |#3| (-791))))) (-2604 (((-595 |#3|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#3| (-1023))))) (-1709 (((-528) $) NIL (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (-1463 (|has| |#3| (-739)) (|has| |#3| (-791))))) (-2800 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#3| |#3|) $) NIL)) (-3201 (((-860) $) NIL (|has| |#3| (-348)))) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (|has| |#3| (-1023)))) (-2084 (((-595 (-528)) $) NIL)) (-3966 (((-110) (-528) $) NIL)) (-3108 (($ (-860)) NIL (|has| |#3| (-348)))) (-2495 (((-1042) $) NIL (|has| |#3| (-1023)))) (-2890 ((|#3| $) NIL (|has| (-528) (-793)))) (-1332 (($ $ |#3|) NIL (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#3|))) NIL (-12 (|has| |#3| (-290 |#3|)) (|has| |#3| (-1023)))) (($ $ (-275 |#3|)) NIL (-12 (|has| |#3| (-290 |#3|)) (|has| |#3| (-1023)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-290 |#3|)) (|has| |#3| (-1023)))) (($ $ (-595 |#3|) (-595 |#3|)) NIL (-12 (|has| |#3| (-290 |#3|)) (|has| |#3| (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#3| (-1023))))) (-2861 (((-595 |#3|) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#3| $ (-528) |#3|) NIL) ((|#3| $ (-528)) NIL)) (-3675 ((|#3| $ $) NIL (|has| |#3| (-981)))) (-2484 (($ (-1177 |#3|)) NIL)) (-3017 (((-130)) NIL (|has| |#3| (-343)))) (-3235 (($ $) NIL (-12 (|has| |#3| (-215)) (|has| |#3| (-981)))) (($ $ (-717)) NIL (-12 (|has| |#3| (-215)) (|has| |#3| (-981)))) (($ $ (-1095)) NIL (-12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981)))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981)))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981)))) (($ $ (-1 |#3| |#3|) (-717)) NIL (|has| |#3| (-981))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-981)))) (-2507 (((-717) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4264))) (((-717) |#3| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#3| (-1023))))) (-2406 (($ $) NIL)) (-2222 (((-1177 |#3|) $) NIL) (($ (-528)) NIL (-1463 (-12 (|has| |#3| (-972 (-528))) (|has| |#3| (-1023))) (|has| |#3| (-981)))) (($ (-387 (-528))) NIL (-12 (|has| |#3| (-972 (-387 (-528)))) (|has| |#3| (-1023)))) (($ |#3|) NIL (|has| |#3| (-1023))) (((-802) $) NIL (|has| |#3| (-569 (-802))))) (-3742 (((-717)) NIL (|has| |#3| (-981)))) (-3451 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4264)))) (-1775 (($ $) NIL (|has| |#3| (-791)))) (-2690 (($ $ (-717)) NIL (|has| |#3| (-673))) (($ $ (-860)) NIL (|has| |#3| (-673)))) (-2969 (($) NIL (|has| |#3| (-128)) CONST)) (-2982 (($) NIL (|has| |#3| (-673)) CONST)) (-3245 (($ $) NIL (-12 (|has| |#3| (-215)) (|has| |#3| (-981)))) (($ $ (-717)) NIL (-12 (|has| |#3| (-215)) (|has| |#3| (-981)))) (($ $ (-1095)) NIL (-12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981)))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981)))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#3| (-839 (-1095))) (|has| |#3| (-981)))) (($ $ (-1 |#3| |#3|) (-717)) NIL (|has| |#3| (-981))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-981)))) (-2244 (((-110) $ $) NIL (-1463 (|has| |#3| (-739)) (|has| |#3| (-791))))) (-2220 (((-110) $ $) NIL (-1463 (|has| |#3| (-739)) (|has| |#3| (-791))))) (-2186 (((-110) $ $) NIL (|has| |#3| (-1023)))) (-2232 (((-110) $ $) NIL (-1463 (|has| |#3| (-739)) (|has| |#3| (-791))))) (-2208 (((-110) $ $) 17 (-1463 (|has| |#3| (-739)) (|has| |#3| (-791))))) (-2296 (($ $ |#3|) NIL (|has| |#3| (-343)))) (-2286 (($ $ $) NIL (|has| |#3| (-981))) (($ $) NIL (|has| |#3| (-981)))) (-2275 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-717)) NIL (|has| |#3| (-673))) (($ $ (-860)) NIL (|has| |#3| (-673)))) (* (($ (-528) $) NIL (|has| |#3| (-981))) (($ $ $) NIL (|has| |#3| (-673))) (($ $ |#3|) NIL (|has| |#3| (-673))) (($ |#3| $) NIL (|has| |#3| (-673))) (($ (-717) $) NIL (|has| |#3| (-128))) (($ (-860) $) NIL (|has| |#3| (-25)))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-1036 |#1| |#2| |#3|) (-220 |#1| |#3|) (-717) (-717) (-739)) (T -1036))
-NIL
-(-220 |#1| |#3|)
-((-1440 (((-595 (-1150 |#2| |#1|)) (-1150 |#2| |#1|) (-1150 |#2| |#1|)) 37)) (-4198 (((-528) (-1150 |#2| |#1|)) 69 (|has| |#1| (-431)))) (-2270 (((-528) (-1150 |#2| |#1|)) 54)) (-2802 (((-595 (-1150 |#2| |#1|)) (-1150 |#2| |#1|) (-1150 |#2| |#1|)) 45)) (-1240 (((-528) (-1150 |#2| |#1|) (-1150 |#2| |#1|)) 68 (|has| |#1| (-431)))) (-1245 (((-595 |#1|) (-1150 |#2| |#1|) (-1150 |#2| |#1|)) 48)) (-3355 (((-528) (-1150 |#2| |#1|) (-1150 |#2| |#1|)) 53)))
-(((-1037 |#1| |#2|) (-10 -7 (-15 -1440 ((-595 (-1150 |#2| |#1|)) (-1150 |#2| |#1|) (-1150 |#2| |#1|))) (-15 -2802 ((-595 (-1150 |#2| |#1|)) (-1150 |#2| |#1|) (-1150 |#2| |#1|))) (-15 -1245 ((-595 |#1|) (-1150 |#2| |#1|) (-1150 |#2| |#1|))) (-15 -3355 ((-528) (-1150 |#2| |#1|) (-1150 |#2| |#1|))) (-15 -2270 ((-528) (-1150 |#2| |#1|))) (IF (|has| |#1| (-431)) (PROGN (-15 -1240 ((-528) (-1150 |#2| |#1|) (-1150 |#2| |#1|))) (-15 -4198 ((-528) (-1150 |#2| |#1|)))) |%noBranch|)) (-766) (-1095)) (T -1037))
-((-4198 (*1 *2 *3) (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-431)) (-4 *4 (-766)) (-14 *5 (-1095)) (-5 *2 (-528)) (-5 *1 (-1037 *4 *5)))) (-1240 (*1 *2 *3 *3) (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-431)) (-4 *4 (-766)) (-14 *5 (-1095)) (-5 *2 (-528)) (-5 *1 (-1037 *4 *5)))) (-2270 (*1 *2 *3) (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-766)) (-14 *5 (-1095)) (-5 *2 (-528)) (-5 *1 (-1037 *4 *5)))) (-3355 (*1 *2 *3 *3) (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-766)) (-14 *5 (-1095)) (-5 *2 (-528)) (-5 *1 (-1037 *4 *5)))) (-1245 (*1 *2 *3 *3) (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-766)) (-14 *5 (-1095)) (-5 *2 (-595 *4)) (-5 *1 (-1037 *4 *5)))) (-2802 (*1 *2 *3 *3) (-12 (-4 *4 (-766)) (-14 *5 (-1095)) (-5 *2 (-595 (-1150 *5 *4))) (-5 *1 (-1037 *4 *5)) (-5 *3 (-1150 *5 *4)))) (-1440 (*1 *2 *3 *3) (-12 (-4 *4 (-766)) (-14 *5 (-1095)) (-5 *2 (-595 (-1150 *5 *4))) (-5 *1 (-1037 *4 *5)) (-5 *3 (-1150 *5 *4)))))
-(-10 -7 (-15 -1440 ((-595 (-1150 |#2| |#1|)) (-1150 |#2| |#1|) (-1150 |#2| |#1|))) (-15 -2802 ((-595 (-1150 |#2| |#1|)) (-1150 |#2| |#1|) (-1150 |#2| |#1|))) (-15 -1245 ((-595 |#1|) (-1150 |#2| |#1|) (-1150 |#2| |#1|))) (-15 -3355 ((-528) (-1150 |#2| |#1|) (-1150 |#2| |#1|))) (-15 -2270 ((-528) (-1150 |#2| |#1|))) (IF (|has| |#1| (-431)) (PROGN (-15 -1240 ((-528) (-1150 |#2| |#1|) (-1150 |#2| |#1|))) (-15 -4198 ((-528) (-1150 |#2| |#1|)))) |%noBranch|))
-((-3605 (((-3 (-528) "failed") |#2| (-1095) |#2| (-1078)) 17) (((-3 (-528) "failed") |#2| (-1095) (-786 |#2|)) 15) (((-3 (-528) "failed") |#2|) 54)))
-(((-1038 |#1| |#2|) (-10 -7 (-15 -3605 ((-3 (-528) "failed") |#2|)) (-15 -3605 ((-3 (-528) "failed") |#2| (-1095) (-786 |#2|))) (-15 -3605 ((-3 (-528) "failed") |#2| (-1095) |#2| (-1078)))) (-13 (-520) (-793) (-972 (-528)) (-591 (-528)) (-431)) (-13 (-27) (-1117) (-410 |#1|))) (T -1038))
-((-3605 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1095)) (-5 *5 (-1078)) (-4 *6 (-13 (-520) (-793) (-972 *2) (-591 *2) (-431))) (-5 *2 (-528)) (-5 *1 (-1038 *6 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *6))))) (-3605 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1095)) (-5 *5 (-786 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *6))) (-4 *6 (-13 (-520) (-793) (-972 *2) (-591 *2) (-431))) (-5 *2 (-528)) (-5 *1 (-1038 *6 *3)))) (-3605 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-520) (-793) (-972 *2) (-591 *2) (-431))) (-5 *2 (-528)) (-5 *1 (-1038 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *4))))))
-(-10 -7 (-15 -3605 ((-3 (-528) "failed") |#2|)) (-15 -3605 ((-3 (-528) "failed") |#2| (-1095) (-786 |#2|))) (-15 -3605 ((-3 (-528) "failed") |#2| (-1095) |#2| (-1078))))
-((-3605 (((-3 (-528) "failed") (-387 (-891 |#1|)) (-1095) (-387 (-891 |#1|)) (-1078)) 35) (((-3 (-528) "failed") (-387 (-891 |#1|)) (-1095) (-786 (-387 (-891 |#1|)))) 30) (((-3 (-528) "failed") (-387 (-891 |#1|))) 13)))
-(((-1039 |#1|) (-10 -7 (-15 -3605 ((-3 (-528) "failed") (-387 (-891 |#1|)))) (-15 -3605 ((-3 (-528) "failed") (-387 (-891 |#1|)) (-1095) (-786 (-387 (-891 |#1|))))) (-15 -3605 ((-3 (-528) "failed") (-387 (-891 |#1|)) (-1095) (-387 (-891 |#1|)) (-1078)))) (-431)) (T -1039))
-((-3605 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-387 (-891 *6))) (-5 *4 (-1095)) (-5 *5 (-1078)) (-4 *6 (-431)) (-5 *2 (-528)) (-5 *1 (-1039 *6)))) (-3605 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1095)) (-5 *5 (-786 (-387 (-891 *6)))) (-5 *3 (-387 (-891 *6))) (-4 *6 (-431)) (-5 *2 (-528)) (-5 *1 (-1039 *6)))) (-3605 (*1 *2 *3) (|partial| -12 (-5 *3 (-387 (-891 *4))) (-4 *4 (-431)) (-5 *2 (-528)) (-5 *1 (-1039 *4)))))
-(-10 -7 (-15 -3605 ((-3 (-528) "failed") (-387 (-891 |#1|)))) (-15 -3605 ((-3 (-528) "failed") (-387 (-891 |#1|)) (-1095) (-786 (-387 (-891 |#1|))))) (-15 -3605 ((-3 (-528) "failed") (-387 (-891 |#1|)) (-1095) (-387 (-891 |#1|)) (-1078))))
-((-2207 (((-110) $ $) NIL)) (-1686 (((-171) $) 8)) (-1630 (((-595 (-171)) $) 10)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 19)) (-2186 (((-110) $ $) 13)))
-(((-1040) (-13 (-1023) (-10 -8 (-15 -1686 ((-171) $)) (-15 -1630 ((-595 (-171)) $))))) (T -1040))
-((-1686 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1040)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-595 (-171))) (-5 *1 (-1040)))))
-(-13 (-1023) (-10 -8 (-15 -1686 ((-171) $)) (-15 -1630 ((-595 (-171)) $))))
-((-1506 (((-296 (-528)) (-47)) 12)))
-(((-1041) (-10 -7 (-15 -1506 ((-296 (-528)) (-47))))) (T -1041))
-((-1506 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-296 (-528))) (-5 *1 (-1041)))))
-(-10 -7 (-15 -1506 ((-296 (-528)) (-47))))
-((-2207 (((-110) $ $) NIL)) (-2355 (($ $) 41)) (-1359 (((-110) $) 65)) (-2993 (($ $ $) 48)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 85)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3251 (($ $ $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2264 (($ $ $ $) 74)) (-1232 (($ $) NIL)) (-2705 (((-398 $) $) NIL)) (-2213 (((-110) $ $) NIL)) (-3605 (((-528) $) NIL)) (-2950 (($ $ $) 71)) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-528) "failed") $) NIL)) (-2409 (((-528) $) NIL)) (-3519 (($ $ $) 59)) (-2120 (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) 79) (((-635 (-528)) (-635 $)) 28)) (-1312 (((-3 $ "failed") $) NIL)) (-1793 (((-3 (-387 (-528)) "failed") $) NIL)) (-3650 (((-110) $) NIL)) (-3099 (((-387 (-528)) $) NIL)) (-1338 (($) 82) (($ $) 83)) (-3498 (($ $ $) 58)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL)) (-2124 (((-110) $) NIL)) (-2146 (($ $ $ $) NIL)) (-1841 (($ $ $) 80)) (-3657 (((-110) $) NIL)) (-1752 (($ $ $) NIL)) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL)) (-1297 (((-110) $) 66)) (-2580 (((-110) $) 64)) (-3617 (($ $) 42)) (-3296 (((-3 $ "failed") $) NIL)) (-3710 (((-110) $) 75)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-1575 (($ $ $ $) 72)) (-1436 (($ $ $) 68) (($) 39)) (-1736 (($ $ $) 67) (($) 38)) (-3019 (($ $) NIL)) (-1584 (($ $) 70)) (-2057 (($ $ $) NIL) (($ (-595 $)) NIL)) (-3034 (((-1078) $) NIL)) (-1627 (($ $ $) NIL)) (-4197 (($) NIL T CONST)) (-3715 (($ $) 50)) (-2495 (((-1042) $) NIL) (($ $) 69)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL)) (-2088 (($ $ $) 62) (($ (-595 $)) NIL)) (-3918 (($ $) NIL)) (-2437 (((-398 $) $) NIL)) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL)) (-3477 (((-3 $ "failed") $ $) NIL)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL)) (-3578 (((-110) $) NIL)) (-3973 (((-717) $) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 61)) (-3235 (($ $ (-717)) NIL) (($ $) NIL)) (-1691 (($ $) 51)) (-2406 (($ $) NIL)) (-3155 (((-528) $) 32) (((-504) $) NIL) (((-831 (-528)) $) NIL) (((-359) $) NIL) (((-207) $) NIL)) (-2222 (((-802) $) 31) (($ (-528)) 81) (($ $) NIL) (($ (-528)) 81)) (-3742 (((-717)) NIL)) (-2608 (((-110) $ $) NIL)) (-3709 (($ $ $) NIL)) (-2911 (($) 37)) (-4016 (((-110) $ $) NIL)) (-2901 (($ $ $ $) 73)) (-1775 (($ $) 63)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2436 (($ $ $) 44)) (-2969 (($) 35 T CONST)) (-1462 (($ $ $) 47)) (-2982 (($) 36 T CONST)) (-1256 (((-1078) $) 21) (((-1078) $ (-110)) 23) (((-1182) (-768) $) 24) (((-1182) (-768) $ (-110)) 25)) (-1475 (($ $) 45)) (-3245 (($ $ (-717)) NIL) (($ $) NIL)) (-1446 (($ $ $) 46)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 40)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 49)) (-2425 (($ $ $) 43)) (-2286 (($ $) 52) (($ $ $) 54)) (-2275 (($ $ $) 53)) (** (($ $ (-860)) NIL) (($ $ (-717)) 57)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 34) (($ $ $) 55)))
-(((-1042) (-13 (-513) (-610) (-774) (-10 -8 (-6 -4251) (-6 -4256) (-6 -4252) (-15 -1736 ($)) (-15 -1436 ($)) (-15 -3617 ($ $)) (-15 -2355 ($ $)) (-15 -2425 ($ $ $)) (-15 -2436 ($ $ $)) (-15 -2993 ($ $ $)) (-15 -1475 ($ $)) (-15 -1446 ($ $ $)) (-15 -1462 ($ $ $))))) (T -1042))
-((-2436 (*1 *1 *1 *1) (-5 *1 (-1042))) (-2425 (*1 *1 *1 *1) (-5 *1 (-1042))) (-2355 (*1 *1 *1) (-5 *1 (-1042))) (-1736 (*1 *1) (-5 *1 (-1042))) (-1436 (*1 *1) (-5 *1 (-1042))) (-3617 (*1 *1 *1) (-5 *1 (-1042))) (-2993 (*1 *1 *1 *1) (-5 *1 (-1042))) (-1475 (*1 *1 *1) (-5 *1 (-1042))) (-1446 (*1 *1 *1 *1) (-5 *1 (-1042))) (-1462 (*1 *1 *1 *1) (-5 *1 (-1042))))
-(-13 (-513) (-610) (-774) (-10 -8 (-6 -4251) (-6 -4256) (-6 -4252) (-15 -1736 ($)) (-15 -1436 ($)) (-15 -3617 ($ $)) (-15 -2355 ($ $)) (-15 -2425 ($ $ $)) (-15 -2436 ($ $ $)) (-15 -2993 ($ $ $)) (-15 -1475 ($ $)) (-15 -1446 ($ $ $)) (-15 -1462 ($ $ $))))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-1513 ((|#1| $) 44)) (-3535 (((-110) $ (-717)) 8)) (-2816 (($) 7 T CONST)) (-3712 ((|#1| |#1| $) 46)) (-4113 ((|#1| $) 45)) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) 9)) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35)) (-3358 (((-110) $ (-717)) 10)) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-3934 ((|#1| $) 39)) (-1950 (($ |#1| $) 40)) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-1390 ((|#1| $) 41)) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3972 (((-717) $) 43)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-2164 (($ (-595 |#1|)) 42)) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-1043 |#1|) (-133) (-1131)) (T -1043))
-((-3712 (*1 *2 *2 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1131)))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1131)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1131)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-1131)) (-5 *2 (-717)))))
-(-13 (-104 |t#1|) (-10 -8 (-6 -4264) (-15 -3712 (|t#1| |t#1| $)) (-15 -4113 (|t#1| $)) (-15 -1513 (|t#1| $)) (-15 -3972 ((-717) $))))
-(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1023)) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-569 (-802)))) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-467 |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-1023) |has| |#1| (-1023)) ((-1131) . T))
-((-1323 ((|#3| $) 76)) (-3001 (((-3 (-528) "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-2409 (((-528) $) NIL) (((-387 (-528)) $) NIL) ((|#3| $) 37)) (-2120 (((-635 (-528)) (-635 $)) NIL) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL) (((-2 (|:| -2163 (-635 |#3|)) (|:| |vec| (-1177 |#3|))) (-635 $) (-1177 $)) 73) (((-635 |#3|) (-635 $)) 65)) (-3235 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-717)) NIL) (($ $ (-595 (-1095)) (-595 (-717))) NIL) (($ $ (-1095) (-717)) NIL) (($ $ (-595 (-1095))) NIL) (($ $ (-1095)) NIL) (($ $ (-717)) NIL) (($ $) NIL)) (-2255 ((|#3| $) 78)) (-1577 ((|#4| $) 32)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ (-387 (-528))) NIL) (($ |#3|) 16)) (** (($ $ (-860)) NIL) (($ $ (-717)) 15) (($ $ (-528)) 82)))
-(((-1044 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-528))) (-15 -2255 (|#3| |#1|)) (-15 -1323 (|#3| |#1|)) (-15 -1577 (|#4| |#1|)) (-15 -2120 ((-635 |#3|) (-635 |#1|))) (-15 -2120 ((-2 (|:| -2163 (-635 |#3|)) (|:| |vec| (-1177 |#3|))) (-635 |#1|) (-1177 |#1|))) (-15 -2120 ((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 |#1|) (-1177 |#1|))) (-15 -2120 ((-635 (-528)) (-635 |#1|))) (-15 -2409 (|#3| |#1|)) (-15 -3001 ((-3 |#3| "failed") |#1|)) (-15 -2222 (|#1| |#3|)) (-15 -2222 (|#1| (-387 (-528)))) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -2409 ((-387 (-528)) |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -2409 ((-528) |#1|)) (-15 -3235 (|#1| |#1|)) (-15 -3235 (|#1| |#1| (-717))) (-15 -3235 (|#1| |#1| (-1095))) (-15 -3235 (|#1| |#1| (-595 (-1095)))) (-15 -3235 (|#1| |#1| (-1095) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)) (-595 (-717)))) (-15 -3235 (|#1| |#1| (-1 |#3| |#3|) (-717))) (-15 -3235 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2222 (|#1| (-528))) (-15 ** (|#1| |#1| (-717))) (-15 ** (|#1| |#1| (-860))) (-15 -2222 ((-802) |#1|))) (-1045 |#2| |#3| |#4| |#5|) (-717) (-981) (-220 |#2| |#3|) (-220 |#2| |#3|)) (T -1044))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-528))) (-15 -2255 (|#3| |#1|)) (-15 -1323 (|#3| |#1|)) (-15 -1577 (|#4| |#1|)) (-15 -2120 ((-635 |#3|) (-635 |#1|))) (-15 -2120 ((-2 (|:| -2163 (-635 |#3|)) (|:| |vec| (-1177 |#3|))) (-635 |#1|) (-1177 |#1|))) (-15 -2120 ((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 |#1|) (-1177 |#1|))) (-15 -2120 ((-635 (-528)) (-635 |#1|))) (-15 -2409 (|#3| |#1|)) (-15 -3001 ((-3 |#3| "failed") |#1|)) (-15 -2222 (|#1| |#3|)) (-15 -2222 (|#1| (-387 (-528)))) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -2409 ((-387 (-528)) |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -2409 ((-528) |#1|)) (-15 -3235 (|#1| |#1|)) (-15 -3235 (|#1| |#1| (-717))) (-15 -3235 (|#1| |#1| (-1095))) (-15 -3235 (|#1| |#1| (-595 (-1095)))) (-15 -3235 (|#1| |#1| (-1095) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)) (-595 (-717)))) (-15 -3235 (|#1| |#1| (-1 |#3| |#3|) (-717))) (-15 -3235 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2222 (|#1| (-528))) (-15 ** (|#1| |#1| (-717))) (-15 ** (|#1| |#1| (-860))) (-15 -2222 ((-802) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-1323 ((|#2| $) 72)) (-1987 (((-110) $) 112)) (-3181 (((-3 $ "failed") $ $) 19)) (-2300 (((-110) $) 110)) (-3535 (((-110) $ (-717)) 102)) (-1626 (($ |#2|) 75)) (-2816 (($) 17 T CONST)) (-2614 (($ $) 129 (|has| |#2| (-288)))) (-4203 ((|#3| $ (-528)) 124)) (-3001 (((-3 (-528) "failed") $) 86 (|has| |#2| (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) 84 (|has| |#2| (-972 (-387 (-528))))) (((-3 |#2| "failed") $) 81)) (-2409 (((-528) $) 87 (|has| |#2| (-972 (-528)))) (((-387 (-528)) $) 85 (|has| |#2| (-972 (-387 (-528))))) ((|#2| $) 80)) (-2120 (((-635 (-528)) (-635 $)) 79 (|has| |#2| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) 78 (|has| |#2| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 $) (-1177 $)) 77) (((-635 |#2|) (-635 $)) 76)) (-1312 (((-3 $ "failed") $) 34)) (-3090 (((-717) $) 130 (|has| |#2| (-520)))) (-2742 ((|#2| $ (-528) (-528)) 122)) (-3342 (((-595 |#2|) $) 95 (|has| $ (-6 -4264)))) (-1297 (((-110) $) 31)) (-1877 (((-717) $) 131 (|has| |#2| (-520)))) (-1809 (((-595 |#4|) $) 132 (|has| |#2| (-520)))) (-1358 (((-717) $) 118)) (-1370 (((-717) $) 119)) (-2029 (((-110) $ (-717)) 103)) (-3997 ((|#2| $) 67 (|has| |#2| (-6 (-4266 "*"))))) (-3065 (((-528) $) 114)) (-2567 (((-528) $) 116)) (-2604 (((-595 |#2|) $) 94 (|has| $ (-6 -4264)))) (-2408 (((-110) |#2| $) 92 (-12 (|has| |#2| (-1023)) (|has| $ (-6 -4264))))) (-3224 (((-528) $) 115)) (-1268 (((-528) $) 117)) (-1553 (($ (-595 (-595 |#2|))) 109)) (-2800 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-2062 (((-595 (-595 |#2|)) $) 120)) (-3358 (((-110) $ (-717)) 104)) (-3034 (((-1078) $) 9)) (-1666 (((-3 $ "failed") $) 66 (|has| |#2| (-343)))) (-2495 (((-1042) $) 10)) (-3477 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-520)))) (-1818 (((-110) (-1 (-110) |#2|) $) 97 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#2|))) 91 (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-275 |#2|)) 90 (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-595 |#2|) (-595 |#2|)) 88 (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))) (-3744 (((-110) $ $) 108)) (-1972 (((-110) $) 105)) (-2147 (($) 106)) (-3043 ((|#2| $ (-528) (-528) |#2|) 123) ((|#2| $ (-528) (-528)) 121)) (-3235 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-717)) 51) (($ $ (-595 (-1095)) (-595 (-717))) 44 (|has| |#2| (-839 (-1095)))) (($ $ (-1095) (-717)) 43 (|has| |#2| (-839 (-1095)))) (($ $ (-595 (-1095))) 42 (|has| |#2| (-839 (-1095)))) (($ $ (-1095)) 41 (|has| |#2| (-839 (-1095)))) (($ $ (-717)) 39 (|has| |#2| (-215))) (($ $) 37 (|has| |#2| (-215)))) (-2255 ((|#2| $) 71)) (-3751 (($ (-595 |#2|)) 74)) (-2851 (((-110) $) 111)) (-1577 ((|#3| $) 73)) (-3166 ((|#2| $) 68 (|has| |#2| (-6 (-4266 "*"))))) (-2507 (((-717) (-1 (-110) |#2|) $) 96 (|has| $ (-6 -4264))) (((-717) |#2| $) 93 (-12 (|has| |#2| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 107)) (-3946 ((|#4| $ (-528)) 125)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ (-387 (-528))) 83 (|has| |#2| (-972 (-387 (-528))))) (($ |#2|) 82)) (-3742 (((-717)) 29)) (-3451 (((-110) (-1 (-110) |#2|) $) 98 (|has| $ (-6 -4264)))) (-1428 (((-110) $) 113)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-3245 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-717)) 49) (($ $ (-595 (-1095)) (-595 (-717))) 48 (|has| |#2| (-839 (-1095)))) (($ $ (-1095) (-717)) 47 (|has| |#2| (-839 (-1095)))) (($ $ (-595 (-1095))) 46 (|has| |#2| (-839 (-1095)))) (($ $ (-1095)) 45 (|has| |#2| (-839 (-1095)))) (($ $ (-717)) 40 (|has| |#2| (-215))) (($ $) 38 (|has| |#2| (-215)))) (-2186 (((-110) $ $) 6)) (-2296 (($ $ |#2|) 128 (|has| |#2| (-343)))) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32) (($ $ (-528)) 65 (|has| |#2| (-343)))) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-2138 (((-717) $) 101 (|has| $ (-6 -4264)))))
-(((-1045 |#1| |#2| |#3| |#4|) (-133) (-717) (-981) (-220 |t#1| |t#2|) (-220 |t#1| |t#2|)) (T -1045))
-((-1626 (*1 *1 *2) (-12 (-4 *2 (-981)) (-4 *1 (-1045 *3 *2 *4 *5)) (-4 *4 (-220 *3 *2)) (-4 *5 (-220 *3 *2)))) (-3751 (*1 *1 *2) (-12 (-5 *2 (-595 *4)) (-4 *4 (-981)) (-4 *1 (-1045 *3 *4 *5 *6)) (-4 *5 (-220 *3 *4)) (-4 *6 (-220 *3 *4)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *2 *5)) (-4 *4 (-981)) (-4 *5 (-220 *3 *4)) (-4 *2 (-220 *3 *4)))) (-1323 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *2 *4 *5)) (-4 *4 (-220 *3 *2)) (-4 *5 (-220 *3 *2)) (-4 *2 (-981)))) (-2255 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *2 *4 *5)) (-4 *4 (-220 *3 *2)) (-4 *5 (-220 *3 *2)) (-4 *2 (-981)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1045 *3 *4 *5 *2)) (-4 *4 (-981)) (-4 *5 (-220 *3 *4)) (-4 *2 (-220 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *2 *5)) (-4 *4 (-981)) (-4 *2 (-220 *3 *4)) (-4 *5 (-220 *3 *4)))) (-3166 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *2 *4 *5)) (-4 *4 (-220 *3 *2)) (-4 *5 (-220 *3 *2)) (|has| *2 (-6 (-4266 "*"))) (-4 *2 (-981)))) (-3997 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *2 *4 *5)) (-4 *4 (-220 *3 *2)) (-4 *5 (-220 *3 *2)) (|has| *2 (-6 (-4266 "*"))) (-4 *2 (-981)))) (-1666 (*1 *1 *1) (|partial| -12 (-4 *1 (-1045 *2 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-220 *2 *3)) (-4 *5 (-220 *2 *3)) (-4 *3 (-343)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-4 *1 (-1045 *3 *4 *5 *6)) (-4 *4 (-981)) (-4 *5 (-220 *3 *4)) (-4 *6 (-220 *3 *4)) (-4 *4 (-343)))))
-(-13 (-213 |t#2|) (-109 |t#2| |t#2|) (-983 |t#1| |t#1| |t#2| |t#3| |t#4|) (-391 |t#2|) (-357 |t#2|) (-10 -8 (IF (|has| |t#2| (-162)) (-6 (-664 |t#2|)) |%noBranch|) (-15 -1626 ($ |t#2|)) (-15 -3751 ($ (-595 |t#2|))) (-15 -1577 (|t#3| $)) (-15 -1323 (|t#2| $)) (-15 -2255 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4266 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -3166 (|t#2| $)) (-15 -3997 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-343)) (PROGN (-15 -1666 ((-3 $ "failed") $)) (-15 ** ($ $ (-528)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4266 "*"))) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-569 (-802)) . T) ((-213 |#2|) . T) ((-215) |has| |#2| (-215)) ((-290 |#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))) ((-357 |#2|) . T) ((-391 |#2|) . T) ((-467 |#2|) . T) ((-489 |#2| |#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))) ((-597 |#2|) . T) ((-597 $) . T) ((-591 (-528)) |has| |#2| (-591 (-528))) ((-591 |#2|) . T) ((-664 |#2|) -1463 (|has| |#2| (-162)) (|has| |#2| (-6 (-4266 "*")))) ((-673) . T) ((-839 (-1095)) |has| |#2| (-839 (-1095))) ((-983 |#1| |#1| |#2| |#3| |#4|) . T) ((-972 (-387 (-528))) |has| |#2| (-972 (-387 (-528)))) ((-972 (-528)) |has| |#2| (-972 (-528))) ((-972 |#2|) . T) ((-986 |#2|) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1131) . T))
-((-4125 ((|#4| |#4|) 70)) (-1936 ((|#4| |#4|) 65)) (-1443 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1400 (-595 |#3|))) |#4| |#3|) 78)) (-3635 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-2845 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67)))
-(((-1046 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1936 (|#4| |#4|)) (-15 -2845 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -4125 (|#4| |#4|)) (-15 -3635 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1443 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1400 (-595 |#3|))) |#4| |#3|))) (-288) (-353 |#1|) (-353 |#1|) (-633 |#1| |#2| |#3|)) (T -1046))
-((-1443 (*1 *2 *3 *4) (-12 (-4 *5 (-288)) (-4 *6 (-353 *5)) (-4 *4 (-353 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1400 (-595 *4)))) (-5 *1 (-1046 *5 *6 *4 *3)) (-4 *3 (-633 *5 *6 *4)))) (-3635 (*1 *2 *3) (-12 (-4 *4 (-288)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1046 *4 *5 *6 *3)) (-4 *3 (-633 *4 *5 *6)))) (-4125 (*1 *2 *2) (-12 (-4 *3 (-288)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *1 (-1046 *3 *4 *5 *2)) (-4 *2 (-633 *3 *4 *5)))) (-2845 (*1 *2 *3) (-12 (-4 *4 (-288)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1046 *4 *5 *6 *3)) (-4 *3 (-633 *4 *5 *6)))) (-1936 (*1 *2 *2) (-12 (-4 *3 (-288)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *1 (-1046 *3 *4 *5 *2)) (-4 *2 (-633 *3 *4 *5)))))
-(-10 -7 (-15 -1936 (|#4| |#4|)) (-15 -2845 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -4125 (|#4| |#4|)) (-15 -3635 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1443 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1400 (-595 |#3|))) |#4| |#3|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 17)) (-2565 (((-595 |#2|) $) 161)) (-2402 (((-1091 $) $ |#2|) 54) (((-1091 |#1|) $) 43)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 110 (|has| |#1| (-520)))) (-1738 (($ $) 112 (|has| |#1| (-520)))) (-1811 (((-110) $) 114 (|has| |#1| (-520)))) (-4042 (((-717) $) NIL) (((-717) $ (-595 |#2|)) 194)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-1232 (($ $) NIL (|has| |#1| (-431)))) (-2705 (((-398 $) $) NIL (|has| |#1| (-431)))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#1| "failed") $) 158) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-3 (-528) "failed") $) NIL (|has| |#1| (-972 (-528)))) (((-3 |#2| "failed") $) NIL)) (-2409 ((|#1| $) 156) (((-387 (-528)) $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-528) $) NIL (|has| |#1| (-972 (-528)))) ((|#2| $) NIL)) (-1606 (($ $ $ |#2|) NIL (|has| |#1| (-162)))) (-2388 (($ $) 198)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) NIL) (((-635 |#1|) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) 82)) (-1551 (($ $) NIL (|has| |#1| (-431))) (($ $ |#2|) NIL (|has| |#1| (-431)))) (-2376 (((-595 $) $) NIL)) (-2124 (((-110) $) NIL (|has| |#1| (-848)))) (-4047 (($ $ |#1| (-500 |#2|) $) NIL)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (-12 (|has| |#1| (-825 (-359))) (|has| |#2| (-825 (-359))))) (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (-12 (|has| |#1| (-825 (-528))) (|has| |#2| (-825 (-528)))))) (-1297 (((-110) $) 19)) (-1224 (((-717) $) 26)) (-2557 (($ (-1091 |#1|) |#2|) 48) (($ (-1091 $) |#2|) 64)) (-3737 (((-595 $) $) NIL)) (-2195 (((-110) $) 32)) (-2548 (($ |#1| (-500 |#2|)) 71) (($ $ |#2| (-717)) 52) (($ $ (-595 |#2|) (-595 (-717))) NIL)) (-3275 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $ |#2|) NIL)) (-3499 (((-500 |#2|) $) 188) (((-717) $ |#2|) 189) (((-595 (-717)) $ (-595 |#2|)) 190)) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-1264 (($ (-1 (-500 |#2|) (-500 |#2|)) $) NIL)) (-3106 (($ (-1 |#1| |#1|) $) 122)) (-3288 (((-3 |#2| "failed") $) 163)) (-2686 (($ $) 197)) (-2697 ((|#1| $) 37)) (-2057 (($ (-595 $)) NIL (|has| |#1| (-431))) (($ $ $) NIL (|has| |#1| (-431)))) (-3034 (((-1078) $) NIL)) (-3024 (((-3 (-595 $) "failed") $) NIL)) (-1281 (((-3 (-595 $) "failed") $) NIL)) (-3352 (((-3 (-2 (|:| |var| |#2|) (|:| -2564 (-717))) "failed") $) NIL)) (-2495 (((-1042) $) NIL)) (-2662 (((-110) $) 33)) (-2675 ((|#1| $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 140 (|has| |#1| (-431)))) (-2088 (($ (-595 $)) 145 (|has| |#1| (-431))) (($ $ $) 132 (|has| |#1| (-431)))) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#1| (-848)))) (-2437 (((-398 $) $) NIL (|has| |#1| (-848)))) (-3477 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-520))) (((-3 $ "failed") $ $) 120 (|has| |#1| (-520)))) (-4014 (($ $ (-595 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL) (($ $ |#2| |#1|) 166) (($ $ (-595 |#2|) (-595 |#1|)) 179) (($ $ |#2| $) 165) (($ $ (-595 |#2|) (-595 $)) 178)) (-1372 (($ $ |#2|) NIL (|has| |#1| (-162)))) (-3235 (($ $ |#2|) 196) (($ $ (-595 |#2|)) NIL) (($ $ |#2| (-717)) NIL) (($ $ (-595 |#2|) (-595 (-717))) NIL)) (-2935 (((-500 |#2|) $) 184) (((-717) $ |#2|) 180) (((-595 (-717)) $ (-595 |#2|)) 182)) (-3155 (((-831 (-359)) $) NIL (-12 (|has| |#1| (-570 (-831 (-359)))) (|has| |#2| (-570 (-831 (-359)))))) (((-831 (-528)) $) NIL (-12 (|has| |#1| (-570 (-831 (-528)))) (|has| |#2| (-570 (-831 (-528)))))) (((-504) $) NIL (-12 (|has| |#1| (-570 (-504))) (|has| |#2| (-570 (-504)))))) (-1618 ((|#1| $) 128 (|has| |#1| (-431))) (($ $ |#2|) 131 (|has| |#1| (-431)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-848))))) (-2222 (((-802) $) 151) (($ (-528)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-520))) (($ (-387 (-528))) NIL (-1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-972 (-387 (-528))))))) (-3348 (((-595 |#1|) $) 154)) (-3216 ((|#1| $ (-500 |#2|)) 73) (($ $ |#2| (-717)) NIL) (($ $ (-595 |#2|) (-595 (-717))) NIL)) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| |#1| (-848))) (|has| |#1| (-138))))) (-3742 (((-717)) 79)) (-1997 (($ $ $ (-717)) NIL (|has| |#1| (-162)))) (-4016 (((-110) $ $) 117 (|has| |#1| (-520)))) (-2690 (($ $ (-860)) 102) (($ $ (-717)) 104)) (-2969 (($) 12 T CONST)) (-2982 (($) 14 T CONST)) (-3245 (($ $ |#2|) NIL) (($ $ (-595 |#2|)) NIL) (($ $ |#2| (-717)) NIL) (($ $ (-595 |#2|) (-595 (-717))) NIL)) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) 97)) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2296 (($ $ |#1|) 126 (|has| |#1| (-343)))) (-2286 (($ $) 85) (($ $ $) 95)) (-2275 (($ $ $) 49)) (** (($ $ (-860)) 103) (($ $ (-717)) 100)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 88) (($ $ $) 65) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528))))) (($ (-387 (-528)) $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ |#1| $) 90) (($ $ |#1|) NIL)))
-(((-1047 |#1| |#2|) (-888 |#1| (-500 |#2|) |#2|) (-981) (-793)) (T -1047))
-NIL
-(-888 |#1| (-500 |#2|) |#2|)
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2565 (((-595 |#2|) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#1| (-520)))) (-1738 (($ $) NIL (|has| |#1| (-520)))) (-1811 (((-110) $) NIL (|has| |#1| (-520)))) (-2880 (($ $) 143 (|has| |#1| (-37 (-387 (-528)))))) (-2735 (($ $) 119 (|has| |#1| (-37 (-387 (-528)))))) (-3181 (((-3 $ "failed") $ $) NIL)) (-2450 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2859 (($ $) 139 (|has| |#1| (-37 (-387 (-528)))))) (-2712 (($ $) 115 (|has| |#1| (-37 (-387 (-528)))))) (-2904 (($ $) 147 (|has| |#1| (-37 (-387 (-528)))))) (-2761 (($ $) 123 (|has| |#1| (-37 (-387 (-528)))))) (-2816 (($) NIL T CONST)) (-2388 (($ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1872 (((-891 |#1|) $ (-717)) NIL) (((-891 |#1|) $ (-717) (-717)) NIL)) (-1900 (((-110) $) NIL)) (-1505 (($) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3689 (((-717) $ |#2|) NIL) (((-717) $ |#2| (-717)) NIL)) (-1297 (((-110) $) NIL)) (-2796 (($ $ (-528)) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2195 (((-110) $) NIL)) (-2548 (($ $ (-595 |#2|) (-595 (-500 |#2|))) NIL) (($ $ |#2| (-500 |#2|)) NIL) (($ |#1| (-500 |#2|)) NIL) (($ $ |#2| (-717)) 58) (($ $ (-595 |#2|) (-595 (-717))) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-2097 (($ $) 113 (|has| |#1| (-37 (-387 (-528)))))) (-2686 (($ $) NIL)) (-2697 ((|#1| $) NIL)) (-3034 (((-1078) $) NIL)) (-1923 (($ $ |#2|) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ |#2| |#1|) 166 (|has| |#1| (-37 (-387 (-528)))))) (-2495 (((-1042) $) NIL)) (-1638 (($ (-1 $) |#2| |#1|) 165 (|has| |#1| (-37 (-387 (-528)))))) (-3740 (($ $ (-717)) 15)) (-3477 (((-3 $ "failed") $ $) NIL (|has| |#1| (-520)))) (-2656 (($ $) 111 (|has| |#1| (-37 (-387 (-528)))))) (-4014 (($ $ |#2| $) 97) (($ $ (-595 |#2|) (-595 $)) 90) (($ $ (-595 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL)) (-3235 (($ $ |#2|) 100) (($ $ (-595 |#2|)) NIL) (($ $ |#2| (-717)) NIL) (($ $ (-595 |#2|) (-595 (-717))) NIL)) (-2935 (((-500 |#2|) $) NIL)) (-3482 (((-1 (-1076 |#3|) |#3|) (-595 |#2|) (-595 (-1076 |#3|))) 79)) (-2917 (($ $) 149 (|has| |#1| (-37 (-387 (-528)))))) (-2773 (($ $) 125 (|has| |#1| (-37 (-387 (-528)))))) (-2892 (($ $) 145 (|has| |#1| (-37 (-387 (-528)))))) (-2749 (($ $) 121 (|has| |#1| (-37 (-387 (-528)))))) (-2869 (($ $) 141 (|has| |#1| (-37 (-387 (-528)))))) (-2724 (($ $) 117 (|has| |#1| (-37 (-387 (-528)))))) (-3534 (($ $) 17)) (-2222 (((-802) $) 182) (($ (-528)) NIL) (($ |#1|) 44 (|has| |#1| (-162))) (($ $) NIL (|has| |#1| (-520))) (($ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528))))) (($ |#2|) 65) (($ |#3|) 63)) (-3216 ((|#1| $ (-500 |#2|)) NIL) (($ $ |#2| (-717)) NIL) (($ $ (-595 |#2|) (-595 (-717))) NIL) ((|#3| $ (-717)) 42)) (-3749 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3742 (((-717)) NIL)) (-2953 (($ $) 155 (|has| |#1| (-37 (-387 (-528)))))) (-2811 (($ $) 131 (|has| |#1| (-37 (-387 (-528)))))) (-4016 (((-110) $ $) NIL (|has| |#1| (-520)))) (-2928 (($ $) 151 (|has| |#1| (-37 (-387 (-528)))))) (-2784 (($ $) 127 (|has| |#1| (-37 (-387 (-528)))))) (-2981 (($ $) 159 (|has| |#1| (-37 (-387 (-528)))))) (-2836 (($ $) 135 (|has| |#1| (-37 (-387 (-528)))))) (-3592 (($ $) 161 (|has| |#1| (-37 (-387 (-528)))))) (-2846 (($ $) 137 (|has| |#1| (-37 (-387 (-528)))))) (-2967 (($ $) 157 (|has| |#1| (-37 (-387 (-528)))))) (-2825 (($ $) 133 (|has| |#1| (-37 (-387 (-528)))))) (-2940 (($ $) 153 (|has| |#1| (-37 (-387 (-528)))))) (-2797 (($ $) 129 (|has| |#1| (-37 (-387 (-528)))))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 18 T CONST)) (-2982 (($) 10 T CONST)) (-3245 (($ $ |#2|) NIL) (($ $ (-595 |#2|)) NIL) (($ $ |#2| (-717)) NIL) (($ $ (-595 |#2|) (-595 (-717))) NIL)) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ |#1|) 184 (|has| |#1| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) 61)) (** (($ $ (-860)) NIL) (($ $ (-717)) 70) (($ $ $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) 103 (|has| |#1| (-37 (-387 (-528)))))) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 60) (($ $ (-387 (-528))) 108 (|has| |#1| (-37 (-387 (-528))))) (($ (-387 (-528)) $) 106 (|has| |#1| (-37 (-387 (-528))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46)))
-(((-1048 |#1| |#2| |#3|) (-13 (-687 |#1| |#2|) (-10 -8 (-15 -3216 (|#3| $ (-717))) (-15 -2222 ($ |#2|)) (-15 -2222 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3482 ((-1 (-1076 |#3|) |#3|) (-595 |#2|) (-595 (-1076 |#3|)))) (IF (|has| |#1| (-37 (-387 (-528)))) (PROGN (-15 -1923 ($ $ |#2| |#1|)) (-15 -1638 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-981) (-793) (-888 |#1| (-500 |#2|) |#2|)) (T -1048))
-((-3216 (*1 *2 *1 *3) (-12 (-5 *3 (-717)) (-4 *2 (-888 *4 (-500 *5) *5)) (-5 *1 (-1048 *4 *5 *2)) (-4 *4 (-981)) (-4 *5 (-793)))) (-2222 (*1 *1 *2) (-12 (-4 *3 (-981)) (-4 *2 (-793)) (-5 *1 (-1048 *3 *2 *4)) (-4 *4 (-888 *3 (-500 *2) *2)))) (-2222 (*1 *1 *2) (-12 (-4 *3 (-981)) (-4 *4 (-793)) (-5 *1 (-1048 *3 *4 *2)) (-4 *2 (-888 *3 (-500 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-981)) (-4 *4 (-793)) (-5 *1 (-1048 *3 *4 *2)) (-4 *2 (-888 *3 (-500 *4) *4)))) (-3482 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *6)) (-5 *4 (-595 (-1076 *7))) (-4 *6 (-793)) (-4 *7 (-888 *5 (-500 *6) *6)) (-4 *5 (-981)) (-5 *2 (-1 (-1076 *7) *7)) (-5 *1 (-1048 *5 *6 *7)))) (-1923 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *3 (-981)) (-4 *2 (-793)) (-5 *1 (-1048 *3 *2 *4)) (-4 *4 (-888 *3 (-500 *2) *2)))) (-1638 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1048 *4 *3 *5))) (-4 *4 (-37 (-387 (-528)))) (-4 *4 (-981)) (-4 *3 (-793)) (-5 *1 (-1048 *4 *3 *5)) (-4 *5 (-888 *4 (-500 *3) *3)))))
-(-13 (-687 |#1| |#2|) (-10 -8 (-15 -3216 (|#3| $ (-717))) (-15 -2222 ($ |#2|)) (-15 -2222 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3482 ((-1 (-1076 |#3|) |#3|) (-595 |#2|) (-595 (-1076 |#3|)))) (IF (|has| |#1| (-37 (-387 (-528)))) (PROGN (-15 -1923 ($ $ |#2| |#1|)) (-15 -1638 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-2207 (((-110) $ $) 7)) (-2785 (((-595 (-2 (|:| -2254 $) (|:| -2378 (-595 |#4|)))) (-595 |#4|)) 85)) (-1985 (((-595 $) (-595 |#4|)) 86) (((-595 $) (-595 |#4|) (-110)) 111)) (-2565 (((-595 |#3|) $) 33)) (-3812 (((-110) $) 26)) (-2414 (((-110) $) 17 (|has| |#1| (-520)))) (-3759 (((-110) |#4| $) 101) (((-110) $) 97)) (-1728 ((|#4| |#4| $) 92)) (-1232 (((-595 (-2 (|:| |val| |#4|) (|:| -2316 $))) |#4| $) 126)) (-1289 (((-2 (|:| |under| $) (|:| -2925 $) (|:| |upper| $)) $ |#3|) 27)) (-3535 (((-110) $ (-717)) 44)) (-1573 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4264))) (((-3 |#4| "failed") $ |#3|) 79)) (-2816 (($) 45 T CONST)) (-1689 (((-110) $) 22 (|has| |#1| (-520)))) (-2584 (((-110) $ $) 24 (|has| |#1| (-520)))) (-3168 (((-110) $ $) 23 (|has| |#1| (-520)))) (-1924 (((-110) $) 25 (|has| |#1| (-520)))) (-1658 (((-595 |#4|) (-595 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-1891 (((-595 |#4|) (-595 |#4|) $) 18 (|has| |#1| (-520)))) (-3794 (((-595 |#4|) (-595 |#4|) $) 19 (|has| |#1| (-520)))) (-3001 (((-3 $ "failed") (-595 |#4|)) 36)) (-2409 (($ (-595 |#4|)) 35)) (-2902 (((-3 $ "failed") $) 82)) (-1592 ((|#4| |#4| $) 89)) (-2923 (($ $) 68 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264))))) (-2280 (($ |#4| $) 67 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4264)))) (-2537 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-520)))) (-1927 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-3345 ((|#4| |#4| $) 87)) (-1422 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4264))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4264))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-4049 (((-2 (|:| -2254 (-595 |#4|)) (|:| -2378 (-595 |#4|))) $) 105)) (-1640 (((-110) |#4| $) 136)) (-4184 (((-110) |#4| $) 133)) (-2667 (((-110) |#4| $) 137) (((-110) $) 134)) (-3342 (((-595 |#4|) $) 52 (|has| $ (-6 -4264)))) (-3092 (((-110) |#4| $) 104) (((-110) $) 103)) (-1761 ((|#3| $) 34)) (-2029 (((-110) $ (-717)) 43)) (-2604 (((-595 |#4|) $) 53 (|has| $ (-6 -4264)))) (-2408 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264))))) (-2800 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#4| |#4|) $) 47)) (-3558 (((-595 |#3|) $) 32)) (-3472 (((-110) |#3| $) 31)) (-3358 (((-110) $ (-717)) 42)) (-3034 (((-1078) $) 9)) (-4192 (((-3 |#4| (-595 $)) |#4| |#4| $) 128)) (-2272 (((-595 (-2 (|:| |val| |#4|) (|:| -2316 $))) |#4| |#4| $) 127)) (-2301 (((-3 |#4| "failed") $) 83)) (-2078 (((-595 $) |#4| $) 129)) (-1307 (((-3 (-110) (-595 $)) |#4| $) 132)) (-3346 (((-595 (-2 (|:| |val| (-110)) (|:| -2316 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-3397 (((-595 $) |#4| $) 125) (((-595 $) (-595 |#4|) $) 124) (((-595 $) (-595 |#4|) (-595 $)) 123) (((-595 $) |#4| (-595 $)) 122)) (-1325 (($ |#4| $) 117) (($ (-595 |#4|) $) 116)) (-3923 (((-595 |#4|) $) 107)) (-2127 (((-110) |#4| $) 99) (((-110) $) 95)) (-3436 ((|#4| |#4| $) 90)) (-3664 (((-110) $ $) 110)) (-1827 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-520)))) (-1906 (((-110) |#4| $) 100) (((-110) $) 96)) (-2001 ((|#4| |#4| $) 91)) (-2495 (((-1042) $) 10)) (-2890 (((-3 |#4| "failed") $) 84)) (-1734 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-3912 (((-3 $ "failed") $ |#4|) 78)) (-3740 (($ $ |#4|) 77) (((-595 $) |#4| $) 115) (((-595 $) |#4| (-595 $)) 114) (((-595 $) (-595 |#4|) $) 113) (((-595 $) (-595 |#4|) (-595 $)) 112)) (-1818 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 |#4|) (-595 |#4|)) 59 (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ (-275 |#4|)) 57 (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ (-595 (-275 |#4|))) 56 (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))))) (-3744 (((-110) $ $) 38)) (-1972 (((-110) $) 41)) (-2147 (($) 40)) (-2935 (((-717) $) 106)) (-2507 (((-717) |#4| $) 54 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264)))) (((-717) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4264)))) (-2406 (($ $) 39)) (-3155 (((-504) $) 69 (|has| |#4| (-570 (-504))))) (-2233 (($ (-595 |#4|)) 60)) (-2649 (($ $ |#3|) 28)) (-3597 (($ $ |#3|) 30)) (-3311 (($ $) 88)) (-1812 (($ $ |#3|) 29)) (-2222 (((-802) $) 11) (((-595 |#4|) $) 37)) (-2459 (((-717) $) 76 (|has| |#3| (-348)))) (-1411 (((-3 (-2 (|:| |bas| $) (|:| -1513 (-595 |#4|))) "failed") (-595 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1513 (-595 |#4|))) "failed") (-595 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-1622 (((-110) $ (-1 (-110) |#4| (-595 |#4|))) 98)) (-4053 (((-595 $) |#4| $) 121) (((-595 $) |#4| (-595 $)) 120) (((-595 $) (-595 |#4|) $) 119) (((-595 $) (-595 |#4|) (-595 $)) 118)) (-3451 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4264)))) (-1490 (((-595 |#3|) $) 81)) (-3207 (((-110) |#4| $) 135)) (-2190 (((-110) |#3| $) 80)) (-2186 (((-110) $ $) 6)) (-2138 (((-717) $) 46 (|has| $ (-6 -4264)))))
-(((-1049 |#1| |#2| |#3| |#4|) (-133) (-431) (-739) (-793) (-994 |t#1| |t#2| |t#3|)) (T -1049))
-NIL
-(-13 (-1032 |t#1| |t#2| |t#3| |t#4|) (-730 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-99) . T) ((-569 (-595 |#4|)) . T) ((-569 (-802)) . T) ((-144 |#4|) . T) ((-570 (-504)) |has| |#4| (-570 (-504))) ((-290 |#4|) -12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))) ((-467 |#4|) . T) ((-489 |#4| |#4|) -12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))) ((-730 |#1| |#2| |#3| |#4|) . T) ((-913 |#1| |#2| |#3| |#4|) . T) ((-999 |#1| |#2| |#3| |#4|) . T) ((-1023) . T) ((-1032 |#1| |#2| |#3| |#4|) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1131) . T))
-((-1651 (((-595 |#2|) |#1|) 12)) (-1737 (((-595 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-595 |#2|) |#1|) 52)) (-4214 (((-595 |#2|) |#2| |#2| |#2|) 39) (((-595 |#2|) |#1|) 50)) (-2265 ((|#2| |#1|) 46)) (-1620 (((-2 (|:| |solns| (-595 |#2|)) (|:| |maps| (-595 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-1851 (((-595 |#2|) |#2| |#2|) 38) (((-595 |#2|) |#1|) 49)) (-3870 (((-595 |#2|) |#2| |#2| |#2| |#2|) 40) (((-595 |#2|) |#1|) 51)) (-2966 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-2455 ((|#2| |#2| |#2| |#2|) 43)) (-2184 ((|#2| |#2| |#2|) 42)) (-3073 ((|#2| |#2| |#2| |#2| |#2|) 44)))
-(((-1050 |#1| |#2|) (-10 -7 (-15 -1651 ((-595 |#2|) |#1|)) (-15 -2265 (|#2| |#1|)) (-15 -1620 ((-2 (|:| |solns| (-595 |#2|)) (|:| |maps| (-595 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1851 ((-595 |#2|) |#1|)) (-15 -4214 ((-595 |#2|) |#1|)) (-15 -3870 ((-595 |#2|) |#1|)) (-15 -1737 ((-595 |#2|) |#1|)) (-15 -1851 ((-595 |#2|) |#2| |#2|)) (-15 -4214 ((-595 |#2|) |#2| |#2| |#2|)) (-15 -3870 ((-595 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1737 ((-595 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2184 (|#2| |#2| |#2|)) (-15 -2455 (|#2| |#2| |#2| |#2|)) (-15 -3073 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2966 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1153 |#2|) (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528))))))) (T -1050))
-((-2966 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528))))))) (-5 *1 (-1050 *3 *2)) (-4 *3 (-1153 *2)))) (-3073 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528))))))) (-5 *1 (-1050 *3 *2)) (-4 *3 (-1153 *2)))) (-2455 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528))))))) (-5 *1 (-1050 *3 *2)) (-4 *3 (-1153 *2)))) (-2184 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528))))))) (-5 *1 (-1050 *3 *2)) (-4 *3 (-1153 *2)))) (-1737 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528))))))) (-5 *2 (-595 *3)) (-5 *1 (-1050 *4 *3)) (-4 *4 (-1153 *3)))) (-3870 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528))))))) (-5 *2 (-595 *3)) (-5 *1 (-1050 *4 *3)) (-4 *4 (-1153 *3)))) (-4214 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528))))))) (-5 *2 (-595 *3)) (-5 *1 (-1050 *4 *3)) (-4 *4 (-1153 *3)))) (-1851 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528))))))) (-5 *2 (-595 *3)) (-5 *1 (-1050 *4 *3)) (-4 *4 (-1153 *3)))) (-1737 (*1 *2 *3) (-12 (-4 *4 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528))))))) (-5 *2 (-595 *4)) (-5 *1 (-1050 *3 *4)) (-4 *3 (-1153 *4)))) (-3870 (*1 *2 *3) (-12 (-4 *4 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528))))))) (-5 *2 (-595 *4)) (-5 *1 (-1050 *3 *4)) (-4 *3 (-1153 *4)))) (-4214 (*1 *2 *3) (-12 (-4 *4 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528))))))) (-5 *2 (-595 *4)) (-5 *1 (-1050 *3 *4)) (-4 *3 (-1153 *4)))) (-1851 (*1 *2 *3) (-12 (-4 *4 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528))))))) (-5 *2 (-595 *4)) (-5 *1 (-1050 *3 *4)) (-4 *3 (-1153 *4)))) (-1620 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528))))))) (-5 *2 (-2 (|:| |solns| (-595 *5)) (|:| |maps| (-595 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1050 *3 *5)) (-4 *3 (-1153 *5)))) (-2265 (*1 *2 *3) (-12 (-4 *2 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528))))))) (-5 *1 (-1050 *3 *2)) (-4 *3 (-1153 *2)))) (-1651 (*1 *2 *3) (-12 (-4 *4 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528))))))) (-5 *2 (-595 *4)) (-5 *1 (-1050 *3 *4)) (-4 *3 (-1153 *4)))))
-(-10 -7 (-15 -1651 ((-595 |#2|) |#1|)) (-15 -2265 (|#2| |#1|)) (-15 -1620 ((-2 (|:| |solns| (-595 |#2|)) (|:| |maps| (-595 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1851 ((-595 |#2|) |#1|)) (-15 -4214 ((-595 |#2|) |#1|)) (-15 -3870 ((-595 |#2|) |#1|)) (-15 -1737 ((-595 |#2|) |#1|)) (-15 -1851 ((-595 |#2|) |#2| |#2|)) (-15 -4214 ((-595 |#2|) |#2| |#2| |#2|)) (-15 -3870 ((-595 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1737 ((-595 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2184 (|#2| |#2| |#2|)) (-15 -2455 (|#2| |#2| |#2| |#2|)) (-15 -3073 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2966 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-3334 (((-595 (-595 (-275 (-296 |#1|)))) (-595 (-275 (-387 (-891 |#1|))))) 95) (((-595 (-595 (-275 (-296 |#1|)))) (-595 (-275 (-387 (-891 |#1|)))) (-595 (-1095))) 94) (((-595 (-595 (-275 (-296 |#1|)))) (-595 (-387 (-891 |#1|)))) 92) (((-595 (-595 (-275 (-296 |#1|)))) (-595 (-387 (-891 |#1|))) (-595 (-1095))) 90) (((-595 (-275 (-296 |#1|))) (-275 (-387 (-891 |#1|)))) 75) (((-595 (-275 (-296 |#1|))) (-275 (-387 (-891 |#1|))) (-1095)) 76) (((-595 (-275 (-296 |#1|))) (-387 (-891 |#1|))) 70) (((-595 (-275 (-296 |#1|))) (-387 (-891 |#1|)) (-1095)) 59)) (-1770 (((-595 (-595 (-296 |#1|))) (-595 (-387 (-891 |#1|))) (-595 (-1095))) 88) (((-595 (-296 |#1|)) (-387 (-891 |#1|)) (-1095)) 43)) (-2665 (((-1085 (-595 (-296 |#1|)) (-595 (-275 (-296 |#1|)))) (-387 (-891 |#1|)) (-1095)) 98) (((-1085 (-595 (-296 |#1|)) (-595 (-275 (-296 |#1|)))) (-275 (-387 (-891 |#1|))) (-1095)) 97)))
-(((-1051 |#1|) (-10 -7 (-15 -3334 ((-595 (-275 (-296 |#1|))) (-387 (-891 |#1|)) (-1095))) (-15 -3334 ((-595 (-275 (-296 |#1|))) (-387 (-891 |#1|)))) (-15 -3334 ((-595 (-275 (-296 |#1|))) (-275 (-387 (-891 |#1|))) (-1095))) (-15 -3334 ((-595 (-275 (-296 |#1|))) (-275 (-387 (-891 |#1|))))) (-15 -3334 ((-595 (-595 (-275 (-296 |#1|)))) (-595 (-387 (-891 |#1|))) (-595 (-1095)))) (-15 -3334 ((-595 (-595 (-275 (-296 |#1|)))) (-595 (-387 (-891 |#1|))))) (-15 -3334 ((-595 (-595 (-275 (-296 |#1|)))) (-595 (-275 (-387 (-891 |#1|)))) (-595 (-1095)))) (-15 -3334 ((-595 (-595 (-275 (-296 |#1|)))) (-595 (-275 (-387 (-891 |#1|)))))) (-15 -1770 ((-595 (-296 |#1|)) (-387 (-891 |#1|)) (-1095))) (-15 -1770 ((-595 (-595 (-296 |#1|))) (-595 (-387 (-891 |#1|))) (-595 (-1095)))) (-15 -2665 ((-1085 (-595 (-296 |#1|)) (-595 (-275 (-296 |#1|)))) (-275 (-387 (-891 |#1|))) (-1095))) (-15 -2665 ((-1085 (-595 (-296 |#1|)) (-595 (-275 (-296 |#1|)))) (-387 (-891 |#1|)) (-1095)))) (-13 (-288) (-793) (-140))) (T -1051))
-((-2665 (*1 *2 *3 *4) (-12 (-5 *3 (-387 (-891 *5))) (-5 *4 (-1095)) (-4 *5 (-13 (-288) (-793) (-140))) (-5 *2 (-1085 (-595 (-296 *5)) (-595 (-275 (-296 *5))))) (-5 *1 (-1051 *5)))) (-2665 (*1 *2 *3 *4) (-12 (-5 *3 (-275 (-387 (-891 *5)))) (-5 *4 (-1095)) (-4 *5 (-13 (-288) (-793) (-140))) (-5 *2 (-1085 (-595 (-296 *5)) (-595 (-275 (-296 *5))))) (-5 *1 (-1051 *5)))) (-1770 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-387 (-891 *5)))) (-5 *4 (-595 (-1095))) (-4 *5 (-13 (-288) (-793) (-140))) (-5 *2 (-595 (-595 (-296 *5)))) (-5 *1 (-1051 *5)))) (-1770 (*1 *2 *3 *4) (-12 (-5 *3 (-387 (-891 *5))) (-5 *4 (-1095)) (-4 *5 (-13 (-288) (-793) (-140))) (-5 *2 (-595 (-296 *5))) (-5 *1 (-1051 *5)))) (-3334 (*1 *2 *3) (-12 (-5 *3 (-595 (-275 (-387 (-891 *4))))) (-4 *4 (-13 (-288) (-793) (-140))) (-5 *2 (-595 (-595 (-275 (-296 *4))))) (-5 *1 (-1051 *4)))) (-3334 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-275 (-387 (-891 *5))))) (-5 *4 (-595 (-1095))) (-4 *5 (-13 (-288) (-793) (-140))) (-5 *2 (-595 (-595 (-275 (-296 *5))))) (-5 *1 (-1051 *5)))) (-3334 (*1 *2 *3) (-12 (-5 *3 (-595 (-387 (-891 *4)))) (-4 *4 (-13 (-288) (-793) (-140))) (-5 *2 (-595 (-595 (-275 (-296 *4))))) (-5 *1 (-1051 *4)))) (-3334 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-387 (-891 *5)))) (-5 *4 (-595 (-1095))) (-4 *5 (-13 (-288) (-793) (-140))) (-5 *2 (-595 (-595 (-275 (-296 *5))))) (-5 *1 (-1051 *5)))) (-3334 (*1 *2 *3) (-12 (-5 *3 (-275 (-387 (-891 *4)))) (-4 *4 (-13 (-288) (-793) (-140))) (-5 *2 (-595 (-275 (-296 *4)))) (-5 *1 (-1051 *4)))) (-3334 (*1 *2 *3 *4) (-12 (-5 *3 (-275 (-387 (-891 *5)))) (-5 *4 (-1095)) (-4 *5 (-13 (-288) (-793) (-140))) (-5 *2 (-595 (-275 (-296 *5)))) (-5 *1 (-1051 *5)))) (-3334 (*1 *2 *3) (-12 (-5 *3 (-387 (-891 *4))) (-4 *4 (-13 (-288) (-793) (-140))) (-5 *2 (-595 (-275 (-296 *4)))) (-5 *1 (-1051 *4)))) (-3334 (*1 *2 *3 *4) (-12 (-5 *3 (-387 (-891 *5))) (-5 *4 (-1095)) (-4 *5 (-13 (-288) (-793) (-140))) (-5 *2 (-595 (-275 (-296 *5)))) (-5 *1 (-1051 *5)))))
-(-10 -7 (-15 -3334 ((-595 (-275 (-296 |#1|))) (-387 (-891 |#1|)) (-1095))) (-15 -3334 ((-595 (-275 (-296 |#1|))) (-387 (-891 |#1|)))) (-15 -3334 ((-595 (-275 (-296 |#1|))) (-275 (-387 (-891 |#1|))) (-1095))) (-15 -3334 ((-595 (-275 (-296 |#1|))) (-275 (-387 (-891 |#1|))))) (-15 -3334 ((-595 (-595 (-275 (-296 |#1|)))) (-595 (-387 (-891 |#1|))) (-595 (-1095)))) (-15 -3334 ((-595 (-595 (-275 (-296 |#1|)))) (-595 (-387 (-891 |#1|))))) (-15 -3334 ((-595 (-595 (-275 (-296 |#1|)))) (-595 (-275 (-387 (-891 |#1|)))) (-595 (-1095)))) (-15 -3334 ((-595 (-595 (-275 (-296 |#1|)))) (-595 (-275 (-387 (-891 |#1|)))))) (-15 -1770 ((-595 (-296 |#1|)) (-387 (-891 |#1|)) (-1095))) (-15 -1770 ((-595 (-595 (-296 |#1|))) (-595 (-387 (-891 |#1|))) (-595 (-1095)))) (-15 -2665 ((-1085 (-595 (-296 |#1|)) (-595 (-275 (-296 |#1|)))) (-275 (-387 (-891 |#1|))) (-1095))) (-15 -2665 ((-1085 (-595 (-296 |#1|)) (-595 (-275 (-296 |#1|)))) (-387 (-891 |#1|)) (-1095))))
-((-1792 (((-387 (-1091 (-296 |#1|))) (-1177 (-296 |#1|)) (-387 (-1091 (-296 |#1|))) (-528)) 29)) (-1995 (((-387 (-1091 (-296 |#1|))) (-387 (-1091 (-296 |#1|))) (-387 (-1091 (-296 |#1|))) (-387 (-1091 (-296 |#1|)))) 40)))
-(((-1052 |#1|) (-10 -7 (-15 -1995 ((-387 (-1091 (-296 |#1|))) (-387 (-1091 (-296 |#1|))) (-387 (-1091 (-296 |#1|))) (-387 (-1091 (-296 |#1|))))) (-15 -1792 ((-387 (-1091 (-296 |#1|))) (-1177 (-296 |#1|)) (-387 (-1091 (-296 |#1|))) (-528)))) (-13 (-520) (-793))) (T -1052))
-((-1792 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-387 (-1091 (-296 *5)))) (-5 *3 (-1177 (-296 *5))) (-5 *4 (-528)) (-4 *5 (-13 (-520) (-793))) (-5 *1 (-1052 *5)))) (-1995 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-387 (-1091 (-296 *3)))) (-4 *3 (-13 (-520) (-793))) (-5 *1 (-1052 *3)))))
-(-10 -7 (-15 -1995 ((-387 (-1091 (-296 |#1|))) (-387 (-1091 (-296 |#1|))) (-387 (-1091 (-296 |#1|))) (-387 (-1091 (-296 |#1|))))) (-15 -1792 ((-387 (-1091 (-296 |#1|))) (-1177 (-296 |#1|)) (-387 (-1091 (-296 |#1|))) (-528))))
-((-1651 (((-595 (-595 (-275 (-296 |#1|)))) (-595 (-275 (-296 |#1|))) (-595 (-1095))) 224) (((-595 (-275 (-296 |#1|))) (-296 |#1|) (-1095)) 20) (((-595 (-275 (-296 |#1|))) (-275 (-296 |#1|)) (-1095)) 26) (((-595 (-275 (-296 |#1|))) (-275 (-296 |#1|))) 25) (((-595 (-275 (-296 |#1|))) (-296 |#1|)) 21)))
-(((-1053 |#1|) (-10 -7 (-15 -1651 ((-595 (-275 (-296 |#1|))) (-296 |#1|))) (-15 -1651 ((-595 (-275 (-296 |#1|))) (-275 (-296 |#1|)))) (-15 -1651 ((-595 (-275 (-296 |#1|))) (-275 (-296 |#1|)) (-1095))) (-15 -1651 ((-595 (-275 (-296 |#1|))) (-296 |#1|) (-1095))) (-15 -1651 ((-595 (-595 (-275 (-296 |#1|)))) (-595 (-275 (-296 |#1|))) (-595 (-1095))))) (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140))) (T -1053))
-((-1651 (*1 *2 *3 *4) (-12 (-5 *4 (-595 (-1095))) (-4 *5 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140))) (-5 *2 (-595 (-595 (-275 (-296 *5))))) (-5 *1 (-1053 *5)) (-5 *3 (-595 (-275 (-296 *5)))))) (-1651 (*1 *2 *3 *4) (-12 (-5 *4 (-1095)) (-4 *5 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140))) (-5 *2 (-595 (-275 (-296 *5)))) (-5 *1 (-1053 *5)) (-5 *3 (-296 *5)))) (-1651 (*1 *2 *3 *4) (-12 (-5 *4 (-1095)) (-4 *5 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140))) (-5 *2 (-595 (-275 (-296 *5)))) (-5 *1 (-1053 *5)) (-5 *3 (-275 (-296 *5))))) (-1651 (*1 *2 *3) (-12 (-4 *4 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140))) (-5 *2 (-595 (-275 (-296 *4)))) (-5 *1 (-1053 *4)) (-5 *3 (-275 (-296 *4))))) (-1651 (*1 *2 *3) (-12 (-4 *4 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140))) (-5 *2 (-595 (-275 (-296 *4)))) (-5 *1 (-1053 *4)) (-5 *3 (-296 *4)))))
-(-10 -7 (-15 -1651 ((-595 (-275 (-296 |#1|))) (-296 |#1|))) (-15 -1651 ((-595 (-275 (-296 |#1|))) (-275 (-296 |#1|)))) (-15 -1651 ((-595 (-275 (-296 |#1|))) (-275 (-296 |#1|)) (-1095))) (-15 -1651 ((-595 (-275 (-296 |#1|))) (-296 |#1|) (-1095))) (-15 -1651 ((-595 (-595 (-275 (-296 |#1|)))) (-595 (-275 (-296 |#1|))) (-595 (-1095)))))
-((-1974 ((|#2| |#2|) 20 (|has| |#1| (-793))) ((|#2| |#2| (-1 (-110) |#1| |#1|)) 17)) (-1424 ((|#2| |#2|) 19 (|has| |#1| (-793))) ((|#2| |#2| (-1 (-110) |#1| |#1|)) 16)))
-(((-1054 |#1| |#2|) (-10 -7 (-15 -1424 (|#2| |#2| (-1 (-110) |#1| |#1|))) (-15 -1974 (|#2| |#2| (-1 (-110) |#1| |#1|))) (IF (|has| |#1| (-793)) (PROGN (-15 -1424 (|#2| |#2|)) (-15 -1974 (|#2| |#2|))) |%noBranch|)) (-1131) (-13 (-561 (-528) |#1|) (-10 -7 (-6 -4264) (-6 -4265)))) (T -1054))
-((-1974 (*1 *2 *2) (-12 (-4 *3 (-793)) (-4 *3 (-1131)) (-5 *1 (-1054 *3 *2)) (-4 *2 (-13 (-561 (-528) *3) (-10 -7 (-6 -4264) (-6 -4265)))))) (-1424 (*1 *2 *2) (-12 (-4 *3 (-793)) (-4 *3 (-1131)) (-5 *1 (-1054 *3 *2)) (-4 *2 (-13 (-561 (-528) *3) (-10 -7 (-6 -4264) (-6 -4265)))))) (-1974 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-1054 *4 *2)) (-4 *2 (-13 (-561 (-528) *4) (-10 -7 (-6 -4264) (-6 -4265)))))) (-1424 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-1054 *4 *2)) (-4 *2 (-13 (-561 (-528) *4) (-10 -7 (-6 -4264) (-6 -4265)))))))
-(-10 -7 (-15 -1424 (|#2| |#2| (-1 (-110) |#1| |#1|))) (-15 -1974 (|#2| |#2| (-1 (-110) |#1| |#1|))) (IF (|has| |#1| (-793)) (PROGN (-15 -1424 (|#2| |#2|)) (-15 -1974 (|#2| |#2|))) |%noBranch|))
-((-2207 (((-110) $ $) NIL)) (-1659 (((-1084 3 |#1|) $) 108)) (-1864 (((-110) $) 72)) (-3921 (($ $ (-595 (-882 |#1|))) 20) (($ $ (-595 (-595 |#1|))) 75) (($ (-595 (-882 |#1|))) 74) (((-595 (-882 |#1|)) $) 73)) (-3861 (((-110) $) 41)) (-1363 (($ $ (-882 |#1|)) 46) (($ $ (-595 |#1|)) 51) (($ $ (-717)) 53) (($ (-882 |#1|)) 47) (((-882 |#1|) $) 45)) (-2898 (((-2 (|:| -3795 (-717)) (|:| |curves| (-717)) (|:| |polygons| (-717)) (|:| |constructs| (-717))) $) 106)) (-2410 (((-717) $) 26)) (-2531 (((-717) $) 25)) (-2852 (($ $ (-717) (-882 |#1|)) 39)) (-2961 (((-110) $) 82)) (-2895 (($ $ (-595 (-595 (-882 |#1|))) (-595 (-161)) (-161)) 89) (($ $ (-595 (-595 (-595 |#1|))) (-595 (-161)) (-161)) 91) (($ $ (-595 (-595 (-882 |#1|))) (-110) (-110)) 85) (($ $ (-595 (-595 (-595 |#1|))) (-110) (-110)) 93) (($ (-595 (-595 (-882 |#1|)))) 86) (($ (-595 (-595 (-882 |#1|))) (-110) (-110)) 87) (((-595 (-595 (-882 |#1|))) $) 84)) (-1356 (($ (-595 $)) 28) (($ $ $) 29)) (-1674 (((-595 (-161)) $) 103)) (-3878 (((-595 (-882 |#1|)) $) 97)) (-1714 (((-595 (-595 (-161))) $) 102)) (-2258 (((-595 (-595 (-595 (-882 |#1|)))) $) NIL)) (-3638 (((-595 (-595 (-595 (-717)))) $) 100)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-4012 (((-717) $ (-595 (-882 |#1|))) 37)) (-2092 (((-110) $) 54)) (-3374 (($ $ (-595 (-882 |#1|))) 56) (($ $ (-595 (-595 |#1|))) 62) (($ (-595 (-882 |#1|))) 57) (((-595 (-882 |#1|)) $) 55)) (-1748 (($) 23) (($ (-1084 3 |#1|)) 24)) (-2406 (($ $) 35)) (-1671 (((-595 $) $) 34)) (-4106 (($ (-595 $)) 31)) (-1699 (((-595 $) $) 33)) (-2222 (((-802) $) 112)) (-3491 (((-110) $) 64)) (-3266 (($ $ (-595 (-882 |#1|))) 66) (($ $ (-595 (-595 |#1|))) 69) (($ (-595 (-882 |#1|))) 67) (((-595 (-882 |#1|)) $) 65)) (-3832 (($ $) 107)) (-2186 (((-110) $ $) NIL)))
-(((-1055 |#1|) (-1056 |#1|) (-981)) (T -1055))
-NIL
-(-1056 |#1|)
-((-2207 (((-110) $ $) 7)) (-1659 (((-1084 3 |#1|) $) 13)) (-1864 (((-110) $) 29)) (-3921 (($ $ (-595 (-882 |#1|))) 33) (($ $ (-595 (-595 |#1|))) 32) (($ (-595 (-882 |#1|))) 31) (((-595 (-882 |#1|)) $) 30)) (-3861 (((-110) $) 44)) (-1363 (($ $ (-882 |#1|)) 49) (($ $ (-595 |#1|)) 48) (($ $ (-717)) 47) (($ (-882 |#1|)) 46) (((-882 |#1|) $) 45)) (-2898 (((-2 (|:| -3795 (-717)) (|:| |curves| (-717)) (|:| |polygons| (-717)) (|:| |constructs| (-717))) $) 15)) (-2410 (((-717) $) 58)) (-2531 (((-717) $) 59)) (-2852 (($ $ (-717) (-882 |#1|)) 50)) (-2961 (((-110) $) 21)) (-2895 (($ $ (-595 (-595 (-882 |#1|))) (-595 (-161)) (-161)) 28) (($ $ (-595 (-595 (-595 |#1|))) (-595 (-161)) (-161)) 27) (($ $ (-595 (-595 (-882 |#1|))) (-110) (-110)) 26) (($ $ (-595 (-595 (-595 |#1|))) (-110) (-110)) 25) (($ (-595 (-595 (-882 |#1|)))) 24) (($ (-595 (-595 (-882 |#1|))) (-110) (-110)) 23) (((-595 (-595 (-882 |#1|))) $) 22)) (-1356 (($ (-595 $)) 57) (($ $ $) 56)) (-1674 (((-595 (-161)) $) 16)) (-3878 (((-595 (-882 |#1|)) $) 20)) (-1714 (((-595 (-595 (-161))) $) 17)) (-2258 (((-595 (-595 (-595 (-882 |#1|)))) $) 18)) (-3638 (((-595 (-595 (-595 (-717)))) $) 19)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-4012 (((-717) $ (-595 (-882 |#1|))) 51)) (-2092 (((-110) $) 39)) (-3374 (($ $ (-595 (-882 |#1|))) 43) (($ $ (-595 (-595 |#1|))) 42) (($ (-595 (-882 |#1|))) 41) (((-595 (-882 |#1|)) $) 40)) (-1748 (($) 61) (($ (-1084 3 |#1|)) 60)) (-2406 (($ $) 52)) (-1671 (((-595 $) $) 53)) (-4106 (($ (-595 $)) 55)) (-1699 (((-595 $) $) 54)) (-2222 (((-802) $) 11)) (-3491 (((-110) $) 34)) (-3266 (($ $ (-595 (-882 |#1|))) 38) (($ $ (-595 (-595 |#1|))) 37) (($ (-595 (-882 |#1|))) 36) (((-595 (-882 |#1|)) $) 35)) (-3832 (($ $) 14)) (-2186 (((-110) $ $) 6)))
-(((-1056 |#1|) (-133) (-981)) (T -1056))
-((-2222 (*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-802)))) (-1748 (*1 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-981)))) (-1748 (*1 *1 *2) (-12 (-5 *2 (-1084 3 *3)) (-4 *3 (-981)) (-4 *1 (-1056 *3)))) (-2531 (*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-717)))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-717)))) (-1356 (*1 *1 *2) (-12 (-5 *2 (-595 *1)) (-4 *1 (-1056 *3)) (-4 *3 (-981)))) (-1356 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-981)))) (-4106 (*1 *1 *2) (-12 (-5 *2 (-595 *1)) (-4 *1 (-1056 *3)) (-4 *3 (-981)))) (-1699 (*1 *2 *1) (-12 (-4 *3 (-981)) (-5 *2 (-595 *1)) (-4 *1 (-1056 *3)))) (-1671 (*1 *2 *1) (-12 (-4 *3 (-981)) (-5 *2 (-595 *1)) (-4 *1 (-1056 *3)))) (-2406 (*1 *1 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-981)))) (-4012 (*1 *2 *1 *3) (-12 (-5 *3 (-595 (-882 *4))) (-4 *1 (-1056 *4)) (-4 *4 (-981)) (-5 *2 (-717)))) (-2852 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-717)) (-5 *3 (-882 *4)) (-4 *1 (-1056 *4)) (-4 *4 (-981)))) (-1363 (*1 *1 *1 *2) (-12 (-5 *2 (-882 *3)) (-4 *1 (-1056 *3)) (-4 *3 (-981)))) (-1363 (*1 *1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *1 (-1056 *3)) (-4 *3 (-981)))) (-1363 (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-1056 *3)) (-4 *3 (-981)))) (-1363 (*1 *1 *2) (-12 (-5 *2 (-882 *3)) (-4 *3 (-981)) (-4 *1 (-1056 *3)))) (-1363 (*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-882 *3)))) (-3861 (*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-110)))) (-3374 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-882 *3))) (-4 *1 (-1056 *3)) (-4 *3 (-981)))) (-3374 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-595 *3))) (-4 *1 (-1056 *3)) (-4 *3 (-981)))) (-3374 (*1 *1 *2) (-12 (-5 *2 (-595 (-882 *3))) (-4 *3 (-981)) (-4 *1 (-1056 *3)))) (-3374 (*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-595 (-882 *3))))) (-2092 (*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-110)))) (-3266 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-882 *3))) (-4 *1 (-1056 *3)) (-4 *3 (-981)))) (-3266 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-595 *3))) (-4 *1 (-1056 *3)) (-4 *3 (-981)))) (-3266 (*1 *1 *2) (-12 (-5 *2 (-595 (-882 *3))) (-4 *3 (-981)) (-4 *1 (-1056 *3)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-595 (-882 *3))))) (-3491 (*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-110)))) (-3921 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-882 *3))) (-4 *1 (-1056 *3)) (-4 *3 (-981)))) (-3921 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-595 *3))) (-4 *1 (-1056 *3)) (-4 *3 (-981)))) (-3921 (*1 *1 *2) (-12 (-5 *2 (-595 (-882 *3))) (-4 *3 (-981)) (-4 *1 (-1056 *3)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-595 (-882 *3))))) (-1864 (*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-110)))) (-2895 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-595 (-595 (-882 *5)))) (-5 *3 (-595 (-161))) (-5 *4 (-161)) (-4 *1 (-1056 *5)) (-4 *5 (-981)))) (-2895 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-595 (-595 (-595 *5)))) (-5 *3 (-595 (-161))) (-5 *4 (-161)) (-4 *1 (-1056 *5)) (-4 *5 (-981)))) (-2895 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-595 (-595 (-882 *4)))) (-5 *3 (-110)) (-4 *1 (-1056 *4)) (-4 *4 (-981)))) (-2895 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-595 (-595 (-595 *4)))) (-5 *3 (-110)) (-4 *1 (-1056 *4)) (-4 *4 (-981)))) (-2895 (*1 *1 *2) (-12 (-5 *2 (-595 (-595 (-882 *3)))) (-4 *3 (-981)) (-4 *1 (-1056 *3)))) (-2895 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-595 (-595 (-882 *4)))) (-5 *3 (-110)) (-4 *4 (-981)) (-4 *1 (-1056 *4)))) (-2895 (*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-595 (-595 (-882 *3)))))) (-2961 (*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-110)))) (-3878 (*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-595 (-882 *3))))) (-3638 (*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-595 (-595 (-595 (-717))))))) (-2258 (*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-595 (-595 (-595 (-882 *3))))))) (-1714 (*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-595 (-595 (-161)))))) (-1674 (*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-595 (-161))))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-2 (|:| -3795 (-717)) (|:| |curves| (-717)) (|:| |polygons| (-717)) (|:| |constructs| (-717)))))) (-3832 (*1 *1 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-981)))) (-1659 (*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-1084 3 *3)))))
-(-13 (-1023) (-10 -8 (-15 -1748 ($)) (-15 -1748 ($ (-1084 3 |t#1|))) (-15 -2531 ((-717) $)) (-15 -2410 ((-717) $)) (-15 -1356 ($ (-595 $))) (-15 -1356 ($ $ $)) (-15 -4106 ($ (-595 $))) (-15 -1699 ((-595 $) $)) (-15 -1671 ((-595 $) $)) (-15 -2406 ($ $)) (-15 -4012 ((-717) $ (-595 (-882 |t#1|)))) (-15 -2852 ($ $ (-717) (-882 |t#1|))) (-15 -1363 ($ $ (-882 |t#1|))) (-15 -1363 ($ $ (-595 |t#1|))) (-15 -1363 ($ $ (-717))) (-15 -1363 ($ (-882 |t#1|))) (-15 -1363 ((-882 |t#1|) $)) (-15 -3861 ((-110) $)) (-15 -3374 ($ $ (-595 (-882 |t#1|)))) (-15 -3374 ($ $ (-595 (-595 |t#1|)))) (-15 -3374 ($ (-595 (-882 |t#1|)))) (-15 -3374 ((-595 (-882 |t#1|)) $)) (-15 -2092 ((-110) $)) (-15 -3266 ($ $ (-595 (-882 |t#1|)))) (-15 -3266 ($ $ (-595 (-595 |t#1|)))) (-15 -3266 ($ (-595 (-882 |t#1|)))) (-15 -3266 ((-595 (-882 |t#1|)) $)) (-15 -3491 ((-110) $)) (-15 -3921 ($ $ (-595 (-882 |t#1|)))) (-15 -3921 ($ $ (-595 (-595 |t#1|)))) (-15 -3921 ($ (-595 (-882 |t#1|)))) (-15 -3921 ((-595 (-882 |t#1|)) $)) (-15 -1864 ((-110) $)) (-15 -2895 ($ $ (-595 (-595 (-882 |t#1|))) (-595 (-161)) (-161))) (-15 -2895 ($ $ (-595 (-595 (-595 |t#1|))) (-595 (-161)) (-161))) (-15 -2895 ($ $ (-595 (-595 (-882 |t#1|))) (-110) (-110))) (-15 -2895 ($ $ (-595 (-595 (-595 |t#1|))) (-110) (-110))) (-15 -2895 ($ (-595 (-595 (-882 |t#1|))))) (-15 -2895 ($ (-595 (-595 (-882 |t#1|))) (-110) (-110))) (-15 -2895 ((-595 (-595 (-882 |t#1|))) $)) (-15 -2961 ((-110) $)) (-15 -3878 ((-595 (-882 |t#1|)) $)) (-15 -3638 ((-595 (-595 (-595 (-717)))) $)) (-15 -2258 ((-595 (-595 (-595 (-882 |t#1|)))) $)) (-15 -1714 ((-595 (-595 (-161))) $)) (-15 -1674 ((-595 (-161)) $)) (-15 -2898 ((-2 (|:| -3795 (-717)) (|:| |curves| (-717)) (|:| |polygons| (-717)) (|:| |constructs| (-717))) $)) (-15 -3832 ($ $)) (-15 -1659 ((-1084 3 |t#1|) $)) (-15 -2222 ((-802) $))))
-(((-99) . T) ((-569 (-802)) . T) ((-1023) . T))
-((-2979 (((-595 (-1100)) (-1078)) 9)))
-(((-1057) (-10 -7 (-15 -2979 ((-595 (-1100)) (-1078))))) (T -1057))
-((-2979 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-595 (-1100))) (-5 *1 (-1057)))))
-(-10 -7 (-15 -2979 ((-595 (-1100)) (-1078))))
-((-2598 (((-1182) (-595 (-802))) 23) (((-1182) (-802)) 22)) (-2049 (((-1182) (-595 (-802))) 21) (((-1182) (-802)) 20)) (-3105 (((-1182) (-595 (-802))) 19) (((-1182) (-802)) 11) (((-1182) (-1078) (-802)) 17)))
-(((-1058) (-10 -7 (-15 -3105 ((-1182) (-1078) (-802))) (-15 -3105 ((-1182) (-802))) (-15 -2049 ((-1182) (-802))) (-15 -2598 ((-1182) (-802))) (-15 -3105 ((-1182) (-595 (-802)))) (-15 -2049 ((-1182) (-595 (-802)))) (-15 -2598 ((-1182) (-595 (-802)))))) (T -1058))
-((-2598 (*1 *2 *3) (-12 (-5 *3 (-595 (-802))) (-5 *2 (-1182)) (-5 *1 (-1058)))) (-2049 (*1 *2 *3) (-12 (-5 *3 (-595 (-802))) (-5 *2 (-1182)) (-5 *1 (-1058)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-595 (-802))) (-5 *2 (-1182)) (-5 *1 (-1058)))) (-2598 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1182)) (-5 *1 (-1058)))) (-2049 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1182)) (-5 *1 (-1058)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1182)) (-5 *1 (-1058)))) (-3105 (*1 *2 *3 *4) (-12 (-5 *3 (-1078)) (-5 *4 (-802)) (-5 *2 (-1182)) (-5 *1 (-1058)))))
-(-10 -7 (-15 -3105 ((-1182) (-1078) (-802))) (-15 -3105 ((-1182) (-802))) (-15 -2049 ((-1182) (-802))) (-15 -2598 ((-1182) (-802))) (-15 -3105 ((-1182) (-595 (-802)))) (-15 -2049 ((-1182) (-595 (-802)))) (-15 -2598 ((-1182) (-595 (-802)))))
-((-1741 (($ $ $) 10)) (-2251 (($ $) 9)) (-2803 (($ $ $) 13)) (-2938 (($ $ $) 15)) (-3950 (($ $ $) 12)) (-1978 (($ $ $) 14)) (-1599 (($ $) 17)) (-2815 (($ $) 16)) (-1775 (($ $) 6)) (-3818 (($ $ $) 11) (($ $) 7)) (-3167 (($ $ $) 8)))
-(((-1059) (-133)) (T -1059))
-((-1599 (*1 *1 *1) (-4 *1 (-1059))) (-2815 (*1 *1 *1) (-4 *1 (-1059))) (-2938 (*1 *1 *1 *1) (-4 *1 (-1059))) (-1978 (*1 *1 *1 *1) (-4 *1 (-1059))) (-2803 (*1 *1 *1 *1) (-4 *1 (-1059))) (-3950 (*1 *1 *1 *1) (-4 *1 (-1059))) (-3818 (*1 *1 *1 *1) (-4 *1 (-1059))) (-1741 (*1 *1 *1 *1) (-4 *1 (-1059))) (-2251 (*1 *1 *1) (-4 *1 (-1059))) (-3167 (*1 *1 *1 *1) (-4 *1 (-1059))) (-3818 (*1 *1 *1) (-4 *1 (-1059))) (-1775 (*1 *1 *1) (-4 *1 (-1059))))
-(-13 (-10 -8 (-15 -1775 ($ $)) (-15 -3818 ($ $)) (-15 -3167 ($ $ $)) (-15 -2251 ($ $)) (-15 -1741 ($ $ $)) (-15 -3818 ($ $ $)) (-15 -3950 ($ $ $)) (-15 -2803 ($ $ $)) (-15 -1978 ($ $ $)) (-15 -2938 ($ $ $)) (-15 -2815 ($ $)) (-15 -1599 ($ $))))
-((-2207 (((-110) $ $) 41)) (-3327 ((|#1| $) 15)) (-3785 (((-110) $ $ (-1 (-110) |#2| |#2|)) 36)) (-2694 (((-110) $) 17)) (-2131 (($ $ |#1|) 28)) (-1231 (($ $ (-110)) 30)) (-1486 (($ $) 31)) (-1657 (($ $ |#2|) 29)) (-3034 (((-1078) $) NIL)) (-3768 (((-110) $ $ (-1 (-110) |#1| |#1|) (-1 (-110) |#2| |#2|)) 35)) (-2495 (((-1042) $) NIL)) (-1972 (((-110) $) 14)) (-2147 (($) 10)) (-2406 (($ $) 27)) (-2233 (($ |#1| |#2| (-110)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -2316 |#2|))) 21) (((-595 $) (-595 (-2 (|:| |val| |#1|) (|:| -2316 |#2|)))) 24) (((-595 $) |#1| (-595 |#2|)) 26)) (-3189 ((|#2| $) 16)) (-2222 (((-802) $) 50)) (-2186 (((-110) $ $) 39)))
-(((-1060 |#1| |#2|) (-13 (-1023) (-10 -8 (-15 -2147 ($)) (-15 -1972 ((-110) $)) (-15 -3327 (|#1| $)) (-15 -3189 (|#2| $)) (-15 -2694 ((-110) $)) (-15 -2233 ($ |#1| |#2| (-110))) (-15 -2233 ($ |#1| |#2|)) (-15 -2233 ($ (-2 (|:| |val| |#1|) (|:| -2316 |#2|)))) (-15 -2233 ((-595 $) (-595 (-2 (|:| |val| |#1|) (|:| -2316 |#2|))))) (-15 -2233 ((-595 $) |#1| (-595 |#2|))) (-15 -2406 ($ $)) (-15 -2131 ($ $ |#1|)) (-15 -1657 ($ $ |#2|)) (-15 -1231 ($ $ (-110))) (-15 -1486 ($ $)) (-15 -3768 ((-110) $ $ (-1 (-110) |#1| |#1|) (-1 (-110) |#2| |#2|))) (-15 -3785 ((-110) $ $ (-1 (-110) |#2| |#2|))))) (-13 (-1023) (-33)) (-13 (-1023) (-33))) (T -1060))
-((-2147 (*1 *1) (-12 (-5 *1 (-1060 *2 *3)) (-4 *2 (-13 (-1023) (-33))) (-4 *3 (-13 (-1023) (-33))))) (-1972 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1060 *3 *4)) (-4 *3 (-13 (-1023) (-33))) (-4 *4 (-13 (-1023) (-33))))) (-3327 (*1 *2 *1) (-12 (-4 *2 (-13 (-1023) (-33))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-13 (-1023) (-33))))) (-3189 (*1 *2 *1) (-12 (-4 *2 (-13 (-1023) (-33))) (-5 *1 (-1060 *3 *2)) (-4 *3 (-13 (-1023) (-33))))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1060 *3 *4)) (-4 *3 (-13 (-1023) (-33))) (-4 *4 (-13 (-1023) (-33))))) (-2233 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-110)) (-5 *1 (-1060 *2 *3)) (-4 *2 (-13 (-1023) (-33))) (-4 *3 (-13 (-1023) (-33))))) (-2233 (*1 *1 *2 *3) (-12 (-5 *1 (-1060 *2 *3)) (-4 *2 (-13 (-1023) (-33))) (-4 *3 (-13 (-1023) (-33))))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2316 *4))) (-4 *3 (-13 (-1023) (-33))) (-4 *4 (-13 (-1023) (-33))) (-5 *1 (-1060 *3 *4)))) (-2233 (*1 *2 *3) (-12 (-5 *3 (-595 (-2 (|:| |val| *4) (|:| -2316 *5)))) (-4 *4 (-13 (-1023) (-33))) (-4 *5 (-13 (-1023) (-33))) (-5 *2 (-595 (-1060 *4 *5))) (-5 *1 (-1060 *4 *5)))) (-2233 (*1 *2 *3 *4) (-12 (-5 *4 (-595 *5)) (-4 *5 (-13 (-1023) (-33))) (-5 *2 (-595 (-1060 *3 *5))) (-5 *1 (-1060 *3 *5)) (-4 *3 (-13 (-1023) (-33))))) (-2406 (*1 *1 *1) (-12 (-5 *1 (-1060 *2 *3)) (-4 *2 (-13 (-1023) (-33))) (-4 *3 (-13 (-1023) (-33))))) (-2131 (*1 *1 *1 *2) (-12 (-5 *1 (-1060 *2 *3)) (-4 *2 (-13 (-1023) (-33))) (-4 *3 (-13 (-1023) (-33))))) (-1657 (*1 *1 *1 *2) (-12 (-5 *1 (-1060 *3 *2)) (-4 *3 (-13 (-1023) (-33))) (-4 *2 (-13 (-1023) (-33))))) (-1231 (*1 *1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1060 *3 *4)) (-4 *3 (-13 (-1023) (-33))) (-4 *4 (-13 (-1023) (-33))))) (-1486 (*1 *1 *1) (-12 (-5 *1 (-1060 *2 *3)) (-4 *2 (-13 (-1023) (-33))) (-4 *3 (-13 (-1023) (-33))))) (-3768 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-110) *5 *5)) (-5 *4 (-1 (-110) *6 *6)) (-4 *5 (-13 (-1023) (-33))) (-4 *6 (-13 (-1023) (-33))) (-5 *2 (-110)) (-5 *1 (-1060 *5 *6)))) (-3785 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-110) *5 *5)) (-4 *5 (-13 (-1023) (-33))) (-5 *2 (-110)) (-5 *1 (-1060 *4 *5)) (-4 *4 (-13 (-1023) (-33))))))
-(-13 (-1023) (-10 -8 (-15 -2147 ($)) (-15 -1972 ((-110) $)) (-15 -3327 (|#1| $)) (-15 -3189 (|#2| $)) (-15 -2694 ((-110) $)) (-15 -2233 ($ |#1| |#2| (-110))) (-15 -2233 ($ |#1| |#2|)) (-15 -2233 ($ (-2 (|:| |val| |#1|) (|:| -2316 |#2|)))) (-15 -2233 ((-595 $) (-595 (-2 (|:| |val| |#1|) (|:| -2316 |#2|))))) (-15 -2233 ((-595 $) |#1| (-595 |#2|))) (-15 -2406 ($ $)) (-15 -2131 ($ $ |#1|)) (-15 -1657 ($ $ |#2|)) (-15 -1231 ($ $ (-110))) (-15 -1486 ($ $)) (-15 -3768 ((-110) $ $ (-1 (-110) |#1| |#1|) (-1 (-110) |#2| |#2|))) (-15 -3785 ((-110) $ $ (-1 (-110) |#2| |#2|)))))
-((-2207 (((-110) $ $) NIL (|has| (-1060 |#1| |#2|) (-1023)))) (-3327 (((-1060 |#1| |#2|) $) 25)) (-3837 (($ $) 76)) (-1510 (((-110) (-1060 |#1| |#2|) $ (-1 (-110) |#2| |#2|)) 85)) (-3909 (($ $ $ (-595 (-1060 |#1| |#2|))) 90) (($ $ $ (-595 (-1060 |#1| |#2|)) (-1 (-110) |#2| |#2|)) 91)) (-3535 (((-110) $ (-717)) NIL)) (-2074 (((-1060 |#1| |#2|) $ (-1060 |#1| |#2|)) 43 (|has| $ (-6 -4265)))) (-2381 (((-1060 |#1| |#2|) $ "value" (-1060 |#1| |#2|)) NIL (|has| $ (-6 -4265)))) (-3409 (($ $ (-595 $)) 41 (|has| $ (-6 -4265)))) (-2816 (($) NIL T CONST)) (-1583 (((-595 (-2 (|:| |val| |#1|) (|:| -2316 |#2|))) $) 80)) (-3991 (($ (-1060 |#1| |#2|) $) 39)) (-2280 (($ (-1060 |#1| |#2|) $) 31)) (-3342 (((-595 (-1060 |#1| |#2|)) $) NIL (|has| $ (-6 -4264)))) (-1690 (((-595 $) $) 51)) (-1492 (((-110) (-1060 |#1| |#2|) $) 82)) (-1313 (((-110) $ $) NIL (|has| (-1060 |#1| |#2|) (-1023)))) (-2029 (((-110) $ (-717)) NIL)) (-2604 (((-595 (-1060 |#1| |#2|)) $) 55 (|has| $ (-6 -4264)))) (-2408 (((-110) (-1060 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-1060 |#1| |#2|) (-1023))))) (-2800 (($ (-1 (-1060 |#1| |#2|) (-1060 |#1| |#2|)) $) 47 (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-1060 |#1| |#2|) (-1060 |#1| |#2|)) $) 46)) (-3358 (((-110) $ (-717)) NIL)) (-3298 (((-595 (-1060 |#1| |#2|)) $) 53)) (-2578 (((-110) $) 42)) (-3034 (((-1078) $) NIL (|has| (-1060 |#1| |#2|) (-1023)))) (-2495 (((-1042) $) NIL (|has| (-1060 |#1| |#2|) (-1023)))) (-3773 (((-3 $ "failed") $) 75)) (-1818 (((-110) (-1 (-110) (-1060 |#1| |#2|)) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 (-1060 |#1| |#2|)))) NIL (-12 (|has| (-1060 |#1| |#2|) (-290 (-1060 |#1| |#2|))) (|has| (-1060 |#1| |#2|) (-1023)))) (($ $ (-275 (-1060 |#1| |#2|))) NIL (-12 (|has| (-1060 |#1| |#2|) (-290 (-1060 |#1| |#2|))) (|has| (-1060 |#1| |#2|) (-1023)))) (($ $ (-1060 |#1| |#2|) (-1060 |#1| |#2|)) NIL (-12 (|has| (-1060 |#1| |#2|) (-290 (-1060 |#1| |#2|))) (|has| (-1060 |#1| |#2|) (-1023)))) (($ $ (-595 (-1060 |#1| |#2|)) (-595 (-1060 |#1| |#2|))) NIL (-12 (|has| (-1060 |#1| |#2|) (-290 (-1060 |#1| |#2|))) (|has| (-1060 |#1| |#2|) (-1023))))) (-3744 (((-110) $ $) 50)) (-1972 (((-110) $) 22)) (-2147 (($) 24)) (-3043 (((-1060 |#1| |#2|) $ "value") NIL)) (-3241 (((-528) $ $) NIL)) (-3177 (((-110) $) 44)) (-2507 (((-717) (-1 (-110) (-1060 |#1| |#2|)) $) NIL (|has| $ (-6 -4264))) (((-717) (-1060 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-1060 |#1| |#2|) (-1023))))) (-2406 (($ $) 49)) (-2233 (($ (-1060 |#1| |#2|)) 9) (($ |#1| |#2| (-595 $)) 12) (($ |#1| |#2| (-595 (-1060 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-595 |#2|)) 17)) (-3904 (((-595 |#2|) $) 81)) (-2222 (((-802) $) 73 (|has| (-1060 |#1| |#2|) (-569 (-802))))) (-3813 (((-595 $) $) 28)) (-2688 (((-110) $ $) NIL (|has| (-1060 |#1| |#2|) (-1023)))) (-3451 (((-110) (-1 (-110) (-1060 |#1| |#2|)) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 64 (|has| (-1060 |#1| |#2|) (-1023)))) (-2138 (((-717) $) 58 (|has| $ (-6 -4264)))))
-(((-1061 |#1| |#2|) (-13 (-946 (-1060 |#1| |#2|)) (-10 -8 (-6 -4265) (-6 -4264) (-15 -3773 ((-3 $ "failed") $)) (-15 -3837 ($ $)) (-15 -2233 ($ (-1060 |#1| |#2|))) (-15 -2233 ($ |#1| |#2| (-595 $))) (-15 -2233 ($ |#1| |#2| (-595 (-1060 |#1| |#2|)))) (-15 -2233 ($ |#1| |#2| |#1| (-595 |#2|))) (-15 -3904 ((-595 |#2|) $)) (-15 -1583 ((-595 (-2 (|:| |val| |#1|) (|:| -2316 |#2|))) $)) (-15 -1492 ((-110) (-1060 |#1| |#2|) $)) (-15 -1510 ((-110) (-1060 |#1| |#2|) $ (-1 (-110) |#2| |#2|))) (-15 -2280 ($ (-1060 |#1| |#2|) $)) (-15 -3991 ($ (-1060 |#1| |#2|) $)) (-15 -3909 ($ $ $ (-595 (-1060 |#1| |#2|)))) (-15 -3909 ($ $ $ (-595 (-1060 |#1| |#2|)) (-1 (-110) |#2| |#2|))))) (-13 (-1023) (-33)) (-13 (-1023) (-33))) (T -1061))
-((-3773 (*1 *1 *1) (|partial| -12 (-5 *1 (-1061 *2 *3)) (-4 *2 (-13 (-1023) (-33))) (-4 *3 (-13 (-1023) (-33))))) (-3837 (*1 *1 *1) (-12 (-5 *1 (-1061 *2 *3)) (-4 *2 (-13 (-1023) (-33))) (-4 *3 (-13 (-1023) (-33))))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-1060 *3 *4)) (-4 *3 (-13 (-1023) (-33))) (-4 *4 (-13 (-1023) (-33))) (-5 *1 (-1061 *3 *4)))) (-2233 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-595 (-1061 *2 *3))) (-5 *1 (-1061 *2 *3)) (-4 *2 (-13 (-1023) (-33))) (-4 *3 (-13 (-1023) (-33))))) (-2233 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-595 (-1060 *2 *3))) (-4 *2 (-13 (-1023) (-33))) (-4 *3 (-13 (-1023) (-33))) (-5 *1 (-1061 *2 *3)))) (-2233 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-595 *3)) (-4 *3 (-13 (-1023) (-33))) (-5 *1 (-1061 *2 *3)) (-4 *2 (-13 (-1023) (-33))))) (-3904 (*1 *2 *1) (-12 (-5 *2 (-595 *4)) (-5 *1 (-1061 *3 *4)) (-4 *3 (-13 (-1023) (-33))) (-4 *4 (-13 (-1023) (-33))))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-595 (-2 (|:| |val| *3) (|:| -2316 *4)))) (-5 *1 (-1061 *3 *4)) (-4 *3 (-13 (-1023) (-33))) (-4 *4 (-13 (-1023) (-33))))) (-1492 (*1 *2 *3 *1) (-12 (-5 *3 (-1060 *4 *5)) (-4 *4 (-13 (-1023) (-33))) (-4 *5 (-13 (-1023) (-33))) (-5 *2 (-110)) (-5 *1 (-1061 *4 *5)))) (-1510 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1060 *5 *6)) (-5 *4 (-1 (-110) *6 *6)) (-4 *5 (-13 (-1023) (-33))) (-4 *6 (-13 (-1023) (-33))) (-5 *2 (-110)) (-5 *1 (-1061 *5 *6)))) (-2280 (*1 *1 *2 *1) (-12 (-5 *2 (-1060 *3 *4)) (-4 *3 (-13 (-1023) (-33))) (-4 *4 (-13 (-1023) (-33))) (-5 *1 (-1061 *3 *4)))) (-3991 (*1 *1 *2 *1) (-12 (-5 *2 (-1060 *3 *4)) (-4 *3 (-13 (-1023) (-33))) (-4 *4 (-13 (-1023) (-33))) (-5 *1 (-1061 *3 *4)))) (-3909 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-595 (-1060 *3 *4))) (-4 *3 (-13 (-1023) (-33))) (-4 *4 (-13 (-1023) (-33))) (-5 *1 (-1061 *3 *4)))) (-3909 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-595 (-1060 *4 *5))) (-5 *3 (-1 (-110) *5 *5)) (-4 *4 (-13 (-1023) (-33))) (-4 *5 (-13 (-1023) (-33))) (-5 *1 (-1061 *4 *5)))))
-(-13 (-946 (-1060 |#1| |#2|)) (-10 -8 (-6 -4265) (-6 -4264) (-15 -3773 ((-3 $ "failed") $)) (-15 -3837 ($ $)) (-15 -2233 ($ (-1060 |#1| |#2|))) (-15 -2233 ($ |#1| |#2| (-595 $))) (-15 -2233 ($ |#1| |#2| (-595 (-1060 |#1| |#2|)))) (-15 -2233 ($ |#1| |#2| |#1| (-595 |#2|))) (-15 -3904 ((-595 |#2|) $)) (-15 -1583 ((-595 (-2 (|:| |val| |#1|) (|:| -2316 |#2|))) $)) (-15 -1492 ((-110) (-1060 |#1| |#2|) $)) (-15 -1510 ((-110) (-1060 |#1| |#2|) $ (-1 (-110) |#2| |#2|))) (-15 -2280 ($ (-1060 |#1| |#2|) $)) (-15 -3991 ($ (-1060 |#1| |#2|) $)) (-15 -3909 ($ $ $ (-595 (-1060 |#1| |#2|)))) (-15 -3909 ($ $ $ (-595 (-1060 |#1| |#2|)) (-1 (-110) |#2| |#2|)))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3351 (($ $) NIL)) (-1323 ((|#2| $) NIL)) (-1987 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-3835 (($ (-635 |#2|)) 47)) (-2300 (((-110) $) NIL)) (-3535 (((-110) $ (-717)) NIL)) (-1626 (($ |#2|) 9)) (-2816 (($) NIL T CONST)) (-2614 (($ $) 60 (|has| |#2| (-288)))) (-4203 (((-222 |#1| |#2|) $ (-528)) 34)) (-3001 (((-3 (-528) "failed") $) NIL (|has| |#2| (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#2| (-972 (-387 (-528))))) (((-3 |#2| "failed") $) NIL)) (-2409 (((-528) $) NIL (|has| |#2| (-972 (-528)))) (((-387 (-528)) $) NIL (|has| |#2| (-972 (-387 (-528))))) ((|#2| $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| |#2| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| |#2| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 $) (-1177 $)) NIL) (((-635 |#2|) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) 74)) (-3090 (((-717) $) 62 (|has| |#2| (-520)))) (-2742 ((|#2| $ (-528) (-528)) NIL)) (-3342 (((-595 |#2|) $) NIL (|has| $ (-6 -4264)))) (-1297 (((-110) $) NIL)) (-1877 (((-717) $) 64 (|has| |#2| (-520)))) (-1809 (((-595 (-222 |#1| |#2|)) $) 68 (|has| |#2| (-520)))) (-1358 (((-717) $) NIL)) (-1370 (((-717) $) NIL)) (-2029 (((-110) $ (-717)) NIL)) (-3997 ((|#2| $) 58 (|has| |#2| (-6 (-4266 "*"))))) (-3065 (((-528) $) NIL)) (-2567 (((-528) $) NIL)) (-2604 (((-595 |#2|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-3224 (((-528) $) NIL)) (-1268 (((-528) $) NIL)) (-1553 (($ (-595 (-595 |#2|))) 29)) (-2800 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2062 (((-595 (-595 |#2|)) $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL)) (-1666 (((-3 $ "failed") $) 71 (|has| |#2| (-343)))) (-2495 (((-1042) $) NIL)) (-3477 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-520)))) (-1818 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#2|))) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-595 |#2|) (-595 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#2| $ (-528) (-528) |#2|) NIL) ((|#2| $ (-528) (-528)) NIL)) (-3235 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-717)) NIL) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-1095)) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-717)) NIL (|has| |#2| (-215))) (($ $) NIL (|has| |#2| (-215)))) (-2255 ((|#2| $) NIL)) (-3751 (($ (-595 |#2|)) 42)) (-2851 (((-110) $) NIL)) (-1577 (((-222 |#1| |#2|) $) NIL)) (-3166 ((|#2| $) 56 (|has| |#2| (-6 (-4266 "*"))))) (-2507 (((-717) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264))) (((-717) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-2406 (($ $) NIL)) (-3155 (((-504) $) 83 (|has| |#2| (-570 (-504))))) (-3946 (((-222 |#1| |#2|) $ (-528)) 36)) (-2222 (((-802) $) 39) (($ (-528)) NIL) (($ (-387 (-528))) NIL (|has| |#2| (-972 (-387 (-528))))) (($ |#2|) NIL) (((-635 |#2|) $) 44)) (-3742 (((-717)) 17)) (-3451 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-1428 (((-110) $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 11 T CONST)) (-2982 (($) 14 T CONST)) (-3245 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-717)) NIL) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-1095)) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-717)) NIL (|has| |#2| (-215))) (($ $) NIL (|has| |#2| (-215)))) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ |#2|) NIL (|has| |#2| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) 54) (($ $ (-528)) 73 (|has| |#2| (-343)))) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-222 |#1| |#2|) $ (-222 |#1| |#2|)) 50) (((-222 |#1| |#2|) (-222 |#1| |#2|) $) 52)) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-1062 |#1| |#2|) (-13 (-1045 |#1| |#2| (-222 |#1| |#2|) (-222 |#1| |#2|)) (-569 (-635 |#2|)) (-10 -8 (-15 -3351 ($ $)) (-15 -3835 ($ (-635 |#2|))) (-15 -2222 ((-635 |#2|) $)) (IF (|has| |#2| (-6 (-4266 "*"))) (-6 -4253) |%noBranch|) (IF (|has| |#2| (-6 (-4266 "*"))) (IF (|has| |#2| (-6 -4261)) (-6 -4261) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-570 (-504))) (-6 (-570 (-504))) |%noBranch|))) (-717) (-981)) (T -1062))
-((-2222 (*1 *2 *1) (-12 (-5 *2 (-635 *4)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-717)) (-4 *4 (-981)))) (-3351 (*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-717)) (-4 *3 (-981)))) (-3835 (*1 *1 *2) (-12 (-5 *2 (-635 *4)) (-4 *4 (-981)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-717)))))
-(-13 (-1045 |#1| |#2| (-222 |#1| |#2|) (-222 |#1| |#2|)) (-569 (-635 |#2|)) (-10 -8 (-15 -3351 ($ $)) (-15 -3835 ($ (-635 |#2|))) (-15 -2222 ((-635 |#2|) $)) (IF (|has| |#2| (-6 (-4266 "*"))) (-6 -4253) |%noBranch|) (IF (|has| |#2| (-6 (-4266 "*"))) (IF (|has| |#2| (-6 -4261)) (-6 -4261) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-570 (-504))) (-6 (-570 (-504))) |%noBranch|)))
-((-1330 (($ $) 19)) (-3335 (($ $ (-137)) 10) (($ $ (-134)) 14)) (-2930 (((-110) $ $) 24)) (-2491 (($ $) 17)) (-3043 (((-137) $ (-528) (-137)) NIL) (((-137) $ (-528)) NIL) (($ $ (-1144 (-528))) NIL) (($ $ $) 29)) (-2222 (($ (-137)) 27) (((-802) $) NIL)))
-(((-1063 |#1|) (-10 -8 (-15 -2222 ((-802) |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3335 (|#1| |#1| (-134))) (-15 -3335 (|#1| |#1| (-137))) (-15 -2222 (|#1| (-137))) (-15 -2930 ((-110) |#1| |#1|)) (-15 -1330 (|#1| |#1|)) (-15 -2491 (|#1| |#1|)) (-15 -3043 (|#1| |#1| (-1144 (-528)))) (-15 -3043 ((-137) |#1| (-528))) (-15 -3043 ((-137) |#1| (-528) (-137)))) (-1064)) (T -1063))
-NIL
-(-10 -8 (-15 -2222 ((-802) |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3335 (|#1| |#1| (-134))) (-15 -3335 (|#1| |#1| (-137))) (-15 -2222 (|#1| (-137))) (-15 -2930 ((-110) |#1| |#1|)) (-15 -1330 (|#1| |#1|)) (-15 -2491 (|#1| |#1|)) (-15 -3043 (|#1| |#1| (-1144 (-528)))) (-15 -3043 ((-137) |#1| (-528))) (-15 -3043 ((-137) |#1| (-528) (-137))))
-((-2207 (((-110) $ $) 19 (|has| (-137) (-1023)))) (-1538 (($ $) 120)) (-1330 (($ $) 121)) (-3335 (($ $ (-137)) 108) (($ $ (-134)) 107)) (-1444 (((-1182) $ (-528) (-528)) 40 (|has| $ (-6 -4265)))) (-2905 (((-110) $ $) 118)) (-2881 (((-110) $ $ (-528)) 117)) (-2129 (((-595 $) $ (-137)) 110) (((-595 $) $ (-134)) 109)) (-3608 (((-110) (-1 (-110) (-137) (-137)) $) 98) (((-110) $) 92 (|has| (-137) (-793)))) (-3863 (($ (-1 (-110) (-137) (-137)) $) 89 (|has| $ (-6 -4265))) (($ $) 88 (-12 (|has| (-137) (-793)) (|has| $ (-6 -4265))))) (-1289 (($ (-1 (-110) (-137) (-137)) $) 99) (($ $) 93 (|has| (-137) (-793)))) (-3535 (((-110) $ (-717)) 8)) (-2381 (((-137) $ (-528) (-137)) 52 (|has| $ (-6 -4265))) (((-137) $ (-1144 (-528)) (-137)) 58 (|has| $ (-6 -4265)))) (-1573 (($ (-1 (-110) (-137)) $) 75 (|has| $ (-6 -4264)))) (-2816 (($) 7 T CONST)) (-2671 (($ $ (-137)) 104) (($ $ (-134)) 103)) (-2472 (($ $) 90 (|has| $ (-6 -4265)))) (-3009 (($ $) 100)) (-3988 (($ $ (-1144 (-528)) $) 114)) (-2923 (($ $) 78 (-12 (|has| (-137) (-1023)) (|has| $ (-6 -4264))))) (-2280 (($ (-137) $) 77 (-12 (|has| (-137) (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) (-137)) $) 74 (|has| $ (-6 -4264)))) (-1422 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) 76 (-12 (|has| (-137) (-1023)) (|has| $ (-6 -4264)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) 73 (|has| $ (-6 -4264))) (((-137) (-1 (-137) (-137) (-137)) $) 72 (|has| $ (-6 -4264)))) (-2812 (((-137) $ (-528) (-137)) 53 (|has| $ (-6 -4265)))) (-2742 (((-137) $ (-528)) 51)) (-2930 (((-110) $ $) 119)) (-3140 (((-528) (-1 (-110) (-137)) $) 97) (((-528) (-137) $) 96 (|has| (-137) (-1023))) (((-528) (-137) $ (-528)) 95 (|has| (-137) (-1023))) (((-528) $ $ (-528)) 113) (((-528) (-134) $ (-528)) 112)) (-3342 (((-595 (-137)) $) 30 (|has| $ (-6 -4264)))) (-3462 (($ (-717) (-137)) 69)) (-2029 (((-110) $ (-717)) 9)) (-3530 (((-528) $) 43 (|has| (-528) (-793)))) (-1436 (($ $ $) 87 (|has| (-137) (-793)))) (-1356 (($ (-1 (-110) (-137) (-137)) $ $) 101) (($ $ $) 94 (|has| (-137) (-793)))) (-2604 (((-595 (-137)) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) (-137) $) 27 (-12 (|has| (-137) (-1023)) (|has| $ (-6 -4264))))) (-1709 (((-528) $) 44 (|has| (-528) (-793)))) (-1736 (($ $ $) 86 (|has| (-137) (-793)))) (-1867 (((-110) $ $ (-137)) 115)) (-3917 (((-717) $ $ (-137)) 116)) (-2800 (($ (-1 (-137) (-137)) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-137) (-137)) $) 35) (($ (-1 (-137) (-137) (-137)) $ $) 64)) (-2915 (($ $) 122)) (-2491 (($ $) 123)) (-3358 (((-110) $ (-717)) 10)) (-2682 (($ $ (-137)) 106) (($ $ (-134)) 105)) (-3034 (((-1078) $) 22 (|has| (-137) (-1023)))) (-3939 (($ (-137) $ (-528)) 60) (($ $ $ (-528)) 59)) (-2084 (((-595 (-528)) $) 46)) (-3966 (((-110) (-528) $) 47)) (-2495 (((-1042) $) 21 (|has| (-137) (-1023)))) (-2890 (((-137) $) 42 (|has| (-528) (-793)))) (-1734 (((-3 (-137) "failed") (-1 (-110) (-137)) $) 71)) (-1332 (($ $ (-137)) 41 (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) (-137)) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 (-137)))) 26 (-12 (|has| (-137) (-290 (-137))) (|has| (-137) (-1023)))) (($ $ (-275 (-137))) 25 (-12 (|has| (-137) (-290 (-137))) (|has| (-137) (-1023)))) (($ $ (-137) (-137)) 24 (-12 (|has| (-137) (-290 (-137))) (|has| (-137) (-1023)))) (($ $ (-595 (-137)) (-595 (-137))) 23 (-12 (|has| (-137) (-290 (-137))) (|has| (-137) (-1023))))) (-3744 (((-110) $ $) 14)) (-2111 (((-110) (-137) $) 45 (-12 (|has| $ (-6 -4264)) (|has| (-137) (-1023))))) (-2861 (((-595 (-137)) $) 48)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3043 (((-137) $ (-528) (-137)) 50) (((-137) $ (-528)) 49) (($ $ (-1144 (-528))) 63) (($ $ $) 102)) (-1745 (($ $ (-528)) 62) (($ $ (-1144 (-528))) 61)) (-2507 (((-717) (-1 (-110) (-137)) $) 31 (|has| $ (-6 -4264))) (((-717) (-137) $) 28 (-12 (|has| (-137) (-1023)) (|has| $ (-6 -4264))))) (-3761 (($ $ $ (-528)) 91 (|has| $ (-6 -4265)))) (-2406 (($ $) 13)) (-3155 (((-504) $) 79 (|has| (-137) (-570 (-504))))) (-2233 (($ (-595 (-137))) 70)) (-3400 (($ $ (-137)) 68) (($ (-137) $) 67) (($ $ $) 66) (($ (-595 $)) 65)) (-2222 (($ (-137)) 111) (((-802) $) 18 (|has| (-137) (-569 (-802))))) (-3451 (((-110) (-1 (-110) (-137)) $) 33 (|has| $ (-6 -4264)))) (-2244 (((-110) $ $) 84 (|has| (-137) (-793)))) (-2220 (((-110) $ $) 83 (|has| (-137) (-793)))) (-2186 (((-110) $ $) 20 (|has| (-137) (-1023)))) (-2232 (((-110) $ $) 85 (|has| (-137) (-793)))) (-2208 (((-110) $ $) 82 (|has| (-137) (-793)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-1064) (-133)) (T -1064))
-((-2491 (*1 *1 *1) (-4 *1 (-1064))) (-2915 (*1 *1 *1) (-4 *1 (-1064))) (-1330 (*1 *1 *1) (-4 *1 (-1064))) (-1538 (*1 *1 *1) (-4 *1 (-1064))) (-2930 (*1 *2 *1 *1) (-12 (-4 *1 (-1064)) (-5 *2 (-110)))) (-2905 (*1 *2 *1 *1) (-12 (-4 *1 (-1064)) (-5 *2 (-110)))) (-2881 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1064)) (-5 *3 (-528)) (-5 *2 (-110)))) (-3917 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1064)) (-5 *3 (-137)) (-5 *2 (-717)))) (-1867 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1064)) (-5 *3 (-137)) (-5 *2 (-110)))) (-3988 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1064)) (-5 *2 (-1144 (-528))))) (-3140 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1064)) (-5 *2 (-528)))) (-3140 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1064)) (-5 *2 (-528)) (-5 *3 (-134)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-137)) (-4 *1 (-1064)))) (-2129 (*1 *2 *1 *3) (-12 (-5 *3 (-137)) (-5 *2 (-595 *1)) (-4 *1 (-1064)))) (-2129 (*1 *2 *1 *3) (-12 (-5 *3 (-134)) (-5 *2 (-595 *1)) (-4 *1 (-1064)))) (-3335 (*1 *1 *1 *2) (-12 (-4 *1 (-1064)) (-5 *2 (-137)))) (-3335 (*1 *1 *1 *2) (-12 (-4 *1 (-1064)) (-5 *2 (-134)))) (-2682 (*1 *1 *1 *2) (-12 (-4 *1 (-1064)) (-5 *2 (-137)))) (-2682 (*1 *1 *1 *2) (-12 (-4 *1 (-1064)) (-5 *2 (-134)))) (-2671 (*1 *1 *1 *2) (-12 (-4 *1 (-1064)) (-5 *2 (-137)))) (-2671 (*1 *1 *1 *2) (-12 (-4 *1 (-1064)) (-5 *2 (-134)))) (-3043 (*1 *1 *1 *1) (-4 *1 (-1064))))
-(-13 (-19 (-137)) (-10 -8 (-15 -2491 ($ $)) (-15 -2915 ($ $)) (-15 -1330 ($ $)) (-15 -1538 ($ $)) (-15 -2930 ((-110) $ $)) (-15 -2905 ((-110) $ $)) (-15 -2881 ((-110) $ $ (-528))) (-15 -3917 ((-717) $ $ (-137))) (-15 -1867 ((-110) $ $ (-137))) (-15 -3988 ($ $ (-1144 (-528)) $)) (-15 -3140 ((-528) $ $ (-528))) (-15 -3140 ((-528) (-134) $ (-528))) (-15 -2222 ($ (-137))) (-15 -2129 ((-595 $) $ (-137))) (-15 -2129 ((-595 $) $ (-134))) (-15 -3335 ($ $ (-137))) (-15 -3335 ($ $ (-134))) (-15 -2682 ($ $ (-137))) (-15 -2682 ($ $ (-134))) (-15 -2671 ($ $ (-137))) (-15 -2671 ($ $ (-134))) (-15 -3043 ($ $ $))))
-(((-33) . T) ((-99) -1463 (|has| (-137) (-1023)) (|has| (-137) (-793))) ((-569 (-802)) -1463 (|has| (-137) (-1023)) (|has| (-137) (-793)) (|has| (-137) (-569 (-802)))) ((-144 #0=(-137)) . T) ((-570 (-504)) |has| (-137) (-570 (-504))) ((-267 #1=(-528) #0#) . T) ((-269 #1# #0#) . T) ((-290 #0#) -12 (|has| (-137) (-290 (-137))) (|has| (-137) (-1023))) ((-353 #0#) . T) ((-467 #0#) . T) ((-561 #1# #0#) . T) ((-489 #0# #0#) -12 (|has| (-137) (-290 (-137))) (|has| (-137) (-1023))) ((-600 #0#) . T) ((-19 #0#) . T) ((-793) |has| (-137) (-793)) ((-1023) -1463 (|has| (-137) (-1023)) (|has| (-137) (-793))) ((-1131) . T))
-((-3647 (((-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) (-595 |#4|) (-595 |#5|) (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) (-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) (-717)) 94)) (-2944 (((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5| (-717)) 54)) (-4101 (((-1182) (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) (-717)) 85)) (-1493 (((-717) (-595 |#4|) (-595 |#5|)) 27)) (-4210 (((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5| (-717)) 56) (((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5| (-717) (-110)) 58)) (-1208 (((-595 |#5|) (-595 |#4|) (-595 |#5|) (-110) (-110) (-110) (-110) (-110)) 76) (((-595 |#5|) (-595 |#4|) (-595 |#5|) (-110) (-110)) 77)) (-3155 (((-1078) (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) 80)) (-3902 (((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5|) 53)) (-2602 (((-717) (-595 |#4|) (-595 |#5|)) 19)))
-(((-1065 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2602 ((-717) (-595 |#4|) (-595 |#5|))) (-15 -1493 ((-717) (-595 |#4|) (-595 |#5|))) (-15 -3902 ((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5|)) (-15 -2944 ((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5| (-717))) (-15 -2944 ((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5|)) (-15 -4210 ((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5| (-717) (-110))) (-15 -4210 ((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5| (-717))) (-15 -4210 ((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5|)) (-15 -1208 ((-595 |#5|) (-595 |#4|) (-595 |#5|) (-110) (-110))) (-15 -1208 ((-595 |#5|) (-595 |#4|) (-595 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -3647 ((-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) (-595 |#4|) (-595 |#5|) (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) (-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) (-717))) (-15 -3155 ((-1078) (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|)))) (-15 -4101 ((-1182) (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) (-717)))) (-431) (-739) (-793) (-994 |#1| |#2| |#3|) (-1032 |#1| |#2| |#3| |#4|)) (T -1065))
-((-4101 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-2 (|:| |val| (-595 *8)) (|:| -2316 *9)))) (-5 *4 (-717)) (-4 *8 (-994 *5 *6 *7)) (-4 *9 (-1032 *5 *6 *7 *8)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-1182)) (-5 *1 (-1065 *5 *6 *7 *8 *9)))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-595 *7)) (|:| -2316 *8))) (-4 *7 (-994 *4 *5 *6)) (-4 *8 (-1032 *4 *5 *6 *7)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-1078)) (-5 *1 (-1065 *4 *5 *6 *7 *8)))) (-3647 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-595 *11)) (|:| |todo| (-595 (-2 (|:| |val| *3) (|:| -2316 *11)))))) (-5 *6 (-717)) (-5 *2 (-595 (-2 (|:| |val| (-595 *10)) (|:| -2316 *11)))) (-5 *3 (-595 *10)) (-5 *4 (-595 *11)) (-4 *10 (-994 *7 *8 *9)) (-4 *11 (-1032 *7 *8 *9 *10)) (-4 *7 (-431)) (-4 *8 (-739)) (-4 *9 (-793)) (-5 *1 (-1065 *7 *8 *9 *10 *11)))) (-1208 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-595 *9)) (-5 *3 (-595 *8)) (-5 *4 (-110)) (-4 *8 (-994 *5 *6 *7)) (-4 *9 (-1032 *5 *6 *7 *8)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *1 (-1065 *5 *6 *7 *8 *9)))) (-1208 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-595 *9)) (-5 *3 (-595 *8)) (-5 *4 (-110)) (-4 *8 (-994 *5 *6 *7)) (-4 *9 (-1032 *5 *6 *7 *8)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *1 (-1065 *5 *6 *7 *8 *9)))) (-4210 (*1 *2 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-595 *4)) (|:| |todo| (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4)))))) (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1032 *5 *6 *7 *3)))) (-4210 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-717)) (-4 *6 (-431)) (-4 *7 (-739)) (-4 *8 (-793)) (-4 *3 (-994 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-595 *4)) (|:| |todo| (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4)))))) (-5 *1 (-1065 *6 *7 *8 *3 *4)) (-4 *4 (-1032 *6 *7 *8 *3)))) (-4210 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-717)) (-5 *6 (-110)) (-4 *7 (-431)) (-4 *8 (-739)) (-4 *9 (-793)) (-4 *3 (-994 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-595 *4)) (|:| |todo| (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4)))))) (-5 *1 (-1065 *7 *8 *9 *3 *4)) (-4 *4 (-1032 *7 *8 *9 *3)))) (-2944 (*1 *2 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-595 *4)) (|:| |todo| (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4)))))) (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1032 *5 *6 *7 *3)))) (-2944 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-717)) (-4 *6 (-431)) (-4 *7 (-739)) (-4 *8 (-793)) (-4 *3 (-994 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-595 *4)) (|:| |todo| (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4)))))) (-5 *1 (-1065 *6 *7 *8 *3 *4)) (-4 *4 (-1032 *6 *7 *8 *3)))) (-3902 (*1 *2 *3 *4) (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-595 *4)) (|:| |todo| (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4)))))) (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1032 *5 *6 *7 *3)))) (-1493 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *8)) (-5 *4 (-595 *9)) (-4 *8 (-994 *5 *6 *7)) (-4 *9 (-1032 *5 *6 *7 *8)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-717)) (-5 *1 (-1065 *5 *6 *7 *8 *9)))) (-2602 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *8)) (-5 *4 (-595 *9)) (-4 *8 (-994 *5 *6 *7)) (-4 *9 (-1032 *5 *6 *7 *8)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-717)) (-5 *1 (-1065 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2602 ((-717) (-595 |#4|) (-595 |#5|))) (-15 -1493 ((-717) (-595 |#4|) (-595 |#5|))) (-15 -3902 ((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5|)) (-15 -2944 ((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5| (-717))) (-15 -2944 ((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5|)) (-15 -4210 ((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5| (-717) (-110))) (-15 -4210 ((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5| (-717))) (-15 -4210 ((-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) |#4| |#5|)) (-15 -1208 ((-595 |#5|) (-595 |#4|) (-595 |#5|) (-110) (-110))) (-15 -1208 ((-595 |#5|) (-595 |#4|) (-595 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -3647 ((-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) (-595 |#4|) (-595 |#5|) (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) (-2 (|:| |done| (-595 |#5|)) (|:| |todo| (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))))) (-717))) (-15 -3155 ((-1078) (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|)))) (-15 -4101 ((-1182) (-595 (-2 (|:| |val| (-595 |#4|)) (|:| -2316 |#5|))) (-717))))
-((-2207 (((-110) $ $) NIL)) (-2785 (((-595 (-2 (|:| -2254 $) (|:| -2378 (-595 |#4|)))) (-595 |#4|)) NIL)) (-1985 (((-595 $) (-595 |#4|)) 110) (((-595 $) (-595 |#4|) (-110)) 111) (((-595 $) (-595 |#4|) (-110) (-110)) 109) (((-595 $) (-595 |#4|) (-110) (-110) (-110) (-110)) 112)) (-2565 (((-595 |#3|) $) NIL)) (-3812 (((-110) $) NIL)) (-2414 (((-110) $) NIL (|has| |#1| (-520)))) (-3759 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1728 ((|#4| |#4| $) NIL)) (-1232 (((-595 (-2 (|:| |val| |#4|) (|:| -2316 $))) |#4| $) 84)) (-1289 (((-2 (|:| |under| $) (|:| -2925 $) (|:| |upper| $)) $ |#3|) NIL)) (-3535 (((-110) $ (-717)) NIL)) (-1573 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264))) (((-3 |#4| "failed") $ |#3|) 62)) (-2816 (($) NIL T CONST)) (-1689 (((-110) $) 26 (|has| |#1| (-520)))) (-2584 (((-110) $ $) NIL (|has| |#1| (-520)))) (-3168 (((-110) $ $) NIL (|has| |#1| (-520)))) (-1924 (((-110) $) NIL (|has| |#1| (-520)))) (-1658 (((-595 |#4|) (-595 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-1891 (((-595 |#4|) (-595 |#4|) $) NIL (|has| |#1| (-520)))) (-3794 (((-595 |#4|) (-595 |#4|) $) NIL (|has| |#1| (-520)))) (-3001 (((-3 $ "failed") (-595 |#4|)) NIL)) (-2409 (($ (-595 |#4|)) NIL)) (-2902 (((-3 $ "failed") $) 39)) (-1592 ((|#4| |#4| $) 65)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023))))) (-2280 (($ |#4| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264)))) (-2537 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-520)))) (-1927 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-3345 ((|#4| |#4| $) NIL)) (-1422 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4264))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4264))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-4049 (((-2 (|:| -2254 (-595 |#4|)) (|:| -2378 (-595 |#4|))) $) NIL)) (-1640 (((-110) |#4| $) NIL)) (-4184 (((-110) |#4| $) NIL)) (-2667 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3948 (((-2 (|:| |val| (-595 |#4|)) (|:| |towers| (-595 $))) (-595 |#4|) (-110) (-110)) 124)) (-3342 (((-595 |#4|) $) 16 (|has| $ (-6 -4264)))) (-3092 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1761 ((|#3| $) 33)) (-2029 (((-110) $ (-717)) NIL)) (-2604 (((-595 |#4|) $) 17 (|has| $ (-6 -4264)))) (-2408 (((-110) |#4| $) 25 (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023))))) (-2800 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#4| |#4|) $) 21)) (-3558 (((-595 |#3|) $) NIL)) (-3472 (((-110) |#3| $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL)) (-4192 (((-3 |#4| (-595 $)) |#4| |#4| $) NIL)) (-2272 (((-595 (-2 (|:| |val| |#4|) (|:| -2316 $))) |#4| |#4| $) 103)) (-2301 (((-3 |#4| "failed") $) 37)) (-2078 (((-595 $) |#4| $) 88)) (-1307 (((-3 (-110) (-595 $)) |#4| $) NIL)) (-3346 (((-595 (-2 (|:| |val| (-110)) (|:| -2316 $))) |#4| $) 98) (((-110) |#4| $) 53)) (-3397 (((-595 $) |#4| $) 107) (((-595 $) (-595 |#4|) $) NIL) (((-595 $) (-595 |#4|) (-595 $)) 108) (((-595 $) |#4| (-595 $)) NIL)) (-2695 (((-595 $) (-595 |#4|) (-110) (-110) (-110)) 119)) (-1325 (($ |#4| $) 75) (($ (-595 |#4|) $) 76) (((-595 $) |#4| $ (-110) (-110) (-110) (-110) (-110)) 74)) (-3923 (((-595 |#4|) $) NIL)) (-2127 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3436 ((|#4| |#4| $) NIL)) (-3664 (((-110) $ $) NIL)) (-1827 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-520)))) (-1906 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-2001 ((|#4| |#4| $) NIL)) (-2495 (((-1042) $) NIL)) (-2890 (((-3 |#4| "failed") $) 35)) (-1734 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-3912 (((-3 $ "failed") $ |#4|) 48)) (-3740 (($ $ |#4|) NIL) (((-595 $) |#4| $) 90) (((-595 $) |#4| (-595 $)) NIL) (((-595 $) (-595 |#4|) $) NIL) (((-595 $) (-595 |#4|) (-595 $)) 86)) (-1818 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 |#4|) (-595 |#4|)) NIL (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ (-275 |#4|)) NIL (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ (-595 (-275 |#4|))) NIL (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) 15)) (-2147 (($) 13)) (-2935 (((-717) $) NIL)) (-2507 (((-717) |#4| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023)))) (((-717) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264)))) (-2406 (($ $) 12)) (-3155 (((-504) $) NIL (|has| |#4| (-570 (-504))))) (-2233 (($ (-595 |#4|)) 20)) (-2649 (($ $ |#3|) 42)) (-3597 (($ $ |#3|) 44)) (-3311 (($ $) NIL)) (-1812 (($ $ |#3|) NIL)) (-2222 (((-802) $) 31) (((-595 |#4|) $) 40)) (-2459 (((-717) $) NIL (|has| |#3| (-348)))) (-1411 (((-3 (-2 (|:| |bas| $) (|:| -1513 (-595 |#4|))) "failed") (-595 |#4|) (-1 (-110) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1513 (-595 |#4|))) "failed") (-595 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-1622 (((-110) $ (-1 (-110) |#4| (-595 |#4|))) NIL)) (-4053 (((-595 $) |#4| $) 54) (((-595 $) |#4| (-595 $)) NIL) (((-595 $) (-595 |#4|) $) NIL) (((-595 $) (-595 |#4|) (-595 $)) NIL)) (-3451 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264)))) (-1490 (((-595 |#3|) $) NIL)) (-3207 (((-110) |#4| $) NIL)) (-2190 (((-110) |#3| $) 61)) (-2186 (((-110) $ $) NIL)) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-1066 |#1| |#2| |#3| |#4|) (-13 (-1032 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1325 ((-595 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -1985 ((-595 $) (-595 |#4|) (-110) (-110))) (-15 -1985 ((-595 $) (-595 |#4|) (-110) (-110) (-110) (-110))) (-15 -2695 ((-595 $) (-595 |#4|) (-110) (-110) (-110))) (-15 -3948 ((-2 (|:| |val| (-595 |#4|)) (|:| |towers| (-595 $))) (-595 |#4|) (-110) (-110))))) (-431) (-739) (-793) (-994 |#1| |#2| |#3|)) (T -1066))
-((-1325 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-595 (-1066 *5 *6 *7 *3))) (-5 *1 (-1066 *5 *6 *7 *3)) (-4 *3 (-994 *5 *6 *7)))) (-1985 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-595 *8)) (-5 *4 (-110)) (-4 *8 (-994 *5 *6 *7)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-595 (-1066 *5 *6 *7 *8))) (-5 *1 (-1066 *5 *6 *7 *8)))) (-1985 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-595 *8)) (-5 *4 (-110)) (-4 *8 (-994 *5 *6 *7)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-595 (-1066 *5 *6 *7 *8))) (-5 *1 (-1066 *5 *6 *7 *8)))) (-2695 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-595 *8)) (-5 *4 (-110)) (-4 *8 (-994 *5 *6 *7)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-595 (-1066 *5 *6 *7 *8))) (-5 *1 (-1066 *5 *6 *7 *8)))) (-3948 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *8 (-994 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-595 *8)) (|:| |towers| (-595 (-1066 *5 *6 *7 *8))))) (-5 *1 (-1066 *5 *6 *7 *8)) (-5 *3 (-595 *8)))))
-(-13 (-1032 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1325 ((-595 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -1985 ((-595 $) (-595 |#4|) (-110) (-110))) (-15 -1985 ((-595 $) (-595 |#4|) (-110) (-110) (-110) (-110))) (-15 -2695 ((-595 $) (-595 |#4|) (-110) (-110) (-110))) (-15 -3948 ((-2 (|:| |val| (-595 |#4|)) (|:| |towers| (-595 $))) (-595 |#4|) (-110) (-110)))))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-1513 ((|#1| $) 34)) (-3796 (($ (-595 |#1|)) 39)) (-3535 (((-110) $ (-717)) NIL)) (-2816 (($) NIL T CONST)) (-3712 ((|#1| |#1| $) 36)) (-4113 ((|#1| $) 32)) (-3342 (((-595 |#1|) $) 18 (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) NIL)) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2800 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 22)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-3934 ((|#1| $) 35)) (-1950 (($ |#1| $) 37)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-1390 ((|#1| $) 33)) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) 31)) (-2147 (($) 38)) (-3972 (((-717) $) 29)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2406 (($ $) 27)) (-2222 (((-802) $) 14 (|has| |#1| (-569 (-802))))) (-2164 (($ (-595 |#1|)) NIL)) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 17 (|has| |#1| (-1023)))) (-2138 (((-717) $) 30 (|has| $ (-6 -4264)))))
-(((-1067 |#1|) (-13 (-1043 |#1|) (-10 -8 (-15 -3796 ($ (-595 |#1|))))) (-1131)) (T -1067))
-((-3796 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1131)) (-5 *1 (-1067 *3)))))
-(-13 (-1043 |#1|) (-10 -8 (-15 -3796 ($ (-595 |#1|)))))
-((-2381 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1144 (-528)) |#2|) 44) ((|#2| $ (-528) |#2|) 41)) (-3691 (((-110) $) 12)) (-2800 (($ (-1 |#2| |#2|) $) 39)) (-2890 ((|#2| $) NIL) (($ $ (-717)) 17)) (-1332 (($ $ |#2|) 40)) (-1441 (((-110) $) 11)) (-3043 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1144 (-528))) 31) ((|#2| $ (-528)) 23) ((|#2| $ (-528) |#2|) NIL)) (-3579 (($ $ $) 47) (($ $ |#2|) NIL)) (-3400 (($ $ $) 33) (($ |#2| $) NIL) (($ (-595 $)) 36) (($ $ |#2|) NIL)))
-(((-1068 |#1| |#2|) (-10 -8 (-15 -3691 ((-110) |#1|)) (-15 -1441 ((-110) |#1|)) (-15 -2381 (|#2| |#1| (-528) |#2|)) (-15 -3043 (|#2| |#1| (-528) |#2|)) (-15 -3043 (|#2| |#1| (-528))) (-15 -1332 (|#1| |#1| |#2|)) (-15 -3400 (|#1| |#1| |#2|)) (-15 -3400 (|#1| (-595 |#1|))) (-15 -3043 (|#1| |#1| (-1144 (-528)))) (-15 -2381 (|#2| |#1| (-1144 (-528)) |#2|)) (-15 -2381 (|#2| |#1| "last" |#2|)) (-15 -2381 (|#1| |#1| "rest" |#1|)) (-15 -2381 (|#2| |#1| "first" |#2|)) (-15 -3579 (|#1| |#1| |#2|)) (-15 -3579 (|#1| |#1| |#1|)) (-15 -3043 (|#2| |#1| "last")) (-15 -3043 (|#1| |#1| "rest")) (-15 -2890 (|#1| |#1| (-717))) (-15 -3043 (|#2| |#1| "first")) (-15 -2890 (|#2| |#1|)) (-15 -3400 (|#1| |#2| |#1|)) (-15 -3400 (|#1| |#1| |#1|)) (-15 -2381 (|#2| |#1| "value" |#2|)) (-15 -3043 (|#2| |#1| "value")) (-15 -2800 (|#1| (-1 |#2| |#2|) |#1|))) (-1069 |#2|) (-1131)) (T -1068))
-NIL
-(-10 -8 (-15 -3691 ((-110) |#1|)) (-15 -1441 ((-110) |#1|)) (-15 -2381 (|#2| |#1| (-528) |#2|)) (-15 -3043 (|#2| |#1| (-528) |#2|)) (-15 -3043 (|#2| |#1| (-528))) (-15 -1332 (|#1| |#1| |#2|)) (-15 -3400 (|#1| |#1| |#2|)) (-15 -3400 (|#1| (-595 |#1|))) (-15 -3043 (|#1| |#1| (-1144 (-528)))) (-15 -2381 (|#2| |#1| (-1144 (-528)) |#2|)) (-15 -2381 (|#2| |#1| "last" |#2|)) (-15 -2381 (|#1| |#1| "rest" |#1|)) (-15 -2381 (|#2| |#1| "first" |#2|)) (-15 -3579 (|#1| |#1| |#2|)) (-15 -3579 (|#1| |#1| |#1|)) (-15 -3043 (|#2| |#1| "last")) (-15 -3043 (|#1| |#1| "rest")) (-15 -2890 (|#1| |#1| (-717))) (-15 -3043 (|#2| |#1| "first")) (-15 -2890 (|#2| |#1|)) (-15 -3400 (|#1| |#2| |#1|)) (-15 -3400 (|#1| |#1| |#1|)) (-15 -2381 (|#2| |#1| "value" |#2|)) (-15 -3043 (|#2| |#1| "value")) (-15 -2800 (|#1| (-1 |#2| |#2|) |#1|)))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-3327 ((|#1| $) 48)) (-2513 ((|#1| $) 65)) (-2023 (($ $) 67)) (-1444 (((-1182) $ (-528) (-528)) 97 (|has| $ (-6 -4265)))) (-3084 (($ $ (-528)) 52 (|has| $ (-6 -4265)))) (-3535 (((-110) $ (-717)) 8)) (-2074 ((|#1| $ |#1|) 39 (|has| $ (-6 -4265)))) (-3307 (($ $ $) 56 (|has| $ (-6 -4265)))) (-2624 ((|#1| $ |#1|) 54 (|has| $ (-6 -4265)))) (-2153 ((|#1| $ |#1|) 58 (|has| $ (-6 -4265)))) (-2381 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4265))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4265))) (($ $ "rest" $) 55 (|has| $ (-6 -4265))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4265))) ((|#1| $ (-1144 (-528)) |#1|) 117 (|has| $ (-6 -4265))) ((|#1| $ (-528) |#1|) 86 (|has| $ (-6 -4265)))) (-3409 (($ $ (-595 $)) 41 (|has| $ (-6 -4265)))) (-1573 (($ (-1 (-110) |#1|) $) 102 (|has| $ (-6 -4264)))) (-2500 ((|#1| $) 66)) (-2816 (($) 7 T CONST)) (-2902 (($ $) 73) (($ $ (-717)) 71)) (-2923 (($ $) 99 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2280 (($ (-1 (-110) |#1|) $) 103 (|has| $ (-6 -4264))) (($ |#1| $) 100 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2812 ((|#1| $ (-528) |#1|) 85 (|has| $ (-6 -4265)))) (-2742 ((|#1| $ (-528)) 87)) (-3691 (((-110) $) 83)) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-1690 (((-595 $) $) 50)) (-1313 (((-110) $ $) 42 (|has| |#1| (-1023)))) (-3462 (($ (-717) |#1|) 108)) (-2029 (((-110) $ (-717)) 9)) (-3530 (((-528) $) 95 (|has| (-528) (-793)))) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-1709 (((-528) $) 94 (|has| (-528) (-793)))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3358 (((-110) $ (-717)) 10)) (-3298 (((-595 |#1|) $) 45)) (-2578 (((-110) $) 49)) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-2301 ((|#1| $) 70) (($ $ (-717)) 68)) (-3939 (($ $ $ (-528)) 116) (($ |#1| $ (-528)) 115)) (-2084 (((-595 (-528)) $) 92)) (-3966 (((-110) (-528) $) 91)) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-2890 ((|#1| $) 76) (($ $ (-717)) 74)) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 106)) (-1332 (($ $ |#1|) 96 (|has| $ (-6 -4265)))) (-1441 (((-110) $) 84)) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-2111 (((-110) |#1| $) 93 (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2861 (((-595 |#1|) $) 90)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3043 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1144 (-528))) 112) ((|#1| $ (-528)) 89) ((|#1| $ (-528) |#1|) 88)) (-3241 (((-528) $ $) 44)) (-1745 (($ $ (-1144 (-528))) 114) (($ $ (-528)) 113)) (-3177 (((-110) $) 46)) (-2185 (($ $) 62)) (-3821 (($ $) 59 (|has| $ (-6 -4265)))) (-3887 (((-717) $) 63)) (-3539 (($ $) 64)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-3155 (((-504) $) 98 (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) 107)) (-3579 (($ $ $) 61 (|has| $ (-6 -4265))) (($ $ |#1|) 60 (|has| $ (-6 -4265)))) (-3400 (($ $ $) 78) (($ |#1| $) 77) (($ (-595 $)) 110) (($ $ |#1|) 109)) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-3813 (((-595 $) $) 51)) (-2688 (((-110) $ $) 43 (|has| |#1| (-1023)))) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-1069 |#1|) (-133) (-1131)) (T -1069))
-((-1441 (*1 *2 *1) (-12 (-4 *1 (-1069 *3)) (-4 *3 (-1131)) (-5 *2 (-110)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-1069 *3)) (-4 *3 (-1131)) (-5 *2 (-110)))))
-(-13 (-1165 |t#1|) (-600 |t#1|) (-10 -8 (-15 -1441 ((-110) $)) (-15 -3691 ((-110) $))))
-(((-33) . T) ((-99) |has| |#1| (-1023)) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-569 (-802)))) ((-144 |#1|) . T) ((-570 (-504)) |has| |#1| (-570 (-504))) ((-267 #0=(-528) |#1|) . T) ((-269 #0# |#1|) . T) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-467 |#1|) . T) ((-561 #0# |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-600 |#1|) . T) ((-946 |#1|) . T) ((-1023) |has| |#1| (-1023)) ((-1131) . T) ((-1165 |#1|) . T))
-((-2207 (((-110) $ $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-3450 (($) NIL) (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-1444 (((-1182) $ |#1| |#1|) NIL (|has| $ (-6 -4265)))) (-3535 (((-110) $ (-717)) NIL)) (-2381 ((|#2| $ |#1| |#2|) NIL)) (-1836 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-1573 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-2582 (((-3 |#2| "failed") |#1| $) NIL)) (-2816 (($) NIL T CONST)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))))) (-3991 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (|has| $ (-6 -4264))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-3 |#2| "failed") |#1| $) NIL)) (-2280 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-1422 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (|has| $ (-6 -4264))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-2812 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4265)))) (-2742 ((|#2| $ |#1|) NIL)) (-3342 (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-595 |#2|) $) NIL (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) NIL)) (-3530 ((|#1| $) NIL (|has| |#1| (-793)))) (-2604 (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-595 |#2|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-1709 ((|#1| $) NIL (|has| |#1| (-793)))) (-2800 (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4265))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-3225 (((-595 |#1|) $) NIL)) (-4024 (((-110) |#1| $) NIL)) (-3934 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL)) (-1950 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL)) (-2084 (((-595 |#1|) $) NIL)) (-3966 (((-110) |#1| $) NIL)) (-2495 (((-1042) $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-2890 ((|#2| $) NIL (|has| |#1| (-793)))) (-1734 (((-3 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) "failed") (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL)) (-1332 (($ $ |#2|) NIL (|has| $ (-6 -4265)))) (-1390 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL)) (-1818 (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-275 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-595 |#2|) (-595 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-595 (-275 |#2|))) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-2861 (((-595 |#2|) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3900 (($) NIL) (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-2507 (((-717) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-717) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (((-717) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023)))) (((-717) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) NIL (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-570 (-504))))) (-2233 (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-2222 (((-802) $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-569 (-802))) (|has| |#2| (-569 (-802)))))) (-2164 (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-3451 (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-1070 |#1| |#2| |#3|) (-1108 |#1| |#2|) (-1023) (-1023) |#2|) (T -1070))
-NIL
-(-1108 |#1| |#2|)
-((-2207 (((-110) $ $) 7)) (-3296 (((-3 $ "failed") $) 13)) (-3034 (((-1078) $) 9)) (-4197 (($) 14 T CONST)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11)) (-2186 (((-110) $ $) 6)))
-(((-1071) (-133)) (T -1071))
-((-4197 (*1 *1) (-4 *1 (-1071))) (-3296 (*1 *1 *1) (|partial| -4 *1 (-1071))))
-(-13 (-1023) (-10 -8 (-15 -4197 ($) -2636) (-15 -3296 ((-3 $ "failed") $))))
-(((-99) . T) ((-569 (-802)) . T) ((-1023) . T))
-((-3649 (((-1076 |#1|) (-1076 |#1|)) 17)) (-4082 (((-1076 |#1|) (-1076 |#1|)) 13)) (-2287 (((-1076 |#1|) (-1076 |#1|) (-528) (-528)) 20)) (-2807 (((-1076 |#1|) (-1076 |#1|)) 15)))
-(((-1072 |#1|) (-10 -7 (-15 -4082 ((-1076 |#1|) (-1076 |#1|))) (-15 -2807 ((-1076 |#1|) (-1076 |#1|))) (-15 -3649 ((-1076 |#1|) (-1076 |#1|))) (-15 -2287 ((-1076 |#1|) (-1076 |#1|) (-528) (-528)))) (-13 (-520) (-140))) (T -1072))
-((-2287 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1076 *4)) (-5 *3 (-528)) (-4 *4 (-13 (-520) (-140))) (-5 *1 (-1072 *4)))) (-3649 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-13 (-520) (-140))) (-5 *1 (-1072 *3)))) (-2807 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-13 (-520) (-140))) (-5 *1 (-1072 *3)))) (-4082 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-13 (-520) (-140))) (-5 *1 (-1072 *3)))))
-(-10 -7 (-15 -4082 ((-1076 |#1|) (-1076 |#1|))) (-15 -2807 ((-1076 |#1|) (-1076 |#1|))) (-15 -3649 ((-1076 |#1|) (-1076 |#1|))) (-15 -2287 ((-1076 |#1|) (-1076 |#1|) (-528) (-528))))
-((-3400 (((-1076 |#1|) (-1076 (-1076 |#1|))) 15)))
-(((-1073 |#1|) (-10 -7 (-15 -3400 ((-1076 |#1|) (-1076 (-1076 |#1|))))) (-1131)) (T -1073))
-((-3400 (*1 *2 *3) (-12 (-5 *3 (-1076 (-1076 *4))) (-5 *2 (-1076 *4)) (-5 *1 (-1073 *4)) (-4 *4 (-1131)))))
-(-10 -7 (-15 -3400 ((-1076 |#1|) (-1076 (-1076 |#1|)))))
-((-3718 (((-1076 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1076 |#1|)) 25)) (-1422 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1076 |#1|)) 26)) (-3106 (((-1076 |#2|) (-1 |#2| |#1|) (-1076 |#1|)) 16)))
-(((-1074 |#1| |#2|) (-10 -7 (-15 -3106 ((-1076 |#2|) (-1 |#2| |#1|) (-1076 |#1|))) (-15 -3718 ((-1076 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1076 |#1|))) (-15 -1422 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1076 |#1|)))) (-1131) (-1131)) (T -1074))
-((-1422 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1076 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) (-5 *1 (-1074 *5 *2)))) (-3718 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1076 *6)) (-4 *6 (-1131)) (-4 *3 (-1131)) (-5 *2 (-1076 *3)) (-5 *1 (-1074 *6 *3)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1076 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1076 *6)) (-5 *1 (-1074 *5 *6)))))
-(-10 -7 (-15 -3106 ((-1076 |#2|) (-1 |#2| |#1|) (-1076 |#1|))) (-15 -3718 ((-1076 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1076 |#1|))) (-15 -1422 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1076 |#1|))))
-((-3106 (((-1076 |#3|) (-1 |#3| |#1| |#2|) (-1076 |#1|) (-1076 |#2|)) 21)))
-(((-1075 |#1| |#2| |#3|) (-10 -7 (-15 -3106 ((-1076 |#3|) (-1 |#3| |#1| |#2|) (-1076 |#1|) (-1076 |#2|)))) (-1131) (-1131) (-1131)) (T -1075))
-((-3106 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1076 *6)) (-5 *5 (-1076 *7)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-1076 *8)) (-5 *1 (-1075 *6 *7 *8)))))
-(-10 -7 (-15 -3106 ((-1076 |#3|) (-1 |#3| |#1| |#2|) (-1076 |#1|) (-1076 |#2|))))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3327 ((|#1| $) NIL)) (-2513 ((|#1| $) NIL)) (-2023 (($ $) 51)) (-1444 (((-1182) $ (-528) (-528)) 76 (|has| $ (-6 -4265)))) (-3084 (($ $ (-528)) 110 (|has| $ (-6 -4265)))) (-3535 (((-110) $ (-717)) NIL)) (-1263 (((-802) $) 41 (|has| |#1| (-1023)))) (-3782 (((-110)) 40 (|has| |#1| (-1023)))) (-2074 ((|#1| $ |#1|) NIL (|has| $ (-6 -4265)))) (-3307 (($ $ $) 98 (|has| $ (-6 -4265))) (($ $ (-528) $) 122)) (-2624 ((|#1| $ |#1|) 107 (|has| $ (-6 -4265)))) (-2153 ((|#1| $ |#1|) 102 (|has| $ (-6 -4265)))) (-2381 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4265))) ((|#1| $ "first" |#1|) 104 (|has| $ (-6 -4265))) (($ $ "rest" $) 106 (|has| $ (-6 -4265))) ((|#1| $ "last" |#1|) 109 (|has| $ (-6 -4265))) ((|#1| $ (-1144 (-528)) |#1|) 89 (|has| $ (-6 -4265))) ((|#1| $ (-528) |#1|) 55 (|has| $ (-6 -4265)))) (-3409 (($ $ (-595 $)) NIL (|has| $ (-6 -4265)))) (-1573 (($ (-1 (-110) |#1|) $) 58)) (-2500 ((|#1| $) NIL)) (-2816 (($) NIL T CONST)) (-3703 (($ $) 14)) (-2902 (($ $) 29) (($ $ (-717)) 88)) (-3343 (((-110) (-595 |#1|) $) 116 (|has| |#1| (-1023)))) (-3115 (($ (-595 |#1|)) 112)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2280 (($ |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) (($ (-1 (-110) |#1|) $) 57)) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2812 ((|#1| $ (-528) |#1|) NIL (|has| $ (-6 -4265)))) (-2742 ((|#1| $ (-528)) NIL)) (-3691 (((-110) $) NIL)) (-3342 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-1835 (((-1182) (-528) $) 121 (|has| |#1| (-1023)))) (-1739 (((-717) $) 118)) (-1690 (((-595 $) $) NIL)) (-1313 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3462 (($ (-717) |#1|) NIL)) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-528) $) NIL (|has| (-528) (-793)))) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-1709 (((-528) $) NIL (|has| (-528) (-793)))) (-2800 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-3358 (((-110) $ (-717)) NIL)) (-3298 (((-595 |#1|) $) NIL)) (-2578 (((-110) $) NIL)) (-3321 (($ $) 90)) (-1621 (((-110) $) 13)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-2301 ((|#1| $) NIL) (($ $ (-717)) NIL)) (-3939 (($ $ $ (-528)) NIL) (($ |#1| $ (-528)) NIL)) (-2084 (((-595 (-528)) $) NIL)) (-3966 (((-110) (-528) $) 74)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-1499 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-1471 ((|#1| $) 10)) (-2890 ((|#1| $) 28) (($ $ (-717)) 49)) (-3719 (((-2 (|:| |cycle?| (-110)) (|:| -1953 (-717)) (|:| |period| (-717))) (-717) $) 25)) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1546 (($ (-1 (-110) |#1|) $) 126)) (-1560 (($ (-1 (-110) |#1|) $) 127)) (-1332 (($ $ |#1|) 68 (|has| $ (-6 -4265)))) (-3740 (($ $ (-528)) 32)) (-1441 (((-110) $) 72)) (-3735 (((-110) $) 12)) (-2628 (((-110) $) 117)) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 20)) (-2111 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2861 (((-595 |#1|) $) NIL)) (-1972 (((-110) $) 15)) (-2147 (($) 43)) (-3043 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1144 (-528))) NIL) ((|#1| $ (-528)) 54) ((|#1| $ (-528) |#1|) NIL)) (-3241 (((-528) $ $) 48)) (-1745 (($ $ (-1144 (-528))) NIL) (($ $ (-528)) NIL)) (-2488 (($ (-1 $)) 47)) (-3177 (((-110) $) 69)) (-2185 (($ $) 70)) (-3821 (($ $) 99 (|has| $ (-6 -4265)))) (-3887 (((-717) $) NIL)) (-3539 (($ $) NIL)) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2406 (($ $) 44)) (-3155 (((-504) $) NIL (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) 53)) (-1555 (($ |#1| $) 97)) (-3579 (($ $ $) 100 (|has| $ (-6 -4265))) (($ $ |#1|) 101 (|has| $ (-6 -4265)))) (-3400 (($ $ $) 78) (($ |#1| $) 45) (($ (-595 $)) 83) (($ $ |#1|) 77)) (-3534 (($ $) 50)) (-2222 (($ (-595 |#1|)) 111) (((-802) $) 42 (|has| |#1| (-569 (-802))))) (-3813 (((-595 $) $) NIL)) (-2688 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 114 (|has| |#1| (-1023)))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-1076 |#1|) (-13 (-622 |#1|) (-10 -8 (-6 -4265) (-15 -2222 ($ (-595 |#1|))) (-15 -3115 ($ (-595 |#1|))) (IF (|has| |#1| (-1023)) (-15 -3343 ((-110) (-595 |#1|) $)) |%noBranch|) (-15 -3719 ((-2 (|:| |cycle?| (-110)) (|:| -1953 (-717)) (|:| |period| (-717))) (-717) $)) (-15 -2488 ($ (-1 $))) (-15 -1555 ($ |#1| $)) (IF (|has| |#1| (-1023)) (PROGN (-15 -1835 ((-1182) (-528) $)) (-15 -1263 ((-802) $)) (-15 -3782 ((-110)))) |%noBranch|) (-15 -3307 ($ $ (-528) $)) (-15 -1499 ($ (-1 |#1|))) (-15 -1499 ($ (-1 |#1| |#1|) |#1|)) (-15 -1546 ($ (-1 (-110) |#1|) $)) (-15 -1560 ($ (-1 (-110) |#1|) $)))) (-1131)) (T -1076))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1131)) (-5 *1 (-1076 *3)))) (-3115 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1131)) (-5 *1 (-1076 *3)))) (-3343 (*1 *2 *3 *1) (-12 (-5 *3 (-595 *4)) (-4 *4 (-1023)) (-4 *4 (-1131)) (-5 *2 (-110)) (-5 *1 (-1076 *4)))) (-3719 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-110)) (|:| -1953 (-717)) (|:| |period| (-717)))) (-5 *1 (-1076 *4)) (-4 *4 (-1131)) (-5 *3 (-717)))) (-2488 (*1 *1 *2) (-12 (-5 *2 (-1 (-1076 *3))) (-5 *1 (-1076 *3)) (-4 *3 (-1131)))) (-1555 (*1 *1 *2 *1) (-12 (-5 *1 (-1076 *2)) (-4 *2 (-1131)))) (-1835 (*1 *2 *3 *1) (-12 (-5 *3 (-528)) (-5 *2 (-1182)) (-5 *1 (-1076 *4)) (-4 *4 (-1023)) (-4 *4 (-1131)))) (-1263 (*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-1076 *3)) (-4 *3 (-1023)) (-4 *3 (-1131)))) (-3782 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1076 *3)) (-4 *3 (-1023)) (-4 *3 (-1131)))) (-3307 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-1076 *3)) (-4 *3 (-1131)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1131)) (-5 *1 (-1076 *3)))) (-1499 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-1076 *3)))) (-1546 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1131)) (-5 *1 (-1076 *3)))) (-1560 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1131)) (-5 *1 (-1076 *3)))))
-(-13 (-622 |#1|) (-10 -8 (-6 -4265) (-15 -2222 ($ (-595 |#1|))) (-15 -3115 ($ (-595 |#1|))) (IF (|has| |#1| (-1023)) (-15 -3343 ((-110) (-595 |#1|) $)) |%noBranch|) (-15 -3719 ((-2 (|:| |cycle?| (-110)) (|:| -1953 (-717)) (|:| |period| (-717))) (-717) $)) (-15 -2488 ($ (-1 $))) (-15 -1555 ($ |#1| $)) (IF (|has| |#1| (-1023)) (PROGN (-15 -1835 ((-1182) (-528) $)) (-15 -1263 ((-802) $)) (-15 -3782 ((-110)))) |%noBranch|) (-15 -3307 ($ $ (-528) $)) (-15 -1499 ($ (-1 |#1|))) (-15 -1499 ($ (-1 |#1| |#1|) |#1|)) (-15 -1546 ($ (-1 (-110) |#1|) $)) (-15 -1560 ($ (-1 (-110) |#1|) $))))
-((-2207 (((-110) $ $) 19)) (-1538 (($ $) 120)) (-1330 (($ $) 121)) (-3335 (($ $ (-137)) 108) (($ $ (-134)) 107)) (-1444 (((-1182) $ (-528) (-528)) 40 (|has| $ (-6 -4265)))) (-2905 (((-110) $ $) 118)) (-2881 (((-110) $ $ (-528)) 117)) (-4193 (($ (-528)) 127)) (-2129 (((-595 $) $ (-137)) 110) (((-595 $) $ (-134)) 109)) (-3608 (((-110) (-1 (-110) (-137) (-137)) $) 98) (((-110) $) 92 (|has| (-137) (-793)))) (-3863 (($ (-1 (-110) (-137) (-137)) $) 89 (|has| $ (-6 -4265))) (($ $) 88 (-12 (|has| (-137) (-793)) (|has| $ (-6 -4265))))) (-1289 (($ (-1 (-110) (-137) (-137)) $) 99) (($ $) 93 (|has| (-137) (-793)))) (-3535 (((-110) $ (-717)) 8)) (-2381 (((-137) $ (-528) (-137)) 52 (|has| $ (-6 -4265))) (((-137) $ (-1144 (-528)) (-137)) 58 (|has| $ (-6 -4265)))) (-1573 (($ (-1 (-110) (-137)) $) 75 (|has| $ (-6 -4264)))) (-2816 (($) 7 T CONST)) (-2671 (($ $ (-137)) 104) (($ $ (-134)) 103)) (-2472 (($ $) 90 (|has| $ (-6 -4265)))) (-3009 (($ $) 100)) (-3988 (($ $ (-1144 (-528)) $) 114)) (-2923 (($ $) 78 (-12 (|has| (-137) (-1023)) (|has| $ (-6 -4264))))) (-2280 (($ (-137) $) 77 (-12 (|has| (-137) (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) (-137)) $) 74 (|has| $ (-6 -4264)))) (-1422 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) 76 (-12 (|has| (-137) (-1023)) (|has| $ (-6 -4264)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) 73 (|has| $ (-6 -4264))) (((-137) (-1 (-137) (-137) (-137)) $) 72 (|has| $ (-6 -4264)))) (-2812 (((-137) $ (-528) (-137)) 53 (|has| $ (-6 -4265)))) (-2742 (((-137) $ (-528)) 51)) (-2930 (((-110) $ $) 119)) (-3140 (((-528) (-1 (-110) (-137)) $) 97) (((-528) (-137) $) 96 (|has| (-137) (-1023))) (((-528) (-137) $ (-528)) 95 (|has| (-137) (-1023))) (((-528) $ $ (-528)) 113) (((-528) (-134) $ (-528)) 112)) (-3342 (((-595 (-137)) $) 30 (|has| $ (-6 -4264)))) (-3462 (($ (-717) (-137)) 69)) (-2029 (((-110) $ (-717)) 9)) (-3530 (((-528) $) 43 (|has| (-528) (-793)))) (-1436 (($ $ $) 87 (|has| (-137) (-793)))) (-1356 (($ (-1 (-110) (-137) (-137)) $ $) 101) (($ $ $) 94 (|has| (-137) (-793)))) (-2604 (((-595 (-137)) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) (-137) $) 27 (-12 (|has| (-137) (-1023)) (|has| $ (-6 -4264))))) (-1709 (((-528) $) 44 (|has| (-528) (-793)))) (-1736 (($ $ $) 86 (|has| (-137) (-793)))) (-1867 (((-110) $ $ (-137)) 115)) (-3917 (((-717) $ $ (-137)) 116)) (-2800 (($ (-1 (-137) (-137)) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-137) (-137)) $) 35) (($ (-1 (-137) (-137) (-137)) $ $) 64)) (-2915 (($ $) 122)) (-2491 (($ $) 123)) (-3358 (((-110) $ (-717)) 10)) (-2682 (($ $ (-137)) 106) (($ $ (-134)) 105)) (-3034 (((-1078) $) 22)) (-3939 (($ (-137) $ (-528)) 60) (($ $ $ (-528)) 59)) (-2084 (((-595 (-528)) $) 46)) (-3966 (((-110) (-528) $) 47)) (-2495 (((-1042) $) 21)) (-2890 (((-137) $) 42 (|has| (-528) (-793)))) (-1734 (((-3 (-137) "failed") (-1 (-110) (-137)) $) 71)) (-1332 (($ $ (-137)) 41 (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) (-137)) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 (-137)))) 26 (-12 (|has| (-137) (-290 (-137))) (|has| (-137) (-1023)))) (($ $ (-275 (-137))) 25 (-12 (|has| (-137) (-290 (-137))) (|has| (-137) (-1023)))) (($ $ (-137) (-137)) 24 (-12 (|has| (-137) (-290 (-137))) (|has| (-137) (-1023)))) (($ $ (-595 (-137)) (-595 (-137))) 23 (-12 (|has| (-137) (-290 (-137))) (|has| (-137) (-1023))))) (-3744 (((-110) $ $) 14)) (-2111 (((-110) (-137) $) 45 (-12 (|has| $ (-6 -4264)) (|has| (-137) (-1023))))) (-2861 (((-595 (-137)) $) 48)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3043 (((-137) $ (-528) (-137)) 50) (((-137) $ (-528)) 49) (($ $ (-1144 (-528))) 63) (($ $ $) 102)) (-1745 (($ $ (-528)) 62) (($ $ (-1144 (-528))) 61)) (-2507 (((-717) (-1 (-110) (-137)) $) 31 (|has| $ (-6 -4264))) (((-717) (-137) $) 28 (-12 (|has| (-137) (-1023)) (|has| $ (-6 -4264))))) (-3761 (($ $ $ (-528)) 91 (|has| $ (-6 -4265)))) (-2406 (($ $) 13)) (-3155 (((-504) $) 79 (|has| (-137) (-570 (-504))))) (-2233 (($ (-595 (-137))) 70)) (-3400 (($ $ (-137)) 68) (($ (-137) $) 67) (($ $ $) 66) (($ (-595 $)) 65)) (-2222 (($ (-137)) 111) (((-802) $) 18)) (-3451 (((-110) (-1 (-110) (-137)) $) 33 (|has| $ (-6 -4264)))) (-1256 (((-1078) $) 131) (((-1078) $ (-110)) 130) (((-1182) (-768) $) 129) (((-1182) (-768) $ (-110)) 128)) (-2244 (((-110) $ $) 84 (|has| (-137) (-793)))) (-2220 (((-110) $ $) 83 (|has| (-137) (-793)))) (-2186 (((-110) $ $) 20)) (-2232 (((-110) $ $) 85 (|has| (-137) (-793)))) (-2208 (((-110) $ $) 82 (|has| (-137) (-793)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-1077) (-133)) (T -1077))
-((-4193 (*1 *1 *2) (-12 (-5 *2 (-528)) (-4 *1 (-1077)))))
-(-13 (-1064) (-1023) (-774) (-10 -8 (-15 -4193 ($ (-528)))))
-(((-33) . T) ((-99) . T) ((-569 (-802)) . T) ((-144 #0=(-137)) . T) ((-570 (-504)) |has| (-137) (-570 (-504))) ((-267 #1=(-528) #0#) . T) ((-269 #1# #0#) . T) ((-290 #0#) -12 (|has| (-137) (-290 (-137))) (|has| (-137) (-1023))) ((-353 #0#) . T) ((-467 #0#) . T) ((-561 #1# #0#) . T) ((-489 #0# #0#) -12 (|has| (-137) (-290 (-137))) (|has| (-137) (-1023))) ((-600 #0#) . T) ((-19 #0#) . T) ((-774) . T) ((-793) |has| (-137) (-793)) ((-1023) . T) ((-1064) . T) ((-1131) . T))
-((-2207 (((-110) $ $) NIL)) (-1538 (($ $) NIL)) (-1330 (($ $) NIL)) (-3335 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-1444 (((-1182) $ (-528) (-528)) NIL (|has| $ (-6 -4265)))) (-2905 (((-110) $ $) NIL)) (-2881 (((-110) $ $ (-528)) NIL)) (-4193 (($ (-528)) 7)) (-2129 (((-595 $) $ (-137)) NIL) (((-595 $) $ (-134)) NIL)) (-3608 (((-110) (-1 (-110) (-137) (-137)) $) NIL) (((-110) $) NIL (|has| (-137) (-793)))) (-3863 (($ (-1 (-110) (-137) (-137)) $) NIL (|has| $ (-6 -4265))) (($ $) NIL (-12 (|has| $ (-6 -4265)) (|has| (-137) (-793))))) (-1289 (($ (-1 (-110) (-137) (-137)) $) NIL) (($ $) NIL (|has| (-137) (-793)))) (-3535 (((-110) $ (-717)) NIL)) (-2381 (((-137) $ (-528) (-137)) NIL (|has| $ (-6 -4265))) (((-137) $ (-1144 (-528)) (-137)) NIL (|has| $ (-6 -4265)))) (-1573 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4264)))) (-2816 (($) NIL T CONST)) (-2671 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-2472 (($ $) NIL (|has| $ (-6 -4265)))) (-3009 (($ $) NIL)) (-3988 (($ $ (-1144 (-528)) $) NIL)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-137) (-1023))))) (-2280 (($ (-137) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-137) (-1023)))) (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4264)))) (-1422 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) NIL (-12 (|has| $ (-6 -4264)) (|has| (-137) (-1023)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) NIL (|has| $ (-6 -4264))) (((-137) (-1 (-137) (-137) (-137)) $) NIL (|has| $ (-6 -4264)))) (-2812 (((-137) $ (-528) (-137)) NIL (|has| $ (-6 -4265)))) (-2742 (((-137) $ (-528)) NIL)) (-2930 (((-110) $ $) NIL)) (-3140 (((-528) (-1 (-110) (-137)) $) NIL) (((-528) (-137) $) NIL (|has| (-137) (-1023))) (((-528) (-137) $ (-528)) NIL (|has| (-137) (-1023))) (((-528) $ $ (-528)) NIL) (((-528) (-134) $ (-528)) NIL)) (-3342 (((-595 (-137)) $) NIL (|has| $ (-6 -4264)))) (-3462 (($ (-717) (-137)) NIL)) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-528) $) NIL (|has| (-528) (-793)))) (-1436 (($ $ $) NIL (|has| (-137) (-793)))) (-1356 (($ (-1 (-110) (-137) (-137)) $ $) NIL) (($ $ $) NIL (|has| (-137) (-793)))) (-2604 (((-595 (-137)) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-137) (-1023))))) (-1709 (((-528) $) NIL (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (|has| (-137) (-793)))) (-1867 (((-110) $ $ (-137)) NIL)) (-3917 (((-717) $ $ (-137)) NIL)) (-2800 (($ (-1 (-137) (-137)) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-137) (-137)) $) NIL) (($ (-1 (-137) (-137) (-137)) $ $) NIL)) (-2915 (($ $) NIL)) (-2491 (($ $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-2682 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-3034 (((-1078) $) NIL)) (-3939 (($ (-137) $ (-528)) NIL) (($ $ $ (-528)) NIL)) (-2084 (((-595 (-528)) $) NIL)) (-3966 (((-110) (-528) $) NIL)) (-2495 (((-1042) $) NIL)) (-2890 (((-137) $) NIL (|has| (-528) (-793)))) (-1734 (((-3 (-137) "failed") (-1 (-110) (-137)) $) NIL)) (-1332 (($ $ (-137)) NIL (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 (-137)))) NIL (-12 (|has| (-137) (-290 (-137))) (|has| (-137) (-1023)))) (($ $ (-275 (-137))) NIL (-12 (|has| (-137) (-290 (-137))) (|has| (-137) (-1023)))) (($ $ (-137) (-137)) NIL (-12 (|has| (-137) (-290 (-137))) (|has| (-137) (-1023)))) (($ $ (-595 (-137)) (-595 (-137))) NIL (-12 (|has| (-137) (-290 (-137))) (|has| (-137) (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-137) (-1023))))) (-2861 (((-595 (-137)) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 (((-137) $ (-528) (-137)) NIL) (((-137) $ (-528)) NIL) (($ $ (-1144 (-528))) NIL) (($ $ $) NIL)) (-1745 (($ $ (-528)) NIL) (($ $ (-1144 (-528))) NIL)) (-2507 (((-717) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4264))) (((-717) (-137) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-137) (-1023))))) (-3761 (($ $ $ (-528)) NIL (|has| $ (-6 -4265)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) NIL (|has| (-137) (-570 (-504))))) (-2233 (($ (-595 (-137))) NIL)) (-3400 (($ $ (-137)) NIL) (($ (-137) $) NIL) (($ $ $) NIL) (($ (-595 $)) NIL)) (-2222 (($ (-137)) NIL) (((-802) $) NIL)) (-3451 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4264)))) (-1256 (((-1078) $) 18) (((-1078) $ (-110)) 20) (((-1182) (-768) $) 21) (((-1182) (-768) $ (-110)) 22)) (-2244 (((-110) $ $) NIL (|has| (-137) (-793)))) (-2220 (((-110) $ $) NIL (|has| (-137) (-793)))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (|has| (-137) (-793)))) (-2208 (((-110) $ $) NIL (|has| (-137) (-793)))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-1078) (-1077)) (T -1078))
-NIL
-(-1077)
-((-2207 (((-110) $ $) NIL (-1463 (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1023)) (|has| |#1| (-1023))))) (-3450 (($) NIL) (($ (-595 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)))) NIL)) (-1444 (((-1182) $ (-1078) (-1078)) NIL (|has| $ (-6 -4265)))) (-3535 (((-110) $ (-717)) NIL)) (-2381 ((|#1| $ (-1078) |#1|) NIL)) (-1836 (($ (-1 (-110) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL (|has| $ (-6 -4264)))) (-1573 (($ (-1 (-110) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL (|has| $ (-6 -4264)))) (-2582 (((-3 |#1| "failed") (-1078) $) NIL)) (-2816 (($) NIL T CONST)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1023))))) (-3991 (($ (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) $) NIL (|has| $ (-6 -4264))) (($ (-1 (-110) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL (|has| $ (-6 -4264))) (((-3 |#1| "failed") (-1078) $) NIL)) (-2280 (($ (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1023)))) (($ (-1 (-110) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL (|has| $ (-6 -4264)))) (-1422 (((-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $ (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1023)))) (((-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $ (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) NIL (|has| $ (-6 -4264))) (((-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL (|has| $ (-6 -4264)))) (-2812 ((|#1| $ (-1078) |#1|) NIL (|has| $ (-6 -4265)))) (-2742 ((|#1| $ (-1078)) NIL)) (-3342 (((-595 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL (|has| $ (-6 -4264))) (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-1078) $) NIL (|has| (-1078) (-793)))) (-2604 (((-595 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL (|has| $ (-6 -4264))) (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1023)))) (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-1709 (((-1078) $) NIL (|has| (-1078) (-793)))) (-2800 (($ (-1 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL (|has| $ (-6 -4265))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (-1463 (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1023)) (|has| |#1| (-1023))))) (-3225 (((-595 (-1078)) $) NIL)) (-4024 (((-110) (-1078) $) NIL)) (-3934 (((-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) $) NIL)) (-1950 (($ (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) $) NIL)) (-2084 (((-595 (-1078)) $) NIL)) (-3966 (((-110) (-1078) $) NIL)) (-2495 (((-1042) $) NIL (-1463 (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1023)) (|has| |#1| (-1023))))) (-2890 ((|#1| $) NIL (|has| (-1078) (-793)))) (-1734 (((-3 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) "failed") (-1 (-110) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL)) (-1332 (($ $ |#1|) NIL (|has| $ (-6 -4265)))) (-1390 (((-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) $) NIL)) (-1818 (((-110) (-1 (-110) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))))) NIL (-12 (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-290 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)))) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1023)))) (($ $ (-275 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)))) NIL (-12 (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-290 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)))) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1023)))) (($ $ (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) NIL (-12 (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-290 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)))) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1023)))) (($ $ (-595 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) (-595 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)))) NIL (-12 (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-290 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)))) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2861 (((-595 |#1|) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#1| $ (-1078)) NIL) ((|#1| $ (-1078) |#1|) NIL)) (-3900 (($) NIL) (($ (-595 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)))) NIL)) (-2507 (((-717) (-1 (-110) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL (|has| $ (-6 -4264))) (((-717) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1023)))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) NIL (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-570 (-504))))) (-2233 (($ (-595 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)))) NIL)) (-2222 (((-802) $) NIL (-1463 (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-569 (-802))) (|has| |#1| (-569 (-802)))))) (-2164 (($ (-595 (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)))) NIL)) (-3451 (((-110) (-1 (-110) (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|))) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) NIL (-1463 (|has| (-2 (|:| -2927 (-1078)) (|:| -1780 |#1|)) (-1023)) (|has| |#1| (-1023))))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-1079 |#1|) (-13 (-1108 (-1078) |#1|) (-10 -7 (-6 -4264))) (-1023)) (T -1079))
-NIL
-(-13 (-1108 (-1078) |#1|) (-10 -7 (-6 -4264)))
-((-3262 (((-1076 |#1|) (-1076 |#1|)) 77)) (-1312 (((-3 (-1076 |#1|) "failed") (-1076 |#1|)) 37)) (-4039 (((-1076 |#1|) (-387 (-528)) (-1076 |#1|)) 121 (|has| |#1| (-37 (-387 (-528)))))) (-3906 (((-1076 |#1|) |#1| (-1076 |#1|)) 127 (|has| |#1| (-343)))) (-1957 (((-1076 |#1|) (-1076 |#1|)) 90)) (-1276 (((-1076 (-528)) (-528)) 57)) (-2026 (((-1076 |#1|) (-1076 (-1076 |#1|))) 109 (|has| |#1| (-37 (-387 (-528)))))) (-3428 (((-1076 |#1|) (-528) (-528) (-1076 |#1|)) 95)) (-3841 (((-1076 |#1|) |#1| (-528)) 45)) (-3989 (((-1076 |#1|) (-1076 |#1|) (-1076 |#1|)) 60)) (-3141 (((-1076 |#1|) (-1076 |#1|) (-1076 |#1|)) 124 (|has| |#1| (-343)))) (-4219 (((-1076 |#1|) |#1| (-1 (-1076 |#1|))) 108 (|has| |#1| (-37 (-387 (-528)))))) (-1376 (((-1076 |#1|) (-1 |#1| (-528)) |#1| (-1 (-1076 |#1|))) 125 (|has| |#1| (-343)))) (-1873 (((-1076 |#1|) (-1076 |#1|)) 89)) (-2387 (((-1076 |#1|) (-1076 |#1|)) 76)) (-4235 (((-1076 |#1|) (-528) (-528) (-1076 |#1|)) 96)) (-1923 (((-1076 |#1|) |#1| (-1076 |#1|)) 105 (|has| |#1| (-37 (-387 (-528)))))) (-1466 (((-1076 (-528)) (-528)) 56)) (-3626 (((-1076 |#1|) |#1|) 59)) (-3051 (((-1076 |#1|) (-1076 |#1|) (-528) (-528)) 92)) (-1262 (((-1076 |#1|) (-1 |#1| (-528)) (-1076 |#1|)) 66)) (-3477 (((-3 (-1076 |#1|) "failed") (-1076 |#1|) (-1076 |#1|)) 35)) (-2012 (((-1076 |#1|) (-1076 |#1|)) 91)) (-4014 (((-1076 |#1|) (-1076 |#1|) |#1|) 71)) (-3318 (((-1076 |#1|) (-1076 |#1|)) 62)) (-2958 (((-1076 |#1|) (-1076 |#1|) (-1076 |#1|)) 72)) (-2222 (((-1076 |#1|) |#1|) 67)) (-2225 (((-1076 |#1|) (-1076 (-1076 |#1|))) 82)) (-2296 (((-1076 |#1|) (-1076 |#1|) (-1076 |#1|)) 36)) (-2286 (((-1076 |#1|) (-1076 |#1|)) 21) (((-1076 |#1|) (-1076 |#1|) (-1076 |#1|)) 23)) (-2275 (((-1076 |#1|) (-1076 |#1|) (-1076 |#1|)) 17)) (* (((-1076 |#1|) (-1076 |#1|) |#1|) 29) (((-1076 |#1|) |#1| (-1076 |#1|)) 26) (((-1076 |#1|) (-1076 |#1|) (-1076 |#1|)) 27)))
-(((-1080 |#1|) (-10 -7 (-15 -2275 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -2286 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -2286 ((-1076 |#1|) (-1076 |#1|))) (-15 * ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 * ((-1076 |#1|) |#1| (-1076 |#1|))) (-15 * ((-1076 |#1|) (-1076 |#1|) |#1|)) (-15 -3477 ((-3 (-1076 |#1|) "failed") (-1076 |#1|) (-1076 |#1|))) (-15 -2296 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -1312 ((-3 (-1076 |#1|) "failed") (-1076 |#1|))) (-15 -3841 ((-1076 |#1|) |#1| (-528))) (-15 -1466 ((-1076 (-528)) (-528))) (-15 -1276 ((-1076 (-528)) (-528))) (-15 -3626 ((-1076 |#1|) |#1|)) (-15 -3989 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -3318 ((-1076 |#1|) (-1076 |#1|))) (-15 -1262 ((-1076 |#1|) (-1 |#1| (-528)) (-1076 |#1|))) (-15 -2222 ((-1076 |#1|) |#1|)) (-15 -4014 ((-1076 |#1|) (-1076 |#1|) |#1|)) (-15 -2958 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -2387 ((-1076 |#1|) (-1076 |#1|))) (-15 -3262 ((-1076 |#1|) (-1076 |#1|))) (-15 -2225 ((-1076 |#1|) (-1076 (-1076 |#1|)))) (-15 -1873 ((-1076 |#1|) (-1076 |#1|))) (-15 -1957 ((-1076 |#1|) (-1076 |#1|))) (-15 -2012 ((-1076 |#1|) (-1076 |#1|))) (-15 -3051 ((-1076 |#1|) (-1076 |#1|) (-528) (-528))) (-15 -3428 ((-1076 |#1|) (-528) (-528) (-1076 |#1|))) (-15 -4235 ((-1076 |#1|) (-528) (-528) (-1076 |#1|))) (IF (|has| |#1| (-37 (-387 (-528)))) (PROGN (-15 -1923 ((-1076 |#1|) |#1| (-1076 |#1|))) (-15 -4219 ((-1076 |#1|) |#1| (-1 (-1076 |#1|)))) (-15 -2026 ((-1076 |#1|) (-1076 (-1076 |#1|)))) (-15 -4039 ((-1076 |#1|) (-387 (-528)) (-1076 |#1|)))) |%noBranch|) (IF (|has| |#1| (-343)) (PROGN (-15 -3141 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -1376 ((-1076 |#1|) (-1 |#1| (-528)) |#1| (-1 (-1076 |#1|)))) (-15 -3906 ((-1076 |#1|) |#1| (-1076 |#1|)))) |%noBranch|)) (-981)) (T -1080))
-((-3906 (*1 *2 *3 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-343)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))) (-1376 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-528))) (-5 *5 (-1 (-1076 *4))) (-4 *4 (-343)) (-4 *4 (-981)) (-5 *2 (-1076 *4)) (-5 *1 (-1080 *4)))) (-3141 (*1 *2 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-343)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))) (-4039 (*1 *2 *3 *2) (-12 (-5 *2 (-1076 *4)) (-4 *4 (-37 *3)) (-4 *4 (-981)) (-5 *3 (-387 (-528))) (-5 *1 (-1080 *4)))) (-2026 (*1 *2 *3) (-12 (-5 *3 (-1076 (-1076 *4))) (-5 *2 (-1076 *4)) (-5 *1 (-1080 *4)) (-4 *4 (-37 (-387 (-528)))) (-4 *4 (-981)))) (-4219 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1076 *3))) (-5 *2 (-1076 *3)) (-5 *1 (-1080 *3)) (-4 *3 (-37 (-387 (-528)))) (-4 *3 (-981)))) (-1923 (*1 *2 *3 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-4 *3 (-981)) (-5 *1 (-1080 *3)))) (-4235 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1076 *4)) (-5 *3 (-528)) (-4 *4 (-981)) (-5 *1 (-1080 *4)))) (-3428 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1076 *4)) (-5 *3 (-528)) (-4 *4 (-981)) (-5 *1 (-1080 *4)))) (-3051 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1076 *4)) (-5 *3 (-528)) (-4 *4 (-981)) (-5 *1 (-1080 *4)))) (-2012 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))) (-1957 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))) (-1873 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))) (-2225 (*1 *2 *3) (-12 (-5 *3 (-1076 (-1076 *4))) (-5 *2 (-1076 *4)) (-5 *1 (-1080 *4)) (-4 *4 (-981)))) (-3262 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))) (-2387 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))) (-2958 (*1 *2 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))) (-4014 (*1 *2 *2 *3) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))) (-2222 (*1 *2 *3) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-1080 *3)) (-4 *3 (-981)))) (-1262 (*1 *2 *3 *2) (-12 (-5 *2 (-1076 *4)) (-5 *3 (-1 *4 (-528))) (-4 *4 (-981)) (-5 *1 (-1080 *4)))) (-3318 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))) (-3989 (*1 *2 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))) (-3626 (*1 *2 *3) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-1080 *3)) (-4 *3 (-981)))) (-1276 (*1 *2 *3) (-12 (-5 *2 (-1076 (-528))) (-5 *1 (-1080 *4)) (-4 *4 (-981)) (-5 *3 (-528)))) (-1466 (*1 *2 *3) (-12 (-5 *2 (-1076 (-528))) (-5 *1 (-1080 *4)) (-4 *4 (-981)) (-5 *3 (-528)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *4 (-528)) (-5 *2 (-1076 *3)) (-5 *1 (-1080 *3)) (-4 *3 (-981)))) (-1312 (*1 *2 *2) (|partial| -12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))) (-2296 (*1 *2 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))) (-3477 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))) (-2286 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))) (-2286 (*1 *2 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))) (-2275 (*1 *2 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))))
-(-10 -7 (-15 -2275 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -2286 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -2286 ((-1076 |#1|) (-1076 |#1|))) (-15 * ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 * ((-1076 |#1|) |#1| (-1076 |#1|))) (-15 * ((-1076 |#1|) (-1076 |#1|) |#1|)) (-15 -3477 ((-3 (-1076 |#1|) "failed") (-1076 |#1|) (-1076 |#1|))) (-15 -2296 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -1312 ((-3 (-1076 |#1|) "failed") (-1076 |#1|))) (-15 -3841 ((-1076 |#1|) |#1| (-528))) (-15 -1466 ((-1076 (-528)) (-528))) (-15 -1276 ((-1076 (-528)) (-528))) (-15 -3626 ((-1076 |#1|) |#1|)) (-15 -3989 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -3318 ((-1076 |#1|) (-1076 |#1|))) (-15 -1262 ((-1076 |#1|) (-1 |#1| (-528)) (-1076 |#1|))) (-15 -2222 ((-1076 |#1|) |#1|)) (-15 -4014 ((-1076 |#1|) (-1076 |#1|) |#1|)) (-15 -2958 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -2387 ((-1076 |#1|) (-1076 |#1|))) (-15 -3262 ((-1076 |#1|) (-1076 |#1|))) (-15 -2225 ((-1076 |#1|) (-1076 (-1076 |#1|)))) (-15 -1873 ((-1076 |#1|) (-1076 |#1|))) (-15 -1957 ((-1076 |#1|) (-1076 |#1|))) (-15 -2012 ((-1076 |#1|) (-1076 |#1|))) (-15 -3051 ((-1076 |#1|) (-1076 |#1|) (-528) (-528))) (-15 -3428 ((-1076 |#1|) (-528) (-528) (-1076 |#1|))) (-15 -4235 ((-1076 |#1|) (-528) (-528) (-1076 |#1|))) (IF (|has| |#1| (-37 (-387 (-528)))) (PROGN (-15 -1923 ((-1076 |#1|) |#1| (-1076 |#1|))) (-15 -4219 ((-1076 |#1|) |#1| (-1 (-1076 |#1|)))) (-15 -2026 ((-1076 |#1|) (-1076 (-1076 |#1|)))) (-15 -4039 ((-1076 |#1|) (-387 (-528)) (-1076 |#1|)))) |%noBranch|) (IF (|has| |#1| (-343)) (PROGN (-15 -3141 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -1376 ((-1076 |#1|) (-1 |#1| (-528)) |#1| (-1 (-1076 |#1|)))) (-15 -3906 ((-1076 |#1|) |#1| (-1076 |#1|)))) |%noBranch|))
-((-2880 (((-1076 |#1|) (-1076 |#1|)) 57)) (-2735 (((-1076 |#1|) (-1076 |#1|)) 39)) (-2859 (((-1076 |#1|) (-1076 |#1|)) 53)) (-2712 (((-1076 |#1|) (-1076 |#1|)) 35)) (-2904 (((-1076 |#1|) (-1076 |#1|)) 60)) (-2761 (((-1076 |#1|) (-1076 |#1|)) 42)) (-2097 (((-1076 |#1|) (-1076 |#1|)) 31)) (-2656 (((-1076 |#1|) (-1076 |#1|)) 27)) (-2917 (((-1076 |#1|) (-1076 |#1|)) 61)) (-2773 (((-1076 |#1|) (-1076 |#1|)) 43)) (-2892 (((-1076 |#1|) (-1076 |#1|)) 58)) (-2749 (((-1076 |#1|) (-1076 |#1|)) 40)) (-2869 (((-1076 |#1|) (-1076 |#1|)) 55)) (-2724 (((-1076 |#1|) (-1076 |#1|)) 37)) (-2953 (((-1076 |#1|) (-1076 |#1|)) 65)) (-2811 (((-1076 |#1|) (-1076 |#1|)) 47)) (-2928 (((-1076 |#1|) (-1076 |#1|)) 63)) (-2784 (((-1076 |#1|) (-1076 |#1|)) 45)) (-2981 (((-1076 |#1|) (-1076 |#1|)) 68)) (-2836 (((-1076 |#1|) (-1076 |#1|)) 50)) (-3592 (((-1076 |#1|) (-1076 |#1|)) 69)) (-2846 (((-1076 |#1|) (-1076 |#1|)) 51)) (-2967 (((-1076 |#1|) (-1076 |#1|)) 67)) (-2825 (((-1076 |#1|) (-1076 |#1|)) 49)) (-2940 (((-1076 |#1|) (-1076 |#1|)) 66)) (-2797 (((-1076 |#1|) (-1076 |#1|)) 48)) (** (((-1076 |#1|) (-1076 |#1|) (-1076 |#1|)) 33)))
-(((-1081 |#1|) (-10 -7 (-15 -2656 ((-1076 |#1|) (-1076 |#1|))) (-15 -2097 ((-1076 |#1|) (-1076 |#1|))) (-15 ** ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -2712 ((-1076 |#1|) (-1076 |#1|))) (-15 -2724 ((-1076 |#1|) (-1076 |#1|))) (-15 -2735 ((-1076 |#1|) (-1076 |#1|))) (-15 -2749 ((-1076 |#1|) (-1076 |#1|))) (-15 -2761 ((-1076 |#1|) (-1076 |#1|))) (-15 -2773 ((-1076 |#1|) (-1076 |#1|))) (-15 -2784 ((-1076 |#1|) (-1076 |#1|))) (-15 -2797 ((-1076 |#1|) (-1076 |#1|))) (-15 -2811 ((-1076 |#1|) (-1076 |#1|))) (-15 -2825 ((-1076 |#1|) (-1076 |#1|))) (-15 -2836 ((-1076 |#1|) (-1076 |#1|))) (-15 -2846 ((-1076 |#1|) (-1076 |#1|))) (-15 -2859 ((-1076 |#1|) (-1076 |#1|))) (-15 -2869 ((-1076 |#1|) (-1076 |#1|))) (-15 -2880 ((-1076 |#1|) (-1076 |#1|))) (-15 -2892 ((-1076 |#1|) (-1076 |#1|))) (-15 -2904 ((-1076 |#1|) (-1076 |#1|))) (-15 -2917 ((-1076 |#1|) (-1076 |#1|))) (-15 -2928 ((-1076 |#1|) (-1076 |#1|))) (-15 -2940 ((-1076 |#1|) (-1076 |#1|))) (-15 -2953 ((-1076 |#1|) (-1076 |#1|))) (-15 -2967 ((-1076 |#1|) (-1076 |#1|))) (-15 -2981 ((-1076 |#1|) (-1076 |#1|))) (-15 -3592 ((-1076 |#1|) (-1076 |#1|)))) (-37 (-387 (-528)))) (T -1081))
-((-3592 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2981 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2967 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2953 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2940 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2928 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2917 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2904 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2892 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2880 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2869 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2859 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2846 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2836 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2825 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2811 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2797 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2784 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2773 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2761 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2749 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2735 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2724 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2712 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2097 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))) (-2656 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1081 *3)))))
-(-10 -7 (-15 -2656 ((-1076 |#1|) (-1076 |#1|))) (-15 -2097 ((-1076 |#1|) (-1076 |#1|))) (-15 ** ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -2712 ((-1076 |#1|) (-1076 |#1|))) (-15 -2724 ((-1076 |#1|) (-1076 |#1|))) (-15 -2735 ((-1076 |#1|) (-1076 |#1|))) (-15 -2749 ((-1076 |#1|) (-1076 |#1|))) (-15 -2761 ((-1076 |#1|) (-1076 |#1|))) (-15 -2773 ((-1076 |#1|) (-1076 |#1|))) (-15 -2784 ((-1076 |#1|) (-1076 |#1|))) (-15 -2797 ((-1076 |#1|) (-1076 |#1|))) (-15 -2811 ((-1076 |#1|) (-1076 |#1|))) (-15 -2825 ((-1076 |#1|) (-1076 |#1|))) (-15 -2836 ((-1076 |#1|) (-1076 |#1|))) (-15 -2846 ((-1076 |#1|) (-1076 |#1|))) (-15 -2859 ((-1076 |#1|) (-1076 |#1|))) (-15 -2869 ((-1076 |#1|) (-1076 |#1|))) (-15 -2880 ((-1076 |#1|) (-1076 |#1|))) (-15 -2892 ((-1076 |#1|) (-1076 |#1|))) (-15 -2904 ((-1076 |#1|) (-1076 |#1|))) (-15 -2917 ((-1076 |#1|) (-1076 |#1|))) (-15 -2928 ((-1076 |#1|) (-1076 |#1|))) (-15 -2940 ((-1076 |#1|) (-1076 |#1|))) (-15 -2953 ((-1076 |#1|) (-1076 |#1|))) (-15 -2967 ((-1076 |#1|) (-1076 |#1|))) (-15 -2981 ((-1076 |#1|) (-1076 |#1|))) (-15 -3592 ((-1076 |#1|) (-1076 |#1|))))
-((-2880 (((-1076 |#1|) (-1076 |#1|)) 100)) (-2735 (((-1076 |#1|) (-1076 |#1|)) 64)) (-2757 (((-2 (|:| -2859 (-1076 |#1|)) (|:| -2869 (-1076 |#1|))) (-1076 |#1|)) 96)) (-2859 (((-1076 |#1|) (-1076 |#1|)) 97)) (-2187 (((-2 (|:| -2712 (-1076 |#1|)) (|:| -2724 (-1076 |#1|))) (-1076 |#1|)) 53)) (-2712 (((-1076 |#1|) (-1076 |#1|)) 54)) (-2904 (((-1076 |#1|) (-1076 |#1|)) 102)) (-2761 (((-1076 |#1|) (-1076 |#1|)) 71)) (-2097 (((-1076 |#1|) (-1076 |#1|)) 39)) (-2656 (((-1076 |#1|) (-1076 |#1|)) 36)) (-2917 (((-1076 |#1|) (-1076 |#1|)) 103)) (-2773 (((-1076 |#1|) (-1076 |#1|)) 72)) (-2892 (((-1076 |#1|) (-1076 |#1|)) 101)) (-2749 (((-1076 |#1|) (-1076 |#1|)) 67)) (-2869 (((-1076 |#1|) (-1076 |#1|)) 98)) (-2724 (((-1076 |#1|) (-1076 |#1|)) 55)) (-2953 (((-1076 |#1|) (-1076 |#1|)) 111)) (-2811 (((-1076 |#1|) (-1076 |#1|)) 86)) (-2928 (((-1076 |#1|) (-1076 |#1|)) 105)) (-2784 (((-1076 |#1|) (-1076 |#1|)) 82)) (-2981 (((-1076 |#1|) (-1076 |#1|)) 115)) (-2836 (((-1076 |#1|) (-1076 |#1|)) 90)) (-3592 (((-1076 |#1|) (-1076 |#1|)) 117)) (-2846 (((-1076 |#1|) (-1076 |#1|)) 92)) (-2967 (((-1076 |#1|) (-1076 |#1|)) 113)) (-2825 (((-1076 |#1|) (-1076 |#1|)) 88)) (-2940 (((-1076 |#1|) (-1076 |#1|)) 107)) (-2797 (((-1076 |#1|) (-1076 |#1|)) 84)) (** (((-1076 |#1|) (-1076 |#1|) (-1076 |#1|)) 40)))
-(((-1082 |#1|) (-10 -7 (-15 -2656 ((-1076 |#1|) (-1076 |#1|))) (-15 -2097 ((-1076 |#1|) (-1076 |#1|))) (-15 ** ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -2187 ((-2 (|:| -2712 (-1076 |#1|)) (|:| -2724 (-1076 |#1|))) (-1076 |#1|))) (-15 -2712 ((-1076 |#1|) (-1076 |#1|))) (-15 -2724 ((-1076 |#1|) (-1076 |#1|))) (-15 -2735 ((-1076 |#1|) (-1076 |#1|))) (-15 -2749 ((-1076 |#1|) (-1076 |#1|))) (-15 -2761 ((-1076 |#1|) (-1076 |#1|))) (-15 -2773 ((-1076 |#1|) (-1076 |#1|))) (-15 -2784 ((-1076 |#1|) (-1076 |#1|))) (-15 -2797 ((-1076 |#1|) (-1076 |#1|))) (-15 -2811 ((-1076 |#1|) (-1076 |#1|))) (-15 -2825 ((-1076 |#1|) (-1076 |#1|))) (-15 -2836 ((-1076 |#1|) (-1076 |#1|))) (-15 -2846 ((-1076 |#1|) (-1076 |#1|))) (-15 -2757 ((-2 (|:| -2859 (-1076 |#1|)) (|:| -2869 (-1076 |#1|))) (-1076 |#1|))) (-15 -2859 ((-1076 |#1|) (-1076 |#1|))) (-15 -2869 ((-1076 |#1|) (-1076 |#1|))) (-15 -2880 ((-1076 |#1|) (-1076 |#1|))) (-15 -2892 ((-1076 |#1|) (-1076 |#1|))) (-15 -2904 ((-1076 |#1|) (-1076 |#1|))) (-15 -2917 ((-1076 |#1|) (-1076 |#1|))) (-15 -2928 ((-1076 |#1|) (-1076 |#1|))) (-15 -2940 ((-1076 |#1|) (-1076 |#1|))) (-15 -2953 ((-1076 |#1|) (-1076 |#1|))) (-15 -2967 ((-1076 |#1|) (-1076 |#1|))) (-15 -2981 ((-1076 |#1|) (-1076 |#1|))) (-15 -3592 ((-1076 |#1|) (-1076 |#1|)))) (-37 (-387 (-528)))) (T -1082))
-((-3592 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2981 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2967 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2953 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2940 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2928 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2917 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2904 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2892 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2880 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2869 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2859 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2757 (*1 *2 *3) (-12 (-4 *4 (-37 (-387 (-528)))) (-5 *2 (-2 (|:| -2859 (-1076 *4)) (|:| -2869 (-1076 *4)))) (-5 *1 (-1082 *4)) (-5 *3 (-1076 *4)))) (-2846 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2836 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2825 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2811 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2797 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2784 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2773 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2761 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2749 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2735 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2724 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2712 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2187 (*1 *2 *3) (-12 (-4 *4 (-37 (-387 (-528)))) (-5 *2 (-2 (|:| -2712 (-1076 *4)) (|:| -2724 (-1076 *4)))) (-5 *1 (-1082 *4)) (-5 *3 (-1076 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2097 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))) (-2656 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1082 *3)))))
-(-10 -7 (-15 -2656 ((-1076 |#1|) (-1076 |#1|))) (-15 -2097 ((-1076 |#1|) (-1076 |#1|))) (-15 ** ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -2187 ((-2 (|:| -2712 (-1076 |#1|)) (|:| -2724 (-1076 |#1|))) (-1076 |#1|))) (-15 -2712 ((-1076 |#1|) (-1076 |#1|))) (-15 -2724 ((-1076 |#1|) (-1076 |#1|))) (-15 -2735 ((-1076 |#1|) (-1076 |#1|))) (-15 -2749 ((-1076 |#1|) (-1076 |#1|))) (-15 -2761 ((-1076 |#1|) (-1076 |#1|))) (-15 -2773 ((-1076 |#1|) (-1076 |#1|))) (-15 -2784 ((-1076 |#1|) (-1076 |#1|))) (-15 -2797 ((-1076 |#1|) (-1076 |#1|))) (-15 -2811 ((-1076 |#1|) (-1076 |#1|))) (-15 -2825 ((-1076 |#1|) (-1076 |#1|))) (-15 -2836 ((-1076 |#1|) (-1076 |#1|))) (-15 -2846 ((-1076 |#1|) (-1076 |#1|))) (-15 -2757 ((-2 (|:| -2859 (-1076 |#1|)) (|:| -2869 (-1076 |#1|))) (-1076 |#1|))) (-15 -2859 ((-1076 |#1|) (-1076 |#1|))) (-15 -2869 ((-1076 |#1|) (-1076 |#1|))) (-15 -2880 ((-1076 |#1|) (-1076 |#1|))) (-15 -2892 ((-1076 |#1|) (-1076 |#1|))) (-15 -2904 ((-1076 |#1|) (-1076 |#1|))) (-15 -2917 ((-1076 |#1|) (-1076 |#1|))) (-15 -2928 ((-1076 |#1|) (-1076 |#1|))) (-15 -2940 ((-1076 |#1|) (-1076 |#1|))) (-15 -2953 ((-1076 |#1|) (-1076 |#1|))) (-15 -2967 ((-1076 |#1|) (-1076 |#1|))) (-15 -2981 ((-1076 |#1|) (-1076 |#1|))) (-15 -3592 ((-1076 |#1|) (-1076 |#1|))))
-((-2489 (((-896 |#2|) |#2| |#2|) 35)) (-1551 ((|#2| |#2| |#1|) 19 (|has| |#1| (-288)))))
-(((-1083 |#1| |#2|) (-10 -7 (-15 -2489 ((-896 |#2|) |#2| |#2|)) (IF (|has| |#1| (-288)) (-15 -1551 (|#2| |#2| |#1|)) |%noBranch|)) (-520) (-1153 |#1|)) (T -1083))
-((-1551 (*1 *2 *2 *3) (-12 (-4 *3 (-288)) (-4 *3 (-520)) (-5 *1 (-1083 *3 *2)) (-4 *2 (-1153 *3)))) (-2489 (*1 *2 *3 *3) (-12 (-4 *4 (-520)) (-5 *2 (-896 *3)) (-5 *1 (-1083 *4 *3)) (-4 *3 (-1153 *4)))))
-(-10 -7 (-15 -2489 ((-896 |#2|) |#2| |#2|)) (IF (|has| |#1| (-288)) (-15 -1551 (|#2| |#2| |#1|)) |%noBranch|))
-((-2207 (((-110) $ $) NIL)) (-2661 (($ $ (-595 (-717))) 67)) (-1659 (($) 26)) (-1962 (($ $) 42)) (-3517 (((-595 $) $) 51)) (-2217 (((-110) $) 16)) (-1496 (((-595 (-882 |#2|)) $) 74)) (-1410 (($ $) 68)) (-2211 (((-717) $) 37)) (-3462 (($) 25)) (-1944 (($ $ (-595 (-717)) (-882 |#2|)) 60) (($ $ (-595 (-717)) (-717)) 61) (($ $ (-717) (-882 |#2|)) 63)) (-1356 (($ $ $) 48) (($ (-595 $)) 50)) (-1567 (((-717) $) 75)) (-2578 (((-110) $) 15)) (-3034 (((-1078) $) NIL)) (-3420 (((-110) $) 18)) (-2495 (((-1042) $) NIL)) (-1406 (((-161) $) 73)) (-3752 (((-882 |#2|) $) 69)) (-2518 (((-717) $) 70)) (-3746 (((-110) $) 72)) (-2575 (($ $ (-595 (-717)) (-161)) 66)) (-2177 (($ $) 43)) (-2222 (((-802) $) 86)) (-3543 (($ $ (-595 (-717)) (-110)) 65)) (-3813 (((-595 $) $) 11)) (-2043 (($ $ (-717)) 36)) (-2126 (($ $) 32)) (-3829 (($ $ $ (-882 |#2|) (-717)) 56)) (-2755 (($ $ (-882 |#2|)) 55)) (-4172 (($ $ (-595 (-717)) (-882 |#2|)) 54) (($ $ (-595 (-717)) (-717)) 58) (((-717) $ (-882 |#2|)) 59)) (-2186 (((-110) $ $) 80)))
-(((-1084 |#1| |#2|) (-13 (-1023) (-10 -8 (-15 -2578 ((-110) $)) (-15 -2217 ((-110) $)) (-15 -3420 ((-110) $)) (-15 -3462 ($)) (-15 -1659 ($)) (-15 -2126 ($ $)) (-15 -2043 ($ $ (-717))) (-15 -3813 ((-595 $) $)) (-15 -2211 ((-717) $)) (-15 -1962 ($ $)) (-15 -2177 ($ $)) (-15 -1356 ($ $ $)) (-15 -1356 ($ (-595 $))) (-15 -3517 ((-595 $) $)) (-15 -4172 ($ $ (-595 (-717)) (-882 |#2|))) (-15 -2755 ($ $ (-882 |#2|))) (-15 -3829 ($ $ $ (-882 |#2|) (-717))) (-15 -1944 ($ $ (-595 (-717)) (-882 |#2|))) (-15 -4172 ($ $ (-595 (-717)) (-717))) (-15 -1944 ($ $ (-595 (-717)) (-717))) (-15 -4172 ((-717) $ (-882 |#2|))) (-15 -1944 ($ $ (-717) (-882 |#2|))) (-15 -3543 ($ $ (-595 (-717)) (-110))) (-15 -2575 ($ $ (-595 (-717)) (-161))) (-15 -2661 ($ $ (-595 (-717)))) (-15 -3752 ((-882 |#2|) $)) (-15 -2518 ((-717) $)) (-15 -3746 ((-110) $)) (-15 -1406 ((-161) $)) (-15 -1567 ((-717) $)) (-15 -1410 ($ $)) (-15 -1496 ((-595 (-882 |#2|)) $)))) (-860) (-981)) (T -1084))
-((-2578 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860)) (-4 *4 (-981)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860)) (-4 *4 (-981)))) (-3420 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860)) (-4 *4 (-981)))) (-3462 (*1 *1) (-12 (-5 *1 (-1084 *2 *3)) (-14 *2 (-860)) (-4 *3 (-981)))) (-1659 (*1 *1) (-12 (-5 *1 (-1084 *2 *3)) (-14 *2 (-860)) (-4 *3 (-981)))) (-2126 (*1 *1 *1) (-12 (-5 *1 (-1084 *2 *3)) (-14 *2 (-860)) (-4 *3 (-981)))) (-2043 (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860)) (-4 *4 (-981)))) (-3813 (*1 *2 *1) (-12 (-5 *2 (-595 (-1084 *3 *4))) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860)) (-4 *4 (-981)))) (-2211 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860)) (-4 *4 (-981)))) (-1962 (*1 *1 *1) (-12 (-5 *1 (-1084 *2 *3)) (-14 *2 (-860)) (-4 *3 (-981)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-1084 *2 *3)) (-14 *2 (-860)) (-4 *3 (-981)))) (-1356 (*1 *1 *1 *1) (-12 (-5 *1 (-1084 *2 *3)) (-14 *2 (-860)) (-4 *3 (-981)))) (-1356 (*1 *1 *2) (-12 (-5 *2 (-595 (-1084 *3 *4))) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860)) (-4 *4 (-981)))) (-3517 (*1 *2 *1) (-12 (-5 *2 (-595 (-1084 *3 *4))) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860)) (-4 *4 (-981)))) (-4172 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-595 (-717))) (-5 *3 (-882 *5)) (-4 *5 (-981)) (-5 *1 (-1084 *4 *5)) (-14 *4 (-860)))) (-2755 (*1 *1 *1 *2) (-12 (-5 *2 (-882 *4)) (-4 *4 (-981)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860)))) (-3829 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-882 *5)) (-5 *3 (-717)) (-4 *5 (-981)) (-5 *1 (-1084 *4 *5)) (-14 *4 (-860)))) (-1944 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-595 (-717))) (-5 *3 (-882 *5)) (-4 *5 (-981)) (-5 *1 (-1084 *4 *5)) (-14 *4 (-860)))) (-4172 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-595 (-717))) (-5 *3 (-717)) (-5 *1 (-1084 *4 *5)) (-14 *4 (-860)) (-4 *5 (-981)))) (-1944 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-595 (-717))) (-5 *3 (-717)) (-5 *1 (-1084 *4 *5)) (-14 *4 (-860)) (-4 *5 (-981)))) (-4172 (*1 *2 *1 *3) (-12 (-5 *3 (-882 *5)) (-4 *5 (-981)) (-5 *2 (-717)) (-5 *1 (-1084 *4 *5)) (-14 *4 (-860)))) (-1944 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-717)) (-5 *3 (-882 *5)) (-4 *5 (-981)) (-5 *1 (-1084 *4 *5)) (-14 *4 (-860)))) (-3543 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-595 (-717))) (-5 *3 (-110)) (-5 *1 (-1084 *4 *5)) (-14 *4 (-860)) (-4 *5 (-981)))) (-2575 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-595 (-717))) (-5 *3 (-161)) (-5 *1 (-1084 *4 *5)) (-14 *4 (-860)) (-4 *5 (-981)))) (-2661 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-717))) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860)) (-4 *4 (-981)))) (-3752 (*1 *2 *1) (-12 (-5 *2 (-882 *4)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860)) (-4 *4 (-981)))) (-2518 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860)) (-4 *4 (-981)))) (-3746 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860)) (-4 *4 (-981)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860)) (-4 *4 (-981)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860)) (-4 *4 (-981)))) (-1410 (*1 *1 *1) (-12 (-5 *1 (-1084 *2 *3)) (-14 *2 (-860)) (-4 *3 (-981)))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-595 (-882 *4))) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860)) (-4 *4 (-981)))))
-(-13 (-1023) (-10 -8 (-15 -2578 ((-110) $)) (-15 -2217 ((-110) $)) (-15 -3420 ((-110) $)) (-15 -3462 ($)) (-15 -1659 ($)) (-15 -2126 ($ $)) (-15 -2043 ($ $ (-717))) (-15 -3813 ((-595 $) $)) (-15 -2211 ((-717) $)) (-15 -1962 ($ $)) (-15 -2177 ($ $)) (-15 -1356 ($ $ $)) (-15 -1356 ($ (-595 $))) (-15 -3517 ((-595 $) $)) (-15 -4172 ($ $ (-595 (-717)) (-882 |#2|))) (-15 -2755 ($ $ (-882 |#2|))) (-15 -3829 ($ $ $ (-882 |#2|) (-717))) (-15 -1944 ($ $ (-595 (-717)) (-882 |#2|))) (-15 -4172 ($ $ (-595 (-717)) (-717))) (-15 -1944 ($ $ (-595 (-717)) (-717))) (-15 -4172 ((-717) $ (-882 |#2|))) (-15 -1944 ($ $ (-717) (-882 |#2|))) (-15 -3543 ($ $ (-595 (-717)) (-110))) (-15 -2575 ($ $ (-595 (-717)) (-161))) (-15 -2661 ($ $ (-595 (-717)))) (-15 -3752 ((-882 |#2|) $)) (-15 -2518 ((-717) $)) (-15 -3746 ((-110) $)) (-15 -1406 ((-161) $)) (-15 -1567 ((-717) $)) (-15 -1410 ($ $)) (-15 -1496 ((-595 (-882 |#2|)) $))))
-((-2207 (((-110) $ $) NIL)) (-1408 ((|#2| $) 11)) (-1398 ((|#1| $) 10)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2233 (($ |#1| |#2|) 9)) (-2222 (((-802) $) 16)) (-2186 (((-110) $ $) NIL)))
-(((-1085 |#1| |#2|) (-13 (-1023) (-10 -8 (-15 -2233 ($ |#1| |#2|)) (-15 -1398 (|#1| $)) (-15 -1408 (|#2| $)))) (-1023) (-1023)) (T -1085))
-((-2233 (*1 *1 *2 *3) (-12 (-5 *1 (-1085 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1023)))) (-1398 (*1 *2 *1) (-12 (-4 *2 (-1023)) (-5 *1 (-1085 *2 *3)) (-4 *3 (-1023)))) (-1408 (*1 *2 *1) (-12 (-4 *2 (-1023)) (-5 *1 (-1085 *3 *2)) (-4 *3 (-1023)))))
-(-13 (-1023) (-10 -8 (-15 -2233 ($ |#1| |#2|)) (-15 -1398 (|#1| $)) (-15 -1408 (|#2| $))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3598 (((-1093 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-288)) (|has| |#1| (-343))))) (-2565 (((-595 (-1008)) $) NIL)) (-3915 (((-1095) $) 11)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-848)) (|has| |#1| (-343))) (|has| |#1| (-520))))) (-1738 (($ $) NIL (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-848)) (|has| |#1| (-343))) (|has| |#1| (-520))))) (-1811 (((-110) $) NIL (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-848)) (|has| |#1| (-343))) (|has| |#1| (-520))))) (-1781 (($ $ (-528)) NIL) (($ $ (-528) (-528)) 66)) (-1514 (((-1076 (-2 (|:| |k| (-528)) (|:| |c| |#1|))) $) NIL)) (-1825 (((-1093 |#1| |#2| |#3|) $) 36)) (-3958 (((-3 (-1093 |#1| |#2| |#3|) "failed") $) 29)) (-2612 (((-1093 |#1| |#2| |#3|) $) 30)) (-2880 (($ $) 107 (|has| |#1| (-37 (-387 (-528)))))) (-2735 (($ $) 83 (|has| |#1| (-37 (-387 (-528)))))) (-3181 (((-3 $ "failed") $ $) NIL)) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-848)) (|has| |#1| (-343))))) (-1232 (($ $) NIL (|has| |#1| (-343)))) (-2705 (((-398 $) $) NIL (|has| |#1| (-343)))) (-2450 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-848)) (|has| |#1| (-343))))) (-2213 (((-110) $ $) NIL (|has| |#1| (-343)))) (-2859 (($ $) 103 (|has| |#1| (-37 (-387 (-528)))))) (-2712 (($ $) 79 (|has| |#1| (-37 (-387 (-528)))))) (-3605 (((-528) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))))) (-1397 (($ (-1076 (-2 (|:| |k| (-528)) (|:| |c| |#1|)))) NIL)) (-2904 (($ $) 111 (|has| |#1| (-37 (-387 (-528)))))) (-2761 (($ $) 87 (|has| |#1| (-37 (-387 (-528)))))) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-1093 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1095) "failed") $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-972 (-1095))) (|has| |#1| (-343)))) (((-3 (-387 (-528)) "failed") $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-972 (-528))) (|has| |#1| (-343)))) (((-3 (-528) "failed") $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-972 (-528))) (|has| |#1| (-343))))) (-2409 (((-1093 |#1| |#2| |#3|) $) 131) (((-1095) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-972 (-1095))) (|has| |#1| (-343)))) (((-387 (-528)) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-972 (-528))) (|has| |#1| (-343)))) (((-528) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-972 (-528))) (|has| |#1| (-343))))) (-2736 (($ $) 34) (($ (-528) $) 35)) (-3519 (($ $ $) NIL (|has| |#1| (-343)))) (-2388 (($ $) NIL)) (-2120 (((-635 (-1093 |#1| |#2| |#3|)) (-635 $)) NIL (|has| |#1| (-343))) (((-2 (|:| -2163 (-635 (-1093 |#1| |#2| |#3|))) (|:| |vec| (-1177 (-1093 |#1| |#2| |#3|)))) (-635 $) (-1177 $)) NIL (|has| |#1| (-343))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-591 (-528))) (|has| |#1| (-343)))) (((-635 (-528)) (-635 $)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-591 (-528))) (|has| |#1| (-343))))) (-1312 (((-3 $ "failed") $) 48)) (-4013 (((-387 (-891 |#1|)) $ (-528)) 65 (|has| |#1| (-520))) (((-387 (-891 |#1|)) $ (-528) (-528)) 67 (|has| |#1| (-520)))) (-1338 (($) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-513)) (|has| |#1| (-343))))) (-3498 (($ $ $) NIL (|has| |#1| (-343)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL (|has| |#1| (-343)))) (-2124 (((-110) $) NIL (|has| |#1| (-343)))) (-3657 (((-110) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))))) (-1900 (((-110) $) 25)) (-1505 (($) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-825 (-528))) (|has| |#1| (-343)))) (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-825 (-359))) (|has| |#1| (-343))))) (-3689 (((-528) $) NIL) (((-528) $ (-528)) 24)) (-1297 (((-110) $) NIL)) (-3037 (($ $) NIL (|has| |#1| (-343)))) (-3031 (((-1093 |#1| |#2| |#3|) $) 38 (|has| |#1| (-343)))) (-2796 (($ $ (-528)) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3296 (((-3 $ "failed") $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-1071)) (|has| |#1| (-343))))) (-3710 (((-110) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))))) (-1771 (($ $ (-860)) NIL)) (-3171 (($ (-1 |#1| (-528)) $) NIL)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-2195 (((-110) $) NIL)) (-2548 (($ |#1| (-528)) 18) (($ $ (-1008) (-528)) NIL) (($ $ (-595 (-1008)) (-595 (-528))) NIL)) (-1436 (($ $ $) NIL (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-793)) (|has| |#1| (-343)))))) (-1736 (($ $ $) NIL (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-793)) (|has| |#1| (-343)))))) (-3106 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1093 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-343)))) (-2097 (($ $) 72 (|has| |#1| (-37 (-387 (-528)))))) (-2686 (($ $) NIL)) (-2697 ((|#1| $) NIL)) (-2057 (($ (-595 $)) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-343)))) (-2623 (($ (-528) (-1093 |#1| |#2| |#3|)) 33)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL (|has| |#1| (-343)))) (-1923 (($ $) 70 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-1095)) NIL (-1463 (-12 (|has| |#1| (-15 -1923 (|#1| |#1| (-1095)))) (|has| |#1| (-15 -2565 ((-595 (-1095)) |#1|))) (|has| |#1| (-37 (-387 (-528))))) (-12 (|has| |#1| (-29 (-528))) (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-897)) (|has| |#1| (-1117))))) (($ $ (-1173 |#2|)) 71 (|has| |#1| (-37 (-387 (-528)))))) (-4197 (($) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-1071)) (|has| |#1| (-343))) CONST)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#1| (-343)))) (-2088 (($ (-595 $)) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-343)))) (-3270 (($ $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-288)) (|has| |#1| (-343))))) (-2925 (((-1093 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-513)) (|has| |#1| (-343))))) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-848)) (|has| |#1| (-343))))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-848)) (|has| |#1| (-343))))) (-2437 (((-398 $) $) NIL (|has| |#1| (-343)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-343))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#1| (-343)))) (-3740 (($ $ (-528)) 145)) (-3477 (((-3 $ "failed") $ $) 49 (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-848)) (|has| |#1| (-343))) (|has| |#1| (-520))))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-2656 (($ $) 73 (|has| |#1| (-37 (-387 (-528)))))) (-4014 (((-1076 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-528))))) (($ $ (-1095) (-1093 |#1| |#2| |#3|)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-489 (-1095) (-1093 |#1| |#2| |#3|))) (|has| |#1| (-343)))) (($ $ (-595 (-1095)) (-595 (-1093 |#1| |#2| |#3|))) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-489 (-1095) (-1093 |#1| |#2| |#3|))) (|has| |#1| (-343)))) (($ $ (-595 (-275 (-1093 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-290 (-1093 |#1| |#2| |#3|))) (|has| |#1| (-343)))) (($ $ (-275 (-1093 |#1| |#2| |#3|))) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-290 (-1093 |#1| |#2| |#3|))) (|has| |#1| (-343)))) (($ $ (-1093 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3|)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-290 (-1093 |#1| |#2| |#3|))) (|has| |#1| (-343)))) (($ $ (-595 (-1093 |#1| |#2| |#3|)) (-595 (-1093 |#1| |#2| |#3|))) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-290 (-1093 |#1| |#2| |#3|))) (|has| |#1| (-343))))) (-3973 (((-717) $) NIL (|has| |#1| (-343)))) (-3043 ((|#1| $ (-528)) NIL) (($ $ $) 54 (|has| (-528) (-1035))) (($ $ (-1093 |#1| |#2| |#3|)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-267 (-1093 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3|))) (|has| |#1| (-343))))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-343)))) (-3235 (($ $ (-1 (-1093 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3|))) NIL (|has| |#1| (-343))) (($ $ (-1 (-1093 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3|)) (-717)) NIL (|has| |#1| (-343))) (($ $ (-1173 |#2|)) 51) (($ $ (-717)) NIL (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-215)) (|has| |#1| (-343))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (($ $) 50 (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-215)) (|has| |#1| (-343))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095)))))) (($ $ (-1095) (-717)) NIL (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095)))))) (($ $ (-595 (-1095))) NIL (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095)))))) (($ $ (-1095)) NIL (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095))))))) (-4118 (($ $) NIL (|has| |#1| (-343)))) (-3042 (((-1093 |#1| |#2| |#3|) $) 41 (|has| |#1| (-343)))) (-2935 (((-528) $) 37)) (-2917 (($ $) 113 (|has| |#1| (-37 (-387 (-528)))))) (-2773 (($ $) 89 (|has| |#1| (-37 (-387 (-528)))))) (-2892 (($ $) 109 (|has| |#1| (-37 (-387 (-528)))))) (-2749 (($ $) 85 (|has| |#1| (-37 (-387 (-528)))))) (-2869 (($ $) 105 (|has| |#1| (-37 (-387 (-528)))))) (-2724 (($ $) 81 (|has| |#1| (-37 (-387 (-528)))))) (-3155 (((-504) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-570 (-504))) (|has| |#1| (-343)))) (((-359) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-957)) (|has| |#1| (-343)))) (((-207) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-957)) (|has| |#1| (-343)))) (((-831 (-359)) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-570 (-831 (-359)))) (|has| |#1| (-343)))) (((-831 (-528)) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-570 (-831 (-528)))) (|has| |#1| (-343))))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| (-1093 |#1| |#2| |#3|) (-848)) (|has| |#1| (-343))))) (-3534 (($ $) NIL)) (-2222 (((-802) $) 149) (($ (-528)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1093 |#1| |#2| |#3|)) 27) (($ (-1173 |#2|)) 23) (($ (-1095)) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-972 (-1095))) (|has| |#1| (-343)))) (($ $) NIL (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-848)) (|has| |#1| (-343))) (|has| |#1| (-520)))) (($ (-387 (-528))) NIL (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-972 (-528))) (|has| |#1| (-343))) (|has| |#1| (-37 (-387 (-528))))))) (-3216 ((|#1| $ (-528)) 68)) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| (-1093 |#1| |#2| |#3|) (-848)) (|has| |#1| (-343))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-138)) (|has| |#1| (-343))) (|has| |#1| (-138))))) (-3742 (((-717)) NIL)) (-1884 ((|#1| $) 12)) (-1769 (((-1093 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-513)) (|has| |#1| (-343))))) (-2953 (($ $) 119 (|has| |#1| (-37 (-387 (-528)))))) (-2811 (($ $) 95 (|has| |#1| (-37 (-387 (-528)))))) (-4016 (((-110) $ $) NIL (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-848)) (|has| |#1| (-343))) (|has| |#1| (-520))))) (-2928 (($ $) 115 (|has| |#1| (-37 (-387 (-528)))))) (-2784 (($ $) 91 (|has| |#1| (-37 (-387 (-528)))))) (-2981 (($ $) 123 (|has| |#1| (-37 (-387 (-528)))))) (-2836 (($ $) 99 (|has| |#1| (-37 (-387 (-528)))))) (-4083 ((|#1| $ (-528)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-528)))) (|has| |#1| (-15 -2222 (|#1| (-1095))))))) (-3592 (($ $) 125 (|has| |#1| (-37 (-387 (-528)))))) (-2846 (($ $) 101 (|has| |#1| (-37 (-387 (-528)))))) (-2967 (($ $) 121 (|has| |#1| (-37 (-387 (-528)))))) (-2825 (($ $) 97 (|has| |#1| (-37 (-387 (-528)))))) (-2940 (($ $) 117 (|has| |#1| (-37 (-387 (-528)))))) (-2797 (($ $) 93 (|has| |#1| (-37 (-387 (-528)))))) (-1775 (($ $) NIL (-12 (|has| (-1093 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| |#1| (-343)))) (-2969 (($) 20 T CONST)) (-2982 (($) 16 T CONST)) (-3245 (($ $ (-1 (-1093 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3|))) NIL (|has| |#1| (-343))) (($ $ (-1 (-1093 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3|)) (-717)) NIL (|has| |#1| (-343))) (($ $ (-717)) NIL (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-215)) (|has| |#1| (-343))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (($ $) NIL (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-215)) (|has| |#1| (-343))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095)))))) (($ $ (-1095) (-717)) NIL (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095)))))) (($ $ (-595 (-1095))) NIL (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095)))))) (($ $ (-1095)) NIL (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095))))))) (-2244 (((-110) $ $) NIL (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-793)) (|has| |#1| (-343)))))) (-2220 (((-110) $ $) NIL (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-793)) (|has| |#1| (-343)))))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-793)) (|has| |#1| (-343)))))) (-2208 (((-110) $ $) NIL (-1463 (-12 (|has| (-1093 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))) (-12 (|has| (-1093 |#1| |#2| |#3|) (-793)) (|has| |#1| (-343)))))) (-2296 (($ $ |#1|) NIL (|has| |#1| (-343))) (($ $ $) 44 (|has| |#1| (-343))) (($ (-1093 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3|)) 45 (|has| |#1| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) 21)) (** (($ $ (-860)) NIL) (($ $ (-717)) 53) (($ $ (-528)) NIL (|has| |#1| (-343))) (($ $ $) 74 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) 128 (|has| |#1| (-37 (-387 (-528)))))) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1093 |#1| |#2| |#3|)) 43 (|has| |#1| (-343))) (($ (-1093 |#1| |#2| |#3|) $) 42 (|has| |#1| (-343))) (($ (-387 (-528)) $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528)))))))
-(((-1086 |#1| |#2| |#3|) (-13 (-1139 |#1| (-1093 |#1| |#2| |#3|)) (-10 -8 (-15 -2222 ($ (-1173 |#2|))) (-15 -3235 ($ $ (-1173 |#2|))) (IF (|has| |#1| (-37 (-387 (-528)))) (-15 -1923 ($ $ (-1173 |#2|))) |%noBranch|))) (-981) (-1095) |#1|) (T -1086))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1086 *3 *4 *5)) (-4 *3 (-981)) (-14 *5 *3))) (-3235 (*1 *1 *1 *2) (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1086 *3 *4 *5)) (-4 *3 (-981)) (-14 *5 *3))) (-1923 (*1 *1 *1 *2) (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1086 *3 *4 *5)) (-4 *3 (-37 (-387 (-528)))) (-4 *3 (-981)) (-14 *5 *3))))
-(-13 (-1139 |#1| (-1093 |#1| |#2| |#3|)) (-10 -8 (-15 -2222 ($ (-1173 |#2|))) (-15 -3235 ($ $ (-1173 |#2|))) (IF (|has| |#1| (-37 (-387 (-528)))) (-15 -1923 ($ $ (-1173 |#2|))) |%noBranch|)))
-((-3907 ((|#2| |#2| (-1016 |#2|)) 26) ((|#2| |#2| (-1095)) 28)))
-(((-1087 |#1| |#2|) (-10 -7 (-15 -3907 (|#2| |#2| (-1095))) (-15 -3907 (|#2| |#2| (-1016 |#2|)))) (-13 (-520) (-793) (-972 (-528)) (-591 (-528))) (-13 (-410 |#1|) (-151) (-27) (-1117))) (T -1087))
-((-3907 (*1 *2 *2 *3) (-12 (-5 *3 (-1016 *2)) (-4 *2 (-13 (-410 *4) (-151) (-27) (-1117))) (-4 *4 (-13 (-520) (-793) (-972 (-528)) (-591 (-528)))) (-5 *1 (-1087 *4 *2)))) (-3907 (*1 *2 *2 *3) (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-520) (-793) (-972 (-528)) (-591 (-528)))) (-5 *1 (-1087 *4 *2)) (-4 *2 (-13 (-410 *4) (-151) (-27) (-1117))))))
-(-10 -7 (-15 -3907 (|#2| |#2| (-1095))) (-15 -3907 (|#2| |#2| (-1016 |#2|))))
-((-3907 (((-3 (-387 (-891 |#1|)) (-296 |#1|)) (-387 (-891 |#1|)) (-1016 (-387 (-891 |#1|)))) 31) (((-387 (-891 |#1|)) (-891 |#1|) (-1016 (-891 |#1|))) 44) (((-3 (-387 (-891 |#1|)) (-296 |#1|)) (-387 (-891 |#1|)) (-1095)) 33) (((-387 (-891 |#1|)) (-891 |#1|) (-1095)) 36)))
-(((-1088 |#1|) (-10 -7 (-15 -3907 ((-387 (-891 |#1|)) (-891 |#1|) (-1095))) (-15 -3907 ((-3 (-387 (-891 |#1|)) (-296 |#1|)) (-387 (-891 |#1|)) (-1095))) (-15 -3907 ((-387 (-891 |#1|)) (-891 |#1|) (-1016 (-891 |#1|)))) (-15 -3907 ((-3 (-387 (-891 |#1|)) (-296 |#1|)) (-387 (-891 |#1|)) (-1016 (-387 (-891 |#1|)))))) (-13 (-520) (-793) (-972 (-528)))) (T -1088))
-((-3907 (*1 *2 *3 *4) (-12 (-5 *4 (-1016 (-387 (-891 *5)))) (-5 *3 (-387 (-891 *5))) (-4 *5 (-13 (-520) (-793) (-972 (-528)))) (-5 *2 (-3 *3 (-296 *5))) (-5 *1 (-1088 *5)))) (-3907 (*1 *2 *3 *4) (-12 (-5 *4 (-1016 (-891 *5))) (-5 *3 (-891 *5)) (-4 *5 (-13 (-520) (-793) (-972 (-528)))) (-5 *2 (-387 *3)) (-5 *1 (-1088 *5)))) (-3907 (*1 *2 *3 *4) (-12 (-5 *4 (-1095)) (-4 *5 (-13 (-520) (-793) (-972 (-528)))) (-5 *2 (-3 (-387 (-891 *5)) (-296 *5))) (-5 *1 (-1088 *5)) (-5 *3 (-387 (-891 *5))))) (-3907 (*1 *2 *3 *4) (-12 (-5 *4 (-1095)) (-4 *5 (-13 (-520) (-793) (-972 (-528)))) (-5 *2 (-387 (-891 *5))) (-5 *1 (-1088 *5)) (-5 *3 (-891 *5)))))
-(-10 -7 (-15 -3907 ((-387 (-891 |#1|)) (-891 |#1|) (-1095))) (-15 -3907 ((-3 (-387 (-891 |#1|)) (-296 |#1|)) (-387 (-891 |#1|)) (-1095))) (-15 -3907 ((-387 (-891 |#1|)) (-891 |#1|) (-1016 (-891 |#1|)))) (-15 -3907 ((-3 (-387 (-891 |#1|)) (-296 |#1|)) (-387 (-891 |#1|)) (-1016 (-387 (-891 |#1|))))))
-((-3106 (((-1091 |#2|) (-1 |#2| |#1|) (-1091 |#1|)) 13)))
-(((-1089 |#1| |#2|) (-10 -7 (-15 -3106 ((-1091 |#2|) (-1 |#2| |#1|) (-1091 |#1|)))) (-981) (-981)) (T -1089))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1091 *5)) (-4 *5 (-981)) (-4 *6 (-981)) (-5 *2 (-1091 *6)) (-5 *1 (-1089 *5 *6)))))
-(-10 -7 (-15 -3106 ((-1091 |#2|) (-1 |#2| |#1|) (-1091 |#1|))))
-((-2705 (((-398 (-1091 (-387 |#4|))) (-1091 (-387 |#4|))) 51)) (-2437 (((-398 (-1091 (-387 |#4|))) (-1091 (-387 |#4|))) 52)))
-(((-1090 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2437 ((-398 (-1091 (-387 |#4|))) (-1091 (-387 |#4|)))) (-15 -2705 ((-398 (-1091 (-387 |#4|))) (-1091 (-387 |#4|))))) (-739) (-793) (-431) (-888 |#3| |#1| |#2|)) (T -1090))
-((-2705 (*1 *2 *3) (-12 (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-431)) (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-398 (-1091 (-387 *7)))) (-5 *1 (-1090 *4 *5 *6 *7)) (-5 *3 (-1091 (-387 *7))))) (-2437 (*1 *2 *3) (-12 (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-431)) (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-398 (-1091 (-387 *7)))) (-5 *1 (-1090 *4 *5 *6 *7)) (-5 *3 (-1091 (-387 *7))))))
-(-10 -7 (-15 -2437 ((-398 (-1091 (-387 |#4|))) (-1091 (-387 |#4|)))) (-15 -2705 ((-398 (-1091 (-387 |#4|))) (-1091 (-387 |#4|)))))
-((-2207 (((-110) $ $) 139)) (-1359 (((-110) $) 30)) (-3695 (((-1177 |#1|) $ (-717)) NIL)) (-2565 (((-595 (-1008)) $) NIL)) (-1378 (($ (-1091 |#1|)) NIL)) (-2402 (((-1091 $) $ (-1008)) 60) (((-1091 |#1|) $) 49)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#1| (-520)))) (-1738 (($ $) 134 (|has| |#1| (-520)))) (-1811 (((-110) $) NIL (|has| |#1| (-520)))) (-4042 (((-717) $) NIL) (((-717) $ (-595 (-1008))) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-1355 (($ $ $) 128 (|has| |#1| (-520)))) (-2152 (((-398 (-1091 $)) (-1091 $)) 73 (|has| |#1| (-848)))) (-1232 (($ $) NIL (|has| |#1| (-431)))) (-2705 (((-398 $) $) NIL (|has| |#1| (-431)))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) 93 (|has| |#1| (-848)))) (-2213 (((-110) $ $) NIL (|has| |#1| (-343)))) (-2646 (($ $ (-717)) 42)) (-1919 (($ $ (-717)) 43)) (-3517 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-431)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#1| "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-3 (-528) "failed") $) NIL (|has| |#1| (-972 (-528)))) (((-3 (-1008) "failed") $) NIL)) (-2409 ((|#1| $) NIL) (((-387 (-528)) $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-528) $) NIL (|has| |#1| (-972 (-528)))) (((-1008) $) NIL)) (-1606 (($ $ $ (-1008)) NIL (|has| |#1| (-162))) ((|#1| $ $) 130 (|has| |#1| (-162)))) (-3519 (($ $ $) NIL (|has| |#1| (-343)))) (-2388 (($ $) 58)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) NIL) (((-635 |#1|) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-3498 (($ $ $) NIL (|has| |#1| (-343)))) (-2325 (($ $ $) 106)) (-4233 (($ $ $) NIL (|has| |#1| (-520)))) (-3291 (((-2 (|:| -1641 |#1|) (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-520)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL (|has| |#1| (-343)))) (-1551 (($ $) 135 (|has| |#1| (-431))) (($ $ (-1008)) NIL (|has| |#1| (-431)))) (-2376 (((-595 $) $) NIL)) (-2124 (((-110) $) NIL (|has| |#1| (-848)))) (-4047 (($ $ |#1| (-717) $) 47)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (-12 (|has| (-1008) (-825 (-359))) (|has| |#1| (-825 (-359))))) (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (-12 (|has| (-1008) (-825 (-528))) (|has| |#1| (-825 (-528)))))) (-2465 (((-802) $ (-802)) 119)) (-3689 (((-717) $ $) NIL (|has| |#1| (-520)))) (-1297 (((-110) $) 32)) (-1224 (((-717) $) NIL)) (-3296 (((-3 $ "failed") $) NIL (|has| |#1| (-1071)))) (-2557 (($ (-1091 |#1|) (-1008)) 51) (($ (-1091 $) (-1008)) 67)) (-1771 (($ $ (-717)) 34)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-3737 (((-595 $) $) NIL)) (-2195 (((-110) $) NIL)) (-2548 (($ |#1| (-717)) 65) (($ $ (-1008) (-717)) NIL) (($ $ (-595 (-1008)) (-595 (-717))) NIL)) (-3275 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $ (-1008)) NIL) (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 123)) (-3499 (((-717) $) NIL) (((-717) $ (-1008)) NIL) (((-595 (-717)) $ (-595 (-1008))) NIL)) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-1264 (($ (-1 (-717) (-717)) $) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-2151 (((-1091 |#1|) $) NIL)) (-3288 (((-3 (-1008) "failed") $) NIL)) (-2686 (($ $) NIL)) (-2697 ((|#1| $) 54)) (-2057 (($ (-595 $)) NIL (|has| |#1| (-431))) (($ $ $) NIL (|has| |#1| (-431)))) (-3034 (((-1078) $) NIL)) (-3830 (((-2 (|:| -3490 $) (|:| -2537 $)) $ (-717)) 41)) (-3024 (((-3 (-595 $) "failed") $) NIL)) (-1281 (((-3 (-595 $) "failed") $) NIL)) (-3352 (((-3 (-2 (|:| |var| (-1008)) (|:| -2564 (-717))) "failed") $) NIL)) (-1923 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4197 (($) NIL (|has| |#1| (-1071)) CONST)) (-2495 (((-1042) $) NIL)) (-2662 (((-110) $) 33)) (-2675 ((|#1| $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 81 (|has| |#1| (-431)))) (-2088 (($ (-595 $)) NIL (|has| |#1| (-431))) (($ $ $) 137 (|has| |#1| (-431)))) (-1855 (($ $ (-717) |#1| $) 101)) (-3261 (((-398 (-1091 $)) (-1091 $)) 79 (|has| |#1| (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) 78 (|has| |#1| (-848)))) (-2437 (((-398 $) $) 86 (|has| |#1| (-848)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-343))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#1| (-343)))) (-3477 (((-3 $ "failed") $ |#1|) 133 (|has| |#1| (-520))) (((-3 $ "failed") $ $) 102 (|has| |#1| (-520)))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-4014 (($ $ (-595 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL) (($ $ (-1008) |#1|) NIL) (($ $ (-595 (-1008)) (-595 |#1|)) NIL) (($ $ (-1008) $) NIL) (($ $ (-595 (-1008)) (-595 $)) NIL)) (-3973 (((-717) $) NIL (|has| |#1| (-343)))) (-3043 ((|#1| $ |#1|) 121) (($ $ $) 122) (((-387 $) (-387 $) (-387 $)) NIL (|has| |#1| (-520))) ((|#1| (-387 $) |#1|) NIL (|has| |#1| (-343))) (((-387 $) $ (-387 $)) NIL (|has| |#1| (-520)))) (-1886 (((-3 $ "failed") $ (-717)) 37)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 140 (|has| |#1| (-343)))) (-1372 (($ $ (-1008)) NIL (|has| |#1| (-162))) ((|#1| $) 126 (|has| |#1| (-162)))) (-3235 (($ $ (-1008)) NIL) (($ $ (-595 (-1008))) NIL) (($ $ (-1008) (-717)) NIL) (($ $ (-595 (-1008)) (-595 (-717))) NIL) (($ $ (-717)) NIL) (($ $) NIL) (($ $ (-1095)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2935 (((-717) $) 56) (((-717) $ (-1008)) NIL) (((-595 (-717)) $ (-595 (-1008))) NIL)) (-3155 (((-831 (-359)) $) NIL (-12 (|has| (-1008) (-570 (-831 (-359)))) (|has| |#1| (-570 (-831 (-359)))))) (((-831 (-528)) $) NIL (-12 (|has| (-1008) (-570 (-831 (-528)))) (|has| |#1| (-570 (-831 (-528)))))) (((-504) $) NIL (-12 (|has| (-1008) (-570 (-504))) (|has| |#1| (-570 (-504)))))) (-1618 ((|#1| $) 132 (|has| |#1| (-431))) (($ $ (-1008)) NIL (|has| |#1| (-431)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-848))))) (-4106 (((-3 $ "failed") $ $) NIL (|has| |#1| (-520))) (((-3 (-387 $) "failed") (-387 $) $) NIL (|has| |#1| (-520)))) (-2222 (((-802) $) 120) (($ (-528)) NIL) (($ |#1|) 55) (($ (-1008)) NIL) (($ (-387 (-528))) NIL (-1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-972 (-387 (-528)))))) (($ $) NIL (|has| |#1| (-520)))) (-3348 (((-595 |#1|) $) NIL)) (-3216 ((|#1| $ (-717)) NIL) (($ $ (-1008) (-717)) NIL) (($ $ (-595 (-1008)) (-595 (-717))) NIL)) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| |#1| (-848))) (|has| |#1| (-138))))) (-3742 (((-717)) NIL)) (-1997 (($ $ $ (-717)) 28 (|has| |#1| (-162)))) (-4016 (((-110) $ $) NIL (|has| |#1| (-520)))) (-2690 (($ $ (-860)) 15) (($ $ (-717)) 16)) (-2969 (($) 17 T CONST)) (-2982 (($) 18 T CONST)) (-3245 (($ $ (-1008)) NIL) (($ $ (-595 (-1008))) NIL) (($ $ (-1008) (-717)) NIL) (($ $ (-595 (-1008)) (-595 (-717))) NIL) (($ $ (-717)) NIL) (($ $) NIL) (($ $ (-1095)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) 98)) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2296 (($ $ |#1|) 141 (|has| |#1| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) 68)) (** (($ $ (-860)) 14) (($ $ (-717)) 12)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 27) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528))))) (($ (-387 (-528)) $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ |#1| $) 104) (($ $ |#1|) NIL)))
-(((-1091 |#1|) (-13 (-1153 |#1|) (-10 -8 (-15 -2465 ((-802) $ (-802))) (-15 -1855 ($ $ (-717) |#1| $)))) (-981)) (T -1091))
-((-2465 (*1 *2 *1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1091 *3)) (-4 *3 (-981)))) (-1855 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-717)) (-5 *1 (-1091 *3)) (-4 *3 (-981)))))
-(-13 (-1153 |#1|) (-10 -8 (-15 -2465 ((-802) $ (-802))) (-15 -1855 ($ $ (-717) |#1| $))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2565 (((-595 (-1008)) $) NIL)) (-3915 (((-1095) $) 11)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#1| (-520)))) (-1738 (($ $) NIL (|has| |#1| (-520)))) (-1811 (((-110) $) NIL (|has| |#1| (-520)))) (-1781 (($ $ (-387 (-528))) NIL) (($ $ (-387 (-528)) (-387 (-528))) NIL)) (-1514 (((-1076 (-2 (|:| |k| (-387 (-528))) (|:| |c| |#1|))) $) NIL)) (-2880 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2735 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL (|has| |#1| (-343)))) (-2705 (((-398 $) $) NIL (|has| |#1| (-343)))) (-2450 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2213 (((-110) $ $) NIL (|has| |#1| (-343)))) (-2859 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2712 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-1397 (($ (-717) (-1076 (-2 (|:| |k| (-387 (-528))) (|:| |c| |#1|)))) NIL)) (-2904 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2761 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-1086 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1093 |#1| |#2| |#3|) "failed") $) 36)) (-2409 (((-1086 |#1| |#2| |#3|) $) NIL) (((-1093 |#1| |#2| |#3|) $) NIL)) (-3519 (($ $ $) NIL (|has| |#1| (-343)))) (-2388 (($ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-3312 (((-387 (-528)) $) 55)) (-3498 (($ $ $) NIL (|has| |#1| (-343)))) (-2632 (($ (-387 (-528)) (-1086 |#1| |#2| |#3|)) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL (|has| |#1| (-343)))) (-2124 (((-110) $) NIL (|has| |#1| (-343)))) (-1900 (((-110) $) NIL)) (-1505 (($) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3689 (((-387 (-528)) $) NIL) (((-387 (-528)) $ (-387 (-528))) NIL)) (-1297 (((-110) $) NIL)) (-2796 (($ $ (-528)) NIL (|has| |#1| (-37 (-387 (-528)))))) (-1771 (($ $ (-860)) NIL) (($ $ (-387 (-528))) NIL)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-2195 (((-110) $) NIL)) (-2548 (($ |#1| (-387 (-528))) 20) (($ $ (-1008) (-387 (-528))) NIL) (($ $ (-595 (-1008)) (-595 (-387 (-528)))) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-2097 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2686 (($ $) NIL)) (-2697 ((|#1| $) NIL)) (-2057 (($ (-595 $)) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-343)))) (-1380 (((-1086 |#1| |#2| |#3|) $) 41)) (-3320 (((-3 (-1086 |#1| |#2| |#3|) "failed") $) NIL)) (-2623 (((-1086 |#1| |#2| |#3|) $) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL (|has| |#1| (-343)))) (-1923 (($ $) 39 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-1095)) NIL (-1463 (-12 (|has| |#1| (-15 -1923 (|#1| |#1| (-1095)))) (|has| |#1| (-15 -2565 ((-595 (-1095)) |#1|))) (|has| |#1| (-37 (-387 (-528))))) (-12 (|has| |#1| (-29 (-528))) (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-897)) (|has| |#1| (-1117))))) (($ $ (-1173 |#2|)) 40 (|has| |#1| (-37 (-387 (-528)))))) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#1| (-343)))) (-2088 (($ (-595 $)) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-343)))) (-2437 (((-398 $) $) NIL (|has| |#1| (-343)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-343))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#1| (-343)))) (-3740 (($ $ (-387 (-528))) NIL)) (-3477 (((-3 $ "failed") $ $) NIL (|has| |#1| (-520)))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-2656 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4014 (((-1076 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-387 (-528))))))) (-3973 (((-717) $) NIL (|has| |#1| (-343)))) (-3043 ((|#1| $ (-387 (-528))) NIL) (($ $ $) NIL (|has| (-387 (-528)) (-1035)))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-343)))) (-3235 (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095)) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-717)) NIL (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|)))) (($ $ (-1173 |#2|)) 38)) (-2935 (((-387 (-528)) $) NIL)) (-2917 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2773 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2892 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2749 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2869 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2724 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3534 (($ $) NIL)) (-2222 (((-802) $) 58) (($ (-528)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1086 |#1| |#2| |#3|)) 30) (($ (-1093 |#1| |#2| |#3|)) 31) (($ (-1173 |#2|)) 26) (($ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $) NIL (|has| |#1| (-520)))) (-3216 ((|#1| $ (-387 (-528))) NIL)) (-3749 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3742 (((-717)) NIL)) (-1884 ((|#1| $) 12)) (-2953 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2811 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4016 (((-110) $ $) NIL (|has| |#1| (-520)))) (-2928 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2784 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2981 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2836 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4083 ((|#1| $ (-387 (-528))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-387 (-528))))) (|has| |#1| (-15 -2222 (|#1| (-1095))))))) (-3592 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2846 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2967 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2825 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2940 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2797 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| |#1| (-343)))) (-2969 (($) 22 T CONST)) (-2982 (($) 16 T CONST)) (-3245 (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095)) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-717)) NIL (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ |#1|) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) 24)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528)))))) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-387 (-528)) $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528)))))))
-(((-1092 |#1| |#2| |#3|) (-13 (-1160 |#1| (-1086 |#1| |#2| |#3|)) (-972 (-1093 |#1| |#2| |#3|)) (-10 -8 (-15 -2222 ($ (-1173 |#2|))) (-15 -3235 ($ $ (-1173 |#2|))) (IF (|has| |#1| (-37 (-387 (-528)))) (-15 -1923 ($ $ (-1173 |#2|))) |%noBranch|))) (-981) (-1095) |#1|) (T -1092))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1092 *3 *4 *5)) (-4 *3 (-981)) (-14 *5 *3))) (-3235 (*1 *1 *1 *2) (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1092 *3 *4 *5)) (-4 *3 (-981)) (-14 *5 *3))) (-1923 (*1 *1 *1 *2) (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1092 *3 *4 *5)) (-4 *3 (-37 (-387 (-528)))) (-4 *3 (-981)) (-14 *5 *3))))
-(-13 (-1160 |#1| (-1086 |#1| |#2| |#3|)) (-972 (-1093 |#1| |#2| |#3|)) (-10 -8 (-15 -2222 ($ (-1173 |#2|))) (-15 -3235 ($ $ (-1173 |#2|))) (IF (|has| |#1| (-37 (-387 (-528)))) (-15 -1923 ($ $ (-1173 |#2|))) |%noBranch|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 125)) (-2565 (((-595 (-1008)) $) NIL)) (-3915 (((-1095) $) 116)) (-2592 (((-1150 |#2| |#1|) $ (-717)) 63)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#1| (-520)))) (-1738 (($ $) NIL (|has| |#1| (-520)))) (-1811 (((-110) $) NIL (|has| |#1| (-520)))) (-1781 (($ $ (-717)) 79) (($ $ (-717) (-717)) 76)) (-1514 (((-1076 (-2 (|:| |k| (-717)) (|:| |c| |#1|))) $) 102)) (-2880 (($ $) 169 (|has| |#1| (-37 (-387 (-528)))))) (-2735 (($ $) 145 (|has| |#1| (-37 (-387 (-528)))))) (-3181 (((-3 $ "failed") $ $) NIL)) (-2450 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2859 (($ $) 165 (|has| |#1| (-37 (-387 (-528)))))) (-2712 (($ $) 141 (|has| |#1| (-37 (-387 (-528)))))) (-1397 (($ (-1076 (-2 (|:| |k| (-717)) (|:| |c| |#1|)))) 115) (($ (-1076 |#1|)) 110)) (-2904 (($ $) 173 (|has| |#1| (-37 (-387 (-528)))))) (-2761 (($ $) 149 (|has| |#1| (-37 (-387 (-528)))))) (-2816 (($) NIL T CONST)) (-2388 (($ $) NIL)) (-1312 (((-3 $ "failed") $) 23)) (-1395 (($ $) 26)) (-1872 (((-891 |#1|) $ (-717)) 75) (((-891 |#1|) $ (-717) (-717)) 77)) (-1900 (((-110) $) 120)) (-1505 (($) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3689 (((-717) $) 122) (((-717) $ (-717)) 124)) (-1297 (((-110) $) NIL)) (-2796 (($ $ (-528)) NIL (|has| |#1| (-37 (-387 (-528)))))) (-1771 (($ $ (-860)) NIL)) (-3171 (($ (-1 |#1| (-528)) $) NIL)) (-2195 (((-110) $) NIL)) (-2548 (($ |#1| (-717)) 13) (($ $ (-1008) (-717)) NIL) (($ $ (-595 (-1008)) (-595 (-717))) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-2097 (($ $) 131 (|has| |#1| (-37 (-387 (-528)))))) (-2686 (($ $) NIL)) (-2697 ((|#1| $) NIL)) (-3034 (((-1078) $) NIL)) (-1923 (($ $) 129 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-1095)) NIL (-1463 (-12 (|has| |#1| (-15 -1923 (|#1| |#1| (-1095)))) (|has| |#1| (-15 -2565 ((-595 (-1095)) |#1|))) (|has| |#1| (-37 (-387 (-528))))) (-12 (|has| |#1| (-29 (-528))) (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-897)) (|has| |#1| (-1117))))) (($ $ (-1173 |#2|)) 130 (|has| |#1| (-37 (-387 (-528)))))) (-2495 (((-1042) $) NIL)) (-3740 (($ $ (-717)) 15)) (-3477 (((-3 $ "failed") $ $) 24 (|has| |#1| (-520)))) (-2656 (($ $) 133 (|has| |#1| (-37 (-387 (-528)))))) (-4014 (((-1076 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-717)))))) (-3043 ((|#1| $ (-717)) 119) (($ $ $) 128 (|has| (-717) (-1035)))) (-3235 (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#1| (-15 * (|#1| (-717) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#1| (-15 * (|#1| (-717) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#1| (-15 * (|#1| (-717) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095)) NIL (-12 (|has| |#1| (-15 * (|#1| (-717) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-717)) NIL (|has| |#1| (-15 * (|#1| (-717) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-717) |#1|)))) (($ $ (-1173 |#2|)) 29)) (-2935 (((-717) $) NIL)) (-2917 (($ $) 175 (|has| |#1| (-37 (-387 (-528)))))) (-2773 (($ $) 151 (|has| |#1| (-37 (-387 (-528)))))) (-2892 (($ $) 171 (|has| |#1| (-37 (-387 (-528)))))) (-2749 (($ $) 147 (|has| |#1| (-37 (-387 (-528)))))) (-2869 (($ $) 167 (|has| |#1| (-37 (-387 (-528)))))) (-2724 (($ $) 143 (|has| |#1| (-37 (-387 (-528)))))) (-3534 (($ $) NIL)) (-2222 (((-802) $) 201) (($ (-528)) NIL) (($ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $) NIL (|has| |#1| (-520))) (($ |#1|) 126 (|has| |#1| (-162))) (($ (-1150 |#2| |#1|)) 51) (($ (-1173 |#2|)) 32)) (-3348 (((-1076 |#1|) $) 98)) (-3216 ((|#1| $ (-717)) 118)) (-3749 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3742 (((-717)) NIL)) (-1884 ((|#1| $) 54)) (-2953 (($ $) 181 (|has| |#1| (-37 (-387 (-528)))))) (-2811 (($ $) 157 (|has| |#1| (-37 (-387 (-528)))))) (-4016 (((-110) $ $) NIL (|has| |#1| (-520)))) (-2928 (($ $) 177 (|has| |#1| (-37 (-387 (-528)))))) (-2784 (($ $) 153 (|has| |#1| (-37 (-387 (-528)))))) (-2981 (($ $) 185 (|has| |#1| (-37 (-387 (-528)))))) (-2836 (($ $) 161 (|has| |#1| (-37 (-387 (-528)))))) (-4083 ((|#1| $ (-717)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-717)))) (|has| |#1| (-15 -2222 (|#1| (-1095))))))) (-3592 (($ $) 187 (|has| |#1| (-37 (-387 (-528)))))) (-2846 (($ $) 163 (|has| |#1| (-37 (-387 (-528)))))) (-2967 (($ $) 183 (|has| |#1| (-37 (-387 (-528)))))) (-2825 (($ $) 159 (|has| |#1| (-37 (-387 (-528)))))) (-2940 (($ $) 179 (|has| |#1| (-37 (-387 (-528)))))) (-2797 (($ $) 155 (|has| |#1| (-37 (-387 (-528)))))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 17 T CONST)) (-2982 (($) 19 T CONST)) (-3245 (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#1| (-15 * (|#1| (-717) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#1| (-15 * (|#1| (-717) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#1| (-15 * (|#1| (-717) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095)) NIL (-12 (|has| |#1| (-15 * (|#1| (-717) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-717)) NIL (|has| |#1| (-15 * (|#1| (-717) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-717) |#1|))))) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ |#1|) NIL (|has| |#1| (-343)))) (-2286 (($ $) NIL) (($ $ $) 194)) (-2275 (($ $ $) 31)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ |#1|) 198 (|has| |#1| (-343))) (($ $ $) 134 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) 137 (|has| |#1| (-37 (-387 (-528)))))) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-387 (-528)) $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528)))))))
-(((-1093 |#1| |#2| |#3|) (-13 (-1168 |#1|) (-10 -8 (-15 -2222 ($ (-1150 |#2| |#1|))) (-15 -2592 ((-1150 |#2| |#1|) $ (-717))) (-15 -2222 ($ (-1173 |#2|))) (-15 -3235 ($ $ (-1173 |#2|))) (IF (|has| |#1| (-37 (-387 (-528)))) (-15 -1923 ($ $ (-1173 |#2|))) |%noBranch|))) (-981) (-1095) |#1|) (T -1093))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1150 *4 *3)) (-4 *3 (-981)) (-14 *4 (-1095)) (-14 *5 *3) (-5 *1 (-1093 *3 *4 *5)))) (-2592 (*1 *2 *1 *3) (-12 (-5 *3 (-717)) (-5 *2 (-1150 *5 *4)) (-5 *1 (-1093 *4 *5 *6)) (-4 *4 (-981)) (-14 *5 (-1095)) (-14 *6 *4))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1093 *3 *4 *5)) (-4 *3 (-981)) (-14 *5 *3))) (-3235 (*1 *1 *1 *2) (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1093 *3 *4 *5)) (-4 *3 (-981)) (-14 *5 *3))) (-1923 (*1 *1 *1 *2) (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1093 *3 *4 *5)) (-4 *3 (-37 (-387 (-528)))) (-4 *3 (-981)) (-14 *5 *3))))
-(-13 (-1168 |#1|) (-10 -8 (-15 -2222 ($ (-1150 |#2| |#1|))) (-15 -2592 ((-1150 |#2| |#1|) $ (-717))) (-15 -2222 ($ (-1173 |#2|))) (-15 -3235 ($ $ (-1173 |#2|))) (IF (|has| |#1| (-37 (-387 (-528)))) (-15 -1923 ($ $ (-1173 |#2|))) |%noBranch|)))
-((-2222 (((-802) $) 27) (($ (-1095)) 29)) (-1463 (($ (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)) (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $))) 40)) (-1448 (($ (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $))) 33) (($ $) 34)) (-2986 (($ (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)) (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $))) 35)) (-2971 (($ (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)) (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $))) 37)) (-2959 (($ (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)) (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $))) 36)) (-2945 (($ (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)) (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $))) 38)) (-3790 (($ (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)) (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)) (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $))) 39)))
-(((-1094) (-13 (-569 (-802)) (-10 -8 (-15 -2222 ($ (-1095))) (-15 -2986 ($ (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)) (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)))) (-15 -2959 ($ (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)) (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)))) (-15 -2971 ($ (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)) (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)))) (-15 -2945 ($ (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)) (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)))) (-15 -1463 ($ (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)) (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)))) (-15 -3790 ($ (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)) (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)) (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)))) (-15 -1448 ($ (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)))) (-15 -1448 ($ $))))) (T -1094))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-1094)))) (-2986 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| (-1094)))) (-5 *1 (-1094)))) (-2959 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| (-1094)))) (-5 *1 (-1094)))) (-2971 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| (-1094)))) (-5 *1 (-1094)))) (-2945 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| (-1094)))) (-5 *1 (-1094)))) (-1463 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| (-1094)))) (-5 *1 (-1094)))) (-3790 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| (-1094)))) (-5 *1 (-1094)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| (-1094)))) (-5 *1 (-1094)))) (-1448 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| (-1094)))) (-5 *1 (-1094)))) (-1448 (*1 *1 *1) (-5 *1 (-1094))))
-(-13 (-569 (-802)) (-10 -8 (-15 -2222 ($ (-1095))) (-15 -2986 ($ (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)) (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)))) (-15 -2959 ($ (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)) (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)))) (-15 -2971 ($ (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)) (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)))) (-15 -2945 ($ (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)) (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)))) (-15 -1463 ($ (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)) (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)))) (-15 -3790 ($ (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)) (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)) (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)))) (-15 -1448 ($ (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359))) (|:| CF (-296 (-159 (-359)))) (|:| |switch| $)))) (-15 -1448 ($ $))))
-((-2207 (((-110) $ $) NIL)) (-2620 (($ $ (-595 (-802))) 59)) (-1296 (($ $ (-595 (-802))) 57)) (-4193 (((-1078) $) 84)) (-1597 (((-2 (|:| -3324 (-595 (-802))) (|:| -3622 (-595 (-802))) (|:| |presup| (-595 (-802))) (|:| -3884 (-595 (-802))) (|:| |args| (-595 (-802)))) $) 87)) (-3425 (((-110) $) 22)) (-3205 (($ $ (-595 (-595 (-802)))) 56) (($ $ (-2 (|:| -3324 (-595 (-802))) (|:| -3622 (-595 (-802))) (|:| |presup| (-595 (-802))) (|:| -3884 (-595 (-802))) (|:| |args| (-595 (-802))))) 82)) (-2816 (($) 124 T CONST)) (-2289 (((-1182)) 106)) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) 66) (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) 73)) (-3462 (($) 95) (($ $) 101)) (-3814 (($ $) 83)) (-1436 (($ $ $) NIL)) (-1736 (($ $ $) NIL)) (-2759 (((-595 $) $) 107)) (-3034 (((-1078) $) 90)) (-2495 (((-1042) $) NIL)) (-3043 (($ $ (-595 (-802))) 58)) (-3155 (((-504) $) 46) (((-1095) $) 47) (((-831 (-528)) $) 77) (((-831 (-359)) $) 75)) (-2222 (((-802) $) 53) (($ (-1078)) 48)) (-3147 (($ $ (-595 (-802))) 60)) (-1256 (((-1078) $) 33) (((-1078) $ (-110)) 34) (((-1182) (-768) $) 35) (((-1182) (-768) $ (-110)) 36)) (-2244 (((-110) $ $) NIL)) (-2220 (((-110) $ $) NIL)) (-2186 (((-110) $ $) 49)) (-2232 (((-110) $ $) NIL)) (-2208 (((-110) $ $) 50)))
-(((-1095) (-13 (-793) (-570 (-504)) (-774) (-570 (-1095)) (-570 (-831 (-528))) (-570 (-831 (-359))) (-825 (-528)) (-825 (-359)) (-10 -8 (-15 -3462 ($)) (-15 -3462 ($ $)) (-15 -2289 ((-1182))) (-15 -2222 ($ (-1078))) (-15 -3814 ($ $)) (-15 -3425 ((-110) $)) (-15 -1597 ((-2 (|:| -3324 (-595 (-802))) (|:| -3622 (-595 (-802))) (|:| |presup| (-595 (-802))) (|:| -3884 (-595 (-802))) (|:| |args| (-595 (-802)))) $)) (-15 -3205 ($ $ (-595 (-595 (-802))))) (-15 -3205 ($ $ (-2 (|:| -3324 (-595 (-802))) (|:| -3622 (-595 (-802))) (|:| |presup| (-595 (-802))) (|:| -3884 (-595 (-802))) (|:| |args| (-595 (-802)))))) (-15 -1296 ($ $ (-595 (-802)))) (-15 -2620 ($ $ (-595 (-802)))) (-15 -3147 ($ $ (-595 (-802)))) (-15 -3043 ($ $ (-595 (-802)))) (-15 -4193 ((-1078) $)) (-15 -2759 ((-595 $) $)) (-15 -2816 ($) -2636)))) (T -1095))
-((-3462 (*1 *1) (-5 *1 (-1095))) (-3462 (*1 *1 *1) (-5 *1 (-1095))) (-2289 (*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-1095)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-1095)))) (-3814 (*1 *1 *1) (-5 *1 (-1095))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1095)))) (-1597 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3324 (-595 (-802))) (|:| -3622 (-595 (-802))) (|:| |presup| (-595 (-802))) (|:| -3884 (-595 (-802))) (|:| |args| (-595 (-802))))) (-5 *1 (-1095)))) (-3205 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-595 (-802)))) (-5 *1 (-1095)))) (-3205 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3324 (-595 (-802))) (|:| -3622 (-595 (-802))) (|:| |presup| (-595 (-802))) (|:| -3884 (-595 (-802))) (|:| |args| (-595 (-802))))) (-5 *1 (-1095)))) (-1296 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-1095)))) (-2620 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-1095)))) (-3147 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-1095)))) (-3043 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-1095)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-1078)) (-5 *1 (-1095)))) (-2759 (*1 *2 *1) (-12 (-5 *2 (-595 (-1095))) (-5 *1 (-1095)))) (-2816 (*1 *1) (-5 *1 (-1095))))
-(-13 (-793) (-570 (-504)) (-774) (-570 (-1095)) (-570 (-831 (-528))) (-570 (-831 (-359))) (-825 (-528)) (-825 (-359)) (-10 -8 (-15 -3462 ($)) (-15 -3462 ($ $)) (-15 -2289 ((-1182))) (-15 -2222 ($ (-1078))) (-15 -3814 ($ $)) (-15 -3425 ((-110) $)) (-15 -1597 ((-2 (|:| -3324 (-595 (-802))) (|:| -3622 (-595 (-802))) (|:| |presup| (-595 (-802))) (|:| -3884 (-595 (-802))) (|:| |args| (-595 (-802)))) $)) (-15 -3205 ($ $ (-595 (-595 (-802))))) (-15 -3205 ($ $ (-2 (|:| -3324 (-595 (-802))) (|:| -3622 (-595 (-802))) (|:| |presup| (-595 (-802))) (|:| -3884 (-595 (-802))) (|:| |args| (-595 (-802)))))) (-15 -1296 ($ $ (-595 (-802)))) (-15 -2620 ($ $ (-595 (-802)))) (-15 -3147 ($ $ (-595 (-802)))) (-15 -3043 ($ $ (-595 (-802)))) (-15 -4193 ((-1078) $)) (-15 -2759 ((-595 $) $)) (-15 -2816 ($) -2636)))
-((-2340 (((-1177 |#1|) |#1| (-860)) 16) (((-1177 |#1|) (-595 |#1|)) 20)))
-(((-1096 |#1|) (-10 -7 (-15 -2340 ((-1177 |#1|) (-595 |#1|))) (-15 -2340 ((-1177 |#1|) |#1| (-860)))) (-981)) (T -1096))
-((-2340 (*1 *2 *3 *4) (-12 (-5 *4 (-860)) (-5 *2 (-1177 *3)) (-5 *1 (-1096 *3)) (-4 *3 (-981)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-595 *4)) (-4 *4 (-981)) (-5 *2 (-1177 *4)) (-5 *1 (-1096 *4)))))
-(-10 -7 (-15 -2340 ((-1177 |#1|) (-595 |#1|))) (-15 -2340 ((-1177 |#1|) |#1| (-860))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#1| (-520)))) (-1738 (($ $) NIL (|has| |#1| (-520)))) (-1811 (((-110) $) NIL (|has| |#1| (-520)))) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-528) "failed") $) NIL (|has| |#1| (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#1| (-972 (-387 (-528))))) (((-3 |#1| "failed") $) NIL)) (-2409 (((-528) $) NIL (|has| |#1| (-972 (-528)))) (((-387 (-528)) $) NIL (|has| |#1| (-972 (-387 (-528))))) ((|#1| $) NIL)) (-2388 (($ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1551 (($ $) NIL (|has| |#1| (-431)))) (-4047 (($ $ |#1| (-908) $) NIL)) (-1297 (((-110) $) NIL)) (-1224 (((-717) $) NIL)) (-2195 (((-110) $) NIL)) (-2548 (($ |#1| (-908)) NIL)) (-3499 (((-908) $) NIL)) (-1264 (($ (-1 (-908) (-908)) $) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-2686 (($ $) NIL)) (-2697 ((|#1| $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2662 (((-110) $) NIL)) (-2675 ((|#1| $) NIL)) (-1855 (($ $ (-908) |#1| $) NIL (-12 (|has| (-908) (-128)) (|has| |#1| (-520))))) (-3477 (((-3 $ "failed") $ $) NIL (|has| |#1| (-520))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-520)))) (-2935 (((-908) $) NIL)) (-1618 ((|#1| $) NIL (|has| |#1| (-431)))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ $) NIL (|has| |#1| (-520))) (($ |#1|) NIL) (($ (-387 (-528))) NIL (-1463 (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-972 (-387 (-528))))))) (-3348 (((-595 |#1|) $) NIL)) (-3216 ((|#1| $ (-908)) NIL)) (-3749 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3742 (((-717)) NIL)) (-1997 (($ $ $ (-717)) NIL (|has| |#1| (-162)))) (-4016 (((-110) $ $) NIL (|has| |#1| (-520)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 9 T CONST)) (-2982 (($) 14 T CONST)) (-2186 (((-110) $ $) 16)) (-2296 (($ $ |#1|) NIL (|has| |#1| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) 19)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-387 (-528)) $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528)))))))
-(((-1097 |#1|) (-13 (-306 |#1| (-908)) (-10 -8 (IF (|has| |#1| (-520)) (IF (|has| (-908) (-128)) (-15 -1855 ($ $ (-908) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4262)) (-6 -4262) |%noBranch|))) (-981)) (T -1097))
-((-1855 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-908)) (-4 *2 (-128)) (-5 *1 (-1097 *3)) (-4 *3 (-520)) (-4 *3 (-981)))))
-(-13 (-306 |#1| (-908)) (-10 -8 (IF (|has| |#1| (-520)) (IF (|has| (-908) (-128)) (-15 -1855 ($ $ (-908) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4262)) (-6 -4262) |%noBranch|)))
-((-1661 (((-1099) (-1095) $) 25)) (-2174 (($) 29)) (-2299 (((-3 (|:| |fst| (-414)) (|:| -2853 "void")) (-1095) $) 22)) (-2154 (((-1182) (-1095) (-3 (|:| |fst| (-414)) (|:| -2853 "void")) $) 41) (((-1182) (-1095) (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) 42) (((-1182) (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) 43)) (-3493 (((-1182) (-1095)) 58)) (-3284 (((-1182) (-1095) $) 55) (((-1182) (-1095)) 56) (((-1182)) 57)) (-3724 (((-1182) (-1095)) 37)) (-3513 (((-1095)) 36)) (-2147 (($) 34)) (-3501 (((-417) (-1095) (-417) (-1095) $) 45) (((-417) (-595 (-1095)) (-417) (-1095) $) 49) (((-417) (-1095) (-417)) 46) (((-417) (-1095) (-417) (-1095)) 50)) (-2335 (((-1095)) 35)) (-2222 (((-802) $) 28)) (-3190 (((-1182)) 30) (((-1182) (-1095)) 33)) (-3497 (((-595 (-1095)) (-1095) $) 24)) (-2876 (((-1182) (-1095) (-595 (-1095)) $) 38) (((-1182) (-1095) (-595 (-1095))) 39) (((-1182) (-595 (-1095))) 40)))
-(((-1098) (-13 (-569 (-802)) (-10 -8 (-15 -2174 ($)) (-15 -3190 ((-1182))) (-15 -3190 ((-1182) (-1095))) (-15 -3501 ((-417) (-1095) (-417) (-1095) $)) (-15 -3501 ((-417) (-595 (-1095)) (-417) (-1095) $)) (-15 -3501 ((-417) (-1095) (-417))) (-15 -3501 ((-417) (-1095) (-417) (-1095))) (-15 -3724 ((-1182) (-1095))) (-15 -2335 ((-1095))) (-15 -3513 ((-1095))) (-15 -2876 ((-1182) (-1095) (-595 (-1095)) $)) (-15 -2876 ((-1182) (-1095) (-595 (-1095)))) (-15 -2876 ((-1182) (-595 (-1095)))) (-15 -2154 ((-1182) (-1095) (-3 (|:| |fst| (-414)) (|:| -2853 "void")) $)) (-15 -2154 ((-1182) (-1095) (-3 (|:| |fst| (-414)) (|:| -2853 "void")))) (-15 -2154 ((-1182) (-3 (|:| |fst| (-414)) (|:| -2853 "void")))) (-15 -3284 ((-1182) (-1095) $)) (-15 -3284 ((-1182) (-1095))) (-15 -3284 ((-1182))) (-15 -3493 ((-1182) (-1095))) (-15 -2147 ($)) (-15 -2299 ((-3 (|:| |fst| (-414)) (|:| -2853 "void")) (-1095) $)) (-15 -3497 ((-595 (-1095)) (-1095) $)) (-15 -1661 ((-1099) (-1095) $))))) (T -1098))
-((-2174 (*1 *1) (-5 *1 (-1098))) (-3190 (*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-1098)))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-1182)) (-5 *1 (-1098)))) (-3501 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-417)) (-5 *3 (-1095)) (-5 *1 (-1098)))) (-3501 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-417)) (-5 *3 (-595 (-1095))) (-5 *4 (-1095)) (-5 *1 (-1098)))) (-3501 (*1 *2 *3 *2) (-12 (-5 *2 (-417)) (-5 *3 (-1095)) (-5 *1 (-1098)))) (-3501 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-417)) (-5 *3 (-1095)) (-5 *1 (-1098)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-1182)) (-5 *1 (-1098)))) (-2335 (*1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-1098)))) (-3513 (*1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-1098)))) (-2876 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-595 (-1095))) (-5 *3 (-1095)) (-5 *2 (-1182)) (-5 *1 (-1098)))) (-2876 (*1 *2 *3 *4) (-12 (-5 *4 (-595 (-1095))) (-5 *3 (-1095)) (-5 *2 (-1182)) (-5 *1 (-1098)))) (-2876 (*1 *2 *3) (-12 (-5 *3 (-595 (-1095))) (-5 *2 (-1182)) (-5 *1 (-1098)))) (-2154 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1095)) (-5 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-5 *2 (-1182)) (-5 *1 (-1098)))) (-2154 (*1 *2 *3 *4) (-12 (-5 *3 (-1095)) (-5 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-5 *2 (-1182)) (-5 *1 (-1098)))) (-2154 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-5 *2 (-1182)) (-5 *1 (-1098)))) (-3284 (*1 *2 *3 *1) (-12 (-5 *3 (-1095)) (-5 *2 (-1182)) (-5 *1 (-1098)))) (-3284 (*1 *2 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-1182)) (-5 *1 (-1098)))) (-3284 (*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-1098)))) (-3493 (*1 *2 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-1182)) (-5 *1 (-1098)))) (-2147 (*1 *1) (-5 *1 (-1098))) (-2299 (*1 *2 *3 *1) (-12 (-5 *3 (-1095)) (-5 *2 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-5 *1 (-1098)))) (-3497 (*1 *2 *3 *1) (-12 (-5 *2 (-595 (-1095))) (-5 *1 (-1098)) (-5 *3 (-1095)))) (-1661 (*1 *2 *3 *1) (-12 (-5 *3 (-1095)) (-5 *2 (-1099)) (-5 *1 (-1098)))))
-(-13 (-569 (-802)) (-10 -8 (-15 -2174 ($)) (-15 -3190 ((-1182))) (-15 -3190 ((-1182) (-1095))) (-15 -3501 ((-417) (-1095) (-417) (-1095) $)) (-15 -3501 ((-417) (-595 (-1095)) (-417) (-1095) $)) (-15 -3501 ((-417) (-1095) (-417))) (-15 -3501 ((-417) (-1095) (-417) (-1095))) (-15 -3724 ((-1182) (-1095))) (-15 -2335 ((-1095))) (-15 -3513 ((-1095))) (-15 -2876 ((-1182) (-1095) (-595 (-1095)) $)) (-15 -2876 ((-1182) (-1095) (-595 (-1095)))) (-15 -2876 ((-1182) (-595 (-1095)))) (-15 -2154 ((-1182) (-1095) (-3 (|:| |fst| (-414)) (|:| -2853 "void")) $)) (-15 -2154 ((-1182) (-1095) (-3 (|:| |fst| (-414)) (|:| -2853 "void")))) (-15 -2154 ((-1182) (-3 (|:| |fst| (-414)) (|:| -2853 "void")))) (-15 -3284 ((-1182) (-1095) $)) (-15 -3284 ((-1182) (-1095))) (-15 -3284 ((-1182))) (-15 -3493 ((-1182) (-1095))) (-15 -2147 ($)) (-15 -2299 ((-3 (|:| |fst| (-414)) (|:| -2853 "void")) (-1095) $)) (-15 -3497 ((-595 (-1095)) (-1095) $)) (-15 -1661 ((-1099) (-1095) $))))
-((-1764 (((-595 (-595 (-3 (|:| -3814 (-1095)) (|:| |bounds| (-595 (-3 (|:| S (-1095)) (|:| P (-891 (-528))))))))) $) 59)) (-4107 (((-595 (-3 (|:| -3814 (-1095)) (|:| |bounds| (-595 (-3 (|:| S (-1095)) (|:| P (-891 (-528)))))))) (-414) $) 43)) (-3059 (($ (-595 (-2 (|:| -2927 (-1095)) (|:| -1780 (-417))))) 17)) (-3493 (((-1182) $) 67)) (-3014 (((-595 (-1095)) $) 22)) (-2918 (((-1027) $) 55)) (-1487 (((-417) (-1095) $) 27)) (-2731 (((-595 (-1095)) $) 30)) (-2147 (($) 19)) (-3501 (((-417) (-595 (-1095)) (-417) $) 25) (((-417) (-1095) (-417) $) 24)) (-2222 (((-802) $) 9) (((-1105 (-1095) (-417)) $) 13)))
-(((-1099) (-13 (-569 (-802)) (-10 -8 (-15 -2222 ((-1105 (-1095) (-417)) $)) (-15 -2147 ($)) (-15 -3501 ((-417) (-595 (-1095)) (-417) $)) (-15 -3501 ((-417) (-1095) (-417) $)) (-15 -1487 ((-417) (-1095) $)) (-15 -3014 ((-595 (-1095)) $)) (-15 -4107 ((-595 (-3 (|:| -3814 (-1095)) (|:| |bounds| (-595 (-3 (|:| S (-1095)) (|:| P (-891 (-528)))))))) (-414) $)) (-15 -2731 ((-595 (-1095)) $)) (-15 -1764 ((-595 (-595 (-3 (|:| -3814 (-1095)) (|:| |bounds| (-595 (-3 (|:| S (-1095)) (|:| P (-891 (-528))))))))) $)) (-15 -2918 ((-1027) $)) (-15 -3493 ((-1182) $)) (-15 -3059 ($ (-595 (-2 (|:| -2927 (-1095)) (|:| -1780 (-417))))))))) (T -1099))
-((-2222 (*1 *2 *1) (-12 (-5 *2 (-1105 (-1095) (-417))) (-5 *1 (-1099)))) (-2147 (*1 *1) (-5 *1 (-1099))) (-3501 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-417)) (-5 *3 (-595 (-1095))) (-5 *1 (-1099)))) (-3501 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-417)) (-5 *3 (-1095)) (-5 *1 (-1099)))) (-1487 (*1 *2 *3 *1) (-12 (-5 *3 (-1095)) (-5 *2 (-417)) (-5 *1 (-1099)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-595 (-1095))) (-5 *1 (-1099)))) (-4107 (*1 *2 *3 *1) (-12 (-5 *3 (-414)) (-5 *2 (-595 (-3 (|:| -3814 (-1095)) (|:| |bounds| (-595 (-3 (|:| S (-1095)) (|:| P (-891 (-528))))))))) (-5 *1 (-1099)))) (-2731 (*1 *2 *1) (-12 (-5 *2 (-595 (-1095))) (-5 *1 (-1099)))) (-1764 (*1 *2 *1) (-12 (-5 *2 (-595 (-595 (-3 (|:| -3814 (-1095)) (|:| |bounds| (-595 (-3 (|:| S (-1095)) (|:| P (-891 (-528)))))))))) (-5 *1 (-1099)))) (-2918 (*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-1099)))) (-3493 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-1099)))) (-3059 (*1 *1 *2) (-12 (-5 *2 (-595 (-2 (|:| -2927 (-1095)) (|:| -1780 (-417))))) (-5 *1 (-1099)))))
-(-13 (-569 (-802)) (-10 -8 (-15 -2222 ((-1105 (-1095) (-417)) $)) (-15 -2147 ($)) (-15 -3501 ((-417) (-595 (-1095)) (-417) $)) (-15 -3501 ((-417) (-1095) (-417) $)) (-15 -1487 ((-417) (-1095) $)) (-15 -3014 ((-595 (-1095)) $)) (-15 -4107 ((-595 (-3 (|:| -3814 (-1095)) (|:| |bounds| (-595 (-3 (|:| S (-1095)) (|:| P (-891 (-528)))))))) (-414) $)) (-15 -2731 ((-595 (-1095)) $)) (-15 -1764 ((-595 (-595 (-3 (|:| -3814 (-1095)) (|:| |bounds| (-595 (-3 (|:| S (-1095)) (|:| P (-891 (-528))))))))) $)) (-15 -2918 ((-1027) $)) (-15 -3493 ((-1182) $)) (-15 -3059 ($ (-595 (-2 (|:| -2927 (-1095)) (|:| -1780 (-417))))))))
-((-2207 (((-110) $ $) NIL)) (-3053 (((-110) $) 42)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2922 (((-3 (-528) (-207) (-1095) (-1078) $) $) 50)) (-3694 (((-595 $) $) 55)) (-3155 (((-1027) $) 24) (($ (-1027)) 25)) (-2024 (((-110) $) 52)) (-2222 (((-802) $) NIL) (($ (-528)) 26) (((-528) $) 28) (($ (-207)) 29) (((-207) $) 31) (($ (-1095)) 32) (((-1095) $) 34) (($ (-1078)) 35) (((-1078) $) 37)) (-2955 (((-110) $ (|[\|\|]| (-528))) 11) (((-110) $ (|[\|\|]| (-207))) 15) (((-110) $ (|[\|\|]| (-1095))) 23) (((-110) $ (|[\|\|]| (-1078))) 19)) (-4244 (($ (-1095) (-595 $)) 39) (($ $ (-595 $)) 40)) (-2440 (((-528) $) 27) (((-207) $) 30) (((-1095) $) 33) (((-1078) $) 36)) (-2186 (((-110) $ $) 7)))
-(((-1100) (-13 (-1172) (-1023) (-10 -8 (-15 -3155 ((-1027) $)) (-15 -3155 ($ (-1027))) (-15 -2222 ($ (-528))) (-15 -2222 ((-528) $)) (-15 -2440 ((-528) $)) (-15 -2222 ($ (-207))) (-15 -2222 ((-207) $)) (-15 -2440 ((-207) $)) (-15 -2222 ($ (-1095))) (-15 -2222 ((-1095) $)) (-15 -2440 ((-1095) $)) (-15 -2222 ($ (-1078))) (-15 -2222 ((-1078) $)) (-15 -2440 ((-1078) $)) (-15 -4244 ($ (-1095) (-595 $))) (-15 -4244 ($ $ (-595 $))) (-15 -3053 ((-110) $)) (-15 -2922 ((-3 (-528) (-207) (-1095) (-1078) $) $)) (-15 -3694 ((-595 $) $)) (-15 -2024 ((-110) $)) (-15 -2955 ((-110) $ (|[\|\|]| (-528)))) (-15 -2955 ((-110) $ (|[\|\|]| (-207)))) (-15 -2955 ((-110) $ (|[\|\|]| (-1095)))) (-15 -2955 ((-110) $ (|[\|\|]| (-1078))))))) (T -1100))
-((-3155 (*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-1100)))) (-3155 (*1 *1 *2) (-12 (-5 *2 (-1027)) (-5 *1 (-1100)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-1100)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-1100)))) (-2440 (*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-1100)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-207)) (-5 *1 (-1100)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-207)) (-5 *1 (-1100)))) (-2440 (*1 *2 *1) (-12 (-5 *2 (-207)) (-5 *1 (-1100)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-1100)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-1100)))) (-2440 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-1100)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-1100)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-1078)) (-5 *1 (-1100)))) (-2440 (*1 *2 *1) (-12 (-5 *2 (-1078)) (-5 *1 (-1100)))) (-4244 (*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-595 (-1100))) (-5 *1 (-1100)))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-1100))) (-5 *1 (-1100)))) (-3053 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1100)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-3 (-528) (-207) (-1095) (-1078) (-1100))) (-5 *1 (-1100)))) (-3694 (*1 *2 *1) (-12 (-5 *2 (-595 (-1100))) (-5 *1 (-1100)))) (-2024 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1100)))) (-2955 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-110)) (-5 *1 (-1100)))) (-2955 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-207))) (-5 *2 (-110)) (-5 *1 (-1100)))) (-2955 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1095))) (-5 *2 (-110)) (-5 *1 (-1100)))) (-2955 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1078))) (-5 *2 (-110)) (-5 *1 (-1100)))))
-(-13 (-1172) (-1023) (-10 -8 (-15 -3155 ((-1027) $)) (-15 -3155 ($ (-1027))) (-15 -2222 ($ (-528))) (-15 -2222 ((-528) $)) (-15 -2440 ((-528) $)) (-15 -2222 ($ (-207))) (-15 -2222 ((-207) $)) (-15 -2440 ((-207) $)) (-15 -2222 ($ (-1095))) (-15 -2222 ((-1095) $)) (-15 -2440 ((-1095) $)) (-15 -2222 ($ (-1078))) (-15 -2222 ((-1078) $)) (-15 -2440 ((-1078) $)) (-15 -4244 ($ (-1095) (-595 $))) (-15 -4244 ($ $ (-595 $))) (-15 -3053 ((-110) $)) (-15 -2922 ((-3 (-528) (-207) (-1095) (-1078) $) $)) (-15 -3694 ((-595 $) $)) (-15 -2024 ((-110) $)) (-15 -2955 ((-110) $ (|[\|\|]| (-528)))) (-15 -2955 ((-110) $ (|[\|\|]| (-207)))) (-15 -2955 ((-110) $ (|[\|\|]| (-1095)))) (-15 -2955 ((-110) $ (|[\|\|]| (-1078))))))
-((-3028 (((-595 (-595 (-891 |#1|))) (-595 (-387 (-891 |#1|))) (-595 (-1095))) 57)) (-1651 (((-595 (-275 (-387 (-891 |#1|)))) (-275 (-387 (-891 |#1|)))) 69) (((-595 (-275 (-387 (-891 |#1|)))) (-387 (-891 |#1|))) 65) (((-595 (-275 (-387 (-891 |#1|)))) (-275 (-387 (-891 |#1|))) (-1095)) 70) (((-595 (-275 (-387 (-891 |#1|)))) (-387 (-891 |#1|)) (-1095)) 64) (((-595 (-595 (-275 (-387 (-891 |#1|))))) (-595 (-275 (-387 (-891 |#1|))))) 93) (((-595 (-595 (-275 (-387 (-891 |#1|))))) (-595 (-387 (-891 |#1|)))) 92) (((-595 (-595 (-275 (-387 (-891 |#1|))))) (-595 (-275 (-387 (-891 |#1|)))) (-595 (-1095))) 94) (((-595 (-595 (-275 (-387 (-891 |#1|))))) (-595 (-387 (-891 |#1|))) (-595 (-1095))) 91)))
-(((-1101 |#1|) (-10 -7 (-15 -1651 ((-595 (-595 (-275 (-387 (-891 |#1|))))) (-595 (-387 (-891 |#1|))) (-595 (-1095)))) (-15 -1651 ((-595 (-595 (-275 (-387 (-891 |#1|))))) (-595 (-275 (-387 (-891 |#1|)))) (-595 (-1095)))) (-15 -1651 ((-595 (-595 (-275 (-387 (-891 |#1|))))) (-595 (-387 (-891 |#1|))))) (-15 -1651 ((-595 (-595 (-275 (-387 (-891 |#1|))))) (-595 (-275 (-387 (-891 |#1|)))))) (-15 -1651 ((-595 (-275 (-387 (-891 |#1|)))) (-387 (-891 |#1|)) (-1095))) (-15 -1651 ((-595 (-275 (-387 (-891 |#1|)))) (-275 (-387 (-891 |#1|))) (-1095))) (-15 -1651 ((-595 (-275 (-387 (-891 |#1|)))) (-387 (-891 |#1|)))) (-15 -1651 ((-595 (-275 (-387 (-891 |#1|)))) (-275 (-387 (-891 |#1|))))) (-15 -3028 ((-595 (-595 (-891 |#1|))) (-595 (-387 (-891 |#1|))) (-595 (-1095))))) (-520)) (T -1101))
-((-3028 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-387 (-891 *5)))) (-5 *4 (-595 (-1095))) (-4 *5 (-520)) (-5 *2 (-595 (-595 (-891 *5)))) (-5 *1 (-1101 *5)))) (-1651 (*1 *2 *3) (-12 (-4 *4 (-520)) (-5 *2 (-595 (-275 (-387 (-891 *4))))) (-5 *1 (-1101 *4)) (-5 *3 (-275 (-387 (-891 *4)))))) (-1651 (*1 *2 *3) (-12 (-4 *4 (-520)) (-5 *2 (-595 (-275 (-387 (-891 *4))))) (-5 *1 (-1101 *4)) (-5 *3 (-387 (-891 *4))))) (-1651 (*1 *2 *3 *4) (-12 (-5 *4 (-1095)) (-4 *5 (-520)) (-5 *2 (-595 (-275 (-387 (-891 *5))))) (-5 *1 (-1101 *5)) (-5 *3 (-275 (-387 (-891 *5)))))) (-1651 (*1 *2 *3 *4) (-12 (-5 *4 (-1095)) (-4 *5 (-520)) (-5 *2 (-595 (-275 (-387 (-891 *5))))) (-5 *1 (-1101 *5)) (-5 *3 (-387 (-891 *5))))) (-1651 (*1 *2 *3) (-12 (-4 *4 (-520)) (-5 *2 (-595 (-595 (-275 (-387 (-891 *4)))))) (-5 *1 (-1101 *4)) (-5 *3 (-595 (-275 (-387 (-891 *4))))))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-595 (-387 (-891 *4)))) (-4 *4 (-520)) (-5 *2 (-595 (-595 (-275 (-387 (-891 *4)))))) (-5 *1 (-1101 *4)))) (-1651 (*1 *2 *3 *4) (-12 (-5 *4 (-595 (-1095))) (-4 *5 (-520)) (-5 *2 (-595 (-595 (-275 (-387 (-891 *5)))))) (-5 *1 (-1101 *5)) (-5 *3 (-595 (-275 (-387 (-891 *5))))))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-387 (-891 *5)))) (-5 *4 (-595 (-1095))) (-4 *5 (-520)) (-5 *2 (-595 (-595 (-275 (-387 (-891 *5)))))) (-5 *1 (-1101 *5)))))
-(-10 -7 (-15 -1651 ((-595 (-595 (-275 (-387 (-891 |#1|))))) (-595 (-387 (-891 |#1|))) (-595 (-1095)))) (-15 -1651 ((-595 (-595 (-275 (-387 (-891 |#1|))))) (-595 (-275 (-387 (-891 |#1|)))) (-595 (-1095)))) (-15 -1651 ((-595 (-595 (-275 (-387 (-891 |#1|))))) (-595 (-387 (-891 |#1|))))) (-15 -1651 ((-595 (-595 (-275 (-387 (-891 |#1|))))) (-595 (-275 (-387 (-891 |#1|)))))) (-15 -1651 ((-595 (-275 (-387 (-891 |#1|)))) (-387 (-891 |#1|)) (-1095))) (-15 -1651 ((-595 (-275 (-387 (-891 |#1|)))) (-275 (-387 (-891 |#1|))) (-1095))) (-15 -1651 ((-595 (-275 (-387 (-891 |#1|)))) (-387 (-891 |#1|)))) (-15 -1651 ((-595 (-275 (-387 (-891 |#1|)))) (-275 (-387 (-891 |#1|))))) (-15 -3028 ((-595 (-595 (-891 |#1|))) (-595 (-387 (-891 |#1|))) (-595 (-1095)))))
-((-4169 (((-1078)) 7)) (-3003 (((-1078)) 9)) (-2875 (((-1182) (-1078)) 11)) (-2867 (((-1078)) 8)))
-(((-1102) (-10 -7 (-15 -4169 ((-1078))) (-15 -2867 ((-1078))) (-15 -3003 ((-1078))) (-15 -2875 ((-1182) (-1078))))) (T -1102))
-((-2875 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1102)))) (-3003 (*1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-1102)))) (-2867 (*1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-1102)))) (-4169 (*1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-1102)))))
-(-10 -7 (-15 -4169 ((-1078))) (-15 -2867 ((-1078))) (-15 -3003 ((-1078))) (-15 -2875 ((-1182) (-1078))))
-((-1340 (((-595 (-595 |#1|)) (-595 (-595 |#1|)) (-595 (-595 (-595 |#1|)))) 38)) (-2359 (((-595 (-595 (-595 |#1|))) (-595 (-595 |#1|))) 24)) (-3465 (((-1104 (-595 |#1|)) (-595 |#1|)) 34)) (-1773 (((-595 (-595 |#1|)) (-595 |#1|)) 30)) (-1266 (((-2 (|:| |f1| (-595 |#1|)) (|:| |f2| (-595 (-595 (-595 |#1|)))) (|:| |f3| (-595 (-595 |#1|))) (|:| |f4| (-595 (-595 (-595 |#1|))))) (-595 (-595 (-595 |#1|)))) 37)) (-1942 (((-2 (|:| |f1| (-595 |#1|)) (|:| |f2| (-595 (-595 (-595 |#1|)))) (|:| |f3| (-595 (-595 |#1|))) (|:| |f4| (-595 (-595 (-595 |#1|))))) (-595 |#1|) (-595 (-595 (-595 |#1|))) (-595 (-595 |#1|)) (-595 (-595 (-595 |#1|))) (-595 (-595 (-595 |#1|))) (-595 (-595 (-595 |#1|)))) 36)) (-1715 (((-595 (-595 |#1|)) (-595 (-595 |#1|))) 28)) (-1666 (((-595 |#1|) (-595 |#1|)) 31)) (-1982 (((-595 (-595 (-595 |#1|))) (-595 |#1|) (-595 (-595 (-595 |#1|)))) 18)) (-1221 (((-595 (-595 (-595 |#1|))) (-1 (-110) |#1| |#1|) (-595 |#1|) (-595 (-595 (-595 |#1|)))) 16)) (-3384 (((-2 (|:| |fs| (-110)) (|:| |sd| (-595 |#1|)) (|:| |td| (-595 (-595 |#1|)))) (-1 (-110) |#1| |#1|) (-595 |#1|) (-595 (-595 |#1|))) 14)) (-2936 (((-595 (-595 |#1|)) (-595 (-595 (-595 |#1|)))) 39)) (-1385 (((-595 (-595 |#1|)) (-1104 (-595 |#1|))) 41)))
-(((-1103 |#1|) (-10 -7 (-15 -3384 ((-2 (|:| |fs| (-110)) (|:| |sd| (-595 |#1|)) (|:| |td| (-595 (-595 |#1|)))) (-1 (-110) |#1| |#1|) (-595 |#1|) (-595 (-595 |#1|)))) (-15 -1221 ((-595 (-595 (-595 |#1|))) (-1 (-110) |#1| |#1|) (-595 |#1|) (-595 (-595 (-595 |#1|))))) (-15 -1982 ((-595 (-595 (-595 |#1|))) (-595 |#1|) (-595 (-595 (-595 |#1|))))) (-15 -1340 ((-595 (-595 |#1|)) (-595 (-595 |#1|)) (-595 (-595 (-595 |#1|))))) (-15 -2936 ((-595 (-595 |#1|)) (-595 (-595 (-595 |#1|))))) (-15 -1385 ((-595 (-595 |#1|)) (-1104 (-595 |#1|)))) (-15 -2359 ((-595 (-595 (-595 |#1|))) (-595 (-595 |#1|)))) (-15 -3465 ((-1104 (-595 |#1|)) (-595 |#1|))) (-15 -1715 ((-595 (-595 |#1|)) (-595 (-595 |#1|)))) (-15 -1773 ((-595 (-595 |#1|)) (-595 |#1|))) (-15 -1666 ((-595 |#1|) (-595 |#1|))) (-15 -1942 ((-2 (|:| |f1| (-595 |#1|)) (|:| |f2| (-595 (-595 (-595 |#1|)))) (|:| |f3| (-595 (-595 |#1|))) (|:| |f4| (-595 (-595 (-595 |#1|))))) (-595 |#1|) (-595 (-595 (-595 |#1|))) (-595 (-595 |#1|)) (-595 (-595 (-595 |#1|))) (-595 (-595 (-595 |#1|))) (-595 (-595 (-595 |#1|))))) (-15 -1266 ((-2 (|:| |f1| (-595 |#1|)) (|:| |f2| (-595 (-595 (-595 |#1|)))) (|:| |f3| (-595 (-595 |#1|))) (|:| |f4| (-595 (-595 (-595 |#1|))))) (-595 (-595 (-595 |#1|)))))) (-793)) (T -1103))
-((-1266 (*1 *2 *3) (-12 (-4 *4 (-793)) (-5 *2 (-2 (|:| |f1| (-595 *4)) (|:| |f2| (-595 (-595 (-595 *4)))) (|:| |f3| (-595 (-595 *4))) (|:| |f4| (-595 (-595 (-595 *4)))))) (-5 *1 (-1103 *4)) (-5 *3 (-595 (-595 (-595 *4)))))) (-1942 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-793)) (-5 *3 (-595 *6)) (-5 *5 (-595 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-595 *5)) (|:| |f3| *5) (|:| |f4| (-595 *5)))) (-5 *1 (-1103 *6)) (-5 *4 (-595 *5)))) (-1666 (*1 *2 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-793)) (-5 *1 (-1103 *3)))) (-1773 (*1 *2 *3) (-12 (-4 *4 (-793)) (-5 *2 (-595 (-595 *4))) (-5 *1 (-1103 *4)) (-5 *3 (-595 *4)))) (-1715 (*1 *2 *2) (-12 (-5 *2 (-595 (-595 *3))) (-4 *3 (-793)) (-5 *1 (-1103 *3)))) (-3465 (*1 *2 *3) (-12 (-4 *4 (-793)) (-5 *2 (-1104 (-595 *4))) (-5 *1 (-1103 *4)) (-5 *3 (-595 *4)))) (-2359 (*1 *2 *3) (-12 (-4 *4 (-793)) (-5 *2 (-595 (-595 (-595 *4)))) (-5 *1 (-1103 *4)) (-5 *3 (-595 (-595 *4))))) (-1385 (*1 *2 *3) (-12 (-5 *3 (-1104 (-595 *4))) (-4 *4 (-793)) (-5 *2 (-595 (-595 *4))) (-5 *1 (-1103 *4)))) (-2936 (*1 *2 *3) (-12 (-5 *3 (-595 (-595 (-595 *4)))) (-5 *2 (-595 (-595 *4))) (-5 *1 (-1103 *4)) (-4 *4 (-793)))) (-1340 (*1 *2 *2 *3) (-12 (-5 *3 (-595 (-595 (-595 *4)))) (-5 *2 (-595 (-595 *4))) (-4 *4 (-793)) (-5 *1 (-1103 *4)))) (-1982 (*1 *2 *3 *2) (-12 (-5 *2 (-595 (-595 (-595 *4)))) (-5 *3 (-595 *4)) (-4 *4 (-793)) (-5 *1 (-1103 *4)))) (-1221 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-595 (-595 (-595 *5)))) (-5 *3 (-1 (-110) *5 *5)) (-5 *4 (-595 *5)) (-4 *5 (-793)) (-5 *1 (-1103 *5)))) (-3384 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-110) *6 *6)) (-4 *6 (-793)) (-5 *4 (-595 *6)) (-5 *2 (-2 (|:| |fs| (-110)) (|:| |sd| *4) (|:| |td| (-595 *4)))) (-5 *1 (-1103 *6)) (-5 *5 (-595 *4)))))
-(-10 -7 (-15 -3384 ((-2 (|:| |fs| (-110)) (|:| |sd| (-595 |#1|)) (|:| |td| (-595 (-595 |#1|)))) (-1 (-110) |#1| |#1|) (-595 |#1|) (-595 (-595 |#1|)))) (-15 -1221 ((-595 (-595 (-595 |#1|))) (-1 (-110) |#1| |#1|) (-595 |#1|) (-595 (-595 (-595 |#1|))))) (-15 -1982 ((-595 (-595 (-595 |#1|))) (-595 |#1|) (-595 (-595 (-595 |#1|))))) (-15 -1340 ((-595 (-595 |#1|)) (-595 (-595 |#1|)) (-595 (-595 (-595 |#1|))))) (-15 -2936 ((-595 (-595 |#1|)) (-595 (-595 (-595 |#1|))))) (-15 -1385 ((-595 (-595 |#1|)) (-1104 (-595 |#1|)))) (-15 -2359 ((-595 (-595 (-595 |#1|))) (-595 (-595 |#1|)))) (-15 -3465 ((-1104 (-595 |#1|)) (-595 |#1|))) (-15 -1715 ((-595 (-595 |#1|)) (-595 (-595 |#1|)))) (-15 -1773 ((-595 (-595 |#1|)) (-595 |#1|))) (-15 -1666 ((-595 |#1|) (-595 |#1|))) (-15 -1942 ((-2 (|:| |f1| (-595 |#1|)) (|:| |f2| (-595 (-595 (-595 |#1|)))) (|:| |f3| (-595 (-595 |#1|))) (|:| |f4| (-595 (-595 (-595 |#1|))))) (-595 |#1|) (-595 (-595 (-595 |#1|))) (-595 (-595 |#1|)) (-595 (-595 (-595 |#1|))) (-595 (-595 (-595 |#1|))) (-595 (-595 (-595 |#1|))))) (-15 -1266 ((-2 (|:| |f1| (-595 |#1|)) (|:| |f2| (-595 (-595 (-595 |#1|)))) (|:| |f3| (-595 (-595 |#1|))) (|:| |f4| (-595 (-595 (-595 |#1|))))) (-595 (-595 (-595 |#1|))))))
-((-2268 (($ (-595 (-595 |#1|))) 10)) (-2062 (((-595 (-595 |#1|)) $) 11)) (-2222 (((-802) $) 26)))
-(((-1104 |#1|) (-10 -8 (-15 -2268 ($ (-595 (-595 |#1|)))) (-15 -2062 ((-595 (-595 |#1|)) $)) (-15 -2222 ((-802) $))) (-1023)) (T -1104))
-((-2222 (*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-1104 *3)) (-4 *3 (-1023)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-595 (-595 *3))) (-5 *1 (-1104 *3)) (-4 *3 (-1023)))) (-2268 (*1 *1 *2) (-12 (-5 *2 (-595 (-595 *3))) (-4 *3 (-1023)) (-5 *1 (-1104 *3)))))
-(-10 -8 (-15 -2268 ($ (-595 (-595 |#1|)))) (-15 -2062 ((-595 (-595 |#1|)) $)) (-15 -2222 ((-802) $)))
-((-2207 (((-110) $ $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-3450 (($) NIL) (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-1444 (((-1182) $ |#1| |#1|) NIL (|has| $ (-6 -4265)))) (-3535 (((-110) $ (-717)) NIL)) (-2381 ((|#2| $ |#1| |#2|) NIL)) (-1836 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-1573 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-2582 (((-3 |#2| "failed") |#1| $) NIL)) (-2816 (($) NIL T CONST)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))))) (-3991 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (|has| $ (-6 -4264))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-3 |#2| "failed") |#1| $) NIL)) (-2280 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-1422 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (|has| $ (-6 -4264))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264)))) (-2812 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4265)))) (-2742 ((|#2| $ |#1|) NIL)) (-3342 (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-595 |#2|) $) NIL (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) NIL)) (-3530 ((|#1| $) NIL (|has| |#1| (-793)))) (-2604 (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-595 |#2|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-1709 ((|#1| $) NIL (|has| |#1| (-793)))) (-2800 (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4265))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-3225 (((-595 |#1|) $) NIL)) (-4024 (((-110) |#1| $) NIL)) (-3934 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL)) (-1950 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL)) (-2084 (((-595 |#1|) $) NIL)) (-3966 (((-110) |#1| $) NIL)) (-2495 (((-1042) $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-2890 ((|#2| $) NIL (|has| |#1| (-793)))) (-1734 (((-3 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) "failed") (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL)) (-1332 (($ $ |#2|) NIL (|has| $ (-6 -4265)))) (-1390 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL)) (-1818 (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-275 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-595 |#2|) (-595 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-595 (-275 |#2|))) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-2861 (((-595 |#2|) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3900 (($) NIL) (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-2507 (((-717) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-717) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) NIL (-12 (|has| $ (-6 -4264)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (((-717) |#2| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023)))) (((-717) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) NIL (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-570 (-504))))) (-2233 (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-2222 (((-802) $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-569 (-802))) (|has| |#2| (-569 (-802)))))) (-2164 (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) NIL)) (-3451 (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) NIL (|has| $ (-6 -4264))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) NIL (-1463 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| |#2| (-1023))))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-1105 |#1| |#2|) (-13 (-1108 |#1| |#2|) (-10 -7 (-6 -4264))) (-1023) (-1023)) (T -1105))
-NIL
-(-13 (-1108 |#1| |#2|) (-10 -7 (-6 -4264)))
-((-3839 ((|#1| (-595 |#1|)) 32)) (-2586 ((|#1| |#1| (-528)) 18)) (-2642 (((-1091 |#1|) |#1| (-860)) 15)))
-(((-1106 |#1|) (-10 -7 (-15 -3839 (|#1| (-595 |#1|))) (-15 -2642 ((-1091 |#1|) |#1| (-860))) (-15 -2586 (|#1| |#1| (-528)))) (-343)) (T -1106))
-((-2586 (*1 *2 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-1106 *2)) (-4 *2 (-343)))) (-2642 (*1 *2 *3 *4) (-12 (-5 *4 (-860)) (-5 *2 (-1091 *3)) (-5 *1 (-1106 *3)) (-4 *3 (-343)))) (-3839 (*1 *2 *3) (-12 (-5 *3 (-595 *2)) (-5 *1 (-1106 *2)) (-4 *2 (-343)))))
-(-10 -7 (-15 -3839 (|#1| (-595 |#1|))) (-15 -2642 ((-1091 |#1|) |#1| (-860))) (-15 -2586 (|#1| |#1| (-528))))
-((-3450 (($) 10) (($ (-595 (-2 (|:| -2927 |#2|) (|:| -1780 |#3|)))) 14)) (-3991 (($ (-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) $) 61) (($ (-1 (-110) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3342 (((-595 (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))) $) 39) (((-595 |#3|) $) 41)) (-2800 (($ (-1 (-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-3106 (($ (-1 (-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3934 (((-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) $) 54)) (-1950 (($ (-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) $) 16)) (-2084 (((-595 |#2|) $) 19)) (-3966 (((-110) |#2| $) 59)) (-1734 (((-3 (-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) "failed") (-1 (-110) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))) $) 58)) (-1390 (((-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) $) 63)) (-1818 (((-110) (-1 (-110) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))) $) NIL) (((-110) (-1 (-110) |#3|) $) 67)) (-2861 (((-595 |#3|) $) 43)) (-3043 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2507 (((-717) (-1 (-110) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))) $) NIL) (((-717) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) $) NIL) (((-717) |#3| $) NIL) (((-717) (-1 (-110) |#3|) $) 68)) (-2222 (((-802) $) 27)) (-3451 (((-110) (-1 (-110) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))) $) NIL) (((-110) (-1 (-110) |#3|) $) 65)) (-2186 (((-110) $ $) 49)))
-(((-1107 |#1| |#2| |#3|) (-10 -8 (-15 -2222 ((-802) |#1|)) (-15 -2186 ((-110) |#1| |#1|)) (-15 -3106 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3450 (|#1| (-595 (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))))) (-15 -3450 (|#1|)) (-15 -3106 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2800 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3451 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -1818 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -2507 ((-717) (-1 (-110) |#3|) |#1|)) (-15 -3342 ((-595 |#3|) |#1|)) (-15 -2507 ((-717) |#3| |#1|)) (-15 -3043 (|#3| |#1| |#2| |#3|)) (-15 -3043 (|#3| |#1| |#2|)) (-15 -2861 ((-595 |#3|) |#1|)) (-15 -3966 ((-110) |#2| |#1|)) (-15 -2084 ((-595 |#2|) |#1|)) (-15 -3991 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3991 (|#1| (-1 (-110) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))) |#1|)) (-15 -3991 (|#1| (-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) |#1|)) (-15 -1734 ((-3 (-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) "failed") (-1 (-110) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))) |#1|)) (-15 -3934 ((-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) |#1|)) (-15 -1950 (|#1| (-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) |#1|)) (-15 -1390 ((-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) |#1|)) (-15 -2507 ((-717) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) |#1|)) (-15 -3342 ((-595 (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))) |#1|)) (-15 -2507 ((-717) (-1 (-110) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))) |#1|)) (-15 -1818 ((-110) (-1 (-110) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))) |#1|)) (-15 -3451 ((-110) (-1 (-110) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))) |#1|)) (-15 -2800 (|#1| (-1 (-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))) |#1|)) (-15 -3106 (|#1| (-1 (-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))) |#1|))) (-1108 |#2| |#3|) (-1023) (-1023)) (T -1107))
-NIL
-(-10 -8 (-15 -2222 ((-802) |#1|)) (-15 -2186 ((-110) |#1| |#1|)) (-15 -3106 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3450 (|#1| (-595 (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))))) (-15 -3450 (|#1|)) (-15 -3106 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2800 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3451 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -1818 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -2507 ((-717) (-1 (-110) |#3|) |#1|)) (-15 -3342 ((-595 |#3|) |#1|)) (-15 -2507 ((-717) |#3| |#1|)) (-15 -3043 (|#3| |#1| |#2| |#3|)) (-15 -3043 (|#3| |#1| |#2|)) (-15 -2861 ((-595 |#3|) |#1|)) (-15 -3966 ((-110) |#2| |#1|)) (-15 -2084 ((-595 |#2|) |#1|)) (-15 -3991 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3991 (|#1| (-1 (-110) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))) |#1|)) (-15 -3991 (|#1| (-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) |#1|)) (-15 -1734 ((-3 (-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) "failed") (-1 (-110) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))) |#1|)) (-15 -3934 ((-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) |#1|)) (-15 -1950 (|#1| (-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) |#1|)) (-15 -1390 ((-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) |#1|)) (-15 -2507 ((-717) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) |#1|)) (-15 -3342 ((-595 (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))) |#1|)) (-15 -2507 ((-717) (-1 (-110) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))) |#1|)) (-15 -1818 ((-110) (-1 (-110) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))) |#1|)) (-15 -3451 ((-110) (-1 (-110) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))) |#1|)) (-15 -2800 (|#1| (-1 (-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))) |#1|)) (-15 -3106 (|#1| (-1 (-2 (|:| -2927 |#2|) (|:| -1780 |#3|)) (-2 (|:| -2927 |#2|) (|:| -1780 |#3|))) |#1|)))
-((-2207 (((-110) $ $) 19 (-1463 (|has| |#2| (-1023)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))))) (-3450 (($) 72) (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) 71)) (-1444 (((-1182) $ |#1| |#1|) 99 (|has| $ (-6 -4265)))) (-3535 (((-110) $ (-717)) 8)) (-2381 ((|#2| $ |#1| |#2|) 73)) (-1836 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 45 (|has| $ (-6 -4264)))) (-1573 (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 55 (|has| $ (-6 -4264)))) (-2582 (((-3 |#2| "failed") |#1| $) 61)) (-2816 (($) 7 T CONST)) (-2923 (($ $) 58 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| $ (-6 -4264))))) (-3991 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 47 (|has| $ (-6 -4264))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 46 (|has| $ (-6 -4264))) (((-3 |#2| "failed") |#1| $) 62)) (-2280 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 54 (|has| $ (-6 -4264)))) (-1422 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 56 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| $ (-6 -4264)))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 53 (|has| $ (-6 -4264))) (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 52 (|has| $ (-6 -4264)))) (-2812 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4265)))) (-2742 ((|#2| $ |#1|) 88)) (-3342 (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 30 (|has| $ (-6 -4264))) (((-595 |#2|) $) 79 (|has| $ (-6 -4264)))) (-2029 (((-110) $ (-717)) 9)) (-3530 ((|#1| $) 96 (|has| |#1| (-793)))) (-2604 (((-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 29 (|has| $ (-6 -4264))) (((-595 |#2|) $) 80 (|has| $ (-6 -4264)))) (-2408 (((-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| $ (-6 -4264)))) (((-110) |#2| $) 82 (-12 (|has| |#2| (-1023)) (|has| $ (-6 -4264))))) (-1709 ((|#1| $) 95 (|has| |#1| (-793)))) (-2800 (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 34 (|has| $ (-6 -4265))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4265)))) (-3106 (($ (-1 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-3358 (((-110) $ (-717)) 10)) (-3034 (((-1078) $) 22 (-1463 (|has| |#2| (-1023)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))))) (-3225 (((-595 |#1|) $) 63)) (-4024 (((-110) |#1| $) 64)) (-3934 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 39)) (-1950 (($ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 40)) (-2084 (((-595 |#1|) $) 93)) (-3966 (((-110) |#1| $) 92)) (-2495 (((-1042) $) 21 (-1463 (|has| |#2| (-1023)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))))) (-2890 ((|#2| $) 97 (|has| |#1| (-793)))) (-1734 (((-3 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) "failed") (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 51)) (-1332 (($ $ |#2|) 98 (|has| $ (-6 -4265)))) (-1390 (((-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 41)) (-1818 (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 32 (|has| $ (-6 -4264))) (((-110) (-1 (-110) |#2|) $) 77 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))))) 26 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-275 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) 25 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) 24 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) 23 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)))) (($ $ (-595 |#2|) (-595 |#2|)) 86 (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-275 |#2|)) 84 (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023)))) (($ $ (-595 (-275 |#2|))) 83 (-12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))))) (-3744 (((-110) $ $) 14)) (-2111 (((-110) |#2| $) 94 (-12 (|has| $ (-6 -4264)) (|has| |#2| (-1023))))) (-2861 (((-595 |#2|) $) 91)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3043 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3900 (($) 49) (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) 48)) (-2507 (((-717) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 31 (|has| $ (-6 -4264))) (((-717) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| $ (-6 -4264)))) (((-717) |#2| $) 81 (-12 (|has| |#2| (-1023)) (|has| $ (-6 -4264)))) (((-717) (-1 (-110) |#2|) $) 78 (|has| $ (-6 -4264)))) (-2406 (($ $) 13)) (-3155 (((-504) $) 59 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-570 (-504))))) (-2233 (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) 50)) (-2222 (((-802) $) 18 (-1463 (|has| |#2| (-569 (-802))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-569 (-802)))))) (-2164 (($ (-595 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) 42)) (-3451 (((-110) (-1 (-110) (-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) $) 33 (|has| $ (-6 -4264))) (((-110) (-1 (-110) |#2|) $) 76 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20 (-1463 (|has| |#2| (-1023)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-1108 |#1| |#2|) (-133) (-1023) (-1023)) (T -1108))
-((-2381 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1108 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1023)))) (-3450 (*1 *1) (-12 (-4 *1 (-1108 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1023)))) (-3450 (*1 *1 *2) (-12 (-5 *2 (-595 (-2 (|:| -2927 *3) (|:| -1780 *4)))) (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *1 (-1108 *3 *4)))) (-3106 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1108 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1023)))))
-(-13 (-566 |t#1| |t#2|) (-561 |t#1| |t#2|) (-10 -8 (-15 -2381 (|t#2| $ |t#1| |t#2|)) (-15 -3450 ($)) (-15 -3450 ($ (-595 (-2 (|:| -2927 |t#1|) (|:| -1780 |t#2|))))) (-15 -3106 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-33) . T) ((-104 #0=(-2 (|:| -2927 |#1|) (|:| -1780 |#2|))) . T) ((-99) -1463 (|has| |#2| (-1023)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))) ((-569 (-802)) -1463 (|has| |#2| (-1023)) (|has| |#2| (-569 (-802))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-569 (-802)))) ((-144 #0#) . T) ((-570 (-504)) |has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-570 (-504))) ((-211 #0#) . T) ((-217 #0#) . T) ((-267 |#1| |#2|) . T) ((-269 |#1| |#2|) . T) ((-290 #0#) -12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))) ((-290 |#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))) ((-467 #0#) . T) ((-467 |#2|) . T) ((-561 |#1| |#2|) . T) ((-489 #0# #0#) -12 (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-290 (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)))) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))) ((-489 |#2| |#2|) -12 (|has| |#2| (-290 |#2|)) (|has| |#2| (-1023))) ((-566 |#1| |#2|) . T) ((-1023) -1463 (|has| |#2| (-1023)) (|has| (-2 (|:| -2927 |#1|) (|:| -1780 |#2|)) (-1023))) ((-1131) . T))
-((-1682 (((-110)) 24)) (-4068 (((-1182) (-1078)) 26)) (-3267 (((-110)) 36)) (-2323 (((-1182)) 34)) (-3874 (((-1182) (-1078) (-1078)) 25)) (-4040 (((-110)) 37)) (-1950 (((-1182) |#1| |#2|) 44)) (-2363 (((-1182)) 20)) (-2989 (((-3 |#2| "failed") |#1|) 42)) (-1334 (((-1182)) 35)))
-(((-1109 |#1| |#2|) (-10 -7 (-15 -2363 ((-1182))) (-15 -3874 ((-1182) (-1078) (-1078))) (-15 -4068 ((-1182) (-1078))) (-15 -2323 ((-1182))) (-15 -1334 ((-1182))) (-15 -1682 ((-110))) (-15 -3267 ((-110))) (-15 -4040 ((-110))) (-15 -2989 ((-3 |#2| "failed") |#1|)) (-15 -1950 ((-1182) |#1| |#2|))) (-1023) (-1023)) (T -1109))
-((-1950 (*1 *2 *3 *4) (-12 (-5 *2 (-1182)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1023)))) (-2989 (*1 *2 *3) (|partial| -12 (-4 *2 (-1023)) (-5 *1 (-1109 *3 *2)) (-4 *3 (-1023)))) (-4040 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1023)))) (-3267 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1023)))) (-1682 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1023)))) (-1334 (*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1023)))) (-2323 (*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1023)))) (-4068 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1109 *4 *5)) (-4 *4 (-1023)) (-4 *5 (-1023)))) (-3874 (*1 *2 *3 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1109 *4 *5)) (-4 *4 (-1023)) (-4 *5 (-1023)))) (-2363 (*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1023)))))
-(-10 -7 (-15 -2363 ((-1182))) (-15 -3874 ((-1182) (-1078) (-1078))) (-15 -4068 ((-1182) (-1078))) (-15 -2323 ((-1182))) (-15 -1334 ((-1182))) (-15 -1682 ((-110))) (-15 -3267 ((-110))) (-15 -4040 ((-110))) (-15 -2989 ((-3 |#2| "failed") |#1|)) (-15 -1950 ((-1182) |#1| |#2|)))
-((-4224 (((-1078) (-1078)) 18)) (-2855 (((-51) (-1078)) 21)))
-(((-1110) (-10 -7 (-15 -2855 ((-51) (-1078))) (-15 -4224 ((-1078) (-1078))))) (T -1110))
-((-4224 (*1 *2 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-1110)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-51)) (-5 *1 (-1110)))))
-(-10 -7 (-15 -2855 ((-51) (-1078))) (-15 -4224 ((-1078) (-1078))))
-((-2222 (((-1112) |#1|) 11)))
-(((-1111 |#1|) (-10 -7 (-15 -2222 ((-1112) |#1|))) (-1023)) (T -1111))
-((-2222 (*1 *2 *3) (-12 (-5 *2 (-1112)) (-5 *1 (-1111 *3)) (-4 *3 (-1023)))))
-(-10 -7 (-15 -2222 ((-1112) |#1|)))
-((-2207 (((-110) $ $) NIL)) (-3239 (((-595 (-1078)) $) 34)) (-2365 (((-595 (-1078)) $ (-595 (-1078))) 37)) (-3862 (((-595 (-1078)) $ (-595 (-1078))) 36)) (-4002 (((-595 (-1078)) $ (-595 (-1078))) 38)) (-3066 (((-595 (-1078)) $) 33)) (-3462 (($) 22)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3079 (((-595 (-1078)) $) 35)) (-2273 (((-1182) $ (-528)) 29) (((-1182) $) 30)) (-3155 (($ (-802) (-528)) 26) (($ (-802) (-528) (-802)) NIL)) (-2222 (((-802) $) 40) (($ (-802)) 24)) (-2186 (((-110) $ $) NIL)))
-(((-1112) (-13 (-1023) (-10 -8 (-15 -2222 ($ (-802))) (-15 -3155 ($ (-802) (-528))) (-15 -3155 ($ (-802) (-528) (-802))) (-15 -2273 ((-1182) $ (-528))) (-15 -2273 ((-1182) $)) (-15 -3079 ((-595 (-1078)) $)) (-15 -3239 ((-595 (-1078)) $)) (-15 -3462 ($)) (-15 -3066 ((-595 (-1078)) $)) (-15 -4002 ((-595 (-1078)) $ (-595 (-1078)))) (-15 -2365 ((-595 (-1078)) $ (-595 (-1078)))) (-15 -3862 ((-595 (-1078)) $ (-595 (-1078))))))) (T -1112))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1112)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-802)) (-5 *3 (-528)) (-5 *1 (-1112)))) (-3155 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-802)) (-5 *3 (-528)) (-5 *1 (-1112)))) (-2273 (*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-5 *2 (-1182)) (-5 *1 (-1112)))) (-2273 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-1112)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-1112)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-1112)))) (-3462 (*1 *1) (-5 *1 (-1112))) (-3066 (*1 *2 *1) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-1112)))) (-4002 (*1 *2 *1 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-1112)))) (-2365 (*1 *2 *1 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-1112)))) (-3862 (*1 *2 *1 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-1112)))))
-(-13 (-1023) (-10 -8 (-15 -2222 ($ (-802))) (-15 -3155 ($ (-802) (-528))) (-15 -3155 ($ (-802) (-528) (-802))) (-15 -2273 ((-1182) $ (-528))) (-15 -2273 ((-1182) $)) (-15 -3079 ((-595 (-1078)) $)) (-15 -3239 ((-595 (-1078)) $)) (-15 -3462 ($)) (-15 -3066 ((-595 (-1078)) $)) (-15 -4002 ((-595 (-1078)) $ (-595 (-1078)))) (-15 -2365 ((-595 (-1078)) $ (-595 (-1078)))) (-15 -3862 ((-595 (-1078)) $ (-595 (-1078))))))
-((-2207 (((-110) $ $) NIL)) (-1298 (((-1078) $ (-1078)) 17) (((-1078) $) 16)) (-2059 (((-1078) $ (-1078)) 15)) (-1879 (($ $ (-1078)) NIL)) (-2137 (((-3 (-1078) "failed") $) 11)) (-2141 (((-1078) $) 8)) (-2256 (((-3 (-1078) "failed") $) 12)) (-1757 (((-1078) $) 9)) (-2378 (($ (-368)) NIL) (($ (-368) (-1078)) NIL)) (-3814 (((-368) $) NIL)) (-3034 (((-1078) $) NIL)) (-3978 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-3524 (((-110) $) 18)) (-2222 (((-802) $) NIL)) (-3250 (($ $) NIL)) (-2186 (((-110) $ $) NIL)))
-(((-1113) (-13 (-344 (-368) (-1078)) (-10 -8 (-15 -1298 ((-1078) $ (-1078))) (-15 -1298 ((-1078) $)) (-15 -2141 ((-1078) $)) (-15 -2137 ((-3 (-1078) "failed") $)) (-15 -2256 ((-3 (-1078) "failed") $)) (-15 -3524 ((-110) $))))) (T -1113))
-((-1298 (*1 *2 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-1113)))) (-1298 (*1 *2 *1) (-12 (-5 *2 (-1078)) (-5 *1 (-1113)))) (-2141 (*1 *2 *1) (-12 (-5 *2 (-1078)) (-5 *1 (-1113)))) (-2137 (*1 *2 *1) (|partial| -12 (-5 *2 (-1078)) (-5 *1 (-1113)))) (-2256 (*1 *2 *1) (|partial| -12 (-5 *2 (-1078)) (-5 *1 (-1113)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1113)))))
-(-13 (-344 (-368) (-1078)) (-10 -8 (-15 -1298 ((-1078) $ (-1078))) (-15 -1298 ((-1078) $)) (-15 -2141 ((-1078) $)) (-15 -2137 ((-3 (-1078) "failed") $)) (-15 -2256 ((-3 (-1078) "failed") $)) (-15 -3524 ((-110) $))))
-((-3605 (((-3 (-528) "failed") |#1|) 19)) (-3611 (((-3 (-528) "failed") |#1|) 14)) (-1712 (((-528) (-1078)) 28)))
-(((-1114 |#1|) (-10 -7 (-15 -3605 ((-3 (-528) "failed") |#1|)) (-15 -3611 ((-3 (-528) "failed") |#1|)) (-15 -1712 ((-528) (-1078)))) (-981)) (T -1114))
-((-1712 (*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-528)) (-5 *1 (-1114 *4)) (-4 *4 (-981)))) (-3611 (*1 *2 *3) (|partial| -12 (-5 *2 (-528)) (-5 *1 (-1114 *3)) (-4 *3 (-981)))) (-3605 (*1 *2 *3) (|partial| -12 (-5 *2 (-528)) (-5 *1 (-1114 *3)) (-4 *3 (-981)))))
-(-10 -7 (-15 -3605 ((-3 (-528) "failed") |#1|)) (-15 -3611 ((-3 (-528) "failed") |#1|)) (-15 -1712 ((-528) (-1078))))
-((-2552 (((-1055 (-207))) 9)))
-(((-1115) (-10 -7 (-15 -2552 ((-1055 (-207)))))) (T -1115))
-((-2552 (*1 *2) (-12 (-5 *2 (-1055 (-207))) (-5 *1 (-1115)))))
-(-10 -7 (-15 -2552 ((-1055 (-207)))))
-((-1505 (($) 11)) (-2953 (($ $) 35)) (-2928 (($ $) 33)) (-2784 (($ $) 25)) (-2981 (($ $) 17)) (-3592 (($ $) 15)) (-2967 (($ $) 19)) (-2825 (($ $) 30)) (-2940 (($ $) 34)) (-2797 (($ $) 29)))
-(((-1116 |#1|) (-10 -8 (-15 -1505 (|#1|)) (-15 -2953 (|#1| |#1|)) (-15 -2928 (|#1| |#1|)) (-15 -2981 (|#1| |#1|)) (-15 -3592 (|#1| |#1|)) (-15 -2967 (|#1| |#1|)) (-15 -2940 (|#1| |#1|)) (-15 -2784 (|#1| |#1|)) (-15 -2825 (|#1| |#1|)) (-15 -2797 (|#1| |#1|))) (-1117)) (T -1116))
-NIL
-(-10 -8 (-15 -1505 (|#1|)) (-15 -2953 (|#1| |#1|)) (-15 -2928 (|#1| |#1|)) (-15 -2981 (|#1| |#1|)) (-15 -3592 (|#1| |#1|)) (-15 -2967 (|#1| |#1|)) (-15 -2940 (|#1| |#1|)) (-15 -2784 (|#1| |#1|)) (-15 -2825 (|#1| |#1|)) (-15 -2797 (|#1| |#1|)))
-((-2880 (($ $) 26)) (-2735 (($ $) 11)) (-2859 (($ $) 27)) (-2712 (($ $) 10)) (-2904 (($ $) 28)) (-2761 (($ $) 9)) (-1505 (($) 16)) (-2097 (($ $) 19)) (-2656 (($ $) 18)) (-2917 (($ $) 29)) (-2773 (($ $) 8)) (-2892 (($ $) 30)) (-2749 (($ $) 7)) (-2869 (($ $) 31)) (-2724 (($ $) 6)) (-2953 (($ $) 20)) (-2811 (($ $) 32)) (-2928 (($ $) 21)) (-2784 (($ $) 33)) (-2981 (($ $) 22)) (-2836 (($ $) 34)) (-3592 (($ $) 23)) (-2846 (($ $) 35)) (-2967 (($ $) 24)) (-2825 (($ $) 36)) (-2940 (($ $) 25)) (-2797 (($ $) 37)) (** (($ $ $) 17)))
-(((-1117) (-133)) (T -1117))
-((-1505 (*1 *1) (-4 *1 (-1117))))
-(-13 (-1120) (-93) (-469) (-34) (-265) (-10 -8 (-15 -1505 ($))))
-(((-34) . T) ((-93) . T) ((-265) . T) ((-469) . T) ((-1120) . T))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3327 ((|#1| $) 17)) (-2727 (($ |#1| (-595 $)) 23) (($ (-595 |#1|)) 27) (($ |#1|) 25)) (-3535 (((-110) $ (-717)) 48)) (-2074 ((|#1| $ |#1|) 14 (|has| $ (-6 -4265)))) (-2381 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4265)))) (-3409 (($ $ (-595 $)) 13 (|has| $ (-6 -4265)))) (-2816 (($) NIL T CONST)) (-3342 (((-595 |#1|) $) 52 (|has| $ (-6 -4264)))) (-1690 (((-595 $) $) 43)) (-1313 (((-110) $ $) 33 (|has| |#1| (-1023)))) (-2029 (((-110) $ (-717)) 41)) (-2604 (((-595 |#1|) $) 53 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 51 (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2800 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 22)) (-3358 (((-110) $ (-717)) 40)) (-3298 (((-595 |#1|) $) 37)) (-2578 (((-110) $) 36)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-1818 (((-110) (-1 (-110) |#1|) $) 50 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 74)) (-1972 (((-110) $) 9)) (-2147 (($) 10)) (-3043 ((|#1| $ "value") NIL)) (-3241 (((-528) $ $) 32)) (-2357 (((-595 $) $) 59)) (-2133 (((-110) $ $) 77)) (-4207 (((-595 $) $) 72)) (-4033 (($ $) 73)) (-3177 (((-110) $) 56)) (-2507 (((-717) (-1 (-110) |#1|) $) 20 (|has| $ (-6 -4264))) (((-717) |#1| $) 16 (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2406 (($ $) 58)) (-2222 (((-802) $) 61 (|has| |#1| (-569 (-802))))) (-3813 (((-595 $) $) 12)) (-2688 (((-110) $ $) 29 (|has| |#1| (-1023)))) (-3451 (((-110) (-1 (-110) |#1|) $) 49 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 28 (|has| |#1| (-1023)))) (-2138 (((-717) $) 39 (|has| $ (-6 -4264)))))
-(((-1118 |#1|) (-13 (-946 |#1|) (-10 -8 (-6 -4264) (-6 -4265) (-15 -2727 ($ |#1| (-595 $))) (-15 -2727 ($ (-595 |#1|))) (-15 -2727 ($ |#1|)) (-15 -3177 ((-110) $)) (-15 -4033 ($ $)) (-15 -4207 ((-595 $) $)) (-15 -2133 ((-110) $ $)) (-15 -2357 ((-595 $) $)))) (-1023)) (T -1118))
-((-3177 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1118 *3)) (-4 *3 (-1023)))) (-2727 (*1 *1 *2 *3) (-12 (-5 *3 (-595 (-1118 *2))) (-5 *1 (-1118 *2)) (-4 *2 (-1023)))) (-2727 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1023)) (-5 *1 (-1118 *3)))) (-2727 (*1 *1 *2) (-12 (-5 *1 (-1118 *2)) (-4 *2 (-1023)))) (-4033 (*1 *1 *1) (-12 (-5 *1 (-1118 *2)) (-4 *2 (-1023)))) (-4207 (*1 *2 *1) (-12 (-5 *2 (-595 (-1118 *3))) (-5 *1 (-1118 *3)) (-4 *3 (-1023)))) (-2133 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1118 *3)) (-4 *3 (-1023)))) (-2357 (*1 *2 *1) (-12 (-5 *2 (-595 (-1118 *3))) (-5 *1 (-1118 *3)) (-4 *3 (-1023)))))
-(-13 (-946 |#1|) (-10 -8 (-6 -4264) (-6 -4265) (-15 -2727 ($ |#1| (-595 $))) (-15 -2727 ($ (-595 |#1|))) (-15 -2727 ($ |#1|)) (-15 -3177 ((-110) $)) (-15 -4033 ($ $)) (-15 -4207 ((-595 $) $)) (-15 -2133 ((-110) $ $)) (-15 -2357 ((-595 $) $))))
-((-2735 (($ $) 15)) (-2761 (($ $) 12)) (-2773 (($ $) 10)) (-2749 (($ $) 17)))
-(((-1119 |#1|) (-10 -8 (-15 -2749 (|#1| |#1|)) (-15 -2773 (|#1| |#1|)) (-15 -2761 (|#1| |#1|)) (-15 -2735 (|#1| |#1|))) (-1120)) (T -1119))
-NIL
-(-10 -8 (-15 -2749 (|#1| |#1|)) (-15 -2773 (|#1| |#1|)) (-15 -2761 (|#1| |#1|)) (-15 -2735 (|#1| |#1|)))
-((-2735 (($ $) 11)) (-2712 (($ $) 10)) (-2761 (($ $) 9)) (-2773 (($ $) 8)) (-2749 (($ $) 7)) (-2724 (($ $) 6)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-805)) . T) ((-1027) . T))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-3581 (($ $ (-860)) 26)) (-2920 (($) 18 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24)))
+(((-990) (-133)) (T -990))
+NIL
+(-13 (-21) (-1038))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-805)) . T) ((-1038) . T) ((-1027) . T))
+((-4049 (($ $) 16)) (-3386 (($ $) 22)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) 49)) (-3391 (($ $) 24)) (-3387 (($ $) 11)) (-3389 (($ $) 38)) (-4246 (((-359) $) NIL) (((-208) $) NIL) (((-831 (-359)) $) 33)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ $) NIL) (($ (-388 (-516))) 28) (($ (-516)) NIL) (($ (-388 (-516))) 28)) (-3385 (((-719)) 8)) (-3390 (($ $) 39)))
+(((-991 |#1|) (-10 -8 (-15 -3386 (|#1| |#1|)) (-15 -4049 (|#1| |#1|)) (-15 -3387 (|#1| |#1|)) (-15 -3389 (|#1| |#1|)) (-15 -3390 (|#1| |#1|)) (-15 -3391 (|#1| |#1|)) (-15 -3060 ((-829 (-359) |#1|) |#1| (-831 (-359)) (-829 (-359) |#1|))) (-15 -4246 ((-831 (-359)) |#1|)) (-15 -4233 (|#1| (-388 (-516)))) (-15 -4233 (|#1| (-516))) (-15 -4246 ((-208) |#1|)) (-15 -4246 ((-359) |#1|)) (-15 -4233 (|#1| (-388 (-516)))) (-15 -4233 (|#1| |#1|)) (-15 -4233 (|#1| (-516))) (-15 -3385 ((-719))) (-15 -4233 ((-805) |#1|))) (-992)) (T -991))
+((-3385 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-991 *3)) (-4 *3 (-992)))))
+(-10 -8 (-15 -3386 (|#1| |#1|)) (-15 -4049 (|#1| |#1|)) (-15 -3387 (|#1| |#1|)) (-15 -3389 (|#1| |#1|)) (-15 -3390 (|#1| |#1|)) (-15 -3391 (|#1| |#1|)) (-15 -3060 ((-829 (-359) |#1|) |#1| (-831 (-359)) (-829 (-359) |#1|))) (-15 -4246 ((-831 (-359)) |#1|)) (-15 -4233 (|#1| (-388 (-516)))) (-15 -4233 (|#1| (-516))) (-15 -4246 ((-208) |#1|)) (-15 -4246 ((-359) |#1|)) (-15 -4233 (|#1| (-388 (-516)))) (-15 -4233 (|#1| |#1|)) (-15 -4233 (|#1| (-516))) (-15 -3385 ((-719))) (-15 -4233 ((-805) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-3388 (((-516) $) 89)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 41)) (-2118 (($ $) 40)) (-2116 (((-110) $) 38)) (-4049 (($ $) 87)) (-1319 (((-3 $ "failed") $ $) 19)) (-4053 (($ $) 73)) (-4245 (((-386 $) $) 72)) (-3301 (($ $) 97)) (-1655 (((-110) $ $) 59)) (-3905 (((-516) $) 114)) (-3815 (($) 17 T CONST)) (-3386 (($ $) 86)) (-3432 (((-3 (-516) #1="failed") $) 102) (((-3 (-388 (-516)) #1#) $) 99)) (-3431 (((-516) $) 101) (((-388 (-516)) $) 98)) (-2824 (($ $ $) 55)) (-3741 (((-3 $ "failed") $) 34)) (-2823 (($ $ $) 56)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 51)) (-4005 (((-110) $) 71)) (-3460 (((-110) $) 112)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) 93)) (-2436 (((-110) $) 31)) (-3275 (($ $ (-516)) 96)) (-3391 (($ $) 92)) (-3461 (((-110) $) 113)) (-1652 (((-3 (-594 $) #2="failed") (-594 $) $) 52)) (-3596 (($ $ $) 111)) (-3597 (($ $ $) 110)) (-1963 (($ $ $) 46) (($ (-594 $)) 45)) (-3513 (((-1081) $) 9)) (-2668 (($ $) 70)) (-3514 (((-1045) $) 10)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 44)) (-3419 (($ $ $) 48) (($ (-594 $)) 47)) (-3387 (($ $) 88)) (-3389 (($ $) 90)) (-4011 (((-386 $) $) 74)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 53)) (-3740 (((-3 $ "failed") $ $) 42)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 50)) (-1654 (((-719) $) 58)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 57)) (-4246 (((-359) $) 105) (((-208) $) 104) (((-831 (-359)) $) 94)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ $) 43) (($ (-388 (-516))) 65) (($ (-516)) 103) (($ (-388 (-516))) 100)) (-3385 (((-719)) 29)) (-3390 (($ $) 91)) (-2117 (((-110) $ $) 39)) (-3661 (($ $) 115)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33) (($ $ (-516)) 69)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2826 (((-110) $ $) 108)) (-2827 (((-110) $ $) 107)) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 109)) (-2948 (((-110) $ $) 106)) (-4224 (($ $ $) 64)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32) (($ $ (-516)) 68) (($ $ (-388 (-516))) 95)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ (-388 (-516))) 67) (($ (-388 (-516)) $) 66)))
+(((-992) (-133)) (T -992))
+((-3661 (*1 *1 *1) (-4 *1 (-992))) (-3391 (*1 *1 *1) (-4 *1 (-992))) (-3390 (*1 *1 *1) (-4 *1 (-992))) (-3389 (*1 *1 *1) (-4 *1 (-992))) (-3388 (*1 *2 *1) (-12 (-4 *1 (-992)) (-5 *2 (-516)))) (-3387 (*1 *1 *1) (-4 *1 (-992))) (-4049 (*1 *1 *1) (-4 *1 (-992))) (-3386 (*1 *1 *1) (-4 *1 (-992))))
+(-13 (-344) (-793) (-958) (-975 (-516)) (-975 (-388 (-516))) (-941) (-572 (-831 (-359))) (-827 (-359)) (-140) (-10 -8 (-15 -3391 ($ $)) (-15 -3390 ($ $)) (-15 -3389 ($ $)) (-15 -3388 ((-516) $)) (-15 -3387 ($ $)) (-15 -4049 ($ $)) (-15 -3386 ($ $)) (-15 -3661 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-388 (-516))) . T) ((-37 $) . T) ((-99) . T) ((-109 #1# #1#) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-571 (-805)) . T) ((-162) . T) ((-572 (-208)) . T) ((-572 (-359)) . T) ((-572 (-831 (-359))) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-432) . T) ((-523) . T) ((-599 #1#) . T) ((-599 $) . T) ((-666 #1#) . T) ((-666 $) . T) ((-675) . T) ((-739) . T) ((-740) . T) ((-742) . T) ((-745) . T) ((-793) . T) ((-795) . T) ((-827 (-359)) . T) ((-862) . T) ((-941) . T) ((-958) . T) ((-975 (-388 (-516))) . T) ((-975 (-516)) . T) ((-989 #1#) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1138) . T))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) |#2| $) 23)) (-3395 ((|#1| $) 10)) (-3905 (((-516) |#2| $) 88)) (-3457 (((-3 $ #1="failed") |#2| (-860)) 57)) (-3396 ((|#1| $) 28)) (-3456 ((|#1| |#2| $ |#1|) 37)) (-3393 (($ $) 25)) (-3741 (((-3 |#2| #1#) |#2| $) 87)) (-3460 (((-110) |#2| $) NIL)) (-3461 (((-110) |#2| $) NIL)) (-3392 (((-110) |#2| $) 24)) (-3394 ((|#1| $) 89)) (-3397 ((|#1| $) 27)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-3459 ((|#2| $) 79)) (-4233 (((-805) $) 70)) (-4048 ((|#1| |#2| $ |#1|) 38)) (-3458 (((-594 $) |#2|) 59)) (-3317 (((-110) $ $) 74)))
+(((-993 |#1| |#2|) (-13 (-999 |#1| |#2|) (-10 -8 (-15 -3397 (|#1| $)) (-15 -3396 (|#1| $)) (-15 -3395 (|#1| $)) (-15 -3394 (|#1| $)) (-15 -3393 ($ $)) (-15 -3392 ((-110) |#2| $)) (-15 -3456 (|#1| |#2| $ |#1|)))) (-13 (-793) (-344)) (-1155 |#1|)) (T -993))
+((-3456 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-993 *2 *3)) (-4 *3 (-1155 *2)))) (-3397 (*1 *2 *1) (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-993 *2 *3)) (-4 *3 (-1155 *2)))) (-3396 (*1 *2 *1) (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-993 *2 *3)) (-4 *3 (-1155 *2)))) (-3395 (*1 *2 *1) (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-993 *2 *3)) (-4 *3 (-1155 *2)))) (-3394 (*1 *2 *1) (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-993 *2 *3)) (-4 *3 (-1155 *2)))) (-3393 (*1 *1 *1) (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-993 *2 *3)) (-4 *3 (-1155 *2)))) (-3392 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-793) (-344))) (-5 *2 (-110)) (-5 *1 (-993 *4 *3)) (-4 *3 (-1155 *4)))))
+(-13 (-999 |#1| |#2|) (-10 -8 (-15 -3397 (|#1| $)) (-15 -3396 (|#1| $)) (-15 -3395 (|#1| $)) (-15 -3394 (|#1| $)) (-15 -3393 ($ $)) (-15 -3392 ((-110) |#2| $)) (-15 -3456 (|#1| |#2| $ |#1|))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-2102 (($ $ $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-2097 (($ $ $ $) NIL)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-1655 (((-110) $ $) NIL)) (-3905 (((-516) $) NIL)) (-2624 (($ $ $) NIL)) (-3815 (($) NIL T CONST)) (-3398 (($ (-1098)) 10) (($ (-516)) 7)) (-3432 (((-3 (-516) "failed") $) NIL)) (-3431 (((-516) $) NIL)) (-2824 (($ $ $) NIL)) (-2297 (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL) (((-637 (-516)) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3288 (((-3 (-388 (-516)) "failed") $) NIL)) (-3287 (((-110) $) NIL)) (-3286 (((-388 (-516)) $) NIL)) (-3258 (($) NIL) (($ $) NIL)) (-2823 (($ $ $) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4005 (((-110) $) NIL)) (-2095 (($ $ $ $) NIL)) (-2103 (($ $ $) NIL)) (-3460 (((-110) $) NIL)) (-1368 (($ $ $) NIL)) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL)) (-2436 (((-110) $) NIL)) (-2936 (((-110) $) NIL)) (-3723 (((-3 $ "failed") $) NIL)) (-3461 (((-110) $) NIL)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL)) (-2096 (($ $ $ $) NIL)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-2099 (($ $) NIL)) (-4112 (($ $) NIL)) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2094 (($ $ $) NIL)) (-3724 (($) NIL T CONST)) (-2101 (($ $) NIL)) (-3514 (((-1045) $) NIL) (($ $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) NIL) (($ (-594 $)) NIL)) (-1366 (($ $) NIL)) (-4011 (((-386 $) $) NIL)) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-2937 (((-110) $) NIL)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-4089 (($ $ (-719)) NIL) (($ $) NIL)) (-2100 (($ $) NIL)) (-3678 (($ $) NIL)) (-4246 (((-516) $) 16) (((-505) $) NIL) (((-831 (-516)) $) NIL) (((-359) $) NIL) (((-208) $) NIL) (($ (-1098)) 9)) (-4233 (((-805) $) 20) (($ (-516)) 6) (($ $) NIL) (($ (-516)) 6)) (-3385 (((-719)) NIL)) (-2104 (((-110) $ $) NIL)) (-3362 (($ $ $) NIL)) (-2957 (($) NIL)) (-2117 (((-110) $ $) NIL)) (-2098 (($ $ $ $) NIL)) (-3661 (($ $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($ $ (-719)) NIL) (($ $) NIL)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) NIL)) (-4116 (($ $) 19) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL)))
+(((-994) (-13 (-515) (-10 -8 (-6 -4256) (-6 -4261) (-6 -4257) (-15 -4246 ($ (-1098))) (-15 -3398 ($ (-1098))) (-15 -3398 ($ (-516)))))) (T -994))
+((-4246 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-994)))) (-3398 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-994)))) (-3398 (*1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-994)))))
+(-13 (-515) (-10 -8 (-6 -4256) (-6 -4261) (-6 -4257) (-15 -4246 ($ (-1098))) (-15 -3398 ($ (-1098))) (-15 -3398 ($ (-516)))))
+((-2828 (((-110) $ $) NIL (-3810 (|has| (-50) (-1027)) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027))))) (-3879 (($) NIL) (($ (-594 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))))) NIL)) (-2243 (((-1185) $ (-1098) (-1098)) NIL (|has| $ (-6 -4270)))) (-1217 (((-110) $ (-719)) NIL)) (-3400 (($) 9)) (-4066 (((-50) $ (-1098) (-50)) NIL)) (-3408 (($ $) 30)) (-3411 (($ $) 28)) (-3412 (($ $) 27)) (-3410 (($ $) 29)) (-3407 (($ $) 32)) (-3406 (($ $) 33)) (-3413 (($ $) 26)) (-3409 (($ $) 31)) (-1581 (($ (-1 (-110) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269)))) (-3992 (($ (-1 (-110) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) 25 (|has| $ (-6 -4269)))) (-2251 (((-3 (-50) #1="failed") (-1098) $) 40)) (-3815 (($) NIL T CONST)) (-3414 (($) 7)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027))))) (-3684 (($ (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) $) 50 (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269))) (((-3 (-50) #1#) (-1098) $) NIL)) (-3685 (($ (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027)))) (($ (-1 (-110) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269)))) (-4121 (((-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $ (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027)))) (((-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $ (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269)))) (-3399 (((-3 (-1081) "failed") $ (-1081) (-516)) 59)) (-1587 (((-50) $ (-1098) (-50)) NIL (|has| $ (-6 -4270)))) (-3372 (((-50) $ (-1098)) NIL)) (-2018 (((-594 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269))) (((-594 (-50)) $) NIL (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-1098) $) NIL (|has| (-1098) (-795)))) (-2445 (((-594 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) 35 (|has| $ (-6 -4269))) (((-594 (-50)) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027)))) (((-110) (-50) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-50) (-1027))))) (-2246 (((-1098) $) NIL (|has| (-1098) (-795)))) (-2022 (($ (-1 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-50) (-50)) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) NIL) (($ (-1 (-50) (-50)) $) NIL) (($ (-1 (-50) (-50) (-50)) $ $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (-3810 (|has| (-50) (-1027)) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027))))) (-2678 (((-594 (-1098)) $) NIL)) (-2252 (((-110) (-1098) $) NIL)) (-1280 (((-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) $) NIL)) (-3889 (($ (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) $) 43)) (-2248 (((-594 (-1098)) $) NIL)) (-2249 (((-110) (-1098) $) NIL)) (-3514 (((-1045) $) NIL (-3810 (|has| (-50) (-1027)) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027))))) (-3403 (((-359) $ (-1098)) 49)) (-3402 (((-594 (-1081)) $ (-1081)) 60)) (-4079 (((-50) $) NIL (|has| (-1098) (-795)))) (-1350 (((-3 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) "failed") (-1 (-110) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) NIL)) (-2244 (($ $ (-50)) NIL (|has| $ (-6 -4270)))) (-1281 (((-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) $) NIL)) (-2020 (((-110) (-1 (-110) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-50)) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))))) NIL (-12 (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-291 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))))) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027)))) (($ $ (-275 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))))) NIL (-12 (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-291 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))))) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027)))) (($ $ (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) NIL (-12 (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-291 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))))) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027)))) (($ $ (-594 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) (-594 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))))) NIL (-12 (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-291 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))))) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027)))) (($ $ (-594 (-50)) (-594 (-50))) NIL (-12 (|has| (-50) (-291 (-50))) (|has| (-50) (-1027)))) (($ $ (-50) (-50)) NIL (-12 (|has| (-50) (-291 (-50))) (|has| (-50) (-1027)))) (($ $ (-275 (-50))) NIL (-12 (|has| (-50) (-291 (-50))) (|has| (-50) (-1027)))) (($ $ (-594 (-275 (-50)))) NIL (-12 (|has| (-50) (-291 (-50))) (|has| (-50) (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) (-50) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-50) (-1027))))) (-2250 (((-594 (-50)) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 (((-50) $ (-1098)) NIL) (((-50) $ (-1098) (-50)) NIL)) (-1473 (($) NIL) (($ (-594 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))))) NIL)) (-3401 (($ $ (-1098)) 51)) (-2019 (((-719) (-1 (-110) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027)))) (((-719) (-50) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-50) (-1027)))) (((-719) (-1 (-110) (-50)) $) NIL (|has| $ (-6 -4269)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) NIL (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-572 (-505))))) (-3804 (($ (-594 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))))) 37)) (-4080 (($ $ $) 38)) (-4233 (((-805) $) NIL (-3810 (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-571 (-805))) (|has| (-50) (-571 (-805)))))) (-3405 (($ $ (-1098) (-359)) 47)) (-3404 (($ $ (-1098) (-359)) 48)) (-1282 (($ (-594 (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))))) NIL)) (-2021 (((-110) (-1 (-110) (-2 (|:| -4139 (-1098)) (|:| -2131 (-50)))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-50)) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) NIL (-3810 (|has| (-50) (-1027)) (|has| (-2 (|:| -4139 (-1098)) (|:| -2131 (-50))) (-1027))))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-995) (-13 (-1111 (-1098) (-50)) (-10 -8 (-15 -4080 ($ $ $)) (-15 -3414 ($)) (-15 -3413 ($ $)) (-15 -3412 ($ $)) (-15 -3411 ($ $)) (-15 -3410 ($ $)) (-15 -3409 ($ $)) (-15 -3408 ($ $)) (-15 -3407 ($ $)) (-15 -3406 ($ $)) (-15 -3405 ($ $ (-1098) (-359))) (-15 -3404 ($ $ (-1098) (-359))) (-15 -3403 ((-359) $ (-1098))) (-15 -3402 ((-594 (-1081)) $ (-1081))) (-15 -3401 ($ $ (-1098))) (-15 -3400 ($)) (-15 -3399 ((-3 (-1081) "failed") $ (-1081) (-516))) (-6 -4269)))) (T -995))
+((-4080 (*1 *1 *1 *1) (-5 *1 (-995))) (-3414 (*1 *1) (-5 *1 (-995))) (-3413 (*1 *1 *1) (-5 *1 (-995))) (-3412 (*1 *1 *1) (-5 *1 (-995))) (-3411 (*1 *1 *1) (-5 *1 (-995))) (-3410 (*1 *1 *1) (-5 *1 (-995))) (-3409 (*1 *1 *1) (-5 *1 (-995))) (-3408 (*1 *1 *1) (-5 *1 (-995))) (-3407 (*1 *1 *1) (-5 *1 (-995))) (-3406 (*1 *1 *1) (-5 *1 (-995))) (-3405 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-359)) (-5 *1 (-995)))) (-3404 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-359)) (-5 *1 (-995)))) (-3403 (*1 *2 *1 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-359)) (-5 *1 (-995)))) (-3402 (*1 *2 *1 *3) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-995)) (-5 *3 (-1081)))) (-3401 (*1 *1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-995)))) (-3400 (*1 *1) (-5 *1 (-995))) (-3399 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1081)) (-5 *3 (-516)) (-5 *1 (-995)))))
+(-13 (-1111 (-1098) (-50)) (-10 -8 (-15 -4080 ($ $ $)) (-15 -3414 ($)) (-15 -3413 ($ $)) (-15 -3412 ($ $)) (-15 -3411 ($ $)) (-15 -3410 ($ $)) (-15 -3409 ($ $)) (-15 -3408 ($ $)) (-15 -3407 ($ $)) (-15 -3406 ($ $)) (-15 -3405 ($ $ (-1098) (-359))) (-15 -3404 ($ $ (-1098) (-359))) (-15 -3403 ((-359) $ (-1098))) (-15 -3402 ((-594 (-1081)) $ (-1081))) (-15 -3401 ($ $ (-1098))) (-15 -3400 ($)) (-15 -3399 ((-3 (-1081) "failed") $ (-1081) (-516))) (-6 -4269)))
+((-4075 (($ $) 45)) (-3441 (((-110) $ $) 74)) (-3432 (((-3 |#2| #1="failed") $) NIL) (((-3 (-388 (-516)) #1#) $) NIL) (((-3 (-516) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 $ "failed") (-887 (-388 (-516)))) 227) (((-3 $ "failed") (-887 (-516))) 226) (((-3 $ "failed") (-887 |#2|)) 229)) (-3431 ((|#2| $) NIL) (((-388 (-516)) $) NIL) (((-516) $) NIL) ((|#4| $) NIL) (($ (-887 (-388 (-516)))) 215) (($ (-887 (-516))) 211) (($ (-887 |#2|)) 231)) (-4235 (($ $) NIL) (($ $ |#4|) 43)) (-3976 (((-110) $ $) 112) (((-110) $ (-594 $)) 113)) (-3447 (((-110) $) 56)) (-4031 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 107)) (-3418 (($ $) 138)) (-3429 (($ $) 134)) (-3430 (($ $) 133)) (-3440 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3439 (($ $ $) 82) (($ $ $ |#4|) 86)) (-3977 (((-110) $ $) 121) (((-110) $ (-594 $)) 122)) (-3455 ((|#4| $) 33)) (-3434 (($ $ $) 110)) (-3448 (((-110) $) 55)) (-3454 (((-719) $) 35)) (-3415 (($ $) 152)) (-3416 (($ $) 149)) (-3443 (((-594 $) $) 68)) (-3446 (($ $) 57)) (-3417 (($ $) 145)) (-3444 (((-594 $) $) 65)) (-3445 (($ $) 59)) (-3449 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3433 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3755 (-719))) $ $) 111)) (-3435 (((-2 (|:| -4229 $) (|:| |gap| (-719)) (|:| -2046 $) (|:| -3166 $)) $ $) 108) (((-2 (|:| -4229 $) (|:| |gap| (-719)) (|:| -2046 $) (|:| -3166 $)) $ $ |#4|) 109)) (-3436 (((-2 (|:| -4229 $) (|:| |gap| (-719)) (|:| -3166 $)) $ $) 104) (((-2 (|:| -4229 $) (|:| |gap| (-719)) (|:| -3166 $)) $ $ |#4|) 105)) (-3438 (($ $ $) 89) (($ $ $ |#4|) 95)) (-3437 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3451 (((-594 $) $) 51)) (-3973 (((-110) $ $) 118) (((-110) $ (-594 $)) 119)) (-3968 (($ $ $) 103)) (-3724 (($ $) 37)) (-3981 (((-110) $ $) 72)) (-3974 (((-110) $ $) 114) (((-110) $ (-594 $)) 116)) (-3969 (($ $ $) 101)) (-3453 (($ $) 40)) (-3419 ((|#2| |#2| $) 142) (($ (-594 $)) NIL) (($ $ $) NIL)) (-3427 (($ $ |#2|) NIL) (($ $ $) 131)) (-3428 (($ $ |#2|) 126) (($ $ $) 129)) (-3452 (($ $) 48)) (-3450 (($ $) 52)) (-4246 (((-831 (-359)) $) NIL) (((-831 (-516)) $) NIL) (((-505) $) NIL) (($ (-887 (-388 (-516)))) 217) (($ (-887 (-516))) 213) (($ (-887 |#2|)) 228) (((-1081) $) 250) (((-887 |#2|) $) 162)) (-4233 (((-805) $) 30) (($ (-516)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-887 |#2|) $) 163) (($ (-388 (-516))) NIL) (($ $) NIL)) (-3442 (((-3 (-110) "failed") $ $) 71)))
+(((-996 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4233 (|#1| |#1|)) (-15 -3419 (|#1| |#1| |#1|)) (-15 -3419 (|#1| (-594 |#1|))) (-15 -4233 (|#1| (-388 (-516)))) (-15 -4233 ((-887 |#2|) |#1|)) (-15 -4246 ((-887 |#2|) |#1|)) (-15 -4246 ((-1081) |#1|)) (-15 -3415 (|#1| |#1|)) (-15 -3416 (|#1| |#1|)) (-15 -3417 (|#1| |#1|)) (-15 -3418 (|#1| |#1|)) (-15 -3419 (|#2| |#2| |#1|)) (-15 -3427 (|#1| |#1| |#1|)) (-15 -3428 (|#1| |#1| |#1|)) (-15 -3427 (|#1| |#1| |#2|)) (-15 -3428 (|#1| |#1| |#2|)) (-15 -3429 (|#1| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 -4246 (|#1| (-887 |#2|))) (-15 -3431 (|#1| (-887 |#2|))) (-15 -3432 ((-3 |#1| "failed") (-887 |#2|))) (-15 -4246 (|#1| (-887 (-516)))) (-15 -3431 (|#1| (-887 (-516)))) (-15 -3432 ((-3 |#1| "failed") (-887 (-516)))) (-15 -4246 (|#1| (-887 (-388 (-516))))) (-15 -3431 (|#1| (-887 (-388 (-516))))) (-15 -3432 ((-3 |#1| "failed") (-887 (-388 (-516))))) (-15 -3968 (|#1| |#1| |#1|)) (-15 -3969 (|#1| |#1| |#1|)) (-15 -3433 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3755 (-719))) |#1| |#1|)) (-15 -3434 (|#1| |#1| |#1|)) (-15 -4031 ((-2 (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1|)) (-15 -3435 ((-2 (|:| -4229 |#1|) (|:| |gap| (-719)) (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1| |#4|)) (-15 -3435 ((-2 (|:| -4229 |#1|) (|:| |gap| (-719)) (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1|)) (-15 -3436 ((-2 (|:| -4229 |#1|) (|:| |gap| (-719)) (|:| -3166 |#1|)) |#1| |#1| |#4|)) (-15 -3436 ((-2 (|:| -4229 |#1|) (|:| |gap| (-719)) (|:| -3166 |#1|)) |#1| |#1|)) (-15 -3437 (|#1| |#1| |#1| |#4|)) (-15 -3438 (|#1| |#1| |#1| |#4|)) (-15 -3437 (|#1| |#1| |#1|)) (-15 -3438 (|#1| |#1| |#1|)) (-15 -3439 (|#1| |#1| |#1| |#4|)) (-15 -3440 (|#1| |#1| |#1| |#4|)) (-15 -3439 (|#1| |#1| |#1|)) (-15 -3440 (|#1| |#1| |#1|)) (-15 -3977 ((-110) |#1| (-594 |#1|))) (-15 -3977 ((-110) |#1| |#1|)) (-15 -3973 ((-110) |#1| (-594 |#1|))) (-15 -3973 ((-110) |#1| |#1|)) (-15 -3974 ((-110) |#1| (-594 |#1|))) (-15 -3974 ((-110) |#1| |#1|)) (-15 -3976 ((-110) |#1| (-594 |#1|))) (-15 -3976 ((-110) |#1| |#1|)) (-15 -3441 ((-110) |#1| |#1|)) (-15 -3981 ((-110) |#1| |#1|)) (-15 -3442 ((-3 (-110) "failed") |#1| |#1|)) (-15 -3443 ((-594 |#1|) |#1|)) (-15 -3444 ((-594 |#1|) |#1|)) (-15 -3445 (|#1| |#1|)) (-15 -3446 (|#1| |#1|)) (-15 -3447 ((-110) |#1|)) (-15 -3448 ((-110) |#1|)) (-15 -4235 (|#1| |#1| |#4|)) (-15 -3449 (|#1| |#1| |#4|)) (-15 -3450 (|#1| |#1|)) (-15 -3451 ((-594 |#1|) |#1|)) (-15 -3452 (|#1| |#1|)) (-15 -4075 (|#1| |#1|)) (-15 -3453 (|#1| |#1|)) (-15 -3724 (|#1| |#1|)) (-15 -3454 ((-719) |#1|)) (-15 -3455 (|#4| |#1|)) (-15 -4246 ((-505) |#1|)) (-15 -4246 ((-831 (-516)) |#1|)) (-15 -4246 ((-831 (-359)) |#1|)) (-15 -3431 (|#4| |#1|)) (-15 -3432 ((-3 |#4| #1="failed") |#1|)) (-15 -4233 (|#1| |#4|)) (-15 -3449 (|#2| |#1|)) (-15 -4235 (|#1| |#1|)) (-15 -3431 ((-516) |#1|)) (-15 -3432 ((-3 (-516) #1#) |#1|)) (-15 -3431 ((-388 (-516)) |#1|)) (-15 -3432 ((-3 (-388 (-516)) #1#) |#1|)) (-15 -4233 (|#1| |#2|)) (-15 -3432 ((-3 |#2| #1#) |#1|)) (-15 -3431 (|#2| |#1|)) (-15 -4233 (|#1| (-516))) (-15 -4233 ((-805) |#1|))) (-997 |#2| |#3| |#4|) (-984) (-741) (-795)) (T -996))
+NIL
+(-10 -8 (-15 -4233 (|#1| |#1|)) (-15 -3419 (|#1| |#1| |#1|)) (-15 -3419 (|#1| (-594 |#1|))) (-15 -4233 (|#1| (-388 (-516)))) (-15 -4233 ((-887 |#2|) |#1|)) (-15 -4246 ((-887 |#2|) |#1|)) (-15 -4246 ((-1081) |#1|)) (-15 -3415 (|#1| |#1|)) (-15 -3416 (|#1| |#1|)) (-15 -3417 (|#1| |#1|)) (-15 -3418 (|#1| |#1|)) (-15 -3419 (|#2| |#2| |#1|)) (-15 -3427 (|#1| |#1| |#1|)) (-15 -3428 (|#1| |#1| |#1|)) (-15 -3427 (|#1| |#1| |#2|)) (-15 -3428 (|#1| |#1| |#2|)) (-15 -3429 (|#1| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 -4246 (|#1| (-887 |#2|))) (-15 -3431 (|#1| (-887 |#2|))) (-15 -3432 ((-3 |#1| "failed") (-887 |#2|))) (-15 -4246 (|#1| (-887 (-516)))) (-15 -3431 (|#1| (-887 (-516)))) (-15 -3432 ((-3 |#1| "failed") (-887 (-516)))) (-15 -4246 (|#1| (-887 (-388 (-516))))) (-15 -3431 (|#1| (-887 (-388 (-516))))) (-15 -3432 ((-3 |#1| "failed") (-887 (-388 (-516))))) (-15 -3968 (|#1| |#1| |#1|)) (-15 -3969 (|#1| |#1| |#1|)) (-15 -3433 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3755 (-719))) |#1| |#1|)) (-15 -3434 (|#1| |#1| |#1|)) (-15 -4031 ((-2 (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1|)) (-15 -3435 ((-2 (|:| -4229 |#1|) (|:| |gap| (-719)) (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1| |#4|)) (-15 -3435 ((-2 (|:| -4229 |#1|) (|:| |gap| (-719)) (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1|)) (-15 -3436 ((-2 (|:| -4229 |#1|) (|:| |gap| (-719)) (|:| -3166 |#1|)) |#1| |#1| |#4|)) (-15 -3436 ((-2 (|:| -4229 |#1|) (|:| |gap| (-719)) (|:| -3166 |#1|)) |#1| |#1|)) (-15 -3437 (|#1| |#1| |#1| |#4|)) (-15 -3438 (|#1| |#1| |#1| |#4|)) (-15 -3437 (|#1| |#1| |#1|)) (-15 -3438 (|#1| |#1| |#1|)) (-15 -3439 (|#1| |#1| |#1| |#4|)) (-15 -3440 (|#1| |#1| |#1| |#4|)) (-15 -3439 (|#1| |#1| |#1|)) (-15 -3440 (|#1| |#1| |#1|)) (-15 -3977 ((-110) |#1| (-594 |#1|))) (-15 -3977 ((-110) |#1| |#1|)) (-15 -3973 ((-110) |#1| (-594 |#1|))) (-15 -3973 ((-110) |#1| |#1|)) (-15 -3974 ((-110) |#1| (-594 |#1|))) (-15 -3974 ((-110) |#1| |#1|)) (-15 -3976 ((-110) |#1| (-594 |#1|))) (-15 -3976 ((-110) |#1| |#1|)) (-15 -3441 ((-110) |#1| |#1|)) (-15 -3981 ((-110) |#1| |#1|)) (-15 -3442 ((-3 (-110) "failed") |#1| |#1|)) (-15 -3443 ((-594 |#1|) |#1|)) (-15 -3444 ((-594 |#1|) |#1|)) (-15 -3445 (|#1| |#1|)) (-15 -3446 (|#1| |#1|)) (-15 -3447 ((-110) |#1|)) (-15 -3448 ((-110) |#1|)) (-15 -4235 (|#1| |#1| |#4|)) (-15 -3449 (|#1| |#1| |#4|)) (-15 -3450 (|#1| |#1|)) (-15 -3451 ((-594 |#1|) |#1|)) (-15 -3452 (|#1| |#1|)) (-15 -4075 (|#1| |#1|)) (-15 -3453 (|#1| |#1|)) (-15 -3724 (|#1| |#1|)) (-15 -3454 ((-719) |#1|)) (-15 -3455 (|#4| |#1|)) (-15 -4246 ((-505) |#1|)) (-15 -4246 ((-831 (-516)) |#1|)) (-15 -4246 ((-831 (-359)) |#1|)) (-15 -3431 (|#4| |#1|)) (-15 -3432 ((-3 |#4| #1="failed") |#1|)) (-15 -4233 (|#1| |#4|)) (-15 -3449 (|#2| |#1|)) (-15 -4235 (|#1| |#1|)) (-15 -3431 ((-516) |#1|)) (-15 -3432 ((-3 (-516) #1#) |#1|)) (-15 -3431 ((-388 (-516)) |#1|)) (-15 -3432 ((-3 (-388 (-516)) #1#) |#1|)) (-15 -4233 (|#1| |#2|)) (-15 -3432 ((-3 |#2| #1#) |#1|)) (-15 -3431 (|#2| |#1|)) (-15 -4233 (|#1| (-516))) (-15 -4233 ((-805) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-3347 (((-594 |#3|) $) 110)) (-3349 (((-1092 $) $ |#3|) 125) (((-1092 |#1|) $) 124)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 87 (|has| |#1| (-523)))) (-2118 (($ $) 88 (|has| |#1| (-523)))) (-2116 (((-110) $) 90 (|has| |#1| (-523)))) (-3083 (((-719) $) 112) (((-719) $ (-594 |#3|)) 111)) (-4075 (($ $) 271)) (-3441 (((-110) $ $) 257)) (-1319 (((-3 $ "failed") $ $) 19)) (-4034 (($ $ $) 216 (|has| |#1| (-523)))) (-3423 (((-594 $) $ $) 211 (|has| |#1| (-523)))) (-2970 (((-386 (-1092 $)) (-1092 $)) 100 (|has| |#1| (-851)))) (-4053 (($ $) 98 (|has| |#1| (-432)))) (-4245 (((-386 $) $) 97 (|has| |#1| (-432)))) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) 103 (|has| |#1| (-851)))) (-3815 (($) 17 T CONST)) (-3432 (((-3 |#1| #2="failed") $) 164) (((-3 (-388 (-516)) #2#) $) 162 (|has| |#1| (-975 (-388 (-516))))) (((-3 (-516) #2#) $) 160 (|has| |#1| (-975 (-516)))) (((-3 |#3| #2#) $) 136) (((-3 $ "failed") (-887 (-388 (-516)))) 231 (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#3| (-572 (-1098))))) (((-3 $ "failed") (-887 (-516))) 228 (-3810 (-12 (-3595 (|has| |#1| (-37 (-388 (-516))))) (|has| |#1| (-37 (-516))) (|has| |#3| (-572 (-1098)))) (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#3| (-572 (-1098)))))) (((-3 $ "failed") (-887 |#1|)) 225 (-3810 (-12 (-3595 (|has| |#1| (-37 (-388 (-516))))) (-3595 (|has| |#1| (-37 (-516)))) (|has| |#3| (-572 (-1098)))) (-12 (-3595 (|has| |#1| (-515))) (-3595 (|has| |#1| (-37 (-388 (-516))))) (|has| |#1| (-37 (-516))) (|has| |#3| (-572 (-1098)))) (-12 (-3595 (|has| |#1| (-931 (-516)))) (|has| |#1| (-37 (-388 (-516)))) (|has| |#3| (-572 (-1098))))))) (-3431 ((|#1| $) 165) (((-388 (-516)) $) 161 (|has| |#1| (-975 (-388 (-516))))) (((-516) $) 159 (|has| |#1| (-975 (-516)))) ((|#3| $) 135) (($ (-887 (-388 (-516)))) 230 (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#3| (-572 (-1098))))) (($ (-887 (-516))) 227 (-3810 (-12 (-3595 (|has| |#1| (-37 (-388 (-516))))) (|has| |#1| (-37 (-516))) (|has| |#3| (-572 (-1098)))) (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#3| (-572 (-1098)))))) (($ (-887 |#1|)) 224 (-3810 (-12 (-3595 (|has| |#1| (-37 (-388 (-516))))) (-3595 (|has| |#1| (-37 (-516)))) (|has| |#3| (-572 (-1098)))) (-12 (-3595 (|has| |#1| (-515))) (-3595 (|has| |#1| (-37 (-388 (-516))))) (|has| |#1| (-37 (-516))) (|has| |#3| (-572 (-1098)))) (-12 (-3595 (|has| |#1| (-931 (-516)))) (|has| |#1| (-37 (-388 (-516)))) (|has| |#3| (-572 (-1098))))))) (-4035 (($ $ $ |#3|) 108 (|has| |#1| (-162))) (($ $ $) 212 (|has| |#1| (-523)))) (-4235 (($ $) 154) (($ $ |#3|) 266)) (-2297 (((-637 (-516)) (-637 $)) 134 (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) 133 (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) 132) (((-637 |#1|) (-637 $)) 131)) (-3976 (((-110) $ $) 256) (((-110) $ (-594 $)) 255)) (-3741 (((-3 $ "failed") $) 34)) (-3447 (((-110) $) 264)) (-4031 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 236)) (-3418 (($ $) 205 (|has| |#1| (-432)))) (-3777 (($ $) 176 (|has| |#1| (-432))) (($ $ |#3|) 105 (|has| |#1| (-432)))) (-3082 (((-594 $) $) 109)) (-4005 (((-110) $) 96 (|has| |#1| (-851)))) (-3429 (($ $) 221 (|has| |#1| (-523)))) (-3430 (($ $) 222 (|has| |#1| (-523)))) (-3440 (($ $ $) 248) (($ $ $ |#3|) 246)) (-3439 (($ $ $) 247) (($ $ $ |#3|) 245)) (-1671 (($ $ |#1| |#2| $) 172)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) 84 (-12 (|has| |#3| (-827 (-359))) (|has| |#1| (-827 (-359))))) (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) 83 (-12 (|has| |#3| (-827 (-516))) (|has| |#1| (-827 (-516)))))) (-2436 (((-110) $) 31)) (-2444 (((-719) $) 169)) (-3977 (((-110) $ $) 250) (((-110) $ (-594 $)) 249)) (-3420 (($ $ $ $ $) 207 (|has| |#1| (-523)))) (-3455 ((|#3| $) 275)) (-3350 (($ (-1092 |#1|) |#3|) 117) (($ (-1092 $) |#3|) 116)) (-3085 (((-594 $) $) 126)) (-4213 (((-110) $) 152)) (-3157 (($ |#1| |#2|) 153) (($ $ |#3| (-719)) 119) (($ $ (-594 |#3|) (-594 (-719))) 118)) (-3434 (($ $ $) 235)) (-4041 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $ |#3|) 120)) (-3448 (((-110) $) 265)) (-3084 ((|#2| $) 170) (((-719) $ |#3|) 122) (((-594 (-719)) $ (-594 |#3|)) 121)) (-3596 (($ $ $) 79 (|has| |#1| (-795)))) (-3454 (((-719) $) 274)) (-3597 (($ $ $) 78 (|has| |#1| (-795)))) (-1672 (($ (-1 |#2| |#2|) $) 171)) (-4234 (($ (-1 |#1| |#1|) $) 151)) (-3348 (((-3 |#3| #3="failed") $) 123)) (-3415 (($ $) 202 (|has| |#1| (-432)))) (-3416 (($ $) 203 (|has| |#1| (-432)))) (-3443 (((-594 $) $) 260)) (-3446 (($ $) 263)) (-3417 (($ $) 204 (|has| |#1| (-432)))) (-3444 (((-594 $) $) 261)) (-3445 (($ $) 262)) (-3158 (($ $) 149)) (-3449 ((|#1| $) 148) (($ $ |#3|) 267)) (-1963 (($ (-594 $)) 94 (|has| |#1| (-432))) (($ $ $) 93 (|has| |#1| (-432)))) (-3433 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3755 (-719))) $ $) 234)) (-3435 (((-2 (|:| -4229 $) (|:| |gap| (-719)) (|:| -2046 $) (|:| -3166 $)) $ $) 238) (((-2 (|:| -4229 $) (|:| |gap| (-719)) (|:| -2046 $) (|:| -3166 $)) $ $ |#3|) 237)) (-3436 (((-2 (|:| -4229 $) (|:| |gap| (-719)) (|:| -3166 $)) $ $) 240) (((-2 (|:| -4229 $) (|:| |gap| (-719)) (|:| -3166 $)) $ $ |#3|) 239)) (-3438 (($ $ $) 244) (($ $ $ |#3|) 242)) (-3437 (($ $ $) 243) (($ $ $ |#3|) 241)) (-3513 (((-1081) $) 9)) (-3464 (($ $ $) 210 (|has| |#1| (-523)))) (-3451 (((-594 $) $) 269)) (-3087 (((-3 (-594 $) #3#) $) 114)) (-3086 (((-3 (-594 $) #3#) $) 115)) (-3088 (((-3 (-2 (|:| |var| |#3|) (|:| -2427 (-719))) #3#) $) 113)) (-3973 (((-110) $ $) 252) (((-110) $ (-594 $)) 251)) (-3968 (($ $ $) 232)) (-3724 (($ $) 273)) (-3981 (((-110) $ $) 258)) (-3974 (((-110) $ $) 254) (((-110) $ (-594 $)) 253)) (-3969 (($ $ $) 233)) (-3453 (($ $) 272)) (-3514 (((-1045) $) 10)) (-3424 (((-2 (|:| -3419 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-523)))) (-3425 (((-2 (|:| -3419 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-523)))) (-1866 (((-110) $) 166)) (-1865 ((|#1| $) 167)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 95 (|has| |#1| (-432)))) (-3419 ((|#1| |#1| $) 206 (|has| |#1| (-432))) (($ (-594 $)) 92 (|has| |#1| (-432))) (($ $ $) 91 (|has| |#1| (-432)))) (-2968 (((-386 (-1092 $)) (-1092 $)) 102 (|has| |#1| (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) 101 (|has| |#1| (-851)))) (-4011 (((-386 $) $) 99 (|has| |#1| (-851)))) (-3426 (((-2 (|:| -3419 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-523)))) (-3740 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-523))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-523)))) (-3427 (($ $ |#1|) 219 (|has| |#1| (-523))) (($ $ $) 217 (|has| |#1| (-523)))) (-3428 (($ $ |#1|) 220 (|has| |#1| (-523))) (($ $ $) 218 (|has| |#1| (-523)))) (-4046 (($ $ (-594 (-275 $))) 145) (($ $ (-275 $)) 144) (($ $ $ $) 143) (($ $ (-594 $) (-594 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-594 |#3|) (-594 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-594 |#3|) (-594 $)) 138)) (-4036 (($ $ |#3|) 107 (|has| |#1| (-162)))) (-4089 (($ $ |#3|) 42) (($ $ (-594 |#3|)) 41) (($ $ |#3| (-719)) 40) (($ $ (-594 |#3|) (-594 (-719))) 39)) (-4223 ((|#2| $) 150) (((-719) $ |#3|) 130) (((-594 (-719)) $ (-594 |#3|)) 129)) (-3452 (($ $) 270)) (-3450 (($ $) 268)) (-4246 (((-831 (-359)) $) 82 (-12 (|has| |#3| (-572 (-831 (-359)))) (|has| |#1| (-572 (-831 (-359)))))) (((-831 (-516)) $) 81 (-12 (|has| |#3| (-572 (-831 (-516)))) (|has| |#1| (-572 (-831 (-516)))))) (((-505) $) 80 (-12 (|has| |#3| (-572 (-505))) (|has| |#1| (-572 (-505))))) (($ (-887 (-388 (-516)))) 229 (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#3| (-572 (-1098))))) (($ (-887 (-516))) 226 (-3810 (-12 (-3595 (|has| |#1| (-37 (-388 (-516))))) (|has| |#1| (-37 (-516))) (|has| |#3| (-572 (-1098)))) (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#3| (-572 (-1098)))))) (($ (-887 |#1|)) 223 (|has| |#3| (-572 (-1098)))) (((-1081) $) 201 (-12 (|has| |#1| (-975 (-516))) (|has| |#3| (-572 (-1098))))) (((-887 |#1|) $) 200 (|has| |#3| (-572 (-1098))))) (-3081 ((|#1| $) 175 (|has| |#1| (-432))) (($ $ |#3|) 106 (|has| |#1| (-432)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) 104 (-3119 (|has| $ (-138)) (|has| |#1| (-851))))) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-887 |#1|) $) 199 (|has| |#3| (-572 (-1098)))) (($ (-388 (-516))) 72 (-3810 (|has| |#1| (-975 (-388 (-516)))) (|has| |#1| (-37 (-388 (-516)))))) (($ $) 85 (|has| |#1| (-523)))) (-4096 (((-594 |#1|) $) 168)) (-3959 ((|#1| $ |#2|) 155) (($ $ |#3| (-719)) 128) (($ $ (-594 |#3|) (-594 (-719))) 127)) (-2965 (((-3 $ #1#) $) 73 (-3810 (-3119 (|has| $ (-138)) (|has| |#1| (-851))) (|has| |#1| (-138))))) (-3385 (((-719)) 29)) (-1670 (($ $ $ (-719)) 173 (|has| |#1| (-162)))) (-2117 (((-110) $ $) 89 (|has| |#1| (-523)))) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-3442 (((-3 (-110) "failed") $ $) 259)) (-2927 (($) 30 T CONST)) (-3421 (($ $ $ $ (-719)) 208 (|has| |#1| (-523)))) (-3422 (($ $ $ (-719)) 209 (|has| |#1| (-523)))) (-2932 (($ $ |#3|) 38) (($ $ (-594 |#3|)) 37) (($ $ |#3| (-719)) 36) (($ $ (-594 |#3|) (-594 (-719))) 35)) (-2826 (((-110) $ $) 76 (|has| |#1| (-795)))) (-2827 (((-110) $ $) 75 (|has| |#1| (-795)))) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 77 (|has| |#1| (-795)))) (-2948 (((-110) $ $) 74 (|has| |#1| (-795)))) (-4224 (($ $ |#1|) 156 (|has| |#1| (-344)))) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ (-388 (-516))) 158 (|has| |#1| (-37 (-388 (-516))))) (($ (-388 (-516)) $) 157 (|has| |#1| (-37 (-388 (-516))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-997 |#1| |#2| |#3|) (-133) (-984) (-741) (-795)) (T -997))
+((-3455 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-3454 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-719)))) (-3724 (*1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3453 (*1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-4075 (*1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3452 (*1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3451 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-594 *1)) (-4 *1 (-997 *3 *4 *5)))) (-3450 (*1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3449 (*1 *1 *1 *2) (-12 (-4 *1 (-997 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-4235 (*1 *1 *1 *2) (-12 (-4 *1 (-997 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-3448 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-3446 (*1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3445 (*1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3444 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-594 *1)) (-4 *1 (-997 *3 *4 *5)))) (-3443 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-594 *1)) (-4 *1 (-997 *3 *4 *5)))) (-3442 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-3981 (*1 *2 *1 *1) (-12 (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-3441 (*1 *2 *1 *1) (-12 (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-3976 (*1 *2 *1 *1) (-12 (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-3976 (*1 *2 *1 *3) (-12 (-5 *3 (-594 *1)) (-4 *1 (-997 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)))) (-3974 (*1 *2 *1 *1) (-12 (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-3974 (*1 *2 *1 *3) (-12 (-5 *3 (-594 *1)) (-4 *1 (-997 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)))) (-3973 (*1 *2 *1 *1) (-12 (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-3973 (*1 *2 *1 *3) (-12 (-5 *3 (-594 *1)) (-4 *1 (-997 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)))) (-3977 (*1 *2 *1 *1) (-12 (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-3977 (*1 *2 *1 *3) (-12 (-5 *3 (-594 *1)) (-4 *1 (-997 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)))) (-3440 (*1 *1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3439 (*1 *1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3440 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-997 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-3439 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-997 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-3438 (*1 *1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3437 (*1 *1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3438 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-997 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-3437 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-997 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-3436 (*1 *2 *1 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| -4229 *1) (|:| |gap| (-719)) (|:| -3166 *1))) (-4 *1 (-997 *3 *4 *5)))) (-3436 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-2 (|:| -4229 *1) (|:| |gap| (-719)) (|:| -3166 *1))) (-4 *1 (-997 *4 *5 *3)))) (-3435 (*1 *2 *1 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| -4229 *1) (|:| |gap| (-719)) (|:| -2046 *1) (|:| -3166 *1))) (-4 *1 (-997 *3 *4 *5)))) (-3435 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-2 (|:| -4229 *1) (|:| |gap| (-719)) (|:| -2046 *1) (|:| -3166 *1))) (-4 *1 (-997 *4 *5 *3)))) (-4031 (*1 *2 *1 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| -2046 *1) (|:| -3166 *1))) (-4 *1 (-997 *3 *4 *5)))) (-3434 (*1 *1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3433 (*1 *2 *1 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3755 (-719)))) (-4 *1 (-997 *3 *4 *5)))) (-3969 (*1 *1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3968 (*1 *1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3432 (*1 *1 *2) (|partial| -12 (-5 *2 (-887 (-388 (-516)))) (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-37 (-388 (-516)))) (-4 *5 (-572 (-1098))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-887 (-388 (-516)))) (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-37 (-388 (-516)))) (-4 *5 (-572 (-1098))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)))) (-4246 (*1 *1 *2) (-12 (-5 *2 (-887 (-388 (-516)))) (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-37 (-388 (-516)))) (-4 *5 (-572 (-1098))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)))) (-3432 (*1 *1 *2) (|partial| -3810 (-12 (-5 *2 (-887 (-516))) (-4 *1 (-997 *3 *4 *5)) (-12 (-3595 (-4 *3 (-37 (-388 (-516))))) (-4 *3 (-37 (-516))) (-4 *5 (-572 (-1098)))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-887 (-516))) (-4 *1 (-997 *3 *4 *5)) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *5 (-572 (-1098)))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))))) (-3431 (*1 *1 *2) (-3810 (-12 (-5 *2 (-887 (-516))) (-4 *1 (-997 *3 *4 *5)) (-12 (-3595 (-4 *3 (-37 (-388 (-516))))) (-4 *3 (-37 (-516))) (-4 *5 (-572 (-1098)))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-887 (-516))) (-4 *1 (-997 *3 *4 *5)) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *5 (-572 (-1098)))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))))) (-4246 (*1 *1 *2) (-3810 (-12 (-5 *2 (-887 (-516))) (-4 *1 (-997 *3 *4 *5)) (-12 (-3595 (-4 *3 (-37 (-388 (-516))))) (-4 *3 (-37 (-516))) (-4 *5 (-572 (-1098)))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-887 (-516))) (-4 *1 (-997 *3 *4 *5)) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *5 (-572 (-1098)))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))))) (-3432 (*1 *1 *2) (|partial| -3810 (-12 (-5 *2 (-887 *3)) (-12 (-3595 (-4 *3 (-37 (-388 (-516))))) (-3595 (-4 *3 (-37 (-516)))) (-4 *5 (-572 (-1098)))) (-4 *3 (-984)) (-4 *1 (-997 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-887 *3)) (-12 (-3595 (-4 *3 (-515))) (-3595 (-4 *3 (-37 (-388 (-516))))) (-4 *3 (-37 (-516))) (-4 *5 (-572 (-1098)))) (-4 *3 (-984)) (-4 *1 (-997 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-887 *3)) (-12 (-3595 (-4 *3 (-931 (-516)))) (-4 *3 (-37 (-388 (-516)))) (-4 *5 (-572 (-1098)))) (-4 *3 (-984)) (-4 *1 (-997 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))))) (-3431 (*1 *1 *2) (-3810 (-12 (-5 *2 (-887 *3)) (-12 (-3595 (-4 *3 (-37 (-388 (-516))))) (-3595 (-4 *3 (-37 (-516)))) (-4 *5 (-572 (-1098)))) (-4 *3 (-984)) (-4 *1 (-997 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-887 *3)) (-12 (-3595 (-4 *3 (-515))) (-3595 (-4 *3 (-37 (-388 (-516))))) (-4 *3 (-37 (-516))) (-4 *5 (-572 (-1098)))) (-4 *3 (-984)) (-4 *1 (-997 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-887 *3)) (-12 (-3595 (-4 *3 (-931 (-516)))) (-4 *3 (-37 (-388 (-516)))) (-4 *5 (-572 (-1098)))) (-4 *3 (-984)) (-4 *1 (-997 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))))) (-4246 (*1 *1 *2) (-12 (-5 *2 (-887 *3)) (-4 *3 (-984)) (-4 *1 (-997 *3 *4 *5)) (-4 *5 (-572 (-1098))) (-4 *4 (-741)) (-4 *5 (-795)))) (-3430 (*1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-523)))) (-3429 (*1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-523)))) (-3428 (*1 *1 *1 *2) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-523)))) (-3427 (*1 *1 *1 *2) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-523)))) (-3428 (*1 *1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-523)))) (-3427 (*1 *1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-523)))) (-4034 (*1 *1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-523)))) (-3426 (*1 *2 *1 *1) (-12 (-4 *3 (-523)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| -3419 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-997 *3 *4 *5)))) (-3425 (*1 *2 *1 *1) (-12 (-4 *3 (-523)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| -3419 *1) (|:| |coef1| *1))) (-4 *1 (-997 *3 *4 *5)))) (-3424 (*1 *2 *1 *1) (-12 (-4 *3 (-523)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| -3419 *1) (|:| |coef2| *1))) (-4 *1 (-997 *3 *4 *5)))) (-4035 (*1 *1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-523)))) (-3423 (*1 *2 *1 *1) (-12 (-4 *3 (-523)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-594 *1)) (-4 *1 (-997 *3 *4 *5)))) (-3464 (*1 *1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-523)))) (-3422 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *3 (-523)))) (-3421 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *3 (-523)))) (-3420 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-523)))) (-3419 (*1 *2 *2 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))) (-3418 (*1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))) (-3417 (*1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))) (-3416 (*1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))) (-3415 (*1 *1 *1) (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))))
+(-13 (-891 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3455 (|t#3| $)) (-15 -3454 ((-719) $)) (-15 -3724 ($ $)) (-15 -3453 ($ $)) (-15 -4075 ($ $)) (-15 -3452 ($ $)) (-15 -3451 ((-594 $) $)) (-15 -3450 ($ $)) (-15 -3449 ($ $ |t#3|)) (-15 -4235 ($ $ |t#3|)) (-15 -3448 ((-110) $)) (-15 -3447 ((-110) $)) (-15 -3446 ($ $)) (-15 -3445 ($ $)) (-15 -3444 ((-594 $) $)) (-15 -3443 ((-594 $) $)) (-15 -3442 ((-3 (-110) "failed") $ $)) (-15 -3981 ((-110) $ $)) (-15 -3441 ((-110) $ $)) (-15 -3976 ((-110) $ $)) (-15 -3976 ((-110) $ (-594 $))) (-15 -3974 ((-110) $ $)) (-15 -3974 ((-110) $ (-594 $))) (-15 -3973 ((-110) $ $)) (-15 -3973 ((-110) $ (-594 $))) (-15 -3977 ((-110) $ $)) (-15 -3977 ((-110) $ (-594 $))) (-15 -3440 ($ $ $)) (-15 -3439 ($ $ $)) (-15 -3440 ($ $ $ |t#3|)) (-15 -3439 ($ $ $ |t#3|)) (-15 -3438 ($ $ $)) (-15 -3437 ($ $ $)) (-15 -3438 ($ $ $ |t#3|)) (-15 -3437 ($ $ $ |t#3|)) (-15 -3436 ((-2 (|:| -4229 $) (|:| |gap| (-719)) (|:| -3166 $)) $ $)) (-15 -3436 ((-2 (|:| -4229 $) (|:| |gap| (-719)) (|:| -3166 $)) $ $ |t#3|)) (-15 -3435 ((-2 (|:| -4229 $) (|:| |gap| (-719)) (|:| -2046 $) (|:| -3166 $)) $ $)) (-15 -3435 ((-2 (|:| -4229 $) (|:| |gap| (-719)) (|:| -2046 $) (|:| -3166 $)) $ $ |t#3|)) (-15 -4031 ((-2 (|:| -2046 $) (|:| -3166 $)) $ $)) (-15 -3434 ($ $ $)) (-15 -3433 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3755 (-719))) $ $)) (-15 -3969 ($ $ $)) (-15 -3968 ($ $ $)) (IF (|has| |t#3| (-572 (-1098))) (PROGN (-6 (-571 (-887 |t#1|))) (-6 (-572 (-887 |t#1|))) (IF (|has| |t#1| (-37 (-388 (-516)))) (PROGN (-15 -3432 ((-3 $ "failed") (-887 (-388 (-516))))) (-15 -3431 ($ (-887 (-388 (-516))))) (-15 -4246 ($ (-887 (-388 (-516))))) (-15 -3432 ((-3 $ "failed") (-887 (-516)))) (-15 -3431 ($ (-887 (-516)))) (-15 -4246 ($ (-887 (-516)))) (IF (|has| |t#1| (-931 (-516))) |%noBranch| (PROGN (-15 -3432 ((-3 $ "failed") (-887 |t#1|))) (-15 -3431 ($ (-887 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-516))) (IF (|has| |t#1| (-37 (-388 (-516)))) |%noBranch| (PROGN (-15 -3432 ((-3 $ "failed") (-887 (-516)))) (-15 -3431 ($ (-887 (-516)))) (-15 -4246 ($ (-887 (-516)))) (IF (|has| |t#1| (-515)) |%noBranch| (PROGN (-15 -3432 ((-3 $ "failed") (-887 |t#1|))) (-15 -3431 ($ (-887 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-516))) |%noBranch| (IF (|has| |t#1| (-37 (-388 (-516)))) |%noBranch| (PROGN (-15 -3432 ((-3 $ "failed") (-887 |t#1|))) (-15 -3431 ($ (-887 |t#1|)))))) (-15 -4246 ($ (-887 |t#1|))) (IF (|has| |t#1| (-975 (-516))) (-6 (-572 (-1081))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-523)) (PROGN (-15 -3430 ($ $)) (-15 -3429 ($ $)) (-15 -3428 ($ $ |t#1|)) (-15 -3427 ($ $ |t#1|)) (-15 -3428 ($ $ $)) (-15 -3427 ($ $ $)) (-15 -4034 ($ $ $)) (-15 -3426 ((-2 (|:| -3419 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3425 ((-2 (|:| -3419 $) (|:| |coef1| $)) $ $)) (-15 -3424 ((-2 (|:| -3419 $) (|:| |coef2| $)) $ $)) (-15 -4035 ($ $ $)) (-15 -3423 ((-594 $) $ $)) (-15 -3464 ($ $ $)) (-15 -3422 ($ $ $ (-719))) (-15 -3421 ($ $ $ $ (-719))) (-15 -3420 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-432)) (PROGN (-15 -3419 (|t#1| |t#1| $)) (-15 -3418 ($ $)) (-15 -3417 ($ $)) (-15 -3416 ($ $)) (-15 -3415 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #1=(-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-388 (-516)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-805)) . T) ((-571 (-887 |#1|)) |has| |#3| (-572 (-1098))) ((-162) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-572 (-505)) -12 (|has| |#1| (-572 (-505))) (|has| |#3| (-572 (-505)))) ((-572 (-831 (-359))) -12 (|has| |#1| (-572 (-831 (-359)))) (|has| |#3| (-572 (-831 (-359))))) ((-572 (-831 (-516))) -12 (|has| |#1| (-572 (-831 (-516)))) (|has| |#3| (-572 (-831 (-516))))) ((-572 (-887 |#1|)) |has| |#3| (-572 (-1098))) ((-572 (-1081)) -12 (|has| |#1| (-975 (-516))) (|has| |#3| (-572 (-1098)))) ((-272) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-291 $) . T) ((-307 |#1| |#2|) . T) ((-358 |#1|) . T) ((-393 |#1|) . T) ((-432) -3810 (|has| |#1| (-851)) (|has| |#1| (-432))) ((-491 |#3| |#1|) . T) ((-491 |#3| $) . T) ((-491 $ $) . T) ((-523) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-599 #1#) |has| |#1| (-37 (-388 (-516)))) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-516)) |has| |#1| (-593 (-516))) ((-593 |#1|) . T) ((-666 #1#) |has| |#1| (-37 (-388 (-516)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-675) . T) ((-795) |has| |#1| (-795)) ((-841 |#3|) . T) ((-827 (-359)) -12 (|has| |#1| (-827 (-359))) (|has| |#3| (-827 (-359)))) ((-827 (-516)) -12 (|has| |#1| (-827 (-516))) (|has| |#3| (-827 (-516)))) ((-891 |#1| |#2| |#3|) . T) ((-851) |has| |#1| (-851)) ((-975 (-388 (-516))) |has| |#1| (-975 (-388 (-516)))) ((-975 (-516)) |has| |#1| (-975 (-516))) ((-975 |#1|) . T) ((-975 |#3|) . T) ((-989 #1#) |has| |#1| (-37 (-388 (-516)))) ((-989 |#1|) . T) ((-989 $) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1138) |has| |#1| (-851)))
+((-3462 (((-110) |#3| $) 13)) (-3457 (((-3 $ "failed") |#3| (-860)) 23)) (-3741 (((-3 |#3| "failed") |#3| $) 38)) (-3460 (((-110) |#3| $) 16)) (-3461 (((-110) |#3| $) 14)))
+(((-998 |#1| |#2| |#3|) (-10 -8 (-15 -3457 ((-3 |#1| "failed") |#3| (-860))) (-15 -3741 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3460 ((-110) |#3| |#1|)) (-15 -3461 ((-110) |#3| |#1|)) (-15 -3462 ((-110) |#3| |#1|))) (-999 |#2| |#3|) (-13 (-793) (-344)) (-1155 |#2|)) (T -998))
+NIL
+(-10 -8 (-15 -3457 ((-3 |#1| "failed") |#3| (-860))) (-15 -3741 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3460 ((-110) |#3| |#1|)) (-15 -3461 ((-110) |#3| |#1|)) (-15 -3462 ((-110) |#3| |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) |#2| $) 21)) (-3905 (((-516) |#2| $) 22)) (-3457 (((-3 $ "failed") |#2| (-860)) 15)) (-3456 ((|#1| |#2| $ |#1|) 13)) (-3741 (((-3 |#2| "failed") |#2| $) 18)) (-3460 (((-110) |#2| $) 19)) (-3461 (((-110) |#2| $) 20)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-3459 ((|#2| $) 17)) (-4233 (((-805) $) 11)) (-4048 ((|#1| |#2| $ |#1|) 14)) (-3458 (((-594 $) |#2|) 16)) (-3317 (((-110) $ $) 6)))
+(((-999 |#1| |#2|) (-133) (-13 (-793) (-344)) (-1155 |t#1|)) (T -999))
+((-3905 (*1 *2 *3 *1) (-12 (-4 *1 (-999 *4 *3)) (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1155 *4)) (-5 *2 (-516)))) (-3462 (*1 *2 *3 *1) (-12 (-4 *1 (-999 *4 *3)) (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1155 *4)) (-5 *2 (-110)))) (-3461 (*1 *2 *3 *1) (-12 (-4 *1 (-999 *4 *3)) (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1155 *4)) (-5 *2 (-110)))) (-3460 (*1 *2 *3 *1) (-12 (-4 *1 (-999 *4 *3)) (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1155 *4)) (-5 *2 (-110)))) (-3741 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-999 *3 *2)) (-4 *3 (-13 (-793) (-344))) (-4 *2 (-1155 *3)))) (-3459 (*1 *2 *1) (-12 (-4 *1 (-999 *3 *2)) (-4 *3 (-13 (-793) (-344))) (-4 *2 (-1155 *3)))) (-3458 (*1 *2 *3) (-12 (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1155 *4)) (-5 *2 (-594 *1)) (-4 *1 (-999 *4 *3)))) (-3457 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-860)) (-4 *4 (-13 (-793) (-344))) (-4 *1 (-999 *4 *2)) (-4 *2 (-1155 *4)))) (-4048 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-999 *2 *3)) (-4 *2 (-13 (-793) (-344))) (-4 *3 (-1155 *2)))) (-3456 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-999 *2 *3)) (-4 *2 (-13 (-793) (-344))) (-4 *3 (-1155 *2)))))
+(-13 (-1027) (-10 -8 (-15 -3905 ((-516) |t#2| $)) (-15 -3462 ((-110) |t#2| $)) (-15 -3461 ((-110) |t#2| $)) (-15 -3460 ((-110) |t#2| $)) (-15 -3741 ((-3 |t#2| "failed") |t#2| $)) (-15 -3459 (|t#2| $)) (-15 -3458 ((-594 $) |t#2|)) (-15 -3457 ((-3 $ "failed") |t#2| (-860))) (-15 -4048 (|t#1| |t#2| $ |t#1|)) (-15 -3456 (|t#1| |t#2| $ |t#1|))))
+(((-99) . T) ((-571 (-805)) . T) ((-1027) . T))
+((-3715 (((-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) (-594 |#4|) (-594 |#5|) (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) (-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) (-719)) 96)) (-3712 (((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5| (-719)) 56)) (-3716 (((-1185) (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) (-719)) 87)) (-3710 (((-719) (-594 |#4|) (-594 |#5|)) 27)) (-3713 (((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5| (-719)) 58) (((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5| (-719) (-110)) 60)) (-3714 (((-594 |#5|) (-594 |#4|) (-594 |#5|) (-110) (-110) (-110) (-110) (-110)) 78) (((-594 |#5|) (-594 |#4|) (-594 |#5|) (-110) (-110)) 79)) (-4246 (((-1081) (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) 82)) (-3711 (((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5| (-110)) 55)) (-3709 (((-719) (-594 |#4|) (-594 |#5|)) 19)))
+(((-1000 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3709 ((-719) (-594 |#4|) (-594 |#5|))) (-15 -3710 ((-719) (-594 |#4|) (-594 |#5|))) (-15 -3711 ((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5| (-110))) (-15 -3712 ((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5| (-719))) (-15 -3712 ((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5|)) (-15 -3713 ((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5| (-719) (-110))) (-15 -3713 ((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5| (-719))) (-15 -3713 ((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5|)) (-15 -3714 ((-594 |#5|) (-594 |#4|) (-594 |#5|) (-110) (-110))) (-15 -3714 ((-594 |#5|) (-594 |#4|) (-594 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -3715 ((-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) (-594 |#4|) (-594 |#5|) (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) (-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) (-719))) (-15 -4246 ((-1081) (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|)))) (-15 -3716 ((-1185) (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) (-719)))) (-432) (-741) (-795) (-997 |#1| |#2| |#3|) (-1002 |#1| |#2| |#3| |#4|)) (T -1000))
+((-3716 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-2 (|:| |val| (-594 *8)) (|:| -1610 *9)))) (-5 *4 (-719)) (-4 *8 (-997 *5 *6 *7)) (-4 *9 (-1002 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-1185)) (-5 *1 (-1000 *5 *6 *7 *8 *9)))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-594 *7)) (|:| -1610 *8))) (-4 *7 (-997 *4 *5 *6)) (-4 *8 (-1002 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1081)) (-5 *1 (-1000 *4 *5 *6 *7 *8)))) (-3715 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-594 *11)) (|:| |todo| (-594 (-2 (|:| |val| *3) (|:| -1610 *11)))))) (-5 *6 (-719)) (-5 *2 (-594 (-2 (|:| |val| (-594 *10)) (|:| -1610 *11)))) (-5 *3 (-594 *10)) (-5 *4 (-594 *11)) (-4 *10 (-997 *7 *8 *9)) (-4 *11 (-1002 *7 *8 *9 *10)) (-4 *7 (-432)) (-4 *8 (-741)) (-4 *9 (-795)) (-5 *1 (-1000 *7 *8 *9 *10 *11)))) (-3714 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-594 *9)) (-5 *3 (-594 *8)) (-5 *4 (-110)) (-4 *8 (-997 *5 *6 *7)) (-4 *9 (-1002 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1000 *5 *6 *7 *8 *9)))) (-3714 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-594 *9)) (-5 *3 (-594 *8)) (-5 *4 (-110)) (-4 *8 (-997 *5 *6 *7)) (-4 *9 (-1002 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1000 *5 *6 *7 *8 *9)))) (-3713 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-594 *4)) (|:| |todo| (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4)))))) (-5 *1 (-1000 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))) (-3713 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-997 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-594 *4)) (|:| |todo| (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4)))))) (-5 *1 (-1000 *6 *7 *8 *3 *4)) (-4 *4 (-1002 *6 *7 *8 *3)))) (-3713 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-719)) (-5 *6 (-110)) (-4 *7 (-432)) (-4 *8 (-741)) (-4 *9 (-795)) (-4 *3 (-997 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-594 *4)) (|:| |todo| (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4)))))) (-5 *1 (-1000 *7 *8 *9 *3 *4)) (-4 *4 (-1002 *7 *8 *9 *3)))) (-3712 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-594 *4)) (|:| |todo| (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4)))))) (-5 *1 (-1000 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))) (-3712 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-997 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-594 *4)) (|:| |todo| (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4)))))) (-5 *1 (-1000 *6 *7 *8 *3 *4)) (-4 *4 (-1002 *6 *7 *8 *3)))) (-3711 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-997 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-594 *4)) (|:| |todo| (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4)))))) (-5 *1 (-1000 *6 *7 *8 *3 *4)) (-4 *4 (-1002 *6 *7 *8 *3)))) (-3710 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *8)) (-5 *4 (-594 *9)) (-4 *8 (-997 *5 *6 *7)) (-4 *9 (-1002 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1000 *5 *6 *7 *8 *9)))) (-3709 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *8)) (-5 *4 (-594 *9)) (-4 *8 (-997 *5 *6 *7)) (-4 *9 (-1002 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1000 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -3709 ((-719) (-594 |#4|) (-594 |#5|))) (-15 -3710 ((-719) (-594 |#4|) (-594 |#5|))) (-15 -3711 ((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5| (-110))) (-15 -3712 ((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5| (-719))) (-15 -3712 ((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5|)) (-15 -3713 ((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5| (-719) (-110))) (-15 -3713 ((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5| (-719))) (-15 -3713 ((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5|)) (-15 -3714 ((-594 |#5|) (-594 |#4|) (-594 |#5|) (-110) (-110))) (-15 -3714 ((-594 |#5|) (-594 |#4|) (-594 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -3715 ((-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) (-594 |#4|) (-594 |#5|) (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) (-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) (-719))) (-15 -4246 ((-1081) (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|)))) (-15 -3716 ((-1185) (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) (-719))))
+((-3471 (((-110) |#5| $) 21)) (-3469 (((-110) |#5| $) 24)) (-3472 (((-110) |#5| $) 16) (((-110) $) 45)) (-3509 (((-594 $) |#5| $) NIL) (((-594 $) (-594 |#5|) $) 77) (((-594 $) (-594 |#5|) (-594 $)) 75) (((-594 $) |#5| (-594 $)) 78)) (-4047 (($ $ |#5|) NIL) (((-594 $) |#5| $) NIL) (((-594 $) |#5| (-594 $)) 60) (((-594 $) (-594 |#5|) $) 62) (((-594 $) (-594 |#5|) (-594 $)) 64)) (-3463 (((-594 $) |#5| $) NIL) (((-594 $) |#5| (-594 $)) 54) (((-594 $) (-594 |#5|) $) 56) (((-594 $) (-594 |#5|) (-594 $)) 58)) (-3470 (((-110) |#5| $) 27)))
+(((-1001 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4047 ((-594 |#1|) (-594 |#5|) (-594 |#1|))) (-15 -4047 ((-594 |#1|) (-594 |#5|) |#1|)) (-15 -4047 ((-594 |#1|) |#5| (-594 |#1|))) (-15 -4047 ((-594 |#1|) |#5| |#1|)) (-15 -3463 ((-594 |#1|) (-594 |#5|) (-594 |#1|))) (-15 -3463 ((-594 |#1|) (-594 |#5|) |#1|)) (-15 -3463 ((-594 |#1|) |#5| (-594 |#1|))) (-15 -3463 ((-594 |#1|) |#5| |#1|)) (-15 -3509 ((-594 |#1|) |#5| (-594 |#1|))) (-15 -3509 ((-594 |#1|) (-594 |#5|) (-594 |#1|))) (-15 -3509 ((-594 |#1|) (-594 |#5|) |#1|)) (-15 -3509 ((-594 |#1|) |#5| |#1|)) (-15 -3469 ((-110) |#5| |#1|)) (-15 -3472 ((-110) |#1|)) (-15 -3470 ((-110) |#5| |#1|)) (-15 -3471 ((-110) |#5| |#1|)) (-15 -3472 ((-110) |#5| |#1|)) (-15 -4047 (|#1| |#1| |#5|))) (-1002 |#2| |#3| |#4| |#5|) (-432) (-741) (-795) (-997 |#2| |#3| |#4|)) (T -1001))
+NIL
+(-10 -8 (-15 -4047 ((-594 |#1|) (-594 |#5|) (-594 |#1|))) (-15 -4047 ((-594 |#1|) (-594 |#5|) |#1|)) (-15 -4047 ((-594 |#1|) |#5| (-594 |#1|))) (-15 -4047 ((-594 |#1|) |#5| |#1|)) (-15 -3463 ((-594 |#1|) (-594 |#5|) (-594 |#1|))) (-15 -3463 ((-594 |#1|) (-594 |#5|) |#1|)) (-15 -3463 ((-594 |#1|) |#5| (-594 |#1|))) (-15 -3463 ((-594 |#1|) |#5| |#1|)) (-15 -3509 ((-594 |#1|) |#5| (-594 |#1|))) (-15 -3509 ((-594 |#1|) (-594 |#5|) (-594 |#1|))) (-15 -3509 ((-594 |#1|) (-594 |#5|) |#1|)) (-15 -3509 ((-594 |#1|) |#5| |#1|)) (-15 -3469 ((-110) |#5| |#1|)) (-15 -3472 ((-110) |#1|)) (-15 -3470 ((-110) |#5| |#1|)) (-15 -3471 ((-110) |#5| |#1|)) (-15 -3472 ((-110) |#5| |#1|)) (-15 -4047 (|#1| |#1| |#5|)))
+((-2828 (((-110) $ $) 7)) (-3963 (((-594 (-2 (|:| -4140 $) (|:| -1768 (-594 |#4|)))) (-594 |#4|)) 85)) (-3964 (((-594 $) (-594 |#4|)) 86) (((-594 $) (-594 |#4|) (-110)) 111)) (-3347 (((-594 |#3|) $) 33)) (-3172 (((-110) $) 26)) (-3163 (((-110) $) 17 (|has| |#1| (-523)))) (-3975 (((-110) |#4| $) 101) (((-110) $) 97)) (-3970 ((|#4| |#4| $) 92)) (-4053 (((-594 (-2 (|:| |val| |#4|) (|:| -1610 $))) |#4| $) 126)) (-3173 (((-2 (|:| |under| $) (|:| -3389 $) (|:| |upper| $)) $ |#3|) 27)) (-1217 (((-110) $ (-719)) 44)) (-3992 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4269))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3815 (($) 45 T CONST)) (-3168 (((-110) $) 22 (|has| |#1| (-523)))) (-3170 (((-110) $ $) 24 (|has| |#1| (-523)))) (-3169 (((-110) $ $) 23 (|has| |#1| (-523)))) (-3171 (((-110) $) 25 (|has| |#1| (-523)))) (-3971 (((-594 |#4|) (-594 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-3164 (((-594 |#4|) (-594 |#4|) $) 18 (|has| |#1| (-523)))) (-3165 (((-594 |#4|) (-594 |#4|) $) 19 (|has| |#1| (-523)))) (-3432 (((-3 $ "failed") (-594 |#4|)) 36)) (-3431 (($ (-594 |#4|)) 35)) (-4077 (((-3 $ #1#) $) 82)) (-3967 ((|#4| |#4| $) 89)) (-1349 (($ $) 68 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-3685 (($ |#4| $) 67 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4269)))) (-3166 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-523)))) (-3976 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-3965 ((|#4| |#4| $) 87)) (-4121 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-3978 (((-2 (|:| -4140 (-594 |#4|)) (|:| -1768 (-594 |#4|))) $) 105)) (-3471 (((-110) |#4| $) 136)) (-3469 (((-110) |#4| $) 133)) (-3472 (((-110) |#4| $) 137) (((-110) $) 134)) (-2018 (((-594 |#4|) $) 52 (|has| $ (-6 -4269)))) (-3977 (((-110) |#4| $) 104) (((-110) $) 103)) (-3455 ((|#3| $) 34)) (-4001 (((-110) $ (-719)) 43)) (-2445 (((-594 |#4|) $) 53 (|has| $ (-6 -4269)))) (-3516 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-2022 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#4| |#4|) $) 47)) (-3178 (((-594 |#3|) $) 32)) (-3177 (((-110) |#3| $) 31)) (-3998 (((-110) $ (-719)) 42)) (-3513 (((-1081) $) 9)) (-3465 (((-3 |#4| (-594 $)) |#4| |#4| $) 128)) (-3464 (((-594 (-2 (|:| |val| |#4|) (|:| -1610 $))) |#4| |#4| $) 127)) (-4076 (((-3 |#4| #1#) $) 83)) (-3466 (((-594 $) |#4| $) 129)) (-3468 (((-3 (-110) (-594 $)) |#4| $) 132)) (-3467 (((-594 (-2 (|:| |val| (-110)) (|:| -1610 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-3509 (((-594 $) |#4| $) 125) (((-594 $) (-594 |#4|) $) 124) (((-594 $) (-594 |#4|) (-594 $)) 123) (((-594 $) |#4| (-594 $)) 122)) (-3719 (($ |#4| $) 117) (($ (-594 |#4|) $) 116)) (-3979 (((-594 |#4|) $) 107)) (-3973 (((-110) |#4| $) 99) (((-110) $) 95)) (-3968 ((|#4| |#4| $) 90)) (-3981 (((-110) $ $) 110)) (-3167 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-523)))) (-3974 (((-110) |#4| $) 100) (((-110) $) 96)) (-3969 ((|#4| |#4| $) 91)) (-3514 (((-1045) $) 10)) (-4079 (((-3 |#4| #1#) $) 84)) (-1350 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-3961 (((-3 $ #1#) $ |#4|) 78)) (-4047 (($ $ |#4|) 77) (((-594 $) |#4| $) 115) (((-594 $) |#4| (-594 $)) 114) (((-594 $) (-594 |#4|) $) 113) (((-594 $) (-594 |#4|) (-594 $)) 112)) (-2020 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 |#4|) (-594 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-275 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-594 (-275 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-1218 (((-110) $ $) 38)) (-3682 (((-110) $) 41)) (-3847 (($) 40)) (-4223 (((-719) $) 106)) (-2019 (((-719) |#4| $) 54 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4269)))) (-3678 (($ $) 39)) (-4246 (((-505) $) 69 (|has| |#4| (-572 (-505))))) (-3804 (($ (-594 |#4|)) 60)) (-3174 (($ $ |#3|) 28)) (-3176 (($ $ |#3|) 30)) (-3966 (($ $) 88)) (-3175 (($ $ |#3|) 29)) (-4233 (((-805) $) 11) (((-594 |#4|) $) 37)) (-3960 (((-719) $) 76 (|has| |#3| (-349)))) (-3980 (((-3 (-2 (|:| |bas| $) (|:| -3602 (-594 |#4|))) #1#) (-594 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3602 (-594 |#4|))) #1#) (-594 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-3972 (((-110) $ (-1 (-110) |#4| (-594 |#4|))) 98)) (-3463 (((-594 $) |#4| $) 121) (((-594 $) |#4| (-594 $)) 120) (((-594 $) (-594 |#4|) $) 119) (((-594 $) (-594 |#4|) (-594 $)) 118)) (-2021 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4269)))) (-3962 (((-594 |#3|) $) 81)) (-3470 (((-110) |#4| $) 135)) (-4209 (((-110) |#3| $) 80)) (-3317 (((-110) $ $) 6)) (-4232 (((-719) $) 46 (|has| $ (-6 -4269)))))
+(((-1002 |#1| |#2| |#3| |#4|) (-133) (-432) (-741) (-795) (-997 |t#1| |t#2| |t#3|)) (T -1002))
+((-3472 (*1 *2 *3 *1) (-12 (-4 *1 (-1002 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-110)))) (-3471 (*1 *2 *3 *1) (-12 (-4 *1 (-1002 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-110)))) (-3470 (*1 *2 *3 *1) (-12 (-4 *1 (-1002 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-110)))) (-3472 (*1 *2 *1) (-12 (-4 *1 (-1002 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-110)))) (-3469 (*1 *2 *3 *1) (-12 (-4 *1 (-1002 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-110)))) (-3468 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-3 (-110) (-594 *1))) (-4 *1 (-1002 *4 *5 *6 *3)))) (-3467 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-594 (-2 (|:| |val| (-110)) (|:| -1610 *1)))) (-4 *1 (-1002 *4 *5 *6 *3)))) (-3467 (*1 *2 *3 *1) (-12 (-4 *1 (-1002 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-110)))) (-3466 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-594 *1)) (-4 *1 (-1002 *4 *5 *6 *3)))) (-3465 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-3 *3 (-594 *1))) (-4 *1 (-1002 *4 *5 *6 *3)))) (-3464 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-594 (-2 (|:| |val| *3) (|:| -1610 *1)))) (-4 *1 (-1002 *4 *5 *6 *3)))) (-4053 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-594 (-2 (|:| |val| *3) (|:| -1610 *1)))) (-4 *1 (-1002 *4 *5 *6 *3)))) (-3509 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-594 *1)) (-4 *1 (-1002 *4 *5 *6 *3)))) (-3509 (*1 *2 *3 *1) (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-594 *1)) (-4 *1 (-1002 *4 *5 *6 *7)))) (-3509 (*1 *2 *3 *2) (-12 (-5 *2 (-594 *1)) (-5 *3 (-594 *7)) (-4 *1 (-1002 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)))) (-3509 (*1 *2 *3 *2) (-12 (-5 *2 (-594 *1)) (-4 *1 (-1002 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6)))) (-3463 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-594 *1)) (-4 *1 (-1002 *4 *5 *6 *3)))) (-3463 (*1 *2 *3 *2) (-12 (-5 *2 (-594 *1)) (-4 *1 (-1002 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6)))) (-3463 (*1 *2 *3 *1) (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-594 *1)) (-4 *1 (-1002 *4 *5 *6 *7)))) (-3463 (*1 *2 *3 *2) (-12 (-5 *2 (-594 *1)) (-5 *3 (-594 *7)) (-4 *1 (-1002 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)))) (-3719 (*1 *1 *2 *1) (-12 (-4 *1 (-1002 *3 *4 *5 *2)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-997 *3 *4 *5)))) (-3719 (*1 *1 *2 *1) (-12 (-5 *2 (-594 *6)) (-4 *1 (-1002 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)))) (-4047 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-594 *1)) (-4 *1 (-1002 *4 *5 *6 *3)))) (-4047 (*1 *2 *3 *2) (-12 (-5 *2 (-594 *1)) (-4 *1 (-1002 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6)))) (-4047 (*1 *2 *3 *1) (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-594 *1)) (-4 *1 (-1002 *4 *5 *6 *7)))) (-4047 (*1 *2 *3 *2) (-12 (-5 *2 (-594 *1)) (-5 *3 (-594 *7)) (-4 *1 (-1002 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)))) (-3964 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *8)) (-5 *4 (-110)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-594 *1)) (-4 *1 (-1002 *5 *6 *7 *8)))))
+(-13 (-1129 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3472 ((-110) |t#4| $)) (-15 -3471 ((-110) |t#4| $)) (-15 -3470 ((-110) |t#4| $)) (-15 -3472 ((-110) $)) (-15 -3469 ((-110) |t#4| $)) (-15 -3468 ((-3 (-110) (-594 $)) |t#4| $)) (-15 -3467 ((-594 (-2 (|:| |val| (-110)) (|:| -1610 $))) |t#4| $)) (-15 -3467 ((-110) |t#4| $)) (-15 -3466 ((-594 $) |t#4| $)) (-15 -3465 ((-3 |t#4| (-594 $)) |t#4| |t#4| $)) (-15 -3464 ((-594 (-2 (|:| |val| |t#4|) (|:| -1610 $))) |t#4| |t#4| $)) (-15 -4053 ((-594 (-2 (|:| |val| |t#4|) (|:| -1610 $))) |t#4| $)) (-15 -3509 ((-594 $) |t#4| $)) (-15 -3509 ((-594 $) (-594 |t#4|) $)) (-15 -3509 ((-594 $) (-594 |t#4|) (-594 $))) (-15 -3509 ((-594 $) |t#4| (-594 $))) (-15 -3463 ((-594 $) |t#4| $)) (-15 -3463 ((-594 $) |t#4| (-594 $))) (-15 -3463 ((-594 $) (-594 |t#4|) $)) (-15 -3463 ((-594 $) (-594 |t#4|) (-594 $))) (-15 -3719 ($ |t#4| $)) (-15 -3719 ($ (-594 |t#4|) $)) (-15 -4047 ((-594 $) |t#4| $)) (-15 -4047 ((-594 $) |t#4| (-594 $))) (-15 -4047 ((-594 $) (-594 |t#4|) $)) (-15 -4047 ((-594 $) (-594 |t#4|) (-594 $))) (-15 -3964 ((-594 $) (-594 |t#4|) (-110)))))
+(((-33) . T) ((-99) . T) ((-571 (-594 |#4|)) . T) ((-571 (-805)) . T) ((-144 |#4|) . T) ((-572 (-505)) |has| |#4| (-572 (-505))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-468 |#4|) . T) ((-491 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1027) . T) ((-1129 |#1| |#2| |#3| |#4|) . T) ((-1134) . T))
+((-3479 (((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#5|) 81)) (-3476 (((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#4| |#5|) 113)) (-3478 (((-594 |#5|) |#4| |#5|) 70)) (-3477 (((-594 (-2 (|:| |val| (-110)) (|:| -1610 |#5|))) |#4| |#5|) 46) (((-110) |#4| |#5|) 53)) (-3558 (((-1185)) 37)) (-3556 (((-1185)) 26)) (-3557 (((-1185) (-1081) (-1081) (-1081)) 33)) (-3555 (((-1185) (-1081) (-1081) (-1081)) 22)) (-3473 (((-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) |#4| |#4| |#5|) 96)) (-3474 (((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) |#3| (-110)) 107) (((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#4| |#5| (-110) (-110)) 50)) (-3475 (((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#4| |#5|) 102)))
+(((-1003 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3555 ((-1185) (-1081) (-1081) (-1081))) (-15 -3556 ((-1185))) (-15 -3557 ((-1185) (-1081) (-1081) (-1081))) (-15 -3558 ((-1185))) (-15 -3473 ((-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) |#4| |#4| |#5|)) (-15 -3474 ((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -3474 ((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) |#3| (-110))) (-15 -3475 ((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#4| |#5|)) (-15 -3476 ((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#4| |#5|)) (-15 -3477 ((-110) |#4| |#5|)) (-15 -3477 ((-594 (-2 (|:| |val| (-110)) (|:| -1610 |#5|))) |#4| |#5|)) (-15 -3478 ((-594 |#5|) |#4| |#5|)) (-15 -3479 ((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#5|))) (-432) (-741) (-795) (-997 |#1| |#2| |#3|) (-1002 |#1| |#2| |#3| |#4|)) (T -1003))
+((-3479 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-594 (-2 (|:| |val| *3) (|:| -1610 *4)))) (-5 *1 (-1003 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))) (-3478 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-594 *4)) (-5 *1 (-1003 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))) (-3477 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-594 (-2 (|:| |val| (-110)) (|:| -1610 *4)))) (-5 *1 (-1003 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))) (-3477 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-1003 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))) (-3476 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-594 (-2 (|:| |val| *3) (|:| -1610 *4)))) (-5 *1 (-1003 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))) (-3475 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-594 (-2 (|:| |val| *3) (|:| -1610 *4)))) (-5 *1 (-1003 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))) (-3474 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-594 (-2 (|:| |val| (-594 *8)) (|:| -1610 *9)))) (-5 *5 (-110)) (-4 *8 (-997 *6 *7 *4)) (-4 *9 (-1002 *6 *7 *4 *8)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *4 (-795)) (-5 *2 (-594 (-2 (|:| |val| *8) (|:| -1610 *9)))) (-5 *1 (-1003 *6 *7 *4 *8 *9)))) (-3474 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-997 *6 *7 *8)) (-5 *2 (-594 (-2 (|:| |val| *3) (|:| -1610 *4)))) (-5 *1 (-1003 *6 *7 *8 *3 *4)) (-4 *4 (-1002 *6 *7 *8 *3)))) (-3473 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4)))) (-5 *1 (-1003 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))) (-3558 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-1185)) (-5 *1 (-1003 *3 *4 *5 *6 *7)) (-4 *7 (-1002 *3 *4 *5 *6)))) (-3557 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1003 *4 *5 *6 *7 *8)) (-4 *8 (-1002 *4 *5 *6 *7)))) (-3556 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-1185)) (-5 *1 (-1003 *3 *4 *5 *6 *7)) (-4 *7 (-1002 *3 *4 *5 *6)))) (-3555 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1003 *4 *5 *6 *7 *8)) (-4 *8 (-1002 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3555 ((-1185) (-1081) (-1081) (-1081))) (-15 -3556 ((-1185))) (-15 -3557 ((-1185) (-1081) (-1081) (-1081))) (-15 -3558 ((-1185))) (-15 -3473 ((-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) |#4| |#4| |#5|)) (-15 -3474 ((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -3474 ((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) |#3| (-110))) (-15 -3475 ((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#4| |#5|)) (-15 -3476 ((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#4| |#5|)) (-15 -3477 ((-110) |#4| |#5|)) (-15 -3477 ((-594 (-2 (|:| |val| (-110)) (|:| -1610 |#5|))) |#4| |#5|)) (-15 -3478 ((-594 |#5|) |#4| |#5|)) (-15 -3479 ((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#5|)))
+((-2828 (((-110) $ $) NIL)) (-3482 (($ $ (-594 (-1098)) (-1 (-110) (-594 |#3|))) 33)) (-3483 (($ |#3| |#3|) 22) (($ |#3| |#3| (-594 (-1098))) 20)) (-3802 ((|#3| $) 13)) (-3432 (((-3 (-275 |#3|) "failed") $) 58)) (-3431 (((-275 |#3|) $) NIL)) (-3480 (((-594 (-1098)) $) 16)) (-3481 (((-831 |#1|) $) 11)) (-3803 ((|#3| $) 12)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4078 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-860)) 39)) (-4233 (((-805) $) 86) (($ (-275 |#3|)) 21)) (-3317 (((-110) $ $) 36)))
+(((-1004 |#1| |#2| |#3|) (-13 (-1027) (-268 |#3| |#3|) (-975 (-275 |#3|)) (-10 -8 (-15 -3483 ($ |#3| |#3|)) (-15 -3483 ($ |#3| |#3| (-594 (-1098)))) (-15 -3482 ($ $ (-594 (-1098)) (-1 (-110) (-594 |#3|)))) (-15 -3481 ((-831 |#1|) $)) (-15 -3803 (|#3| $)) (-15 -3802 (|#3| $)) (-15 -4078 (|#3| $ |#3| (-860))) (-15 -3480 ((-594 (-1098)) $)))) (-1027) (-13 (-984) (-827 |#1|) (-795) (-572 (-831 |#1|))) (-13 (-402 |#2|) (-827 |#1|) (-572 (-831 |#1|)))) (T -1004))
+((-3483 (*1 *1 *2 *2) (-12 (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-831 *3)))) (-5 *1 (-1004 *3 *4 *2)) (-4 *2 (-13 (-402 *4) (-827 *3) (-572 (-831 *3)))))) (-3483 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-594 (-1098))) (-4 *4 (-1027)) (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-831 *4)))) (-5 *1 (-1004 *4 *5 *2)) (-4 *2 (-13 (-402 *5) (-827 *4) (-572 (-831 *4)))))) (-3482 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-594 (-1098))) (-5 *3 (-1 (-110) (-594 *6))) (-4 *6 (-13 (-402 *5) (-827 *4) (-572 (-831 *4)))) (-4 *4 (-1027)) (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-831 *4)))) (-5 *1 (-1004 *4 *5 *6)))) (-3481 (*1 *2 *1) (-12 (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 *2))) (-5 *2 (-831 *3)) (-5 *1 (-1004 *3 *4 *5)) (-4 *5 (-13 (-402 *4) (-827 *3) (-572 *2))))) (-3803 (*1 *2 *1) (-12 (-4 *3 (-1027)) (-4 *2 (-13 (-402 *4) (-827 *3) (-572 (-831 *3)))) (-5 *1 (-1004 *3 *4 *2)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-831 *3)))))) (-3802 (*1 *2 *1) (-12 (-4 *3 (-1027)) (-4 *2 (-13 (-402 *4) (-827 *3) (-572 (-831 *3)))) (-5 *1 (-1004 *3 *4 *2)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-831 *3)))))) (-4078 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-860)) (-4 *4 (-1027)) (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-831 *4)))) (-5 *1 (-1004 *4 *5 *2)) (-4 *2 (-13 (-402 *5) (-827 *4) (-572 (-831 *4)))))) (-3480 (*1 *2 *1) (-12 (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-831 *3)))) (-5 *2 (-594 (-1098))) (-5 *1 (-1004 *3 *4 *5)) (-4 *5 (-13 (-402 *4) (-827 *3) (-572 (-831 *3)))))))
+(-13 (-1027) (-268 |#3| |#3|) (-975 (-275 |#3|)) (-10 -8 (-15 -3483 ($ |#3| |#3|)) (-15 -3483 ($ |#3| |#3| (-594 (-1098)))) (-15 -3482 ($ $ (-594 (-1098)) (-1 (-110) (-594 |#3|)))) (-15 -3481 ((-831 |#1|) $)) (-15 -3803 (|#3| $)) (-15 -3802 (|#3| $)) (-15 -4078 (|#3| $ |#3| (-860))) (-15 -3480 ((-594 (-1098)) $))))
+((-2828 (((-110) $ $) NIL)) (-3824 (((-1098) $) 8)) (-3513 (((-1081) $) 16)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 11)) (-3317 (((-110) $ $) 13)))
+(((-1005 |#1|) (-13 (-1027) (-10 -8 (-15 -3824 ((-1098) $)))) (-1098)) (T -1005))
+((-3824 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1005 *3)) (-14 *3 *2))))
+(-13 (-1027) (-10 -8 (-15 -3824 ((-1098) $))))
+((-2828 (((-110) $ $) NIL)) (-3485 (($ (-594 (-1004 |#1| |#2| |#3|))) 13)) (-3484 (((-594 (-1004 |#1| |#2| |#3|)) $) 20)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4078 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-860)) 26)) (-4233 (((-805) $) 16)) (-3317 (((-110) $ $) 19)))
+(((-1006 |#1| |#2| |#3|) (-13 (-1027) (-268 |#3| |#3|) (-10 -8 (-15 -3485 ($ (-594 (-1004 |#1| |#2| |#3|)))) (-15 -3484 ((-594 (-1004 |#1| |#2| |#3|)) $)) (-15 -4078 (|#3| $ |#3| (-860))))) (-1027) (-13 (-984) (-827 |#1|) (-795) (-572 (-831 |#1|))) (-13 (-402 |#2|) (-827 |#1|) (-572 (-831 |#1|)))) (T -1006))
+((-3485 (*1 *1 *2) (-12 (-5 *2 (-594 (-1004 *3 *4 *5))) (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-831 *3)))) (-4 *5 (-13 (-402 *4) (-827 *3) (-572 (-831 *3)))) (-5 *1 (-1006 *3 *4 *5)))) (-3484 (*1 *2 *1) (-12 (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-831 *3)))) (-5 *2 (-594 (-1004 *3 *4 *5))) (-5 *1 (-1006 *3 *4 *5)) (-4 *5 (-13 (-402 *4) (-827 *3) (-572 (-831 *3)))))) (-4078 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-860)) (-4 *4 (-1027)) (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-831 *4)))) (-5 *1 (-1006 *4 *5 *2)) (-4 *2 (-13 (-402 *5) (-827 *4) (-572 (-831 *4)))))))
+(-13 (-1027) (-268 |#3| |#3|) (-10 -8 (-15 -3485 ($ (-594 (-1004 |#1| |#2| |#3|)))) (-15 -3484 ((-594 (-1004 |#1| |#2| |#3|)) $)) (-15 -4078 (|#3| $ |#3| (-860)))))
+((-3486 (((-594 (-2 (|:| -1813 (-1092 |#1|)) (|:| -3497 (-594 (-887 |#1|))))) (-594 (-887 |#1|)) (-110) (-110)) 75) (((-594 (-2 (|:| -1813 (-1092 |#1|)) (|:| -3497 (-594 (-887 |#1|))))) (-594 (-887 |#1|))) 77) (((-594 (-2 (|:| -1813 (-1092 |#1|)) (|:| -3497 (-594 (-887 |#1|))))) (-594 (-887 |#1|)) (-110)) 76)))
+(((-1007 |#1| |#2|) (-10 -7 (-15 -3486 ((-594 (-2 (|:| -1813 (-1092 |#1|)) (|:| -3497 (-594 (-887 |#1|))))) (-594 (-887 |#1|)) (-110))) (-15 -3486 ((-594 (-2 (|:| -1813 (-1092 |#1|)) (|:| -3497 (-594 (-887 |#1|))))) (-594 (-887 |#1|)))) (-15 -3486 ((-594 (-2 (|:| -1813 (-1092 |#1|)) (|:| -3497 (-594 (-887 |#1|))))) (-594 (-887 |#1|)) (-110) (-110)))) (-13 (-289) (-140)) (-594 (-1098))) (T -1007))
+((-3486 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-5 *2 (-594 (-2 (|:| -1813 (-1092 *5)) (|:| -3497 (-594 (-887 *5)))))) (-5 *1 (-1007 *5 *6)) (-5 *3 (-594 (-887 *5))) (-14 *6 (-594 (-1098))))) (-3486 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-5 *2 (-594 (-2 (|:| -1813 (-1092 *4)) (|:| -3497 (-594 (-887 *4)))))) (-5 *1 (-1007 *4 *5)) (-5 *3 (-594 (-887 *4))) (-14 *5 (-594 (-1098))))) (-3486 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-5 *2 (-594 (-2 (|:| -1813 (-1092 *5)) (|:| -3497 (-594 (-887 *5)))))) (-5 *1 (-1007 *5 *6)) (-5 *3 (-594 (-887 *5))) (-14 *6 (-594 (-1098))))))
+(-10 -7 (-15 -3486 ((-594 (-2 (|:| -1813 (-1092 |#1|)) (|:| -3497 (-594 (-887 |#1|))))) (-594 (-887 |#1|)) (-110))) (-15 -3486 ((-594 (-2 (|:| -1813 (-1092 |#1|)) (|:| -3497 (-594 (-887 |#1|))))) (-594 (-887 |#1|)))) (-15 -3486 ((-594 (-2 (|:| -1813 (-1092 |#1|)) (|:| -3497 (-594 (-887 |#1|))))) (-594 (-887 |#1|)) (-110) (-110))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 126)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-344)))) (-2118 (($ $) NIL (|has| |#1| (-344)))) (-2116 (((-110) $) NIL (|has| |#1| (-344)))) (-1851 (((-637 |#1|) (-1179 $)) NIL) (((-637 |#1|)) 115)) (-3608 ((|#1| $) 119)) (-1741 (((-1107 (-860) (-719)) (-516)) NIL (|has| |#1| (-331)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL (|has| |#1| (-344)))) (-4245 (((-386 $) $) NIL (|has| |#1| (-344)))) (-1655 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3395 (((-719)) 40 (|has| |#1| (-349)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-516) #1="failed") $) NIL (|has| |#1| (-975 (-516)))) (((-3 (-388 (-516)) #1#) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-3 |#1| #1#) $) NIL)) (-3431 (((-516) $) NIL (|has| |#1| (-975 (-516)))) (((-388 (-516)) $) NIL (|has| |#1| (-975 (-388 (-516))))) ((|#1| $) NIL)) (-1861 (($ (-1179 |#1|) (-1179 $)) NIL) (($ (-1179 |#1|)) 43)) (-1739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-331)))) (-2824 (($ $ $) NIL (|has| |#1| (-344)))) (-1850 (((-637 |#1|) $ (-1179 $)) NIL) (((-637 |#1|) $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) 106) (((-637 |#1|) (-637 $)) 101)) (-4121 (($ |#2|) 61) (((-3 $ "failed") (-388 |#2|)) NIL (|has| |#1| (-344)))) (-3741 (((-3 $ "failed") $) NIL)) (-3368 (((-860)) 77)) (-3258 (($) 44 (|has| |#1| (-349)))) (-2823 (($ $ $) NIL (|has| |#1| (-344)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL (|has| |#1| (-344)))) (-3097 (($) NIL (|has| |#1| (-331)))) (-1746 (((-110) $) NIL (|has| |#1| (-331)))) (-1836 (($ $ (-719)) NIL (|has| |#1| (-331))) (($ $) NIL (|has| |#1| (-331)))) (-4005 (((-110) $) NIL (|has| |#1| (-344)))) (-4050 (((-860) $) NIL (|has| |#1| (-331))) (((-780 (-860)) $) NIL (|has| |#1| (-331)))) (-2436 (((-110) $) NIL)) (-3391 ((|#1| $) NIL)) (-3723 (((-3 $ "failed") $) NIL (|has| |#1| (-331)))) (-1652 (((-3 (-594 $) #2="failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-2073 ((|#2| $) 84 (|has| |#1| (-344)))) (-2069 (((-860) $) 131 (|has| |#1| (-349)))) (-3343 ((|#2| $) 58)) (-1963 (($ (-594 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL (|has| |#1| (-344)))) (-3724 (($) NIL (|has| |#1| (-331)) CONST)) (-2426 (($ (-860)) 125 (|has| |#1| (-349)))) (-3514 (((-1045) $) NIL)) (-2435 (($) 121)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#1| (-344)))) (-3419 (($ (-594 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1742 (((-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516))))) NIL (|has| |#1| (-331)))) (-4011 (((-386 $) $) NIL (|has| |#1| (-344)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#1| (-344)))) (-3740 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-1654 (((-719) $) NIL (|has| |#1| (-344)))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-344)))) (-4036 ((|#1| (-1179 $)) NIL) ((|#1|) 109)) (-1837 (((-719) $) NIL (|has| |#1| (-331))) (((-3 (-719) "failed") $ $) NIL (|has| |#1| (-331)))) (-4089 (($ $) NIL (-3810 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-331)))) (($ $ (-719)) NIL (-3810 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-331)))) (($ $ (-1098)) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1098))))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1098))))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1098))))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1098))))) (($ $ (-1 |#1| |#1|) (-719)) NIL (|has| |#1| (-344))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-344)))) (-2434 (((-637 |#1|) (-1179 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-344)))) (-3459 ((|#2|) 73)) (-1740 (($) NIL (|has| |#1| (-331)))) (-3497 (((-1179 |#1|) $ (-1179 $)) 89) (((-637 |#1|) (-1179 $) (-1179 $)) NIL) (((-1179 |#1|) $) 71) (((-637 |#1|) (-1179 $)) 85)) (-4246 (((-1179 |#1|) $) NIL) (($ (-1179 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2966 (((-3 (-1179 $) "failed") (-637 $)) NIL (|has| |#1| (-331)))) (-4233 (((-805) $) 57) (($ (-516)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-344))) (($ (-388 (-516))) NIL (-3810 (|has| |#1| (-344)) (|has| |#1| (-975 (-388 (-516))))))) (-2965 (($ $) NIL (|has| |#1| (-331))) (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2632 ((|#2| $) 82)) (-3385 (((-719)) 75)) (-2071 (((-1179 $)) 81)) (-2117 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| |#1| (-344)))) (-2920 (($) 30 T CONST)) (-2927 (($) 19 T CONST)) (-2932 (($ $) NIL (-3810 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-331)))) (($ $ (-719)) NIL (-3810 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-331)))) (($ $ (-1098)) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1098))))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1098))))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1098))))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1098))))) (($ $ (-1 |#1| |#1|) (-719)) NIL (|has| |#1| (-344))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-344)))) (-3317 (((-110) $ $) 63)) (-4224 (($ $ $) NIL (|has| |#1| (-344)))) (-4116 (($ $) 67) (($ $ $) NIL)) (-4118 (($ $ $) 65)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| |#1| (-344)))) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-388 (-516)) $) NIL (|has| |#1| (-344))) (($ $ (-388 (-516))) NIL (|has| |#1| (-344)))))
+(((-1008 |#1| |#2| |#3|) (-673 |#1| |#2|) (-162) (-1155 |#1|) |#2|) (T -1008))
+NIL
+(-673 |#1| |#2|)
+((-4011 (((-386 |#3|) |#3|) 18)))
+(((-1009 |#1| |#2| |#3|) (-10 -7 (-15 -4011 ((-386 |#3|) |#3|))) (-1155 (-388 (-516))) (-13 (-344) (-140) (-673 (-388 (-516)) |#1|)) (-1155 |#2|)) (T -1009))
+((-4011 (*1 *2 *3) (-12 (-4 *4 (-1155 (-388 (-516)))) (-4 *5 (-13 (-344) (-140) (-673 (-388 (-516)) *4))) (-5 *2 (-386 *3)) (-5 *1 (-1009 *4 *5 *3)) (-4 *3 (-1155 *5)))))
+(-10 -7 (-15 -4011 ((-386 |#3|) |#3|)))
+((-4011 (((-386 |#3|) |#3|) 19)))
+(((-1010 |#1| |#2| |#3|) (-10 -7 (-15 -4011 ((-386 |#3|) |#3|))) (-1155 (-388 (-887 (-516)))) (-13 (-344) (-140) (-673 (-388 (-887 (-516))) |#1|)) (-1155 |#2|)) (T -1010))
+((-4011 (*1 *2 *3) (-12 (-4 *4 (-1155 (-388 (-887 (-516))))) (-4 *5 (-13 (-344) (-140) (-673 (-388 (-887 (-516))) *4))) (-5 *2 (-386 *3)) (-5 *1 (-1010 *4 *5 *3)) (-4 *3 (-1155 *5)))))
+(-10 -7 (-15 -4011 ((-386 |#3|) |#3|)))
+((-2828 (((-110) $ $) NIL)) (-3596 (($ $ $) 14)) (-3597 (($ $ $) 15)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-3487 (($) 6)) (-4246 (((-1098) $) 18)) (-4233 (((-805) $) 12)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 13)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 8)))
+(((-1011) (-13 (-795) (-10 -8 (-15 -3487 ($)) (-15 -4246 ((-1098) $))))) (T -1011))
+((-3487 (*1 *1) (-5 *1 (-1011))) (-4246 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1011)))))
+(-13 (-795) (-10 -8 (-15 -3487 ($)) (-15 -4246 ((-1098) $))))
+((-3490 ((|#1| |#1| (-1 (-516) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-110) |#1|)) 20)) (-3488 (((-1185)) 15)) (-3489 (((-594 |#1|)) 9)))
+(((-1012 |#1|) (-10 -7 (-15 -3488 ((-1185))) (-15 -3489 ((-594 |#1|))) (-15 -3490 (|#1| |#1| (-1 (-110) |#1|))) (-15 -3490 (|#1| |#1| (-1 (-516) |#1| |#1|)))) (-129)) (T -1012))
+((-3490 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-516) *2 *2)) (-4 *2 (-129)) (-5 *1 (-1012 *2)))) (-3490 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *2)) (-4 *2 (-129)) (-5 *1 (-1012 *2)))) (-3489 (*1 *2) (-12 (-5 *2 (-594 *3)) (-5 *1 (-1012 *3)) (-4 *3 (-129)))) (-3488 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1012 *3)) (-4 *3 (-129)))))
+(-10 -7 (-15 -3488 ((-1185))) (-15 -3489 ((-594 |#1|))) (-15 -3490 (|#1| |#1| (-1 (-110) |#1|))) (-15 -3490 (|#1| |#1| (-1 (-516) |#1| |#1|))))
+((-3493 (($ (-106) $) 16)) (-3494 (((-3 (-106) "failed") (-1098) $) 15)) (-3847 (($) 7)) (-3492 (($) 17)) (-3491 (($) 18)) (-3495 (((-594 (-164)) $) 10)) (-4233 (((-805) $) 21)))
+(((-1013) (-13 (-571 (-805)) (-10 -8 (-15 -3847 ($)) (-15 -3495 ((-594 (-164)) $)) (-15 -3494 ((-3 (-106) "failed") (-1098) $)) (-15 -3493 ($ (-106) $)) (-15 -3492 ($)) (-15 -3491 ($))))) (T -1013))
+((-3847 (*1 *1) (-5 *1 (-1013))) (-3495 (*1 *2 *1) (-12 (-5 *2 (-594 (-164))) (-5 *1 (-1013)))) (-3494 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1098)) (-5 *2 (-106)) (-5 *1 (-1013)))) (-3493 (*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-1013)))) (-3492 (*1 *1) (-5 *1 (-1013))) (-3491 (*1 *1) (-5 *1 (-1013))))
+(-13 (-571 (-805)) (-10 -8 (-15 -3847 ($)) (-15 -3495 ((-594 (-164)) $)) (-15 -3494 ((-3 (-106) "failed") (-1098) $)) (-15 -3493 ($ (-106) $)) (-15 -3492 ($)) (-15 -3491 ($))))
+((-3496 (((-1179 (-637 |#1|)) (-594 (-637 |#1|))) 42) (((-1179 (-637 (-887 |#1|))) (-594 (-1098)) (-637 (-887 |#1|))) 63) (((-1179 (-637 (-388 (-887 |#1|)))) (-594 (-1098)) (-637 (-388 (-887 |#1|)))) 79)) (-3497 (((-1179 |#1|) (-637 |#1|) (-594 (-637 |#1|))) 36)))
+(((-1014 |#1|) (-10 -7 (-15 -3496 ((-1179 (-637 (-388 (-887 |#1|)))) (-594 (-1098)) (-637 (-388 (-887 |#1|))))) (-15 -3496 ((-1179 (-637 (-887 |#1|))) (-594 (-1098)) (-637 (-887 |#1|)))) (-15 -3496 ((-1179 (-637 |#1|)) (-594 (-637 |#1|)))) (-15 -3497 ((-1179 |#1|) (-637 |#1|) (-594 (-637 |#1|))))) (-344)) (T -1014))
+((-3497 (*1 *2 *3 *4) (-12 (-5 *4 (-594 (-637 *5))) (-5 *3 (-637 *5)) (-4 *5 (-344)) (-5 *2 (-1179 *5)) (-5 *1 (-1014 *5)))) (-3496 (*1 *2 *3) (-12 (-5 *3 (-594 (-637 *4))) (-4 *4 (-344)) (-5 *2 (-1179 (-637 *4))) (-5 *1 (-1014 *4)))) (-3496 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-1098))) (-4 *5 (-344)) (-5 *2 (-1179 (-637 (-887 *5)))) (-5 *1 (-1014 *5)) (-5 *4 (-637 (-887 *5))))) (-3496 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-1098))) (-4 *5 (-344)) (-5 *2 (-1179 (-637 (-388 (-887 *5))))) (-5 *1 (-1014 *5)) (-5 *4 (-637 (-388 (-887 *5)))))))
+(-10 -7 (-15 -3496 ((-1179 (-637 (-388 (-887 |#1|)))) (-594 (-1098)) (-637 (-388 (-887 |#1|))))) (-15 -3496 ((-1179 (-637 (-887 |#1|))) (-594 (-1098)) (-637 (-887 |#1|)))) (-15 -3496 ((-1179 (-637 |#1|)) (-594 (-637 |#1|)))) (-15 -3497 ((-1179 |#1|) (-637 |#1|) (-594 (-637 |#1|)))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1493 (((-594 (-719)) $) NIL) (((-594 (-719)) $ (-1098)) NIL)) (-1527 (((-719) $) NIL) (((-719) $ (-1098)) NIL)) (-3347 (((-594 (-1016 (-1098))) $) NIL)) (-3349 (((-1092 $) $ (-1016 (-1098))) NIL) (((-1092 |#1|) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-2118 (($ $) NIL (|has| |#1| (-523)))) (-2116 (((-110) $) NIL (|has| |#1| (-523)))) (-3083 (((-719) $) NIL) (((-719) $ (-594 (-1016 (-1098)))) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-4053 (($ $) NIL (|has| |#1| (-432)))) (-4245 (((-386 $) $) NIL (|has| |#1| (-432)))) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-1489 (($ $) NIL)) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#1| #2="failed") $) NIL) (((-3 (-388 (-516)) #2#) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-3 (-516) #2#) $) NIL (|has| |#1| (-975 (-516)))) (((-3 (-1016 (-1098)) #2#) $) NIL) (((-3 (-1098) #2#) $) NIL) (((-3 (-1050 |#1| (-1098)) #2#) $) NIL)) (-3431 ((|#1| $) NIL) (((-388 (-516)) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-516) $) NIL (|has| |#1| (-975 (-516)))) (((-1016 (-1098)) $) NIL) (((-1098) $) NIL) (((-1050 |#1| (-1098)) $) NIL)) (-4035 (($ $ $ (-1016 (-1098))) NIL (|has| |#1| (-162)))) (-4235 (($ $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3777 (($ $) NIL (|has| |#1| (-432))) (($ $ (-1016 (-1098))) NIL (|has| |#1| (-432)))) (-3082 (((-594 $) $) NIL)) (-4005 (((-110) $) NIL (|has| |#1| (-851)))) (-1671 (($ $ |#1| (-502 (-1016 (-1098))) $) NIL)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (-12 (|has| (-1016 (-1098)) (-827 (-359))) (|has| |#1| (-827 (-359))))) (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (-12 (|has| (-1016 (-1098)) (-827 (-516))) (|has| |#1| (-827 (-516)))))) (-4050 (((-719) $ (-1098)) NIL) (((-719) $) NIL)) (-2436 (((-110) $) NIL)) (-2444 (((-719) $) NIL)) (-3350 (($ (-1092 |#1|) (-1016 (-1098))) NIL) (($ (-1092 $) (-1016 (-1098))) NIL)) (-3085 (((-594 $) $) NIL)) (-4213 (((-110) $) NIL)) (-3157 (($ |#1| (-502 (-1016 (-1098)))) NIL) (($ $ (-1016 (-1098)) (-719)) NIL) (($ $ (-594 (-1016 (-1098))) (-594 (-719))) NIL)) (-4041 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $ (-1016 (-1098))) NIL)) (-3084 (((-502 (-1016 (-1098))) $) NIL) (((-719) $ (-1016 (-1098))) NIL) (((-594 (-719)) $ (-594 (-1016 (-1098)))) NIL)) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-1672 (($ (-1 (-502 (-1016 (-1098))) (-502 (-1016 (-1098)))) $) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-1528 (((-1 $ (-719)) (-1098)) NIL) (((-1 $ (-719)) $) NIL (|has| |#1| (-216)))) (-3348 (((-3 (-1016 (-1098)) #3="failed") $) NIL)) (-3158 (($ $) NIL)) (-3449 ((|#1| $) NIL)) (-1491 (((-1016 (-1098)) $) NIL)) (-1963 (($ (-594 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3513 (((-1081) $) NIL)) (-1492 (((-110) $) NIL)) (-3087 (((-3 (-594 $) #3#) $) NIL)) (-3086 (((-3 (-594 $) #3#) $) NIL)) (-3088 (((-3 (-2 (|:| |var| (-1016 (-1098))) (|:| -2427 (-719))) #3#) $) NIL)) (-1490 (($ $) NIL)) (-3514 (((-1045) $) NIL)) (-1866 (((-110) $) NIL)) (-1865 ((|#1| $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#1| (-432)))) (-3419 (($ (-594 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-4011 (((-386 $) $) NIL (|has| |#1| (-851)))) (-3740 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-4046 (($ $ (-594 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL) (($ $ (-1016 (-1098)) |#1|) NIL) (($ $ (-594 (-1016 (-1098))) (-594 |#1|)) NIL) (($ $ (-1016 (-1098)) $) NIL) (($ $ (-594 (-1016 (-1098))) (-594 $)) NIL) (($ $ (-1098) $) NIL (|has| |#1| (-216))) (($ $ (-594 (-1098)) (-594 $)) NIL (|has| |#1| (-216))) (($ $ (-1098) |#1|) NIL (|has| |#1| (-216))) (($ $ (-594 (-1098)) (-594 |#1|)) NIL (|has| |#1| (-216)))) (-4036 (($ $ (-1016 (-1098))) NIL (|has| |#1| (-162)))) (-4089 (($ $ (-1016 (-1098))) NIL) (($ $ (-594 (-1016 (-1098)))) NIL) (($ $ (-1016 (-1098)) (-719)) NIL) (($ $ (-594 (-1016 (-1098))) (-594 (-719))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1098)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1494 (((-594 (-1098)) $) NIL)) (-4223 (((-502 (-1016 (-1098))) $) NIL) (((-719) $ (-1016 (-1098))) NIL) (((-594 (-719)) $ (-594 (-1016 (-1098)))) NIL) (((-719) $ (-1098)) NIL)) (-4246 (((-831 (-359)) $) NIL (-12 (|has| (-1016 (-1098)) (-572 (-831 (-359)))) (|has| |#1| (-572 (-831 (-359)))))) (((-831 (-516)) $) NIL (-12 (|has| (-1016 (-1098)) (-572 (-831 (-516)))) (|has| |#1| (-572 (-831 (-516)))))) (((-505) $) NIL (-12 (|has| (-1016 (-1098)) (-572 (-505))) (|has| |#1| (-572 (-505)))))) (-3081 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-1016 (-1098))) NIL (|has| |#1| (-432)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-851))))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ |#1|) NIL) (($ (-1016 (-1098))) NIL) (($ (-1098)) NIL) (($ (-1050 |#1| (-1098))) NIL) (($ (-388 (-516))) NIL (-3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-975 (-388 (-516)))))) (($ $) NIL (|has| |#1| (-523)))) (-4096 (((-594 |#1|) $) NIL)) (-3959 ((|#1| $ (-502 (-1016 (-1098)))) NIL) (($ $ (-1016 (-1098)) (-719)) NIL) (($ $ (-594 (-1016 (-1098))) (-594 (-719))) NIL)) (-2965 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| $ (-138)) (|has| |#1| (-851))) (|has| |#1| (-138))))) (-3385 (((-719)) NIL)) (-1670 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-2117 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($ $ (-1016 (-1098))) NIL) (($ $ (-594 (-1016 (-1098)))) NIL) (($ $ (-1016 (-1098)) (-719)) NIL) (($ $ (-594 (-1016 (-1098))) (-594 (-719))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1098)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#1| (-795)))) (-4224 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516))))) (($ (-388 (-516)) $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1015 |#1|) (-13 (-235 |#1| (-1098) (-1016 (-1098)) (-502 (-1016 (-1098)))) (-975 (-1050 |#1| (-1098)))) (-984)) (T -1015))
+NIL
+(-13 (-235 |#1| (-1098) (-1016 (-1098)) (-502 (-1016 (-1098)))) (-975 (-1050 |#1| (-1098))))
+((-2828 (((-110) $ $) NIL)) (-1527 (((-719) $) NIL)) (-4110 ((|#1| $) 10)) (-3432 (((-3 |#1| "failed") $) NIL)) (-3431 ((|#1| $) NIL)) (-4050 (((-719) $) 11)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-1528 (($ |#1| (-719)) 9)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4089 (($ $) NIL) (($ $ (-719)) NIL)) (-4233 (((-805) $) NIL) (($ |#1|) NIL)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 15)))
+(((-1016 |#1|) (-248 |#1|) (-795)) (T -1016))
+NIL
+(-248 |#1|)
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4015 (($ |#1| |#1|) 15)) (-4234 (((-594 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-793)))) (-3501 ((|#1| $) 10)) (-3503 ((|#1| $) 9)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-3499 (((-516) $) 14)) (-3500 ((|#1| $) 12)) (-3502 ((|#1| $) 11)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-4239 (((-594 |#1|) $) 36 (|has| |#1| (-793))) (((-594 |#1|) (-594 $)) 35 (|has| |#1| (-793)))) (-4246 (($ |#1|) 26)) (-4233 (((-805) $) 25 (|has| |#1| (-1027)))) (-4016 (($ |#1| |#1|) 8)) (-3504 (($ $ (-516)) 16)) (-3317 (((-110) $ $) 19 (|has| |#1| (-1027)))))
+(((-1017 |#1|) (-13 (-1021 |#1|) (-10 -7 (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-1022 |#1| (-594 |#1|))) |%noBranch|))) (-1134)) (T -1017))
+NIL
+(-13 (-1021 |#1|) (-10 -7 (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-1022 |#1| (-594 |#1|))) |%noBranch|)))
+((-4234 (((-594 |#2|) (-1 |#2| |#1|) (-1017 |#1|)) 24 (|has| |#1| (-793))) (((-1017 |#2|) (-1 |#2| |#1|) (-1017 |#1|)) 14)))
+(((-1018 |#1| |#2|) (-10 -7 (-15 -4234 ((-1017 |#2|) (-1 |#2| |#1|) (-1017 |#1|))) (IF (|has| |#1| (-793)) (-15 -4234 ((-594 |#2|) (-1 |#2| |#1|) (-1017 |#1|))) |%noBranch|)) (-1134) (-1134)) (T -1018))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1017 *5)) (-4 *5 (-793)) (-4 *5 (-1134)) (-4 *6 (-1134)) (-5 *2 (-594 *6)) (-5 *1 (-1018 *5 *6)))) (-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1017 *5)) (-4 *5 (-1134)) (-4 *6 (-1134)) (-5 *2 (-1017 *6)) (-5 *1 (-1018 *5 *6)))))
+(-10 -7 (-15 -4234 ((-1017 |#2|) (-1 |#2| |#1|) (-1017 |#1|))) (IF (|has| |#1| (-793)) (-15 -4234 ((-594 |#2|) (-1 |#2| |#1|) (-1017 |#1|))) |%noBranch|))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4110 (((-1098) $) 11)) (-4015 (((-1017 |#1|) $) 12)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-3498 (($ (-1098) (-1017 |#1|)) 10)) (-4233 (((-805) $) 20 (|has| |#1| (-1027)))) (-3317 (((-110) $ $) 15 (|has| |#1| (-1027)))))
+(((-1019 |#1|) (-13 (-1134) (-10 -8 (-15 -3498 ($ (-1098) (-1017 |#1|))) (-15 -4110 ((-1098) $)) (-15 -4015 ((-1017 |#1|) $)) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|))) (-1134)) (T -1019))
+((-3498 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-1017 *4)) (-4 *4 (-1134)) (-5 *1 (-1019 *4)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1019 *3)) (-4 *3 (-1134)))) (-4015 (*1 *2 *1) (-12 (-5 *2 (-1017 *3)) (-5 *1 (-1019 *3)) (-4 *3 (-1134)))))
+(-13 (-1134) (-10 -8 (-15 -3498 ($ (-1098) (-1017 |#1|))) (-15 -4110 ((-1098) $)) (-15 -4015 ((-1017 |#1|) $)) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|)))
+((-4234 (((-1019 |#2|) (-1 |#2| |#1|) (-1019 |#1|)) 19)))
+(((-1020 |#1| |#2|) (-10 -7 (-15 -4234 ((-1019 |#2|) (-1 |#2| |#1|) (-1019 |#1|)))) (-1134) (-1134)) (T -1020))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1019 *5)) (-4 *5 (-1134)) (-4 *6 (-1134)) (-5 *2 (-1019 *6)) (-5 *1 (-1020 *5 *6)))))
+(-10 -7 (-15 -4234 ((-1019 |#2|) (-1 |#2| |#1|) (-1019 |#1|))))
+((-4015 (($ |#1| |#1|) 7)) (-3501 ((|#1| $) 10)) (-3503 ((|#1| $) 12)) (-3499 (((-516) $) 8)) (-3500 ((|#1| $) 9)) (-3502 ((|#1| $) 11)) (-4246 (($ |#1|) 6)) (-4016 (($ |#1| |#1|) 14)) (-3504 (($ $ (-516)) 13)))
+(((-1021 |#1|) (-133) (-1134)) (T -1021))
+((-4016 (*1 *1 *2 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1134)))) (-3504 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-4 *1 (-1021 *3)) (-4 *3 (-1134)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1134)))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1134)))) (-3501 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1134)))) (-3500 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1134)))) (-3499 (*1 *2 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1134)) (-5 *2 (-516)))) (-4015 (*1 *1 *2 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1134)))) (-4246 (*1 *1 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1134)))))
+(-13 (-1134) (-10 -8 (-15 -4016 ($ |t#1| |t#1|)) (-15 -3504 ($ $ (-516))) (-15 -3503 (|t#1| $)) (-15 -3502 (|t#1| $)) (-15 -3501 (|t#1| $)) (-15 -3500 (|t#1| $)) (-15 -3499 ((-516) $)) (-15 -4015 ($ |t#1| |t#1|)) (-15 -4246 ($ |t#1|))))
+(((-1134) . T))
+((-4015 (($ |#1| |#1|) 7)) (-4234 ((|#2| (-1 |#1| |#1|) $) 16)) (-3501 ((|#1| $) 10)) (-3503 ((|#1| $) 12)) (-3499 (((-516) $) 8)) (-3500 ((|#1| $) 9)) (-3502 ((|#1| $) 11)) (-4239 ((|#2| (-594 $)) 18) ((|#2| $) 17)) (-4246 (($ |#1|) 6)) (-4016 (($ |#1| |#1|) 14)) (-3504 (($ $ (-516)) 13)))
+(((-1022 |#1| |#2|) (-133) (-793) (-1072 |t#1|)) (T -1022))
+((-4239 (*1 *2 *3) (-12 (-5 *3 (-594 *1)) (-4 *1 (-1022 *4 *2)) (-4 *4 (-793)) (-4 *2 (-1072 *4)))) (-4239 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *2)) (-4 *3 (-793)) (-4 *2 (-1072 *3)))) (-4234 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1022 *4 *2)) (-4 *4 (-793)) (-4 *2 (-1072 *4)))))
+(-13 (-1021 |t#1|) (-10 -8 (-15 -4239 (|t#2| (-594 $))) (-15 -4239 (|t#2| $)) (-15 -4234 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-1021 |#1|) . T) ((-1134) . T))
+((-2828 (((-110) $ $) NIL)) (-1871 (($) NIL (|has| |#1| (-349)))) (-3505 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-3507 (($ $ $) 72)) (-3506 (((-110) $ $) 73)) (-1217 (((-110) $ (-719)) NIL)) (-3395 (((-719)) NIL (|has| |#1| (-349)))) (-3510 (($ (-594 |#1|)) NIL) (($) 13)) (-1581 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3992 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3815 (($) NIL T CONST)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3684 (($ |#1| $) 67 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3685 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4269)))) (-3258 (($) NIL (|has| |#1| (-349)))) (-2018 (((-594 |#1|) $) 19 (|has| $ (-6 -4269)))) (-3512 (((-110) $ $) NIL)) (-4001 (((-110) $ (-719)) NIL)) (-3596 ((|#1| $) 57 (|has| |#1| (-795)))) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 66 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3597 ((|#1| $) 55 (|has| |#1| (-795)))) (-2022 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 34)) (-2069 (((-860) $) NIL (|has| |#1| (-349)))) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL)) (-3509 (($ $ $) 70)) (-1280 ((|#1| $) 25)) (-3889 (($ |#1| $) 65)) (-2426 (($ (-860)) NIL (|has| |#1| (-349)))) (-3514 (((-1045) $) NIL)) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 31)) (-1281 ((|#1| $) 27)) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) 21)) (-3847 (($) 11)) (-3508 (($ $ |#1|) NIL) (($ $ $) 71)) (-1473 (($) NIL) (($ (-594 |#1|)) NIL)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3678 (($ $) 16)) (-4246 (((-505) $) 52 (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) 61)) (-1872 (($ $) NIL (|has| |#1| (-349)))) (-4233 (((-805) $) NIL)) (-1873 (((-719) $) NIL)) (-3511 (($ (-594 |#1|)) NIL) (($) 12)) (-1282 (($ (-594 |#1|)) NIL)) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 54)) (-4232 (((-719) $) 10 (|has| $ (-6 -4269)))))
+(((-1023 |#1|) (-407 |#1|) (-1027)) (T -1023))
+NIL
+(-407 |#1|)
+((-3505 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3507 (($ $ $) 10)) (-3508 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1024 |#1| |#2|) (-10 -8 (-15 -3505 (|#1| |#2| |#1|)) (-15 -3505 (|#1| |#1| |#2|)) (-15 -3505 (|#1| |#1| |#1|)) (-15 -3507 (|#1| |#1| |#1|)) (-15 -3508 (|#1| |#1| |#2|)) (-15 -3508 (|#1| |#1| |#1|))) (-1025 |#2|) (-1027)) (T -1024))
+NIL
+(-10 -8 (-15 -3505 (|#1| |#2| |#1|)) (-15 -3505 (|#1| |#1| |#2|)) (-15 -3505 (|#1| |#1| |#1|)) (-15 -3507 (|#1| |#1| |#1|)) (-15 -3508 (|#1| |#1| |#2|)) (-15 -3508 (|#1| |#1| |#1|)))
+((-2828 (((-110) $ $) 7)) (-3505 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3507 (($ $ $) 20)) (-3506 (((-110) $ $) 19)) (-1217 (((-110) $ (-719)) 35)) (-3510 (($) 25) (($ (-594 |#1|)) 24)) (-3992 (($ (-1 (-110) |#1|) $) 56 (|has| $ (-6 -4269)))) (-3815 (($) 36 T CONST)) (-1349 (($ $) 59 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3685 (($ |#1| $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4269)))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4269)))) (-2018 (((-594 |#1|) $) 43 (|has| $ (-6 -4269)))) (-3512 (((-110) $ $) 28)) (-4001 (((-110) $ (-719)) 34)) (-2445 (((-594 |#1|) $) 44 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 46 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2022 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 38)) (-3998 (((-110) $ (-719)) 33)) (-3513 (((-1081) $) 9)) (-3509 (($ $ $) 23)) (-3514 (((-1045) $) 10)) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 52)) (-2020 (((-110) (-1 (-110) |#1|) $) 41 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 |#1|) (-594 |#1|)) 50 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 48 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 (-275 |#1|))) 47 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 29)) (-3682 (((-110) $) 32)) (-3847 (($) 31)) (-3508 (($ $ $) 22) (($ $ |#1|) 21)) (-2019 (((-719) |#1| $) 45 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#1|) $) 42 (|has| $ (-6 -4269)))) (-3678 (($ $) 30)) (-4246 (((-505) $) 60 (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) 51)) (-4233 (((-805) $) 11)) (-3511 (($) 27) (($ (-594 |#1|)) 26)) (-2021 (((-110) (-1 (-110) |#1|) $) 40 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 6)) (-4232 (((-719) $) 37 (|has| $ (-6 -4269)))))
+(((-1025 |#1|) (-133) (-1027)) (T -1025))
+((-3512 (*1 *2 *1 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1027)) (-5 *2 (-110)))) (-3511 (*1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-3511 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1027)) (-4 *1 (-1025 *3)))) (-3510 (*1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-3510 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1027)) (-4 *1 (-1025 *3)))) (-3509 (*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-3508 (*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-3508 (*1 *1 *1 *2) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-3507 (*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-3506 (*1 *2 *1 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1027)) (-5 *2 (-110)))) (-3505 (*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-3505 (*1 *1 *1 *2) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-3505 (*1 *1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
+(-13 (-1027) (-144 |t#1|) (-10 -8 (-6 -4259) (-15 -3512 ((-110) $ $)) (-15 -3511 ($)) (-15 -3511 ($ (-594 |t#1|))) (-15 -3510 ($)) (-15 -3510 ($ (-594 |t#1|))) (-15 -3509 ($ $ $)) (-15 -3508 ($ $ $)) (-15 -3508 ($ $ |t#1|)) (-15 -3507 ($ $ $)) (-15 -3506 ((-110) $ $)) (-15 -3505 ($ $ $)) (-15 -3505 ($ $ |t#1|)) (-15 -3505 ($ |t#1| $))))
+(((-33) . T) ((-99) . T) ((-571 (-805)) . T) ((-144 |#1|) . T) ((-572 (-505)) |has| |#1| (-572 (-505))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) . T) ((-1134) . T))
+((-3513 (((-1081) $) 10)) (-3514 (((-1045) $) 8)))
+(((-1026 |#1|) (-10 -8 (-15 -3513 ((-1081) |#1|)) (-15 -3514 ((-1045) |#1|))) (-1027)) (T -1026))
+NIL
+(-10 -8 (-15 -3513 ((-1081) |#1|)) (-15 -3514 ((-1045) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-3317 (((-110) $ $) 6)))
+(((-1027) (-133)) (T -1027))
+((-3514 (*1 *2 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-1045)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-1081)))))
+(-13 (-99) (-571 (-805)) (-10 -8 (-15 -3514 ((-1045) $)) (-15 -3513 ((-1081) $))))
+(((-99) . T) ((-571 (-805)) . T))
+((-2828 (((-110) $ $) NIL)) (-3395 (((-719)) 30)) (-3518 (($ (-594 (-860))) 52)) (-3520 (((-3 $ #1="failed") $ (-860) (-860)) 58)) (-3258 (($) 32)) (-3516 (((-110) (-860) $) 35)) (-2069 (((-860) $) 50)) (-3513 (((-1081) $) NIL)) (-2426 (($ (-860)) 31)) (-3521 (((-3 $ #1#) $ (-860)) 55)) (-3514 (((-1045) $) NIL)) (-3517 (((-1179 $)) 40)) (-3519 (((-594 (-860)) $) 24)) (-3515 (((-719) $ (-860) (-860)) 56)) (-4233 (((-805) $) 29)) (-3317 (((-110) $ $) 21)))
+(((-1028 |#1| |#2|) (-13 (-349) (-10 -8 (-15 -3521 ((-3 $ #1="failed") $ (-860))) (-15 -3520 ((-3 $ #1#) $ (-860) (-860))) (-15 -3519 ((-594 (-860)) $)) (-15 -3518 ($ (-594 (-860)))) (-15 -3517 ((-1179 $))) (-15 -3516 ((-110) (-860) $)) (-15 -3515 ((-719) $ (-860) (-860))))) (-860) (-860)) (T -1028))
+((-3521 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-860)) (-5 *1 (-1028 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3520 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-860)) (-5 *1 (-1028 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3519 (*1 *2 *1) (-12 (-5 *2 (-594 (-860))) (-5 *1 (-1028 *3 *4)) (-14 *3 (-860)) (-14 *4 (-860)))) (-3518 (*1 *1 *2) (-12 (-5 *2 (-594 (-860))) (-5 *1 (-1028 *3 *4)) (-14 *3 (-860)) (-14 *4 (-860)))) (-3517 (*1 *2) (-12 (-5 *2 (-1179 (-1028 *3 *4))) (-5 *1 (-1028 *3 *4)) (-14 *3 (-860)) (-14 *4 (-860)))) (-3516 (*1 *2 *3 *1) (-12 (-5 *3 (-860)) (-5 *2 (-110)) (-5 *1 (-1028 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3515 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-860)) (-5 *2 (-719)) (-5 *1 (-1028 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-349) (-10 -8 (-15 -3521 ((-3 $ #1="failed") $ (-860))) (-15 -3520 ((-3 $ #1#) $ (-860) (-860))) (-15 -3519 ((-594 (-860)) $)) (-15 -3518 ($ (-594 (-860)))) (-15 -3517 ((-1179 $))) (-15 -3516 ((-110) (-860) $)) (-15 -3515 ((-719) $ (-860) (-860)))))
+((-2828 (((-110) $ $) NIL)) (-3531 (((-110) $) NIL)) (-3527 (((-1098) $) NIL)) (-3532 (((-110) $) NIL)) (-3817 (((-1081) $) NIL)) (-3534 (((-110) $) NIL)) (-3536 (((-110) $) NIL)) (-3533 (((-110) $) NIL)) (-3513 (((-1081) $) NIL)) (-3530 (((-110) $) NIL)) (-3526 (((-516) $) NIL)) (-3514 (((-1045) $) NIL)) (-3529 (((-110) $) NIL)) (-3525 (((-208) $) NIL)) (-3524 (((-805) $) NIL)) (-3537 (((-110) $ $) NIL)) (-4078 (($ $ (-516)) NIL) (($ $ (-594 (-516))) NIL)) (-3528 (((-594 $) $) NIL)) (-4246 (($ (-594 $)) NIL) (($ (-1081)) NIL) (($ (-1098)) NIL) (($ (-516)) NIL) (($ (-208)) NIL) (($ (-805)) NIL)) (-4233 (((-805) $) NIL)) (-3522 (($ $) NIL)) (-3523 (($ $) NIL)) (-3535 (((-110) $) NIL)) (-3317 (((-110) $ $) NIL)) (-4232 (((-516) $) NIL)))
+(((-1029) (-1030 (-1081) (-1098) (-516) (-208) (-805))) (T -1029))
+NIL
+(-1030 (-1081) (-1098) (-516) (-208) (-805))
+((-2828 (((-110) $ $) 7)) (-3531 (((-110) $) 32)) (-3527 ((|#2| $) 27)) (-3532 (((-110) $) 33)) (-3817 ((|#1| $) 28)) (-3534 (((-110) $) 35)) (-3536 (((-110) $) 37)) (-3533 (((-110) $) 34)) (-3513 (((-1081) $) 9)) (-3530 (((-110) $) 31)) (-3526 ((|#3| $) 26)) (-3514 (((-1045) $) 10)) (-3529 (((-110) $) 30)) (-3525 ((|#4| $) 25)) (-3524 ((|#5| $) 24)) (-3537 (((-110) $ $) 38)) (-4078 (($ $ (-516)) 14) (($ $ (-594 (-516))) 13)) (-3528 (((-594 $) $) 29)) (-4246 (($ (-594 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-4233 (((-805) $) 11)) (-3522 (($ $) 16)) (-3523 (($ $) 17)) (-3535 (((-110) $) 36)) (-3317 (((-110) $ $) 6)) (-4232 (((-516) $) 15)))
+(((-1030 |#1| |#2| |#3| |#4| |#5|) (-133) (-1027) (-1027) (-1027) (-1027) (-1027)) (T -1030))
+((-3537 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-3535 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-3534 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-3532 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-3530 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-3529 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-3528 (*1 *2 *1) (-12 (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-594 *1)) (-4 *1 (-1030 *3 *4 *5 *6 *7)))) (-3817 (*1 *2 *1) (-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))) (-3527 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *2 *4 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))) (-3526 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *2 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *2)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))) (-4246 (*1 *1 *2) (-12 (-5 *2 (-594 *1)) (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)))) (-4246 (*1 *1 *2) (-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *2 (-1027)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))) (-4246 (*1 *1 *2) (-12 (-4 *1 (-1030 *3 *2 *4 *5 *6)) (-4 *3 (-1027)) (-4 *2 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))) (-4246 (*1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *2 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))) (-4246 (*1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *2 (-1027)) (-4 *6 (-1027)))) (-4246 (*1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *2)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))) (-3523 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *2 (-1027)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))) (-3522 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *2 (-1027)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))) (-4232 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-516)))) (-4078 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)))) (-4078 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-516))) (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)))))
+(-13 (-1027) (-10 -8 (-15 -3537 ((-110) $ $)) (-15 -3536 ((-110) $)) (-15 -3535 ((-110) $)) (-15 -3534 ((-110) $)) (-15 -3533 ((-110) $)) (-15 -3532 ((-110) $)) (-15 -3531 ((-110) $)) (-15 -3530 ((-110) $)) (-15 -3529 ((-110) $)) (-15 -3528 ((-594 $) $)) (-15 -3817 (|t#1| $)) (-15 -3527 (|t#2| $)) (-15 -3526 (|t#3| $)) (-15 -3525 (|t#4| $)) (-15 -3524 (|t#5| $)) (-15 -4246 ($ (-594 $))) (-15 -4246 ($ |t#1|)) (-15 -4246 ($ |t#2|)) (-15 -4246 ($ |t#3|)) (-15 -4246 ($ |t#4|)) (-15 -4246 ($ |t#5|)) (-15 -3523 ($ $)) (-15 -3522 ($ $)) (-15 -4232 ((-516) $)) (-15 -4078 ($ $ (-516))) (-15 -4078 ($ $ (-594 (-516))))))
+(((-99) . T) ((-571 (-805)) . T) ((-1027) . T))
+((-2828 (((-110) $ $) NIL)) (-3531 (((-110) $) 38)) (-3527 ((|#2| $) 42)) (-3532 (((-110) $) 37)) (-3817 ((|#1| $) 41)) (-3534 (((-110) $) 35)) (-3536 (((-110) $) 14)) (-3533 (((-110) $) 36)) (-3513 (((-1081) $) NIL)) (-3530 (((-110) $) 39)) (-3526 ((|#3| $) 44)) (-3514 (((-1045) $) NIL)) (-3529 (((-110) $) 40)) (-3525 ((|#4| $) 43)) (-3524 ((|#5| $) 45)) (-3537 (((-110) $ $) 34)) (-4078 (($ $ (-516)) 56) (($ $ (-594 (-516))) 58)) (-3528 (((-594 $) $) 22)) (-4246 (($ (-594 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-4233 (((-805) $) 23)) (-3522 (($ $) 21)) (-3523 (($ $) 52)) (-3535 (((-110) $) 18)) (-3317 (((-110) $ $) 33)) (-4232 (((-516) $) 54)))
+(((-1031 |#1| |#2| |#3| |#4| |#5|) (-1030 |#1| |#2| |#3| |#4| |#5|) (-1027) (-1027) (-1027) (-1027) (-1027)) (T -1031))
+NIL
+(-1030 |#1| |#2| |#3| |#4| |#5|)
+((-3658 (((-1185) $) 23)) (-3538 (($ (-1098) (-415) |#2|) 11)) (-4233 (((-805) $) 16)))
+(((-1032 |#1| |#2|) (-13 (-377) (-10 -8 (-15 -3538 ($ (-1098) (-415) |#2|)))) (-795) (-402 |#1|)) (T -1032))
+((-3538 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1098)) (-5 *3 (-415)) (-4 *5 (-795)) (-5 *1 (-1032 *5 *4)) (-4 *4 (-402 *5)))))
+(-13 (-377) (-10 -8 (-15 -3538 ($ (-1098) (-415) |#2|))))
+((-3541 (((-110) |#5| |#5|) 38)) (-3544 (((-110) |#5| |#5|) 52)) (-3549 (((-110) |#5| (-594 |#5|)) 75) (((-110) |#5| |#5|) 61)) (-3545 (((-110) (-594 |#4|) (-594 |#4|)) 58)) (-3551 (((-110) (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|)) (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) 63)) (-3540 (((-1185)) 33)) (-3539 (((-1185) (-1081) (-1081) (-1081)) 29)) (-3550 (((-594 |#5|) (-594 |#5|)) 82)) (-3552 (((-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|)))) 80)) (-3553 (((-594 (-2 (|:| -3537 (-594 |#4|)) (|:| -1610 |#5|) (|:| |ineq| (-594 |#4|)))) (-594 |#4|) (-594 |#5|) (-110) (-110)) 102)) (-3543 (((-110) |#5| |#5|) 47)) (-3548 (((-3 (-110) "failed") |#5| |#5|) 71)) (-3546 (((-110) (-594 |#4|) (-594 |#4|)) 57)) (-3547 (((-110) (-594 |#4|) (-594 |#4|)) 59)) (-3981 (((-110) (-594 |#4|) (-594 |#4|)) 60)) (-3554 (((-3 (-2 (|:| -3537 (-594 |#4|)) (|:| -1610 |#5|) (|:| |ineq| (-594 |#4|))) "failed") (-594 |#4|) |#5| (-594 |#4|) (-110) (-110) (-110) (-110) (-110)) 98)) (-3542 (((-594 |#5|) (-594 |#5|)) 43)))
+(((-1033 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3539 ((-1185) (-1081) (-1081) (-1081))) (-15 -3540 ((-1185))) (-15 -3541 ((-110) |#5| |#5|)) (-15 -3542 ((-594 |#5|) (-594 |#5|))) (-15 -3543 ((-110) |#5| |#5|)) (-15 -3544 ((-110) |#5| |#5|)) (-15 -3545 ((-110) (-594 |#4|) (-594 |#4|))) (-15 -3546 ((-110) (-594 |#4|) (-594 |#4|))) (-15 -3547 ((-110) (-594 |#4|) (-594 |#4|))) (-15 -3981 ((-110) (-594 |#4|) (-594 |#4|))) (-15 -3548 ((-3 (-110) "failed") |#5| |#5|)) (-15 -3549 ((-110) |#5| |#5|)) (-15 -3549 ((-110) |#5| (-594 |#5|))) (-15 -3550 ((-594 |#5|) (-594 |#5|))) (-15 -3551 ((-110) (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|)) (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|)))) (-15 -3552 ((-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) (-15 -3553 ((-594 (-2 (|:| -3537 (-594 |#4|)) (|:| -1610 |#5|) (|:| |ineq| (-594 |#4|)))) (-594 |#4|) (-594 |#5|) (-110) (-110))) (-15 -3554 ((-3 (-2 (|:| -3537 (-594 |#4|)) (|:| -1610 |#5|) (|:| |ineq| (-594 |#4|))) "failed") (-594 |#4|) |#5| (-594 |#4|) (-110) (-110) (-110) (-110) (-110)))) (-432) (-741) (-795) (-997 |#1| |#2| |#3|) (-1002 |#1| |#2| |#3| |#4|)) (T -1033))
+((-3554 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-997 *6 *7 *8)) (-5 *2 (-2 (|:| -3537 (-594 *9)) (|:| -1610 *4) (|:| |ineq| (-594 *9)))) (-5 *1 (-1033 *6 *7 *8 *9 *4)) (-5 *3 (-594 *9)) (-4 *4 (-1002 *6 *7 *8 *9)))) (-3553 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-594 *10)) (-5 *5 (-110)) (-4 *10 (-1002 *6 *7 *8 *9)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-997 *6 *7 *8)) (-5 *2 (-594 (-2 (|:| -3537 (-594 *9)) (|:| -1610 *10) (|:| |ineq| (-594 *9))))) (-5 *1 (-1033 *6 *7 *8 *9 *10)) (-5 *3 (-594 *9)))) (-3552 (*1 *2 *2) (-12 (-5 *2 (-594 (-2 (|:| |val| (-594 *6)) (|:| -1610 *7)))) (-4 *6 (-997 *3 *4 *5)) (-4 *7 (-1002 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-1033 *3 *4 *5 *6 *7)))) (-3551 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-594 *7)) (|:| -1610 *8))) (-4 *7 (-997 *4 *5 *6)) (-4 *8 (-1002 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-1033 *4 *5 *6 *7 *8)))) (-3550 (*1 *2 *2) (-12 (-5 *2 (-594 *7)) (-4 *7 (-1002 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-5 *1 (-1033 *3 *4 *5 *6 *7)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *4 (-594 *3)) (-4 *3 (-1002 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-997 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-1033 *5 *6 *7 *8 *3)))) (-3549 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1033 *4 *5 *6 *7 *3)) (-4 *3 (-1002 *4 *5 *6 *7)))) (-3548 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1033 *4 *5 *6 *7 *3)) (-4 *3 (-1002 *4 *5 *6 *7)))) (-3981 (*1 *2 *3 *3) (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-1033 *4 *5 *6 *7 *8)) (-4 *8 (-1002 *4 *5 *6 *7)))) (-3547 (*1 *2 *3 *3) (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-1033 *4 *5 *6 *7 *8)) (-4 *8 (-1002 *4 *5 *6 *7)))) (-3546 (*1 *2 *3 *3) (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-1033 *4 *5 *6 *7 *8)) (-4 *8 (-1002 *4 *5 *6 *7)))) (-3545 (*1 *2 *3 *3) (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-1033 *4 *5 *6 *7 *8)) (-4 *8 (-1002 *4 *5 *6 *7)))) (-3544 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1033 *4 *5 *6 *7 *3)) (-4 *3 (-1002 *4 *5 *6 *7)))) (-3543 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1033 *4 *5 *6 *7 *3)) (-4 *3 (-1002 *4 *5 *6 *7)))) (-3542 (*1 *2 *2) (-12 (-5 *2 (-594 *7)) (-4 *7 (-1002 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-5 *1 (-1033 *3 *4 *5 *6 *7)))) (-3541 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1033 *4 *5 *6 *7 *3)) (-4 *3 (-1002 *4 *5 *6 *7)))) (-3540 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-1185)) (-5 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *7 (-1002 *3 *4 *5 *6)))) (-3539 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1033 *4 *5 *6 *7 *8)) (-4 *8 (-1002 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3539 ((-1185) (-1081) (-1081) (-1081))) (-15 -3540 ((-1185))) (-15 -3541 ((-110) |#5| |#5|)) (-15 -3542 ((-594 |#5|) (-594 |#5|))) (-15 -3543 ((-110) |#5| |#5|)) (-15 -3544 ((-110) |#5| |#5|)) (-15 -3545 ((-110) (-594 |#4|) (-594 |#4|))) (-15 -3546 ((-110) (-594 |#4|) (-594 |#4|))) (-15 -3547 ((-110) (-594 |#4|) (-594 |#4|))) (-15 -3981 ((-110) (-594 |#4|) (-594 |#4|))) (-15 -3548 ((-3 (-110) "failed") |#5| |#5|)) (-15 -3549 ((-110) |#5| |#5|)) (-15 -3549 ((-110) |#5| (-594 |#5|))) (-15 -3550 ((-594 |#5|) (-594 |#5|))) (-15 -3551 ((-110) (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|)) (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|)))) (-15 -3552 ((-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) (-15 -3553 ((-594 (-2 (|:| -3537 (-594 |#4|)) (|:| -1610 |#5|) (|:| |ineq| (-594 |#4|)))) (-594 |#4|) (-594 |#5|) (-110) (-110))) (-15 -3554 ((-3 (-2 (|:| -3537 (-594 |#4|)) (|:| -1610 |#5|) (|:| |ineq| (-594 |#4|))) "failed") (-594 |#4|) |#5| (-594 |#4|) (-110) (-110) (-110) (-110) (-110))))
+((-3569 (((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#5|) 96)) (-3559 (((-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) |#4| |#4| |#5|) 72)) (-3562 (((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#4| |#5|) 91)) (-3564 (((-594 |#5|) |#4| |#5|) 110)) (-3566 (((-594 |#5|) |#4| |#5|) 117)) (-3568 (((-594 |#5|) |#4| |#5|) 118)) (-3563 (((-594 (-2 (|:| |val| (-110)) (|:| -1610 |#5|))) |#4| |#5|) 97)) (-3565 (((-594 (-2 (|:| |val| (-110)) (|:| -1610 |#5|))) |#4| |#5|) 116)) (-3567 (((-594 (-2 (|:| |val| (-110)) (|:| -1610 |#5|))) |#4| |#5|) 46) (((-110) |#4| |#5|) 53)) (-3560 (((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) |#3| (-110)) 84) (((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#4| |#5| (-110) (-110)) 50)) (-3561 (((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#4| |#5|) 79)) (-3558 (((-1185)) 37)) (-3556 (((-1185)) 26)) (-3557 (((-1185) (-1081) (-1081) (-1081)) 33)) (-3555 (((-1185) (-1081) (-1081) (-1081)) 22)))
+(((-1034 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3555 ((-1185) (-1081) (-1081) (-1081))) (-15 -3556 ((-1185))) (-15 -3557 ((-1185) (-1081) (-1081) (-1081))) (-15 -3558 ((-1185))) (-15 -3559 ((-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) |#4| |#4| |#5|)) (-15 -3560 ((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -3560 ((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) |#3| (-110))) (-15 -3561 ((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#4| |#5|)) (-15 -3562 ((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#4| |#5|)) (-15 -3567 ((-110) |#4| |#5|)) (-15 -3563 ((-594 (-2 (|:| |val| (-110)) (|:| -1610 |#5|))) |#4| |#5|)) (-15 -3564 ((-594 |#5|) |#4| |#5|)) (-15 -3565 ((-594 (-2 (|:| |val| (-110)) (|:| -1610 |#5|))) |#4| |#5|)) (-15 -3566 ((-594 |#5|) |#4| |#5|)) (-15 -3567 ((-594 (-2 (|:| |val| (-110)) (|:| -1610 |#5|))) |#4| |#5|)) (-15 -3568 ((-594 |#5|) |#4| |#5|)) (-15 -3569 ((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#5|))) (-432) (-741) (-795) (-997 |#1| |#2| |#3|) (-1002 |#1| |#2| |#3| |#4|)) (T -1034))
+((-3569 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-594 (-2 (|:| |val| *3) (|:| -1610 *4)))) (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))) (-3568 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-594 *4)) (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))) (-3567 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-594 (-2 (|:| |val| (-110)) (|:| -1610 *4)))) (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))) (-3566 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-594 *4)) (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))) (-3565 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-594 (-2 (|:| |val| (-110)) (|:| -1610 *4)))) (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))) (-3564 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-594 *4)) (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))) (-3563 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-594 (-2 (|:| |val| (-110)) (|:| -1610 *4)))) (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))) (-3567 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))) (-3562 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-594 (-2 (|:| |val| *3) (|:| -1610 *4)))) (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))) (-3561 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-594 (-2 (|:| |val| *3) (|:| -1610 *4)))) (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))) (-3560 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-594 (-2 (|:| |val| (-594 *8)) (|:| -1610 *9)))) (-5 *5 (-110)) (-4 *8 (-997 *6 *7 *4)) (-4 *9 (-1002 *6 *7 *4 *8)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *4 (-795)) (-5 *2 (-594 (-2 (|:| |val| *8) (|:| -1610 *9)))) (-5 *1 (-1034 *6 *7 *4 *8 *9)))) (-3560 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-997 *6 *7 *8)) (-5 *2 (-594 (-2 (|:| |val| *3) (|:| -1610 *4)))) (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1002 *6 *7 *8 *3)))) (-3559 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4)))) (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))) (-3558 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-1185)) (-5 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *7 (-1002 *3 *4 *5 *6)))) (-3557 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1002 *4 *5 *6 *7)))) (-3556 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-1185)) (-5 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *7 (-1002 *3 *4 *5 *6)))) (-3555 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1081)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1002 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3555 ((-1185) (-1081) (-1081) (-1081))) (-15 -3556 ((-1185))) (-15 -3557 ((-1185) (-1081) (-1081) (-1081))) (-15 -3558 ((-1185))) (-15 -3559 ((-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) |#4| |#4| |#5|)) (-15 -3560 ((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -3560 ((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) |#3| (-110))) (-15 -3561 ((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#4| |#5|)) (-15 -3562 ((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#4| |#5|)) (-15 -3567 ((-110) |#4| |#5|)) (-15 -3563 ((-594 (-2 (|:| |val| (-110)) (|:| -1610 |#5|))) |#4| |#5|)) (-15 -3564 ((-594 |#5|) |#4| |#5|)) (-15 -3565 ((-594 (-2 (|:| |val| (-110)) (|:| -1610 |#5|))) |#4| |#5|)) (-15 -3566 ((-594 |#5|) |#4| |#5|)) (-15 -3567 ((-594 (-2 (|:| |val| (-110)) (|:| -1610 |#5|))) |#4| |#5|)) (-15 -3568 ((-594 |#5|) |#4| |#5|)) (-15 -3569 ((-594 (-2 (|:| |val| |#4|) (|:| -1610 |#5|))) |#4| |#5|)))
+((-2828 (((-110) $ $) 7)) (-3963 (((-594 (-2 (|:| -4140 $) (|:| -1768 (-594 |#4|)))) (-594 |#4|)) 85)) (-3964 (((-594 $) (-594 |#4|)) 86) (((-594 $) (-594 |#4|) (-110)) 111)) (-3347 (((-594 |#3|) $) 33)) (-3172 (((-110) $) 26)) (-3163 (((-110) $) 17 (|has| |#1| (-523)))) (-3975 (((-110) |#4| $) 101) (((-110) $) 97)) (-3970 ((|#4| |#4| $) 92)) (-4053 (((-594 (-2 (|:| |val| |#4|) (|:| -1610 $))) |#4| $) 126)) (-3173 (((-2 (|:| |under| $) (|:| -3389 $) (|:| |upper| $)) $ |#3|) 27)) (-1217 (((-110) $ (-719)) 44)) (-3992 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4269))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3815 (($) 45 T CONST)) (-3168 (((-110) $) 22 (|has| |#1| (-523)))) (-3170 (((-110) $ $) 24 (|has| |#1| (-523)))) (-3169 (((-110) $ $) 23 (|has| |#1| (-523)))) (-3171 (((-110) $) 25 (|has| |#1| (-523)))) (-3971 (((-594 |#4|) (-594 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-3164 (((-594 |#4|) (-594 |#4|) $) 18 (|has| |#1| (-523)))) (-3165 (((-594 |#4|) (-594 |#4|) $) 19 (|has| |#1| (-523)))) (-3432 (((-3 $ "failed") (-594 |#4|)) 36)) (-3431 (($ (-594 |#4|)) 35)) (-4077 (((-3 $ #1#) $) 82)) (-3967 ((|#4| |#4| $) 89)) (-1349 (($ $) 68 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-3685 (($ |#4| $) 67 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4269)))) (-3166 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-523)))) (-3976 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-3965 ((|#4| |#4| $) 87)) (-4121 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-3978 (((-2 (|:| -4140 (-594 |#4|)) (|:| -1768 (-594 |#4|))) $) 105)) (-3471 (((-110) |#4| $) 136)) (-3469 (((-110) |#4| $) 133)) (-3472 (((-110) |#4| $) 137) (((-110) $) 134)) (-2018 (((-594 |#4|) $) 52 (|has| $ (-6 -4269)))) (-3977 (((-110) |#4| $) 104) (((-110) $) 103)) (-3455 ((|#3| $) 34)) (-4001 (((-110) $ (-719)) 43)) (-2445 (((-594 |#4|) $) 53 (|has| $ (-6 -4269)))) (-3516 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-2022 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#4| |#4|) $) 47)) (-3178 (((-594 |#3|) $) 32)) (-3177 (((-110) |#3| $) 31)) (-3998 (((-110) $ (-719)) 42)) (-3513 (((-1081) $) 9)) (-3465 (((-3 |#4| (-594 $)) |#4| |#4| $) 128)) (-3464 (((-594 (-2 (|:| |val| |#4|) (|:| -1610 $))) |#4| |#4| $) 127)) (-4076 (((-3 |#4| #1#) $) 83)) (-3466 (((-594 $) |#4| $) 129)) (-3468 (((-3 (-110) (-594 $)) |#4| $) 132)) (-3467 (((-594 (-2 (|:| |val| (-110)) (|:| -1610 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-3509 (((-594 $) |#4| $) 125) (((-594 $) (-594 |#4|) $) 124) (((-594 $) (-594 |#4|) (-594 $)) 123) (((-594 $) |#4| (-594 $)) 122)) (-3719 (($ |#4| $) 117) (($ (-594 |#4|) $) 116)) (-3979 (((-594 |#4|) $) 107)) (-3973 (((-110) |#4| $) 99) (((-110) $) 95)) (-3968 ((|#4| |#4| $) 90)) (-3981 (((-110) $ $) 110)) (-3167 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-523)))) (-3974 (((-110) |#4| $) 100) (((-110) $) 96)) (-3969 ((|#4| |#4| $) 91)) (-3514 (((-1045) $) 10)) (-4079 (((-3 |#4| #1#) $) 84)) (-1350 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-3961 (((-3 $ #1#) $ |#4|) 78)) (-4047 (($ $ |#4|) 77) (((-594 $) |#4| $) 115) (((-594 $) |#4| (-594 $)) 114) (((-594 $) (-594 |#4|) $) 113) (((-594 $) (-594 |#4|) (-594 $)) 112)) (-2020 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 |#4|) (-594 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-275 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-594 (-275 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-1218 (((-110) $ $) 38)) (-3682 (((-110) $) 41)) (-3847 (($) 40)) (-4223 (((-719) $) 106)) (-2019 (((-719) |#4| $) 54 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4269)))) (-3678 (($ $) 39)) (-4246 (((-505) $) 69 (|has| |#4| (-572 (-505))))) (-3804 (($ (-594 |#4|)) 60)) (-3174 (($ $ |#3|) 28)) (-3176 (($ $ |#3|) 30)) (-3966 (($ $) 88)) (-3175 (($ $ |#3|) 29)) (-4233 (((-805) $) 11) (((-594 |#4|) $) 37)) (-3960 (((-719) $) 76 (|has| |#3| (-349)))) (-3980 (((-3 (-2 (|:| |bas| $) (|:| -3602 (-594 |#4|))) #1#) (-594 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3602 (-594 |#4|))) #1#) (-594 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-3972 (((-110) $ (-1 (-110) |#4| (-594 |#4|))) 98)) (-3463 (((-594 $) |#4| $) 121) (((-594 $) |#4| (-594 $)) 120) (((-594 $) (-594 |#4|) $) 119) (((-594 $) (-594 |#4|) (-594 $)) 118)) (-2021 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4269)))) (-3962 (((-594 |#3|) $) 81)) (-3470 (((-110) |#4| $) 135)) (-4209 (((-110) |#3| $) 80)) (-3317 (((-110) $ $) 6)) (-4232 (((-719) $) 46 (|has| $ (-6 -4269)))))
+(((-1035 |#1| |#2| |#3| |#4|) (-133) (-432) (-741) (-795) (-997 |t#1| |t#2| |t#3|)) (T -1035))
+NIL
+(-13 (-1002 |t#1| |t#2| |t#3| |t#4|))
+(((-33) . T) ((-99) . T) ((-571 (-594 |#4|)) . T) ((-571 (-805)) . T) ((-144 |#4|) . T) ((-572 (-505)) |has| |#4| (-572 (-505))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-468 |#4|) . T) ((-491 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1002 |#1| |#2| |#3| |#4|) . T) ((-1027) . T) ((-1129 |#1| |#2| |#3| |#4|) . T) ((-1134) . T))
+((-3580 (((-594 (-516)) (-516) (-516) (-516)) 22)) (-3579 (((-594 (-516)) (-516) (-516) (-516)) 12)) (-3578 (((-594 (-516)) (-516) (-516) (-516)) 18)) (-3577 (((-516) (-516) (-516)) 9)) (-3576 (((-1179 (-516)) (-594 (-516)) (-1179 (-516)) (-516)) 46) (((-1179 (-516)) (-1179 (-516)) (-1179 (-516)) (-516)) 41)) (-3575 (((-594 (-516)) (-594 (-516)) (-594 (-516)) (-110)) 28)) (-3574 (((-637 (-516)) (-594 (-516)) (-594 (-516)) (-637 (-516))) 45)) (-3573 (((-637 (-516)) (-594 (-516)) (-594 (-516))) 33)) (-3572 (((-594 (-637 (-516))) (-594 (-516))) 35)) (-3571 (((-594 (-516)) (-594 (-516)) (-594 (-516)) (-637 (-516))) 49)) (-3570 (((-637 (-516)) (-594 (-516)) (-594 (-516)) (-594 (-516))) 57)))
+(((-1036) (-10 -7 (-15 -3570 ((-637 (-516)) (-594 (-516)) (-594 (-516)) (-594 (-516)))) (-15 -3571 ((-594 (-516)) (-594 (-516)) (-594 (-516)) (-637 (-516)))) (-15 -3572 ((-594 (-637 (-516))) (-594 (-516)))) (-15 -3573 ((-637 (-516)) (-594 (-516)) (-594 (-516)))) (-15 -3574 ((-637 (-516)) (-594 (-516)) (-594 (-516)) (-637 (-516)))) (-15 -3575 ((-594 (-516)) (-594 (-516)) (-594 (-516)) (-110))) (-15 -3576 ((-1179 (-516)) (-1179 (-516)) (-1179 (-516)) (-516))) (-15 -3576 ((-1179 (-516)) (-594 (-516)) (-1179 (-516)) (-516))) (-15 -3577 ((-516) (-516) (-516))) (-15 -3578 ((-594 (-516)) (-516) (-516) (-516))) (-15 -3579 ((-594 (-516)) (-516) (-516) (-516))) (-15 -3580 ((-594 (-516)) (-516) (-516) (-516))))) (T -1036))
+((-3580 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-1036)) (-5 *3 (-516)))) (-3579 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-1036)) (-5 *3 (-516)))) (-3578 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-1036)) (-5 *3 (-516)))) (-3577 (*1 *2 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-1036)))) (-3576 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1179 (-516))) (-5 *3 (-594 (-516))) (-5 *4 (-516)) (-5 *1 (-1036)))) (-3576 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1179 (-516))) (-5 *3 (-516)) (-5 *1 (-1036)))) (-3575 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-594 (-516))) (-5 *3 (-110)) (-5 *1 (-1036)))) (-3574 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-637 (-516))) (-5 *3 (-594 (-516))) (-5 *1 (-1036)))) (-3573 (*1 *2 *3 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-637 (-516))) (-5 *1 (-1036)))) (-3572 (*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-594 (-637 (-516)))) (-5 *1 (-1036)))) (-3571 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-594 (-516))) (-5 *3 (-637 (-516))) (-5 *1 (-1036)))) (-3570 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-637 (-516))) (-5 *1 (-1036)))))
+(-10 -7 (-15 -3570 ((-637 (-516)) (-594 (-516)) (-594 (-516)) (-594 (-516)))) (-15 -3571 ((-594 (-516)) (-594 (-516)) (-594 (-516)) (-637 (-516)))) (-15 -3572 ((-594 (-637 (-516))) (-594 (-516)))) (-15 -3573 ((-637 (-516)) (-594 (-516)) (-594 (-516)))) (-15 -3574 ((-637 (-516)) (-594 (-516)) (-594 (-516)) (-637 (-516)))) (-15 -3575 ((-594 (-516)) (-594 (-516)) (-594 (-516)) (-110))) (-15 -3576 ((-1179 (-516)) (-1179 (-516)) (-1179 (-516)) (-516))) (-15 -3576 ((-1179 (-516)) (-594 (-516)) (-1179 (-516)) (-516))) (-15 -3577 ((-516) (-516) (-516))) (-15 -3578 ((-594 (-516)) (-516) (-516) (-516))) (-15 -3579 ((-594 (-516)) (-516) (-516) (-516))) (-15 -3580 ((-594 (-516)) (-516) (-516) (-516))))
+((-3581 (($ $ (-860)) 12)) (** (($ $ (-860)) 10)))
+(((-1037 |#1|) (-10 -8 (-15 -3581 (|#1| |#1| (-860))) (-15 ** (|#1| |#1| (-860)))) (-1038)) (T -1037))
+NIL
+(-10 -8 (-15 -3581 (|#1| |#1| (-860))) (-15 ** (|#1| |#1| (-860))))
+((-2828 (((-110) $ $) 7)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-3581 (($ $ (-860)) 13)) (-3317 (((-110) $ $) 6)) (** (($ $ (-860)) 14)) (* (($ $ $) 15)))
+(((-1038) (-133)) (T -1038))
+((* (*1 *1 *1 *1) (-4 *1 (-1038))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1038)) (-5 *2 (-860)))) (-3581 (*1 *1 *1 *2) (-12 (-4 *1 (-1038)) (-5 *2 (-860)))))
+(-13 (-1027) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-860))) (-15 -3581 ($ $ (-860)))))
+(((-99) . T) ((-571 (-805)) . T) ((-1027) . T))
+((-2828 (((-110) $ $) NIL (|has| |#3| (-1027)))) (-3462 (((-110) $) NIL (|has| |#3| (-128)))) (-3989 (($ (-860)) NIL (|has| |#3| (-984)))) (-2243 (((-1185) $ (-516) (-516)) NIL (|has| $ (-6 -4270)))) (-2667 (($ $ $) NIL (|has| |#3| (-741)))) (-1319 (((-3 $ "failed") $ $) NIL (|has| |#3| (-128)))) (-1217 (((-110) $ (-719)) NIL)) (-3395 (((-719)) NIL (|has| |#3| (-349)))) (-3905 (((-516) $) NIL (|has| |#3| (-793)))) (-4066 ((|#3| $ (-516) |#3|) NIL (|has| $ (-6 -4270)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-516) #1="failed") $) NIL (-12 (|has| |#3| (-975 (-516))) (|has| |#3| (-1027)))) (((-3 (-388 (-516)) #1#) $) NIL (-12 (|has| |#3| (-975 (-388 (-516)))) (|has| |#3| (-1027)))) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1027)))) (-3431 (((-516) $) NIL (-12 (|has| |#3| (-975 (-516))) (|has| |#3| (-1027)))) (((-388 (-516)) $) NIL (-12 (|has| |#3| (-975 (-388 (-516)))) (|has| |#3| (-1027)))) ((|#3| $) NIL (|has| |#3| (-1027)))) (-2297 (((-637 (-516)) (-637 $)) NIL (-12 (|has| |#3| (-593 (-516))) (|has| |#3| (-984)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (-12 (|has| |#3| (-593 (-516))) (|has| |#3| (-984)))) (((-2 (|:| -1650 (-637 |#3|)) (|:| |vec| (-1179 |#3|))) (-637 $) (-1179 $)) NIL (|has| |#3| (-984))) (((-637 |#3|) (-637 $)) NIL (|has| |#3| (-984)))) (-3741 (((-3 $ "failed") $) NIL (|has| |#3| (-675)))) (-3258 (($) NIL (|has| |#3| (-349)))) (-1587 ((|#3| $ (-516) |#3|) NIL (|has| $ (-6 -4270)))) (-3372 ((|#3| $ (-516)) 12)) (-3460 (((-110) $) NIL (|has| |#3| (-793)))) (-2018 (((-594 |#3|) $) NIL (|has| $ (-6 -4269)))) (-2436 (((-110) $) NIL (|has| |#3| (-675)))) (-3461 (((-110) $) NIL (|has| |#3| (-793)))) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-516) $) NIL (|has| (-516) (-795)))) (-3596 (($ $ $) NIL (-3810 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2445 (((-594 |#3|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#3| (-1027))))) (-2246 (((-516) $) NIL (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (-3810 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2022 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#3| |#3|) $) NIL)) (-2069 (((-860) $) NIL (|has| |#3| (-349)))) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (|has| |#3| (-1027)))) (-2248 (((-594 (-516)) $) NIL)) (-2249 (((-110) (-516) $) NIL)) (-2426 (($ (-860)) NIL (|has| |#3| (-349)))) (-3514 (((-1045) $) NIL (|has| |#3| (-1027)))) (-4079 ((|#3| $) NIL (|has| (-516) (-795)))) (-2244 (($ $ |#3|) NIL (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#3|))) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-275 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-594 |#3|) (-594 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#3| (-1027))))) (-2250 (((-594 |#3|) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#3| $ (-516) |#3|) NIL) ((|#3| $ (-516)) NIL)) (-4115 ((|#3| $ $) NIL (|has| |#3| (-984)))) (-1475 (($ (-1179 |#3|)) NIL)) (-4190 (((-130)) NIL (|has| |#3| (-344)))) (-4089 (($ $) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984)))) (($ $ (-1098)) NIL (-12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984)))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984)))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984)))) (($ $ (-1 |#3| |#3|) (-719)) NIL (|has| |#3| (-984))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-984)))) (-2019 (((-719) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269))) (((-719) |#3| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#3| (-1027))))) (-3678 (($ $) NIL)) (-4233 (((-1179 |#3|) $) NIL) (($ (-516)) NIL (-3810 (-12 (|has| |#3| (-975 (-516))) (|has| |#3| (-1027))) (|has| |#3| (-984)))) (($ (-388 (-516))) NIL (-12 (|has| |#3| (-975 (-388 (-516)))) (|has| |#3| (-1027)))) (($ |#3|) NIL (|has| |#3| (-1027))) (((-805) $) NIL (|has| |#3| (-571 (-805))))) (-3385 (((-719)) NIL (|has| |#3| (-984)))) (-2021 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269)))) (-3661 (($ $) NIL (|has| |#3| (-793)))) (-3581 (($ $ (-719)) NIL (|has| |#3| (-675))) (($ $ (-860)) NIL (|has| |#3| (-675)))) (-2920 (($) NIL (|has| |#3| (-128)) CONST)) (-2927 (($) NIL (|has| |#3| (-675)) CONST)) (-2932 (($ $) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984)))) (($ $ (-1098)) NIL (-12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984)))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984)))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#3| (-841 (-1098))) (|has| |#3| (-984)))) (($ $ (-1 |#3| |#3|) (-719)) NIL (|has| |#3| (-984))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-984)))) (-2826 (((-110) $ $) NIL (-3810 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2827 (((-110) $ $) NIL (-3810 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-3317 (((-110) $ $) NIL (|has| |#3| (-1027)))) (-2947 (((-110) $ $) NIL (-3810 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2948 (((-110) $ $) 17 (-3810 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-4224 (($ $ |#3|) NIL (|has| |#3| (-344)))) (-4116 (($ $ $) NIL (|has| |#3| (-984))) (($ $) NIL (|has| |#3| (-984)))) (-4118 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-719)) NIL (|has| |#3| (-675))) (($ $ (-860)) NIL (|has| |#3| (-675)))) (* (($ (-516) $) NIL (|has| |#3| (-984))) (($ $ $) NIL (|has| |#3| (-675))) (($ $ |#3|) NIL (|has| |#3| (-675))) (($ |#3| $) NIL (|has| |#3| (-675))) (($ (-719) $) NIL (|has| |#3| (-128))) (($ (-860) $) NIL (|has| |#3| (-25)))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-1039 |#1| |#2| |#3|) (-221 |#1| |#3|) (-719) (-719) (-741)) (T -1039))
+NIL
+(-221 |#1| |#3|)
+((-3582 (((-594 (-1148 |#2| |#1|)) (-1148 |#2| |#1|) (-1148 |#2| |#1|)) 37)) (-3588 (((-516) (-1148 |#2| |#1|)) 69 (|has| |#1| (-432)))) (-3586 (((-516) (-1148 |#2| |#1|)) 54)) (-3583 (((-594 (-1148 |#2| |#1|)) (-1148 |#2| |#1|) (-1148 |#2| |#1|)) 45)) (-3587 (((-516) (-1148 |#2| |#1|) (-1148 |#2| |#1|)) 68 (|has| |#1| (-432)))) (-3584 (((-594 |#1|) (-1148 |#2| |#1|) (-1148 |#2| |#1|)) 48)) (-3585 (((-516) (-1148 |#2| |#1|) (-1148 |#2| |#1|)) 53)))
+(((-1040 |#1| |#2|) (-10 -7 (-15 -3582 ((-594 (-1148 |#2| |#1|)) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3583 ((-594 (-1148 |#2| |#1|)) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3584 ((-594 |#1|) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3585 ((-516) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3586 ((-516) (-1148 |#2| |#1|))) (IF (|has| |#1| (-432)) (PROGN (-15 -3587 ((-516) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3588 ((-516) (-1148 |#2| |#1|)))) |%noBranch|)) (-768) (-1098)) (T -1040))
+((-3588 (*1 *2 *3) (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-432)) (-4 *4 (-768)) (-14 *5 (-1098)) (-5 *2 (-516)) (-5 *1 (-1040 *4 *5)))) (-3587 (*1 *2 *3 *3) (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-432)) (-4 *4 (-768)) (-14 *5 (-1098)) (-5 *2 (-516)) (-5 *1 (-1040 *4 *5)))) (-3586 (*1 *2 *3) (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-768)) (-14 *5 (-1098)) (-5 *2 (-516)) (-5 *1 (-1040 *4 *5)))) (-3585 (*1 *2 *3 *3) (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-768)) (-14 *5 (-1098)) (-5 *2 (-516)) (-5 *1 (-1040 *4 *5)))) (-3584 (*1 *2 *3 *3) (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-768)) (-14 *5 (-1098)) (-5 *2 (-594 *4)) (-5 *1 (-1040 *4 *5)))) (-3583 (*1 *2 *3 *3) (-12 (-4 *4 (-768)) (-14 *5 (-1098)) (-5 *2 (-594 (-1148 *5 *4))) (-5 *1 (-1040 *4 *5)) (-5 *3 (-1148 *5 *4)))) (-3582 (*1 *2 *3 *3) (-12 (-4 *4 (-768)) (-14 *5 (-1098)) (-5 *2 (-594 (-1148 *5 *4))) (-5 *1 (-1040 *4 *5)) (-5 *3 (-1148 *5 *4)))))
+(-10 -7 (-15 -3582 ((-594 (-1148 |#2| |#1|)) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3583 ((-594 (-1148 |#2| |#1|)) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3584 ((-594 |#1|) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3585 ((-516) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3586 ((-516) (-1148 |#2| |#1|))) (IF (|has| |#1| (-432)) (PROGN (-15 -3587 ((-516) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3588 ((-516) (-1148 |#2| |#1|)))) |%noBranch|))
+((-2828 (((-110) $ $) NIL)) (-3590 (((-171) $) 8)) (-3589 (((-594 (-171)) $) 10)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 19)) (-3317 (((-110) $ $) 13)))
+(((-1041) (-13 (-1027) (-10 -8 (-15 -3590 ((-171) $)) (-15 -3589 ((-594 (-171)) $))))) (T -1041))
+((-3590 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1041)))) (-3589 (*1 *2 *1) (-12 (-5 *2 (-594 (-171))) (-5 *1 (-1041)))))
+(-13 (-1027) (-10 -8 (-15 -3590 ((-171) $)) (-15 -3589 ((-594 (-171)) $))))
+((-3905 (((-3 (-516) #1="failed") |#2| (-1098) |#2| (-1081)) 17) (((-3 (-516) #1#) |#2| (-1098) (-787 |#2|)) 15) (((-3 (-516) #1#) |#2|) 54)))
+(((-1042 |#1| |#2|) (-10 -7 (-15 -3905 ((-3 (-516) #1="failed") |#2|)) (-15 -3905 ((-3 (-516) #1#) |#2| (-1098) (-787 |#2|))) (-15 -3905 ((-3 (-516) #1#) |#2| (-1098) |#2| (-1081)))) (-13 (-523) (-795) (-975 (-516)) (-593 (-516)) (-432)) (-13 (-27) (-1120) (-402 |#1|))) (T -1042))
+((-3905 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1098)) (-5 *5 (-1081)) (-4 *6 (-13 (-523) (-795) (-975 *2) (-593 *2) (-432))) (-5 *2 (-516)) (-5 *1 (-1042 *6 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *6))))) (-3905 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1098)) (-5 *5 (-787 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *6))) (-4 *6 (-13 (-523) (-795) (-975 *2) (-593 *2) (-432))) (-5 *2 (-516)) (-5 *1 (-1042 *6 *3)))) (-3905 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-523) (-795) (-975 *2) (-593 *2) (-432))) (-5 *2 (-516)) (-5 *1 (-1042 *4 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *4))))))
+(-10 -7 (-15 -3905 ((-3 (-516) #1="failed") |#2|)) (-15 -3905 ((-3 (-516) #1#) |#2| (-1098) (-787 |#2|))) (-15 -3905 ((-3 (-516) #1#) |#2| (-1098) |#2| (-1081))))
+((-3905 (((-3 (-516) #1="failed") (-388 (-887 |#1|)) (-1098) (-388 (-887 |#1|)) (-1081)) 35) (((-3 (-516) #1#) (-388 (-887 |#1|)) (-1098) (-787 (-388 (-887 |#1|)))) 30) (((-3 (-516) #1#) (-388 (-887 |#1|))) 13)))
+(((-1043 |#1|) (-10 -7 (-15 -3905 ((-3 (-516) #1="failed") (-388 (-887 |#1|)))) (-15 -3905 ((-3 (-516) #1#) (-388 (-887 |#1|)) (-1098) (-787 (-388 (-887 |#1|))))) (-15 -3905 ((-3 (-516) #1#) (-388 (-887 |#1|)) (-1098) (-388 (-887 |#1|)) (-1081)))) (-432)) (T -1043))
+((-3905 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-388 (-887 *6))) (-5 *4 (-1098)) (-5 *5 (-1081)) (-4 *6 (-432)) (-5 *2 (-516)) (-5 *1 (-1043 *6)))) (-3905 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1098)) (-5 *5 (-787 (-388 (-887 *6)))) (-5 *3 (-388 (-887 *6))) (-4 *6 (-432)) (-5 *2 (-516)) (-5 *1 (-1043 *6)))) (-3905 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-887 *4))) (-4 *4 (-432)) (-5 *2 (-516)) (-5 *1 (-1043 *4)))))
+(-10 -7 (-15 -3905 ((-3 (-516) #1="failed") (-388 (-887 |#1|)))) (-15 -3905 ((-3 (-516) #1#) (-388 (-887 |#1|)) (-1098) (-787 (-388 (-887 |#1|))))) (-15 -3905 ((-3 (-516) #1#) (-388 (-887 |#1|)) (-1098) (-388 (-887 |#1|)) (-1081))))
+((-3931 (((-295 (-516)) (-47)) 12)))
+(((-1044) (-10 -7 (-15 -3931 ((-295 (-516)) (-47))))) (T -1044))
+((-3931 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-295 (-516))) (-5 *1 (-1044)))))
+(-10 -7 (-15 -3931 ((-295 (-516)) (-47))))
+((-2828 (((-110) $ $) NIL)) (-3598 (($ $) 41)) (-3462 (((-110) $) 65)) (-3594 (($ $ $) 48)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 85)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-2102 (($ $ $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-2097 (($ $ $ $) 74)) (-4053 (($ $) NIL)) (-4245 (((-386 $) $) NIL)) (-1655 (((-110) $ $) NIL)) (-3905 (((-516) $) NIL)) (-2624 (($ $ $) 71)) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-516) "failed") $) NIL)) (-3431 (((-516) $) NIL)) (-2824 (($ $ $) 59)) (-2297 (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) 79) (((-637 (-516)) (-637 $)) 28)) (-3741 (((-3 $ "failed") $) NIL)) (-3288 (((-3 (-388 (-516)) "failed") $) NIL)) (-3287 (((-110) $) NIL)) (-3286 (((-388 (-516)) $) NIL)) (-3258 (($) 82) (($ $) 83)) (-2823 (($ $ $) 58)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL)) (-4005 (((-110) $) NIL)) (-2095 (($ $ $ $) NIL)) (-2103 (($ $ $) 80)) (-3460 (((-110) $) NIL)) (-1368 (($ $ $) NIL)) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL)) (-2436 (((-110) $) 66)) (-2936 (((-110) $) 64)) (-3595 (($ $) 42)) (-3723 (((-3 $ "failed") $) NIL)) (-3461 (((-110) $) 75)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL)) (-2096 (($ $ $ $) 72)) (-3596 (($ $ $) 68) (($) 39)) (-3597 (($ $ $) 67) (($) 38)) (-2099 (($ $) NIL)) (-4112 (($ $) 70)) (-1963 (($ $ $) NIL) (($ (-594 $)) NIL)) (-3513 (((-1081) $) NIL)) (-2094 (($ $ $) NIL)) (-3724 (($) NIL T CONST)) (-2101 (($ $) 50)) (-3514 (((-1045) $) NIL) (($ $) 69)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL)) (-3419 (($ $ $) 62) (($ (-594 $)) NIL)) (-1366 (($ $) NIL)) (-4011 (((-386 $) $) NIL)) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL)) (-2937 (((-110) $) NIL)) (-1654 (((-719) $) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 61)) (-4089 (($ $ (-719)) NIL) (($ $) NIL)) (-2100 (($ $) 51)) (-3678 (($ $) NIL)) (-4246 (((-516) $) 32) (((-505) $) NIL) (((-831 (-516)) $) NIL) (((-359) $) NIL) (((-208) $) NIL)) (-4233 (((-805) $) 31) (($ (-516)) 81) (($ $) NIL) (($ (-516)) 81)) (-3385 (((-719)) NIL)) (-2104 (((-110) $ $) NIL)) (-3362 (($ $ $) NIL)) (-2957 (($) 37)) (-2117 (((-110) $ $) NIL)) (-2098 (($ $ $ $) 73)) (-3661 (($ $) 63)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-3600 (($ $ $) 44)) (-2920 (($) 35 T CONST)) (-3591 (($ $ $) 47)) (-2927 (($) 36 T CONST)) (-2768 (((-1081) $) 21) (((-1081) $ (-110)) 23) (((-1185) (-771) $) 24) (((-1185) (-771) $ (-110)) 25)) (-3593 (($ $) 45)) (-2932 (($ $ (-719)) NIL) (($ $) NIL)) (-3592 (($ $ $) 46)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 40)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 49)) (-3599 (($ $ $) 43)) (-4116 (($ $) 52) (($ $ $) 54)) (-4118 (($ $ $) 53)) (** (($ $ (-860)) NIL) (($ $ (-719)) 57)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 34) (($ $ $) 55)))
+(((-1045) (-13 (-515) (-613) (-769) (-10 -8 (-6 -4256) (-6 -4261) (-6 -4257) (-15 -3597 ($)) (-15 -3596 ($)) (-15 -3595 ($ $)) (-15 -3598 ($ $)) (-15 -3599 ($ $ $)) (-15 -3600 ($ $ $)) (-15 -3594 ($ $ $)) (-15 -3593 ($ $)) (-15 -3592 ($ $ $)) (-15 -3591 ($ $ $))))) (T -1045))
+((-3600 (*1 *1 *1 *1) (-5 *1 (-1045))) (-3599 (*1 *1 *1 *1) (-5 *1 (-1045))) (-3598 (*1 *1 *1) (-5 *1 (-1045))) (-3597 (*1 *1) (-5 *1 (-1045))) (-3596 (*1 *1) (-5 *1 (-1045))) (-3595 (*1 *1 *1) (-5 *1 (-1045))) (-3594 (*1 *1 *1 *1) (-5 *1 (-1045))) (-3593 (*1 *1 *1) (-5 *1 (-1045))) (-3592 (*1 *1 *1 *1) (-5 *1 (-1045))) (-3591 (*1 *1 *1 *1) (-5 *1 (-1045))))
+(-13 (-515) (-613) (-769) (-10 -8 (-6 -4256) (-6 -4261) (-6 -4257) (-15 -3597 ($)) (-15 -3596 ($)) (-15 -3595 ($ $)) (-15 -3598 ($ $)) (-15 -3599 ($ $ $)) (-15 -3600 ($ $ $)) (-15 -3594 ($ $ $)) (-15 -3593 ($ $)) (-15 -3592 ($ $ $)) (-15 -3591 ($ $ $))))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3602 ((|#1| $) 44)) (-1217 (((-110) $ (-719)) 8)) (-3815 (($) 7 T CONST)) (-3604 ((|#1| |#1| $) 46)) (-3603 ((|#1| $) 45)) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) 9)) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35)) (-3998 (((-110) $ (-719)) 10)) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-1280 ((|#1| $) 39)) (-3889 (($ |#1| $) 40)) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-1281 ((|#1| $) 41)) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-3601 (((-719) $) 43)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-1282 (($ (-594 |#1|)) 42)) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-1046 |#1|) (-133) (-1134)) (T -1046))
+((-3604 (*1 *2 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1134)))) (-3603 (*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1134)))) (-3602 (*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1134)))) (-3601 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-1134)) (-5 *2 (-719)))))
+(-13 (-104 |t#1|) (-10 -8 (-6 -4269) (-15 -3604 (|t#1| |t#1| $)) (-15 -3603 (|t#1| $)) (-15 -3602 (|t#1| $)) (-15 -3601 ((-719) $))))
+(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-571 (-805)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1134) . T))
+((-3608 ((|#3| $) 76)) (-3432 (((-3 (-516) #1="failed") $) NIL) (((-3 (-388 (-516)) #1#) $) NIL) (((-3 |#3| #1#) $) 40)) (-3431 (((-516) $) NIL) (((-388 (-516)) $) NIL) ((|#3| $) 37)) (-2297 (((-637 (-516)) (-637 $)) NIL) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL) (((-2 (|:| -1650 (-637 |#3|)) (|:| |vec| (-1179 |#3|))) (-637 $) (-1179 $)) 73) (((-637 |#3|) (-637 $)) 65)) (-4089 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-719)) NIL) (($ $ (-594 (-1098)) (-594 (-719))) NIL) (($ $ (-1098) (-719)) NIL) (($ $ (-594 (-1098))) NIL) (($ $ (-1098)) NIL) (($ $ (-719)) NIL) (($ $) NIL)) (-3607 ((|#3| $) 78)) (-3609 ((|#4| $) 32)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ (-388 (-516))) NIL) (($ |#3|) 16)) (** (($ $ (-860)) NIL) (($ $ (-719)) 15) (($ $ (-516)) 82)))
+(((-1047 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-516))) (-15 -3607 (|#3| |#1|)) (-15 -3608 (|#3| |#1|)) (-15 -3609 (|#4| |#1|)) (-15 -2297 ((-637 |#3|) (-637 |#1|))) (-15 -2297 ((-2 (|:| -1650 (-637 |#3|)) (|:| |vec| (-1179 |#3|))) (-637 |#1|) (-1179 |#1|))) (-15 -2297 ((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 |#1|) (-1179 |#1|))) (-15 -2297 ((-637 (-516)) (-637 |#1|))) (-15 -3431 (|#3| |#1|)) (-15 -3432 ((-3 |#3| #1="failed") |#1|)) (-15 -4233 (|#1| |#3|)) (-15 -4233 (|#1| (-388 (-516)))) (-15 -3432 ((-3 (-388 (-516)) #1#) |#1|)) (-15 -3431 ((-388 (-516)) |#1|)) (-15 -3432 ((-3 (-516) #1#) |#1|)) (-15 -3431 ((-516) |#1|)) (-15 -4089 (|#1| |#1|)) (-15 -4089 (|#1| |#1| (-719))) (-15 -4089 (|#1| |#1| (-1098))) (-15 -4089 (|#1| |#1| (-594 (-1098)))) (-15 -4089 (|#1| |#1| (-1098) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)) (-594 (-719)))) (-15 -4089 (|#1| |#1| (-1 |#3| |#3|) (-719))) (-15 -4089 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4233 (|#1| (-516))) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-860))) (-15 -4233 ((-805) |#1|))) (-1048 |#2| |#3| |#4| |#5|) (-719) (-984) (-221 |#2| |#3|) (-221 |#2| |#3|)) (T -1047))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-516))) (-15 -3607 (|#3| |#1|)) (-15 -3608 (|#3| |#1|)) (-15 -3609 (|#4| |#1|)) (-15 -2297 ((-637 |#3|) (-637 |#1|))) (-15 -2297 ((-2 (|:| -1650 (-637 |#3|)) (|:| |vec| (-1179 |#3|))) (-637 |#1|) (-1179 |#1|))) (-15 -2297 ((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 |#1|) (-1179 |#1|))) (-15 -2297 ((-637 (-516)) (-637 |#1|))) (-15 -3431 (|#3| |#1|)) (-15 -3432 ((-3 |#3| #1="failed") |#1|)) (-15 -4233 (|#1| |#3|)) (-15 -4233 (|#1| (-388 (-516)))) (-15 -3432 ((-3 (-388 (-516)) #1#) |#1|)) (-15 -3431 ((-388 (-516)) |#1|)) (-15 -3432 ((-3 (-516) #1#) |#1|)) (-15 -3431 ((-516) |#1|)) (-15 -4089 (|#1| |#1|)) (-15 -4089 (|#1| |#1| (-719))) (-15 -4089 (|#1| |#1| (-1098))) (-15 -4089 (|#1| |#1| (-594 (-1098)))) (-15 -4089 (|#1| |#1| (-1098) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)) (-594 (-719)))) (-15 -4089 (|#1| |#1| (-1 |#3| |#3|) (-719))) (-15 -4089 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4233 (|#1| (-516))) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-860))) (-15 -4233 ((-805) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-3608 ((|#2| $) 72)) (-3380 (((-110) $) 112)) (-1319 (((-3 $ "failed") $ $) 19)) (-3382 (((-110) $) 110)) (-1217 (((-110) $ (-719)) 102)) (-3611 (($ |#2|) 75)) (-3815 (($) 17 T CONST)) (-3369 (($ $) 129 (|has| |#2| (-289)))) (-3371 ((|#3| $ (-516)) 124)) (-3432 (((-3 (-516) #1="failed") $) 86 (|has| |#2| (-975 (-516)))) (((-3 (-388 (-516)) #1#) $) 84 (|has| |#2| (-975 (-388 (-516))))) (((-3 |#2| #1#) $) 81)) (-3431 (((-516) $) 87 (|has| |#2| (-975 (-516)))) (((-388 (-516)) $) 85 (|has| |#2| (-975 (-388 (-516))))) ((|#2| $) 80)) (-2297 (((-637 (-516)) (-637 $)) 79 (|has| |#2| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) 78 (|has| |#2| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 $) (-1179 $)) 77) (((-637 |#2|) (-637 $)) 76)) (-3741 (((-3 $ "failed") $) 34)) (-3368 (((-719) $) 130 (|has| |#2| (-523)))) (-3372 ((|#2| $ (-516) (-516)) 122)) (-2018 (((-594 |#2|) $) 95 (|has| $ (-6 -4269)))) (-2436 (((-110) $) 31)) (-3367 (((-719) $) 131 (|has| |#2| (-523)))) (-3366 (((-594 |#4|) $) 132 (|has| |#2| (-523)))) (-3374 (((-719) $) 118)) (-3373 (((-719) $) 119)) (-4001 (((-110) $ (-719)) 103)) (-3605 ((|#2| $) 67 (|has| |#2| (-6 (-4271 #2="*"))))) (-3378 (((-516) $) 114)) (-3376 (((-516) $) 116)) (-2445 (((-594 |#2|) $) 94 (|has| $ (-6 -4269)))) (-3516 (((-110) |#2| $) 92 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269))))) (-3377 (((-516) $) 115)) (-3375 (((-516) $) 117)) (-3383 (($ (-594 (-594 |#2|))) 109)) (-2022 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-3875 (((-594 (-594 |#2|)) $) 120)) (-3998 (((-110) $ (-719)) 104)) (-3513 (((-1081) $) 9)) (-3871 (((-3 $ "failed") $) 66 (|has| |#2| (-344)))) (-3514 (((-1045) $) 10)) (-3740 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-523)))) (-2020 (((-110) (-1 (-110) |#2|) $) 97 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#2|))) 91 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-275 |#2|)) 90 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-594 |#2|) (-594 |#2|)) 88 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1218 (((-110) $ $) 108)) (-3682 (((-110) $) 105)) (-3847 (($) 106)) (-4078 ((|#2| $ (-516) (-516) |#2|) 123) ((|#2| $ (-516) (-516)) 121)) (-4089 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-719)) 51) (($ $ (-594 (-1098)) (-594 (-719))) 44 (|has| |#2| (-841 (-1098)))) (($ $ (-1098) (-719)) 43 (|has| |#2| (-841 (-1098)))) (($ $ (-594 (-1098))) 42 (|has| |#2| (-841 (-1098)))) (($ $ (-1098)) 41 (|has| |#2| (-841 (-1098)))) (($ $ (-719)) 39 (|has| |#2| (-216))) (($ $) 37 (|has| |#2| (-216)))) (-3607 ((|#2| $) 71)) (-3610 (($ (-594 |#2|)) 74)) (-3381 (((-110) $) 111)) (-3609 ((|#3| $) 73)) (-3606 ((|#2| $) 68 (|has| |#2| (-6 (-4271 #2#))))) (-2019 (((-719) (-1 (-110) |#2|) $) 96 (|has| $ (-6 -4269))) (((-719) |#2| $) 93 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 107)) (-3370 ((|#4| $ (-516)) 125)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ (-388 (-516))) 83 (|has| |#2| (-975 (-388 (-516))))) (($ |#2|) 82)) (-3385 (((-719)) 29)) (-2021 (((-110) (-1 (-110) |#2|) $) 98 (|has| $ (-6 -4269)))) (-3379 (((-110) $) 113)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2932 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-719)) 49) (($ $ (-594 (-1098)) (-594 (-719))) 48 (|has| |#2| (-841 (-1098)))) (($ $ (-1098) (-719)) 47 (|has| |#2| (-841 (-1098)))) (($ $ (-594 (-1098))) 46 (|has| |#2| (-841 (-1098)))) (($ $ (-1098)) 45 (|has| |#2| (-841 (-1098)))) (($ $ (-719)) 40 (|has| |#2| (-216))) (($ $) 38 (|has| |#2| (-216)))) (-3317 (((-110) $ $) 6)) (-4224 (($ $ |#2|) 128 (|has| |#2| (-344)))) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32) (($ $ (-516)) 65 (|has| |#2| (-344)))) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-4232 (((-719) $) 101 (|has| $ (-6 -4269)))))
+(((-1048 |#1| |#2| |#3| |#4|) (-133) (-719) (-984) (-221 |t#1| |t#2|) (-221 |t#1| |t#2|)) (T -1048))
+((-3611 (*1 *1 *2) (-12 (-4 *2 (-984)) (-4 *1 (-1048 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)))) (-3610 (*1 *1 *2) (-12 (-5 *2 (-594 *4)) (-4 *4 (-984)) (-4 *1 (-1048 *3 *4 *5 *6)) (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *3 *4)))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *2 *5)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4)) (-4 *2 (-221 *3 *4)))) (-3608 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)) (-4 *2 (-984)))) (-3607 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)) (-4 *2 (-984)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4)) (-4 *2 (-221 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *2 *5)) (-4 *4 (-984)) (-4 *2 (-221 *3 *4)) (-4 *5 (-221 *3 *4)))) (-3606 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)) (|has| *2 (-6 (-4271 #1="*"))) (-4 *2 (-984)))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)) (|has| *2 (-6 (-4271 #1#))) (-4 *2 (-984)))) (-3871 (*1 *1 *1) (|partial| -12 (-4 *1 (-1048 *2 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-221 *2 *3)) (-4 *5 (-221 *2 *3)) (-4 *3 (-344)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-4 *1 (-1048 *3 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *3 *4)) (-4 *4 (-344)))))
+(-13 (-214 |t#2|) (-109 |t#2| |t#2|) (-986 |t#1| |t#1| |t#2| |t#3| |t#4|) (-393 |t#2|) (-358 |t#2|) (-10 -8 (IF (|has| |t#2| (-162)) (-6 (-666 |t#2|)) |%noBranch|) (-15 -3611 ($ |t#2|)) (-15 -3610 ($ (-594 |t#2|))) (-15 -3609 (|t#3| $)) (-15 -3608 (|t#2| $)) (-15 -3607 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4271 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -3606 (|t#2| $)) (-15 -3605 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-344)) (PROGN (-15 -3871 ((-3 $ "failed") $)) (-15 ** ($ $ (-516)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4271 #1="*"))) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-571 (-805)) . T) ((-214 |#2|) . T) ((-216) |has| |#2| (-216)) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-358 |#2|) . T) ((-393 |#2|) . T) ((-468 |#2|) . T) ((-491 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-599 |#2|) . T) ((-599 $) . T) ((-593 (-516)) |has| |#2| (-593 (-516))) ((-593 |#2|) . T) ((-666 |#2|) -3810 (|has| |#2| (-162)) (|has| |#2| (-6 (-4271 #1#)))) ((-675) . T) ((-841 (-1098)) |has| |#2| (-841 (-1098))) ((-986 |#1| |#1| |#2| |#3| |#4|) . T) ((-975 (-388 (-516))) |has| |#2| (-975 (-388 (-516)))) ((-975 (-516)) |has| |#2| (-975 (-516))) ((-975 |#2|) . T) ((-989 |#2|) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1134) . T))
+((-3614 ((|#4| |#4|) 70)) (-3612 ((|#4| |#4|) 65)) (-3616 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2071 (-594 |#3|))) |#4| |#3|) 78)) (-3615 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-3613 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67)))
+(((-1049 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3612 (|#4| |#4|)) (-15 -3613 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3614 (|#4| |#4|)) (-15 -3615 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3616 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2071 (-594 |#3|))) |#4| |#3|))) (-289) (-353 |#1|) (-353 |#1|) (-634 |#1| |#2| |#3|)) (T -1049))
+((-3616 (*1 *2 *3 *4) (-12 (-4 *5 (-289)) (-4 *6 (-353 *5)) (-4 *4 (-353 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2071 (-594 *4)))) (-5 *1 (-1049 *5 *6 *4 *3)) (-4 *3 (-634 *5 *6 *4)))) (-3615 (*1 *2 *3) (-12 (-4 *4 (-289)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1049 *4 *5 *6 *3)) (-4 *3 (-634 *4 *5 *6)))) (-3614 (*1 *2 *2) (-12 (-4 *3 (-289)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *1 (-1049 *3 *4 *5 *2)) (-4 *2 (-634 *3 *4 *5)))) (-3613 (*1 *2 *3) (-12 (-4 *4 (-289)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1049 *4 *5 *6 *3)) (-4 *3 (-634 *4 *5 *6)))) (-3612 (*1 *2 *2) (-12 (-4 *3 (-289)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *1 (-1049 *3 *4 *5 *2)) (-4 *2 (-634 *3 *4 *5)))))
+(-10 -7 (-15 -3612 (|#4| |#4|)) (-15 -3613 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3614 (|#4| |#4|)) (-15 -3615 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3616 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2071 (-594 |#3|))) |#4| |#3|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 17)) (-3347 (((-594 |#2|) $) 161)) (-3349 (((-1092 $) $ |#2|) 54) (((-1092 |#1|) $) 43)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 110 (|has| |#1| (-523)))) (-2118 (($ $) 112 (|has| |#1| (-523)))) (-2116 (((-110) $) 114 (|has| |#1| (-523)))) (-3083 (((-719) $) NIL) (((-719) $ (-594 |#2|)) 194)) (-1319 (((-3 $ "failed") $ $) NIL)) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-4053 (($ $) NIL (|has| |#1| (-432)))) (-4245 (((-386 $) $) NIL (|has| |#1| (-432)))) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#1| #2="failed") $) 158) (((-3 (-388 (-516)) #2#) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-3 (-516) #2#) $) NIL (|has| |#1| (-975 (-516)))) (((-3 |#2| #2#) $) NIL)) (-3431 ((|#1| $) 156) (((-388 (-516)) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-516) $) NIL (|has| |#1| (-975 (-516)))) ((|#2| $) NIL)) (-4035 (($ $ $ |#2|) NIL (|has| |#1| (-162)))) (-4235 (($ $) 198)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) 82)) (-3777 (($ $) NIL (|has| |#1| (-432))) (($ $ |#2|) NIL (|has| |#1| (-432)))) (-3082 (((-594 $) $) NIL)) (-4005 (((-110) $) NIL (|has| |#1| (-851)))) (-1671 (($ $ |#1| (-502 |#2|) $) NIL)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (-12 (|has| |#1| (-827 (-359))) (|has| |#2| (-827 (-359))))) (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (-12 (|has| |#1| (-827 (-516))) (|has| |#2| (-827 (-516)))))) (-2436 (((-110) $) 19)) (-2444 (((-719) $) 26)) (-3350 (($ (-1092 |#1|) |#2|) 48) (($ (-1092 $) |#2|) 64)) (-3085 (((-594 $) $) NIL)) (-4213 (((-110) $) 32)) (-3157 (($ |#1| (-502 |#2|)) 71) (($ $ |#2| (-719)) 52) (($ $ (-594 |#2|) (-594 (-719))) NIL)) (-4041 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $ |#2|) NIL)) (-3084 (((-502 |#2|) $) 188) (((-719) $ |#2|) 189) (((-594 (-719)) $ (-594 |#2|)) 190)) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-1672 (($ (-1 (-502 |#2|) (-502 |#2|)) $) NIL)) (-4234 (($ (-1 |#1| |#1|) $) 122)) (-3348 (((-3 |#2| #3="failed") $) 163)) (-3158 (($ $) 197)) (-3449 ((|#1| $) 37)) (-1963 (($ (-594 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3513 (((-1081) $) NIL)) (-3087 (((-3 (-594 $) #3#) $) NIL)) (-3086 (((-3 (-594 $) #3#) $) NIL)) (-3088 (((-3 (-2 (|:| |var| |#2|) (|:| -2427 (-719))) #3#) $) NIL)) (-3514 (((-1045) $) NIL)) (-1866 (((-110) $) 33)) (-1865 ((|#1| $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 140 (|has| |#1| (-432)))) (-3419 (($ (-594 $)) 145 (|has| |#1| (-432))) (($ $ $) 132 (|has| |#1| (-432)))) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#1| (-851)))) (-4011 (((-386 $) $) NIL (|has| |#1| (-851)))) (-3740 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ $) 120 (|has| |#1| (-523)))) (-4046 (($ $ (-594 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL) (($ $ |#2| |#1|) 166) (($ $ (-594 |#2|) (-594 |#1|)) 179) (($ $ |#2| $) 165) (($ $ (-594 |#2|) (-594 $)) 178)) (-4036 (($ $ |#2|) NIL (|has| |#1| (-162)))) (-4089 (($ $ |#2|) 196) (($ $ (-594 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-594 |#2|) (-594 (-719))) NIL)) (-4223 (((-502 |#2|) $) 184) (((-719) $ |#2|) 180) (((-594 (-719)) $ (-594 |#2|)) 182)) (-4246 (((-831 (-359)) $) NIL (-12 (|has| |#1| (-572 (-831 (-359)))) (|has| |#2| (-572 (-831 (-359)))))) (((-831 (-516)) $) NIL (-12 (|has| |#1| (-572 (-831 (-516)))) (|has| |#2| (-572 (-831 (-516)))))) (((-505) $) NIL (-12 (|has| |#1| (-572 (-505))) (|has| |#2| (-572 (-505)))))) (-3081 ((|#1| $) 128 (|has| |#1| (-432))) (($ $ |#2|) 131 (|has| |#1| (-432)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-851))))) (-4233 (((-805) $) 151) (($ (-516)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-523))) (($ (-388 (-516))) NIL (-3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-975 (-388 (-516))))))) (-4096 (((-594 |#1|) $) 154)) (-3959 ((|#1| $ (-502 |#2|)) 73) (($ $ |#2| (-719)) NIL) (($ $ (-594 |#2|) (-594 (-719))) NIL)) (-2965 (((-3 $ "failed") $) NIL (-3810 (-12 (|has| $ (-138)) (|has| |#1| (-851))) (|has| |#1| (-138))))) (-3385 (((-719)) 79)) (-1670 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-2117 (((-110) $ $) 117 (|has| |#1| (-523)))) (-3581 (($ $ (-860)) 102) (($ $ (-719)) 104)) (-2920 (($) 12 T CONST)) (-2927 (($) 14 T CONST)) (-2932 (($ $ |#2|) NIL) (($ $ (-594 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-594 |#2|) (-594 (-719))) NIL)) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) 97)) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#1| (-795)))) (-4224 (($ $ |#1|) 126 (|has| |#1| (-344)))) (-4116 (($ $) 85) (($ $ $) 95)) (-4118 (($ $ $) 49)) (** (($ $ (-860)) 103) (($ $ (-719)) 100)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 88) (($ $ $) 65) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516))))) (($ (-388 (-516)) $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ |#1| $) 90) (($ $ |#1|) NIL)))
+(((-1050 |#1| |#2|) (-891 |#1| (-502 |#2|) |#2|) (-984) (-795)) (T -1050))
+NIL
+(-891 |#1| (-502 |#2|) |#2|)
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3347 (((-594 |#2|) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-2118 (($ $) NIL (|has| |#1| (-523)))) (-2116 (((-110) $) NIL (|has| |#1| (-523)))) (-3766 (($ $) 143 (|has| |#1| (-37 (-388 (-516)))))) (-3921 (($ $) 119 (|has| |#1| (-37 (-388 (-516)))))) (-1319 (((-3 $ "failed") $ $) NIL)) (-3301 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3764 (($ $) 139 (|has| |#1| (-37 (-388 (-516)))))) (-3920 (($ $) 115 (|has| |#1| (-37 (-388 (-516)))))) (-3768 (($ $) 147 (|has| |#1| (-37 (-388 (-516)))))) (-3919 (($ $) 123 (|has| |#1| (-37 (-388 (-516)))))) (-3815 (($) NIL T CONST)) (-4235 (($ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-4093 (((-887 |#1|) $ (-719)) NIL) (((-887 |#1|) $ (-719) (-719)) NIL)) (-3156 (((-110) $) NIL)) (-3909 (($) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4050 (((-719) $ |#2|) NIL) (((-719) $ |#2| (-719)) NIL)) (-2436 (((-110) $) NIL)) (-3275 (($ $ (-516)) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4213 (((-110) $) NIL)) (-3157 (($ $ (-594 |#2|) (-594 (-502 |#2|))) NIL) (($ $ |#2| (-502 |#2|)) NIL) (($ |#1| (-502 |#2|)) NIL) (($ $ |#2| (-719)) 58) (($ $ (-594 |#2|) (-594 (-719))) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-4218 (($ $) 113 (|has| |#1| (-37 (-388 (-516)))))) (-3158 (($ $) NIL)) (-3449 ((|#1| $) NIL)) (-3513 (((-1081) $) NIL)) (-4091 (($ $ |#2|) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ |#2| |#1|) 166 (|has| |#1| (-37 (-388 (-516)))))) (-3514 (((-1045) $) NIL)) (-3958 (($ (-1 $) |#2| |#1|) 165 (|has| |#1| (-37 (-388 (-516)))))) (-4047 (($ $ (-719)) 15)) (-3740 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-4219 (($ $) 111 (|has| |#1| (-37 (-388 (-516)))))) (-4046 (($ $ |#2| $) 97) (($ $ (-594 |#2|) (-594 $)) 90) (($ $ (-594 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL)) (-4089 (($ $ |#2|) 100) (($ $ (-594 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-594 |#2|) (-594 (-719))) NIL)) (-4223 (((-502 |#2|) $) NIL)) (-3617 (((-1 (-1076 |#3|) |#3|) (-594 |#2|) (-594 (-1076 |#3|))) 79)) (-3769 (($ $) 149 (|has| |#1| (-37 (-388 (-516)))))) (-3918 (($ $) 125 (|has| |#1| (-37 (-388 (-516)))))) (-3767 (($ $) 145 (|has| |#1| (-37 (-388 (-516)))))) (-3917 (($ $) 121 (|has| |#1| (-37 (-388 (-516)))))) (-3765 (($ $) 141 (|has| |#1| (-37 (-388 (-516)))))) (-3916 (($ $) 117 (|has| |#1| (-37 (-388 (-516)))))) (-3155 (($ $) 17)) (-4233 (((-805) $) 182) (($ (-516)) NIL) (($ |#1|) 44 (|has| |#1| (-162))) (($ $) NIL (|has| |#1| (-523))) (($ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516))))) (($ |#2|) 65) (($ |#3|) 63)) (-3959 ((|#1| $ (-502 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-594 |#2|) (-594 (-719))) NIL) ((|#3| $ (-719)) 42)) (-2965 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3385 (((-719)) NIL)) (-3772 (($ $) 155 (|has| |#1| (-37 (-388 (-516)))))) (-3760 (($ $) 131 (|has| |#1| (-37 (-388 (-516)))))) (-2117 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3770 (($ $) 151 (|has| |#1| (-37 (-388 (-516)))))) (-3758 (($ $) 127 (|has| |#1| (-37 (-388 (-516)))))) (-3774 (($ $) 159 (|has| |#1| (-37 (-388 (-516)))))) (-3762 (($ $) 135 (|has| |#1| (-37 (-388 (-516)))))) (-3775 (($ $) 161 (|has| |#1| (-37 (-388 (-516)))))) (-3763 (($ $) 137 (|has| |#1| (-37 (-388 (-516)))))) (-3773 (($ $) 157 (|has| |#1| (-37 (-388 (-516)))))) (-3761 (($ $) 133 (|has| |#1| (-37 (-388 (-516)))))) (-3771 (($ $) 153 (|has| |#1| (-37 (-388 (-516)))))) (-3759 (($ $) 129 (|has| |#1| (-37 (-388 (-516)))))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 18 T CONST)) (-2927 (($) 10 T CONST)) (-2932 (($ $ |#2|) NIL) (($ $ (-594 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-594 |#2|) (-594 (-719))) NIL)) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ |#1|) 184 (|has| |#1| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) 61)) (** (($ $ (-860)) NIL) (($ $ (-719)) 70) (($ $ $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) 103 (|has| |#1| (-37 (-388 (-516)))))) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 60) (($ $ (-388 (-516))) 108 (|has| |#1| (-37 (-388 (-516))))) (($ (-388 (-516)) $) 106 (|has| |#1| (-37 (-388 (-516))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46)))
+(((-1051 |#1| |#2| |#3|) (-13 (-689 |#1| |#2|) (-10 -8 (-15 -3959 (|#3| $ (-719))) (-15 -4233 ($ |#2|)) (-15 -4233 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3617 ((-1 (-1076 |#3|) |#3|) (-594 |#2|) (-594 (-1076 |#3|)))) (IF (|has| |#1| (-37 (-388 (-516)))) (PROGN (-15 -4091 ($ $ |#2| |#1|)) (-15 -3958 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-984) (-795) (-891 |#1| (-502 |#2|) |#2|)) (T -1051))
+((-3959 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *2 (-891 *4 (-502 *5) *5)) (-5 *1 (-1051 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-795)))) (-4233 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *2 (-795)) (-5 *1 (-1051 *3 *2 *4)) (-4 *4 (-891 *3 (-502 *2) *2)))) (-4233 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *4 (-795)) (-5 *1 (-1051 *3 *4 *2)) (-4 *2 (-891 *3 (-502 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-795)) (-5 *1 (-1051 *3 *4 *2)) (-4 *2 (-891 *3 (-502 *4) *4)))) (-3617 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *6)) (-5 *4 (-594 (-1076 *7))) (-4 *6 (-795)) (-4 *7 (-891 *5 (-502 *6) *6)) (-4 *5 (-984)) (-5 *2 (-1 (-1076 *7) *7)) (-5 *1 (-1051 *5 *6 *7)))) (-4091 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *3 (-984)) (-4 *2 (-795)) (-5 *1 (-1051 *3 *2 *4)) (-4 *4 (-891 *3 (-502 *2) *2)))) (-3958 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1051 *4 *3 *5))) (-4 *4 (-37 (-388 (-516)))) (-4 *4 (-984)) (-4 *3 (-795)) (-5 *1 (-1051 *4 *3 *5)) (-4 *5 (-891 *4 (-502 *3) *3)))))
+(-13 (-689 |#1| |#2|) (-10 -8 (-15 -3959 (|#3| $ (-719))) (-15 -4233 ($ |#2|)) (-15 -4233 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3617 ((-1 (-1076 |#3|) |#3|) (-594 |#2|) (-594 (-1076 |#3|)))) (IF (|has| |#1| (-37 (-388 (-516)))) (PROGN (-15 -4091 ($ $ |#2| |#1|)) (-15 -3958 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-2828 (((-110) $ $) 7)) (-3963 (((-594 (-2 (|:| -4140 $) (|:| -1768 (-594 |#4|)))) (-594 |#4|)) 85)) (-3964 (((-594 $) (-594 |#4|)) 86) (((-594 $) (-594 |#4|) (-110)) 111)) (-3347 (((-594 |#3|) $) 33)) (-3172 (((-110) $) 26)) (-3163 (((-110) $) 17 (|has| |#1| (-523)))) (-3975 (((-110) |#4| $) 101) (((-110) $) 97)) (-3970 ((|#4| |#4| $) 92)) (-4053 (((-594 (-2 (|:| |val| |#4|) (|:| -1610 $))) |#4| $) 126)) (-3173 (((-2 (|:| |under| $) (|:| -3389 $) (|:| |upper| $)) $ |#3|) 27)) (-1217 (((-110) $ (-719)) 44)) (-3992 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4269))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3815 (($) 45 T CONST)) (-3168 (((-110) $) 22 (|has| |#1| (-523)))) (-3170 (((-110) $ $) 24 (|has| |#1| (-523)))) (-3169 (((-110) $ $) 23 (|has| |#1| (-523)))) (-3171 (((-110) $) 25 (|has| |#1| (-523)))) (-3971 (((-594 |#4|) (-594 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-3164 (((-594 |#4|) (-594 |#4|) $) 18 (|has| |#1| (-523)))) (-3165 (((-594 |#4|) (-594 |#4|) $) 19 (|has| |#1| (-523)))) (-3432 (((-3 $ "failed") (-594 |#4|)) 36)) (-3431 (($ (-594 |#4|)) 35)) (-4077 (((-3 $ #1#) $) 82)) (-3967 ((|#4| |#4| $) 89)) (-1349 (($ $) 68 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-3685 (($ |#4| $) 67 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4269)))) (-3166 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-523)))) (-3976 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-3965 ((|#4| |#4| $) 87)) (-4121 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-3978 (((-2 (|:| -4140 (-594 |#4|)) (|:| -1768 (-594 |#4|))) $) 105)) (-3471 (((-110) |#4| $) 136)) (-3469 (((-110) |#4| $) 133)) (-3472 (((-110) |#4| $) 137) (((-110) $) 134)) (-2018 (((-594 |#4|) $) 52 (|has| $ (-6 -4269)))) (-3977 (((-110) |#4| $) 104) (((-110) $) 103)) (-3455 ((|#3| $) 34)) (-4001 (((-110) $ (-719)) 43)) (-2445 (((-594 |#4|) $) 53 (|has| $ (-6 -4269)))) (-3516 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-2022 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#4| |#4|) $) 47)) (-3178 (((-594 |#3|) $) 32)) (-3177 (((-110) |#3| $) 31)) (-3998 (((-110) $ (-719)) 42)) (-3513 (((-1081) $) 9)) (-3465 (((-3 |#4| (-594 $)) |#4| |#4| $) 128)) (-3464 (((-594 (-2 (|:| |val| |#4|) (|:| -1610 $))) |#4| |#4| $) 127)) (-4076 (((-3 |#4| #1#) $) 83)) (-3466 (((-594 $) |#4| $) 129)) (-3468 (((-3 (-110) (-594 $)) |#4| $) 132)) (-3467 (((-594 (-2 (|:| |val| (-110)) (|:| -1610 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-3509 (((-594 $) |#4| $) 125) (((-594 $) (-594 |#4|) $) 124) (((-594 $) (-594 |#4|) (-594 $)) 123) (((-594 $) |#4| (-594 $)) 122)) (-3719 (($ |#4| $) 117) (($ (-594 |#4|) $) 116)) (-3979 (((-594 |#4|) $) 107)) (-3973 (((-110) |#4| $) 99) (((-110) $) 95)) (-3968 ((|#4| |#4| $) 90)) (-3981 (((-110) $ $) 110)) (-3167 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-523)))) (-3974 (((-110) |#4| $) 100) (((-110) $) 96)) (-3969 ((|#4| |#4| $) 91)) (-3514 (((-1045) $) 10)) (-4079 (((-3 |#4| #1#) $) 84)) (-1350 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-3961 (((-3 $ #1#) $ |#4|) 78)) (-4047 (($ $ |#4|) 77) (((-594 $) |#4| $) 115) (((-594 $) |#4| (-594 $)) 114) (((-594 $) (-594 |#4|) $) 113) (((-594 $) (-594 |#4|) (-594 $)) 112)) (-2020 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 |#4|) (-594 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-275 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-594 (-275 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-1218 (((-110) $ $) 38)) (-3682 (((-110) $) 41)) (-3847 (($) 40)) (-4223 (((-719) $) 106)) (-2019 (((-719) |#4| $) 54 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4269)))) (-3678 (($ $) 39)) (-4246 (((-505) $) 69 (|has| |#4| (-572 (-505))))) (-3804 (($ (-594 |#4|)) 60)) (-3174 (($ $ |#3|) 28)) (-3176 (($ $ |#3|) 30)) (-3966 (($ $) 88)) (-3175 (($ $ |#3|) 29)) (-4233 (((-805) $) 11) (((-594 |#4|) $) 37)) (-3960 (((-719) $) 76 (|has| |#3| (-349)))) (-3980 (((-3 (-2 (|:| |bas| $) (|:| -3602 (-594 |#4|))) #1#) (-594 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3602 (-594 |#4|))) #1#) (-594 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-3972 (((-110) $ (-1 (-110) |#4| (-594 |#4|))) 98)) (-3463 (((-594 $) |#4| $) 121) (((-594 $) |#4| (-594 $)) 120) (((-594 $) (-594 |#4|) $) 119) (((-594 $) (-594 |#4|) (-594 $)) 118)) (-2021 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4269)))) (-3962 (((-594 |#3|) $) 81)) (-3470 (((-110) |#4| $) 135)) (-4209 (((-110) |#3| $) 80)) (-3317 (((-110) $ $) 6)) (-4232 (((-719) $) 46 (|has| $ (-6 -4269)))))
+(((-1052 |#1| |#2| |#3| |#4|) (-133) (-432) (-741) (-795) (-997 |t#1| |t#2| |t#3|)) (T -1052))
+NIL
+(-13 (-1035 |t#1| |t#2| |t#3| |t#4|) (-732 |t#1| |t#2| |t#3| |t#4|))
+(((-33) . T) ((-99) . T) ((-571 (-594 |#4|)) . T) ((-571 (-805)) . T) ((-144 |#4|) . T) ((-572 (-505)) |has| |#4| (-572 (-505))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-468 |#4|) . T) ((-491 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-732 |#1| |#2| |#3| |#4|) . T) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1002 |#1| |#2| |#3| |#4|) . T) ((-1027) . T) ((-1035 |#1| |#2| |#3| |#4|) . T) ((-1129 |#1| |#2| |#3| |#4|) . T) ((-1134) . T))
+((-3855 (((-594 |#2|) |#1|) 12)) (-3623 (((-594 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-594 |#2|) |#1|) 52)) (-3621 (((-594 |#2|) |#2| |#2| |#2|) 39) (((-594 |#2|) |#1|) 50)) (-3618 ((|#2| |#1|) 46)) (-3619 (((-2 (|:| |solns| (-594 |#2|)) (|:| |maps| (-594 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3620 (((-594 |#2|) |#2| |#2|) 38) (((-594 |#2|) |#1|) 49)) (-3622 (((-594 |#2|) |#2| |#2| |#2| |#2|) 40) (((-594 |#2|) |#1|) 51)) (-3627 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-3625 ((|#2| |#2| |#2| |#2|) 43)) (-3624 ((|#2| |#2| |#2|) 42)) (-3626 ((|#2| |#2| |#2| |#2| |#2|) 44)))
+(((-1053 |#1| |#2|) (-10 -7 (-15 -3855 ((-594 |#2|) |#1|)) (-15 -3618 (|#2| |#1|)) (-15 -3619 ((-2 (|:| |solns| (-594 |#2|)) (|:| |maps| (-594 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3620 ((-594 |#2|) |#1|)) (-15 -3621 ((-594 |#2|) |#1|)) (-15 -3622 ((-594 |#2|) |#1|)) (-15 -3623 ((-594 |#2|) |#1|)) (-15 -3620 ((-594 |#2|) |#2| |#2|)) (-15 -3621 ((-594 |#2|) |#2| |#2| |#2|)) (-15 -3622 ((-594 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3623 ((-594 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3624 (|#2| |#2| |#2|)) (-15 -3625 (|#2| |#2| |#2| |#2|)) (-15 -3626 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3627 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1155 |#2|) (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516))))))) (T -1053))
+((-3627 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516))))))) (-5 *1 (-1053 *3 *2)) (-4 *3 (-1155 *2)))) (-3626 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516))))))) (-5 *1 (-1053 *3 *2)) (-4 *3 (-1155 *2)))) (-3625 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516))))))) (-5 *1 (-1053 *3 *2)) (-4 *3 (-1155 *2)))) (-3624 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516))))))) (-5 *1 (-1053 *3 *2)) (-4 *3 (-1155 *2)))) (-3623 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516))))))) (-5 *2 (-594 *3)) (-5 *1 (-1053 *4 *3)) (-4 *4 (-1155 *3)))) (-3622 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516))))))) (-5 *2 (-594 *3)) (-5 *1 (-1053 *4 *3)) (-4 *4 (-1155 *3)))) (-3621 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516))))))) (-5 *2 (-594 *3)) (-5 *1 (-1053 *4 *3)) (-4 *4 (-1155 *3)))) (-3620 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516))))))) (-5 *2 (-594 *3)) (-5 *1 (-1053 *4 *3)) (-4 *4 (-1155 *3)))) (-3623 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516))))))) (-5 *2 (-594 *4)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-1155 *4)))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516))))))) (-5 *2 (-594 *4)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-1155 *4)))) (-3621 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516))))))) (-5 *2 (-594 *4)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-1155 *4)))) (-3620 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516))))))) (-5 *2 (-594 *4)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-1155 *4)))) (-3619 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516))))))) (-5 *2 (-2 (|:| |solns| (-594 *5)) (|:| |maps| (-594 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1053 *3 *5)) (-4 *3 (-1155 *5)))) (-3618 (*1 *2 *3) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516))))))) (-5 *1 (-1053 *3 *2)) (-4 *3 (-1155 *2)))) (-3855 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516))))))) (-5 *2 (-594 *4)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-1155 *4)))))
+(-10 -7 (-15 -3855 ((-594 |#2|) |#1|)) (-15 -3618 (|#2| |#1|)) (-15 -3619 ((-2 (|:| |solns| (-594 |#2|)) (|:| |maps| (-594 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3620 ((-594 |#2|) |#1|)) (-15 -3621 ((-594 |#2|) |#1|)) (-15 -3622 ((-594 |#2|) |#1|)) (-15 -3623 ((-594 |#2|) |#1|)) (-15 -3620 ((-594 |#2|) |#2| |#2|)) (-15 -3621 ((-594 |#2|) |#2| |#2| |#2|)) (-15 -3622 ((-594 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3623 ((-594 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3624 (|#2| |#2| |#2|)) (-15 -3625 (|#2| |#2| |#2| |#2|)) (-15 -3626 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3627 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-3628 (((-594 (-594 (-275 (-295 |#1|)))) (-594 (-275 (-388 (-887 |#1|))))) 95) (((-594 (-594 (-275 (-295 |#1|)))) (-594 (-275 (-388 (-887 |#1|)))) (-594 (-1098))) 94) (((-594 (-594 (-275 (-295 |#1|)))) (-594 (-388 (-887 |#1|)))) 92) (((-594 (-594 (-275 (-295 |#1|)))) (-594 (-388 (-887 |#1|))) (-594 (-1098))) 90) (((-594 (-275 (-295 |#1|))) (-275 (-388 (-887 |#1|)))) 75) (((-594 (-275 (-295 |#1|))) (-275 (-388 (-887 |#1|))) (-1098)) 76) (((-594 (-275 (-295 |#1|))) (-388 (-887 |#1|))) 70) (((-594 (-275 (-295 |#1|))) (-388 (-887 |#1|)) (-1098)) 59)) (-3629 (((-594 (-594 (-295 |#1|))) (-594 (-388 (-887 |#1|))) (-594 (-1098))) 88) (((-594 (-295 |#1|)) (-388 (-887 |#1|)) (-1098)) 43)) (-3630 (((-1088 (-594 (-295 |#1|)) (-594 (-275 (-295 |#1|)))) (-388 (-887 |#1|)) (-1098)) 98) (((-1088 (-594 (-295 |#1|)) (-594 (-275 (-295 |#1|)))) (-275 (-388 (-887 |#1|))) (-1098)) 97)))
+(((-1054 |#1|) (-10 -7 (-15 -3628 ((-594 (-275 (-295 |#1|))) (-388 (-887 |#1|)) (-1098))) (-15 -3628 ((-594 (-275 (-295 |#1|))) (-388 (-887 |#1|)))) (-15 -3628 ((-594 (-275 (-295 |#1|))) (-275 (-388 (-887 |#1|))) (-1098))) (-15 -3628 ((-594 (-275 (-295 |#1|))) (-275 (-388 (-887 |#1|))))) (-15 -3628 ((-594 (-594 (-275 (-295 |#1|)))) (-594 (-388 (-887 |#1|))) (-594 (-1098)))) (-15 -3628 ((-594 (-594 (-275 (-295 |#1|)))) (-594 (-388 (-887 |#1|))))) (-15 -3628 ((-594 (-594 (-275 (-295 |#1|)))) (-594 (-275 (-388 (-887 |#1|)))) (-594 (-1098)))) (-15 -3628 ((-594 (-594 (-275 (-295 |#1|)))) (-594 (-275 (-388 (-887 |#1|)))))) (-15 -3629 ((-594 (-295 |#1|)) (-388 (-887 |#1|)) (-1098))) (-15 -3629 ((-594 (-594 (-295 |#1|))) (-594 (-388 (-887 |#1|))) (-594 (-1098)))) (-15 -3630 ((-1088 (-594 (-295 |#1|)) (-594 (-275 (-295 |#1|)))) (-275 (-388 (-887 |#1|))) (-1098))) (-15 -3630 ((-1088 (-594 (-295 |#1|)) (-594 (-275 (-295 |#1|)))) (-388 (-887 |#1|)) (-1098)))) (-13 (-289) (-795) (-140))) (T -1054))
+((-3630 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-887 *5))) (-5 *4 (-1098)) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-1088 (-594 (-295 *5)) (-594 (-275 (-295 *5))))) (-5 *1 (-1054 *5)))) (-3630 (*1 *2 *3 *4) (-12 (-5 *3 (-275 (-388 (-887 *5)))) (-5 *4 (-1098)) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-1088 (-594 (-295 *5)) (-594 (-275 (-295 *5))))) (-5 *1 (-1054 *5)))) (-3629 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-388 (-887 *5)))) (-5 *4 (-594 (-1098))) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-594 (-594 (-295 *5)))) (-5 *1 (-1054 *5)))) (-3629 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-887 *5))) (-5 *4 (-1098)) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-594 (-295 *5))) (-5 *1 (-1054 *5)))) (-3628 (*1 *2 *3) (-12 (-5 *3 (-594 (-275 (-388 (-887 *4))))) (-4 *4 (-13 (-289) (-795) (-140))) (-5 *2 (-594 (-594 (-275 (-295 *4))))) (-5 *1 (-1054 *4)))) (-3628 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-275 (-388 (-887 *5))))) (-5 *4 (-594 (-1098))) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-594 (-594 (-275 (-295 *5))))) (-5 *1 (-1054 *5)))) (-3628 (*1 *2 *3) (-12 (-5 *3 (-594 (-388 (-887 *4)))) (-4 *4 (-13 (-289) (-795) (-140))) (-5 *2 (-594 (-594 (-275 (-295 *4))))) (-5 *1 (-1054 *4)))) (-3628 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-388 (-887 *5)))) (-5 *4 (-594 (-1098))) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-594 (-594 (-275 (-295 *5))))) (-5 *1 (-1054 *5)))) (-3628 (*1 *2 *3) (-12 (-5 *3 (-275 (-388 (-887 *4)))) (-4 *4 (-13 (-289) (-795) (-140))) (-5 *2 (-594 (-275 (-295 *4)))) (-5 *1 (-1054 *4)))) (-3628 (*1 *2 *3 *4) (-12 (-5 *3 (-275 (-388 (-887 *5)))) (-5 *4 (-1098)) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-594 (-275 (-295 *5)))) (-5 *1 (-1054 *5)))) (-3628 (*1 *2 *3) (-12 (-5 *3 (-388 (-887 *4))) (-4 *4 (-13 (-289) (-795) (-140))) (-5 *2 (-594 (-275 (-295 *4)))) (-5 *1 (-1054 *4)))) (-3628 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-887 *5))) (-5 *4 (-1098)) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-594 (-275 (-295 *5)))) (-5 *1 (-1054 *5)))))
+(-10 -7 (-15 -3628 ((-594 (-275 (-295 |#1|))) (-388 (-887 |#1|)) (-1098))) (-15 -3628 ((-594 (-275 (-295 |#1|))) (-388 (-887 |#1|)))) (-15 -3628 ((-594 (-275 (-295 |#1|))) (-275 (-388 (-887 |#1|))) (-1098))) (-15 -3628 ((-594 (-275 (-295 |#1|))) (-275 (-388 (-887 |#1|))))) (-15 -3628 ((-594 (-594 (-275 (-295 |#1|)))) (-594 (-388 (-887 |#1|))) (-594 (-1098)))) (-15 -3628 ((-594 (-594 (-275 (-295 |#1|)))) (-594 (-388 (-887 |#1|))))) (-15 -3628 ((-594 (-594 (-275 (-295 |#1|)))) (-594 (-275 (-388 (-887 |#1|)))) (-594 (-1098)))) (-15 -3628 ((-594 (-594 (-275 (-295 |#1|)))) (-594 (-275 (-388 (-887 |#1|)))))) (-15 -3629 ((-594 (-295 |#1|)) (-388 (-887 |#1|)) (-1098))) (-15 -3629 ((-594 (-594 (-295 |#1|))) (-594 (-388 (-887 |#1|))) (-594 (-1098)))) (-15 -3630 ((-1088 (-594 (-295 |#1|)) (-594 (-275 (-295 |#1|)))) (-275 (-388 (-887 |#1|))) (-1098))) (-15 -3630 ((-1088 (-594 (-295 |#1|)) (-594 (-275 (-295 |#1|)))) (-388 (-887 |#1|)) (-1098))))
+((-3632 (((-388 (-1092 (-295 |#1|))) (-1179 (-295 |#1|)) (-388 (-1092 (-295 |#1|))) (-516)) 29)) (-3631 (((-388 (-1092 (-295 |#1|))) (-388 (-1092 (-295 |#1|))) (-388 (-1092 (-295 |#1|))) (-388 (-1092 (-295 |#1|)))) 40)))
+(((-1055 |#1|) (-10 -7 (-15 -3631 ((-388 (-1092 (-295 |#1|))) (-388 (-1092 (-295 |#1|))) (-388 (-1092 (-295 |#1|))) (-388 (-1092 (-295 |#1|))))) (-15 -3632 ((-388 (-1092 (-295 |#1|))) (-1179 (-295 |#1|)) (-388 (-1092 (-295 |#1|))) (-516)))) (-13 (-523) (-795))) (T -1055))
+((-3632 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-388 (-1092 (-295 *5)))) (-5 *3 (-1179 (-295 *5))) (-5 *4 (-516)) (-4 *5 (-13 (-523) (-795))) (-5 *1 (-1055 *5)))) (-3631 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-388 (-1092 (-295 *3)))) (-4 *3 (-13 (-523) (-795))) (-5 *1 (-1055 *3)))))
+(-10 -7 (-15 -3631 ((-388 (-1092 (-295 |#1|))) (-388 (-1092 (-295 |#1|))) (-388 (-1092 (-295 |#1|))) (-388 (-1092 (-295 |#1|))))) (-15 -3632 ((-388 (-1092 (-295 |#1|))) (-1179 (-295 |#1|)) (-388 (-1092 (-295 |#1|))) (-516))))
+((-3855 (((-594 (-594 (-275 (-295 |#1|)))) (-594 (-275 (-295 |#1|))) (-594 (-1098))) 224) (((-594 (-275 (-295 |#1|))) (-295 |#1|) (-1098)) 20) (((-594 (-275 (-295 |#1|))) (-275 (-295 |#1|)) (-1098)) 26) (((-594 (-275 (-295 |#1|))) (-275 (-295 |#1|))) 25) (((-594 (-275 (-295 |#1|))) (-295 |#1|)) 21)))
+(((-1056 |#1|) (-10 -7 (-15 -3855 ((-594 (-275 (-295 |#1|))) (-295 |#1|))) (-15 -3855 ((-594 (-275 (-295 |#1|))) (-275 (-295 |#1|)))) (-15 -3855 ((-594 (-275 (-295 |#1|))) (-275 (-295 |#1|)) (-1098))) (-15 -3855 ((-594 (-275 (-295 |#1|))) (-295 |#1|) (-1098))) (-15 -3855 ((-594 (-594 (-275 (-295 |#1|)))) (-594 (-275 (-295 |#1|))) (-594 (-1098))))) (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140))) (T -1056))
+((-3855 (*1 *2 *3 *4) (-12 (-5 *4 (-594 (-1098))) (-4 *5 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140))) (-5 *2 (-594 (-594 (-275 (-295 *5))))) (-5 *1 (-1056 *5)) (-5 *3 (-594 (-275 (-295 *5)))))) (-3855 (*1 *2 *3 *4) (-12 (-5 *4 (-1098)) (-4 *5 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140))) (-5 *2 (-594 (-275 (-295 *5)))) (-5 *1 (-1056 *5)) (-5 *3 (-295 *5)))) (-3855 (*1 *2 *3 *4) (-12 (-5 *4 (-1098)) (-4 *5 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140))) (-5 *2 (-594 (-275 (-295 *5)))) (-5 *1 (-1056 *5)) (-5 *3 (-275 (-295 *5))))) (-3855 (*1 *2 *3) (-12 (-4 *4 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140))) (-5 *2 (-594 (-275 (-295 *4)))) (-5 *1 (-1056 *4)) (-5 *3 (-275 (-295 *4))))) (-3855 (*1 *2 *3) (-12 (-4 *4 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140))) (-5 *2 (-594 (-275 (-295 *4)))) (-5 *1 (-1056 *4)) (-5 *3 (-295 *4)))))
+(-10 -7 (-15 -3855 ((-594 (-275 (-295 |#1|))) (-295 |#1|))) (-15 -3855 ((-594 (-275 (-295 |#1|))) (-275 (-295 |#1|)))) (-15 -3855 ((-594 (-275 (-295 |#1|))) (-275 (-295 |#1|)) (-1098))) (-15 -3855 ((-594 (-275 (-295 |#1|))) (-295 |#1|) (-1098))) (-15 -3855 ((-594 (-594 (-275 (-295 |#1|)))) (-594 (-275 (-295 |#1|))) (-594 (-1098)))))
+((-3634 ((|#2| |#2|) 20 (|has| |#1| (-795))) ((|#2| |#2| (-1 (-110) |#1| |#1|)) 17)) (-3633 ((|#2| |#2|) 19 (|has| |#1| (-795))) ((|#2| |#2| (-1 (-110) |#1| |#1|)) 16)))
+(((-1057 |#1| |#2|) (-10 -7 (-15 -3633 (|#2| |#2| (-1 (-110) |#1| |#1|))) (-15 -3634 (|#2| |#2| (-1 (-110) |#1| |#1|))) (IF (|has| |#1| (-795)) (PROGN (-15 -3633 (|#2| |#2|)) (-15 -3634 (|#2| |#2|))) |%noBranch|)) (-1134) (-13 (-563 (-516) |#1|) (-10 -7 (-6 -4269) (-6 -4270)))) (T -1057))
+((-3634 (*1 *2 *2) (-12 (-4 *3 (-795)) (-4 *3 (-1134)) (-5 *1 (-1057 *3 *2)) (-4 *2 (-13 (-563 (-516) *3) (-10 -7 (-6 -4269) (-6 -4270)))))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-795)) (-4 *3 (-1134)) (-5 *1 (-1057 *3 *2)) (-4 *2 (-13 (-563 (-516) *3) (-10 -7 (-6 -4269) (-6 -4270)))))) (-3634 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1134)) (-5 *1 (-1057 *4 *2)) (-4 *2 (-13 (-563 (-516) *4) (-10 -7 (-6 -4269) (-6 -4270)))))) (-3633 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1134)) (-5 *1 (-1057 *4 *2)) (-4 *2 (-13 (-563 (-516) *4) (-10 -7 (-6 -4269) (-6 -4270)))))))
+(-10 -7 (-15 -3633 (|#2| |#2| (-1 (-110) |#1| |#1|))) (-15 -3634 (|#2| |#2| (-1 (-110) |#1| |#1|))) (IF (|has| |#1| (-795)) (PROGN (-15 -3633 (|#2| |#2|)) (-15 -3634 (|#2| |#2|))) |%noBranch|))
+((-2828 (((-110) $ $) NIL)) (-4167 (((-1087 3 |#1|) $) 108)) (-3644 (((-110) $) 72)) (-3645 (($ $ (-594 (-884 |#1|))) 20) (($ $ (-594 (-594 |#1|))) 75) (($ (-594 (-884 |#1|))) 74) (((-594 (-884 |#1|)) $) 73)) (-3650 (((-110) $) 41)) (-3988 (($ $ (-884 |#1|)) 46) (($ $ (-594 |#1|)) 51) (($ $ (-719)) 53) (($ (-884 |#1|)) 47) (((-884 |#1|) $) 45)) (-3636 (((-2 (|:| -4129 (-719)) (|:| |curves| (-719)) (|:| |polygons| (-719)) (|:| |constructs| (-719))) $) 106)) (-3654 (((-719) $) 26)) (-3655 (((-719) $) 25)) (-4166 (($ $ (-719) (-884 |#1|)) 39)) (-3642 (((-110) $) 82)) (-3643 (($ $ (-594 (-594 (-884 |#1|))) (-594 (-161)) (-161)) 89) (($ $ (-594 (-594 (-594 |#1|))) (-594 (-161)) (-161)) 91) (($ $ (-594 (-594 (-884 |#1|))) (-110) (-110)) 85) (($ $ (-594 (-594 (-594 |#1|))) (-110) (-110)) 93) (($ (-594 (-594 (-884 |#1|)))) 86) (($ (-594 (-594 (-884 |#1|))) (-110) (-110)) 87) (((-594 (-594 (-884 |#1|))) $) 84)) (-3792 (($ (-594 $)) 28) (($ $ $) 29)) (-3637 (((-594 (-161)) $) 103)) (-3641 (((-594 (-884 |#1|)) $) 97)) (-3638 (((-594 (-594 (-161))) $) 102)) (-3639 (((-594 (-594 (-594 (-884 |#1|)))) $) NIL)) (-3640 (((-594 (-594 (-594 (-719)))) $) 100)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-3651 (((-719) $ (-594 (-884 |#1|))) 37)) (-3648 (((-110) $) 54)) (-3649 (($ $ (-594 (-884 |#1|))) 56) (($ $ (-594 (-594 |#1|))) 62) (($ (-594 (-884 |#1|))) 57) (((-594 (-884 |#1|)) $) 55)) (-3656 (($) 23) (($ (-1087 3 |#1|)) 24)) (-3678 (($ $) 35)) (-3652 (((-594 $) $) 34)) (-4033 (($ (-594 $)) 31)) (-3653 (((-594 $) $) 33)) (-4233 (((-805) $) 112)) (-3646 (((-110) $) 64)) (-3647 (($ $ (-594 (-884 |#1|))) 66) (($ $ (-594 (-594 |#1|))) 69) (($ (-594 (-884 |#1|))) 67) (((-594 (-884 |#1|)) $) 65)) (-3635 (($ $) 107)) (-3317 (((-110) $ $) NIL)))
+(((-1058 |#1|) (-1059 |#1|) (-984)) (T -1058))
+NIL
+(-1059 |#1|)
+((-2828 (((-110) $ $) 7)) (-4167 (((-1087 3 |#1|) $) 13)) (-3644 (((-110) $) 29)) (-3645 (($ $ (-594 (-884 |#1|))) 33) (($ $ (-594 (-594 |#1|))) 32) (($ (-594 (-884 |#1|))) 31) (((-594 (-884 |#1|)) $) 30)) (-3650 (((-110) $) 44)) (-3988 (($ $ (-884 |#1|)) 49) (($ $ (-594 |#1|)) 48) (($ $ (-719)) 47) (($ (-884 |#1|)) 46) (((-884 |#1|) $) 45)) (-3636 (((-2 (|:| -4129 (-719)) (|:| |curves| (-719)) (|:| |polygons| (-719)) (|:| |constructs| (-719))) $) 15)) (-3654 (((-719) $) 58)) (-3655 (((-719) $) 59)) (-4166 (($ $ (-719) (-884 |#1|)) 50)) (-3642 (((-110) $) 21)) (-3643 (($ $ (-594 (-594 (-884 |#1|))) (-594 (-161)) (-161)) 28) (($ $ (-594 (-594 (-594 |#1|))) (-594 (-161)) (-161)) 27) (($ $ (-594 (-594 (-884 |#1|))) (-110) (-110)) 26) (($ $ (-594 (-594 (-594 |#1|))) (-110) (-110)) 25) (($ (-594 (-594 (-884 |#1|)))) 24) (($ (-594 (-594 (-884 |#1|))) (-110) (-110)) 23) (((-594 (-594 (-884 |#1|))) $) 22)) (-3792 (($ (-594 $)) 57) (($ $ $) 56)) (-3637 (((-594 (-161)) $) 16)) (-3641 (((-594 (-884 |#1|)) $) 20)) (-3638 (((-594 (-594 (-161))) $) 17)) (-3639 (((-594 (-594 (-594 (-884 |#1|)))) $) 18)) (-3640 (((-594 (-594 (-594 (-719)))) $) 19)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-3651 (((-719) $ (-594 (-884 |#1|))) 51)) (-3648 (((-110) $) 39)) (-3649 (($ $ (-594 (-884 |#1|))) 43) (($ $ (-594 (-594 |#1|))) 42) (($ (-594 (-884 |#1|))) 41) (((-594 (-884 |#1|)) $) 40)) (-3656 (($) 61) (($ (-1087 3 |#1|)) 60)) (-3678 (($ $) 52)) (-3652 (((-594 $) $) 53)) (-4033 (($ (-594 $)) 55)) (-3653 (((-594 $) $) 54)) (-4233 (((-805) $) 11)) (-3646 (((-110) $) 34)) (-3647 (($ $ (-594 (-884 |#1|))) 38) (($ $ (-594 (-594 |#1|))) 37) (($ (-594 (-884 |#1|))) 36) (((-594 (-884 |#1|)) $) 35)) (-3635 (($ $) 14)) (-3317 (((-110) $ $) 6)))
+(((-1059 |#1|) (-133) (-984)) (T -1059))
+((-4233 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-805)))) (-3656 (*1 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-984)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-1087 3 *3)) (-4 *3 (-984)) (-4 *1 (-1059 *3)))) (-3655 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-719)))) (-3654 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-719)))) (-3792 (*1 *1 *2) (-12 (-5 *2 (-594 *1)) (-4 *1 (-1059 *3)) (-4 *3 (-984)))) (-3792 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-984)))) (-4033 (*1 *1 *2) (-12 (-5 *2 (-594 *1)) (-4 *1 (-1059 *3)) (-4 *3 (-984)))) (-3653 (*1 *2 *1) (-12 (-4 *3 (-984)) (-5 *2 (-594 *1)) (-4 *1 (-1059 *3)))) (-3652 (*1 *2 *1) (-12 (-4 *3 (-984)) (-5 *2 (-594 *1)) (-4 *1 (-1059 *3)))) (-3678 (*1 *1 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-984)))) (-3651 (*1 *2 *1 *3) (-12 (-5 *3 (-594 (-884 *4))) (-4 *1 (-1059 *4)) (-4 *4 (-984)) (-5 *2 (-719)))) (-4166 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *3 (-884 *4)) (-4 *1 (-1059 *4)) (-4 *4 (-984)))) (-3988 (*1 *1 *1 *2) (-12 (-5 *2 (-884 *3)) (-4 *1 (-1059 *3)) (-4 *3 (-984)))) (-3988 (*1 *1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *1 (-1059 *3)) (-4 *3 (-984)))) (-3988 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1059 *3)) (-4 *3 (-984)))) (-3988 (*1 *1 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-984)) (-4 *1 (-1059 *3)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-884 *3)))) (-3650 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-110)))) (-3649 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-884 *3))) (-4 *1 (-1059 *3)) (-4 *3 (-984)))) (-3649 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-594 *3))) (-4 *1 (-1059 *3)) (-4 *3 (-984)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-594 (-884 *3))) (-4 *3 (-984)) (-4 *1 (-1059 *3)))) (-3649 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-594 (-884 *3))))) (-3648 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-110)))) (-3647 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-884 *3))) (-4 *1 (-1059 *3)) (-4 *3 (-984)))) (-3647 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-594 *3))) (-4 *1 (-1059 *3)) (-4 *3 (-984)))) (-3647 (*1 *1 *2) (-12 (-5 *2 (-594 (-884 *3))) (-4 *3 (-984)) (-4 *1 (-1059 *3)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-594 (-884 *3))))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-110)))) (-3645 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-884 *3))) (-4 *1 (-1059 *3)) (-4 *3 (-984)))) (-3645 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-594 *3))) (-4 *1 (-1059 *3)) (-4 *3 (-984)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-594 (-884 *3))) (-4 *3 (-984)) (-4 *1 (-1059 *3)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-594 (-884 *3))))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-110)))) (-3643 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-594 (-594 (-884 *5)))) (-5 *3 (-594 (-161))) (-5 *4 (-161)) (-4 *1 (-1059 *5)) (-4 *5 (-984)))) (-3643 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-594 (-594 (-594 *5)))) (-5 *3 (-594 (-161))) (-5 *4 (-161)) (-4 *1 (-1059 *5)) (-4 *5 (-984)))) (-3643 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-594 (-594 (-884 *4)))) (-5 *3 (-110)) (-4 *1 (-1059 *4)) (-4 *4 (-984)))) (-3643 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-594 (-594 (-594 *4)))) (-5 *3 (-110)) (-4 *1 (-1059 *4)) (-4 *4 (-984)))) (-3643 (*1 *1 *2) (-12 (-5 *2 (-594 (-594 (-884 *3)))) (-4 *3 (-984)) (-4 *1 (-1059 *3)))) (-3643 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-594 (-594 (-884 *4)))) (-5 *3 (-110)) (-4 *4 (-984)) (-4 *1 (-1059 *4)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-594 (-594 (-884 *3)))))) (-3642 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-110)))) (-3641 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-594 (-884 *3))))) (-3640 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-594 (-594 (-594 (-719))))))) (-3639 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-594 (-594 (-594 (-884 *3))))))) (-3638 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-594 (-594 (-161)))))) (-3637 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-594 (-161))))) (-3636 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -4129 (-719)) (|:| |curves| (-719)) (|:| |polygons| (-719)) (|:| |constructs| (-719)))))) (-3635 (*1 *1 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-984)))) (-4167 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-1087 3 *3)))))
+(-13 (-1027) (-10 -8 (-15 -3656 ($)) (-15 -3656 ($ (-1087 3 |t#1|))) (-15 -3655 ((-719) $)) (-15 -3654 ((-719) $)) (-15 -3792 ($ (-594 $))) (-15 -3792 ($ $ $)) (-15 -4033 ($ (-594 $))) (-15 -3653 ((-594 $) $)) (-15 -3652 ((-594 $) $)) (-15 -3678 ($ $)) (-15 -3651 ((-719) $ (-594 (-884 |t#1|)))) (-15 -4166 ($ $ (-719) (-884 |t#1|))) (-15 -3988 ($ $ (-884 |t#1|))) (-15 -3988 ($ $ (-594 |t#1|))) (-15 -3988 ($ $ (-719))) (-15 -3988 ($ (-884 |t#1|))) (-15 -3988 ((-884 |t#1|) $)) (-15 -3650 ((-110) $)) (-15 -3649 ($ $ (-594 (-884 |t#1|)))) (-15 -3649 ($ $ (-594 (-594 |t#1|)))) (-15 -3649 ($ (-594 (-884 |t#1|)))) (-15 -3649 ((-594 (-884 |t#1|)) $)) (-15 -3648 ((-110) $)) (-15 -3647 ($ $ (-594 (-884 |t#1|)))) (-15 -3647 ($ $ (-594 (-594 |t#1|)))) (-15 -3647 ($ (-594 (-884 |t#1|)))) (-15 -3647 ((-594 (-884 |t#1|)) $)) (-15 -3646 ((-110) $)) (-15 -3645 ($ $ (-594 (-884 |t#1|)))) (-15 -3645 ($ $ (-594 (-594 |t#1|)))) (-15 -3645 ($ (-594 (-884 |t#1|)))) (-15 -3645 ((-594 (-884 |t#1|)) $)) (-15 -3644 ((-110) $)) (-15 -3643 ($ $ (-594 (-594 (-884 |t#1|))) (-594 (-161)) (-161))) (-15 -3643 ($ $ (-594 (-594 (-594 |t#1|))) (-594 (-161)) (-161))) (-15 -3643 ($ $ (-594 (-594 (-884 |t#1|))) (-110) (-110))) (-15 -3643 ($ $ (-594 (-594 (-594 |t#1|))) (-110) (-110))) (-15 -3643 ($ (-594 (-594 (-884 |t#1|))))) (-15 -3643 ($ (-594 (-594 (-884 |t#1|))) (-110) (-110))) (-15 -3643 ((-594 (-594 (-884 |t#1|))) $)) (-15 -3642 ((-110) $)) (-15 -3641 ((-594 (-884 |t#1|)) $)) (-15 -3640 ((-594 (-594 (-594 (-719)))) $)) (-15 -3639 ((-594 (-594 (-594 (-884 |t#1|)))) $)) (-15 -3638 ((-594 (-594 (-161))) $)) (-15 -3637 ((-594 (-161)) $)) (-15 -3636 ((-2 (|:| -4129 (-719)) (|:| |curves| (-719)) (|:| |polygons| (-719)) (|:| |constructs| (-719))) $)) (-15 -3635 ($ $)) (-15 -4167 ((-1087 3 |t#1|) $)) (-15 -4233 ((-805) $))))
+(((-99) . T) ((-571 (-805)) . T) ((-1027) . T))
+((-3657 (((-594 (-1103)) (-1081)) 9)))
+(((-1060) (-10 -7 (-15 -3657 ((-594 (-1103)) (-1081))))) (T -1060))
+((-3657 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-594 (-1103))) (-5 *1 (-1060)))))
+(-10 -7 (-15 -3657 ((-594 (-1103)) (-1081))))
+((-3660 (((-1185) (-594 (-805))) 23) (((-1185) (-805)) 22)) (-3659 (((-1185) (-594 (-805))) 21) (((-1185) (-805)) 20)) (-3658 (((-1185) (-594 (-805))) 19) (((-1185) (-805)) 11) (((-1185) (-1081) (-805)) 17)))
+(((-1061) (-10 -7 (-15 -3658 ((-1185) (-1081) (-805))) (-15 -3658 ((-1185) (-805))) (-15 -3659 ((-1185) (-805))) (-15 -3660 ((-1185) (-805))) (-15 -3658 ((-1185) (-594 (-805)))) (-15 -3659 ((-1185) (-594 (-805)))) (-15 -3660 ((-1185) (-594 (-805)))))) (T -1061))
+((-3660 (*1 *2 *3) (-12 (-5 *3 (-594 (-805))) (-5 *2 (-1185)) (-5 *1 (-1061)))) (-3659 (*1 *2 *3) (-12 (-5 *3 (-594 (-805))) (-5 *2 (-1185)) (-5 *1 (-1061)))) (-3658 (*1 *2 *3) (-12 (-5 *3 (-594 (-805))) (-5 *2 (-1185)) (-5 *1 (-1061)))) (-3660 (*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1185)) (-5 *1 (-1061)))) (-3659 (*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1185)) (-5 *1 (-1061)))) (-3658 (*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1185)) (-5 *1 (-1061)))) (-3658 (*1 *2 *3 *4) (-12 (-5 *3 (-1081)) (-5 *4 (-805)) (-5 *2 (-1185)) (-5 *1 (-1061)))))
+(-10 -7 (-15 -3658 ((-1185) (-1081) (-805))) (-15 -3658 ((-1185) (-805))) (-15 -3659 ((-1185) (-805))) (-15 -3660 ((-1185) (-805))) (-15 -3658 ((-1185) (-594 (-805)))) (-15 -3659 ((-1185) (-594 (-805)))) (-15 -3660 ((-1185) (-594 (-805)))))
+((-3664 (($ $ $) 10)) (-3663 (($ $) 9)) (-3667 (($ $ $) 13)) (-3669 (($ $ $) 15)) (-3666 (($ $ $) 12)) (-3668 (($ $ $) 14)) (-3671 (($ $) 17)) (-3670 (($ $) 16)) (-3661 (($ $) 6)) (-3665 (($ $ $) 11) (($ $) 7)) (-3662 (($ $ $) 8)))
+(((-1062) (-133)) (T -1062))
+((-3671 (*1 *1 *1) (-4 *1 (-1062))) (-3670 (*1 *1 *1) (-4 *1 (-1062))) (-3669 (*1 *1 *1 *1) (-4 *1 (-1062))) (-3668 (*1 *1 *1 *1) (-4 *1 (-1062))) (-3667 (*1 *1 *1 *1) (-4 *1 (-1062))) (-3666 (*1 *1 *1 *1) (-4 *1 (-1062))) (-3665 (*1 *1 *1 *1) (-4 *1 (-1062))) (-3664 (*1 *1 *1 *1) (-4 *1 (-1062))) (-3663 (*1 *1 *1) (-4 *1 (-1062))) (-3662 (*1 *1 *1 *1) (-4 *1 (-1062))) (-3665 (*1 *1 *1) (-4 *1 (-1062))) (-3661 (*1 *1 *1) (-4 *1 (-1062))))
+(-13 (-10 -8 (-15 -3661 ($ $)) (-15 -3665 ($ $)) (-15 -3662 ($ $ $)) (-15 -3663 ($ $)) (-15 -3664 ($ $ $)) (-15 -3665 ($ $ $)) (-15 -3666 ($ $ $)) (-15 -3667 ($ $ $)) (-15 -3668 ($ $ $)) (-15 -3669 ($ $ $)) (-15 -3670 ($ $)) (-15 -3671 ($ $))))
+((-2828 (((-110) $ $) 41)) (-3681 ((|#1| $) 15)) (-3672 (((-110) $ $ (-1 (-110) |#2| |#2|)) 36)) (-3679 (((-110) $) 17)) (-3677 (($ $ |#1|) 28)) (-3675 (($ $ (-110)) 30)) (-3674 (($ $) 31)) (-3676 (($ $ |#2|) 29)) (-3513 (((-1081) $) NIL)) (-3673 (((-110) $ $ (-1 (-110) |#1| |#1|) (-1 (-110) |#2| |#2|)) 35)) (-3514 (((-1045) $) NIL)) (-3682 (((-110) $) 14)) (-3847 (($) 10)) (-3678 (($ $) 27)) (-3804 (($ |#1| |#2| (-110)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1610 |#2|))) 21) (((-594 $) (-594 (-2 (|:| |val| |#1|) (|:| -1610 |#2|)))) 24) (((-594 $) |#1| (-594 |#2|)) 26)) (-3680 ((|#2| $) 16)) (-4233 (((-805) $) 50)) (-3317 (((-110) $ $) 39)))
+(((-1063 |#1| |#2|) (-13 (-1027) (-10 -8 (-15 -3847 ($)) (-15 -3682 ((-110) $)) (-15 -3681 (|#1| $)) (-15 -3680 (|#2| $)) (-15 -3679 ((-110) $)) (-15 -3804 ($ |#1| |#2| (-110))) (-15 -3804 ($ |#1| |#2|)) (-15 -3804 ($ (-2 (|:| |val| |#1|) (|:| -1610 |#2|)))) (-15 -3804 ((-594 $) (-594 (-2 (|:| |val| |#1|) (|:| -1610 |#2|))))) (-15 -3804 ((-594 $) |#1| (-594 |#2|))) (-15 -3678 ($ $)) (-15 -3677 ($ $ |#1|)) (-15 -3676 ($ $ |#2|)) (-15 -3675 ($ $ (-110))) (-15 -3674 ($ $)) (-15 -3673 ((-110) $ $ (-1 (-110) |#1| |#1|) (-1 (-110) |#2| |#2|))) (-15 -3672 ((-110) $ $ (-1 (-110) |#2| |#2|))))) (-13 (-1027) (-33)) (-13 (-1027) (-33))) (T -1063))
+((-3847 (*1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1063 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))))) (-3681 (*1 *2 *1) (-12 (-4 *2 (-13 (-1027) (-33))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-13 (-1027) (-33))))) (-3680 (*1 *2 *1) (-12 (-4 *2 (-13 (-1027) (-33))) (-5 *1 (-1063 *3 *2)) (-4 *3 (-13 (-1027) (-33))))) (-3679 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1063 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))))) (-3804 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-110)) (-5 *1 (-1063 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-3804 (*1 *1 *2 *3) (-12 (-5 *1 (-1063 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-3804 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1610 *4))) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1063 *3 *4)))) (-3804 (*1 *2 *3) (-12 (-5 *3 (-594 (-2 (|:| |val| *4) (|:| -1610 *5)))) (-4 *4 (-13 (-1027) (-33))) (-4 *5 (-13 (-1027) (-33))) (-5 *2 (-594 (-1063 *4 *5))) (-5 *1 (-1063 *4 *5)))) (-3804 (*1 *2 *3 *4) (-12 (-5 *4 (-594 *5)) (-4 *5 (-13 (-1027) (-33))) (-5 *2 (-594 (-1063 *3 *5))) (-5 *1 (-1063 *3 *5)) (-4 *3 (-13 (-1027) (-33))))) (-3678 (*1 *1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-3677 (*1 *1 *1 *2) (-12 (-5 *1 (-1063 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-3676 (*1 *1 *1 *2) (-12 (-5 *1 (-1063 *3 *2)) (-4 *3 (-13 (-1027) (-33))) (-4 *2 (-13 (-1027) (-33))))) (-3675 (*1 *1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1063 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))))) (-3674 (*1 *1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-3673 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-110) *5 *5)) (-5 *4 (-1 (-110) *6 *6)) (-4 *5 (-13 (-1027) (-33))) (-4 *6 (-13 (-1027) (-33))) (-5 *2 (-110)) (-5 *1 (-1063 *5 *6)))) (-3672 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-110) *5 *5)) (-4 *5 (-13 (-1027) (-33))) (-5 *2 (-110)) (-5 *1 (-1063 *4 *5)) (-4 *4 (-13 (-1027) (-33))))))
+(-13 (-1027) (-10 -8 (-15 -3847 ($)) (-15 -3682 ((-110) $)) (-15 -3681 (|#1| $)) (-15 -3680 (|#2| $)) (-15 -3679 ((-110) $)) (-15 -3804 ($ |#1| |#2| (-110))) (-15 -3804 ($ |#1| |#2|)) (-15 -3804 ($ (-2 (|:| |val| |#1|) (|:| -1610 |#2|)))) (-15 -3804 ((-594 $) (-594 (-2 (|:| |val| |#1|) (|:| -1610 |#2|))))) (-15 -3804 ((-594 $) |#1| (-594 |#2|))) (-15 -3678 ($ $)) (-15 -3677 ($ $ |#1|)) (-15 -3676 ($ $ |#2|)) (-15 -3675 ($ $ (-110))) (-15 -3674 ($ $)) (-15 -3673 ((-110) $ $ (-1 (-110) |#1| |#1|) (-1 (-110) |#2| |#2|))) (-15 -3672 ((-110) $ $ (-1 (-110) |#2| |#2|)))))
+((-2828 (((-110) $ $) NIL (|has| (-1063 |#1| |#2|) (-1027)))) (-3681 (((-1063 |#1| |#2|) $) 25)) (-3690 (($ $) 76)) (-3686 (((-110) (-1063 |#1| |#2|) $ (-1 (-110) |#2| |#2|)) 85)) (-3683 (($ $ $ (-594 (-1063 |#1| |#2|))) 90) (($ $ $ (-594 (-1063 |#1| |#2|)) (-1 (-110) |#2| |#2|)) 91)) (-1217 (((-110) $ (-719)) NIL)) (-3289 (((-1063 |#1| |#2|) $ (-1063 |#1| |#2|)) 43 (|has| $ (-6 -4270)))) (-4066 (((-1063 |#1| |#2|) $ #1="value" (-1063 |#1| |#2|)) NIL (|has| $ (-6 -4270)))) (-3290 (($ $ (-594 $)) 41 (|has| $ (-6 -4270)))) (-3815 (($) NIL T CONST)) (-3688 (((-594 (-2 (|:| |val| |#1|) (|:| -1610 |#2|))) $) 80)) (-3684 (($ (-1063 |#1| |#2|) $) 39)) (-3685 (($ (-1063 |#1| |#2|) $) 31)) (-2018 (((-594 (-1063 |#1| |#2|)) $) NIL (|has| $ (-6 -4269)))) (-3295 (((-594 $) $) 51)) (-3687 (((-110) (-1063 |#1| |#2|) $) 82)) (-3291 (((-110) $ $) NIL (|has| (-1063 |#1| |#2|) (-1027)))) (-4001 (((-110) $ (-719)) NIL)) (-2445 (((-594 (-1063 |#1| |#2|)) $) 55 (|has| $ (-6 -4269)))) (-3516 (((-110) (-1063 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-1063 |#1| |#2|) (-1027))))) (-2022 (($ (-1 (-1063 |#1| |#2|) (-1063 |#1| |#2|)) $) 47 (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-1063 |#1| |#2|) (-1063 |#1| |#2|)) $) 46)) (-3998 (((-110) $ (-719)) NIL)) (-3294 (((-594 (-1063 |#1| |#2|)) $) 53)) (-3801 (((-110) $) 42)) (-3513 (((-1081) $) NIL (|has| (-1063 |#1| |#2|) (-1027)))) (-3514 (((-1045) $) NIL (|has| (-1063 |#1| |#2|) (-1027)))) (-3691 (((-3 $ "failed") $) 75)) (-2020 (((-110) (-1 (-110) (-1063 |#1| |#2|)) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 (-1063 |#1| |#2|)))) NIL (-12 (|has| (-1063 |#1| |#2|) (-291 (-1063 |#1| |#2|))) (|has| (-1063 |#1| |#2|) (-1027)))) (($ $ (-275 (-1063 |#1| |#2|))) NIL (-12 (|has| (-1063 |#1| |#2|) (-291 (-1063 |#1| |#2|))) (|has| (-1063 |#1| |#2|) (-1027)))) (($ $ (-1063 |#1| |#2|) (-1063 |#1| |#2|)) NIL (-12 (|has| (-1063 |#1| |#2|) (-291 (-1063 |#1| |#2|))) (|has| (-1063 |#1| |#2|) (-1027)))) (($ $ (-594 (-1063 |#1| |#2|)) (-594 (-1063 |#1| |#2|))) NIL (-12 (|has| (-1063 |#1| |#2|) (-291 (-1063 |#1| |#2|))) (|has| (-1063 |#1| |#2|) (-1027))))) (-1218 (((-110) $ $) 50)) (-3682 (((-110) $) 22)) (-3847 (($) 24)) (-4078 (((-1063 |#1| |#2|) $ #1#) NIL)) (-3293 (((-516) $ $) NIL)) (-3915 (((-110) $) 44)) (-2019 (((-719) (-1 (-110) (-1063 |#1| |#2|)) $) NIL (|has| $ (-6 -4269))) (((-719) (-1063 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-1063 |#1| |#2|) (-1027))))) (-3678 (($ $) 49)) (-3804 (($ (-1063 |#1| |#2|)) 9) (($ |#1| |#2| (-594 $)) 12) (($ |#1| |#2| (-594 (-1063 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-594 |#2|)) 17)) (-3689 (((-594 |#2|) $) 81)) (-4233 (((-805) $) 73 (|has| (-1063 |#1| |#2|) (-571 (-805))))) (-3796 (((-594 $) $) 28)) (-3292 (((-110) $ $) NIL (|has| (-1063 |#1| |#2|) (-1027)))) (-2021 (((-110) (-1 (-110) (-1063 |#1| |#2|)) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 64 (|has| (-1063 |#1| |#2|) (-1027)))) (-4232 (((-719) $) 58 (|has| $ (-6 -4269)))))
+(((-1064 |#1| |#2|) (-13 (-949 (-1063 |#1| |#2|)) (-10 -8 (-6 -4270) (-6 -4269) (-15 -3691 ((-3 $ "failed") $)) (-15 -3690 ($ $)) (-15 -3804 ($ (-1063 |#1| |#2|))) (-15 -3804 ($ |#1| |#2| (-594 $))) (-15 -3804 ($ |#1| |#2| (-594 (-1063 |#1| |#2|)))) (-15 -3804 ($ |#1| |#2| |#1| (-594 |#2|))) (-15 -3689 ((-594 |#2|) $)) (-15 -3688 ((-594 (-2 (|:| |val| |#1|) (|:| -1610 |#2|))) $)) (-15 -3687 ((-110) (-1063 |#1| |#2|) $)) (-15 -3686 ((-110) (-1063 |#1| |#2|) $ (-1 (-110) |#2| |#2|))) (-15 -3685 ($ (-1063 |#1| |#2|) $)) (-15 -3684 ($ (-1063 |#1| |#2|) $)) (-15 -3683 ($ $ $ (-594 (-1063 |#1| |#2|)))) (-15 -3683 ($ $ $ (-594 (-1063 |#1| |#2|)) (-1 (-110) |#2| |#2|))))) (-13 (-1027) (-33)) (-13 (-1027) (-33))) (T -1064))
+((-3691 (*1 *1 *1) (|partial| -12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-3690 (*1 *1 *1) (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-3804 (*1 *1 *2) (-12 (-5 *2 (-1063 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1064 *3 *4)))) (-3804 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-594 (-1064 *2 *3))) (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-3804 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-594 (-1063 *2 *3))) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))) (-5 *1 (-1064 *2 *3)))) (-3804 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-594 *3)) (-4 *3 (-13 (-1027) (-33))) (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33))))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-594 *4)) (-5 *1 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))))) (-3688 (*1 *2 *1) (-12 (-5 *2 (-594 (-2 (|:| |val| *3) (|:| -1610 *4)))) (-5 *1 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))))) (-3687 (*1 *2 *3 *1) (-12 (-5 *3 (-1063 *4 *5)) (-4 *4 (-13 (-1027) (-33))) (-4 *5 (-13 (-1027) (-33))) (-5 *2 (-110)) (-5 *1 (-1064 *4 *5)))) (-3686 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1063 *5 *6)) (-5 *4 (-1 (-110) *6 *6)) (-4 *5 (-13 (-1027) (-33))) (-4 *6 (-13 (-1027) (-33))) (-5 *2 (-110)) (-5 *1 (-1064 *5 *6)))) (-3685 (*1 *1 *2 *1) (-12 (-5 *2 (-1063 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1064 *3 *4)))) (-3684 (*1 *1 *2 *1) (-12 (-5 *2 (-1063 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1064 *3 *4)))) (-3683 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-594 (-1063 *3 *4))) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1064 *3 *4)))) (-3683 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-594 (-1063 *4 *5))) (-5 *3 (-1 (-110) *5 *5)) (-4 *4 (-13 (-1027) (-33))) (-4 *5 (-13 (-1027) (-33))) (-5 *1 (-1064 *4 *5)))))
+(-13 (-949 (-1063 |#1| |#2|)) (-10 -8 (-6 -4270) (-6 -4269) (-15 -3691 ((-3 $ "failed") $)) (-15 -3690 ($ $)) (-15 -3804 ($ (-1063 |#1| |#2|))) (-15 -3804 ($ |#1| |#2| (-594 $))) (-15 -3804 ($ |#1| |#2| (-594 (-1063 |#1| |#2|)))) (-15 -3804 ($ |#1| |#2| |#1| (-594 |#2|))) (-15 -3689 ((-594 |#2|) $)) (-15 -3688 ((-594 (-2 (|:| |val| |#1|) (|:| -1610 |#2|))) $)) (-15 -3687 ((-110) (-1063 |#1| |#2|) $)) (-15 -3686 ((-110) (-1063 |#1| |#2|) $ (-1 (-110) |#2| |#2|))) (-15 -3685 ($ (-1063 |#1| |#2|) $)) (-15 -3684 ($ (-1063 |#1| |#2|) $)) (-15 -3683 ($ $ $ (-594 (-1063 |#1| |#2|)))) (-15 -3683 ($ $ $ (-594 (-1063 |#1| |#2|)) (-1 (-110) |#2| |#2|)))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3693 (($ $) NIL)) (-3608 ((|#2| $) NIL)) (-3380 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3692 (($ (-637 |#2|)) 47)) (-3382 (((-110) $) NIL)) (-1217 (((-110) $ (-719)) NIL)) (-3611 (($ |#2|) 9)) (-3815 (($) NIL T CONST)) (-3369 (($ $) 60 (|has| |#2| (-289)))) (-3371 (((-222 |#1| |#2|) $ (-516)) 34)) (-3432 (((-3 (-516) #1="failed") $) NIL (|has| |#2| (-975 (-516)))) (((-3 (-388 (-516)) #1#) $) NIL (|has| |#2| (-975 (-388 (-516))))) (((-3 |#2| #1#) $) NIL)) (-3431 (((-516) $) NIL (|has| |#2| (-975 (-516)))) (((-388 (-516)) $) NIL (|has| |#2| (-975 (-388 (-516))))) ((|#2| $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| |#2| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| |#2| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 $) (-1179 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) 74)) (-3368 (((-719) $) 62 (|has| |#2| (-523)))) (-3372 ((|#2| $ (-516) (-516)) NIL)) (-2018 (((-594 |#2|) $) NIL (|has| $ (-6 -4269)))) (-2436 (((-110) $) NIL)) (-3367 (((-719) $) 64 (|has| |#2| (-523)))) (-3366 (((-594 (-222 |#1| |#2|)) $) 68 (|has| |#2| (-523)))) (-3374 (((-719) $) NIL)) (-3373 (((-719) $) NIL)) (-4001 (((-110) $ (-719)) NIL)) (-3605 ((|#2| $) 58 (|has| |#2| (-6 (-4271 #2="*"))))) (-3378 (((-516) $) NIL)) (-3376 (((-516) $) NIL)) (-2445 (((-594 |#2|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-3377 (((-516) $) NIL)) (-3375 (((-516) $) NIL)) (-3383 (($ (-594 (-594 |#2|))) 29)) (-2022 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3875 (((-594 (-594 |#2|)) $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL)) (-3871 (((-3 $ "failed") $) 71 (|has| |#2| (-344)))) (-3514 (((-1045) $) NIL)) (-3740 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-523)))) (-2020 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-594 |#2|) (-594 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#2| $ (-516) (-516) |#2|) NIL) ((|#2| $ (-516) (-516)) NIL)) (-4089 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-1098)) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-3607 ((|#2| $) NIL)) (-3610 (($ (-594 |#2|)) 42)) (-3381 (((-110) $) NIL)) (-3609 (((-222 |#1| |#2|) $) NIL)) (-3606 ((|#2| $) 56 (|has| |#2| (-6 (-4271 #2#))))) (-2019 (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-3678 (($ $) NIL)) (-4246 (((-505) $) 83 (|has| |#2| (-572 (-505))))) (-3370 (((-222 |#1| |#2|) $ (-516)) 36)) (-4233 (((-805) $) 39) (($ (-516)) NIL) (($ (-388 (-516))) NIL (|has| |#2| (-975 (-388 (-516))))) (($ |#2|) NIL) (((-637 |#2|) $) 44)) (-3385 (((-719)) 17)) (-2021 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3379 (((-110) $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 11 T CONST)) (-2927 (($) 14 T CONST)) (-2932 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-1098)) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) 54) (($ $ (-516)) 73 (|has| |#2| (-344)))) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-222 |#1| |#2|) $ (-222 |#1| |#2|)) 50) (((-222 |#1| |#2|) (-222 |#1| |#2|) $) 52)) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-1065 |#1| |#2|) (-13 (-1048 |#1| |#2| (-222 |#1| |#2|) (-222 |#1| |#2|)) (-571 (-637 |#2|)) (-10 -8 (-15 -3693 ($ $)) (-15 -3692 ($ (-637 |#2|))) (-15 -4233 ((-637 |#2|) $)) (IF (|has| |#2| (-6 (-4271 "*"))) (-6 -4258) |%noBranch|) (IF (|has| |#2| (-6 (-4271 "*"))) (IF (|has| |#2| (-6 -4266)) (-6 -4266) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-572 (-505))) (-6 (-572 (-505))) |%noBranch|))) (-719) (-984)) (T -1065))
+((-4233 (*1 *2 *1) (-12 (-5 *2 (-637 *4)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-719)) (-4 *4 (-984)))) (-3693 (*1 *1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-719)) (-4 *3 (-984)))) (-3692 (*1 *1 *2) (-12 (-5 *2 (-637 *4)) (-4 *4 (-984)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-719)))))
+(-13 (-1048 |#1| |#2| (-222 |#1| |#2|) (-222 |#1| |#2|)) (-571 (-637 |#2|)) (-10 -8 (-15 -3693 ($ $)) (-15 -3692 ($ (-637 |#2|))) (-15 -4233 ((-637 |#2|) $)) (IF (|has| |#2| (-6 (-4271 "*"))) (-6 -4258) |%noBranch|) (IF (|has| |#2| (-6 (-4271 "*"))) (IF (|has| |#2| (-6 -4266)) (-6 -4266) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-572 (-505))) (-6 (-572 (-505))) |%noBranch|)))
+((-3706 (($ $) 19)) (-3696 (($ $ (-137)) 10) (($ $ (-134)) 14)) (-3704 (((-110) $ $) 24)) (-3708 (($ $) 17)) (-4078 (((-137) $ (-516) (-137)) NIL) (((-137) $ (-516)) NIL) (($ $ (-1146 (-516))) NIL) (($ $ $) 29)) (-4233 (($ (-137)) 27) (((-805) $) NIL)))
+(((-1066 |#1|) (-10 -8 (-15 -4233 ((-805) |#1|)) (-15 -4078 (|#1| |#1| |#1|)) (-15 -3696 (|#1| |#1| (-134))) (-15 -3696 (|#1| |#1| (-137))) (-15 -4233 (|#1| (-137))) (-15 -3704 ((-110) |#1| |#1|)) (-15 -3706 (|#1| |#1|)) (-15 -3708 (|#1| |#1|)) (-15 -4078 (|#1| |#1| (-1146 (-516)))) (-15 -4078 ((-137) |#1| (-516))) (-15 -4078 ((-137) |#1| (-516) (-137)))) (-1067)) (T -1066))
+NIL
+(-10 -8 (-15 -4233 ((-805) |#1|)) (-15 -4078 (|#1| |#1| |#1|)) (-15 -3696 (|#1| |#1| (-134))) (-15 -3696 (|#1| |#1| (-137))) (-15 -4233 (|#1| (-137))) (-15 -3704 ((-110) |#1| |#1|)) (-15 -3706 (|#1| |#1|)) (-15 -3708 (|#1| |#1|)) (-15 -4078 (|#1| |#1| (-1146 (-516)))) (-15 -4078 ((-137) |#1| (-516))) (-15 -4078 ((-137) |#1| (-516) (-137))))
+((-2828 (((-110) $ $) 19 (|has| (-137) (-1027)))) (-3705 (($ $) 120)) (-3706 (($ $) 121)) (-3696 (($ $ (-137)) 108) (($ $ (-134)) 107)) (-2243 (((-1185) $ (-516) (-516)) 40 (|has| $ (-6 -4270)))) (-3703 (((-110) $ $) 118)) (-3702 (((-110) $ $ (-516)) 117)) (-3697 (((-594 $) $ (-137)) 110) (((-594 $) $ (-134)) 109)) (-1798 (((-110) (-1 (-110) (-137) (-137)) $) 98) (((-110) $) 92 (|has| (-137) (-795)))) (-1796 (($ (-1 (-110) (-137) (-137)) $) 89 (|has| $ (-6 -4270))) (($ $) 88 (-12 (|has| (-137) (-795)) (|has| $ (-6 -4270))))) (-3173 (($ (-1 (-110) (-137) (-137)) $) 99) (($ $) 93 (|has| (-137) (-795)))) (-1217 (((-110) $ (-719)) 8)) (-4066 (((-137) $ (-516) (-137)) 52 (|has| $ (-6 -4270))) (((-137) $ (-1146 (-516)) (-137)) 58 (|has| $ (-6 -4270)))) (-3992 (($ (-1 (-110) (-137)) $) 75 (|has| $ (-6 -4269)))) (-3815 (($) 7 T CONST)) (-3694 (($ $ (-137)) 104) (($ $ (-134)) 103)) (-2312 (($ $) 90 (|has| $ (-6 -4270)))) (-2313 (($ $) 100)) (-3699 (($ $ (-1146 (-516)) $) 114)) (-1349 (($ $) 78 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269))))) (-3685 (($ (-137) $) 77 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) (-137)) $) 74 (|has| $ (-6 -4269)))) (-4121 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) 76 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) 73 (|has| $ (-6 -4269))) (((-137) (-1 (-137) (-137) (-137)) $) 72 (|has| $ (-6 -4269)))) (-1587 (((-137) $ (-516) (-137)) 53 (|has| $ (-6 -4270)))) (-3372 (((-137) $ (-516)) 51)) (-3704 (((-110) $ $) 119)) (-3698 (((-516) (-1 (-110) (-137)) $) 97) (((-516) (-137) $) 96 (|has| (-137) (-1027))) (((-516) (-137) $ (-516)) 95 (|has| (-137) (-1027))) (((-516) $ $ (-516)) 113) (((-516) (-134) $ (-516)) 112)) (-2018 (((-594 (-137)) $) 30 (|has| $ (-6 -4269)))) (-3896 (($ (-719) (-137)) 69)) (-4001 (((-110) $ (-719)) 9)) (-2245 (((-516) $) 43 (|has| (-516) (-795)))) (-3596 (($ $ $) 87 (|has| (-137) (-795)))) (-3792 (($ (-1 (-110) (-137) (-137)) $ $) 101) (($ $ $) 94 (|has| (-137) (-795)))) (-2445 (((-594 (-137)) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) (-137) $) 27 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269))))) (-2246 (((-516) $) 44 (|has| (-516) (-795)))) (-3597 (($ $ $) 86 (|has| (-137) (-795)))) (-3700 (((-110) $ $ (-137)) 115)) (-3701 (((-719) $ $ (-137)) 116)) (-2022 (($ (-1 (-137) (-137)) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-137) (-137)) $) 35) (($ (-1 (-137) (-137) (-137)) $ $) 64)) (-3707 (($ $) 122)) (-3708 (($ $) 123)) (-3998 (((-110) $ (-719)) 10)) (-3695 (($ $ (-137)) 106) (($ $ (-134)) 105)) (-3513 (((-1081) $) 22 (|has| (-137) (-1027)))) (-2317 (($ (-137) $ (-516)) 60) (($ $ $ (-516)) 59)) (-2248 (((-594 (-516)) $) 46)) (-2249 (((-110) (-516) $) 47)) (-3514 (((-1045) $) 21 (|has| (-137) (-1027)))) (-4079 (((-137) $) 42 (|has| (-516) (-795)))) (-1350 (((-3 (-137) "failed") (-1 (-110) (-137)) $) 71)) (-2244 (($ $ (-137)) 41 (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) (-137)) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 (-137)))) 26 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-275 (-137))) 25 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-137) (-137)) 24 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-594 (-137)) (-594 (-137))) 23 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))))) (-1218 (((-110) $ $) 14)) (-2247 (((-110) (-137) $) 45 (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-2250 (((-594 (-137)) $) 48)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-4078 (((-137) $ (-516) (-137)) 50) (((-137) $ (-516)) 49) (($ $ (-1146 (-516))) 63) (($ $ $) 102)) (-2318 (($ $ (-516)) 62) (($ $ (-1146 (-516))) 61)) (-2019 (((-719) (-1 (-110) (-137)) $) 31 (|has| $ (-6 -4269))) (((-719) (-137) $) 28 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269))))) (-1797 (($ $ $ (-516)) 91 (|has| $ (-6 -4270)))) (-3678 (($ $) 13)) (-4246 (((-505) $) 79 (|has| (-137) (-572 (-505))))) (-3804 (($ (-594 (-137))) 70)) (-4080 (($ $ (-137)) 68) (($ (-137) $) 67) (($ $ $) 66) (($ (-594 $)) 65)) (-4233 (($ (-137)) 111) (((-805) $) 18 (|has| (-137) (-571 (-805))))) (-2021 (((-110) (-1 (-110) (-137)) $) 33 (|has| $ (-6 -4269)))) (-2826 (((-110) $ $) 84 (|has| (-137) (-795)))) (-2827 (((-110) $ $) 83 (|has| (-137) (-795)))) (-3317 (((-110) $ $) 20 (|has| (-137) (-1027)))) (-2947 (((-110) $ $) 85 (|has| (-137) (-795)))) (-2948 (((-110) $ $) 82 (|has| (-137) (-795)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-1067) (-133)) (T -1067))
+((-3708 (*1 *1 *1) (-4 *1 (-1067))) (-3707 (*1 *1 *1) (-4 *1 (-1067))) (-3706 (*1 *1 *1) (-4 *1 (-1067))) (-3705 (*1 *1 *1) (-4 *1 (-1067))) (-3704 (*1 *2 *1 *1) (-12 (-4 *1 (-1067)) (-5 *2 (-110)))) (-3703 (*1 *2 *1 *1) (-12 (-4 *1 (-1067)) (-5 *2 (-110)))) (-3702 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1067)) (-5 *3 (-516)) (-5 *2 (-110)))) (-3701 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1067)) (-5 *3 (-137)) (-5 *2 (-719)))) (-3700 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1067)) (-5 *3 (-137)) (-5 *2 (-110)))) (-3699 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1067)) (-5 *2 (-1146 (-516))))) (-3698 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1067)) (-5 *2 (-516)))) (-3698 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1067)) (-5 *2 (-516)) (-5 *3 (-134)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-137)) (-4 *1 (-1067)))) (-3697 (*1 *2 *1 *3) (-12 (-5 *3 (-137)) (-5 *2 (-594 *1)) (-4 *1 (-1067)))) (-3697 (*1 *2 *1 *3) (-12 (-5 *3 (-134)) (-5 *2 (-594 *1)) (-4 *1 (-1067)))) (-3696 (*1 *1 *1 *2) (-12 (-4 *1 (-1067)) (-5 *2 (-137)))) (-3696 (*1 *1 *1 *2) (-12 (-4 *1 (-1067)) (-5 *2 (-134)))) (-3695 (*1 *1 *1 *2) (-12 (-4 *1 (-1067)) (-5 *2 (-137)))) (-3695 (*1 *1 *1 *2) (-12 (-4 *1 (-1067)) (-5 *2 (-134)))) (-3694 (*1 *1 *1 *2) (-12 (-4 *1 (-1067)) (-5 *2 (-137)))) (-3694 (*1 *1 *1 *2) (-12 (-4 *1 (-1067)) (-5 *2 (-134)))) (-4078 (*1 *1 *1 *1) (-4 *1 (-1067))))
+(-13 (-19 (-137)) (-10 -8 (-15 -3708 ($ $)) (-15 -3707 ($ $)) (-15 -3706 ($ $)) (-15 -3705 ($ $)) (-15 -3704 ((-110) $ $)) (-15 -3703 ((-110) $ $)) (-15 -3702 ((-110) $ $ (-516))) (-15 -3701 ((-719) $ $ (-137))) (-15 -3700 ((-110) $ $ (-137))) (-15 -3699 ($ $ (-1146 (-516)) $)) (-15 -3698 ((-516) $ $ (-516))) (-15 -3698 ((-516) (-134) $ (-516))) (-15 -4233 ($ (-137))) (-15 -3697 ((-594 $) $ (-137))) (-15 -3697 ((-594 $) $ (-134))) (-15 -3696 ($ $ (-137))) (-15 -3696 ($ $ (-134))) (-15 -3695 ($ $ (-137))) (-15 -3695 ($ $ (-134))) (-15 -3694 ($ $ (-137))) (-15 -3694 ($ $ (-134))) (-15 -4078 ($ $ $))))
+(((-33) . T) ((-99) -3810 (|has| (-137) (-1027)) (|has| (-137) (-795))) ((-571 (-805)) -3810 (|has| (-137) (-1027)) (|has| (-137) (-795)) (|has| (-137) (-571 (-805)))) ((-144 #1=(-137)) . T) ((-572 (-505)) |has| (-137) (-572 (-505))) ((-268 #2=(-516) #1#) . T) ((-270 #2# #1#) . T) ((-291 #1#) -12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))) ((-353 #1#) . T) ((-468 #1#) . T) ((-563 #2# #1#) . T) ((-491 #1# #1#) -12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))) ((-602 #1#) . T) ((-19 #1#) . T) ((-795) |has| (-137) (-795)) ((-1027) -3810 (|has| (-137) (-1027)) (|has| (-137) (-795))) ((-1134) . T))
+((-3715 (((-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) (-594 |#4|) (-594 |#5|) (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) (-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) (-719)) 94)) (-3712 (((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5| (-719)) 54)) (-3716 (((-1185) (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) (-719)) 85)) (-3710 (((-719) (-594 |#4|) (-594 |#5|)) 27)) (-3713 (((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5| (-719)) 56) (((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5| (-719) (-110)) 58)) (-3714 (((-594 |#5|) (-594 |#4|) (-594 |#5|) (-110) (-110) (-110) (-110) (-110)) 76) (((-594 |#5|) (-594 |#4|) (-594 |#5|) (-110) (-110)) 77)) (-4246 (((-1081) (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) 80)) (-3711 (((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5|) 53)) (-3709 (((-719) (-594 |#4|) (-594 |#5|)) 19)))
+(((-1068 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3709 ((-719) (-594 |#4|) (-594 |#5|))) (-15 -3710 ((-719) (-594 |#4|) (-594 |#5|))) (-15 -3711 ((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5|)) (-15 -3712 ((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5| (-719))) (-15 -3712 ((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5|)) (-15 -3713 ((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5| (-719) (-110))) (-15 -3713 ((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5| (-719))) (-15 -3713 ((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5|)) (-15 -3714 ((-594 |#5|) (-594 |#4|) (-594 |#5|) (-110) (-110))) (-15 -3714 ((-594 |#5|) (-594 |#4|) (-594 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -3715 ((-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) (-594 |#4|) (-594 |#5|) (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) (-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) (-719))) (-15 -4246 ((-1081) (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|)))) (-15 -3716 ((-1185) (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) (-719)))) (-432) (-741) (-795) (-997 |#1| |#2| |#3|) (-1035 |#1| |#2| |#3| |#4|)) (T -1068))
+((-3716 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-2 (|:| |val| (-594 *8)) (|:| -1610 *9)))) (-5 *4 (-719)) (-4 *8 (-997 *5 *6 *7)) (-4 *9 (-1035 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-1185)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-594 *7)) (|:| -1610 *8))) (-4 *7 (-997 *4 *5 *6)) (-4 *8 (-1035 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1081)) (-5 *1 (-1068 *4 *5 *6 *7 *8)))) (-3715 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-594 *11)) (|:| |todo| (-594 (-2 (|:| |val| *3) (|:| -1610 *11)))))) (-5 *6 (-719)) (-5 *2 (-594 (-2 (|:| |val| (-594 *10)) (|:| -1610 *11)))) (-5 *3 (-594 *10)) (-5 *4 (-594 *11)) (-4 *10 (-997 *7 *8 *9)) (-4 *11 (-1035 *7 *8 *9 *10)) (-4 *7 (-432)) (-4 *8 (-741)) (-4 *9 (-795)) (-5 *1 (-1068 *7 *8 *9 *10 *11)))) (-3714 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-594 *9)) (-5 *3 (-594 *8)) (-5 *4 (-110)) (-4 *8 (-997 *5 *6 *7)) (-4 *9 (-1035 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) (-3714 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-594 *9)) (-5 *3 (-594 *8)) (-5 *4 (-110)) (-4 *8 (-997 *5 *6 *7)) (-4 *9 (-1035 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) (-3713 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-594 *4)) (|:| |todo| (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4)))))) (-5 *1 (-1068 *5 *6 *7 *3 *4)) (-4 *4 (-1035 *5 *6 *7 *3)))) (-3713 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-997 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-594 *4)) (|:| |todo| (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4)))))) (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1035 *6 *7 *8 *3)))) (-3713 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-719)) (-5 *6 (-110)) (-4 *7 (-432)) (-4 *8 (-741)) (-4 *9 (-795)) (-4 *3 (-997 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-594 *4)) (|:| |todo| (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4)))))) (-5 *1 (-1068 *7 *8 *9 *3 *4)) (-4 *4 (-1035 *7 *8 *9 *3)))) (-3712 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-594 *4)) (|:| |todo| (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4)))))) (-5 *1 (-1068 *5 *6 *7 *3 *4)) (-4 *4 (-1035 *5 *6 *7 *3)))) (-3712 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-997 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-594 *4)) (|:| |todo| (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4)))))) (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1035 *6 *7 *8 *3)))) (-3711 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-594 *4)) (|:| |todo| (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4)))))) (-5 *1 (-1068 *5 *6 *7 *3 *4)) (-4 *4 (-1035 *5 *6 *7 *3)))) (-3710 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *8)) (-5 *4 (-594 *9)) (-4 *8 (-997 *5 *6 *7)) (-4 *9 (-1035 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) (-3709 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *8)) (-5 *4 (-594 *9)) (-4 *8 (-997 *5 *6 *7)) (-4 *9 (-1035 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -3709 ((-719) (-594 |#4|) (-594 |#5|))) (-15 -3710 ((-719) (-594 |#4|) (-594 |#5|))) (-15 -3711 ((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5|)) (-15 -3712 ((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5| (-719))) (-15 -3712 ((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5|)) (-15 -3713 ((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5| (-719) (-110))) (-15 -3713 ((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5| (-719))) (-15 -3713 ((-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) |#4| |#5|)) (-15 -3714 ((-594 |#5|) (-594 |#4|) (-594 |#5|) (-110) (-110))) (-15 -3714 ((-594 |#5|) (-594 |#4|) (-594 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -3715 ((-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) (-594 |#4|) (-594 |#5|) (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) (-2 (|:| |done| (-594 |#5|)) (|:| |todo| (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))))) (-719))) (-15 -4246 ((-1081) (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|)))) (-15 -3716 ((-1185) (-594 (-2 (|:| |val| (-594 |#4|)) (|:| -1610 |#5|))) (-719))))
+((-2828 (((-110) $ $) NIL)) (-3963 (((-594 (-2 (|:| -4140 $) (|:| -1768 (-594 |#4|)))) (-594 |#4|)) NIL)) (-3964 (((-594 $) (-594 |#4|)) 110) (((-594 $) (-594 |#4|) (-110)) 111) (((-594 $) (-594 |#4|) (-110) (-110)) 109) (((-594 $) (-594 |#4|) (-110) (-110) (-110) (-110)) 112)) (-3347 (((-594 |#3|) $) NIL)) (-3172 (((-110) $) NIL)) (-3163 (((-110) $) NIL (|has| |#1| (-523)))) (-3975 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3970 ((|#4| |#4| $) NIL)) (-4053 (((-594 (-2 (|:| |val| |#4|) (|:| -1610 $))) |#4| $) 84)) (-3173 (((-2 (|:| |under| $) (|:| -3389 $) (|:| |upper| $)) $ |#3|) NIL)) (-1217 (((-110) $ (-719)) NIL)) (-3992 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269))) (((-3 |#4| #1="failed") $ |#3|) 62)) (-3815 (($) NIL T CONST)) (-3168 (((-110) $) 26 (|has| |#1| (-523)))) (-3170 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3169 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3171 (((-110) $) NIL (|has| |#1| (-523)))) (-3971 (((-594 |#4|) (-594 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3164 (((-594 |#4|) (-594 |#4|) $) NIL (|has| |#1| (-523)))) (-3165 (((-594 |#4|) (-594 |#4|) $) NIL (|has| |#1| (-523)))) (-3432 (((-3 $ "failed") (-594 |#4|)) NIL)) (-3431 (($ (-594 |#4|)) NIL)) (-4077 (((-3 $ #1#) $) 39)) (-3967 ((|#4| |#4| $) 65)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-3685 (($ |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3166 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-523)))) (-3976 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-3965 ((|#4| |#4| $) NIL)) (-4121 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3978 (((-2 (|:| -4140 (-594 |#4|)) (|:| -1768 (-594 |#4|))) $) NIL)) (-3471 (((-110) |#4| $) NIL)) (-3469 (((-110) |#4| $) NIL)) (-3472 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3717 (((-2 (|:| |val| (-594 |#4|)) (|:| |towers| (-594 $))) (-594 |#4|) (-110) (-110)) 124)) (-2018 (((-594 |#4|) $) 16 (|has| $ (-6 -4269)))) (-3977 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3455 ((|#3| $) 33)) (-4001 (((-110) $ (-719)) NIL)) (-2445 (((-594 |#4|) $) 17 (|has| $ (-6 -4269)))) (-3516 (((-110) |#4| $) 25 (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-2022 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#4| |#4|) $) 21)) (-3178 (((-594 |#3|) $) NIL)) (-3177 (((-110) |#3| $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL)) (-3465 (((-3 |#4| (-594 $)) |#4| |#4| $) NIL)) (-3464 (((-594 (-2 (|:| |val| |#4|) (|:| -1610 $))) |#4| |#4| $) 103)) (-4076 (((-3 |#4| #1#) $) 37)) (-3466 (((-594 $) |#4| $) 88)) (-3468 (((-3 (-110) (-594 $)) |#4| $) NIL)) (-3467 (((-594 (-2 (|:| |val| (-110)) (|:| -1610 $))) |#4| $) 98) (((-110) |#4| $) 53)) (-3509 (((-594 $) |#4| $) 107) (((-594 $) (-594 |#4|) $) NIL) (((-594 $) (-594 |#4|) (-594 $)) 108) (((-594 $) |#4| (-594 $)) NIL)) (-3718 (((-594 $) (-594 |#4|) (-110) (-110) (-110)) 119)) (-3719 (($ |#4| $) 75) (($ (-594 |#4|) $) 76) (((-594 $) |#4| $ (-110) (-110) (-110) (-110) (-110)) 74)) (-3979 (((-594 |#4|) $) NIL)) (-3973 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3968 ((|#4| |#4| $) NIL)) (-3981 (((-110) $ $) NIL)) (-3167 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-523)))) (-3974 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3969 ((|#4| |#4| $) NIL)) (-3514 (((-1045) $) NIL)) (-4079 (((-3 |#4| #1#) $) 35)) (-1350 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-3961 (((-3 $ #1#) $ |#4|) 48)) (-4047 (($ $ |#4|) NIL) (((-594 $) |#4| $) 90) (((-594 $) |#4| (-594 $)) NIL) (((-594 $) (-594 |#4|) $) NIL) (((-594 $) (-594 |#4|) (-594 $)) 86)) (-2020 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 |#4|) (-594 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-275 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-594 (-275 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) 15)) (-3847 (($) 13)) (-4223 (((-719) $) NIL)) (-2019 (((-719) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (((-719) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3678 (($ $) 12)) (-4246 (((-505) $) NIL (|has| |#4| (-572 (-505))))) (-3804 (($ (-594 |#4|)) 20)) (-3174 (($ $ |#3|) 42)) (-3176 (($ $ |#3|) 44)) (-3966 (($ $) NIL)) (-3175 (($ $ |#3|) NIL)) (-4233 (((-805) $) 31) (((-594 |#4|) $) 40)) (-3960 (((-719) $) NIL (|has| |#3| (-349)))) (-3980 (((-3 (-2 (|:| |bas| $) (|:| -3602 (-594 |#4|))) #1#) (-594 |#4|) (-1 (-110) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3602 (-594 |#4|))) #1#) (-594 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3972 (((-110) $ (-1 (-110) |#4| (-594 |#4|))) NIL)) (-3463 (((-594 $) |#4| $) 54) (((-594 $) |#4| (-594 $)) NIL) (((-594 $) (-594 |#4|) $) NIL) (((-594 $) (-594 |#4|) (-594 $)) NIL)) (-2021 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3962 (((-594 |#3|) $) NIL)) (-3470 (((-110) |#4| $) NIL)) (-4209 (((-110) |#3| $) 61)) (-3317 (((-110) $ $) NIL)) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-1069 |#1| |#2| |#3| |#4|) (-13 (-1035 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3719 ((-594 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -3964 ((-594 $) (-594 |#4|) (-110) (-110))) (-15 -3964 ((-594 $) (-594 |#4|) (-110) (-110) (-110) (-110))) (-15 -3718 ((-594 $) (-594 |#4|) (-110) (-110) (-110))) (-15 -3717 ((-2 (|:| |val| (-594 |#4|)) (|:| |towers| (-594 $))) (-594 |#4|) (-110) (-110))))) (-432) (-741) (-795) (-997 |#1| |#2| |#3|)) (T -1069))
+((-3719 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-594 (-1069 *5 *6 *7 *3))) (-5 *1 (-1069 *5 *6 *7 *3)) (-4 *3 (-997 *5 *6 *7)))) (-3964 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-594 *8)) (-5 *4 (-110)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-594 (-1069 *5 *6 *7 *8))) (-5 *1 (-1069 *5 *6 *7 *8)))) (-3964 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-594 *8)) (-5 *4 (-110)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-594 (-1069 *5 *6 *7 *8))) (-5 *1 (-1069 *5 *6 *7 *8)))) (-3718 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-594 *8)) (-5 *4 (-110)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-594 (-1069 *5 *6 *7 *8))) (-5 *1 (-1069 *5 *6 *7 *8)))) (-3717 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-997 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-594 *8)) (|:| |towers| (-594 (-1069 *5 *6 *7 *8))))) (-5 *1 (-1069 *5 *6 *7 *8)) (-5 *3 (-594 *8)))))
+(-13 (-1035 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3719 ((-594 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -3964 ((-594 $) (-594 |#4|) (-110) (-110))) (-15 -3964 ((-594 $) (-594 |#4|) (-110) (-110) (-110) (-110))) (-15 -3718 ((-594 $) (-594 |#4|) (-110) (-110) (-110))) (-15 -3717 ((-2 (|:| |val| (-594 |#4|)) (|:| |towers| (-594 $))) (-594 |#4|) (-110) (-110)))))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3602 ((|#1| $) 34)) (-3720 (($ (-594 |#1|)) 39)) (-1217 (((-110) $ (-719)) NIL)) (-3815 (($) NIL T CONST)) (-3604 ((|#1| |#1| $) 36)) (-3603 ((|#1| $) 32)) (-2018 (((-594 |#1|) $) 18 (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) NIL)) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2022 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 22)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-1280 ((|#1| $) 35)) (-3889 (($ |#1| $) 37)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-1281 ((|#1| $) 33)) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) 31)) (-3847 (($) 38)) (-3601 (((-719) $) 29)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3678 (($ $) 27)) (-4233 (((-805) $) 14 (|has| |#1| (-571 (-805))))) (-1282 (($ (-594 |#1|)) NIL)) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 17 (|has| |#1| (-1027)))) (-4232 (((-719) $) 30 (|has| $ (-6 -4269)))))
+(((-1070 |#1|) (-13 (-1046 |#1|) (-10 -8 (-15 -3720 ($ (-594 |#1|))))) (-1134)) (T -1070))
+((-3720 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1134)) (-5 *1 (-1070 *3)))))
+(-13 (-1046 |#1|) (-10 -8 (-15 -3720 ($ (-594 |#1|)))))
+((-4066 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ #2="first" |#2|) NIL) (($ $ #3="rest" $) NIL) ((|#2| $ #4="last" |#2|) NIL) ((|#2| $ (-1146 (-516)) |#2|) 44) ((|#2| $ (-516) |#2|) 41)) (-3721 (((-110) $) 12)) (-2022 (($ (-1 |#2| |#2|) $) 39)) (-4079 ((|#2| $) NIL) (($ $ (-719)) 17)) (-2244 (($ $ |#2|) 40)) (-3722 (((-110) $) 11)) (-4078 ((|#2| $ #1#) NIL) ((|#2| $ #2#) NIL) (($ $ #3#) NIL) ((|#2| $ #4#) NIL) (($ $ (-1146 (-516))) 31) ((|#2| $ (-516)) 23) ((|#2| $ (-516) |#2|) NIL)) (-4069 (($ $ $) 47) (($ $ |#2|) NIL)) (-4080 (($ $ $) 33) (($ |#2| $) NIL) (($ (-594 $)) 36) (($ $ |#2|) NIL)))
+(((-1071 |#1| |#2|) (-10 -8 (-15 -3721 ((-110) |#1|)) (-15 -3722 ((-110) |#1|)) (-15 -4066 (|#2| |#1| (-516) |#2|)) (-15 -4078 (|#2| |#1| (-516) |#2|)) (-15 -4078 (|#2| |#1| (-516))) (-15 -2244 (|#1| |#1| |#2|)) (-15 -4080 (|#1| |#1| |#2|)) (-15 -4080 (|#1| (-594 |#1|))) (-15 -4078 (|#1| |#1| (-1146 (-516)))) (-15 -4066 (|#2| |#1| (-1146 (-516)) |#2|)) (-15 -4066 (|#2| |#1| #1="last" |#2|)) (-15 -4066 (|#1| |#1| #2="rest" |#1|)) (-15 -4066 (|#2| |#1| #3="first" |#2|)) (-15 -4069 (|#1| |#1| |#2|)) (-15 -4069 (|#1| |#1| |#1|)) (-15 -4078 (|#2| |#1| #1#)) (-15 -4078 (|#1| |#1| #2#)) (-15 -4079 (|#1| |#1| (-719))) (-15 -4078 (|#2| |#1| #3#)) (-15 -4079 (|#2| |#1|)) (-15 -4080 (|#1| |#2| |#1|)) (-15 -4080 (|#1| |#1| |#1|)) (-15 -4066 (|#2| |#1| #4="value" |#2|)) (-15 -4078 (|#2| |#1| #4#)) (-15 -2022 (|#1| (-1 |#2| |#2|) |#1|))) (-1072 |#2|) (-1134)) (T -1071))
+NIL
+(-10 -8 (-15 -3721 ((-110) |#1|)) (-15 -3722 ((-110) |#1|)) (-15 -4066 (|#2| |#1| (-516) |#2|)) (-15 -4078 (|#2| |#1| (-516) |#2|)) (-15 -4078 (|#2| |#1| (-516))) (-15 -2244 (|#1| |#1| |#2|)) (-15 -4080 (|#1| |#1| |#2|)) (-15 -4080 (|#1| (-594 |#1|))) (-15 -4078 (|#1| |#1| (-1146 (-516)))) (-15 -4066 (|#2| |#1| (-1146 (-516)) |#2|)) (-15 -4066 (|#2| |#1| #1="last" |#2|)) (-15 -4066 (|#1| |#1| #2="rest" |#1|)) (-15 -4066 (|#2| |#1| #3="first" |#2|)) (-15 -4069 (|#1| |#1| |#2|)) (-15 -4069 (|#1| |#1| |#1|)) (-15 -4078 (|#2| |#1| #1#)) (-15 -4078 (|#1| |#1| #2#)) (-15 -4079 (|#1| |#1| (-719))) (-15 -4078 (|#2| |#1| #3#)) (-15 -4079 (|#2| |#1|)) (-15 -4080 (|#1| |#2| |#1|)) (-15 -4080 (|#1| |#1| |#1|)) (-15 -4066 (|#2| |#1| #4="value" |#2|)) (-15 -4078 (|#2| |#1| #4#)) (-15 -2022 (|#1| (-1 |#2| |#2|) |#1|)))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3681 ((|#1| $) 48)) (-4073 ((|#1| $) 65)) (-4075 (($ $) 67)) (-2243 (((-1185) $ (-516) (-516)) 97 (|has| $ (-6 -4270)))) (-4063 (($ $ (-516)) 52 (|has| $ (-6 -4270)))) (-1217 (((-110) $ (-719)) 8)) (-3289 ((|#1| $ |#1|) 39 (|has| $ (-6 -4270)))) (-4065 (($ $ $) 56 (|has| $ (-6 -4270)))) (-4064 ((|#1| $ |#1|) 54 (|has| $ (-6 -4270)))) (-4067 ((|#1| $ |#1|) 58 (|has| $ (-6 -4270)))) (-4066 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4270))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4270))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4270))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4270))) ((|#1| $ (-1146 (-516)) |#1|) 117 (|has| $ (-6 -4270))) ((|#1| $ (-516) |#1|) 86 (|has| $ (-6 -4270)))) (-3290 (($ $ (-594 $)) 41 (|has| $ (-6 -4270)))) (-3992 (($ (-1 (-110) |#1|) $) 102 (|has| $ (-6 -4269)))) (-4074 ((|#1| $) 66)) (-3815 (($) 7 T CONST)) (-4077 (($ $) 73) (($ $ (-719)) 71)) (-1349 (($ $) 99 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3685 (($ (-1 (-110) |#1|) $) 103 (|has| $ (-6 -4269))) (($ |#1| $) 100 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1587 ((|#1| $ (-516) |#1|) 85 (|has| $ (-6 -4270)))) (-3372 ((|#1| $ (-516)) 87)) (-3721 (((-110) $) 83)) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-3295 (((-594 $) $) 50)) (-3291 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-3896 (($ (-719) |#1|) 108)) (-4001 (((-110) $ (-719)) 9)) (-2245 (((-516) $) 95 (|has| (-516) (-795)))) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2246 (((-516) $) 94 (|has| (-516) (-795)))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3998 (((-110) $ (-719)) 10)) (-3294 (((-594 |#1|) $) 45)) (-3801 (((-110) $) 49)) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-4076 ((|#1| $) 70) (($ $ (-719)) 68)) (-2317 (($ $ $ (-516)) 116) (($ |#1| $ (-516)) 115)) (-2248 (((-594 (-516)) $) 92)) (-2249 (((-110) (-516) $) 91)) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-4079 ((|#1| $) 76) (($ $ (-719)) 74)) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 106)) (-2244 (($ $ |#1|) 96 (|has| $ (-6 -4270)))) (-3722 (((-110) $) 84)) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-2247 (((-110) |#1| $) 93 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2250 (((-594 |#1|) $) 90)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-4078 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1146 (-516))) 112) ((|#1| $ (-516)) 89) ((|#1| $ (-516) |#1|) 88)) (-3293 (((-516) $ $) 44)) (-2318 (($ $ (-1146 (-516))) 114) (($ $ (-516)) 113)) (-3915 (((-110) $) 46)) (-4070 (($ $) 62)) (-4068 (($ $) 59 (|has| $ (-6 -4270)))) (-4071 (((-719) $) 63)) (-4072 (($ $) 64)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4246 (((-505) $) 98 (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) 107)) (-4069 (($ $ $) 61 (|has| $ (-6 -4270))) (($ $ |#1|) 60 (|has| $ (-6 -4270)))) (-4080 (($ $ $) 78) (($ |#1| $) 77) (($ (-594 $)) 110) (($ $ |#1|) 109)) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-3796 (((-594 $) $) 51)) (-3292 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-1072 |#1|) (-133) (-1134)) (T -1072))
+((-3722 (*1 *2 *1) (-12 (-4 *1 (-1072 *3)) (-4 *3 (-1134)) (-5 *2 (-110)))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-1072 *3)) (-4 *3 (-1134)) (-5 *2 (-110)))))
+(-13 (-1168 |t#1|) (-602 |t#1|) (-10 -8 (-15 -3722 ((-110) $)) (-15 -3721 ((-110) $))))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-571 (-805)))) ((-144 |#1|) . T) ((-572 (-505)) |has| |#1| (-572 (-505))) ((-268 #1=(-516) |#1|) . T) ((-270 #1# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-563 #1# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-949 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1134) . T) ((-1168 |#1|) . T))
+((-2828 (((-110) $ $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3879 (($) NIL) (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-2243 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -4270)))) (-1217 (((-110) $ (-719)) NIL)) (-4066 ((|#2| $ |#1| |#2|) NIL)) (-1581 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3992 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2251 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3815 (($) NIL T CONST)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))))) (-3684 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-3 |#2| #1#) |#1| $) NIL)) (-3685 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-4121 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-1587 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4270)))) (-3372 ((|#2| $ |#1|) NIL)) (-2018 (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-594 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) NIL)) (-2245 ((|#1| $) NIL (|has| |#1| (-795)))) (-2445 (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-594 |#2|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2246 ((|#1| $) NIL (|has| |#1| (-795)))) (-2022 (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2678 (((-594 |#1|) $) NIL)) (-2252 (((-110) |#1| $) NIL)) (-1280 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL)) (-3889 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL)) (-2248 (((-594 |#1|) $) NIL)) (-2249 (((-110) |#1| $) NIL)) (-3514 (((-1045) $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-4079 ((|#2| $) NIL (|has| |#1| (-795)))) (-1350 (((-3 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) "failed") (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL)) (-2244 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-1281 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL)) (-2020 (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-275 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-594 |#2|) (-594 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-594 (-275 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2250 (((-594 |#2|) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1473 (($) NIL) (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-2019 (((-719) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) NIL (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-572 (-505))))) (-3804 (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-4233 (((-805) $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-571 (-805))) (|has| |#2| (-571 (-805)))))) (-1282 (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-2021 (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-1073 |#1| |#2| |#3|) (-1111 |#1| |#2|) (-1027) (-1027) |#2|) (T -1073))
+NIL
+(-1111 |#1| |#2|)
+((-2828 (((-110) $ $) 7)) (-3723 (((-3 $ "failed") $) 13)) (-3513 (((-1081) $) 9)) (-3724 (($) 14 T CONST)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11)) (-3317 (((-110) $ $) 6)))
+(((-1074) (-133)) (T -1074))
+((-3724 (*1 *1) (-4 *1 (-1074))) (-3723 (*1 *1 *1) (|partial| -4 *1 (-1074))))
+(-13 (-1027) (-10 -8 (-15 -3724 ($) -4227) (-15 -3723 ((-3 $ "failed") $))))
+(((-99) . T) ((-571 (-805)) . T) ((-1027) . T))
+((-3727 (((-1076 |#1|) (-1076 |#1|)) 17)) (-3725 (((-1076 |#1|) (-1076 |#1|)) 13)) (-3728 (((-1076 |#1|) (-1076 |#1|) (-516) (-516)) 20)) (-3726 (((-1076 |#1|) (-1076 |#1|)) 15)))
+(((-1075 |#1|) (-10 -7 (-15 -3725 ((-1076 |#1|) (-1076 |#1|))) (-15 -3726 ((-1076 |#1|) (-1076 |#1|))) (-15 -3727 ((-1076 |#1|) (-1076 |#1|))) (-15 -3728 ((-1076 |#1|) (-1076 |#1|) (-516) (-516)))) (-13 (-523) (-140))) (T -1075))
+((-3728 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1076 *4)) (-5 *3 (-516)) (-4 *4 (-13 (-523) (-140))) (-5 *1 (-1075 *4)))) (-3727 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-13 (-523) (-140))) (-5 *1 (-1075 *3)))) (-3726 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-13 (-523) (-140))) (-5 *1 (-1075 *3)))) (-3725 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-13 (-523) (-140))) (-5 *1 (-1075 *3)))))
+(-10 -7 (-15 -3725 ((-1076 |#1|) (-1076 |#1|))) (-15 -3726 ((-1076 |#1|) (-1076 |#1|))) (-15 -3727 ((-1076 |#1|) (-1076 |#1|))) (-15 -3728 ((-1076 |#1|) (-1076 |#1|) (-516) (-516))))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3681 ((|#1| $) NIL)) (-4073 ((|#1| $) NIL)) (-4075 (($ $) 51)) (-2243 (((-1185) $ (-516) (-516)) 76 (|has| $ (-6 -4270)))) (-4063 (($ $ (-516)) 110 (|has| $ (-6 -4270)))) (-1217 (((-110) $ (-719)) NIL)) (-3733 (((-805) $) 41 (|has| |#1| (-1027)))) (-3732 (((-110)) 40 (|has| |#1| (-1027)))) (-3289 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-4065 (($ $ $) 98 (|has| $ (-6 -4270))) (($ $ (-516) $) 122)) (-4064 ((|#1| $ |#1|) 107 (|has| $ (-6 -4270)))) (-4067 ((|#1| $ |#1|) 102 (|has| $ (-6 -4270)))) (-4066 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ #2="first" |#1|) 104 (|has| $ (-6 -4270))) (($ $ #3="rest" $) 106 (|has| $ (-6 -4270))) ((|#1| $ #4="last" |#1|) 109 (|has| $ (-6 -4270))) ((|#1| $ (-1146 (-516)) |#1|) 89 (|has| $ (-6 -4270))) ((|#1| $ (-516) |#1|) 55 (|has| $ (-6 -4270)))) (-3290 (($ $ (-594 $)) NIL (|has| $ (-6 -4270)))) (-3992 (($ (-1 (-110) |#1|) $) 58)) (-4074 ((|#1| $) NIL)) (-3815 (($) NIL T CONST)) (-2333 (($ $) 14)) (-4077 (($ $) 29) (($ $ (-719)) 88)) (-3738 (((-110) (-594 |#1|) $) 116 (|has| |#1| (-1027)))) (-3739 (($ (-594 |#1|)) 112)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3685 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) 57)) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1587 ((|#1| $ (-516) |#1|) NIL (|has| $ (-6 -4270)))) (-3372 ((|#1| $ (-516)) NIL)) (-3721 (((-110) $) NIL)) (-2018 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3734 (((-1185) (-516) $) 121 (|has| |#1| (-1027)))) (-2332 (((-719) $) 118)) (-3295 (((-594 $) $) NIL)) (-3291 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3896 (($ (-719) |#1|) NIL)) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-516) $) NIL (|has| (-516) (-795)))) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2246 (((-516) $) NIL (|has| (-516) (-795)))) (-2022 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-3998 (((-110) $ (-719)) NIL)) (-3294 (((-594 |#1|) $) NIL)) (-3801 (((-110) $) NIL)) (-2335 (($ $) 90)) (-2336 (((-110) $) 13)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-4076 ((|#1| $) NIL) (($ $ (-719)) NIL)) (-2317 (($ $ $ (-516)) NIL) (($ |#1| $ (-516)) NIL)) (-2248 (((-594 (-516)) $) NIL)) (-2249 (((-110) (-516) $) 74)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-3731 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-2334 ((|#1| $) 10)) (-4079 ((|#1| $) 28) (($ $ (-719)) 49)) (-3737 (((-2 (|:| |cycle?| (-110)) (|:| -2855 (-719)) (|:| |period| (-719))) (-719) $) 25)) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3730 (($ (-1 (-110) |#1|) $) 126)) (-3729 (($ (-1 (-110) |#1|) $) 127)) (-2244 (($ $ |#1|) 68 (|has| $ (-6 -4270)))) (-4047 (($ $ (-516)) 32)) (-3722 (((-110) $) 72)) (-2337 (((-110) $) 12)) (-2338 (((-110) $) 117)) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 20)) (-2247 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2250 (((-594 |#1|) $) NIL)) (-3682 (((-110) $) 15)) (-3847 (($) 43)) (-4078 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1146 (-516))) NIL) ((|#1| $ (-516)) 54) ((|#1| $ (-516) |#1|) NIL)) (-3293 (((-516) $ $) 48)) (-2318 (($ $ (-1146 (-516))) NIL) (($ $ (-516)) NIL)) (-3736 (($ (-1 $)) 47)) (-3915 (((-110) $) 69)) (-4070 (($ $) 70)) (-4068 (($ $) 99 (|has| $ (-6 -4270)))) (-4071 (((-719) $) NIL)) (-4072 (($ $) NIL)) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3678 (($ $) 44)) (-4246 (((-505) $) NIL (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) 53)) (-3735 (($ |#1| $) 97)) (-4069 (($ $ $) 100 (|has| $ (-6 -4270))) (($ $ |#1|) 101 (|has| $ (-6 -4270)))) (-4080 (($ $ $) 78) (($ |#1| $) 45) (($ (-594 $)) 83) (($ $ |#1|) 77)) (-3155 (($ $) 50)) (-4233 (($ (-594 |#1|)) 111) (((-805) $) 42 (|has| |#1| (-571 (-805))))) (-3796 (((-594 $) $) NIL)) (-3292 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 114 (|has| |#1| (-1027)))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-1076 |#1|) (-13 (-624 |#1|) (-10 -8 (-6 -4270) (-15 -4233 ($ (-594 |#1|))) (-15 -3739 ($ (-594 |#1|))) (IF (|has| |#1| (-1027)) (-15 -3738 ((-110) (-594 |#1|) $)) |%noBranch|) (-15 -3737 ((-2 (|:| |cycle?| (-110)) (|:| -2855 (-719)) (|:| |period| (-719))) (-719) $)) (-15 -3736 ($ (-1 $))) (-15 -3735 ($ |#1| $)) (IF (|has| |#1| (-1027)) (PROGN (-15 -3734 ((-1185) (-516) $)) (-15 -3733 ((-805) $)) (-15 -3732 ((-110)))) |%noBranch|) (-15 -4065 ($ $ (-516) $)) (-15 -3731 ($ (-1 |#1|))) (-15 -3731 ($ (-1 |#1| |#1|) |#1|)) (-15 -3730 ($ (-1 (-110) |#1|) $)) (-15 -3729 ($ (-1 (-110) |#1|) $)))) (-1134)) (T -1076))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1134)) (-5 *1 (-1076 *3)))) (-3739 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1134)) (-5 *1 (-1076 *3)))) (-3738 (*1 *2 *3 *1) (-12 (-5 *3 (-594 *4)) (-4 *4 (-1027)) (-4 *4 (-1134)) (-5 *2 (-110)) (-5 *1 (-1076 *4)))) (-3737 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-110)) (|:| -2855 (-719)) (|:| |period| (-719)))) (-5 *1 (-1076 *4)) (-4 *4 (-1134)) (-5 *3 (-719)))) (-3736 (*1 *1 *2) (-12 (-5 *2 (-1 (-1076 *3))) (-5 *1 (-1076 *3)) (-4 *3 (-1134)))) (-3735 (*1 *1 *2 *1) (-12 (-5 *1 (-1076 *2)) (-4 *2 (-1134)))) (-3734 (*1 *2 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-1185)) (-5 *1 (-1076 *4)) (-4 *4 (-1027)) (-4 *4 (-1134)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-1076 *3)) (-4 *3 (-1027)) (-4 *3 (-1134)))) (-3732 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1076 *3)) (-4 *3 (-1027)) (-4 *3 (-1134)))) (-4065 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1076 *3)) (-4 *3 (-1134)))) (-3731 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1134)) (-5 *1 (-1076 *3)))) (-3731 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1134)) (-5 *1 (-1076 *3)))) (-3730 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1134)) (-5 *1 (-1076 *3)))) (-3729 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1134)) (-5 *1 (-1076 *3)))))
+(-13 (-624 |#1|) (-10 -8 (-6 -4270) (-15 -4233 ($ (-594 |#1|))) (-15 -3739 ($ (-594 |#1|))) (IF (|has| |#1| (-1027)) (-15 -3738 ((-110) (-594 |#1|) $)) |%noBranch|) (-15 -3737 ((-2 (|:| |cycle?| (-110)) (|:| -2855 (-719)) (|:| |period| (-719))) (-719) $)) (-15 -3736 ($ (-1 $))) (-15 -3735 ($ |#1| $)) (IF (|has| |#1| (-1027)) (PROGN (-15 -3734 ((-1185) (-516) $)) (-15 -3733 ((-805) $)) (-15 -3732 ((-110)))) |%noBranch|) (-15 -4065 ($ $ (-516) $)) (-15 -3731 ($ (-1 |#1|))) (-15 -3731 ($ (-1 |#1| |#1|) |#1|)) (-15 -3730 ($ (-1 (-110) |#1|) $)) (-15 -3729 ($ (-1 (-110) |#1|) $))))
+((-4080 (((-1076 |#1|) (-1076 (-1076 |#1|))) 15)))
+(((-1077 |#1|) (-10 -7 (-15 -4080 ((-1076 |#1|) (-1076 (-1076 |#1|))))) (-1134)) (T -1077))
+((-4080 (*1 *2 *3) (-12 (-5 *3 (-1076 (-1076 *4))) (-5 *2 (-1076 *4)) (-5 *1 (-1077 *4)) (-4 *4 (-1134)))))
+(-10 -7 (-15 -4080 ((-1076 |#1|) (-1076 (-1076 |#1|)))))
+((-4120 (((-1076 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1076 |#1|)) 25)) (-4121 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1076 |#1|)) 26)) (-4234 (((-1076 |#2|) (-1 |#2| |#1|) (-1076 |#1|)) 16)))
+(((-1078 |#1| |#2|) (-10 -7 (-15 -4234 ((-1076 |#2|) (-1 |#2| |#1|) (-1076 |#1|))) (-15 -4120 ((-1076 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1076 |#1|))) (-15 -4121 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1076 |#1|)))) (-1134) (-1134)) (T -1078))
+((-4121 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1076 *5)) (-4 *5 (-1134)) (-4 *2 (-1134)) (-5 *1 (-1078 *5 *2)))) (-4120 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1076 *6)) (-4 *6 (-1134)) (-4 *3 (-1134)) (-5 *2 (-1076 *3)) (-5 *1 (-1078 *6 *3)))) (-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1076 *5)) (-4 *5 (-1134)) (-4 *6 (-1134)) (-5 *2 (-1076 *6)) (-5 *1 (-1078 *5 *6)))))
+(-10 -7 (-15 -4234 ((-1076 |#2|) (-1 |#2| |#1|) (-1076 |#1|))) (-15 -4120 ((-1076 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1076 |#1|))) (-15 -4121 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1076 |#1|))))
+((-4234 (((-1076 |#3|) (-1 |#3| |#1| |#2|) (-1076 |#1|) (-1076 |#2|)) 21)))
+(((-1079 |#1| |#2| |#3|) (-10 -7 (-15 -4234 ((-1076 |#3|) (-1 |#3| |#1| |#2|) (-1076 |#1|) (-1076 |#2|)))) (-1134) (-1134) (-1134)) (T -1079))
+((-4234 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1076 *6)) (-5 *5 (-1076 *7)) (-4 *6 (-1134)) (-4 *7 (-1134)) (-4 *8 (-1134)) (-5 *2 (-1076 *8)) (-5 *1 (-1079 *6 *7 *8)))))
+(-10 -7 (-15 -4234 ((-1076 |#3|) (-1 |#3| |#1| |#2|) (-1076 |#1|) (-1076 |#2|))))
+((-2828 (((-110) $ $) 19)) (-3705 (($ $) 120)) (-3706 (($ $) 121)) (-3696 (($ $ (-137)) 108) (($ $ (-134)) 107)) (-2243 (((-1185) $ (-516) (-516)) 40 (|has| $ (-6 -4270)))) (-3703 (((-110) $ $) 118)) (-3702 (((-110) $ $ (-516)) 117)) (-3817 (($ (-516)) 127)) (-3697 (((-594 $) $ (-137)) 110) (((-594 $) $ (-134)) 109)) (-1798 (((-110) (-1 (-110) (-137) (-137)) $) 98) (((-110) $) 92 (|has| (-137) (-795)))) (-1796 (($ (-1 (-110) (-137) (-137)) $) 89 (|has| $ (-6 -4270))) (($ $) 88 (-12 (|has| (-137) (-795)) (|has| $ (-6 -4270))))) (-3173 (($ (-1 (-110) (-137) (-137)) $) 99) (($ $) 93 (|has| (-137) (-795)))) (-1217 (((-110) $ (-719)) 8)) (-4066 (((-137) $ (-516) (-137)) 52 (|has| $ (-6 -4270))) (((-137) $ (-1146 (-516)) (-137)) 58 (|has| $ (-6 -4270)))) (-3992 (($ (-1 (-110) (-137)) $) 75 (|has| $ (-6 -4269)))) (-3815 (($) 7 T CONST)) (-3694 (($ $ (-137)) 104) (($ $ (-134)) 103)) (-2312 (($ $) 90 (|has| $ (-6 -4270)))) (-2313 (($ $) 100)) (-3699 (($ $ (-1146 (-516)) $) 114)) (-1349 (($ $) 78 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269))))) (-3685 (($ (-137) $) 77 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) (-137)) $) 74 (|has| $ (-6 -4269)))) (-4121 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) 76 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) 73 (|has| $ (-6 -4269))) (((-137) (-1 (-137) (-137) (-137)) $) 72 (|has| $ (-6 -4269)))) (-1587 (((-137) $ (-516) (-137)) 53 (|has| $ (-6 -4270)))) (-3372 (((-137) $ (-516)) 51)) (-3704 (((-110) $ $) 119)) (-3698 (((-516) (-1 (-110) (-137)) $) 97) (((-516) (-137) $) 96 (|has| (-137) (-1027))) (((-516) (-137) $ (-516)) 95 (|has| (-137) (-1027))) (((-516) $ $ (-516)) 113) (((-516) (-134) $ (-516)) 112)) (-2018 (((-594 (-137)) $) 30 (|has| $ (-6 -4269)))) (-3896 (($ (-719) (-137)) 69)) (-4001 (((-110) $ (-719)) 9)) (-2245 (((-516) $) 43 (|has| (-516) (-795)))) (-3596 (($ $ $) 87 (|has| (-137) (-795)))) (-3792 (($ (-1 (-110) (-137) (-137)) $ $) 101) (($ $ $) 94 (|has| (-137) (-795)))) (-2445 (((-594 (-137)) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) (-137) $) 27 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269))))) (-2246 (((-516) $) 44 (|has| (-516) (-795)))) (-3597 (($ $ $) 86 (|has| (-137) (-795)))) (-3700 (((-110) $ $ (-137)) 115)) (-3701 (((-719) $ $ (-137)) 116)) (-2022 (($ (-1 (-137) (-137)) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-137) (-137)) $) 35) (($ (-1 (-137) (-137) (-137)) $ $) 64)) (-3707 (($ $) 122)) (-3708 (($ $) 123)) (-3998 (((-110) $ (-719)) 10)) (-3695 (($ $ (-137)) 106) (($ $ (-134)) 105)) (-3513 (((-1081) $) 22)) (-2317 (($ (-137) $ (-516)) 60) (($ $ $ (-516)) 59)) (-2248 (((-594 (-516)) $) 46)) (-2249 (((-110) (-516) $) 47)) (-3514 (((-1045) $) 21)) (-4079 (((-137) $) 42 (|has| (-516) (-795)))) (-1350 (((-3 (-137) "failed") (-1 (-110) (-137)) $) 71)) (-2244 (($ $ (-137)) 41 (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) (-137)) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 (-137)))) 26 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-275 (-137))) 25 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-137) (-137)) 24 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-594 (-137)) (-594 (-137))) 23 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))))) (-1218 (((-110) $ $) 14)) (-2247 (((-110) (-137) $) 45 (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-2250 (((-594 (-137)) $) 48)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-4078 (((-137) $ (-516) (-137)) 50) (((-137) $ (-516)) 49) (($ $ (-1146 (-516))) 63) (($ $ $) 102)) (-2318 (($ $ (-516)) 62) (($ $ (-1146 (-516))) 61)) (-2019 (((-719) (-1 (-110) (-137)) $) 31 (|has| $ (-6 -4269))) (((-719) (-137) $) 28 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269))))) (-1797 (($ $ $ (-516)) 91 (|has| $ (-6 -4270)))) (-3678 (($ $) 13)) (-4246 (((-505) $) 79 (|has| (-137) (-572 (-505))))) (-3804 (($ (-594 (-137))) 70)) (-4080 (($ $ (-137)) 68) (($ (-137) $) 67) (($ $ $) 66) (($ (-594 $)) 65)) (-4233 (($ (-137)) 111) (((-805) $) 18)) (-2021 (((-110) (-1 (-110) (-137)) $) 33 (|has| $ (-6 -4269)))) (-2768 (((-1081) $) 131) (((-1081) $ (-110)) 130) (((-1185) (-771) $) 129) (((-1185) (-771) $ (-110)) 128)) (-2826 (((-110) $ $) 84 (|has| (-137) (-795)))) (-2827 (((-110) $ $) 83 (|has| (-137) (-795)))) (-3317 (((-110) $ $) 20)) (-2947 (((-110) $ $) 85 (|has| (-137) (-795)))) (-2948 (((-110) $ $) 82 (|has| (-137) (-795)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-1080) (-133)) (T -1080))
+((-3817 (*1 *1 *2) (-12 (-5 *2 (-516)) (-4 *1 (-1080)))))
+(-13 (-1067) (-1027) (-769) (-10 -8 (-15 -3817 ($ (-516)))))
+(((-33) . T) ((-99) . T) ((-571 (-805)) . T) ((-144 #1=(-137)) . T) ((-572 (-505)) |has| (-137) (-572 (-505))) ((-268 #2=(-516) #1#) . T) ((-270 #2# #1#) . T) ((-291 #1#) -12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))) ((-353 #1#) . T) ((-468 #1#) . T) ((-563 #2# #1#) . T) ((-491 #1# #1#) -12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))) ((-602 #1#) . T) ((-19 #1#) . T) ((-769) . T) ((-795) |has| (-137) (-795)) ((-1027) . T) ((-1067) . T) ((-1134) . T))
+((-2828 (((-110) $ $) NIL)) (-3705 (($ $) NIL)) (-3706 (($ $) NIL)) (-3696 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-2243 (((-1185) $ (-516) (-516)) NIL (|has| $ (-6 -4270)))) (-3703 (((-110) $ $) NIL)) (-3702 (((-110) $ $ (-516)) NIL)) (-3817 (($ (-516)) 7)) (-3697 (((-594 $) $ (-137)) NIL) (((-594 $) $ (-134)) NIL)) (-1798 (((-110) (-1 (-110) (-137) (-137)) $) NIL) (((-110) $) NIL (|has| (-137) (-795)))) (-1796 (($ (-1 (-110) (-137) (-137)) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-137) (-795))))) (-3173 (($ (-1 (-110) (-137) (-137)) $) NIL) (($ $) NIL (|has| (-137) (-795)))) (-1217 (((-110) $ (-719)) NIL)) (-4066 (((-137) $ (-516) (-137)) NIL (|has| $ (-6 -4270))) (((-137) $ (-1146 (-516)) (-137)) NIL (|has| $ (-6 -4270)))) (-3992 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-3815 (($) NIL T CONST)) (-3694 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-2312 (($ $) NIL (|has| $ (-6 -4270)))) (-2313 (($ $) NIL)) (-3699 (($ $ (-1146 (-516)) $) NIL)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-3685 (($ (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027)))) (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-4121 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) NIL (|has| $ (-6 -4269))) (((-137) (-1 (-137) (-137) (-137)) $) NIL (|has| $ (-6 -4269)))) (-1587 (((-137) $ (-516) (-137)) NIL (|has| $ (-6 -4270)))) (-3372 (((-137) $ (-516)) NIL)) (-3704 (((-110) $ $) NIL)) (-3698 (((-516) (-1 (-110) (-137)) $) NIL) (((-516) (-137) $) NIL (|has| (-137) (-1027))) (((-516) (-137) $ (-516)) NIL (|has| (-137) (-1027))) (((-516) $ $ (-516)) NIL) (((-516) (-134) $ (-516)) NIL)) (-2018 (((-594 (-137)) $) NIL (|has| $ (-6 -4269)))) (-3896 (($ (-719) (-137)) NIL)) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-516) $) NIL (|has| (-516) (-795)))) (-3596 (($ $ $) NIL (|has| (-137) (-795)))) (-3792 (($ (-1 (-110) (-137) (-137)) $ $) NIL) (($ $ $) NIL (|has| (-137) (-795)))) (-2445 (((-594 (-137)) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-2246 (((-516) $) NIL (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (|has| (-137) (-795)))) (-3700 (((-110) $ $ (-137)) NIL)) (-3701 (((-719) $ $ (-137)) NIL)) (-2022 (($ (-1 (-137) (-137)) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-137) (-137)) $) NIL) (($ (-1 (-137) (-137) (-137)) $ $) NIL)) (-3707 (($ $) NIL)) (-3708 (($ $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3695 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-3513 (((-1081) $) NIL)) (-2317 (($ (-137) $ (-516)) NIL) (($ $ $ (-516)) NIL)) (-2248 (((-594 (-516)) $) NIL)) (-2249 (((-110) (-516) $) NIL)) (-3514 (((-1045) $) NIL)) (-4079 (((-137) $) NIL (|has| (-516) (-795)))) (-1350 (((-3 (-137) "failed") (-1 (-110) (-137)) $) NIL)) (-2244 (($ $ (-137)) NIL (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 (-137)))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-275 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-137) (-137)) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-594 (-137)) (-594 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-2250 (((-594 (-137)) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 (((-137) $ (-516) (-137)) NIL) (((-137) $ (-516)) NIL) (($ $ (-1146 (-516))) NIL) (($ $ $) NIL)) (-2318 (($ $ (-516)) NIL) (($ $ (-1146 (-516))) NIL)) (-2019 (((-719) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269))) (((-719) (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-1797 (($ $ $ (-516)) NIL (|has| $ (-6 -4270)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) NIL (|has| (-137) (-572 (-505))))) (-3804 (($ (-594 (-137))) NIL)) (-4080 (($ $ (-137)) NIL) (($ (-137) $) NIL) (($ $ $) NIL) (($ (-594 $)) NIL)) (-4233 (($ (-137)) NIL) (((-805) $) NIL)) (-2021 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-2768 (((-1081) $) 18) (((-1081) $ (-110)) 20) (((-1185) (-771) $) 21) (((-1185) (-771) $ (-110)) 22)) (-2826 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2827 (((-110) $ $) NIL (|has| (-137) (-795)))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2948 (((-110) $ $) NIL (|has| (-137) (-795)))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-1081) (-1080)) (T -1081))
+NIL
+(-1080)
+((-2828 (((-110) $ $) NIL (-3810 (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1027)) (|has| |#1| (-1027))))) (-3879 (($) NIL) (($ (-594 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)))) NIL)) (-2243 (((-1185) $ (-1081) (-1081)) NIL (|has| $ (-6 -4270)))) (-1217 (((-110) $ (-719)) NIL)) (-4066 ((|#1| $ (-1081) |#1|) NIL)) (-1581 (($ (-1 (-110) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-3992 (($ (-1 (-110) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-2251 (((-3 |#1| #1="failed") (-1081) $) NIL)) (-3815 (($) NIL T CONST)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1027))))) (-3684 (($ (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL (|has| $ (-6 -4269))) (((-3 |#1| #1#) (-1081) $) NIL)) (-3685 (($ (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-4121 (((-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $ (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1027)))) (((-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $ (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-1587 ((|#1| $ (-1081) |#1|) NIL (|has| $ (-6 -4270)))) (-3372 ((|#1| $ (-1081)) NIL)) (-2018 (((-594 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL (|has| $ (-6 -4269))) (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-1081) $) NIL (|has| (-1081) (-795)))) (-2445 (((-594 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL (|has| $ (-6 -4269))) (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1027)))) (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2246 (((-1081) $) NIL (|has| (-1081) (-795)))) (-2022 (($ (-1 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (-3810 (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1027)) (|has| |#1| (-1027))))) (-2678 (((-594 (-1081)) $) NIL)) (-2252 (((-110) (-1081) $) NIL)) (-1280 (((-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) $) NIL)) (-3889 (($ (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) $) NIL)) (-2248 (((-594 (-1081)) $) NIL)) (-2249 (((-110) (-1081) $) NIL)) (-3514 (((-1045) $) NIL (-3810 (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1027)) (|has| |#1| (-1027))))) (-4079 ((|#1| $) NIL (|has| (-1081) (-795)))) (-1350 (((-3 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) "failed") (-1 (-110) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL)) (-2244 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-1281 (((-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) $) NIL)) (-2020 (((-110) (-1 (-110) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))))) NIL (-12 (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-291 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)))) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1027)))) (($ $ (-275 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)))) NIL (-12 (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-291 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)))) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1027)))) (($ $ (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) NIL (-12 (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-291 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)))) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1027)))) (($ $ (-594 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) (-594 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)))) NIL (-12 (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-291 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)))) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2250 (((-594 |#1|) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#1| $ (-1081)) NIL) ((|#1| $ (-1081) |#1|) NIL)) (-1473 (($) NIL) (($ (-594 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)))) NIL)) (-2019 (((-719) (-1 (-110) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1027)))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) NIL (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-572 (-505))))) (-3804 (($ (-594 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)))) NIL)) (-4233 (((-805) $) NIL (-3810 (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-571 (-805))) (|has| |#1| (-571 (-805)))))) (-1282 (($ (-594 (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)))) NIL)) (-2021 (((-110) (-1 (-110) (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) NIL (-3810 (|has| (-2 (|:| -4139 (-1081)) (|:| -2131 |#1|)) (-1027)) (|has| |#1| (-1027))))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-1082 |#1|) (-13 (-1111 (-1081) |#1|) (-10 -7 (-6 -4269))) (-1027)) (T -1082))
+NIL
+(-13 (-1111 (-1081) |#1|) (-10 -7 (-6 -4269)))
+((-4083 (((-1076 |#1|) (-1076 |#1|)) 77)) (-3741 (((-3 (-1076 |#1|) "failed") (-1076 |#1|)) 37)) (-3752 (((-1076 |#1|) (-388 (-516)) (-1076 |#1|)) 121 (|has| |#1| (-37 (-388 (-516)))))) (-3755 (((-1076 |#1|) |#1| (-1076 |#1|)) 127 (|has| |#1| (-344)))) (-4086 (((-1076 |#1|) (-1076 |#1|)) 90)) (-3743 (((-1076 (-516)) (-516)) 57)) (-3751 (((-1076 |#1|) (-1076 (-1076 |#1|))) 109 (|has| |#1| (-37 (-388 (-516)))))) (-4082 (((-1076 |#1|) (-516) (-516) (-1076 |#1|)) 95)) (-4214 (((-1076 |#1|) |#1| (-516)) 45)) (-3745 (((-1076 |#1|) (-1076 |#1|) (-1076 |#1|)) 60)) (-3753 (((-1076 |#1|) (-1076 |#1|) (-1076 |#1|)) 124 (|has| |#1| (-344)))) (-3750 (((-1076 |#1|) |#1| (-1 (-1076 |#1|))) 108 (|has| |#1| (-37 (-388 (-516)))))) (-3754 (((-1076 |#1|) (-1 |#1| (-516)) |#1| (-1 (-1076 |#1|))) 125 (|has| |#1| (-344)))) (-4087 (((-1076 |#1|) (-1076 |#1|)) 89)) (-4088 (((-1076 |#1|) (-1076 |#1|)) 76)) (-4081 (((-1076 |#1|) (-516) (-516) (-1076 |#1|)) 96)) (-4091 (((-1076 |#1|) |#1| (-1076 |#1|)) 105 (|has| |#1| (-37 (-388 (-516)))))) (-3742 (((-1076 (-516)) (-516)) 56)) (-3744 (((-1076 |#1|) |#1|) 59)) (-4084 (((-1076 |#1|) (-1076 |#1|) (-516) (-516)) 92)) (-3747 (((-1076 |#1|) (-1 |#1| (-516)) (-1076 |#1|)) 66)) (-3740 (((-3 (-1076 |#1|) "failed") (-1076 |#1|) (-1076 |#1|)) 35)) (-4085 (((-1076 |#1|) (-1076 |#1|)) 91)) (-4046 (((-1076 |#1|) (-1076 |#1|) |#1|) 71)) (-3746 (((-1076 |#1|) (-1076 |#1|)) 62)) (-3748 (((-1076 |#1|) (-1076 |#1|) (-1076 |#1|)) 72)) (-4233 (((-1076 |#1|) |#1|) 67)) (-3749 (((-1076 |#1|) (-1076 (-1076 |#1|))) 82)) (-4224 (((-1076 |#1|) (-1076 |#1|) (-1076 |#1|)) 36)) (-4116 (((-1076 |#1|) (-1076 |#1|)) 21) (((-1076 |#1|) (-1076 |#1|) (-1076 |#1|)) 23)) (-4118 (((-1076 |#1|) (-1076 |#1|) (-1076 |#1|)) 17)) (* (((-1076 |#1|) (-1076 |#1|) |#1|) 29) (((-1076 |#1|) |#1| (-1076 |#1|)) 26) (((-1076 |#1|) (-1076 |#1|) (-1076 |#1|)) 27)))
+(((-1083 |#1|) (-10 -7 (-15 -4118 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -4116 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -4116 ((-1076 |#1|) (-1076 |#1|))) (-15 * ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 * ((-1076 |#1|) |#1| (-1076 |#1|))) (-15 * ((-1076 |#1|) (-1076 |#1|) |#1|)) (-15 -3740 ((-3 (-1076 |#1|) "failed") (-1076 |#1|) (-1076 |#1|))) (-15 -4224 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -3741 ((-3 (-1076 |#1|) "failed") (-1076 |#1|))) (-15 -4214 ((-1076 |#1|) |#1| (-516))) (-15 -3742 ((-1076 (-516)) (-516))) (-15 -3743 ((-1076 (-516)) (-516))) (-15 -3744 ((-1076 |#1|) |#1|)) (-15 -3745 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -3746 ((-1076 |#1|) (-1076 |#1|))) (-15 -3747 ((-1076 |#1|) (-1 |#1| (-516)) (-1076 |#1|))) (-15 -4233 ((-1076 |#1|) |#1|)) (-15 -4046 ((-1076 |#1|) (-1076 |#1|) |#1|)) (-15 -3748 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -4088 ((-1076 |#1|) (-1076 |#1|))) (-15 -4083 ((-1076 |#1|) (-1076 |#1|))) (-15 -3749 ((-1076 |#1|) (-1076 (-1076 |#1|)))) (-15 -4087 ((-1076 |#1|) (-1076 |#1|))) (-15 -4086 ((-1076 |#1|) (-1076 |#1|))) (-15 -4085 ((-1076 |#1|) (-1076 |#1|))) (-15 -4084 ((-1076 |#1|) (-1076 |#1|) (-516) (-516))) (-15 -4082 ((-1076 |#1|) (-516) (-516) (-1076 |#1|))) (-15 -4081 ((-1076 |#1|) (-516) (-516) (-1076 |#1|))) (IF (|has| |#1| (-37 (-388 (-516)))) (PROGN (-15 -4091 ((-1076 |#1|) |#1| (-1076 |#1|))) (-15 -3750 ((-1076 |#1|) |#1| (-1 (-1076 |#1|)))) (-15 -3751 ((-1076 |#1|) (-1076 (-1076 |#1|)))) (-15 -3752 ((-1076 |#1|) (-388 (-516)) (-1076 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -3753 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -3754 ((-1076 |#1|) (-1 |#1| (-516)) |#1| (-1 (-1076 |#1|)))) (-15 -3755 ((-1076 |#1|) |#1| (-1076 |#1|)))) |%noBranch|)) (-984)) (T -1083))
+((-3755 (*1 *2 *3 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-344)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))) (-3754 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-516))) (-5 *5 (-1 (-1076 *4))) (-4 *4 (-344)) (-4 *4 (-984)) (-5 *2 (-1076 *4)) (-5 *1 (-1083 *4)))) (-3753 (*1 *2 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-344)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))) (-3752 (*1 *2 *3 *2) (-12 (-5 *2 (-1076 *4)) (-4 *4 (-37 *3)) (-4 *4 (-984)) (-5 *3 (-388 (-516))) (-5 *1 (-1083 *4)))) (-3751 (*1 *2 *3) (-12 (-5 *3 (-1076 (-1076 *4))) (-5 *2 (-1076 *4)) (-5 *1 (-1083 *4)) (-4 *4 (-37 (-388 (-516)))) (-4 *4 (-984)))) (-3750 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1076 *3))) (-5 *2 (-1076 *3)) (-5 *1 (-1083 *3)) (-4 *3 (-37 (-388 (-516)))) (-4 *3 (-984)))) (-4091 (*1 *2 *3 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-4 *3 (-984)) (-5 *1 (-1083 *3)))) (-4081 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1076 *4)) (-5 *3 (-516)) (-4 *4 (-984)) (-5 *1 (-1083 *4)))) (-4082 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1076 *4)) (-5 *3 (-516)) (-4 *4 (-984)) (-5 *1 (-1083 *4)))) (-4084 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1076 *4)) (-5 *3 (-516)) (-4 *4 (-984)) (-5 *1 (-1083 *4)))) (-4085 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))) (-4086 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))) (-4087 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-1076 (-1076 *4))) (-5 *2 (-1076 *4)) (-5 *1 (-1083 *4)) (-4 *4 (-984)))) (-4083 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))) (-4088 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))) (-3748 (*1 *2 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))) (-4046 (*1 *2 *2 *3) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))) (-4233 (*1 *2 *3) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-1083 *3)) (-4 *3 (-984)))) (-3747 (*1 *2 *3 *2) (-12 (-5 *2 (-1076 *4)) (-5 *3 (-1 *4 (-516))) (-4 *4 (-984)) (-5 *1 (-1083 *4)))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))) (-3745 (*1 *2 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))) (-3744 (*1 *2 *3) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-1083 *3)) (-4 *3 (-984)))) (-3743 (*1 *2 *3) (-12 (-5 *2 (-1076 (-516))) (-5 *1 (-1083 *4)) (-4 *4 (-984)) (-5 *3 (-516)))) (-3742 (*1 *2 *3) (-12 (-5 *2 (-1076 (-516))) (-5 *1 (-1083 *4)) (-4 *4 (-984)) (-5 *3 (-516)))) (-4214 (*1 *2 *3 *4) (-12 (-5 *4 (-516)) (-5 *2 (-1076 *3)) (-5 *1 (-1083 *3)) (-4 *3 (-984)))) (-3741 (*1 *2 *2) (|partial| -12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))) (-4224 (*1 *2 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))) (-3740 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))) (-4116 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))) (-4116 (*1 *2 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))) (-4118 (*1 *2 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))))
+(-10 -7 (-15 -4118 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -4116 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -4116 ((-1076 |#1|) (-1076 |#1|))) (-15 * ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 * ((-1076 |#1|) |#1| (-1076 |#1|))) (-15 * ((-1076 |#1|) (-1076 |#1|) |#1|)) (-15 -3740 ((-3 (-1076 |#1|) "failed") (-1076 |#1|) (-1076 |#1|))) (-15 -4224 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -3741 ((-3 (-1076 |#1|) "failed") (-1076 |#1|))) (-15 -4214 ((-1076 |#1|) |#1| (-516))) (-15 -3742 ((-1076 (-516)) (-516))) (-15 -3743 ((-1076 (-516)) (-516))) (-15 -3744 ((-1076 |#1|) |#1|)) (-15 -3745 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -3746 ((-1076 |#1|) (-1076 |#1|))) (-15 -3747 ((-1076 |#1|) (-1 |#1| (-516)) (-1076 |#1|))) (-15 -4233 ((-1076 |#1|) |#1|)) (-15 -4046 ((-1076 |#1|) (-1076 |#1|) |#1|)) (-15 -3748 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -4088 ((-1076 |#1|) (-1076 |#1|))) (-15 -4083 ((-1076 |#1|) (-1076 |#1|))) (-15 -3749 ((-1076 |#1|) (-1076 (-1076 |#1|)))) (-15 -4087 ((-1076 |#1|) (-1076 |#1|))) (-15 -4086 ((-1076 |#1|) (-1076 |#1|))) (-15 -4085 ((-1076 |#1|) (-1076 |#1|))) (-15 -4084 ((-1076 |#1|) (-1076 |#1|) (-516) (-516))) (-15 -4082 ((-1076 |#1|) (-516) (-516) (-1076 |#1|))) (-15 -4081 ((-1076 |#1|) (-516) (-516) (-1076 |#1|))) (IF (|has| |#1| (-37 (-388 (-516)))) (PROGN (-15 -4091 ((-1076 |#1|) |#1| (-1076 |#1|))) (-15 -3750 ((-1076 |#1|) |#1| (-1 (-1076 |#1|)))) (-15 -3751 ((-1076 |#1|) (-1076 (-1076 |#1|)))) (-15 -3752 ((-1076 |#1|) (-388 (-516)) (-1076 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -3753 ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -3754 ((-1076 |#1|) (-1 |#1| (-516)) |#1| (-1 (-1076 |#1|)))) (-15 -3755 ((-1076 |#1|) |#1| (-1076 |#1|)))) |%noBranch|))
+((-3766 (((-1076 |#1|) (-1076 |#1|)) 100)) (-3921 (((-1076 |#1|) (-1076 |#1|)) 64)) (-3757 (((-2 (|:| -3764 (-1076 |#1|)) (|:| -3765 (-1076 |#1|))) (-1076 |#1|)) 96)) (-3764 (((-1076 |#1|) (-1076 |#1|)) 97)) (-3756 (((-2 (|:| -3920 (-1076 |#1|)) (|:| -3916 (-1076 |#1|))) (-1076 |#1|)) 53)) (-3920 (((-1076 |#1|) (-1076 |#1|)) 54)) (-3768 (((-1076 |#1|) (-1076 |#1|)) 102)) (-3919 (((-1076 |#1|) (-1076 |#1|)) 71)) (-4218 (((-1076 |#1|) (-1076 |#1|)) 39)) (-4219 (((-1076 |#1|) (-1076 |#1|)) 36)) (-3769 (((-1076 |#1|) (-1076 |#1|)) 103)) (-3918 (((-1076 |#1|) (-1076 |#1|)) 72)) (-3767 (((-1076 |#1|) (-1076 |#1|)) 101)) (-3917 (((-1076 |#1|) (-1076 |#1|)) 67)) (-3765 (((-1076 |#1|) (-1076 |#1|)) 98)) (-3916 (((-1076 |#1|) (-1076 |#1|)) 55)) (-3772 (((-1076 |#1|) (-1076 |#1|)) 111)) (-3760 (((-1076 |#1|) (-1076 |#1|)) 86)) (-3770 (((-1076 |#1|) (-1076 |#1|)) 105)) (-3758 (((-1076 |#1|) (-1076 |#1|)) 82)) (-3774 (((-1076 |#1|) (-1076 |#1|)) 115)) (-3762 (((-1076 |#1|) (-1076 |#1|)) 90)) (-3775 (((-1076 |#1|) (-1076 |#1|)) 117)) (-3763 (((-1076 |#1|) (-1076 |#1|)) 92)) (-3773 (((-1076 |#1|) (-1076 |#1|)) 113)) (-3761 (((-1076 |#1|) (-1076 |#1|)) 88)) (-3771 (((-1076 |#1|) (-1076 |#1|)) 107)) (-3759 (((-1076 |#1|) (-1076 |#1|)) 84)) (** (((-1076 |#1|) (-1076 |#1|) (-1076 |#1|)) 40)))
+(((-1084 |#1|) (-10 -7 (-15 -4219 ((-1076 |#1|) (-1076 |#1|))) (-15 -4218 ((-1076 |#1|) (-1076 |#1|))) (-15 ** ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -3756 ((-2 (|:| -3920 (-1076 |#1|)) (|:| -3916 (-1076 |#1|))) (-1076 |#1|))) (-15 -3920 ((-1076 |#1|) (-1076 |#1|))) (-15 -3916 ((-1076 |#1|) (-1076 |#1|))) (-15 -3921 ((-1076 |#1|) (-1076 |#1|))) (-15 -3917 ((-1076 |#1|) (-1076 |#1|))) (-15 -3919 ((-1076 |#1|) (-1076 |#1|))) (-15 -3918 ((-1076 |#1|) (-1076 |#1|))) (-15 -3758 ((-1076 |#1|) (-1076 |#1|))) (-15 -3759 ((-1076 |#1|) (-1076 |#1|))) (-15 -3760 ((-1076 |#1|) (-1076 |#1|))) (-15 -3761 ((-1076 |#1|) (-1076 |#1|))) (-15 -3762 ((-1076 |#1|) (-1076 |#1|))) (-15 -3763 ((-1076 |#1|) (-1076 |#1|))) (-15 -3757 ((-2 (|:| -3764 (-1076 |#1|)) (|:| -3765 (-1076 |#1|))) (-1076 |#1|))) (-15 -3764 ((-1076 |#1|) (-1076 |#1|))) (-15 -3765 ((-1076 |#1|) (-1076 |#1|))) (-15 -3766 ((-1076 |#1|) (-1076 |#1|))) (-15 -3767 ((-1076 |#1|) (-1076 |#1|))) (-15 -3768 ((-1076 |#1|) (-1076 |#1|))) (-15 -3769 ((-1076 |#1|) (-1076 |#1|))) (-15 -3770 ((-1076 |#1|) (-1076 |#1|))) (-15 -3771 ((-1076 |#1|) (-1076 |#1|))) (-15 -3772 ((-1076 |#1|) (-1076 |#1|))) (-15 -3773 ((-1076 |#1|) (-1076 |#1|))) (-15 -3774 ((-1076 |#1|) (-1076 |#1|))) (-15 -3775 ((-1076 |#1|) (-1076 |#1|)))) (-37 (-388 (-516)))) (T -1084))
+((-3775 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-3774 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-3773 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-3772 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-3771 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-3770 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-3769 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-3768 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-3767 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-3766 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-3765 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-3764 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-3757 (*1 *2 *3) (-12 (-4 *4 (-37 (-388 (-516)))) (-5 *2 (-2 (|:| -3764 (-1076 *4)) (|:| -3765 (-1076 *4)))) (-5 *1 (-1084 *4)) (-5 *3 (-1076 *4)))) (-3763 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-3762 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-3761 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-3760 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-3759 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-3758 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-3918 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-3917 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-3921 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-3916 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-3920 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-3756 (*1 *2 *3) (-12 (-4 *4 (-37 (-388 (-516)))) (-5 *2 (-2 (|:| -3920 (-1076 *4)) (|:| -3916 (-1076 *4)))) (-5 *1 (-1084 *4)) (-5 *3 (-1076 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-4218 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))) (-4219 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3)))))
+(-10 -7 (-15 -4219 ((-1076 |#1|) (-1076 |#1|))) (-15 -4218 ((-1076 |#1|) (-1076 |#1|))) (-15 ** ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -3756 ((-2 (|:| -3920 (-1076 |#1|)) (|:| -3916 (-1076 |#1|))) (-1076 |#1|))) (-15 -3920 ((-1076 |#1|) (-1076 |#1|))) (-15 -3916 ((-1076 |#1|) (-1076 |#1|))) (-15 -3921 ((-1076 |#1|) (-1076 |#1|))) (-15 -3917 ((-1076 |#1|) (-1076 |#1|))) (-15 -3919 ((-1076 |#1|) (-1076 |#1|))) (-15 -3918 ((-1076 |#1|) (-1076 |#1|))) (-15 -3758 ((-1076 |#1|) (-1076 |#1|))) (-15 -3759 ((-1076 |#1|) (-1076 |#1|))) (-15 -3760 ((-1076 |#1|) (-1076 |#1|))) (-15 -3761 ((-1076 |#1|) (-1076 |#1|))) (-15 -3762 ((-1076 |#1|) (-1076 |#1|))) (-15 -3763 ((-1076 |#1|) (-1076 |#1|))) (-15 -3757 ((-2 (|:| -3764 (-1076 |#1|)) (|:| -3765 (-1076 |#1|))) (-1076 |#1|))) (-15 -3764 ((-1076 |#1|) (-1076 |#1|))) (-15 -3765 ((-1076 |#1|) (-1076 |#1|))) (-15 -3766 ((-1076 |#1|) (-1076 |#1|))) (-15 -3767 ((-1076 |#1|) (-1076 |#1|))) (-15 -3768 ((-1076 |#1|) (-1076 |#1|))) (-15 -3769 ((-1076 |#1|) (-1076 |#1|))) (-15 -3770 ((-1076 |#1|) (-1076 |#1|))) (-15 -3771 ((-1076 |#1|) (-1076 |#1|))) (-15 -3772 ((-1076 |#1|) (-1076 |#1|))) (-15 -3773 ((-1076 |#1|) (-1076 |#1|))) (-15 -3774 ((-1076 |#1|) (-1076 |#1|))) (-15 -3775 ((-1076 |#1|) (-1076 |#1|))))
+((-3766 (((-1076 |#1|) (-1076 |#1|)) 57)) (-3921 (((-1076 |#1|) (-1076 |#1|)) 39)) (-3764 (((-1076 |#1|) (-1076 |#1|)) 53)) (-3920 (((-1076 |#1|) (-1076 |#1|)) 35)) (-3768 (((-1076 |#1|) (-1076 |#1|)) 60)) (-3919 (((-1076 |#1|) (-1076 |#1|)) 42)) (-4218 (((-1076 |#1|) (-1076 |#1|)) 31)) (-4219 (((-1076 |#1|) (-1076 |#1|)) 27)) (-3769 (((-1076 |#1|) (-1076 |#1|)) 61)) (-3918 (((-1076 |#1|) (-1076 |#1|)) 43)) (-3767 (((-1076 |#1|) (-1076 |#1|)) 58)) (-3917 (((-1076 |#1|) (-1076 |#1|)) 40)) (-3765 (((-1076 |#1|) (-1076 |#1|)) 55)) (-3916 (((-1076 |#1|) (-1076 |#1|)) 37)) (-3772 (((-1076 |#1|) (-1076 |#1|)) 65)) (-3760 (((-1076 |#1|) (-1076 |#1|)) 47)) (-3770 (((-1076 |#1|) (-1076 |#1|)) 63)) (-3758 (((-1076 |#1|) (-1076 |#1|)) 45)) (-3774 (((-1076 |#1|) (-1076 |#1|)) 68)) (-3762 (((-1076 |#1|) (-1076 |#1|)) 50)) (-3775 (((-1076 |#1|) (-1076 |#1|)) 69)) (-3763 (((-1076 |#1|) (-1076 |#1|)) 51)) (-3773 (((-1076 |#1|) (-1076 |#1|)) 67)) (-3761 (((-1076 |#1|) (-1076 |#1|)) 49)) (-3771 (((-1076 |#1|) (-1076 |#1|)) 66)) (-3759 (((-1076 |#1|) (-1076 |#1|)) 48)) (** (((-1076 |#1|) (-1076 |#1|) (-1076 |#1|)) 33)))
+(((-1085 |#1|) (-10 -7 (-15 -4219 ((-1076 |#1|) (-1076 |#1|))) (-15 -4218 ((-1076 |#1|) (-1076 |#1|))) (-15 ** ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -3920 ((-1076 |#1|) (-1076 |#1|))) (-15 -3916 ((-1076 |#1|) (-1076 |#1|))) (-15 -3921 ((-1076 |#1|) (-1076 |#1|))) (-15 -3917 ((-1076 |#1|) (-1076 |#1|))) (-15 -3919 ((-1076 |#1|) (-1076 |#1|))) (-15 -3918 ((-1076 |#1|) (-1076 |#1|))) (-15 -3758 ((-1076 |#1|) (-1076 |#1|))) (-15 -3759 ((-1076 |#1|) (-1076 |#1|))) (-15 -3760 ((-1076 |#1|) (-1076 |#1|))) (-15 -3761 ((-1076 |#1|) (-1076 |#1|))) (-15 -3762 ((-1076 |#1|) (-1076 |#1|))) (-15 -3763 ((-1076 |#1|) (-1076 |#1|))) (-15 -3764 ((-1076 |#1|) (-1076 |#1|))) (-15 -3765 ((-1076 |#1|) (-1076 |#1|))) (-15 -3766 ((-1076 |#1|) (-1076 |#1|))) (-15 -3767 ((-1076 |#1|) (-1076 |#1|))) (-15 -3768 ((-1076 |#1|) (-1076 |#1|))) (-15 -3769 ((-1076 |#1|) (-1076 |#1|))) (-15 -3770 ((-1076 |#1|) (-1076 |#1|))) (-15 -3771 ((-1076 |#1|) (-1076 |#1|))) (-15 -3772 ((-1076 |#1|) (-1076 |#1|))) (-15 -3773 ((-1076 |#1|) (-1076 |#1|))) (-15 -3774 ((-1076 |#1|) (-1076 |#1|))) (-15 -3775 ((-1076 |#1|) (-1076 |#1|)))) (-37 (-388 (-516)))) (T -1085))
+((-3775 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-3774 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-3773 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-3772 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-3771 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-3770 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-3769 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-3768 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-3767 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-3766 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-3765 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-3764 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-3763 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-3762 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-3761 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-3760 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-3759 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-3758 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-3918 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-3917 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-3921 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-3916 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-3920 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-4218 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))) (-4219 (*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))))
+(-10 -7 (-15 -4219 ((-1076 |#1|) (-1076 |#1|))) (-15 -4218 ((-1076 |#1|) (-1076 |#1|))) (-15 ** ((-1076 |#1|) (-1076 |#1|) (-1076 |#1|))) (-15 -3920 ((-1076 |#1|) (-1076 |#1|))) (-15 -3916 ((-1076 |#1|) (-1076 |#1|))) (-15 -3921 ((-1076 |#1|) (-1076 |#1|))) (-15 -3917 ((-1076 |#1|) (-1076 |#1|))) (-15 -3919 ((-1076 |#1|) (-1076 |#1|))) (-15 -3918 ((-1076 |#1|) (-1076 |#1|))) (-15 -3758 ((-1076 |#1|) (-1076 |#1|))) (-15 -3759 ((-1076 |#1|) (-1076 |#1|))) (-15 -3760 ((-1076 |#1|) (-1076 |#1|))) (-15 -3761 ((-1076 |#1|) (-1076 |#1|))) (-15 -3762 ((-1076 |#1|) (-1076 |#1|))) (-15 -3763 ((-1076 |#1|) (-1076 |#1|))) (-15 -3764 ((-1076 |#1|) (-1076 |#1|))) (-15 -3765 ((-1076 |#1|) (-1076 |#1|))) (-15 -3766 ((-1076 |#1|) (-1076 |#1|))) (-15 -3767 ((-1076 |#1|) (-1076 |#1|))) (-15 -3768 ((-1076 |#1|) (-1076 |#1|))) (-15 -3769 ((-1076 |#1|) (-1076 |#1|))) (-15 -3770 ((-1076 |#1|) (-1076 |#1|))) (-15 -3771 ((-1076 |#1|) (-1076 |#1|))) (-15 -3772 ((-1076 |#1|) (-1076 |#1|))) (-15 -3773 ((-1076 |#1|) (-1076 |#1|))) (-15 -3774 ((-1076 |#1|) (-1076 |#1|))) (-15 -3775 ((-1076 |#1|) (-1076 |#1|))))
+((-3776 (((-899 |#2|) |#2| |#2|) 35)) (-3777 ((|#2| |#2| |#1|) 19 (|has| |#1| (-289)))))
+(((-1086 |#1| |#2|) (-10 -7 (-15 -3776 ((-899 |#2|) |#2| |#2|)) (IF (|has| |#1| (-289)) (-15 -3777 (|#2| |#2| |#1|)) |%noBranch|)) (-523) (-1155 |#1|)) (T -1086))
+((-3777 (*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-4 *3 (-523)) (-5 *1 (-1086 *3 *2)) (-4 *2 (-1155 *3)))) (-3776 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-899 *3)) (-5 *1 (-1086 *4 *3)) (-4 *3 (-1155 *4)))))
+(-10 -7 (-15 -3776 ((-899 |#2|) |#2| |#2|)) (IF (|has| |#1| (-289)) (-15 -3777 (|#2| |#2| |#1|)) |%noBranch|))
+((-2828 (((-110) $ $) NIL)) (-3785 (($ $ (-594 (-719))) 67)) (-4167 (($) 26)) (-3794 (($ $) 42)) (-4030 (((-594 $) $) 51)) (-3800 (((-110) $) 16)) (-3778 (((-594 (-884 |#2|)) $) 74)) (-3779 (($ $) 68)) (-3795 (((-719) $) 37)) (-3896 (($) 25)) (-3788 (($ $ (-594 (-719)) (-884 |#2|)) 60) (($ $ (-594 (-719)) (-719)) 61) (($ $ (-719) (-884 |#2|)) 63)) (-3792 (($ $ $) 48) (($ (-594 $)) 50)) (-3780 (((-719) $) 75)) (-3801 (((-110) $) 15)) (-3513 (((-1081) $) NIL)) (-3799 (((-110) $) 18)) (-3514 (((-1045) $) NIL)) (-3781 (((-161) $) 73)) (-3784 (((-884 |#2|) $) 69)) (-3783 (((-719) $) 70)) (-3782 (((-110) $) 72)) (-3786 (($ $ (-594 (-719)) (-161)) 66)) (-3793 (($ $) 43)) (-4233 (((-805) $) 86)) (-3787 (($ $ (-594 (-719)) (-110)) 65)) (-3796 (((-594 $) $) 11)) (-3797 (($ $ (-719)) 36)) (-3798 (($ $) 32)) (-3789 (($ $ $ (-884 |#2|) (-719)) 56)) (-3790 (($ $ (-884 |#2|)) 55)) (-3791 (($ $ (-594 (-719)) (-884 |#2|)) 54) (($ $ (-594 (-719)) (-719)) 58) (((-719) $ (-884 |#2|)) 59)) (-3317 (((-110) $ $) 80)))
+(((-1087 |#1| |#2|) (-13 (-1027) (-10 -8 (-15 -3801 ((-110) $)) (-15 -3800 ((-110) $)) (-15 -3799 ((-110) $)) (-15 -3896 ($)) (-15 -4167 ($)) (-15 -3798 ($ $)) (-15 -3797 ($ $ (-719))) (-15 -3796 ((-594 $) $)) (-15 -3795 ((-719) $)) (-15 -3794 ($ $)) (-15 -3793 ($ $)) (-15 -3792 ($ $ $)) (-15 -3792 ($ (-594 $))) (-15 -4030 ((-594 $) $)) (-15 -3791 ($ $ (-594 (-719)) (-884 |#2|))) (-15 -3790 ($ $ (-884 |#2|))) (-15 -3789 ($ $ $ (-884 |#2|) (-719))) (-15 -3788 ($ $ (-594 (-719)) (-884 |#2|))) (-15 -3791 ($ $ (-594 (-719)) (-719))) (-15 -3788 ($ $ (-594 (-719)) (-719))) (-15 -3791 ((-719) $ (-884 |#2|))) (-15 -3788 ($ $ (-719) (-884 |#2|))) (-15 -3787 ($ $ (-594 (-719)) (-110))) (-15 -3786 ($ $ (-594 (-719)) (-161))) (-15 -3785 ($ $ (-594 (-719)))) (-15 -3784 ((-884 |#2|) $)) (-15 -3783 ((-719) $)) (-15 -3782 ((-110) $)) (-15 -3781 ((-161) $)) (-15 -3780 ((-719) $)) (-15 -3779 ($ $)) (-15 -3778 ((-594 (-884 |#2|)) $)))) (-860) (-984)) (T -1087))
+((-3801 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))) (-3799 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))) (-3896 (*1 *1) (-12 (-5 *1 (-1087 *2 *3)) (-14 *2 (-860)) (-4 *3 (-984)))) (-4167 (*1 *1) (-12 (-5 *1 (-1087 *2 *3)) (-14 *2 (-860)) (-4 *3 (-984)))) (-3798 (*1 *1 *1) (-12 (-5 *1 (-1087 *2 *3)) (-14 *2 (-860)) (-4 *3 (-984)))) (-3797 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-594 (-1087 *3 *4))) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))) (-3795 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))) (-3794 (*1 *1 *1) (-12 (-5 *1 (-1087 *2 *3)) (-14 *2 (-860)) (-4 *3 (-984)))) (-3793 (*1 *1 *1) (-12 (-5 *1 (-1087 *2 *3)) (-14 *2 (-860)) (-4 *3 (-984)))) (-3792 (*1 *1 *1 *1) (-12 (-5 *1 (-1087 *2 *3)) (-14 *2 (-860)) (-4 *3 (-984)))) (-3792 (*1 *1 *2) (-12 (-5 *2 (-594 (-1087 *3 *4))) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-594 (-1087 *3 *4))) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))) (-3791 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-594 (-719))) (-5 *3 (-884 *5)) (-4 *5 (-984)) (-5 *1 (-1087 *4 *5)) (-14 *4 (-860)))) (-3790 (*1 *1 *1 *2) (-12 (-5 *2 (-884 *4)) (-4 *4 (-984)) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)))) (-3789 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-884 *5)) (-5 *3 (-719)) (-4 *5 (-984)) (-5 *1 (-1087 *4 *5)) (-14 *4 (-860)))) (-3788 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-594 (-719))) (-5 *3 (-884 *5)) (-4 *5 (-984)) (-5 *1 (-1087 *4 *5)) (-14 *4 (-860)))) (-3791 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-594 (-719))) (-5 *3 (-719)) (-5 *1 (-1087 *4 *5)) (-14 *4 (-860)) (-4 *5 (-984)))) (-3788 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-594 (-719))) (-5 *3 (-719)) (-5 *1 (-1087 *4 *5)) (-14 *4 (-860)) (-4 *5 (-984)))) (-3791 (*1 *2 *1 *3) (-12 (-5 *3 (-884 *5)) (-4 *5 (-984)) (-5 *2 (-719)) (-5 *1 (-1087 *4 *5)) (-14 *4 (-860)))) (-3788 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *3 (-884 *5)) (-4 *5 (-984)) (-5 *1 (-1087 *4 *5)) (-14 *4 (-860)))) (-3787 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-594 (-719))) (-5 *3 (-110)) (-5 *1 (-1087 *4 *5)) (-14 *4 (-860)) (-4 *5 (-984)))) (-3786 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-594 (-719))) (-5 *3 (-161)) (-5 *1 (-1087 *4 *5)) (-14 *4 (-860)) (-4 *5 (-984)))) (-3785 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-719))) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))) (-3784 (*1 *2 *1) (-12 (-5 *2 (-884 *4)) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))) (-3782 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))) (-3781 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))) (-3780 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))) (-3779 (*1 *1 *1) (-12 (-5 *1 (-1087 *2 *3)) (-14 *2 (-860)) (-4 *3 (-984)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-594 (-884 *4))) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))))
+(-13 (-1027) (-10 -8 (-15 -3801 ((-110) $)) (-15 -3800 ((-110) $)) (-15 -3799 ((-110) $)) (-15 -3896 ($)) (-15 -4167 ($)) (-15 -3798 ($ $)) (-15 -3797 ($ $ (-719))) (-15 -3796 ((-594 $) $)) (-15 -3795 ((-719) $)) (-15 -3794 ($ $)) (-15 -3793 ($ $)) (-15 -3792 ($ $ $)) (-15 -3792 ($ (-594 $))) (-15 -4030 ((-594 $) $)) (-15 -3791 ($ $ (-594 (-719)) (-884 |#2|))) (-15 -3790 ($ $ (-884 |#2|))) (-15 -3789 ($ $ $ (-884 |#2|) (-719))) (-15 -3788 ($ $ (-594 (-719)) (-884 |#2|))) (-15 -3791 ($ $ (-594 (-719)) (-719))) (-15 -3788 ($ $ (-594 (-719)) (-719))) (-15 -3791 ((-719) $ (-884 |#2|))) (-15 -3788 ($ $ (-719) (-884 |#2|))) (-15 -3787 ($ $ (-594 (-719)) (-110))) (-15 -3786 ($ $ (-594 (-719)) (-161))) (-15 -3785 ($ $ (-594 (-719)))) (-15 -3784 ((-884 |#2|) $)) (-15 -3783 ((-719) $)) (-15 -3782 ((-110) $)) (-15 -3781 ((-161) $)) (-15 -3780 ((-719) $)) (-15 -3779 ($ $)) (-15 -3778 ((-594 (-884 |#2|)) $))))
+((-2828 (((-110) $ $) NIL)) (-3802 ((|#2| $) 11)) (-3803 ((|#1| $) 10)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-3804 (($ |#1| |#2|) 9)) (-4233 (((-805) $) 16)) (-3317 (((-110) $ $) NIL)))
+(((-1088 |#1| |#2|) (-13 (-1027) (-10 -8 (-15 -3804 ($ |#1| |#2|)) (-15 -3803 (|#1| $)) (-15 -3802 (|#2| $)))) (-1027) (-1027)) (T -1088))
+((-3804 (*1 *1 *2 *3) (-12 (-5 *1 (-1088 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-3803 (*1 *2 *1) (-12 (-4 *2 (-1027)) (-5 *1 (-1088 *2 *3)) (-4 *3 (-1027)))) (-3802 (*1 *2 *1) (-12 (-4 *2 (-1027)) (-5 *1 (-1088 *3 *2)) (-4 *3 (-1027)))))
+(-13 (-1027) (-10 -8 (-15 -3804 ($ |#1| |#2|)) (-15 -3803 (|#1| $)) (-15 -3802 (|#2| $))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3388 (((-1096 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-289)) (|has| |#1| (-344))))) (-3347 (((-594 (-1011)) $) NIL)) (-4110 (((-1098) $) 11)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-851)) (|has| |#1| (-344))) (-12 (|has| (-1096 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-2118 (($ $) NIL (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-851)) (|has| |#1| (-344))) (-12 (|has| (-1096 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-2116 (((-110) $) NIL (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-851)) (|has| |#1| (-344))) (-12 (|has| (-1096 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-4049 (($ $ (-516)) NIL) (($ $ (-516) (-516)) 66)) (-4052 (((-1076 (-2 (|:| |k| (-516)) (|:| |c| |#1|))) $) NIL)) (-4010 (((-1096 |#1| |#2| |#3|) $) 36)) (-4007 (((-3 (-1096 |#1| |#2| |#3|) "failed") $) 29)) (-4008 (((-1096 |#1| |#2| |#3|) $) 30)) (-3766 (($ $) 107 (|has| |#1| (-37 (-388 (-516)))))) (-3921 (($ $) 83 (|has| |#1| (-37 (-388 (-516)))))) (-1319 (((-3 $ "failed") $ $) NIL)) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-851)) (|has| |#1| (-344))))) (-4053 (($ $) NIL (|has| |#1| (-344)))) (-4245 (((-386 $) $) NIL (|has| |#1| (-344)))) (-3301 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-851)) (|has| |#1| (-344))))) (-1655 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3764 (($ $) 103 (|has| |#1| (-37 (-388 (-516)))))) (-3920 (($ $) 79 (|has| |#1| (-37 (-388 (-516)))))) (-3905 (((-516) $) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-4097 (($ (-1076 (-2 (|:| |k| (-516)) (|:| |c| |#1|)))) NIL)) (-3768 (($ $) 111 (|has| |#1| (-37 (-388 (-516)))))) (-3919 (($ $) 87 (|has| |#1| (-37 (-388 (-516)))))) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-1096 |#1| |#2| |#3|) #2="failed") $) 31) (((-3 (-1098) #2#) $) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-975 (-1098))) (|has| |#1| (-344)))) (((-3 (-388 (-516)) #2#) $) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-975 (-516))) (|has| |#1| (-344)))) (((-3 (-516) #2#) $) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-975 (-516))) (|has| |#1| (-344))))) (-3431 (((-1096 |#1| |#2| |#3|) $) 131) (((-1098) $) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-975 (-1098))) (|has| |#1| (-344)))) (((-388 (-516)) $) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-975 (-516))) (|has| |#1| (-344)))) (((-516) $) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-975 (-516))) (|has| |#1| (-344))))) (-4009 (($ $) 34) (($ (-516) $) 35)) (-2824 (($ $ $) NIL (|has| |#1| (-344)))) (-4235 (($ $) NIL)) (-2297 (((-637 (-1096 |#1| |#2| |#3|)) (-637 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -1650 (-637 (-1096 |#1| |#2| |#3|))) (|:| |vec| (-1179 (-1096 |#1| |#2| |#3|)))) (-637 $) (-1179 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-593 (-516))) (|has| |#1| (-344)))) (((-637 (-516)) (-637 $)) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-593 (-516))) (|has| |#1| (-344))))) (-3741 (((-3 $ "failed") $) 48)) (-4006 (((-388 (-887 |#1|)) $ (-516)) 65 (|has| |#1| (-523))) (((-388 (-887 |#1|)) $ (-516) (-516)) 67 (|has| |#1| (-523)))) (-3258 (($) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-515)) (|has| |#1| (-344))))) (-2823 (($ $ $) NIL (|has| |#1| (-344)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL (|has| |#1| (-344)))) (-4005 (((-110) $) NIL (|has| |#1| (-344)))) (-3460 (((-110) $) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-3156 (((-110) $) 25)) (-3909 (($) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-827 (-516))) (|has| |#1| (-344)))) (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-827 (-359))) (|has| |#1| (-344))))) (-4050 (((-516) $) NIL) (((-516) $ (-516)) 24)) (-2436 (((-110) $) NIL)) (-3260 (($ $) NIL (|has| |#1| (-344)))) (-3262 (((-1096 |#1| |#2| |#3|) $) 38 (|has| |#1| (-344)))) (-3275 (($ $ (-516)) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3723 (((-3 $ "failed") $) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-1074)) (|has| |#1| (-344))))) (-3461 (((-110) $) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-4055 (($ $ (-860)) NIL)) (-4094 (($ (-1 |#1| (-516)) $) NIL)) (-1652 (((-3 (-594 $) #3="failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-4213 (((-110) $) NIL)) (-3157 (($ |#1| (-516)) 18) (($ $ (-1011) (-516)) NIL) (($ $ (-594 (-1011)) (-594 (-516))) NIL)) (-3596 (($ $ $) NIL (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1096 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-3597 (($ $ $) NIL (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1096 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-4234 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1096 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-344)))) (-4218 (($ $) 72 (|has| |#1| (-37 (-388 (-516)))))) (-3158 (($ $) NIL)) (-3449 ((|#1| $) NIL)) (-1963 (($ (-594 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-4057 (($ (-516) (-1096 |#1| |#2| |#3|)) 33)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL (|has| |#1| (-344)))) (-4091 (($ $) 70 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-1098)) NIL (-3810 (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-29 (-516))) (|has| |#1| (-901)) (|has| |#1| (-1120))) (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-15 -4091 (|#1| |#1| (-1098)))) (|has| |#1| (-15 -3347 ((-594 (-1098)) |#1|)))))) (($ $ (-1176 |#2|)) 71 (|has| |#1| (-37 (-388 (-516)))))) (-3724 (($) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-1074)) (|has| |#1| (-344))) CONST)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#1| (-344)))) (-3419 (($ (-594 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-3387 (($ $) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-289)) (|has| |#1| (-344))))) (-3389 (((-1096 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-515)) (|has| |#1| (-344))))) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-851)) (|has| |#1| (-344))))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-851)) (|has| |#1| (-344))))) (-4011 (((-386 $) $) NIL (|has| |#1| (-344)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#1| (-344)))) (-4047 (($ $ (-516)) 145)) (-3740 (((-3 $ "failed") $ $) 49 (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-851)) (|has| |#1| (-344))) (-12 (|has| (-1096 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-4219 (($ $) 73 (|has| |#1| (-37 (-388 (-516)))))) (-4046 (((-1076 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-516))))) (($ $ (-1098) (-1096 |#1| |#2| |#3|)) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-491 (-1098) (-1096 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-594 (-1098)) (-594 (-1096 |#1| |#2| |#3|))) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-491 (-1098) (-1096 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-594 (-275 (-1096 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-291 (-1096 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-275 (-1096 |#1| |#2| |#3|))) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-291 (-1096 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-1096 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3|)) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-291 (-1096 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-594 (-1096 |#1| |#2| |#3|)) (-594 (-1096 |#1| |#2| |#3|))) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-291 (-1096 |#1| |#2| |#3|))) (|has| |#1| (-344))))) (-1654 (((-719) $) NIL (|has| |#1| (-344)))) (-4078 ((|#1| $ (-516)) NIL) (($ $ $) 54 (|has| (-516) (-1038))) (($ $ (-1096 |#1| |#2| |#3|)) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-268 (-1096 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3|))) (|has| |#1| (-344))))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-344)))) (-4089 (($ $ (-1 (-1096 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3|))) NIL (|has| |#1| (-344))) (($ $ (-1 (-1096 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3|)) (-719)) NIL (|has| |#1| (-344))) (($ $ (-1176 |#2|)) 51) (($ $ (-719)) NIL (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $) 50 (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-841 (-1098))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))))) (($ $ (-1098) (-719)) NIL (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-841 (-1098))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))))) (($ $ (-594 (-1098))) NIL (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-841 (-1098))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))))) (($ $ (-1098)) NIL (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-841 (-1098))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))))) (-3259 (($ $) NIL (|has| |#1| (-344)))) (-3261 (((-1096 |#1| |#2| |#3|) $) 41 (|has| |#1| (-344)))) (-4223 (((-516) $) 37)) (-3769 (($ $) 113 (|has| |#1| (-37 (-388 (-516)))))) (-3918 (($ $) 89 (|has| |#1| (-37 (-388 (-516)))))) (-3767 (($ $) 109 (|has| |#1| (-37 (-388 (-516)))))) (-3917 (($ $) 85 (|has| |#1| (-37 (-388 (-516)))))) (-3765 (($ $) 105 (|has| |#1| (-37 (-388 (-516)))))) (-3916 (($ $) 81 (|has| |#1| (-37 (-388 (-516)))))) (-4246 (((-505) $) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-572 (-505))) (|has| |#1| (-344)))) (((-359) $) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-958)) (|has| |#1| (-344)))) (((-208) $) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-958)) (|has| |#1| (-344)))) (((-831 (-359)) $) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-572 (-831 (-359)))) (|has| |#1| (-344)))) (((-831 (-516)) $) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-572 (-831 (-516)))) (|has| |#1| (-344))))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-1096 |#1| |#2| |#3|) (-851)) (|has| |#1| (-344))))) (-3155 (($ $) NIL)) (-4233 (((-805) $) 149) (($ (-516)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1096 |#1| |#2| |#3|)) 27) (($ (-1176 |#2|)) 23) (($ (-1098)) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-975 (-1098))) (|has| |#1| (-344)))) (($ $) NIL (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-851)) (|has| |#1| (-344))) (-12 (|has| (-1096 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (|has| |#1| (-523)))) (($ (-388 (-516))) NIL (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-975 (-516))) (|has| |#1| (-344))) (|has| |#1| (-37 (-388 (-516))))))) (-3959 ((|#1| $ (-516)) 68)) (-2965 (((-3 $ "failed") $) NIL (-3810 (-12 (|has| $ (-138)) (|has| (-1096 |#1| |#2| |#3|) (-851)) (|has| |#1| (-344))) (-12 (|has| (-1096 |#1| |#2| |#3|) (-138)) (|has| |#1| (-344))) (|has| |#1| (-138))))) (-3385 (((-719)) NIL)) (-4051 ((|#1| $) 12)) (-3390 (((-1096 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-515)) (|has| |#1| (-344))))) (-3772 (($ $) 119 (|has| |#1| (-37 (-388 (-516)))))) (-3760 (($ $) 95 (|has| |#1| (-37 (-388 (-516)))))) (-2117 (((-110) $ $) NIL (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-851)) (|has| |#1| (-344))) (-12 (|has| (-1096 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-3770 (($ $) 115 (|has| |#1| (-37 (-388 (-516)))))) (-3758 (($ $) 91 (|has| |#1| (-37 (-388 (-516)))))) (-3774 (($ $) 123 (|has| |#1| (-37 (-388 (-516)))))) (-3762 (($ $) 99 (|has| |#1| (-37 (-388 (-516)))))) (-4048 ((|#1| $ (-516)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-516)))) (|has| |#1| (-15 -4233 (|#1| (-1098))))))) (-3775 (($ $) 125 (|has| |#1| (-37 (-388 (-516)))))) (-3763 (($ $) 101 (|has| |#1| (-37 (-388 (-516)))))) (-3773 (($ $) 121 (|has| |#1| (-37 (-388 (-516)))))) (-3761 (($ $) 97 (|has| |#1| (-37 (-388 (-516)))))) (-3771 (($ $) 117 (|has| |#1| (-37 (-388 (-516)))))) (-3759 (($ $) 93 (|has| |#1| (-37 (-388 (-516)))))) (-3661 (($ $) NIL (-12 (|has| (-1096 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| |#1| (-344)))) (-2920 (($) 20 T CONST)) (-2927 (($) 16 T CONST)) (-2932 (($ $ (-1 (-1096 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3|))) NIL (|has| |#1| (-344))) (($ $ (-1 (-1096 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3|)) (-719)) NIL (|has| |#1| (-344))) (($ $ (-719)) NIL (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $) NIL (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-841 (-1098))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))))) (($ $ (-1098) (-719)) NIL (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-841 (-1098))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))))) (($ $ (-594 (-1098))) NIL (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-841 (-1098))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))))) (($ $ (-1098)) NIL (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-841 (-1098))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))))) (-2826 (((-110) $ $) NIL (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1096 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2827 (((-110) $ $) NIL (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1096 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1096 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2948 (((-110) $ $) NIL (-3810 (-12 (|has| (-1096 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1096 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-4224 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) 44 (|has| |#1| (-344))) (($ (-1096 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3|)) 45 (|has| |#1| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) 21)) (** (($ $ (-860)) NIL) (($ $ (-719)) 53) (($ $ (-516)) NIL (|has| |#1| (-344))) (($ $ $) 74 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) 128 (|has| |#1| (-37 (-388 (-516)))))) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1096 |#1| |#2| |#3|)) 43 (|has| |#1| (-344))) (($ (-1096 |#1| |#2| |#3|) $) 42 (|has| |#1| (-344))) (($ (-388 (-516)) $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516)))))))
+(((-1089 |#1| |#2| |#3|) (-13 (-1143 |#1| (-1096 |#1| |#2| |#3|)) (-10 -8 (-15 -4233 ($ (-1176 |#2|))) (-15 -4089 ($ $ (-1176 |#2|))) (IF (|has| |#1| (-37 (-388 (-516)))) (-15 -4091 ($ $ (-1176 |#2|))) |%noBranch|))) (-984) (-1098) |#1|) (T -1089))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1089 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-4089 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1089 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-4091 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1089 *3 *4 *5)) (-4 *3 (-37 (-388 (-516)))) (-4 *3 (-984)) (-14 *5 *3))))
+(-13 (-1143 |#1| (-1096 |#1| |#2| |#3|)) (-10 -8 (-15 -4233 ($ (-1176 |#2|))) (-15 -4089 ($ $ (-1176 |#2|))) (IF (|has| |#1| (-37 (-388 (-516)))) (-15 -4091 ($ $ (-1176 |#2|))) |%noBranch|)))
+((-3805 ((|#2| |#2| (-1019 |#2|)) 26) ((|#2| |#2| (-1098)) 28)))
+(((-1090 |#1| |#2|) (-10 -7 (-15 -3805 (|#2| |#2| (-1098))) (-15 -3805 (|#2| |#2| (-1019 |#2|)))) (-13 (-523) (-795) (-975 (-516)) (-593 (-516))) (-13 (-402 |#1|) (-151) (-27) (-1120))) (T -1090))
+((-3805 (*1 *2 *2 *3) (-12 (-5 *3 (-1019 *2)) (-4 *2 (-13 (-402 *4) (-151) (-27) (-1120))) (-4 *4 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *1 (-1090 *4 *2)))) (-3805 (*1 *2 *2 *3) (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *1 (-1090 *4 *2)) (-4 *2 (-13 (-402 *4) (-151) (-27) (-1120))))))
+(-10 -7 (-15 -3805 (|#2| |#2| (-1098))) (-15 -3805 (|#2| |#2| (-1019 |#2|))))
+((-3805 (((-3 (-388 (-887 |#1|)) (-295 |#1|)) (-388 (-887 |#1|)) (-1019 (-388 (-887 |#1|)))) 31) (((-388 (-887 |#1|)) (-887 |#1|) (-1019 (-887 |#1|))) 44) (((-3 (-388 (-887 |#1|)) (-295 |#1|)) (-388 (-887 |#1|)) (-1098)) 33) (((-388 (-887 |#1|)) (-887 |#1|) (-1098)) 36)))
+(((-1091 |#1|) (-10 -7 (-15 -3805 ((-388 (-887 |#1|)) (-887 |#1|) (-1098))) (-15 -3805 ((-3 (-388 (-887 |#1|)) (-295 |#1|)) (-388 (-887 |#1|)) (-1098))) (-15 -3805 ((-388 (-887 |#1|)) (-887 |#1|) (-1019 (-887 |#1|)))) (-15 -3805 ((-3 (-388 (-887 |#1|)) (-295 |#1|)) (-388 (-887 |#1|)) (-1019 (-388 (-887 |#1|)))))) (-13 (-523) (-795) (-975 (-516)))) (T -1091))
+((-3805 (*1 *2 *3 *4) (-12 (-5 *4 (-1019 (-388 (-887 *5)))) (-5 *3 (-388 (-887 *5))) (-4 *5 (-13 (-523) (-795) (-975 (-516)))) (-5 *2 (-3 *3 (-295 *5))) (-5 *1 (-1091 *5)))) (-3805 (*1 *2 *3 *4) (-12 (-5 *4 (-1019 (-887 *5))) (-5 *3 (-887 *5)) (-4 *5 (-13 (-523) (-795) (-975 (-516)))) (-5 *2 (-388 *3)) (-5 *1 (-1091 *5)))) (-3805 (*1 *2 *3 *4) (-12 (-5 *4 (-1098)) (-4 *5 (-13 (-523) (-795) (-975 (-516)))) (-5 *2 (-3 (-388 (-887 *5)) (-295 *5))) (-5 *1 (-1091 *5)) (-5 *3 (-388 (-887 *5))))) (-3805 (*1 *2 *3 *4) (-12 (-5 *4 (-1098)) (-4 *5 (-13 (-523) (-795) (-975 (-516)))) (-5 *2 (-388 (-887 *5))) (-5 *1 (-1091 *5)) (-5 *3 (-887 *5)))))
+(-10 -7 (-15 -3805 ((-388 (-887 |#1|)) (-887 |#1|) (-1098))) (-15 -3805 ((-3 (-388 (-887 |#1|)) (-295 |#1|)) (-388 (-887 |#1|)) (-1098))) (-15 -3805 ((-388 (-887 |#1|)) (-887 |#1|) (-1019 (-887 |#1|)))) (-15 -3805 ((-3 (-388 (-887 |#1|)) (-295 |#1|)) (-388 (-887 |#1|)) (-1019 (-388 (-887 |#1|))))))
+((-2828 (((-110) $ $) 139)) (-3462 (((-110) $) 30)) (-4045 (((-1179 |#1|) $ (-719)) NIL)) (-3347 (((-594 (-1011)) $) NIL)) (-4043 (($ (-1092 |#1|)) NIL)) (-3349 (((-1092 $) $ (-1011)) 60) (((-1092 |#1|) $) 49)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-2118 (($ $) 134 (|has| |#1| (-523)))) (-2116 (((-110) $) NIL (|has| |#1| (-523)))) (-3083 (((-719) $) NIL) (((-719) $ (-594 (-1011))) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-4034 (($ $ $) 128 (|has| |#1| (-523)))) (-2970 (((-386 (-1092 $)) (-1092 $)) 73 (|has| |#1| (-851)))) (-4053 (($ $) NIL (|has| |#1| (-432)))) (-4245 (((-386 $) $) NIL (|has| |#1| (-432)))) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) 93 (|has| |#1| (-851)))) (-1655 (((-110) $ $) NIL (|has| |#1| (-344)))) (-4039 (($ $ (-719)) 42)) (-4038 (($ $ (-719)) 43)) (-4030 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-432)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#1| #2="failed") $) NIL) (((-3 (-388 (-516)) #2#) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-3 (-516) #2#) $) NIL (|has| |#1| (-975 (-516)))) (((-3 (-1011) #2#) $) NIL)) (-3431 ((|#1| $) NIL) (((-388 (-516)) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-516) $) NIL (|has| |#1| (-975 (-516)))) (((-1011) $) NIL)) (-4035 (($ $ $ (-1011)) NIL (|has| |#1| (-162))) ((|#1| $ $) 130 (|has| |#1| (-162)))) (-2824 (($ $ $) NIL (|has| |#1| (-344)))) (-4235 (($ $) 58)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-2823 (($ $ $) NIL (|has| |#1| (-344)))) (-4037 (($ $ $) 106)) (-4032 (($ $ $) NIL (|has| |#1| (-523)))) (-4031 (((-2 (|:| -4229 |#1|) (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-523)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL (|has| |#1| (-344)))) (-3777 (($ $) 135 (|has| |#1| (-432))) (($ $ (-1011)) NIL (|has| |#1| (-432)))) (-3082 (((-594 $) $) NIL)) (-4005 (((-110) $) NIL (|has| |#1| (-851)))) (-1671 (($ $ |#1| (-719) $) 47)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (-12 (|has| (-1011) (-827 (-359))) (|has| |#1| (-827 (-359))))) (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (-12 (|has| (-1011) (-827 (-516))) (|has| |#1| (-827 (-516)))))) (-3806 (((-805) $ (-805)) 119)) (-4050 (((-719) $ $) NIL (|has| |#1| (-523)))) (-2436 (((-110) $) 32)) (-2444 (((-719) $) NIL)) (-3723 (((-3 $ "failed") $) NIL (|has| |#1| (-1074)))) (-3350 (($ (-1092 |#1|) (-1011)) 51) (($ (-1092 $) (-1011)) 67)) (-4055 (($ $ (-719)) 34)) (-1652 (((-3 (-594 $) #3="failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-3085 (((-594 $) $) NIL)) (-4213 (((-110) $) NIL)) (-3157 (($ |#1| (-719)) 65) (($ $ (-1011) (-719)) NIL) (($ $ (-594 (-1011)) (-594 (-719))) NIL)) (-4041 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $ (-1011)) NIL) (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 123)) (-3084 (((-719) $) NIL) (((-719) $ (-1011)) NIL) (((-594 (-719)) $ (-594 (-1011))) NIL)) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-1672 (($ (-1 (-719) (-719)) $) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-4044 (((-1092 |#1|) $) NIL)) (-3348 (((-3 (-1011) #4="failed") $) NIL)) (-3158 (($ $) NIL)) (-3449 ((|#1| $) 54)) (-1963 (($ (-594 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3513 (((-1081) $) NIL)) (-4040 (((-2 (|:| -2046 $) (|:| -3166 $)) $ (-719)) 41)) (-3087 (((-3 (-594 $) #4#) $) NIL)) (-3086 (((-3 (-594 $) #4#) $) NIL)) (-3088 (((-3 (-2 (|:| |var| (-1011)) (|:| -2427 (-719))) #4#) $) NIL)) (-4091 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3724 (($) NIL (|has| |#1| (-1074)) CONST)) (-3514 (((-1045) $) NIL)) (-1866 (((-110) $) 33)) (-1865 ((|#1| $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 81 (|has| |#1| (-432)))) (-3419 (($ (-594 $)) NIL (|has| |#1| (-432))) (($ $ $) 137 (|has| |#1| (-432)))) (-4017 (($ $ (-719) |#1| $) 101)) (-2968 (((-386 (-1092 $)) (-1092 $)) 79 (|has| |#1| (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) 78 (|has| |#1| (-851)))) (-4011 (((-386 $) $) 86 (|has| |#1| (-851)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#1| (-344)))) (-3740 (((-3 $ "failed") $ |#1|) 133 (|has| |#1| (-523))) (((-3 $ "failed") $ $) 102 (|has| |#1| (-523)))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-4046 (($ $ (-594 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL) (($ $ (-1011) |#1|) NIL) (($ $ (-594 (-1011)) (-594 |#1|)) NIL) (($ $ (-1011) $) NIL) (($ $ (-594 (-1011)) (-594 $)) NIL)) (-1654 (((-719) $) NIL (|has| |#1| (-344)))) (-4078 ((|#1| $ |#1|) 121) (($ $ $) 122) (((-388 $) (-388 $) (-388 $)) NIL (|has| |#1| (-523))) ((|#1| (-388 $) |#1|) NIL (|has| |#1| (-344))) (((-388 $) $ (-388 $)) NIL (|has| |#1| (-523)))) (-4042 (((-3 $ #5="failed") $ (-719)) 37)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 140 (|has| |#1| (-344)))) (-4036 (($ $ (-1011)) NIL (|has| |#1| (-162))) ((|#1| $) 126 (|has| |#1| (-162)))) (-4089 (($ $ (-1011)) NIL) (($ $ (-594 (-1011))) NIL) (($ $ (-1011) (-719)) NIL) (($ $ (-594 (-1011)) (-594 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1098)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4223 (((-719) $) 56) (((-719) $ (-1011)) NIL) (((-594 (-719)) $ (-594 (-1011))) NIL)) (-4246 (((-831 (-359)) $) NIL (-12 (|has| (-1011) (-572 (-831 (-359)))) (|has| |#1| (-572 (-831 (-359)))))) (((-831 (-516)) $) NIL (-12 (|has| (-1011) (-572 (-831 (-516)))) (|has| |#1| (-572 (-831 (-516)))))) (((-505) $) NIL (-12 (|has| (-1011) (-572 (-505))) (|has| |#1| (-572 (-505)))))) (-3081 ((|#1| $) 132 (|has| |#1| (-432))) (($ $ (-1011)) NIL (|has| |#1| (-432)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-851))))) (-4033 (((-3 $ #5#) $ $) NIL (|has| |#1| (-523))) (((-3 (-388 $) #5#) (-388 $) $) NIL (|has| |#1| (-523)))) (-4233 (((-805) $) 120) (($ (-516)) NIL) (($ |#1|) 55) (($ (-1011)) NIL) (($ (-388 (-516))) NIL (-3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-975 (-388 (-516)))))) (($ $) NIL (|has| |#1| (-523)))) (-4096 (((-594 |#1|) $) NIL)) (-3959 ((|#1| $ (-719)) NIL) (($ $ (-1011) (-719)) NIL) (($ $ (-594 (-1011)) (-594 (-719))) NIL)) (-2965 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| $ (-138)) (|has| |#1| (-851))) (|has| |#1| (-138))))) (-3385 (((-719)) NIL)) (-1670 (($ $ $ (-719)) 28 (|has| |#1| (-162)))) (-2117 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3581 (($ $ (-860)) 15) (($ $ (-719)) 16)) (-2920 (($) 17 T CONST)) (-2927 (($) 18 T CONST)) (-2932 (($ $ (-1011)) NIL) (($ $ (-594 (-1011))) NIL) (($ $ (-1011) (-719)) NIL) (($ $ (-594 (-1011)) (-594 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1098)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) 98)) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#1| (-795)))) (-4224 (($ $ |#1|) 141 (|has| |#1| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) 68)) (** (($ $ (-860)) 14) (($ $ (-719)) 12)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 27) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516))))) (($ (-388 (-516)) $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ |#1| $) 104) (($ $ |#1|) NIL)))
+(((-1092 |#1|) (-13 (-1155 |#1|) (-10 -8 (-15 -3806 ((-805) $ (-805))) (-15 -4017 ($ $ (-719) |#1| $)))) (-984)) (T -1092))
+((-3806 (*1 *2 *1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1092 *3)) (-4 *3 (-984)))) (-4017 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1092 *3)) (-4 *3 (-984)))))
+(-13 (-1155 |#1|) (-10 -8 (-15 -3806 ((-805) $ (-805))) (-15 -4017 ($ $ (-719) |#1| $))))
+((-4234 (((-1092 |#2|) (-1 |#2| |#1|) (-1092 |#1|)) 13)))
+(((-1093 |#1| |#2|) (-10 -7 (-15 -4234 ((-1092 |#2|) (-1 |#2| |#1|) (-1092 |#1|)))) (-984) (-984)) (T -1093))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1092 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-5 *2 (-1092 *6)) (-5 *1 (-1093 *5 *6)))))
+(-10 -7 (-15 -4234 ((-1092 |#2|) (-1 |#2| |#1|) (-1092 |#1|))))
+((-4245 (((-386 (-1092 (-388 |#4|))) (-1092 (-388 |#4|))) 51)) (-4011 (((-386 (-1092 (-388 |#4|))) (-1092 (-388 |#4|))) 52)))
+(((-1094 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4011 ((-386 (-1092 (-388 |#4|))) (-1092 (-388 |#4|)))) (-15 -4245 ((-386 (-1092 (-388 |#4|))) (-1092 (-388 |#4|))))) (-741) (-795) (-432) (-891 |#3| |#1| |#2|)) (T -1094))
+((-4245 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-432)) (-4 *7 (-891 *6 *4 *5)) (-5 *2 (-386 (-1092 (-388 *7)))) (-5 *1 (-1094 *4 *5 *6 *7)) (-5 *3 (-1092 (-388 *7))))) (-4011 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-432)) (-4 *7 (-891 *6 *4 *5)) (-5 *2 (-386 (-1092 (-388 *7)))) (-5 *1 (-1094 *4 *5 *6 *7)) (-5 *3 (-1092 (-388 *7))))))
+(-10 -7 (-15 -4011 ((-386 (-1092 (-388 |#4|))) (-1092 (-388 |#4|)))) (-15 -4245 ((-386 (-1092 (-388 |#4|))) (-1092 (-388 |#4|)))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3347 (((-594 (-1011)) $) NIL)) (-4110 (((-1098) $) 11)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-2118 (($ $) NIL (|has| |#1| (-523)))) (-2116 (((-110) $) NIL (|has| |#1| (-523)))) (-4049 (($ $ (-388 (-516))) NIL) (($ $ (-388 (-516)) (-388 (-516))) NIL)) (-4052 (((-1076 (-2 (|:| |k| (-388 (-516))) (|:| |c| |#1|))) $) NIL)) (-3766 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3921 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL (|has| |#1| (-344)))) (-4245 (((-386 $) $) NIL (|has| |#1| (-344)))) (-3301 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-1655 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3764 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3920 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4097 (($ (-719) (-1076 (-2 (|:| |k| (-388 (-516))) (|:| |c| |#1|)))) NIL)) (-3768 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-1089 |#1| |#2| |#3|) #1="failed") $) 33) (((-3 (-1096 |#1| |#2| |#3|) #1#) $) 36)) (-3431 (((-1089 |#1| |#2| |#3|) $) NIL) (((-1096 |#1| |#2| |#3|) $) NIL)) (-2824 (($ $ $) NIL (|has| |#1| (-344)))) (-4235 (($ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-4059 (((-388 (-516)) $) 55)) (-2823 (($ $ $) NIL (|has| |#1| (-344)))) (-4060 (($ (-388 (-516)) (-1089 |#1| |#2| |#3|)) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL (|has| |#1| (-344)))) (-4005 (((-110) $) NIL (|has| |#1| (-344)))) (-3156 (((-110) $) NIL)) (-3909 (($) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4050 (((-388 (-516)) $) NIL) (((-388 (-516)) $ (-388 (-516))) NIL)) (-2436 (((-110) $) NIL)) (-3275 (($ $ (-516)) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4055 (($ $ (-860)) NIL) (($ $ (-388 (-516))) NIL)) (-1652 (((-3 (-594 $) #2="failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-4213 (((-110) $) NIL)) (-3157 (($ |#1| (-388 (-516))) 20) (($ $ (-1011) (-388 (-516))) NIL) (($ $ (-594 (-1011)) (-594 (-388 (-516)))) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-4218 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3158 (($ $) NIL)) (-3449 ((|#1| $) NIL)) (-1963 (($ (-594 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-4058 (((-1089 |#1| |#2| |#3|) $) 41)) (-4056 (((-3 (-1089 |#1| |#2| |#3|) "failed") $) NIL)) (-4057 (((-1089 |#1| |#2| |#3|) $) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL (|has| |#1| (-344)))) (-4091 (($ $) 39 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-1098)) NIL (-3810 (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-29 (-516))) (|has| |#1| (-901)) (|has| |#1| (-1120))) (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-15 -4091 (|#1| |#1| (-1098)))) (|has| |#1| (-15 -3347 ((-594 (-1098)) |#1|)))))) (($ $ (-1176 |#2|)) 40 (|has| |#1| (-37 (-388 (-516)))))) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#1| (-344)))) (-3419 (($ (-594 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-4011 (((-386 $) $) NIL (|has| |#1| (-344)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#1| (-344)))) (-4047 (($ $ (-388 (-516))) NIL)) (-3740 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-4219 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4046 (((-1076 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-388 (-516))))))) (-1654 (((-719) $) NIL (|has| |#1| (-344)))) (-4078 ((|#1| $ (-388 (-516))) NIL) (($ $ $) NIL (|has| (-388 (-516)) (-1038)))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-344)))) (-4089 (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))) (($ $ (-1176 |#2|)) 38)) (-4223 (((-388 (-516)) $) NIL)) (-3769 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3918 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3767 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3917 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3765 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3916 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3155 (($ $) NIL)) (-4233 (((-805) $) 58) (($ (-516)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1089 |#1| |#2| |#3|)) 30) (($ (-1096 |#1| |#2| |#3|)) 31) (($ (-1176 |#2|)) 26) (($ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $) NIL (|has| |#1| (-523)))) (-3959 ((|#1| $ (-388 (-516))) NIL)) (-2965 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3385 (((-719)) NIL)) (-4051 ((|#1| $) 12)) (-3772 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3760 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-2117 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3770 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3758 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3774 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3762 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4048 ((|#1| $ (-388 (-516))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-516))))) (|has| |#1| (-15 -4233 (|#1| (-1098))))))) (-3775 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3763 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3773 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3761 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3771 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3759 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| |#1| (-344)))) (-2920 (($) 22 T CONST)) (-2927 (($) 16 T CONST)) (-2932 (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) 24)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516)))))) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-516)) $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516)))))))
+(((-1095 |#1| |#2| |#3|) (-13 (-1164 |#1| (-1089 |#1| |#2| |#3|)) (-975 (-1096 |#1| |#2| |#3|)) (-10 -8 (-15 -4233 ($ (-1176 |#2|))) (-15 -4089 ($ $ (-1176 |#2|))) (IF (|has| |#1| (-37 (-388 (-516)))) (-15 -4091 ($ $ (-1176 |#2|))) |%noBranch|))) (-984) (-1098) |#1|) (T -1095))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1095 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-4089 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1095 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-4091 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1095 *3 *4 *5)) (-4 *3 (-37 (-388 (-516)))) (-4 *3 (-984)) (-14 *5 *3))))
+(-13 (-1164 |#1| (-1089 |#1| |#2| |#3|)) (-975 (-1096 |#1| |#2| |#3|)) (-10 -8 (-15 -4233 ($ (-1176 |#2|))) (-15 -4089 ($ $ (-1176 |#2|))) (IF (|has| |#1| (-37 (-388 (-516)))) (-15 -4091 ($ $ (-1176 |#2|))) |%noBranch|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 125)) (-3347 (((-594 (-1011)) $) NIL)) (-4110 (((-1098) $) 116)) (-4090 (((-1148 |#2| |#1|) $ (-719)) 63)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-2118 (($ $) NIL (|has| |#1| (-523)))) (-2116 (((-110) $) NIL (|has| |#1| (-523)))) (-4049 (($ $ (-719)) 79) (($ $ (-719) (-719)) 76)) (-4052 (((-1076 (-2 (|:| |k| (-719)) (|:| |c| |#1|))) $) 102)) (-3766 (($ $) 169 (|has| |#1| (-37 (-388 (-516)))))) (-3921 (($ $) 145 (|has| |#1| (-37 (-388 (-516)))))) (-1319 (((-3 $ "failed") $ $) NIL)) (-3301 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3764 (($ $) 165 (|has| |#1| (-37 (-388 (-516)))))) (-3920 (($ $) 141 (|has| |#1| (-37 (-388 (-516)))))) (-4097 (($ (-1076 (-2 (|:| |k| (-719)) (|:| |c| |#1|)))) 115) (($ (-1076 |#1|)) 110)) (-3768 (($ $) 173 (|has| |#1| (-37 (-388 (-516)))))) (-3919 (($ $) 149 (|has| |#1| (-37 (-388 (-516)))))) (-3815 (($) NIL T CONST)) (-4235 (($ $) NIL)) (-3741 (((-3 $ "failed") $) 23)) (-4095 (($ $) 26)) (-4093 (((-887 |#1|) $ (-719)) 75) (((-887 |#1|) $ (-719) (-719)) 77)) (-3156 (((-110) $) 120)) (-3909 (($) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4050 (((-719) $) 122) (((-719) $ (-719)) 124)) (-2436 (((-110) $) NIL)) (-3275 (($ $ (-516)) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4055 (($ $ (-860)) NIL)) (-4094 (($ (-1 |#1| (-516)) $) NIL)) (-4213 (((-110) $) NIL)) (-3157 (($ |#1| (-719)) 13) (($ $ (-1011) (-719)) NIL) (($ $ (-594 (-1011)) (-594 (-719))) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-4218 (($ $) 131 (|has| |#1| (-37 (-388 (-516)))))) (-3158 (($ $) NIL)) (-3449 ((|#1| $) NIL)) (-3513 (((-1081) $) NIL)) (-4091 (($ $) 129 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-1098)) NIL (-3810 (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-29 (-516))) (|has| |#1| (-901)) (|has| |#1| (-1120))) (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-15 -4091 (|#1| |#1| (-1098)))) (|has| |#1| (-15 -3347 ((-594 (-1098)) |#1|)))))) (($ $ (-1176 |#2|)) 130 (|has| |#1| (-37 (-388 (-516)))))) (-3514 (((-1045) $) NIL)) (-4047 (($ $ (-719)) 15)) (-3740 (((-3 $ "failed") $ $) 24 (|has| |#1| (-523)))) (-4219 (($ $) 133 (|has| |#1| (-37 (-388 (-516)))))) (-4046 (((-1076 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-719)))))) (-4078 ((|#1| $ (-719)) 119) (($ $ $) 128 (|has| (-719) (-1038)))) (-4089 (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-1098)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $ (-1176 |#2|)) 29)) (-4223 (((-719) $) NIL)) (-3769 (($ $) 175 (|has| |#1| (-37 (-388 (-516)))))) (-3918 (($ $) 151 (|has| |#1| (-37 (-388 (-516)))))) (-3767 (($ $) 171 (|has| |#1| (-37 (-388 (-516)))))) (-3917 (($ $) 147 (|has| |#1| (-37 (-388 (-516)))))) (-3765 (($ $) 167 (|has| |#1| (-37 (-388 (-516)))))) (-3916 (($ $) 143 (|has| |#1| (-37 (-388 (-516)))))) (-3155 (($ $) NIL)) (-4233 (((-805) $) 201) (($ (-516)) NIL) (($ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $) NIL (|has| |#1| (-523))) (($ |#1|) 126 (|has| |#1| (-162))) (($ (-1148 |#2| |#1|)) 51) (($ (-1176 |#2|)) 32)) (-4096 (((-1076 |#1|) $) 98)) (-3959 ((|#1| $ (-719)) 118)) (-2965 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3385 (((-719)) NIL)) (-4051 ((|#1| $) 54)) (-3772 (($ $) 181 (|has| |#1| (-37 (-388 (-516)))))) (-3760 (($ $) 157 (|has| |#1| (-37 (-388 (-516)))))) (-2117 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3770 (($ $) 177 (|has| |#1| (-37 (-388 (-516)))))) (-3758 (($ $) 153 (|has| |#1| (-37 (-388 (-516)))))) (-3774 (($ $) 185 (|has| |#1| (-37 (-388 (-516)))))) (-3762 (($ $) 161 (|has| |#1| (-37 (-388 (-516)))))) (-4048 ((|#1| $ (-719)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-719)))) (|has| |#1| (-15 -4233 (|#1| (-1098))))))) (-3775 (($ $) 187 (|has| |#1| (-37 (-388 (-516)))))) (-3763 (($ $) 163 (|has| |#1| (-37 (-388 (-516)))))) (-3773 (($ $) 183 (|has| |#1| (-37 (-388 (-516)))))) (-3761 (($ $) 159 (|has| |#1| (-37 (-388 (-516)))))) (-3771 (($ $) 179 (|has| |#1| (-37 (-388 (-516)))))) (-3759 (($ $) 155 (|has| |#1| (-37 (-388 (-516)))))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 17 T CONST)) (-2927 (($) 19 T CONST)) (-2932 (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-1098)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-4116 (($ $) NIL) (($ $ $) 194)) (-4118 (($ $ $) 31)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ |#1|) 198 (|has| |#1| (-344))) (($ $ $) 134 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) 137 (|has| |#1| (-37 (-388 (-516)))))) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-516)) $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516)))))))
+(((-1096 |#1| |#2| |#3|) (-13 (-1172 |#1|) (-10 -8 (-15 -4233 ($ (-1148 |#2| |#1|))) (-15 -4090 ((-1148 |#2| |#1|) $ (-719))) (-15 -4233 ($ (-1176 |#2|))) (-15 -4089 ($ $ (-1176 |#2|))) (IF (|has| |#1| (-37 (-388 (-516)))) (-15 -4091 ($ $ (-1176 |#2|))) |%noBranch|))) (-984) (-1098) |#1|) (T -1096))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1148 *4 *3)) (-4 *3 (-984)) (-14 *4 (-1098)) (-14 *5 *3) (-5 *1 (-1096 *3 *4 *5)))) (-4090 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1148 *5 *4)) (-5 *1 (-1096 *4 *5 *6)) (-4 *4 (-984)) (-14 *5 (-1098)) (-14 *6 *4))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1096 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-4089 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1096 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-4091 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1096 *3 *4 *5)) (-4 *3 (-37 (-388 (-516)))) (-4 *3 (-984)) (-14 *5 *3))))
+(-13 (-1172 |#1|) (-10 -8 (-15 -4233 ($ (-1148 |#2| |#1|))) (-15 -4090 ((-1148 |#2| |#1|) $ (-719))) (-15 -4233 ($ (-1176 |#2|))) (-15 -4089 ($ $ (-1176 |#2|))) (IF (|has| |#1| (-37 (-388 (-516)))) (-15 -4091 ($ $ (-1176 |#2|))) |%noBranch|)))
+((-4233 (((-805) $) 27) (($ (-1098)) 29)) (-3810 (($ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)) (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $))) 40)) (-3807 (($ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $))) 33) (($ $) 34)) (-3814 (($ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)) (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $))) 35)) (-3812 (($ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)) (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $))) 37)) (-3813 (($ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)) (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $))) 36)) (-3811 (($ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)) (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $))) 38)) (-3809 (($ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)) (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)) (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $))) 39)))
+(((-1097) (-13 (-571 (-805)) (-10 -8 (-15 -4233 ($ (-1098))) (-15 -3814 ($ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)) (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)))) (-15 -3813 ($ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)) (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)))) (-15 -3812 ($ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)) (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)))) (-15 -3811 ($ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)) (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)))) (-15 -3810 ($ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)) (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)))) (-15 -3809 ($ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)) (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)) (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)))) (-15 -3807 ($ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)))) (-15 -3807 ($ $))))) (T -1097))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-1097)))) (-3814 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| (-1097)))) (-5 *1 (-1097)))) (-3813 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| (-1097)))) (-5 *1 (-1097)))) (-3812 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| (-1097)))) (-5 *1 (-1097)))) (-3811 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| (-1097)))) (-5 *1 (-1097)))) (-3810 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| (-1097)))) (-5 *1 (-1097)))) (-3809 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| (-1097)))) (-5 *1 (-1097)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| (-1097)))) (-5 *1 (-1097)))) (-3807 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| (-1097)))) (-5 *1 (-1097)))) (-3807 (*1 *1 *1) (-5 *1 (-1097))))
+(-13 (-571 (-805)) (-10 -8 (-15 -4233 ($ (-1098))) (-15 -3814 ($ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)) (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)))) (-15 -3813 ($ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)) (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)))) (-15 -3812 ($ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)) (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)))) (-15 -3811 ($ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)) (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)))) (-15 -3810 ($ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)) (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)))) (-15 -3809 ($ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)) (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)) (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)))) (-15 -3807 ($ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359))) (|:| CF (-295 (-158 (-359)))) (|:| |switch| $)))) (-15 -3807 ($ $))))
+((-2828 (((-110) $ $) NIL)) (-3819 (($ $ (-594 (-805))) 59)) (-3820 (($ $ (-594 (-805))) 57)) (-3817 (((-1081) $) 84)) (-3822 (((-2 (|:| -2844 (-594 (-805))) (|:| -2667 (-594 (-805))) (|:| |presup| (-594 (-805))) (|:| -2842 (-594 (-805))) (|:| |args| (-594 (-805)))) $) 87)) (-3823 (((-110) $) 22)) (-3821 (($ $ (-594 (-594 (-805)))) 56) (($ $ (-2 (|:| -2844 (-594 (-805))) (|:| -2667 (-594 (-805))) (|:| |presup| (-594 (-805))) (|:| -2842 (-594 (-805))) (|:| |args| (-594 (-805))))) 82)) (-3815 (($) 124 T CONST)) (-3825 (((-1185)) 106)) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) 66) (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) 73)) (-3896 (($) 95) (($ $) 101)) (-3824 (($ $) 83)) (-3596 (($ $ $) NIL)) (-3597 (($ $ $) NIL)) (-3816 (((-594 $) $) 107)) (-3513 (((-1081) $) 90)) (-3514 (((-1045) $) NIL)) (-4078 (($ $ (-594 (-805))) 58)) (-4246 (((-505) $) 46) (((-1098) $) 47) (((-831 (-516)) $) 77) (((-831 (-359)) $) 75)) (-4233 (((-805) $) 53) (($ (-1081)) 48)) (-3818 (($ $ (-594 (-805))) 60)) (-2768 (((-1081) $) 33) (((-1081) $ (-110)) 34) (((-1185) (-771) $) 35) (((-1185) (-771) $ (-110)) 36)) (-2826 (((-110) $ $) NIL)) (-2827 (((-110) $ $) NIL)) (-3317 (((-110) $ $) 49)) (-2947 (((-110) $ $) NIL)) (-2948 (((-110) $ $) 50)))
+(((-1098) (-13 (-795) (-572 (-505)) (-769) (-572 (-1098)) (-572 (-831 (-516))) (-572 (-831 (-359))) (-827 (-516)) (-827 (-359)) (-10 -8 (-15 -3896 ($)) (-15 -3896 ($ $)) (-15 -3825 ((-1185))) (-15 -4233 ($ (-1081))) (-15 -3824 ($ $)) (-15 -3823 ((-110) $)) (-15 -3822 ((-2 (|:| -2844 (-594 (-805))) (|:| -2667 (-594 (-805))) (|:| |presup| (-594 (-805))) (|:| -2842 (-594 (-805))) (|:| |args| (-594 (-805)))) $)) (-15 -3821 ($ $ (-594 (-594 (-805))))) (-15 -3821 ($ $ (-2 (|:| -2844 (-594 (-805))) (|:| -2667 (-594 (-805))) (|:| |presup| (-594 (-805))) (|:| -2842 (-594 (-805))) (|:| |args| (-594 (-805)))))) (-15 -3820 ($ $ (-594 (-805)))) (-15 -3819 ($ $ (-594 (-805)))) (-15 -3818 ($ $ (-594 (-805)))) (-15 -4078 ($ $ (-594 (-805)))) (-15 -3817 ((-1081) $)) (-15 -3816 ((-594 $) $)) (-15 -3815 ($) -4227)))) (T -1098))
+((-3896 (*1 *1) (-5 *1 (-1098))) (-3896 (*1 *1 *1) (-5 *1 (-1098))) (-3825 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1098)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1098)))) (-3824 (*1 *1 *1) (-5 *1 (-1098))) (-3823 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1098)))) (-3822 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2844 (-594 (-805))) (|:| -2667 (-594 (-805))) (|:| |presup| (-594 (-805))) (|:| -2842 (-594 (-805))) (|:| |args| (-594 (-805))))) (-5 *1 (-1098)))) (-3821 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-594 (-805)))) (-5 *1 (-1098)))) (-3821 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2844 (-594 (-805))) (|:| -2667 (-594 (-805))) (|:| |presup| (-594 (-805))) (|:| -2842 (-594 (-805))) (|:| |args| (-594 (-805))))) (-5 *1 (-1098)))) (-3820 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-1098)))) (-3819 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-1098)))) (-3818 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-1098)))) (-4078 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-1098)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-1098)))) (-3816 (*1 *2 *1) (-12 (-5 *2 (-594 (-1098))) (-5 *1 (-1098)))) (-3815 (*1 *1) (-5 *1 (-1098))))
+(-13 (-795) (-572 (-505)) (-769) (-572 (-1098)) (-572 (-831 (-516))) (-572 (-831 (-359))) (-827 (-516)) (-827 (-359)) (-10 -8 (-15 -3896 ($)) (-15 -3896 ($ $)) (-15 -3825 ((-1185))) (-15 -4233 ($ (-1081))) (-15 -3824 ($ $)) (-15 -3823 ((-110) $)) (-15 -3822 ((-2 (|:| -2844 (-594 (-805))) (|:| -2667 (-594 (-805))) (|:| |presup| (-594 (-805))) (|:| -2842 (-594 (-805))) (|:| |args| (-594 (-805)))) $)) (-15 -3821 ($ $ (-594 (-594 (-805))))) (-15 -3821 ($ $ (-2 (|:| -2844 (-594 (-805))) (|:| -2667 (-594 (-805))) (|:| |presup| (-594 (-805))) (|:| -2842 (-594 (-805))) (|:| |args| (-594 (-805)))))) (-15 -3820 ($ $ (-594 (-805)))) (-15 -3819 ($ $ (-594 (-805)))) (-15 -3818 ($ $ (-594 (-805)))) (-15 -4078 ($ $ (-594 (-805)))) (-15 -3817 ((-1081) $)) (-15 -3816 ((-594 $) $)) (-15 -3815 ($) -4227)))
+((-3826 (((-1179 |#1|) |#1| (-860)) 16) (((-1179 |#1|) (-594 |#1|)) 20)))
+(((-1099 |#1|) (-10 -7 (-15 -3826 ((-1179 |#1|) (-594 |#1|))) (-15 -3826 ((-1179 |#1|) |#1| (-860)))) (-984)) (T -1099))
+((-3826 (*1 *2 *3 *4) (-12 (-5 *4 (-860)) (-5 *2 (-1179 *3)) (-5 *1 (-1099 *3)) (-4 *3 (-984)))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-594 *4)) (-4 *4 (-984)) (-5 *2 (-1179 *4)) (-5 *1 (-1099 *4)))))
+(-10 -7 (-15 -3826 ((-1179 |#1|) (-594 |#1|))) (-15 -3826 ((-1179 |#1|) |#1| (-860))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-2118 (($ $) NIL (|has| |#1| (-523)))) (-2116 (((-110) $) NIL (|has| |#1| (-523)))) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-516) #1="failed") $) NIL (|has| |#1| (-975 (-516)))) (((-3 (-388 (-516)) #1#) $) NIL (|has| |#1| (-975 (-388 (-516))))) (((-3 |#1| #1#) $) NIL)) (-3431 (((-516) $) NIL (|has| |#1| (-975 (-516)))) (((-388 (-516)) $) NIL (|has| |#1| (-975 (-388 (-516))))) ((|#1| $) NIL)) (-4235 (($ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-3777 (($ $) NIL (|has| |#1| (-432)))) (-1671 (($ $ |#1| (-911) $) NIL)) (-2436 (((-110) $) NIL)) (-2444 (((-719) $) NIL)) (-4213 (((-110) $) NIL)) (-3157 (($ |#1| (-911)) NIL)) (-3084 (((-911) $) NIL)) (-1672 (($ (-1 (-911) (-911)) $) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-3158 (($ $) NIL)) (-3449 ((|#1| $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-1866 (((-110) $) NIL)) (-1865 ((|#1| $) NIL)) (-4017 (($ $ (-911) |#1| $) NIL (-12 (|has| (-911) (-128)) (|has| |#1| (-523))))) (-3740 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523)))) (-4223 (((-911) $) NIL)) (-3081 ((|#1| $) NIL (|has| |#1| (-432)))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ $) NIL (|has| |#1| (-523))) (($ |#1|) NIL) (($ (-388 (-516))) NIL (-3810 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-975 (-388 (-516))))))) (-4096 (((-594 |#1|) $) NIL)) (-3959 ((|#1| $ (-911)) NIL)) (-2965 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3385 (((-719)) NIL)) (-1670 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-2117 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 9 T CONST)) (-2927 (($) 14 T CONST)) (-3317 (((-110) $ $) 16)) (-4224 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) 19)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-388 (-516)) $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516)))))))
+(((-1100 |#1|) (-13 (-307 |#1| (-911)) (-10 -8 (IF (|has| |#1| (-523)) (IF (|has| (-911) (-128)) (-15 -4017 ($ $ (-911) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4267)) (-6 -4267) |%noBranch|))) (-984)) (T -1100))
+((-4017 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-911)) (-4 *2 (-128)) (-5 *1 (-1100 *3)) (-4 *3 (-523)) (-4 *3 (-984)))))
+(-13 (-307 |#1| #1=(-911)) (-10 -8 (IF (|has| |#1| (-523)) (IF (|has| #1# (-128)) (-15 -4017 ($ $ #1# |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4267)) (-6 -4267) |%noBranch|)))
+((-3827 (((-1102) (-1098) $) 25)) (-3837 (($) 29)) (-3829 (((-3 (|:| |fst| (-415)) (|:| -4189 #1="void")) (-1098) $) 22)) (-3831 (((-1185) (-1098) (-3 (|:| |fst| (-415)) (|:| -4189 #1#)) $) 41) (((-1185) (-1098) (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) 42) (((-1185) (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) 43)) (-3839 (((-1185) (-1098)) 58)) (-3830 (((-1185) (-1098) $) 55) (((-1185) (-1098)) 56) (((-1185)) 57)) (-3835 (((-1185) (-1098)) 37)) (-3833 (((-1098)) 36)) (-3847 (($) 34)) (-3846 (((-417) (-1098) (-417) (-1098) $) 45) (((-417) (-594 (-1098)) (-417) (-1098) $) 49) (((-417) (-1098) (-417)) 46) (((-417) (-1098) (-417) (-1098)) 50)) (-3834 (((-1098)) 35)) (-4233 (((-805) $) 28)) (-3836 (((-1185)) 30) (((-1185) (-1098)) 33)) (-3828 (((-594 (-1098)) (-1098) $) 24)) (-3832 (((-1185) (-1098) (-594 (-1098)) $) 38) (((-1185) (-1098) (-594 (-1098))) 39) (((-1185) (-594 (-1098))) 40)))
+(((-1101) (-13 (-571 (-805)) (-10 -8 (-15 -3837 ($)) (-15 -3836 ((-1185))) (-15 -3836 ((-1185) (-1098))) (-15 -3846 ((-417) (-1098) (-417) (-1098) $)) (-15 -3846 ((-417) (-594 (-1098)) (-417) (-1098) $)) (-15 -3846 ((-417) (-1098) (-417))) (-15 -3846 ((-417) (-1098) (-417) (-1098))) (-15 -3835 ((-1185) (-1098))) (-15 -3834 ((-1098))) (-15 -3833 ((-1098))) (-15 -3832 ((-1185) (-1098) (-594 (-1098)) $)) (-15 -3832 ((-1185) (-1098) (-594 (-1098)))) (-15 -3832 ((-1185) (-594 (-1098)))) (-15 -3831 ((-1185) (-1098) (-3 (|:| |fst| (-415)) (|:| -4189 #1="void")) $)) (-15 -3831 ((-1185) (-1098) (-3 (|:| |fst| (-415)) (|:| -4189 #1#)))) (-15 -3831 ((-1185) (-3 (|:| |fst| (-415)) (|:| -4189 #1#)))) (-15 -3830 ((-1185) (-1098) $)) (-15 -3830 ((-1185) (-1098))) (-15 -3830 ((-1185))) (-15 -3839 ((-1185) (-1098))) (-15 -3847 ($)) (-15 -3829 ((-3 (|:| |fst| (-415)) (|:| -4189 #1#)) (-1098) $)) (-15 -3828 ((-594 (-1098)) (-1098) $)) (-15 -3827 ((-1102) (-1098) $))))) (T -1101))
+((-3837 (*1 *1) (-5 *1 (-1101))) (-3836 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1101)))) (-3836 (*1 *2 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-1185)) (-5 *1 (-1101)))) (-3846 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-417)) (-5 *3 (-1098)) (-5 *1 (-1101)))) (-3846 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-417)) (-5 *3 (-594 (-1098))) (-5 *4 (-1098)) (-5 *1 (-1101)))) (-3846 (*1 *2 *3 *2) (-12 (-5 *2 (-417)) (-5 *3 (-1098)) (-5 *1 (-1101)))) (-3846 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-417)) (-5 *3 (-1098)) (-5 *1 (-1101)))) (-3835 (*1 *2 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-1185)) (-5 *1 (-1101)))) (-3834 (*1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-1101)))) (-3833 (*1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-1101)))) (-3832 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-594 (-1098))) (-5 *3 (-1098)) (-5 *2 (-1185)) (-5 *1 (-1101)))) (-3832 (*1 *2 *3 *4) (-12 (-5 *4 (-594 (-1098))) (-5 *3 (-1098)) (-5 *2 (-1185)) (-5 *1 (-1101)))) (-3832 (*1 *2 *3) (-12 (-5 *3 (-594 (-1098))) (-5 *2 (-1185)) (-5 *1 (-1101)))) (-3831 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1098)) (-5 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1="void"))) (-5 *2 (-1185)) (-5 *1 (-1101)))) (-3831 (*1 *2 *3 *4) (-12 (-5 *3 (-1098)) (-5 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-5 *2 (-1185)) (-5 *1 (-1101)))) (-3831 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-5 *2 (-1185)) (-5 *1 (-1101)))) (-3830 (*1 *2 *3 *1) (-12 (-5 *3 (-1098)) (-5 *2 (-1185)) (-5 *1 (-1101)))) (-3830 (*1 *2 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-1185)) (-5 *1 (-1101)))) (-3830 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1101)))) (-3839 (*1 *2 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-1185)) (-5 *1 (-1101)))) (-3847 (*1 *1) (-5 *1 (-1101))) (-3829 (*1 *2 *3 *1) (-12 (-5 *3 (-1098)) (-5 *2 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-5 *1 (-1101)))) (-3828 (*1 *2 *3 *1) (-12 (-5 *2 (-594 (-1098))) (-5 *1 (-1101)) (-5 *3 (-1098)))) (-3827 (*1 *2 *3 *1) (-12 (-5 *3 (-1098)) (-5 *2 (-1102)) (-5 *1 (-1101)))))
+(-13 (-571 (-805)) (-10 -8 (-15 -3837 ($)) (-15 -3836 ((-1185))) (-15 -3836 ((-1185) (-1098))) (-15 -3846 ((-417) (-1098) (-417) (-1098) $)) (-15 -3846 ((-417) (-594 (-1098)) (-417) (-1098) $)) (-15 -3846 ((-417) (-1098) (-417))) (-15 -3846 ((-417) (-1098) (-417) (-1098))) (-15 -3835 ((-1185) (-1098))) (-15 -3834 ((-1098))) (-15 -3833 ((-1098))) (-15 -3832 ((-1185) (-1098) (-594 (-1098)) $)) (-15 -3832 ((-1185) (-1098) (-594 (-1098)))) (-15 -3832 ((-1185) (-594 (-1098)))) (-15 -3831 ((-1185) (-1098) (-3 (|:| |fst| (-415)) (|:| -4189 #1="void")) $)) (-15 -3831 ((-1185) (-1098) (-3 (|:| |fst| (-415)) (|:| -4189 #1#)))) (-15 -3831 ((-1185) (-3 (|:| |fst| (-415)) (|:| -4189 #1#)))) (-15 -3830 ((-1185) (-1098) $)) (-15 -3830 ((-1185) (-1098))) (-15 -3830 ((-1185))) (-15 -3839 ((-1185) (-1098))) (-15 -3847 ($)) (-15 -3829 ((-3 (|:| |fst| (-415)) (|:| -4189 #1#)) (-1098) $)) (-15 -3828 ((-594 (-1098)) (-1098) $)) (-15 -3827 ((-1102) (-1098) $))))
+((-3841 (((-594 (-594 (-3 (|:| -3824 (-1098)) (|:| |bounds| (-594 (-3 (|:| S (-1098)) (|:| P (-887 (-516))))))))) $) 59)) (-3843 (((-594 (-3 (|:| -3824 (-1098)) (|:| |bounds| (-594 (-3 (|:| S (-1098)) (|:| P (-887 (-516)))))))) (-415) $) 43)) (-3838 (($ (-594 (-2 (|:| -4139 (-1098)) (|:| -2131 (-417))))) 17)) (-3839 (((-1185) $) 67)) (-3844 (((-594 (-1098)) $) 22)) (-3840 (((-1029) $) 55)) (-3845 (((-417) (-1098) $) 27)) (-3842 (((-594 (-1098)) $) 30)) (-3847 (($) 19)) (-3846 (((-417) (-594 (-1098)) (-417) $) 25) (((-417) (-1098) (-417) $) 24)) (-4233 (((-805) $) 9) (((-1107 (-1098) (-417)) $) 13)))
+(((-1102) (-13 (-571 (-805)) (-10 -8 (-15 -4233 ((-1107 (-1098) (-417)) $)) (-15 -3847 ($)) (-15 -3846 ((-417) (-594 (-1098)) (-417) $)) (-15 -3846 ((-417) (-1098) (-417) $)) (-15 -3845 ((-417) (-1098) $)) (-15 -3844 ((-594 (-1098)) $)) (-15 -3843 ((-594 (-3 (|:| -3824 (-1098)) (|:| |bounds| (-594 (-3 (|:| S (-1098)) (|:| P (-887 (-516)))))))) (-415) $)) (-15 -3842 ((-594 (-1098)) $)) (-15 -3841 ((-594 (-594 (-3 (|:| -3824 (-1098)) (|:| |bounds| (-594 (-3 (|:| S (-1098)) (|:| P (-887 (-516))))))))) $)) (-15 -3840 ((-1029) $)) (-15 -3839 ((-1185) $)) (-15 -3838 ($ (-594 (-2 (|:| -4139 (-1098)) (|:| -2131 (-417))))))))) (T -1102))
+((-4233 (*1 *2 *1) (-12 (-5 *2 (-1107 (-1098) (-417))) (-5 *1 (-1102)))) (-3847 (*1 *1) (-5 *1 (-1102))) (-3846 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-417)) (-5 *3 (-594 (-1098))) (-5 *1 (-1102)))) (-3846 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-417)) (-5 *3 (-1098)) (-5 *1 (-1102)))) (-3845 (*1 *2 *3 *1) (-12 (-5 *3 (-1098)) (-5 *2 (-417)) (-5 *1 (-1102)))) (-3844 (*1 *2 *1) (-12 (-5 *2 (-594 (-1098))) (-5 *1 (-1102)))) (-3843 (*1 *2 *3 *1) (-12 (-5 *3 (-415)) (-5 *2 (-594 (-3 (|:| -3824 (-1098)) (|:| |bounds| (-594 (-3 (|:| S (-1098)) (|:| P (-887 (-516))))))))) (-5 *1 (-1102)))) (-3842 (*1 *2 *1) (-12 (-5 *2 (-594 (-1098))) (-5 *1 (-1102)))) (-3841 (*1 *2 *1) (-12 (-5 *2 (-594 (-594 (-3 (|:| -3824 (-1098)) (|:| |bounds| (-594 (-3 (|:| S (-1098)) (|:| P (-887 (-516)))))))))) (-5 *1 (-1102)))) (-3840 (*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-1102)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1102)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-594 (-2 (|:| -4139 (-1098)) (|:| -2131 (-417))))) (-5 *1 (-1102)))))
+(-13 (-571 (-805)) (-10 -8 (-15 -4233 ((-1107 (-1098) (-417)) $)) (-15 -3847 ($)) (-15 -3846 ((-417) (-594 (-1098)) (-417) $)) (-15 -3846 ((-417) (-1098) (-417) $)) (-15 -3845 ((-417) (-1098) $)) (-15 -3844 ((-594 (-1098)) $)) (-15 -3843 ((-594 (-3 (|:| -3824 (-1098)) (|:| |bounds| (-594 (-3 (|:| S (-1098)) (|:| P (-887 (-516)))))))) (-415) $)) (-15 -3842 ((-594 (-1098)) $)) (-15 -3841 ((-594 (-594 (-3 (|:| -3824 (-1098)) (|:| |bounds| (-594 (-3 (|:| S (-1098)) (|:| P (-887 (-516))))))))) $)) (-15 -3840 ((-1029) $)) (-15 -3839 ((-1185) $)) (-15 -3838 ($ (-594 (-2 (|:| -4139 (-1098)) (|:| -2131 (-417))))))))
+((-2828 (((-110) $ $) NIL)) (-3852 (((-110) $) 42)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-3851 (((-3 (-516) (-208) (-1098) (-1081) $) $) 50)) (-3850 (((-594 $) $) 55)) (-4246 (((-1029) $) 24) (($ (-1029)) 25)) (-3849 (((-110) $) 52)) (-4233 (((-805) $) NIL) (($ (-516)) 26) (((-516) $) 28) (($ (-208)) 29) (((-208) $) 31) (($ (-1098)) 32) (((-1098) $) 34) (($ (-1081)) 35) (((-1081) $) 37)) (-3848 (((-110) $ (|[\|\|]| (-516))) 11) (((-110) $ (|[\|\|]| (-208))) 15) (((-110) $ (|[\|\|]| (-1098))) 23) (((-110) $ (|[\|\|]| (-1081))) 19)) (-3853 (($ (-1098) (-594 $)) 39) (($ $ (-594 $)) 40)) (-3854 (((-516) $) 27) (((-208) $) 30) (((-1098) $) 33) (((-1081) $) 36)) (-3317 (((-110) $ $) 7)))
+(((-1103) (-13 (-1175) (-1027) (-10 -8 (-15 -4246 ((-1029) $)) (-15 -4246 ($ (-1029))) (-15 -4233 ($ (-516))) (-15 -4233 ((-516) $)) (-15 -3854 ((-516) $)) (-15 -4233 ($ (-208))) (-15 -4233 ((-208) $)) (-15 -3854 ((-208) $)) (-15 -4233 ($ (-1098))) (-15 -4233 ((-1098) $)) (-15 -3854 ((-1098) $)) (-15 -4233 ($ (-1081))) (-15 -4233 ((-1081) $)) (-15 -3854 ((-1081) $)) (-15 -3853 ($ (-1098) (-594 $))) (-15 -3853 ($ $ (-594 $))) (-15 -3852 ((-110) $)) (-15 -3851 ((-3 (-516) (-208) (-1098) (-1081) $) $)) (-15 -3850 ((-594 $) $)) (-15 -3849 ((-110) $)) (-15 -3848 ((-110) $ (|[\|\|]| (-516)))) (-15 -3848 ((-110) $ (|[\|\|]| (-208)))) (-15 -3848 ((-110) $ (|[\|\|]| (-1098)))) (-15 -3848 ((-110) $ (|[\|\|]| (-1081))))))) (T -1103))
+((-4246 (*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-1103)))) (-4246 (*1 *1 *2) (-12 (-5 *2 (-1029)) (-5 *1 (-1103)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-1103)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1103)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1103)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-1103)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-1103)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-1103)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-1103)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1103)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1103)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1103)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-1103)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-1103)))) (-3853 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-594 (-1103))) (-5 *1 (-1103)))) (-3853 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-1103))) (-5 *1 (-1103)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1103)))) (-3851 (*1 *2 *1) (-12 (-5 *2 (-3 (-516) (-208) (-1098) (-1081) (-1103))) (-5 *1 (-1103)))) (-3850 (*1 *2 *1) (-12 (-5 *2 (-594 (-1103))) (-5 *1 (-1103)))) (-3849 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1103)))) (-3848 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-110)) (-5 *1 (-1103)))) (-3848 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-208))) (-5 *2 (-110)) (-5 *1 (-1103)))) (-3848 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1098))) (-5 *2 (-110)) (-5 *1 (-1103)))) (-3848 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1081))) (-5 *2 (-110)) (-5 *1 (-1103)))))
+(-13 (-1175) (-1027) (-10 -8 (-15 -4246 ((-1029) $)) (-15 -4246 ($ (-1029))) (-15 -4233 ($ (-516))) (-15 -4233 ((-516) $)) (-15 -3854 ((-516) $)) (-15 -4233 ($ (-208))) (-15 -4233 ((-208) $)) (-15 -3854 ((-208) $)) (-15 -4233 ($ (-1098))) (-15 -4233 ((-1098) $)) (-15 -3854 ((-1098) $)) (-15 -4233 ($ (-1081))) (-15 -4233 ((-1081) $)) (-15 -3854 ((-1081) $)) (-15 -3853 ($ (-1098) (-594 $))) (-15 -3853 ($ $ (-594 $))) (-15 -3852 ((-110) $)) (-15 -3851 ((-3 (-516) (-208) (-1098) (-1081) $) $)) (-15 -3850 ((-594 $) $)) (-15 -3849 ((-110) $)) (-15 -3848 ((-110) $ (|[\|\|]| (-516)))) (-15 -3848 ((-110) $ (|[\|\|]| (-208)))) (-15 -3848 ((-110) $ (|[\|\|]| (-1098)))) (-15 -3848 ((-110) $ (|[\|\|]| (-1081))))))
+((-3856 (((-594 (-594 (-887 |#1|))) (-594 (-388 (-887 |#1|))) (-594 (-1098))) 57)) (-3855 (((-594 (-275 (-388 (-887 |#1|)))) (-275 (-388 (-887 |#1|)))) 69) (((-594 (-275 (-388 (-887 |#1|)))) (-388 (-887 |#1|))) 65) (((-594 (-275 (-388 (-887 |#1|)))) (-275 (-388 (-887 |#1|))) (-1098)) 70) (((-594 (-275 (-388 (-887 |#1|)))) (-388 (-887 |#1|)) (-1098)) 64) (((-594 (-594 (-275 (-388 (-887 |#1|))))) (-594 (-275 (-388 (-887 |#1|))))) 93) (((-594 (-594 (-275 (-388 (-887 |#1|))))) (-594 (-388 (-887 |#1|)))) 92) (((-594 (-594 (-275 (-388 (-887 |#1|))))) (-594 (-275 (-388 (-887 |#1|)))) (-594 (-1098))) 94) (((-594 (-594 (-275 (-388 (-887 |#1|))))) (-594 (-388 (-887 |#1|))) (-594 (-1098))) 91)))
+(((-1104 |#1|) (-10 -7 (-15 -3855 ((-594 (-594 (-275 (-388 (-887 |#1|))))) (-594 (-388 (-887 |#1|))) (-594 (-1098)))) (-15 -3855 ((-594 (-594 (-275 (-388 (-887 |#1|))))) (-594 (-275 (-388 (-887 |#1|)))) (-594 (-1098)))) (-15 -3855 ((-594 (-594 (-275 (-388 (-887 |#1|))))) (-594 (-388 (-887 |#1|))))) (-15 -3855 ((-594 (-594 (-275 (-388 (-887 |#1|))))) (-594 (-275 (-388 (-887 |#1|)))))) (-15 -3855 ((-594 (-275 (-388 (-887 |#1|)))) (-388 (-887 |#1|)) (-1098))) (-15 -3855 ((-594 (-275 (-388 (-887 |#1|)))) (-275 (-388 (-887 |#1|))) (-1098))) (-15 -3855 ((-594 (-275 (-388 (-887 |#1|)))) (-388 (-887 |#1|)))) (-15 -3855 ((-594 (-275 (-388 (-887 |#1|)))) (-275 (-388 (-887 |#1|))))) (-15 -3856 ((-594 (-594 (-887 |#1|))) (-594 (-388 (-887 |#1|))) (-594 (-1098))))) (-523)) (T -1104))
+((-3856 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-388 (-887 *5)))) (-5 *4 (-594 (-1098))) (-4 *5 (-523)) (-5 *2 (-594 (-594 (-887 *5)))) (-5 *1 (-1104 *5)))) (-3855 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-594 (-275 (-388 (-887 *4))))) (-5 *1 (-1104 *4)) (-5 *3 (-275 (-388 (-887 *4)))))) (-3855 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-594 (-275 (-388 (-887 *4))))) (-5 *1 (-1104 *4)) (-5 *3 (-388 (-887 *4))))) (-3855 (*1 *2 *3 *4) (-12 (-5 *4 (-1098)) (-4 *5 (-523)) (-5 *2 (-594 (-275 (-388 (-887 *5))))) (-5 *1 (-1104 *5)) (-5 *3 (-275 (-388 (-887 *5)))))) (-3855 (*1 *2 *3 *4) (-12 (-5 *4 (-1098)) (-4 *5 (-523)) (-5 *2 (-594 (-275 (-388 (-887 *5))))) (-5 *1 (-1104 *5)) (-5 *3 (-388 (-887 *5))))) (-3855 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-594 (-594 (-275 (-388 (-887 *4)))))) (-5 *1 (-1104 *4)) (-5 *3 (-594 (-275 (-388 (-887 *4))))))) (-3855 (*1 *2 *3) (-12 (-5 *3 (-594 (-388 (-887 *4)))) (-4 *4 (-523)) (-5 *2 (-594 (-594 (-275 (-388 (-887 *4)))))) (-5 *1 (-1104 *4)))) (-3855 (*1 *2 *3 *4) (-12 (-5 *4 (-594 (-1098))) (-4 *5 (-523)) (-5 *2 (-594 (-594 (-275 (-388 (-887 *5)))))) (-5 *1 (-1104 *5)) (-5 *3 (-594 (-275 (-388 (-887 *5))))))) (-3855 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-388 (-887 *5)))) (-5 *4 (-594 (-1098))) (-4 *5 (-523)) (-5 *2 (-594 (-594 (-275 (-388 (-887 *5)))))) (-5 *1 (-1104 *5)))))
+(-10 -7 (-15 -3855 ((-594 (-594 (-275 (-388 (-887 |#1|))))) (-594 (-388 (-887 |#1|))) (-594 (-1098)))) (-15 -3855 ((-594 (-594 (-275 (-388 (-887 |#1|))))) (-594 (-275 (-388 (-887 |#1|)))) (-594 (-1098)))) (-15 -3855 ((-594 (-594 (-275 (-388 (-887 |#1|))))) (-594 (-388 (-887 |#1|))))) (-15 -3855 ((-594 (-594 (-275 (-388 (-887 |#1|))))) (-594 (-275 (-388 (-887 |#1|)))))) (-15 -3855 ((-594 (-275 (-388 (-887 |#1|)))) (-388 (-887 |#1|)) (-1098))) (-15 -3855 ((-594 (-275 (-388 (-887 |#1|)))) (-275 (-388 (-887 |#1|))) (-1098))) (-15 -3855 ((-594 (-275 (-388 (-887 |#1|)))) (-388 (-887 |#1|)))) (-15 -3855 ((-594 (-275 (-388 (-887 |#1|)))) (-275 (-388 (-887 |#1|))))) (-15 -3856 ((-594 (-594 (-887 |#1|))) (-594 (-388 (-887 |#1|))) (-594 (-1098)))))
+((-3857 (((-1081)) 7)) (-3859 (((-1081)) 9)) (-3860 (((-1185) (-1081)) 11)) (-3858 (((-1081)) 8)))
+(((-1105) (-10 -7 (-15 -3857 ((-1081))) (-15 -3858 ((-1081))) (-15 -3859 ((-1081))) (-15 -3860 ((-1185) (-1081))))) (T -1105))
+((-3860 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1105)))) (-3859 (*1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1105)))) (-3858 (*1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1105)))) (-3857 (*1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1105)))))
+(-10 -7 (-15 -3857 ((-1081))) (-15 -3858 ((-1081))) (-15 -3859 ((-1081))) (-15 -3860 ((-1185) (-1081))))
+((-3864 (((-594 (-594 |#1|)) (-594 (-594 |#1|)) (-594 (-594 (-594 |#1|)))) 38)) (-3867 (((-594 (-594 (-594 |#1|))) (-594 (-594 |#1|))) 24)) (-3868 (((-1108 (-594 |#1|)) (-594 |#1|)) 34)) (-3870 (((-594 (-594 |#1|)) (-594 |#1|)) 30)) (-3873 (((-2 (|:| |f1| (-594 |#1|)) (|:| |f2| (-594 (-594 (-594 |#1|)))) (|:| |f3| (-594 (-594 |#1|))) (|:| |f4| (-594 (-594 (-594 |#1|))))) (-594 (-594 (-594 |#1|)))) 37)) (-3872 (((-2 (|:| |f1| (-594 |#1|)) (|:| |f2| (-594 (-594 (-594 |#1|)))) (|:| |f3| (-594 (-594 |#1|))) (|:| |f4| (-594 (-594 (-594 |#1|))))) (-594 |#1|) (-594 (-594 (-594 |#1|))) (-594 (-594 |#1|)) (-594 (-594 (-594 |#1|))) (-594 (-594 (-594 |#1|))) (-594 (-594 (-594 |#1|)))) 36)) (-3869 (((-594 (-594 |#1|)) (-594 (-594 |#1|))) 28)) (-3871 (((-594 |#1|) (-594 |#1|)) 31)) (-3863 (((-594 (-594 (-594 |#1|))) (-594 |#1|) (-594 (-594 (-594 |#1|)))) 18)) (-3862 (((-594 (-594 (-594 |#1|))) (-1 (-110) |#1| |#1|) (-594 |#1|) (-594 (-594 (-594 |#1|)))) 16)) (-3861 (((-2 (|:| |fs| (-110)) (|:| |sd| (-594 |#1|)) (|:| |td| (-594 (-594 |#1|)))) (-1 (-110) |#1| |#1|) (-594 |#1|) (-594 (-594 |#1|))) 14)) (-3865 (((-594 (-594 |#1|)) (-594 (-594 (-594 |#1|)))) 39)) (-3866 (((-594 (-594 |#1|)) (-1108 (-594 |#1|))) 41)))
+(((-1106 |#1|) (-10 -7 (-15 -3861 ((-2 (|:| |fs| (-110)) (|:| |sd| (-594 |#1|)) (|:| |td| (-594 (-594 |#1|)))) (-1 (-110) |#1| |#1|) (-594 |#1|) (-594 (-594 |#1|)))) (-15 -3862 ((-594 (-594 (-594 |#1|))) (-1 (-110) |#1| |#1|) (-594 |#1|) (-594 (-594 (-594 |#1|))))) (-15 -3863 ((-594 (-594 (-594 |#1|))) (-594 |#1|) (-594 (-594 (-594 |#1|))))) (-15 -3864 ((-594 (-594 |#1|)) (-594 (-594 |#1|)) (-594 (-594 (-594 |#1|))))) (-15 -3865 ((-594 (-594 |#1|)) (-594 (-594 (-594 |#1|))))) (-15 -3866 ((-594 (-594 |#1|)) (-1108 (-594 |#1|)))) (-15 -3867 ((-594 (-594 (-594 |#1|))) (-594 (-594 |#1|)))) (-15 -3868 ((-1108 (-594 |#1|)) (-594 |#1|))) (-15 -3869 ((-594 (-594 |#1|)) (-594 (-594 |#1|)))) (-15 -3870 ((-594 (-594 |#1|)) (-594 |#1|))) (-15 -3871 ((-594 |#1|) (-594 |#1|))) (-15 -3872 ((-2 (|:| |f1| (-594 |#1|)) (|:| |f2| (-594 (-594 (-594 |#1|)))) (|:| |f3| (-594 (-594 |#1|))) (|:| |f4| (-594 (-594 (-594 |#1|))))) (-594 |#1|) (-594 (-594 (-594 |#1|))) (-594 (-594 |#1|)) (-594 (-594 (-594 |#1|))) (-594 (-594 (-594 |#1|))) (-594 (-594 (-594 |#1|))))) (-15 -3873 ((-2 (|:| |f1| (-594 |#1|)) (|:| |f2| (-594 (-594 (-594 |#1|)))) (|:| |f3| (-594 (-594 |#1|))) (|:| |f4| (-594 (-594 (-594 |#1|))))) (-594 (-594 (-594 |#1|)))))) (-795)) (T -1106))
+((-3873 (*1 *2 *3) (-12 (-4 *4 (-795)) (-5 *2 (-2 (|:| |f1| (-594 *4)) (|:| |f2| (-594 (-594 (-594 *4)))) (|:| |f3| (-594 (-594 *4))) (|:| |f4| (-594 (-594 (-594 *4)))))) (-5 *1 (-1106 *4)) (-5 *3 (-594 (-594 (-594 *4)))))) (-3872 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-795)) (-5 *3 (-594 *6)) (-5 *5 (-594 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-594 *5)) (|:| |f3| *5) (|:| |f4| (-594 *5)))) (-5 *1 (-1106 *6)) (-5 *4 (-594 *5)))) (-3871 (*1 *2 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-795)) (-5 *1 (-1106 *3)))) (-3870 (*1 *2 *3) (-12 (-4 *4 (-795)) (-5 *2 (-594 (-594 *4))) (-5 *1 (-1106 *4)) (-5 *3 (-594 *4)))) (-3869 (*1 *2 *2) (-12 (-5 *2 (-594 (-594 *3))) (-4 *3 (-795)) (-5 *1 (-1106 *3)))) (-3868 (*1 *2 *3) (-12 (-4 *4 (-795)) (-5 *2 (-1108 (-594 *4))) (-5 *1 (-1106 *4)) (-5 *3 (-594 *4)))) (-3867 (*1 *2 *3) (-12 (-4 *4 (-795)) (-5 *2 (-594 (-594 (-594 *4)))) (-5 *1 (-1106 *4)) (-5 *3 (-594 (-594 *4))))) (-3866 (*1 *2 *3) (-12 (-5 *3 (-1108 (-594 *4))) (-4 *4 (-795)) (-5 *2 (-594 (-594 *4))) (-5 *1 (-1106 *4)))) (-3865 (*1 *2 *3) (-12 (-5 *3 (-594 (-594 (-594 *4)))) (-5 *2 (-594 (-594 *4))) (-5 *1 (-1106 *4)) (-4 *4 (-795)))) (-3864 (*1 *2 *2 *3) (-12 (-5 *3 (-594 (-594 (-594 *4)))) (-5 *2 (-594 (-594 *4))) (-4 *4 (-795)) (-5 *1 (-1106 *4)))) (-3863 (*1 *2 *3 *2) (-12 (-5 *2 (-594 (-594 (-594 *4)))) (-5 *3 (-594 *4)) (-4 *4 (-795)) (-5 *1 (-1106 *4)))) (-3862 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-594 (-594 (-594 *5)))) (-5 *3 (-1 (-110) *5 *5)) (-5 *4 (-594 *5)) (-4 *5 (-795)) (-5 *1 (-1106 *5)))) (-3861 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-110) *6 *6)) (-4 *6 (-795)) (-5 *4 (-594 *6)) (-5 *2 (-2 (|:| |fs| (-110)) (|:| |sd| *4) (|:| |td| (-594 *4)))) (-5 *1 (-1106 *6)) (-5 *5 (-594 *4)))))
+(-10 -7 (-15 -3861 ((-2 (|:| |fs| (-110)) (|:| |sd| (-594 |#1|)) (|:| |td| (-594 (-594 |#1|)))) (-1 (-110) |#1| |#1|) (-594 |#1|) (-594 (-594 |#1|)))) (-15 -3862 ((-594 (-594 (-594 |#1|))) (-1 (-110) |#1| |#1|) (-594 |#1|) (-594 (-594 (-594 |#1|))))) (-15 -3863 ((-594 (-594 (-594 |#1|))) (-594 |#1|) (-594 (-594 (-594 |#1|))))) (-15 -3864 ((-594 (-594 |#1|)) (-594 (-594 |#1|)) (-594 (-594 (-594 |#1|))))) (-15 -3865 ((-594 (-594 |#1|)) (-594 (-594 (-594 |#1|))))) (-15 -3866 ((-594 (-594 |#1|)) (-1108 (-594 |#1|)))) (-15 -3867 ((-594 (-594 (-594 |#1|))) (-594 (-594 |#1|)))) (-15 -3868 ((-1108 (-594 |#1|)) (-594 |#1|))) (-15 -3869 ((-594 (-594 |#1|)) (-594 (-594 |#1|)))) (-15 -3870 ((-594 (-594 |#1|)) (-594 |#1|))) (-15 -3871 ((-594 |#1|) (-594 |#1|))) (-15 -3872 ((-2 (|:| |f1| (-594 |#1|)) (|:| |f2| (-594 (-594 (-594 |#1|)))) (|:| |f3| (-594 (-594 |#1|))) (|:| |f4| (-594 (-594 (-594 |#1|))))) (-594 |#1|) (-594 (-594 (-594 |#1|))) (-594 (-594 |#1|)) (-594 (-594 (-594 |#1|))) (-594 (-594 (-594 |#1|))) (-594 (-594 (-594 |#1|))))) (-15 -3873 ((-2 (|:| |f1| (-594 |#1|)) (|:| |f2| (-594 (-594 (-594 |#1|)))) (|:| |f3| (-594 (-594 |#1|))) (|:| |f4| (-594 (-594 (-594 |#1|))))) (-594 (-594 (-594 |#1|))))))
+((-2828 (((-110) $ $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3879 (($) NIL) (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-2243 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -4270)))) (-1217 (((-110) $ (-719)) NIL)) (-4066 ((|#2| $ |#1| |#2|) NIL)) (-1581 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3992 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2251 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3815 (($) NIL T CONST)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))))) (-3684 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-3 |#2| #1#) |#1| $) NIL)) (-3685 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-4121 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-1587 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4270)))) (-3372 ((|#2| $ |#1|) NIL)) (-2018 (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-594 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) NIL)) (-2245 ((|#1| $) NIL (|has| |#1| (-795)))) (-2445 (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-594 |#2|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2246 ((|#1| $) NIL (|has| |#1| (-795)))) (-2022 (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2678 (((-594 |#1|) $) NIL)) (-2252 (((-110) |#1| $) NIL)) (-1280 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL)) (-3889 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL)) (-2248 (((-594 |#1|) $) NIL)) (-2249 (((-110) |#1| $) NIL)) (-3514 (((-1045) $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-4079 ((|#2| $) NIL (|has| |#1| (-795)))) (-1350 (((-3 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) "failed") (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL)) (-2244 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-1281 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL)) (-2020 (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-275 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-594 |#2|) (-594 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-594 (-275 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2250 (((-594 |#2|) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1473 (($) NIL) (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-2019 (((-719) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) NIL (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-572 (-505))))) (-3804 (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-4233 (((-805) $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-571 (-805))) (|has| |#2| (-571 (-805)))))) (-1282 (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) NIL)) (-2021 (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) NIL (-3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-1107 |#1| |#2|) (-13 (-1111 |#1| |#2|) (-10 -7 (-6 -4269))) (-1027) (-1027)) (T -1107))
+NIL
+(-13 (-1111 |#1| |#2|) (-10 -7 (-6 -4269)))
+((-3874 (($ (-594 (-594 |#1|))) 10)) (-3875 (((-594 (-594 |#1|)) $) 11)) (-4233 (((-805) $) 26)))
+(((-1108 |#1|) (-10 -8 (-15 -3874 ($ (-594 (-594 |#1|)))) (-15 -3875 ((-594 (-594 |#1|)) $)) (-15 -4233 ((-805) $))) (-1027)) (T -1108))
+((-4233 (*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-1108 *3)) (-4 *3 (-1027)))) (-3875 (*1 *2 *1) (-12 (-5 *2 (-594 (-594 *3))) (-5 *1 (-1108 *3)) (-4 *3 (-1027)))) (-3874 (*1 *1 *2) (-12 (-5 *2 (-594 (-594 *3))) (-4 *3 (-1027)) (-5 *1 (-1108 *3)))))
+(-10 -8 (-15 -3874 ($ (-594 (-594 |#1|)))) (-15 -3875 ((-594 (-594 |#1|)) $)) (-15 -4233 ((-805) $)))
+((-3876 ((|#1| (-594 |#1|)) 32)) (-3878 ((|#1| |#1| (-516)) 18)) (-3877 (((-1092 |#1|) |#1| (-860)) 15)))
+(((-1109 |#1|) (-10 -7 (-15 -3876 (|#1| (-594 |#1|))) (-15 -3877 ((-1092 |#1|) |#1| (-860))) (-15 -3878 (|#1| |#1| (-516)))) (-344)) (T -1109))
+((-3878 (*1 *2 *2 *3) (-12 (-5 *3 (-516)) (-5 *1 (-1109 *2)) (-4 *2 (-344)))) (-3877 (*1 *2 *3 *4) (-12 (-5 *4 (-860)) (-5 *2 (-1092 *3)) (-5 *1 (-1109 *3)) (-4 *3 (-344)))) (-3876 (*1 *2 *3) (-12 (-5 *3 (-594 *2)) (-5 *1 (-1109 *2)) (-4 *2 (-344)))))
+(-10 -7 (-15 -3876 (|#1| (-594 |#1|))) (-15 -3877 ((-1092 |#1|) |#1| (-860))) (-15 -3878 (|#1| |#1| (-516))))
+((-3879 (($) 10) (($ (-594 (-2 (|:| -4139 |#2|) (|:| -2131 |#3|)))) 14)) (-3684 (($ (-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) $) 61) (($ (-1 (-110) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2018 (((-594 (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))) $) 39) (((-594 |#3|) $) 41)) (-2022 (($ (-1 (-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-4234 (($ (-1 (-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1280 (((-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) $) 54)) (-3889 (($ (-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) $) 16)) (-2248 (((-594 |#2|) $) 19)) (-2249 (((-110) |#2| $) 59)) (-1350 (((-3 (-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) "failed") (-1 (-110) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))) $) 58)) (-1281 (((-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) $) 63)) (-2020 (((-110) (-1 (-110) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))) $) NIL) (((-110) (-1 (-110) |#3|) $) 67)) (-2250 (((-594 |#3|) $) 43)) (-4078 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2019 (((-719) (-1 (-110) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))) $) NIL) (((-719) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) $) NIL) (((-719) |#3| $) NIL) (((-719) (-1 (-110) |#3|) $) 68)) (-4233 (((-805) $) 27)) (-2021 (((-110) (-1 (-110) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))) $) NIL) (((-110) (-1 (-110) |#3|) $) 65)) (-3317 (((-110) $ $) 49)))
+(((-1110 |#1| |#2| |#3|) (-10 -8 (-15 -4233 ((-805) |#1|)) (-15 -3317 ((-110) |#1| |#1|)) (-15 -4234 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3879 (|#1| (-594 (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))))) (-15 -3879 (|#1|)) (-15 -4234 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2022 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2021 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -2020 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -2019 ((-719) (-1 (-110) |#3|) |#1|)) (-15 -2018 ((-594 |#3|) |#1|)) (-15 -2019 ((-719) |#3| |#1|)) (-15 -4078 (|#3| |#1| |#2| |#3|)) (-15 -4078 (|#3| |#1| |#2|)) (-15 -2250 ((-594 |#3|) |#1|)) (-15 -2249 ((-110) |#2| |#1|)) (-15 -2248 ((-594 |#2|) |#1|)) (-15 -3684 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3684 (|#1| (-1 (-110) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))) |#1|)) (-15 -3684 (|#1| (-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) |#1|)) (-15 -1350 ((-3 (-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) "failed") (-1 (-110) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))) |#1|)) (-15 -1280 ((-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) |#1|)) (-15 -3889 (|#1| (-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) |#1|)) (-15 -1281 ((-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) |#1|)) (-15 -2019 ((-719) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) |#1|)) (-15 -2018 ((-594 (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))) |#1|)) (-15 -2019 ((-719) (-1 (-110) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))) |#1|)) (-15 -2020 ((-110) (-1 (-110) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))) |#1|)) (-15 -2021 ((-110) (-1 (-110) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))) |#1|)) (-15 -2022 (|#1| (-1 (-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))) |#1|)) (-15 -4234 (|#1| (-1 (-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))) |#1|))) (-1111 |#2| |#3|) (-1027) (-1027)) (T -1110))
+NIL
+(-10 -8 (-15 -4233 ((-805) |#1|)) (-15 -3317 ((-110) |#1| |#1|)) (-15 -4234 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3879 (|#1| (-594 (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))))) (-15 -3879 (|#1|)) (-15 -4234 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2022 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2021 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -2020 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -2019 ((-719) (-1 (-110) |#3|) |#1|)) (-15 -2018 ((-594 |#3|) |#1|)) (-15 -2019 ((-719) |#3| |#1|)) (-15 -4078 (|#3| |#1| |#2| |#3|)) (-15 -4078 (|#3| |#1| |#2|)) (-15 -2250 ((-594 |#3|) |#1|)) (-15 -2249 ((-110) |#2| |#1|)) (-15 -2248 ((-594 |#2|) |#1|)) (-15 -3684 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3684 (|#1| (-1 (-110) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))) |#1|)) (-15 -3684 (|#1| (-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) |#1|)) (-15 -1350 ((-3 (-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) "failed") (-1 (-110) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))) |#1|)) (-15 -1280 ((-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) |#1|)) (-15 -3889 (|#1| (-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) |#1|)) (-15 -1281 ((-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) |#1|)) (-15 -2019 ((-719) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) |#1|)) (-15 -2018 ((-594 (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))) |#1|)) (-15 -2019 ((-719) (-1 (-110) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))) |#1|)) (-15 -2020 ((-110) (-1 (-110) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))) |#1|)) (-15 -2021 ((-110) (-1 (-110) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))) |#1|)) (-15 -2022 (|#1| (-1 (-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))) |#1|)) (-15 -4234 (|#1| (-1 (-2 (|:| -4139 |#2|) (|:| -2131 |#3|)) (-2 (|:| -4139 |#2|) (|:| -2131 |#3|))) |#1|)))
+((-2828 (((-110) $ $) 19 (-3810 (|has| |#2| (-1027)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))))) (-3879 (($) 72) (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) 71)) (-2243 (((-1185) $ |#1| |#1|) 99 (|has| $ (-6 -4270)))) (-1217 (((-110) $ (-719)) 8)) (-4066 ((|#2| $ |#1| |#2|) 73)) (-1581 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 45 (|has| $ (-6 -4269)))) (-3992 (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 55 (|has| $ (-6 -4269)))) (-2251 (((-3 |#2| #1="failed") |#1| $) 61)) (-3815 (($) 7 T CONST)) (-1349 (($ $) 58 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| $ (-6 -4269))))) (-3684 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 46 (|has| $ (-6 -4269))) (((-3 |#2| #1#) |#1| $) 62)) (-3685 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 54 (|has| $ (-6 -4269)))) (-4121 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 56 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 53 (|has| $ (-6 -4269))) (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 52 (|has| $ (-6 -4269)))) (-1587 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4270)))) (-3372 ((|#2| $ |#1|) 88)) (-2018 (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 30 (|has| $ (-6 -4269))) (((-594 |#2|) $) 79 (|has| $ (-6 -4269)))) (-4001 (((-110) $ (-719)) 9)) (-2245 ((|#1| $) 96 (|has| |#1| (-795)))) (-2445 (((-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 29 (|has| $ (-6 -4269))) (((-594 |#2|) $) 80 (|has| $ (-6 -4269)))) (-3516 (((-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-110) |#2| $) 82 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269))))) (-2246 ((|#1| $) 95 (|has| |#1| (-795)))) (-2022 (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 34 (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4270)))) (-4234 (($ (-1 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-3998 (((-110) $ (-719)) 10)) (-3513 (((-1081) $) 22 (-3810 (|has| |#2| (-1027)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))))) (-2678 (((-594 |#1|) $) 63)) (-2252 (((-110) |#1| $) 64)) (-1280 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 39)) (-3889 (($ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 40)) (-2248 (((-594 |#1|) $) 93)) (-2249 (((-110) |#1| $) 92)) (-3514 (((-1045) $) 21 (-3810 (|has| |#2| (-1027)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))))) (-4079 ((|#2| $) 97 (|has| |#1| (-795)))) (-1350 (((-3 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) "failed") (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 51)) (-2244 (($ $ |#2|) 98 (|has| $ (-6 -4270)))) (-1281 (((-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 41)) (-2020 (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 32 (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) 77 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))))) 26 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-275 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) 25 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) 24 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) 23 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)))) (($ $ (-594 |#2|) (-594 |#2|)) 86 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-275 |#2|)) 84 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-594 (-275 |#2|))) 83 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1218 (((-110) $ $) 14)) (-2247 (((-110) |#2| $) 94 (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2250 (((-594 |#2|) $) 91)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-4078 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-1473 (($) 49) (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) 48)) (-2019 (((-719) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 31 (|has| $ (-6 -4269))) (((-719) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-719) |#2| $) 81 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#2|) $) 78 (|has| $ (-6 -4269)))) (-3678 (($ $) 13)) (-4246 (((-505) $) 59 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-572 (-505))))) (-3804 (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) 50)) (-4233 (((-805) $) 18 (-3810 (|has| |#2| (-571 (-805))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-571 (-805)))))) (-1282 (($ (-594 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) 42)) (-2021 (((-110) (-1 (-110) (-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) $) 33 (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) 76 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20 (-3810 (|has| |#2| (-1027)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-1111 |#1| |#2|) (-133) (-1027) (-1027)) (T -1111))
+((-4066 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1111 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))) (-3879 (*1 *1) (-12 (-4 *1 (-1111 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-3879 (*1 *1 *2) (-12 (-5 *2 (-594 (-2 (|:| -4139 *3) (|:| -2131 *4)))) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *1 (-1111 *3 *4)))) (-4234 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1111 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))))
+(-13 (-568 |t#1| |t#2|) (-563 |t#1| |t#2|) (-10 -8 (-15 -4066 (|t#2| $ |t#1| |t#2|)) (-15 -3879 ($)) (-15 -3879 ($ (-594 (-2 (|:| -4139 |t#1|) (|:| -2131 |t#2|))))) (-15 -4234 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-33) . T) ((-104 #1=(-2 (|:| -4139 |#1|) (|:| -2131 |#2|))) . T) ((-99) -3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))) ((-571 (-805)) -3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-571 (-805))) (|has| |#2| (-1027)) (|has| |#2| (-571 (-805)))) ((-144 #1#) . T) ((-572 (-505)) |has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-572 (-505))) ((-212 #1#) . T) ((-218 #1#) . T) ((-268 |#1| |#2|) . T) ((-270 |#1| |#2|) . T) ((-291 #1#) -12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-468 #1#) . T) ((-468 |#2|) . T) ((-563 |#1| |#2|) . T) ((-491 #1# #1#) -12 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-291 (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)))) (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027))) ((-491 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-568 |#1| |#2|) . T) ((-1027) -3810 (|has| (-2 (|:| -4139 |#1|) (|:| -2131 |#2|)) (-1027)) (|has| |#2| (-1027))) ((-1134) . T))
+((-3885 (((-110)) 24)) (-3882 (((-1185) (-1081)) 26)) (-3886 (((-110)) 36)) (-3883 (((-1185)) 34)) (-3881 (((-1185) (-1081) (-1081)) 25)) (-3887 (((-110)) 37)) (-3889 (((-1185) |#1| |#2|) 44)) (-3880 (((-1185)) 20)) (-3888 (((-3 |#2| "failed") |#1|) 42)) (-3884 (((-1185)) 35)))
+(((-1112 |#1| |#2|) (-10 -7 (-15 -3880 ((-1185))) (-15 -3881 ((-1185) (-1081) (-1081))) (-15 -3882 ((-1185) (-1081))) (-15 -3883 ((-1185))) (-15 -3884 ((-1185))) (-15 -3885 ((-110))) (-15 -3886 ((-110))) (-15 -3887 ((-110))) (-15 -3888 ((-3 |#2| "failed") |#1|)) (-15 -3889 ((-1185) |#1| |#2|))) (-1027) (-1027)) (T -1112))
+((-3889 (*1 *2 *3 *4) (-12 (-5 *2 (-1185)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-3888 (*1 *2 *3) (|partial| -12 (-4 *2 (-1027)) (-5 *1 (-1112 *3 *2)) (-4 *3 (-1027)))) (-3887 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-3886 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-3885 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-3884 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-3883 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-3882 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1112 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1027)))) (-3881 (*1 *2 *3 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1112 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1027)))) (-3880 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))))
+(-10 -7 (-15 -3880 ((-1185))) (-15 -3881 ((-1185) (-1081) (-1081))) (-15 -3882 ((-1185) (-1081))) (-15 -3883 ((-1185))) (-15 -3884 ((-1185))) (-15 -3885 ((-110))) (-15 -3886 ((-110))) (-15 -3887 ((-110))) (-15 -3888 ((-3 |#2| "failed") |#1|)) (-15 -3889 ((-1185) |#1| |#2|)))
+((-3891 (((-1081) (-1081)) 18)) (-3890 (((-50) (-1081)) 21)))
+(((-1113) (-10 -7 (-15 -3890 ((-50) (-1081))) (-15 -3891 ((-1081) (-1081))))) (T -1113))
+((-3891 (*1 *2 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1113)))) (-3890 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-50)) (-5 *1 (-1113)))))
+(-10 -7 (-15 -3890 ((-50) (-1081))) (-15 -3891 ((-1081) (-1081))))
+((-2828 (((-110) $ $) NIL)) (-3897 (((-594 (-1081)) $) 34)) (-3893 (((-594 (-1081)) $ (-594 (-1081))) 37)) (-3892 (((-594 (-1081)) $ (-594 (-1081))) 36)) (-3894 (((-594 (-1081)) $ (-594 (-1081))) 38)) (-3895 (((-594 (-1081)) $) 33)) (-3896 (($) 22)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-3898 (((-594 (-1081)) $) 35)) (-3899 (((-1185) $ (-516)) 29) (((-1185) $) 30)) (-4246 (($ (-805) (-516)) 26) (($ (-805) (-516) (-805)) NIL)) (-4233 (((-805) $) 40) (($ (-805)) 24)) (-3317 (((-110) $ $) NIL)))
+(((-1114) (-13 (-1027) (-10 -8 (-15 -4233 ($ (-805))) (-15 -4246 ($ (-805) (-516))) (-15 -4246 ($ (-805) (-516) (-805))) (-15 -3899 ((-1185) $ (-516))) (-15 -3899 ((-1185) $)) (-15 -3898 ((-594 (-1081)) $)) (-15 -3897 ((-594 (-1081)) $)) (-15 -3896 ($)) (-15 -3895 ((-594 (-1081)) $)) (-15 -3894 ((-594 (-1081)) $ (-594 (-1081)))) (-15 -3893 ((-594 (-1081)) $ (-594 (-1081)))) (-15 -3892 ((-594 (-1081)) $ (-594 (-1081))))))) (T -1114))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1114)))) (-4246 (*1 *1 *2 *3) (-12 (-5 *2 (-805)) (-5 *3 (-516)) (-5 *1 (-1114)))) (-4246 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-805)) (-5 *3 (-516)) (-5 *1 (-1114)))) (-3899 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-1185)) (-5 *1 (-1114)))) (-3899 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1114)))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-1114)))) (-3897 (*1 *2 *1) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-1114)))) (-3896 (*1 *1) (-5 *1 (-1114))) (-3895 (*1 *2 *1) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-1114)))) (-3894 (*1 *2 *1 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-1114)))) (-3893 (*1 *2 *1 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-1114)))) (-3892 (*1 *2 *1 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-1114)))))
+(-13 (-1027) (-10 -8 (-15 -4233 ($ (-805))) (-15 -4246 ($ (-805) (-516))) (-15 -4246 ($ (-805) (-516) (-805))) (-15 -3899 ((-1185) $ (-516))) (-15 -3899 ((-1185) $)) (-15 -3898 ((-594 (-1081)) $)) (-15 -3897 ((-594 (-1081)) $)) (-15 -3896 ($)) (-15 -3895 ((-594 (-1081)) $)) (-15 -3894 ((-594 (-1081)) $ (-594 (-1081)))) (-15 -3893 ((-594 (-1081)) $ (-594 (-1081)))) (-15 -3892 ((-594 (-1081)) $ (-594 (-1081))))))
+((-4233 (((-1114) |#1|) 11)))
+(((-1115 |#1|) (-10 -7 (-15 -4233 ((-1114) |#1|))) (-1027)) (T -1115))
+((-4233 (*1 *2 *3) (-12 (-5 *2 (-1114)) (-5 *1 (-1115 *3)) (-4 *3 (-1027)))))
+(-10 -7 (-15 -4233 ((-1114) |#1|)))
+((-2828 (((-110) $ $) NIL)) (-3904 (((-1081) $ (-1081)) 17) (((-1081) $) 16)) (-1763 (((-1081) $ (-1081)) 15)) (-1767 (($ $ (-1081)) NIL)) (-3902 (((-3 (-1081) "failed") $) 11)) (-3903 (((-1081) $) 8)) (-3901 (((-3 (-1081) "failed") $) 12)) (-1764 (((-1081) $) 9)) (-1768 (($ (-369)) NIL) (($ (-369) (-1081)) NIL)) (-3824 (((-369) $) NIL)) (-3513 (((-1081) $) NIL)) (-1765 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-3900 (((-110) $) 18)) (-4233 (((-805) $) NIL)) (-1766 (($ $) NIL)) (-3317 (((-110) $ $) NIL)))
+(((-1116) (-13 (-346 (-369) (-1081)) (-10 -8 (-15 -3904 ((-1081) $ (-1081))) (-15 -3904 ((-1081) $)) (-15 -3903 ((-1081) $)) (-15 -3902 ((-3 (-1081) "failed") $)) (-15 -3901 ((-3 (-1081) "failed") $)) (-15 -3900 ((-110) $))))) (T -1116))
+((-3904 (*1 *2 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1116)))) (-3904 (*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-1116)))) (-3903 (*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-1116)))) (-3902 (*1 *2 *1) (|partial| -12 (-5 *2 (-1081)) (-5 *1 (-1116)))) (-3901 (*1 *2 *1) (|partial| -12 (-5 *2 (-1081)) (-5 *1 (-1116)))) (-3900 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1116)))))
+(-13 (-346 (-369) (-1081)) (-10 -8 (-15 -3904 ((-1081) $ (-1081))) (-15 -3904 ((-1081) $)) (-15 -3903 ((-1081) $)) (-15 -3902 ((-3 (-1081) "failed") $)) (-15 -3901 ((-3 (-1081) "failed") $)) (-15 -3900 ((-110) $))))
+((-3905 (((-3 (-516) "failed") |#1|) 19)) (-3906 (((-3 (-516) "failed") |#1|) 14)) (-3907 (((-516) (-1081)) 28)))
+(((-1117 |#1|) (-10 -7 (-15 -3905 ((-3 (-516) "failed") |#1|)) (-15 -3906 ((-3 (-516) "failed") |#1|)) (-15 -3907 ((-516) (-1081)))) (-984)) (T -1117))
+((-3907 (*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-516)) (-5 *1 (-1117 *4)) (-4 *4 (-984)))) (-3906 (*1 *2 *3) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-1117 *3)) (-4 *3 (-984)))) (-3905 (*1 *2 *3) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-1117 *3)) (-4 *3 (-984)))))
+(-10 -7 (-15 -3905 ((-3 (-516) "failed") |#1|)) (-15 -3906 ((-3 (-516) "failed") |#1|)) (-15 -3907 ((-516) (-1081))))
+((-3908 (((-1058 (-208))) 9)))
+(((-1118) (-10 -7 (-15 -3908 ((-1058 (-208)))))) (T -1118))
+((-3908 (*1 *2) (-12 (-5 *2 (-1058 (-208))) (-5 *1 (-1118)))))
+(-10 -7 (-15 -3908 ((-1058 (-208)))))
+((-3909 (($) 11)) (-3772 (($ $) 35)) (-3770 (($ $) 33)) (-3758 (($ $) 25)) (-3774 (($ $) 17)) (-3775 (($ $) 15)) (-3773 (($ $) 19)) (-3761 (($ $) 30)) (-3771 (($ $) 34)) (-3759 (($ $) 29)))
+(((-1119 |#1|) (-10 -8 (-15 -3909 (|#1|)) (-15 -3772 (|#1| |#1|)) (-15 -3770 (|#1| |#1|)) (-15 -3774 (|#1| |#1|)) (-15 -3775 (|#1| |#1|)) (-15 -3773 (|#1| |#1|)) (-15 -3771 (|#1| |#1|)) (-15 -3758 (|#1| |#1|)) (-15 -3761 (|#1| |#1|)) (-15 -3759 (|#1| |#1|))) (-1120)) (T -1119))
+NIL
+(-10 -8 (-15 -3909 (|#1|)) (-15 -3772 (|#1| |#1|)) (-15 -3770 (|#1| |#1|)) (-15 -3774 (|#1| |#1|)) (-15 -3775 (|#1| |#1|)) (-15 -3773 (|#1| |#1|)) (-15 -3771 (|#1| |#1|)) (-15 -3758 (|#1| |#1|)) (-15 -3761 (|#1| |#1|)) (-15 -3759 (|#1| |#1|)))
+((-3766 (($ $) 26)) (-3921 (($ $) 11)) (-3764 (($ $) 27)) (-3920 (($ $) 10)) (-3768 (($ $) 28)) (-3919 (($ $) 9)) (-3909 (($) 16)) (-4218 (($ $) 19)) (-4219 (($ $) 18)) (-3769 (($ $) 29)) (-3918 (($ $) 8)) (-3767 (($ $) 30)) (-3917 (($ $) 7)) (-3765 (($ $) 31)) (-3916 (($ $) 6)) (-3772 (($ $) 20)) (-3760 (($ $) 32)) (-3770 (($ $) 21)) (-3758 (($ $) 33)) (-3774 (($ $) 22)) (-3762 (($ $) 34)) (-3775 (($ $) 23)) (-3763 (($ $) 35)) (-3773 (($ $) 24)) (-3761 (($ $) 36)) (-3771 (($ $) 25)) (-3759 (($ $) 37)) (** (($ $ $) 17)))
(((-1120) (-133)) (T -1120))
-((-2735 (*1 *1 *1) (-4 *1 (-1120))) (-2712 (*1 *1 *1) (-4 *1 (-1120))) (-2761 (*1 *1 *1) (-4 *1 (-1120))) (-2773 (*1 *1 *1) (-4 *1 (-1120))) (-2749 (*1 *1 *1) (-4 *1 (-1120))) (-2724 (*1 *1 *1) (-4 *1 (-1120))))
-(-13 (-10 -8 (-15 -2724 ($ $)) (-15 -2749 ($ $)) (-15 -2773 ($ $)) (-15 -2761 ($ $)) (-15 -2712 ($ $)) (-15 -2735 ($ $))))
-((-1365 ((|#2| |#2|) 88)) (-3137 (((-110) |#2|) 26)) (-2461 ((|#2| |#2|) 30)) (-2473 ((|#2| |#2|) 32)) (-3885 ((|#2| |#2| (-1095)) 83) ((|#2| |#2|) 84)) (-2367 (((-159 |#2|) |#2|) 28)) (-2443 ((|#2| |#2| (-1095)) 85) ((|#2| |#2|) 86)))
-(((-1121 |#1| |#2|) (-10 -7 (-15 -3885 (|#2| |#2|)) (-15 -3885 (|#2| |#2| (-1095))) (-15 -2443 (|#2| |#2|)) (-15 -2443 (|#2| |#2| (-1095))) (-15 -1365 (|#2| |#2|)) (-15 -2461 (|#2| |#2|)) (-15 -2473 (|#2| |#2|)) (-15 -3137 ((-110) |#2|)) (-15 -2367 ((-159 |#2|) |#2|))) (-13 (-431) (-793) (-972 (-528)) (-591 (-528))) (-13 (-27) (-1117) (-410 |#1|))) (T -1121))
-((-2367 (*1 *2 *3) (-12 (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-159 *3)) (-5 *1 (-1121 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *4))))) (-3137 (*1 *2 *3) (-12 (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *2 (-110)) (-5 *1 (-1121 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *4))))) (-2473 (*1 *2 *2) (-12 (-4 *3 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *3))))) (-2461 (*1 *2 *2) (-12 (-4 *3 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *3))))) (-1365 (*1 *2 *2) (-12 (-4 *3 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *3))))) (-2443 (*1 *2 *2 *3) (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *1 (-1121 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *4))))) (-2443 (*1 *2 *2) (-12 (-4 *3 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *3))))) (-3885 (*1 *2 *2 *3) (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *1 (-1121 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *4))))) (-3885 (*1 *2 *2) (-12 (-4 *3 (-13 (-431) (-793) (-972 (-528)) (-591 (-528)))) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *3))))))
-(-10 -7 (-15 -3885 (|#2| |#2|)) (-15 -3885 (|#2| |#2| (-1095))) (-15 -2443 (|#2| |#2|)) (-15 -2443 (|#2| |#2| (-1095))) (-15 -1365 (|#2| |#2|)) (-15 -2461 (|#2| |#2|)) (-15 -2473 (|#2| |#2|)) (-15 -3137 ((-110) |#2|)) (-15 -2367 ((-159 |#2|) |#2|)))
-((-2535 ((|#4| |#4| |#1|) 27)) (-4134 ((|#4| |#4| |#1|) 28)))
-(((-1122 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2535 (|#4| |#4| |#1|)) (-15 -4134 (|#4| |#4| |#1|))) (-520) (-353 |#1|) (-353 |#1|) (-633 |#1| |#2| |#3|)) (T -1122))
-((-4134 (*1 *2 *2 *3) (-12 (-4 *3 (-520)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *1 (-1122 *3 *4 *5 *2)) (-4 *2 (-633 *3 *4 *5)))) (-2535 (*1 *2 *2 *3) (-12 (-4 *3 (-520)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *1 (-1122 *3 *4 *5 *2)) (-4 *2 (-633 *3 *4 *5)))))
-(-10 -7 (-15 -2535 (|#4| |#4| |#1|)) (-15 -4134 (|#4| |#4| |#1|)))
-((-3328 ((|#2| |#2|) 134)) (-3729 ((|#2| |#2|) 131)) (-1762 ((|#2| |#2|) 122)) (-1616 ((|#2| |#2|) 119)) (-4166 ((|#2| |#2|) 127)) (-4065 ((|#2| |#2|) 115)) (-3417 ((|#2| |#2|) 43)) (-1354 ((|#2| |#2|) 95)) (-1506 ((|#2| |#2|) 75)) (-2412 ((|#2| |#2|) 129)) (-2052 ((|#2| |#2|) 117)) (-4078 ((|#2| |#2|) 139)) (-3582 ((|#2| |#2|) 137)) (-1947 ((|#2| |#2|) 138)) (-3338 ((|#2| |#2|) 136)) (-2720 ((|#2| |#2|) 149)) (-2064 ((|#2| |#2|) 30 (-12 (|has| |#2| (-570 (-831 |#1|))) (|has| |#2| (-825 |#1|)) (|has| |#1| (-570 (-831 |#1|))) (|has| |#1| (-825 |#1|))))) (-4226 ((|#2| |#2|) 76)) (-3775 ((|#2| |#2|) 140)) (-1535 ((|#2| |#2|) 141)) (-2929 ((|#2| |#2|) 128)) (-3916 ((|#2| |#2|) 116)) (-3641 ((|#2| |#2|) 135)) (-1357 ((|#2| |#2|) 133)) (-2282 ((|#2| |#2|) 123)) (-1628 ((|#2| |#2|) 121)) (-3305 ((|#2| |#2|) 125)) (-3280 ((|#2| |#2|) 113)))
-(((-1123 |#1| |#2|) (-10 -7 (-15 -1535 (|#2| |#2|)) (-15 -1506 (|#2| |#2|)) (-15 -2720 (|#2| |#2|)) (-15 -1354 (|#2| |#2|)) (-15 -3417 (|#2| |#2|)) (-15 -4226 (|#2| |#2|)) (-15 -3775 (|#2| |#2|)) (-15 -3280 (|#2| |#2|)) (-15 -3305 (|#2| |#2|)) (-15 -2282 (|#2| |#2|)) (-15 -3641 (|#2| |#2|)) (-15 -3916 (|#2| |#2|)) (-15 -2929 (|#2| |#2|)) (-15 -2052 (|#2| |#2|)) (-15 -2412 (|#2| |#2|)) (-15 -4065 (|#2| |#2|)) (-15 -4166 (|#2| |#2|)) (-15 -1762 (|#2| |#2|)) (-15 -3328 (|#2| |#2|)) (-15 -1616 (|#2| |#2|)) (-15 -3729 (|#2| |#2|)) (-15 -1628 (|#2| |#2|)) (-15 -1357 (|#2| |#2|)) (-15 -3338 (|#2| |#2|)) (-15 -3582 (|#2| |#2|)) (-15 -1947 (|#2| |#2|)) (-15 -4078 (|#2| |#2|)) (IF (|has| |#1| (-825 |#1|)) (IF (|has| |#1| (-570 (-831 |#1|))) (IF (|has| |#2| (-570 (-831 |#1|))) (IF (|has| |#2| (-825 |#1|)) (-15 -2064 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-793) (-431)) (-13 (-410 |#1|) (-1117))) (T -1123))
-((-2064 (*1 *2 *2) (-12 (-4 *3 (-570 (-831 *3))) (-4 *3 (-825 *3)) (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-570 (-831 *3))) (-4 *2 (-825 *3)) (-4 *2 (-13 (-410 *3) (-1117))))) (-4078 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-1947 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-3582 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-3338 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-1357 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-1628 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-3729 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-1616 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-3328 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-1762 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-4166 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-4065 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-2412 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-2052 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-2929 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-2282 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-3305 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-3280 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-3775 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-4226 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-3417 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-1354 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-2720 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-1506 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2)) (-4 *2 (-13 (-410 *3) (-1117))))))
-(-10 -7 (-15 -1535 (|#2| |#2|)) (-15 -1506 (|#2| |#2|)) (-15 -2720 (|#2| |#2|)) (-15 -1354 (|#2| |#2|)) (-15 -3417 (|#2| |#2|)) (-15 -4226 (|#2| |#2|)) (-15 -3775 (|#2| |#2|)) (-15 -3280 (|#2| |#2|)) (-15 -3305 (|#2| |#2|)) (-15 -2282 (|#2| |#2|)) (-15 -3641 (|#2| |#2|)) (-15 -3916 (|#2| |#2|)) (-15 -2929 (|#2| |#2|)) (-15 -2052 (|#2| |#2|)) (-15 -2412 (|#2| |#2|)) (-15 -4065 (|#2| |#2|)) (-15 -4166 (|#2| |#2|)) (-15 -1762 (|#2| |#2|)) (-15 -3328 (|#2| |#2|)) (-15 -1616 (|#2| |#2|)) (-15 -3729 (|#2| |#2|)) (-15 -1628 (|#2| |#2|)) (-15 -1357 (|#2| |#2|)) (-15 -3338 (|#2| |#2|)) (-15 -3582 (|#2| |#2|)) (-15 -1947 (|#2| |#2|)) (-15 -4078 (|#2| |#2|)) (IF (|has| |#1| (-825 |#1|)) (IF (|has| |#1| (-570 (-831 |#1|))) (IF (|has| |#2| (-570 (-831 |#1|))) (IF (|has| |#2| (-825 |#1|)) (-15 -2064 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-3759 (((-110) |#5| $) 60) (((-110) $) 102)) (-1728 ((|#5| |#5| $) 75)) (-1573 (($ (-1 (-110) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-1658 (((-595 |#5|) (-595 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|)) 73)) (-3001 (((-3 $ "failed") (-595 |#5|)) 126)) (-2902 (((-3 $ "failed") $) 112)) (-1592 ((|#5| |#5| $) 94)) (-1927 (((-110) |#5| $ (-1 (-110) |#5| |#5|)) 31)) (-3345 ((|#5| |#5| $) 98)) (-1422 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|)) 69)) (-4049 (((-2 (|:| -2254 (-595 |#5|)) (|:| -2378 (-595 |#5|))) $) 55)) (-3092 (((-110) |#5| $) 58) (((-110) $) 103)) (-1761 ((|#4| $) 108)) (-2301 (((-3 |#5| "failed") $) 110)) (-3923 (((-595 |#5|) $) 49)) (-2127 (((-110) |#5| $) 67) (((-110) $) 107)) (-3436 ((|#5| |#5| $) 81)) (-3664 (((-110) $ $) 27)) (-1906 (((-110) |#5| $) 63) (((-110) $) 105)) (-2001 ((|#5| |#5| $) 78)) (-2890 (((-3 |#5| "failed") $) 109)) (-3740 (($ $ |#5|) 127)) (-2935 (((-717) $) 52)) (-2233 (($ (-595 |#5|)) 124)) (-2649 (($ $ |#4|) 122)) (-3597 (($ $ |#4|) 121)) (-3311 (($ $) 120)) (-2222 (((-802) $) NIL) (((-595 |#5|) $) 113)) (-2459 (((-717) $) 130)) (-1411 (((-3 (-2 (|:| |bas| $) (|:| -1513 (-595 |#5|))) "failed") (-595 |#5|) (-1 (-110) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -1513 (-595 |#5|))) "failed") (-595 |#5|) (-1 (-110) |#5|) (-1 (-110) |#5| |#5|)) 45)) (-1622 (((-110) $ (-1 (-110) |#5| (-595 |#5|))) 100)) (-1490 (((-595 |#4|) $) 115)) (-2190 (((-110) |#4| $) 118)) (-2186 (((-110) $ $) 19)))
-(((-1124 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2459 ((-717) |#1|)) (-15 -3740 (|#1| |#1| |#5|)) (-15 -1573 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2190 ((-110) |#4| |#1|)) (-15 -1490 ((-595 |#4|) |#1|)) (-15 -2902 ((-3 |#1| "failed") |#1|)) (-15 -2301 ((-3 |#5| "failed") |#1|)) (-15 -2890 ((-3 |#5| "failed") |#1|)) (-15 -3345 (|#5| |#5| |#1|)) (-15 -3311 (|#1| |#1|)) (-15 -1592 (|#5| |#5| |#1|)) (-15 -3436 (|#5| |#5| |#1|)) (-15 -2001 (|#5| |#5| |#1|)) (-15 -1728 (|#5| |#5| |#1|)) (-15 -1658 ((-595 |#5|) (-595 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -1422 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -2127 ((-110) |#1|)) (-15 -1906 ((-110) |#1|)) (-15 -3759 ((-110) |#1|)) (-15 -1622 ((-110) |#1| (-1 (-110) |#5| (-595 |#5|)))) (-15 -2127 ((-110) |#5| |#1|)) (-15 -1906 ((-110) |#5| |#1|)) (-15 -3759 ((-110) |#5| |#1|)) (-15 -1927 ((-110) |#5| |#1| (-1 (-110) |#5| |#5|))) (-15 -3092 ((-110) |#1|)) (-15 -3092 ((-110) |#5| |#1|)) (-15 -4049 ((-2 (|:| -2254 (-595 |#5|)) (|:| -2378 (-595 |#5|))) |#1|)) (-15 -2935 ((-717) |#1|)) (-15 -3923 ((-595 |#5|) |#1|)) (-15 -1411 ((-3 (-2 (|:| |bas| |#1|) (|:| -1513 (-595 |#5|))) "failed") (-595 |#5|) (-1 (-110) |#5|) (-1 (-110) |#5| |#5|))) (-15 -1411 ((-3 (-2 (|:| |bas| |#1|) (|:| -1513 (-595 |#5|))) "failed") (-595 |#5|) (-1 (-110) |#5| |#5|))) (-15 -3664 ((-110) |#1| |#1|)) (-15 -2649 (|#1| |#1| |#4|)) (-15 -3597 (|#1| |#1| |#4|)) (-15 -1761 (|#4| |#1|)) (-15 -3001 ((-3 |#1| "failed") (-595 |#5|))) (-15 -2222 ((-595 |#5|) |#1|)) (-15 -2233 (|#1| (-595 |#5|))) (-15 -1422 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1422 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1573 (|#1| (-1 (-110) |#5|) |#1|)) (-15 -1422 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2222 ((-802) |#1|)) (-15 -2186 ((-110) |#1| |#1|))) (-1125 |#2| |#3| |#4| |#5|) (-520) (-739) (-793) (-994 |#2| |#3| |#4|)) (T -1124))
-NIL
-(-10 -8 (-15 -2459 ((-717) |#1|)) (-15 -3740 (|#1| |#1| |#5|)) (-15 -1573 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2190 ((-110) |#4| |#1|)) (-15 -1490 ((-595 |#4|) |#1|)) (-15 -2902 ((-3 |#1| "failed") |#1|)) (-15 -2301 ((-3 |#5| "failed") |#1|)) (-15 -2890 ((-3 |#5| "failed") |#1|)) (-15 -3345 (|#5| |#5| |#1|)) (-15 -3311 (|#1| |#1|)) (-15 -1592 (|#5| |#5| |#1|)) (-15 -3436 (|#5| |#5| |#1|)) (-15 -2001 (|#5| |#5| |#1|)) (-15 -1728 (|#5| |#5| |#1|)) (-15 -1658 ((-595 |#5|) (-595 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -1422 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -2127 ((-110) |#1|)) (-15 -1906 ((-110) |#1|)) (-15 -3759 ((-110) |#1|)) (-15 -1622 ((-110) |#1| (-1 (-110) |#5| (-595 |#5|)))) (-15 -2127 ((-110) |#5| |#1|)) (-15 -1906 ((-110) |#5| |#1|)) (-15 -3759 ((-110) |#5| |#1|)) (-15 -1927 ((-110) |#5| |#1| (-1 (-110) |#5| |#5|))) (-15 -3092 ((-110) |#1|)) (-15 -3092 ((-110) |#5| |#1|)) (-15 -4049 ((-2 (|:| -2254 (-595 |#5|)) (|:| -2378 (-595 |#5|))) |#1|)) (-15 -2935 ((-717) |#1|)) (-15 -3923 ((-595 |#5|) |#1|)) (-15 -1411 ((-3 (-2 (|:| |bas| |#1|) (|:| -1513 (-595 |#5|))) "failed") (-595 |#5|) (-1 (-110) |#5|) (-1 (-110) |#5| |#5|))) (-15 -1411 ((-3 (-2 (|:| |bas| |#1|) (|:| -1513 (-595 |#5|))) "failed") (-595 |#5|) (-1 (-110) |#5| |#5|))) (-15 -3664 ((-110) |#1| |#1|)) (-15 -2649 (|#1| |#1| |#4|)) (-15 -3597 (|#1| |#1| |#4|)) (-15 -1761 (|#4| |#1|)) (-15 -3001 ((-3 |#1| "failed") (-595 |#5|))) (-15 -2222 ((-595 |#5|) |#1|)) (-15 -2233 (|#1| (-595 |#5|))) (-15 -1422 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1422 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1573 (|#1| (-1 (-110) |#5|) |#1|)) (-15 -1422 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2222 ((-802) |#1|)) (-15 -2186 ((-110) |#1| |#1|)))
-((-2207 (((-110) $ $) 7)) (-2785 (((-595 (-2 (|:| -2254 $) (|:| -2378 (-595 |#4|)))) (-595 |#4|)) 85)) (-1985 (((-595 $) (-595 |#4|)) 86)) (-2565 (((-595 |#3|) $) 33)) (-3812 (((-110) $) 26)) (-2414 (((-110) $) 17 (|has| |#1| (-520)))) (-3759 (((-110) |#4| $) 101) (((-110) $) 97)) (-1728 ((|#4| |#4| $) 92)) (-1289 (((-2 (|:| |under| $) (|:| -2925 $) (|:| |upper| $)) $ |#3|) 27)) (-3535 (((-110) $ (-717)) 44)) (-1573 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4264))) (((-3 |#4| "failed") $ |#3|) 79)) (-2816 (($) 45 T CONST)) (-1689 (((-110) $) 22 (|has| |#1| (-520)))) (-2584 (((-110) $ $) 24 (|has| |#1| (-520)))) (-3168 (((-110) $ $) 23 (|has| |#1| (-520)))) (-1924 (((-110) $) 25 (|has| |#1| (-520)))) (-1658 (((-595 |#4|) (-595 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-1891 (((-595 |#4|) (-595 |#4|) $) 18 (|has| |#1| (-520)))) (-3794 (((-595 |#4|) (-595 |#4|) $) 19 (|has| |#1| (-520)))) (-3001 (((-3 $ "failed") (-595 |#4|)) 36)) (-2409 (($ (-595 |#4|)) 35)) (-2902 (((-3 $ "failed") $) 82)) (-1592 ((|#4| |#4| $) 89)) (-2923 (($ $) 68 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264))))) (-2280 (($ |#4| $) 67 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4264)))) (-2537 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-520)))) (-1927 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-3345 ((|#4| |#4| $) 87)) (-1422 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4264))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4264))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-4049 (((-2 (|:| -2254 (-595 |#4|)) (|:| -2378 (-595 |#4|))) $) 105)) (-3342 (((-595 |#4|) $) 52 (|has| $ (-6 -4264)))) (-3092 (((-110) |#4| $) 104) (((-110) $) 103)) (-1761 ((|#3| $) 34)) (-2029 (((-110) $ (-717)) 43)) (-2604 (((-595 |#4|) $) 53 (|has| $ (-6 -4264)))) (-2408 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264))))) (-2800 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#4| |#4|) $) 47)) (-3558 (((-595 |#3|) $) 32)) (-3472 (((-110) |#3| $) 31)) (-3358 (((-110) $ (-717)) 42)) (-3034 (((-1078) $) 9)) (-2301 (((-3 |#4| "failed") $) 83)) (-3923 (((-595 |#4|) $) 107)) (-2127 (((-110) |#4| $) 99) (((-110) $) 95)) (-3436 ((|#4| |#4| $) 90)) (-3664 (((-110) $ $) 110)) (-1827 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-520)))) (-1906 (((-110) |#4| $) 100) (((-110) $) 96)) (-2001 ((|#4| |#4| $) 91)) (-2495 (((-1042) $) 10)) (-2890 (((-3 |#4| "failed") $) 84)) (-1734 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-3912 (((-3 $ "failed") $ |#4|) 78)) (-3740 (($ $ |#4|) 77)) (-1818 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 |#4|) (-595 |#4|)) 59 (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ (-275 |#4|)) 57 (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ (-595 (-275 |#4|))) 56 (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))))) (-3744 (((-110) $ $) 38)) (-1972 (((-110) $) 41)) (-2147 (($) 40)) (-2935 (((-717) $) 106)) (-2507 (((-717) |#4| $) 54 (-12 (|has| |#4| (-1023)) (|has| $ (-6 -4264)))) (((-717) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4264)))) (-2406 (($ $) 39)) (-3155 (((-504) $) 69 (|has| |#4| (-570 (-504))))) (-2233 (($ (-595 |#4|)) 60)) (-2649 (($ $ |#3|) 28)) (-3597 (($ $ |#3|) 30)) (-3311 (($ $) 88)) (-1812 (($ $ |#3|) 29)) (-2222 (((-802) $) 11) (((-595 |#4|) $) 37)) (-2459 (((-717) $) 76 (|has| |#3| (-348)))) (-1411 (((-3 (-2 (|:| |bas| $) (|:| -1513 (-595 |#4|))) "failed") (-595 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1513 (-595 |#4|))) "failed") (-595 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-1622 (((-110) $ (-1 (-110) |#4| (-595 |#4|))) 98)) (-3451 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4264)))) (-1490 (((-595 |#3|) $) 81)) (-2190 (((-110) |#3| $) 80)) (-2186 (((-110) $ $) 6)) (-2138 (((-717) $) 46 (|has| $ (-6 -4264)))))
-(((-1125 |#1| |#2| |#3| |#4|) (-133) (-520) (-739) (-793) (-994 |t#1| |t#2| |t#3|)) (T -1125))
-((-3664 (*1 *2 *1 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-110)))) (-1411 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-110) *8 *8)) (-4 *8 (-994 *5 *6 *7)) (-4 *5 (-520)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1513 (-595 *8)))) (-5 *3 (-595 *8)) (-4 *1 (-1125 *5 *6 *7 *8)))) (-1411 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-110) *9)) (-5 *5 (-1 (-110) *9 *9)) (-4 *9 (-994 *6 *7 *8)) (-4 *6 (-520)) (-4 *7 (-739)) (-4 *8 (-793)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1513 (-595 *9)))) (-5 *3 (-595 *9)) (-4 *1 (-1125 *6 *7 *8 *9)))) (-3923 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-595 *6)))) (-2935 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-717)))) (-4049 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-2 (|:| -2254 (-595 *6)) (|:| -2378 (-595 *6)))))) (-3092 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-110)))) (-3092 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-110)))) (-1927 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *1 (-1125 *5 *6 *7 *3)) (-4 *5 (-520)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-110)))) (-3759 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-110)))) (-1906 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-110)))) (-2127 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-110)))) (-1622 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-110) *7 (-595 *7))) (-4 *1 (-1125 *4 *5 *6 *7)) (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-110)))) (-3759 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-110)))) (-1906 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-110)))) (-2127 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-110)))) (-1422 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-110) *2 *2)) (-4 *1 (-1125 *5 *6 *7 *2)) (-4 *5 (-520)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *2 (-994 *5 *6 *7)))) (-1658 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-595 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-110) *8 *8)) (-4 *1 (-1125 *5 *6 *7 *8)) (-4 *5 (-520)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *8 (-994 *5 *6 *7)))) (-1728 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *2 (-994 *3 *4 *5)))) (-2001 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *2 (-994 *3 *4 *5)))) (-3436 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *2 (-994 *3 *4 *5)))) (-1592 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *2 (-994 *3 *4 *5)))) (-3311 (*1 *1 *1) (-12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *2 (-520)) (-4 *3 (-739)) (-4 *4 (-793)) (-4 *5 (-994 *2 *3 *4)))) (-3345 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *2 (-994 *3 *4 *5)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-595 *1)) (-4 *1 (-1125 *4 *5 *6 *7)))) (-2785 (*1 *2 *3) (-12 (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-595 (-2 (|:| -2254 *1) (|:| -2378 (-595 *7))))) (-5 *3 (-595 *7)) (-4 *1 (-1125 *4 *5 *6 *7)))) (-2890 (*1 *2 *1) (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *2 (-994 *3 *4 *5)))) (-2301 (*1 *2 *1) (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *2 (-994 *3 *4 *5)))) (-2902 (*1 *1 *1) (|partial| -12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *2 (-520)) (-4 *3 (-739)) (-4 *4 (-793)) (-4 *5 (-994 *2 *3 *4)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-595 *5)))) (-2190 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *3 *6)) (-4 *4 (-520)) (-4 *5 (-739)) (-4 *3 (-793)) (-4 *6 (-994 *4 *5 *3)) (-5 *2 (-110)))) (-1573 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1125 *4 *5 *3 *2)) (-4 *4 (-520)) (-4 *5 (-739)) (-4 *3 (-793)) (-4 *2 (-994 *4 *5 *3)))) (-3912 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *2 (-994 *3 *4 *5)))) (-3740 (*1 *1 *1 *2) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *2 (-994 *3 *4 *5)))) (-2459 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-4 *5 (-348)) (-5 *2 (-717)))))
-(-13 (-913 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4264) (-6 -4265) (-15 -3664 ((-110) $ $)) (-15 -1411 ((-3 (-2 (|:| |bas| $) (|:| -1513 (-595 |t#4|))) "failed") (-595 |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -1411 ((-3 (-2 (|:| |bas| $) (|:| -1513 (-595 |t#4|))) "failed") (-595 |t#4|) (-1 (-110) |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -3923 ((-595 |t#4|) $)) (-15 -2935 ((-717) $)) (-15 -4049 ((-2 (|:| -2254 (-595 |t#4|)) (|:| -2378 (-595 |t#4|))) $)) (-15 -3092 ((-110) |t#4| $)) (-15 -3092 ((-110) $)) (-15 -1927 ((-110) |t#4| $ (-1 (-110) |t#4| |t#4|))) (-15 -3759 ((-110) |t#4| $)) (-15 -1906 ((-110) |t#4| $)) (-15 -2127 ((-110) |t#4| $)) (-15 -1622 ((-110) $ (-1 (-110) |t#4| (-595 |t#4|)))) (-15 -3759 ((-110) $)) (-15 -1906 ((-110) $)) (-15 -2127 ((-110) $)) (-15 -1422 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -1658 ((-595 |t#4|) (-595 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -1728 (|t#4| |t#4| $)) (-15 -2001 (|t#4| |t#4| $)) (-15 -3436 (|t#4| |t#4| $)) (-15 -1592 (|t#4| |t#4| $)) (-15 -3311 ($ $)) (-15 -3345 (|t#4| |t#4| $)) (-15 -1985 ((-595 $) (-595 |t#4|))) (-15 -2785 ((-595 (-2 (|:| -2254 $) (|:| -2378 (-595 |t#4|)))) (-595 |t#4|))) (-15 -2890 ((-3 |t#4| "failed") $)) (-15 -2301 ((-3 |t#4| "failed") $)) (-15 -2902 ((-3 $ "failed") $)) (-15 -1490 ((-595 |t#3|) $)) (-15 -2190 ((-110) |t#3| $)) (-15 -1573 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3912 ((-3 $ "failed") $ |t#4|)) (-15 -3740 ($ $ |t#4|)) (IF (|has| |t#3| (-348)) (-15 -2459 ((-717) $)) |%noBranch|)))
-(((-33) . T) ((-99) . T) ((-569 (-595 |#4|)) . T) ((-569 (-802)) . T) ((-144 |#4|) . T) ((-570 (-504)) |has| |#4| (-570 (-504))) ((-290 |#4|) -12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))) ((-467 |#4|) . T) ((-489 |#4| |#4|) -12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))) ((-913 |#1| |#2| |#3| |#4|) . T) ((-1023) . T) ((-1131) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2565 (((-595 (-1095)) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#1| (-520)))) (-1738 (($ $) NIL (|has| |#1| (-520)))) (-1811 (((-110) $) NIL (|has| |#1| (-520)))) (-2880 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2735 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3181 (((-3 $ "failed") $ $) NIL)) (-2450 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2859 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2712 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2904 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2761 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2816 (($) NIL T CONST)) (-2388 (($ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1872 (((-891 |#1|) $ (-717)) 17) (((-891 |#1|) $ (-717) (-717)) NIL)) (-1900 (((-110) $) NIL)) (-1505 (($) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3689 (((-717) $ (-1095)) NIL) (((-717) $ (-1095) (-717)) NIL)) (-1297 (((-110) $) NIL)) (-2796 (($ $ (-528)) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2195 (((-110) $) NIL)) (-2548 (($ $ (-595 (-1095)) (-595 (-500 (-1095)))) NIL) (($ $ (-1095) (-500 (-1095))) NIL) (($ |#1| (-500 (-1095))) NIL) (($ $ (-1095) (-717)) NIL) (($ $ (-595 (-1095)) (-595 (-717))) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-2097 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2686 (($ $) NIL)) (-2697 ((|#1| $) NIL)) (-3034 (((-1078) $) NIL)) (-1923 (($ $ (-1095)) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-1095) |#1|) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2495 (((-1042) $) NIL)) (-1638 (($ (-1 $) (-1095) |#1|) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3740 (($ $ (-717)) NIL)) (-3477 (((-3 $ "failed") $ $) NIL (|has| |#1| (-520)))) (-2656 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4014 (($ $ (-1095) $) NIL) (($ $ (-595 (-1095)) (-595 $)) NIL) (($ $ (-595 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL)) (-3235 (($ $ (-1095)) NIL) (($ $ (-595 (-1095))) NIL) (($ $ (-1095) (-717)) NIL) (($ $ (-595 (-1095)) (-595 (-717))) NIL)) (-2935 (((-500 (-1095)) $) NIL)) (-2917 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2773 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2892 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2749 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2869 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2724 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3534 (($ $) NIL)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ $) NIL (|has| |#1| (-520))) (($ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528))))) (($ (-1095)) NIL) (($ (-891 |#1|)) NIL)) (-3216 ((|#1| $ (-500 (-1095))) NIL) (($ $ (-1095) (-717)) NIL) (($ $ (-595 (-1095)) (-595 (-717))) NIL) (((-891 |#1|) $ (-717)) NIL)) (-3749 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3742 (((-717)) NIL)) (-2953 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2811 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4016 (((-110) $ $) NIL (|has| |#1| (-520)))) (-2928 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2784 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2981 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2836 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3592 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2846 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2967 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2825 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2940 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2797 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) NIL T CONST)) (-3245 (($ $ (-1095)) NIL) (($ $ (-595 (-1095))) NIL) (($ $ (-1095) (-717)) NIL) (($ $ (-595 (-1095)) (-595 (-717))) NIL)) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ |#1|) NIL (|has| |#1| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528)))))) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528))))) (($ (-387 (-528)) $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1126 |#1|) (-13 (-687 |#1| (-1095)) (-10 -8 (-15 -3216 ((-891 |#1|) $ (-717))) (-15 -2222 ($ (-1095))) (-15 -2222 ($ (-891 |#1|))) (IF (|has| |#1| (-37 (-387 (-528)))) (PROGN (-15 -1923 ($ $ (-1095) |#1|)) (-15 -1638 ($ (-1 $) (-1095) |#1|))) |%noBranch|))) (-981)) (T -1126))
-((-3216 (*1 *2 *1 *3) (-12 (-5 *3 (-717)) (-5 *2 (-891 *4)) (-5 *1 (-1126 *4)) (-4 *4 (-981)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-1126 *3)) (-4 *3 (-981)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-891 *3)) (-4 *3 (-981)) (-5 *1 (-1126 *3)))) (-1923 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *1 (-1126 *3)) (-4 *3 (-37 (-387 (-528)))) (-4 *3 (-981)))) (-1638 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1126 *4))) (-5 *3 (-1095)) (-5 *1 (-1126 *4)) (-4 *4 (-37 (-387 (-528)))) (-4 *4 (-981)))))
-(-13 (-687 |#1| (-1095)) (-10 -8 (-15 -3216 ((-891 |#1|) $ (-717))) (-15 -2222 ($ (-1095))) (-15 -2222 ($ (-891 |#1|))) (IF (|has| |#1| (-37 (-387 (-528)))) (PROGN (-15 -1923 ($ $ (-1095) |#1|)) (-15 -1638 ($ (-1 $) (-1095) |#1|))) |%noBranch|)))
-((-3731 (($ |#1| (-595 (-595 (-882 (-207)))) (-110)) 19)) (-3672 (((-110) $ (-110)) 18)) (-3179 (((-110) $) 17)) (-2474 (((-595 (-595 (-882 (-207)))) $) 13)) (-3277 ((|#1| $) 8)) (-1931 (((-110) $) 15)))
-(((-1127 |#1|) (-10 -8 (-15 -3277 (|#1| $)) (-15 -2474 ((-595 (-595 (-882 (-207)))) $)) (-15 -1931 ((-110) $)) (-15 -3179 ((-110) $)) (-15 -3672 ((-110) $ (-110))) (-15 -3731 ($ |#1| (-595 (-595 (-882 (-207)))) (-110)))) (-911)) (T -1127))
-((-3731 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-595 (-595 (-882 (-207))))) (-5 *4 (-110)) (-5 *1 (-1127 *2)) (-4 *2 (-911)))) (-3672 (*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1127 *3)) (-4 *3 (-911)))) (-3179 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1127 *3)) (-4 *3 (-911)))) (-1931 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1127 *3)) (-4 *3 (-911)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-595 (-595 (-882 (-207))))) (-5 *1 (-1127 *3)) (-4 *3 (-911)))) (-3277 (*1 *2 *1) (-12 (-5 *1 (-1127 *2)) (-4 *2 (-911)))))
-(-10 -8 (-15 -3277 (|#1| $)) (-15 -2474 ((-595 (-595 (-882 (-207)))) $)) (-15 -1931 ((-110) $)) (-15 -3179 ((-110) $)) (-15 -3672 ((-110) $ (-110))) (-15 -3731 ($ |#1| (-595 (-595 (-882 (-207)))) (-110))))
-((-2562 (((-882 (-207)) (-882 (-207))) 25)) (-1363 (((-882 (-207)) (-207) (-207) (-207) (-207)) 10)) (-3747 (((-595 (-882 (-207))) (-882 (-207)) (-882 (-207)) (-882 (-207)) (-207) (-595 (-595 (-207)))) 37)) (-3675 (((-207) (-882 (-207)) (-882 (-207))) 21)) (-3996 (((-882 (-207)) (-882 (-207)) (-882 (-207))) 22)) (-3124 (((-595 (-595 (-207))) (-528)) 31)) (-2286 (((-882 (-207)) (-882 (-207)) (-882 (-207))) 20)) (-2275 (((-882 (-207)) (-882 (-207)) (-882 (-207))) 19)) (* (((-882 (-207)) (-207) (-882 (-207))) 18)))
-(((-1128) (-10 -7 (-15 -1363 ((-882 (-207)) (-207) (-207) (-207) (-207))) (-15 * ((-882 (-207)) (-207) (-882 (-207)))) (-15 -2275 ((-882 (-207)) (-882 (-207)) (-882 (-207)))) (-15 -2286 ((-882 (-207)) (-882 (-207)) (-882 (-207)))) (-15 -3675 ((-207) (-882 (-207)) (-882 (-207)))) (-15 -3996 ((-882 (-207)) (-882 (-207)) (-882 (-207)))) (-15 -2562 ((-882 (-207)) (-882 (-207)))) (-15 -3124 ((-595 (-595 (-207))) (-528))) (-15 -3747 ((-595 (-882 (-207))) (-882 (-207)) (-882 (-207)) (-882 (-207)) (-207) (-595 (-595 (-207))))))) (T -1128))
-((-3747 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-595 (-595 (-207)))) (-5 *4 (-207)) (-5 *2 (-595 (-882 *4))) (-5 *1 (-1128)) (-5 *3 (-882 *4)))) (-3124 (*1 *2 *3) (-12 (-5 *3 (-528)) (-5 *2 (-595 (-595 (-207)))) (-5 *1 (-1128)))) (-2562 (*1 *2 *2) (-12 (-5 *2 (-882 (-207))) (-5 *1 (-1128)))) (-3996 (*1 *2 *2 *2) (-12 (-5 *2 (-882 (-207))) (-5 *1 (-1128)))) (-3675 (*1 *2 *3 *3) (-12 (-5 *3 (-882 (-207))) (-5 *2 (-207)) (-5 *1 (-1128)))) (-2286 (*1 *2 *2 *2) (-12 (-5 *2 (-882 (-207))) (-5 *1 (-1128)))) (-2275 (*1 *2 *2 *2) (-12 (-5 *2 (-882 (-207))) (-5 *1 (-1128)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-882 (-207))) (-5 *3 (-207)) (-5 *1 (-1128)))) (-1363 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-882 (-207))) (-5 *1 (-1128)) (-5 *3 (-207)))))
-(-10 -7 (-15 -1363 ((-882 (-207)) (-207) (-207) (-207) (-207))) (-15 * ((-882 (-207)) (-207) (-882 (-207)))) (-15 -2275 ((-882 (-207)) (-882 (-207)) (-882 (-207)))) (-15 -2286 ((-882 (-207)) (-882 (-207)) (-882 (-207)))) (-15 -3675 ((-207) (-882 (-207)) (-882 (-207)))) (-15 -3996 ((-882 (-207)) (-882 (-207)) (-882 (-207)))) (-15 -2562 ((-882 (-207)) (-882 (-207)))) (-15 -3124 ((-595 (-595 (-207))) (-528))) (-15 -3747 ((-595 (-882 (-207))) (-882 (-207)) (-882 (-207)) (-882 (-207)) (-207) (-595 (-595 (-207))))))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-1573 ((|#1| $ (-717)) 13)) (-1584 (((-717) $) 12)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-2222 (((-896 |#1|) $) 10) (($ (-896 |#1|)) 9) (((-802) $) 23 (|has| |#1| (-569 (-802))))) (-2186 (((-110) $ $) 16 (|has| |#1| (-1023)))))
-(((-1129 |#1|) (-13 (-569 (-896 |#1|)) (-10 -8 (-15 -2222 ($ (-896 |#1|))) (-15 -1573 (|#1| $ (-717))) (-15 -1584 ((-717) $)) (IF (|has| |#1| (-569 (-802))) (-6 (-569 (-802))) |%noBranch|) (IF (|has| |#1| (-1023)) (-6 (-1023)) |%noBranch|))) (-1131)) (T -1129))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-896 *3)) (-4 *3 (-1131)) (-5 *1 (-1129 *3)))) (-1573 (*1 *2 *1 *3) (-12 (-5 *3 (-717)) (-5 *1 (-1129 *2)) (-4 *2 (-1131)))) (-1584 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-1129 *3)) (-4 *3 (-1131)))))
-(-13 (-569 (-896 |#1|)) (-10 -8 (-15 -2222 ($ (-896 |#1|))) (-15 -1573 (|#1| $ (-717))) (-15 -1584 ((-717) $)) (IF (|has| |#1| (-569 (-802))) (-6 (-569 (-802))) |%noBranch|) (IF (|has| |#1| (-1023)) (-6 (-1023)) |%noBranch|)))
-((-1740 (((-398 (-1091 (-1091 |#1|))) (-1091 (-1091 |#1|)) (-528)) 80)) (-1971 (((-398 (-1091 (-1091 |#1|))) (-1091 (-1091 |#1|))) 74)) (-1210 (((-398 (-1091 (-1091 |#1|))) (-1091 (-1091 |#1|))) 59)))
-(((-1130 |#1|) (-10 -7 (-15 -1971 ((-398 (-1091 (-1091 |#1|))) (-1091 (-1091 |#1|)))) (-15 -1210 ((-398 (-1091 (-1091 |#1|))) (-1091 (-1091 |#1|)))) (-15 -1740 ((-398 (-1091 (-1091 |#1|))) (-1091 (-1091 |#1|)) (-528)))) (-329)) (T -1130))
-((-1740 (*1 *2 *3 *4) (-12 (-5 *4 (-528)) (-4 *5 (-329)) (-5 *2 (-398 (-1091 (-1091 *5)))) (-5 *1 (-1130 *5)) (-5 *3 (-1091 (-1091 *5))))) (-1210 (*1 *2 *3) (-12 (-4 *4 (-329)) (-5 *2 (-398 (-1091 (-1091 *4)))) (-5 *1 (-1130 *4)) (-5 *3 (-1091 (-1091 *4))))) (-1971 (*1 *2 *3) (-12 (-4 *4 (-329)) (-5 *2 (-398 (-1091 (-1091 *4)))) (-5 *1 (-1130 *4)) (-5 *3 (-1091 (-1091 *4))))))
-(-10 -7 (-15 -1971 ((-398 (-1091 (-1091 |#1|))) (-1091 (-1091 |#1|)))) (-15 -1210 ((-398 (-1091 (-1091 |#1|))) (-1091 (-1091 |#1|)))) (-15 -1740 ((-398 (-1091 (-1091 |#1|))) (-1091 (-1091 |#1|)) (-528))))
-NIL
-(((-1131) (-133)) (T -1131))
-NIL
-(-13 (-10 -7 (-6 -4050)))
-((-1532 (((-110)) 15)) (-2417 (((-1182) (-595 |#1|) (-595 |#1|)) 19) (((-1182) (-595 |#1|)) 20)) (-2029 (((-110) |#1| |#1|) 32 (|has| |#1| (-793)))) (-3358 (((-110) |#1| |#1| (-1 (-110) |#1| |#1|)) 27) (((-3 (-110) "failed") |#1| |#1|) 25)) (-2678 ((|#1| (-595 |#1|)) 33 (|has| |#1| (-793))) ((|#1| (-595 |#1|) (-1 (-110) |#1| |#1|)) 28)) (-1796 (((-2 (|:| -2398 (-595 |#1|)) (|:| -1482 (-595 |#1|)))) 17)))
-(((-1132 |#1|) (-10 -7 (-15 -2417 ((-1182) (-595 |#1|))) (-15 -2417 ((-1182) (-595 |#1|) (-595 |#1|))) (-15 -1796 ((-2 (|:| -2398 (-595 |#1|)) (|:| -1482 (-595 |#1|))))) (-15 -3358 ((-3 (-110) "failed") |#1| |#1|)) (-15 -3358 ((-110) |#1| |#1| (-1 (-110) |#1| |#1|))) (-15 -2678 (|#1| (-595 |#1|) (-1 (-110) |#1| |#1|))) (-15 -1532 ((-110))) (IF (|has| |#1| (-793)) (PROGN (-15 -2678 (|#1| (-595 |#1|))) (-15 -2029 ((-110) |#1| |#1|))) |%noBranch|)) (-1023)) (T -1132))
-((-2029 (*1 *2 *3 *3) (-12 (-5 *2 (-110)) (-5 *1 (-1132 *3)) (-4 *3 (-793)) (-4 *3 (-1023)))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-1023)) (-4 *2 (-793)) (-5 *1 (-1132 *2)))) (-1532 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1132 *3)) (-4 *3 (-1023)))) (-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *2)) (-5 *4 (-1 (-110) *2 *2)) (-5 *1 (-1132 *2)) (-4 *2 (-1023)))) (-3358 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *3 (-1023)) (-5 *2 (-110)) (-5 *1 (-1132 *3)))) (-3358 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-110)) (-5 *1 (-1132 *3)) (-4 *3 (-1023)))) (-1796 (*1 *2) (-12 (-5 *2 (-2 (|:| -2398 (-595 *3)) (|:| -1482 (-595 *3)))) (-5 *1 (-1132 *3)) (-4 *3 (-1023)))) (-2417 (*1 *2 *3 *3) (-12 (-5 *3 (-595 *4)) (-4 *4 (-1023)) (-5 *2 (-1182)) (-5 *1 (-1132 *4)))) (-2417 (*1 *2 *3) (-12 (-5 *3 (-595 *4)) (-4 *4 (-1023)) (-5 *2 (-1182)) (-5 *1 (-1132 *4)))))
-(-10 -7 (-15 -2417 ((-1182) (-595 |#1|))) (-15 -2417 ((-1182) (-595 |#1|) (-595 |#1|))) (-15 -1796 ((-2 (|:| -2398 (-595 |#1|)) (|:| -1482 (-595 |#1|))))) (-15 -3358 ((-3 (-110) "failed") |#1| |#1|)) (-15 -3358 ((-110) |#1| |#1| (-1 (-110) |#1| |#1|))) (-15 -2678 (|#1| (-595 |#1|) (-1 (-110) |#1| |#1|))) (-15 -1532 ((-110))) (IF (|has| |#1| (-793)) (PROGN (-15 -2678 (|#1| (-595 |#1|))) (-15 -2029 ((-110) |#1| |#1|))) |%noBranch|))
-((-3356 (((-1182) (-595 (-1095)) (-595 (-1095))) 13) (((-1182) (-595 (-1095))) 11)) (-1211 (((-1182)) 14)) (-3432 (((-2 (|:| -1482 (-595 (-1095))) (|:| -2398 (-595 (-1095))))) 18)))
-(((-1133) (-10 -7 (-15 -3356 ((-1182) (-595 (-1095)))) (-15 -3356 ((-1182) (-595 (-1095)) (-595 (-1095)))) (-15 -3432 ((-2 (|:| -1482 (-595 (-1095))) (|:| -2398 (-595 (-1095)))))) (-15 -1211 ((-1182))))) (T -1133))
-((-1211 (*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-1133)))) (-3432 (*1 *2) (-12 (-5 *2 (-2 (|:| -1482 (-595 (-1095))) (|:| -2398 (-595 (-1095))))) (-5 *1 (-1133)))) (-3356 (*1 *2 *3 *3) (-12 (-5 *3 (-595 (-1095))) (-5 *2 (-1182)) (-5 *1 (-1133)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-595 (-1095))) (-5 *2 (-1182)) (-5 *1 (-1133)))))
-(-10 -7 (-15 -3356 ((-1182) (-595 (-1095)))) (-15 -3356 ((-1182) (-595 (-1095)) (-595 (-1095)))) (-15 -3432 ((-2 (|:| -1482 (-595 (-1095))) (|:| -2398 (-595 (-1095)))))) (-15 -1211 ((-1182))))
-((-1232 (($ $) 17)) (-2124 (((-110) $) 24)))
-(((-1134 |#1|) (-10 -8 (-15 -1232 (|#1| |#1|)) (-15 -2124 ((-110) |#1|))) (-1135)) (T -1134))
-NIL
-(-10 -8 (-15 -1232 (|#1| |#1|)) (-15 -2124 ((-110) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 41)) (-1738 (($ $) 40)) (-1811 (((-110) $) 38)) (-3181 (((-3 $ "failed") $ $) 19)) (-1232 (($ $) 51)) (-2705 (((-398 $) $) 52)) (-2816 (($) 17 T CONST)) (-1312 (((-3 $ "failed") $) 34)) (-2124 (((-110) $) 53)) (-1297 (((-110) $) 31)) (-2057 (($ $ $) 46) (($ (-595 $)) 45)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 44)) (-2088 (($ $ $) 48) (($ (-595 $)) 47)) (-2437 (((-398 $) $) 50)) (-3477 (((-3 $ "failed") $ $) 42)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ $) 43)) (-3742 (((-717)) 29)) (-4016 (((-110) $ $) 39)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24)))
-(((-1135) (-133)) (T -1135))
-((-2124 (*1 *2 *1) (-12 (-4 *1 (-1135)) (-5 *2 (-110)))) (-2705 (*1 *2 *1) (-12 (-5 *2 (-398 *1)) (-4 *1 (-1135)))) (-1232 (*1 *1 *1) (-4 *1 (-1135))) (-2437 (*1 *2 *1) (-12 (-5 *2 (-398 *1)) (-4 *1 (-1135)))))
-(-13 (-431) (-10 -8 (-15 -2124 ((-110) $)) (-15 -2705 ((-398 $) $)) (-15 -1232 ($ $)) (-15 -2437 ((-398 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-569 (-802)) . T) ((-162) . T) ((-271) . T) ((-431) . T) ((-520) . T) ((-597 $) . T) ((-664 $) . T) ((-673) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-3106 (((-1141 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1141 |#1| |#3| |#5|)) 23)))
-(((-1136 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3106 ((-1141 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1141 |#1| |#3| |#5|)))) (-981) (-981) (-1095) (-1095) |#1| |#2|) (T -1136))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1141 *5 *7 *9)) (-4 *5 (-981)) (-4 *6 (-981)) (-14 *7 (-1095)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1141 *6 *8 *10)) (-5 *1 (-1136 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1095)))))
-(-10 -7 (-15 -3106 ((-1141 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1141 |#1| |#3| |#5|))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2565 (((-595 (-1008)) $) 74)) (-3915 (((-1095) $) 103)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 51 (|has| |#1| (-520)))) (-1738 (($ $) 52 (|has| |#1| (-520)))) (-1811 (((-110) $) 54 (|has| |#1| (-520)))) (-1781 (($ $ (-528)) 98) (($ $ (-528) (-528)) 97)) (-1514 (((-1076 (-2 (|:| |k| (-528)) (|:| |c| |#1|))) $) 105)) (-2880 (($ $) 135 (|has| |#1| (-37 (-387 (-528)))))) (-2735 (($ $) 118 (|has| |#1| (-37 (-387 (-528)))))) (-3181 (((-3 $ "failed") $ $) 19)) (-1232 (($ $) 162 (|has| |#1| (-343)))) (-2705 (((-398 $) $) 163 (|has| |#1| (-343)))) (-2450 (($ $) 117 (|has| |#1| (-37 (-387 (-528)))))) (-2213 (((-110) $ $) 153 (|has| |#1| (-343)))) (-2859 (($ $) 134 (|has| |#1| (-37 (-387 (-528)))))) (-2712 (($ $) 119 (|has| |#1| (-37 (-387 (-528)))))) (-1397 (($ (-1076 (-2 (|:| |k| (-528)) (|:| |c| |#1|)))) 174)) (-2904 (($ $) 133 (|has| |#1| (-37 (-387 (-528)))))) (-2761 (($ $) 120 (|has| |#1| (-37 (-387 (-528)))))) (-2816 (($) 17 T CONST)) (-3519 (($ $ $) 157 (|has| |#1| (-343)))) (-2388 (($ $) 60)) (-1312 (((-3 $ "failed") $) 34)) (-4013 (((-387 (-891 |#1|)) $ (-528)) 172 (|has| |#1| (-520))) (((-387 (-891 |#1|)) $ (-528) (-528)) 171 (|has| |#1| (-520)))) (-3498 (($ $ $) 156 (|has| |#1| (-343)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 151 (|has| |#1| (-343)))) (-2124 (((-110) $) 164 (|has| |#1| (-343)))) (-1900 (((-110) $) 73)) (-1505 (($) 145 (|has| |#1| (-37 (-387 (-528)))))) (-3689 (((-528) $) 100) (((-528) $ (-528)) 99)) (-1297 (((-110) $) 31)) (-2796 (($ $ (-528)) 116 (|has| |#1| (-37 (-387 (-528)))))) (-1771 (($ $ (-860)) 101)) (-3171 (($ (-1 |#1| (-528)) $) 173)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) 160 (|has| |#1| (-343)))) (-2195 (((-110) $) 62)) (-2548 (($ |#1| (-528)) 61) (($ $ (-1008) (-528)) 76) (($ $ (-595 (-1008)) (-595 (-528))) 75)) (-3106 (($ (-1 |#1| |#1|) $) 63)) (-2097 (($ $) 142 (|has| |#1| (-37 (-387 (-528)))))) (-2686 (($ $) 65)) (-2697 ((|#1| $) 66)) (-2057 (($ (-595 $)) 149 (|has| |#1| (-343))) (($ $ $) 148 (|has| |#1| (-343)))) (-3034 (((-1078) $) 9)) (-2652 (($ $) 165 (|has| |#1| (-343)))) (-1923 (($ $) 170 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-1095)) 169 (-1463 (-12 (|has| |#1| (-29 (-528))) (|has| |#1| (-897)) (|has| |#1| (-1117)) (|has| |#1| (-37 (-387 (-528))))) (-12 (|has| |#1| (-15 -2565 ((-595 (-1095)) |#1|))) (|has| |#1| (-15 -1923 (|#1| |#1| (-1095)))) (|has| |#1| (-37 (-387 (-528)))))))) (-2495 (((-1042) $) 10)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 150 (|has| |#1| (-343)))) (-2088 (($ (-595 $)) 147 (|has| |#1| (-343))) (($ $ $) 146 (|has| |#1| (-343)))) (-2437 (((-398 $) $) 161 (|has| |#1| (-343)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-343))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 158 (|has| |#1| (-343)))) (-3740 (($ $ (-528)) 95)) (-3477 (((-3 $ "failed") $ $) 50 (|has| |#1| (-520)))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 152 (|has| |#1| (-343)))) (-2656 (($ $) 143 (|has| |#1| (-37 (-387 (-528)))))) (-4014 (((-1076 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-528)))))) (-3973 (((-717) $) 154 (|has| |#1| (-343)))) (-3043 ((|#1| $ (-528)) 104) (($ $ $) 81 (|has| (-528) (-1035)))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 155 (|has| |#1| (-343)))) (-3235 (($ $ (-595 (-1095)) (-595 (-717))) 89 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (($ $ (-1095) (-717)) 88 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (($ $ (-595 (-1095))) 87 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (($ $ (-1095)) 86 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (($ $ (-717)) 84 (|has| |#1| (-15 * (|#1| (-528) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (-2935 (((-528) $) 64)) (-2917 (($ $) 132 (|has| |#1| (-37 (-387 (-528)))))) (-2773 (($ $) 121 (|has| |#1| (-37 (-387 (-528)))))) (-2892 (($ $) 131 (|has| |#1| (-37 (-387 (-528)))))) (-2749 (($ $) 122 (|has| |#1| (-37 (-387 (-528)))))) (-2869 (($ $) 130 (|has| |#1| (-37 (-387 (-528)))))) (-2724 (($ $) 123 (|has| |#1| (-37 (-387 (-528)))))) (-3534 (($ $) 72)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ |#1|) 47 (|has| |#1| (-162))) (($ (-387 (-528))) 57 (|has| |#1| (-37 (-387 (-528))))) (($ $) 49 (|has| |#1| (-520)))) (-3216 ((|#1| $ (-528)) 59)) (-3749 (((-3 $ "failed") $) 48 (|has| |#1| (-138)))) (-3742 (((-717)) 29)) (-1884 ((|#1| $) 102)) (-2953 (($ $) 141 (|has| |#1| (-37 (-387 (-528)))))) (-2811 (($ $) 129 (|has| |#1| (-37 (-387 (-528)))))) (-4016 (((-110) $ $) 53 (|has| |#1| (-520)))) (-2928 (($ $) 140 (|has| |#1| (-37 (-387 (-528)))))) (-2784 (($ $) 128 (|has| |#1| (-37 (-387 (-528)))))) (-2981 (($ $) 139 (|has| |#1| (-37 (-387 (-528)))))) (-2836 (($ $) 127 (|has| |#1| (-37 (-387 (-528)))))) (-4083 ((|#1| $ (-528)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-528)))) (|has| |#1| (-15 -2222 (|#1| (-1095))))))) (-3592 (($ $) 138 (|has| |#1| (-37 (-387 (-528)))))) (-2846 (($ $) 126 (|has| |#1| (-37 (-387 (-528)))))) (-2967 (($ $) 137 (|has| |#1| (-37 (-387 (-528)))))) (-2825 (($ $) 125 (|has| |#1| (-37 (-387 (-528)))))) (-2940 (($ $) 136 (|has| |#1| (-37 (-387 (-528)))))) (-2797 (($ $) 124 (|has| |#1| (-37 (-387 (-528)))))) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33) (($ $ (-528)) 166 (|has| |#1| (-343)))) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-3245 (($ $ (-595 (-1095)) (-595 (-717))) 93 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (($ $ (-1095) (-717)) 92 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (($ $ (-595 (-1095))) 91 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (($ $ (-1095)) 90 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (($ $ (-717)) 85 (|has| |#1| (-15 * (|#1| (-528) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (-2186 (((-110) $ $) 6)) (-2296 (($ $ |#1|) 58 (|has| |#1| (-343))) (($ $ $) 168 (|has| |#1| (-343)))) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32) (($ $ (-528)) 167 (|has| |#1| (-343))) (($ $ $) 144 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) 115 (|has| |#1| (-37 (-387 (-528)))))) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-387 (-528)) $) 56 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) 55 (|has| |#1| (-37 (-387 (-528)))))))
-(((-1137 |#1|) (-133) (-981)) (T -1137))
-((-1397 (*1 *1 *2) (-12 (-5 *2 (-1076 (-2 (|:| |k| (-528)) (|:| |c| *3)))) (-4 *3 (-981)) (-4 *1 (-1137 *3)))) (-3171 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-528))) (-4 *1 (-1137 *3)) (-4 *3 (-981)))) (-4013 (*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-4 *1 (-1137 *4)) (-4 *4 (-981)) (-4 *4 (-520)) (-5 *2 (-387 (-891 *4))))) (-4013 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-528)) (-4 *1 (-1137 *4)) (-4 *4 (-981)) (-4 *4 (-520)) (-5 *2 (-387 (-891 *4))))) (-1923 (*1 *1 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-981)) (-4 *2 (-37 (-387 (-528)))))) (-1923 (*1 *1 *1 *2) (-1463 (-12 (-5 *2 (-1095)) (-4 *1 (-1137 *3)) (-4 *3 (-981)) (-12 (-4 *3 (-29 (-528))) (-4 *3 (-897)) (-4 *3 (-1117)) (-4 *3 (-37 (-387 (-528)))))) (-12 (-5 *2 (-1095)) (-4 *1 (-1137 *3)) (-4 *3 (-981)) (-12 (|has| *3 (-15 -2565 ((-595 *2) *3))) (|has| *3 (-15 -1923 (*3 *3 *2))) (-4 *3 (-37 (-387 (-528)))))))))
-(-13 (-1155 |t#1| (-528)) (-10 -8 (-15 -1397 ($ (-1076 (-2 (|:| |k| (-528)) (|:| |c| |t#1|))))) (-15 -3171 ($ (-1 |t#1| (-528)) $)) (IF (|has| |t#1| (-520)) (PROGN (-15 -4013 ((-387 (-891 |t#1|)) $ (-528))) (-15 -4013 ((-387 (-891 |t#1|)) $ (-528) (-528)))) |%noBranch|) (IF (|has| |t#1| (-37 (-387 (-528)))) (PROGN (-15 -1923 ($ $)) (IF (|has| |t#1| (-15 -1923 (|t#1| |t#1| (-1095)))) (IF (|has| |t#1| (-15 -2565 ((-595 (-1095)) |t#1|))) (-15 -1923 ($ $ (-1095))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1117)) (IF (|has| |t#1| (-897)) (IF (|has| |t#1| (-29 (-528))) (-15 -1923 ($ $ (-1095))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-938)) (-6 (-1117))) |%noBranch|) (IF (|has| |t#1| (-343)) (-6 (-343)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-528)) . T) ((-25) . T) ((-37 #1=(-387 (-528))) -1463 (|has| |#1| (-343)) (|has| |#1| (-37 (-387 (-528))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1463 (|has| |#1| (-520)) (|has| |#1| (-343))) ((-34) |has| |#1| (-37 (-387 (-528)))) ((-93) |has| |#1| (-37 (-387 (-528)))) ((-99) . T) ((-109 #1# #1#) -1463 (|has| |#1| (-343)) (|has| |#1| (-37 (-387 (-528))))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1463 (|has| |#1| (-520)) (|has| |#1| (-343)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-569 (-802)) . T) ((-162) -1463 (|has| |#1| (-520)) (|has| |#1| (-343)) (|has| |#1| (-162))) ((-215) |has| |#1| (-15 * (|#1| (-528) |#1|))) ((-225) |has| |#1| (-343)) ((-265) |has| |#1| (-37 (-387 (-528)))) ((-267 $ $) |has| (-528) (-1035)) ((-271) -1463 (|has| |#1| (-520)) (|has| |#1| (-343))) ((-288) |has| |#1| (-343)) ((-343) |has| |#1| (-343)) ((-431) |has| |#1| (-343)) ((-469) |has| |#1| (-37 (-387 (-528)))) ((-520) -1463 (|has| |#1| (-520)) (|has| |#1| (-343))) ((-597 #1#) -1463 (|has| |#1| (-343)) (|has| |#1| (-37 (-387 (-528))))) ((-597 |#1|) . T) ((-597 $) . T) ((-664 #1#) -1463 (|has| |#1| (-343)) (|has| |#1| (-37 (-387 (-528))))) ((-664 |#1|) |has| |#1| (-162)) ((-664 $) -1463 (|has| |#1| (-520)) (|has| |#1| (-343))) ((-673) . T) ((-839 (-1095)) -12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095)))) ((-910 |#1| #0# (-1008)) . T) ((-859) |has| |#1| (-343)) ((-938) |has| |#1| (-37 (-387 (-528)))) ((-986 #1#) -1463 (|has| |#1| (-343)) (|has| |#1| (-37 (-387 (-528))))) ((-986 |#1|) . T) ((-986 $) -1463 (|has| |#1| (-520)) (|has| |#1| (-343)) (|has| |#1| (-162))) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1117) |has| |#1| (-37 (-387 (-528)))) ((-1120) |has| |#1| (-37 (-387 (-528)))) ((-1135) |has| |#1| (-343)) ((-1155 |#1| #0#) . T))
-((-1359 (((-110) $) 12)) (-3001 (((-3 |#3| "failed") $) 17) (((-3 (-1095) "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL) (((-3 (-528) "failed") $) NIL)) (-2409 ((|#3| $) 14) (((-1095) $) NIL) (((-387 (-528)) $) NIL) (((-528) $) NIL)))
-(((-1138 |#1| |#2| |#3|) (-10 -8 (-15 -2409 ((-528) |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -2409 ((-387 (-528)) |#1|)) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -2409 ((-1095) |#1|)) (-15 -3001 ((-3 (-1095) "failed") |#1|)) (-15 -2409 (|#3| |#1|)) (-15 -3001 ((-3 |#3| "failed") |#1|)) (-15 -1359 ((-110) |#1|))) (-1139 |#2| |#3|) (-981) (-1168 |#2|)) (T -1138))
-NIL
-(-10 -8 (-15 -2409 ((-528) |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -2409 ((-387 (-528)) |#1|)) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -2409 ((-1095) |#1|)) (-15 -3001 ((-3 (-1095) "failed") |#1|)) (-15 -2409 (|#3| |#1|)) (-15 -3001 ((-3 |#3| "failed") |#1|)) (-15 -1359 ((-110) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3598 ((|#2| $) 231 (-3287 (|has| |#2| (-288)) (|has| |#1| (-343))))) (-2565 (((-595 (-1008)) $) 74)) (-3915 (((-1095) $) 103)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 51 (|has| |#1| (-520)))) (-1738 (($ $) 52 (|has| |#1| (-520)))) (-1811 (((-110) $) 54 (|has| |#1| (-520)))) (-1781 (($ $ (-528)) 98) (($ $ (-528) (-528)) 97)) (-1514 (((-1076 (-2 (|:| |k| (-528)) (|:| |c| |#1|))) $) 105)) (-1825 ((|#2| $) 267)) (-3958 (((-3 |#2| "failed") $) 263)) (-2612 ((|#2| $) 264)) (-2880 (($ $) 135 (|has| |#1| (-37 (-387 (-528)))))) (-2735 (($ $) 118 (|has| |#1| (-37 (-387 (-528)))))) (-3181 (((-3 $ "failed") $ $) 19)) (-2152 (((-398 (-1091 $)) (-1091 $)) 240 (-3287 (|has| |#2| (-848)) (|has| |#1| (-343))))) (-1232 (($ $) 162 (|has| |#1| (-343)))) (-2705 (((-398 $) $) 163 (|has| |#1| (-343)))) (-2450 (($ $) 117 (|has| |#1| (-37 (-387 (-528)))))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) 237 (-3287 (|has| |#2| (-848)) (|has| |#1| (-343))))) (-2213 (((-110) $ $) 153 (|has| |#1| (-343)))) (-2859 (($ $) 134 (|has| |#1| (-37 (-387 (-528)))))) (-2712 (($ $) 119 (|has| |#1| (-37 (-387 (-528)))))) (-3605 (((-528) $) 249 (-3287 (|has| |#2| (-766)) (|has| |#1| (-343))))) (-1397 (($ (-1076 (-2 (|:| |k| (-528)) (|:| |c| |#1|)))) 174)) (-2904 (($ $) 133 (|has| |#1| (-37 (-387 (-528)))))) (-2761 (($ $) 120 (|has| |#1| (-37 (-387 (-528)))))) (-2816 (($) 17 T CONST)) (-3001 (((-3 |#2| "failed") $) 270) (((-3 (-528) "failed") $) 259 (-3287 (|has| |#2| (-972 (-528))) (|has| |#1| (-343)))) (((-3 (-387 (-528)) "failed") $) 257 (-3287 (|has| |#2| (-972 (-528))) (|has| |#1| (-343)))) (((-3 (-1095) "failed") $) 242 (-3287 (|has| |#2| (-972 (-1095))) (|has| |#1| (-343))))) (-2409 ((|#2| $) 269) (((-528) $) 260 (-3287 (|has| |#2| (-972 (-528))) (|has| |#1| (-343)))) (((-387 (-528)) $) 258 (-3287 (|has| |#2| (-972 (-528))) (|has| |#1| (-343)))) (((-1095) $) 243 (-3287 (|has| |#2| (-972 (-1095))) (|has| |#1| (-343))))) (-2736 (($ $) 266) (($ (-528) $) 265)) (-3519 (($ $ $) 157 (|has| |#1| (-343)))) (-2388 (($ $) 60)) (-2120 (((-635 |#2|) (-635 $)) 221 (|has| |#1| (-343))) (((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 $) (-1177 $)) 220 (|has| |#1| (-343))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) 219 (-3287 (|has| |#2| (-591 (-528))) (|has| |#1| (-343)))) (((-635 (-528)) (-635 $)) 218 (-3287 (|has| |#2| (-591 (-528))) (|has| |#1| (-343))))) (-1312 (((-3 $ "failed") $) 34)) (-4013 (((-387 (-891 |#1|)) $ (-528)) 172 (|has| |#1| (-520))) (((-387 (-891 |#1|)) $ (-528) (-528)) 171 (|has| |#1| (-520)))) (-1338 (($) 233 (-3287 (|has| |#2| (-513)) (|has| |#1| (-343))))) (-3498 (($ $ $) 156 (|has| |#1| (-343)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 151 (|has| |#1| (-343)))) (-2124 (((-110) $) 164 (|has| |#1| (-343)))) (-3657 (((-110) $) 247 (-3287 (|has| |#2| (-766)) (|has| |#1| (-343))))) (-1900 (((-110) $) 73)) (-1505 (($) 145 (|has| |#1| (-37 (-387 (-528)))))) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) 225 (-3287 (|has| |#2| (-825 (-359))) (|has| |#1| (-343)))) (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) 224 (-3287 (|has| |#2| (-825 (-528))) (|has| |#1| (-343))))) (-3689 (((-528) $) 100) (((-528) $ (-528)) 99)) (-1297 (((-110) $) 31)) (-3037 (($ $) 229 (|has| |#1| (-343)))) (-3031 ((|#2| $) 227 (|has| |#1| (-343)))) (-2796 (($ $ (-528)) 116 (|has| |#1| (-37 (-387 (-528)))))) (-3296 (((-3 $ "failed") $) 261 (-3287 (|has| |#2| (-1071)) (|has| |#1| (-343))))) (-3710 (((-110) $) 248 (-3287 (|has| |#2| (-766)) (|has| |#1| (-343))))) (-1771 (($ $ (-860)) 101)) (-3171 (($ (-1 |#1| (-528)) $) 173)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) 160 (|has| |#1| (-343)))) (-2195 (((-110) $) 62)) (-2548 (($ |#1| (-528)) 61) (($ $ (-1008) (-528)) 76) (($ $ (-595 (-1008)) (-595 (-528))) 75)) (-1436 (($ $ $) 251 (-3287 (|has| |#2| (-793)) (|has| |#1| (-343))))) (-1736 (($ $ $) 252 (-3287 (|has| |#2| (-793)) (|has| |#1| (-343))))) (-3106 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-343)))) (-2097 (($ $) 142 (|has| |#1| (-37 (-387 (-528)))))) (-2686 (($ $) 65)) (-2697 ((|#1| $) 66)) (-2057 (($ (-595 $)) 149 (|has| |#1| (-343))) (($ $ $) 148 (|has| |#1| (-343)))) (-2623 (($ (-528) |#2|) 268)) (-3034 (((-1078) $) 9)) (-2652 (($ $) 165 (|has| |#1| (-343)))) (-1923 (($ $) 170 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-1095)) 169 (-1463 (-12 (|has| |#1| (-29 (-528))) (|has| |#1| (-897)) (|has| |#1| (-1117)) (|has| |#1| (-37 (-387 (-528))))) (-12 (|has| |#1| (-15 -2565 ((-595 (-1095)) |#1|))) (|has| |#1| (-15 -1923 (|#1| |#1| (-1095)))) (|has| |#1| (-37 (-387 (-528)))))))) (-4197 (($) 262 (-3287 (|has| |#2| (-1071)) (|has| |#1| (-343))) CONST)) (-2495 (((-1042) $) 10)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 150 (|has| |#1| (-343)))) (-2088 (($ (-595 $)) 147 (|has| |#1| (-343))) (($ $ $) 146 (|has| |#1| (-343)))) (-3270 (($ $) 232 (-3287 (|has| |#2| (-288)) (|has| |#1| (-343))))) (-2925 ((|#2| $) 235 (-3287 (|has| |#2| (-513)) (|has| |#1| (-343))))) (-3261 (((-398 (-1091 $)) (-1091 $)) 238 (-3287 (|has| |#2| (-848)) (|has| |#1| (-343))))) (-2394 (((-398 (-1091 $)) (-1091 $)) 239 (-3287 (|has| |#2| (-848)) (|has| |#1| (-343))))) (-2437 (((-398 $) $) 161 (|has| |#1| (-343)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-343))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 158 (|has| |#1| (-343)))) (-3740 (($ $ (-528)) 95)) (-3477 (((-3 $ "failed") $ $) 50 (|has| |#1| (-520)))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 152 (|has| |#1| (-343)))) (-2656 (($ $) 143 (|has| |#1| (-37 (-387 (-528)))))) (-4014 (((-1076 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-528))))) (($ $ (-1095) |#2|) 212 (-3287 (|has| |#2| (-489 (-1095) |#2|)) (|has| |#1| (-343)))) (($ $ (-595 (-1095)) (-595 |#2|)) 211 (-3287 (|has| |#2| (-489 (-1095) |#2|)) (|has| |#1| (-343)))) (($ $ (-595 (-275 |#2|))) 210 (-3287 (|has| |#2| (-290 |#2|)) (|has| |#1| (-343)))) (($ $ (-275 |#2|)) 209 (-3287 (|has| |#2| (-290 |#2|)) (|has| |#1| (-343)))) (($ $ |#2| |#2|) 208 (-3287 (|has| |#2| (-290 |#2|)) (|has| |#1| (-343)))) (($ $ (-595 |#2|) (-595 |#2|)) 207 (-3287 (|has| |#2| (-290 |#2|)) (|has| |#1| (-343))))) (-3973 (((-717) $) 154 (|has| |#1| (-343)))) (-3043 ((|#1| $ (-528)) 104) (($ $ $) 81 (|has| (-528) (-1035))) (($ $ |#2|) 206 (-3287 (|has| |#2| (-267 |#2| |#2|)) (|has| |#1| (-343))))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 155 (|has| |#1| (-343)))) (-3235 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-343))) (($ $ (-1 |#2| |#2|) (-717)) 216 (|has| |#1| (-343))) (($ $ (-717)) 84 (-1463 (-3287 (|has| |#2| (-215)) (|has| |#1| (-343))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (($ $) 82 (-1463 (-3287 (|has| |#2| (-215)) (|has| |#1| (-343))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (($ $ (-595 (-1095)) (-595 (-717))) 89 (-1463 (-3287 (|has| |#2| (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-528) |#1|)))))) (($ $ (-1095) (-717)) 88 (-1463 (-3287 (|has| |#2| (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-528) |#1|)))))) (($ $ (-595 (-1095))) 87 (-1463 (-3287 (|has| |#2| (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-528) |#1|)))))) (($ $ (-1095)) 86 (-1463 (-3287 (|has| |#2| (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))))) (-4118 (($ $) 230 (|has| |#1| (-343)))) (-3042 ((|#2| $) 228 (|has| |#1| (-343)))) (-2935 (((-528) $) 64)) (-2917 (($ $) 132 (|has| |#1| (-37 (-387 (-528)))))) (-2773 (($ $) 121 (|has| |#1| (-37 (-387 (-528)))))) (-2892 (($ $) 131 (|has| |#1| (-37 (-387 (-528)))))) (-2749 (($ $) 122 (|has| |#1| (-37 (-387 (-528)))))) (-2869 (($ $) 130 (|has| |#1| (-37 (-387 (-528)))))) (-2724 (($ $) 123 (|has| |#1| (-37 (-387 (-528)))))) (-3155 (((-207) $) 246 (-3287 (|has| |#2| (-957)) (|has| |#1| (-343)))) (((-359) $) 245 (-3287 (|has| |#2| (-957)) (|has| |#1| (-343)))) (((-504) $) 244 (-3287 (|has| |#2| (-570 (-504))) (|has| |#1| (-343)))) (((-831 (-359)) $) 223 (-3287 (|has| |#2| (-570 (-831 (-359)))) (|has| |#1| (-343)))) (((-831 (-528)) $) 222 (-3287 (|has| |#2| (-570 (-831 (-528)))) (|has| |#1| (-343))))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) 236 (-3287 (-3287 (|has| $ (-138)) (|has| |#2| (-848))) (|has| |#1| (-343))))) (-3534 (($ $) 72)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ |#1|) 47 (|has| |#1| (-162))) (($ |#2|) 271) (($ (-1095)) 241 (-3287 (|has| |#2| (-972 (-1095))) (|has| |#1| (-343)))) (($ (-387 (-528))) 57 (|has| |#1| (-37 (-387 (-528))))) (($ $) 49 (|has| |#1| (-520)))) (-3216 ((|#1| $ (-528)) 59)) (-3749 (((-3 $ "failed") $) 48 (-1463 (-3287 (-1463 (|has| |#2| (-138)) (-3287 (|has| $ (-138)) (|has| |#2| (-848)))) (|has| |#1| (-343))) (|has| |#1| (-138))))) (-3742 (((-717)) 29)) (-1884 ((|#1| $) 102)) (-1769 ((|#2| $) 234 (-3287 (|has| |#2| (-513)) (|has| |#1| (-343))))) (-2953 (($ $) 141 (|has| |#1| (-37 (-387 (-528)))))) (-2811 (($ $) 129 (|has| |#1| (-37 (-387 (-528)))))) (-4016 (((-110) $ $) 53 (|has| |#1| (-520)))) (-2928 (($ $) 140 (|has| |#1| (-37 (-387 (-528)))))) (-2784 (($ $) 128 (|has| |#1| (-37 (-387 (-528)))))) (-2981 (($ $) 139 (|has| |#1| (-37 (-387 (-528)))))) (-2836 (($ $) 127 (|has| |#1| (-37 (-387 (-528)))))) (-4083 ((|#1| $ (-528)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-528)))) (|has| |#1| (-15 -2222 (|#1| (-1095))))))) (-3592 (($ $) 138 (|has| |#1| (-37 (-387 (-528)))))) (-2846 (($ $) 126 (|has| |#1| (-37 (-387 (-528)))))) (-2967 (($ $) 137 (|has| |#1| (-37 (-387 (-528)))))) (-2825 (($ $) 125 (|has| |#1| (-37 (-387 (-528)))))) (-2940 (($ $) 136 (|has| |#1| (-37 (-387 (-528)))))) (-2797 (($ $) 124 (|has| |#1| (-37 (-387 (-528)))))) (-1775 (($ $) 250 (-3287 (|has| |#2| (-766)) (|has| |#1| (-343))))) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33) (($ $ (-528)) 166 (|has| |#1| (-343)))) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-3245 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-343))) (($ $ (-1 |#2| |#2|) (-717)) 214 (|has| |#1| (-343))) (($ $ (-717)) 85 (-1463 (-3287 (|has| |#2| (-215)) (|has| |#1| (-343))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (($ $) 83 (-1463 (-3287 (|has| |#2| (-215)) (|has| |#1| (-343))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (($ $ (-595 (-1095)) (-595 (-717))) 93 (-1463 (-3287 (|has| |#2| (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-528) |#1|)))))) (($ $ (-1095) (-717)) 92 (-1463 (-3287 (|has| |#2| (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-528) |#1|)))))) (($ $ (-595 (-1095))) 91 (-1463 (-3287 (|has| |#2| (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-528) |#1|)))))) (($ $ (-1095)) 90 (-1463 (-3287 (|has| |#2| (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))))) (-2244 (((-110) $ $) 254 (-3287 (|has| |#2| (-793)) (|has| |#1| (-343))))) (-2220 (((-110) $ $) 255 (-3287 (|has| |#2| (-793)) (|has| |#1| (-343))))) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 253 (-3287 (|has| |#2| (-793)) (|has| |#1| (-343))))) (-2208 (((-110) $ $) 256 (-3287 (|has| |#2| (-793)) (|has| |#1| (-343))))) (-2296 (($ $ |#1|) 58 (|has| |#1| (-343))) (($ $ $) 168 (|has| |#1| (-343))) (($ |#2| |#2|) 226 (|has| |#1| (-343)))) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32) (($ $ (-528)) 167 (|has| |#1| (-343))) (($ $ $) 144 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) 115 (|has| |#1| (-37 (-387 (-528)))))) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-343))) (($ |#2| $) 204 (|has| |#1| (-343))) (($ (-387 (-528)) $) 56 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) 55 (|has| |#1| (-37 (-387 (-528)))))))
-(((-1139 |#1| |#2|) (-133) (-981) (-1168 |t#1|)) (T -1139))
-((-2935 (*1 *2 *1) (-12 (-4 *1 (-1139 *3 *4)) (-4 *3 (-981)) (-4 *4 (-1168 *3)) (-5 *2 (-528)))) (-2222 (*1 *1 *2) (-12 (-4 *3 (-981)) (-4 *1 (-1139 *3 *2)) (-4 *2 (-1168 *3)))) (-2623 (*1 *1 *2 *3) (-12 (-5 *2 (-528)) (-4 *4 (-981)) (-4 *1 (-1139 *4 *3)) (-4 *3 (-1168 *4)))) (-1825 (*1 *2 *1) (-12 (-4 *1 (-1139 *3 *2)) (-4 *3 (-981)) (-4 *2 (-1168 *3)))) (-2736 (*1 *1 *1) (-12 (-4 *1 (-1139 *2 *3)) (-4 *2 (-981)) (-4 *3 (-1168 *2)))) (-2736 (*1 *1 *2 *1) (-12 (-5 *2 (-528)) (-4 *1 (-1139 *3 *4)) (-4 *3 (-981)) (-4 *4 (-1168 *3)))) (-2612 (*1 *2 *1) (-12 (-4 *1 (-1139 *3 *2)) (-4 *3 (-981)) (-4 *2 (-1168 *3)))) (-3958 (*1 *2 *1) (|partial| -12 (-4 *1 (-1139 *3 *2)) (-4 *3 (-981)) (-4 *2 (-1168 *3)))))
-(-13 (-1137 |t#1|) (-972 |t#2|) (-10 -8 (-15 -2623 ($ (-528) |t#2|)) (-15 -2935 ((-528) $)) (-15 -1825 (|t#2| $)) (-15 -2736 ($ $)) (-15 -2736 ($ (-528) $)) (-15 -2222 ($ |t#2|)) (-15 -2612 (|t#2| $)) (-15 -3958 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-343)) (-6 (-929 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-528)) . T) ((-25) . T) ((-37 #1=(-387 (-528))) -1463 (|has| |#1| (-343)) (|has| |#1| (-37 (-387 (-528))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 |#2|) |has| |#1| (-343)) ((-37 $) -1463 (|has| |#1| (-520)) (|has| |#1| (-343))) ((-34) |has| |#1| (-37 (-387 (-528)))) ((-93) |has| |#1| (-37 (-387 (-528)))) ((-99) . T) ((-109 #1# #1#) -1463 (|has| |#1| (-343)) (|has| |#1| (-37 (-387 (-528))))) ((-109 |#1| |#1|) . T) ((-109 |#2| |#2|) |has| |#1| (-343)) ((-109 $ $) -1463 (|has| |#1| (-520)) (|has| |#1| (-343)) (|has| |#1| (-162))) ((-128) . T) ((-138) -1463 (-12 (|has| |#1| (-343)) (|has| |#2| (-138))) (|has| |#1| (-138))) ((-140) -1463 (-12 (|has| |#1| (-343)) (|has| |#2| (-140))) (|has| |#1| (-140))) ((-569 (-802)) . T) ((-162) -1463 (|has| |#1| (-520)) (|has| |#1| (-343)) (|has| |#1| (-162))) ((-570 (-207)) -12 (|has| |#1| (-343)) (|has| |#2| (-957))) ((-570 (-359)) -12 (|has| |#1| (-343)) (|has| |#2| (-957))) ((-570 (-504)) -12 (|has| |#1| (-343)) (|has| |#2| (-570 (-504)))) ((-570 (-831 (-359))) -12 (|has| |#1| (-343)) (|has| |#2| (-570 (-831 (-359))))) ((-570 (-831 (-528))) -12 (|has| |#1| (-343)) (|has| |#2| (-570 (-831 (-528))))) ((-213 |#2|) |has| |#1| (-343)) ((-215) -1463 (-12 (|has| |#1| (-343)) (|has| |#2| (-215))) (|has| |#1| (-15 * (|#1| (-528) |#1|)))) ((-225) |has| |#1| (-343)) ((-265) |has| |#1| (-37 (-387 (-528)))) ((-267 |#2| $) -12 (|has| |#1| (-343)) (|has| |#2| (-267 |#2| |#2|))) ((-267 $ $) |has| (-528) (-1035)) ((-271) -1463 (|has| |#1| (-520)) (|has| |#1| (-343))) ((-288) |has| |#1| (-343)) ((-290 |#2|) -12 (|has| |#1| (-343)) (|has| |#2| (-290 |#2|))) ((-343) |has| |#1| (-343)) ((-318 |#2|) |has| |#1| (-343)) ((-357 |#2|) |has| |#1| (-343)) ((-380 |#2|) |has| |#1| (-343)) ((-431) |has| |#1| (-343)) ((-469) |has| |#1| (-37 (-387 (-528)))) ((-489 (-1095) |#2|) -12 (|has| |#1| (-343)) (|has| |#2| (-489 (-1095) |#2|))) ((-489 |#2| |#2|) -12 (|has| |#1| (-343)) (|has| |#2| (-290 |#2|))) ((-520) -1463 (|has| |#1| (-520)) (|has| |#1| (-343))) ((-597 #1#) -1463 (|has| |#1| (-343)) (|has| |#1| (-37 (-387 (-528))))) ((-597 |#1|) . T) ((-597 |#2|) |has| |#1| (-343)) ((-597 $) . T) ((-591 (-528)) -12 (|has| |#1| (-343)) (|has| |#2| (-591 (-528)))) ((-591 |#2|) |has| |#1| (-343)) ((-664 #1#) -1463 (|has| |#1| (-343)) (|has| |#1| (-37 (-387 (-528))))) ((-664 |#1|) |has| |#1| (-162)) ((-664 |#2|) |has| |#1| (-343)) ((-664 $) -1463 (|has| |#1| (-520)) (|has| |#1| (-343))) ((-673) . T) ((-737) -12 (|has| |#1| (-343)) (|has| |#2| (-766))) ((-738) -12 (|has| |#1| (-343)) (|has| |#2| (-766))) ((-740) -12 (|has| |#1| (-343)) (|has| |#2| (-766))) ((-741) -12 (|has| |#1| (-343)) (|has| |#2| (-766))) ((-766) -12 (|has| |#1| (-343)) (|has| |#2| (-766))) ((-791) -12 (|has| |#1| (-343)) (|has| |#2| (-766))) ((-793) -1463 (-12 (|has| |#1| (-343)) (|has| |#2| (-793))) (-12 (|has| |#1| (-343)) (|has| |#2| (-766)))) ((-839 (-1095)) -1463 (-12 (|has| |#1| (-343)) (|has| |#2| (-839 (-1095)))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095))))) ((-825 (-359)) -12 (|has| |#1| (-343)) (|has| |#2| (-825 (-359)))) ((-825 (-528)) -12 (|has| |#1| (-343)) (|has| |#2| (-825 (-528)))) ((-823 |#2|) |has| |#1| (-343)) ((-848) -12 (|has| |#1| (-343)) (|has| |#2| (-848))) ((-910 |#1| #0# (-1008)) . T) ((-859) |has| |#1| (-343)) ((-929 |#2|) |has| |#1| (-343)) ((-938) |has| |#1| (-37 (-387 (-528)))) ((-957) -12 (|has| |#1| (-343)) (|has| |#2| (-957))) ((-972 (-387 (-528))) -12 (|has| |#1| (-343)) (|has| |#2| (-972 (-528)))) ((-972 (-528)) -12 (|has| |#1| (-343)) (|has| |#2| (-972 (-528)))) ((-972 (-1095)) -12 (|has| |#1| (-343)) (|has| |#2| (-972 (-1095)))) ((-972 |#2|) . T) ((-986 #1#) -1463 (|has| |#1| (-343)) (|has| |#1| (-37 (-387 (-528))))) ((-986 |#1|) . T) ((-986 |#2|) |has| |#1| (-343)) ((-986 $) -1463 (|has| |#1| (-520)) (|has| |#1| (-343)) (|has| |#1| (-162))) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1071) -12 (|has| |#1| (-343)) (|has| |#2| (-1071))) ((-1117) |has| |#1| (-37 (-387 (-528)))) ((-1120) |has| |#1| (-37 (-387 (-528)))) ((-1131) |has| |#1| (-343)) ((-1135) |has| |#1| (-343)) ((-1137 |#1|) . T) ((-1155 |#1| #0#) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 70)) (-3598 ((|#2| $) NIL (-12 (|has| |#2| (-288)) (|has| |#1| (-343))))) (-2565 (((-595 (-1008)) $) NIL)) (-3915 (((-1095) $) 88)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#1| (-520)))) (-1738 (($ $) NIL (|has| |#1| (-520)))) (-1811 (((-110) $) NIL (|has| |#1| (-520)))) (-1781 (($ $ (-528)) 97) (($ $ (-528) (-528)) 99)) (-1514 (((-1076 (-2 (|:| |k| (-528)) (|:| |c| |#1|))) $) 47)) (-1825 ((|#2| $) 11)) (-3958 (((-3 |#2| "failed") $) 30)) (-2612 ((|#2| $) 31)) (-2880 (($ $) 192 (|has| |#1| (-37 (-387 (-528)))))) (-2735 (($ $) 168 (|has| |#1| (-37 (-387 (-528)))))) (-3181 (((-3 $ "failed") $ $) NIL)) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (-12 (|has| |#2| (-848)) (|has| |#1| (-343))))) (-1232 (($ $) NIL (|has| |#1| (-343)))) (-2705 (((-398 $) $) NIL (|has| |#1| (-343)))) (-2450 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (-12 (|has| |#2| (-848)) (|has| |#1| (-343))))) (-2213 (((-110) $ $) NIL (|has| |#1| (-343)))) (-2859 (($ $) 188 (|has| |#1| (-37 (-387 (-528)))))) (-2712 (($ $) 164 (|has| |#1| (-37 (-387 (-528)))))) (-3605 (((-528) $) NIL (-12 (|has| |#2| (-766)) (|has| |#1| (-343))))) (-1397 (($ (-1076 (-2 (|:| |k| (-528)) (|:| |c| |#1|)))) 57)) (-2904 (($ $) 196 (|has| |#1| (-37 (-387 (-528)))))) (-2761 (($ $) 172 (|has| |#1| (-37 (-387 (-528)))))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#2| "failed") $) 144) (((-3 (-528) "failed") $) NIL (-12 (|has| |#2| (-972 (-528))) (|has| |#1| (-343)))) (((-3 (-387 (-528)) "failed") $) NIL (-12 (|has| |#2| (-972 (-528))) (|has| |#1| (-343)))) (((-3 (-1095) "failed") $) NIL (-12 (|has| |#2| (-972 (-1095))) (|has| |#1| (-343))))) (-2409 ((|#2| $) 143) (((-528) $) NIL (-12 (|has| |#2| (-972 (-528))) (|has| |#1| (-343)))) (((-387 (-528)) $) NIL (-12 (|has| |#2| (-972 (-528))) (|has| |#1| (-343)))) (((-1095) $) NIL (-12 (|has| |#2| (-972 (-1095))) (|has| |#1| (-343))))) (-2736 (($ $) 61) (($ (-528) $) 24)) (-3519 (($ $ $) NIL (|has| |#1| (-343)))) (-2388 (($ $) NIL)) (-2120 (((-635 |#2|) (-635 $)) NIL (|has| |#1| (-343))) (((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 $) (-1177 $)) NIL (|has| |#1| (-343))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (-12 (|has| |#2| (-591 (-528))) (|has| |#1| (-343)))) (((-635 (-528)) (-635 $)) NIL (-12 (|has| |#2| (-591 (-528))) (|has| |#1| (-343))))) (-1312 (((-3 $ "failed") $) 77)) (-4013 (((-387 (-891 |#1|)) $ (-528)) 112 (|has| |#1| (-520))) (((-387 (-891 |#1|)) $ (-528) (-528)) 114 (|has| |#1| (-520)))) (-1338 (($) NIL (-12 (|has| |#2| (-513)) (|has| |#1| (-343))))) (-3498 (($ $ $) NIL (|has| |#1| (-343)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL (|has| |#1| (-343)))) (-2124 (((-110) $) NIL (|has| |#1| (-343)))) (-3657 (((-110) $) NIL (-12 (|has| |#2| (-766)) (|has| |#1| (-343))))) (-1900 (((-110) $) 64)) (-1505 (($) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (-12 (|has| |#2| (-825 (-359))) (|has| |#1| (-343)))) (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (-12 (|has| |#2| (-825 (-528))) (|has| |#1| (-343))))) (-3689 (((-528) $) 93) (((-528) $ (-528)) 95)) (-1297 (((-110) $) NIL)) (-3037 (($ $) NIL (|has| |#1| (-343)))) (-3031 ((|#2| $) 151 (|has| |#1| (-343)))) (-2796 (($ $ (-528)) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3296 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1071)) (|has| |#1| (-343))))) (-3710 (((-110) $) NIL (-12 (|has| |#2| (-766)) (|has| |#1| (-343))))) (-1771 (($ $ (-860)) 136)) (-3171 (($ (-1 |#1| (-528)) $) 132)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-2195 (((-110) $) NIL)) (-2548 (($ |#1| (-528)) 19) (($ $ (-1008) (-528)) NIL) (($ $ (-595 (-1008)) (-595 (-528))) NIL)) (-1436 (($ $ $) NIL (-12 (|has| |#2| (-793)) (|has| |#1| (-343))))) (-1736 (($ $ $) NIL (-12 (|has| |#2| (-793)) (|has| |#1| (-343))))) (-3106 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-343)))) (-2097 (($ $) 162 (|has| |#1| (-37 (-387 (-528)))))) (-2686 (($ $) NIL)) (-2697 ((|#1| $) NIL)) (-2057 (($ (-595 $)) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-343)))) (-2623 (($ (-528) |#2|) 10)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) 145 (|has| |#1| (-343)))) (-1923 (($ $) 214 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-1095)) 219 (-1463 (-12 (|has| |#1| (-15 -1923 (|#1| |#1| (-1095)))) (|has| |#1| (-15 -2565 ((-595 (-1095)) |#1|))) (|has| |#1| (-37 (-387 (-528))))) (-12 (|has| |#1| (-29 (-528))) (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-897)) (|has| |#1| (-1117)))))) (-4197 (($) NIL (-12 (|has| |#2| (-1071)) (|has| |#1| (-343))) CONST)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#1| (-343)))) (-2088 (($ (-595 $)) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-343)))) (-3270 (($ $) NIL (-12 (|has| |#2| (-288)) (|has| |#1| (-343))))) (-2925 ((|#2| $) NIL (-12 (|has| |#2| (-513)) (|has| |#1| (-343))))) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (-12 (|has| |#2| (-848)) (|has| |#1| (-343))))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (-12 (|has| |#2| (-848)) (|has| |#1| (-343))))) (-2437 (((-398 $) $) NIL (|has| |#1| (-343)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-343))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#1| (-343)))) (-3740 (($ $ (-528)) 126)) (-3477 (((-3 $ "failed") $ $) 116 (|has| |#1| (-520)))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-2656 (($ $) 160 (|has| |#1| (-37 (-387 (-528)))))) (-4014 (((-1076 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-528))))) (($ $ (-1095) |#2|) NIL (-12 (|has| |#2| (-489 (-1095) |#2|)) (|has| |#1| (-343)))) (($ $ (-595 (-1095)) (-595 |#2|)) NIL (-12 (|has| |#2| (-489 (-1095) |#2|)) (|has| |#1| (-343)))) (($ $ (-595 (-275 |#2|))) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#1| (-343)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#1| (-343)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#1| (-343)))) (($ $ (-595 |#2|) (-595 |#2|)) NIL (-12 (|has| |#2| (-290 |#2|)) (|has| |#1| (-343))))) (-3973 (((-717) $) NIL (|has| |#1| (-343)))) (-3043 ((|#1| $ (-528)) 91) (($ $ $) 79 (|has| (-528) (-1035))) (($ $ |#2|) NIL (-12 (|has| |#2| (-267 |#2| |#2|)) (|has| |#1| (-343))))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-343)))) (-3235 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-343))) (($ $ (-1 |#2| |#2|) (-717)) NIL (|has| |#1| (-343))) (($ $ (-717)) NIL (-1463 (-12 (|has| |#2| (-215)) (|has| |#1| (-343))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (($ $) 137 (-1463 (-12 (|has| |#2| (-215)) (|has| |#1| (-343))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (-1463 (-12 (|has| |#2| (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095)))))) (($ $ (-1095) (-717)) NIL (-1463 (-12 (|has| |#2| (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095)))))) (($ $ (-595 (-1095))) NIL (-1463 (-12 (|has| |#2| (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095)))))) (($ $ (-1095)) 140 (-1463 (-12 (|has| |#2| (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095))))))) (-4118 (($ $) NIL (|has| |#1| (-343)))) (-3042 ((|#2| $) 152 (|has| |#1| (-343)))) (-2935 (((-528) $) 12)) (-2917 (($ $) 198 (|has| |#1| (-37 (-387 (-528)))))) (-2773 (($ $) 174 (|has| |#1| (-37 (-387 (-528)))))) (-2892 (($ $) 194 (|has| |#1| (-37 (-387 (-528)))))) (-2749 (($ $) 170 (|has| |#1| (-37 (-387 (-528)))))) (-2869 (($ $) 190 (|has| |#1| (-37 (-387 (-528)))))) (-2724 (($ $) 166 (|has| |#1| (-37 (-387 (-528)))))) (-3155 (((-207) $) NIL (-12 (|has| |#2| (-957)) (|has| |#1| (-343)))) (((-359) $) NIL (-12 (|has| |#2| (-957)) (|has| |#1| (-343)))) (((-504) $) NIL (-12 (|has| |#2| (-570 (-504))) (|has| |#1| (-343)))) (((-831 (-359)) $) NIL (-12 (|has| |#2| (-570 (-831 (-359)))) (|has| |#1| (-343)))) (((-831 (-528)) $) NIL (-12 (|has| |#2| (-570 (-831 (-528)))) (|has| |#1| (-343))))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-848)) (|has| |#1| (-343))))) (-3534 (($ $) 124)) (-2222 (((-802) $) 245) (($ (-528)) 23) (($ |#1|) 21 (|has| |#1| (-162))) (($ |#2|) 20) (($ (-1095)) NIL (-12 (|has| |#2| (-972 (-1095))) (|has| |#1| (-343)))) (($ (-387 (-528))) 155 (|has| |#1| (-37 (-387 (-528))))) (($ $) NIL (|has| |#1| (-520)))) (-3216 ((|#1| $ (-528)) 74)) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| |#2| (-848)) (|has| |#1| (-343))) (-12 (|has| |#2| (-138)) (|has| |#1| (-343))) (|has| |#1| (-138))))) (-3742 (((-717)) 142)) (-1884 ((|#1| $) 90)) (-1769 ((|#2| $) NIL (-12 (|has| |#2| (-513)) (|has| |#1| (-343))))) (-2953 (($ $) 204 (|has| |#1| (-37 (-387 (-528)))))) (-2811 (($ $) 180 (|has| |#1| (-37 (-387 (-528)))))) (-4016 (((-110) $ $) NIL (|has| |#1| (-520)))) (-2928 (($ $) 200 (|has| |#1| (-37 (-387 (-528)))))) (-2784 (($ $) 176 (|has| |#1| (-37 (-387 (-528)))))) (-2981 (($ $) 208 (|has| |#1| (-37 (-387 (-528)))))) (-2836 (($ $) 184 (|has| |#1| (-37 (-387 (-528)))))) (-4083 ((|#1| $ (-528)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-528)))) (|has| |#1| (-15 -2222 (|#1| (-1095))))))) (-3592 (($ $) 210 (|has| |#1| (-37 (-387 (-528)))))) (-2846 (($ $) 186 (|has| |#1| (-37 (-387 (-528)))))) (-2967 (($ $) 206 (|has| |#1| (-37 (-387 (-528)))))) (-2825 (($ $) 182 (|has| |#1| (-37 (-387 (-528)))))) (-2940 (($ $) 202 (|has| |#1| (-37 (-387 (-528)))))) (-2797 (($ $) 178 (|has| |#1| (-37 (-387 (-528)))))) (-1775 (($ $) NIL (-12 (|has| |#2| (-766)) (|has| |#1| (-343))))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| |#1| (-343)))) (-2969 (($) 13 T CONST)) (-2982 (($) 17 T CONST)) (-3245 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-343))) (($ $ (-1 |#2| |#2|) (-717)) NIL (|has| |#1| (-343))) (($ $ (-717)) NIL (-1463 (-12 (|has| |#2| (-215)) (|has| |#1| (-343))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (($ $) NIL (-1463 (-12 (|has| |#2| (-215)) (|has| |#1| (-343))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (-1463 (-12 (|has| |#2| (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095)))))) (($ $ (-1095) (-717)) NIL (-1463 (-12 (|has| |#2| (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095)))))) (($ $ (-595 (-1095))) NIL (-1463 (-12 (|has| |#2| (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095)))))) (($ $ (-1095)) NIL (-1463 (-12 (|has| |#2| (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095))))))) (-2244 (((-110) $ $) NIL (-12 (|has| |#2| (-793)) (|has| |#1| (-343))))) (-2220 (((-110) $ $) NIL (-12 (|has| |#2| (-793)) (|has| |#1| (-343))))) (-2186 (((-110) $ $) 63)) (-2232 (((-110) $ $) NIL (-12 (|has| |#2| (-793)) (|has| |#1| (-343))))) (-2208 (((-110) $ $) NIL (-12 (|has| |#2| (-793)) (|has| |#1| (-343))))) (-2296 (($ $ |#1|) NIL (|has| |#1| (-343))) (($ $ $) 149 (|has| |#1| (-343))) (($ |#2| |#2|) 150 (|has| |#1| (-343)))) (-2286 (($ $) 213) (($ $ $) 68)) (-2275 (($ $ $) 66)) (** (($ $ (-860)) NIL) (($ $ (-717)) 73) (($ $ (-528)) 146 (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) 158 (|has| |#1| (-37 (-387 (-528)))))) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-343))) (($ |#2| $) 147 (|has| |#1| (-343))) (($ (-387 (-528)) $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528)))))))
-(((-1140 |#1| |#2|) (-1139 |#1| |#2|) (-981) (-1168 |#1|)) (T -1140))
-NIL
-(-1139 |#1| |#2|)
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3598 (((-1169 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-288)) (|has| |#1| (-343))))) (-2565 (((-595 (-1008)) $) NIL)) (-3915 (((-1095) $) 10)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-848)) (|has| |#1| (-343))) (|has| |#1| (-520))))) (-1738 (($ $) NIL (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-848)) (|has| |#1| (-343))) (|has| |#1| (-520))))) (-1811 (((-110) $) NIL (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-848)) (|has| |#1| (-343))) (|has| |#1| (-520))))) (-1781 (($ $ (-528)) NIL) (($ $ (-528) (-528)) NIL)) (-1514 (((-1076 (-2 (|:| |k| (-528)) (|:| |c| |#1|))) $) NIL)) (-1825 (((-1169 |#1| |#2| |#3|) $) NIL)) (-3958 (((-3 (-1169 |#1| |#2| |#3|) "failed") $) NIL)) (-2612 (((-1169 |#1| |#2| |#3|) $) NIL)) (-2880 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2735 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3181 (((-3 $ "failed") $ $) NIL)) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-848)) (|has| |#1| (-343))))) (-1232 (($ $) NIL (|has| |#1| (-343)))) (-2705 (((-398 $) $) NIL (|has| |#1| (-343)))) (-2450 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-848)) (|has| |#1| (-343))))) (-2213 (((-110) $ $) NIL (|has| |#1| (-343)))) (-2859 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2712 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3605 (((-528) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))))) (-1397 (($ (-1076 (-2 (|:| |k| (-528)) (|:| |c| |#1|)))) NIL)) (-2904 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2761 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-1169 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1095) "failed") $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-972 (-1095))) (|has| |#1| (-343)))) (((-3 (-387 (-528)) "failed") $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-972 (-528))) (|has| |#1| (-343)))) (((-3 (-528) "failed") $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-972 (-528))) (|has| |#1| (-343))))) (-2409 (((-1169 |#1| |#2| |#3|) $) NIL) (((-1095) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-972 (-1095))) (|has| |#1| (-343)))) (((-387 (-528)) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-972 (-528))) (|has| |#1| (-343)))) (((-528) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-972 (-528))) (|has| |#1| (-343))))) (-2736 (($ $) NIL) (($ (-528) $) NIL)) (-3519 (($ $ $) NIL (|has| |#1| (-343)))) (-2388 (($ $) NIL)) (-2120 (((-635 (-1169 |#1| |#2| |#3|)) (-635 $)) NIL (|has| |#1| (-343))) (((-2 (|:| -2163 (-635 (-1169 |#1| |#2| |#3|))) (|:| |vec| (-1177 (-1169 |#1| |#2| |#3|)))) (-635 $) (-1177 $)) NIL (|has| |#1| (-343))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-591 (-528))) (|has| |#1| (-343)))) (((-635 (-528)) (-635 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-591 (-528))) (|has| |#1| (-343))))) (-1312 (((-3 $ "failed") $) NIL)) (-4013 (((-387 (-891 |#1|)) $ (-528)) NIL (|has| |#1| (-520))) (((-387 (-891 |#1|)) $ (-528) (-528)) NIL (|has| |#1| (-520)))) (-1338 (($) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-513)) (|has| |#1| (-343))))) (-3498 (($ $ $) NIL (|has| |#1| (-343)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL (|has| |#1| (-343)))) (-2124 (((-110) $) NIL (|has| |#1| (-343)))) (-3657 (((-110) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))))) (-1900 (((-110) $) NIL)) (-1505 (($) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4181 (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-825 (-528))) (|has| |#1| (-343)))) (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-825 (-359))) (|has| |#1| (-343))))) (-3689 (((-528) $) NIL) (((-528) $ (-528)) NIL)) (-1297 (((-110) $) NIL)) (-3037 (($ $) NIL (|has| |#1| (-343)))) (-3031 (((-1169 |#1| |#2| |#3|) $) NIL (|has| |#1| (-343)))) (-2796 (($ $ (-528)) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3296 (((-3 $ "failed") $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-1071)) (|has| |#1| (-343))))) (-3710 (((-110) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))))) (-1771 (($ $ (-860)) NIL)) (-3171 (($ (-1 |#1| (-528)) $) NIL)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-2195 (((-110) $) NIL)) (-2548 (($ |#1| (-528)) 17) (($ $ (-1008) (-528)) NIL) (($ $ (-595 (-1008)) (-595 (-528))) NIL)) (-1436 (($ $ $) NIL (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-793)) (|has| |#1| (-343)))))) (-1736 (($ $ $) NIL (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-793)) (|has| |#1| (-343)))))) (-3106 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-343)))) (-2097 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2686 (($ $) NIL)) (-2697 ((|#1| $) NIL)) (-2057 (($ (-595 $)) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-343)))) (-2623 (($ (-528) (-1169 |#1| |#2| |#3|)) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL (|has| |#1| (-343)))) (-1923 (($ $) 25 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-1095)) NIL (-1463 (-12 (|has| |#1| (-15 -1923 (|#1| |#1| (-1095)))) (|has| |#1| (-15 -2565 ((-595 (-1095)) |#1|))) (|has| |#1| (-37 (-387 (-528))))) (-12 (|has| |#1| (-29 (-528))) (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-897)) (|has| |#1| (-1117))))) (($ $ (-1173 |#2|)) 26 (|has| |#1| (-37 (-387 (-528)))))) (-4197 (($) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-1071)) (|has| |#1| (-343))) CONST)) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#1| (-343)))) (-2088 (($ (-595 $)) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-343)))) (-3270 (($ $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-288)) (|has| |#1| (-343))))) (-2925 (((-1169 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-513)) (|has| |#1| (-343))))) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-848)) (|has| |#1| (-343))))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-848)) (|has| |#1| (-343))))) (-2437 (((-398 $) $) NIL (|has| |#1| (-343)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-343))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#1| (-343)))) (-3740 (($ $ (-528)) NIL)) (-3477 (((-3 $ "failed") $ $) NIL (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-848)) (|has| |#1| (-343))) (|has| |#1| (-520))))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-2656 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4014 (((-1076 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-528))))) (($ $ (-1095) (-1169 |#1| |#2| |#3|)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-489 (-1095) (-1169 |#1| |#2| |#3|))) (|has| |#1| (-343)))) (($ $ (-595 (-1095)) (-595 (-1169 |#1| |#2| |#3|))) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-489 (-1095) (-1169 |#1| |#2| |#3|))) (|has| |#1| (-343)))) (($ $ (-595 (-275 (-1169 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-290 (-1169 |#1| |#2| |#3|))) (|has| |#1| (-343)))) (($ $ (-275 (-1169 |#1| |#2| |#3|))) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-290 (-1169 |#1| |#2| |#3|))) (|has| |#1| (-343)))) (($ $ (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-290 (-1169 |#1| |#2| |#3|))) (|has| |#1| (-343)))) (($ $ (-595 (-1169 |#1| |#2| |#3|)) (-595 (-1169 |#1| |#2| |#3|))) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-290 (-1169 |#1| |#2| |#3|))) (|has| |#1| (-343))))) (-3973 (((-717) $) NIL (|has| |#1| (-343)))) (-3043 ((|#1| $ (-528)) NIL) (($ $ $) NIL (|has| (-528) (-1035))) (($ $ (-1169 |#1| |#2| |#3|)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-267 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|))) (|has| |#1| (-343))))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-343)))) (-3235 (($ $ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|))) NIL (|has| |#1| (-343))) (($ $ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) (-717)) NIL (|has| |#1| (-343))) (($ $ (-1173 |#2|)) 24) (($ $ (-717)) NIL (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-215)) (|has| |#1| (-343))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (($ $) 23 (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-215)) (|has| |#1| (-343))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095)))))) (($ $ (-1095) (-717)) NIL (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095)))))) (($ $ (-595 (-1095))) NIL (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095)))))) (($ $ (-1095)) NIL (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095))))))) (-4118 (($ $) NIL (|has| |#1| (-343)))) (-3042 (((-1169 |#1| |#2| |#3|) $) NIL (|has| |#1| (-343)))) (-2935 (((-528) $) NIL)) (-2917 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2773 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2892 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2749 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2869 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2724 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3155 (((-504) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-570 (-504))) (|has| |#1| (-343)))) (((-359) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-957)) (|has| |#1| (-343)))) (((-207) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-957)) (|has| |#1| (-343)))) (((-831 (-359)) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-570 (-831 (-359)))) (|has| |#1| (-343)))) (((-831 (-528)) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-570 (-831 (-528)))) (|has| |#1| (-343))))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| (-1169 |#1| |#2| |#3|) (-848)) (|has| |#1| (-343))))) (-3534 (($ $) NIL)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1169 |#1| |#2| |#3|)) NIL) (($ (-1173 |#2|)) 22) (($ (-1095)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-972 (-1095))) (|has| |#1| (-343)))) (($ $) NIL (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-848)) (|has| |#1| (-343))) (|has| |#1| (-520)))) (($ (-387 (-528))) NIL (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-972 (-528))) (|has| |#1| (-343))) (|has| |#1| (-37 (-387 (-528))))))) (-3216 ((|#1| $ (-528)) NIL)) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| (-1169 |#1| |#2| |#3|) (-848)) (|has| |#1| (-343))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-138)) (|has| |#1| (-343))) (|has| |#1| (-138))))) (-3742 (((-717)) NIL)) (-1884 ((|#1| $) 11)) (-1769 (((-1169 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-513)) (|has| |#1| (-343))))) (-2953 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2811 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4016 (((-110) $ $) NIL (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-848)) (|has| |#1| (-343))) (|has| |#1| (-520))))) (-2928 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2784 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2981 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2836 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4083 ((|#1| $ (-528)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-528)))) (|has| |#1| (-15 -2222 (|#1| (-1095))))))) (-3592 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2846 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2967 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2825 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2940 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2797 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-1775 (($ $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| |#1| (-343)))) (-2969 (($) 19 T CONST)) (-2982 (($) 15 T CONST)) (-3245 (($ $ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|))) NIL (|has| |#1| (-343))) (($ $ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) (-717)) NIL (|has| |#1| (-343))) (($ $ (-717)) NIL (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-215)) (|has| |#1| (-343))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (($ $) NIL (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-215)) (|has| |#1| (-343))) (|has| |#1| (-15 * (|#1| (-528) |#1|))))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095)))))) (($ $ (-1095) (-717)) NIL (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095)))))) (($ $ (-595 (-1095))) NIL (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095)))))) (($ $ (-1095)) NIL (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-839 (-1095))) (|has| |#1| (-343))) (-12 (|has| |#1| (-15 * (|#1| (-528) |#1|))) (|has| |#1| (-839 (-1095))))))) (-2244 (((-110) $ $) NIL (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-793)) (|has| |#1| (-343)))))) (-2220 (((-110) $ $) NIL (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-793)) (|has| |#1| (-343)))))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-793)) (|has| |#1| (-343)))))) (-2208 (((-110) $ $) NIL (-1463 (-12 (|has| (-1169 |#1| |#2| |#3|) (-766)) (|has| |#1| (-343))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-793)) (|has| |#1| (-343)))))) (-2296 (($ $ |#1|) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-343))) (($ (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) NIL (|has| |#1| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) 20)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528)))))) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1169 |#1| |#2| |#3|)) NIL (|has| |#1| (-343))) (($ (-1169 |#1| |#2| |#3|) $) NIL (|has| |#1| (-343))) (($ (-387 (-528)) $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528)))))))
-(((-1141 |#1| |#2| |#3|) (-13 (-1139 |#1| (-1169 |#1| |#2| |#3|)) (-10 -8 (-15 -2222 ($ (-1173 |#2|))) (-15 -3235 ($ $ (-1173 |#2|))) (IF (|has| |#1| (-37 (-387 (-528)))) (-15 -1923 ($ $ (-1173 |#2|))) |%noBranch|))) (-981) (-1095) |#1|) (T -1141))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1141 *3 *4 *5)) (-4 *3 (-981)) (-14 *5 *3))) (-3235 (*1 *1 *1 *2) (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1141 *3 *4 *5)) (-4 *3 (-981)) (-14 *5 *3))) (-1923 (*1 *1 *1 *2) (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1141 *3 *4 *5)) (-4 *3 (-37 (-387 (-528)))) (-4 *3 (-981)) (-14 *5 *3))))
-(-13 (-1139 |#1| (-1169 |#1| |#2| |#3|)) (-10 -8 (-15 -2222 ($ (-1173 |#2|))) (-15 -3235 ($ $ (-1173 |#2|))) (IF (|has| |#1| (-37 (-387 (-528)))) (-15 -1923 ($ $ (-1173 |#2|))) |%noBranch|)))
-((-3683 (((-2 (|:| |contp| (-528)) (|:| -2783 (-595 (-2 (|:| |irr| |#1|) (|:| -2842 (-528)))))) |#1| (-110)) 12)) (-1668 (((-398 |#1|) |#1|) 22)) (-2437 (((-398 |#1|) |#1|) 21)))
-(((-1142 |#1|) (-10 -7 (-15 -2437 ((-398 |#1|) |#1|)) (-15 -1668 ((-398 |#1|) |#1|)) (-15 -3683 ((-2 (|:| |contp| (-528)) (|:| -2783 (-595 (-2 (|:| |irr| |#1|) (|:| -2842 (-528)))))) |#1| (-110)))) (-1153 (-528))) (T -1142))
-((-3683 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-5 *2 (-2 (|:| |contp| (-528)) (|:| -2783 (-595 (-2 (|:| |irr| *3) (|:| -2842 (-528))))))) (-5 *1 (-1142 *3)) (-4 *3 (-1153 (-528))))) (-1668 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-1142 *3)) (-4 *3 (-1153 (-528))))) (-2437 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-1142 *3)) (-4 *3 (-1153 (-528))))))
-(-10 -7 (-15 -2437 ((-398 |#1|) |#1|)) (-15 -1668 ((-398 |#1|) |#1|)) (-15 -3683 ((-2 (|:| |contp| (-528)) (|:| -2783 (-595 (-2 (|:| |irr| |#1|) (|:| -2842 (-528)))))) |#1| (-110))))
-((-3106 (((-1076 |#2|) (-1 |#2| |#1|) (-1144 |#1|)) 23 (|has| |#1| (-791))) (((-1144 |#2|) (-1 |#2| |#1|) (-1144 |#1|)) 17)))
-(((-1143 |#1| |#2|) (-10 -7 (-15 -3106 ((-1144 |#2|) (-1 |#2| |#1|) (-1144 |#1|))) (IF (|has| |#1| (-791)) (-15 -3106 ((-1076 |#2|) (-1 |#2| |#1|) (-1144 |#1|))) |%noBranch|)) (-1131) (-1131)) (T -1143))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1144 *5)) (-4 *5 (-791)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1076 *6)) (-5 *1 (-1143 *5 *6)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1144 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1144 *6)) (-5 *1 (-1143 *5 *6)))))
-(-10 -7 (-15 -3106 ((-1144 |#2|) (-1 |#2| |#1|) (-1144 |#1|))) (IF (|has| |#1| (-791)) (-15 -3106 ((-1076 |#2|) (-1 |#2| |#1|) (-1144 |#1|))) |%noBranch|))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3628 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-3106 (((-1076 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-791)))) (-2398 ((|#1| $) 14)) (-1342 ((|#1| $) 10)) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-1351 (((-528) $) 18)) (-1482 ((|#1| $) 17)) (-1361 ((|#1| $) 11)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-3440 (((-110) $) 16)) (-1535 (((-1076 |#1|) $) 38 (|has| |#1| (-791))) (((-1076 |#1|) (-595 $)) 37 (|has| |#1| (-791)))) (-3155 (($ |#1|) 25)) (-2222 (($ (-1018 |#1|)) 24) (((-802) $) 34 (|has| |#1| (-1023)))) (-2713 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1994 (($ $ (-528)) 13)) (-2186 (((-110) $ $) 27 (|has| |#1| (-1023)))))
-(((-1144 |#1|) (-13 (-1017 |#1|) (-10 -8 (-15 -2713 ($ |#1|)) (-15 -3628 ($ |#1|)) (-15 -2222 ($ (-1018 |#1|))) (-15 -3440 ((-110) $)) (IF (|has| |#1| (-1023)) (-6 (-1023)) |%noBranch|) (IF (|has| |#1| (-791)) (-6 (-1019 |#1| (-1076 |#1|))) |%noBranch|))) (-1131)) (T -1144))
-((-2713 (*1 *1 *2) (-12 (-5 *1 (-1144 *2)) (-4 *2 (-1131)))) (-3628 (*1 *1 *2) (-12 (-5 *1 (-1144 *2)) (-4 *2 (-1131)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-1018 *3)) (-4 *3 (-1131)) (-5 *1 (-1144 *3)))) (-3440 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1144 *3)) (-4 *3 (-1131)))))
-(-13 (-1017 |#1|) (-10 -8 (-15 -2713 ($ |#1|)) (-15 -3628 ($ |#1|)) (-15 -2222 ($ (-1018 |#1|))) (-15 -3440 ((-110) $)) (IF (|has| |#1| (-1023)) (-6 (-1023)) |%noBranch|) (IF (|has| |#1| (-791)) (-6 (-1019 |#1| (-1076 |#1|))) |%noBranch|)))
-((-3106 (((-1150 |#3| |#4|) (-1 |#4| |#2|) (-1150 |#1| |#2|)) 15)))
-(((-1145 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3106 ((-1150 |#3| |#4|) (-1 |#4| |#2|) (-1150 |#1| |#2|)))) (-1095) (-981) (-1095) (-981)) (T -1145))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1150 *5 *6)) (-14 *5 (-1095)) (-4 *6 (-981)) (-4 *8 (-981)) (-5 *2 (-1150 *7 *8)) (-5 *1 (-1145 *5 *6 *7 *8)) (-14 *7 (-1095)))))
-(-10 -7 (-15 -3106 ((-1150 |#3| |#4|) (-1 |#4| |#2|) (-1150 |#1| |#2|))))
-((-3600 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2710 ((|#1| |#3|) 13)) (-2519 ((|#3| |#3|) 19)))
-(((-1146 |#1| |#2| |#3|) (-10 -7 (-15 -2710 (|#1| |#3|)) (-15 -2519 (|#3| |#3|)) (-15 -3600 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-520) (-929 |#1|) (-1153 |#2|)) (T -1146))
-((-3600 (*1 *2 *3) (-12 (-4 *4 (-520)) (-4 *5 (-929 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1146 *4 *5 *3)) (-4 *3 (-1153 *5)))) (-2519 (*1 *2 *2) (-12 (-4 *3 (-520)) (-4 *4 (-929 *3)) (-5 *1 (-1146 *3 *4 *2)) (-4 *2 (-1153 *4)))) (-2710 (*1 *2 *3) (-12 (-4 *4 (-929 *2)) (-4 *2 (-520)) (-5 *1 (-1146 *2 *4 *3)) (-4 *3 (-1153 *4)))))
-(-10 -7 (-15 -2710 (|#1| |#3|)) (-15 -2519 (|#3| |#3|)) (-15 -3600 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-1447 (((-3 |#2| "failed") |#2| (-717) |#1|) 29)) (-1823 (((-3 |#2| "failed") |#2| (-717)) 30)) (-2261 (((-3 (-2 (|:| -3562 |#2|) (|:| -3572 |#2|)) "failed") |#2|) 43)) (-2080 (((-595 |#2|) |#2|) 45)) (-2343 (((-3 |#2| "failed") |#2| |#2|) 40)))
-(((-1147 |#1| |#2|) (-10 -7 (-15 -1823 ((-3 |#2| "failed") |#2| (-717))) (-15 -1447 ((-3 |#2| "failed") |#2| (-717) |#1|)) (-15 -2343 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2261 ((-3 (-2 (|:| -3562 |#2|) (|:| -3572 |#2|)) "failed") |#2|)) (-15 -2080 ((-595 |#2|) |#2|))) (-13 (-520) (-140)) (-1153 |#1|)) (T -1147))
-((-2080 (*1 *2 *3) (-12 (-4 *4 (-13 (-520) (-140))) (-5 *2 (-595 *3)) (-5 *1 (-1147 *4 *3)) (-4 *3 (-1153 *4)))) (-2261 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-520) (-140))) (-5 *2 (-2 (|:| -3562 *3) (|:| -3572 *3))) (-5 *1 (-1147 *4 *3)) (-4 *3 (-1153 *4)))) (-2343 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-520) (-140))) (-5 *1 (-1147 *3 *2)) (-4 *2 (-1153 *3)))) (-1447 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-717)) (-4 *4 (-13 (-520) (-140))) (-5 *1 (-1147 *4 *2)) (-4 *2 (-1153 *4)))) (-1823 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-717)) (-4 *4 (-13 (-520) (-140))) (-5 *1 (-1147 *4 *2)) (-4 *2 (-1153 *4)))))
-(-10 -7 (-15 -1823 ((-3 |#2| "failed") |#2| (-717))) (-15 -1447 ((-3 |#2| "failed") |#2| (-717) |#1|)) (-15 -2343 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2261 ((-3 (-2 (|:| -3562 |#2|) (|:| -3572 |#2|)) "failed") |#2|)) (-15 -2080 ((-595 |#2|) |#2|)))
-((-2285 (((-3 (-2 (|:| -3490 |#2|) (|:| -2537 |#2|)) "failed") |#2| |#2|) 32)))
-(((-1148 |#1| |#2|) (-10 -7 (-15 -2285 ((-3 (-2 (|:| -3490 |#2|) (|:| -2537 |#2|)) "failed") |#2| |#2|))) (-520) (-1153 |#1|)) (T -1148))
-((-2285 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-520)) (-5 *2 (-2 (|:| -3490 *3) (|:| -2537 *3))) (-5 *1 (-1148 *4 *3)) (-4 *3 (-1153 *4)))))
-(-10 -7 (-15 -2285 ((-3 (-2 (|:| -3490 |#2|) (|:| -2537 |#2|)) "failed") |#2| |#2|)))
-((-3248 ((|#2| |#2| |#2|) 19)) (-1684 ((|#2| |#2| |#2|) 30)) (-3398 ((|#2| |#2| |#2| (-717) (-717)) 36)))
-(((-1149 |#1| |#2|) (-10 -7 (-15 -3248 (|#2| |#2| |#2|)) (-15 -1684 (|#2| |#2| |#2|)) (-15 -3398 (|#2| |#2| |#2| (-717) (-717)))) (-981) (-1153 |#1|)) (T -1149))
-((-3398 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-717)) (-4 *4 (-981)) (-5 *1 (-1149 *4 *2)) (-4 *2 (-1153 *4)))) (-1684 (*1 *2 *2 *2) (-12 (-4 *3 (-981)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-1153 *3)))) (-3248 (*1 *2 *2 *2) (-12 (-4 *3 (-981)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-1153 *3)))))
-(-10 -7 (-15 -3248 (|#2| |#2| |#2|)) (-15 -1684 (|#2| |#2| |#2|)) (-15 -3398 (|#2| |#2| |#2| (-717) (-717))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3695 (((-1177 |#2|) $ (-717)) NIL)) (-2565 (((-595 (-1008)) $) NIL)) (-1378 (($ (-1091 |#2|)) NIL)) (-2402 (((-1091 $) $ (-1008)) NIL) (((-1091 |#2|) $) NIL)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#2| (-520)))) (-1738 (($ $) NIL (|has| |#2| (-520)))) (-1811 (((-110) $) NIL (|has| |#2| (-520)))) (-4042 (((-717) $) NIL) (((-717) $ (-595 (-1008))) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-1355 (($ $ $) NIL (|has| |#2| (-520)))) (-2152 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#2| (-848)))) (-1232 (($ $) NIL (|has| |#2| (-431)))) (-2705 (((-398 $) $) NIL (|has| |#2| (-431)))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) NIL (|has| |#2| (-848)))) (-2213 (((-110) $ $) NIL (|has| |#2| (-343)))) (-2646 (($ $ (-717)) NIL)) (-1919 (($ $ (-717)) NIL)) (-3517 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-431)))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#2| "failed") $) NIL) (((-3 (-387 (-528)) "failed") $) NIL (|has| |#2| (-972 (-387 (-528))))) (((-3 (-528) "failed") $) NIL (|has| |#2| (-972 (-528)))) (((-3 (-1008) "failed") $) NIL)) (-2409 ((|#2| $) NIL) (((-387 (-528)) $) NIL (|has| |#2| (-972 (-387 (-528))))) (((-528) $) NIL (|has| |#2| (-972 (-528)))) (((-1008) $) NIL)) (-1606 (($ $ $ (-1008)) NIL (|has| |#2| (-162))) ((|#2| $ $) NIL (|has| |#2| (-162)))) (-3519 (($ $ $) NIL (|has| |#2| (-343)))) (-2388 (($ $) NIL)) (-2120 (((-635 (-528)) (-635 $)) NIL (|has| |#2| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) NIL (|has| |#2| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#2|)) (|:| |vec| (-1177 |#2|))) (-635 $) (-1177 $)) NIL) (((-635 |#2|) (-635 $)) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-3498 (($ $ $) NIL (|has| |#2| (-343)))) (-2325 (($ $ $) NIL)) (-4233 (($ $ $) NIL (|has| |#2| (-520)))) (-3291 (((-2 (|:| -1641 |#2|) (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#2| (-520)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL (|has| |#2| (-343)))) (-1551 (($ $) NIL (|has| |#2| (-431))) (($ $ (-1008)) NIL (|has| |#2| (-431)))) (-2376 (((-595 $) $) NIL)) (-2124 (((-110) $) NIL (|has| |#2| (-848)))) (-4047 (($ $ |#2| (-717) $) NIL)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) NIL (-12 (|has| (-1008) (-825 (-359))) (|has| |#2| (-825 (-359))))) (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) NIL (-12 (|has| (-1008) (-825 (-528))) (|has| |#2| (-825 (-528)))))) (-3689 (((-717) $ $) NIL (|has| |#2| (-520)))) (-1297 (((-110) $) NIL)) (-1224 (((-717) $) NIL)) (-3296 (((-3 $ "failed") $) NIL (|has| |#2| (-1071)))) (-2557 (($ (-1091 |#2|) (-1008)) NIL) (($ (-1091 $) (-1008)) NIL)) (-1771 (($ $ (-717)) NIL)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#2| (-343)))) (-3737 (((-595 $) $) NIL)) (-2195 (((-110) $) NIL)) (-2548 (($ |#2| (-717)) 17) (($ $ (-1008) (-717)) NIL) (($ $ (-595 (-1008)) (-595 (-717))) NIL)) (-3275 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $ (-1008)) NIL) (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL)) (-3499 (((-717) $) NIL) (((-717) $ (-1008)) NIL) (((-595 (-717)) $ (-595 (-1008))) NIL)) (-1436 (($ $ $) NIL (|has| |#2| (-793)))) (-1736 (($ $ $) NIL (|has| |#2| (-793)))) (-1264 (($ (-1 (-717) (-717)) $) NIL)) (-3106 (($ (-1 |#2| |#2|) $) NIL)) (-2151 (((-1091 |#2|) $) NIL)) (-3288 (((-3 (-1008) "failed") $) NIL)) (-2686 (($ $) NIL)) (-2697 ((|#2| $) NIL)) (-2057 (($ (-595 $)) NIL (|has| |#2| (-431))) (($ $ $) NIL (|has| |#2| (-431)))) (-3034 (((-1078) $) NIL)) (-3830 (((-2 (|:| -3490 $) (|:| -2537 $)) $ (-717)) NIL)) (-3024 (((-3 (-595 $) "failed") $) NIL)) (-1281 (((-3 (-595 $) "failed") $) NIL)) (-3352 (((-3 (-2 (|:| |var| (-1008)) (|:| -2564 (-717))) "failed") $) NIL)) (-1923 (($ $) NIL (|has| |#2| (-37 (-387 (-528)))))) (-4197 (($) NIL (|has| |#2| (-1071)) CONST)) (-2495 (((-1042) $) NIL)) (-2662 (((-110) $) NIL)) (-2675 ((|#2| $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#2| (-431)))) (-2088 (($ (-595 $)) NIL (|has| |#2| (-431))) (($ $ $) NIL (|has| |#2| (-431)))) (-1855 (($ $ (-717) |#2| $) NIL)) (-3261 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#2| (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) NIL (|has| |#2| (-848)))) (-2437 (((-398 $) $) NIL (|has| |#2| (-848)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-343))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#2| (-343)))) (-3477 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-520))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-520)))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#2| (-343)))) (-4014 (($ $ (-595 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL) (($ $ (-1008) |#2|) NIL) (($ $ (-595 (-1008)) (-595 |#2|)) NIL) (($ $ (-1008) $) NIL) (($ $ (-595 (-1008)) (-595 $)) NIL)) (-3973 (((-717) $) NIL (|has| |#2| (-343)))) (-3043 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-387 $) (-387 $) (-387 $)) NIL (|has| |#2| (-520))) ((|#2| (-387 $) |#2|) NIL (|has| |#2| (-343))) (((-387 $) $ (-387 $)) NIL (|has| |#2| (-520)))) (-1886 (((-3 $ "failed") $ (-717)) NIL)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#2| (-343)))) (-1372 (($ $ (-1008)) NIL (|has| |#2| (-162))) ((|#2| $) NIL (|has| |#2| (-162)))) (-3235 (($ $ (-1008)) NIL) (($ $ (-595 (-1008))) NIL) (($ $ (-1008) (-717)) NIL) (($ $ (-595 (-1008)) (-595 (-717))) NIL) (($ $ (-717)) NIL) (($ $) NIL) (($ $ (-1095)) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-1 |#2| |#2|) (-717)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2935 (((-717) $) NIL) (((-717) $ (-1008)) NIL) (((-595 (-717)) $ (-595 (-1008))) NIL)) (-3155 (((-831 (-359)) $) NIL (-12 (|has| (-1008) (-570 (-831 (-359)))) (|has| |#2| (-570 (-831 (-359)))))) (((-831 (-528)) $) NIL (-12 (|has| (-1008) (-570 (-831 (-528)))) (|has| |#2| (-570 (-831 (-528)))))) (((-504) $) NIL (-12 (|has| (-1008) (-570 (-504))) (|has| |#2| (-570 (-504)))))) (-1618 ((|#2| $) NIL (|has| |#2| (-431))) (($ $ (-1008)) NIL (|has| |#2| (-431)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-848))))) (-4106 (((-3 $ "failed") $ $) NIL (|has| |#2| (-520))) (((-3 (-387 $) "failed") (-387 $) $) NIL (|has| |#2| (-520)))) (-2222 (((-802) $) 13) (($ (-528)) NIL) (($ |#2|) NIL) (($ (-1008)) NIL) (($ (-1173 |#1|)) 19) (($ (-387 (-528))) NIL (-1463 (|has| |#2| (-37 (-387 (-528)))) (|has| |#2| (-972 (-387 (-528)))))) (($ $) NIL (|has| |#2| (-520)))) (-3348 (((-595 |#2|) $) NIL)) (-3216 ((|#2| $ (-717)) NIL) (($ $ (-1008) (-717)) NIL) (($ $ (-595 (-1008)) (-595 (-717))) NIL)) (-3749 (((-3 $ "failed") $) NIL (-1463 (-12 (|has| $ (-138)) (|has| |#2| (-848))) (|has| |#2| (-138))))) (-3742 (((-717)) NIL)) (-1997 (($ $ $ (-717)) NIL (|has| |#2| (-162)))) (-4016 (((-110) $ $) NIL (|has| |#2| (-520)))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) NIL T CONST)) (-2982 (($) 14 T CONST)) (-3245 (($ $ (-1008)) NIL) (($ $ (-595 (-1008))) NIL) (($ $ (-1008) (-717)) NIL) (($ $ (-595 (-1008)) (-595 (-717))) NIL) (($ $ (-717)) NIL) (($ $) NIL) (($ $ (-1095)) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-595 (-1095))) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-1095) (-717)) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) NIL (|has| |#2| (-839 (-1095)))) (($ $ (-1 |#2| |#2|) (-717)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2244 (((-110) $ $) NIL (|has| |#2| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#2| (-793)))) (-2186 (((-110) $ $) NIL)) (-2232 (((-110) $ $) NIL (|has| |#2| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#2| (-793)))) (-2296 (($ $ |#2|) NIL (|has| |#2| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-387 (-528))) NIL (|has| |#2| (-37 (-387 (-528))))) (($ (-387 (-528)) $) NIL (|has| |#2| (-37 (-387 (-528))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1150 |#1| |#2|) (-13 (-1153 |#2|) (-10 -8 (-15 -2222 ($ (-1173 |#1|))) (-15 -1855 ($ $ (-717) |#2| $)))) (-1095) (-981)) (T -1150))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1173 *3)) (-14 *3 (-1095)) (-5 *1 (-1150 *3 *4)) (-4 *4 (-981)))) (-1855 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-717)) (-5 *1 (-1150 *4 *3)) (-14 *4 (-1095)) (-4 *3 (-981)))))
-(-13 (-1153 |#2|) (-10 -8 (-15 -2222 ($ (-1173 |#1|))) (-15 -1855 ($ $ (-717) |#2| $))))
-((-3106 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1151 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3106 (|#4| (-1 |#3| |#1|) |#2|))) (-981) (-1153 |#1|) (-981) (-1153 |#3|)) (T -1151))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-981)) (-4 *6 (-981)) (-4 *2 (-1153 *6)) (-5 *1 (-1151 *5 *4 *6 *2)) (-4 *4 (-1153 *5)))))
-(-10 -7 (-15 -3106 (|#4| (-1 |#3| |#1|) |#2|)))
-((-3695 (((-1177 |#2|) $ (-717)) 114)) (-2565 (((-595 (-1008)) $) 15)) (-1378 (($ (-1091 |#2|)) 67)) (-4042 (((-717) $) NIL) (((-717) $ (-595 (-1008))) 18)) (-2152 (((-398 (-1091 $)) (-1091 $)) 185)) (-1232 (($ $) 175)) (-2705 (((-398 $) $) 173)) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) 82)) (-2646 (($ $ (-717)) 71)) (-1919 (($ $ (-717)) 73)) (-3517 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-3001 (((-3 |#2| "failed") $) 117) (((-3 (-387 (-528)) "failed") $) NIL) (((-3 (-528) "failed") $) NIL) (((-3 (-1008) "failed") $) NIL)) (-2409 ((|#2| $) 115) (((-387 (-528)) $) NIL) (((-528) $) NIL) (((-1008) $) NIL)) (-4233 (($ $ $) 151)) (-3291 (((-2 (|:| -1641 |#2|) (|:| -3490 $) (|:| -2537 $)) $ $) 153)) (-3689 (((-717) $ $) 170)) (-3296 (((-3 $ "failed") $) 123)) (-2548 (($ |#2| (-717)) NIL) (($ $ (-1008) (-717)) 47) (($ $ (-595 (-1008)) (-595 (-717))) NIL)) (-3499 (((-717) $) NIL) (((-717) $ (-1008)) 42) (((-595 (-717)) $ (-595 (-1008))) 43)) (-2151 (((-1091 |#2|) $) 59)) (-3288 (((-3 (-1008) "failed") $) 40)) (-3830 (((-2 (|:| -3490 $) (|:| -2537 $)) $ (-717)) 70)) (-1923 (($ $) 197)) (-4197 (($) 119)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 182)) (-3261 (((-398 (-1091 $)) (-1091 $)) 88)) (-2394 (((-398 (-1091 $)) (-1091 $)) 86)) (-2437 (((-398 $) $) 107)) (-4014 (($ $ (-595 (-275 $))) 39) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-595 $) (-595 $)) NIL) (($ $ (-1008) |#2|) 31) (($ $ (-595 (-1008)) (-595 |#2|)) 28) (($ $ (-1008) $) 25) (($ $ (-595 (-1008)) (-595 $)) 23)) (-3973 (((-717) $) 188)) (-3043 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-387 $) (-387 $) (-387 $)) 147) ((|#2| (-387 $) |#2|) 187) (((-387 $) $ (-387 $)) 169)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 191)) (-3235 (($ $ (-1008)) 140) (($ $ (-595 (-1008))) NIL) (($ $ (-1008) (-717)) NIL) (($ $ (-595 (-1008)) (-595 (-717))) NIL) (($ $ (-717)) NIL) (($ $) 138) (($ $ (-1095)) NIL) (($ $ (-595 (-1095))) NIL) (($ $ (-1095) (-717)) NIL) (($ $ (-595 (-1095)) (-595 (-717))) NIL) (($ $ (-1 |#2| |#2|) (-717)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-2935 (((-717) $) NIL) (((-717) $ (-1008)) 16) (((-595 (-717)) $ (-595 (-1008))) 20)) (-1618 ((|#2| $) NIL) (($ $ (-1008)) 125)) (-4106 (((-3 $ "failed") $ $) 161) (((-3 (-387 $) "failed") (-387 $) $) 157)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ |#2|) NIL) (($ (-1008)) 51) (($ (-387 (-528))) NIL) (($ $) NIL)))
-(((-1152 |#1| |#2|) (-10 -8 (-15 -2222 (|#1| |#1|)) (-15 -3550 ((-1091 |#1|) (-1091 |#1|) (-1091 |#1|))) (-15 -2705 ((-398 |#1|) |#1|)) (-15 -1232 (|#1| |#1|)) (-15 -2222 (|#1| (-387 (-528)))) (-15 -4197 (|#1|)) (-15 -3296 ((-3 |#1| "failed") |#1|)) (-15 -3043 ((-387 |#1|) |#1| (-387 |#1|))) (-15 -3973 ((-717) |#1|)) (-15 -1512 ((-2 (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1|)) (-15 -1923 (|#1| |#1|)) (-15 -3043 (|#2| (-387 |#1|) |#2|)) (-15 -3517 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3291 ((-2 (|:| -1641 |#2|) (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1|)) (-15 -4233 (|#1| |#1| |#1|)) (-15 -4106 ((-3 (-387 |#1|) "failed") (-387 |#1|) |#1|)) (-15 -4106 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3689 ((-717) |#1| |#1|)) (-15 -3043 ((-387 |#1|) (-387 |#1|) (-387 |#1|))) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1919 (|#1| |#1| (-717))) (-15 -2646 (|#1| |#1| (-717))) (-15 -3830 ((-2 (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| (-717))) (-15 -1378 (|#1| (-1091 |#2|))) (-15 -2151 ((-1091 |#2|) |#1|)) (-15 -3695 ((-1177 |#2|) |#1| (-717))) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)) (-595 (-717)))) (-15 -3235 (|#1| |#1| (-1095) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)))) (-15 -3235 (|#1| |#1| (-1095))) (-15 -3235 (|#1| |#1|)) (-15 -3235 (|#1| |#1| (-717))) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#2| |#1| |#2|)) (-15 -2437 ((-398 |#1|) |#1|)) (-15 -2152 ((-398 (-1091 |#1|)) (-1091 |#1|))) (-15 -2394 ((-398 (-1091 |#1|)) (-1091 |#1|))) (-15 -3261 ((-398 (-1091 |#1|)) (-1091 |#1|))) (-15 -4159 ((-3 (-595 (-1091 |#1|)) "failed") (-595 (-1091 |#1|)) (-1091 |#1|))) (-15 -1618 (|#1| |#1| (-1008))) (-15 -2565 ((-595 (-1008)) |#1|)) (-15 -4042 ((-717) |#1| (-595 (-1008)))) (-15 -4042 ((-717) |#1|)) (-15 -2548 (|#1| |#1| (-595 (-1008)) (-595 (-717)))) (-15 -2548 (|#1| |#1| (-1008) (-717))) (-15 -3499 ((-595 (-717)) |#1| (-595 (-1008)))) (-15 -3499 ((-717) |#1| (-1008))) (-15 -3288 ((-3 (-1008) "failed") |#1|)) (-15 -2935 ((-595 (-717)) |#1| (-595 (-1008)))) (-15 -2935 ((-717) |#1| (-1008))) (-15 -2409 ((-1008) |#1|)) (-15 -3001 ((-3 (-1008) "failed") |#1|)) (-15 -2222 (|#1| (-1008))) (-15 -4014 (|#1| |#1| (-595 (-1008)) (-595 |#1|))) (-15 -4014 (|#1| |#1| (-1008) |#1|)) (-15 -4014 (|#1| |#1| (-595 (-1008)) (-595 |#2|))) (-15 -4014 (|#1| |#1| (-1008) |#2|)) (-15 -4014 (|#1| |#1| (-595 |#1|) (-595 |#1|))) (-15 -4014 (|#1| |#1| |#1| |#1|)) (-15 -4014 (|#1| |#1| (-275 |#1|))) (-15 -4014 (|#1| |#1| (-595 (-275 |#1|)))) (-15 -2935 ((-717) |#1|)) (-15 -2548 (|#1| |#2| (-717))) (-15 -2409 ((-528) |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -2409 ((-387 (-528)) |#1|)) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -2222 (|#1| |#2|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -2409 (|#2| |#1|)) (-15 -3499 ((-717) |#1|)) (-15 -1618 (|#2| |#1|)) (-15 -3235 (|#1| |#1| (-595 (-1008)) (-595 (-717)))) (-15 -3235 (|#1| |#1| (-1008) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1008)))) (-15 -3235 (|#1| |#1| (-1008))) (-15 -2222 (|#1| (-528))) (-15 -2222 ((-802) |#1|))) (-1153 |#2|) (-981)) (T -1152))
-NIL
-(-10 -8 (-15 -2222 (|#1| |#1|)) (-15 -3550 ((-1091 |#1|) (-1091 |#1|) (-1091 |#1|))) (-15 -2705 ((-398 |#1|) |#1|)) (-15 -1232 (|#1| |#1|)) (-15 -2222 (|#1| (-387 (-528)))) (-15 -4197 (|#1|)) (-15 -3296 ((-3 |#1| "failed") |#1|)) (-15 -3043 ((-387 |#1|) |#1| (-387 |#1|))) (-15 -3973 ((-717) |#1|)) (-15 -1512 ((-2 (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1|)) (-15 -1923 (|#1| |#1|)) (-15 -3043 (|#2| (-387 |#1|) |#2|)) (-15 -3517 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3291 ((-2 (|:| -1641 |#2|) (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| |#1|)) (-15 -4233 (|#1| |#1| |#1|)) (-15 -4106 ((-3 (-387 |#1|) "failed") (-387 |#1|) |#1|)) (-15 -4106 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3689 ((-717) |#1| |#1|)) (-15 -3043 ((-387 |#1|) (-387 |#1|) (-387 |#1|))) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1919 (|#1| |#1| (-717))) (-15 -2646 (|#1| |#1| (-717))) (-15 -3830 ((-2 (|:| -3490 |#1|) (|:| -2537 |#1|)) |#1| (-717))) (-15 -1378 (|#1| (-1091 |#2|))) (-15 -2151 ((-1091 |#2|) |#1|)) (-15 -3695 ((-1177 |#2|) |#1| (-717))) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3235 (|#1| |#1| (-1 |#2| |#2|) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)) (-595 (-717)))) (-15 -3235 (|#1| |#1| (-1095) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1095)))) (-15 -3235 (|#1| |#1| (-1095))) (-15 -3235 (|#1| |#1|)) (-15 -3235 (|#1| |#1| (-717))) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#2| |#1| |#2|)) (-15 -2437 ((-398 |#1|) |#1|)) (-15 -2152 ((-398 (-1091 |#1|)) (-1091 |#1|))) (-15 -2394 ((-398 (-1091 |#1|)) (-1091 |#1|))) (-15 -3261 ((-398 (-1091 |#1|)) (-1091 |#1|))) (-15 -4159 ((-3 (-595 (-1091 |#1|)) "failed") (-595 (-1091 |#1|)) (-1091 |#1|))) (-15 -1618 (|#1| |#1| (-1008))) (-15 -2565 ((-595 (-1008)) |#1|)) (-15 -4042 ((-717) |#1| (-595 (-1008)))) (-15 -4042 ((-717) |#1|)) (-15 -2548 (|#1| |#1| (-595 (-1008)) (-595 (-717)))) (-15 -2548 (|#1| |#1| (-1008) (-717))) (-15 -3499 ((-595 (-717)) |#1| (-595 (-1008)))) (-15 -3499 ((-717) |#1| (-1008))) (-15 -3288 ((-3 (-1008) "failed") |#1|)) (-15 -2935 ((-595 (-717)) |#1| (-595 (-1008)))) (-15 -2935 ((-717) |#1| (-1008))) (-15 -2409 ((-1008) |#1|)) (-15 -3001 ((-3 (-1008) "failed") |#1|)) (-15 -2222 (|#1| (-1008))) (-15 -4014 (|#1| |#1| (-595 (-1008)) (-595 |#1|))) (-15 -4014 (|#1| |#1| (-1008) |#1|)) (-15 -4014 (|#1| |#1| (-595 (-1008)) (-595 |#2|))) (-15 -4014 (|#1| |#1| (-1008) |#2|)) (-15 -4014 (|#1| |#1| (-595 |#1|) (-595 |#1|))) (-15 -4014 (|#1| |#1| |#1| |#1|)) (-15 -4014 (|#1| |#1| (-275 |#1|))) (-15 -4014 (|#1| |#1| (-595 (-275 |#1|)))) (-15 -2935 ((-717) |#1|)) (-15 -2548 (|#1| |#2| (-717))) (-15 -2409 ((-528) |#1|)) (-15 -3001 ((-3 (-528) "failed") |#1|)) (-15 -2409 ((-387 (-528)) |#1|)) (-15 -3001 ((-3 (-387 (-528)) "failed") |#1|)) (-15 -2222 (|#1| |#2|)) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -2409 (|#2| |#1|)) (-15 -3499 ((-717) |#1|)) (-15 -1618 (|#2| |#1|)) (-15 -3235 (|#1| |#1| (-595 (-1008)) (-595 (-717)))) (-15 -3235 (|#1| |#1| (-1008) (-717))) (-15 -3235 (|#1| |#1| (-595 (-1008)))) (-15 -3235 (|#1| |#1| (-1008))) (-15 -2222 (|#1| (-528))) (-15 -2222 ((-802) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3695 (((-1177 |#1|) $ (-717)) 238)) (-2565 (((-595 (-1008)) $) 110)) (-1378 (($ (-1091 |#1|)) 236)) (-2402 (((-1091 $) $ (-1008)) 125) (((-1091 |#1|) $) 124)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 87 (|has| |#1| (-520)))) (-1738 (($ $) 88 (|has| |#1| (-520)))) (-1811 (((-110) $) 90 (|has| |#1| (-520)))) (-4042 (((-717) $) 112) (((-717) $ (-595 (-1008))) 111)) (-3181 (((-3 $ "failed") $ $) 19)) (-1355 (($ $ $) 223 (|has| |#1| (-520)))) (-2152 (((-398 (-1091 $)) (-1091 $)) 100 (|has| |#1| (-848)))) (-1232 (($ $) 98 (|has| |#1| (-431)))) (-2705 (((-398 $) $) 97 (|has| |#1| (-431)))) (-4159 (((-3 (-595 (-1091 $)) "failed") (-595 (-1091 $)) (-1091 $)) 103 (|has| |#1| (-848)))) (-2213 (((-110) $ $) 208 (|has| |#1| (-343)))) (-2646 (($ $ (-717)) 231)) (-1919 (($ $ (-717)) 230)) (-3517 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-431)))) (-2816 (($) 17 T CONST)) (-3001 (((-3 |#1| "failed") $) 164) (((-3 (-387 (-528)) "failed") $) 162 (|has| |#1| (-972 (-387 (-528))))) (((-3 (-528) "failed") $) 160 (|has| |#1| (-972 (-528)))) (((-3 (-1008) "failed") $) 136)) (-2409 ((|#1| $) 165) (((-387 (-528)) $) 161 (|has| |#1| (-972 (-387 (-528))))) (((-528) $) 159 (|has| |#1| (-972 (-528)))) (((-1008) $) 135)) (-1606 (($ $ $ (-1008)) 108 (|has| |#1| (-162))) ((|#1| $ $) 226 (|has| |#1| (-162)))) (-3519 (($ $ $) 212 (|has| |#1| (-343)))) (-2388 (($ $) 154)) (-2120 (((-635 (-528)) (-635 $)) 134 (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 (-528))) (|:| |vec| (-1177 (-528)))) (-635 $) (-1177 $)) 133 (|has| |#1| (-591 (-528)))) (((-2 (|:| -2163 (-635 |#1|)) (|:| |vec| (-1177 |#1|))) (-635 $) (-1177 $)) 132) (((-635 |#1|) (-635 $)) 131)) (-1312 (((-3 $ "failed") $) 34)) (-3498 (($ $ $) 211 (|has| |#1| (-343)))) (-2325 (($ $ $) 229)) (-4233 (($ $ $) 220 (|has| |#1| (-520)))) (-3291 (((-2 (|:| -1641 |#1|) (|:| -3490 $) (|:| -2537 $)) $ $) 219 (|has| |#1| (-520)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 206 (|has| |#1| (-343)))) (-1551 (($ $) 176 (|has| |#1| (-431))) (($ $ (-1008)) 105 (|has| |#1| (-431)))) (-2376 (((-595 $) $) 109)) (-2124 (((-110) $) 96 (|has| |#1| (-848)))) (-4047 (($ $ |#1| (-717) $) 172)) (-4181 (((-828 (-359) $) $ (-831 (-359)) (-828 (-359) $)) 84 (-12 (|has| (-1008) (-825 (-359))) (|has| |#1| (-825 (-359))))) (((-828 (-528) $) $ (-831 (-528)) (-828 (-528) $)) 83 (-12 (|has| (-1008) (-825 (-528))) (|has| |#1| (-825 (-528)))))) (-3689 (((-717) $ $) 224 (|has| |#1| (-520)))) (-1297 (((-110) $) 31)) (-1224 (((-717) $) 169)) (-3296 (((-3 $ "failed") $) 204 (|has| |#1| (-1071)))) (-2557 (($ (-1091 |#1|) (-1008)) 117) (($ (-1091 $) (-1008)) 116)) (-1771 (($ $ (-717)) 235)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) 215 (|has| |#1| (-343)))) (-3737 (((-595 $) $) 126)) (-2195 (((-110) $) 152)) (-2548 (($ |#1| (-717)) 153) (($ $ (-1008) (-717)) 119) (($ $ (-595 (-1008)) (-595 (-717))) 118)) (-3275 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $ (-1008)) 120) (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 233)) (-3499 (((-717) $) 170) (((-717) $ (-1008)) 122) (((-595 (-717)) $ (-595 (-1008))) 121)) (-1436 (($ $ $) 79 (|has| |#1| (-793)))) (-1736 (($ $ $) 78 (|has| |#1| (-793)))) (-1264 (($ (-1 (-717) (-717)) $) 171)) (-3106 (($ (-1 |#1| |#1|) $) 151)) (-2151 (((-1091 |#1|) $) 237)) (-3288 (((-3 (-1008) "failed") $) 123)) (-2686 (($ $) 149)) (-2697 ((|#1| $) 148)) (-2057 (($ (-595 $)) 94 (|has| |#1| (-431))) (($ $ $) 93 (|has| |#1| (-431)))) (-3034 (((-1078) $) 9)) (-3830 (((-2 (|:| -3490 $) (|:| -2537 $)) $ (-717)) 232)) (-3024 (((-3 (-595 $) "failed") $) 114)) (-1281 (((-3 (-595 $) "failed") $) 115)) (-3352 (((-3 (-2 (|:| |var| (-1008)) (|:| -2564 (-717))) "failed") $) 113)) (-1923 (($ $) 216 (|has| |#1| (-37 (-387 (-528)))))) (-4197 (($) 203 (|has| |#1| (-1071)) CONST)) (-2495 (((-1042) $) 10)) (-2662 (((-110) $) 166)) (-2675 ((|#1| $) 167)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 95 (|has| |#1| (-431)))) (-2088 (($ (-595 $)) 92 (|has| |#1| (-431))) (($ $ $) 91 (|has| |#1| (-431)))) (-3261 (((-398 (-1091 $)) (-1091 $)) 102 (|has| |#1| (-848)))) (-2394 (((-398 (-1091 $)) (-1091 $)) 101 (|has| |#1| (-848)))) (-2437 (((-398 $) $) 99 (|has| |#1| (-848)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-343))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 213 (|has| |#1| (-343)))) (-3477 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-520))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-520)))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 207 (|has| |#1| (-343)))) (-4014 (($ $ (-595 (-275 $))) 145) (($ $ (-275 $)) 144) (($ $ $ $) 143) (($ $ (-595 $) (-595 $)) 142) (($ $ (-1008) |#1|) 141) (($ $ (-595 (-1008)) (-595 |#1|)) 140) (($ $ (-1008) $) 139) (($ $ (-595 (-1008)) (-595 $)) 138)) (-3973 (((-717) $) 209 (|has| |#1| (-343)))) (-3043 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-387 $) (-387 $) (-387 $)) 225 (|has| |#1| (-520))) ((|#1| (-387 $) |#1|) 217 (|has| |#1| (-343))) (((-387 $) $ (-387 $)) 205 (|has| |#1| (-520)))) (-1886 (((-3 $ "failed") $ (-717)) 234)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 210 (|has| |#1| (-343)))) (-1372 (($ $ (-1008)) 107 (|has| |#1| (-162))) ((|#1| $) 227 (|has| |#1| (-162)))) (-3235 (($ $ (-1008)) 42) (($ $ (-595 (-1008))) 41) (($ $ (-1008) (-717)) 40) (($ $ (-595 (-1008)) (-595 (-717))) 39) (($ $ (-717)) 253) (($ $) 251) (($ $ (-1095)) 250 (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) 249 (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) 248 (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) 247 (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-2935 (((-717) $) 150) (((-717) $ (-1008)) 130) (((-595 (-717)) $ (-595 (-1008))) 129)) (-3155 (((-831 (-359)) $) 82 (-12 (|has| (-1008) (-570 (-831 (-359)))) (|has| |#1| (-570 (-831 (-359)))))) (((-831 (-528)) $) 81 (-12 (|has| (-1008) (-570 (-831 (-528)))) (|has| |#1| (-570 (-831 (-528)))))) (((-504) $) 80 (-12 (|has| (-1008) (-570 (-504))) (|has| |#1| (-570 (-504)))))) (-1618 ((|#1| $) 175 (|has| |#1| (-431))) (($ $ (-1008)) 106 (|has| |#1| (-431)))) (-1495 (((-3 (-1177 $) "failed") (-635 $)) 104 (-3287 (|has| $ (-138)) (|has| |#1| (-848))))) (-4106 (((-3 $ "failed") $ $) 222 (|has| |#1| (-520))) (((-3 (-387 $) "failed") (-387 $) $) 221 (|has| |#1| (-520)))) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ |#1|) 163) (($ (-1008)) 137) (($ (-387 (-528))) 72 (-1463 (|has| |#1| (-972 (-387 (-528)))) (|has| |#1| (-37 (-387 (-528)))))) (($ $) 85 (|has| |#1| (-520)))) (-3348 (((-595 |#1|) $) 168)) (-3216 ((|#1| $ (-717)) 155) (($ $ (-1008) (-717)) 128) (($ $ (-595 (-1008)) (-595 (-717))) 127)) (-3749 (((-3 $ "failed") $) 73 (-1463 (-3287 (|has| $ (-138)) (|has| |#1| (-848))) (|has| |#1| (-138))))) (-3742 (((-717)) 29)) (-1997 (($ $ $ (-717)) 173 (|has| |#1| (-162)))) (-4016 (((-110) $ $) 89 (|has| |#1| (-520)))) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-3245 (($ $ (-1008)) 38) (($ $ (-595 (-1008))) 37) (($ $ (-1008) (-717)) 36) (($ $ (-595 (-1008)) (-595 (-717))) 35) (($ $ (-717)) 254) (($ $) 252) (($ $ (-1095)) 246 (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095))) 245 (|has| |#1| (-839 (-1095)))) (($ $ (-1095) (-717)) 244 (|has| |#1| (-839 (-1095)))) (($ $ (-595 (-1095)) (-595 (-717))) 243 (|has| |#1| (-839 (-1095)))) (($ $ (-1 |#1| |#1|) (-717)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-2244 (((-110) $ $) 76 (|has| |#1| (-793)))) (-2220 (((-110) $ $) 75 (|has| |#1| (-793)))) (-2186 (((-110) $ $) 6)) (-2232 (((-110) $ $) 77 (|has| |#1| (-793)))) (-2208 (((-110) $ $) 74 (|has| |#1| (-793)))) (-2296 (($ $ |#1|) 156 (|has| |#1| (-343)))) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ (-387 (-528))) 158 (|has| |#1| (-37 (-387 (-528))))) (($ (-387 (-528)) $) 157 (|has| |#1| (-37 (-387 (-528))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-1153 |#1|) (-133) (-981)) (T -1153))
-((-3695 (*1 *2 *1 *3) (-12 (-5 *3 (-717)) (-4 *1 (-1153 *4)) (-4 *4 (-981)) (-5 *2 (-1177 *4)))) (-2151 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-981)) (-5 *2 (-1091 *3)))) (-1378 (*1 *1 *2) (-12 (-5 *2 (-1091 *3)) (-4 *3 (-981)) (-4 *1 (-1153 *3)))) (-1771 (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-1153 *3)) (-4 *3 (-981)))) (-1886 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-717)) (-4 *1 (-1153 *3)) (-4 *3 (-981)))) (-3275 (*1 *2 *1 *1) (-12 (-4 *3 (-981)) (-5 *2 (-2 (|:| -3490 *1) (|:| -2537 *1))) (-4 *1 (-1153 *3)))) (-3830 (*1 *2 *1 *3) (-12 (-5 *3 (-717)) (-4 *4 (-981)) (-5 *2 (-2 (|:| -3490 *1) (|:| -2537 *1))) (-4 *1 (-1153 *4)))) (-2646 (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-1153 *3)) (-4 *3 (-981)))) (-1919 (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-1153 *3)) (-4 *3 (-981)))) (-2325 (*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-981)))) (-3235 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1153 *3)) (-4 *3 (-981)))) (-1372 (*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-981)) (-4 *2 (-162)))) (-1606 (*1 *2 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-981)) (-4 *2 (-162)))) (-3043 (*1 *2 *2 *2) (-12 (-5 *2 (-387 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-981)) (-4 *3 (-520)))) (-3689 (*1 *2 *1 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-981)) (-4 *3 (-520)) (-5 *2 (-717)))) (-1355 (*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-981)) (-4 *2 (-520)))) (-4106 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1153 *2)) (-4 *2 (-981)) (-4 *2 (-520)))) (-4106 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-387 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-981)) (-4 *3 (-520)))) (-4233 (*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-981)) (-4 *2 (-520)))) (-3291 (*1 *2 *1 *1) (-12 (-4 *3 (-520)) (-4 *3 (-981)) (-5 *2 (-2 (|:| -1641 *3) (|:| -3490 *1) (|:| -2537 *1))) (-4 *1 (-1153 *3)))) (-3517 (*1 *2 *1 *1) (-12 (-4 *3 (-431)) (-4 *3 (-981)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1153 *3)))) (-3043 (*1 *2 *3 *2) (-12 (-5 *3 (-387 *1)) (-4 *1 (-1153 *2)) (-4 *2 (-981)) (-4 *2 (-343)))) (-1923 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-981)) (-4 *2 (-37 (-387 (-528)))))))
-(-13 (-888 |t#1| (-717) (-1008)) (-267 |t#1| |t#1|) (-267 $ $) (-215) (-213 |t#1|) (-10 -8 (-15 -3695 ((-1177 |t#1|) $ (-717))) (-15 -2151 ((-1091 |t#1|) $)) (-15 -1378 ($ (-1091 |t#1|))) (-15 -1771 ($ $ (-717))) (-15 -1886 ((-3 $ "failed") $ (-717))) (-15 -3275 ((-2 (|:| -3490 $) (|:| -2537 $)) $ $)) (-15 -3830 ((-2 (|:| -3490 $) (|:| -2537 $)) $ (-717))) (-15 -2646 ($ $ (-717))) (-15 -1919 ($ $ (-717))) (-15 -2325 ($ $ $)) (-15 -3235 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1071)) (-6 (-1071)) |%noBranch|) (IF (|has| |t#1| (-162)) (PROGN (-15 -1372 (|t#1| $)) (-15 -1606 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-520)) (PROGN (-6 (-267 (-387 $) (-387 $))) (-15 -3043 ((-387 $) (-387 $) (-387 $))) (-15 -3689 ((-717) $ $)) (-15 -1355 ($ $ $)) (-15 -4106 ((-3 $ "failed") $ $)) (-15 -4106 ((-3 (-387 $) "failed") (-387 $) $)) (-15 -4233 ($ $ $)) (-15 -3291 ((-2 (|:| -1641 |t#1|) (|:| -3490 $) (|:| -2537 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-431)) (-15 -3517 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-343)) (PROGN (-6 (-288)) (-6 -4260) (-15 -3043 (|t#1| (-387 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-387 (-528)))) (-15 -1923 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-717)) . T) ((-25) . T) ((-37 #1=(-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431)) (|has| |#1| (-343))) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-387 (-528)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431)) (|has| |#1| (-343)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-569 (-802)) . T) ((-162) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431)) (|has| |#1| (-343)) (|has| |#1| (-162))) ((-570 (-504)) -12 (|has| (-1008) (-570 (-504))) (|has| |#1| (-570 (-504)))) ((-570 (-831 (-359))) -12 (|has| (-1008) (-570 (-831 (-359)))) (|has| |#1| (-570 (-831 (-359))))) ((-570 (-831 (-528))) -12 (|has| (-1008) (-570 (-831 (-528)))) (|has| |#1| (-570 (-831 (-528))))) ((-213 |#1|) . T) ((-215) . T) ((-267 (-387 $) (-387 $)) |has| |#1| (-520)) ((-267 |#1| |#1|) . T) ((-267 $ $) . T) ((-271) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431)) (|has| |#1| (-343))) ((-288) |has| |#1| (-343)) ((-290 $) . T) ((-306 |#1| #0#) . T) ((-357 |#1|) . T) ((-391 |#1|) . T) ((-431) -1463 (|has| |#1| (-848)) (|has| |#1| (-431)) (|has| |#1| (-343))) ((-489 #2=(-1008) |#1|) . T) ((-489 #2# $) . T) ((-489 $ $) . T) ((-520) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431)) (|has| |#1| (-343))) ((-597 #1#) |has| |#1| (-37 (-387 (-528)))) ((-597 |#1|) . T) ((-597 $) . T) ((-591 (-528)) |has| |#1| (-591 (-528))) ((-591 |#1|) . T) ((-664 #1#) |has| |#1| (-37 (-387 (-528)))) ((-664 |#1|) |has| |#1| (-162)) ((-664 $) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431)) (|has| |#1| (-343))) ((-673) . T) ((-793) |has| |#1| (-793)) ((-839 #2#) . T) ((-839 (-1095)) |has| |#1| (-839 (-1095))) ((-825 (-359)) -12 (|has| (-1008) (-825 (-359))) (|has| |#1| (-825 (-359)))) ((-825 (-528)) -12 (|has| (-1008) (-825 (-528))) (|has| |#1| (-825 (-528)))) ((-888 |#1| #0# #2#) . T) ((-848) |has| |#1| (-848)) ((-859) |has| |#1| (-343)) ((-972 (-387 (-528))) |has| |#1| (-972 (-387 (-528)))) ((-972 (-528)) |has| |#1| (-972 (-528))) ((-972 #2#) . T) ((-972 |#1|) . T) ((-986 #1#) |has| |#1| (-37 (-387 (-528)))) ((-986 |#1|) . T) ((-986 $) -1463 (|has| |#1| (-848)) (|has| |#1| (-520)) (|has| |#1| (-431)) (|has| |#1| (-343)) (|has| |#1| (-162))) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1071) |has| |#1| (-1071)) ((-1135) |has| |#1| (-848)))
-((-2565 (((-595 (-1008)) $) 28)) (-2388 (($ $) 25)) (-2548 (($ |#2| |#3|) NIL) (($ $ (-1008) |#3|) 22) (($ $ (-595 (-1008)) (-595 |#3|)) 21)) (-2686 (($ $) 14)) (-2697 ((|#2| $) 12)) (-2935 ((|#3| $) 10)))
-(((-1154 |#1| |#2| |#3|) (-10 -8 (-15 -2565 ((-595 (-1008)) |#1|)) (-15 -2548 (|#1| |#1| (-595 (-1008)) (-595 |#3|))) (-15 -2548 (|#1| |#1| (-1008) |#3|)) (-15 -2388 (|#1| |#1|)) (-15 -2548 (|#1| |#2| |#3|)) (-15 -2935 (|#3| |#1|)) (-15 -2686 (|#1| |#1|)) (-15 -2697 (|#2| |#1|))) (-1155 |#2| |#3|) (-981) (-738)) (T -1154))
-NIL
-(-10 -8 (-15 -2565 ((-595 (-1008)) |#1|)) (-15 -2548 (|#1| |#1| (-595 (-1008)) (-595 |#3|))) (-15 -2548 (|#1| |#1| (-1008) |#3|)) (-15 -2388 (|#1| |#1|)) (-15 -2548 (|#1| |#2| |#3|)) (-15 -2935 (|#3| |#1|)) (-15 -2686 (|#1| |#1|)) (-15 -2697 (|#2| |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2565 (((-595 (-1008)) $) 74)) (-3915 (((-1095) $) 103)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 51 (|has| |#1| (-520)))) (-1738 (($ $) 52 (|has| |#1| (-520)))) (-1811 (((-110) $) 54 (|has| |#1| (-520)))) (-1781 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-1514 (((-1076 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-2388 (($ $) 60)) (-1312 (((-3 $ "failed") $) 34)) (-1900 (((-110) $) 73)) (-3689 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-1297 (((-110) $) 31)) (-1771 (($ $ (-860)) 101)) (-2195 (((-110) $) 62)) (-2548 (($ |#1| |#2|) 61) (($ $ (-1008) |#2|) 76) (($ $ (-595 (-1008)) (-595 |#2|)) 75)) (-3106 (($ (-1 |#1| |#1|) $) 63)) (-2686 (($ $) 65)) (-2697 ((|#1| $) 66)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-3740 (($ $ |#2|) 95)) (-3477 (((-3 $ "failed") $ $) 50 (|has| |#1| (-520)))) (-4014 (((-1076 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-3043 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1035)))) (-3235 (($ $ (-595 (-1095)) (-595 (-717))) 89 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1095) (-717)) 88 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-595 (-1095))) 87 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1095)) 86 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-717)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2935 ((|#2| $) 64)) (-3534 (($ $) 72)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ (-387 (-528))) 57 (|has| |#1| (-37 (-387 (-528))))) (($ $) 49 (|has| |#1| (-520))) (($ |#1|) 47 (|has| |#1| (-162)))) (-3216 ((|#1| $ |#2|) 59)) (-3749 (((-3 $ "failed") $) 48 (|has| |#1| (-138)))) (-3742 (((-717)) 29)) (-1884 ((|#1| $) 102)) (-4016 (((-110) $ $) 53 (|has| |#1| (-520)))) (-4083 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2222 (|#1| (-1095))))))) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-3245 (($ $ (-595 (-1095)) (-595 (-717))) 93 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1095) (-717)) 92 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-595 (-1095))) 91 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1095)) 90 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-717)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2186 (((-110) $ $) 6)) (-2296 (($ $ |#1|) 58 (|has| |#1| (-343)))) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-387 (-528)) $) 56 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) 55 (|has| |#1| (-37 (-387 (-528)))))))
-(((-1155 |#1| |#2|) (-133) (-981) (-738)) (T -1155))
-((-1514 (*1 *2 *1) (-12 (-4 *1 (-1155 *3 *4)) (-4 *3 (-981)) (-4 *4 (-738)) (-5 *2 (-1076 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3043 (*1 *2 *1 *3) (-12 (-4 *1 (-1155 *2 *3)) (-4 *3 (-738)) (-4 *2 (-981)))) (-3915 (*1 *2 *1) (-12 (-4 *1 (-1155 *3 *4)) (-4 *3 (-981)) (-4 *4 (-738)) (-5 *2 (-1095)))) (-1884 (*1 *2 *1) (-12 (-4 *1 (-1155 *2 *3)) (-4 *3 (-738)) (-4 *2 (-981)))) (-1771 (*1 *1 *1 *2) (-12 (-5 *2 (-860)) (-4 *1 (-1155 *3 *4)) (-4 *3 (-981)) (-4 *4 (-738)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-981)) (-4 *2 (-738)))) (-3689 (*1 *2 *1 *2) (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-981)) (-4 *2 (-738)))) (-1781 (*1 *1 *1 *2) (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-981)) (-4 *2 (-738)))) (-1781 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-981)) (-4 *2 (-738)))) (-4083 (*1 *2 *1 *3) (-12 (-4 *1 (-1155 *2 *3)) (-4 *3 (-738)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2222 (*2 (-1095)))) (-4 *2 (-981)))) (-3740 (*1 *1 *1 *2) (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-981)) (-4 *2 (-738)))) (-4014 (*1 *2 *1 *3) (-12 (-4 *1 (-1155 *3 *4)) (-4 *3 (-981)) (-4 *4 (-738)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1076 *3)))))
-(-13 (-910 |t#1| |t#2| (-1008)) (-10 -8 (-15 -1514 ((-1076 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3043 (|t#1| $ |t#2|)) (-15 -3915 ((-1095) $)) (-15 -1884 (|t#1| $)) (-15 -1771 ($ $ (-860))) (-15 -3689 (|t#2| $)) (-15 -3689 (|t#2| $ |t#2|)) (-15 -1781 ($ $ |t#2|)) (-15 -1781 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2222 (|t#1| (-1095)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4083 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3740 ($ $ |t#2|)) (IF (|has| |t#2| (-1035)) (-6 (-267 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-215)) (IF (|has| |t#1| (-839 (-1095))) (-6 (-839 (-1095))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4014 ((-1076 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-520)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-387 (-528)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1463 (|has| |#1| (-520)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-569 (-802)) . T) ((-162) -1463 (|has| |#1| (-520)) (|has| |#1| (-162))) ((-215) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-267 $ $) |has| |#2| (-1035)) ((-271) |has| |#1| (-520)) ((-520) |has| |#1| (-520)) ((-597 #0#) |has| |#1| (-37 (-387 (-528)))) ((-597 |#1|) . T) ((-597 $) . T) ((-664 #0#) |has| |#1| (-37 (-387 (-528)))) ((-664 |#1|) |has| |#1| (-162)) ((-664 $) |has| |#1| (-520)) ((-673) . T) ((-839 (-1095)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-839 (-1095)))) ((-910 |#1| |#2| (-1008)) . T) ((-986 #0#) |has| |#1| (-37 (-387 (-528)))) ((-986 |#1|) . T) ((-986 $) -1463 (|has| |#1| (-520)) (|has| |#1| (-162))) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-1232 ((|#2| |#2|) 12)) (-2705 (((-398 |#2|) |#2|) 14)) (-2306 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-528))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-528)))) 30)))
-(((-1156 |#1| |#2|) (-10 -7 (-15 -2705 ((-398 |#2|) |#2|)) (-15 -1232 (|#2| |#2|)) (-15 -2306 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-528))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-528)))))) (-520) (-13 (-1153 |#1|) (-520) (-10 -8 (-15 -2088 ($ $ $))))) (T -1156))
-((-2306 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-528)))) (-4 *4 (-13 (-1153 *3) (-520) (-10 -8 (-15 -2088 ($ $ $))))) (-4 *3 (-520)) (-5 *1 (-1156 *3 *4)))) (-1232 (*1 *2 *2) (-12 (-4 *3 (-520)) (-5 *1 (-1156 *3 *2)) (-4 *2 (-13 (-1153 *3) (-520) (-10 -8 (-15 -2088 ($ $ $))))))) (-2705 (*1 *2 *3) (-12 (-4 *4 (-520)) (-5 *2 (-398 *3)) (-5 *1 (-1156 *4 *3)) (-4 *3 (-13 (-1153 *4) (-520) (-10 -8 (-15 -2088 ($ $ $))))))))
-(-10 -7 (-15 -2705 ((-398 |#2|) |#2|)) (-15 -1232 (|#2| |#2|)) (-15 -2306 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-528))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-528))))))
-((-3106 (((-1162 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1162 |#1| |#3| |#5|)) 24)))
-(((-1157 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3106 ((-1162 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1162 |#1| |#3| |#5|)))) (-981) (-981) (-1095) (-1095) |#1| |#2|) (T -1157))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1162 *5 *7 *9)) (-4 *5 (-981)) (-4 *6 (-981)) (-14 *7 (-1095)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1162 *6 *8 *10)) (-5 *1 (-1157 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1095)))))
-(-10 -7 (-15 -3106 ((-1162 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1162 |#1| |#3| |#5|))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2565 (((-595 (-1008)) $) 74)) (-3915 (((-1095) $) 103)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 51 (|has| |#1| (-520)))) (-1738 (($ $) 52 (|has| |#1| (-520)))) (-1811 (((-110) $) 54 (|has| |#1| (-520)))) (-1781 (($ $ (-387 (-528))) 98) (($ $ (-387 (-528)) (-387 (-528))) 97)) (-1514 (((-1076 (-2 (|:| |k| (-387 (-528))) (|:| |c| |#1|))) $) 105)) (-2880 (($ $) 135 (|has| |#1| (-37 (-387 (-528)))))) (-2735 (($ $) 118 (|has| |#1| (-37 (-387 (-528)))))) (-3181 (((-3 $ "failed") $ $) 19)) (-1232 (($ $) 162 (|has| |#1| (-343)))) (-2705 (((-398 $) $) 163 (|has| |#1| (-343)))) (-2450 (($ $) 117 (|has| |#1| (-37 (-387 (-528)))))) (-2213 (((-110) $ $) 153 (|has| |#1| (-343)))) (-2859 (($ $) 134 (|has| |#1| (-37 (-387 (-528)))))) (-2712 (($ $) 119 (|has| |#1| (-37 (-387 (-528)))))) (-1397 (($ (-717) (-1076 (-2 (|:| |k| (-387 (-528))) (|:| |c| |#1|)))) 172)) (-2904 (($ $) 133 (|has| |#1| (-37 (-387 (-528)))))) (-2761 (($ $) 120 (|has| |#1| (-37 (-387 (-528)))))) (-2816 (($) 17 T CONST)) (-3519 (($ $ $) 157 (|has| |#1| (-343)))) (-2388 (($ $) 60)) (-1312 (((-3 $ "failed") $) 34)) (-3498 (($ $ $) 156 (|has| |#1| (-343)))) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 151 (|has| |#1| (-343)))) (-2124 (((-110) $) 164 (|has| |#1| (-343)))) (-1900 (((-110) $) 73)) (-1505 (($) 145 (|has| |#1| (-37 (-387 (-528)))))) (-3689 (((-387 (-528)) $) 100) (((-387 (-528)) $ (-387 (-528))) 99)) (-1297 (((-110) $) 31)) (-2796 (($ $ (-528)) 116 (|has| |#1| (-37 (-387 (-528)))))) (-1771 (($ $ (-860)) 101) (($ $ (-387 (-528))) 171)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) 160 (|has| |#1| (-343)))) (-2195 (((-110) $) 62)) (-2548 (($ |#1| (-387 (-528))) 61) (($ $ (-1008) (-387 (-528))) 76) (($ $ (-595 (-1008)) (-595 (-387 (-528)))) 75)) (-3106 (($ (-1 |#1| |#1|) $) 63)) (-2097 (($ $) 142 (|has| |#1| (-37 (-387 (-528)))))) (-2686 (($ $) 65)) (-2697 ((|#1| $) 66)) (-2057 (($ (-595 $)) 149 (|has| |#1| (-343))) (($ $ $) 148 (|has| |#1| (-343)))) (-3034 (((-1078) $) 9)) (-2652 (($ $) 165 (|has| |#1| (-343)))) (-1923 (($ $) 170 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-1095)) 169 (-1463 (-12 (|has| |#1| (-29 (-528))) (|has| |#1| (-897)) (|has| |#1| (-1117)) (|has| |#1| (-37 (-387 (-528))))) (-12 (|has| |#1| (-15 -2565 ((-595 (-1095)) |#1|))) (|has| |#1| (-15 -1923 (|#1| |#1| (-1095)))) (|has| |#1| (-37 (-387 (-528)))))))) (-2495 (((-1042) $) 10)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 150 (|has| |#1| (-343)))) (-2088 (($ (-595 $)) 147 (|has| |#1| (-343))) (($ $ $) 146 (|has| |#1| (-343)))) (-2437 (((-398 $) $) 161 (|has| |#1| (-343)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-343))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 158 (|has| |#1| (-343)))) (-3740 (($ $ (-387 (-528))) 95)) (-3477 (((-3 $ "failed") $ $) 50 (|has| |#1| (-520)))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 152 (|has| |#1| (-343)))) (-2656 (($ $) 143 (|has| |#1| (-37 (-387 (-528)))))) (-4014 (((-1076 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-387 (-528))))))) (-3973 (((-717) $) 154 (|has| |#1| (-343)))) (-3043 ((|#1| $ (-387 (-528))) 104) (($ $ $) 81 (|has| (-387 (-528)) (-1035)))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 155 (|has| |#1| (-343)))) (-3235 (($ $ (-595 (-1095)) (-595 (-717))) 89 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (($ $ (-1095) (-717)) 88 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (($ $ (-595 (-1095))) 87 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (($ $ (-1095)) 86 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (($ $ (-717)) 84 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (-2935 (((-387 (-528)) $) 64)) (-2917 (($ $) 132 (|has| |#1| (-37 (-387 (-528)))))) (-2773 (($ $) 121 (|has| |#1| (-37 (-387 (-528)))))) (-2892 (($ $) 131 (|has| |#1| (-37 (-387 (-528)))))) (-2749 (($ $) 122 (|has| |#1| (-37 (-387 (-528)))))) (-2869 (($ $) 130 (|has| |#1| (-37 (-387 (-528)))))) (-2724 (($ $) 123 (|has| |#1| (-37 (-387 (-528)))))) (-3534 (($ $) 72)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ |#1|) 47 (|has| |#1| (-162))) (($ (-387 (-528))) 57 (|has| |#1| (-37 (-387 (-528))))) (($ $) 49 (|has| |#1| (-520)))) (-3216 ((|#1| $ (-387 (-528))) 59)) (-3749 (((-3 $ "failed") $) 48 (|has| |#1| (-138)))) (-3742 (((-717)) 29)) (-1884 ((|#1| $) 102)) (-2953 (($ $) 141 (|has| |#1| (-37 (-387 (-528)))))) (-2811 (($ $) 129 (|has| |#1| (-37 (-387 (-528)))))) (-4016 (((-110) $ $) 53 (|has| |#1| (-520)))) (-2928 (($ $) 140 (|has| |#1| (-37 (-387 (-528)))))) (-2784 (($ $) 128 (|has| |#1| (-37 (-387 (-528)))))) (-2981 (($ $) 139 (|has| |#1| (-37 (-387 (-528)))))) (-2836 (($ $) 127 (|has| |#1| (-37 (-387 (-528)))))) (-4083 ((|#1| $ (-387 (-528))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-387 (-528))))) (|has| |#1| (-15 -2222 (|#1| (-1095))))))) (-3592 (($ $) 138 (|has| |#1| (-37 (-387 (-528)))))) (-2846 (($ $) 126 (|has| |#1| (-37 (-387 (-528)))))) (-2967 (($ $) 137 (|has| |#1| (-37 (-387 (-528)))))) (-2825 (($ $) 125 (|has| |#1| (-37 (-387 (-528)))))) (-2940 (($ $) 136 (|has| |#1| (-37 (-387 (-528)))))) (-2797 (($ $) 124 (|has| |#1| (-37 (-387 (-528)))))) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33) (($ $ (-528)) 166 (|has| |#1| (-343)))) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-3245 (($ $ (-595 (-1095)) (-595 (-717))) 93 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (($ $ (-1095) (-717)) 92 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (($ $ (-595 (-1095))) 91 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (($ $ (-1095)) 90 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (($ $ (-717)) 85 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (-2186 (((-110) $ $) 6)) (-2296 (($ $ |#1|) 58 (|has| |#1| (-343))) (($ $ $) 168 (|has| |#1| (-343)))) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32) (($ $ (-528)) 167 (|has| |#1| (-343))) (($ $ $) 144 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) 115 (|has| |#1| (-37 (-387 (-528)))))) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-387 (-528)) $) 56 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) 55 (|has| |#1| (-37 (-387 (-528)))))))
-(((-1158 |#1|) (-133) (-981)) (T -1158))
-((-1397 (*1 *1 *2 *3) (-12 (-5 *2 (-717)) (-5 *3 (-1076 (-2 (|:| |k| (-387 (-528))) (|:| |c| *4)))) (-4 *4 (-981)) (-4 *1 (-1158 *4)))) (-1771 (*1 *1 *1 *2) (-12 (-5 *2 (-387 (-528))) (-4 *1 (-1158 *3)) (-4 *3 (-981)))) (-1923 (*1 *1 *1) (-12 (-4 *1 (-1158 *2)) (-4 *2 (-981)) (-4 *2 (-37 (-387 (-528)))))) (-1923 (*1 *1 *1 *2) (-1463 (-12 (-5 *2 (-1095)) (-4 *1 (-1158 *3)) (-4 *3 (-981)) (-12 (-4 *3 (-29 (-528))) (-4 *3 (-897)) (-4 *3 (-1117)) (-4 *3 (-37 (-387 (-528)))))) (-12 (-5 *2 (-1095)) (-4 *1 (-1158 *3)) (-4 *3 (-981)) (-12 (|has| *3 (-15 -2565 ((-595 *2) *3))) (|has| *3 (-15 -1923 (*3 *3 *2))) (-4 *3 (-37 (-387 (-528)))))))))
-(-13 (-1155 |t#1| (-387 (-528))) (-10 -8 (-15 -1397 ($ (-717) (-1076 (-2 (|:| |k| (-387 (-528))) (|:| |c| |t#1|))))) (-15 -1771 ($ $ (-387 (-528)))) (IF (|has| |t#1| (-37 (-387 (-528)))) (PROGN (-15 -1923 ($ $)) (IF (|has| |t#1| (-15 -1923 (|t#1| |t#1| (-1095)))) (IF (|has| |t#1| (-15 -2565 ((-595 (-1095)) |t#1|))) (-15 -1923 ($ $ (-1095))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1117)) (IF (|has| |t#1| (-897)) (IF (|has| |t#1| (-29 (-528))) (-15 -1923 ($ $ (-1095))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-938)) (-6 (-1117))) |%noBranch|) (IF (|has| |t#1| (-343)) (-6 (-343)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-387 (-528))) . T) ((-25) . T) ((-37 #1=(-387 (-528))) -1463 (|has| |#1| (-343)) (|has| |#1| (-37 (-387 (-528))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1463 (|has| |#1| (-520)) (|has| |#1| (-343))) ((-34) |has| |#1| (-37 (-387 (-528)))) ((-93) |has| |#1| (-37 (-387 (-528)))) ((-99) . T) ((-109 #1# #1#) -1463 (|has| |#1| (-343)) (|has| |#1| (-37 (-387 (-528))))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1463 (|has| |#1| (-520)) (|has| |#1| (-343)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-569 (-802)) . T) ((-162) -1463 (|has| |#1| (-520)) (|has| |#1| (-343)) (|has| |#1| (-162))) ((-215) |has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) ((-225) |has| |#1| (-343)) ((-265) |has| |#1| (-37 (-387 (-528)))) ((-267 $ $) |has| (-387 (-528)) (-1035)) ((-271) -1463 (|has| |#1| (-520)) (|has| |#1| (-343))) ((-288) |has| |#1| (-343)) ((-343) |has| |#1| (-343)) ((-431) |has| |#1| (-343)) ((-469) |has| |#1| (-37 (-387 (-528)))) ((-520) -1463 (|has| |#1| (-520)) (|has| |#1| (-343))) ((-597 #1#) -1463 (|has| |#1| (-343)) (|has| |#1| (-37 (-387 (-528))))) ((-597 |#1|) . T) ((-597 $) . T) ((-664 #1#) -1463 (|has| |#1| (-343)) (|has| |#1| (-37 (-387 (-528))))) ((-664 |#1|) |has| |#1| (-162)) ((-664 $) -1463 (|has| |#1| (-520)) (|has| |#1| (-343))) ((-673) . T) ((-839 (-1095)) -12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095)))) ((-910 |#1| #0# (-1008)) . T) ((-859) |has| |#1| (-343)) ((-938) |has| |#1| (-37 (-387 (-528)))) ((-986 #1#) -1463 (|has| |#1| (-343)) (|has| |#1| (-37 (-387 (-528))))) ((-986 |#1|) . T) ((-986 $) -1463 (|has| |#1| (-520)) (|has| |#1| (-343)) (|has| |#1| (-162))) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1117) |has| |#1| (-37 (-387 (-528)))) ((-1120) |has| |#1| (-37 (-387 (-528)))) ((-1135) |has| |#1| (-343)) ((-1155 |#1| #0#) . T))
-((-1359 (((-110) $) 12)) (-3001 (((-3 |#3| "failed") $) 17)) (-2409 ((|#3| $) 14)))
-(((-1159 |#1| |#2| |#3|) (-10 -8 (-15 -2409 (|#3| |#1|)) (-15 -3001 ((-3 |#3| "failed") |#1|)) (-15 -1359 ((-110) |#1|))) (-1160 |#2| |#3|) (-981) (-1137 |#2|)) (T -1159))
-NIL
-(-10 -8 (-15 -2409 (|#3| |#1|)) (-15 -3001 ((-3 |#3| "failed") |#1|)) (-15 -1359 ((-110) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2565 (((-595 (-1008)) $) 74)) (-3915 (((-1095) $) 103)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 51 (|has| |#1| (-520)))) (-1738 (($ $) 52 (|has| |#1| (-520)))) (-1811 (((-110) $) 54 (|has| |#1| (-520)))) (-1781 (($ $ (-387 (-528))) 98) (($ $ (-387 (-528)) (-387 (-528))) 97)) (-1514 (((-1076 (-2 (|:| |k| (-387 (-528))) (|:| |c| |#1|))) $) 105)) (-2880 (($ $) 135 (|has| |#1| (-37 (-387 (-528)))))) (-2735 (($ $) 118 (|has| |#1| (-37 (-387 (-528)))))) (-3181 (((-3 $ "failed") $ $) 19)) (-1232 (($ $) 162 (|has| |#1| (-343)))) (-2705 (((-398 $) $) 163 (|has| |#1| (-343)))) (-2450 (($ $) 117 (|has| |#1| (-37 (-387 (-528)))))) (-2213 (((-110) $ $) 153 (|has| |#1| (-343)))) (-2859 (($ $) 134 (|has| |#1| (-37 (-387 (-528)))))) (-2712 (($ $) 119 (|has| |#1| (-37 (-387 (-528)))))) (-1397 (($ (-717) (-1076 (-2 (|:| |k| (-387 (-528))) (|:| |c| |#1|)))) 172)) (-2904 (($ $) 133 (|has| |#1| (-37 (-387 (-528)))))) (-2761 (($ $) 120 (|has| |#1| (-37 (-387 (-528)))))) (-2816 (($) 17 T CONST)) (-3001 (((-3 |#2| "failed") $) 183)) (-2409 ((|#2| $) 182)) (-3519 (($ $ $) 157 (|has| |#1| (-343)))) (-2388 (($ $) 60)) (-1312 (((-3 $ "failed") $) 34)) (-3312 (((-387 (-528)) $) 180)) (-3498 (($ $ $) 156 (|has| |#1| (-343)))) (-2632 (($ (-387 (-528)) |#2|) 181)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 151 (|has| |#1| (-343)))) (-2124 (((-110) $) 164 (|has| |#1| (-343)))) (-1900 (((-110) $) 73)) (-1505 (($) 145 (|has| |#1| (-37 (-387 (-528)))))) (-3689 (((-387 (-528)) $) 100) (((-387 (-528)) $ (-387 (-528))) 99)) (-1297 (((-110) $) 31)) (-2796 (($ $ (-528)) 116 (|has| |#1| (-37 (-387 (-528)))))) (-1771 (($ $ (-860)) 101) (($ $ (-387 (-528))) 171)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) 160 (|has| |#1| (-343)))) (-2195 (((-110) $) 62)) (-2548 (($ |#1| (-387 (-528))) 61) (($ $ (-1008) (-387 (-528))) 76) (($ $ (-595 (-1008)) (-595 (-387 (-528)))) 75)) (-3106 (($ (-1 |#1| |#1|) $) 63)) (-2097 (($ $) 142 (|has| |#1| (-37 (-387 (-528)))))) (-2686 (($ $) 65)) (-2697 ((|#1| $) 66)) (-2057 (($ (-595 $)) 149 (|has| |#1| (-343))) (($ $ $) 148 (|has| |#1| (-343)))) (-1380 ((|#2| $) 179)) (-3320 (((-3 |#2| "failed") $) 177)) (-2623 ((|#2| $) 178)) (-3034 (((-1078) $) 9)) (-2652 (($ $) 165 (|has| |#1| (-343)))) (-1923 (($ $) 170 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-1095)) 169 (-1463 (-12 (|has| |#1| (-29 (-528))) (|has| |#1| (-897)) (|has| |#1| (-1117)) (|has| |#1| (-37 (-387 (-528))))) (-12 (|has| |#1| (-15 -2565 ((-595 (-1095)) |#1|))) (|has| |#1| (-15 -1923 (|#1| |#1| (-1095)))) (|has| |#1| (-37 (-387 (-528)))))))) (-2495 (((-1042) $) 10)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 150 (|has| |#1| (-343)))) (-2088 (($ (-595 $)) 147 (|has| |#1| (-343))) (($ $ $) 146 (|has| |#1| (-343)))) (-2437 (((-398 $) $) 161 (|has| |#1| (-343)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-343))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 158 (|has| |#1| (-343)))) (-3740 (($ $ (-387 (-528))) 95)) (-3477 (((-3 $ "failed") $ $) 50 (|has| |#1| (-520)))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 152 (|has| |#1| (-343)))) (-2656 (($ $) 143 (|has| |#1| (-37 (-387 (-528)))))) (-4014 (((-1076 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-387 (-528))))))) (-3973 (((-717) $) 154 (|has| |#1| (-343)))) (-3043 ((|#1| $ (-387 (-528))) 104) (($ $ $) 81 (|has| (-387 (-528)) (-1035)))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 155 (|has| |#1| (-343)))) (-3235 (($ $ (-595 (-1095)) (-595 (-717))) 89 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (($ $ (-1095) (-717)) 88 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (($ $ (-595 (-1095))) 87 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (($ $ (-1095)) 86 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (($ $ (-717)) 84 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (-2935 (((-387 (-528)) $) 64)) (-2917 (($ $) 132 (|has| |#1| (-37 (-387 (-528)))))) (-2773 (($ $) 121 (|has| |#1| (-37 (-387 (-528)))))) (-2892 (($ $) 131 (|has| |#1| (-37 (-387 (-528)))))) (-2749 (($ $) 122 (|has| |#1| (-37 (-387 (-528)))))) (-2869 (($ $) 130 (|has| |#1| (-37 (-387 (-528)))))) (-2724 (($ $) 123 (|has| |#1| (-37 (-387 (-528)))))) (-3534 (($ $) 72)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ |#1|) 47 (|has| |#1| (-162))) (($ |#2|) 184) (($ (-387 (-528))) 57 (|has| |#1| (-37 (-387 (-528))))) (($ $) 49 (|has| |#1| (-520)))) (-3216 ((|#1| $ (-387 (-528))) 59)) (-3749 (((-3 $ "failed") $) 48 (|has| |#1| (-138)))) (-3742 (((-717)) 29)) (-1884 ((|#1| $) 102)) (-2953 (($ $) 141 (|has| |#1| (-37 (-387 (-528)))))) (-2811 (($ $) 129 (|has| |#1| (-37 (-387 (-528)))))) (-4016 (((-110) $ $) 53 (|has| |#1| (-520)))) (-2928 (($ $) 140 (|has| |#1| (-37 (-387 (-528)))))) (-2784 (($ $) 128 (|has| |#1| (-37 (-387 (-528)))))) (-2981 (($ $) 139 (|has| |#1| (-37 (-387 (-528)))))) (-2836 (($ $) 127 (|has| |#1| (-37 (-387 (-528)))))) (-4083 ((|#1| $ (-387 (-528))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-387 (-528))))) (|has| |#1| (-15 -2222 (|#1| (-1095))))))) (-3592 (($ $) 138 (|has| |#1| (-37 (-387 (-528)))))) (-2846 (($ $) 126 (|has| |#1| (-37 (-387 (-528)))))) (-2967 (($ $) 137 (|has| |#1| (-37 (-387 (-528)))))) (-2825 (($ $) 125 (|has| |#1| (-37 (-387 (-528)))))) (-2940 (($ $) 136 (|has| |#1| (-37 (-387 (-528)))))) (-2797 (($ $) 124 (|has| |#1| (-37 (-387 (-528)))))) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33) (($ $ (-528)) 166 (|has| |#1| (-343)))) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-3245 (($ $ (-595 (-1095)) (-595 (-717))) 93 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (($ $ (-1095) (-717)) 92 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (($ $ (-595 (-1095))) 91 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (($ $ (-1095)) 90 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (($ $ (-717)) 85 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (-2186 (((-110) $ $) 6)) (-2296 (($ $ |#1|) 58 (|has| |#1| (-343))) (($ $ $) 168 (|has| |#1| (-343)))) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32) (($ $ (-528)) 167 (|has| |#1| (-343))) (($ $ $) 144 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) 115 (|has| |#1| (-37 (-387 (-528)))))) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-387 (-528)) $) 56 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) 55 (|has| |#1| (-37 (-387 (-528)))))))
-(((-1160 |#1| |#2|) (-133) (-981) (-1137 |t#1|)) (T -1160))
-((-2935 (*1 *2 *1) (-12 (-4 *1 (-1160 *3 *4)) (-4 *3 (-981)) (-4 *4 (-1137 *3)) (-5 *2 (-387 (-528))))) (-2222 (*1 *1 *2) (-12 (-4 *3 (-981)) (-4 *1 (-1160 *3 *2)) (-4 *2 (-1137 *3)))) (-2632 (*1 *1 *2 *3) (-12 (-5 *2 (-387 (-528))) (-4 *4 (-981)) (-4 *1 (-1160 *4 *3)) (-4 *3 (-1137 *4)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-1160 *3 *4)) (-4 *3 (-981)) (-4 *4 (-1137 *3)) (-5 *2 (-387 (-528))))) (-1380 (*1 *2 *1) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-981)) (-4 *2 (-1137 *3)))) (-2623 (*1 *2 *1) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-981)) (-4 *2 (-1137 *3)))) (-3320 (*1 *2 *1) (|partial| -12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-981)) (-4 *2 (-1137 *3)))))
-(-13 (-1158 |t#1|) (-972 |t#2|) (-10 -8 (-15 -2632 ($ (-387 (-528)) |t#2|)) (-15 -3312 ((-387 (-528)) $)) (-15 -1380 (|t#2| $)) (-15 -2935 ((-387 (-528)) $)) (-15 -2222 ($ |t#2|)) (-15 -2623 (|t#2| $)) (-15 -3320 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-387 (-528))) . T) ((-25) . T) ((-37 #1=(-387 (-528))) -1463 (|has| |#1| (-343)) (|has| |#1| (-37 (-387 (-528))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1463 (|has| |#1| (-520)) (|has| |#1| (-343))) ((-34) |has| |#1| (-37 (-387 (-528)))) ((-93) |has| |#1| (-37 (-387 (-528)))) ((-99) . T) ((-109 #1# #1#) -1463 (|has| |#1| (-343)) (|has| |#1| (-37 (-387 (-528))))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1463 (|has| |#1| (-520)) (|has| |#1| (-343)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-569 (-802)) . T) ((-162) -1463 (|has| |#1| (-520)) (|has| |#1| (-343)) (|has| |#1| (-162))) ((-215) |has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) ((-225) |has| |#1| (-343)) ((-265) |has| |#1| (-37 (-387 (-528)))) ((-267 $ $) |has| (-387 (-528)) (-1035)) ((-271) -1463 (|has| |#1| (-520)) (|has| |#1| (-343))) ((-288) |has| |#1| (-343)) ((-343) |has| |#1| (-343)) ((-431) |has| |#1| (-343)) ((-469) |has| |#1| (-37 (-387 (-528)))) ((-520) -1463 (|has| |#1| (-520)) (|has| |#1| (-343))) ((-597 #1#) -1463 (|has| |#1| (-343)) (|has| |#1| (-37 (-387 (-528))))) ((-597 |#1|) . T) ((-597 $) . T) ((-664 #1#) -1463 (|has| |#1| (-343)) (|has| |#1| (-37 (-387 (-528))))) ((-664 |#1|) |has| |#1| (-162)) ((-664 $) -1463 (|has| |#1| (-520)) (|has| |#1| (-343))) ((-673) . T) ((-839 (-1095)) -12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095)))) ((-910 |#1| #0# (-1008)) . T) ((-859) |has| |#1| (-343)) ((-938) |has| |#1| (-37 (-387 (-528)))) ((-972 |#2|) . T) ((-986 #1#) -1463 (|has| |#1| (-343)) (|has| |#1| (-37 (-387 (-528))))) ((-986 |#1|) . T) ((-986 $) -1463 (|has| |#1| (-520)) (|has| |#1| (-343)) (|has| |#1| (-162))) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1117) |has| |#1| (-37 (-387 (-528)))) ((-1120) |has| |#1| (-37 (-387 (-528)))) ((-1135) |has| |#1| (-343)) ((-1155 |#1| #0#) . T) ((-1158 |#1|) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2565 (((-595 (-1008)) $) NIL)) (-3915 (((-1095) $) 96)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#1| (-520)))) (-1738 (($ $) NIL (|has| |#1| (-520)))) (-1811 (((-110) $) NIL (|has| |#1| (-520)))) (-1781 (($ $ (-387 (-528))) 106) (($ $ (-387 (-528)) (-387 (-528))) 108)) (-1514 (((-1076 (-2 (|:| |k| (-387 (-528))) (|:| |c| |#1|))) $) 51)) (-2880 (($ $) 180 (|has| |#1| (-37 (-387 (-528)))))) (-2735 (($ $) 156 (|has| |#1| (-37 (-387 (-528)))))) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL (|has| |#1| (-343)))) (-2705 (((-398 $) $) NIL (|has| |#1| (-343)))) (-2450 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2213 (((-110) $ $) NIL (|has| |#1| (-343)))) (-2859 (($ $) 176 (|has| |#1| (-37 (-387 (-528)))))) (-2712 (($ $) 152 (|has| |#1| (-37 (-387 (-528)))))) (-1397 (($ (-717) (-1076 (-2 (|:| |k| (-387 (-528))) (|:| |c| |#1|)))) 61)) (-2904 (($ $) 184 (|has| |#1| (-37 (-387 (-528)))))) (-2761 (($ $) 160 (|has| |#1| (-37 (-387 (-528)))))) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#2| "failed") $) NIL)) (-2409 ((|#2| $) NIL)) (-3519 (($ $ $) NIL (|has| |#1| (-343)))) (-2388 (($ $) NIL)) (-1312 (((-3 $ "failed") $) 79)) (-3312 (((-387 (-528)) $) 13)) (-3498 (($ $ $) NIL (|has| |#1| (-343)))) (-2632 (($ (-387 (-528)) |#2|) 11)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL (|has| |#1| (-343)))) (-2124 (((-110) $) NIL (|has| |#1| (-343)))) (-1900 (((-110) $) 68)) (-1505 (($) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3689 (((-387 (-528)) $) 103) (((-387 (-528)) $ (-387 (-528))) 104)) (-1297 (((-110) $) NIL)) (-2796 (($ $ (-528)) NIL (|has| |#1| (-37 (-387 (-528)))))) (-1771 (($ $ (-860)) 120) (($ $ (-387 (-528))) 118)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-2195 (((-110) $) NIL)) (-2548 (($ |#1| (-387 (-528))) 31) (($ $ (-1008) (-387 (-528))) NIL) (($ $ (-595 (-1008)) (-595 (-387 (-528)))) NIL)) (-3106 (($ (-1 |#1| |#1|) $) 115)) (-2097 (($ $) 150 (|has| |#1| (-37 (-387 (-528)))))) (-2686 (($ $) NIL)) (-2697 ((|#1| $) NIL)) (-2057 (($ (-595 $)) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-343)))) (-1380 ((|#2| $) 12)) (-3320 (((-3 |#2| "failed") $) 41)) (-2623 ((|#2| $) 42)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) 93 (|has| |#1| (-343)))) (-1923 (($ $) 135 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-1095)) 140 (-1463 (-12 (|has| |#1| (-15 -1923 (|#1| |#1| (-1095)))) (|has| |#1| (-15 -2565 ((-595 (-1095)) |#1|))) (|has| |#1| (-37 (-387 (-528))))) (-12 (|has| |#1| (-29 (-528))) (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-897)) (|has| |#1| (-1117)))))) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#1| (-343)))) (-2088 (($ (-595 $)) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-343)))) (-2437 (((-398 $) $) NIL (|has| |#1| (-343)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-343))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#1| (-343)))) (-3740 (($ $ (-387 (-528))) 112)) (-3477 (((-3 $ "failed") $ $) NIL (|has| |#1| (-520)))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-2656 (($ $) 148 (|has| |#1| (-37 (-387 (-528)))))) (-4014 (((-1076 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-387 (-528))))))) (-3973 (((-717) $) NIL (|has| |#1| (-343)))) (-3043 ((|#1| $ (-387 (-528))) 100) (($ $ $) 86 (|has| (-387 (-528)) (-1035)))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-343)))) (-3235 (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095)) 127 (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-717)) NIL (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (-2935 (((-387 (-528)) $) 16)) (-2917 (($ $) 186 (|has| |#1| (-37 (-387 (-528)))))) (-2773 (($ $) 162 (|has| |#1| (-37 (-387 (-528)))))) (-2892 (($ $) 182 (|has| |#1| (-37 (-387 (-528)))))) (-2749 (($ $) 158 (|has| |#1| (-37 (-387 (-528)))))) (-2869 (($ $) 178 (|has| |#1| (-37 (-387 (-528)))))) (-2724 (($ $) 154 (|has| |#1| (-37 (-387 (-528)))))) (-3534 (($ $) 110)) (-2222 (((-802) $) NIL) (($ (-528)) 35) (($ |#1|) 27 (|has| |#1| (-162))) (($ |#2|) 32) (($ (-387 (-528))) 128 (|has| |#1| (-37 (-387 (-528))))) (($ $) NIL (|has| |#1| (-520)))) (-3216 ((|#1| $ (-387 (-528))) 99)) (-3749 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3742 (((-717)) 117)) (-1884 ((|#1| $) 98)) (-2953 (($ $) 192 (|has| |#1| (-37 (-387 (-528)))))) (-2811 (($ $) 168 (|has| |#1| (-37 (-387 (-528)))))) (-4016 (((-110) $ $) NIL (|has| |#1| (-520)))) (-2928 (($ $) 188 (|has| |#1| (-37 (-387 (-528)))))) (-2784 (($ $) 164 (|has| |#1| (-37 (-387 (-528)))))) (-2981 (($ $) 196 (|has| |#1| (-37 (-387 (-528)))))) (-2836 (($ $) 172 (|has| |#1| (-37 (-387 (-528)))))) (-4083 ((|#1| $ (-387 (-528))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-387 (-528))))) (|has| |#1| (-15 -2222 (|#1| (-1095))))))) (-3592 (($ $) 198 (|has| |#1| (-37 (-387 (-528)))))) (-2846 (($ $) 174 (|has| |#1| (-37 (-387 (-528)))))) (-2967 (($ $) 194 (|has| |#1| (-37 (-387 (-528)))))) (-2825 (($ $) 170 (|has| |#1| (-37 (-387 (-528)))))) (-2940 (($ $) 190 (|has| |#1| (-37 (-387 (-528)))))) (-2797 (($ $) 166 (|has| |#1| (-37 (-387 (-528)))))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| |#1| (-343)))) (-2969 (($) 21 T CONST)) (-2982 (($) 17 T CONST)) (-3245 (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095)) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-717)) NIL (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (-2186 (((-110) $ $) 66)) (-2296 (($ $ |#1|) NIL (|has| |#1| (-343))) (($ $ $) 92 (|has| |#1| (-343)))) (-2286 (($ $) 131) (($ $ $) 72)) (-2275 (($ $ $) 70)) (** (($ $ (-860)) NIL) (($ $ (-717)) 76) (($ $ (-528)) 145 (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) 146 (|has| |#1| (-37 (-387 (-528)))))) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-387 (-528)) $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528)))))))
-(((-1161 |#1| |#2|) (-1160 |#1| |#2|) (-981) (-1137 |#1|)) (T -1161))
-NIL
-(-1160 |#1| |#2|)
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2565 (((-595 (-1008)) $) NIL)) (-3915 (((-1095) $) 11)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#1| (-520)))) (-1738 (($ $) NIL (|has| |#1| (-520)))) (-1811 (((-110) $) NIL (|has| |#1| (-520)))) (-1781 (($ $ (-387 (-528))) NIL) (($ $ (-387 (-528)) (-387 (-528))) NIL)) (-1514 (((-1076 (-2 (|:| |k| (-387 (-528))) (|:| |c| |#1|))) $) NIL)) (-2880 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2735 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3181 (((-3 $ "failed") $ $) NIL)) (-1232 (($ $) NIL (|has| |#1| (-343)))) (-2705 (((-398 $) $) NIL (|has| |#1| (-343)))) (-2450 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2213 (((-110) $ $) NIL (|has| |#1| (-343)))) (-2859 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2712 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-1397 (($ (-717) (-1076 (-2 (|:| |k| (-387 (-528))) (|:| |c| |#1|)))) NIL)) (-2904 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2761 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-1141 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1169 |#1| |#2| |#3|) "failed") $) 22)) (-2409 (((-1141 |#1| |#2| |#3|) $) NIL) (((-1169 |#1| |#2| |#3|) $) NIL)) (-3519 (($ $ $) NIL (|has| |#1| (-343)))) (-2388 (($ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-3312 (((-387 (-528)) $) 57)) (-3498 (($ $ $) NIL (|has| |#1| (-343)))) (-2632 (($ (-387 (-528)) (-1141 |#1| |#2| |#3|)) NIL)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) NIL (|has| |#1| (-343)))) (-2124 (((-110) $) NIL (|has| |#1| (-343)))) (-1900 (((-110) $) NIL)) (-1505 (($) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3689 (((-387 (-528)) $) NIL) (((-387 (-528)) $ (-387 (-528))) NIL)) (-1297 (((-110) $) NIL)) (-2796 (($ $ (-528)) NIL (|has| |#1| (-37 (-387 (-528)))))) (-1771 (($ $ (-860)) NIL) (($ $ (-387 (-528))) NIL)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-2195 (((-110) $) NIL)) (-2548 (($ |#1| (-387 (-528))) 30) (($ $ (-1008) (-387 (-528))) NIL) (($ $ (-595 (-1008)) (-595 (-387 (-528)))) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-2097 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2686 (($ $) NIL)) (-2697 ((|#1| $) NIL)) (-2057 (($ (-595 $)) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-343)))) (-1380 (((-1141 |#1| |#2| |#3|) $) 60)) (-3320 (((-3 (-1141 |#1| |#2| |#3|) "failed") $) NIL)) (-2623 (((-1141 |#1| |#2| |#3|) $) NIL)) (-3034 (((-1078) $) NIL)) (-2652 (($ $) NIL (|has| |#1| (-343)))) (-1923 (($ $) 39 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-1095)) NIL (-1463 (-12 (|has| |#1| (-15 -1923 (|#1| |#1| (-1095)))) (|has| |#1| (-15 -2565 ((-595 (-1095)) |#1|))) (|has| |#1| (-37 (-387 (-528))))) (-12 (|has| |#1| (-29 (-528))) (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-897)) (|has| |#1| (-1117))))) (($ $ (-1173 |#2|)) 40 (|has| |#1| (-37 (-387 (-528)))))) (-2495 (((-1042) $) NIL)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) NIL (|has| |#1| (-343)))) (-2088 (($ (-595 $)) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-343)))) (-2437 (((-398 $) $) NIL (|has| |#1| (-343)))) (-2401 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-343))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) NIL (|has| |#1| (-343)))) (-3740 (($ $ (-387 (-528))) NIL)) (-3477 (((-3 $ "failed") $ $) NIL (|has| |#1| (-520)))) (-1253 (((-3 (-595 $) "failed") (-595 $) $) NIL (|has| |#1| (-343)))) (-2656 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4014 (((-1076 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-387 (-528))))))) (-3973 (((-717) $) NIL (|has| |#1| (-343)))) (-3043 ((|#1| $ (-387 (-528))) NIL) (($ $ $) NIL (|has| (-387 (-528)) (-1035)))) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) NIL (|has| |#1| (-343)))) (-3235 (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095)) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-717)) NIL (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|)))) (($ $ (-1173 |#2|)) 38)) (-2935 (((-387 (-528)) $) NIL)) (-2917 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2773 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2892 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2749 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2869 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2724 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3534 (($ $) NIL)) (-2222 (((-802) $) 89) (($ (-528)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1141 |#1| |#2| |#3|)) 16) (($ (-1169 |#1| |#2| |#3|)) 17) (($ (-1173 |#2|)) 36) (($ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $) NIL (|has| |#1| (-520)))) (-3216 ((|#1| $ (-387 (-528))) NIL)) (-3749 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3742 (((-717)) NIL)) (-1884 ((|#1| $) 12)) (-2953 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2811 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4016 (((-110) $ $) NIL (|has| |#1| (-520)))) (-2928 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2784 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2981 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2836 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4083 ((|#1| $ (-387 (-528))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-387 (-528))))) (|has| |#1| (-15 -2222 (|#1| (-1095))))))) (-3592 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2846 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2967 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2825 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2940 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2797 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| |#1| (-343)))) (-2969 (($) 32 T CONST)) (-2982 (($) 26 T CONST)) (-3245 (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095)) NIL (-12 (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-717)) NIL (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-387 (-528)) |#1|))))) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ |#1|) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) 34)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ (-528)) NIL (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528)))))) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-387 (-528)) $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528)))))))
-(((-1162 |#1| |#2| |#3|) (-13 (-1160 |#1| (-1141 |#1| |#2| |#3|)) (-972 (-1169 |#1| |#2| |#3|)) (-10 -8 (-15 -2222 ($ (-1173 |#2|))) (-15 -3235 ($ $ (-1173 |#2|))) (IF (|has| |#1| (-37 (-387 (-528)))) (-15 -1923 ($ $ (-1173 |#2|))) |%noBranch|))) (-981) (-1095) |#1|) (T -1162))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1162 *3 *4 *5)) (-4 *3 (-981)) (-14 *5 *3))) (-3235 (*1 *1 *1 *2) (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1162 *3 *4 *5)) (-4 *3 (-981)) (-14 *5 *3))) (-1923 (*1 *1 *1 *2) (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1162 *3 *4 *5)) (-4 *3 (-37 (-387 (-528)))) (-4 *3 (-981)) (-14 *5 *3))))
-(-13 (-1160 |#1| (-1141 |#1| |#2| |#3|)) (-972 (-1169 |#1| |#2| |#3|)) (-10 -8 (-15 -2222 ($ (-1173 |#2|))) (-15 -3235 ($ $ (-1173 |#2|))) (IF (|has| |#1| (-37 (-387 (-528)))) (-15 -1923 ($ $ (-1173 |#2|))) |%noBranch|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 34)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL)) (-1738 (($ $) NIL)) (-1811 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-3001 (((-3 (-528) "failed") $) NIL (|has| (-1162 |#2| |#3| |#4|) (-972 (-528)))) (((-3 (-387 (-528)) "failed") $) NIL (|has| (-1162 |#2| |#3| |#4|) (-972 (-387 (-528))))) (((-3 (-1162 |#2| |#3| |#4|) "failed") $) 20)) (-2409 (((-528) $) NIL (|has| (-1162 |#2| |#3| |#4|) (-972 (-528)))) (((-387 (-528)) $) NIL (|has| (-1162 |#2| |#3| |#4|) (-972 (-387 (-528))))) (((-1162 |#2| |#3| |#4|) $) NIL)) (-2388 (($ $) 35)) (-1312 (((-3 $ "failed") $) 25)) (-1551 (($ $) NIL (|has| (-1162 |#2| |#3| |#4|) (-431)))) (-4047 (($ $ (-1162 |#2| |#3| |#4|) (-299 |#2| |#3| |#4|) $) NIL)) (-1297 (((-110) $) NIL)) (-1224 (((-717) $) 11)) (-2195 (((-110) $) NIL)) (-2548 (($ (-1162 |#2| |#3| |#4|) (-299 |#2| |#3| |#4|)) 23)) (-3499 (((-299 |#2| |#3| |#4|) $) NIL)) (-1264 (($ (-1 (-299 |#2| |#3| |#4|) (-299 |#2| |#3| |#4|)) $) NIL)) (-3106 (($ (-1 (-1162 |#2| |#3| |#4|) (-1162 |#2| |#3| |#4|)) $) NIL)) (-4191 (((-3 (-786 |#2|) "failed") $) 75)) (-2686 (($ $) NIL)) (-2697 (((-1162 |#2| |#3| |#4|) $) 18)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2662 (((-110) $) NIL)) (-2675 (((-1162 |#2| |#3| |#4|) $) NIL)) (-3477 (((-3 $ "failed") $ (-1162 |#2| |#3| |#4|)) NIL (|has| (-1162 |#2| |#3| |#4|) (-520))) (((-3 $ "failed") $ $) NIL)) (-2908 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1162 |#2| |#3| |#4|)) (|:| |%expon| (-299 |#2| |#3| |#4|)) (|:| |%expTerms| (-595 (-2 (|:| |k| (-387 (-528))) (|:| |c| |#2|)))))) (|:| |%type| (-1078))) "failed") $) 58)) (-2935 (((-299 |#2| |#3| |#4|) $) 14)) (-1618 (((-1162 |#2| |#3| |#4|) $) NIL (|has| (-1162 |#2| |#3| |#4|) (-431)))) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ (-1162 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-387 (-528))) NIL (-1463 (|has| (-1162 |#2| |#3| |#4|) (-37 (-387 (-528)))) (|has| (-1162 |#2| |#3| |#4|) (-972 (-387 (-528))))))) (-3348 (((-595 (-1162 |#2| |#3| |#4|)) $) NIL)) (-3216 (((-1162 |#2| |#3| |#4|) $ (-299 |#2| |#3| |#4|)) NIL)) (-3749 (((-3 $ "failed") $) NIL (|has| (-1162 |#2| |#3| |#4|) (-138)))) (-3742 (((-717)) NIL)) (-1997 (($ $ $ (-717)) NIL (|has| (-1162 |#2| |#3| |#4|) (-162)))) (-4016 (((-110) $ $) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 63 T CONST)) (-2982 (($) NIL T CONST)) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ (-1162 |#2| |#3| |#4|)) NIL (|has| (-1162 |#2| |#3| |#4|) (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ (-1162 |#2| |#3| |#4|)) NIL) (($ (-1162 |#2| |#3| |#4|) $) NIL) (($ (-387 (-528)) $) NIL (|has| (-1162 |#2| |#3| |#4|) (-37 (-387 (-528))))) (($ $ (-387 (-528))) NIL (|has| (-1162 |#2| |#3| |#4|) (-37 (-387 (-528)))))))
-(((-1163 |#1| |#2| |#3| |#4|) (-13 (-306 (-1162 |#2| |#3| |#4|) (-299 |#2| |#3| |#4|)) (-520) (-10 -8 (-15 -4191 ((-3 (-786 |#2|) "failed") $)) (-15 -2908 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1162 |#2| |#3| |#4|)) (|:| |%expon| (-299 |#2| |#3| |#4|)) (|:| |%expTerms| (-595 (-2 (|:| |k| (-387 (-528))) (|:| |c| |#2|)))))) (|:| |%type| (-1078))) "failed") $)))) (-13 (-793) (-972 (-528)) (-591 (-528)) (-431)) (-13 (-27) (-1117) (-410 |#1|)) (-1095) |#2|) (T -1163))
-((-4191 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-793) (-972 (-528)) (-591 (-528)) (-431))) (-5 *2 (-786 *4)) (-5 *1 (-1163 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1117) (-410 *3))) (-14 *5 (-1095)) (-14 *6 *4))) (-2908 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-793) (-972 (-528)) (-591 (-528)) (-431))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1162 *4 *5 *6)) (|:| |%expon| (-299 *4 *5 *6)) (|:| |%expTerms| (-595 (-2 (|:| |k| (-387 (-528))) (|:| |c| *4)))))) (|:| |%type| (-1078)))) (-5 *1 (-1163 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1117) (-410 *3))) (-14 *5 (-1095)) (-14 *6 *4))))
-(-13 (-306 (-1162 |#2| |#3| |#4|) (-299 |#2| |#3| |#4|)) (-520) (-10 -8 (-15 -4191 ((-3 (-786 |#2|) "failed") $)) (-15 -2908 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1162 |#2| |#3| |#4|)) (|:| |%expon| (-299 |#2| |#3| |#4|)) (|:| |%expTerms| (-595 (-2 (|:| |k| (-387 (-528))) (|:| |c| |#2|)))))) (|:| |%type| (-1078))) "failed") $))))
-((-3327 ((|#2| $) 29)) (-2513 ((|#2| $) 18)) (-2023 (($ $) 36)) (-3084 (($ $ (-528)) 64)) (-3535 (((-110) $ (-717)) 33)) (-2074 ((|#2| $ |#2|) 61)) (-2624 ((|#2| $ |#2|) 59)) (-2381 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-3409 (($ $ (-595 $)) 60)) (-2500 ((|#2| $) 17)) (-2902 (($ $) NIL) (($ $ (-717)) 42)) (-1690 (((-595 $) $) 26)) (-1313 (((-110) $ $) 50)) (-2029 (((-110) $ (-717)) 32)) (-3358 (((-110) $ (-717)) 31)) (-2578 (((-110) $) 28)) (-2301 ((|#2| $) 24) (($ $ (-717)) 46)) (-3043 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3177 (((-110) $) 22)) (-2185 (($ $) 39)) (-3821 (($ $) 65)) (-3887 (((-717) $) 41)) (-3539 (($ $) 40)) (-3400 (($ $ $) 58) (($ |#2| $) NIL)) (-3813 (((-595 $) $) 27)) (-2186 (((-110) $ $) 48)) (-2138 (((-717) $) 35)))
-(((-1164 |#1| |#2|) (-10 -8 (-15 -3084 (|#1| |#1| (-528))) (-15 -2381 (|#2| |#1| "last" |#2|)) (-15 -2624 (|#2| |#1| |#2|)) (-15 -2381 (|#1| |#1| "rest" |#1|)) (-15 -2381 (|#2| |#1| "first" |#2|)) (-15 -3821 (|#1| |#1|)) (-15 -2185 (|#1| |#1|)) (-15 -3887 ((-717) |#1|)) (-15 -3539 (|#1| |#1|)) (-15 -2513 (|#2| |#1|)) (-15 -2500 (|#2| |#1|)) (-15 -2023 (|#1| |#1|)) (-15 -2301 (|#1| |#1| (-717))) (-15 -3043 (|#2| |#1| "last")) (-15 -2301 (|#2| |#1|)) (-15 -2902 (|#1| |#1| (-717))) (-15 -3043 (|#1| |#1| "rest")) (-15 -2902 (|#1| |#1|)) (-15 -3043 (|#2| |#1| "first")) (-15 -3400 (|#1| |#2| |#1|)) (-15 -3400 (|#1| |#1| |#1|)) (-15 -2074 (|#2| |#1| |#2|)) (-15 -2381 (|#2| |#1| "value" |#2|)) (-15 -3409 (|#1| |#1| (-595 |#1|))) (-15 -1313 ((-110) |#1| |#1|)) (-15 -3177 ((-110) |#1|)) (-15 -3043 (|#2| |#1| "value")) (-15 -3327 (|#2| |#1|)) (-15 -2578 ((-110) |#1|)) (-15 -1690 ((-595 |#1|) |#1|)) (-15 -3813 ((-595 |#1|) |#1|)) (-15 -2186 ((-110) |#1| |#1|)) (-15 -2138 ((-717) |#1|)) (-15 -3535 ((-110) |#1| (-717))) (-15 -2029 ((-110) |#1| (-717))) (-15 -3358 ((-110) |#1| (-717)))) (-1165 |#2|) (-1131)) (T -1164))
-NIL
-(-10 -8 (-15 -3084 (|#1| |#1| (-528))) (-15 -2381 (|#2| |#1| "last" |#2|)) (-15 -2624 (|#2| |#1| |#2|)) (-15 -2381 (|#1| |#1| "rest" |#1|)) (-15 -2381 (|#2| |#1| "first" |#2|)) (-15 -3821 (|#1| |#1|)) (-15 -2185 (|#1| |#1|)) (-15 -3887 ((-717) |#1|)) (-15 -3539 (|#1| |#1|)) (-15 -2513 (|#2| |#1|)) (-15 -2500 (|#2| |#1|)) (-15 -2023 (|#1| |#1|)) (-15 -2301 (|#1| |#1| (-717))) (-15 -3043 (|#2| |#1| "last")) (-15 -2301 (|#2| |#1|)) (-15 -2902 (|#1| |#1| (-717))) (-15 -3043 (|#1| |#1| "rest")) (-15 -2902 (|#1| |#1|)) (-15 -3043 (|#2| |#1| "first")) (-15 -3400 (|#1| |#2| |#1|)) (-15 -3400 (|#1| |#1| |#1|)) (-15 -2074 (|#2| |#1| |#2|)) (-15 -2381 (|#2| |#1| "value" |#2|)) (-15 -3409 (|#1| |#1| (-595 |#1|))) (-15 -1313 ((-110) |#1| |#1|)) (-15 -3177 ((-110) |#1|)) (-15 -3043 (|#2| |#1| "value")) (-15 -3327 (|#2| |#1|)) (-15 -2578 ((-110) |#1|)) (-15 -1690 ((-595 |#1|) |#1|)) (-15 -3813 ((-595 |#1|) |#1|)) (-15 -2186 ((-110) |#1| |#1|)) (-15 -2138 ((-717) |#1|)) (-15 -3535 ((-110) |#1| (-717))) (-15 -2029 ((-110) |#1| (-717))) (-15 -3358 ((-110) |#1| (-717))))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-3327 ((|#1| $) 48)) (-2513 ((|#1| $) 65)) (-2023 (($ $) 67)) (-3084 (($ $ (-528)) 52 (|has| $ (-6 -4265)))) (-3535 (((-110) $ (-717)) 8)) (-2074 ((|#1| $ |#1|) 39 (|has| $ (-6 -4265)))) (-3307 (($ $ $) 56 (|has| $ (-6 -4265)))) (-2624 ((|#1| $ |#1|) 54 (|has| $ (-6 -4265)))) (-2153 ((|#1| $ |#1|) 58 (|has| $ (-6 -4265)))) (-2381 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4265))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4265))) (($ $ "rest" $) 55 (|has| $ (-6 -4265))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4265)))) (-3409 (($ $ (-595 $)) 41 (|has| $ (-6 -4265)))) (-2500 ((|#1| $) 66)) (-2816 (($) 7 T CONST)) (-2902 (($ $) 73) (($ $ (-717)) 71)) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-1690 (((-595 $) $) 50)) (-1313 (((-110) $ $) 42 (|has| |#1| (-1023)))) (-2029 (((-110) $ (-717)) 9)) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35)) (-3358 (((-110) $ (-717)) 10)) (-3298 (((-595 |#1|) $) 45)) (-2578 (((-110) $) 49)) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-2301 ((|#1| $) 70) (($ $ (-717)) 68)) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-2890 ((|#1| $) 76) (($ $ (-717)) 74)) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3043 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3241 (((-528) $ $) 44)) (-3177 (((-110) $) 46)) (-2185 (($ $) 62)) (-3821 (($ $) 59 (|has| $ (-6 -4265)))) (-3887 (((-717) $) 63)) (-3539 (($ $) 64)) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2406 (($ $) 13)) (-3579 (($ $ $) 61 (|has| $ (-6 -4265))) (($ $ |#1|) 60 (|has| $ (-6 -4265)))) (-3400 (($ $ $) 78) (($ |#1| $) 77)) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-3813 (((-595 $) $) 51)) (-2688 (((-110) $ $) 43 (|has| |#1| (-1023)))) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-1165 |#1|) (-133) (-1131)) (T -1165))
-((-3400 (*1 *1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1131)))) (-3400 (*1 *1 *2 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1131)))) (-2890 (*1 *2 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1131)))) (-3043 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1165 *2)) (-4 *2 (-1131)))) (-2890 (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-1165 *3)) (-4 *3 (-1131)))) (-2902 (*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1131)))) (-3043 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1165 *3)) (-4 *3 (-1131)))) (-2902 (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-1165 *3)) (-4 *3 (-1131)))) (-2301 (*1 *2 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1131)))) (-3043 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1165 *2)) (-4 *2 (-1131)))) (-2301 (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-1165 *3)) (-4 *3 (-1131)))) (-2023 (*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1131)))) (-2500 (*1 *2 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1131)))) (-2513 (*1 *2 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1131)))) (-3539 (*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1131)))) (-3887 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1131)) (-5 *2 (-717)))) (-2185 (*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1131)))) (-3579 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4265)) (-4 *1 (-1165 *2)) (-4 *2 (-1131)))) (-3579 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4265)) (-4 *1 (-1165 *2)) (-4 *2 (-1131)))) (-3821 (*1 *1 *1) (-12 (|has| *1 (-6 -4265)) (-4 *1 (-1165 *2)) (-4 *2 (-1131)))) (-2153 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4265)) (-4 *1 (-1165 *2)) (-4 *2 (-1131)))) (-2381 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4265)) (-4 *1 (-1165 *2)) (-4 *2 (-1131)))) (-3307 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4265)) (-4 *1 (-1165 *2)) (-4 *2 (-1131)))) (-2381 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4265)) (-4 *1 (-1165 *3)) (-4 *3 (-1131)))) (-2624 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4265)) (-4 *1 (-1165 *2)) (-4 *2 (-1131)))) (-2381 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4265)) (-4 *1 (-1165 *2)) (-4 *2 (-1131)))) (-3084 (*1 *1 *1 *2) (-12 (-5 *2 (-528)) (|has| *1 (-6 -4265)) (-4 *1 (-1165 *3)) (-4 *3 (-1131)))))
-(-13 (-946 |t#1|) (-10 -8 (-15 -3400 ($ $ $)) (-15 -3400 ($ |t#1| $)) (-15 -2890 (|t#1| $)) (-15 -3043 (|t#1| $ "first")) (-15 -2890 ($ $ (-717))) (-15 -2902 ($ $)) (-15 -3043 ($ $ "rest")) (-15 -2902 ($ $ (-717))) (-15 -2301 (|t#1| $)) (-15 -3043 (|t#1| $ "last")) (-15 -2301 ($ $ (-717))) (-15 -2023 ($ $)) (-15 -2500 (|t#1| $)) (-15 -2513 (|t#1| $)) (-15 -3539 ($ $)) (-15 -3887 ((-717) $)) (-15 -2185 ($ $)) (IF (|has| $ (-6 -4265)) (PROGN (-15 -3579 ($ $ $)) (-15 -3579 ($ $ |t#1|)) (-15 -3821 ($ $)) (-15 -2153 (|t#1| $ |t#1|)) (-15 -2381 (|t#1| $ "first" |t#1|)) (-15 -3307 ($ $ $)) (-15 -2381 ($ $ "rest" $)) (-15 -2624 (|t#1| $ |t#1|)) (-15 -2381 (|t#1| $ "last" |t#1|)) (-15 -3084 ($ $ (-528)))) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1023)) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-569 (-802)))) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-467 |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-946 |#1|) . T) ((-1023) |has| |#1| (-1023)) ((-1131) . T))
-((-3106 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1166 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3106 (|#4| (-1 |#2| |#1|) |#3|))) (-981) (-981) (-1168 |#1|) (-1168 |#2|)) (T -1166))
-((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-981)) (-4 *6 (-981)) (-4 *2 (-1168 *6)) (-5 *1 (-1166 *5 *6 *4 *2)) (-4 *4 (-1168 *5)))))
-(-10 -7 (-15 -3106 (|#4| (-1 |#2| |#1|) |#3|)))
-((-1359 (((-110) $) 15)) (-2880 (($ $) 92)) (-2735 (($ $) 68)) (-2859 (($ $) 88)) (-2712 (($ $) 64)) (-2904 (($ $) 96)) (-2761 (($ $) 72)) (-2097 (($ $) 62)) (-2656 (($ $) 60)) (-2917 (($ $) 98)) (-2773 (($ $) 74)) (-2892 (($ $) 94)) (-2749 (($ $) 70)) (-2869 (($ $) 90)) (-2724 (($ $) 66)) (-2222 (((-802) $) 48) (($ (-528)) NIL) (($ (-387 (-528))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2953 (($ $) 104)) (-2811 (($ $) 80)) (-2928 (($ $) 100)) (-2784 (($ $) 76)) (-2981 (($ $) 108)) (-2836 (($ $) 84)) (-3592 (($ $) 110)) (-2846 (($ $) 86)) (-2967 (($ $) 106)) (-2825 (($ $) 82)) (-2940 (($ $) 102)) (-2797 (($ $) 78)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-387 (-528))) 58)))
-(((-1167 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-387 (-528)))) (-15 -2735 (|#1| |#1|)) (-15 -2712 (|#1| |#1|)) (-15 -2761 (|#1| |#1|)) (-15 -2773 (|#1| |#1|)) (-15 -2749 (|#1| |#1|)) (-15 -2724 (|#1| |#1|)) (-15 -2797 (|#1| |#1|)) (-15 -2825 (|#1| |#1|)) (-15 -2846 (|#1| |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -2784 (|#1| |#1|)) (-15 -2811 (|#1| |#1|)) (-15 -2869 (|#1| |#1|)) (-15 -2892 (|#1| |#1|)) (-15 -2917 (|#1| |#1|)) (-15 -2904 (|#1| |#1|)) (-15 -2859 (|#1| |#1|)) (-15 -2880 (|#1| |#1|)) (-15 -2940 (|#1| |#1|)) (-15 -2967 (|#1| |#1|)) (-15 -3592 (|#1| |#1|)) (-15 -2981 (|#1| |#1|)) (-15 -2928 (|#1| |#1|)) (-15 -2953 (|#1| |#1|)) (-15 -2097 (|#1| |#1|)) (-15 -2656 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2222 (|#1| |#2|)) (-15 -2222 (|#1| |#1|)) (-15 -2222 (|#1| (-387 (-528)))) (-15 -2222 (|#1| (-528))) (-15 ** (|#1| |#1| (-717))) (-15 ** (|#1| |#1| (-860))) (-15 -1359 ((-110) |#1|)) (-15 -2222 ((-802) |#1|))) (-1168 |#2|) (-981)) (T -1167))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-387 (-528)))) (-15 -2735 (|#1| |#1|)) (-15 -2712 (|#1| |#1|)) (-15 -2761 (|#1| |#1|)) (-15 -2773 (|#1| |#1|)) (-15 -2749 (|#1| |#1|)) (-15 -2724 (|#1| |#1|)) (-15 -2797 (|#1| |#1|)) (-15 -2825 (|#1| |#1|)) (-15 -2846 (|#1| |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -2784 (|#1| |#1|)) (-15 -2811 (|#1| |#1|)) (-15 -2869 (|#1| |#1|)) (-15 -2892 (|#1| |#1|)) (-15 -2917 (|#1| |#1|)) (-15 -2904 (|#1| |#1|)) (-15 -2859 (|#1| |#1|)) (-15 -2880 (|#1| |#1|)) (-15 -2940 (|#1| |#1|)) (-15 -2967 (|#1| |#1|)) (-15 -3592 (|#1| |#1|)) (-15 -2981 (|#1| |#1|)) (-15 -2928 (|#1| |#1|)) (-15 -2953 (|#1| |#1|)) (-15 -2097 (|#1| |#1|)) (-15 -2656 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2222 (|#1| |#2|)) (-15 -2222 (|#1| |#1|)) (-15 -2222 (|#1| (-387 (-528)))) (-15 -2222 (|#1| (-528))) (-15 ** (|#1| |#1| (-717))) (-15 ** (|#1| |#1| (-860))) (-15 -1359 ((-110) |#1|)) (-15 -2222 ((-802) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2565 (((-595 (-1008)) $) 74)) (-3915 (((-1095) $) 103)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 51 (|has| |#1| (-520)))) (-1738 (($ $) 52 (|has| |#1| (-520)))) (-1811 (((-110) $) 54 (|has| |#1| (-520)))) (-1781 (($ $ (-717)) 98) (($ $ (-717) (-717)) 97)) (-1514 (((-1076 (-2 (|:| |k| (-717)) (|:| |c| |#1|))) $) 105)) (-2880 (($ $) 135 (|has| |#1| (-37 (-387 (-528)))))) (-2735 (($ $) 118 (|has| |#1| (-37 (-387 (-528)))))) (-3181 (((-3 $ "failed") $ $) 19)) (-2450 (($ $) 117 (|has| |#1| (-37 (-387 (-528)))))) (-2859 (($ $) 134 (|has| |#1| (-37 (-387 (-528)))))) (-2712 (($ $) 119 (|has| |#1| (-37 (-387 (-528)))))) (-1397 (($ (-1076 (-2 (|:| |k| (-717)) (|:| |c| |#1|)))) 155) (($ (-1076 |#1|)) 153)) (-2904 (($ $) 133 (|has| |#1| (-37 (-387 (-528)))))) (-2761 (($ $) 120 (|has| |#1| (-37 (-387 (-528)))))) (-2816 (($) 17 T CONST)) (-2388 (($ $) 60)) (-1312 (((-3 $ "failed") $) 34)) (-1395 (($ $) 152)) (-1872 (((-891 |#1|) $ (-717)) 150) (((-891 |#1|) $ (-717) (-717)) 149)) (-1900 (((-110) $) 73)) (-1505 (($) 145 (|has| |#1| (-37 (-387 (-528)))))) (-3689 (((-717) $) 100) (((-717) $ (-717)) 99)) (-1297 (((-110) $) 31)) (-2796 (($ $ (-528)) 116 (|has| |#1| (-37 (-387 (-528)))))) (-1771 (($ $ (-860)) 101)) (-3171 (($ (-1 |#1| (-528)) $) 151)) (-2195 (((-110) $) 62)) (-2548 (($ |#1| (-717)) 61) (($ $ (-1008) (-717)) 76) (($ $ (-595 (-1008)) (-595 (-717))) 75)) (-3106 (($ (-1 |#1| |#1|) $) 63)) (-2097 (($ $) 142 (|has| |#1| (-37 (-387 (-528)))))) (-2686 (($ $) 65)) (-2697 ((|#1| $) 66)) (-3034 (((-1078) $) 9)) (-1923 (($ $) 147 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-1095)) 146 (-1463 (-12 (|has| |#1| (-29 (-528))) (|has| |#1| (-897)) (|has| |#1| (-1117)) (|has| |#1| (-37 (-387 (-528))))) (-12 (|has| |#1| (-15 -2565 ((-595 (-1095)) |#1|))) (|has| |#1| (-15 -1923 (|#1| |#1| (-1095)))) (|has| |#1| (-37 (-387 (-528)))))))) (-2495 (((-1042) $) 10)) (-3740 (($ $ (-717)) 95)) (-3477 (((-3 $ "failed") $ $) 50 (|has| |#1| (-520)))) (-2656 (($ $) 143 (|has| |#1| (-37 (-387 (-528)))))) (-4014 (((-1076 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-717)))))) (-3043 ((|#1| $ (-717)) 104) (($ $ $) 81 (|has| (-717) (-1035)))) (-3235 (($ $ (-595 (-1095)) (-595 (-717))) 89 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-717) |#1|))))) (($ $ (-1095) (-717)) 88 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-717) |#1|))))) (($ $ (-595 (-1095))) 87 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-717) |#1|))))) (($ $ (-1095)) 86 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-717) |#1|))))) (($ $ (-717)) 84 (|has| |#1| (-15 * (|#1| (-717) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-717) |#1|))))) (-2935 (((-717) $) 64)) (-2917 (($ $) 132 (|has| |#1| (-37 (-387 (-528)))))) (-2773 (($ $) 121 (|has| |#1| (-37 (-387 (-528)))))) (-2892 (($ $) 131 (|has| |#1| (-37 (-387 (-528)))))) (-2749 (($ $) 122 (|has| |#1| (-37 (-387 (-528)))))) (-2869 (($ $) 130 (|has| |#1| (-37 (-387 (-528)))))) (-2724 (($ $) 123 (|has| |#1| (-37 (-387 (-528)))))) (-3534 (($ $) 72)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ (-387 (-528))) 57 (|has| |#1| (-37 (-387 (-528))))) (($ $) 49 (|has| |#1| (-520))) (($ |#1|) 47 (|has| |#1| (-162)))) (-3348 (((-1076 |#1|) $) 154)) (-3216 ((|#1| $ (-717)) 59)) (-3749 (((-3 $ "failed") $) 48 (|has| |#1| (-138)))) (-3742 (((-717)) 29)) (-1884 ((|#1| $) 102)) (-2953 (($ $) 141 (|has| |#1| (-37 (-387 (-528)))))) (-2811 (($ $) 129 (|has| |#1| (-37 (-387 (-528)))))) (-4016 (((-110) $ $) 53 (|has| |#1| (-520)))) (-2928 (($ $) 140 (|has| |#1| (-37 (-387 (-528)))))) (-2784 (($ $) 128 (|has| |#1| (-37 (-387 (-528)))))) (-2981 (($ $) 139 (|has| |#1| (-37 (-387 (-528)))))) (-2836 (($ $) 127 (|has| |#1| (-37 (-387 (-528)))))) (-4083 ((|#1| $ (-717)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-717)))) (|has| |#1| (-15 -2222 (|#1| (-1095))))))) (-3592 (($ $) 138 (|has| |#1| (-37 (-387 (-528)))))) (-2846 (($ $) 126 (|has| |#1| (-37 (-387 (-528)))))) (-2967 (($ $) 137 (|has| |#1| (-37 (-387 (-528)))))) (-2825 (($ $) 125 (|has| |#1| (-37 (-387 (-528)))))) (-2940 (($ $) 136 (|has| |#1| (-37 (-387 (-528)))))) (-2797 (($ $) 124 (|has| |#1| (-37 (-387 (-528)))))) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-3245 (($ $ (-595 (-1095)) (-595 (-717))) 93 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-717) |#1|))))) (($ $ (-1095) (-717)) 92 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-717) |#1|))))) (($ $ (-595 (-1095))) 91 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-717) |#1|))))) (($ $ (-1095)) 90 (-12 (|has| |#1| (-839 (-1095))) (|has| |#1| (-15 * (|#1| (-717) |#1|))))) (($ $ (-717)) 85 (|has| |#1| (-15 * (|#1| (-717) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-717) |#1|))))) (-2186 (((-110) $ $) 6)) (-2296 (($ $ |#1|) 58 (|has| |#1| (-343)))) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32) (($ $ |#1|) 148 (|has| |#1| (-343))) (($ $ $) 144 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) 115 (|has| |#1| (-37 (-387 (-528)))))) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-387 (-528)) $) 56 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) 55 (|has| |#1| (-37 (-387 (-528)))))))
-(((-1168 |#1|) (-133) (-981)) (T -1168))
-((-1397 (*1 *1 *2) (-12 (-5 *2 (-1076 (-2 (|:| |k| (-717)) (|:| |c| *3)))) (-4 *3 (-981)) (-4 *1 (-1168 *3)))) (-3348 (*1 *2 *1) (-12 (-4 *1 (-1168 *3)) (-4 *3 (-981)) (-5 *2 (-1076 *3)))) (-1397 (*1 *1 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-4 *1 (-1168 *3)))) (-1395 (*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-981)))) (-3171 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-528))) (-4 *1 (-1168 *3)) (-4 *3 (-981)))) (-1872 (*1 *2 *1 *3) (-12 (-5 *3 (-717)) (-4 *1 (-1168 *4)) (-4 *4 (-981)) (-5 *2 (-891 *4)))) (-1872 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-717)) (-4 *1 (-1168 *4)) (-4 *4 (-981)) (-5 *2 (-891 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-981)) (-4 *2 (-343)))) (-1923 (*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-981)) (-4 *2 (-37 (-387 (-528)))))) (-1923 (*1 *1 *1 *2) (-1463 (-12 (-5 *2 (-1095)) (-4 *1 (-1168 *3)) (-4 *3 (-981)) (-12 (-4 *3 (-29 (-528))) (-4 *3 (-897)) (-4 *3 (-1117)) (-4 *3 (-37 (-387 (-528)))))) (-12 (-5 *2 (-1095)) (-4 *1 (-1168 *3)) (-4 *3 (-981)) (-12 (|has| *3 (-15 -2565 ((-595 *2) *3))) (|has| *3 (-15 -1923 (*3 *3 *2))) (-4 *3 (-37 (-387 (-528)))))))))
-(-13 (-1155 |t#1| (-717)) (-10 -8 (-15 -1397 ($ (-1076 (-2 (|:| |k| (-717)) (|:| |c| |t#1|))))) (-15 -3348 ((-1076 |t#1|) $)) (-15 -1397 ($ (-1076 |t#1|))) (-15 -1395 ($ $)) (-15 -3171 ($ (-1 |t#1| (-528)) $)) (-15 -1872 ((-891 |t#1|) $ (-717))) (-15 -1872 ((-891 |t#1|) $ (-717) (-717))) (IF (|has| |t#1| (-343)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-387 (-528)))) (PROGN (-15 -1923 ($ $)) (IF (|has| |t#1| (-15 -1923 (|t#1| |t#1| (-1095)))) (IF (|has| |t#1| (-15 -2565 ((-595 (-1095)) |t#1|))) (-15 -1923 ($ $ (-1095))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1117)) (IF (|has| |t#1| (-897)) (IF (|has| |t#1| (-29 (-528))) (-15 -1923 ($ $ (-1095))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-938)) (-6 (-1117))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-717)) . T) ((-25) . T) ((-37 #1=(-387 (-528))) |has| |#1| (-37 (-387 (-528)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-520)) ((-34) |has| |#1| (-37 (-387 (-528)))) ((-93) |has| |#1| (-37 (-387 (-528)))) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-387 (-528)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1463 (|has| |#1| (-520)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-569 (-802)) . T) ((-162) -1463 (|has| |#1| (-520)) (|has| |#1| (-162))) ((-215) |has| |#1| (-15 * (|#1| (-717) |#1|))) ((-265) |has| |#1| (-37 (-387 (-528)))) ((-267 $ $) |has| (-717) (-1035)) ((-271) |has| |#1| (-520)) ((-469) |has| |#1| (-37 (-387 (-528)))) ((-520) |has| |#1| (-520)) ((-597 #1#) |has| |#1| (-37 (-387 (-528)))) ((-597 |#1|) . T) ((-597 $) . T) ((-664 #1#) |has| |#1| (-37 (-387 (-528)))) ((-664 |#1|) |has| |#1| (-162)) ((-664 $) |has| |#1| (-520)) ((-673) . T) ((-839 (-1095)) -12 (|has| |#1| (-15 * (|#1| (-717) |#1|))) (|has| |#1| (-839 (-1095)))) ((-910 |#1| #0# (-1008)) . T) ((-938) |has| |#1| (-37 (-387 (-528)))) ((-986 #1#) |has| |#1| (-37 (-387 (-528)))) ((-986 |#1|) . T) ((-986 $) -1463 (|has| |#1| (-520)) (|has| |#1| (-162))) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1117) |has| |#1| (-37 (-387 (-528)))) ((-1120) |has| |#1| (-37 (-387 (-528)))) ((-1155 |#1| #0#) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-2565 (((-595 (-1008)) $) NIL)) (-3915 (((-1095) $) 87)) (-2592 (((-1150 |#2| |#1|) $ (-717)) 73)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) NIL (|has| |#1| (-520)))) (-1738 (($ $) NIL (|has| |#1| (-520)))) (-1811 (((-110) $) 137 (|has| |#1| (-520)))) (-1781 (($ $ (-717)) 122) (($ $ (-717) (-717)) 124)) (-1514 (((-1076 (-2 (|:| |k| (-717)) (|:| |c| |#1|))) $) 42)) (-2880 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2735 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3181 (((-3 $ "failed") $ $) NIL)) (-2450 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2859 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2712 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-1397 (($ (-1076 (-2 (|:| |k| (-717)) (|:| |c| |#1|)))) 53) (($ (-1076 |#1|)) NIL)) (-2904 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2761 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2816 (($) NIL T CONST)) (-3262 (($ $) 128)) (-2388 (($ $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-1395 (($ $) 135)) (-1872 (((-891 |#1|) $ (-717)) 63) (((-891 |#1|) $ (-717) (-717)) 65)) (-1900 (((-110) $) NIL)) (-1505 (($) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3689 (((-717) $) NIL) (((-717) $ (-717)) NIL)) (-1297 (((-110) $) NIL)) (-1957 (($ $) 112)) (-2796 (($ $ (-528)) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3428 (($ (-528) (-528) $) 130)) (-1771 (($ $ (-860)) 134)) (-3171 (($ (-1 |#1| (-528)) $) 106)) (-2195 (((-110) $) NIL)) (-2548 (($ |#1| (-717)) 15) (($ $ (-1008) (-717)) NIL) (($ $ (-595 (-1008)) (-595 (-717))) NIL)) (-3106 (($ (-1 |#1| |#1|) $) 94)) (-2097 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2686 (($ $) NIL)) (-2697 ((|#1| $) NIL)) (-3034 (((-1078) $) NIL)) (-1873 (($ $) 110)) (-2387 (($ $) 108)) (-4235 (($ (-528) (-528) $) 132)) (-1923 (($ $) 145 (|has| |#1| (-37 (-387 (-528))))) (($ $ (-1095)) 151 (-1463 (-12 (|has| |#1| (-15 -1923 (|#1| |#1| (-1095)))) (|has| |#1| (-15 -2565 ((-595 (-1095)) |#1|))) (|has| |#1| (-37 (-387 (-528))))) (-12 (|has| |#1| (-29 (-528))) (|has| |#1| (-37 (-387 (-528)))) (|has| |#1| (-897)) (|has| |#1| (-1117))))) (($ $ (-1173 |#2|)) 146 (|has| |#1| (-37 (-387 (-528)))))) (-2495 (((-1042) $) NIL)) (-3051 (($ $ (-528) (-528)) 116)) (-3740 (($ $ (-717)) 118)) (-3477 (((-3 $ "failed") $ $) NIL (|has| |#1| (-520)))) (-2656 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2012 (($ $) 114)) (-4014 (((-1076 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-717)))))) (-3043 ((|#1| $ (-717)) 91) (($ $ $) 126 (|has| (-717) (-1035)))) (-3235 (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#1| (-15 * (|#1| (-717) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#1| (-15 * (|#1| (-717) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#1| (-15 * (|#1| (-717) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095)) 103 (-12 (|has| |#1| (-15 * (|#1| (-717) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-717)) NIL (|has| |#1| (-15 * (|#1| (-717) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-717) |#1|)))) (($ $ (-1173 |#2|)) 99)) (-2935 (((-717) $) NIL)) (-2917 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2773 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2892 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2749 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2869 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2724 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-3534 (($ $) 120)) (-2222 (((-802) $) NIL) (($ (-528)) 24) (($ (-387 (-528))) 143 (|has| |#1| (-37 (-387 (-528))))) (($ $) NIL (|has| |#1| (-520))) (($ |#1|) 23 (|has| |#1| (-162))) (($ (-1150 |#2| |#1|)) 80) (($ (-1173 |#2|)) 20)) (-3348 (((-1076 |#1|) $) NIL)) (-3216 ((|#1| $ (-717)) 90)) (-3749 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3742 (((-717)) NIL)) (-1884 ((|#1| $) 88)) (-2953 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2811 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4016 (((-110) $ $) NIL (|has| |#1| (-520)))) (-2928 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2784 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2981 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2836 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-4083 ((|#1| $ (-717)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-717)))) (|has| |#1| (-15 -2222 (|#1| (-1095))))))) (-3592 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2846 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2967 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2825 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2940 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2797 (($ $) NIL (|has| |#1| (-37 (-387 (-528)))))) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 17 T CONST)) (-2982 (($) 13 T CONST)) (-3245 (($ $ (-595 (-1095)) (-595 (-717))) NIL (-12 (|has| |#1| (-15 * (|#1| (-717) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095) (-717)) NIL (-12 (|has| |#1| (-15 * (|#1| (-717) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-595 (-1095))) NIL (-12 (|has| |#1| (-15 * (|#1| (-717) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-1095)) NIL (-12 (|has| |#1| (-15 * (|#1| (-717) |#1|))) (|has| |#1| (-839 (-1095))))) (($ $ (-717)) NIL (|has| |#1| (-15 * (|#1| (-717) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-717) |#1|))))) (-2186 (((-110) $ $) NIL)) (-2296 (($ $ |#1|) NIL (|has| |#1| (-343)))) (-2286 (($ $) NIL) (($ $ $) 102)) (-2275 (($ $ $) 18)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL) (($ $ |#1|) 140 (|has| |#1| (-343))) (($ $ $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528)))))) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-387 (-528)) $) NIL (|has| |#1| (-37 (-387 (-528))))) (($ $ (-387 (-528))) NIL (|has| |#1| (-37 (-387 (-528)))))))
-(((-1169 |#1| |#2| |#3|) (-13 (-1168 |#1|) (-10 -8 (-15 -2222 ($ (-1150 |#2| |#1|))) (-15 -2592 ((-1150 |#2| |#1|) $ (-717))) (-15 -2222 ($ (-1173 |#2|))) (-15 -3235 ($ $ (-1173 |#2|))) (-15 -2387 ($ $)) (-15 -1873 ($ $)) (-15 -1957 ($ $)) (-15 -2012 ($ $)) (-15 -3051 ($ $ (-528) (-528))) (-15 -3262 ($ $)) (-15 -3428 ($ (-528) (-528) $)) (-15 -4235 ($ (-528) (-528) $)) (IF (|has| |#1| (-37 (-387 (-528)))) (-15 -1923 ($ $ (-1173 |#2|))) |%noBranch|))) (-981) (-1095) |#1|) (T -1169))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1150 *4 *3)) (-4 *3 (-981)) (-14 *4 (-1095)) (-14 *5 *3) (-5 *1 (-1169 *3 *4 *5)))) (-2592 (*1 *2 *1 *3) (-12 (-5 *3 (-717)) (-5 *2 (-1150 *5 *4)) (-5 *1 (-1169 *4 *5 *6)) (-4 *4 (-981)) (-14 *5 (-1095)) (-14 *6 *4))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-981)) (-14 *5 *3))) (-3235 (*1 *1 *1 *2) (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-981)) (-14 *5 *3))) (-2387 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-981)) (-14 *3 (-1095)) (-14 *4 *2))) (-1873 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-981)) (-14 *3 (-1095)) (-14 *4 *2))) (-1957 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-981)) (-14 *3 (-1095)) (-14 *4 *2))) (-2012 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-981)) (-14 *3 (-1095)) (-14 *4 *2))) (-3051 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-981)) (-14 *4 (-1095)) (-14 *5 *3))) (-3262 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-981)) (-14 *3 (-1095)) (-14 *4 *2))) (-3428 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-981)) (-14 *4 (-1095)) (-14 *5 *3))) (-4235 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-981)) (-14 *4 (-1095)) (-14 *5 *3))) (-1923 (*1 *1 *1 *2) (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-37 (-387 (-528)))) (-4 *3 (-981)) (-14 *5 *3))))
-(-13 (-1168 |#1|) (-10 -8 (-15 -2222 ($ (-1150 |#2| |#1|))) (-15 -2592 ((-1150 |#2| |#1|) $ (-717))) (-15 -2222 ($ (-1173 |#2|))) (-15 -3235 ($ $ (-1173 |#2|))) (-15 -2387 ($ $)) (-15 -1873 ($ $)) (-15 -1957 ($ $)) (-15 -2012 ($ $)) (-15 -3051 ($ $ (-528) (-528))) (-15 -3262 ($ $)) (-15 -3428 ($ (-528) (-528) $)) (-15 -4235 ($ (-528) (-528) $)) (IF (|has| |#1| (-37 (-387 (-528)))) (-15 -1923 ($ $ (-1173 |#2|))) |%noBranch|)))
-((-3180 (((-1 (-1076 |#1|) (-595 (-1076 |#1|))) (-1 |#2| (-595 |#2|))) 24)) (-4212 (((-1 (-1076 |#1|) (-1076 |#1|) (-1076 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3970 (((-1 (-1076 |#1|) (-1076 |#1|)) (-1 |#2| |#2|)) 13)) (-3458 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3571 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3184 ((|#2| (-1 |#2| (-595 |#2|)) (-595 |#1|)) 54)) (-3085 (((-595 |#2|) (-595 |#1|) (-595 (-1 |#2| (-595 |#2|)))) 61)) (-2404 ((|#2| |#2| |#2|) 43)))
-(((-1170 |#1| |#2|) (-10 -7 (-15 -3970 ((-1 (-1076 |#1|) (-1076 |#1|)) (-1 |#2| |#2|))) (-15 -4212 ((-1 (-1076 |#1|) (-1076 |#1|) (-1076 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3180 ((-1 (-1076 |#1|) (-595 (-1076 |#1|))) (-1 |#2| (-595 |#2|)))) (-15 -2404 (|#2| |#2| |#2|)) (-15 -3571 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3458 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3184 (|#2| (-1 |#2| (-595 |#2|)) (-595 |#1|))) (-15 -3085 ((-595 |#2|) (-595 |#1|) (-595 (-1 |#2| (-595 |#2|)))))) (-37 (-387 (-528))) (-1168 |#1|)) (T -1170))
-((-3085 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *5)) (-5 *4 (-595 (-1 *6 (-595 *6)))) (-4 *5 (-37 (-387 (-528)))) (-4 *6 (-1168 *5)) (-5 *2 (-595 *6)) (-5 *1 (-1170 *5 *6)))) (-3184 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-595 *2))) (-5 *4 (-595 *5)) (-4 *5 (-37 (-387 (-528)))) (-4 *2 (-1168 *5)) (-5 *1 (-1170 *5 *2)))) (-3458 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1168 *4)) (-5 *1 (-1170 *4 *2)) (-4 *4 (-37 (-387 (-528)))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1168 *4)) (-5 *1 (-1170 *4 *2)) (-4 *4 (-37 (-387 (-528)))))) (-2404 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-1168 *3)))) (-3180 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-595 *5))) (-4 *5 (-1168 *4)) (-4 *4 (-37 (-387 (-528)))) (-5 *2 (-1 (-1076 *4) (-595 (-1076 *4)))) (-5 *1 (-1170 *4 *5)))) (-4212 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1168 *4)) (-4 *4 (-37 (-387 (-528)))) (-5 *2 (-1 (-1076 *4) (-1076 *4) (-1076 *4))) (-5 *1 (-1170 *4 *5)))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1168 *4)) (-4 *4 (-37 (-387 (-528)))) (-5 *2 (-1 (-1076 *4) (-1076 *4))) (-5 *1 (-1170 *4 *5)))))
-(-10 -7 (-15 -3970 ((-1 (-1076 |#1|) (-1076 |#1|)) (-1 |#2| |#2|))) (-15 -4212 ((-1 (-1076 |#1|) (-1076 |#1|) (-1076 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3180 ((-1 (-1076 |#1|) (-595 (-1076 |#1|))) (-1 |#2| (-595 |#2|)))) (-15 -2404 (|#2| |#2| |#2|)) (-15 -3571 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3458 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3184 (|#2| (-1 |#2| (-595 |#2|)) (-595 |#1|))) (-15 -3085 ((-595 |#2|) (-595 |#1|) (-595 (-1 |#2| (-595 |#2|))))))
-((-3889 ((|#2| |#4| (-717)) 30)) (-1847 ((|#4| |#2|) 25)) (-4236 ((|#4| (-387 |#2|)) 52 (|has| |#1| (-520)))) (-3855 (((-1 |#4| (-595 |#4|)) |#3|) 46)))
-(((-1171 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1847 (|#4| |#2|)) (-15 -3889 (|#2| |#4| (-717))) (-15 -3855 ((-1 |#4| (-595 |#4|)) |#3|)) (IF (|has| |#1| (-520)) (-15 -4236 (|#4| (-387 |#2|))) |%noBranch|)) (-981) (-1153 |#1|) (-605 |#2|) (-1168 |#1|)) (T -1171))
-((-4236 (*1 *2 *3) (-12 (-5 *3 (-387 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-520)) (-4 *4 (-981)) (-4 *2 (-1168 *4)) (-5 *1 (-1171 *4 *5 *6 *2)) (-4 *6 (-605 *5)))) (-3855 (*1 *2 *3) (-12 (-4 *4 (-981)) (-4 *5 (-1153 *4)) (-5 *2 (-1 *6 (-595 *6))) (-5 *1 (-1171 *4 *5 *3 *6)) (-4 *3 (-605 *5)) (-4 *6 (-1168 *4)))) (-3889 (*1 *2 *3 *4) (-12 (-5 *4 (-717)) (-4 *5 (-981)) (-4 *2 (-1153 *5)) (-5 *1 (-1171 *5 *2 *6 *3)) (-4 *6 (-605 *2)) (-4 *3 (-1168 *5)))) (-1847 (*1 *2 *3) (-12 (-4 *4 (-981)) (-4 *3 (-1153 *4)) (-4 *2 (-1168 *4)) (-5 *1 (-1171 *4 *3 *5 *2)) (-4 *5 (-605 *3)))))
-(-10 -7 (-15 -1847 (|#4| |#2|)) (-15 -3889 (|#2| |#4| (-717))) (-15 -3855 ((-1 |#4| (-595 |#4|)) |#3|)) (IF (|has| |#1| (-520)) (-15 -4236 (|#4| (-387 |#2|))) |%noBranch|))
-NIL
-(((-1172) (-133)) (T -1172))
-NIL
-(-13 (-10 -7 (-6 -4050)))
-((-2207 (((-110) $ $) NIL)) (-3915 (((-1095)) 12)) (-3034 (((-1078) $) 17)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 11) (((-1095) $) 8)) (-2186 (((-110) $ $) 14)))
-(((-1173 |#1|) (-13 (-1023) (-569 (-1095)) (-10 -8 (-15 -2222 ((-1095) $)) (-15 -3915 ((-1095))))) (-1095)) (T -1173))
-((-2222 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-1173 *3)) (-14 *3 *2))) (-3915 (*1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-1173 *3)) (-14 *3 *2))))
-(-13 (-1023) (-569 (-1095)) (-10 -8 (-15 -2222 ((-1095) $)) (-15 -3915 ((-1095)))))
-((-3460 (($ (-717)) 18)) (-4061 (((-635 |#2|) $ $) 40)) (-1817 ((|#2| $) 48)) (-1584 ((|#2| $) 47)) (-3675 ((|#2| $ $) 35)) (-3996 (($ $ $) 44)) (-2286 (($ $) 22) (($ $ $) 28)) (-2275 (($ $ $) 15)) (* (($ (-528) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30)))
-(((-1174 |#1| |#2|) (-10 -8 (-15 -1817 (|#2| |#1|)) (-15 -1584 (|#2| |#1|)) (-15 -3996 (|#1| |#1| |#1|)) (-15 -4061 ((-635 |#2|) |#1| |#1|)) (-15 -3675 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-528) |#1|)) (-15 -2286 (|#1| |#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 -3460 (|#1| (-717))) (-15 -2275 (|#1| |#1| |#1|))) (-1175 |#2|) (-1131)) (T -1174))
-NIL
-(-10 -8 (-15 -1817 (|#2| |#1|)) (-15 -1584 (|#2| |#1|)) (-15 -3996 (|#1| |#1| |#1|)) (-15 -4061 ((-635 |#2|) |#1| |#1|)) (-15 -3675 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-528) |#1|)) (-15 -2286 (|#1| |#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 -3460 (|#1| (-717))) (-15 -2275 (|#1| |#1| |#1|)))
-((-2207 (((-110) $ $) 19 (|has| |#1| (-1023)))) (-3460 (($ (-717)) 112 (|has| |#1| (-23)))) (-1444 (((-1182) $ (-528) (-528)) 40 (|has| $ (-6 -4265)))) (-3608 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-793)))) (-3863 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4265))) (($ $) 88 (-12 (|has| |#1| (-793)) (|has| $ (-6 -4265))))) (-1289 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-793)))) (-3535 (((-110) $ (-717)) 8)) (-2381 ((|#1| $ (-528) |#1|) 52 (|has| $ (-6 -4265))) ((|#1| $ (-1144 (-528)) |#1|) 58 (|has| $ (-6 -4265)))) (-1573 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4264)))) (-2816 (($) 7 T CONST)) (-2472 (($ $) 90 (|has| $ (-6 -4265)))) (-3009 (($ $) 100)) (-2923 (($ $) 78 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-2280 (($ |#1| $) 77 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4264)))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4264)))) (-2812 ((|#1| $ (-528) |#1|) 53 (|has| $ (-6 -4265)))) (-2742 ((|#1| $ (-528)) 51)) (-3140 (((-528) (-1 (-110) |#1|) $) 97) (((-528) |#1| $) 96 (|has| |#1| (-1023))) (((-528) |#1| $ (-528)) 95 (|has| |#1| (-1023)))) (-3342 (((-595 |#1|) $) 30 (|has| $ (-6 -4264)))) (-4061 (((-635 |#1|) $ $) 105 (|has| |#1| (-981)))) (-3462 (($ (-717) |#1|) 69)) (-2029 (((-110) $ (-717)) 9)) (-3530 (((-528) $) 43 (|has| (-528) (-793)))) (-1436 (($ $ $) 87 (|has| |#1| (-793)))) (-1356 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-793)))) (-2604 (((-595 |#1|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-1709 (((-528) $) 44 (|has| (-528) (-793)))) (-1736 (($ $ $) 86 (|has| |#1| (-793)))) (-2800 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1817 ((|#1| $) 102 (-12 (|has| |#1| (-981)) (|has| |#1| (-938))))) (-3358 (((-110) $ (-717)) 10)) (-1584 ((|#1| $) 103 (-12 (|has| |#1| (-981)) (|has| |#1| (-938))))) (-3034 (((-1078) $) 22 (|has| |#1| (-1023)))) (-3939 (($ |#1| $ (-528)) 60) (($ $ $ (-528)) 59)) (-2084 (((-595 (-528)) $) 46)) (-3966 (((-110) (-528) $) 47)) (-2495 (((-1042) $) 21 (|has| |#1| (-1023)))) (-2890 ((|#1| $) 42 (|has| (-528) (-793)))) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-1332 (($ $ |#1|) 41 (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) 26 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) 23 (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) 14)) (-2111 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2861 (((-595 |#1|) $) 48)) (-1972 (((-110) $) 11)) (-2147 (($) 12)) (-3043 ((|#1| $ (-528) |#1|) 50) ((|#1| $ (-528)) 49) (($ $ (-1144 (-528))) 63)) (-3675 ((|#1| $ $) 106 (|has| |#1| (-981)))) (-1745 (($ $ (-528)) 62) (($ $ (-1144 (-528))) 61)) (-3996 (($ $ $) 104 (|has| |#1| (-981)))) (-2507 (((-717) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4264))) (((-717) |#1| $) 28 (-12 (|has| |#1| (-1023)) (|has| $ (-6 -4264))))) (-3761 (($ $ $ (-528)) 91 (|has| $ (-6 -4265)))) (-2406 (($ $) 13)) (-3155 (((-504) $) 79 (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) 70)) (-3400 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-595 $)) 65)) (-2222 (((-802) $) 18 (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4264)))) (-2244 (((-110) $ $) 84 (|has| |#1| (-793)))) (-2220 (((-110) $ $) 83 (|has| |#1| (-793)))) (-2186 (((-110) $ $) 20 (|has| |#1| (-1023)))) (-2232 (((-110) $ $) 85 (|has| |#1| (-793)))) (-2208 (((-110) $ $) 82 (|has| |#1| (-793)))) (-2286 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2275 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-528) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-673))) (($ $ |#1|) 107 (|has| |#1| (-673)))) (-2138 (((-717) $) 6 (|has| $ (-6 -4264)))))
-(((-1175 |#1|) (-133) (-1131)) (T -1175))
-((-2275 (*1 *1 *1 *1) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-1131)) (-4 *2 (-25)))) (-3460 (*1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-1175 *3)) (-4 *3 (-23)) (-4 *3 (-1131)))) (-2286 (*1 *1 *1) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-1131)) (-4 *2 (-21)))) (-2286 (*1 *1 *1 *1) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-1131)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-528)) (-4 *1 (-1175 *3)) (-4 *3 (-1131)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-1131)) (-4 *2 (-673)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-1131)) (-4 *2 (-673)))) (-3675 (*1 *2 *1 *1) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-1131)) (-4 *2 (-981)))) (-4061 (*1 *2 *1 *1) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-1131)) (-4 *3 (-981)) (-5 *2 (-635 *3)))) (-3996 (*1 *1 *1 *1) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-1131)) (-4 *2 (-981)))) (-1584 (*1 *2 *1) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-1131)) (-4 *2 (-938)) (-4 *2 (-981)))) (-1817 (*1 *2 *1) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-1131)) (-4 *2 (-938)) (-4 *2 (-981)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2275 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3460 ($ (-717))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2286 ($ $)) (-15 -2286 ($ $ $)) (-15 * ($ (-528) $))) |%noBranch|) (IF (|has| |t#1| (-673)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-981)) (PROGN (-15 -3675 (|t#1| $ $)) (-15 -4061 ((-635 |t#1|) $ $)) (-15 -3996 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-938)) (IF (|has| |t#1| (-981)) (PROGN (-15 -1584 (|t#1| $)) (-15 -1817 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-33) . T) ((-99) -1463 (|has| |#1| (-1023)) (|has| |#1| (-793))) ((-569 (-802)) -1463 (|has| |#1| (-1023)) (|has| |#1| (-793)) (|has| |#1| (-569 (-802)))) ((-144 |#1|) . T) ((-570 (-504)) |has| |#1| (-570 (-504))) ((-267 #0=(-528) |#1|) . T) ((-269 #0# |#1|) . T) ((-290 |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-353 |#1|) . T) ((-467 |#1|) . T) ((-561 #0# |#1|) . T) ((-489 |#1| |#1|) -12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))) ((-600 |#1|) . T) ((-19 |#1|) . T) ((-793) |has| |#1| (-793)) ((-1023) -1463 (|has| |#1| (-1023)) (|has| |#1| (-793))) ((-1131) . T))
-((-3718 (((-1177 |#2|) (-1 |#2| |#1| |#2|) (-1177 |#1|) |#2|) 13)) (-1422 ((|#2| (-1 |#2| |#1| |#2|) (-1177 |#1|) |#2|) 15)) (-3106 (((-3 (-1177 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1177 |#1|)) 28) (((-1177 |#2|) (-1 |#2| |#1|) (-1177 |#1|)) 18)))
-(((-1176 |#1| |#2|) (-10 -7 (-15 -3718 ((-1177 |#2|) (-1 |#2| |#1| |#2|) (-1177 |#1|) |#2|)) (-15 -1422 (|#2| (-1 |#2| |#1| |#2|) (-1177 |#1|) |#2|)) (-15 -3106 ((-1177 |#2|) (-1 |#2| |#1|) (-1177 |#1|))) (-15 -3106 ((-3 (-1177 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1177 |#1|)))) (-1131) (-1131)) (T -1176))
-((-3106 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1177 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1177 *6)) (-5 *1 (-1176 *5 *6)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1177 *6)) (-5 *1 (-1176 *5 *6)))) (-1422 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1177 *5)) (-4 *5 (-1131)) (-4 *2 (-1131)) (-5 *1 (-1176 *5 *2)))) (-3718 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1177 *6)) (-4 *6 (-1131)) (-4 *5 (-1131)) (-5 *2 (-1177 *5)) (-5 *1 (-1176 *6 *5)))))
-(-10 -7 (-15 -3718 ((-1177 |#2|) (-1 |#2| |#1| |#2|) (-1177 |#1|) |#2|)) (-15 -1422 (|#2| (-1 |#2| |#1| |#2|) (-1177 |#1|) |#2|)) (-15 -3106 ((-1177 |#2|) (-1 |#2| |#1|) (-1177 |#1|))) (-15 -3106 ((-3 (-1177 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1177 |#1|))))
-((-2207 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-3460 (($ (-717)) NIL (|has| |#1| (-23)))) (-3220 (($ (-595 |#1|)) 9)) (-1444 (((-1182) $ (-528) (-528)) NIL (|has| $ (-6 -4265)))) (-3608 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-793)))) (-3863 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4265))) (($ $) NIL (-12 (|has| $ (-6 -4265)) (|has| |#1| (-793))))) (-1289 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-793)))) (-3535 (((-110) $ (-717)) NIL)) (-2381 ((|#1| $ (-528) |#1|) NIL (|has| $ (-6 -4265))) ((|#1| $ (-1144 (-528)) |#1|) NIL (|has| $ (-6 -4265)))) (-1573 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2816 (($) NIL T CONST)) (-2472 (($ $) NIL (|has| $ (-6 -4265)))) (-3009 (($ $) NIL)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2280 (($ |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-1422 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4264))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4264)))) (-2812 ((|#1| $ (-528) |#1|) NIL (|has| $ (-6 -4265)))) (-2742 ((|#1| $ (-528)) NIL)) (-3140 (((-528) (-1 (-110) |#1|) $) NIL) (((-528) |#1| $) NIL (|has| |#1| (-1023))) (((-528) |#1| $ (-528)) NIL (|has| |#1| (-1023)))) (-3342 (((-595 |#1|) $) 15 (|has| $ (-6 -4264)))) (-4061 (((-635 |#1|) $ $) NIL (|has| |#1| (-981)))) (-3462 (($ (-717) |#1|) NIL)) (-2029 (((-110) $ (-717)) NIL)) (-3530 (((-528) $) NIL (|has| (-528) (-793)))) (-1436 (($ $ $) NIL (|has| |#1| (-793)))) (-1356 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-793)))) (-2604 (((-595 |#1|) $) NIL (|has| $ (-6 -4264)))) (-2408 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-1709 (((-528) $) NIL (|has| (-528) (-793)))) (-1736 (($ $ $) NIL (|has| |#1| (-793)))) (-2800 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1817 ((|#1| $) NIL (-12 (|has| |#1| (-938)) (|has| |#1| (-981))))) (-3358 (((-110) $ (-717)) NIL)) (-1584 ((|#1| $) NIL (-12 (|has| |#1| (-938)) (|has| |#1| (-981))))) (-3034 (((-1078) $) NIL (|has| |#1| (-1023)))) (-3939 (($ |#1| $ (-528)) NIL) (($ $ $ (-528)) NIL)) (-2084 (((-595 (-528)) $) NIL)) (-3966 (((-110) (-528) $) NIL)) (-2495 (((-1042) $) NIL (|has| |#1| (-1023)))) (-2890 ((|#1| $) NIL (|has| (-528) (-793)))) (-1734 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1332 (($ $ |#1|) NIL (|has| $ (-6 -4265)))) (-1818 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 (-275 |#1|))) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023)))) (($ $ (-595 |#1|) (-595 |#1|)) NIL (-12 (|has| |#1| (-290 |#1|)) (|has| |#1| (-1023))))) (-3744 (((-110) $ $) NIL)) (-2111 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-2861 (((-595 |#1|) $) NIL)) (-1972 (((-110) $) NIL)) (-2147 (($) NIL)) (-3043 ((|#1| $ (-528) |#1|) NIL) ((|#1| $ (-528)) NIL) (($ $ (-1144 (-528))) NIL)) (-3675 ((|#1| $ $) NIL (|has| |#1| (-981)))) (-1745 (($ $ (-528)) NIL) (($ $ (-1144 (-528))) NIL)) (-3996 (($ $ $) NIL (|has| |#1| (-981)))) (-2507 (((-717) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264))) (((-717) |#1| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#1| (-1023))))) (-3761 (($ $ $ (-528)) NIL (|has| $ (-6 -4265)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) 19 (|has| |#1| (-570 (-504))))) (-2233 (($ (-595 |#1|)) 8)) (-3400 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-595 $)) NIL)) (-2222 (((-802) $) NIL (|has| |#1| (-569 (-802))))) (-3451 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4264)))) (-2244 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2220 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2186 (((-110) $ $) NIL (|has| |#1| (-1023)))) (-2232 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2208 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2286 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2275 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-528) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-673))) (($ $ |#1|) NIL (|has| |#1| (-673)))) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-1177 |#1|) (-13 (-1175 |#1|) (-10 -8 (-15 -3220 ($ (-595 |#1|))))) (-1131)) (T -1177))
-((-3220 (*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1131)) (-5 *1 (-1177 *3)))))
-(-13 (-1175 |#1|) (-10 -8 (-15 -3220 ($ (-595 |#1|)))))
-((-2207 (((-110) $ $) NIL)) (-2469 (((-1078) $ (-1078)) 90) (((-1078) $ (-1078) (-1078)) 88) (((-1078) $ (-1078) (-595 (-1078))) 87)) (-1865 (($) 59)) (-3077 (((-1182) $ (-447) (-860)) 45)) (-1756 (((-1182) $ (-860) (-1078)) 73) (((-1182) $ (-860) (-813)) 74)) (-2741 (((-1182) $ (-860) (-359) (-359)) 48)) (-1215 (((-1182) $ (-1078)) 69)) (-1303 (((-1182) $ (-860) (-1078)) 78)) (-3721 (((-1182) $ (-860) (-359) (-359)) 49)) (-1520 (((-1182) $ (-860) (-860)) 46)) (-2447 (((-1182) $) 70)) (-1980 (((-1182) $ (-860) (-1078)) 77)) (-3926 (((-1182) $ (-447) (-860)) 31)) (-3795 (((-1182) $ (-860) (-1078)) 76)) (-4157 (((-595 (-244)) $) 23) (($ $ (-595 (-244))) 24)) (-2972 (((-1182) $ (-717) (-717)) 43)) (-4200 (($ $) 60) (($ (-447) (-595 (-244))) 61)) (-3034 (((-1078) $) NIL)) (-2927 (((-528) $) 38)) (-2495 (((-1042) $) NIL)) (-2528 (((-1177 (-3 (-447) "undefined")) $) 37)) (-1921 (((-1177 (-2 (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |deltaX| (-207)) (|:| |deltaY| (-207)) (|:| -3795 (-528)) (|:| -3850 (-528)) (|:| |spline| (-528)) (|:| -1320 (-528)) (|:| |axesColor| (-813)) (|:| -1756 (-528)) (|:| |unitsColor| (-813)) (|:| |showing| (-528)))) $) 36)) (-3330 (((-1182) $ (-860) (-207) (-207) (-207) (-207) (-528) (-528) (-528) (-528) (-813) (-528) (-813) (-528)) 68)) (-2753 (((-595 (-882 (-207))) $) NIL)) (-3172 (((-447) $ (-860)) 33)) (-3048 (((-1182) $ (-717) (-717) (-860) (-860)) 40)) (-1288 (((-1182) $ (-1078)) 79)) (-3850 (((-1182) $ (-860) (-1078)) 75)) (-2222 (((-802) $) 85)) (-2254 (((-1182) $) 80)) (-1320 (((-1182) $ (-860) (-1078)) 71) (((-1182) $ (-860) (-813)) 72)) (-2186 (((-110) $ $) NIL)))
-(((-1178) (-13 (-1023) (-10 -8 (-15 -2753 ((-595 (-882 (-207))) $)) (-15 -1865 ($)) (-15 -4200 ($ $)) (-15 -4157 ((-595 (-244)) $)) (-15 -4157 ($ $ (-595 (-244)))) (-15 -4200 ($ (-447) (-595 (-244)))) (-15 -3330 ((-1182) $ (-860) (-207) (-207) (-207) (-207) (-528) (-528) (-528) (-528) (-813) (-528) (-813) (-528))) (-15 -1921 ((-1177 (-2 (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |deltaX| (-207)) (|:| |deltaY| (-207)) (|:| -3795 (-528)) (|:| -3850 (-528)) (|:| |spline| (-528)) (|:| -1320 (-528)) (|:| |axesColor| (-813)) (|:| -1756 (-528)) (|:| |unitsColor| (-813)) (|:| |showing| (-528)))) $)) (-15 -2528 ((-1177 (-3 (-447) "undefined")) $)) (-15 -1215 ((-1182) $ (-1078))) (-15 -3926 ((-1182) $ (-447) (-860))) (-15 -3172 ((-447) $ (-860))) (-15 -1320 ((-1182) $ (-860) (-1078))) (-15 -1320 ((-1182) $ (-860) (-813))) (-15 -1756 ((-1182) $ (-860) (-1078))) (-15 -1756 ((-1182) $ (-860) (-813))) (-15 -3795 ((-1182) $ (-860) (-1078))) (-15 -1980 ((-1182) $ (-860) (-1078))) (-15 -3850 ((-1182) $ (-860) (-1078))) (-15 -1288 ((-1182) $ (-1078))) (-15 -2254 ((-1182) $)) (-15 -3048 ((-1182) $ (-717) (-717) (-860) (-860))) (-15 -3721 ((-1182) $ (-860) (-359) (-359))) (-15 -2741 ((-1182) $ (-860) (-359) (-359))) (-15 -1303 ((-1182) $ (-860) (-1078))) (-15 -2972 ((-1182) $ (-717) (-717))) (-15 -3077 ((-1182) $ (-447) (-860))) (-15 -1520 ((-1182) $ (-860) (-860))) (-15 -2469 ((-1078) $ (-1078))) (-15 -2469 ((-1078) $ (-1078) (-1078))) (-15 -2469 ((-1078) $ (-1078) (-595 (-1078)))) (-15 -2447 ((-1182) $)) (-15 -2927 ((-528) $)) (-15 -2222 ((-802) $))))) (T -1178))
-((-2222 (*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-1178)))) (-2753 (*1 *2 *1) (-12 (-5 *2 (-595 (-882 (-207)))) (-5 *1 (-1178)))) (-1865 (*1 *1) (-5 *1 (-1178))) (-4200 (*1 *1 *1) (-5 *1 (-1178))) (-4157 (*1 *2 *1) (-12 (-5 *2 (-595 (-244))) (-5 *1 (-1178)))) (-4157 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-244))) (-5 *1 (-1178)))) (-4200 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-595 (-244))) (-5 *1 (-1178)))) (-3330 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-860)) (-5 *4 (-207)) (-5 *5 (-528)) (-5 *6 (-813)) (-5 *2 (-1182)) (-5 *1 (-1178)))) (-1921 (*1 *2 *1) (-12 (-5 *2 (-1177 (-2 (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |deltaX| (-207)) (|:| |deltaY| (-207)) (|:| -3795 (-528)) (|:| -3850 (-528)) (|:| |spline| (-528)) (|:| -1320 (-528)) (|:| |axesColor| (-813)) (|:| -1756 (-528)) (|:| |unitsColor| (-813)) (|:| |showing| (-528))))) (-5 *1 (-1178)))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-1177 (-3 (-447) "undefined"))) (-5 *1 (-1178)))) (-1215 (*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1178)))) (-3926 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-447)) (-5 *4 (-860)) (-5 *2 (-1182)) (-5 *1 (-1178)))) (-3172 (*1 *2 *1 *3) (-12 (-5 *3 (-860)) (-5 *2 (-447)) (-5 *1 (-1178)))) (-1320 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-860)) (-5 *4 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1178)))) (-1320 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-860)) (-5 *4 (-813)) (-5 *2 (-1182)) (-5 *1 (-1178)))) (-1756 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-860)) (-5 *4 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1178)))) (-1756 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-860)) (-5 *4 (-813)) (-5 *2 (-1182)) (-5 *1 (-1178)))) (-3795 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-860)) (-5 *4 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1178)))) (-1980 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-860)) (-5 *4 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1178)))) (-3850 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-860)) (-5 *4 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1178)))) (-1288 (*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1178)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-1178)))) (-3048 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-717)) (-5 *4 (-860)) (-5 *2 (-1182)) (-5 *1 (-1178)))) (-3721 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-860)) (-5 *4 (-359)) (-5 *2 (-1182)) (-5 *1 (-1178)))) (-2741 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-860)) (-5 *4 (-359)) (-5 *2 (-1182)) (-5 *1 (-1178)))) (-1303 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-860)) (-5 *4 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1178)))) (-2972 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-717)) (-5 *2 (-1182)) (-5 *1 (-1178)))) (-3077 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-447)) (-5 *4 (-860)) (-5 *2 (-1182)) (-5 *1 (-1178)))) (-1520 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1182)) (-5 *1 (-1178)))) (-2469 (*1 *2 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-1178)))) (-2469 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-1178)))) (-2469 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-595 (-1078))) (-5 *2 (-1078)) (-5 *1 (-1178)))) (-2447 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-1178)))) (-2927 (*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-1178)))))
-(-13 (-1023) (-10 -8 (-15 -2753 ((-595 (-882 (-207))) $)) (-15 -1865 ($)) (-15 -4200 ($ $)) (-15 -4157 ((-595 (-244)) $)) (-15 -4157 ($ $ (-595 (-244)))) (-15 -4200 ($ (-447) (-595 (-244)))) (-15 -3330 ((-1182) $ (-860) (-207) (-207) (-207) (-207) (-528) (-528) (-528) (-528) (-813) (-528) (-813) (-528))) (-15 -1921 ((-1177 (-2 (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |deltaX| (-207)) (|:| |deltaY| (-207)) (|:| -3795 (-528)) (|:| -3850 (-528)) (|:| |spline| (-528)) (|:| -1320 (-528)) (|:| |axesColor| (-813)) (|:| -1756 (-528)) (|:| |unitsColor| (-813)) (|:| |showing| (-528)))) $)) (-15 -2528 ((-1177 (-3 (-447) "undefined")) $)) (-15 -1215 ((-1182) $ (-1078))) (-15 -3926 ((-1182) $ (-447) (-860))) (-15 -3172 ((-447) $ (-860))) (-15 -1320 ((-1182) $ (-860) (-1078))) (-15 -1320 ((-1182) $ (-860) (-813))) (-15 -1756 ((-1182) $ (-860) (-1078))) (-15 -1756 ((-1182) $ (-860) (-813))) (-15 -3795 ((-1182) $ (-860) (-1078))) (-15 -1980 ((-1182) $ (-860) (-1078))) (-15 -3850 ((-1182) $ (-860) (-1078))) (-15 -1288 ((-1182) $ (-1078))) (-15 -2254 ((-1182) $)) (-15 -3048 ((-1182) $ (-717) (-717) (-860) (-860))) (-15 -3721 ((-1182) $ (-860) (-359) (-359))) (-15 -2741 ((-1182) $ (-860) (-359) (-359))) (-15 -1303 ((-1182) $ (-860) (-1078))) (-15 -2972 ((-1182) $ (-717) (-717))) (-15 -3077 ((-1182) $ (-447) (-860))) (-15 -1520 ((-1182) $ (-860) (-860))) (-15 -2469 ((-1078) $ (-1078))) (-15 -2469 ((-1078) $ (-1078) (-1078))) (-15 -2469 ((-1078) $ (-1078) (-595 (-1078)))) (-15 -2447 ((-1182) $)) (-15 -2927 ((-528) $)) (-15 -2222 ((-802) $))))
-((-2207 (((-110) $ $) NIL)) (-2158 (((-1182) $ (-359)) 140) (((-1182) $ (-359) (-359) (-359)) 141)) (-2469 (((-1078) $ (-1078)) 148) (((-1078) $ (-1078) (-1078)) 146) (((-1078) $ (-1078) (-595 (-1078))) 145)) (-3315 (($) 50)) (-4091 (((-1182) $ (-359) (-359) (-359) (-359) (-359)) 116) (((-2 (|:| |theta| (-207)) (|:| |phi| (-207)) (|:| -3721 (-207)) (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |scaleZ| (-207)) (|:| |deltaX| (-207)) (|:| |deltaY| (-207))) $) 114) (((-1182) $ (-2 (|:| |theta| (-207)) (|:| |phi| (-207)) (|:| -3721 (-207)) (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |scaleZ| (-207)) (|:| |deltaX| (-207)) (|:| |deltaY| (-207)))) 115) (((-1182) $ (-528) (-528) (-359) (-359) (-359)) 117) (((-1182) $ (-359) (-359)) 118) (((-1182) $ (-359) (-359) (-359)) 125)) (-3478 (((-359)) 97) (((-359) (-359)) 98)) (-1791 (((-359)) 92) (((-359) (-359)) 94)) (-2554 (((-359)) 95) (((-359) (-359)) 96)) (-2750 (((-359)) 101) (((-359) (-359)) 102)) (-3036 (((-359)) 99) (((-359) (-359)) 100)) (-2741 (((-1182) $ (-359) (-359)) 142)) (-1215 (((-1182) $ (-1078)) 126)) (-1659 (((-1055 (-207)) $) 51) (($ $ (-1055 (-207))) 52)) (-1663 (((-1182) $ (-1078)) 154)) (-3919 (((-1182) $ (-1078)) 155)) (-3306 (((-1182) $ (-359) (-359)) 124) (((-1182) $ (-528) (-528)) 139)) (-1520 (((-1182) $ (-860) (-860)) 132)) (-2447 (((-1182) $) 112)) (-1713 (((-1182) $ (-1078)) 153)) (-3193 (((-1182) $ (-1078)) 109)) (-4157 (((-595 (-244)) $) 53) (($ $ (-595 (-244))) 54)) (-2972 (((-1182) $ (-717) (-717)) 131)) (-2852 (((-1182) $ (-717) (-882 (-207))) 160)) (-2696 (($ $) 56) (($ (-1055 (-207)) (-1078)) 57) (($ (-1055 (-207)) (-595 (-244))) 58)) (-3629 (((-1182) $ (-359) (-359) (-359)) 106)) (-3034 (((-1078) $) NIL)) (-2927 (((-528) $) 103)) (-4074 (((-1182) $ (-359)) 143)) (-3162 (((-1182) $ (-359)) 158)) (-2495 (((-1042) $) NIL)) (-2551 (((-1182) $ (-359)) 157)) (-3717 (((-1182) $ (-1078)) 111)) (-3048 (((-1182) $ (-717) (-717) (-860) (-860)) 130)) (-3427 (((-1182) $ (-1078)) 108)) (-1288 (((-1182) $ (-1078)) 110)) (-2689 (((-1182) $ (-148) (-148)) 129)) (-2222 (((-802) $) 137)) (-2254 (((-1182) $) 113)) (-2311 (((-1182) $ (-1078)) 156)) (-1320 (((-1182) $ (-1078)) 107)) (-2186 (((-110) $ $) NIL)))
-(((-1179) (-13 (-1023) (-10 -8 (-15 -1791 ((-359))) (-15 -1791 ((-359) (-359))) (-15 -2554 ((-359))) (-15 -2554 ((-359) (-359))) (-15 -3478 ((-359))) (-15 -3478 ((-359) (-359))) (-15 -3036 ((-359))) (-15 -3036 ((-359) (-359))) (-15 -2750 ((-359))) (-15 -2750 ((-359) (-359))) (-15 -3315 ($)) (-15 -2696 ($ $)) (-15 -2696 ($ (-1055 (-207)) (-1078))) (-15 -2696 ($ (-1055 (-207)) (-595 (-244)))) (-15 -1659 ((-1055 (-207)) $)) (-15 -1659 ($ $ (-1055 (-207)))) (-15 -2852 ((-1182) $ (-717) (-882 (-207)))) (-15 -4157 ((-595 (-244)) $)) (-15 -4157 ($ $ (-595 (-244)))) (-15 -2972 ((-1182) $ (-717) (-717))) (-15 -1520 ((-1182) $ (-860) (-860))) (-15 -1215 ((-1182) $ (-1078))) (-15 -3048 ((-1182) $ (-717) (-717) (-860) (-860))) (-15 -4091 ((-1182) $ (-359) (-359) (-359) (-359) (-359))) (-15 -4091 ((-2 (|:| |theta| (-207)) (|:| |phi| (-207)) (|:| -3721 (-207)) (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |scaleZ| (-207)) (|:| |deltaX| (-207)) (|:| |deltaY| (-207))) $)) (-15 -4091 ((-1182) $ (-2 (|:| |theta| (-207)) (|:| |phi| (-207)) (|:| -3721 (-207)) (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |scaleZ| (-207)) (|:| |deltaX| (-207)) (|:| |deltaY| (-207))))) (-15 -4091 ((-1182) $ (-528) (-528) (-359) (-359) (-359))) (-15 -4091 ((-1182) $ (-359) (-359))) (-15 -4091 ((-1182) $ (-359) (-359) (-359))) (-15 -1288 ((-1182) $ (-1078))) (-15 -1320 ((-1182) $ (-1078))) (-15 -3427 ((-1182) $ (-1078))) (-15 -3193 ((-1182) $ (-1078))) (-15 -3717 ((-1182) $ (-1078))) (-15 -3306 ((-1182) $ (-359) (-359))) (-15 -3306 ((-1182) $ (-528) (-528))) (-15 -2158 ((-1182) $ (-359))) (-15 -2158 ((-1182) $ (-359) (-359) (-359))) (-15 -2741 ((-1182) $ (-359) (-359))) (-15 -1713 ((-1182) $ (-1078))) (-15 -2551 ((-1182) $ (-359))) (-15 -3162 ((-1182) $ (-359))) (-15 -1663 ((-1182) $ (-1078))) (-15 -3919 ((-1182) $ (-1078))) (-15 -2311 ((-1182) $ (-1078))) (-15 -3629 ((-1182) $ (-359) (-359) (-359))) (-15 -4074 ((-1182) $ (-359))) (-15 -2447 ((-1182) $)) (-15 -2689 ((-1182) $ (-148) (-148))) (-15 -2469 ((-1078) $ (-1078))) (-15 -2469 ((-1078) $ (-1078) (-1078))) (-15 -2469 ((-1078) $ (-1078) (-595 (-1078)))) (-15 -2254 ((-1182) $)) (-15 -2927 ((-528) $))))) (T -1179))
-((-1791 (*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1179)))) (-1791 (*1 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1179)))) (-2554 (*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1179)))) (-2554 (*1 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1179)))) (-3478 (*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1179)))) (-3478 (*1 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1179)))) (-3036 (*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1179)))) (-3036 (*1 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1179)))) (-2750 (*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1179)))) (-2750 (*1 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1179)))) (-3315 (*1 *1) (-5 *1 (-1179))) (-2696 (*1 *1 *1) (-5 *1 (-1179))) (-2696 (*1 *1 *2 *3) (-12 (-5 *2 (-1055 (-207))) (-5 *3 (-1078)) (-5 *1 (-1179)))) (-2696 (*1 *1 *2 *3) (-12 (-5 *2 (-1055 (-207))) (-5 *3 (-595 (-244))) (-5 *1 (-1179)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-1055 (-207))) (-5 *1 (-1179)))) (-1659 (*1 *1 *1 *2) (-12 (-5 *2 (-1055 (-207))) (-5 *1 (-1179)))) (-2852 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-717)) (-5 *4 (-882 (-207))) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-4157 (*1 *2 *1) (-12 (-5 *2 (-595 (-244))) (-5 *1 (-1179)))) (-4157 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-244))) (-5 *1 (-1179)))) (-2972 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-717)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-1520 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-1215 (*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-3048 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-717)) (-5 *4 (-860)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-4091 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-4091 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-207)) (|:| |phi| (-207)) (|:| -3721 (-207)) (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |scaleZ| (-207)) (|:| |deltaX| (-207)) (|:| |deltaY| (-207)))) (-5 *1 (-1179)))) (-4091 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-207)) (|:| |phi| (-207)) (|:| -3721 (-207)) (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |scaleZ| (-207)) (|:| |deltaX| (-207)) (|:| |deltaY| (-207)))) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-4091 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-528)) (-5 *4 (-359)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-4091 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-4091 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-1288 (*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-1320 (*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-3427 (*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-3193 (*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-3717 (*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-3306 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-3306 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-528)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-2158 (*1 *2 *1 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-2158 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-2741 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-1713 (*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-2551 (*1 *2 *1 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-3162 (*1 *2 *1 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-1663 (*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-3919 (*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-2311 (*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-3629 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-4074 (*1 *2 *1 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-2447 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-1179)))) (-2689 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-148)) (-5 *2 (-1182)) (-5 *1 (-1179)))) (-2469 (*1 *2 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-1179)))) (-2469 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-1179)))) (-2469 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-595 (-1078))) (-5 *2 (-1078)) (-5 *1 (-1179)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-1179)))) (-2927 (*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-1179)))))
-(-13 (-1023) (-10 -8 (-15 -1791 ((-359))) (-15 -1791 ((-359) (-359))) (-15 -2554 ((-359))) (-15 -2554 ((-359) (-359))) (-15 -3478 ((-359))) (-15 -3478 ((-359) (-359))) (-15 -3036 ((-359))) (-15 -3036 ((-359) (-359))) (-15 -2750 ((-359))) (-15 -2750 ((-359) (-359))) (-15 -3315 ($)) (-15 -2696 ($ $)) (-15 -2696 ($ (-1055 (-207)) (-1078))) (-15 -2696 ($ (-1055 (-207)) (-595 (-244)))) (-15 -1659 ((-1055 (-207)) $)) (-15 -1659 ($ $ (-1055 (-207)))) (-15 -2852 ((-1182) $ (-717) (-882 (-207)))) (-15 -4157 ((-595 (-244)) $)) (-15 -4157 ($ $ (-595 (-244)))) (-15 -2972 ((-1182) $ (-717) (-717))) (-15 -1520 ((-1182) $ (-860) (-860))) (-15 -1215 ((-1182) $ (-1078))) (-15 -3048 ((-1182) $ (-717) (-717) (-860) (-860))) (-15 -4091 ((-1182) $ (-359) (-359) (-359) (-359) (-359))) (-15 -4091 ((-2 (|:| |theta| (-207)) (|:| |phi| (-207)) (|:| -3721 (-207)) (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |scaleZ| (-207)) (|:| |deltaX| (-207)) (|:| |deltaY| (-207))) $)) (-15 -4091 ((-1182) $ (-2 (|:| |theta| (-207)) (|:| |phi| (-207)) (|:| -3721 (-207)) (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |scaleZ| (-207)) (|:| |deltaX| (-207)) (|:| |deltaY| (-207))))) (-15 -4091 ((-1182) $ (-528) (-528) (-359) (-359) (-359))) (-15 -4091 ((-1182) $ (-359) (-359))) (-15 -4091 ((-1182) $ (-359) (-359) (-359))) (-15 -1288 ((-1182) $ (-1078))) (-15 -1320 ((-1182) $ (-1078))) (-15 -3427 ((-1182) $ (-1078))) (-15 -3193 ((-1182) $ (-1078))) (-15 -3717 ((-1182) $ (-1078))) (-15 -3306 ((-1182) $ (-359) (-359))) (-15 -3306 ((-1182) $ (-528) (-528))) (-15 -2158 ((-1182) $ (-359))) (-15 -2158 ((-1182) $ (-359) (-359) (-359))) (-15 -2741 ((-1182) $ (-359) (-359))) (-15 -1713 ((-1182) $ (-1078))) (-15 -2551 ((-1182) $ (-359))) (-15 -3162 ((-1182) $ (-359))) (-15 -1663 ((-1182) $ (-1078))) (-15 -3919 ((-1182) $ (-1078))) (-15 -2311 ((-1182) $ (-1078))) (-15 -3629 ((-1182) $ (-359) (-359) (-359))) (-15 -4074 ((-1182) $ (-359))) (-15 -2447 ((-1182) $)) (-15 -2689 ((-1182) $ (-148) (-148))) (-15 -2469 ((-1078) $ (-1078))) (-15 -2469 ((-1078) $ (-1078) (-1078))) (-15 -2469 ((-1078) $ (-1078) (-595 (-1078)))) (-15 -2254 ((-1182) $)) (-15 -2927 ((-528) $))))
-((-2850 (((-595 (-1078)) (-595 (-1078))) 94) (((-595 (-1078))) 90)) (-1516 (((-595 (-1078))) 88)) (-1468 (((-595 (-860)) (-595 (-860))) 63) (((-595 (-860))) 60)) (-1579 (((-595 (-717)) (-595 (-717))) 57) (((-595 (-717))) 53)) (-3531 (((-1182)) 65)) (-3924 (((-860) (-860)) 81) (((-860)) 80)) (-1460 (((-860) (-860)) 79) (((-860)) 78)) (-3941 (((-813) (-813)) 75) (((-813)) 74)) (-3755 (((-207)) 85) (((-207) (-359)) 87)) (-1255 (((-860)) 82) (((-860) (-860)) 83)) (-2641 (((-860) (-860)) 77) (((-860)) 76)) (-3804 (((-813) (-813)) 69) (((-813)) 67)) (-1789 (((-813) (-813)) 71) (((-813)) 70)) (-3580 (((-813) (-813)) 73) (((-813)) 72)))
-(((-1180) (-10 -7 (-15 -3804 ((-813))) (-15 -3804 ((-813) (-813))) (-15 -1789 ((-813))) (-15 -1789 ((-813) (-813))) (-15 -3580 ((-813))) (-15 -3580 ((-813) (-813))) (-15 -3941 ((-813))) (-15 -3941 ((-813) (-813))) (-15 -2641 ((-860))) (-15 -2641 ((-860) (-860))) (-15 -1579 ((-595 (-717)))) (-15 -1579 ((-595 (-717)) (-595 (-717)))) (-15 -1468 ((-595 (-860)))) (-15 -1468 ((-595 (-860)) (-595 (-860)))) (-15 -3531 ((-1182))) (-15 -2850 ((-595 (-1078)))) (-15 -2850 ((-595 (-1078)) (-595 (-1078)))) (-15 -1516 ((-595 (-1078)))) (-15 -1460 ((-860))) (-15 -3924 ((-860))) (-15 -1460 ((-860) (-860))) (-15 -3924 ((-860) (-860))) (-15 -1255 ((-860) (-860))) (-15 -1255 ((-860))) (-15 -3755 ((-207) (-359))) (-15 -3755 ((-207))))) (T -1180))
-((-3755 (*1 *2) (-12 (-5 *2 (-207)) (-5 *1 (-1180)))) (-3755 (*1 *2 *3) (-12 (-5 *3 (-359)) (-5 *2 (-207)) (-5 *1 (-1180)))) (-1255 (*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1180)))) (-1255 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1180)))) (-3924 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1180)))) (-1460 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1180)))) (-3924 (*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1180)))) (-1460 (*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1180)))) (-1516 (*1 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-1180)))) (-2850 (*1 *2 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-1180)))) (-2850 (*1 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-1180)))) (-3531 (*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-1180)))) (-1468 (*1 *2 *2) (-12 (-5 *2 (-595 (-860))) (-5 *1 (-1180)))) (-1468 (*1 *2) (-12 (-5 *2 (-595 (-860))) (-5 *1 (-1180)))) (-1579 (*1 *2 *2) (-12 (-5 *2 (-595 (-717))) (-5 *1 (-1180)))) (-1579 (*1 *2) (-12 (-5 *2 (-595 (-717))) (-5 *1 (-1180)))) (-2641 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1180)))) (-2641 (*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1180)))) (-3941 (*1 *2 *2) (-12 (-5 *2 (-813)) (-5 *1 (-1180)))) (-3941 (*1 *2) (-12 (-5 *2 (-813)) (-5 *1 (-1180)))) (-3580 (*1 *2 *2) (-12 (-5 *2 (-813)) (-5 *1 (-1180)))) (-3580 (*1 *2) (-12 (-5 *2 (-813)) (-5 *1 (-1180)))) (-1789 (*1 *2 *2) (-12 (-5 *2 (-813)) (-5 *1 (-1180)))) (-1789 (*1 *2) (-12 (-5 *2 (-813)) (-5 *1 (-1180)))) (-3804 (*1 *2 *2) (-12 (-5 *2 (-813)) (-5 *1 (-1180)))) (-3804 (*1 *2) (-12 (-5 *2 (-813)) (-5 *1 (-1180)))))
-(-10 -7 (-15 -3804 ((-813))) (-15 -3804 ((-813) (-813))) (-15 -1789 ((-813))) (-15 -1789 ((-813) (-813))) (-15 -3580 ((-813))) (-15 -3580 ((-813) (-813))) (-15 -3941 ((-813))) (-15 -3941 ((-813) (-813))) (-15 -2641 ((-860))) (-15 -2641 ((-860) (-860))) (-15 -1579 ((-595 (-717)))) (-15 -1579 ((-595 (-717)) (-595 (-717)))) (-15 -1468 ((-595 (-860)))) (-15 -1468 ((-595 (-860)) (-595 (-860)))) (-15 -3531 ((-1182))) (-15 -2850 ((-595 (-1078)))) (-15 -2850 ((-595 (-1078)) (-595 (-1078)))) (-15 -1516 ((-595 (-1078)))) (-15 -1460 ((-860))) (-15 -3924 ((-860))) (-15 -1460 ((-860) (-860))) (-15 -3924 ((-860) (-860))) (-15 -1255 ((-860) (-860))) (-15 -1255 ((-860))) (-15 -3755 ((-207) (-359))) (-15 -3755 ((-207))))
-((-2776 (((-447) (-595 (-595 (-882 (-207)))) (-595 (-244))) 21) (((-447) (-595 (-595 (-882 (-207))))) 20) (((-447) (-595 (-595 (-882 (-207)))) (-813) (-813) (-860) (-595 (-244))) 19)) (-2714 (((-1178) (-595 (-595 (-882 (-207)))) (-595 (-244))) 27) (((-1178) (-595 (-595 (-882 (-207)))) (-813) (-813) (-860) (-595 (-244))) 26)) (-2222 (((-1178) (-447)) 38)))
-(((-1181) (-10 -7 (-15 -2776 ((-447) (-595 (-595 (-882 (-207)))) (-813) (-813) (-860) (-595 (-244)))) (-15 -2776 ((-447) (-595 (-595 (-882 (-207)))))) (-15 -2776 ((-447) (-595 (-595 (-882 (-207)))) (-595 (-244)))) (-15 -2714 ((-1178) (-595 (-595 (-882 (-207)))) (-813) (-813) (-860) (-595 (-244)))) (-15 -2714 ((-1178) (-595 (-595 (-882 (-207)))) (-595 (-244)))) (-15 -2222 ((-1178) (-447))))) (T -1181))
-((-2222 (*1 *2 *3) (-12 (-5 *3 (-447)) (-5 *2 (-1178)) (-5 *1 (-1181)))) (-2714 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-595 (-882 (-207))))) (-5 *4 (-595 (-244))) (-5 *2 (-1178)) (-5 *1 (-1181)))) (-2714 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-595 (-595 (-882 (-207))))) (-5 *4 (-813)) (-5 *5 (-860)) (-5 *6 (-595 (-244))) (-5 *2 (-1178)) (-5 *1 (-1181)))) (-2776 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-595 (-882 (-207))))) (-5 *4 (-595 (-244))) (-5 *2 (-447)) (-5 *1 (-1181)))) (-2776 (*1 *2 *3) (-12 (-5 *3 (-595 (-595 (-882 (-207))))) (-5 *2 (-447)) (-5 *1 (-1181)))) (-2776 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-595 (-595 (-882 (-207))))) (-5 *4 (-813)) (-5 *5 (-860)) (-5 *6 (-595 (-244))) (-5 *2 (-447)) (-5 *1 (-1181)))))
-(-10 -7 (-15 -2776 ((-447) (-595 (-595 (-882 (-207)))) (-813) (-813) (-860) (-595 (-244)))) (-15 -2776 ((-447) (-595 (-595 (-882 (-207)))))) (-15 -2776 ((-447) (-595 (-595 (-882 (-207)))) (-595 (-244)))) (-15 -2714 ((-1178) (-595 (-595 (-882 (-207)))) (-813) (-813) (-860) (-595 (-244)))) (-15 -2714 ((-1178) (-595 (-595 (-882 (-207)))) (-595 (-244)))) (-15 -2222 ((-1178) (-447))))
-((-2853 (($) 7)) (-2222 (((-802) $) 10)))
-(((-1182) (-10 -8 (-15 -2853 ($)) (-15 -2222 ((-802) $)))) (T -1182))
-((-2222 (*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-1182)))) (-2853 (*1 *1) (-5 *1 (-1182))))
-(-10 -8 (-15 -2853 ($)) (-15 -2222 ((-802) $)))
-((-2296 (($ $ |#2|) 10)))
-(((-1183 |#1| |#2|) (-10 -8 (-15 -2296 (|#1| |#1| |#2|))) (-1184 |#2|) (-343)) (T -1183))
-NIL
-(-10 -8 (-15 -2296 (|#1| |#1| |#2|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-3017 (((-130)) 28)) (-2222 (((-802) $) 11)) (-2969 (($) 18 T CONST)) (-2186 (((-110) $ $) 6)) (-2296 (($ $ |#1|) 29)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-1184 |#1|) (-133) (-343)) (T -1184))
-((-2296 (*1 *1 *1 *2) (-12 (-4 *1 (-1184 *2)) (-4 *2 (-343)))) (-3017 (*1 *2) (-12 (-4 *1 (-1184 *3)) (-4 *3 (-343)) (-5 *2 (-130)))))
-(-13 (-664 |t#1|) (-10 -8 (-15 -2296 ($ $ |t#1|)) (-15 -3017 ((-130)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-569 (-802)) . T) ((-597 |#1|) . T) ((-664 |#1|) . T) ((-986 |#1|) . T) ((-1023) . T))
-((-1220 (((-595 (-1126 |#1|)) (-1095) (-1126 |#1|)) 78)) (-2659 (((-1076 (-1076 (-891 |#1|))) (-1095) (-1076 (-891 |#1|))) 57)) (-3067 (((-1 (-1076 (-1126 |#1|)) (-1076 (-1126 |#1|))) (-717) (-1126 |#1|) (-1076 (-1126 |#1|))) 68)) (-3302 (((-1 (-1076 (-891 |#1|)) (-1076 (-891 |#1|))) (-717)) 59)) (-3836 (((-1 (-1091 (-891 |#1|)) (-891 |#1|)) (-1095)) 29)) (-4195 (((-1 (-1076 (-891 |#1|)) (-1076 (-891 |#1|))) (-717)) 58)))
-(((-1185 |#1|) (-10 -7 (-15 -3302 ((-1 (-1076 (-891 |#1|)) (-1076 (-891 |#1|))) (-717))) (-15 -4195 ((-1 (-1076 (-891 |#1|)) (-1076 (-891 |#1|))) (-717))) (-15 -2659 ((-1076 (-1076 (-891 |#1|))) (-1095) (-1076 (-891 |#1|)))) (-15 -3836 ((-1 (-1091 (-891 |#1|)) (-891 |#1|)) (-1095))) (-15 -1220 ((-595 (-1126 |#1|)) (-1095) (-1126 |#1|))) (-15 -3067 ((-1 (-1076 (-1126 |#1|)) (-1076 (-1126 |#1|))) (-717) (-1126 |#1|) (-1076 (-1126 |#1|))))) (-343)) (T -1185))
-((-3067 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-717)) (-4 *6 (-343)) (-5 *4 (-1126 *6)) (-5 *2 (-1 (-1076 *4) (-1076 *4))) (-5 *1 (-1185 *6)) (-5 *5 (-1076 *4)))) (-1220 (*1 *2 *3 *4) (-12 (-5 *3 (-1095)) (-4 *5 (-343)) (-5 *2 (-595 (-1126 *5))) (-5 *1 (-1185 *5)) (-5 *4 (-1126 *5)))) (-3836 (*1 *2 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-1 (-1091 (-891 *4)) (-891 *4))) (-5 *1 (-1185 *4)) (-4 *4 (-343)))) (-2659 (*1 *2 *3 *4) (-12 (-5 *3 (-1095)) (-4 *5 (-343)) (-5 *2 (-1076 (-1076 (-891 *5)))) (-5 *1 (-1185 *5)) (-5 *4 (-1076 (-891 *5))))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-1 (-1076 (-891 *4)) (-1076 (-891 *4)))) (-5 *1 (-1185 *4)) (-4 *4 (-343)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-1 (-1076 (-891 *4)) (-1076 (-891 *4)))) (-5 *1 (-1185 *4)) (-4 *4 (-343)))))
-(-10 -7 (-15 -3302 ((-1 (-1076 (-891 |#1|)) (-1076 (-891 |#1|))) (-717))) (-15 -4195 ((-1 (-1076 (-891 |#1|)) (-1076 (-891 |#1|))) (-717))) (-15 -2659 ((-1076 (-1076 (-891 |#1|))) (-1095) (-1076 (-891 |#1|)))) (-15 -3836 ((-1 (-1091 (-891 |#1|)) (-891 |#1|)) (-1095))) (-15 -1220 ((-595 (-1126 |#1|)) (-1095) (-1126 |#1|))) (-15 -3067 ((-1 (-1076 (-1126 |#1|)) (-1076 (-1126 |#1|))) (-717) (-1126 |#1|) (-1076 (-1126 |#1|)))))
-((-2954 (((-2 (|:| -1400 (-635 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-635 |#2|))) |#2|) 75)) (-3882 (((-2 (|:| -1400 (-635 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-635 |#2|)))) 74)))
-(((-1186 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3882 ((-2 (|:| -1400 (-635 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-635 |#2|))))) (-15 -2954 ((-2 (|:| -1400 (-635 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-635 |#2|))) |#2|))) (-329) (-1153 |#1|) (-1153 |#2|) (-389 |#2| |#3|)) (T -1186))
-((-2954 (*1 *2 *3) (-12 (-4 *4 (-329)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 *3)) (-5 *2 (-2 (|:| -1400 (-635 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-635 *3)))) (-5 *1 (-1186 *4 *3 *5 *6)) (-4 *6 (-389 *3 *5)))) (-3882 (*1 *2) (-12 (-4 *3 (-329)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| -1400 (-635 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-635 *4)))) (-5 *1 (-1186 *3 *4 *5 *6)) (-4 *6 (-389 *4 *5)))))
-(-10 -7 (-15 -3882 ((-2 (|:| -1400 (-635 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-635 |#2|))))) (-15 -2954 ((-2 (|:| -1400 (-635 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-635 |#2|))) |#2|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 43)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-1312 (((-3 $ "failed") $) NIL)) (-1297 (((-110) $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2222 (((-802) $) 64) (($ (-528)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-162)))) (-3742 (((-717)) NIL)) (-2973 (((-1182) (-717)) 16)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 27 T CONST)) (-2982 (($) 67 T CONST)) (-2186 (((-110) $ $) 69)) (-2296 (((-3 $ "failed") $ $) NIL (|has| |#1| (-343)))) (-2286 (($ $) 71) (($ $ $) NIL)) (-2275 (($ $ $) 47)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162)))))
-(((-1187 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-981) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2222 (|#4| $)) (IF (|has| |#1| (-343)) (-15 -2296 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2222 ($ |#4|)) (-15 -2973 ((-1182) (-717))))) (-981) (-793) (-739) (-888 |#1| |#3| |#2|) (-595 |#2|) (-595 (-717)) (-717)) (T -1187))
-((-2222 (*1 *2 *1) (-12 (-4 *2 (-888 *3 *5 *4)) (-5 *1 (-1187 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-981)) (-4 *4 (-793)) (-4 *5 (-739)) (-14 *6 (-595 *4)) (-14 *7 (-595 (-717))) (-14 *8 (-717)))) (-2296 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-343)) (-4 *2 (-981)) (-4 *3 (-793)) (-4 *4 (-739)) (-14 *6 (-595 *3)) (-5 *1 (-1187 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-888 *2 *4 *3)) (-14 *7 (-595 (-717))) (-14 *8 (-717)))) (-2222 (*1 *1 *2) (-12 (-4 *3 (-981)) (-4 *4 (-793)) (-4 *5 (-739)) (-14 *6 (-595 *4)) (-5 *1 (-1187 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-888 *3 *5 *4)) (-14 *7 (-595 (-717))) (-14 *8 (-717)))) (-2973 (*1 *2 *3) (-12 (-5 *3 (-717)) (-4 *4 (-981)) (-4 *5 (-793)) (-4 *6 (-739)) (-14 *8 (-595 *5)) (-5 *2 (-1182)) (-5 *1 (-1187 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-888 *4 *6 *5)) (-14 *9 (-595 *3)) (-14 *10 *3))))
-(-13 (-981) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2222 (|#4| $)) (IF (|has| |#1| (-343)) (-15 -2296 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2222 ($ |#4|)) (-15 -2973 ((-1182) (-717)))))
-((-2207 (((-110) $ $) NIL)) (-2785 (((-595 (-2 (|:| -2254 $) (|:| -2378 (-595 |#4|)))) (-595 |#4|)) NIL)) (-1985 (((-595 $) (-595 |#4|)) 88)) (-2565 (((-595 |#3|) $) NIL)) (-3812 (((-110) $) NIL)) (-2414 (((-110) $) NIL (|has| |#1| (-520)))) (-3759 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1728 ((|#4| |#4| $) NIL)) (-1289 (((-2 (|:| |under| $) (|:| -2925 $) (|:| |upper| $)) $ |#3|) NIL)) (-3535 (((-110) $ (-717)) NIL)) (-1573 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2816 (($) NIL T CONST)) (-1689 (((-110) $) NIL (|has| |#1| (-520)))) (-2584 (((-110) $ $) NIL (|has| |#1| (-520)))) (-3168 (((-110) $ $) NIL (|has| |#1| (-520)))) (-1924 (((-110) $) NIL (|has| |#1| (-520)))) (-1658 (((-595 |#4|) (-595 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 28)) (-1891 (((-595 |#4|) (-595 |#4|) $) 25 (|has| |#1| (-520)))) (-3794 (((-595 |#4|) (-595 |#4|) $) NIL (|has| |#1| (-520)))) (-3001 (((-3 $ "failed") (-595 |#4|)) NIL)) (-2409 (($ (-595 |#4|)) NIL)) (-2902 (((-3 $ "failed") $) 70)) (-1592 ((|#4| |#4| $) 75)) (-2923 (($ $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023))))) (-2280 (($ |#4| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264)))) (-2537 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-520)))) (-1927 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-3345 ((|#4| |#4| $) NIL)) (-1422 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4264))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4264))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-4049 (((-2 (|:| -2254 (-595 |#4|)) (|:| -2378 (-595 |#4|))) $) NIL)) (-3342 (((-595 |#4|) $) NIL (|has| $ (-6 -4264)))) (-3092 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1761 ((|#3| $) 76)) (-2029 (((-110) $ (-717)) NIL)) (-2604 (((-595 |#4|) $) 29 (|has| $ (-6 -4264)))) (-2408 (((-110) |#4| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023))))) (-2734 (((-3 $ "failed") (-595 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-595 |#4|)) 35)) (-2800 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4265)))) (-3106 (($ (-1 |#4| |#4|) $) NIL)) (-3558 (((-595 |#3|) $) NIL)) (-3472 (((-110) |#3| $) NIL)) (-3358 (((-110) $ (-717)) NIL)) (-3034 (((-1078) $) NIL)) (-2301 (((-3 |#4| "failed") $) NIL)) (-3923 (((-595 |#4|) $) 50)) (-2127 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3436 ((|#4| |#4| $) 74)) (-3664 (((-110) $ $) 85)) (-1827 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-520)))) (-1906 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-2001 ((|#4| |#4| $) NIL)) (-2495 (((-1042) $) NIL)) (-2890 (((-3 |#4| "failed") $) 69)) (-1734 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-3912 (((-3 $ "failed") $ |#4|) NIL)) (-3740 (($ $ |#4|) NIL)) (-1818 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264)))) (-4014 (($ $ (-595 |#4|) (-595 |#4|)) NIL (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ (-275 |#4|)) NIL (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023)))) (($ $ (-595 (-275 |#4|))) NIL (-12 (|has| |#4| (-290 |#4|)) (|has| |#4| (-1023))))) (-3744 (((-110) $ $) NIL)) (-1972 (((-110) $) 67)) (-2147 (($) 42)) (-2935 (((-717) $) NIL)) (-2507 (((-717) |#4| $) NIL (-12 (|has| $ (-6 -4264)) (|has| |#4| (-1023)))) (((-717) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264)))) (-2406 (($ $) NIL)) (-3155 (((-504) $) NIL (|has| |#4| (-570 (-504))))) (-2233 (($ (-595 |#4|)) NIL)) (-2649 (($ $ |#3|) NIL)) (-3597 (($ $ |#3|) NIL)) (-3311 (($ $) NIL)) (-1812 (($ $ |#3|) NIL)) (-2222 (((-802) $) NIL) (((-595 |#4|) $) 57)) (-2459 (((-717) $) NIL (|has| |#3| (-348)))) (-1979 (((-3 $ "failed") (-595 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-595 |#4|)) 41)) (-2303 (((-595 $) (-595 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-595 $) (-595 |#4|)) 66)) (-1411 (((-3 (-2 (|:| |bas| $) (|:| -1513 (-595 |#4|))) "failed") (-595 |#4|) (-1 (-110) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -1513 (-595 |#4|))) "failed") (-595 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-1622 (((-110) $ (-1 (-110) |#4| (-595 |#4|))) NIL)) (-3451 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4264)))) (-1490 (((-595 |#3|) $) NIL)) (-2190 (((-110) |#3| $) NIL)) (-2186 (((-110) $ $) NIL)) (-2138 (((-717) $) NIL (|has| $ (-6 -4264)))))
-(((-1188 |#1| |#2| |#3| |#4|) (-13 (-1125 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2734 ((-3 $ "failed") (-595 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2734 ((-3 $ "failed") (-595 |#4|))) (-15 -1979 ((-3 $ "failed") (-595 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1979 ((-3 $ "failed") (-595 |#4|))) (-15 -2303 ((-595 $) (-595 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2303 ((-595 $) (-595 |#4|))))) (-520) (-739) (-793) (-994 |#1| |#2| |#3|)) (T -1188))
-((-2734 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-595 *8)) (-5 *3 (-1 (-110) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-994 *5 *6 *7)) (-4 *5 (-520)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *1 (-1188 *5 *6 *7 *8)))) (-2734 (*1 *1 *2) (|partial| -12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-1188 *3 *4 *5 *6)))) (-1979 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-595 *8)) (-5 *3 (-1 (-110) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-994 *5 *6 *7)) (-4 *5 (-520)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *1 (-1188 *5 *6 *7 *8)))) (-1979 (*1 *1 *2) (|partial| -12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-1188 *3 *4 *5 *6)))) (-2303 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-595 *9)) (-5 *4 (-1 (-110) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-994 *6 *7 *8)) (-4 *6 (-520)) (-4 *7 (-739)) (-4 *8 (-793)) (-5 *2 (-595 (-1188 *6 *7 *8 *9))) (-5 *1 (-1188 *6 *7 *8 *9)))) (-2303 (*1 *2 *3) (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-595 (-1188 *4 *5 *6 *7))) (-5 *1 (-1188 *4 *5 *6 *7)))))
-(-13 (-1125 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2734 ((-3 $ "failed") (-595 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2734 ((-3 $ "failed") (-595 |#4|))) (-15 -1979 ((-3 $ "failed") (-595 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1979 ((-3 $ "failed") (-595 |#4|))) (-15 -2303 ((-595 $) (-595 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2303 ((-595 $) (-595 |#4|)))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3181 (((-3 $ "failed") $ $) 19)) (-2816 (($) 17 T CONST)) (-1312 (((-3 $ "failed") $) 34)) (-1297 (((-110) $) 31)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ |#1|) 38)) (-3742 (((-717)) 29)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-1189 |#1|) (-133) (-981)) (T -1189))
-((-2222 (*1 *1 *2) (-12 (-4 *1 (-1189 *2)) (-4 *2 (-981)))))
-(-13 (-981) (-109 |t#1| |t#1|) (-10 -8 (-15 -2222 ($ |t#1|)) (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-162)) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-569 (-802)) . T) ((-597 |#1|) . T) ((-597 $) . T) ((-664 |#1|) |has| |#1| (-162)) ((-673) . T) ((-986 |#1|) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T))
-((-2207 (((-110) $ $) 60)) (-1359 (((-110) $) NIL)) (-3642 (((-595 |#1|) $) 45)) (-2086 (($ $ (-717)) 39)) (-3181 (((-3 $ "failed") $ $) NIL)) (-3880 (($ $ (-717)) 18 (|has| |#2| (-162))) (($ $ $) 19 (|has| |#2| (-162)))) (-2816 (($) NIL T CONST)) (-2650 (($ $ $) 63) (($ $ (-765 |#1|)) 49) (($ $ |#1|) 53)) (-3001 (((-3 (-765 |#1|) "failed") $) NIL)) (-2409 (((-765 |#1|) $) NIL)) (-2388 (($ $) 32)) (-1312 (((-3 $ "failed") $) NIL)) (-3722 (((-110) $) NIL)) (-2539 (($ $) NIL)) (-1297 (((-110) $) NIL)) (-1224 (((-717) $) NIL)) (-3737 (((-595 $) $) NIL)) (-2195 (((-110) $) NIL)) (-3841 (($ (-765 |#1|) |#2|) 31)) (-2091 (($ $) 33)) (-1603 (((-2 (|:| |k| (-765 |#1|)) (|:| |c| |#2|)) $) 12)) (-1925 (((-765 |#1|) $) NIL)) (-2022 (((-765 |#1|) $) 34)) (-3106 (($ (-1 |#2| |#2|) $) NIL)) (-1572 (($ $ $) 62) (($ $ (-765 |#1|)) 51) (($ $ |#1|) 55)) (-1868 (((-2 (|:| |k| (-765 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2686 (((-765 |#1|) $) 28)) (-2697 ((|#2| $) 30)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2935 (((-717) $) 36)) (-4217 (((-110) $) 40)) (-2636 ((|#2| $) NIL)) (-2222 (((-802) $) NIL) (($ (-765 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-528)) NIL)) (-3348 (((-595 |#2|) $) NIL)) (-3216 ((|#2| $ (-765 |#1|)) NIL)) (-1641 ((|#2| $ $) 65) ((|#2| $ (-765 |#1|)) NIL)) (-3742 (((-717)) NIL)) (-2690 (($ $ (-717)) NIL) (($ $ (-860)) NIL)) (-2969 (($) 13 T CONST)) (-2982 (($) 15 T CONST)) (-2145 (((-595 (-2 (|:| |k| (-765 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2186 (((-110) $ $) 38)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) 22)) (** (($ $ (-717)) NIL) (($ $ (-860)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-765 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
-(((-1190 |#1| |#2|) (-13 (-362 |#2| (-765 |#1|)) (-1196 |#1| |#2|)) (-793) (-981)) (T -1190))
-NIL
-(-13 (-362 |#2| (-765 |#1|)) (-1196 |#1| |#2|))
-((-2097 ((|#3| |#3| (-717)) 23)) (-2656 ((|#3| |#3| (-717)) 28)) (-3430 ((|#3| |#3| |#3| (-717)) 29)))
-(((-1191 |#1| |#2| |#3|) (-10 -7 (-15 -2656 (|#3| |#3| (-717))) (-15 -2097 (|#3| |#3| (-717))) (-15 -3430 (|#3| |#3| |#3| (-717)))) (-13 (-981) (-664 (-387 (-528)))) (-793) (-1196 |#2| |#1|)) (T -1191))
-((-3430 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-717)) (-4 *4 (-13 (-981) (-664 (-387 (-528))))) (-4 *5 (-793)) (-5 *1 (-1191 *4 *5 *2)) (-4 *2 (-1196 *5 *4)))) (-2097 (*1 *2 *2 *3) (-12 (-5 *3 (-717)) (-4 *4 (-13 (-981) (-664 (-387 (-528))))) (-4 *5 (-793)) (-5 *1 (-1191 *4 *5 *2)) (-4 *2 (-1196 *5 *4)))) (-2656 (*1 *2 *2 *3) (-12 (-5 *3 (-717)) (-4 *4 (-13 (-981) (-664 (-387 (-528))))) (-4 *5 (-793)) (-5 *1 (-1191 *4 *5 *2)) (-4 *2 (-1196 *5 *4)))))
-(-10 -7 (-15 -2656 (|#3| |#3| (-717))) (-15 -2097 (|#3| |#3| (-717))) (-15 -3430 (|#3| |#3| |#3| (-717))))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3642 (((-595 |#1|) $) 40)) (-3181 (((-3 $ "failed") $ $) 19)) (-3880 (($ $ $) 43 (|has| |#2| (-162))) (($ $ (-717)) 42 (|has| |#2| (-162)))) (-2816 (($) 17 T CONST)) (-2650 (($ $ |#1|) 54) (($ $ (-765 |#1|)) 53) (($ $ $) 52)) (-3001 (((-3 (-765 |#1|) "failed") $) 64)) (-2409 (((-765 |#1|) $) 63)) (-1312 (((-3 $ "failed") $) 34)) (-3722 (((-110) $) 45)) (-2539 (($ $) 44)) (-1297 (((-110) $) 31)) (-2195 (((-110) $) 50)) (-3841 (($ (-765 |#1|) |#2|) 51)) (-2091 (($ $) 49)) (-1603 (((-2 (|:| |k| (-765 |#1|)) (|:| |c| |#2|)) $) 60)) (-1925 (((-765 |#1|) $) 61)) (-3106 (($ (-1 |#2| |#2|) $) 41)) (-1572 (($ $ |#1|) 57) (($ $ (-765 |#1|)) 56) (($ $ $) 55)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-4217 (((-110) $) 47)) (-2636 ((|#2| $) 46)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ |#2|) 68) (($ (-765 |#1|)) 65) (($ |#1|) 48)) (-1641 ((|#2| $ (-765 |#1|)) 59) ((|#2| $ $) 58)) (-3742 (((-717)) 29)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
-(((-1192 |#1| |#2|) (-133) (-793) (-981)) (T -1192))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1192 *3 *2)) (-4 *3 (-793)) (-4 *2 (-981)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1192 *2 *3)) (-4 *2 (-793)) (-4 *3 (-981)))) (-1925 (*1 *2 *1) (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981)) (-5 *2 (-765 *3)))) (-1603 (*1 *2 *1) (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981)) (-5 *2 (-2 (|:| |k| (-765 *3)) (|:| |c| *4))))) (-1641 (*1 *2 *1 *3) (-12 (-5 *3 (-765 *4)) (-4 *1 (-1192 *4 *2)) (-4 *4 (-793)) (-4 *2 (-981)))) (-1641 (*1 *2 *1 *1) (-12 (-4 *1 (-1192 *3 *2)) (-4 *3 (-793)) (-4 *2 (-981)))) (-1572 (*1 *1 *1 *2) (-12 (-4 *1 (-1192 *2 *3)) (-4 *2 (-793)) (-4 *3 (-981)))) (-1572 (*1 *1 *1 *2) (-12 (-5 *2 (-765 *3)) (-4 *1 (-1192 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981)))) (-1572 (*1 *1 *1 *1) (-12 (-4 *1 (-1192 *2 *3)) (-4 *2 (-793)) (-4 *3 (-981)))) (-2650 (*1 *1 *1 *2) (-12 (-4 *1 (-1192 *2 *3)) (-4 *2 (-793)) (-4 *3 (-981)))) (-2650 (*1 *1 *1 *2) (-12 (-5 *2 (-765 *3)) (-4 *1 (-1192 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981)))) (-2650 (*1 *1 *1 *1) (-12 (-4 *1 (-1192 *2 *3)) (-4 *2 (-793)) (-4 *3 (-981)))) (-3841 (*1 *1 *2 *3) (-12 (-5 *2 (-765 *4)) (-4 *4 (-793)) (-4 *1 (-1192 *4 *3)) (-4 *3 (-981)))) (-2195 (*1 *2 *1) (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981)) (-5 *2 (-110)))) (-2091 (*1 *1 *1) (-12 (-4 *1 (-1192 *2 *3)) (-4 *2 (-793)) (-4 *3 (-981)))) (-2222 (*1 *1 *2) (-12 (-4 *1 (-1192 *2 *3)) (-4 *2 (-793)) (-4 *3 (-981)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981)) (-5 *2 (-110)))) (-2636 (*1 *2 *1) (-12 (-4 *1 (-1192 *3 *2)) (-4 *3 (-793)) (-4 *2 (-981)))) (-3722 (*1 *2 *1) (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981)) (-5 *2 (-110)))) (-2539 (*1 *1 *1) (-12 (-4 *1 (-1192 *2 *3)) (-4 *2 (-793)) (-4 *3 (-981)))) (-3880 (*1 *1 *1 *1) (-12 (-4 *1 (-1192 *2 *3)) (-4 *2 (-793)) (-4 *3 (-981)) (-4 *3 (-162)))) (-3880 (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-1192 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981)) (-4 *4 (-162)))) (-3106 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1192 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981)))) (-3642 (*1 *2 *1) (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981)) (-5 *2 (-595 *3)))))
-(-13 (-981) (-1189 |t#2|) (-972 (-765 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1925 ((-765 |t#1|) $)) (-15 -1603 ((-2 (|:| |k| (-765 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1641 (|t#2| $ (-765 |t#1|))) (-15 -1641 (|t#2| $ $)) (-15 -1572 ($ $ |t#1|)) (-15 -1572 ($ $ (-765 |t#1|))) (-15 -1572 ($ $ $)) (-15 -2650 ($ $ |t#1|)) (-15 -2650 ($ $ (-765 |t#1|))) (-15 -2650 ($ $ $)) (-15 -3841 ($ (-765 |t#1|) |t#2|)) (-15 -2195 ((-110) $)) (-15 -2091 ($ $)) (-15 -2222 ($ |t#1|)) (-15 -4217 ((-110) $)) (-15 -2636 (|t#2| $)) (-15 -3722 ((-110) $)) (-15 -2539 ($ $)) (IF (|has| |t#2| (-162)) (PROGN (-15 -3880 ($ $ $)) (-15 -3880 ($ $ (-717)))) |%noBranch|) (-15 -3106 ($ (-1 |t#2| |t#2|) $)) (-15 -3642 ((-595 |t#1|) $)) (IF (|has| |t#2| (-6 -4257)) (-6 -4257) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-162)) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-569 (-802)) . T) ((-597 |#2|) . T) ((-597 $) . T) ((-664 |#2|) |has| |#2| (-162)) ((-673) . T) ((-972 (-765 |#1|)) . T) ((-986 |#2|) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1189 |#2|) . T))
-((-3455 (((-110) $) 15)) (-2190 (((-110) $) 14)) (-2698 (($ $) 19) (($ $ (-717)) 20)))
-(((-1193 |#1| |#2|) (-10 -8 (-15 -2698 (|#1| |#1| (-717))) (-15 -2698 (|#1| |#1|)) (-15 -3455 ((-110) |#1|)) (-15 -2190 ((-110) |#1|))) (-1194 |#2|) (-343)) (T -1193))
-NIL
-(-10 -8 (-15 -2698 (|#1| |#1| (-717))) (-15 -2698 (|#1| |#1|)) (-15 -3455 ((-110) |#1|)) (-15 -2190 ((-110) |#1|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-2142 (((-2 (|:| -2445 $) (|:| -4251 $) (|:| |associate| $)) $) 41)) (-1738 (($ $) 40)) (-1811 (((-110) $) 38)) (-3455 (((-110) $) 94)) (-3370 (((-717)) 90)) (-3181 (((-3 $ "failed") $ $) 19)) (-1232 (($ $) 73)) (-2705 (((-398 $) $) 72)) (-2213 (((-110) $ $) 59)) (-2816 (($) 17 T CONST)) (-3001 (((-3 |#1| "failed") $) 101)) (-2409 ((|#1| $) 100)) (-3519 (($ $ $) 55)) (-1312 (((-3 $ "failed") $) 34)) (-3498 (($ $ $) 56)) (-2403 (((-2 (|:| -1641 (-595 $)) (|:| -1261 $)) (-595 $)) 51)) (-2790 (($ $ (-717)) 87 (-1463 (|has| |#1| (-138)) (|has| |#1| (-348)))) (($ $) 86 (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-2124 (((-110) $) 71)) (-3689 (((-779 (-860)) $) 84 (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-1297 (((-110) $) 31)) (-1271 (((-3 (-595 $) "failed") (-595 $) $) 52)) (-2057 (($ $ $) 46) (($ (-595 $)) 45)) (-3034 (((-1078) $) 9)) (-2652 (($ $) 70)) (-3148 (((-110) $) 93)) (-2495 (((-1042) $) 10)) (-3550 (((-1091 $) (-1091 $) (-1091 $)) 44)) (-2088 (($ $ $) 48) (($ (-595 $)) 47)) (-2437 (((-398 $) $) 74)) (-2209 (((-779 (-860))) 91)) (-2401 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1261 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3477 (((-3 $ "failed") $ $) 42)) (-1253 (((-3 (-595 $) "failed") (-595 $) $) 50)) (-3973 (((-717) $) 58)) (-1512 (((-2 (|:| -3490 $) (|:| -2537 $)) $ $) 57)) (-3500 (((-3 (-717) "failed") $ $) 85 (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-3017 (((-130)) 99)) (-2935 (((-779 (-860)) $) 92)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ $) 43) (($ (-387 (-528))) 65) (($ |#1|) 102)) (-3749 (((-3 $ "failed") $) 83 (-1463 (|has| |#1| (-138)) (|has| |#1| (-348))))) (-3742 (((-717)) 29)) (-4016 (((-110) $ $) 39)) (-2190 (((-110) $) 95)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33) (($ $ (-528)) 69)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2698 (($ $) 89 (|has| |#1| (-348))) (($ $ (-717)) 88 (|has| |#1| (-348)))) (-2186 (((-110) $ $) 6)) (-2296 (($ $ $) 64) (($ $ |#1|) 98)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32) (($ $ (-528)) 68)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ $ (-387 (-528))) 67) (($ (-387 (-528)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
-(((-1194 |#1|) (-133) (-343)) (T -1194))
-((-2190 (*1 *2 *1) (-12 (-4 *1 (-1194 *3)) (-4 *3 (-343)) (-5 *2 (-110)))) (-3455 (*1 *2 *1) (-12 (-4 *1 (-1194 *3)) (-4 *3 (-343)) (-5 *2 (-110)))) (-3148 (*1 *2 *1) (-12 (-4 *1 (-1194 *3)) (-4 *3 (-343)) (-5 *2 (-110)))) (-2935 (*1 *2 *1) (-12 (-4 *1 (-1194 *3)) (-4 *3 (-343)) (-5 *2 (-779 (-860))))) (-2209 (*1 *2) (-12 (-4 *1 (-1194 *3)) (-4 *3 (-343)) (-5 *2 (-779 (-860))))) (-3370 (*1 *2) (-12 (-4 *1 (-1194 *3)) (-4 *3 (-343)) (-5 *2 (-717)))) (-2698 (*1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-343)) (-4 *2 (-348)))) (-2698 (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-1194 *3)) (-4 *3 (-343)) (-4 *3 (-348)))))
-(-13 (-343) (-972 |t#1|) (-1184 |t#1|) (-10 -8 (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-382)) |%noBranch|) (-15 -2190 ((-110) $)) (-15 -3455 ((-110) $)) (-15 -3148 ((-110) $)) (-15 -2935 ((-779 (-860)) $)) (-15 -2209 ((-779 (-860)))) (-15 -3370 ((-717))) (IF (|has| |t#1| (-348)) (PROGN (-6 (-382)) (-15 -2698 ($ $)) (-15 -2698 ($ $ (-717)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-387 (-528))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1463 (|has| |#1| (-348)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-569 (-802)) . T) ((-162) . T) ((-225) . T) ((-271) . T) ((-288) . T) ((-343) . T) ((-382) -1463 (|has| |#1| (-348)) (|has| |#1| (-138))) ((-431) . T) ((-520) . T) ((-597 #0#) . T) ((-597 |#1|) . T) ((-597 $) . T) ((-664 #0#) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-673) . T) ((-859) . T) ((-972 |#1|) . T) ((-986 #0#) . T) ((-986 |#1|) . T) ((-986 $) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1135) . T) ((-1184 |#1|) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3642 (((-595 |#1|) $) 86)) (-2086 (($ $ (-717)) 89)) (-3181 (((-3 $ "failed") $ $) NIL)) (-3880 (($ $ $) NIL (|has| |#2| (-162))) (($ $ (-717)) NIL (|has| |#2| (-162)))) (-2816 (($) NIL T CONST)) (-2650 (($ $ |#1|) NIL) (($ $ (-765 |#1|)) NIL) (($ $ $) NIL)) (-3001 (((-3 (-765 |#1|) "failed") $) NIL) (((-3 (-832 |#1|) "failed") $) NIL)) (-2409 (((-765 |#1|) $) NIL) (((-832 |#1|) $) NIL)) (-2388 (($ $) 88)) (-1312 (((-3 $ "failed") $) NIL)) (-3722 (((-110) $) 77)) (-2539 (($ $) 81)) (-1415 (($ $ $ (-717)) 90)) (-1297 (((-110) $) NIL)) (-1224 (((-717) $) NIL)) (-3737 (((-595 $) $) NIL)) (-2195 (((-110) $) NIL)) (-3841 (($ (-765 |#1|) |#2|) NIL) (($ (-832 |#1|) |#2|) 26)) (-2091 (($ $) 103)) (-1603 (((-2 (|:| |k| (-765 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1925 (((-765 |#1|) $) NIL)) (-2022 (((-765 |#1|) $) NIL)) (-3106 (($ (-1 |#2| |#2|) $) NIL)) (-1572 (($ $ |#1|) NIL) (($ $ (-765 |#1|)) NIL) (($ $ $) NIL)) (-2097 (($ $ (-717)) 97 (|has| |#2| (-664 (-387 (-528)))))) (-1868 (((-2 (|:| |k| (-832 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2686 (((-832 |#1|) $) 70)) (-2697 ((|#2| $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-2656 (($ $ (-717)) 94 (|has| |#2| (-664 (-387 (-528)))))) (-2935 (((-717) $) 87)) (-4217 (((-110) $) 71)) (-2636 ((|#2| $) 75)) (-2222 (((-802) $) 57) (($ (-528)) NIL) (($ |#2|) 51) (($ (-765 |#1|)) NIL) (($ |#1|) 59) (($ (-832 |#1|)) NIL) (($ (-613 |#1| |#2|)) 43) (((-1190 |#1| |#2|) $) 64) (((-1199 |#1| |#2|) $) 69)) (-3348 (((-595 |#2|) $) NIL)) (-3216 ((|#2| $ (-832 |#1|)) NIL)) (-1641 ((|#2| $ (-765 |#1|)) NIL) ((|#2| $ $) NIL)) (-3742 (((-717)) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 21 T CONST)) (-2982 (($) 25 T CONST)) (-2145 (((-595 (-2 (|:| |k| (-832 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2236 (((-3 (-613 |#1| |#2|) "failed") $) 102)) (-2186 (((-110) $ $) 65)) (-2286 (($ $) 96) (($ $ $) 95)) (-2275 (($ $ $) 20)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-832 |#1|)) NIL)))
-(((-1195 |#1| |#2|) (-13 (-1196 |#1| |#2|) (-362 |#2| (-832 |#1|)) (-10 -8 (-15 -2222 ($ (-613 |#1| |#2|))) (-15 -2222 ((-1190 |#1| |#2|) $)) (-15 -2222 ((-1199 |#1| |#2|) $)) (-15 -2236 ((-3 (-613 |#1| |#2|) "failed") $)) (-15 -1415 ($ $ $ (-717))) (IF (|has| |#2| (-664 (-387 (-528)))) (PROGN (-15 -2656 ($ $ (-717))) (-15 -2097 ($ $ (-717)))) |%noBranch|))) (-793) (-162)) (T -1195))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-613 *3 *4)) (-4 *3 (-793)) (-4 *4 (-162)) (-5 *1 (-1195 *3 *4)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-1190 *3 *4)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-793)) (-4 *4 (-162)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-1199 *3 *4)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-793)) (-4 *4 (-162)))) (-2236 (*1 *2 *1) (|partial| -12 (-5 *2 (-613 *3 *4)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-793)) (-4 *4 (-162)))) (-1415 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-793)) (-4 *4 (-162)))) (-2656 (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-1195 *3 *4)) (-4 *4 (-664 (-387 (-528)))) (-4 *3 (-793)) (-4 *4 (-162)))) (-2097 (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-1195 *3 *4)) (-4 *4 (-664 (-387 (-528)))) (-4 *3 (-793)) (-4 *4 (-162)))))
-(-13 (-1196 |#1| |#2|) (-362 |#2| (-832 |#1|)) (-10 -8 (-15 -2222 ($ (-613 |#1| |#2|))) (-15 -2222 ((-1190 |#1| |#2|) $)) (-15 -2222 ((-1199 |#1| |#2|) $)) (-15 -2236 ((-3 (-613 |#1| |#2|) "failed") $)) (-15 -1415 ($ $ $ (-717))) (IF (|has| |#2| (-664 (-387 (-528)))) (PROGN (-15 -2656 ($ $ (-717))) (-15 -2097 ($ $ (-717)))) |%noBranch|)))
-((-2207 (((-110) $ $) 7)) (-1359 (((-110) $) 16)) (-3642 (((-595 |#1|) $) 40)) (-2086 (($ $ (-717)) 73)) (-3181 (((-3 $ "failed") $ $) 19)) (-3880 (($ $ $) 43 (|has| |#2| (-162))) (($ $ (-717)) 42 (|has| |#2| (-162)))) (-2816 (($) 17 T CONST)) (-2650 (($ $ |#1|) 54) (($ $ (-765 |#1|)) 53) (($ $ $) 52)) (-3001 (((-3 (-765 |#1|) "failed") $) 64)) (-2409 (((-765 |#1|) $) 63)) (-1312 (((-3 $ "failed") $) 34)) (-3722 (((-110) $) 45)) (-2539 (($ $) 44)) (-1297 (((-110) $) 31)) (-2195 (((-110) $) 50)) (-3841 (($ (-765 |#1|) |#2|) 51)) (-2091 (($ $) 49)) (-1603 (((-2 (|:| |k| (-765 |#1|)) (|:| |c| |#2|)) $) 60)) (-1925 (((-765 |#1|) $) 61)) (-2022 (((-765 |#1|) $) 75)) (-3106 (($ (-1 |#2| |#2|) $) 41)) (-1572 (($ $ |#1|) 57) (($ $ (-765 |#1|)) 56) (($ $ $) 55)) (-3034 (((-1078) $) 9)) (-2495 (((-1042) $) 10)) (-2935 (((-717) $) 74)) (-4217 (((-110) $) 47)) (-2636 ((|#2| $) 46)) (-2222 (((-802) $) 11) (($ (-528)) 28) (($ |#2|) 68) (($ (-765 |#1|)) 65) (($ |#1|) 48)) (-1641 ((|#2| $ (-765 |#1|)) 59) ((|#2| $ $) 58)) (-3742 (((-717)) 29)) (-2690 (($ $ (-860)) 26) (($ $ (-717)) 33)) (-2969 (($) 18 T CONST)) (-2982 (($) 30 T CONST)) (-2186 (((-110) $ $) 6)) (-2286 (($ $) 22) (($ $ $) 21)) (-2275 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-717)) 32)) (* (($ (-860) $) 13) (($ (-717) $) 15) (($ (-528) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
-(((-1196 |#1| |#2|) (-133) (-793) (-981)) (T -1196))
-((-2022 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981)) (-5 *2 (-765 *3)))) (-2935 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981)) (-5 *2 (-717)))) (-2086 (*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981)))))
-(-13 (-1192 |t#1| |t#2|) (-10 -8 (-15 -2022 ((-765 |t#1|) $)) (-15 -2935 ((-717) $)) (-15 -2086 ($ $ (-717)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-162)) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-569 (-802)) . T) ((-597 |#2|) . T) ((-597 $) . T) ((-664 |#2|) |has| |#2| (-162)) ((-673) . T) ((-972 (-765 |#1|)) . T) ((-986 |#2|) . T) ((-981) . T) ((-987) . T) ((-1035) . T) ((-1023) . T) ((-1189 |#2|) . T) ((-1192 |#1| |#2|) . T))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3642 (((-595 (-1095)) $) NIL)) (-2441 (($ (-1190 (-1095) |#1|)) NIL)) (-2086 (($ $ (-717)) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-3880 (($ $ $) NIL (|has| |#1| (-162))) (($ $ (-717)) NIL (|has| |#1| (-162)))) (-2816 (($) NIL T CONST)) (-2650 (($ $ (-1095)) NIL) (($ $ (-765 (-1095))) NIL) (($ $ $) NIL)) (-3001 (((-3 (-765 (-1095)) "failed") $) NIL)) (-2409 (((-765 (-1095)) $) NIL)) (-1312 (((-3 $ "failed") $) NIL)) (-3722 (((-110) $) NIL)) (-2539 (($ $) NIL)) (-1297 (((-110) $) NIL)) (-2195 (((-110) $) NIL)) (-3841 (($ (-765 (-1095)) |#1|) NIL)) (-2091 (($ $) NIL)) (-1603 (((-2 (|:| |k| (-765 (-1095))) (|:| |c| |#1|)) $) NIL)) (-1925 (((-765 (-1095)) $) NIL)) (-2022 (((-765 (-1095)) $) NIL)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-1572 (($ $ (-1095)) NIL) (($ $ (-765 (-1095))) NIL) (($ $ $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-1535 (((-1190 (-1095) |#1|) $) NIL)) (-2935 (((-717) $) NIL)) (-4217 (((-110) $) NIL)) (-2636 ((|#1| $) NIL)) (-2222 (((-802) $) NIL) (($ (-528)) NIL) (($ |#1|) NIL) (($ (-765 (-1095))) NIL) (($ (-1095)) NIL)) (-1641 ((|#1| $ (-765 (-1095))) NIL) ((|#1| $ $) NIL)) (-3742 (((-717)) NIL)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) NIL T CONST)) (-1399 (((-595 (-2 (|:| |k| (-1095)) (|:| |c| $))) $) NIL)) (-2982 (($) NIL T CONST)) (-2186 (((-110) $ $) NIL)) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1095) $) NIL)))
-(((-1197 |#1|) (-13 (-1196 (-1095) |#1|) (-10 -8 (-15 -1535 ((-1190 (-1095) |#1|) $)) (-15 -2441 ($ (-1190 (-1095) |#1|))) (-15 -1399 ((-595 (-2 (|:| |k| (-1095)) (|:| |c| $))) $)))) (-981)) (T -1197))
-((-1535 (*1 *2 *1) (-12 (-5 *2 (-1190 (-1095) *3)) (-5 *1 (-1197 *3)) (-4 *3 (-981)))) (-2441 (*1 *1 *2) (-12 (-5 *2 (-1190 (-1095) *3)) (-4 *3 (-981)) (-5 *1 (-1197 *3)))) (-1399 (*1 *2 *1) (-12 (-5 *2 (-595 (-2 (|:| |k| (-1095)) (|:| |c| (-1197 *3))))) (-5 *1 (-1197 *3)) (-4 *3 (-981)))))
-(-13 (-1196 (-1095) |#1|) (-10 -8 (-15 -1535 ((-1190 (-1095) |#1|) $)) (-15 -2441 ($ (-1190 (-1095) |#1|))) (-15 -1399 ((-595 (-2 (|:| |k| (-1095)) (|:| |c| $))) $))))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) NIL)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2816 (($) NIL T CONST)) (-3001 (((-3 |#2| "failed") $) NIL)) (-2409 ((|#2| $) NIL)) (-2388 (($ $) NIL)) (-1312 (((-3 $ "failed") $) 36)) (-3722 (((-110) $) 30)) (-2539 (($ $) 32)) (-1297 (((-110) $) NIL)) (-1224 (((-717) $) NIL)) (-3737 (((-595 $) $) NIL)) (-2195 (((-110) $) NIL)) (-3841 (($ |#2| |#1|) NIL)) (-1925 ((|#2| $) 19)) (-2022 ((|#2| $) 16)) (-3106 (($ (-1 |#1| |#1|) $) NIL)) (-1868 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2686 ((|#2| $) NIL)) (-2697 ((|#1| $) NIL)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-4217 (((-110) $) 27)) (-2636 ((|#1| $) 28)) (-2222 (((-802) $) 55) (($ (-528)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-3348 (((-595 |#1|) $) NIL)) (-3216 ((|#1| $ |#2|) NIL)) (-1641 ((|#1| $ |#2|) 24)) (-3742 (((-717)) 14)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 25 T CONST)) (-2982 (($) 11 T CONST)) (-2145 (((-595 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2186 (((-110) $ $) 26)) (-2296 (($ $ |#1|) 57 (|has| |#1| (-343)))) (-2286 (($ $) NIL) (($ $ $) NIL)) (-2275 (($ $ $) 44)) (** (($ $ (-860)) NIL) (($ $ (-717)) 46)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2138 (((-717) $) 15)))
-(((-1198 |#1| |#2|) (-13 (-981) (-1189 |#1|) (-362 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2138 ((-717) $)) (-15 -2222 ($ |#2|)) (-15 -2022 (|#2| $)) (-15 -1925 (|#2| $)) (-15 -2388 ($ $)) (-15 -1641 (|#1| $ |#2|)) (-15 -4217 ((-110) $)) (-15 -2636 (|#1| $)) (-15 -3722 ((-110) $)) (-15 -2539 ($ $)) (-15 -3106 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-343)) (-15 -2296 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4257)) (-6 -4257) |%noBranch|) (IF (|has| |#1| (-6 -4261)) (-6 -4261) |%noBranch|) (IF (|has| |#1| (-6 -4262)) (-6 -4262) |%noBranch|))) (-981) (-789)) (T -1198))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1198 *2 *3)) (-4 *2 (-981)) (-4 *3 (-789)))) (-2388 (*1 *1 *1) (-12 (-5 *1 (-1198 *2 *3)) (-4 *2 (-981)) (-4 *3 (-789)))) (-3106 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-981)) (-5 *1 (-1198 *3 *4)) (-4 *4 (-789)))) (-2222 (*1 *1 *2) (-12 (-5 *1 (-1198 *3 *2)) (-4 *3 (-981)) (-4 *2 (-789)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-981)) (-4 *4 (-789)))) (-2022 (*1 *2 *1) (-12 (-4 *2 (-789)) (-5 *1 (-1198 *3 *2)) (-4 *3 (-981)))) (-1925 (*1 *2 *1) (-12 (-4 *2 (-789)) (-5 *1 (-1198 *3 *2)) (-4 *3 (-981)))) (-1641 (*1 *2 *1 *3) (-12 (-4 *2 (-981)) (-5 *1 (-1198 *2 *3)) (-4 *3 (-789)))) (-4217 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-981)) (-4 *4 (-789)))) (-2636 (*1 *2 *1) (-12 (-4 *2 (-981)) (-5 *1 (-1198 *2 *3)) (-4 *3 (-789)))) (-3722 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-981)) (-4 *4 (-789)))) (-2539 (*1 *1 *1) (-12 (-5 *1 (-1198 *2 *3)) (-4 *2 (-981)) (-4 *3 (-789)))) (-2296 (*1 *1 *1 *2) (-12 (-5 *1 (-1198 *2 *3)) (-4 *2 (-343)) (-4 *2 (-981)) (-4 *3 (-789)))))
-(-13 (-981) (-1189 |#1|) (-362 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2138 ((-717) $)) (-15 -2222 ($ |#2|)) (-15 -2022 (|#2| $)) (-15 -1925 (|#2| $)) (-15 -2388 ($ $)) (-15 -1641 (|#1| $ |#2|)) (-15 -4217 ((-110) $)) (-15 -2636 (|#1| $)) (-15 -3722 ((-110) $)) (-15 -2539 ($ $)) (-15 -3106 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-343)) (-15 -2296 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4257)) (-6 -4257) |%noBranch|) (IF (|has| |#1| (-6 -4261)) (-6 -4261) |%noBranch|) (IF (|has| |#1| (-6 -4262)) (-6 -4262) |%noBranch|)))
-((-2207 (((-110) $ $) 26)) (-1359 (((-110) $) NIL)) (-3642 (((-595 |#1|) $) 120)) (-2441 (($ (-1190 |#1| |#2|)) 44)) (-2086 (($ $ (-717)) 32)) (-3181 (((-3 $ "failed") $ $) NIL)) (-3880 (($ $ $) 48 (|has| |#2| (-162))) (($ $ (-717)) 46 (|has| |#2| (-162)))) (-2816 (($) NIL T CONST)) (-2650 (($ $ |#1|) 102) (($ $ (-765 |#1|)) 103) (($ $ $) 25)) (-3001 (((-3 (-765 |#1|) "failed") $) NIL)) (-2409 (((-765 |#1|) $) NIL)) (-1312 (((-3 $ "failed") $) 110)) (-3722 (((-110) $) 105)) (-2539 (($ $) 106)) (-1297 (((-110) $) NIL)) (-2195 (((-110) $) NIL)) (-3841 (($ (-765 |#1|) |#2|) 19)) (-2091 (($ $) NIL)) (-1603 (((-2 (|:| |k| (-765 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1925 (((-765 |#1|) $) 111)) (-2022 (((-765 |#1|) $) 114)) (-3106 (($ (-1 |#2| |#2|) $) 119)) (-1572 (($ $ |#1|) 100) (($ $ (-765 |#1|)) 101) (($ $ $) 56)) (-3034 (((-1078) $) NIL)) (-2495 (((-1042) $) NIL)) (-1535 (((-1190 |#1| |#2|) $) 84)) (-2935 (((-717) $) 117)) (-4217 (((-110) $) 70)) (-2636 ((|#2| $) 28)) (-2222 (((-802) $) 63) (($ (-528)) 77) (($ |#2|) 74) (($ (-765 |#1|)) 17) (($ |#1|) 73)) (-1641 ((|#2| $ (-765 |#1|)) 104) ((|#2| $ $) 27)) (-3742 (((-717)) 108)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 14 T CONST)) (-1399 (((-595 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2982 (($) 29 T CONST)) (-2186 (((-110) $ $) 13)) (-2286 (($ $) 88) (($ $ $) 91)) (-2275 (($ $ $) 55)) (** (($ $ (-860)) NIL) (($ $ (-717)) 49)) (* (($ (-860) $) NIL) (($ (-717) $) 47) (($ (-528) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
-(((-1199 |#1| |#2|) (-13 (-1196 |#1| |#2|) (-10 -8 (-15 -1535 ((-1190 |#1| |#2|) $)) (-15 -2441 ($ (-1190 |#1| |#2|))) (-15 -1399 ((-595 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-793) (-981)) (T -1199))
-((-1535 (*1 *2 *1) (-12 (-5 *2 (-1190 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981)))) (-2441 (*1 *1 *2) (-12 (-5 *2 (-1190 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981)) (-5 *1 (-1199 *3 *4)))) (-1399 (*1 *2 *1) (-12 (-5 *2 (-595 (-2 (|:| |k| *3) (|:| |c| (-1199 *3 *4))))) (-5 *1 (-1199 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981)))))
-(-13 (-1196 |#1| |#2|) (-10 -8 (-15 -1535 ((-1190 |#1| |#2|) $)) (-15 -2441 ($ (-1190 |#1| |#2|))) (-15 -1399 ((-595 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-4085 (((-595 (-1076 |#1|)) (-1 (-595 (-1076 |#1|)) (-595 (-1076 |#1|))) (-528)) 15) (((-1076 |#1|) (-1 (-1076 |#1|) (-1076 |#1|))) 11)))
-(((-1200 |#1|) (-10 -7 (-15 -4085 ((-1076 |#1|) (-1 (-1076 |#1|) (-1076 |#1|)))) (-15 -4085 ((-595 (-1076 |#1|)) (-1 (-595 (-1076 |#1|)) (-595 (-1076 |#1|))) (-528)))) (-1131)) (T -1200))
-((-4085 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-595 (-1076 *5)) (-595 (-1076 *5)))) (-5 *4 (-528)) (-5 *2 (-595 (-1076 *5))) (-5 *1 (-1200 *5)) (-4 *5 (-1131)))) (-4085 (*1 *2 *3) (-12 (-5 *3 (-1 (-1076 *4) (-1076 *4))) (-5 *2 (-1076 *4)) (-5 *1 (-1200 *4)) (-4 *4 (-1131)))))
-(-10 -7 (-15 -4085 ((-1076 |#1|) (-1 (-1076 |#1|) (-1076 |#1|)))) (-15 -4085 ((-595 (-1076 |#1|)) (-1 (-595 (-1076 |#1|)) (-595 (-1076 |#1|))) (-528))))
-((-3309 (((-595 (-2 (|:| -1697 (-1091 |#1|)) (|:| -4243 (-595 (-891 |#1|))))) (-595 (-891 |#1|))) 148) (((-595 (-2 (|:| -1697 (-1091 |#1|)) (|:| -4243 (-595 (-891 |#1|))))) (-595 (-891 |#1|)) (-110)) 147) (((-595 (-2 (|:| -1697 (-1091 |#1|)) (|:| -4243 (-595 (-891 |#1|))))) (-595 (-891 |#1|)) (-110) (-110)) 146) (((-595 (-2 (|:| -1697 (-1091 |#1|)) (|:| -4243 (-595 (-891 |#1|))))) (-595 (-891 |#1|)) (-110) (-110) (-110)) 145) (((-595 (-2 (|:| -1697 (-1091 |#1|)) (|:| -4243 (-595 (-891 |#1|))))) (-978 |#1| |#2|)) 130)) (-1722 (((-595 (-978 |#1| |#2|)) (-595 (-891 |#1|))) 72) (((-595 (-978 |#1| |#2|)) (-595 (-891 |#1|)) (-110)) 71) (((-595 (-978 |#1| |#2|)) (-595 (-891 |#1|)) (-110) (-110)) 70)) (-2705 (((-595 (-1066 |#1| (-500 (-804 |#3|)) (-804 |#3|) (-726 |#1| (-804 |#3|)))) (-978 |#1| |#2|)) 61)) (-3018 (((-595 (-595 (-959 (-387 |#1|)))) (-595 (-891 |#1|))) 115) (((-595 (-595 (-959 (-387 |#1|)))) (-595 (-891 |#1|)) (-110)) 114) (((-595 (-595 (-959 (-387 |#1|)))) (-595 (-891 |#1|)) (-110) (-110)) 113) (((-595 (-595 (-959 (-387 |#1|)))) (-595 (-891 |#1|)) (-110) (-110) (-110)) 112) (((-595 (-595 (-959 (-387 |#1|)))) (-978 |#1| |#2|)) 107)) (-1946 (((-595 (-595 (-959 (-387 |#1|)))) (-595 (-891 |#1|))) 120) (((-595 (-595 (-959 (-387 |#1|)))) (-595 (-891 |#1|)) (-110)) 119) (((-595 (-595 (-959 (-387 |#1|)))) (-595 (-891 |#1|)) (-110) (-110)) 118) (((-595 (-595 (-959 (-387 |#1|)))) (-978 |#1| |#2|)) 117)) (-3155 (((-595 (-726 |#1| (-804 |#3|))) (-1066 |#1| (-500 (-804 |#3|)) (-804 |#3|) (-726 |#1| (-804 |#3|)))) 98) (((-1091 (-959 (-387 |#1|))) (-1091 |#1|)) 89) (((-891 (-959 (-387 |#1|))) (-726 |#1| (-804 |#3|))) 96) (((-891 (-959 (-387 |#1|))) (-891 |#1|)) 94) (((-726 |#1| (-804 |#3|)) (-726 |#1| (-804 |#2|))) 33)))
-(((-1201 |#1| |#2| |#3|) (-10 -7 (-15 -1722 ((-595 (-978 |#1| |#2|)) (-595 (-891 |#1|)) (-110) (-110))) (-15 -1722 ((-595 (-978 |#1| |#2|)) (-595 (-891 |#1|)) (-110))) (-15 -1722 ((-595 (-978 |#1| |#2|)) (-595 (-891 |#1|)))) (-15 -3309 ((-595 (-2 (|:| -1697 (-1091 |#1|)) (|:| -4243 (-595 (-891 |#1|))))) (-978 |#1| |#2|))) (-15 -3309 ((-595 (-2 (|:| -1697 (-1091 |#1|)) (|:| -4243 (-595 (-891 |#1|))))) (-595 (-891 |#1|)) (-110) (-110) (-110))) (-15 -3309 ((-595 (-2 (|:| -1697 (-1091 |#1|)) (|:| -4243 (-595 (-891 |#1|))))) (-595 (-891 |#1|)) (-110) (-110))) (-15 -3309 ((-595 (-2 (|:| -1697 (-1091 |#1|)) (|:| -4243 (-595 (-891 |#1|))))) (-595 (-891 |#1|)) (-110))) (-15 -3309 ((-595 (-2 (|:| -1697 (-1091 |#1|)) (|:| -4243 (-595 (-891 |#1|))))) (-595 (-891 |#1|)))) (-15 -3018 ((-595 (-595 (-959 (-387 |#1|)))) (-978 |#1| |#2|))) (-15 -3018 ((-595 (-595 (-959 (-387 |#1|)))) (-595 (-891 |#1|)) (-110) (-110) (-110))) (-15 -3018 ((-595 (-595 (-959 (-387 |#1|)))) (-595 (-891 |#1|)) (-110) (-110))) (-15 -3018 ((-595 (-595 (-959 (-387 |#1|)))) (-595 (-891 |#1|)) (-110))) (-15 -3018 ((-595 (-595 (-959 (-387 |#1|)))) (-595 (-891 |#1|)))) (-15 -1946 ((-595 (-595 (-959 (-387 |#1|)))) (-978 |#1| |#2|))) (-15 -1946 ((-595 (-595 (-959 (-387 |#1|)))) (-595 (-891 |#1|)) (-110) (-110))) (-15 -1946 ((-595 (-595 (-959 (-387 |#1|)))) (-595 (-891 |#1|)) (-110))) (-15 -1946 ((-595 (-595 (-959 (-387 |#1|)))) (-595 (-891 |#1|)))) (-15 -2705 ((-595 (-1066 |#1| (-500 (-804 |#3|)) (-804 |#3|) (-726 |#1| (-804 |#3|)))) (-978 |#1| |#2|))) (-15 -3155 ((-726 |#1| (-804 |#3|)) (-726 |#1| (-804 |#2|)))) (-15 -3155 ((-891 (-959 (-387 |#1|))) (-891 |#1|))) (-15 -3155 ((-891 (-959 (-387 |#1|))) (-726 |#1| (-804 |#3|)))) (-15 -3155 ((-1091 (-959 (-387 |#1|))) (-1091 |#1|))) (-15 -3155 ((-595 (-726 |#1| (-804 |#3|))) (-1066 |#1| (-500 (-804 |#3|)) (-804 |#3|) (-726 |#1| (-804 |#3|)))))) (-13 (-791) (-288) (-140) (-957)) (-595 (-1095)) (-595 (-1095))) (T -1201))
-((-3155 (*1 *2 *3) (-12 (-5 *3 (-1066 *4 (-500 (-804 *6)) (-804 *6) (-726 *4 (-804 *6)))) (-4 *4 (-13 (-791) (-288) (-140) (-957))) (-14 *6 (-595 (-1095))) (-5 *2 (-595 (-726 *4 (-804 *6)))) (-5 *1 (-1201 *4 *5 *6)) (-14 *5 (-595 (-1095))))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-1091 *4)) (-4 *4 (-13 (-791) (-288) (-140) (-957))) (-5 *2 (-1091 (-959 (-387 *4)))) (-5 *1 (-1201 *4 *5 *6)) (-14 *5 (-595 (-1095))) (-14 *6 (-595 (-1095))))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-726 *4 (-804 *6))) (-4 *4 (-13 (-791) (-288) (-140) (-957))) (-14 *6 (-595 (-1095))) (-5 *2 (-891 (-959 (-387 *4)))) (-5 *1 (-1201 *4 *5 *6)) (-14 *5 (-595 (-1095))))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-891 *4)) (-4 *4 (-13 (-791) (-288) (-140) (-957))) (-5 *2 (-891 (-959 (-387 *4)))) (-5 *1 (-1201 *4 *5 *6)) (-14 *5 (-595 (-1095))) (-14 *6 (-595 (-1095))))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-726 *4 (-804 *5))) (-4 *4 (-13 (-791) (-288) (-140) (-957))) (-14 *5 (-595 (-1095))) (-5 *2 (-726 *4 (-804 *6))) (-5 *1 (-1201 *4 *5 *6)) (-14 *6 (-595 (-1095))))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-978 *4 *5)) (-4 *4 (-13 (-791) (-288) (-140) (-957))) (-14 *5 (-595 (-1095))) (-5 *2 (-595 (-1066 *4 (-500 (-804 *6)) (-804 *6) (-726 *4 (-804 *6))))) (-5 *1 (-1201 *4 *5 *6)) (-14 *6 (-595 (-1095))))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-595 (-891 *4))) (-4 *4 (-13 (-791) (-288) (-140) (-957))) (-5 *2 (-595 (-595 (-959 (-387 *4))))) (-5 *1 (-1201 *4 *5 *6)) (-14 *5 (-595 (-1095))) (-14 *6 (-595 (-1095))))) (-1946 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-891 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-791) (-288) (-140) (-957))) (-5 *2 (-595 (-595 (-959 (-387 *5))))) (-5 *1 (-1201 *5 *6 *7)) (-14 *6 (-595 (-1095))) (-14 *7 (-595 (-1095))))) (-1946 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-595 (-891 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-791) (-288) (-140) (-957))) (-5 *2 (-595 (-595 (-959 (-387 *5))))) (-5 *1 (-1201 *5 *6 *7)) (-14 *6 (-595 (-1095))) (-14 *7 (-595 (-1095))))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-978 *4 *5)) (-4 *4 (-13 (-791) (-288) (-140) (-957))) (-14 *5 (-595 (-1095))) (-5 *2 (-595 (-595 (-959 (-387 *4))))) (-5 *1 (-1201 *4 *5 *6)) (-14 *6 (-595 (-1095))))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-595 (-891 *4))) (-4 *4 (-13 (-791) (-288) (-140) (-957))) (-5 *2 (-595 (-595 (-959 (-387 *4))))) (-5 *1 (-1201 *4 *5 *6)) (-14 *5 (-595 (-1095))) (-14 *6 (-595 (-1095))))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-891 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-791) (-288) (-140) (-957))) (-5 *2 (-595 (-595 (-959 (-387 *5))))) (-5 *1 (-1201 *5 *6 *7)) (-14 *6 (-595 (-1095))) (-14 *7 (-595 (-1095))))) (-3018 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-595 (-891 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-791) (-288) (-140) (-957))) (-5 *2 (-595 (-595 (-959 (-387 *5))))) (-5 *1 (-1201 *5 *6 *7)) (-14 *6 (-595 (-1095))) (-14 *7 (-595 (-1095))))) (-3018 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-595 (-891 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-791) (-288) (-140) (-957))) (-5 *2 (-595 (-595 (-959 (-387 *5))))) (-5 *1 (-1201 *5 *6 *7)) (-14 *6 (-595 (-1095))) (-14 *7 (-595 (-1095))))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-978 *4 *5)) (-4 *4 (-13 (-791) (-288) (-140) (-957))) (-14 *5 (-595 (-1095))) (-5 *2 (-595 (-595 (-959 (-387 *4))))) (-5 *1 (-1201 *4 *5 *6)) (-14 *6 (-595 (-1095))))) (-3309 (*1 *2 *3) (-12 (-4 *4 (-13 (-791) (-288) (-140) (-957))) (-5 *2 (-595 (-2 (|:| -1697 (-1091 *4)) (|:| -4243 (-595 (-891 *4)))))) (-5 *1 (-1201 *4 *5 *6)) (-5 *3 (-595 (-891 *4))) (-14 *5 (-595 (-1095))) (-14 *6 (-595 (-1095))))) (-3309 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-791) (-288) (-140) (-957))) (-5 *2 (-595 (-2 (|:| -1697 (-1091 *5)) (|:| -4243 (-595 (-891 *5)))))) (-5 *1 (-1201 *5 *6 *7)) (-5 *3 (-595 (-891 *5))) (-14 *6 (-595 (-1095))) (-14 *7 (-595 (-1095))))) (-3309 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-791) (-288) (-140) (-957))) (-5 *2 (-595 (-2 (|:| -1697 (-1091 *5)) (|:| -4243 (-595 (-891 *5)))))) (-5 *1 (-1201 *5 *6 *7)) (-5 *3 (-595 (-891 *5))) (-14 *6 (-595 (-1095))) (-14 *7 (-595 (-1095))))) (-3309 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-791) (-288) (-140) (-957))) (-5 *2 (-595 (-2 (|:| -1697 (-1091 *5)) (|:| -4243 (-595 (-891 *5)))))) (-5 *1 (-1201 *5 *6 *7)) (-5 *3 (-595 (-891 *5))) (-14 *6 (-595 (-1095))) (-14 *7 (-595 (-1095))))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-978 *4 *5)) (-4 *4 (-13 (-791) (-288) (-140) (-957))) (-14 *5 (-595 (-1095))) (-5 *2 (-595 (-2 (|:| -1697 (-1091 *4)) (|:| -4243 (-595 (-891 *4)))))) (-5 *1 (-1201 *4 *5 *6)) (-14 *6 (-595 (-1095))))) (-1722 (*1 *2 *3) (-12 (-5 *3 (-595 (-891 *4))) (-4 *4 (-13 (-791) (-288) (-140) (-957))) (-5 *2 (-595 (-978 *4 *5))) (-5 *1 (-1201 *4 *5 *6)) (-14 *5 (-595 (-1095))) (-14 *6 (-595 (-1095))))) (-1722 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-891 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-791) (-288) (-140) (-957))) (-5 *2 (-595 (-978 *5 *6))) (-5 *1 (-1201 *5 *6 *7)) (-14 *6 (-595 (-1095))) (-14 *7 (-595 (-1095))))) (-1722 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-595 (-891 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-791) (-288) (-140) (-957))) (-5 *2 (-595 (-978 *5 *6))) (-5 *1 (-1201 *5 *6 *7)) (-14 *6 (-595 (-1095))) (-14 *7 (-595 (-1095))))))
-(-10 -7 (-15 -1722 ((-595 (-978 |#1| |#2|)) (-595 (-891 |#1|)) (-110) (-110))) (-15 -1722 ((-595 (-978 |#1| |#2|)) (-595 (-891 |#1|)) (-110))) (-15 -1722 ((-595 (-978 |#1| |#2|)) (-595 (-891 |#1|)))) (-15 -3309 ((-595 (-2 (|:| -1697 (-1091 |#1|)) (|:| -4243 (-595 (-891 |#1|))))) (-978 |#1| |#2|))) (-15 -3309 ((-595 (-2 (|:| -1697 (-1091 |#1|)) (|:| -4243 (-595 (-891 |#1|))))) (-595 (-891 |#1|)) (-110) (-110) (-110))) (-15 -3309 ((-595 (-2 (|:| -1697 (-1091 |#1|)) (|:| -4243 (-595 (-891 |#1|))))) (-595 (-891 |#1|)) (-110) (-110))) (-15 -3309 ((-595 (-2 (|:| -1697 (-1091 |#1|)) (|:| -4243 (-595 (-891 |#1|))))) (-595 (-891 |#1|)) (-110))) (-15 -3309 ((-595 (-2 (|:| -1697 (-1091 |#1|)) (|:| -4243 (-595 (-891 |#1|))))) (-595 (-891 |#1|)))) (-15 -3018 ((-595 (-595 (-959 (-387 |#1|)))) (-978 |#1| |#2|))) (-15 -3018 ((-595 (-595 (-959 (-387 |#1|)))) (-595 (-891 |#1|)) (-110) (-110) (-110))) (-15 -3018 ((-595 (-595 (-959 (-387 |#1|)))) (-595 (-891 |#1|)) (-110) (-110))) (-15 -3018 ((-595 (-595 (-959 (-387 |#1|)))) (-595 (-891 |#1|)) (-110))) (-15 -3018 ((-595 (-595 (-959 (-387 |#1|)))) (-595 (-891 |#1|)))) (-15 -1946 ((-595 (-595 (-959 (-387 |#1|)))) (-978 |#1| |#2|))) (-15 -1946 ((-595 (-595 (-959 (-387 |#1|)))) (-595 (-891 |#1|)) (-110) (-110))) (-15 -1946 ((-595 (-595 (-959 (-387 |#1|)))) (-595 (-891 |#1|)) (-110))) (-15 -1946 ((-595 (-595 (-959 (-387 |#1|)))) (-595 (-891 |#1|)))) (-15 -2705 ((-595 (-1066 |#1| (-500 (-804 |#3|)) (-804 |#3|) (-726 |#1| (-804 |#3|)))) (-978 |#1| |#2|))) (-15 -3155 ((-726 |#1| (-804 |#3|)) (-726 |#1| (-804 |#2|)))) (-15 -3155 ((-891 (-959 (-387 |#1|))) (-891 |#1|))) (-15 -3155 ((-891 (-959 (-387 |#1|))) (-726 |#1| (-804 |#3|)))) (-15 -3155 ((-1091 (-959 (-387 |#1|))) (-1091 |#1|))) (-15 -3155 ((-595 (-726 |#1| (-804 |#3|))) (-1066 |#1| (-500 (-804 |#3|)) (-804 |#3|) (-726 |#1| (-804 |#3|))))))
-((-2345 (((-3 (-1177 (-387 (-528))) "failed") (-1177 |#1|) |#1|) 21)) (-3776 (((-110) (-1177 |#1|)) 12)) (-1742 (((-3 (-1177 (-528)) "failed") (-1177 |#1|)) 16)))
-(((-1202 |#1|) (-10 -7 (-15 -3776 ((-110) (-1177 |#1|))) (-15 -1742 ((-3 (-1177 (-528)) "failed") (-1177 |#1|))) (-15 -2345 ((-3 (-1177 (-387 (-528))) "failed") (-1177 |#1|) |#1|))) (-591 (-528))) (T -1202))
-((-2345 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-591 (-528))) (-5 *2 (-1177 (-387 (-528)))) (-5 *1 (-1202 *4)))) (-1742 (*1 *2 *3) (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-591 (-528))) (-5 *2 (-1177 (-528))) (-5 *1 (-1202 *4)))) (-3776 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-591 (-528))) (-5 *2 (-110)) (-5 *1 (-1202 *4)))))
-(-10 -7 (-15 -3776 ((-110) (-1177 |#1|))) (-15 -1742 ((-3 (-1177 (-528)) "failed") (-1177 |#1|))) (-15 -2345 ((-3 (-1177 (-387 (-528))) "failed") (-1177 |#1|) |#1|)))
-((-2207 (((-110) $ $) NIL)) (-1359 (((-110) $) 11)) (-3181 (((-3 $ "failed") $ $) NIL)) (-2856 (((-717)) 8)) (-2816 (($) NIL T CONST)) (-1312 (((-3 $ "failed") $) 43)) (-1338 (($) 36)) (-1297 (((-110) $) NIL)) (-3296 (((-3 $ "failed") $) 29)) (-3201 (((-860) $) 15)) (-3034 (((-1078) $) NIL)) (-4197 (($) 25 T CONST)) (-3108 (($ (-860)) 37)) (-2495 (((-1042) $) NIL)) (-3155 (((-528) $) 13)) (-2222 (((-802) $) 22) (($ (-528)) 19)) (-3742 (((-717)) 9)) (-2690 (($ $ (-860)) NIL) (($ $ (-717)) NIL)) (-2969 (($) 23 T CONST)) (-2982 (($) 24 T CONST)) (-2186 (((-110) $ $) 27)) (-2286 (($ $) 38) (($ $ $) 35)) (-2275 (($ $ $) 26)) (** (($ $ (-860)) NIL) (($ $ (-717)) 40)) (* (($ (-860) $) NIL) (($ (-717) $) NIL) (($ (-528) $) 32) (($ $ $) 31)))
-(((-1203 |#1|) (-13 (-162) (-348) (-570 (-528)) (-1071)) (-860)) (T -1203))
-NIL
-(-13 (-162) (-348) (-570 (-528)) (-1071))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-3 3150676 3150681 3150686 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3150661 3150666 3150671 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3150646 3150651 3150656 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3150631 3150636 3150641 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1203 3149761 3150506 3150583 "ZMOD" 3150588 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1202 3148871 3149035 3149244 "ZLINDEP" 3149593 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1201 3138275 3140020 3141972 "ZDSOLVE" 3147020 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1200 3137521 3137662 3137851 "YSTREAM" 3138121 NIL YSTREAM (NIL T) -7 NIL NIL) (-1199 3135290 3136826 3137029 "XRPOLY" 3137364 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1198 3131752 3133081 3133663 "XPR" 3134754 NIL XPR (NIL T T) -8 NIL NIL) (-1197 3129466 3131087 3131290 "XPOLY" 3131583 NIL XPOLY (NIL T) -8 NIL NIL) (-1196 3127280 3128658 3128712 "XPOLYC" 3128997 NIL XPOLYC (NIL T T) -9 NIL 3129110) (-1195 3123652 3125797 3126185 "XPBWPOLY" 3126938 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1194 3119580 3121893 3121935 "XF" 3122556 NIL XF (NIL T) -9 NIL 3122955) (-1193 3119201 3119289 3119458 "XF-" 3119463 NIL XF- (NIL T T) -8 NIL NIL) (-1192 3114581 3115880 3115934 "XFALG" 3118082 NIL XFALG (NIL T T) -9 NIL 3118869) (-1191 3113718 3113822 3114026 "XEXPPKG" 3114473 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1190 3111817 3113569 3113664 "XDPOLY" 3113669 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1189 3110696 3111306 3111348 "XALG" 3111410 NIL XALG (NIL T) -9 NIL 3111529) (-1188 3104172 3108680 3109173 "WUTSET" 3110288 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1187 3101984 3102791 3103142 "WP" 3103954 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1186 3100870 3101068 3101363 "WFFINTBS" 3101781 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1185 3098774 3099201 3099663 "WEIER" 3100442 NIL WEIER (NIL T) -7 NIL NIL) (-1184 3097923 3098347 3098389 "VSPACE" 3098525 NIL VSPACE (NIL T) -9 NIL 3098599) (-1183 3097761 3097788 3097879 "VSPACE-" 3097884 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1182 3097507 3097550 3097621 "VOID" 3097712 T VOID (NIL) -8 NIL NIL) (-1181 3095643 3096002 3096408 "VIEW" 3097123 T VIEW (NIL) -7 NIL NIL) (-1180 3092068 3092706 3093443 "VIEWDEF" 3094928 T VIEWDEF (NIL) -7 NIL NIL) (-1179 3081406 3083616 3085789 "VIEW3D" 3089917 T VIEW3D (NIL) -8 NIL NIL) (-1178 3073688 3075317 3076896 "VIEW2D" 3079849 T VIEW2D (NIL) -8 NIL NIL) (-1177 3069097 3073458 3073550 "VECTOR" 3073631 NIL VECTOR (NIL T) -8 NIL NIL) (-1176 3067674 3067933 3068251 "VECTOR2" 3068827 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1175 3061214 3065466 3065509 "VECTCAT" 3066497 NIL VECTCAT (NIL T) -9 NIL 3067081) (-1174 3060228 3060482 3060872 "VECTCAT-" 3060877 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1173 3059709 3059879 3059999 "VARIABLE" 3060143 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1172 3059642 3059647 3059677 "UTYPE" 3059682 T UTYPE (NIL) -9 NIL NIL) (-1171 3058477 3058631 3058892 "UTSODETL" 3059468 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1170 3055917 3056377 3056901 "UTSODE" 3058018 NIL UTSODE (NIL T T) -7 NIL NIL) (-1169 3047761 3053557 3054045 "UTS" 3055486 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1168 3039106 3044471 3044513 "UTSCAT" 3045614 NIL UTSCAT (NIL T) -9 NIL 3046371) (-1167 3036461 3037177 3038165 "UTSCAT-" 3038170 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1166 3036092 3036135 3036266 "UTS2" 3036412 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1165 3030368 3032933 3032976 "URAGG" 3035046 NIL URAGG (NIL T) -9 NIL 3035768) (-1164 3027307 3028170 3029293 "URAGG-" 3029298 NIL URAGG- (NIL T T) -8 NIL NIL) (-1163 3022993 3025924 3026395 "UPXSSING" 3026971 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1162 3014884 3022114 3022394 "UPXS" 3022770 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1161 3007913 3014789 3014860 "UPXSCONS" 3014865 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1160 2998202 3005032 3005093 "UPXSCCA" 3005742 NIL UPXSCCA (NIL T T) -9 NIL 3005983) (-1159 2997841 2997926 2998099 "UPXSCCA-" 2998104 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1158 2988052 2994655 2994697 "UPXSCAT" 2995340 NIL UPXSCAT (NIL T) -9 NIL 2995948) (-1157 2987486 2987565 2987742 "UPXS2" 2987967 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1156 2986140 2986393 2986744 "UPSQFREE" 2987229 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1155 2980031 2983086 2983140 "UPSCAT" 2984289 NIL UPSCAT (NIL T T) -9 NIL 2985063) (-1154 2979236 2979443 2979769 "UPSCAT-" 2979774 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1153 2965322 2973359 2973401 "UPOLYC" 2975479 NIL UPOLYC (NIL T) -9 NIL 2976700) (-1152 2956652 2959077 2962223 "UPOLYC-" 2962228 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1151 2956283 2956326 2956457 "UPOLYC2" 2956603 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1150 2947702 2955852 2955989 "UP" 2956193 NIL UP (NIL NIL T) -8 NIL NIL) (-1149 2947045 2947152 2947315 "UPMP" 2947591 NIL UPMP (NIL T T) -7 NIL NIL) (-1148 2946598 2946679 2946818 "UPDIVP" 2946958 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1147 2945166 2945415 2945731 "UPDECOMP" 2946347 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1146 2944401 2944513 2944698 "UPCDEN" 2945050 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1145 2943924 2943993 2944140 "UP2" 2944326 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1144 2942441 2943128 2943405 "UNISEG" 2943682 NIL UNISEG (NIL T) -8 NIL NIL) (-1143 2941656 2941783 2941988 "UNISEG2" 2942284 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1142 2940716 2940896 2941122 "UNIFACT" 2941472 NIL UNIFACT (NIL T) -7 NIL NIL) (-1141 2924612 2939897 2940147 "ULS" 2940523 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1140 2912577 2924517 2924588 "ULSCONS" 2924593 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1139 2895327 2907340 2907401 "ULSCCAT" 2908113 NIL ULSCCAT (NIL T T) -9 NIL 2908409) (-1138 2894378 2894623 2895010 "ULSCCAT-" 2895015 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1137 2884368 2890885 2890927 "ULSCAT" 2891783 NIL ULSCAT (NIL T) -9 NIL 2892513) (-1136 2883802 2883881 2884058 "ULS2" 2884283 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1135 2882200 2883167 2883197 "UFD" 2883409 T UFD (NIL) -9 NIL 2883523) (-1134 2881994 2882040 2882135 "UFD-" 2882140 NIL UFD- (NIL T) -8 NIL NIL) (-1133 2881076 2881259 2881475 "UDVO" 2881800 T UDVO (NIL) -7 NIL NIL) (-1132 2878892 2879301 2879772 "UDPO" 2880640 NIL UDPO (NIL T) -7 NIL NIL) (-1131 2878825 2878830 2878860 "TYPE" 2878865 T TYPE (NIL) -9 NIL NIL) (-1130 2877796 2877998 2878238 "TWOFACT" 2878619 NIL TWOFACT (NIL T) -7 NIL NIL) (-1129 2876734 2877071 2877334 "TUPLE" 2877568 NIL TUPLE (NIL T) -8 NIL NIL) (-1128 2874425 2874944 2875483 "TUBETOOL" 2876217 T TUBETOOL (NIL) -7 NIL NIL) (-1127 2873274 2873479 2873720 "TUBE" 2874218 NIL TUBE (NIL T) -8 NIL NIL) (-1126 2867998 2872252 2872534 "TS" 2873026 NIL TS (NIL T) -8 NIL NIL) (-1125 2856702 2860794 2860890 "TSETCAT" 2866124 NIL TSETCAT (NIL T T T T) -9 NIL 2867655) (-1124 2851437 2853035 2854925 "TSETCAT-" 2854930 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1123 2845700 2846546 2847488 "TRMANIP" 2850573 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1122 2845141 2845204 2845367 "TRIMAT" 2845632 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1121 2842947 2843184 2843547 "TRIGMNIP" 2844890 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1120 2842467 2842580 2842610 "TRIGCAT" 2842823 T TRIGCAT (NIL) -9 NIL NIL) (-1119 2842136 2842215 2842356 "TRIGCAT-" 2842361 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1118 2839035 2840996 2841276 "TREE" 2841891 NIL TREE (NIL T) -8 NIL NIL) (-1117 2838309 2838837 2838867 "TRANFUN" 2838902 T TRANFUN (NIL) -9 NIL 2838968) (-1116 2837588 2837779 2838059 "TRANFUN-" 2838064 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1115 2837392 2837424 2837485 "TOPSP" 2837549 T TOPSP (NIL) -7 NIL NIL) (-1114 2836744 2836859 2837012 "TOOLSIGN" 2837273 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1113 2835405 2835921 2836160 "TEXTFILE" 2836527 T TEXTFILE (NIL) -8 NIL NIL) (-1112 2833270 2833784 2834222 "TEX" 2834989 T TEX (NIL) -8 NIL NIL) (-1111 2833051 2833082 2833154 "TEX1" 2833233 NIL TEX1 (NIL T) -7 NIL NIL) (-1110 2832699 2832762 2832852 "TEMUTL" 2832983 T TEMUTL (NIL) -7 NIL NIL) (-1109 2830853 2831133 2831458 "TBCMPPK" 2832422 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1108 2822742 2829014 2829070 "TBAGG" 2829470 NIL TBAGG (NIL T T) -9 NIL 2829681) (-1107 2817812 2819300 2821054 "TBAGG-" 2821059 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1106 2817196 2817303 2817448 "TANEXP" 2817701 NIL TANEXP (NIL T) -7 NIL NIL) (-1105 2810697 2817053 2817146 "TABLE" 2817151 NIL TABLE (NIL T T) -8 NIL NIL) (-1104 2810109 2810208 2810346 "TABLEAU" 2810594 NIL TABLEAU (NIL T) -8 NIL NIL) (-1103 2804717 2805937 2807185 "TABLBUMP" 2808895 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1102 2804145 2804245 2804373 "SYSTEM" 2804611 T SYSTEM (NIL) -7 NIL NIL) (-1101 2800608 2801303 2802086 "SYSSOLP" 2803396 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1100 2796899 2797607 2798341 "SYNTAX" 2799896 T SYNTAX (NIL) -8 NIL NIL) (-1099 2794033 2794641 2795279 "SYMTAB" 2796283 T SYMTAB (NIL) -8 NIL NIL) (-1098 2789282 2790184 2791167 "SYMS" 2793072 T SYMS (NIL) -8 NIL NIL) (-1097 2786515 2788742 2788971 "SYMPOLY" 2789087 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1096 2786035 2786110 2786232 "SYMFUNC" 2786427 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1095 2782012 2783272 2784094 "SYMBOL" 2785235 T SYMBOL (NIL) -8 NIL NIL) (-1094 2775551 2777240 2778960 "SWITCH" 2780314 T SWITCH (NIL) -8 NIL NIL) (-1093 2768781 2774378 2774680 "SUTS" 2775306 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1092 2760671 2767902 2768182 "SUPXS" 2768558 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1091 2752163 2760292 2760417 "SUP" 2760580 NIL SUP (NIL T) -8 NIL NIL) (-1090 2751322 2751449 2751666 "SUPFRACF" 2752031 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1089 2750947 2751006 2751117 "SUP2" 2751257 NIL SUP2 (NIL T T) -7 NIL NIL) (-1088 2749365 2749639 2750001 "SUMRF" 2750646 NIL SUMRF (NIL T) -7 NIL NIL) (-1087 2748682 2748748 2748946 "SUMFS" 2749286 NIL SUMFS (NIL T T) -7 NIL NIL) (-1086 2732618 2747863 2748113 "SULS" 2748489 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1085 2731940 2732143 2732283 "SUCH" 2732526 NIL SUCH (NIL T T) -8 NIL NIL) (-1084 2725867 2726879 2727837 "SUBSPACE" 2731028 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1083 2725297 2725387 2725551 "SUBRESP" 2725755 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1082 2718666 2719962 2721273 "STTF" 2724033 NIL STTF (NIL T) -7 NIL NIL) (-1081 2712839 2713959 2715106 "STTFNC" 2717566 NIL STTFNC (NIL T) -7 NIL NIL) (-1080 2704190 2706057 2707850 "STTAYLOR" 2711080 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1079 2697434 2704054 2704137 "STRTBL" 2704142 NIL STRTBL (NIL T) -8 NIL NIL) (-1078 2692825 2697389 2697420 "STRING" 2697425 T STRING (NIL) -8 NIL NIL) (-1077 2687714 2692199 2692229 "STRICAT" 2692288 T STRICAT (NIL) -9 NIL 2692350) (-1076 2680428 2685237 2685857 "STREAM" 2687129 NIL STREAM (NIL T) -8 NIL NIL) (-1075 2679938 2680015 2680159 "STREAM3" 2680345 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1074 2678920 2679103 2679338 "STREAM2" 2679751 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1073 2678608 2678660 2678753 "STREAM1" 2678862 NIL STREAM1 (NIL T) -7 NIL NIL) (-1072 2677624 2677805 2678036 "STINPROD" 2678424 NIL STINPROD (NIL T) -7 NIL NIL) (-1071 2677203 2677387 2677417 "STEP" 2677497 T STEP (NIL) -9 NIL 2677575) (-1070 2670746 2677102 2677179 "STBL" 2677184 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1069 2665922 2669969 2670012 "STAGG" 2670165 NIL STAGG (NIL T) -9 NIL 2670254) (-1068 2663624 2664226 2665098 "STAGG-" 2665103 NIL STAGG- (NIL T T) -8 NIL NIL) (-1067 2661819 2663394 2663486 "STACK" 2663567 NIL STACK (NIL T) -8 NIL NIL) (-1066 2654550 2659966 2660421 "SREGSET" 2661449 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1065 2646990 2648358 2649870 "SRDCMPK" 2653156 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1064 2639958 2644431 2644461 "SRAGG" 2645764 T SRAGG (NIL) -9 NIL 2646372) (-1063 2638975 2639230 2639609 "SRAGG-" 2639614 NIL SRAGG- (NIL T) -8 NIL NIL) (-1062 2633424 2637894 2638321 "SQMATRIX" 2638594 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1061 2627176 2630144 2630870 "SPLTREE" 2632770 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1060 2623166 2623832 2624478 "SPLNODE" 2626602 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1059 2622213 2622446 2622476 "SPFCAT" 2622920 T SPFCAT (NIL) -9 NIL NIL) (-1058 2620950 2621160 2621424 "SPECOUT" 2621971 T SPECOUT (NIL) -7 NIL NIL) (-1057 2620711 2620751 2620820 "SPADPRSR" 2620903 T SPADPRSR (NIL) -7 NIL NIL) (-1056 2612734 2614481 2614523 "SPACEC" 2618846 NIL SPACEC (NIL T) -9 NIL 2620662) (-1055 2610905 2612667 2612715 "SPACE3" 2612720 NIL SPACE3 (NIL T) -8 NIL NIL) (-1054 2609657 2609828 2610119 "SORTPAK" 2610710 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1053 2607713 2608016 2608434 "SOLVETRA" 2609321 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1052 2606724 2606946 2607220 "SOLVESER" 2607486 NIL SOLVESER (NIL T) -7 NIL NIL) (-1051 2601944 2602825 2603827 "SOLVERAD" 2605776 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1050 2597759 2598368 2599097 "SOLVEFOR" 2601311 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1049 2592059 2597111 2597207 "SNTSCAT" 2597212 NIL SNTSCAT (NIL T T T T) -9 NIL 2597282) (-1048 2586163 2590390 2590780 "SMTS" 2591749 NIL SMTS (NIL T T T) -8 NIL NIL) (-1047 2580573 2586052 2586128 "SMP" 2586133 NIL SMP (NIL T T) -8 NIL NIL) (-1046 2578732 2579033 2579431 "SMITH" 2580270 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1045 2571697 2575893 2575995 "SMATCAT" 2577335 NIL SMATCAT (NIL NIL T T T) -9 NIL 2577884) (-1044 2568638 2569461 2570638 "SMATCAT-" 2570643 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1043 2566352 2567875 2567918 "SKAGG" 2568179 NIL SKAGG (NIL T) -9 NIL 2568314) (-1042 2562410 2565456 2565734 "SINT" 2566096 T SINT (NIL) -8 NIL NIL) (-1041 2562182 2562220 2562286 "SIMPAN" 2562366 T SIMPAN (NIL) -7 NIL NIL) (-1040 2561698 2561884 2561983 "SIG" 2562105 T SIG (NIL) -8 NIL NIL) (-1039 2560536 2560757 2561032 "SIGNRF" 2561457 NIL SIGNRF (NIL T) -7 NIL NIL) (-1038 2559345 2559496 2559786 "SIGNEF" 2560365 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1037 2557035 2557489 2557995 "SHP" 2558886 NIL SHP (NIL T NIL) -7 NIL NIL) (-1036 2550888 2556936 2557012 "SHDP" 2557017 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1035 2550378 2550570 2550600 "SGROUP" 2550752 T SGROUP (NIL) -9 NIL 2550839) (-1034 2550148 2550200 2550304 "SGROUP-" 2550309 NIL SGROUP- (NIL T) -8 NIL NIL) (-1033 2546984 2547681 2548404 "SGCF" 2549447 T SGCF (NIL) -7 NIL NIL) (-1032 2541383 2546435 2546531 "SFRTCAT" 2546536 NIL SFRTCAT (NIL T T T T) -9 NIL 2546574) (-1031 2534843 2535858 2536992 "SFRGCD" 2540366 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1030 2528009 2529080 2530264 "SFQCMPK" 2533776 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1029 2527631 2527720 2527830 "SFORT" 2527950 NIL SFORT (NIL T T) -8 NIL NIL) (-1028 2526776 2527471 2527592 "SEXOF" 2527597 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1027 2525910 2526657 2526725 "SEX" 2526730 T SEX (NIL) -8 NIL NIL) (-1026 2520687 2521376 2521471 "SEXCAT" 2525242 NIL SEXCAT (NIL T T T T T) -9 NIL 2525861) (-1025 2517867 2520621 2520669 "SET" 2520674 NIL SET (NIL T) -8 NIL NIL) (-1024 2516118 2516580 2516885 "SETMN" 2517608 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1023 2515726 2515852 2515882 "SETCAT" 2515999 T SETCAT (NIL) -9 NIL 2516083) (-1022 2515506 2515558 2515657 "SETCAT-" 2515662 NIL SETCAT- (NIL T) -8 NIL NIL) (-1021 2511894 2513968 2514011 "SETAGG" 2514881 NIL SETAGG (NIL T) -9 NIL 2515221) (-1020 2511352 2511468 2511705 "SETAGG-" 2511710 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1019 2510556 2510849 2510910 "SEGXCAT" 2511196 NIL SEGXCAT (NIL T T) -9 NIL 2511316) (-1018 2509612 2510222 2510404 "SEG" 2510409 NIL SEG (NIL T) -8 NIL NIL) (-1017 2508519 2508732 2508775 "SEGCAT" 2509357 NIL SEGCAT (NIL T) -9 NIL 2509595) (-1016 2507568 2507898 2508098 "SEGBIND" 2508354 NIL SEGBIND (NIL T) -8 NIL NIL) (-1015 2507189 2507248 2507361 "SEGBIND2" 2507503 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1014 2506408 2506534 2506738 "SEG2" 2507033 NIL SEG2 (NIL T T) -7 NIL NIL) (-1013 2505845 2506343 2506390 "SDVAR" 2506395 NIL SDVAR (NIL T) -8 NIL NIL) (-1012 2498097 2505618 2505746 "SDPOL" 2505751 NIL SDPOL (NIL T) -8 NIL NIL) (-1011 2496690 2496956 2497275 "SCPKG" 2497812 NIL SCPKG (NIL T) -7 NIL NIL) (-1010 2495826 2496006 2496206 "SCOPE" 2496512 T SCOPE (NIL) -8 NIL NIL) (-1009 2495047 2495180 2495359 "SCACHE" 2495681 NIL SCACHE (NIL T) -7 NIL NIL) (-1008 2494486 2494807 2494892 "SAOS" 2494984 T SAOS (NIL) -8 NIL NIL) (-1007 2494051 2494086 2494259 "SAERFFC" 2494445 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1006 2487945 2493948 2494028 "SAE" 2494033 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1005 2487538 2487573 2487732 "SAEFACT" 2487904 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1004 2485859 2486173 2486574 "RURPK" 2487204 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1003 2484499 2484778 2485089 "RULESET" 2485693 NIL RULESET (NIL T T T) -8 NIL NIL) (-1002 2481697 2482200 2482663 "RULE" 2484181 NIL RULE (NIL T T T) -8 NIL NIL) (-1001 2481336 2481491 2481574 "RULECOLD" 2481649 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1000 2476213 2477007 2477925 "RSETGCD" 2480535 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-999 2465528 2470580 2470674 "RSETCAT" 2474739 NIL RSETCAT (NIL T T T T) -9 NIL 2475836) (-998 2463459 2463998 2464818 "RSETCAT-" 2464823 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-997 2455889 2457264 2458780 "RSDCMPK" 2462058 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-996 2453907 2454348 2454420 "RRCC" 2455496 NIL RRCC (NIL T T) -9 NIL 2455840) (-995 2453261 2453435 2453711 "RRCC-" 2453716 NIL RRCC- (NIL T T T) -8 NIL NIL) (-994 2427628 2437253 2437317 "RPOLCAT" 2447819 NIL RPOLCAT (NIL T T T) -9 NIL 2450977) (-993 2419132 2421470 2424588 "RPOLCAT-" 2424593 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-992 2410198 2417362 2417842 "ROUTINE" 2418672 T ROUTINE (NIL) -8 NIL NIL) (-991 2406903 2409754 2409901 "ROMAN" 2410071 T ROMAN (NIL) -8 NIL NIL) (-990 2405189 2405774 2406031 "ROIRC" 2406709 NIL ROIRC (NIL T T) -8 NIL NIL) (-989 2401594 2403898 2403926 "RNS" 2404222 T RNS (NIL) -9 NIL 2404492) (-988 2400108 2400491 2401022 "RNS-" 2401095 NIL RNS- (NIL T) -8 NIL NIL) (-987 2399534 2399942 2399970 "RNG" 2399975 T RNG (NIL) -9 NIL 2399996) (-986 2398932 2399294 2399334 "RMODULE" 2399394 NIL RMODULE (NIL T) -9 NIL 2399436) (-985 2397784 2397878 2398208 "RMCAT2" 2398833 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-984 2394498 2396967 2397288 "RMATRIX" 2397519 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-983 2387495 2389729 2389841 "RMATCAT" 2393150 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2394132) (-982 2386874 2387021 2387324 "RMATCAT-" 2387329 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-981 2385925 2386489 2386517 "RING" 2386627 T RING (NIL) -9 NIL 2386721) (-980 2385720 2385764 2385858 "RING-" 2385863 NIL RING- (NIL T) -8 NIL NIL) (-979 2384568 2384805 2385061 "RIDIST" 2385484 T RIDIST (NIL) -7 NIL NIL) (-978 2375890 2384042 2384245 "RGCHAIN" 2384417 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-977 2372895 2373509 2374177 "RF" 2375254 NIL RF (NIL T) -7 NIL NIL) (-976 2372544 2372607 2372708 "RFFACTOR" 2372826 NIL RFFACTOR (NIL T) -7 NIL NIL) (-975 2372272 2372307 2372402 "RFFACT" 2372503 NIL RFFACT (NIL T) -7 NIL NIL) (-974 2370402 2370766 2371146 "RFDIST" 2371912 T RFDIST (NIL) -7 NIL NIL) (-973 2369860 2369952 2370112 "RETSOL" 2370304 NIL RETSOL (NIL T T) -7 NIL NIL) (-972 2369453 2369533 2369574 "RETRACT" 2369764 NIL RETRACT (NIL T) -9 NIL NIL) (-971 2369305 2369330 2369414 "RETRACT-" 2369419 NIL RETRACT- (NIL T T) -8 NIL NIL) (-970 2362163 2368962 2369087 "RESULT" 2369200 T RESULT (NIL) -8 NIL NIL) (-969 2360748 2361437 2361634 "RESRING" 2362066 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-968 2360388 2360437 2360533 "RESLATC" 2360685 NIL RESLATC (NIL T) -7 NIL NIL) (-967 2360097 2360131 2360236 "REPSQ" 2360347 NIL REPSQ (NIL T) -7 NIL NIL) (-966 2357528 2358108 2358708 "REP" 2359517 T REP (NIL) -7 NIL NIL) (-965 2357229 2357263 2357372 "REPDB" 2357487 NIL REPDB (NIL T) -7 NIL NIL) (-964 2351174 2352553 2353773 "REP2" 2356041 NIL REP2 (NIL T) -7 NIL NIL) (-963 2347580 2348261 2349066 "REP1" 2350401 NIL REP1 (NIL T) -7 NIL NIL) (-962 2340326 2345741 2346193 "REGSET" 2347211 NIL REGSET (NIL T T T T) -8 NIL NIL) (-961 2339147 2339482 2339730 "REF" 2340111 NIL REF (NIL T) -8 NIL NIL) (-960 2338528 2338631 2338796 "REDORDER" 2339031 NIL REDORDER (NIL T T) -7 NIL NIL) (-959 2334497 2337762 2337983 "RECLOS" 2338359 NIL RECLOS (NIL T) -8 NIL NIL) (-958 2333554 2333735 2333948 "REALSOLV" 2334304 T REALSOLV (NIL) -7 NIL NIL) (-957 2333402 2333443 2333471 "REAL" 2333476 T REAL (NIL) -9 NIL 2333511) (-956 2329893 2330695 2331577 "REAL0Q" 2332567 NIL REAL0Q (NIL T) -7 NIL NIL) (-955 2325504 2326492 2327551 "REAL0" 2328874 NIL REAL0 (NIL T) -7 NIL NIL) (-954 2324912 2324984 2325189 "RDIV" 2325426 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-953 2323985 2324159 2324370 "RDIST" 2324734 NIL RDIST (NIL T) -7 NIL NIL) (-952 2322589 2322876 2323245 "RDETRS" 2323693 NIL RDETRS (NIL T T) -7 NIL NIL) (-951 2320410 2320864 2321399 "RDETR" 2322131 NIL RDETR (NIL T T) -7 NIL NIL) (-950 2319026 2319304 2319705 "RDEEFS" 2320126 NIL RDEEFS (NIL T T) -7 NIL NIL) (-949 2317526 2317832 2318261 "RDEEF" 2318714 NIL RDEEF (NIL T T) -7 NIL NIL) (-948 2311811 2314743 2314771 "RCFIELD" 2316048 T RCFIELD (NIL) -9 NIL 2316778) (-947 2309880 2310384 2311077 "RCFIELD-" 2311150 NIL RCFIELD- (NIL T) -8 NIL NIL) (-946 2306212 2307997 2308038 "RCAGG" 2309109 NIL RCAGG (NIL T) -9 NIL 2309574) (-945 2305843 2305937 2306097 "RCAGG-" 2306102 NIL RCAGG- (NIL T T) -8 NIL NIL) (-944 2305187 2305299 2305461 "RATRET" 2305727 NIL RATRET (NIL T) -7 NIL NIL) (-943 2304744 2304811 2304930 "RATFACT" 2305115 NIL RATFACT (NIL T) -7 NIL NIL) (-942 2304059 2304179 2304329 "RANDSRC" 2304614 T RANDSRC (NIL) -7 NIL NIL) (-941 2303796 2303840 2303911 "RADUTIL" 2304008 T RADUTIL (NIL) -7 NIL NIL) (-940 2296803 2302539 2302856 "RADIX" 2303511 NIL RADIX (NIL NIL) -8 NIL NIL) (-939 2288372 2296647 2296775 "RADFF" 2296780 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-938 2288024 2288099 2288127 "RADCAT" 2288284 T RADCAT (NIL) -9 NIL NIL) (-937 2287809 2287857 2287954 "RADCAT-" 2287959 NIL RADCAT- (NIL T) -8 NIL NIL) (-936 2285960 2287584 2287673 "QUEUE" 2287753 NIL QUEUE (NIL T) -8 NIL NIL) (-935 2282457 2285897 2285942 "QUAT" 2285947 NIL QUAT (NIL T) -8 NIL NIL) (-934 2282095 2282138 2282265 "QUATCT2" 2282408 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-933 2275889 2279269 2279309 "QUATCAT" 2280088 NIL QUATCAT (NIL T) -9 NIL 2280853) (-932 2272033 2273070 2274457 "QUATCAT-" 2274551 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-931 2269554 2271118 2271159 "QUAGG" 2271534 NIL QUAGG (NIL T) -9 NIL 2271709) (-930 2268479 2268952 2269124 "QFORM" 2269426 NIL QFORM (NIL NIL T) -8 NIL NIL) (-929 2259776 2265034 2265074 "QFCAT" 2265732 NIL QFCAT (NIL T) -9 NIL 2266725) (-928 2255348 2256549 2258140 "QFCAT-" 2258234 NIL QFCAT- (NIL T T) -8 NIL NIL) (-927 2254986 2255029 2255156 "QFCAT2" 2255299 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-926 2254446 2254556 2254686 "QEQUAT" 2254876 T QEQUAT (NIL) -8 NIL NIL) (-925 2247632 2248703 2249885 "QCMPACK" 2253379 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-924 2245208 2245629 2246057 "QALGSET" 2247287 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-923 2244453 2244627 2244859 "QALGSET2" 2245028 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-922 2243144 2243367 2243684 "PWFFINTB" 2244226 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-921 2241332 2241500 2241853 "PUSHVAR" 2242958 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-920 2237250 2238304 2238345 "PTRANFN" 2240229 NIL PTRANFN (NIL T) -9 NIL NIL) (-919 2235662 2235953 2236274 "PTPACK" 2236961 NIL PTPACK (NIL T) -7 NIL NIL) (-918 2235298 2235355 2235462 "PTFUNC2" 2235599 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-917 2229775 2234116 2234156 "PTCAT" 2234524 NIL PTCAT (NIL T) -9 NIL 2234686) (-916 2229433 2229468 2229592 "PSQFR" 2229734 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-915 2228028 2228326 2228660 "PSEUDLIN" 2229131 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-914 2214835 2217200 2219523 "PSETPK" 2225788 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-913 2207922 2210636 2210730 "PSETCAT" 2213711 NIL PSETCAT (NIL T T T T) -9 NIL 2214525) (-912 2205760 2206394 2207213 "PSETCAT-" 2207218 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-911 2205109 2205274 2205302 "PSCURVE" 2205570 T PSCURVE (NIL) -9 NIL 2205737) (-910 2201561 2203087 2203151 "PSCAT" 2203987 NIL PSCAT (NIL T T T) -9 NIL 2204227) (-909 2200625 2200841 2201240 "PSCAT-" 2201245 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-908 2199277 2199910 2200124 "PRTITION" 2200431 T PRTITION (NIL) -8 NIL NIL) (-907 2188375 2190581 2192769 "PRS" 2197139 NIL PRS (NIL T T) -7 NIL NIL) (-906 2186234 2187726 2187766 "PRQAGG" 2187949 NIL PRQAGG (NIL T) -9 NIL 2188051) (-905 2185805 2185907 2185935 "PROPLOG" 2186120 T PROPLOG (NIL) -9 NIL NIL) (-904 2182928 2183493 2184020 "PROPFRML" 2185310 NIL PROPFRML (NIL T) -8 NIL NIL) (-903 2182388 2182498 2182628 "PROPERTY" 2182818 T PROPERTY (NIL) -8 NIL NIL) (-902 2176162 2180554 2181374 "PRODUCT" 2181614 NIL PRODUCT (NIL T T) -8 NIL NIL) (-901 2173438 2175622 2175855 "PR" 2175973 NIL PR (NIL T T) -8 NIL NIL) (-900 2173234 2173266 2173325 "PRINT" 2173399 T PRINT (NIL) -7 NIL NIL) (-899 2172574 2172691 2172843 "PRIMES" 2173114 NIL PRIMES (NIL T) -7 NIL NIL) (-898 2170639 2171040 2171506 "PRIMELT" 2172153 NIL PRIMELT (NIL T) -7 NIL NIL) (-897 2170368 2170417 2170445 "PRIMCAT" 2170569 T PRIMCAT (NIL) -9 NIL NIL) (-896 2166529 2170306 2170351 "PRIMARR" 2170356 NIL PRIMARR (NIL T) -8 NIL NIL) (-895 2165536 2165714 2165942 "PRIMARR2" 2166347 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-894 2165179 2165235 2165346 "PREASSOC" 2165474 NIL PREASSOC (NIL T T) -7 NIL NIL) (-893 2164654 2164787 2164815 "PPCURVE" 2165020 T PPCURVE (NIL) -9 NIL 2165156) (-892 2162013 2162412 2163004 "POLYROOT" 2164235 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-891 2155919 2161619 2161778 "POLY" 2161886 NIL POLY (NIL T) -8 NIL NIL) (-890 2155304 2155362 2155595 "POLYLIFT" 2155855 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-889 2151589 2152038 2152666 "POLYCATQ" 2154849 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-888 2138630 2144027 2144091 "POLYCAT" 2147576 NIL POLYCAT (NIL T T T) -9 NIL 2149503) (-887 2132081 2133942 2136325 "POLYCAT-" 2136330 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-886 2131670 2131738 2131857 "POLY2UP" 2132007 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-885 2131306 2131363 2131470 "POLY2" 2131607 NIL POLY2 (NIL T T) -7 NIL NIL) (-884 2129991 2130230 2130506 "POLUTIL" 2131080 NIL POLUTIL (NIL T T) -7 NIL NIL) (-883 2128353 2128630 2128960 "POLTOPOL" 2129713 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-882 2123876 2128290 2128335 "POINT" 2128340 NIL POINT (NIL T) -8 NIL NIL) (-881 2122063 2122420 2122795 "PNTHEORY" 2123521 T PNTHEORY (NIL) -7 NIL NIL) (-880 2120491 2120788 2121197 "PMTOOLS" 2121761 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-879 2120084 2120162 2120279 "PMSYM" 2120407 NIL PMSYM (NIL T) -7 NIL NIL) (-878 2119594 2119663 2119837 "PMQFCAT" 2120009 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-877 2118949 2119059 2119215 "PMPRED" 2119471 NIL PMPRED (NIL T) -7 NIL NIL) (-876 2118345 2118431 2118592 "PMPREDFS" 2118850 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-875 2116991 2117199 2117583 "PMPLCAT" 2118107 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-874 2116523 2116602 2116754 "PMLSAGG" 2116906 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-873 2116000 2116076 2116256 "PMKERNEL" 2116441 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-872 2115617 2115692 2115805 "PMINS" 2115919 NIL PMINS (NIL T) -7 NIL NIL) (-871 2115047 2115116 2115331 "PMFS" 2115542 NIL PMFS (NIL T T T) -7 NIL NIL) (-870 2114278 2114396 2114600 "PMDOWN" 2114924 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-869 2113441 2113600 2113782 "PMASS" 2114116 T PMASS (NIL) -7 NIL NIL) (-868 2112715 2112826 2112989 "PMASSFS" 2113327 NIL PMASSFS (NIL T T) -7 NIL NIL) (-867 2112370 2112438 2112532 "PLOTTOOL" 2112641 T PLOTTOOL (NIL) -7 NIL NIL) (-866 2106992 2108181 2109329 "PLOT" 2111242 T PLOT (NIL) -8 NIL NIL) (-865 2102806 2103840 2104761 "PLOT3D" 2106091 T PLOT3D (NIL) -8 NIL NIL) (-864 2101718 2101895 2102130 "PLOT1" 2102610 NIL PLOT1 (NIL T) -7 NIL NIL) (-863 2077112 2081784 2086635 "PLEQN" 2096984 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-862 2076430 2076552 2076732 "PINTERP" 2076977 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-861 2076123 2076170 2076273 "PINTERPA" 2076377 NIL PINTERPA (NIL T T) -7 NIL NIL) (-860 2075362 2075929 2076016 "PI" 2076056 T PI (NIL) -8 NIL NIL) (-859 2073754 2074739 2074767 "PID" 2074949 T PID (NIL) -9 NIL 2075083) (-858 2073479 2073516 2073604 "PICOERCE" 2073711 NIL PICOERCE (NIL T) -7 NIL NIL) (-857 2072799 2072938 2073114 "PGROEB" 2073335 NIL PGROEB (NIL T) -7 NIL NIL) (-856 2068386 2069200 2070105 "PGE" 2071914 T PGE (NIL) -7 NIL NIL) (-855 2066510 2066756 2067122 "PGCD" 2068103 NIL PGCD (NIL T T T T) -7 NIL NIL) (-854 2065848 2065951 2066112 "PFRPAC" 2066394 NIL PFRPAC (NIL T) -7 NIL NIL) (-853 2062463 2064396 2064749 "PFR" 2065527 NIL PFR (NIL T) -8 NIL NIL) (-852 2060852 2061096 2061421 "PFOTOOLS" 2062210 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-851 2059385 2059624 2059975 "PFOQ" 2060609 NIL PFOQ (NIL T T T) -7 NIL NIL) (-850 2057862 2058074 2058436 "PFO" 2059169 NIL PFO (NIL T T T T T) -7 NIL NIL) (-849 2054385 2057751 2057820 "PF" 2057825 NIL PF (NIL NIL) -8 NIL NIL) (-848 2051814 2053095 2053123 "PFECAT" 2053708 T PFECAT (NIL) -9 NIL 2054092) (-847 2051259 2051413 2051627 "PFECAT-" 2051632 NIL PFECAT- (NIL T) -8 NIL NIL) (-846 2049863 2050114 2050415 "PFBRU" 2051008 NIL PFBRU (NIL T T) -7 NIL NIL) (-845 2047730 2048081 2048513 "PFBR" 2049514 NIL PFBR (NIL T T T T) -7 NIL NIL) (-844 2043581 2045106 2045782 "PERM" 2047087 NIL PERM (NIL T) -8 NIL NIL) (-843 2038846 2039788 2040658 "PERMGRP" 2042744 NIL PERMGRP (NIL T) -8 NIL NIL) (-842 2036917 2037910 2037951 "PERMCAT" 2038397 NIL PERMCAT (NIL T) -9 NIL 2038702) (-841 2036572 2036613 2036736 "PERMAN" 2036870 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-840 2034012 2036141 2036272 "PENDTREE" 2036474 NIL PENDTREE (NIL T) -8 NIL NIL) (-839 2032085 2032863 2032904 "PDRING" 2033561 NIL PDRING (NIL T) -9 NIL 2033846) (-838 2031188 2031406 2031768 "PDRING-" 2031773 NIL PDRING- (NIL T T) -8 NIL NIL) (-837 2028329 2029080 2029771 "PDEPROB" 2030517 T PDEPROB (NIL) -8 NIL NIL) (-836 2025900 2026396 2026945 "PDEPACK" 2027800 T PDEPACK (NIL) -7 NIL NIL) (-835 2024812 2025002 2025253 "PDECOMP" 2025699 NIL PDECOMP (NIL T T) -7 NIL NIL) (-834 2022424 2023239 2023267 "PDECAT" 2024052 T PDECAT (NIL) -9 NIL 2024763) (-833 2022177 2022210 2022299 "PCOMP" 2022385 NIL PCOMP (NIL T T) -7 NIL NIL) (-832 2020384 2020980 2021276 "PBWLB" 2021907 NIL PBWLB (NIL T) -8 NIL NIL) (-831 2012892 2014461 2015797 "PATTERN" 2019069 NIL PATTERN (NIL T) -8 NIL NIL) (-830 2012524 2012581 2012690 "PATTERN2" 2012829 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-829 2010281 2010669 2011126 "PATTERN1" 2012113 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-828 2007676 2008230 2008711 "PATRES" 2009846 NIL PATRES (NIL T T) -8 NIL NIL) (-827 2007240 2007307 2007439 "PATRES2" 2007603 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-826 2005137 2005537 2005942 "PATMATCH" 2006909 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-825 2004674 2004857 2004898 "PATMAB" 2005005 NIL PATMAB (NIL T) -9 NIL 2005088) (-824 2003219 2003528 2003786 "PATLRES" 2004479 NIL PATLRES (NIL T T T) -8 NIL NIL) (-823 2002765 2002888 2002929 "PATAB" 2002934 NIL PATAB (NIL T) -9 NIL 2003106) (-822 2000246 2000778 2001351 "PARTPERM" 2002212 T PARTPERM (NIL) -7 NIL NIL) (-821 1999867 1999930 2000032 "PARSURF" 2000177 NIL PARSURF (NIL T) -8 NIL NIL) (-820 1999499 1999556 1999665 "PARSU2" 1999804 NIL PARSU2 (NIL T T) -7 NIL NIL) (-819 1999263 1999303 1999370 "PARSER" 1999452 T PARSER (NIL) -7 NIL NIL) (-818 1998884 1998947 1999049 "PARSCURV" 1999194 NIL PARSCURV (NIL T) -8 NIL NIL) (-817 1998516 1998573 1998682 "PARSC2" 1998821 NIL PARSC2 (NIL T T) -7 NIL NIL) (-816 1998155 1998213 1998310 "PARPCURV" 1998452 NIL PARPCURV (NIL T) -8 NIL NIL) (-815 1997787 1997844 1997953 "PARPC2" 1998092 NIL PARPC2 (NIL T T) -7 NIL NIL) (-814 1997307 1997393 1997512 "PAN2EXPR" 1997688 T PAN2EXPR (NIL) -7 NIL NIL) (-813 1996113 1996428 1996656 "PALETTE" 1997099 T PALETTE (NIL) -8 NIL NIL) (-812 1994581 1995118 1995478 "PAIR" 1995799 NIL PAIR (NIL T T) -8 NIL NIL) (-811 1988431 1993840 1994034 "PADICRC" 1994436 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-810 1981639 1987777 1987961 "PADICRAT" 1988279 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-809 1979943 1981576 1981621 "PADIC" 1981626 NIL PADIC (NIL NIL) -8 NIL NIL) (-808 1977148 1978722 1978762 "PADICCT" 1979343 NIL PADICCT (NIL NIL) -9 NIL 1979625) (-807 1976105 1976305 1976573 "PADEPAC" 1976935 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-806 1975317 1975450 1975656 "PADE" 1975967 NIL PADE (NIL T T T) -7 NIL NIL) (-805 1973328 1974160 1974475 "OWP" 1975085 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-804 1972437 1972933 1973105 "OVAR" 1973196 NIL OVAR (NIL NIL) -8 NIL NIL) (-803 1971701 1971822 1971983 "OUT" 1972296 T OUT (NIL) -7 NIL NIL) (-802 1960755 1962926 1965096 "OUTFORM" 1969551 T OUTFORM (NIL) -8 NIL NIL) (-801 1960163 1960484 1960573 "OSI" 1960686 T OSI (NIL) -8 NIL NIL) (-800 1959694 1960032 1960060 "OSGROUP" 1960065 T OSGROUP (NIL) -9 NIL 1960087) (-799 1958439 1958666 1958951 "ORTHPOL" 1959441 NIL ORTHPOL (NIL T) -7 NIL NIL) (-798 1955810 1958100 1958238 "OREUP" 1958382 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-797 1953206 1955503 1955629 "ORESUP" 1955752 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-796 1950741 1951241 1951801 "OREPCTO" 1952695 NIL OREPCTO (NIL T T) -7 NIL NIL) (-795 1944651 1946857 1946897 "OREPCAT" 1949218 NIL OREPCAT (NIL T) -9 NIL 1950321) (-794 1941799 1942581 1943638 "OREPCAT-" 1943643 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-793 1940977 1941249 1941277 "ORDSET" 1941586 T ORDSET (NIL) -9 NIL 1941750) (-792 1940496 1940618 1940811 "ORDSET-" 1940816 NIL ORDSET- (NIL T) -8 NIL NIL) (-791 1939110 1939911 1939939 "ORDRING" 1940141 T ORDRING (NIL) -9 NIL 1940265) (-790 1938755 1938849 1938993 "ORDRING-" 1938998 NIL ORDRING- (NIL T) -8 NIL NIL) (-789 1938118 1938599 1938627 "ORDMON" 1938632 T ORDMON (NIL) -9 NIL 1938653) (-788 1937280 1937427 1937622 "ORDFUNS" 1937967 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-787 1936792 1937151 1937179 "ORDFIN" 1937184 T ORDFIN (NIL) -9 NIL 1937205) (-786 1933304 1935378 1935787 "ORDCOMP" 1936416 NIL ORDCOMP (NIL T) -8 NIL NIL) (-785 1932570 1932697 1932883 "ORDCOMP2" 1933164 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-784 1929077 1929960 1930797 "OPTPROB" 1931753 T OPTPROB (NIL) -8 NIL NIL) (-783 1925919 1926548 1927242 "OPTPACK" 1928403 T OPTPACK (NIL) -7 NIL NIL) (-782 1923645 1924381 1924409 "OPTCAT" 1925224 T OPTCAT (NIL) -9 NIL 1925870) (-781 1923413 1923452 1923518 "OPQUERY" 1923599 T OPQUERY (NIL) -7 NIL NIL) (-780 1920549 1921740 1922240 "OP" 1922945 NIL OP (NIL T) -8 NIL NIL) (-779 1917314 1919346 1919715 "ONECOMP" 1920213 NIL ONECOMP (NIL T) -8 NIL NIL) (-778 1916619 1916734 1916908 "ONECOMP2" 1917186 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-777 1916038 1916144 1916274 "OMSERVER" 1916509 T OMSERVER (NIL) -7 NIL NIL) (-776 1912927 1915479 1915519 "OMSAGG" 1915580 NIL OMSAGG (NIL T) -9 NIL 1915644) (-775 1911550 1911813 1912095 "OMPKG" 1912665 T OMPKG (NIL) -7 NIL NIL) (-774 1910980 1911083 1911111 "OM" 1911410 T OM (NIL) -9 NIL NIL) (-773 1909519 1910532 1910700 "OMLO" 1910861 NIL OMLO (NIL T T) -8 NIL NIL) (-772 1908449 1908596 1908822 "OMEXPR" 1909345 NIL OMEXPR (NIL T) -7 NIL NIL) (-771 1907767 1907995 1908131 "OMERR" 1908333 T OMERR (NIL) -8 NIL NIL) (-770 1906945 1907188 1907348 "OMERRK" 1907627 T OMERRK (NIL) -8 NIL NIL) (-769 1906423 1906622 1906730 "OMENC" 1906857 T OMENC (NIL) -8 NIL NIL) (-768 1900318 1901503 1902674 "OMDEV" 1905272 T OMDEV (NIL) -8 NIL NIL) (-767 1899387 1899558 1899752 "OMCONN" 1900144 T OMCONN (NIL) -8 NIL NIL) (-766 1898003 1898989 1899017 "OINTDOM" 1899022 T OINTDOM (NIL) -9 NIL 1899043) (-765 1893765 1894995 1895710 "OFMONOID" 1897320 NIL OFMONOID (NIL T) -8 NIL NIL) (-764 1893203 1893702 1893747 "ODVAR" 1893752 NIL ODVAR (NIL T) -8 NIL NIL) (-763 1890328 1892700 1892885 "ODR" 1893078 NIL ODR (NIL T T NIL) -8 NIL NIL) (-762 1882634 1890107 1890231 "ODPOL" 1890236 NIL ODPOL (NIL T) -8 NIL NIL) (-761 1876457 1882506 1882611 "ODP" 1882616 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-760 1875223 1875438 1875713 "ODETOOLS" 1876231 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-759 1872192 1872848 1873564 "ODESYS" 1874556 NIL ODESYS (NIL T T) -7 NIL NIL) (-758 1867096 1868004 1869027 "ODERTRIC" 1871267 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-757 1866522 1866604 1866798 "ODERED" 1867008 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-756 1863424 1863972 1864647 "ODERAT" 1865945 NIL ODERAT (NIL T T) -7 NIL NIL) (-755 1860392 1860856 1861452 "ODEPRRIC" 1862953 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-754 1858261 1858830 1859339 "ODEPROB" 1859903 T ODEPROB (NIL) -8 NIL NIL) (-753 1854793 1855276 1855922 "ODEPRIM" 1857740 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-752 1854046 1854148 1854406 "ODEPAL" 1854685 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-751 1850248 1851029 1851883 "ODEPACK" 1853212 T ODEPACK (NIL) -7 NIL NIL) (-750 1849285 1849392 1849620 "ODEINT" 1850137 NIL ODEINT (NIL T T) -7 NIL NIL) (-749 1843386 1844811 1846258 "ODEIFTBL" 1847858 T ODEIFTBL (NIL) -8 NIL NIL) (-748 1838730 1839516 1840474 "ODEEF" 1842545 NIL ODEEF (NIL T T) -7 NIL NIL) (-747 1838067 1838156 1838385 "ODECONST" 1838635 NIL ODECONST (NIL T T T) -7 NIL NIL) (-746 1836225 1836858 1836886 "ODECAT" 1837489 T ODECAT (NIL) -9 NIL 1838018) (-745 1833097 1835937 1836056 "OCT" 1836138 NIL OCT (NIL T) -8 NIL NIL) (-744 1832735 1832778 1832905 "OCTCT2" 1833048 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-743 1827569 1830007 1830047 "OC" 1831143 NIL OC (NIL T) -9 NIL 1832000) (-742 1824796 1825544 1826534 "OC-" 1826628 NIL OC- (NIL T T) -8 NIL NIL) (-741 1824175 1824617 1824645 "OCAMON" 1824650 T OCAMON (NIL) -9 NIL 1824671) (-740 1823733 1824048 1824076 "OASGP" 1824081 T OASGP (NIL) -9 NIL 1824101) (-739 1823021 1823484 1823512 "OAMONS" 1823552 T OAMONS (NIL) -9 NIL 1823595) (-738 1822462 1822869 1822897 "OAMON" 1822902 T OAMON (NIL) -9 NIL 1822922) (-737 1821767 1822259 1822287 "OAGROUP" 1822292 T OAGROUP (NIL) -9 NIL 1822312) (-736 1821457 1821507 1821595 "NUMTUBE" 1821711 NIL NUMTUBE (NIL T) -7 NIL NIL) (-735 1815030 1816548 1818084 "NUMQUAD" 1819941 T NUMQUAD (NIL) -7 NIL NIL) (-734 1810786 1811774 1812799 "NUMODE" 1814025 T NUMODE (NIL) -7 NIL NIL) (-733 1808190 1809036 1809064 "NUMINT" 1809981 T NUMINT (NIL) -9 NIL 1810737) (-732 1807138 1807335 1807553 "NUMFMT" 1807992 T NUMFMT (NIL) -7 NIL NIL) (-731 1793517 1796454 1798984 "NUMERIC" 1804647 NIL NUMERIC (NIL T) -7 NIL NIL) (-730 1787918 1792970 1793064 "NTSCAT" 1793069 NIL NTSCAT (NIL T T T T) -9 NIL 1793107) (-729 1787112 1787277 1787470 "NTPOLFN" 1787757 NIL NTPOLFN (NIL T) -7 NIL NIL) (-728 1774928 1783954 1784764 "NSUP" 1786334 NIL NSUP (NIL T) -8 NIL NIL) (-727 1774564 1774621 1774728 "NSUP2" 1774865 NIL NSUP2 (NIL T T) -7 NIL NIL) (-726 1764526 1774343 1774473 "NSMP" 1774478 NIL NSMP (NIL T T) -8 NIL NIL) (-725 1762958 1763259 1763616 "NREP" 1764214 NIL NREP (NIL T) -7 NIL NIL) (-724 1761549 1761801 1762159 "NPCOEF" 1762701 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-723 1760615 1760730 1760946 "NORMRETR" 1761430 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-722 1758668 1758958 1759365 "NORMPK" 1760323 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-721 1758353 1758381 1758505 "NORMMA" 1758634 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-720 1758180 1758310 1758339 "NONE" 1758344 T NONE (NIL) -8 NIL NIL) (-719 1757969 1757998 1758067 "NONE1" 1758144 NIL NONE1 (NIL T) -7 NIL NIL) (-718 1757454 1757516 1757701 "NODE1" 1757901 NIL NODE1 (NIL T T) -7 NIL NIL) (-717 1755748 1756617 1756872 "NNI" 1757219 T NNI (NIL) -8 NIL NIL) (-716 1754168 1754481 1754845 "NLINSOL" 1755416 NIL NLINSOL (NIL T) -7 NIL NIL) (-715 1750335 1751303 1752225 "NIPROB" 1753266 T NIPROB (NIL) -8 NIL NIL) (-714 1749092 1749326 1749628 "NFINTBAS" 1750097 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-713 1747800 1748031 1748312 "NCODIV" 1748860 NIL NCODIV (NIL T T) -7 NIL NIL) (-712 1747562 1747599 1747674 "NCNTFRAC" 1747757 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-711 1745742 1746106 1746526 "NCEP" 1747187 NIL NCEP (NIL T) -7 NIL NIL) (-710 1744654 1745393 1745421 "NASRING" 1745531 T NASRING (NIL) -9 NIL 1745605) (-709 1744449 1744493 1744587 "NASRING-" 1744592 NIL NASRING- (NIL T) -8 NIL NIL) (-708 1743603 1744102 1744130 "NARNG" 1744247 T NARNG (NIL) -9 NIL 1744338) (-707 1743295 1743362 1743496 "NARNG-" 1743501 NIL NARNG- (NIL T) -8 NIL NIL) (-706 1742174 1742381 1742616 "NAGSP" 1743080 T NAGSP (NIL) -7 NIL NIL) (-705 1733598 1735244 1736879 "NAGS" 1740559 T NAGS (NIL) -7 NIL NIL) (-704 1732162 1732466 1732793 "NAGF07" 1733291 T NAGF07 (NIL) -7 NIL NIL) (-703 1726744 1728024 1729320 "NAGF04" 1730886 T NAGF04 (NIL) -7 NIL NIL) (-702 1719776 1721374 1722991 "NAGF02" 1725147 T NAGF02 (NIL) -7 NIL NIL) (-701 1715040 1716130 1717237 "NAGF01" 1718689 T NAGF01 (NIL) -7 NIL NIL) (-700 1708700 1710258 1711835 "NAGE04" 1713483 T NAGE04 (NIL) -7 NIL NIL) (-699 1699941 1702044 1704156 "NAGE02" 1706608 T NAGE02 (NIL) -7 NIL NIL) (-698 1695934 1696871 1697825 "NAGE01" 1699007 T NAGE01 (NIL) -7 NIL NIL) (-697 1693741 1694272 1694827 "NAGD03" 1695399 T NAGD03 (NIL) -7 NIL NIL) (-696 1685527 1687446 1689391 "NAGD02" 1691816 T NAGD02 (NIL) -7 NIL NIL) (-695 1679386 1680799 1682227 "NAGD01" 1684119 T NAGD01 (NIL) -7 NIL NIL) (-694 1675643 1676453 1677278 "NAGC06" 1678581 T NAGC06 (NIL) -7 NIL NIL) (-693 1674120 1674449 1674802 "NAGC05" 1675310 T NAGC05 (NIL) -7 NIL NIL) (-692 1673504 1673621 1673763 "NAGC02" 1673998 T NAGC02 (NIL) -7 NIL NIL) (-691 1672566 1673123 1673163 "NAALG" 1673242 NIL NAALG (NIL T) -9 NIL 1673303) (-690 1672401 1672430 1672520 "NAALG-" 1672525 NIL NAALG- (NIL T T) -8 NIL NIL) (-689 1666351 1667459 1668646 "MULTSQFR" 1671297 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-688 1665670 1665745 1665929 "MULTFACT" 1666263 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-687 1658864 1662775 1662827 "MTSCAT" 1663887 NIL MTSCAT (NIL T T) -9 NIL 1664401) (-686 1658576 1658630 1658722 "MTHING" 1658804 NIL MTHING (NIL T) -7 NIL NIL) (-685 1658368 1658401 1658461 "MSYSCMD" 1658536 T MSYSCMD (NIL) -7 NIL NIL) (-684 1654480 1657123 1657443 "MSET" 1658081 NIL MSET (NIL T) -8 NIL NIL) (-683 1651576 1654042 1654083 "MSETAGG" 1654088 NIL MSETAGG (NIL T) -9 NIL 1654122) (-682 1647432 1648974 1649715 "MRING" 1650879 NIL MRING (NIL T T) -8 NIL NIL) (-681 1647002 1647069 1647198 "MRF2" 1647359 NIL MRF2 (NIL T T T) -7 NIL NIL) (-680 1646620 1646655 1646799 "MRATFAC" 1646961 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-679 1644232 1644527 1644958 "MPRFF" 1646325 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-678 1638252 1644087 1644183 "MPOLY" 1644188 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-677 1637742 1637777 1637985 "MPCPF" 1638211 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-676 1637258 1637301 1637484 "MPC3" 1637693 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-675 1636459 1636540 1636759 "MPC2" 1637173 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-674 1634760 1635097 1635487 "MONOTOOL" 1636119 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-673 1633885 1634220 1634248 "MONOID" 1634525 T MONOID (NIL) -9 NIL 1634697) (-672 1633263 1633426 1633669 "MONOID-" 1633674 NIL MONOID- (NIL T) -8 NIL NIL) (-671 1624244 1630230 1630289 "MONOGEN" 1630963 NIL MONOGEN (NIL T T) -9 NIL 1631419) (-670 1621462 1622197 1623197 "MONOGEN-" 1623316 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-669 1620322 1620742 1620770 "MONADWU" 1621162 T MONADWU (NIL) -9 NIL 1621400) (-668 1619694 1619853 1620101 "MONADWU-" 1620106 NIL MONADWU- (NIL T) -8 NIL NIL) (-667 1619080 1619298 1619326 "MONAD" 1619533 T MONAD (NIL) -9 NIL 1619645) (-666 1618765 1618843 1618975 "MONAD-" 1618980 NIL MONAD- (NIL T) -8 NIL NIL) (-665 1617016 1617678 1617957 "MOEBIUS" 1618518 NIL MOEBIUS (NIL T) -8 NIL NIL) (-664 1616410 1616788 1616828 "MODULE" 1616833 NIL MODULE (NIL T) -9 NIL 1616859) (-663 1615978 1616074 1616264 "MODULE-" 1616269 NIL MODULE- (NIL T T) -8 NIL NIL) (-662 1613649 1614344 1614670 "MODRING" 1615803 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-661 1610605 1611770 1612287 "MODOP" 1613181 NIL MODOP (NIL T T) -8 NIL NIL) (-660 1608792 1609244 1609585 "MODMONOM" 1610404 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-659 1598471 1606996 1607418 "MODMON" 1608420 NIL MODMON (NIL T T) -8 NIL NIL) (-658 1595597 1597315 1597591 "MODFIELD" 1598346 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-657 1594601 1594878 1595068 "MMLFORM" 1595427 T MMLFORM (NIL) -8 NIL NIL) (-656 1594127 1594170 1594349 "MMAP" 1594552 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-655 1592364 1593141 1593181 "MLO" 1593598 NIL MLO (NIL T) -9 NIL 1593839) (-654 1589731 1590246 1590848 "MLIFT" 1591845 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-653 1589122 1589206 1589360 "MKUCFUNC" 1589642 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-652 1588721 1588791 1588914 "MKRECORD" 1589045 NIL MKRECORD (NIL T T) -7 NIL NIL) (-651 1587769 1587930 1588158 "MKFUNC" 1588532 NIL MKFUNC (NIL T) -7 NIL NIL) (-650 1587157 1587261 1587417 "MKFLCFN" 1587652 NIL MKFLCFN (NIL T) -7 NIL NIL) (-649 1586583 1586950 1587039 "MKCHSET" 1587101 NIL MKCHSET (NIL T) -8 NIL NIL) (-648 1585860 1585962 1586147 "MKBCFUNC" 1586476 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-647 1582544 1585414 1585550 "MINT" 1585744 T MINT (NIL) -8 NIL NIL) (-646 1581356 1581599 1581876 "MHROWRED" 1582299 NIL MHROWRED (NIL T) -7 NIL NIL) (-645 1576627 1579801 1580225 "MFLOAT" 1580952 T MFLOAT (NIL) -8 NIL NIL) (-644 1575984 1576060 1576231 "MFINFACT" 1576539 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-643 1572299 1573147 1574031 "MESH" 1575120 T MESH (NIL) -7 NIL NIL) (-642 1570689 1571001 1571354 "MDDFACT" 1571986 NIL MDDFACT (NIL T) -7 NIL NIL) (-641 1567532 1569849 1569890 "MDAGG" 1570145 NIL MDAGG (NIL T) -9 NIL 1570288) (-640 1557230 1566825 1567032 "MCMPLX" 1567345 T MCMPLX (NIL) -8 NIL NIL) (-639 1556371 1556517 1556717 "MCDEN" 1557079 NIL MCDEN (NIL T T) -7 NIL NIL) (-638 1554261 1554531 1554911 "MCALCFN" 1556101 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-637 1553172 1553345 1553586 "MAYBE" 1554059 NIL MAYBE (NIL T) -8 NIL NIL) (-636 1550794 1551317 1551878 "MATSTOR" 1552643 NIL MATSTOR (NIL T) -7 NIL NIL) (-635 1546803 1550169 1550416 "MATRIX" 1550579 NIL MATRIX (NIL T) -8 NIL NIL) (-634 1542572 1543276 1544012 "MATLIN" 1546160 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-633 1532770 1535908 1535984 "MATCAT" 1540822 NIL MATCAT (NIL T T T) -9 NIL 1542239) (-632 1529135 1530148 1531503 "MATCAT-" 1531508 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-631 1527737 1527890 1528221 "MATCAT2" 1528970 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-630 1525849 1526173 1526557 "MAPPKG3" 1527412 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-629 1524830 1525003 1525225 "MAPPKG2" 1525673 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-628 1523329 1523613 1523940 "MAPPKG1" 1524536 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-627 1522940 1522998 1523121 "MAPHACK3" 1523265 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-626 1522532 1522593 1522707 "MAPHACK2" 1522872 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-625 1521970 1522073 1522215 "MAPHACK1" 1522423 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-624 1520078 1520672 1520975 "MAGMA" 1521699 NIL MAGMA (NIL T) -8 NIL NIL) (-623 1516552 1518322 1518782 "M3D" 1519651 NIL M3D (NIL T) -8 NIL NIL) (-622 1510708 1514923 1514964 "LZSTAGG" 1515746 NIL LZSTAGG (NIL T) -9 NIL 1516041) (-621 1506681 1507839 1509296 "LZSTAGG-" 1509301 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-620 1503797 1504574 1505060 "LWORD" 1506227 NIL LWORD (NIL T) -8 NIL NIL) (-619 1496957 1503568 1503702 "LSQM" 1503707 NIL LSQM (NIL NIL T) -8 NIL NIL) (-618 1496181 1496320 1496548 "LSPP" 1496812 NIL LSPP (NIL T T T T) -7 NIL NIL) (-617 1493993 1494294 1494750 "LSMP" 1495870 NIL LSMP (NIL T T T T) -7 NIL NIL) (-616 1490772 1491446 1492176 "LSMP1" 1493295 NIL LSMP1 (NIL T) -7 NIL NIL) (-615 1484699 1489941 1489982 "LSAGG" 1490044 NIL LSAGG (NIL T) -9 NIL 1490122) (-614 1481394 1482318 1483531 "LSAGG-" 1483536 NIL LSAGG- (NIL T T) -8 NIL NIL) (-613 1479020 1480538 1480787 "LPOLY" 1481189 NIL LPOLY (NIL T T) -8 NIL NIL) (-612 1478602 1478687 1478810 "LPEFRAC" 1478929 NIL LPEFRAC (NIL T) -7 NIL NIL) (-611 1476949 1477696 1477949 "LO" 1478434 NIL LO (NIL T T T) -8 NIL NIL) (-610 1476603 1476715 1476743 "LOGIC" 1476854 T LOGIC (NIL) -9 NIL 1476934) (-609 1476465 1476488 1476559 "LOGIC-" 1476564 NIL LOGIC- (NIL T) -8 NIL NIL) (-608 1475658 1475798 1475991 "LODOOPS" 1476321 NIL LODOOPS (NIL T T) -7 NIL NIL) (-607 1473076 1475575 1475640 "LODO" 1475645 NIL LODO (NIL T NIL) -8 NIL NIL) (-606 1471622 1471857 1472208 "LODOF" 1472823 NIL LODOF (NIL T T) -7 NIL NIL) (-605 1468042 1470478 1470518 "LODOCAT" 1470950 NIL LODOCAT (NIL T) -9 NIL 1471161) (-604 1467776 1467834 1467960 "LODOCAT-" 1467965 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-603 1465090 1467617 1467735 "LODO2" 1467740 NIL LODO2 (NIL T T) -8 NIL NIL) (-602 1462519 1465027 1465072 "LODO1" 1465077 NIL LODO1 (NIL T) -8 NIL NIL) (-601 1461382 1461547 1461858 "LODEEF" 1462342 NIL LODEEF (NIL T T T) -7 NIL NIL) (-600 1456669 1459513 1459554 "LNAGG" 1460501 NIL LNAGG (NIL T) -9 NIL 1460945) (-599 1455816 1456030 1456372 "LNAGG-" 1456377 NIL LNAGG- (NIL T T) -8 NIL NIL) (-598 1451981 1452743 1453381 "LMOPS" 1455232 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-597 1451379 1451741 1451781 "LMODULE" 1451841 NIL LMODULE (NIL T) -9 NIL 1451883) (-596 1448625 1451024 1451147 "LMDICT" 1451289 NIL LMDICT (NIL T) -8 NIL NIL) (-595 1441852 1447571 1447869 "LIST" 1448360 NIL LIST (NIL T) -8 NIL NIL) (-594 1441377 1441451 1441590 "LIST3" 1441772 NIL LIST3 (NIL T T T) -7 NIL NIL) (-593 1440384 1440562 1440790 "LIST2" 1441195 NIL LIST2 (NIL T T) -7 NIL NIL) (-592 1438518 1438830 1439229 "LIST2MAP" 1440031 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-591 1437231 1437911 1437951 "LINEXP" 1438204 NIL LINEXP (NIL T) -9 NIL 1438352) (-590 1435878 1436138 1436435 "LINDEP" 1436983 NIL LINDEP (NIL T T) -7 NIL NIL) (-589 1432645 1433364 1434141 "LIMITRF" 1435133 NIL LIMITRF (NIL T) -7 NIL NIL) (-588 1430925 1431220 1431635 "LIMITPS" 1432340 NIL LIMITPS (NIL T T) -7 NIL NIL) (-587 1425380 1430436 1430664 "LIE" 1430746 NIL LIE (NIL T T) -8 NIL NIL) (-586 1424431 1424874 1424914 "LIECAT" 1425054 NIL LIECAT (NIL T) -9 NIL 1425205) (-585 1424272 1424299 1424387 "LIECAT-" 1424392 NIL LIECAT- (NIL T T) -8 NIL NIL) (-584 1416884 1423721 1423886 "LIB" 1424127 T LIB (NIL) -8 NIL NIL) (-583 1412521 1413402 1414337 "LGROBP" 1416001 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-582 1410387 1410661 1411023 "LF" 1412242 NIL LF (NIL T T) -7 NIL NIL) (-581 1409227 1409919 1409947 "LFCAT" 1410154 T LFCAT (NIL) -9 NIL 1410293) (-580 1406139 1406765 1407451 "LEXTRIPK" 1408593 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-579 1402845 1403709 1404212 "LEXP" 1405719 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-578 1401243 1401556 1401957 "LEADCDET" 1402527 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-577 1400439 1400513 1400740 "LAZM3PK" 1401164 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-576 1395356 1398518 1399055 "LAUPOL" 1399952 NIL LAUPOL (NIL T T) -8 NIL NIL) (-575 1394923 1394967 1395134 "LAPLACE" 1395306 NIL LAPLACE (NIL T T) -7 NIL NIL) (-574 1392851 1394024 1394275 "LA" 1394756 NIL LA (NIL T T T) -8 NIL NIL) (-573 1391914 1392508 1392548 "LALG" 1392609 NIL LALG (NIL T) -9 NIL 1392667) (-572 1391629 1391688 1391823 "LALG-" 1391828 NIL LALG- (NIL T T) -8 NIL NIL) (-571 1390539 1390726 1391023 "KOVACIC" 1391429 NIL KOVACIC (NIL T T) -7 NIL NIL) (-570 1390374 1390398 1390439 "KONVERT" 1390501 NIL KONVERT (NIL T) -9 NIL NIL) (-569 1390209 1390233 1390274 "KOERCE" 1390336 NIL KOERCE (NIL T) -9 NIL NIL) (-568 1387943 1388703 1389096 "KERNEL" 1389848 NIL KERNEL (NIL T) -8 NIL NIL) (-567 1387445 1387526 1387656 "KERNEL2" 1387857 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-566 1381297 1385985 1386039 "KDAGG" 1386416 NIL KDAGG (NIL T T) -9 NIL 1386622) (-565 1380826 1380950 1381155 "KDAGG-" 1381160 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-564 1374001 1380487 1380642 "KAFILE" 1380704 NIL KAFILE (NIL T) -8 NIL NIL) (-563 1368456 1373512 1373740 "JORDAN" 1373822 NIL JORDAN (NIL T T) -8 NIL NIL) (-562 1368185 1368244 1368331 "JAVACODE" 1368389 T JAVACODE (NIL) -8 NIL NIL) (-561 1364485 1366391 1366445 "IXAGG" 1367374 NIL IXAGG (NIL T T) -9 NIL 1367833) (-560 1363404 1363710 1364129 "IXAGG-" 1364134 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-559 1358989 1363326 1363385 "IVECTOR" 1363390 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-558 1357755 1357992 1358258 "ITUPLE" 1358756 NIL ITUPLE (NIL T) -8 NIL NIL) (-557 1356191 1356368 1356674 "ITRIGMNP" 1357577 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-556 1354936 1355140 1355423 "ITFUN3" 1355967 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-555 1354568 1354625 1354734 "ITFUN2" 1354873 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-554 1352370 1353441 1353738 "ITAYLOR" 1354303 NIL ITAYLOR (NIL T) -8 NIL NIL) (-553 1341358 1346556 1347715 "ISUPS" 1351243 NIL ISUPS (NIL T) -8 NIL NIL) (-552 1340462 1340602 1340838 "ISUMP" 1341205 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-551 1335726 1340263 1340342 "ISTRING" 1340415 NIL ISTRING (NIL NIL) -8 NIL NIL) (-550 1334939 1335020 1335235 "IRURPK" 1335640 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-549 1333875 1334076 1334316 "IRSN" 1334719 T IRSN (NIL) -7 NIL NIL) (-548 1331910 1332265 1332700 "IRRF2F" 1333513 NIL IRRF2F (NIL T) -7 NIL NIL) (-547 1331657 1331695 1331771 "IRREDFFX" 1331866 NIL IRREDFFX (NIL T) -7 NIL NIL) (-546 1330272 1330531 1330830 "IROOT" 1331390 NIL IROOT (NIL T) -7 NIL NIL) (-545 1326910 1327961 1328651 "IR" 1329614 NIL IR (NIL T) -8 NIL NIL) (-544 1324523 1325018 1325584 "IR2" 1326388 NIL IR2 (NIL T T) -7 NIL NIL) (-543 1323599 1323712 1323932 "IR2F" 1324406 NIL IR2F (NIL T T) -7 NIL NIL) (-542 1323390 1323424 1323484 "IPRNTPK" 1323559 T IPRNTPK (NIL) -7 NIL NIL) (-541 1319944 1323279 1323348 "IPF" 1323353 NIL IPF (NIL NIL) -8 NIL NIL) (-540 1318261 1319869 1319926 "IPADIC" 1319931 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-539 1317760 1317818 1318007 "INVLAPLA" 1318197 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-538 1307409 1309762 1312148 "INTTR" 1315424 NIL INTTR (NIL T T) -7 NIL NIL) (-537 1303757 1304498 1305361 "INTTOOLS" 1306595 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-536 1303343 1303434 1303551 "INTSLPE" 1303660 T INTSLPE (NIL) -7 NIL NIL) (-535 1301293 1303266 1303325 "INTRVL" 1303330 NIL INTRVL (NIL T) -8 NIL NIL) (-534 1298900 1299412 1299986 "INTRF" 1300778 NIL INTRF (NIL T) -7 NIL NIL) (-533 1298315 1298412 1298553 "INTRET" 1298798 NIL INTRET (NIL T) -7 NIL NIL) (-532 1296317 1296706 1297175 "INTRAT" 1297923 NIL INTRAT (NIL T T) -7 NIL NIL) (-531 1293550 1294133 1294758 "INTPM" 1295802 NIL INTPM (NIL T T) -7 NIL NIL) (-530 1290259 1290858 1291602 "INTPAF" 1292936 NIL INTPAF (NIL T T T) -7 NIL NIL) (-529 1285502 1286448 1287483 "INTPACK" 1289244 T INTPACK (NIL) -7 NIL NIL) (-528 1282356 1285231 1285358 "INT" 1285395 T INT (NIL) -8 NIL NIL) (-527 1281608 1281760 1281968 "INTHERTR" 1282198 NIL INTHERTR (NIL T T) -7 NIL NIL) (-526 1281047 1281127 1281315 "INTHERAL" 1281522 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-525 1278893 1279336 1279793 "INTHEORY" 1280610 T INTHEORY (NIL) -7 NIL NIL) (-524 1270215 1271836 1273614 "INTG0" 1277245 NIL INTG0 (NIL T T T) -7 NIL NIL) (-523 1250788 1255578 1260388 "INTFTBL" 1265425 T INTFTBL (NIL) -8 NIL NIL) (-522 1250037 1250175 1250348 "INTFACT" 1250647 NIL INTFACT (NIL T) -7 NIL NIL) (-521 1247428 1247874 1248437 "INTEF" 1249591 NIL INTEF (NIL T T) -7 NIL NIL) (-520 1245890 1246639 1246667 "INTDOM" 1246968 T INTDOM (NIL) -9 NIL 1247175) (-519 1245259 1245433 1245675 "INTDOM-" 1245680 NIL INTDOM- (NIL T) -8 NIL NIL) (-518 1241752 1243684 1243738 "INTCAT" 1244537 NIL INTCAT (NIL T) -9 NIL 1244856) (-517 1241225 1241327 1241455 "INTBIT" 1241644 T INTBIT (NIL) -7 NIL NIL) (-516 1239900 1240054 1240367 "INTALG" 1241070 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-515 1239357 1239447 1239617 "INTAF" 1239804 NIL INTAF (NIL T T) -7 NIL NIL) (-514 1232811 1239167 1239307 "INTABL" 1239312 NIL INTABL (NIL T T T) -8 NIL NIL) (-513 1227762 1230491 1230519 "INS" 1231487 T INS (NIL) -9 NIL 1232168) (-512 1225002 1225773 1226747 "INS-" 1226820 NIL INS- (NIL T) -8 NIL NIL) (-511 1223781 1224008 1224305 "INPSIGN" 1224755 NIL INPSIGN (NIL T T) -7 NIL NIL) (-510 1222899 1223016 1223213 "INPRODPF" 1223661 NIL INPRODPF (NIL T T) -7 NIL NIL) (-509 1221793 1221910 1222147 "INPRODFF" 1222779 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-508 1220793 1220945 1221205 "INNMFACT" 1221629 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-507 1219990 1220087 1220275 "INMODGCD" 1220692 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-506 1218499 1218743 1219067 "INFSP" 1219735 NIL INFSP (NIL T T T) -7 NIL NIL) (-505 1217683 1217800 1217983 "INFPROD0" 1218379 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-504 1214694 1215852 1216343 "INFORM" 1217200 T INFORM (NIL) -8 NIL NIL) (-503 1214304 1214364 1214462 "INFORM1" 1214629 NIL INFORM1 (NIL T) -7 NIL NIL) (-502 1213827 1213916 1214030 "INFINITY" 1214210 T INFINITY (NIL) -7 NIL NIL) (-501 1212444 1212693 1213014 "INEP" 1213575 NIL INEP (NIL T T T) -7 NIL NIL) (-500 1211720 1212341 1212406 "INDE" 1212411 NIL INDE (NIL T) -8 NIL NIL) (-499 1211284 1211352 1211469 "INCRMAPS" 1211647 NIL INCRMAPS (NIL T) -7 NIL NIL) (-498 1206595 1207520 1208464 "INBFF" 1210372 NIL INBFF (NIL T) -7 NIL NIL) (-497 1203090 1206440 1206543 "IMATRIX" 1206548 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-496 1201802 1201925 1202240 "IMATQF" 1202946 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-495 1200022 1200249 1200586 "IMATLIN" 1201558 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-494 1194648 1199946 1200004 "ILIST" 1200009 NIL ILIST (NIL T NIL) -8 NIL NIL) (-493 1192601 1194508 1194621 "IIARRAY2" 1194626 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-492 1187969 1192512 1192576 "IFF" 1192581 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-491 1183012 1187261 1187449 "IFARRAY" 1187826 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-490 1182219 1182916 1182989 "IFAMON" 1182994 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-489 1181803 1181868 1181922 "IEVALAB" 1182129 NIL IEVALAB (NIL T T) -9 NIL NIL) (-488 1181478 1181546 1181706 "IEVALAB-" 1181711 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-487 1181136 1181392 1181455 "IDPO" 1181460 NIL IDPO (NIL T T) -8 NIL NIL) (-486 1180413 1181025 1181100 "IDPOAMS" 1181105 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-485 1179747 1180302 1180377 "IDPOAM" 1180382 NIL IDPOAM (NIL T T) -8 NIL NIL) (-484 1178833 1179083 1179136 "IDPC" 1179549 NIL IDPC (NIL T T) -9 NIL 1179698) (-483 1178329 1178725 1178798 "IDPAM" 1178803 NIL IDPAM (NIL T T) -8 NIL NIL) (-482 1177732 1178221 1178294 "IDPAG" 1178299 NIL IDPAG (NIL T T) -8 NIL NIL) (-481 1173987 1174835 1175730 "IDECOMP" 1176889 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-480 1166860 1167910 1168957 "IDEAL" 1173023 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-479 1166024 1166136 1166335 "ICDEN" 1166744 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-478 1165123 1165504 1165651 "ICARD" 1165897 T ICARD (NIL) -8 NIL NIL) (-477 1163195 1163508 1163911 "IBPTOOLS" 1164800 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-476 1158809 1162815 1162928 "IBITS" 1163114 NIL IBITS (NIL NIL) -8 NIL NIL) (-475 1155532 1156108 1156803 "IBATOOL" 1158226 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-474 1153312 1153773 1154306 "IBACHIN" 1155067 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-473 1151189 1153158 1153261 "IARRAY2" 1153266 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-472 1147342 1151115 1151172 "IARRAY1" 1151177 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-471 1141280 1145760 1146238 "IAN" 1146884 T IAN (NIL) -8 NIL NIL) (-470 1140791 1140848 1141021 "IALGFACT" 1141217 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-469 1140319 1140432 1140460 "HYPCAT" 1140667 T HYPCAT (NIL) -9 NIL NIL) (-468 1139857 1139974 1140160 "HYPCAT-" 1140165 NIL HYPCAT- (NIL T) -8 NIL NIL) (-467 1136537 1137868 1137909 "HOAGG" 1138890 NIL HOAGG (NIL T) -9 NIL 1139569) (-466 1135131 1135530 1136056 "HOAGG-" 1136061 NIL HOAGG- (NIL T T) -8 NIL NIL) (-465 1128961 1134572 1134738 "HEXADEC" 1134985 T HEXADEC (NIL) -8 NIL NIL) (-464 1127709 1127931 1128194 "HEUGCD" 1128738 NIL HEUGCD (NIL T) -7 NIL NIL) (-463 1126812 1127546 1127676 "HELLFDIV" 1127681 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-462 1125040 1126589 1126677 "HEAP" 1126756 NIL HEAP (NIL T) -8 NIL NIL) (-461 1124379 1124619 1124747 "HEADAST" 1124932 T HEADAST (NIL) -8 NIL NIL) (-460 1118246 1124294 1124356 "HDP" 1124361 NIL HDP (NIL NIL T) -8 NIL NIL) (-459 1111958 1117883 1118034 "HDMP" 1118147 NIL HDMP (NIL NIL T) -8 NIL NIL) (-458 1111283 1111422 1111586 "HB" 1111814 T HB (NIL) -7 NIL NIL) (-457 1104780 1111129 1111233 "HASHTBL" 1111238 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-456 1102533 1104408 1104587 "HACKPI" 1104621 T HACKPI (NIL) -8 NIL NIL) (-455 1098229 1102387 1102499 "GTSET" 1102504 NIL GTSET (NIL T T T T) -8 NIL NIL) (-454 1091755 1098107 1098205 "GSTBL" 1098210 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-453 1083988 1090791 1091055 "GSERIES" 1091546 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-452 1083011 1083464 1083492 "GROUP" 1083753 T GROUP (NIL) -9 NIL 1083912) (-451 1082127 1082350 1082694 "GROUP-" 1082699 NIL GROUP- (NIL T) -8 NIL NIL) (-450 1080496 1080815 1081202 "GROEBSOL" 1081804 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-449 1079437 1079699 1079750 "GRMOD" 1080279 NIL GRMOD (NIL T T) -9 NIL 1080447) (-448 1079205 1079241 1079369 "GRMOD-" 1079374 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-447 1074530 1075559 1076559 "GRIMAGE" 1078225 T GRIMAGE (NIL) -8 NIL NIL) (-446 1072997 1073257 1073581 "GRDEF" 1074226 T GRDEF (NIL) -7 NIL NIL) (-445 1072441 1072557 1072698 "GRAY" 1072876 T GRAY (NIL) -7 NIL NIL) (-444 1071675 1072055 1072106 "GRALG" 1072259 NIL GRALG (NIL T T) -9 NIL 1072351) (-443 1071336 1071409 1071572 "GRALG-" 1071577 NIL GRALG- (NIL T T T) -8 NIL NIL) (-442 1068144 1070925 1071101 "GPOLSET" 1071243 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-441 1067500 1067557 1067814 "GOSPER" 1068081 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-440 1063259 1063938 1064464 "GMODPOL" 1067199 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-439 1062264 1062448 1062686 "GHENSEL" 1063071 NIL GHENSEL (NIL T T) -7 NIL NIL) (-438 1056330 1057173 1058199 "GENUPS" 1061348 NIL GENUPS (NIL T T) -7 NIL NIL) (-437 1056027 1056078 1056167 "GENUFACT" 1056273 NIL GENUFACT (NIL T) -7 NIL NIL) (-436 1055439 1055516 1055681 "GENPGCD" 1055945 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-435 1054913 1054948 1055161 "GENMFACT" 1055398 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-434 1053481 1053736 1054043 "GENEEZ" 1054656 NIL GENEEZ (NIL T T) -7 NIL NIL) (-433 1047355 1053094 1053255 "GDMP" 1053404 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-432 1036732 1041126 1042232 "GCNAALG" 1046338 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-431 1035154 1036026 1036054 "GCDDOM" 1036309 T GCDDOM (NIL) -9 NIL 1036466) (-430 1034624 1034751 1034966 "GCDDOM-" 1034971 NIL GCDDOM- (NIL T) -8 NIL NIL) (-429 1033296 1033481 1033785 "GB" 1034403 NIL GB (NIL T T T T) -7 NIL NIL) (-428 1021916 1024242 1026634 "GBINTERN" 1030987 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-427 1019753 1020045 1020466 "GBF" 1021591 NIL GBF (NIL T T T T) -7 NIL NIL) (-426 1018534 1018699 1018966 "GBEUCLID" 1019569 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-425 1017883 1018008 1018157 "GAUSSFAC" 1018405 T GAUSSFAC (NIL) -7 NIL NIL) (-424 1016260 1016562 1016875 "GALUTIL" 1017602 NIL GALUTIL (NIL T) -7 NIL NIL) (-423 1014577 1014851 1015174 "GALPOLYU" 1015987 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-422 1011966 1012256 1012661 "GALFACTU" 1014274 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-421 1003772 1005271 1006879 "GALFACT" 1010398 NIL GALFACT (NIL T) -7 NIL NIL) (-420 1001160 1001818 1001846 "FVFUN" 1003002 T FVFUN (NIL) -9 NIL 1003722) (-419 1000426 1000608 1000636 "FVC" 1000927 T FVC (NIL) -9 NIL 1001110) (-418 1000068 1000223 1000304 "FUNCTION" 1000378 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-417 997738 998289 998778 "FT" 999599 T FT (NIL) -8 NIL NIL) (-416 996556 997039 997242 "FTEM" 997555 T FTEM (NIL) -8 NIL NIL) (-415 994821 995109 995511 "FSUPFACT" 996248 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-414 993218 993507 993839 "FST" 994509 T FST (NIL) -8 NIL NIL) (-413 992393 992499 992693 "FSRED" 993100 NIL FSRED (NIL T T) -7 NIL NIL) (-412 991072 991327 991681 "FSPRMELT" 992108 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-411 988157 988595 989094 "FSPECF" 990635 NIL FSPECF (NIL T T) -7 NIL NIL) (-410 970531 979088 979128 "FS" 982966 NIL FS (NIL T) -9 NIL 985248) (-409 959181 962171 966227 "FS-" 966524 NIL FS- (NIL T T) -8 NIL NIL) (-408 958697 958751 958927 "FSINT" 959122 NIL FSINT (NIL T T) -7 NIL NIL) (-407 956978 957690 957993 "FSERIES" 958476 NIL FSERIES (NIL T T) -8 NIL NIL) (-406 955996 956112 956342 "FSCINT" 956858 NIL FSCINT (NIL T T) -7 NIL NIL) (-405 952231 954941 954982 "FSAGG" 955352 NIL FSAGG (NIL T) -9 NIL 955611) (-404 949993 950594 951390 "FSAGG-" 951485 NIL FSAGG- (NIL T T) -8 NIL NIL) (-403 949035 949178 949405 "FSAGG2" 949846 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-402 946694 946973 947526 "FS2UPS" 948753 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-401 946280 946323 946476 "FS2" 946645 NIL FS2 (NIL T T T T) -7 NIL NIL) (-400 945140 945311 945619 "FS2EXPXP" 946105 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-399 944566 944681 944833 "FRUTIL" 945020 NIL FRUTIL (NIL T) -7 NIL NIL) (-398 935986 940065 941421 "FR" 943242 NIL FR (NIL T) -8 NIL NIL) (-397 931063 933706 933746 "FRNAALG" 935142 NIL FRNAALG (NIL T) -9 NIL 935749) (-396 926741 927812 929087 "FRNAALG-" 929837 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-395 926379 926422 926549 "FRNAAF2" 926692 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-394 924744 925236 925530 "FRMOD" 926192 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-393 922466 923135 923451 "FRIDEAL" 924535 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-392 921665 921752 922039 "FRIDEAL2" 922373 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-391 920923 921331 921372 "FRETRCT" 921377 NIL FRETRCT (NIL T) -9 NIL 921548) (-390 920035 920266 920617 "FRETRCT-" 920622 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-389 917245 918465 918524 "FRAMALG" 919406 NIL FRAMALG (NIL T T) -9 NIL 919698) (-388 915378 915834 916464 "FRAMALG-" 916687 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-387 909280 914853 915129 "FRAC" 915134 NIL FRAC (NIL T) -8 NIL NIL) (-386 908916 908973 909080 "FRAC2" 909217 NIL FRAC2 (NIL T T) -7 NIL NIL) (-385 908552 908609 908716 "FR2" 908853 NIL FR2 (NIL T T) -7 NIL NIL) (-384 903226 906139 906167 "FPS" 907286 T FPS (NIL) -9 NIL 907842) (-383 902675 902784 902948 "FPS-" 903094 NIL FPS- (NIL T) -8 NIL NIL) (-382 900124 901821 901849 "FPC" 902074 T FPC (NIL) -9 NIL 902216) (-381 899917 899957 900054 "FPC-" 900059 NIL FPC- (NIL T) -8 NIL NIL) (-380 898796 899406 899447 "FPATMAB" 899452 NIL FPATMAB (NIL T) -9 NIL 899604) (-379 896496 896972 897398 "FPARFRAC" 898433 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-378 891889 892388 893070 "FORTRAN" 895928 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-377 889605 890105 890644 "FORT" 891370 T FORT (NIL) -7 NIL NIL) (-376 887281 887843 887871 "FORTFN" 888931 T FORTFN (NIL) -9 NIL 889555) (-375 887045 887095 887123 "FORTCAT" 887182 T FORTCAT (NIL) -9 NIL 887244) (-374 885105 885588 885987 "FORMULA" 886666 T FORMULA (NIL) -8 NIL NIL) (-373 884893 884923 884992 "FORMULA1" 885069 NIL FORMULA1 (NIL T) -7 NIL NIL) (-372 884416 884468 884641 "FORDER" 884835 NIL FORDER (NIL T T T T) -7 NIL NIL) (-371 883512 883676 883869 "FOP" 884243 T FOP (NIL) -7 NIL NIL) (-370 882120 882792 882966 "FNLA" 883394 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-369 880789 881178 881206 "FNCAT" 881778 T FNCAT (NIL) -9 NIL 882071) (-368 880355 880748 880776 "FNAME" 880781 T FNAME (NIL) -8 NIL NIL) (-367 879015 879988 880016 "FMTC" 880021 T FMTC (NIL) -9 NIL 880056) (-366 875333 876540 877168 "FMONOID" 878420 NIL FMONOID (NIL T) -8 NIL NIL) (-365 874553 875076 875224 "FM" 875229 NIL FM (NIL T T) -8 NIL NIL) (-364 871977 872623 872651 "FMFUN" 873795 T FMFUN (NIL) -9 NIL 874503) (-363 871246 871427 871455 "FMC" 871745 T FMC (NIL) -9 NIL 871927) (-362 868476 869310 869363 "FMCAT" 870545 NIL FMCAT (NIL T T) -9 NIL 871039) (-361 867371 868244 868343 "FM1" 868421 NIL FM1 (NIL T T) -8 NIL NIL) (-360 865145 865561 866055 "FLOATRP" 866922 NIL FLOATRP (NIL T) -7 NIL NIL) (-359 858631 862801 863431 "FLOAT" 864535 T FLOAT (NIL) -8 NIL NIL) (-358 856069 856569 857147 "FLOATCP" 858098 NIL FLOATCP (NIL T) -7 NIL NIL) (-357 854858 855706 855746 "FLINEXP" 855751 NIL FLINEXP (NIL T) -9 NIL 855844) (-356 854013 854248 854575 "FLINEXP-" 854580 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-355 853089 853233 853457 "FLASORT" 853865 NIL FLASORT (NIL T T) -7 NIL NIL) (-354 850308 851150 851202 "FLALG" 852429 NIL FLALG (NIL T T) -9 NIL 852896) (-353 844093 847795 847836 "FLAGG" 849098 NIL FLAGG (NIL T) -9 NIL 849750) (-352 842819 843158 843648 "FLAGG-" 843653 NIL FLAGG- (NIL T T) -8 NIL NIL) (-351 841861 842004 842231 "FLAGG2" 842672 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-350 838834 839852 839911 "FINRALG" 841039 NIL FINRALG (NIL T T) -9 NIL 841547) (-349 837994 838223 838562 "FINRALG-" 838567 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-348 837401 837614 837642 "FINITE" 837838 T FINITE (NIL) -9 NIL 837945) (-347 829861 832022 832062 "FINAALG" 835729 NIL FINAALG (NIL T) -9 NIL 837182) (-346 825202 826243 827387 "FINAALG-" 828766 NIL FINAALG- (NIL T T) -8 NIL NIL) (-345 824597 824957 825060 "FILE" 825132 NIL FILE (NIL T) -8 NIL NIL) (-344 823282 823594 823648 "FILECAT" 824332 NIL FILECAT (NIL T T) -9 NIL 824548) (-343 821145 822701 822729 "FIELD" 822769 T FIELD (NIL) -9 NIL 822849) (-342 819765 820150 820661 "FIELD-" 820666 NIL FIELD- (NIL T) -8 NIL NIL) (-341 817580 818402 818748 "FGROUP" 819452 NIL FGROUP (NIL T) -8 NIL NIL) (-340 816670 816834 817054 "FGLMICPK" 817412 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-339 812472 816595 816652 "FFX" 816657 NIL FFX (NIL T NIL) -8 NIL NIL) (-338 812073 812134 812269 "FFSLPE" 812405 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-337 808066 808845 809641 "FFPOLY" 811309 NIL FFPOLY (NIL T) -7 NIL NIL) (-336 807570 807606 807815 "FFPOLY2" 808024 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-335 803391 807489 807552 "FFP" 807557 NIL FFP (NIL T NIL) -8 NIL NIL) (-334 798759 803302 803366 "FF" 803371 NIL FF (NIL NIL NIL) -8 NIL NIL) (-333 793855 798102 798292 "FFNBX" 798613 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-332 788764 792990 793248 "FFNBP" 793709 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-331 783367 788048 788259 "FFNB" 788597 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-330 782199 782397 782712 "FFINTBAS" 783164 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-329 778423 780663 780691 "FFIELDC" 781311 T FFIELDC (NIL) -9 NIL 781687) (-328 777086 777456 777953 "FFIELDC-" 777958 NIL FFIELDC- (NIL T) -8 NIL NIL) (-327 776656 776701 776825 "FFHOM" 777028 NIL FFHOM (NIL T T T) -7 NIL NIL) (-326 774354 774838 775355 "FFF" 776171 NIL FFF (NIL T) -7 NIL NIL) (-325 769942 774096 774197 "FFCGX" 774297 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-324 765544 769674 769781 "FFCGP" 769885 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-323 760697 765271 765379 "FFCG" 765480 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-322 742643 751766 751852 "FFCAT" 757017 NIL FFCAT (NIL T T T) -9 NIL 758504) (-321 737841 738888 740202 "FFCAT-" 741432 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-320 737252 737295 737530 "FFCAT2" 737792 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-319 726452 730242 731459 "FEXPR" 736107 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-318 725452 725887 725928 "FEVALAB" 726012 NIL FEVALAB (NIL T) -9 NIL 726273) (-317 724611 724821 725159 "FEVALAB-" 725164 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-316 723204 723994 724197 "FDIV" 724510 NIL FDIV (NIL T T T T) -8 NIL NIL) (-315 720271 720986 721101 "FDIVCAT" 722669 NIL FDIVCAT (NIL T T T T) -9 NIL 723106) (-314 720033 720060 720230 "FDIVCAT-" 720235 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-313 719253 719340 719617 "FDIV2" 719940 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-312 717939 718198 718487 "FCPAK1" 718984 T FCPAK1 (NIL) -7 NIL NIL) (-311 717067 717439 717580 "FCOMP" 717830 NIL FCOMP (NIL T) -8 NIL NIL) (-310 700702 704116 707677 "FC" 713526 T FC (NIL) -8 NIL NIL) (-309 693298 697344 697384 "FAXF" 699186 NIL FAXF (NIL T) -9 NIL 699877) (-308 690577 691232 692057 "FAXF-" 692522 NIL FAXF- (NIL T T) -8 NIL NIL) (-307 685677 689953 690129 "FARRAY" 690434 NIL FARRAY (NIL T) -8 NIL NIL) (-306 681068 683139 683191 "FAMR" 684203 NIL FAMR (NIL T T) -9 NIL 684663) (-305 679959 680261 680695 "FAMR-" 680700 NIL FAMR- (NIL T T T) -8 NIL NIL) (-304 679155 679881 679934 "FAMONOID" 679939 NIL FAMONOID (NIL T) -8 NIL NIL) (-303 676988 677672 677725 "FAMONC" 678666 NIL FAMONC (NIL T T) -9 NIL 679051) (-302 675680 676742 676879 "FAGROUP" 676884 NIL FAGROUP (NIL T) -8 NIL NIL) (-301 673483 673802 674204 "FACUTIL" 675361 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-300 672582 672767 672989 "FACTFUNC" 673293 NIL FACTFUNC (NIL T) -7 NIL NIL) (-299 664902 671833 672045 "EXPUPXS" 672438 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-298 662385 662925 663511 "EXPRTUBE" 664336 T EXPRTUBE (NIL) -7 NIL NIL) (-297 658579 659171 659908 "EXPRODE" 661724 NIL EXPRODE (NIL T T) -7 NIL NIL) (-296 643738 657238 657664 "EXPR" 658185 NIL EXPR (NIL T) -8 NIL NIL) (-295 638166 638753 639565 "EXPR2UPS" 643036 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-294 637802 637859 637966 "EXPR2" 638103 NIL EXPR2 (NIL T T) -7 NIL NIL) (-293 629156 636939 637234 "EXPEXPAN" 637640 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-292 628983 629113 629142 "EXIT" 629147 T EXIT (NIL) -8 NIL NIL) (-291 628610 628672 628785 "EVALCYC" 628915 NIL EVALCYC (NIL T) -7 NIL NIL) (-290 628151 628269 628310 "EVALAB" 628480 NIL EVALAB (NIL T) -9 NIL 628584) (-289 627632 627754 627975 "EVALAB-" 627980 NIL EVALAB- (NIL T T) -8 NIL NIL) (-288 625095 626407 626435 "EUCDOM" 626990 T EUCDOM (NIL) -9 NIL 627340) (-287 623500 623942 624532 "EUCDOM-" 624537 NIL EUCDOM- (NIL T) -8 NIL NIL) (-286 611078 613826 616566 "ESTOOLS" 620780 T ESTOOLS (NIL) -7 NIL NIL) (-285 610714 610771 610878 "ESTOOLS2" 611015 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-284 610465 610507 610587 "ESTOOLS1" 610666 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-283 604403 606127 606155 "ES" 608919 T ES (NIL) -9 NIL 610325) (-282 599350 600637 602454 "ES-" 602618 NIL ES- (NIL T) -8 NIL NIL) (-281 595725 596485 597265 "ESCONT" 598590 T ESCONT (NIL) -7 NIL NIL) (-280 595470 595502 595584 "ESCONT1" 595687 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-279 595145 595195 595295 "ES2" 595414 NIL ES2 (NIL T T) -7 NIL NIL) (-278 594775 594833 594942 "ES1" 595081 NIL ES1 (NIL T T) -7 NIL NIL) (-277 593991 594120 594296 "ERROR" 594619 T ERROR (NIL) -7 NIL NIL) (-276 587494 593850 593941 "EQTBL" 593946 NIL EQTBL (NIL T T) -8 NIL NIL) (-275 579931 582812 584259 "EQ" 586080 NIL -3790 (NIL T) -8 NIL NIL) (-274 579563 579620 579729 "EQ2" 579868 NIL EQ2 (NIL T T) -7 NIL NIL) (-273 574855 575901 576994 "EP" 578502 NIL EP (NIL T) -7 NIL NIL) (-272 573437 573738 574055 "ENV" 574558 T ENV (NIL) -8 NIL NIL) (-271 572597 573161 573189 "ENTIRER" 573194 T ENTIRER (NIL) -9 NIL 573239) (-270 569053 570552 570922 "EMR" 572396 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-269 568197 568382 568436 "ELTAGG" 568816 NIL ELTAGG (NIL T T) -9 NIL 569027) (-268 567916 567978 568119 "ELTAGG-" 568124 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-267 567705 567734 567788 "ELTAB" 567872 NIL ELTAB (NIL T T) -9 NIL NIL) (-266 566831 566977 567176 "ELFUTS" 567556 NIL ELFUTS (NIL T T) -7 NIL NIL) (-265 566573 566629 566657 "ELEMFUN" 566762 T ELEMFUN (NIL) -9 NIL NIL) (-264 566443 566464 566532 "ELEMFUN-" 566537 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-263 561335 564544 564585 "ELAGG" 565525 NIL ELAGG (NIL T) -9 NIL 565988) (-262 559620 560054 560717 "ELAGG-" 560722 NIL ELAGG- (NIL T T) -8 NIL NIL) (-261 558277 558557 558852 "ELABEXPR" 559345 T ELABEXPR (NIL) -8 NIL NIL) (-260 551145 552944 553771 "EFUPXS" 557553 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-259 544595 546396 547206 "EFULS" 550421 NIL EFULS (NIL T T T) -8 NIL NIL) (-258 542026 542384 542862 "EFSTRUC" 544227 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-257 531098 532663 534223 "EF" 540541 NIL EF (NIL T T) -7 NIL NIL) (-256 530199 530583 530732 "EAB" 530969 T EAB (NIL) -8 NIL NIL) (-255 529412 530158 530186 "E04UCFA" 530191 T E04UCFA (NIL) -8 NIL NIL) (-254 528625 529371 529399 "E04NAFA" 529404 T E04NAFA (NIL) -8 NIL NIL) (-253 527838 528584 528612 "E04MBFA" 528617 T E04MBFA (NIL) -8 NIL NIL) (-252 527051 527797 527825 "E04JAFA" 527830 T E04JAFA (NIL) -8 NIL NIL) (-251 526266 527010 527038 "E04GCFA" 527043 T E04GCFA (NIL) -8 NIL NIL) (-250 525481 526225 526253 "E04FDFA" 526258 T E04FDFA (NIL) -8 NIL NIL) (-249 524694 525440 525468 "E04DGFA" 525473 T E04DGFA (NIL) -8 NIL NIL) (-248 518879 520224 521586 "E04AGNT" 523352 T E04AGNT (NIL) -7 NIL NIL) (-247 517606 518086 518126 "DVARCAT" 518601 NIL DVARCAT (NIL T) -9 NIL 518799) (-246 516810 517022 517336 "DVARCAT-" 517341 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-245 509672 516612 516739 "DSMP" 516744 NIL DSMP (NIL T T T) -8 NIL NIL) (-244 504482 505617 506685 "DROPT" 508624 T DROPT (NIL) -8 NIL NIL) (-243 504147 504206 504304 "DROPT1" 504417 NIL DROPT1 (NIL T) -7 NIL NIL) (-242 499262 500388 501525 "DROPT0" 503030 T DROPT0 (NIL) -7 NIL NIL) (-241 497607 497932 498318 "DRAWPT" 498896 T DRAWPT (NIL) -7 NIL NIL) (-240 492194 493117 494196 "DRAW" 496581 NIL DRAW (NIL T) -7 NIL NIL) (-239 491827 491880 491998 "DRAWHACK" 492135 NIL DRAWHACK (NIL T) -7 NIL NIL) (-238 490558 490827 491118 "DRAWCX" 491556 T DRAWCX (NIL) -7 NIL NIL) (-237 490076 490144 490294 "DRAWCURV" 490484 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-236 480547 482506 484621 "DRAWCFUN" 487981 T DRAWCFUN (NIL) -7 NIL NIL) (-235 477361 479243 479284 "DQAGG" 479913 NIL DQAGG (NIL T) -9 NIL 480186) (-234 465868 472606 472688 "DPOLCAT" 474526 NIL DPOLCAT (NIL T T T T) -9 NIL 475070) (-233 460708 462054 464011 "DPOLCAT-" 464016 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-232 453504 460570 460667 "DPMO" 460672 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-231 446203 453285 453451 "DPMM" 453456 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-230 445623 445826 445940 "DOMAIN" 446109 T DOMAIN (NIL) -8 NIL NIL) (-229 439335 445260 445411 "DMP" 445524 NIL DMP (NIL NIL T) -8 NIL NIL) (-228 438935 438991 439135 "DLP" 439273 NIL DLP (NIL T) -7 NIL NIL) (-227 432579 438036 438263 "DLIST" 438740 NIL DLIST (NIL T) -8 NIL NIL) (-226 429426 431435 431476 "DLAGG" 432026 NIL DLAGG (NIL T) -9 NIL 432255) (-225 428136 428828 428856 "DIVRING" 429006 T DIVRING (NIL) -9 NIL 429114) (-224 427124 427377 427770 "DIVRING-" 427775 NIL DIVRING- (NIL T) -8 NIL NIL) (-223 425226 425583 425989 "DISPLAY" 426738 T DISPLAY (NIL) -7 NIL NIL) (-222 419115 425140 425203 "DIRPROD" 425208 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-221 417963 418166 418431 "DIRPROD2" 418908 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-220 407482 413487 413540 "DIRPCAT" 413948 NIL DIRPCAT (NIL NIL T) -9 NIL 414787) (-219 404808 405450 406331 "DIRPCAT-" 406668 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-218 404095 404255 404441 "DIOSP" 404642 T DIOSP (NIL) -7 NIL NIL) (-217 400798 403008 403049 "DIOPS" 403483 NIL DIOPS (NIL T) -9 NIL 403712) (-216 400347 400461 400652 "DIOPS-" 400657 NIL DIOPS- (NIL T T) -8 NIL NIL) (-215 399219 399857 399885 "DIFRING" 400072 T DIFRING (NIL) -9 NIL 400181) (-214 398865 398942 399094 "DIFRING-" 399099 NIL DIFRING- (NIL T) -8 NIL NIL) (-213 396655 397937 397977 "DIFEXT" 398336 NIL DIFEXT (NIL T) -9 NIL 398629) (-212 394941 395369 396034 "DIFEXT-" 396039 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-211 392264 394474 394515 "DIAGG" 394520 NIL DIAGG (NIL T) -9 NIL 394540) (-210 391648 391805 392057 "DIAGG-" 392062 NIL DIAGG- (NIL T T) -8 NIL NIL) (-209 387113 390607 390884 "DHMATRIX" 391417 NIL DHMATRIX (NIL T) -8 NIL NIL) (-208 382725 383634 384644 "DFSFUN" 386123 T DFSFUN (NIL) -7 NIL NIL) (-207 377511 381439 381804 "DFLOAT" 382380 T DFLOAT (NIL) -8 NIL NIL) (-206 375744 376025 376420 "DFINTTLS" 377219 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-205 372777 373779 374177 "DERHAM" 375411 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-204 370626 372552 372641 "DEQUEUE" 372721 NIL DEQUEUE (NIL T) -8 NIL NIL) (-203 369844 369977 370172 "DEGRED" 370488 NIL DEGRED (NIL T T) -7 NIL NIL) (-202 366244 366989 367841 "DEFINTRF" 369072 NIL DEFINTRF (NIL T) -7 NIL NIL) (-201 363775 364244 364842 "DEFINTEF" 365763 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-200 357605 363216 363382 "DECIMAL" 363629 T DECIMAL (NIL) -8 NIL NIL) (-199 355117 355575 356081 "DDFACT" 357149 NIL DDFACT (NIL T T) -7 NIL NIL) (-198 354713 354756 354907 "DBLRESP" 355068 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-197 352423 352757 353126 "DBASE" 354471 NIL DBASE (NIL T) -8 NIL NIL) (-196 351558 352382 352410 "D03FAFA" 352415 T D03FAFA (NIL) -8 NIL NIL) (-195 350694 351517 351545 "D03EEFA" 351550 T D03EEFA (NIL) -8 NIL NIL) (-194 348644 349110 349599 "D03AGNT" 350225 T D03AGNT (NIL) -7 NIL NIL) (-193 347962 348603 348631 "D02EJFA" 348636 T D02EJFA (NIL) -8 NIL NIL) (-192 347280 347921 347949 "D02CJFA" 347954 T D02CJFA (NIL) -8 NIL NIL) (-191 346598 347239 347267 "D02BHFA" 347272 T D02BHFA (NIL) -8 NIL NIL) (-190 345916 346557 346585 "D02BBFA" 346590 T D02BBFA (NIL) -8 NIL NIL) (-189 339114 340702 342308 "D02AGNT" 344330 T D02AGNT (NIL) -7 NIL NIL) (-188 336883 337405 337951 "D01WGTS" 338588 T D01WGTS (NIL) -7 NIL NIL) (-187 335986 336842 336870 "D01TRNS" 336875 T D01TRNS (NIL) -8 NIL NIL) (-186 335089 335945 335973 "D01GBFA" 335978 T D01GBFA (NIL) -8 NIL NIL) (-185 334192 335048 335076 "D01FCFA" 335081 T D01FCFA (NIL) -8 NIL NIL) (-184 333295 334151 334179 "D01ASFA" 334184 T D01ASFA (NIL) -8 NIL NIL) (-183 332398 333254 333282 "D01AQFA" 333287 T D01AQFA (NIL) -8 NIL NIL) (-182 331501 332357 332385 "D01APFA" 332390 T D01APFA (NIL) -8 NIL NIL) (-181 330604 331460 331488 "D01ANFA" 331493 T D01ANFA (NIL) -8 NIL NIL) (-180 329707 330563 330591 "D01AMFA" 330596 T D01AMFA (NIL) -8 NIL NIL) (-179 328810 329666 329694 "D01ALFA" 329699 T D01ALFA (NIL) -8 NIL NIL) (-178 327913 328769 328797 "D01AKFA" 328802 T D01AKFA (NIL) -8 NIL NIL) (-177 327016 327872 327900 "D01AJFA" 327905 T D01AJFA (NIL) -8 NIL NIL) (-176 320320 321869 323428 "D01AGNT" 325477 T D01AGNT (NIL) -7 NIL NIL) (-175 319657 319785 319937 "CYCLOTOM" 320188 T CYCLOTOM (NIL) -7 NIL NIL) (-174 316392 317105 317832 "CYCLES" 318950 T CYCLES (NIL) -7 NIL NIL) (-173 315704 315838 316009 "CVMP" 316253 NIL CVMP (NIL T) -7 NIL NIL) (-172 313485 313743 314118 "CTRIGMNP" 315432 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-171 312996 313185 313284 "CTORCALL" 313406 T CTORCALL (NIL) -8 NIL NIL) (-170 312370 312469 312622 "CSTTOOLS" 312893 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-169 308169 308826 309584 "CRFP" 311682 NIL CRFP (NIL T T) -7 NIL NIL) (-168 307216 307401 307629 "CRAPACK" 307973 NIL CRAPACK (NIL T) -7 NIL NIL) (-167 306600 306701 306905 "CPMATCH" 307092 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-166 306325 306353 306459 "CPIMA" 306566 NIL CPIMA (NIL T T T) -7 NIL NIL) (-165 302689 303361 304079 "COORDSYS" 305660 NIL COORDSYS (NIL T) -7 NIL NIL) (-164 302073 302202 302352 "CONTOUR" 302559 T CONTOUR (NIL) -8 NIL NIL) (-163 297934 300076 300568 "CONTFRAC" 301613 NIL CONTFRAC (NIL T) -8 NIL NIL) (-162 297088 297652 297680 "COMRING" 297685 T COMRING (NIL) -9 NIL 297736) (-161 296169 296446 296630 "COMPPROP" 296924 T COMPPROP (NIL) -8 NIL NIL) (-160 295830 295865 295993 "COMPLPAT" 296128 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-159 285811 295639 295748 "COMPLEX" 295753 NIL COMPLEX (NIL T) -8 NIL NIL) (-158 285447 285504 285611 "COMPLEX2" 285748 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-157 285165 285200 285298 "COMPFACT" 285406 NIL COMPFACT (NIL T T) -7 NIL NIL) (-156 269500 279794 279834 "COMPCAT" 280836 NIL COMPCAT (NIL T) -9 NIL 282229) (-155 259015 261939 265566 "COMPCAT-" 265922 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-154 258746 258774 258876 "COMMUPC" 258981 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-153 258541 258574 258633 "COMMONOP" 258707 T COMMONOP (NIL) -7 NIL NIL) (-152 258124 258292 258379 "COMM" 258474 T COMM (NIL) -8 NIL NIL) (-151 257373 257567 257595 "COMBOPC" 257933 T COMBOPC (NIL) -9 NIL 258108) (-150 256269 256479 256721 "COMBINAT" 257163 NIL COMBINAT (NIL T) -7 NIL NIL) (-149 252467 253040 253680 "COMBF" 255691 NIL COMBF (NIL T T) -7 NIL NIL) (-148 251253 251583 251818 "COLOR" 252252 T COLOR (NIL) -8 NIL NIL) (-147 250893 250940 251065 "CMPLXRT" 251200 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-146 246395 247423 248503 "CLIP" 249833 T CLIP (NIL) -7 NIL NIL) (-145 244733 245503 245741 "CLIF" 246223 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-144 240956 242880 242921 "CLAGG" 243850 NIL CLAGG (NIL T) -9 NIL 244386) (-143 239378 239835 240418 "CLAGG-" 240423 NIL CLAGG- (NIL T T) -8 NIL NIL) (-142 238922 239007 239147 "CINTSLPE" 239287 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-141 236423 236894 237442 "CHVAR" 238450 NIL CHVAR (NIL T T T) -7 NIL NIL) (-140 235646 236210 236238 "CHARZ" 236243 T CHARZ (NIL) -9 NIL 236257) (-139 235400 235440 235518 "CHARPOL" 235600 NIL CHARPOL (NIL T) -7 NIL NIL) (-138 234507 235104 235132 "CHARNZ" 235179 T CHARNZ (NIL) -9 NIL 235234) (-137 232532 233197 233532 "CHAR" 234192 T CHAR (NIL) -8 NIL NIL) (-136 232258 232319 232347 "CFCAT" 232458 T CFCAT (NIL) -9 NIL NIL) (-135 231503 231614 231796 "CDEN" 232142 NIL CDEN (NIL T T T) -7 NIL NIL) (-134 227495 230656 230936 "CCLASS" 231243 T CCLASS (NIL) -8 NIL NIL) (-133 227414 227440 227475 "CATEGORY" 227480 T -10 (NIL) -8 NIL NIL) (-132 222466 223443 224196 "CARTEN" 226717 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-131 221574 221722 221943 "CARTEN2" 222313 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-130 219872 220726 220982 "CARD" 221338 T CARD (NIL) -8 NIL NIL) (-129 219245 219573 219601 "CACHSET" 219733 T CACHSET (NIL) -9 NIL 219810) (-128 218742 219038 219066 "CABMON" 219116 T CABMON (NIL) -9 NIL 219172) (-127 217910 218289 218432 "BYTE" 218619 T BYTE (NIL) -8 NIL NIL) (-126 213858 217857 217891 "BYTEARY" 217896 T BYTEARY (NIL) -8 NIL NIL) (-125 211415 213550 213657 "BTREE" 213784 NIL BTREE (NIL T) -8 NIL NIL) (-124 208913 211063 211185 "BTOURN" 211325 NIL BTOURN (NIL T) -8 NIL NIL) (-123 206332 208385 208426 "BTCAT" 208494 NIL BTCAT (NIL T) -9 NIL 208571) (-122 205999 206079 206228 "BTCAT-" 206233 NIL BTCAT- (NIL T T) -8 NIL NIL) (-121 201220 205091 205119 "BTAGG" 205375 T BTAGG (NIL) -9 NIL 205554) (-120 200643 200787 201017 "BTAGG-" 201022 NIL BTAGG- (NIL T) -8 NIL NIL) (-119 197687 199921 200136 "BSTREE" 200460 NIL BSTREE (NIL T) -8 NIL NIL) (-118 196825 196951 197135 "BRILL" 197543 NIL BRILL (NIL T) -7 NIL NIL) (-117 193527 195554 195595 "BRAGG" 196244 NIL BRAGG (NIL T) -9 NIL 196501) (-116 192056 192462 193017 "BRAGG-" 193022 NIL BRAGG- (NIL T T) -8 NIL NIL) (-115 185264 191402 191586 "BPADICRT" 191904 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-114 183568 185201 185246 "BPADIC" 185251 NIL BPADIC (NIL NIL) -8 NIL NIL) (-113 183268 183298 183411 "BOUNDZRO" 183532 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-112 178783 179874 180741 "BOP" 182421 T BOP (NIL) -8 NIL NIL) (-111 176404 176848 177368 "BOP1" 178296 NIL BOP1 (NIL T) -7 NIL NIL) (-110 175039 175744 175962 "BOOLEAN" 176206 T BOOLEAN (NIL) -8 NIL NIL) (-109 174406 174784 174836 "BMODULE" 174841 NIL BMODULE (NIL T T) -9 NIL 174905) (-108 170216 174204 174277 "BITS" 174353 T BITS (NIL) -8 NIL NIL) (-107 169313 169748 169900 "BINFILE" 170084 T BINFILE (NIL) -8 NIL NIL) (-106 168725 168847 168989 "BINDING" 169191 T BINDING (NIL) -8 NIL NIL) (-105 162559 168169 168334 "BINARY" 168580 T BINARY (NIL) -8 NIL NIL) (-104 160387 161815 161856 "BGAGG" 162116 NIL BGAGG (NIL T) -9 NIL 162253) (-103 160218 160250 160341 "BGAGG-" 160346 NIL BGAGG- (NIL T T) -8 NIL NIL) (-102 159316 159602 159807 "BFUNCT" 160033 T BFUNCT (NIL) -8 NIL NIL) (-101 158011 158189 158476 "BEZOUT" 159140 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-100 154528 156863 157193 "BBTREE" 157714 NIL BBTREE (NIL T) -8 NIL NIL) (-99 154266 154319 154345 "BASTYPE" 154462 T BASTYPE (NIL) -9 NIL NIL) (-98 154121 154150 154220 "BASTYPE-" 154225 NIL BASTYPE- (NIL T) -8 NIL NIL) (-97 153559 153635 153785 "BALFACT" 154032 NIL BALFACT (NIL T T) -7 NIL NIL) (-96 152381 152978 153163 "AUTOMOR" 153404 NIL AUTOMOR (NIL T) -8 NIL NIL) (-95 152107 152112 152138 "ATTREG" 152143 T ATTREG (NIL) -9 NIL NIL) (-94 150386 150804 151156 "ATTRBUT" 151773 T ATTRBUT (NIL) -8 NIL NIL) (-93 149922 150035 150061 "ATRIG" 150262 T ATRIG (NIL) -9 NIL NIL) (-92 149731 149772 149859 "ATRIG-" 149864 NIL ATRIG- (NIL T) -8 NIL NIL) (-91 149457 149600 149626 "ASTCAT" 149631 T ASTCAT (NIL) -9 NIL 149661) (-90 149254 149297 149389 "ASTCAT-" 149394 NIL ASTCAT- (NIL T) -8 NIL NIL) (-89 147451 149030 149118 "ASTACK" 149197 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145956 146253 146618 "ASSOCEQ" 147133 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144988 145615 145739 "ASP9" 145863 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144752 144936 144975 "ASP8" 144980 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143621 144357 144499 "ASP80" 144641 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142520 143256 143388 "ASP7" 143520 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141474 142197 142315 "ASP78" 142433 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140443 141154 141271 "ASP77" 141388 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139355 140081 140212 "ASP74" 140343 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 138255 138990 139122 "ASP73" 139254 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 137210 137932 138050 "ASP6" 138168 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 136158 136887 137005 "ASP55" 137123 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 135108 135832 135951 "ASP50" 136070 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 134196 134809 134919 "ASP4" 135029 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 133284 133897 134007 "ASP49" 134117 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 132069 132823 132991 "ASP42" 133173 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130846 131602 131772 "ASP41" 131956 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129796 130523 130641 "ASP35" 130759 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129561 129744 129783 "ASP34" 129788 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 129298 129365 129441 "ASP33" 129516 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 128193 128933 129065 "ASP31" 129197 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127958 128141 128180 "ASP30" 128185 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127693 127762 127838 "ASP29" 127913 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127458 127641 127680 "ASP28" 127685 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 127223 127406 127445 "ASP27" 127450 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 126307 126921 127032 "ASP24" 127143 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 125223 125948 126078 "ASP20" 126208 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124311 124924 125034 "ASP1" 125144 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 123255 123985 124104 "ASP19" 124223 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122992 123059 123135 "ASP12" 123210 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121844 122591 122735 "ASP10" 122879 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119743 121688 121779 "ARRAY2" 121784 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115559 119391 119505 "ARRAY1" 119660 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114591 114764 114985 "ARRAY12" 115382 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108951 110822 110897 "ARR2CAT" 113527 NIL ARR2CAT (NIL T T T) -9 NIL 114285) (-54 106385 107129 108083 "ARR2CAT-" 108088 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 105137 105289 105594 "APPRULE" 106221 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104790 104838 104956 "APPLYORE" 105083 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103764 104055 104250 "ANY" 104613 T ANY (NIL) -8 NIL NIL) (-50 103042 103165 103322 "ANY1" 103638 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100574 101492 101817 "ANTISYM" 102767 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100089 100278 100375 "ANON" 100495 T ANON (NIL) -8 NIL NIL) (-47 94166 98634 99085 "AN" 99656 T AN (NIL) -8 NIL NIL) (-46 90520 91918 91968 "AMR" 92707 NIL AMR (NIL T T) -9 NIL 93306) (-45 89633 89854 90216 "AMR-" 90221 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74183 89550 89611 "ALIST" 89616 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71020 73777 73946 "ALGSC" 74101 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67576 68130 68737 "ALGPKG" 70460 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66853 66954 67138 "ALGMFACT" 67462 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62602 63283 63937 "ALGMANIP" 66377 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53921 62228 62378 "ALGFF" 62535 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53117 53248 53427 "ALGFACT" 53779 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52108 52718 52756 "ALGEBRA" 52816 NIL ALGEBRA (NIL T) -9 NIL 52874) (-36 51826 51885 52017 "ALGEBRA-" 52022 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34087 49830 49882 "ALAGG" 50018 NIL ALAGG (NIL T T) -9 NIL 50179) (-34 33623 33736 33762 "AHYP" 33963 T AHYP (NIL) -9 NIL NIL) (-33 32554 32802 32828 "AGG" 33327 T AGG (NIL) -9 NIL 33606) (-32 31988 32150 32364 "AGG-" 32369 NIL AGG- (NIL T) -8 NIL NIL) (-31 29675 30093 30510 "AF" 31631 NIL AF (NIL T T) -7 NIL NIL) (-30 28944 29202 29358 "ACPLOT" 29537 T ACPLOT (NIL) -8 NIL NIL) (-29 18411 26357 26408 "ACFS" 27119 NIL ACFS (NIL T) -9 NIL 27358) (-28 16425 16915 17690 "ACFS-" 17695 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12693 14649 14675 "ACF" 15554 T ACF (NIL) -9 NIL 15966) (-26 11397 11731 12224 "ACF-" 12229 NIL ACF- (NIL T) -8 NIL NIL) (-25 10996 11165 11191 "ABELSG" 11283 T ABELSG (NIL) -9 NIL 11348) (-24 10863 10888 10954 "ABELSG-" 10959 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10233 10494 10520 "ABELMON" 10690 T ABELMON (NIL) -9 NIL 10802) (-22 9897 9981 10119 "ABELMON-" 10124 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9232 9578 9604 "ABELGRP" 9729 T ABELGRP (NIL) -9 NIL 9811) (-20 8695 8824 9040 "ABELGRP-" 9045 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
+((-3909 (*1 *1) (-4 *1 (-1120))))
+(-13 (-1123) (-93) (-471) (-34) (-266) (-10 -8 (-15 -3909 ($))))
+(((-34) . T) ((-93) . T) ((-266) . T) ((-471) . T) ((-1123) . T))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3681 ((|#1| $) 17)) (-3914 (($ |#1| (-594 $)) 23) (($ (-594 |#1|)) 27) (($ |#1|) 25)) (-1217 (((-110) $ (-719)) 48)) (-3289 ((|#1| $ |#1|) 14 (|has| $ (-6 -4270)))) (-4066 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4270)))) (-3290 (($ $ (-594 $)) 13 (|has| $ (-6 -4270)))) (-3815 (($) NIL T CONST)) (-2018 (((-594 |#1|) $) 52 (|has| $ (-6 -4269)))) (-3295 (((-594 $) $) 43)) (-3291 (((-110) $ $) 33 (|has| |#1| (-1027)))) (-4001 (((-110) $ (-719)) 41)) (-2445 (((-594 |#1|) $) 53 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 51 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2022 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 22)) (-3998 (((-110) $ (-719)) 40)) (-3294 (((-594 |#1|) $) 37)) (-3801 (((-110) $) 36)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-2020 (((-110) (-1 (-110) |#1|) $) 50 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 74)) (-3682 (((-110) $) 9)) (-3847 (($) 10)) (-4078 ((|#1| $ #1#) NIL)) (-3293 (((-516) $ $) 32)) (-3910 (((-594 $) $) 59)) (-3911 (((-110) $ $) 77)) (-3912 (((-594 $) $) 72)) (-3913 (($ $) 73)) (-3915 (((-110) $) 56)) (-2019 (((-719) (-1 (-110) |#1|) $) 20 (|has| $ (-6 -4269))) (((-719) |#1| $) 16 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3678 (($ $) 58)) (-4233 (((-805) $) 61 (|has| |#1| (-571 (-805))))) (-3796 (((-594 $) $) 12)) (-3292 (((-110) $ $) 29 (|has| |#1| (-1027)))) (-2021 (((-110) (-1 (-110) |#1|) $) 49 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 28 (|has| |#1| (-1027)))) (-4232 (((-719) $) 39 (|has| $ (-6 -4269)))))
+(((-1121 |#1|) (-13 (-949 |#1|) (-10 -8 (-6 -4269) (-6 -4270) (-15 -3914 ($ |#1| (-594 $))) (-15 -3914 ($ (-594 |#1|))) (-15 -3914 ($ |#1|)) (-15 -3915 ((-110) $)) (-15 -3913 ($ $)) (-15 -3912 ((-594 $) $)) (-15 -3911 ((-110) $ $)) (-15 -3910 ((-594 $) $)))) (-1027)) (T -1121))
+((-3915 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1121 *3)) (-4 *3 (-1027)))) (-3914 (*1 *1 *2 *3) (-12 (-5 *3 (-594 (-1121 *2))) (-5 *1 (-1121 *2)) (-4 *2 (-1027)))) (-3914 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1027)) (-5 *1 (-1121 *3)))) (-3914 (*1 *1 *2) (-12 (-5 *1 (-1121 *2)) (-4 *2 (-1027)))) (-3913 (*1 *1 *1) (-12 (-5 *1 (-1121 *2)) (-4 *2 (-1027)))) (-3912 (*1 *2 *1) (-12 (-5 *2 (-594 (-1121 *3))) (-5 *1 (-1121 *3)) (-4 *3 (-1027)))) (-3911 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1121 *3)) (-4 *3 (-1027)))) (-3910 (*1 *2 *1) (-12 (-5 *2 (-594 (-1121 *3))) (-5 *1 (-1121 *3)) (-4 *3 (-1027)))))
+(-13 (-949 |#1|) (-10 -8 (-6 -4269) (-6 -4270) (-15 -3914 ($ |#1| (-594 $))) (-15 -3914 ($ (-594 |#1|))) (-15 -3914 ($ |#1|)) (-15 -3915 ((-110) $)) (-15 -3913 ($ $)) (-15 -3912 ((-594 $) $)) (-15 -3911 ((-110) $ $)) (-15 -3910 ((-594 $) $))))
+((-3921 (($ $) 15)) (-3919 (($ $) 12)) (-3918 (($ $) 10)) (-3917 (($ $) 17)))
+(((-1122 |#1|) (-10 -8 (-15 -3917 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3921 (|#1| |#1|))) (-1123)) (T -1122))
+NIL
+(-10 -8 (-15 -3917 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3921 (|#1| |#1|)))
+((-3921 (($ $) 11)) (-3920 (($ $) 10)) (-3919 (($ $) 9)) (-3918 (($ $) 8)) (-3917 (($ $) 7)) (-3916 (($ $) 6)))
+(((-1123) (-133)) (T -1123))
+((-3921 (*1 *1 *1) (-4 *1 (-1123))) (-3920 (*1 *1 *1) (-4 *1 (-1123))) (-3919 (*1 *1 *1) (-4 *1 (-1123))) (-3918 (*1 *1 *1) (-4 *1 (-1123))) (-3917 (*1 *1 *1) (-4 *1 (-1123))) (-3916 (*1 *1 *1) (-4 *1 (-1123))))
+(-13 (-10 -8 (-15 -3916 ($ $)) (-15 -3917 ($ $)) (-15 -3918 ($ $)) (-15 -3919 ($ $)) (-15 -3920 ($ $)) (-15 -3921 ($ $))))
+((-3924 ((|#2| |#2|) 88)) (-3927 (((-110) |#2|) 26)) (-3925 ((|#2| |#2|) 30)) (-3926 ((|#2| |#2|) 32)) (-3922 ((|#2| |#2| (-1098)) 83) ((|#2| |#2|) 84)) (-3928 (((-158 |#2|) |#2|) 28)) (-3923 ((|#2| |#2| (-1098)) 85) ((|#2| |#2|) 86)))
+(((-1124 |#1| |#2|) (-10 -7 (-15 -3922 (|#2| |#2|)) (-15 -3922 (|#2| |#2| (-1098))) (-15 -3923 (|#2| |#2|)) (-15 -3923 (|#2| |#2| (-1098))) (-15 -3924 (|#2| |#2|)) (-15 -3925 (|#2| |#2|)) (-15 -3926 (|#2| |#2|)) (-15 -3927 ((-110) |#2|)) (-15 -3928 ((-158 |#2|) |#2|))) (-13 (-432) (-795) (-975 (-516)) (-593 (-516))) (-13 (-27) (-1120) (-402 |#1|))) (T -1124))
+((-3928 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-158 *3)) (-5 *1 (-1124 *4 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *4))))) (-3927 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-110)) (-5 *1 (-1124 *4 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *4))))) (-3926 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *1 (-1124 *3 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *3))))) (-3925 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *1 (-1124 *3 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *3))))) (-3924 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *1 (-1124 *3 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *3))))) (-3923 (*1 *2 *2 *3) (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *1 (-1124 *4 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *4))))) (-3923 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *1 (-1124 *3 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *3))))) (-3922 (*1 *2 *2 *3) (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *1 (-1124 *4 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *4))))) (-3922 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *1 (-1124 *3 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *3))))))
+(-10 -7 (-15 -3922 (|#2| |#2|)) (-15 -3922 (|#2| |#2| (-1098))) (-15 -3923 (|#2| |#2|)) (-15 -3923 (|#2| |#2| (-1098))) (-15 -3924 (|#2| |#2|)) (-15 -3925 (|#2| |#2|)) (-15 -3926 (|#2| |#2|)) (-15 -3927 ((-110) |#2|)) (-15 -3928 ((-158 |#2|) |#2|)))
+((-3929 ((|#4| |#4| |#1|) 27)) (-3930 ((|#4| |#4| |#1|) 28)))
+(((-1125 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3929 (|#4| |#4| |#1|)) (-15 -3930 (|#4| |#4| |#1|))) (-523) (-353 |#1|) (-353 |#1|) (-634 |#1| |#2| |#3|)) (T -1125))
+((-3930 (*1 *2 *2 *3) (-12 (-4 *3 (-523)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *1 (-1125 *3 *4 *5 *2)) (-4 *2 (-634 *3 *4 *5)))) (-3929 (*1 *2 *2 *3) (-12 (-4 *3 (-523)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-5 *1 (-1125 *3 *4 *5 *2)) (-4 *2 (-634 *3 *4 *5)))))
+(-10 -7 (-15 -3929 (|#4| |#4| |#1|)) (-15 -3930 (|#4| |#4| |#1|)))
+((-3948 ((|#2| |#2|) 134)) (-3950 ((|#2| |#2|) 131)) (-3947 ((|#2| |#2|) 122)) (-3949 ((|#2| |#2|) 119)) (-3946 ((|#2| |#2|) 127)) (-3945 ((|#2| |#2|) 115)) (-3934 ((|#2| |#2|) 43)) (-3933 ((|#2| |#2|) 95)) (-3931 ((|#2| |#2|) 75)) (-3944 ((|#2| |#2|) 129)) (-3943 ((|#2| |#2|) 117)) (-3956 ((|#2| |#2|) 139)) (-3954 ((|#2| |#2|) 137)) (-3955 ((|#2| |#2|) 138)) (-3953 ((|#2| |#2|) 136)) (-3932 ((|#2| |#2|) 149)) (-3957 ((|#2| |#2|) 30 (-12 (|has| |#2| (-572 (-831 |#1|))) (|has| |#2| (-827 |#1|)) (|has| |#1| (-572 (-831 |#1|))) (|has| |#1| (-827 |#1|))))) (-3935 ((|#2| |#2|) 76)) (-3936 ((|#2| |#2|) 140)) (-4239 ((|#2| |#2|) 141)) (-3942 ((|#2| |#2|) 128)) (-3941 ((|#2| |#2|) 116)) (-3940 ((|#2| |#2|) 135)) (-3952 ((|#2| |#2|) 133)) (-3939 ((|#2| |#2|) 123)) (-3951 ((|#2| |#2|) 121)) (-3938 ((|#2| |#2|) 125)) (-3937 ((|#2| |#2|) 113)))
+(((-1126 |#1| |#2|) (-10 -7 (-15 -4239 (|#2| |#2|)) (-15 -3931 (|#2| |#2|)) (-15 -3932 (|#2| |#2|)) (-15 -3933 (|#2| |#2|)) (-15 -3934 (|#2| |#2|)) (-15 -3935 (|#2| |#2|)) (-15 -3936 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -3938 (|#2| |#2|)) (-15 -3939 (|#2| |#2|)) (-15 -3940 (|#2| |#2|)) (-15 -3941 (|#2| |#2|)) (-15 -3942 (|#2| |#2|)) (-15 -3943 (|#2| |#2|)) (-15 -3944 (|#2| |#2|)) (-15 -3945 (|#2| |#2|)) (-15 -3946 (|#2| |#2|)) (-15 -3947 (|#2| |#2|)) (-15 -3948 (|#2| |#2|)) (-15 -3949 (|#2| |#2|)) (-15 -3950 (|#2| |#2|)) (-15 -3951 (|#2| |#2|)) (-15 -3952 (|#2| |#2|)) (-15 -3953 (|#2| |#2|)) (-15 -3954 (|#2| |#2|)) (-15 -3955 (|#2| |#2|)) (-15 -3956 (|#2| |#2|)) (IF (|has| |#1| (-827 |#1|)) (IF (|has| |#1| (-572 (-831 |#1|))) (IF (|has| |#2| (-572 (-831 |#1|))) (IF (|has| |#2| (-827 |#1|)) (-15 -3957 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-795) (-432)) (-13 (-402 |#1|) (-1120))) (T -1126))
+((-3957 (*1 *2 *2) (-12 (-4 *3 (-572 (-831 *3))) (-4 *3 (-827 *3)) (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-572 (-831 *3))) (-4 *2 (-827 *3)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3956 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3955 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3954 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3953 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3952 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3951 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3950 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3949 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3948 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3947 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3946 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3944 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3943 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3942 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3941 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3940 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3939 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3938 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3936 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3935 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3934 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3933 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3932 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-3931 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))) (-4239 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-402 *3) (-1120))))))
+(-10 -7 (-15 -4239 (|#2| |#2|)) (-15 -3931 (|#2| |#2|)) (-15 -3932 (|#2| |#2|)) (-15 -3933 (|#2| |#2|)) (-15 -3934 (|#2| |#2|)) (-15 -3935 (|#2| |#2|)) (-15 -3936 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -3938 (|#2| |#2|)) (-15 -3939 (|#2| |#2|)) (-15 -3940 (|#2| |#2|)) (-15 -3941 (|#2| |#2|)) (-15 -3942 (|#2| |#2|)) (-15 -3943 (|#2| |#2|)) (-15 -3944 (|#2| |#2|)) (-15 -3945 (|#2| |#2|)) (-15 -3946 (|#2| |#2|)) (-15 -3947 (|#2| |#2|)) (-15 -3948 (|#2| |#2|)) (-15 -3949 (|#2| |#2|)) (-15 -3950 (|#2| |#2|)) (-15 -3951 (|#2| |#2|)) (-15 -3952 (|#2| |#2|)) (-15 -3953 (|#2| |#2|)) (-15 -3954 (|#2| |#2|)) (-15 -3955 (|#2| |#2|)) (-15 -3956 (|#2| |#2|)) (IF (|has| |#1| (-827 |#1|)) (IF (|has| |#1| (-572 (-831 |#1|))) (IF (|has| |#2| (-572 (-831 |#1|))) (IF (|has| |#2| (-827 |#1|)) (-15 -3957 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3347 (((-594 (-1098)) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-2118 (($ $) NIL (|has| |#1| (-523)))) (-2116 (((-110) $) NIL (|has| |#1| (-523)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3921 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-1319 (((-3 $ "failed") $ $) NIL)) (-3301 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3764 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3920 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3768 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3815 (($) NIL T CONST)) (-4235 (($ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-4093 (((-887 |#1|) $ (-719)) 17) (((-887 |#1|) $ (-719) (-719)) NIL)) (-3156 (((-110) $) NIL)) (-3909 (($) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4050 (((-719) $ (-1098)) NIL) (((-719) $ (-1098) (-719)) NIL)) (-2436 (((-110) $) NIL)) (-3275 (($ $ (-516)) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4213 (((-110) $) NIL)) (-3157 (($ $ (-594 (-1098)) (-594 (-502 (-1098)))) NIL) (($ $ (-1098) (-502 (-1098))) NIL) (($ |#1| (-502 (-1098))) NIL) (($ $ (-1098) (-719)) NIL) (($ $ (-594 (-1098)) (-594 (-719))) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-4218 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3158 (($ $) NIL)) (-3449 ((|#1| $) NIL)) (-3513 (((-1081) $) NIL)) (-4091 (($ $ (-1098)) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-1098) |#1|) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3514 (((-1045) $) NIL)) (-3958 (($ (-1 $) (-1098) |#1|) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4047 (($ $ (-719)) NIL)) (-3740 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-4219 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4046 (($ $ (-1098) $) NIL) (($ $ (-594 (-1098)) (-594 $)) NIL) (($ $ (-594 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL)) (-4089 (($ $ (-1098)) NIL) (($ $ (-594 (-1098))) NIL) (($ $ (-1098) (-719)) NIL) (($ $ (-594 (-1098)) (-594 (-719))) NIL)) (-4223 (((-502 (-1098)) $) NIL)) (-3769 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3918 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3767 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3917 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3765 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3916 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3155 (($ $) NIL)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ $) NIL (|has| |#1| (-523))) (($ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516))))) (($ (-1098)) NIL) (($ (-887 |#1|)) NIL)) (-3959 ((|#1| $ (-502 (-1098))) NIL) (($ $ (-1098) (-719)) NIL) (($ $ (-594 (-1098)) (-594 (-719))) NIL) (((-887 |#1|) $ (-719)) NIL)) (-2965 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3385 (((-719)) NIL)) (-3772 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3760 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-2117 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3770 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3758 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3774 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3762 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3775 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3763 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3773 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3761 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3771 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3759 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) NIL T CONST)) (-2932 (($ $ (-1098)) NIL) (($ $ (-594 (-1098))) NIL) (($ $ (-1098) (-719)) NIL) (($ $ (-594 (-1098)) (-594 (-719))) NIL)) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516)))))) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516))))) (($ (-388 (-516)) $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1127 |#1|) (-13 (-689 |#1| (-1098)) (-10 -8 (-15 -3959 ((-887 |#1|) $ (-719))) (-15 -4233 ($ (-1098))) (-15 -4233 ($ (-887 |#1|))) (IF (|has| |#1| (-37 (-388 (-516)))) (PROGN (-15 -4091 ($ $ (-1098) |#1|)) (-15 -3958 ($ (-1 $) (-1098) |#1|))) |%noBranch|))) (-984)) (T -1127))
+((-3959 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-887 *4)) (-5 *1 (-1127 *4)) (-4 *4 (-984)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-1127 *3)) (-4 *3 (-984)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-887 *3)) (-4 *3 (-984)) (-5 *1 (-1127 *3)))) (-4091 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *1 (-1127 *3)) (-4 *3 (-37 (-388 (-516)))) (-4 *3 (-984)))) (-3958 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1127 *4))) (-5 *3 (-1098)) (-5 *1 (-1127 *4)) (-4 *4 (-37 (-388 (-516)))) (-4 *4 (-984)))))
+(-13 (-689 |#1| (-1098)) (-10 -8 (-15 -3959 ((-887 |#1|) $ (-719))) (-15 -4233 ($ (-1098))) (-15 -4233 ($ (-887 |#1|))) (IF (|has| |#1| (-37 (-388 (-516)))) (PROGN (-15 -4091 ($ $ (-1098) |#1|)) (-15 -3958 ($ (-1 $) (-1098) |#1|))) |%noBranch|)))
+((-3975 (((-110) |#5| $) 60) (((-110) $) 102)) (-3970 ((|#5| |#5| $) 75)) (-3992 (($ (-1 (-110) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-3971 (((-594 |#5|) (-594 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|)) 73)) (-3432 (((-3 $ "failed") (-594 |#5|)) 126)) (-4077 (((-3 $ "failed") $) 112)) (-3967 ((|#5| |#5| $) 94)) (-3976 (((-110) |#5| $ (-1 (-110) |#5| |#5|)) 31)) (-3965 ((|#5| |#5| $) 98)) (-4121 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|)) 69)) (-3978 (((-2 (|:| -4140 (-594 |#5|)) (|:| -1768 (-594 |#5|))) $) 55)) (-3977 (((-110) |#5| $) 58) (((-110) $) 103)) (-3455 ((|#4| $) 108)) (-4076 (((-3 |#5| "failed") $) 110)) (-3979 (((-594 |#5|) $) 49)) (-3973 (((-110) |#5| $) 67) (((-110) $) 107)) (-3968 ((|#5| |#5| $) 81)) (-3981 (((-110) $ $) 27)) (-3974 (((-110) |#5| $) 63) (((-110) $) 105)) (-3969 ((|#5| |#5| $) 78)) (-4079 (((-3 |#5| "failed") $) 109)) (-4047 (($ $ |#5|) 127)) (-4223 (((-719) $) 52)) (-3804 (($ (-594 |#5|)) 124)) (-3174 (($ $ |#4|) 122)) (-3176 (($ $ |#4|) 121)) (-3966 (($ $) 120)) (-4233 (((-805) $) NIL) (((-594 |#5|) $) 113)) (-3960 (((-719) $) 130)) (-3980 (((-3 (-2 (|:| |bas| $) (|:| -3602 (-594 |#5|))) "failed") (-594 |#5|) (-1 (-110) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -3602 (-594 |#5|))) "failed") (-594 |#5|) (-1 (-110) |#5|) (-1 (-110) |#5| |#5|)) 45)) (-3972 (((-110) $ (-1 (-110) |#5| (-594 |#5|))) 100)) (-3962 (((-594 |#4|) $) 115)) (-4209 (((-110) |#4| $) 118)) (-3317 (((-110) $ $) 19)))
+(((-1128 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3960 ((-719) |#1|)) (-15 -4047 (|#1| |#1| |#5|)) (-15 -3992 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4209 ((-110) |#4| |#1|)) (-15 -3962 ((-594 |#4|) |#1|)) (-15 -4077 ((-3 |#1| "failed") |#1|)) (-15 -4076 ((-3 |#5| "failed") |#1|)) (-15 -4079 ((-3 |#5| "failed") |#1|)) (-15 -3965 (|#5| |#5| |#1|)) (-15 -3966 (|#1| |#1|)) (-15 -3967 (|#5| |#5| |#1|)) (-15 -3968 (|#5| |#5| |#1|)) (-15 -3969 (|#5| |#5| |#1|)) (-15 -3970 (|#5| |#5| |#1|)) (-15 -3971 ((-594 |#5|) (-594 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -4121 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -3973 ((-110) |#1|)) (-15 -3974 ((-110) |#1|)) (-15 -3975 ((-110) |#1|)) (-15 -3972 ((-110) |#1| (-1 (-110) |#5| (-594 |#5|)))) (-15 -3973 ((-110) |#5| |#1|)) (-15 -3974 ((-110) |#5| |#1|)) (-15 -3975 ((-110) |#5| |#1|)) (-15 -3976 ((-110) |#5| |#1| (-1 (-110) |#5| |#5|))) (-15 -3977 ((-110) |#1|)) (-15 -3977 ((-110) |#5| |#1|)) (-15 -3978 ((-2 (|:| -4140 (-594 |#5|)) (|:| -1768 (-594 |#5|))) |#1|)) (-15 -4223 ((-719) |#1|)) (-15 -3979 ((-594 |#5|) |#1|)) (-15 -3980 ((-3 (-2 (|:| |bas| |#1|) (|:| -3602 (-594 |#5|))) "failed") (-594 |#5|) (-1 (-110) |#5|) (-1 (-110) |#5| |#5|))) (-15 -3980 ((-3 (-2 (|:| |bas| |#1|) (|:| -3602 (-594 |#5|))) "failed") (-594 |#5|) (-1 (-110) |#5| |#5|))) (-15 -3981 ((-110) |#1| |#1|)) (-15 -3174 (|#1| |#1| |#4|)) (-15 -3176 (|#1| |#1| |#4|)) (-15 -3455 (|#4| |#1|)) (-15 -3432 ((-3 |#1| "failed") (-594 |#5|))) (-15 -4233 ((-594 |#5|) |#1|)) (-15 -3804 (|#1| (-594 |#5|))) (-15 -4121 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4121 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3992 (|#1| (-1 (-110) |#5|) |#1|)) (-15 -4121 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4233 ((-805) |#1|)) (-15 -3317 ((-110) |#1| |#1|))) (-1129 |#2| |#3| |#4| |#5|) (-523) (-741) (-795) (-997 |#2| |#3| |#4|)) (T -1128))
+NIL
+(-10 -8 (-15 -3960 ((-719) |#1|)) (-15 -4047 (|#1| |#1| |#5|)) (-15 -3992 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4209 ((-110) |#4| |#1|)) (-15 -3962 ((-594 |#4|) |#1|)) (-15 -4077 ((-3 |#1| "failed") |#1|)) (-15 -4076 ((-3 |#5| "failed") |#1|)) (-15 -4079 ((-3 |#5| "failed") |#1|)) (-15 -3965 (|#5| |#5| |#1|)) (-15 -3966 (|#1| |#1|)) (-15 -3967 (|#5| |#5| |#1|)) (-15 -3968 (|#5| |#5| |#1|)) (-15 -3969 (|#5| |#5| |#1|)) (-15 -3970 (|#5| |#5| |#1|)) (-15 -3971 ((-594 |#5|) (-594 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -4121 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -3973 ((-110) |#1|)) (-15 -3974 ((-110) |#1|)) (-15 -3975 ((-110) |#1|)) (-15 -3972 ((-110) |#1| (-1 (-110) |#5| (-594 |#5|)))) (-15 -3973 ((-110) |#5| |#1|)) (-15 -3974 ((-110) |#5| |#1|)) (-15 -3975 ((-110) |#5| |#1|)) (-15 -3976 ((-110) |#5| |#1| (-1 (-110) |#5| |#5|))) (-15 -3977 ((-110) |#1|)) (-15 -3977 ((-110) |#5| |#1|)) (-15 -3978 ((-2 (|:| -4140 (-594 |#5|)) (|:| -1768 (-594 |#5|))) |#1|)) (-15 -4223 ((-719) |#1|)) (-15 -3979 ((-594 |#5|) |#1|)) (-15 -3980 ((-3 (-2 (|:| |bas| |#1|) (|:| -3602 (-594 |#5|))) "failed") (-594 |#5|) (-1 (-110) |#5|) (-1 (-110) |#5| |#5|))) (-15 -3980 ((-3 (-2 (|:| |bas| |#1|) (|:| -3602 (-594 |#5|))) "failed") (-594 |#5|) (-1 (-110) |#5| |#5|))) (-15 -3981 ((-110) |#1| |#1|)) (-15 -3174 (|#1| |#1| |#4|)) (-15 -3176 (|#1| |#1| |#4|)) (-15 -3455 (|#4| |#1|)) (-15 -3432 ((-3 |#1| "failed") (-594 |#5|))) (-15 -4233 ((-594 |#5|) |#1|)) (-15 -3804 (|#1| (-594 |#5|))) (-15 -4121 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4121 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3992 (|#1| (-1 (-110) |#5|) |#1|)) (-15 -4121 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4233 ((-805) |#1|)) (-15 -3317 ((-110) |#1| |#1|)))
+((-2828 (((-110) $ $) 7)) (-3963 (((-594 (-2 (|:| -4140 $) (|:| -1768 (-594 |#4|)))) (-594 |#4|)) 85)) (-3964 (((-594 $) (-594 |#4|)) 86)) (-3347 (((-594 |#3|) $) 33)) (-3172 (((-110) $) 26)) (-3163 (((-110) $) 17 (|has| |#1| (-523)))) (-3975 (((-110) |#4| $) 101) (((-110) $) 97)) (-3970 ((|#4| |#4| $) 92)) (-3173 (((-2 (|:| |under| $) (|:| -3389 $) (|:| |upper| $)) $ |#3|) 27)) (-1217 (((-110) $ (-719)) 44)) (-3992 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4269))) (((-3 |#4| "failed") $ |#3|) 79)) (-3815 (($) 45 T CONST)) (-3168 (((-110) $) 22 (|has| |#1| (-523)))) (-3170 (((-110) $ $) 24 (|has| |#1| (-523)))) (-3169 (((-110) $ $) 23 (|has| |#1| (-523)))) (-3171 (((-110) $) 25 (|has| |#1| (-523)))) (-3971 (((-594 |#4|) (-594 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-3164 (((-594 |#4|) (-594 |#4|) $) 18 (|has| |#1| (-523)))) (-3165 (((-594 |#4|) (-594 |#4|) $) 19 (|has| |#1| (-523)))) (-3432 (((-3 $ "failed") (-594 |#4|)) 36)) (-3431 (($ (-594 |#4|)) 35)) (-4077 (((-3 $ "failed") $) 82)) (-3967 ((|#4| |#4| $) 89)) (-1349 (($ $) 68 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-3685 (($ |#4| $) 67 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4269)))) (-3166 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-523)))) (-3976 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-3965 ((|#4| |#4| $) 87)) (-4121 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-3978 (((-2 (|:| -4140 (-594 |#4|)) (|:| -1768 (-594 |#4|))) $) 105)) (-2018 (((-594 |#4|) $) 52 (|has| $ (-6 -4269)))) (-3977 (((-110) |#4| $) 104) (((-110) $) 103)) (-3455 ((|#3| $) 34)) (-4001 (((-110) $ (-719)) 43)) (-2445 (((-594 |#4|) $) 53 (|has| $ (-6 -4269)))) (-3516 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-2022 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#4| |#4|) $) 47)) (-3178 (((-594 |#3|) $) 32)) (-3177 (((-110) |#3| $) 31)) (-3998 (((-110) $ (-719)) 42)) (-3513 (((-1081) $) 9)) (-4076 (((-3 |#4| "failed") $) 83)) (-3979 (((-594 |#4|) $) 107)) (-3973 (((-110) |#4| $) 99) (((-110) $) 95)) (-3968 ((|#4| |#4| $) 90)) (-3981 (((-110) $ $) 110)) (-3167 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-523)))) (-3974 (((-110) |#4| $) 100) (((-110) $) 96)) (-3969 ((|#4| |#4| $) 91)) (-3514 (((-1045) $) 10)) (-4079 (((-3 |#4| "failed") $) 84)) (-1350 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-3961 (((-3 $ "failed") $ |#4|) 78)) (-4047 (($ $ |#4|) 77)) (-2020 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 |#4|) (-594 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-275 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-594 (-275 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-1218 (((-110) $ $) 38)) (-3682 (((-110) $) 41)) (-3847 (($) 40)) (-4223 (((-719) $) 106)) (-2019 (((-719) |#4| $) 54 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4269)))) (-3678 (($ $) 39)) (-4246 (((-505) $) 69 (|has| |#4| (-572 (-505))))) (-3804 (($ (-594 |#4|)) 60)) (-3174 (($ $ |#3|) 28)) (-3176 (($ $ |#3|) 30)) (-3966 (($ $) 88)) (-3175 (($ $ |#3|) 29)) (-4233 (((-805) $) 11) (((-594 |#4|) $) 37)) (-3960 (((-719) $) 76 (|has| |#3| (-349)))) (-3980 (((-3 (-2 (|:| |bas| $) (|:| -3602 (-594 |#4|))) "failed") (-594 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3602 (-594 |#4|))) "failed") (-594 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-3972 (((-110) $ (-1 (-110) |#4| (-594 |#4|))) 98)) (-2021 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4269)))) (-3962 (((-594 |#3|) $) 81)) (-4209 (((-110) |#3| $) 80)) (-3317 (((-110) $ $) 6)) (-4232 (((-719) $) 46 (|has| $ (-6 -4269)))))
+(((-1129 |#1| |#2| |#3| |#4|) (-133) (-523) (-741) (-795) (-997 |t#1| |t#2| |t#3|)) (T -1129))
+((-3981 (*1 *2 *1 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-110)))) (-3980 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-110) *8 *8)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3602 (-594 *8)))) (-5 *3 (-594 *8)) (-4 *1 (-1129 *5 *6 *7 *8)))) (-3980 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-110) *9)) (-5 *5 (-1 (-110) *9 *9)) (-4 *9 (-997 *6 *7 *8)) (-4 *6 (-523)) (-4 *7 (-741)) (-4 *8 (-795)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3602 (-594 *9)))) (-5 *3 (-594 *9)) (-4 *1 (-1129 *6 *7 *8 *9)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-594 *6)))) (-4223 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-719)))) (-3978 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-2 (|:| -4140 (-594 *6)) (|:| -1768 (-594 *6)))))) (-3977 (*1 *2 *3 *1) (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-110)))) (-3977 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-110)))) (-3976 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *1 (-1129 *5 *6 *7 *3)) (-4 *5 (-523)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-110)))) (-3975 (*1 *2 *3 *1) (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-110)))) (-3974 (*1 *2 *3 *1) (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-110)))) (-3973 (*1 *2 *3 *1) (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-110)))) (-3972 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-110) *7 (-594 *7))) (-4 *1 (-1129 *4 *5 *6 *7)) (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-110)))) (-3975 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-110)))) (-3974 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-110)))) (-3973 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-110)))) (-4121 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-110) *2 *2)) (-4 *1 (-1129 *5 *6 *7 *2)) (-4 *5 (-523)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *2 (-997 *5 *6 *7)))) (-3971 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-594 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-110) *8 *8)) (-4 *1 (-1129 *5 *6 *7 *8)) (-4 *5 (-523)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-997 *5 *6 *7)))) (-3970 (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-997 *3 *4 *5)))) (-3969 (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-997 *3 *4 *5)))) (-3968 (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-997 *3 *4 *5)))) (-3967 (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-997 *3 *4 *5)))) (-3966 (*1 *1 *1) (-12 (-4 *1 (-1129 *2 *3 *4 *5)) (-4 *2 (-523)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-997 *2 *3 *4)))) (-3965 (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-997 *3 *4 *5)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-594 *1)) (-4 *1 (-1129 *4 *5 *6 *7)))) (-3963 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-594 (-2 (|:| -4140 *1) (|:| -1768 (-594 *7))))) (-5 *3 (-594 *7)) (-4 *1 (-1129 *4 *5 *6 *7)))) (-4079 (*1 *2 *1) (|partial| -12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-997 *3 *4 *5)))) (-4076 (*1 *2 *1) (|partial| -12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-997 *3 *4 *5)))) (-4077 (*1 *1 *1) (|partial| -12 (-4 *1 (-1129 *2 *3 *4 *5)) (-4 *2 (-523)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-997 *2 *3 *4)))) (-3962 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-594 *5)))) (-4209 (*1 *2 *3 *1) (-12 (-4 *1 (-1129 *4 *5 *3 *6)) (-4 *4 (-523)) (-4 *5 (-741)) (-4 *3 (-795)) (-4 *6 (-997 *4 *5 *3)) (-5 *2 (-110)))) (-3992 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1129 *4 *5 *3 *2)) (-4 *4 (-523)) (-4 *5 (-741)) (-4 *3 (-795)) (-4 *2 (-997 *4 *5 *3)))) (-3961 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-997 *3 *4 *5)))) (-4047 (*1 *1 *1 *2) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-997 *3 *4 *5)))) (-3960 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-4 *5 (-349)) (-5 *2 (-719)))))
+(-13 (-916 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4269) (-6 -4270) (-15 -3981 ((-110) $ $)) (-15 -3980 ((-3 (-2 (|:| |bas| $) (|:| -3602 (-594 |t#4|))) "failed") (-594 |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -3980 ((-3 (-2 (|:| |bas| $) (|:| -3602 (-594 |t#4|))) "failed") (-594 |t#4|) (-1 (-110) |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -3979 ((-594 |t#4|) $)) (-15 -4223 ((-719) $)) (-15 -3978 ((-2 (|:| -4140 (-594 |t#4|)) (|:| -1768 (-594 |t#4|))) $)) (-15 -3977 ((-110) |t#4| $)) (-15 -3977 ((-110) $)) (-15 -3976 ((-110) |t#4| $ (-1 (-110) |t#4| |t#4|))) (-15 -3975 ((-110) |t#4| $)) (-15 -3974 ((-110) |t#4| $)) (-15 -3973 ((-110) |t#4| $)) (-15 -3972 ((-110) $ (-1 (-110) |t#4| (-594 |t#4|)))) (-15 -3975 ((-110) $)) (-15 -3974 ((-110) $)) (-15 -3973 ((-110) $)) (-15 -4121 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -3971 ((-594 |t#4|) (-594 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -3970 (|t#4| |t#4| $)) (-15 -3969 (|t#4| |t#4| $)) (-15 -3968 (|t#4| |t#4| $)) (-15 -3967 (|t#4| |t#4| $)) (-15 -3966 ($ $)) (-15 -3965 (|t#4| |t#4| $)) (-15 -3964 ((-594 $) (-594 |t#4|))) (-15 -3963 ((-594 (-2 (|:| -4140 $) (|:| -1768 (-594 |t#4|)))) (-594 |t#4|))) (-15 -4079 ((-3 |t#4| "failed") $)) (-15 -4076 ((-3 |t#4| "failed") $)) (-15 -4077 ((-3 $ "failed") $)) (-15 -3962 ((-594 |t#3|) $)) (-15 -4209 ((-110) |t#3| $)) (-15 -3992 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3961 ((-3 $ "failed") $ |t#4|)) (-15 -4047 ($ $ |t#4|)) (IF (|has| |t#3| (-349)) (-15 -3960 ((-719) $)) |%noBranch|)))
+(((-33) . T) ((-99) . T) ((-571 (-594 |#4|)) . T) ((-571 (-805)) . T) ((-144 |#4|) . T) ((-572 (-505)) |has| |#4| (-572 (-505))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-468 |#4|) . T) ((-491 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1027) . T) ((-1134) . T))
+((-3987 (($ |#1| (-594 (-594 (-884 (-208)))) (-110)) 19)) (-3986 (((-110) $ (-110)) 18)) (-3985 (((-110) $) 17)) (-3983 (((-594 (-594 (-884 (-208)))) $) 13)) (-3982 ((|#1| $) 8)) (-3984 (((-110) $) 15)))
+(((-1130 |#1|) (-10 -8 (-15 -3982 (|#1| $)) (-15 -3983 ((-594 (-594 (-884 (-208)))) $)) (-15 -3984 ((-110) $)) (-15 -3985 ((-110) $)) (-15 -3986 ((-110) $ (-110))) (-15 -3987 ($ |#1| (-594 (-594 (-884 (-208)))) (-110)))) (-914)) (T -1130))
+((-3987 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-594 (-594 (-884 (-208))))) (-5 *4 (-110)) (-5 *1 (-1130 *2)) (-4 *2 (-914)))) (-3986 (*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1130 *3)) (-4 *3 (-914)))) (-3985 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1130 *3)) (-4 *3 (-914)))) (-3984 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1130 *3)) (-4 *3 (-914)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-594 (-594 (-884 (-208))))) (-5 *1 (-1130 *3)) (-4 *3 (-914)))) (-3982 (*1 *2 *1) (-12 (-5 *1 (-1130 *2)) (-4 *2 (-914)))))
+(-10 -8 (-15 -3982 (|#1| $)) (-15 -3983 ((-594 (-594 (-884 (-208)))) $)) (-15 -3984 ((-110) $)) (-15 -3985 ((-110) $)) (-15 -3986 ((-110) $ (-110))) (-15 -3987 ($ |#1| (-594 (-594 (-884 (-208)))) (-110))))
+((-3989 (((-884 (-208)) (-884 (-208))) 25)) (-3988 (((-884 (-208)) (-208) (-208) (-208) (-208)) 10)) (-3991 (((-594 (-884 (-208))) (-884 (-208)) (-884 (-208)) (-884 (-208)) (-208) (-594 (-594 (-208)))) 37)) (-4115 (((-208) (-884 (-208)) (-884 (-208))) 21)) (-4113 (((-884 (-208)) (-884 (-208)) (-884 (-208))) 22)) (-3990 (((-594 (-594 (-208))) (-516)) 31)) (-4116 (((-884 (-208)) (-884 (-208)) (-884 (-208))) 20)) (-4118 (((-884 (-208)) (-884 (-208)) (-884 (-208))) 19)) (* (((-884 (-208)) (-208) (-884 (-208))) 18)))
+(((-1131) (-10 -7 (-15 -3988 ((-884 (-208)) (-208) (-208) (-208) (-208))) (-15 * ((-884 (-208)) (-208) (-884 (-208)))) (-15 -4118 ((-884 (-208)) (-884 (-208)) (-884 (-208)))) (-15 -4116 ((-884 (-208)) (-884 (-208)) (-884 (-208)))) (-15 -4115 ((-208) (-884 (-208)) (-884 (-208)))) (-15 -4113 ((-884 (-208)) (-884 (-208)) (-884 (-208)))) (-15 -3989 ((-884 (-208)) (-884 (-208)))) (-15 -3990 ((-594 (-594 (-208))) (-516))) (-15 -3991 ((-594 (-884 (-208))) (-884 (-208)) (-884 (-208)) (-884 (-208)) (-208) (-594 (-594 (-208))))))) (T -1131))
+((-3991 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-594 (-594 (-208)))) (-5 *4 (-208)) (-5 *2 (-594 (-884 *4))) (-5 *1 (-1131)) (-5 *3 (-884 *4)))) (-3990 (*1 *2 *3) (-12 (-5 *3 (-516)) (-5 *2 (-594 (-594 (-208)))) (-5 *1 (-1131)))) (-3989 (*1 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1131)))) (-4113 (*1 *2 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1131)))) (-4115 (*1 *2 *3 *3) (-12 (-5 *3 (-884 (-208))) (-5 *2 (-208)) (-5 *1 (-1131)))) (-4116 (*1 *2 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1131)))) (-4118 (*1 *2 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1131)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-884 (-208))) (-5 *3 (-208)) (-5 *1 (-1131)))) (-3988 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1131)) (-5 *3 (-208)))))
+(-10 -7 (-15 -3988 ((-884 (-208)) (-208) (-208) (-208) (-208))) (-15 * ((-884 (-208)) (-208) (-884 (-208)))) (-15 -4118 ((-884 (-208)) (-884 (-208)) (-884 (-208)))) (-15 -4116 ((-884 (-208)) (-884 (-208)) (-884 (-208)))) (-15 -4115 ((-208) (-884 (-208)) (-884 (-208)))) (-15 -4113 ((-884 (-208)) (-884 (-208)) (-884 (-208)))) (-15 -3989 ((-884 (-208)) (-884 (-208)))) (-15 -3990 ((-594 (-594 (-208))) (-516))) (-15 -3991 ((-594 (-884 (-208))) (-884 (-208)) (-884 (-208)) (-884 (-208)) (-208) (-594 (-594 (-208))))))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3992 ((|#1| $ (-719)) 13)) (-4112 (((-719) $) 12)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-4233 (((-899 |#1|) $) 10) (($ (-899 |#1|)) 9) (((-805) $) 23 (|has| |#1| (-571 (-805))))) (-3317 (((-110) $ $) 16 (|has| |#1| (-1027)))))
+(((-1132 |#1|) (-13 (-571 (-899 |#1|)) (-10 -8 (-15 -4233 ($ (-899 |#1|))) (-15 -3992 (|#1| $ (-719))) (-15 -4112 ((-719) $)) (IF (|has| |#1| (-571 (-805))) (-6 (-571 (-805))) |%noBranch|) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|))) (-1134)) (T -1132))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-899 *3)) (-4 *3 (-1134)) (-5 *1 (-1132 *3)))) (-3992 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-1132 *2)) (-4 *2 (-1134)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1132 *3)) (-4 *3 (-1134)))))
+(-13 (-571 (-899 |#1|)) (-10 -8 (-15 -4233 ($ (-899 |#1|))) (-15 -3992 (|#1| $ (-719))) (-15 -4112 ((-719) $)) (IF (|has| |#1| (-571 (-805))) (-6 (-571 (-805))) |%noBranch|) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|)))
+((-3995 (((-386 (-1092 (-1092 |#1|))) (-1092 (-1092 |#1|)) (-516)) 80)) (-3993 (((-386 (-1092 (-1092 |#1|))) (-1092 (-1092 |#1|))) 74)) (-3994 (((-386 (-1092 (-1092 |#1|))) (-1092 (-1092 |#1|))) 59)))
+(((-1133 |#1|) (-10 -7 (-15 -3993 ((-386 (-1092 (-1092 |#1|))) (-1092 (-1092 |#1|)))) (-15 -3994 ((-386 (-1092 (-1092 |#1|))) (-1092 (-1092 |#1|)))) (-15 -3995 ((-386 (-1092 (-1092 |#1|))) (-1092 (-1092 |#1|)) (-516)))) (-331)) (T -1133))
+((-3995 (*1 *2 *3 *4) (-12 (-5 *4 (-516)) (-4 *5 (-331)) (-5 *2 (-386 (-1092 (-1092 *5)))) (-5 *1 (-1133 *5)) (-5 *3 (-1092 (-1092 *5))))) (-3994 (*1 *2 *3) (-12 (-4 *4 (-331)) (-5 *2 (-386 (-1092 (-1092 *4)))) (-5 *1 (-1133 *4)) (-5 *3 (-1092 (-1092 *4))))) (-3993 (*1 *2 *3) (-12 (-4 *4 (-331)) (-5 *2 (-386 (-1092 (-1092 *4)))) (-5 *1 (-1133 *4)) (-5 *3 (-1092 (-1092 *4))))))
+(-10 -7 (-15 -3993 ((-386 (-1092 (-1092 |#1|))) (-1092 (-1092 |#1|)))) (-15 -3994 ((-386 (-1092 (-1092 |#1|))) (-1092 (-1092 |#1|)))) (-15 -3995 ((-386 (-1092 (-1092 |#1|))) (-1092 (-1092 |#1|)) (-516))))
+NIL
+(((-1134) (-133)) (T -1134))
+NIL
+(-13 (-10 -7 (-6 -2303)))
+((-3999 (((-110)) 15)) (-3996 (((-1185) (-594 |#1|) (-594 |#1|)) 19) (((-1185) (-594 |#1|)) 20)) (-4001 (((-110) |#1| |#1|) 32 (|has| |#1| (-795)))) (-3998 (((-110) |#1| |#1| (-1 (-110) |#1| |#1|)) 27) (((-3 (-110) "failed") |#1| |#1|) 25)) (-4000 ((|#1| (-594 |#1|)) 33 (|has| |#1| (-795))) ((|#1| (-594 |#1|) (-1 (-110) |#1| |#1|)) 28)) (-3997 (((-2 (|:| -3501 (-594 |#1|)) (|:| -3500 (-594 |#1|)))) 17)))
+(((-1135 |#1|) (-10 -7 (-15 -3996 ((-1185) (-594 |#1|))) (-15 -3996 ((-1185) (-594 |#1|) (-594 |#1|))) (-15 -3997 ((-2 (|:| -3501 (-594 |#1|)) (|:| -3500 (-594 |#1|))))) (-15 -3998 ((-3 (-110) "failed") |#1| |#1|)) (-15 -3998 ((-110) |#1| |#1| (-1 (-110) |#1| |#1|))) (-15 -4000 (|#1| (-594 |#1|) (-1 (-110) |#1| |#1|))) (-15 -3999 ((-110))) (IF (|has| |#1| (-795)) (PROGN (-15 -4000 (|#1| (-594 |#1|))) (-15 -4001 ((-110) |#1| |#1|))) |%noBranch|)) (-1027)) (T -1135))
+((-4001 (*1 *2 *3 *3) (-12 (-5 *2 (-110)) (-5 *1 (-1135 *3)) (-4 *3 (-795)) (-4 *3 (-1027)))) (-4000 (*1 *2 *3) (-12 (-5 *3 (-594 *2)) (-4 *2 (-1027)) (-4 *2 (-795)) (-5 *1 (-1135 *2)))) (-3999 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1135 *3)) (-4 *3 (-1027)))) (-4000 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *2)) (-5 *4 (-1 (-110) *2 *2)) (-5 *1 (-1135 *2)) (-4 *2 (-1027)))) (-3998 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *3 (-1027)) (-5 *2 (-110)) (-5 *1 (-1135 *3)))) (-3998 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-110)) (-5 *1 (-1135 *3)) (-4 *3 (-1027)))) (-3997 (*1 *2) (-12 (-5 *2 (-2 (|:| -3501 (-594 *3)) (|:| -3500 (-594 *3)))) (-5 *1 (-1135 *3)) (-4 *3 (-1027)))) (-3996 (*1 *2 *3 *3) (-12 (-5 *3 (-594 *4)) (-4 *4 (-1027)) (-5 *2 (-1185)) (-5 *1 (-1135 *4)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-594 *4)) (-4 *4 (-1027)) (-5 *2 (-1185)) (-5 *1 (-1135 *4)))))
+(-10 -7 (-15 -3996 ((-1185) (-594 |#1|))) (-15 -3996 ((-1185) (-594 |#1|) (-594 |#1|))) (-15 -3997 ((-2 (|:| -3501 (-594 |#1|)) (|:| -3500 (-594 |#1|))))) (-15 -3998 ((-3 (-110) "failed") |#1| |#1|)) (-15 -3998 ((-110) |#1| |#1| (-1 (-110) |#1| |#1|))) (-15 -4000 (|#1| (-594 |#1|) (-1 (-110) |#1| |#1|))) (-15 -3999 ((-110))) (IF (|has| |#1| (-795)) (PROGN (-15 -4000 (|#1| (-594 |#1|))) (-15 -4001 ((-110) |#1| |#1|))) |%noBranch|))
+((-4002 (((-1185) (-594 (-1098)) (-594 (-1098))) 13) (((-1185) (-594 (-1098))) 11)) (-4004 (((-1185)) 14)) (-4003 (((-2 (|:| -3500 (-594 (-1098))) (|:| -3501 (-594 (-1098))))) 18)))
+(((-1136) (-10 -7 (-15 -4002 ((-1185) (-594 (-1098)))) (-15 -4002 ((-1185) (-594 (-1098)) (-594 (-1098)))) (-15 -4003 ((-2 (|:| -3500 (-594 (-1098))) (|:| -3501 (-594 (-1098)))))) (-15 -4004 ((-1185))))) (T -1136))
+((-4004 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1136)))) (-4003 (*1 *2) (-12 (-5 *2 (-2 (|:| -3500 (-594 (-1098))) (|:| -3501 (-594 (-1098))))) (-5 *1 (-1136)))) (-4002 (*1 *2 *3 *3) (-12 (-5 *3 (-594 (-1098))) (-5 *2 (-1185)) (-5 *1 (-1136)))) (-4002 (*1 *2 *3) (-12 (-5 *3 (-594 (-1098))) (-5 *2 (-1185)) (-5 *1 (-1136)))))
+(-10 -7 (-15 -4002 ((-1185) (-594 (-1098)))) (-15 -4002 ((-1185) (-594 (-1098)) (-594 (-1098)))) (-15 -4003 ((-2 (|:| -3500 (-594 (-1098))) (|:| -3501 (-594 (-1098)))))) (-15 -4004 ((-1185))))
+((-4053 (($ $) 17)) (-4005 (((-110) $) 24)))
+(((-1137 |#1|) (-10 -8 (-15 -4053 (|#1| |#1|)) (-15 -4005 ((-110) |#1|))) (-1138)) (T -1137))
+NIL
+(-10 -8 (-15 -4053 (|#1| |#1|)) (-15 -4005 ((-110) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 41)) (-2118 (($ $) 40)) (-2116 (((-110) $) 38)) (-1319 (((-3 $ "failed") $ $) 19)) (-4053 (($ $) 51)) (-4245 (((-386 $) $) 52)) (-3815 (($) 17 T CONST)) (-3741 (((-3 $ "failed") $) 34)) (-4005 (((-110) $) 53)) (-2436 (((-110) $) 31)) (-1963 (($ $ $) 46) (($ (-594 $)) 45)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 44)) (-3419 (($ $ $) 48) (($ (-594 $)) 47)) (-4011 (((-386 $) $) 50)) (-3740 (((-3 $ "failed") $ $) 42)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ $) 43)) (-3385 (((-719)) 29)) (-2117 (((-110) $ $) 39)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24)))
+(((-1138) (-133)) (T -1138))
+((-4005 (*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-110)))) (-4245 (*1 *2 *1) (-12 (-5 *2 (-386 *1)) (-4 *1 (-1138)))) (-4053 (*1 *1 *1) (-4 *1 (-1138))) (-4011 (*1 *2 *1) (-12 (-5 *2 (-386 *1)) (-4 *1 (-1138)))))
+(-13 (-432) (-10 -8 (-15 -4005 ((-110) $)) (-15 -4245 ((-386 $) $)) (-15 -4053 ($ $)) (-15 -4011 ((-386 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-805)) . T) ((-162) . T) ((-272) . T) ((-432) . T) ((-523) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3388 (((-1169 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-289)) (|has| |#1| (-344))))) (-3347 (((-594 (-1011)) $) NIL)) (-4110 (((-1098) $) 10)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-851)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-2118 (($ $) NIL (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-851)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-2116 (((-110) $) NIL (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-851)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-4049 (($ $ (-516)) NIL) (($ $ (-516) (-516)) NIL)) (-4052 (((-1076 (-2 (|:| |k| (-516)) (|:| |c| |#1|))) $) NIL)) (-4010 (((-1169 |#1| |#2| |#3|) $) NIL)) (-4007 (((-3 (-1169 |#1| |#2| |#3|) "failed") $) NIL)) (-4008 (((-1169 |#1| |#2| |#3|) $) NIL)) (-3766 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3921 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-1319 (((-3 $ "failed") $ $) NIL)) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-851)) (|has| |#1| (-344))))) (-4053 (($ $) NIL (|has| |#1| (-344)))) (-4245 (((-386 $) $) NIL (|has| |#1| (-344)))) (-3301 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-851)) (|has| |#1| (-344))))) (-1655 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3764 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3920 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3905 (((-516) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-4097 (($ (-1076 (-2 (|:| |k| (-516)) (|:| |c| |#1|)))) NIL)) (-3768 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-1169 |#1| |#2| |#3|) #2="failed") $) NIL) (((-3 (-1098) #2#) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-975 (-1098))) (|has| |#1| (-344)))) (((-3 (-388 (-516)) #2#) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-975 (-516))) (|has| |#1| (-344)))) (((-3 (-516) #2#) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-975 (-516))) (|has| |#1| (-344))))) (-3431 (((-1169 |#1| |#2| |#3|) $) NIL) (((-1098) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-975 (-1098))) (|has| |#1| (-344)))) (((-388 (-516)) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-975 (-516))) (|has| |#1| (-344)))) (((-516) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-975 (-516))) (|has| |#1| (-344))))) (-4009 (($ $) NIL) (($ (-516) $) NIL)) (-2824 (($ $ $) NIL (|has| |#1| (-344)))) (-4235 (($ $) NIL)) (-2297 (((-637 (-1169 |#1| |#2| |#3|)) (-637 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -1650 (-637 (-1169 |#1| |#2| |#3|))) (|:| |vec| (-1179 (-1169 |#1| |#2| |#3|)))) (-637 $) (-1179 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-593 (-516))) (|has| |#1| (-344)))) (((-637 (-516)) (-637 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-593 (-516))) (|has| |#1| (-344))))) (-3741 (((-3 $ "failed") $) NIL)) (-4006 (((-388 (-887 |#1|)) $ (-516)) NIL (|has| |#1| (-523))) (((-388 (-887 |#1|)) $ (-516) (-516)) NIL (|has| |#1| (-523)))) (-3258 (($) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-515)) (|has| |#1| (-344))))) (-2823 (($ $ $) NIL (|has| |#1| (-344)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL (|has| |#1| (-344)))) (-4005 (((-110) $) NIL (|has| |#1| (-344)))) (-3460 (((-110) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-3156 (((-110) $) NIL)) (-3909 (($) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3060 (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-827 (-516))) (|has| |#1| (-344)))) (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-827 (-359))) (|has| |#1| (-344))))) (-4050 (((-516) $) NIL) (((-516) $ (-516)) NIL)) (-2436 (((-110) $) NIL)) (-3260 (($ $) NIL (|has| |#1| (-344)))) (-3262 (((-1169 |#1| |#2| |#3|) $) NIL (|has| |#1| (-344)))) (-3275 (($ $ (-516)) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3723 (((-3 $ "failed") $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-1074)) (|has| |#1| (-344))))) (-3461 (((-110) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-4055 (($ $ (-860)) NIL)) (-4094 (($ (-1 |#1| (-516)) $) NIL)) (-1652 (((-3 (-594 $) #3="failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-4213 (((-110) $) NIL)) (-3157 (($ |#1| (-516)) 17) (($ $ (-1011) (-516)) NIL) (($ $ (-594 (-1011)) (-594 (-516))) NIL)) (-3596 (($ $ $) NIL (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-3597 (($ $ $) NIL (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-4234 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-344)))) (-4218 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3158 (($ $) NIL)) (-3449 ((|#1| $) NIL)) (-1963 (($ (-594 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-4057 (($ (-516) (-1169 |#1| |#2| |#3|)) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL (|has| |#1| (-344)))) (-4091 (($ $) 25 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-1098)) NIL (-3810 (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-29 (-516))) (|has| |#1| (-901)) (|has| |#1| (-1120))) (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-15 -4091 (|#1| |#1| (-1098)))) (|has| |#1| (-15 -3347 ((-594 (-1098)) |#1|)))))) (($ $ (-1176 |#2|)) 26 (|has| |#1| (-37 (-388 (-516)))))) (-3724 (($) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-1074)) (|has| |#1| (-344))) CONST)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#1| (-344)))) (-3419 (($ (-594 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-3387 (($ $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-289)) (|has| |#1| (-344))))) (-3389 (((-1169 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-515)) (|has| |#1| (-344))))) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-851)) (|has| |#1| (-344))))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-851)) (|has| |#1| (-344))))) (-4011 (((-386 $) $) NIL (|has| |#1| (-344)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#1| (-344)))) (-4047 (($ $ (-516)) NIL)) (-3740 (((-3 $ "failed") $ $) NIL (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-851)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-4219 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4046 (((-1076 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-516))))) (($ $ (-1098) (-1169 |#1| |#2| |#3|)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-491 (-1098) (-1169 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-594 (-1098)) (-594 (-1169 |#1| |#2| |#3|))) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-491 (-1098) (-1169 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-594 (-275 (-1169 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-291 (-1169 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-275 (-1169 |#1| |#2| |#3|))) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-291 (-1169 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-291 (-1169 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-594 (-1169 |#1| |#2| |#3|)) (-594 (-1169 |#1| |#2| |#3|))) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-291 (-1169 |#1| |#2| |#3|))) (|has| |#1| (-344))))) (-1654 (((-719) $) NIL (|has| |#1| (-344)))) (-4078 ((|#1| $ (-516)) NIL) (($ $ $) NIL (|has| (-516) (-1038))) (($ $ (-1169 |#1| |#2| |#3|)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-268 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|))) (|has| |#1| (-344))))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-344)))) (-4089 (($ $ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|))) NIL (|has| |#1| (-344))) (($ $ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) (-719)) NIL (|has| |#1| (-344))) (($ $ (-1176 |#2|)) 24) (($ $ (-719)) NIL (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $) 23 (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-841 (-1098))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))))) (($ $ (-1098) (-719)) NIL (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-841 (-1098))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))))) (($ $ (-594 (-1098))) NIL (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-841 (-1098))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))))) (($ $ (-1098)) NIL (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-841 (-1098))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))))) (-3259 (($ $) NIL (|has| |#1| (-344)))) (-3261 (((-1169 |#1| |#2| |#3|) $) NIL (|has| |#1| (-344)))) (-4223 (((-516) $) NIL)) (-3769 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3918 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3767 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3917 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3765 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3916 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4246 (((-505) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-572 (-505))) (|has| |#1| (-344)))) (((-359) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-958)) (|has| |#1| (-344)))) (((-208) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-958)) (|has| |#1| (-344)))) (((-831 (-359)) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-572 (-831 (-359)))) (|has| |#1| (-344)))) (((-831 (-516)) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-572 (-831 (-516)))) (|has| |#1| (-344))))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-1169 |#1| |#2| |#3|) (-851)) (|has| |#1| (-344))))) (-3155 (($ $) NIL)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1169 |#1| |#2| |#3|)) NIL) (($ (-1176 |#2|)) 22) (($ (-1098)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-975 (-1098))) (|has| |#1| (-344)))) (($ $) NIL (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-851)) (|has| |#1| (-344))) (|has| |#1| (-523)))) (($ (-388 (-516))) NIL (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-975 (-516))) (|has| |#1| (-344))) (|has| |#1| (-37 (-388 (-516))))))) (-3959 ((|#1| $ (-516)) NIL)) (-2965 (((-3 $ "failed") $) NIL (-3810 (-12 (|has| $ (-138)) (|has| (-1169 |#1| |#2| |#3|) (-851)) (|has| |#1| (-344))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-138)) (|has| |#1| (-344))) (|has| |#1| (-138))))) (-3385 (((-719)) NIL)) (-4051 ((|#1| $) 11)) (-3390 (((-1169 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-515)) (|has| |#1| (-344))))) (-3772 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3760 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-2117 (((-110) $ $) NIL (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-851)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-3770 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3758 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3774 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3762 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4048 ((|#1| $ (-516)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-516)))) (|has| |#1| (-15 -4233 (|#1| (-1098))))))) (-3775 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3763 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3773 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3761 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3771 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3759 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3661 (($ $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| |#1| (-344)))) (-2920 (($) 19 T CONST)) (-2927 (($) 15 T CONST)) (-2932 (($ $ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|))) NIL (|has| |#1| (-344))) (($ $ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) (-719)) NIL (|has| |#1| (-344))) (($ $ (-719)) NIL (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $) NIL (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-841 (-1098))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))))) (($ $ (-1098) (-719)) NIL (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-841 (-1098))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))))) (($ $ (-594 (-1098))) NIL (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-841 (-1098))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))))) (($ $ (-1098)) NIL (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-841 (-1098))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))))) (-2826 (((-110) $ $) NIL (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2827 (((-110) $ $) NIL (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2948 (((-110) $ $) NIL (-3810 (-12 (|has| (-1169 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-4224 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344))) (($ (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) NIL (|has| |#1| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) 20)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516)))))) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1169 |#1| |#2| |#3|)) NIL (|has| |#1| (-344))) (($ (-1169 |#1| |#2| |#3|) $) NIL (|has| |#1| (-344))) (($ (-388 (-516)) $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516)))))))
+(((-1139 |#1| |#2| |#3|) (-13 (-1143 |#1| (-1169 |#1| |#2| |#3|)) (-10 -8 (-15 -4233 ($ (-1176 |#2|))) (-15 -4089 ($ $ (-1176 |#2|))) (IF (|has| |#1| (-37 (-388 (-516)))) (-15 -4091 ($ $ (-1176 |#2|))) |%noBranch|))) (-984) (-1098) |#1|) (T -1139))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-4089 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-4091 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-37 (-388 (-516)))) (-4 *3 (-984)) (-14 *5 *3))))
+(-13 (-1143 |#1| (-1169 |#1| |#2| |#3|)) (-10 -8 (-15 -4233 ($ (-1176 |#2|))) (-15 -4089 ($ $ (-1176 |#2|))) (IF (|has| |#1| (-37 (-388 (-516)))) (-15 -4091 ($ $ (-1176 |#2|))) |%noBranch|)))
+((-4234 (((-1139 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1139 |#1| |#3| |#5|)) 23)))
+(((-1140 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4234 ((-1139 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1139 |#1| |#3| |#5|)))) (-984) (-984) (-1098) (-1098) |#1| |#2|) (T -1140))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1139 *5 *7 *9)) (-4 *5 (-984)) (-4 *6 (-984)) (-14 *7 (-1098)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1139 *6 *8 *10)) (-5 *1 (-1140 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1098)))))
+(-10 -7 (-15 -4234 ((-1139 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1139 |#1| |#3| |#5|))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-3347 (((-594 (-1011)) $) 74)) (-4110 (((-1098) $) 103)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 51 (|has| |#1| (-523)))) (-2118 (($ $) 52 (|has| |#1| (-523)))) (-2116 (((-110) $) 54 (|has| |#1| (-523)))) (-4049 (($ $ (-516)) 98) (($ $ (-516) (-516)) 97)) (-4052 (((-1076 (-2 (|:| |k| (-516)) (|:| |c| |#1|))) $) 105)) (-3766 (($ $) 135 (|has| |#1| (-37 (-388 (-516)))))) (-3921 (($ $) 118 (|has| |#1| (-37 (-388 (-516)))))) (-1319 (((-3 $ "failed") $ $) 19)) (-4053 (($ $) 162 (|has| |#1| (-344)))) (-4245 (((-386 $) $) 163 (|has| |#1| (-344)))) (-3301 (($ $) 117 (|has| |#1| (-37 (-388 (-516)))))) (-1655 (((-110) $ $) 153 (|has| |#1| (-344)))) (-3764 (($ $) 134 (|has| |#1| (-37 (-388 (-516)))))) (-3920 (($ $) 119 (|has| |#1| (-37 (-388 (-516)))))) (-4097 (($ (-1076 (-2 (|:| |k| (-516)) (|:| |c| |#1|)))) 174)) (-3768 (($ $) 133 (|has| |#1| (-37 (-388 (-516)))))) (-3919 (($ $) 120 (|has| |#1| (-37 (-388 (-516)))))) (-3815 (($) 17 T CONST)) (-2824 (($ $ $) 157 (|has| |#1| (-344)))) (-4235 (($ $) 60)) (-3741 (((-3 $ "failed") $) 34)) (-4006 (((-388 (-887 |#1|)) $ (-516)) 172 (|has| |#1| (-523))) (((-388 (-887 |#1|)) $ (-516) (-516)) 171 (|has| |#1| (-523)))) (-2823 (($ $ $) 156 (|has| |#1| (-344)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 151 (|has| |#1| (-344)))) (-4005 (((-110) $) 164 (|has| |#1| (-344)))) (-3156 (((-110) $) 73)) (-3909 (($) 145 (|has| |#1| (-37 (-388 (-516)))))) (-4050 (((-516) $) 100) (((-516) $ (-516)) 99)) (-2436 (((-110) $) 31)) (-3275 (($ $ (-516)) 116 (|has| |#1| (-37 (-388 (-516)))))) (-4055 (($ $ (-860)) 101)) (-4094 (($ (-1 |#1| (-516)) $) 173)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) 160 (|has| |#1| (-344)))) (-4213 (((-110) $) 62)) (-3157 (($ |#1| (-516)) 61) (($ $ (-1011) (-516)) 76) (($ $ (-594 (-1011)) (-594 (-516))) 75)) (-4234 (($ (-1 |#1| |#1|) $) 63)) (-4218 (($ $) 142 (|has| |#1| (-37 (-388 (-516)))))) (-3158 (($ $) 65)) (-3449 ((|#1| $) 66)) (-1963 (($ (-594 $)) 149 (|has| |#1| (-344))) (($ $ $) 148 (|has| |#1| (-344)))) (-3513 (((-1081) $) 9)) (-2668 (($ $) 165 (|has| |#1| (-344)))) (-4091 (($ $) 170 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-1098)) 169 (-3810 (-12 (|has| |#1| (-29 (-516))) (|has| |#1| (-901)) (|has| |#1| (-1120)) (|has| |#1| (-37 (-388 (-516))))) (-12 (|has| |#1| (-15 -3347 ((-594 (-1098)) |#1|))) (|has| |#1| (-15 -4091 (|#1| |#1| (-1098)))) (|has| |#1| (-37 (-388 (-516)))))))) (-3514 (((-1045) $) 10)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 150 (|has| |#1| (-344)))) (-3419 (($ (-594 $)) 147 (|has| |#1| (-344))) (($ $ $) 146 (|has| |#1| (-344)))) (-4011 (((-386 $) $) 161 (|has| |#1| (-344)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 159 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 158 (|has| |#1| (-344)))) (-4047 (($ $ (-516)) 95)) (-3740 (((-3 $ "failed") $ $) 50 (|has| |#1| (-523)))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 152 (|has| |#1| (-344)))) (-4219 (($ $) 143 (|has| |#1| (-37 (-388 (-516)))))) (-4046 (((-1076 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-516)))))) (-1654 (((-719) $) 154 (|has| |#1| (-344)))) (-4078 ((|#1| $ (-516)) 104) (($ $ $) 81 (|has| (-516) (-1038)))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 155 (|has| |#1| (-344)))) (-4089 (($ $ (-594 (-1098)) (-594 (-719))) 89 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $ (-1098) (-719)) 88 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $ (-594 (-1098))) 87 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $ (-1098)) 86 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $ (-719)) 84 (|has| |#1| (-15 * (|#1| (-516) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (-4223 (((-516) $) 64)) (-3769 (($ $) 132 (|has| |#1| (-37 (-388 (-516)))))) (-3918 (($ $) 121 (|has| |#1| (-37 (-388 (-516)))))) (-3767 (($ $) 131 (|has| |#1| (-37 (-388 (-516)))))) (-3917 (($ $) 122 (|has| |#1| (-37 (-388 (-516)))))) (-3765 (($ $) 130 (|has| |#1| (-37 (-388 (-516)))))) (-3916 (($ $) 123 (|has| |#1| (-37 (-388 (-516)))))) (-3155 (($ $) 72)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ |#1|) 47 (|has| |#1| (-162))) (($ (-388 (-516))) 57 (|has| |#1| (-37 (-388 (-516))))) (($ $) 49 (|has| |#1| (-523)))) (-3959 ((|#1| $ (-516)) 59)) (-2965 (((-3 $ "failed") $) 48 (|has| |#1| (-138)))) (-3385 (((-719)) 29)) (-4051 ((|#1| $) 102)) (-3772 (($ $) 141 (|has| |#1| (-37 (-388 (-516)))))) (-3760 (($ $) 129 (|has| |#1| (-37 (-388 (-516)))))) (-2117 (((-110) $ $) 53 (|has| |#1| (-523)))) (-3770 (($ $) 140 (|has| |#1| (-37 (-388 (-516)))))) (-3758 (($ $) 128 (|has| |#1| (-37 (-388 (-516)))))) (-3774 (($ $) 139 (|has| |#1| (-37 (-388 (-516)))))) (-3762 (($ $) 127 (|has| |#1| (-37 (-388 (-516)))))) (-4048 ((|#1| $ (-516)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-516)))) (|has| |#1| (-15 -4233 (|#1| (-1098))))))) (-3775 (($ $) 138 (|has| |#1| (-37 (-388 (-516)))))) (-3763 (($ $) 126 (|has| |#1| (-37 (-388 (-516)))))) (-3773 (($ $) 137 (|has| |#1| (-37 (-388 (-516)))))) (-3761 (($ $) 125 (|has| |#1| (-37 (-388 (-516)))))) (-3771 (($ $) 136 (|has| |#1| (-37 (-388 (-516)))))) (-3759 (($ $) 124 (|has| |#1| (-37 (-388 (-516)))))) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33) (($ $ (-516)) 166 (|has| |#1| (-344)))) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2932 (($ $ (-594 (-1098)) (-594 (-719))) 93 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $ (-1098) (-719)) 92 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $ (-594 (-1098))) 91 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $ (-1098)) 90 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $ (-719)) 85 (|has| |#1| (-15 * (|#1| (-516) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (-3317 (((-110) $ $) 6)) (-4224 (($ $ |#1|) 58 (|has| |#1| (-344))) (($ $ $) 168 (|has| |#1| (-344)))) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32) (($ $ (-516)) 167 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) 115 (|has| |#1| (-37 (-388 (-516)))))) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-388 (-516)) $) 56 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) 55 (|has| |#1| (-37 (-388 (-516)))))))
+(((-1141 |#1|) (-133) (-984)) (T -1141))
+((-4097 (*1 *1 *2) (-12 (-5 *2 (-1076 (-2 (|:| |k| (-516)) (|:| |c| *3)))) (-4 *3 (-984)) (-4 *1 (-1141 *3)))) (-4094 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-516))) (-4 *1 (-1141 *3)) (-4 *3 (-984)))) (-4006 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-4 *1 (-1141 *4)) (-4 *4 (-984)) (-4 *4 (-523)) (-5 *2 (-388 (-887 *4))))) (-4006 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-516)) (-4 *1 (-1141 *4)) (-4 *4 (-984)) (-4 *4 (-523)) (-5 *2 (-388 (-887 *4))))) (-4091 (*1 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-516)))))) (-4091 (*1 *1 *1 *2) (-3810 (-12 (-5 *2 (-1098)) (-4 *1 (-1141 *3)) (-4 *3 (-984)) (-12 (-4 *3 (-29 (-516))) (-4 *3 (-901)) (-4 *3 (-1120)) (-4 *3 (-37 (-388 (-516)))))) (-12 (-5 *2 (-1098)) (-4 *1 (-1141 *3)) (-4 *3 (-984)) (-12 (|has| *3 (-15 -3347 ((-594 *2) *3))) (|has| *3 (-15 -4091 (*3 *3 *2))) (-4 *3 (-37 (-388 (-516)))))))))
+(-13 (-1158 |t#1| (-516)) (-10 -8 (-15 -4097 ($ (-1076 (-2 (|:| |k| (-516)) (|:| |c| |t#1|))))) (-15 -4094 ($ (-1 |t#1| (-516)) $)) (IF (|has| |t#1| (-523)) (PROGN (-15 -4006 ((-388 (-887 |t#1|)) $ (-516))) (-15 -4006 ((-388 (-887 |t#1|)) $ (-516) (-516)))) |%noBranch|) (IF (|has| |t#1| (-37 (-388 (-516)))) (PROGN (-15 -4091 ($ $)) (IF (|has| |t#1| (-15 -4091 (|t#1| |t#1| (-1098)))) (IF (|has| |t#1| (-15 -3347 ((-594 (-1098)) |t#1|))) (-15 -4091 ($ $ (-1098))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1120)) (IF (|has| |t#1| (-901)) (IF (|has| |t#1| (-29 (-516))) (-15 -4091 ($ $ (-1098))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-941)) (-6 (-1120))) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #1=(-516)) . T) ((-25) . T) ((-37 #2=(-388 (-516))) -3810 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-516))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -3810 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-34) |has| |#1| (-37 (-388 (-516)))) ((-93) |has| |#1| (-37 (-388 (-516)))) ((-99) . T) ((-109 #2# #2#) -3810 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-516))))) ((-109 |#1| |#1|) . T) ((-109 $ $) -3810 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-805)) . T) ((-162) -3810 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| (-516) |#1|))) ((-226) |has| |#1| (-344)) ((-266) |has| |#1| (-37 (-388 (-516)))) ((-268 $ $) |has| (-516) (-1038)) ((-272) -3810 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-344) |has| |#1| (-344)) ((-432) |has| |#1| (-344)) ((-471) |has| |#1| (-37 (-388 (-516)))) ((-523) -3810 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-599 #2#) -3810 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-516))))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #2#) -3810 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-516))))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -3810 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-675) . T) ((-841 (-1098)) -12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))) ((-913 |#1| #1# (-1011)) . T) ((-862) |has| |#1| (-344)) ((-941) |has| |#1| (-37 (-388 (-516)))) ((-989 #2#) -3810 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-516))))) ((-989 |#1|) . T) ((-989 $) -3810 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1120) |has| |#1| (-37 (-388 (-516)))) ((-1123) |has| |#1| (-37 (-388 (-516)))) ((-1138) |has| |#1| (-344)) ((-1158 |#1| #1#) . T))
+((-3462 (((-110) $) 12)) (-3432 (((-3 |#3| #1="failed") $) 17) (((-3 (-1098) #1#) $) NIL) (((-3 (-388 (-516)) #1#) $) NIL) (((-3 (-516) #1#) $) NIL)) (-3431 ((|#3| $) 14) (((-1098) $) NIL) (((-388 (-516)) $) NIL) (((-516) $) NIL)))
+(((-1142 |#1| |#2| |#3|) (-10 -8 (-15 -3431 ((-516) |#1|)) (-15 -3432 ((-3 (-516) #1="failed") |#1|)) (-15 -3431 ((-388 (-516)) |#1|)) (-15 -3432 ((-3 (-388 (-516)) #1#) |#1|)) (-15 -3431 ((-1098) |#1|)) (-15 -3432 ((-3 (-1098) #1#) |#1|)) (-15 -3431 (|#3| |#1|)) (-15 -3432 ((-3 |#3| #1#) |#1|)) (-15 -3462 ((-110) |#1|))) (-1143 |#2| |#3|) (-984) (-1172 |#2|)) (T -1142))
+NIL
+(-10 -8 (-15 -3431 ((-516) |#1|)) (-15 -3432 ((-3 (-516) #1="failed") |#1|)) (-15 -3431 ((-388 (-516)) |#1|)) (-15 -3432 ((-3 (-388 (-516)) #1#) |#1|)) (-15 -3431 ((-1098) |#1|)) (-15 -3432 ((-3 (-1098) #1#) |#1|)) (-15 -3431 (|#3| |#1|)) (-15 -3432 ((-3 |#3| #1#) |#1|)) (-15 -3462 ((-110) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-3388 ((|#2| $) 231 (-3119 (|has| |#2| (-289)) (|has| |#1| (-344))))) (-3347 (((-594 (-1011)) $) 74)) (-4110 (((-1098) $) 103)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 51 (|has| |#1| (-523)))) (-2118 (($ $) 52 (|has| |#1| (-523)))) (-2116 (((-110) $) 54 (|has| |#1| (-523)))) (-4049 (($ $ (-516)) 98) (($ $ (-516) (-516)) 97)) (-4052 (((-1076 (-2 (|:| |k| (-516)) (|:| |c| |#1|))) $) 105)) (-4010 ((|#2| $) 267)) (-4007 (((-3 |#2| "failed") $) 263)) (-4008 ((|#2| $) 264)) (-3766 (($ $) 135 (|has| |#1| (-37 (-388 (-516)))))) (-3921 (($ $) 118 (|has| |#1| (-37 (-388 (-516)))))) (-1319 (((-3 $ "failed") $ $) 19)) (-2970 (((-386 (-1092 $)) (-1092 $)) 240 (-3119 (|has| |#2| (-851)) (|has| |#1| (-344))))) (-4053 (($ $) 162 (|has| |#1| (-344)))) (-4245 (((-386 $) $) 163 (|has| |#1| (-344)))) (-3301 (($ $) 117 (|has| |#1| (-37 (-388 (-516)))))) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) 237 (-3119 (|has| |#2| (-851)) (|has| |#1| (-344))))) (-1655 (((-110) $ $) 153 (|has| |#1| (-344)))) (-3764 (($ $) 134 (|has| |#1| (-37 (-388 (-516)))))) (-3920 (($ $) 119 (|has| |#1| (-37 (-388 (-516)))))) (-3905 (((-516) $) 249 (-3119 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-4097 (($ (-1076 (-2 (|:| |k| (-516)) (|:| |c| |#1|)))) 174)) (-3768 (($ $) 133 (|has| |#1| (-37 (-388 (-516)))))) (-3919 (($ $) 120 (|has| |#1| (-37 (-388 (-516)))))) (-3815 (($) 17 T CONST)) (-3432 (((-3 |#2| #2="failed") $) 270) (((-3 (-516) #2#) $) 259 (-3119 (|has| |#2| (-975 (-516))) (|has| |#1| (-344)))) (((-3 (-388 (-516)) #2#) $) 257 (-3119 (|has| |#2| (-975 (-516))) (|has| |#1| (-344)))) (((-3 (-1098) #2#) $) 242 (-3119 (|has| |#2| (-975 (-1098))) (|has| |#1| (-344))))) (-3431 ((|#2| $) 269) (((-516) $) 260 (-3119 (|has| |#2| (-975 (-516))) (|has| |#1| (-344)))) (((-388 (-516)) $) 258 (-3119 (|has| |#2| (-975 (-516))) (|has| |#1| (-344)))) (((-1098) $) 243 (-3119 (|has| |#2| (-975 (-1098))) (|has| |#1| (-344))))) (-4009 (($ $) 266) (($ (-516) $) 265)) (-2824 (($ $ $) 157 (|has| |#1| (-344)))) (-4235 (($ $) 60)) (-2297 (((-637 |#2|) (-637 $)) 221 (|has| |#1| (-344))) (((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 $) (-1179 $)) 220 (|has| |#1| (-344))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) 219 (-3119 (|has| |#2| (-593 (-516))) (|has| |#1| (-344)))) (((-637 (-516)) (-637 $)) 218 (-3119 (|has| |#2| (-593 (-516))) (|has| |#1| (-344))))) (-3741 (((-3 $ "failed") $) 34)) (-4006 (((-388 (-887 |#1|)) $ (-516)) 172 (|has| |#1| (-523))) (((-388 (-887 |#1|)) $ (-516) (-516)) 171 (|has| |#1| (-523)))) (-3258 (($) 233 (-3119 (|has| |#2| (-515)) (|has| |#1| (-344))))) (-2823 (($ $ $) 156 (|has| |#1| (-344)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 151 (|has| |#1| (-344)))) (-4005 (((-110) $) 164 (|has| |#1| (-344)))) (-3460 (((-110) $) 247 (-3119 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-3156 (((-110) $) 73)) (-3909 (($) 145 (|has| |#1| (-37 (-388 (-516)))))) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) 225 (-3119 (|has| |#2| (-827 (-359))) (|has| |#1| (-344)))) (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) 224 (-3119 (|has| |#2| (-827 (-516))) (|has| |#1| (-344))))) (-4050 (((-516) $) 100) (((-516) $ (-516)) 99)) (-2436 (((-110) $) 31)) (-3260 (($ $) 229 (|has| |#1| (-344)))) (-3262 ((|#2| $) 227 (|has| |#1| (-344)))) (-3275 (($ $ (-516)) 116 (|has| |#1| (-37 (-388 (-516)))))) (-3723 (((-3 $ "failed") $) 261 (-3119 (|has| |#2| (-1074)) (|has| |#1| (-344))))) (-3461 (((-110) $) 248 (-3119 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-4055 (($ $ (-860)) 101)) (-4094 (($ (-1 |#1| (-516)) $) 173)) (-1652 (((-3 (-594 $) #3="failed") (-594 $) $) 160 (|has| |#1| (-344)))) (-4213 (((-110) $) 62)) (-3157 (($ |#1| (-516)) 61) (($ $ (-1011) (-516)) 76) (($ $ (-594 (-1011)) (-594 (-516))) 75)) (-3596 (($ $ $) 251 (-3119 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-3597 (($ $ $) 252 (-3119 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-4234 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-344)))) (-4218 (($ $) 142 (|has| |#1| (-37 (-388 (-516)))))) (-3158 (($ $) 65)) (-3449 ((|#1| $) 66)) (-1963 (($ (-594 $)) 149 (|has| |#1| (-344))) (($ $ $) 148 (|has| |#1| (-344)))) (-4057 (($ (-516) |#2|) 268)) (-3513 (((-1081) $) 9)) (-2668 (($ $) 165 (|has| |#1| (-344)))) (-4091 (($ $) 170 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-1098)) 169 (-3810 (-12 (|has| |#1| (-29 (-516))) (|has| |#1| (-901)) (|has| |#1| (-1120)) (|has| |#1| (-37 (-388 (-516))))) (-12 (|has| |#1| (-15 -3347 ((-594 (-1098)) |#1|))) (|has| |#1| (-15 -4091 (|#1| |#1| (-1098)))) (|has| |#1| (-37 (-388 (-516)))))))) (-3724 (($) 262 (-3119 (|has| |#2| (-1074)) (|has| |#1| (-344))) CONST)) (-3514 (((-1045) $) 10)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 150 (|has| |#1| (-344)))) (-3419 (($ (-594 $)) 147 (|has| |#1| (-344))) (($ $ $) 146 (|has| |#1| (-344)))) (-3387 (($ $) 232 (-3119 (|has| |#2| (-289)) (|has| |#1| (-344))))) (-3389 ((|#2| $) 235 (-3119 (|has| |#2| (-515)) (|has| |#1| (-344))))) (-2968 (((-386 (-1092 $)) (-1092 $)) 238 (-3119 (|has| |#2| (-851)) (|has| |#1| (-344))))) (-2969 (((-386 (-1092 $)) (-1092 $)) 239 (-3119 (|has| |#2| (-851)) (|has| |#1| (-344))))) (-4011 (((-386 $) $) 161 (|has| |#1| (-344)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 159 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 158 (|has| |#1| (-344)))) (-4047 (($ $ (-516)) 95)) (-3740 (((-3 $ "failed") $ $) 50 (|has| |#1| (-523)))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 152 (|has| |#1| (-344)))) (-4219 (($ $) 143 (|has| |#1| (-37 (-388 (-516)))))) (-4046 (((-1076 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-516))))) (($ $ (-1098) |#2|) 212 (-3119 (|has| |#2| (-491 (-1098) |#2|)) (|has| |#1| (-344)))) (($ $ (-594 (-1098)) (-594 |#2|)) 211 (-3119 (|has| |#2| (-491 (-1098) |#2|)) (|has| |#1| (-344)))) (($ $ (-594 (-275 |#2|))) 210 (-3119 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ (-275 |#2|)) 209 (-3119 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ |#2| |#2|) 208 (-3119 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ (-594 |#2|) (-594 |#2|)) 207 (-3119 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344))))) (-1654 (((-719) $) 154 (|has| |#1| (-344)))) (-4078 ((|#1| $ (-516)) 104) (($ $ $) 81 (|has| (-516) (-1038))) (($ $ |#2|) 206 (-3119 (|has| |#2| (-268 |#2| |#2|)) (|has| |#1| (-344))))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 155 (|has| |#1| (-344)))) (-4089 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-344))) (($ $ (-1 |#2| |#2|) (-719)) 216 (|has| |#1| (-344))) (($ $ (-719)) 84 (-3810 (-3119 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $) 82 (-3810 (-3119 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $ (-594 (-1098)) (-594 (-719))) 89 (-3810 (-3119 (|has| |#2| (-841 (-1098))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))))) (($ $ (-1098) (-719)) 88 (-3810 (-3119 (|has| |#2| (-841 (-1098))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))))) (($ $ (-594 (-1098))) 87 (-3810 (-3119 (|has| |#2| (-841 (-1098))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))))) (($ $ (-1098)) 86 (-3810 (-3119 (|has| |#2| (-841 (-1098))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))))) (-3259 (($ $) 230 (|has| |#1| (-344)))) (-3261 ((|#2| $) 228 (|has| |#1| (-344)))) (-4223 (((-516) $) 64)) (-3769 (($ $) 132 (|has| |#1| (-37 (-388 (-516)))))) (-3918 (($ $) 121 (|has| |#1| (-37 (-388 (-516)))))) (-3767 (($ $) 131 (|has| |#1| (-37 (-388 (-516)))))) (-3917 (($ $) 122 (|has| |#1| (-37 (-388 (-516)))))) (-3765 (($ $) 130 (|has| |#1| (-37 (-388 (-516)))))) (-3916 (($ $) 123 (|has| |#1| (-37 (-388 (-516)))))) (-4246 (((-208) $) 246 (-3119 (|has| |#2| (-958)) (|has| |#1| (-344)))) (((-359) $) 245 (-3119 (|has| |#2| (-958)) (|has| |#1| (-344)))) (((-505) $) 244 (-3119 (|has| |#2| (-572 (-505))) (|has| |#1| (-344)))) (((-831 (-359)) $) 223 (-3119 (|has| |#2| (-572 (-831 (-359)))) (|has| |#1| (-344)))) (((-831 (-516)) $) 222 (-3119 (|has| |#2| (-572 (-831 (-516)))) (|has| |#1| (-344))))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) 236 (-3119 (-3119 (|has| $ (-138)) (|has| |#2| (-851))) (|has| |#1| (-344))))) (-3155 (($ $) 72)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ |#1|) 47 (|has| |#1| (-162))) (($ |#2|) 271) (($ (-1098)) 241 (-3119 (|has| |#2| (-975 (-1098))) (|has| |#1| (-344)))) (($ (-388 (-516))) 57 (|has| |#1| (-37 (-388 (-516))))) (($ $) 49 (|has| |#1| (-523)))) (-3959 ((|#1| $ (-516)) 59)) (-2965 (((-3 $ "failed") $) 48 (-3810 (-3119 (-3810 (|has| |#2| (-138)) (-3119 (|has| $ (-138)) (|has| |#2| (-851)))) (|has| |#1| (-344))) (|has| |#1| (-138))))) (-3385 (((-719)) 29)) (-4051 ((|#1| $) 102)) (-3390 ((|#2| $) 234 (-3119 (|has| |#2| (-515)) (|has| |#1| (-344))))) (-3772 (($ $) 141 (|has| |#1| (-37 (-388 (-516)))))) (-3760 (($ $) 129 (|has| |#1| (-37 (-388 (-516)))))) (-2117 (((-110) $ $) 53 (|has| |#1| (-523)))) (-3770 (($ $) 140 (|has| |#1| (-37 (-388 (-516)))))) (-3758 (($ $) 128 (|has| |#1| (-37 (-388 (-516)))))) (-3774 (($ $) 139 (|has| |#1| (-37 (-388 (-516)))))) (-3762 (($ $) 127 (|has| |#1| (-37 (-388 (-516)))))) (-4048 ((|#1| $ (-516)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-516)))) (|has| |#1| (-15 -4233 (|#1| (-1098))))))) (-3775 (($ $) 138 (|has| |#1| (-37 (-388 (-516)))))) (-3763 (($ $) 126 (|has| |#1| (-37 (-388 (-516)))))) (-3773 (($ $) 137 (|has| |#1| (-37 (-388 (-516)))))) (-3761 (($ $) 125 (|has| |#1| (-37 (-388 (-516)))))) (-3771 (($ $) 136 (|has| |#1| (-37 (-388 (-516)))))) (-3759 (($ $) 124 (|has| |#1| (-37 (-388 (-516)))))) (-3661 (($ $) 250 (-3119 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33) (($ $ (-516)) 166 (|has| |#1| (-344)))) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2932 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-344))) (($ $ (-1 |#2| |#2|) (-719)) 214 (|has| |#1| (-344))) (($ $ (-719)) 85 (-3810 (-3119 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $) 83 (-3810 (-3119 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $ (-594 (-1098)) (-594 (-719))) 93 (-3810 (-3119 (|has| |#2| (-841 (-1098))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))))) (($ $ (-1098) (-719)) 92 (-3810 (-3119 (|has| |#2| (-841 (-1098))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))))) (($ $ (-594 (-1098))) 91 (-3810 (-3119 (|has| |#2| (-841 (-1098))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))))) (($ $ (-1098)) 90 (-3810 (-3119 (|has| |#2| (-841 (-1098))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))))) (-2826 (((-110) $ $) 254 (-3119 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2827 (((-110) $ $) 255 (-3119 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 253 (-3119 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2948 (((-110) $ $) 256 (-3119 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-4224 (($ $ |#1|) 58 (|has| |#1| (-344))) (($ $ $) 168 (|has| |#1| (-344))) (($ |#2| |#2|) 226 (|has| |#1| (-344)))) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32) (($ $ (-516)) 167 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) 115 (|has| |#1| (-37 (-388 (-516)))))) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-344))) (($ |#2| $) 204 (|has| |#1| (-344))) (($ (-388 (-516)) $) 56 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) 55 (|has| |#1| (-37 (-388 (-516)))))))
+(((-1143 |#1| |#2|) (-133) (-984) (-1172 |t#1|)) (T -1143))
+((-4223 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1172 *3)) (-5 *2 (-516)))) (-4233 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *1 (-1143 *3 *2)) (-4 *2 (-1172 *3)))) (-4057 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-4 *4 (-984)) (-4 *1 (-1143 *4 *3)) (-4 *3 (-1172 *4)))) (-4010 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1172 *3)))) (-4009 (*1 *1 *1) (-12 (-4 *1 (-1143 *2 *3)) (-4 *2 (-984)) (-4 *3 (-1172 *2)))) (-4009 (*1 *1 *2 *1) (-12 (-5 *2 (-516)) (-4 *1 (-1143 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1172 *3)))) (-4008 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1172 *3)))) (-4007 (*1 *2 *1) (|partial| -12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1172 *3)))))
+(-13 (-1141 |t#1|) (-975 |t#2|) (-10 -8 (-15 -4057 ($ (-516) |t#2|)) (-15 -4223 ((-516) $)) (-15 -4010 (|t#2| $)) (-15 -4009 ($ $)) (-15 -4009 ($ (-516) $)) (-15 -4233 ($ |t#2|)) (-15 -4008 (|t#2| $)) (-15 -4007 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-344)) (-6 (-931 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #1=(-516)) . T) ((-25) . T) ((-37 #2=(-388 (-516))) -3810 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-516))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 |#2|) |has| |#1| (-344)) ((-37 $) -3810 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-34) |has| |#1| (-37 (-388 (-516)))) ((-93) |has| |#1| (-37 (-388 (-516)))) ((-99) . T) ((-109 #2# #2#) -3810 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-516))))) ((-109 |#1| |#1|) . T) ((-109 |#2| |#2|) |has| |#1| (-344)) ((-109 $ $) -3810 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) -3810 (-12 (|has| |#1| (-344)) (|has| |#2| (-138))) (|has| |#1| (-138))) ((-140) -3810 (-12 (|has| |#1| (-344)) (|has| |#2| (-140))) (|has| |#1| (-140))) ((-571 (-805)) . T) ((-162) -3810 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-572 (-208)) -12 (|has| |#1| (-344)) (|has| |#2| (-958))) ((-572 (-359)) -12 (|has| |#1| (-344)) (|has| |#2| (-958))) ((-572 (-505)) -12 (|has| |#1| (-344)) (|has| |#2| (-572 (-505)))) ((-572 (-831 (-359))) -12 (|has| |#1| (-344)) (|has| |#2| (-572 (-831 (-359))))) ((-572 (-831 (-516))) -12 (|has| |#1| (-344)) (|has| |#2| (-572 (-831 (-516))))) ((-214 |#2|) |has| |#1| (-344)) ((-216) -3810 (|has| |#1| (-15 * (|#1| (-516) |#1|))) (-12 (|has| |#1| (-344)) (|has| |#2| (-216)))) ((-226) |has| |#1| (-344)) ((-266) |has| |#1| (-37 (-388 (-516)))) ((-268 |#2| $) -12 (|has| |#1| (-344)) (|has| |#2| (-268 |#2| |#2|))) ((-268 $ $) |has| (-516) (-1038)) ((-272) -3810 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-291 |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-291 |#2|))) ((-344) |has| |#1| (-344)) ((-319 |#2|) |has| |#1| (-344)) ((-358 |#2|) |has| |#1| (-344)) ((-381 |#2|) |has| |#1| (-344)) ((-432) |has| |#1| (-344)) ((-471) |has| |#1| (-37 (-388 (-516)))) ((-491 (-1098) |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-491 (-1098) |#2|))) ((-491 |#2| |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-291 |#2|))) ((-523) -3810 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-599 #2#) -3810 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-516))))) ((-599 |#1|) . T) ((-599 |#2|) |has| |#1| (-344)) ((-599 $) . T) ((-593 (-516)) -12 (|has| |#1| (-344)) (|has| |#2| (-593 (-516)))) ((-593 |#2|) |has| |#1| (-344)) ((-666 #2#) -3810 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-516))))) ((-666 |#1|) |has| |#1| (-162)) ((-666 |#2|) |has| |#1| (-344)) ((-666 $) -3810 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-675) . T) ((-739) -12 (|has| |#1| (-344)) (|has| |#2| (-768))) ((-740) -12 (|has| |#1| (-344)) (|has| |#2| (-768))) ((-742) -12 (|has| |#1| (-344)) (|has| |#2| (-768))) ((-745) -12 (|has| |#1| (-344)) (|has| |#2| (-768))) ((-768) -12 (|has| |#1| (-344)) (|has| |#2| (-768))) ((-793) -12 (|has| |#1| (-344)) (|has| |#2| (-768))) ((-795) -3810 (-12 (|has| |#1| (-344)) (|has| |#2| (-795))) (-12 (|has| |#1| (-344)) (|has| |#2| (-768)))) ((-841 (-1098)) -3810 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))) (-12 (|has| |#1| (-344)) (|has| |#2| (-841 (-1098))))) ((-827 (-359)) -12 (|has| |#1| (-344)) (|has| |#2| (-827 (-359)))) ((-827 (-516)) -12 (|has| |#1| (-344)) (|has| |#2| (-827 (-516)))) ((-825 |#2|) |has| |#1| (-344)) ((-851) -12 (|has| |#1| (-344)) (|has| |#2| (-851))) ((-913 |#1| #1# (-1011)) . T) ((-862) |has| |#1| (-344)) ((-931 |#2|) |has| |#1| (-344)) ((-941) |has| |#1| (-37 (-388 (-516)))) ((-958) -12 (|has| |#1| (-344)) (|has| |#2| (-958))) ((-975 (-388 (-516))) -12 (|has| |#1| (-344)) (|has| |#2| (-975 (-516)))) ((-975 (-516)) -12 (|has| |#1| (-344)) (|has| |#2| (-975 (-516)))) ((-975 (-1098)) -12 (|has| |#1| (-344)) (|has| |#2| (-975 (-1098)))) ((-975 |#2|) . T) ((-989 #2#) -3810 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-516))))) ((-989 |#1|) . T) ((-989 |#2|) |has| |#1| (-344)) ((-989 $) -3810 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1074) -12 (|has| |#1| (-344)) (|has| |#2| (-1074))) ((-1120) |has| |#1| (-37 (-388 (-516)))) ((-1123) |has| |#1| (-37 (-388 (-516)))) ((-1134) |has| |#1| (-344)) ((-1138) |has| |#1| (-344)) ((-1141 |#1|) . T) ((-1158 |#1| #1#) . T))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 70)) (-3388 ((|#2| $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-289))))) (-3347 (((-594 (-1011)) $) NIL)) (-4110 (((-1098) $) 88)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-2118 (($ $) NIL (|has| |#1| (-523)))) (-2116 (((-110) $) NIL (|has| |#1| (-523)))) (-4049 (($ $ (-516)) 97) (($ $ (-516) (-516)) 99)) (-4052 (((-1076 (-2 (|:| |k| (-516)) (|:| |c| |#1|))) $) 47)) (-4010 ((|#2| $) 11)) (-4007 (((-3 |#2| "failed") $) 30)) (-4008 ((|#2| $) 31)) (-3766 (($ $) 192 (|has| |#1| (-37 (-388 (-516)))))) (-3921 (($ $) 168 (|has| |#1| (-37 (-388 (-516)))))) (-1319 (((-3 $ "failed") $ $) NIL)) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-851))))) (-4053 (($ $) NIL (|has| |#1| (-344)))) (-4245 (((-386 $) $) NIL (|has| |#1| (-344)))) (-3301 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-851))))) (-1655 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3764 (($ $) 188 (|has| |#1| (-37 (-388 (-516)))))) (-3920 (($ $) 164 (|has| |#1| (-37 (-388 (-516)))))) (-3905 (((-516) $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-768))))) (-4097 (($ (-1076 (-2 (|:| |k| (-516)) (|:| |c| |#1|)))) 57)) (-3768 (($ $) 196 (|has| |#1| (-37 (-388 (-516)))))) (-3919 (($ $) 172 (|has| |#1| (-37 (-388 (-516)))))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#2| #2="failed") $) 144) (((-3 (-516) #2#) $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-975 (-516))))) (((-3 (-388 (-516)) #2#) $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-975 (-516))))) (((-3 (-1098) #2#) $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-975 (-1098)))))) (-3431 ((|#2| $) 143) (((-516) $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-975 (-516))))) (((-388 (-516)) $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-975 (-516))))) (((-1098) $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-975 (-1098)))))) (-4009 (($ $) 61) (($ (-516) $) 24)) (-2824 (($ $ $) NIL (|has| |#1| (-344)))) (-4235 (($ $) NIL)) (-2297 (((-637 |#2|) (-637 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 $) (-1179 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-593 (-516))))) (((-637 (-516)) (-637 $)) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-593 (-516)))))) (-3741 (((-3 $ "failed") $) 77)) (-4006 (((-388 (-887 |#1|)) $ (-516)) 112 (|has| |#1| (-523))) (((-388 (-887 |#1|)) $ (-516) (-516)) 114 (|has| |#1| (-523)))) (-3258 (($) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-515))))) (-2823 (($ $ $) NIL (|has| |#1| (-344)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL (|has| |#1| (-344)))) (-4005 (((-110) $) NIL (|has| |#1| (-344)))) (-3460 (((-110) $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-768))))) (-3156 (((-110) $) 64)) (-3909 (($) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-827 (-359))))) (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-827 (-516)))))) (-4050 (((-516) $) 93) (((-516) $ (-516)) 95)) (-2436 (((-110) $) NIL)) (-3260 (($ $) NIL (|has| |#1| (-344)))) (-3262 ((|#2| $) 151 (|has| |#1| (-344)))) (-3275 (($ $ (-516)) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3723 (((-3 $ "failed") $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-1074))))) (-3461 (((-110) $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-768))))) (-4055 (($ $ (-860)) 136)) (-4094 (($ (-1 |#1| (-516)) $) 132)) (-1652 (((-3 (-594 $) #3="failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-4213 (((-110) $) NIL)) (-3157 (($ |#1| (-516)) 19) (($ $ (-1011) (-516)) NIL) (($ $ (-594 (-1011)) (-594 (-516))) NIL)) (-3596 (($ $ $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-795))))) (-3597 (($ $ $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-795))))) (-4234 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-344)))) (-4218 (($ $) 162 (|has| |#1| (-37 (-388 (-516)))))) (-3158 (($ $) NIL)) (-3449 ((|#1| $) NIL)) (-1963 (($ (-594 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-4057 (($ (-516) |#2|) 10)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) 145 (|has| |#1| (-344)))) (-4091 (($ $) 214 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-1098)) 219 (-3810 (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-29 (-516))) (|has| |#1| (-901)) (|has| |#1| (-1120))) (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-15 -4091 (|#1| |#1| (-1098)))) (|has| |#1| (-15 -3347 ((-594 (-1098)) |#1|))))))) (-3724 (($) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-1074))) CONST)) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#1| (-344)))) (-3419 (($ (-594 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-3387 (($ $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-289))))) (-3389 ((|#2| $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-515))))) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-851))))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-851))))) (-4011 (((-386 $) $) NIL (|has| |#1| (-344)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#1| (-344)))) (-4047 (($ $ (-516)) 126)) (-3740 (((-3 $ "failed") $ $) 116 (|has| |#1| (-523)))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-4219 (($ $) 160 (|has| |#1| (-37 (-388 (-516)))))) (-4046 (((-1076 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-516))))) (($ $ (-1098) |#2|) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-491 (-1098) |#2|)))) (($ $ (-594 (-1098)) (-594 |#2|)) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-491 (-1098) |#2|)))) (($ $ (-594 (-275 |#2|))) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-291 |#2|)))) (($ $ (-275 |#2|)) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-291 |#2|)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-291 |#2|)))) (($ $ (-594 |#2|) (-594 |#2|)) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-291 |#2|))))) (-1654 (((-719) $) NIL (|has| |#1| (-344)))) (-4078 ((|#1| $ (-516)) 91) (($ $ $) 79 (|has| (-516) (-1038))) (($ $ |#2|) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-268 |#2| |#2|))))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-344)))) (-4089 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-344))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#1| (-344))) (($ $ (-719)) NIL (-3810 (-12 (|has| |#1| (-344)) (|has| |#2| (-216))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $) 137 (-3810 (-12 (|has| |#1| (-344)) (|has| |#2| (-216))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (-3810 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))) (-12 (|has| |#1| (-344)) (|has| |#2| (-841 (-1098)))))) (($ $ (-1098) (-719)) NIL (-3810 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))) (-12 (|has| |#1| (-344)) (|has| |#2| (-841 (-1098)))))) (($ $ (-594 (-1098))) NIL (-3810 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))) (-12 (|has| |#1| (-344)) (|has| |#2| (-841 (-1098)))))) (($ $ (-1098)) 140 (-3810 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))) (-12 (|has| |#1| (-344)) (|has| |#2| (-841 (-1098))))))) (-3259 (($ $) NIL (|has| |#1| (-344)))) (-3261 ((|#2| $) 152 (|has| |#1| (-344)))) (-4223 (((-516) $) 12)) (-3769 (($ $) 198 (|has| |#1| (-37 (-388 (-516)))))) (-3918 (($ $) 174 (|has| |#1| (-37 (-388 (-516)))))) (-3767 (($ $) 194 (|has| |#1| (-37 (-388 (-516)))))) (-3917 (($ $) 170 (|has| |#1| (-37 (-388 (-516)))))) (-3765 (($ $) 190 (|has| |#1| (-37 (-388 (-516)))))) (-3916 (($ $) 166 (|has| |#1| (-37 (-388 (-516)))))) (-4246 (((-208) $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-958)))) (((-359) $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-958)))) (((-505) $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-572 (-505))))) (((-831 (-359)) $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-572 (-831 (-359)))))) (((-831 (-516)) $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-572 (-831 (-516))))))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-344)) (|has| |#2| (-851))))) (-3155 (($ $) 124)) (-4233 (((-805) $) 245) (($ (-516)) 23) (($ |#1|) 21 (|has| |#1| (-162))) (($ |#2|) 20) (($ (-1098)) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-975 (-1098))))) (($ (-388 (-516))) 155 (|has| |#1| (-37 (-388 (-516))))) (($ $) NIL (|has| |#1| (-523)))) (-3959 ((|#1| $ (-516)) 74)) (-2965 (((-3 $ "failed") $) NIL (-3810 (-12 (|has| $ (-138)) (|has| |#1| (-344)) (|has| |#2| (-851))) (|has| |#1| (-138)) (-12 (|has| |#1| (-344)) (|has| |#2| (-138)))))) (-3385 (((-719)) 142)) (-4051 ((|#1| $) 90)) (-3390 ((|#2| $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-515))))) (-3772 (($ $) 204 (|has| |#1| (-37 (-388 (-516)))))) (-3760 (($ $) 180 (|has| |#1| (-37 (-388 (-516)))))) (-2117 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3770 (($ $) 200 (|has| |#1| (-37 (-388 (-516)))))) (-3758 (($ $) 176 (|has| |#1| (-37 (-388 (-516)))))) (-3774 (($ $) 208 (|has| |#1| (-37 (-388 (-516)))))) (-3762 (($ $) 184 (|has| |#1| (-37 (-388 (-516)))))) (-4048 ((|#1| $ (-516)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-516)))) (|has| |#1| (-15 -4233 (|#1| (-1098))))))) (-3775 (($ $) 210 (|has| |#1| (-37 (-388 (-516)))))) (-3763 (($ $) 186 (|has| |#1| (-37 (-388 (-516)))))) (-3773 (($ $) 206 (|has| |#1| (-37 (-388 (-516)))))) (-3761 (($ $) 182 (|has| |#1| (-37 (-388 (-516)))))) (-3771 (($ $) 202 (|has| |#1| (-37 (-388 (-516)))))) (-3759 (($ $) 178 (|has| |#1| (-37 (-388 (-516)))))) (-3661 (($ $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-768))))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| |#1| (-344)))) (-2920 (($) 13 T CONST)) (-2927 (($) 17 T CONST)) (-2932 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-344))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#1| (-344))) (($ $ (-719)) NIL (-3810 (-12 (|has| |#1| (-344)) (|has| |#2| (-216))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $) NIL (-3810 (-12 (|has| |#1| (-344)) (|has| |#2| (-216))) (|has| |#1| (-15 * (|#1| (-516) |#1|))))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (-3810 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))) (-12 (|has| |#1| (-344)) (|has| |#2| (-841 (-1098)))))) (($ $ (-1098) (-719)) NIL (-3810 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))) (-12 (|has| |#1| (-344)) (|has| |#2| (-841 (-1098)))))) (($ $ (-594 (-1098))) NIL (-3810 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))) (-12 (|has| |#1| (-344)) (|has| |#2| (-841 (-1098)))))) (($ $ (-1098)) NIL (-3810 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-516) |#1|)))) (-12 (|has| |#1| (-344)) (|has| |#2| (-841 (-1098))))))) (-2826 (((-110) $ $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-795))))) (-2827 (((-110) $ $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-795))))) (-3317 (((-110) $ $) 63)) (-2947 (((-110) $ $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-795))))) (-2948 (((-110) $ $) NIL (-12 (|has| |#1| (-344)) (|has| |#2| (-795))))) (-4224 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) 149 (|has| |#1| (-344))) (($ |#2| |#2|) 150 (|has| |#1| (-344)))) (-4116 (($ $) 213) (($ $ $) 68)) (-4118 (($ $ $) 66)) (** (($ $ (-860)) NIL) (($ $ (-719)) 73) (($ $ (-516)) 146 (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) 158 (|has| |#1| (-37 (-388 (-516)))))) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-344))) (($ |#2| $) 147 (|has| |#1| (-344))) (($ (-388 (-516)) $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516)))))))
+(((-1144 |#1| |#2|) (-1143 |#1| |#2|) (-984) (-1172 |#1|)) (T -1144))
+NIL
+(-1143 |#1| |#2|)
+((-4013 (((-2 (|:| |contp| (-516)) (|:| -2701 (-594 (-2 (|:| |irr| |#1|) (|:| -2421 (-516)))))) |#1| (-110)) 12)) (-4012 (((-386 |#1|) |#1|) 22)) (-4011 (((-386 |#1|) |#1|) 21)))
+(((-1145 |#1|) (-10 -7 (-15 -4011 ((-386 |#1|) |#1|)) (-15 -4012 ((-386 |#1|) |#1|)) (-15 -4013 ((-2 (|:| |contp| (-516)) (|:| -2701 (-594 (-2 (|:| |irr| |#1|) (|:| -2421 (-516)))))) |#1| (-110)))) (-1155 (-516))) (T -1145))
+((-4013 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-5 *2 (-2 (|:| |contp| (-516)) (|:| -2701 (-594 (-2 (|:| |irr| *3) (|:| -2421 (-516))))))) (-5 *1 (-1145 *3)) (-4 *3 (-1155 (-516))))) (-4012 (*1 *2 *3) (-12 (-5 *2 (-386 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-1155 (-516))))) (-4011 (*1 *2 *3) (-12 (-5 *2 (-386 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-1155 (-516))))))
+(-10 -7 (-15 -4011 ((-386 |#1|) |#1|)) (-15 -4012 ((-386 |#1|) |#1|)) (-15 -4013 ((-2 (|:| |contp| (-516)) (|:| -2701 (-594 (-2 (|:| |irr| |#1|) (|:| -2421 (-516)))))) |#1| (-110))))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4015 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-4234 (((-1076 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-793)))) (-3501 ((|#1| $) 14)) (-3503 ((|#1| $) 10)) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-3499 (((-516) $) 18)) (-3500 ((|#1| $) 17)) (-3502 ((|#1| $) 11)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-4014 (((-110) $) 16)) (-4239 (((-1076 |#1|) $) 38 (|has| |#1| (-793))) (((-1076 |#1|) (-594 $)) 37 (|has| |#1| (-793)))) (-4246 (($ |#1|) 25)) (-4233 (($ (-1017 |#1|)) 24) (((-805) $) 34 (|has| |#1| (-1027)))) (-4016 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-3504 (($ $ (-516)) 13)) (-3317 (((-110) $ $) 27 (|has| |#1| (-1027)))))
+(((-1146 |#1|) (-13 (-1021 |#1|) (-10 -8 (-15 -4016 ($ |#1|)) (-15 -4015 ($ |#1|)) (-15 -4233 ($ (-1017 |#1|))) (-15 -4014 ((-110) $)) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-1022 |#1| (-1076 |#1|))) |%noBranch|))) (-1134)) (T -1146))
+((-4016 (*1 *1 *2) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1134)))) (-4015 (*1 *1 *2) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1134)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-1017 *3)) (-4 *3 (-1134)) (-5 *1 (-1146 *3)))) (-4014 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1146 *3)) (-4 *3 (-1134)))))
+(-13 (-1021 |#1|) (-10 -8 (-15 -4016 ($ |#1|)) (-15 -4015 ($ |#1|)) (-15 -4233 ($ (-1017 |#1|))) (-15 -4014 ((-110) $)) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-1022 |#1| (-1076 |#1|))) |%noBranch|)))
+((-4234 (((-1076 |#2|) (-1 |#2| |#1|) (-1146 |#1|)) 23 (|has| |#1| (-793))) (((-1146 |#2|) (-1 |#2| |#1|) (-1146 |#1|)) 17)))
+(((-1147 |#1| |#2|) (-10 -7 (-15 -4234 ((-1146 |#2|) (-1 |#2| |#1|) (-1146 |#1|))) (IF (|has| |#1| (-793)) (-15 -4234 ((-1076 |#2|) (-1 |#2| |#1|) (-1146 |#1|))) |%noBranch|)) (-1134) (-1134)) (T -1147))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1146 *5)) (-4 *5 (-793)) (-4 *5 (-1134)) (-4 *6 (-1134)) (-5 *2 (-1076 *6)) (-5 *1 (-1147 *5 *6)))) (-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1146 *5)) (-4 *5 (-1134)) (-4 *6 (-1134)) (-5 *2 (-1146 *6)) (-5 *1 (-1147 *5 *6)))))
+(-10 -7 (-15 -4234 ((-1146 |#2|) (-1 |#2| |#1|) (-1146 |#1|))) (IF (|has| |#1| (-793)) (-15 -4234 ((-1076 |#2|) (-1 |#2| |#1|) (-1146 |#1|))) |%noBranch|))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-4045 (((-1179 |#2|) $ (-719)) NIL)) (-3347 (((-594 (-1011)) $) NIL)) (-4043 (($ (-1092 |#2|)) NIL)) (-3349 (((-1092 $) $ (-1011)) NIL) (((-1092 |#2|) $) NIL)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#2| (-523)))) (-2118 (($ $) NIL (|has| |#2| (-523)))) (-2116 (((-110) $) NIL (|has| |#2| (-523)))) (-3083 (((-719) $) NIL) (((-719) $ (-594 (-1011))) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-4034 (($ $ $) NIL (|has| |#2| (-523)))) (-2970 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#2| (-851)))) (-4053 (($ $) NIL (|has| |#2| (-432)))) (-4245 (((-386 $) $) NIL (|has| |#2| (-432)))) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) NIL (|has| |#2| (-851)))) (-1655 (((-110) $ $) NIL (|has| |#2| (-344)))) (-4039 (($ $ (-719)) NIL)) (-4038 (($ $ (-719)) NIL)) (-4030 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-432)))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#2| #2="failed") $) NIL) (((-3 (-388 (-516)) #2#) $) NIL (|has| |#2| (-975 (-388 (-516))))) (((-3 (-516) #2#) $) NIL (|has| |#2| (-975 (-516)))) (((-3 (-1011) #2#) $) NIL)) (-3431 ((|#2| $) NIL) (((-388 (-516)) $) NIL (|has| |#2| (-975 (-388 (-516))))) (((-516) $) NIL (|has| |#2| (-975 (-516)))) (((-1011) $) NIL)) (-4035 (($ $ $ (-1011)) NIL (|has| |#2| (-162))) ((|#2| $ $) NIL (|has| |#2| (-162)))) (-2824 (($ $ $) NIL (|has| |#2| (-344)))) (-4235 (($ $) NIL)) (-2297 (((-637 (-516)) (-637 $)) NIL (|has| |#2| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) NIL (|has| |#2| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#2|)) (|:| |vec| (-1179 |#2|))) (-637 $) (-1179 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-2823 (($ $ $) NIL (|has| |#2| (-344)))) (-4037 (($ $ $) NIL)) (-4032 (($ $ $) NIL (|has| |#2| (-523)))) (-4031 (((-2 (|:| -4229 |#2|) (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#2| (-523)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL (|has| |#2| (-344)))) (-3777 (($ $) NIL (|has| |#2| (-432))) (($ $ (-1011)) NIL (|has| |#2| (-432)))) (-3082 (((-594 $) $) NIL)) (-4005 (((-110) $) NIL (|has| |#2| (-851)))) (-1671 (($ $ |#2| (-719) $) NIL)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) NIL (-12 (|has| (-1011) (-827 (-359))) (|has| |#2| (-827 (-359))))) (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) NIL (-12 (|has| (-1011) (-827 (-516))) (|has| |#2| (-827 (-516)))))) (-4050 (((-719) $ $) NIL (|has| |#2| (-523)))) (-2436 (((-110) $) NIL)) (-2444 (((-719) $) NIL)) (-3723 (((-3 $ "failed") $) NIL (|has| |#2| (-1074)))) (-3350 (($ (-1092 |#2|) (-1011)) NIL) (($ (-1092 $) (-1011)) NIL)) (-4055 (($ $ (-719)) NIL)) (-1652 (((-3 (-594 $) #3="failed") (-594 $) $) NIL (|has| |#2| (-344)))) (-3085 (((-594 $) $) NIL)) (-4213 (((-110) $) NIL)) (-3157 (($ |#2| (-719)) 17) (($ $ (-1011) (-719)) NIL) (($ $ (-594 (-1011)) (-594 (-719))) NIL)) (-4041 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $ (-1011)) NIL) (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL)) (-3084 (((-719) $) NIL) (((-719) $ (-1011)) NIL) (((-594 (-719)) $ (-594 (-1011))) NIL)) (-3596 (($ $ $) NIL (|has| |#2| (-795)))) (-3597 (($ $ $) NIL (|has| |#2| (-795)))) (-1672 (($ (-1 (-719) (-719)) $) NIL)) (-4234 (($ (-1 |#2| |#2|) $) NIL)) (-4044 (((-1092 |#2|) $) NIL)) (-3348 (((-3 (-1011) #4="failed") $) NIL)) (-3158 (($ $) NIL)) (-3449 ((|#2| $) NIL)) (-1963 (($ (-594 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-3513 (((-1081) $) NIL)) (-4040 (((-2 (|:| -2046 $) (|:| -3166 $)) $ (-719)) NIL)) (-3087 (((-3 (-594 $) #4#) $) NIL)) (-3086 (((-3 (-594 $) #4#) $) NIL)) (-3088 (((-3 (-2 (|:| |var| (-1011)) (|:| -2427 (-719))) #4#) $) NIL)) (-4091 (($ $) NIL (|has| |#2| (-37 (-388 (-516)))))) (-3724 (($) NIL (|has| |#2| (-1074)) CONST)) (-3514 (((-1045) $) NIL)) (-1866 (((-110) $) NIL)) (-1865 ((|#2| $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#2| (-432)))) (-3419 (($ (-594 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-4017 (($ $ (-719) |#2| $) NIL)) (-2968 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#2| (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) NIL (|has| |#2| (-851)))) (-4011 (((-386 $) $) NIL (|has| |#2| (-851)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#2| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#2| (-344)))) (-3740 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-523)))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL (|has| |#2| (-344)))) (-4046 (($ $ (-594 (-275 $))) NIL) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL) (($ $ (-1011) |#2|) NIL) (($ $ (-594 (-1011)) (-594 |#2|)) NIL) (($ $ (-1011) $) NIL) (($ $ (-594 (-1011)) (-594 $)) NIL)) (-1654 (((-719) $) NIL (|has| |#2| (-344)))) (-4078 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-388 $) (-388 $) (-388 $)) NIL (|has| |#2| (-523))) ((|#2| (-388 $) |#2|) NIL (|has| |#2| (-344))) (((-388 $) $ (-388 $)) NIL (|has| |#2| (-523)))) (-4042 (((-3 $ #5="failed") $ (-719)) NIL)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#2| (-344)))) (-4036 (($ $ (-1011)) NIL (|has| |#2| (-162))) ((|#2| $) NIL (|has| |#2| (-162)))) (-4089 (($ $ (-1011)) NIL) (($ $ (-594 (-1011))) NIL) (($ $ (-1011) (-719)) NIL) (($ $ (-594 (-1011)) (-594 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1098)) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4223 (((-719) $) NIL) (((-719) $ (-1011)) NIL) (((-594 (-719)) $ (-594 (-1011))) NIL)) (-4246 (((-831 (-359)) $) NIL (-12 (|has| (-1011) (-572 (-831 (-359)))) (|has| |#2| (-572 (-831 (-359)))))) (((-831 (-516)) $) NIL (-12 (|has| (-1011) (-572 (-831 (-516)))) (|has| |#2| (-572 (-831 (-516)))))) (((-505) $) NIL (-12 (|has| (-1011) (-572 (-505))) (|has| |#2| (-572 (-505)))))) (-3081 ((|#2| $) NIL (|has| |#2| (-432))) (($ $ (-1011)) NIL (|has| |#2| (-432)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-851))))) (-4033 (((-3 $ #5#) $ $) NIL (|has| |#2| (-523))) (((-3 (-388 $) #5#) (-388 $) $) NIL (|has| |#2| (-523)))) (-4233 (((-805) $) 13) (($ (-516)) NIL) (($ |#2|) NIL) (($ (-1011)) NIL) (($ (-1176 |#1|)) 19) (($ (-388 (-516))) NIL (-3810 (|has| |#2| (-37 (-388 (-516)))) (|has| |#2| (-975 (-388 (-516)))))) (($ $) NIL (|has| |#2| (-523)))) (-4096 (((-594 |#2|) $) NIL)) (-3959 ((|#2| $ (-719)) NIL) (($ $ (-1011) (-719)) NIL) (($ $ (-594 (-1011)) (-594 (-719))) NIL)) (-2965 (((-3 $ #1#) $) NIL (-3810 (-12 (|has| $ (-138)) (|has| |#2| (-851))) (|has| |#2| (-138))))) (-3385 (((-719)) NIL)) (-1670 (($ $ $ (-719)) NIL (|has| |#2| (-162)))) (-2117 (((-110) $ $) NIL (|has| |#2| (-523)))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) NIL T CONST)) (-2927 (($) 14 T CONST)) (-2932 (($ $ (-1011)) NIL) (($ $ (-594 (-1011))) NIL) (($ $ (-1011) (-719)) NIL) (($ $ (-594 (-1011)) (-594 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1098)) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-594 (-1098))) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-1098) (-719)) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) NIL (|has| |#2| (-841 (-1098)))) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2826 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#2| (-795)))) (-3317 (((-110) $ $) NIL)) (-2947 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#2| (-795)))) (-4224 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-388 (-516))) NIL (|has| |#2| (-37 (-388 (-516))))) (($ (-388 (-516)) $) NIL (|has| |#2| (-37 (-388 (-516))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1148 |#1| |#2|) (-13 (-1155 |#2|) (-10 -8 (-15 -4233 ($ (-1176 |#1|))) (-15 -4017 ($ $ (-719) |#2| $)))) (-1098) (-984)) (T -1148))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1176 *3)) (-14 *3 (-1098)) (-5 *1 (-1148 *3 *4)) (-4 *4 (-984)))) (-4017 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1148 *4 *3)) (-14 *4 (-1098)) (-4 *3 (-984)))))
+(-13 (-1155 |#2|) (-10 -8 (-15 -4233 ($ (-1176 |#1|))) (-15 -4017 ($ $ (-719) |#2| $))))
+((-4234 (((-1148 |#3| |#4|) (-1 |#4| |#2|) (-1148 |#1| |#2|)) 15)))
+(((-1149 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4234 ((-1148 |#3| |#4|) (-1 |#4| |#2|) (-1148 |#1| |#2|)))) (-1098) (-984) (-1098) (-984)) (T -1149))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1148 *5 *6)) (-14 *5 (-1098)) (-4 *6 (-984)) (-4 *8 (-984)) (-5 *2 (-1148 *7 *8)) (-5 *1 (-1149 *5 *6 *7 *8)) (-14 *7 (-1098)))))
+(-10 -7 (-15 -4234 ((-1148 |#3| |#4|) (-1 |#4| |#2|) (-1148 |#1| |#2|))))
+((-4020 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4018 ((|#1| |#3|) 13)) (-4019 ((|#3| |#3|) 19)))
+(((-1150 |#1| |#2| |#3|) (-10 -7 (-15 -4018 (|#1| |#3|)) (-15 -4019 (|#3| |#3|)) (-15 -4020 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-523) (-931 |#1|) (-1155 |#2|)) (T -1150))
+((-4020 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-931 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1150 *4 *5 *3)) (-4 *3 (-1155 *5)))) (-4019 (*1 *2 *2) (-12 (-4 *3 (-523)) (-4 *4 (-931 *3)) (-5 *1 (-1150 *3 *4 *2)) (-4 *2 (-1155 *4)))) (-4018 (*1 *2 *3) (-12 (-4 *4 (-931 *2)) (-4 *2 (-523)) (-5 *1 (-1150 *2 *4 *3)) (-4 *3 (-1155 *4)))))
+(-10 -7 (-15 -4018 (|#1| |#3|)) (-15 -4019 (|#3| |#3|)) (-15 -4020 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-4022 (((-3 |#2| "failed") |#2| (-719) |#1|) 29)) (-4021 (((-3 |#2| "failed") |#2| (-719)) 30)) (-4024 (((-3 (-2 (|:| -3397 |#2|) (|:| -3396 |#2|)) "failed") |#2|) 43)) (-4025 (((-594 |#2|) |#2|) 45)) (-4023 (((-3 |#2| "failed") |#2| |#2|) 40)))
+(((-1151 |#1| |#2|) (-10 -7 (-15 -4021 ((-3 |#2| "failed") |#2| (-719))) (-15 -4022 ((-3 |#2| "failed") |#2| (-719) |#1|)) (-15 -4023 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4024 ((-3 (-2 (|:| -3397 |#2|) (|:| -3396 |#2|)) "failed") |#2|)) (-15 -4025 ((-594 |#2|) |#2|))) (-13 (-523) (-140)) (-1155 |#1|)) (T -1151))
+((-4025 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-140))) (-5 *2 (-594 *3)) (-5 *1 (-1151 *4 *3)) (-4 *3 (-1155 *4)))) (-4024 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-523) (-140))) (-5 *2 (-2 (|:| -3397 *3) (|:| -3396 *3))) (-5 *1 (-1151 *4 *3)) (-4 *3 (-1155 *4)))) (-4023 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-523) (-140))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-1155 *3)))) (-4022 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-719)) (-4 *4 (-13 (-523) (-140))) (-5 *1 (-1151 *4 *2)) (-4 *2 (-1155 *4)))) (-4021 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-719)) (-4 *4 (-13 (-523) (-140))) (-5 *1 (-1151 *4 *2)) (-4 *2 (-1155 *4)))))
+(-10 -7 (-15 -4021 ((-3 |#2| "failed") |#2| (-719))) (-15 -4022 ((-3 |#2| "failed") |#2| (-719) |#1|)) (-15 -4023 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4024 ((-3 (-2 (|:| -3397 |#2|) (|:| -3396 |#2|)) "failed") |#2|)) (-15 -4025 ((-594 |#2|) |#2|)))
+((-4026 (((-3 (-2 (|:| -2046 |#2|) (|:| -3166 |#2|)) "failed") |#2| |#2|) 32)))
+(((-1152 |#1| |#2|) (-10 -7 (-15 -4026 ((-3 (-2 (|:| -2046 |#2|) (|:| -3166 |#2|)) "failed") |#2| |#2|))) (-523) (-1155 |#1|)) (T -1152))
+((-4026 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-523)) (-5 *2 (-2 (|:| -2046 *3) (|:| -3166 *3))) (-5 *1 (-1152 *4 *3)) (-4 *3 (-1155 *4)))))
+(-10 -7 (-15 -4026 ((-3 (-2 (|:| -2046 |#2|) (|:| -3166 |#2|)) "failed") |#2| |#2|)))
+((-4027 ((|#2| |#2| |#2|) 19)) (-4028 ((|#2| |#2| |#2|) 30)) (-4029 ((|#2| |#2| |#2| (-719) (-719)) 36)))
+(((-1153 |#1| |#2|) (-10 -7 (-15 -4027 (|#2| |#2| |#2|)) (-15 -4028 (|#2| |#2| |#2|)) (-15 -4029 (|#2| |#2| |#2| (-719) (-719)))) (-984) (-1155 |#1|)) (T -1153))
+((-4029 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-719)) (-4 *4 (-984)) (-5 *1 (-1153 *4 *2)) (-4 *2 (-1155 *4)))) (-4028 (*1 *2 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1155 *3)))) (-4027 (*1 *2 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1155 *3)))))
+(-10 -7 (-15 -4027 (|#2| |#2| |#2|)) (-15 -4028 (|#2| |#2| |#2|)) (-15 -4029 (|#2| |#2| |#2| (-719) (-719))))
+((-4045 (((-1179 |#2|) $ (-719)) 114)) (-3347 (((-594 (-1011)) $) 15)) (-4043 (($ (-1092 |#2|)) 67)) (-3083 (((-719) $) NIL) (((-719) $ (-594 (-1011))) 18)) (-2970 (((-386 (-1092 $)) (-1092 $)) 185)) (-4053 (($ $) 175)) (-4245 (((-386 $) $) 173)) (-2967 (((-3 (-594 (-1092 $)) "failed") (-594 (-1092 $)) (-1092 $)) 82)) (-4039 (($ $ (-719)) 71)) (-4038 (($ $ (-719)) 73)) (-4030 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-3432 (((-3 |#2| #1="failed") $) 117) (((-3 (-388 (-516)) #1#) $) NIL) (((-3 (-516) #1#) $) NIL) (((-3 (-1011) #1#) $) NIL)) (-3431 ((|#2| $) 115) (((-388 (-516)) $) NIL) (((-516) $) NIL) (((-1011) $) NIL)) (-4032 (($ $ $) 151)) (-4031 (((-2 (|:| -4229 |#2|) (|:| -2046 $) (|:| -3166 $)) $ $) 153)) (-4050 (((-719) $ $) 170)) (-3723 (((-3 $ "failed") $) 123)) (-3157 (($ |#2| (-719)) NIL) (($ $ (-1011) (-719)) 47) (($ $ (-594 (-1011)) (-594 (-719))) NIL)) (-3084 (((-719) $) NIL) (((-719) $ (-1011)) 42) (((-594 (-719)) $ (-594 (-1011))) 43)) (-4044 (((-1092 |#2|) $) 59)) (-3348 (((-3 (-1011) "failed") $) 40)) (-4040 (((-2 (|:| -2046 $) (|:| -3166 $)) $ (-719)) 70)) (-4091 (($ $) 197)) (-3724 (($) 119)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 182)) (-2968 (((-386 (-1092 $)) (-1092 $)) 88)) (-2969 (((-386 (-1092 $)) (-1092 $)) 86)) (-4011 (((-386 $) $) 107)) (-4046 (($ $ (-594 (-275 $))) 39) (($ $ (-275 $)) NIL) (($ $ $ $) NIL) (($ $ (-594 $) (-594 $)) NIL) (($ $ (-1011) |#2|) 31) (($ $ (-594 (-1011)) (-594 |#2|)) 28) (($ $ (-1011) $) 25) (($ $ (-594 (-1011)) (-594 $)) 23)) (-1654 (((-719) $) 188)) (-4078 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-388 $) (-388 $) (-388 $)) 147) ((|#2| (-388 $) |#2|) 187) (((-388 $) $ (-388 $)) 169)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 191)) (-4089 (($ $ (-1011)) 140) (($ $ (-594 (-1011))) NIL) (($ $ (-1011) (-719)) NIL) (($ $ (-594 (-1011)) (-594 (-719))) NIL) (($ $ (-719)) NIL) (($ $) 138) (($ $ (-1098)) NIL) (($ $ (-594 (-1098))) NIL) (($ $ (-1098) (-719)) NIL) (($ $ (-594 (-1098)) (-594 (-719))) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-4223 (((-719) $) NIL) (((-719) $ (-1011)) 16) (((-594 (-719)) $ (-594 (-1011))) 20)) (-3081 ((|#2| $) NIL) (($ $ (-1011)) 125)) (-4033 (((-3 $ "failed") $ $) 161) (((-3 (-388 $) "failed") (-388 $) $) 157)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ |#2|) NIL) (($ (-1011)) 51) (($ (-388 (-516))) NIL) (($ $) NIL)))
+(((-1154 |#1| |#2|) (-10 -8 (-15 -4233 (|#1| |#1|)) (-15 -2971 ((-1092 |#1|) (-1092 |#1|) (-1092 |#1|))) (-15 -4245 ((-386 |#1|) |#1|)) (-15 -4053 (|#1| |#1|)) (-15 -4233 (|#1| (-388 (-516)))) (-15 -3724 (|#1|)) (-15 -3723 ((-3 |#1| "failed") |#1|)) (-15 -4078 ((-388 |#1|) |#1| (-388 |#1|))) (-15 -1654 ((-719) |#1|)) (-15 -3145 ((-2 (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1|)) (-15 -4091 (|#1| |#1|)) (-15 -4078 (|#2| (-388 |#1|) |#2|)) (-15 -4030 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4031 ((-2 (|:| -4229 |#2|) (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1|)) (-15 -4032 (|#1| |#1| |#1|)) (-15 -4033 ((-3 (-388 |#1|) "failed") (-388 |#1|) |#1|)) (-15 -4033 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4050 ((-719) |#1| |#1|)) (-15 -4078 ((-388 |#1|) (-388 |#1|) (-388 |#1|))) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4038 (|#1| |#1| (-719))) (-15 -4039 (|#1| |#1| (-719))) (-15 -4040 ((-2 (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| (-719))) (-15 -4043 (|#1| (-1092 |#2|))) (-15 -4044 ((-1092 |#2|) |#1|)) (-15 -4045 ((-1179 |#2|) |#1| (-719))) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)) (-594 (-719)))) (-15 -4089 (|#1| |#1| (-1098) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)))) (-15 -4089 (|#1| |#1| (-1098))) (-15 -4089 (|#1| |#1|)) (-15 -4089 (|#1| |#1| (-719))) (-15 -4078 (|#1| |#1| |#1|)) (-15 -4078 (|#2| |#1| |#2|)) (-15 -4011 ((-386 |#1|) |#1|)) (-15 -2970 ((-386 (-1092 |#1|)) (-1092 |#1|))) (-15 -2969 ((-386 (-1092 |#1|)) (-1092 |#1|))) (-15 -2968 ((-386 (-1092 |#1|)) (-1092 |#1|))) (-15 -2967 ((-3 (-594 (-1092 |#1|)) "failed") (-594 (-1092 |#1|)) (-1092 |#1|))) (-15 -3081 (|#1| |#1| (-1011))) (-15 -3347 ((-594 (-1011)) |#1|)) (-15 -3083 ((-719) |#1| (-594 (-1011)))) (-15 -3083 ((-719) |#1|)) (-15 -3157 (|#1| |#1| (-594 (-1011)) (-594 (-719)))) (-15 -3157 (|#1| |#1| (-1011) (-719))) (-15 -3084 ((-594 (-719)) |#1| (-594 (-1011)))) (-15 -3084 ((-719) |#1| (-1011))) (-15 -3348 ((-3 (-1011) "failed") |#1|)) (-15 -4223 ((-594 (-719)) |#1| (-594 (-1011)))) (-15 -4223 ((-719) |#1| (-1011))) (-15 -3431 ((-1011) |#1|)) (-15 -3432 ((-3 (-1011) #1="failed") |#1|)) (-15 -4233 (|#1| (-1011))) (-15 -4046 (|#1| |#1| (-594 (-1011)) (-594 |#1|))) (-15 -4046 (|#1| |#1| (-1011) |#1|)) (-15 -4046 (|#1| |#1| (-594 (-1011)) (-594 |#2|))) (-15 -4046 (|#1| |#1| (-1011) |#2|)) (-15 -4046 (|#1| |#1| (-594 |#1|) (-594 |#1|))) (-15 -4046 (|#1| |#1| |#1| |#1|)) (-15 -4046 (|#1| |#1| (-275 |#1|))) (-15 -4046 (|#1| |#1| (-594 (-275 |#1|)))) (-15 -4223 ((-719) |#1|)) (-15 -3157 (|#1| |#2| (-719))) (-15 -3431 ((-516) |#1|)) (-15 -3432 ((-3 (-516) #1#) |#1|)) (-15 -3431 ((-388 (-516)) |#1|)) (-15 -3432 ((-3 (-388 (-516)) #1#) |#1|)) (-15 -4233 (|#1| |#2|)) (-15 -3432 ((-3 |#2| #1#) |#1|)) (-15 -3431 (|#2| |#1|)) (-15 -3084 ((-719) |#1|)) (-15 -3081 (|#2| |#1|)) (-15 -4089 (|#1| |#1| (-594 (-1011)) (-594 (-719)))) (-15 -4089 (|#1| |#1| (-1011) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1011)))) (-15 -4089 (|#1| |#1| (-1011))) (-15 -4233 (|#1| (-516))) (-15 -4233 ((-805) |#1|))) (-1155 |#2|) (-984)) (T -1154))
+NIL
+(-10 -8 (-15 -4233 (|#1| |#1|)) (-15 -2971 ((-1092 |#1|) (-1092 |#1|) (-1092 |#1|))) (-15 -4245 ((-386 |#1|) |#1|)) (-15 -4053 (|#1| |#1|)) (-15 -4233 (|#1| (-388 (-516)))) (-15 -3724 (|#1|)) (-15 -3723 ((-3 |#1| "failed") |#1|)) (-15 -4078 ((-388 |#1|) |#1| (-388 |#1|))) (-15 -1654 ((-719) |#1|)) (-15 -3145 ((-2 (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1|)) (-15 -4091 (|#1| |#1|)) (-15 -4078 (|#2| (-388 |#1|) |#2|)) (-15 -4030 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4031 ((-2 (|:| -4229 |#2|) (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| |#1|)) (-15 -4032 (|#1| |#1| |#1|)) (-15 -4033 ((-3 (-388 |#1|) "failed") (-388 |#1|) |#1|)) (-15 -4033 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4050 ((-719) |#1| |#1|)) (-15 -4078 ((-388 |#1|) (-388 |#1|) (-388 |#1|))) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4038 (|#1| |#1| (-719))) (-15 -4039 (|#1| |#1| (-719))) (-15 -4040 ((-2 (|:| -2046 |#1|) (|:| -3166 |#1|)) |#1| (-719))) (-15 -4043 (|#1| (-1092 |#2|))) (-15 -4044 ((-1092 |#2|) |#1|)) (-15 -4045 ((-1179 |#2|) |#1| (-719))) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4089 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)) (-594 (-719)))) (-15 -4089 (|#1| |#1| (-1098) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1098)))) (-15 -4089 (|#1| |#1| (-1098))) (-15 -4089 (|#1| |#1|)) (-15 -4089 (|#1| |#1| (-719))) (-15 -4078 (|#1| |#1| |#1|)) (-15 -4078 (|#2| |#1| |#2|)) (-15 -4011 ((-386 |#1|) |#1|)) (-15 -2970 ((-386 (-1092 |#1|)) (-1092 |#1|))) (-15 -2969 ((-386 (-1092 |#1|)) (-1092 |#1|))) (-15 -2968 ((-386 (-1092 |#1|)) (-1092 |#1|))) (-15 -2967 ((-3 (-594 (-1092 |#1|)) "failed") (-594 (-1092 |#1|)) (-1092 |#1|))) (-15 -3081 (|#1| |#1| (-1011))) (-15 -3347 ((-594 (-1011)) |#1|)) (-15 -3083 ((-719) |#1| (-594 (-1011)))) (-15 -3083 ((-719) |#1|)) (-15 -3157 (|#1| |#1| (-594 (-1011)) (-594 (-719)))) (-15 -3157 (|#1| |#1| (-1011) (-719))) (-15 -3084 ((-594 (-719)) |#1| (-594 (-1011)))) (-15 -3084 ((-719) |#1| (-1011))) (-15 -3348 ((-3 (-1011) "failed") |#1|)) (-15 -4223 ((-594 (-719)) |#1| (-594 (-1011)))) (-15 -4223 ((-719) |#1| (-1011))) (-15 -3431 ((-1011) |#1|)) (-15 -3432 ((-3 (-1011) #1="failed") |#1|)) (-15 -4233 (|#1| (-1011))) (-15 -4046 (|#1| |#1| (-594 (-1011)) (-594 |#1|))) (-15 -4046 (|#1| |#1| (-1011) |#1|)) (-15 -4046 (|#1| |#1| (-594 (-1011)) (-594 |#2|))) (-15 -4046 (|#1| |#1| (-1011) |#2|)) (-15 -4046 (|#1| |#1| (-594 |#1|) (-594 |#1|))) (-15 -4046 (|#1| |#1| |#1| |#1|)) (-15 -4046 (|#1| |#1| (-275 |#1|))) (-15 -4046 (|#1| |#1| (-594 (-275 |#1|)))) (-15 -4223 ((-719) |#1|)) (-15 -3157 (|#1| |#2| (-719))) (-15 -3431 ((-516) |#1|)) (-15 -3432 ((-3 (-516) #1#) |#1|)) (-15 -3431 ((-388 (-516)) |#1|)) (-15 -3432 ((-3 (-388 (-516)) #1#) |#1|)) (-15 -4233 (|#1| |#2|)) (-15 -3432 ((-3 |#2| #1#) |#1|)) (-15 -3431 (|#2| |#1|)) (-15 -3084 ((-719) |#1|)) (-15 -3081 (|#2| |#1|)) (-15 -4089 (|#1| |#1| (-594 (-1011)) (-594 (-719)))) (-15 -4089 (|#1| |#1| (-1011) (-719))) (-15 -4089 (|#1| |#1| (-594 (-1011)))) (-15 -4089 (|#1| |#1| (-1011))) (-15 -4233 (|#1| (-516))) (-15 -4233 ((-805) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-4045 (((-1179 |#1|) $ (-719)) 238)) (-3347 (((-594 (-1011)) $) 110)) (-4043 (($ (-1092 |#1|)) 236)) (-3349 (((-1092 $) $ (-1011)) 125) (((-1092 |#1|) $) 124)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 87 (|has| |#1| (-523)))) (-2118 (($ $) 88 (|has| |#1| (-523)))) (-2116 (((-110) $) 90 (|has| |#1| (-523)))) (-3083 (((-719) $) 112) (((-719) $ (-594 (-1011))) 111)) (-1319 (((-3 $ "failed") $ $) 19)) (-4034 (($ $ $) 223 (|has| |#1| (-523)))) (-2970 (((-386 (-1092 $)) (-1092 $)) 100 (|has| |#1| (-851)))) (-4053 (($ $) 98 (|has| |#1| (-432)))) (-4245 (((-386 $) $) 97 (|has| |#1| (-432)))) (-2967 (((-3 (-594 (-1092 $)) #1="failed") (-594 (-1092 $)) (-1092 $)) 103 (|has| |#1| (-851)))) (-1655 (((-110) $ $) 208 (|has| |#1| (-344)))) (-4039 (($ $ (-719)) 231)) (-4038 (($ $ (-719)) 230)) (-4030 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-432)))) (-3815 (($) 17 T CONST)) (-3432 (((-3 |#1| #2="failed") $) 164) (((-3 (-388 (-516)) #2#) $) 162 (|has| |#1| (-975 (-388 (-516))))) (((-3 (-516) #2#) $) 160 (|has| |#1| (-975 (-516)))) (((-3 (-1011) #2#) $) 136)) (-3431 ((|#1| $) 165) (((-388 (-516)) $) 161 (|has| |#1| (-975 (-388 (-516))))) (((-516) $) 159 (|has| |#1| (-975 (-516)))) (((-1011) $) 135)) (-4035 (($ $ $ (-1011)) 108 (|has| |#1| (-162))) ((|#1| $ $) 226 (|has| |#1| (-162)))) (-2824 (($ $ $) 212 (|has| |#1| (-344)))) (-4235 (($ $) 154)) (-2297 (((-637 (-516)) (-637 $)) 134 (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 (-516))) (|:| |vec| (-1179 (-516)))) (-637 $) (-1179 $)) 133 (|has| |#1| (-593 (-516)))) (((-2 (|:| -1650 (-637 |#1|)) (|:| |vec| (-1179 |#1|))) (-637 $) (-1179 $)) 132) (((-637 |#1|) (-637 $)) 131)) (-3741 (((-3 $ "failed") $) 34)) (-2823 (($ $ $) 211 (|has| |#1| (-344)))) (-4037 (($ $ $) 229)) (-4032 (($ $ $) 220 (|has| |#1| (-523)))) (-4031 (((-2 (|:| -4229 |#1|) (|:| -2046 $) (|:| -3166 $)) $ $) 219 (|has| |#1| (-523)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 206 (|has| |#1| (-344)))) (-3777 (($ $) 176 (|has| |#1| (-432))) (($ $ (-1011)) 105 (|has| |#1| (-432)))) (-3082 (((-594 $) $) 109)) (-4005 (((-110) $) 96 (|has| |#1| (-851)))) (-1671 (($ $ |#1| (-719) $) 172)) (-3060 (((-829 (-359) $) $ (-831 (-359)) (-829 (-359) $)) 84 (-12 (|has| (-1011) (-827 (-359))) (|has| |#1| (-827 (-359))))) (((-829 (-516) $) $ (-831 (-516)) (-829 (-516) $)) 83 (-12 (|has| (-1011) (-827 (-516))) (|has| |#1| (-827 (-516)))))) (-4050 (((-719) $ $) 224 (|has| |#1| (-523)))) (-2436 (((-110) $) 31)) (-2444 (((-719) $) 169)) (-3723 (((-3 $ "failed") $) 204 (|has| |#1| (-1074)))) (-3350 (($ (-1092 |#1|) (-1011)) 117) (($ (-1092 $) (-1011)) 116)) (-4055 (($ $ (-719)) 235)) (-1652 (((-3 (-594 $) #3="failed") (-594 $) $) 215 (|has| |#1| (-344)))) (-3085 (((-594 $) $) 126)) (-4213 (((-110) $) 152)) (-3157 (($ |#1| (-719)) 153) (($ $ (-1011) (-719)) 119) (($ $ (-594 (-1011)) (-594 (-719))) 118)) (-4041 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $ (-1011)) 120) (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 233)) (-3084 (((-719) $) 170) (((-719) $ (-1011)) 122) (((-594 (-719)) $ (-594 (-1011))) 121)) (-3596 (($ $ $) 79 (|has| |#1| (-795)))) (-3597 (($ $ $) 78 (|has| |#1| (-795)))) (-1672 (($ (-1 (-719) (-719)) $) 171)) (-4234 (($ (-1 |#1| |#1|) $) 151)) (-4044 (((-1092 |#1|) $) 237)) (-3348 (((-3 (-1011) #4="failed") $) 123)) (-3158 (($ $) 149)) (-3449 ((|#1| $) 148)) (-1963 (($ (-594 $)) 94 (|has| |#1| (-432))) (($ $ $) 93 (|has| |#1| (-432)))) (-3513 (((-1081) $) 9)) (-4040 (((-2 (|:| -2046 $) (|:| -3166 $)) $ (-719)) 232)) (-3087 (((-3 (-594 $) #4#) $) 114)) (-3086 (((-3 (-594 $) #4#) $) 115)) (-3088 (((-3 (-2 (|:| |var| (-1011)) (|:| -2427 (-719))) #4#) $) 113)) (-4091 (($ $) 216 (|has| |#1| (-37 (-388 (-516)))))) (-3724 (($) 203 (|has| |#1| (-1074)) CONST)) (-3514 (((-1045) $) 10)) (-1866 (((-110) $) 166)) (-1865 ((|#1| $) 167)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 95 (|has| |#1| (-432)))) (-3419 (($ (-594 $)) 92 (|has| |#1| (-432))) (($ $ $) 91 (|has| |#1| (-432)))) (-2968 (((-386 (-1092 $)) (-1092 $)) 102 (|has| |#1| (-851)))) (-2969 (((-386 (-1092 $)) (-1092 $)) 101 (|has| |#1| (-851)))) (-4011 (((-386 $) $) 99 (|has| |#1| (-851)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 214 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 213 (|has| |#1| (-344)))) (-3740 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-523))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-523)))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 207 (|has| |#1| (-344)))) (-4046 (($ $ (-594 (-275 $))) 145) (($ $ (-275 $)) 144) (($ $ $ $) 143) (($ $ (-594 $) (-594 $)) 142) (($ $ (-1011) |#1|) 141) (($ $ (-594 (-1011)) (-594 |#1|)) 140) (($ $ (-1011) $) 139) (($ $ (-594 (-1011)) (-594 $)) 138)) (-1654 (((-719) $) 209 (|has| |#1| (-344)))) (-4078 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-388 $) (-388 $) (-388 $)) 225 (|has| |#1| (-523))) ((|#1| (-388 $) |#1|) 217 (|has| |#1| (-344))) (((-388 $) $ (-388 $)) 205 (|has| |#1| (-523)))) (-4042 (((-3 $ "failed") $ (-719)) 234)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 210 (|has| |#1| (-344)))) (-4036 (($ $ (-1011)) 107 (|has| |#1| (-162))) ((|#1| $) 227 (|has| |#1| (-162)))) (-4089 (($ $ (-1011)) 42) (($ $ (-594 (-1011))) 41) (($ $ (-1011) (-719)) 40) (($ $ (-594 (-1011)) (-594 (-719))) 39) (($ $ (-719)) 253) (($ $) 251) (($ $ (-1098)) 250 (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) 249 (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) 248 (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) 247 (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-4223 (((-719) $) 150) (((-719) $ (-1011)) 130) (((-594 (-719)) $ (-594 (-1011))) 129)) (-4246 (((-831 (-359)) $) 82 (-12 (|has| (-1011) (-572 (-831 (-359)))) (|has| |#1| (-572 (-831 (-359)))))) (((-831 (-516)) $) 81 (-12 (|has| (-1011) (-572 (-831 (-516)))) (|has| |#1| (-572 (-831 (-516)))))) (((-505) $) 80 (-12 (|has| (-1011) (-572 (-505))) (|has| |#1| (-572 (-505)))))) (-3081 ((|#1| $) 175 (|has| |#1| (-432))) (($ $ (-1011)) 106 (|has| |#1| (-432)))) (-2966 (((-3 (-1179 $) #1#) (-637 $)) 104 (-3119 (|has| $ (-138)) (|has| |#1| (-851))))) (-4033 (((-3 $ "failed") $ $) 222 (|has| |#1| (-523))) (((-3 (-388 $) "failed") (-388 $) $) 221 (|has| |#1| (-523)))) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ |#1|) 163) (($ (-1011)) 137) (($ (-388 (-516))) 72 (-3810 (|has| |#1| (-975 (-388 (-516)))) (|has| |#1| (-37 (-388 (-516)))))) (($ $) 85 (|has| |#1| (-523)))) (-4096 (((-594 |#1|) $) 168)) (-3959 ((|#1| $ (-719)) 155) (($ $ (-1011) (-719)) 128) (($ $ (-594 (-1011)) (-594 (-719))) 127)) (-2965 (((-3 $ #1#) $) 73 (-3810 (-3119 (|has| $ (-138)) (|has| |#1| (-851))) (|has| |#1| (-138))))) (-3385 (((-719)) 29)) (-1670 (($ $ $ (-719)) 173 (|has| |#1| (-162)))) (-2117 (((-110) $ $) 89 (|has| |#1| (-523)))) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2932 (($ $ (-1011)) 38) (($ $ (-594 (-1011))) 37) (($ $ (-1011) (-719)) 36) (($ $ (-594 (-1011)) (-594 (-719))) 35) (($ $ (-719)) 254) (($ $) 252) (($ $ (-1098)) 246 (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098))) 245 (|has| |#1| (-841 (-1098)))) (($ $ (-1098) (-719)) 244 (|has| |#1| (-841 (-1098)))) (($ $ (-594 (-1098)) (-594 (-719))) 243 (|has| |#1| (-841 (-1098)))) (($ $ (-1 |#1| |#1|) (-719)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-2826 (((-110) $ $) 76 (|has| |#1| (-795)))) (-2827 (((-110) $ $) 75 (|has| |#1| (-795)))) (-3317 (((-110) $ $) 6)) (-2947 (((-110) $ $) 77 (|has| |#1| (-795)))) (-2948 (((-110) $ $) 74 (|has| |#1| (-795)))) (-4224 (($ $ |#1|) 156 (|has| |#1| (-344)))) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ (-388 (-516))) 158 (|has| |#1| (-37 (-388 (-516))))) (($ (-388 (-516)) $) 157 (|has| |#1| (-37 (-388 (-516))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-1155 |#1|) (-133) (-984)) (T -1155))
+((-4045 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-1155 *4)) (-4 *4 (-984)) (-5 *2 (-1179 *4)))) (-4044 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-984)) (-5 *2 (-1092 *3)))) (-4043 (*1 *1 *2) (-12 (-5 *2 (-1092 *3)) (-4 *3 (-984)) (-4 *1 (-1155 *3)))) (-4055 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1155 *3)) (-4 *3 (-984)))) (-4042 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-719)) (-4 *1 (-1155 *3)) (-4 *3 (-984)))) (-4041 (*1 *2 *1 *1) (-12 (-4 *3 (-984)) (-5 *2 (-2 (|:| -2046 *1) (|:| -3166 *1))) (-4 *1 (-1155 *3)))) (-4040 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *4 (-984)) (-5 *2 (-2 (|:| -2046 *1) (|:| -3166 *1))) (-4 *1 (-1155 *4)))) (-4039 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1155 *3)) (-4 *3 (-984)))) (-4038 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1155 *3)) (-4 *3 (-984)))) (-4037 (*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-984)))) (-4089 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-984)))) (-4036 (*1 *2 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-984)) (-4 *2 (-162)))) (-4035 (*1 *2 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-984)) (-4 *2 (-162)))) (-4078 (*1 *2 *2 *2) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-984)) (-4 *3 (-523)))) (-4050 (*1 *2 *1 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-984)) (-4 *3 (-523)) (-5 *2 (-719)))) (-4034 (*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-984)) (-4 *2 (-523)))) (-4033 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1155 *2)) (-4 *2 (-984)) (-4 *2 (-523)))) (-4033 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-388 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-984)) (-4 *3 (-523)))) (-4032 (*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-984)) (-4 *2 (-523)))) (-4031 (*1 *2 *1 *1) (-12 (-4 *3 (-523)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -4229 *3) (|:| -2046 *1) (|:| -3166 *1))) (-4 *1 (-1155 *3)))) (-4030 (*1 *2 *1 *1) (-12 (-4 *3 (-432)) (-4 *3 (-984)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1155 *3)))) (-4078 (*1 *2 *3 *2) (-12 (-5 *3 (-388 *1)) (-4 *1 (-1155 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-4091 (*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-516)))))))
+(-13 (-891 |t#1| (-719) (-1011)) (-268 |t#1| |t#1|) (-268 $ $) (-216) (-214 |t#1|) (-10 -8 (-15 -4045 ((-1179 |t#1|) $ (-719))) (-15 -4044 ((-1092 |t#1|) $)) (-15 -4043 ($ (-1092 |t#1|))) (-15 -4055 ($ $ (-719))) (-15 -4042 ((-3 $ "failed") $ (-719))) (-15 -4041 ((-2 (|:| -2046 $) (|:| -3166 $)) $ $)) (-15 -4040 ((-2 (|:| -2046 $) (|:| -3166 $)) $ (-719))) (-15 -4039 ($ $ (-719))) (-15 -4038 ($ $ (-719))) (-15 -4037 ($ $ $)) (-15 -4089 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1074)) (-6 (-1074)) |%noBranch|) (IF (|has| |t#1| (-162)) (PROGN (-15 -4036 (|t#1| $)) (-15 -4035 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-523)) (PROGN (-6 (-268 (-388 $) (-388 $))) (-15 -4078 ((-388 $) (-388 $) (-388 $))) (-15 -4050 ((-719) $ $)) (-15 -4034 ($ $ $)) (-15 -4033 ((-3 $ "failed") $ $)) (-15 -4033 ((-3 (-388 $) "failed") (-388 $) $)) (-15 -4032 ($ $ $)) (-15 -4031 ((-2 (|:| -4229 |t#1|) (|:| -2046 $) (|:| -3166 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-432)) (-15 -4030 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-344)) (PROGN (-6 (-289)) (-6 -4265) (-15 -4078 (|t#1| (-388 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-388 (-516)))) (-15 -4091 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #1=(-719)) . T) ((-25) . T) ((-37 #2=(-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-99) . T) ((-109 #2# #2#) |has| |#1| (-37 (-388 (-516)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-805)) . T) ((-162) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-572 (-505)) -12 (|has| |#1| (-572 (-505))) (|has| (-1011) (-572 (-505)))) ((-572 (-831 (-359))) -12 (|has| |#1| (-572 (-831 (-359)))) (|has| (-1011) (-572 (-831 (-359))))) ((-572 (-831 (-516))) -12 (|has| |#1| (-572 (-831 (-516)))) (|has| (-1011) (-572 (-831 (-516))))) ((-214 |#1|) . T) ((-216) . T) ((-268 (-388 $) (-388 $)) |has| |#1| (-523)) ((-268 |#1| |#1|) . T) ((-268 $ $) . T) ((-272) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-291 $) . T) ((-307 |#1| #1#) . T) ((-358 |#1|) . T) ((-393 |#1|) . T) ((-432) -3810 (|has| |#1| (-851)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-491 #3=(-1011) |#1|) . T) ((-491 #3# $) . T) ((-491 $ $) . T) ((-523) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-599 #2#) |has| |#1| (-37 (-388 (-516)))) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-516)) |has| |#1| (-593 (-516))) ((-593 |#1|) . T) ((-666 #2#) |has| |#1| (-37 (-388 (-516)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-675) . T) ((-795) |has| |#1| (-795)) ((-841 #3#) . T) ((-841 (-1098)) |has| |#1| (-841 (-1098))) ((-827 (-359)) -12 (|has| |#1| (-827 (-359))) (|has| (-1011) (-827 (-359)))) ((-827 (-516)) -12 (|has| |#1| (-827 (-516))) (|has| (-1011) (-827 (-516)))) ((-891 |#1| #1# #3#) . T) ((-851) |has| |#1| (-851)) ((-862) |has| |#1| (-344)) ((-975 (-388 (-516))) |has| |#1| (-975 (-388 (-516)))) ((-975 (-516)) |has| |#1| (-975 (-516))) ((-975 #3#) . T) ((-975 |#1|) . T) ((-989 #2#) |has| |#1| (-37 (-388 (-516)))) ((-989 |#1|) . T) ((-989 $) -3810 (|has| |#1| (-851)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1074) |has| |#1| (-1074)) ((-1138) |has| |#1| (-851)))
+((-4234 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
+(((-1156 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4234 (|#4| (-1 |#3| |#1|) |#2|))) (-984) (-1155 |#1|) (-984) (-1155 |#3|)) (T -1156))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-4 *2 (-1155 *6)) (-5 *1 (-1156 *5 *4 *6 *2)) (-4 *4 (-1155 *5)))))
+(-10 -7 (-15 -4234 (|#4| (-1 |#3| |#1|) |#2|)))
+((-3347 (((-594 (-1011)) $) 28)) (-4235 (($ $) 25)) (-3157 (($ |#2| |#3|) NIL) (($ $ (-1011) |#3|) 22) (($ $ (-594 (-1011)) (-594 |#3|)) 21)) (-3158 (($ $) 14)) (-3449 ((|#2| $) 12)) (-4223 ((|#3| $) 10)))
+(((-1157 |#1| |#2| |#3|) (-10 -8 (-15 -3347 ((-594 (-1011)) |#1|)) (-15 -3157 (|#1| |#1| (-594 (-1011)) (-594 |#3|))) (-15 -3157 (|#1| |#1| (-1011) |#3|)) (-15 -4235 (|#1| |#1|)) (-15 -3157 (|#1| |#2| |#3|)) (-15 -4223 (|#3| |#1|)) (-15 -3158 (|#1| |#1|)) (-15 -3449 (|#2| |#1|))) (-1158 |#2| |#3|) (-984) (-740)) (T -1157))
+NIL
+(-10 -8 (-15 -3347 ((-594 (-1011)) |#1|)) (-15 -3157 (|#1| |#1| (-594 (-1011)) (-594 |#3|))) (-15 -3157 (|#1| |#1| (-1011) |#3|)) (-15 -4235 (|#1| |#1|)) (-15 -3157 (|#1| |#2| |#3|)) (-15 -4223 (|#3| |#1|)) (-15 -3158 (|#1| |#1|)) (-15 -3449 (|#2| |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-3347 (((-594 (-1011)) $) 74)) (-4110 (((-1098) $) 103)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 51 (|has| |#1| (-523)))) (-2118 (($ $) 52 (|has| |#1| (-523)))) (-2116 (((-110) $) 54 (|has| |#1| (-523)))) (-4049 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-4052 (((-1076 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-4235 (($ $) 60)) (-3741 (((-3 $ "failed") $) 34)) (-3156 (((-110) $) 73)) (-4050 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-2436 (((-110) $) 31)) (-4055 (($ $ (-860)) 101)) (-4213 (((-110) $) 62)) (-3157 (($ |#1| |#2|) 61) (($ $ (-1011) |#2|) 76) (($ $ (-594 (-1011)) (-594 |#2|)) 75)) (-4234 (($ (-1 |#1| |#1|) $) 63)) (-3158 (($ $) 65)) (-3449 ((|#1| $) 66)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4047 (($ $ |#2|) 95)) (-3740 (((-3 $ "failed") $ $) 50 (|has| |#1| (-523)))) (-4046 (((-1076 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4078 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1038)))) (-4089 (($ $ (-594 (-1098)) (-594 (-719))) 89 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1098) (-719)) 88 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-594 (-1098))) 87 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1098)) 86 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-719)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4223 ((|#2| $) 64)) (-3155 (($ $) 72)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ (-388 (-516))) 57 (|has| |#1| (-37 (-388 (-516))))) (($ $) 49 (|has| |#1| (-523))) (($ |#1|) 47 (|has| |#1| (-162)))) (-3959 ((|#1| $ |#2|) 59)) (-2965 (((-3 $ "failed") $) 48 (|has| |#1| (-138)))) (-3385 (((-719)) 29)) (-4051 ((|#1| $) 102)) (-2117 (((-110) $ $) 53 (|has| |#1| (-523)))) (-4048 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4233 (|#1| (-1098))))))) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2932 (($ $ (-594 (-1098)) (-594 (-719))) 93 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1098) (-719)) 92 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-594 (-1098))) 91 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1098)) 90 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-719)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3317 (((-110) $ $) 6)) (-4224 (($ $ |#1|) 58 (|has| |#1| (-344)))) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-388 (-516)) $) 56 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) 55 (|has| |#1| (-37 (-388 (-516)))))))
+(((-1158 |#1| |#2|) (-133) (-984) (-740)) (T -1158))
+((-4052 (*1 *2 *1) (-12 (-4 *1 (-1158 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-1076 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4078 (*1 *2 *1 *3) (-12 (-4 *1 (-1158 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)))) (-4110 (*1 *2 *1) (-12 (-4 *1 (-1158 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-1098)))) (-4051 (*1 *2 *1) (-12 (-4 *1 (-1158 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)))) (-4055 (*1 *1 *1 *2) (-12 (-5 *2 (-860)) (-4 *1 (-1158 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-4050 (*1 *2 *1 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-4049 (*1 *1 *1 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-4049 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-4048 (*1 *2 *1 *3) (-12 (-4 *1 (-1158 *2 *3)) (-4 *3 (-740)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4233 (*2 (-1098)))) (-4 *2 (-984)))) (-4047 (*1 *1 *1 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-4046 (*1 *2 *1 *3) (-12 (-4 *1 (-1158 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1076 *3)))))
+(-13 (-913 |t#1| |t#2| (-1011)) (-10 -8 (-15 -4052 ((-1076 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4078 (|t#1| $ |t#2|)) (-15 -4110 ((-1098) $)) (-15 -4051 (|t#1| $)) (-15 -4055 ($ $ (-860))) (-15 -4050 (|t#2| $)) (-15 -4050 (|t#2| $ |t#2|)) (-15 -4049 ($ $ |t#2|)) (-15 -4049 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4233 (|t#1| (-1098)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4048 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4047 ($ $ |t#2|)) (IF (|has| |t#2| (-1038)) (-6 (-268 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-216)) (IF (|has| |t#1| (-841 (-1098))) (-6 (-841 (-1098))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4046 ((-1076 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #1=(-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-523)) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-388 (-516)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -3810 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-805)) . T) ((-162) -3810 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-268 $ $) |has| |#2| (-1038)) ((-272) |has| |#1| (-523)) ((-523) |has| |#1| (-523)) ((-599 #1#) |has| |#1| (-37 (-388 (-516)))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #1#) |has| |#1| (-37 (-388 (-516)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-523)) ((-675) . T) ((-841 (-1098)) -12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-913 |#1| |#2| (-1011)) . T) ((-989 #1#) |has| |#1| (-37 (-388 (-516)))) ((-989 |#1|) . T) ((-989 $) -3810 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-4053 ((|#2| |#2|) 12)) (-4245 (((-386 |#2|) |#2|) 14)) (-4054 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-516))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-516)))) 30)))
+(((-1159 |#1| |#2|) (-10 -7 (-15 -4245 ((-386 |#2|) |#2|)) (-15 -4053 (|#2| |#2|)) (-15 -4054 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-516))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-516)))))) (-523) (-13 (-1155 |#1|) (-523) (-10 -8 (-15 -3419 ($ $ $))))) (T -1159))
+((-4054 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-516)))) (-4 *4 (-13 (-1155 *3) (-523) (-10 -8 (-15 -3419 ($ $ $))))) (-4 *3 (-523)) (-5 *1 (-1159 *3 *4)))) (-4053 (*1 *2 *2) (-12 (-4 *3 (-523)) (-5 *1 (-1159 *3 *2)) (-4 *2 (-13 (-1155 *3) (-523) (-10 -8 (-15 -3419 ($ $ $))))))) (-4245 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-386 *3)) (-5 *1 (-1159 *4 *3)) (-4 *3 (-13 (-1155 *4) (-523) (-10 -8 (-15 -3419 ($ $ $))))))))
+(-10 -7 (-15 -4245 ((-386 |#2|) |#2|)) (-15 -4053 (|#2| |#2|)) (-15 -4054 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-516))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-516))))))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3347 (((-594 (-1011)) $) NIL)) (-4110 (((-1098) $) 11)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-2118 (($ $) NIL (|has| |#1| (-523)))) (-2116 (((-110) $) NIL (|has| |#1| (-523)))) (-4049 (($ $ (-388 (-516))) NIL) (($ $ (-388 (-516)) (-388 (-516))) NIL)) (-4052 (((-1076 (-2 (|:| |k| (-388 (-516))) (|:| |c| |#1|))) $) NIL)) (-3766 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3921 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL (|has| |#1| (-344)))) (-4245 (((-386 $) $) NIL (|has| |#1| (-344)))) (-3301 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-1655 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3764 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3920 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4097 (($ (-719) (-1076 (-2 (|:| |k| (-388 (-516))) (|:| |c| |#1|)))) NIL)) (-3768 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-1139 |#1| |#2| |#3|) #1="failed") $) 19) (((-3 (-1169 |#1| |#2| |#3|) #1#) $) 22)) (-3431 (((-1139 |#1| |#2| |#3|) $) NIL) (((-1169 |#1| |#2| |#3|) $) NIL)) (-2824 (($ $ $) NIL (|has| |#1| (-344)))) (-4235 (($ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-4059 (((-388 (-516)) $) 57)) (-2823 (($ $ $) NIL (|has| |#1| (-344)))) (-4060 (($ (-388 (-516)) (-1139 |#1| |#2| |#3|)) NIL)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL (|has| |#1| (-344)))) (-4005 (((-110) $) NIL (|has| |#1| (-344)))) (-3156 (((-110) $) NIL)) (-3909 (($) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4050 (((-388 (-516)) $) NIL) (((-388 (-516)) $ (-388 (-516))) NIL)) (-2436 (((-110) $) NIL)) (-3275 (($ $ (-516)) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4055 (($ $ (-860)) NIL) (($ $ (-388 (-516))) NIL)) (-1652 (((-3 (-594 $) #2="failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-4213 (((-110) $) NIL)) (-3157 (($ |#1| (-388 (-516))) 30) (($ $ (-1011) (-388 (-516))) NIL) (($ $ (-594 (-1011)) (-594 (-388 (-516)))) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-4218 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3158 (($ $) NIL)) (-3449 ((|#1| $) NIL)) (-1963 (($ (-594 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-4058 (((-1139 |#1| |#2| |#3|) $) 60)) (-4056 (((-3 (-1139 |#1| |#2| |#3|) "failed") $) NIL)) (-4057 (((-1139 |#1| |#2| |#3|) $) NIL)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) NIL (|has| |#1| (-344)))) (-4091 (($ $) 39 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-1098)) NIL (-3810 (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-29 (-516))) (|has| |#1| (-901)) (|has| |#1| (-1120))) (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-15 -4091 (|#1| |#1| (-1098)))) (|has| |#1| (-15 -3347 ((-594 (-1098)) |#1|)))))) (($ $ (-1176 |#2|)) 40 (|has| |#1| (-37 (-388 (-516)))))) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#1| (-344)))) (-3419 (($ (-594 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-4011 (((-386 $) $) NIL (|has| |#1| (-344)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#1| (-344)))) (-4047 (($ $ (-388 (-516))) NIL)) (-3740 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-4219 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4046 (((-1076 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-388 (-516))))))) (-1654 (((-719) $) NIL (|has| |#1| (-344)))) (-4078 ((|#1| $ (-388 (-516))) NIL) (($ $ $) NIL (|has| (-388 (-516)) (-1038)))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-344)))) (-4089 (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))) (($ $ (-1176 |#2|)) 38)) (-4223 (((-388 (-516)) $) NIL)) (-3769 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3918 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3767 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3917 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3765 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3916 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3155 (($ $) NIL)) (-4233 (((-805) $) 89) (($ (-516)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1139 |#1| |#2| |#3|)) 16) (($ (-1169 |#1| |#2| |#3|)) 17) (($ (-1176 |#2|)) 36) (($ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $) NIL (|has| |#1| (-523)))) (-3959 ((|#1| $ (-388 (-516))) NIL)) (-2965 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3385 (((-719)) NIL)) (-4051 ((|#1| $) 12)) (-3772 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3760 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-2117 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3770 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3758 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3774 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3762 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4048 ((|#1| $ (-388 (-516))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-516))))) (|has| |#1| (-15 -4233 (|#1| (-1098))))))) (-3775 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3763 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3773 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3761 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3771 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3759 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| |#1| (-344)))) (-2920 (($) 32 T CONST)) (-2927 (($) 26 T CONST)) (-2932 (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) 34)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516)))))) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-516)) $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516)))))))
+(((-1160 |#1| |#2| |#3|) (-13 (-1164 |#1| (-1139 |#1| |#2| |#3|)) (-975 (-1169 |#1| |#2| |#3|)) (-10 -8 (-15 -4233 ($ (-1176 |#2|))) (-15 -4089 ($ $ (-1176 |#2|))) (IF (|has| |#1| (-37 (-388 (-516)))) (-15 -4091 ($ $ (-1176 |#2|))) |%noBranch|))) (-984) (-1098) |#1|) (T -1160))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-4089 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-4091 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-37 (-388 (-516)))) (-4 *3 (-984)) (-14 *5 *3))))
+(-13 (-1164 |#1| (-1139 |#1| |#2| |#3|)) (-975 (-1169 |#1| |#2| |#3|)) (-10 -8 (-15 -4233 ($ (-1176 |#2|))) (-15 -4089 ($ $ (-1176 |#2|))) (IF (|has| |#1| (-37 (-388 (-516)))) (-15 -4091 ($ $ (-1176 |#2|))) |%noBranch|)))
+((-4234 (((-1160 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1160 |#1| |#3| |#5|)) 24)))
+(((-1161 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4234 ((-1160 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1160 |#1| |#3| |#5|)))) (-984) (-984) (-1098) (-1098) |#1| |#2|) (T -1161))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1160 *5 *7 *9)) (-4 *5 (-984)) (-4 *6 (-984)) (-14 *7 (-1098)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1160 *6 *8 *10)) (-5 *1 (-1161 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1098)))))
+(-10 -7 (-15 -4234 ((-1160 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1160 |#1| |#3| |#5|))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-3347 (((-594 (-1011)) $) 74)) (-4110 (((-1098) $) 103)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 51 (|has| |#1| (-523)))) (-2118 (($ $) 52 (|has| |#1| (-523)))) (-2116 (((-110) $) 54 (|has| |#1| (-523)))) (-4049 (($ $ (-388 (-516))) 98) (($ $ (-388 (-516)) (-388 (-516))) 97)) (-4052 (((-1076 (-2 (|:| |k| (-388 (-516))) (|:| |c| |#1|))) $) 105)) (-3766 (($ $) 135 (|has| |#1| (-37 (-388 (-516)))))) (-3921 (($ $) 118 (|has| |#1| (-37 (-388 (-516)))))) (-1319 (((-3 $ "failed") $ $) 19)) (-4053 (($ $) 162 (|has| |#1| (-344)))) (-4245 (((-386 $) $) 163 (|has| |#1| (-344)))) (-3301 (($ $) 117 (|has| |#1| (-37 (-388 (-516)))))) (-1655 (((-110) $ $) 153 (|has| |#1| (-344)))) (-3764 (($ $) 134 (|has| |#1| (-37 (-388 (-516)))))) (-3920 (($ $) 119 (|has| |#1| (-37 (-388 (-516)))))) (-4097 (($ (-719) (-1076 (-2 (|:| |k| (-388 (-516))) (|:| |c| |#1|)))) 172)) (-3768 (($ $) 133 (|has| |#1| (-37 (-388 (-516)))))) (-3919 (($ $) 120 (|has| |#1| (-37 (-388 (-516)))))) (-3815 (($) 17 T CONST)) (-2824 (($ $ $) 157 (|has| |#1| (-344)))) (-4235 (($ $) 60)) (-3741 (((-3 $ "failed") $) 34)) (-2823 (($ $ $) 156 (|has| |#1| (-344)))) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 151 (|has| |#1| (-344)))) (-4005 (((-110) $) 164 (|has| |#1| (-344)))) (-3156 (((-110) $) 73)) (-3909 (($) 145 (|has| |#1| (-37 (-388 (-516)))))) (-4050 (((-388 (-516)) $) 100) (((-388 (-516)) $ (-388 (-516))) 99)) (-2436 (((-110) $) 31)) (-3275 (($ $ (-516)) 116 (|has| |#1| (-37 (-388 (-516)))))) (-4055 (($ $ (-860)) 101) (($ $ (-388 (-516))) 171)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) 160 (|has| |#1| (-344)))) (-4213 (((-110) $) 62)) (-3157 (($ |#1| (-388 (-516))) 61) (($ $ (-1011) (-388 (-516))) 76) (($ $ (-594 (-1011)) (-594 (-388 (-516)))) 75)) (-4234 (($ (-1 |#1| |#1|) $) 63)) (-4218 (($ $) 142 (|has| |#1| (-37 (-388 (-516)))))) (-3158 (($ $) 65)) (-3449 ((|#1| $) 66)) (-1963 (($ (-594 $)) 149 (|has| |#1| (-344))) (($ $ $) 148 (|has| |#1| (-344)))) (-3513 (((-1081) $) 9)) (-2668 (($ $) 165 (|has| |#1| (-344)))) (-4091 (($ $) 170 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-1098)) 169 (-3810 (-12 (|has| |#1| (-29 (-516))) (|has| |#1| (-901)) (|has| |#1| (-1120)) (|has| |#1| (-37 (-388 (-516))))) (-12 (|has| |#1| (-15 -3347 ((-594 (-1098)) |#1|))) (|has| |#1| (-15 -4091 (|#1| |#1| (-1098)))) (|has| |#1| (-37 (-388 (-516)))))))) (-3514 (((-1045) $) 10)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 150 (|has| |#1| (-344)))) (-3419 (($ (-594 $)) 147 (|has| |#1| (-344))) (($ $ $) 146 (|has| |#1| (-344)))) (-4011 (((-386 $) $) 161 (|has| |#1| (-344)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 159 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 158 (|has| |#1| (-344)))) (-4047 (($ $ (-388 (-516))) 95)) (-3740 (((-3 $ "failed") $ $) 50 (|has| |#1| (-523)))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 152 (|has| |#1| (-344)))) (-4219 (($ $) 143 (|has| |#1| (-37 (-388 (-516)))))) (-4046 (((-1076 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-516))))))) (-1654 (((-719) $) 154 (|has| |#1| (-344)))) (-4078 ((|#1| $ (-388 (-516))) 104) (($ $ $) 81 (|has| (-388 (-516)) (-1038)))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 155 (|has| |#1| (-344)))) (-4089 (($ $ (-594 (-1098)) (-594 (-719))) 89 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098) (-719)) 88 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-594 (-1098))) 87 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098)) 86 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-719)) 84 (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (-4223 (((-388 (-516)) $) 64)) (-3769 (($ $) 132 (|has| |#1| (-37 (-388 (-516)))))) (-3918 (($ $) 121 (|has| |#1| (-37 (-388 (-516)))))) (-3767 (($ $) 131 (|has| |#1| (-37 (-388 (-516)))))) (-3917 (($ $) 122 (|has| |#1| (-37 (-388 (-516)))))) (-3765 (($ $) 130 (|has| |#1| (-37 (-388 (-516)))))) (-3916 (($ $) 123 (|has| |#1| (-37 (-388 (-516)))))) (-3155 (($ $) 72)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ |#1|) 47 (|has| |#1| (-162))) (($ (-388 (-516))) 57 (|has| |#1| (-37 (-388 (-516))))) (($ $) 49 (|has| |#1| (-523)))) (-3959 ((|#1| $ (-388 (-516))) 59)) (-2965 (((-3 $ "failed") $) 48 (|has| |#1| (-138)))) (-3385 (((-719)) 29)) (-4051 ((|#1| $) 102)) (-3772 (($ $) 141 (|has| |#1| (-37 (-388 (-516)))))) (-3760 (($ $) 129 (|has| |#1| (-37 (-388 (-516)))))) (-2117 (((-110) $ $) 53 (|has| |#1| (-523)))) (-3770 (($ $) 140 (|has| |#1| (-37 (-388 (-516)))))) (-3758 (($ $) 128 (|has| |#1| (-37 (-388 (-516)))))) (-3774 (($ $) 139 (|has| |#1| (-37 (-388 (-516)))))) (-3762 (($ $) 127 (|has| |#1| (-37 (-388 (-516)))))) (-4048 ((|#1| $ (-388 (-516))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-516))))) (|has| |#1| (-15 -4233 (|#1| (-1098))))))) (-3775 (($ $) 138 (|has| |#1| (-37 (-388 (-516)))))) (-3763 (($ $) 126 (|has| |#1| (-37 (-388 (-516)))))) (-3773 (($ $) 137 (|has| |#1| (-37 (-388 (-516)))))) (-3761 (($ $) 125 (|has| |#1| (-37 (-388 (-516)))))) (-3771 (($ $) 136 (|has| |#1| (-37 (-388 (-516)))))) (-3759 (($ $) 124 (|has| |#1| (-37 (-388 (-516)))))) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33) (($ $ (-516)) 166 (|has| |#1| (-344)))) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2932 (($ $ (-594 (-1098)) (-594 (-719))) 93 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098) (-719)) 92 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-594 (-1098))) 91 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098)) 90 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-719)) 85 (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (-3317 (((-110) $ $) 6)) (-4224 (($ $ |#1|) 58 (|has| |#1| (-344))) (($ $ $) 168 (|has| |#1| (-344)))) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32) (($ $ (-516)) 167 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) 115 (|has| |#1| (-37 (-388 (-516)))))) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-388 (-516)) $) 56 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) 55 (|has| |#1| (-37 (-388 (-516)))))))
+(((-1162 |#1|) (-133) (-984)) (T -1162))
+((-4097 (*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *3 (-1076 (-2 (|:| |k| (-388 (-516))) (|:| |c| *4)))) (-4 *4 (-984)) (-4 *1 (-1162 *4)))) (-4055 (*1 *1 *1 *2) (-12 (-5 *2 (-388 (-516))) (-4 *1 (-1162 *3)) (-4 *3 (-984)))) (-4091 (*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-516)))))) (-4091 (*1 *1 *1 *2) (-3810 (-12 (-5 *2 (-1098)) (-4 *1 (-1162 *3)) (-4 *3 (-984)) (-12 (-4 *3 (-29 (-516))) (-4 *3 (-901)) (-4 *3 (-1120)) (-4 *3 (-37 (-388 (-516)))))) (-12 (-5 *2 (-1098)) (-4 *1 (-1162 *3)) (-4 *3 (-984)) (-12 (|has| *3 (-15 -3347 ((-594 *2) *3))) (|has| *3 (-15 -4091 (*3 *3 *2))) (-4 *3 (-37 (-388 (-516)))))))))
+(-13 (-1158 |t#1| (-388 (-516))) (-10 -8 (-15 -4097 ($ (-719) (-1076 (-2 (|:| |k| (-388 (-516))) (|:| |c| |t#1|))))) (-15 -4055 ($ $ (-388 (-516)))) (IF (|has| |t#1| (-37 (-388 (-516)))) (PROGN (-15 -4091 ($ $)) (IF (|has| |t#1| (-15 -4091 (|t#1| |t#1| (-1098)))) (IF (|has| |t#1| (-15 -3347 ((-594 (-1098)) |t#1|))) (-15 -4091 ($ $ (-1098))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1120)) (IF (|has| |t#1| (-901)) (IF (|has| |t#1| (-29 (-516))) (-15 -4091 ($ $ (-1098))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-941)) (-6 (-1120))) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #1=(-388 (-516))) . T) ((-25) . T) ((-37 #2=(-388 (-516))) -3810 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-516))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -3810 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-34) |has| |#1| (-37 (-388 (-516)))) ((-93) |has| |#1| (-37 (-388 (-516)))) ((-99) . T) ((-109 #2# #2#) -3810 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-516))))) ((-109 |#1| |#1|) . T) ((-109 $ $) -3810 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-805)) . T) ((-162) -3810 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))) ((-226) |has| |#1| (-344)) ((-266) |has| |#1| (-37 (-388 (-516)))) ((-268 $ $) |has| (-388 (-516)) (-1038)) ((-272) -3810 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-344) |has| |#1| (-344)) ((-432) |has| |#1| (-344)) ((-471) |has| |#1| (-37 (-388 (-516)))) ((-523) -3810 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-599 #2#) -3810 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-516))))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #2#) -3810 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-516))))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -3810 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-675) . T) ((-841 (-1098)) -12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))) ((-913 |#1| #1# (-1011)) . T) ((-862) |has| |#1| (-344)) ((-941) |has| |#1| (-37 (-388 (-516)))) ((-989 #2#) -3810 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-516))))) ((-989 |#1|) . T) ((-989 $) -3810 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1120) |has| |#1| (-37 (-388 (-516)))) ((-1123) |has| |#1| (-37 (-388 (-516)))) ((-1138) |has| |#1| (-344)) ((-1158 |#1| #1#) . T))
+((-3462 (((-110) $) 12)) (-3432 (((-3 |#3| "failed") $) 17)) (-3431 ((|#3| $) 14)))
+(((-1163 |#1| |#2| |#3|) (-10 -8 (-15 -3431 (|#3| |#1|)) (-15 -3432 ((-3 |#3| "failed") |#1|)) (-15 -3462 ((-110) |#1|))) (-1164 |#2| |#3|) (-984) (-1141 |#2|)) (T -1163))
+NIL
+(-10 -8 (-15 -3431 (|#3| |#1|)) (-15 -3432 ((-3 |#3| "failed") |#1|)) (-15 -3462 ((-110) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-3347 (((-594 (-1011)) $) 74)) (-4110 (((-1098) $) 103)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 51 (|has| |#1| (-523)))) (-2118 (($ $) 52 (|has| |#1| (-523)))) (-2116 (((-110) $) 54 (|has| |#1| (-523)))) (-4049 (($ $ (-388 (-516))) 98) (($ $ (-388 (-516)) (-388 (-516))) 97)) (-4052 (((-1076 (-2 (|:| |k| (-388 (-516))) (|:| |c| |#1|))) $) 105)) (-3766 (($ $) 135 (|has| |#1| (-37 (-388 (-516)))))) (-3921 (($ $) 118 (|has| |#1| (-37 (-388 (-516)))))) (-1319 (((-3 $ "failed") $ $) 19)) (-4053 (($ $) 162 (|has| |#1| (-344)))) (-4245 (((-386 $) $) 163 (|has| |#1| (-344)))) (-3301 (($ $) 117 (|has| |#1| (-37 (-388 (-516)))))) (-1655 (((-110) $ $) 153 (|has| |#1| (-344)))) (-3764 (($ $) 134 (|has| |#1| (-37 (-388 (-516)))))) (-3920 (($ $) 119 (|has| |#1| (-37 (-388 (-516)))))) (-4097 (($ (-719) (-1076 (-2 (|:| |k| (-388 (-516))) (|:| |c| |#1|)))) 172)) (-3768 (($ $) 133 (|has| |#1| (-37 (-388 (-516)))))) (-3919 (($ $) 120 (|has| |#1| (-37 (-388 (-516)))))) (-3815 (($) 17 T CONST)) (-3432 (((-3 |#2| "failed") $) 183)) (-3431 ((|#2| $) 182)) (-2824 (($ $ $) 157 (|has| |#1| (-344)))) (-4235 (($ $) 60)) (-3741 (((-3 $ "failed") $) 34)) (-4059 (((-388 (-516)) $) 180)) (-2823 (($ $ $) 156 (|has| |#1| (-344)))) (-4060 (($ (-388 (-516)) |#2|) 181)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 151 (|has| |#1| (-344)))) (-4005 (((-110) $) 164 (|has| |#1| (-344)))) (-3156 (((-110) $) 73)) (-3909 (($) 145 (|has| |#1| (-37 (-388 (-516)))))) (-4050 (((-388 (-516)) $) 100) (((-388 (-516)) $ (-388 (-516))) 99)) (-2436 (((-110) $) 31)) (-3275 (($ $ (-516)) 116 (|has| |#1| (-37 (-388 (-516)))))) (-4055 (($ $ (-860)) 101) (($ $ (-388 (-516))) 171)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) 160 (|has| |#1| (-344)))) (-4213 (((-110) $) 62)) (-3157 (($ |#1| (-388 (-516))) 61) (($ $ (-1011) (-388 (-516))) 76) (($ $ (-594 (-1011)) (-594 (-388 (-516)))) 75)) (-4234 (($ (-1 |#1| |#1|) $) 63)) (-4218 (($ $) 142 (|has| |#1| (-37 (-388 (-516)))))) (-3158 (($ $) 65)) (-3449 ((|#1| $) 66)) (-1963 (($ (-594 $)) 149 (|has| |#1| (-344))) (($ $ $) 148 (|has| |#1| (-344)))) (-4058 ((|#2| $) 179)) (-4056 (((-3 |#2| "failed") $) 177)) (-4057 ((|#2| $) 178)) (-3513 (((-1081) $) 9)) (-2668 (($ $) 165 (|has| |#1| (-344)))) (-4091 (($ $) 170 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-1098)) 169 (-3810 (-12 (|has| |#1| (-29 (-516))) (|has| |#1| (-901)) (|has| |#1| (-1120)) (|has| |#1| (-37 (-388 (-516))))) (-12 (|has| |#1| (-15 -3347 ((-594 (-1098)) |#1|))) (|has| |#1| (-15 -4091 (|#1| |#1| (-1098)))) (|has| |#1| (-37 (-388 (-516)))))))) (-3514 (((-1045) $) 10)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 150 (|has| |#1| (-344)))) (-3419 (($ (-594 $)) 147 (|has| |#1| (-344))) (($ $ $) 146 (|has| |#1| (-344)))) (-4011 (((-386 $) $) 161 (|has| |#1| (-344)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 159 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 158 (|has| |#1| (-344)))) (-4047 (($ $ (-388 (-516))) 95)) (-3740 (((-3 $ "failed") $ $) 50 (|has| |#1| (-523)))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 152 (|has| |#1| (-344)))) (-4219 (($ $) 143 (|has| |#1| (-37 (-388 (-516)))))) (-4046 (((-1076 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-516))))))) (-1654 (((-719) $) 154 (|has| |#1| (-344)))) (-4078 ((|#1| $ (-388 (-516))) 104) (($ $ $) 81 (|has| (-388 (-516)) (-1038)))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 155 (|has| |#1| (-344)))) (-4089 (($ $ (-594 (-1098)) (-594 (-719))) 89 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098) (-719)) 88 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-594 (-1098))) 87 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098)) 86 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-719)) 84 (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (-4223 (((-388 (-516)) $) 64)) (-3769 (($ $) 132 (|has| |#1| (-37 (-388 (-516)))))) (-3918 (($ $) 121 (|has| |#1| (-37 (-388 (-516)))))) (-3767 (($ $) 131 (|has| |#1| (-37 (-388 (-516)))))) (-3917 (($ $) 122 (|has| |#1| (-37 (-388 (-516)))))) (-3765 (($ $) 130 (|has| |#1| (-37 (-388 (-516)))))) (-3916 (($ $) 123 (|has| |#1| (-37 (-388 (-516)))))) (-3155 (($ $) 72)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ |#1|) 47 (|has| |#1| (-162))) (($ |#2|) 184) (($ (-388 (-516))) 57 (|has| |#1| (-37 (-388 (-516))))) (($ $) 49 (|has| |#1| (-523)))) (-3959 ((|#1| $ (-388 (-516))) 59)) (-2965 (((-3 $ "failed") $) 48 (|has| |#1| (-138)))) (-3385 (((-719)) 29)) (-4051 ((|#1| $) 102)) (-3772 (($ $) 141 (|has| |#1| (-37 (-388 (-516)))))) (-3760 (($ $) 129 (|has| |#1| (-37 (-388 (-516)))))) (-2117 (((-110) $ $) 53 (|has| |#1| (-523)))) (-3770 (($ $) 140 (|has| |#1| (-37 (-388 (-516)))))) (-3758 (($ $) 128 (|has| |#1| (-37 (-388 (-516)))))) (-3774 (($ $) 139 (|has| |#1| (-37 (-388 (-516)))))) (-3762 (($ $) 127 (|has| |#1| (-37 (-388 (-516)))))) (-4048 ((|#1| $ (-388 (-516))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-516))))) (|has| |#1| (-15 -4233 (|#1| (-1098))))))) (-3775 (($ $) 138 (|has| |#1| (-37 (-388 (-516)))))) (-3763 (($ $) 126 (|has| |#1| (-37 (-388 (-516)))))) (-3773 (($ $) 137 (|has| |#1| (-37 (-388 (-516)))))) (-3761 (($ $) 125 (|has| |#1| (-37 (-388 (-516)))))) (-3771 (($ $) 136 (|has| |#1| (-37 (-388 (-516)))))) (-3759 (($ $) 124 (|has| |#1| (-37 (-388 (-516)))))) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33) (($ $ (-516)) 166 (|has| |#1| (-344)))) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2932 (($ $ (-594 (-1098)) (-594 (-719))) 93 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098) (-719)) 92 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-594 (-1098))) 91 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098)) 90 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-719)) 85 (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (-3317 (((-110) $ $) 6)) (-4224 (($ $ |#1|) 58 (|has| |#1| (-344))) (($ $ $) 168 (|has| |#1| (-344)))) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32) (($ $ (-516)) 167 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) 115 (|has| |#1| (-37 (-388 (-516)))))) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-388 (-516)) $) 56 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) 55 (|has| |#1| (-37 (-388 (-516)))))))
+(((-1164 |#1| |#2|) (-133) (-984) (-1141 |t#1|)) (T -1164))
+((-4223 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1141 *3)) (-5 *2 (-388 (-516))))) (-4233 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *1 (-1164 *3 *2)) (-4 *2 (-1141 *3)))) (-4060 (*1 *1 *2 *3) (-12 (-5 *2 (-388 (-516))) (-4 *4 (-984)) (-4 *1 (-1164 *4 *3)) (-4 *3 (-1141 *4)))) (-4059 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1141 *3)) (-5 *2 (-388 (-516))))) (-4058 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1141 *3)))) (-4057 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1141 *3)))) (-4056 (*1 *2 *1) (|partial| -12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1141 *3)))))
+(-13 (-1162 |t#1|) (-975 |t#2|) (-10 -8 (-15 -4060 ($ (-388 (-516)) |t#2|)) (-15 -4059 ((-388 (-516)) $)) (-15 -4058 (|t#2| $)) (-15 -4223 ((-388 (-516)) $)) (-15 -4233 ($ |t#2|)) (-15 -4057 (|t#2| $)) (-15 -4056 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-46 |#1| #1=(-388 (-516))) . T) ((-25) . T) ((-37 #2=(-388 (-516))) -3810 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-516))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -3810 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-34) |has| |#1| (-37 (-388 (-516)))) ((-93) |has| |#1| (-37 (-388 (-516)))) ((-99) . T) ((-109 #2# #2#) -3810 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-516))))) ((-109 |#1| |#1|) . T) ((-109 $ $) -3810 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-805)) . T) ((-162) -3810 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))) ((-226) |has| |#1| (-344)) ((-266) |has| |#1| (-37 (-388 (-516)))) ((-268 $ $) |has| (-388 (-516)) (-1038)) ((-272) -3810 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-344) |has| |#1| (-344)) ((-432) |has| |#1| (-344)) ((-471) |has| |#1| (-37 (-388 (-516)))) ((-523) -3810 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-599 #2#) -3810 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-516))))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #2#) -3810 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-516))))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -3810 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-675) . T) ((-841 (-1098)) -12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))) ((-913 |#1| #1# (-1011)) . T) ((-862) |has| |#1| (-344)) ((-941) |has| |#1| (-37 (-388 (-516)))) ((-975 |#2|) . T) ((-989 #2#) -3810 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-516))))) ((-989 |#1|) . T) ((-989 $) -3810 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1120) |has| |#1| (-37 (-388 (-516)))) ((-1123) |has| |#1| (-37 (-388 (-516)))) ((-1138) |has| |#1| (-344)) ((-1158 |#1| #1#) . T) ((-1162 |#1|) . T))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3347 (((-594 (-1011)) $) NIL)) (-4110 (((-1098) $) 96)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-2118 (($ $) NIL (|has| |#1| (-523)))) (-2116 (((-110) $) NIL (|has| |#1| (-523)))) (-4049 (($ $ (-388 (-516))) 106) (($ $ (-388 (-516)) (-388 (-516))) 108)) (-4052 (((-1076 (-2 (|:| |k| (-388 (-516))) (|:| |c| |#1|))) $) 51)) (-3766 (($ $) 180 (|has| |#1| (-37 (-388 (-516)))))) (-3921 (($ $) 156 (|has| |#1| (-37 (-388 (-516)))))) (-1319 (((-3 $ "failed") $ $) NIL)) (-4053 (($ $) NIL (|has| |#1| (-344)))) (-4245 (((-386 $) $) NIL (|has| |#1| (-344)))) (-3301 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-1655 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3764 (($ $) 176 (|has| |#1| (-37 (-388 (-516)))))) (-3920 (($ $) 152 (|has| |#1| (-37 (-388 (-516)))))) (-4097 (($ (-719) (-1076 (-2 (|:| |k| (-388 (-516))) (|:| |c| |#1|)))) 61)) (-3768 (($ $) 184 (|has| |#1| (-37 (-388 (-516)))))) (-3919 (($ $) 160 (|has| |#1| (-37 (-388 (-516)))))) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#2| "failed") $) NIL)) (-3431 ((|#2| $) NIL)) (-2824 (($ $ $) NIL (|has| |#1| (-344)))) (-4235 (($ $) NIL)) (-3741 (((-3 $ "failed") $) 79)) (-4059 (((-388 (-516)) $) 13)) (-2823 (($ $ $) NIL (|has| |#1| (-344)))) (-4060 (($ (-388 (-516)) |#2|) 11)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) NIL (|has| |#1| (-344)))) (-4005 (((-110) $) NIL (|has| |#1| (-344)))) (-3156 (((-110) $) 68)) (-3909 (($) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4050 (((-388 (-516)) $) 103) (((-388 (-516)) $ (-388 (-516))) 104)) (-2436 (((-110) $) NIL)) (-3275 (($ $ (-516)) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4055 (($ $ (-860)) 120) (($ $ (-388 (-516))) 118)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-4213 (((-110) $) NIL)) (-3157 (($ |#1| (-388 (-516))) 31) (($ $ (-1011) (-388 (-516))) NIL) (($ $ (-594 (-1011)) (-594 (-388 (-516)))) NIL)) (-4234 (($ (-1 |#1| |#1|) $) 115)) (-4218 (($ $) 150 (|has| |#1| (-37 (-388 (-516)))))) (-3158 (($ $) NIL)) (-3449 ((|#1| $) NIL)) (-1963 (($ (-594 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-4058 ((|#2| $) 12)) (-4056 (((-3 |#2| "failed") $) 41)) (-4057 ((|#2| $) 42)) (-3513 (((-1081) $) NIL)) (-2668 (($ $) 93 (|has| |#1| (-344)))) (-4091 (($ $) 135 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-1098)) 140 (-3810 (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-29 (-516))) (|has| |#1| (-901)) (|has| |#1| (-1120))) (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-15 -4091 (|#1| |#1| (-1098)))) (|has| |#1| (-15 -3347 ((-594 (-1098)) |#1|))))))) (-3514 (((-1045) $) NIL)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) NIL (|has| |#1| (-344)))) (-3419 (($ (-594 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-4011 (((-386 $) $) NIL (|has| |#1| (-344)))) (-1653 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) NIL (|has| |#1| (-344)))) (-4047 (($ $ (-388 (-516))) 112)) (-3740 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-3003 (((-3 (-594 $) "failed") (-594 $) $) NIL (|has| |#1| (-344)))) (-4219 (($ $) 148 (|has| |#1| (-37 (-388 (-516)))))) (-4046 (((-1076 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-516))))))) (-1654 (((-719) $) NIL (|has| |#1| (-344)))) (-4078 ((|#1| $ (-388 (-516))) 100) (($ $ $) 86 (|has| (-388 (-516)) (-1038)))) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) NIL (|has| |#1| (-344)))) (-4089 (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098)) 127 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (-4223 (((-388 (-516)) $) 16)) (-3769 (($ $) 186 (|has| |#1| (-37 (-388 (-516)))))) (-3918 (($ $) 162 (|has| |#1| (-37 (-388 (-516)))))) (-3767 (($ $) 182 (|has| |#1| (-37 (-388 (-516)))))) (-3917 (($ $) 158 (|has| |#1| (-37 (-388 (-516)))))) (-3765 (($ $) 178 (|has| |#1| (-37 (-388 (-516)))))) (-3916 (($ $) 154 (|has| |#1| (-37 (-388 (-516)))))) (-3155 (($ $) 110)) (-4233 (((-805) $) NIL) (($ (-516)) 35) (($ |#1|) 27 (|has| |#1| (-162))) (($ |#2|) 32) (($ (-388 (-516))) 128 (|has| |#1| (-37 (-388 (-516))))) (($ $) NIL (|has| |#1| (-523)))) (-3959 ((|#1| $ (-388 (-516))) 99)) (-2965 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3385 (((-719)) 117)) (-4051 ((|#1| $) 98)) (-3772 (($ $) 192 (|has| |#1| (-37 (-388 (-516)))))) (-3760 (($ $) 168 (|has| |#1| (-37 (-388 (-516)))))) (-2117 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3770 (($ $) 188 (|has| |#1| (-37 (-388 (-516)))))) (-3758 (($ $) 164 (|has| |#1| (-37 (-388 (-516)))))) (-3774 (($ $) 196 (|has| |#1| (-37 (-388 (-516)))))) (-3762 (($ $) 172 (|has| |#1| (-37 (-388 (-516)))))) (-4048 ((|#1| $ (-388 (-516))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-516))))) (|has| |#1| (-15 -4233 (|#1| (-1098))))))) (-3775 (($ $) 198 (|has| |#1| (-37 (-388 (-516)))))) (-3763 (($ $) 174 (|has| |#1| (-37 (-388 (-516)))))) (-3773 (($ $) 194 (|has| |#1| (-37 (-388 (-516)))))) (-3761 (($ $) 170 (|has| |#1| (-37 (-388 (-516)))))) (-3771 (($ $) 190 (|has| |#1| (-37 (-388 (-516)))))) (-3759 (($ $) 166 (|has| |#1| (-37 (-388 (-516)))))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ (-516)) NIL (|has| |#1| (-344)))) (-2920 (($) 21 T CONST)) (-2927 (($) 17 T CONST)) (-2932 (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-1098)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-516)) |#1|))))) (-3317 (((-110) $ $) 66)) (-4224 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) 92 (|has| |#1| (-344)))) (-4116 (($ $) 131) (($ $ $) 72)) (-4118 (($ $ $) 70)) (** (($ $ (-860)) NIL) (($ $ (-719)) 76) (($ $ (-516)) 145 (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) 146 (|has| |#1| (-37 (-388 (-516)))))) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-388 (-516)) $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516)))))))
+(((-1165 |#1| |#2|) (-1164 |#1| |#2|) (-984) (-1141 |#1|)) (T -1165))
+NIL
+(-1164 |#1| |#2|)
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 34)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-2118 (($ $) NIL)) (-2116 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-3432 (((-3 (-516) #1="failed") $) NIL (|has| (-1160 |#2| |#3| |#4|) (-975 (-516)))) (((-3 (-388 (-516)) #1#) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-975 (-388 (-516))))) (((-3 (-1160 |#2| |#3| |#4|) #1#) $) 20)) (-3431 (((-516) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-975 (-516)))) (((-388 (-516)) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-975 (-388 (-516))))) (((-1160 |#2| |#3| |#4|) $) NIL)) (-4235 (($ $) 35)) (-3741 (((-3 $ "failed") $) 25)) (-3777 (($ $) NIL (|has| (-1160 |#2| |#3| |#4|) (-432)))) (-1671 (($ $ (-1160 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|) $) NIL)) (-2436 (((-110) $) NIL)) (-2444 (((-719) $) 11)) (-4213 (((-110) $) NIL)) (-3157 (($ (-1160 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) 23)) (-3084 (((-300 |#2| |#3| |#4|) $) NIL)) (-1672 (($ (-1 (-300 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) $) NIL)) (-4234 (($ (-1 (-1160 |#2| |#3| |#4|) (-1160 |#2| |#3| |#4|)) $) NIL)) (-4062 (((-3 (-787 |#2|) "failed") $) 75)) (-3158 (($ $) NIL)) (-3449 (((-1160 |#2| |#3| |#4|) $) 18)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-1866 (((-110) $) NIL)) (-1865 (((-1160 |#2| |#3| |#4|) $) NIL)) (-3740 (((-3 $ "failed") $ (-1160 |#2| |#3| |#4|)) NIL (|has| (-1160 |#2| |#3| |#4|) (-523))) (((-3 $ "failed") $ $) NIL)) (-4061 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1160 |#2| |#3| |#4|)) (|:| |%expon| (-300 |#2| |#3| |#4|)) (|:| |%expTerms| (-594 (-2 (|:| |k| (-388 (-516))) (|:| |c| |#2|)))))) (|:| |%type| (-1081))) "failed") $) 58)) (-4223 (((-300 |#2| |#3| |#4|) $) 14)) (-3081 (((-1160 |#2| |#3| |#4|) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-432)))) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ (-1160 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-388 (-516))) NIL (-3810 (|has| (-1160 |#2| |#3| |#4|) (-975 (-388 (-516)))) (|has| (-1160 |#2| |#3| |#4|) (-37 (-388 (-516))))))) (-4096 (((-594 (-1160 |#2| |#3| |#4|)) $) NIL)) (-3959 (((-1160 |#2| |#3| |#4|) $ (-300 |#2| |#3| |#4|)) NIL)) (-2965 (((-3 $ "failed") $) NIL (|has| (-1160 |#2| |#3| |#4|) (-138)))) (-3385 (((-719)) NIL)) (-1670 (($ $ $ (-719)) NIL (|has| (-1160 |#2| |#3| |#4|) (-162)))) (-2117 (((-110) $ $) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 63 T CONST)) (-2927 (($) NIL T CONST)) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ (-1160 |#2| |#3| |#4|)) NIL (|has| (-1160 |#2| |#3| |#4|) (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ (-1160 |#2| |#3| |#4|)) NIL) (($ (-1160 |#2| |#3| |#4|) $) NIL) (($ (-388 (-516)) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-37 (-388 (-516))))) (($ $ (-388 (-516))) NIL (|has| (-1160 |#2| |#3| |#4|) (-37 (-388 (-516)))))))
+(((-1166 |#1| |#2| |#3| |#4|) (-13 (-307 (-1160 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) (-523) (-10 -8 (-15 -4062 ((-3 (-787 |#2|) "failed") $)) (-15 -4061 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1160 |#2| |#3| |#4|)) (|:| |%expon| (-300 |#2| |#3| |#4|)) (|:| |%expTerms| (-594 (-2 (|:| |k| (-388 (-516))) (|:| |c| |#2|)))))) (|:| |%type| (-1081))) "failed") $)))) (-13 (-795) (-975 (-516)) (-593 (-516)) (-432)) (-13 (-27) (-1120) (-402 |#1|)) (-1098) |#2|) (T -1166))
+((-4062 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-795) (-975 (-516)) (-593 (-516)) (-432))) (-5 *2 (-787 *4)) (-5 *1 (-1166 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1120) (-402 *3))) (-14 *5 (-1098)) (-14 *6 *4))) (-4061 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-795) (-975 (-516)) (-593 (-516)) (-432))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1160 *4 *5 *6)) (|:| |%expon| (-300 *4 *5 *6)) (|:| |%expTerms| (-594 (-2 (|:| |k| (-388 (-516))) (|:| |c| *4)))))) (|:| |%type| (-1081)))) (-5 *1 (-1166 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1120) (-402 *3))) (-14 *5 (-1098)) (-14 *6 *4))))
+(-13 (-307 (-1160 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) (-523) (-10 -8 (-15 -4062 ((-3 (-787 |#2|) "failed") $)) (-15 -4061 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1160 |#2| |#3| |#4|)) (|:| |%expon| (-300 |#2| |#3| |#4|)) (|:| |%expTerms| (-594 (-2 (|:| |k| (-388 (-516))) (|:| |c| |#2|)))))) (|:| |%type| (-1081))) "failed") $))))
+((-3681 ((|#2| $) 29)) (-4073 ((|#2| $) 18)) (-4075 (($ $) 36)) (-4063 (($ $ (-516)) 64)) (-1217 (((-110) $ (-719)) 33)) (-3289 ((|#2| $ |#2|) 61)) (-4064 ((|#2| $ |#2|) 59)) (-4066 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-3290 (($ $ (-594 $)) 60)) (-4074 ((|#2| $) 17)) (-4077 (($ $) NIL) (($ $ (-719)) 42)) (-3295 (((-594 $) $) 26)) (-3291 (((-110) $ $) 50)) (-4001 (((-110) $ (-719)) 32)) (-3998 (((-110) $ (-719)) 31)) (-3801 (((-110) $) 28)) (-4076 ((|#2| $) 24) (($ $ (-719)) 46)) (-4078 ((|#2| $ #1#) NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3915 (((-110) $) 22)) (-4070 (($ $) 39)) (-4068 (($ $) 65)) (-4071 (((-719) $) 41)) (-4072 (($ $) 40)) (-4080 (($ $ $) 58) (($ |#2| $) NIL)) (-3796 (((-594 $) $) 27)) (-3317 (((-110) $ $) 48)) (-4232 (((-719) $) 35)))
+(((-1167 |#1| |#2|) (-10 -8 (-15 -4063 (|#1| |#1| (-516))) (-15 -4066 (|#2| |#1| "last" |#2|)) (-15 -4064 (|#2| |#1| |#2|)) (-15 -4066 (|#1| |#1| "rest" |#1|)) (-15 -4066 (|#2| |#1| "first" |#2|)) (-15 -4068 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -4071 ((-719) |#1|)) (-15 -4072 (|#1| |#1|)) (-15 -4073 (|#2| |#1|)) (-15 -4074 (|#2| |#1|)) (-15 -4075 (|#1| |#1|)) (-15 -4076 (|#1| |#1| (-719))) (-15 -4078 (|#2| |#1| "last")) (-15 -4076 (|#2| |#1|)) (-15 -4077 (|#1| |#1| (-719))) (-15 -4078 (|#1| |#1| "rest")) (-15 -4077 (|#1| |#1|)) (-15 -4078 (|#2| |#1| "first")) (-15 -4080 (|#1| |#2| |#1|)) (-15 -4080 (|#1| |#1| |#1|)) (-15 -3289 (|#2| |#1| |#2|)) (-15 -4066 (|#2| |#1| #1="value" |#2|)) (-15 -3290 (|#1| |#1| (-594 |#1|))) (-15 -3291 ((-110) |#1| |#1|)) (-15 -3915 ((-110) |#1|)) (-15 -4078 (|#2| |#1| #1#)) (-15 -3681 (|#2| |#1|)) (-15 -3801 ((-110) |#1|)) (-15 -3295 ((-594 |#1|) |#1|)) (-15 -3796 ((-594 |#1|) |#1|)) (-15 -3317 ((-110) |#1| |#1|)) (-15 -4232 ((-719) |#1|)) (-15 -1217 ((-110) |#1| (-719))) (-15 -4001 ((-110) |#1| (-719))) (-15 -3998 ((-110) |#1| (-719)))) (-1168 |#2|) (-1134)) (T -1167))
+NIL
+(-10 -8 (-15 -4063 (|#1| |#1| (-516))) (-15 -4066 (|#2| |#1| "last" |#2|)) (-15 -4064 (|#2| |#1| |#2|)) (-15 -4066 (|#1| |#1| "rest" |#1|)) (-15 -4066 (|#2| |#1| "first" |#2|)) (-15 -4068 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -4071 ((-719) |#1|)) (-15 -4072 (|#1| |#1|)) (-15 -4073 (|#2| |#1|)) (-15 -4074 (|#2| |#1|)) (-15 -4075 (|#1| |#1|)) (-15 -4076 (|#1| |#1| (-719))) (-15 -4078 (|#2| |#1| "last")) (-15 -4076 (|#2| |#1|)) (-15 -4077 (|#1| |#1| (-719))) (-15 -4078 (|#1| |#1| "rest")) (-15 -4077 (|#1| |#1|)) (-15 -4078 (|#2| |#1| "first")) (-15 -4080 (|#1| |#2| |#1|)) (-15 -4080 (|#1| |#1| |#1|)) (-15 -3289 (|#2| |#1| |#2|)) (-15 -4066 (|#2| |#1| #1="value" |#2|)) (-15 -3290 (|#1| |#1| (-594 |#1|))) (-15 -3291 ((-110) |#1| |#1|)) (-15 -3915 ((-110) |#1|)) (-15 -4078 (|#2| |#1| #1#)) (-15 -3681 (|#2| |#1|)) (-15 -3801 ((-110) |#1|)) (-15 -3295 ((-594 |#1|) |#1|)) (-15 -3796 ((-594 |#1|) |#1|)) (-15 -3317 ((-110) |#1| |#1|)) (-15 -4232 ((-719) |#1|)) (-15 -1217 ((-110) |#1| (-719))) (-15 -4001 ((-110) |#1| (-719))) (-15 -3998 ((-110) |#1| (-719))))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3681 ((|#1| $) 48)) (-4073 ((|#1| $) 65)) (-4075 (($ $) 67)) (-4063 (($ $ (-516)) 52 (|has| $ (-6 -4270)))) (-1217 (((-110) $ (-719)) 8)) (-3289 ((|#1| $ |#1|) 39 (|has| $ (-6 -4270)))) (-4065 (($ $ $) 56 (|has| $ (-6 -4270)))) (-4064 ((|#1| $ |#1|) 54 (|has| $ (-6 -4270)))) (-4067 ((|#1| $ |#1|) 58 (|has| $ (-6 -4270)))) (-4066 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4270))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4270))) (($ $ "rest" $) 55 (|has| $ (-6 -4270))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4270)))) (-3290 (($ $ (-594 $)) 41 (|has| $ (-6 -4270)))) (-4074 ((|#1| $) 66)) (-3815 (($) 7 T CONST)) (-4077 (($ $) 73) (($ $ (-719)) 71)) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-3295 (((-594 $) $) 50)) (-3291 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-4001 (((-110) $ (-719)) 9)) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35)) (-3998 (((-110) $ (-719)) 10)) (-3294 (((-594 |#1|) $) 45)) (-3801 (((-110) $) 49)) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-4076 ((|#1| $) 70) (($ $ (-719)) 68)) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-4079 ((|#1| $) 76) (($ $ (-719)) 74)) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-4078 ((|#1| $ #1#) 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3293 (((-516) $ $) 44)) (-3915 (((-110) $) 46)) (-4070 (($ $) 62)) (-4068 (($ $) 59 (|has| $ (-6 -4270)))) (-4071 (((-719) $) 63)) (-4072 (($ $) 64)) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3678 (($ $) 13)) (-4069 (($ $ $) 61 (|has| $ (-6 -4270))) (($ $ |#1|) 60 (|has| $ (-6 -4270)))) (-4080 (($ $ $) 78) (($ |#1| $) 77)) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-3796 (((-594 $) $) 51)) (-3292 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-1168 |#1|) (-133) (-1134)) (T -1168))
+((-4080 (*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1134)))) (-4080 (*1 *1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1134)))) (-4079 (*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1134)))) (-4078 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1168 *2)) (-4 *2 (-1134)))) (-4079 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1168 *3)) (-4 *3 (-1134)))) (-4077 (*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1134)))) (-4078 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1168 *3)) (-4 *3 (-1134)))) (-4077 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1168 *3)) (-4 *3 (-1134)))) (-4076 (*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1134)))) (-4078 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1168 *2)) (-4 *2 (-1134)))) (-4076 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1168 *3)) (-4 *3 (-1134)))) (-4075 (*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1134)))) (-4074 (*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1134)))) (-4073 (*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1134)))) (-4072 (*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1134)))) (-4071 (*1 *2 *1) (-12 (-4 *1 (-1168 *3)) (-4 *3 (-1134)) (-5 *2 (-719)))) (-4070 (*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1134)))) (-4069 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1168 *2)) (-4 *2 (-1134)))) (-4069 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1168 *2)) (-4 *2 (-1134)))) (-4068 (*1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1168 *2)) (-4 *2 (-1134)))) (-4067 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1168 *2)) (-4 *2 (-1134)))) (-4066 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4270)) (-4 *1 (-1168 *2)) (-4 *2 (-1134)))) (-4065 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1168 *2)) (-4 *2 (-1134)))) (-4066 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4270)) (-4 *1 (-1168 *3)) (-4 *3 (-1134)))) (-4064 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1168 *2)) (-4 *2 (-1134)))) (-4066 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4270)) (-4 *1 (-1168 *2)) (-4 *2 (-1134)))) (-4063 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (|has| *1 (-6 -4270)) (-4 *1 (-1168 *3)) (-4 *3 (-1134)))))
+(-13 (-949 |t#1|) (-10 -8 (-15 -4080 ($ $ $)) (-15 -4080 ($ |t#1| $)) (-15 -4079 (|t#1| $)) (-15 -4078 (|t#1| $ "first")) (-15 -4079 ($ $ (-719))) (-15 -4077 ($ $)) (-15 -4078 ($ $ "rest")) (-15 -4077 ($ $ (-719))) (-15 -4076 (|t#1| $)) (-15 -4078 (|t#1| $ "last")) (-15 -4076 ($ $ (-719))) (-15 -4075 ($ $)) (-15 -4074 (|t#1| $)) (-15 -4073 (|t#1| $)) (-15 -4072 ($ $)) (-15 -4071 ((-719) $)) (-15 -4070 ($ $)) (IF (|has| $ (-6 -4270)) (PROGN (-15 -4069 ($ $ $)) (-15 -4069 ($ $ |t#1|)) (-15 -4068 ($ $)) (-15 -4067 (|t#1| $ |t#1|)) (-15 -4066 (|t#1| $ "first" |t#1|)) (-15 -4065 ($ $ $)) (-15 -4066 ($ $ "rest" $)) (-15 -4064 (|t#1| $ |t#1|)) (-15 -4066 (|t#1| $ "last" |t#1|)) (-15 -4063 ($ $ (-516)))) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-571 (-805)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-949 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1134) . T))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-3347 (((-594 (-1011)) $) NIL)) (-4110 (((-1098) $) 87)) (-4090 (((-1148 |#2| |#1|) $ (-719)) 73)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-2118 (($ $) NIL (|has| |#1| (-523)))) (-2116 (((-110) $) 137 (|has| |#1| (-523)))) (-4049 (($ $ (-719)) 122) (($ $ (-719) (-719)) 124)) (-4052 (((-1076 (-2 (|:| |k| (-719)) (|:| |c| |#1|))) $) 42)) (-3766 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3921 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-1319 (((-3 $ "failed") $ $) NIL)) (-3301 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3764 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3920 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4097 (($ (-1076 (-2 (|:| |k| (-719)) (|:| |c| |#1|)))) 53) (($ (-1076 |#1|)) NIL)) (-3768 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3815 (($) NIL T CONST)) (-4083 (($ $) 128)) (-4235 (($ $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-4095 (($ $) 135)) (-4093 (((-887 |#1|) $ (-719)) 63) (((-887 |#1|) $ (-719) (-719)) 65)) (-3156 (((-110) $) NIL)) (-3909 (($) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4050 (((-719) $) NIL) (((-719) $ (-719)) NIL)) (-2436 (((-110) $) NIL)) (-4086 (($ $) 112)) (-3275 (($ $ (-516)) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4082 (($ (-516) (-516) $) 130)) (-4055 (($ $ (-860)) 134)) (-4094 (($ (-1 |#1| (-516)) $) 106)) (-4213 (((-110) $) NIL)) (-3157 (($ |#1| (-719)) 15) (($ $ (-1011) (-719)) NIL) (($ $ (-594 (-1011)) (-594 (-719))) NIL)) (-4234 (($ (-1 |#1| |#1|) $) 94)) (-4218 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3158 (($ $) NIL)) (-3449 ((|#1| $) NIL)) (-3513 (((-1081) $) NIL)) (-4087 (($ $) 110)) (-4088 (($ $) 108)) (-4081 (($ (-516) (-516) $) 132)) (-4091 (($ $) 145 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-1098)) 151 (-3810 (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-29 (-516))) (|has| |#1| (-901)) (|has| |#1| (-1120))) (-12 (|has| |#1| (-37 (-388 (-516)))) (|has| |#1| (-15 -4091 (|#1| |#1| (-1098)))) (|has| |#1| (-15 -3347 ((-594 (-1098)) |#1|)))))) (($ $ (-1176 |#2|)) 146 (|has| |#1| (-37 (-388 (-516)))))) (-3514 (((-1045) $) NIL)) (-4084 (($ $ (-516) (-516)) 116)) (-4047 (($ $ (-719)) 118)) (-3740 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-4219 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4085 (($ $) 114)) (-4046 (((-1076 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-719)))))) (-4078 ((|#1| $ (-719)) 91) (($ $ $) 126 (|has| (-719) (-1038)))) (-4089 (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-1098)) 103 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $ (-1176 |#2|)) 99)) (-4223 (((-719) $) NIL)) (-3769 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3918 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3767 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3917 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3765 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3916 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3155 (($ $) 120)) (-4233 (((-805) $) NIL) (($ (-516)) 24) (($ (-388 (-516))) 143 (|has| |#1| (-37 (-388 (-516))))) (($ $) NIL (|has| |#1| (-523))) (($ |#1|) 23 (|has| |#1| (-162))) (($ (-1148 |#2| |#1|)) 80) (($ (-1176 |#2|)) 20)) (-4096 (((-1076 |#1|) $) NIL)) (-3959 ((|#1| $ (-719)) 90)) (-2965 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3385 (((-719)) NIL)) (-4051 ((|#1| $) 88)) (-3772 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3760 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-2117 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3770 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3758 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3774 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3762 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-4048 ((|#1| $ (-719)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-719)))) (|has| |#1| (-15 -4233 (|#1| (-1098))))))) (-3775 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3763 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3773 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3761 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3771 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3759 (($ $) NIL (|has| |#1| (-37 (-388 (-516)))))) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 17 T CONST)) (-2927 (($) 13 T CONST)) (-2932 (($ $ (-594 (-1098)) (-594 (-719))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-1098) (-719)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-594 (-1098))) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-1098)) NIL (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (-3317 (((-110) $ $) NIL)) (-4224 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-4116 (($ $) NIL) (($ $ $) 102)) (-4118 (($ $ $) 18)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ |#1|) 140 (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516)))))) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-388 (-516)) $) NIL (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) NIL (|has| |#1| (-37 (-388 (-516)))))))
+(((-1169 |#1| |#2| |#3|) (-13 (-1172 |#1|) (-10 -8 (-15 -4233 ($ (-1148 |#2| |#1|))) (-15 -4090 ((-1148 |#2| |#1|) $ (-719))) (-15 -4233 ($ (-1176 |#2|))) (-15 -4089 ($ $ (-1176 |#2|))) (-15 -4088 ($ $)) (-15 -4087 ($ $)) (-15 -4086 ($ $)) (-15 -4085 ($ $)) (-15 -4084 ($ $ (-516) (-516))) (-15 -4083 ($ $)) (-15 -4082 ($ (-516) (-516) $)) (-15 -4081 ($ (-516) (-516) $)) (IF (|has| |#1| (-37 (-388 (-516)))) (-15 -4091 ($ $ (-1176 |#2|))) |%noBranch|))) (-984) (-1098) |#1|) (T -1169))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-1148 *4 *3)) (-4 *3 (-984)) (-14 *4 (-1098)) (-14 *5 *3) (-5 *1 (-1169 *3 *4 *5)))) (-4090 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1148 *5 *4)) (-5 *1 (-1169 *4 *5 *6)) (-4 *4 (-984)) (-14 *5 (-1098)) (-14 *6 *4))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-4089 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-4088 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1098)) (-14 *4 *2))) (-4087 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1098)) (-14 *4 *2))) (-4086 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1098)) (-14 *4 *2))) (-4085 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1098)) (-14 *4 *2))) (-4084 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-1098)) (-14 *5 *3))) (-4083 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1098)) (-14 *4 *2))) (-4082 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-1098)) (-14 *5 *3))) (-4081 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-1098)) (-14 *5 *3))) (-4091 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-37 (-388 (-516)))) (-4 *3 (-984)) (-14 *5 *3))))
+(-13 (-1172 |#1|) (-10 -8 (-15 -4233 ($ (-1148 |#2| |#1|))) (-15 -4090 ((-1148 |#2| |#1|) $ (-719))) (-15 -4233 ($ (-1176 |#2|))) (-15 -4089 ($ $ (-1176 |#2|))) (-15 -4088 ($ $)) (-15 -4087 ($ $)) (-15 -4086 ($ $)) (-15 -4085 ($ $)) (-15 -4084 ($ $ (-516) (-516))) (-15 -4083 ($ $)) (-15 -4082 ($ (-516) (-516) $)) (-15 -4081 ($ (-516) (-516) $)) (IF (|has| |#1| (-37 (-388 (-516)))) (-15 -4091 ($ $ (-1176 |#2|))) |%noBranch|)))
+((-4234 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1170 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4234 (|#4| (-1 |#2| |#1|) |#3|))) (-984) (-984) (-1172 |#1|) (-1172 |#2|)) (T -1170))
+((-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-4 *2 (-1172 *6)) (-5 *1 (-1170 *5 *6 *4 *2)) (-4 *4 (-1172 *5)))))
+(-10 -7 (-15 -4234 (|#4| (-1 |#2| |#1|) |#3|)))
+((-3462 (((-110) $) 15)) (-3766 (($ $) 92)) (-3921 (($ $) 68)) (-3764 (($ $) 88)) (-3920 (($ $) 64)) (-3768 (($ $) 96)) (-3919 (($ $) 72)) (-4218 (($ $) 62)) (-4219 (($ $) 60)) (-3769 (($ $) 98)) (-3918 (($ $) 74)) (-3767 (($ $) 94)) (-3917 (($ $) 70)) (-3765 (($ $) 90)) (-3916 (($ $) 66)) (-4233 (((-805) $) 48) (($ (-516)) NIL) (($ (-388 (-516))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3772 (($ $) 104)) (-3760 (($ $) 80)) (-3770 (($ $) 100)) (-3758 (($ $) 76)) (-3774 (($ $) 108)) (-3762 (($ $) 84)) (-3775 (($ $) 110)) (-3763 (($ $) 86)) (-3773 (($ $) 106)) (-3761 (($ $) 82)) (-3771 (($ $) 102)) (-3759 (($ $) 78)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-388 (-516))) 58)))
+(((-1171 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-388 (-516)))) (-15 -3921 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -3761 (|#1| |#1|)) (-15 -3763 (|#1| |#1|)) (-15 -3762 (|#1| |#1|)) (-15 -3758 (|#1| |#1|)) (-15 -3760 (|#1| |#1|)) (-15 -3765 (|#1| |#1|)) (-15 -3767 (|#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3768 (|#1| |#1|)) (-15 -3764 (|#1| |#1|)) (-15 -3766 (|#1| |#1|)) (-15 -3771 (|#1| |#1|)) (-15 -3773 (|#1| |#1|)) (-15 -3775 (|#1| |#1|)) (-15 -3774 (|#1| |#1|)) (-15 -3770 (|#1| |#1|)) (-15 -3772 (|#1| |#1|)) (-15 -4218 (|#1| |#1|)) (-15 -4219 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4233 (|#1| |#2|)) (-15 -4233 (|#1| |#1|)) (-15 -4233 (|#1| (-388 (-516)))) (-15 -4233 (|#1| (-516))) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-860))) (-15 -3462 ((-110) |#1|)) (-15 -4233 ((-805) |#1|))) (-1172 |#2|) (-984)) (T -1171))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-388 (-516)))) (-15 -3921 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -3761 (|#1| |#1|)) (-15 -3763 (|#1| |#1|)) (-15 -3762 (|#1| |#1|)) (-15 -3758 (|#1| |#1|)) (-15 -3760 (|#1| |#1|)) (-15 -3765 (|#1| |#1|)) (-15 -3767 (|#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3768 (|#1| |#1|)) (-15 -3764 (|#1| |#1|)) (-15 -3766 (|#1| |#1|)) (-15 -3771 (|#1| |#1|)) (-15 -3773 (|#1| |#1|)) (-15 -3775 (|#1| |#1|)) (-15 -3774 (|#1| |#1|)) (-15 -3770 (|#1| |#1|)) (-15 -3772 (|#1| |#1|)) (-15 -4218 (|#1| |#1|)) (-15 -4219 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4233 (|#1| |#2|)) (-15 -4233 (|#1| |#1|)) (-15 -4233 (|#1| (-388 (-516)))) (-15 -4233 (|#1| (-516))) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-860))) (-15 -3462 ((-110) |#1|)) (-15 -4233 ((-805) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-3347 (((-594 (-1011)) $) 74)) (-4110 (((-1098) $) 103)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 51 (|has| |#1| (-523)))) (-2118 (($ $) 52 (|has| |#1| (-523)))) (-2116 (((-110) $) 54 (|has| |#1| (-523)))) (-4049 (($ $ (-719)) 98) (($ $ (-719) (-719)) 97)) (-4052 (((-1076 (-2 (|:| |k| (-719)) (|:| |c| |#1|))) $) 105)) (-3766 (($ $) 135 (|has| |#1| (-37 (-388 (-516)))))) (-3921 (($ $) 118 (|has| |#1| (-37 (-388 (-516)))))) (-1319 (((-3 $ "failed") $ $) 19)) (-3301 (($ $) 117 (|has| |#1| (-37 (-388 (-516)))))) (-3764 (($ $) 134 (|has| |#1| (-37 (-388 (-516)))))) (-3920 (($ $) 119 (|has| |#1| (-37 (-388 (-516)))))) (-4097 (($ (-1076 (-2 (|:| |k| (-719)) (|:| |c| |#1|)))) 155) (($ (-1076 |#1|)) 153)) (-3768 (($ $) 133 (|has| |#1| (-37 (-388 (-516)))))) (-3919 (($ $) 120 (|has| |#1| (-37 (-388 (-516)))))) (-3815 (($) 17 T CONST)) (-4235 (($ $) 60)) (-3741 (((-3 $ "failed") $) 34)) (-4095 (($ $) 152)) (-4093 (((-887 |#1|) $ (-719)) 150) (((-887 |#1|) $ (-719) (-719)) 149)) (-3156 (((-110) $) 73)) (-3909 (($) 145 (|has| |#1| (-37 (-388 (-516)))))) (-4050 (((-719) $) 100) (((-719) $ (-719)) 99)) (-2436 (((-110) $) 31)) (-3275 (($ $ (-516)) 116 (|has| |#1| (-37 (-388 (-516)))))) (-4055 (($ $ (-860)) 101)) (-4094 (($ (-1 |#1| (-516)) $) 151)) (-4213 (((-110) $) 62)) (-3157 (($ |#1| (-719)) 61) (($ $ (-1011) (-719)) 76) (($ $ (-594 (-1011)) (-594 (-719))) 75)) (-4234 (($ (-1 |#1| |#1|) $) 63)) (-4218 (($ $) 142 (|has| |#1| (-37 (-388 (-516)))))) (-3158 (($ $) 65)) (-3449 ((|#1| $) 66)) (-3513 (((-1081) $) 9)) (-4091 (($ $) 147 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-1098)) 146 (-3810 (-12 (|has| |#1| (-29 (-516))) (|has| |#1| (-901)) (|has| |#1| (-1120)) (|has| |#1| (-37 (-388 (-516))))) (-12 (|has| |#1| (-15 -3347 ((-594 (-1098)) |#1|))) (|has| |#1| (-15 -4091 (|#1| |#1| (-1098)))) (|has| |#1| (-37 (-388 (-516)))))))) (-3514 (((-1045) $) 10)) (-4047 (($ $ (-719)) 95)) (-3740 (((-3 $ "failed") $ $) 50 (|has| |#1| (-523)))) (-4219 (($ $) 143 (|has| |#1| (-37 (-388 (-516)))))) (-4046 (((-1076 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-719)))))) (-4078 ((|#1| $ (-719)) 104) (($ $ $) 81 (|has| (-719) (-1038)))) (-4089 (($ $ (-594 (-1098)) (-594 (-719))) 89 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-1098) (-719)) 88 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-594 (-1098))) 87 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-1098)) 86 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-719)) 84 (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (-4223 (((-719) $) 64)) (-3769 (($ $) 132 (|has| |#1| (-37 (-388 (-516)))))) (-3918 (($ $) 121 (|has| |#1| (-37 (-388 (-516)))))) (-3767 (($ $) 131 (|has| |#1| (-37 (-388 (-516)))))) (-3917 (($ $) 122 (|has| |#1| (-37 (-388 (-516)))))) (-3765 (($ $) 130 (|has| |#1| (-37 (-388 (-516)))))) (-3916 (($ $) 123 (|has| |#1| (-37 (-388 (-516)))))) (-3155 (($ $) 72)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ (-388 (-516))) 57 (|has| |#1| (-37 (-388 (-516))))) (($ $) 49 (|has| |#1| (-523))) (($ |#1|) 47 (|has| |#1| (-162)))) (-4096 (((-1076 |#1|) $) 154)) (-3959 ((|#1| $ (-719)) 59)) (-2965 (((-3 $ "failed") $) 48 (|has| |#1| (-138)))) (-3385 (((-719)) 29)) (-4051 ((|#1| $) 102)) (-3772 (($ $) 141 (|has| |#1| (-37 (-388 (-516)))))) (-3760 (($ $) 129 (|has| |#1| (-37 (-388 (-516)))))) (-2117 (((-110) $ $) 53 (|has| |#1| (-523)))) (-3770 (($ $) 140 (|has| |#1| (-37 (-388 (-516)))))) (-3758 (($ $) 128 (|has| |#1| (-37 (-388 (-516)))))) (-3774 (($ $) 139 (|has| |#1| (-37 (-388 (-516)))))) (-3762 (($ $) 127 (|has| |#1| (-37 (-388 (-516)))))) (-4048 ((|#1| $ (-719)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-719)))) (|has| |#1| (-15 -4233 (|#1| (-1098))))))) (-3775 (($ $) 138 (|has| |#1| (-37 (-388 (-516)))))) (-3763 (($ $) 126 (|has| |#1| (-37 (-388 (-516)))))) (-3773 (($ $) 137 (|has| |#1| (-37 (-388 (-516)))))) (-3761 (($ $) 125 (|has| |#1| (-37 (-388 (-516)))))) (-3771 (($ $) 136 (|has| |#1| (-37 (-388 (-516)))))) (-3759 (($ $) 124 (|has| |#1| (-37 (-388 (-516)))))) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-2932 (($ $ (-594 (-1098)) (-594 (-719))) 93 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-1098) (-719)) 92 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-594 (-1098))) 91 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-1098)) 90 (-12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-719)) 85 (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (-3317 (((-110) $ $) 6)) (-4224 (($ $ |#1|) 58 (|has| |#1| (-344)))) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32) (($ $ |#1|) 148 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) 115 (|has| |#1| (-37 (-388 (-516)))))) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-388 (-516)) $) 56 (|has| |#1| (-37 (-388 (-516))))) (($ $ (-388 (-516))) 55 (|has| |#1| (-37 (-388 (-516)))))))
+(((-1172 |#1|) (-133) (-984)) (T -1172))
+((-4097 (*1 *1 *2) (-12 (-5 *2 (-1076 (-2 (|:| |k| (-719)) (|:| |c| *3)))) (-4 *3 (-984)) (-4 *1 (-1172 *3)))) (-4096 (*1 *2 *1) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-984)) (-5 *2 (-1076 *3)))) (-4097 (*1 *1 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-4 *1 (-1172 *3)))) (-4095 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-984)))) (-4094 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-516))) (-4 *1 (-1172 *3)) (-4 *3 (-984)))) (-4093 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-1172 *4)) (-4 *4 (-984)) (-5 *2 (-887 *4)))) (-4093 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-4 *1 (-1172 *4)) (-4 *4 (-984)) (-5 *2 (-887 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-4091 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-516)))))) (-4091 (*1 *1 *1 *2) (-3810 (-12 (-5 *2 (-1098)) (-4 *1 (-1172 *3)) (-4 *3 (-984)) (-12 (-4 *3 (-29 (-516))) (-4 *3 (-901)) (-4 *3 (-1120)) (-4 *3 (-37 (-388 (-516)))))) (-12 (-5 *2 (-1098)) (-4 *1 (-1172 *3)) (-4 *3 (-984)) (-12 (|has| *3 (-15 -3347 ((-594 *2) *3))) (|has| *3 (-15 -4091 (*3 *3 *2))) (-4 *3 (-37 (-388 (-516)))))))))
+(-13 (-1158 |t#1| (-719)) (-10 -8 (-15 -4097 ($ (-1076 (-2 (|:| |k| (-719)) (|:| |c| |t#1|))))) (-15 -4096 ((-1076 |t#1|) $)) (-15 -4097 ($ (-1076 |t#1|))) (-15 -4095 ($ $)) (-15 -4094 ($ (-1 |t#1| (-516)) $)) (-15 -4093 ((-887 |t#1|) $ (-719))) (-15 -4093 ((-887 |t#1|) $ (-719) (-719))) (IF (|has| |t#1| (-344)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-388 (-516)))) (PROGN (-15 -4091 ($ $)) (IF (|has| |t#1| (-15 -4091 (|t#1| |t#1| (-1098)))) (IF (|has| |t#1| (-15 -3347 ((-594 (-1098)) |t#1|))) (-15 -4091 ($ $ (-1098))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1120)) (IF (|has| |t#1| (-901)) (IF (|has| |t#1| (-29 (-516))) (-15 -4091 ($ $ (-1098))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-941)) (-6 (-1120))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #1=(-719)) . T) ((-25) . T) ((-37 #2=(-388 (-516))) |has| |#1| (-37 (-388 (-516)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-523)) ((-34) |has| |#1| (-37 (-388 (-516)))) ((-93) |has| |#1| (-37 (-388 (-516)))) ((-99) . T) ((-109 #2# #2#) |has| |#1| (-37 (-388 (-516)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -3810 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-805)) . T) ((-162) -3810 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| (-719) |#1|))) ((-266) |has| |#1| (-37 (-388 (-516)))) ((-268 $ $) |has| (-719) (-1038)) ((-272) |has| |#1| (-523)) ((-471) |has| |#1| (-37 (-388 (-516)))) ((-523) |has| |#1| (-523)) ((-599 #2#) |has| |#1| (-37 (-388 (-516)))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #2#) |has| |#1| (-37 (-388 (-516)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-523)) ((-675) . T) ((-841 (-1098)) -12 (|has| |#1| (-841 (-1098))) (|has| |#1| (-15 * (|#1| (-719) |#1|)))) ((-913 |#1| #1# (-1011)) . T) ((-941) |has| |#1| (-37 (-388 (-516)))) ((-989 #2#) |has| |#1| (-37 (-388 (-516)))) ((-989 |#1|) . T) ((-989 $) -3810 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1120) |has| |#1| (-37 (-388 (-516)))) ((-1123) |has| |#1| (-37 (-388 (-516)))) ((-1158 |#1| #1#) . T))
+((-4100 (((-1 (-1076 |#1|) (-594 (-1076 |#1|))) (-1 |#2| (-594 |#2|))) 24)) (-4099 (((-1 (-1076 |#1|) (-1076 |#1|) (-1076 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4098 (((-1 (-1076 |#1|) (-1076 |#1|)) (-1 |#2| |#2|)) 13)) (-4103 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4102 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4104 ((|#2| (-1 |#2| (-594 |#2|)) (-594 |#1|)) 54)) (-4105 (((-594 |#2|) (-594 |#1|) (-594 (-1 |#2| (-594 |#2|)))) 61)) (-4101 ((|#2| |#2| |#2|) 43)))
+(((-1173 |#1| |#2|) (-10 -7 (-15 -4098 ((-1 (-1076 |#1|) (-1076 |#1|)) (-1 |#2| |#2|))) (-15 -4099 ((-1 (-1076 |#1|) (-1076 |#1|) (-1076 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4100 ((-1 (-1076 |#1|) (-594 (-1076 |#1|))) (-1 |#2| (-594 |#2|)))) (-15 -4101 (|#2| |#2| |#2|)) (-15 -4102 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4103 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4104 (|#2| (-1 |#2| (-594 |#2|)) (-594 |#1|))) (-15 -4105 ((-594 |#2|) (-594 |#1|) (-594 (-1 |#2| (-594 |#2|)))))) (-37 (-388 (-516))) (-1172 |#1|)) (T -1173))
+((-4105 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *5)) (-5 *4 (-594 (-1 *6 (-594 *6)))) (-4 *5 (-37 (-388 (-516)))) (-4 *6 (-1172 *5)) (-5 *2 (-594 *6)) (-5 *1 (-1173 *5 *6)))) (-4104 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-594 *2))) (-5 *4 (-594 *5)) (-4 *5 (-37 (-388 (-516)))) (-4 *2 (-1172 *5)) (-5 *1 (-1173 *5 *2)))) (-4103 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1173 *4 *2)) (-4 *4 (-37 (-388 (-516)))))) (-4102 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1173 *4 *2)) (-4 *4 (-37 (-388 (-516)))))) (-4101 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-1172 *3)))) (-4100 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-594 *5))) (-4 *5 (-1172 *4)) (-4 *4 (-37 (-388 (-516)))) (-5 *2 (-1 (-1076 *4) (-594 (-1076 *4)))) (-5 *1 (-1173 *4 *5)))) (-4099 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1172 *4)) (-4 *4 (-37 (-388 (-516)))) (-5 *2 (-1 (-1076 *4) (-1076 *4) (-1076 *4))) (-5 *1 (-1173 *4 *5)))) (-4098 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1172 *4)) (-4 *4 (-37 (-388 (-516)))) (-5 *2 (-1 (-1076 *4) (-1076 *4))) (-5 *1 (-1173 *4 *5)))))
+(-10 -7 (-15 -4098 ((-1 (-1076 |#1|) (-1076 |#1|)) (-1 |#2| |#2|))) (-15 -4099 ((-1 (-1076 |#1|) (-1076 |#1|) (-1076 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4100 ((-1 (-1076 |#1|) (-594 (-1076 |#1|))) (-1 |#2| (-594 |#2|)))) (-15 -4101 (|#2| |#2| |#2|)) (-15 -4102 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4103 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4104 (|#2| (-1 |#2| (-594 |#2|)) (-594 |#1|))) (-15 -4105 ((-594 |#2|) (-594 |#1|) (-594 (-1 |#2| (-594 |#2|))))))
+((-4107 ((|#2| |#4| (-719)) 30)) (-4106 ((|#4| |#2|) 25)) (-4109 ((|#4| (-388 |#2|)) 52 (|has| |#1| (-523)))) (-4108 (((-1 |#4| (-594 |#4|)) |#3|) 46)))
+(((-1174 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4106 (|#4| |#2|)) (-15 -4107 (|#2| |#4| (-719))) (-15 -4108 ((-1 |#4| (-594 |#4|)) |#3|)) (IF (|has| |#1| (-523)) (-15 -4109 (|#4| (-388 |#2|))) |%noBranch|)) (-984) (-1155 |#1|) (-609 |#2|) (-1172 |#1|)) (T -1174))
+((-4109 (*1 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-523)) (-4 *4 (-984)) (-4 *2 (-1172 *4)) (-5 *1 (-1174 *4 *5 *6 *2)) (-4 *6 (-609 *5)))) (-4108 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *5 (-1155 *4)) (-5 *2 (-1 *6 (-594 *6))) (-5 *1 (-1174 *4 *5 *3 *6)) (-4 *3 (-609 *5)) (-4 *6 (-1172 *4)))) (-4107 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-984)) (-4 *2 (-1155 *5)) (-5 *1 (-1174 *5 *2 *6 *3)) (-4 *6 (-609 *2)) (-4 *3 (-1172 *5)))) (-4106 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *3 (-1155 *4)) (-4 *2 (-1172 *4)) (-5 *1 (-1174 *4 *3 *5 *2)) (-4 *5 (-609 *3)))))
+(-10 -7 (-15 -4106 (|#4| |#2|)) (-15 -4107 (|#2| |#4| (-719))) (-15 -4108 ((-1 |#4| (-594 |#4|)) |#3|)) (IF (|has| |#1| (-523)) (-15 -4109 (|#4| (-388 |#2|))) |%noBranch|))
+NIL
+(((-1175) (-133)) (T -1175))
+NIL
+(-13 (-10 -7 (-6 -2303)))
+((-2828 (((-110) $ $) NIL)) (-4110 (((-1098)) 12)) (-3513 (((-1081) $) 17)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 11) (((-1098) $) 8)) (-3317 (((-110) $ $) 14)))
+(((-1176 |#1|) (-13 (-1027) (-571 (-1098)) (-10 -8 (-15 -4233 ((-1098) $)) (-15 -4110 ((-1098))))) (-1098)) (T -1176))
+((-4233 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1176 *3)) (-14 *3 *2))) (-4110 (*1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-1176 *3)) (-14 *3 *2))))
+(-13 (-1027) (-571 (-1098)) (-10 -8 (-15 -4233 ((-1098) $)) (-15 -4110 ((-1098)))))
+((-4117 (($ (-719)) 18)) (-4114 (((-637 |#2|) $ $) 40)) (-4111 ((|#2| $) 48)) (-4112 ((|#2| $) 47)) (-4115 ((|#2| $ $) 35)) (-4113 (($ $ $) 44)) (-4116 (($ $) 22) (($ $ $) 28)) (-4118 (($ $ $) 15)) (* (($ (-516) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30)))
+(((-1177 |#1| |#2|) (-10 -8 (-15 -4111 (|#2| |#1|)) (-15 -4112 (|#2| |#1|)) (-15 -4113 (|#1| |#1| |#1|)) (-15 -4114 ((-637 |#2|) |#1| |#1|)) (-15 -4115 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-516) |#1|)) (-15 -4116 (|#1| |#1| |#1|)) (-15 -4116 (|#1| |#1|)) (-15 -4117 (|#1| (-719))) (-15 -4118 (|#1| |#1| |#1|))) (-1178 |#2|) (-1134)) (T -1177))
+NIL
+(-10 -8 (-15 -4111 (|#2| |#1|)) (-15 -4112 (|#2| |#1|)) (-15 -4113 (|#1| |#1| |#1|)) (-15 -4114 ((-637 |#2|) |#1| |#1|)) (-15 -4115 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-516) |#1|)) (-15 -4116 (|#1| |#1| |#1|)) (-15 -4116 (|#1| |#1|)) (-15 -4117 (|#1| (-719))) (-15 -4118 (|#1| |#1| |#1|)))
+((-2828 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-4117 (($ (-719)) 112 (|has| |#1| (-23)))) (-2243 (((-1185) $ (-516) (-516)) 40 (|has| $ (-6 -4270)))) (-1798 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-795)))) (-1796 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4270))) (($ $) 88 (-12 (|has| |#1| (-795)) (|has| $ (-6 -4270))))) (-3173 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-795)))) (-1217 (((-110) $ (-719)) 8)) (-4066 ((|#1| $ (-516) |#1|) 52 (|has| $ (-6 -4270))) ((|#1| $ (-1146 (-516)) |#1|) 58 (|has| $ (-6 -4270)))) (-3992 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4269)))) (-3815 (($) 7 T CONST)) (-2312 (($ $) 90 (|has| $ (-6 -4270)))) (-2313 (($ $) 100)) (-1349 (($ $) 78 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3685 (($ |#1| $) 77 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4269)))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4269)))) (-1587 ((|#1| $ (-516) |#1|) 53 (|has| $ (-6 -4270)))) (-3372 ((|#1| $ (-516)) 51)) (-3698 (((-516) (-1 (-110) |#1|) $) 97) (((-516) |#1| $) 96 (|has| |#1| (-1027))) (((-516) |#1| $ (-516)) 95 (|has| |#1| (-1027)))) (-2018 (((-594 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4114 (((-637 |#1|) $ $) 105 (|has| |#1| (-984)))) (-3896 (($ (-719) |#1|) 69)) (-4001 (((-110) $ (-719)) 9)) (-2245 (((-516) $) 43 (|has| (-516) (-795)))) (-3596 (($ $ $) 87 (|has| |#1| (-795)))) (-3792 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-795)))) (-2445 (((-594 |#1|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2246 (((-516) $) 44 (|has| (-516) (-795)))) (-3597 (($ $ $) 86 (|has| |#1| (-795)))) (-2022 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4111 ((|#1| $) 102 (-12 (|has| |#1| (-984)) (|has| |#1| (-941))))) (-3998 (((-110) $ (-719)) 10)) (-4112 ((|#1| $) 103 (-12 (|has| |#1| (-984)) (|has| |#1| (-941))))) (-3513 (((-1081) $) 22 (|has| |#1| (-1027)))) (-2317 (($ |#1| $ (-516)) 60) (($ $ $ (-516)) 59)) (-2248 (((-594 (-516)) $) 46)) (-2249 (((-110) (-516) $) 47)) (-3514 (((-1045) $) 21 (|has| |#1| (-1027)))) (-4079 ((|#1| $) 42 (|has| (-516) (-795)))) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-2244 (($ $ |#1|) 41 (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) 14)) (-2247 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2250 (((-594 |#1|) $) 48)) (-3682 (((-110) $) 11)) (-3847 (($) 12)) (-4078 ((|#1| $ (-516) |#1|) 50) ((|#1| $ (-516)) 49) (($ $ (-1146 (-516))) 63)) (-4115 ((|#1| $ $) 106 (|has| |#1| (-984)))) (-2318 (($ $ (-516)) 62) (($ $ (-1146 (-516))) 61)) (-4113 (($ $ $) 104 (|has| |#1| (-984)))) (-2019 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1797 (($ $ $ (-516)) 91 (|has| $ (-6 -4270)))) (-3678 (($ $) 13)) (-4246 (((-505) $) 79 (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) 70)) (-4080 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-594 $)) 65)) (-4233 (((-805) $) 18 (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2826 (((-110) $ $) 84 (|has| |#1| (-795)))) (-2827 (((-110) $ $) 83 (|has| |#1| (-795)))) (-3317 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2947 (((-110) $ $) 85 (|has| |#1| (-795)))) (-2948 (((-110) $ $) 82 (|has| |#1| (-795)))) (-4116 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4118 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-516) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-675))) (($ $ |#1|) 107 (|has| |#1| (-675)))) (-4232 (((-719) $) 6 (|has| $ (-6 -4269)))))
+(((-1178 |#1|) (-133) (-1134)) (T -1178))
+((-4118 (*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1134)) (-4 *2 (-25)))) (-4117 (*1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1178 *3)) (-4 *3 (-23)) (-4 *3 (-1134)))) (-4116 (*1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1134)) (-4 *2 (-21)))) (-4116 (*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1134)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-516)) (-4 *1 (-1178 *3)) (-4 *3 (-1134)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1134)) (-4 *2 (-675)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1134)) (-4 *2 (-675)))) (-4115 (*1 *2 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1134)) (-4 *2 (-984)))) (-4114 (*1 *2 *1 *1) (-12 (-4 *1 (-1178 *3)) (-4 *3 (-1134)) (-4 *3 (-984)) (-5 *2 (-637 *3)))) (-4113 (*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1134)) (-4 *2 (-984)))) (-4112 (*1 *2 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1134)) (-4 *2 (-941)) (-4 *2 (-984)))) (-4111 (*1 *2 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1134)) (-4 *2 (-941)) (-4 *2 (-984)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4118 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4117 ($ (-719))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4116 ($ $)) (-15 -4116 ($ $ $)) (-15 * ($ (-516) $))) |%noBranch|) (IF (|has| |t#1| (-675)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-984)) (PROGN (-15 -4115 (|t#1| $ $)) (-15 -4114 ((-637 |t#1|) $ $)) (-15 -4113 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-941)) (IF (|has| |t#1| (-984)) (PROGN (-15 -4112 (|t#1| $)) (-15 -4111 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-33) . T) ((-99) -3810 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-571 (-805)) -3810 (|has| |#1| (-1027)) (|has| |#1| (-795)) (|has| |#1| (-571 (-805)))) ((-144 |#1|) . T) ((-572 (-505)) |has| |#1| (-572 (-505))) ((-268 #1=(-516) |#1|) . T) ((-270 #1# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-353 |#1|) . T) ((-468 |#1|) . T) ((-563 #1# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-19 |#1|) . T) ((-795) |has| |#1| (-795)) ((-1027) -3810 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-1134) . T))
+((-2828 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4117 (($ (-719)) NIL (|has| |#1| (-23)))) (-4119 (($ (-594 |#1|)) 9)) (-2243 (((-1185) $ (-516) (-516)) NIL (|has| $ (-6 -4270)))) (-1798 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-1796 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795))))) (-3173 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-1217 (((-110) $ (-719)) NIL)) (-4066 ((|#1| $ (-516) |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-1146 (-516)) |#1|) NIL (|has| $ (-6 -4270)))) (-3992 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3815 (($) NIL T CONST)) (-2312 (($ $) NIL (|has| $ (-6 -4270)))) (-2313 (($ $) NIL)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3685 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4121 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-1587 ((|#1| $ (-516) |#1|) NIL (|has| $ (-6 -4270)))) (-3372 ((|#1| $ (-516)) NIL)) (-3698 (((-516) (-1 (-110) |#1|) $) NIL) (((-516) |#1| $) NIL (|has| |#1| (-1027))) (((-516) |#1| $ (-516)) NIL (|has| |#1| (-1027)))) (-2018 (((-594 |#1|) $) 15 (|has| $ (-6 -4269)))) (-4114 (((-637 |#1|) $ $) NIL (|has| |#1| (-984)))) (-3896 (($ (-719) |#1|) NIL)) (-4001 (((-110) $ (-719)) NIL)) (-2245 (((-516) $) NIL (|has| (-516) (-795)))) (-3596 (($ $ $) NIL (|has| |#1| (-795)))) (-3792 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-2445 (((-594 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3516 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2246 (((-516) $) NIL (|has| (-516) (-795)))) (-3597 (($ $ $) NIL (|has| |#1| (-795)))) (-2022 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4111 ((|#1| $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-984))))) (-3998 (((-110) $ (-719)) NIL)) (-4112 ((|#1| $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-984))))) (-3513 (((-1081) $) NIL (|has| |#1| (-1027)))) (-2317 (($ |#1| $ (-516)) NIL) (($ $ $ (-516)) NIL)) (-2248 (((-594 (-516)) $) NIL)) (-2249 (((-110) (-516) $) NIL)) (-3514 (((-1045) $) NIL (|has| |#1| (-1027)))) (-4079 ((|#1| $) NIL (|has| (-516) (-795)))) (-1350 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-2244 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-2020 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 (-275 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-275 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-594 |#1|) (-594 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1218 (((-110) $ $) NIL)) (-2247 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2250 (((-594 |#1|) $) NIL)) (-3682 (((-110) $) NIL)) (-3847 (($) NIL)) (-4078 ((|#1| $ (-516) |#1|) NIL) ((|#1| $ (-516)) NIL) (($ $ (-1146 (-516))) NIL)) (-4115 ((|#1| $ $) NIL (|has| |#1| (-984)))) (-2318 (($ $ (-516)) NIL) (($ $ (-1146 (-516))) NIL)) (-4113 (($ $ $) NIL (|has| |#1| (-984)))) (-2019 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1797 (($ $ $ (-516)) NIL (|has| $ (-6 -4270)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) 19 (|has| |#1| (-572 (-505))))) (-3804 (($ (-594 |#1|)) 8)) (-4080 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-594 $)) NIL)) (-4233 (((-805) $) NIL (|has| |#1| (-571 (-805))))) (-2021 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2826 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2827 (((-110) $ $) NIL (|has| |#1| (-795)))) (-3317 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2947 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2948 (((-110) $ $) NIL (|has| |#1| (-795)))) (-4116 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4118 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-516) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-675))) (($ $ |#1|) NIL (|has| |#1| (-675)))) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-1179 |#1|) (-13 (-1178 |#1|) (-10 -8 (-15 -4119 ($ (-594 |#1|))))) (-1134)) (T -1179))
+((-4119 (*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1134)) (-5 *1 (-1179 *3)))))
+(-13 (-1178 |#1|) (-10 -8 (-15 -4119 ($ (-594 |#1|)))))
+((-4120 (((-1179 |#2|) (-1 |#2| |#1| |#2|) (-1179 |#1|) |#2|) 13)) (-4121 ((|#2| (-1 |#2| |#1| |#2|) (-1179 |#1|) |#2|) 15)) (-4234 (((-3 (-1179 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1179 |#1|)) 28) (((-1179 |#2|) (-1 |#2| |#1|) (-1179 |#1|)) 18)))
+(((-1180 |#1| |#2|) (-10 -7 (-15 -4120 ((-1179 |#2|) (-1 |#2| |#1| |#2|) (-1179 |#1|) |#2|)) (-15 -4121 (|#2| (-1 |#2| |#1| |#2|) (-1179 |#1|) |#2|)) (-15 -4234 ((-1179 |#2|) (-1 |#2| |#1|) (-1179 |#1|))) (-15 -4234 ((-3 (-1179 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1179 |#1|)))) (-1134) (-1134)) (T -1180))
+((-4234 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1179 *5)) (-4 *5 (-1134)) (-4 *6 (-1134)) (-5 *2 (-1179 *6)) (-5 *1 (-1180 *5 *6)))) (-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-1134)) (-4 *6 (-1134)) (-5 *2 (-1179 *6)) (-5 *1 (-1180 *5 *6)))) (-4121 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1179 *5)) (-4 *5 (-1134)) (-4 *2 (-1134)) (-5 *1 (-1180 *5 *2)))) (-4120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1179 *6)) (-4 *6 (-1134)) (-4 *5 (-1134)) (-5 *2 (-1179 *5)) (-5 *1 (-1180 *6 *5)))))
+(-10 -7 (-15 -4120 ((-1179 |#2|) (-1 |#2| |#1| |#2|) (-1179 |#1|) |#2|)) (-15 -4121 (|#2| (-1 |#2| |#1| |#2|) (-1179 |#1|) |#2|)) (-15 -4234 ((-1179 |#2|) (-1 |#2| |#1|) (-1179 |#1|))) (-15 -4234 ((-3 (-1179 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1179 |#1|))))
+((-4122 (((-448) (-594 (-594 (-884 (-208)))) (-594 (-243))) 21) (((-448) (-594 (-594 (-884 (-208))))) 20) (((-448) (-594 (-594 (-884 (-208)))) (-815) (-815) (-860) (-594 (-243))) 19)) (-4123 (((-1182) (-594 (-594 (-884 (-208)))) (-594 (-243))) 27) (((-1182) (-594 (-594 (-884 (-208)))) (-815) (-815) (-860) (-594 (-243))) 26)) (-4233 (((-1182) (-448)) 38)))
+(((-1181) (-10 -7 (-15 -4122 ((-448) (-594 (-594 (-884 (-208)))) (-815) (-815) (-860) (-594 (-243)))) (-15 -4122 ((-448) (-594 (-594 (-884 (-208)))))) (-15 -4122 ((-448) (-594 (-594 (-884 (-208)))) (-594 (-243)))) (-15 -4123 ((-1182) (-594 (-594 (-884 (-208)))) (-815) (-815) (-860) (-594 (-243)))) (-15 -4123 ((-1182) (-594 (-594 (-884 (-208)))) (-594 (-243)))) (-15 -4233 ((-1182) (-448))))) (T -1181))
+((-4233 (*1 *2 *3) (-12 (-5 *3 (-448)) (-5 *2 (-1182)) (-5 *1 (-1181)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-594 (-884 (-208))))) (-5 *4 (-594 (-243))) (-5 *2 (-1182)) (-5 *1 (-1181)))) (-4123 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-594 (-594 (-884 (-208))))) (-5 *4 (-815)) (-5 *5 (-860)) (-5 *6 (-594 (-243))) (-5 *2 (-1182)) (-5 *1 (-1181)))) (-4122 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-594 (-884 (-208))))) (-5 *4 (-594 (-243))) (-5 *2 (-448)) (-5 *1 (-1181)))) (-4122 (*1 *2 *3) (-12 (-5 *3 (-594 (-594 (-884 (-208))))) (-5 *2 (-448)) (-5 *1 (-1181)))) (-4122 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-594 (-594 (-884 (-208))))) (-5 *4 (-815)) (-5 *5 (-860)) (-5 *6 (-594 (-243))) (-5 *2 (-448)) (-5 *1 (-1181)))))
+(-10 -7 (-15 -4122 ((-448) (-594 (-594 (-884 (-208)))) (-815) (-815) (-860) (-594 (-243)))) (-15 -4122 ((-448) (-594 (-594 (-884 (-208)))))) (-15 -4122 ((-448) (-594 (-594 (-884 (-208)))) (-594 (-243)))) (-15 -4123 ((-1182) (-594 (-594 (-884 (-208)))) (-815) (-815) (-860) (-594 (-243)))) (-15 -4123 ((-1182) (-594 (-594 (-884 (-208)))) (-594 (-243)))) (-15 -4233 ((-1182) (-448))))
+((-2828 (((-110) $ $) NIL)) (-4141 (((-1081) $ (-1081)) 90) (((-1081) $ (-1081) (-1081)) 88) (((-1081) $ (-1081) (-594 (-1081))) 87)) (-4137 (($) 59)) (-4124 (((-1185) $ (-448) (-860)) 45)) (-4130 (((-1185) $ (-860) (-1081)) 73) (((-1185) $ (-860) (-815)) 74)) (-4152 (((-1185) $ (-860) (-359) (-359)) 48)) (-4162 (((-1185) $ (-1081)) 69)) (-4125 (((-1185) $ (-860) (-1081)) 78)) (-4126 (((-1185) $ (-860) (-359) (-359)) 49)) (-4163 (((-1185) $ (-860) (-860)) 46)) (-4143 (((-1185) $) 70)) (-4128 (((-1185) $ (-860) (-1081)) 77)) (-4132 (((-1185) $ (-448) (-860)) 31)) (-4129 (((-1185) $ (-860) (-1081)) 76)) (-4165 (((-594 (-243)) $) 23) (($ $ (-594 (-243))) 24)) (-4164 (((-1185) $ (-719) (-719)) 43)) (-4136 (($ $) 60) (($ (-448) (-594 (-243))) 61)) (-3513 (((-1081) $) NIL)) (-4139 (((-516) $) 38)) (-3514 (((-1045) $) NIL)) (-4133 (((-1179 (-3 (-448) "undefined")) $) 37)) (-4134 (((-1179 (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -4129 (-516)) (|:| -4127 (-516)) (|:| |spline| (-516)) (|:| -4158 (-516)) (|:| |axesColor| (-815)) (|:| -4130 (-516)) (|:| |unitsColor| (-815)) (|:| |showing| (-516)))) $) 36)) (-4135 (((-1185) $ (-860) (-208) (-208) (-208) (-208) (-516) (-516) (-516) (-516) (-815) (-516) (-815) (-516)) 68)) (-4138 (((-594 (-884 (-208))) $) NIL)) (-4131 (((-448) $ (-860)) 33)) (-4161 (((-1185) $ (-719) (-719) (-860) (-860)) 40)) (-4159 (((-1185) $ (-1081)) 79)) (-4127 (((-1185) $ (-860) (-1081)) 75)) (-4233 (((-805) $) 85)) (-4140 (((-1185) $) 80)) (-4158 (((-1185) $ (-860) (-1081)) 71) (((-1185) $ (-860) (-815)) 72)) (-3317 (((-110) $ $) NIL)))
+(((-1182) (-13 (-1027) (-10 -8 (-15 -4138 ((-594 (-884 (-208))) $)) (-15 -4137 ($)) (-15 -4136 ($ $)) (-15 -4165 ((-594 (-243)) $)) (-15 -4165 ($ $ (-594 (-243)))) (-15 -4136 ($ (-448) (-594 (-243)))) (-15 -4135 ((-1185) $ (-860) (-208) (-208) (-208) (-208) (-516) (-516) (-516) (-516) (-815) (-516) (-815) (-516))) (-15 -4134 ((-1179 (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -4129 (-516)) (|:| -4127 (-516)) (|:| |spline| (-516)) (|:| -4158 (-516)) (|:| |axesColor| (-815)) (|:| -4130 (-516)) (|:| |unitsColor| (-815)) (|:| |showing| (-516)))) $)) (-15 -4133 ((-1179 (-3 (-448) "undefined")) $)) (-15 -4162 ((-1185) $ (-1081))) (-15 -4132 ((-1185) $ (-448) (-860))) (-15 -4131 ((-448) $ (-860))) (-15 -4158 ((-1185) $ (-860) (-1081))) (-15 -4158 ((-1185) $ (-860) (-815))) (-15 -4130 ((-1185) $ (-860) (-1081))) (-15 -4130 ((-1185) $ (-860) (-815))) (-15 -4129 ((-1185) $ (-860) (-1081))) (-15 -4128 ((-1185) $ (-860) (-1081))) (-15 -4127 ((-1185) $ (-860) (-1081))) (-15 -4159 ((-1185) $ (-1081))) (-15 -4140 ((-1185) $)) (-15 -4161 ((-1185) $ (-719) (-719) (-860) (-860))) (-15 -4126 ((-1185) $ (-860) (-359) (-359))) (-15 -4152 ((-1185) $ (-860) (-359) (-359))) (-15 -4125 ((-1185) $ (-860) (-1081))) (-15 -4164 ((-1185) $ (-719) (-719))) (-15 -4124 ((-1185) $ (-448) (-860))) (-15 -4163 ((-1185) $ (-860) (-860))) (-15 -4141 ((-1081) $ (-1081))) (-15 -4141 ((-1081) $ (-1081) (-1081))) (-15 -4141 ((-1081) $ (-1081) (-594 (-1081)))) (-15 -4143 ((-1185) $)) (-15 -4139 ((-516) $)) (-15 -4233 ((-805) $))))) (T -1182))
+((-4233 (*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-1182)))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-594 (-884 (-208)))) (-5 *1 (-1182)))) (-4137 (*1 *1) (-5 *1 (-1182))) (-4136 (*1 *1 *1) (-5 *1 (-1182))) (-4165 (*1 *2 *1) (-12 (-5 *2 (-594 (-243))) (-5 *1 (-1182)))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-243))) (-5 *1 (-1182)))) (-4136 (*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-594 (-243))) (-5 *1 (-1182)))) (-4135 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-860)) (-5 *4 (-208)) (-5 *5 (-516)) (-5 *6 (-815)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-1179 (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -4129 (-516)) (|:| -4127 (-516)) (|:| |spline| (-516)) (|:| -4158 (-516)) (|:| |axesColor| (-815)) (|:| -4130 (-516)) (|:| |unitsColor| (-815)) (|:| |showing| (-516))))) (-5 *1 (-1182)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-1179 (-3 (-448) "undefined"))) (-5 *1 (-1182)))) (-4162 (*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-4132 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-448)) (-5 *4 (-860)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-4131 (*1 *2 *1 *3) (-12 (-5 *3 (-860)) (-5 *2 (-448)) (-5 *1 (-1182)))) (-4158 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-860)) (-5 *4 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-4158 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-860)) (-5 *4 (-815)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-4130 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-860)) (-5 *4 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-4130 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-860)) (-5 *4 (-815)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-4129 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-860)) (-5 *4 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-4128 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-860)) (-5 *4 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-4127 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-860)) (-5 *4 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-4140 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1182)))) (-4161 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-719)) (-5 *4 (-860)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-4126 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-860)) (-5 *4 (-359)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-4152 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-860)) (-5 *4 (-359)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-4125 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-860)) (-5 *4 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-4164 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-4124 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-448)) (-5 *4 (-860)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-4163 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-4141 (*1 *2 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1182)))) (-4141 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1182)))) (-4141 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-594 (-1081))) (-5 *2 (-1081)) (-5 *1 (-1182)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1182)))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1182)))))
+(-13 (-1027) (-10 -8 (-15 -4138 ((-594 (-884 (-208))) $)) (-15 -4137 ($)) (-15 -4136 ($ $)) (-15 -4165 ((-594 (-243)) $)) (-15 -4165 ($ $ (-594 (-243)))) (-15 -4136 ($ (-448) (-594 (-243)))) (-15 -4135 ((-1185) $ (-860) (-208) (-208) (-208) (-208) (-516) (-516) (-516) (-516) (-815) (-516) (-815) (-516))) (-15 -4134 ((-1179 (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -4129 (-516)) (|:| -4127 (-516)) (|:| |spline| (-516)) (|:| -4158 (-516)) (|:| |axesColor| (-815)) (|:| -4130 (-516)) (|:| |unitsColor| (-815)) (|:| |showing| (-516)))) $)) (-15 -4133 ((-1179 (-3 (-448) "undefined")) $)) (-15 -4162 ((-1185) $ (-1081))) (-15 -4132 ((-1185) $ (-448) (-860))) (-15 -4131 ((-448) $ (-860))) (-15 -4158 ((-1185) $ (-860) (-1081))) (-15 -4158 ((-1185) $ (-860) (-815))) (-15 -4130 ((-1185) $ (-860) (-1081))) (-15 -4130 ((-1185) $ (-860) (-815))) (-15 -4129 ((-1185) $ (-860) (-1081))) (-15 -4128 ((-1185) $ (-860) (-1081))) (-15 -4127 ((-1185) $ (-860) (-1081))) (-15 -4159 ((-1185) $ (-1081))) (-15 -4140 ((-1185) $)) (-15 -4161 ((-1185) $ (-719) (-719) (-860) (-860))) (-15 -4126 ((-1185) $ (-860) (-359) (-359))) (-15 -4152 ((-1185) $ (-860) (-359) (-359))) (-15 -4125 ((-1185) $ (-860) (-1081))) (-15 -4164 ((-1185) $ (-719) (-719))) (-15 -4124 ((-1185) $ (-448) (-860))) (-15 -4163 ((-1185) $ (-860) (-860))) (-15 -4141 ((-1081) $ (-1081))) (-15 -4141 ((-1081) $ (-1081) (-1081))) (-15 -4141 ((-1081) $ (-1081) (-594 (-1081)))) (-15 -4143 ((-1185) $)) (-15 -4139 ((-516) $)) (-15 -4233 ((-805) $))))
+((-2828 (((-110) $ $) NIL)) (-4153 (((-1185) $ (-359)) 140) (((-1185) $ (-359) (-359) (-359)) 141)) (-4141 (((-1081) $ (-1081)) 148) (((-1081) $ (-1081) (-1081)) 146) (((-1081) $ (-1081) (-594 (-1081))) 145)) (-4169 (($) 50)) (-4160 (((-1185) $ (-359) (-359) (-359) (-359) (-359)) 116) (((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -4126 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) $) 114) (((-1185) $ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -4126 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) 115) (((-1185) $ (-516) (-516) (-359) (-359) (-359)) 117) (((-1185) $ (-359) (-359)) 118) (((-1185) $ (-359) (-359) (-359)) 125)) (-4172 (((-359)) 97) (((-359) (-359)) 98)) (-4174 (((-359)) 92) (((-359) (-359)) 94)) (-4173 (((-359)) 95) (((-359) (-359)) 96)) (-4170 (((-359)) 101) (((-359) (-359)) 102)) (-4171 (((-359)) 99) (((-359) (-359)) 100)) (-4152 (((-1185) $ (-359) (-359)) 142)) (-4162 (((-1185) $ (-1081)) 126)) (-4167 (((-1058 (-208)) $) 51) (($ $ (-1058 (-208))) 52)) (-4148 (((-1185) $ (-1081)) 154)) (-4147 (((-1185) $ (-1081)) 155)) (-4154 (((-1185) $ (-359) (-359)) 124) (((-1185) $ (-516) (-516)) 139)) (-4163 (((-1185) $ (-860) (-860)) 132)) (-4143 (((-1185) $) 112)) (-4151 (((-1185) $ (-1081)) 153)) (-4156 (((-1185) $ (-1081)) 109)) (-4165 (((-594 (-243)) $) 53) (($ $ (-594 (-243))) 54)) (-4164 (((-1185) $ (-719) (-719)) 131)) (-4166 (((-1185) $ (-719) (-884 (-208))) 160)) (-4168 (($ $) 56) (($ (-1058 (-208)) (-1081)) 57) (($ (-1058 (-208)) (-594 (-243))) 58)) (-4145 (((-1185) $ (-359) (-359) (-359)) 106)) (-3513 (((-1081) $) NIL)) (-4139 (((-516) $) 103)) (-4144 (((-1185) $ (-359)) 143)) (-4149 (((-1185) $ (-359)) 158)) (-3514 (((-1045) $) NIL)) (-4150 (((-1185) $ (-359)) 157)) (-4155 (((-1185) $ (-1081)) 111)) (-4161 (((-1185) $ (-719) (-719) (-860) (-860)) 130)) (-4157 (((-1185) $ (-1081)) 108)) (-4159 (((-1185) $ (-1081)) 110)) (-4142 (((-1185) $ (-148) (-148)) 129)) (-4233 (((-805) $) 137)) (-4140 (((-1185) $) 113)) (-4146 (((-1185) $ (-1081)) 156)) (-4158 (((-1185) $ (-1081)) 107)) (-3317 (((-110) $ $) NIL)))
+(((-1183) (-13 (-1027) (-10 -8 (-15 -4174 ((-359))) (-15 -4174 ((-359) (-359))) (-15 -4173 ((-359))) (-15 -4173 ((-359) (-359))) (-15 -4172 ((-359))) (-15 -4172 ((-359) (-359))) (-15 -4171 ((-359))) (-15 -4171 ((-359) (-359))) (-15 -4170 ((-359))) (-15 -4170 ((-359) (-359))) (-15 -4169 ($)) (-15 -4168 ($ $)) (-15 -4168 ($ (-1058 (-208)) (-1081))) (-15 -4168 ($ (-1058 (-208)) (-594 (-243)))) (-15 -4167 ((-1058 (-208)) $)) (-15 -4167 ($ $ (-1058 (-208)))) (-15 -4166 ((-1185) $ (-719) (-884 (-208)))) (-15 -4165 ((-594 (-243)) $)) (-15 -4165 ($ $ (-594 (-243)))) (-15 -4164 ((-1185) $ (-719) (-719))) (-15 -4163 ((-1185) $ (-860) (-860))) (-15 -4162 ((-1185) $ (-1081))) (-15 -4161 ((-1185) $ (-719) (-719) (-860) (-860))) (-15 -4160 ((-1185) $ (-359) (-359) (-359) (-359) (-359))) (-15 -4160 ((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -4126 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) $)) (-15 -4160 ((-1185) $ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -4126 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -4160 ((-1185) $ (-516) (-516) (-359) (-359) (-359))) (-15 -4160 ((-1185) $ (-359) (-359))) (-15 -4160 ((-1185) $ (-359) (-359) (-359))) (-15 -4159 ((-1185) $ (-1081))) (-15 -4158 ((-1185) $ (-1081))) (-15 -4157 ((-1185) $ (-1081))) (-15 -4156 ((-1185) $ (-1081))) (-15 -4155 ((-1185) $ (-1081))) (-15 -4154 ((-1185) $ (-359) (-359))) (-15 -4154 ((-1185) $ (-516) (-516))) (-15 -4153 ((-1185) $ (-359))) (-15 -4153 ((-1185) $ (-359) (-359) (-359))) (-15 -4152 ((-1185) $ (-359) (-359))) (-15 -4151 ((-1185) $ (-1081))) (-15 -4150 ((-1185) $ (-359))) (-15 -4149 ((-1185) $ (-359))) (-15 -4148 ((-1185) $ (-1081))) (-15 -4147 ((-1185) $ (-1081))) (-15 -4146 ((-1185) $ (-1081))) (-15 -4145 ((-1185) $ (-359) (-359) (-359))) (-15 -4144 ((-1185) $ (-359))) (-15 -4143 ((-1185) $)) (-15 -4142 ((-1185) $ (-148) (-148))) (-15 -4141 ((-1081) $ (-1081))) (-15 -4141 ((-1081) $ (-1081) (-1081))) (-15 -4141 ((-1081) $ (-1081) (-594 (-1081)))) (-15 -4140 ((-1185) $)) (-15 -4139 ((-516) $))))) (T -1183))
+((-4174 (*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1183)))) (-4174 (*1 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1183)))) (-4173 (*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1183)))) (-4173 (*1 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1183)))) (-4172 (*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1183)))) (-4172 (*1 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1183)))) (-4171 (*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1183)))) (-4171 (*1 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1183)))) (-4170 (*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1183)))) (-4170 (*1 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1183)))) (-4169 (*1 *1) (-5 *1 (-1183))) (-4168 (*1 *1 *1) (-5 *1 (-1183))) (-4168 (*1 *1 *2 *3) (-12 (-5 *2 (-1058 (-208))) (-5 *3 (-1081)) (-5 *1 (-1183)))) (-4168 (*1 *1 *2 *3) (-12 (-5 *2 (-1058 (-208))) (-5 *3 (-594 (-243))) (-5 *1 (-1183)))) (-4167 (*1 *2 *1) (-12 (-5 *2 (-1058 (-208))) (-5 *1 (-1183)))) (-4167 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-208))) (-5 *1 (-1183)))) (-4166 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-719)) (-5 *4 (-884 (-208))) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4165 (*1 *2 *1) (-12 (-5 *2 (-594 (-243))) (-5 *1 (-1183)))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-594 (-243))) (-5 *1 (-1183)))) (-4164 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4163 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4162 (*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4161 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-719)) (-5 *4 (-860)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4160 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -4126 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) (-5 *1 (-1183)))) (-4160 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -4126 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4160 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-516)) (-5 *4 (-359)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4160 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4160 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4158 (*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4157 (*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4156 (*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4155 (*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4154 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4154 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-516)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4153 (*1 *2 *1 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4153 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4152 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4151 (*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4150 (*1 *2 *1 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4149 (*1 *2 *1 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4148 (*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4147 (*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4146 (*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4145 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4144 (*1 *2 *1 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4142 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-148)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4141 (*1 *2 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1183)))) (-4141 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1183)))) (-4141 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-594 (-1081))) (-5 *2 (-1081)) (-5 *1 (-1183)))) (-4140 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1183)))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1183)))))
+(-13 (-1027) (-10 -8 (-15 -4174 ((-359))) (-15 -4174 ((-359) (-359))) (-15 -4173 ((-359))) (-15 -4173 ((-359) (-359))) (-15 -4172 ((-359))) (-15 -4172 ((-359) (-359))) (-15 -4171 ((-359))) (-15 -4171 ((-359) (-359))) (-15 -4170 ((-359))) (-15 -4170 ((-359) (-359))) (-15 -4169 ($)) (-15 -4168 ($ $)) (-15 -4168 ($ (-1058 (-208)) (-1081))) (-15 -4168 ($ (-1058 (-208)) (-594 (-243)))) (-15 -4167 ((-1058 (-208)) $)) (-15 -4167 ($ $ (-1058 (-208)))) (-15 -4166 ((-1185) $ (-719) (-884 (-208)))) (-15 -4165 ((-594 (-243)) $)) (-15 -4165 ($ $ (-594 (-243)))) (-15 -4164 ((-1185) $ (-719) (-719))) (-15 -4163 ((-1185) $ (-860) (-860))) (-15 -4162 ((-1185) $ (-1081))) (-15 -4161 ((-1185) $ (-719) (-719) (-860) (-860))) (-15 -4160 ((-1185) $ (-359) (-359) (-359) (-359) (-359))) (-15 -4160 ((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -4126 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) $)) (-15 -4160 ((-1185) $ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -4126 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -4160 ((-1185) $ (-516) (-516) (-359) (-359) (-359))) (-15 -4160 ((-1185) $ (-359) (-359))) (-15 -4160 ((-1185) $ (-359) (-359) (-359))) (-15 -4159 ((-1185) $ (-1081))) (-15 -4158 ((-1185) $ (-1081))) (-15 -4157 ((-1185) $ (-1081))) (-15 -4156 ((-1185) $ (-1081))) (-15 -4155 ((-1185) $ (-1081))) (-15 -4154 ((-1185) $ (-359) (-359))) (-15 -4154 ((-1185) $ (-516) (-516))) (-15 -4153 ((-1185) $ (-359))) (-15 -4153 ((-1185) $ (-359) (-359) (-359))) (-15 -4152 ((-1185) $ (-359) (-359))) (-15 -4151 ((-1185) $ (-1081))) (-15 -4150 ((-1185) $ (-359))) (-15 -4149 ((-1185) $ (-359))) (-15 -4148 ((-1185) $ (-1081))) (-15 -4147 ((-1185) $ (-1081))) (-15 -4146 ((-1185) $ (-1081))) (-15 -4145 ((-1185) $ (-359) (-359) (-359))) (-15 -4144 ((-1185) $ (-359))) (-15 -4143 ((-1185) $)) (-15 -4142 ((-1185) $ (-148) (-148))) (-15 -4141 ((-1081) $ (-1081))) (-15 -4141 ((-1081) $ (-1081) (-1081))) (-15 -4141 ((-1081) $ (-1081) (-594 (-1081)))) (-15 -4140 ((-1185) $)) (-15 -4139 ((-516) $))))
+((-4183 (((-594 (-1081)) (-594 (-1081))) 94) (((-594 (-1081))) 90)) (-4184 (((-594 (-1081))) 88)) (-4181 (((-594 (-860)) (-594 (-860))) 63) (((-594 (-860))) 60)) (-4180 (((-594 (-719)) (-594 (-719))) 57) (((-594 (-719))) 53)) (-4182 (((-1185)) 65)) (-4186 (((-860) (-860)) 81) (((-860)) 80)) (-4185 (((-860) (-860)) 79) (((-860)) 78)) (-4178 (((-815) (-815)) 75) (((-815)) 74)) (-4188 (((-208)) 85) (((-208) (-359)) 87)) (-4187 (((-860)) 82) (((-860) (-860)) 83)) (-4179 (((-860) (-860)) 77) (((-860)) 76)) (-4175 (((-815) (-815)) 69) (((-815)) 67)) (-4176 (((-815) (-815)) 71) (((-815)) 70)) (-4177 (((-815) (-815)) 73) (((-815)) 72)))
+(((-1184) (-10 -7 (-15 -4175 ((-815))) (-15 -4175 ((-815) (-815))) (-15 -4176 ((-815))) (-15 -4176 ((-815) (-815))) (-15 -4177 ((-815))) (-15 -4177 ((-815) (-815))) (-15 -4178 ((-815))) (-15 -4178 ((-815) (-815))) (-15 -4179 ((-860))) (-15 -4179 ((-860) (-860))) (-15 -4180 ((-594 (-719)))) (-15 -4180 ((-594 (-719)) (-594 (-719)))) (-15 -4181 ((-594 (-860)))) (-15 -4181 ((-594 (-860)) (-594 (-860)))) (-15 -4182 ((-1185))) (-15 -4183 ((-594 (-1081)))) (-15 -4183 ((-594 (-1081)) (-594 (-1081)))) (-15 -4184 ((-594 (-1081)))) (-15 -4185 ((-860))) (-15 -4186 ((-860))) (-15 -4185 ((-860) (-860))) (-15 -4186 ((-860) (-860))) (-15 -4187 ((-860) (-860))) (-15 -4187 ((-860))) (-15 -4188 ((-208) (-359))) (-15 -4188 ((-208))))) (T -1184))
+((-4188 (*1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-1184)))) (-4188 (*1 *2 *3) (-12 (-5 *3 (-359)) (-5 *2 (-208)) (-5 *1 (-1184)))) (-4187 (*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1184)))) (-4187 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1184)))) (-4186 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1184)))) (-4185 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1184)))) (-4186 (*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1184)))) (-4185 (*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1184)))) (-4184 (*1 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-1184)))) (-4183 (*1 *2 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-1184)))) (-4183 (*1 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-1184)))) (-4182 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1184)))) (-4181 (*1 *2 *2) (-12 (-5 *2 (-594 (-860))) (-5 *1 (-1184)))) (-4181 (*1 *2) (-12 (-5 *2 (-594 (-860))) (-5 *1 (-1184)))) (-4180 (*1 *2 *2) (-12 (-5 *2 (-594 (-719))) (-5 *1 (-1184)))) (-4180 (*1 *2) (-12 (-5 *2 (-594 (-719))) (-5 *1 (-1184)))) (-4179 (*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1184)))) (-4179 (*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1184)))) (-4178 (*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-4178 (*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-4177 (*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-4177 (*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-4176 (*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-4176 (*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-4175 (*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-4175 (*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))))
+(-10 -7 (-15 -4175 ((-815))) (-15 -4175 ((-815) (-815))) (-15 -4176 ((-815))) (-15 -4176 ((-815) (-815))) (-15 -4177 ((-815))) (-15 -4177 ((-815) (-815))) (-15 -4178 ((-815))) (-15 -4178 ((-815) (-815))) (-15 -4179 ((-860))) (-15 -4179 ((-860) (-860))) (-15 -4180 ((-594 (-719)))) (-15 -4180 ((-594 (-719)) (-594 (-719)))) (-15 -4181 ((-594 (-860)))) (-15 -4181 ((-594 (-860)) (-594 (-860)))) (-15 -4182 ((-1185))) (-15 -4183 ((-594 (-1081)))) (-15 -4183 ((-594 (-1081)) (-594 (-1081)))) (-15 -4184 ((-594 (-1081)))) (-15 -4185 ((-860))) (-15 -4186 ((-860))) (-15 -4185 ((-860) (-860))) (-15 -4186 ((-860) (-860))) (-15 -4187 ((-860) (-860))) (-15 -4187 ((-860))) (-15 -4188 ((-208) (-359))) (-15 -4188 ((-208))))
+((-4189 (($) 7)) (-4233 (((-805) $) 10)))
+(((-1185) (-10 -8 (-15 -4189 ($)) (-15 -4233 ((-805) $)))) (T -1185))
+((-4233 (*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-1185)))) (-4189 (*1 *1) (-5 *1 (-1185))))
+(-10 -8 (-15 -4189 ($)) (-15 -4233 ((-805) $)))
+((-4224 (($ $ |#2|) 10)))
+(((-1186 |#1| |#2|) (-10 -8 (-15 -4224 (|#1| |#1| |#2|))) (-1187 |#2|) (-344)) (T -1186))
+NIL
+(-10 -8 (-15 -4224 (|#1| |#1| |#2|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4190 (((-130)) 28)) (-4233 (((-805) $) 11)) (-2920 (($) 18 T CONST)) (-3317 (((-110) $ $) 6)) (-4224 (($ $ |#1|) 29)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-1187 |#1|) (-133) (-344)) (T -1187))
+((-4224 (*1 *1 *1 *2) (-12 (-4 *1 (-1187 *2)) (-4 *2 (-344)))) (-4190 (*1 *2) (-12 (-4 *1 (-1187 *3)) (-4 *3 (-344)) (-5 *2 (-130)))))
+(-13 (-666 |t#1|) (-10 -8 (-15 -4224 ($ $ |t#1|)) (-15 -4190 ((-130)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-805)) . T) ((-599 |#1|) . T) ((-666 |#1|) . T) ((-989 |#1|) . T) ((-1027) . T))
+((-4195 (((-594 (-1127 |#1|)) (-1098) (-1127 |#1|)) 78)) (-4193 (((-1076 (-1076 (-887 |#1|))) (-1098) (-1076 (-887 |#1|))) 57)) (-4196 (((-1 (-1076 (-1127 |#1|)) (-1076 (-1127 |#1|))) (-719) (-1127 |#1|) (-1076 (-1127 |#1|))) 68)) (-4191 (((-1 (-1076 (-887 |#1|)) (-1076 (-887 |#1|))) (-719)) 59)) (-4194 (((-1 (-1092 (-887 |#1|)) (-887 |#1|)) (-1098)) 29)) (-4192 (((-1 (-1076 (-887 |#1|)) (-1076 (-887 |#1|))) (-719)) 58)))
+(((-1188 |#1|) (-10 -7 (-15 -4191 ((-1 (-1076 (-887 |#1|)) (-1076 (-887 |#1|))) (-719))) (-15 -4192 ((-1 (-1076 (-887 |#1|)) (-1076 (-887 |#1|))) (-719))) (-15 -4193 ((-1076 (-1076 (-887 |#1|))) (-1098) (-1076 (-887 |#1|)))) (-15 -4194 ((-1 (-1092 (-887 |#1|)) (-887 |#1|)) (-1098))) (-15 -4195 ((-594 (-1127 |#1|)) (-1098) (-1127 |#1|))) (-15 -4196 ((-1 (-1076 (-1127 |#1|)) (-1076 (-1127 |#1|))) (-719) (-1127 |#1|) (-1076 (-1127 |#1|))))) (-344)) (T -1188))
+((-4196 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-719)) (-4 *6 (-344)) (-5 *4 (-1127 *6)) (-5 *2 (-1 (-1076 *4) (-1076 *4))) (-5 *1 (-1188 *6)) (-5 *5 (-1076 *4)))) (-4195 (*1 *2 *3 *4) (-12 (-5 *3 (-1098)) (-4 *5 (-344)) (-5 *2 (-594 (-1127 *5))) (-5 *1 (-1188 *5)) (-5 *4 (-1127 *5)))) (-4194 (*1 *2 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-1 (-1092 (-887 *4)) (-887 *4))) (-5 *1 (-1188 *4)) (-4 *4 (-344)))) (-4193 (*1 *2 *3 *4) (-12 (-5 *3 (-1098)) (-4 *5 (-344)) (-5 *2 (-1076 (-1076 (-887 *5)))) (-5 *1 (-1188 *5)) (-5 *4 (-1076 (-887 *5))))) (-4192 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-1076 (-887 *4)) (-1076 (-887 *4)))) (-5 *1 (-1188 *4)) (-4 *4 (-344)))) (-4191 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-1076 (-887 *4)) (-1076 (-887 *4)))) (-5 *1 (-1188 *4)) (-4 *4 (-344)))))
+(-10 -7 (-15 -4191 ((-1 (-1076 (-887 |#1|)) (-1076 (-887 |#1|))) (-719))) (-15 -4192 ((-1 (-1076 (-887 |#1|)) (-1076 (-887 |#1|))) (-719))) (-15 -4193 ((-1076 (-1076 (-887 |#1|))) (-1098) (-1076 (-887 |#1|)))) (-15 -4194 ((-1 (-1092 (-887 |#1|)) (-887 |#1|)) (-1098))) (-15 -4195 ((-594 (-1127 |#1|)) (-1098) (-1127 |#1|))) (-15 -4196 ((-1 (-1076 (-1127 |#1|)) (-1076 (-1127 |#1|))) (-719) (-1127 |#1|) (-1076 (-1127 |#1|)))))
+((-4198 (((-2 (|:| -2071 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) |#2|) 75)) (-4197 (((-2 (|:| -2071 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) 74)))
+(((-1189 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4197 ((-2 (|:| -2071 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))))) (-15 -4198 ((-2 (|:| -2071 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) |#2|))) (-331) (-1155 |#1|) (-1155 |#2|) (-391 |#2| |#3|)) (T -1189))
+((-4198 (*1 *2 *3) (-12 (-4 *4 (-331)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 *3)) (-5 *2 (-2 (|:| -2071 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3)))) (-5 *1 (-1189 *4 *3 *5 *6)) (-4 *6 (-391 *3 *5)))) (-4197 (*1 *2) (-12 (-4 *3 (-331)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| -2071 (-637 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-637 *4)))) (-5 *1 (-1189 *3 *4 *5 *6)) (-4 *6 (-391 *4 *5)))))
+(-10 -7 (-15 -4197 ((-2 (|:| -2071 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))))) (-15 -4198 ((-2 (|:| -2071 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) |#2|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 43)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-3741 (((-3 $ "failed") $) NIL)) (-2436 (((-110) $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4233 (((-805) $) 64) (($ (-516)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-162)))) (-3385 (((-719)) NIL)) (-4199 (((-1185) (-719)) 16)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 27 T CONST)) (-2927 (($) 67 T CONST)) (-3317 (((-110) $ $) 69)) (-4224 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-4116 (($ $) 71) (($ $ $) NIL)) (-4118 (($ $ $) 47)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162)))))
+(((-1190 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-984) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -4233 (|#4| $)) (IF (|has| |#1| (-344)) (-15 -4224 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4233 ($ |#4|)) (-15 -4199 ((-1185) (-719))))) (-984) (-795) (-741) (-891 |#1| |#3| |#2|) (-594 |#2|) (-594 (-719)) (-719)) (T -1190))
+((-4233 (*1 *2 *1) (-12 (-4 *2 (-891 *3 *5 *4)) (-5 *1 (-1190 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-741)) (-14 *6 (-594 *4)) (-14 *7 (-594 (-719))) (-14 *8 (-719)))) (-4224 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-344)) (-4 *2 (-984)) (-4 *3 (-795)) (-4 *4 (-741)) (-14 *6 (-594 *3)) (-5 *1 (-1190 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-891 *2 *4 *3)) (-14 *7 (-594 (-719))) (-14 *8 (-719)))) (-4233 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-741)) (-14 *6 (-594 *4)) (-5 *1 (-1190 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-891 *3 *5 *4)) (-14 *7 (-594 (-719))) (-14 *8 (-719)))) (-4199 (*1 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-984)) (-4 *5 (-795)) (-4 *6 (-741)) (-14 *8 (-594 *5)) (-5 *2 (-1185)) (-5 *1 (-1190 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-891 *4 *6 *5)) (-14 *9 (-594 *3)) (-14 *10 *3))))
+(-13 (-984) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -4233 (|#4| $)) (IF (|has| |#1| (-344)) (-15 -4224 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4233 ($ |#4|)) (-15 -4199 ((-1185) (-719)))))
+((-2828 (((-110) $ $) NIL)) (-3963 (((-594 (-2 (|:| -4140 $) (|:| -1768 (-594 |#4|)))) (-594 |#4|)) NIL)) (-3964 (((-594 $) (-594 |#4|)) 88)) (-3347 (((-594 |#3|) $) NIL)) (-3172 (((-110) $) NIL)) (-3163 (((-110) $) NIL (|has| |#1| (-523)))) (-3975 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3970 ((|#4| |#4| $) NIL)) (-3173 (((-2 (|:| |under| $) (|:| -3389 $) (|:| |upper| $)) $ |#3|) NIL)) (-1217 (((-110) $ (-719)) NIL)) (-3992 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-3815 (($) NIL T CONST)) (-3168 (((-110) $) NIL (|has| |#1| (-523)))) (-3170 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3169 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3171 (((-110) $) NIL (|has| |#1| (-523)))) (-3971 (((-594 |#4|) (-594 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 28)) (-3164 (((-594 |#4|) (-594 |#4|) $) 25 (|has| |#1| (-523)))) (-3165 (((-594 |#4|) (-594 |#4|) $) NIL (|has| |#1| (-523)))) (-3432 (((-3 $ "failed") (-594 |#4|)) NIL)) (-3431 (($ (-594 |#4|)) NIL)) (-4077 (((-3 $ #1#) $) 70)) (-3967 ((|#4| |#4| $) 75)) (-1349 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-3685 (($ |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3166 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-523)))) (-3976 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-3965 ((|#4| |#4| $) NIL)) (-4121 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3978 (((-2 (|:| -4140 (-594 |#4|)) (|:| -1768 (-594 |#4|))) $) NIL)) (-2018 (((-594 |#4|) $) NIL (|has| $ (-6 -4269)))) (-3977 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3455 ((|#3| $) 76)) (-4001 (((-110) $ (-719)) NIL)) (-2445 (((-594 |#4|) $) 29 (|has| $ (-6 -4269)))) (-3516 (((-110) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-4202 (((-3 $ "failed") (-594 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-594 |#4|)) 35)) (-2022 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4270)))) (-4234 (($ (-1 |#4| |#4|) $) NIL)) (-3178 (((-594 |#3|) $) NIL)) (-3177 (((-110) |#3| $) NIL)) (-3998 (((-110) $ (-719)) NIL)) (-3513 (((-1081) $) NIL)) (-4076 (((-3 |#4| #1#) $) NIL)) (-3979 (((-594 |#4|) $) 50)) (-3973 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3968 ((|#4| |#4| $) 74)) (-3981 (((-110) $ $) 85)) (-3167 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-523)))) (-3974 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3969 ((|#4| |#4| $) NIL)) (-3514 (((-1045) $) NIL)) (-4079 (((-3 |#4| #1#) $) 69)) (-1350 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-3961 (((-3 $ #1#) $ |#4|) NIL)) (-4047 (($ $ |#4|) NIL)) (-2020 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-4046 (($ $ (-594 |#4|) (-594 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-275 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-594 (-275 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-1218 (((-110) $ $) NIL)) (-3682 (((-110) $) 67)) (-3847 (($) 42)) (-4223 (((-719) $) NIL)) (-2019 (((-719) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (((-719) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3678 (($ $) NIL)) (-4246 (((-505) $) NIL (|has| |#4| (-572 (-505))))) (-3804 (($ (-594 |#4|)) NIL)) (-3174 (($ $ |#3|) NIL)) (-3176 (($ $ |#3|) NIL)) (-3966 (($ $) NIL)) (-3175 (($ $ |#3|) NIL)) (-4233 (((-805) $) NIL) (((-594 |#4|) $) 57)) (-3960 (((-719) $) NIL (|has| |#3| (-349)))) (-4201 (((-3 $ "failed") (-594 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-594 |#4|)) 41)) (-4200 (((-594 $) (-594 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-594 $) (-594 |#4|)) 66)) (-3980 (((-3 (-2 (|:| |bas| $) (|:| -3602 (-594 |#4|))) #1#) (-594 |#4|) (-1 (-110) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -3602 (-594 |#4|))) #1#) (-594 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3972 (((-110) $ (-1 (-110) |#4| (-594 |#4|))) NIL)) (-2021 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3962 (((-594 |#3|) $) NIL)) (-4209 (((-110) |#3| $) NIL)) (-3317 (((-110) $ $) NIL)) (-4232 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-1191 |#1| |#2| |#3| |#4|) (-13 (-1129 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4202 ((-3 $ "failed") (-594 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4202 ((-3 $ "failed") (-594 |#4|))) (-15 -4201 ((-3 $ "failed") (-594 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4201 ((-3 $ "failed") (-594 |#4|))) (-15 -4200 ((-594 $) (-594 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4200 ((-594 $) (-594 |#4|))))) (-523) (-741) (-795) (-997 |#1| |#2| |#3|)) (T -1191))
+((-4202 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-594 *8)) (-5 *3 (-1 (-110) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1191 *5 *6 *7 *8)))) (-4202 (*1 *1 *2) (|partial| -12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-1191 *3 *4 *5 *6)))) (-4201 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-594 *8)) (-5 *3 (-1 (-110) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1191 *5 *6 *7 *8)))) (-4201 (*1 *1 *2) (|partial| -12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-1191 *3 *4 *5 *6)))) (-4200 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-594 *9)) (-5 *4 (-1 (-110) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-997 *6 *7 *8)) (-4 *6 (-523)) (-4 *7 (-741)) (-4 *8 (-795)) (-5 *2 (-594 (-1191 *6 *7 *8 *9))) (-5 *1 (-1191 *6 *7 *8 *9)))) (-4200 (*1 *2 *3) (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-594 (-1191 *4 *5 *6 *7))) (-5 *1 (-1191 *4 *5 *6 *7)))))
+(-13 (-1129 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4202 ((-3 $ "failed") (-594 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4202 ((-3 $ "failed") (-594 |#4|))) (-15 -4201 ((-3 $ "failed") (-594 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4201 ((-3 $ "failed") (-594 |#4|))) (-15 -4200 ((-594 $) (-594 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4200 ((-594 $) (-594 |#4|)))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-1319 (((-3 $ "failed") $ $) 19)) (-3815 (($) 17 T CONST)) (-3741 (((-3 $ "failed") $) 34)) (-2436 (((-110) $) 31)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ |#1|) 38)) (-3385 (((-719)) 29)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-1192 |#1|) (-133) (-984)) (T -1192))
+((-4233 (*1 *1 *2) (-12 (-4 *1 (-1192 *2)) (-4 *2 (-984)))))
+(-13 (-984) (-109 |t#1| |t#1|) (-10 -8 (-15 -4233 ($ |t#1|)) (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-162)) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-805)) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 |#1|) |has| |#1| (-162)) ((-675) . T) ((-989 |#1|) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T))
+((-2828 (((-110) $ $) 60)) (-3462 (((-110) $) NIL)) (-4210 (((-594 |#1|) $) 45)) (-4222 (($ $ (-719)) 39)) (-1319 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $ (-719)) 18 (|has| |#2| (-162))) (($ $ $) 19 (|has| |#2| (-162)))) (-3815 (($) NIL T CONST)) (-4215 (($ $ $) 63) (($ $ (-767 |#1|)) 49) (($ $ |#1|) 53)) (-3432 (((-3 (-767 |#1|) "failed") $) NIL)) (-3431 (((-767 |#1|) $) NIL)) (-4235 (($ $) 32)) (-3741 (((-3 $ "failed") $) NIL)) (-4226 (((-110) $) NIL)) (-4225 (($ $) NIL)) (-2436 (((-110) $) NIL)) (-2444 (((-719) $) NIL)) (-3085 (((-594 $) $) NIL)) (-4213 (((-110) $) NIL)) (-4214 (($ (-767 |#1|) |#2|) 31)) (-4212 (($ $) 33)) (-4217 (((-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|)) $) 12)) (-4230 (((-767 |#1|) $) NIL)) (-4231 (((-767 |#1|) $) 34)) (-4234 (($ (-1 |#2| |#2|) $) NIL)) (-4216 (($ $ $) 62) (($ $ (-767 |#1|)) 51) (($ $ |#1|) 55)) (-1815 (((-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3158 (((-767 |#1|) $) 28)) (-3449 ((|#2| $) 30)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4223 (((-719) $) 36)) (-4228 (((-110) $) 40)) (-4227 ((|#2| $) NIL)) (-4233 (((-805) $) NIL) (($ (-767 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-516)) NIL)) (-4096 (((-594 |#2|) $) NIL)) (-3959 ((|#2| $ (-767 |#1|)) NIL)) (-4229 ((|#2| $ $) 65) ((|#2| $ (-767 |#1|)) NIL)) (-3385 (((-719)) NIL)) (-3581 (($ $ (-719)) NIL) (($ $ (-860)) NIL)) (-2920 (($) 13 T CONST)) (-2927 (($) 15 T CONST)) (-2926 (((-594 (-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3317 (((-110) $ $) 38)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) 22)) (** (($ $ (-719)) NIL) (($ $ (-860)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-767 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
+(((-1193 |#1| |#2|) (-13 (-365 |#2| (-767 |#1|)) (-1200 |#1| |#2|)) (-795) (-984)) (T -1193))
+NIL
+(-13 (-365 |#2| (-767 |#1|)) (-1200 |#1| |#2|))
+((-4218 ((|#3| |#3| (-719)) 23)) (-4219 ((|#3| |#3| (-719)) 28)) (-4203 ((|#3| |#3| |#3| (-719)) 29)))
+(((-1194 |#1| |#2| |#3|) (-10 -7 (-15 -4219 (|#3| |#3| (-719))) (-15 -4218 (|#3| |#3| (-719))) (-15 -4203 (|#3| |#3| |#3| (-719)))) (-13 (-984) (-666 (-388 (-516)))) (-795) (-1200 |#2| |#1|)) (T -1194))
+((-4203 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-13 (-984) (-666 (-388 (-516))))) (-4 *5 (-795)) (-5 *1 (-1194 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))) (-4218 (*1 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-13 (-984) (-666 (-388 (-516))))) (-4 *5 (-795)) (-5 *1 (-1194 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))) (-4219 (*1 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-13 (-984) (-666 (-388 (-516))))) (-4 *5 (-795)) (-5 *1 (-1194 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))))
+(-10 -7 (-15 -4219 (|#3| |#3| (-719))) (-15 -4218 (|#3| |#3| (-719))) (-15 -4203 (|#3| |#3| |#3| (-719))))
+((-4208 (((-110) $) 15)) (-4209 (((-110) $) 14)) (-4204 (($ $) 19) (($ $ (-719)) 20)))
+(((-1195 |#1| |#2|) (-10 -8 (-15 -4204 (|#1| |#1| (-719))) (-15 -4204 (|#1| |#1|)) (-15 -4208 ((-110) |#1|)) (-15 -4209 ((-110) |#1|))) (-1196 |#2|) (-344)) (T -1195))
+NIL
+(-10 -8 (-15 -4204 (|#1| |#1| (-719))) (-15 -4204 (|#1| |#1|)) (-15 -4208 ((-110) |#1|)) (-15 -4209 ((-110) |#1|)))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-2119 (((-2 (|:| -1842 $) (|:| -4256 $) (|:| |associate| $)) $) 41)) (-2118 (($ $) 40)) (-2116 (((-110) $) 38)) (-4208 (((-110) $) 94)) (-4205 (((-719)) 90)) (-1319 (((-3 $ "failed") $ $) 19)) (-4053 (($ $) 73)) (-4245 (((-386 $) $) 72)) (-1655 (((-110) $ $) 59)) (-3815 (($) 17 T CONST)) (-3432 (((-3 |#1| "failed") $) 101)) (-3431 ((|#1| $) 100)) (-2824 (($ $ $) 55)) (-3741 (((-3 $ "failed") $) 34)) (-2823 (($ $ $) 56)) (-3004 (((-2 (|:| -4229 (-594 $)) (|:| -2435 $)) (-594 $)) 51)) (-1836 (($ $ (-719)) 87 (-3810 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) 86 (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-4005 (((-110) $) 71)) (-4050 (((-780 (-860)) $) 84 (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2436 (((-110) $) 31)) (-1652 (((-3 (-594 $) #1="failed") (-594 $) $) 52)) (-1963 (($ $ $) 46) (($ (-594 $)) 45)) (-3513 (((-1081) $) 9)) (-2668 (($ $) 70)) (-4207 (((-110) $) 93)) (-3514 (((-1045) $) 10)) (-2971 (((-1092 $) (-1092 $) (-1092 $)) 44)) (-3419 (($ $ $) 48) (($ (-594 $)) 47)) (-4011 (((-386 $) $) 74)) (-4206 (((-780 (-860))) 91)) (-1653 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2435 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 53)) (-3740 (((-3 $ "failed") $ $) 42)) (-3003 (((-3 (-594 $) "failed") (-594 $) $) 50)) (-1654 (((-719) $) 58)) (-3145 (((-2 (|:| -2046 $) (|:| -3166 $)) $ $) 57)) (-1837 (((-3 (-719) "failed") $ $) 85 (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-4190 (((-130)) 99)) (-4223 (((-780 (-860)) $) 92)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ $) 43) (($ (-388 (-516))) 65) (($ |#1|) 102)) (-2965 (((-3 $ "failed") $) 83 (-3810 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3385 (((-719)) 29)) (-2117 (((-110) $ $) 39)) (-4209 (((-110) $) 95)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33) (($ $ (-516)) 69)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-4204 (($ $) 89 (|has| |#1| (-349))) (($ $ (-719)) 88 (|has| |#1| (-349)))) (-3317 (((-110) $ $) 6)) (-4224 (($ $ $) 64) (($ $ |#1|) 98)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32) (($ $ (-516)) 68)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ $ (-388 (-516))) 67) (($ (-388 (-516)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
+(((-1196 |#1|) (-133) (-344)) (T -1196))
+((-4209 (*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-344)) (-5 *2 (-110)))) (-4208 (*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-344)) (-5 *2 (-110)))) (-4207 (*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-344)) (-5 *2 (-110)))) (-4223 (*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-344)) (-5 *2 (-780 (-860))))) (-4206 (*1 *2) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-344)) (-5 *2 (-780 (-860))))) (-4205 (*1 *2) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-344)) (-5 *2 (-719)))) (-4204 (*1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-344)) (-4 *2 (-349)))) (-4204 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1196 *3)) (-4 *3 (-344)) (-4 *3 (-349)))))
+(-13 (-344) (-975 |t#1|) (-1187 |t#1|) (-10 -8 (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-383)) |%noBranch|) (-15 -4209 ((-110) $)) (-15 -4208 ((-110) $)) (-15 -4207 ((-110) $)) (-15 -4223 ((-780 (-860)) $)) (-15 -4206 ((-780 (-860)))) (-15 -4205 ((-719))) (IF (|has| |t#1| (-349)) (PROGN (-6 (-383)) (-15 -4204 ($ $)) (-15 -4204 ($ $ (-719)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-388 (-516))) . T) ((-37 $) . T) ((-99) . T) ((-109 #1# #1#) . T) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -3810 (|has| |#1| (-349)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-571 (-805)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-383) -3810 (|has| |#1| (-349)) (|has| |#1| (-138))) ((-432) . T) ((-523) . T) ((-599 #1#) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #1#) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-675) . T) ((-862) . T) ((-975 |#1|) . T) ((-989 #1#) . T) ((-989 |#1|) . T) ((-989 $) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1138) . T) ((-1187 |#1|) . T))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-4210 (((-594 |#1|) $) 40)) (-1319 (((-3 $ "failed") $ $) 19)) (-4211 (($ $ $) 43 (|has| |#2| (-162))) (($ $ (-719)) 42 (|has| |#2| (-162)))) (-3815 (($) 17 T CONST)) (-4215 (($ $ |#1|) 54) (($ $ (-767 |#1|)) 53) (($ $ $) 52)) (-3432 (((-3 (-767 |#1|) "failed") $) 64)) (-3431 (((-767 |#1|) $) 63)) (-3741 (((-3 $ "failed") $) 34)) (-4226 (((-110) $) 45)) (-4225 (($ $) 44)) (-2436 (((-110) $) 31)) (-4213 (((-110) $) 50)) (-4214 (($ (-767 |#1|) |#2|) 51)) (-4212 (($ $) 49)) (-4217 (((-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|)) $) 60)) (-4230 (((-767 |#1|) $) 61)) (-4234 (($ (-1 |#2| |#2|) $) 41)) (-4216 (($ $ |#1|) 57) (($ $ (-767 |#1|)) 56) (($ $ $) 55)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4228 (((-110) $) 47)) (-4227 ((|#2| $) 46)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ |#2|) 68) (($ (-767 |#1|)) 65) (($ |#1|) 48)) (-4229 ((|#2| $ (-767 |#1|)) 59) ((|#2| $ $) 58)) (-3385 (((-719)) 29)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
+(((-1197 |#1| |#2|) (-133) (-795) (-984)) (T -1197))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-795)) (-4 *2 (-984)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-4230 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-767 *3)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-2 (|:| |k| (-767 *3)) (|:| |c| *4))))) (-4229 (*1 *2 *1 *3) (-12 (-5 *3 (-767 *4)) (-4 *1 (-1197 *4 *2)) (-4 *4 (-795)) (-4 *2 (-984)))) (-4229 (*1 *2 *1 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-795)) (-4 *2 (-984)))) (-4216 (*1 *1 *1 *2) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-4216 (*1 *1 *1 *2) (-12 (-5 *2 (-767 *3)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))) (-4216 (*1 *1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-4215 (*1 *1 *1 *2) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-4215 (*1 *1 *1 *2) (-12 (-5 *2 (-767 *3)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))) (-4215 (*1 *1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-4214 (*1 *1 *2 *3) (-12 (-5 *2 (-767 *4)) (-4 *4 (-795)) (-4 *1 (-1197 *4 *3)) (-4 *3 (-984)))) (-4213 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-110)))) (-4212 (*1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-4233 (*1 *1 *2) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-4228 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-110)))) (-4227 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-795)) (-4 *2 (-984)))) (-4226 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-110)))) (-4225 (*1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-4211 (*1 *1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)) (-4 *3 (-162)))) (-4211 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-4 *4 (-162)))) (-4234 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))) (-4210 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-594 *3)))))
+(-13 (-984) (-1192 |t#2|) (-975 (-767 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4230 ((-767 |t#1|) $)) (-15 -4217 ((-2 (|:| |k| (-767 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4229 (|t#2| $ (-767 |t#1|))) (-15 -4229 (|t#2| $ $)) (-15 -4216 ($ $ |t#1|)) (-15 -4216 ($ $ (-767 |t#1|))) (-15 -4216 ($ $ $)) (-15 -4215 ($ $ |t#1|)) (-15 -4215 ($ $ (-767 |t#1|))) (-15 -4215 ($ $ $)) (-15 -4214 ($ (-767 |t#1|) |t#2|)) (-15 -4213 ((-110) $)) (-15 -4212 ($ $)) (-15 -4233 ($ |t#1|)) (-15 -4228 ((-110) $)) (-15 -4227 (|t#2| $)) (-15 -4226 ((-110) $)) (-15 -4225 ($ $)) (IF (|has| |t#2| (-162)) (PROGN (-15 -4211 ($ $ $)) (-15 -4211 ($ $ (-719)))) |%noBranch|) (-15 -4234 ($ (-1 |t#2| |t#2|) $)) (-15 -4210 ((-594 |t#1|) $)) (IF (|has| |t#2| (-6 -4262)) (-6 -4262) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-162)) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-571 (-805)) . T) ((-599 |#2|) . T) ((-599 $) . T) ((-666 |#2|) |has| |#2| (-162)) ((-675) . T) ((-975 (-767 |#1|)) . T) ((-989 |#2|) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1192 |#2|) . T))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-4210 (((-594 |#1|) $) 86)) (-4222 (($ $ (-719)) 89)) (-1319 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $ $) NIL (|has| |#2| (-162))) (($ $ (-719)) NIL (|has| |#2| (-162)))) (-3815 (($) NIL T CONST)) (-4215 (($ $ |#1|) NIL) (($ $ (-767 |#1|)) NIL) (($ $ $) NIL)) (-3432 (((-3 (-767 |#1|) #1="failed") $) NIL) (((-3 (-834 |#1|) #1#) $) NIL)) (-3431 (((-767 |#1|) $) NIL) (((-834 |#1|) $) NIL)) (-4235 (($ $) 88)) (-3741 (((-3 $ "failed") $) NIL)) (-4226 (((-110) $) 77)) (-4225 (($ $) 81)) (-4220 (($ $ $ (-719)) 90)) (-2436 (((-110) $) NIL)) (-2444 (((-719) $) NIL)) (-3085 (((-594 $) $) NIL)) (-4213 (((-110) $) NIL)) (-4214 (($ (-767 |#1|) |#2|) NIL) (($ (-834 |#1|) |#2|) 26)) (-4212 (($ $) 103)) (-4217 (((-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4230 (((-767 |#1|) $) NIL)) (-4231 (((-767 |#1|) $) NIL)) (-4234 (($ (-1 |#2| |#2|) $) NIL)) (-4216 (($ $ |#1|) NIL) (($ $ (-767 |#1|)) NIL) (($ $ $) NIL)) (-4218 (($ $ (-719)) 97 (|has| |#2| (-666 (-388 (-516)))))) (-1815 (((-2 (|:| |k| (-834 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3158 (((-834 |#1|) $) 70)) (-3449 ((|#2| $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4219 (($ $ (-719)) 94 (|has| |#2| (-666 (-388 (-516)))))) (-4223 (((-719) $) 87)) (-4228 (((-110) $) 71)) (-4227 ((|#2| $) 75)) (-4233 (((-805) $) 57) (($ (-516)) NIL) (($ |#2|) 51) (($ (-767 |#1|)) NIL) (($ |#1|) 59) (($ (-834 |#1|)) NIL) (($ (-615 |#1| |#2|)) 43) (((-1193 |#1| |#2|) $) 64) (((-1202 |#1| |#2|) $) 69)) (-4096 (((-594 |#2|) $) NIL)) (-3959 ((|#2| $ (-834 |#1|)) NIL)) (-4229 ((|#2| $ (-767 |#1|)) NIL) ((|#2| $ $) NIL)) (-3385 (((-719)) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 21 T CONST)) (-2927 (($) 25 T CONST)) (-2926 (((-594 (-2 (|:| |k| (-834 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4221 (((-3 (-615 |#1| |#2|) "failed") $) 102)) (-3317 (((-110) $ $) 65)) (-4116 (($ $) 96) (($ $ $) 95)) (-4118 (($ $ $) 20)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-834 |#1|)) NIL)))
+(((-1198 |#1| |#2|) (-13 (-1200 |#1| |#2|) (-365 |#2| (-834 |#1|)) (-10 -8 (-15 -4233 ($ (-615 |#1| |#2|))) (-15 -4233 ((-1193 |#1| |#2|) $)) (-15 -4233 ((-1202 |#1| |#2|) $)) (-15 -4221 ((-3 (-615 |#1| |#2|) "failed") $)) (-15 -4220 ($ $ $ (-719))) (IF (|has| |#2| (-666 (-388 (-516)))) (PROGN (-15 -4219 ($ $ (-719))) (-15 -4218 ($ $ (-719)))) |%noBranch|))) (-795) (-162)) (T -1198))
+((-4233 (*1 *1 *2) (-12 (-5 *2 (-615 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *1 (-1198 *3 *4)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-1202 *3 *4)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-4221 (*1 *2 *1) (|partial| -12 (-5 *2 (-615 *3 *4)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-4220 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-4219 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-1198 *3 *4)) (-4 *4 (-666 (-388 (-516)))) (-4 *3 (-795)) (-4 *4 (-162)))) (-4218 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-1198 *3 *4)) (-4 *4 (-666 (-388 (-516)))) (-4 *3 (-795)) (-4 *4 (-162)))))
+(-13 (-1200 |#1| |#2|) (-365 |#2| (-834 |#1|)) (-10 -8 (-15 -4233 ($ (-615 |#1| |#2|))) (-15 -4233 ((-1193 |#1| |#2|) $)) (-15 -4233 ((-1202 |#1| |#2|) $)) (-15 -4221 ((-3 (-615 |#1| |#2|) "failed") $)) (-15 -4220 ($ $ $ (-719))) (IF (|has| |#2| (-666 (-388 (-516)))) (PROGN (-15 -4219 ($ $ (-719))) (-15 -4218 ($ $ (-719)))) |%noBranch|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-4210 (((-594 (-1098)) $) NIL)) (-4238 (($ (-1193 (-1098) |#1|)) NIL)) (-4222 (($ $ (-719)) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $ $) NIL (|has| |#1| (-162))) (($ $ (-719)) NIL (|has| |#1| (-162)))) (-3815 (($) NIL T CONST)) (-4215 (($ $ (-1098)) NIL) (($ $ (-767 (-1098))) NIL) (($ $ $) NIL)) (-3432 (((-3 (-767 (-1098)) "failed") $) NIL)) (-3431 (((-767 (-1098)) $) NIL)) (-3741 (((-3 $ "failed") $) NIL)) (-4226 (((-110) $) NIL)) (-4225 (($ $) NIL)) (-2436 (((-110) $) NIL)) (-4213 (((-110) $) NIL)) (-4214 (($ (-767 (-1098)) |#1|) NIL)) (-4212 (($ $) NIL)) (-4217 (((-2 (|:| |k| (-767 (-1098))) (|:| |c| |#1|)) $) NIL)) (-4230 (((-767 (-1098)) $) NIL)) (-4231 (((-767 (-1098)) $) NIL)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-4216 (($ $ (-1098)) NIL) (($ $ (-767 (-1098))) NIL) (($ $ $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4239 (((-1193 (-1098) |#1|) $) NIL)) (-4223 (((-719) $) NIL)) (-4228 (((-110) $) NIL)) (-4227 ((|#1| $) NIL)) (-4233 (((-805) $) NIL) (($ (-516)) NIL) (($ |#1|) NIL) (($ (-767 (-1098))) NIL) (($ (-1098)) NIL)) (-4229 ((|#1| $ (-767 (-1098))) NIL) ((|#1| $ $) NIL)) (-3385 (((-719)) NIL)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) NIL T CONST)) (-4237 (((-594 (-2 (|:| |k| (-1098)) (|:| |c| $))) $) NIL)) (-2927 (($) NIL T CONST)) (-3317 (((-110) $ $) NIL)) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) NIL)) (** (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1098) $) NIL)))
+(((-1199 |#1|) (-13 (-1200 (-1098) |#1|) (-10 -8 (-15 -4239 ((-1193 (-1098) |#1|) $)) (-15 -4238 ($ (-1193 (-1098) |#1|))) (-15 -4237 ((-594 (-2 (|:| |k| (-1098)) (|:| |c| $))) $)))) (-984)) (T -1199))
+((-4239 (*1 *2 *1) (-12 (-5 *2 (-1193 (-1098) *3)) (-5 *1 (-1199 *3)) (-4 *3 (-984)))) (-4238 (*1 *1 *2) (-12 (-5 *2 (-1193 (-1098) *3)) (-4 *3 (-984)) (-5 *1 (-1199 *3)))) (-4237 (*1 *2 *1) (-12 (-5 *2 (-594 (-2 (|:| |k| (-1098)) (|:| |c| (-1199 *3))))) (-5 *1 (-1199 *3)) (-4 *3 (-984)))))
+(-13 (-1200 #1=(-1098) |#1|) (-10 -8 (-15 -4239 ((-1193 #1# |#1|) $)) (-15 -4238 ($ (-1193 #1# |#1|))) (-15 -4237 ((-594 (-2 (|:| |k| #1#) (|:| |c| $))) $))))
+((-2828 (((-110) $ $) 7)) (-3462 (((-110) $) 16)) (-4210 (((-594 |#1|) $) 40)) (-4222 (($ $ (-719)) 73)) (-1319 (((-3 $ "failed") $ $) 19)) (-4211 (($ $ $) 43 (|has| |#2| (-162))) (($ $ (-719)) 42 (|has| |#2| (-162)))) (-3815 (($) 17 T CONST)) (-4215 (($ $ |#1|) 54) (($ $ (-767 |#1|)) 53) (($ $ $) 52)) (-3432 (((-3 (-767 |#1|) "failed") $) 64)) (-3431 (((-767 |#1|) $) 63)) (-3741 (((-3 $ "failed") $) 34)) (-4226 (((-110) $) 45)) (-4225 (($ $) 44)) (-2436 (((-110) $) 31)) (-4213 (((-110) $) 50)) (-4214 (($ (-767 |#1|) |#2|) 51)) (-4212 (($ $) 49)) (-4217 (((-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|)) $) 60)) (-4230 (((-767 |#1|) $) 61)) (-4231 (((-767 |#1|) $) 75)) (-4234 (($ (-1 |#2| |#2|) $) 41)) (-4216 (($ $ |#1|) 57) (($ $ (-767 |#1|)) 56) (($ $ $) 55)) (-3513 (((-1081) $) 9)) (-3514 (((-1045) $) 10)) (-4223 (((-719) $) 74)) (-4228 (((-110) $) 47)) (-4227 ((|#2| $) 46)) (-4233 (((-805) $) 11) (($ (-516)) 28) (($ |#2|) 68) (($ (-767 |#1|)) 65) (($ |#1|) 48)) (-4229 ((|#2| $ (-767 |#1|)) 59) ((|#2| $ $) 58)) (-3385 (((-719)) 29)) (-3581 (($ $ (-860)) 26) (($ $ (-719)) 33)) (-2920 (($) 18 T CONST)) (-2927 (($) 30 T CONST)) (-3317 (((-110) $ $) 6)) (-4116 (($ $) 22) (($ $ $) 21)) (-4118 (($ $ $) 14)) (** (($ $ (-860)) 25) (($ $ (-719)) 32)) (* (($ (-860) $) 13) (($ (-719) $) 15) (($ (-516) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
+(((-1200 |#1| |#2|) (-133) (-795) (-984)) (T -1200))
+((-4231 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-767 *3)))) (-4223 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-719)))) (-4222 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))))
+(-13 (-1197 |t#1| |t#2|) (-10 -8 (-15 -4231 ((-767 |t#1|) $)) (-15 -4223 ((-719) $)) (-15 -4222 ($ $ (-719)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-162)) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-571 (-805)) . T) ((-599 |#2|) . T) ((-599 $) . T) ((-666 |#2|) |has| |#2| (-162)) ((-675) . T) ((-975 (-767 |#1|)) . T) ((-989 |#2|) . T) ((-984) . T) ((-990) . T) ((-1038) . T) ((-1027) . T) ((-1192 |#2|) . T) ((-1197 |#1| |#2|) . T))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) NIL)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3815 (($) NIL T CONST)) (-3432 (((-3 |#2| "failed") $) NIL)) (-3431 ((|#2| $) NIL)) (-4235 (($ $) NIL)) (-3741 (((-3 $ "failed") $) 36)) (-4226 (((-110) $) 30)) (-4225 (($ $) 32)) (-2436 (((-110) $) NIL)) (-2444 (((-719) $) NIL)) (-3085 (((-594 $) $) NIL)) (-4213 (((-110) $) NIL)) (-4214 (($ |#2| |#1|) NIL)) (-4230 ((|#2| $) 19)) (-4231 ((|#2| $) 16)) (-4234 (($ (-1 |#1| |#1|) $) NIL)) (-1815 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3158 ((|#2| $) NIL)) (-3449 ((|#1| $) NIL)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4228 (((-110) $) 27)) (-4227 ((|#1| $) 28)) (-4233 (((-805) $) 55) (($ (-516)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-4096 (((-594 |#1|) $) NIL)) (-3959 ((|#1| $ |#2|) NIL)) (-4229 ((|#1| $ |#2|) 24)) (-3385 (((-719)) 14)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 25 T CONST)) (-2927 (($) 11 T CONST)) (-2926 (((-594 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3317 (((-110) $ $) 26)) (-4224 (($ $ |#1|) 57 (|has| |#1| (-344)))) (-4116 (($ $) NIL) (($ $ $) NIL)) (-4118 (($ $ $) 44)) (** (($ $ (-860)) NIL) (($ $ (-719)) 46)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-4232 (((-719) $) 15)))
+(((-1201 |#1| |#2|) (-13 (-984) (-1192 |#1|) (-365 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4232 ((-719) $)) (-15 -4233 ($ |#2|)) (-15 -4231 (|#2| $)) (-15 -4230 (|#2| $)) (-15 -4235 ($ $)) (-15 -4229 (|#1| $ |#2|)) (-15 -4228 ((-110) $)) (-15 -4227 (|#1| $)) (-15 -4226 ((-110) $)) (-15 -4225 ($ $)) (-15 -4234 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-344)) (-15 -4224 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4262)) (-6 -4262) |%noBranch|) (IF (|has| |#1| (-6 -4266)) (-6 -4266) |%noBranch|) (IF (|has| |#1| (-6 -4267)) (-6 -4267) |%noBranch|))) (-984) (-791)) (T -1201))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-984)) (-4 *3 (-791)))) (-4235 (*1 *1 *1) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-984)) (-4 *3 (-791)))) (-4234 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-791)))) (-4233 (*1 *1 *2) (-12 (-5 *1 (-1201 *3 *2)) (-4 *3 (-984)) (-4 *2 (-791)))) (-4232 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-984)) (-4 *4 (-791)))) (-4231 (*1 *2 *1) (-12 (-4 *2 (-791)) (-5 *1 (-1201 *3 *2)) (-4 *3 (-984)))) (-4230 (*1 *2 *1) (-12 (-4 *2 (-791)) (-5 *1 (-1201 *3 *2)) (-4 *3 (-984)))) (-4229 (*1 *2 *1 *3) (-12 (-4 *2 (-984)) (-5 *1 (-1201 *2 *3)) (-4 *3 (-791)))) (-4228 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-984)) (-4 *4 (-791)))) (-4227 (*1 *2 *1) (-12 (-4 *2 (-984)) (-5 *1 (-1201 *2 *3)) (-4 *3 (-791)))) (-4226 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-984)) (-4 *4 (-791)))) (-4225 (*1 *1 *1) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-984)) (-4 *3 (-791)))) (-4224 (*1 *1 *1 *2) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-344)) (-4 *2 (-984)) (-4 *3 (-791)))))
+(-13 (-984) (-1192 |#1|) (-365 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4232 ((-719) $)) (-15 -4233 ($ |#2|)) (-15 -4231 (|#2| $)) (-15 -4230 (|#2| $)) (-15 -4235 ($ $)) (-15 -4229 (|#1| $ |#2|)) (-15 -4228 ((-110) $)) (-15 -4227 (|#1| $)) (-15 -4226 ((-110) $)) (-15 -4225 ($ $)) (-15 -4234 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-344)) (-15 -4224 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4262)) (-6 -4262) |%noBranch|) (IF (|has| |#1| (-6 -4266)) (-6 -4266) |%noBranch|) (IF (|has| |#1| (-6 -4267)) (-6 -4267) |%noBranch|)))
+((-2828 (((-110) $ $) 26)) (-3462 (((-110) $) NIL)) (-4210 (((-594 |#1|) $) 120)) (-4238 (($ (-1193 |#1| |#2|)) 44)) (-4222 (($ $ (-719)) 32)) (-1319 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $ $) 48 (|has| |#2| (-162))) (($ $ (-719)) 46 (|has| |#2| (-162)))) (-3815 (($) NIL T CONST)) (-4215 (($ $ |#1|) 102) (($ $ (-767 |#1|)) 103) (($ $ $) 25)) (-3432 (((-3 (-767 |#1|) "failed") $) NIL)) (-3431 (((-767 |#1|) $) NIL)) (-3741 (((-3 $ "failed") $) 110)) (-4226 (((-110) $) 105)) (-4225 (($ $) 106)) (-2436 (((-110) $) NIL)) (-4213 (((-110) $) NIL)) (-4214 (($ (-767 |#1|) |#2|) 19)) (-4212 (($ $) NIL)) (-4217 (((-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4230 (((-767 |#1|) $) 111)) (-4231 (((-767 |#1|) $) 114)) (-4234 (($ (-1 |#2| |#2|) $) 119)) (-4216 (($ $ |#1|) 100) (($ $ (-767 |#1|)) 101) (($ $ $) 56)) (-3513 (((-1081) $) NIL)) (-3514 (((-1045) $) NIL)) (-4239 (((-1193 |#1| |#2|) $) 84)) (-4223 (((-719) $) 117)) (-4228 (((-110) $) 70)) (-4227 ((|#2| $) 28)) (-4233 (((-805) $) 63) (($ (-516)) 77) (($ |#2|) 74) (($ (-767 |#1|)) 17) (($ |#1|) 73)) (-4229 ((|#2| $ (-767 |#1|)) 104) ((|#2| $ $) 27)) (-3385 (((-719)) 108)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 14 T CONST)) (-4237 (((-594 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2927 (($) 29 T CONST)) (-3317 (((-110) $ $) 13)) (-4116 (($ $) 88) (($ $ $) 91)) (-4118 (($ $ $) 55)) (** (($ $ (-860)) NIL) (($ $ (-719)) 49)) (* (($ (-860) $) NIL) (($ (-719) $) 47) (($ (-516) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
+(((-1202 |#1| |#2|) (-13 (-1200 |#1| |#2|) (-10 -8 (-15 -4239 ((-1193 |#1| |#2|) $)) (-15 -4238 ($ (-1193 |#1| |#2|))) (-15 -4237 ((-594 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-795) (-984)) (T -1202))
+((-4239 (*1 *2 *1) (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))) (-4238 (*1 *1 *2) (-12 (-5 *2 (-1193 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *1 (-1202 *3 *4)))) (-4237 (*1 *2 *1) (-12 (-5 *2 (-594 (-2 (|:| |k| *3) (|:| |c| (-1202 *3 *4))))) (-5 *1 (-1202 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))))
+(-13 (-1200 |#1| |#2|) (-10 -8 (-15 -4239 ((-1193 |#1| |#2|) $)) (-15 -4238 ($ (-1193 |#1| |#2|))) (-15 -4237 ((-594 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-4240 (((-594 (-1076 |#1|)) (-1 (-594 (-1076 |#1|)) (-594 (-1076 |#1|))) (-516)) 15) (((-1076 |#1|) (-1 (-1076 |#1|) (-1076 |#1|))) 11)))
+(((-1203 |#1|) (-10 -7 (-15 -4240 ((-1076 |#1|) (-1 (-1076 |#1|) (-1076 |#1|)))) (-15 -4240 ((-594 (-1076 |#1|)) (-1 (-594 (-1076 |#1|)) (-594 (-1076 |#1|))) (-516)))) (-1134)) (T -1203))
+((-4240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-594 (-1076 *5)) (-594 (-1076 *5)))) (-5 *4 (-516)) (-5 *2 (-594 (-1076 *5))) (-5 *1 (-1203 *5)) (-4 *5 (-1134)))) (-4240 (*1 *2 *3) (-12 (-5 *3 (-1 (-1076 *4) (-1076 *4))) (-5 *2 (-1076 *4)) (-5 *1 (-1203 *4)) (-4 *4 (-1134)))))
+(-10 -7 (-15 -4240 ((-1076 |#1|) (-1 (-1076 |#1|) (-1076 |#1|)))) (-15 -4240 ((-594 (-1076 |#1|)) (-1 (-594 (-1076 |#1|)) (-594 (-1076 |#1|))) (-516))))
+((-4242 (((-594 (-2 (|:| -1813 (-1092 |#1|)) (|:| -3497 (-594 (-887 |#1|))))) (-594 (-887 |#1|))) 148) (((-594 (-2 (|:| -1813 (-1092 |#1|)) (|:| -3497 (-594 (-887 |#1|))))) (-594 (-887 |#1|)) (-110)) 147) (((-594 (-2 (|:| -1813 (-1092 |#1|)) (|:| -3497 (-594 (-887 |#1|))))) (-594 (-887 |#1|)) (-110) (-110)) 146) (((-594 (-2 (|:| -1813 (-1092 |#1|)) (|:| -3497 (-594 (-887 |#1|))))) (-594 (-887 |#1|)) (-110) (-110) (-110)) 145) (((-594 (-2 (|:| -1813 (-1092 |#1|)) (|:| -3497 (-594 (-887 |#1|))))) (-981 |#1| |#2|)) 130)) (-4241 (((-594 (-981 |#1| |#2|)) (-594 (-887 |#1|))) 72) (((-594 (-981 |#1| |#2|)) (-594 (-887 |#1|)) (-110)) 71) (((-594 (-981 |#1| |#2|)) (-594 (-887 |#1|)) (-110) (-110)) 70)) (-4245 (((-594 (-1069 |#1| (-502 (-806 |#3|)) (-806 |#3|) (-728 |#1| (-806 |#3|)))) (-981 |#1| |#2|)) 61)) (-4243 (((-594 (-594 (-962 (-388 |#1|)))) (-594 (-887 |#1|))) 115) (((-594 (-594 (-962 (-388 |#1|)))) (-594 (-887 |#1|)) (-110)) 114) (((-594 (-594 (-962 (-388 |#1|)))) (-594 (-887 |#1|)) (-110) (-110)) 113) (((-594 (-594 (-962 (-388 |#1|)))) (-594 (-887 |#1|)) (-110) (-110) (-110)) 112) (((-594 (-594 (-962 (-388 |#1|)))) (-981 |#1| |#2|)) 107)) (-4244 (((-594 (-594 (-962 (-388 |#1|)))) (-594 (-887 |#1|))) 120) (((-594 (-594 (-962 (-388 |#1|)))) (-594 (-887 |#1|)) (-110)) 119) (((-594 (-594 (-962 (-388 |#1|)))) (-594 (-887 |#1|)) (-110) (-110)) 118) (((-594 (-594 (-962 (-388 |#1|)))) (-981 |#1| |#2|)) 117)) (-4246 (((-594 (-728 |#1| (-806 |#3|))) (-1069 |#1| (-502 (-806 |#3|)) (-806 |#3|) (-728 |#1| (-806 |#3|)))) 98) (((-1092 (-962 (-388 |#1|))) (-1092 |#1|)) 89) (((-887 (-962 (-388 |#1|))) (-728 |#1| (-806 |#3|))) 96) (((-887 (-962 (-388 |#1|))) (-887 |#1|)) 94) (((-728 |#1| (-806 |#3|)) (-728 |#1| (-806 |#2|))) 33)))
+(((-1204 |#1| |#2| |#3|) (-10 -7 (-15 -4241 ((-594 (-981 |#1| |#2|)) (-594 (-887 |#1|)) (-110) (-110))) (-15 -4241 ((-594 (-981 |#1| |#2|)) (-594 (-887 |#1|)) (-110))) (-15 -4241 ((-594 (-981 |#1| |#2|)) (-594 (-887 |#1|)))) (-15 -4242 ((-594 (-2 (|:| -1813 (-1092 |#1|)) (|:| -3497 (-594 (-887 |#1|))))) (-981 |#1| |#2|))) (-15 -4242 ((-594 (-2 (|:| -1813 (-1092 |#1|)) (|:| -3497 (-594 (-887 |#1|))))) (-594 (-887 |#1|)) (-110) (-110) (-110))) (-15 -4242 ((-594 (-2 (|:| -1813 (-1092 |#1|)) (|:| -3497 (-594 (-887 |#1|))))) (-594 (-887 |#1|)) (-110) (-110))) (-15 -4242 ((-594 (-2 (|:| -1813 (-1092 |#1|)) (|:| -3497 (-594 (-887 |#1|))))) (-594 (-887 |#1|)) (-110))) (-15 -4242 ((-594 (-2 (|:| -1813 (-1092 |#1|)) (|:| -3497 (-594 (-887 |#1|))))) (-594 (-887 |#1|)))) (-15 -4243 ((-594 (-594 (-962 (-388 |#1|)))) (-981 |#1| |#2|))) (-15 -4243 ((-594 (-594 (-962 (-388 |#1|)))) (-594 (-887 |#1|)) (-110) (-110) (-110))) (-15 -4243 ((-594 (-594 (-962 (-388 |#1|)))) (-594 (-887 |#1|)) (-110) (-110))) (-15 -4243 ((-594 (-594 (-962 (-388 |#1|)))) (-594 (-887 |#1|)) (-110))) (-15 -4243 ((-594 (-594 (-962 (-388 |#1|)))) (-594 (-887 |#1|)))) (-15 -4244 ((-594 (-594 (-962 (-388 |#1|)))) (-981 |#1| |#2|))) (-15 -4244 ((-594 (-594 (-962 (-388 |#1|)))) (-594 (-887 |#1|)) (-110) (-110))) (-15 -4244 ((-594 (-594 (-962 (-388 |#1|)))) (-594 (-887 |#1|)) (-110))) (-15 -4244 ((-594 (-594 (-962 (-388 |#1|)))) (-594 (-887 |#1|)))) (-15 -4245 ((-594 (-1069 |#1| (-502 (-806 |#3|)) (-806 |#3|) (-728 |#1| (-806 |#3|)))) (-981 |#1| |#2|))) (-15 -4246 ((-728 |#1| (-806 |#3|)) (-728 |#1| (-806 |#2|)))) (-15 -4246 ((-887 (-962 (-388 |#1|))) (-887 |#1|))) (-15 -4246 ((-887 (-962 (-388 |#1|))) (-728 |#1| (-806 |#3|)))) (-15 -4246 ((-1092 (-962 (-388 |#1|))) (-1092 |#1|))) (-15 -4246 ((-594 (-728 |#1| (-806 |#3|))) (-1069 |#1| (-502 (-806 |#3|)) (-806 |#3|) (-728 |#1| (-806 |#3|)))))) (-13 (-793) (-289) (-140) (-958)) (-594 (-1098)) (-594 (-1098))) (T -1204))
+((-4246 (*1 *2 *3) (-12 (-5 *3 (-1069 *4 (-502 (-806 *6)) (-806 *6) (-728 *4 (-806 *6)))) (-4 *4 (-13 (-793) (-289) (-140) (-958))) (-14 *6 (-594 (-1098))) (-5 *2 (-594 (-728 *4 (-806 *6)))) (-5 *1 (-1204 *4 *5 *6)) (-14 *5 (-594 (-1098))))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-1092 *4)) (-4 *4 (-13 (-793) (-289) (-140) (-958))) (-5 *2 (-1092 (-962 (-388 *4)))) (-5 *1 (-1204 *4 *5 *6)) (-14 *5 (-594 (-1098))) (-14 *6 (-594 (-1098))))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-728 *4 (-806 *6))) (-4 *4 (-13 (-793) (-289) (-140) (-958))) (-14 *6 (-594 (-1098))) (-5 *2 (-887 (-962 (-388 *4)))) (-5 *1 (-1204 *4 *5 *6)) (-14 *5 (-594 (-1098))))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-887 *4)) (-4 *4 (-13 (-793) (-289) (-140) (-958))) (-5 *2 (-887 (-962 (-388 *4)))) (-5 *1 (-1204 *4 *5 *6)) (-14 *5 (-594 (-1098))) (-14 *6 (-594 (-1098))))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-728 *4 (-806 *5))) (-4 *4 (-13 (-793) (-289) (-140) (-958))) (-14 *5 (-594 (-1098))) (-5 *2 (-728 *4 (-806 *6))) (-5 *1 (-1204 *4 *5 *6)) (-14 *6 (-594 (-1098))))) (-4245 (*1 *2 *3) (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-958))) (-14 *5 (-594 (-1098))) (-5 *2 (-594 (-1069 *4 (-502 (-806 *6)) (-806 *6) (-728 *4 (-806 *6))))) (-5 *1 (-1204 *4 *5 *6)) (-14 *6 (-594 (-1098))))) (-4244 (*1 *2 *3) (-12 (-5 *3 (-594 (-887 *4))) (-4 *4 (-13 (-793) (-289) (-140) (-958))) (-5 *2 (-594 (-594 (-962 (-388 *4))))) (-5 *1 (-1204 *4 *5 *6)) (-14 *5 (-594 (-1098))) (-14 *6 (-594 (-1098))))) (-4244 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-887 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-958))) (-5 *2 (-594 (-594 (-962 (-388 *5))))) (-5 *1 (-1204 *5 *6 *7)) (-14 *6 (-594 (-1098))) (-14 *7 (-594 (-1098))))) (-4244 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-594 (-887 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-958))) (-5 *2 (-594 (-594 (-962 (-388 *5))))) (-5 *1 (-1204 *5 *6 *7)) (-14 *6 (-594 (-1098))) (-14 *7 (-594 (-1098))))) (-4244 (*1 *2 *3) (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-958))) (-14 *5 (-594 (-1098))) (-5 *2 (-594 (-594 (-962 (-388 *4))))) (-5 *1 (-1204 *4 *5 *6)) (-14 *6 (-594 (-1098))))) (-4243 (*1 *2 *3) (-12 (-5 *3 (-594 (-887 *4))) (-4 *4 (-13 (-793) (-289) (-140) (-958))) (-5 *2 (-594 (-594 (-962 (-388 *4))))) (-5 *1 (-1204 *4 *5 *6)) (-14 *5 (-594 (-1098))) (-14 *6 (-594 (-1098))))) (-4243 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-887 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-958))) (-5 *2 (-594 (-594 (-962 (-388 *5))))) (-5 *1 (-1204 *5 *6 *7)) (-14 *6 (-594 (-1098))) (-14 *7 (-594 (-1098))))) (-4243 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-594 (-887 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-958))) (-5 *2 (-594 (-594 (-962 (-388 *5))))) (-5 *1 (-1204 *5 *6 *7)) (-14 *6 (-594 (-1098))) (-14 *7 (-594 (-1098))))) (-4243 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-594 (-887 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-958))) (-5 *2 (-594 (-594 (-962 (-388 *5))))) (-5 *1 (-1204 *5 *6 *7)) (-14 *6 (-594 (-1098))) (-14 *7 (-594 (-1098))))) (-4243 (*1 *2 *3) (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-958))) (-14 *5 (-594 (-1098))) (-5 *2 (-594 (-594 (-962 (-388 *4))))) (-5 *1 (-1204 *4 *5 *6)) (-14 *6 (-594 (-1098))))) (-4242 (*1 *2 *3) (-12 (-4 *4 (-13 (-793) (-289) (-140) (-958))) (-5 *2 (-594 (-2 (|:| -1813 (-1092 *4)) (|:| -3497 (-594 (-887 *4)))))) (-5 *1 (-1204 *4 *5 *6)) (-5 *3 (-594 (-887 *4))) (-14 *5 (-594 (-1098))) (-14 *6 (-594 (-1098))))) (-4242 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-958))) (-5 *2 (-594 (-2 (|:| -1813 (-1092 *5)) (|:| -3497 (-594 (-887 *5)))))) (-5 *1 (-1204 *5 *6 *7)) (-5 *3 (-594 (-887 *5))) (-14 *6 (-594 (-1098))) (-14 *7 (-594 (-1098))))) (-4242 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-958))) (-5 *2 (-594 (-2 (|:| -1813 (-1092 *5)) (|:| -3497 (-594 (-887 *5)))))) (-5 *1 (-1204 *5 *6 *7)) (-5 *3 (-594 (-887 *5))) (-14 *6 (-594 (-1098))) (-14 *7 (-594 (-1098))))) (-4242 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-958))) (-5 *2 (-594 (-2 (|:| -1813 (-1092 *5)) (|:| -3497 (-594 (-887 *5)))))) (-5 *1 (-1204 *5 *6 *7)) (-5 *3 (-594 (-887 *5))) (-14 *6 (-594 (-1098))) (-14 *7 (-594 (-1098))))) (-4242 (*1 *2 *3) (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-958))) (-14 *5 (-594 (-1098))) (-5 *2 (-594 (-2 (|:| -1813 (-1092 *4)) (|:| -3497 (-594 (-887 *4)))))) (-5 *1 (-1204 *4 *5 *6)) (-14 *6 (-594 (-1098))))) (-4241 (*1 *2 *3) (-12 (-5 *3 (-594 (-887 *4))) (-4 *4 (-13 (-793) (-289) (-140) (-958))) (-5 *2 (-594 (-981 *4 *5))) (-5 *1 (-1204 *4 *5 *6)) (-14 *5 (-594 (-1098))) (-14 *6 (-594 (-1098))))) (-4241 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-887 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-958))) (-5 *2 (-594 (-981 *5 *6))) (-5 *1 (-1204 *5 *6 *7)) (-14 *6 (-594 (-1098))) (-14 *7 (-594 (-1098))))) (-4241 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-594 (-887 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-958))) (-5 *2 (-594 (-981 *5 *6))) (-5 *1 (-1204 *5 *6 *7)) (-14 *6 (-594 (-1098))) (-14 *7 (-594 (-1098))))))
+(-10 -7 (-15 -4241 ((-594 (-981 |#1| |#2|)) (-594 (-887 |#1|)) (-110) (-110))) (-15 -4241 ((-594 (-981 |#1| |#2|)) (-594 (-887 |#1|)) (-110))) (-15 -4241 ((-594 (-981 |#1| |#2|)) (-594 (-887 |#1|)))) (-15 -4242 ((-594 (-2 (|:| -1813 (-1092 |#1|)) (|:| -3497 (-594 (-887 |#1|))))) (-981 |#1| |#2|))) (-15 -4242 ((-594 (-2 (|:| -1813 (-1092 |#1|)) (|:| -3497 (-594 (-887 |#1|))))) (-594 (-887 |#1|)) (-110) (-110) (-110))) (-15 -4242 ((-594 (-2 (|:| -1813 (-1092 |#1|)) (|:| -3497 (-594 (-887 |#1|))))) (-594 (-887 |#1|)) (-110) (-110))) (-15 -4242 ((-594 (-2 (|:| -1813 (-1092 |#1|)) (|:| -3497 (-594 (-887 |#1|))))) (-594 (-887 |#1|)) (-110))) (-15 -4242 ((-594 (-2 (|:| -1813 (-1092 |#1|)) (|:| -3497 (-594 (-887 |#1|))))) (-594 (-887 |#1|)))) (-15 -4243 ((-594 (-594 (-962 (-388 |#1|)))) (-981 |#1| |#2|))) (-15 -4243 ((-594 (-594 (-962 (-388 |#1|)))) (-594 (-887 |#1|)) (-110) (-110) (-110))) (-15 -4243 ((-594 (-594 (-962 (-388 |#1|)))) (-594 (-887 |#1|)) (-110) (-110))) (-15 -4243 ((-594 (-594 (-962 (-388 |#1|)))) (-594 (-887 |#1|)) (-110))) (-15 -4243 ((-594 (-594 (-962 (-388 |#1|)))) (-594 (-887 |#1|)))) (-15 -4244 ((-594 (-594 (-962 (-388 |#1|)))) (-981 |#1| |#2|))) (-15 -4244 ((-594 (-594 (-962 (-388 |#1|)))) (-594 (-887 |#1|)) (-110) (-110))) (-15 -4244 ((-594 (-594 (-962 (-388 |#1|)))) (-594 (-887 |#1|)) (-110))) (-15 -4244 ((-594 (-594 (-962 (-388 |#1|)))) (-594 (-887 |#1|)))) (-15 -4245 ((-594 (-1069 |#1| (-502 (-806 |#3|)) (-806 |#3|) (-728 |#1| (-806 |#3|)))) (-981 |#1| |#2|))) (-15 -4246 ((-728 |#1| (-806 |#3|)) (-728 |#1| (-806 |#2|)))) (-15 -4246 ((-887 (-962 (-388 |#1|))) (-887 |#1|))) (-15 -4246 ((-887 (-962 (-388 |#1|))) (-728 |#1| (-806 |#3|)))) (-15 -4246 ((-1092 (-962 (-388 |#1|))) (-1092 |#1|))) (-15 -4246 ((-594 (-728 |#1| (-806 |#3|))) (-1069 |#1| (-502 (-806 |#3|)) (-806 |#3|) (-728 |#1| (-806 |#3|))))))
+((-4249 (((-3 (-1179 (-388 (-516))) "failed") (-1179 |#1|) |#1|) 21)) (-4247 (((-110) (-1179 |#1|)) 12)) (-4248 (((-3 (-1179 (-516)) "failed") (-1179 |#1|)) 16)))
+(((-1205 |#1|) (-10 -7 (-15 -4247 ((-110) (-1179 |#1|))) (-15 -4248 ((-3 (-1179 (-516)) "failed") (-1179 |#1|))) (-15 -4249 ((-3 (-1179 (-388 (-516))) "failed") (-1179 |#1|) |#1|))) (-593 (-516))) (T -1205))
+((-4249 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-593 (-516))) (-5 *2 (-1179 (-388 (-516)))) (-5 *1 (-1205 *4)))) (-4248 (*1 *2 *3) (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-593 (-516))) (-5 *2 (-1179 (-516))) (-5 *1 (-1205 *4)))) (-4247 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-593 (-516))) (-5 *2 (-110)) (-5 *1 (-1205 *4)))))
+(-10 -7 (-15 -4247 ((-110) (-1179 |#1|))) (-15 -4248 ((-3 (-1179 (-516)) "failed") (-1179 |#1|))) (-15 -4249 ((-3 (-1179 (-388 (-516))) "failed") (-1179 |#1|) |#1|)))
+((-2828 (((-110) $ $) NIL)) (-3462 (((-110) $) 11)) (-1319 (((-3 $ "failed") $ $) NIL)) (-3395 (((-719)) 8)) (-3815 (($) NIL T CONST)) (-3741 (((-3 $ "failed") $) 43)) (-3258 (($) 36)) (-2436 (((-110) $) NIL)) (-3723 (((-3 $ "failed") $) 29)) (-2069 (((-860) $) 15)) (-3513 (((-1081) $) NIL)) (-3724 (($) 25 T CONST)) (-2426 (($ (-860)) 37)) (-3514 (((-1045) $) NIL)) (-4246 (((-516) $) 13)) (-4233 (((-805) $) 22) (($ (-516)) 19)) (-3385 (((-719)) 9)) (-3581 (($ $ (-860)) NIL) (($ $ (-719)) NIL)) (-2920 (($) 23 T CONST)) (-2927 (($) 24 T CONST)) (-3317 (((-110) $ $) 27)) (-4116 (($ $) 38) (($ $ $) 35)) (-4118 (($ $ $) 26)) (** (($ $ (-860)) NIL) (($ $ (-719)) 40)) (* (($ (-860) $) NIL) (($ (-719) $) NIL) (($ (-516) $) 32) (($ $ $) 31)))
+(((-1206 |#1|) (-13 (-162) (-349) (-572 (-516)) (-1074)) (-860)) (T -1206))
+NIL
+(-13 (-162) (-349) (-572 (-516)) (-1074))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-3 3142187 3142192 3142197 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3142172 3142177 3142182 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3142157 3142162 3142167 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3142142 3142147 3142152 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1206 3141272 3142017 3142094 "ZMOD" 3142099 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1205 3140382 3140546 3140755 "ZLINDEP" 3141104 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1204 3129786 3131531 3133483 "ZDSOLVE" 3138531 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1203 3129032 3129173 3129362 "YSTREAM" 3129632 NIL YSTREAM (NIL T) -7 NIL NIL) (-1202 3126801 3128337 3128540 "XRPOLY" 3128875 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1201 3123263 3124592 3125174 "XPR" 3126265 NIL XPR (NIL T T) -8 NIL NIL) (-1200 3121077 3122455 3122509 "XPOLYC" 3122794 NIL XPOLYC (NIL T T) -9 NIL 3122907) (-1199 3118800 3120421 3120624 "XPOLY" 3120917 NIL XPOLY (NIL T) -8 NIL NIL) (-1198 3115174 3117317 3117705 "XPBWPOLY" 3118458 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1197 3110554 3111853 3111907 "XFALG" 3114055 NIL XFALG (NIL T T) -9 NIL 3114842) (-1196 3106484 3108795 3108837 "XF" 3109458 NIL XF (NIL T) -9 NIL 3109857) (-1195 3106105 3106193 3106362 "XF-" 3106367 NIL XF- (NIL T T) -8 NIL NIL) (-1194 3105242 3105346 3105550 "XEXPPKG" 3105997 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1193 3103341 3105093 3105188 "XDPOLY" 3105193 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1192 3102220 3102830 3102872 "XALG" 3102934 NIL XALG (NIL T) -9 NIL 3103053) (-1191 3095723 3100204 3100697 "WUTSET" 3101812 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1190 3093535 3094342 3094693 "WP" 3095505 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1189 3092421 3092619 3092914 "WFFINTBS" 3093332 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1188 3090325 3090752 3091214 "WEIER" 3091993 NIL WEIER (NIL T) -7 NIL NIL) (-1187 3089474 3089898 3089940 "VSPACE" 3090076 NIL VSPACE (NIL T) -9 NIL 3090150) (-1186 3089312 3089339 3089430 "VSPACE-" 3089435 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1185 3089058 3089101 3089172 "VOID" 3089263 T VOID (NIL) -8 NIL NIL) (-1184 3085483 3086121 3086858 "VIEWDEF" 3088343 T VIEWDEF (NIL) -7 NIL NIL) (-1183 3074821 3077031 3079204 "VIEW3D" 3083332 T VIEW3D (NIL) -8 NIL NIL) (-1182 3067103 3068732 3070311 "VIEW2D" 3073264 T VIEW2D (NIL) -8 NIL NIL) (-1181 3065239 3065598 3066004 "VIEW" 3066719 T VIEW (NIL) -7 NIL NIL) (-1180 3063816 3064075 3064393 "VECTOR2" 3064969 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1179 3059225 3063586 3063678 "VECTOR" 3063759 NIL VECTOR (NIL T) -8 NIL NIL) (-1178 3052765 3057017 3057060 "VECTCAT" 3058048 NIL VECTCAT (NIL T) -9 NIL 3058632) (-1177 3051779 3052033 3052423 "VECTCAT-" 3052428 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1176 3051260 3051430 3051550 "VARIABLE" 3051694 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1175 3051193 3051198 3051228 "UTYPE" 3051233 T UTYPE (NIL) -9 NIL NIL) (-1174 3050028 3050182 3050443 "UTSODETL" 3051019 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1173 3047468 3047928 3048452 "UTSODE" 3049569 NIL UTSODE (NIL T T) -7 NIL NIL) (-1172 3038813 3044178 3044220 "UTSCAT" 3045321 NIL UTSCAT (NIL T) -9 NIL 3046078) (-1171 3036168 3036884 3037872 "UTSCAT-" 3037877 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1170 3035799 3035842 3035973 "UTS2" 3036119 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1169 3027643 3033439 3033927 "UTS" 3035368 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1168 3021920 3024484 3024527 "URAGG" 3026597 NIL URAGG (NIL T) -9 NIL 3027319) (-1167 3018862 3019724 3020846 "URAGG-" 3020851 NIL URAGG- (NIL T T) -8 NIL NIL) (-1166 3014555 3017479 3017950 "UPXSSING" 3018526 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1165 3007586 3014460 3014531 "UPXSCONS" 3014536 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1164 2997877 3004705 3004766 "UPXSCCA" 3005415 NIL UPXSCCA (NIL T T) -9 NIL 3005656) (-1163 2997516 2997601 2997774 "UPXSCCA-" 2997779 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1162 2987729 2994330 2994372 "UPXSCAT" 2995015 NIL UPXSCAT (NIL T) -9 NIL 2995623) (-1161 2987163 2987242 2987419 "UPXS2" 2987644 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1160 2979058 2986284 2986564 "UPXS" 2986940 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1159 2977715 2977967 2978317 "UPSQFREE" 2978802 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1158 2971606 2974661 2974715 "UPSCAT" 2975864 NIL UPSCAT (NIL T T) -9 NIL 2976638) (-1157 2970811 2971018 2971344 "UPSCAT-" 2971349 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1156 2970442 2970485 2970616 "UPOLYC2" 2970762 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1155 2956561 2964565 2964607 "UPOLYC" 2966685 NIL UPOLYC (NIL T) -9 NIL 2967906) (-1154 2947927 2950340 2953474 "UPOLYC-" 2953479 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1153 2947270 2947377 2947540 "UPMP" 2947816 NIL UPMP (NIL T T) -7 NIL NIL) (-1152 2946823 2946904 2947043 "UPDIVP" 2947183 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1151 2945391 2945640 2945956 "UPDECOMP" 2946572 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1150 2944626 2944738 2944923 "UPCDEN" 2945275 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1149 2944149 2944218 2944365 "UP2" 2944551 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1148 2935608 2943718 2943855 "UP" 2944059 NIL UP (NIL NIL T) -8 NIL NIL) (-1147 2934823 2934950 2935155 "UNISEG2" 2935451 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1146 2933340 2934027 2934304 "UNISEG" 2934581 NIL UNISEG (NIL T) -8 NIL NIL) (-1145 2932400 2932580 2932806 "UNIFACT" 2933156 NIL UNIFACT (NIL T) -7 NIL NIL) (-1144 2920381 2932305 2932376 "ULSCONS" 2932381 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1143 2903147 2915144 2915205 "ULSCCAT" 2915917 NIL ULSCCAT (NIL T T) -9 NIL 2916213) (-1142 2902234 2902467 2902842 "ULSCCAT-" 2902847 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1141 2892226 2898741 2898783 "ULSCAT" 2899639 NIL ULSCAT (NIL T) -9 NIL 2900369) (-1140 2891660 2891739 2891916 "ULS2" 2892141 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1139 2875572 2890841 2891091 "ULS" 2891467 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1138 2873970 2874937 2874967 "UFD" 2875179 T UFD (NIL) -9 NIL 2875293) (-1137 2873764 2873810 2873905 "UFD-" 2873910 NIL UFD- (NIL T) -8 NIL NIL) (-1136 2872846 2873029 2873245 "UDVO" 2873570 T UDVO (NIL) -7 NIL NIL) (-1135 2870662 2871071 2871542 "UDPO" 2872410 NIL UDPO (NIL T) -7 NIL NIL) (-1134 2870595 2870600 2870630 "TYPE" 2870635 T TYPE (NIL) -9 NIL NIL) (-1133 2869566 2869768 2870008 "TWOFACT" 2870389 NIL TWOFACT (NIL T) -7 NIL NIL) (-1132 2868504 2868841 2869104 "TUPLE" 2869338 NIL TUPLE (NIL T) -8 NIL NIL) (-1131 2866195 2866714 2867253 "TUBETOOL" 2867987 T TUBETOOL (NIL) -7 NIL NIL) (-1130 2865044 2865249 2865490 "TUBE" 2865988 NIL TUBE (NIL T) -8 NIL NIL) (-1129 2853748 2857840 2857936 "TSETCAT" 2863170 NIL TSETCAT (NIL T T T T) -9 NIL 2864701) (-1128 2848483 2850081 2851971 "TSETCAT-" 2851976 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1127 2843207 2847461 2847743 "TS" 2848235 NIL TS (NIL T) -8 NIL NIL) (-1126 2837470 2838316 2839258 "TRMANIP" 2842343 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1125 2836911 2836974 2837137 "TRIMAT" 2837402 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1124 2834717 2834954 2835317 "TRIGMNIP" 2836660 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1123 2834237 2834350 2834380 "TRIGCAT" 2834593 T TRIGCAT (NIL) -9 NIL NIL) (-1122 2833906 2833985 2834126 "TRIGCAT-" 2834131 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1121 2830806 2832766 2833046 "TREE" 2833661 NIL TREE (NIL T) -8 NIL NIL) (-1120 2830080 2830608 2830638 "TRANFUN" 2830673 T TRANFUN (NIL) -9 NIL 2830739) (-1119 2829359 2829550 2829830 "TRANFUN-" 2829835 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1118 2829163 2829195 2829256 "TOPSP" 2829320 T TOPSP (NIL) -7 NIL NIL) (-1117 2828515 2828630 2828783 "TOOLSIGN" 2829044 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1116 2827176 2827692 2827931 "TEXTFILE" 2828298 T TEXTFILE (NIL) -8 NIL NIL) (-1115 2826957 2826988 2827060 "TEX1" 2827139 NIL TEX1 (NIL T) -7 NIL NIL) (-1114 2824822 2825336 2825774 "TEX" 2826541 T TEX (NIL) -8 NIL NIL) (-1113 2824470 2824533 2824623 "TEMUTL" 2824754 T TEMUTL (NIL) -7 NIL NIL) (-1112 2822624 2822904 2823229 "TBCMPPK" 2824193 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1111 2814515 2820785 2820841 "TBAGG" 2821241 NIL TBAGG (NIL T T) -9 NIL 2821452) (-1110 2809585 2811073 2812827 "TBAGG-" 2812832 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1109 2808969 2809076 2809221 "TANEXP" 2809474 NIL TANEXP (NIL T) -7 NIL NIL) (-1108 2808381 2808480 2808618 "TABLEAU" 2808866 NIL TABLEAU (NIL T) -8 NIL NIL) (-1107 2801884 2808238 2808331 "TABLE" 2808336 NIL TABLE (NIL T T) -8 NIL NIL) (-1106 2796492 2797712 2798960 "TABLBUMP" 2800670 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1105 2795920 2796020 2796148 "SYSTEM" 2796386 T SYSTEM (NIL) -7 NIL NIL) (-1104 2792383 2793078 2793861 "SYSSOLP" 2795171 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1103 2788674 2789382 2790116 "SYNTAX" 2791671 T SYNTAX (NIL) -8 NIL NIL) (-1102 2785808 2786416 2787054 "SYMTAB" 2788058 T SYMTAB (NIL) -8 NIL NIL) (-1101 2781081 2781977 2782954 "SYMS" 2784853 T SYMS (NIL) -8 NIL NIL) (-1100 2778324 2780544 2780773 "SYMPOLY" 2780889 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1099 2777844 2777919 2778041 "SYMFUNC" 2778236 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1098 2773821 2775081 2775903 "SYMBOL" 2777044 T SYMBOL (NIL) -8 NIL NIL) (-1097 2767360 2769049 2770769 "SWITCH" 2772123 T SWITCH (NIL) -8 NIL NIL) (-1096 2760590 2766187 2766489 "SUTS" 2767115 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1095 2752484 2759711 2759991 "SUPXS" 2760367 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1094 2751643 2751770 2751987 "SUPFRACF" 2752352 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1093 2751268 2751327 2751438 "SUP2" 2751578 NIL SUP2 (NIL T T) -7 NIL NIL) (-1092 2742800 2750889 2751014 "SUP" 2751177 NIL SUP (NIL T) -8 NIL NIL) (-1091 2741218 2741492 2741854 "SUMRF" 2742499 NIL SUMRF (NIL T) -7 NIL NIL) (-1090 2740535 2740601 2740799 "SUMFS" 2741139 NIL SUMFS (NIL T T) -7 NIL NIL) (-1089 2724487 2739716 2739966 "SULS" 2740342 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1088 2723809 2724012 2724152 "SUCH" 2724395 NIL SUCH (NIL T T) -8 NIL NIL) (-1087 2717736 2718748 2719706 "SUBSPACE" 2722897 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1086 2717166 2717256 2717420 "SUBRESP" 2717624 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1085 2711339 2712459 2713606 "STTFNC" 2716066 NIL STTFNC (NIL T) -7 NIL NIL) (-1084 2704708 2706004 2707315 "STTF" 2710075 NIL STTF (NIL T) -7 NIL NIL) (-1083 2696059 2697926 2699719 "STTAYLOR" 2702949 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1082 2689305 2695923 2696006 "STRTBL" 2696011 NIL STRTBL (NIL T) -8 NIL NIL) (-1081 2684696 2689260 2689291 "STRING" 2689296 T STRING (NIL) -8 NIL NIL) (-1080 2679585 2684070 2684100 "STRICAT" 2684159 T STRICAT (NIL) -9 NIL 2684221) (-1079 2679095 2679172 2679316 "STREAM3" 2679502 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1078 2678077 2678260 2678495 "STREAM2" 2678908 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1077 2677765 2677817 2677910 "STREAM1" 2678019 NIL STREAM1 (NIL T) -7 NIL NIL) (-1076 2670481 2675288 2675908 "STREAM" 2677180 NIL STREAM (NIL T) -8 NIL NIL) (-1075 2669497 2669678 2669909 "STINPROD" 2670297 NIL STINPROD (NIL T) -7 NIL NIL) (-1074 2669076 2669260 2669290 "STEP" 2669370 T STEP (NIL) -9 NIL 2669448) (-1073 2662621 2668975 2669052 "STBL" 2669057 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1072 2657799 2661844 2661887 "STAGG" 2662040 NIL STAGG (NIL T) -9 NIL 2662129) (-1071 2655507 2656107 2656977 "STAGG-" 2656982 NIL STAGG- (NIL T T) -8 NIL NIL) (-1070 2653702 2655277 2655369 "STACK" 2655450 NIL STACK (NIL T) -8 NIL NIL) (-1069 2646460 2651849 2652304 "SREGSET" 2653332 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1068 2638900 2640268 2641780 "SRDCMPK" 2645066 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1067 2631868 2636341 2636371 "SRAGG" 2637674 T SRAGG (NIL) -9 NIL 2638282) (-1066 2630885 2631140 2631519 "SRAGG-" 2631524 NIL SRAGG- (NIL T) -8 NIL NIL) (-1065 2625338 2629804 2630231 "SQMATRIX" 2630504 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1064 2619091 2622058 2622784 "SPLTREE" 2624684 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1063 2615081 2615747 2616393 "SPLNODE" 2618517 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1062 2614128 2614361 2614391 "SPFCAT" 2614835 T SPFCAT (NIL) -9 NIL NIL) (-1061 2612865 2613075 2613339 "SPECOUT" 2613886 T SPECOUT (NIL) -7 NIL NIL) (-1060 2612626 2612666 2612735 "SPADPRSR" 2612818 T SPADPRSR (NIL) -7 NIL NIL) (-1059 2604649 2606396 2606438 "SPACEC" 2610761 NIL SPACEC (NIL T) -9 NIL 2612577) (-1058 2602820 2604582 2604630 "SPACE3" 2604635 NIL SPACE3 (NIL T) -8 NIL NIL) (-1057 2601572 2601743 2602034 "SORTPAK" 2602625 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1056 2599628 2599931 2600349 "SOLVETRA" 2601236 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1055 2598639 2598861 2599135 "SOLVESER" 2599401 NIL SOLVESER (NIL T) -7 NIL NIL) (-1054 2593859 2594740 2595742 "SOLVERAD" 2597691 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1053 2589674 2590283 2591012 "SOLVEFOR" 2593226 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1052 2584000 2589025 2589121 "SNTSCAT" 2589126 NIL SNTSCAT (NIL T T T T) -9 NIL 2589196) (-1051 2578104 2582331 2582721 "SMTS" 2583690 NIL SMTS (NIL T T T) -8 NIL NIL) (-1050 2572540 2577993 2578069 "SMP" 2578074 NIL SMP (NIL T T) -8 NIL NIL) (-1049 2570699 2571000 2571398 "SMITH" 2572237 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1048 2563662 2567854 2567956 "SMATCAT" 2569299 NIL SMATCAT (NIL NIL T T T) -9 NIL 2569848) (-1047 2560624 2561440 2562610 "SMATCAT-" 2562615 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1046 2558338 2559861 2559904 "SKAGG" 2560165 NIL SKAGG (NIL T) -9 NIL 2560300) (-1045 2554398 2557442 2557720 "SINT" 2558082 T SINT (NIL) -8 NIL NIL) (-1044 2554170 2554208 2554274 "SIMPAN" 2554354 T SIMPAN (NIL) -7 NIL NIL) (-1043 2553029 2553243 2553511 "SIGNRF" 2553936 NIL SIGNRF (NIL T) -7 NIL NIL) (-1042 2551859 2552003 2552286 "SIGNEF" 2552865 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1041 2551375 2551561 2551660 "SIG" 2551782 T SIG (NIL) -8 NIL NIL) (-1040 2549065 2549519 2550025 "SHP" 2550916 NIL SHP (NIL T NIL) -7 NIL NIL) (-1039 2542925 2548966 2549042 "SHDP" 2549047 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1038 2542415 2542607 2542637 "SGROUP" 2542789 T SGROUP (NIL) -9 NIL 2542876) (-1037 2542185 2542237 2542341 "SGROUP-" 2542346 NIL SGROUP- (NIL T) -8 NIL NIL) (-1036 2539021 2539718 2540441 "SGCF" 2541484 T SGCF (NIL) -7 NIL NIL) (-1035 2533445 2538470 2538566 "SFRTCAT" 2538571 NIL SFRTCAT (NIL T T T T) -9 NIL 2538610) (-1034 2526887 2527902 2529037 "SFRGCD" 2532428 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1033 2520034 2521105 2522290 "SFQCMPK" 2525820 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1032 2519656 2519745 2519855 "SFORT" 2519975 NIL SFORT (NIL T T) -8 NIL NIL) (-1031 2518801 2519496 2519617 "SEXOF" 2519622 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1030 2513578 2514267 2514362 "SEXCAT" 2518133 NIL SEXCAT (NIL T T T T T) -9 NIL 2518752) (-1029 2512712 2513459 2513527 "SEX" 2513532 T SEX (NIL) -8 NIL NIL) (-1028 2510969 2511429 2511732 "SETMN" 2512455 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1027 2510577 2510703 2510733 "SETCAT" 2510850 T SETCAT (NIL) -9 NIL 2510934) (-1026 2510357 2510409 2510508 "SETCAT-" 2510513 NIL SETCAT- (NIL T) -8 NIL NIL) (-1025 2506745 2508819 2508862 "SETAGG" 2509732 NIL SETAGG (NIL T) -9 NIL 2510072) (-1024 2506203 2506319 2506556 "SETAGG-" 2506561 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1023 2503383 2506137 2506185 "SET" 2506190 NIL SET (NIL T) -8 NIL NIL) (-1022 2502587 2502880 2502941 "SEGXCAT" 2503227 NIL SEGXCAT (NIL T T) -9 NIL 2503347) (-1021 2501494 2501707 2501750 "SEGCAT" 2502332 NIL SEGCAT (NIL T) -9 NIL 2502570) (-1020 2501115 2501174 2501287 "SEGBIND2" 2501429 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1019 2500164 2500494 2500694 "SEGBIND" 2500950 NIL SEGBIND (NIL T) -8 NIL NIL) (-1018 2499383 2499509 2499713 "SEG2" 2500008 NIL SEG2 (NIL T T) -7 NIL NIL) (-1017 2498439 2499049 2499231 "SEG" 2499236 NIL SEG (NIL T) -8 NIL NIL) (-1016 2497876 2498374 2498421 "SDVAR" 2498426 NIL SDVAR (NIL T) -8 NIL NIL) (-1015 2490169 2497649 2497777 "SDPOL" 2497782 NIL SDPOL (NIL T) -8 NIL NIL) (-1014 2488762 2489028 2489347 "SCPKG" 2489884 NIL SCPKG (NIL T) -7 NIL NIL) (-1013 2487898 2488078 2488278 "SCOPE" 2488584 T SCOPE (NIL) -8 NIL NIL) (-1012 2487119 2487252 2487431 "SCACHE" 2487753 NIL SCACHE (NIL T) -7 NIL NIL) (-1011 2486558 2486879 2486964 "SAOS" 2487056 T SAOS (NIL) -8 NIL NIL) (-1010 2486123 2486158 2486331 "SAERFFC" 2486517 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1009 2485716 2485751 2485910 "SAEFACT" 2486082 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1008 2479619 2485613 2485693 "SAE" 2485698 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1007 2477940 2478254 2478655 "RURPK" 2479285 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1006 2476580 2476859 2477170 "RULESET" 2477774 NIL RULESET (NIL T T T) -8 NIL NIL) (-1005 2476219 2476374 2476457 "RULECOLD" 2476532 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1004 2473417 2473920 2474383 "RULE" 2475901 NIL RULE (NIL T T T) -8 NIL NIL) (-1003 2468280 2469074 2469993 "RSETGCD" 2472616 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1002 2457593 2462618 2462714 "RSETCAT" 2466806 NIL RSETCAT (NIL T T T T) -9 NIL 2467903) (-1001 2455521 2456060 2456883 "RSETCAT-" 2456888 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1000 2447922 2449297 2450816 "RSDCMPK" 2454120 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-999 2445940 2446381 2446453 "RRCC" 2447529 NIL RRCC (NIL T T) -9 NIL 2447873) (-998 2445294 2445468 2445744 "RRCC-" 2445749 NIL RRCC- (NIL T T T) -8 NIL NIL) (-997 2419692 2429286 2429350 "RPOLCAT" 2439852 NIL RPOLCAT (NIL T T T) -9 NIL 2443010) (-996 2411232 2413558 2416664 "RPOLCAT-" 2416669 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-995 2402300 2409462 2409942 "ROUTINE" 2410772 T ROUTINE (NIL) -8 NIL NIL) (-994 2399007 2401856 2402003 "ROMAN" 2402173 T ROMAN (NIL) -8 NIL NIL) (-993 2397295 2397878 2398135 "ROIRC" 2398813 NIL ROIRC (NIL T T) -8 NIL NIL) (-992 2393704 2396004 2396032 "RNS" 2396328 T RNS (NIL) -9 NIL 2396598) (-991 2392218 2392601 2393132 "RNS-" 2393205 NIL RNS- (NIL T) -8 NIL NIL) (-990 2391644 2392052 2392080 "RNG" 2392085 T RNG (NIL) -9 NIL 2392106) (-989 2391042 2391404 2391444 "RMODULE" 2391504 NIL RMODULE (NIL T) -9 NIL 2391546) (-988 2389894 2389988 2390318 "RMCAT2" 2390943 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-987 2386608 2389077 2389398 "RMATRIX" 2389629 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-986 2379605 2381839 2381951 "RMATCAT" 2385260 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2386242) (-985 2378984 2379131 2379434 "RMATCAT-" 2379439 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-984 2378035 2378599 2378627 "RING" 2378737 T RING (NIL) -9 NIL 2378831) (-983 2377830 2377874 2377968 "RING-" 2377973 NIL RING- (NIL T) -8 NIL NIL) (-982 2376678 2376915 2377171 "RIDIST" 2377594 T RIDIST (NIL) -7 NIL NIL) (-981 2368025 2376150 2376354 "RGCHAIN" 2376526 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-980 2367674 2367737 2367838 "RFFACTOR" 2367956 NIL RFFACTOR (NIL T) -7 NIL NIL) (-979 2367402 2367437 2367532 "RFFACT" 2367633 NIL RFFACT (NIL T) -7 NIL NIL) (-978 2365532 2365896 2366276 "RFDIST" 2367042 T RFDIST (NIL) -7 NIL NIL) (-977 2362537 2363151 2363819 "RF" 2364896 NIL RF (NIL T) -7 NIL NIL) (-976 2361995 2362087 2362247 "RETSOL" 2362439 NIL RETSOL (NIL T T) -7 NIL NIL) (-975 2361588 2361668 2361709 "RETRACT" 2361899 NIL RETRACT (NIL T) -9 NIL NIL) (-974 2361440 2361465 2361549 "RETRACT-" 2361554 NIL RETRACT- (NIL T T) -8 NIL NIL) (-973 2354300 2361097 2361222 "RESULT" 2361335 T RESULT (NIL) -8 NIL NIL) (-972 2352885 2353574 2353771 "RESRING" 2354203 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-971 2352525 2352574 2352670 "RESLATC" 2352822 NIL RESLATC (NIL T) -7 NIL NIL) (-970 2352234 2352268 2352373 "REPSQ" 2352484 NIL REPSQ (NIL T) -7 NIL NIL) (-969 2351935 2351969 2352078 "REPDB" 2352193 NIL REPDB (NIL T) -7 NIL NIL) (-968 2345880 2347259 2348479 "REP2" 2350747 NIL REP2 (NIL T) -7 NIL NIL) (-967 2342286 2342967 2343772 "REP1" 2345107 NIL REP1 (NIL T) -7 NIL NIL) (-966 2339717 2340297 2340897 "REP" 2341706 T REP (NIL) -7 NIL NIL) (-965 2332488 2337876 2338329 "REGSET" 2339347 NIL REGSET (NIL T T T T) -8 NIL NIL) (-964 2331309 2331644 2331892 "REF" 2332273 NIL REF (NIL T) -8 NIL NIL) (-963 2330690 2330793 2330958 "REDORDER" 2331193 NIL REDORDER (NIL T T) -7 NIL NIL) (-962 2326690 2329924 2330145 "RECLOS" 2330521 NIL RECLOS (NIL T) -8 NIL NIL) (-961 2325747 2325928 2326141 "REALSOLV" 2326497 T REALSOLV (NIL) -7 NIL NIL) (-960 2322238 2323040 2323922 "REAL0Q" 2324912 NIL REAL0Q (NIL T) -7 NIL NIL) (-959 2317849 2318837 2319896 "REAL0" 2321219 NIL REAL0 (NIL T) -7 NIL NIL) (-958 2317697 2317738 2317766 "REAL" 2317771 T REAL (NIL) -9 NIL 2317806) (-957 2317105 2317177 2317382 "RDIV" 2317619 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-956 2316178 2316352 2316563 "RDIST" 2316927 NIL RDIST (NIL T) -7 NIL NIL) (-955 2314782 2315069 2315438 "RDETRS" 2315886 NIL RDETRS (NIL T T) -7 NIL NIL) (-954 2312603 2313057 2313592 "RDETR" 2314324 NIL RDETR (NIL T T) -7 NIL NIL) (-953 2311219 2311497 2311898 "RDEEFS" 2312319 NIL RDEEFS (NIL T T) -7 NIL NIL) (-952 2309719 2310025 2310454 "RDEEF" 2310907 NIL RDEEF (NIL T T) -7 NIL NIL) (-951 2304013 2306936 2306964 "RCFIELD" 2308241 T RCFIELD (NIL) -9 NIL 2308971) (-950 2302082 2302586 2303279 "RCFIELD-" 2303352 NIL RCFIELD- (NIL T) -8 NIL NIL) (-949 2298414 2300199 2300240 "RCAGG" 2301311 NIL RCAGG (NIL T) -9 NIL 2301776) (-948 2298045 2298139 2298299 "RCAGG-" 2298304 NIL RCAGG- (NIL T T) -8 NIL NIL) (-947 2297389 2297501 2297663 "RATRET" 2297929 NIL RATRET (NIL T) -7 NIL NIL) (-946 2296946 2297013 2297132 "RATFACT" 2297317 NIL RATFACT (NIL T) -7 NIL NIL) (-945 2296261 2296381 2296531 "RANDSRC" 2296816 T RANDSRC (NIL) -7 NIL NIL) (-944 2295998 2296042 2296113 "RADUTIL" 2296210 T RADUTIL (NIL) -7 NIL NIL) (-943 2289026 2294741 2295058 "RADIX" 2295713 NIL RADIX (NIL NIL) -8 NIL NIL) (-942 2280606 2288870 2288998 "RADFF" 2289003 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-941 2280258 2280333 2280361 "RADCAT" 2280518 T RADCAT (NIL) -9 NIL NIL) (-940 2280043 2280091 2280188 "RADCAT-" 2280193 NIL RADCAT- (NIL T) -8 NIL NIL) (-939 2278194 2279818 2279907 "QUEUE" 2279987 NIL QUEUE (NIL T) -8 NIL NIL) (-938 2277832 2277875 2278002 "QUATCT2" 2278145 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-937 2271633 2275006 2275046 "QUATCAT" 2275825 NIL QUATCAT (NIL T) -9 NIL 2276590) (-936 2267798 2268828 2270208 "QUATCAT-" 2270302 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-935 2264302 2267735 2267780 "QUAT" 2267785 NIL QUAT (NIL T) -8 NIL NIL) (-934 2261823 2263387 2263428 "QUAGG" 2263803 NIL QUAGG (NIL T) -9 NIL 2263978) (-933 2260748 2261221 2261393 "QFORM" 2261695 NIL QFORM (NIL NIL T) -8 NIL NIL) (-932 2260386 2260429 2260556 "QFCAT2" 2260699 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-931 2251699 2256941 2256981 "QFCAT" 2257639 NIL QFCAT (NIL T) -9 NIL 2258632) (-930 2247307 2248496 2250075 "QFCAT-" 2250169 NIL QFCAT- (NIL T T) -8 NIL NIL) (-929 2246767 2246877 2247007 "QEQUAT" 2247197 T QEQUAT (NIL) -8 NIL NIL) (-928 2239934 2241005 2242188 "QCMPACK" 2245700 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-927 2239179 2239353 2239585 "QALGSET2" 2239754 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-926 2236761 2237180 2237606 "QALGSET" 2238836 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-925 2235452 2235675 2235992 "PWFFINTB" 2236534 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-924 2233657 2233825 2234178 "PUSHVAR" 2235266 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-923 2229575 2230629 2230670 "PTRANFN" 2232554 NIL PTRANFN (NIL T) -9 NIL NIL) (-922 2227987 2228278 2228599 "PTPACK" 2229286 NIL PTPACK (NIL T) -7 NIL NIL) (-921 2227623 2227680 2227787 "PTFUNC2" 2227924 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-920 2222100 2226441 2226481 "PTCAT" 2226849 NIL PTCAT (NIL T) -9 NIL 2227011) (-919 2221758 2221793 2221917 "PSQFR" 2222059 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-918 2220353 2220651 2220985 "PSEUDLIN" 2221456 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-917 2207160 2209525 2211848 "PSETPK" 2218113 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-916 2200247 2202961 2203055 "PSETCAT" 2206036 NIL PSETCAT (NIL T T T T) -9 NIL 2206850) (-915 2198085 2198719 2199538 "PSETCAT-" 2199543 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-914 2197434 2197599 2197627 "PSCURVE" 2197895 T PSCURVE (NIL) -9 NIL 2198062) (-913 2193886 2195412 2195476 "PSCAT" 2196312 NIL PSCAT (NIL T T T) -9 NIL 2196552) (-912 2192950 2193166 2193565 "PSCAT-" 2193570 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-911 2191602 2192235 2192449 "PRTITION" 2192756 T PRTITION (NIL) -8 NIL NIL) (-910 2180700 2182906 2185094 "PRS" 2189464 NIL PRS (NIL T T) -7 NIL NIL) (-909 2178559 2180051 2180091 "PRQAGG" 2180274 NIL PRQAGG (NIL T) -9 NIL 2180376) (-908 2178130 2178232 2178260 "PROPLOG" 2178445 T PROPLOG (NIL) -9 NIL NIL) (-907 2175253 2175818 2176345 "PROPFRML" 2177635 NIL PROPFRML (NIL T) -8 NIL NIL) (-906 2174713 2174823 2174953 "PROPERTY" 2175143 T PROPERTY (NIL) -8 NIL NIL) (-905 2168487 2172879 2173699 "PRODUCT" 2173939 NIL PRODUCT (NIL T T) -8 NIL NIL) (-904 2168283 2168315 2168374 "PRINT" 2168448 T PRINT (NIL) -7 NIL NIL) (-903 2167623 2167740 2167892 "PRIMES" 2168163 NIL PRIMES (NIL T) -7 NIL NIL) (-902 2165688 2166089 2166555 "PRIMELT" 2167202 NIL PRIMELT (NIL T) -7 NIL NIL) (-901 2165417 2165466 2165494 "PRIMCAT" 2165618 T PRIMCAT (NIL) -9 NIL NIL) (-900 2164424 2164602 2164830 "PRIMARR2" 2165235 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-899 2160585 2164362 2164407 "PRIMARR" 2164412 NIL PRIMARR (NIL T) -8 NIL NIL) (-898 2160228 2160284 2160395 "PREASSOC" 2160523 NIL PREASSOC (NIL T T) -7 NIL NIL) (-897 2157511 2159688 2159921 "PR" 2160039 NIL PR (NIL T T) -8 NIL NIL) (-896 2156986 2157119 2157147 "PPCURVE" 2157352 T PPCURVE (NIL) -9 NIL 2157488) (-895 2156608 2156781 2156864 "PORTNUM" 2156923 T PORTNUM (NIL) -8 NIL NIL) (-894 2153967 2154366 2154958 "POLYROOT" 2156189 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-893 2153352 2153410 2153643 "POLYLIFT" 2153903 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-892 2149637 2150086 2150714 "POLYCATQ" 2152897 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-891 2136692 2142075 2142139 "POLYCAT" 2145624 NIL POLYCAT (NIL T T T) -9 NIL 2147551) (-890 2130200 2132042 2134406 "POLYCAT-" 2134411 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-889 2129789 2129857 2129976 "POLY2UP" 2130126 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-888 2129425 2129482 2129589 "POLY2" 2129726 NIL POLY2 (NIL T T) -7 NIL NIL) (-887 2123362 2129031 2129190 "POLY" 2129298 NIL POLY (NIL T) -8 NIL NIL) (-886 2122047 2122286 2122562 "POLUTIL" 2123136 NIL POLUTIL (NIL T T) -7 NIL NIL) (-885 2120409 2120686 2121016 "POLTOPOL" 2121769 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-884 2115932 2120346 2120391 "POINT" 2120396 NIL POINT (NIL T) -8 NIL NIL) (-883 2114119 2114476 2114851 "PNTHEORY" 2115577 T PNTHEORY (NIL) -7 NIL NIL) (-882 2112547 2112844 2113253 "PMTOOLS" 2113817 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-881 2112140 2112218 2112335 "PMSYM" 2112463 NIL PMSYM (NIL T) -7 NIL NIL) (-880 2111650 2111719 2111893 "PMQFCAT" 2112065 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-879 2111046 2111132 2111293 "PMPREDFS" 2111551 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-878 2110401 2110511 2110667 "PMPRED" 2110923 NIL PMPRED (NIL T) -7 NIL NIL) (-877 2109047 2109255 2109639 "PMPLCAT" 2110163 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-876 2108579 2108658 2108810 "PMLSAGG" 2108962 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-875 2108056 2108132 2108312 "PMKERNEL" 2108497 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-874 2107673 2107748 2107861 "PMINS" 2107975 NIL PMINS (NIL T) -7 NIL NIL) (-873 2107103 2107172 2107387 "PMFS" 2107598 NIL PMFS (NIL T T T) -7 NIL NIL) (-872 2106334 2106452 2106656 "PMDOWN" 2106980 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-871 2105608 2105719 2105882 "PMASSFS" 2106220 NIL PMASSFS (NIL T T) -7 NIL NIL) (-870 2104771 2104930 2105112 "PMASS" 2105446 T PMASS (NIL) -7 NIL NIL) (-869 2104426 2104494 2104588 "PLOTTOOL" 2104697 T PLOTTOOL (NIL) -7 NIL NIL) (-868 2100240 2101274 2102195 "PLOT3D" 2103525 T PLOT3D (NIL) -8 NIL NIL) (-867 2099152 2099329 2099564 "PLOT1" 2100044 NIL PLOT1 (NIL T) -7 NIL NIL) (-866 2093774 2094963 2096111 "PLOT" 2098024 T PLOT (NIL) -8 NIL NIL) (-865 2069168 2073840 2078691 "PLEQN" 2089040 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-864 2068861 2068908 2069011 "PINTERPA" 2069115 NIL PINTERPA (NIL T T) -7 NIL NIL) (-863 2068179 2068301 2068481 "PINTERP" 2068726 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-862 2066571 2067556 2067584 "PID" 2067766 T PID (NIL) -9 NIL 2067900) (-861 2066296 2066333 2066421 "PICOERCE" 2066528 NIL PICOERCE (NIL T) -7 NIL NIL) (-860 2065535 2066102 2066189 "PI" 2066229 T PI (NIL) -8 NIL NIL) (-859 2064855 2064994 2065170 "PGROEB" 2065391 NIL PGROEB (NIL T) -7 NIL NIL) (-858 2060442 2061256 2062161 "PGE" 2063970 T PGE (NIL) -7 NIL NIL) (-857 2058566 2058812 2059178 "PGCD" 2060159 NIL PGCD (NIL T T T T) -7 NIL NIL) (-856 2057904 2058007 2058168 "PFRPAC" 2058450 NIL PFRPAC (NIL T) -7 NIL NIL) (-855 2054521 2056452 2056805 "PFR" 2057583 NIL PFR (NIL T) -8 NIL NIL) (-854 2052910 2053154 2053479 "PFOTOOLS" 2054268 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-853 2051443 2051682 2052033 "PFOQ" 2052667 NIL PFOQ (NIL T T T) -7 NIL NIL) (-852 2049920 2050132 2050494 "PFO" 2051227 NIL PFO (NIL T T T T T) -7 NIL NIL) (-851 2047349 2048630 2048658 "PFECAT" 2049243 T PFECAT (NIL) -9 NIL 2049627) (-850 2046794 2046948 2047162 "PFECAT-" 2047167 NIL PFECAT- (NIL T) -8 NIL NIL) (-849 2045398 2045649 2045950 "PFBRU" 2046543 NIL PFBRU (NIL T T) -7 NIL NIL) (-848 2043265 2043616 2044048 "PFBR" 2045049 NIL PFBR (NIL T T T T) -7 NIL NIL) (-847 2039790 2043154 2043223 "PF" 2043228 NIL PF (NIL NIL) -8 NIL NIL) (-846 2035055 2035997 2036867 "PERMGRP" 2038953 NIL PERMGRP (NIL T) -8 NIL NIL) (-845 2033126 2034119 2034160 "PERMCAT" 2034606 NIL PERMCAT (NIL T) -9 NIL 2034911) (-844 2032781 2032822 2032945 "PERMAN" 2033079 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-843 2028632 2030157 2030833 "PERM" 2032138 NIL PERM (NIL T) -8 NIL NIL) (-842 2026074 2028201 2028332 "PENDTREE" 2028534 NIL PENDTREE (NIL T) -8 NIL NIL) (-841 2024147 2024925 2024966 "PDRING" 2025623 NIL PDRING (NIL T) -9 NIL 2025908) (-840 2023250 2023468 2023830 "PDRING-" 2023835 NIL PDRING- (NIL T T) -8 NIL NIL) (-839 2020391 2021142 2021833 "PDEPROB" 2022579 T PDEPROB (NIL) -8 NIL NIL) (-838 2017962 2018458 2019007 "PDEPACK" 2019862 T PDEPACK (NIL) -7 NIL NIL) (-837 2016874 2017064 2017315 "PDECOMP" 2017761 NIL PDECOMP (NIL T T) -7 NIL NIL) (-836 2014486 2015301 2015329 "PDECAT" 2016114 T PDECAT (NIL) -9 NIL 2016825) (-835 2014239 2014272 2014361 "PCOMP" 2014447 NIL PCOMP (NIL T T) -7 NIL NIL) (-834 2012446 2013042 2013338 "PBWLB" 2013969 NIL PBWLB (NIL T) -8 NIL NIL) (-833 2012078 2012135 2012244 "PATTERN2" 2012383 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-832 2009835 2010223 2010680 "PATTERN1" 2011667 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-831 2002345 2003912 2005248 "PATTERN" 2008520 NIL PATTERN (NIL T) -8 NIL NIL) (-830 2001909 2001976 2002108 "PATRES2" 2002272 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-829 1999304 1999858 2000339 "PATRES" 2001474 NIL PATRES (NIL T T) -8 NIL NIL) (-828 1997201 1997601 1998006 "PATMATCH" 1998973 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-827 1996738 1996921 1996962 "PATMAB" 1997069 NIL PATMAB (NIL T) -9 NIL 1997152) (-826 1995283 1995592 1995850 "PATLRES" 1996543 NIL PATLRES (NIL T T T) -8 NIL NIL) (-825 1994829 1994952 1994993 "PATAB" 1994998 NIL PATAB (NIL T) -9 NIL 1995170) (-824 1992310 1992842 1993415 "PARTPERM" 1994276 T PARTPERM (NIL) -7 NIL NIL) (-823 1991931 1991994 1992096 "PARSURF" 1992241 NIL PARSURF (NIL T) -8 NIL NIL) (-822 1991563 1991620 1991729 "PARSU2" 1991868 NIL PARSU2 (NIL T T) -7 NIL NIL) (-821 1991327 1991367 1991434 "PARSER" 1991516 T PARSER (NIL) -7 NIL NIL) (-820 1990948 1991011 1991113 "PARSCURV" 1991258 NIL PARSCURV (NIL T) -8 NIL NIL) (-819 1990580 1990637 1990746 "PARSC2" 1990885 NIL PARSC2 (NIL T T) -7 NIL NIL) (-818 1990219 1990277 1990374 "PARPCURV" 1990516 NIL PARPCURV (NIL T) -8 NIL NIL) (-817 1989851 1989908 1990017 "PARPC2" 1990156 NIL PARPC2 (NIL T T) -7 NIL NIL) (-816 1989371 1989457 1989576 "PAN2EXPR" 1989752 T PAN2EXPR (NIL) -7 NIL NIL) (-815 1988177 1988492 1988720 "PALETTE" 1989163 T PALETTE (NIL) -8 NIL NIL) (-814 1986645 1987182 1987542 "PAIR" 1987863 NIL PAIR (NIL T T) -8 NIL NIL) (-813 1980516 1985904 1986098 "PADICRC" 1986500 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-812 1973745 1979862 1980046 "PADICRAT" 1980364 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-811 1970952 1972524 1972564 "PADICCT" 1973145 NIL PADICCT (NIL NIL) -9 NIL 1973427) (-810 1969258 1970889 1970934 "PADIC" 1970939 NIL PADIC (NIL NIL) -8 NIL NIL) (-809 1968215 1968415 1968683 "PADEPAC" 1969045 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-808 1967427 1967560 1967766 "PADE" 1968077 NIL PADE (NIL T T T) -7 NIL NIL) (-807 1965438 1966270 1966585 "OWP" 1967195 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-806 1964547 1965043 1965215 "OVAR" 1965306 NIL OVAR (NIL NIL) -8 NIL NIL) (-805 1953601 1955772 1957942 "OUTFORM" 1962397 T OUTFORM (NIL) -8 NIL NIL) (-804 1952865 1952986 1953147 "OUT" 1953460 T OUT (NIL) -7 NIL NIL) (-803 1952273 1952594 1952683 "OSI" 1952796 T OSI (NIL) -8 NIL NIL) (-802 1951804 1952142 1952170 "OSGROUP" 1952175 T OSGROUP (NIL) -9 NIL 1952197) (-801 1950549 1950776 1951061 "ORTHPOL" 1951551 NIL ORTHPOL (NIL T) -7 NIL NIL) (-800 1947934 1950210 1950348 "OREUP" 1950492 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-799 1945344 1947627 1947753 "ORESUP" 1947876 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-798 1942879 1943379 1943939 "OREPCTO" 1944833 NIL OREPCTO (NIL T T) -7 NIL NIL) (-797 1936796 1938995 1939035 "OREPCAT" 1941356 NIL OREPCAT (NIL T) -9 NIL 1942459) (-796 1933965 1934740 1935790 "OREPCAT-" 1935795 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-795 1933143 1933415 1933443 "ORDSET" 1933752 T ORDSET (NIL) -9 NIL 1933916) (-794 1932662 1932784 1932977 "ORDSET-" 1932982 NIL ORDSET- (NIL T) -8 NIL NIL) (-793 1931276 1932077 1932105 "ORDRING" 1932307 T ORDRING (NIL) -9 NIL 1932431) (-792 1930921 1931015 1931159 "ORDRING-" 1931164 NIL ORDRING- (NIL T) -8 NIL NIL) (-791 1930284 1930765 1930793 "ORDMON" 1930798 T ORDMON (NIL) -9 NIL 1930819) (-790 1929446 1929593 1929788 "ORDFUNS" 1930133 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-789 1928958 1929317 1929345 "ORDFIN" 1929350 T ORDFIN (NIL) -9 NIL 1929371) (-788 1928224 1928351 1928537 "ORDCOMP2" 1928818 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-787 1924743 1926810 1927219 "ORDCOMP" 1927848 NIL ORDCOMP (NIL T) -8 NIL NIL) (-786 1921250 1922133 1922970 "OPTPROB" 1923926 T OPTPROB (NIL) -8 NIL NIL) (-785 1918092 1918721 1919415 "OPTPACK" 1920576 T OPTPACK (NIL) -7 NIL NIL) (-784 1915818 1916554 1916582 "OPTCAT" 1917397 T OPTCAT (NIL) -9 NIL 1918043) (-783 1915586 1915625 1915691 "OPQUERY" 1915772 T OPQUERY (NIL) -7 NIL NIL) (-782 1912724 1913913 1914413 "OP" 1915118 NIL OP (NIL T) -8 NIL NIL) (-781 1912029 1912144 1912318 "ONECOMP2" 1912596 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-780 1908801 1910826 1911195 "ONECOMP" 1911693 NIL ONECOMP (NIL T) -8 NIL NIL) (-779 1908220 1908326 1908456 "OMSERVER" 1908691 T OMSERVER (NIL) -7 NIL NIL) (-778 1905109 1907661 1907701 "OMSAGG" 1907762 NIL OMSAGG (NIL T) -9 NIL 1907826) (-777 1903732 1903995 1904277 "OMPKG" 1904847 T OMPKG (NIL) -7 NIL NIL) (-776 1902271 1903284 1903452 "OMLO" 1903613 NIL OMLO (NIL T T) -8 NIL NIL) (-775 1901201 1901348 1901574 "OMEXPR" 1902097 NIL OMEXPR (NIL T) -7 NIL NIL) (-774 1900379 1900622 1900782 "OMERRK" 1901061 T OMERRK (NIL) -8 NIL NIL) (-773 1899697 1899925 1900061 "OMERR" 1900263 T OMERR (NIL) -8 NIL NIL) (-772 1899175 1899374 1899482 "OMENC" 1899609 T OMENC (NIL) -8 NIL NIL) (-771 1893070 1894255 1895426 "OMDEV" 1898024 T OMDEV (NIL) -8 NIL NIL) (-770 1892139 1892310 1892504 "OMCONN" 1892896 T OMCONN (NIL) -8 NIL NIL) (-769 1891569 1891672 1891700 "OM" 1891999 T OM (NIL) -9 NIL NIL) (-768 1890185 1891171 1891199 "OINTDOM" 1891204 T OINTDOM (NIL) -9 NIL 1891225) (-767 1885947 1887177 1887892 "OFMONOID" 1889502 NIL OFMONOID (NIL T) -8 NIL NIL) (-766 1885385 1885884 1885929 "ODVAR" 1885934 NIL ODVAR (NIL T) -8 NIL NIL) (-765 1882512 1884882 1885067 "ODR" 1885260 NIL ODR (NIL T T NIL) -8 NIL NIL) (-764 1874859 1882291 1882415 "ODPOL" 1882420 NIL ODPOL (NIL T) -8 NIL NIL) (-763 1868689 1874731 1874836 "ODP" 1874841 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-762 1867455 1867670 1867945 "ODETOOLS" 1868463 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-761 1864424 1865080 1865796 "ODESYS" 1866788 NIL ODESYS (NIL T T) -7 NIL NIL) (-760 1859328 1860236 1861259 "ODERTRIC" 1863499 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-759 1858754 1858836 1859030 "ODERED" 1859240 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-758 1855664 1856210 1856883 "ODERAT" 1858179 NIL ODERAT (NIL T T) -7 NIL NIL) (-757 1852632 1853096 1853692 "ODEPRRIC" 1855193 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-756 1850501 1851070 1851579 "ODEPROB" 1852143 T ODEPROB (NIL) -8 NIL NIL) (-755 1847033 1847516 1848162 "ODEPRIM" 1849980 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-754 1846286 1846388 1846646 "ODEPAL" 1846925 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-753 1842488 1843269 1844123 "ODEPACK" 1845452 T ODEPACK (NIL) -7 NIL NIL) (-752 1841525 1841632 1841860 "ODEINT" 1842377 NIL ODEINT (NIL T T) -7 NIL NIL) (-751 1835626 1837051 1838498 "ODEIFTBL" 1840098 T ODEIFTBL (NIL) -8 NIL NIL) (-750 1830984 1831766 1832720 "ODEEF" 1834789 NIL ODEEF (NIL T T) -7 NIL NIL) (-749 1830321 1830410 1830639 "ODECONST" 1830889 NIL ODECONST (NIL T T T) -7 NIL NIL) (-748 1828479 1829112 1829140 "ODECAT" 1829743 T ODECAT (NIL) -9 NIL 1830272) (-747 1828117 1828160 1828287 "OCTCT2" 1828430 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-746 1825001 1827829 1827948 "OCT" 1828030 NIL OCT (NIL T) -8 NIL NIL) (-745 1824380 1824822 1824850 "OCAMON" 1824855 T OCAMON (NIL) -9 NIL 1824876) (-744 1819221 1821652 1821692 "OC" 1822788 NIL OC (NIL T) -9 NIL 1823645) (-743 1816469 1817210 1818193 "OC-" 1818287 NIL OC- (NIL T T) -8 NIL NIL) (-742 1816027 1816342 1816370 "OASGP" 1816375 T OASGP (NIL) -9 NIL 1816395) (-741 1815315 1815778 1815806 "OAMONS" 1815846 T OAMONS (NIL) -9 NIL 1815889) (-740 1814756 1815163 1815191 "OAMON" 1815196 T OAMON (NIL) -9 NIL 1815216) (-739 1814061 1814553 1814581 "OAGROUP" 1814586 T OAGROUP (NIL) -9 NIL 1814606) (-738 1813751 1813801 1813889 "NUMTUBE" 1814005 NIL NUMTUBE (NIL T) -7 NIL NIL) (-737 1807324 1808842 1810378 "NUMQUAD" 1812235 T NUMQUAD (NIL) -7 NIL NIL) (-736 1803080 1804068 1805093 "NUMODE" 1806319 T NUMODE (NIL) -7 NIL NIL) (-735 1800484 1801330 1801358 "NUMINT" 1802275 T NUMINT (NIL) -9 NIL 1803031) (-734 1799432 1799629 1799847 "NUMFMT" 1800286 T NUMFMT (NIL) -7 NIL NIL) (-733 1785811 1788748 1791278 "NUMERIC" 1796941 NIL NUMERIC (NIL T) -7 NIL NIL) (-732 1780237 1785262 1785356 "NTSCAT" 1785361 NIL NTSCAT (NIL T T T T) -9 NIL 1785400) (-731 1779431 1779596 1779789 "NTPOLFN" 1780076 NIL NTPOLFN (NIL T) -7 NIL NIL) (-730 1779067 1779124 1779231 "NSUP2" 1779368 NIL NSUP2 (NIL T T) -7 NIL NIL) (-729 1766928 1775909 1776719 "NSUP" 1778289 NIL NSUP (NIL T) -8 NIL NIL) (-728 1756938 1766707 1766837 "NSMP" 1766842 NIL NSMP (NIL T T) -8 NIL NIL) (-727 1755370 1755671 1756028 "NREP" 1756626 NIL NREP (NIL T) -7 NIL NIL) (-726 1753961 1754213 1754571 "NPCOEF" 1755113 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-725 1753027 1753142 1753358 "NORMRETR" 1753842 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-724 1751074 1751364 1751772 "NORMPK" 1752735 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-723 1750759 1750787 1750911 "NORMMA" 1751040 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-722 1750548 1750577 1750646 "NONE1" 1750723 NIL NONE1 (NIL T) -7 NIL NIL) (-721 1750375 1750505 1750534 "NONE" 1750539 T NONE (NIL) -8 NIL NIL) (-720 1749860 1749922 1750107 "NODE1" 1750307 NIL NODE1 (NIL T T) -7 NIL NIL) (-719 1748154 1749023 1749278 "NNI" 1749625 T NNI (NIL) -8 NIL NIL) (-718 1746574 1746887 1747251 "NLINSOL" 1747822 NIL NLINSOL (NIL T) -7 NIL NIL) (-717 1742741 1743709 1744631 "NIPROB" 1745672 T NIPROB (NIL) -8 NIL NIL) (-716 1741498 1741732 1742034 "NFINTBAS" 1742503 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-715 1740206 1740437 1740718 "NCODIV" 1741266 NIL NCODIV (NIL T T) -7 NIL NIL) (-714 1739968 1740005 1740080 "NCNTFRAC" 1740163 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-713 1738148 1738512 1738932 "NCEP" 1739593 NIL NCEP (NIL T) -7 NIL NIL) (-712 1737067 1737799 1737827 "NASRING" 1737937 T NASRING (NIL) -9 NIL 1738011) (-711 1736862 1736906 1737000 "NASRING-" 1737005 NIL NASRING- (NIL T) -8 NIL NIL) (-710 1736016 1736515 1736543 "NARNG" 1736660 T NARNG (NIL) -9 NIL 1736751) (-709 1735708 1735775 1735909 "NARNG-" 1735914 NIL NARNG- (NIL T) -8 NIL NIL) (-708 1734587 1734794 1735029 "NAGSP" 1735493 T NAGSP (NIL) -7 NIL NIL) (-707 1726011 1727657 1729292 "NAGS" 1732972 T NAGS (NIL) -7 NIL NIL) (-706 1724575 1724879 1725206 "NAGF07" 1725704 T NAGF07 (NIL) -7 NIL NIL) (-705 1719157 1720437 1721733 "NAGF04" 1723299 T NAGF04 (NIL) -7 NIL NIL) (-704 1712189 1713787 1715404 "NAGF02" 1717560 T NAGF02 (NIL) -7 NIL NIL) (-703 1707453 1708543 1709650 "NAGF01" 1711102 T NAGF01 (NIL) -7 NIL NIL) (-702 1701113 1702671 1704248 "NAGE04" 1705896 T NAGE04 (NIL) -7 NIL NIL) (-701 1692354 1694457 1696569 "NAGE02" 1699021 T NAGE02 (NIL) -7 NIL NIL) (-700 1688347 1689284 1690238 "NAGE01" 1691420 T NAGE01 (NIL) -7 NIL NIL) (-699 1686154 1686685 1687240 "NAGD03" 1687812 T NAGD03 (NIL) -7 NIL NIL) (-698 1677940 1679859 1681804 "NAGD02" 1684229 T NAGD02 (NIL) -7 NIL NIL) (-697 1671799 1673212 1674640 "NAGD01" 1676532 T NAGD01 (NIL) -7 NIL NIL) (-696 1668056 1668866 1669691 "NAGC06" 1670994 T NAGC06 (NIL) -7 NIL NIL) (-695 1666533 1666862 1667215 "NAGC05" 1667723 T NAGC05 (NIL) -7 NIL NIL) (-694 1665917 1666034 1666176 "NAGC02" 1666411 T NAGC02 (NIL) -7 NIL NIL) (-693 1664979 1665536 1665576 "NAALG" 1665655 NIL NAALG (NIL T) -9 NIL 1665716) (-692 1664814 1664843 1664933 "NAALG-" 1664938 NIL NAALG- (NIL T T) -8 NIL NIL) (-691 1658764 1659872 1661059 "MULTSQFR" 1663710 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-690 1658083 1658158 1658342 "MULTFACT" 1658676 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-689 1651277 1655188 1655240 "MTSCAT" 1656300 NIL MTSCAT (NIL T T) -9 NIL 1656814) (-688 1650989 1651043 1651135 "MTHING" 1651217 NIL MTHING (NIL T) -7 NIL NIL) (-687 1650781 1650814 1650874 "MSYSCMD" 1650949 T MSYSCMD (NIL) -7 NIL NIL) (-686 1647877 1650343 1650384 "MSETAGG" 1650389 NIL MSETAGG (NIL T) -9 NIL 1650423) (-685 1643989 1646632 1646952 "MSET" 1647590 NIL MSET (NIL T) -8 NIL NIL) (-684 1639847 1641387 1642128 "MRING" 1643292 NIL MRING (NIL T T) -8 NIL NIL) (-683 1639417 1639484 1639613 "MRF2" 1639774 NIL MRF2 (NIL T T T) -7 NIL NIL) (-682 1639035 1639070 1639214 "MRATFAC" 1639376 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-681 1636647 1636942 1637373 "MPRFF" 1638740 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-680 1630693 1636502 1636598 "MPOLY" 1636603 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-679 1630183 1630218 1630426 "MPCPF" 1630652 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-678 1629699 1629742 1629925 "MPC3" 1630134 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-677 1628900 1628981 1629200 "MPC2" 1629614 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-676 1627201 1627538 1627928 "MONOTOOL" 1628560 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-675 1626326 1626661 1626689 "MONOID" 1626966 T MONOID (NIL) -9 NIL 1627138) (-674 1625704 1625867 1626110 "MONOID-" 1626115 NIL MONOID- (NIL T) -8 NIL NIL) (-673 1616694 1622671 1622730 "MONOGEN" 1623404 NIL MONOGEN (NIL T T) -9 NIL 1623860) (-672 1613933 1614661 1615654 "MONOGEN-" 1615773 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-671 1612793 1613213 1613241 "MONADWU" 1613633 T MONADWU (NIL) -9 NIL 1613871) (-670 1612165 1612324 1612572 "MONADWU-" 1612577 NIL MONADWU- (NIL T) -8 NIL NIL) (-669 1611551 1611769 1611797 "MONAD" 1612004 T MONAD (NIL) -9 NIL 1612116) (-668 1611236 1611314 1611446 "MONAD-" 1611451 NIL MONAD- (NIL T) -8 NIL NIL) (-667 1609487 1610149 1610428 "MOEBIUS" 1610989 NIL MOEBIUS (NIL T) -8 NIL NIL) (-666 1608881 1609259 1609299 "MODULE" 1609304 NIL MODULE (NIL T) -9 NIL 1609330) (-665 1608449 1608545 1608735 "MODULE-" 1608740 NIL MODULE- (NIL T T) -8 NIL NIL) (-664 1606164 1606859 1607185 "MODRING" 1608274 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-663 1603122 1604285 1604802 "MODOP" 1605696 NIL MODOP (NIL T T) -8 NIL NIL) (-662 1601309 1601761 1602102 "MODMONOM" 1602921 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-661 1591028 1599513 1599935 "MODMON" 1600937 NIL MODMON (NIL T T) -8 NIL NIL) (-660 1588180 1589896 1590172 "MODFIELD" 1590903 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-659 1587184 1587461 1587651 "MMLFORM" 1588010 T MMLFORM (NIL) -8 NIL NIL) (-658 1586710 1586753 1586932 "MMAP" 1587135 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-657 1584947 1585724 1585764 "MLO" 1586181 NIL MLO (NIL T) -9 NIL 1586422) (-656 1582314 1582829 1583431 "MLIFT" 1584428 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-655 1581705 1581789 1581943 "MKUCFUNC" 1582225 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-654 1581304 1581374 1581497 "MKRECORD" 1581628 NIL MKRECORD (NIL T T) -7 NIL NIL) (-653 1580352 1580513 1580741 "MKFUNC" 1581115 NIL MKFUNC (NIL T) -7 NIL NIL) (-652 1579740 1579844 1580000 "MKFLCFN" 1580235 NIL MKFLCFN (NIL T) -7 NIL NIL) (-651 1579166 1579533 1579622 "MKCHSET" 1579684 NIL MKCHSET (NIL T) -8 NIL NIL) (-650 1578443 1578545 1578730 "MKBCFUNC" 1579059 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-649 1575129 1577997 1578133 "MINT" 1578327 T MINT (NIL) -8 NIL NIL) (-648 1573941 1574184 1574461 "MHROWRED" 1574884 NIL MHROWRED (NIL T) -7 NIL NIL) (-647 1569221 1572386 1572810 "MFLOAT" 1573537 T MFLOAT (NIL) -8 NIL NIL) (-646 1568578 1568654 1568825 "MFINFACT" 1569133 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-645 1564913 1565756 1566635 "MESH" 1567719 T MESH (NIL) -7 NIL NIL) (-644 1563303 1563615 1563968 "MDDFACT" 1564600 NIL MDDFACT (NIL T) -7 NIL NIL) (-643 1560146 1562463 1562504 "MDAGG" 1562759 NIL MDAGG (NIL T) -9 NIL 1562902) (-642 1549862 1559439 1559646 "MCMPLX" 1559959 T MCMPLX (NIL) -8 NIL NIL) (-641 1549003 1549149 1549349 "MCDEN" 1549711 NIL MCDEN (NIL T T) -7 NIL NIL) (-640 1546893 1547163 1547543 "MCALCFN" 1548733 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-639 1545804 1545977 1546218 "MAYBE" 1546691 NIL MAYBE (NIL T) -8 NIL NIL) (-638 1543426 1543949 1544510 "MATSTOR" 1545275 NIL MATSTOR (NIL T) -7 NIL NIL) (-637 1539434 1542801 1543048 "MATRIX" 1543211 NIL MATRIX (NIL T) -8 NIL NIL) (-636 1535203 1535907 1536643 "MATLIN" 1538791 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-635 1533805 1533958 1534289 "MATCAT2" 1535038 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-634 1523997 1527138 1527214 "MATCAT" 1532055 NIL MATCAT (NIL T T T) -9 NIL 1533472) (-633 1520362 1521375 1522730 "MATCAT-" 1522735 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-632 1518474 1518798 1519182 "MAPPKG3" 1520037 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-631 1517455 1517628 1517850 "MAPPKG2" 1518298 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-630 1515954 1516238 1516565 "MAPPKG1" 1517161 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-629 1515565 1515623 1515746 "MAPHACK3" 1515890 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-628 1515157 1515218 1515332 "MAPHACK2" 1515497 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-627 1514595 1514698 1514840 "MAPHACK1" 1515048 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-626 1512703 1513297 1513600 "MAGMA" 1514324 NIL MAGMA (NIL T) -8 NIL NIL) (-625 1509177 1510947 1511407 "M3D" 1512276 NIL M3D (NIL T) -8 NIL NIL) (-624 1503335 1507548 1507589 "LZSTAGG" 1508371 NIL LZSTAGG (NIL T) -9 NIL 1508666) (-623 1499308 1500466 1501923 "LZSTAGG-" 1501928 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-622 1496424 1497201 1497687 "LWORD" 1498854 NIL LWORD (NIL T) -8 NIL NIL) (-621 1489615 1496195 1496329 "LSQM" 1496334 NIL LSQM (NIL NIL T) -8 NIL NIL) (-620 1488839 1488978 1489206 "LSPP" 1489470 NIL LSPP (NIL T T T T) -7 NIL NIL) (-619 1485681 1486338 1487051 "LSMP1" 1488158 NIL LSMP1 (NIL T) -7 NIL NIL) (-618 1483516 1483810 1484259 "LSMP" 1485377 NIL LSMP (NIL T T T T) -7 NIL NIL) (-617 1477445 1482685 1482726 "LSAGG" 1482788 NIL LSAGG (NIL T) -9 NIL 1482866) (-616 1474140 1475064 1476277 "LSAGG-" 1476282 NIL LSAGG- (NIL T T) -8 NIL NIL) (-615 1471766 1473284 1473533 "LPOLY" 1473935 NIL LPOLY (NIL T T) -8 NIL NIL) (-614 1471348 1471433 1471556 "LPEFRAC" 1471675 NIL LPEFRAC (NIL T) -7 NIL NIL) (-613 1471002 1471114 1471142 "LOGIC" 1471253 T LOGIC (NIL) -9 NIL 1471333) (-612 1470864 1470887 1470958 "LOGIC-" 1470963 NIL LOGIC- (NIL T) -8 NIL NIL) (-611 1470057 1470197 1470390 "LODOOPS" 1470720 NIL LODOOPS (NIL T T) -7 NIL NIL) (-610 1468603 1468838 1469189 "LODOF" 1469804 NIL LODOF (NIL T T) -7 NIL NIL) (-609 1465037 1467459 1467499 "LODOCAT" 1467931 NIL LODOCAT (NIL T) -9 NIL 1468142) (-608 1464771 1464829 1464955 "LODOCAT-" 1464960 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-607 1462099 1464612 1464730 "LODO2" 1464735 NIL LODO2 (NIL T T) -8 NIL NIL) (-606 1459542 1462036 1462081 "LODO1" 1462086 NIL LODO1 (NIL T) -8 NIL NIL) (-605 1456974 1459459 1459524 "LODO" 1459529 NIL LODO (NIL T NIL) -8 NIL NIL) (-604 1455837 1456002 1456313 "LODEEF" 1456797 NIL LODEEF (NIL T T T) -7 NIL NIL) (-603 1454184 1454931 1455184 "LO" 1455669 NIL LO (NIL T T T) -8 NIL NIL) (-602 1449471 1452315 1452356 "LNAGG" 1453303 NIL LNAGG (NIL T) -9 NIL 1453747) (-601 1448618 1448832 1449174 "LNAGG-" 1449179 NIL LNAGG- (NIL T T) -8 NIL NIL) (-600 1444783 1445545 1446183 "LMOPS" 1448034 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-599 1444181 1444543 1444583 "LMODULE" 1444643 NIL LMODULE (NIL T) -9 NIL 1444685) (-598 1441427 1443826 1443949 "LMDICT" 1444091 NIL LMDICT (NIL T) -8 NIL NIL) (-597 1440952 1441026 1441165 "LIST3" 1441347 NIL LIST3 (NIL T T T) -7 NIL NIL) (-596 1439086 1439398 1439797 "LIST2MAP" 1440599 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-595 1438093 1438271 1438499 "LIST2" 1438904 NIL LIST2 (NIL T T) -7 NIL NIL) (-594 1431322 1437039 1437337 "LIST" 1437828 NIL LIST (NIL T) -8 NIL NIL) (-593 1430035 1430715 1430755 "LINEXP" 1431008 NIL LINEXP (NIL T) -9 NIL 1431156) (-592 1428682 1428942 1429239 "LINDEP" 1429787 NIL LINDEP (NIL T T) -7 NIL NIL) (-591 1425520 1426220 1426978 "LIMITRF" 1427956 NIL LIMITRF (NIL T) -7 NIL NIL) (-590 1423823 1424111 1424519 "LIMITPS" 1425222 NIL LIMITPS (NIL T T) -7 NIL NIL) (-589 1422874 1423317 1423357 "LIECAT" 1423497 NIL LIECAT (NIL T) -9 NIL 1423648) (-588 1422715 1422742 1422830 "LIECAT-" 1422835 NIL LIECAT- (NIL T T) -8 NIL NIL) (-587 1417202 1422226 1422454 "LIE" 1422536 NIL LIE (NIL T T) -8 NIL NIL) (-586 1409816 1416651 1416816 "LIB" 1417057 T LIB (NIL) -8 NIL NIL) (-585 1405453 1406334 1407269 "LGROBP" 1408933 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-584 1404293 1404985 1405013 "LFCAT" 1405220 T LFCAT (NIL) -9 NIL 1405359) (-583 1402159 1402433 1402795 "LF" 1404014 NIL LF (NIL T T) -7 NIL NIL) (-582 1399071 1399697 1400383 "LEXTRIPK" 1401525 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-581 1395777 1396641 1397144 "LEXP" 1398651 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-580 1394175 1394488 1394889 "LEADCDET" 1395459 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-579 1393368 1393442 1393670 "LAZM3PK" 1394096 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-578 1388299 1391447 1391984 "LAUPOL" 1392881 NIL LAUPOL (NIL T T) -8 NIL NIL) (-577 1387866 1387910 1388077 "LAPLACE" 1388249 NIL LAPLACE (NIL T T) -7 NIL NIL) (-576 1386929 1387523 1387563 "LALG" 1387624 NIL LALG (NIL T) -9 NIL 1387682) (-575 1386644 1386703 1386838 "LALG-" 1386843 NIL LALG- (NIL T T) -8 NIL NIL) (-574 1384572 1385745 1385996 "LA" 1386477 NIL LA (NIL T T T) -8 NIL NIL) (-573 1383482 1383669 1383966 "KOVACIC" 1384372 NIL KOVACIC (NIL T T) -7 NIL NIL) (-572 1383317 1383341 1383382 "KONVERT" 1383444 NIL KONVERT (NIL T) -9 NIL NIL) (-571 1383152 1383176 1383217 "KOERCE" 1383279 NIL KOERCE (NIL T) -9 NIL NIL) (-570 1382654 1382735 1382865 "KERNEL2" 1383066 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-569 1380388 1381148 1381541 "KERNEL" 1382293 NIL KERNEL (NIL T) -8 NIL NIL) (-568 1374240 1378928 1378982 "KDAGG" 1379359 NIL KDAGG (NIL T T) -9 NIL 1379565) (-567 1373769 1373893 1374098 "KDAGG-" 1374103 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-566 1366946 1373430 1373585 "KAFILE" 1373647 NIL KAFILE (NIL T) -8 NIL NIL) (-565 1361433 1366457 1366685 "JORDAN" 1366767 NIL JORDAN (NIL T T) -8 NIL NIL) (-564 1361162 1361221 1361308 "JAVACODE" 1361366 T JAVACODE (NIL) -8 NIL NIL) (-563 1357462 1359368 1359422 "IXAGG" 1360351 NIL IXAGG (NIL T T) -9 NIL 1360810) (-562 1356381 1356687 1357106 "IXAGG-" 1357111 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-561 1351966 1356303 1356362 "IVECTOR" 1356367 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-560 1350732 1350969 1351235 "ITUPLE" 1351733 NIL ITUPLE (NIL T) -8 NIL NIL) (-559 1349168 1349345 1349651 "ITRIGMNP" 1350554 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-558 1347913 1348117 1348400 "ITFUN3" 1348944 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-557 1347545 1347602 1347711 "ITFUN2" 1347850 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-556 1345347 1346418 1346715 "ITAYLOR" 1347280 NIL ITAYLOR (NIL T) -8 NIL NIL) (-555 1334335 1339533 1340692 "ISUPS" 1344220 NIL ISUPS (NIL T) -8 NIL NIL) (-554 1333439 1333579 1333815 "ISUMP" 1334182 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-553 1328703 1333240 1333319 "ISTRING" 1333392 NIL ISTRING (NIL NIL) -8 NIL NIL) (-552 1327916 1327997 1328212 "IRURPK" 1328617 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-551 1326852 1327053 1327293 "IRSN" 1327696 T IRSN (NIL) -7 NIL NIL) (-550 1324887 1325242 1325677 "IRRF2F" 1326490 NIL IRRF2F (NIL T) -7 NIL NIL) (-549 1324634 1324672 1324748 "IRREDFFX" 1324843 NIL IRREDFFX (NIL T) -7 NIL NIL) (-548 1323249 1323508 1323807 "IROOT" 1324367 NIL IROOT (NIL T) -7 NIL NIL) (-547 1322325 1322438 1322658 "IR2F" 1323132 NIL IR2F (NIL T T) -7 NIL NIL) (-546 1319938 1320433 1320999 "IR2" 1321803 NIL IR2 (NIL T T) -7 NIL NIL) (-545 1316576 1317627 1318317 "IR" 1319280 NIL IR (NIL T) -8 NIL NIL) (-544 1316367 1316401 1316461 "IPRNTPK" 1316536 T IPRNTPK (NIL) -7 NIL NIL) (-543 1312923 1316256 1316325 "IPF" 1316330 NIL IPF (NIL NIL) -8 NIL NIL) (-542 1311242 1312848 1312905 "IPADIC" 1312910 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-541 1310741 1310799 1310988 "INVLAPLA" 1311178 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-540 1300438 1302779 1305153 "INTTR" 1308417 NIL INTTR (NIL T T) -7 NIL NIL) (-539 1296786 1297527 1298390 "INTTOOLS" 1299624 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-538 1296372 1296463 1296580 "INTSLPE" 1296689 T INTSLPE (NIL) -7 NIL NIL) (-537 1294322 1296295 1296354 "INTRVL" 1296359 NIL INTRVL (NIL T) -8 NIL NIL) (-536 1291929 1292441 1293015 "INTRF" 1293807 NIL INTRF (NIL T) -7 NIL NIL) (-535 1291344 1291441 1291582 "INTRET" 1291827 NIL INTRET (NIL T) -7 NIL NIL) (-534 1289346 1289735 1290204 "INTRAT" 1290952 NIL INTRAT (NIL T T) -7 NIL NIL) (-533 1286579 1287162 1287787 "INTPM" 1288831 NIL INTPM (NIL T T) -7 NIL NIL) (-532 1283311 1283903 1284640 "INTPAF" 1285972 NIL INTPAF (NIL T T T) -7 NIL NIL) (-531 1278554 1279500 1280535 "INTPACK" 1282296 T INTPACK (NIL) -7 NIL NIL) (-530 1277806 1277958 1278166 "INTHERTR" 1278396 NIL INTHERTR (NIL T T) -7 NIL NIL) (-529 1277245 1277325 1277513 "INTHERAL" 1277720 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-528 1275091 1275534 1275991 "INTHEORY" 1276808 T INTHEORY (NIL) -7 NIL NIL) (-527 1266471 1268074 1269834 "INTG0" 1273461 NIL INTG0 (NIL T T T) -7 NIL NIL) (-526 1252744 1256109 1259494 "INTFTBL" 1263106 T INTFTBL (NIL) -8 NIL NIL) (-525 1251993 1252131 1252304 "INTFACT" 1252603 NIL INTFACT (NIL T) -7 NIL NIL) (-524 1249390 1249834 1250395 "INTEF" 1251549 NIL INTEF (NIL T T) -7 NIL NIL) (-523 1247852 1248601 1248629 "INTDOM" 1248930 T INTDOM (NIL) -9 NIL 1249137) (-522 1247221 1247395 1247637 "INTDOM-" 1247642 NIL INTDOM- (NIL T) -8 NIL NIL) (-521 1243714 1245646 1245700 "INTCAT" 1246499 NIL INTCAT (NIL T) -9 NIL 1246818) (-520 1243187 1243289 1243417 "INTBIT" 1243606 T INTBIT (NIL) -7 NIL NIL) (-519 1241862 1242016 1242329 "INTALG" 1243032 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-518 1241319 1241409 1241579 "INTAF" 1241766 NIL INTAF (NIL T T) -7 NIL NIL) (-517 1234775 1241129 1241269 "INTABL" 1241274 NIL INTABL (NIL T T T) -8 NIL NIL) (-516 1231631 1234504 1234631 "INT" 1234668 T INT (NIL) -8 NIL NIL) (-515 1226584 1229311 1229339 "INS" 1230307 T INS (NIL) -9 NIL 1230988) (-514 1223824 1224595 1225569 "INS-" 1225642 NIL INS- (NIL T) -8 NIL NIL) (-513 1222676 1222881 1223156 "INPSIGN" 1223599 NIL INPSIGN (NIL T T) -7 NIL NIL) (-512 1221794 1221911 1222108 "INPRODPF" 1222556 NIL INPRODPF (NIL T T) -7 NIL NIL) (-511 1220688 1220805 1221042 "INPRODFF" 1221674 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-510 1219688 1219840 1220100 "INNMFACT" 1220524 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-509 1218885 1218982 1219170 "INMODGCD" 1219587 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-508 1217394 1217638 1217962 "INFSP" 1218630 NIL INFSP (NIL T T T) -7 NIL NIL) (-507 1216578 1216695 1216878 "INFPROD0" 1217274 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-506 1216188 1216248 1216346 "INFORM1" 1216513 NIL INFORM1 (NIL T) -7 NIL NIL) (-505 1213199 1214357 1214848 "INFORM" 1215705 T INFORM (NIL) -8 NIL NIL) (-504 1212722 1212811 1212925 "INFINITY" 1213105 T INFINITY (NIL) -7 NIL NIL) (-503 1211339 1211588 1211909 "INEP" 1212470 NIL INEP (NIL T T T) -7 NIL NIL) (-502 1210615 1211236 1211301 "INDE" 1211306 NIL INDE (NIL T) -8 NIL NIL) (-501 1210179 1210247 1210364 "INCRMAPS" 1210542 NIL INCRMAPS (NIL T) -7 NIL NIL) (-500 1205490 1206415 1207359 "INBFF" 1209267 NIL INBFF (NIL T) -7 NIL NIL) (-499 1201984 1205335 1205438 "IMATRIX" 1205443 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-498 1200696 1200819 1201134 "IMATQF" 1201840 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-497 1198916 1199143 1199480 "IMATLIN" 1200452 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-496 1193544 1198840 1198898 "ILIST" 1198903 NIL ILIST (NIL T NIL) -8 NIL NIL) (-495 1191497 1193404 1193517 "IIARRAY2" 1193522 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-494 1186867 1191408 1191472 "IFF" 1191477 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-493 1181910 1186159 1186347 "IFARRAY" 1186724 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-492 1181117 1181814 1181887 "IFAMON" 1181892 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-491 1180701 1180766 1180820 "IEVALAB" 1181027 NIL IEVALAB (NIL T T) -9 NIL NIL) (-490 1180376 1180444 1180604 "IEVALAB-" 1180609 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-489 1179653 1180265 1180340 "IDPOAMS" 1180345 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-488 1178987 1179542 1179617 "IDPOAM" 1179622 NIL IDPOAM (NIL T T) -8 NIL NIL) (-487 1178645 1178901 1178964 "IDPO" 1178969 NIL IDPO (NIL T T) -8 NIL NIL) (-486 1177731 1177981 1178034 "IDPC" 1178447 NIL IDPC (NIL T T) -9 NIL 1178596) (-485 1177227 1177623 1177696 "IDPAM" 1177701 NIL IDPAM (NIL T T) -8 NIL NIL) (-484 1176630 1177119 1177192 "IDPAG" 1177197 NIL IDPAG (NIL T T) -8 NIL NIL) (-483 1172885 1173733 1174628 "IDECOMP" 1175787 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-482 1165758 1166808 1167855 "IDEAL" 1171921 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-481 1164922 1165034 1165233 "ICDEN" 1165642 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-480 1164021 1164402 1164549 "ICARD" 1164795 T ICARD (NIL) -8 NIL NIL) (-479 1162093 1162406 1162809 "IBPTOOLS" 1163698 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-478 1157707 1161713 1161826 "IBITS" 1162012 NIL IBITS (NIL NIL) -8 NIL NIL) (-477 1154430 1155006 1155701 "IBATOOL" 1157124 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-476 1152210 1152671 1153204 "IBACHIN" 1153965 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-475 1150087 1152056 1152159 "IARRAY2" 1152164 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-474 1146240 1150013 1150070 "IARRAY1" 1150075 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-473 1140187 1144658 1145136 "IAN" 1145782 T IAN (NIL) -8 NIL NIL) (-472 1139698 1139755 1139928 "IALGFACT" 1140124 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-471 1139226 1139339 1139367 "HYPCAT" 1139574 T HYPCAT (NIL) -9 NIL NIL) (-470 1138764 1138881 1139067 "HYPCAT-" 1139072 NIL HYPCAT- (NIL T) -8 NIL NIL) (-469 1138386 1138559 1138642 "HOSTNAME" 1138701 T HOSTNAME (NIL) -8 NIL NIL) (-468 1135066 1136397 1136438 "HOAGG" 1137419 NIL HOAGG (NIL T) -9 NIL 1138098) (-467 1133660 1134059 1134585 "HOAGG-" 1134590 NIL HOAGG- (NIL T T) -8 NIL NIL) (-466 1127511 1133101 1133267 "HEXADEC" 1133514 T HEXADEC (NIL) -8 NIL NIL) (-465 1126259 1126481 1126744 "HEUGCD" 1127288 NIL HEUGCD (NIL T) -7 NIL NIL) (-464 1125362 1126096 1126226 "HELLFDIV" 1126231 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-463 1123590 1125139 1125227 "HEAP" 1125306 NIL HEAP (NIL T) -8 NIL NIL) (-462 1122929 1123169 1123297 "HEADAST" 1123482 T HEADAST (NIL) -8 NIL NIL) (-461 1116803 1122844 1122906 "HDP" 1122911 NIL HDP (NIL NIL T) -8 NIL NIL) (-460 1110546 1116440 1116591 "HDMP" 1116704 NIL HDMP (NIL NIL T) -8 NIL NIL) (-459 1109871 1110010 1110174 "HB" 1110402 T HB (NIL) -7 NIL NIL) (-458 1103370 1109717 1109821 "HASHTBL" 1109826 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-457 1101127 1102998 1103177 "HACKPI" 1103211 T HACKPI (NIL) -8 NIL NIL) (-456 1096850 1100981 1101093 "GTSET" 1101098 NIL GTSET (NIL T T T T) -8 NIL NIL) (-455 1090378 1096728 1096826 "GSTBL" 1096831 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-454 1082613 1089414 1089678 "GSERIES" 1090169 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-453 1081636 1082089 1082117 "GROUP" 1082378 T GROUP (NIL) -9 NIL 1082537) (-452 1080752 1080975 1081319 "GROUP-" 1081324 NIL GROUP- (NIL T) -8 NIL NIL) (-451 1079121 1079440 1079827 "GROEBSOL" 1080429 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-450 1078062 1078324 1078375 "GRMOD" 1078904 NIL GRMOD (NIL T T) -9 NIL 1079072) (-449 1077830 1077866 1077994 "GRMOD-" 1077999 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-448 1073155 1074184 1075184 "GRIMAGE" 1076850 T GRIMAGE (NIL) -8 NIL NIL) (-447 1071622 1071882 1072206 "GRDEF" 1072851 T GRDEF (NIL) -7 NIL NIL) (-446 1071066 1071182 1071323 "GRAY" 1071501 T GRAY (NIL) -7 NIL NIL) (-445 1070300 1070680 1070731 "GRALG" 1070884 NIL GRALG (NIL T T) -9 NIL 1070976) (-444 1069961 1070034 1070197 "GRALG-" 1070202 NIL GRALG- (NIL T T T) -8 NIL NIL) (-443 1066769 1069550 1069726 "GPOLSET" 1069868 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-442 1066125 1066182 1066439 "GOSPER" 1066706 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-441 1061884 1062563 1063089 "GMODPOL" 1065824 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-440 1060889 1061073 1061311 "GHENSEL" 1061696 NIL GHENSEL (NIL T T) -7 NIL NIL) (-439 1054955 1055798 1056824 "GENUPS" 1059973 NIL GENUPS (NIL T T) -7 NIL NIL) (-438 1054652 1054703 1054792 "GENUFACT" 1054898 NIL GENUFACT (NIL T) -7 NIL NIL) (-437 1054064 1054141 1054306 "GENPGCD" 1054570 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-436 1053538 1053573 1053786 "GENMFACT" 1054023 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-435 1052106 1052361 1052668 "GENEEZ" 1053281 NIL GENEEZ (NIL T T) -7 NIL NIL) (-434 1046011 1051719 1051880 "GDMP" 1052029 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-433 1035410 1039782 1040888 "GCNAALG" 1044994 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-432 1033832 1034704 1034732 "GCDDOM" 1034987 T GCDDOM (NIL) -9 NIL 1035144) (-431 1033302 1033429 1033644 "GCDDOM-" 1033649 NIL GCDDOM- (NIL T) -8 NIL NIL) (-430 1021922 1024248 1026640 "GBINTERN" 1030993 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-429 1019759 1020051 1020472 "GBF" 1021597 NIL GBF (NIL T T T T) -7 NIL NIL) (-428 1018540 1018705 1018972 "GBEUCLID" 1019575 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-427 1017212 1017397 1017701 "GB" 1018319 NIL GB (NIL T T T T) -7 NIL NIL) (-426 1016561 1016686 1016835 "GAUSSFAC" 1017083 T GAUSSFAC (NIL) -7 NIL NIL) (-425 1014938 1015240 1015553 "GALUTIL" 1016280 NIL GALUTIL (NIL T) -7 NIL NIL) (-424 1013255 1013529 1013852 "GALPOLYU" 1014665 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-423 1010644 1010934 1011339 "GALFACTU" 1012952 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-422 1002450 1003949 1005557 "GALFACT" 1009076 NIL GALFACT (NIL T) -7 NIL NIL) (-421 999838 1000496 1000524 "FVFUN" 1001680 T FVFUN (NIL) -9 NIL 1002400) (-420 999104 999286 999314 "FVC" 999605 T FVC (NIL) -9 NIL 999788) (-419 998746 998901 998982 "FUNCTION" 999056 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-418 997564 998047 998250 "FTEM" 998563 T FTEM (NIL) -8 NIL NIL) (-417 995246 995794 996280 "FT" 997098 T FT (NIL) -8 NIL NIL) (-416 993511 993799 994201 "FSUPFACT" 994938 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-415 991908 992197 992529 "FST" 993199 T FST (NIL) -8 NIL NIL) (-414 991083 991189 991383 "FSRED" 991790 NIL FSRED (NIL T T) -7 NIL NIL) (-413 989762 990017 990371 "FSPRMELT" 990798 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-412 986847 987285 987784 "FSPECF" 989325 NIL FSPECF (NIL T T) -7 NIL NIL) (-411 986363 986417 986593 "FSINT" 986788 NIL FSINT (NIL T T) -7 NIL NIL) (-410 984644 985356 985659 "FSERIES" 986142 NIL FSERIES (NIL T T) -8 NIL NIL) (-409 983662 983778 984008 "FSCINT" 984524 NIL FSCINT (NIL T T) -7 NIL NIL) (-408 982704 982847 983074 "FSAGG2" 983515 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-407 978939 981649 981690 "FSAGG" 982060 NIL FSAGG (NIL T) -9 NIL 982319) (-406 976701 977302 978098 "FSAGG-" 978193 NIL FSAGG- (NIL T T) -8 NIL NIL) (-405 974360 974639 975192 "FS2UPS" 976419 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-404 973220 973391 973699 "FS2EXPXP" 974185 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-403 972806 972849 973002 "FS2" 973171 NIL FS2 (NIL T T T T) -7 NIL NIL) (-402 955209 963737 963777 "FS" 967615 NIL FS (NIL T) -9 NIL 969897) (-401 943940 946903 950932 "FS-" 951229 NIL FS- (NIL T T) -8 NIL NIL) (-400 943366 943481 943633 "FRUTIL" 943820 NIL FRUTIL (NIL T) -7 NIL NIL) (-399 938475 941086 941126 "FRNAALG" 942522 NIL FRNAALG (NIL T) -9 NIL 943129) (-398 934204 935258 936516 "FRNAALG-" 937266 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-397 933842 933885 934012 "FRNAAF2" 934155 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-396 932207 932699 932993 "FRMOD" 933655 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-395 931406 931493 931780 "FRIDEAL2" 932114 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-394 929128 929797 930113 "FRIDEAL" 931197 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-393 928393 928794 928835 "FRETRCT" 928840 NIL FRETRCT (NIL T) -9 NIL 929011) (-392 927526 927750 928094 "FRETRCT-" 928099 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-391 924736 925956 926015 "FRAMALG" 926897 NIL FRAMALG (NIL T T) -9 NIL 927189) (-390 922869 923325 923955 "FRAMALG-" 924178 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-389 922505 922562 922669 "FRAC2" 922806 NIL FRAC2 (NIL T T) -7 NIL NIL) (-388 916428 921980 922256 "FRAC" 922261 NIL FRAC (NIL T) -8 NIL NIL) (-387 916064 916121 916228 "FR2" 916365 NIL FR2 (NIL T T) -7 NIL NIL) (-386 907599 911644 912973 "FR" 914767 NIL FR (NIL T) -8 NIL NIL) (-385 902277 905186 905214 "FPS" 906333 T FPS (NIL) -9 NIL 906889) (-384 901726 901835 901999 "FPS-" 902145 NIL FPS- (NIL T) -8 NIL NIL) (-383 899177 900872 900900 "FPC" 901125 T FPC (NIL) -9 NIL 901267) (-382 898970 899010 899107 "FPC-" 899112 NIL FPC- (NIL T) -8 NIL NIL) (-381 897849 898459 898500 "FPATMAB" 898505 NIL FPATMAB (NIL T) -9 NIL 898657) (-380 895549 896025 896451 "FPARFRAC" 897486 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-379 890981 891480 892162 "FORTRAN" 894981 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-378 888657 889219 889247 "FORTFN" 890307 T FORTFN (NIL) -9 NIL 890931) (-377 888421 888471 888499 "FORTCAT" 888558 T FORTCAT (NIL) -9 NIL 888620) (-376 886137 886637 887176 "FORT" 887902 T FORT (NIL) -7 NIL NIL) (-375 885925 885955 886024 "FORMULA1" 886101 NIL FORMULA1 (NIL T) -7 NIL NIL) (-374 883985 884468 884867 "FORMULA" 885546 T FORMULA (NIL) -8 NIL NIL) (-373 883508 883560 883733 "FORDER" 883927 NIL FORDER (NIL T T T T) -7 NIL NIL) (-372 882604 882768 882961 "FOP" 883335 T FOP (NIL) -7 NIL NIL) (-371 881212 881884 882058 "FNLA" 882486 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-370 879881 880270 880298 "FNCAT" 880870 T FNCAT (NIL) -9 NIL 881163) (-369 879447 879840 879868 "FNAME" 879873 T FNAME (NIL) -8 NIL NIL) (-368 878107 879080 879108 "FMTC" 879113 T FMTC (NIL) -9 NIL 879148) (-367 874425 875632 876260 "FMONOID" 877512 NIL FMONOID (NIL T) -8 NIL NIL) (-366 871849 872495 872523 "FMFUN" 873667 T FMFUN (NIL) -9 NIL 874375) (-365 869079 869913 869966 "FMCAT" 871148 NIL FMCAT (NIL T T) -9 NIL 871642) (-364 868348 868529 868557 "FMC" 868847 T FMC (NIL) -9 NIL 869029) (-363 867243 868116 868215 "FM1" 868293 NIL FM1 (NIL T T) -8 NIL NIL) (-362 866463 866986 867134 "FM" 867139 NIL FM (NIL T T) -8 NIL NIL) (-361 864237 864653 865147 "FLOATRP" 866014 NIL FLOATRP (NIL T) -7 NIL NIL) (-360 861675 862175 862753 "FLOATCP" 863704 NIL FLOATCP (NIL T) -7 NIL NIL) (-359 855165 859331 859961 "FLOAT" 861065 T FLOAT (NIL) -8 NIL NIL) (-358 853954 854802 854842 "FLINEXP" 854847 NIL FLINEXP (NIL T) -9 NIL 854940) (-357 853109 853344 853671 "FLINEXP-" 853676 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-356 852185 852329 852553 "FLASORT" 852961 NIL FLASORT (NIL T T) -7 NIL NIL) (-355 849404 850246 850298 "FLALG" 851525 NIL FLALG (NIL T T) -9 NIL 851992) (-354 848446 848589 848816 "FLAGG2" 849257 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-353 842231 845933 845974 "FLAGG" 847236 NIL FLAGG (NIL T) -9 NIL 847888) (-352 840957 841296 841786 "FLAGG-" 841791 NIL FLAGG- (NIL T T) -8 NIL NIL) (-351 837930 838948 839007 "FINRALG" 840135 NIL FINRALG (NIL T T) -9 NIL 840643) (-350 837090 837319 837658 "FINRALG-" 837663 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-349 836497 836710 836738 "FINITE" 836934 T FINITE (NIL) -9 NIL 837041) (-348 828957 831118 831158 "FINAALG" 834825 NIL FINAALG (NIL T) -9 NIL 836278) (-347 824298 825339 826483 "FINAALG-" 827862 NIL FINAALG- (NIL T T) -8 NIL NIL) (-346 822983 823295 823349 "FILECAT" 824033 NIL FILECAT (NIL T T) -9 NIL 824249) (-345 822378 822738 822841 "FILE" 822913 NIL FILE (NIL T) -8 NIL NIL) (-344 820243 821797 821825 "FIELD" 821865 T FIELD (NIL) -9 NIL 821945) (-343 818863 819248 819759 "FIELD-" 819764 NIL FIELD- (NIL T) -8 NIL NIL) (-342 816678 817500 817846 "FGROUP" 818550 NIL FGROUP (NIL T) -8 NIL NIL) (-341 815768 815932 816152 "FGLMICPK" 816510 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-340 811572 815693 815750 "FFX" 815755 NIL FFX (NIL T NIL) -8 NIL NIL) (-339 811173 811234 811369 "FFSLPE" 811505 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-338 810677 810713 810922 "FFPOLY2" 811131 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-337 806670 807449 808245 "FFPOLY" 809913 NIL FFPOLY (NIL T) -7 NIL NIL) (-336 802493 806589 806652 "FFP" 806657 NIL FFP (NIL T NIL) -8 NIL NIL) (-335 797591 801836 802026 "FFNBX" 802347 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-334 792502 796726 796984 "FFNBP" 797445 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-333 787107 791786 791997 "FFNB" 792335 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-332 785939 786137 786452 "FFINTBAS" 786904 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-331 782165 784403 784431 "FFIELDC" 785051 T FFIELDC (NIL) -9 NIL 785427) (-330 780828 781198 781695 "FFIELDC-" 781700 NIL FFIELDC- (NIL T) -8 NIL NIL) (-329 780398 780443 780567 "FFHOM" 780770 NIL FFHOM (NIL T T T) -7 NIL NIL) (-328 778096 778580 779097 "FFF" 779913 NIL FFF (NIL T) -7 NIL NIL) (-327 773686 777838 777939 "FFCGX" 778039 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-326 769290 773418 773525 "FFCGP" 773629 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-325 764445 769017 769125 "FFCG" 769226 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-324 763856 763899 764134 "FFCAT2" 764396 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-323 745811 754925 755011 "FFCAT" 760176 NIL FFCAT (NIL T T T) -9 NIL 761663) (-322 741009 742056 743370 "FFCAT-" 744600 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-321 736379 740920 740984 "FF" 740989 NIL FF (NIL NIL NIL) -8 NIL NIL) (-320 725581 729369 730586 "FEXPR" 735234 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-319 724581 725016 725057 "FEVALAB" 725141 NIL FEVALAB (NIL T) -9 NIL 725402) (-318 723740 723950 724288 "FEVALAB-" 724293 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-317 720807 721522 721637 "FDIVCAT" 723205 NIL FDIVCAT (NIL T T T T) -9 NIL 723642) (-316 720569 720596 720766 "FDIVCAT-" 720771 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-315 719789 719876 720153 "FDIV2" 720476 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-314 718382 719172 719375 "FDIV" 719688 NIL FDIV (NIL T T T T) -8 NIL NIL) (-313 717068 717327 717616 "FCPAK1" 718113 T FCPAK1 (NIL) -7 NIL NIL) (-312 716196 716568 716709 "FCOMP" 716959 NIL FCOMP (NIL T) -8 NIL NIL) (-311 699831 703245 706806 "FC" 712655 T FC (NIL) -8 NIL NIL) (-310 692429 696473 696513 "FAXF" 698315 NIL FAXF (NIL T) -9 NIL 699006) (-309 689708 690363 691188 "FAXF-" 691653 NIL FAXF- (NIL T T) -8 NIL NIL) (-308 684808 689084 689260 "FARRAY" 689565 NIL FARRAY (NIL T) -8 NIL NIL) (-307 680206 682270 682322 "FAMR" 683334 NIL FAMR (NIL T T) -9 NIL 683794) (-306 679097 679399 679833 "FAMR-" 679838 NIL FAMR- (NIL T T T) -8 NIL NIL) (-305 678293 679019 679072 "FAMONOID" 679077 NIL FAMONOID (NIL T) -8 NIL NIL) (-304 676126 676810 676863 "FAMONC" 677804 NIL FAMONC (NIL T T) -9 NIL 678189) (-303 674818 675880 676017 "FAGROUP" 676022 NIL FAGROUP (NIL T) -8 NIL NIL) (-302 672621 672940 673342 "FACUTIL" 674499 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-301 671720 671905 672127 "FACTFUNC" 672431 NIL FACTFUNC (NIL T) -7 NIL NIL) (-300 664042 670971 671183 "EXPUPXS" 671576 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-299 661525 662065 662651 "EXPRTUBE" 663476 T EXPRTUBE (NIL) -7 NIL NIL) (-298 657719 658311 659048 "EXPRODE" 660864 NIL EXPRODE (NIL T T) -7 NIL NIL) (-297 652147 652734 653546 "EXPR2UPS" 657017 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-296 651783 651840 651947 "EXPR2" 652084 NIL EXPR2 (NIL T T) -7 NIL NIL) (-295 637003 650442 650868 "EXPR" 651389 NIL EXPR (NIL T) -8 NIL NIL) (-294 628383 636140 636435 "EXPEXPAN" 636841 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-293 628210 628340 628369 "EXIT" 628374 T EXIT (NIL) -8 NIL NIL) (-292 627837 627899 628012 "EVALCYC" 628142 NIL EVALCYC (NIL T) -7 NIL NIL) (-291 627378 627496 627537 "EVALAB" 627707 NIL EVALAB (NIL T) -9 NIL 627811) (-290 626859 626981 627202 "EVALAB-" 627207 NIL EVALAB- (NIL T T) -8 NIL NIL) (-289 624322 625634 625662 "EUCDOM" 626217 T EUCDOM (NIL) -9 NIL 626567) (-288 622727 623169 623759 "EUCDOM-" 623764 NIL EUCDOM- (NIL T) -8 NIL NIL) (-287 622363 622420 622527 "ESTOOLS2" 622664 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-286 622114 622156 622236 "ESTOOLS1" 622315 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-285 609692 612440 615180 "ESTOOLS" 619394 T ESTOOLS (NIL) -7 NIL NIL) (-284 609437 609469 609551 "ESCONT1" 609654 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-283 605812 606572 607352 "ESCONT" 608677 T ESCONT (NIL) -7 NIL NIL) (-282 605487 605537 605637 "ES2" 605756 NIL ES2 (NIL T T) -7 NIL NIL) (-281 605117 605175 605284 "ES1" 605423 NIL ES1 (NIL T T) -7 NIL NIL) (-280 599055 600779 600807 "ES" 603571 T ES (NIL) -9 NIL 604977) (-279 594002 595289 597106 "ES-" 597270 NIL ES- (NIL T) -8 NIL NIL) (-278 593218 593347 593523 "ERROR" 593846 T ERROR (NIL) -7 NIL NIL) (-277 586723 593077 593168 "EQTBL" 593173 NIL EQTBL (NIL T T) -8 NIL NIL) (-276 586355 586412 586521 "EQ2" 586660 NIL EQ2 (NIL T T) -7 NIL NIL) (-275 578792 581673 583120 "EQ" 584941 NIL -3809 (NIL T) -8 NIL NIL) (-274 574084 575130 576223 "EP" 577731 NIL EP (NIL T) -7 NIL NIL) (-273 572666 572967 573284 "ENV" 573787 T ENV (NIL) -8 NIL NIL) (-272 571826 572390 572418 "ENTIRER" 572423 T ENTIRER (NIL) -9 NIL 572468) (-271 568338 569835 570205 "EMR" 571625 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-270 567482 567667 567721 "ELTAGG" 568101 NIL ELTAGG (NIL T T) -9 NIL 568312) (-269 567201 567263 567404 "ELTAGG-" 567409 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-268 566990 567019 567073 "ELTAB" 567157 NIL ELTAB (NIL T T) -9 NIL NIL) (-267 566116 566262 566461 "ELFUTS" 566841 NIL ELFUTS (NIL T T) -7 NIL NIL) (-266 565858 565914 565942 "ELEMFUN" 566047 T ELEMFUN (NIL) -9 NIL NIL) (-265 565728 565749 565817 "ELEMFUN-" 565822 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-264 560620 563829 563870 "ELAGG" 564810 NIL ELAGG (NIL T) -9 NIL 565273) (-263 558905 559339 560002 "ELAGG-" 560007 NIL ELAGG- (NIL T T) -8 NIL NIL) (-262 557562 557842 558137 "ELABEXPR" 558630 T ELABEXPR (NIL) -8 NIL NIL) (-261 550557 552229 553056 "EFUPXS" 556838 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-260 544134 545808 546618 "EFULS" 549833 NIL EFULS (NIL T T T) -8 NIL NIL) (-259 541565 541923 542401 "EFSTRUC" 543766 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-258 530637 532202 533762 "EF" 540080 NIL EF (NIL T T) -7 NIL NIL) (-257 529738 530122 530271 "EAB" 530508 T EAB (NIL) -8 NIL NIL) (-256 528951 529697 529725 "E04UCFA" 529730 T E04UCFA (NIL) -8 NIL NIL) (-255 528164 528910 528938 "E04NAFA" 528943 T E04NAFA (NIL) -8 NIL NIL) (-254 527377 528123 528151 "E04MBFA" 528156 T E04MBFA (NIL) -8 NIL NIL) (-253 526590 527336 527364 "E04JAFA" 527369 T E04JAFA (NIL) -8 NIL NIL) (-252 525805 526549 526577 "E04GCFA" 526582 T E04GCFA (NIL) -8 NIL NIL) (-251 525020 525764 525792 "E04FDFA" 525797 T E04FDFA (NIL) -8 NIL NIL) (-250 524233 524979 525007 "E04DGFA" 525012 T E04DGFA (NIL) -8 NIL NIL) (-249 518418 519763 521125 "E04AGNT" 522891 T E04AGNT (NIL) -7 NIL NIL) (-248 517145 517625 517665 "DVARCAT" 518140 NIL DVARCAT (NIL T) -9 NIL 518338) (-247 516349 516561 516875 "DVARCAT-" 516880 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-246 509252 516151 516278 "DSMP" 516283 NIL DSMP (NIL T T T) -8 NIL NIL) (-245 508917 508976 509074 "DROPT1" 509187 NIL DROPT1 (NIL T) -7 NIL NIL) (-244 504032 505158 506295 "DROPT0" 507800 T DROPT0 (NIL) -7 NIL NIL) (-243 498842 499977 501045 "DROPT" 502984 T DROPT (NIL) -8 NIL NIL) (-242 497187 497512 497898 "DRAWPT" 498476 T DRAWPT (NIL) -7 NIL NIL) (-241 496820 496873 496991 "DRAWHACK" 497128 NIL DRAWHACK (NIL T) -7 NIL NIL) (-240 495551 495820 496111 "DRAWCX" 496549 T DRAWCX (NIL) -7 NIL NIL) (-239 495069 495137 495287 "DRAWCURV" 495477 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-238 485540 487499 489614 "DRAWCFUN" 492974 T DRAWCFUN (NIL) -7 NIL NIL) (-237 480127 481050 482129 "DRAW" 484514 NIL DRAW (NIL T) -7 NIL NIL) (-236 476941 478823 478864 "DQAGG" 479493 NIL DQAGG (NIL T) -9 NIL 479766) (-235 465484 472186 472268 "DPOLCAT" 474106 NIL DPOLCAT (NIL T T T T) -9 NIL 474650) (-234 460375 461704 463644 "DPOLCAT-" 463649 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-233 453178 460237 460334 "DPMO" 460339 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-232 445884 452959 453125 "DPMM" 453130 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-231 445304 445507 445621 "DOMAIN" 445790 T DOMAIN (NIL) -8 NIL NIL) (-230 439047 444941 445092 "DMP" 445205 NIL DMP (NIL NIL T) -8 NIL NIL) (-229 438647 438703 438847 "DLP" 438985 NIL DLP (NIL T) -7 NIL NIL) (-228 432293 437748 437975 "DLIST" 438452 NIL DLIST (NIL T) -8 NIL NIL) (-227 429141 431149 431190 "DLAGG" 431740 NIL DLAGG (NIL T) -9 NIL 431969) (-226 427851 428543 428571 "DIVRING" 428721 T DIVRING (NIL) -9 NIL 428829) (-225 426839 427092 427485 "DIVRING-" 427490 NIL DIVRING- (NIL T) -8 NIL NIL) (-224 424941 425298 425704 "DISPLAY" 426453 T DISPLAY (NIL) -7 NIL NIL) (-223 423789 423992 424257 "DIRPROD2" 424734 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-222 417685 423703 423766 "DIRPROD" 423771 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-221 407211 413209 413262 "DIRPCAT" 413670 NIL DIRPCAT (NIL NIL T) -9 NIL 414509) (-220 404537 405179 406060 "DIRPCAT-" 406397 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-219 403824 403984 404170 "DIOSP" 404371 T DIOSP (NIL) -7 NIL NIL) (-218 400527 402737 402778 "DIOPS" 403212 NIL DIOPS (NIL T) -9 NIL 403441) (-217 400076 400190 400381 "DIOPS-" 400386 NIL DIOPS- (NIL T T) -8 NIL NIL) (-216 398948 399586 399614 "DIFRING" 399801 T DIFRING (NIL) -9 NIL 399910) (-215 398594 398671 398823 "DIFRING-" 398828 NIL DIFRING- (NIL T) -8 NIL NIL) (-214 396384 397666 397706 "DIFEXT" 398065 NIL DIFEXT (NIL T) -9 NIL 398358) (-213 394670 395098 395763 "DIFEXT-" 395768 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-212 391993 394203 394244 "DIAGG" 394249 NIL DIAGG (NIL T) -9 NIL 394269) (-211 391377 391534 391786 "DIAGG-" 391791 NIL DIAGG- (NIL T T) -8 NIL NIL) (-210 386841 390336 390613 "DHMATRIX" 391146 NIL DHMATRIX (NIL T) -8 NIL NIL) (-209 382453 383362 384372 "DFSFUN" 385851 T DFSFUN (NIL) -7 NIL NIL) (-208 377243 381167 381532 "DFLOAT" 382108 T DFLOAT (NIL) -8 NIL NIL) (-207 375476 375757 376152 "DFINTTLS" 376951 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-206 372509 373511 373909 "DERHAM" 375143 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-205 370358 372284 372373 "DEQUEUE" 372453 NIL DEQUEUE (NIL T) -8 NIL NIL) (-204 369576 369709 369904 "DEGRED" 370220 NIL DEGRED (NIL T T) -7 NIL NIL) (-203 366156 366856 367663 "DEFINTRF" 368849 NIL DEFINTRF (NIL T) -7 NIL NIL) (-202 363799 364240 364810 "DEFINTEF" 365703 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-201 357650 363240 363406 "DECIMAL" 363653 T DECIMAL (NIL) -8 NIL NIL) (-200 355162 355620 356126 "DDFACT" 357194 NIL DDFACT (NIL T T) -7 NIL NIL) (-199 354758 354801 354952 "DBLRESP" 355113 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-198 352468 352802 353171 "DBASE" 354516 NIL DBASE (NIL T) -8 NIL NIL) (-197 351737 351948 352094 "DATABUF" 352367 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-196 350872 351696 351724 "D03FAFA" 351729 T D03FAFA (NIL) -8 NIL NIL) (-195 350008 350831 350859 "D03EEFA" 350864 T D03EEFA (NIL) -8 NIL NIL) (-194 347958 348424 348913 "D03AGNT" 349539 T D03AGNT (NIL) -7 NIL NIL) (-193 347276 347917 347945 "D02EJFA" 347950 T D02EJFA (NIL) -8 NIL NIL) (-192 346594 347235 347263 "D02CJFA" 347268 T D02CJFA (NIL) -8 NIL NIL) (-191 345912 346553 346581 "D02BHFA" 346586 T D02BHFA (NIL) -8 NIL NIL) (-190 345230 345871 345899 "D02BBFA" 345904 T D02BBFA (NIL) -8 NIL NIL) (-189 338428 340016 341622 "D02AGNT" 343644 T D02AGNT (NIL) -7 NIL NIL) (-188 336197 336719 337265 "D01WGTS" 337902 T D01WGTS (NIL) -7 NIL NIL) (-187 335300 336156 336184 "D01TRNS" 336189 T D01TRNS (NIL) -8 NIL NIL) (-186 334403 335259 335287 "D01GBFA" 335292 T D01GBFA (NIL) -8 NIL NIL) (-185 333506 334362 334390 "D01FCFA" 334395 T D01FCFA (NIL) -8 NIL NIL) (-184 332609 333465 333493 "D01ASFA" 333498 T D01ASFA (NIL) -8 NIL NIL) (-183 331712 332568 332596 "D01AQFA" 332601 T D01AQFA (NIL) -8 NIL NIL) (-182 330815 331671 331699 "D01APFA" 331704 T D01APFA (NIL) -8 NIL NIL) (-181 329918 330774 330802 "D01ANFA" 330807 T D01ANFA (NIL) -8 NIL NIL) (-180 329021 329877 329905 "D01AMFA" 329910 T D01AMFA (NIL) -8 NIL NIL) (-179 328124 328980 329008 "D01ALFA" 329013 T D01ALFA (NIL) -8 NIL NIL) (-178 327227 328083 328111 "D01AKFA" 328116 T D01AKFA (NIL) -8 NIL NIL) (-177 326330 327186 327214 "D01AJFA" 327219 T D01AJFA (NIL) -8 NIL NIL) (-176 319634 321183 322742 "D01AGNT" 324791 T D01AGNT (NIL) -7 NIL NIL) (-175 318971 319099 319251 "CYCLOTOM" 319502 T CYCLOTOM (NIL) -7 NIL NIL) (-174 315706 316419 317146 "CYCLES" 318264 T CYCLES (NIL) -7 NIL NIL) (-173 315018 315152 315323 "CVMP" 315567 NIL CVMP (NIL T) -7 NIL NIL) (-172 312799 313057 313432 "CTRIGMNP" 314746 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-171 312310 312499 312598 "CTORCALL" 312720 T CTORCALL (NIL) -8 NIL NIL) (-170 311684 311783 311936 "CSTTOOLS" 312207 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-169 307483 308140 308898 "CRFP" 310996 NIL CRFP (NIL T T) -7 NIL NIL) (-168 306530 306715 306943 "CRAPACK" 307287 NIL CRAPACK (NIL T) -7 NIL NIL) (-167 305914 306015 306219 "CPMATCH" 306406 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-166 305639 305667 305773 "CPIMA" 305880 NIL CPIMA (NIL T T T) -7 NIL NIL) (-165 302003 302675 303393 "COORDSYS" 304974 NIL COORDSYS (NIL T) -7 NIL NIL) (-164 301387 301516 301666 "CONTOUR" 301873 T CONTOUR (NIL) -8 NIL NIL) (-163 297250 299390 299882 "CONTFRAC" 300927 NIL CONTFRAC (NIL T) -8 NIL NIL) (-162 296404 296968 296996 "COMRING" 297001 T COMRING (NIL) -9 NIL 297052) (-161 295485 295762 295946 "COMPPROP" 296240 T COMPPROP (NIL) -8 NIL NIL) (-160 295146 295181 295309 "COMPLPAT" 295444 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-159 294782 294839 294946 "COMPLEX2" 295083 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-158 284781 294591 294700 "COMPLEX" 294705 NIL COMPLEX (NIL T) -8 NIL NIL) (-157 284499 284534 284632 "COMPFACT" 284740 NIL COMPFACT (NIL T T) -7 NIL NIL) (-156 268843 279128 279168 "COMPCAT" 280170 NIL COMPCAT (NIL T) -9 NIL 281563) (-155 258379 261296 264916 "COMPCAT-" 265272 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-154 258110 258138 258240 "COMMUPC" 258345 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-153 257905 257938 257997 "COMMONOP" 258071 T COMMONOP (NIL) -7 NIL NIL) (-152 257488 257656 257743 "COMM" 257838 T COMM (NIL) -8 NIL NIL) (-151 256737 256931 256959 "COMBOPC" 257297 T COMBOPC (NIL) -9 NIL 257472) (-150 255633 255843 256085 "COMBINAT" 256527 NIL COMBINAT (NIL T) -7 NIL NIL) (-149 251831 252404 253044 "COMBF" 255055 NIL COMBF (NIL T T) -7 NIL NIL) (-148 250617 250947 251182 "COLOR" 251616 T COLOR (NIL) -8 NIL NIL) (-147 250257 250304 250429 "CMPLXRT" 250564 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-146 245759 246787 247867 "CLIP" 249197 T CLIP (NIL) -7 NIL NIL) (-145 244097 244867 245105 "CLIF" 245587 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-144 240320 242244 242285 "CLAGG" 243214 NIL CLAGG (NIL T) -9 NIL 243750) (-143 238742 239199 239782 "CLAGG-" 239787 NIL CLAGG- (NIL T T) -8 NIL NIL) (-142 238286 238371 238511 "CINTSLPE" 238651 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-141 235787 236258 236806 "CHVAR" 237814 NIL CHVAR (NIL T T T) -7 NIL NIL) (-140 235010 235574 235602 "CHARZ" 235607 T CHARZ (NIL) -9 NIL 235621) (-139 234764 234804 234882 "CHARPOL" 234964 NIL CHARPOL (NIL T) -7 NIL NIL) (-138 233871 234468 234496 "CHARNZ" 234543 T CHARNZ (NIL) -9 NIL 234598) (-137 231896 232561 232896 "CHAR" 233556 T CHAR (NIL) -8 NIL NIL) (-136 231622 231683 231711 "CFCAT" 231822 T CFCAT (NIL) -9 NIL NIL) (-135 230867 230978 231160 "CDEN" 231506 NIL CDEN (NIL T T T) -7 NIL NIL) (-134 226859 230020 230300 "CCLASS" 230607 T CCLASS (NIL) -8 NIL NIL) (-133 226778 226804 226839 "CATEGORY" 226844 T -10 (NIL) -8 NIL NIL) (-132 225886 226034 226255 "CARTEN2" 226625 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-131 220938 221915 222668 "CARTEN" 225189 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-130 219236 220090 220346 "CARD" 220702 T CARD (NIL) -8 NIL NIL) (-129 218609 218937 218965 "CACHSET" 219097 T CACHSET (NIL) -9 NIL 219174) (-128 218106 218402 218430 "CABMON" 218480 T CABMON (NIL) -9 NIL 218536) (-127 214054 218053 218087 "BYTEARY" 218092 T BYTEARY (NIL) -8 NIL NIL) (-126 213222 213601 213744 "BYTE" 213931 T BYTE (NIL) -8 NIL NIL) (-125 210781 212914 213021 "BTREE" 213148 NIL BTREE (NIL T) -8 NIL NIL) (-124 208281 210429 210551 "BTOURN" 210691 NIL BTOURN (NIL T) -8 NIL NIL) (-123 205702 207753 207794 "BTCAT" 207862 NIL BTCAT (NIL T) -9 NIL 207939) (-122 205369 205449 205598 "BTCAT-" 205603 NIL BTCAT- (NIL T T) -8 NIL NIL) (-121 200590 204461 204489 "BTAGG" 204745 T BTAGG (NIL) -9 NIL 204924) (-120 200013 200157 200387 "BTAGG-" 200392 NIL BTAGG- (NIL T) -8 NIL NIL) (-119 197059 199291 199506 "BSTREE" 199830 NIL BSTREE (NIL T) -8 NIL NIL) (-118 196197 196323 196507 "BRILL" 196915 NIL BRILL (NIL T) -7 NIL NIL) (-117 192900 194926 194967 "BRAGG" 195616 NIL BRAGG (NIL T) -9 NIL 195873) (-116 191432 191837 192391 "BRAGG-" 192396 NIL BRAGG- (NIL T T) -8 NIL NIL) (-115 184661 190778 190962 "BPADICRT" 191280 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-114 182967 184598 184643 "BPADIC" 184648 NIL BPADIC (NIL NIL) -8 NIL NIL) (-113 182667 182697 182810 "BOUNDZRO" 182931 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-112 180288 180732 181252 "BOP1" 182180 NIL BOP1 (NIL T) -7 NIL NIL) (-111 175803 176894 177761 "BOP" 179441 T BOP (NIL) -8 NIL NIL) (-110 174438 175143 175361 "BOOLEAN" 175605 T BOOLEAN (NIL) -8 NIL NIL) (-109 173805 174183 174235 "BMODULE" 174240 NIL BMODULE (NIL T T) -9 NIL 174304) (-108 169615 173603 173676 "BITS" 173752 T BITS (NIL) -8 NIL NIL) (-107 168712 169147 169299 "BINFILE" 169483 T BINFILE (NIL) -8 NIL NIL) (-106 168124 168246 168388 "BINDING" 168590 T BINDING (NIL) -8 NIL NIL) (-105 161979 167568 167733 "BINARY" 167979 T BINARY (NIL) -8 NIL NIL) (-104 159807 161235 161276 "BGAGG" 161536 NIL BGAGG (NIL T) -9 NIL 161673) (-103 159638 159670 159761 "BGAGG-" 159766 NIL BGAGG- (NIL T T) -8 NIL NIL) (-102 158736 159022 159227 "BFUNCT" 159453 T BFUNCT (NIL) -8 NIL NIL) (-101 157425 157606 157893 "BEZOUT" 158560 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-100 153944 156277 156607 "BBTREE" 157128 NIL BBTREE (NIL T) -8 NIL NIL) (-99 153682 153735 153761 "BASTYPE" 153878 T BASTYPE (NIL) -9 NIL NIL) (-98 153537 153566 153636 "BASTYPE-" 153641 NIL BASTYPE- (NIL T) -8 NIL NIL) (-97 152975 153051 153201 "BALFACT" 153448 NIL BALFACT (NIL T T) -7 NIL NIL) (-96 151797 152394 152579 "AUTOMOR" 152820 NIL AUTOMOR (NIL T) -8 NIL NIL) (-95 151523 151528 151554 "ATTREG" 151559 T ATTREG (NIL) -9 NIL NIL) (-94 149802 150220 150572 "ATTRBUT" 151189 T ATTRBUT (NIL) -8 NIL NIL) (-93 149338 149451 149477 "ATRIG" 149678 T ATRIG (NIL) -9 NIL NIL) (-92 149147 149188 149275 "ATRIG-" 149280 NIL ATRIG- (NIL T) -8 NIL NIL) (-91 148873 149016 149042 "ASTCAT" 149047 T ASTCAT (NIL) -9 NIL 149077) (-90 148670 148713 148805 "ASTCAT-" 148810 NIL ASTCAT- (NIL T) -8 NIL NIL) (-89 146867 148446 148534 "ASTACK" 148613 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145372 145669 146034 "ASSOCEQ" 146549 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144426 145031 145155 "ASP9" 145279 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 143317 144031 144173 "ASP80" 144315 NIL ASP80 (NIL NIL) -8 NIL NIL) (-85 143081 143265 143304 "ASP8" 143309 NIL ASP8 (NIL NIL) -8 NIL NIL) (-84 142057 142758 142876 "ASP78" 142994 NIL ASP78 (NIL NIL) -8 NIL NIL) (-83 141048 141737 141854 "ASP77" 141971 NIL ASP77 (NIL NIL) -8 NIL NIL) (-82 139982 140686 140817 "ASP74" 140948 NIL ASP74 (NIL NIL) -8 NIL NIL) (-81 138904 139617 139749 "ASP73" 139881 NIL ASP73 (NIL NIL) -8 NIL NIL) (-80 137825 138539 138671 "ASP7" 138803 NIL ASP7 (NIL NIL) -8 NIL NIL) (-79 136802 137502 137620 "ASP6" 137738 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 135772 136479 136597 "ASP55" 136715 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 134744 135446 135565 "ASP50" 135684 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 133854 134445 134555 "ASP49" 134665 NIL ASP49 (NIL NIL) -8 NIL NIL) (-75 132661 133393 133561 "ASP42" 133743 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-74 131460 132194 132364 "ASP41" 132548 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130570 131161 131271 "ASP4" 131381 NIL ASP4 (NIL NIL) -8 NIL NIL) (-72 129542 130247 130365 "ASP35" 130483 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129307 129490 129529 "ASP34" 129534 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 129044 129111 129187 "ASP33" 129262 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 127961 128679 128811 "ASP31" 128943 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127726 127909 127948 "ASP30" 127953 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127461 127530 127606 "ASP29" 127681 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127226 127409 127448 "ASP28" 127453 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 126991 127174 127213 "ASP27" 127218 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 126097 126689 126800 "ASP24" 126911 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 125035 125738 125868 "ASP20" 125998 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124001 124709 124828 "ASP19" 124947 NIL ASP19 (NIL NIL) -8 NIL NIL) (-61 123738 123805 123881 "ASP12" 123956 NIL ASP12 (NIL NIL) -8 NIL NIL) (-60 122612 123337 123481 "ASP10" 123625 NIL ASP10 (NIL NIL) -8 NIL NIL) (-59 121722 122313 122423 "ASP1" 122533 NIL ASP1 (NIL NIL) -8 NIL NIL) (-58 119621 121566 121657 "ARRAY2" 121662 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 118653 118826 119047 "ARRAY12" 119444 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-56 114469 118301 118415 "ARRAY1" 118570 NIL ARRAY1 (NIL T) -8 NIL NIL) (-55 108829 110700 110775 "ARR2CAT" 113405 NIL ARR2CAT (NIL T T T) -9 NIL 114163) (-54 106263 107007 107961 "ARR2CAT-" 107966 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 105015 105167 105472 "APPRULE" 106099 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104668 104716 104834 "APPLYORE" 104961 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103946 104069 104226 "ANY1" 104542 NIL ANY1 (NIL T) -7 NIL NIL) (-50 102920 103211 103406 "ANY" 103769 T ANY (NIL) -8 NIL NIL) (-49 100452 101370 101695 "ANTISYM" 102645 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 99967 100156 100253 "ANON" 100373 T ANON (NIL) -8 NIL NIL) (-47 94053 98512 98963 "AN" 99534 T AN (NIL) -8 NIL NIL) (-46 90407 91805 91855 "AMR" 92594 NIL AMR (NIL T T) -9 NIL 93193) (-45 89520 89741 90103 "AMR-" 90108 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74076 89437 89498 "ALIST" 89503 NIL ALIST (NIL T T) -8 NIL NIL) (-43 70945 73670 73839 "ALGSC" 73994 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67501 68055 68662 "ALGPKG" 70385 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66778 66879 67063 "ALGMFACT" 67387 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62527 63208 63862 "ALGMANIP" 66302 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53857 62153 62303 "ALGFF" 62460 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53053 53184 53363 "ALGFACT" 53715 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52044 52654 52692 "ALGEBRA" 52752 NIL ALGEBRA (NIL T) -9 NIL 52810) (-36 51762 51821 51953 "ALGEBRA-" 51958 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34029 49766 49818 "ALAGG" 49954 NIL ALAGG (NIL T T) -9 NIL 50115) (-34 33565 33678 33704 "AHYP" 33905 T AHYP (NIL) -9 NIL NIL) (-33 32496 32744 32770 "AGG" 33269 T AGG (NIL) -9 NIL 33548) (-32 31930 32092 32306 "AGG-" 32311 NIL AGG- (NIL T) -8 NIL NIL) (-31 29617 30035 30452 "AF" 31573 NIL AF (NIL T T) -7 NIL NIL) (-30 28886 29144 29300 "ACPLOT" 29479 T ACPLOT (NIL) -8 NIL NIL) (-29 18409 26299 26350 "ACFS" 27061 NIL ACFS (NIL T) -9 NIL 27300) (-28 16423 16913 17688 "ACFS-" 17693 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12693 14647 14673 "ACF" 15552 T ACF (NIL) -9 NIL 15964) (-26 11397 11731 12224 "ACF-" 12229 NIL ACF- (NIL T) -8 NIL NIL) (-25 10996 11165 11191 "ABELSG" 11283 T ABELSG (NIL) -9 NIL 11348) (-24 10863 10888 10954 "ABELSG-" 10959 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10233 10494 10520 "ABELMON" 10690 T ABELMON (NIL) -9 NIL 10802) (-22 9897 9981 10119 "ABELMON-" 10124 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9232 9578 9604 "ABELGRP" 9729 T ABELGRP (NIL) -9 NIL 9811) (-20 8695 8824 9040 "ABELGRP-" 9045 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index 07bbd3bb..b4d2880b 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,14617 +1,14193 @@
-(727014 . 3428466486)
-(((*1 *1 *1 *2) (-12 (-5 *2 (-595 (-1100))) (-5 *1 (-1100))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-595 (-1100))) (-5 *1 (-1100)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-882 (-207)) (-882 (-207)))) (-5 *1 (-244))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-309 *4)) (-4 *4 (-343))
- (-5 *2 (-635 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-309 *3)) (-4 *3 (-343)) (-5 *2 (-1177 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-347 *4)) (-4 *4 (-162))
- (-5 *2 (-635 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-347 *4)) (-4 *4 (-162))
- (-5 *2 (-1177 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-350 *4 *5)) (-4 *4 (-162))
- (-4 *5 (-1153 *4)) (-5 *2 (-635 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-350 *4 *5)) (-4 *4 (-162))
- (-4 *5 (-1153 *4)) (-5 *2 (-1177 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-389 *4 *5)) (-4 *4 (-162))
- (-4 *5 (-1153 *4)) (-5 *2 (-635 *4))))
+(719571 . 3428546880)
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-593 (-516)))
+ (-5 *2 (-1179 (-388 (-516)))) (-5 *1 (-1205 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-593 (-516)))
+ (-5 *2 (-1179 (-516))) (-5 *1 (-1205 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1179 *4)) (-4 *4 (-593 (-516))) (-5 *2 (-110))
+ (-5 *1 (-1205 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *5 (-13 (-572 *2) (-162))) (-5 *2 (-831 *4)) (-5 *1 (-160 *4 *5 *3))
+ (-4 *4 (-1027)) (-4 *3 (-156 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-1017 (-787 (-359)))))
+ (-5 *2 (-594 (-1017 (-787 (-208))))) (-5 *1 (-285))))
+ ((*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-359))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-805)) (-5 *3 (-516)) (-5 *1 (-374))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1179 *3)) (-4 *3 (-162)) (-4 *1 (-391 *3 *4))
+ (-4 *4 (-1155 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1153 *3))
- (-5 *2 (-1177 *3))))
+ (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1155 *3))
+ (-5 *2 (-1179 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-162)) (-4 *1 (-399 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-162)) (-5 *2 (-1179 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-386 *1)) (-4 *1 (-402 *3)) (-4 *3 (-523)) (-4 *3 (-795))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *1 (-443 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1029)) (-5 *1 (-505))))
+ ((*1 *2 *1) (-12 (-4 *1 (-572 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *2) (-12 (-4 *3 (-162)) (-4 *1 (-673 *3 *2)) (-4 *2 (-1155 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 (-831 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1027))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-984)) (-4 *1 (-920 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-994))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-887 *3)) (-4 *3 (-984)) (-4 *1 (-997 *3 *4 *5))
+ (-4 *5 (-572 (-1098))) (-4 *4 (-741)) (-4 *5 (-795))))
+ ((*1 *1 *2)
+ (-3810
+ (-12 (-5 *2 (-887 (-516))) (-4 *1 (-997 *3 *4 *5))
+ (-12 (-3595 (-4 *3 (-37 (-388 (-516))))) (-4 *3 (-37 (-516)))
+ (-4 *5 (-572 (-1098))))
+ (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)))
+ (-12 (-5 *2 (-887 (-516))) (-4 *1 (-997 *3 *4 *5))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *5 (-572 (-1098)))) (-4 *3 (-984))
+ (-4 *4 (-741)) (-4 *5 (-795)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-887 (-388 (-516)))) (-4 *1 (-997 *3 *4 *5))
+ (-4 *3 (-37 (-388 (-516)))) (-4 *5 (-572 (-1098))) (-4 *3 (-984))
+ (-4 *4 (-741)) (-4 *5 (-795))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-594 *7)) (|:| -1610 *8)))
+ (-4 *7 (-997 *4 *5 *6)) (-4 *8 (-1002 *4 *5 *6 *7)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1081))
+ (-5 *1 (-1000 *4 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1011))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1030 *3 *4 *5 *6 *2)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *2 (-1027)) (-4 *6 (-1027))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1030 *3 *4 *2 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *2 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1030 *3 *2 *4 *5 *6)) (-4 *3 (-1027)) (-4 *2 (-1027))
+ (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *2 (-1027)) (-4 *3 (-1027))
+ (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-594 *1)) (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027))
+ (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-594 *7)) (|:| -1610 *8)))
+ (-4 *7 (-997 *4 *5 *6)) (-4 *8 (-1035 *4 *5 *6 *7)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1081))
+ (-5 *1 (-1068 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1029)) (-5 *1 (-1103))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-1103))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-805)) (-5 *3 (-516)) (-5 *1 (-1114))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-805)) (-5 *3 (-516)) (-5 *1 (-1114))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-728 *4 (-806 *5))) (-4 *4 (-13 (-793) (-289) (-140) (-958)))
+ (-14 *5 (-594 (-1098))) (-5 *2 (-728 *4 (-806 *6))) (-5 *1 (-1204 *4 *5 *6))
+ (-14 *6 (-594 (-1098)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-887 *4)) (-4 *4 (-13 (-793) (-289) (-140) (-958)))
+ (-5 *2 (-887 (-962 (-388 *4)))) (-5 *1 (-1204 *4 *5 *6))
+ (-14 *5 (-594 (-1098))) (-14 *6 (-594 (-1098)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-728 *4 (-806 *6))) (-4 *4 (-13 (-793) (-289) (-140) (-958)))
+ (-14 *6 (-594 (-1098))) (-5 *2 (-887 (-962 (-388 *4))))
+ (-5 *1 (-1204 *4 *5 *6)) (-14 *5 (-594 (-1098)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1092 *4)) (-4 *4 (-13 (-793) (-289) (-140) (-958)))
+ (-5 *2 (-1092 (-962 (-388 *4)))) (-5 *1 (-1204 *4 *5 *6))
+ (-14 *5 (-594 (-1098))) (-14 *6 (-594 (-1098)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1069 *4 (-502 (-806 *6)) (-806 *6) (-728 *4 (-806 *6))))
+ (-4 *4 (-13 (-793) (-289) (-140) (-958))) (-14 *6 (-594 (-1098)))
+ (-5 *2 (-594 (-728 *4 (-806 *6)))) (-5 *1 (-1204 *4 *5 *6))
+ (-14 *5 (-594 (-1098))))))
+(((*1 *2 *3) (-12 (-5 *2 (-386 *3)) (-5 *1 (-525 *3)) (-4 *3 (-515))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-386 *3))
+ (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-891 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-4 *7 (-891 *6 *4 *5))
+ (-5 *2 (-386 (-1092 *7))) (-5 *1 (-691 *4 *5 *6 *7)) (-5 *3 (-1092 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-432)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-386 *1)) (-4 *1 (-891 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-432)) (-5 *2 (-386 *3))
+ (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-891 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-432)) (-4 *7 (-891 *6 *4 *5))
+ (-5 *2 (-386 (-1092 (-388 *7)))) (-5 *1 (-1094 *4 *5 *6 *7))
+ (-5 *3 (-1092 (-388 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-386 *1)) (-4 *1 (-1138))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-386 *3)) (-5 *1 (-1159 *4 *3))
+ (-4 *3 (-13 (-1155 *4) (-523) (-10 -8 (-15 -3419 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-958)))
+ (-14 *5 (-594 (-1098)))
+ (-5 *2 (-594 (-1069 *4 (-502 (-806 *6)) (-806 *6) (-728 *4 (-806 *6)))))
+ (-5 *1 (-1204 *4 *5 *6)) (-14 *6 (-594 (-1098))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-958)))
+ (-14 *5 (-594 (-1098))) (-5 *2 (-594 (-594 (-962 (-388 *4)))))
+ (-5 *1 (-1204 *4 *5 *6)) (-14 *6 (-594 (-1098)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-594 (-887 *5))) (-5 *4 (-110))
+ (-4 *5 (-13 (-793) (-289) (-140) (-958)))
+ (-5 *2 (-594 (-594 (-962 (-388 *5))))) (-5 *1 (-1204 *5 *6 *7))
+ (-14 *6 (-594 (-1098))) (-14 *7 (-594 (-1098)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-887 *5))) (-5 *4 (-110))
+ (-4 *5 (-13 (-793) (-289) (-140) (-958)))
+ (-5 *2 (-594 (-594 (-962 (-388 *5))))) (-5 *1 (-1204 *5 *6 *7))
+ (-14 *6 (-594 (-1098))) (-14 *7 (-594 (-1098)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-887 *4))) (-4 *4 (-13 (-793) (-289) (-140) (-958)))
+ (-5 *2 (-594 (-594 (-962 (-388 *4))))) (-5 *1 (-1204 *4 *5 *6))
+ (-14 *5 (-594 (-1098))) (-14 *6 (-594 (-1098))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-594 (-887 (-516)))) (-5 *4 (-594 (-1098)))
+ (-5 *2 (-594 (-594 (-359)))) (-5 *1 (-961)) (-5 *5 (-359))))
((*1 *2 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-397 *4)) (-4 *4 (-162))
- (-5 *2 (-635 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-162)) (-5 *2 (-1177 *3))))
+ (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-958)))
+ (-14 *5 (-594 (-1098))) (-5 *2 (-594 (-594 (-962 (-388 *4)))))
+ (-5 *1 (-1204 *4 *5 *6)) (-14 *6 (-594 (-1098)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-594 (-887 *5))) (-5 *4 (-110))
+ (-4 *5 (-13 (-793) (-289) (-140) (-958)))
+ (-5 *2 (-594 (-594 (-962 (-388 *5))))) (-5 *1 (-1204 *5 *6 *7))
+ (-14 *6 (-594 (-1098))) (-14 *7 (-594 (-1098)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-594 (-887 *5))) (-5 *4 (-110))
+ (-4 *5 (-13 (-793) (-289) (-140) (-958)))
+ (-5 *2 (-594 (-594 (-962 (-388 *5))))) (-5 *1 (-1204 *5 *6 *7))
+ (-14 *6 (-594 (-1098))) (-14 *7 (-594 (-1098)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-887 *5))) (-5 *4 (-110))
+ (-4 *5 (-13 (-793) (-289) (-140) (-958)))
+ (-5 *2 (-594 (-594 (-962 (-388 *5))))) (-5 *1 (-1204 *5 *6 *7))
+ (-14 *6 (-594 (-1098))) (-14 *7 (-594 (-1098)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-887 *4))) (-4 *4 (-13 (-793) (-289) (-140) (-958)))
+ (-5 *2 (-594 (-594 (-962 (-388 *4))))) (-5 *1 (-1204 *4 *5 *6))
+ (-14 *5 (-594 (-1098))) (-14 *6 (-594 (-1098))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-958)))
+ (-14 *5 (-594 (-1098)))
+ (-5 *2 (-594 (-2 (|:| -1813 (-1092 *4)) (|:| -3497 (-594 (-887 *4))))))
+ (-5 *1 (-1204 *4 *5 *6)) (-14 *6 (-594 (-1098)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-958)))
+ (-5 *2 (-594 (-2 (|:| -1813 (-1092 *5)) (|:| -3497 (-594 (-887 *5))))))
+ (-5 *1 (-1204 *5 *6 *7)) (-5 *3 (-594 (-887 *5))) (-14 *6 (-594 (-1098)))
+ (-14 *7 (-594 (-1098)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-958)))
+ (-5 *2 (-594 (-2 (|:| -1813 (-1092 *5)) (|:| -3497 (-594 (-887 *5))))))
+ (-5 *1 (-1204 *5 *6 *7)) (-5 *3 (-594 (-887 *5))) (-14 *6 (-594 (-1098)))
+ (-14 *7 (-594 (-1098)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-958)))
+ (-5 *2 (-594 (-2 (|:| -1813 (-1092 *5)) (|:| -3497 (-594 (-887 *5))))))
+ (-5 *1 (-1204 *5 *6 *7)) (-5 *3 (-594 (-887 *5))) (-14 *6 (-594 (-1098)))
+ (-14 *7 (-594 (-1098)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-793) (-289) (-140) (-958)))
+ (-5 *2 (-594 (-2 (|:| -1813 (-1092 *4)) (|:| -3497 (-594 (-887 *4))))))
+ (-5 *1 (-1204 *4 *5 *6)) (-5 *3 (-594 (-887 *4))) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-594 (-1098))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-594 (-887 *5))) (-5 *4 (-110))
+ (-4 *5 (-13 (-793) (-289) (-140) (-958))) (-5 *2 (-594 (-981 *5 *6)))
+ (-5 *1 (-1204 *5 *6 *7)) (-14 *6 (-594 (-1098))) (-14 *7 (-594 (-1098)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 (-635 *5))) (-5 *3 (-635 *5)) (-4 *5 (-343))
- (-5 *2 (-1177 *5)) (-5 *1 (-1011 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1023)) (-5 *2 (-110)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-635 *3))
- (-4 *3 (-13 (-288) (-10 -8 (-15 -2705 ((-398 $) $)))))
- (-4 *4 (-1153 *3)) (-5 *1 (-475 *3 *4 *5)) (-4 *5 (-389 *3 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-149 *3 *2))
- (-4 *2 (-410 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-793) (-520))) (-5 *1 (-149 *4 *2))
- (-4 *2 (-410 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1095))))
- ((*1 *1 *1) (-4 *1 (-151))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1162 *3 *4 *5)) (-4 *3 (-13 (-343) (-793)))
- (-14 *4 (-1095)) (-14 *5 *3) (-5 *1 (-299 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-359))) (-5 *1 (-974)) (-5 *3 (-359)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-595 *3)) (-4 *3 (-1023)) (-4 *1 (-1021 *3))))
- ((*1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1023)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-387 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-520))
- (-4 *4 (-981)) (-4 *2 (-1168 *4)) (-5 *1 (-1171 *4 *5 *6 *2))
- (-4 *6 (-605 *5)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1076 *4)) (-5 *3 (-528)) (-4 *4 (-981))
- (-5 *1 (-1080 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-528)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-981))
- (-14 *4 (-1095)) (-14 *5 *3))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-595 *5)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5))
- (-14 *3 (-528)) (-14 *4 (-717)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-981)) (-4 *2 (-520)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-343)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-431)) (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793))
- (-5 *2 (-595 *3)) (-5 *1 (-914 *4 *5 *6 *3))
- (-4 *3 (-994 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-802)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-595 (-229 *4 *5))) (-5 *2 (-229 *4 *5))
- (-14 *4 (-595 (-1095))) (-4 *5 (-431)) (-5 *1 (-583 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-891 *4)) (-4 *4 (-13 (-288) (-140)))
- (-4 *2 (-888 *4 *6 *5)) (-5 *1 (-863 *4 *5 *6 *2))
- (-4 *5 (-13 (-793) (-570 (-1095)))) (-4 *6 (-739)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-520)) (-5 *2 (-595 *3)) (-5 *1 (-907 *4 *3))
- (-4 *3 (-1153 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-1110)))))
-(((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1095)) (-5 *1 (-623 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-924 (-387 (-528)) (-804 *3) (-222 *4 (-717))
- (-229 *3 (-387 (-528)))))
- (-14 *3 (-595 (-1095))) (-14 *4 (-717)) (-5 *1 (-923 *3 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-812 (-904 *3) (-904 *3))) (-5 *1 (-904 *3))
- (-4 *3 (-905)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1076 *3))) (-5 *2 (-1076 *3)) (-5 *1 (-1080 *3))
- (-4 *3 (-37 (-387 (-528)))) (-4 *3 (-981)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7))
- (-5 *2 (-595 (-2 (|:| |val| (-110)) (|:| -2316 *4))))
- (-5 *1 (-1031 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-261))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1023))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981))
- (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-981))
- (-4 *4 (-789)))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-528)) (-5 *5 (-635 (-207))) (-5 *4 (-207))
- (-5 *2 (-970)) (-5 *1 (-702)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-635 (-207))) (-5 *5 (-635 (-528))) (-5 *6 (-207))
- (-5 *3 (-528)) (-5 *2 (-970)) (-5 *1 (-698)))))
+ (-12 (-5 *3 (-594 (-887 *5))) (-5 *4 (-110))
+ (-4 *5 (-13 (-793) (-289) (-140) (-958))) (-5 *2 (-594 (-981 *5 *6)))
+ (-5 *1 (-1204 *5 *6 *7)) (-14 *6 (-594 (-1098))) (-14 *7 (-594 (-1098)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-887 *4))) (-4 *4 (-13 (-793) (-289) (-140) (-958)))
+ (-5 *2 (-594 (-981 *4 *5))) (-5 *1 (-1204 *4 *5 *6)) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-594 (-1098))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528)))))))
- (-5 *2 (-595 *4)) (-5 *1 (-1050 *3 *4)) (-4 *3 (-1153 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528)))))))
- (-5 *2 (-595 *3)) (-5 *1 (-1050 *4 *3)) (-4 *4 (-1153 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-1182)) (-5 *1 (-359))))
- ((*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-359)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1168 *4))
- (-4 *4 (-37 (-387 (-528))))
- (-5 *2 (-1 (-1076 *4) (-1076 *4) (-1076 *4))) (-5 *1 (-1170 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-595 (-1095))) (-5 *1 (-504)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-717)) (-5 *6 (-110)) (-4 *7 (-431)) (-4 *8 (-739))
- (-4 *9 (-793)) (-4 *3 (-994 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-595 *4))
- (|:| |todo| (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4))))))
- (-5 *1 (-997 *7 *8 *9 *3 *4)) (-4 *4 (-999 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-717)) (-4 *6 (-431)) (-4 *7 (-739)) (-4 *8 (-793))
- (-4 *3 (-994 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-595 *4))
- (|:| |todo| (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4))))))
- (-5 *1 (-997 *6 *7 *8 *3 *4)) (-4 *4 (-999 *6 *7 *8 *3))))
+ (-12 (-5 *3 (-1 (-1076 *4) (-1076 *4))) (-5 *2 (-1076 *4)) (-5 *1 (-1203 *4))
+ (-4 *4 (-1134))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-595 *4))
- (|:| |todo| (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4))))))
- (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-717)) (-5 *6 (-110)) (-4 *7 (-431)) (-4 *8 (-739))
- (-4 *9 (-793)) (-4 *3 (-994 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-595 *4))
- (|:| |todo| (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4))))))
- (-5 *1 (-1065 *7 *8 *9 *3 *4)) (-4 *4 (-1032 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-717)) (-4 *6 (-431)) (-4 *7 (-739)) (-4 *8 (-793))
- (-4 *3 (-994 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-595 *4))
- (|:| |todo| (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4))))))
- (-5 *1 (-1065 *6 *7 *8 *3 *4)) (-4 *4 (-1032 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-595 *4))
- (|:| |todo| (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4))))))
- (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1032 *5 *6 *7 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-13 (-793) (-520) (-972 (-528)))) (-5 *2 (-1182))
- (-5 *1 (-413 *3 *4)) (-4 *4 (-410 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-520)) (-5 *2 (-595 (-635 *3))) (-5 *1 (-42 *3 *4))
- (-4 *4 (-397 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-595 (-1118 *3))) (-5 *1 (-1118 *3)) (-4 *3 (-1023)))))
+ (-12 (-5 *3 (-1 (-594 (-1076 *5)) (-594 (-1076 *5)))) (-5 *4 (-516))
+ (-5 *2 (-594 (-1076 *5))) (-5 *1 (-1203 *5)) (-4 *5 (-1134)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-891 *5))) (-5 *4 (-595 (-1095))) (-4 *5 (-520))
- (-5 *2 (-595 (-595 (-275 (-387 (-891 *5)))))) (-5 *1 (-716 *5))))
+ (-12 (-5 *4 (-860)) (-4 *6 (-13 (-523) (-795))) (-5 *2 (-594 (-295 *6)))
+ (-5 *1 (-204 *5 *6)) (-5 *3 (-295 *6)) (-4 *5 (-984))))
+ ((*1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-523))))
((*1 *2 *3)
- (-12 (-5 *3 (-595 (-891 *4))) (-4 *4 (-520))
- (-5 *2 (-595 (-595 (-275 (-387 (-891 *4)))))) (-5 *1 (-716 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-635 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1400 (-595 *6)))
- *7 *6))
- (-4 *6 (-343)) (-4 *7 (-605 *6))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1177 *6) "failed"))
- (|:| -1400 (-595 (-1177 *6)))))
- (-5 *1 (-759 *6 *7)) (-5 *4 (-1177 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520))
- (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-914 *3 *4 *5 *6)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1095)) (-5 *2 (-106)) (-5 *1 (-164))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1095)) (-5 *2 (-106)) (-5 *1 (-1010)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-528)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1131))
- (-4 *5 (-353 *4)) (-4 *2 (-353 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-528)) (-4 *1 (-983 *4 *5 *6 *2 *7)) (-4 *6 (-981))
- (-4 *7 (-220 *4 *6)) (-4 *2 (-220 *5 *6)))))
-(((*1 *1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-447)) (-5 *3 (-595 (-244))) (-5 *1 (-1178))))
- ((*1 *1 *1) (-5 *1 (-1178))))
-(((*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-51)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-431)) (-4 *4 (-766))
- (-14 *5 (-1095)) (-5 *2 (-528)) (-5 *1 (-1037 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793))))
- ((*1 *1) (-4 *1 (-1071))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-844 *4)) (-4 *4 (-1023)) (-5 *2 (-595 (-717)))
- (-5 *1 (-843 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-717)) (-5 *2 (-1 (-1076 (-891 *4)) (-1076 (-891 *4))))
- (-5 *1 (-1185 *4)) (-4 *4 (-343)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4))
- (-4 *3 (-347 *4))))
- ((*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *1 *1) (-5 *1 (-802)))
+ (-12 (-5 *3 (-545 *5)) (-4 *5 (-13 (-29 *4) (-1120)))
+ (-4 *4 (-13 (-432) (-975 (-516)) (-795) (-593 (-516)))) (-5 *2 (-594 *5))
+ (-5 *1 (-547 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-545 (-388 (-887 *4))))
+ (-4 *4 (-13 (-432) (-975 (-516)) (-795) (-593 (-516))))
+ (-5 *2 (-594 (-295 *4))) (-5 *1 (-550 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1022 *3 *2)) (-4 *3 (-793)) (-4 *2 (-1072 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 *1)) (-4 *1 (-1022 *4 *2)) (-4 *4 (-793))
+ (-4 *2 (-1072 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1026 *2 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-1023))
- (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *2 (-1023))))
- ((*1 *1 *2) (-12 (-5 *2 (-528)) (-4 *1 (-1077))))
- ((*1 *2 *1) (-12 (-5 *2 (-1078)) (-5 *1 (-1095)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-3 *3 (-595 *1)))
- (-4 *1 (-999 *4 *5 *6 *3)))))
+ (-12 (-5 *2 (-1193 (-1098) *3)) (-5 *1 (-1199 *3)) (-4 *3 (-984))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-795))
+ (-4 *4 (-984)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1193 (-1098) *3)) (-4 *3 (-984)) (-5 *1 (-1199 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1193 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
+ (-5 *1 (-1202 *3 *4)))))
(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-793) (-972 (-528)) (-591 (-528)) (-431)))
- (-5 *2 (-786 *4)) (-5 *1 (-293 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1117) (-410 *3))) (-14 *5 (-1095))
- (-14 *6 *4)))
+ (-12 (-5 *2 (-594 (-2 (|:| |k| (-1098)) (|:| |c| (-1199 *3)))))
+ (-5 *1 (-1199 *3)) (-4 *3 (-984))))
((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-793) (-972 (-528)) (-591 (-528)) (-431)))
- (-5 *2 (-786 *4)) (-5 *1 (-1163 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1117) (-410 *3))) (-14 *5 (-1095))
- (-14 *6 *4))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-635 (-207))) (-5 *4 (-528)) (-5 *2 (-970))
- (-5 *1 (-702)))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-595
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-717)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-739)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-431)) (-4 *5 (-793))
- (-5 *1 (-428 *3 *4 *5 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-398 *3)) (-4 *3 (-520)) (-5 *1 (-399 *3)))))
-(((*1 *1) (-5 *1 (-148))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-528)) (-5 *5 (-159 (-207))) (-5 *6 (-1078))
- (-5 *4 (-207)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-999 *4 *5 *6 *3)) (-4 *4 (-431)) (-4 *5 (-739))
- (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-110)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1076 (-207))) (-5 *2 (-595 (-1078))) (-5 *1 (-176))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1076 (-207))) (-5 *2 (-595 (-1078))) (-5 *1 (-281))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1076 (-207))) (-5 *2 (-595 (-1078))) (-5 *1 (-286)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-831 *4)) (-4 *4 (-1023)) (-5 *2 (-110))
- (-5 *1 (-828 *4 *5)) (-4 *5 (-1023))))
+ (-12 (-5 *2 (-594 (-2 (|:| |k| *3) (|:| |c| (-1202 *3 *4)))))
+ (-5 *1 (-1202 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-516))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-719))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-860))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-131 *2 *3 *4)) (-14 *2 (-516)) (-14 *3 (-719)) (-4 *4 (-162))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-148))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-148))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1120))) (-5 *1 (-210 *3))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1134)) (-4 *2 (-675))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1134)) (-4 *2 (-675))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1038)) (-4 *2 (-1134))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1038)) (-4 *2 (-1134))))
+ ((*1 *1 *2 *3) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-128))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-363 *3 *2)) (-4 *3 (-984)) (-4 *2 (-795))))
+ ((*1 *1 *2 *3) (-12 (-4 *1 (-365 *2 *3)) (-4 *2 (-984)) (-4 *3 (-1027))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *2 *1)
+ (-12 (-14 *3 (-594 (-1098))) (-4 *4 (-162)) (-4 *6 (-221 (-4232 *3) (-719)))
+ (-14 *7
+ (-1 (-110) (-2 (|:| -2426 *5) (|:| -2427 *6))
+ (-2 (|:| -2426 *5) (|:| -2427 *6))))
+ (-5 *1 (-441 *3 *4 *5 *6 *7 *2)) (-4 *5 (-795))
+ (-4 *2 (-891 *4 *6 (-806 *3)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5))
+ (-4 *5 (-891 *2 *3 *4))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-331)) (-5 *1 (-500 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-505)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-556 *3)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-556 *2)) (-4 *2 (-984))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-984))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-990))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1027)) (-4 *6 (-1027))
+ (-4 *7 (-1027)) (-5 *2 (-1 *7 *5)) (-5 *1 (-632 *5 *6 *7))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-634 *3 *2 *4)) (-4 *3 (-984)) (-4 *2 (-353 *3))
+ (-4 *4 (-353 *3))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-634 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-353 *3))
+ (-4 *2 (-353 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-516)) (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2))
+ (-4 *4 (-353 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2))
+ (-4 *4 (-353 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2))
+ (-4 *4 (-353 *2))))
+ ((*1 *1 *1 *1) (-4 *1 (-669)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1 *1) (-5 *1 (-805)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1027))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-523))
+ (-5 *1 (-910 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-989 *2)) (-4 *2 (-990))))
+ ((*1 *1 *1 *1) (-4 *1 (-1038)))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1048 *3 *4 *2 *5)) (-4 *4 (-984)) (-4 *2 (-221 *3 *4))
+ (-4 *5 (-221 *3 *4))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1048 *3 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4))
+ (-4 *2 (-221 *3 *4))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *3 (-984)) (-4 *4 (-795)) (-5 *1 (-1051 *3 *4 *2))
+ (-4 *2 (-891 *3 (-502 *4) *4))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-884 (-208))) (-5 *3 (-208)) (-5 *1 (-1131))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1134)) (-4 *2 (-675))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1134)) (-4 *2 (-675))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-516)) (-4 *1 (-1178 *3)) (-4 *3 (-1134)) (-4 *3 (-21))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-795)) (-4 *2 (-984))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-984)) (-4 *3 (-791)))))
+(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740))))
+ ((*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-984)) (-14 *3 (-594 (-1098)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-984) (-795)))
+ (-14 *3 (-594 (-1098)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *2 (-984)) (-4 *3 (-1027))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-594 (-1098))) (-4 *3 (-162)) (-4 *5 (-221 (-4232 *2) (-719)))
+ (-14 *6
+ (-1 (-110) (-2 (|:| -2426 *4) (|:| -2427 *5))
+ (-2 (|:| -2426 *4) (|:| -2427 *5))))
+ (-5 *1 (-441 *2 *3 *4 *5 *6 *7)) (-4 *4 (-795))
+ (-4 *7 (-891 *3 *5 (-806 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-795))))
+ ((*1 *1 *1) (-12 (-4 *2 (-523)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1155 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-984))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-684 *2 *3)) (-4 *3 (-795)) (-4 *2 (-984)) (-4 *3 (-675))))
+ ((*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-997 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-984)) (-4 *3 (-791)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-49 *3 *4))
+ (-14 *4 (-594 (-1098)))))
+ ((*1 *1 *2 *1 *1 *3)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1134))
+ (-4 *4 (-353 *3)) (-4 *5 (-353 *3))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1134))
+ (-4 *4 (-353 *3)) (-4 *5 (-353 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1134))
+ (-4 *4 (-353 *3)) (-4 *5 (-353 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-831 *5)) (-4 *5 (-1023)) (-5 *2 (-110))
- (-5 *1 (-829 *5 *3)) (-4 *3 (-1131))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-56 *5)) (-4 *5 (-1134)) (-4 *6 (-1134))
+ (-5 *2 (-56 *6)) (-5 *1 (-57 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *6)) (-5 *4 (-831 *5)) (-4 *5 (-1023))
- (-4 *6 (-1131)) (-5 *2 (-110)) (-5 *1 (-829 *5 *6)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-828 *5 *3)) (-5 *4 (-831 *5)) (-4 *5 (-1023))
- (-4 *3 (-156 *6)) (-4 (-891 *6) (-825 *5))
- (-4 *6 (-13 (-825 *5) (-162))) (-5 *1 (-167 *5 *6 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-828 *4 *1)) (-5 *3 (-831 *4)) (-4 *1 (-825 *4))
- (-4 *4 (-1023))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-828 *5 *6)) (-5 *4 (-831 *5)) (-4 *5 (-1023))
- (-4 *6 (-13 (-1023) (-972 *3))) (-4 *3 (-825 *5))
- (-5 *1 (-870 *5 *3 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-828 *5 *3)) (-4 *5 (-1023))
- (-4 *3 (-13 (-410 *6) (-570 *4) (-825 *5) (-972 (-568 $))))
- (-5 *4 (-831 *5)) (-4 *6 (-13 (-520) (-793) (-825 *5)))
- (-5 *1 (-871 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-828 (-528) *3)) (-5 *4 (-831 (-528))) (-4 *3 (-513))
- (-5 *1 (-872 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-828 *5 *6)) (-5 *3 (-568 *6)) (-4 *5 (-1023))
- (-4 *6 (-13 (-793) (-972 (-568 $)) (-570 *4) (-825 *5)))
- (-5 *4 (-831 *5)) (-5 *1 (-873 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-824 *5 *6 *3)) (-5 *4 (-831 *5)) (-4 *5 (-1023))
- (-4 *6 (-825 *5)) (-4 *3 (-615 *6)) (-5 *1 (-874 *5 *6 *3))))
- ((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-828 *6 *3) *8 (-831 *6) (-828 *6 *3)))
- (-4 *8 (-793)) (-5 *2 (-828 *6 *3)) (-5 *4 (-831 *6))
- (-4 *6 (-1023)) (-4 *3 (-13 (-888 *9 *7 *8) (-570 *4)))
- (-4 *7 (-739)) (-4 *9 (-13 (-981) (-793) (-825 *6)))
- (-5 *1 (-875 *6 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-828 *5 *3)) (-4 *5 (-1023))
- (-4 *3 (-13 (-888 *8 *6 *7) (-570 *4))) (-5 *4 (-831 *5))
- (-4 *7 (-825 *5)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *8 (-13 (-981) (-793) (-825 *5))) (-5 *1 (-875 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-828 *5 *3)) (-4 *5 (-1023)) (-4 *3 (-929 *6))
- (-4 *6 (-13 (-520) (-825 *5) (-570 *4))) (-5 *4 (-831 *5))
- (-5 *1 (-878 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-828 *5 (-1095))) (-5 *3 (-1095)) (-5 *4 (-831 *5))
- (-4 *5 (-1023)) (-5 *1 (-879 *5))))
- ((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-595 (-831 *7))) (-5 *5 (-1 *9 (-595 *9)))
- (-5 *6 (-1 (-828 *7 *9) *9 (-831 *7) (-828 *7 *9))) (-4 *7 (-1023))
- (-4 *9 (-13 (-981) (-570 (-831 *7)) (-972 *8))) (-5 *2 (-828 *7 *9))
- (-5 *3 (-595 *9)) (-4 *8 (-13 (-981) (-793)))
- (-5 *1 (-880 *7 *8 *9)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-694)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-207) (-207) (-207) (-207))) (-5 *1 (-244))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-207) (-207) (-207))) (-5 *1 (-244))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-207) (-207))) (-5 *1 (-244)))))
-(((*1 *2 *3) (-12 (-5 *3 (-528)) (-5 *2 (-1182)) (-5 *1 (-942)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-793))
- (-5 *2 (-2 (|:| -1641 (-528)) (|:| |var| (-568 *1))))
- (-4 *1 (-410 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1078)) (-5 *2 (-595 (-1100))) (-5 *1 (-819)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-5 *2 (-717)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-397 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-813)))))
-(((*1 *1) (-5 *1 (-1008))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-882 *5)) (-4 *5 (-981)) (-5 *2 (-717))
- (-5 *1 (-1084 *4 *5)) (-14 *4 (-860))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-595 (-717))) (-5 *3 (-717)) (-5 *1 (-1084 *4 *5))
- (-14 *4 (-860)) (-4 *5 (-981))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-595 (-717))) (-5 *3 (-882 *5)) (-4 *5 (-981))
- (-5 *1 (-1084 *4 *5)) (-14 *4 (-860)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1091 *3)) (-4 *3 (-329)) (-5 *1 (-337 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-595 (-728 *3))) (-5 *1 (-728 *3)) (-4 *3 (-520))
- (-4 *3 (-981)))))
-(((*1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-1102)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-207)) (-5 *4 (-528))
- (-5 *5 (-3 (|:| |fn| (-368)) (|:| |fp| (-62 G)))) (-5 *2 (-970))
- (-5 *1 (-695)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-112)) (-4 *2 (-1023)) (-4 *2 (-793))
- (-5 *1 (-111 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1078)) (-5 *4 (-528)) (-5 *5 (-635 (-207)))
- (-5 *2 (-970)) (-5 *1 (-704)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-717)) (-5 *1 (-799 *2)) (-4 *2 (-162)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1177 *5)) (-4 *5 (-738)) (-5 *2 (-110))
- (-5 *1 (-788 *4 *5)) (-14 *4 (-717)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-414)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-215)) (-4 *3 (-981)) (-4 *4 (-793)) (-4 *5 (-247 *4))
- (-4 *6 (-739)) (-5 *2 (-1 *1 (-717))) (-4 *1 (-234 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-981)) (-4 *3 (-793)) (-4 *5 (-247 *3)) (-4 *6 (-739))
- (-5 *2 (-1 *1 (-717))) (-4 *1 (-234 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-717)) (-4 *1 (-247 *2)) (-4 *2 (-793)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *3 (-595 (-1 *4 (-595 *4)))) (-4 *4 (-1023))
- (-5 *1 (-111 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1023))
- (-5 *1 (-111 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-112)) (-5 *2 (-595 (-1 *4 (-595 *4))))
- (-5 *1 (-111 *4)) (-4 *4 (-1023)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-595 (-1091 *5))) (-5 *3 (-1091 *5))
- (-4 *5 (-156 *4)) (-4 *4 (-513)) (-5 *1 (-142 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-595 *3)) (-4 *3 (-1153 *5))
- (-4 *5 (-1153 *4)) (-4 *4 (-329)) (-5 *1 (-338 *4 *5 *3))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-595 (-1091 (-528)))) (-5 *3 (-1091 (-528)))
- (-5 *1 (-536))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-595 (-1091 *1))) (-5 *3 (-1091 *1))
- (-4 *1 (-848)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7))
- (-5 *2 (-595 (-2 (|:| |val| *3) (|:| -2316 *4))))
- (-5 *1 (-1031 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-595 (-244))) (-5 *1 (-1178))))
- ((*1 *2 *1) (-12 (-5 *2 (-595 (-244))) (-5 *1 (-1178))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-595 (-244))) (-5 *1 (-1179))))
- ((*1 *2 *1) (-12 (-5 *2 (-595 (-244))) (-5 *1 (-1179)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-520) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1095))
- (-4 *4 (-13 (-520) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *1 (-258 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *4))))))
-(((*1 *2)
- (-12 (-4 *3 (-520)) (-5 *2 (-595 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-397 *3)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-528)) (-5 *6 (-1 (-1182) (-1177 *5) (-1177 *5) (-359)))
- (-5 *3 (-1177 (-359))) (-5 *5 (-359)) (-5 *2 (-1182))
- (-5 *1 (-734)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-387 (-891 *3))) (-5 *1 (-432 *3 *4 *5 *6))
- (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1042)) (-5 *2 (-1182)) (-5 *1 (-777)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1042)) (-5 *2 (-110)) (-5 *1 (-767)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-504))) (-5 *2 (-1095)) (-5 *1 (-504)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207)))
- (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207))
- (|:| |relerr| (-207))))
- (-5 *2 (-528)) (-5 *1 (-188)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1153 *6))
- (-4 *6 (-13 (-343) (-140) (-972 *4))) (-5 *4 (-528))
- (-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-110))))
- (|:| -2589
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-951 *6 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-525))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1091 (-387 (-528)))) (-5 *1 (-881)) (-5 *3 (-528)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-410 *3) (-938))) (-5 *1 (-257 *3 *2))
- (-4 *3 (-13 (-793) (-520))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1025 (-1025 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-779 *3)) (-4 *3 (-1023))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-786 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1078)) (-4 *6 (-431)) (-4 *7 (-739)) (-4 *8 (-793))
- (-4 *4 (-994 *6 *7 *8)) (-5 *2 (-1182))
- (-5 *1 (-722 *6 *7 *8 *4 *5)) (-4 *5 (-999 *6 *7 *8 *4)))))
-(((*1 *1) (-5 *1 (-417))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-717)) (-5 *1 (-623 *3)) (-4 *3 (-981)) (-4 *3 (-1023)))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1095))
- (-4 *4 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528))))
- (-5 *1 (-539 *4 *2))
- (-4 *2 (-13 (-1117) (-897) (-1059) (-29 *4))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-480 (-387 (-528)) (-222 *5 (-717)) (-804 *4)
- (-229 *4 (-387 (-528)))))
- (-14 *4 (-595 (-1095))) (-14 *5 (-717)) (-5 *2 (-110))
- (-5 *1 (-481 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-5 *2 (-1091 *3)) (-5 *1 (-40 *4 *3))
- (-4 *3
- (-13 (-343) (-283)
- (-10 -8 (-15 -3031 ((-1047 *4 (-568 $)) $))
- (-15 -3042 ((-1047 *4 (-568 $)) $))
- (-15 -2222 ($ (-1047 *4 (-568 $))))))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *8)) (-4 *8 (-888 *5 *7 *6))
- (-4 *5 (-13 (-288) (-140))) (-4 *6 (-13 (-793) (-570 (-1095))))
- (-4 *7 (-739))
- (-5 *2
- (-595
- (-2 (|:| |eqzro| (-595 *8)) (|:| |neqzro| (-595 *8))
- (|:| |wcond| (-595 (-891 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1177 (-387 (-891 *5))))
- (|:| -1400 (-595 (-1177 (-387 (-891 *5))))))))))
- (-5 *1 (-863 *5 *6 *7 *8)) (-5 *4 (-595 *8))))
+ (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-131 *5 *6 *7)) (-14 *5 (-516))
+ (-14 *6 (-719)) (-4 *7 (-162)) (-4 *8 (-162)) (-5 *2 (-131 *5 *6 *8))
+ (-5 *1 (-132 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *8)) (-5 *4 (-595 (-1095))) (-4 *8 (-888 *5 *7 *6))
- (-4 *5 (-13 (-288) (-140))) (-4 *6 (-13 (-793) (-570 (-1095))))
- (-4 *7 (-739))
- (-5 *2
- (-595
- (-2 (|:| |eqzro| (-595 *8)) (|:| |neqzro| (-595 *8))
- (|:| |wcond| (-595 (-891 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1177 (-387 (-891 *5))))
- (|:| -1400 (-595 (-1177 (-387 (-891 *5))))))))))
- (-5 *1 (-863 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 *7)) (-4 *7 (-888 *4 *6 *5))
- (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095))))
- (-4 *6 (-739))
- (-5 *2
- (-595
- (-2 (|:| |eqzro| (-595 *7)) (|:| |neqzro| (-595 *7))
- (|:| |wcond| (-595 (-891 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1177 (-387 (-891 *4))))
- (|:| -1400 (-595 (-1177 (-387 (-891 *4))))))))))
- (-5 *1 (-863 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-158 *5)) (-4 *5 (-162)) (-4 *6 (-162))
+ (-5 *2 (-158 *6)) (-5 *1 (-159 *5 *6))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-295 *3) (-295 *3))) (-4 *3 (-13 (-984) (-795)))
+ (-5 *1 (-206 *3 *4)) (-14 *4 (-594 (-1098)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-222 *5 *6)) (-14 *5 (-719)) (-4 *6 (-1134))
+ (-4 *7 (-1134)) (-5 *2 (-222 *5 *7)) (-5 *1 (-223 *5 *6 *7))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1134)) (-5 *1 (-275 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-275 *5)) (-4 *5 (-1134)) (-4 *6 (-1134))
+ (-5 *2 (-275 *6)) (-5 *1 (-276 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-569 *1)) (-4 *1 (-280))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-635 *9)) (-5 *5 (-860)) (-4 *9 (-888 *6 *8 *7))
- (-4 *6 (-13 (-288) (-140))) (-4 *7 (-13 (-793) (-570 (-1095))))
- (-4 *8 (-739))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1081)) (-5 *5 (-569 *6)) (-4 *6 (-280))
+ (-4 *2 (-1134)) (-5 *1 (-281 *6 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-569 *5)) (-4 *5 (-280)) (-4 *2 (-280))
+ (-5 *1 (-282 *5 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-637 *5)) (-4 *5 (-984)) (-4 *6 (-984))
+ (-5 *2 (-637 *6)) (-5 *1 (-287 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-295 *5)) (-4 *5 (-795)) (-4 *6 (-795))
+ (-5 *2 (-295 *6)) (-5 *1 (-296 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-314 *5 *6 *7 *8)) (-4 *5 (-344))
+ (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-388 *6))) (-4 *8 (-323 *5 *6 *7))
+ (-4 *9 (-344)) (-4 *10 (-1155 *9)) (-4 *11 (-1155 (-388 *10)))
+ (-5 *2 (-314 *9 *10 *11 *12)) (-5 *1 (-315 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-323 *9 *10 *11))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1138)) (-4 *8 (-1138)) (-4 *6 (-1155 *5))
+ (-4 *7 (-1155 (-388 *6))) (-4 *9 (-1155 *8)) (-4 *2 (-323 *8 *9 *10))
+ (-5 *1 (-324 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-323 *5 *6 *7))
+ (-4 *10 (-1155 (-388 *9)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1134)) (-4 *6 (-1134)) (-4 *2 (-353 *6))
+ (-5 *1 (-354 *5 *4 *6 *2)) (-4 *4 (-353 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-365 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-523)) (-5 *1 (-386 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-386 *5)) (-4 *5 (-523)) (-4 *6 (-523))
+ (-5 *2 (-386 *6)) (-5 *1 (-387 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-523)) (-4 *6 (-523))
+ (-5 *2 (-388 *6)) (-5 *1 (-389 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-394 *5 *6 *7 *8)) (-4 *5 (-289))
+ (-4 *6 (-931 *5)) (-4 *7 (-1155 *6)) (-4 *8 (-13 (-391 *6 *7) (-975 *6)))
+ (-4 *9 (-289)) (-4 *10 (-931 *9)) (-4 *11 (-1155 *10))
+ (-5 *2 (-394 *9 *10 *11 *12)) (-5 *1 (-395 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-13 (-391 *10 *11) (-975 *10)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-4 *2 (-399 *6))
+ (-5 *1 (-397 *4 *5 *2 *6)) (-4 *4 (-399 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-984) (-795)))
+ (-4 *6 (-13 (-984) (-795))) (-4 *2 (-402 *6)) (-5 *1 (-403 *5 *4 *6 *2))
+ (-4 *4 (-402 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-407 *6))
+ (-5 *1 (-408 *5 *4 *6 *2)) (-4 *4 (-407 *5))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-468 *3)) (-4 *3 (-1134))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-486 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-795))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-545 *5)) (-4 *5 (-344)) (-4 *6 (-344))
+ (-5 *2 (-545 *6)) (-5 *1 (-546 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *6 *5))
+ (-5 *4 (-3 (-2 (|:| -2189 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-344))
+ (-4 *6 (-344)) (-5 *2 (-2 (|:| -2189 *6) (|:| |coeff| *6)))
+ (-5 *1 (-546 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-344))
+ (-4 *2 (-344)) (-5 *1 (-546 *5 *2))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *6 *5))
+ (-5 *4
+ (-3
+ (-2 (|:| |mainpart| *5)
+ (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ "failed"))
+ (-4 *5 (-344)) (-4 *6 (-344))
(-5 *2
- (-595
- (-2 (|:| |eqzro| (-595 *9)) (|:| |neqzro| (-595 *9))
- (|:| |wcond| (-595 (-891 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1177 (-387 (-891 *6))))
- (|:| -1400 (-595 (-1177 (-387 (-891 *6))))))))))
- (-5 *1 (-863 *6 *7 *8 *9)) (-5 *4 (-595 *9))))
+ (-2 (|:| |mainpart| *6)
+ (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
+ (-5 *1 (-546 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-560 *5)) (-4 *5 (-1134)) (-4 *6 (-1134))
+ (-5 *2 (-560 *6)) (-5 *1 (-557 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-635 *9)) (-5 *4 (-595 (-1095))) (-5 *5 (-860))
- (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-288) (-140)))
- (-4 *7 (-13 (-793) (-570 (-1095)))) (-4 *8 (-739))
- (-5 *2
- (-595
- (-2 (|:| |eqzro| (-595 *9)) (|:| |neqzro| (-595 *9))
- (|:| |wcond| (-595 (-891 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1177 (-387 (-891 *6))))
- (|:| -1400 (-595 (-1177 (-387 (-891 *6))))))))))
- (-5 *1 (-863 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-560 *6)) (-5 *5 (-560 *7))
+ (-4 *6 (-1134)) (-4 *7 (-1134)) (-4 *8 (-1134)) (-5 *2 (-560 *8))
+ (-5 *1 (-558 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1076 *6)) (-5 *5 (-560 *7))
+ (-4 *6 (-1134)) (-4 *7 (-1134)) (-4 *8 (-1134)) (-5 *2 (-1076 *8))
+ (-5 *1 (-558 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-560 *6)) (-5 *5 (-1076 *7))
+ (-4 *6 (-1134)) (-4 *7 (-1134)) (-4 *8 (-1134)) (-5 *2 (-1076 *8))
+ (-5 *1 (-558 *6 *7 *8))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1134)) (-5 *1 (-560 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *8)) (-5 *4 (-860)) (-4 *8 (-888 *5 *7 *6))
- (-4 *5 (-13 (-288) (-140))) (-4 *6 (-13 (-793) (-570 (-1095))))
- (-4 *7 (-739))
- (-5 *2
- (-595
- (-2 (|:| |eqzro| (-595 *8)) (|:| |neqzro| (-595 *8))
- (|:| |wcond| (-595 (-891 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1177 (-387 (-891 *5))))
- (|:| -1400 (-595 (-1177 (-387 (-891 *5))))))))))
- (-5 *1 (-863 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-594 *5)) (-4 *5 (-1134)) (-4 *6 (-1134))
+ (-5 *2 (-594 *6)) (-5 *1 (-595 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-635 *9)) (-5 *4 (-595 *9)) (-5 *5 (-1078))
- (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-288) (-140)))
- (-4 *7 (-13 (-793) (-570 (-1095)))) (-4 *8 (-739)) (-5 *2 (-528))
- (-5 *1 (-863 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-594 *6)) (-5 *5 (-594 *7))
+ (-4 *6 (-1134)) (-4 *7 (-1134)) (-4 *8 (-1134)) (-5 *2 (-594 *8))
+ (-5 *1 (-597 *6 *7 *8))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-602 *3)) (-4 *3 (-1134))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-984)) (-4 *8 (-984)) (-4 *6 (-353 *5))
+ (-4 *7 (-353 *5)) (-4 *2 (-634 *8 *9 *10))
+ (-5 *1 (-635 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-634 *5 *6 *7))
+ (-4 *9 (-353 *8)) (-4 *10 (-353 *8))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-984)) (-4 *8 (-984))
+ (-4 *6 (-353 *5)) (-4 *7 (-353 *5)) (-4 *2 (-634 *8 *9 *10))
+ (-5 *1 (-635 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-634 *5 *6 *7))
+ (-4 *9 (-353 *8)) (-4 *10 (-353 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-523)) (-4 *7 (-523)) (-4 *6 (-1155 *5))
+ (-4 *2 (-1155 (-388 *8))) (-5 *1 (-658 *5 *6 *4 *7 *8 *2))
+ (-4 *4 (-1155 (-388 *6))) (-4 *8 (-1155 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-984)) (-4 *9 (-984)) (-4 *5 (-795))
+ (-4 *6 (-741)) (-4 *2 (-891 *9 *7 *5)) (-5 *1 (-677 *5 *6 *7 *8 *9 *4 *2))
+ (-4 *7 (-741)) (-4 *4 (-891 *8 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-795)) (-4 *6 (-795)) (-4 *7 (-741))
+ (-4 *9 (-984)) (-4 *2 (-891 *9 *8 *6)) (-5 *1 (-678 *5 *6 *7 *8 *9 *4 *2))
+ (-4 *8 (-741)) (-4 *4 (-891 *9 *7 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-684 *5 *7)) (-4 *5 (-984)) (-4 *6 (-984))
+ (-4 *7 (-675)) (-5 *2 (-684 *6 *7)) (-5 *1 (-683 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-684 *3 *4)) (-4 *4 (-675))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-729 *5)) (-4 *5 (-984)) (-4 *6 (-984))
+ (-5 *2 (-729 *6)) (-5 *1 (-730 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-4 *2 (-744 *6))
+ (-5 *1 (-747 *4 *5 *2 *6)) (-4 *4 (-744 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-780 *5)) (-4 *5 (-1027)) (-4 *6 (-1027))
+ (-5 *2 (-780 *6)) (-5 *1 (-781 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-780 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-780 *5)) (-4 *5 (-1027))
+ (-4 *6 (-1027)) (-5 *1 (-781 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1027)) (-4 *6 (-1027))
+ (-5 *2 (-787 *6)) (-5 *1 (-788 *5 *6))))
+ ((*1 *2 *3 *4 *2 *2)
+ (-12 (-5 *2 (-787 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1027))
+ (-4 *6 (-1027)) (-5 *1 (-788 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-818 *5)) (-4 *5 (-1134)) (-4 *6 (-1134))
+ (-5 *2 (-818 *6)) (-5 *1 (-817 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1134)) (-4 *6 (-1134))
+ (-5 *2 (-820 *6)) (-5 *1 (-819 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-823 *5)) (-4 *5 (-1134)) (-4 *6 (-1134))
+ (-5 *2 (-823 *6)) (-5 *1 (-822 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-829 *5 *6)) (-4 *5 (-1027)) (-4 *6 (-1027))
+ (-4 *7 (-1027)) (-5 *2 (-829 *5 *7)) (-5 *1 (-830 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-831 *5)) (-4 *5 (-1027)) (-4 *6 (-1027))
+ (-5 *2 (-831 *6)) (-5 *1 (-833 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-887 *5)) (-4 *5 (-984)) (-4 *6 (-984))
+ (-5 *2 (-887 *6)) (-5 *1 (-888 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-635 *9)) (-5 *4 (-595 (-1095))) (-5 *5 (-1078))
- (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-288) (-140)))
- (-4 *7 (-13 (-793) (-570 (-1095)))) (-4 *8 (-739)) (-5 *2 (-528))
- (-5 *1 (-863 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *8)) (-5 *4 (-1078)) (-4 *8 (-888 *5 *7 *6))
- (-4 *5 (-13 (-288) (-140))) (-4 *6 (-13 (-793) (-570 (-1095))))
- (-4 *7 (-739)) (-5 *2 (-528)) (-5 *1 (-863 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-635 *10)) (-5 *4 (-595 *10)) (-5 *5 (-860))
- (-5 *6 (-1078)) (-4 *10 (-888 *7 *9 *8)) (-4 *7 (-13 (-288) (-140)))
- (-4 *8 (-13 (-793) (-570 (-1095)))) (-4 *9 (-739)) (-5 *2 (-528))
- (-5 *1 (-863 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-635 *10)) (-5 *4 (-595 (-1095))) (-5 *5 (-860))
- (-5 *6 (-1078)) (-4 *10 (-888 *7 *9 *8)) (-4 *7 (-13 (-288) (-140)))
- (-4 *8 (-13 (-793) (-570 (-1095)))) (-4 *9 (-739)) (-5 *2 (-528))
- (-5 *1 (-863 *7 *8 *9 *10))))
+ (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-795)) (-4 *8 (-984))
+ (-4 *6 (-741))
+ (-4 *2
+ (-13 (-1027)
+ (-10 -8 (-15 -4118 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-719))))))
+ (-5 *1 (-893 *6 *7 *8 *5 *2)) (-4 *5 (-891 *8 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-899 *5)) (-4 *5 (-1134)) (-4 *6 (-1134))
+ (-5 *2 (-899 *6)) (-5 *1 (-900 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-884 *5)) (-4 *5 (-984)) (-4 *6 (-984))
+ (-5 *2 (-884 *6)) (-5 *1 (-921 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 *2 (-887 *4))) (-4 *4 (-984)) (-4 *2 (-891 (-887 *4) *5 *6))
+ (-4 *5 (-741))
+ (-4 *6
+ (-13 (-795)
+ (-10 -8 (-15 -4246 ((-1098) $)) (-15 -4110 ((-3 $ "failed") (-1098))))))
+ (-5 *1 (-924 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-523)) (-4 *6 (-523)) (-4 *2 (-931 *6))
+ (-5 *1 (-932 *5 *6 *4 *2)) (-4 *4 (-931 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-4 *2 (-937 *6))
+ (-5 *1 (-938 *4 *5 *2 *6)) (-4 *4 (-937 *5))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-984)) (-4 *10 (-984)) (-14 *5 (-719))
+ (-14 *6 (-719)) (-4 *8 (-221 *6 *7)) (-4 *9 (-221 *5 *7))
+ (-4 *2 (-986 *5 *6 *10 *11 *12))
+ (-5 *1 (-988 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-986 *5 *6 *7 *8 *9)) (-4 *11 (-221 *6 *10))
+ (-4 *12 (-221 *5 *10))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1017 *5)) (-4 *5 (-1134)) (-4 *6 (-1134))
+ (-5 *2 (-1017 *6)) (-5 *1 (-1018 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1017 *5)) (-4 *5 (-793)) (-4 *5 (-1134))
+ (-4 *6 (-1134)) (-5 *2 (-594 *6)) (-5 *1 (-1018 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1019 *5)) (-4 *5 (-1134)) (-4 *6 (-1134))
+ (-5 *2 (-1019 *6)) (-5 *1 (-1020 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1022 *4 *2)) (-4 *4 (-793))
+ (-4 *2 (-1072 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1076 *5)) (-4 *5 (-1134)) (-4 *6 (-1134))
+ (-5 *2 (-1076 *6)) (-5 *1 (-1078 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-635 *9)) (-5 *4 (-860)) (-5 *5 (-1078))
- (-4 *9 (-888 *6 *8 *7)) (-4 *6 (-13 (-288) (-140)))
- (-4 *7 (-13 (-793) (-570 (-1095)))) (-4 *8 (-739)) (-5 *2 (-528))
- (-5 *1 (-863 *6 *7 *8 *9)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-455 *4 *5 *6 *7)) (|:| -1513 (-595 *7))))
- (-5 *1 (-914 *4 *5 *6 *7)) (-5 *3 (-595 *7)))))
-(((*1 *1 *1 *1) (-5 *1 (-110))) ((*1 *1 *1 *1) (-4 *1 (-121))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-520)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3))
- (-5 *1 (-1122 *3 *4 *5 *2)) (-4 *2 (-633 *3 *4 *5)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-860)) (-5 *2 (-717)) (-5 *1 (-1024 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *1 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-21)) (-4 *2 (-1131)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-329))
- (-5 *2
- (-2 (|:| |cont| *5)
- (|:| -2783 (-595 (-2 (|:| |irr| *3) (|:| -2842 (-528)))))))
- (-5 *1 (-199 *5 *3)) (-4 *3 (-1153 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 *1)) (-4 *1 (-283))))
- ((*1 *1 *1) (-4 *1 (-283)))
- ((*1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802))))
- ((*1 *1 *1) (-5 *1 (-802))))
-(((*1 *2) (-12 (-5 *2 (-595 (-1095))) (-5 *1 (-102)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-140))
- (-4 *3 (-288)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *1 (-914 *3 *4 *5 *6)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-595 (-568 *6))) (-5 *4 (-1095)) (-5 *2 (-568 *6))
- (-4 *6 (-410 *5)) (-4 *5 (-793)) (-5 *1 (-537 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-288)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3))
- (-5 *1 (-1046 *3 *4 *5 *2)) (-4 *2 (-633 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-635 (-296 (-528)))) (-5 *1 (-966)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-595 (-568 *4))) (-4 *4 (-410 *3)) (-4 *3 (-793))
- (-5 *1 (-537 *3 *4))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-828 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1023))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1023))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1023))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1023)))))
-(((*1 *2 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1078)) (-5 *1 (-286)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1023)) (-4 *6 (-1023))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-630 *4 *5 *6)) (-4 *4 (-1023)))))
-(((*1 *1 *1) (-12 (-4 *1 (-410 *2)) (-4 *2 (-793)) (-4 *2 (-520))))
- ((*1 *1 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-520)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1095)) (-5 *2 (-1 *6 *5)) (-5 *1 (-653 *4 *5 *6))
- (-4 *4 (-570 (-504))) (-4 *5 (-1131)) (-4 *6 (-1131)))))
-(((*1 *2)
- (-12 (-4 *3 (-520)) (-5 *2 (-595 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-397 *3)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-717)) (-4 *5 (-329)) (-4 *6 (-1153 *5))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1076 *6)) (-5 *5 (-1076 *7))
+ (-4 *6 (-1134)) (-4 *7 (-1134)) (-4 *8 (-1134)) (-5 *2 (-1076 *8))
+ (-5 *1 (-1079 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1092 *5)) (-4 *5 (-984)) (-4 *6 (-984))
+ (-5 *2 (-1092 *6)) (-5 *1 (-1093 *5 *6))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1111 *3 *4)) (-4 *3 (-1027))
+ (-4 *4 (-1027))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1139 *5 *7 *9)) (-4 *5 (-984))
+ (-4 *6 (-984)) (-14 *7 (-1098)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1139 *6 *8 *10)) (-5 *1 (-1140 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1098))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1146 *5)) (-4 *5 (-1134)) (-4 *6 (-1134))
+ (-5 *2 (-1146 *6)) (-5 *1 (-1147 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1146 *5)) (-4 *5 (-793)) (-4 *5 (-1134))
+ (-4 *6 (-1134)) (-5 *2 (-1076 *6)) (-5 *1 (-1147 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1148 *5 *6)) (-14 *5 (-1098)) (-4 *6 (-984))
+ (-4 *8 (-984)) (-5 *2 (-1148 *7 *8)) (-5 *1 (-1149 *5 *6 *7 *8))
+ (-14 *7 (-1098))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-4 *2 (-1155 *6))
+ (-5 *1 (-1156 *5 *4 *6 *2)) (-4 *4 (-1155 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1160 *5 *7 *9)) (-4 *5 (-984))
+ (-4 *6 (-984)) (-14 *7 (-1098)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1160 *6 *8 *10)) (-5 *1 (-1161 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1098))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-4 *2 (-1172 *6))
+ (-5 *1 (-1170 *5 *6 *4 *2)) (-4 *4 (-1172 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-1134)) (-4 *6 (-1134))
+ (-5 *2 (-1179 *6)) (-5 *1 (-1180 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1179 *5))
+ (-4 *5 (-1134)) (-4 *6 (-1134)) (-5 *2 (-1179 *6)) (-5 *1 (-1180 *5 *6))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-791)))))
+(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-162))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1179 *3)) (-4 *3 (-344)) (-14 *6 (-1179 (-637 *3)))
+ (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-860)) (-14 *5 (-594 (-1098)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1050 (-516) (-569 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *3) (-12 (-5 *2 (-50)) (-5 *1 (-51 *3)) (-4 *3 (-1134))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-320 (-3804 'X) (-3804) (-647))) (-5 *1 (-59 *3))
+ (-14 *3 (-1098))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1179 (-320 (-3804 'JINT 'X 'ELAM) (-3804) (-647))))
+ (-5 *1 (-60 *3)) (-14 *3 (-1098))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1179 (-320 (-3804) (-3804 'XC) (-647)))) (-5 *1 (-62 *3))
+ (-14 *3 (-1098))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-637 (-320 (-3804) (-3804 'X 'HESS) (-647)))) (-5 *1 (-63 *3))
+ (-14 *3 (-1098))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-320 (-3804) (-3804 'XC) (-647))) (-5 *1 (-64 *3))
+ (-14 *3 (-1098))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1179 (-320 (-3804 'X) (-3804 '-4240) (-647)))) (-5 *1 (-69 *3))
+ (-14 *3 (-1098))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1179 (-320 (-3804) (-3804 'X) (-647)))) (-5 *1 (-72 *3))
+ (-14 *3 (-1098))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-320 (-3804) (-3804 'X) (-647))) (-5 *1 (-73 *3))
+ (-14 *3 (-1098))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1179 (-320 (-3804 'X 'EPS) (-3804 '-4240) (-647))))
+ (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1098)) (-14 *4 (-1098)) (-14 *5 (-1098))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1179 (-320 (-3804 'EPS) (-3804 'YA 'YB) (-647))))
+ (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1098)) (-14 *4 (-1098)) (-14 *5 (-1098))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-320 (-3804) (-3804 'X) (-647))) (-5 *1 (-76 *3))
+ (-14 *3 (-1098))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1179 (-320 (-3804) (-3804 'XC) (-647)))) (-5 *1 (-77 *3))
+ (-14 *3 (-1098))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1179 (-320 (-3804) (-3804 'X) (-647)))) (-5 *1 (-78 *3))
+ (-14 *3 (-1098))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1179 (-320 (-3804) (-3804 'X) (-647)))) (-5 *1 (-79 *3))
+ (-14 *3 (-1098))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1179 (-320 (-3804 'X) (-3804 '-4240) (-647)))) (-5 *1 (-80 *3))
+ (-14 *3 (-1098))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1179 (-320 (-3804 'X '-4240) (-3804) (-647)))) (-5 *1 (-81 *3))
+ (-14 *3 (-1098))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-637 (-320 (-3804 'X '-4240) (-3804) (-647)))) (-5 *1 (-82 *3))
+ (-14 *3 (-1098))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-637 (-320 (-3804 'X) (-3804) (-647)))) (-5 *1 (-83 *3))
+ (-14 *3 (-1098))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1179 (-320 (-3804 'X) (-3804) (-647)))) (-5 *1 (-84 *3))
+ (-14 *3 (-1098))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-637 (-320 (-3804 'XL 'XR 'ELAM) (-3804) (-647))))
+ (-5 *1 (-86 *3)) (-14 *3 (-1098))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-320 (-3804 'X) (-3804 '-4240) (-647))) (-5 *1 (-87 *3))
+ (-14 *3 (-1098))))
+ ((*1 *2 *1) (-12 (-5 *2 (-943 2)) (-5 *1 (-105))))
+ ((*1 *2 *1) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-105))))
+ ((*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-126))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-594 (-131 *3 *4 *5))) (-5 *1 (-131 *3 *4 *5)) (-14 *3 (-516))
+ (-14 *4 (-719)) (-4 *5 (-162))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-594 *5)) (-4 *5 (-162)) (-5 *1 (-131 *3 *4 *5)) (-14 *3 (-516))
+ (-14 *4 (-719))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1065 *4 *5)) (-14 *4 (-719)) (-4 *5 (-162))
+ (-5 *1 (-131 *3 *4 *5)) (-14 *3 (-516))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-222 *4 *5)) (-14 *4 (-719)) (-4 *5 (-162))
+ (-5 *1 (-131 *3 *4 *5)) (-14 *3 (-516))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1179 (-637 *4))) (-4 *4 (-162))
+ (-5 *2 (-1179 (-637 (-388 (-887 *4))))) (-5 *1 (-173 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-594 *3))
+ (-4 *3
+ (-13 (-795)
+ (-10 -8 (-15 -4078 ((-1081) $ (-1098))) (-15 -3899 ((-1185) $))
+ (-15 -2037 ((-1185) $)))))
+ (-5 *1 (-198 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-943 10)) (-5 *1 (-201))))
+ ((*1 *2 *1) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-201))))
+ ((*1 *2 *1) (-12 (-5 *2 (-594 *3)) (-5 *1 (-228 *3)) (-4 *3 (-795))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-795)) (-5 *1 (-228 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1019 (-295 *4))) (-4 *4 (-13 (-795) (-523) (-572 (-359))))
+ (-5 *2 (-1019 (-359))) (-5 *1 (-241 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-248 *2)) (-4 *2 (-795))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-257))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1155 *3)) (-5 *1 (-271 *3 *2 *4 *5 *6 *7)) (-4 *3 (-162))
+ (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1160 *4 *5 *6)) (-4 *4 (-13 (-27) (-1120) (-402 *3)))
+ (-14 *5 (-1098)) (-14 *6 *4)
+ (-4 *3 (-13 (-795) (-975 (-516)) (-593 (-516)) (-432)))
+ (-5 *1 (-294 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-311))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-295 *5)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-594 (-1098)))
+ (-14 *4 (-594 (-1098))) (-4 *5 (-368))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-331)) (-4 *2 (-310 *4)) (-5 *1 (-329 *3 *4 *2))
+ (-4 *3 (-310 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-331)) (-4 *2 (-310 *4)) (-5 *1 (-329 *2 *4 *3))
+ (-4 *3 (-310 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162))
+ (-5 *2 (-1202 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162))
+ (-5 *2 (-1193 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-795)) (-4 *3 (-162))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311)))))
+ (-4 *1 (-364))))
+ ((*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-364))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 (-311))) (-4 *1 (-364))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-647))) (-4 *1 (-364))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311)))))
+ (-4 *1 (-366))))
+ ((*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-366))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 (-311))) (-4 *1 (-366))))
+ ((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1081))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1081)) (-4 *1 (-370))))
+ ((*1 *1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-374))))
+ ((*1 *2 *3) (-12 (-5 *2 (-374)) (-5 *1 (-375 *3)) (-4 *3 (-1027))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311)))))
+ (-4 *1 (-378))))
+ ((*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-378))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 (-311))) (-4 *1 (-378))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-275 (-295 (-158 (-359))))) (-5 *1 (-379 *3 *4 *5 *6))
+ (-14 *3 (-1098)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1="void")))
+ (-14 *5 (-594 (-1098))) (-14 *6 (-1102))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-275 (-295 (-359)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098))
+ (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1102))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-275 (-295 (-516)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098))
+ (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1102))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-295 (-158 (-359)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098))
+ (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1102))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-295 (-359))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098))
+ (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1102))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-295 (-516))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098))
+ (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1102))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-275 (-295 (-642)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098))
+ (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1102))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-275 (-295 (-647)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098))
+ (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1102))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-275 (-295 (-649)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098))
+ (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1102))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-295 (-642))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098))
+ (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1102))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-295 (-647))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098))
+ (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1102))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-295 (-649))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098))
+ (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1102))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311)))))
+ (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098))
+ (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1102))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-594 (-311))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098))
+ (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1102))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-311)) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1098))
+ (-14 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1102))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-388 (-887 (-388 *3)))) (-4 *3 (-523)) (-4 *3 (-795))
+ (-4 *1 (-402 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-887 (-388 *3))) (-4 *3 (-523)) (-4 *3 (-795))
+ (-4 *1 (-402 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-388 *3)) (-4 *3 (-523)) (-4 *3 (-795)) (-4 *1 (-402 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1050 *3 (-569 *1))) (-4 *3 (-984)) (-4 *3 (-795))
+ (-4 *1 (-402 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-312 *4)) (-4 *4 (-13 (-795) (-21))) (-5 *1 (-410 *3 *4))
+ (-4 *3 (-13 (-162) (-37 (-388 (-516)))))))
+ ((*1 *1 *2)
+ (-12 (-5 *1 (-410 *2 *3)) (-4 *2 (-13 (-162) (-37 (-388 (-516)))))
+ (-4 *3 (-13 (-795) (-21)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-415))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-415))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-415))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-415))))
+ ((*1 *1 *2) (-12 (-5 *2 (-415)) (-5 *1 (-417))))
+ ((*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-417))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311)))))
+ (-4 *1 (-420))))
+ ((*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-420))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 (-311))) (-4 *1 (-420))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179 (-647))) (-4 *1 (-420))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| |localSymbols| (-1102)) (|:| -1680 (-594 (-311)))))
+ (-4 *1 (-421))))
+ ((*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-421))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 (-311))) (-4 *1 (-421))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1179 (-388 (-887 *3)))) (-4 *3 (-162))
+ (-14 *6 (-1179 (-637 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-14 *4 (-860))
+ (-14 *5 (-594 (-1098)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 (-594 (-884 (-208))))) (-5 *1 (-448))))
+ ((*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-448))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1160 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-1098)) (-14 *5 *3)
+ (-5 *1 (-454 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-454 *3 *4 *5))
+ (-4 *3 (-984)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-5 *2 (-943 16)) (-5 *1 (-466))))
+ ((*1 *2 *1) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-466))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1050 (-516) (-569 (-473)))) (-5 *1 (-473))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-480))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-594 *6)) (-4 *6 (-891 *3 *4 *5)) (-4 *3 (-344)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-126)) (-5 *1 (-564))))
+ ((*1 *1 *2) (-12 (-4 *3 (-162)) (-5 *1 (-565 *3 *2)) (-4 *2 (-693 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-571 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *2) (-12 (-4 *1 (-576 *2)) (-4 *2 (-984))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1198 *3 *4)) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795))
+ (-4 *4 (-13 (-162) (-666 (-388 (-516))))) (-14 *5 (-860))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795))
+ (-4 *4 (-13 (-162) (-666 (-388 (-516))))) (-14 *5 (-860))))
+ ((*1 *1 *2) (-12 (-4 *3 (-162)) (-5 *1 (-587 *3 *2)) (-4 *2 (-693 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-622 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1) (-12 (-5 *2 (-767 *3)) (-5 *1 (-622 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-899 (-899 (-899 *3)))) (-5 *1 (-625 *3)) (-4 *3 (-1027))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-899 (-899 (-899 *3)))) (-4 *3 (-1027)) (-5 *1 (-625 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-767 *3)) (-5 *1 (-626 *3)) (-4 *3 (-795))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1027))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-984)) (-4 *1 (-634 *3 *4 *2)) (-4 *4 (-353 *3))
+ (-4 *2 (-353 *3))))
+ ((*1 *2 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-805)))))
+ ((*1 *1 *2) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-805)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-158 (-359))) (-5 *1 (-642))))
+ ((*1 *1 *2) (-12 (-5 *2 (-158 (-649))) (-5 *1 (-642))))
+ ((*1 *1 *2) (-12 (-5 *2 (-158 (-647))) (-5 *1 (-642))))
+ ((*1 *1 *2) (-12 (-5 *2 (-158 (-516))) (-5 *1 (-642))))
+ ((*1 *1 *2) (-12 (-5 *2 (-158 (-359))) (-5 *1 (-642))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649)) (-5 *1 (-647))))
+ ((*1 *2 *1) (-12 (-5 *2 (-359)) (-5 *1 (-647))))
+ ((*1 *2 *3) (-12 (-5 *3 (-295 (-516))) (-5 *2 (-295 (-649))) (-5 *1 (-649))))
+ ((*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-1027))))
+ ((*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1081)) (-5 *1 (-659))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-162)) (-5 *1 (-660 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2) (-12 (-4 *3 (-984)) (-5 *1 (-661 *3 *2)) (-4 *2 (-1155 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -2426 *3) (|:| -2427 *4))) (-5 *1 (-662 *3 *4 *5))
+ (-4 *3 (-795)) (-4 *4 (-1027)) (-14 *5 (-1 (-110) *2 *2))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| -2426 *3) (|:| -2427 *4))) (-4 *3 (-795))
+ (-4 *4 (-1027)) (-5 *1 (-662 *3 *4 *5)) (-14 *5 (-1 (-110) *2 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-162)) (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-594 (-2 (|:| -4229 *3) (|:| -4214 *4)))) (-4 *3 (-984))
+ (-4 *4 (-675)) (-5 *1 (-684 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-516)) (-4 *1 (-712))))
+ ((*1 *1 *2)
+ (-12
(-5 *2
- (-595
- (-2 (|:| -1400 (-635 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-635 *6)))))
- (-5 *1 (-474 *5 *6 *7))
- (-5 *3
- (-2 (|:| -1400 (-635 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-635 *6))))
- (-4 *7 (-1153 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-205 *2 *3)) (-4 *2 (-13 (-981) (-793)))
- (-14 *3 (-595 (-1095))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1078)) (-5 *4 (-1042)) (-5 *2 (-110)) (-5 *1 (-767)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-568 *3))
- (-4 *3 (-13 (-410 *5) (-27) (-1117)))
- (-4 *5 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528))))
- (-5 *2 (-2 (|:| -1497 *3) (|:| |coeff| *3)))
- (-5 *1 (-530 *5 *3 *6)) (-4 *6 (-1023)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-343) (-140) (-972 (-528))))
- (-4 *5 (-1153 *4)) (-5 *2 (-595 (-387 *5))) (-5 *1 (-952 *4 *5))
- (-5 *3 (-387 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1078)) (-5 *1 (-732)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-414))
+ (-3
+ (|:| |nia|
+ (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208)))
+ (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (|:| |mdnia|
+ (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208)))))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))))
+ (-5 *1 (-717))))
+ ((*1 *1 *2)
+ (-12
(-5 *2
- (-595
- (-3 (|:| -3814 (-1095))
- (|:| |bounds| (-595 (-3 (|:| S (-1095)) (|:| P (-891 (-528)))))))))
- (-5 *1 (-1099)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 *1)) (-4 *1 (-1056 *3)) (-4 *3 (-981))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-387 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-981))
- (-4 *3 (-520))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1153 *2)) (-4 *2 (-981)) (-4 *2 (-520)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-703)))))
-(((*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-708))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-2 (|:| -2437 (-1091 *6)) (|:| -2564 (-528)))))
- (-4 *6 (-288)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-528))
- (-5 *1 (-689 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-2 (|:| |val| (-595 *8)) (|:| -2316 *9))))
- (-5 *4 (-717)) (-4 *8 (-994 *5 *6 *7)) (-4 *9 (-999 *5 *6 *7 *8))
- (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-1182))
- (-5 *1 (-997 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-2 (|:| |val| (-595 *8)) (|:| -2316 *9))))
- (-5 *4 (-717)) (-4 *8 (-994 *5 *6 *7)) (-4 *9 (-1032 *5 *6 *7 *8))
- (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-1182))
- (-5 *1 (-1065 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-595 *7) *7 (-1091 *7))) (-5 *5 (-1 (-398 *7) *7))
- (-4 *7 (-1153 *6)) (-4 *6 (-13 (-343) (-140) (-972 (-387 (-528)))))
- (-5 *2 (-595 (-2 (|:| |frac| (-387 *7)) (|:| -2589 *3))))
- (-5 *1 (-755 *6 *7 *3 *8)) (-4 *3 (-605 *7))
- (-4 *8 (-605 (-387 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1153 *5))
- (-4 *5 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528)))))
+ (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208)))))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *1 (-717))))
+ ((*1 *1 *2)
+ (-12
(-5 *2
- (-595 (-2 (|:| |frac| (-387 *6)) (|:| -2589 (-603 *6 (-387 *6))))))
- (-5 *1 (-758 *5 *6)) (-5 *3 (-603 *6 (-387 *6))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-359))) (-5 *1 (-974)) (-5 *3 (-359)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-628 *3)) (-4 *3 (-1023)))))
-(((*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162))))
- ((*1 *1 *1 *1) (-4 *1 (-452)))
- ((*1 *1 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162))))
- ((*1 *2 *2) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-822))))
- ((*1 *1 *1) (-5 *1 (-908)))
- ((*1 *1 *1) (-12 (-4 *1 (-933 *2)) (-4 *2 (-162)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-307 *3)) (-4 *3 (-1131))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-528)) (-5 *1 (-491 *3 *4)) (-4 *3 (-1131)) (-14 *4 *2))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-793)) (-5 *1 (-227 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-605 *2)) (-4 *2 (-981)) (-4 *2 (-343))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-343)) (-5 *1 (-608 *4 *2))
- (-4 *2 (-605 *4)))))
-(((*1 *2 *3 *2)
+ (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208)))
+ (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *1 (-717))))
+ ((*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-717))))
+ ((*1 *2 *3) (-12 (-5 *2 (-721)) (-5 *1 (-722 *3)) (-4 *3 (-1134))))
+ ((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |theta| (-207)) (|:| |phi| (-207)) (|:| -3721 (-207))
- (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |scaleZ| (-207))
- (|:| |deltaX| (-207)) (|:| |deltaY| (-207))))
- (-5 *3 (-595 (-244))) (-5 *1 (-242))))
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208)))
+ (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *1 (-756))))
+ ((*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-756))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-841 *3)) (-5 *1 (-765 *3 *2 *4)) (-4 *3 (-1027)) (-14 *4 *3)))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1027)) (-14 *4 *3) (-5 *1 (-765 *3 *2 *4)) (-4 *2 (-841 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-774))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |theta| (-207)) (|:| |phi| (-207)) (|:| -3721 (-207))
- (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |scaleZ| (-207))
- (|:| |deltaX| (-207)) (|:| |deltaY| (-207))))
- (-5 *1 (-244))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-359)) (-5 *2 (-1182)) (-5 *1 (-1179))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-359)) (-5 *2 (-1182)) (-5 *1 (-1179))))
- ((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-528)) (-5 *4 (-359)) (-5 *2 (-1182)) (-5 *1 (-1179))))
- ((*1 *2 *1 *3)
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208)))
+ (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208))))
+ (|:| |ub| (-594 (-787 (-208))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208)))))))
+ (-5 *1 (-786))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208)))))
+ (-5 *1 (-786))))
+ ((*1 *1 *2)
(-12
- (-5 *3
- (-2 (|:| |theta| (-207)) (|:| |phi| (-207)) (|:| -3721 (-207))
- (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |scaleZ| (-207))
- (|:| |deltaX| (-207)) (|:| |deltaY| (-207))))
- (-5 *2 (-1182)) (-5 *1 (-1179))))
+ (-5 *2
+ (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208)))
+ (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208))))
+ (|:| |ub| (-594 (-787 (-208))))))
+ (-5 *1 (-786))))
+ ((*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-786))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1176 *3)) (-14 *3 (-1098)) (-5 *1 (-800 *3 *4 *5 *6))
+ (-4 *4 (-984)) (-14 *5 (-96 *4)) (-14 *6 (-1 *4 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-803))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-887 *3)) (-4 *3 (-984)) (-5 *1 (-807 *3 *4 *5 *6))
+ (-14 *4 (-594 (-1098))) (-14 *5 (-594 (-719))) (-14 *6 (-719))))
((*1 *2 *1)
+ (-12 (-5 *2 (-887 *3)) (-5 *1 (-807 *3 *4 *5 *6)) (-4 *3 (-984))
+ (-14 *4 (-594 (-1098))) (-14 *5 (-594 (-719))) (-14 *6 (-719))))
+ ((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815))))
+ ((*1 *2 *3) (-12 (-5 *3 (-887 (-47))) (-5 *2 (-295 (-516))) (-5 *1 (-816))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-388 (-887 (-47)))) (-5 *2 (-295 (-516))) (-5 *1 (-816))))
+ ((*1 *1 *2) (-12 (-5 *1 (-834 *2)) (-4 *2 (-795))))
+ ((*1 *2 *1) (-12 (-5 *2 (-767 *3)) (-5 *1 (-834 *3)) (-4 *3 (-795))))
+ ((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |theta| (-207)) (|:| |phi| (-207)) (|:| -3721 (-207))
- (|:| |scaleX| (-207)) (|:| |scaleY| (-207)) (|:| |scaleZ| (-207))
- (|:| |deltaX| (-207)) (|:| |deltaY| (-207))))
- (-5 *1 (-1179))))
- ((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-359)) (-5 *2 (-1182)) (-5 *1 (-1179)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-972 (-528))) (-4 *3 (-13 (-793) (-520)))
- (-5 *1 (-31 *3 *2)) (-4 *2 (-410 *3))))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-1091 *4)) (-5 *1 (-155 *3 *4))
- (-4 *3 (-156 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-981)) (-4 *1 (-283))))
- ((*1 *2) (-12 (-4 *1 (-309 *3)) (-4 *3 (-343)) (-5 *2 (-1091 *3))))
- ((*1 *2) (-12 (-4 *1 (-671 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1153 *3))))
+ (-2 (|:| |pde| (-594 (-295 (-208))))
+ (|:| |constraints|
+ (-594
+ (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719))
+ (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208)))
+ (|:| |dFinish| (-637 (-208))))))
+ (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081))
+ (|:| |tol| (-208))))
+ (-5 *1 (-839))))
+ ((*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-839))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1121 *3)) (-5 *1 (-842 *3)) (-4 *3 (-1027))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1027)) (-5 *1 (-843 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 (-594 *3))) (-4 *3 (-1027)) (-5 *1 (-843 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 (-843 *3))) (-4 *3 (-1027)) (-5 *1 (-846 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-594 (-843 *3))) (-5 *1 (-846 *3)) (-4 *3 (-1027))))
+ ((*1 *1 *2) (-12 (-5 *2 (-388 (-386 *3))) (-4 *3 (-289)) (-5 *1 (-855 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-855 *3)) (-4 *3 (-289))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-457)) (-5 *2 (-295 *4)) (-5 *1 (-861 *4))
+ (-4 *4 (-13 (-795) (-523)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-907 *3)) (-4 *3 (-908))))
+ ((*1 *1 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-908))))
+ ((*1 *2 *1) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-911))))
+ ((*1 *2 *1) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-943 *3)) (-14 *3 (-516))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *1 (-971 *3)) (-4 *3 (-1134))))
+ ((*1 *2 *3) (-12 (-5 *3 (-293)) (-5 *1 (-971 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *1 (-972 *3 *4 *5 *2 *6)) (-4 *2 (-891 *3 *4 *5)) (-14 *6 (-594 *2))))
+ ((*1 *1 *2) (-12 (-4 *1 (-975 *2)) (-4 *2 (-1134))))
+ ((*1 *2 *3) (-12 (-5 *2 (-388 (-887 *3))) (-5 *1 (-977 *3)) (-4 *3 (-523))))
+ ((*1 *1 *2) (-12 (-5 *2 (-516)) (-4 *1 (-984))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-637 *5)) (-5 *1 (-987 *3 *4 *5)) (-14 *3 (-719))
+ (-14 *4 (-719)) (-4 *5 (-984))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-984)) (-4 *4 (-795)) (-5 *1 (-1051 *3 *4 *2))
+ (-4 *2 (-891 *3 (-502 *4) *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-984)) (-4 *2 (-795)) (-5 *1 (-1051 *3 *2 *4))
+ (-4 *4 (-891 *3 (-502 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-805))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-637 *4)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-719)) (-4 *4 (-984))))
+ ((*1 *1 *2) (-12 (-5 *2 (-137)) (-4 *1 (-1067))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1134)) (-5 *1 (-1076 *3))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-1083 *3)) (-4 *3 (-984))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1089 *3 *4 *5))
+ (-4 *3 (-984)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1095 *3 *4 *5))
+ (-4 *3 (-984)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1096 *3 *4 *5))
+ (-4 *3 (-984)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1148 *4 *3)) (-4 *3 (-984)) (-14 *4 (-1098)) (-14 *5 *3)
+ (-5 *1 (-1096 *3 *4 *5))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-1097))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1098))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1107 (-1098) (-417))) (-5 *1 (-1102))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-1103))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1103))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1103))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-1103))))
+ ((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-1103))))
+ ((*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-1103))))
+ ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1103))))
+ ((*1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-1103))))
+ ((*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-1108 *3)) (-4 *3 (-1027))))
+ ((*1 *1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1114))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1114)) (-5 *1 (-1115 *3)) (-4 *3 (-1027))))
+ ((*1 *1 *2) (-12 (-5 *2 (-887 *3)) (-4 *3 (-984)) (-5 *1 (-1127 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-1127 *3)) (-4 *3 (-984))))
+ ((*1 *1 *2) (-12 (-5 *2 (-899 *3)) (-4 *3 (-1134)) (-5 *1 (-1132 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1139 *3 *4 *5))
+ (-4 *3 (-984)) (-14 *5 *3)))
+ ((*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *1 (-1143 *3 *2)) (-4 *2 (-1172 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1017 *3)) (-4 *3 (-1134)) (-5 *1 (-1146 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1176 *3)) (-14 *3 (-1098)) (-5 *1 (-1148 *3 *4))
+ (-4 *4 (-984))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1160 *3 *4 *5))
+ (-4 *3 (-984)) (-14 *5 *3)))
+ ((*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *1 (-1164 *3 *2)) (-4 *2 (-1141 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1169 *3 *4 *5))
+ (-4 *3 (-984)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1148 *4 *3)) (-4 *3 (-984)) (-14 *4 (-1098)) (-14 *5 *3)
+ (-5 *1 (-1169 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1176 *3)) (-14 *3 *2)))
+ ((*1 *2 *3) (-12 (-5 *3 (-448)) (-5 *2 (-1182)) (-5 *1 (-1181))))
+ ((*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-1182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-1185))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-741)) (-14 *6 (-594 *4))
+ (-5 *1 (-1190 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-891 *3 *5 *4))
+ (-14 *7 (-594 (-719))) (-14 *8 (-719))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-891 *3 *5 *4)) (-5 *1 (-1190 *3 *4 *5 *2 *6 *7 *8))
+ (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-741)) (-14 *6 (-594 *4))
+ (-14 *7 (-594 (-719))) (-14 *8 (-719))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1192 *2)) (-4 *2 (-984))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1202 *3 *4)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-795))
+ (-4 *4 (-162))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-795))
+ (-4 *4 (-162))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-615 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162))
+ (-5 *1 (-1198 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1201 *3 *2)) (-4 *3 (-984)) (-4 *2 (-791)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-33)) (-5 *2 (-719))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-516))))
((*1 *2 *1)
- (-12 (-4 *1 (-996 *3 *2)) (-4 *3 (-13 (-791) (-343)))
- (-4 *2 (-1153 *3)))))
+ (-12 (-5 *2 (-719)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-984)) (-4 *4 (-791)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-595 (-2 (|:| |gen| *3) (|:| -2656 *4))))
- (-5 *1 (-598 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-591 *5)) (-4 *5 (-343))
- (-4 *5 (-520)) (-5 *2 (-1177 *5)) (-5 *1 (-590 *5 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-591 *5))
- (-3617 (-4 *5 (-343))) (-4 *5 (-520)) (-5 *2 (-1177 (-387 *5)))
- (-5 *1 (-590 *5 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)) (-4 *2 (-520)))))
-(((*1 *2 *1) (-12 (-4 *1 (-329)) (-5 *2 (-110))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1091 *4)) (-4 *4 (-329)) (-5 *2 (-110))
- (-5 *1 (-337 *4)))))
+ (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-767 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-791)) (-5 *1 (-1201 *3 *2)) (-4 *3 (-984)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-767 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-791)) (-5 *1 (-1201 *3 *2)) (-4 *3 (-984)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1202 *4 *2)) (-4 *1 (-355 *4 *2)) (-4 *4 (-795))
+ (-4 *2 (-162))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-795)) (-4 *2 (-984))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-767 *4)) (-4 *1 (-1197 *4 *2)) (-4 *4 (-795)) (-4 *2 (-984))))
+ ((*1 *2 *1 *3) (-12 (-4 *2 (-984)) (-5 *1 (-1201 *2 *3)) (-4 *3 (-791)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-984)) (-4 *4 (-791)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1076 *4) (-1076 *4))) (-5 *2 (-1076 *4))
- (-5 *1 (-1200 *4)) (-4 *4 (-1131))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-595 (-1076 *5)) (-595 (-1076 *5)))) (-5 *4 (-528))
- (-5 *2 (-595 (-1076 *5))) (-5 *1 (-1200 *5)) (-4 *5 (-1131)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-387 (-528))) (-5 *1 (-115 *4)) (-14 *4 *3)
- (-5 *3 (-528))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-808 *3)) (-5 *2 (-528))))
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1027)) (-5 *2 (-1 *5 *4)) (-5 *1 (-631 *4 *5))
+ (-4 *4 (-1027))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-295 (-516))) (-5 *1 (-870))))
+ ((*1 *2 *2) (-12 (-4 *3 (-795)) (-5 *1 (-871 *3 *2)) (-4 *2 (-402 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-795)) (-4 *2 (-984))))
+ ((*1 *2 *1) (-12 (-4 *2 (-984)) (-5 *1 (-1201 *2 *3)) (-4 *3 (-791)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-984)) (-4 *4 (-791)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-984)) (-4 *3 (-791)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)) (-4 *2 (-344))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-208))))
+ ((*1 *1 *1 *1)
+ (-3810 (-12 (-5 *1 (-275 *2)) (-4 *2 (-344)) (-4 *2 (-1134)))
+ (-12 (-5 *1 (-275 *2)) (-4 *2 (-453)) (-4 *2 (-1134)))))
+ ((*1 *1 *1 *1) (-4 *1 (-344)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-359))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1050 *3 (-569 *1))) (-4 *3 (-523)) (-4 *3 (-795))
+ (-4 *1 (-402 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-453)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-331)) (-5 *1 (-500 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-505)))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-162)) (-5 *1 (-574 *2 *4 *3)) (-4 *2 (-37 *4))
+ (-4 *3 (|SubsetCategory| (-675) *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *4 (-162)) (-5 *1 (-574 *3 *4 *2)) (-4 *3 (-37 *4))
+ (-4 *2 (|SubsetCategory| (-675) *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-589 *2)) (-4 *2 (-162)) (-4 *2 (-344))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-162)) (-5 *1 (-603 *2 *4 *3)) (-4 *2 (-666 *4))
+ (-4 *3 (|SubsetCategory| (-675) *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *4 (-162)) (-5 *1 (-603 *3 *4 *2)) (-4 *3 (-666 *4))
+ (-4 *2 (|SubsetCategory| (-675) *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2))
+ (-4 *4 (-353 *2)) (-4 *2 (-344))))
+ ((*1 *1 *1 *1) (-5 *1 (-805)))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-807 *2 *3 *4 *5)) (-4 *2 (-344)) (-4 *2 (-984))
+ (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-719))) (-14 *5 (-719))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-931 *2)) (-4 *2 (-523))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-986 *3 *4 *2 *5 *6)) (-4 *2 (-984)) (-4 *5 (-221 *4 *2))
+ (-4 *6 (-221 *3 *2)) (-4 *2 (-344))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1187 *2)) (-4 *2 (-344))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-344)) (-4 *2 (-984)) (-4 *3 (-795)) (-4 *4 (-741))
+ (-14 *6 (-594 *3)) (-5 *1 (-1190 *2 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-891 *2 *4 *3)) (-14 *7 (-594 (-719))) (-14 *8 (-719))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-344)) (-4 *2 (-984)) (-4 *3 (-791)))))
+(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-719)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984))
+ (-14 *4 (-594 (-1098)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-516)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795)))
+ (-14 *4 (-594 (-1098)))))
((*1 *2 *1 *3)
- (-12 (-5 *2 (-387 (-528))) (-5 *1 (-810 *4)) (-14 *4 *3)
- (-5 *3 (-528))))
+ (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795))
+ (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-257))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1092 *8)) (-5 *4 (-594 *6)) (-4 *6 (-795))
+ (-4 *8 (-891 *7 *5 *6)) (-4 *5 (-741)) (-4 *7 (-984)) (-5 *2 (-594 (-719)))
+ (-5 *1 (-302 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-860))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-4 *1 (-450 *3 *2)) (-4 *3 (-162)) (-4 *2 (-23))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-523)) (-5 *2 (-516)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1155 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-984)) (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-984)) (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-843 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-846 *3)) (-4 *3 (-1027))))
((*1 *2 *1 *3)
- (-12 (-14 *4 *3) (-5 *2 (-387 (-528))) (-5 *1 (-811 *4 *5))
- (-5 *3 (-528)) (-4 *5 (-808 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-948)) (-5 *2 (-387 (-528)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-996 *2 *3)) (-4 *2 (-13 (-791) (-343)))
- (-4 *3 (-1153 *2))))
+ (-12 (-5 *3 (-594 *6)) (-4 *1 (-891 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *2 (-594 (-719)))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1155 *2 *3)) (-4 *3 (-738))
- (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2222 (*2 (-1095))))
- (-4 *2 (-981)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-520) (-140))) (-5 *1 (-505 *3 *2))
- (-4 *2 (-1168 *3))))
+ (-12 (-4 *1 (-891 *4 *5 *3)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795))
+ (-5 *2 (-719))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-913 *3 *2 *4)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *2 (-740))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-719))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1172 *3)) (-5 *2 (-516))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1141 *3))
+ (-5 *2 (-388 (-516)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-344)) (-5 *2 (-780 (-860)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-719)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-719)) (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-719)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1193 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162))
+ (-5 *1 (-615 *3 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-615 *3 *4)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-795))
+ (-4 *4 (-162)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-131 *2 *3 *4)) (-14 *2 (-516)) (-14 *3 (-719)) (-4 *4 (-162))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-795) (-523))) (-5 *1 (-149 *4 *2))
+ (-4 *2 (-402 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1019 *2)) (-4 *2 (-402 *4)) (-4 *4 (-13 (-795) (-523)))
+ (-5 *1 (-149 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1019 *1)) (-4 *1 (-151))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1098))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-719)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-594 (-516))) (-5 *1 (-49 *3 *4)) (-4 *3 (-984))
+ (-14 *4 (-594 (-1098)))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-343) (-348) (-570 (-528)))) (-4 *4 (-1153 *3))
- (-4 *5 (-671 *3 *4)) (-5 *1 (-509 *3 *4 *5 *2)) (-4 *2 (-1168 *5))))
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-343) (-348) (-570 (-528)))) (-5 *1 (-510 *3 *2))
- (-4 *2 (-1168 *3))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-13 (-520) (-140)))
- (-5 *1 (-1072 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-981)) (-5 *1 (-963 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-595 (-635 *3))) (-4 *3 (-981)) (-5 *1 (-963 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-981)) (-5 *1 (-963 *3))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ ((*1 *1 *1) (-4 *1 (-266)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098)))
+ (-4 *4 (-368))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-615 *3 *4)) (-4 *3 (-795))
+ (-4 *4 (-13 (-162) (-666 (-388 (-516))))) (-5 *1 (-581 *3 *4 *5))
+ (-14 *5 (-860))))
((*1 *2 *2)
- (-12 (-5 *2 (-595 (-635 *3))) (-4 *3 (-981)) (-5 *1 (-963 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-343)) (-4 *3 (-739)) (-4 *4 (-793))
- (-5 *1 (-480 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-992)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1023))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023)) (-4 *4 (-1023))
- (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-110)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-110)) (-5 *3 (-595 (-244))) (-5 *1 (-242))))
- ((*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-244))))
- ((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-446))))
- ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-446)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1182)) (-5 *1 (-1179)))))
-(((*1 *2 *1) (-12 (-4 *1 (-235 *3)) (-4 *3 (-1131)) (-5 *2 (-717))))
- ((*1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-717))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-981))
- (-4 *2 (-13 (-384) (-972 *4) (-343) (-1117) (-265)))
- (-5 *1 (-422 *4 *3 *2)) (-4 *3 (-1153 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-568 *3)) (-4 *3 (-793))))
- ((*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-802))))
- ((*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-802)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-595 (-595 *6))) (-4 *6 (-888 *3 *5 *4))
- (-4 *3 (-13 (-288) (-140))) (-4 *4 (-13 (-793) (-570 (-1095))))
- (-4 *5 (-739)) (-5 *1 (-863 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-234 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-793))
- (-4 *5 (-247 *4)) (-4 *6 (-739)) (-5 *2 (-110)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-343)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110))
- (-5 *1 (-480 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1076 *2)) (-4 *2 (-288)) (-5 *1 (-163 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1109 *4 *5))
- (-4 *4 (-1023)) (-4 *5 (-1023)))))
-(((*1 *2 *1) (-12 (-4 *1 (-369)) (-5 *2 (-1078)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-802)) (-5 *1 (-370 *3 *4 *5)) (-14 *3 (-717))
- (-14 *4 (-717)) (-4 *5 (-162)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-595 (-51))) (-5 *1 (-831 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-685)))))
-(((*1 *2 *3) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-525)) (-5 *3 (-528)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1175 *3)) (-4 *3 (-1131)) (-4 *3 (-981))
- (-5 *2 (-635 *3)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-598 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *1) (-5 *1 (-134))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-343)) (-5 *1 (-713 *2 *3)) (-4 *2 (-655 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-343)))))
-(((*1 *1 *2)
- (-12 (-4 *3 (-981)) (-5 *1 (-773 *2 *3)) (-4 *2 (-655 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-234 *4 *3 *5 *6)) (-4 *4 (-981)) (-4 *3 (-793))
- (-4 *5 (-247 *3)) (-4 *6 (-739)) (-5 *2 (-595 (-717)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-234 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-793))
- (-4 *5 (-247 *4)) (-4 *6 (-739)) (-5 *2 (-595 (-717))))))
-(((*1 *2)
- (-12 (-4 *3 (-520)) (-5 *2 (-595 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-397 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-595 *1)) (-5 *3 (-595 *7)) (-4 *1 (-999 *4 *5 *6 *7))
- (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-431))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-595 *1))
- (-4 *1 (-999 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-595 *1)) (-4 *1 (-999 *4 *5 *6 *3)) (-4 *4 (-431))
- (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-595 *1))
- (-4 *1 (-999 *4 *5 *6 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-981))
- (-4 *2 (-13 (-384) (-972 *4) (-343) (-1117) (-265)))
- (-5 *1 (-422 *4 *3 *2)) (-4 *3 (-1153 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-866)))))
-(((*1 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5))
- (-5 *2 (-2 (|:| -2254 (-595 *6)) (|:| -2378 (-595 *6)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095)) (-5 *4 (-891 (-528))) (-5 *2 (-310))
- (-5 *1 (-312)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-306 *2 *3)) (-4 *2 (-981)) (-4 *3 (-738)))))
-(((*1 *1) (-5 *1 (-148))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207)))
- (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207))
- (|:| |relerr| (-207))))
- (-5 *2 (-2 (|:| -4057 (-112)) (|:| |w| (-207)))) (-5 *1 (-188)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-595 (-2 (|:| |val| (-595 *6)) (|:| -2316 *7))))
- (-4 *6 (-994 *3 *4 *5)) (-4 *7 (-999 *3 *4 *5 *6)) (-4 *3 (-431))
- (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-925 *3 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-595 (-2 (|:| |val| (-595 *6)) (|:| -2316 *7))))
- (-4 *6 (-994 *3 *4 *5)) (-4 *7 (-999 *3 *4 *5 *6)) (-4 *3 (-431))
- (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-1030 *3 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-369)) (-5 *2 (-110)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-595 *6)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-981))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-717))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *5 (-793)) (-5 *2 (-717)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-303 *3 *4)) (-4 *3 (-1023))
- (-4 *4 (-128)))))
-(((*1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1023))
- (-4 *4 (-1023)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1076 *4)) (-4 *4 (-37 *3)) (-4 *4 (-981))
- (-5 *3 (-387 (-528))) (-5 *1 (-1080 *4)))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| -1400 (-635 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-635 *3))))
- (-4 *3 (-13 (-288) (-10 -8 (-15 -2705 ((-398 $) $)))))
- (-4 *4 (-1153 *3)) (-5 *1 (-475 *3 *4 *5)) (-4 *5 (-389 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *2) (-12 (-5 *2 (-368)) (-5 *1 (-416))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-368)) (-5 *1 (-416)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-888 *3 *5 *4)) (-5 *1 (-924 *3 *4 *5 *2))
- (-4 *3 (-431)) (-4 *4 (-793)) (-4 *5 (-739)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-343)) (-5 *1 (-266 *3 *2)) (-4 *2 (-1168 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1118 *2)) (-4 *2 (-1023)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207)))
- (-5 *5 (-3 (|:| |fn| (-368)) (|:| |fp| (-64 FUNCT1))))
- (-5 *2 (-970)) (-5 *1 (-700)))))
-(((*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1078)) (-5 *1 (-657)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-520))
- (-5 *2 (-2 (|:| -2163 (-635 *5)) (|:| |vec| (-1177 (-595 (-860))))))
- (-5 *1 (-88 *5 *3)) (-5 *4 (-860)) (-4 *3 (-605 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-387 *6)) (-4 *5 (-1135)) (-4 *6 (-1153 *5))
- (-5 *2 (-2 (|:| -2564 (-717)) (|:| -1641 *3) (|:| |radicand| *6)))
- (-5 *1 (-141 *5 *6 *7)) (-5 *4 (-717)) (-4 *7 (-1153 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-981)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-882 *3) (-882 *3))) (-5 *1 (-165 *3))
- (-4 *3 (-13 (-343) (-1117) (-938))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-387 *4)))
- (-5 *2 (-2 (|:| |num| (-1177 *4)) (|:| |den| *4))))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-719)) (-4 *4 (-13 (-984) (-666 (-388 (-516))))) (-4 *5 (-795))
+ (-5 *1 (-1194 *4 *5 *2)) (-4 *2 (-1200 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-719)) (-5 *1 (-1198 *3 *4)) (-4 *4 (-666 (-388 (-516))))
+ (-4 *3 (-795)) (-4 *4 (-162)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-566 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1023))
- (-5 *2 (-110)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-347 *4)) (-4 *4 (-162))
- (-5 *2 (-1177 (-635 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-1177 (-635 *4))) (-5 *1 (-396 *3 *4))
- (-4 *3 (-397 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-397 *3)) (-4 *3 (-162)) (-5 *2 (-1177 (-635 *3)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-1095))) (-4 *5 (-343))
- (-5 *2 (-1177 (-635 (-387 (-891 *5))))) (-5 *1 (-1011 *5))
- (-5 *4 (-635 (-387 (-891 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-1095))) (-4 *5 (-343))
- (-5 *2 (-1177 (-635 (-891 *5)))) (-5 *1 (-1011 *5))
- (-5 *4 (-635 (-891 *5)))))
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ ((*1 *1 *1) (-4 *1 (-266)))
((*1 *2 *3)
- (-12 (-5 *3 (-595 (-635 *4))) (-4 *4 (-343))
- (-5 *2 (-1177 (-635 *4))) (-5 *1 (-1011 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-525)))))
-(((*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1078)) (-5 *1 (-657)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-860)) (-5 *2 (-1091 *4)) (-5 *1 (-337 *4))
- (-4 *4 (-329)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-38 *3)) (-4 *3 (-1153 (-47))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-234 *3 *4 *2 *5)) (-4 *3 (-981)) (-4 *4 (-793))
- (-4 *5 (-739)) (-4 *2 (-247 *4)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-296 (-207))) (-5 *1 (-286))))
+ (-12 (-5 *3 (-386 *4)) (-4 *4 (-523))
+ (-5 *2 (-594 (-2 (|:| -4229 (-719)) (|:| |logand| *4)))) (-5 *1 (-301 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098)))
+ (-4 *4 (-368))))
((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |num| (-831 *3)) (|:| |den| (-831 *3))))
- (-5 *1 (-831 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-520)) (-5 *2 (-110)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-296 (-528))) (-5 *4 (-1 (-207) (-207)))
- (-5 *5 (-1018 (-207))) (-5 *6 (-528)) (-5 *2 (-1127 (-865)))
- (-5 *1 (-298))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-296 (-528))) (-5 *4 (-1 (-207) (-207)))
- (-5 *5 (-1018 (-207))) (-5 *6 (-528)) (-5 *7 (-1078))
- (-5 *2 (-1127 (-865))) (-5 *1 (-298))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-296 (-528))) (-5 *4 (-1 (-207) (-207)))
- (-5 *5 (-1018 (-207))) (-5 *6 (-207)) (-5 *7 (-528))
- (-5 *2 (-1127 (-865))) (-5 *1 (-298))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-296 (-528))) (-5 *4 (-1 (-207) (-207)))
- (-5 *5 (-1018 (-207))) (-5 *6 (-207)) (-5 *7 (-528)) (-5 *8 (-1078))
- (-5 *2 (-1127 (-865))) (-5 *1 (-298)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-387 *5)) (-4 *4 (-1135)) (-4 *5 (-1153 *4))
- (-5 *1 (-141 *4 *5 *2)) (-4 *2 (-1153 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1097 (-387 (-528)))) (-5 *2 (-387 (-528)))
- (-5 *1 (-174))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-635 (-296 (-207)))) (-5 *3 (-595 (-1095)))
- (-5 *4 (-1177 (-296 (-207)))) (-5 *1 (-189))))
+ (-12 (-5 *2 (-615 *3 *4)) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795))
+ (-4 *4 (-13 (-162) (-666 (-388 (-516))))) (-14 *5 (-860))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-719)) (-4 *4 (-13 (-984) (-666 (-388 (-516))))) (-4 *5 (-795))
+ (-5 *1 (-1194 *4 *5 *2)) (-4 *2 (-1200 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-595 (-275 *3))) (-4 *3 (-290 *3)) (-4 *3 (-1023))
- (-4 *3 (-1131)) (-5 *1 (-275 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-290 *2)) (-4 *2 (-1023)) (-4 *2 (-1131))
- (-5 *1 (-275 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 *1)) (-4 *1 (-283))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 (-595 *1))) (-4 *1 (-283))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-595 (-112))) (-5 *3 (-595 (-1 *1 (-595 *1))))
- (-4 *1 (-283))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-595 (-112))) (-5 *3 (-595 (-1 *1 *1))) (-4 *1 (-283))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-1 *1 *1)) (-4 *1 (-283))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-1 *1 (-595 *1))) (-4 *1 (-283))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-595 (-1095))) (-5 *3 (-595 (-1 *1 (-595 *1))))
- (-4 *1 (-283))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-595 (-1095))) (-5 *3 (-595 (-1 *1 *1))) (-4 *1 (-283))))
+ (-12 (-5 *2 (-719)) (-5 *1 (-1198 *3 *4)) (-4 *4 (-666 (-388 (-516))))
+ (-4 *3 (-795)) (-4 *4 (-162)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
+ (-5 *2 (-2 (|:| |k| (-767 *3)) (|:| |c| *4))))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1202 *3 *4)) (-4 *1 (-355 *3 *4)) (-4 *3 (-795))
+ (-4 *4 (-162))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-595 (-275 *3))) (-4 *1 (-290 *3)) (-4 *3 (-1023))))
+ (-12 (-5 *2 (-767 *3)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1202 *3 *4)) (-4 *1 (-355 *3 *4)) (-4 *3 (-795))
+ (-4 *4 (-162))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-275 *3)) (-4 *1 (-290 *3)) (-4 *3 (-1023))))
+ (-12 (-5 *2 (-767 *3)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))))
+(((*1 *1 *2 *3) (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1027))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-528))) (-5 *4 (-1097 (-387 (-528))))
- (-5 *1 (-291 *2)) (-4 *2 (-37 (-387 (-528))))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-595 *4)) (-5 *3 (-595 *1)) (-4 *1 (-354 *4 *5))
- (-4 *4 (-793)) (-4 *5 (-162))))
- ((*1 *1 *1 *2 *1)
- (-12 (-4 *1 (-354 *2 *3)) (-4 *2 (-793)) (-4 *3 (-162))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1095)) (-5 *3 (-717)) (-5 *4 (-1 *1 *1))
- (-4 *1 (-410 *5)) (-4 *5 (-793)) (-4 *5 (-981))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1095)) (-5 *3 (-717)) (-5 *4 (-1 *1 (-595 *1)))
- (-4 *1 (-410 *5)) (-4 *5 (-793)) (-4 *5 (-981))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-595 (-1095))) (-5 *3 (-595 (-717)))
- (-5 *4 (-595 (-1 *1 (-595 *1)))) (-4 *1 (-410 *5)) (-4 *5 (-793))
- (-4 *5 (-981))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-595 (-1095))) (-5 *3 (-595 (-717)))
- (-5 *4 (-595 (-1 *1 *1))) (-4 *1 (-410 *5)) (-4 *5 (-793))
- (-4 *5 (-981))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-595 (-112))) (-5 *3 (-595 *1)) (-5 *4 (-1095))
- (-4 *1 (-410 *5)) (-4 *5 (-793)) (-4 *5 (-570 (-504)))))
- ((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-112)) (-5 *3 (-1095)) (-4 *1 (-410 *4)) (-4 *4 (-793))
- (-4 *4 (-570 (-504)))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-410 *2)) (-4 *2 (-793)) (-4 *2 (-570 (-504)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-595 (-1095))) (-4 *1 (-410 *3)) (-4 *3 (-793))
- (-4 *3 (-570 (-504)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1095)) (-4 *1 (-410 *3)) (-4 *3 (-793))
- (-4 *3 (-570 (-504)))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-489 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1131))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-595 *4)) (-5 *3 (-595 *5)) (-4 *1 (-489 *4 *5))
- (-4 *4 (-1023)) (-4 *5 (-1131))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-779 *3)) (-4 *3 (-343)) (-5 *1 (-665 *3))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-665 *2)) (-4 *2 (-343))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-842 *2)) (-4 *2 (-1023))))
- ((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-387 (-891 *4))) (-5 *3 (-1095)) (-4 *4 (-520))
- (-5 *1 (-977 *4))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-595 (-1095))) (-5 *4 (-595 (-387 (-891 *5))))
- (-5 *2 (-387 (-891 *5))) (-4 *5 (-520)) (-5 *1 (-977 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-275 (-387 (-891 *4)))) (-5 *2 (-387 (-891 *4)))
- (-4 *4 (-520)) (-5 *1 (-977 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-595 (-275 (-387 (-891 *4))))) (-5 *2 (-387 (-891 *4)))
- (-4 *4 (-520)) (-5 *1 (-977 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1155 *3 *4)) (-4 *3 (-981)) (-4 *4 (-738))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1076 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-528)) (-4 *1 (-1137 *4)) (-4 *4 (-981)) (-4 *4 (-520))
- (-5 *2 (-387 (-891 *4)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-528)) (-4 *1 (-1137 *4)) (-4 *4 (-981)) (-4 *4 (-520))
- (-5 *2 (-387 (-891 *4))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-595 (-882 *4))) (-4 *1 (-1056 *4)) (-4 *4 (-981))
- (-5 *2 (-717)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-595 (-1018 (-359)))) (-5 *3 (-595 (-244)))
- (-5 *1 (-242))))
- ((*1 *1 *2) (-12 (-5 *2 (-595 (-1018 (-359)))) (-5 *1 (-244))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-595 (-1018 (-359)))) (-5 *1 (-447))))
- ((*1 *2 *1) (-12 (-5 *2 (-595 (-1018 (-359)))) (-5 *1 (-447)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-972 (-47)))
- (-4 *4 (-13 (-520) (-793) (-972 (-528)))) (-4 *5 (-410 *4))
- (-5 *2 (-398 (-1091 (-47)))) (-5 *1 (-415 *4 *5 *3))
- (-4 *3 (-1153 *5)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-595 (-1095))) (-5 *3 (-51)) (-5 *1 (-831 *4))
- (-4 *4 (-1023)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-860)) (-5 *2 (-1091 *4)) (-5 *1 (-337 *4))
- (-4 *4 (-329)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-904 *3)) (-4 *3 (-905)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1042)) (-4 *4 (-329))
- (-5 *1 (-498 *4)))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-528)) (-5 *5 (-110)) (-5 *6 (-635 (-207)))
- (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-75 OBJFUN))))
- (-5 *4 (-207)) (-5 *2 (-970)) (-5 *1 (-700)))))
-(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-446))))
- ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-446)))))
-(((*1 *1) (-5 *1 (-272))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-374))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-1112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-767)) (-5 *4 (-51)) (-5 *2 (-1182)) (-5 *1 (-777)))))
-(((*1 *2 *1) (-12 (-4 *1 (-347 *2)) (-4 *2 (-162)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-329)) (-5 *2 (-110)) (-5 *1 (-199 *4 *3))
- (-4 *3 (-1153 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095))))
- (-4 *6 (-739)) (-4 *7 (-888 *4 *6 *5))
- (-5 *2
- (-2 (|:| |sysok| (-110)) (|:| |z0| (-595 *7)) (|:| |n0| (-595 *7))))
- (-5 *1 (-863 *4 *5 *6 *7)) (-5 *3 (-595 *7)))))
+ (-12 (-5 *4 (-516)) (-5 *2 (-1076 *3)) (-5 *1 (-1083 *3)) (-4 *3 (-984))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-767 *4)) (-4 *4 (-795)) (-4 *1 (-1197 *4 *3)) (-4 *3 (-984)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2))
- (|has| *2 (-6 (-4266 "*"))) (-4 *2 (-981))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-353 *2)) (-4 *5 (-353 *2)) (-4 *2 (-162))
- (-5 *1 (-634 *2 *4 *5 *3)) (-4 *3 (-633 *2 *4 *5))))
+ (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-555 *3)) (-4 *3 (-984))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-523)) (-5 *2 (-110)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1155 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675))))
((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3 *2 *4 *5)) (-4 *4 (-220 *3 *2))
- (-4 *5 (-220 *3 *2)) (|has| *2 (-6 (-4266 "*"))) (-4 *2 (-981)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-917 *2)) (-4 *2 (-981))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-882 (-207))) (-5 *1 (-1128))))
+ (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-110)))))
+(((*1 *1 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-795)) (-4 *3 (-162))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-581 *2 *3 *4)) (-4 *2 (-795))
+ (-4 *3 (-13 (-162) (-666 (-388 (-516))))) (-14 *4 (-860))))
+ ((*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-719)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
+ (-4 *4 (-162))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1175 *2)) (-4 *2 (-1131)) (-4 *2 (-981)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1091 *7)) (-5 *3 (-528)) (-4 *7 (-888 *6 *4 *5))
- (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-981))
- (-5 *1 (-301 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-288)) (-5 *1 (-646 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1023)) (-4 *2 (-839 *4)) (-5 *1 (-638 *4 *2 *5 *3))
- (-4 *5 (-353 *2)) (-4 *3 (-13 (-353 *4) (-10 -7 (-6 -4264)))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-595 (-275 *3))) (-5 *1 (-275 *3)) (-4 *3 (-520))
- (-4 *3 (-1131)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4264)) (-4 *1 (-217 *3))
- (-4 *3 (-1023))))
- ((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4264)) (-4 *1 (-217 *2)) (-4 *2 (-1023))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-263 *2)) (-4 *2 (-1131)) (-4 *2 (-1023))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-263 *3)) (-4 *3 (-1131))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-566 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1023))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-528)) (-4 *4 (-1023))
- (-5 *1 (-684 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-528)) (-5 *1 (-684 *2)) (-4 *2 (-1023))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1060 *3 *4)) (-4 *3 (-13 (-1023) (-33)))
- (-4 *4 (-13 (-1023) (-33))) (-5 *1 (-1061 *3 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-343) (-791))) (-5 *1 (-169 *3 *2))
- (-4 *2 (-1153 (-159 *3))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1064)) (-5 *2 (-1144 (-528))))))
-(((*1 *1)
- (-12 (-4 *3 (-1023)) (-5 *1 (-824 *2 *3 *4)) (-4 *2 (-1023))
- (-4 *4 (-615 *3))))
- ((*1 *1) (-12 (-5 *1 (-828 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1023)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-459 *4 *5)) (-14 *4 (-595 (-1095))) (-4 *5 (-981))
- (-5 *2 (-891 *5)) (-5 *1 (-883 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-311 *3)) (-4 *3 (-793)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-207)) (|:| |xend| (-207))
- (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207)))
- (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207)))
- (|:| |abserr| (-207)) (|:| |relerr| (-207))))
- (-5 *2 (-359)) (-5 *1 (-189)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110))
- (-5 *1 (-914 *4 *5 *6 *3)) (-4 *3 (-994 *4 *5 *6)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-343)) (-5 *1 (-835 *2 *3))
- (-4 *2 (-1153 *3)))))
+ (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)) (-4 *3 (-162)))))
(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1153 *4)) (-5 *1 (-753 *4 *2 *3 *5))
- (-4 *4 (-13 (-343) (-140) (-972 (-387 (-528))))) (-4 *3 (-605 *2))
- (-4 *5 (-605 (-387 *2)))))
+ (-12 (-5 *4 (-719)) (-5 *2 (-594 (-1098))) (-5 *1 (-194)) (-5 *3 (-1098))))
((*1 *2 *3 *4)
- (-12 (-4 *2 (-1153 *4)) (-5 *1 (-753 *4 *2 *5 *3))
- (-4 *4 (-13 (-343) (-140) (-972 (-387 (-528))))) (-4 *5 (-605 *2))
- (-4 *3 (-605 (-387 *2))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1023))
- (-5 *2 (-1078)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 *5)) (-4 *5 (-410 *4)) (-4 *4 (-13 (-793) (-520)))
- (-5 *2 (-802)) (-5 *1 (-31 *4 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-717)) (-4 *5 (-520))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-907 *5 *3)) (-4 *3 (-1153 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *2 (-994 *4 *5 *6)) (-5 *1 (-722 *4 *5 *6 *2 *3))
- (-4 *3 (-999 *4 *5 *6 *2)))))
+ (-12 (-5 *3 (-295 (-208))) (-5 *4 (-719)) (-5 *2 (-594 (-1098)))
+ (-5 *1 (-249))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *2 (-594 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-594 *3)) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795))
+ (-4 *4 (-13 (-162) (-666 (-388 (-516))))) (-14 *5 (-860))))
+ ((*1 *2 *1) (-12 (-5 *2 (-594 *3)) (-5 *1 (-622 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1) (-12 (-5 *2 (-594 *3)) (-5 *1 (-626 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1) (-12 (-5 *2 (-594 *3)) (-5 *1 (-767 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1) (-12 (-5 *2 (-594 *3)) (-5 *1 (-834 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-594 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1129 *4 *5 *3 *6)) (-4 *4 (-523)) (-4 *5 (-741)) (-4 *3 (-795))
+ (-4 *6 (-997 *4 *5 *3)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-344)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-344)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-344)) (-5 *2 (-110)))))
(((*1 *2)
- (-12
- (-5 *2
- (-1177 (-595 (-2 (|:| -3327 (-849 *3)) (|:| -3108 (-1042))))))
- (-5 *1 (-331 *3 *4)) (-14 *3 (-860)) (-14 *4 (-860))))
- ((*1 *2)
- (-12 (-5 *2 (-1177 (-595 (-2 (|:| -3327 *3) (|:| -3108 (-1042))))))
- (-5 *1 (-332 *3 *4)) (-4 *3 (-329)) (-14 *4 (-3 (-1091 *3) *2))))
+ (-12 (-4 *4 (-344)) (-5 *2 (-860)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4))))
((*1 *2)
- (-12 (-5 *2 (-1177 (-595 (-2 (|:| -3327 *3) (|:| -3108 (-1042))))))
- (-5 *1 (-333 *3 *4)) (-4 *3 (-329)) (-14 *4 (-860)))))
-(((*1 *2 *1) (-12 (-4 *1 (-288)) (-5 *2 (-717)))))
-(((*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-831 *3)) (-4 *3 (-1023))))
- ((*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-1131)) (-5 *2 (-717)))))
+ (-12 (-4 *4 (-344)) (-5 *2 (-780 (-860))) (-5 *1 (-309 *3 *4))
+ (-4 *3 (-310 *4))))
+ ((*1 *2) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-860))))
+ ((*1 *2) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-344)) (-5 *2 (-780 (-860))))))
+(((*1 *2)
+ (-12 (-4 *4 (-344)) (-5 *2 (-719)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-344)) (-5 *2 (-719)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-343) (-791))) (-5 *1 (-169 *3 *2))
- (-4 *2 (-1153 (-159 *3))))))
+ (-12 (-4 *3 (-331)) (-4 *4 (-310 *3)) (-4 *5 (-1155 *4))
+ (-5 *1 (-725 *3 *4 *5 *2 *6)) (-4 *2 (-1155 *5)) (-14 *6 (-860))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-719)) (-4 *1 (-1196 *3)) (-4 *3 (-344)) (-4 *3 (-349))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-344)) (-4 *2 (-349)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-719)) (-4 *4 (-13 (-984) (-666 (-388 (-516))))) (-4 *5 (-795))
+ (-5 *1 (-1194 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-1191 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-594 *8)) (-5 *3 (-1 (-110) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-741))
+ (-4 *7 (-795)) (-5 *1 (-1191 *5 *6 *7 *8)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-1191 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-594 *8)) (-5 *3 (-1 (-110) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-741))
+ (-4 *7 (-795)) (-5 *1 (-1191 *5 *6 *7 *8)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1168 *4))
- (-4 *4 (-37 (-387 (-528)))) (-5 *2 (-1 (-1076 *4) (-1076 *4)))
- (-5 *1 (-1170 *4 *5)))))
+ (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *2 (-594 (-1191 *4 *5 *6 *7)))
+ (-5 *1 (-1191 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-594 *9)) (-5 *4 (-1 (-110) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-997 *6 *7 *8)) (-4 *6 (-523)) (-4 *7 (-741)) (-4 *8 (-795))
+ (-5 *2 (-594 (-1191 *6 *7 *8 *9))) (-5 *1 (-1191 *6 *7 *8 *9)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1177 *5)) (-4 *5 (-591 *4)) (-4 *4 (-520))
- (-5 *2 (-1177 *4)) (-5 *1 (-590 *4 *5)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-528)) (-5 *5 (-635 (-207))) (-5 *4 (-207))
- (-5 *2 (-970)) (-5 *1 (-699)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-513)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-561 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1131))
- (-5 *2 (-110)))))
-(((*1 *1) (-5 *1 (-1010))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-667)) (-5 *2 (-860))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-717)))))
-(((*1 *2)
- (-12 (-5 *2 (-1177 (-1024 *3 *4))) (-5 *1 (-1024 *3 *4))
- (-14 *3 (-860)) (-14 *4 (-860)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-316 *5 *6 *7 *8)) (-4 *5 (-410 *4))
- (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-387 *6)))
- (-4 *8 (-322 *5 *6 *7)) (-4 *4 (-13 (-793) (-520) (-972 (-528))))
- (-5 *2 (-2 (|:| -3689 (-717)) (|:| -3160 *8)))
- (-5 *1 (-850 *4 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-719)) (-5 *2 (-1185)) (-5 *1 (-807 *4 *5 *6 *7)) (-4 *4 (-984))
+ (-14 *5 (-594 (-1098))) (-14 *6 (-594 *3)) (-14 *7 *3)))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-316 (-387 (-528)) *4 *5 *6))
- (-4 *4 (-1153 (-387 (-528)))) (-4 *5 (-1153 (-387 *4)))
- (-4 *6 (-322 (-387 (-528)) *4 *5))
- (-5 *2 (-2 (|:| -3689 (-717)) (|:| -3160 *6)))
- (-5 *1 (-851 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1078)) (-4 *4 (-13 (-288) (-140)))
- (-4 *5 (-13 (-793) (-570 (-1095)))) (-4 *6 (-739))
- (-5 *2
- (-595
- (-2 (|:| |eqzro| (-595 *7)) (|:| |neqzro| (-595 *7))
- (|:| |wcond| (-595 (-891 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1177 (-387 (-891 *4))))
- (|:| -1400 (-595 (-1177 (-387 (-891 *4))))))))))
- (-5 *1 (-863 *4 *5 *6 *7)) (-4 *7 (-888 *4 *6 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1177 (-595 (-2 (|:| -3327 *4) (|:| -3108 (-1042))))))
- (-4 *4 (-329)) (-5 *2 (-1182)) (-5 *1 (-498 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-343) (-140)))
- (-5 *2 (-595 (-2 (|:| -2564 (-717)) (|:| -1884 *4) (|:| |num| *4))))
- (-5 *1 (-379 *3 *4)) (-4 *4 (-1153 *3)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1139 *3 *2)) (-4 *3 (-981))
- (-4 *2 (-1168 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-717)) (-4 *1 (-605 *3)) (-4 *3 (-981)) (-4 *3 (-343))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-717)) (-5 *4 (-1 *5 *5)) (-4 *5 (-343))
- (-5 *1 (-608 *5 *2)) (-4 *2 (-605 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-1 (-359))) (-5 *1 (-974)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-635 *6)) (-5 *5 (-1 (-398 (-1091 *6)) (-1091 *6)))
- (-4 *6 (-343))
- (-5 *2
- (-595
- (-2 (|:| |outval| *7) (|:| |outmult| (-528))
- (|:| |outvect| (-595 (-635 *7))))))
- (-5 *1 (-501 *6 *7 *4)) (-4 *7 (-343)) (-4 *4 (-13 (-343) (-791))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-431))
- (-5 *2
- (-595
- (-2 (|:| |eigval| (-3 (-387 (-891 *4)) (-1085 (-1095) (-891 *4))))
- (|:| |eigmult| (-717))
- (|:| |eigvec| (-595 (-635 (-387 (-891 *4))))))))
- (-5 *1 (-273 *4)) (-5 *3 (-635 (-387 (-891 *4)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1091 *1)) (-5 *4 (-1095)) (-4 *1 (-27))
- (-5 *2 (-595 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1091 *1)) (-4 *1 (-27)) (-5 *2 (-595 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-891 *1)) (-4 *1 (-27)) (-5 *2 (-595 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-793) (-520))) (-5 *2 (-595 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *2 (-595 *1)) (-4 *1 (-29 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-207))) (-5 *2 (-1177 (-645))) (-5 *1 (-286)))))
+ (-12 (-5 *3 (-719)) (-4 *4 (-984)) (-4 *5 (-795)) (-4 *6 (-741))
+ (-14 *8 (-594 *5)) (-5 *2 (-1185)) (-5 *1 (-1190 *4 *5 *6 *7 *8 *9 *10))
+ (-4 *7 (-891 *4 *6 *5)) (-14 *9 (-594 *3)) (-14 *10 *3))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1097 (-387 (-528)))) (-5 *1 (-174)) (-5 *3 (-528)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-207)) (-5 *1 (-208))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-207))) (-5 *1 (-208))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2))
- (-4 *2 (-410 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1059))))
-(((*1 *1 *1) (-5 *1 (-504))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *8 (-994 *5 *6 *7))
+ (-12 (-4 *3 (-13 (-289) (-10 -8 (-15 -4245 ((-386 $) $)))))
+ (-4 *4 (-1155 *3))
(-5 *2
- (-2 (|:| |val| (-595 *8)) (|:| |towers| (-595 (-962 *5 *6 *7 *8)))))
- (-5 *1 (-962 *5 *6 *7 *8)) (-5 *3 (-595 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *8 (-994 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-595 *8))
- (|:| |towers| (-595 (-1066 *5 *6 *7 *8)))))
- (-5 *1 (-1066 *5 *6 *7 *8)) (-5 *3 (-595 *8)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-283)) (-5 *3 (-1095)) (-5 *2 (-110))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-110)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-528)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1131))
- (-4 *5 (-353 *4)) (-4 *2 (-353 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-528)) (-4 *1 (-983 *4 *5 *6 *7 *2)) (-4 *6 (-981))
- (-4 *7 (-220 *5 *6)) (-4 *2 (-220 *4 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-366 *2)) (-4 *2 (-1023))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-793)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-520)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2088 *3)))
- (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-499 *3)) (-4 *3 (-13 (-673) (-25))))))
-(((*1 *2) (-12 (-5 *2 (-813)) (-5 *1 (-1180))))
- ((*1 *2 *2) (-12 (-5 *2 (-813)) (-5 *1 (-1180)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-528)) (-4 *1 (-600 *3)) (-4 *3 (-1131))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-528)) (-4 *1 (-600 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-568 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1095))) (-5 *5 (-1091 *2))
- (-4 *2 (-13 (-410 *6) (-27) (-1117)))
- (-4 *6 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528))))
- (-5 *1 (-524 *6 *2 *7)) (-4 *7 (-1023))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-568 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1095)))
- (-5 *5 (-387 (-1091 *2))) (-4 *2 (-13 (-410 *6) (-27) (-1117)))
- (-4 *6 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528))))
- (-5 *1 (-524 *6 *2 *7)) (-4 *7 (-1023)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-595 *5) *6))
- (-4 *5 (-13 (-343) (-140) (-972 (-387 (-528))))) (-4 *6 (-1153 *5))
- (-5 *2 (-595 (-2 (|:| |poly| *6) (|:| -2589 *3))))
- (-5 *1 (-755 *5 *6 *3 *7)) (-4 *3 (-605 *6))
- (-4 *7 (-605 (-387 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-595 *5) *6))
- (-4 *5 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528)))))
- (-4 *6 (-1153 *5))
- (-5 *2 (-595 (-2 (|:| |poly| *6) (|:| -2589 (-603 *6 (-387 *6))))))
- (-5 *1 (-758 *5 *6)) (-5 *3 (-603 *6 (-387 *6))))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-717) *2)) (-5 *4 (-717)) (-4 *2 (-1023))
- (-5 *1 (-625 *2))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1 *3 (-717) *3)) (-4 *3 (-1023)) (-5 *1 (-628 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)) (-4 *2 (-431)))))
-(((*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359))
+ (-2 (|:| -2071 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3))))
+ (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-391 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-516)) (-4 *4 (-1155 *3))
(-5 *2
- (-2 (|:| -3327 *4) (|:| -3817 *4) (|:| |totalpts| (-528))
- (|:| |success| (-110))))
- (-5 *1 (-735)) (-5 *5 (-528)))))
-(((*1 *1) (-5 *1 (-417))))
-(((*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-1182)) (-5 *1 (-359))))
- ((*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-359)))))
-(((*1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-595 (-112))))))
-(((*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-51)))))
-(((*1 *2 *3) (-12 (-5 *3 (-595 (-51))) (-5 *2 (-1182)) (-5 *1 (-803)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-702)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-447)) (-5 *4 (-860)) (-5 *2 (-1182)) (-5 *1 (-1178)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-891 (-207))) (-5 *2 (-296 (-359))) (-5 *1 (-286)))))
-(((*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1180))))
- ((*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1180)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-595 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-1091 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-595 (-882 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 (-882 *3))) (-4 *3 (-981)) (-4 *1 (-1056 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-595 (-595 *3))) (-4 *1 (-1056 *3)) (-4 *3 (-981))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-595 (-882 *3))) (-4 *1 (-1056 *3)) (-4 *3 (-981)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *6 (-520)) (-4 *2 (-888 *3 *5 *4))
- (-5 *1 (-679 *5 *4 *6 *2)) (-5 *3 (-387 (-891 *6))) (-4 *5 (-739))
- (-4 *4 (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $))))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1179)))))
-(((*1 *1 *1) (-4 *1 (-136)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-149 *3 *2))
- (-4 *2 (-410 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-513)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *5)) (-5 *4 (-595 *6)) (-4 *5 (-1023))
- (-4 *6 (-1131)) (-5 *2 (-1 *6 *5)) (-5 *1 (-592 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-595 *5)) (-5 *4 (-595 *2)) (-4 *5 (-1023))
- (-4 *2 (-1131)) (-5 *1 (-592 *5 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-595 *6)) (-5 *4 (-595 *5)) (-4 *6 (-1023))
- (-4 *5 (-1131)) (-5 *2 (-1 *5 *6)) (-5 *1 (-592 *6 *5))))
- ((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-595 *5)) (-5 *4 (-595 *2)) (-4 *5 (-1023))
- (-4 *2 (-1131)) (-5 *1 (-592 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-595 *5)) (-5 *4 (-595 *6))
- (-4 *5 (-1023)) (-4 *6 (-1131)) (-5 *1 (-592 *5 *6))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-595 *5)) (-5 *4 (-595 *2)) (-5 *6 (-1 *2 *5))
- (-4 *5 (-1023)) (-4 *2 (-1131)) (-5 *1 (-592 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1064)) (-5 *3 (-137)) (-5 *2 (-717)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-793))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1095)) (-5 *1 (-804 *3)) (-14 *3 (-595 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-904 *3)) (-4 *3 (-905))))
- ((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-926))))
- ((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-1016 *3)) (-4 *3 (-1131))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1155 *3 *4)) (-4 *3 (-981)) (-4 *4 (-738))
- (-5 *2 (-1095))))
- ((*1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-1173 *3)) (-14 *3 *2))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1023)) (-5 *1 (-902 *3 *2)) (-4 *3 (-1023)))))
-(((*1 *2 *1) (-12 (-4 *1 (-347 *2)) (-4 *2 (-162)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-520))
- (-4 *4 (-739)) (-4 *5 (-793)) (-4 *2 (-994 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207)))
- (|:| |lb| (-595 (-786 (-207))))
- (|:| |cf| (-595 (-296 (-207))))
- (|:| |ub| (-595 (-786 (-207))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-595 (-296 (-207))))
- (|:| -4197 (-595 (-207)))))))
- (-5 *2 (-595 (-1078))) (-5 *1 (-248)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-860)) (-5 *2 (-1177 (-1177 (-528)))) (-5 *1 (-445)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-595 (-1060 *4 *5))) (-5 *3 (-1 (-110) *5 *5))
- (-4 *4 (-13 (-1023) (-33))) (-4 *5 (-13 (-1023) (-33)))
- (-5 *1 (-1061 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-595 (-1060 *3 *4))) (-4 *3 (-13 (-1023) (-33)))
- (-4 *4 (-13 (-1023) (-33))) (-5 *1 (-1061 *3 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-51)) (-5 *1 (-775)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1018 *3)) (-4 *3 (-888 *7 *6 *4)) (-4 *6 (-739))
- (-4 *4 (-793)) (-4 *7 (-520))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-528))))
- (-5 *1 (-552 *6 *4 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-739)) (-4 *4 (-793)) (-4 *6 (-520))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-528))))
- (-5 *1 (-552 *5 *4 *6 *3)) (-4 *3 (-888 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-802))) ((*1 *1 *1 *1) (-5 *1 (-802)))
- ((*1 *1 *1) (-5 *1 (-802)))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1095))
- (-4 *4 (-13 (-520) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *1 (-1087 *4 *2)) (-4 *2 (-13 (-410 *4) (-151) (-27) (-1117)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1016 *2)) (-4 *2 (-13 (-410 *4) (-151) (-27) (-1117)))
- (-4 *4 (-13 (-520) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *1 (-1087 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1095)) (-4 *5 (-13 (-520) (-793) (-972 (-528))))
- (-5 *2 (-387 (-891 *5))) (-5 *1 (-1088 *5)) (-5 *3 (-891 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1095)) (-4 *5 (-13 (-520) (-793) (-972 (-528))))
- (-5 *2 (-3 (-387 (-891 *5)) (-296 *5))) (-5 *1 (-1088 *5))
- (-5 *3 (-387 (-891 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1016 (-891 *5))) (-5 *3 (-891 *5))
- (-4 *5 (-13 (-520) (-793) (-972 (-528)))) (-5 *2 (-387 *3))
- (-5 *1 (-1088 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1016 (-387 (-891 *5)))) (-5 *3 (-387 (-891 *5)))
- (-4 *5 (-13 (-520) (-793) (-972 (-528)))) (-5 *2 (-3 *3 (-296 *5)))
- (-5 *1 (-1088 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-343)) (-4 *3 (-981))
- (-5 *1 (-1080 *3)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-595 (-528))) (-5 *1 (-1033)) (-5 *3 (-528)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-595 *4)) (-5 *1 (-1061 *3 *4))
- (-4 *3 (-13 (-1023) (-33))) (-4 *4 (-13 (-1023) (-33))))))
-(((*1 *2 *2) (-12 (-5 *1 (-546 *2)) (-4 *2 (-513)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-110)) (-4 *6 (-431)) (-4 *7 (-739)) (-4 *8 (-793))
- (-4 *3 (-994 *6 *7 *8))
+ (-2 (|:| -2071 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3))))
+ (-5 *1 (-716 *4 *5)) (-4 *5 (-391 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-331)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 *3))
(-5 *2
- (-2 (|:| |done| (-595 *4))
- (|:| |todo| (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4))))))
- (-5 *1 (-997 *6 *7 *8 *3 *4)) (-4 *4 (-999 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7))
+ (-2 (|:| -2071 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3))))
+ (-5 *1 (-925 *4 *3 *5 *6)) (-4 *6 (-673 *3 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-331)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 *3))
(-5 *2
- (-2 (|:| |done| (-595 *4))
- (|:| |todo| (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4))))))
- (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1032 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1076 (-595 (-528)))) (-5 *1 (-822))
- (-5 *3 (-595 (-528))))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1023)) (-4 *1 (-217 *3))))
- ((*1 *1) (-12 (-4 *1 (-217 *2)) (-4 *2 (-1023)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-595 (-1002 *4 *5 *2))) (-4 *4 (-1023))
- (-4 *5 (-13 (-981) (-825 *4) (-793) (-570 (-831 *4))))
- (-4 *2 (-13 (-410 *5) (-825 *4) (-570 (-831 *4))))
- (-5 *1 (-53 *4 *5 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-595 (-1002 *5 *6 *2))) (-5 *4 (-860)) (-4 *5 (-1023))
- (-4 *6 (-13 (-981) (-825 *5) (-793) (-570 (-831 *5))))
- (-4 *2 (-13 (-410 *6) (-825 *5) (-570 (-831 *5))))
- (-5 *1 (-53 *5 *6 *2)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-528)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1131))
- (-4 *3 (-353 *4)) (-4 *5 (-353 *4)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-595 (-595 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-595 (-3 (|:| |array| (-595 *3)) (|:| |scalar| (-1095)))))
- (-5 *6 (-595 (-1095))) (-5 *3 (-1095)) (-5 *2 (-1027))
- (-5 *1 (-377))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-595 (-595 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-595 (-3 (|:| |array| (-595 *3)) (|:| |scalar| (-1095)))))
- (-5 *6 (-595 (-1095))) (-5 *3 (-1095)) (-5 *2 (-1027))
- (-5 *1 (-377))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-595 (-1095))) (-5 *5 (-1098)) (-5 *3 (-1095))
- (-5 *2 (-1027)) (-5 *1 (-377)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1091 *1)) (-5 *3 (-1095)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-891 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1095)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-793) (-520)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-793) (-520))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-310)))))
-(((*1 *1 *2) (-12 (-5 *1 (-209 *2)) (-4 *2 (-13 (-343) (-1117))))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1023)) (-5 *1 (-684 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-684 *2)) (-4 *2 (-1023))))
- ((*1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-1023)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-802))) ((*1 *1 *1 *1) (-5 *1 (-802)))
- ((*1 *1 *1) (-5 *1 (-802))))
-(((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-768)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-717)) (-4 *5 (-981)) (-4 *2 (-1153 *5))
- (-5 *1 (-1171 *5 *2 *6 *3)) (-4 *6 (-605 *2)) (-4 *3 (-1168 *5)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1078)) (-5 *4 (-528)) (-5 *5 (-635 (-159 (-207))))
- (-5 *2 (-970)) (-5 *1 (-701)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1131)) (-5 *2 (-717)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2))
- (-4 *4 (-353 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-520) (-793) (-972 (-528)))) (-5 *1 (-172 *3 *2))
- (-4 *2 (-13 (-27) (-1117) (-410 (-159 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-520) (-793) (-972 (-528))))
- (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-410 (-159 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1095))
- (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *1 (-1121 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *4))))))
-(((*1 *1 *1 *1) (-5 *1 (-802))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-528)) (-5 *5 (-635 (-207)))
- (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN))))
- (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-86 OUTPUT))))
- (-5 *3 (-207)) (-5 *2 (-970)) (-5 *1 (-696)))))
+ (-2 (|:| -2071 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3))))
+ (-5 *1 (-1189 *4 *3 *5 *6)) (-4 *6 (-391 *3 *5)))))
(((*1 *2)
- (-12 (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4)))
- (-5 *2 (-1177 *1)) (-4 *1 (-322 *3 *4 *5))))
+ (-12 (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4)))
+ (-5 *2 (-1179 *1)) (-4 *1 (-323 *3 *4 *5))))
((*1 *2)
- (-12 (-4 *3 (-13 (-288) (-10 -8 (-15 -2705 ((-398 $) $)))))
- (-4 *4 (-1153 *3))
+ (-12 (-4 *3 (-13 (-289) (-10 -8 (-15 -4245 ((-386 $) $)))))
+ (-4 *4 (-1155 *3))
(-5 *2
- (-2 (|:| -1400 (-635 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-635 *3))))
- (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-389 *3 *4))))
+ (-2 (|:| -2071 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3))))
+ (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-391 *3 *4))))
((*1 *2)
- (-12 (-4 *3 (-1153 (-528)))
+ (-12 (-4 *3 (-1155 (-516)))
(-5 *2
- (-2 (|:| -1400 (-635 (-528))) (|:| |basisDen| (-528))
- (|:| |basisInv| (-635 (-528)))))
- (-5 *1 (-714 *3 *4)) (-4 *4 (-389 (-528) *3))))
+ (-2 (|:| -2071 (-637 (-516))) (|:| |basisDen| (-516))
+ (|:| |basisInv| (-637 (-516)))))
+ (-5 *1 (-716 *3 *4)) (-4 *4 (-391 (-516) *3))))
((*1 *2)
- (-12 (-4 *3 (-329)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 *4))
+ (-12 (-4 *3 (-331)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 *4))
(-5 *2
- (-2 (|:| -1400 (-635 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-635 *4))))
- (-5 *1 (-922 *3 *4 *5 *6)) (-4 *6 (-671 *4 *5))))
+ (-2 (|:| -2071 (-637 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-637 *4))))
+ (-5 *1 (-925 *3 *4 *5 *6)) (-4 *6 (-673 *4 *5))))
((*1 *2)
- (-12 (-4 *3 (-329)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 *4))
+ (-12 (-4 *3 (-331)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 *4))
(-5 *2
- (-2 (|:| -1400 (-635 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-635 *4))))
- (-5 *1 (-1186 *3 *4 *5 *6)) (-4 *6 (-389 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-717)) (-4 *1 (-1192 *3 *4)) (-4 *3 (-793))
- (-4 *4 (-981)) (-4 *4 (-162))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1192 *2 *3)) (-4 *2 (-793)) (-4 *3 (-981))
- (-4 *3 (-162)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *1 (-626 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1023)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-595 (-882 *3))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023)) (-4 *4 (-1023))
- (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-110)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-343)) (-5 *1 (-960 *3 *2)) (-4 *2 (-605 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-343)) (-5 *2 (-2 (|:| -2589 *3) (|:| -4057 (-595 *5))))
- (-5 *1 (-960 *5 *3)) (-5 *4 (-595 *5)) (-4 *3 (-605 *5)))))
+ (-2 (|:| -2071 (-637 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-637 *4))))
+ (-5 *1 (-1189 *3 *4 *5 *6)) (-4 *6 (-391 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-719)) (-4 *6 (-344)) (-5 *4 (-1127 *6))
+ (-5 *2 (-1 (-1076 *4) (-1076 *4))) (-5 *1 (-1188 *6)) (-5 *5 (-1076 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-387 (-528)))) (-5 *2 (-595 *4)) (-5 *1 (-725 *4))
- (-4 *4 (-13 (-343) (-791))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1109 *4 *5))
- (-4 *4 (-1023)) (-4 *5 (-1023)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-329)) (-4 *5 (-309 *4)) (-4 *6 (-1153 *5))
- (-5 *2 (-595 *3)) (-5 *1 (-723 *4 *5 *6 *3 *7)) (-4 *3 (-1153 *6))
- (-14 *7 (-860)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-595 (-1095))) (-5 *2 (-1095)) (-5 *1 (-310)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
+ (-12 (-5 *3 (-1098)) (-4 *5 (-344)) (-5 *2 (-594 (-1127 *5)))
+ (-5 *1 (-1188 *5)) (-5 *4 (-1127 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528)))))))
- (-5 *2 (-595 *4)) (-5 *1 (-1050 *3 *4)) (-4 *3 (-1153 *4))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528)))))))
- (-5 *2 (-595 *3)) (-5 *1 (-1050 *4 *3)) (-4 *4 (-1153 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-595 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-288))
- (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-426 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-595 *7)) (-5 *3 (-1078)) (-4 *7 (-888 *4 *5 *6))
- (-4 *4 (-288)) (-4 *5 (-739)) (-4 *6 (-793))
- (-5 *1 (-426 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-595 *7)) (-5 *3 (-1078)) (-4 *7 (-888 *4 *5 *6))
- (-4 *4 (-288)) (-4 *5 (-739)) (-4 *6 (-793))
- (-5 *1 (-426 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-1098)) (-5 *2 (-1 (-1092 (-887 *4)) (-887 *4)))
+ (-5 *1 (-1188 *4)) (-4 *4 (-344)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1091 *2)) (-4 *2 (-888 (-387 (-891 *6)) *5 *4))
- (-5 *1 (-679 *5 *4 *6 *2)) (-4 *5 (-739))
- (-4 *4 (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $)))))
- (-4 *6 (-520)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-347 *4)) (-4 *4 (-162))
- (-5 *2 (-635 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-162)) (-5 *2 (-635 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *1 (-626 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1023)))))
+ (-12 (-5 *3 (-1098)) (-4 *5 (-344)) (-5 *2 (-1076 (-1076 (-887 *5))))
+ (-5 *1 (-1188 *5)) (-5 *4 (-1076 (-887 *5))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-882 *3) (-882 *3))) (-5 *1 (-165 *3))
- (-4 *3 (-13 (-343) (-1117) (-938))))))
+ (-12 (-5 *3 (-719)) (-5 *2 (-1 (-1076 (-887 *4)) (-1076 (-887 *4))))
+ (-5 *1 (-1188 *4)) (-4 *4 (-344)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-459 *4 *5)) (-14 *4 (-595 (-1095))) (-4 *5 (-981))
- (-5 *2 (-229 *4 *5)) (-5 *1 (-883 *4 *5)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4265)) (-4 *1 (-353 *2)) (-4 *2 (-1131))
- (-4 *2 (-793))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3 *3)) (|has| *1 (-6 -4265))
- (-4 *1 (-353 *3)) (-4 *3 (-1131)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-374))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-1112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-866)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)) (-4 *2 (-520))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)) (-4 *2 (-520)))))
-(((*1 *2 *1)
+ (-12 (-5 *3 (-719)) (-5 *2 (-1 (-1076 (-887 *4)) (-1076 (-887 *4))))
+ (-5 *1 (-1188 *4)) (-4 *4 (-344)))))
+(((*1 *2)
+ (-12 (-14 *4 (-719)) (-4 *5 (-1134)) (-5 *2 (-130)) (-5 *1 (-220 *3 *4 *5))
+ (-4 *3 (-221 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-344)) (-5 *2 (-130)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-719)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-162))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-516))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-891 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-594 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741))
+ (-5 *2 (-516)) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-891 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-984)) (-5 *2 (-860))))
+ ((*1 *2) (-12 (-4 *1 (-1187 *3)) (-4 *3 (-344)) (-5 *2 (-130)))))
+(((*1 *1) (-5 *1 (-1185))))
+(((*1 *2 *3) (-12 (-5 *3 (-359)) (-5 *2 (-208)) (-5 *1 (-1184))))
+ ((*1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-1184)))))
+(((*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1184))))
+ ((*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-594 (-860))) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-594 (-860))) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-594 (-719))) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-594 (-719))) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))))
+(((*1 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1183)))))
+(((*1 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1183)))))
+(((*1 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1183)))))
+(((*1 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1183)))))
+(((*1 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1183)))))
+(((*1 *1) (-5 *1 (-1183))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1058 (-208))) (-5 *3 (-594 (-243))) (-5 *1 (-1183))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1058 (-208))) (-5 *3 (-1081)) (-5 *1 (-1183))))
+ ((*1 *1 *1) (-5 *1 (-1183))))
+(((*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-1087 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1087 *2 *3)) (-14 *2 (-860)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-208))) (-5 *1 (-1183))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1058 (-208))) (-5 *1 (-1183)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-719)) (-5 *3 (-884 *4)) (-4 *1 (-1059 *4)) (-4 *4 (-984))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-719)) (-5 *4 (-884 (-208))) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-594 (-243))) (-5 *1 (-1182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-594 (-243))) (-5 *1 (-1182))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-594 (-243))) (-5 *1 (-1183))))
+ ((*1 *2 *1) (-12 (-5 *2 (-594 (-243))) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-243))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1081)) (-5 *3 (-594 (-243))) (-5 *1 (-244))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-719)) (-5 *4 (-860)) (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-719)) (-5 *4 (-860)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *1 *2)
(-12
(-5 *2
- (-595
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-528)))))
- (-5 *1 (-398 *3)) (-4 *3 (-520))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-717)) (-4 *3 (-329)) (-4 *5 (-1153 *3))
- (-5 *2 (-595 (-1091 *3))) (-5 *1 (-474 *3 *5 *6))
- (-4 *6 (-1153 *5)))))
+ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -4126 (-208))
+ (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208))
+ (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))
+ (-5 *1 (-243))))
+ ((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -4126 (-208))
+ (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208))
+ (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))
+ (-5 *3 (-594 (-243))) (-5 *1 (-244))))
+ ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1185)) (-5 *1 (-1183))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1185)) (-5 *1 (-1183))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-516)) (-5 *4 (-359)) (-5 *2 (-1185)) (-5 *1 (-1183))))
+ ((*1 *2 *1 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -4126 (-208))
+ (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208))
+ (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))
+ (-5 *2 (-1185)) (-5 *1 (-1183))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -4126 (-208))
+ (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208))
+ (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))
+ (-5 *1 (-1183))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-359)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-860)) (-5 *4 (-815)) (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-860)) (-5 *4 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-516)) (-5 *2 (-1185)) (-5 *1 (-1183))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1017 (-208))) (-5 *1 (-866))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1017 (-208))) (-5 *1 (-866))))
+ ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1017 (-208))) (-5 *1 (-868))))
+ ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1185)) (-5 *1 (-1183))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1120)))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-860)) (-5 *4 (-359)) (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-148)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-594 (-1081))) (-5 *2 (-1081)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-594 (-1081))) (-5 *2 (-1081)) (-5 *1 (-1183))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1183))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-448))))
+ ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1183)))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-884 (-208)))) (-5 *1 (-1182)))))
+(((*1 *1) (-5 *1 (-1182))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-594 (-243))) (-5 *1 (-1182))))
+ ((*1 *1 *1) (-5 *1 (-1182))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-860)) (-5 *4 (-208)) (-5 *5 (-516)) (-5 *6 (-815))
+ (-5 *2 (-1185)) (-5 *1 (-1182)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-387 (-891 *3))) (-5 *1 (-432 *3 *4 *5 *6))
- (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-528)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-717)) (-4 *5 (-162))))
- ((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-528)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-717)) (-4 *5 (-162))))
- ((*1 *2 *2 *3)
(-12
(-5 *2
- (-480 (-387 (-528)) (-222 *5 (-717)) (-804 *4)
- (-229 *4 (-387 (-528)))))
- (-5 *3 (-595 (-804 *4))) (-14 *4 (-595 (-1095))) (-14 *5 (-717))
- (-5 *1 (-481 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-981)) (-4 *5 (-1153 *4)) (-5 *2 (-1 *6 (-595 *6)))
- (-5 *1 (-1171 *4 *5 *3 *6)) (-4 *3 (-605 *5)) (-4 *6 (-1168 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-343))
- (-5 *2 (-110)) (-5 *1 (-616 *5))))
+ (-1179
+ (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208))
+ (|:| |deltaY| (-208)) (|:| -4129 (-516)) (|:| -4127 (-516))
+ (|:| |spline| (-516)) (|:| -4158 (-516)) (|:| |axesColor| (-815))
+ (|:| -4130 (-516)) (|:| |unitsColor| (-815)) (|:| |showing| (-516)))))
+ (-5 *1 (-1182)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1100 (-388 (-516)))) (-5 *1 (-174)) (-5 *3 (-516))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179 (-3 (-448) "undefined"))) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-448)) (-5 *4 (-860)) (-5 *2 (-1185)) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-860)) (-5 *2 (-448)) (-5 *1 (-1182)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-594 (-359))) (-5 *3 (-594 (-243))) (-5 *1 (-244))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-594 (-359))) (-5 *1 (-448))))
+ ((*1 *2 *1) (-12 (-5 *2 (-594 (-359))) (-5 *1 (-448))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-860)) (-5 *4 (-815)) (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-860)) (-5 *4 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-860)) (-5 *4 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-860)) (-5 *4 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-860)) (-5 *4 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1182)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1120)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344))))
+ ((*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-860)) (-5 *4 (-359)) (-5 *2 (-1185)) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-860)) (-5 *4 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-448)) (-5 *4 (-860)) (-5 *2 (-1185)) (-5 *1 (-1182)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-594 (-594 (-884 (-208))))) (-5 *4 (-815)) (-5 *5 (-860))
+ (-5 *6 (-594 (-243))) (-5 *2 (-1182)) (-5 *1 (-1181))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-343)) (-4 *6 (-13 (-353 *5) (-10 -7 (-6 -4265))))
- (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4265)))) (-5 *2 (-110))
- (-5 *1 (-617 *5 *6 *4 *3)) (-4 *3 (-633 *5 *6 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-595 *3))
- (-5 *1 (-914 *4 *5 *6 *3)) (-4 *3 (-994 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-802)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-848)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-398 (-1091 *7)))
- (-5 *1 (-845 *4 *5 *6 *7)) (-5 *3 (-1091 *7))))
+ (-12 (-5 *3 (-594 (-594 (-884 (-208))))) (-5 *4 (-594 (-243)))
+ (-5 *2 (-1182)) (-5 *1 (-1181)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-594 (-594 (-884 (-208))))) (-5 *4 (-815)) (-5 *5 (-860))
+ (-5 *6 (-594 (-243))) (-5 *2 (-448)) (-5 *1 (-1181))))
((*1 *2 *3)
- (-12 (-4 *4 (-848)) (-4 *5 (-1153 *4)) (-5 *2 (-398 (-1091 *5)))
- (-5 *1 (-846 *4 *5)) (-5 *3 (-1091 *5)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-860)) (-5 *4 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1178)))))
+ (-12 (-5 *3 (-594 (-594 (-884 (-208))))) (-5 *2 (-448)) (-5 *1 (-1181))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-594 (-884 (-208))))) (-5 *4 (-594 (-243))) (-5 *2 (-448))
+ (-5 *1 (-1181)))))
+(((*1 *1 *1) (-5 *1 (-47)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-56 *5)) (-4 *5 (-1134)) (-4 *2 (-1134))
+ (-5 *1 (-57 *5 *2))))
+ ((*1 *2 *3 *1 *2 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1027)) (|has| *1 (-6 -4269))
+ (-4 *1 (-144 *2)) (-4 *2 (-1134))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *2))
+ (-4 *2 (-1134))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *2))
+ (-4 *2 (-1134))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-984)) (-5 *2 (-2 (|:| -2063 (-1092 *4)) (|:| |deg| (-860))))
+ (-5 *1 (-204 *4 *5)) (-5 *3 (-1092 *4)) (-4 *5 (-13 (-523) (-795)))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-222 *5 *6)) (-14 *5 (-719))
+ (-4 *6 (-1134)) (-4 *2 (-1134)) (-5 *1 (-223 *5 *6 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-162)) (-5 *1 (-271 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1155 *4))
+ (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-523)) (-4 *2 (-795))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-317 *2 *3 *4 *5)) (-4 *2 (-344)) (-4 *3 (-1155 *2))
+ (-4 *4 (-1155 (-388 *3))) (-4 *5 (-323 *2 *3 *4))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1134)) (-4 *2 (-1134))
+ (-5 *1 (-354 *5 *4 *2 *6)) (-4 *4 (-353 *5)) (-4 *6 (-353 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1027)) (-4 *2 (-1027))
+ (-5 *1 (-408 *5 *4 *2 *6)) (-4 *4 (-407 *5)) (-4 *6 (-407 *2))))
+ ((*1 *1 *1) (-5 *1 (-473)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-594 *5)) (-4 *5 (-1134)) (-4 *2 (-1134))
+ (-5 *1 (-595 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-984)) (-4 *2 (-984)) (-4 *6 (-353 *5))
+ (-4 *7 (-353 *5)) (-4 *8 (-353 *2)) (-4 *9 (-353 *2))
+ (-5 *1 (-635 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-634 *5 *6 *7))
+ (-4 *10 (-634 *2 *8 *9))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-660 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2) (-12 (-4 *3 (-984)) (-5 *1 (-661 *3 *2)) (-4 *2 (-1155 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-388 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-344))
+ (-4 *3 (-162)) (-4 *1 (-673 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *3 (-162)) (-4 *1 (-673 *3 *2)) (-4 *2 (-1155 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-899 *5)) (-4 *5 (-1134)) (-4 *2 (-1134))
+ (-5 *1 (-900 *5 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *1 (-972 *3 *4 *5 *2 *6)) (-4 *2 (-891 *3 *4 *5)) (-14 *6 (-594 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-984)) (-4 *2 (-984)) (-14 *5 (-719))
+ (-14 *6 (-719)) (-4 *8 (-221 *6 *7)) (-4 *9 (-221 *5 *7))
+ (-4 *10 (-221 *6 *2)) (-4 *11 (-221 *5 *2))
+ (-5 *1 (-988 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-986 *5 *6 *7 *8 *9)) (-4 *12 (-986 *5 *6 *2 *10 *11))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1076 *5)) (-4 *5 (-1134)) (-4 *2 (-1134))
+ (-5 *1 (-1078 *5 *2))))
+ ((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-110) *2 *2))
+ (-4 *1 (-1129 *5 *6 *7 *2)) (-4 *5 (-523)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *2 (-997 *5 *6 *7))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1179 *5)) (-4 *5 (-1134)) (-4 *2 (-1134))
+ (-5 *1 (-1180 *5 *2)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-56 *6)) (-4 *6 (-1134)) (-4 *5 (-1134))
+ (-5 *2 (-56 *5)) (-5 *1 (-57 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-222 *6 *7)) (-14 *6 (-719))
+ (-4 *7 (-1134)) (-4 *5 (-1134)) (-5 *2 (-222 *6 *5))
+ (-5 *1 (-223 *6 *7 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1134)) (-4 *5 (-1134)) (-4 *2 (-353 *5))
+ (-5 *1 (-354 *6 *4 *5 *2)) (-4 *4 (-353 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1027)) (-4 *5 (-1027)) (-4 *2 (-407 *5))
+ (-5 *1 (-408 *6 *4 *5 *2)) (-4 *4 (-407 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-594 *6)) (-4 *6 (-1134)) (-4 *5 (-1134))
+ (-5 *2 (-594 *5)) (-5 *1 (-595 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-899 *6)) (-4 *6 (-1134)) (-4 *5 (-1134))
+ (-5 *2 (-899 *5)) (-5 *1 (-900 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1076 *6)) (-4 *6 (-1134)) (-4 *3 (-1134))
+ (-5 *2 (-1076 *3)) (-5 *1 (-1078 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1179 *6)) (-4 *6 (-1134)) (-4 *5 (-1134))
+ (-5 *2 (-1179 *5)) (-5 *1 (-1180 *6 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1134)) (-5 *1 (-1179 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-148)))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-198 *2))
+ (-4 *2
+ (-13 (-795)
+ (-10 -8 (-15 -4078 ((-1081) $ (-1098))) (-15 -3899 ((-1185) $))
+ (-15 -2037 ((-1185) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-275 *2)) (-4 *2 (-25)) (-4 *2 (-1134))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-25)) (-4 *2 (-1134))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-128))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *2)) (-4 *2 (-1155 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5))
+ (-4 *5 (-891 *2 *3 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-505)))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2))
+ (-4 *4 (-353 *2))))
+ ((*1 *1 *1 *1) (-5 *1 (-805)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1027))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1131))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1134)) (-4 *2 (-25)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-719)) (-4 *3 (-984)) (-4 *1 (-634 *3 *4 *5)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-719)) (-4 *1 (-1178 *3)) (-4 *3 (-23)) (-4 *3 (-1134)))))
+(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-130)))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-198 *2))
+ (-4 *2
+ (-13 (-795)
+ (-10 -8 (-15 -4078 ((-1081) $ (-1098))) (-15 -3899 ((-1185) $))
+ (-15 -2037 ((-1185) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-275 *2)) (-4 *2 (-21)) (-4 *2 (-1134))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-21)) (-4 *2 (-1134))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
+ ((*1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2))
+ (-4 *4 (-353 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2))
+ (-4 *4 (-353 *2))))
+ ((*1 *1 *1) (-5 *1 (-805))) ((*1 *1 *1 *1) (-5 *1 (-805)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1131))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1134)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1134)) (-4 *2 (-21)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1134)) (-4 *2 (-984))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-805))))
+ ((*1 *1 *1) (-5 *1 (-805)))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-884 (-208))) (-5 *2 (-208)) (-5 *1 (-1131))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1134)) (-4 *2 (-984)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1178 *3)) (-4 *3 (-1134)) (-4 *3 (-984)) (-5 *2 (-637 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-984))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1131))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1134)) (-4 *2 (-984)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1023)) (-4 *6 (-1023))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-630 *4 *5 *6)) (-4 *5 (-1023)))))
-(((*1 *2)
- (-12 (-4 *3 (-520)) (-5 *2 (-595 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-397 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-350 *4 *5)) (-4 *4 (-162))
- (-4 *5 (-1153 *4)) (-5 *2 (-635 *4))))
+ (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1120) (-266)))
+ (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1155 *4))))
+ ((*1 *1 *1) (-4 *1 (-515)))
+ ((*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-622 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-626 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-767 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-834 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1) (-12 (-4 *1 (-934 *3)) (-4 *3 (-1134)) (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1132 *3)) (-4 *3 (-1134))))
((*1 *2 *1)
- (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1153 *3))
- (-5 *2 (-635 *3)))))
+ (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1134)) (-4 *2 (-941)) (-4 *2 (-984)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1134)) (-4 *2 (-941)) (-4 *2 (-984)))))
+(((*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-795))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1098)) (-5 *1 (-806 *3)) (-14 *3 (-594 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-907 *3)) (-4 *3 (-908))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-929))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1019 *3)) (-4 *3 (-1134))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1158 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-1098))))
+ ((*1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-1176 *3)) (-14 *3 *2))))
(((*1 *2 *3)
- (-12 (-5 *2 (-528)) (-5 *1 (-424 *3)) (-4 *3 (-384)) (-4 *3 (-981)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-112) (-112))) (-5 *1 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-343)) (-4 *3 (-981))
- (-5 *2 (-2 (|:| -3490 *1) (|:| -2537 *1))) (-4 *1 (-795 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-96 *5)) (-4 *5 (-343)) (-4 *5 (-981))
- (-5 *2 (-2 (|:| -3490 *3) (|:| -2537 *3))) (-5 *1 (-796 *5 *3))
- (-4 *3 (-795 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-343) (-140) (-972 (-387 (-528)))))
- (-4 *5 (-1153 *4))
- (-5 *2 (-595 (-2 (|:| |deg| (-717)) (|:| -2589 *5))))
- (-5 *1 (-755 *4 *5 *3 *6)) (-4 *3 (-605 *5))
- (-4 *6 (-605 (-387 *5))))))
-(((*1 *1 *2 *3)
- (-12 (-4 *1 (-362 *3 *2)) (-4 *3 (-981)) (-4 *2 (-1023))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-528)) (-5 *2 (-1076 *3)) (-5 *1 (-1080 *3))
- (-4 *3 (-981))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-765 *4)) (-4 *4 (-793)) (-4 *1 (-1192 *4 *3))
- (-4 *3 (-981)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520))
- (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-914 *3 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-595 *2)) (-5 *1 (-1106 *2)) (-4 *2 (-343)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4265)) (-4 *1 (-226 *2)) (-4 *2 (-1131)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1061 *2 *3)) (-4 *2 (-13 (-1023) (-33)))
- (-4 *3 (-13 (-1023) (-33))))))
+ (-12 (-5 *3 (-388 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-523)) (-4 *4 (-984))
+ (-4 *2 (-1172 *4)) (-5 *1 (-1174 *4 *5 *6 *2)) (-4 *6 (-609 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1095)) (-5 *2 (-1 (-1091 (-891 *4)) (-891 *4)))
- (-5 *1 (-1185 *4)) (-4 *4 (-343)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-635 *4)) (-4 *4 (-981)) (-5 *1 (-1062 *3 *4))
- (-14 *3 (-717)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-140))
- (-4 *3 (-288)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *1 (-914 *3 *4 *5 *6)))))
+ (-12 (-4 *4 (-984)) (-4 *5 (-1155 *4)) (-5 *2 (-1 *6 (-594 *6)))
+ (-5 *1 (-1174 *4 *5 *3 *6)) (-4 *3 (-609 *5)) (-4 *6 (-1172 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-784)) (-5 *4 (-992)) (-5 *2 (-970)) (-5 *1 (-783))))
- ((*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-970)) (-5 *1 (-783))))
- ((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-595 (-359))) (-5 *5 (-595 (-786 (-359))))
- (-5 *6 (-595 (-296 (-359)))) (-5 *3 (-296 (-359))) (-5 *2 (-970))
- (-5 *1 (-783))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-296 (-359))) (-5 *4 (-595 (-359)))
- (-5 *5 (-595 (-786 (-359)))) (-5 *2 (-970)) (-5 *1 (-783))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-296 (-359))) (-5 *4 (-595 (-359))) (-5 *2 (-970))
- (-5 *1 (-783))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-296 (-359)))) (-5 *4 (-595 (-359)))
- (-5 *2 (-970)) (-5 *1 (-783)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-595 (-2 (|:| -2437 (-1091 *6)) (|:| -2564 (-528)))))
- (-4 *6 (-288)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-110))
- (-5 *1 (-689 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-981)))))
-(((*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-1182)) (-5 *1 (-359))))
- ((*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-359)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-717)) (-4 *4 (-981))
- (-5 *2 (-2 (|:| -3490 *1) (|:| -2537 *1))) (-4 *1 (-1153 *4)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-882 *5)) (-5 *3 (-717)) (-4 *5 (-981))
- (-5 *1 (-1084 *4 *5)) (-14 *4 (-860)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-112))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1078)) (-4 *4 (-793)) (-5 *1 (-868 *4 *2))
- (-4 *2 (-410 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095)) (-5 *4 (-1078)) (-5 *2 (-296 (-528)))
- (-5 *1 (-869)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-520)) (-4 *3 (-162)) (-4 *4 (-353 *3))
- (-4 *5 (-353 *3)) (-5 *1 (-634 *3 *4 *5 *2))
- (-4 *2 (-633 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-256)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-112)) (-4 *4 (-981)) (-5 *1 (-661 *4 *2))
- (-4 *2 (-597 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-112)) (-5 *1 (-780 *2)) (-4 *2 (-981)))))
+ (-12 (-5 *4 (-719)) (-4 *5 (-984)) (-4 *2 (-1155 *5))
+ (-5 *1 (-1174 *5 *2 *6 *3)) (-4 *6 (-609 *2)) (-4 *3 (-1172 *5)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359))
- (|:| |expense| (-359)) (|:| |accuracy| (-359))
- (|:| |intermediateResults| (-359))))
- (-5 *2 (-970)) (-5 *1 (-286)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-48)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4265)) (-4 *1 (-1165 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-1182)) (-5 *1 (-359)))))
-(((*1 *1 *1) (-5 *1 (-207)))
- ((*1 *2 *2) (-12 (-5 *2 (-207)) (-5 *1 (-208))))
- ((*1 *2 *2) (-12 (-5 *2 (-159 (-207))) (-5 *1 (-208))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2))
- (-4 *2 (-410 *3))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2))
- (-4 *2 (-410 *3))))
- ((*1 *1 *1) (-4 *1 (-1059))) ((*1 *1 *1 *1) (-4 *1 (-1059))))
-(((*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-292)) (-5 *1 (-277))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 (-1078))) (-5 *2 (-292)) (-5 *1 (-277))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-292)) (-5 *1 (-277))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 (-1078))) (-5 *3 (-1078)) (-5 *2 (-292))
- (-5 *1 (-277)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-595 (-528))) (-5 *3 (-635 (-528))) (-5 *1 (-1033)))))
+ (-12 (-4 *4 (-984)) (-4 *3 (-1155 *4)) (-4 *2 (-1172 *4))
+ (-5 *1 (-1174 *4 *3 *5 *2)) (-4 *5 (-609 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-288) (-140))) (-4 *6 (-739))
- (-4 *7 (-793)) (-4 *8 (-994 *5 *6 *7)) (-5 *2 (-595 *3))
- (-5 *1 (-550 *5 *6 *7 *8 *3)) (-4 *3 (-1032 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-288) (-140)))
- (-5 *2
- (-595 (-2 (|:| -1697 (-1091 *5)) (|:| -4243 (-595 (-891 *5))))))
- (-5 *1 (-1004 *5 *6)) (-5 *3 (-595 (-891 *5)))
- (-14 *6 (-595 (-1095)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-288) (-140)))
- (-5 *2
- (-595 (-2 (|:| -1697 (-1091 *4)) (|:| -4243 (-595 (-891 *4))))))
- (-5 *1 (-1004 *4 *5)) (-5 *3 (-595 (-891 *4)))
- (-14 *5 (-595 (-1095)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-288) (-140)))
- (-5 *2
- (-595 (-2 (|:| -1697 (-1091 *5)) (|:| -4243 (-595 (-891 *5))))))
- (-5 *1 (-1004 *5 *6)) (-5 *3 (-595 (-891 *5)))
- (-14 *6 (-595 (-1095))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-106))))
- ((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-344 *2 *3)) (-4 *3 (-1023)) (-4 *2 (-1023))))
- ((*1 *2 *1) (-12 (-4 *1 (-369)) (-5 *2 (-1078))))
- ((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-418 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-461))))
- ((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-568 *3)) (-4 *3 (-793))))
- ((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-903))))
- ((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-1001 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-5 *1 (-1095))))
-(((*1 *2 *1) (-12 (-4 *3 (-1131)) (-5 *2 (-595 *1)) (-4 *1 (-946 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-595 (-1084 *3 *4))) (-5 *1 (-1084 *3 *4))
- (-14 *3 (-860)) (-4 *4 (-981)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-913 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-989)) (-4 *3 (-1117))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-813)) (-5 *3 (-595 (-244))) (-5 *1 (-242)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-694)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-595 (-568 *2))) (-5 *4 (-595 (-1095)))
- (-4 *2 (-13 (-410 (-159 *5)) (-938) (-1117)))
- (-4 *5 (-13 (-520) (-793))) (-5 *1 (-557 *5 *6 *2))
- (-4 *6 (-13 (-410 *5) (-938) (-1117))))))
-(((*1 *2) (-12 (-5 *2 (-813)) (-5 *1 (-1180))))
- ((*1 *2 *2) (-12 (-5 *2 (-813)) (-5 *1 (-1180)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-528))) (-5 *2 (-843 (-528))) (-5 *1 (-856))))
- ((*1 *2) (-12 (-5 *2 (-843 (-528))) (-5 *1 (-856)))))
-(((*1 *2 *3) (-12 (-5 *3 (-207)) (-5 *2 (-1078)) (-5 *1 (-176))))
- ((*1 *2 *3) (-12 (-5 *3 (-207)) (-5 *2 (-1078)) (-5 *1 (-281))))
- ((*1 *2 *3) (-12 (-5 *3 (-207)) (-5 *2 (-1078)) (-5 *1 (-286)))))
-(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-981))
- (-5 *1 (-796 *5 *2)) (-4 *2 (-795 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7))
- (-5 *2 (-595 (-2 (|:| |val| *3) (|:| -2316 *4))))
- (-5 *1 (-1031 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))))
+ (-12 (-5 *3 (-594 *5)) (-5 *4 (-594 (-1 *6 (-594 *6))))
+ (-4 *5 (-37 (-388 (-516)))) (-4 *6 (-1172 *5)) (-5 *2 (-594 *6))
+ (-5 *1 (-1173 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-594 *2))) (-5 *4 (-594 *5)) (-4 *5 (-37 (-388 (-516))))
+ (-4 *2 (-1172 *5)) (-5 *1 (-1173 *5 *2)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-568 *3)) (-4 *3 (-13 (-410 *5) (-27) (-1117)))
- (-4 *5 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528))))
- (-5 *2 (-545 *3)) (-5 *1 (-530 *5 *3 *6)) (-4 *6 (-1023)))))
-(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-717)) (-4 *4 (-329)) (-5 *1 (-199 *4 *2))
- (-4 *2 (-1153 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-528)) (-5 *1 (-642 *2)) (-4 *2 (-1153 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-595 *3)) (-4 *3 (-1131)) (-5 *1 (-1067 *3)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-860)) (-5 *4 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1178)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-595 *6)) (-4 *1 (-913 *3 *4 *5 *6)) (-4 *3 (-981))
- (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5))
- (-4 *3 (-520)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
-(((*1 *1 *1) (-5 *1 (-992))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359)))
- (|:| CF (-296 (-159 (-359)))) (|:| |switch| (-1094))))
- (-5 *1 (-1094)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-229 *4 *5)) (-14 *4 (-595 (-1095))) (-4 *5 (-981))
- (-5 *2 (-891 *5)) (-5 *1 (-883 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-739))
- (-4 *5 (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $))))) (-4 *6 (-520))
- (-5 *2 (-2 (|:| -3622 (-891 *6)) (|:| -1472 (-891 *6))))
- (-5 *1 (-679 *4 *5 *6 *3)) (-4 *3 (-888 (-387 (-891 *6)) *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-595 (-164))) (-5 *1 (-1010)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-110) *5 *5)) (-4 *5 (-13 (-1023) (-33)))
- (-5 *2 (-110)) (-5 *1 (-1060 *4 *5)) (-4 *4 (-13 (-1023) (-33))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1173 *4 *2))
+ (-4 *4 (-37 (-388 (-516)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1173 *4 *2))
+ (-4 *4 (-37 (-388 (-516)))))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-635 *3))
- (-4 *3 (-13 (-288) (-10 -8 (-15 -2705 ((-398 $) $)))))
- (-4 *4 (-1153 *3)) (-5 *1 (-475 *3 *4 *5)) (-4 *5 (-389 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-635 *3))
- (-4 *3 (-13 (-288) (-10 -8 (-15 -2705 ((-398 $) $)))))
- (-4 *4 (-1153 *3)) (-5 *1 (-475 *3 *4 *5)) (-4 *5 (-389 *3 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-1076 *3)) (-4 *3 (-1023))
- (-4 *3 (-1131)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-1078)) (-5 *5 (-635 (-207)))
- (-5 *2 (-970)) (-5 *1 (-694)))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-1172 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1095))
- (-5 *2
- (-2 (|:| |zeros| (-1076 (-207))) (|:| |ones| (-1076 (-207)))
- (|:| |singularities| (-1076 (-207)))))
- (-5 *1 (-102)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-961 (-786 (-528))))
- (-5 *3 (-1076 (-2 (|:| |k| (-528)) (|:| |c| *4)))) (-4 *4 (-981))
- (-5 *1 (-553 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1023)) (-4 *4 (-1023))
- (-4 *6 (-1023)) (-5 *2 (-1 *6 *5)) (-5 *1 (-630 *5 *4 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
+ (-12 (-5 *3 (-1 *5 (-594 *5))) (-4 *5 (-1172 *4)) (-4 *4 (-37 (-388 (-516))))
+ (-5 *2 (-1 (-1076 *4) (-594 (-1076 *4)))) (-5 *1 (-1173 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1177 *4)) (-4 *4 (-591 (-528))) (-5 *2 (-110))
- (-5 *1 (-1202 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1061 *2 *3)) (-4 *2 (-13 (-1023) (-33)))
- (-4 *3 (-13 (-1023) (-33))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1078)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-1182))
- (-5 *1 (-1000 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1078)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-1182))
- (-5 *1 (-1031 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1172 *4)) (-4 *4 (-37 (-388 (-516))))
+ (-5 *2 (-1 (-1076 *4) (-1076 *4) (-1076 *4))) (-5 *1 (-1173 *4 *5)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-635 (-387 (-891 (-528)))))
- (-5 *2 (-635 (-296 (-528)))) (-5 *1 (-966)))))
-(((*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-1131)))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1172 *4)) (-4 *4 (-37 (-388 (-516))))
+ (-5 *2 (-1 (-1076 *4) (-1076 *4))) (-5 *1 (-1173 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *2 (-50)) (-5 *1 (-297 *4 *5)) (-4 *5 (-13 (-27) (-1120) (-402 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-297 *4 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-388 (-516)))
+ (-4 *5 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-297 *5 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-275 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *5)))
+ (-4 *5 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-297 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-275 *3)) (-5 *5 (-388 (-516)))
+ (-4 *3 (-13 (-27) (-1120) (-402 *6)))
+ (-4 *6 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-297 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-516))) (-5 *4 (-275 *6))
+ (-4 *6 (-13 (-27) (-1120) (-402 *5)))
+ (-4 *5 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-439 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1098)) (-5 *5 (-275 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *6)))
+ (-4 *6 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-439 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-516))) (-5 *4 (-275 *7)) (-5 *5 (-1146 (-516)))
+ (-4 *7 (-13 (-27) (-1120) (-402 *6)))
+ (-4 *6 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-439 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1098)) (-5 *5 (-275 *3)) (-5 *6 (-1146 (-516)))
+ (-4 *3 (-13 (-27) (-1120) (-402 *7)))
+ (-4 *7 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-439 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-388 (-516)))) (-5 *4 (-275 *8))
+ (-5 *5 (-1146 (-388 (-516)))) (-5 *6 (-388 (-516)))
+ (-4 *8 (-13 (-27) (-1120) (-402 *7)))
+ (-4 *7 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-439 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1098)) (-5 *5 (-275 *3)) (-5 *6 (-1146 (-388 (-516))))
+ (-5 *7 (-388 (-516))) (-4 *3 (-13 (-27) (-1120) (-402 *8)))
+ (-4 *8 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-439 *8 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1076 (-2 (|:| |k| (-516)) (|:| |c| *3)))) (-4 *3 (-984))
+ (-5 *1 (-555 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-556 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1076 (-2 (|:| |k| (-516)) (|:| |c| *3)))) (-4 *3 (-984))
+ (-4 *1 (-1141 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-719)) (-5 *3 (-1076 (-2 (|:| |k| (-388 (-516))) (|:| |c| *4))))
+ (-4 *4 (-984)) (-4 *1 (-1162 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-4 *1 (-1172 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1076 (-2 (|:| |k| (-719)) (|:| |c| *3)))) (-4 *3 (-984))
+ (-4 *1 (-1172 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-594 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-594 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-556 *3)) (-4 *3 (-984))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-594 *3)) (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675))))
+ ((*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-984)) (-5 *2 (-594 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-984)) (-5 *2 (-1076 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-984)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-516))) (-4 *3 (-984)) (-5 *1 (-555 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-516))) (-4 *1 (-1141 *3)) (-4 *3 (-984))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-516))) (-4 *1 (-1172 *3)) (-4 *3 (-984)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *5)) (-4 *4 (-984)) (-4 *5 (-795))
+ (-5 *2 (-887 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *5)) (-4 *4 (-984)) (-4 *5 (-795))
+ (-5 *2 (-887 *4))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-719)) (-4 *1 (-1172 *4)) (-4 *4 (-984)) (-5 *2 (-887 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-719)) (-4 *1 (-1172 *4)) (-4 *4 (-984)) (-5 *2 (-887 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-387 (-528))) (-4 *4 (-972 (-528)))
- (-4 *4 (-13 (-793) (-520))) (-5 *1 (-31 *4 *2)) (-4 *2 (-410 *4))))
+ (-12 (-5 *3 (-388 (-516))) (-4 *4 (-975 (-516))) (-4 *4 (-13 (-795) (-523)))
+ (-5 *1 (-31 *4 *2)) (-4 *2 (-402 *4))))
((*1 *1 *1 *1) (-5 *1 (-130)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-149 *3 *2))
- (-4 *2 (-410 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-207)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-225)) (-5 *2 (-528))))
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-149 *3 *2)) (-4 *2 (-402 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-208)))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-226)) (-5 *2 (-516))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-387 (-528))) (-4 *4 (-343)) (-4 *4 (-37 *3))
- (-4 *5 (-1168 *4)) (-5 *1 (-259 *4 *5 *2)) (-4 *2 (-1139 *4 *5))))
+ (-12 (-5 *3 (-388 (-516))) (-4 *4 (-344)) (-4 *4 (-37 *3)) (-4 *5 (-1172 *4))
+ (-5 *1 (-260 *4 *5 *2)) (-4 *2 (-1143 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-387 (-528))) (-4 *4 (-343)) (-4 *4 (-37 *3))
- (-4 *5 (-1137 *4)) (-5 *1 (-260 *4 *5 *2 *6)) (-4 *2 (-1160 *4 *5))
- (-4 *6 (-920 *5))))
- ((*1 *1 *1 *1) (-4 *1 (-265)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-341 *2)) (-4 *2 (-1023))))
+ (-12 (-5 *3 (-388 (-516))) (-4 *4 (-344)) (-4 *4 (-37 *3)) (-4 *5 (-1141 *4))
+ (-5 *1 (-261 *4 *5 *2 *6)) (-4 *2 (-1164 *4 *5)) (-4 *6 (-923 *5))))
+ ((*1 *1 *1 *1) (-4 *1 (-266)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-516)) (-5 *1 (-342 *2)) (-4 *2 (-1027))))
((*1 *1 *1 *1) (-5 *1 (-359)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-717)) (-5 *1 (-366 *2)) (-4 *2 (-1023))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-5 *1 (-367 *2)) (-4 *2 (-1027))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-717)) (-4 *1 (-410 *3)) (-4 *3 (-793)) (-4 *3 (-1035))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-452)) (-5 *2 (-528))))
+ (-12 (-5 *2 (-719)) (-4 *1 (-402 *3)) (-4 *3 (-795)) (-4 *3 (-1038))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-453)) (-5 *2 (-516))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-717)) (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *1 (-480 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5))))
+ (-12 (-5 *2 (-719)) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-891 *3 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1177 *4)) (-5 *3 (-528)) (-4 *4 (-329))
- (-5 *1 (-498 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-504))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-504))))
+ (-12 (-5 *2 (-1179 *4)) (-5 *3 (-516)) (-4 *4 (-331)) (-5 *1 (-500 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-505))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-505))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-717)) (-4 *4 (-1023))
- (-5 *1 (-628 *4))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-719)) (-4 *4 (-1027)) (-5 *1 (-630 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-528)) (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981))
- (-4 *4 (-353 *3)) (-4 *5 (-353 *3)) (-4 *3 (-343))))
+ (-12 (-5 *2 (-516)) (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3)) (-4 *3 (-344))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-717)) (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981))
- (-4 *4 (-353 *3)) (-4 *5 (-353 *3))))
+ (-12 (-5 *2 (-719)) (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-635 *4)) (-5 *3 (-717)) (-4 *4 (-981))
- (-5 *1 (-636 *4))))
+ (-12 (-5 *2 (-637 *4)) (-5 *3 (-719)) (-4 *4 (-984)) (-5 *1 (-638 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-528)) (-4 *3 (-981)) (-5 *1 (-661 *3 *4))
- (-4 *4 (-597 *3))))
+ (-12 (-5 *2 (-516)) (-4 *3 (-984)) (-5 *1 (-663 *3 *4)) (-4 *4 (-599 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *3 (-528)) (-4 *4 (-981))
- (-5 *1 (-661 *4 *5)) (-4 *5 (-597 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-667)) (-5 *2 (-860))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-717))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-673)) (-5 *2 (-717))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-717)) (-5 *1 (-765 *2)) (-4 *2 (-793))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-780 *3)) (-4 *3 (-981))))
+ (-12 (-5 *2 (-111)) (-5 *3 (-516)) (-4 *4 (-984)) (-5 *1 (-663 *4 *5))
+ (-4 *5 (-599 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-860))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-719))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-675)) (-5 *2 (-719))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-5 *1 (-767 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-782 *3)) (-4 *3 (-984))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *3 (-528)) (-5 *1 (-780 *4)) (-4 *4 (-981))))
- ((*1 *1 *1 *1) (-5 *1 (-802)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1023))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-831 *3)) (-4 *3 (-1023))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-938)) (-5 *2 (-387 (-528)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1035)) (-5 *2 (-860))))
+ (-12 (-5 *2 (-111)) (-5 *3 (-516)) (-5 *1 (-782 *4)) (-4 *4 (-984))))
+ ((*1 *1 *1 *1) (-5 *1 (-805)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-831 *3)) (-4 *3 (-1027))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-941)) (-5 *2 (-388 (-516)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1038)) (-5 *2 (-860))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-528)) (-4 *1 (-1045 *3 *4 *5 *6)) (-4 *4 (-981))
- (-4 *5 (-220 *3 *4)) (-4 *6 (-220 *3 *4)) (-4 *4 (-343))))
+ (-12 (-5 *2 (-516)) (-4 *1 (-1048 *3 *4 *5 *6)) (-4 *4 (-984))
+ (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *3 *4)) (-4 *4 (-344))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-981)) (-4 *2 (-343)))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-110) *5 *5)) (-5 *4 (-1 (-110) *6 *6))
- (-4 *5 (-13 (-1023) (-33))) (-4 *6 (-13 (-1023) (-33)))
- (-5 *2 (-110)) (-5 *1 (-1060 *5 *6)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-701)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)) (-4 *2 (-520))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)) (-4 *2 (-520)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-288)) (-5 *2 (-398 *3))
- (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-888 *6 *4 *5)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-598 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-23))
- (-14 *4 *3)))
- ((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-598 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-23))
- (-14 *4 *3)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-981)) (-4 *2 (-1023)))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-698)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-528)) (|has| *1 (-6 -4265)) (-4 *1 (-353 *3))
- (-4 *3 (-1131)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1078))
- (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-110)) (-5 *1 (-206 *4 *5)) (-4 *5 (-13 (-1117) (-29 *4))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-520)) (-4 *5 (-739))
- (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-110)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-343)) (-5 *2 (-2 (|:| -3490 *3) (|:| -2537 *3)))
- (-5 *1 (-713 *3 *4)) (-4 *3 (-655 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-343)) (-4 *3 (-981))
- (-5 *2 (-2 (|:| -3490 *1) (|:| -2537 *1))) (-4 *1 (-795 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-96 *5)) (-4 *5 (-343)) (-4 *5 (-981))
- (-5 *2 (-2 (|:| -3490 *3) (|:| -2537 *3))) (-5 *1 (-796 *5 *3))
- (-4 *3 (-795 *5)))))
-(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4266 "*"))) (-4 *5 (-353 *2)) (-4 *6 (-353 *2))
- (-4 *2 (-981)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1153 *2))
- (-4 *4 (-633 *2 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-717))
- (-5 *1 (-428 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-359)) (-5 *2 (-207)) (-5 *1 (-1180))))
- ((*1 *2) (-12 (-5 *2 (-207)) (-5 *1 (-1180)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-981)) (-5 *1 (-423 *3 *2)) (-4 *2 (-1153 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-1135)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-387 *5)))
- (-5 *2 (-110)) (-5 *1 (-321 *3 *4 *5 *6)) (-4 *3 (-322 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-387 *4))) (-5 *2 (-110)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-882 *4)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860))
- (-4 *4 (-981)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-595 *1)) (-4 *3 (-981)) (-4 *1 (-633 *3 *4 *5))
- (-4 *4 (-353 *3)) (-4 *5 (-353 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 *3)) (-4 *3 (-981)) (-4 *1 (-633 *3 *4 *5))
- (-4 *4 (-353 *3)) (-4 *5 (-353 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-981)) (-5 *1 (-635 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 *4)) (-4 *4 (-981)) (-4 *1 (-1045 *3 *4 *5 *6))
- (-4 *5 (-220 *3 *4)) (-4 *6 (-220 *3 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -2163 (-635 (-387 (-891 *4))))
- (|:| |vec| (-595 (-387 (-891 *4)))) (|:| -3090 (-717))
- (|:| |rows| (-595 (-528))) (|:| |cols| (-595 (-528)))))
- (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095))))
- (-4 *6 (-739))
- (-5 *2
- (-2 (|:| |partsol| (-1177 (-387 (-891 *4))))
- (|:| -1400 (-595 (-1177 (-387 (-891 *4)))))))
- (-5 *1 (-863 *4 *5 *6 *7)) (-4 *7 (-888 *4 *6 *5)))))
-(((*1 *1 *1) (|partial| -4 *1 (-138))) ((*1 *1 *1) (-4 *1 (-329)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-138)) (-4 *1 (-848)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-4 *3 (-13 (-793) (-520))) (-5 *1 (-31 *3 *4))
- (-4 *4 (-410 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-717)) (-5 *1 (-112))))
- ((*1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-112))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-4 *3 (-13 (-793) (-520))) (-5 *1 (-149 *3 *4))
- (-4 *4 (-410 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-112)) (-5 *1 (-153))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *4))
- (-4 *4 (-13 (-410 *3) (-938)))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-282 *3)) (-4 *3 (-283))))
- ((*1 *2 *2) (-12 (-4 *1 (-283)) (-5 *2 (-112))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-4 *4 (-793)) (-5 *1 (-409 *3 *4))
- (-4 *3 (-410 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *4))
- (-4 *4 (-410 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-793))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-4 *3 (-13 (-793) (-520))) (-5 *1 (-582 *3 *4))
- (-4 *4 (-13 (-410 *3) (-938) (-1117))))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-595 (-595 (-207)))) (-5 *4 (-207))
- (-5 *2 (-595 (-882 *4))) (-5 *1 (-1128)) (-5 *3 (-882 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860))
- (-4 *4 (-981)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520))
- (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-914 *3 *4 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-595 *3))
- (-5 *1 (-914 *4 *5 *6 *3)) (-4 *3 (-994 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-595 *3)) (-4 *3 (-994 *4 *5 *6)) (-4 *4 (-520))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *1 (-914 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520))
- (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-914 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-595 *7) (-595 *7))) (-5 *2 (-595 *7))
- (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793))
- (-5 *1 (-914 *4 *5 *6 *7)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110)))))
-(((*1 *2)
- (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1153 (-387 *2)))
- (-4 *2 (-1153 *4)) (-5 *1 (-321 *3 *4 *2 *5))
- (-4 *3 (-322 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-322 *3 *2 *4)) (-4 *3 (-1135))
- (-4 *4 (-1153 (-387 *2))) (-4 *2 (-1153 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-717)) (-5 *1 (-155 *3 *4))
- (-4 *3 (-156 *4))))
- ((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1131)) (-5 *2 (-717))
- (-5 *1 (-219 *3 *4 *5)) (-4 *3 (-220 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-793)) (-5 *2 (-717)) (-5 *1 (-409 *3 *4))
- (-4 *3 (-410 *4))))
- ((*1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-512 *3)) (-4 *3 (-513))))
- ((*1 *2) (-12 (-4 *1 (-710)) (-5 *2 (-717))))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-717)) (-5 *1 (-742 *3 *4))
- (-4 *3 (-743 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-520)) (-5 *2 (-717)) (-5 *1 (-928 *3 *4))
- (-4 *3 (-929 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-717)) (-5 *1 (-932 *3 *4))
- (-4 *3 (-933 *4))))
- ((*1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-947 *3)) (-4 *3 (-948))))
- ((*1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-717))))
- ((*1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-988 *3)) (-4 *3 (-989)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1095)) (-5 *2 (-504)) (-5 *1 (-503 *4))
- (-4 *4 (-1131)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-163 *3)) (-4 *3 (-288))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-4 *1 (-622 *3)) (-4 *3 (-1131))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-717)) (-4 *1 (-687 *3 *4)) (-4 *3 (-981))
- (-4 *4 (-793))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-808 *3)) (-5 *2 (-528))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-595 *3)) (-4 *1 (-917 *3)) (-4 *3 (-981))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-595 *1)) (-5 *3 (-595 *7)) (-4 *1 (-999 *4 *5 *6 *7))
- (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-431))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-595 *1))
- (-4 *1 (-999 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-595 *1)) (-4 *1 (-999 *4 *5 *6 *3)) (-4 *4 (-431))
- (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-595 *1))
- (-4 *1 (-999 *4 *5 *6 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-520)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *2 (-994 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-981)) (-4 *2 (-738)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1078)) (-5 *3 (-769)) (-5 *1 (-768)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-698)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-981)) (-4 *4 (-1023)) (-5 *2 (-595 *1))
- (-4 *1 (-362 *3 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-595 (-682 *3 *4))) (-5 *1 (-682 *3 *4)) (-4 *3 (-981))
- (-4 *4 (-673))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-595 *1))
- (-4 *1 (-888 *3 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1091 *6)) (-5 *3 (-528)) (-4 *6 (-288)) (-4 *4 (-739))
- (-4 *5 (-793)) (-5 *1 (-689 *4 *5 *6 *7)) (-4 *7 (-888 *6 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-622 *3)) (-4 *3 (-1131)) (-5 *2 (-110)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-431)) (-4 *3 (-793)) (-4 *4 (-739))
- (-5 *1 (-924 *2 *3 *4 *5)) (-4 *5 (-888 *2 *4 *3)))))
-(((*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1091 *1)) (-5 *4 (-1095)) (-4 *1 (-27))
- (-5 *2 (-595 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1091 *1)) (-4 *1 (-27)) (-5 *2 (-595 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-891 *1)) (-4 *1 (-27)) (-5 *2 (-595 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-793) (-520))) (-5 *2 (-595 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *2 (-595 *1)) (-4 *1 (-29 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-296 (-207))) (-5 *4 (-595 (-1095)))
- (-5 *5 (-1018 (-786 (-207)))) (-5 *2 (-1076 (-207))) (-5 *1 (-281)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-207)) (-5 *5 (-528)) (-5 *2 (-1127 *3))
- (-5 *1 (-736 *3)) (-4 *3 (-911))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-595 (-882 (-207))))) (-5 *4 (-110))
- (-5 *1 (-1127 *2)) (-4 *2 (-911)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *2 *1) (-12 (-5 *2 (-595 (-1100))) (-5 *1 (-171)))))
-(((*1 *1 *1) (-4 *1 (-581)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-582 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938) (-1117))))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-528) "failed") *5)) (-4 *5 (-981))
- (-5 *2 (-528)) (-5 *1 (-511 *5 *3)) (-4 *3 (-1153 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-528) "failed") *4)) (-4 *4 (-981))
- (-5 *2 (-528)) (-5 *1 (-511 *4 *3)) (-4 *3 (-1153 *4))))
+ (-12 (-5 *4 (-1019 (-787 *3))) (-4 *3 (-13 (-1120) (-901) (-29 *5)))
+ (-4 *5 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516))))
+ (-5 *2
+ (-3 (|:| |f1| (-787 *3)) (|:| |f2| (-594 (-787 *3)))
+ (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")))
+ (-5 *1 (-202 *5 *3))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-528) "failed") *4)) (-4 *4 (-981))
- (-5 *2 (-528)) (-5 *1 (-511 *4 *3)) (-4 *3 (-1153 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-981)) (-4 *4 (-1153 *3)) (-5 *1 (-154 *3 *4 *2))
- (-4 *2 (-1153 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-1182)) (-5 *1 (-1098)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 *4)) (-4 *4 (-343)) (-5 *2 (-635 *4))
- (-5 *1 (-760 *4 *5)) (-4 *5 (-605 *4))))
+ (-12 (-5 *4 (-1019 (-787 *3))) (-5 *5 (-1081))
+ (-4 *3 (-13 (-1120) (-901) (-29 *6)))
+ (-4 *6 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516))))
+ (-5 *2
+ (-3 (|:| |f1| (-787 *3)) (|:| |f2| (-594 (-787 *3))) (|:| |fail| #1#)
+ (|:| |pole| #2#)))
+ (-5 *1 (-202 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *5)) (-5 *4 (-717)) (-4 *5 (-343))
- (-5 *2 (-635 *5)) (-5 *1 (-760 *5 *6)) (-4 *6 (-605 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981))
- (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-981))
- (-4 *4 (-789)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-209 *2)) (-4 *2 (-13 (-343) (-1117)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-665 *2)) (-4 *2 (-343))))
- ((*1 *1 *2) (-12 (-5 *1 (-665 *2)) (-4 *2 (-343))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-860)) (-5 *4 (-359)) (-5 *2 (-1182)) (-5 *1 (-1178)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-568 *3)) (-5 *5 (-1 (-1091 *3) (-1091 *3)))
- (-4 *3 (-13 (-27) (-410 *6))) (-4 *6 (-13 (-793) (-520)))
- (-5 *2 (-545 *3)) (-5 *1 (-515 *6 *3)))))
-(((*1 *2 *3 *1)
- (-12
+ (-12 (-5 *3 (-388 (-887 *5))) (-5 *4 (-1019 (-787 (-295 *5))))
+ (-4 *5 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516))))
(-5 *2
- (-2 (|:| |cycle?| (-110)) (|:| -1953 (-717)) (|:| |period| (-717))))
- (-5 *1 (-1076 *4)) (-4 *4 (-1131)) (-5 *3 (-717)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1131))
- (-4 *5 (-1131)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-222 *6 *7)) (-14 *6 (-717))
- (-4 *7 (-1131)) (-4 *5 (-1131)) (-5 *2 (-222 *6 *5))
- (-5 *1 (-221 *6 *7 *5))))
+ (-3 (|:| |f1| (-787 (-295 *5))) (|:| |f2| (-594 (-787 (-295 *5))))
+ (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole")))
+ (-5 *1 (-203 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1131)) (-4 *5 (-1131))
- (-4 *2 (-353 *5)) (-5 *1 (-351 *6 *4 *5 *2)) (-4 *4 (-353 *6))))
+ (-12 (-5 *3 (-388 (-887 *6))) (-5 *4 (-1019 (-787 (-295 *6))))
+ (-5 *5 (-1081))
+ (-4 *6 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516))))
+ (-5 *2
+ (-3 (|:| |f1| (-787 (-295 *6))) (|:| |f2| (-594 (-787 (-295 *6))))
+ (|:| |fail| #3#) (|:| |pole| #4#)))
+ (-5 *1 (-203 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1019 (-787 (-388 (-887 *5))))) (-5 *3 (-388 (-887 *5)))
+ (-4 *5 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516))))
+ (-5 *2
+ (-3 (|:| |f1| (-787 (-295 *5))) (|:| |f2| (-594 (-787 (-295 *5))))
+ (|:| |fail| #3#) (|:| |pole| #4#)))
+ (-5 *1 (-203 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1023)) (-4 *5 (-1023))
- (-4 *2 (-405 *5)) (-5 *1 (-403 *6 *4 *5 *2)) (-4 *4 (-405 *6))))
+ (-12 (-5 *4 (-1019 (-787 (-388 (-887 *6))))) (-5 *5 (-1081))
+ (-5 *3 (-388 (-887 *6)))
+ (-4 *6 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516))))
+ (-5 *2
+ (-3 (|:| |f1| (-787 (-295 *6))) (|:| |f2| (-594 (-787 (-295 *6))))
+ (|:| |fail| #3#) (|:| |pole| #4#)))
+ (-5 *1 (-203 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1098))
+ (-4 *5 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516))))
+ (-5 *2 (-3 *3 (-594 *3))) (-5 *1 (-411 *5 *3))
+ (-4 *3 (-13 (-1120) (-901) (-29 *5)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-454 *3 *4 *5))
+ (-4 *3 (-37 (-388 (-516)))) (-4 *3 (-984)) (-14 *5 *3)))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-295 (-359))) (-5 *4 (-1017 (-787 (-359)))) (-5 *5 (-359))
+ (-5 *6 (-995)) (-5 *2 (-973)) (-5 *1 (-531))))
+ ((*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-973)) (-5 *1 (-531))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-295 (-359))) (-5 *4 (-1017 (-787 (-359)))) (-5 *5 (-359))
+ (-5 *2 (-973)) (-5 *1 (-531))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-595 *6)) (-4 *6 (-1131))
- (-4 *5 (-1131)) (-5 *2 (-595 *5)) (-5 *1 (-593 *6 *5))))
+ (-12 (-5 *3 (-295 (-359))) (-5 *4 (-1017 (-787 (-359)))) (-5 *5 (-359))
+ (-5 *2 (-973)) (-5 *1 (-531))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-295 (-359))) (-5 *4 (-1017 (-787 (-359)))) (-5 *2 (-973))
+ (-5 *1 (-531))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-295 (-359))) (-5 *4 (-594 (-1017 (-787 (-359)))))
+ (-5 *2 (-973)) (-5 *1 (-531))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-896 *6)) (-4 *6 (-1131))
- (-4 *5 (-1131)) (-5 *2 (-896 *5)) (-5 *1 (-895 *6 *5))))
+ (-12 (-5 *3 (-295 (-359))) (-5 *4 (-594 (-1017 (-787 (-359)))))
+ (-5 *5 (-359)) (-5 *2 (-973)) (-5 *1 (-531))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-295 (-359))) (-5 *4 (-594 (-1017 (-787 (-359)))))
+ (-5 *5 (-359)) (-5 *2 (-973)) (-5 *1 (-531))))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-295 (-359))) (-5 *4 (-594 (-1017 (-787 (-359)))))
+ (-5 *5 (-359)) (-5 *6 (-995)) (-5 *2 (-973)) (-5 *1 (-531))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1076 *6)) (-4 *6 (-1131))
- (-4 *3 (-1131)) (-5 *2 (-1076 *3)) (-5 *1 (-1074 *6 *3))))
+ (|partial| -12 (-5 *3 (-295 (-359))) (-5 *4 (-1019 (-787 (-359))))
+ (-5 *5 (-1081)) (-5 *2 (-973)) (-5 *1 (-531))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1177 *6)) (-4 *6 (-1131))
- (-4 *5 (-1131)) (-5 *2 (-1177 *5)) (-5 *1 (-1176 *6 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1179)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-981)) (-5 *1 (-423 *3 *2)) (-4 *2 (-1153 *3)))))
-(((*1 *1 *1) (-4 *1 (-513))))
-(((*1 *2)
- (-12 (-5 *2 (-387 (-891 *3))) (-5 *1 (-432 *3 *4 *5 *6))
- (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-405 *3)) (-4 *3 (-1023)) (-5 *2 (-717)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-343)) (-4 *3 (-981))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1261 *1)))
- (-4 *1 (-795 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-518 *3)) (-4 *3 (-13 (-384) (-1117))) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-4 *1 (-791)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-996 *4 *3)) (-4 *4 (-13 (-791) (-343)))
- (-4 *3 (-1153 *4)) (-5 *2 (-110)))))
-(((*1 *1 *1 *1) (-4 *1 (-136)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-149 *3 *2))
- (-4 *2 (-410 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-513))))
- ((*1 *1 *1 *1) (-5 *1 (-802)))
+ (|partial| -12 (-5 *3 (-295 (-359))) (-5 *4 (-1019 (-787 (-359))))
+ (-5 *5 (-1098)) (-5 *2 (-973)) (-5 *1 (-531))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-140) (-975 (-516)))) (-4 *5 (-1155 *4))
+ (-5 *2 (-545 (-388 *5))) (-5 *1 (-534 *4 *5)) (-5 *3 (-388 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-528))) (-5 *1 (-979))
- (-5 *3 (-528)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-159 (-207)))) (-5 *2 (-970))
- (-5 *1 (-701)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-520))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-635 *4)) (-5 *3 (-717)) (-4 *4 (-981))
- (-5 *1 (-636 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-520) (-793)))
- (-4 *2 (-13 (-410 *4) (-938) (-1117))) (-5 *1 (-557 *4 *2 *3))
- (-4 *3 (-13 (-410 (-159 *4)) (-938) (-1117))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-163 *3)) (-4 *3 (-288)))))
-(((*1 *1 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1131)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-398 *2)) (-4 *2 (-520)))))
-(((*1 *2 *3) (-12 (-5 *2 (-528)) (-5 *1 (-533 *3)) (-4 *3 (-972 *2))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1026 *3 *4 *2 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-1023))
- (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *2 (-1023)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-595 (-635 *6))) (-5 *4 (-110)) (-5 *5 (-528))
- (-5 *2 (-635 *6)) (-5 *1 (-964 *6)) (-4 *6 (-343)) (-4 *6 (-981))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-595 (-635 *4))) (-5 *2 (-635 *4)) (-5 *1 (-964 *4))
- (-4 *4 (-343)) (-4 *4 (-981))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-595 (-635 *5))) (-5 *4 (-528)) (-5 *2 (-635 *5))
- (-5 *1 (-964 *5)) (-4 *5 (-343)) (-4 *5 (-981)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-159 (-207))) (-5 *5 (-528)) (-5 *6 (-1078))
- (-5 *3 (-207)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-207)) (|:| |xend| (-207))
- (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207)))
- (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207)))
- (|:| |abserr| (-207)) (|:| |relerr| (-207))))
- (-5 *2 (-359)) (-5 *1 (-189)))))
+ (-12 (-5 *3 (-388 (-887 *5))) (-5 *4 (-1098)) (-4 *5 (-140))
+ (-4 *5 (-13 (-432) (-975 (-516)) (-795) (-593 (-516))))
+ (-5 *2 (-3 (-295 *5) (-594 (-295 *5)))) (-5 *1 (-550 *5))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-689 *3 *2)) (-4 *3 (-984)) (-4 *2 (-795))
+ (-4 *3 (-37 (-388 (-516))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1098)) (-5 *1 (-887 *3)) (-4 *3 (-37 (-388 (-516))))
+ (-4 *3 (-984))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *3 (-984)) (-4 *2 (-795))
+ (-5 *1 (-1051 *3 *2 *4)) (-4 *4 (-891 *3 (-502 *2) *2))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-4 *3 (-984))
+ (-5 *1 (-1083 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1089 *3 *4 *5))
+ (-4 *3 (-37 (-388 (-516)))) (-4 *3 (-984)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1095 *3 *4 *5))
+ (-4 *3 (-37 (-388 (-516)))) (-4 *3 (-984)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1096 *3 *4 *5))
+ (-4 *3 (-37 (-388 (-516)))) (-4 *3 (-984)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1098)) (-5 *1 (-1127 *3)) (-4 *3 (-37 (-388 (-516))))
+ (-4 *3 (-984))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1139 *3 *4 *5))
+ (-4 *3 (-37 (-388 (-516)))) (-4 *3 (-984)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-3810
+ (-12 (-5 *2 (-1098)) (-4 *1 (-1141 *3)) (-4 *3 (-984))
+ (-12 (-4 *3 (-29 (-516))) (-4 *3 (-901)) (-4 *3 (-1120))
+ (-4 *3 (-37 (-388 (-516))))))
+ (-12 (-5 *2 (-1098)) (-4 *1 (-1141 *3)) (-4 *3 (-984))
+ (-12 (|has| *3 (-15 -3347 ((-594 *2) *3)))
+ (|has| *3 (-15 -4091 (*3 *3 *2))) (-4 *3 (-37 (-388 (-516))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1141 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-516))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1155 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-516))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1160 *3 *4 *5))
+ (-4 *3 (-37 (-388 (-516)))) (-4 *3 (-984)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-3810
+ (-12 (-5 *2 (-1098)) (-4 *1 (-1162 *3)) (-4 *3 (-984))
+ (-12 (-4 *3 (-29 (-516))) (-4 *3 (-901)) (-4 *3 (-1120))
+ (-4 *3 (-37 (-388 (-516))))))
+ (-12 (-5 *2 (-1098)) (-4 *1 (-1162 *3)) (-4 *3 (-984))
+ (-12 (|has| *3 (-15 -3347 ((-594 *2) *3)))
+ (|has| *3 (-15 -4091 (*3 *3 *2))) (-4 *3 (-37 (-388 (-516))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1162 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-516))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1169 *3 *4 *5))
+ (-4 *3 (-37 (-388 (-516)))) (-4 *3 (-984)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-3810
+ (-12 (-5 *2 (-1098)) (-4 *1 (-1172 *3)) (-4 *3 (-984))
+ (-12 (-4 *3 (-29 (-516))) (-4 *3 (-901)) (-4 *3 (-1120))
+ (-4 *3 (-37 (-388 (-516))))))
+ (-12 (-5 *2 (-1098)) (-4 *1 (-1172 *3)) (-4 *3 (-984))
+ (-12 (|has| *3 (-15 -3347 ((-594 *2) *3)))
+ (|has| *3 (-15 -4091 (*3 *3 *2))) (-4 *3 (-37 (-388 (-516))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1172 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-516)))))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-322 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1153 *4))
- (-4 *5 (-1153 (-387 *3))) (-5 *2 (-110))))
+ (-12 (-5 *3 (-719)) (-5 *2 (-1148 *5 *4)) (-5 *1 (-1096 *4 *5 *6))
+ (-4 *4 (-984)) (-14 *5 (-1098)) (-14 *6 *4)))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-387 *4))) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-387 *4))) (-5 *2 (-110)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-207)) (|:| |xend| (-207))
- (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207)))
- (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207)))
- (|:| |abserr| (-207)) (|:| |relerr| (-207))))
- (-5 *2 (-359)) (-5 *1 (-189)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-717)) (-4 *1 (-1153 *4)) (-4 *4 (-981))
- (-5 *2 (-1177 *4)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-595 (-261))) (-5 *1 (-261))))
- ((*1 *2 *1) (-12 (-5 *2 (-595 (-1100))) (-5 *1 (-1100)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-667)) (-5 *2 (-860))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-717)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1018 (-786 (-359)))) (-5 *2 (-1018 (-786 (-207))))
- (-5 *1 (-286)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1069 *3)) (-4 *3 (-1131)) (-5 *2 (-110)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-981)) (-5 *1 (-636 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-234 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-793))
- (-4 *5 (-247 *4)) (-4 *6 (-739)) (-5 *2 (-717))))
+ (-12 (-5 *3 (-719)) (-5 *2 (-1148 *5 *4)) (-5 *1 (-1169 *4 *5 *6))
+ (-4 *4 (-984)) (-14 *5 (-1098)) (-14 *6 *4))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-719)) (-4 *1 (-214 *4)) (-4 *4 (-984))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-214 *3)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-719))))
+ ((*1 *1 *1) (-4 *1 (-216)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-248 *3)) (-4 *3 (-795))))
+ ((*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138))
+ (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-719)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4))
+ (-4 *4 (-1155 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-344) (-140))) (-5 *1 (-380 *2 *3)) (-4 *3 (-1155 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-454 *3 *4 *5))
+ (-4 *3 (-984)) (-14 *5 *3)))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-234 *4 *3 *5 *6)) (-4 *4 (-981)) (-4 *3 (-793))
- (-4 *5 (-247 *3)) (-4 *6 (-739)) (-5 *2 (-717))))
- ((*1 *2 *1) (-12 (-4 *1 (-247 *3)) (-4 *3 (-793)) (-5 *2 (-717))))
- ((*1 *2 *1) (-12 (-4 *1 (-329)) (-5 *2 (-860))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-316 *4 *5 *6 *7)) (-4 *4 (-13 (-348) (-343)))
- (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-387 *5))) (-4 *7 (-322 *4 *5 *6))
- (-5 *2 (-717)) (-5 *1 (-372 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-779 (-860)))))
- ((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-528))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-554 *3)) (-4 *3 (-981))))
- ((*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-554 *3)) (-4 *3 (-981))))
+ (-12 (-4 *2 (-344)) (-4 *2 (-841 *3)) (-5 *1 (-545 *2)) (-5 *3 (-1098))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-545 *2)) (-4 *2 (-344))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-805))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-594 *4)) (-5 *3 (-594 (-719))) (-4 *1 (-841 *4))
+ (-4 *4 (-1027))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-841 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *1 (-841 *3)) (-4 *3 (-1027))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-841 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1089 *3 *4 *5))
+ (-4 *3 (-984)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1095 *3 *4 *5))
+ (-4 *3 (-984)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1096 *3 *4 *5))
+ (-4 *3 (-984)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1139 *3 *4 *5))
+ (-4 *3 (-984)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1160 *3 *4 *5))
+ (-4 *3 (-984)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1098)) (-5 *1 (-1169 *3 *4 *5))
+ (-4 *3 (-984)) (-14 *5 *3))))
+(((*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1098)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1098)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1098)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1098)) (-14 *4 *2))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1076 *4)) (-5 *3 (-516)) (-4 *4 (-984)) (-5 *1 (-1083 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-516)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-1098))
+ (-14 *5 *3))))
+(((*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1098)) (-14 *4 *2))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1076 *4)) (-5 *3 (-516)) (-4 *4 (-984)) (-5 *1 (-1083 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-516)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-1098))
+ (-14 *5 *3))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1076 *4)) (-5 *3 (-516)) (-4 *4 (-984)) (-5 *1 (-1083 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-516)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-1098))
+ (-14 *5 *3))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-973)) (-5 *1 (-285))))
+ ((*1 *2 *3) (-12 (-5 *3 (-594 (-973))) (-5 *2 (-973)) (-5 *1 (-285))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 *1)) (-4 *1 (-602 *3)) (-4 *3 (-1134))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *1 *1) (-5 *1 (-995)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1076 (-1076 *4))) (-5 *2 (-1076 *4)) (-5 *1 (-1077 *4))
+ (-4 *4 (-1134))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1027)) (-4 *3 (-795)) (-4 *2 (-1134))))
+ ((*1 *2 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795))))
+ ((*1 *2 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1134)) (-5 *1 (-814 *2 *3)) (-4 *3 (-1134))))
+ ((*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-834 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *2 (-997 *3 *4 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1168 *3)) (-4 *3 (-1134))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-516)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1134)) (-4 *4 (-353 *2))
+ (-4 *5 (-353 *2))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-516)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-353 *2))
+ (-4 *5 (-353 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-117 *3)) (-4 *3 (-1134))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-117 *3)) (-4 *3 (-1134))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-594 (-516))) (-4 *2 (-162)) (-5 *1 (-131 *4 *5 *2))
+ (-14 *4 (-516)) (-14 *5 (-719))))
+ ((*1 *2 *1 *3 *3 *3 *3)
+ (-12 (-5 *3 (-516)) (-4 *2 (-162)) (-5 *1 (-131 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-719))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-516)) (-4 *2 (-162)) (-5 *1 (-131 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-719))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-516)) (-4 *2 (-162)) (-5 *1 (-131 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-719))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-516)) (-4 *2 (-162)) (-5 *1 (-131 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-719))))
((*1 *2 *1)
- (-12 (-4 *3 (-520)) (-5 *2 (-528)) (-5 *1 (-576 *3 *4))
- (-4 *4 (-1153 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-717)) (-4 *1 (-687 *4 *3)) (-4 *4 (-981))
- (-4 *3 (-793))))
+ (-12 (-4 *2 (-162)) (-5 *1 (-131 *3 *4 *2)) (-14 *3 (-516)) (-14 *4 (-719))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-687 *4 *3)) (-4 *4 (-981)) (-4 *3 (-793))
- (-5 *2 (-717))))
- ((*1 *2 *1) (-12 (-4 *1 (-808 *3)) (-5 *2 (-717))))
- ((*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-843 *3)) (-4 *3 (-1023))))
- ((*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-844 *3)) (-4 *3 (-1023))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-316 *5 *6 *7 *8)) (-4 *5 (-410 *4))
- (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-387 *6)))
- (-4 *8 (-322 *5 *6 *7)) (-4 *4 (-13 (-793) (-520) (-972 (-528))))
- (-5 *2 (-717)) (-5 *1 (-850 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-316 (-387 (-528)) *4 *5 *6))
- (-4 *4 (-1153 (-387 (-528)))) (-4 *5 (-1153 (-387 *4)))
- (-4 *6 (-322 (-387 (-528)) *4 *5)) (-5 *2 (-717))
- (-5 *1 (-851 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-316 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-343))
- (-4 *7 (-1153 *6)) (-4 *4 (-1153 (-387 *7))) (-4 *8 (-322 *6 *7 *4))
- (-4 *9 (-13 (-348) (-343))) (-5 *2 (-717))
- (-5 *1 (-954 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1153 *3)) (-4 *3 (-981)) (-4 *3 (-520)) (-5 *2 (-717))))
+ (-12 (-5 *3 (-719)) (-4 *2 (-1027)) (-5 *1 (-197 *4 *2)) (-14 *4 (-860))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1098)) (-5 *2 (-228 (-1081))) (-5 *1 (-198 *4))
+ (-4 *4
+ (-13 (-795)
+ (-10 -8 (-15 -4078 ((-1081) $ *3)) (-15 -3899 ((-1185) $))
+ (-15 -2037 ((-1185) $)))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-929)) (-5 *1 (-198 *3))
+ (-4 *3
+ (-13 (-795)
+ (-10 -8 (-15 -4078 ((-1081) $ (-1098))) (-15 -3899 ((-1185) $))
+ (-15 -2037 ((-1185) $)))))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "count") (-5 *2 (-719)) (-5 *1 (-228 *4)) (-4 *4 (-795))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-228 *3)) (-4 *3 (-795))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-228 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-268 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1134))))
+ ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1134))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-981)) (-4 *2 (-738))))
- ((*1 *2 *1) (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-981)) (-4 *2 (-738)))))
-(((*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-94)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-595 (-595 *3))) (-4 *3 (-1023)) (-5 *1 (-844 *3)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1095)) (-5 *2 (-595 (-903))) (-5 *1 (-272)))))
-(((*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-446))))
- ((*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-446))))
- ((*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-866)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-860))
- (-5 *2 (-1177 (-595 (-2 (|:| -3327 *4) (|:| -3108 (-1042))))))
- (-5 *1 (-326 *4)) (-4 *4 (-329)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-110))
- (-5 *2
- (-2 (|:| |contp| (-528))
- (|:| -2783 (-595 (-2 (|:| |irr| *3) (|:| -2842 (-528)))))))
- (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-110))
- (-5 *2
- (-2 (|:| |contp| (-528))
- (|:| -2783 (-595 (-2 (|:| |irr| *3) (|:| -2842 (-528)))))))
- (-5 *1 (-1142 *3)) (-4 *3 (-1153 (-528))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1026 *3 *2 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-1023))
- (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *2 (-1023)))))
-(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-813)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1078)) (-5 *5 (-635 (-207))) (-5 *6 (-635 (-528)))
- (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-704)))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-207)) (-5 *4 (-528))
- (-5 *5 (-3 (|:| |fn| (-368)) (|:| |fp| (-62 G)))) (-5 *2 (-970))
- (-5 *1 (-695)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-112)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-528) (-528))) (-5 *1 (-341 *3)) (-4 *3 (-1023))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-717) (-717))) (-5 *1 (-366 *3)) (-4 *3 (-1023))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
- (-5 *1 (-598 *3 *4 *5)) (-4 *3 (-1023)))))
-(((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-522 *3)) (-4 *3 (-513)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-220 *3 *2)) (-4 *2 (-1131)) (-4 *2 (-981))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-802))))
- ((*1 *1 *1) (-5 *1 (-802)))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-882 (-207))) (-5 *2 (-207)) (-5 *1 (-1128))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1175 *2)) (-4 *2 (-1131)) (-4 *2 (-981)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-595 *3)) (-4 *3 (-288)) (-5 *1 (-168 *3)))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1095))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-595 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-595 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -1497 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1117) (-27) (-410 *8)))
- (-4 *8 (-13 (-431) (-793) (-140) (-972 *3) (-591 *3)))
- (-5 *3 (-528))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -3572 *4) (|:| |sol?| (-110))))
- (-5 *1 (-949 *8 *4)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1127 *3)) (-4 *3 (-911)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-207))
- (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-76 FUNCTN))))
- (-5 *2 (-970)) (-5 *1 (-695)))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-159 (-207)))) (-5 *2 (-970))
- (-5 *1 (-703)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 (-804 *5))) (-14 *5 (-595 (-1095))) (-4 *6 (-431))
- (-5 *2
- (-2 (|:| |dpolys| (-595 (-229 *5 *6)))
- (|:| |coords| (-595 (-528)))))
- (-5 *1 (-450 *5 *6 *7)) (-5 *3 (-595 (-229 *5 *6))) (-4 *7 (-431)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-831 *4)) (-4 *4 (-1023)) (-5 *1 (-829 *4 *3))
- (-4 *3 (-1131))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-831 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *2) (-12 (-5 *2 (-296 (-207))) (-5 *1 (-248)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-414)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-322 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1153 *4))
- (-4 *5 (-1153 (-387 *3))) (-5 *2 (-110))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-387 *4))) (-5 *2 (-110)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-431))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110))
- (-5 *1 (-925 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *5 (-793)) (-5 *2 (-110))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-431))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110))
- (-5 *1 (-1030 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-431)) (-4 *4 (-793)) (-4 *5 (-739)) (-5 *2 (-595 *6))
- (-5 *1 (-924 *3 *4 *5 *6)) (-4 *6 (-888 *3 *5 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-765 *3)) (-4 *3 (-793)) (-5 *1 (-620 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-387 *4)) (-4 *4 (-1153 *3))
- (-4 *3 (-13 (-343) (-140) (-972 (-528)))) (-5 *1 (-532 *3 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 (-310))) (-5 *1 (-310)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-882 *3)) (-4 *3 (-13 (-343) (-1117) (-938)))
- (-5 *1 (-165 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-518 *3)) (-4 *3 (-13 (-384) (-1117))) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-4 *1 (-791)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-996 *4 *3)) (-4 *4 (-13 (-791) (-343)))
- (-4 *3 (-1153 *4)) (-5 *2 (-110)))))
-(((*1 *1) (-5 *1 (-417))))
-(((*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-706)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-431)) (-4 *3 (-739)) (-4 *5 (-793)) (-5 *2 (-110))
- (-5 *1 (-428 *4 *3 *5 *6)) (-4 *6 (-888 *4 *3 *5)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-860)) (-5 *1 (-421 *2))
- (-4 *2 (-1153 (-528)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-860)) (-5 *4 (-717)) (-5 *1 (-421 *2))
- (-4 *2 (-1153 (-528)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-860)) (-5 *4 (-595 (-717))) (-5 *1 (-421 *2))
- (-4 *2 (-1153 (-528)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-860)) (-5 *4 (-595 (-717))) (-5 *5 (-717))
- (-5 *1 (-421 *2)) (-4 *2 (-1153 (-528)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-860)) (-5 *4 (-595 (-717))) (-5 *5 (-717))
- (-5 *6 (-110)) (-5 *1 (-421 *2)) (-4 *2 (-1153 (-528)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-860)) (-5 *4 (-398 *2)) (-4 *2 (-1153 *5))
- (-5 *1 (-423 *5 *2)) (-4 *5 (-981)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1177 *1)) (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135))
- (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 *2)) (-4 *2 (-410 *4)) (-5 *1 (-149 *4 *2))
- (-4 *4 (-13 (-793) (-520))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-513)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-398 *3)) (-4 *3 (-513)) (-4 *3 (-520))))
- ((*1 *2 *1) (-12 (-4 *1 (-513)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-743 *3)) (-4 *3 (-162)) (-4 *3 (-513)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-779 *3)) (-4 *3 (-513)) (-4 *3 (-1023))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-786 *3)) (-4 *3 (-513)) (-4 *3 (-1023))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-933 *3)) (-4 *3 (-162)) (-4 *3 (-513)) (-5 *2 (-110))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-944 *3)) (-4 *3 (-972 (-387 (-528)))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-520) (-140))) (-5 *1 (-505 *3 *2))
- (-4 *2 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-343) (-348) (-570 (-528)))) (-4 *4 (-1153 *3))
- (-4 *5 (-671 *3 *4)) (-5 *1 (-509 *3 *4 *5 *2)) (-4 *2 (-1168 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-343) (-348) (-570 (-528)))) (-5 *1 (-510 *3 *2))
- (-4 *2 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-13 (-520) (-140)))
- (-5 *1 (-1072 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1078)) (-5 *2 (-197 (-478))) (-5 *1 (-781)))))
-(((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-595 *11))
- (|:| |todo| (-595 (-2 (|:| |val| *3) (|:| -2316 *11))))))
- (-5 *6 (-717))
- (-5 *2 (-595 (-2 (|:| |val| (-595 *10)) (|:| -2316 *11))))
- (-5 *3 (-595 *10)) (-5 *4 (-595 *11)) (-4 *10 (-994 *7 *8 *9))
- (-4 *11 (-999 *7 *8 *9 *10)) (-4 *7 (-431)) (-4 *8 (-739))
- (-4 *9 (-793)) (-5 *1 (-997 *7 *8 *9 *10 *11))))
- ((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-595 *11))
- (|:| |todo| (-595 (-2 (|:| |val| *3) (|:| -2316 *11))))))
- (-5 *6 (-717))
- (-5 *2 (-595 (-2 (|:| |val| (-595 *10)) (|:| -2316 *11))))
- (-5 *3 (-595 *10)) (-5 *4 (-595 *11)) (-4 *10 (-994 *7 *8 *9))
- (-4 *11 (-1032 *7 *8 *9 *10)) (-4 *7 (-431)) (-4 *8 (-739))
- (-4 *9 (-793)) (-5 *1 (-1065 *7 *8 *9 *10 *11)))))
-(((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-843 (-528))) (-5 *1 (-856))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 (-528))) (-5 *2 (-843 (-528))) (-5 *1 (-856)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1091 *9)) (-5 *4 (-595 *7)) (-5 *5 (-595 (-595 *8)))
- (-4 *7 (-793)) (-4 *8 (-288)) (-4 *9 (-888 *8 *6 *7)) (-4 *6 (-739))
- (-5 *2
- (-2 (|:| |upol| (-1091 *8)) (|:| |Lval| (-595 *8))
- (|:| |Lfact|
- (-595 (-2 (|:| -2437 (-1091 *8)) (|:| -2564 (-528)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-689 *6 *7 *8 *9)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-387 (-528))) (-5 *1 (-299 *3 *4 *5))
- (-4 *3 (-13 (-343) (-793))) (-14 *4 (-1095)) (-14 *5 *3))))
+ (-12 (-4 *3 (-162)) (-5 *1 (-271 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1155 *3))
+ (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-111)) (-5 *3 (-594 *1)) (-4 *1 (-280))))
+ ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-280)) (-5 *2 (-111))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-280)) (-5 *2 (-111))))
+ ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-280)) (-5 *2 (-111))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-280)) (-5 *2 (-111))))
+ ((*1 *2 *1 *2 *2)
+ (-12 (-4 *1 (-323 *2 *3 *4)) (-4 *2 (-1138)) (-4 *3 (-1155 *2))
+ (-4 *4 (-1155 (-388 *3)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-4 *1 (-399 *2)) (-4 *2 (-162))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-1081)) (-5 *1 (-480))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-50)) (-5 *1 (-586))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1146 (-516))) (-4 *1 (-602 *3)) (-4 *3 (-1134))))
+ ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-719)) (-5 *1 (-625 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-594 (-516))) (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984))
+ (-4 *4 (-353 *3)) (-4 *5 (-353 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-111)) (-5 *3 (-594 (-831 *4))) (-5 *1 (-831 *4))
+ (-4 *4 (-1027))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-845 *2)) (-4 *2 (-1027))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-719)) (-5 *2 (-843 *4)) (-5 *1 (-846 *4)) (-4 *4 (-1027))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-222 *4 *2)) (-14 *4 (-860)) (-4 *2 (-344))
+ (-5 *1 (-933 *4 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-949 *2)) (-4 *2 (-1134))))
+ ((*1 *2 *1) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1134))))
+ ((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-516)) (-4 *1 (-986 *4 *5 *2 *6 *7)) (-4 *2 (-984))
+ (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-516)) (-4 *1 (-986 *4 *5 *2 *6 *7)) (-4 *6 (-221 *5 *2))
+ (-4 *7 (-221 *4 *2)) (-4 *2 (-984))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-860)) (-4 *4 (-1027))
+ (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-831 *4))))
+ (-5 *1 (-1004 *4 *5 *2))
+ (-4 *2 (-13 (-402 *5) (-827 *4) (-572 (-831 *4))))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-860)) (-4 *4 (-1027))
+ (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-831 *4))))
+ (-5 *1 (-1006 *4 *5 *2))
+ (-4 *2 (-13 (-402 *5) (-827 *4) (-572 (-831 *4))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-594 (-516))) (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027))
+ (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-516)) (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027))
+ (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027))))
+ ((*1 *1 *1 *1) (-4 *1 (-1067)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-1098))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-388 *1)) (-4 *1 (-1155 *2)) (-4 *2 (-984)) (-4 *2 (-344))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-388 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-984)) (-4 *3 (-523))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1158 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1168 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1168 *3)) (-4 *3 (-1134))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1168 *2)) (-4 *2 (-1134)))))
+(((*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1129 *2 *3 *4 *5)) (-4 *2 (-523)) (-4 *3 (-741))
+ (-4 *4 (-795)) (-4 *5 (-997 *2 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1168 *3)) (-4 *3 (-1134))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1134))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *2 (-997 *3 *4 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1168 *3)) (-4 *3 (-1134))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1134)))))
+(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1134)) (-5 *1 (-814 *3 *2)) (-4 *3 (-1134))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1134)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1168 *3)) (-4 *3 (-1134)) (-5 *2 (-719)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1134)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-227 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1168 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1168 *2)) (-4 *2 (-1134)))))
+(((*1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1168 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1168 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-516)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1134)) (-4 *4 (-353 *2))
+ (-4 *5 (-353 *2))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4270)) (-4 *1 (-117 *3))
+ (-4 *3 (-1134))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4270)) (-4 *1 (-117 *3)) (-4 *3 (-1134))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-719)) (-5 *1 (-197 *4 *2)) (-14 *4 (-860)) (-4 *2 (-1027))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4270)) (-4 *1 (-270 *3 *2)) (-4 *3 (-1027))
+ (-4 *2 (-1134))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-50)) (-5 *3 (-1098)) (-5 *1 (-586))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-1146 (-516))) (|has| *1 (-6 -4270)) (-4 *1 (-602 *2))
+ (-4 *2 (-1134))))
+ ((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-594 (-516))) (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984))
+ (-4 *4 (-353 *3)) (-4 *5 (-353 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4270)) (-4 *1 (-949 *2))
+ (-4 *2 (-1134))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1134))))
+ ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1111 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4270)) (-4 *1 (-1168 *2))
+ (-4 *2 (-1134))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4270)) (-4 *1 (-1168 *3))
+ (-4 *3 (-1134))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4270)) (-4 *1 (-1168 *2))
+ (-4 *2 (-1134)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1076 *3)) (-4 *3 (-1134))))
+ ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1168 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1168 *2)) (-4 *2 (-1134)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-516)) (|has| *1 (-6 -4270)) (-4 *1 (-1168 *3))
+ (-4 *3 (-1134)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1023))
- (-4 *4 (-13 (-981) (-825 *3) (-793) (-570 (-831 *3))))
- (-5 *2 (-595 (-1002 *3 *4 *5))) (-5 *1 (-1003 *3 *4 *5))
- (-4 *5 (-13 (-410 *4) (-825 *3) (-570 (-831 *3)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-717)) (-5 *2 (-595 (-1095))) (-5 *1 (-194))
- (-5 *3 (-1095))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-296 (-207))) (-5 *4 (-717)) (-5 *2 (-595 (-1095)))
- (-5 *1 (-248))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-354 *3 *4)) (-4 *3 (-793)) (-4 *4 (-162))
- (-5 *2 (-595 *3))))
+ (|partial| -12 (-4 *3 (-13 (-795) (-975 (-516)) (-593 (-516)) (-432)))
+ (-5 *2 (-787 *4)) (-5 *1 (-294 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1120) (-402 *3))) (-14 *5 (-1098)) (-14 *6 *4)))
((*1 *2 *1)
- (-12 (-5 *2 (-595 *3)) (-5 *1 (-579 *3 *4 *5)) (-4 *3 (-793))
- (-4 *4 (-13 (-162) (-664 (-387 (-528))))) (-14 *5 (-860))))
- ((*1 *2 *1) (-12 (-5 *2 (-595 *3)) (-5 *1 (-620 *3)) (-4 *3 (-793))))
- ((*1 *2 *1) (-12 (-5 *2 (-595 *3)) (-5 *1 (-624 *3)) (-4 *3 (-793))))
- ((*1 *2 *1) (-12 (-5 *2 (-595 *3)) (-5 *1 (-765 *3)) (-4 *3 (-793))))
- ((*1 *2 *1) (-12 (-5 *2 (-595 *3)) (-5 *1 (-832 *3)) (-4 *3 (-793))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981))
- (-5 *2 (-595 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1091 *3)) (-4 *3 (-348)) (-4 *1 (-309 *3))
- (-4 *3 (-343)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-925 *4 *5 *6 *7 *3))
- (-4 *3 (-999 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-110))
- (-5 *1 (-1030 *4 *5 *6 *7 *3)) (-4 *3 (-999 *4 *5 *6 *7)))))
+ (|partial| -12 (-4 *3 (-13 (-795) (-975 (-516)) (-593 (-516)) (-432)))
+ (-5 *2 (-787 *4)) (-5 *1 (-1166 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1120) (-402 *3))) (-14 *5 (-1098)) (-14 *6 *4))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981))
- (-5 *2 (-595 (-595 (-595 (-717))))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-288)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4))
+ (|partial| -12 (-4 *3 (-13 (-795) (-975 (-516)) (-593 (-516)) (-432)))
(-5 *2
- (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1046 *4 *5 *6 *3)) (-4 *3 (-633 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-528)) (-4 *4 (-1153 (-387 *3))) (-5 *2 (-860))
- (-5 *1 (-852 *4 *5)) (-4 *5 (-1153 (-387 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-595 (-595 (-882 (-207)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-911)) (-5 *2 (-595 (-595 (-882 (-207))))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-355 *4 *2))
- (-4 *2 (-13 (-353 *4) (-10 -7 (-6 -4265)))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-882 *3) (-882 *3))) (-5 *1 (-165 *3))
- (-4 *3 (-13 (-343) (-1117) (-938))))))
-(((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-359)) (-5 *2 (-1182)) (-5 *1 (-1179)))))
+ (-2
+ (|:| |%term|
+ (-2 (|:| |%coef| (-1160 *4 *5 *6)) (|:| |%expon| (-300 *4 *5 *6))
+ (|:| |%expTerms| (-594 (-2 (|:| |k| (-388 (-516))) (|:| |c| *4))))))
+ (|:| |%type| (-1081))))
+ (-5 *1 (-1166 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1120) (-402 *3)))
+ (-14 *5 (-1098)) (-14 *6 *4))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *2 (-50)) (-5 *1 (-297 *4 *5)) (-4 *5 (-13 (-27) (-1120) (-402 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-297 *4 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-388 (-516)))
+ (-4 *5 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-297 *5 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-275 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *5)))
+ (-4 *5 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-297 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-275 *3)) (-5 *5 (-388 (-516)))
+ (-4 *3 (-13 (-27) (-1120) (-402 *6)))
+ (-4 *6 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-297 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-388 (-516)))) (-5 *4 (-275 *8))
+ (-5 *5 (-1146 (-388 (-516)))) (-5 *6 (-388 (-516)))
+ (-4 *8 (-13 (-27) (-1120) (-402 *7)))
+ (-4 *7 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-439 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1098)) (-5 *5 (-275 *3)) (-5 *6 (-1146 (-388 (-516))))
+ (-5 *7 (-388 (-516))) (-4 *3 (-13 (-27) (-1120) (-402 *8)))
+ (-4 *8 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-439 *8 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-388 (-516))) (-4 *4 (-984)) (-4 *1 (-1164 *4 *3))
+ (-4 *3 (-1141 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1018 *3)) (-5 *1 (-1016 *3)) (-4 *3 (-1131))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1131))))
- ((*1 *1 *2) (-12 (-5 *1 (-1144 *2)) (-4 *2 (-1131)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802))))
- ((*1 *1 *1) (-5 *1 (-802))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1095))
- (-4 *4 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)))
- (-5 *1 (-750 *4 *2)) (-4 *2 (-13 (-29 *4) (-1117) (-897)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-802))) ((*1 *1 *1 *1) (-5 *1 (-802)))
- ((*1 *1 *1) (-5 *1 (-802)))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1076 *3)) (-5 *1 (-1080 *3)) (-4 *3 (-981)))))
-(((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-1117))))
- ((*1 *2 *1) (-12 (-5 *1 (-311 *2)) (-4 *2 (-793))))
- ((*1 *2 *1) (-12 (-5 *2 (-595 *3)) (-5 *1 (-568 *3)) (-4 *3 (-793)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1177 (-595 (-2 (|:| -3327 *4) (|:| -3108 (-1042))))))
- (-4 *4 (-329)) (-5 *2 (-635 *4)) (-5 *1 (-326 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-518 *2)) (-4 *2 (-13 (-384) (-1117)))))
- ((*1 *1 *1 *1) (-4 *1 (-739))))
-(((*1 *2 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-207)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-866))
- (-5 *2
- (-2 (|:| |brans| (-595 (-595 (-882 (-207)))))
- (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))))
- (-5 *1 (-146))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-866)) (-5 *4 (-387 (-528)))
- (-5 *2
- (-2 (|:| |brans| (-595 (-595 (-882 (-207)))))
- (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))))
- (-5 *1 (-146)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359))
- (-5 *2
- (-2 (|:| -3327 *4) (|:| -3817 *4) (|:| |totalpts| (-528))
- (|:| |success| (-110))))
- (-5 *1 (-735)) (-5 *5 (-528)))))
-(((*1 *2 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-288)))))
-(((*1 *1 *1) (-4 *1 (-121))) ((*1 *1 *1) (-5 *1 (-802)))
- ((*1 *1 *1) (-4 *1 (-905))) ((*1 *1 *1) (-5 *1 (-1042))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-620 *3)) (-4 *3 (-793))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-624 *3)) (-4 *3 (-793))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-765 *3)) (-4 *3 (-793)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-1078)) (-5 *5 (-635 (-207)))
- (-5 *2 (-970)) (-5 *1 (-694)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-595 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-431))
- (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-428 *3 *4 *5 *6)))))
+ (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1141 *3))
+ (-5 *2 (-388 (-516))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1141 *3)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-528)) (-5 *1 (-1114 *3)) (-4 *3 (-981)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-904 *3)) (-4 *3 (-905)))))
-(((*1 *1 *1) (-4 *1 (-581)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-582 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938) (-1117))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-353 *3)) (-4 *3 (-1131)) (-4 *3 (-793)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *1 (-353 *4)) (-4 *4 (-1131))
- (-5 *2 (-110)))))
-(((*1 *1 *1 *1) (-4 *1 (-708))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *1 (-428 *3 *4 *5 *2)) (-4 *2 (-888 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-791)) (-5 *2 (-528))))
- ((*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-844 *3)) (-4 *3 (-1023))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-996 *4 *3)) (-4 *4 (-13 (-791) (-343)))
- (-4 *3 (-1153 *4)) (-5 *2 (-528))))
+ (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *2 (-50)) (-5 *1 (-297 *4 *5)) (-4 *5 (-13 (-27) (-1120) (-402 *4)))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-520) (-793) (-972 *2) (-591 *2) (-431)))
- (-5 *2 (-528)) (-5 *1 (-1038 *4 *3))
- (-4 *3 (-13 (-27) (-1117) (-410 *4)))))
+ (-12 (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-297 *4 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-516)) (-4 *5 (-13 (-432) (-795) (-975 *4) (-593 *4)))
+ (-5 *2 (-50)) (-5 *1 (-297 *5 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-275 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *5)))
+ (-4 *5 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-297 *5 *3))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1095)) (-5 *5 (-786 *3))
- (-4 *3 (-13 (-27) (-1117) (-410 *6)))
- (-4 *6 (-13 (-520) (-793) (-972 *2) (-591 *2) (-431)))
- (-5 *2 (-528)) (-5 *1 (-1038 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1095)) (-5 *5 (-1078))
- (-4 *6 (-13 (-520) (-793) (-972 *2) (-591 *2) (-431)))
- (-5 *2 (-528)) (-5 *1 (-1038 *6 *3))
- (-4 *3 (-13 (-27) (-1117) (-410 *6)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-387 (-891 *4))) (-4 *4 (-431)) (-5 *2 (-528))
- (-5 *1 (-1039 *4))))
+ (-12 (-5 *4 (-275 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *6)))
+ (-4 *6 (-13 (-432) (-795) (-975 *5) (-593 *5))) (-5 *5 (-516)) (-5 *2 (-50))
+ (-5 *1 (-297 *6 *3))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1095)) (-5 *5 (-786 (-387 (-891 *6))))
- (-5 *3 (-387 (-891 *6))) (-4 *6 (-431)) (-5 *2 (-528))
- (-5 *1 (-1039 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-387 (-891 *6))) (-5 *4 (-1095))
- (-5 *5 (-1078)) (-4 *6 (-431)) (-5 *2 (-528)) (-5 *1 (-1039 *6))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-528)) (-5 *1 (-1114 *3)) (-4 *3 (-981)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *5 (-635 (-207))) (-5 *4 (-207))
- (-5 *2 (-970)) (-5 *1 (-699)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1023)) (-4 *3 (-839 *5)) (-5 *2 (-1177 *3))
- (-5 *1 (-638 *5 *3 *6 *4)) (-4 *6 (-353 *3))
- (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4264)))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-595 *7)) (|:| |badPols| (-595 *7))))
- (-5 *1 (-914 *4 *5 *6 *7)) (-5 *3 (-595 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-595 (-595 (-207)))) (-5 *1 (-865)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-4 *5 (-929 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-135 *4 *5 *3))
- (-4 *3 (-353 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-4 *5 (-929 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
- (-5 *1 (-479 *4 *5 *6 *3)) (-4 *6 (-353 *4)) (-4 *3 (-353 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 *5)) (-4 *5 (-929 *4)) (-4 *4 (-520))
- (-5 *2 (-2 (|:| |num| (-635 *4)) (|:| |den| *4)))
- (-5 *1 (-639 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-343) (-140) (-972 (-387 (-528)))))
- (-4 *6 (-1153 *5))
- (-5 *2 (-2 (|:| -2589 *7) (|:| |rh| (-595 (-387 *6)))))
- (-5 *1 (-753 *5 *6 *7 *3)) (-5 *4 (-595 (-387 *6)))
- (-4 *7 (-605 *6)) (-4 *3 (-605 (-387 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-4 *5 (-929 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1146 *4 *5 *3))
- (-4 *3 (-1153 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *2 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-288))))
- ((*1 *2 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-288))))
- ((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-520)) (-4 *2 (-288))))
- ((*1 *2 *1) (-12 (-4 *1 (-989)) (-5 *2 (-528)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-913 *3 *4 *2 *5)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *2 (-793)) (-4 *5 (-994 *3 *4 *2)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1153 *5))
- (-4 *5 (-13 (-27) (-410 *4)))
- (-4 *4 (-13 (-793) (-520) (-972 (-528))))
- (-4 *7 (-1153 (-387 *6))) (-5 *1 (-516 *4 *5 *6 *7 *2))
- (-4 *2 (-322 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1078)) (-5 *1 (-286)))))
+ (-12 (-5 *3 (-1 *7 (-516))) (-5 *4 (-275 *7)) (-5 *5 (-1146 (-516)))
+ (-4 *7 (-13 (-27) (-1120) (-402 *6)))
+ (-4 *6 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-439 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1098)) (-5 *5 (-275 *3)) (-5 *6 (-1146 (-516)))
+ (-4 *3 (-13 (-27) (-1120) (-402 *7)))
+ (-4 *7 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-439 *7 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-516)) (-4 *4 (-984)) (-4 *1 (-1143 *4 *3)) (-4 *3 (-1172 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1141 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-595 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-545 *3)) (-4 *3 (-343)))))
-(((*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-865)))))
-(((*1 *1 *1) (-4 *1 (-34)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -1606 *3) (|:| |coef1| (-728 *3)) (|:| |coef2| (-728 *3))))
- (-5 *1 (-728 *3)) (-4 *3 (-520)) (-4 *3 (-981)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-366 *3)) (|:| |mm| (-366 *3)) (|:| |rm| (-366 *3))))
- (-5 *1 (-366 *3)) (-4 *3 (-1023))))
- ((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-765 *3)) (|:| |mm| (-765 *3)) (|:| |rm| (-765 *3))))
- (-5 *1 (-765 *3)) (-4 *3 (-793)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-793)) (-5 *1 (-462 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-595 (-1177 *4))) (-5 *1 (-346 *3 *4))
- (-4 *3 (-347 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-4 *3 (-520))
- (-5 *2 (-595 (-1177 *3))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-635 *7)) (-5 *3 (-595 *7)) (-4 *7 (-888 *4 *6 *5))
- (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095))))
- (-4 *6 (-739)) (-5 *1 (-863 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-595 (-891 *4))) (-5 *3 (-595 (-1095))) (-4 *4 (-431))
- (-5 *1 (-857 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 *2)) (-4 *2 (-410 *4)) (-5 *1 (-149 *4 *2))
- (-4 *4 (-13 (-793) (-520))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *1 *1 *1) (-4 *1 (-283))) ((*1 *1 *1) (-4 *1 (-283))))
-(((*1 *2) (-12 (-5 *2 (-813)) (-5 *1 (-1180))))
- ((*1 *2 *2) (-12 (-5 *2 (-813)) (-5 *1 (-1180)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4265)) (-4 *1 (-226 *2)) (-4 *2 (-1131))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1131))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1131))))
+ (|partial| -12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1141 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1155 *3)) (-4 *3 (-984))))
((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4265)) (-4 *1 (-1165 *2)) (-4 *2 (-1131))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4265)) (-4 *1 (-1165 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *1) (-12 (-4 *1 (-972 (-528))) (-4 *1 (-283)) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-4 *1 (-513)) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-844 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1131)))))
-(((*1 *1) (-5 *1 (-769))))
-(((*1 *2 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-706)))))
-(((*1 *2 *2) (-12 (-5 *1 (-899 *2)) (-4 *2 (-513)))))
-(((*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1131))))
- ((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-793))))
- ((*1 *1 *1) (-12 (-5 *1 (-624 *2)) (-4 *2 (-793))))
- ((*1 *1 *1) (-5 *1 (-802)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-802))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-791) (-343))) (-5 *1 (-990 *2 *3))
- (-4 *3 (-1153 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1168 *4)) (-5 *1 (-1170 *4 *2))
- (-4 *4 (-37 (-387 (-528)))))))
-(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-860)) (-4 *1 (-1158 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-388 (-516))) (-4 *1 (-1162 *3)) (-4 *3 (-984)))))
+(((*1 *2 *2)
(-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-717)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-739)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-431)) (-4 *6 (-793))
- (-5 *2 (-110)) (-5 *1 (-428 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-525)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(((*1 *1 *1 *1) (-5 *1 (-802))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-520)) (-4 *3 (-981))
- (-5 *2 (-2 (|:| -3490 *1) (|:| -2537 *1))) (-4 *1 (-795 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-96 *5)) (-4 *5 (-520)) (-4 *5 (-981))
- (-5 *2 (-2 (|:| -3490 *3) (|:| -2537 *3))) (-5 *1 (-796 *5 *3))
- (-4 *3 (-795 *5)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-595 *8)) (-5 *3 (-1 (-110) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-994 *5 *6 *7)) (-4 *5 (-520))
- (-4 *6 (-739)) (-4 *7 (-793)) (-5 *1 (-914 *5 *6 *7 *8)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-296 *3)) (-4 *3 (-13 (-981) (-793)))
- (-5 *1 (-205 *3 *4)) (-14 *4 (-595 (-1095))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1131))))
- ((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-793))))
- ((*1 *1 *1) (-12 (-5 *1 (-624 *2)) (-4 *2 (-793))))
- ((*1 *1 *1) (-5 *1 (-802)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-802))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-791) (-343))) (-5 *1 (-990 *2 *3))
- (-4 *3 (-1153 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-296 (-207))) (-5 *1 (-248)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-768)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-913 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-595 *5)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1078)) (-5 *3 (-769)) (-5 *1 (-768)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-303 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-128))
- (-4 *3 (-738)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1078)) (-5 *4 (-528)) (-5 *5 (-635 (-207)))
- (-5 *6 (-207)) (-5 *2 (-970)) (-5 *1 (-699)))))
-(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-446))))
- ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-446)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-234 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-793))
- (-4 *5 (-247 *4)) (-4 *6 (-739)) (-5 *2 (-595 *4)))))
+ (-5 *2
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-516))))
+ (-4 *4 (-13 (-1155 *3) (-523) (-10 -8 (-15 -3419 ($ $ $))))) (-4 *3 (-523))
+ (-5 *1 (-1159 *3 *4)))))
(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-347 *2)) (-4 *2 (-162)) (-4 *2 (-520))))
- ((*1 *1 *1) (|partial| -4 *1 (-669))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1095))
- (-4 *5 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-545 *3)) (-5 *1 (-406 *5 *3))
- (-4 *3 (-13 (-1117) (-29 *5))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-431))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1091 *6)) (-4 *6 (-888 *5 *3 *4)) (-4 *3 (-739))
- (-4 *4 (-793)) (-4 *5 (-848)) (-5 *1 (-436 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-848)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-4 *3 (-520))
- (-5 *2 (-1091 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-110))
- (-5 *1 (-480 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-410 *3) (-938))) (-5 *1 (-257 *3 *2))
- (-4 *3 (-13 (-793) (-520))))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-207)) (-5 *4 (-528))
- (-5 *5 (-3 (|:| |fn| (-368)) (|:| |fp| (-62 G)))) (-5 *2 (-970))
- (-5 *1 (-695)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-393 *3 *4 *5 *6)) (-4 *6 (-972 *4)) (-4 *3 (-288))
- (-4 *4 (-929 *3)) (-4 *5 (-1153 *4)) (-4 *6 (-389 *4 *5))
- (-14 *7 (-1177 *6)) (-5 *1 (-394 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1177 *6)) (-4 *6 (-389 *4 *5)) (-4 *4 (-929 *3))
- (-4 *5 (-1153 *4)) (-4 *3 (-288)) (-5 *1 (-394 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -3572 *7) (|:| |sol?| (-110)))
- (-528) *7))
- (-5 *6 (-595 (-387 *8))) (-4 *7 (-343)) (-4 *8 (-1153 *7))
- (-5 *3 (-387 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-595 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-538 *7 *8)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-595 (-717))) (-5 *3 (-110)) (-5 *1 (-1084 *4 *5))
- (-14 *4 (-860)) (-4 *5 (-981)))))
-(((*1 *1 *2 *3 *4)
- (-12
- (-5 *3
- (-595
- (-2 (|:| |scalar| (-387 (-528))) (|:| |coeff| (-1091 *2))
- (|:| |logand| (-1091 *2)))))
- (-5 *4 (-595 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
- (-4 *2 (-343)) (-5 *1 (-545 *2)))))
+ (-12 (-4 *1 (-891 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-4 *2 (-432))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6))
+ (-5 *2 (-594 (-2 (|:| |val| *3) (|:| -1610 *1))))
+ (-4 *1 (-1002 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1138)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-523)) (-5 *1 (-1159 *3 *2))
+ (-4 *2 (-13 (-1155 *3) (-523) (-10 -8 (-15 -3419 ($ $ $))))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-595 (-1095))) (|:| |pred| (-51))))
- (-5 *1 (-831 *3)) (-4 *3 (-1023)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-994 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *2 (-793))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-307 *3)) (-4 *3 (-1131))))
+ (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-128))
+ (-5 *2 (-594 (-2 (|:| |gen| *3) (|:| -4219 *4))))))
((*1 *2 *1)
- (-12 (-5 *2 (-717)) (-5 *1 (-491 *3 *4)) (-4 *3 (-1131))
- (-14 *4 (-528)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-860)) (-4 *4 (-348)) (-4 *4 (-343)) (-5 *2 (-1091 *1))
- (-4 *1 (-309 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-309 *3)) (-4 *3 (-343)) (-5 *2 (-1091 *3))))
+ (-12 (-5 *2 (-594 (-2 (|:| -4229 *3) (|:| -4214 *4)))) (-5 *1 (-684 *3 *4))
+ (-4 *3 (-984)) (-4 *4 (-675))))
((*1 *2 *1)
- (-12 (-4 *1 (-350 *3 *2)) (-4 *3 (-162)) (-4 *3 (-343))
- (-4 *2 (-1153 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1177 *4)) (-4 *4 (-329)) (-5 *2 (-1091 *4))
- (-5 *1 (-498 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-337 *3)) (-4 *3 (-329)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-717)) (-5 *2 (-110)))))
-(((*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-288))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1097 (-387 (-528)))) (-5 *1 (-174)) (-5 *3 (-528))))
- ((*1 *1 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1131))))
- ((*1 *1 *1) (-4 *1 (-808 *2)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-910 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-738))
- (-4 *4 (-793)))))
-(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-882 (-207))) (-5 *4 (-813)) (-5 *5 (-860))
- (-5 *2 (-1182)) (-5 *1 (-447))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-882 (-207))) (-5 *2 (-1182)) (-5 *1 (-447))))
- ((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-595 (-882 (-207)))) (-5 *4 (-813)) (-5 *5 (-860))
- (-5 *2 (-1182)) (-5 *1 (-447)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1177 (-635 *4))) (-4 *4 (-162))
- (-5 *2 (-1177 (-635 (-891 *4)))) (-5 *1 (-173 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-1180)))))
+ (-12 (-4 *1 (-1158 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740))
+ (-5 *2 (-1076 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1081)) (-5 *3 (-516)) (-5 *1 (-224))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-594 (-1081))) (-5 *3 (-516)) (-5 *4 (-1081)) (-5 *1 (-224))))
+ ((*1 *1 *1) (-5 *1 (-805)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-805))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1158 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-561 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1023))
- (-4 *2 (-793)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1023)) (-4 *5 (-1023))
- (-4 *6 (-1023)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-630 *4 *5 *6)))))
-(((*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-288)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-322 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1153 *4))
- (-4 *5 (-1153 (-387 *3))) (-5 *2 (-110))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-387 *4))) (-5 *2 (-110)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-296 (-207)))) (-5 *2 (-110)) (-5 *1 (-248)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1113)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-595 (-1091 *7))) (-5 *3 (-1091 *7))
- (-4 *7 (-888 *5 *6 *4)) (-4 *5 (-848)) (-4 *6 (-739))
- (-4 *4 (-793)) (-5 *1 (-845 *5 *6 *4 *7)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-288)) (-4 *3 (-929 *2)) (-4 *4 (-1153 *3))
- (-5 *1 (-393 *2 *3 *4 *5)) (-4 *5 (-13 (-389 *3 *4) (-972 *3))))))
-(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-866)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-602 (-387 *6))) (-5 *4 (-387 *6)) (-4 *6 (-1153 *5))
- (-4 *5 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1400 (-595 *4))))
- (-5 *1 (-756 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-602 (-387 *6))) (-4 *6 (-1153 *5))
- (-4 *5 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528)))))
- (-5 *2 (-2 (|:| -1400 (-595 (-387 *6))) (|:| -2163 (-635 *5))))
- (-5 *1 (-756 *5 *6)) (-5 *4 (-595 (-387 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-603 *6 (-387 *6))) (-5 *4 (-387 *6)) (-4 *6 (-1153 *5))
- (-4 *5 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1400 (-595 *4))))
- (-5 *1 (-756 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-603 *6 (-387 *6))) (-4 *6 (-1153 *5))
- (-4 *5 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528)))))
- (-5 *2 (-2 (|:| -1400 (-595 (-387 *6))) (|:| -2163 (-635 *5))))
- (-5 *1 (-756 *5 *6)) (-5 *4 (-595 (-387 *6))))))
-(((*1 *1 *1 *1) (-4 *1 (-288))) ((*1 *1 *1 *1) (-5 *1 (-717)))
- ((*1 *1 *1 *1) (-5 *1 (-802))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-207) (-207) (-207)))
- (-5 *4 (-1 (-207) (-207) (-207) (-207)))
- (-5 *2 (-1 (-882 (-207)) (-207) (-207))) (-5 *1 (-643)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-343)) (-4 *4 (-520)) (-4 *5 (-1153 *4))
- (-5 *2 (-2 (|:| -1226 (-576 *4 *5)) (|:| -3959 (-387 *5))))
- (-5 *1 (-576 *4 *5)) (-5 *3 (-387 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-595 (-1084 *3 *4))) (-5 *1 (-1084 *3 *4))
- (-14 *3 (-860)) (-4 *4 (-981))))
+ (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795))
+ (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-719))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795))
+ (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-795)) (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-4 *1 (-331)) (-5 *2 (-860))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-314 *4 *5 *6 *7)) (-4 *4 (-13 (-349) (-344)))
+ (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-388 *5))) (-4 *7 (-323 *4 *5 *6))
+ (-5 *2 (-719)) (-5 *1 (-373 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-780 (-860)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-516))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-556 *3)) (-4 *3 (-984))))
+ ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-556 *3)) (-4 *3 (-984))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-523)) (-5 *2 (-516)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1155 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-719)) (-4 *1 (-689 *4 *3)) (-4 *4 (-984)) (-4 *3 (-795))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-689 *4 *3)) (-4 *4 (-984)) (-4 *3 (-795)) (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-4 *1 (-811 *3)) (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-843 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-846 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-402 *4))
+ (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-388 *6))) (-4 *8 (-323 *5 *6 *7))
+ (-4 *4 (-13 (-795) (-523) (-975 (-516)))) (-5 *2 (-719))
+ (-5 *1 (-852 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-314 (-388 (-516)) *4 *5 *6))
+ (-4 *4 (-1155 (-388 (-516)))) (-4 *5 (-1155 (-388 *4)))
+ (-4 *6 (-323 (-388 (-516)) *4 *5)) (-5 *2 (-719)) (-5 *1 (-853 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-314 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-344))
+ (-4 *7 (-1155 *6)) (-4 *4 (-1155 (-388 *7))) (-4 *8 (-323 *6 *7 *4))
+ (-4 *9 (-13 (-349) (-344))) (-5 *2 (-719)) (-5 *1 (-957 *6 *7 *4 *8 *9))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-431)) (-4 *3 (-981))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
- (-4 *1 (-1153 *3)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1091 *1)) (-4 *1 (-948)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1095)) (-4 *5 (-1135)) (-4 *6 (-1153 *5))
- (-4 *7 (-1153 (-387 *6))) (-5 *2 (-595 (-891 *5)))
- (-5 *1 (-321 *4 *5 *6 *7)) (-4 *4 (-322 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1095)) (-4 *1 (-322 *4 *5 *6)) (-4 *4 (-1135))
- (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-387 *5))) (-4 *4 (-343))
- (-5 *2 (-595 (-891 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-359)) (-5 *1 (-94))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-359)) (-5 *1 (-94)))))
-(((*1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-1098)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7))
- (-5 *2 (-595 (-2 (|:| |val| (-110)) (|:| -2316 *4))))
- (-5 *1 (-1031 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -1497 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-343)) (-4 *7 (-1153 *6))
- (-5 *2 (-2 (|:| |answer| (-545 (-387 *7))) (|:| |a0| *6)))
- (-5 *1 (-538 *6 *7)) (-5 *3 (-387 *7)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1023))))
- ((*1 *1 *2) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1023)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095))))
- (-4 *6 (-739)) (-5 *2 (-387 (-891 *4))) (-5 *1 (-863 *4 *5 *6 *3))
- (-4 *3 (-888 *4 *6 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 *7)) (-4 *7 (-888 *4 *6 *5))
- (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095))))
- (-4 *6 (-739)) (-5 *2 (-635 (-387 (-891 *4))))
- (-5 *1 (-863 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 *7)) (-4 *7 (-888 *4 *6 *5))
- (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095))))
- (-4 *6 (-739)) (-5 *2 (-595 (-387 (-891 *4))))
- (-5 *1 (-863 *4 *5 *6 *7)))))
-(((*1 *1)
- (-12 (-5 *1 (-598 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-595 *3)) (-4 *3 (-888 *4 *6 *5)) (-4 *4 (-431))
- (-4 *5 (-793)) (-4 *6 (-739)) (-5 *1 (-924 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-159 (-207)) (-159 (-207)))) (-5 *4 (-1018 (-207)))
- (-5 *5 (-110)) (-5 *2 (-1179)) (-5 *1 (-238)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 *2)) (-4 *2 (-410 *4)) (-5 *1 (-149 *4 *2))
- (-4 *4 (-13 (-793) (-520))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-528)) (-4 *2 (-410 *3)) (-5 *1 (-31 *3 *2))
- (-4 *3 (-972 *4)) (-4 *3 (-13 (-793) (-520))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-528)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-5 *2 (-1182)) (-5 *1 (-428 *4 *5 *6 *7)) (-4 *7 (-888 *4 *5 *6)))))
-(((*1 *2 *3 *2 *3)
- (-12 (-5 *2 (-417)) (-5 *3 (-1095)) (-5 *1 (-1098))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-417)) (-5 *3 (-1095)) (-5 *1 (-1098))))
- ((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-417)) (-5 *3 (-595 (-1095))) (-5 *4 (-1095))
- (-5 *1 (-1098))))
- ((*1 *2 *3 *2 *3 *1)
- (-12 (-5 *2 (-417)) (-5 *3 (-1095)) (-5 *1 (-1098))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-417)) (-5 *3 (-1095)) (-5 *1 (-1099))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-417)) (-5 *3 (-595 (-1095))) (-5 *1 (-1099)))))
-(((*1 *2 *1) (-12 (-4 *1 (-329)) (-5 *2 (-717))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-382)) (-5 *2 (-717)))))
-(((*1 *2 *1) (-12 (-4 *1 (-306 *3 *2)) (-4 *3 (-981)) (-4 *2 (-738))))
- ((*1 *2 *1) (-12 (-4 *1 (-655 *3)) (-4 *3 (-981)) (-5 *2 (-717))))
- ((*1 *2 *1) (-12 (-4 *1 (-795 *3)) (-4 *3 (-981)) (-5 *2 (-717))))
+ (-12 (-4 *1 (-1155 *3)) (-4 *3 (-984)) (-4 *3 (-523)) (-5 *2 (-719))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))))
+(((*1 *1 *1) (-4 *1 (-992)))
+ ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-388 (-516))) (-5 *1 (-115 *4)) (-14 *4 *3) (-5 *3 (-516))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-811 *3)) (-5 *2 (-516))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-595 *6)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-981))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-595 (-717)))))
+ (-12 (-5 *2 (-388 (-516))) (-5 *1 (-812 *4)) (-14 *4 *3) (-5 *3 (-516))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-888 *4 *5 *3)) (-4 *4 (-981)) (-4 *5 (-739))
- (-4 *3 (-793)) (-5 *2 (-717)))))
-(((*1 *1 *1 *1) (-4 *1 (-288))) ((*1 *1 *1 *1) (-5 *1 (-717)))
- ((*1 *1 *1 *1) (-5 *1 (-802))))
-(((*1 *2 *3 *1)
- (-12 (-5 *2 (-595 (-1095))) (-5 *1 (-1098)) (-5 *3 (-1095)))))
-(((*1 *1 *1) (-5 *1 (-802))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1095))
- (-4 *4 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-750 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1117) (-897))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 *4)) (-4 *4 (-793)) (-5 *2 (-595 (-613 *4 *5)))
- (-5 *1 (-579 *4 *5 *6)) (-4 *5 (-13 (-162) (-664 (-387 (-528)))))
- (-14 *6 (-860)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-1182)) (-5 *1 (-1098))))
- ((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-1099)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-414)) (|:| -2853 "void")))
- (-5 *1 (-417)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-110)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-888 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-343)) (-4 *3 (-739)) (-4 *4 (-793))
- (-5 *1 (-480 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-866)))))
-(((*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-865)))))
-(((*1 *2 *3) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-525)) (-5 *3 (-528))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1091 (-387 (-528)))) (-5 *1 (-881)) (-5 *3 (-528)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-765 *3)) (|:| |rm| (-765 *3))))
- (-5 *1 (-765 *3)) (-4 *3 (-793))))
- ((*1 *1 *1 *1) (-5 *1 (-802))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-698)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1177 (-717))) (-5 *1 (-623 *3)) (-4 *3 (-1023)))))
-(((*1 *1) (-5 *1 (-272))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *6)) (-5 *4 (-595 (-1076 *7))) (-4 *6 (-793))
- (-4 *7 (-888 *5 (-500 *6) *6)) (-4 *5 (-981))
- (-5 *2 (-1 (-1076 *7) *7)) (-5 *1 (-1048 *5 *6 *7)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-717)) (-5 *1 (-546 *2)) (-4 *2 (-513))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -2911 *3) (|:| -2564 (-717)))) (-5 *1 (-546 *3))
- (-4 *3 (-513)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359))
- (-5 *2
- (-2 (|:| -3327 *4) (|:| -3817 *4) (|:| |totalpts| (-528))
- (|:| |success| (-110))))
- (-5 *1 (-735)) (-5 *5 (-528)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-1 (-110) *8))) (-4 *8 (-994 *5 *6 *7))
- (-4 *5 (-520)) (-4 *6 (-739)) (-4 *7 (-793))
- (-5 *2 (-2 (|:| |goodPols| (-595 *8)) (|:| |badPols| (-595 *8))))
- (-5 *1 (-914 *5 *6 *7 *8)) (-5 *4 (-595 *8)))))
-(((*1 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1179))))
- ((*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1179)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-520))))
+ (-12 (-14 *4 *3) (-5 *2 (-388 (-516))) (-5 *1 (-813 *4 *5)) (-5 *3 (-516))
+ (-4 *5 (-811 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-951)) (-5 *2 (-388 (-516)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-999 *2 *3)) (-4 *2 (-13 (-793) (-344))) (-4 *3 (-1155 *2))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1158 *2 *3)) (-4 *3 (-740)) (|has| *2 (-15 ** (*2 *2 *3)))
+ (|has| *2 (-15 -4233 (*2 (-1098)))) (-4 *2 (-984)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-163 *3)) (-4 *3 (-289))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-4 *1 (-624 *3)) (-4 *3 (-1134))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-306 *2 *3)) (-4 *2 (-981)) (-4 *3 (-738))
- (-4 *2 (-520))))
- ((*1 *1 *1 *1) (|partial| -4 *1 (-520)))
+ (-12 (-5 *2 (-719)) (-4 *1 (-689 *3 *4)) (-4 *3 (-984)) (-4 *4 (-795))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-811 *3)) (-5 *2 (-516))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *1 (-920 *3)) (-4 *3 (-984))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-594 *1)) (-5 *3 (-594 *7)) (-4 *1 (-1002 *4 *5 *6 *7))
+ (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *2 (-594 *1)) (-4 *1 (-1002 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-594 *1)) (-4 *1 (-1002 *4 *5 *6 *3)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6))
+ (-5 *2 (-594 *1)) (-4 *1 (-1002 *4 *5 *6 *3))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981))
- (-4 *3 (-353 *2)) (-4 *4 (-353 *2)) (-4 *2 (-520))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-717)))
+ (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *2 (-997 *3 *4 *5))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-388 *5)) (-4 *4 (-1138)) (-4 *5 (-1155 *4))
+ (-5 *1 (-141 *4 *5 *2)) (-4 *2 (-1155 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1100 (-388 (-516)))) (-5 *2 (-388 (-516))) (-5 *1 (-174))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-637 (-295 (-208)))) (-5 *3 (-594 (-1098)))
+ (-5 *4 (-1179 (-295 (-208)))) (-5 *1 (-189))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-520))))
- ((*1 *1 *1 *1) (-5 *1 (-802)))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-520))
- (-5 *1 (-907 *3 *4))))
+ (-12 (-5 *2 (-594 (-275 *3))) (-4 *3 (-291 *3)) (-4 *3 (-1027))
+ (-4 *3 (-1134)) (-5 *1 (-275 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-291 *2)) (-4 *2 (-1027)) (-4 *2 (-1134)) (-5 *1 (-275 *2))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-111)) (-5 *3 (-1 *1 *1)) (-4 *1 (-280))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-111)) (-5 *3 (-1 *1 (-594 *1))) (-4 *1 (-280))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-594 (-111))) (-5 *3 (-594 (-1 *1 (-594 *1)))) (-4 *1 (-280))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-594 (-111))) (-5 *3 (-594 (-1 *1 *1))) (-4 *1 (-280))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-1 *1 *1)) (-4 *1 (-280))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-1 *1 (-594 *1))) (-4 *1 (-280))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-594 (-1098))) (-5 *3 (-594 (-1 *1 (-594 *1)))) (-4 *1 (-280))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-594 (-1098))) (-5 *3 (-594 (-1 *1 *1))) (-4 *1 (-280))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-983 *3 *4 *2 *5 *6)) (-4 *2 (-981))
- (-4 *5 (-220 *4 *2)) (-4 *6 (-220 *3 *2)) (-4 *2 (-520))))
- ((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-343) (-140) (-972 (-528)))) (-4 *5 (-1153 *4))
- (-5 *2 (-2 (|:| |ans| (-387 *5)) (|:| |nosol| (-110))))
- (-5 *1 (-951 *4 *5)) (-5 *3 (-387 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-528))
- (-5 *1 (-428 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-595 *2)) (-4 *2 (-888 *4 *5 *6)) (-4 *4 (-431))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *1 (-428 *4 *5 *6 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-387 (-891 (-159 (-528))))))
- (-5 *2 (-595 (-595 (-275 (-891 (-159 *4)))))) (-5 *1 (-358 *4))
- (-4 *4 (-13 (-343) (-791)))))
+ (-12 (-5 *2 (-594 (-275 *3))) (-4 *1 (-291 *3)) (-4 *3 (-1027))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-275 *3)) (-4 *1 (-291 *3)) (-4 *3 (-1027))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-275 (-387 (-891 (-159 (-528)))))))
- (-5 *2 (-595 (-595 (-275 (-891 (-159 *4)))))) (-5 *1 (-358 *4))
- (-4 *4 (-13 (-343) (-791)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-387 (-891 (-159 (-528)))))
- (-5 *2 (-595 (-275 (-891 (-159 *4))))) (-5 *1 (-358 *4))
- (-4 *4 (-13 (-343) (-791)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-275 (-387 (-891 (-159 (-528))))))
- (-5 *2 (-595 (-275 (-891 (-159 *4))))) (-5 *1 (-358 *4))
- (-4 *4 (-13 (-343) (-791))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-913 *4 *5 *3 *6)) (-4 *4 (-981)) (-4 *5 (-739))
- (-4 *3 (-793)) (-4 *6 (-994 *4 *5 *3)) (-5 *2 (-110)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023)) (-4 *4 (-1023))
- (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-110)))))
-(((*1 *2)
- (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-387 *4))) (-5 *2 (-110)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-635 (-207))) (-5 *4 (-528)) (-5 *5 (-110))
- (-5 *2 (-970)) (-5 *1 (-692)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 *2)) (-4 *2 (-410 *4)) (-5 *1 (-149 *4 *2))
- (-4 *4 (-13 (-793) (-520))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-793)) (-5 *2 (-1104 (-595 *4))) (-5 *1 (-1103 *4))
- (-5 *3 (-595 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-635 *5)) (-4 *5 (-981)) (-5 *1 (-984 *3 *4 *5))
- (-14 *3 (-717)) (-14 *4 (-717)))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-717)) (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-981))
- (-4 *4 (-739)) (-4 *5 (-793)) (-4 *3 (-520)))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-717)) (-4 *3 (-1131)) (-4 *1 (-55 *3 *4 *5))
- (-4 *4 (-353 *3)) (-4 *5 (-353 *3))))
- ((*1 *1) (-5 *1 (-161)))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1078)) (-4 *1 (-369))))
- ((*1 *1) (-5 *1 (-374)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-717)) (-4 *1 (-600 *3)) (-4 *3 (-1131))))
- ((*1 *1)
- (-12 (-4 *3 (-1023)) (-5 *1 (-824 *2 *3 *4)) (-4 *2 (-1023))
- (-4 *4 (-615 *3))))
- ((*1 *1) (-12 (-5 *1 (-828 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1023))))
- ((*1 *1) (-12 (-5 *1 (-1084 *2 *3)) (-14 *2 (-860)) (-4 *3 (-981))))
- ((*1 *1 *1) (-5 *1 (-1095))) ((*1 *1) (-5 *1 (-1095)))
- ((*1 *1) (-5 *1 (-1112))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-568 *5))) (-4 *4 (-793)) (-5 *2 (-568 *5))
- (-5 *1 (-537 *4 *5)) (-4 *5 (-410 *4)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-717)) (-4 *3 (-981)) (-4 *1 (-633 *3 *4 *5))
- (-4 *4 (-353 *3)) (-4 *5 (-353 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-717)) (-4 *1 (-1175 *3)) (-4 *3 (-23)) (-4 *3 (-1131)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-703)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1168 *4)) (-5 *1 (-1170 *4 *2))
- (-4 *4 (-37 (-387 (-528)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1095))
- (-4 *5 (-13 (-793) (-972 (-528)) (-431) (-591 (-528))))
- (-5 *2 (-2 (|:| -2192 *3) (|:| |nconst| *3))) (-5 *1 (-531 *5 *3))
- (-4 *3 (-13 (-27) (-1117) (-410 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-387 (-891 (-528)))))
- (-5 *2
- (-595
- (-2 (|:| |radval| (-296 (-528))) (|:| |radmult| (-528))
- (|:| |radvect| (-595 (-635 (-296 (-528))))))))
- (-5 *1 (-966)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1194 *3)) (-4 *3 (-343)) (-5 *2 (-110)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-343))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
- (-5 *1 (-538 *5 *3)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-831 *4)) (-4 *4 (-1023)) (-4 *2 (-1023))
- (-5 *1 (-828 *4 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4264)) (-4 *1 (-467 *4))
- (-4 *4 (-1131)) (-5 *2 (-110)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-595 (-2 (|:| -2927 *3) (|:| -1780 *4))))
- (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *1 (-1108 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1108 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1023)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-981))
- (-14 *4 (-595 (-1095)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-205 *3 *4)) (-4 *3 (-13 (-981) (-793)))
- (-14 *4 (-595 (-1095))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-149 *3 *2))
- (-4 *2 (-410 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-834))
- (-5 *3
- (-2 (|:| |pde| (-595 (-296 (-207))))
- (|:| |constraints|
- (-595
- (-2 (|:| |start| (-207)) (|:| |finish| (-207))
- (|:| |grid| (-717)) (|:| |boundaryType| (-528))
- (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207))))))
- (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078))
- (|:| |tol| (-207))))
- (-5 *2 (-970)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-991))))
- ((*1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-991)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-981)) (-4 *2 (-633 *4 *5 *6))
- (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1153 *4)) (-4 *5 (-353 *4))
- (-4 *6 (-353 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-655 *3)) (-5 *1 (-773 *2 *3)) (-4 *3 (-981)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-341 *3)) (-4 *3 (-1023))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-528)) (-5 *2 (-717)) (-5 *1 (-366 *4)) (-4 *4 (-1023))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-528)) (-4 *2 (-23)) (-5 *1 (-598 *4 *2 *5))
- (-4 *4 (-1023)) (-14 *5 *2)))
+ (-12 (-5 *3 (-1 *2 (-516))) (-5 *4 (-1100 (-388 (-516)))) (-5 *1 (-292 *2))
+ (-4 *2 (-37 (-388 (-516))))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-594 *4)) (-5 *3 (-594 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-795))
+ (-4 *5 (-162))))
+ ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-795)) (-4 *3 (-162))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-719)) (-5 *4 (-1 *1 *1)) (-4 *1 (-402 *5))
+ (-4 *5 (-795)) (-4 *5 (-984))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-719)) (-5 *4 (-1 *1 (-594 *1)))
+ (-4 *1 (-402 *5)) (-4 *5 (-795)) (-4 *5 (-984))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-594 (-1098))) (-5 *3 (-594 (-719)))
+ (-5 *4 (-594 (-1 *1 (-594 *1)))) (-4 *1 (-402 *5)) (-4 *5 (-795))
+ (-4 *5 (-984))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-594 (-1098))) (-5 *3 (-594 (-719))) (-5 *4 (-594 (-1 *1 *1)))
+ (-4 *1 (-402 *5)) (-4 *5 (-795)) (-4 *5 (-984))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-594 (-111))) (-5 *3 (-594 *1)) (-5 *4 (-1098))
+ (-4 *1 (-402 *5)) (-4 *5 (-795)) (-4 *5 (-572 (-505)))))
+ ((*1 *1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-111)) (-5 *3 (-1098)) (-4 *1 (-402 *4)) (-4 *4 (-795))
+ (-4 *4 (-572 (-505)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-402 *2)) (-4 *2 (-795)) (-4 *2 (-572 (-505)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-594 (-1098))) (-4 *1 (-402 *3)) (-4 *3 (-795))
+ (-4 *3 (-572 (-505)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1098)) (-4 *1 (-402 *3)) (-4 *3 (-795)) (-4 *3 (-572 (-505)))))
+ ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-491 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1134))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-594 *4)) (-5 *3 (-594 *5)) (-4 *1 (-491 *4 *5)) (-4 *4 (-1027))
+ (-4 *5 (-1134))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-780 *3)) (-4 *3 (-344)) (-5 *1 (-667 *3))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-845 *2)) (-4 *2 (-1027))))
+ ((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-388 (-887 *4))) (-5 *3 (-1098)) (-4 *4 (-523))
+ (-5 *1 (-977 *4))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-1098))) (-5 *4 (-594 (-388 (-887 *5))))
+ (-5 *2 (-388 (-887 *5))) (-4 *5 (-523)) (-5 *1 (-977 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-275 (-388 (-887 *4)))) (-5 *2 (-388 (-887 *4))) (-4 *4 (-523))
+ (-5 *1 (-977 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-594 (-275 (-388 (-887 *4))))) (-5 *2 (-388 (-887 *4)))
+ (-4 *4 (-523)) (-5 *1 (-977 *4))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-528)) (-5 *2 (-717)) (-5 *1 (-765 *4)) (-4 *4 (-793)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-635 (-207))) (-5 *4 (-528)) (-5 *2 (-970))
- (-5 *1 (-702)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1144 *3)) (-4 *3 (-1131)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-528))) (-5 *2 (-843 (-528))) (-5 *1 (-856))))
- ((*1 *2) (-12 (-5 *2 (-843 (-528))) (-5 *1 (-856)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-595 (-528))) (-5 *1 (-1033)) (-5 *3 (-528)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-520)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *2 (-994 *3 *4 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 *7)) (-4 *7 (-888 *4 *6 *5))
- (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095))))
- (-4 *6 (-739)) (-5 *2 (-110)) (-5 *1 (-863 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 (-891 *4))) (-4 *4 (-13 (-288) (-140)))
- (-4 *5 (-13 (-793) (-570 (-1095)))) (-4 *6 (-739)) (-5 *2 (-110))
- (-5 *1 (-863 *4 *5 *6 *7)) (-4 *7 (-888 *4 *6 *5)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-528)) (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981))
- (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))))
-(((*1 *2)
- (-12
- (-5 *2 (-2 (|:| -1482 (-595 (-1095))) (|:| -2398 (-595 (-1095)))))
- (-5 *1 (-1133)))))
-(((*1 *2 *2) (-12 (-5 *1 (-628 *2)) (-4 *2 (-1023)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-717)) (-4 *4 (-13 (-981) (-664 (-387 (-528)))))
- (-4 *5 (-793)) (-5 *1 (-1191 *4 *5 *2)) (-4 *2 (-1196 *5 *4)))))
-(((*1 *1) (-5 *1 (-417))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1076 *4)) (-5 *3 (-528)) (-4 *4 (-981))
- (-5 *1 (-1080 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-528)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-981))
- (-14 *4 (-1095)) (-14 *5 *3))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1179)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-860)) (-5 *1 (-965 *2))
- (-4 *2 (-13 (-1023) (-10 -8 (-15 -2275 ($ $ $))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1095)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *1 *1 *1) (-5 *1 (-802))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-595 (-2 (|:| |k| (-620 *3)) (|:| |c| *4))))
- (-5 *1 (-579 *3 *4 *5)) (-4 *3 (-793))
- (-4 *4 (-13 (-162) (-664 (-387 (-528))))) (-14 *5 (-860)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-595 (-860))) (-5 *1 (-1024 *3 *4)) (-14 *3 (-860))
- (-14 *4 (-860)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860))
- (-4 *4 (-981)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-813)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *6)) (-5 *4 (-1095)) (-4 *6 (-410 *5))
- (-4 *5 (-793)) (-5 *2 (-595 (-568 *6))) (-5 *1 (-537 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1097 (-387 (-528)))) (-5 *1 (-174)) (-5 *3 (-528)))))
-(((*1 *1) (-5 *1 (-992))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-110))
- (-4 *6 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-4 *3 (-13 (-27) (-1117) (-410 *6) (-10 -8 (-15 -2222 ($ *7)))))
- (-4 *7 (-791))
- (-4 *8
- (-13 (-1155 *3 *7) (-343) (-1117)
- (-10 -8 (-15 -3235 ($ $)) (-15 -1923 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1078)) (|:| |prob| (-1078))))))
- (-5 *1 (-402 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1078)) (-4 *9 (-920 *8))
- (-14 *10 (-1095)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-528)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *8 (-288))
- (-4 *9 (-888 *8 *6 *7))
- (-5 *2 (-2 (|:| -3292 (-1091 *9)) (|:| |polval| (-1091 *8))))
- (-5 *1 (-689 *6 *7 *8 *9)) (-5 *3 (-1091 *9)) (-5 *4 (-1091 *8)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1177 (-1177 *4))) (-4 *4 (-981)) (-5 *2 (-635 *4))
- (-5 *1 (-964 *4)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-568 *3)) (-5 *5 (-595 *3)) (-5 *6 (-1091 *3))
- (-4 *3 (-13 (-410 *7) (-27) (-1117)))
- (-4 *7 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-595 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-524 *7 *3 *8)) (-4 *8 (-1023))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-568 *3)) (-5 *5 (-595 *3))
- (-5 *6 (-387 (-1091 *3))) (-4 *3 (-13 (-410 *7) (-27) (-1117)))
- (-4 *7 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-595 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-524 *7 *3 *8)) (-4 *8 (-1023)))))
+ (-12 (-4 *1 (-1158 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1076 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-719)) (-4 *1 (-1155 *4)) (-4 *4 (-984)) (-5 *2 (-1179 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-984)) (-5 *2 (-1092 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1092 *3)) (-4 *3 (-984)) (-4 *1 (-1155 *3)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-595 *1)) (|has| *1 (-6 -4265)) (-4 *1 (-946 *3))
- (-4 *3 (-1131)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-866))
- (-5 *2
- (-2 (|:| |brans| (-595 (-595 (-882 (-207)))))
- (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))))
- (-5 *1 (-146))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-866)) (-5 *4 (-387 (-528)))
- (-5 *2
- (-2 (|:| |brans| (-595 (-595 (-882 (-207)))))
- (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))))
- (-5 *1 (-146))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-595 (-595 (-882 (-207)))))
- (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))))
- (-5 *1 (-146)) (-5 *3 (-595 (-882 (-207))))))
+ (|partial| -12 (-5 *2 (-719)) (-4 *1 (-1155 *3)) (-4 *3 (-984)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795))
+ (-5 *2 (-2 (|:| -2046 *1) (|:| -3166 *1))) (-4 *1 (-891 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-984)) (-5 *2 (-2 (|:| -2046 *1) (|:| -3166 *1)))
+ (-4 *1 (-1155 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-719)) (-4 *4 (-984)) (-5 *2 (-2 (|:| -2046 *1) (|:| -3166 *1)))
+ (-4 *1 (-1155 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1155 *3)) (-4 *3 (-984)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1155 *3)) (-4 *3 (-984)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-984)))))
+(((*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-155 *3 *2)) (-4 *3 (-156 *2))))
((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-595 (-595 (-882 (-207)))))
- (|:| |xValues| (-1018 (-207))) (|:| |yValues| (-1018 (-207)))))
- (-5 *1 (-146)) (-5 *3 (-595 (-595 (-882 (-207)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-595 (-1018 (-359)))) (-5 *1 (-244))))
- ((*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-244)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-111 *3)) (-4 *3 (-793)) (-4 *3 (-1023)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4))
- (-4 *3 (-347 *4))))
- ((*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1177 (-595 (-2 (|:| -3327 *4) (|:| -3108 (-1042))))))
- (-4 *4 (-329)) (-5 *2 (-717)) (-5 *1 (-326 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-717)) (-5 *1 (-331 *3 *4)) (-14 *3 (-860))
- (-14 *4 (-860))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-351 *2 *4)) (-4 *4 (-1155 *2))
+ (-4 *2 (-162))))
((*1 *2)
- (-12 (-5 *2 (-717)) (-5 *1 (-332 *3 *4)) (-4 *3 (-329))
- (-14 *4
- (-3 (-1091 *3)
- (-1177 (-595 (-2 (|:| -3327 *3) (|:| -3108 (-1042)))))))))
+ (-12 (-4 *4 (-1155 *2)) (-4 *2 (-162)) (-5 *1 (-390 *3 *2 *4))
+ (-4 *3 (-391 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1155 *2)) (-4 *2 (-162))))
((*1 *2)
- (-12 (-5 *2 (-717)) (-5 *1 (-333 *3 *4)) (-4 *3 (-329))
- (-14 *4 (-860)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-347 *2)) (-4 *2 (-520)) (-4 *2 (-162)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-981)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-970)) (-5 *1 (-286))))
- ((*1 *2 *3) (-12 (-5 *3 (-595 (-970))) (-5 *2 (-970)) (-5 *1 (-286))))
- ((*1 *1 *2) (-12 (-5 *2 (-595 *1)) (-4 *1 (-600 *3)) (-4 *3 (-1131))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-1131))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-1131))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-600 *2)) (-4 *2 (-1131))))
- ((*1 *1 *1 *1) (-5 *1 (-992)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1076 (-1076 *4))) (-5 *2 (-1076 *4)) (-5 *1 (-1073 *4))
- (-4 *4 (-1131))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1131))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1131)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-981)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-717)) (-4 *4 (-981)) (-5 *1 (-1149 *4 *2))
- (-4 *2 (-1153 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-595 (-480 *3 *4 *5 *6))) (-4 *3 (-343)) (-4 *4 (-739))
- (-4 *5 (-793)) (-5 *1 (-480 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5))))
+ (-12 (-4 *3 (-1155 *2)) (-5 *2 (-516)) (-5 *1 (-716 *3 *4))
+ (-4 *4 (-391 *2 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-891 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795))
+ (-4 *3 (-162))))
+ ((*1 *2 *3) (-12 (-4 *2 (-523)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1155 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-984)) (-4 *2 (-162)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-891 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795))
+ (-4 *3 (-162))))
+ ((*1 *2 *3 *3) (-12 (-4 *2 (-523)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1155 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-343)) (-4 *3 (-739)) (-4 *4 (-793))
- (-5 *1 (-480 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-595 *1)) (-4 *1 (-999 *4 *5 *6 *3)) (-4 *4 (-431))
- (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-595 *1)) (-5 *3 (-595 *7)) (-4 *1 (-999 *4 *5 *6 *7))
- (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-431))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-595 *1))
- (-4 *1 (-999 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-595 *1))
- (-4 *1 (-999 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1023)))))
-(((*1 *1 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-21)) (-4 *2 (-1131)))))
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-4 *2 (-523))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-984)) (-4 *2 (-162)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-523)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1155 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-4 *2 (-523))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-984)) (-4 *2 (-523)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 *1)) (-4 *1 (-1059 *3)) (-4 *3 (-984))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-388 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-984))
+ (-4 *3 (-523))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1155 *2)) (-4 *2 (-984)) (-4 *2 (-523)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-984)) (-4 *2 (-523)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1091 *3)) (-5 *1 (-853 *3)) (-4 *3 (-288)))))
+ (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| -4229 *4) (|:| -2046 *3) (|:| -3166 *3)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-2 (|:| -2046 *1) (|:| -3166 *1))) (-4 *1 (-997 *3 *4 *5))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-523)) (-4 *3 (-984))
+ (-5 *2 (-2 (|:| -4229 *3) (|:| -2046 *1) (|:| -3166 *1)))
+ (-4 *1 (-1155 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-860)) (-5 *2 (-1091 *4)) (-5 *1 (-547 *4))
- (-4 *4 (-329)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-296 *3)) (-4 *3 (-520)) (-4 *3 (-793)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-140))
- (-4 *3 (-288)) (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *1 (-914 *3 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1078)) (-5 *1 (-732)))))
+ (-12 (-4 *4 (-344)) (-4 *4 (-523)) (-4 *5 (-1155 *4))
+ (-5 *2 (-2 (|:| -1834 (-578 *4 *5)) (|:| -1833 (-388 *5))))
+ (-5 *1 (-578 *4 *5)) (-5 *3 (-388 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-594 (-1087 *3 *4))) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860))
+ (-4 *4 (-984))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-432)) (-4 *3 (-984))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1155 *3)))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-719)) (-4 *4 (-984)) (-5 *1 (-1153 *4 *2)) (-4 *2 (-1155 *4)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1155 *3)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1155 *3)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-520))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2088 *3)))
- (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)) (-4 *2 (-431)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-992)) (-5 *3 (-1078)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-244))) (-5 *4 (-1095)) (-5 *2 (-110))
- (-5 *1 (-244)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-635 *5))) (-5 *4 (-528)) (-4 *5 (-343))
- (-4 *5 (-981)) (-5 *2 (-110)) (-5 *1 (-964 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 (-635 *4))) (-4 *4 (-343)) (-4 *4 (-981))
- (-5 *2 (-110)) (-5 *1 (-964 *4)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-595 (-891 *3))) (-4 *3 (-431))
- (-5 *1 (-340 *3 *4)) (-14 *4 (-595 (-1095)))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-595 (-726 *3 (-804 *4)))) (-4 *3 (-431))
- (-14 *4 (-595 (-1095))) (-5 *1 (-580 *3 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-110) *6 *6)) (-4 *6 (-793)) (-5 *4 (-595 *6))
- (-5 *2 (-2 (|:| |fs| (-110)) (|:| |sd| *4) (|:| |td| (-595 *4))))
- (-5 *1 (-1103 *6)) (-5 *5 (-595 *4)))))
+ (|partial| -12 (-4 *4 (-523)) (-5 *2 (-2 (|:| -2046 *3) (|:| -3166 *3)))
+ (-5 *1 (-1152 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-595 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-507 *4 *2 *5 *6))
- (-4 *4 (-288)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-717))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-387 (-891 *3))) (-5 *1 (-432 *3 *4 *5 *6))
- (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-595 (-51))) (-5 *1 (-831 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-207)) (-5 *4 (-528))
- (-5 *5 (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305)))) (-5 *2 (-970))
- (-5 *1 (-695)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1076 (-595 (-528)))) (-5 *1 (-822)) (-5 *3 (-528)))))
-(((*1 *2) (-12 (-5 *2 (-1067 (-1078))) (-5 *1 (-371)))))
+ (-12 (-4 *4 (-13 (-523) (-140))) (-5 *2 (-594 *3)) (-5 *1 (-1151 *4 *3))
+ (-4 *3 (-1155 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-528))) (-5 *1 (-979)))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-635 (-207))) (-5 *5 (-635 (-528))) (-5 *3 (-528))
- (-5 *2 (-970)) (-5 *1 (-703)))))
+ (|partial| -12 (-4 *4 (-13 (-523) (-140)))
+ (-5 *2 (-2 (|:| -3397 *3) (|:| -3396 *3))) (-5 *1 (-1151 *4 *3))
+ (-4 *3 (-1155 *4)))))
(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-343)) (-5 *1 (-713 *2 *3)) (-4 *2 (-655 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-343)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1131))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-818 *2)) (-4 *2 (-1131))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-595 (-882 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 (-882 *3))) (-4 *3 (-981)) (-4 *1 (-1056 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-595 (-595 *3))) (-4 *1 (-1056 *3)) (-4 *3 (-981))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-595 (-882 *3))) (-4 *1 (-1056 *3)) (-4 *3 (-981)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-702)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-865)))))
-(((*1 *2)
- (-12 (-4 *4 (-343)) (-5 *2 (-717)) (-5 *1 (-308 *3 *4))
- (-4 *3 (-309 *4))))
- ((*1 *2) (-12 (-4 *1 (-1194 *3)) (-4 *3 (-343)) (-5 *2 (-717)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-860)) (-5 *2 (-1091 *4)) (-5 *1 (-337 *4))
- (-4 *4 (-329)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1131)) (-4 *2 (-793))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-263 *3)) (-4 *3 (-1131))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-793)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-699)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1076 (-528))) (-5 *1 (-940 *3)) (-14 *3 (-528)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1372 *4)))
- (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1097 (-387 (-528)))) (-5 *1 (-174)))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-595 *3)) (-5 *5 (-860)) (-4 *3 (-1153 *4))
- (-4 *4 (-288)) (-5 *1 (-439 *4 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-424 *3)) (-4 *3 (-981)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-595 (-528))) (-5 *1 (-1033)) (-5 *3 (-528)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1078)) (-5 *5 (-635 (-207))) (-5 *6 (-207))
- (-5 *7 (-635 (-528))) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-699)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-717)) (-5 *2 (-110))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-110)) (-5 *1 (-1132 *3)) (-4 *3 (-1023))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *3 (-1023)) (-5 *2 (-110))
- (-5 *1 (-1132 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-813)) (-5 *3 (-595 (-244))) (-5 *1 (-242)))))
+ (|partial| -12 (-4 *3 (-13 (-523) (-140))) (-5 *1 (-1151 *3 *2))
+ (-4 *2 (-1155 *3)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-719)) (-4 *4 (-13 (-523) (-140)))
+ (-5 *1 (-1151 *4 *2)) (-4 *2 (-1155 *4)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-719)) (-4 *4 (-13 (-523) (-140)))
+ (-5 *1 (-1151 *4 *2)) (-4 *2 (-1155 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-1095))) (-5 *2 (-1182)) (-5 *1 (-1133))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-595 (-1095))) (-5 *2 (-1182)) (-5 *1 (-1133)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-766)) (-14 *5 (-1095))
- (-5 *2 (-528)) (-5 *1 (-1037 *4 *5)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-528)) (-5 *5 (-635 (-207)))
- (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-68 APROD)))) (-5 *4 (-207))
- (-5 *2 (-970)) (-5 *1 (-703)))))
+ (-12 (-4 *4 (-523)) (-4 *5 (-931 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-135 *4 *5 *3))
+ (-4 *3 (-353 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-4 *5 (-931 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-481 *4 *5 *6 *3))
+ (-4 *6 (-353 *4)) (-4 *3 (-353 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 *5)) (-4 *5 (-931 *4)) (-4 *4 (-523))
+ (-5 *2 (-2 (|:| |num| (-637 *4)) (|:| |den| *4))) (-5 *1 (-641 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *6 (-1155 *5))
+ (-5 *2 (-2 (|:| -3537 *7) (|:| |rh| (-594 (-388 *6)))))
+ (-5 *1 (-755 *5 *6 *7 *3)) (-5 *4 (-594 (-388 *6))) (-4 *7 (-609 *6))
+ (-4 *3 (-609 (-388 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-4 *5 (-931 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1150 *4 *5 *3))
+ (-4 *3 (-1155 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-431)) (-4 *3 (-793)) (-4 *3 (-972 (-528)))
- (-4 *3 (-520)) (-5 *1 (-40 *3 *2)) (-4 *2 (-410 *3))
- (-4 *2
- (-13 (-343) (-283)
- (-10 -8 (-15 -3031 ((-1047 *3 (-568 $)) $))
- (-15 -3042 ((-1047 *3 (-568 $)) $))
- (-15 -2222 ($ (-1047 *3 (-568 $))))))))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1095)) (-4 *4 (-981)) (-4 *4 (-793))
- (-5 *2 (-2 (|:| |var| (-568 *1)) (|:| -2564 (-528))))
- (-4 *1 (-410 *4))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-112)) (-4 *4 (-981)) (-4 *4 (-793))
- (-5 *2 (-2 (|:| |var| (-568 *1)) (|:| -2564 (-528))))
- (-4 *1 (-410 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1035)) (-4 *3 (-793))
- (-5 *2 (-2 (|:| |var| (-568 *1)) (|:| -2564 (-528))))
- (-4 *1 (-410 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-831 *3)) (|:| -2564 (-717))))
- (-5 *1 (-831 *3)) (-4 *3 (-1023))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *5 (-793)) (-5 *2 (-2 (|:| |var| *5) (|:| -2564 (-717))))))
+ (-12 (-4 *3 (-523)) (-4 *4 (-931 *3)) (-5 *1 (-135 *3 *4 *2))
+ (-4 *2 (-353 *4))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-981))
- (-4 *7 (-888 *6 *4 *5))
- (-5 *2 (-2 (|:| |var| *5) (|:| -2564 (-528))))
- (-5 *1 (-889 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-343)
- (-10 -8 (-15 -2222 ($ *7)) (-15 -3031 (*7 $))
- (-15 -3042 (*7 $))))))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-528)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-717)) (-4 *5 (-162))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-528)) (-14 *3 (-717))
- (-4 *4 (-162))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2))
- (-4 *4 (-353 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-981)) (-4 *1 (-633 *3 *2 *4)) (-4 *2 (-353 *3))
- (-4 *4 (-353 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-717)) (-4 *3 (-981)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-891 (-528))) (-5 *2 (-595 *1)) (-4 *1 (-948))))
+ (-12 (-4 *4 (-523)) (-4 *5 (-931 *4)) (-4 *2 (-353 *4))
+ (-5 *1 (-481 *4 *5 *2 *3)) (-4 *3 (-353 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-891 (-387 (-528)))) (-5 *2 (-595 *1)) (-4 *1 (-948))))
- ((*1 *2 *3) (-12 (-5 *3 (-891 *1)) (-4 *1 (-948)) (-5 *2 (-595 *1))))
+ (-12 (-5 *3 (-637 *5)) (-4 *5 (-931 *4)) (-4 *4 (-523)) (-5 *2 (-637 *4))
+ (-5 *1 (-641 *4 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-523)) (-4 *4 (-931 *3)) (-5 *1 (-1150 *3 *4 *2))
+ (-4 *2 (-1155 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-931 *2)) (-4 *2 (-523)) (-5 *1 (-135 *2 *4 *3))
+ (-4 *3 (-353 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1091 (-528))) (-5 *2 (-595 *1)) (-4 *1 (-948))))
+ (-12 (-4 *4 (-931 *2)) (-4 *2 (-523)) (-5 *1 (-481 *2 *4 *5 *3))
+ (-4 *5 (-353 *2)) (-4 *3 (-353 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1091 (-387 (-528)))) (-5 *2 (-595 *1)) (-4 *1 (-948))))
- ((*1 *2 *3) (-12 (-5 *3 (-1091 *1)) (-4 *1 (-948)) (-5 *2 (-595 *1))))
+ (-12 (-5 *3 (-637 *4)) (-4 *4 (-931 *2)) (-4 *2 (-523))
+ (-5 *1 (-641 *2 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-791) (-343))) (-4 *3 (-1153 *4)) (-5 *2 (-595 *1))
- (-4 *1 (-996 *4 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-296 (-159 (-359)))) (-5 *1 (-310))))
- ((*1 *1 *2) (-12 (-5 *2 (-296 (-528))) (-5 *1 (-310))))
- ((*1 *1 *2) (-12 (-5 *2 (-296 (-359))) (-5 *1 (-310))))
- ((*1 *1 *2) (-12 (-5 *2 (-296 (-640))) (-5 *1 (-310))))
- ((*1 *1 *2) (-12 (-5 *2 (-296 (-647))) (-5 *1 (-310))))
- ((*1 *1 *2) (-12 (-5 *2 (-296 (-645))) (-5 *1 (-310))))
- ((*1 *1) (-5 *1 (-310))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-306 *3 *4)) (-4 *3 (-981)) (-4 *4 (-738))
- (-5 *2 (-595 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-362 *3 *4)) (-4 *3 (-981)) (-4 *4 (-1023))
- (-5 *2 (-595 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-554 *3)) (-4 *3 (-981))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-595 *3)) (-5 *1 (-682 *3 *4)) (-4 *3 (-981))
- (-4 *4 (-673))))
- ((*1 *2 *1) (-12 (-4 *1 (-795 *3)) (-4 *3 (-981)) (-5 *2 (-595 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1168 *3)) (-4 *3 (-981)) (-5 *2 (-1076 *3)))))
+ (-12 (-4 *4 (-931 *2)) (-4 *2 (-523)) (-5 *1 (-1150 *2 *4 *3))
+ (-4 *3 (-1155 *4)))))
+(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-719)) (-5 *1 (-729 *3)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-897 *3 *2)) (-4 *2 (-128)) (-4 *3 (-523)) (-4 *3 (-984))
+ (-4 *2 (-740))))
+ ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1092 *3)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-911)) (-4 *2 (-128)) (-5 *1 (-1100 *3)) (-4 *3 (-523))
+ (-4 *3 (-984))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-719)) (-5 *1 (-1148 *4 *3)) (-14 *4 (-1098)) (-4 *3 (-984)))))
+(((*1 *1 *1) (-5 *1 (-805))) ((*1 *1 *1 *1) (-5 *1 (-805)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1017 *3)) (-5 *1 (-1019 *3)) (-4 *3 (-1134))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1146 *3)) (-4 *3 (-1134)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1091 (-891 *6))) (-4 *6 (-520))
- (-4 *2 (-888 (-387 (-891 *6)) *5 *4)) (-5 *1 (-679 *5 *4 *6 *2))
- (-4 *5 (-739))
- (-4 *4 (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $))))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-999 *4 *5 *6 *3)) (-4 *4 (-431)) (-4 *5 (-739))
- (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *3 (-994 *4 *5 *6))
- (-5 *2 (-595 (-2 (|:| |val| (-110)) (|:| -2316 *1))))
- (-4 *1 (-999 *4 *5 *6 *3)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-520)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *2 (-994 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-207)) (-5 *1 (-238)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-595 *4)) (-4 *4 (-1023)) (-4 *4 (-1131)) (-5 *2 (-110))
- (-5 *1 (-1076 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-353 *3))
- (-4 *5 (-353 *3)) (-5 *2 (-595 *3))))
- ((*1 *2 *1)
- (-12 (|has| *1 (-6 -4264)) (-4 *1 (-467 *3)) (-4 *3 (-1131))
- (-5 *2 (-595 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-717)) (-5 *3 (-110)) (-5 *1 (-108))))
- ((*1 *2 *2) (-12 (-5 *2 (-860)) (|has| *1 (-6 -4255)) (-4 *1 (-384))))
- ((*1 *2) (-12 (-4 *1 (-384)) (-5 *2 (-860)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-994 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *2 (-793))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-717)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-739)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-431)) (-4 *6 (-793))
- (-5 *2 (-110)) (-5 *1 (-428 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
+ (-12 (-5 *4 (-110))
+ (-5 *2
+ (-2 (|:| |contp| (-516))
+ (|:| -2701 (-594 (-2 (|:| |irr| *3) (|:| -2421 (-516)))))))
+ (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-110))
+ (-5 *2
+ (-2 (|:| |contp| (-516))
+ (|:| -2701 (-594 (-2 (|:| |irr| *3) (|:| -2421 (-516)))))))
+ (-5 *1 (-1145 *3)) (-4 *3 (-1155 (-516))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-848)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-398 (-1091 *7)))
- (-5 *1 (-845 *4 *5 *6 *7)) (-5 *3 (-1091 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-848)) (-4 *5 (-1153 *4)) (-5 *2 (-398 (-1091 *5)))
- (-5 *1 (-846 *4 *5)) (-5 *3 (-1091 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-925 *4 *5 *6 *7 *3))
- (-4 *3 (-999 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-331)) (-5 *2 (-386 *3)) (-5 *1 (-200 *4 *3))
+ (-4 *3 (-1155 *4))))
+ ((*1 *2 *3) (-12 (-5 *2 (-386 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 *3)) (-4 *3 (-999 *5 *6 *7 *8)) (-4 *5 (-431))
- (-4 *6 (-739)) (-4 *7 (-793)) (-4 *8 (-994 *5 *6 *7)) (-5 *2 (-110))
- (-5 *1 (-925 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-110))
- (-5 *1 (-1030 *4 *5 *6 *7 *3)) (-4 *3 (-999 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 *3)) (-4 *3 (-999 *5 *6 *7 *8)) (-4 *5 (-431))
- (-4 *6 (-739)) (-4 *7 (-793)) (-4 *8 (-994 *5 *6 *7)) (-5 *2 (-110))
- (-5 *1 (-1030 *5 *6 *7 *8 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1064)) (-5 *2 (-134))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1064)) (-5 *2 (-137)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-387 (-891 *5))) (-5 *4 (-1095))
- (-4 *5 (-13 (-288) (-793) (-140))) (-5 *2 (-595 (-275 (-296 *5))))
- (-5 *1 (-1051 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-387 (-891 *4))) (-4 *4 (-13 (-288) (-793) (-140)))
- (-5 *2 (-595 (-275 (-296 *4)))) (-5 *1 (-1051 *4))))
+ (-12 (-5 *4 (-719)) (-5 *2 (-386 *3)) (-5 *1 (-422 *3))
+ (-4 *3 (-1155 (-516)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-275 (-387 (-891 *5)))) (-5 *4 (-1095))
- (-4 *5 (-13 (-288) (-793) (-140))) (-5 *2 (-595 (-275 (-296 *5))))
- (-5 *1 (-1051 *5))))
+ (-12 (-5 *4 (-594 (-719))) (-5 *2 (-386 *3)) (-5 *1 (-422 *3))
+ (-4 *3 (-1155 (-516)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-594 (-719))) (-5 *5 (-719)) (-5 *2 (-386 *3)) (-5 *1 (-422 *3))
+ (-4 *3 (-1155 (-516)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-719)) (-5 *2 (-386 *3)) (-5 *1 (-422 *3))
+ (-4 *3 (-1155 (-516)))))
((*1 *2 *3)
- (-12 (-5 *3 (-275 (-387 (-891 *4))))
- (-4 *4 (-13 (-288) (-793) (-140))) (-5 *2 (-595 (-275 (-296 *4))))
- (-5 *1 (-1051 *4))))
+ (-12 (-5 *2 (-386 *3)) (-5 *1 (-946 *3)) (-4 *3 (-1155 (-388 (-516))))))
+ ((*1 *2 *3) (-12 (-5 *2 (-386 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-1155 (-516))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-594 (-47))) (-5 *2 (-386 *3)) (-5 *1 (-38 *3))
+ (-4 *3 (-1155 (-47)))))
+ ((*1 *2 *3) (-12 (-5 *2 (-386 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1155 (-47)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-594 (-47))) (-4 *5 (-795)) (-4 *6 (-741)) (-5 *2 (-386 *3))
+ (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-891 (-47) *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-387 (-891 *5)))) (-5 *4 (-595 (-1095)))
- (-4 *5 (-13 (-288) (-793) (-140)))
- (-5 *2 (-595 (-595 (-275 (-296 *5))))) (-5 *1 (-1051 *5))))
+ (-12 (-5 *4 (-594 (-47))) (-4 *5 (-795)) (-4 *6 (-741))
+ (-4 *7 (-891 (-47) *6 *5)) (-5 *2 (-386 (-1092 *7))) (-5 *1 (-41 *5 *6 *7))
+ (-5 *3 (-1092 *7))))
((*1 *2 *3)
- (-12 (-5 *3 (-595 (-387 (-891 *4))))
- (-4 *4 (-13 (-288) (-793) (-140)))
- (-5 *2 (-595 (-595 (-275 (-296 *4))))) (-5 *1 (-1051 *4))))
+ (-12 (-4 *4 (-289)) (-5 *2 (-386 *3)) (-5 *1 (-157 *4 *3))
+ (-4 *3 (-1155 (-158 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-110)) (-4 *4 (-13 (-344) (-793))) (-5 *2 (-386 *3))
+ (-5 *1 (-169 *4 *3)) (-4 *3 (-1155 (-158 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-275 (-387 (-891 *5))))) (-5 *4 (-595 (-1095)))
- (-4 *5 (-13 (-288) (-793) (-140)))
- (-5 *2 (-595 (-595 (-275 (-296 *5))))) (-5 *1 (-1051 *5))))
+ (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-386 *3)) (-5 *1 (-169 *4 *3))
+ (-4 *3 (-1155 (-158 *4)))))
((*1 *2 *3)
- (-12 (-5 *3 (-595 (-275 (-387 (-891 *4)))))
- (-4 *4 (-13 (-288) (-793) (-140)))
- (-5 *2 (-595 (-595 (-275 (-296 *4))))) (-5 *1 (-1051 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-802))) ((*1 *1 *1) (-5 *1 (-802)))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1091 (-528))) (-5 *3 (-528)) (-4 *1 (-808 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-802))))
- ((*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1182)) (-5 *1 (-900)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-860)) (-5 *4 (-207)) (-5 *5 (-528)) (-5 *6 (-813))
- (-5 *2 (-1182)) (-5 *1 (-1178)))))
-(((*1 *1) (-5 *1 (-417))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-801))))
- ((*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-903))))
- ((*1 *2 *1) (-12 (-5 *2 (-1078)) (-5 *1 (-926))))
- ((*1 *2 *1) (-12 (-4 *1 (-946 *2)) (-4 *2 (-1131))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1023) (-33))) (-5 *1 (-1060 *2 *3))
- (-4 *3 (-13 (-1023) (-33))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-347 *2)) (-4 *2 (-162))))
- ((*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-396 *3 *2)) (-4 *3 (-397 *2))))
- ((*1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-162)))))
-(((*1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-130)))))
-(((*1 *1 *1 *1) (-5 *1 (-802))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-602 (-387 *2))) (-4 *2 (-1153 *4)) (-5 *1 (-756 *4 *2))
- (-4 *4 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528)))))))
+ (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-386 *3)) (-5 *1 (-169 *4 *3))
+ (-4 *3 (-1155 (-158 *4)))))
((*1 *2 *3)
- (-12 (-5 *3 (-603 *2 (-387 *2))) (-4 *2 (-1153 *4))
- (-5 *1 (-756 *4 *2))
- (-4 *4 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528))))))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-398 *2)) (-4 *2 (-520)))))
-(((*1 *1 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-981))
- (-4 *2 (-1137 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-288) (-140))) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-595 (-595 *7)))
- (-5 *1 (-427 *4 *5 *6 *7)) (-5 *3 (-595 *7))))
+ (-12 (-4 *4 (-331)) (-5 *2 (-386 *3)) (-5 *1 (-200 *4 *3))
+ (-4 *3 (-1155 *4))))
+ ((*1 *2 *3) (-12 (-5 *2 (-386 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-288) (-140))) (-4 *6 (-739))
- (-4 *7 (-793)) (-4 *8 (-888 *5 *6 *7)) (-5 *2 (-595 (-595 *8)))
- (-5 *1 (-427 *5 *6 *7 *8)) (-5 *3 (-595 *8)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-595 *3)) (-4 *3 (-1153 (-528))) (-5 *1 (-464 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-802))))
-(((*1 *1) (-5 *1 (-1179))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-528))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-717)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-739)) (-4 *4 (-888 *5 *6 *7)) (-4 *5 (-431)) (-4 *7 (-793))
- (-5 *1 (-428 *5 *6 *7 *4)))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-717)) (-5 *1 (-623 *2)) (-4 *2 (-1023)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1160 *3 *4)) (-4 *3 (-981)) (-4 *4 (-1137 *3))
- (-5 *2 (-387 (-528))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *2 (-520)) (-4 *3 (-739))
- (-4 *4 (-793)) (-4 *5 (-994 *2 *3 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-802))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-978 *4 *5)) (-4 *4 (-13 (-791) (-288) (-140) (-957)))
- (-14 *5 (-595 (-1095)))
- (-5 *2
- (-595 (-2 (|:| -1697 (-1091 *4)) (|:| -4243 (-595 (-891 *4))))))
- (-5 *1 (-1201 *4 *5 *6)) (-14 *6 (-595 (-1095)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-791) (-288) (-140) (-957)))
- (-5 *2
- (-595 (-2 (|:| -1697 (-1091 *5)) (|:| -4243 (-595 (-891 *5))))))
- (-5 *1 (-1201 *5 *6 *7)) (-5 *3 (-595 (-891 *5)))
- (-14 *6 (-595 (-1095))) (-14 *7 (-595 (-1095)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-791) (-288) (-140) (-957)))
- (-5 *2
- (-595 (-2 (|:| -1697 (-1091 *5)) (|:| -4243 (-595 (-891 *5))))))
- (-5 *1 (-1201 *5 *6 *7)) (-5 *3 (-595 (-891 *5)))
- (-14 *6 (-595 (-1095))) (-14 *7 (-595 (-1095)))))
+ (-12 (-5 *4 (-719)) (-5 *2 (-386 *3)) (-5 *1 (-422 *3))
+ (-4 *3 (-1155 (-516)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-791) (-288) (-140) (-957)))
- (-5 *2
- (-595 (-2 (|:| -1697 (-1091 *5)) (|:| -4243 (-595 (-891 *5))))))
- (-5 *1 (-1201 *5 *6 *7)) (-5 *3 (-595 (-891 *5)))
- (-14 *6 (-595 (-1095))) (-14 *7 (-595 (-1095)))))
+ (-12 (-5 *4 (-594 (-719))) (-5 *2 (-386 *3)) (-5 *1 (-422 *3))
+ (-4 *3 (-1155 (-516)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-594 (-719))) (-5 *5 (-719)) (-5 *2 (-386 *3)) (-5 *1 (-422 *3))
+ (-4 *3 (-1155 (-516)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-719)) (-5 *2 (-386 *3)) (-5 *1 (-422 *3))
+ (-4 *3 (-1155 (-516)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-791) (-288) (-140) (-957)))
- (-5 *2
- (-595 (-2 (|:| -1697 (-1091 *4)) (|:| -4243 (-595 (-891 *4))))))
- (-5 *1 (-1201 *4 *5 *6)) (-5 *3 (-595 (-891 *4)))
- (-14 *5 (-595 (-1095))) (-14 *6 (-595 (-1095))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-528)) (-5 *1 (-1076 *3)) (-4 *3 (-1131))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4265)) (-4 *1 (-1165 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-528)) (-5 *2 (-1182)) (-5 *1 (-1179))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-359)) (-5 *2 (-1182)) (-5 *1 (-1179)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-359)) (-5 *1 (-732)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-717)) (-5 *4 (-528)) (-5 *1 (-424 *2)) (-4 *2 (-981)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-717)) (-5 *2 (-1 (-1076 (-891 *4)) (-1076 (-891 *4))))
- (-5 *1 (-1185 *4)) (-4 *4 (-343)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1177 (-296 (-207)))) (-5 *4 (-595 (-1095)))
- (-5 *2 (-635 (-296 (-207)))) (-5 *1 (-189))))
+ (-12 (-5 *2 (-386 (-158 (-516)))) (-5 *1 (-426)) (-5 *3 (-158 (-516)))))
+ ((*1 *2 *3)
+ (-12
+ (-4 *4
+ (-13 (-795)
+ (-10 -8 (-15 -4246 ((-1098) $)) (-15 -4110 ((-3 $ "failed") (-1098))))))
+ (-4 *5 (-741)) (-4 *7 (-523)) (-5 *2 (-386 *3))
+ (-5 *1 (-436 *4 *5 *6 *7 *3)) (-4 *6 (-523)) (-4 *3 (-891 *7 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-289)) (-5 *2 (-386 (-1092 *4))) (-5 *1 (-438 *4))
+ (-5 *3 (-1092 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1023)) (-4 *6 (-839 *5)) (-5 *2 (-635 *6))
- (-5 *1 (-638 *5 *6 *3 *4)) (-4 *3 (-353 *6))
- (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4264)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-628 *2)) (-4 *2 (-1023))))
+ (-12 (-5 *4 (-1 (-386 *6) *6)) (-4 *6 (-1155 *5)) (-4 *5 (-344))
+ (-4 *7 (-13 (-344) (-140) (-673 *5 *6))) (-5 *2 (-386 *3))
+ (-5 *1 (-472 *5 *6 *7 *3)) (-4 *3 (-1155 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-595 *5) (-595 *5))) (-5 *4 (-528))
- (-5 *2 (-595 *5)) (-5 *1 (-628 *5)) (-4 *5 (-1023)))))
-(((*1 *2 *1) (-12 (-5 *2 (-595 (-595 (-882 (-207))))) (-5 *1 (-447)))))
-(((*1 *2 *1) (-12 (-4 *1 (-946 *3)) (-4 *3 (-1131)) (-5 *2 (-595 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-595 (-568 (-47)))) (-5 *1 (-47))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-568 (-47))) (-5 *1 (-47))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1091 (-47))) (-5 *3 (-595 (-568 (-47)))) (-5 *1 (-47))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1091 (-47))) (-5 *3 (-568 (-47))) (-5 *1 (-47))))
- ((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162))))
+ (-12 (-5 *4 (-1 (-386 (-1092 *7)) (-1092 *7))) (-4 *7 (-13 (-289) (-140)))
+ (-4 *5 (-795)) (-4 *6 (-741)) (-5 *2 (-386 *3)) (-5 *1 (-510 *5 *6 *7 *3))
+ (-4 *3 (-891 *7 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-386 (-1092 *7)) (-1092 *7))) (-4 *7 (-13 (-289) (-140)))
+ (-4 *5 (-795)) (-4 *6 (-741)) (-4 *8 (-891 *7 *6 *5))
+ (-5 *2 (-386 (-1092 *8))) (-5 *1 (-510 *5 *6 *7 *8)) (-5 *3 (-1092 *8))))
+ ((*1 *2 *3) (-12 (-5 *2 (-386 *3)) (-5 *1 (-525 *3)) (-4 *3 (-515))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-594 *5) *6))
+ (-4 *5 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516)))))
+ (-4 *6 (-1155 *5)) (-5 *2 (-594 (-606 (-388 *6)))) (-5 *1 (-610 *5 *6))
+ (-5 *3 (-606 (-388 *6)))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-343) (-791))) (-5 *1 (-169 *2 *3))
- (-4 *3 (-1153 (-159 *2)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-860)) (-4 *1 (-309 *3)) (-4 *3 (-343)) (-4 *3 (-348))))
- ((*1 *2 *1) (-12 (-4 *1 (-309 *2)) (-4 *2 (-343))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-350 *2 *3)) (-4 *3 (-1153 *2)) (-4 *2 (-162))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1153 *2)) (-4 *2 (-929 *3)) (-5 *1 (-393 *3 *2 *4 *5))
- (-4 *3 (-288)) (-4 *5 (-13 (-389 *2 *4) (-972 *2)))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1153 *2)) (-4 *2 (-929 *3))
- (-5 *1 (-394 *3 *2 *4 *5 *6)) (-4 *3 (-288)) (-4 *5 (-389 *2 *4))
- (-14 *6 (-1177 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-860)) (-4 *5 (-981))
- (-4 *2 (-13 (-384) (-972 *5) (-343) (-1117) (-265)))
- (-5 *1 (-422 *5 *3 *2)) (-4 *3 (-1153 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-595 (-568 (-471)))) (-5 *1 (-471))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-568 (-471))) (-5 *1 (-471))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1091 (-471))) (-5 *3 (-595 (-568 (-471))))
- (-5 *1 (-471))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1091 (-471))) (-5 *3 (-568 (-471))) (-5 *1 (-471))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1177 *4)) (-5 *3 (-860)) (-4 *4 (-329))
- (-5 *1 (-498 *4))))
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516)))))
+ (-4 *5 (-1155 *4)) (-5 *2 (-594 (-606 (-388 *5)))) (-5 *1 (-610 *4 *5))
+ (-5 *3 (-606 (-388 *5)))))
((*1 *2 *3)
- (-12 (-4 *4 (-431)) (-4 *5 (-671 *4 *2)) (-4 *2 (-1153 *4))
- (-5 *1 (-721 *4 *2 *5 *3)) (-4 *3 (-1153 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162))))
- ((*1 *2 *1) (-12 (-4 *1 (-933 *2)) (-4 *2 (-162))))
- ((*1 *1 *1) (-4 *1 (-989))))
-(((*1 *1 *1) (|partial| -4 *1 (-1071))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1177 *1)) (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135))
- (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-860)) (-5 *2 (-1182)) (-5 *1 (-197 *4))
- (-4 *4
- (-13 (-793)
- (-10 -8 (-15 -3043 ((-1078) $ (-1095))) (-15 -2273 (*2 $))
- (-15 -3294 (*2 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1182)) (-5 *1 (-197 *3))
- (-4 *3
- (-13 (-793)
- (-10 -8 (-15 -3043 ((-1078) $ (-1095))) (-15 -2273 (*2 $))
- (-15 -3294 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-478)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-343)) (-5 *1 (-713 *2 *3)) (-4 *2 (-655 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-343)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1177 *4)) (-4 *4 (-329)) (-5 *2 (-1091 *4))
- (-5 *1 (-498 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-520))
- (-5 *2 (-2 (|:| -1641 *4) (|:| -3490 *3) (|:| -2537 *3)))
- (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *2 (-2 (|:| -3490 *1) (|:| -2537 *1))) (-4 *1 (-994 *3 *4 *5))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-520)) (-4 *3 (-981))
- (-5 *2 (-2 (|:| -1641 *3) (|:| -3490 *1) (|:| -2537 *1)))
- (-4 *1 (-1153 *3)))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-595 (-1095))) (-14 *5 (-717))
- (-5 *2
- (-595
- (-480 (-387 (-528)) (-222 *5 (-717)) (-804 *4)
- (-229 *4 (-387 (-528))))))
- (-5 *1 (-481 *4 *5))
- (-5 *3
- (-480 (-387 (-528)) (-222 *5 (-717)) (-804 *4)
- (-229 *4 (-387 (-528))))))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802))))
- ((*1 *1 *1) (-5 *1 (-802)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 *3)) (-4 *3 (-1023)) (-4 *1 (-1021 *3))))
- ((*1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1023)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *2 (-793))))
+ (-12 (-5 *3 (-767 *4)) (-4 *4 (-795)) (-5 *2 (-594 (-622 *4)))
+ (-5 *1 (-622 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-516)) (-5 *2 (-594 *3)) (-5 *1 (-644 *3)) (-4 *3 (-1155 *4))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-739)) (-4 *5 (-981)) (-4 *6 (-888 *5 *4 *2))
- (-4 *2 (-793)) (-5 *1 (-889 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-343)
- (-10 -8 (-15 -2222 ($ *6)) (-15 -3031 (*6 $))
- (-15 -3042 (*6 $)))))))
+ (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-331)) (-5 *2 (-386 *3))
+ (-5 *1 (-646 *4 *5 *6 *3)) (-4 *3 (-891 *6 *5 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-387 (-891 *4))) (-4 *4 (-520))
- (-5 *2 (-1095)) (-5 *1 (-977 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-121))) ((*1 *1 *1 *1) (-5 *1 (-802)))
- ((*1 *1 *1 *1) (-4 *1 (-905))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-595 (-459 *4 *5))) (-5 *3 (-595 (-804 *4)))
- (-14 *4 (-595 (-1095))) (-4 *5 (-431)) (-5 *1 (-450 *4 *5 *6))
- (-4 *6 (-431)))))
+ (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-331)) (-4 *7 (-891 *6 *5 *4))
+ (-5 *2 (-386 (-1092 *7))) (-5 *1 (-646 *4 *5 *6 *7)) (-5 *3 (-1092 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-741))
+ (-4 *5
+ (-13 (-795)
+ (-10 -8 (-15 -4246 ((-1098) $)) (-15 -4110 ((-3 $ "failed") (-1098))))))
+ (-4 *6 (-289)) (-5 *2 (-386 *3)) (-5 *1 (-679 *4 *5 *6 *3))
+ (-4 *3 (-891 (-887 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-741)) (-4 *5 (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $)))))
+ (-4 *6 (-523)) (-5 *2 (-386 *3)) (-5 *1 (-681 *4 *5 *6 *3))
+ (-4 *3 (-891 (-388 (-887 *6)) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-13 (-289) (-140)))
+ (-5 *2 (-386 *3)) (-5 *1 (-682 *4 *5 *6 *3))
+ (-4 *3 (-891 (-388 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-13 (-289) (-140)))
+ (-5 *2 (-386 *3)) (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-891 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-13 (-289) (-140)))
+ (-4 *7 (-891 *6 *5 *4)) (-5 *2 (-386 (-1092 *7))) (-5 *1 (-690 *4 *5 *6 *7))
+ (-5 *3 (-1092 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-386 *3)) (-5 *1 (-946 *3)) (-4 *3 (-1155 (-388 (-516))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-386 *3)) (-5 *1 (-979 *3))
+ (-4 *3 (-1155 (-388 (-887 (-516)))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1155 (-388 (-516))))
+ (-4 *5 (-13 (-344) (-140) (-673 (-388 (-516)) *4))) (-5 *2 (-386 *3))
+ (-5 *1 (-1009 *4 *5 *3)) (-4 *3 (-1155 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1155 (-388 (-887 (-516)))))
+ (-4 *5 (-13 (-344) (-140) (-673 (-388 (-887 (-516))) *4))) (-5 *2 (-386 *3))
+ (-5 *1 (-1010 *4 *5 *3)) (-4 *3 (-1155 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-432)) (-4 *7 (-891 *6 *4 *5))
+ (-5 *2 (-386 (-1092 (-388 *7)))) (-5 *1 (-1094 *4 *5 *6 *7))
+ (-5 *3 (-1092 (-388 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-386 *1)) (-4 *1 (-1138))))
+ ((*1 *2 *3) (-12 (-5 *2 (-386 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-1155 (-516))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1172 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-115 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-115 *2)) (-14 *2 (-516))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-812 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-812 *2)) (-14 *2 (-516))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-516)) (-14 *3 *2) (-5 *1 (-813 *3 *4)) (-4 *4 (-811 *3))))
+ ((*1 *1 *1) (-12 (-14 *2 (-516)) (-5 *1 (-813 *2 *3)) (-4 *3 (-811 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-516)) (-4 *1 (-1143 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1172 *3))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1143 *2 *3)) (-4 *2 (-984)) (-4 *3 (-1172 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *2 (-50)) (-5 *1 (-297 *4 *5)) (-4 *5 (-13 (-27) (-1120) (-402 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-297 *4 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-719)) (-4 *5 (-13 (-432) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *2 (-50)) (-5 *1 (-297 *5 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-275 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *5)))
+ (-4 *5 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-297 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-275 *3)) (-5 *5 (-719)) (-4 *3 (-13 (-27) (-1120) (-402 *6)))
+ (-4 *6 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-297 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-516))) (-5 *4 (-275 *6))
+ (-4 *6 (-13 (-27) (-1120) (-402 *5)))
+ (-4 *5 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-439 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1098)) (-5 *5 (-275 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *6)))
+ (-4 *6 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-439 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-516))) (-5 *4 (-275 *7)) (-5 *5 (-1146 (-719)))
+ (-4 *7 (-13 (-27) (-1120) (-402 *6)))
+ (-4 *6 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-439 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1098)) (-5 *5 (-275 *3)) (-5 *6 (-1146 (-719)))
+ (-4 *3 (-13 (-27) (-1120) (-402 *7)))
+ (-4 *7 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-50))
+ (-5 *1 (-439 *7 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1172 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1076 (-387 *3))) (-5 *1 (-163 *3)) (-4 *3 (-288)))))
-(((*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-1098))))
- ((*1 *2 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-1182)) (-5 *1 (-1098))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1095)) (-5 *2 (-1182)) (-5 *1 (-1098)))))
-(((*1 *2)
- (-12 (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793))
- (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-1182))
- (-5 *1 (-1000 *3 *4 *5 *6 *7)) (-4 *7 (-999 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793))
- (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-1182))
- (-5 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *7 (-999 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-904 *3)) (-4 *3 (-905)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-347 *4)) (-4 *4 (-162))
- (-5 *2 (-635 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-162)) (-5 *2 (-635 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-694)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-407 *3 *2)) (-4 *3 (-13 (-162) (-37 (-387 (-528)))))
- (-4 *2 (-13 (-793) (-21))))))
-(((*1 *2 *1) (-12 (-5 *1 (-1127 *2)) (-4 *2 (-911)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095)) (-5 *4 (-891 (-528))) (-5 *2 (-310))
- (-5 *1 (-312)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-981)) (-4 *5 (-739)) (-4 *3 (-793))
- (-5 *2 (-2 (|:| -3490 *1) (|:| -2537 *1))) (-4 *1 (-888 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-981)) (-5 *2 (-2 (|:| -3490 *1) (|:| -2537 *1)))
- (-4 *1 (-1153 *3)))))
-(((*1 *1) (-5 *1 (-110))))
-(((*1 *2)
- (-12 (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793))
- (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-1182))
- (-5 *1 (-1000 *3 *4 *5 *6 *7)) (-4 *7 (-999 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793))
- (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-1182))
- (-5 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *7 (-999 *3 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-891 (-207))) (-5 *2 (-207)) (-5 *1 (-286)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-595 *3)) (-5 *1 (-899 *3)) (-4 *3 (-513)))))
-(((*1 *2 *1) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-105))))
- ((*1 *2 *1) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-200))))
- ((*1 *2 *1) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-465))))
- ((*1 *1 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-520)) (-4 *2 (-288))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-387 (-528))) (-5 *1 (-940 *3)) (-14 *3 (-528))))
- ((*1 *1 *1) (-4 *1 (-989))))
+ (|partial| -12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1172 *3)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1018 (-786 (-207)))) (-5 *1 (-286)))))
+ (-12 (-5 *3 (-516)) (-4 *1 (-1141 *4)) (-4 *4 (-984)) (-4 *4 (-523))
+ (-5 *2 (-388 (-887 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-516)) (-4 *1 (-1141 *4)) (-4 *4 (-984)) (-4 *4 (-523))
+ (-5 *2 (-388 (-887 *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-158 (-516))) (-5 *2 (-110)) (-5 *1 (-426))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-482 (-388 (-516)) (-222 *5 (-719)) (-806 *4) (-230 *4 (-388 (-516)))))
+ (-14 *4 (-594 (-1098))) (-14 *5 (-719)) (-5 *2 (-110))
+ (-5 *1 (-483 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-903 *3)) (-4 *3 (-515))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-110)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1136)))))
(((*1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1023))
- (-4 *4 (-1023)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-595 (-882 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 (-882 *3))) (-4 *3 (-981)) (-4 *1 (-1056 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-595 (-595 *3))) (-4 *1 (-1056 *3)) (-4 *3 (-981))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-595 (-882 *3))) (-4 *1 (-1056 *3)) (-4 *3 (-981)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-110) *2)) (-4 *2 (-129)) (-5 *1 (-1009 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-528) *2 *2)) (-4 *2 (-129)) (-5 *1 (-1009 *2)))))
+ (-12 (-5 *2 (-2 (|:| -3500 (-594 (-1098))) (|:| -3501 (-594 (-1098)))))
+ (-5 *1 (-1136)))))
+(((*1 *2 *3) (-12 (-5 *3 (-594 (-1098))) (-5 *2 (-1185)) (-5 *1 (-1136))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-594 (-1098))) (-5 *2 (-1185)) (-5 *1 (-1136)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-719)) (-5 *2 (-110))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1135 *3)) (-4 *3 (-795)) (-4 *3 (-1027)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1062 *3 *4)) (-14 *3 (-860)) (-4 *4 (-343))
- (-5 *1 (-930 *3 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-981)) (-14 *3 (-1095))
- (-14 *4 *2))))
+ (-12 (-5 *3 (-594 *2)) (-5 *4 (-1 (-110) *2 *2)) (-5 *1 (-1135 *2))
+ (-4 *2 (-1027))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 *2)) (-4 *2 (-1027)) (-4 *2 (-795)) (-5 *1 (-1135 *2)))))
+(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1135 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-719)) (-5 *2 (-110))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-5 *2 (-110)) (-5 *1 (-1135 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *3 (-1027)) (-5 *2 (-110))
+ (-5 *1 (-1135 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -3501 (-594 *3)) (|:| -3500 (-594 *3))))
+ (-5 *1 (-1135 *3)) (-4 *3 (-1027)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-848)) (-5 *2 (-398 (-1091 *1))) (-5 *3 (-1091 *1)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-990 (-959 *4) (-1091 (-959 *4)))) (-5 *3 (-802))
- (-5 *1 (-959 *4)) (-4 *4 (-13 (-791) (-343) (-957))))))
+ (-12 (-5 *3 (-594 *4)) (-4 *4 (-1027)) (-5 *2 (-1185)) (-5 *1 (-1135 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-594 *4)) (-4 *4 (-1027)) (-5 *2 (-1185)) (-5 *1 (-1135 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1095))
- (-4 *5 (-13 (-431) (-793) (-140) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-545 *3)) (-5 *1 (-521 *5 *3))
- (-4 *3 (-13 (-27) (-1117) (-410 *5))))))
-(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-970)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-528))) (-5 *2 (-528)) (-5 *1 (-464 *4))
- (-4 *4 (-1153 *2)))))
+ (-12 (-5 *4 (-516)) (-4 *5 (-331)) (-5 *2 (-386 (-1092 (-1092 *5))))
+ (-5 *1 (-1133 *5)) (-5 *3 (-1092 (-1092 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-528))) (-5 *2 (-1097 (-387 (-528))))
- (-5 *1 (-174)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-343))
- (-5 *2
- (-2 (|:| A (-635 *5))
- (|:| |eqs|
- (-595
- (-2 (|:| C (-635 *5)) (|:| |g| (-1177 *5)) (|:| -2589 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-759 *5 *6)) (-5 *3 (-635 *5)) (-5 *4 (-1177 *5))
- (-4 *6 (-605 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-343)) (-4 *6 (-605 *5))
- (-5 *2 (-2 (|:| -2163 (-635 *6)) (|:| |vec| (-1177 *5))))
- (-5 *1 (-759 *5 *6)) (-5 *3 (-635 *6)) (-5 *4 (-1177 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-860)) (-5 *1 (-967 *2))
- (-4 *2 (-13 (-1023) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)) (-4 *2 (-520)))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-528))
- (-5 *6
- (-2 (|:| |try| (-359)) (|:| |did| (-359)) (|:| -2719 (-359))))
- (-5 *7 (-1 (-1182) (-1177 *5) (-1177 *5) (-359)))
- (-5 *3 (-1177 (-359))) (-5 *5 (-359)) (-5 *2 (-1182))
- (-5 *1 (-734))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-528))
- (-5 *6
- (-2 (|:| |try| (-359)) (|:| |did| (-359)) (|:| -2719 (-359))))
- (-5 *7 (-1 (-1182) (-1177 *5) (-1177 *5) (-359)))
- (-5 *3 (-1177 (-359))) (-5 *5 (-359)) (-5 *2 (-1182))
- (-5 *1 (-734)))))
-(((*1 *1 *1 *1) (-4 *1 (-513))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1023)))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-635 (-207))) (-5 *5 (-635 (-528))) (-5 *3 (-528))
- (-5 *2 (-970)) (-5 *1 (-701)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-981)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-1153 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1095))
- (-4 *4 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528))))
- (-5 *1 (-406 *4 *2)) (-4 *2 (-13 (-1117) (-29 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-387 (-891 *5))) (-5 *4 (-1095)) (-4 *5 (-140))
- (-4 *5 (-13 (-431) (-972 (-528)) (-793) (-591 (-528))))
- (-5 *2 (-296 *5)) (-5 *1 (-548 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-207)) (-5 *2 (-645)) (-5 *1 (-286)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-717)) (-4 *1 (-213 *4))
- (-4 *4 (-981))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-213 *3)) (-4 *3 (-981))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-215)) (-5 *2 (-717))))
- ((*1 *1 *1) (-4 *1 (-215)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-717)) (-4 *3 (-13 (-343) (-140))) (-5 *1 (-379 *3 *4))
- (-4 *4 (-1153 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-343) (-140))) (-5 *1 (-379 *2 *3))
- (-4 *3 (-1153 *2))))
- ((*1 *1) (-12 (-4 *1 (-605 *2)) (-4 *2 (-981))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-595 *4)) (-5 *3 (-595 (-717))) (-4 *1 (-839 *4))
- (-4 *4 (-1023))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-717)) (-4 *1 (-839 *2)) (-4 *2 (-1023))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-595 *3)) (-4 *1 (-839 *3)) (-4 *3 (-1023))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-839 *2)) (-4 *2 (-1023)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *1 *1 *1) (-5 *1 (-802))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-159 *4)) (-5 *1 (-169 *4 *3))
- (-4 *4 (-13 (-343) (-791))) (-4 *3 (-1153 *2)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-946 *3)) (-4 *3 (-1131)) (-5 *2 (-528)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-343)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4)))
- (-5 *2 (-1177 *6)) (-5 *1 (-316 *3 *4 *5 *6))
- (-4 *6 (-322 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-1112)))))
+ (-12 (-4 *4 (-331)) (-5 *2 (-386 (-1092 (-1092 *4)))) (-5 *1 (-1133 *4))
+ (-5 *3 (-1092 (-1092 *4))))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-595
- (-2 (|:| -3090 (-717))
- (|:| |eqns|
- (-595
- (-2 (|:| |det| *7) (|:| |rows| (-595 (-528)))
- (|:| |cols| (-595 (-528))))))
- (|:| |fgb| (-595 *7)))))
- (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-288) (-140)))
- (-4 *5 (-13 (-793) (-570 (-1095)))) (-4 *6 (-739)) (-5 *2 (-717))
- (-5 *1 (-863 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-635 *11)) (-5 *4 (-595 (-387 (-891 *8))))
- (-5 *5 (-717)) (-5 *6 (-1078)) (-4 *8 (-13 (-288) (-140)))
- (-4 *11 (-888 *8 *10 *9)) (-4 *9 (-13 (-793) (-570 (-1095))))
- (-4 *10 (-739))
- (-5 *2
- (-2
- (|:| |rgl|
- (-595
- (-2 (|:| |eqzro| (-595 *11)) (|:| |neqzro| (-595 *11))
- (|:| |wcond| (-595 (-891 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1177 (-387 (-891 *8))))
- (|:| -1400 (-595 (-1177 (-387 (-891 *8))))))))))
- (|:| |rgsz| (-528))))
- (-5 *1 (-863 *8 *9 *10 *11)) (-5 *7 (-528)))))
-(((*1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-424 *3)) (-4 *3 (-981)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-717)) (-4 *1 (-213 *4))
- (-4 *4 (-981))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-213 *3)) (-4 *3 (-981))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-215)) (-5 *2 (-717))))
- ((*1 *1 *1) (-4 *1 (-215)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-247 *3)) (-4 *3 (-793))))
- ((*1 *1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-793))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135))
- (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-717)) (-4 *3 (-13 (-343) (-140))) (-5 *1 (-379 *3 *4))
- (-4 *4 (-1153 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-343) (-140))) (-5 *1 (-379 *2 *3))
- (-4 *3 (-1153 *2))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-453 *3 *4 *5))
- (-4 *3 (-981)) (-14 *5 *3)))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-343)) (-4 *2 (-839 *3)) (-5 *1 (-545 *2))
- (-5 *3 (-1095))))
+ (-12 (-4 *4 (-331)) (-5 *2 (-386 (-1092 (-1092 *4)))) (-5 *1 (-1133 *4))
+ (-5 *3 (-1092 (-1092 *4))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *3))
+ (-4 *3 (-1134))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1134)) (-5 *1 (-560 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-624 *3)) (-4 *3 (-1134))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-545 *2)) (-4 *2 (-343))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-802))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-595 *4)) (-5 *3 (-595 (-717))) (-4 *1 (-839 *4))
- (-4 *4 (-1023))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-717)) (-4 *1 (-839 *2)) (-4 *2 (-1023))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-595 *3)) (-4 *1 (-839 *3)) (-4 *3 (-1023))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-839 *2)) (-4 *2 (-1023))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1086 *3 *4 *5))
- (-4 *3 (-981)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1092 *3 *4 *5))
- (-4 *3 (-981)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1093 *3 *4 *5))
- (-4 *3 (-981)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1141 *3 *4 *5))
- (-4 *3 (-981)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1153 *3)) (-4 *3 (-981))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1162 *3 *4 *5))
- (-4 *3 (-981)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1169 *3 *4 *5))
- (-4 *3 (-981)) (-14 *5 *3))))
-(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-866)))))
-(((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |partsol| (-1177 (-387 (-891 *4))))
- (|:| -1400 (-595 (-1177 (-387 (-891 *4)))))))
- (-5 *3 (-595 *7)) (-4 *4 (-13 (-288) (-140)))
- (-4 *7 (-888 *4 *6 *5)) (-4 *5 (-13 (-793) (-570 (-1095))))
- (-4 *6 (-739)) (-5 *1 (-863 *4 *5 *6 *7)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
+ (|partial| -12 (-4 *1 (-1129 *4 *5 *3 *2)) (-4 *4 (-523)) (-4 *5 (-741))
+ (-4 *3 (-795)) (-4 *2 (-997 *4 *5 *3))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-1132 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-594 (-594 (-208)))) (-5 *4 (-208)) (-5 *2 (-594 (-884 *4)))
+ (-5 *1 (-1131)) (-5 *3 (-884 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-516)) (-5 *2 (-594 (-594 (-208)))) (-5 *1 (-1131)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-860)) (-4 *1 (-221 *3 *4)) (-4 *4 (-984)) (-4 *4 (-1134))))
+ ((*1 *1 *2)
+ (-12 (-14 *3 (-594 (-1098))) (-4 *4 (-162)) (-4 *5 (-221 (-4232 *3) (-719)))
+ (-14 *6
+ (-1 (-110) (-2 (|:| -2426 *2) (|:| -2427 *5))
+ (-2 (|:| -2426 *2) (|:| -2427 *5))))
+ (-5 *1 (-441 *3 *4 *2 *5 *6 *7)) (-4 *2 (-795))
+ (-4 *7 (-891 *4 *5 (-806 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1131)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-884 (-208))) (-5 *4 (-815)) (-5 *2 (-1185)) (-5 *1 (-448))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-984)) (-4 *1 (-920 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-884 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-984)) (-4 *1 (-1059 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1059 *3)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *1 (-1059 *3)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-884 *3)) (-4 *1 (-1059 *3)) (-4 *3 (-984))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1131)) (-5 *3 (-208)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-208)) (-5 *5 (-516)) (-5 *2 (-1130 *3)) (-5 *1 (-738 *3))
+ (-4 *3 (-914))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-594 (-884 (-208))))) (-5 *4 (-110)) (-5 *1 (-1130 *2))
+ (-4 *2 (-914)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1130 *3)) (-4 *3 (-914)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1130 *3)) (-4 *3 (-914)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1130 *3)) (-4 *3 (-914)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-595
- (-2 (|:| |scalar| (-387 (-528))) (|:| |coeff| (-1091 *3))
- (|:| |logand| (-1091 *3)))))
- (-5 *1 (-545 *3)) (-4 *3 (-343)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1095))
- (-4 *5 (-13 (-520) (-972 (-528)) (-140)))
- (-5 *2
- (-2 (|:| -1497 (-387 (-891 *5))) (|:| |coeff| (-387 (-891 *5)))))
- (-5 *1 (-534 *5)) (-5 *3 (-387 (-891 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-813))))
- ((*1 *2 *3) (-12 (-5 *3 (-882 *2)) (-5 *1 (-919 *2)) (-4 *2 (-981)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 (-1095))) (-5 *1 (-461)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-520) (-793))) (-5 *2 (-159 *5))
- (-5 *1 (-557 *4 *5 *3)) (-4 *5 (-13 (-410 *4) (-938) (-1117)))
- (-4 *3 (-13 (-410 (-159 *4)) (-938) (-1117))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207)))
- (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207))
- (|:| |relerr| (-207))))
- (-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-176)))))
+ (-12 (-5 *2 (-594 (-594 (-884 (-208))))) (-5 *1 (-1130 *3)) (-4 *3 (-914)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1130 *2)) (-4 *2 (-914)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8))
+ (-4 *8 (-1002 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-110))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-1033 *4 *5 *6 *7 *8))
+ (-4 *8 (-1002 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-110)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 (-110) *9)) (-5 *5 (-1 (-110) *9 *9))
+ (-4 *9 (-997 *6 *7 *8)) (-4 *6 (-523)) (-4 *7 (-741)) (-4 *8 (-795))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -3602 (-594 *9)))) (-5 *3 (-594 *9))
+ (-4 *1 (-1129 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-110) *8 *8)) (-4 *8 (-997 *5 *6 *7))
+ (-4 *5 (-523)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -3602 (-594 *8)))) (-5 *3 (-594 *8))
+ (-4 *1 (-1129 *5 *6 *7 *8)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-595
- (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207)))
- (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207))
- (|:| |relerr| (-207)))))
- (-5 *1 (-523))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-566 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1023))
- (-5 *2 (-595 *3))))
+ (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-594 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-997 *3 *4 *5))
+ (-5 *2 (-2 (|:| -4140 (-594 *6)) (|:| -1768 (-594 *6)))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-594 *1)) (-4 *1 (-997 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *2 (-110))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-110))))
((*1 *2 *1)
- (-12
- (-5 *2
- (-595
- (-2 (|:| |xinit| (-207)) (|:| |xend| (-207))
- (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207)))
- (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207)))
- (|:| |abserr| (-207)) (|:| |relerr| (-207)))))
- (-5 *1 (-749)))))
+ (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-110)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-594 *1)) (-4 *1 (-997 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *2 (-110))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-110))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *1 (-1129 *5 *6 *7 *3)) (-4 *5 (-523))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7)) (-5 *2 (-110)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-353 *3))
- (-4 *5 (-353 *3)) (-5 *2 (-528))))
+ (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-110)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-594 *1)) (-4 *1 (-997 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *2 (-110))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-110))))
((*1 *2 *1)
- (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981))
- (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-5 *2 (-528)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1131)) (-5 *1 (-170 *3 *2)) (-4 *2 (-622 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-768)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-343))
- (-5 *2 (-2 (|:| -1497 (-387 *6)) (|:| |coeff| (-387 *6))))
- (-5 *1 (-538 *5 *6)) (-5 *3 (-387 *6)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-595 *3)) (-4 *3 (-1131)) (-5 *1 (-1177 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162))))
- ((*1 *2 *1) (-12 (-4 *1 (-933 *2)) (-4 *2 (-162)))))
+ (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-110)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-594 *1)) (-4 *1 (-997 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *2 (-110))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-110)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 (-110) *7 (-594 *7))) (-4 *1 (-1129 *4 *5 *6 *7))
+ (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6))
+ (-5 *2 (-110)))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-594 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-110) *8 *8))
+ (-4 *1 (-1129 *5 *6 *7 *8)) (-4 *5 (-523)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *8 (-997 *5 *6 *7)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *2 (-997 *3 *4 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *2 (-997 *3 *4 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *2 (-997 *3 *4 *5)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *2 (-997 *3 *4 *5)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)) (-4 *2 (-431)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-110)) (-4 *4 (-13 (-343) (-791))) (-5 *2 (-398 *3))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1153 (-159 *4)))))
+ (-12 (-4 *1 (-1129 *2 *3 *4 *5)) (-4 *2 (-523)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-4 *5 (-997 *2 *3 *4)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *2 (-997 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 *8)) (-5 *4 (-110)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-432))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-594 *10))
+ (-5 *1 (-579 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1002 *5 *6 *7 *8))
+ (-4 *10 (-1035 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-343) (-791))) (-5 *2 (-398 *3))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1153 (-159 *4))))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-738)) (-4 *2 (-981))))
+ (-12 (-5 *3 (-594 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
+ (-14 *6 (-594 (-1098))) (-5 *2 (-594 (-981 *5 *6))) (-5 *1 (-582 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
+ (-14 *6 (-594 (-1098)))
+ (-5 *2 (-594 (-1069 *5 (-502 (-806 *6)) (-806 *6) (-728 *5 (-806 *6)))))
+ (-5 *1 (-582 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-594 *8)) (-5 *4 (-110)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-432))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-594 (-965 *5 *6 *7 *8)))
+ (-5 *1 (-965 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-594 *8)) (-5 *4 (-110)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-432))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-594 (-965 *5 *6 *7 *8)))
+ (-5 *1 (-965 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-594 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
+ (-14 *6 (-594 (-1098))) (-5 *2 (-594 (-981 *5 *6))) (-5 *1 (-981 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 *8)) (-5 *4 (-110)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-432))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-594 *1))
+ (-4 *1 (-1002 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-594 *8)) (-5 *4 (-110)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-432))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-594 (-1069 *5 *6 *7 *8)))
+ (-5 *1 (-1069 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-594 *8)) (-5 *4 (-110)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-432))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-594 (-1069 *5 *6 *7 *8)))
+ (-5 *1 (-1069 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *2 (-594 *1)) (-4 *1 (-1129 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6))
+ (-5 *2 (-594 (-2 (|:| -4140 *1) (|:| -1768 (-594 *7))))) (-5 *3 (-594 *7))
+ (-4 *1 (-1129 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-594 *5)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *2 (-997 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-997 *3 *4 *5)) (-4 *5 (-349)) (-5 *2 (-719)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984))))
((*1 *2 *1 *1)
- (-12 (-4 *2 (-981)) (-5 *1 (-49 *2 *3)) (-14 *3 (-595 (-1095)))))
+ (-12 (-4 *2 (-984)) (-5 *1 (-49 *2 *3)) (-14 *3 (-594 (-1098)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-595 (-860))) (-4 *2 (-343)) (-5 *1 (-145 *4 *2 *5))
- (-14 *4 (-860)) (-14 *5 (-930 *4 *2))))
+ (-12 (-5 *3 (-594 (-860))) (-4 *2 (-344)) (-5 *1 (-145 *4 *2 *5))
+ (-14 *4 (-860)) (-14 *5 (-933 *4 *2))))
((*1 *2 *1 *1)
- (-12 (-5 *2 (-296 *3)) (-5 *1 (-205 *3 *4))
- (-4 *3 (-13 (-981) (-793))) (-14 *4 (-595 (-1095)))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-303 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-128))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-362 *2 *3)) (-4 *3 (-1023)) (-4 *2 (-981))))
+ (-12 (-5 *2 (-295 *3)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795)))
+ (-14 *4 (-594 (-1098)))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-128))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1027)) (-4 *2 (-984))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-528)) (-4 *2 (-520)) (-5 *1 (-576 *2 *4))
- (-4 *4 (-1153 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-717)) (-4 *1 (-655 *2)) (-4 *2 (-981))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-981)) (-5 *1 (-682 *2 *3)) (-4 *3 (-673))))
+ (-12 (-5 *3 (-516)) (-4 *2 (-523)) (-5 *1 (-578 *2 *4)) (-4 *4 (-1155 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-657 *2)) (-4 *2 (-984))))
+ ((*1 *2 *1 *3) (-12 (-4 *2 (-984)) (-5 *1 (-684 *2 *3)) (-4 *3 (-675))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-595 *5)) (-5 *3 (-595 (-717))) (-4 *1 (-687 *4 *5))
- (-4 *4 (-981)) (-4 *5 (-793))))
+ (-12 (-5 *2 (-594 *5)) (-5 *3 (-594 (-719))) (-4 *1 (-689 *4 *5))
+ (-4 *4 (-984)) (-4 *5 (-795))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-717)) (-4 *1 (-687 *4 *2)) (-4 *4 (-981))
- (-4 *2 (-793))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-717)) (-4 *1 (-795 *2)) (-4 *2 (-981))))
+ (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *2)) (-4 *4 (-984)) (-4 *2 (-795))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-797 *2)) (-4 *2 (-984))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-595 *6)) (-5 *3 (-595 (-717))) (-4 *1 (-888 *4 *5 *6))
- (-4 *4 (-981)) (-4 *5 (-739)) (-4 *6 (-793))))
+ (-12 (-5 *2 (-594 *6)) (-5 *3 (-594 (-719))) (-4 *1 (-891 *4 *5 *6))
+ (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-717)) (-4 *1 (-888 *4 *5 *2)) (-4 *4 (-981))
- (-4 *5 (-739)) (-4 *2 (-793))))
+ (-12 (-5 *3 (-719)) (-4 *1 (-891 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-741))
+ (-4 *2 (-795))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-717)) (-4 *2 (-888 *4 (-500 *5) *5))
- (-5 *1 (-1048 *4 *5 *2)) (-4 *4 (-981)) (-4 *5 (-793))))
+ (-12 (-5 *3 (-719)) (-4 *2 (-891 *4 (-502 *5) *5)) (-5 *1 (-1051 *4 *5 *2))
+ (-4 *4 (-984)) (-4 *5 (-795))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-717)) (-5 *2 (-891 *4)) (-5 *1 (-1126 *4))
- (-4 *4 (-981)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1131)) (-5 *1 (-307 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 *3)) (-4 *3 (-1131)) (-5 *1 (-491 *3 *4))
- (-14 *4 (-528)))))
+ (-12 (-5 *3 (-719)) (-5 *2 (-887 *4)) (-5 *1 (-1127 *4)) (-4 *4 (-984)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1051 *4 *3 *5))) (-4 *4 (-37 (-388 (-516)))) (-4 *4 (-984))
+ (-4 *3 (-795)) (-5 *1 (-1051 *4 *3 *5)) (-4 *5 (-891 *4 (-502 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1127 *4))) (-5 *3 (-1098)) (-5 *1 (-1127 *4))
+ (-4 *4 (-37 (-388 (-516)))) (-4 *4 (-984)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-572 (-831 *3))) (-4 *3 (-827 *3)) (-4 *3 (-13 (-795) (-432)))
+ (-5 *1 (-1126 *3 *2)) (-4 *2 (-572 (-831 *3))) (-4 *2 (-827 *3))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-140)) (-4 *2 (-289)) (-4 *2 (-432)) (-4 *3 (-795))
+ (-4 *4 (-741)) (-5 *1 (-926 *2 *3 *4 *5)) (-4 *5 (-891 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-295 (-516))) (-5 *1 (-1044))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-1120))))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1095))
- (-4 *4 (-13 (-431) (-793) (-140) (-972 (-528)) (-591 (-528))))
- (-5 *1 (-521 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-528))) (-5 *2 (-843 (-528))) (-5 *1 (-856))))
- ((*1 *2 *3) (-12 (-5 *3 (-908)) (-5 *2 (-843 (-528))) (-5 *1 (-856)))))
+ (-12 (-4 *3 (-523)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3))
+ (-5 *1 (-1125 *3 *4 *5 *2)) (-4 *2 (-634 *3 *4 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-595 *2)) (-4 *2 (-513)) (-5 *1 (-150 *2)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-343)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 *5)) (-4 *5 (-1153 *3)) (-4 *3 (-288))
- (-5 *2 (-110)) (-5 *1 (-434 *3 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-163 *3)) (-4 *3 (-288)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-793)) (-5 *1 (-119 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-999 *4 *5 *6 *3)) (-4 *4 (-431)) (-4 *5 (-739))
- (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-110)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1153 *6))
- (-4 *6 (-13 (-27) (-410 *5)))
- (-4 *5 (-13 (-793) (-520) (-972 (-528)))) (-4 *8 (-1153 (-387 *7)))
- (-5 *2 (-545 *3)) (-5 *1 (-516 *5 *6 *7 *8 *3))
- (-4 *3 (-322 *6 *7 *8)))))
-(((*1 *1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| -3324 (-595 (-802))) (|:| -3622 (-595 (-802)))
- (|:| |presup| (-595 (-802))) (|:| -3884 (-595 (-802)))
- (|:| |args| (-595 (-802)))))
- (-5 *1 (-1095))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-595 (-595 (-802)))) (-5 *1 (-1095)))))
+ (-12 (-4 *3 (-523)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3))
+ (-5 *1 (-1125 *3 *4 *5 *2)) (-4 *2 (-634 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1097 (-387 (-528)))) (-5 *1 (-174)) (-5 *3 (-528)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-576 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -3572 *4) (|:| |sol?| (-110)))
- (-528) *4))
- (-4 *4 (-343)) (-4 *5 (-1153 *4)) (-5 *1 (-538 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
-(((*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-860))))
+ (-12 (-4 *4 (-13 (-523) (-795) (-975 (-516)))) (-5 *2 (-158 (-295 *4)))
+ (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1120) (-402 (-158 *4))))))
((*1 *2 *3)
- (-12 (-5 *3 (-1177 *4)) (-4 *4 (-329)) (-5 *2 (-860))
- (-5 *1 (-498 *4)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-595
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-717)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-739)) (-4 *6 (-888 *4 *3 *5)) (-4 *4 (-431)) (-4 *5 (-793))
- (-5 *1 (-428 *4 *3 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-595 (-528))) (-5 *1 (-940 *3)) (-14 *3 (-528)))))
+ (-12 (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *2 (-158 *3)) (-5 *1 (-1124 *4 *3))
+ (-4 *3 (-13 (-27) (-1120) (-402 *4))))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-480 (-387 (-528)) (-222 *5 (-717)) (-804 *4)
- (-229 *4 (-387 (-528)))))
- (-14 *4 (-595 (-1095))) (-14 *5 (-717)) (-5 *2 (-110))
- (-5 *1 (-481 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-717)) (-4 *5 (-981)) (-5 *2 (-528))
- (-5 *1 (-422 *5 *3 *6)) (-4 *3 (-1153 *5))
- (-4 *6 (-13 (-384) (-972 *5) (-343) (-1117) (-265)))))
+ (-12 (-4 *4 (-13 (-523) (-795) (-975 (-516)))) (-5 *2 (-110))
+ (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1120) (-402 (-158 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415))))
((*1 *2 *3)
- (-12 (-4 *4 (-981)) (-5 *2 (-528)) (-5 *1 (-422 *4 *3 *5))
- (-4 *3 (-1153 *4))
- (-4 *5 (-13 (-384) (-972 *4) (-343) (-1117) (-265))))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-635 (-528))) (-5 *3 (-595 (-528))) (-5 *1 (-1033)))))
+ (-12 (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-110))
+ (-5 *1 (-1124 *4 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-523) (-795) (-975 (-516)))) (-5 *2 (-295 *4))
+ (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1120) (-402 (-158 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-432) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *1 (-1124 *3 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-523) (-795) (-975 (-516)))) (-5 *2 (-295 *4))
+ (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1120) (-402 (-158 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162))))
+ ((*1 *2 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-162))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-432) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *1 (-1124 *3 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *3))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-520)) (-5 *1 (-40 *3 *2))
- (-4 *2
- (-13 (-343) (-283)
- (-10 -8 (-15 -3031 ((-1047 *3 (-568 $)) $))
- (-15 -3042 ((-1047 *3 (-568 $)) $))
- (-15 -2222 ($ (-1047 *3 (-568 $))))))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-635 *4)) (-5 *3 (-860)) (-4 *4 (-981))
- (-5 *1 (-963 *4))))
+ (-12 (-4 *3 (-13 (-523) (-795) (-975 (-516)))) (-5 *1 (-172 *3 *2))
+ (-4 *2 (-13 (-27) (-1120) (-402 (-158 *3))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-432) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *1 (-1124 *3 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *3))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-523) (-795) (-975 (-516)))) (-5 *1 (-172 *3 *2))
+ (-4 *2 (-13 (-27) (-1120) (-402 (-158 *3))))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-595 (-635 *4))) (-5 *3 (-860)) (-4 *4 (-981))
- (-5 *1 (-963 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1179)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-207))) (-5 *2 (-595 (-1078))) (-5 *1 (-176))))
+ (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-523) (-795) (-975 (-516))))
+ (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1120) (-402 (-158 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-432) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *1 (-1124 *3 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *1 (-1124 *4 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-523) (-795) (-975 (-516)))) (-5 *1 (-172 *3 *2))
+ (-4 *2 (-13 (-27) (-1120) (-402 (-158 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-523) (-795) (-975 (-516))))
+ (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1120) (-402 (-158 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-432) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *1 (-1124 *3 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *1 (-1124 *4 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098)))
+ (-4 *4 (-368))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3))))
+ ((*1 *1 *1) (-4 *1 (-1123))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-312 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098)))
+ (-4 *4 (-368))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3))))
+ ((*1 *1 *1) (-4 *1 (-1123))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3))))
+ ((*1 *1 *1) (-4 *1 (-1123))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3))))
+ ((*1 *1 *1) (-4 *1 (-1123))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3))))
+ ((*1 *1 *1) (-4 *1 (-1123))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-312 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098)))
+ (-4 *4 (-368))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3))))
+ ((*1 *1 *1) (-4 *1 (-1123))))
+(((*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1134)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1121 *3)) (-4 *3 (-1027)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1121 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1027)) (-5 *1 (-1121 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-594 (-1121 *2))) (-5 *1 (-1121 *2)) (-4 *2 (-1027)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1121 *2)) (-4 *2 (-1027)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-594 (-1121 *3))) (-5 *1 (-1121 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1121 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-594 (-1121 *3))) (-5 *1 (-1121 *3)) (-4 *3 (-1027)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-402 *3) (-941))) (-5 *1 (-258 *3 *2))
+ (-4 *3 (-13 (-795) (-523)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098)))
+ (-4 *4 (-368))))
+ ((*1 *1) (-5 *1 (-457))) ((*1 *1) (-4 *1 (-1120))))
+(((*1 *2) (-12 (-5 *2 (-1058 (-208))) (-5 *1 (-1118)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1081)) (-5 *2 (-516)) (-5 *1 (-1117 *4)) (-4 *4 (-984)))))
+(((*1 *2 *3) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-1117 *3)) (-4 *3 (-984)))))
+(((*1 *2 *1) (-12 (-4 *1 (-793)) (-5 *2 (-516))))
+ ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-843 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-999 *4 *3)) (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1155 *4))
+ (-5 *2 (-516))))
((*1 *2 *3)
- (-12 (-5 *3 (-595 (-207))) (-5 *2 (-595 (-1078))) (-5 *1 (-281))))
+ (|partial| -12 (-4 *4 (-13 (-523) (-795) (-975 *2) (-593 *2) (-432)))
+ (-5 *2 (-516)) (-5 *1 (-1042 *4 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1098)) (-5 *5 (-787 *3))
+ (-4 *3 (-13 (-27) (-1120) (-402 *6)))
+ (-4 *6 (-13 (-523) (-795) (-975 *2) (-593 *2) (-432))) (-5 *2 (-516))
+ (-5 *1 (-1042 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1098)) (-5 *5 (-1081))
+ (-4 *6 (-13 (-523) (-795) (-975 *2) (-593 *2) (-432))) (-5 *2 (-516))
+ (-5 *1 (-1042 *6 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *6)))))
((*1 *2 *3)
- (-12 (-5 *3 (-595 (-207))) (-5 *2 (-595 (-1078))) (-5 *1 (-286)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-882 *3) (-882 *3))) (-5 *1 (-165 *3))
- (-4 *3 (-13 (-343) (-1117) (-938))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-1182)) (-5 *1 (-1098))))
- ((*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-1098)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1023) (-33))) (-5 *1 (-1060 *3 *2))
- (-4 *3 (-13 (-1023) (-33))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-110))
- (-4 *6 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-4 *3 (-13 (-27) (-1117) (-410 *6) (-10 -8 (-15 -2222 ($ *7)))))
- (-4 *7 (-791))
- (-4 *8
- (-13 (-1155 *3 *7) (-343) (-1117)
- (-10 -8 (-15 -3235 ($ $)) (-15 -1923 ($ $)))))
+ (|partial| -12 (-5 *3 (-388 (-887 *4))) (-4 *4 (-432)) (-5 *2 (-516))
+ (-5 *1 (-1043 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1098)) (-5 *5 (-787 (-388 (-887 *6))))
+ (-5 *3 (-388 (-887 *6))) (-4 *6 (-432)) (-5 *2 (-516)) (-5 *1 (-1043 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-388 (-887 *6))) (-5 *4 (-1098)) (-5 *5 (-1081))
+ (-4 *6 (-432)) (-5 *2 (-516)) (-5 *1 (-1043 *6))))
+ ((*1 *2 *3) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-1117 *3)) (-4 *3 (-984)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-1116))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1116)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-1116)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1081)) (-5 *1 (-1116)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1045)) (-5 *1 (-107))))
+ ((*1 *2 *1) (|partial| -12 (-5 *1 (-345 *2)) (-4 *2 (-1027))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1081)) (-5 *1 (-1116)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1116)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-805) (-805))) (-5 *1 (-111))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-805) (-594 (-805)))) (-5 *1 (-111))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-805) (-594 (-805)))) (-5 *1 (-111))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1185)) (-5 *1 (-198 *3))
+ (-4 *3
+ (-13 (-795)
+ (-10 -8 (-15 -4078 ((-1081) $ (-1098))) (-15 -3899 (*2 $))
+ (-15 -2037 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-374))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-1185)) (-5 *1 (-374))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-480))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-659))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1114))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-1185)) (-5 *1 (-1114)))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-374))))
+ ((*1 *2 *1) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-1114)))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-1114)))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-719)) (-4 *3 (-1134)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3))))
+ ((*1 *1) (-5 *1 (-161)))
+ ((*1 *1) (-12 (-5 *1 (-197 *2 *3)) (-14 *2 (-860)) (-4 *3 (-1027))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1081)) (-4 *1 (-370))))
+ ((*1 *1) (-5 *1 (-374)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-4 *1 (-602 *3)) (-4 *3 (-1134))))
+ ((*1 *1)
+ (-12 (-4 *3 (-1027)) (-5 *1 (-826 *2 *3 *4)) (-4 *2 (-1027))
+ (-4 *4 (-617 *3))))
+ ((*1 *1) (-12 (-5 *1 (-829 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027))))
+ ((*1 *1) (-12 (-5 *1 (-1087 *2 *3)) (-14 *2 (-860)) (-4 *3 (-984))))
+ ((*1 *1 *1) (-5 *1 (-1098))) ((*1 *1) (-5 *1 (-1098)))
+ ((*1 *1) (-5 *1 (-1114))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-374))))
+ ((*1 *2 *1) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-1114)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-374))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-1114)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-1114)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-374))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-1114)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1113)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-50)) (-5 *1 (-1113)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-795))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-124 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-516)) (-4 *1 (-264 *3)) (-4 *3 (-1134))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-516)) (-4 *1 (-264 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *2)
+ (-12
(-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1078)) (|:| |prob| (-1078))))))
- (-5 *1 (-402 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1078)) (-4 *9 (-920 *8))
- (-14 *10 (-1095)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4265)) (-4 *1 (-117 *2)) (-4 *2 (-1131)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-329)) (-4 *2 (-981)) (-5 *1 (-659 *2 *3))
- (-4 *3 (-1153 *2)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-717)) (-4 *4 (-288)) (-4 *6 (-1153 *4))
- (-5 *2 (-1177 (-595 *6))) (-5 *1 (-434 *4 *6)) (-5 *5 (-595 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-595 *2))) (-5 *4 (-595 *5))
- (-4 *5 (-37 (-387 (-528)))) (-4 *2 (-1168 *5))
- (-5 *1 (-1170 *5 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1097 (-387 (-528)))) (-5 *1 (-174)) (-5 *3 (-528)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-275 (-891 (-528))))
+ (-2
+ (|:| -4139
+ (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208)))
+ (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (|:| -2131
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1076 (-208)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1511
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))))
+ (-5 *1 (-526))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-643 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *2)
+ (-12
(-5 *2
- (-2 (|:| |varOrder| (-595 (-1095)))
- (|:| |inhom| (-3 (-595 (-1177 (-717))) "failed"))
- (|:| |hom| (-595 (-1177 (-717))))))
- (-5 *1 (-218)))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-128))))
+ (-2
+ (|:| -4139
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208)))
+ (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (|:| -2131
+ (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359))
+ (|:| |expense| (-359)) (|:| |accuracy| (-359))
+ (|:| |intermediateResults| (-359))))))
+ (-5 *1 (-751))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-1185)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-595 *5))) (-4 *5 (-1168 *4))
- (-4 *4 (-37 (-387 (-528))))
- (-5 *2 (-1 (-1076 *4) (-595 (-1076 *4)))) (-5 *1 (-1170 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1127 *3)) (-4 *3 (-911)))))
-(((*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162))))
- ((*1 *2 *1) (-12 (-4 *1 (-933 *2)) (-4 *2 (-162)))))
-(((*1 *2 *1) (-12 (-4 *1 (-946 *3)) (-4 *3 (-1131)) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1118 *3)) (-4 *3 (-1023)))))
+ (|partial| -12 (-4 *2 (-1027)) (-5 *1 (-1112 *3 *2)) (-4 *3 (-1027)))))
(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4))
- (-4 *3 (-347 *4))))
- ((*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-699)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-528)) (-5 *6 (-1 (-1182) (-1177 *5) (-1177 *5) (-359)))
- (-5 *3 (-1177 (-359))) (-5 *5 (-359)) (-5 *2 (-1182))
- (-5 *1 (-734)))))
-(((*1 *2 *3) (-12 (-5 *3 (-504)) (-5 *1 (-503 *2)) (-4 *2 (-1131))))
- ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-504)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-860)) (-5 *2 (-447)) (-5 *1 (-1178)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-528))) (-4 *3 (-981)) (-5 *1 (-553 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-528))) (-4 *1 (-1137 *3)) (-4 *3 (-981))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-528))) (-4 *1 (-1168 *3)) (-4 *3 (-981)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-802)))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))))
(((*1 *2)
- (-12 (-4 *3 (-520)) (-5 *2 (-595 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-397 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-913 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520))
- (-5 *2 (-110)))))
-(((*1 *1 *1 *1) (-5 *1 (-207)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-207)) (-5 *1 (-208))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-207))) (-5 *1 (-208))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2))
- (-4 *2 (-410 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-717)) (-5 *2 (-1 (-359))) (-5 *1 (-974))))
- ((*1 *1 *1 *1) (-4 *1 (-1059))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-353 *2)) (-4 *5 (-353 *2)) (-4 *2 (-343))
- (-5 *1 (-495 *2 *4 *5 *3)) (-4 *3 (-633 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2))
- (|has| *2 (-6 (-4266 "*"))) (-4 *2 (-981))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-353 *2)) (-4 *5 (-353 *2)) (-4 *2 (-162))
- (-5 *1 (-634 *2 *4 *5 *3)) (-4 *3 (-633 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3 *2 *4 *5)) (-4 *4 (-220 *3 *2))
- (-4 *5 (-220 *3 *2)) (|has| *2 (-6 (-4266 "*"))) (-4 *2 (-981)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-595 (-1091 *13))) (-5 *3 (-1091 *13))
- (-5 *4 (-595 *12)) (-5 *5 (-595 *10)) (-5 *6 (-595 *13))
- (-5 *7 (-595 (-595 (-2 (|:| -3254 (-717)) (|:| |pcoef| *13)))))
- (-5 *8 (-595 (-717))) (-5 *9 (-1177 (-595 (-1091 *10))))
- (-4 *12 (-793)) (-4 *10 (-288)) (-4 *13 (-888 *10 *11 *12))
- (-4 *11 (-739)) (-5 *1 (-654 *11 *12 *10 *13)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-717)) (-5 *1 (-729 *2)) (-4 *2 (-37 (-387 (-528))))
- (-4 *2 (-162)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1091 *4)) (-4 *4 (-329))
- (-5 *2 (-1177 (-595 (-2 (|:| -3327 *4) (|:| -3108 (-1042))))))
- (-5 *1 (-326 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1182)) (-5 *1 (-1179)))))
-(((*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-866)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-595 (-1095))) (-5 *3 (-1095)) (-5 *1 (-504))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1095)) (-5 *1 (-651 *3)) (-4 *3 (-570 (-504)))))
- ((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1095)) (-5 *1 (-651 *3)) (-4 *3 (-570 (-504)))))
- ((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1095)) (-5 *1 (-651 *3)) (-4 *3 (-570 (-504)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-595 (-1095))) (-5 *2 (-1095)) (-5 *1 (-651 *3))
- (-4 *3 (-570 (-504))))))
-(((*1 *1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-288)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-528)) (-5 *5 (-635 (-207))) (-5 *4 (-207))
- (-5 *2 (-970)) (-5 *1 (-699)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-793) (-520))) (-5 *1 (-149 *4 *2))
- (-4 *2 (-410 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1016 *2)) (-4 *2 (-410 *4)) (-4 *4 (-13 (-793) (-520)))
- (-5 *1 (-149 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1016 *1)) (-4 *1 (-151))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1095)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1023)))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))))
+(((*1 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1185)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1185)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))))
(((*1 *2 *3)
- (-12 (-4 *5 (-13 (-570 *2) (-162))) (-5 *2 (-831 *4))
- (-5 *1 (-160 *4 *5 *3)) (-4 *4 (-1023)) (-4 *3 (-156 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 (-1018 (-786 (-359)))))
- (-5 *2 (-595 (-1018 (-786 (-207))))) (-5 *1 (-286))))
- ((*1 *1 *2) (-12 (-5 *2 (-207)) (-5 *1 (-359))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-802)) (-5 *3 (-528)) (-5 *1 (-374))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1177 *3)) (-4 *3 (-162)) (-4 *1 (-389 *3 *4))
- (-4 *4 (-1153 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1153 *3))
- (-5 *2 (-1177 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-162)) (-4 *1 (-397 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-162)) (-5 *2 (-1177 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-398 *1)) (-4 *1 (-410 *3)) (-4 *3 (-520))
- (-4 *3 (-793))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-981))
- (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-442 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1027)) (-5 *1 (-504))))
- ((*1 *2 *1) (-12 (-4 *1 (-570 *2)) (-4 *2 (-1131))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-162)) (-4 *1 (-671 *3 *2)) (-4 *2 (-1153 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 (-831 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1023))))
- ((*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-981)) (-4 *1 (-917 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-991))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-891 *3)) (-4 *3 (-981)) (-4 *1 (-994 *3 *4 *5))
- (-4 *5 (-570 (-1095))) (-4 *4 (-739)) (-4 *5 (-793))))
- ((*1 *1 *2)
- (-1463
- (-12 (-5 *2 (-891 (-528))) (-4 *1 (-994 *3 *4 *5))
- (-12 (-3617 (-4 *3 (-37 (-387 (-528))))) (-4 *3 (-37 (-528)))
- (-4 *5 (-570 (-1095))))
- (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)))
- (-12 (-5 *2 (-891 (-528))) (-4 *1 (-994 *3 *4 *5))
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *5 (-570 (-1095))))
- (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-891 (-387 (-528)))) (-4 *1 (-994 *3 *4 *5))
- (-4 *3 (-37 (-387 (-528)))) (-4 *5 (-570 (-1095))) (-4 *3 (-981))
- (-4 *4 (-739)) (-4 *5 (-793))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-595 *7)) (|:| -2316 *8)))
- (-4 *7 (-994 *4 *5 *6)) (-4 *8 (-999 *4 *5 *6 *7)) (-4 *4 (-431))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-1078))
- (-5 *1 (-997 *4 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-1008))))
- ((*1 *1 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1131))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-1026 *3 *4 *5 *6 *2)) (-4 *3 (-1023)) (-4 *4 (-1023))
- (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *2 (-1023))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-1026 *3 *4 *5 *2 *6)) (-4 *3 (-1023)) (-4 *4 (-1023))
- (-4 *5 (-1023)) (-4 *2 (-1023)) (-4 *6 (-1023))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-1026 *3 *4 *2 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-1023))
- (-4 *2 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-1026 *3 *2 *4 *5 *6)) (-4 *3 (-1023)) (-4 *2 (-1023))
- (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-1026 *2 *3 *4 *5 *6)) (-4 *2 (-1023)) (-4 *3 (-1023))
- (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 *1)) (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023))
- (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-595 *7)) (|:| -2316 *8)))
- (-4 *7 (-994 *4 *5 *6)) (-4 *8 (-1032 *4 *5 *6 *7)) (-4 *4 (-431))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-1078))
- (-5 *1 (-1065 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1027)) (-5 *1 (-1100))))
- ((*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-1100))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-802)) (-5 *3 (-528)) (-5 *1 (-1112))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-802)) (-5 *3 (-528)) (-5 *1 (-1112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-726 *4 (-804 *5)))
- (-4 *4 (-13 (-791) (-288) (-140) (-957))) (-14 *5 (-595 (-1095)))
- (-5 *2 (-726 *4 (-804 *6))) (-5 *1 (-1201 *4 *5 *6))
- (-14 *6 (-595 (-1095)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-891 *4)) (-4 *4 (-13 (-791) (-288) (-140) (-957)))
- (-5 *2 (-891 (-959 (-387 *4)))) (-5 *1 (-1201 *4 *5 *6))
- (-14 *5 (-595 (-1095))) (-14 *6 (-595 (-1095)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-726 *4 (-804 *6)))
- (-4 *4 (-13 (-791) (-288) (-140) (-957))) (-14 *6 (-595 (-1095)))
- (-5 *2 (-891 (-959 (-387 *4)))) (-5 *1 (-1201 *4 *5 *6))
- (-14 *5 (-595 (-1095)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1091 *4)) (-4 *4 (-13 (-791) (-288) (-140) (-957)))
- (-5 *2 (-1091 (-959 (-387 *4)))) (-5 *1 (-1201 *4 *5 *6))
- (-14 *5 (-595 (-1095))) (-14 *6 (-595 (-1095)))))
- ((*1 *2 *3)
- (-12
- (-5 *3 (-1066 *4 (-500 (-804 *6)) (-804 *6) (-726 *4 (-804 *6))))
- (-4 *4 (-13 (-791) (-288) (-140) (-957))) (-14 *6 (-595 (-1095)))
- (-5 *2 (-595 (-726 *4 (-804 *6)))) (-5 *1 (-1201 *4 *5 *6))
- (-14 *5 (-595 (-1095))))))
-(((*1 *1 *1) (-12 (-4 *1 (-605 *2)) (-4 *2 (-981))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-4 *4 (-162)) (-4 *5 (-353 *4))
- (-4 *6 (-353 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
- (-5 *1 (-634 *4 *5 *6 *3)) (-4 *3 (-633 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-162)) (-4 *2 (-981)) (-5 *1 (-661 *2 *3))
- (-4 *3 (-597 *2))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-162)) (-4 *2 (-981)) (-5 *1 (-661 *2 *3))
- (-4 *3 (-597 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-780 *2)) (-4 *2 (-162)) (-4 *2 (-981))))
- ((*1 *1 *1) (-12 (-5 *1 (-780 *2)) (-4 *2 (-162)) (-4 *2 (-981)))))
-(((*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-908)))))
+ (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1112 *4 *5)) (-4 *4 (-1027))
+ (-4 *5 (-1027)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1112 *4 *5)) (-4 *4 (-1027))
+ (-4 *5 (-1027)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1185)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-594 (-2 (|:| -4139 *3) (|:| -2131 *4)))) (-4 *3 (-1027))
+ (-4 *4 (-1027)) (-4 *1 (-1111 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1111 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-516)) (-5 *1 (-1109 *2)) (-4 *2 (-344)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1091 *5)) (-4 *5 (-343)) (-5 *2 (-595 *6))
- (-5 *1 (-501 *5 *6 *4)) (-4 *6 (-343)) (-4 *4 (-13 (-343) (-791))))))
+ (-12 (-5 *4 (-860)) (-5 *2 (-1092 *3)) (-5 *1 (-1109 *3)) (-4 *3 (-344)))))
+(((*1 *2 *3) (-12 (-5 *3 (-594 *2)) (-5 *1 (-1109 *2)) (-4 *2 (-344)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1023)) (-5 *2 (-828 *3 *5)) (-5 *1 (-824 *3 *4 *5))
- (-4 *3 (-1023)) (-4 *5 (-615 *4)))))
+ (-12 (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3)) (-5 *2 (-594 (-594 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5))
+ (-4 *7 (-221 *3 *5)) (-5 *2 (-594 (-594 *5)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-594 (-594 *3))) (-5 *1 (-1108 *3)) (-4 *3 (-1027)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 (-594 *3))) (-4 *3 (-1027)) (-5 *1 (-1108 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-775)) (-5 *3 (-1078)))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *4 (-528)) (-5 *5 (-1078)) (-5 *6 (-635 (-207)))
- (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-87 G))))
- (-5 *8 (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN))))
- (-5 *9 (-3 (|:| |fn| (-368)) (|:| |fp| (-69 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-368)) (|:| |fp| (-86 OUTPUT))))
- (-5 *3 (-207)) (-5 *2 (-970)) (-5 *1 (-696)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1194 *3)) (-4 *3 (-343)) (-5 *2 (-110)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-1095)))))
+ (-12 (-4 *4 (-795))
+ (-5 *2
+ (-2 (|:| |f1| (-594 *4)) (|:| |f2| (-594 (-594 (-594 *4))))
+ (|:| |f3| (-594 (-594 *4))) (|:| |f4| (-594 (-594 (-594 *4))))))
+ (-5 *1 (-1106 *4)) (-5 *3 (-594 (-594 (-594 *4)))))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-795)) (-5 *3 (-594 *6)) (-5 *5 (-594 *3))
+ (-5 *2
+ (-2 (|:| |f1| *3) (|:| |f2| (-594 *5)) (|:| |f3| *5) (|:| |f4| (-594 *5))))
+ (-5 *1 (-1106 *6)) (-5 *4 (-594 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-431)) (-4 *3 (-793)) (-4 *3 (-972 (-528)))
- (-4 *3 (-520)) (-5 *1 (-40 *3 *2)) (-4 *2 (-410 *3))
- (-4 *2
- (-13 (-343) (-283)
- (-10 -8 (-15 -3031 ((-1047 *3 (-568 $)) $))
- (-15 -3042 ((-1047 *3 (-568 $)) $))
- (-15 -2222 ($ (-1047 *3 (-568 $))))))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))
- (-5 *2 (-387 (-528))) (-5 *1 (-955 *4)) (-4 *4 (-1153 (-528))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-528)) (|has| *1 (-6 -4255)) (-4 *1 (-384))
- (-5 *2 (-860)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-528))) (-5 *2 (-843 (-528))) (-5 *1 (-856))))
- ((*1 *2) (-12 (-5 *2 (-843 (-528))) (-5 *1 (-856)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-694)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-343)) (-4 *3 (-981))
- (-5 *1 (-1080 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1042)) (-5 *1 (-107))))
- ((*1 *2 *1) (-12 (-4 *1 (-129)) (-5 *2 (-717))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-528)) (-4 *1 (-353 *3)) (-4 *3 (-1131))
- (-4 *3 (-1023))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-353 *3)) (-4 *3 (-1131)) (-4 *3 (-1023))
- (-5 *2 (-528))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-110) *4)) (-4 *1 (-353 *4)) (-4 *4 (-1131))
- (-5 *2 (-528))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1064)) (-5 *2 (-528)) (-5 *3 (-134))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1064)) (-5 *2 (-528)))))
-(((*1 *2)
- (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-387 *4))) (-5 *2 (-635 (-387 *4))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-387 (-891 *3))) (-5 *1 (-432 *3 *4 *5 *6))
- (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-520) (-793) (-972 (-528)))) (-5 *2 (-110))
- (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-410 (-159 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-414))))
+ (|partial| -12 (-4 *3 (-344)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3))
+ (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-634 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-110)) (-5 *1 (-1121 *4 *3))
- (-4 *3 (-13 (-27) (-1117) (-410 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1078)) (-5 *1 (-657)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-812 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-110)) (-5 *1 (-553 *3)) (-4 *3 (-981)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-595 (-528))) (-5 *2 (-635 (-528))) (-5 *1 (-1033)))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-162)) (-4 *2 (-981)) (-5 *1 (-661 *2 *3))
- (-4 *3 (-597 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-780 *2)) (-4 *2 (-162)) (-4 *2 (-981)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1153 *6))
- (-4 *6 (-13 (-27) (-410 *5)))
- (-4 *5 (-13 (-793) (-520) (-972 (-528)))) (-4 *8 (-1153 (-387 *7)))
- (-5 *2 (-545 *3)) (-5 *1 (-516 *5 *6 *7 *8 *3))
- (-4 *3 (-322 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-595
- (-2 (|:| -3090 (-717))
- (|:| |eqns|
- (-595
- (-2 (|:| |det| *7) (|:| |rows| (-595 (-528)))
- (|:| |cols| (-595 (-528))))))
- (|:| |fgb| (-595 *7)))))
- (-4 *7 (-888 *4 *6 *5)) (-4 *4 (-13 (-288) (-140)))
- (-4 *5 (-13 (-793) (-570 (-1095)))) (-4 *6 (-739)) (-5 *2 (-717))
- (-5 *1 (-863 *4 *5 *6 *7)))))
+ (|partial| -12 (-4 *4 (-523)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4))
+ (-4 *7 (-931 *4)) (-4 *2 (-634 *7 *8 *9))
+ (-5 *1 (-498 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-634 *4 *5 *6))
+ (-4 *8 (-353 *7)) (-4 *9 (-353 *7))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2))
+ (-4 *4 (-353 *2)) (-4 *2 (-344))))
+ ((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-344)) (-4 *3 (-162)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3)) (-5 *1 (-636 *3 *4 *5 *2)) (-4 *2 (-634 *3 *4 *5))))
+ ((*1 *1 *1) (|partial| -12 (-5 *1 (-637 *2)) (-4 *2 (-344)) (-4 *2 (-984))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1048 *2 *3 *4 *5)) (-4 *3 (-984))
+ (-4 *4 (-221 *2 *3)) (-4 *5 (-221 *2 *3)) (-4 *3 (-344))))
+ ((*1 *2 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-795)) (-5 *1 (-1106 *3)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-207)) (|:| |xend| (-207))
- (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207)))
- (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207)))
- (|:| |abserr| (-207)) (|:| |relerr| (-207))))
- (-5 *2
- (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359))
- (|:| |expense| (-359)) (|:| |accuracy| (-359))
- (|:| |intermediateResults| (-359))))
- (-5 *1 (-749)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-717)) (-4 *6 (-1023)) (-4 *7 (-839 *6))
- (-5 *2 (-635 *7)) (-5 *1 (-638 *6 *7 *3 *4)) (-4 *3 (-353 *7))
- (-4 *4 (-13 (-353 *6) (-10 -7 (-6 -4264)))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-598 *3 *4 *5)) (-4 *3 (-1023))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1078)) (-5 *4 (-159 (-207))) (-5 *5 (-528))
- (-5 *2 (-970)) (-5 *1 (-705)))))
+ (-12 (-4 *4 (-795)) (-5 *2 (-594 (-594 *4))) (-5 *1 (-1106 *4))
+ (-5 *3 (-594 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-594 (-594 *3))) (-4 *3 (-795)) (-5 *1 (-1106 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-528)) (-5 *2 (-595 (-595 (-207)))) (-5 *1 (-1128)))))
+ (-12 (-4 *4 (-795)) (-5 *2 (-1108 (-594 *4))) (-5 *1 (-1106 *4))
+ (-5 *3 (-594 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-717)) (-5 *2 (-1091 *4)) (-5 *1 (-498 *4))
- (-4 *4 (-329)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-159 (-387 (-528)))))
- (-5 *2
- (-595
- (-2 (|:| |outval| (-159 *4)) (|:| |outmult| (-528))
- (|:| |outvect| (-595 (-635 (-159 *4)))))))
- (-5 *1 (-711 *4)) (-4 *4 (-13 (-343) (-791))))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-717)) (-4 *4 (-329)) (-5 *1 (-199 *4 *2))
- (-4 *2 (-1153 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
-(((*1 *1) (-5 *1 (-137))) ((*1 *1 *1) (-5 *1 (-802))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-387 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-13 (-343) (-140)))
- (-5 *1 (-379 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-595 *3)) (-4 *3 (-1131)) (-5 *1 (-1076 *3)))))
-(((*1 *1 *1) (-4 *1 (-581)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-582 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938) (-1117))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-981))
- (-14 *4 (-595 (-1095)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-51)) (-5 *2 (-110)) (-5 *1 (-50 *4)) (-4 *4 (-1131))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-205 *3 *4)) (-4 *3 (-13 (-981) (-793)))
- (-14 *4 (-595 (-1095)))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-620 *3)) (-4 *3 (-793))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-624 *3)) (-4 *3 (-793))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-832 *3)) (-4 *3 (-793)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-717)) (-5 *1 (-546 *2)) (-4 *2 (-513)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1076 (-595 (-528)))) (-5 *3 (-595 (-528)))
- (-5 *1 (-822)))))
+ (-12 (-4 *4 (-795)) (-5 *2 (-594 (-594 (-594 *4)))) (-5 *1 (-1106 *4))
+ (-5 *3 (-594 (-594 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-545 *2)) (-4 *2 (-13 (-29 *4) (-1117)))
- (-5 *1 (-543 *4 *2))
- (-4 *4 (-13 (-431) (-972 (-528)) (-793) (-591 (-528))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-545 (-387 (-891 *4))))
- (-4 *4 (-13 (-431) (-972 (-528)) (-793) (-591 (-528))))
- (-5 *2 (-296 *4)) (-5 *1 (-548 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-860)) (-4 *1 (-348))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-860)) (-5 *2 (-1177 *4)) (-5 *1 (-498 *4))
- (-4 *4 (-329))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-793)) (-5 *1 (-660 *2 *3 *4)) (-4 *3 (-1023))
- (-14 *4
- (-1 (-110) (-2 (|:| -3108 *2) (|:| -2564 *3))
- (-2 (|:| -3108 *2) (|:| -2564 *3)))))))
+ (-12 (-5 *3 (-1108 (-594 *4))) (-4 *4 (-795)) (-5 *2 (-594 (-594 *4)))
+ (-5 *1 (-1106 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-347 *4)) (-4 *4 (-162))
- (-5 *2 (-635 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-635 *4)) (-5 *1 (-396 *3 *4))
- (-4 *3 (-397 *4))))
- ((*1 *2) (-12 (-4 *1 (-397 *3)) (-4 *3 (-162)) (-5 *2 (-635 *3)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-981))
- (-4 *4 (-738))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-981)) (-5 *1 (-49 *3 *4))
- (-14 *4 (-595 (-1095)))))
- ((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1131))
- (-4 *4 (-353 *3)) (-4 *5 (-353 *3))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1131))
- (-4 *4 (-353 *3)) (-4 *5 (-353 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1131))
- (-4 *4 (-353 *3)) (-4 *5 (-353 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1131))
- (-4 *6 (-1131)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-528))
- (-14 *6 (-717)) (-4 *7 (-162)) (-4 *8 (-162))
- (-5 *2 (-132 *5 *6 *8)) (-5 *1 (-131 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-159 *5)) (-4 *5 (-162))
- (-4 *6 (-162)) (-5 *2 (-159 *6)) (-5 *1 (-158 *5 *6))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-296 *3) (-296 *3))) (-4 *3 (-13 (-981) (-793)))
- (-5 *1 (-205 *3 *4)) (-14 *4 (-595 (-1095)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-222 *5 *6)) (-14 *5 (-717))
- (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-222 *5 *7))
- (-5 *1 (-221 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-275 *5)) (-4 *5 (-1131))
- (-4 *6 (-1131)) (-5 *2 (-275 *6)) (-5 *1 (-274 *5 *6))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-275 *3))))
+ (-12 (-5 *3 (-594 (-594 (-594 *4)))) (-5 *2 (-594 (-594 *4)))
+ (-5 *1 (-1106 *4)) (-4 *4 (-795)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-594 (-594 (-594 *4)))) (-5 *2 (-594 (-594 *4))) (-4 *4 (-795))
+ (-5 *1 (-1106 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-594 (-594 (-594 *4)))) (-5 *3 (-594 *4)) (-4 *4 (-795))
+ (-5 *1 (-1106 *4)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-594 (-594 (-594 *5)))) (-5 *3 (-1 (-110) *5 *5))
+ (-5 *4 (-594 *5)) (-4 *5 (-795)) (-5 *1 (-1106 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-110) *6 *6)) (-4 *6 (-795)) (-5 *4 (-594 *6))
+ (-5 *2 (-2 (|:| |fs| (-110)) (|:| |sd| *4) (|:| |td| (-594 *4))))
+ (-5 *1 (-1106 *6)) (-5 *5 (-594 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-1105)))))
+(((*1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1105)))))
+(((*1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1105)))))
+(((*1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-1105)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-388 (-887 *5)))) (-5 *4 (-594 (-1098))) (-4 *5 (-523))
+ (-5 *2 (-594 (-594 (-887 *5)))) (-5 *1 (-1104 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-388 (-887 (-516)))))
+ (-5 *2 (-594 (-594 (-275 (-887 *4))))) (-5 *1 (-361 *4))
+ (-4 *4 (-13 (-793) (-344)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-275 (-388 (-887 (-516))))))
+ (-5 *2 (-594 (-594 (-275 (-887 *4))))) (-5 *1 (-361 *4))
+ (-4 *4 (-13 (-793) (-344)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-887 (-516)))) (-5 *2 (-594 (-275 (-887 *4))))
+ (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-275 (-388 (-887 (-516))))) (-5 *2 (-594 (-275 (-887 *4))))
+ (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1078)) (-5 *5 (-568 *6))
- (-4 *6 (-283)) (-4 *2 (-1131)) (-5 *1 (-278 *6 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-568 *5)) (-4 *5 (-283))
- (-4 *2 (-283)) (-5 *1 (-279 *5 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-568 *1)) (-4 *1 (-283))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-635 *5)) (-4 *5 (-981))
- (-4 *6 (-981)) (-5 *2 (-635 *6)) (-5 *1 (-285 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-296 *5)) (-4 *5 (-793))
- (-4 *6 (-793)) (-5 *2 (-296 *6)) (-5 *1 (-294 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-316 *5 *6 *7 *8)) (-4 *5 (-343))
- (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-387 *6))) (-4 *8 (-322 *5 *6 *7))
- (-4 *9 (-343)) (-4 *10 (-1153 *9)) (-4 *11 (-1153 (-387 *10)))
- (-5 *2 (-316 *9 *10 *11 *12))
- (-5 *1 (-313 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-322 *9 *10 *11))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-318 *3)) (-4 *3 (-1023))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1135)) (-4 *8 (-1135))
- (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-387 *6))) (-4 *9 (-1153 *8))
- (-4 *2 (-322 *8 *9 *10)) (-5 *1 (-320 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-322 *5 *6 *7)) (-4 *10 (-1153 (-387 *9)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1131)) (-4 *6 (-1131))
- (-4 *2 (-353 *6)) (-5 *1 (-351 *5 *4 *6 *2)) (-4 *4 (-353 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-362 *3 *4)) (-4 *3 (-981))
- (-4 *4 (-1023))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-398 *5)) (-4 *5 (-520))
- (-4 *6 (-520)) (-5 *2 (-398 *6)) (-5 *1 (-385 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-387 *5)) (-4 *5 (-520))
- (-4 *6 (-520)) (-5 *2 (-387 *6)) (-5 *1 (-386 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-393 *5 *6 *7 *8)) (-4 *5 (-288))
- (-4 *6 (-929 *5)) (-4 *7 (-1153 *6))
- (-4 *8 (-13 (-389 *6 *7) (-972 *6))) (-4 *9 (-288))
- (-4 *10 (-929 *9)) (-4 *11 (-1153 *10))
- (-5 *2 (-393 *9 *10 *11 *12))
- (-5 *1 (-392 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-389 *10 *11) (-972 *10)))))
+ (|partial| -12 (-5 *5 (-1098))
+ (-4 *6 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)))
+ (-4 *4 (-13 (-29 *6) (-1120) (-901)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2071 (-594 *4))))
+ (-5 *1 (-604 *6 *4 *3)) (-4 *3 (-609 *4))))
+ ((*1 *2 *3 *2 *4 *2 *5)
+ (|partial| -12 (-5 *4 (-1098)) (-5 *5 (-594 *2))
+ (-4 *2 (-13 (-29 *6) (-1120) (-901)))
+ (-4 *6 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)))
+ (-5 *1 (-604 *6 *2 *3)) (-4 *3 (-609 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162))
- (-4 *2 (-397 *6)) (-5 *1 (-395 *4 *5 *2 *6)) (-4 *4 (-397 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-520)) (-5 *1 (-398 *3))))
+ (-12 (-4 *5 (-344)) (-4 *6 (-13 (-353 *5) (-10 -7 (-6 -4270))))
+ (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4270))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2071 (-594 *4))))
+ (-5 *1 (-618 *5 *6 *4 *3)) (-4 *3 (-634 *5 *6 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-981) (-793)))
- (-4 *6 (-13 (-981) (-793))) (-4 *2 (-410 *6))
- (-5 *1 (-401 *5 *4 *6 *2)) (-4 *4 (-410 *5))))
+ (-12 (-4 *5 (-344)) (-4 *6 (-13 (-353 *5) (-10 -7 (-6 -4270))))
+ (-4 *7 (-13 (-353 *5) (-10 -7 (-6 -4270))))
+ (-5 *2 (-594 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2071 (-594 *7)))))
+ (-5 *1 (-618 *5 *6 *7 *3)) (-5 *4 (-594 *7)) (-4 *3 (-634 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1023)) (-4 *6 (-1023))
- (-4 *2 (-405 *6)) (-5 *1 (-403 *5 *4 *6 *2)) (-4 *4 (-405 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-467 *3)) (-4 *3 (-1131))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-484 *3 *4)) (-4 *3 (-1023))
- (-4 *4 (-793))))
+ (-12 (-5 *3 (-637 *5)) (-4 *5 (-344))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1179 *5) #2="failed"))
+ (|:| -2071 (-594 (-1179 *5)))))
+ (-5 *1 (-619 *5)) (-5 *4 (-1179 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-545 *5)) (-4 *5 (-343))
- (-4 *6 (-343)) (-5 *2 (-545 *6)) (-5 *1 (-544 *5 *6))))
+ (-12 (-5 *3 (-594 (-594 *5))) (-4 *5 (-344))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1179 *5) #2#)) (|:| -2071 (-594 (-1179 *5)))))
+ (-5 *1 (-619 *5)) (-5 *4 (-1179 *5))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -1497 *5) (|:| |coeff| *5)) "failed"))
- (-4 *5 (-343)) (-4 *6 (-343))
- (-5 *2 (-2 (|:| -1497 *6) (|:| |coeff| *6)))
- (-5 *1 (-544 *5 *6))))
+ (-12 (-5 *3 (-637 *5)) (-4 *5 (-344))
+ (-5 *2
+ (-594
+ (-2 (|:| |particular| (-3 (-1179 *5) #2#))
+ (|:| -2071 (-594 (-1179 *5))))))
+ (-5 *1 (-619 *5)) (-5 *4 (-594 (-1179 *5)))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
- (-4 *5 (-343)) (-4 *2 (-343)) (-5 *1 (-544 *5 *2))))
+ (-12 (-5 *3 (-594 (-594 *5))) (-4 *5 (-344))
+ (-5 *2
+ (-594
+ (-2 (|:| |particular| (-3 (-1179 *5) #2#))
+ (|:| -2071 (-594 (-1179 *5))))))
+ (-5 *1 (-619 *5)) (-5 *4 (-594 (-1179 *5)))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4
- (-3
- (-2 (|:| |mainpart| *5)
- (|:| |limitedlogs|
- (-595 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
- "failed"))
- (-4 *5 (-343)) (-4 *6 (-343))
- (-5 *2
- (-2 (|:| |mainpart| *6)
- (|:| |limitedlogs|
- (-595 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
- (-5 *1 (-544 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-558 *5)) (-4 *5 (-1131))
- (-4 *6 (-1131)) (-5 *2 (-558 *6)) (-5 *1 (-555 *5 *6))))
+ (-12 (-5 *3 (-594 (-887 *5))) (-5 *4 (-594 (-1098))) (-4 *5 (-523))
+ (-5 *2 (-594 (-594 (-275 (-388 (-887 *5)))))) (-5 *1 (-718 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-887 *4))) (-4 *4 (-523))
+ (-5 *2 (-594 (-594 (-275 (-388 (-887 *4)))))) (-5 *1 (-718 *4))))
+ ((*1 *2 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-111)) (-5 *4 (-1098))
+ (-4 *5 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)))
+ (-5 *1 (-720 *5 *2)) (-4 *2 (-13 (-29 *5) (-1120) (-901)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-558 *6)) (-5 *5 (-558 *7))
- (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-558 *8))
- (-5 *1 (-556 *6 *7 *8))))
+ (|partial| -12 (-5 *3 (-637 *7)) (-5 *5 (-1098))
+ (-4 *7 (-13 (-29 *6) (-1120) (-901)))
+ (-4 *6 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)))
+ (-5 *2 (-2 (|:| |particular| (-1179 *7)) (|:| -2071 (-594 (-1179 *7)))))
+ (-5 *1 (-750 *6 *7)) (-5 *4 (-1179 *7))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-637 *6)) (-5 *4 (-1098))
+ (-4 *6 (-13 (-29 *5) (-1120) (-901)))
+ (-4 *5 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)))
+ (-5 *2 (-594 (-1179 *6))) (-5 *1 (-750 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1076 *6)) (-5 *5 (-558 *7))
- (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-1076 *8))
- (-5 *1 (-556 *6 *7 *8))))
+ (|partial| -12 (-5 *3 (-594 (-275 *7))) (-5 *4 (-594 (-111))) (-5 *5 (-1098))
+ (-4 *7 (-13 (-29 *6) (-1120) (-901)))
+ (-4 *6 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)))
+ (-5 *2 (-2 (|:| |particular| (-1179 *7)) (|:| -2071 (-594 (-1179 *7)))))
+ (-5 *1 (-750 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-558 *6)) (-5 *5 (-1076 *7))
- (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-1076 *8))
- (-5 *1 (-556 *6 *7 *8))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-558 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-595 *5)) (-4 *5 (-1131))
- (-4 *6 (-1131)) (-5 *2 (-595 *6)) (-5 *1 (-593 *5 *6))))
+ (|partial| -12 (-5 *3 (-594 *7)) (-5 *4 (-594 (-111))) (-5 *5 (-1098))
+ (-4 *7 (-13 (-29 *6) (-1120) (-901)))
+ (-4 *6 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)))
+ (-5 *2 (-2 (|:| |particular| (-1179 *7)) (|:| -2071 (-594 (-1179 *7)))))
+ (-5 *1 (-750 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-595 *6)) (-5 *5 (-595 *7))
- (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-595 *8))
- (-5 *1 (-594 *6 *7 *8))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-600 *3)) (-4 *3 (-1131))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-981)) (-4 *8 (-981))
- (-4 *6 (-353 *5)) (-4 *7 (-353 *5)) (-4 *2 (-633 *8 *9 *10))
- (-5 *1 (-631 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-633 *5 *6 *7))
- (-4 *9 (-353 *8)) (-4 *10 (-353 *8))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-981))
- (-4 *8 (-981)) (-4 *6 (-353 *5)) (-4 *7 (-353 *5))
- (-4 *2 (-633 *8 *9 *10)) (-5 *1 (-631 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-633 *5 *6 *7)) (-4 *9 (-353 *8)) (-4 *10 (-353 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-520)) (-4 *7 (-520))
- (-4 *6 (-1153 *5)) (-4 *2 (-1153 (-387 *8)))
- (-5 *1 (-656 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1153 (-387 *6)))
- (-4 *8 (-1153 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-981)) (-4 *9 (-981)) (-4 *5 (-793))
- (-4 *6 (-739)) (-4 *2 (-888 *9 *7 *5))
- (-5 *1 (-675 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-739))
- (-4 *4 (-888 *8 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-793)) (-4 *6 (-793)) (-4 *7 (-739))
- (-4 *9 (-981)) (-4 *2 (-888 *9 *8 *6))
- (-5 *1 (-676 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-739))
- (-4 *4 (-888 *9 *7 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-682 *5 *7)) (-4 *5 (-981))
- (-4 *6 (-981)) (-4 *7 (-673)) (-5 *2 (-682 *6 *7))
- (-5 *1 (-681 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-981)) (-5 *1 (-682 *3 *4))
- (-4 *4 (-673))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-728 *5)) (-4 *5 (-981))
- (-4 *6 (-981)) (-5 *2 (-728 *6)) (-5 *1 (-727 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162))
- (-4 *2 (-743 *6)) (-5 *1 (-744 *4 *5 *2 *6)) (-4 *4 (-743 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-779 *5)) (-4 *5 (-1023))
- (-4 *6 (-1023)) (-5 *2 (-779 *6)) (-5 *1 (-778 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-779 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-779 *5))
- (-4 *5 (-1023)) (-4 *6 (-1023)) (-5 *1 (-778 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-786 *5)) (-4 *5 (-1023))
- (-4 *6 (-1023)) (-5 *2 (-786 *6)) (-5 *1 (-785 *5 *6))))
- ((*1 *2 *3 *4 *2 *2)
- (-12 (-5 *2 (-786 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-786 *5))
- (-4 *5 (-1023)) (-4 *6 (-1023)) (-5 *1 (-785 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5)) (-4 *5 (-1131))
- (-4 *6 (-1131)) (-5 *2 (-816 *6)) (-5 *1 (-815 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-818 *5)) (-4 *5 (-1131))
- (-4 *6 (-1131)) (-5 *2 (-818 *6)) (-5 *1 (-817 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-821 *5)) (-4 *5 (-1131))
- (-4 *6 (-1131)) (-5 *2 (-821 *6)) (-5 *1 (-820 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-828 *5 *6)) (-4 *5 (-1023))
- (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-828 *5 *7))
- (-5 *1 (-827 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-831 *5)) (-4 *5 (-1023))
- (-4 *6 (-1023)) (-5 *2 (-831 *6)) (-5 *1 (-830 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-891 *5)) (-4 *5 (-981))
- (-4 *6 (-981)) (-5 *2 (-891 *6)) (-5 *1 (-885 *5 *6))))
+ (-12 (-5 *3 (-275 *7)) (-5 *4 (-111)) (-5 *5 (-1098))
+ (-4 *7 (-13 (-29 *6) (-1120) (-901)))
+ (-4 *6 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)))
+ (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2071 (-594 *7))) *7 #3="failed"))
+ (-5 *1 (-750 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-793))
- (-4 *8 (-981)) (-4 *6 (-739))
- (-4 *2
- (-13 (-1023)
- (-10 -8 (-15 -2275 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-717))))))
- (-5 *1 (-890 *6 *7 *8 *5 *2)) (-4 *5 (-888 *8 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-896 *5)) (-4 *5 (-1131))
- (-4 *6 (-1131)) (-5 *2 (-896 *6)) (-5 *1 (-895 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-882 *5)) (-4 *5 (-981))
- (-4 *6 (-981)) (-5 *2 (-882 *6)) (-5 *1 (-918 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-891 *4))) (-4 *4 (-981))
- (-4 *2 (-888 (-891 *4) *5 *6)) (-4 *5 (-739))
- (-4 *6
- (-13 (-793)
- (-10 -8 (-15 -3155 ((-1095) $))
- (-15 -3915 ((-3 $ "failed") (-1095))))))
- (-5 *1 (-921 *4 *5 *6 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-520)) (-4 *6 (-520))
- (-4 *2 (-929 *6)) (-5 *1 (-927 *5 *6 *4 *2)) (-4 *4 (-929 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162))
- (-4 *2 (-933 *6)) (-5 *1 (-934 *4 *5 *2 *6)) (-4 *4 (-933 *5))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-983 *3 *4 *5 *6 *7))
- (-4 *5 (-981)) (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981))
- (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-981)) (-4 *10 (-981))
- (-14 *5 (-717)) (-14 *6 (-717)) (-4 *8 (-220 *6 *7))
- (-4 *9 (-220 *5 *7)) (-4 *2 (-983 *5 *6 *10 *11 *12))
- (-5 *1 (-985 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-983 *5 *6 *7 *8 *9)) (-4 *11 (-220 *6 *10))
- (-4 *12 (-220 *5 *10))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1018 *5)) (-4 *5 (-1131))
- (-4 *6 (-1131)) (-5 *2 (-1018 *6)) (-5 *1 (-1014 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1018 *5)) (-4 *5 (-791))
- (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-595 *6))
- (-5 *1 (-1014 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1016 *5)) (-4 *5 (-1131))
- (-4 *6 (-1131)) (-5 *2 (-1016 *6)) (-5 *1 (-1015 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1019 *4 *2)) (-4 *4 (-791))
- (-4 *2 (-1069 *4))))
+ (-12 (-5 *4 (-111)) (-5 *5 (-1098))
+ (-4 *6 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)))
+ (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2071 (-594 *3))) *3 #3#))
+ (-5 *1 (-750 *6 *3)) (-4 *3 (-13 (-29 *6) (-1120) (-901)))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-275 *2)) (-5 *4 (-111)) (-5 *5 (-594 *2))
+ (-4 *2 (-13 (-29 *6) (-1120) (-901))) (-5 *1 (-750 *6 *2))
+ (-4 *6 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)))))
+ ((*1 *2 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-111)) (-5 *4 (-275 *2)) (-5 *5 (-594 *2))
+ (-4 *2 (-13 (-29 *6) (-1120) (-901)))
+ (-4 *6 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)))
+ (-5 *1 (-750 *6 *2))))
+ ((*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-973)) (-5 *1 (-753))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1076 *5)) (-4 *5 (-1131))
- (-4 *6 (-1131)) (-5 *2 (-1076 *6)) (-5 *1 (-1074 *5 *6))))
+ (-12 (-5 *3 (-756)) (-5 *4 (-995)) (-5 *2 (-973)) (-5 *1 (-753))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1179 (-295 (-359)))) (-5 *4 (-359)) (-5 *5 (-594 *4))
+ (-5 *2 (-973)) (-5 *1 (-753))))
+ ((*1 *2 *3 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1179 (-295 (-359)))) (-5 *4 (-359)) (-5 *5 (-594 *4))
+ (-5 *2 (-973)) (-5 *1 (-753))))
+ ((*1 *2 *3 *4 *4 *5 *6 *4)
+ (-12 (-5 *3 (-1179 (-295 *4))) (-5 *5 (-594 (-359))) (-5 *6 (-295 (-359)))
+ (-5 *4 (-359)) (-5 *2 (-973)) (-5 *1 (-753))))
+ ((*1 *2 *3 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1179 (-295 (-359)))) (-5 *4 (-359)) (-5 *5 (-594 *4))
+ (-5 *2 (-973)) (-5 *1 (-753))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
+ (-12 (-5 *3 (-1179 (-295 *4))) (-5 *5 (-594 (-359))) (-5 *6 (-295 (-359)))
+ (-5 *4 (-359)) (-5 *2 (-973)) (-5 *1 (-753))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
+ (-12 (-5 *3 (-1179 (-295 *4))) (-5 *5 (-594 (-359))) (-5 *6 (-295 (-359)))
+ (-5 *4 (-359)) (-5 *2 (-973)) (-5 *1 (-753))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1076 *6)) (-5 *5 (-1076 *7))
- (-4 *6 (-1131)) (-4 *7 (-1131)) (-4 *8 (-1131)) (-5 *2 (-1076 *8))
- (-5 *1 (-1075 *6 *7 *8))))
+ (|partial| -12
+ (-5 *5
+ (-1 (-3 (-2 (|:| |particular| *6) (|:| -2071 (-594 *6))) "failed") *7 *6))
+ (-4 *6 (-344)) (-4 *7 (-609 *6))
+ (-5 *2 (-2 (|:| |particular| (-1179 *6)) (|:| -2071 (-637 *6))))
+ (-5 *1 (-761 *6 *7)) (-5 *3 (-637 *6)) (-5 *4 (-1179 *6))))
+ ((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-973)) (-5 *1 (-838))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1091 *5)) (-4 *5 (-981))
- (-4 *6 (-981)) (-5 *2 (-1091 *6)) (-5 *1 (-1089 *5 *6))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1108 *3 *4)) (-4 *3 (-1023))
- (-4 *4 (-1023))))
+ (-12 (-5 *3 (-839)) (-5 *4 (-995)) (-5 *2 (-973)) (-5 *1 (-838))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
+ (-12 (-5 *4 (-719)) (-5 *6 (-594 (-594 (-295 *3)))) (-5 *7 (-1081))
+ (-5 *8 (-208)) (-5 *5 (-594 (-295 (-359)))) (-5 *3 (-359)) (-5 *2 (-973))
+ (-5 *1 (-838))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *4 (-719)) (-5 *6 (-594 (-594 (-295 *3)))) (-5 *7 (-1081))
+ (-5 *5 (-594 (-295 (-359)))) (-5 *3 (-359)) (-5 *2 (-973)) (-5 *1 (-838))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1141 *5 *7 *9)) (-4 *5 (-981))
- (-4 *6 (-981)) (-14 *7 (-1095)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1141 *6 *8 *10)) (-5 *1 (-1136 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1095))))
+ (-12 (-5 *3 (-887 (-388 (-516)))) (-5 *2 (-594 (-359))) (-5 *1 (-961))
+ (-5 *4 (-359))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1144 *5)) (-4 *5 (-1131))
- (-4 *6 (-1131)) (-5 *2 (-1144 *6)) (-5 *1 (-1143 *5 *6))))
+ (-12 (-5 *3 (-887 (-516))) (-5 *2 (-594 (-359))) (-5 *1 (-961))
+ (-5 *4 (-359))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516)))))))
+ (-5 *2 (-594 *4)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-1155 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)))
+ (-5 *2 (-594 (-275 (-295 *4)))) (-5 *1 (-1056 *4)) (-5 *3 (-295 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)))
+ (-5 *2 (-594 (-275 (-295 *4)))) (-5 *1 (-1056 *4))
+ (-5 *3 (-275 (-295 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1144 *5)) (-4 *5 (-791))
- (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1076 *6))
- (-5 *1 (-1143 *5 *6))))
+ (-12 (-5 *4 (-1098))
+ (-4 *5 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)))
+ (-5 *2 (-594 (-275 (-295 *5)))) (-5 *1 (-1056 *5))
+ (-5 *3 (-275 (-295 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1150 *5 *6)) (-14 *5 (-1095))
- (-4 *6 (-981)) (-4 *8 (-981)) (-5 *2 (-1150 *7 *8))
- (-5 *1 (-1145 *5 *6 *7 *8)) (-14 *7 (-1095))))
+ (-12 (-5 *4 (-1098))
+ (-4 *5 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)))
+ (-5 *2 (-594 (-275 (-295 *5)))) (-5 *1 (-1056 *5)) (-5 *3 (-295 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-981)) (-4 *6 (-981))
- (-4 *2 (-1153 *6)) (-5 *1 (-1151 *5 *4 *6 *2)) (-4 *4 (-1153 *5))))
+ (-12 (-5 *4 (-594 (-1098)))
+ (-4 *5 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)))
+ (-5 *2 (-594 (-594 (-275 (-295 *5))))) (-5 *1 (-1056 *5))
+ (-5 *3 (-594 (-275 (-295 *5))))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1162 *5 *7 *9)) (-4 *5 (-981))
- (-4 *6 (-981)) (-14 *7 (-1095)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1162 *6 *8 *10)) (-5 *1 (-1157 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1095))))
+ (-12 (-5 *3 (-594 (-388 (-887 *5)))) (-5 *4 (-594 (-1098))) (-4 *5 (-523))
+ (-5 *2 (-594 (-594 (-275 (-388 (-887 *5)))))) (-5 *1 (-1104 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-981)) (-4 *6 (-981))
- (-4 *2 (-1168 *6)) (-5 *1 (-1166 *5 *6 *4 *2)) (-4 *4 (-1168 *5))))
+ (-12 (-5 *4 (-594 (-1098))) (-4 *5 (-523))
+ (-5 *2 (-594 (-594 (-275 (-388 (-887 *5)))))) (-5 *1 (-1104 *5))
+ (-5 *3 (-594 (-275 (-388 (-887 *5)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-388 (-887 *4)))) (-4 *4 (-523))
+ (-5 *2 (-594 (-594 (-275 (-388 (-887 *4)))))) (-5 *1 (-1104 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-594 (-594 (-275 (-388 (-887 *4))))))
+ (-5 *1 (-1104 *4)) (-5 *3 (-594 (-275 (-388 (-887 *4)))))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-1131))
- (-4 *6 (-1131)) (-5 *2 (-1177 *6)) (-5 *1 (-1176 *5 *6))))
+ (-12 (-5 *4 (-1098)) (-4 *5 (-523)) (-5 *2 (-594 (-275 (-388 (-887 *5)))))
+ (-5 *1 (-1104 *5)) (-5 *3 (-388 (-887 *5)))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1177 *5))
- (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1177 *6))
- (-5 *1 (-1176 *5 *6))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1192 *3 *4)) (-4 *3 (-793))
- (-4 *4 (-981))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-981)) (-5 *1 (-1198 *3 *4))
- (-4 *4 (-789)))))
-(((*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-60 *3)) (-14 *3 (-1095))))
- ((*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-67 *3)) (-14 *3 (-1095))))
- ((*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-70 *3)) (-14 *3 (-1095))))
- ((*1 *2 *1) (-12 (-4 *1 (-375)) (-5 *2 (-1182))))
- ((*1 *2 *3) (-12 (-5 *3 (-368)) (-5 *2 (-1182)) (-5 *1 (-377))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1078)) (-5 *4 (-802)) (-5 *2 (-1182)) (-5 *1 (-1058))))
- ((*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1182)) (-5 *1 (-1058))))
+ (-12 (-5 *4 (-1098)) (-4 *5 (-523)) (-5 *2 (-594 (-275 (-388 (-887 *5)))))
+ (-5 *1 (-1104 *5)) (-5 *3 (-275 (-388 (-887 *5))))))
((*1 *2 *3)
- (-12 (-5 *3 (-595 (-802))) (-5 *2 (-1182)) (-5 *1 (-1058)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-595 *7)) (|:| -2316 *8)))
- (-4 *7 (-994 *4 *5 *6)) (-4 *8 (-999 *4 *5 *6 *7)) (-4 *4 (-431))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110))
- (-5 *1 (-925 *4 *5 *6 *7 *8))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-595 *7)) (|:| -2316 *8)))
- (-4 *7 (-994 *4 *5 *6)) (-4 *8 (-999 *4 *5 *6 *7)) (-4 *4 (-431))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110))
- (-5 *1 (-1030 *4 *5 *6 *7 *8)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1091 *1)) (-4 *1 (-948)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-595 (-528))) (-5 *1 (-940 *3)) (-14 *3 (-528)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1042)) (-5 *1 (-767)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-398 *2)) (-4 *2 (-520)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-513))
- (-5 *2 (-387 (-528)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-387 (-528))) (-5 *1 (-398 *3)) (-4 *3 (-513))
- (-4 *3 (-520))))
- ((*1 *2 *1) (-12 (-4 *1 (-513)) (-5 *2 (-387 (-528)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-743 *3)) (-4 *3 (-162)) (-4 *3 (-513))
- (-5 *2 (-387 (-528)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-387 (-528))) (-5 *1 (-779 *3)) (-4 *3 (-513))
- (-4 *3 (-1023))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-387 (-528))) (-5 *1 (-786 *3)) (-4 *3 (-513))
- (-4 *3 (-1023))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-933 *3)) (-4 *3 (-162)) (-4 *3 (-513))
- (-5 *2 (-387 (-528)))))
+ (-12 (-4 *4 (-523)) (-5 *2 (-594 (-275 (-388 (-887 *4))))) (-5 *1 (-1104 *4))
+ (-5 *3 (-388 (-887 *4)))))
((*1 *2 *3)
- (-12 (-5 *2 (-387 (-528))) (-5 *1 (-944 *3)) (-4 *3 (-972 *2)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1023)) (-4 *2 (-839 *5)) (-5 *1 (-638 *5 *2 *3 *4))
- (-4 *3 (-353 *2)) (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4264)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-528))))
- ((*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-645)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207)))
- (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207))
- (|:| |relerr| (-207))))
- (-5 *2 (-1076 (-207))) (-5 *1 (-176))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-296 (-207))) (-5 *4 (-595 (-1095)))
- (-5 *5 (-1018 (-786 (-207)))) (-5 *2 (-1076 (-207))) (-5 *1 (-281))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1177 (-296 (-207)))) (-5 *4 (-595 (-1095)))
- (-5 *5 (-1018 (-786 (-207)))) (-5 *2 (-1076 (-207))) (-5 *1 (-281)))))
-(((*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-371)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-595 *1)) (-4 *1 (-994 *4 *5 *6)) (-4 *4 (-981))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *5 (-793)) (-5 *2 (-110))))
+ (-12 (-4 *4 (-523)) (-5 *2 (-594 (-275 (-388 (-887 *4))))) (-5 *1 (-1104 *4))
+ (-5 *3 (-275 (-388 (-887 *4)))))))
+(((*1 *2 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-805)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-1103))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1103))))
+ ((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-1103))))
+ ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1103)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-594 (-1103))) (-5 *1 (-1103))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-594 (-1103))) (-5 *1 (-1103)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1103)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1098)) (-5 *1 (-262))))
((*1 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-520)) (-4 *5 (-739))
- (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-110)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-595 (-159 *4))) (-5 *1 (-147 *3 *4))
- (-4 *3 (-1153 (-159 (-528)))) (-4 *4 (-13 (-343) (-791)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-343) (-791))) (-5 *2 (-595 (-159 *4)))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1153 (-159 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-343) (-791))) (-5 *2 (-595 (-159 *4)))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1153 (-159 *4))))))
+ (-12 (-5 *2 (-3 (-516) (-208) (-1098) (-1081) (-1103))) (-5 *1 (-1103)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-594 (-262))) (-5 *1 (-262))))
+ ((*1 *2 *1) (-12 (-5 *2 (-594 (-1103))) (-5 *1 (-1103)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1103)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| -2380)) (-5 *2 (-110)) (-5 *1 (-639 *4))
+ (-4 *4 (-571 (-805)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-571 (-805))) (-5 *2 (-110))
+ (-5 *1 (-639 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-1081))) (-5 *2 (-110)) (-5 *1 (-1103))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-1098))) (-5 *2 (-110)) (-5 *1 (-1103))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-208))) (-5 *2 (-110)) (-5 *1 (-1103))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-110)) (-5 *1 (-1103)))))
+(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-273))) ((*1 *1) (-5 *1 (-805)))
+ ((*1 *1)
+ (-12 (-4 *2 (-432)) (-4 *3 (-795)) (-4 *4 (-741)) (-5 *1 (-926 *2 *3 *4 *5))
+ (-4 *5 (-891 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-1013)))
+ ((*1 *1)
+ (-12 (-5 *1 (-1063 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
+ (-4 *3 (-13 (-1027) (-33)))))
+ ((*1 *1) (-5 *1 (-1101))) ((*1 *1) (-5 *1 (-1102))))
+(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-417)) (-5 *3 (-1098)) (-5 *1 (-1101))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-417)) (-5 *3 (-1098)) (-5 *1 (-1101))))
+ ((*1 *2 *3 *2 *4 *1)
+ (-12 (-5 *2 (-417)) (-5 *3 (-594 (-1098))) (-5 *4 (-1098)) (-5 *1 (-1101))))
+ ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-417)) (-5 *3 (-1098)) (-5 *1 (-1101))))
+ ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-417)) (-5 *3 (-1098)) (-5 *1 (-1102))))
+ ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-417)) (-5 *3 (-594 (-1098))) (-5 *1 (-1102)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1098)) (-5 *2 (-417)) (-5 *1 (-1102)))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-1098))) (-5 *1 (-1102)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-415))
+ (-5 *2
+ (-594
+ (-3 (|:| -3824 (-1098))
+ (|:| |bounds| (-594 (-3 (|:| S (-1098)) (|:| P (-887 (-516)))))))))
+ (-5 *1 (-1102)))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-1098))) (-5 *1 (-1102)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-717)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-528))
- (-14 *4 *2) (-4 *5 (-162))))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-860)) (-5 *1 (-155 *3 *4))
- (-4 *3 (-156 *4))))
- ((*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-860))))
- ((*1 *2)
- (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1153 *3))
- (-5 *2 (-860))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-343)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4))
- (-5 *2 (-717)) (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-633 *4 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-343))
- (-5 *2 (-717)) (-5 *1 (-616 *5))))
+ (-12
+ (-5 *2
+ (-594
+ (-594
+ (-3 (|:| -3824 (-1098))
+ (|:| |bounds| (-594 (-3 (|:| S (-1098)) (|:| P (-887 (-516))))))))))
+ (-5 *1 (-1102)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-1102)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-1185)) (-5 *1 (-1101))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1102)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-594 (-2 (|:| -4139 (-1098)) (|:| -2131 (-417)))))
+ (-5 *1 (-1102)))))
+(((*1 *1) (-5 *1 (-1101))))
+(((*1 *2 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-1185)) (-5 *1 (-1101))))
+ ((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1101)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-1185)) (-5 *1 (-1101)))))
+(((*1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-1101)))))
+(((*1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-1101)))))
+(((*1 *2 *3) (-12 (-5 *3 (-594 (-1098))) (-5 *2 (-1185)) (-5 *1 (-1101))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-594 (-1098))) (-5 *3 (-1098)) (-5 *2 (-1185)) (-5 *1 (-1101))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *4 (-594 (-1098))) (-5 *3 (-1098)) (-5 *2 (-1185)) (-5 *1 (-1101)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-3 (|:| |fst| (-415)) (|:| -4189 #1="void"))) (-5 *2 (-1185))
+ (-5 *1 (-1101))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-343)) (-4 *6 (-13 (-353 *5) (-10 -7 (-6 -4265))))
- (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4265)))) (-5 *2 (-717))
- (-5 *1 (-617 *5 *6 *4 *3)) (-4 *3 (-633 *5 *6 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3))
- (-4 *5 (-353 *3)) (-4 *3 (-520)) (-5 *2 (-717))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-4 *4 (-162)) (-4 *5 (-353 *4))
- (-4 *6 (-353 *4)) (-5 *2 (-717)) (-5 *1 (-634 *4 *5 *6 *3))
- (-4 *3 (-633 *4 *5 *6))))
+ (-12 (-5 *3 (-1098)) (-5 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#)))
+ (-5 *2 (-1185)) (-5 *1 (-1101))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1098)) (-5 *4 (-3 (|:| |fst| (-415)) (|:| -4189 #1#)))
+ (-5 *2 (-1185)) (-5 *1 (-1101)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1101))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-1185)) (-5 *1 (-1101))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1098)) (-5 *2 (-1185)) (-5 *1 (-1101)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1098)) (-5 *2 (-3 (|:| |fst| (-415)) (|:| -4189 "void")))
+ (-5 *1 (-1101)))))
+(((*1 *2 *3 *1) (-12 (-5 *2 (-594 (-1098))) (-5 *1 (-1101)) (-5 *3 (-1098)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1098)) (-5 *2 (-1102)) (-5 *1 (-1101)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-594 *4)) (-4 *4 (-984)) (-5 *2 (-1179 *4)) (-5 *1 (-1099 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-860)) (-5 *2 (-1179 *3)) (-5 *1 (-1099 *3)) (-4 *3 (-984)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1098)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-106))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-111))))
+ ((*1 *2 *1) (-12 (-4 *1 (-346 *2 *3)) (-4 *3 (-1027)) (-4 *2 (-1027))))
+ ((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1081))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-419 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-462))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-569 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-906))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1005 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-5 *1 (-1098))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1098)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805))))
((*1 *2 *1)
- (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981))
- (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-4 *5 (-520))
- (-5 *2 (-717)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-520))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110))
- (-5 *1 (-914 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-882 *2)) (-5 *1 (-919 *2)) (-4 *2 (-981)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-981)) (-5 *2 (-1177 *3)) (-5 *1 (-659 *3 *4))
- (-4 *4 (-1153 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *5)) (-5 *4 (-595 (-1 *6 (-595 *6))))
- (-4 *5 (-37 (-387 (-528)))) (-4 *6 (-1168 *5)) (-5 *2 (-595 *6))
- (-5 *1 (-1170 *5 *6)))))
+ (-12
+ (-5 *2
+ (-2 (|:| -2844 (-594 (-805))) (|:| -2667 (-594 (-805)))
+ (|:| |presup| (-594 (-805))) (|:| -2842 (-594 (-805)))
+ (|:| |args| (-594 (-805)))))
+ (-5 *1 (-1098)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-528)) (|has| *1 (-6 -4265)) (-4 *1 (-1165 *3))
- (-4 *3 (-1131)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-831 *4)) (-5 *3 (-1 (-110) *5)) (-4 *4 (-1023))
- (-4 *5 (-1131)) (-5 *1 (-829 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-831 *4)) (-5 *3 (-595 (-1 (-110) *5))) (-4 *4 (-1023))
- (-4 *5 (-1131)) (-5 *1 (-829 *4 *5))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-831 *5)) (-5 *3 (-595 (-1095)))
- (-5 *4 (-1 (-110) (-595 *6))) (-4 *5 (-1023)) (-4 *6 (-1131))
- (-5 *1 (-829 *5 *6))))
+ (-12
+ (-5 *2
+ (-2 (|:| -2844 (-594 (-805))) (|:| -2667 (-594 (-805)))
+ (|:| |presup| (-594 (-805))) (|:| -2842 (-594 (-805)))
+ (|:| |args| (-594 (-805)))))
+ (-5 *1 (-1098))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-594 (-594 (-805)))) (-5 *1 (-1098)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-1098)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-1098)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-1098)))))
+(((*1 *1 *1) (-5 *1 (-805)))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027))))
+ ((*1 *1 *2) (-12 (-5 *2 (-516)) (-4 *1 (-1080))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-1098)))))
+(((*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1134))))
+ ((*1 *2 *1) (-12 (-5 *2 (-594 (-1098))) (-5 *1 (-1098)))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33)))
+ ((*1 *1)
+ (-12 (-5 *1 (-131 *2 *3 *4)) (-14 *2 (-516)) (-14 *3 (-719)) (-4 *4 (-162))))
+ ((*1 *1) (-4 *1 (-675))) ((*1 *1) (-5 *1 (-1098))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359)))
+ (|:| CF (-295 (-158 (-359)))) (|:| |switch| (-1097))))
+ (-5 *1 (-1097)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359)))
+ (|:| CF (-295 (-158 (-359)))) (|:| |switch| (-1097))))
+ (-5 *1 (-1097)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359)))
+ (|:| CF (-295 (-158 (-359)))) (|:| |switch| (-1097))))
+ (-5 *1 (-1097)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359)))
+ (|:| CF (-295 (-158 (-359)))) (|:| |switch| (-1097))))
+ (-5 *1 (-1097)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359)))
+ (|:| CF (-295 (-158 (-359)))) (|:| |switch| (-1097))))
+ (-5 *1 (-1097)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359)))
+ (|:| CF (-295 (-158 (-359)))) (|:| |switch| (-1097))))
+ (-5 *1 (-1097)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359)))
+ (|:| CF (-295 (-158 (-359)))) (|:| |switch| (-1097))))
+ (-5 *1 (-1097)))))
+(((*1 *1 *1) (-5 *1 (-1097)))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-295 (-516))) (|:| -3358 (-295 (-359)))
+ (|:| CF (-295 (-158 (-359)))) (|:| |switch| (-1097))))
+ (-5 *1 (-1097)))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-805) (-805) (-805))) (-5 *4 (-516)) (-5 *2 (-805))
+ (-5 *1 (-600 *5 *6 *7)) (-4 *5 (-1027)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-805)) (-5 *1 (-799 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-96 *3))
+ (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-805))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-805))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-805))))
+ ((*1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-805))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-805)) (-5 *1 (-1092 *3)) (-4 *3 (-984)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1017 *3)) (-4 *3 (-891 *7 *6 *4)) (-4 *6 (-741)) (-4 *4 (-795))
+ (-4 *7 (-523)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-516))))
+ (-5 *1 (-554 *6 *4 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-523))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-516)))) (-5 *1 (-554 *5 *4 *6 *3))
+ (-4 *3 (-891 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-805))) ((*1 *1 *1 *1) (-5 *1 (-805)))
+ ((*1 *1 *1) (-5 *1 (-805)))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-110) *5)) (-4 *5 (-1131)) (-4 *4 (-793))
- (-5 *1 (-876 *4 *2 *5)) (-4 *2 (-410 *4))))
+ (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-523) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *1 (-1090 *4 *2)) (-4 *2 (-13 (-402 *4) (-151) (-27) (-1120)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-595 (-1 (-110) *5))) (-4 *5 (-1131)) (-4 *4 (-793))
- (-5 *1 (-876 *4 *2 *5)) (-4 *2 (-410 *4))))
+ (-12 (-5 *3 (-1019 *2)) (-4 *2 (-13 (-402 *4) (-151) (-27) (-1120)))
+ (-4 *4 (-13 (-523) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *1 (-1090 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095)) (-5 *4 (-1 (-110) *5)) (-4 *5 (-1131))
- (-5 *2 (-296 (-528))) (-5 *1 (-877 *5))))
+ (-12 (-5 *4 (-1098)) (-4 *5 (-13 (-523) (-795) (-975 (-516))))
+ (-5 *2 (-388 (-887 *5))) (-5 *1 (-1091 *5)) (-5 *3 (-887 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095)) (-5 *4 (-595 (-1 (-110) *5))) (-4 *5 (-1131))
- (-5 *2 (-296 (-528))) (-5 *1 (-877 *5))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-595 (-1095))) (-5 *3 (-1 (-110) (-595 *6)))
- (-4 *6 (-13 (-410 *5) (-825 *4) (-570 (-831 *4)))) (-4 *4 (-1023))
- (-4 *5 (-13 (-981) (-825 *4) (-793) (-570 (-831 *4))))
- (-5 *1 (-1002 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-770)))))
-(((*1 *2 *3) (-12 (-5 *3 (-368)) (-5 *2 (-1182)) (-5 *1 (-371))))
- ((*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-371)))))
-(((*1 *2 *1) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-374))))
- ((*1 *2 *1) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-1112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-447)) (-5 *4 (-860)) (-5 *2 (-1182)) (-5 *1 (-1178)))))
-(((*1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-706)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-288))
- (-5 *2 (-717)) (-5 *1 (-434 *5 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4))
- (-4 *3 (-347 *4))))
- ((*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528)))))))
- (-5 *1 (-1050 *3 *2)) (-4 *3 (-1153 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-595 *2)) (-4 *2 (-888 *4 *5 *6)) (-4 *4 (-343))
- (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-5 *1 (-429 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-96 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-343))
- (-5 *2
- (-2 (|:| R (-635 *6)) (|:| A (-635 *6)) (|:| |Ainv| (-635 *6))))
- (-5 *1 (-915 *6)) (-5 *3 (-635 *6)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1177 (-1095))) (-5 *3 (-1177 (-432 *4 *5 *6 *7)))
- (-5 *1 (-432 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-860))
- (-14 *6 (-595 (-1095))) (-14 *7 (-1177 (-635 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-1177 (-432 *4 *5 *6 *7)))
- (-5 *1 (-432 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-860))
- (-14 *6 (-595 *2)) (-14 *7 (-1177 (-635 *4)))))
+ (-12 (-5 *4 (-1098)) (-4 *5 (-13 (-523) (-795) (-975 (-516))))
+ (-5 *2 (-3 (-388 (-887 *5)) (-295 *5))) (-5 *1 (-1091 *5))
+ (-5 *3 (-388 (-887 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1019 (-887 *5))) (-5 *3 (-887 *5))
+ (-4 *5 (-13 (-523) (-795) (-975 (-516)))) (-5 *2 (-388 *3))
+ (-5 *1 (-1091 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1019 (-388 (-887 *5)))) (-5 *3 (-388 (-887 *5)))
+ (-4 *5 (-13 (-523) (-795) (-975 (-516)))) (-5 *2 (-3 *3 (-295 *5)))
+ (-5 *1 (-1091 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1134)) (-4 *1 (-144 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1177 (-432 *3 *4 *5 *6))) (-5 *1 (-432 *3 *4 *5 *6))
- (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-595 (-1095)))
- (-14 *6 (-1177 (-635 *3)))))
+ (-12 (-5 *2 (-594 (-2 (|:| -2427 (-719)) (|:| -4051 *4) (|:| |num| *4))))
+ (-4 *4 (-1155 *3)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -4189 #1="void")))
+ (-5 *3 (-594 (-887 (-516)))) (-5 *4 (-110)) (-5 *1 (-417))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -4189 #1#))) (-5 *3 (-594 (-1098)))
+ (-5 *4 (-110)) (-5 *1 (-417))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-560 *3)) (-4 *3 (-1134))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-162))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-5 *1 (-615 *3 *4)) (-4 *4 (-162))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-5 *1 (-615 *3 *4)) (-4 *4 (-162))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-5 *1 (-615 *3 *4)) (-4 *4 (-162))))
((*1 *1 *2)
- (-12 (-5 *2 (-1177 (-1095))) (-5 *1 (-432 *3 *4 *5 *6))
- (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-595 (-1095)))
- (-14 *6 (-1177 (-635 *3)))))
+ (-12 (-5 *2 (-594 (-594 (-594 *3)))) (-4 *3 (-1027)) (-5 *1 (-625 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-795)) (-4 *3 (-1027))
+ (-14 *4
+ (-1 (-110) (-2 (|:| -2426 *2) (|:| -2427 *3))
+ (-2 (|:| -2426 *2) (|:| -2427 *3))))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-814 *2 *3)) (-4 *2 (-1134)) (-4 *3 (-1134))))
((*1 *1 *2)
- (-12 (-5 *2 (-1095)) (-5 *1 (-432 *3 *4 *5 *6)) (-4 *3 (-162))
- (-14 *4 (-860)) (-14 *5 (-595 *2)) (-14 *6 (-1177 (-635 *3)))))
- ((*1 *1)
- (-12 (-5 *1 (-432 *2 *3 *4 *5)) (-4 *2 (-162)) (-14 *3 (-860))
- (-14 *4 (-595 (-1095))) (-14 *5 (-1177 (-635 *2))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-319 *3 *4 *5)) (-14 *3 (-595 (-1095)))
- (-14 *4 (-595 (-1095))) (-4 *5 (-367))))
- ((*1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-319 *3 *4 *5)) (-14 *3 (-595 (-1095)))
- (-14 *4 (-595 (-1095))) (-4 *5 (-367)))))
-(((*1 *1) (-5 *1 (-523))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1091 *3)) (-4 *3 (-329)) (-5 *1 (-337 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-717)) (-4 *6 (-343)) (-5 *4 (-1126 *6))
- (-5 *2 (-1 (-1076 *4) (-1076 *4))) (-5 *1 (-1185 *6))
- (-5 *5 (-1076 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-374))))
- ((*1 *2 *1) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-1112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-353 *3))
- (-4 *5 (-353 *3)) (-5 *2 (-528))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981))
- (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-5 *2 (-528)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1153 *4))
- (-5 *2 (-2 (|:| |radicand| (-387 *5)) (|:| |deg| (-717))))
- (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1153 (-387 *5))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-595 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-343))
- (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-480 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-275 (-779 *3)))
- (-4 *5 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-779 *3)) (-5 *1 (-588 *5 *3))
- (-4 *3 (-13 (-27) (-1117) (-410 *5)))))
+ (-12 (-5 *2 (-594 (-2 (|:| -4139 (-1098)) (|:| -2131 *4)))) (-4 *4 (-1027))
+ (-5 *1 (-829 *3 *4)) (-4 *3 (-1027))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-275 (-779 (-891 *5)))) (-4 *5 (-431))
- (-5 *2 (-779 (-387 (-891 *5)))) (-5 *1 (-589 *5))
- (-5 *3 (-387 (-891 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-275 (-387 (-891 *5)))) (-5 *3 (-387 (-891 *5)))
- (-4 *5 (-431)) (-5 *2 (-779 *3)) (-5 *1 (-589 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-595 (-275 *4))) (-5 *1 (-579 *3 *4 *5)) (-4 *3 (-793))
- (-4 *4 (-13 (-162) (-664 (-387 (-528))))) (-14 *5 (-860)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-595 (-2 (|:| -2927 (-1095)) (|:| -1780 (-417)))))
- (-5 *1 (-1099)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-525))))
+ (-12 (-5 *4 (-594 *5)) (-4 *5 (-13 (-1027) (-33)))
+ (-5 *2 (-594 (-1063 *3 *5))) (-5 *1 (-1063 *3 *5))
+ (-4 *3 (-13 (-1027) (-33)))))
((*1 *2 *3)
- (-12 (-5 *2 (-1091 (-387 (-528)))) (-5 *1 (-881)) (-5 *3 (-528)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-595
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-717)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-739)) (-4 *3 (-888 *4 *5 *6)) (-4 *4 (-431)) (-4 *6 (-793))
- (-5 *1 (-428 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-602 *4)) (-4 *4 (-322 *5 *6 *7))
- (-4 *5 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528)))))
- (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-387 *6)))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1400 (-595 *4))))
- (-5 *1 (-752 *5 *6 *7 *4)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-635 (-207))) (-5 *4 (-528)) (-5 *5 (-110))
- (-5 *2 (-970)) (-5 *1 (-692)))))
-(((*1 *1)
- (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-528)) (-14 *3 (-717))
- (-4 *4 (-162)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1100)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-595 (-1002 *3 *4 *5))) (-4 *3 (-1023))
- (-4 *4 (-13 (-981) (-825 *3) (-793) (-570 (-831 *3))))
- (-4 *5 (-13 (-410 *4) (-825 *3) (-570 (-831 *3))))
- (-5 *1 (-1003 *3 *4 *5)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1076 *4)) (-5 *3 (-528)) (-4 *4 (-981))
- (-5 *1 (-1080 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-528)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-981))
- (-14 *4 (-1095)) (-14 *5 *3))))
-(((*1 *1) (-5 *1 (-207))) ((*1 *1) (-5 *1 (-359))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-518 *3)) (-4 *3 (-13 (-384) (-1117))) (-5 *2 (-110)))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-717)) (-5 *4 (-860)) (-5 *2 (-1182)) (-5 *1 (-1178))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-717)) (-5 *4 (-860)) (-5 *2 (-1182)) (-5 *1 (-1179)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4))
- (-4 *3 (-347 *4))))
- ((*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-315 *3 *4 *5 *6)) (-4 *3 (-343)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-387 *4))) (-4 *6 (-322 *3 *4 *5))
- (-5 *2 (-393 *4 (-387 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1177 *6)) (-4 *6 (-13 (-389 *4 *5) (-972 *4)))
- (-4 *4 (-929 *3)) (-4 *5 (-1153 *4)) (-4 *3 (-288))
- (-5 *1 (-393 *3 *4 *5 *6))))
+ (-12 (-5 *3 (-594 (-2 (|:| |val| *4) (|:| -1610 *5))))
+ (-4 *4 (-13 (-1027) (-33))) (-4 *5 (-13 (-1027) (-33)))
+ (-5 *2 (-594 (-1063 *4 *5))) (-5 *1 (-1063 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-595 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-343))
- (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-480 *3 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-595 *2)) (-4 *2 (-888 *4 *5 *6)) (-4 *4 (-431))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *1 (-428 *4 *5 *6 *2)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-948)) (-5 *2 (-802)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-528)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1131))
- (-4 *4 (-353 *2)) (-4 *5 (-353 *2))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-528)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-353 *2))
- (-4 *5 (-353 *2)) (-4 *2 (-1131))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 "right") (-4 *1 (-117 *3)) (-4 *3 (-1131))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-117 *3)) (-4 *3 (-1131))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-595 (-528))) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2))
- (-14 *4 (-528)) (-14 *5 (-717))))
- ((*1 *2 *1 *3 *3 *3 *3)
- (-12 (-5 *3 (-528)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-717))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-528)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-717))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-528)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-717))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-528)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-717))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-162)) (-5 *1 (-132 *3 *4 *2)) (-14 *3 (-528))
- (-14 *4 (-717))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1095)) (-5 *2 (-227 (-1078))) (-5 *1 (-197 *4))
- (-4 *4
- (-13 (-793)
- (-10 -8 (-15 -3043 ((-1078) $ *3)) (-15 -2273 ((-1182) $))
- (-15 -3294 ((-1182) $)))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-926)) (-5 *1 (-197 *3))
- (-4 *3
- (-13 (-793)
- (-10 -8 (-15 -3043 ((-1078) $ (-1095))) (-15 -2273 ((-1182) $))
- (-15 -3294 ((-1182) $)))))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 "count") (-5 *2 (-717)) (-5 *1 (-227 *4)) (-4 *4 (-793))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-227 *3)) (-4 *3 (-793))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 "unique") (-5 *1 (-227 *3)) (-4 *3 (-793))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1131))))
- ((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-269 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1131))))
- ((*1 *2 *1 *2)
- (-12 (-4 *3 (-162)) (-5 *1 (-270 *3 *2 *4 *5 *6 *7))
- (-4 *2 (-1153 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-595 *1)) (-4 *1 (-283))))
- ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112))))
- ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112))))
- ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112))))
- ((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-322 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-1153 *2))
- (-4 *4 (-1153 (-387 *3)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-4 *1 (-397 *2)) (-4 *2 (-162))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-1078)) (-5 *1 (-478))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-51)) (-5 *1 (-584))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1144 (-528))) (-4 *1 (-600 *3)) (-4 *3 (-1131))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-717)) (-5 *1 (-623 *2)) (-4 *2 (-1023))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-595 (-528))) (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981))
- (-4 *4 (-353 *3)) (-4 *5 (-353 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802))))
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1610 *4))) (-4 *3 (-13 (-1027) (-33)))
+ (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1063 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *3 (-595 (-831 *4))) (-5 *1 (-831 *4))
- (-4 *4 (-1023))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-842 *2)) (-4 *2 (-1023))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-717)) (-5 *2 (-844 *4)) (-5 *1 (-843 *4))
- (-4 *4 (-1023))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-222 *4 *2)) (-14 *4 (-860)) (-4 *2 (-343))
- (-5 *1 (-930 *4 *2))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 "value") (-4 *1 (-946 *2)) (-4 *2 (-1131))))
- ((*1 *2 *1) (-12 (-5 *1 (-961 *2)) (-4 *2 (-1131))))
- ((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-528)) (-4 *1 (-983 *4 *5 *2 *6 *7)) (-4 *2 (-981))
- (-4 *6 (-220 *5 *2)) (-4 *7 (-220 *4 *2))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-528)) (-4 *1 (-983 *4 *5 *2 *6 *7))
- (-4 *6 (-220 *5 *2)) (-4 *7 (-220 *4 *2)) (-4 *2 (-981))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-860)) (-4 *4 (-1023))
- (-4 *5 (-13 (-981) (-825 *4) (-793) (-570 (-831 *4))))
- (-5 *1 (-1002 *4 *5 *2))
- (-4 *2 (-13 (-410 *5) (-825 *4) (-570 (-831 *4))))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-860)) (-4 *4 (-1023))
- (-4 *5 (-13 (-981) (-825 *4) (-793) (-570 (-831 *4))))
- (-5 *1 (-1003 *4 *5 *2))
- (-4 *2 (-13 (-410 *5) (-825 *4) (-570 (-831 *4))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-595 (-528))) (-4 *1 (-1026 *3 *4 *5 *6 *7))
- (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023))
- (-4 *7 (-1023))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-528)) (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023))
- (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023))))
- ((*1 *1 *1 *1) (-4 *1 (-1064)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-1095))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-387 *1)) (-4 *1 (-1153 *2)) (-4 *2 (-981))
- (-4 *2 (-343))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-387 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-981))
- (-4 *3 (-520))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1155 *2 *3)) (-4 *3 (-738)) (-4 *2 (-981))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 "last") (-4 *1 (-1165 *2)) (-4 *2 (-1131))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 "rest") (-4 *1 (-1165 *3)) (-4 *3 (-1131))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 "first") (-4 *1 (-1165 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1047 (-528) (-568 (-47)))) (-5 *1 (-47))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-929 *2)) (-4 *4 (-1153 *3)) (-4 *2 (-288))
- (-5 *1 (-393 *2 *3 *4 *5)) (-4 *5 (-13 (-389 *3 *4) (-972 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-520)) (-4 *3 (-793)) (-5 *2 (-1047 *3 (-568 *1)))
- (-4 *1 (-410 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1047 (-528) (-568 (-471)))) (-5 *1 (-471))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-673) *4))
- (-5 *1 (-574 *3 *4 *2)) (-4 *3 (-37 *4))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-673) *4))
- (-5 *1 (-611 *3 *4 *2)) (-4 *3 (-664 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-520)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-110))
- (-5 *1 (-1031 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7))
- (-5 *2 (-595 (-2 (|:| |val| (-110)) (|:| -2316 *4))))
- (-5 *1 (-1031 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-891 (-387 (-528)))) (-5 *4 (-1095))
- (-5 *5 (-1018 (-786 (-207)))) (-5 *2 (-595 (-207))) (-5 *1 (-281)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-518 *2)) (-4 *2 (-13 (-384) (-1117))))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1095)) (-5 *3 (-414)) (-4 *5 (-793))
- (-5 *1 (-1029 *5 *4)) (-4 *4 (-410 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-410 *2)) (-4 *2 (-793)) (-4 *2 (-981))))
- ((*1 *1 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-520)))))
-(((*1 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1179))))
- ((*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1179)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-316 *5 *6 *7 *8)) (-4 *5 (-410 *4)) (-4 *6 (-1153 *5))
- (-4 *7 (-1153 (-387 *6))) (-4 *8 (-322 *5 *6 *7))
- (-4 *4 (-13 (-793) (-520) (-972 (-528)))) (-5 *2 (-110))
- (-5 *1 (-850 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-316 (-387 (-528)) *4 *5 *6))
- (-4 *4 (-1153 (-387 (-528)))) (-4 *5 (-1153 (-387 *4)))
- (-4 *6 (-322 (-387 (-528)) *4 *5)) (-5 *2 (-110))
- (-5 *1 (-851 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1023)) (-5 *2 (-1078)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-528)) (-5 *5 (-635 (-207)))
- (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-65 DOT))))
- (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-207))
- (-5 *2 (-970)) (-5 *1 (-702))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-528)) (-5 *5 (-635 (-207)))
- (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-65 DOT))))
- (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-368))
- (-5 *4 (-207)) (-5 *2 (-970)) (-5 *1 (-702)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1047 (-528) (-568 (-47)))) (-5 *1 (-47))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-288)) (-4 *4 (-929 *3)) (-4 *5 (-1153 *4))
- (-5 *2 (-1177 *6)) (-5 *1 (-393 *3 *4 *5 *6))
- (-4 *6 (-13 (-389 *4 *5) (-972 *4)))))
+ (-12 (-5 *1 (-1063 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
+ (-4 *3 (-13 (-1027) (-33)))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-110)) (-5 *1 (-1063 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
+ (-4 *3 (-13 (-1027) (-33)))))
+ ((*1 *1 *2 *3 *2 *4)
+ (-12 (-5 *4 (-594 *3)) (-4 *3 (-13 (-1027) (-33))) (-5 *1 (-1064 *2 *3))
+ (-4 *2 (-13 (-1027) (-33)))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-594 (-1063 *2 *3))) (-4 *2 (-13 (-1027) (-33)))
+ (-4 *3 (-13 (-1027) (-33))) (-5 *1 (-1064 *2 *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-594 (-1064 *2 *3))) (-5 *1 (-1064 *2 *3))
+ (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1063 *3 *4)) (-4 *3 (-13 (-1027) (-33)))
+ (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1064 *3 *4))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-1088 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1134))))
((*1 *2 *1)
- (-12 (-4 *3 (-981)) (-4 *3 (-793)) (-5 *2 (-1047 *3 (-568 *1)))
- (-4 *1 (-410 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1047 (-528) (-568 (-471)))) (-5 *1 (-471))))
+ (-12 (-4 *3 (-1027)) (-4 *2 (-13 (-402 *4) (-827 *3) (-572 (-831 *3))))
+ (-5 *1 (-1004 *3 *4 *2))
+ (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-831 *3))))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1027)) (-5 *1 (-1088 *2 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1134))))
((*1 *2 *1)
- (-12 (-4 *3 (-162)) (-4 *2 (-37 *3)) (-5 *1 (-574 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-673) *3))))
+ (-12 (-4 *3 (-1027)) (-4 *2 (-13 (-402 *4) (-827 *3) (-572 (-831 *3))))
+ (-5 *1 (-1004 *3 *4 *2))
+ (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-831 *3))))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1027)) (-5 *1 (-1088 *3 *2)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1134)) (-5 *2 (-110))))
((*1 *2 *1)
- (-12 (-4 *3 (-162)) (-4 *2 (-664 *3)) (-5 *1 (-611 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-673) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-520)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *6)) (-5 *4 (-595 (-1095))) (-4 *6 (-343))
- (-5 *2 (-595 (-275 (-891 *6)))) (-5 *1 (-506 *5 *6 *7))
- (-4 *5 (-431)) (-4 *7 (-13 (-343) (-791))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1135)) (-4 *5 (-1153 *4))
- (-5 *2 (-2 (|:| -1641 (-387 *5)) (|:| |poly| *3)))
- (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1153 (-387 *5))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-387 (-891 *5)))) (-5 *4 (-595 (-1095)))
- (-4 *5 (-520)) (-5 *2 (-595 (-595 (-891 *5)))) (-5 *1 (-1101 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1177 *5)) (-4 *5 (-591 *4)) (-4 *4 (-520))
- (-5 *2 (-110)) (-5 *1 (-590 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-1153 *4)) (-5 *1 (-755 *4 *2 *3 *5))
- (-4 *4 (-13 (-343) (-140) (-972 (-387 (-528))))) (-4 *3 (-605 *2))
- (-4 *5 (-605 (-387 *2))))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-994 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *2 (-793))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1035)) (-4 *3 (-793)) (-5 *2 (-595 *1))
- (-4 *1 (-410 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-595 (-831 *3))) (-5 *1 (-831 *3))
- (-4 *3 (-1023))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *2 (-595 *1)) (-4 *1 (-888 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-981))
- (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-595 *3))
- (-5 *1 (-889 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-343)
- (-10 -8 (-15 -2222 ($ *7)) (-15 -3031 (*7 $))
- (-15 -3042 (*7 $))))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *8)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-528))
- (-14 *6 (-717)) (-4 *7 (-162)) (-4 *8 (-162))
- (-5 *2 (-132 *5 *6 *8)) (-5 *1 (-131 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *9)) (-4 *9 (-981)) (-4 *5 (-793)) (-4 *6 (-739))
- (-4 *8 (-981)) (-4 *2 (-888 *9 *7 *5))
- (-5 *1 (-675 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-739))
- (-4 *4 (-888 *8 *6 *5)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-702)))))
-(((*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-645))))
- ((*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-645)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-343) (-140) (-972 (-528))))
- (-4 *5 (-1153 *4))
- (-5 *2 (-2 (|:| -1497 (-387 *5)) (|:| |coeff| (-387 *5))))
- (-5 *1 (-532 *4 *5)) (-5 *3 (-387 *5)))))
-(((*1 *1 *1) (-4 *1 (-513))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-595 (-891 (-528)))) (-5 *4 (-595 (-1095)))
- (-5 *2 (-595 (-595 (-359)))) (-5 *1 (-958)) (-5 *5 (-359))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-978 *4 *5)) (-4 *4 (-13 (-791) (-288) (-140) (-957)))
- (-14 *5 (-595 (-1095))) (-5 *2 (-595 (-595 (-959 (-387 *4)))))
- (-5 *1 (-1201 *4 *5 *6)) (-14 *6 (-595 (-1095)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-595 (-891 *5))) (-5 *4 (-110))
- (-4 *5 (-13 (-791) (-288) (-140) (-957)))
- (-5 *2 (-595 (-595 (-959 (-387 *5))))) (-5 *1 (-1201 *5 *6 *7))
- (-14 *6 (-595 (-1095))) (-14 *7 (-595 (-1095)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-595 (-891 *5))) (-5 *4 (-110))
- (-4 *5 (-13 (-791) (-288) (-140) (-957)))
- (-5 *2 (-595 (-595 (-959 (-387 *5))))) (-5 *1 (-1201 *5 *6 *7))
- (-14 *6 (-595 (-1095))) (-14 *7 (-595 (-1095)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-891 *5))) (-5 *4 (-110))
- (-4 *5 (-13 (-791) (-288) (-140) (-957)))
- (-5 *2 (-595 (-595 (-959 (-387 *5))))) (-5 *1 (-1201 *5 *6 *7))
- (-14 *6 (-595 (-1095))) (-14 *7 (-595 (-1095)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 (-891 *4)))
- (-4 *4 (-13 (-791) (-288) (-140) (-957)))
- (-5 *2 (-595 (-595 (-959 (-387 *4))))) (-5 *1 (-1201 *4 *5 *6))
- (-14 *5 (-595 (-1095))) (-14 *6 (-595 (-1095))))))
-(((*1 *2)
- (-12 (-14 *4 (-717)) (-4 *5 (-1131)) (-5 *2 (-130))
- (-5 *1 (-219 *3 *4 *5)) (-4 *3 (-220 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-343)) (-5 *2 (-130)) (-5 *1 (-308 *3 *4))
- (-4 *3 (-309 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-717)) (-5 *1 (-370 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-162))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1087 *2 *3)) (-14 *2 (-860)) (-4 *3 (-984)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-719)) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1134)) (-5 *2 (-594 *1)) (-4 *1 (-949 *3))))
((*1 *2 *1)
- (-12 (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-528))
- (-5 *1 (-480 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-595 *6)) (-4 *6 (-793)) (-4 *4 (-343)) (-4 *5 (-739))
- (-5 *2 (-528)) (-5 *1 (-480 *4 *5 *6 *7)) (-4 *7 (-888 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-917 *3)) (-4 *3 (-981)) (-5 *2 (-860))))
- ((*1 *2) (-12 (-4 *1 (-1184 *3)) (-4 *3 (-343)) (-5 *2 (-130)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-595 *1)) (-4 *1 (-410 *4))
- (-4 *4 (-793))))
- ((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1095)) (-4 *1 (-410 *3)) (-4 *3 (-793))))
- ((*1 *1 *2 *1 *1 *1)
- (-12 (-5 *2 (-1095)) (-4 *1 (-410 *3)) (-4 *3 (-793))))
+ (-12 (-5 *2 (-594 (-1087 *3 *4))) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860))
+ (-4 *4 (-984)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-719)) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1087 *2 *3)) (-14 *2 (-860)) (-4 *3 (-984)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1087 *2 *3)) (-14 *2 (-860)) (-4 *3 (-984)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-353 *2)) (-4 *2 (-1134)) (-4 *2 (-795))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1095)) (-4 *1 (-410 *3)) (-4 *3 (-793))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1095)) (-4 *1 (-410 *3)) (-4 *3 (-793)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-882 *3)) (-4 *3 (-13 (-343) (-1117) (-938)))
- (-5 *1 (-165 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-595 (-1095))) (-5 *1 (-1099)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-1033)))))
-(((*1 *1 *1 *1) (-5 *1 (-110))) ((*1 *1 *1 *1) (-4 *1 (-121))))
-(((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-595
- (-2 (|:| |eqzro| (-595 *8)) (|:| |neqzro| (-595 *8))
- (|:| |wcond| (-595 (-891 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1177 (-387 (-891 *5))))
- (|:| -1400 (-595 (-1177 (-387 (-891 *5))))))))))
- (-5 *4 (-1078)) (-4 *5 (-13 (-288) (-140))) (-4 *8 (-888 *5 *7 *6))
- (-4 *6 (-13 (-793) (-570 (-1095)))) (-4 *7 (-739)) (-5 *2 (-528))
- (-5 *1 (-863 *5 *6 *7 *8)))))
-(((*1 *2)
- (-12 (-4 *1 (-329))
- (-5 *2 (-595 (-2 (|:| -2437 (-528)) (|:| -2564 (-528))))))))
-(((*1 *1 *1) (-12 (-4 *1 (-353 *2)) (-4 *2 (-1131))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-981)) (-5 *1 (-423 *3 *2)) (-4 *2 (-1153 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-598 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1135)) (-4 *5 (-1153 *3)) (-4 *6 (-1153 (-387 *5)))
- (-5 *2 (-110)) (-5 *1 (-321 *4 *3 *5 *6)) (-4 *4 (-322 *3 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-387 *4))) (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-802)))))
+ (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-353 *3)) (-4 *3 (-1134))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-984))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 *1)) (-4 *1 (-1059 *3)) (-4 *3 (-984))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-594 (-1087 *3 *4))) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860))
+ (-4 *4 (-984))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1087 *2 *3)) (-14 *2 (-860)) (-4 *3 (-984)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-884 *5)) (-4 *5 (-984)) (-5 *2 (-719)) (-5 *1 (-1087 *4 *5))
+ (-14 *4 (-860))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-594 (-719))) (-5 *3 (-719)) (-5 *1 (-1087 *4 *5))
+ (-14 *4 (-860)) (-4 *5 (-984))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-594 (-719))) (-5 *3 (-884 *5)) (-4 *5 (-984))
+ (-5 *1 (-1087 *4 *5)) (-14 *4 (-860)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-884 *4)) (-4 *4 (-984)) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-884 *5)) (-5 *3 (-719)) (-4 *5 (-984)) (-5 *1 (-1087 *4 *5))
+ (-14 *4 (-860)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-719)) (-5 *3 (-884 *5)) (-4 *5 (-984)) (-5 *1 (-1087 *4 *5))
+ (-14 *4 (-860))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-594 (-719))) (-5 *3 (-719)) (-5 *1 (-1087 *4 *5))
+ (-14 *4 (-860)) (-4 *5 (-984))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-594 (-719))) (-5 *3 (-884 *5)) (-4 *5 (-984))
+ (-5 *1 (-1087 *4 *5)) (-14 *4 (-860)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-594 (-719))) (-5 *3 (-110)) (-5 *1 (-1087 *4 *5))
+ (-14 *4 (-860)) (-4 *5 (-984)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-594 (-719))) (-5 *3 (-161)) (-5 *1 (-1087 *4 *5))
+ (-14 *4 (-860)) (-4 *5 (-984)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-594 (-719))) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860))
+ (-4 *4 (-984)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-595 *5)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-528))
- (-14 *4 (-717)) (-4 *5 (-162)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-793)) (-5 *1 (-868 *3 *2)) (-4 *2 (-410 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1095)) (-5 *2 (-296 (-528))) (-5 *1 (-869)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-831 *4)) (-4 *4 (-1023)) (-5 *2 (-595 *5))
- (-5 *1 (-829 *4 *5)) (-4 *5 (-1131)))))
-(((*1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-1102)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-387 (-891 *6)) (-1085 (-1095) (-891 *6))))
- (-5 *5 (-717)) (-4 *6 (-431)) (-5 *2 (-595 (-635 (-387 (-891 *6)))))
- (-5 *1 (-273 *6)) (-5 *4 (-635 (-387 (-891 *6))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-2 (|:| |eigval| (-3 (-387 (-891 *5)) (-1085 (-1095) (-891 *5))))
- (|:| |eigmult| (-717)) (|:| |eigvec| (-595 *4))))
- (-4 *5 (-431)) (-5 *2 (-595 (-635 (-387 (-891 *5)))))
- (-5 *1 (-273 *5)) (-5 *4 (-635 (-387 (-891 *5)))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1131))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-891 (-359))) (-5 *1 (-319 *3 *4 *5))
- (-4 *5 (-972 (-359))) (-14 *3 (-595 (-1095)))
- (-14 *4 (-595 (-1095))) (-4 *5 (-367))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-387 (-891 (-359)))) (-5 *1 (-319 *3 *4 *5))
- (-4 *5 (-972 (-359))) (-14 *3 (-595 (-1095)))
- (-14 *4 (-595 (-1095))) (-4 *5 (-367))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-296 (-359))) (-5 *1 (-319 *3 *4 *5))
- (-4 *5 (-972 (-359))) (-14 *3 (-595 (-1095)))
- (-14 *4 (-595 (-1095))) (-4 *5 (-367))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-891 (-528))) (-5 *1 (-319 *3 *4 *5))
- (-4 *5 (-972 (-528))) (-14 *3 (-595 (-1095)))
- (-14 *4 (-595 (-1095))) (-4 *5 (-367))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-387 (-891 (-528)))) (-5 *1 (-319 *3 *4 *5))
- (-4 *5 (-972 (-528))) (-14 *3 (-595 (-1095)))
- (-14 *4 (-595 (-1095))) (-4 *5 (-367))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-296 (-528))) (-5 *1 (-319 *3 *4 *5))
- (-4 *5 (-972 (-528))) (-14 *3 (-595 (-1095)))
- (-14 *4 (-595 (-1095))) (-4 *5 (-367))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1095)) (-5 *1 (-319 *3 *4 *5))
- (-14 *3 (-595 *2)) (-14 *4 (-595 *2)) (-4 *5 (-367))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-296 *5)) (-4 *5 (-367))
- (-5 *1 (-319 *3 *4 *5)) (-14 *3 (-595 (-1095)))
- (-14 *4 (-595 (-1095)))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-635 (-387 (-891 (-528))))) (-4 *1 (-364))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-635 (-387 (-891 (-359))))) (-4 *1 (-364))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-635 (-891 (-528)))) (-4 *1 (-364))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-635 (-891 (-359)))) (-4 *1 (-364))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-635 (-296 (-528)))) (-4 *1 (-364))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-635 (-296 (-359)))) (-4 *1 (-364))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-387 (-891 (-528)))) (-4 *1 (-376))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-387 (-891 (-359)))) (-4 *1 (-376))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-891 (-528))) (-4 *1 (-376))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-891 (-359))) (-4 *1 (-376))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-296 (-528))) (-4 *1 (-376))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-296 (-359))) (-4 *1 (-376))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1177 (-387 (-891 (-528))))) (-4 *1 (-420))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1177 (-387 (-891 (-359))))) (-4 *1 (-420))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1177 (-891 (-528)))) (-4 *1 (-420))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1177 (-891 (-359)))) (-4 *1 (-420))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1177 (-296 (-528)))) (-4 *1 (-420))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1177 (-296 (-359)))) (-4 *1 (-420))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-329)) (-4 *5 (-309 *4)) (-4 *6 (-1153 *5))
- (-5 *2 (-1091 (-1091 *4))) (-5 *1 (-723 *4 *5 *6 *3 *7))
- (-4 *3 (-1153 *6)) (-14 *7 (-860))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5))
- (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793))
- (-4 *1 (-913 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-972 *2)) (-4 *2 (-1131))))
- ((*1 *1 *2)
- (|partial| -1463
- (-12 (-5 *2 (-891 *3))
- (-12 (-3617 (-4 *3 (-37 (-387 (-528)))))
- (-3617 (-4 *3 (-37 (-528)))) (-4 *5 (-570 (-1095))))
- (-4 *3 (-981)) (-4 *1 (-994 *3 *4 *5)) (-4 *4 (-739))
- (-4 *5 (-793)))
- (-12 (-5 *2 (-891 *3))
- (-12 (-3617 (-4 *3 (-513))) (-3617 (-4 *3 (-37 (-387 (-528)))))
- (-4 *3 (-37 (-528))) (-4 *5 (-570 (-1095))))
- (-4 *3 (-981)) (-4 *1 (-994 *3 *4 *5)) (-4 *4 (-739))
- (-4 *5 (-793)))
- (-12 (-5 *2 (-891 *3))
- (-12 (-3617 (-4 *3 (-929 (-528)))) (-4 *3 (-37 (-387 (-528))))
- (-4 *5 (-570 (-1095))))
- (-4 *3 (-981)) (-4 *1 (-994 *3 *4 *5)) (-4 *4 (-739))
- (-4 *5 (-793)))))
- ((*1 *1 *2)
- (|partial| -1463
- (-12 (-5 *2 (-891 (-528))) (-4 *1 (-994 *3 *4 *5))
- (-12 (-3617 (-4 *3 (-37 (-387 (-528))))) (-4 *3 (-37 (-528)))
- (-4 *5 (-570 (-1095))))
- (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)))
- (-12 (-5 *2 (-891 (-528))) (-4 *1 (-994 *3 *4 *5))
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *5 (-570 (-1095))))
- (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-891 (-387 (-528)))) (-4 *1 (-994 *3 *4 *5))
- (-4 *3 (-37 (-387 (-528)))) (-4 *5 (-570 (-1095))) (-4 *3 (-981))
- (-4 *4 (-739)) (-4 *5 (-793)))))
-(((*1 *1 *1 *1) (-5 *1 (-802))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 *2)) (-5 *1 (-464 *2)) (-4 *2 (-1153 (-528))))))
+ (-12 (-5 *2 (-884 *4)) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-595 (-528))) (-5 *1 (-940 *3)) (-14 *3 (-528)))))
-(((*1 *2 *1) (-12 (-5 *2 (-595 (-1095))) (-5 *1 (-771)))))
-(((*1 *1 *1) (-12 (-4 *1 (-226 *2)) (-4 *2 (-1131))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-528))) (-5 *2 (-843 (-528))) (-5 *1 (-856))))
- ((*1 *2) (-12 (-5 *2 (-843 (-528))) (-5 *1 (-856)))))
+ (-12 (-5 *2 (-719)) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023)) (-4 *4 (-1023))
- (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-110)))))
-(((*1 *1 *1 *1) (-5 *1 (-110))) ((*1 *1 *1 *1) (-4 *1 (-121)))
- ((*1 *1 *1 *1) (-5 *1 (-1042))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-110)) (-5 *1 (-775)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-5 *2 (-717)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-397 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1177 *3)) (-4 *3 (-981)) (-5 *1 (-659 *3 *4))
- (-4 *4 (-1153 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1023)) (-5 *1 (-1109 *3 *2)) (-4 *3 (-1023)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1091 *7))
- (-4 *5 (-981)) (-4 *7 (-981)) (-4 *2 (-1153 *5))
- (-5 *1 (-477 *5 *2 *6 *7)) (-4 *6 (-1153 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-207)) (-5 *1 (-208))))
- ((*1 *2 *2) (-12 (-5 *2 (-159 (-207))) (-5 *1 (-208)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359)))
- (|:| CF (-296 (-159 (-359)))) (|:| |switch| (-1094))))
- (-5 *1 (-1094)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1076 (-2 (|:| |k| (-528)) (|:| |c| *6))))
- (-5 *4 (-961 (-786 (-528)))) (-5 *5 (-1095)) (-5 *7 (-387 (-528)))
- (-4 *6 (-981)) (-5 *2 (-802)) (-5 *1 (-553 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-528)) (-5 *2 (-595 (-2 (|:| -2437 *3) (|:| -2935 *4))))
- (-5 *1 (-642 *3)) (-4 *3 (-1153 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-517)))))
-(((*1 *1) (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-504))) ((*1 *1) (-4 *1 (-669)))
- ((*1 *1) (-4 *1 (-673)))
- ((*1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1023))))
- ((*1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-793)))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-161)) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-719)) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860)) (-4 *4 (-984)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1087 *2 *3)) (-14 *2 (-860)) (-4 *3 (-984)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-594 (-884 *4))) (-5 *1 (-1087 *3 *4)) (-14 *3 (-860))
+ (-4 *4 (-984)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)) (-4 *2 (-432))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-323 *2 *3 *4)) (-4 *2 (-1138)) (-4 *3 (-1155 *2))
+ (-4 *4 (-1155 (-388 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-432))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-891 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795))
+ (-4 *3 (-432))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-891 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-4 *2 (-432))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-289)) (-4 *3 (-523)) (-5 *1 (-1086 *3 *2)) (-4 *2 (-1155 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-899 *3)) (-5 *1 (-1086 *4 *3))
+ (-4 *3 (-1155 *4)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-110)) (-4 *6 (-431)) (-4 *7 (-739)) (-4 *8 (-793))
- (-4 *3 (-994 *6 *7 *8))
- (-5 *2 (-595 (-2 (|:| |val| *3) (|:| -2316 *4))))
- (-5 *1 (-1031 *6 *7 *8 *3 *4)) (-4 *4 (-999 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-595 (-2 (|:| |val| (-595 *8)) (|:| -2316 *9))))
- (-5 *5 (-110)) (-4 *8 (-994 *6 *7 *4)) (-4 *9 (-999 *6 *7 *4 *8))
- (-4 *6 (-431)) (-4 *7 (-739)) (-4 *4 (-793))
- (-5 *2 (-595 (-2 (|:| |val| *8) (|:| -2316 *9))))
- (-5 *1 (-1031 *6 *7 *4 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1078)) (-5 *2 (-595 (-1100))) (-5 *1 (-1057)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1091 *3)) (-4 *3 (-329)) (-5 *1 (-337 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095)) (-5 *4 (-891 (-528))) (-5 *2 (-310))
- (-5 *1 (-312)))))
-(((*1 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-94)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *1) (-5 *1 (-134))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-717)) (-5 *2 (-1182)) (-5 *1 (-805 *4 *5 *6 *7))
- (-4 *4 (-981)) (-14 *5 (-595 (-1095))) (-14 *6 (-595 *3))
- (-14 *7 *3)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-717)) (-4 *4 (-981)) (-4 *5 (-793)) (-4 *6 (-739))
- (-14 *8 (-595 *5)) (-5 *2 (-1182))
- (-5 *1 (-1187 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-888 *4 *6 *5))
- (-14 *9 (-595 *3)) (-14 *10 *3))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-717)) (-5 *2 (-1182)) (-5 *1 (-1178))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-717)) (-5 *2 (-1182)) (-5 *1 (-1179)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359)))
- (|:| CF (-296 (-159 (-359)))) (|:| |switch| (-1094))))
- (-5 *1 (-1094)))))
-(((*1 *1 *1 *1) (-4 *1 (-905))))
-(((*1 *1) (-4 *1 (-23)))
- ((*1 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-504)))
- ((*1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1023)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-159 (-387 (-528))))) (-5 *2 (-595 (-159 *4)))
- (-5 *1 (-711 *4)) (-4 *4 (-13 (-343) (-791))))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3)))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528)))))))
- (-5 *1 (-1050 *3 *2)) (-4 *3 (-1153 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-2 (|:| -3327 *4) (|:| -1479 (-528)))))
- (-4 *4 (-1023)) (-5 *2 (-1 *4)) (-5 *1 (-953 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-904 *3)) (-4 *3 (-905)))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-296 (-528))) (-5 *4 (-1 (-207) (-207)))
- (-5 *5 (-1018 (-207))) (-5 *6 (-595 (-244))) (-5 *2 (-1055 (-207)))
- (-5 *1 (-643)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1095)) (-5 *6 (-595 (-568 *3)))
- (-5 *5 (-568 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *7)))
- (-4 *7 (-13 (-431) (-793) (-140) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-2 (|:| -1497 *3) (|:| |coeff| *3)))
- (-5 *1 (-521 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-110)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-398 *3)) (-4 *3 (-520)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359)))
- (|:| CF (-296 (-159 (-359)))) (|:| |switch| (-1094))))
- (-5 *1 (-1094)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-981)) (-5 *1 (-833 *2 *3)) (-4 *2 (-1153 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1078)) (-5 *4 (-528)) (-5 *5 (-635 (-207)))
- (-5 *2 (-970)) (-5 *1 (-704)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-207))
- (-5 *2 (-970)) (-5 *1 (-699)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2000)) (-5 *2 (-110)) (-5 *1 (-637 *4))
- (-4 *4 (-569 (-802)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-569 (-802))) (-5 *2 (-110))
- (-5 *1 (-637 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1078))) (-5 *2 (-110)) (-5 *1 (-1100))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1095))) (-5 *2 (-110)) (-5 *1 (-1100))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-207))) (-5 *2 (-110)) (-5 *1 (-1100))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-110)) (-5 *1 (-1100)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-288) (-10 -8 (-15 -2705 ((-398 $) $)))))
- (-4 *4 (-1153 *3))
- (-5 *2
- (-2 (|:| -1400 (-635 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-635 *3))))
- (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-389 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-528)) (-4 *4 (-1153 *3))
- (-5 *2
- (-2 (|:| -1400 (-635 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-635 *3))))
- (-5 *1 (-714 *4 *5)) (-4 *5 (-389 *3 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-329)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 *3))
- (-5 *2
- (-2 (|:| -1400 (-635 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-635 *3))))
- (-5 *1 (-922 *4 *3 *5 *6)) (-4 *6 (-671 *3 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-329)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 *3))
- (-5 *2
- (-2 (|:| -1400 (-635 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-635 *3))))
- (-5 *1 (-1186 *4 *3 *5 *6)) (-4 *6 (-389 *3 *5)))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3)))))
-(((*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-446))))
- ((*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-446))))
- ((*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-866)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1078)) (-4 *1 (-369)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-359))))
- ((*1 *1 *1 *1) (-4 *1 (-513)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-665 *2)) (-4 *2 (-343))))
- ((*1 *1 *2) (-12 (-5 *1 (-665 *2)) (-4 *2 (-343))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-717)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -2702 (-359)) (|:| -3814 (-1078))
- (|:| |explanations| (-595 (-1078)))))
- (-5 *2 (-970)) (-5 *1 (-286))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -2702 (-359)) (|:| -3814 (-1078))
- (|:| |explanations| (-595 (-1078))) (|:| |extra| (-970))))
- (-5 *2 (-970)) (-5 *1 (-286)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-882 *3)) (-4 *3 (-13 (-343) (-1117) (-938)))
- (-5 *1 (-165 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-387 (-528))) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-520)) (-4 *8 (-888 *7 *5 *6))
- (-5 *2 (-2 (|:| -2564 (-717)) (|:| -1641 *9) (|:| |radicand| *9)))
- (-5 *1 (-892 *5 *6 *7 *8 *9)) (-5 *4 (-717))
- (-4 *9
- (-13 (-343)
- (-10 -8 (-15 -3031 (*8 $)) (-15 -3042 (*8 $)) (-15 -2222 ($ *8))))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-5 *2 (-717)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-397 *4)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359)))
- (|:| CF (-296 (-159 (-359)))) (|:| |switch| (-1094))))
- (-5 *1 (-1094)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-717)) (-4 *6 (-431)) (-4 *7 (-739)) (-4 *8 (-793))
- (-4 *3 (-994 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-595 *4))
- (|:| |todo| (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4))))))
- (-5 *1 (-997 *6 *7 *8 *3 *4)) (-4 *4 (-999 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-595 *4))
- (|:| |todo| (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4))))))
- (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-717)) (-4 *6 (-431)) (-4 *7 (-739)) (-4 *8 (-793))
- (-4 *3 (-994 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-595 *4))
- (|:| |todo| (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4))))))
- (-5 *1 (-1065 *6 *7 *8 *3 *4)) (-4 *4 (-1032 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-595 *4))
- (|:| |todo| (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4))))))
- (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1032 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-882 *2)) (-5 *1 (-919 *2)) (-4 *2 (-981)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-717)) (-5 *2 (-387 (-528))) (-5 *1 (-207))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-717)) (-5 *2 (-387 (-528))) (-5 *1 (-207))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-717)) (-5 *2 (-387 (-528))) (-5 *1 (-359))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-717)) (-5 *2 (-387 (-528))) (-5 *1 (-359)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-595 *3)) (-4 *3 (-1131)))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 (-387 (-891 (-528)))))
- (-5 *2 (-595 (-635 (-296 (-528))))) (-5 *1 (-966))
- (-5 *3 (-296 (-528))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-207)) (-5 *1 (-208))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-207))) (-5 *1 (-208))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2))
- (-4 *2 (-410 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1059))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-981)) (-5 *2 (-528)) (-5 *1 (-422 *4 *3 *5))
- (-4 *3 (-1153 *4))
- (-4 *5 (-13 (-384) (-972 *4) (-343) (-1117) (-265))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-595 (-595 *4)))) (-5 *2 (-595 (-595 *4)))
- (-5 *1 (-1103 *4)) (-4 *4 (-793)))))
-(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-981)) (-4 *2 (-738))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-717)) (-5 *1 (-49 *3 *4)) (-4 *3 (-981))
- (-14 *4 (-595 (-1095)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-528)) (-5 *1 (-205 *3 *4)) (-4 *3 (-13 (-981) (-793)))
- (-14 *4 (-595 (-1095)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-234 *4 *3 *5 *6)) (-4 *4 (-981)) (-4 *3 (-793))
- (-4 *5 (-247 *3)) (-4 *6 (-739)) (-5 *2 (-717))))
- ((*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-256))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1091 *8)) (-5 *4 (-595 *6)) (-4 *6 (-793))
- (-4 *8 (-888 *7 *5 *6)) (-4 *5 (-739)) (-4 *7 (-981))
- (-5 *2 (-595 (-717))) (-5 *1 (-301 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-309 *3)) (-4 *3 (-343)) (-5 *2 (-860))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-354 *3 *4)) (-4 *3 (-793)) (-4 *4 (-162))
- (-5 *2 (-717))))
- ((*1 *2 *1) (-12 (-4 *1 (-449 *3 *2)) (-4 *3 (-162)) (-4 *2 (-23))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-520)) (-5 *2 (-528)) (-5 *1 (-576 *3 *4))
- (-4 *4 (-1153 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-655 *3)) (-4 *3 (-981)) (-5 *2 (-717))))
- ((*1 *2 *1) (-12 (-4 *1 (-795 *3)) (-4 *3 (-981)) (-5 *2 (-717))))
- ((*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-843 *3)) (-4 *3 (-1023))))
- ((*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-844 *3)) (-4 *3 (-1023))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-595 *6)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-981))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-595 (-717)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-888 *4 *5 *3)) (-4 *4 (-981)) (-4 *5 (-739))
- (-4 *3 (-793)) (-5 *2 (-717))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-910 *3 *2 *4)) (-4 *3 (-981)) (-4 *4 (-793))
- (-4 *2 (-738))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-717))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1139 *3 *4)) (-4 *3 (-981)) (-4 *4 (-1168 *3))
- (-5 *2 (-528))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1160 *3 *4)) (-4 *3 (-981)) (-4 *4 (-1137 *3))
- (-5 *2 (-387 (-528)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1194 *3)) (-4 *3 (-343)) (-5 *2 (-779 (-860)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981))
- (-5 *2 (-717)))))
-(((*1 *1 *2) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-200)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-1078)) (-5 *5 (-635 (-207)))
- (-5 *2 (-970)) (-5 *1 (-694)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1023)) (-4 *5 (-1023))
- (-5 *2 (-1 *5)) (-5 *1 (-629 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 (-1018 (-387 (-528))))) (-5 *1 (-244))))
- ((*1 *1 *2) (-12 (-5 *2 (-595 (-1018 (-359)))) (-5 *1 (-244)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1064)) (-5 *2 (-110)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-447))))
- ((*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-1178))))
- ((*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-1179)))))
-(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-865)))))
-(((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-520)) (-4 *2 (-513))))
- ((*1 *1 *1) (-4 *1 (-989))))
-(((*1 *2)
- (-12 (-5 *2 (-860)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528)))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))))
+(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
- (-12 (-5 *2 (-860)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4264)) (-4 *1 (-144 *2)) (-4 *2 (-1131))
- (-4 *2 (-1023)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1095)) (-5 *1 (-261))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-3 (-528) (-207) (-1095) (-1078) (-1100)))
- (-5 *1 (-1100)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
- *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
- *9)
- (-12 (-5 *4 (-635 (-207))) (-5 *5 (-110)) (-5 *6 (-207))
- (-5 *7 (-635 (-528)))
- (-5 *8 (-3 (|:| |fn| (-368)) (|:| |fp| (-78 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-368)) (|:| |fp| (-75 OBJFUN))))
- (-5 *3 (-528)) (-5 *2 (-970)) (-5 *1 (-700)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-698)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207)))
- (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207))
- (|:| |relerr| (-207))))
- (-5 *2
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (-5 *1 (-176)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-1099)))))
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
- ((*1 *1 *1) (-4 *1 (-469)))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ ((*1 *1 *1) (-4 *1 (-471)))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3)))))
-(((*1 *1) (-4 *1 (-329)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 *5)) (-4 *5 (-410 *4))
- (-4 *4 (-13 (-520) (-793) (-140)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-595 (-1091 *5)))
- (|:| |prim| (-1091 *5))))
- (-5 *1 (-412 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-520) (-793) (-140)))
- (-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1091 *3))
- (|:| |pol2| (-1091 *3)) (|:| |prim| (-1091 *3))))
- (-5 *1 (-412 *4 *3)) (-4 *3 (-27)) (-4 *3 (-410 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-891 *5)) (-5 *4 (-1095)) (-4 *5 (-13 (-343) (-140)))
- (-5 *2
- (-2 (|:| |coef1| (-528)) (|:| |coef2| (-528))
- (|:| |prim| (-1091 *5))))
- (-5 *1 (-898 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-891 *5))) (-5 *4 (-595 (-1095)))
- (-4 *5 (-13 (-343) (-140)))
- (-5 *2
- (-2 (|:| -1641 (-595 (-528))) (|:| |poly| (-595 (-1091 *5)))
- (|:| |prim| (-1091 *5))))
- (-5 *1 (-898 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-595 (-891 *6))) (-5 *4 (-595 (-1095))) (-5 *5 (-1095))
- (-4 *6 (-13 (-343) (-140)))
- (-5 *2
- (-2 (|:| -1641 (-595 (-528))) (|:| |poly| (-595 (-1091 *6)))
- (|:| |prim| (-1091 *6))))
- (-5 *1 (-898 *6)))))
-(((*1 *1 *1) (-4 *1 (-1064))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-981)) (-5 *1 (-636 *3))))
- ((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-981)) (-5 *1 (-636 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-1023)))))
-(((*1 *2) (-12 (-4 *1 (-384)) (-5 *2 (-860)))) ((*1 *1) (-4 *1 (-513)))
- ((*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-645))))
- ((*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-645))))
- ((*1 *2 *1) (-12 (-5 *2 (-595 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *5 (-793)) (-5 *2 (-717)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-694)))))
-(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-793) (-972 (-528)) (-591 (-528)) (-431)))
- (-5 *2
- (-2
- (|:| |%term|
- (-2 (|:| |%coef| (-1162 *4 *5 *6))
- (|:| |%expon| (-299 *4 *5 *6))
- (|:| |%expTerms|
- (-595 (-2 (|:| |k| (-387 (-528))) (|:| |c| *4))))))
- (|:| |%type| (-1078))))
- (-5 *1 (-1163 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1117) (-410 *3)))
- (-14 *5 (-1095)) (-14 *6 *4))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-717)) (-4 *5 (-343)) (-5 *2 (-387 *6))
- (-5 *1 (-806 *5 *4 *6)) (-4 *4 (-1168 *5)) (-4 *6 (-1153 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-717)) (-5 *4 (-1169 *5 *6 *7)) (-4 *5 (-343))
- (-14 *6 (-1095)) (-14 *7 *5) (-5 *2 (-387 (-1150 *6 *5)))
- (-5 *1 (-807 *5 *6 *7))))
- ((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-717)) (-5 *4 (-1169 *5 *6 *7)) (-4 *5 (-343))
- (-14 *6 (-1095)) (-14 *7 *5) (-5 *2 (-387 (-1150 *6 *5)))
- (-5 *1 (-807 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-347 *4)) (-4 *4 (-162))
- (-5 *2 (-635 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-635 *4)) (-5 *1 (-396 *3 *4))
- (-4 *3 (-397 *4))))
- ((*1 *2) (-12 (-4 *1 (-397 *3)) (-4 *3 (-162)) (-5 *2 (-635 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1064)) (-5 *2 (-110)))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
- ((*1 *1 *1) (-4 *1 (-469)))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ ((*1 *1 *1) (-4 *1 (-471)))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-528)) (-5 *5 (-635 (-207)))
- (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-87 G))))
- (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN)))) (-5 *3 (-207))
- (-5 *2 (-970)) (-5 *1 (-696)))))
-(((*1 *1 *1) (-12 (-5 *1 (-624 *2)) (-4 *2 (-793))))
- ((*1 *1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-793))))
- ((*1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-793))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *2 (-520))
- (-4 *3 (-739)) (-4 *4 (-793)) (-4 *5 (-994 *2 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-717)) (-4 *1 (-1165 *3)) (-4 *3 (-1131))))
- ((*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1131)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-513))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-703)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-5 *2 (-1177 (-635 *4))) (-5 *1 (-88 *4 *5))
- (-5 *3 (-635 *4)) (-4 *5 (-605 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981))
- (-5 *2
- (-2 (|:| -3795 (-717)) (|:| |curves| (-717))
- (|:| |polygons| (-717)) (|:| |constructs| (-717)))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-343))
- (-5 *2 (-595 (-2 (|:| C (-635 *5)) (|:| |g| (-1177 *5)))))
- (-5 *1 (-915 *5)) (-5 *3 (-635 *5)) (-5 *4 (-1177 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3572 *6) (|:| |sol?| (-110))) (-528)
- *6))
- (-4 *6 (-343)) (-4 *7 (-1153 *6))
- (-5 *2 (-2 (|:| |answer| (-545 (-387 *7))) (|:| |a0| *6)))
- (-5 *1 (-538 *6 *7)) (-5 *3 (-387 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981))
- (-5 *2 (-595 (-595 (-882 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-595 (-595 (-882 *4)))) (-5 *3 (-110)) (-4 *4 (-981))
- (-4 *1 (-1056 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 (-595 (-882 *3)))) (-4 *3 (-981))
- (-4 *1 (-1056 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-595 (-595 (-595 *4)))) (-5 *3 (-110))
- (-4 *1 (-1056 *4)) (-4 *4 (-981))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-595 (-595 (-882 *4)))) (-5 *3 (-110))
- (-4 *1 (-1056 *4)) (-4 *4 (-981))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-595 (-595 (-595 *5)))) (-5 *3 (-595 (-161)))
- (-5 *4 (-161)) (-4 *1 (-1056 *5)) (-4 *5 (-981))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-595 (-595 (-882 *5)))) (-5 *3 (-595 (-161)))
- (-5 *4 (-161)) (-4 *1 (-1056 *5)) (-4 *5 (-981)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-343) (-140) (-972 (-387 (-528)))))
- (-4 *3 (-1153 *4)) (-5 *1 (-755 *4 *3 *2 *5)) (-4 *2 (-605 *3))
- (-4 *5 (-605 (-387 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-387 *5))
- (-4 *4 (-13 (-343) (-140) (-972 (-387 (-528))))) (-4 *5 (-1153 *4))
- (-5 *1 (-755 *4 *5 *2 *6)) (-4 *2 (-605 *5)) (-4 *6 (-605 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-528)) (-5 *4 (-398 *2)) (-4 *2 (-888 *7 *5 *6))
- (-5 *1 (-689 *5 *6 *7 *2)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-288)))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
- ((*1 *1 *1) (-4 *1 (-469)))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ ((*1 *1 *1) (-4 *1 (-471)))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-779 *3)) (-4 *3 (-1023))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-786 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-561 *3 *2)) (-4 *3 (-1023)) (-4 *3 (-793))
- (-4 *2 (-1131))))
- ((*1 *2 *1) (-12 (-5 *1 (-624 *2)) (-4 *2 (-793))))
- ((*1 *2 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-793))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1131)) (-5 *1 (-812 *2 *3)) (-4 *3 (-1131))))
- ((*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-832 *3)) (-4 *3 (-793))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-520))
- (-4 *4 (-739)) (-4 *5 (-793)) (-4 *2 (-994 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-717)) (-4 *1 (-1165 *3)) (-4 *3 (-1131))))
- ((*1 *2 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-595 (-882 (-207))))) (-5 *2 (-595 (-207)))
- (-5 *1 (-447)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-110)) (-5 *5 (-635 (-207)))
- (-5 *2 (-970)) (-5 *1 (-702)))))
-(((*1 *2) (-12 (-5 *2 (-1067 (-1078))) (-5 *1 (-371)))))
-(((*1 *2)
- (-12 (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793))
- (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-1182))
- (-5 *1 (-925 *3 *4 *5 *6 *7)) (-4 *7 (-999 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793))
- (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-1182))
- (-5 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *7 (-999 *3 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-866)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-595 (-595 *3))) (-4 *3 (-1023)) (-4 *1 (-842 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-528)) (-5 *5 (-635 (-207))) (-5 *4 (-207))
- (-5 *2 (-970)) (-5 *1 (-697)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-5 *2 (-717)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-397 *4)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1064)) (-5 *3 (-528)) (-5 *2 (-110)))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095)))
- (-14 *3 (-595 (-1095))) (-4 *4 (-367))))
- ((*1 *1 *1) (-4 *1 (-469)))
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098)))
+ (-4 *4 (-368))))
+ ((*1 *1 *1) (-4 *1 (-471)))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-767)))))
-(((*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-568 *3)) (-5 *5 (-1091 *3))
- (-4 *3 (-13 (-410 *6) (-27) (-1117)))
- (-4 *6 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528))))
- (-5 *2 (-545 *3)) (-5 *1 (-524 *6 *3 *7)) (-4 *7 (-1023))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-568 *3)) (-5 *5 (-387 (-1091 *3)))
- (-4 *3 (-13 (-410 *6) (-27) (-1117)))
- (-4 *6 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528))))
- (-5 *2 (-545 *3)) (-5 *1 (-524 *6 *3 *7)) (-4 *7 (-1023)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-1095))) (-5 *2 (-1182)) (-5 *1 (-1098))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 (-1095))) (-5 *3 (-1095)) (-5 *2 (-1182))
- (-5 *1 (-1098))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-595 (-1095))) (-5 *3 (-1095)) (-5 *2 (-1182))
- (-5 *1 (-1098)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1102)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-162)) (-4 *2 (-23)) (-5 *1 (-270 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1153 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-658 *3 *2 *4 *5 *6)) (-4 *3 (-162))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *2 (-1153 *3)) (-5 *1 (-659 *3 *2)) (-4 *3 (-981))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-662 *3 *2 *4 *5 *6)) (-4 *3 (-162))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-808 *3)) (-5 *2 (-528)))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-595 *7)) (-5 *5 (-595 (-595 *8))) (-4 *7 (-793))
- (-4 *8 (-288)) (-4 *6 (-739)) (-4 *9 (-888 *8 *6 *7))
- (-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart|
- (-595 (-2 (|:| -2437 (-1091 *9)) (|:| -2564 (-528)))))))
- (-5 *1 (-689 *6 *7 *8 *9)) (-5 *3 (-1091 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-765 *4)) (-4 *4 (-793)) (-5 *2 (-110))
- (-5 *1 (-620 *4)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-359)) (-5 *1 (-94)))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095)))
- (-14 *3 (-595 (-1095))) (-4 *4 (-367))))
- ((*1 *1 *1) (-4 *1 (-469)))
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098)))
+ (-4 *4 (-368))))
+ ((*1 *1 *1) (-4 *1 (-471)))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-595 (-528))) (-5 *2 (-717)) (-5 *1 (-549)))))
-(((*1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-1102)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-163 *3)) (-4 *3 (-288)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1095)) (-5 *5 (-595 (-387 (-891 *6))))
- (-5 *3 (-387 (-891 *6)))
- (-4 *6 (-13 (-520) (-972 (-528)) (-140)))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-595 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-534 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-595 (-51))) (-5 *1 (-831 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-595
- (-2
- (|:| -2927
- (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207)))
- (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207))
- (|:| |relerr| (-207))))
- (|:| -1780
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1076 (-207)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2931
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-523))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-561 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1131))
- (-5 *2 (-595 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-981))
- (-4 *2 (-13 (-384) (-972 *4) (-343) (-1117) (-265)))
- (-5 *1 (-422 *4 *3 *2)) (-4 *3 (-1153 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-860)) (-4 *5 (-981))
- (-4 *2 (-13 (-384) (-972 *5) (-343) (-1117) (-265)))
- (-5 *1 (-422 *5 *3 *2)) (-4 *3 (-1153 *5)))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095)))
- (-14 *3 (-595 (-1095))) (-4 *4 (-367))))
- ((*1 *1 *1) (-4 *1 (-469)))
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098)))
+ (-4 *4 (-368))))
+ ((*1 *1 *1) (-4 *1 (-471)))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-595 *4))
- (-5 *1 (-1031 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-343)) (-5 *1 (-713 *2 *3)) (-4 *2 (-655 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-343)))))
-(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1131)) (-5 *2 (-717))
- (-5 *1 (-219 *3 *4 *5)) (-4 *3 (-220 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-303 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-128))
- (-5 *2 (-717))))
- ((*1 *2)
- (-12 (-4 *4 (-343)) (-5 *2 (-717)) (-5 *1 (-308 *3 *4))
- (-4 *3 (-309 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-341 *3)) (-4 *3 (-1023))))
- ((*1 *2) (-12 (-4 *1 (-348)) (-5 *2 (-717))))
- ((*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-366 *3)) (-4 *3 (-1023))))
- ((*1 *2)
- (-12 (-4 *4 (-1023)) (-5 *2 (-717)) (-5 *1 (-404 *3 *4))
- (-4 *3 (-405 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-717)) (-5 *1 (-598 *3 *4 *5)) (-4 *3 (-1023))
- (-4 *4 (-23)) (-14 *5 *4)))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-4 *5 (-1153 *4)) (-5 *2 (-717))
- (-5 *1 (-670 *3 *4 *5)) (-4 *3 (-671 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-765 *3)) (-4 *3 (-793))))
- ((*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-942))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-791) (-343))) (-5 *1 (-990 *2 *3))
- (-4 *3 (-1153 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-51)) (-5 *1 (-1110)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4))
- (-4 *3 (-347 *4))))
- ((*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *1) (-5 *1 (-1182))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-717)) (-5 *3 (-882 *4)) (-4 *1 (-1056 *4))
- (-4 *4 (-981))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-717)) (-5 *4 (-882 (-207))) (-5 *2 (-1182))
- (-5 *1 (-1179)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3))
- (-4 *5 (-353 *3)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981))
- (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-5 *2 (-110)))))
-(((*1 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-1180))))
- ((*1 *2 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-1180)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-528)) (-5 *3 (-860)) (-4 *1 (-384))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-528)) (-4 *1 (-384))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1026 *3 *4 *5 *2 *6)) (-4 *3 (-1023)) (-4 *4 (-1023))
- (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *2 (-1023)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-595 *1))
- (-4 *1 (-994 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-812 (-904 *3) (-904 *3))) (-5 *1 (-904 *3))
- (-4 *3 (-905)))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))))
(((*1 *1 *1) (-4 *1 (-93)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-288)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
- (-5 *1 (-1046 *4 *5 *6 *3)) (-4 *3 (-633 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-739))
- (-4 *3 (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $))))) (-4 *5 (-520))
- (-5 *1 (-679 *4 *3 *5 *2)) (-4 *2 (-888 (-387 (-891 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-981)) (-4 *5 (-739))
- (-4 *3
- (-13 (-793)
- (-10 -8 (-15 -3155 ((-1095) $))
- (-15 -3915 ((-3 $ "failed") (-1095))))))
- (-5 *1 (-921 *4 *5 *3 *2)) (-4 *2 (-888 (-891 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-595 *6))
- (-4 *6
- (-13 (-793)
- (-10 -8 (-15 -3155 ((-1095) $))
- (-15 -3915 ((-3 $ "failed") (-1095))))))
- (-4 *4 (-981)) (-4 *5 (-739)) (-5 *1 (-921 *4 *5 *6 *2))
- (-4 *2 (-888 (-891 *4) *5 *6)))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-110)) (-5 *3 (-891 *6)) (-5 *4 (-1095))
- (-5 *5 (-786 *7))
- (-4 *6 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-4 *7 (-13 (-1117) (-29 *6))) (-5 *1 (-206 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-110)) (-5 *3 (-1091 *6)) (-5 *4 (-786 *6))
- (-4 *6 (-13 (-1117) (-29 *5)))
- (-4 *5 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *1 (-206 *5 *6)))))
-(((*1 *2)
- (-12 (-4 *3 (-981)) (-5 *2 (-896 (-659 *3 *4))) (-5 *1 (-659 *3 *4))
- (-4 *4 (-1153 *3)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-110)) (-5 *5 (-635 (-159 (-207))))
- (-5 *2 (-970)) (-5 *1 (-702)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 *7)) (-4 *7 (-888 *4 *5 *6)) (-4 *6 (-570 (-1095)))
- (-4 *4 (-343)) (-4 *5 (-739)) (-4 *6 (-793))
- (-5 *2 (-1085 (-595 (-891 *4)) (-595 (-275 (-891 *4)))))
- (-5 *1 (-480 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-808 *3)) (-5 *2 (-528)))))
-(((*1 *2 *2) (-12 (-5 *2 (-595 (-296 (-207)))) (-5 *1 (-248)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1095)) (-4 *5 (-570 (-831 (-528))))
- (-4 *5 (-825 (-528)))
- (-4 *5 (-13 (-793) (-972 (-528)) (-431) (-591 (-528))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-531 *5 *3)) (-4 *3 (-581))
- (-4 *3 (-13 (-27) (-1117) (-410 *5))))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))))
(((*1 *1 *1) (-4 *1 (-93)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-1 (-110) *8))) (-4 *8 (-994 *5 *6 *7))
- (-4 *5 (-520)) (-4 *6 (-739)) (-4 *7 (-793))
- (-5 *2 (-2 (|:| |goodPols| (-595 *8)) (|:| |badPols| (-595 *8))))
- (-5 *1 (-914 *5 *6 *7 *8)) (-5 *4 (-595 *8)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-597 *5)) (-4 *5 (-981))
- (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-795 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-635 *3)) (-4 *1 (-397 *3)) (-4 *3 (-162))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981))))
- ((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-96 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-981))
- (-5 *1 (-796 *2 *3)) (-4 *3 (-795 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1131)) (-4 *2 (-1023))))
- ((*1 *1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1023)))))
-(((*1 *2)
- (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-387 *4))) (-5 *2 (-635 (-387 *4))))))
-(((*1 *2)
- (-12 (-4 *3 (-520)) (-5 *2 (-595 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-397 *3)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-695)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1091 *3)) (-4 *3 (-329)) (-5 *1 (-337 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1091 (-387 (-891 *3)))) (-5 *1 (-432 *3 *4 *5 *6))
- (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-882 *3) (-882 *3))) (-5 *1 (-165 *3))
- (-4 *3 (-13 (-343) (-1117) (-938))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))))
(((*1 *1 *1) (-4 *1 (-93)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3572 *6) (|:| |sol?| (-110))) (-528)
- *6))
- (-4 *6 (-343)) (-4 *7 (-1153 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-387 *7)) (|:| |a0| *6))
- (-2 (|:| -1497 (-387 *7)) (|:| |coeff| (-387 *7))) "failed"))
- (-5 *1 (-538 *6 *7)) (-5 *3 (-387 *7)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1091 *9)) (-5 *4 (-595 *7)) (-4 *7 (-793))
- (-4 *9 (-888 *8 *6 *7)) (-4 *6 (-739)) (-4 *8 (-288))
- (-5 *2 (-595 (-717))) (-5 *1 (-689 *6 *7 *8 *9)) (-5 *5 (-717)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-595 *2)) (-4 *2 (-1023)) (-4 *2 (-1131)))))
-(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-865)))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-891 (-528))) (-5 *3 (-1095))
- (-5 *4 (-1018 (-387 (-528)))) (-5 *1 (-30)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-283)) (-4 *2 (-1131))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-595 (-568 *1))) (-5 *3 (-595 *1)) (-4 *1 (-283))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-595 (-275 *1))) (-4 *1 (-283))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-275 *1)) (-4 *1 (-283)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-517)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-595 (-387 (-891 (-528))))) (-5 *4 (-595 (-1095)))
- (-5 *2 (-595 (-595 *5))) (-5 *1 (-360 *5))
- (-4 *5 (-13 (-791) (-343)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-387 (-891 (-528)))) (-5 *2 (-595 *4)) (-5 *1 (-360 *4))
- (-4 *4 (-13 (-791) (-343))))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33)))
- ((*1 *1)
- (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-528)) (-14 *3 (-717))
- (-4 *4 (-162))))
- ((*1 *1) (-4 *1 (-673))) ((*1 *1) (-5 *1 (-1095))))
-(((*1 *2 *2) (-12 (-5 *2 (-159 (-207))) (-5 *1 (-208))))
- ((*1 *2 *2) (-12 (-5 *2 (-207)) (-5 *1 (-208))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))))
+(((*1 *1 *1) (-4 *1 (-93))) ((*1 *1 *1 *1) (-5 *1 (-208)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2))
- (-4 *2 (-410 *3))))
- ((*1 *1 *1) (-4 *1 (-1059))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-891 *6))) (-5 *4 (-595 (-1095)))
- (-4 *6 (-13 (-520) (-972 *5))) (-4 *5 (-520))
- (-5 *2 (-595 (-595 (-275 (-387 (-891 *6)))))) (-5 *1 (-973 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-595 *3)) (|:| |image| (-595 *3))))
- (-5 *1 (-844 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-528)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1131))
- (-4 *4 (-353 *2)) (-4 *5 (-353 *2))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4265)) (-4 *1 (-269 *3 *2)) (-4 *3 (-1023))
- (-4 *2 (-1131)))))
-(((*1 *1 *1) (-4 *1 (-93))) ((*1 *1 *1 *1) (-5 *1 (-207)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095)))
- (-14 *3 (-595 (-1095))) (-4 *4 (-367))))
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098)))
+ (-4 *4 (-368))))
((*1 *1 *1 *1) (-5 *1 (-359)))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-595 *2)) (-4 *2 (-1023)) (-4 *2 (-1131)))))
-(((*1 *2 *2 *3)
- (|partial| -12
- (-5 *3 (-595 (-2 (|:| |func| *2) (|:| |pole| (-110)))))
- (-4 *2 (-13 (-410 *4) (-938))) (-4 *4 (-13 (-793) (-520)))
- (-5 *1 (-257 *4 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-520) (-140))) (-5 *1 (-505 *3 *2))
- (-4 *2 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-343) (-348) (-570 (-528)))) (-4 *4 (-1153 *3))
- (-4 *5 (-671 *3 *4)) (-5 *1 (-509 *3 *4 *5 *2)) (-4 *2 (-1168 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-343) (-348) (-570 (-528)))) (-5 *1 (-510 *3 *2))
- (-4 *2 (-1168 *3))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-13 (-520) (-140)))
- (-5 *1 (-1072 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-137)))))
-(((*1 *1) (-12 (-4 *1 (-405 *2)) (-4 *2 (-348)) (-4 *2 (-1023)))))
-(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-275 *6)) (-5 *4 (-112)) (-4 *6 (-410 *5))
- (-4 *5 (-13 (-793) (-520) (-570 (-504)))) (-5 *2 (-51))
- (-5 *1 (-297 *5 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-275 *7)) (-5 *4 (-112)) (-5 *5 (-595 *7))
- (-4 *7 (-410 *6)) (-4 *6 (-13 (-793) (-520) (-570 (-504))))
- (-5 *2 (-51)) (-5 *1 (-297 *6 *7))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-595 (-275 *7))) (-5 *4 (-595 (-112))) (-5 *5 (-275 *7))
- (-4 *7 (-410 *6)) (-4 *6 (-13 (-793) (-520) (-570 (-504))))
- (-5 *2 (-51)) (-5 *1 (-297 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-595 (-275 *8))) (-5 *4 (-595 (-112))) (-5 *5 (-275 *8))
- (-5 *6 (-595 *8)) (-4 *8 (-410 *7))
- (-4 *7 (-13 (-793) (-520) (-570 (-504)))) (-5 *2 (-51))
- (-5 *1 (-297 *7 *8))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-595 *7)) (-5 *4 (-595 (-112))) (-5 *5 (-275 *7))
- (-4 *7 (-410 *6)) (-4 *6 (-13 (-793) (-520) (-570 (-504))))
- (-5 *2 (-51)) (-5 *1 (-297 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-595 *8)) (-5 *4 (-595 (-112))) (-5 *6 (-595 (-275 *8)))
- (-4 *8 (-410 *7)) (-5 *5 (-275 *8))
- (-4 *7 (-13 (-793) (-520) (-570 (-504)))) (-5 *2 (-51))
- (-5 *1 (-297 *7 *8))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-275 *5)) (-5 *4 (-112)) (-4 *5 (-410 *6))
- (-4 *6 (-13 (-793) (-520) (-570 (-504)))) (-5 *2 (-51))
- (-5 *1 (-297 *6 *5))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-112)) (-5 *5 (-275 *3)) (-4 *3 (-410 *6))
- (-4 *6 (-13 (-793) (-520) (-570 (-504)))) (-5 *2 (-51))
- (-5 *1 (-297 *6 *3))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-112)) (-5 *5 (-275 *3)) (-4 *3 (-410 *6))
- (-4 *6 (-13 (-793) (-520) (-570 (-504)))) (-5 *2 (-51))
- (-5 *1 (-297 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-112)) (-5 *5 (-275 *3)) (-5 *6 (-595 *3))
- (-4 *3 (-410 *7)) (-4 *7 (-13 (-793) (-520) (-570 (-504))))
- (-5 *2 (-51)) (-5 *1 (-297 *7 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-207)) (-5 *1 (-208))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-207))) (-5 *1 (-208))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2))
- (-4 *2 (-410 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1059))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-766)) (-14 *5 (-1095)) (-5 *2 (-595 (-1150 *5 *4)))
- (-5 *1 (-1037 *4 *5)) (-5 *3 (-1150 *5 *4)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-635 (-528))) (-5 *5 (-110)) (-5 *7 (-635 (-207)))
- (-5 *3 (-528)) (-5 *6 (-207)) (-5 *2 (-970)) (-5 *1 (-701)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1131))
- (-4 *4 (-353 *3)) (-4 *5 (-353 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4265)) (-4 *1 (-467 *3))
- (-4 *3 (-1131)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-275 *2)) (-4 *2 (-673)) (-4 *2 (-1131)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-137))))
- ((*1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-137)))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))))
(((*1 *1 *1) (-4 *1 (-93)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095)))
- (-14 *3 (-595 (-1095))) (-4 *4 (-367))))
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098)))
+ (-4 *4 (-368))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-398 *5)) (-4 *5 (-520))
- (-5 *2
- (-2 (|:| -2564 (-717)) (|:| -1641 *5) (|:| |radicand| (-595 *5))))
- (-5 *1 (-300 *5)) (-5 *4 (-717))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-938)) (-5 *2 (-528)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1025 *4)) (-4 *4 (-1023)) (-5 *2 (-1 *4))
- (-5 *1 (-953 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-359))) (-5 *1 (-974)) (-5 *3 (-359))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1018 (-528))) (-5 *2 (-1 (-528))) (-5 *1 (-979)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-595 *2)) (-4 *2 (-1023)) (-4 *2 (-1131)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-635 *5))) (-4 *5 (-288)) (-4 *5 (-981))
- (-5 *2 (-1177 (-1177 *5))) (-5 *1 (-964 *5)) (-5 *4 (-1177 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-405 *2)) (-4 *2 (-1023)) (-4 *2 (-348)))))
-(((*1 *1 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-1131)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-717))))
- ((*1 *1 *1) (-4 *1 (-382))))
-(((*1 *2 *1) (-12 (-4 *1 (-911)) (-5 *2 (-1018 (-207))))))
-(((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| -4057 (-112)) (|:| |arg| (-595 (-831 *3)))))
- (-5 *1 (-831 *3)) (-4 *3 (-1023))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-112)) (-5 *2 (-595 (-831 *4)))
- (-5 *1 (-831 *4)) (-4 *4 (-1023)))))
-(((*1 *2 *1) (-12 (-4 *1 (-484 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-793)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-315 *3 *4 *5 *6)) (-4 *3 (-343)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-387 *4))) (-4 *6 (-322 *3 *4 *5)) (-5 *2 (-110)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6))
- (-5 *2 (-595 (-2 (|:| -2254 *1) (|:| -2378 (-595 *7)))))
- (-5 *3 (-595 *7)) (-4 *1 (-1125 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))))
(((*1 *1 *1) (-4 *1 (-93)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095)))
- (-14 *3 (-595 (-1095))) (-4 *4 (-367))))
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098)))
+ (-4 *4 (-368))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1084 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-595 (-2 (|:| |gen| *3) (|:| -2656 (-528)))))
- (-5 *1 (-341 *3)) (-4 *3 (-1023))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-595 (-2 (|:| |gen| *3) (|:| -2656 (-717)))))
- (-5 *1 (-366 *3)) (-4 *3 (-1023))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-595 (-2 (|:| -2437 *3) (|:| -2564 (-528)))))
- (-5 *1 (-398 *3)) (-4 *3 (-520))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-595 (-2 (|:| |gen| *3) (|:| -2656 (-717)))))
- (-5 *1 (-765 *3)) (-4 *3 (-793)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1026 *2 *3 *4 *5 *6)) (-4 *2 (-1023)) (-4 *3 (-1023))
- (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-702)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *5 (-793)) (-5 *2 (-110)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-702)))))
-(((*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-1018 (-207)))))
- ((*1 *2 *1) (-12 (-4 *1 (-911)) (-5 *2 (-1018 (-207))))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-595 (-595 (-882 (-207))))) (-5 *4 (-813))
- (-5 *5 (-860)) (-5 *6 (-595 (-244))) (-5 *2 (-447)) (-5 *1 (-1181))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 (-595 (-882 (-207))))) (-5 *2 (-447))
- (-5 *1 (-1181))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-595 (-882 (-207))))) (-5 *4 (-595 (-244)))
- (-5 *2 (-447)) (-5 *1 (-1181)))))
-(((*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-865)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-140) (-27) (-972 (-528)) (-972 (-387 (-528)))))
- (-4 *5 (-1153 *4)) (-5 *2 (-1091 (-387 *5))) (-5 *1 (-571 *4 *5))
- (-5 *3 (-387 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1153 *5))
- (-4 *5 (-13 (-140) (-27) (-972 (-528)) (-972 (-387 (-528)))))
- (-5 *2 (-1091 (-387 *6))) (-5 *1 (-571 *5 *6)) (-5 *3 (-387 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3))))
- ((*1 *1 *1) (-4 *1 (-1120))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-388 (-516)))) (-5 *1 (-1085 *3)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-568 *4)) (-4 *4 (-793)) (-4 *2 (-793))
- (-5 *1 (-567 *2 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1026 *2 *3 *4 *5 *6)) (-4 *2 (-1023)) (-4 *3 (-1023))
- (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *7)) (-4 *7 (-793)) (-4 *5 (-848)) (-4 *6 (-739))
- (-4 *8 (-888 *5 *6 *7)) (-5 *2 (-398 (-1091 *8)))
- (-5 *1 (-845 *5 *6 *7 *8)) (-5 *4 (-1091 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-848)) (-4 *5 (-1153 *4)) (-5 *2 (-398 (-1091 *5)))
- (-5 *1 (-846 *4 *5)) (-5 *3 (-1091 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-105))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-595 (-504))) (-5 *1 (-504)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-431)) (-4 *3 (-793)) (-4 *3 (-972 (-528)))
- (-4 *3 (-520)) (-5 *1 (-40 *3 *2)) (-4 *2 (-410 *3))
- (-4 *2
- (-13 (-343) (-283)
- (-10 -8 (-15 -3031 ((-1047 *3 (-568 $)) $))
- (-15 -3042 ((-1047 *3 (-568 $)) $))
- (-15 -2222 ($ (-1047 *3 (-568 $))))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-51)) (-5 *1 (-775)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1095))
- (-4 *5 (-13 (-520) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-595 (-568 *3)))
- (|:| |vals| (-595 *3))))
- (-5 *1 (-258 *5 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-893)) (-5 *2 (-1018 (-207)))))
- ((*1 *2 *1) (-12 (-4 *1 (-911)) (-5 *2 (-1018 (-207))))))
+ (-12 (-4 *4 (-37 (-388 (-516))))
+ (-5 *2 (-2 (|:| -3764 (-1076 *4)) (|:| -3765 (-1076 *4))))
+ (-5 *1 (-1084 *4)) (-5 *3 (-1076 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-37 (-388 (-516))))
+ (-5 *2 (-2 (|:| -3920 (-1076 *4)) (|:| -3916 (-1076 *4))))
+ (-5 *1 (-1084 *4)) (-5 *3 (-1076 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-344)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1095)) (-5 *5 (-1018 (-207))) (-5 *2 (-866))
- (-5 *1 (-864 *3)) (-4 *3 (-570 (-504)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1095)) (-5 *5 (-1018 (-207))) (-5 *2 (-866))
- (-5 *1 (-864 *3)) (-4 *3 (-570 (-504)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1018 (-207))) (-5 *1 (-865))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-207) (-207))) (-5 *3 (-1018 (-207)))
- (-5 *1 (-865))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-207) (-207))) (-5 *3 (-1018 (-207)))
- (-5 *1 (-865))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1018 (-207))) (-5 *1 (-866))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-207) (-207))) (-5 *3 (-1018 (-207)))
- (-5 *1 (-866))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-207) (-207))) (-5 *3 (-1018 (-207)))
- (-5 *1 (-866))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-595 (-1 (-207) (-207)))) (-5 *3 (-1018 (-207)))
- (-5 *1 (-866))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-595 (-1 (-207) (-207)))) (-5 *3 (-1018 (-207)))
- (-5 *1 (-866))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-207) (-207))) (-5 *3 (-1018 (-207)))
- (-5 *1 (-866))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-207) (-207))) (-5 *3 (-1018 (-207)))
- (-5 *1 (-866)))))
+ (-12 (-5 *3 (-1 *4 (-516))) (-5 *5 (-1 (-1076 *4))) (-4 *4 (-344))
+ (-4 *4 (-984)) (-5 *2 (-1076 *4)) (-5 *1 (-1083 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-344)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1076 *4)) (-4 *4 (-37 *3)) (-4 *4 (-984)) (-5 *3 (-388 (-516)))
+ (-5 *1 (-1083 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1076 (-1076 *4))) (-5 *2 (-1076 *4)) (-5 *1 (-1083 *4))
+ (-4 *4 (-37 (-388 (-516)))) (-4 *4 (-984)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-1076 *3))) (-5 *2 (-1076 *3)) (-5 *1 (-1083 *3))
+ (-4 *3 (-37 (-388 (-516)))) (-4 *3 (-984)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1076 (-1076 *4))) (-5 *2 (-1076 *4)) (-5 *1 (-1083 *4))
+ (-4 *4 (-984)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-835 *2 *3)) (-4 *2 (-1155 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1076 *4)) (-5 *3 (-1 *4 (-516))) (-4 *4 (-984))
+ (-5 *1 (-1083 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-595 (-568 *5))) (-5 *3 (-1095)) (-4 *5 (-410 *4))
- (-4 *4 (-793)) (-5 *1 (-537 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1091 *9)) (-5 *4 (-595 *7)) (-5 *5 (-595 *8))
- (-4 *7 (-793)) (-4 *8 (-981)) (-4 *9 (-888 *8 *6 *7)) (-4 *6 (-739))
- (-5 *2 (-1091 *8)) (-5 *1 (-301 *6 *7 *8 *9)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3))))
- ((*1 *1 *1) (-4 *1 (-1120))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-207)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-398 *4) *4)) (-4 *4 (-520)) (-5 *2 (-398 *4))
- (-5 *1 (-399 *4))))
- ((*1 *1 *1) (-5 *1 (-865)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1018 (-207))) (-5 *1 (-865))))
- ((*1 *1 *1) (-5 *1 (-866)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1018 (-207))) (-5 *1 (-866))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))
- (-5 *4 (-387 (-528))) (-5 *1 (-955 *3)) (-4 *3 (-1153 (-528)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))
- (-5 *1 (-955 *3)) (-4 *3 (-1153 (-528)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))
- (-5 *4 (-387 (-528))) (-5 *1 (-956 *3)) (-4 *3 (-1153 *4))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))
- (-5 *1 (-956 *3)) (-4 *3 (-1153 (-387 (-528))))))
+ (-12 (-5 *3 (-1098))
+ (-4 *4 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)))
+ (-5 *1 (-752 *4 *2)) (-4 *2 (-13 (-29 *4) (-1120) (-901)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-805))) ((*1 *1 *1 *1) (-5 *1 (-805)))
+ ((*1 *1 *1) (-5 *1 (-805)))
+ ((*1 *2 *3) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-1083 *3)) (-4 *3 (-984)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1076 (-516))) (-5 *1 (-1083 *4)) (-4 *4 (-984))
+ (-5 *3 (-516)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1076 (-516))) (-5 *1 (-1083 *4)) (-4 *4 (-984))
+ (-5 *3 (-516)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-145 *2 *3 *4)) (-14 *2 (-860)) (-4 *3 (-344))
+ (-14 *4 (-933 *2 *3))))
((*1 *1 *1)
- (-12 (-4 *2 (-13 (-791) (-343))) (-5 *1 (-990 *2 *3))
- (-4 *3 (-1153 *2)))))
-(((*1 *1 *2) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1131))))
- ((*1 *2 *1) (-12 (-5 *2 (-595 (-1095))) (-5 *1 (-1095)))))
-(((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-843 (-528))) (-5 *1 (-856))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 (-528))) (-5 *2 (-843 (-528))) (-5 *1 (-856)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-37 (-387 (-528))))
- (-5 *2 (-2 (|:| -2859 (-1076 *4)) (|:| -2869 (-1076 *4))))
- (-5 *1 (-1082 *4)) (-5 *3 (-1076 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1091 (-387 (-891 *3)))) (-5 *1 (-432 *3 *4 *5 *6))
- (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))))
+ (|partial| -12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1155 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-523))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344))))
+ ((*1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344))))
+ ((*1 *1 *1) (|partial| -4 *1 (-671))) ((*1 *1 *1) (|partial| -4 *1 (-675)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-724 *5 *6 *7 *3 *4))
+ (-4 *4 (-1002 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-999 *3 *2)) (-4 *3 (-13 (-793) (-344)))
+ (-4 *2 (-1155 *3))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-882 *4)) (-4 *4 (-981)) (-5 *1 (-1084 *3 *4))
- (-14 *3 (-860)))))
+ (|partial| -12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-523))))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-307 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740))
+ (-4 *2 (-523))))
+ ((*1 *1 *1 *1) (|partial| -4 *1 (-523)))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2))
+ (-4 *4 (-353 *2)) (-4 *2 (-523))))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-719)))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-523))))
+ ((*1 *1 *1 *1) (-5 *1 (-805)))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-523))
+ (-5 *1 (-910 *3 *4))))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-986 *3 *4 *2 *5 *6)) (-4 *2 (-984))
+ (-4 *5 (-221 *4 *2)) (-4 *6 (-221 *3 *2)) (-4 *2 (-523))))
+ ((*1 *2 *2 *2)
+ (|partial| -12 (-5 *2 (-1076 *3)) (-4 *3 (-984)) (-5 *1 (-1083 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1134)) (-5 *1 (-1076 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-594 *4)) (-4 *4 (-1027)) (-4 *4 (-1134)) (-5 *2 (-110))
+ (-5 *1 (-1076 *4)))))
+(((*1 *2 *3 *1)
+ (-12
+ (-5 *2 (-2 (|:| |cycle?| (-110)) (|:| -2855 (-719)) (|:| |period| (-719))))
+ (-5 *1 (-1076 *4)) (-4 *4 (-1134)) (-5 *3 (-719)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-1076 *3))) (-5 *1 (-1076 *3)) (-4 *3 (-1134)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1076 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-804))))
+ ((*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1185)) (-5 *1 (-804))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1081)) (-5 *4 (-805)) (-5 *2 (-1185)) (-5 *1 (-804))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-516)) (-5 *2 (-1185)) (-5 *1 (-1076 *4)) (-4 *4 (-1027))
+ (-4 *4 (-1134)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-595 (-595 (-717)))) (-5 *1 (-843 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *1) (-12 (-5 *2 (-595 (-882 (-207)))) (-5 *1 (-1178)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-296 (-359))) (-5 *2 (-296 (-207))) (-5 *1 (-286)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1177 (-296 (-207))))
- (-5 *2
- (-2 (|:| |additions| (-528)) (|:| |multiplications| (-528))
- (|:| |exponentiations| (-528)) (|:| |functionCalls| (-528))))
- (-5 *1 (-286)))))
-(((*1 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1179))))
- ((*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1179)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3))))
- ((*1 *1 *1) (-4 *1 (-1120))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-595 (-595 (-528)))) (-5 *1 (-908))
- (-5 *3 (-595 (-528))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-310)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207)))
- (-5 *5 (-3 (|:| |fn| (-368)) (|:| |fp| (-61 LSFUN2))))
- (-5 *2 (-970)) (-5 *1 (-700)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-234 *2 *3 *4 *5)) (-4 *2 (-981)) (-4 *3 (-793))
- (-4 *4 (-247 *3)) (-4 *5 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-595 *4))
- (-5 *1 (-1031 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-564 *2)) (-4 *2 (-1023))))
- ((*1 *1 *1) (-5 *1 (-584))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-528)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-353 *2))
- (-4 *5 (-353 *2)) (-4 *2 (-1131))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-269 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1131))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-528)) (-4 *1 (-983 *4 *5 *2 *6 *7))
- (-4 *6 (-220 *5 *2)) (-4 *7 (-220 *4 *2)) (-4 *2 (-981)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-209 *2)) (-4 *2 (-13 (-343) (-1117)))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-860)) (-5 *4 (-359)) (-5 *2 (-1182)) (-5 *1 (-1178))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-359)) (-5 *2 (-1182)) (-5 *1 (-1179)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-717)) (-5 *1 (-799 *2)) (-4 *2 (-37 (-387 (-528))))
- (-4 *2 (-162)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-831 *4)) (-4 *4 (-1023)) (-5 *1 (-828 *4 *3))
- (-4 *3 (-1023)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-595 *3)) (-4 *3 (-288)) (-5 *1 (-168 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-1023))))
- ((*1 *1 *2) (-12 (-5 *1 (-840 *2)) (-4 *2 (-1023)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-115 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-115 *2)) (-14 *2 (-528))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-810 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-14 *2 (-528))))
+ (-12 (-5 *2 (-805)) (-5 *1 (-1076 *3)) (-4 *3 (-1027)) (-4 *3 (-1134)))))
+(((*1 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1076 *3)) (-4 *3 (-1027)) (-4 *3 (-1134)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-719)) (-5 *2 (-1179 (-594 (-516)))) (-5 *1 (-459))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1134)) (-5 *1 (-560 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1134)) (-5 *1 (-1076 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1134)) (-5 *1 (-1076 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1134)) (-5 *1 (-560 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-528)) (-14 *3 *2) (-5 *1 (-811 *3 *4))
- (-4 *4 (-808 *3))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-528)) (-5 *1 (-811 *2 *3)) (-4 *3 (-808 *2))))
+ (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1134)) (-5 *1 (-1076 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1134)) (-5 *1 (-560 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-528)) (-4 *1 (-1139 *3 *4)) (-4 *3 (-981))
- (-4 *4 (-1168 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1139 *2 *3)) (-4 *2 (-981)) (-4 *3 (-1168 *2)))))
+ (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1134)) (-5 *1 (-1076 *3)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-516)) (-4 *4 (-13 (-523) (-140))) (-5 *1 (-507 *4 *2))
+ (-4 *2 (-1172 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-516)) (-4 *4 (-13 (-344) (-349) (-572 *3))) (-4 *5 (-1155 *4))
+ (-4 *6 (-673 *4 *5)) (-5 *1 (-511 *4 *5 *6 *2)) (-4 *2 (-1172 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-516)) (-4 *4 (-13 (-344) (-349) (-572 *3)))
+ (-5 *1 (-512 *4 *2)) (-4 *2 (-1172 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1076 *4)) (-5 *3 (-516)) (-4 *4 (-13 (-523) (-140)))
+ (-5 *1 (-1075 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
+ (-12 (-4 *3 (-13 (-523) (-140))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1172 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095)))
- (-14 *3 (-595 (-1095))) (-4 *4 (-367))))
+ (-12 (-4 *3 (-13 (-344) (-349) (-572 (-516)))) (-4 *4 (-1155 *3))
+ (-4 *5 (-673 *3 *4)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-1172 *5))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
+ (-12 (-4 *3 (-13 (-344) (-349) (-572 (-516)))) (-5 *1 (-512 *3 *2))
+ (-4 *2 (-1172 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3))))
- ((*1 *1 *1) (-4 *1 (-1120))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5))
- (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *1 (-1188 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-595 *8)) (-5 *3 (-1 (-110) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-994 *5 *6 *7)) (-4 *5 (-520))
- (-4 *6 (-739)) (-4 *7 (-793)) (-5 *1 (-1188 *5 *6 *7 *8)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-189))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-595 (-359))) (-5 *2 (-359)) (-5 *1 (-189)))))
-(((*1 *2 *1) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-1091 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-595 (-1095))) (-5 *1 (-1099)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359))
- (-5 *2
- (-2 (|:| -3327 *4) (|:| -3817 *4) (|:| |totalpts| (-528))
- (|:| |success| (-110))))
- (-5 *1 (-735)) (-5 *5 (-528)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-431))
- (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *1 (-914 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1118 *2)) (-4 *2 (-1023))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 *3)) (-4 *3 (-1023)) (-5 *1 (-1118 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-595 (-1118 *2))) (-5 *1 (-1118 *2)) (-4 *2 (-1023)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1076 (-387 *3))) (-5 *1 (-163 *3)) (-4 *3 (-288)))))
-(((*1 *2 *1) (-12 (-5 *2 (-595 (-903))) (-5 *1 (-106))))
- ((*1 *2 *1) (-12 (-5 *2 (-44 (-1078) (-720))) (-5 *1 (-112)))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-13 (-523) (-140))) (-5 *1 (-1075 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
+ (-12 (-4 *3 (-13 (-523) (-140))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1172 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-311 *2)) (-4 *2 (-793))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095)))
- (-14 *3 (-595 (-1095))) (-4 *4 (-367))))
+ (-12 (-4 *3 (-13 (-344) (-349) (-572 (-516)))) (-4 *4 (-1155 *3))
+ (-4 *5 (-673 *3 *4)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-1172 *5))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
+ (-12 (-4 *3 (-13 (-344) (-349) (-572 (-516)))) (-5 *1 (-512 *3 *2))
+ (-4 *2 (-1172 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3))))
- ((*1 *1 *1) (-4 *1 (-1120))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-595 *3)) (-4 *3 (-793)) (-5 *1 (-686 *3)))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-528)) (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981))
- (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-882 (-207)) (-882 (-207)))) (-5 *3 (-595 (-244)))
- (-5 *1 (-242))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1 (-882 (-207)) (-882 (-207)))) (-5 *1 (-244))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 (-459 *5 *6))) (-5 *3 (-459 *5 *6))
- (-14 *5 (-595 (-1095))) (-4 *6 (-431)) (-5 *2 (-1177 *6))
- (-5 *1 (-583 *5 *6)))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-13 (-523) (-140))) (-5 *1 (-1075 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *1 *1) (-12 (-4 *1 (-226 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-717)) (-5 *2 (-635 (-891 *4))) (-5 *1 (-963 *4))
- (-4 *4 (-981)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-1078))) (-5 *2 (-1078)) (-5 *1 (-176))))
- ((*1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-702)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-522 *2)) (-4 *2 (-513)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-595 (-595 (-882 (-207))))) (-5 *4 (-813))
- (-5 *5 (-860)) (-5 *6 (-595 (-244))) (-5 *2 (-1178))
- (-5 *1 (-1181))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-595 (-882 (-207))))) (-5 *4 (-595 (-244)))
- (-5 *2 (-1178)) (-5 *1 (-1181)))))
-(((*1 *1 *1) (-5 *1 (-802))) ((*1 *1 *1 *1) (-5 *1 (-802)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1131))))
- ((*1 *1 *2) (-12 (-5 *1 (-1144 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
+ (-12 (-4 *3 (-13 (-523) (-140))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1172 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
+ (-12 (-4 *3 (-13 (-344) (-349) (-572 (-516)))) (-4 *4 (-1155 *3))
+ (-4 *5 (-673 *3 *4)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-1172 *5))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-311 *2)) (-4 *2 (-793))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095)))
- (-14 *3 (-595 (-1095))) (-4 *4 (-367))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
+ (-12 (-4 *3 (-13 (-344) (-349) (-572 (-516)))) (-5 *1 (-512 *3 *2))
+ (-4 *2 (-1172 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3))))
- ((*1 *1 *1) (-4 *1 (-1120))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-387 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1153 *5))
- (-5 *1 (-674 *5 *2)) (-4 *5 (-343)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-929 *2)) (-4 *2 (-520)) (-5 *1 (-135 *2 *4 *3))
- (-4 *3 (-353 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-929 *2)) (-4 *2 (-520)) (-5 *1 (-479 *2 *4 *5 *3))
- (-4 *5 (-353 *2)) (-4 *3 (-353 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 *4)) (-4 *4 (-929 *2)) (-4 *2 (-520))
- (-5 *1 (-639 *2 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-929 *2)) (-4 *2 (-520)) (-5 *1 (-1146 *2 *4 *3))
- (-4 *3 (-1153 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-546 *3)) (-4 *3 (-513)))))
+ (-12 (-5 *2 (-1076 *3)) (-4 *3 (-13 (-523) (-140))) (-5 *1 (-1075 *3)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1095)) (-5 *3 (-595 (-891 (-528))))
- (-5 *4 (-296 (-159 (-359)))) (-5 *1 (-310))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1095)) (-5 *3 (-595 (-891 (-528))))
- (-5 *4 (-296 (-359))) (-5 *1 (-310))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1095)) (-5 *3 (-595 (-891 (-528))))
- (-5 *4 (-296 (-528))) (-5 *1 (-310))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-1177 (-296 (-159 (-359)))))
- (-5 *1 (-310))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-1177 (-296 (-359)))) (-5 *1 (-310))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-1177 (-296 (-528)))) (-5 *1 (-310))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-635 (-296 (-159 (-359)))))
- (-5 *1 (-310))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-635 (-296 (-359)))) (-5 *1 (-310))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-635 (-296 (-528)))) (-5 *1 (-310))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-296 (-159 (-359)))) (-5 *1 (-310))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-296 (-359))) (-5 *1 (-310))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-296 (-528))) (-5 *1 (-310))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1095)) (-5 *3 (-595 (-891 (-528))))
- (-5 *4 (-296 (-640))) (-5 *1 (-310))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1095)) (-5 *3 (-595 (-891 (-528))))
- (-5 *4 (-296 (-645))) (-5 *1 (-310))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1095)) (-5 *3 (-595 (-891 (-528))))
- (-5 *4 (-296 (-647))) (-5 *1 (-310))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-1177 (-296 (-640)))) (-5 *1 (-310))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-1177 (-296 (-645)))) (-5 *1 (-310))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-1177 (-296 (-647)))) (-5 *1 (-310))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-635 (-296 (-640)))) (-5 *1 (-310))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-635 (-296 (-645)))) (-5 *1 (-310))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-635 (-296 (-647)))) (-5 *1 (-310))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-1177 (-640))) (-5 *1 (-310))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-1177 (-645))) (-5 *1 (-310))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-1177 (-647))) (-5 *1 (-310))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-635 (-640))) (-5 *1 (-310))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-635 (-645))) (-5 *1 (-310))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-635 (-647))) (-5 *1 (-310))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-296 (-640))) (-5 *1 (-310))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-296 (-645))) (-5 *1 (-310))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-296 (-647))) (-5 *1 (-310))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-1078)) (-5 *1 (-310))))
- ((*1 *1 *1 *1) (-5 *1 (-802))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-595 (-387 *6))) (-5 *3 (-387 *6))
- (-4 *6 (-1153 *5)) (-4 *5 (-13 (-343) (-140) (-972 (-528))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-595 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-532 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-522 *3)) (-4 *3 (-513))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-288)) (-5 *2 (-398 *3))
- (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-888 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-288))
- (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-398 (-1091 *7)))
- (-5 *1 (-689 *4 *5 *6 *7)) (-5 *3 (-1091 *7))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-431)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *2 (-398 *1)) (-4 *1 (-888 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-793)) (-4 *5 (-739)) (-4 *6 (-431)) (-5 *2 (-398 *3))
- (-5 *1 (-916 *4 *5 *6 *3)) (-4 *3 (-888 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-431))
- (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-398 (-1091 (-387 *7))))
- (-5 *1 (-1090 *4 *5 *6 *7)) (-5 *3 (-1091 (-387 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-398 *1)) (-4 *1 (-1135))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-5 *2 (-398 *3)) (-5 *1 (-1156 *4 *3))
- (-4 *3 (-13 (-1153 *4) (-520) (-10 -8 (-15 -2088 ($ $ $)))))))
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795))))
+ ((*1 *1) (-4 *1 (-1074))))
+(((*1 *1 *1) (|partial| -4 *1 (-1074))))
+(((*1 *2 *1) (-12 (-4 *1 (-1072 *3)) (-4 *3 (-1134)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1072 *3)) (-4 *3 (-1134)) (-5 *2 (-110)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1134)) (-5 *1 (-1070 *3)))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *2 (-594 (-965 *5 *6 *7 *3))) (-5 *1 (-965 *5 *6 *7 *3))
+ (-4 *3 (-997 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-594 *6)) (-4 *1 (-1002 *3 *4 *5 *6)) (-4 *3 (-432))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1002 *3 *4 *5 *2)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *2 (-997 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *2 (-594 (-1069 *5 *6 *7 *3))) (-5 *1 (-1069 *5 *6 *7 *3))
+ (-4 *3 (-997 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-594 *8)) (-5 *4 (-110)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-432))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-594 (-965 *5 *6 *7 *8)))
+ (-5 *1 (-965 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-594 *8)) (-5 *4 (-110)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-432))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-594 (-1069 *5 *6 *7 *8)))
+ (-5 *1 (-1069 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *8 (-997 *5 *6 *7))
+ (-5 *2 (-2 (|:| |val| (-594 *8)) (|:| |towers| (-594 (-965 *5 *6 *7 *8)))))
+ (-5 *1 (-965 *5 *6 *7 *8)) (-5 *3 (-594 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *8 (-997 *5 *6 *7))
+ (-5 *2 (-2 (|:| |val| (-594 *8)) (|:| |towers| (-594 (-1069 *5 *6 *7 *8)))))
+ (-5 *1 (-1069 *5 *6 *7 *8)) (-5 *3 (-594 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-2 (|:| |val| (-594 *8)) (|:| -1610 *9)))) (-5 *4 (-719))
+ (-4 *8 (-997 *5 *6 *7)) (-4 *9 (-1002 *5 *6 *7 *8)) (-4 *5 (-432))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-1185))
+ (-5 *1 (-1000 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-2 (|:| |val| (-594 *8)) (|:| -1610 *9)))) (-5 *4 (-719))
+ (-4 *8 (-997 *5 *6 *7)) (-4 *9 (-1035 *5 *6 *7 *8)) (-4 *5 (-432))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-1185))
+ (-5 *1 (-1068 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-594 *11))
+ (|:| |todo| (-594 (-2 (|:| |val| *3) (|:| -1610 *11))))))
+ (-5 *6 (-719)) (-5 *2 (-594 (-2 (|:| |val| (-594 *10)) (|:| -1610 *11))))
+ (-5 *3 (-594 *10)) (-5 *4 (-594 *11)) (-4 *10 (-997 *7 *8 *9))
+ (-4 *11 (-1002 *7 *8 *9 *10)) (-4 *7 (-432)) (-4 *8 (-741)) (-4 *9 (-795))
+ (-5 *1 (-1000 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-594 *11))
+ (|:| |todo| (-594 (-2 (|:| |val| *3) (|:| -1610 *11))))))
+ (-5 *6 (-719)) (-5 *2 (-594 (-2 (|:| |val| (-594 *10)) (|:| -1610 *11))))
+ (-5 *3 (-594 *10)) (-5 *4 (-594 *11)) (-4 *10 (-997 *7 *8 *9))
+ (-4 *11 (-1035 *7 *8 *9 *10)) (-4 *7 (-432)) (-4 *8 (-741)) (-4 *9 (-795))
+ (-5 *1 (-1068 *7 *8 *9 *10 *11)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4))) (-4 *6 (-323 *3 *4 *5))
+ (-5 *2
+ (-2 (|:| -2351 (-394 *4 (-388 *4) *5 *6)) (|:| |principalPart| *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-344))
+ (-5 *2 (-2 (|:| |poly| *6) (|:| -3355 (-388 *6)) (|:| |special| (-388 *6))))
+ (-5 *1 (-676 *5 *6)) (-5 *3 (-388 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-978 *4 *5)) (-4 *4 (-13 (-791) (-288) (-140) (-957)))
- (-14 *5 (-595 (-1095)))
+ (-12 (-4 *4 (-344)) (-5 *2 (-594 *3)) (-5 *1 (-837 *3 *4))
+ (-4 *3 (-1155 *4))))
+ ((*1 *2 *3 *4 *4)
+ (|partial| -12 (-5 *4 (-719)) (-4 *5 (-344))
+ (-5 *2 (-2 (|:| -3397 *3) (|:| -3396 *3))) (-5 *1 (-837 *3 *5))
+ (-4 *3 (-1155 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-594 *9)) (-5 *3 (-594 *8)) (-5 *4 (-110))
+ (-4 *8 (-997 *5 *6 *7)) (-4 *9 (-1002 *5 *6 *7 *8)) (-4 *5 (-432))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1000 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-594 *9)) (-5 *3 (-594 *8)) (-5 *4 (-110))
+ (-4 *8 (-997 *5 *6 *7)) (-4 *9 (-1002 *5 *6 *7 *8)) (-4 *5 (-432))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1000 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-594 *9)) (-5 *3 (-594 *8)) (-5 *4 (-110))
+ (-4 *8 (-997 *5 *6 *7)) (-4 *9 (-1035 *5 *6 *7 *8)) (-4 *5 (-432))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1068 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-594 *9)) (-5 *3 (-594 *8)) (-5 *4 (-110))
+ (-4 *8 (-997 *5 *6 *7)) (-4 *9 (-1035 *5 *6 *7 *8)) (-4 *5 (-432))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-719)) (-5 *6 (-110)) (-4 *7 (-432)) (-4 *8 (-741))
+ (-4 *9 (-795)) (-4 *3 (-997 *7 *8 *9))
(-5 *2
- (-595 (-1066 *4 (-500 (-804 *6)) (-804 *6) (-726 *4 (-804 *6)))))
- (-5 *1 (-1201 *4 *5 *6)) (-14 *6 (-595 (-1095))))))
-(((*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-148))))
- ((*1 *2 *1) (-12 (-5 *2 (-148)) (-5 *1 (-813))))
- ((*1 *2 *3) (-12 (-5 *3 (-882 *2)) (-5 *1 (-919 *2)) (-4 *2 (-981)))))
-(((*1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-148))))
- ((*1 *2 *3) (-12 (-5 *3 (-882 *2)) (-5 *1 (-919 *2)) (-4 *2 (-981)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-715))
+ (-2 (|:| |done| (-594 *4))
+ (|:| |todo| (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4))))))
+ (-5 *1 (-1000 *7 *8 *9 *3 *4)) (-4 *4 (-1002 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
+ (-4 *3 (-997 *6 *7 *8))
(-5 *2
- (-2 (|:| -2702 (-359)) (|:| -3814 (-1078))
- (|:| |explanations| (-595 (-1078))) (|:| |extra| (-970))))
- (-5 *1 (-529))))
+ (-2 (|:| |done| (-594 *4))
+ (|:| |todo| (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4))))))
+ (-5 *1 (-1000 *6 *7 *8 *3 *4)) (-4 *4 (-1002 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-715)) (-5 *4 (-992))
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
(-5 *2
- (-2 (|:| -2702 (-359)) (|:| -3814 (-1078))
- (|:| |explanations| (-595 (-1078))) (|:| |extra| (-970))))
- (-5 *1 (-529))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-733)) (-5 *3 (-992))
- (-5 *4
- (-2 (|:| |fn| (-296 (-207)))
- (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207))
- (|:| |relerr| (-207))))
+ (-2 (|:| |done| (-594 *4))
+ (|:| |todo| (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4))))))
+ (-5 *1 (-1000 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-719)) (-5 *6 (-110)) (-4 *7 (-432)) (-4 *8 (-741))
+ (-4 *9 (-795)) (-4 *3 (-997 *7 *8 *9))
(-5 *2
- (-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))
- (|:| |extra| (-970))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-733)) (-5 *3 (-992))
- (-5 *4
- (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207)))
- (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207))
- (|:| |relerr| (-207))))
+ (-2 (|:| |done| (-594 *4))
+ (|:| |todo| (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4))))))
+ (-5 *1 (-1068 *7 *8 *9 *3 *4)) (-4 *4 (-1035 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
+ (-4 *3 (-997 *6 *7 *8))
(-5 *2
- (-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))
- (|:| |extra| (-970))))))
+ (-2 (|:| |done| (-594 *4))
+ (|:| |todo| (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4))))))
+ (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1035 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-746)) (-5 *3 (-992))
- (-5 *4
- (-2 (|:| |xinit| (-207)) (|:| |xend| (-207))
- (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207)))
- (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207)))
- (|:| |abserr| (-207)) (|:| |relerr| (-207))))
- (-5 *2 (-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-754))
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
(-5 *2
- (-2 (|:| -2702 (-359)) (|:| -3814 (-1078))
- (|:| |explanations| (-595 (-1078)))))
- (-5 *1 (-751))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-754)) (-5 *4 (-992))
+ (-2 (|:| |done| (-594 *4))
+ (|:| |todo| (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4))))))
+ (-5 *1 (-1068 *5 *6 *7 *3 *4)) (-4 *4 (-1035 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
+ (-4 *3 (-997 *6 *7 *8))
(-5 *2
- (-2 (|:| -2702 (-359)) (|:| -3814 (-1078))
- (|:| |explanations| (-595 (-1078)))))
- (-5 *1 (-751))))
+ (-2 (|:| |done| (-594 *4))
+ (|:| |todo| (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4))))))
+ (-5 *1 (-1000 *6 *7 *8 *3 *4)) (-4 *4 (-1002 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-782)) (-5 *3 (-992))
- (-5 *4
- (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207)))))
- (-5 *2 (-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-782)) (-5 *3 (-992))
- (-5 *4
- (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207)))
- (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207))))
- (|:| |ub| (-595 (-786 (-207))))))
- (-5 *2 (-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-784))
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
(-5 *2
- (-2 (|:| -2702 (-359)) (|:| -3814 (-1078))
- (|:| |explanations| (-595 (-1078)))))
- (-5 *1 (-783))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-784)) (-5 *4 (-992))
+ (-2 (|:| |done| (-594 *4))
+ (|:| |todo| (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4))))))
+ (-5 *1 (-1000 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
+ (-4 *3 (-997 *6 *7 *8))
(-5 *2
- (-2 (|:| -2702 (-359)) (|:| -3814 (-1078))
- (|:| |explanations| (-595 (-1078)))))
- (-5 *1 (-783))))
+ (-2 (|:| |done| (-594 *4))
+ (|:| |todo| (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4))))))
+ (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1035 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-834)) (-5 *3 (-992))
- (-5 *4
- (-2 (|:| |pde| (-595 (-296 (-207))))
- (|:| |constraints|
- (-595
- (-2 (|:| |start| (-207)) (|:| |finish| (-207))
- (|:| |grid| (-717)) (|:| |boundaryType| (-528))
- (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207))))))
- (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078))
- (|:| |tol| (-207))))
- (-5 *2 (-2 (|:| -2702 (-359)) (|:| |explanations| (-1078))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-837))
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-594 *4))
+ (|:| |todo| (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4))))))
+ (-5 *1 (-1068 *5 *6 *7 *3 *4)) (-4 *4 (-1035 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
+ (-4 *3 (-997 *6 *7 *8))
(-5 *2
- (-2 (|:| -2702 (-359)) (|:| -3814 (-1078))
- (|:| |explanations| (-595 (-1078)))))
- (-5 *1 (-836))))
+ (-2 (|:| |done| (-594 *4))
+ (|:| |todo| (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4))))))
+ (-5 *1 (-1000 *6 *7 *8 *3 *4)) (-4 *4 (-1002 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-837)) (-5 *4 (-992))
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
(-5 *2
- (-2 (|:| -2702 (-359)) (|:| -3814 (-1078))
- (|:| |explanations| (-595 (-1078)))))
- (-5 *1 (-836)))))
+ (-2 (|:| |done| (-594 *4))
+ (|:| |todo| (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4))))))
+ (-5 *1 (-1068 *5 *6 *7 *3 *4)) (-4 *4 (-1035 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *1 *1) (-4 *1 (-581)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-582 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938) (-1117))))))
-(((*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-337 *3)) (-4 *3 (-329)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-329)) (-4 *4 (-309 *3)) (-4 *5 (-1153 *4))
- (-5 *1 (-723 *3 *4 *5 *2 *6)) (-4 *2 (-1153 *5)) (-14 *6 (-860))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-717)) (-4 *1 (-1194 *3)) (-4 *3 (-343)) (-4 *3 (-348))))
- ((*1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-343)) (-4 *2 (-348)))))
-(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-738)) (-4 *2 (-981))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-981)) (-5 *1 (-49 *2 *3)) (-14 *3 (-595 (-1095)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-296 *3)) (-5 *1 (-205 *3 *4))
- (-4 *3 (-13 (-981) (-793))) (-14 *4 (-595 (-1095)))))
- ((*1 *2 *1) (-12 (-4 *1 (-362 *2 *3)) (-4 *3 (-1023)) (-4 *2 (-981))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-595 (-1095))) (-4 *5 (-220 (-2138 *3) (-717)))
- (-14 *6
- (-1 (-110) (-2 (|:| -3108 *4) (|:| -2564 *5))
- (-2 (|:| -3108 *4) (|:| -2564 *5))))
- (-4 *2 (-162)) (-5 *1 (-440 *3 *2 *4 *5 *6 *7)) (-4 *4 (-793))
- (-4 *7 (-888 *2 *5 (-804 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1023))))
+ (-12 (-5 *3 (-594 *8)) (-5 *4 (-594 *9)) (-4 *8 (-997 *5 *6 *7))
+ (-4 *9 (-1002 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *2 (-719)) (-5 *1 (-1000 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 *8)) (-5 *4 (-594 *9)) (-4 *8 (-997 *5 *6 *7))
+ (-4 *9 (-1035 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *2 (-719)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 *8)) (-5 *4 (-594 *9)) (-4 *8 (-997 *5 *6 *7))
+ (-4 *9 (-1002 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *2 (-719)) (-5 *1 (-1000 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 *8)) (-5 *4 (-594 *9)) (-4 *8 (-997 *5 *6 *7))
+ (-4 *9 (-1035 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *2 (-719)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))))
+(((*1 *1) (-5 *1 (-134))) ((*1 *1 *1) (-5 *1 (-137)))
+ ((*1 *1 *1) (-4 *1 (-1067))))
+(((*1 *1 *1) (-4 *1 (-1067))))
+(((*1 *1) (-5 *1 (-134))) ((*1 *1 *1) (-5 *1 (-137)))
+ ((*1 *1 *1) (-4 *1 (-1067))))
+(((*1 *1 *1) (-4 *1 (-1067))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1067)) (-5 *2 (-110)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1067)) (-5 *2 (-110)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1067)) (-5 *3 (-516)) (-5 *2 (-110)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 *5)) (-5 *4 (-594 *6)) (-4 *5 (-1027)) (-4 *6 (-1134))
+ (-5 *2 (-1 *6 *5)) (-5 *1 (-596 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-594 *5)) (-5 *4 (-594 *2)) (-4 *5 (-1027)) (-4 *2 (-1134))
+ (-5 *1 (-596 *5 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-594 *6)) (-5 *4 (-594 *5)) (-4 *6 (-1027)) (-4 *5 (-1134))
+ (-5 *2 (-1 *5 *6)) (-5 *1 (-596 *6 *5))))
+ ((*1 *2 *3 *4 *5 *2)
+ (-12 (-5 *3 (-594 *5)) (-5 *4 (-594 *2)) (-4 *5 (-1027)) (-4 *2 (-1134))
+ (-5 *1 (-596 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-594 *5)) (-5 *4 (-594 *6)) (-4 *5 (-1027))
+ (-4 *6 (-1134)) (-5 *1 (-596 *5 *6))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-594 *5)) (-5 *4 (-594 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1027))
+ (-4 *2 (-1134)) (-5 *1 (-596 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1067)) (-5 *3 (-137)) (-5 *2 (-719)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1067)) (-5 *3 (-137)) (-5 *2 (-110)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1067)) (-5 *2 (-1146 (-516))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1045)) (-5 *1 (-107))))
+ ((*1 *2 *1) (-12 (-4 *1 (-129)) (-5 *2 (-719))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *2 (-516)) (-4 *1 (-353 *3)) (-4 *3 (-1134)) (-4 *3 (-1027))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-353 *3)) (-4 *3 (-1134)) (-4 *3 (-1027)) (-5 *2 (-516))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-110) *4)) (-4 *1 (-353 *4)) (-4 *4 (-1134))
+ (-5 *2 (-516))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1067)) (-5 *2 (-516)) (-5 *3 (-134))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1067)) (-5 *2 (-516)))))
+(((*1 *2 *3) (-12 (-5 *2 (-386 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1155 (-47)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-119 *3)) (|:| |greater| (-119 *3))))
+ (-5 *1 (-119 *3)) (-4 *3 (-795))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-545 *4)) (-4 *4 (-13 (-29 *3) (-1120)))
+ (-4 *3 (-13 (-432) (-975 (-516)) (-795) (-593 (-516))))
+ (-5 *1 (-547 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-545 (-388 (-887 *3))))
+ (-4 *3 (-13 (-432) (-975 (-516)) (-795) (-593 (-516)))) (-5 *1 (-550 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-344))
+ (-5 *2 (-2 (|:| -3355 *3) (|:| |special| *3))) (-5 *1 (-676 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1179 *5)) (-4 *5 (-344)) (-4 *5 (-984))
+ (-5 *2 (-594 (-594 (-637 *5)))) (-5 *1 (-968 *5)) (-5 *3 (-594 (-637 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1179 (-1179 *5))) (-4 *5 (-344)) (-4 *5 (-984))
+ (-5 *2 (-594 (-594 (-637 *5)))) (-5 *1 (-968 *5)) (-5 *3 (-594 (-637 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-134)) (-5 *2 (-594 *1)) (-4 *1 (-1067))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-137)) (-5 *2 (-594 *1)) (-4 *1 (-1067)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1067)) (-5 *2 (-134))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1067)) (-5 *2 (-137)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1067)) (-5 *2 (-134))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1067)) (-5 *2 (-137)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1067)) (-5 *2 (-134))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1067)) (-5 *2 (-137)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-516)) (-5 *1 (-131 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-719))
+ (-4 *5 (-162))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-131 *2 *3 *4)) (-14 *2 (-516)) (-14 *3 (-719)) (-4 *4 (-162))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2))
+ (-4 *4 (-353 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-984)) (-4 *1 (-634 *3 *2 *4)) (-4 *2 (-353 *3))
+ (-4 *4 (-353 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-719)) (-4 *3 (-984)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-637 *4)) (-4 *4 (-984)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-719)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
+ (-4 *3 (-13 (-1027) (-33))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
+ (-4 *3 (-13 (-1027) (-33))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-594 *4)) (-5 *1 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33)))
+ (-4 *4 (-13 (-1027) (-33))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-594 (-2 (|:| |val| *3) (|:| -1610 *4)))) (-5 *1 (-1064 *3 *4))
+ (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1063 *4 *5)) (-4 *4 (-13 (-1027) (-33)))
+ (-4 *5 (-13 (-1027) (-33))) (-5 *2 (-110)) (-5 *1 (-1064 *4 *5)))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1063 *5 *6)) (-5 *4 (-1 (-110) *6 *6))
+ (-4 *5 (-13 (-1027) (-33))) (-4 *6 (-13 (-1027) (-33))) (-5 *2 (-110))
+ (-5 *1 (-1064 *5 *6)))))
+(((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4269)) (-4 *1 (-144 *2)) (-4 *2 (-1134))
+ (-4 *2 (-1027))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *3))
+ (-4 *3 (-1134))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-624 *3)) (-4 *3 (-1134))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-516)) (-4 *4 (-1027))
+ (-5 *1 (-685 *4))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *1 (-685 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1063 *3 *4)) (-4 *3 (-13 (-1027) (-33)))
+ (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1064 *3 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4269)) (-4 *1 (-218 *3))
+ (-4 *3 (-1027))))
+ ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-218 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1134)) (-4 *2 (-1027))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-264 *3)) (-4 *3 (-1134))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-568 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-516)) (-4 *4 (-1027))
+ (-5 *1 (-685 *4))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *1 (-685 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1063 *3 *4)) (-4 *3 (-13 (-1027) (-33)))
+ (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1064 *3 *4)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-594 (-1063 *4 *5))) (-5 *3 (-1 (-110) *5 *5))
+ (-4 *4 (-13 (-1027) (-33))) (-4 *5 (-13 (-1027) (-33)))
+ (-5 *1 (-1064 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-594 (-1063 *3 *4))) (-4 *3 (-13 (-1027) (-33)))
+ (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1064 *3 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110))))
((*1 *2 *1)
- (-12 (-4 *2 (-520)) (-5 *1 (-576 *2 *3)) (-4 *3 (-1153 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-655 *2)) (-4 *2 (-981))))
+ (-12 (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *2 (-110))
+ (-5 *1 (-926 *3 *4 *5 *6)) (-4 *6 (-891 *3 *5 *4))))
((*1 *2 *1)
- (-12 (-4 *2 (-981)) (-5 *1 (-682 *2 *3)) (-4 *3 (-793))
- (-4 *3 (-673))))
- ((*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-1063 *3 *4)) (-4 *3 (-13 (-1027) (-33)))
+ (-4 *4 (-13 (-1027) (-33))))))
+(((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-803))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-906))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-929))))
+ ((*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-1134))))
((*1 *2 *1)
- (-12 (-4 *1 (-910 *2 *3 *4)) (-4 *3 (-738)) (-4 *4 (-793))
- (-4 *2 (-981))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-994 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *2 (-793)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1055 (-207))) (-5 *3 (-595 (-244))) (-5 *1 (-1179))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1055 (-207))) (-5 *3 (-1078)) (-5 *1 (-1179))))
- ((*1 *1 *1) (-5 *1 (-1179))))
-(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-595 *8)) (-5 *4 (-110)) (-4 *8 (-994 *5 *6 *7))
- (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-5 *2 (-595 (-962 *5 *6 *7 *8))) (-5 *1 (-962 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-595 *8)) (-5 *4 (-110)) (-4 *8 (-994 *5 *6 *7))
- (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-5 *2 (-595 (-1066 *5 *6 *7 *8))) (-5 *1 (-1066 *5 *6 *7 *8)))))
+ (-12 (-4 *2 (-13 (-1027) (-33))) (-5 *1 (-1063 *2 *3))
+ (-4 *3 (-13 (-1027) (-33))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-431)) (-4 *4 (-793)) (-4 *5 (-739))
- (-5 *2 (-110)) (-5 *1 (-924 *3 *4 *5 *6))
- (-4 *6 (-888 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1060 *3 *4)) (-4 *3 (-13 (-1023) (-33)))
- (-4 *4 (-13 (-1023) (-33))))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-635 (-207))) (-5 *4 (-528)) (-5 *5 (-207))
- (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-59 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-85 BDYVAL))))
- (-5 *2 (-970)) (-5 *1 (-696))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-635 (-207))) (-5 *4 (-528)) (-5 *5 (-207))
- (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-59 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-85 BDYVAL))))
- (-5 *8 (-368)) (-5 *2 (-970)) (-5 *1 (-696)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-717)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-739)) (-4 *2 (-888 *4 *5 *6)) (-5 *1 (-428 *4 *5 *6 *2))
- (-4 *4 (-431)) (-4 *6 (-793)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1097 (-387 (-528)))) (-5 *2 (-387 (-528)))
- (-5 *1 (-174)))))
-(((*1 *1 *1) (-5 *1 (-110))) ((*1 *1 *1) (-4 *1 (-121)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-225)) (-5 *2 (-528))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-452)) (-5 *2 (-528))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-673)) (-5 *2 (-717))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1035)) (-5 *2 (-860)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-148)) (-5 *2 (-1182)) (-5 *1 (-1179)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-946 *3)) (-4 *3 (-1131)) (-4 *3 (-1023))
- (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-981)) (-4 *3 (-738))))
- ((*1 *2 *1) (-12 (-4 *1 (-362 *3 *2)) (-4 *3 (-981)) (-4 *2 (-1023))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-595 (-1095))) (-4 *4 (-162))
- (-4 *6 (-220 (-2138 *3) (-717)))
- (-14 *7
- (-1 (-110) (-2 (|:| -3108 *5) (|:| -2564 *6))
- (-2 (|:| -3108 *5) (|:| -2564 *6))))
- (-5 *2 (-660 *5 *6 *7)) (-5 *1 (-440 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-793)) (-4 *8 (-888 *4 *6 (-804 *3)))))
+ (-12 (-4 *2 (-13 (-1027) (-33))) (-5 *1 (-1063 *3 *2))
+ (-4 *3 (-13 (-1027) (-33))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *2 (-110))
+ (-5 *1 (-926 *3 *4 *5 *6)) (-4 *6 (-891 *3 *5 *4))))
((*1 *2 *1)
- (-12 (-4 *2 (-673)) (-4 *2 (-793)) (-5 *1 (-682 *3 *2))
- (-4 *3 (-981))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-1063 *3 *4)) (-4 *3 (-13 (-1027) (-33)))
+ (-4 *4 (-13 (-1027) (-33))))))
+(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-111)))
+ ((*1 *1 *1) (-5 *1 (-161))) ((*1 *1 *1) (-4 *1 (-515)))
+ ((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-984))))
((*1 *1 *1)
- (-12 (-4 *1 (-910 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-738))
- (-4 *4 (-793)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1078)) (-5 *3 (-720)) (-5 *1 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 *3)) (-4 *3 (-888 *5 *6 *7)) (-4 *5 (-431))
- (-4 *6 (-739)) (-4 *7 (-793))
- (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-428 *5 *6 *7 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4))
- (-4 *3 (-347 *4))))
- ((*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1064)) (-5 *2 (-134))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1064)) (-5 *2 (-137)))))
-(((*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-645))))
- ((*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-645)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1078)) (-5 *3 (-528)) (-5 *1 (-223)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *2)) (-5 *4 (-1 (-110) *2 *2)) (-5 *1 (-1132 *2))
- (-4 *2 (-1023))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 *2)) (-4 *2 (-1023)) (-4 *2 (-793))
- (-5 *1 (-1132 *2)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-207))
- (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-72 FCN)))) (-5 *2 (-970))
- (-5 *1 (-693)))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5))
- (-4 *5 (-13 (-343) (-140) (-972 (-528))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-387 *6)) (|:| |c| (-387 *6))
- (|:| -3956 *6)))
- (-5 *1 (-951 *5 *6)) (-5 *3 (-387 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-306 *2 *3)) (-4 *3 (-738)) (-4 *2 (-981))))
- ((*1 *2 *1) (-12 (-4 *1 (-410 *2)) (-4 *2 (-793)))))
-(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1023)) (-5 *1 (-844 *3)))))
+ (-12 (-5 *1 (-1063 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
+ (-4 *3 (-13 (-1027) (-33))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1063 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
+ (-4 *3 (-13 (-1027) (-33))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1063 *3 *2)) (-4 *3 (-13 (-1027) (-33)))
+ (-4 *2 (-13 (-1027) (-33))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1063 *3 *4)) (-4 *3 (-13 (-1027) (-33)))
+ (-4 *4 (-13 (-1027) (-33))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1063 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
+ (-4 *3 (-13 (-1027) (-33))))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-110) *5 *5)) (-5 *4 (-1 (-110) *6 *6))
+ (-4 *5 (-13 (-1027) (-33))) (-4 *6 (-13 (-1027) (-33))) (-5 *2 (-110))
+ (-5 *1 (-1063 *5 *6)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-110) *5 *5)) (-4 *5 (-13 (-1027) (-33))) (-5 *2 (-110))
+ (-5 *1 (-1063 *4 *5)) (-4 *4 (-13 (-1027) (-33))))))
+(((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3))))
+ ((*1 *1 *1) (-4 *1 (-1062))))
+(((*1 *2 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3))))
+ ((*1 *1 *1) (-4 *1 (-1062))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1062))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1062))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1062))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1062))))
+(((*1 *1 *1) (-5 *1 (-208))) ((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3))))
+ ((*1 *1 *1) (-4 *1 (-1062))) ((*1 *1 *1 *1) (-4 *1 (-1062))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-208)) (-5 *3 (-719)) (-5 *1 (-209))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-158 (-208))) (-5 *3 (-719)) (-5 *1 (-209))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1062))))
+(((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3))))
+ ((*1 *1 *1) (-4 *1 (-1062))))
+(((*1 *1 *1 *1) (-5 *1 (-208)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-359))) (-5 *1 (-978))))
+ ((*1 *1 *1 *1) (-4 *1 (-1062))))
+(((*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-992))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098)))
+ (-4 *4 (-368))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162)) (-4 *2 (-992))))
+ ((*1 *1 *1) (-4 *1 (-793)))
+ ((*1 *2 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-162)) (-4 *2 (-992))))
+ ((*1 *1 *1) (-4 *1 (-992))) ((*1 *1 *1) (-4 *1 (-1062))))
+(((*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1185)) (-5 *1 (-1061))))
+ ((*1 *2 *3) (-12 (-5 *3 (-594 (-805))) (-5 *2 (-1185)) (-5 *1 (-1061)))))
+(((*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1185)) (-5 *1 (-1061))))
+ ((*1 *2 *3) (-12 (-5 *3 (-594 (-805))) (-5 *2 (-1185)) (-5 *1 (-1061)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-61 *3)) (-14 *3 (-1098))))
+ ((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-67 *3)) (-14 *3 (-1098))))
+ ((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-70 *3)) (-14 *3 (-1098))))
+ ((*1 *2 *3) (-12 (-5 *3 (-369)) (-5 *2 (-1185)) (-5 *1 (-376))))
+ ((*1 *2 *1) (-12 (-4 *1 (-377)) (-5 *2 (-1185))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1081)) (-5 *4 (-805)) (-5 *2 (-1185)) (-5 *1 (-1061))))
+ ((*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1185)) (-5 *1 (-1061))))
+ ((*1 *2 *3) (-12 (-5 *3 (-594 (-805))) (-5 *2 (-1185)) (-5 *1 (-1061)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-594 (-1103))) (-5 *1 (-1060)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1087 3 *3)) (-4 *3 (-984)) (-4 *1 (-1059 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-984)))))
(((*1 *2)
- (-12 (-5 *2 (-896 (-1042))) (-5 *1 (-323 *3 *4)) (-14 *3 (-860))
- (-14 *4 (-860))))
+ (-12 (-4 *4 (-1138)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-388 *5)))
+ (-5 *2 (-719)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6))))
((*1 *2)
- (-12 (-5 *2 (-896 (-1042))) (-5 *1 (-324 *3 *4)) (-4 *3 (-329))
- (-14 *4 (-1091 *3))))
- ((*1 *2)
- (-12 (-5 *2 (-896 (-1042))) (-5 *1 (-325 *3 *4)) (-4 *3 (-329))
- (-14 *4 (-860)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1064)) (-5 *2 (-134))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1064)) (-5 *2 (-137)))))
-(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-767)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-860)) (-4 *5 (-520)) (-5 *2 (-635 *5))
- (-5 *1 (-894 *5 *3)) (-4 *3 (-605 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-329))
- (-5 *2 (-595 (-2 (|:| |deg| (-717)) (|:| -3891 *3))))
- (-5 *1 (-199 *4 *3)) (-4 *3 (-1153 *4)))))
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4))) (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-719)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-719)))))
+(((*1 *2 *1) (-12 (-4 *3 (-984)) (-5 *2 (-594 *1)) (-4 *1 (-1059 *3)))))
+(((*1 *2 *1) (-12 (-4 *3 (-984)) (-5 *2 (-594 *1)) (-4 *1 (-1059 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-594 (-884 *4))) (-4 *1 (-1059 *4)) (-4 *4 (-984))
+ (-5 *2 (-719)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-110)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-818 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1134))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-594 (-884 *3)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 (-884 *3))) (-4 *3 (-984)) (-4 *1 (-1059 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-594 (-594 *3))) (-4 *1 (-1059 *3)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-594 (-884 *3))) (-4 *1 (-1059 *3)) (-4 *3 (-984)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-594 (-884 *3)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 (-884 *3))) (-4 *3 (-984)) (-4 *1 (-1059 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-594 (-594 *3))) (-4 *1 (-1059 *3)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-594 (-884 *3))) (-4 *1 (-1059 *3)) (-4 *3 (-984)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-594 (-884 *3)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 (-884 *3))) (-4 *3 (-984)) (-4 *1 (-1059 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-594 (-594 *3))) (-4 *1 (-1059 *3)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-594 (-884 *3))) (-4 *1 (-1059 *3)) (-4 *3 (-984)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-110)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-999 *3 *4 *5 *6)) (-4 *3 (-431)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-999 *4 *5 *6 *3)) (-4 *4 (-431)) (-4 *5 (-739))
- (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-110)))))
-(((*1 *1 *1) (-4 *1 (-581)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-582 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938) (-1117))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-275 (-387 (-891 *5)))) (-5 *4 (-1095))
- (-4 *5 (-13 (-288) (-793) (-140)))
- (-5 *2 (-1085 (-595 (-296 *5)) (-595 (-275 (-296 *5)))))
- (-5 *1 (-1051 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-387 (-891 *5))) (-5 *4 (-1095))
- (-4 *5 (-13 (-288) (-793) (-140)))
- (-5 *2 (-1085 (-595 (-296 *5)) (-595 (-275 (-296 *5)))))
- (-5 *1 (-1051 *5)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-595
- (-2
- (|:| -2927
- (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207)))
- (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207))
- (|:| |relerr| (-207))))
- (|:| -1780
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1076 (-207)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2931
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-523)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)))))
+ (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-594 (-594 (-884 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-594 (-594 (-884 *4)))) (-5 *3 (-110)) (-4 *4 (-984))
+ (-4 *1 (-1059 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-594 (-594 (-884 *3)))) (-4 *3 (-984)) (-4 *1 (-1059 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-594 (-594 (-594 *4)))) (-5 *3 (-110)) (-4 *1 (-1059 *4))
+ (-4 *4 (-984))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-594 (-594 (-884 *4)))) (-5 *3 (-110)) (-4 *1 (-1059 *4))
+ (-4 *4 (-984))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-594 (-594 (-594 *5)))) (-5 *3 (-594 (-161))) (-5 *4 (-161))
+ (-4 *1 (-1059 *5)) (-4 *5 (-984))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-594 (-594 (-884 *5)))) (-5 *3 (-594 (-161))) (-5 *4 (-161))
+ (-4 *1 (-1059 *5)) (-4 *5 (-984)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-594 (-884 *3))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-306 *3 *4)) (-4 *3 (-981)) (-4 *4 (-738))
- (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-793)) (-5 *2 (-110)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-595 (-717))) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860))
- (-4 *4 (-981)))))
-(((*1 *1 *2) (-12 (-5 *2 (-171)) (-5 *1 (-230)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095)) (-4 *5 (-343)) (-5 *2 (-1076 (-1076 (-891 *5))))
- (-5 *1 (-1185 *5)) (-5 *4 (-1076 (-891 *5))))))
+ (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-594 (-594 (-594 (-719))))))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1023)) (-5 *2 (-110)) (-5 *1 (-824 *3 *4 *5))
- (-4 *3 (-1023)) (-4 *5 (-615 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-828 *3 *4)) (-4 *3 (-1023))
- (-4 *4 (-1023)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1078)) (-5 *5 (-635 (-207))) (-5 *6 (-207))
- (-5 *7 (-635 (-528))) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-699)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-595 (-528))) (-5 *1 (-49 *3 *4)) (-4 *3 (-981))
- (-14 *4 (-595 (-1095)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
- ((*1 *1 *1) (-4 *1 (-265)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095)))
- (-14 *3 (-595 (-1095))) (-4 *4 (-367))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-613 *3 *4)) (-4 *3 (-793))
- (-4 *4 (-13 (-162) (-664 (-387 (-528))))) (-5 *1 (-579 *3 *4 *5))
- (-14 *5 (-860))))
+ (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984))
+ (-5 *2 (-594 (-594 (-594 (-884 *3))))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-594 (-594 (-161)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984)) (-5 *2 (-594 (-161))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1059 *3)) (-4 *3 (-984))
+ (-5 *2
+ (-2 (|:| -4129 (-719)) (|:| |curves| (-719)) (|:| |polygons| (-719))
+ (|:| |constructs| (-719)))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-594 (-2 (|:| -4011 (-1092 *6)) (|:| -2427 (-516)))))
+ (-4 *6 (-289)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
+ (-5 *1 (-691 *4 *5 *6 *7)) (-4 *7 (-891 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-984)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1134)) (-5 *1 (-1057 *4 *2))
+ (-4 *2 (-13 (-563 (-516) *4) (-10 -7 (-6 -4269) (-6 -4270))))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
+ (-12 (-4 *3 (-795)) (-4 *3 (-1134)) (-5 *1 (-1057 *3 *2))
+ (-4 *2 (-13 (-563 (-516) *3) (-10 -7 (-6 -4269) (-6 -4270)))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1134)) (-5 *1 (-1057 *4 *2))
+ (-4 *2 (-13 (-563 (-516) *4) (-10 -7 (-6 -4269) (-6 -4270))))))
((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-717)) (-4 *4 (-13 (-981) (-664 (-387 (-528)))))
- (-4 *5 (-793)) (-5 *1 (-1191 *4 *5 *2)) (-4 *2 (-1196 *5 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-717)) (-5 *1 (-1195 *3 *4))
- (-4 *4 (-664 (-387 (-528)))) (-4 *3 (-793)) (-4 *4 (-162)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |mval| (-635 *3)) (|:| |invmval| (-635 *3))
- (|:| |genIdeal| (-480 *3 *4 *5 *6))))
- (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *1 (-480 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1091 *3)) (-4 *3 (-329)) (-5 *1 (-337 *3)))))
+ (-12 (-4 *3 (-795)) (-4 *3 (-1134)) (-5 *1 (-1057 *3 *2))
+ (-4 *2 (-13 (-563 (-516) *3) (-10 -7 (-6 -4269) (-6 -4270)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1179 *4)) (-4 *4 (-984)) (-4 *2 (-1155 *4))
+ (-5 *1 (-424 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-388 (-1092 (-295 *5)))) (-5 *3 (-1179 (-295 *5)))
+ (-5 *4 (-516)) (-4 *5 (-13 (-523) (-795))) (-5 *1 (-1055 *5)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-388 (-1092 (-295 *3)))) (-4 *3 (-13 (-523) (-795)))
+ (-5 *1 (-1055 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-387 (-528))))
- (-5 *2
- (-595
- (-2 (|:| |outval| *4) (|:| |outmult| (-528))
- (|:| |outvect| (-595 (-635 *4))))))
- (-5 *1 (-725 *4)) (-4 *4 (-13 (-343) (-791))))))
-(((*1 *1 *1) (-4 *1 (-225)))
- ((*1 *1 *1)
- (-12 (-4 *2 (-162)) (-5 *1 (-270 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1153 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (-1463 (-12 (-5 *1 (-275 *2)) (-4 *2 (-343)) (-4 *2 (-1131)))
- (-12 (-5 *1 (-275 *2)) (-4 *2 (-452)) (-4 *2 (-1131)))))
- ((*1 *1 *1) (-4 *1 (-452)))
- ((*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-329)) (-5 *1 (-498 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-662 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162)) (-4 *2 (-343)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-207) (-207) (-207)))
- (-5 *4 (-3 (-1 (-207) (-207) (-207) (-207)) "undefined"))
- (-5 *5 (-1018 (-207))) (-5 *6 (-595 (-244))) (-5 *2 (-1055 (-207)))
- (-5 *1 (-643))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-882 (-207)) (-207) (-207))) (-5 *4 (-1018 (-207)))
- (-5 *5 (-595 (-244))) (-5 *2 (-1055 (-207))) (-5 *1 (-643))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1055 (-207))) (-5 *3 (-1 (-882 (-207)) (-207) (-207)))
- (-5 *4 (-1018 (-207))) (-5 *5 (-595 (-244))) (-5 *1 (-643)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1199 *3 *4)) (-4 *1 (-354 *3 *4)) (-4 *3 (-793))
- (-4 *4 (-162))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-366 *2)) (-4 *2 (-1023))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-765 *2)) (-4 *2 (-793))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-765 *2)) (-4 *2 (-793))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1192 *2 *3)) (-4 *2 (-793)) (-4 *3 (-981))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-765 *3)) (-4 *1 (-1192 *3 *4)) (-4 *3 (-793))
- (-4 *4 (-981))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1192 *2 *3)) (-4 *2 (-793)) (-4 *3 (-981)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-913 *3 *4 *2 *5)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *2 (-793)) (-4 *5 (-994 *3 *4 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-770)) (-5 *1 (-771)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-981))
- (-4 *2 (-13 (-384) (-972 *4) (-343) (-1117) (-265)))
- (-5 *1 (-422 *4 *3 *2)) (-4 *3 (-1153 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-1153 *3)) (-4 *3 (-981)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-717)) (-4 *5 (-520))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-907 *5 *3)) (-4 *3 (-1153 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-110)) (-5 *3 (-595 (-244))) (-5 *1 (-242))))
- ((*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-244)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4))
- (-4 *3 (-347 *4))))
- ((*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+ (-12 (-5 *3 (-275 (-388 (-887 *5)))) (-5 *4 (-1098))
+ (-4 *5 (-13 (-289) (-795) (-140)))
+ (-5 *2 (-1088 (-594 (-295 *5)) (-594 (-275 (-295 *5)))))
+ (-5 *1 (-1054 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-887 *5))) (-5 *4 (-1098))
+ (-4 *5 (-13 (-289) (-795) (-140)))
+ (-5 *2 (-1088 (-594 (-295 *5)) (-594 (-275 (-295 *5)))))
+ (-5 *1 (-1054 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-860)) (-5 *2 (-1091 *3)) (-5 *1 (-1106 *3))
- (-4 *3 (-343)))))
-(((*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1180))))
- ((*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1180)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207)))
- (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207))))
- (|:| |ub| (-595 (-786 (-207))))))
- (-5 *1 (-248)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1095)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-648 *4 *5 *6 *7))
- (-4 *4 (-570 (-504))) (-4 *5 (-1131)) (-4 *6 (-1131))
- (-4 *7 (-1131)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-770)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1023)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-629 *4 *5)) (-4 *4 (-1023))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-793)) (-5 *1 (-868 *3 *2)) (-4 *2 (-410 *3))))
+ (-12 (-5 *3 (-388 (-887 *5))) (-5 *4 (-1098))
+ (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-594 (-295 *5)))
+ (-5 *1 (-1054 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-388 (-887 *5)))) (-5 *4 (-594 (-1098)))
+ (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-594 (-594 (-295 *5))))
+ (-5 *1 (-1054 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-887 *5))) (-5 *4 (-1098))
+ (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-594 (-275 (-295 *5))))
+ (-5 *1 (-1054 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1095)) (-5 *2 (-296 (-528))) (-5 *1 (-869))))
- ((*1 *2 *1) (-12 (-4 *1 (-1192 *3 *2)) (-4 *3 (-793)) (-4 *2 (-981))))
- ((*1 *2 *1) (-12 (-4 *2 (-981)) (-5 *1 (-1198 *2 *3)) (-4 *3 (-789)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-207)) (-5 *4 (-528))
- (-5 *5 (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305)))) (-5 *2 (-970))
- (-5 *1 (-693)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-717)) (-4 *6 (-1023)) (-4 *3 (-839 *6))
- (-5 *2 (-635 *3)) (-5 *1 (-638 *6 *3 *7 *4)) (-4 *7 (-353 *3))
- (-4 *4 (-13 (-353 *6) (-10 -7 (-6 -4264)))))))
-(((*1 *1) (-5 *1 (-134))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1095))
- (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-295 *4 *5))
- (-4 *5 (-13 (-27) (-1117) (-410 *4)))))
+ (-12 (-5 *3 (-388 (-887 *4))) (-4 *4 (-13 (-289) (-795) (-140)))
+ (-5 *2 (-594 (-275 (-295 *4)))) (-5 *1 (-1054 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-275 (-388 (-887 *5)))) (-5 *4 (-1098))
+ (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-594 (-275 (-295 *5))))
+ (-5 *1 (-1054 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-295 *4 *3))
- (-4 *3 (-13 (-27) (-1117) (-410 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-387 (-528)))
- (-4 *5 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-295 *5 *3))
- (-4 *3 (-13 (-27) (-1117) (-410 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-275 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *5)))
- (-4 *5 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-295 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-275 *3)) (-5 *5 (-387 (-528)))
- (-4 *3 (-13 (-27) (-1117) (-410 *6)))
- (-4 *6 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-295 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-387 (-528)))) (-5 *4 (-275 *8))
- (-5 *5 (-1144 (-387 (-528)))) (-5 *6 (-387 (-528)))
- (-4 *8 (-13 (-27) (-1117) (-410 *7)))
- (-4 *7 (-13 (-520) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-438 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1095)) (-5 *5 (-275 *3)) (-5 *6 (-1144 (-387 (-528))))
- (-5 *7 (-387 (-528))) (-4 *3 (-13 (-27) (-1117) (-410 *8)))
- (-4 *8 (-13 (-520) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-438 *8 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-387 (-528))) (-4 *4 (-981)) (-4 *1 (-1160 *4 *3))
- (-4 *3 (-1137 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-717)) (-5 *1 (-424 *3)) (-4 *3 (-384)) (-4 *3 (-981))))
- ((*1 *2)
- (-12 (-5 *2 (-717)) (-5 *1 (-424 *3)) (-4 *3 (-384)) (-4 *3 (-981)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-163 *3)) (-4 *3 (-288)))))
-(((*1 *2)
- (-12 (-4 *3 (-520)) (-5 *2 (-595 (-635 *3))) (-5 *1 (-42 *3 *4))
- (-4 *4 (-397 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-622 *3)) (-4 *3 (-1131)) (-5 *2 (-110)))))
+ (-12 (-5 *3 (-275 (-388 (-887 *4)))) (-4 *4 (-13 (-289) (-795) (-140)))
+ (-5 *2 (-594 (-275 (-295 *4)))) (-5 *1 (-1054 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-388 (-887 *5)))) (-5 *4 (-594 (-1098)))
+ (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-594 (-594 (-275 (-295 *5)))))
+ (-5 *1 (-1054 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-388 (-887 *4)))) (-4 *4 (-13 (-289) (-795) (-140)))
+ (-5 *2 (-594 (-594 (-275 (-295 *4))))) (-5 *1 (-1054 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-275 (-388 (-887 *5))))) (-5 *4 (-594 (-1098)))
+ (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-594 (-594 (-275 (-295 *5)))))
+ (-5 *1 (-1054 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-275 (-388 (-887 *4)))))
+ (-4 *4 (-13 (-289) (-795) (-140))) (-5 *2 (-594 (-594 (-275 (-295 *4)))))
+ (-5 *1 (-1054 *4)))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516)))))))
+ (-5 *1 (-1053 *3 *2)) (-4 *3 (-1155 *2)))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516)))))))
+ (-5 *1 (-1053 *3 *2)) (-4 *3 (-1155 *2)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516)))))))
+ (-5 *1 (-1053 *3 *2)) (-4 *3 (-1155 *2)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516)))))))
+ (-5 *1 (-1053 *3 *2)) (-4 *3 (-1155 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516)))))))
+ (-5 *2 (-594 *4)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-1155 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516)))))))
+ (-5 *2 (-594 *3)) (-5 *1 (-1053 *4 *3)) (-4 *4 (-1155 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516)))))))
+ (-5 *2 (-594 *4)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-1155 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516)))))))
+ (-5 *2 (-594 *3)) (-5 *1 (-1053 *4 *3)) (-4 *4 (-1155 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516)))))))
+ (-5 *2 (-594 *4)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-1155 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516)))))))
+ (-5 *2 (-594 *3)) (-5 *1 (-1053 *4 *3)) (-4 *4 (-1155 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516)))))))
+ (-5 *2 (-594 *4)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-1155 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516)))))))
+ (-5 *2 (-594 *3)) (-5 *1 (-1053 *4 *3)) (-4 *4 (-1155 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *8)) (-4 *8 (-888 *5 *7 *6))
- (-4 *5 (-13 (-288) (-140))) (-4 *6 (-13 (-793) (-570 (-1095))))
- (-4 *7 (-739))
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516)))))))
(-5 *2
- (-595
- (-2 (|:| -3090 (-717))
- (|:| |eqns|
- (-595
- (-2 (|:| |det| *8) (|:| |rows| (-595 (-528)))
- (|:| |cols| (-595 (-528))))))
- (|:| |fgb| (-595 *8)))))
- (-5 *1 (-863 *5 *6 *7 *8)) (-5 *4 (-717)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-595 (-528))) (-5 *2 (-1097 (-387 (-528))))
- (-5 *1 (-174)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *1 (-743 *2)) (-4 *2 (-162))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-935 *3)) (-4 *3 (-162)) (-5 *1 (-745 *3)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4265)) (-4 *1 (-1165 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1095))
- (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-295 *4 *5))
- (-4 *5 (-13 (-27) (-1117) (-410 *4)))))
+ (-2 (|:| |solns| (-594 *5))
+ (|:| |maps| (-594 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1053 *3 *5)) (-4 *3 (-1155 *5)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-344)) (-4 *5 (-13 (-353 *4) (-10 -7 (-6 -4270))))
+ (-4 *2 (-13 (-353 *4) (-10 -7 (-6 -4270)))) (-5 *1 (-618 *4 *5 *2 *3))
+ (-4 *3 (-634 *4 *5 *2))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-5 *2 (-1179 *4)) (-5 *3 (-637 *4)) (-4 *4 (-344))
+ (-5 *1 (-619 *4))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-594 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-344))
+ (-5 *1 (-762 *2 *3)) (-4 *3 (-609 *2))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-295 *4 *3))
- (-4 *3 (-13 (-27) (-1117) (-410 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-528)) (-4 *5 (-13 (-431) (-793) (-972 *4) (-591 *4)))
- (-5 *2 (-51)) (-5 *1 (-295 *5 *3))
- (-4 *3 (-13 (-27) (-1117) (-410 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-275 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *5)))
- (-4 *5 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-295 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-275 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *6)))
- (-4 *6 (-13 (-431) (-793) (-972 *5) (-591 *5))) (-5 *5 (-528))
- (-5 *2 (-51)) (-5 *1 (-295 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-528))) (-5 *4 (-275 *7)) (-5 *5 (-1144 (-528)))
- (-4 *7 (-13 (-27) (-1117) (-410 *6)))
- (-4 *6 (-13 (-520) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-438 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1095)) (-5 *5 (-275 *3)) (-5 *6 (-1144 (-528)))
- (-4 *3 (-13 (-27) (-1117) (-410 *7)))
- (-4 *7 (-13 (-520) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-438 *7 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-528)) (-4 *4 (-981)) (-4 *1 (-1139 *4 *3))
- (-4 *3 (-1168 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-981)) (-4 *2 (-1137 *3)))))
+ (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-516)))))))
+ (-5 *1 (-1053 *3 *2)) (-4 *3 (-1155 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *5)) (-5 *4 (-860)) (-4 *5 (-793))
- (-5 *2 (-595 (-620 *5))) (-5 *1 (-620 *5)))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-595 (-1095))) (-4 *4 (-162))
- (-4 *5 (-220 (-2138 *3) (-717)))
- (-14 *6
- (-1 (-110) (-2 (|:| -3108 *2) (|:| -2564 *5))
- (-2 (|:| -3108 *2) (|:| -2564 *5))))
- (-4 *2 (-793)) (-5 *1 (-440 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-888 *4 *5 (-804 *3))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-1095)))))
-(((*1 *1 *1 *1) (-4 *1 (-121))) ((*1 *1 *1 *1) (-5 *1 (-802)))
- ((*1 *1 *1 *1) (-4 *1 (-905))))
+ (-12 (-5 *3 (-594 *6)) (-5 *4 (-594 (-1076 *7))) (-4 *6 (-795))
+ (-4 *7 (-891 *5 (-502 *6) *6)) (-4 *5 (-984)) (-5 *2 (-1 (-1076 *7) *7))
+ (-5 *1 (-1051 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-359)) (-5 *1 (-94))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-359)) (-5 *1 (-94)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-702)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-347 *2)) (-4 *2 (-520)) (-4 *2 (-162)))))
+ (-12 (-4 *5 (-289)) (-4 *6 (-353 *5)) (-4 *4 (-353 *5))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2071 (-594 *4))))
+ (-5 *1 (-1049 *5 *6 *4 *3)) (-4 *3 (-634 *5 *6 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-289)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4))
+ (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1049 *4 *5 *6 *3)) (-4 *3 (-634 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-343)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3))
- (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-633 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4))
- (-4 *7 (-929 *4)) (-4 *2 (-633 *7 *8 *9))
- (-5 *1 (-496 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-633 *4 *5 *6))
- (-4 *8 (-353 *7)) (-4 *9 (-353 *7))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2))
- (-4 *4 (-353 *2)) (-4 *2 (-288))))
+ (-12 (-4 *3 (-289)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3))
+ (-5 *1 (-1049 *3 *4 *5 *2)) (-4 *2 (-634 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-289)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1049 *4 *5 *6 *3))
+ (-4 *3 (-634 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1092 (-516))) (-5 *1 (-883)) (-5 *3 (-516))))
((*1 *2 *2)
- (-12 (-4 *3 (-288)) (-4 *3 (-162)) (-4 *4 (-353 *3))
- (-4 *5 (-353 *3)) (-5 *1 (-634 *3 *4 *5 *2))
- (-4 *2 (-633 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-288)) (-5 *1 (-646 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4 *5 *6)) (-4 *4 (-981))
- (-4 *5 (-220 *3 *4)) (-4 *6 (-220 *2 *4)) (-4 *4 (-288)))))
+ (-12 (-4 *3 (-289)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3))
+ (-5 *1 (-1049 *3 *4 *5 *2)) (-4 *2 (-634 *3 *4 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-719)) (-4 *3 (-984)) (-4 *1 (-634 *3 *4 *5)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *2 (-984)) (-4 *1 (-1048 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2))
+ (-4 *5 (-221 *3 *2)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-594 *1)) (-4 *3 (-984)) (-4 *1 (-634 *3 *4 *5))
+ (-4 *4 (-353 *3)) (-4 *5 (-353 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-594 *3)) (-4 *3 (-984)) (-4 *1 (-634 *3 *4 *5))
+ (-4 *4 (-353 *3)) (-4 *5 (-353 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-984)) (-5 *1 (-637 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-594 *4)) (-4 *4 (-984)) (-4 *1 (-1048 *3 *4 *5 *6))
+ (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *3 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023)) (-4 *4 (-1023))
- (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-110)))))
+ (-12 (-4 *1 (-1048 *3 *4 *2 *5)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4))
+ (-4 *2 (-221 *3 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-860)) (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349))))
+ ((*1 *2 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-344))))
+ ((*1 *2 *1) (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1155 *2)) (-4 *2 (-162))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1179 *4)) (-5 *3 (-860)) (-4 *4 (-331)) (-5 *1 (-500 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1048 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2))
+ (-4 *2 (-984)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 *2)) (-4 *4 (-1155 *2))
+ (-4 *2 (-13 (-289) (-10 -8 (-15 -4245 ((-386 $) $)))))
+ (-5 *1 (-477 *2 *4 *5)) (-4 *5 (-391 *2 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1048 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2))
+ (-4 *2 (-984)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1095))
- (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-295 *4 *5))
- (-4 *5 (-13 (-27) (-1117) (-410 *4)))))
+ (-12 (-4 *4 (-353 *2)) (-4 *5 (-353 *2)) (-4 *2 (-344))
+ (-5 *1 (-497 *2 *4 *5 *3)) (-4 *3 (-634 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2))
+ (|has| *2 (-6 (-4271 "*"))) (-4 *2 (-984))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-295 *4 *3))
- (-4 *3 (-13 (-27) (-1117) (-410 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-717))
- (-4 *5 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-295 *5 *3))
- (-4 *3 (-13 (-27) (-1117) (-410 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-275 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *5)))
- (-4 *5 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-295 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-275 *3)) (-5 *5 (-717))
- (-4 *3 (-13 (-27) (-1117) (-410 *6)))
- (-4 *6 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-295 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-528))) (-5 *4 (-275 *6))
- (-4 *6 (-13 (-27) (-1117) (-410 *5)))
- (-4 *5 (-13 (-520) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-438 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1095)) (-5 *5 (-275 *3))
- (-4 *3 (-13 (-27) (-1117) (-410 *6)))
- (-4 *6 (-13 (-520) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-438 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-528))) (-5 *4 (-275 *7)) (-5 *5 (-1144 (-717)))
- (-4 *7 (-13 (-27) (-1117) (-410 *6)))
- (-4 *6 (-13 (-520) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-438 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1095)) (-5 *5 (-275 *3)) (-5 *6 (-1144 (-717)))
- (-4 *3 (-13 (-27) (-1117) (-410 *7)))
- (-4 *7 (-13 (-520) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-438 *7 *3))))
+ (-12 (-4 *4 (-353 *2)) (-4 *5 (-353 *2)) (-4 *2 (-162))
+ (-5 *1 (-636 *2 *4 *5 *3)) (-4 *3 (-634 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-1139 *3 *2)) (-4 *3 (-981)) (-4 *2 (-1168 *3)))))
-(((*1 *2 *3 *3 *1)
- (|partial| -12 (-5 *3 (-1095)) (-5 *2 (-1027)) (-5 *1 (-272)))))
-(((*1 *1 *2) (-12 (-5 *1 (-209 *2)) (-4 *2 (-13 (-343) (-1117))))))
-(((*1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-802)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-513)) (-5 *2 (-110)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
+ (-12 (-4 *1 (-1048 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2))
+ (|has| *2 (-6 (-4271 "*"))) (-4 *2 (-984)))))
(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4264)) (-4 *1 (-467 *3)) (-4 *3 (-1131))
- (-5 *2 (-595 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-595 *3)) (-5 *1 (-684 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
+ (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *3 (-353 *2)) (-4 *4 (-353 *2))
+ (|has| *2 (-6 (-4271 "*"))) (-4 *2 (-984))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-353 *2)) (-4 *5 (-353 *2)) (-4 *2 (-162))
+ (-5 *1 (-636 *2 *4 *5 *3)) (-4 *3 (-634 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1048 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2))
+ (|has| *2 (-6 (-4271 "*"))) (-4 *2 (-984)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-831 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-1134)) (-5 *2 (-719)))))
+(((*1 *1 *1 *1) (-4 *1 (-613))) ((*1 *1 *1 *1) (-5 *1 (-1045))))
+(((*1 *1 *1 *1) (-4 *1 (-613))) ((*1 *1 *1 *1) (-5 *1 (-1045))))
+(((*1 *1 *1) (-4 *1 (-613))) ((*1 *1 *1) (-5 *1 (-1045))))
+(((*1 *1)
+ (-12 (-4 *1 (-385)) (-3595 (|has| *1 (-6 -4260)))
+ (-3595 (|has| *1 (-6 -4252)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-407 *2)) (-4 *2 (-1027)) (-4 *2 (-795))))
+ ((*1 *1 *1 *1) (-4 *1 (-795)))
+ ((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-795)))) ((*1 *1) (-5 *1 (-1045))))
+(((*1 *1)
+ (-12 (-4 *1 (-385)) (-3595 (|has| *1 (-6 -4260)))
+ (-3595 (|has| *1 (-6 -4252)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-407 *2)) (-4 *2 (-1027)) (-4 *2 (-795))))
+ ((*1 *2 *1) (-12 (-4 *1 (-778 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1 *1) (-4 *1 (-795))) ((*1 *1) (-5 *1 (-1045))))
+(((*1 *1 *1) (-4 *1 (-121))) ((*1 *1 *1) (-5 *1 (-805)))
+ ((*1 *1 *1) (-4 *1 (-908))) ((*1 *1 *1) (-5 *1 (-1045))))
+(((*1 *1 *1 *1) (-5 *1 (-110))) ((*1 *1 *1 *1) (-4 *1 (-121)))
+ ((*1 *1 *1 *1) (-5 *1 (-1045))))
+(((*1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-516))))
+ ((*1 *1 *1) (-5 *1 (-1045))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-516))))
+ ((*1 *1 *1 *1) (-5 *1 (-1045))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-516))))
+ ((*1 *1 *1 *1) (-5 *1 (-1045))))
+(((*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1041)))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-171))) (-5 *1 (-1041)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-432)) (-4 *4 (-768)) (-14 *5 (-1098))
+ (-5 *2 (-516)) (-5 *1 (-1040 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-432)) (-4 *4 (-768)) (-14 *5 (-1098))
+ (-5 *2 (-516)) (-5 *1 (-1040 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-768)) (-14 *5 (-1098)) (-5 *2 (-516))
+ (-5 *1 (-1040 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-768)) (-14 *5 (-1098)) (-5 *2 (-516))
+ (-5 *1 (-1040 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-768)) (-14 *5 (-1098)) (-5 *2 (-594 *4))
+ (-5 *1 (-1040 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-768)) (-14 *5 (-1098)) (-5 *2 (-594 (-1148 *5 *4)))
+ (-5 *1 (-1040 *4 *5)) (-5 *3 (-1148 *5 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-768)) (-14 *5 (-1098)) (-5 *2 (-594 (-1148 *5 *4)))
+ (-5 *1 (-1040 *4 *5)) (-5 *3 (-1148 *5 *4)))))
+(((*1 *1 *1) (-5 *1 (-110))) ((*1 *1 *1) (-4 *1 (-121)))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-226)) (-5 *2 (-516))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-453)) (-5 *2 (-516))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-675)) (-5 *2 (-719))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1038)) (-5 *2 (-860)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-1036)) (-5 *3 (-516)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-1036)) (-5 *3 (-516)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-1036)) (-5 *3 (-516)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-1036)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1179 (-516))) (-5 *3 (-516)) (-5 *1 (-1036))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1179 (-516))) (-5 *3 (-594 (-516))) (-5 *4 (-516))
+ (-5 *1 (-1036)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-594 (-516))) (-5 *3 (-110)) (-5 *1 (-1036)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-637 (-516))) (-5 *3 (-594 (-516))) (-5 *1 (-1036)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-594 (-516))) (-5 *2 (-637 (-516))) (-5 *1 (-1036)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-516))) (-5 *2 (-594 (-637 (-516)))) (-5 *1 (-1036)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-594 (-516))) (-5 *3 (-637 (-516))) (-5 *1 (-1036)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-594 (-516))) (-5 *2 (-637 (-516))) (-5 *1 (-1036)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *8)) (-5 *4 (-595 *9)) (-4 *8 (-994 *5 *6 *7))
- (-4 *9 (-999 *5 *6 *7 *8)) (-4 *5 (-431)) (-4 *6 (-739))
- (-4 *7 (-793)) (-5 *2 (-717)) (-5 *1 (-997 *5 *6 *7 *8 *9))))
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
+ (-5 *2 (-594 (-2 (|:| |val| *3) (|:| -1610 *4))))
+ (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
+ (-5 *2 (-594 *4)) (-5 *1 (-1034 *5 *6 *7 *3 *4))
+ (-4 *4 (-1002 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
+ (-5 *2 (-110)) (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *8)) (-5 *4 (-595 *9)) (-4 *8 (-994 *5 *6 *7))
- (-4 *9 (-1032 *5 *6 *7 *8)) (-4 *5 (-431)) (-4 *6 (-739))
- (-4 *7 (-793)) (-5 *2 (-717)) (-5 *1 (-1065 *5 *6 *7 *8 *9)))))
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
+ (-5 *2 (-594 (-2 (|:| |val| (-110)) (|:| -1610 *4))))
+ (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-595 *6))
- (-5 *1 (-480 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-595 (-844 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1023)))))
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
+ (-5 *2 (-594 *4)) (-5 *1 (-1034 *5 *6 *7 *3 *4))
+ (-4 *4 (-1002 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1182)) (-5 *1 (-1058))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 (-802))) (-5 *2 (-1182)) (-5 *1 (-1058)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-717)) (-4 *2 (-1023))
- (-5 *1 (-625 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-813)))))
-(((*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-749)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-860)) (-5 *1 (-1024 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1095)) (-5 *4 (-891 (-528))) (-5 *2 (-310))
- (-5 *1 (-312))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1095)) (-5 *4 (-1016 (-891 (-528)))) (-5 *2 (-310))
- (-5 *1 (-312))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-717)) (-5 *1 (-623 *3)) (-4 *3 (-981)) (-4 *3 (-1023)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-717)) (-5 *2 (-1150 *5 *4)) (-5 *1 (-1093 *4 *5 *6))
- (-4 *4 (-981)) (-14 *5 (-1095)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-717)) (-5 *2 (-1150 *5 *4)) (-5 *1 (-1169 *4 *5 *6))
- (-4 *4 (-981)) (-14 *5 (-1095)) (-14 *6 *4))))
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
+ (-5 *2 (-594 (-2 (|:| |val| (-110)) (|:| -1610 *4))))
+ (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
+ (-5 *2 (-594 *4)) (-5 *1 (-1034 *5 *6 *7 *3 *4))
+ (-4 *4 (-1002 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
+ (-5 *2 (-594 (-2 (|:| |val| (-110)) (|:| -1610 *4))))
+ (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
+ (-5 *2 (-594 (-2 (|:| |val| *3) (|:| -1610 *4))))
+ (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
+ (-5 *2 (-594 (-2 (|:| |val| *3) (|:| -1610 *4))))
+ (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
+ (-4 *3 (-997 *6 *7 *8)) (-5 *2 (-594 (-2 (|:| |val| *3) (|:| -1610 *4))))
+ (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1002 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-594 (-2 (|:| |val| (-594 *8)) (|:| -1610 *9)))) (-5 *5 (-110))
+ (-4 *8 (-997 *6 *7 *4)) (-4 *9 (-1002 *6 *7 *4 *8)) (-4 *6 (-432))
+ (-4 *7 (-741)) (-4 *4 (-795))
+ (-5 *2 (-594 (-2 (|:| |val| *8) (|:| -1610 *9))))
+ (-5 *1 (-1034 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
+ (-5 *2 (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4))))
+ (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))))
(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-1091 (-891 *4))) (-5 *1 (-396 *3 *4))
- (-4 *3 (-397 *4))))
+ (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5))
+ (-5 *2 (-1185)) (-5 *1 (-1003 *3 *4 *5 *6 *7)) (-4 *7 (-1002 *3 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *1 (-397 *3)) (-4 *3 (-162)) (-4 *3 (-343))
- (-5 *2 (-1091 (-891 *3)))))
+ (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5))
+ (-5 *2 (-1185)) (-5 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *7 (-1002 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1081)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1003 *4 *5 *6 *7 *8))
+ (-4 *8 (-1002 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1081)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1034 *4 *5 *6 *7 *8))
+ (-4 *8 (-1002 *4 *5 *6 *7)))))
+(((*1 *2)
+ (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5))
+ (-5 *2 (-1185)) (-5 *1 (-1003 *3 *4 *5 *6 *7)) (-4 *7 (-1002 *3 *4 *5 *6))))
((*1 *2)
- (-12 (-5 *2 (-1091 (-387 (-891 *3)))) (-5 *1 (-432 *3 *4 *5 *6))
- (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-717))
- (-4 *3 (-13 (-288) (-10 -8 (-15 -2705 ((-398 $) $)))))
- (-4 *4 (-1153 *3)) (-5 *1 (-475 *3 *4 *5)) (-4 *5 (-389 *3 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023)) (-4 *4 (-1023))
- (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-5 *2 (-595 (-106))) (-5 *1 (-164)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-595 *2) *2 *2 *2)) (-4 *2 (-1023))
- (-5 *1 (-100 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1023)) (-5 *1 (-100 *2)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-1106 *2)) (-4 *2 (-343)))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-207))
- (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-79 FCN)))) (-5 *2 (-970))
- (-5 *1 (-693)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-913 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520))
- (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-4 *1 (-369)) (-5 *2 (-110)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-566 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1023)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-309 *3)) (-4 *3 (-343)) (-4 *3 (-348)) (-5 *2 (-110))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1091 *4)) (-4 *4 (-329)) (-5 *2 (-110))
- (-5 *1 (-337 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1177 *4)) (-4 *4 (-329)) (-5 *2 (-110))
- (-5 *1 (-498 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-972 (-528))) (-4 *1 (-283)) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-4 *1 (-513)) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-844 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1091 *6)) (-4 *6 (-981)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *2 (-1091 *7)) (-5 *1 (-301 *4 *5 *6 *7))
- (-4 *7 (-888 *6 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-946 *3)) (-4 *3 (-1131)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860))
- (-4 *4 (-981)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-366 *2)) (-4 *2 (-1023))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-793)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-2 (|:| -2437 *4) (|:| -2935 (-528)))))
- (-4 *4 (-1153 (-528))) (-5 *2 (-684 (-717))) (-5 *1 (-421 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-398 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-981))
- (-5 *2 (-684 (-717))) (-5 *1 (-423 *4 *5)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-595 (-717))) (-5 *3 (-161)) (-5 *1 (-1084 *4 *5))
- (-14 *4 (-860)) (-4 *5 (-981)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-110))
- (-5 *6 (-207)) (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-66 APROD))))
- (-5 *8 (-3 (|:| |fn| (-368)) (|:| |fp| (-71 MSOLVE))))
- (-5 *2 (-970)) (-5 *1 (-703)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-595 *5) *6))
- (-4 *5 (-13 (-343) (-140) (-972 (-387 (-528))))) (-4 *6 (-1153 *5))
- (-5 *2 (-595 (-2 (|:| -2636 *5) (|:| -2589 *3))))
- (-5 *1 (-755 *5 *6 *3 *7)) (-4 *3 (-605 *6))
- (-4 *7 (-605 (-387 *6))))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-595 (-2 (|:| |totdeg| (-717)) (|:| -3292 *3))))
- (-5 *4 (-717)) (-4 *3 (-888 *5 *6 *7)) (-4 *5 (-431)) (-4 *6 (-739))
- (-4 *7 (-793)) (-5 *1 (-428 *5 *6 *7 *3)))))
+ (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5))
+ (-5 *2 (-1185)) (-5 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *7 (-1002 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1081)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1003 *4 *5 *6 *7 *8))
+ (-4 *8 (-1002 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1081)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1034 *4 *5 *6 *7 *8))
+ (-4 *8 (-1002 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
+ (-4 *9 (-997 *6 *7 *8))
+ (-5 *2 (-2 (|:| -3537 (-594 *9)) (|:| -1610 *4) (|:| |ineq| (-594 *9))))
+ (-5 *1 (-928 *6 *7 *8 *9 *4)) (-5 *3 (-594 *9))
+ (-4 *4 (-1002 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
+ (-4 *9 (-997 *6 *7 *8))
+ (-5 *2 (-2 (|:| -3537 (-594 *9)) (|:| -1610 *4) (|:| |ineq| (-594 *9))))
+ (-5 *1 (-1033 *6 *7 *8 *9 *4)) (-5 *3 (-594 *9))
+ (-4 *4 (-1002 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-594 *10)) (-5 *5 (-110)) (-4 *10 (-1002 *6 *7 *8 *9))
+ (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-997 *6 *7 *8))
+ (-5 *2
+ (-594 (-2 (|:| -3537 (-594 *9)) (|:| -1610 *10) (|:| |ineq| (-594 *9)))))
+ (-5 *1 (-928 *6 *7 *8 *9 *10)) (-5 *3 (-594 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-594 *10)) (-5 *5 (-110)) (-4 *10 (-1002 *6 *7 *8 *9))
+ (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-997 *6 *7 *8))
+ (-5 *2
+ (-594 (-2 (|:| -3537 (-594 *9)) (|:| -1610 *10) (|:| |ineq| (-594 *9)))))
+ (-5 *1 (-1033 *6 *7 *8 *9 *10)) (-5 *3 (-594 *9)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
+ (-12 (-5 *2 (-594 (-2 (|:| |val| (-594 *6)) (|:| -1610 *7))))
+ (-4 *6 (-997 *3 *4 *5)) (-4 *7 (-1002 *3 *4 *5 *6)) (-4 *3 (-432))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-928 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-594 (-2 (|:| |val| (-594 *6)) (|:| -1610 *7))))
+ (-4 *6 (-997 *3 *4 *5)) (-4 *7 (-1002 *3 *4 *5 *6)) (-4 *3 (-432))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-1033 *3 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-4 *2 (-520)) (-5 *1 (-907 *2 *3)) (-4 *3 (-1153 *2)))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-635 (-207))) (-5 *5 (-635 (-528))) (-5 *3 (-528))
- (-5 *2 (-970)) (-5 *1 (-703)))))
+ (-12 (-5 *3 (-2 (|:| |val| (-594 *7)) (|:| -1610 *8)))
+ (-4 *7 (-997 *4 *5 *6)) (-4 *8 (-1002 *4 *5 *6 *7)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-594 *7)) (|:| -1610 *8)))
+ (-4 *7 (-997 *4 *5 *6)) (-4 *8 (-1002 *4 *5 *6 *7)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
+ (-5 *1 (-1033 *4 *5 *6 *7 *8)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-594 *7)) (-4 *7 (-1002 *3 *4 *5 *6)) (-4 *3 (-432))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5))
+ (-5 *1 (-928 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-594 *7)) (-4 *7 (-1002 *3 *4 *5 *6)) (-4 *3 (-432))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5))
+ (-5 *1 (-1033 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6))
+ (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1002 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-594 *3)) (-4 *3 (-1002 *5 *6 *7 *8)) (-4 *5 (-432))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-997 *5 *6 *7)) (-5 *2 (-110))
+ (-5 *1 (-928 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6))
+ (-5 *2 (-110)) (-5 *1 (-1033 *4 *5 *6 *7 *3)) (-4 *3 (-1002 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-594 *3)) (-4 *3 (-1002 *5 *6 *7 *8)) (-4 *5 (-432))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-997 *5 *6 *7)) (-5 *2 (-110))
+ (-5 *1 (-1033 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3))
+ (-4 *3 (-1002 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1033 *4 *5 *6 *7 *3))
+ (-4 *3 (-1002 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8))
+ (-4 *8 (-1002 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-1033 *4 *5 *6 *7 *8))
+ (-4 *8 (-1002 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8))
+ (-4 *8 (-1002 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-1033 *4 *5 *6 *7 *8))
+ (-4 *8 (-1002 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8))
+ (-4 *8 (-1002 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-1033 *4 *5 *6 *7 *8))
+ (-4 *8 (-1002 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6))
+ (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1002 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6))
+ (-5 *2 (-110)) (-5 *1 (-1033 *4 *5 *6 *7 *3)) (-4 *3 (-1002 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6))
+ (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1002 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6))
+ (-5 *2 (-110)) (-5 *1 (-1033 *4 *5 *6 *7 *3)) (-4 *3 (-1002 *4 *5 *6 *7)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-594 *7)) (-4 *7 (-1002 *3 *4 *5 *6)) (-4 *3 (-432))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5))
+ (-5 *1 (-928 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-594 *7)) (-4 *7 (-1002 *3 *4 *5 *6)) (-4 *3 (-432))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5))
+ (-5 *1 (-1033 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6))
+ (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1002 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6))
+ (-5 *2 (-110)) (-5 *1 (-1033 *4 *5 *6 *7 *3)) (-4 *3 (-1002 *4 *5 *6 *7)))))
+(((*1 *2)
+ (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5))
+ (-5 *2 (-1185)) (-5 *1 (-928 *3 *4 *5 *6 *7)) (-4 *7 (-1002 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5))
+ (-5 *2 (-1185)) (-5 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *7 (-1002 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1081)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-928 *4 *5 *6 *7 *8))
+ (-4 *8 (-1002 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1081)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-997 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1033 *4 *5 *6 *7 *8))
+ (-4 *8 (-1002 *4 *5 *6 *7)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-415)) (-4 *5 (-795)) (-5 *1 (-1032 *5 *4))
+ (-4 *4 (-402 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-353 *3))
- (-4 *5 (-353 *3)) (-5 *2 (-528))))
+ (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1027))))
((*1 *2 *1)
- (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981))
- (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-5 *2 (-528)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207)))))
- (-5 *2 (-595 (-1095))) (-5 *1 (-248))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1091 *7)) (-4 *7 (-888 *6 *4 *5)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *6 (-981)) (-5 *2 (-595 *5))
- (-5 *1 (-301 *4 *5 *6 *7))))
+ (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415))))
+ ((*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-535 *3)) (-4 *3 (-975 (-516)))))
((*1 *2 *1)
- (-12 (-5 *2 (-595 (-1095))) (-5 *1 (-319 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 *2) (-4 *5 (-367))))
+ (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-594 (-2 (|:| -4139 (-1098)) (|:| -2131 *4))))
+ (-5 *1 (-829 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027))))
((*1 *2 *1)
- (-12 (-4 *1 (-410 *3)) (-4 *3 (-793)) (-5 *2 (-595 (-1095)))))
+ (-12 (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027))
+ (-4 *7 (-1027)) (-5 *2 (-594 *1)) (-4 *1 (-1030 *3 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1030 *3 *2 *4 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))))
+(((*1 *2 *3) (-12 (-5 *2 (-516)) (-5 *1 (-535 *3)) (-4 *3 (-975 *2))))
((*1 *2 *1)
- (-12 (-5 *2 (-595 (-831 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1023))))
+ (-12 (-4 *1 (-1030 *3 *4 *2 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-860)) (-4 *1 (-385))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-516)) (-4 *1 (-385))))
((*1 *2 *1)
- (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *5 (-793)) (-5 *2 (-595 *5))))
+ (-12 (-4 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1030 *3 *4 *5 *6 *2)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *2 (-1027)) (-4 *3 (-1027))
+ (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *2 (-1027)) (-4 *3 (-1027))
+ (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-860)) (-5 *1 (-1028 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-860)) (-5 *1 (-1028 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-594 (-860))) (-5 *1 (-1028 *3 *4)) (-14 *3 (-860))
+ (-14 *4 (-860)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-594 (-860))) (-5 *1 (-1028 *3 *4)) (-14 *3 (-860))
+ (-14 *4 (-860)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1179 (-1028 *3 *4))) (-5 *1 (-1028 *3 *4)) (-14 *3 (-860))
+ (-14 *4 (-860)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4269)) (-4 *1 (-468 *3)) (-4 *3 (-1134)) (-4 *3 (-1027))
+ (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-843 *4)) (-4 *4 (-1027)) (-5 *2 (-110)) (-5 *1 (-846 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-860)) (-5 *2 (-110)) (-5 *1 (-1028 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-860)) (-5 *2 (-719)) (-5 *1 (-1028 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-208)))) ((*1 *1 *1) (-4 *1 (-515)))
+ ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-553 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-1045)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-1081)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1027)) (-5 *2 (-110)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805))))
+ ((*1 *1 *1) (-5 *1 (-805)))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1027)) (-4 *1 (-1025 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1027)) (-4 *1 (-1025 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-594 (-482 *3 *4 *5 *6))) (-4 *3 (-344)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-891 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5))
+ (-4 *5 (-891 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-594 *1)) (-4 *1 (-1002 *4 *5 *6 *3)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-594 *1)) (-5 *3 (-594 *7)) (-4 *1 (-1002 *4 *5 *6 *7))
+ (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *2 (-594 *1)) (-4 *1 (-1002 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6))
+ (-5 *2 (-594 *1)) (-4 *1 (-1002 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1027)) (-5 *2 (-110)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-594 (-569 *4))) (-4 *4 (-402 *3)) (-4 *3 (-795))
+ (-5 *1 (-539 *3 *4))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-829 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-4 *1 (-1021 *3)) (-4 *3 (-1134)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1134)) (-5 *2 (-516)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-1081)) (-5 *1 (-929))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-1017 *4)) (-4 *4 (-1134)) (-5 *1 (-1019 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-884 (-208)) (-884 (-208)))) (-5 *1 (-243))))
((*1 *2 *3)
- (-12 (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-981))
- (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-595 *5))
- (-5 *1 (-889 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-343)
- (-10 -8 (-15 -2222 ($ *7)) (-15 -3031 (*7 $)) (-15 -3042 (*7 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1025 (-1095))) (-5 *1 (-904 *3)) (-4 *3 (-905))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-910 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-738))
- (-4 *5 (-793)) (-5 *2 (-595 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-913 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-595 *5))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-310 *4)) (-4 *4 (-344)) (-5 *2 (-637 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1179 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-1179 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162))
+ (-4 *5 (-1155 *4)) (-5 *2 (-637 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162))
+ (-4 *5 (-1155 *4)) (-5 *2 (-1179 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-387 (-891 *4))) (-4 *4 (-520)) (-5 *2 (-595 (-1095)))
- (-5 *1 (-977 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1162 *3 *4 *5)) (-5 *1 (-299 *3 *4 *5))
- (-4 *3 (-13 (-343) (-793))) (-14 *4 (-1095)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-528))))
- ((*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-398 *3)) (-4 *3 (-520))))
- ((*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-645))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-391 *4 *5)) (-4 *4 (-162))
+ (-4 *5 (-1155 *4)) (-5 *2 (-637 *4))))
((*1 *2 *1)
- (-12 (-4 *2 (-1023)) (-5 *1 (-660 *3 *2 *4)) (-4 *3 (-793))
- (-14 *4
- (-1 (-110) (-2 (|:| -3108 *3) (|:| -2564 *2))
- (-2 (|:| -3108 *3) (|:| -2564 *2)))))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1131)) (-5 *1 (-170 *3 *2))
- (-4 *2 (-622 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-860)) (-4 *1 (-220 *3 *4)) (-4 *4 (-981))
- (-4 *4 (-1131))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-595 (-1095))) (-4 *4 (-162))
- (-4 *5 (-220 (-2138 *3) (-717)))
- (-14 *6
- (-1 (-110) (-2 (|:| -3108 *2) (|:| -2564 *5))
- (-2 (|:| -3108 *2) (|:| -2564 *5))))
- (-5 *1 (-440 *3 *4 *2 *5 *6 *7)) (-4 *2 (-793))
- (-4 *7 (-888 *4 *5 (-804 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-882 (-207))) (-5 *1 (-1128)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-387 *2)) (-4 *2 (-1153 *5))
- (-5 *1 (-753 *5 *2 *3 *6))
- (-4 *5 (-13 (-343) (-140) (-972 (-387 (-528)))))
- (-4 *3 (-605 *2)) (-4 *6 (-605 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 (-387 *2))) (-4 *2 (-1153 *5))
- (-5 *1 (-753 *5 *2 *3 *6))
- (-4 *5 (-13 (-343) (-140) (-972 (-387 (-528))))) (-4 *3 (-605 *2))
- (-4 *6 (-605 (-387 *2))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-288) (-140))) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-595 (-595 *7)))
- (-5 *1 (-427 *4 *5 *6 *7)) (-5 *3 (-595 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-288) (-140))) (-4 *6 (-739))
- (-4 *7 (-793)) (-4 *8 (-888 *5 *6 *7)) (-5 *2 (-595 (-595 *8)))
- (-5 *1 (-427 *5 *6 *7 *8)) (-5 *3 (-595 *8))))
+ (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1155 *3))
+ (-5 *2 (-1179 *3))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-288) (-140))) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-888 *4 *5 *6)) (-5 *2 (-595 (-595 *7)))
- (-5 *1 (-427 *4 *5 *6 *7)) (-5 *3 (-595 *7))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-399 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-162)) (-5 *2 (-1179 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-288) (-140))) (-4 *6 (-739))
- (-4 *7 (-793)) (-4 *8 (-888 *5 *6 *7)) (-5 *2 (-595 (-595 *8)))
- (-5 *1 (-427 *5 *6 *7 *8)) (-5 *3 (-595 *8)))))
+ (-12 (-5 *4 (-594 (-637 *5))) (-5 *3 (-637 *5)) (-4 *5 (-344))
+ (-5 *2 (-1179 *5)) (-5 *1 (-1014 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
+ (-5 *2 (-1179 (-637 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-1179 (-637 *4))) (-5 *1 (-398 *3 *4))
+ (-4 *3 (-399 *4))))
+ ((*1 *2) (-12 (-4 *1 (-399 *3)) (-4 *3 (-162)) (-5 *2 (-1179 (-637 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-1098))) (-4 *5 (-344))
+ (-5 *2 (-1179 (-637 (-388 (-887 *5))))) (-5 *1 (-1014 *5))
+ (-5 *4 (-637 (-388 (-887 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-1098))) (-4 *5 (-344)) (-5 *2 (-1179 (-637 (-887 *5))))
+ (-5 *1 (-1014 *5)) (-5 *4 (-637 (-887 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-637 *4))) (-4 *4 (-344)) (-5 *2 (-1179 (-637 *4)))
+ (-5 *1 (-1014 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-164))) (-5 *1 (-1013)))))
+(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1098)) (-5 *2 (-106)) (-5 *1 (-164))))
+ ((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1098)) (-5 *2 (-106)) (-5 *1 (-1013)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-1013)))))
+(((*1 *1) (-5 *1 (-1013))))
+(((*1 *1) (-5 *1 (-1013))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *2)) (-4 *2 (-129)) (-5 *1 (-1012 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-516) *2 *2)) (-4 *2 (-129)) (-5 *1 (-1012 *2)))))
+(((*1 *2) (-12 (-5 *2 (-594 *3)) (-5 *1 (-1012 *3)) (-4 *3 (-129)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1012 *3)) (-4 *3 (-129)))))
+(((*1 *1) (-5 *1 (-1011))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *8 (-997 *5 *6 *7)) (-5 *2 (-594 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3))
+ (-4 *3 (-1035 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140)))
+ (-5 *2 (-594 (-2 (|:| -1813 (-1092 *5)) (|:| -3497 (-594 (-887 *5))))))
+ (-5 *1 (-1007 *5 *6)) (-5 *3 (-594 (-887 *5))) (-14 *6 (-594 (-1098)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-289) (-140)))
+ (-5 *2 (-594 (-2 (|:| -1813 (-1092 *4)) (|:| -3497 (-594 (-887 *4))))))
+ (-5 *1 (-1007 *4 *5)) (-5 *3 (-594 (-887 *4))) (-14 *5 (-594 (-1098)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140)))
+ (-5 *2 (-594 (-2 (|:| -1813 (-1092 *5)) (|:| -3497 (-594 (-887 *5))))))
+ (-5 *1 (-1007 *5 *6)) (-5 *3 (-594 (-887 *5))) (-14 *6 (-594 (-1098))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-594 (-1004 *3 *4 *5))) (-4 *3 (-1027))
+ (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-831 *3))))
+ (-4 *5 (-13 (-402 *4) (-827 *3) (-572 (-831 *3))))
+ (-5 *1 (-1006 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-831 *3))))
+ (-5 *2 (-594 (-1004 *3 *4 *5))) (-5 *1 (-1006 *3 *4 *5))
+ (-4 *5 (-13 (-402 *4) (-827 *3) (-572 (-831 *3)))))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-594 (-1098))) (-4 *4 (-1027))
+ (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-831 *4))))
+ (-5 *1 (-1004 *4 *5 *2))
+ (-4 *2 (-13 (-402 *5) (-827 *4) (-572 (-831 *4))))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-831 *3))))
+ (-5 *1 (-1004 *3 *4 *2))
+ (-4 *2 (-13 (-402 *4) (-827 *3) (-572 (-831 *3)))))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1095)) (-4 *4 (-431)) (-4 *4 (-793))
- (-5 *1 (-537 *4 *2)) (-4 *2 (-265)) (-4 *2 (-410 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520))
- (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-914 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1091 (-387 (-1091 *2)))) (-5 *4 (-568 *2))
- (-4 *2 (-13 (-410 *5) (-27) (-1117)))
- (-4 *5 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528))))
- (-5 *1 (-524 *5 *2 *6)) (-4 *6 (-1023))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1091 *1)) (-4 *1 (-888 *4 *5 *3)) (-4 *4 (-981))
- (-4 *5 (-739)) (-4 *3 (-793))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1091 *4)) (-4 *4 (-981)) (-4 *1 (-888 *4 *5 *3))
- (-4 *5 (-739)) (-4 *3 (-793))))
+ (-12 (-5 *2 (-831 *4)) (-5 *3 (-1 (-110) *5)) (-4 *4 (-1027)) (-4 *5 (-1134))
+ (-5 *1 (-832 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-831 *4)) (-5 *3 (-594 (-1 (-110) *5))) (-4 *4 (-1027))
+ (-4 *5 (-1134)) (-5 *1 (-832 *4 *5))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-831 *5)) (-5 *3 (-594 (-1098))) (-5 *4 (-1 (-110) (-594 *6)))
+ (-4 *5 (-1027)) (-4 *6 (-1134)) (-5 *1 (-832 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-387 (-1091 *2))) (-4 *5 (-739)) (-4 *4 (-793))
- (-4 *6 (-981))
- (-4 *2
- (-13 (-343)
- (-10 -8 (-15 -2222 ($ *7)) (-15 -3031 (*7 $)) (-15 -3042 (*7 $)))))
- (-5 *1 (-889 *5 *4 *6 *7 *2)) (-4 *7 (-888 *6 *5 *4))))
+ (-12 (-5 *3 (-1098)) (-5 *4 (-1 (-110) *5)) (-4 *5 (-1134))
+ (-5 *2 (-295 (-516))) (-5 *1 (-878 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-387 (-1091 (-387 (-891 *5))))) (-5 *4 (-1095))
- (-5 *2 (-387 (-891 *5))) (-5 *1 (-977 *5)) (-4 *5 (-520)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-981)) (-4 *7 (-981))
- (-4 *6 (-1153 *5)) (-5 *2 (-1091 (-1091 *7)))
- (-5 *1 (-477 *5 *6 *4 *7)) (-4 *4 (-1153 *6)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-207))
- (-5 *2
- (-2 (|:| |brans| (-595 (-595 (-882 *4))))
- (|:| |xValues| (-1018 *4)) (|:| |yValues| (-1018 *4))))
- (-5 *1 (-146)) (-5 *3 (-595 (-595 (-882 *4)))))))
-(((*1 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1179))))
- ((*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1179)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-595 (-528))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-528))
- (-14 *4 (-717)) (-4 *5 (-162)))))
-(((*1 *2) (-12 (-5 *2 (-1055 (-207))) (-5 *1 (-1115)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1182)) (-5 *1 (-1179)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-990 (-959 *3) (-1091 (-959 *3))))
- (-5 *1 (-959 *3)) (-4 *3 (-13 (-791) (-343) (-957))))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-359)) (-5 *1 (-992)))))
-(((*1 *1 *2 *3)
- (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-981)) (-4 *3 (-738))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-595 (-860))) (-5 *1 (-145 *4 *2 *5)) (-14 *4 (-860))
- (-4 *2 (-343)) (-14 *5 (-930 *4 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-660 *5 *6 *7)) (-4 *5 (-793))
- (-4 *6 (-220 (-2138 *4) (-717)))
- (-14 *7
- (-1 (-110) (-2 (|:| -3108 *5) (|:| -2564 *6))
- (-2 (|:| -3108 *5) (|:| -2564 *6))))
- (-14 *4 (-595 (-1095))) (-4 *2 (-162))
- (-5 *1 (-440 *4 *2 *5 *6 *7 *8)) (-4 *8 (-888 *2 *6 (-804 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-793))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-528)) (-4 *2 (-520)) (-5 *1 (-576 *2 *4))
- (-4 *4 (-1153 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-717)) (-4 *1 (-655 *2)) (-4 *2 (-981))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-682 *2 *3)) (-4 *2 (-981)) (-4 *3 (-673))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-595 *5)) (-5 *3 (-595 (-717))) (-4 *1 (-687 *4 *5))
- (-4 *4 (-981)) (-4 *5 (-793))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-717)) (-4 *1 (-687 *4 *2)) (-4 *4 (-981))
- (-4 *2 (-793))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-717)) (-4 *1 (-795 *2)) (-4 *2 (-981))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-595 *6)) (-5 *3 (-595 (-717))) (-4 *1 (-888 *4 *5 *6))
- (-4 *4 (-981)) (-4 *5 (-739)) (-4 *6 (-793))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-717)) (-4 *1 (-888 *4 *5 *2)) (-4 *4 (-981))
- (-4 *5 (-739)) (-4 *2 (-793))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-595 *6)) (-5 *3 (-595 *5)) (-4 *1 (-910 *4 *5 *6))
- (-4 *4 (-981)) (-4 *5 (-738)) (-4 *6 (-793))))
+ (-12 (-5 *3 (-1098)) (-5 *4 (-594 (-1 (-110) *5))) (-4 *5 (-1134))
+ (-5 *2 (-295 (-516))) (-5 *1 (-878 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-110) *5)) (-4 *5 (-1134)) (-4 *4 (-795))
+ (-5 *1 (-879 *4 *2 *5)) (-4 *2 (-402 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-594 (-1 (-110) *5))) (-4 *5 (-1134)) (-4 *4 (-795))
+ (-5 *1 (-879 *4 *2 *5)) (-4 *2 (-402 *4))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-910 *4 *3 *2)) (-4 *4 (-981)) (-4 *3 (-738))
- (-4 *2 (-793)))))
-(((*1 *2)
- (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-387 *4))) (-5 *2 (-635 (-387 *4))))))
+ (-12 (-5 *2 (-594 (-1098))) (-5 *3 (-1 (-110) (-594 *6)))
+ (-4 *6 (-13 (-402 *5) (-827 *4) (-572 (-831 *4)))) (-4 *4 (-1027))
+ (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-831 *4))))
+ (-5 *1 (-1004 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 *2)))
+ (-5 *2 (-831 *3)) (-5 *1 (-1004 *3 *4 *5))
+ (-4 *5 (-13 (-402 *4) (-827 *3) (-572 *2))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-831 *3))))
+ (-5 *2 (-594 (-1098))) (-5 *1 (-1004 *3 *4 *5))
+ (-4 *5 (-13 (-402 *4) (-827 *3) (-572 (-831 *3)))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-110))
- (-5 *1 (-1000 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7))
- (-5 *2 (-595 (-2 (|:| |val| (-110)) (|:| -2316 *4))))
- (-5 *1 (-1000 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-387 (-891 (-528)))))
- (-5 *2 (-595 (-635 (-296 (-528))))) (-5 *1 (-966)))))
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
+ (-5 *2 (-594 (-2 (|:| |val| *3) (|:| -1610 *4))))
+ (-5 *1 (-1003 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-635 *5))) (-5 *4 (-1177 *5)) (-4 *5 (-288))
- (-4 *5 (-981)) (-5 *2 (-635 *5)) (-5 *1 (-964 *5)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1078)) (-5 *2 (-359)) (-5 *1 (-732)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-528)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1131))
- (-4 *5 (-353 *4)) (-4 *3 (-353 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-802))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-207))
- (-5 *2 (-970)) (-5 *1 (-698)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1192 *2 *3)) (-4 *2 (-793)) (-4 *3 (-981))))
- ((*1 *1 *1) (-12 (-5 *1 (-1198 *2 *3)) (-4 *2 (-981)) (-4 *3 (-789)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-981)) (-4 *5 (-739)) (-4 *3 (-793))
- (-5 *2 (-2 (|:| -1641 *1) (|:| |gap| (-717)) (|:| -2537 *1)))
- (-4 *1 (-994 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *2 (-2 (|:| -1641 *1) (|:| |gap| (-717)) (|:| -2537 *1)))
- (-4 *1 (-994 *3 *4 *5)))))
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
+ (-5 *2 (-594 *4)) (-5 *1 (-1003 *5 *6 *7 *3 *4))
+ (-4 *4 (-1002 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
+ (-5 *2 (-110)) (-5 *1 (-1003 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
+ (-5 *2 (-594 (-2 (|:| |val| (-110)) (|:| -1610 *4))))
+ (-5 *1 (-1003 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
+ (-5 *2 (-594 (-2 (|:| |val| *3) (|:| -1610 *4))))
+ (-5 *1 (-1003 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
+ (-5 *2 (-594 (-2 (|:| |val| *3) (|:| -1610 *4))))
+ (-5 *1 (-1003 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
+ (-4 *3 (-997 *6 *7 *8)) (-5 *2 (-594 (-2 (|:| |val| *3) (|:| -1610 *4))))
+ (-5 *1 (-1003 *6 *7 *8 *3 *4)) (-4 *4 (-1002 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-594 (-2 (|:| |val| (-594 *8)) (|:| -1610 *9)))) (-5 *5 (-110))
+ (-4 *8 (-997 *6 *7 *4)) (-4 *9 (-1002 *6 *7 *4 *8)) (-4 *6 (-432))
+ (-4 *7 (-741)) (-4 *4 (-795))
+ (-5 *2 (-594 (-2 (|:| |val| *8) (|:| -1610 *9))))
+ (-5 *1 (-1003 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
+ (-5 *2 (-594 (-2 (|:| |val| (-594 *3)) (|:| -1610 *4))))
+ (-5 *1 (-1003 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1002 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1002 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-110)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-913 *4 *5 *6 *3)) (-4 *4 (-981)) (-4 *5 (-739))
- (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-4 *4 (-520))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-528)) (-5 *5 (-110)) (-5 *6 (-635 (-207)))
- (-5 *4 (-207)) (-5 *2 (-970)) (-5 *1 (-702)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-520)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3))
- (-5 *1 (-1122 *3 *4 *5 *2)) (-4 *2 (-633 *3 *4 *5)))))
+ (-12 (-4 *1 (-1002 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-110)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1002 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-110)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1002 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-110)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6))
+ (-5 *2 (-3 (-110) (-594 *1))) (-4 *1 (-1002 *4 *5 *6 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1002 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *3 (-997 *4 *5 *6)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6))
+ (-5 *2 (-594 (-2 (|:| |val| (-110)) (|:| -1610 *1))))
+ (-4 *1 (-1002 *4 *5 *6 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6))
+ (-5 *2 (-594 *1)) (-4 *1 (-1002 *4 *5 *6 *3)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6))
+ (-5 *2 (-3 *3 (-594 *1))) (-4 *1 (-1002 *4 *5 *6 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-729 *2)) (-4 *2 (-523)) (-4 *2 (-984))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-523)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1155 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-4 *2 (-523))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6))
+ (-5 *2 (-594 (-2 (|:| |val| *3) (|:| -1610 *1))))
+ (-4 *1 (-1002 *4 *5 *6 *3)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1091 *2)) (-4 *2 (-410 *4)) (-4 *4 (-13 (-793) (-520)))
- (-5 *1 (-31 *4 *2)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1027)) (-5 *1 (-261)))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-568 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1095)))
- (-4 *2 (-13 (-410 *5) (-27) (-1117)))
- (-4 *5 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528))))
- (-5 *1 (-530 *5 *2 *6)) (-4 *6 (-1023)))))
-(((*1 *2)
- (-12 (-4 *4 (-1135)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-387 *5)))
- (-5 *2 (-717)) (-5 *1 (-321 *3 *4 *5 *6)) (-4 *3 (-322 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-387 *4))) (-5 *2 (-717))))
- ((*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-717)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-528)) (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981))
- (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-882 *3) (-882 *3))) (-5 *1 (-165 *3))
- (-4 *3 (-13 (-343) (-1117) (-938))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1097 (-387 (-528)))) (-5 *1 (-174)) (-5 *3 (-528))))
+ (-12 (-5 *2 (-594 *1)) (-5 *3 (-594 *7)) (-4 *1 (-1002 *4 *5 *6 *7))
+ (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *2 (-594 *1)) (-4 *1 (-1002 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-594 *1)) (-4 *1 (-1002 *4 *5 *6 *3)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-997 *4 *5 *6))
+ (-5 *2 (-594 *1)) (-4 *1 (-1002 *4 *5 *6 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-110))))
((*1 *2 *1)
- (-12 (-5 *2 (-1177 (-3 (-447) "undefined"))) (-5 *1 (-1178)))))
+ (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-891 *3 *4 *5))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-999 *4 *3)) (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1155 *4))
+ (-5 *2 (-110)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-641 *3)) (-4 *3 (-1023))
- (-5 *2 (-595 (-2 (|:| -1780 *3) (|:| -2507 (-717))))))))
+ (-12 (-4 *1 (-521 *3)) (-4 *3 (-13 (-385) (-1120))) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-4 *1 (-793)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-999 *4 *3)) (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1155 *4))
+ (-5 *2 (-110)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1023))
- (-4 *4 (-13 (-981) (-825 *3) (-793) (-570 (-831 *3))))
- (-5 *2 (-595 (-1095))) (-5 *1 (-1002 *3 *4 *5))
- (-4 *5 (-13 (-410 *4) (-825 *3) (-570 (-831 *3)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-802)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-431))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110))
- (-5 *1 (-925 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-431))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110))
- (-5 *1 (-1030 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-595 *7)) (-5 *3 (-528)) (-4 *7 (-888 *4 *5 *6))
- (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-5 *1 (-428 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-891 *5)) (-4 *5 (-981)) (-5 *2 (-459 *4 *5))
- (-5 *1 (-883 *4 *5)) (-14 *4 (-595 (-1095))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *1 (-400 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1117) (-410 *3)))
- (-14 *4 (-1095)) (-14 *5 *2)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-4 *2 (-13 (-27) (-1117) (-410 *3) (-10 -8 (-15 -2222 ($ *4)))))
- (-4 *4 (-791))
- (-4 *5
- (-13 (-1155 *2 *4) (-343) (-1117)
- (-10 -8 (-15 -3235 ($ $)) (-15 -1923 ($ $)))))
- (-5 *1 (-402 *3 *2 *4 *5 *6 *7)) (-4 *6 (-920 *5)) (-14 *7 (-1095)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-595 (-635 *4))) (-5 *2 (-635 *4)) (-4 *4 (-981))
- (-5 *1 (-964 *4)))))
+ (-12 (-4 *1 (-521 *3)) (-4 *3 (-13 (-385) (-1120))) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-4 *1 (-793)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-999 *4 *3)) (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1155 *4))
+ (-5 *2 (-110)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-520)) (-4 *4 (-929 *3)) (-5 *1 (-135 *3 *4 *2))
- (-4 *2 (-353 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-4 *5 (-929 *4)) (-4 *2 (-353 *4))
- (-5 *1 (-479 *4 *5 *2 *3)) (-4 *3 (-353 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 *5)) (-4 *5 (-929 *4)) (-4 *4 (-520))
- (-5 *2 (-635 *4)) (-5 *1 (-639 *4 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-520)) (-4 *4 (-929 *3)) (-5 *1 (-1146 *3 *4 *2))
- (-4 *2 (-1153 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-717)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860))
- (-4 *4 (-981)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-699)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-635 *2)) (-4 *2 (-162)) (-5 *1 (-139 *2))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-162)) (-4 *2 (-1153 *4)) (-5 *1 (-166 *4 *2 *3))
- (-4 *3 (-671 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-387 (-891 *5)))) (-5 *4 (-1095))
- (-5 *2 (-891 *5)) (-5 *1 (-273 *5)) (-4 *5 (-431))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 (-387 (-891 *4)))) (-5 *2 (-891 *4))
- (-5 *1 (-273 *4)) (-4 *4 (-431))))
+ (-12 (-4 *3 (-975 (-516))) (-4 *3 (-13 (-795) (-523))) (-5 *1 (-31 *3 *2))
+ (-4 *2 (-402 *3))))
+ ((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-1092 *4)) (-5 *1 (-155 *3 *4))
+ (-4 *3 (-156 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-984)) (-4 *1 (-280))))
+ ((*1 *2) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1092 *3))))
+ ((*1 *2) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1155 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-350 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1153 *3))))
+ (-12 (-4 *1 (-999 *3 *2)) (-4 *3 (-13 (-793) (-344))) (-4 *2 (-1155 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-887 (-516))) (-5 *2 (-594 *1)) (-4 *1 (-951))))
((*1 *2 *3)
- (-12 (-5 *3 (-635 (-159 (-387 (-528)))))
- (-5 *2 (-891 (-159 (-387 (-528))))) (-5 *1 (-711 *4))
- (-4 *4 (-13 (-343) (-791)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-159 (-387 (-528))))) (-5 *4 (-1095))
- (-5 *2 (-891 (-159 (-387 (-528))))) (-5 *1 (-711 *5))
- (-4 *5 (-13 (-343) (-791)))))
+ (-12 (-5 *3 (-887 (-388 (-516)))) (-5 *2 (-594 *1)) (-4 *1 (-951))))
+ ((*1 *2 *3) (-12 (-5 *3 (-887 *1)) (-4 *1 (-951)) (-5 *2 (-594 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1092 (-516))) (-5 *2 (-594 *1)) (-4 *1 (-951))))
((*1 *2 *3)
- (-12 (-5 *3 (-635 (-387 (-528)))) (-5 *2 (-891 (-387 (-528))))
- (-5 *1 (-725 *4)) (-4 *4 (-13 (-343) (-791)))))
+ (-12 (-5 *3 (-1092 (-388 (-516)))) (-5 *2 (-594 *1)) (-4 *1 (-951))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1092 *1)) (-4 *1 (-951)) (-5 *2 (-594 *1))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1155 *4)) (-5 *2 (-594 *1))
+ (-4 *1 (-999 *4 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1092 *1)) (-5 *3 (-1098)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1092 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-887 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1098)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-795) (-523)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-795) (-523)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-387 (-528)))) (-5 *4 (-1095))
- (-5 *2 (-891 (-387 (-528)))) (-5 *1 (-725 *5))
- (-4 *5 (-13 (-343) (-791))))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-162)) (-5 *1 (-270 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1153 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-162))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-662 *2 *3 *4 *5 *6)) (-4 *2 (-162))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1078)) (-5 *1 (-504)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *8)) (-5 *4 (-717)) (-4 *8 (-888 *5 *7 *6))
- (-4 *5 (-13 (-288) (-140))) (-4 *6 (-13 (-793) (-570 (-1095))))
- (-4 *7 (-739))
- (-5 *2
- (-595
- (-2 (|:| |det| *8) (|:| |rows| (-595 (-528)))
- (|:| |cols| (-595 (-528))))))
- (-5 *1 (-863 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-528)) (-4 *3 (-162)) (-4 *5 (-353 *3))
- (-4 *6 (-353 *3)) (-5 *1 (-634 *3 *5 *6 *2))
- (-4 *2 (-633 *3 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-310))))
- ((*1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-310)))))
+ (-12 (-5 *3 (-1092 *2)) (-5 *4 (-1098)) (-4 *2 (-402 *5)) (-5 *1 (-31 *5 *2))
+ (-4 *5 (-13 (-795) (-523)))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1092 *1)) (-5 *3 (-860)) (-4 *1 (-951))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1092 *1)) (-5 *3 (-860)) (-5 *4 (-805))
+ (-4 *1 (-951))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-860)) (-4 *4 (-13 (-793) (-344)))
+ (-4 *1 (-999 *4 *2)) (-4 *2 (-1155 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-388 (-516))) (-5 *1 (-962 *3))
+ (-4 *3 (-13 (-793) (-344) (-958)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-993 *2 *3)) (-4 *3 (-1155 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-999 *2 *3)) (-4 *2 (-13 (-793) (-344))) (-4 *3 (-1155 *2)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-595 (-2 (|:| -2927 (-1095)) (|:| -1780 *4))))
- (-5 *1 (-828 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1023))))
+ (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-997 *3 *4 *2)) (-4 *2 (-795))))
((*1 *2 *1)
- (-12 (-4 *3 (-1023)) (-4 *4 (-1023)) (-4 *5 (-1023)) (-4 *6 (-1023))
- (-4 *7 (-1023)) (-5 *2 (-595 *1)) (-4 *1 (-1026 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4264)) (-4 *1 (-467 *3)) (-4 *3 (-1131))
- (-4 *3 (-1023)) (-5 *2 (-717))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4264)) (-4 *1 (-467 *4))
- (-4 *4 (-1131)) (-5 *2 (-717)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-431)) (-4 *4 (-520))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -2021 *4))) (-5 *1 (-907 *4 *3))
- (-4 *3 (-1153 *4)))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -2783 (-595 (-2 (|:| |irr| *10) (|:| -2842 (-528)))))))
- (-5 *6 (-595 *3)) (-5 *7 (-595 *8)) (-4 *8 (-793)) (-4 *3 (-288))
- (-4 *10 (-888 *3 *9 *8)) (-4 *9 (-739))
- (-5 *2
- (-2 (|:| |polfac| (-595 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-595 (-1091 *3)))))
- (-5 *1 (-578 *8 *9 *3 *10)) (-5 *4 (-595 (-1091 *3))))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-520)) (-5 *1 (-907 *3 *2)) (-4 *2 (-1153 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-296 (-207))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-359)) (|:| |stabilityFactor| (-359))))
- (-5 *1 (-189)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 *2)) (-4 *2 (-410 *4)) (-5 *1 (-149 *4 *2))
- (-4 *4 (-13 (-793) (-520))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-110))
- (-4 *5 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2
- (-3 (|:| |%expansion| (-293 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1078)) (|:| |prob| (-1078))))))
- (-5 *1 (-400 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1117) (-410 *5)))
- (-14 *6 (-1095)) (-14 *7 *3))))
+ (-12 (-4 *1 (-997 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1131)) (-5 *1 (-812 *3 *2)) (-4 *3 (-1131))))
- ((*1 *2 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-595 *2)) (-4 *2 (-994 *4 *5 *6)) (-4 *4 (-520))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *1 (-914 *4 *5 *6 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-520)) (-5 *1 (-40 *3 *2))
- (-4 *2
- (-13 (-343) (-283)
- (-10 -8 (-15 -3031 ((-1047 *3 (-568 $)) $))
- (-15 -3042 ((-1047 *3 (-568 $)) $))
- (-15 -2222 ($ (-1047 *3 (-568 $)))))))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-520)) (-5 *1 (-40 *3 *2))
- (-4 *2
- (-13 (-343) (-283)
- (-10 -8 (-15 -3031 ((-1047 *3 (-568 $)) $))
- (-15 -3042 ((-1047 *3 (-568 $)) $))
- (-15 -2222 ($ (-1047 *3 (-568 $)))))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-595 *2))
- (-4 *2
- (-13 (-343) (-283)
- (-10 -8 (-15 -3031 ((-1047 *4 (-568 $)) $))
- (-15 -3042 ((-1047 *4 (-568 $)) $))
- (-15 -2222 ($ (-1047 *4 (-568 $)))))))
- (-4 *4 (-520)) (-5 *1 (-40 *4 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-595 (-568 *2)))
- (-4 *2
- (-13 (-343) (-283)
- (-10 -8 (-15 -3031 ((-1047 *4 (-568 $)) $))
- (-15 -3042 ((-1047 *4 (-568 $)) $))
- (-15 -2222 ($ (-1047 *4 (-568 $)))))))
- (-4 *4 (-520)) (-5 *1 (-40 *4 *2)))))
-(((*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-865)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-726 *5 (-804 *6)))) (-5 *4 (-110)) (-4 *5 (-431))
- (-14 *6 (-595 (-1095))) (-5 *2 (-595 (-978 *5 *6)))
- (-5 *1 (-580 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-207))))
- ((*1 *1 *1) (-4 *1 (-513)))
- ((*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-551 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-4 *1 (-1023)) (-5 *2 (-1042)))))
-(((*1 *1 *1) (-5 *1 (-992))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-110) *6)) (-4 *6 (-13 (-1023) (-972 *5)))
- (-4 *5 (-825 *4)) (-4 *4 (-1023)) (-5 *2 (-1 (-110) *5))
- (-5 *1 (-870 *4 *5 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-528)) (-4 *1 (-303 *2 *4)) (-4 *4 (-128))
- (-4 *2 (-1023))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-5 *1 (-341 *2)) (-4 *2 (-1023))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-5 *1 (-366 *2)) (-4 *2 (-1023))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-5 *1 (-398 *2)) (-4 *2 (-520))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-528)) (-4 *2 (-1023)) (-5 *1 (-598 *2 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4)))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-5 *1 (-765 *2)) (-4 *2 (-793)))))
-(((*1 *1) (-5 *1 (-134))) ((*1 *1 *1) (-5 *1 (-137)))
- ((*1 *1 *1) (-4 *1 (-1064))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-595 *2)) (-5 *1 (-168 *2)) (-4 *2 (-288))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-595 (-595 *4))) (-5 *2 (-595 *4)) (-4 *4 (-288))
- (-5 *1 (-168 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-595 *8))
- (-5 *4
- (-595
- (-2 (|:| -1400 (-635 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-635 *7)))))
- (-5 *5 (-717)) (-4 *8 (-1153 *7)) (-4 *7 (-1153 *6)) (-4 *6 (-329))
- (-5 *2
- (-2 (|:| -1400 (-635 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-635 *7))))
- (-5 *1 (-474 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-525)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-520)) (-5 *2 (-896 *3)) (-5 *1 (-1083 *4 *3))
- (-4 *3 (-1153 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-1076 *3))) (-5 *1 (-1076 *3)) (-4 *3 (-1131)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1091 *3)) (-4 *3 (-329)) (-5 *1 (-337 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-350 *4 *5)) (-4 *4 (-162))
- (-4 *5 (-1153 *4)) (-5 *2 (-635 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-4 *5 (-1153 *4)) (-5 *2 (-635 *4))
- (-5 *1 (-388 *3 *4 *5)) (-4 *3 (-389 *4 *5))))
- ((*1 *2)
- (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1153 *3))
- (-5 *2 (-635 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1062 *4 *2)) (-14 *4 (-860))
- (-4 *2 (-13 (-981) (-10 -7 (-6 (-4266 "*"))))) (-5 *1 (-841 *4 *2)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1131)) (-4 *1 (-220 *3 *4)))))
+ (-12 (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-719)))))
+(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-812 (-904 *3) (-904 *3))) (-5 *1 (-904 *3))
- (-4 *3 (-905)))))
+ (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-594 *1))
+ (-4 *1 (-997 *3 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))))
+(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984))))
+ ((*1 *2 *1) (-12 (-4 *2 (-984)) (-5 *1 (-49 *2 *3)) (-14 *3 (-594 (-1098)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-295 *3)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795)))
+ (-14 *4 (-594 (-1098)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1027)) (-4 *2 (-984))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-594 (-1098))) (-4 *5 (-221 (-4232 *3) (-719)))
+ (-14 *6
+ (-1 (-110) (-2 (|:| -2426 *4) (|:| -2427 *5))
+ (-2 (|:| -2426 *4) (|:| -2427 *5))))
+ (-4 *2 (-162)) (-5 *1 (-441 *3 *2 *4 *5 *6 *7)) (-4 *4 (-795))
+ (-4 *7 (-891 *2 *5 (-806 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-486 *2 *3)) (-4 *3 (-795)) (-4 *2 (-1027))))
+ ((*1 *2 *1) (-12 (-4 *2 (-523)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1155 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-984))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-984)) (-5 *1 (-684 *2 *3)) (-4 *3 (-795)) (-4 *3 (-675))))
+ ((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *3 (-740)) (-4 *4 (-795)) (-4 *2 (-984))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-997 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-459 *4 *5))) (-14 *4 (-595 (-1095)))
- (-4 *5 (-431)) (-5 *2 (-595 (-229 *4 *5))) (-5 *1 (-583 *4 *5)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-520)) (-4 *3 (-162))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -1400 (-595 *1))))
- (-4 *1 (-347 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-432 *3 *4 *5 *6))
- (|:| -1400 (-595 (-432 *3 *4 *5 *6)))))
- (-5 *1 (-432 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-860))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))))
-(((*1 *1) (-5 *1 (-310))))
-(((*1 *1) (-5 *1 (-1010))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
-(((*1 *1) (-5 *1 (-310))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-831 *4)) (-4 *4 (-1023)) (-5 *1 (-828 *4 *3))
- (-4 *3 (-1023)))))
+ (-12 (-4 *4 (-984)) (-5 *2 (-110)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1155 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-110)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-595 (-595 (-882 (-207))))) (-5 *1 (-1127 *3))
- (-4 *3 (-911)))))
-(((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-520) (-793) (-972 (-528)))) (-5 *2 (-296 *4))
- (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-410 (-159 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *3))))))
-(((*1 *1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1131))))
- ((*1 *1 *1)
- (-12 (|has| *1 (-6 -4265)) (-4 *1 (-353 *2)) (-4 *2 (-1131))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-598 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802))))
- ((*1 *1 *1 *1) (-5 *1 (-802))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-2 (|:| |deg| (-717)) (|:| -3891 *5))))
- (-4 *5 (-1153 *4)) (-4 *4 (-329)) (-5 *2 (-595 *5))
- (-5 *1 (-199 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-2 (|:| -2437 *5) (|:| -2935 (-528)))))
- (-5 *4 (-528)) (-4 *5 (-1153 *4)) (-5 *2 (-595 *5))
- (-5 *1 (-642 *5)))))
-(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-595 (-1078))) (-5 *2 (-1078)) (-5 *1 (-1178))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-1178))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-1178))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-595 (-1078))) (-5 *2 (-1078)) (-5 *1 (-1179))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-1179))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-1179)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2))
- (-4 *4 (-353 *2)))))
+ (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-594 *1))
+ (-4 *1 (-997 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-594 *1))
+ (-4 *1 (-997 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *2 (-110)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-110)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-997 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-997 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-997 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-997 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795))
+ (-5 *2 (-2 (|:| -4229 *1) (|:| |gap| (-719)) (|:| -3166 *1)))
+ (-4 *1 (-997 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-2 (|:| -4229 *1) (|:| |gap| (-719)) (|:| -3166 *1)))
+ (-4 *1 (-997 *3 *4 *5)))))
(((*1 *2 *1 *1)
(-12
(-5 *2
- (-2 (|:| -1641 *3) (|:| |gap| (-717)) (|:| -3490 (-728 *3))
- (|:| -2537 (-728 *3))))
- (-5 *1 (-728 *3)) (-4 *3 (-981))))
+ (-2 (|:| -4229 *3) (|:| |gap| (-719)) (|:| -2046 (-729 *3))
+ (|:| -3166 (-729 *3))))
+ (-5 *1 (-729 *3)) (-4 *3 (-984))))
((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-981)) (-4 *5 (-739)) (-4 *3 (-793))
- (-5 *2
- (-2 (|:| -1641 *1) (|:| |gap| (-717)) (|:| -3490 *1)
- (|:| -2537 *1)))
- (-4 *1 (-994 *4 *5 *3))))
+ (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795))
+ (-5 *2 (-2 (|:| -4229 *1) (|:| |gap| (-719)) (|:| -2046 *1) (|:| -3166 *1)))
+ (-4 *1 (-997 *4 *5 *3))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *2
- (-2 (|:| -1641 *1) (|:| |gap| (-717)) (|:| -3490 *1)
- (|:| -2537 *1)))
- (-4 *1 (-994 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-4 *3 (-520))
- (-5 *2 (-1091 *3)))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-802) (-802) (-802))) (-5 *4 (-528)) (-5 *2 (-802))
- (-5 *1 (-598 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-802)) (-5 *1 (-797 *3 *4 *5)) (-4 *3 (-981))
- (-14 *4 (-96 *3)) (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-207)) (-5 *1 (-802))))
- ((*1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-802))))
- ((*1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-802))))
- ((*1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-802))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1091 *3)) (-4 *3 (-981)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-431))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110))
- (-5 *1 (-925 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-431))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110))
- (-5 *1 (-1030 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-207) (-207) (-207)))
- (-5 *4 (-3 (-1 (-207) (-207) (-207) (-207)) "undefined"))
- (-5 *5 (-1018 (-207))) (-5 *6 (-595 (-244))) (-5 *2 (-1055 (-207)))
- (-5 *1 (-643)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
-(((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-520) (-793) (-972 (-528)))) (-5 *2 (-296 *4))
- (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1117) (-410 (-159 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162))))
- ((*1 *2 *1) (-12 (-4 *1 (-933 *2)) (-4 *2 (-162))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *3))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1153 *4)) (-4 *4 (-1135))
- (-4 *1 (-322 *4 *3 *5)) (-4 *5 (-1153 (-387 *3))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-4 *5 (-348))
- (-5 *2 (-717)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-528)) (-4 *4 (-162)) (-4 *5 (-353 *4))
- (-4 *6 (-353 *4)) (-5 *1 (-634 *4 *5 *6 *2))
- (-4 *2 (-633 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1091 *4)) (-4 *4 (-329))
- (-4 *2
- (-13 (-382)
- (-10 -7 (-15 -2222 (*2 *4)) (-15 -3201 ((-860) *2))
- (-15 -1400 ((-1177 *2) (-860))) (-15 -2698 (*2 *2)))))
- (-5 *1 (-336 *2 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-717)) (-4 *4 (-343)) (-4 *5 (-1153 *4)) (-5 *2 (-1182))
- (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1153 (-387 *5))) (-14 *7 *6))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528)))))))
- (-5 *1 (-1050 *3 *2)) (-4 *3 (-1153 *2)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-702)))))
-(((*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-853 *3)) (-4 *3 (-288)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-860)) (-4 *1 (-691 *3)) (-4 *3 (-162)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095)))
- (-14 *3 (-595 (-1095))) (-4 *4 (-367))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-808 *3)) (-5 *2 (-528))))
- ((*1 *1 *1) (-4 *1 (-938)))
- ((*1 *1 *2) (-12 (-5 *2 (-528)) (-4 *1 (-948))))
- ((*1 *1 *2) (-12 (-5 *2 (-387 (-528))) (-4 *1 (-948))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-948)) (-5 *2 (-860))))
- ((*1 *1 *1) (-4 *1 (-948))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-520))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110))
- (-5 *1 (-914 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1177 *4)) (-5 *3 (-717)) (-4 *4 (-329))
- (-5 *1 (-498 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-1178))))
- ((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-1179)))))
-(((*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-866)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 (-359))) (-5 *1 (-244))))
- ((*1 *1)
- (|partial| -12 (-4 *1 (-347 *2)) (-4 *2 (-520)) (-4 *2 (-162))))
- ((*1 *2 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-520)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1042)) (-5 *1 (-107)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-520) (-793) (-972 (-528)))) (-5 *1 (-172 *3 *2))
- (-4 *2 (-13 (-27) (-1117) (-410 (-159 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-520) (-793) (-972 (-528))))
- (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-410 (-159 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1095))
- (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *1 (-1121 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *4))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528)))))
- (-4 *5 (-1153 *4)) (-5 *2 (-595 (-602 (-387 *5))))
- (-5 *1 (-606 *4 *5)) (-5 *3 (-602 (-387 *5))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1190 (-1095) *3)) (-4 *3 (-981)) (-5 *1 (-1197 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1190 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981))
- (-5 *1 (-1199 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-569 (-802)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1078)) (-5 *1 (-1100))))
- ((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-1100))))
- ((*1 *2 *1) (-12 (-5 *2 (-207)) (-5 *1 (-1100))))
- ((*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-1100)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-229 *4 *5)) (-14 *4 (-595 (-1095))) (-4 *5 (-981))
- (-5 *2 (-459 *4 *5)) (-5 *1 (-883 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1091 (-528))) (-5 *1 (-175)) (-5 *3 (-528))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-717)) (-5 *1 (-729 *2)) (-4 *2 (-162))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1091 (-528))) (-5 *1 (-881)) (-5 *3 (-528)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 (-47))) (-5 *2 (-398 *3)) (-5 *1 (-38 *3))
- (-4 *3 (-1153 (-47)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-398 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1153 (-47)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 (-47))) (-4 *5 (-793)) (-4 *6 (-739))
- (-5 *2 (-398 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-888 (-47) *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 (-47))) (-4 *5 (-793)) (-4 *6 (-739))
- (-4 *7 (-888 (-47) *6 *5)) (-5 *2 (-398 (-1091 *7)))
- (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1091 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-288)) (-5 *2 (-398 *3)) (-5 *1 (-157 *4 *3))
- (-4 *3 (-1153 (-159 *4)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-110)) (-4 *4 (-13 (-343) (-791))) (-5 *2 (-398 *3))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1153 (-159 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-343) (-791))) (-5 *2 (-398 *3))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1153 (-159 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-343) (-791))) (-5 *2 (-398 *3))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1153 (-159 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-329)) (-5 *2 (-398 *3)) (-5 *1 (-199 *4 *3))
- (-4 *3 (-1153 *4))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-398 *3)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-717)) (-5 *2 (-398 *3)) (-5 *1 (-421 *3))
- (-4 *3 (-1153 (-528)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 (-717))) (-5 *2 (-398 *3)) (-5 *1 (-421 *3))
- (-4 *3 (-1153 (-528)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-595 (-717))) (-5 *5 (-717)) (-5 *2 (-398 *3))
- (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-717)) (-5 *2 (-398 *3)) (-5 *1 (-421 *3))
- (-4 *3 (-1153 (-528)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-398 (-159 (-528)))) (-5 *1 (-425))
- (-5 *3 (-159 (-528)))))
- ((*1 *2 *3)
+ (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-2 (|:| -4229 *1) (|:| |gap| (-719)) (|:| -2046 *1) (|:| -3166 *1)))
+ (-4 *1 (-997 *3 *4 *5)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-729 *2)) (-4 *2 (-984))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))))
+(((*1 *2 *1 *1)
(-12
- (-4 *4
- (-13 (-793)
- (-10 -8 (-15 -3155 ((-1095) $))
- (-15 -3915 ((-3 $ "failed") (-1095))))))
- (-4 *5 (-739)) (-4 *7 (-520)) (-5 *2 (-398 *3))
- (-5 *1 (-435 *4 *5 *6 *7 *3)) (-4 *6 (-520))
- (-4 *3 (-888 *7 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-288)) (-5 *2 (-398 (-1091 *4))) (-5 *1 (-437 *4))
- (-5 *3 (-1091 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1153 *5)) (-4 *5 (-343))
- (-4 *7 (-13 (-343) (-140) (-671 *5 *6))) (-5 *2 (-398 *3))
- (-5 *1 (-470 *5 *6 *7 *3)) (-4 *3 (-1153 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-398 (-1091 *7)) (-1091 *7)))
- (-4 *7 (-13 (-288) (-140))) (-4 *5 (-793)) (-4 *6 (-739))
- (-5 *2 (-398 *3)) (-5 *1 (-508 *5 *6 *7 *3))
- (-4 *3 (-888 *7 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-398 (-1091 *7)) (-1091 *7)))
- (-4 *7 (-13 (-288) (-140))) (-4 *5 (-793)) (-4 *6 (-739))
- (-4 *8 (-888 *7 *6 *5)) (-5 *2 (-398 (-1091 *8)))
- (-5 *1 (-508 *5 *6 *7 *8)) (-5 *3 (-1091 *8))))
- ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-522 *3)) (-4 *3 (-513))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-595 *5) *6))
- (-4 *5 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528)))))
- (-4 *6 (-1153 *5)) (-5 *2 (-595 (-602 (-387 *6))))
- (-5 *1 (-606 *5 *6)) (-5 *3 (-602 (-387 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528)))))
- (-4 *5 (-1153 *4)) (-5 *2 (-595 (-602 (-387 *5))))
- (-5 *1 (-606 *4 *5)) (-5 *3 (-602 (-387 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-765 *4)) (-4 *4 (-793)) (-5 *2 (-595 (-620 *4)))
- (-5 *1 (-620 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-528)) (-5 *2 (-595 *3)) (-5 *1 (-642 *3))
- (-4 *3 (-1153 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-793)) (-4 *5 (-739)) (-4 *6 (-329)) (-5 *2 (-398 *3))
- (-5 *1 (-644 *4 *5 *6 *3)) (-4 *3 (-888 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-793)) (-4 *5 (-739)) (-4 *6 (-329))
- (-4 *7 (-888 *6 *5 *4)) (-5 *2 (-398 (-1091 *7)))
- (-5 *1 (-644 *4 *5 *6 *7)) (-5 *3 (-1091 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-739))
- (-4 *5
- (-13 (-793)
- (-10 -8 (-15 -3155 ((-1095) $))
- (-15 -3915 ((-3 $ "failed") (-1095))))))
- (-4 *6 (-288)) (-5 *2 (-398 *3)) (-5 *1 (-677 *4 *5 *6 *3))
- (-4 *3 (-888 (-891 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-739))
- (-4 *5 (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $))))) (-4 *6 (-520))
- (-5 *2 (-398 *3)) (-5 *1 (-679 *4 *5 *6 *3))
- (-4 *3 (-888 (-387 (-891 *6)) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-13 (-288) (-140)))
- (-5 *2 (-398 *3)) (-5 *1 (-680 *4 *5 *6 *3))
- (-4 *3 (-888 (-387 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-793)) (-4 *5 (-739)) (-4 *6 (-13 (-288) (-140)))
- (-5 *2 (-398 *3)) (-5 *1 (-688 *4 *5 *6 *3))
- (-4 *3 (-888 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-793)) (-4 *5 (-739)) (-4 *6 (-13 (-288) (-140)))
- (-4 *7 (-888 *6 *5 *4)) (-5 *2 (-398 (-1091 *7)))
- (-5 *1 (-688 *4 *5 *6 *7)) (-5 *3 (-1091 *7))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-398 *3)) (-5 *1 (-943 *3))
- (-4 *3 (-1153 (-387 (-528))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-398 *3)) (-5 *1 (-975 *3))
- (-4 *3 (-1153 (-387 (-891 (-528)))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1153 (-387 (-528))))
- (-4 *5 (-13 (-343) (-140) (-671 (-387 (-528)) *4)))
- (-5 *2 (-398 *3)) (-5 *1 (-1005 *4 *5 *3)) (-4 *3 (-1153 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1153 (-387 (-891 (-528)))))
- (-4 *5 (-13 (-343) (-140) (-671 (-387 (-891 (-528))) *4)))
- (-5 *2 (-398 *3)) (-5 *1 (-1007 *4 *5 *3)) (-4 *3 (-1153 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-431))
- (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-398 (-1091 (-387 *7))))
- (-5 *1 (-1090 *4 *5 *6 *7)) (-5 *3 (-1091 (-387 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-398 *1)) (-4 *1 (-1135))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-398 *3)) (-5 *1 (-1142 *3)) (-4 *3 (-1153 (-528))))))
-(((*1 *1 *1 *1) (-4 *1 (-610))) ((*1 *1 *1 *1) (-5 *1 (-1042))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-528)) (-5 *5 (-635 (-207)))
- (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305)))) (-5 *3 (-207))
- (-5 *2 (-970)) (-5 *1 (-695)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-981)) (-5 *2 (-1177 *3)) (-5 *1 (-659 *3 *4))
- (-4 *4 (-1153 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-981)) (-5 *1 (-636 *3)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-110)) (-5 *5 (-1025 (-717))) (-5 *6 (-717))
- (-5 *2
- (-2 (|:| |contp| (-528))
- (|:| -2783 (-595 (-2 (|:| |irr| *3) (|:| -2842 (-528)))))))
- (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 (-528))) (-4 *3 (-981)) (-5 *1 (-96 *3))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-981)) (-5 *1 (-96 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-981)) (-5 *1 (-96 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-860)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-860)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))))
-(((*1 *2 *2) (-12 (-5 *2 (-595 (-296 (-207)))) (-5 *1 (-248)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-568 *4)) (-5 *1 (-567 *3 *4)) (-4 *3 (-793))
- (-4 *4 (-793)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-842 *3)) (-4 *3 (-1023)) (-5 *2 (-1025 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1023)) (-5 *2 (-1025 (-595 *4))) (-5 *1 (-843 *4))
- (-5 *3 (-595 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1023)) (-5 *2 (-1025 (-1025 *4))) (-5 *1 (-843 *4))
- (-5 *3 (-1025 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *2 (-1025 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-528)) (-5 *5 (-635 (-207))) (-5 *4 (-207))
- (-5 *2 (-970)) (-5 *1 (-703)))))
-(((*1 *1 *1 *1) (-4 *1 (-610))) ((*1 *1 *1 *1) (-5 *1 (-1042))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-860)) (-5 *4 (-398 *6)) (-4 *6 (-1153 *5))
- (-4 *5 (-981)) (-5 *2 (-595 *6)) (-5 *1 (-423 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1023)) (-4 *3 (-839 *5)) (-5 *2 (-635 *3))
- (-5 *1 (-638 *5 *3 *6 *4)) (-4 *6 (-353 *3))
- (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4264)))))))
-(((*1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))))
-(((*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-1078)) (-5 *1 (-51)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-5 *2 (-717)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-397 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-431))
- (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *1 (-914 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-398 *3)) (-5 *1 (-853 *3)) (-4 *3 (-288)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 *4)) (-4 *4 (-1023)) (-5 *2 (-1182))
- (-5 *1 (-1132 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-595 *4)) (-4 *4 (-1023)) (-5 *2 (-1182))
- (-5 *1 (-1132 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-261))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-904 *3)) (-4 *3 (-905)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-882 *3)) (-4 *3 (-13 (-343) (-1117) (-938)))
- (-5 *1 (-165 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-913 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520))
- (-5 *2 (-110)))))
-(((*1 *2)
- (-12 (-4 *1 (-329))
- (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-717)))))
-(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1131))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-891 (-359))) (-5 *1 (-319 *3 *4 *5))
- (-4 *5 (-972 (-359))) (-14 *3 (-595 (-1095)))
- (-14 *4 (-595 (-1095))) (-4 *5 (-367))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-387 (-891 (-359)))) (-5 *1 (-319 *3 *4 *5))
- (-4 *5 (-972 (-359))) (-14 *3 (-595 (-1095)))
- (-14 *4 (-595 (-1095))) (-4 *5 (-367))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-296 (-359))) (-5 *1 (-319 *3 *4 *5))
- (-4 *5 (-972 (-359))) (-14 *3 (-595 (-1095)))
- (-14 *4 (-595 (-1095))) (-4 *5 (-367))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-891 (-528))) (-5 *1 (-319 *3 *4 *5))
- (-4 *5 (-972 (-528))) (-14 *3 (-595 (-1095)))
- (-14 *4 (-595 (-1095))) (-4 *5 (-367))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-387 (-891 (-528)))) (-5 *1 (-319 *3 *4 *5))
- (-4 *5 (-972 (-528))) (-14 *3 (-595 (-1095)))
- (-14 *4 (-595 (-1095))) (-4 *5 (-367))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-296 (-528))) (-5 *1 (-319 *3 *4 *5))
- (-4 *5 (-972 (-528))) (-14 *3 (-595 (-1095)))
- (-14 *4 (-595 (-1095))) (-4 *5 (-367))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1095)) (-5 *1 (-319 *3 *4 *5)) (-14 *3 (-595 *2))
- (-14 *4 (-595 *2)) (-4 *5 (-367))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-296 *5)) (-4 *5 (-367)) (-5 *1 (-319 *3 *4 *5))
- (-14 *3 (-595 (-1095))) (-14 *4 (-595 (-1095)))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 (-387 (-891 (-528))))) (-4 *1 (-364))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 (-387 (-891 (-359))))) (-4 *1 (-364))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 (-891 (-528)))) (-4 *1 (-364))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 (-891 (-359)))) (-4 *1 (-364))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 (-296 (-528)))) (-4 *1 (-364))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 (-296 (-359)))) (-4 *1 (-364))))
- ((*1 *1 *2) (-12 (-5 *2 (-387 (-891 (-528)))) (-4 *1 (-376))))
- ((*1 *1 *2) (-12 (-5 *2 (-387 (-891 (-359)))) (-4 *1 (-376))))
- ((*1 *1 *2) (-12 (-5 *2 (-891 (-528))) (-4 *1 (-376))))
- ((*1 *1 *2) (-12 (-5 *2 (-891 (-359))) (-4 *1 (-376))))
- ((*1 *1 *2) (-12 (-5 *2 (-296 (-528))) (-4 *1 (-376))))
- ((*1 *1 *2) (-12 (-5 *2 (-296 (-359))) (-4 *1 (-376))))
- ((*1 *1 *2) (-12 (-5 *2 (-1177 (-387 (-891 (-528))))) (-4 *1 (-420))))
- ((*1 *1 *2) (-12 (-5 *2 (-1177 (-387 (-891 (-359))))) (-4 *1 (-420))))
- ((*1 *1 *2) (-12 (-5 *2 (-1177 (-891 (-528)))) (-4 *1 (-420))))
- ((*1 *1 *2) (-12 (-5 *2 (-1177 (-891 (-359)))) (-4 *1 (-420))))
- ((*1 *1 *2) (-12 (-5 *2 (-1177 (-296 (-528)))) (-4 *1 (-420))))
- ((*1 *1 *2) (-12 (-5 *2 (-1177 (-296 (-359)))) (-4 *1 (-420))))
+ (-5 *2 (-2 (|:| |polnum| (-729 *3)) (|:| |polden| *3) (|:| -3755 (-719))))
+ (-5 *1 (-729 *3)) (-4 *3 (-984))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3755 (-719))))
+ (-4 *1 (-997 *3 *4 *5)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-50)) (-5 *1 (-51 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-887 (-359))) (-5 *1 (-320 *3 *4 *5))
+ (-4 *5 (-975 (-359))) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098)))
+ (-4 *5 (-368))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-388 (-887 (-359)))) (-5 *1 (-320 *3 *4 *5))
+ (-4 *5 (-975 (-359))) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098)))
+ (-4 *5 (-368))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-295 (-359))) (-5 *1 (-320 *3 *4 *5))
+ (-4 *5 (-975 (-359))) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098)))
+ (-4 *5 (-368))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-887 (-516))) (-5 *1 (-320 *3 *4 *5))
+ (-4 *5 (-975 (-516))) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098)))
+ (-4 *5 (-368))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-388 (-887 (-516)))) (-5 *1 (-320 *3 *4 *5))
+ (-4 *5 (-975 (-516))) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098)))
+ (-4 *5 (-368))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-295 (-516))) (-5 *1 (-320 *3 *4 *5))
+ (-4 *5 (-975 (-516))) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098)))
+ (-4 *5 (-368))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1098)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-594 *2))
+ (-14 *4 (-594 *2)) (-4 *5 (-368))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-295 *5)) (-4 *5 (-368)) (-5 *1 (-320 *3 *4 *5))
+ (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098)))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-637 (-388 (-887 (-516))))) (-4 *1 (-366))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-637 (-388 (-887 (-359))))) (-4 *1 (-366))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-887 (-516)))) (-4 *1 (-366))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-887 (-359)))) (-4 *1 (-366))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-295 (-516)))) (-4 *1 (-366))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-295 (-359)))) (-4 *1 (-366))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-887 (-516)))) (-4 *1 (-378))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-887 (-359)))) (-4 *1 (-378))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-887 (-516))) (-4 *1 (-378))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-887 (-359))) (-4 *1 (-378))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-295 (-516))) (-4 *1 (-378))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-295 (-359))) (-4 *1 (-378))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1179 (-388 (-887 (-516))))) (-4 *1 (-421))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1179 (-388 (-887 (-359))))) (-4 *1 (-421))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-1179 (-887 (-516)))) (-4 *1 (-421))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-1179 (-887 (-359)))) (-4 *1 (-421))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-1179 (-295 (-516)))) (-4 *1 (-421))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-1179 (-295 (-359)))) (-4 *1 (-421))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-331)) (-4 *5 (-310 *4)) (-4 *6 (-1155 *5))
+ (-5 *2 (-1092 (-1092 *4))) (-5 *1 (-725 *4 *5 *6 *3 *7)) (-4 *3 (-1155 *6))
+ (-14 *7 (-860))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-984))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-4 *1 (-916 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-975 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *2)
+ (|partial| -3810
+ (-12 (-5 *2 (-887 *3))
+ (-12 (-3595 (-4 *3 (-37 (-388 (-516))))) (-3595 (-4 *3 (-37 (-516))))
+ (-4 *5 (-572 (-1098))))
+ (-4 *3 (-984)) (-4 *1 (-997 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795)))
+ (-12 (-5 *2 (-887 *3))
+ (-12 (-3595 (-4 *3 (-515))) (-3595 (-4 *3 (-37 (-388 (-516)))))
+ (-4 *3 (-37 (-516))) (-4 *5 (-572 (-1098))))
+ (-4 *3 (-984)) (-4 *1 (-997 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795)))
+ (-12 (-5 *2 (-887 *3))
+ (-12 (-3595 (-4 *3 (-931 (-516)))) (-4 *3 (-37 (-388 (-516))))
+ (-4 *5 (-572 (-1098))))
+ (-4 *3 (-984)) (-4 *1 (-997 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795)))))
+ ((*1 *1 *2)
+ (|partial| -3810
+ (-12 (-5 *2 (-887 (-516))) (-4 *1 (-997 *3 *4 *5))
+ (-12 (-3595 (-4 *3 (-37 (-388 (-516))))) (-4 *3 (-37 (-516)))
+ (-4 *5 (-572 (-1098))))
+ (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)))
+ (-12 (-5 *2 (-887 (-516))) (-4 *1 (-997 *3 *4 *5))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *5 (-572 (-1098)))) (-4 *3 (-984))
+ (-4 *4 (-741)) (-4 *5 (-795)))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-887 (-388 (-516)))) (-4 *1 (-997 *3 *4 *5))
+ (-4 *3 (-37 (-388 (-516)))) (-4 *5 (-572 (-1098))) (-4 *3 (-984))
+ (-4 *4 (-741)) (-4 *5 (-795)))))
+(((*1 *2 *3) (-12 (-5 *3 (-50)) (-5 *1 (-51 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-887 (-359))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-359)))
+ (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098))) (-4 *5 (-368))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-388 (-887 (-359)))) (-5 *1 (-320 *3 *4 *5))
+ (-4 *5 (-975 (-359))) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098)))
+ (-4 *5 (-368))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-295 (-359))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-359)))
+ (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098))) (-4 *5 (-368))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-887 (-516))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-516)))
+ (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098))) (-4 *5 (-368))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-388 (-887 (-516)))) (-5 *1 (-320 *3 *4 *5))
+ (-4 *5 (-975 (-516))) (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098)))
+ (-4 *5 (-368))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-295 (-516))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-516)))
+ (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098))) (-4 *5 (-368))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1098)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-594 *2))
+ (-14 *4 (-594 *2)) (-4 *5 (-368))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-295 *5)) (-4 *5 (-368)) (-5 *1 (-320 *3 *4 *5))
+ (-14 *3 (-594 (-1098))) (-14 *4 (-594 (-1098)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-388 (-887 (-516))))) (-4 *1 (-366))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-388 (-887 (-359))))) (-4 *1 (-366))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-887 (-516)))) (-4 *1 (-366))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-887 (-359)))) (-4 *1 (-366))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-295 (-516)))) (-4 *1 (-366))))
+ ((*1 *1 *2) (-12 (-5 *2 (-637 (-295 (-359)))) (-4 *1 (-366))))
+ ((*1 *1 *2) (-12 (-5 *2 (-388 (-887 (-516)))) (-4 *1 (-378))))
+ ((*1 *1 *2) (-12 (-5 *2 (-388 (-887 (-359)))) (-4 *1 (-378))))
+ ((*1 *1 *2) (-12 (-5 *2 (-887 (-516))) (-4 *1 (-378))))
+ ((*1 *1 *2) (-12 (-5 *2 (-887 (-359))) (-4 *1 (-378))))
+ ((*1 *1 *2) (-12 (-5 *2 (-295 (-516))) (-4 *1 (-378))))
+ ((*1 *1 *2) (-12 (-5 *2 (-295 (-359))) (-4 *1 (-378))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179 (-388 (-887 (-516))))) (-4 *1 (-421))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179 (-388 (-887 (-359))))) (-4 *1 (-421))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179 (-887 (-516)))) (-4 *1 (-421))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179 (-887 (-359)))) (-4 *1 (-421))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179 (-295 (-516)))) (-4 *1 (-421))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179 (-295 (-359)))) (-4 *1 (-421))))
((*1 *2 *1)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207)))
- (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207))
- (|:| |relerr| (-207))))
+ (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208)))
+ (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
(|:| |mdnia|
- (-2 (|:| |fn| (-296 (-207)))
- (|:| -2931 (-595 (-1018 (-786 (-207)))))
- (|:| |abserr| (-207)) (|:| |relerr| (-207))))))
- (-5 *1 (-715))))
+ (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208)))))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))))
+ (-5 *1 (-717))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |xinit| (-207)) (|:| |xend| (-207))
- (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207)))
- (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207)))
- (|:| |abserr| (-207)) (|:| |relerr| (-207))))
- (-5 *1 (-754))))
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208)))
+ (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *1 (-756))))
((*1 *2 *1)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207)))
- (|:| |lb| (-595 (-786 (-207))))
- (|:| |cf| (-595 (-296 (-207))))
- (|:| |ub| (-595 (-786 (-207))))))
+ (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208)))
+ (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208))))
+ (|:| |ub| (-594 (-787 (-208))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-595 (-296 (-207))))
- (|:| -4197 (-595 (-207)))))))
- (-5 *1 (-784))))
+ (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208)))))))
+ (-5 *1 (-786))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |pde| (-595 (-296 (-207))))
+ (-2 (|:| |pde| (-594 (-295 (-208))))
(|:| |constraints|
- (-595
- (-2 (|:| |start| (-207)) (|:| |finish| (-207))
- (|:| |grid| (-717)) (|:| |boundaryType| (-528))
- (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207))))))
- (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078))
- (|:| |tol| (-207))))
- (-5 *1 (-837))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-981))
- (-4 *4 (-739)) (-4 *5 (-793)) (-4 *1 (-913 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-1131))))
- ((*1 *1 *2)
- (-1463
- (-12 (-5 *2 (-891 *3))
- (-12 (-3617 (-4 *3 (-37 (-387 (-528)))))
- (-3617 (-4 *3 (-37 (-528)))) (-4 *5 (-570 (-1095))))
- (-4 *3 (-981)) (-4 *1 (-994 *3 *4 *5)) (-4 *4 (-739))
- (-4 *5 (-793)))
- (-12 (-5 *2 (-891 *3))
- (-12 (-3617 (-4 *3 (-513))) (-3617 (-4 *3 (-37 (-387 (-528)))))
- (-4 *3 (-37 (-528))) (-4 *5 (-570 (-1095))))
- (-4 *3 (-981)) (-4 *1 (-994 *3 *4 *5)) (-4 *4 (-739))
- (-4 *5 (-793)))
- (-12 (-5 *2 (-891 *3))
- (-12 (-3617 (-4 *3 (-929 (-528)))) (-4 *3 (-37 (-387 (-528))))
- (-4 *5 (-570 (-1095))))
- (-4 *3 (-981)) (-4 *1 (-994 *3 *4 *5)) (-4 *4 (-739))
- (-4 *5 (-793)))))
- ((*1 *1 *2)
- (-1463
- (-12 (-5 *2 (-891 (-528))) (-4 *1 (-994 *3 *4 *5))
- (-12 (-3617 (-4 *3 (-37 (-387 (-528))))) (-4 *3 (-37 (-528)))
- (-4 *5 (-570 (-1095))))
- (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)))
- (-12 (-5 *2 (-891 (-528))) (-4 *1 (-994 *3 *4 *5))
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *5 (-570 (-1095))))
- (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-891 (-387 (-528)))) (-4 *1 (-994 *3 *4 *5))
- (-4 *3 (-37 (-387 (-528)))) (-4 *5 (-570 (-1095))) (-4 *3 (-981))
- (-4 *4 (-739)) (-4 *5 (-793)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4264)) (-4 *1 (-467 *3)) (-4 *3 (-1131))
- (-4 *3 (-1023)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-844 *4)) (-4 *4 (-1023)) (-5 *2 (-110))
- (-5 *1 (-843 *4))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-860)) (-5 *2 (-110)) (-5 *1 (-1024 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2) (-12 (-5 *2 (-595 *3)) (-5 *1 (-1009 *3)) (-4 *3 (-129)))))
-(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-112)))
- ((*1 *1 *1) (-5 *1 (-161))) ((*1 *1 *1) (-4 *1 (-513)))
- ((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1023))))
- ((*1 *1 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-981))))
+ (-594
+ (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719))
+ (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208)))
+ (|:| |dFinish| (-637 (-208))))))
+ (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081))
+ (|:| |tol| (-208))))
+ (-5 *1 (-839))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *1 (-916 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-975 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *2)
+ (-3810
+ (-12 (-5 *2 (-887 *3))
+ (-12 (-3595 (-4 *3 (-37 (-388 (-516))))) (-3595 (-4 *3 (-37 (-516))))
+ (-4 *5 (-572 (-1098))))
+ (-4 *3 (-984)) (-4 *1 (-997 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795)))
+ (-12 (-5 *2 (-887 *3))
+ (-12 (-3595 (-4 *3 (-515))) (-3595 (-4 *3 (-37 (-388 (-516)))))
+ (-4 *3 (-37 (-516))) (-4 *5 (-572 (-1098))))
+ (-4 *3 (-984)) (-4 *1 (-997 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795)))
+ (-12 (-5 *2 (-887 *3))
+ (-12 (-3595 (-4 *3 (-931 (-516)))) (-4 *3 (-37 (-388 (-516))))
+ (-4 *5 (-572 (-1098))))
+ (-4 *3 (-984)) (-4 *1 (-997 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795)))))
+ ((*1 *1 *2)
+ (-3810
+ (-12 (-5 *2 (-887 (-516))) (-4 *1 (-997 *3 *4 *5))
+ (-12 (-3595 (-4 *3 (-37 (-388 (-516))))) (-4 *3 (-37 (-516)))
+ (-4 *5 (-572 (-1098))))
+ (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)))
+ (-12 (-5 *2 (-887 (-516))) (-4 *1 (-997 *3 *4 *5))
+ (-12 (-4 *3 (-37 (-388 (-516)))) (-4 *5 (-572 (-1098)))) (-4 *3 (-984))
+ (-4 *4 (-741)) (-4 *5 (-795)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-887 (-388 (-516)))) (-4 *1 (-997 *3 *4 *5))
+ (-4 *3 (-37 (-388 (-516)))) (-4 *5 (-572 (-1098))) (-4 *3 (-984))
+ (-4 *4 (-741)) (-4 *5 (-795)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-4 *2 (-523)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-4 *2 (-523)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-4 *2 (-523))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-4 *2 (-523)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-4 *2 (-523))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-4 *2 (-523)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -3419 (-729 *3)) (|:| |coef1| (-729 *3)) (|:| |coef2| (-729 *3))))
+ (-5 *1 (-729 *3)) (-4 *3 (-523)) (-4 *3 (-984))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-523)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-2 (|:| -3419 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-997 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3419 (-729 *3)) (|:| |coef1| (-729 *3))))
+ (-5 *1 (-729 *3)) (-4 *3 (-523)) (-4 *3 (-984))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-523)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-2 (|:| -3419 *1) (|:| |coef1| *1))) (-4 *1 (-997 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3419 (-729 *3)) (|:| |coef2| (-729 *3))))
+ (-5 *1 (-729 *3)) (-4 *3 (-523)) (-4 *3 (-984))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-523)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-2 (|:| -3419 *1) (|:| |coef2| *1))) (-4 *1 (-997 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-523)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-594 *1)) (-4 *1 (-997 *3 *4 *5)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-719)) (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *3 (-523)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-719)) (-4 *1 (-997 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *3 (-523)))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-4 *2 (-523)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 *1)) (-4 *1 (-432))))
+ ((*1 *1 *1 *1) (-4 *1 (-432)))
+ ((*1 *2 *3) (-12 (-5 *3 (-594 *2)) (-5 *1 (-465 *2)) (-4 *2 (-1155 (-516)))))
+ ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-516)) (-5 *1 (-644 *2)) (-4 *2 (-1155 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-719)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-289)) (-5 *1 (-857 *3 *4 *5 *2))
+ (-4 *2 (-891 *5 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 *2)) (-4 *2 (-891 *6 *4 *5)) (-5 *1 (-857 *4 *5 *6 *2))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1092 *6)) (-4 *6 (-891 *5 *3 *4)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-4 *5 (-289)) (-5 *1 (-857 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-1092 *7))) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289))
+ (-5 *2 (-1092 *7)) (-5 *1 (-857 *4 *5 *6 *7)) (-4 *7 (-891 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-860)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-432)) (-4 *3 (-523)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1155 *3))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-4 *2 (-432)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-4 *2 (-432)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-4 *2 (-432)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-4 *2 (-432)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-997 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-4 *2 (-432)))))
+(((*1 *1) (-5 *1 (-995))))
+(((*1 *1 *1) (-5 *1 (-995))))
+(((*1 *1 *1) (-5 *1 (-995))))
+(((*1 *1 *1) (-5 *1 (-995))))
+(((*1 *1 *1) (-5 *1 (-995))))
+(((*1 *1 *1) (-5 *1 (-995))))
+(((*1 *1 *1) (-5 *1 (-995))))
+(((*1 *1 *1) (-5 *1 (-995))))
+(((*1 *1 *1) (-5 *1 (-995))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-359)) (-5 *1 (-995)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-359)) (-5 *1 (-995)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-359)) (-5 *1 (-995)))))
+(((*1 *2 *1 *3) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-995)) (-5 *3 (-1081)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-995)))))
+(((*1 *1) (-5 *1 (-995))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1081)) (-5 *3 (-516)) (-5 *1 (-995)))))
+(((*1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-994))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-994)))))
+(((*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1) (-5 *1 (-805)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-805))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-993 *2 *3)) (-4 *3 (-1155 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1) (-5 *1 (-805)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-805))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-993 *2 *3)) (-4 *3 (-1155 *2)))))
+(((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1134)) (-5 *2 (-719)) (-5 *1 (-220 *3 *4 *5))
+ (-4 *3 (-221 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-128)) (-5 *2 (-719))))
+ ((*1 *2)
+ (-12 (-4 *4 (-344)) (-5 *2 (-719)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-342 *3)) (-4 *3 (-1027))))
+ ((*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-367 *3)) (-4 *3 (-1027))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1027)) (-5 *2 (-719)) (-5 *1 (-406 *3 *4)) (-4 *3 (-407 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-719)) (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)) (-4 *4 (-23))
+ (-14 *5 *4)))
+ ((*1 *2)
+ (-12 (-4 *4 (-162)) (-4 *5 (-1155 *4)) (-5 *2 (-719)) (-5 *1 (-672 *3 *4 *5))
+ (-4 *3 (-673 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-767 *3)) (-4 *3 (-795))))
+ ((*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-945))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-993 *2 *3)) (-4 *3 (-1155 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-993 *2 *3)) (-4 *3 (-1155 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-386 *4) *4)) (-4 *4 (-523)) (-5 *2 (-386 *4))
+ (-5 *1 (-400 *4))))
+ ((*1 *1 *1) (-5 *1 (-866)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1017 (-208))) (-5 *1 (-866))))
+ ((*1 *1 *1) (-5 *1 (-868)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1017 (-208))) (-5 *1 (-868))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))
+ (-5 *4 (-388 (-516))) (-5 *1 (-959 *3)) (-4 *3 (-1155 (-516)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))
+ (-5 *1 (-959 *3)) (-4 *3 (-1155 (-516)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))
+ (-5 *4 (-388 (-516))) (-5 *1 (-960 *3)) (-4 *3 (-1155 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))
+ (-5 *1 (-960 *3)) (-4 *3 (-1155 (-388 (-516))))))
((*1 *1 *1)
- (-12 (-5 *1 (-1060 *2 *3)) (-4 *2 (-13 (-1023) (-33)))
- (-4 *3 (-13 (-1023) (-33))))))
-(((*1 *1 *1 *1) (-4 *1 (-452))) ((*1 *1 *1 *1) (-4 *1 (-708))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-1168 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-859)) (-5 *2 (-2 (|:| -1641 (-595 *1)) (|:| -1261 *1)))
- (-5 *3 (-595 *1)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-568 *1)) (-4 *1 (-410 *4)) (-4 *4 (-793))
- (-4 *4 (-520)) (-5 *2 (-387 (-1091 *1)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-568 *3)) (-4 *3 (-13 (-410 *6) (-27) (-1117)))
- (-4 *6 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528))))
- (-5 *2 (-1091 (-387 (-1091 *3)))) (-5 *1 (-524 *6 *3 *7))
- (-5 *5 (-1091 *3)) (-4 *7 (-1023))))
+ (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-993 *2 *3)) (-4 *3 (-1155 *2)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-793) (-344))) (-5 *2 (-110)) (-5 *1 (-993 *4 *3))
+ (-4 *3 (-1155 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-594 (-569 (-47)))) (-5 *1 (-47))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-569 (-47))) (-5 *1 (-47))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1092 (-47))) (-5 *3 (-594 (-569 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-1092 (-47))) (-5 *3 (-569 (-47))) (-5 *1 (-47))))
+ ((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3))
+ (-4 *3 (-1155 (-158 *2)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-860)) (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349))))
+ ((*1 *2 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-344))))
+ ((*1 *2 *1) (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1155 *2)) (-4 *2 (-162))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1155 *2)) (-4 *2 (-931 *3)) (-5 *1 (-394 *3 *2 *4 *5))
+ (-4 *3 (-289)) (-4 *5 (-13 (-391 *2 *4) (-975 *2)))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1155 *2)) (-4 *2 (-931 *3)) (-5 *1 (-396 *3 *2 *4 *5 *6))
+ (-4 *3 (-289)) (-4 *5 (-391 *2 *4)) (-14 *6 (-1179 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1173 *5)) (-14 *5 (-1095)) (-4 *6 (-981))
- (-5 *2 (-1150 *5 (-891 *6))) (-5 *1 (-886 *5 *6)) (-5 *3 (-891 *6))))
+ (-12 (-5 *4 (-860)) (-4 *5 (-984))
+ (-4 *2 (-13 (-385) (-975 *5) (-344) (-1120) (-266))) (-5 *1 (-423 *5 *3 *2))
+ (-4 *3 (-1155 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-594 (-569 (-473)))) (-5 *1 (-473))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-569 (-473))) (-5 *1 (-473))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1092 (-473))) (-5 *3 (-594 (-569 (-473)))) (-5 *1 (-473))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1092 (-473))) (-5 *3 (-569 (-473))) (-5 *1 (-473))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1179 *4)) (-5 *3 (-860)) (-4 *4 (-331)) (-5 *1 (-500 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-673 *4 *2)) (-4 *2 (-1155 *4))
+ (-5 *1 (-723 *4 *2 *5 *3)) (-4 *3 (-1155 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162))))
+ ((*1 *2 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-162))))
+ ((*1 *1 *1) (-4 *1 (-992))))
+(((*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-523)) (-4 *2 (-515))))
+ ((*1 *1 *1) (-4 *1 (-992))))
+(((*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-523)) (-4 *2 (-515))))
+ ((*1 *1 *1) (-4 *1 (-992))))
+(((*1 *2 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289))))
+ ((*1 *2 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289))))
+ ((*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-523)) (-4 *2 (-289))))
+ ((*1 *2 *1) (-12 (-4 *1 (-992)) (-5 *2 (-516)))))
+(((*1 *2 *1) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-105))))
+ ((*1 *2 *1) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-201))))
+ ((*1 *2 *1) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-466))))
+ ((*1 *1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-523)) (-4 *2 (-289))))
+ ((*1 *2 *1) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-943 *3)) (-14 *3 (-516))))
+ ((*1 *1 *1) (-4 *1 (-992))))
+(((*1 *1 *1) (-4 *1 (-992))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-719)) (-5 *1 (-155 *3 *4)) (-4 *3 (-156 *4))))
+ ((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1134)) (-5 *2 (-719)) (-5 *1 (-220 *3 *4 *5))
+ (-4 *3 (-221 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-795)) (-5 *2 (-719)) (-5 *1 (-401 *3 *4)) (-4 *3 (-402 *4))))
+ ((*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-514 *3)) (-4 *3 (-515))))
+ ((*1 *2) (-12 (-4 *1 (-712)) (-5 *2 (-719))))
+ ((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-719)) (-5 *1 (-743 *3 *4)) (-4 *3 (-744 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-523)) (-5 *2 (-719)) (-5 *1 (-930 *3 *4)) (-4 *3 (-931 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-719)) (-5 *1 (-936 *3 *4)) (-4 *3 (-937 *4))))
+ ((*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-950 *3)) (-4 *3 (-951))))
+ ((*1 *2) (-12 (-4 *1 (-984)) (-5 *2 (-719))))
+ ((*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-991 *3)) (-4 *3 (-992)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-637 *5)) (-4 *5 (-984)) (-5 *1 (-987 *3 *4 *5)) (-14 *3 (-719))
+ (-14 *4 (-719)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-594 (-594 *3))) (-4 *3 (-984)) (-4 *1 (-634 *3 *4 *5))
+ (-4 *4 (-353 *3)) (-4 *5 (-353 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 (-594 (-805)))) (-5 *1 (-805))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1065 *3 *4)) (-5 *1 (-933 *3 *4)) (-14 *3 (-860))
+ (-4 *4 (-344))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-594 (-594 *5))) (-4 *5 (-984)) (-4 *1 (-986 *3 *4 *5 *6 *7))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5))
+ (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5))
+ (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5))
+ (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5))
+ (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3)) (-5 *2 (-516))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5))
+ (-4 *7 (-221 *3 *5)) (-5 *2 (-516)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3)) (-5 *2 (-516))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5))
+ (-4 *7 (-221 *3 *5)) (-5 *2 (-516)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3)) (-5 *2 (-516))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5))
+ (-4 *7 (-221 *3 *5)) (-5 *2 (-516)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3)) (-5 *2 (-516))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5))
+ (-4 *7 (-221 *3 *5)) (-5 *2 (-516)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3)) (-5 *2 (-719))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5))
+ (-4 *7 (-221 *3 *5)) (-5 *2 (-719)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3)) (-5 *2 (-719))))
((*1 *2 *1)
- (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *5 (-793)) (-5 *2 (-1091 *3))))
+ (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5))
+ (-4 *7 (-221 *3 *5)) (-5 *2 (-719)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-516)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-353 *2))
+ (-4 *5 (-353 *2)) (-4 *2 (-1134))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1134))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-516)) (-4 *1 (-986 *4 *5 *2 *6 *7)) (-4 *6 (-221 *5 *2))
+ (-4 *7 (-221 *4 *2)) (-4 *2 (-984)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-516)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1134)) (-4 *5 (-353 *4))
+ (-4 *2 (-353 *4))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-981)) (-4 *5 (-739)) (-4 *3 (-793)) (-5 *2 (-1091 *1))
- (-4 *1 (-888 *4 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-739)) (-4 *4 (-793)) (-4 *6 (-981))
- (-4 *7 (-888 *6 *5 *4)) (-5 *2 (-387 (-1091 *3)))
- (-5 *1 (-889 *5 *4 *6 *7 *3))
- (-4 *3
- (-13 (-343)
- (-10 -8 (-15 -2222 ($ *7)) (-15 -3031 (*7 $)) (-15 -3042 (*7 $)))))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1091 *3))
- (-4 *3
- (-13 (-343)
- (-10 -8 (-15 -2222 ($ *7)) (-15 -3031 (*7 $)) (-15 -3042 (*7 $)))))
- (-4 *7 (-888 *6 *5 *4)) (-4 *5 (-739)) (-4 *4 (-793)) (-4 *6 (-981))
- (-5 *1 (-889 *5 *4 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1095)) (-4 *5 (-520))
- (-5 *2 (-387 (-1091 (-387 (-891 *5))))) (-5 *1 (-977 *5))
- (-5 *3 (-387 (-891 *5))))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-288))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1261 *1)))
- (-4 *1 (-288)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-699)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1095))
- (-4 *5 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-545 *3)) (-5 *1 (-406 *5 *3))
- (-4 *3 (-13 (-1117) (-29 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1095)) (-4 *5 (-13 (-520) (-972 (-528)) (-140)))
- (-5 *2 (-545 (-387 (-891 *5)))) (-5 *1 (-534 *5))
- (-5 *3 (-387 (-891 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1131)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-770)) (-5 *3 (-595 (-1095))) (-5 *1 (-771)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-359)) (-5 *3 (-595 (-244))) (-5 *1 (-242))))
- ((*1 *1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-244)))))
-(((*1 *2 *3) (-12 (-5 *3 (-882 *2)) (-5 *1 (-919 *2)) (-4 *2 (-981)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-398 (-1091 *1))) (-5 *1 (-296 *4)) (-5 *3 (-1091 *1))
- (-4 *4 (-431)) (-4 *4 (-520)) (-4 *4 (-793))))
+ (-12 (-5 *3 (-516)) (-4 *1 (-986 *4 *5 *6 *2 *7)) (-4 *6 (-984))
+ (-4 *7 (-221 *4 *6)) (-4 *2 (-221 *5 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-516)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1134)) (-4 *5 (-353 *4))
+ (-4 *2 (-353 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-516)) (-4 *1 (-986 *4 *5 *6 *7 *2)) (-4 *6 (-984))
+ (-4 *7 (-221 *5 *6)) (-4 *2 (-221 *4 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-344)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3))
+ (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-634 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-4 *1 (-848)) (-5 *2 (-398 (-1091 *1))) (-5 *3 (-1091 *1)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-860)) (-4 *5 (-288)) (-4 *3 (-1153 *5))
- (-5 *2 (-2 (|:| |plist| (-595 *3)) (|:| |modulo| *5)))
- (-5 *1 (-439 *5 *3)) (-5 *4 (-595 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-720)) (-5 *1 (-51)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-3 (-2 (|:| -1497 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-595 (-387 *8))) (-4 *7 (-343)) (-4 *8 (-1153 *7))
- (-5 *3 (-387 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-595 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-538 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-595 (-568 *1))) (-4 *1 (-283)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-717)) (-5 *1 (-799 *2)) (-4 *2 (-162))))
- ((*1 *2 *3 *3 *2)
- (-12 (-5 *3 (-717)) (-5 *1 (-799 *2)) (-4 *2 (-162)))))
-(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-981)) (-4 *3 (-738))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-981)) (-14 *3 (-595 (-1095)))))
+ (-12 (-4 *4 (-523)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-4 *7 (-931 *4))
+ (-4 *2 (-634 *7 *8 *9)) (-5 *1 (-498 *4 *5 *6 *3 *7 *8 *9 *2))
+ (-4 *3 (-634 *4 *5 *6)) (-4 *8 (-353 *7)) (-4 *9 (-353 *7))))
((*1 *1 *1)
- (-12 (-5 *1 (-205 *2 *3)) (-4 *2 (-13 (-981) (-793)))
- (-14 *3 (-595 (-1095)))))
- ((*1 *1 *1) (-12 (-4 *1 (-362 *2 *3)) (-4 *2 (-981)) (-4 *3 (-1023))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-595 (-1095))) (-4 *3 (-162))
- (-4 *5 (-220 (-2138 *2) (-717)))
- (-14 *6
- (-1 (-110) (-2 (|:| -3108 *4) (|:| -2564 *5))
- (-2 (|:| -3108 *4) (|:| -2564 *5))))
- (-5 *1 (-440 *2 *3 *4 *5 *6 *7)) (-4 *4 (-793))
- (-4 *7 (-888 *3 *5 (-804 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-793))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-520)) (-5 *1 (-576 *2 *3)) (-4 *3 (-1153 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-655 *2)) (-4 *2 (-981))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-682 *2 *3)) (-4 *3 (-793)) (-4 *2 (-981))
- (-4 *3 (-673))))
- ((*1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-994 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *2 (-793))))
- ((*1 *1 *1) (-12 (-5 *1 (-1198 *2 *3)) (-4 *2 (-981)) (-4 *3 (-789)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3))))
+ (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2))
+ (-4 *4 (-353 *2)) (-4 *2 (-289))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-289)) (-4 *3 (-162)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3))
+ (-5 *1 (-636 *3 *4 *5 *2)) (-4 *2 (-634 *3 *4 *5))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-981)) (-14 *3 (-1095))
- (-14 *4 *2))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-528)) (-5 *1 (-359)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1091 *4)) (-4 *4 (-329)) (-5 *2 (-896 (-1042)))
- (-5 *1 (-326 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 *3)) (-4 *3 (-1032 *5 *6 *7 *8))
- (-4 *5 (-13 (-288) (-140))) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *8 (-994 *5 *6 *7)) (-5 *2 (-110))
- (-5 *1 (-550 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 *2)) (-4 *2 (-410 *4)) (-5 *1 (-149 *4 *2))
- (-4 *4 (-13 (-793) (-520))))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-528)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1131))
- (-4 *4 (-353 *2)) (-4 *5 (-353 *2))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4265)) (-4 *1 (-117 *3))
- (-4 *3 (-1131))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4265)) (-4 *1 (-117 *3))
- (-4 *3 (-1131))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4265)) (-4 *1 (-269 *3 *2)) (-4 *3 (-1023))
- (-4 *2 (-1131))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1095)) (-5 *1 (-584))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1144 (-528))) (|has| *1 (-6 -4265)) (-4 *1 (-600 *2))
- (-4 *2 (-1131))))
- ((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-595 (-528))) (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981))
- (-4 *4 (-353 *3)) (-4 *5 (-353 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4265)) (-4 *1 (-946 *2))
- (-4 *2 (-1131))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-1131))))
- ((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-1108 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1023))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4265)) (-4 *1 (-1165 *2))
- (-4 *2 (-1131))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4265)) (-4 *1 (-1165 *3))
- (-4 *3 (-1131))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4265)) (-4 *1 (-1165 *2))
- (-4 *2 (-1131)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-882 *3)) (-4 *3 (-13 (-343) (-1117) (-938)))
- (-5 *1 (-165 *3)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-431)) (-4 *3 (-739)) (-4 *5 (-793)) (-5 *2 (-110))
- (-5 *1 (-428 *4 *3 *5 *6)) (-4 *6 (-888 *4 *3 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1078)) (-4 *1 (-344 *2 *4)) (-4 *2 (-1023))
- (-4 *4 (-1023))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1023)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-597 *3)) (-4 *3 (-981))
- (-5 *1 (-661 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-981)) (-5 *1 (-780 *3)))))
+ (-12 (-4 *1 (-986 *2 *3 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4))
+ (-4 *6 (-221 *2 *4)) (-4 *4 (-289)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-595 *1))
- (-4 *1 (-888 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7))
- (-5 *2 (-595 (-2 (|:| |val| *3) (|:| -2316 *4))))
- (-5 *1 (-1000 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))))
-(((*1 *1 *1) (-5 *1 (-207))) ((*1 *1 *1) (-5 *1 (-359)))
- ((*1 *1) (-5 *1 (-359))))
-(((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-882 (-207)) (-207))) (-5 *3 (-1018 (-207)))
- (-5 *1 (-865))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-882 (-207)) (-207))) (-5 *3 (-1018 (-207)))
- (-5 *1 (-865))))
- ((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-882 (-207)) (-207))) (-5 *3 (-1018 (-207)))
- (-5 *1 (-866))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-882 (-207)) (-207))) (-5 *3 (-1018 (-207)))
- (-5 *1 (-866)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-223))))
+ (-12 (-5 *2 (-719)) (-5 *1 (-131 *3 *4 *5)) (-14 *3 (-516)) (-14 *4 *2)
+ (-4 *5 (-162))))
+ ((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-860)) (-5 *1 (-155 *3 *4)) (-4 *3 (-156 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-860))))
+ ((*1 *2)
+ (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1155 *3)) (-5 *2 (-860))))
((*1 *2 *3)
- (-12 (-5 *3 (-595 (-1078))) (-5 *2 (-1182)) (-5 *1 (-223)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-163 *3)) (-4 *3 (-288)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |pde| (-595 (-296 (-207))))
- (|:| |constraints|
- (-595
- (-2 (|:| |start| (-207)) (|:| |finish| (-207))
- (|:| |grid| (-717)) (|:| |boundaryType| (-528))
- (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207))))))
- (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078))
- (|:| |tol| (-207))))
- (-5 *2 (-110)) (-5 *1 (-194)))))
-(((*1 *1) (-5 *1 (-148))))
-(((*1 *2 *1) (-12 (-5 *2 (-1018 (-207))) (-5 *1 (-865))))
- ((*1 *2 *1) (-12 (-5 *2 (-1018 (-207))) (-5 *1 (-866)))))
+ (-12 (-4 *4 (-344)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-5 *2 (-719))
+ (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-634 *4 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-344)) (-4 *6 (-13 (-353 *5) (-10 -7 (-6 -4270))))
+ (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4270)))) (-5 *2 (-719))
+ (-5 *1 (-618 *5 *6 *4 *3)) (-4 *3 (-634 *5 *6 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-344)) (-5 *2 (-719))
+ (-5 *1 (-619 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3)) (-4 *3 (-523)) (-5 *2 (-719))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-4 *4 (-162)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4))
+ (-5 *2 (-719)) (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-634 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5))
+ (-4 *7 (-221 *3 *5)) (-4 *5 (-523)) (-5 *2 (-719)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-520) (-793) (-972 (-528))))
- (-5 *2 (-159 (-296 *4))) (-5 *1 (-172 *4 *3))
- (-4 *3 (-13 (-27) (-1117) (-410 (-159 *4))))))
+ (-12 (-4 *4 (-344)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)) (-5 *2 (-719))
+ (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-634 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3)) (-4 *3 (-523)) (-5 *2 (-719))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-159 *3)) (-5 *1 (-1121 *4 *3))
- (-4 *3 (-13 (-27) (-1117) (-410 *4))))))
+ (-12 (-4 *4 (-523)) (-4 *4 (-162)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4))
+ (-5 *2 (-719)) (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-634 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5))
+ (-4 *7 (-221 *3 *5)) (-4 *5 (-523)) (-5 *2 (-719)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-159 (-359))) (-5 *1 (-731 *3)) (-4 *3 (-570 (-359)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-860)) (-5 *2 (-159 (-359))) (-5 *1 (-731 *3))
- (-4 *3 (-570 (-359)))))
+ (-12 (|has| *6 (-6 -4270)) (-4 *4 (-344)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4))
+ (-5 *2 (-594 *6)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-634 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-159 *4)) (-4 *4 (-162)) (-4 *4 (-570 (-359)))
- (-5 *2 (-159 (-359))) (-5 *1 (-731 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-159 *5)) (-5 *4 (-860)) (-4 *5 (-162))
- (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *5))))
+ (-12 (|has| *9 (-6 -4270)) (-4 *4 (-523)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4))
+ (-4 *7 (-931 *4)) (-4 *8 (-353 *7)) (-4 *9 (-353 *7)) (-5 *2 (-594 *6))
+ (-5 *1 (-498 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-634 *4 *5 *6))
+ (-4 *10 (-634 *7 *8 *9))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3)) (-4 *3 (-523)) (-5 *2 (-594 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-891 (-159 *4))) (-4 *4 (-162)) (-4 *4 (-570 (-359)))
- (-5 *2 (-159 (-359))) (-5 *1 (-731 *4))))
+ (-12 (-4 *4 (-523)) (-4 *4 (-162)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4))
+ (-5 *2 (-594 *6)) (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-634 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-986 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5))
+ (-4 *7 (-221 *3 *5)) (-4 *5 (-523)) (-5 *2 (-594 *7)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-982)))))
+(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-516))) (-5 *1 (-982)))))
+(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-516))) (-5 *1 (-982)))))
+(((*1 *1 *1 *1) (-4 *1 (-136)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-149 *3 *2)) (-4 *2 (-402 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515))))
+ ((*1 *1 *1 *1) (-5 *1 (-805)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-516))) (-5 *1 (-982))
+ (-5 *3 (-516)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1023 *4)) (-4 *4 (-1027)) (-5 *2 (-1 *4)) (-5 *1 (-956 *4))))
+ ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-359))) (-5 *1 (-978)) (-5 *3 (-359))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1017 (-516))) (-5 *2 (-1 (-516))) (-5 *1 (-982)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-388 (-887 *4))) (-4 *4 (-289)) (-5 *2 (-388 (-386 (-887 *4))))
+ (-5 *1 (-980 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-359))) (-5 *1 (-978)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-359))) (-5 *1 (-978)))))
+(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-359))) (-5 *1 (-978)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1160 *3 *4 *5)) (-4 *3 (-13 (-344) (-795))) (-14 *4 (-1098))
+ (-14 *5 *3) (-5 *1 (-300 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-359))) (-5 *1 (-978)) (-5 *3 (-359)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-359))) (-5 *1 (-978)) (-5 *3 (-359)))))
+(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-359)) (-5 *1 (-978)))))
+(((*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-978)))))
+(((*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-978)))))
+(((*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-978)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1092 (-388 (-1092 *2)))) (-5 *4 (-569 *2))
+ (-4 *2 (-13 (-402 *5) (-27) (-1120)))
+ (-4 *5 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516))))
+ (-5 *1 (-527 *5 *2 *6)) (-4 *6 (-1027))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092 *1)) (-4 *1 (-891 *4 *5 *3)) (-4 *4 (-984)) (-4 *5 (-741))
+ (-4 *3 (-795))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092 *4)) (-4 *4 (-984)) (-4 *1 (-891 *4 *5 *3)) (-4 *5 (-741))
+ (-4 *3 (-795))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-891 (-159 *5))) (-5 *4 (-860)) (-4 *5 (-162))
- (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-891 *4)) (-4 *4 (-981)) (-4 *4 (-570 (-359)))
- (-5 *2 (-159 (-359))) (-5 *1 (-731 *4))))
+ (-12 (-5 *3 (-388 (-1092 *2))) (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-984))
+ (-4 *2
+ (-13 (-344)
+ (-10 -8 (-15 -4233 ($ *7)) (-15 -3262 (*7 $)) (-15 -3261 (*7 $)))))
+ (-5 *1 (-892 *5 *4 *6 *7 *2)) (-4 *7 (-891 *6 *5 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-891 *5)) (-5 *4 (-860)) (-4 *5 (-981))
- (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-387 (-891 *4))) (-4 *4 (-520)) (-4 *4 (-570 (-359)))
- (-5 *2 (-159 (-359))) (-5 *1 (-731 *4))))
+ (-12 (-5 *3 (-388 (-1092 (-388 (-887 *5))))) (-5 *4 (-1098))
+ (-5 *2 (-388 (-887 *5))) (-5 *1 (-977 *5)) (-4 *5 (-523)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-569 *1)) (-4 *1 (-402 *4)) (-4 *4 (-795)) (-4 *4 (-523))
+ (-5 *2 (-388 (-1092 *1)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-569 *3)) (-4 *3 (-13 (-402 *6) (-27) (-1120)))
+ (-4 *6 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516))))
+ (-5 *2 (-1092 (-388 (-1092 *3)))) (-5 *1 (-527 *6 *3 *7)) (-5 *5 (-1092 *3))
+ (-4 *7 (-1027))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-387 (-891 *5))) (-5 *4 (-860)) (-4 *5 (-520))
- (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-387 (-891 (-159 *4)))) (-4 *4 (-520))
- (-4 *4 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *4))))
+ (-12 (-5 *4 (-1176 *5)) (-14 *5 (-1098)) (-4 *6 (-984))
+ (-5 *2 (-1148 *5 (-887 *6))) (-5 *1 (-889 *5 *6)) (-5 *3 (-887 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-891 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-1092 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-1092 *1))
+ (-4 *1 (-891 *4 *5 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-387 (-891 (-159 *5)))) (-5 *4 (-860)) (-4 *5 (-520))
- (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-296 *4)) (-4 *4 (-520)) (-4 *4 (-793))
- (-4 *4 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *4))))
+ (-12 (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-984)) (-4 *7 (-891 *6 *5 *4))
+ (-5 *2 (-388 (-1092 *3))) (-5 *1 (-892 *5 *4 *6 *7 *3))
+ (-4 *3
+ (-13 (-344)
+ (-10 -8 (-15 -4233 ($ *7)) (-15 -3262 (*7 $)) (-15 -3261 (*7 $)))))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1092 *3))
+ (-4 *3
+ (-13 (-344)
+ (-10 -8 (-15 -4233 ($ *7)) (-15 -3262 (*7 $)) (-15 -3261 (*7 $)))))
+ (-4 *7 (-891 *6 *5 *4)) (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-984))
+ (-5 *1 (-892 *5 *4 *6 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-296 *5)) (-5 *4 (-860)) (-4 *5 (-520)) (-4 *5 (-793))
- (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *5))))
+ (-12 (-5 *4 (-1098)) (-4 *5 (-523)) (-5 *2 (-388 (-1092 (-388 (-887 *5)))))
+ (-5 *1 (-977 *5)) (-5 *3 (-388 (-887 *5))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-891 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *2 (-795))))
((*1 *2 *3)
- (-12 (-5 *3 (-296 (-159 *4))) (-4 *4 (-520)) (-4 *4 (-793))
- (-4 *4 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-296 (-159 *5))) (-5 *4 (-860)) (-4 *5 (-520))
- (-4 *5 (-793)) (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359)))
- (-5 *1 (-731 *5)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-1112)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1091 (-528))) (-5 *1 (-881)) (-5 *3 (-528)))))
-(((*1 *2)
- (-12 (-5 *2 (-1182)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1023))
- (-4 *4 (-1023)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-981))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-595 (-1091 *7))) (-5 *3 (-1091 *7))
- (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-848)) (-4 *5 (-739))
- (-4 *6 (-793)) (-5 *1 (-845 *4 *5 *6 *7))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-595 (-1091 *5))) (-5 *3 (-1091 *5))
- (-4 *5 (-1153 *4)) (-4 *4 (-848)) (-5 *1 (-846 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-171)))))
+ (|partial| -12 (-4 *4 (-741)) (-4 *5 (-984)) (-4 *6 (-891 *5 *4 *2))
+ (-4 *2 (-795)) (-5 *1 (-892 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-344)
+ (-10 -8 (-15 -4233 ($ *6)) (-15 -3262 (*6 $)) (-15 -3261 (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-388 (-887 *4))) (-4 *4 (-523)) (-5 *2 (-1098))
+ (-5 *1 (-977 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-793)) (-5 *2 (-595 (-595 (-595 *4))))
- (-5 *1 (-1103 *4)) (-5 *3 (-595 (-595 *4))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-431))
- (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *1 (-914 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-595 (-1118 *3))) (-5 *1 (-1118 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-163 (-387 (-528)))) (-5 *1 (-115 *3)) (-14 *3 (-528))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *3 (-1076 *2)) (-4 *2 (-288)) (-5 *1 (-163 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-387 *3)) (-4 *3 (-288)) (-5 *1 (-163 *3))))
+ (-12 (-5 *3 (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208)))))
+ (-5 *2 (-594 (-1098))) (-5 *1 (-249))))
((*1 *2 *3)
- (-12 (-5 *2 (-163 (-528))) (-5 *1 (-712 *3)) (-4 *3 (-384))))
+ (-12 (-5 *3 (-1092 *7)) (-4 *7 (-891 *6 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-984)) (-5 *2 (-594 *5)) (-5 *1 (-302 *4 *5 *6 *7))))
((*1 *2 *1)
- (-12 (-5 *2 (-163 (-387 (-528)))) (-5 *1 (-810 *3)) (-14 *3 (-528))))
+ (-12 (-5 *2 (-594 (-1098))) (-5 *1 (-320 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-368))))
+ ((*1 *2 *1) (-12 (-4 *1 (-402 *3)) (-4 *3 (-795)) (-5 *2 (-594 (-1098)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-594 (-831 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1027))))
((*1 *2 *1)
- (-12 (-14 *3 (-528)) (-5 *2 (-163 (-387 (-528))))
- (-5 *1 (-811 *3 *4)) (-4 *4 (-808 *3)))))
-(((*1 *1 *1) (-4 *1 (-610))) ((*1 *1 *1) (-5 *1 (-1042))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-925 *4 *5 *6 *7 *3))
- (-4 *3 (-999 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-110))
- (-5 *1 (-1030 *4 *5 *6 *7 *3)) (-4 *3 (-999 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359))
- (-5 *2
- (-2 (|:| -3327 *4) (|:| -3817 *4) (|:| |totalpts| (-528))
- (|:| |success| (-110))))
- (-5 *1 (-735)) (-5 *5 (-528)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1023)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-387 (-891 *5)) (-1085 (-1095) (-891 *5))))
- (-4 *5 (-431)) (-5 *2 (-595 (-635 (-387 (-891 *5)))))
- (-5 *1 (-273 *5)) (-5 *4 (-635 (-387 (-891 *5)))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *2)
- (-12 (-4 *3 (-739)) (-4 *4 (-793)) (-4 *2 (-848))
- (-5 *1 (-436 *3 *4 *2 *5)) (-4 *5 (-888 *2 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-739)) (-4 *4 (-793)) (-4 *2 (-848))
- (-5 *1 (-845 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-848)) (-5 *1 (-846 *2 *3)) (-4 *3 (-1153 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1177 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-343))
- (-4 *1 (-671 *5 *6)) (-4 *5 (-162)) (-4 *6 (-1153 *5))
- (-5 *2 (-635 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-387 (-891 *3))) (-5 *1 (-432 *3 *4 *5 *6))
- (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))))
+ (-12 (-4 *1 (-891 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-594 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-4 *7 (-891 *6 *4 *5))
+ (-5 *2 (-594 *5)) (-5 *1 (-892 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-344)
+ (-10 -8 (-15 -4233 ($ *7)) (-15 -3262 (*7 $)) (-15 -3261 (*7 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1023 (-1098))) (-5 *1 (-907 *3)) (-4 *3 (-908))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-913 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-740)) (-4 *5 (-795))
+ (-5 *2 (-594 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-594 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-388 (-887 *4))) (-4 *4 (-523)) (-5 *2 (-594 (-1098)))
+ (-5 *1 (-977 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
+ (-12 (-5 *3 (-594 (-887 *6))) (-5 *4 (-594 (-1098)))
+ (-4 *6 (-13 (-523) (-975 *5))) (-4 *5 (-523))
+ (-5 *2 (-594 (-594 (-275 (-388 (-887 *6)))))) (-5 *1 (-976 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-973)))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-973)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-569 *6)) (-4 *6 (-13 (-402 *5) (-27) (-1120)))
+ (-4 *5 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516))))
+ (-5 *2 (-1092 (-388 (-1092 *6)))) (-5 *1 (-527 *5 *6 *7)) (-5 *3 (-1092 *6))
+ (-4 *7 (-1027))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1155 *3)) (-5 *1 (-661 *3 *2)) (-4 *3 (-984))))
+ ((*1 *2 *1) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1155 *3))))
+ ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
+ (|partial| -12 (-5 *4 (-1092 *11)) (-5 *6 (-594 *10)) (-5 *7 (-594 (-719)))
+ (-5 *8 (-594 *11)) (-4 *10 (-795)) (-4 *11 (-289)) (-4 *9 (-741))
+ (-4 *5 (-891 *11 *9 *10)) (-5 *2 (-594 (-1092 *5)))
+ (-5 *1 (-691 *9 *10 *11 *5)) (-5 *3 (-1092 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-891 *3 *4 *5)) (-5 *1 (-972 *3 *4 *5 *2 *6)) (-4 *3 (-344))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-14 *6 (-594 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-860)) (-5 *1 (-970 *2))
+ (-4 *2 (-13 (-1027) (-10 -8 (-15 * ($ $ $))))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-860)) (-5 *1 (-969 *2))
+ (-4 *2 (-13 (-1027) (-10 -8 (-15 -4118 ($ $ $))))))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-591 (-528)))
- (-5 *2 (-1177 (-387 (-528)))) (-5 *1 (-1202 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-981)) (-5 *2 (-528)) (-5 *1 (-422 *4 *3 *5))
- (-4 *3 (-1153 *4))
- (-4 *5 (-13 (-384) (-972 *4) (-343) (-1117) (-265))))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-520) (-140))) (-5 *1 (-1147 *3 *2))
- (-4 *2 (-1153 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-520))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1606 *4)))
- (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-110)) (-5 *1 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-283)) (-5 *3 (-1095)) (-5 *2 (-110))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-283)) (-5 *3 (-112)) (-5 *2 (-110))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1095)) (-5 *2 (-110)) (-5 *1 (-568 *4)) (-4 *4 (-793))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-112)) (-5 *2 (-110)) (-5 *1 (-568 *4)) (-4 *4 (-793))))
+ (-12 (-5 *3 (-594 (-1179 *5))) (-5 *4 (-516)) (-5 *2 (-1179 *5))
+ (-5 *1 (-968 *5)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-984)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-110)) (-5 *5 (-516)) (-4 *6 (-344)) (-4 *6 (-349))
+ (-4 *6 (-984)) (-5 *2 (-594 (-594 (-637 *6)))) (-5 *1 (-968 *6))
+ (-5 *3 (-594 (-637 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-344)) (-4 *4 (-349)) (-4 *4 (-984))
+ (-5 *2 (-594 (-594 (-637 *4)))) (-5 *1 (-968 *4)) (-5 *3 (-594 (-637 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1023)) (-5 *2 (-110)) (-5 *1 (-826 *5 *3 *4))
- (-4 *3 (-825 *5)) (-4 *4 (-570 (-831 *5)))))
+ (-12 (-5 *4 (-110)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-984))
+ (-5 *2 (-594 (-594 (-637 *5)))) (-5 *1 (-968 *5)) (-5 *3 (-594 (-637 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *6)) (-4 *6 (-825 *5)) (-4 *5 (-1023))
- (-5 *2 (-110)) (-5 *1 (-826 *5 *6 *4)) (-4 *4 (-570 (-831 *5))))))
+ (-12 (-5 *4 (-860)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-984))
+ (-5 *2 (-594 (-594 (-637 *5)))) (-5 *1 (-968 *5)) (-5 *3 (-594 (-637 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-637 *5))) (-5 *4 (-516)) (-4 *5 (-344)) (-4 *5 (-984))
+ (-5 *2 (-110)) (-5 *1 (-968 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-637 *4))) (-4 *4 (-344)) (-4 *4 (-984)) (-5 *2 (-110))
+ (-5 *1 (-968 *4)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-594 (-637 *6))) (-5 *4 (-110)) (-5 *5 (-516)) (-5 *2 (-637 *6))
+ (-5 *1 (-968 *6)) (-4 *6 (-344)) (-4 *6 (-984))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-594 (-637 *4))) (-5 *2 (-637 *4)) (-5 *1 (-968 *4))
+ (-4 *4 (-344)) (-4 *4 (-984))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-594 (-637 *5))) (-5 *4 (-516)) (-5 *2 (-637 *5))
+ (-5 *1 (-968 *5)) (-4 *5 (-344)) (-4 *5 (-984)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-637 *5))) (-5 *4 (-1179 *5)) (-4 *5 (-289))
+ (-4 *5 (-984)) (-5 *2 (-637 *5)) (-5 *1 (-968 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-637 *5))) (-4 *5 (-289)) (-4 *5 (-984))
+ (-5 *2 (-1179 (-1179 *5))) (-5 *1 (-968 *5)) (-5 *4 (-1179 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-594 (-637 *4))) (-5 *2 (-637 *4)) (-4 *4 (-984))
+ (-5 *1 (-968 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-595 *4)) (-4 *4 (-981)) (-5 *2 (-1177 *4))
- (-5 *1 (-1096 *4))))
+ (-12 (-5 *3 (-1179 (-1179 *4))) (-4 *4 (-984)) (-5 *2 (-637 *4))
+ (-5 *1 (-968 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-843 (-516))) (-5 *4 (-516)) (-5 *2 (-637 *4)) (-5 *1 (-967 *5))
+ (-4 *5 (-984))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-516))) (-5 *2 (-637 (-516))) (-5 *1 (-967 *4))
+ (-4 *4 (-984))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-860)) (-5 *2 (-1177 *3)) (-5 *1 (-1096 *3))
- (-4 *3 (-981)))))
-(((*1 *1) (-12 (-4 *1 (-309 *2)) (-4 *2 (-348)) (-4 *2 (-343))))
+ (-12 (-5 *3 (-594 (-843 (-516)))) (-5 *4 (-516)) (-5 *2 (-594 (-637 *4)))
+ (-5 *1 (-967 *5)) (-4 *5 (-984))))
((*1 *2 *3)
- (-12 (-5 *3 (-860)) (-5 *2 (-1177 *4)) (-5 *1 (-498 *4))
- (-4 *4 (-329)))))
+ (-12 (-5 *3 (-594 (-594 (-516)))) (-5 *2 (-594 (-637 (-516))))
+ (-5 *1 (-967 *4)) (-4 *4 (-984)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-967 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-594 (-637 *3))) (-4 *3 (-984)) (-5 *1 (-967 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-967 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-594 (-637 *3))) (-4 *3 (-984)) (-5 *1 (-967 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-637 *4)) (-5 *3 (-860)) (-4 *4 (-984)) (-5 *1 (-967 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-594 (-637 *4))) (-5 *3 (-860)) (-4 *4 (-984))
+ (-5 *1 (-967 *4)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-329)) (-5 *3 (-528)) (-5 *2 (-1105 (-860) (-717))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-296 (-207)))) (-5 *4 (-717))
- (-5 *2 (-635 (-207))) (-5 *1 (-248)))))
-(((*1 *1 *2) (-12 (-5 *2 (-368)) (-5 *1 (-584)))))
-(((*1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-1098)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-528)) (-5 *2 (-1182)) (-5 *1 (-843 *4))
- (-4 *4 (-1023))))
- ((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-843 *3)) (-4 *3 (-1023)))))
+ (-12 (-5 *3 (-719)) (-5 *2 (-637 (-887 *4))) (-5 *1 (-967 *4))
+ (-4 *4 (-984)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-387 (-891 *4))) (-5 *3 (-1095))
- (-4 *4 (-13 (-520) (-972 (-528)) (-140))) (-5 *1 (-534 *4)))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-635 *2)) (-5 *4 (-528))
- (-4 *2 (-13 (-288) (-10 -8 (-15 -2705 ((-398 $) $)))))
- (-4 *5 (-1153 *2)) (-5 *1 (-475 *2 *5 *6)) (-4 *6 (-389 *2 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-355 *4 *2))
- (-4 *2 (-13 (-353 *4) (-10 -7 (-6 -4265)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-525)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(((*1 *2)
- (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-387 *4))) (-5 *2 (-110)))))
+ (-12 (-5 *2 (-637 *4)) (-5 *3 (-860)) (|has| *4 (-6 (-4271 "*")))
+ (-4 *4 (-984)) (-5 *1 (-967 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-594 (-637 *4))) (-5 *3 (-860)) (|has| *4 (-6 (-4271 "*")))
+ (-4 *4 (-984)) (-5 *1 (-967 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-388 (-887 (-516))))) (-5 *2 (-594 (-637 (-295 (-516)))))
+ (-5 *1 (-966)))))
+(((*1 *2 *2) (-12 (-5 *2 (-594 (-637 (-295 (-516))))) (-5 *1 (-966)))))
+(((*1 *2 *2) (-12 (-5 *2 (-637 (-295 (-516)))) (-5 *1 (-966)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-637 (-388 (-887 (-516)))))
+ (-5 *2 (-637 (-295 (-516)))) (-5 *1 (-966)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-388 (-887 (-516))))) (-5 *2 (-594 (-295 (-516))))
+ (-5 *1 (-966)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-637 (-388 (-887 (-516))))) (-5 *2 (-594 (-637 (-295 (-516)))))
+ (-5 *1 (-966)) (-5 *3 (-295 (-516))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-388 (-887 (-516)))))
+ (-5 *2
+ (-594
+ (-2 (|:| |radval| (-295 (-516))) (|:| |radmult| (-516))
+ (|:| |radvect| (-594 (-637 (-295 (-516))))))))
+ (-5 *1 (-966)))))
+(((*1 *1 *2) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1134))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415))))
+ ((*1 *1 *1 *1) (-5 *1 (-805)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-964 *3)) (-4 *3 (-1134)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-963 *3 *2)) (-4 *2 (-609 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-344)) (-5 *2 (-2 (|:| -3537 *3) (|:| -2770 (-594 *5))))
+ (-5 *1 (-963 *5 *3)) (-5 *4 (-594 *5)) (-4 *3 (-609 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-993 (-962 *4) (-1092 (-962 *4)))) (-5 *3 (-805))
+ (-5 *1 (-962 *4)) (-4 *4 (-13 (-793) (-344) (-958))))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-504) (-595 (-504)))) (-5 *1 (-112))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-504) (-595 (-504)))) (-5 *1 (-112)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-981)))))
-(((*1 *2 *1) (-12 (-5 *2 (-595 (-891 (-528)))) (-5 *1 (-417))))
+ (|partial| -12 (-5 *2 (-993 (-962 *3) (-1092 (-962 *3)))) (-5 *1 (-962 *3))
+ (-4 *3 (-13 (-793) (-344) (-958))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))))
+ (-5 *1 (-959 *3)) (-4 *3 (-1155 (-516)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095)) (-5 *4 (-635 (-207))) (-5 *2 (-1027))
- (-5 *1 (-706))))
+ (-12 (-5 *2 (-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))))
+ (-5 *1 (-959 *3)) (-4 *3 (-1155 (-516)))
+ (-5 *4 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095)) (-5 *4 (-635 (-528))) (-5 *2 (-1027))
- (-5 *1 (-706)))))
-(((*1 *2)
- (-12 (-5 *2 (-1182)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1023))
- (-4 *4 (-1023)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-528)) (-5 *1 (-223))))
+ (-12 (-5 *2 (-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))))
+ (-5 *1 (-959 *3)) (-4 *3 (-1155 (-516))) (-5 *4 (-388 (-516)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-388 (-516))) (-5 *2 (-594 (-2 (|:| -3397 *5) (|:| -3396 *5))))
+ (-5 *1 (-959 *3)) (-4 *3 (-1155 (-516)))
+ (-5 *4 (-2 (|:| -3397 *5) (|:| -3396 *5)))))
((*1 *2 *3)
- (-12 (-5 *3 (-595 (-1078))) (-5 *2 (-528)) (-5 *1 (-223)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-431))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110))
- (-5 *1 (-925 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-431))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110))
- (-5 *1 (-1030 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-595 (-459 *3 *4))) (-14 *3 (-595 (-1095)))
- (-4 *4 (-431)) (-5 *1 (-583 *3 *4)))))
+ (-12 (-5 *2 (-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))))
+ (-5 *1 (-960 *3)) (-4 *3 (-1155 (-388 (-516))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))))
+ (-5 *1 (-960 *3)) (-4 *3 (-1155 (-388 (-516))))
+ (-5 *4 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-388 (-516))) (-5 *2 (-594 (-2 (|:| -3397 *4) (|:| -3396 *4))))
+ (-5 *1 (-960 *3)) (-4 *3 (-1155 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-388 (-516))) (-5 *2 (-594 (-2 (|:| -3397 *5) (|:| -3396 *5))))
+ (-5 *1 (-960 *3)) (-4 *3 (-1155 *5))
+ (-5 *4 (-2 (|:| -3397 *5) (|:| -3396 *5))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1153 (-528)))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1153 (-528))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-110)) (-5 *1 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-595 (-568 *1))) (-4 *1 (-283)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-1078)) (-5 *5 (-635 (-207)))
- (-5 *2 (-970)) (-5 *1 (-694)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-802)) (-5 *1 (-370 *3 *4 *5)) (-14 *3 (-717))
- (-14 *4 (-717)) (-4 *5 (-162)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2))
- (-4 *4 (-353 *2)))))
-(((*1 *2)
- (-12 (-4 *3 (-520)) (-5 *2 (-595 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-397 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1179)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1023))
- (-5 *2 (-2 (|:| -2927 *3) (|:| -1780 *4))))))
+ (-12 (-5 *3 (-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))))
+ (-5 *2 (-594 (-388 (-516)))) (-5 *1 (-959 *4)) (-4 *4 (-1155 (-516))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-1182))
- (-5 *1 (-428 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-595 *7)) (-4 *7 (-999 *3 *4 *5 *6)) (-4 *3 (-431))
- (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5))
- (-5 *1 (-925 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-595 *7)) (-4 *7 (-999 *3 *4 *5 *6)) (-4 *3 (-431))
- (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5))
- (-5 *1 (-1030 *3 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-528))))
- (-4 *4 (-13 (-1153 *3) (-520) (-10 -8 (-15 -2088 ($ $ $)))))
- (-4 *3 (-520)) (-5 *1 (-1156 *3 *4)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-595 (-528))) (-5 *3 (-110)) (-5 *1 (-1033)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-309 *3)) (-4 *3 (-343)) (-4 *3 (-348))
- (-5 *2 (-1091 *3)))))
+ (-12 (-5 *3 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516)))))
+ (-5 *2 (-388 (-516))) (-5 *1 (-959 *4)) (-4 *4 (-1155 (-516))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1179 *6)) (-5 *4 (-1179 (-516))) (-5 *5 (-516)) (-4 *6 (-1027))
+ (-5 *2 (-1 *6)) (-5 *1 (-956 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-520))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-595 (-1188 *4 *5 *6 *7)))
- (-5 *1 (-1188 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-595 *9)) (-5 *4 (-1 (-110) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-994 *6 *7 *8)) (-4 *6 (-520))
- (-4 *7 (-739)) (-4 *8 (-793)) (-5 *2 (-595 (-1188 *6 *7 *8 *9)))
- (-5 *1 (-1188 *6 *7 *8 *9)))))
+ (-12 (-5 *3 (-594 (-2 (|:| -3681 *4) (|:| -1527 (-516))))) (-4 *4 (-1027))
+ (-5 *2 (-1 *4)) (-5 *1 (-956 *4)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-344) (-140) (-975 (-516)))) (-4 *5 (-1155 *4))
+ (-5 *2 (-594 (-388 *5))) (-5 *1 (-955 *4 *5)) (-5 *3 (-388 *5)))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-344) (-140) (-975 (-516))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-388 *6)) (|:| |h| *6) (|:| |c1| (-388 *6))
+ (|:| |c2| (-388 *6)) (|:| -3359 *6)))
+ (-5 *1 (-955 *5 *6)) (-5 *3 (-388 *6)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1155 *6))
+ (-4 *6 (-13 (-344) (-140) (-975 *4))) (-5 *4 (-516))
+ (-5 *2
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-110))))
+ (|:| -3537
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-954 *6 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-344) (-140) (-975 (-516)))) (-4 *5 (-1155 *4))
+ (-5 *2 (-2 (|:| |ans| (-388 *5)) (|:| |nosol| (-110)))) (-5 *1 (-954 *4 *5))
+ (-5 *3 (-388 *5)))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-344) (-140) (-975 (-516))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-388 *6)) (|:| |c| (-388 *6)) (|:| -3359 *6)))
+ (-5 *1 (-954 *5 *6)) (-5 *3 (-388 *6)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1098))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-594 *4)))
+ (-5 *7 (-1 (-3 (-2 (|:| -2189 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1120) (-27) (-402 *8)))
+ (-4 *8 (-13 (-432) (-795) (-140) (-975 *3) (-593 *3))) (-5 *3 (-516))
+ (-5 *2 (-594 *4)) (-5 *1 (-953 *8 *4)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1098))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-594 *4)))
+ (-5 *7 (-1 (-3 (-2 (|:| -2189 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1120) (-27) (-402 *8)))
+ (-4 *8 (-13 (-432) (-795) (-140) (-975 *3) (-593 *3))) (-5 *3 (-516))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -3396 *4) (|:| |sol?| (-110))))
+ (-5 *1 (-952 *8 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098)))
+ (-4 *4 (-368))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-811 *3)) (-5 *2 (-516))))
+ ((*1 *1 *1) (-4 *1 (-941))) ((*1 *1 *2) (-12 (-5 *2 (-516)) (-4 *1 (-951))))
+ ((*1 *1 *2) (-12 (-5 *2 (-388 (-516))) (-4 *1 (-951))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-860))))
+ ((*1 *1 *1) (-4 *1 (-951))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-951)) (-5 *2 (-805)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1092 *1)) (-4 *1 (-951)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1092 *1)) (-4 *1 (-951)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-805)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-805)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1134)) (-5 *2 (-594 *1)) (-4 *1 (-949 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1134)) (-5 *2 (-594 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1134)) (-5 *2 (-516)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-949 *3)) (-4 *3 (-1134)) (-4 *3 (-1027)) (-5 *2 (-110)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-949 *3)) (-4 *3 (-1134)) (-4 *3 (-1027)) (-5 *2 (-110)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-594 *1)) (|has| *1 (-6 -4270)) (-4 *1 (-949 *3))
+ (-4 *3 (-1134)))))
+(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-949 *2)) (-4 *2 (-1134)))))
(((*1 *2 *1)
- (-12 (-14 *3 (-595 (-1095))) (-4 *4 (-162))
- (-14 *6
- (-1 (-110) (-2 (|:| -3108 *5) (|:| -2564 *2))
- (-2 (|:| -3108 *5) (|:| -2564 *2))))
- (-4 *2 (-220 (-2138 *3) (-717))) (-5 *1 (-440 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-793)) (-4 *7 (-888 *4 *2 (-804 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-226 *2)) (-4 *2 (-1131))))
+ (|partial| -12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-515))
+ (-5 *2 (-388 (-516)))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-520))
- (-4 *4 (-739)) (-4 *5 (-793)) (-4 *2 (-994 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-717)) (-4 *1 (-1165 *3)) (-4 *3 (-1131))))
- ((*1 *2 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1131)))))
+ (|partial| -12 (-5 *2 (-388 (-516))) (-5 *1 (-386 *3)) (-4 *3 (-515))
+ (-4 *3 (-523))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-515)) (-5 *2 (-388 (-516)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-744 *3)) (-4 *3 (-162)) (-4 *3 (-515))
+ (-5 *2 (-388 (-516)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-388 (-516))) (-5 *1 (-780 *3)) (-4 *3 (-515))
+ (-4 *3 (-1027))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-388 (-516))) (-5 *1 (-787 *3)) (-4 *3 (-515))
+ (-4 *3 (-1027))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-937 *3)) (-4 *3 (-162)) (-4 *3 (-515))
+ (-5 *2 (-388 (-516)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-388 (-516))) (-5 *1 (-947 *3)) (-4 *3 (-975 *2)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3))
- (-4 *5 (-353 *3)) (-5 *2 (-110))))
+ (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-110))))
((*1 *2 *1)
- (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981))
- (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-5 *2 (-110)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1095))
- (-5 *2 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-5 *1 (-1098)))))
-(((*1 *2 *2) (-12 (-5 *2 (-717)) (-5 *1 (-424 *3)) (-4 *3 (-981))))
- ((*1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-424 *3)) (-4 *3 (-981)))))
-(((*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-337 *3)) (-4 *3 (-329)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-981)) (-4 *3 (-738))
- (-4 *2 (-343))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-207))))
- ((*1 *1 *1 *1)
- (-1463 (-12 (-5 *1 (-275 *2)) (-4 *2 (-343)) (-4 *2 (-1131)))
- (-12 (-5 *1 (-275 *2)) (-4 *2 (-452)) (-4 *2 (-1131)))))
- ((*1 *1 *1 *1) (-4 *1 (-343)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-359))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1047 *3 (-568 *1))) (-4 *3 (-520)) (-4 *3 (-793))
- (-4 *1 (-410 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-452)))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1177 *3)) (-4 *3 (-329)) (-5 *1 (-498 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-504)))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-162)) (-5 *1 (-574 *2 *4 *3)) (-4 *2 (-37 *4))
- (-4 *3 (|SubsetCategory| (-673) *4))))
- ((*1 *1 *1 *2)
- (-12 (-4 *4 (-162)) (-5 *1 (-574 *3 *4 *2)) (-4 *3 (-37 *4))
- (-4 *2 (|SubsetCategory| (-673) *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-586 *2)) (-4 *2 (-162)) (-4 *2 (-343))))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-162)) (-5 *1 (-611 *2 *4 *3)) (-4 *2 (-664 *4))
- (-4 *3 (|SubsetCategory| (-673) *4))))
- ((*1 *1 *1 *2)
- (-12 (-4 *4 (-162)) (-5 *1 (-611 *3 *4 *2)) (-4 *3 (-664 *4))
- (-4 *2 (|SubsetCategory| (-673) *4))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2))
- (-4 *4 (-353 *2)) (-4 *2 (-343))))
- ((*1 *1 *1 *1) (-5 *1 (-802)))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-805 *2 *3 *4 *5)) (-4 *2 (-343))
- (-4 *2 (-981)) (-14 *3 (-595 (-1095))) (-14 *4 (-595 (-717)))
- (-14 *5 (-717))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1023))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-929 *2)) (-4 *2 (-520))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-983 *3 *4 *2 *5 *6)) (-4 *2 (-981))
- (-4 *5 (-220 *4 *2)) (-4 *6 (-220 *3 *2)) (-4 *2 (-343))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1184 *2)) (-4 *2 (-343))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-343)) (-4 *2 (-981)) (-4 *3 (-793))
- (-4 *4 (-739)) (-14 *6 (-595 *3))
- (-5 *1 (-1187 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-888 *2 *4 *3))
- (-14 *7 (-595 (-717))) (-14 *8 (-717))))
- ((*1 *1 *1 *2)
- (-12 (-5 *1 (-1198 *2 *3)) (-4 *2 (-343)) (-4 *2 (-981))
- (-4 *3 (-789)))))
-(((*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-974)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1095))
- (-4 *4 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528))))
- (-5 *1 (-575 *4 *2)) (-4 *2 (-13 (-1117) (-897) (-29 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-465)))))
-(((*1 *2 *1) (-12 (-4 *1 (-369)) (-5 *2 (-1078)))))
-(((*1 *2 *3) (-12 (-5 *3 (-296 (-207))) (-5 *2 (-207)) (-5 *1 (-286)))))
-(((*1 *1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-288)))))
-(((*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-1095)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-746))
- (-5 *3
- (-2 (|:| |xinit| (-207)) (|:| |xend| (-207))
- (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207)))
- (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207)))
- (|:| |abserr| (-207)) (|:| |relerr| (-207))))
- (-5 *2 (-970)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-528)) (-4 *4 (-13 (-520) (-140))) (-5 *1 (-505 *4 *2))
- (-4 *2 (-1168 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-528)) (-4 *4 (-13 (-343) (-348) (-570 *3)))
- (-4 *5 (-1153 *4)) (-4 *6 (-671 *4 *5)) (-5 *1 (-509 *4 *5 *6 *2))
- (-4 *2 (-1168 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-528)) (-4 *4 (-13 (-343) (-348) (-570 *3)))
- (-5 *1 (-510 *4 *2)) (-4 *2 (-1168 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1076 *4)) (-5 *3 (-528)) (-4 *4 (-13 (-520) (-140)))
- (-5 *1 (-1072 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-130)))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-197 *2))
- (-4 *2
- (-13 (-793)
- (-10 -8 (-15 -3043 ((-1078) $ (-1095))) (-15 -2273 ((-1182) $))
- (-15 -3294 ((-1182) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-275 *2)) (-4 *2 (-21)) (-4 *2 (-1131))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-21)) (-4 *2 (-1131))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
- ((*1 *1 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2))
- (-4 *4 (-353 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2))
- (-4 *4 (-353 *2))))
- ((*1 *1 *1) (-5 *1 (-802))) ((*1 *1 *1 *1) (-5 *1 (-802)))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-882 (-207))) (-5 *1 (-1128))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-1131)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-1131)) (-4 *2 (-21)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-520))
- (-5 *2 (-2 (|:| -3490 *3) (|:| -2537 *3))) (-5 *1 (-1148 *4 *3))
- (-4 *3 (-1153 *4)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-948)) (-5 *2 (-802)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-507 *4 *2 *5 *6))
- (-4 *4 (-288)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-717))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *1 *1) (-5 *1 (-992))))
-(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4264)) (-4 *1 (-144 *2)) (-4 *2 (-1131))
- (-4 *2 (-1023))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4264)) (-4 *1 (-144 *3))
- (-4 *3 (-1131))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-622 *3)) (-4 *3 (-1131))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-528)) (-4 *4 (-1023))
- (-5 *1 (-684 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-528)) (-5 *1 (-684 *2)) (-4 *2 (-1023))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1060 *3 *4)) (-4 *3 (-13 (-1023) (-33)))
- (-4 *4 (-13 (-1023) (-33))) (-5 *1 (-1061 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-860))
- (-5 *2
- (-3 (-1091 *4)
- (-1177 (-595 (-2 (|:| -3327 *4) (|:| -3108 (-1042)))))))
- (-5 *1 (-326 *4)) (-4 *4 (-329)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1153 (-387 (-528))))
- (-5 *2 (-2 (|:| |den| (-528)) (|:| |gcdnum| (-528))))
- (-5 *1 (-852 *3 *4)) (-4 *4 (-1153 (-387 *3)))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-386 *3)) (-4 *3 (-515)) (-4 *3 (-523))))
+ ((*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-744 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-780 *3)) (-4 *3 (-515)) (-4 *3 (-1027))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-787 *3)) (-4 *3 (-515)) (-4 *3 (-1027))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-937 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-110))))
((*1 *2 *3)
- (-12 (-4 *4 (-1153 (-387 *2))) (-5 *2 (-528)) (-5 *1 (-852 *4 *3))
- (-4 *3 (-1153 (-387 *4))))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-947 *3)) (-4 *3 (-975 (-388 (-516)))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-387 *4))) (-5 *2 (-110)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-296 (-207))) (-5 *2 (-296 (-359))) (-5 *1 (-286)))))
-(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-148)))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-197 *2))
- (-4 *2
- (-13 (-793)
- (-10 -8 (-15 -3043 ((-1078) $ (-1095))) (-15 -2273 ((-1182) $))
- (-15 -3294 ((-1182) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-275 *2)) (-4 *2 (-25)) (-4 *2 (-1131))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-25)) (-4 *2 (-1131))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-303 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-128))))
- ((*1 *1 *2 *1)
- (-12 (-4 *3 (-13 (-343) (-140))) (-5 *1 (-379 *3 *2))
- (-4 *2 (-1153 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-343)) (-4 *3 (-739)) (-4 *4 (-793))
- (-5 *1 (-480 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-504)))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2))
- (-4 *4 (-353 *2))))
- ((*1 *1 *1 *1) (-5 *1 (-802)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1023))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-882 (-207))) (-5 *1 (-1128))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-1131)) (-4 *2 (-25)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-595 (-860))) (-5 *1 (-1024 *3 *4)) (-14 *3 (-860))
- (-14 *4 (-860)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-802) (-802))) (-5 *1 (-112))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-802) (-595 (-802)))) (-5 *1 (-112))))
+ (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-516)))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-802) (-595 (-802)))) (-5 *1 (-112))))
+ (-12 (-5 *2 (-388 (-516))) (-5 *1 (-386 *3)) (-4 *3 (-515)) (-4 *3 (-523))))
+ ((*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-388 (-516)))))
((*1 *2 *1)
- (-12 (-5 *2 (-1182)) (-5 *1 (-197 *3))
- (-4 *3
- (-13 (-793)
- (-10 -8 (-15 -3043 ((-1078) $ (-1095))) (-15 -2273 (*2 $))
- (-15 -3294 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-374))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-5 *2 (-1182)) (-5 *1 (-374))))
- ((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-478))))
- ((*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-657))))
- ((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-1112))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-528)) (-5 *2 (-1182)) (-5 *1 (-1112)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-520)) (-4 *2 (-981))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-520)) (-5 *1 (-907 *3 *2)) (-4 *2 (-1153 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)) (-4 *2 (-520))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *3 (-994 *4 *5 *6))
- (-5 *2 (-595 (-2 (|:| |val| *3) (|:| -2316 *1))))
- (-4 *1 (-999 *4 *5 *6 *3)))))
-(((*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-647))))
- ((*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-647)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-766)) (-14 *5 (-1095))
- (-5 *2 (-528)) (-5 *1 (-1037 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095))))
- (-4 *6 (-739)) (-5 *2 (-595 (-595 (-528))))
- (-5 *1 (-863 *4 *5 *6 *7)) (-5 *3 (-528)) (-4 *7 (-888 *4 *6 *5)))))
+ (-12 (-4 *1 (-744 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-516)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-388 (-516))) (-5 *1 (-780 *3)) (-4 *3 (-515)) (-4 *3 (-1027))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-388 (-516))) (-5 *1 (-787 *3)) (-4 *3 (-515)) (-4 *3 (-1027))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-937 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-516)))))
+ ((*1 *2 *3) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-947 *3)) (-4 *3 (-975 *2)))))
+(((*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-945)))))
+(((*1 *2 *3) (-12 (-5 *3 (-516)) (-5 *2 (-1185)) (-5 *1 (-945)))))
+(((*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-945))))
+ ((*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-945)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-516))) (-5 *4 (-516)) (-5 *2 (-50)) (-5 *1 (-944)))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-943 *3)) (-14 *3 (-516)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1076 (-516))) (-5 *1 (-943 *3)) (-14 *3 (-516)))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-943 *3)) (-14 *3 (-516)))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-943 *3)) (-14 *3 (-516)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-943 *3)) (-14 *3 (-516)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-943 *3)) (-14 *3 (-516)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-386 *5)) (-4 *5 (-523))
+ (-5 *2 (-2 (|:| -2427 (-719)) (|:| -4229 *5) (|:| |radicand| (-594 *5))))
+ (-5 *1 (-301 *5)) (-5 *4 (-719))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-941)) (-5 *2 (-516)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1027)) (-5 *1 (-939 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162))))
+ ((*1 *1 *1 *1) (-4 *1 (-453)))
+ ((*1 *1 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162))))
+ ((*1 *2 *2) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-824))))
+ ((*1 *1 *1) (-5 *1 (-911)))
+ ((*1 *1 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-162)))))
+(((*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162))))
+ ((*1 *2 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-162)))))
+(((*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162))))
+ ((*1 *2 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-162)))))
+(((*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162))))
+ ((*1 *2 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-162)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-937 *2)) (-4 *2 (-162)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1134)))))
+(((*1 *1 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1134)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-595 (-595 *3))) (-4 *3 (-1023)) (-5 *1 (-1104 *3)))))
-(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-1065 *3 *4)) (-14 *3 (-860)) (-4 *4 (-344))
+ (-5 *1 (-933 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1050 (-516) (-569 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-289)) (-4 *4 (-931 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *6))
+ (-5 *1 (-394 *3 *4 *5 *6)) (-4 *6 (-13 (-391 *4 *5) (-975 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-984)) (-4 *3 (-795)) (-5 *2 (-1050 *3 (-569 *1)))
+ (-4 *1 (-402 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1050 (-516) (-569 (-473)))) (-5 *1 (-473))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-162)) (-4 *2 (-37 *3)) (-5 *1 (-574 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-675) *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-162)) (-4 *2 (-666 *3)) (-5 *1 (-603 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-675) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-523)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1050 (-516) (-569 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-931 *2)) (-4 *4 (-1155 *3)) (-4 *2 (-289))
+ (-5 *1 (-394 *2 *3 *4 *5)) (-4 *5 (-13 (-391 *3 *4) (-975 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-523)) (-4 *3 (-795)) (-5 *2 (-1050 *3 (-569 *1)))
+ (-4 *1 (-402 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1050 (-516) (-569 (-473)))) (-5 *1 (-473))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-675) *4))
+ (-5 *1 (-574 *3 *4 *2)) (-4 *3 (-37 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-675) *4))
+ (-5 *1 (-603 *3 *4 *2)) (-4 *3 (-666 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-523)))))
+(((*1 *1 *1) (-12 (-4 *1 (-402 *2)) (-4 *2 (-795)) (-4 *2 (-984))))
+ ((*1 *1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-523)))))
+(((*1 *1 *1) (-12 (-4 *1 (-402 *2)) (-4 *2 (-795)) (-4 *2 (-523))))
+ ((*1 *1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-523)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-860)) (-5 *2 (-1092 *4)) (-5 *1 (-337 *4)) (-4 *4 (-331))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-860)) (-5 *2 (-1092 *4)) (-5 *1 (-337 *4)) (-4 *4 (-331))))
+ ((*1 *1) (-4 *1 (-349)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-860)) (-5 *2 (-1179 *4)) (-5 *1 (-500 *4)) (-4 *4 (-331))))
+ ((*1 *1 *1) (-4 *1 (-515))) ((*1 *1) (-4 *1 (-515)))
+ ((*1 *1 *1) (-5 *1 (-516))) ((*1 *1 *1) (-5 *1 (-719)))
+ ((*1 *2 *1) (-12 (-5 *2 (-843 *3)) (-5 *1 (-846 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-516)) (-5 *2 (-843 *4)) (-5 *1 (-846 *4)) (-4 *4 (-1027))))
+ ((*1 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-515)) (-4 *2 (-523)))))
+(((*1 *2 *2)
(-12
(-5 *2
- (-2 (|:| |polnum| (-728 *3)) (|:| |polden| *3) (|:| -3906 (-717))))
- (-5 *1 (-728 *3)) (-4 *3 (-981))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3906 (-717))))
- (-4 *1 (-994 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-416)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1177 *4)) (-5 *3 (-635 *4)) (-4 *4 (-343))
- (-5 *1 (-616 *4))))
- ((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-343))
- (-4 *5 (-13 (-353 *4) (-10 -7 (-6 -4265))))
- (-4 *2 (-13 (-353 *4) (-10 -7 (-6 -4265))))
- (-5 *1 (-617 *4 *5 *2 *3)) (-4 *3 (-633 *4 *5 *2))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-595 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-343))
- (-5 *1 (-760 *2 *3)) (-4 *3 (-605 *2))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528)))))))
- (-5 *1 (-1050 *3 *2)) (-4 *3 (-1153 *2)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-513))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-694)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-129)) (-5 *3 (-717)) (-5 *2 (-1182)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-520) (-140)))
- (-5 *2 (-2 (|:| -3562 *3) (|:| -3572 *3))) (-5 *1 (-1147 *4 *3))
- (-4 *3 (-1153 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1095)) (-5 *5 (-1018 (-207))) (-5 *2 (-866))
- (-5 *1 (-864 *3)) (-4 *3 (-570 (-504)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1095)) (-5 *2 (-866)) (-5 *1 (-864 *3))
- (-4 *3 (-570 (-504)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-207) (-207))) (-5 *1 (-866))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-207) (-207))) (-5 *3 (-1018 (-207)))
- (-5 *1 (-866)))))
+ (-926 (-388 (-516)) (-806 *3) (-222 *4 (-719)) (-230 *3 (-388 (-516)))))
+ (-14 *3 (-594 (-1098))) (-14 *4 (-719)) (-5 *1 (-927 *3 *4)))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1023)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981))
- (-5 *2 (-595 (-595 (-595 (-882 *3))))))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-528)) (-5 *5 (-635 (-207))) (-5 *4 (-207))
- (-5 *2 (-970)) (-5 *1 (-699)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1042)) (-5 *1 (-107))))
- ((*1 *2 *1) (|partial| -12 (-5 *1 (-345 *2)) (-4 *2 (-1023))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1078)) (-5 *1 (-1113)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 *2)) (-4 *4 (-1153 *2))
- (-4 *2 (-13 (-288) (-10 -8 (-15 -2705 ((-398 $) $)))))
- (-5 *1 (-475 *2 *4 *5)) (-4 *5 (-389 *2 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3 *2 *4 *5)) (-4 *4 (-220 *3 *2))
- (-4 *5 (-220 *3 *2)) (-4 *2 (-981)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161))))
- ((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-1178))))
- ((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-1179)))))
+ (-12 (-5 *2 (-594 *3)) (-4 *3 (-891 *4 *6 *5)) (-4 *4 (-432)) (-4 *5 (-795))
+ (-4 *6 (-741)) (-5 *1 (-926 *4 *5 *6 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-110) "failed")) (-4 *3 (-432)) (-4 *4 (-795))
+ (-4 *5 (-741)) (-5 *1 (-926 *3 *4 *5 *6)) (-4 *6 (-891 *3 *5 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1025 *3)) (-5 *1 (-844 *3)) (-4 *3 (-348))
- (-4 *3 (-1023)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *4 (-528)) (-5 *5 (-635 (-207)))
- (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-82 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-207))
- (-5 *2 (-970)) (-5 *1 (-696)))))
-(((*1 *2 *2) (-12 (-5 *2 (-207)) (-5 *1 (-208))))
- ((*1 *2 *2) (-12 (-5 *2 (-159 (-207))) (-5 *1 (-208))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2))
- (-4 *2 (-410 *3))))
- ((*1 *1 *1) (-4 *1 (-1059))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-528)) (-5 *5 (-635 (-207))) (-5 *4 (-207))
- (-5 *2 (-970)) (-5 *1 (-700)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-595 *7)) (|:| |badPols| (-595 *7))))
- (-5 *1 (-914 *4 *5 *6 *7)) (-5 *3 (-595 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-904 *3)) (-4 *3 (-905)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *3) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-525)) (-5 *3 (-528)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-1135))
- (-4 *6 (-1153 (-387 *5)))
- (-5 *2
- (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
- (|:| |gd| *5)))
- (-4 *1 (-322 *4 *5 *6)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-793)) (-5 *2 (-110))))
- ((*1 *1 *1 *1) (-5 *1 (-802))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-387 (-528))) (-4 *1 (-518 *3))
- (-4 *3 (-13 (-384) (-1117)))))
- ((*1 *1 *2) (-12 (-4 *1 (-518 *2)) (-4 *2 (-13 (-384) (-1117)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-518 *2)) (-4 *2 (-13 (-384) (-1117))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-387 (-528)))
- (-4 *4 (-13 (-520) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *1 (-258 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *4))))))
-(((*1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-223)))))
-(((*1 *2 *2) (-12 (-5 *2 (-595 (-635 (-296 (-528))))) (-5 *1 (-966)))))
-(((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1131)))))
+ (-12 (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *2 (-594 *6))
+ (-5 *1 (-926 *3 *4 *5 *6)) (-4 *6 (-891 *3 *5 *4)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1095)) (-5 *1 (-568 *3)) (-4 *3 (-793)))))
+ (-12 (-4 *2 (-891 *3 *5 *4)) (-5 *1 (-926 *3 *4 *5 *2)) (-4 *3 (-432))
+ (-4 *4 (-795)) (-4 *5 (-741)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-234 *2 *3 *4 *5)) (-4 *2 (-981)) (-4 *3 (-793))
- (-4 *4 (-247 *3)) (-4 *5 (-739)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1190 *3 *4)) (-4 *3 (-793)) (-4 *4 (-162))
- (-5 *1 (-613 *3 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-613 *3 *4)) (-5 *1 (-1195 *3 *4))
- (-4 *3 (-793)) (-4 *4 (-162)))))
+ (-12 (-4 *2 (-432)) (-4 *3 (-795)) (-4 *4 (-741)) (-5 *1 (-926 *2 *3 *4 *5))
+ (-4 *5 (-891 *2 *4 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1155 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-925 *4 *2 *3 *5))
+ (-4 *4 (-331)) (-4 *5 (-673 *2 *3)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-739))
- (-4 *3 (-13 (-793) (-10 -8 (-15 -3155 ((-1095) $))))) (-4 *5 (-520))
- (-5 *1 (-679 *4 *3 *5 *2)) (-4 *2 (-888 (-387 (-891 *5)) *4 *3))))
+ (-12 (-4 *4 (-741)) (-4 *3 (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $)))))
+ (-4 *5 (-523)) (-5 *1 (-681 *4 *3 *5 *2))
+ (-4 *2 (-891 (-388 (-887 *5)) *4 *3))))
((*1 *2 *2 *3)
- (-12 (-4 *4 (-981)) (-4 *5 (-739))
+ (-12 (-4 *4 (-984)) (-4 *5 (-741))
(-4 *3
- (-13 (-793)
- (-10 -8 (-15 -3155 ((-1095) $))
- (-15 -3915 ((-3 $ "failed") (-1095))))))
- (-5 *1 (-921 *4 *5 *3 *2)) (-4 *2 (-888 (-891 *4) *5 *3))))
+ (-13 (-795)
+ (-10 -8 (-15 -4246 ((-1098) $))
+ (-15 -4110 ((-3 $ #1="failed") (-1098))))))
+ (-5 *1 (-924 *4 *5 *3 *2)) (-4 *2 (-891 (-887 *4) *5 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-595 *6))
+ (-12 (-5 *3 (-594 *6))
(-4 *6
- (-13 (-793)
- (-10 -8 (-15 -3155 ((-1095) $))
- (-15 -3915 ((-3 $ "failed") (-1095))))))
- (-4 *4 (-981)) (-4 *5 (-739)) (-5 *1 (-921 *4 *5 *6 *2))
- (-4 *2 (-888 (-891 *4) *5 *6)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-398 *2)) (-4 *2 (-288)) (-5 *1 (-853 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-387 (-891 *5))) (-5 *4 (-1095))
- (-4 *5 (-13 (-288) (-140))) (-5 *2 (-51)) (-5 *1 (-854 *5))))
+ (-13 (-795)
+ (-10 -8 (-15 -4246 ((-1098) $)) (-15 -4110 ((-3 $ #1#) (-1098))))))
+ (-4 *4 (-984)) (-4 *5 (-741)) (-5 *1 (-924 *4 *5 *6 *2))
+ (-4 *2 (-891 (-887 *4) *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-741)) (-4 *3 (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $)))))
+ (-4 *5 (-523)) (-5 *1 (-681 *4 *3 *5 *2))
+ (-4 *2 (-891 (-388 (-887 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-984)) (-4 *5 (-741))
+ (-4 *3
+ (-13 (-795)
+ (-10 -8 (-15 -4246 ((-1098) $))
+ (-15 -4110 ((-3 $ #1="failed") (-1098))))))
+ (-5 *1 (-924 *4 *5 *3 *2)) (-4 *2 (-891 (-887 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-594 *6))
+ (-4 *6
+ (-13 (-795)
+ (-10 -8 (-15 -4246 ((-1098) $)) (-15 -4110 ((-3 $ #1#) (-1098))))))
+ (-4 *4 (-984)) (-4 *5 (-741)) (-5 *1 (-924 *4 *5 *6 *2))
+ (-4 *2 (-891 (-887 *4) *5 *6)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-719)) (-4 *1 (-923 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-815))))
+ ((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
+(((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-148))))
+ ((*1 *2 *1) (-12 (-5 *2 (-148)) (-5 *1 (-815))))
+ ((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
+(((*1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-148))))
+ ((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
+(((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
+(((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
+(((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
+(((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
+(((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
+(((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-344))
+ (-5 *2 (-594 (-2 (|:| C (-637 *5)) (|:| |g| (-1179 *5))))) (-5 *1 (-918 *5))
+ (-5 *3 (-637 *5)) (-5 *4 (-1179 *5)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-860)) (-5 *1 (-647))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-637 *5)) (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344))
+ (-5 *1 (-918 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-594 *2)) (-4 *2 (-891 *4 *5 *6)) (-4 *4 (-344)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-427 *4 *5 *6 *2))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-398 (-891 *6))) (-5 *5 (-1095)) (-5 *3 (-891 *6))
- (-4 *6 (-13 (-288) (-140))) (-5 *2 (-51)) (-5 *1 (-854 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1131)) (-4 *1 (-144 *3))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-595 (-2 (|:| -2564 (-717)) (|:| -1884 *4) (|:| |num| *4))))
- (-4 *4 (-1153 *3)) (-4 *3 (-13 (-343) (-140))) (-5 *1 (-379 *3 *4))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-414)) (|:| -2853 "void")))
- (-5 *3 (-595 (-891 (-528)))) (-5 *4 (-110)) (-5 *1 (-417))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-414)) (|:| -2853 "void")))
- (-5 *3 (-595 (-1095))) (-5 *4 (-110)) (-5 *1 (-417))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1076 *3)) (-5 *1 (-558 *3)) (-4 *3 (-1131))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-586 *2)) (-4 *2 (-162))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-620 *3)) (-4 *3 (-793)) (-5 *1 (-613 *3 *4))
- (-4 *4 (-162))))
+ (-12 (-5 *4 (-96 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-344))
+ (-5 *2 (-2 (|:| R (-637 *6)) (|:| A (-637 *6)) (|:| |Ainv| (-637 *6))))
+ (-5 *1 (-918 *6)) (-5 *3 (-637 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-140)) (-4 *3 (-289))
+ (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-140)) (-4 *3 (-289))
+ (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-140)) (-4 *3 (-289))
+ (-4 *3 (-523)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-523))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-523))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-523))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-523))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-594 *7)) (-5 *3 (-110)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-432)) (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-5 *2 (-594 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-997 *4 *5 *6)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-594 *8)) (-5 *3 (-1 (-110) *8 *8)) (-5 *4 (-1 *8 *8 *8))
+ (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *1 (-917 *5 *6 *7 *8)))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-594 *9)) (-5 *3 (-1 (-110) *9)) (-5 *4 (-1 (-110) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-997 *6 *7 *8)) (-4 *6 (-523)) (-4 *7 (-741))
+ (-4 *8 (-795)) (-5 *1 (-917 *6 *7 *8 *9)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-997 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-456 *4 *5 *6 *7)) (|:| -3602 (-594 *7))))
+ (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-594 *7)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-594 *2)) (-4 *2 (-997 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *2)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-594 *7)) (-5 *3 (-110)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-523))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-594 *7)) (|:| |badPols| (-594 *7))))
+ (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-594 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
+ (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-997 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-594 *7)) (|:| |badPols| (-594 *7))))
+ (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-594 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-594 (-295 (-208)))) (-5 *2 (-110)) (-5 *1 (-249))))
+ ((*1 *2 *3) (-12 (-5 *3 (-295 (-208))) (-5 *2 (-110)) (-5 *1 (-249))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
+ (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-997 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-594 *7)) (|:| |badPols| (-594 *7))))
+ (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-594 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
+ (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-997 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-997 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-594 *7)) (|:| |badPols| (-594 *7))))
+ (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-594 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-1 (-110) *8))) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-523))
+ (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *2 (-2 (|:| |goodPols| (-594 *8)) (|:| |badPols| (-594 *8))))
+ (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-594 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-1 (-110) *8))) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-523))
+ (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *2 (-2 (|:| |goodPols| (-594 *8)) (|:| |badPols| (-594 *8))))
+ (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-594 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-110) *8)) (-4 *8 (-997 *5 *6 *7)) (-4 *5 (-523))
+ (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *2 (-2 (|:| |goodPols| (-594 *8)) (|:| |badPols| (-594 *8))))
+ (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-594 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-594 (-594 *8))) (-5 *3 (-594 *8)) (-4 *8 (-997 *5 *6 *7))
+ (-4 *5 (-523)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-110))
+ (-5 *1 (-917 *5 *6 *7 *8)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-594 *7)) (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *4 *5 *6 *7)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-594 *3))
+ (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-997 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-594 *3)) (-4 *3 (-997 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-594 *7) (-594 *7))) (-5 *2 (-594 *7))
+ (-4 *7 (-997 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-5 *1 (-917 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-594 *3))
+ (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-997 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-594 *6)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-594 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-916 *4 *5 *3 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795))
+ (-4 *6 (-997 *4 *5 *3)) (-5 *2 (-110)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795))
+ (-4 *5 (-997 *3 *4 *2)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795))
+ (-4 *5 (-997 *3 *4 *2)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795))
+ (-4 *5 (-997 *3 *4 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-353 *2)) (-4 *2 (-1134)) (-4 *2 (-795))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-620 *3)) (-4 *3 (-793)) (-5 *1 (-613 *3 *4))
- (-4 *4 (-162))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-620 *3)) (-4 *3 (-793)) (-5 *1 (-613 *3 *4))
- (-4 *4 (-162))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 (-595 (-595 *3)))) (-4 *3 (-1023))
- (-5 *1 (-623 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-793)) (-4 *3 (-1023))
- (-14 *4
- (-1 (-110) (-2 (|:| -3108 *2) (|:| -2564 *3))
- (-2 (|:| -3108 *2) (|:| -2564 *3))))))
+ (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-353 *3)) (-4 *3 (-1134))))
+ ((*1 *2 *2) (-12 (-5 *2 (-594 (-843 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-4 *6 (-997 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -3389 *1) (|:| |upper| *1)))
+ (-4 *1 (-916 *4 *5 *3 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-997 *3 *4 *5)) (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)) (-5 *2 (-110)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)) (-5 *2 (-110)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)) (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)) (-5 *2 (-110)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-916 *4 *5 *6 *3)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *3 (-997 *4 *5 *6)) (-4 *4 (-523))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-916 *4 *5 *6 *3)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *3 (-997 *4 *5 *6)) (-4 *4 (-523))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-594 *6)) (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-594 *6)) (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-997 *3 *4 *5)) (-4 *3 (-523)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-896)) (-5 *2 (-594 (-594 (-884 (-208)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-594 (-594 (-884 (-208))))))))
+(((*1 *2 *1) (-12 (-4 *1 (-896)) (-5 *2 (-1017 (-208)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1017 (-208))))))
+(((*1 *2 *1) (-12 (-4 *1 (-896)) (-5 *2 (-1017 (-208)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1017 (-208))))))
+(((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1017 (-208))))))
+(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740))))
+ ((*1 *2 *1) (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1027))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-594 (-1098))) (-4 *4 (-162)) (-4 *6 (-221 (-4232 *3) (-719)))
+ (-14 *7
+ (-1 (-110) (-2 (|:| -2426 *5) (|:| -2427 *6))
+ (-2 (|:| -2426 *5) (|:| -2427 *6))))
+ (-5 *2 (-662 *5 *6 *7)) (-5 *1 (-441 *3 *4 *5 *6 *7 *8)) (-4 *5 (-795))
+ (-4 *8 (-891 *4 *6 (-806 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-675)) (-4 *2 (-795)) (-5 *1 (-684 *3 *2)) (-4 *3 (-984))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-740)) (-4 *4 (-795)))))
+(((*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-812 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 (-2 (|:| -2927 (-1095)) (|:| -1780 *4))))
- (-4 *4 (-1023)) (-5 *1 (-828 *3 *4)) (-4 *3 (-1023))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 *5)) (-4 *5 (-13 (-1023) (-33)))
- (-5 *2 (-595 (-1060 *3 *5))) (-5 *1 (-1060 *3 *5))
- (-4 *3 (-13 (-1023) (-33)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 (-2 (|:| |val| *4) (|:| -2316 *5))))
- (-4 *4 (-13 (-1023) (-33))) (-4 *5 (-13 (-1023) (-33)))
- (-5 *2 (-595 (-1060 *4 *5))) (-5 *1 (-1060 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2316 *4)))
- (-4 *3 (-13 (-1023) (-33))) (-4 *4 (-13 (-1023) (-33)))
- (-5 *1 (-1060 *3 *4))))
+ (-12 (-5 *3 (-594 (-860))) (-5 *1 (-145 *4 *2 *5)) (-14 *4 (-860))
+ (-4 *2 (-344)) (-14 *5 (-933 *4 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1060 *2 *3)) (-4 *2 (-13 (-1023) (-33)))
- (-4 *3 (-13 (-1023) (-33)))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-110)) (-5 *1 (-1060 *2 *3)) (-4 *2 (-13 (-1023) (-33)))
- (-4 *3 (-13 (-1023) (-33)))))
- ((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-595 *3)) (-4 *3 (-13 (-1023) (-33)))
- (-5 *1 (-1061 *2 *3)) (-4 *2 (-13 (-1023) (-33)))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-595 (-1060 *2 *3))) (-4 *2 (-13 (-1023) (-33)))
- (-4 *3 (-13 (-1023) (-33))) (-5 *1 (-1061 *2 *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-595 (-1061 *2 *3))) (-5 *1 (-1061 *2 *3))
- (-4 *2 (-13 (-1023) (-33))) (-4 *3 (-13 (-1023) (-33)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1060 *3 *4)) (-4 *3 (-13 (-1023) (-33)))
- (-4 *4 (-13 (-1023) (-33))) (-5 *1 (-1061 *3 *4))))
+ (-12 (-5 *3 (-662 *5 *6 *7)) (-4 *5 (-795)) (-4 *6 (-221 (-4232 *4) (-719)))
+ (-14 *7
+ (-1 (-110) (-2 (|:| -2426 *5) (|:| -2427 *6))
+ (-2 (|:| -2426 *5) (|:| -2427 *6))))
+ (-14 *4 (-594 (-1098))) (-4 *2 (-162)) (-5 *1 (-441 *4 *2 *5 *6 *7 *8))
+ (-4 *8 (-891 *2 *6 (-806 *4)))))
+ ((*1 *1 *2 *3) (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-795))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1085 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1023)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-793)) (-5 *2 (-110))))
- ((*1 *1 *1 *1) (-5 *1 (-802)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-843 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-288))
- (-5 *2 (-595 (-717))) (-5 *1 (-724 *3 *4 *5 *6 *7))
- (-4 *3 (-1153 *6)) (-4 *7 (-888 *6 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-595 (-1010))) (-5 *1 (-272)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-207))
- (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-76 FUNCTN))))
- (-5 *2 (-970)) (-5 *1 (-695)))))
-(((*1 *1 *2) (-12 (-5 *2 (-813)) (-5 *1 (-244))))
- ((*1 *1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-244)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-343)) (-4 *7 (-1153 *5)) (-4 *4 (-671 *5 *7))
- (-5 *2 (-2 (|:| -2163 (-635 *6)) (|:| |vec| (-1177 *5))))
- (-5 *1 (-757 *5 *6 *7 *4 *3)) (-4 *6 (-605 *5)) (-4 *3 (-605 *4)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359))
- (-5 *2
- (-2 (|:| -3327 *4) (|:| -3817 *4) (|:| |totalpts| (-528))
- (|:| |success| (-110))))
- (-5 *1 (-735)) (-5 *5 (-528)))))
+ (-12 (-5 *3 (-516)) (-4 *2 (-523)) (-5 *1 (-578 *2 *4)) (-4 *4 (-1155 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-657 *2)) (-4 *2 (-984))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-684 *2 *3)) (-4 *2 (-984)) (-4 *3 (-675))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-594 *5)) (-5 *3 (-594 (-719))) (-4 *1 (-689 *4 *5))
+ (-4 *4 (-984)) (-4 *5 (-795))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *2)) (-4 *4 (-984)) (-4 *2 (-795))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-797 *2)) (-4 *2 (-984))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-594 *6)) (-5 *3 (-594 (-719))) (-4 *1 (-891 *4 *5 *6))
+ (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-719)) (-4 *1 (-891 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-741))
+ (-4 *2 (-795))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-594 *6)) (-5 *3 (-594 *5)) (-4 *1 (-913 *4 *5 *6))
+ (-4 *4 (-984)) (-4 *5 (-740)) (-4 *6 (-795))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *1 (-913 *4 *3 *2)) (-4 *4 (-984)) (-4 *3 (-740)) (-4 *2 (-795)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-556 *3)) (-4 *3 (-984))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-913 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-740)) (-4 *5 (-795))
+ (-5 *2 (-110)))))
+(((*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1100 (-388 (-516)))) (-5 *1 (-174)) (-5 *3 (-516))))
+ ((*1 *1 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *1) (-4 *1 (-811 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-740)) (-4 *4 (-795)))))
+(((*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-911)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1076 (-1076 *4))) (-5 *2 (-1076 *4)) (-5 *1 (-1080 *4))
- (-4 *4 (-981)))))
-(((*1 *1) (-5 *1 (-749))))
+ (-12 (-5 *2 (-594 (-594 (-516)))) (-5 *1 (-911)) (-5 *3 (-594 (-516))))))
+(((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-911)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4035 *4)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4035 *4)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *3 *3) (-12 (-4 *2 (-523)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1155 *2)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-523)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1155 *3)))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-719)) (-4 *3 (-523)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1155 *3)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-719)) (-4 *2 (-523)) (-5 *1 (-910 *2 *4)) (-4 *4 (-1155 *2)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2046 *1) (|:| -3166 *1))) (-4 *1 (-289))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-367 *3)) (|:| |rm| (-367 *3))))
+ (-5 *1 (-367 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2046 (-719)) (|:| -3166 (-719)))) (-5 *1 (-719))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| -2046 *3) (|:| -3166 *3)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *4 (-523))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -3142 *4))) (-5 *1 (-910 *4 *3))
+ (-4 *3 (-1155 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *4 (-523))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3142 *4)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-523)) (-4 *2 (-432)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1155 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-594 (-719))) (-5 *1 (-910 *4 *3))
+ (-4 *3 (-1155 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-594 *3)) (-5 *1 (-910 *4 *3))
+ (-4 *3 (-1155 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-296 (-207))) (-5 *2 (-296 (-387 (-528))))
- (-5 *1 (-286)))))
-(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-162))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1177 *3)) (-4 *3 (-343)) (-14 *6 (-1177 (-635 *3)))
- (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-860)) (-14 *5 (-595 (-1095)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1047 (-528) (-568 (-47)))) (-5 *1 (-47))))
- ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1131))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1177 (-319 (-2233 'JINT 'X 'ELAM) (-2233) (-645))))
- (-5 *1 (-59 *3)) (-14 *3 (-1095))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1177 (-319 (-2233) (-2233 'XC) (-645))))
- (-5 *1 (-61 *3)) (-14 *3 (-1095))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-319 (-2233 'X) (-2233) (-645))) (-5 *1 (-62 *3))
- (-14 *3 (-1095))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-635 (-319 (-2233) (-2233 'X 'HESS) (-645))))
- (-5 *1 (-63 *3)) (-14 *3 (-1095))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-319 (-2233) (-2233 'XC) (-645))) (-5 *1 (-64 *3))
- (-14 *3 (-1095))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1177 (-319 (-2233 'X) (-2233 '-4085) (-645))))
- (-5 *1 (-69 *3)) (-14 *3 (-1095))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1177 (-319 (-2233) (-2233 'X) (-645))))
- (-5 *1 (-72 *3)) (-14 *3 (-1095))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1177 (-319 (-2233 'X 'EPS) (-2233 '-4085) (-645))))
- (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1095)) (-14 *4 (-1095))
- (-14 *5 (-1095))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1177 (-319 (-2233 'EPS) (-2233 'YA 'YB) (-645))))
- (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1095)) (-14 *4 (-1095))
- (-14 *5 (-1095))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-319 (-2233) (-2233 'X) (-645))) (-5 *1 (-75 *3))
- (-14 *3 (-1095))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-319 (-2233) (-2233 'X) (-645))) (-5 *1 (-76 *3))
- (-14 *3 (-1095))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1177 (-319 (-2233) (-2233 'XC) (-645))))
- (-5 *1 (-77 *3)) (-14 *3 (-1095))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1177 (-319 (-2233) (-2233 'X) (-645))))
- (-5 *1 (-78 *3)) (-14 *3 (-1095))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1177 (-319 (-2233) (-2233 'X) (-645))))
- (-5 *1 (-79 *3)) (-14 *3 (-1095))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1177 (-319 (-2233 'X '-4085) (-2233) (-645))))
- (-5 *1 (-80 *3)) (-14 *3 (-1095))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-635 (-319 (-2233 'X '-4085) (-2233) (-645))))
- (-5 *1 (-81 *3)) (-14 *3 (-1095))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-635 (-319 (-2233 'X) (-2233) (-645)))) (-5 *1 (-82 *3))
- (-14 *3 (-1095))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1177 (-319 (-2233 'X) (-2233) (-645))))
- (-5 *1 (-83 *3)) (-14 *3 (-1095))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1177 (-319 (-2233 'X) (-2233 '-4085) (-645))))
- (-5 *1 (-84 *3)) (-14 *3 (-1095))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-635 (-319 (-2233 'XL 'XR 'ELAM) (-2233) (-645))))
- (-5 *1 (-85 *3)) (-14 *3 (-1095))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-319 (-2233 'X) (-2233 '-4085) (-645))) (-5 *1 (-87 *3))
- (-14 *3 (-1095))))
- ((*1 *2 *1) (-12 (-5 *2 (-940 2)) (-5 *1 (-105))))
- ((*1 *2 *1) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-105))))
- ((*1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-127))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 (-132 *3 *4 *5))) (-5 *1 (-132 *3 *4 *5))
- (-14 *3 (-528)) (-14 *4 (-717)) (-4 *5 (-162))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 *5)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5))
- (-14 *3 (-528)) (-14 *4 (-717))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1062 *4 *5)) (-14 *4 (-717)) (-4 *5 (-162))
- (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-528))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-222 *4 *5)) (-14 *4 (-717)) (-4 *5 (-162))
- (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-528))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1177 (-635 *4))) (-4 *4 (-162))
- (-5 *2 (-1177 (-635 (-387 (-891 *4))))) (-5 *1 (-173 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 *3))
- (-4 *3
- (-13 (-793)
- (-10 -8 (-15 -3043 ((-1078) $ (-1095))) (-15 -2273 ((-1182) $))
- (-15 -3294 ((-1182) $)))))
- (-5 *1 (-197 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-940 10)) (-5 *1 (-200))))
- ((*1 *2 *1) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-200))))
- ((*1 *2 *1) (-12 (-5 *2 (-595 *3)) (-5 *1 (-227 *3)) (-4 *3 (-793))))
- ((*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-793)) (-5 *1 (-227 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1016 (-296 *4)))
- (-4 *4 (-13 (-793) (-520) (-570 (-359)))) (-5 *2 (-1016 (-359)))
- (-5 *1 (-239 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-247 *2)) (-4 *2 (-793))))
- ((*1 *1 *2) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-256))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1153 *3)) (-5 *1 (-270 *3 *2 *4 *5 *6 *7))
- (-4 *3 (-162)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1162 *4 *5 *6)) (-4 *4 (-13 (-27) (-1117) (-410 *3)))
- (-14 *5 (-1095)) (-14 *6 *4)
- (-4 *3 (-13 (-793) (-972 (-528)) (-591 (-528)) (-431)))
- (-5 *1 (-293 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-310))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-296 *5)) (-5 *1 (-319 *3 *4 *5))
- (-14 *3 (-595 (-1095))) (-14 *4 (-595 (-1095))) (-4 *5 (-367))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-329)) (-4 *2 (-309 *4)) (-5 *1 (-327 *3 *4 *2))
- (-4 *3 (-309 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-329)) (-4 *2 (-309 *4)) (-5 *1 (-327 *2 *4 *3))
- (-4 *3 (-309 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-354 *3 *4)) (-4 *3 (-793)) (-4 *4 (-162))
- (-5 *2 (-1199 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-354 *3 *4)) (-4 *3 (-793)) (-4 *4 (-162))
- (-5 *2 (-1190 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-354 *2 *3)) (-4 *2 (-793)) (-4 *3 (-162))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310)))))
- (-4 *1 (-363))))
- ((*1 *1 *2) (-12 (-5 *2 (-310)) (-4 *1 (-363))))
- ((*1 *1 *2) (-12 (-5 *2 (-595 (-310))) (-4 *1 (-363))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 (-645))) (-4 *1 (-363))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310)))))
- (-4 *1 (-364))))
- ((*1 *1 *2) (-12 (-5 *2 (-310)) (-4 *1 (-364))))
- ((*1 *1 *2) (-12 (-5 *2 (-595 (-310))) (-4 *1 (-364))))
- ((*1 *2 *1) (-12 (-4 *1 (-369)) (-5 *2 (-1078))))
- ((*1 *1 *2) (-12 (-5 *2 (-1078)) (-4 *1 (-369))))
- ((*1 *2 *3) (-12 (-5 *2 (-374)) (-5 *1 (-373 *3)) (-4 *3 (-1023))))
- ((*1 *1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-374))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310)))))
- (-4 *1 (-376))))
- ((*1 *1 *2) (-12 (-5 *2 (-310)) (-4 *1 (-376))))
- ((*1 *1 *2) (-12 (-5 *2 (-595 (-310))) (-4 *1 (-376))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-275 (-296 (-159 (-359))))) (-5 *1 (-378 *3 *4 *5 *6))
- (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void")))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1099))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-275 (-296 (-359)))) (-5 *1 (-378 *3 *4 *5 *6))
- (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void")))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1099))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-275 (-296 (-528)))) (-5 *1 (-378 *3 *4 *5 *6))
- (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void")))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1099))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-296 (-159 (-359)))) (-5 *1 (-378 *3 *4 *5 *6))
- (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void")))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1099))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-296 (-359))) (-5 *1 (-378 *3 *4 *5 *6))
- (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void")))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1099))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-296 (-528))) (-5 *1 (-378 *3 *4 *5 *6))
- (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void")))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1099))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-275 (-296 (-640)))) (-5 *1 (-378 *3 *4 *5 *6))
- (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void")))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1099))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-275 (-296 (-645)))) (-5 *1 (-378 *3 *4 *5 *6))
- (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void")))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1099))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-275 (-296 (-647)))) (-5 *1 (-378 *3 *4 *5 *6))
- (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void")))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1099))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-296 (-640))) (-5 *1 (-378 *3 *4 *5 *6))
- (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void")))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1099))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-296 (-645))) (-5 *1 (-378 *3 *4 *5 *6))
- (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void")))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1099))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-296 (-647))) (-5 *1 (-378 *3 *4 *5 *6))
- (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void")))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1099))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310)))))
- (-5 *1 (-378 *3 *4 *5 *6)) (-14 *3 (-1095))
- (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void")))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1099))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 (-310))) (-5 *1 (-378 *3 *4 *5 *6))
- (-14 *3 (-1095)) (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void")))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1099))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-310)) (-5 *1 (-378 *3 *4 *5 *6)) (-14 *3 (-1095))
- (-14 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void")))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1099))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-311 *4)) (-4 *4 (-13 (-793) (-21)))
- (-5 *1 (-407 *3 *4)) (-4 *3 (-13 (-162) (-37 (-387 (-528)))))))
- ((*1 *1 *2)
- (-12 (-5 *1 (-407 *2 *3)) (-4 *2 (-13 (-162) (-37 (-387 (-528)))))
- (-4 *3 (-13 (-793) (-21)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-387 (-891 (-387 *3)))) (-4 *3 (-520)) (-4 *3 (-793))
- (-4 *1 (-410 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-891 (-387 *3))) (-4 *3 (-520)) (-4 *3 (-793))
- (-4 *1 (-410 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-387 *3)) (-4 *3 (-520)) (-4 *3 (-793))
- (-4 *1 (-410 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1047 *3 (-568 *1))) (-4 *3 (-981)) (-4 *3 (-793))
- (-4 *1 (-410 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-414))))
- ((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-414))))
- ((*1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-414))))
- ((*1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-414))))
- ((*1 *1 *2) (-12 (-5 *2 (-414)) (-5 *1 (-417))))
- ((*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-417))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310)))))
- (-4 *1 (-419))))
- ((*1 *1 *2) (-12 (-5 *2 (-310)) (-4 *1 (-419))))
- ((*1 *1 *2) (-12 (-5 *2 (-595 (-310))) (-4 *1 (-419))))
- ((*1 *1 *2) (-12 (-5 *2 (-1177 (-645))) (-4 *1 (-419))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1099)) (|:| -1806 (-595 (-310)))))
- (-4 *1 (-420))))
- ((*1 *1 *2) (-12 (-5 *2 (-310)) (-4 *1 (-420))))
- ((*1 *1 *2) (-12 (-5 *2 (-595 (-310))) (-4 *1 (-420))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1177 (-387 (-891 *3)))) (-4 *3 (-162))
- (-14 *6 (-1177 (-635 *3))) (-5 *1 (-432 *3 *4 *5 *6))
- (-14 *4 (-860)) (-14 *5 (-595 (-1095)))))
- ((*1 *1 *2) (-12 (-5 *2 (-595 (-595 (-882 (-207))))) (-5 *1 (-447))))
- ((*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-447))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1162 *3 *4 *5)) (-4 *3 (-981)) (-14 *4 (-1095))
- (-14 *5 *3) (-5 *1 (-453 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-453 *3 *4 *5))
- (-4 *3 (-981)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-5 *2 (-940 16)) (-5 *1 (-465))))
- ((*1 *2 *1) (-12 (-5 *2 (-387 (-528))) (-5 *1 (-465))))
- ((*1 *1 *2) (-12 (-5 *2 (-1047 (-528) (-568 (-471)))) (-5 *1 (-471))))
- ((*1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-478))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-343))
- (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-480 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-127)) (-5 *1 (-562))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-162)) (-5 *1 (-563 *3 *2)) (-4 *2 (-691 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-1131))))
- ((*1 *1 *2) (-12 (-4 *1 (-573 *2)) (-4 *2 (-981))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1195 *3 *4)) (-5 *1 (-579 *3 *4 *5)) (-4 *3 (-793))
- (-4 *4 (-13 (-162) (-664 (-387 (-528))))) (-14 *5 (-860))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1190 *3 *4)) (-5 *1 (-579 *3 *4 *5)) (-4 *3 (-793))
- (-4 *4 (-13 (-162) (-664 (-387 (-528))))) (-14 *5 (-860))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-162)) (-5 *1 (-587 *3 *2)) (-4 *2 (-691 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-624 *3)) (-5 *1 (-620 *3)) (-4 *3 (-793))))
- ((*1 *2 *1) (-12 (-5 *2 (-765 *3)) (-5 *1 (-620 *3)) (-4 *3 (-793))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-896 (-896 (-896 *3)))) (-5 *1 (-623 *3))
- (-4 *3 (-1023))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-896 (-896 (-896 *3)))) (-4 *3 (-1023))
- (-5 *1 (-623 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-765 *3)) (-5 *1 (-624 *3)) (-4 *3 (-793))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-628 *3)) (-4 *3 (-1023))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-981)) (-4 *1 (-633 *3 *4 *2)) (-4 *4 (-353 *3))
- (-4 *2 (-353 *3))))
- ((*1 *2 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-569 (-802)))))
- ((*1 *1 *2) (-12 (-5 *1 (-637 *2)) (-4 *2 (-569 (-802)))))
- ((*1 *2 *1) (-12 (-5 *2 (-159 (-359))) (-5 *1 (-640))))
- ((*1 *1 *2) (-12 (-5 *2 (-159 (-647))) (-5 *1 (-640))))
- ((*1 *1 *2) (-12 (-5 *2 (-159 (-645))) (-5 *1 (-640))))
- ((*1 *1 *2) (-12 (-5 *2 (-159 (-528))) (-5 *1 (-640))))
- ((*1 *1 *2) (-12 (-5 *2 (-159 (-359))) (-5 *1 (-640))))
- ((*1 *1 *2) (-12 (-5 *2 (-647)) (-5 *1 (-645))))
- ((*1 *2 *1) (-12 (-5 *2 (-359)) (-5 *1 (-645))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-296 (-528))) (-5 *2 (-296 (-647))) (-5 *1 (-647))))
- ((*1 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1023))))
- ((*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1078)) (-5 *1 (-657))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-162)) (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-981)) (-5 *1 (-659 *3 *2)) (-4 *2 (-1153 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -3108 *3) (|:| -2564 *4)))
- (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-793)) (-4 *4 (-1023))
- (-14 *5 (-1 (-110) *2 *2))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| -3108 *3) (|:| -2564 *4))) (-4 *3 (-793))
- (-4 *4 (-1023)) (-5 *1 (-660 *3 *4 *5)) (-14 *5 (-1 (-110) *2 *2))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-162)) (-5 *1 (-662 *2 *3 *4 *5 *6)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 (-2 (|:| -1641 *3) (|:| -3841 *4)))) (-4 *3 (-981))
- (-4 *4 (-673)) (-5 *1 (-682 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-528)) (-4 *1 (-710))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-3
- (|:| |nia|
- (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207)))
- (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207))
- (|:| |relerr| (-207))))
- (|:| |mdnia|
- (-2 (|:| |fn| (-296 (-207)))
- (|:| -2931 (-595 (-1018 (-786 (-207)))))
- (|:| |abserr| (-207)) (|:| |relerr| (-207))))))
- (-5 *1 (-715))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-296 (-207)))
- (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207))
- (|:| |relerr| (-207))))
- (-5 *1 (-715))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207)))
- (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207))
- (|:| |relerr| (-207))))
- (-5 *1 (-715))))
- ((*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-715))))
- ((*1 *2 *3) (-12 (-5 *2 (-720)) (-5 *1 (-719 *3)) (-4 *3 (-1131))))
- ((*1 *1 *2)
- (-12
+ (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4036 *4)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-523))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4036 *4)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3419 *3)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3419 *3)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3419 *3)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-719)) (-4 *5 (-523))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *5 *3))
+ (-4 *3 (-1155 *5)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-719)) (-4 *5 (-523))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-910 *5 *3)) (-4 *3 (-1155 *5)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-719)) (-4 *4 (-523)) (-5 *1 (-910 *4 *2)) (-4 *2 (-1155 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-719)) (-4 *5 (-523))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *5 *3))
+ (-4 *3 (-1155 *5)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-719)) (-4 *5 (-523))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-910 *5 *3)) (-4 *3 (-1155 *5)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-719)) (-4 *4 (-523)) (-5 *1 (-910 *4 *2)) (-4 *2 (-1155 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4035 *4)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4035 *4)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4035 *4)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1134)) (-4 *2 (-795))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-264 *3)) (-4 *3 (-1134))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-795)))))
+(((*1 *1 *1 *1) (-4 *1 (-908))))
+(((*1 *1 *1 *1) (-4 *1 (-908))))
+(((*1 *1 *1 *1) (-4 *1 (-121))) ((*1 *1 *1 *1) (-5 *1 (-805)))
+ ((*1 *1 *1 *1) (-4 *1 (-908))))
+(((*1 *1 *1 *1) (-4 *1 (-121))) ((*1 *1 *1 *1) (-5 *1 (-805)))
+ ((*1 *1 *1 *1) (-4 *1 (-908))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
+(((*1 *2 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-908)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
+(((*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-908)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
+(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1081)) (-5 *2 (-721)) (-5 *1 (-111))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-1029)) (-5 *1 (-906)))))
+(((*1 *1 *2 *3) (-12 (-5 *1 (-905 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1027)) (-5 *1 (-905 *2 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1027)) (-5 *1 (-905 *3 *2)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-805))))
+ ((*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1185)) (-5 *1 (-904)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-594 *3)) (-5 *1 (-903 *3)) (-4 *3 (-515)))))
+(((*1 *2 *2) (-12 (-5 *1 (-903 *2)) (-4 *2 (-515)))))
+(((*1 *2 *2) (-12 (-5 *1 (-903 *2)) (-4 *2 (-515)))))
+(((*1 *1) (-4 *1 (-331)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 *5)) (-4 *5 (-402 *4)) (-4 *4 (-13 (-523) (-795) (-140)))
+ (-5 *2
+ (-2 (|:| |primelt| *5) (|:| |poly| (-594 (-1092 *5)))
+ (|:| |prim| (-1092 *5))))
+ (-5 *1 (-413 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-523) (-795) (-140)))
(-5 *2
- (-2 (|:| |xinit| (-207)) (|:| |xend| (-207))
- (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207)))
- (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207)))
- (|:| |abserr| (-207)) (|:| |relerr| (-207))))
- (-5 *1 (-754))))
- ((*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-754))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-839 *3)) (-5 *1 (-763 *3 *2 *4)) (-4 *3 (-1023))
- (-14 *4 *3)))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1023)) (-14 *4 *3) (-5 *1 (-763 *3 *2 *4))
- (-4 *2 (-839 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-770))))
- ((*1 *1 *2)
- (-12
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1092 *3)) (|:| |pol2| (-1092 *3))
+ (|:| |prim| (-1092 *3))))
+ (-5 *1 (-413 *4 *3)) (-4 *3 (-27)) (-4 *3 (-402 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-887 *5)) (-5 *4 (-1098)) (-4 *5 (-13 (-344) (-140)))
(-5 *2
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207)))
- (|:| |lb| (-595 (-786 (-207))))
- (|:| |cf| (-595 (-296 (-207))))
- (|:| |ub| (-595 (-786 (-207))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-595 (-296 (-207))))
- (|:| -4197 (-595 (-207)))))))
- (-5 *1 (-784))))
- ((*1 *1 *2)
- (-12
+ (-2 (|:| |coef1| (-516)) (|:| |coef2| (-516)) (|:| |prim| (-1092 *5))))
+ (-5 *1 (-902 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-887 *5))) (-5 *4 (-594 (-1098)))
+ (-4 *5 (-13 (-344) (-140)))
(-5 *2
- (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207)))))
- (-5 *1 (-784))))
- ((*1 *1 *2)
- (-12
+ (-2 (|:| -4229 (-594 (-516))) (|:| |poly| (-594 (-1092 *5)))
+ (|:| |prim| (-1092 *5))))
+ (-5 *1 (-902 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-594 (-887 *6))) (-5 *4 (-594 (-1098))) (-5 *5 (-1098))
+ (-4 *6 (-13 (-344) (-140)))
(-5 *2
- (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207)))
- (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207))))
- (|:| |ub| (-595 (-786 (-207))))))
- (-5 *1 (-784))))
- ((*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-784))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1173 *3)) (-14 *3 (-1095)) (-5 *1 (-798 *3 *4 *5 *6))
- (-4 *4 (-981)) (-14 *5 (-96 *4)) (-14 *6 (-1 *4 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-801))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-891 *3)) (-4 *3 (-981)) (-5 *1 (-805 *3 *4 *5 *6))
- (-14 *4 (-595 (-1095))) (-14 *5 (-595 (-717))) (-14 *6 (-717))))
+ (-2 (|:| -4229 (-594 (-516))) (|:| |poly| (-594 (-1092 *6)))
+ (|:| |prim| (-1092 *6))))
+ (-5 *1 (-902 *6)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1098)) (-5 *1 (-545 *2)) (-4 *2 (-975 *3)) (-4 *2 (-344))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-545 *2)) (-4 *2 (-344))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-795) (-523))) (-5 *1 (-583 *4 *2))
+ (-4 *2 (-13 (-402 *4) (-941) (-1120)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1019 *2)) (-4 *2 (-13 (-402 *4) (-941) (-1120)))
+ (-4 *4 (-13 (-795) (-523))) (-5 *1 (-583 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-901)) (-5 *2 (-1098))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1019 *1)) (-4 *1 (-901)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-860)) (-4 *5 (-523)) (-5 *2 (-637 *5))
+ (-5 *1 (-898 *5 *3)) (-4 *3 (-609 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1045)) (-5 *1 (-895)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-523)) (-4 *3 (-891 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2427 (-719)) (|:| -4229 *3) (|:| |radicand| (-594 *3))))
+ (-5 *1 (-894 *5 *6 *7 *3 *8)) (-5 *4 (-719))
+ (-4 *8
+ (-13 (-344)
+ (-10 -8 (-15 -3262 (*3 $)) (-15 -3261 (*3 $)) (-15 -4233 ($ *3))))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *7 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-523))
+ (-4 *8 (-891 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2427 (-719)) (|:| -4229 *3) (|:| |radicand| *3)))
+ (-5 *1 (-894 *5 *6 *7 *8 *3)) (-5 *4 (-719))
+ (-4 *3
+ (-13 (-344)
+ (-10 -8 (-15 -3262 (*8 $)) (-15 -3261 (*8 $)) (-15 -4233 ($ *8))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-516))) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-523))
+ (-4 *8 (-891 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2427 (-719)) (|:| -4229 *9) (|:| |radicand| *9)))
+ (-5 *1 (-894 *5 *6 *7 *8 *9)) (-5 *4 (-719))
+ (-4 *9
+ (-13 (-344)
+ (-10 -8 (-15 -3262 (*8 $)) (-15 -3261 (*8 $)) (-15 -4233 ($ *8))))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-523)) (-4 *7 (-891 *3 *5 *6))
+ (-5 *2 (-2 (|:| -2427 (-719)) (|:| -4229 *8) (|:| |radicand| *8)))
+ (-5 *1 (-894 *5 *6 *3 *7 *8)) (-5 *4 (-719))
+ (-4 *8
+ (-13 (-344)
+ (-10 -8 (-15 -3262 (*7 $)) (-15 -3261 (*7 $)) (-15 -4233 ($ *7))))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-984)) (-4 *3 (-795))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -2427 (-516)))) (-4 *1 (-402 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-891 *3)) (-5 *1 (-805 *3 *4 *5 *6)) (-4 *3 (-981))
- (-14 *4 (-595 (-1095))) (-14 *5 (-595 (-717))) (-14 *6 (-717))))
- ((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-813))))
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-831 *3)) (|:| -2427 (-831 *3))))
+ (-5 *1 (-831 *3)) (-4 *3 (-1027))))
((*1 *2 *3)
- (-12 (-5 *3 (-891 (-47))) (-5 *2 (-296 (-528))) (-5 *1 (-814))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-387 (-891 (-47)))) (-5 *2 (-296 (-528)))
- (-5 *1 (-814))))
- ((*1 *1 *2) (-12 (-5 *1 (-832 *2)) (-4 *2 (-793))))
- ((*1 *2 *1) (-12 (-5 *2 (-765 *3)) (-5 *1 (-832 *3)) (-4 *3 (-793))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |pde| (-595 (-296 (-207))))
- (|:| |constraints|
- (-595
- (-2 (|:| |start| (-207)) (|:| |finish| (-207))
- (|:| |grid| (-717)) (|:| |boundaryType| (-528))
- (|:| |dStart| (-635 (-207))) (|:| |dFinish| (-635 (-207))))))
- (|:| |f| (-595 (-595 (-296 (-207))))) (|:| |st| (-1078))
- (|:| |tol| (-207))))
- (-5 *1 (-837))))
- ((*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-837))))
+ (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984))
+ (-4 *7 (-891 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2427 (-516))))
+ (-5 *1 (-892 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-344)
+ (-10 -8 (-15 -4233 ($ *7)) (-15 -3262 (*7 $)) (-15 -3261 (*7 $))))))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1098)) (-4 *4 (-984)) (-4 *4 (-795))
+ (-5 *2 (-2 (|:| |var| (-569 *1)) (|:| -2427 (-516)))) (-4 *1 (-402 *4))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-111)) (-4 *4 (-984)) (-4 *4 (-795))
+ (-5 *2 (-2 (|:| |var| (-569 *1)) (|:| -2427 (-516)))) (-4 *1 (-402 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-1118 *3)) (-5 *1 (-840 *3)) (-4 *3 (-1023))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 (-844 *3))) (-4 *3 (-1023)) (-5 *1 (-843 *3))))
+ (|partial| -12 (-4 *3 (-1038)) (-4 *3 (-795))
+ (-5 *2 (-2 (|:| |var| (-569 *1)) (|:| -2427 (-516)))) (-4 *1 (-402 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-595 (-844 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1023))))
- ((*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1023)) (-5 *1 (-844 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 (-595 *3))) (-4 *3 (-1023)) (-5 *1 (-844 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-387 (-398 *3))) (-4 *3 (-288)) (-5 *1 (-853 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-387 *3)) (-5 *1 (-853 *3)) (-4 *3 (-288))))
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-831 *3)) (|:| -2427 (-719))))
+ (-5 *1 (-831 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-891 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *2 (-2 (|:| |var| *5) (|:| -2427 (-719))))))
((*1 *2 *3)
- (-12 (-5 *3 (-456)) (-5 *2 (-296 *4)) (-5 *1 (-858 *4))
- (-4 *4 (-13 (-793) (-520)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-904 *3)) (-4 *3 (-905))))
- ((*1 *1 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-905))))
- ((*1 *2 *1) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-908))))
+ (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984))
+ (-4 *7 (-891 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2427 (-516))))
+ (-5 *1 (-892 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-344)
+ (-10 -8 (-15 -4233 ($ *7)) (-15 -3262 (*7 $)) (-15 -3261 (*7 $))))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1038)) (-4 *3 (-795)) (-5 *2 (-594 *1))
+ (-4 *1 (-402 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-387 (-528))) (-5 *1 (-940 *3)) (-14 *3 (-528))))
- ((*1 *2 *3) (-12 (-5 *2 (-1182)) (-5 *1 (-968 *3)) (-4 *3 (-1131))))
- ((*1 *2 *3) (-12 (-5 *3 (-292)) (-5 *1 (-968 *2)) (-4 *2 (-1131))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *1 (-969 *3 *4 *5 *2 *6)) (-4 *2 (-888 *3 *4 *5))
- (-14 *6 (-595 *2))))
- ((*1 *1 *2) (-12 (-4 *1 (-972 *2)) (-4 *2 (-1131))))
+ (|partial| -12 (-5 *2 (-594 (-831 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-594 *1))
+ (-4 *1 (-891 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-387 (-891 *3))) (-5 *1 (-977 *3)) (-4 *3 (-520))))
- ((*1 *1 *2) (-12 (-5 *2 (-528)) (-4 *1 (-981))))
+ (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984))
+ (-4 *7 (-891 *6 *4 *5)) (-5 *2 (-594 *3)) (-5 *1 (-892 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-344)
+ (-10 -8 (-15 -4233 ($ *7)) (-15 -3262 (*7 $)) (-15 -3261 (*7 $))))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-795)) (-5 *2 (-594 *1))
+ (-4 *1 (-402 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-635 *5)) (-5 *1 (-984 *3 *4 *5)) (-14 *3 (-717))
- (-14 *4 (-717)) (-4 *5 (-981))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-981)) (-4 *4 (-793)) (-5 *1 (-1048 *3 *4 *2))
- (-4 *2 (-888 *3 (-500 *4) *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-981)) (-4 *2 (-793)) (-5 *1 (-1048 *3 *2 *4))
- (-4 *4 (-888 *3 (-500 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-802))))
+ (|partial| -12 (-5 *2 (-594 (-831 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1027))))
((*1 *2 *1)
- (-12 (-5 *2 (-635 *4)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-717))
- (-4 *4 (-981))))
- ((*1 *1 *2) (-12 (-5 *2 (-137)) (-4 *1 (-1064))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 *3)) (-4 *3 (-1131)) (-5 *1 (-1076 *3))))
+ (|partial| -12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-594 *1))
+ (-4 *1 (-891 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-1076 *3)) (-5 *1 (-1080 *3)) (-4 *3 (-981))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1086 *3 *4 *5))
- (-4 *3 (-981)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1092 *3 *4 *5))
- (-4 *3 (-981)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1093 *3 *4 *5))
- (-4 *3 (-981)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1150 *4 *3)) (-4 *3 (-981)) (-14 *4 (-1095))
- (-14 *5 *3) (-5 *1 (-1093 *3 *4 *5))))
- ((*1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-1094))))
- ((*1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-1095))))
- ((*1 *2 *1) (-12 (-5 *2 (-1105 (-1095) (-417))) (-5 *1 (-1099))))
- ((*1 *2 *1) (-12 (-5 *2 (-1078)) (-5 *1 (-1100))))
- ((*1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-1100))))
- ((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-1100))))
- ((*1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-1100))))
- ((*1 *2 *1) (-12 (-5 *2 (-207)) (-5 *1 (-1100))))
- ((*1 *1 *2) (-12 (-5 *2 (-207)) (-5 *1 (-1100))))
- ((*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-1100))))
- ((*1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-1100))))
- ((*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-1104 *3)) (-4 *3 (-1023))))
- ((*1 *2 *3) (-12 (-5 *2 (-1112)) (-5 *1 (-1111 *3)) (-4 *3 (-1023))))
- ((*1 *1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1112))))
- ((*1 *1 *2) (-12 (-5 *2 (-891 *3)) (-4 *3 (-981)) (-5 *1 (-1126 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-1126 *3)) (-4 *3 (-981))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-896 *3)) (-4 *3 (-1131)) (-5 *1 (-1129 *3))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-981)) (-4 *1 (-1139 *3 *2)) (-4 *2 (-1168 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1141 *3 *4 *5))
- (-4 *3 (-981)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1018 *3)) (-4 *3 (-1131)) (-5 *1 (-1144 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1173 *3)) (-14 *3 (-1095)) (-5 *1 (-1150 *3 *4))
- (-4 *4 (-981))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-981)) (-4 *1 (-1160 *3 *2)) (-4 *2 (-1137 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1162 *3 *4 *5))
- (-4 *3 (-981)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1169 *3 *4 *5))
- (-4 *3 (-981)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1150 *4 *3)) (-4 *3 (-981)) (-14 *4 (-1095))
- (-14 *5 *3) (-5 *1 (-1169 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-1173 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-1178))))
- ((*1 *2 *3) (-12 (-5 *3 (-447)) (-5 *2 (-1178)) (-5 *1 (-1181))))
- ((*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-1182))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-981)) (-4 *4 (-793)) (-4 *5 (-739)) (-14 *6 (-595 *4))
- (-5 *1 (-1187 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-888 *3 *5 *4))
- (-14 *7 (-595 (-717))) (-14 *8 (-717))))
+ (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984))
+ (-4 *7 (-891 *6 *4 *5)) (-5 *2 (-594 *3)) (-5 *1 (-892 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-344)
+ (-10 -8 (-15 -4233 ($ *7)) (-15 -3262 (*7 $)) (-15 -3261 (*7 $))))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-594 *1)) (-4 *1 (-365 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *2 (-888 *3 *5 *4)) (-5 *1 (-1187 *3 *4 *5 *2 *6 *7 *8))
- (-4 *3 (-981)) (-4 *4 (-793)) (-4 *5 (-739)) (-14 *6 (-595 *4))
- (-14 *7 (-595 (-717))) (-14 *8 (-717))))
- ((*1 *1 *2) (-12 (-4 *1 (-1189 *2)) (-4 *2 (-981))))
- ((*1 *1 *2) (-12 (-4 *1 (-1192 *2 *3)) (-4 *2 (-793)) (-4 *3 (-981))))
+ (-12 (-5 *2 (-594 (-684 *3 *4))) (-5 *1 (-684 *3 *4)) (-4 *3 (-984))
+ (-4 *4 (-675))))
((*1 *2 *1)
- (-12 (-5 *2 (-1199 *3 *4)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-793))
- (-4 *4 (-162))))
+ (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-594 *1))
+ (-4 *1 (-891 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-307 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740))))
+ ((*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-984)) (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-984)) (-5 *2 (-719))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-594 *6)) (-4 *1 (-891 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *2 (-594 (-719)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-891 *4 *5 *3)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795))
+ (-5 *2 (-719)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-594 *6)) (-4 *1 (-891 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *2 (-719))))
((*1 *2 *1)
- (-12 (-5 *2 (-1190 *3 *4)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-793))
- (-4 *4 (-162))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-613 *3 *4)) (-4 *3 (-793)) (-4 *4 (-162))
- (-5 *1 (-1195 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-1198 *3 *2)) (-4 *3 (-981)) (-4 *2 (-789)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-343)) (-4 *6 (-1153 (-387 *2)))
- (-4 *2 (-1153 *5)) (-5 *1 (-198 *5 *2 *6 *3))
- (-4 *3 (-322 *5 *2 *6)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-793)) (-5 *2 (-110))))
- ((*1 *1 *1 *1) (-5 *1 (-802))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1078)) (-5 *3 (-595 (-244))) (-5 *1 (-242))))
- ((*1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-244)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-717)) (-5 *1 (-57 *3)) (-4 *3 (-1131))))
- ((*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1131)) (-5 *1 (-57 *3)))))
+ (-12 (-4 *1 (-891 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-719)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860))
- (-4 *4 (-981)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-694)))))
-(((*1 *1 *1) (-5 *1 (-992))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-717)) (-4 *4 (-329)) (-5 *1 (-199 *4 *2))
- (-4 *2 (-1153 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-288)) (-5 *2 (-110)))))
-(((*1 *1 *1) (-4 *1 (-989))))
+ (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-594 *1))
+ (-4 *1 (-891 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-717)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860))
- (-4 *4 (-981)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359))
- (-5 *2
- (-2 (|:| -3327 *4) (|:| -3817 *4) (|:| |totalpts| (-528))
- (|:| |success| (-110))))
- (-5 *1 (-735)) (-5 *5 (-528)))))
-(((*1 *2)
- (-12 (-4 *4 (-343)) (-5 *2 (-860)) (-5 *1 (-308 *3 *4))
- (-4 *3 (-309 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-343)) (-5 *2 (-779 (-860))) (-5 *1 (-308 *3 *4))
- (-4 *3 (-309 *4))))
- ((*1 *2) (-12 (-4 *1 (-309 *3)) (-4 *3 (-343)) (-5 *2 (-860))))
- ((*1 *2)
- (-12 (-4 *1 (-1194 *3)) (-4 *3 (-343)) (-5 *2 (-779 (-860))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-793)) (-5 *2 (-110))))
- ((*1 *1 *1 *1) (-5 *1 (-802)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-842 *3)) (-4 *3 (-1023)) (-5 *2 (-110))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-843 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110))))
- ((*1 *1 *1 *1) (-5 *1 (-802))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-528)) (-5 *1 (-642 *2)) (-4 *2 (-1153 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2))
- (-4 *2 (-410 *3)))))
+ (-12 (-4 *1 (-307 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)) (-4 *2 (-432))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 *4)) (-4 *4 (-1155 (-516))) (-5 *2 (-594 (-516)))
+ (-5 *1 (-465 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-432))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-891 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795))
+ (-4 *3 (-432)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-594 *5)) (-5 *4 (-516)) (-4 *5 (-793)) (-4 *5 (-344))
+ (-5 *2 (-719)) (-5 *1 (-886 *5 *6)) (-4 *6 (-1155 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-5 *2 (-595 *3)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-397 *4)))))
+ (-12 (-5 *3 (-594 *4)) (-4 *4 (-793)) (-4 *4 (-344)) (-5 *2 (-719))
+ (-5 *1 (-886 *4 *5)) (-4 *5 (-1155 *4)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-782))
- (-5 *3
- (-2 (|:| |fn| (-296 (-207))) (|:| -4197 (-595 (-207)))
- (|:| |lb| (-595 (-786 (-207)))) (|:| |cf| (-595 (-296 (-207))))
- (|:| |ub| (-595 (-786 (-207))))))
- (-5 *2 (-970))))
+ (-12 (-4 *2 (-344)) (-4 *2 (-793)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1155 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-344)) (-5 *2 (-594 *3)) (-5 *1 (-886 *4 *3))
+ (-4 *3 (-1155 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-344)) (-5 *2 (-594 *3)) (-5 *1 (-886 *4 *3))
+ (-4 *3 (-1155 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-887 *5)) (-4 *5 (-984)) (-5 *2 (-230 *4 *5))
+ (-5 *1 (-885 *4 *5)) (-14 *4 (-594 (-1098))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-594 (-1098))) (-4 *5 (-984))
+ (-5 *2 (-887 *5)) (-5 *1 (-885 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-460 *4 *5)) (-14 *4 (-594 (-1098))) (-4 *5 (-984))
+ (-5 *2 (-887 *5)) (-5 *1 (-885 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-887 *5)) (-4 *5 (-984)) (-5 *2 (-460 *4 *5))
+ (-5 *1 (-885 *4 *5)) (-14 *4 (-594 (-1098))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-460 *4 *5)) (-14 *4 (-594 (-1098))) (-4 *5 (-984))
+ (-5 *2 (-230 *4 *5)) (-5 *1 (-885 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-594 (-1098))) (-4 *5 (-984))
+ (-5 *2 (-460 *4 *5)) (-5 *1 (-885 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-528))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1092 (-388 (-516)))) (-5 *1 (-883)) (-5 *3 (-516)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1092 (-516))) (-5 *1 (-883)) (-5 *3 (-516)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1092 (-516))) (-5 *2 (-516)) (-5 *1 (-883)))))
+(((*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-528))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1092 (-388 (-516)))) (-5 *1 (-883)) (-5 *3 (-516)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1092 (-516))) (-5 *1 (-175)) (-5 *3 (-516))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-731 *2)) (-4 *2 (-162))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1092 (-516))) (-5 *1 (-883)) (-5 *3 (-516)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1092 (-516))) (-5 *1 (-883)) (-5 *3 (-516)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1092 (-516))) (-5 *1 (-883)) (-5 *3 (-516)))))
+(((*1 *2 *3) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-528)) (-5 *3 (-516))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1092 (-388 (-516)))) (-5 *1 (-883)) (-5 *3 (-516)))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-594 *8)) (-5 *4 (-594 (-831 *6)))
+ (-5 *5 (-1 (-829 *6 *8) *8 (-831 *6) (-829 *6 *8))) (-4 *6 (-1027))
+ (-4 *8 (-13 (-984) (-572 (-831 *6)) (-975 *7))) (-5 *2 (-829 *6 *8))
+ (-4 *7 (-13 (-984) (-795))) (-5 *1 (-882 *6 *7 *8)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-829 *5 *3)) (-5 *4 (-831 *5)) (-4 *5 (-1027)) (-4 *3 (-156 *6))
+ (-4 (-887 *6) (-827 *5)) (-4 *6 (-13 (-827 *5) (-162)))
+ (-5 *1 (-167 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-829 *4 *1)) (-5 *3 (-831 *4)) (-4 *1 (-827 *4))
+ (-4 *4 (-1027))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-829 *5 *6)) (-5 *4 (-831 *5)) (-4 *5 (-1027))
+ (-4 *6 (-13 (-1027) (-975 *3))) (-4 *3 (-827 *5)) (-5 *1 (-872 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-829 *5 *3)) (-4 *5 (-1027))
+ (-4 *3 (-13 (-402 *6) (-572 *4) (-827 *5) (-975 (-569 $))))
+ (-5 *4 (-831 *5)) (-4 *6 (-13 (-523) (-795) (-827 *5)))
+ (-5 *1 (-873 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-829 (-516) *3)) (-5 *4 (-831 (-516))) (-4 *3 (-515))
+ (-5 *1 (-874 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-829 *5 *6)) (-5 *3 (-569 *6)) (-4 *5 (-1027))
+ (-4 *6 (-13 (-795) (-975 (-569 $)) (-572 *4) (-827 *5))) (-5 *4 (-831 *5))
+ (-5 *1 (-875 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-826 *5 *6 *3)) (-5 *4 (-831 *5)) (-4 *5 (-1027))
+ (-4 *6 (-827 *5)) (-4 *3 (-617 *6)) (-5 *1 (-876 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *5 (-1 (-829 *6 *3) *8 (-831 *6) (-829 *6 *3))) (-4 *8 (-795))
+ (-5 *2 (-829 *6 *3)) (-5 *4 (-831 *6)) (-4 *6 (-1027))
+ (-4 *3 (-13 (-891 *9 *7 *8) (-572 *4))) (-4 *7 (-741))
+ (-4 *9 (-13 (-984) (-795) (-827 *6))) (-5 *1 (-877 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-829 *5 *3)) (-4 *5 (-1027))
+ (-4 *3 (-13 (-891 *8 *6 *7) (-572 *4))) (-5 *4 (-831 *5)) (-4 *7 (-827 *5))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-13 (-984) (-795) (-827 *5)))
+ (-5 *1 (-877 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-829 *5 *3)) (-4 *5 (-1027)) (-4 *3 (-931 *6))
+ (-4 *6 (-13 (-523) (-827 *5) (-572 *4))) (-5 *4 (-831 *5))
+ (-5 *1 (-880 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-829 *5 (-1098))) (-5 *3 (-1098)) (-5 *4 (-831 *5))
+ (-4 *5 (-1027)) (-5 *1 (-881 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *4 (-594 (-831 *7))) (-5 *5 (-1 *9 (-594 *9)))
+ (-5 *6 (-1 (-829 *7 *9) *9 (-831 *7) (-829 *7 *9))) (-4 *7 (-1027))
+ (-4 *9 (-13 (-984) (-572 (-831 *7)) (-975 *8))) (-5 *2 (-829 *7 *9))
+ (-5 *3 (-594 *9)) (-4 *8 (-13 (-984) (-795))) (-5 *1 (-882 *7 *8 *9)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-110) *6)) (-4 *6 (-13 (-1027) (-975 *5))) (-4 *5 (-827 *4))
+ (-4 *4 (-1027)) (-5 *2 (-1 (-110) *5)) (-5 *1 (-872 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-295 (-516))) (-5 *1 (-870))))
+ ((*1 *2 *2) (-12 (-4 *3 (-795)) (-5 *1 (-871 *3 *2)) (-4 *2 (-402 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-295 (-516))) (-5 *1 (-870))))
+ ((*1 *2 *2) (-12 (-4 *3 (-795)) (-5 *1 (-871 *3 *2)) (-4 *2 (-402 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-111))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1098)) (-5 *4 (-1081)) (-5 *2 (-295 (-516))) (-5 *1 (-870))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1081)) (-4 *4 (-795)) (-5 *1 (-871 *4 *2)) (-4 *2 (-402 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-594 (-884 (-208))))) (-5 *2 (-594 (-1017 (-208))))
+ (-5 *1 (-869)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1017 (-208)))
+ (-5 *1 (-866))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1017 (-208)))
+ (-5 *1 (-866))))
+ ((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1017 (-208)))
+ (-5 *1 (-868))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1017 (-208)))
+ (-5 *1 (-868)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1017 (-208))) (-5 *1 (-866))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1017 (-208))) (-5 *1 (-866))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1017 (-208))) (-5 *1 (-866))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-594 (-1 (-208) (-208)))) (-5 *3 (-1017 (-208)))
+ (-5 *1 (-866))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-594 (-1 (-208) (-208)))) (-5 *3 (-1017 (-208)))
+ (-5 *1 (-866))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1017 (-208))) (-5 *1 (-866))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1017 (-208))) (-5 *1 (-866))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1098)) (-5 *5 (-1017 (-208))) (-5 *2 (-866)) (-5 *1 (-867 *3))
+ (-4 *3 (-572 (-505)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1098)) (-5 *5 (-1017 (-208))) (-5 *2 (-866)) (-5 *1 (-867 *3))
+ (-4 *3 (-572 (-505)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1017 (-208))) (-5 *1 (-868))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1017 (-208))) (-5 *1 (-868))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1017 (-208))) (-5 *1 (-868)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1017 (-208))) (-5 *1 (-866))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1017 (-208))) (-5 *1 (-868)))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-594 (-208)))) (-5 *1 (-868)))))
+(((*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-868)))))
+(((*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-868)))))
+(((*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-868)))))
+(((*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-868)))))
+(((*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-868)))))
+(((*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-868)))))
+(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-868)))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-868)))))
+(((*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-868)))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-868)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-866))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1017 (-208))) (-5 *1 (-866))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1098)) (-5 *5 (-1017 (-208))) (-5 *2 (-866)) (-5 *1 (-867 *3))
+ (-4 *3 (-572 (-505)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1098)) (-5 *2 (-866)) (-5 *1 (-867 *3)) (-4 *3 (-572 (-505))))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-866)))))
+(((*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-447))))
+ ((*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-447))))
+ ((*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-866)))))
+(((*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-866)))))
+(((*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-447))))
+ ((*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-447))))
+ ((*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-866)))))
+(((*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-866)))))
+(((*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-447))))
+ ((*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-447))))
+ ((*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-866)))))
+(((*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-866)))))
+(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-866)))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-866)))))
+(((*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-866)))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-866)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-594 *7)) (-4 *7 (-891 *4 *6 *5)) (-4 *4 (-13 (-289) (-140)))
+ (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741)) (-5 *2 (-110))
+ (-5 *1 (-865 *4 *5 *6 *7))))
((*1 *2 *3)
- (-12 (-4 *1 (-782))
+ (-12 (-5 *3 (-594 (-887 *4))) (-4 *4 (-13 (-289) (-140)))
+ (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741)) (-5 *2 (-110))
+ (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-891 *4 *6 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-289) (-140))) (-4 *4 (-13 (-795) (-572 (-1098))))
+ (-4 *5 (-741)) (-5 *1 (-865 *3 *4 *5 *2)) (-4 *2 (-891 *3 *5 *4)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
+ (-12
(-5 *3
- (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207)))))
- (-5 *2 (-970)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-520)) (-4 *3 (-162))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -1400 (-595 *1))))
- (-4 *1 (-347 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-432 *3 *4 *5 *6))
- (|:| -1400 (-595 (-432 *3 *4 *5 *6)))))
- (-5 *1 (-432 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-860))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-717)) (-4 *4 (-520)) (-5 *1 (-907 *4 *2))
- (-4 *2 (-1153 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023)) (-4 *4 (-1023))
- (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-110)))))
+ (-2 (|:| |det| *12) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516)))))
+ (-5 *4 (-637 *12)) (-5 *5 (-594 (-388 (-887 *9)))) (-5 *6 (-594 (-594 *12)))
+ (-5 *7 (-719)) (-5 *8 (-516)) (-4 *9 (-13 (-289) (-140)))
+ (-4 *12 (-891 *9 *11 *10)) (-4 *10 (-13 (-795) (-572 (-1098))))
+ (-4 *11 (-741))
+ (-5 *2
+ (-2 (|:| |eqzro| (-594 *12)) (|:| |neqzro| (-594 *12))
+ (|:| |wcond| (-594 (-887 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1179 (-388 (-887 *9))))
+ (|:| -2071 (-594 (-1179 (-388 (-887 *9)))))))))
+ (-5 *1 (-865 *9 *10 *11 *12)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-637 *7)) (-5 *3 (-594 *7)) (-4 *7 (-891 *4 *6 *5))
+ (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1098))))
+ (-4 *6 (-741)) (-5 *1 (-865 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *8)) (-5 *4 (-719)) (-4 *8 (-891 *5 *7 *6))
+ (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1098))))
+ (-4 *7 (-741))
+ (-5 *2
+ (-594
+ (-2 (|:| |det| *8) (|:| |rows| (-594 (-516)))
+ (|:| |cols| (-594 (-516))))))
+ (-5 *1 (-865 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-594 (-594 *8))) (-5 *3 (-594 *8)) (-4 *8 (-891 *5 *7 *6))
+ (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1098))))
+ (-4 *7 (-741)) (-5 *2 (-110)) (-5 *1 (-865 *5 *6 *7 *8)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1098))))
+ (-4 *6 (-741)) (-5 *2 (-594 (-594 (-516)))) (-5 *1 (-865 *4 *5 *6 *7))
+ (-5 *3 (-516)) (-4 *7 (-891 *4 *6 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-594 (-594 *6))) (-4 *6 (-891 *3 *5 *4))
+ (-4 *3 (-13 (-289) (-140))) (-4 *4 (-13 (-795) (-572 (-1098))))
+ (-4 *5 (-741)) (-5 *1 (-865 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-520) (-793) (-972 (-528)))) (-4 *5 (-410 *4))
- (-5 *2
- (-3 (|:| |overq| (-1091 (-387 (-528))))
- (|:| |overan| (-1091 (-47))) (|:| -3987 (-110))))
- (-5 *1 (-415 *4 *5 *3)) (-4 *3 (-1153 *5)))))
-(((*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-513))))
- ((*1 *1 *2) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-908)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-793)) (-5 *1 (-124 *3)))))
-(((*1 *1) (-5 *1 (-447))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-981)) (-4 *4 (-738))
- (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-362 *3 *4)) (-4 *3 (-981)) (-4 *4 (-1023))
- (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-553 *3)) (-4 *3 (-981))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-520)) (-5 *2 (-110)) (-5 *1 (-576 *3 *4))
- (-4 *4 (-1153 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-682 *3 *4)) (-4 *3 (-981))
- (-4 *4 (-673))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981))
- (-5 *2 (-110)))))
-(((*1 *1 *2 *3)
(-12
(-5 *3
- (-595
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-528)))))
- (-4 *2 (-520)) (-5 *1 (-398 *2))))
- ((*1 *2 *3)
+ (-594
+ (-2 (|:| -3368 (-719))
+ (|:| |eqns|
+ (-594
+ (-2 (|:| |det| *7) (|:| |rows| (-594 (-516)))
+ (|:| |cols| (-594 (-516))))))
+ (|:| |fgb| (-594 *7)))))
+ (-4 *7 (-891 *4 *6 *5)) (-4 *4 (-13 (-289) (-140)))
+ (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741)) (-5 *2 (-719))
+ (-5 *1 (-865 *4 *5 *6 *7)))))
+(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |contp| (-528))
- (|:| -2783 (-595 (-2 (|:| |irr| *4) (|:| -2842 (-528)))))))
- (-4 *4 (-1153 (-528))) (-5 *2 (-398 *4)) (-5 *1 (-421 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1042)) (-5 *1 (-786 *3)) (-4 *3 (-1023)))))
+ (-594
+ (-2 (|:| -3368 (-719))
+ (|:| |eqns|
+ (-594
+ (-2 (|:| |det| *7) (|:| |rows| (-594 (-516)))
+ (|:| |cols| (-594 (-516))))))
+ (|:| |fgb| (-594 *7)))))
+ (-4 *7 (-891 *4 *6 *5)) (-4 *4 (-13 (-289) (-140)))
+ (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741)) (-5 *2 (-719))
+ (-5 *1 (-865 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1098))))
+ (-4 *6 (-741)) (-5 *2 (-594 *3)) (-5 *1 (-865 *4 *5 *6 *3))
+ (-4 *3 (-891 *4 *6 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-629 *4 *3)) (-4 *4 (-1023))
- (-4 *3 (-1023)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-595 (-110))) (-5 *5 (-635 (-207)))
- (-5 *6 (-635 (-528))) (-5 *7 (-207)) (-5 *3 (-528)) (-5 *2 (-970))
- (-5 *1 (-701)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1125 *4 *5 *3 *6)) (-4 *4 (-520)) (-4 *5 (-739))
- (-4 *3 (-793)) (-4 *6 (-994 *4 *5 *3)) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-4 *1 (-1194 *3)) (-4 *3 (-343)) (-5 *2 (-110)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-1177 (-528))) (-5 *3 (-528)) (-5 *1 (-1033))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1177 (-528))) (-5 *3 (-595 (-528))) (-5 *4 (-528))
- (-5 *1 (-1033)))))
+ (-12
+ (-5 *3
+ (-2 (|:| -1650 (-637 (-388 (-887 *4)))) (|:| |vec| (-594 (-388 (-887 *4))))
+ (|:| -3368 (-719)) (|:| |rows| (-594 (-516))) (|:| |cols| (-594 (-516)))))
+ (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1098))))
+ (-4 *6 (-741))
+ (-5 *2
+ (-2 (|:| |partsol| (-1179 (-388 (-887 *4))))
+ (|:| -2071 (-594 (-1179 (-388 (-887 *4)))))))
+ (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-891 *4 *6 *5)))))
+(((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |partsol| (-1179 (-388 (-887 *4))))
+ (|:| -2071 (-594 (-1179 (-388 (-887 *4)))))))
+ (-5 *3 (-594 *7)) (-4 *4 (-13 (-289) (-140))) (-4 *7 (-891 *4 *6 *5))
+ (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741))
+ (-5 *1 (-865 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *8)) (-4 *8 (-891 *5 *7 *6)) (-4 *5 (-13 (-289) (-140)))
+ (-4 *6 (-13 (-795) (-572 (-1098)))) (-4 *7 (-741))
+ (-5 *2
+ (-594
+ (-2 (|:| -3368 (-719))
+ (|:| |eqns|
+ (-594
+ (-2 (|:| |det| *8) (|:| |rows| (-594 (-516)))
+ (|:| |cols| (-594 (-516))))))
+ (|:| |fgb| (-594 *8)))))
+ (-5 *1 (-865 *5 *6 *7 *8)) (-5 *4 (-719)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1098))))
+ (-4 *6 (-741)) (-4 *7 (-891 *4 *6 *5))
+ (-5 *2 (-2 (|:| |sysok| (-110)) (|:| |z0| (-594 *7)) (|:| |n0| (-594 *7))))
+ (-5 *1 (-865 *4 *5 *6 *7)) (-5 *3 (-594 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-887 *4)) (-4 *4 (-13 (-289) (-140))) (-4 *2 (-891 *4 *6 *5))
+ (-5 *1 (-865 *4 *5 *6 *2)) (-4 *5 (-13 (-795) (-572 (-1098))))
+ (-4 *6 (-741)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-1098))) (-4 *4 (-13 (-289) (-140)))
+ (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741))
+ (-5 *2 (-594 (-388 (-887 *4)))) (-5 *1 (-865 *4 *5 *6 *7))
+ (-4 *7 (-891 *4 *6 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1098))))
+ (-4 *6 (-741)) (-5 *2 (-388 (-887 *4))) (-5 *1 (-865 *4 *5 *6 *3))
+ (-4 *3 (-891 *4 *6 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 *7)) (-4 *7 (-891 *4 *6 *5)) (-4 *4 (-13 (-289) (-140)))
+ (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741))
+ (-5 *2 (-637 (-388 (-887 *4)))) (-5 *1 (-865 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 *7)) (-4 *7 (-891 *4 *6 *5)) (-4 *4 (-13 (-289) (-140)))
+ (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741))
+ (-5 *2 (-594 (-388 (-887 *4)))) (-5 *1 (-865 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-637 *11)) (-5 *4 (-594 (-388 (-887 *8)))) (-5 *5 (-719))
+ (-5 *6 (-1081)) (-4 *8 (-13 (-289) (-140))) (-4 *11 (-891 *8 *10 *9))
+ (-4 *9 (-13 (-795) (-572 (-1098)))) (-4 *10 (-741))
+ (-5 *2
+ (-2
+ (|:| |rgl|
+ (-594
+ (-2 (|:| |eqzro| (-594 *11)) (|:| |neqzro| (-594 *11))
+ (|:| |wcond| (-594 (-887 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1179 (-388 (-887 *8))))
+ (|:| -2071 (-594 (-1179 (-388 (-887 *8))))))))))
+ (|:| |rgsz| (-516))))
+ (-5 *1 (-865 *8 *9 *10 *11)) (-5 *7 (-516)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-289) (-140)))
+ (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741))
+ (-5 *2
+ (-594
+ (-2 (|:| |eqzro| (-594 *7)) (|:| |neqzro| (-594 *7))
+ (|:| |wcond| (-594 (-887 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1179 (-388 (-887 *4))))
+ (|:| -2071 (-594 (-1179 (-388 (-887 *4))))))))))
+ (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-891 *4 *6 *5)))))
+(((*1 *2 *3 *4)
(-12
(-5 *3
- (-2 (|:| |xinit| (-207)) (|:| |xend| (-207))
- (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207)))
- (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207)))
- (|:| |abserr| (-207)) (|:| |relerr| (-207))))
- (-5 *2 (-359)) (-5 *1 (-189)))))
+ (-594
+ (-2 (|:| |eqzro| (-594 *8)) (|:| |neqzro| (-594 *8))
+ (|:| |wcond| (-594 (-887 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1179 (-388 (-887 *5))))
+ (|:| -2071 (-594 (-1179 (-388 (-887 *5))))))))))
+ (-5 *4 (-1081)) (-4 *5 (-13 (-289) (-140))) (-4 *8 (-891 *5 *7 *6))
+ (-4 *6 (-13 (-795) (-572 (-1098)))) (-4 *7 (-741)) (-5 *2 (-516))
+ (-5 *1 (-865 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *8)) (-4 *8 (-891 *5 *7 *6)) (-4 *5 (-13 (-289) (-140)))
+ (-4 *6 (-13 (-795) (-572 (-1098)))) (-4 *7 (-741))
+ (-5 *2
+ (-594
+ (-2 (|:| |eqzro| (-594 *8)) (|:| |neqzro| (-594 *8))
+ (|:| |wcond| (-594 (-887 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1179 (-388 (-887 *5))))
+ (|:| -2071 (-594 (-1179 (-388 (-887 *5))))))))))
+ (-5 *1 (-865 *5 *6 *7 *8)) (-5 *4 (-594 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *8)) (-5 *4 (-594 (-1098))) (-4 *8 (-891 *5 *7 *6))
+ (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1098))))
+ (-4 *7 (-741))
+ (-5 *2
+ (-594
+ (-2 (|:| |eqzro| (-594 *8)) (|:| |neqzro| (-594 *8))
+ (|:| |wcond| (-594 (-887 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1179 (-388 (-887 *5))))
+ (|:| -2071 (-594 (-1179 (-388 (-887 *5))))))))))
+ (-5 *1 (-865 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 *7)) (-4 *7 (-891 *4 *6 *5)) (-4 *4 (-13 (-289) (-140)))
+ (-4 *5 (-13 (-795) (-572 (-1098)))) (-4 *6 (-741))
+ (-5 *2
+ (-594
+ (-2 (|:| |eqzro| (-594 *7)) (|:| |neqzro| (-594 *7))
+ (|:| |wcond| (-594 (-887 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1179 (-388 (-887 *4))))
+ (|:| -2071 (-594 (-1179 (-388 (-887 *4))))))))))
+ (-5 *1 (-865 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-637 *9)) (-5 *5 (-860)) (-4 *9 (-891 *6 *8 *7))
+ (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1098))))
+ (-4 *8 (-741))
+ (-5 *2
+ (-594
+ (-2 (|:| |eqzro| (-594 *9)) (|:| |neqzro| (-594 *9))
+ (|:| |wcond| (-594 (-887 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1179 (-388 (-887 *6))))
+ (|:| -2071 (-594 (-1179 (-388 (-887 *6))))))))))
+ (-5 *1 (-865 *6 *7 *8 *9)) (-5 *4 (-594 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-637 *9)) (-5 *4 (-594 (-1098))) (-5 *5 (-860))
+ (-4 *9 (-891 *6 *8 *7)) (-4 *6 (-13 (-289) (-140)))
+ (-4 *7 (-13 (-795) (-572 (-1098)))) (-4 *8 (-741))
+ (-5 *2
+ (-594
+ (-2 (|:| |eqzro| (-594 *9)) (|:| |neqzro| (-594 *9))
+ (|:| |wcond| (-594 (-887 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1179 (-388 (-887 *6))))
+ (|:| -2071 (-594 (-1179 (-388 (-887 *6))))))))))
+ (-5 *1 (-865 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *8)) (-5 *4 (-860)) (-4 *8 (-891 *5 *7 *6))
+ (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1098))))
+ (-4 *7 (-741))
+ (-5 *2
+ (-594
+ (-2 (|:| |eqzro| (-594 *8)) (|:| |neqzro| (-594 *8))
+ (|:| |wcond| (-594 (-887 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1179 (-388 (-887 *5))))
+ (|:| -2071 (-594 (-1179 (-388 (-887 *5))))))))))
+ (-5 *1 (-865 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-637 *9)) (-5 *4 (-594 *9)) (-5 *5 (-1081))
+ (-4 *9 (-891 *6 *8 *7)) (-4 *6 (-13 (-289) (-140)))
+ (-4 *7 (-13 (-795) (-572 (-1098)))) (-4 *8 (-741)) (-5 *2 (-516))
+ (-5 *1 (-865 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-637 *9)) (-5 *4 (-594 (-1098))) (-5 *5 (-1081))
+ (-4 *9 (-891 *6 *8 *7)) (-4 *6 (-13 (-289) (-140)))
+ (-4 *7 (-13 (-795) (-572 (-1098)))) (-4 *8 (-741)) (-5 *2 (-516))
+ (-5 *1 (-865 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *8)) (-5 *4 (-1081)) (-4 *8 (-891 *5 *7 *6))
+ (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1098))))
+ (-4 *7 (-741)) (-5 *2 (-516)) (-5 *1 (-865 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-637 *10)) (-5 *4 (-594 *10)) (-5 *5 (-860)) (-5 *6 (-1081))
+ (-4 *10 (-891 *7 *9 *8)) (-4 *7 (-13 (-289) (-140)))
+ (-4 *8 (-13 (-795) (-572 (-1098)))) (-4 *9 (-741)) (-5 *2 (-516))
+ (-5 *1 (-865 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-637 *10)) (-5 *4 (-594 (-1098))) (-5 *5 (-860)) (-5 *6 (-1081))
+ (-4 *10 (-891 *7 *9 *8)) (-4 *7 (-13 (-289) (-140)))
+ (-4 *8 (-13 (-795) (-572 (-1098)))) (-4 *9 (-741)) (-5 *2 (-516))
+ (-5 *1 (-865 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-637 *9)) (-5 *4 (-860)) (-5 *5 (-1081)) (-4 *9 (-891 *6 *8 *7))
+ (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1098))))
+ (-4 *8 (-741)) (-5 *2 (-516)) (-5 *1 (-865 *6 *7 *8 *9)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-594 *4)) (-4 *4 (-344)) (-4 *2 (-1155 *4))
+ (-5 *1 (-864 *4 *2)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1148 *4 *5)) (-5 *3 (-594 *5)) (-14 *4 (-1098)) (-4 *5 (-344))
+ (-5 *1 (-863 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-594 *5)) (-4 *5 (-344)) (-5 *2 (-1092 *5)) (-5 *1 (-863 *4 *5))
+ (-14 *4 (-1098)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-37 (-387 (-528))))
- (-5 *2 (-2 (|:| -2712 (-1076 *4)) (|:| -2724 (-1076 *4))))
- (-5 *1 (-1082 *4)) (-5 *3 (-1076 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1131))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-414))))
- ((*1 *1 *1 *1) (-5 *1 (-802)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-961 *3)) (-4 *3 (-1131)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1131)))))
+ (-12 (-4 *1 (-862)) (-5 *2 (-2 (|:| -4229 (-594 *1)) (|:| -2435 *1)))
+ (-5 *3 (-594 *1)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-594 *1)) (-4 *1 (-862)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-594 (-887 *4))) (-5 *3 (-594 (-1098))) (-4 *4 (-432))
+ (-5 *1 (-859 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-594 (-887 *4))) (-5 *3 (-594 (-1098))) (-4 *4 (-432))
+ (-5 *1 (-859 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-846 (-516))) (-5 *1 (-858))))
+ ((*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-846 (-516))) (-5 *1 (-858)))))
+(((*1 *2) (-12 (-5 *2 (-846 (-516))) (-5 *1 (-858)))))
+(((*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-846 (-516))) (-5 *1 (-858))))
+ ((*1 *2) (-12 (-5 *2 (-846 (-516))) (-5 *1 (-858)))))
+(((*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-846 (-516))) (-5 *1 (-858))))
+ ((*1 *2) (-12 (-5 *2 (-846 (-516))) (-5 *1 (-858)))))
+(((*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-846 (-516))) (-5 *1 (-858))))
+ ((*1 *2) (-12 (-5 *2 (-846 (-516))) (-5 *1 (-858)))))
+(((*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-846 (-516))) (-5 *1 (-858))))
+ ((*1 *2) (-12 (-5 *2 (-846 (-516))) (-5 *1 (-858)))))
+(((*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-846 (-516))) (-5 *1 (-858))))
+ ((*1 *2) (-12 (-5 *2 (-846 (-516))) (-5 *1 (-858)))))
+(((*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-846 (-516))) (-5 *1 (-858))))
+ ((*1 *2) (-12 (-5 *2 (-846 (-516))) (-5 *1 (-858)))))
+(((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-846 (-516))) (-5 *1 (-858))))
+ ((*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-846 (-516))) (-5 *1 (-858)))))
+(((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-846 (-516))) (-5 *1 (-858))))
+ ((*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-846 (-516))) (-5 *1 (-858)))))
+(((*1 *2 *3) (-12 (-5 *3 (-594 (-860))) (-5 *2 (-846 (-516))) (-5 *1 (-858)))))
+(((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-846 (-516))) (-5 *1 (-858))))
+ ((*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-846 (-516))) (-5 *1 (-858)))))
+(((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-846 (-516))) (-5 *1 (-858))))
+ ((*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-846 (-516))) (-5 *1 (-858)))))
(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528)))))))
- (-5 *1 (-1050 *3 *2)) (-4 *3 (-1153 *2)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1023))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1023)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-595 *3)) (-4 *3 (-1153 (-528))) (-5 *1 (-464 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-882 *2)) (-5 *1 (-919 *2)) (-4 *2 (-981)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-961 (-786 (-528)))) (-5 *1 (-553 *3)) (-4 *3 (-981)))))
-(((*1 *1)
- (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-528)) (-14 *3 (-717))
- (-4 *4 (-162)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-207)) (-5 *4 (-528))
- (-5 *5 (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305)))) (-5 *2 (-970))
- (-5 *1 (-695)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1084 *2 *3)) (-14 *2 (-860)) (-4 *3 (-981)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-635 (-207))) (-5 *4 (-528)) (-5 *5 (-207))
- (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN)))) (-5 *2 (-970))
- (-5 *1 (-696)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-595 (-891 *3))) (-4 *3 (-431)) (-5 *1 (-340 *3 *4))
- (-14 *4 (-595 (-1095)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-595 *6)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-431))
- (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-429 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-595 *7)) (-5 *3 (-1078)) (-4 *7 (-888 *4 *5 *6))
- (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-5 *1 (-429 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-595 *7)) (-5 *3 (-1078)) (-4 *7 (-888 *4 *5 *6))
- (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-5 *1 (-429 *4 *5 *6 *7))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-343)) (-4 *3 (-739)) (-4 *4 (-793))
- (-5 *1 (-480 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-595 (-726 *3 (-804 *4)))) (-4 *3 (-431))
- (-14 *4 (-595 (-1095))) (-5 *1 (-580 *3 *4)))))
-(((*1 *1) (-5 *1 (-1098))))
-(((*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-970)) (-5 *1 (-783))))
+ (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-289)) (-5 *1 (-857 *3 *4 *5 *2))
+ (-4 *2 (-891 *5 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1092 *6)) (-4 *6 (-891 *5 *3 *4)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-4 *5 (-289)) (-5 *1 (-857 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 *2)) (-4 *2 (-891 *6 *4 *5)) (-5 *1 (-857 *4 *5 *6 *2))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-386 *2)) (-4 *2 (-289)) (-5 *1 (-855 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-296 (-359)))) (-5 *4 (-595 (-359)))
- (-5 *2 (-970)) (-5 *1 (-783)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-110) *8)) (-4 *8 (-994 *5 *6 *7)) (-4 *5 (-520))
- (-4 *6 (-739)) (-4 *7 (-793))
- (-5 *2 (-2 (|:| |goodPols| (-595 *8)) (|:| |badPols| (-595 *8))))
- (-5 *1 (-914 *5 *6 *7 *8)) (-5 *4 (-595 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7))
- (-5 *2 (-595 (-2 (|:| |val| (-110)) (|:| -2316 *4))))
- (-5 *1 (-722 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1097 (-387 (-528)))) (-5 *1 (-174)))))
+ (-12 (-5 *3 (-388 (-887 *5))) (-5 *4 (-1098)) (-4 *5 (-13 (-289) (-140)))
+ (-5 *2 (-50)) (-5 *1 (-856 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-386 (-887 *6))) (-5 *5 (-1098)) (-5 *3 (-887 *6))
+ (-4 *6 (-13 (-289) (-140))) (-5 *2 (-50)) (-5 *1 (-856 *6)))))
+(((*1 *1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))))
+(((*1 *2 *1) (-12 (-5 *2 (-386 *3)) (-5 *1 (-855 *3)) (-4 *3 (-289)))))
+(((*1 *2 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-855 *3)) (-4 *3 (-289)))))
+(((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-855 *3)) (-4 *3 (-289)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-1092 *3)) (-5 *1 (-855 *3)) (-4 *3 (-289)))))
+(((*1 *1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1155 (-388 (-516)))) (-5 *1 (-854 *3 *2))
+ (-4 *2 (-1155 (-388 *3))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1155 (-388 *2))) (-5 *2 (-516)) (-5 *1 (-854 *4 *3))
+ (-4 *3 (-1155 (-388 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-2 (|:| |den| (-516)) (|:| |gcdnum| (-516)))))
+ (-4 *4 (-1155 (-388 *2))) (-5 *2 (-516)) (-5 *1 (-854 *4 *5))
+ (-4 *5 (-1155 (-388 *4))))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1155 (-388 (-516))))
+ (-5 *2 (-2 (|:| |den| (-516)) (|:| |gcdnum| (-516)))) (-5 *1 (-854 *3 *4))
+ (-4 *4 (-1155 (-388 *3)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1155 (-388 *2))) (-5 *2 (-516)) (-5 *1 (-854 *4 *3))
+ (-4 *3 (-1155 (-388 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-516)) (-4 *4 (-1155 (-388 *3))) (-5 *2 (-860))
+ (-5 *1 (-854 *4 *5)) (-4 *5 (-1155 (-388 *4))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-402 *4))
+ (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-388 *6))) (-4 *8 (-323 *5 *6 *7))
+ (-4 *4 (-13 (-795) (-523) (-975 (-516))))
+ (-5 *2 (-2 (|:| -4050 (-719)) (|:| -2409 *8)))
+ (-5 *1 (-852 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-314 (-388 (-516)) *4 *5 *6))
+ (-4 *4 (-1155 (-388 (-516)))) (-4 *5 (-1155 (-388 *4)))
+ (-4 *6 (-323 (-388 (-516)) *4 *5))
+ (-5 *2 (-2 (|:| -4050 (-719)) (|:| -2409 *6))) (-5 *1 (-853 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-402 *4)) (-4 *6 (-1155 *5))
+ (-4 *7 (-1155 (-388 *6))) (-4 *8 (-323 *5 *6 *7))
+ (-4 *4 (-13 (-795) (-523) (-975 (-516)))) (-5 *2 (-110))
+ (-5 *1 (-852 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-314 (-388 (-516)) *4 *5 *6)) (-4 *4 (-1155 (-388 (-516))))
+ (-4 *5 (-1155 (-388 *4))) (-4 *6 (-323 (-388 (-516)) *4 *5)) (-5 *2 (-110))
+ (-5 *1 (-853 *4 *5 *6)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1092 *1)) (-4 *1 (-432))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1092 *6)) (-4 *6 (-891 *5 *3 *4)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-4 *5 (-851)) (-5 *1 (-437 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1092 *1)) (-4 *1 (-851)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-386 (-1092 *1))) (-5 *1 (-295 *4)) (-5 *3 (-1092 *1))
+ (-4 *4 (-432)) (-4 *4 (-523)) (-4 *4 (-795))))
+ ((*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *2 (-386 (-1092 *1))) (-5 *3 (-1092 *1)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-386 (-1092 *1))) (-5 *1 (-295 *4)) (-5 *3 (-1092 *1))
+ (-4 *4 (-432)) (-4 *4 (-523)) (-4 *4 (-795))))
+ ((*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *2 (-386 (-1092 *1))) (-5 *3 (-1092 *1)))))
+(((*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *2 (-386 (-1092 *1))) (-5 *3 (-1092 *1)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1095))
- (-4 *4 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)))
- (-5 *1 (-750 *4 *2)) (-4 *2 (-13 (-29 *4) (-1117) (-897))))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-717)) (-4 *5 (-343)) (-5 *2 (-163 *6))
- (-5 *1 (-806 *5 *4 *6)) (-4 *4 (-1168 *5)) (-4 *6 (-1153 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-528)) (|has| *1 (-6 -4255)) (-4 *1 (-384))
- (-5 *2 (-860)))))
+ (|partial| -12 (-5 *2 (-594 (-1092 *5))) (-5 *3 (-1092 *5)) (-4 *5 (-156 *4))
+ (-4 *4 (-515)) (-5 *1 (-142 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-594 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-1155 *4))
+ (-4 *4 (-331)) (-5 *1 (-339 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-594 (-1092 (-516)))) (-5 *3 (-1092 (-516)))
+ (-5 *1 (-538))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-594 (-1092 *1))) (-5 *3 (-1092 *1)) (-4 *1 (-851)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-882 *3) (-882 *3))) (-5 *1 (-165 *3))
- (-4 *3 (-13 (-343) (-1117) (-938)))))
- ((*1 *2)
- (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1153 (-387 *2)))
- (-4 *2 (-1153 *4)) (-5 *1 (-321 *3 *4 *2 *5))
- (-4 *3 (-322 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-322 *3 *2 *4)) (-4 *3 (-1135))
- (-4 *4 (-1153 (-387 *2))) (-4 *2 (-1153 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1131)) (-4 *1 (-104 *3)))))
+ (|partial| -12 (-5 *3 (-637 *1)) (-4 *1 (-331)) (-5 *2 (-1179 *1))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-637 *1)) (-4 *1 (-138)) (-4 *1 (-851))
+ (-5 *2 (-1179 *1)))))
+(((*1 *1 *1) (|partial| -4 *1 (-138))) ((*1 *1 *1) (-4 *1 (-331)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-138)) (-4 *1 (-851)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-207))) (-5 *4 (-717)) (-5 *2 (-635 (-207)))
- (-5 *1 (-286)))))
+ (-12 (-5 *3 (-594 *7)) (-4 *7 (-795)) (-4 *5 (-851)) (-4 *6 (-741))
+ (-4 *8 (-891 *5 *6 *7)) (-5 *2 (-386 (-1092 *8))) (-5 *1 (-848 *5 *6 *7 *8))
+ (-5 *4 (-1092 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-851)) (-4 *5 (-1155 *4)) (-5 *2 (-386 (-1092 *5)))
+ (-5 *1 (-849 *4 *5)) (-5 *3 (-1092 *5)))))
+(((*1 *2)
+ (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-851)) (-5 *1 (-437 *3 *4 *2 *5))
+ (-4 *5 (-891 *2 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-851)) (-5 *1 (-848 *2 *3 *4 *5))
+ (-4 *5 (-891 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-851)) (-5 *1 (-849 *2 *3)) (-4 *3 (-1155 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-851)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-891 *4 *5 *6))
+ (-5 *2 (-386 (-1092 *7))) (-5 *1 (-848 *4 *5 *6 *7)) (-5 *3 (-1092 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-851)) (-4 *5 (-1155 *4)) (-5 *2 (-386 (-1092 *5)))
+ (-5 *1 (-849 *4 *5)) (-5 *3 (-1092 *5)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-891 *4)) (-4 *4 (-981)) (-4 *4 (-570 *2))
- (-5 *2 (-359)) (-5 *1 (-731 *4))))
+ (-12 (-4 *4 (-851)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-891 *4 *5 *6))
+ (-5 *2 (-386 (-1092 *7))) (-5 *1 (-848 *4 *5 *6 *7)) (-5 *3 (-1092 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-851)) (-4 *5 (-1155 *4)) (-5 *2 (-386 (-1092 *5)))
+ (-5 *1 (-849 *4 *5)) (-5 *3 (-1092 *5)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-594 (-1092 *7))) (-5 *3 (-1092 *7))
+ (-4 *7 (-891 *4 *5 *6)) (-4 *4 (-851)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-5 *1 (-848 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-594 (-1092 *5))) (-5 *3 (-1092 *5))
+ (-4 *5 (-1155 *4)) (-4 *4 (-851)) (-5 *1 (-849 *4 *5)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-594 (-1092 *7))) (-5 *3 (-1092 *7))
+ (-4 *7 (-891 *5 *6 *4)) (-4 *5 (-851)) (-4 *6 (-741)) (-4 *4 (-795))
+ (-5 *1 (-848 *5 *6 *4 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-594 *6))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-891 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-594 (-843 *3))) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
+(((*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-860)))) ((*1 *1) (-4 *1 (-515)))
+ ((*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-647))))
+ ((*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-647))))
+ ((*1 *2 *1) (-12 (-5 *2 (-594 *3)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-843 *3))) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-594 (-594 (-719)))) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 (-843 *3))) (-4 *3 (-1027)) (-5 *1 (-846 *3)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1027)) (-5 *2 (-1023 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1027)) (-5 *2 (-1023 (-594 *4))) (-5 *1 (-846 *4))
+ (-5 *3 (-594 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1027)) (-5 *2 (-1023 (-1023 *4))) (-5 *1 (-846 *4))
+ (-5 *3 (-1023 *4))))
+ ((*1 *2 *1 *3) (-12 (-5 *2 (-1023 *3)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1023 (-1023 *3))) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-843 *4)) (-4 *4 (-1027)) (-5 *2 (-594 (-719)))
+ (-5 *1 (-846 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-843 *4)) (-4 *4 (-1027)) (-5 *2 (-594 (-719)))
+ (-5 *1 (-846 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1023 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1023 *3)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110))))
+ ((*1 *1 *1 *1) (-5 *1 (-805)))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1027)) (-5 *2 (-110))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110))))
+ ((*1 *1 *1 *1) (-5 *1 (-805)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-516)) (-5 *2 (-1185)) (-5 *1 (-846 *4)) (-4 *4 (-1027))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1027)) (-4 *1 (-845 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 (-594 *3))) (-4 *3 (-1027)) (-4 *1 (-845 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1065 *4 *2)) (-14 *4 (-860))
+ (-4 *2 (-13 (-984) (-10 -7 (-6 (-4271 "*"))))) (-5 *1 (-844 *4 *2)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |preimage| (-594 *3)) (|:| |image| (-594 *3))))
+ (-5 *1 (-843 *3)) (-4 *3 (-1027)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 (-594 *3))) (-4 *3 (-1027)) (-5 *1 (-843 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 (-594 *3))) (-4 *3 (-1027)) (-5 *1 (-843 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-843 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-843 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-4 *1 (-975 (-516))) (-4 *1 (-280)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-843 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-4 *1 (-975 (-516))) (-4 *1 (-280)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-843 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1023 *3)) (-5 *1 (-843 *3)) (-4 *3 (-349)) (-4 *3 (-1027)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1027)) (-5 *1 (-843 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *2) (-12 (-5 *1 (-842 *2)) (-4 *2 (-1027)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-719)) (-4 *1 (-214 *4)) (-4 *4 (-984))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-214 *3)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-719))))
+ ((*1 *1 *1) (-4 *1 (-216)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-719)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4))
+ (-4 *4 (-1155 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-344) (-140))) (-5 *1 (-380 *2 *3)) (-4 *3 (-1155 *2))))
+ ((*1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-984))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-594 *4)) (-5 *3 (-594 (-719))) (-4 *1 (-841 *4))
+ (-4 *4 (-1027))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-841 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *1 (-841 *3)) (-4 *3 (-1027))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-841 *2)) (-4 *2 (-1027)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-717))
+ (-5 *2
+ (-2 (|:| -2931 (-359)) (|:| -3824 (-1081))
+ (|:| |explanations| (-594 (-1081))) (|:| |extra| (-973))))
+ (-5 *1 (-531))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-717)) (-5 *4 (-995))
+ (-5 *2
+ (-2 (|:| -2931 (-359)) (|:| -3824 (-1081))
+ (|:| |explanations| (-594 (-1081))) (|:| |extra| (-973))))
+ (-5 *1 (-531))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-735)) (-5 *3 (-995))
+ (-5 *4
+ (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208)))))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2
+ (-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))
+ (|:| |extra| (-973))))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-891 *5)) (-5 *4 (-860)) (-4 *5 (-981))
- (-4 *5 (-570 *2)) (-5 *2 (-359)) (-5 *1 (-731 *5))))
+ (-12 (-4 *1 (-735)) (-5 *3 (-995))
+ (-5 *4
+ (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208)))
+ (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2
+ (-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))
+ (|:| |extra| (-973))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-748)) (-5 *3 (-995))
+ (-5 *4
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208)))
+ (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2 (-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-387 (-891 *4))) (-4 *4 (-520))
- (-4 *4 (-570 *2)) (-5 *2 (-359)) (-5 *1 (-731 *4))))
+ (-12 (-5 *3 (-756))
+ (-5 *2
+ (-2 (|:| -2931 (-359)) (|:| -3824 (-1081))
+ (|:| |explanations| (-594 (-1081)))))
+ (-5 *1 (-753))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-387 (-891 *5))) (-5 *4 (-860)) (-4 *5 (-520))
- (-4 *5 (-570 *2)) (-5 *2 (-359)) (-5 *1 (-731 *5))))
+ (-12 (-5 *3 (-756)) (-5 *4 (-995))
+ (-5 *2
+ (-2 (|:| -2931 (-359)) (|:| -3824 (-1081))
+ (|:| |explanations| (-594 (-1081)))))
+ (-5 *1 (-753))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-784)) (-5 *3 (-995))
+ (-5 *4 (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208)))))
+ (-5 *2 (-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-784)) (-5 *3 (-995))
+ (-5 *4
+ (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208)))
+ (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208))))
+ (|:| |ub| (-594 (-787 (-208))))))
+ (-5 *2 (-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-296 *4)) (-4 *4 (-520)) (-4 *4 (-793))
- (-4 *4 (-570 *2)) (-5 *2 (-359)) (-5 *1 (-731 *4))))
+ (-12 (-5 *3 (-786))
+ (-5 *2
+ (-2 (|:| -2931 (-359)) (|:| -3824 (-1081))
+ (|:| |explanations| (-594 (-1081)))))
+ (-5 *1 (-785))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-296 *5)) (-5 *4 (-860)) (-4 *5 (-520))
- (-4 *5 (-793)) (-4 *5 (-570 *2)) (-5 *2 (-359))
- (-5 *1 (-731 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-322 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1153 *4))
- (-4 *5 (-1153 (-387 *3))) (-5 *2 (-110))))
+ (-12 (-5 *3 (-786)) (-5 *4 (-995))
+ (-5 *2
+ (-2 (|:| -2931 (-359)) (|:| -3824 (-1081))
+ (|:| |explanations| (-594 (-1081)))))
+ (-5 *1 (-785))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-836)) (-5 *3 (-995))
+ (-5 *4
+ (-2 (|:| |pde| (-594 (-295 (-208))))
+ (|:| |constraints|
+ (-594
+ (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719))
+ (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208)))
+ (|:| |dFinish| (-637 (-208))))))
+ (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081))
+ (|:| |tol| (-208))))
+ (-5 *2 (-2 (|:| -2931 (-359)) (|:| |explanations| (-1081))))))
((*1 *2 *3)
- (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-387 *4))) (-5 *2 (-110)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-981)) (-5 *1 (-636 *3)))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-860)) (-5 *1 (-1024 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1018 (-207))) (-5 *1 (-865))))
- ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1018 (-207))) (-5 *1 (-866))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1018 (-207))) (-5 *1 (-866))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-359)) (-5 *2 (-1182)) (-5 *1 (-1179))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1182)) (-5 *1 (-1179)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-288)) (-5 *1 (-646 *3)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-110))
- (-5 *1 (-925 *4 *5 *6 *7 *3)) (-4 *3 (-999 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-110))
- (-5 *1 (-1030 *4 *5 *6 *7 *3)) (-4 *3 (-999 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-635 (-207))) (-5 *5 (-635 (-528))) (-5 *3 (-528))
- (-5 *2 (-970)) (-5 *1 (-703)))))
+ (-12 (-5 *3 (-839))
+ (-5 *2
+ (-2 (|:| -2931 (-359)) (|:| -3824 (-1081))
+ (|:| |explanations| (-594 (-1081)))))
+ (-5 *1 (-838))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-839)) (-5 *4 (-995))
+ (-5 *2
+ (-2 (|:| -2931 (-359)) (|:| -3824 (-1081))
+ (|:| |explanations| (-594 (-1081)))))
+ (-5 *1 (-838)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-719)) (-4 *4 (-344)) (-5 *1 (-837 *2 *4)) (-4 *2 (-1155 *4)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-344)) (-5 *1 (-837 *2 *3)) (-4 *2 (-1155 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-414)) (|:| -2853 "void")))
- (-5 *2 (-1182)) (-5 *1 (-1098))))
+ (-12 (-4 *1 (-836))
+ (-5 *3
+ (-2 (|:| |pde| (-594 (-295 (-208))))
+ (|:| |constraints|
+ (-594
+ (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719))
+ (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208)))
+ (|:| |dFinish| (-637 (-208))))))
+ (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081))
+ (|:| |tol| (-208))))
+ (-5 *2 (-973)))))
+(((*1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-505))) ((*1 *1) (-4 *1 (-671))) ((*1 *1) (-4 *1 (-675)))
+ ((*1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1027))))
+ ((*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-795)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027))
+ (-5 *2 (-594 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-594 (-2 (|:| |k| (-834 *3)) (|:| |c| *4))))
+ (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795))
+ (-4 *4 (-13 (-162) (-666 (-388 (-516))))) (-14 *5 (-860))))
+ ((*1 *2 *1) (-12 (-5 *2 (-594 (-622 *3))) (-5 *1 (-834 *3)) (-4 *3 (-795)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984))
+ (-14 *4 (-594 (-1098)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-50)) (-5 *2 (-110)) (-5 *1 (-51 *4)) (-4 *4 (-1134))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795)))
+ (-14 *4 (-594 (-1098)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-622 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-626 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-834 *3)) (-4 *3 (-795)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-831 *4)) (-4 *4 (-1027)) (-5 *2 (-594 *5)) (-5 *1 (-832 *4 *5))
+ (-4 *5 (-1134)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-50)) (-5 *1 (-831 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-831 *4)) (-4 *4 (-1027)) (-5 *1 (-832 *4 *3)) (-4 *3 (-1134)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-831 *4)) (-4 *4 (-1027)) (-5 *2 (-110))
+ (-5 *1 (-829 *4 *5)) (-4 *5 (-1027))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095))
- (-5 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-5 *2 (-1182))
- (-5 *1 (-1098))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1095))
- (-5 *4 (-3 (|:| |fst| (-414)) (|:| -2853 "void"))) (-5 *2 (-1182))
- (-5 *1 (-1098)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4265)) (-4 *1 (-1165 *2)) (-4 *2 (-1131)))))
+ (-12 (-5 *4 (-831 *5)) (-4 *5 (-1027)) (-5 *2 (-110)) (-5 *1 (-832 *5 *3))
+ (-4 *3 (-1134))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 *6)) (-5 *4 (-831 *5)) (-4 *5 (-1027)) (-4 *6 (-1134))
+ (-5 *2 (-110)) (-5 *1 (-832 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-398 (-1091 *1))) (-5 *1 (-296 *4)) (-5 *3 (-1091 *1))
- (-4 *4 (-431)) (-4 *4 (-520)) (-4 *4 (-793))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-848)) (-5 *2 (-398 (-1091 *1))) (-5 *3 (-1091 *1)))))
+ (-12 (-5 *3 (-831 *4)) (-4 *4 (-1027)) (-5 *2 (-1 (-110) *5))
+ (-5 *1 (-832 *4 *5)) (-4 *5 (-1134)))))
+(((*1 *1) (-4 *1 (-23)))
+ ((*1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-505))) ((*1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1027)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1153 *3)) (-4 *3 (-981)) (-5 *2 (-1091 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-791)) (-5 *1 (-284 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1078)) (-5 *4 (-159 (-207))) (-5 *5 (-528))
- (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-272)))
- ((*1 *1) (-5 *1 (-802)))
- ((*1 *1)
- (-12 (-4 *2 (-431)) (-4 *3 (-793)) (-4 *4 (-739))
- (-5 *1 (-924 *2 *3 *4 *5)) (-4 *5 (-888 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-1010)))
- ((*1 *1)
- (-12 (-5 *1 (-1060 *2 *3)) (-4 *2 (-13 (-1023) (-33)))
- (-4 *3 (-13 (-1023) (-33)))))
- ((*1 *1) (-5 *1 (-1098))) ((*1 *1) (-5 *1 (-1099))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-513))))
+ (|partial| -12 (-5 *2 (-2 (|:| -2770 (-111)) (|:| |arg| (-594 (-831 *3)))))
+ (-5 *1 (-831 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-111)) (-5 *2 (-594 (-831 *4))) (-5 *1 (-831 *4))
+ (-4 *4 (-1027)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-295 (-208))) (-5 *1 (-285))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |num| (-831 *3)) (|:| |den| (-831 *3))))
+ (-5 *1 (-831 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-594 (-831 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-50))) (-5 *1 (-831 *3)) (-4 *3 (-1027)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-594 (-50))) (-5 *1 (-831 *3)) (-4 *3 (-1027)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-594 (-50))) (-5 *1 (-831 *3)) (-4 *3 (-1027)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-110)) (-5 *1 (-831 *4)) (-4 *4 (-1027)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-594 (-1098))) (-5 *3 (-50)) (-5 *1 (-831 *4)) (-4 *4 (-1027)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-362 *3 *4)) (-4 *3 (-981)) (-4 *4 (-1023))
- (-5 *2 (-595 (-2 (|:| |k| *4) (|:| |c| *3))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-595 (-2 (|:| |k| (-832 *3)) (|:| |c| *4))))
- (-5 *1 (-579 *3 *4 *5)) (-4 *3 (-793))
- (-4 *4 (-13 (-162) (-664 (-387 (-528))))) (-14 *5 (-860))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-595 (-620 *3))) (-5 *1 (-832 *3)) (-4 *3 (-793)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-110)) (-5 *1 (-775)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-309 *3)) (-4 *3 (-343)) (-4 *3 (-348))
- (-5 *2 (-1091 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-309 *3)) (-4 *3 (-343)) (-4 *3 (-348))
- (-5 *2 (-1091 *3)))))
+ (-12 (-5 *2 (-2 (|:| |var| (-594 (-1098))) (|:| |pred| (-50))))
+ (-5 *1 (-831 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1027)))))
+(((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1027)))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-50))) (-5 *1 (-831 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-594 (-831 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1027)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -2445 *1) (|:| -4251 *1) (|:| |associate| *1)))
- (-4 *1 (-520)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1078)) (-5 *1 (-1113)))))
+ (-12 (-4 *4 (-1027)) (-5 *2 (-110)) (-5 *1 (-826 *3 *4 *5)) (-4 *3 (-1027))
+ (-4 *5 (-617 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-829 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))))
+(((*1 *1)
+ (-12 (-4 *3 (-1027)) (-5 *1 (-826 *2 *3 *4)) (-4 *2 (-1027))
+ (-4 *4 (-617 *3))))
+ ((*1 *1) (-12 (-5 *1 (-829 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-831 *4)) (-4 *4 (-1027)) (-4 *2 (-1027))
+ (-5 *1 (-829 *4 *2)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-831 *4)) (-4 *4 (-1027)) (-5 *1 (-829 *4 *3)) (-4 *3 (-1027)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-831 *4)) (-4 *4 (-1027)) (-5 *1 (-829 *4 *3)) (-4 *3 (-1027)))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-831 *4)) (-4 *4 (-1027)) (-5 *1 (-829 *4 *3)) (-4 *3 (-1027)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *8)) (-5 *4 (-595 *7)) (-4 *7 (-793))
- (-4 *8 (-888 *5 *6 *7)) (-4 *5 (-520)) (-4 *6 (-739))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1177 (-387 *8)) "failed"))
- (|:| -1400 (-595 (-1177 (-387 *8))))))
- (-5 *1 (-618 *5 *6 *7 *8)))))
+ (-12 (-4 *5 (-1027)) (-4 *6 (-827 *5)) (-5 *2 (-826 *5 *6 (-594 *6)))
+ (-5 *1 (-828 *5 *6 *4)) (-5 *3 (-594 *6)) (-4 *4 (-572 (-831 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1027)) (-5 *2 (-594 (-275 *3))) (-5 *1 (-828 *5 *3 *4))
+ (-4 *3 (-975 (-1098))) (-4 *3 (-827 *5)) (-4 *4 (-572 (-831 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1027)) (-5 *2 (-594 (-275 (-887 *3)))) (-5 *1 (-828 *5 *3 *4))
+ (-4 *3 (-984)) (-3595 (-4 *3 (-975 (-1098)))) (-4 *3 (-827 *5))
+ (-4 *4 (-572 (-831 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1027)) (-5 *2 (-829 *5 *3)) (-5 *1 (-828 *5 *3 *4))
+ (-3595 (-4 *3 (-975 (-1098)))) (-3595 (-4 *3 (-984))) (-4 *3 (-827 *5))
+ (-4 *4 (-572 (-831 *5))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-110)) (-5 *1 (-111))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-280)) (-5 *3 (-1098)) (-5 *2 (-110))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-280)) (-5 *3 (-111)) (-5 *2 (-110))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1098)) (-5 *2 (-110)) (-5 *1 (-569 *4)) (-4 *4 (-795))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-111)) (-5 *2 (-110)) (-5 *1 (-569 *4)) (-4 *4 (-795))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1027)) (-5 *2 (-110)) (-5 *1 (-828 *5 *3 *4)) (-4 *3 (-827 *5))
+ (-4 *4 (-572 (-831 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 *6)) (-4 *6 (-827 *5)) (-4 *5 (-1027)) (-5 *2 (-110))
+ (-5 *1 (-828 *5 *6 *4)) (-4 *4 (-572 (-831 *5))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-829 *4 *5)) (-5 *3 (-829 *4 *6)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-617 *5)) (-5 *1 (-826 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1027)) (-5 *2 (-829 *3 *4)) (-5 *1 (-826 *3 *4 *5))
+ (-4 *3 (-1027)) (-4 *5 (-617 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1027)) (-5 *2 (-829 *3 *5)) (-5 *1 (-826 *3 *4 *5))
+ (-4 *3 (-1027)) (-4 *5 (-617 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1076 (-594 (-516)))) (-5 *1 (-824)) (-5 *3 (-516)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1076 (-594 (-516)))) (-5 *1 (-824)) (-5 *3 (-594 (-516)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1076 (-594 (-516)))) (-5 *1 (-824)) (-5 *3 (-594 (-516))))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-860)) (-5 *3 (-595 (-244))) (-5 *1 (-242))))
- ((*1 *1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-244)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4264)) (-4 *1 (-33)) (-5 *2 (-717))))
+ (-12 (-5 *2 (-1076 (-594 (-516)))) (-5 *3 (-594 (-516))) (-5 *1 (-824)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1076 (-594 (-516)))) (-5 *1 (-824)) (-5 *3 (-594 (-516))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1076 (-594 (-516)))) (-5 *1 (-824)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1076 (-594 (-516)))) (-5 *1 (-824)) (-5 *3 (-516))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1076 (-594 (-516)))) (-5 *1 (-824)) (-5 *3 (-516))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1076 (-594 (-516)))) (-5 *1 (-824)) (-5 *3 (-516)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-818 *2)) (-4 *2 (-1134))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-820 *2)) (-4 *2 (-1134))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-823 *2)) (-4 *2 (-1134)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-594 (-1103))) (-5 *1 (-821)))))
+(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))))
+(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))))
+(((*1 *2 *3) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-224)) (-5 *3 (-1081))))
+ ((*1 *2 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-224))))
+ ((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))))
+(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))))
+(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))))
+(((*1 *1 *2 *3) (-12 (-5 *1 (-814 *2 *3)) (-4 *2 (-1134)) (-4 *3 (-1134)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-163 (-388 (-516)))) (-5 *1 (-115 *3)) (-14 *3 (-516))))
+ ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1076 *2)) (-4 *2 (-289)) (-5 *1 (-163 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-289)) (-5 *1 (-163 *3))))
+ ((*1 *2 *3) (-12 (-5 *2 (-163 (-516))) (-5 *1 (-714 *3)) (-4 *3 (-385))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-163 (-388 (-516)))) (-5 *1 (-812 *3)) (-14 *3 (-516))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-516)) (-5 *2 (-163 (-388 (-516)))) (-5 *1 (-813 *3 *4))
+ (-4 *4 (-811 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-384 *3)) (-4 *3 (-385))))
+ ((*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-384 *3)) (-4 *3 (-385))))
+ ((*1 *2 *2) (-12 (-5 *2 (-860)) (|has| *1 (-6 -4260)) (-4 *1 (-385))))
+ ((*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-860))))
+ ((*1 *2 *1) (-12 (-4 *1 (-811 *3)) (-5 *2 (-1076 (-516))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-162)) (-4 *2 (-23)) (-5 *1 (-271 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1155 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
((*1 *2 *1)
- (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023)) (-4 *4 (-1023))
- (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-528))))
+ (-12 (-4 *2 (-23)) (-5 *1 (-660 *3 *2 *4 *5 *6)) (-4 *3 (-162))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *2 (-1155 *3)) (-5 *1 (-661 *3 *2)) (-4 *3 (-984))))
((*1 *2 *1)
- (-12 (-5 *2 (-717)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-981))
- (-4 *4 (-789)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1078)) (-5 *1 (-1113)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359))
- (-5 *2
- (-2 (|:| -3327 *4) (|:| -3817 *4) (|:| |totalpts| (-528))
- (|:| |success| (-110))))
- (-5 *1 (-735)) (-5 *5 (-528)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-459 *4 *5))) (-14 *4 (-595 (-1095)))
- (-4 *5 (-431))
- (-5 *2
- (-2 (|:| |gblist| (-595 (-229 *4 *5)))
- (|:| |gvlist| (-595 (-528)))))
- (-5 *1 (-583 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-595 (-1095))) (-5 *1 (-48))))
- ((*1 *2 *1) (-12 (-5 *2 (-595 (-1095))) (-5 *1 (-461)))))
+ (-12 (-4 *2 (-23)) (-5 *1 (-664 *3 *2 *4 *5 *6)) (-4 *3 (-162))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-811 *3)) (-5 *2 (-516)))))
+(((*1 *2 *1) (-12 (-4 *1 (-811 *3)) (-5 *2 (-516)))))
+(((*1 *1 *1) (-4 *1 (-811 *2))))
+(((*1 *1 *1 *1) (-5 *1 (-805))) ((*1 *1 *1) (-5 *1 (-805)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1092 (-516))) (-5 *3 (-516)) (-4 *1 (-811 *4)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-719)) (-4 *5 (-344)) (-5 *2 (-388 *6))
+ (-5 *1 (-808 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1155 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-719)) (-5 *4 (-1169 *5 *6 *7)) (-4 *5 (-344))
+ (-14 *6 (-1098)) (-14 *7 *5) (-5 *2 (-388 (-1148 *6 *5)))
+ (-5 *1 (-809 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-719)) (-5 *4 (-1169 *5 *6 *7)) (-4 *5 (-344))
+ (-14 *6 (-1098)) (-14 *7 *5) (-5 *2 (-388 (-1148 *6 *5)))
+ (-5 *1 (-809 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-719)) (-4 *5 (-344)) (-5 *2 (-163 *6))
+ (-5 *1 (-808 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1155 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-805)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-805)))))
+(((*1 *2 *1) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1120)))))
+ ((*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-805))))
+ ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-805)))))
+(((*1 *2 *1) (-12 (-4 *1 (-236 *3)) (-4 *3 (-1134)) (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-4 *1 (-280)) (-5 *2 (-719))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1120) (-266)))
+ (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1155 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-569 *3)) (-4 *3 (-795))))
+ ((*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-805))))
+ ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-805)))))
+(((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-805)))))
+(((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-805)))))
+(((*1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-805)))))
+(((*1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-805)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-805)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805))))
+ ((*1 *1 *1 *1) (-5 *1 (-805))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805))))
+ ((*1 *1 *1 *1) (-5 *1 (-805))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-805)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805)))))
+(((*1 *1 *1 *1) (-5 *1 (-805))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-805)))))
+(((*1 *1 *1 *1) (-5 *1 (-805))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 *1)) (-4 *1 (-280))))
+ ((*1 *1 *1) (-4 *1 (-280))) ((*1 *1 *1) (-5 *1 (-805))))
+(((*1 *1 *1 *1) (-5 *1 (-805))))
+(((*1 *1 *1 *1) (-5 *1 (-805))))
+(((*1 *1 *1 *1) (-5 *1 (-805))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-594 (-887 (-516))))
+ (-5 *4 (-295 (-158 (-359)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-594 (-887 (-516)))) (-5 *4 (-295 (-359)))
+ (-5 *1 (-311))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-594 (-887 (-516)))) (-5 *4 (-295 (-516)))
+ (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-1179 (-295 (-158 (-359))))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-1179 (-295 (-359)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-1179 (-295 (-516)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-637 (-295 (-158 (-359))))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-637 (-295 (-359)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-637 (-295 (-516)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-295 (-158 (-359)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-295 (-359))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-295 (-516))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-594 (-887 (-516)))) (-5 *4 (-295 (-642)))
+ (-5 *1 (-311))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-594 (-887 (-516)))) (-5 *4 (-295 (-647)))
+ (-5 *1 (-311))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-594 (-887 (-516)))) (-5 *4 (-295 (-649)))
+ (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-1179 (-295 (-642)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-1179 (-295 (-647)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-1179 (-295 (-649)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-637 (-295 (-642)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-637 (-295 (-647)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-637 (-295 (-649)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-1179 (-642))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-1179 (-647))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-1179 (-649))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-637 (-642))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-637 (-647))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-637 (-649))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-295 (-642))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-295 (-647))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-295 (-649))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-1081)) (-5 *1 (-311))))
+ ((*1 *1 *1 *1) (-5 *1 (-805))))
+(((*1 *1 *1 *1) (-5 *1 (-805))))
+(((*1 *1 *1 *1) (-5 *1 (-805))))
+(((*1 *1 *1 *1) (-5 *1 (-805))))
+(((*1 *1 *1 *1) (-5 *1 (-805))))
+(((*1 *1 *1 *1) (-5 *1 (-805))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805)))))
+(((*1 *1) (-5 *1 (-137))) ((*1 *1 *1) (-5 *1 (-805))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-805))))
+ ((*1 *1 *1) (-5 *1 (-805))))
+(((*1 *1 *1) (-5 *1 (-805))))
+(((*1 *1 *1 *1) (-5 *1 (-805))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-805))) ((*1 *1 *1 *1) (-5 *1 (-805)))
+ ((*1 *1 *1) (-5 *1 (-805))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805))))
+ ((*1 *1 *1) (-5 *1 (-805))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 *1)) (-4 *1 (-280))))
+ ((*1 *1 *1) (-4 *1 (-280)))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805))))
+ ((*1 *1 *1) (-5 *1 (-805))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805)))))
+(((*1 *2 *3) (-12 (-5 *3 (-594 (-1081))) (-5 *2 (-1081)) (-5 *1 (-176))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-805)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110))))
+ ((*1 *1 *1 *1) (-5 *1 (-805))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110))))
+ ((*1 *1 *1 *1) (-5 *1 (-805))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110))))
+ ((*1 *1 *1 *1) (-5 *1 (-805))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1118 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-568 *4)) (-5 *6 (-1091 *4))
- (-4 *4 (-13 (-410 *7) (-27) (-1117)))
- (-4 *7 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1400 (-595 *4))))
- (-5 *1 (-524 *7 *4 *3)) (-4 *3 (-605 *4)) (-4 *3 (-1023))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-568 *4)) (-5 *6 (-387 (-1091 *4)))
- (-4 *4 (-13 (-410 *7) (-27) (-1117)))
- (-4 *7 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1400 (-595 *4))))
- (-5 *1 (-524 *7 *4 *3)) (-4 *3 (-605 *4)) (-4 *3 (-1023)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1060 *2 *3)) (-4 *2 (-13 (-1023) (-33)))
- (-4 *3 (-13 (-1023) (-33))))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-100 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-100 *2)) (-4 *2 (-1023)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-398 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1153 (-47)))))
- ((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-119 *3)) (|:| |greater| (-119 *3))))
- (-5 *1 (-119 *3)) (-4 *3 (-793))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-545 *4)) (-4 *4 (-13 (-29 *3) (-1117)))
- (-4 *3 (-13 (-431) (-972 (-528)) (-793) (-591 (-528))))
- (-5 *1 (-543 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-545 (-387 (-891 *3))))
- (-4 *3 (-13 (-431) (-972 (-528)) (-793) (-591 (-528))))
- (-5 *1 (-548 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-343))
- (-5 *2 (-2 (|:| -4099 *3) (|:| |special| *3))) (-5 *1 (-674 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1177 *5)) (-4 *5 (-343)) (-4 *5 (-981))
- (-5 *2 (-595 (-595 (-635 *5)))) (-5 *1 (-964 *5))
- (-5 *3 (-595 (-635 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1177 (-1177 *5))) (-4 *5 (-343)) (-4 *5 (-981))
- (-5 *2 (-595 (-595 (-635 *5)))) (-5 *1 (-964 *5))
- (-5 *3 (-595 (-635 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-134)) (-5 *2 (-595 *1)) (-4 *1 (-1064))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-137)) (-5 *2 (-595 *1)) (-4 *1 (-1064)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1078)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-1182))
- (-5 *1 (-1000 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1078)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-1182))
- (-5 *1 (-1031 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-595 *1)) (-4 *1 (-994 *4 *5 *6)) (-4 *4 (-981))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110))))
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-767 *3)) (|:| |rm| (-767 *3))))
+ (-5 *1 (-767 *3)) (-4 *3 (-795))))
+ ((*1 *1 *1 *1) (-5 *1 (-805))))
+(((*1 *1 *1 *1) (-4 *1 (-289))) ((*1 *1 *1 *1) (-5 *1 (-719)))
+ ((*1 *1 *1 *1) (-5 *1 (-805))))
+(((*1 *1 *1 *1) (-4 *1 (-289))) ((*1 *1 *1 *1) (-5 *1 (-719)))
+ ((*1 *1 *1 *1) (-5 *1 (-805))))
+(((*1 *2 *3) (-12 (-5 *3 (-594 (-50))) (-5 *2 (-1185)) (-5 *1 (-804)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-37 (-388 (-516))))
+ (-4 *2 (-162)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162))))
+ ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-344)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -2046 *1) (|:| -3166 *1)))
+ (-4 *1 (-797 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-96 *5)) (-4 *5 (-344)) (-4 *5 (-984))
+ (-5 *2 (-2 (|:| -2046 *3) (|:| -3166 *3))) (-5 *1 (-798 *5 *3))
+ (-4 *3 (-797 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-344)) (-5 *2 (-2 (|:| -2046 *3) (|:| -3166 *3)))
+ (-5 *1 (-715 *3 *4)) (-4 *3 (-657 *4))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *5 (-793)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-520)) (-4 *5 (-739))
- (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-110)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1084 *2 *3)) (-14 *2 (-860)) (-4 *3 (-981)))))
+ (-12 (-4 *3 (-344)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -2046 *1) (|:| -3166 *1)))
+ (-4 *1 (-797 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-96 *5)) (-4 *5 (-344)) (-4 *5 (-984))
+ (-5 *2 (-2 (|:| -2046 *3) (|:| -3166 *3))) (-5 *1 (-798 *5 *3))
+ (-4 *3 (-797 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-523)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -2046 *1) (|:| -3166 *1)))
+ (-4 *1 (-797 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-96 *5)) (-4 *5 (-523)) (-4 *5 (-984))
+ (-5 *2 (-2 (|:| -2046 *3) (|:| -3166 *3))) (-5 *1 (-798 *5 *3))
+ (-4 *3 (-797 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-523)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -2046 *1) (|:| -3166 *1)))
+ (-4 *1 (-797 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-96 *5)) (-4 *5 (-523)) (-4 *5 (-984))
+ (-5 *2 (-2 (|:| -2046 *3) (|:| -3166 *3))) (-5 *1 (-798 *5 *3))
+ (-4 *3 (-797 *5)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-599 *5)) (-4 *5 (-984))
+ (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-797 *5))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-637 *3)) (-4 *1 (-399 *3)) (-4 *3 (-162))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984))))
+ ((*1 *2 *3 *2 *2 *4 *5)
+ (-12 (-5 *4 (-96 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-984)) (-5 *1 (-798 *2 *3))
+ (-4 *3 (-797 *2)))))
+(((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-984)) (-5 *1 (-798 *5 *2))
+ (-4 *2 (-797 *5)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-344)) (-4 *3 (-984))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2435 *1)))
+ (-4 *1 (-797 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-344)) (-4 *3 (-984))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2435 *1)))
+ (-4 *1 (-797 *3)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1179 *5)) (-4 *5 (-740)) (-5 *2 (-110)) (-5 *1 (-790 *4 *5))
+ (-14 *4 (-719)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1179 *5)) (-4 *5 (-740)) (-5 *2 (-110)) (-5 *1 (-790 *4 *5))
+ (-14 *4 (-719)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1179 *5)) (-4 *5 (-740)) (-5 *2 (-110)) (-5 *1 (-790 *4 *5))
+ (-14 *4 (-719)))))
+(((*1 *2) (-12 (-5 *2 (-787 (-516))) (-5 *1 (-504))))
+ ((*1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1027)))))
+(((*1 *2) (-12 (-5 *2 (-787 (-516))) (-5 *1 (-504))))
+ ((*1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1027)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-780 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-787 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-780 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-787 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1045)) (-5 *1 (-787 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-973)) (-5 *1 (-785))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-295 (-359)))) (-5 *4 (-594 (-359))) (-5 *2 (-973))
+ (-5 *1 (-785)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-786)) (-5 *4 (-995)) (-5 *2 (-973)) (-5 *1 (-785))))
+ ((*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-973)) (-5 *1 (-785))))
+ ((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-594 (-359))) (-5 *5 (-594 (-787 (-359))))
+ (-5 *6 (-594 (-295 (-359)))) (-5 *3 (-295 (-359))) (-5 *2 (-973))
+ (-5 *1 (-785))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-295 (-359))) (-5 *4 (-594 (-359))) (-5 *5 (-594 (-787 (-359))))
+ (-5 *2 (-973)) (-5 *1 (-785))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-295 (-359))) (-5 *4 (-594 (-359))) (-5 *2 (-973))
+ (-5 *1 (-785))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-295 (-359)))) (-5 *4 (-594 (-359))) (-5 *2 (-973))
+ (-5 *1 (-785)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-528))) (-5 *2 (-595 (-635 (-528))))
- (-5 *1 (-1033)))))
-(((*1 *2 *3) (-12 (-5 *3 (-159 (-528))) (-5 *2 (-110)) (-5 *1 (-425))))
- ((*1 *2 *3)
- (-12
+ (-12 (-4 *1 (-784))
(-5 *3
- (-480 (-387 (-528)) (-222 *5 (-717)) (-804 *4)
- (-229 *4 (-387 (-528)))))
- (-14 *4 (-595 (-1095))) (-14 *5 (-717)) (-5 *2 (-110))
- (-5 *1 (-481 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-899 *3)) (-4 *3 (-513))))
- ((*1 *2 *1) (-12 (-4 *1 (-1135)) (-5 *2 (-110)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-860)) (-5 *3 (-595 (-244))) (-5 *1 (-242))))
- ((*1 *1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-244)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-528)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-398 *2)) (-4 *2 (-520)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-933 *2)) (-4 *2 (-162)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *1)) (-5 *4 (-1177 *1)) (-4 *1 (-591 *5))
- (-4 *5 (-981))
- (-5 *2 (-2 (|:| -2163 (-635 *5)) (|:| |vec| (-1177 *5))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 *1)) (-4 *1 (-591 *4)) (-4 *4 (-981))
- (-5 *2 (-635 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-431)) (-4 *4 (-739)) (-4 *5 (-793))
- (-4 *6 (-994 *3 *4 *5)) (-5 *1 (-577 *3 *4 *5 *6 *7 *2))
- (-4 *7 (-999 *3 *4 *5 *6)) (-4 *2 (-1032 *3 *4 *5 *6)))))
-(((*1 *1 *1 *1) (-4 *1 (-905))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-528)) (-4 *4 (-739)) (-4 *5 (-793)) (-4 *2 (-981))
- (-5 *1 (-301 *4 *5 *2 *6)) (-4 *6 (-888 *2 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-891 *5)) (-4 *5 (-981)) (-5 *2 (-229 *4 *5))
- (-5 *1 (-883 *4 *5)) (-14 *4 (-595 (-1095))))))
+ (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208)))
+ (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208))))
+ (|:| |ub| (-594 (-787 (-208))))))
+ (-5 *2 (-973))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-784))
+ (-5 *3 (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208)))))
+ (-5 *2 (-973)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-198 (-480))) (-5 *1 (-783)))))
+(((*1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-984))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-4 *4 (-162)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4))
+ (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-636 *4 *5 *6 *3))
+ (-4 *3 (-634 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-162)) (-4 *2 (-984)) (-5 *1 (-663 *2 *3)) (-4 *3 (-599 *2))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-162)) (-4 *2 (-984)) (-5 *1 (-663 *2 *3)) (-4 *3 (-599 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-162)) (-4 *2 (-984))))
+ ((*1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-162)) (-4 *2 (-984)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1177 *1)) (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135))
- (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1097 (-387 (-528)))) (-5 *1 (-174)) (-5 *3 (-528)))))
-(((*1 *1) (-5 *1 (-417))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1091 (-528))) (-5 *2 (-528)) (-5 *1 (-881)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4264)) (-4 *1 (-561 *4 *3)) (-4 *4 (-1023))
- (-4 *3 (-1131)) (-4 *3 (-1023)) (-5 *2 (-110)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-288)) (-5 *1 (-434 *3 *2)) (-4 *2 (-1153 *3))))
+ (-12 (-4 *2 (-162)) (-4 *2 (-984)) (-5 *1 (-663 *2 *3)) (-4 *3 (-599 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-782 *2)) (-4 *2 (-162)) (-4 *2 (-984)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-111)) (-5 *4 (-594 *2)) (-5 *1 (-112 *2))
+ (-4 *2 (-1027))))
((*1 *2 *2 *3)
- (-12 (-4 *3 (-288)) (-5 *1 (-439 *3 *2)) (-4 *2 (-1153 *3))))
+ (-12 (-5 *2 (-111)) (-5 *3 (-1 *4 (-594 *4))) (-4 *4 (-1027))
+ (-5 *1 (-112 *4))))
((*1 *2 *2 *3)
- (-12 (-4 *3 (-288)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-717)))
- (-5 *1 (-507 *3 *2 *4 *5)) (-4 *2 (-1153 *3)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-595 (-831 *3))) (-5 *1 (-831 *3))
- (-4 *3 (-1023)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-595 (-504))) (-5 *1 (-504)))))
-(((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1023)))))
-(((*1 *2 *3) (-12 (-5 *3 (-207)) (-5 *2 (-387 (-528))) (-5 *1 (-286)))))
-(((*1 *2) (-12 (-5 *2 (-843 (-528))) (-5 *1 (-856)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 (-137))) (-5 *1 (-134))))
- ((*1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-134)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-1177 *5))) (-5 *4 (-528)) (-5 *2 (-1177 *5))
- (-5 *1 (-964 *5)) (-4 *5 (-343)) (-4 *5 (-348)) (-4 *5 (-981)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-1091 (-891 *4))) (-5 *1 (-396 *3 *4))
- (-4 *3 (-397 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-397 *3)) (-4 *3 (-162)) (-4 *3 (-343))
- (-5 *2 (-1091 (-891 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1091 (-387 (-891 *3)))) (-5 *1 (-432 *3 *4 *5 *6))
- (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-882 *3)) (-4 *3 (-13 (-343) (-1117) (-938)))
- (-5 *1 (-165 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2088 (-728 *3)) (|:| |coef2| (-728 *3))))
- (-5 *1 (-728 *3)) (-4 *3 (-520)) (-4 *3 (-981))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-520)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *2 (-2 (|:| -2088 *1) (|:| |coef2| *1)))
- (-4 *1 (-994 *3 *4 *5)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1168 *3))
- (-5 *1 (-259 *3 *4 *2)) (-4 *2 (-1139 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *4 (-1137 *3))
- (-5 *1 (-260 *3 *4 *2 *5)) (-4 *2 (-1160 *3 *4)) (-4 *5 (-920 *4))))
- ((*1 *1 *1) (-4 *1 (-265)))
+ (-12 (-5 *2 (-111)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1027)) (-5 *1 (-112 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-398 *4)) (-4 *4 (-520))
- (-5 *2 (-595 (-2 (|:| -1641 (-717)) (|:| |logand| *4))))
- (-5 *1 (-300 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095)))
- (-14 *3 (-595 (-1095))) (-4 *4 (-367))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-613 *3 *4)) (-5 *1 (-579 *3 *4 *5)) (-4 *3 (-793))
- (-4 *4 (-13 (-162) (-664 (-387 (-528))))) (-14 *5 (-860))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1081 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528))))
- (-5 *1 (-1082 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-717)) (-4 *4 (-13 (-981) (-664 (-387 (-528)))))
- (-4 *5 (-793)) (-5 *1 (-1191 *4 *5 *2)) (-4 *2 (-1196 *5 *4))))
+ (|partial| -12 (-5 *3 (-111)) (-5 *2 (-1 *4 (-594 *4))) (-5 *1 (-112 *4))
+ (-4 *4 (-1027))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-717)) (-5 *1 (-1195 *3 *4))
- (-4 *4 (-664 (-387 (-528)))) (-4 *3 (-793)) (-4 *4 (-162)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-599 *3)) (-4 *3 (-984))
+ (-5 *1 (-663 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-782 *3)))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-598 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *1) (-5 *1 (-110))))
-(((*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-942))))
- ((*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-942)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12
- (-5 *3
- (-1 (-3 (-2 (|:| -1497 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-343)) (-5 *1 (-538 *4 *2)) (-4 *2 (-1153 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-110)))))
-(((*1 *1 *1) (-12 (-4 *1 (-354 *2 *3)) (-4 *2 (-793)) (-4 *3 (-162))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-579 *2 *3 *4)) (-4 *2 (-793))
- (-4 *3 (-13 (-162) (-664 (-387 (-528))))) (-14 *4 (-860))))
- ((*1 *1 *1) (-12 (-5 *1 (-624 *2)) (-4 *2 (-793))))
- ((*1 *1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-793))))
- ((*1 *1 *1) (-12 (-4 *1 (-1192 *2 *3)) (-4 *2 (-793)) (-4 *3 (-981)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7))
- (-5 *2 (-595 (-2 (|:| |val| *3) (|:| -2316 *4))))
- (-5 *1 (-1000 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-110)) (-5 *1 (-831 *4))
- (-4 *4 (-1023)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 *1)) (-4 *1 (-431))))
- ((*1 *1 *1 *1) (-4 *1 (-431)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 *2)) (-5 *1 (-464 *2)) (-4 *2 (-1153 (-528)))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-528)) (-5 *1 (-642 *2)) (-4 *2 (-1153 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-717)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-739)) (-4 *4 (-793)) (-4 *5 (-288))
- (-5 *1 (-855 *3 *4 *5 *2)) (-4 *2 (-888 *5 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 *2)) (-4 *2 (-888 *6 *4 *5))
- (-5 *1 (-855 *4 *5 *6 *2)) (-4 *4 (-739)) (-4 *5 (-793))
- (-4 *6 (-288))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1091 *6)) (-4 *6 (-888 *5 *3 *4)) (-4 *3 (-739))
- (-4 *4 (-793)) (-4 *5 (-288)) (-5 *1 (-855 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-599 *3)) (-4 *3 (-984))
+ (-5 *1 (-663 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-782 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-111)) (-4 *4 (-984)) (-5 *1 (-663 *4 *2)) (-4 *2 (-599 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-111)) (-5 *1 (-782 *2)) (-4 *2 (-984)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-342 (-111))) (-4 *2 (-984)) (-5 *1 (-663 *2 *4))
+ (-4 *4 (-599 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-342 (-111))) (-5 *1 (-782 *2)) (-4 *2 (-984)))))
+(((*1 *2) (-12 (-5 *2 (-780 (-516))) (-5 *1 (-504))))
+ ((*1 *1) (-12 (-5 *1 (-780 *2)) (-4 *2 (-1027)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1045)) (-5 *2 (-1185)) (-5 *1 (-779)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-770)) (-5 *4 (-50)) (-5 *2 (-1185)) (-5 *1 (-779)))))
+(((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-50)) (-5 *1 (-779)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-293)) (-5 *1 (-777)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-110)) (-5 *1 (-777)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-110)) (-5 *1 (-777)))))
+(((*1 *2 *3) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-777)) (-5 *3 (-1081)))))
+(((*1 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-777)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-50)) (-5 *1 (-777)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-50)) (-5 *1 (-777)))))
+(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-50)) (-5 *1 (-777)))))
+(((*1 *1 *2) (-12 (-4 *3 (-984)) (-5 *1 (-776 *2 *3)) (-4 *2 (-657 *3)))))
+(((*1 *2 *1) (-12 (-4 *2 (-657 *3)) (-5 *1 (-776 *2 *3)) (-4 *3 (-984)))))
+(((*1 *2 *1) (-12 (-4 *1 (-769)) (-5 *2 (-1081))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-769)) (-5 *3 (-110)) (-5 *2 (-1081))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-769)) (-5 *3 (-771)) (-5 *2 (-1185))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-769)) (-5 *3 (-771)) (-5 *4 (-110)) (-5 *2 (-1185))))
((*1 *2 *3)
- (-12 (-5 *3 (-595 (-1091 *7))) (-4 *4 (-739)) (-4 *5 (-793))
- (-4 *6 (-288)) (-5 *2 (-1091 *7)) (-5 *1 (-855 *4 *5 *6 *7))
- (-4 *7 (-888 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-860)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-431)) (-4 *3 (-520)) (-5 *1 (-907 *3 *2))
- (-4 *2 (-1153 *3))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)) (-4 *2 (-431)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-528)) (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981))
- (-4 *4 (-353 *3)) (-4 *5 (-353 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-717)) (-4 *1 (-354 *3 *4)) (-4 *3 (-793))
- (-4 *4 (-162))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-717)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-793))
- (-4 *4 (-981)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-343)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110))
- (-5 *1 (-480 *4 *5 *6 *3)) (-4 *3 (-888 *4 *5 *6)))))
+ (-12 (-5 *3 (-295 *4)) (-4 *4 (-13 (-769) (-795) (-984))) (-5 *2 (-1081))
+ (-5 *1 (-775 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-295 *5)) (-5 *4 (-110)) (-4 *5 (-13 (-769) (-795) (-984)))
+ (-5 *2 (-1081)) (-5 *1 (-775 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-771)) (-5 *4 (-295 *5)) (-4 *5 (-13 (-769) (-795) (-984)))
+ (-5 *2 (-1185)) (-5 *1 (-775 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-771)) (-5 *4 (-295 *6)) (-5 *5 (-110))
+ (-4 *6 (-13 (-769) (-795) (-984))) (-5 *2 (-1185)) (-5 *1 (-775 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-774)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-774)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-774)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-774)))))
+(((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-773)))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-1098))) (-5 *1 (-773)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-774)) (-5 *3 (-594 (-1098))) (-5 *1 (-773)))))
+(((*1 *1) (-5 *1 (-772))))
+(((*1 *1) (-5 *1 (-772))))
+(((*1 *1) (-5 *1 (-772))))
+(((*1 *1) (-5 *1 (-772))))
+(((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-771)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |cd| (-1081)) (|:| -3824 (-1081)))) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-771)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1081)) (-5 *3 (-772)) (-5 *1 (-771)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1081)) (-5 *3 (-772)) (-5 *1 (-771)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1045)) (-5 *2 (-110)) (-5 *1 (-770)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1081)) (-5 *4 (-1045)) (-5 *2 (-110)) (-5 *1 (-770)))))
+(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-770)))))
+(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-770)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-770)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1045)) (-5 *1 (-770)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-622 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-626 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-767 *3)) (-4 *3 (-795)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2 (-2 (|:| |lm| (-367 *3)) (|:| |mm| (-367 *3)) (|:| |rm| (-367 *3))))
+ (-5 *1 (-367 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1 *1)
+ (-12
+ (-5 *2 (-2 (|:| |lm| (-767 *3)) (|:| |mm| (-767 *3)) (|:| |rm| (-767 *3))))
+ (-5 *1 (-767 *3)) (-4 *3 (-795)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-342 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-516)) (-5 *2 (-719)) (-5 *1 (-367 *4)) (-4 *4 (-1027))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-516)) (-4 *2 (-23)) (-5 *1 (-600 *4 *2 *5)) (-4 *4 (-1027))
+ (-14 *5 *2)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-516)) (-5 *2 (-719)) (-5 *1 (-767 *4)) (-4 *4 (-795)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-516)) (-4 *1 (-304 *2 *4)) (-4 *4 (-128)) (-4 *2 (-1027))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *1 (-342 *2)) (-4 *2 (-1027))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *1 (-367 *2)) (-4 *2 (-1027))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *1 (-386 *2)) (-4 *2 (-523))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-516)) (-4 *2 (-1027)) (-5 *1 (-600 *2 *4 *5)) (-4 *4 (-23))
+ (-14 *5 *4)))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *1 (-767 *2)) (-4 *2 (-795)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-561 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1131))
- (-5 *2 (-595 *3)))))
+ (-12 (-5 *2 (-594 (-2 (|:| |gen| *3) (|:| -4219 (-516))))) (-5 *1 (-342 *3))
+ (-4 *3 (-1027))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-594 (-2 (|:| |gen| *3) (|:| -4219 (-719))))) (-5 *1 (-367 *3))
+ (-4 *3 (-1027))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-594 (-2 (|:| -4011 *3) (|:| -2427 (-516))))) (-5 *1 (-386 *3))
+ (-4 *3 (-523))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-594 (-2 (|:| |gen| *3) (|:| -4219 (-719))))) (-5 *1 (-767 *3))
+ (-4 *3 (-795)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1177 (-595 *3))) (-4 *4 (-288))
- (-5 *2 (-595 *3)) (-5 *1 (-434 *4 *3)) (-4 *3 (-1153 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))))
+ (|partial| -12 (-5 *5 (-594 *4)) (-4 *4 (-344)) (-5 *2 (-1179 *4))
+ (-5 *1 (-762 *4 *3)) (-4 *3 (-609 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-296 (-207)))) (-5 *2 (-110)) (-5 *1 (-248))))
- ((*1 *2 *3) (-12 (-5 *3 (-296 (-207))) (-5 *2 (-110)) (-5 *1 (-248))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110))
- (-5 *1 (-914 *4 *5 *6 *3)) (-4 *3 (-994 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-520) (-140))) (-5 *2 (-595 *3))
- (-5 *1 (-1147 *4 *3)) (-4 *3 (-1153 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-1135)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4)))
- (-5 *2 (-1177 *1)) (-4 *1 (-322 *3 *4 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-595 *1))
- (-4 *1 (-999 *4 *5 *6 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1131)))))
-(((*1 *1 *1) (-5 *1 (-992))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-786 (-207)))) (-5 *4 (-207)) (-5 *2 (-595 *4))
- (-5 *1 (-248)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4265)) (-4 *1 (-946 *2)) (-4 *2 (-1131)))))
-(((*1 *1) (-5 *1 (-769))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-112)) (-5 *4 (-717)) (-4 *5 (-431)) (-4 *5 (-793))
- (-4 *5 (-972 (-528))) (-4 *5 (-520)) (-5 *1 (-40 *5 *2))
- (-4 *2 (-410 *5))
- (-4 *2
- (-13 (-343) (-283)
- (-10 -8 (-15 -3031 ((-1047 *5 (-568 $)) $))
- (-15 -3042 ((-1047 *5 (-568 $)) $))
- (-15 -2222 ($ (-1047 *5 (-568 $))))))))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-359)) (-5 *1 (-992)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-802)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-1010)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1023)) (-4 *5 (-1023))
- (-5 *2 (-1 *5 *4)) (-5 *1 (-629 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-981)) (-5 *1 (-659 *3 *2)) (-4 *2 (-1153 *3)))))
+ (-12 (-5 *3 (-594 *4)) (-4 *4 (-344)) (-5 *2 (-637 *4)) (-5 *1 (-762 *4 *5))
+ (-4 *5 (-609 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 *5)) (-5 *4 (-719)) (-4 *5 (-344)) (-5 *2 (-637 *5))
+ (-5 *1 (-762 *5 *6)) (-4 *6 (-609 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-528))) (-5 *4 (-844 (-528)))
- (-5 *2 (-635 (-528))) (-5 *1 (-549))))
+ (-12 (-5 *3 (-594 (-887 *5))) (-5 *4 (-594 (-1098))) (-4 *5 (-523))
+ (-5 *2 (-594 (-594 (-275 (-388 (-887 *5)))))) (-5 *1 (-718 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-595 (-528))) (-5 *2 (-595 (-635 (-528))))
- (-5 *1 (-549))))
+ (-12 (-5 *3 (-594 (-887 *4))) (-4 *4 (-523))
+ (-5 *2 (-594 (-594 (-275 (-388 (-887 *4)))))) (-5 *1 (-718 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-637 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2071 (-594 *6))) *7 *6))
+ (-4 *6 (-344)) (-4 *7 (-609 *6))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1179 *6) "failed"))
+ (|:| -2071 (-594 (-1179 *6)))))
+ (-5 *1 (-761 *6 *7)) (-5 *4 (-1179 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-344))
+ (-5 *2
+ (-2 (|:| A (-637 *5))
+ (|:| |eqs|
+ (-594
+ (-2 (|:| C (-637 *5)) (|:| |g| (-1179 *5)) (|:| -3537 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-761 *5 *6)) (-5 *3 (-637 *5)) (-5 *4 (-1179 *5))
+ (-4 *6 (-609 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-528))) (-5 *4 (-595 (-844 (-528))))
- (-5 *2 (-595 (-635 (-528)))) (-5 *1 (-549)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-570 (-831 *3))) (-4 *3 (-825 *3))
- (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-570 (-831 *3))) (-4 *2 (-825 *3))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-568 *4)) (-5 *6 (-1095))
- (-4 *4 (-13 (-410 *7) (-27) (-1117)))
- (-4 *7 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528))))
+ (-12 (-4 *5 (-344)) (-4 *6 (-609 *5))
+ (-5 *2 (-2 (|:| -1650 (-637 *6)) (|:| |vec| (-1179 *5))))
+ (-5 *1 (-761 *5 *6)) (-5 *3 (-637 *6)) (-5 *4 (-1179 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-606 (-388 *6))) (-5 *4 (-1 (-594 *5) *6))
+ (-4 *5 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516)))))
+ (-4 *6 (-1155 *5)) (-5 *2 (-594 (-388 *6))) (-5 *1 (-760 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-606 (-388 *7))) (-5 *4 (-1 (-594 *6) *7))
+ (-5 *5 (-1 (-386 *7) *7))
+ (-4 *6 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516)))))
+ (-4 *7 (-1155 *6)) (-5 *2 (-594 (-388 *7))) (-5 *1 (-760 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-607 *6 (-388 *6))) (-5 *4 (-1 (-594 *5) *6))
+ (-4 *5 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516)))))
+ (-4 *6 (-1155 *5)) (-5 *2 (-594 (-388 *6))) (-5 *1 (-760 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-607 *7 (-388 *7))) (-5 *4 (-1 (-594 *6) *7))
+ (-5 *5 (-1 (-386 *7) *7))
+ (-4 *6 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516)))))
+ (-4 *7 (-1155 *6)) (-5 *2 (-594 (-388 *7))) (-5 *1 (-760 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-606 (-388 *5))) (-4 *5 (-1155 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516)))))
+ (-5 *2 (-594 (-388 *5))) (-5 *1 (-760 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-606 (-388 *6))) (-5 *4 (-1 (-386 *6) *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-27)) (-4 *5 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516)))))
+ (-5 *2 (-594 (-388 *6))) (-5 *1 (-760 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-607 *5 (-388 *5))) (-4 *5 (-1155 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516)))))
+ (-5 *2 (-594 (-388 *5))) (-5 *1 (-760 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-607 *6 (-388 *6))) (-5 *4 (-1 (-386 *6) *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-27)) (-4 *5 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516)))))
+ (-5 *2 (-594 (-388 *6))) (-5 *1 (-760 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-594 *5) *6))
+ (-4 *5 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *6 (-1155 *5))
+ (-5 *2 (-594 (-2 (|:| |poly| *6) (|:| -3537 *3))))
+ (-5 *1 (-757 *5 *6 *3 *7)) (-4 *3 (-609 *6)) (-4 *7 (-609 (-388 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-594 *5) *6))
+ (-4 *5 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516)))))
+ (-4 *6 (-1155 *5))
+ (-5 *2 (-594 (-2 (|:| |poly| *6) (|:| -3537 (-607 *6 (-388 *6))))))
+ (-5 *1 (-760 *5 *6)) (-5 *3 (-607 *6 (-388 *6))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 (-594 *7) *7 (-1092 *7))) (-5 *5 (-1 (-386 *7) *7))
+ (-4 *7 (-1155 *6)) (-4 *6 (-13 (-344) (-140) (-975 (-388 (-516)))))
+ (-5 *2 (-594 (-2 (|:| |frac| (-388 *7)) (|:| -3537 *3))))
+ (-5 *1 (-757 *6 *7 *3 *8)) (-4 *3 (-609 *7)) (-4 *8 (-609 (-388 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-386 *6) *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516)))))
+ (-5 *2 (-594 (-2 (|:| |frac| (-388 *6)) (|:| -3537 (-607 *6 (-388 *6))))))
+ (-5 *1 (-760 *5 *6)) (-5 *3 (-607 *6 (-388 *6))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-344)) (-4 *7 (-1155 *5)) (-4 *4 (-673 *5 *7))
+ (-5 *2 (-2 (|:| -1650 (-637 *6)) (|:| |vec| (-1179 *5))))
+ (-5 *1 (-759 *5 *6 *7 *4 *3)) (-4 *6 (-609 *5)) (-4 *3 (-609 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-606 (-388 *2))) (-4 *2 (-1155 *4)) (-5 *1 (-758 *4 *2))
+ (-4 *4 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-607 *2 (-388 *2))) (-4 *2 (-1155 *4)) (-5 *1 (-758 *4 *2))
+ (-4 *4 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-606 (-388 *6))) (-5 *4 (-388 *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516)))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2071 (-594 *4))))
+ (-5 *1 (-758 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-606 (-388 *6))) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516)))))
+ (-5 *2 (-2 (|:| -2071 (-594 (-388 *6))) (|:| -1650 (-637 *5))))
+ (-5 *1 (-758 *5 *6)) (-5 *4 (-594 (-388 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-607 *6 (-388 *6))) (-5 *4 (-388 *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516)))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2071 (-594 *4))))
+ (-5 *1 (-758 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-607 *6 (-388 *6))) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516)))))
+ (-5 *2 (-2 (|:| -2071 (-594 (-388 *6))) (|:| -1650 (-637 *5))))
+ (-5 *1 (-758 *5 *6)) (-5 *4 (-594 (-388 *6))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *3 (-1155 *4))
+ (-5 *1 (-757 *4 *3 *2 *5)) (-4 *2 (-609 *3)) (-4 *5 (-609 (-388 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-388 *5)) (-4 *4 (-13 (-344) (-140) (-975 (-388 (-516)))))
+ (-4 *5 (-1155 *4)) (-5 *1 (-757 *4 *5 *2 *6)) (-4 *2 (-609 *5))
+ (-4 *6 (-609 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-594 *5) *6))
+ (-4 *5 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *6 (-1155 *5))
+ (-5 *2 (-594 (-2 (|:| -4227 *5) (|:| -3537 *3)))) (-5 *1 (-757 *5 *6 *3 *7))
+ (-4 *3 (-609 *6)) (-4 *7 (-609 (-388 *6))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *5 (-1155 *4))
+ (-5 *2 (-594 (-2 (|:| |deg| (-719)) (|:| -3537 *5))))
+ (-5 *1 (-757 *4 *5 *3 *6)) (-4 *3 (-609 *5)) (-4 *6 (-609 (-388 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1155 *4)) (-5 *1 (-757 *4 *2 *3 *5))
+ (-4 *4 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *3 (-609 *2))
+ (-4 *5 (-609 (-388 *2))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1155 *4)) (-5 *1 (-755 *4 *2 *3 *5))
+ (-4 *4 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *3 (-609 *2))
+ (-4 *5 (-609 (-388 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1155 *4)) (-5 *1 (-755 *4 *2 *5 *3))
+ (-4 *4 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *5 (-609 *2))
+ (-4 *3 (-609 (-388 *2))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *5 (-1155 *4))
+ (-5 *2 (-594 (-2 (|:| -4051 *5) (|:| -3498 *5)))) (-5 *1 (-755 *4 *5 *3 *6))
+ (-4 *3 (-609 *5)) (-4 *6 (-609 (-388 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *4 (-1155 *5))
+ (-5 *2 (-594 (-2 (|:| -4051 *4) (|:| -3498 *4)))) (-5 *1 (-755 *5 *4 *3 *6))
+ (-4 *3 (-609 *4)) (-4 *6 (-609 (-388 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *5 (-1155 *4))
+ (-5 *2 (-594 (-2 (|:| -4051 *5) (|:| -3498 *5)))) (-5 *1 (-755 *4 *5 *6 *3))
+ (-4 *6 (-609 *5)) (-4 *3 (-609 (-388 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *4 (-1155 *5))
+ (-5 *2 (-594 (-2 (|:| -4051 *4) (|:| -3498 *4)))) (-5 *1 (-755 *5 *4 *6 *3))
+ (-4 *6 (-609 *4)) (-4 *3 (-609 (-388 *4))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-388 *2)) (-4 *2 (-1155 *5))
+ (-5 *1 (-755 *5 *2 *3 *6)) (-4 *5 (-13 (-344) (-140) (-975 (-388 (-516)))))
+ (-4 *3 (-609 *2)) (-4 *6 (-609 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-594 (-388 *2))) (-4 *2 (-1155 *5)) (-5 *1 (-755 *5 *2 *3 *6))
+ (-4 *5 (-13 (-344) (-140) (-975 (-388 (-516))))) (-4 *3 (-609 *2))
+ (-4 *6 (-609 (-388 *2))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-606 *4)) (-4 *4 (-323 *5 *6 *7))
+ (-4 *5 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516)))))
+ (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-388 *6)))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2071 (-594 *4))))
+ (-5 *1 (-754 *5 *6 *7 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1098))
+ (-4 *4 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-752 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1120) (-901))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1098))
+ (-4 *4 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)))
+ (-5 *1 (-752 *4 *2)) (-4 *2 (-13 (-29 *4) (-1120) (-901))))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208)))
+ (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359))
+ (|:| |expense| (-359)) (|:| |accuracy| (-359))
+ (|:| |intermediateResults| (-359))))
+ (-5 *1 (-751)))))
+(((*1 *1 *2)
+ (-12
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1400 (-595 *4))))
- (-5 *1 (-530 *7 *4 *3)) (-4 *3 (-605 *4)) (-4 *3 (-1023)))))
+ (-594
+ (-2
+ (|:| -4139
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208)))
+ (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (|:| -2131
+ (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359))
+ (|:| |expense| (-359)) (|:| |accuracy| (-359))
+ (|:| |intermediateResults| (-359)))))))
+ (-5 *1 (-751)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3))
- (-4 *5 (-353 *3)) (-5 *2 (-595 (-595 *3)))))
+ (-12
+ (-5 *2
+ (-594
+ (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208)))
+ (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208)))))
+ (-5 *1 (-526))))
((*1 *2 *1)
- (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981))
- (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-5 *2 (-595 (-595 *5)))))
+ (-12 (-4 *1 (-568 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-5 *2 (-594 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-595 (-595 *3))) (-5 *1 (-1104 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *1) (-12 (-4 *1 (-347 *2)) (-4 *2 (-162)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-545 *3) *3 (-1095)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
- (-1095)))
- (-4 *3 (-265)) (-4 *3 (-581)) (-4 *3 (-972 *4)) (-4 *3 (-410 *7))
- (-5 *4 (-1095)) (-4 *7 (-570 (-831 (-528)))) (-4 *7 (-431))
- (-4 *7 (-825 (-528))) (-4 *7 (-793)) (-5 *2 (-545 *3))
- (-5 *1 (-537 *7 *3)))))
-(((*1 *2 *1 *2)
- (-12 (-4 *1 (-344 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1023)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1095)) (-4 *4 (-520)) (-4 *4 (-793))
- (-5 *1 (-537 *4 *2)) (-4 *2 (-410 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 *1)) (-4 *1 (-431))))
- ((*1 *1 *1 *1) (-4 *1 (-431))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-831 *4)) (-4 *4 (-1023)) (-5 *2 (-1 (-110) *5))
- (-5 *1 (-829 *4 *5)) (-4 *5 (-1131)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-416)))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-310))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-310)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-343) (-791)))
- (-5 *2 (-595 (-2 (|:| -2783 (-595 *3)) (|:| -3817 *5))))
- (-5 *1 (-169 *5 *3)) (-4 *3 (-1153 (-159 *5)))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-343) (-791)))
- (-5 *2 (-595 (-2 (|:| -2783 (-595 *3)) (|:| -3817 *4))))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1153 (-159 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-844 *3)) (-4 *3 (-1023)))))
+ (-12
+ (-5 *2
+ (-594
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208)))
+ (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208)))))
+ (-5 *1 (-751)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-751)))))
+(((*1 *1) (-5 *1 (-751))))
(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1153 *9)) (-4 *7 (-739)) (-4 *8 (-793)) (-4 *9 (-288))
- (-4 *10 (-888 *9 *7 *8))
+ (-12 (-5 *5 (-1098))
+ (-4 *6 (-13 (-795) (-289) (-975 (-516)) (-593 (-516)) (-140)))
+ (-4 *4 (-13 (-29 *6) (-1120) (-901)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2071 (-594 *4))))
+ (-5 *1 (-749 *6 *4 *3)) (-4 *3 (-609 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-748))
+ (-5 *3
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208)))
+ (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2 (-973)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-935 *3)) (-4 *3 (-162)) (-5 *1 (-746 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162)))))
+(((*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162)))))
+(((*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162)))))
+(((*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162)))))
+(((*1 *1 *1) (-4 *1 (-226)))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1155 *2))
+ (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (-3810 (-12 (-5 *1 (-275 *2)) (-4 *2 (-344)) (-4 *2 (-1134)))
+ (-12 (-5 *1 (-275 *2)) (-4 *2 (-453)) (-4 *2 (-1134)))))
+ ((*1 *1 *1) (-4 *1 (-453)))
+ ((*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-331)) (-5 *1 (-500 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-162)) (-4 *2 (-344)))))
+(((*1 *2 *1) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1120)))))
+ ((*1 *1 *1 *1) (-4 *1 (-741))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359))
(-5 *2
- (-2 (|:| |deter| (-595 (-1091 *10)))
- (|:| |dterm|
- (-595 (-595 (-2 (|:| -3254 (-717)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-595 *6)) (|:| |nlead| (-595 *10))))
- (-5 *1 (-724 *6 *7 *8 *9 *10)) (-5 *3 (-1091 *10)) (-5 *4 (-595 *6))
- (-5 *5 (-595 *10)))))
-(((*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1182)) (-5 *1 (-1058))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 (-802))) (-5 *2 (-1182)) (-5 *1 (-1058)))))
-(((*1 *2 *3) (-12 (-5 *3 (-882 *2)) (-5 *1 (-919 *2)) (-4 *2 (-981)))))
-(((*1 *2)
- (-12 (-4 *3 (-520)) (-5 *2 (-595 (-635 *3))) (-5 *1 (-42 *3 *4))
- (-4 *4 (-397 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1153 (-387 (-528)))) (-5 *1 (-852 *3 *2))
- (-4 *2 (-1153 (-387 *3))))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-164)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4))
- (-4 *3 (-347 *4))))
- ((*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-717)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860))
- (-4 *4 (-981)))))
+ (-2 (|:| -3681 *4) (|:| -1606 *4) (|:| |totalpts| (-516))
+ (|:| |success| (-110))))
+ (-5 *1 (-737)) (-5 *5 (-516)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359))
+ (-5 *2
+ (-2 (|:| -3681 *4) (|:| -1606 *4) (|:| |totalpts| (-516))
+ (|:| |success| (-110))))
+ (-5 *1 (-737)) (-5 *5 (-516)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359))
+ (-5 *2
+ (-2 (|:| -3681 *4) (|:| -1606 *4) (|:| |totalpts| (-516))
+ (|:| |success| (-110))))
+ (-5 *1 (-737)) (-5 *5 (-516)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359))
+ (-5 *2
+ (-2 (|:| -3681 *4) (|:| -1606 *4) (|:| |totalpts| (-516))
+ (|:| |success| (-110))))
+ (-5 *1 (-737)) (-5 *5 (-516)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359))
+ (-5 *2
+ (-2 (|:| -3681 *4) (|:| -1606 *4) (|:| |totalpts| (-516))
+ (|:| |success| (-110))))
+ (-5 *1 (-737)) (-5 *5 (-516)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359))
+ (-5 *2
+ (-2 (|:| -3681 *4) (|:| -1606 *4) (|:| |totalpts| (-516))
+ (|:| |success| (-110))))
+ (-5 *1 (-737)) (-5 *5 (-516)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359))
+ (-5 *2
+ (-2 (|:| -3681 *4) (|:| -1606 *4) (|:| |totalpts| (-516))
+ (|:| |success| (-110))))
+ (-5 *1 (-737)) (-5 *5 (-516)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359))
+ (-5 *2
+ (-2 (|:| -3681 *4) (|:| -1606 *4) (|:| |totalpts| (-516))
+ (|:| |success| (-110))))
+ (-5 *1 (-737)) (-5 *5 (-516)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359))
+ (-5 *2
+ (-2 (|:| -3681 *4) (|:| -1606 *4) (|:| |totalpts| (-516))
+ (|:| |success| (-110))))
+ (-5 *1 (-737)) (-5 *5 (-516)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-516)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-359)))
+ (-5 *3 (-1179 (-359))) (-5 *5 (-359)) (-5 *2 (-1185)) (-5 *1 (-736)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-516))
+ (-5 *6 (-2 (|:| |try| (-359)) (|:| |did| (-359)) (|:| -1482 (-359))))
+ (-5 *7 (-1 (-1185) (-1179 *5) (-1179 *5) (-359))) (-5 *3 (-1179 (-359)))
+ (-5 *5 (-359)) (-5 *2 (-1185)) (-5 *1 (-736))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-516))
+ (-5 *6 (-2 (|:| |try| (-359)) (|:| |did| (-359)) (|:| -1482 (-359))))
+ (-5 *7 (-1 (-1185) (-1179 *5) (-1179 *5) (-359))) (-5 *3 (-1179 (-359)))
+ (-5 *5 (-359)) (-5 *2 (-1185)) (-5 *1 (-736)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *4 (-516)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-359)))
+ (-5 *3 (-1179 (-359))) (-5 *5 (-359)) (-5 *2 (-1185)) (-5 *1 (-736)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-516)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-359)))
+ (-5 *3 (-1179 (-359))) (-5 *5 (-359)) (-5 *2 (-1185)) (-5 *1 (-736))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-516)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-359)))
+ (-5 *3 (-1179 (-359))) (-5 *5 (-359)) (-5 *2 (-1185)) (-5 *1 (-736)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-735)) (-5 *2 (-973))
+ (-5 *3
+ (-2 (|:| |fn| (-295 (-208))) (|:| -1511 (-594 (-1017 (-787 (-208)))))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-735)) (-5 *2 (-973))
+ (-5 *3
+ (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208)))
+ (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208)))))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-1081)) (-5 *2 (-359)) (-5 *1 (-734)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-359)) (-5 *1 (-734)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-860)) (-5 *1 (-734)))))
+(((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1081)) (-5 *1 (-734)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-860)) (-5 *1 (-734)))))
+(((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-1081)) (-5 *1 (-734)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-112)) (-4 *4 (-13 (-793) (-520))) (-5 *2 (-110))
- (-5 *1 (-31 *4 *5)) (-4 *5 (-410 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-112)) (-4 *4 (-13 (-793) (-520))) (-5 *2 (-110))
- (-5 *1 (-149 *4 *5)) (-4 *5 (-410 *4))))
+ (|partial| -12 (-5 *3 (-887 (-158 *4))) (-4 *4 (-162)) (-4 *4 (-572 (-359)))
+ (-5 *2 (-158 (-359))) (-5 *1 (-733 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-887 (-158 *5))) (-5 *4 (-860)) (-4 *5 (-162))
+ (-4 *5 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-112)) (-4 *4 (-13 (-793) (-520))) (-5 *2 (-110))
- (-5 *1 (-257 *4 *5)) (-4 *5 (-13 (-410 *4) (-938)))))
+ (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-984)) (-4 *4 (-572 (-359)))
+ (-5 *2 (-158 (-359))) (-5 *1 (-733 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-887 *5)) (-5 *4 (-860)) (-4 *5 (-984))
+ (-4 *5 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-112)) (-5 *2 (-110)) (-5 *1 (-282 *4)) (-4 *4 (-283))))
- ((*1 *2 *3) (-12 (-4 *1 (-283)) (-5 *3 (-112)) (-5 *2 (-110))))
+ (|partial| -12 (-5 *3 (-388 (-887 *4))) (-4 *4 (-523)) (-4 *4 (-572 (-359)))
+ (-5 *2 (-158 (-359))) (-5 *1 (-733 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-388 (-887 *5))) (-5 *4 (-860)) (-4 *5 (-523))
+ (-4 *5 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-112)) (-4 *5 (-793)) (-5 *2 (-110))
- (-5 *1 (-409 *4 *5)) (-4 *4 (-410 *5))))
+ (|partial| -12 (-5 *3 (-388 (-887 (-158 *4)))) (-4 *4 (-523))
+ (-4 *4 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-388 (-887 (-158 *5)))) (-5 *4 (-860)) (-4 *5 (-523))
+ (-4 *5 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-112)) (-4 *4 (-13 (-793) (-520))) (-5 *2 (-110))
- (-5 *1 (-411 *4 *5)) (-4 *5 (-410 *4))))
+ (|partial| -12 (-5 *3 (-295 *4)) (-4 *4 (-523)) (-4 *4 (-795))
+ (-4 *4 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-295 *5)) (-5 *4 (-860)) (-4 *5 (-523)) (-4 *5 (-795))
+ (-4 *5 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-112)) (-4 *4 (-13 (-793) (-520))) (-5 *2 (-110))
- (-5 *1 (-582 *4 *5)) (-4 *5 (-13 (-410 *4) (-938) (-1117))))))
+ (|partial| -12 (-5 *3 (-295 (-158 *4))) (-4 *4 (-523)) (-4 *4 (-795))
+ (-4 *4 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-295 (-158 *5))) (-5 *4 (-860)) (-4 *5 (-523))
+ (-4 *5 (-795)) (-4 *5 (-572 (-359))) (-5 *2 (-158 (-359)))
+ (-5 *1 (-733 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-431))
- (-5 *2
- (-595
- (-2 (|:| |eigval| (-3 (-387 (-891 *4)) (-1085 (-1095) (-891 *4))))
- (|:| |geneigvec| (-595 (-635 (-387 (-891 *4))))))))
- (-5 *1 (-273 *4)) (-5 *3 (-635 (-387 (-891 *4)))))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-343)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1095))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-595 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-595 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -1497 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1117) (-27) (-410 *8)))
- (-4 *8 (-13 (-431) (-793) (-140) (-972 *3) (-591 *3)))
- (-5 *3 (-528)) (-5 *2 (-595 *4)) (-5 *1 (-950 *8 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-238)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-5 *2 (-595 *3)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-397 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1026 *3 *4 *5 *6 *2)) (-4 *3 (-1023)) (-4 *4 (-1023))
- (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *2 (-1023)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-110)) (-5 *5 (-528)) (-4 *6 (-343)) (-4 *6 (-348))
- (-4 *6 (-981)) (-5 *2 (-595 (-595 (-635 *6)))) (-5 *1 (-964 *6))
- (-5 *3 (-595 (-635 *6)))))
+ (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-984)) (-4 *4 (-572 *2))
+ (-5 *2 (-359)) (-5 *1 (-733 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-887 *5)) (-5 *4 (-860)) (-4 *5 (-984))
+ (-4 *5 (-572 *2)) (-5 *2 (-359)) (-5 *1 (-733 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-343)) (-4 *4 (-348)) (-4 *4 (-981))
- (-5 *2 (-595 (-595 (-635 *4)))) (-5 *1 (-964 *4))
- (-5 *3 (-595 (-635 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-343)) (-4 *5 (-348)) (-4 *5 (-981))
- (-5 *2 (-595 (-595 (-635 *5)))) (-5 *1 (-964 *5))
- (-5 *3 (-595 (-635 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-860)) (-4 *5 (-343)) (-4 *5 (-348)) (-4 *5 (-981))
- (-5 *2 (-595 (-595 (-635 *5)))) (-5 *1 (-964 *5))
- (-5 *3 (-595 (-635 *5))))))
-(((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-843 (-528))) (-5 *1 (-856))))
+ (|partial| -12 (-5 *3 (-388 (-887 *4))) (-4 *4 (-523)) (-4 *4 (-572 *2))
+ (-5 *2 (-359)) (-5 *1 (-733 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-388 (-887 *5))) (-5 *4 (-860)) (-4 *5 (-523))
+ (-4 *5 (-572 *2)) (-5 *2 (-359)) (-5 *1 (-733 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-595 (-528))) (-5 *2 (-843 (-528))) (-5 *1 (-856)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4265)) (-4 *1 (-117 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1023)) (-4 *4 (-13 (-981) (-825 *3) (-793) (-570 *2)))
- (-5 *2 (-831 *3)) (-5 *1 (-1002 *3 *4 *5))
- (-4 *5 (-13 (-410 *4) (-825 *3) (-570 *2))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *5)) (-5 *4 (-860)) (-4 *5 (-793))
- (-5 *2 (-57 (-595 (-620 *5)))) (-5 *1 (-620 *5)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-698)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-717)) (-5 *2 (-110))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-1132 *3)) (-4 *3 (-793))
- (-4 *3 (-1023)))))
+ (|partial| -12 (-5 *3 (-295 *4)) (-4 *4 (-523)) (-4 *4 (-795))
+ (-4 *4 (-572 *2)) (-5 *2 (-359)) (-5 *1 (-733 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-295 *5)) (-5 *4 (-860)) (-4 *5 (-523)) (-4 *5 (-795))
+ (-4 *5 (-572 *2)) (-5 *2 (-359)) (-5 *1 (-733 *5)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-891 (-159 *4))) (-4 *4 (-162))
- (-4 *4 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *4))))
+ (-12 (-5 *2 (-158 (-359))) (-5 *1 (-733 *3)) (-4 *3 (-572 (-359)))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-891 (-159 *5))) (-5 *4 (-860)) (-4 *5 (-162))
- (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *5))))
+ (-12 (-5 *4 (-860)) (-5 *2 (-158 (-359))) (-5 *1 (-733 *3))
+ (-4 *3 (-572 (-359)))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-891 *4)) (-4 *4 (-981)) (-4 *4 (-570 (-359)))
- (-5 *2 (-159 (-359))) (-5 *1 (-731 *4))))
+ (-12 (-5 *3 (-158 *4)) (-4 *4 (-162)) (-4 *4 (-572 (-359)))
+ (-5 *2 (-158 (-359))) (-5 *1 (-733 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-891 *5)) (-5 *4 (-860)) (-4 *5 (-981))
- (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *5))))
+ (-12 (-5 *3 (-158 *5)) (-5 *4 (-860)) (-4 *5 (-162)) (-4 *5 (-572 (-359)))
+ (-5 *2 (-158 (-359))) (-5 *1 (-733 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-387 (-891 *4))) (-4 *4 (-520))
- (-4 *4 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *4))))
+ (-12 (-5 *3 (-887 (-158 *4))) (-4 *4 (-162)) (-4 *4 (-572 (-359)))
+ (-5 *2 (-158 (-359))) (-5 *1 (-733 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-387 (-891 *5))) (-5 *4 (-860)) (-4 *5 (-520))
- (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *5))))
+ (-12 (-5 *3 (-887 (-158 *5))) (-5 *4 (-860)) (-4 *5 (-162))
+ (-4 *5 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-387 (-891 (-159 *4)))) (-4 *4 (-520))
- (-4 *4 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *4))))
+ (-12 (-5 *3 (-887 *4)) (-4 *4 (-984)) (-4 *4 (-572 (-359)))
+ (-5 *2 (-158 (-359))) (-5 *1 (-733 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-387 (-891 (-159 *5)))) (-5 *4 (-860))
- (-4 *5 (-520)) (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359)))
- (-5 *1 (-731 *5))))
+ (-12 (-5 *3 (-887 *5)) (-5 *4 (-860)) (-4 *5 (-984)) (-4 *5 (-572 (-359)))
+ (-5 *2 (-158 (-359))) (-5 *1 (-733 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-296 *4)) (-4 *4 (-520)) (-4 *4 (-793))
- (-4 *4 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *4))))
+ (-12 (-5 *3 (-388 (-887 *4))) (-4 *4 (-523)) (-4 *4 (-572 (-359)))
+ (-5 *2 (-158 (-359))) (-5 *1 (-733 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-296 *5)) (-5 *4 (-860)) (-4 *5 (-520))
- (-4 *5 (-793)) (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359)))
- (-5 *1 (-731 *5))))
+ (-12 (-5 *3 (-388 (-887 *5))) (-5 *4 (-860)) (-4 *5 (-523))
+ (-4 *5 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-296 (-159 *4))) (-4 *4 (-520)) (-4 *4 (-793))
- (-4 *4 (-570 (-359))) (-5 *2 (-159 (-359))) (-5 *1 (-731 *4))))
+ (-12 (-5 *3 (-388 (-887 (-158 *4)))) (-4 *4 (-523)) (-4 *4 (-572 (-359)))
+ (-5 *2 (-158 (-359))) (-5 *1 (-733 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-296 (-159 *5))) (-5 *4 (-860)) (-4 *5 (-520))
- (-4 *5 (-793)) (-4 *5 (-570 (-359))) (-5 *2 (-159 (-359)))
- (-5 *1 (-731 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-802)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1076 (-1076 *4))) (-5 *2 (-1076 *4)) (-5 *1 (-1080 *4))
- (-4 *4 (-37 (-387 (-528)))) (-4 *4 (-981)))))
+ (-12 (-5 *3 (-388 (-887 (-158 *5)))) (-5 *4 (-860)) (-4 *5 (-523))
+ (-4 *5 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-295 *4)) (-4 *4 (-523)) (-4 *4 (-795)) (-4 *4 (-572 (-359)))
+ (-5 *2 (-158 (-359))) (-5 *1 (-733 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-295 *5)) (-5 *4 (-860)) (-4 *5 (-523)) (-4 *5 (-795))
+ (-4 *5 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-295 (-158 *4))) (-4 *4 (-523)) (-4 *4 (-795))
+ (-4 *4 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-295 (-158 *5))) (-5 *4 (-860)) (-4 *5 (-523)) (-4 *5 (-795))
+ (-4 *5 (-572 (-359))) (-5 *2 (-158 (-359))) (-5 *1 (-733 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-359)) (-5 *1 (-733 *3)) (-4 *3 (-572 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-860)) (-5 *2 (-359)) (-5 *1 (-733 *3)) (-4 *3 (-572 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-887 *4)) (-4 *4 (-984)) (-4 *4 (-572 *2)) (-5 *2 (-359))
+ (-5 *1 (-733 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-887 *5)) (-5 *4 (-860)) (-4 *5 (-984)) (-4 *5 (-572 *2))
+ (-5 *2 (-359)) (-5 *1 (-733 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-388 (-887 *4))) (-4 *4 (-523)) (-4 *4 (-572 *2)) (-5 *2 (-359))
+ (-5 *1 (-733 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-887 *5))) (-5 *4 (-860)) (-4 *5 (-523)) (-4 *5 (-572 *2))
+ (-5 *2 (-359)) (-5 *1 (-733 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-295 *4)) (-4 *4 (-523)) (-4 *4 (-795)) (-4 *4 (-572 *2))
+ (-5 *2 (-359)) (-5 *1 (-733 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-295 *5)) (-5 *4 (-860)) (-4 *5 (-523)) (-4 *5 (-795))
+ (-4 *5 (-572 *2)) (-5 *2 (-359)) (-5 *1 (-733 *5)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-860)) (-5 *3 (-595 (-244))) (-5 *1 (-242))))
- ((*1 *1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-244)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1100)))))
-(((*1 *1 *1) (-12 (-4 *1 (-226 *2)) (-4 *2 (-1131))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793))))
- ((*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981))
- (-5 *2 (-765 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-789)) (-5 *1 (-1198 *3 *2)) (-4 *3 (-981)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-520)) (-4 *2 (-431)) (-5 *1 (-907 *2 *3))
- (-4 *3 (-1153 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 *4)) (-4 *4 (-343)) (-5 *2 (-1091 *4))
- (-5 *1 (-501 *4 *5 *6)) (-4 *5 (-343)) (-4 *6 (-13 (-343) (-791))))))
+ (-12 (-5 *3 (-719)) (-5 *1 (-731 *2)) (-4 *2 (-37 (-388 (-516))))
+ (-4 *2 (-162)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-110)) (-5 *3 (-595 (-244))) (-5 *1 (-242)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *4 (-635 (-207))) (-5 *5 (-635 (-528))) (-5 *6 (-207))
- (-5 *3 (-528)) (-5 *2 (-970)) (-5 *1 (-699)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1078)) (-5 *1 (-768)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-595 (-296 (-207)))) (-5 *3 (-207)) (-5 *2 (-110))
- (-5 *1 (-194)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)) (-4 *2 (-520)))))
+ (-12 (-5 *3 (-719)) (-5 *1 (-731 *2)) (-4 *2 (-37 (-388 (-516))))
+ (-4 *2 (-162)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-729 *2)) (-4 *2 (-984)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-729 *2)) (-4 *2 (-984)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-594 (-729 *3))) (-5 *1 (-729 *3)) (-4 *3 (-523))
+ (-4 *3 (-984)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2 (-2 (|:| -4035 *3) (|:| |coef1| (-729 *3)) (|:| |coef2| (-729 *3))))
+ (-5 *1 (-729 *3)) (-4 *3 (-523)) (-4 *3 (-984)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -4035 *3) (|:| |coef1| (-729 *3)))) (-5 *1 (-729 *3))
+ (-4 *3 (-523)) (-4 *3 (-984)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -4035 *3) (|:| |coef2| (-729 *3)))) (-5 *1 (-729 *3))
+ (-4 *3 (-523)) (-4 *3 (-984)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-388 (-516))))
+ (-5 *2
+ (-594
+ (-2 (|:| |outval| *4) (|:| |outmult| (-516))
+ (|:| |outvect| (-594 (-637 *4))))))
+ (-5 *1 (-727 *4)) (-4 *4 (-13 (-344) (-793))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-388 (-516)))) (-5 *2 (-594 *4)) (-5 *1 (-727 *4))
+ (-4 *4 (-13 (-344) (-793))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-637 *2)) (-4 *2 (-162)) (-5 *1 (-139 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-162)) (-4 *2 (-1155 *4)) (-5 *1 (-166 *4 *2 *3))
+ (-4 *3 (-673 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-388 (-887 *5)))) (-5 *4 (-1098)) (-5 *2 (-887 *5))
+ (-5 *1 (-274 *5)) (-4 *5 (-432))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-388 (-887 *4)))) (-5 *2 (-887 *4)) (-5 *1 (-274 *4))
+ (-4 *4 (-432))))
+ ((*1 *2 *1) (-12 (-4 *1 (-351 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1155 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-158 (-388 (-516))))) (-5 *2 (-887 (-158 (-388 (-516)))))
+ (-5 *1 (-713 *4)) (-4 *4 (-13 (-344) (-793)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-158 (-388 (-516))))) (-5 *4 (-1098))
+ (-5 *2 (-887 (-158 (-388 (-516))))) (-5 *1 (-713 *5))
+ (-4 *5 (-13 (-344) (-793)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-388 (-516)))) (-5 *2 (-887 (-388 (-516))))
+ (-5 *1 (-727 *4)) (-4 *4 (-13 (-344) (-793)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-388 (-516)))) (-5 *4 (-1098))
+ (-5 *2 (-887 (-388 (-516)))) (-5 *1 (-727 *5)) (-4 *5 (-13 (-344) (-793))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-860))) (-5 *2 (-843 (-528))) (-5 *1 (-856)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
+ (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-594 (-719)))
+ (-5 *1 (-726 *3 *4 *5 *6 *7)) (-4 *3 (-1155 *6)) (-4 *7 (-891 *6 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1155 *9)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-289))
+ (-4 *10 (-891 *9 *7 *8))
+ (-5 *2
+ (-2 (|:| |deter| (-594 (-1092 *10)))
+ (|:| |dterm| (-594 (-594 (-2 (|:| -3342 (-719)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-594 *6)) (|:| |nlead| (-594 *10))))
+ (-5 *1 (-726 *6 *7 *8 *9 *10)) (-5 *3 (-1092 *10)) (-5 *4 (-594 *6))
+ (-5 *5 (-594 *10)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-331)) (-4 *5 (-310 *4)) (-4 *6 (-1155 *5)) (-5 *2 (-594 *3))
+ (-5 *1 (-725 *4 *5 *6 *3 *7)) (-4 *3 (-1155 *6)) (-14 *7 (-860)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
+ (-5 *2 (-594 (-2 (|:| |val| (-110)) (|:| -1610 *4))))
+ (-5 *1 (-724 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1081)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
+ (-4 *4 (-997 *6 *7 *8)) (-5 *2 (-1185)) (-5 *1 (-724 *6 *7 *8 *4 *5))
+ (-4 *5 (-1002 *6 *7 *8 *4)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-981)) (-14 *3 (-1095))
- (-14 *4 *2))))
+ (-12 (-4 *3 (-13 (-523) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *1 (-259 *3 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-523) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *4)))))
+ ((*1 *1 *1) (-5 *1 (-359)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-997 *5 *6 *7))
+ (-5 *2 (-594 (-2 (|:| |val| *3) (|:| -1610 *4))))
+ (-5 *1 (-724 *5 *6 *7 *3 *4)) (-4 *4 (-1002 *5 *6 *7 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-595 (-891 *4))) (-5 *3 (-595 (-1095))) (-4 *4 (-431))
- (-5 *1 (-857 *4)))))
-(((*1 *2 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-905)))))
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *2 (-997 *4 *5 *6))
+ (-5 *1 (-724 *4 *5 *6 *2 *3)) (-4 *3 (-1002 *4 *5 *6 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-359))))
+ ((*1 *1 *1 *1) (-4 *1 (-515)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344))))
+ ((*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-719)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-158 (-388 (-516)))))
+ (-5 *2
+ (-594
+ (-2 (|:| |outval| (-158 *4)) (|:| |outmult| (-516))
+ (|:| |outvect| (-594 (-637 (-158 *4)))))))
+ (-5 *1 (-713 *4)) (-4 *4 (-13 (-344) (-793))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-158 (-388 (-516))))) (-5 *2 (-594 (-158 *4)))
+ (-5 *1 (-713 *4)) (-4 *4 (-13 (-344) (-793))))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-710))))
+(((*1 *1 *1 *1) (-4 *1 (-453))) ((*1 *1 *1 *1) (-4 *1 (-710))))
+(((*1 *1 *1 *1) (-4 *1 (-710))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-708)))))
+(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-708)))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-887 (-516)))) (-5 *1 (-417))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1098)) (-5 *4 (-637 (-208))) (-5 *2 (-1029)) (-5 *1 (-708))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1098)) (-5 *4 (-637 (-516))) (-5 *2 (-1029)) (-5 *1 (-708)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-708)))))
+(((*1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-708)))))
+(((*1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-708)))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-158 (-208))) (-5 *5 (-516)) (-5 *6 (-1081)) (-5 *3 (-208))
+ (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-158 (-208))) (-5 *5 (-516)) (-5 *6 (-1081)) (-5 *3 (-208))
+ (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-516)) (-5 *5 (-158 (-208))) (-5 *6 (-1081)) (-5 *4 (-208))
+ (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1081)) (-5 *4 (-158 (-208))) (-5 *5 (-516)) (-5 *2 (-973))
+ (-5 *1 (-707)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1081)) (-5 *4 (-158 (-208))) (-5 *5 (-516)) (-5 *2 (-973))
+ (-5 *1 (-707)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-158 (-208))) (-5 *5 (-516)) (-5 *6 (-1081)) (-5 *3 (-208))
+ (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-158 (-208))) (-5 *5 (-516)) (-5 *6 (-1081)) (-5 *3 (-208))
+ (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-158 (-208))) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1081)) (-5 *4 (-516)) (-5 *5 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-706)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1081)) (-5 *4 (-516)) (-5 *5 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-706)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1081)) (-5 *5 (-637 (-208))) (-5 *6 (-637 (-516)))
+ (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-706)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-706)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-516)) (-5 *5 (-637 (-208)))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD)))) (-5 *4 (-208))
+ (-5 *2 (-973)) (-5 *1 (-705)))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-516))) (-5 *3 (-516))
+ (-5 *2 (-973)) (-5 *1 (-705)))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-110)) (-5 *6 (-208))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-973))
+ (-5 *1 (-705)))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-516))) (-5 *3 (-516))
+ (-5 *2 (-973)) (-5 *1 (-705)))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-516)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973))
+ (-5 *1 (-705)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-705)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-516))) (-5 *3 (-516))
+ (-5 *2 (-973)) (-5 *1 (-705)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-637 (-208))) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-705)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-705)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-705)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-158 (-208)))) (-5 *2 (-973))
+ (-5 *1 (-705)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-110)) (-5 *5 (-637 (-158 (-208))))
+ (-5 *2 (-973)) (-5 *1 (-704)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-110)) (-5 *5 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-704)))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-516)) (-5 *5 (-637 (-208)))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-208))
+ (-5 *2 (-973)) (-5 *1 (-704))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-516)) (-5 *5 (-637 (-208)))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-369))
+ (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-704)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-516)) (-5 *5 (-110)) (-5 *6 (-637 (-208))) (-5 *4 (-208))
+ (-5 *2 (-973)) (-5 *1 (-704)))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-516)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973))
+ (-5 *1 (-704)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-637 (-208))) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-704)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-637 (-208))) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-704)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1081)) (-5 *4 (-516)) (-5 *5 (-637 (-158 (-208))))
+ (-5 *2 (-973)) (-5 *1 (-703)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1081)) (-5 *4 (-516)) (-5 *5 (-637 (-158 (-208))))
+ (-5 *2 (-973)) (-5 *1 (-703)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-158 (-208)))) (-5 *2 (-973))
+ (-5 *1 (-703)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1081)) (-5 *4 (-516)) (-5 *5 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-703)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1081)) (-5 *4 (-516)) (-5 *5 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-703)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-703)))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-516))) (-5 *3 (-516))
+ (-5 *2 (-973)) (-5 *1 (-703)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-594 (-110))) (-5 *5 (-637 (-208))) (-5 *6 (-637 (-516)))
+ (-5 *7 (-208)) (-5 *3 (-516)) (-5 *2 (-973)) (-5 *1 (-703)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-637 (-516))) (-5 *5 (-110)) (-5 *7 (-637 (-208)))
+ (-5 *3 (-516)) (-5 *6 (-208)) (-5 *2 (-973)) (-5 *1 (-703)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-594 (-110))) (-5 *7 (-637 (-208))) (-5 *8 (-637 (-516)))
+ (-5 *3 (-516)) (-5 *4 (-208)) (-5 *5 (-110)) (-5 *2 (-973)) (-5 *1 (-703)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-516)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973))
+ (-5 *1 (-702)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3
+ *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9)
+ (-12 (-5 *4 (-637 (-208))) (-5 *5 (-110)) (-5 *6 (-208))
+ (-5 *7 (-637 (-516))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-76 OBJFUN)))) (-5 *3 (-516))
+ (-5 *2 (-973)) (-5 *1 (-702)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3
+ *8)
+ (-12 (-5 *5 (-637 (-208))) (-5 *6 (-110)) (-5 *7 (-637 (-516)))
+ (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-516))
+ (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-702)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-110)) (-5 *2 (-973))
+ (-5 *1 (-702)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208)))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-973))
+ (-5 *1 (-702)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208)))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 LSFUN2)))) (-5 *2 (-973))
+ (-5 *1 (-702)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208)))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-973))
+ (-5 *1 (-702)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-516)) (-5 *5 (-110)) (-5 *6 (-637 (-208)))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-76 OBJFUN)))) (-5 *4 (-208))
+ (-5 *2 (-973)) (-5 *1 (-702)))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-516)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973))
+ (-5 *1 (-701)))))
(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1081)) (-5 *4 (-516)) (-5 *5 (-637 (-208))) (-5 *6 (-208))
+ (-5 *2 (-973)) (-5 *1 (-701)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1081)) (-5 *5 (-637 (-208))) (-5 *6 (-208))
+ (-5 *7 (-637 (-516))) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-701)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-516))) (-5 *6 (-208))
+ (-5 *3 (-516)) (-5 *2 (-973)) (-5 *1 (-701)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1081)) (-5 *5 (-637 (-208))) (-5 *6 (-208))
+ (-5 *7 (-637 (-516))) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-701)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973))
+ (-5 *1 (-701)))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973))
+ (-5 *1 (-701)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973))
+ (-5 *1 (-701)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-516)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973))
+ (-5 *1 (-701)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-516)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973))
+ (-5 *1 (-701)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-637 (-208))) (-5 *6 (-637 (-516))) (-5 *3 (-516))
+ (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973))
+ (-5 *1 (-701)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973))
+ (-5 *1 (-700)))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973))
+ (-5 *1 (-700)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-516))) (-5 *6 (-208))
+ (-5 *3 (-516)) (-5 *2 (-973)) (-5 *1 (-700)))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973))
+ (-5 *1 (-700)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6
+ *4)
+ (-12 (-5 *4 (-516)) (-5 *5 (-637 (-208))) (-5 *6 (-625 (-208)))
+ (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-699)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *5 (-1081))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-81 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-973))
+ (-5 *1 (-699)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-516)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973))
(-5 *1 (-699)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-525)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-545 *3)) (-4 *3 (-343)))))
-(((*1 *1 *1) (-4 *1 (-808 *2))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-516)) (-5 *5 (-637 (-208)))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-74 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-75 G JACOBG JACGEP))))
+ (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-637 (-208))) (-5 *4 (-516)) (-5 *5 (-208))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-60 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 BDYVAL)))) (-5 *2 (-973))
+ (-5 *1 (-698))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-637 (-208))) (-5 *4 (-516)) (-5 *5 (-208))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-60 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 BDYVAL)))) (-5 *8 (-369))
+ (-5 *2 (-973)) (-5 *1 (-698)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-516)) (-5 *5 (-637 (-208)))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-208))
+ (-5 *2 (-973)) (-5 *1 (-698)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-637 (-208))) (-5 *4 (-516)) (-5 *5 (-208))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN)))) (-5 *2 (-973))
+ (-5 *1 (-698)))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-516)) (-5 *5 (-1081)) (-5 *6 (-637 (-208)))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))))
+ (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-208))
+ (-5 *2 (-973)) (-5 *1 (-698)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-516)) (-5 *5 (-1081)) (-5 *6 (-637 (-208)))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))))
+ (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-208))
+ (-5 *2 (-973)) (-5 *1 (-698)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-516)) (-5 *5 (-637 (-208)))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN)))) (-5 *3 (-208))
+ (-5 *2 (-973)) (-5 *1 (-698)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-516)) (-5 *5 (-637 (-208)))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-80 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-208))
+ (-5 *2 (-973)) (-5 *1 (-698)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FUNCTN)))) (-5 *2 (-973))
+ (-5 *1 (-697)))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-637 (-208))) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-697)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FUNCTN)))) (-5 *2 (-973))
+ (-5 *1 (-697)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516)) (-5 *2 (-973)) (-5 *1 (-697)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 G)))) (-5 *2 (-973))
+ (-5 *1 (-697)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 G)))) (-5 *2 (-973))
+ (-5 *1 (-697)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 G)))) (-5 *2 (-973))
+ (-5 *1 (-697)))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 G)))) (-5 *2 (-973))
+ (-5 *1 (-697)))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358)))) (-5 *2 (-973))
+ (-5 *1 (-697)))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-516)) (-5 *5 (-637 (-208)))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358)))) (-5 *3 (-208))
+ (-5 *2 (-973)) (-5 *1 (-697)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358)))) (-5 *2 (-973))
+ (-5 *1 (-697)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358)))) (-5 *2 (-973))
+ (-5 *1 (-697)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-1081)) (-5 *5 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-696)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-1081)) (-5 *5 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-696)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-1081)) (-5 *5 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-696)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-1081)) (-5 *5 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-696)))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN)))) (-5 *2 (-973))
+ (-5 *1 (-695)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-516)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN)))) (-5 *2 (-973))
+ (-5 *1 (-695)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-208)) (-5 *4 (-516))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 -3358)))) (-5 *2 (-973))
+ (-5 *1 (-695)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-637 (-208))) (-5 *4 (-516)) (-5 *5 (-110)) (-5 *2 (-973))
+ (-5 *1 (-694)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-637 (-208))) (-5 *4 (-516)) (-5 *5 (-110)) (-5 *2 (-973))
+ (-5 *1 (-694)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-860)) (-4 *1 (-693 *3)) (-4 *3 (-162)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1092 *6)) (-5 *3 (-516)) (-4 *6 (-289)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *1 (-691 *4 *5 *6 *7)) (-4 *7 (-891 *6 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1092 *9)) (-5 *4 (-594 *7)) (-4 *7 (-795))
+ (-4 *9 (-891 *8 *6 *7)) (-4 *6 (-741)) (-4 *8 (-289)) (-5 *2 (-594 (-719)))
+ (-5 *1 (-691 *6 *7 *8 *9)) (-5 *5 (-719)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1095)) (-5 *2 (-1 (-207) (-207))) (-5 *1 (-650 *3))
- (-4 *3 (-570 (-504)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1095)) (-5 *2 (-1 (-207) (-207) (-207)))
- (-5 *1 (-650 *3)) (-4 *3 (-570 (-504))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-595 (-459 *5 *6))) (-5 *4 (-804 *5))
- (-14 *5 (-595 (-1095))) (-5 *2 (-459 *5 *6)) (-5 *1 (-583 *5 *6))
- (-4 *6 (-431))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-459 *5 *6))) (-5 *4 (-804 *5))
- (-14 *5 (-595 (-1095))) (-5 *2 (-459 *5 *6)) (-5 *1 (-583 *5 *6))
- (-4 *6 (-431)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-417)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-520)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *2 (-994 *3 *4 *5)))))
-(((*1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-569 (-802))))))
+ (-12 (-5 *3 (-516)) (-5 *4 (-386 *2)) (-4 *2 (-891 *7 *5 *6))
+ (-5 *1 (-691 *5 *6 *7 *2)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-289)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1092 *9)) (-5 *4 (-594 *7)) (-5 *5 (-594 (-594 *8)))
+ (-4 *7 (-795)) (-4 *8 (-289)) (-4 *9 (-891 *8 *6 *7)) (-4 *6 (-741))
+ (-5 *2
+ (-2 (|:| |upol| (-1092 *8)) (|:| |Lval| (-594 *8))
+ (|:| |Lfact| (-594 (-2 (|:| -4011 (-1092 *8)) (|:| -2427 (-516)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-691 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-594 *7)) (-5 *5 (-594 (-594 *8))) (-4 *7 (-795)) (-4 *8 (-289))
+ (-4 *6 (-741)) (-4 *9 (-891 *8 *6 *7))
+ (-5 *2
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart| (-594 (-2 (|:| -4011 (-1092 *9)) (|:| -2427 (-516)))))))
+ (-5 *1 (-691 *6 *7 *8 *9)) (-5 *3 (-1092 *9)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-516)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-289))
+ (-4 *9 (-891 *8 *6 *7))
+ (-5 *2 (-2 (|:| -2063 (-1092 *9)) (|:| |polval| (-1092 *8))))
+ (-5 *1 (-691 *6 *7 *8 *9)) (-5 *3 (-1092 *9)) (-5 *4 (-1092 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-289)) (-5 *2 (-386 *3))
+ (-5 *1 (-691 *5 *4 *6 *3)) (-4 *3 (-891 *6 *5 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-786 (-359))) (-5 *2 (-786 (-207))) (-5 *1 (-286)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-717)) (-4 *1 (-306 *3 *4)) (-4 *3 (-981))
- (-4 *4 (-738)) (-4 *3 (-162)))))
+ (-12 (-5 *3 (-594 (-2 (|:| -4011 (-1092 *6)) (|:| -2427 (-516)))))
+ (-4 *6 (-289)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-516))
+ (-5 *1 (-691 *4 *5 *6 *7)) (-4 *7 (-891 *6 *4 *5)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207)))
- (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207))
- (|:| |relerr| (-207))))
- (-5 *2 (-595 (-207))) (-5 *1 (-188)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-387 (-1091 (-296 *3)))) (-4 *3 (-13 (-520) (-793)))
- (-5 *1 (-1052 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-528)) (-4 *1 (-1017 *3)) (-4 *3 (-1131)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-528))) (-5 *2 (-843 (-528))) (-5 *1 (-856))))
- ((*1 *2) (-12 (-5 *2 (-843 (-528))) (-5 *1 (-856)))))
-(((*1 *1 *1) (-12 (-5 *1 (-553 *2)) (-4 *2 (-981)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-347 *2)) (-4 *2 (-162))))
- ((*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-396 *3 *2)) (-4 *3 (-397 *2))))
- ((*1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-162)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-981)) (-14 *3 (-595 (-1095)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-205 *2 *3)) (-4 *2 (-13 (-981) (-793)))
- (-14 *3 (-595 (-1095))))))
+ (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-386 *3))
+ (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-891 *6 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-795)) (-5 *1 (-688 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-687)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1027)) (-5 *1 (-685 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-685 *2)) (-4 *2 (-1027))))
+ ((*1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-1027)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-595 (-844 *3))) (-5 *1 (-843 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7))
- (-5 *2 (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4))))
- (-5 *1 (-1000 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))))
+ (-12 (|has| *1 (-6 -4269)) (-4 *1 (-468 *3)) (-4 *3 (-1134))
+ (-5 *2 (-594 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-594 *3)) (-5 *1 (-685 *3)) (-4 *3 (-1027)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3))
- (-4 *5 (-353 *3)) (-5 *2 (-110))))
+ (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-719))))
((*1 *2 *1)
- (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981))
- (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-5 *2 (-110)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-994 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *2 (-793))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)))))
+ (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-719))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-719)) (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *6 (-523)) (-4 *2 (-891 *3 *5 *4)) (-5 *1 (-681 *5 *4 *6 *2))
+ (-5 *3 (-388 (-887 *6))) (-4 *5 (-741))
+ (-4 *4 (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1092 (-887 *6))) (-4 *6 (-523))
+ (-4 *2 (-891 (-388 (-887 *6)) *5 *4)) (-5 *1 (-681 *5 *4 *6 *2))
+ (-4 *5 (-741)) (-4 *4 (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *8)) (-5 *4 (-110)) (-4 *8 (-994 *5 *6 *7))
- (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-595 *10))
- (-5 *1 (-577 *5 *6 *7 *8 *9 *10)) (-4 *9 (-999 *5 *6 *7 *8))
- (-4 *10 (-1032 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-1092 *2)) (-4 *2 (-891 (-388 (-887 *6)) *5 *4))
+ (-5 *1 (-681 *5 *4 *6 *2)) (-4 *5 (-741))
+ (-4 *4 (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $))))) (-4 *6 (-523)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-741)) (-4 *5 (-13 (-795) (-10 -8 (-15 -4246 ((-1098) $)))))
+ (-4 *6 (-523)) (-5 *2 (-2 (|:| -2667 (-887 *6)) (|:| -2113 (-887 *6))))
+ (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-891 (-388 (-887 *6)) *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 *8)) (-5 *4 (-131 *5 *6 *7)) (-14 *5 (-516))
+ (-14 *6 (-719)) (-4 *7 (-162)) (-4 *8 (-162)) (-5 *2 (-131 *5 *6 *8))
+ (-5 *1 (-132 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-726 *5 (-804 *6)))) (-5 *4 (-110)) (-4 *5 (-431))
- (-14 *6 (-595 (-1095))) (-5 *2 (-595 (-978 *5 *6)))
- (-5 *1 (-580 *5 *6))))
+ (-12 (-5 *3 (-594 *9)) (-4 *9 (-984)) (-4 *5 (-795)) (-4 *6 (-741))
+ (-4 *8 (-984)) (-4 *2 (-891 *9 *7 *5)) (-5 *1 (-677 *5 *6 *7 *8 *9 *4 *2))
+ (-4 *7 (-741)) (-4 *4 (-891 *8 *6 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1155 *5))
+ (-5 *1 (-676 *5 *2)) (-4 *5 (-344)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-344))
+ (-5 *2 (-2 (|:| -3355 (-386 *3)) (|:| |special| (-386 *3))))
+ (-5 *1 (-676 *5 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-891 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-671)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-4 *1 (-675)) (-5 *2 (-110)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-719)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984))
+ (-14 *4 (-594 (-1098)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-719)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795)))
+ (-14 *4 (-594 (-1098)))))
+ ((*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-317 *3 *4 *5 *2)) (-4 *3 (-344)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4))) (-4 *2 (-323 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-719)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-162))))
+ ((*1 *1) (-12 (-4 *2 (-162)) (-4 *1 (-673 *2 *3)) (-4 *3 (-1155 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1179 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344))
+ (-4 *1 (-673 *5 *6)) (-4 *5 (-162)) (-4 *6 (-1155 *5)) (-5 *2 (-637 *5)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-860))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-719)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-860))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-719)))))
+(((*1 *1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-523))))
+ ((*1 *1 *1) (|partial| -4 *1 (-671))))
+(((*1 *1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-523))))
+ ((*1 *1 *1) (|partial| -4 *1 (-671))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1155 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-660 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1160 *3 *4 *5)) (-5 *1 (-300 *3 *4 *5))
+ (-4 *3 (-13 (-344) (-795))) (-14 *4 (-1098)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-516))))
+ ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-386 *3)) (-4 *3 (-523))))
+ ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-647))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1027)) (-5 *1 (-662 *3 *2 *4)) (-4 *3 (-795))
+ (-14 *4
+ (-1 (-110) (-2 (|:| -2426 *3) (|:| -2427 *2))
+ (-2 (|:| -2426 *3) (|:| -2427 *2)))))))
+(((*1 *1 *2) (-12 (-5 *2 (-860)) (-4 *1 (-349))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-860)) (-5 *2 (-1179 *4)) (-5 *1 (-500 *4)) (-4 *4 (-331))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-795)) (-5 *1 (-662 *2 *3 *4)) (-4 *3 (-1027))
+ (-14 *4
+ (-1 (-110) (-2 (|:| -2426 *2) (|:| -2427 *3))
+ (-2 (|:| -2426 *2) (|:| -2427 *3)))))))
+(((*1 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-661 *3 *2)) (-4 *2 (-1155 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-984)) (-5 *2 (-1179 *3)) (-5 *1 (-661 *3 *4))
+ (-4 *4 (-1155 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1179 *3)) (-4 *3 (-984)) (-5 *1 (-661 *3 *4))
+ (-4 *4 (-1155 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-984)) (-5 *2 (-1179 *3)) (-5 *1 (-661 *3 *4))
+ (-4 *4 (-1155 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-984)) (-5 *2 (-899 (-661 *3 *4))) (-5 *1 (-661 *3 *4))
+ (-4 *4 (-1155 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-984)) (-5 *2 (-899 (-661 *3 *4))) (-5 *1 (-661 *3 *4))
+ (-4 *4 (-1155 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-331)) (-4 *2 (-984)) (-5 *1 (-661 *2 *3)) (-4 *3 (-1155 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1081)) (-5 *1 (-659)))))
+(((*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1081)) (-5 *1 (-659)))))
+(((*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1081)) (-5 *1 (-659)))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-594 (-1092 *13))) (-5 *3 (-1092 *13))
+ (-5 *4 (-594 *12)) (-5 *5 (-594 *10)) (-5 *6 (-594 *13))
+ (-5 *7 (-594 (-594 (-2 (|:| -3342 (-719)) (|:| |pcoef| *13)))))
+ (-5 *8 (-594 (-719))) (-5 *9 (-1179 (-594 (-1092 *10)))) (-4 *12 (-795))
+ (-4 *10 (-289)) (-4 *13 (-891 *10 *11 *12)) (-4 *11 (-741))
+ (-5 *1 (-656 *11 *12 *10 *13)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-594 *11)) (-5 *5 (-594 (-1092 *9))) (-5 *6 (-594 *9))
+ (-5 *7 (-594 *12)) (-5 *8 (-594 (-719))) (-4 *11 (-795)) (-4 *9 (-289))
+ (-4 *12 (-891 *9 *10 *11)) (-4 *10 (-741)) (-5 *2 (-594 (-1092 *12)))
+ (-5 *1 (-656 *10 *11 *9 *12)) (-5 *3 (-1092 *12)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-594 (-1092 *11))) (-5 *3 (-1092 *11))
+ (-5 *4 (-594 *10)) (-5 *5 (-594 *8)) (-5 *6 (-594 (-719)))
+ (-5 *7 (-1179 (-594 (-1092 *8)))) (-4 *10 (-795)) (-4 *8 (-289))
+ (-4 *11 (-891 *8 *9 *10)) (-4 *9 (-741)) (-5 *1 (-656 *9 *10 *8 *11)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1098)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-650 *3 *5 *6 *7))
+ (-4 *3 (-572 (-505))) (-4 *5 (-1134)) (-4 *6 (-1134)) (-4 *7 (-1134))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-726 *5 (-804 *6)))) (-5 *4 (-110)) (-4 *5 (-431))
- (-14 *6 (-595 (-1095)))
- (-5 *2
- (-595 (-1066 *5 (-500 (-804 *6)) (-804 *6) (-726 *5 (-804 *6)))))
- (-5 *1 (-580 *5 *6))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-595 *8)) (-5 *4 (-110)) (-4 *8 (-994 *5 *6 *7))
- (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-5 *2 (-595 (-962 *5 *6 *7 *8))) (-5 *1 (-962 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-595 *8)) (-5 *4 (-110)) (-4 *8 (-994 *5 *6 *7))
- (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-5 *2 (-595 (-962 *5 *6 *7 *8))) (-5 *1 (-962 *5 *6 *7 *8))))
+ (-12 (-5 *4 (-1098)) (-5 *2 (-1 *6 *5)) (-5 *1 (-655 *3 *5 *6))
+ (-4 *3 (-572 (-505))) (-4 *5 (-1134)) (-4 *6 (-1134)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1098)) (-5 *2 (-1 *6 *5)) (-5 *1 (-655 *4 *5 *6))
+ (-4 *4 (-572 (-505))) (-4 *5 (-1134)) (-4 *6 (-1134)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-654 *3 *4))
+ (-4 *3 (-1134)) (-4 *4 (-1134)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-594 (-1098))) (-5 *3 (-1098)) (-5 *1 (-505))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-653 *3)) (-4 *3 (-572 (-505)))))
+ ((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-1098)) (-5 *1 (-653 *3)) (-4 *3 (-572 (-505)))))
+ ((*1 *2 *3 *2 *2 *2)
+ (-12 (-5 *2 (-1098)) (-5 *1 (-653 *3)) (-4 *3 (-572 (-505)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *4 (-594 (-1098))) (-5 *2 (-1098)) (-5 *1 (-653 *3))
+ (-4 *3 (-572 (-505))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1098)) (-5 *2 (-1 (-208) (-208))) (-5 *1 (-652 *3))
+ (-4 *3 (-572 (-505)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-595 (-726 *5 (-804 *6)))) (-5 *4 (-110)) (-4 *5 (-431))
- (-14 *6 (-595 (-1095))) (-5 *2 (-595 (-978 *5 *6)))
- (-5 *1 (-978 *5 *6))))
+ (-12 (-5 *4 (-1098)) (-5 *2 (-1 (-208) (-208) (-208))) (-5 *1 (-652 *3))
+ (-4 *3 (-572 (-505))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1098)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-650 *4 *5 *6 *7))
+ (-4 *4 (-572 (-505))) (-4 *5 (-1134)) (-4 *6 (-1134)) (-4 *7 (-1134)))))
+(((*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-649))))
+ ((*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-649)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-289)) (-4 *3 (-162)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3))
+ (-5 *2 (-2 (|:| -2046 *3) (|:| -3166 *3))) (-5 *1 (-636 *3 *4 *5 *6))
+ (-4 *6 (-634 *3 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-2 (|:| -2046 *3) (|:| -3166 *3))) (-5 *1 (-648 *3))
+ (-4 *3 (-289)))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-516))))
+ ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-647)))))
+(((*1 *2 *2) (-12 (-5 *2 (-860)) (|has| *1 (-6 -4260)) (-4 *1 (-385))))
+ ((*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-860))))
+ ((*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-647))))
+ ((*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-647)))))
+(((*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-647))))
+ ((*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-647)))))
+(((*1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-647))))
+ ((*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-647)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-208) (-208) (-208)))
+ (-5 *4 (-1 (-208) (-208) (-208) (-208)))
+ (-5 *2 (-1 (-884 (-208)) (-208) (-208))) (-5 *1 (-645)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-295 (-516))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1017 (-208)))
+ (-5 *6 (-594 (-243))) (-5 *2 (-1058 (-208))) (-5 *1 (-645)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-208) (-208) (-208)))
+ (-5 *4 (-3 (-1 (-208) (-208) (-208) (-208)) "undefined"))
+ (-5 *5 (-1017 (-208))) (-5 *6 (-594 (-243))) (-5 *2 (-1058 (-208)))
+ (-5 *1 (-645)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-208) (-208) (-208)))
+ (-5 *4 (-3 (-1 (-208) (-208) (-208) (-208)) "undefined"))
+ (-5 *5 (-1017 (-208))) (-5 *6 (-594 (-243))) (-5 *2 (-1058 (-208)))
+ (-5 *1 (-645))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1017 (-208)))
+ (-5 *5 (-594 (-243))) (-5 *2 (-1058 (-208))) (-5 *1 (-645))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1058 (-208))) (-5 *3 (-1 (-884 (-208)) (-208) (-208)))
+ (-5 *4 (-1017 (-208))) (-5 *5 (-594 (-243))) (-5 *1 (-645)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-719)) (-4 *4 (-331)) (-5 *1 (-200 *4 *2)) (-4 *2 (-1155 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-516)) (-5 *1 (-644 *2)) (-4 *2 (-1155 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-2 (|:| |deg| (-719)) (|:| -2835 *5)))) (-4 *5 (-1155 *4))
+ (-4 *4 (-331)) (-5 *2 (-594 *5)) (-5 *1 (-200 *4 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *8)) (-5 *4 (-110)) (-4 *8 (-994 *5 *6 *7))
- (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793)) (-5 *2 (-595 *1))
- (-4 *1 (-999 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-595 *8)) (-5 *4 (-110)) (-4 *8 (-994 *5 *6 *7))
- (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-5 *2 (-595 (-1066 *5 *6 *7 *8))) (-5 *1 (-1066 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-594 (-2 (|:| -4011 *5) (|:| -4223 (-516))))) (-5 *4 (-516))
+ (-4 *5 (-1155 *4)) (-5 *2 (-594 *5)) (-5 *1 (-644 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-516)) (-5 *2 (-594 (-2 (|:| -4011 *3) (|:| -4223 *4))))
+ (-5 *1 (-644 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-516)) (-5 *1 (-644 *2)) (-4 *2 (-1155 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1134)) (-4 *2 (-1027))))
+ ((*1 *1 *1) (-12 (-4 *1 (-643 *2)) (-4 *2 (-1027)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-643 *3)) (-4 *3 (-1027))
+ (-5 *2 (-594 (-2 (|:| -2131 *3) (|:| -2019 (-719))))))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-719)) (-4 *6 (-1027)) (-4 *7 (-841 *6)) (-5 *2 (-637 *7))
+ (-5 *1 (-640 *6 *7 *3 *4)) (-4 *3 (-353 *7))
+ (-4 *4 (-13 (-353 *6) (-10 -7 (-6 -4269)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1179 (-295 (-208)))) (-5 *4 (-594 (-1098)))
+ (-5 *2 (-637 (-295 (-208)))) (-5 *1 (-189))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1027)) (-4 *6 (-841 *5)) (-5 *2 (-637 *6))
+ (-5 *1 (-640 *5 *6 *3 *4)) (-4 *3 (-353 *6))
+ (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4269)))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-719)) (-4 *6 (-1027)) (-4 *3 (-841 *6)) (-5 *2 (-637 *3))
+ (-5 *1 (-640 *6 *3 *7 *4)) (-4 *7 (-353 *3))
+ (-4 *4 (-13 (-353 *6) (-10 -7 (-6 -4269)))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1027)) (-4 *3 (-841 *5)) (-5 *2 (-637 *3))
+ (-5 *1 (-640 *5 *3 *6 *4)) (-4 *6 (-353 *3))
+ (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4269)))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1027)) (-4 *2 (-841 *4)) (-5 *1 (-640 *4 *2 *5 *3))
+ (-4 *5 (-353 *2)) (-4 *3 (-13 (-353 *4) (-10 -7 (-6 -4269)))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1027)) (-4 *2 (-841 *5)) (-5 *1 (-640 *5 *2 *3 *4))
+ (-4 *3 (-353 *2)) (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4269)))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1027)) (-4 *3 (-841 *5)) (-5 *2 (-1179 *3))
+ (-5 *1 (-640 *5 *3 *6 *4)) (-4 *6 (-353 *3))
+ (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4269)))))))
+(((*1 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-805))))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-637 *4)) (-5 *3 (-719)) (-4 *4 (-984)) (-5 *1 (-638 *4)))))
+(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3))))
+ ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
+(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-523)) (-4 *3 (-162)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3)) (-5 *1 (-636 *3 *4 *5 *2)) (-4 *2 (-634 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-523)) (-4 *3 (-162)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3))
+ (-5 *1 (-636 *3 *4 *5 *2)) (-4 *2 (-634 *3 *4 *5)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-516)) (-4 *3 (-162)) (-4 *5 (-353 *3)) (-4 *6 (-353 *3))
+ (-5 *1 (-636 *3 *5 *6 *2)) (-4 *2 (-634 *3 *5 *6)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-516)) (-4 *3 (-162)) (-4 *5 (-353 *3)) (-4 *6 (-353 *3))
+ (-5 *1 (-636 *3 *5 *6 *2)) (-4 *2 (-634 *3 *5 *6)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-516)) (-4 *4 (-162)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4))
+ (-5 *1 (-636 *4 *5 *6 *2)) (-4 *2 (-634 *4 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2))
+ (-4 *4 (-353 *2)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2))
+ (-4 *4 (-353 *2)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-634 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-353 *2))
+ (-4 *4 (-353 *2)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-516)) (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-516)) (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3)))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-516)) (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3)))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-516)) (-4 *1 (-634 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027))
+ (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-632 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-1 *6 *4 *5))
+ (-5 *1 (-632 *4 *5 *6)) (-4 *4 (-1027)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1027)) (-4 *6 (-1027)) (-5 *2 (-1 *6 *4 *5))
+ (-5 *1 (-632 *4 *5 *6)) (-4 *5 (-1027)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027))
+ (-5 *2 (-1 *6 *5)) (-5 *1 (-632 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1027)) (-4 *4 (-1027)) (-4 *6 (-1027))
+ (-5 *2 (-1 *6 *5)) (-5 *1 (-632 *5 *4 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-631 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-5 *2 (-1 *5))
+ (-5 *1 (-631 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-631 *4 *3)) (-4 *4 (-1027))
+ (-4 *3 (-1027)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-719) *2)) (-5 *4 (-719)) (-4 *2 (-1027))
+ (-5 *1 (-627 *2))))
+ ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-719) *3)) (-4 *3 (-1027)) (-5 *1 (-630 *3)))))
+(((*1 *2 *2) (-12 (-5 *1 (-630 *2)) (-4 *2 (-1027)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-630 *2)) (-4 *2 (-1027))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-594 *5) (-594 *5))) (-5 *4 (-516)) (-5 *2 (-594 *5))
+ (-5 *1 (-630 *5)) (-4 *5 (-1027)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1027)) (-4 *6 (-1027))
+ (-4 *2 (-1027)) (-5 *1 (-629 *5 *6 *2)))))
+(((*1 *2 *3 *2) (-12 (-5 *1 (-628 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))))
+(((*1 *2 *2 *3) (-12 (-5 *1 (-628 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-719)) (-4 *2 (-1027)) (-5 *1 (-627 *2)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1098)) (-5 *4 (-887 (-516))) (-5 *2 (-311)) (-5 *1 (-313))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-595 *8)) (-5 *4 (-110)) (-4 *8 (-994 *5 *6 *7))
- (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-5 *2 (-595 (-1066 *5 *6 *7 *8))) (-5 *1 (-1066 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 *7)) (-4 *7 (-994 *4 *5 *6)) (-4 *4 (-520))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-595 *1))
- (-4 *1 (-1125 *4 *5 *6 *7)))))
-(((*1 *1) (-4 *1 (-329))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-595 (-595 (-595 *4)))) (-5 *3 (-595 *4)) (-4 *4 (-793))
- (-5 *1 (-1103 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-595 *6)) (-4 *6 (-793)) (-4 *4 (-343)) (-4 *5 (-739))
- (-5 *2
- (-2 (|:| |mval| (-635 *4)) (|:| |invmval| (-635 *4))
- (|:| |genIdeal| (-480 *4 *5 *6 *7))))
- (-5 *1 (-480 *4 *5 *6 *7)) (-4 *7 (-888 *4 *5 *6)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-860)) (-5 *4 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1178)))))
+ (-12 (-5 *3 (-1098)) (-5 *4 (-1019 (-887 (-516)))) (-5 *2 (-311))
+ (-5 *1 (-313))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-719)) (-5 *1 (-625 *3)) (-4 *3 (-984)) (-4 *3 (-1027)))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5))
- (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *1 (-1188 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-595 *8)) (-5 *3 (-1 (-110) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-994 *5 *6 *7)) (-4 *5 (-520))
- (-4 *6 (-739)) (-4 *7 (-793)) (-5 *1 (-1188 *5 *6 *7 *8)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-207)) (-5 *1 (-208))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-207))) (-5 *1 (-208))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2))
- (-4 *2 (-410 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1059))))
+ (-12 (-5 *2 (-719)) (-5 *1 (-625 *3)) (-4 *3 (-984)) (-4 *3 (-1027)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3)))
+ ((*1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-984)) (-4 *2 (-1027)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-719)) (-5 *1 (-625 *2)) (-4 *2 (-1027)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-625 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179 (-719))) (-5 *1 (-625 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1134)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1134)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1134)) (-5 *2 (-110)))))
+(((*1 *1 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1134)))))
+(((*1 *1 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1134)) (-5 *2 (-719)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-767 *4)) (-4 *4 (-795)) (-5 *2 (-110)) (-5 *1 (-622 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-767 *3)) (-4 *3 (-795)) (-5 *1 (-622 *3)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-767 *3)) (-4 *3 (-795)) (-5 *1 (-622 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 *5)) (-5 *4 (-860)) (-4 *5 (-795))
+ (-5 *2 (-56 (-594 (-622 *5)))) (-5 *1 (-622 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 *5)) (-5 *4 (-860)) (-4 *5 (-795)) (-5 *2 (-594 (-622 *5)))
+ (-5 *1 (-622 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 *8)) (-5 *4 (-594 *7)) (-4 *7 (-795))
+ (-4 *8 (-891 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-741))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1179 (-388 *8)) "failed"))
+ (|:| -2071 (-594 (-1179 (-388 *8))))))
+ (-5 *1 (-620 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-344)) (-4 *6 (-13 (-353 *5) (-10 -7 (-6 -4270))))
+ (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4270)))) (-5 *2 (-110))
+ (-5 *1 (-618 *5 *6 *4 *3)) (-4 *3 (-634 *5 *6 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-344)) (-5 *2 (-110))
+ (-5 *1 (-619 *5)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-594 (-1092 *4))) (-5 *3 (-1092 *4)) (-4 *4 (-851))
+ (-5 *1 (-614 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-984)) (-4 *2 (-344))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-344)) (-5 *1 (-611 *4 *2))
+ (-4 *2 (-609 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-719)) (-4 *1 (-609 *3)) (-4 *3 (-984)) (-4 *3 (-344))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-719)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344)) (-5 *1 (-611 *5 *2))
+ (-4 *2 (-609 *5)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-984)) (-4 *2 (-344))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-344)) (-5 *1 (-611 *4 *2))
+ (-4 *2 (-609 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1018 (-786 (-207)))) (-5 *2 (-207)) (-5 *1 (-176))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1018 (-786 (-207)))) (-5 *2 (-207)) (-5 *1 (-281))))
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-344) (-140) (-975 (-516)) (-975 (-388 (-516)))))
+ (-4 *5 (-1155 *4)) (-5 *2 (-594 (-606 (-388 *5)))) (-5 *1 (-610 *4 *5))
+ (-5 *3 (-606 (-388 *5))))))
+(((*1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1146 (-516))) (-4 *1 (-602 *3)) (-4 *3 (-1134))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-4 *1 (-602 *3)) (-4 *3 (-1134)))))
+(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-516)) (-4 *1 (-602 *3)) (-4 *3 (-1134))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-516)) (-4 *1 (-602 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-594 (-2 (|:| |gen| *3) (|:| -4219 *4))))
+ (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-594 (-2 (|:| |gen| *3) (|:| -4219 *4)))) (-4 *3 (-1027))
+ (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-600 *3 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-353 *2)) (-4 *2 (-1134))))
+ ((*1 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1155 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-353 *2)) (-4 *2 (-1134))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *1)
+ (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)) (-4 *4 (-23))
+ (-14 *5 *4))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-516) (-516))) (-5 *1 (-342 *3)) (-4 *3 (-1027))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-719) (-719))) (-5 *1 (-367 *3)) (-4 *3 (-1027))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-600 *3 *4 *5))
+ (-4 *3 (-1027)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-304 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-128))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-342 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-367 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-600 *3 *4 *5)) (-4 *4 (-23))
+ (-14 *5 *4))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-598 *3)) (-4 *3 (-1027)))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1027)))))
+(((*1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-594 *3)) (-4 *3 (-1134)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1134)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1027)) (-4 *2 (-1134)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1027)) (-4 *2 (-1134)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1027)) (-4 *2 (-1134)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *1)) (-5 *4 (-1179 *1)) (-4 *1 (-593 *5)) (-4 *5 (-984))
+ (-5 *2 (-2 (|:| -1650 (-637 *5)) (|:| |vec| (-1179 *5))))))
((*1 *2 *3)
- (-12 (-5 *3 (-1018 (-786 (-207)))) (-5 *2 (-207)) (-5 *1 (-286)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
-(((*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-974)))))
+ (-12 (-5 *3 (-637 *1)) (-4 *1 (-593 *4)) (-4 *4 (-984)) (-5 *2 (-637 *4)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-593 *5)) (-4 *5 (-344))
+ (-4 *5 (-523)) (-5 *2 (-1179 *5)) (-5 *1 (-592 *5 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-593 *5)) (-3595 (-4 *5 (-344)))
+ (-4 *5 (-523)) (-5 *2 (-1179 (-388 *5))) (-5 *1 (-592 *5 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1179 *5)) (-4 *5 (-593 *4)) (-4 *4 (-523))
+ (-5 *2 (-1179 *4)) (-5 *1 (-592 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1179 *5)) (-4 *5 (-593 *4)) (-4 *4 (-523)) (-5 *2 (-110))
+ (-5 *1 (-592 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-275 (-787 *3))) (-4 *3 (-13 (-27) (-1120) (-402 *5)))
+ (-4 *5 (-13 (-432) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *2
+ (-3 (-787 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-787 *3) #1="failed"))
+ (|:| |rightHandLimit| (-3 (-787 *3) #1#)))
+ "failed"))
+ (-5 *1 (-590 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-275 *3)) (-5 *5 (-1081))
+ (-4 *3 (-13 (-27) (-1120) (-402 *6)))
+ (-4 *6 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-787 *3))
+ (-5 *1 (-590 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-275 (-787 (-887 *5)))) (-4 *5 (-432))
+ (-5 *2
+ (-3 (-787 (-388 (-887 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-787 (-388 (-887 *5))) #2="failed"))
+ (|:| |rightHandLimit| (-3 (-787 (-388 (-887 *5))) #2#)))
+ #3="failed"))
+ (-5 *1 (-591 *5)) (-5 *3 (-388 (-887 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-275 (-388 (-887 *5)))) (-5 *3 (-388 (-887 *5))) (-4 *5 (-432))
+ (-5 *2
+ (-3 (-787 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-787 *3) #2#))
+ (|:| |rightHandLimit| (-3 (-787 *3) #2#)))
+ #3#))
+ (-5 *1 (-591 *5))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-275 (-388 (-887 *6)))) (-5 *5 (-1081))
+ (-5 *3 (-388 (-887 *6))) (-4 *6 (-432)) (-5 *2 (-787 *3))
+ (-5 *1 (-591 *6)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-275 (-780 *3)))
+ (-4 *5 (-13 (-432) (-795) (-975 (-516)) (-593 (-516)))) (-5 *2 (-780 *3))
+ (-5 *1 (-590 *5 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-275 (-780 (-887 *5)))) (-4 *5 (-432))
+ (-5 *2 (-780 (-388 (-887 *5)))) (-5 *1 (-591 *5)) (-5 *3 (-388 (-887 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-275 (-388 (-887 *5)))) (-5 *3 (-388 (-887 *5))) (-4 *5 (-432))
+ (-5 *2 (-780 *3)) (-5 *1 (-591 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-369)) (-5 *1 (-586)))))
+(((*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *1) (-5 *1 (-586))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-594 (-1098))) (-4 *5 (-432))
+ (-5 *2 (-460 *4 *5)) (-5 *1 (-585 *4 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-1054 *4 *2))
- (-4 *2 (-13 (-561 (-528) *4) (-10 -7 (-6 -4264) (-6 -4265))))))
+ (-12 (-5 *3 (-594 (-230 *4 *5))) (-5 *2 (-230 *4 *5)) (-14 *4 (-594 (-1098)))
+ (-4 *5 (-432)) (-5 *1 (-585 *4 *5)))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-594 (-460 *4 *5))) (-5 *3 (-806 *4)) (-14 *4 (-594 (-1098)))
+ (-4 *5 (-432)) (-5 *1 (-585 *4 *5)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-594 *6)) (-5 *4 (-594 (-230 *5 *6))) (-4 *6 (-432))
+ (-5 *2 (-230 *5 *6)) (-14 *5 (-594 (-1098))) (-5 *1 (-585 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-884 (-208)) (-884 (-208)))) (-5 *1 (-243))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-884 (-208)) (-884 (-208)))) (-5 *3 (-594 (-243)))
+ (-5 *1 (-244))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-594 (-460 *5 *6))) (-5 *3 (-460 *5 *6)) (-14 *5 (-594 (-1098)))
+ (-4 *6 (-432)) (-5 *2 (-1179 *6)) (-5 *1 (-585 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-594 (-460 *3 *4))) (-14 *3 (-594 (-1098))) (-4 *4 (-432))
+ (-5 *1 (-585 *3 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-594 (-460 *5 *6))) (-5 *4 (-806 *5)) (-14 *5 (-594 (-1098)))
+ (-5 *2 (-460 *5 *6)) (-5 *1 (-585 *5 *6)) (-4 *6 (-432))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-460 *5 *6))) (-5 *4 (-806 *5)) (-14 *5 (-594 (-1098)))
+ (-5 *2 (-460 *5 *6)) (-5 *1 (-585 *5 *6)) (-4 *6 (-432)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-460 *4 *5))) (-14 *4 (-594 (-1098))) (-4 *5 (-432))
+ (-5 *2 (-594 (-230 *4 *5))) (-5 *1 (-585 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-594 (-1098))) (-4 *5 (-432))
+ (-5 *2 (-2 (|:| |glbase| (-594 (-230 *4 *5))) (|:| |glval| (-594 (-516)))))
+ (-5 *1 (-585 *4 *5)) (-5 *3 (-594 (-230 *4 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-460 *4 *5))) (-14 *4 (-594 (-1098))) (-4 *5 (-432))
+ (-5 *2 (-2 (|:| |gblist| (-594 (-230 *4 *5))) (|:| |gvlist| (-594 (-516)))))
+ (-5 *1 (-585 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-583 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941) (-1120)))))
+ ((*1 *1 *1) (-4 *1 (-584))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-583 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941) (-1120)))))
+ ((*1 *1 *1) (-4 *1 (-584))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-583 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941) (-1120)))))
+ ((*1 *1 *1) (-4 *1 (-584))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-583 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941) (-1120)))))
+ ((*1 *1 *1) (-4 *1 (-584))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-583 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941) (-1120)))))
+ ((*1 *1 *1) (-4 *1 (-584))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-583 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941) (-1120)))))
+ ((*1 *1 *1) (-4 *1 (-584))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-111)) (-4 *3 (-13 (-795) (-523))) (-5 *1 (-31 *3 *4))
+ (-4 *4 (-402 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-719)) (-5 *1 (-111))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-111))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-111)) (-4 *3 (-13 (-795) (-523))) (-5 *1 (-149 *3 *4))
+ (-4 *4 (-402 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1098)) (-5 *2 (-111)) (-5 *1 (-153))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-111)) (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *4))
+ (-4 *4 (-13 (-402 *3) (-941)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-279 *3)) (-4 *3 (-280))))
+ ((*1 *2 *2) (-12 (-4 *1 (-280)) (-5 *2 (-111))))
((*1 *2 *2)
- (-12 (-4 *3 (-793)) (-4 *3 (-1131)) (-5 *1 (-1054 *3 *2))
- (-4 *2 (-13 (-561 (-528) *3) (-10 -7 (-6 -4264) (-6 -4265)))))))
+ (-12 (-5 *2 (-111)) (-4 *4 (-795)) (-5 *1 (-401 *3 *4)) (-4 *3 (-402 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-111)) (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *4))
+ (-4 *4 (-402 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-569 *3)) (-4 *3 (-795))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-111)) (-4 *3 (-13 (-795) (-523))) (-5 *1 (-583 *3 *4))
+ (-4 *4 (-13 (-402 *3) (-941) (-1120))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-528))) (-5 *2 (-843 (-528))) (-5 *1 (-856))))
- ((*1 *2) (-12 (-5 *2 (-843 (-528))) (-5 *1 (-856)))))
-(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-431)) (-4 *4 (-793)) (-4 *5 (-739)) (-5 *2 (-110))
- (-5 *1 (-924 *3 *4 *5 *6)) (-4 *6 (-888 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1060 *3 *4)) (-4 *3 (-13 (-1023) (-33)))
- (-4 *4 (-13 (-1023) (-33))))))
+ (-12 (-5 *3 (-111)) (-4 *4 (-13 (-795) (-523))) (-5 *2 (-110))
+ (-5 *1 (-31 *4 *5)) (-4 *5 (-402 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-111)) (-4 *4 (-13 (-795) (-523))) (-5 *2 (-110))
+ (-5 *1 (-149 *4 *5)) (-4 *5 (-402 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-111)) (-4 *4 (-13 (-795) (-523))) (-5 *2 (-110))
+ (-5 *1 (-258 *4 *5)) (-4 *5 (-13 (-402 *4) (-941)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-111)) (-5 *2 (-110)) (-5 *1 (-279 *4)) (-4 *4 (-280))))
+ ((*1 *2 *3) (-12 (-4 *1 (-280)) (-5 *3 (-111)) (-5 *2 (-110))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-111)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-401 *4 *5))
+ (-4 *4 (-402 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-111)) (-4 *4 (-13 (-795) (-523))) (-5 *2 (-110))
+ (-5 *1 (-412 *4 *5)) (-4 *5 (-402 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-111)) (-4 *4 (-13 (-795) (-523))) (-5 *2 (-110))
+ (-5 *1 (-583 *4 *5)) (-4 *5 (-13 (-402 *4) (-941) (-1120))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
+ (-14 *6 (-594 (-1098)))
+ (-5 *2 (-594 (-1069 *5 (-502 (-806 *6)) (-806 *6) (-728 *5 (-806 *6)))))
+ (-5 *1 (-582 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
+ (-14 *6 (-594 (-1098))) (-5 *2 (-594 (-981 *5 *6))) (-5 *1 (-582 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-594 (-887 *3))) (-4 *3 (-432)) (-5 *1 (-341 *3 *4))
+ (-14 *4 (-594 (-1098)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-594 *6)) (-4 *6 (-891 *3 *4 *5)) (-4 *3 (-432)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *1 (-427 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-594 *7)) (-5 *3 (-1081)) (-4 *7 (-891 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-427 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-594 *7)) (-5 *3 (-1081)) (-4 *7 (-891 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-427 *4 *5 *6 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5))
+ (-4 *5 (-891 *2 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-594 (-728 *3 (-806 *4)))) (-4 *3 (-432))
+ (-14 *4 (-594 (-1098))) (-5 *1 (-582 *3 *4)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-594 (-887 *3))) (-4 *3 (-432)) (-5 *1 (-341 *3 *4))
+ (-14 *4 (-594 (-1098)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-594 (-728 *3 (-806 *4)))) (-4 *3 (-432))
+ (-14 *4 (-594 (-1098))) (-5 *1 (-582 *3 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-329)) (-5 *2 (-398 (-1091 (-1091 *4))))
- (-5 *1 (-1130 *4)) (-5 *3 (-1091 (-1091 *4))))))
+ (-12 (-5 *3 (-594 (-887 *4))) (-4 *4 (-432)) (-5 *2 (-110))
+ (-5 *1 (-341 *4 *5)) (-14 *5 (-594 (-1098)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-728 *4 (-806 *5)))) (-4 *4 (-432))
+ (-14 *5 (-594 (-1098))) (-5 *2 (-110)) (-5 *1 (-582 *4 *5)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-594 *4)) (-4 *4 (-795)) (-5 *2 (-594 (-615 *4 *5)))
+ (-5 *1 (-581 *4 *5 *6)) (-4 *5 (-13 (-162) (-666 (-388 (-516)))))
+ (-14 *6 (-860)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-594 (-2 (|:| |k| (-622 *3)) (|:| |c| *4))))
+ (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795))
+ (-4 *4 (-13 (-162) (-666 (-388 (-516))))) (-14 *5 (-860)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-594 (-275 *4))) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795))
+ (-4 *4 (-13 (-162) (-666 (-388 (-516))))) (-14 *5 (-860)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -2701 (-594 (-2 (|:| |irr| *10) (|:| -2421 (-516)))))))
+ (-5 *6 (-594 *3)) (-5 *7 (-594 *8)) (-4 *8 (-795)) (-4 *3 (-289))
+ (-4 *10 (-891 *3 *9 *8)) (-4 *9 (-741))
+ (-5 *2
+ (-2 (|:| |polfac| (-594 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-594 (-1092 *3)))))
+ (-5 *1 (-580 *8 *9 *3 *10)) (-5 *4 (-594 (-1092 *3))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-719)) (-5 *5 (-594 *3)) (-4 *3 (-289)) (-4 *6 (-795))
+ (-4 *7 (-741)) (-5 *2 (-110)) (-5 *1 (-580 *6 *7 *3 *8))
+ (-4 *8 (-891 *3 *7 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-997 *3 *4 *5))
+ (-5 *1 (-579 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1002 *3 *4 *5 *6))
+ (-4 *2 (-1035 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *2 (-523)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1155 *2)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1098))
+ (-4 *4 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516))))
+ (-5 *1 (-577 *4 *2)) (-4 *2 (-13 (-1120) (-901) (-29 *4))))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-140) (-27) (-975 (-516)) (-975 (-388 (-516)))))
+ (-4 *5 (-1155 *4)) (-5 *2 (-1092 (-388 *5))) (-5 *1 (-573 *4 *5))
+ (-5 *3 (-388 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-386 *6) *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-140) (-27) (-975 (-516)) (-975 (-388 (-516)))))
+ (-5 *2 (-1092 (-388 *6))) (-5 *1 (-573 *5 *6)) (-5 *3 (-388 *6)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-569 *4)) (-4 *4 (-795)) (-4 *2 (-795))
+ (-5 *1 (-570 *2 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-569 *4)) (-5 *1 (-570 *3 *4)) (-4 *3 (-795)) (-4 *4 (-795)))))
+(((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-1120))))
+ ((*1 *2 *1) (-12 (-5 *1 (-312 *2)) (-4 *2 (-795))))
+ ((*1 *2 *1) (-12 (-5 *2 (-594 *3)) (-5 *1 (-569 *3)) (-4 *3 (-795)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-111)) (-5 *3 (-594 *1)) (-4 *1 (-280))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-280)) (-5 *2 (-111))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-569 *3)) (-4 *3 (-795))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-111)) (-5 *3 (-594 *5)) (-5 *4 (-719)) (-4 *5 (-795))
+ (-5 *1 (-569 *5)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1098)) (-5 *1 (-569 *3)) (-4 *3 (-795)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-568 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-5 *2 (-110)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-568 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))))
+(((*1 *2 *1)
(-12
- (-5 *3
- (-2 (|:| |xinit| (-207)) (|:| |xend| (-207))
- (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207)))
- (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207)))
- (|:| |abserr| (-207)) (|:| |relerr| (-207))))
(-5 *2
- (-2 (|:| |stiffnessFactor| (-359)) (|:| |stabilityFactor| (-359))))
- (-5 *1 (-189)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-343)) (-5 *2 (-595 *3)) (-5 *1 (-884 *4 *3))
- (-4 *3 (-1153 *4)))))
+ (-594
+ (-2
+ (|:| -4139
+ (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208)))
+ (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (|:| -2131
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1076 (-208)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1511
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-526))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1134)) (-5 *2 (-594 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1134)) (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1134)) (-5 *2 (-594 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4269)) (-4 *1 (-563 *4 *3)) (-4 *4 (-1027))
+ (-4 *3 (-1134)) (-4 *3 (-1027)) (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-563 *2 *3)) (-4 *3 (-1134)) (-4 *2 (-1027)) (-4 *2 (-795)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-563 *2 *3)) (-4 *3 (-1134)) (-4 *2 (-1027)) (-4 *2 (-795)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1134)) (-4 *3 (-353 *2))
+ (-4 *4 (-353 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4270)) (-4 *1 (-563 *3 *2)) (-4 *3 (-1027))
+ (-4 *2 (-1134)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (|has| *1 (-6 -4270)) (-4 *1 (-563 *3 *4)) (-4 *3 (-1027))
+ (-4 *4 (-1134)) (-5 *2 (-1185)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-569 *2))) (-5 *4 (-594 (-1098)))
+ (-4 *2 (-13 (-402 (-158 *5)) (-941) (-1120))) (-4 *5 (-13 (-523) (-795)))
+ (-5 *1 (-559 *5 *6 *2)) (-4 *6 (-13 (-402 *5) (-941) (-1120))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-860)) (-5 *2 (-1091 *4)) (-5 *1 (-337 *4))
- (-4 *4 (-329)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-359) (-359))) (-5 *4 (-359))
- (-5 *2
- (-2 (|:| -3327 *4) (|:| -3817 *4) (|:| |totalpts| (-528))
- (|:| |success| (-110))))
- (-5 *1 (-735)) (-5 *5 (-528)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-665 *2)) (-4 *2 (-343)))))
-(((*1 *2 *3) (-12 (-5 *3 (-207)) (-5 *2 (-296 (-359))) (-5 *1 (-286)))))
-(((*1 *1 *1) (-5 *1 (-110))))
+ (-12 (-4 *4 (-13 (-523) (-795))) (-5 *2 (-158 *5)) (-5 *1 (-559 *4 *5 *3))
+ (-4 *5 (-13 (-402 *4) (-941) (-1120)))
+ (-4 *3 (-13 (-402 (-158 *4)) (-941) (-1120))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-523) (-795)))
+ (-4 *2 (-13 (-402 (-158 *4)) (-941) (-1120))) (-5 *1 (-559 *4 *3 *2))
+ (-4 *3 (-13 (-402 *4) (-941) (-1120))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-523) (-795))) (-4 *2 (-13 (-402 *4) (-941) (-1120)))
+ (-5 *1 (-559 *4 *2 *3)) (-4 *3 (-13 (-402 (-158 *4)) (-941) (-1120))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-158 *5)) (-4 *5 (-13 (-402 *4) (-941) (-1120)))
+ (-4 *4 (-13 (-523) (-795))) (-4 *2 (-13 (-402 (-158 *4)) (-941) (-1120)))
+ (-5 *1 (-559 *4 *5 *2)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-964 (-787 (-516))))
+ (-5 *3 (-1076 (-2 (|:| |k| (-516)) (|:| |c| *4)))) (-4 *4 (-984))
+ (-5 *1 (-555 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-964 (-787 (-516)))) (-5 *1 (-555 *3)) (-4 *3 (-984)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1076 (-2 (|:| |k| (-516)) (|:| |c| *3)))) (-5 *1 (-555 *3))
+ (-4 *3 (-984)))))
+(((*1 *1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-110)) (-5 *1 (-555 *3)) (-4 *3 (-984)))))
+(((*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-984)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-984)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1076 (-2 (|:| |k| (-516)) (|:| |c| *6))))
+ (-5 *4 (-964 (-787 (-516)))) (-5 *5 (-1098)) (-5 *7 (-388 (-516)))
+ (-4 *6 (-984)) (-5 *2 (-805)) (-5 *1 (-555 *6)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-387 (-528))) (-5 *1 (-553 *3)) (-4 *3 (-37 *2))
- (-4 *3 (-981)))))
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-388 (-516))) (-5 *1 (-555 *3)) (-4 *3 (-37 *2))
+ (-4 *3 (-984)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1084 *2 *3)) (-14 *2 (-860)) (-4 *3 (-981)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -1497 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-343)) (-4 *7 (-1153 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-387 *7)) (|:| |a0| *6))
- (-2 (|:| -1497 (-387 *7)) (|:| |coeff| (-387 *7))) "failed"))
- (-5 *1 (-538 *6 *7)) (-5 *3 (-387 *7)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-717)) (-5 *1 (-112)))))
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-981)) (-14 *3 (-1095))
- (-14 *4 *2))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-981)) (-4 *3 (-793))
- (-5 *2 (-2 (|:| |val| *1) (|:| -2564 (-528)))) (-4 *1 (-410 *3))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |val| (-831 *3)) (|:| -2564 (-831 *3))))
- (-5 *1 (-831 *3)) (-4 *3 (-1023))))
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-516)))) (-4 *2 (-984)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-594 *3)) (-4 *3 (-1035 *5 *6 *7 *8))
+ (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *8 (-997 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-552 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-516))) (-5 *4 (-843 (-516))) (-5 *2 (-637 (-516)))
+ (-5 *1 (-551))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-981))
- (-4 *7 (-888 *6 *4 *5))
- (-5 *2 (-2 (|:| |val| *3) (|:| -2564 (-528))))
- (-5 *1 (-889 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-343)
- (-10 -8 (-15 -2222 ($ *7)) (-15 -3031 (*7 $))
- (-15 -3042 (*7 $))))))))
-(((*1 *2)
- (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-387 *4))) (-5 *2 (-635 (-387 *4))))))
+ (-12 (-5 *3 (-594 (-516))) (-5 *2 (-594 (-637 (-516)))) (-5 *1 (-551))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-516))) (-5 *4 (-594 (-843 (-516))))
+ (-5 *2 (-594 (-637 (-516)))) (-5 *1 (-551)))))
+(((*1 *2 *3) (-12 (-5 *3 (-594 (-516))) (-5 *2 (-719)) (-5 *1 (-551)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1098))
+ (-4 *4 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516))))
+ (-5 *1 (-409 *4 *2)) (-4 *2 (-13 (-1120) (-29 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-887 *5))) (-5 *4 (-1098)) (-4 *5 (-140))
+ (-4 *5 (-13 (-432) (-975 (-516)) (-795) (-593 (-516)))) (-5 *2 (-295 *5))
+ (-5 *1 (-550 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-545 *2)) (-4 *2 (-13 (-29 *4) (-1120))) (-5 *1 (-547 *4 *2))
+ (-4 *4 (-13 (-432) (-975 (-516)) (-795) (-593 (-516))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-545 (-388 (-887 *4))))
+ (-4 *4 (-13 (-432) (-975 (-516)) (-795) (-593 (-516)))) (-5 *2 (-295 *4))
+ (-5 *1 (-550 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-860)) (-5 *2 (-1092 *4)) (-5 *1 (-549 *4)) (-4 *4 (-331)))))
+(((*1 *2 *2) (-12 (-5 *1 (-548 *2)) (-4 *2 (-515)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-548 *2)) (-4 *2 (-515)))))
+(((*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-548 *3)) (-4 *3 (-515)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-719)) (-5 *1 (-548 *2)) (-4 *2 (-515)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-719)) (-5 *1 (-548 *2)) (-4 *2 (-515))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -2957 *3) (|:| -2427 (-719)))) (-5 *1 (-548 *3))
+ (-4 *3 (-515)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-719)) (-5 *2 (-110)) (-5 *1 (-548 *3)) (-4 *3 (-515)))))
+(((*1 *1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-594
+ (-2 (|:| |scalar| (-388 (-516))) (|:| |coeff| (-1092 *2))
+ (|:| |logand| (-1092 *2)))))
+ (-5 *4 (-594 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-344))
+ (-5 *1 (-545 *2)))))
+(((*1 *2 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-344)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-595 *1))
- (-4 *1 (-994 *3 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802)))))
-(((*1 *1 *2) (-12 (-5 *2 (-813)) (-5 *1 (-244))))
- ((*1 *1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-244)))))
-(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-970)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1131))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-793))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-124 *2)) (-4 *2 (-793))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-528)) (-4 *1 (-263 *3)) (-4 *3 (-1131))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-528)) (-4 *1 (-263 *2)) (-4 *2 (-1131))))
- ((*1 *1 *2)
(-12
(-5 *2
- (-2
- (|:| -2927
- (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207)))
- (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207))
- (|:| |relerr| (-207))))
- (|:| -1780
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1076 (-207)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2931
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))))
- (-5 *1 (-523))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-717)) (-4 *1 (-641 *2)) (-4 *2 (-1023))))
- ((*1 *1 *2)
- (-12
+ (-594
+ (-2 (|:| |scalar| (-388 (-516))) (|:| |coeff| (-1092 *3))
+ (|:| |logand| (-1092 *3)))))
+ (-5 *1 (-545 *3)) (-4 *3 (-344)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-594 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-545 *3)) (-4 *3 (-344)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-545 *3)) (-4 *3 (-344)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-544)))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1098))
+ (-4 *4 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516))))
+ (-5 *1 (-541 *4 *2)) (-4 *2 (-13 (-1120) (-901) (-1062) (-29 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-344))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-540 *5 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-344))
(-5 *2
- (-2
- (|:| -2927
- (-2 (|:| |xinit| (-207)) (|:| |xend| (-207))
- (|:| |fn| (-1177 (-296 (-207)))) (|:| |yinit| (-595 (-207)))
- (|:| |intvals| (-595 (-207))) (|:| |g| (-296 (-207)))
- (|:| |abserr| (-207)) (|:| |relerr| (-207))))
- (|:| -1780
- (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359))
- (|:| |expense| (-359)) (|:| |accuracy| (-359))
- (|:| |intermediateResults| (-359))))))
- (-5 *1 (-749))))
- ((*1 *2 *3 *4)
- (-12 (-5 *2 (-1182)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1023))
- (-4 *4 (-1023)))))
+ (-2 (|:| |ir| (-545 (-388 *6))) (|:| |specpart| (-388 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-540 *5 *6)) (-5 *3 (-388 *6)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-578 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -3396 *4) (|:| |sol?| (-110))) (-516) *4))
+ (-4 *4 (-344)) (-4 *5 (-1155 *4)) (-5 *1 (-540 *4 *5)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12
+ (-5 *3 (-1 (-3 (-2 (|:| -2189 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-344)) (-5 *1 (-540 *4 *2)) (-4 *2 (-1155 *4)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1095))
- (-4 *6 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)))
- (-4 *4 (-13 (-29 *6) (-1117) (-897)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -1400 (-595 *4))))
- (-5 *1 (-747 *6 *4 *3)) (-4 *3 (-605 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-347 *2)) (-4 *2 (-162)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-978 *4 *5)) (-4 *4 (-13 (-791) (-288) (-140) (-957)))
- (-14 *5 (-595 (-1095))) (-5 *2 (-595 (-595 (-959 (-387 *4)))))
- (-5 *1 (-1201 *4 *5 *6)) (-14 *6 (-595 (-1095)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-595 (-891 *5))) (-5 *4 (-110))
- (-4 *5 (-13 (-791) (-288) (-140) (-957)))
- (-5 *2 (-595 (-595 (-959 (-387 *5))))) (-5 *1 (-1201 *5 *6 *7))
- (-14 *6 (-595 (-1095))) (-14 *7 (-595 (-1095)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-891 *5))) (-5 *4 (-110))
- (-4 *5 (-13 (-791) (-288) (-140) (-957)))
- (-5 *2 (-595 (-595 (-959 (-387 *5))))) (-5 *1 (-1201 *5 *6 *7))
- (-14 *6 (-595 (-1095))) (-14 *7 (-595 (-1095)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 (-891 *4)))
- (-4 *4 (-13 (-791) (-288) (-140) (-957)))
- (-5 *2 (-595 (-595 (-959 (-387 *4))))) (-5 *1 (-1201 *4 *5 *6))
- (-14 *5 (-595 (-1095))) (-14 *6 (-595 (-1095))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-343)) (-4 *1 (-309 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1153 *4)) (-4 *4 (-1135))
- (-4 *1 (-322 *4 *3 *5)) (-4 *5 (-1153 (-387 *3)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1177 *1)) (-4 *4 (-162))
- (-4 *1 (-347 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1177 *1)) (-4 *4 (-162))
- (-4 *1 (-350 *4 *5)) (-4 *5 (-1153 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1177 *3)) (-4 *3 (-162)) (-4 *1 (-389 *3 *4))
- (-4 *4 (-1153 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-162)) (-4 *1 (-397 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-717)) (-5 *3 (-882 *5)) (-4 *5 (-981))
- (-5 *1 (-1084 *4 *5)) (-14 *4 (-860))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-595 (-717))) (-5 *3 (-717)) (-5 *1 (-1084 *4 *5))
- (-14 *4 (-860)) (-4 *5 (-981))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-595 (-717))) (-5 *3 (-882 *5)) (-4 *5 (-981))
- (-5 *1 (-1084 *4 *5)) (-14 *4 (-860)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-595 *10)) (-5 *5 (-110)) (-4 *10 (-999 *6 *7 *8 *9))
- (-4 *6 (-431)) (-4 *7 (-739)) (-4 *8 (-793)) (-4 *9 (-994 *6 *7 *8))
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-594 (-388 *7))) (-4 *7 (-1155 *6))
+ (-5 *3 (-388 *7)) (-4 *6 (-344))
(-5 *2
- (-595
- (-2 (|:| -2589 (-595 *9)) (|:| -2316 *10) (|:| |ineq| (-595 *9)))))
- (-5 *1 (-925 *6 *7 *8 *9 *10)) (-5 *3 (-595 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-595 *10)) (-5 *5 (-110)) (-4 *10 (-999 *6 *7 *8 *9))
- (-4 *6 (-431)) (-4 *7 (-739)) (-4 *8 (-793)) (-4 *9 (-994 *6 *7 *8))
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-540 *6 *7)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-344))
+ (-5 *2 (-2 (|:| -2189 (-388 *6)) (|:| |coeff| (-388 *6))))
+ (-5 *1 (-540 *5 *6)) (-5 *3 (-388 *6)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -3396 *7) (|:| |sol?| (-110))) (-516) *7))
+ (-5 *6 (-594 (-388 *8))) (-4 *7 (-344)) (-4 *8 (-1155 *7)) (-5 *3 (-388 *8))
(-5 *2
- (-595
- (-2 (|:| -2589 (-595 *9)) (|:| -2316 *10) (|:| |ineq| (-595 *9)))))
- (-5 *1 (-1030 *6 *7 *8 *9 *10)) (-5 *3 (-595 *9)))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-793)) (-5 *3 (-595 *6)) (-5 *5 (-595 *3))
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-540 *7 *8)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5 (-1 (-3 (-2 (|:| -2189 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-594 (-388 *8))) (-4 *7 (-344)) (-4 *8 (-1155 *7)) (-5 *3 (-388 *8))
(-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-595 *5)) (|:| |f3| *5)
- (|:| |f4| (-595 *5))))
- (-5 *1 (-1103 *6)) (-5 *4 (-595 *5)))))
-(((*1 *1 *1) (-5 *1 (-992))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-717)) (-5 *1 (-799 *2)) (-4 *2 (-162))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1091 (-528))) (-5 *1 (-881)) (-5 *3 (-528)))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-207))
- (-5 *2 (-970)) (-5 *1 (-699)))))
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-540 *7 *8)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3396 *6) (|:| |sol?| (-110))) (-516) *6))
+ (-4 *6 (-344)) (-4 *7 (-1155 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-388 *7)) (|:| |a0| *6))
+ (-2 (|:| -2189 (-388 *7)) (|:| |coeff| (-388 *7))) "failed"))
+ (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2189 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-344)) (-4 *7 (-1155 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-388 *7)) (|:| |a0| *6))
+ (-2 (|:| -2189 (-388 *7)) (|:| |coeff| (-388 *7))) "failed"))
+ (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-594 *6) "failed") (-516) *6 *6))
+ (-4 *6 (-344)) (-4 *7 (-1155 *6))
+ (-5 *2 (-2 (|:| |answer| (-545 (-388 *7))) (|:| |a0| *6)))
+ (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3396 *6) (|:| |sol?| (-110))) (-516) *6))
+ (-4 *6 (-344)) (-4 *7 (-1155 *6))
+ (-5 *2 (-2 (|:| |answer| (-545 (-388 *7))) (|:| |a0| *6)))
+ (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1023))
- (-4 *6 (-1023)) (-4 *2 (-1023)) (-5 *1 (-627 *5 *6 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-51)) (-5 *1 (-775)))))
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2189 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-344)) (-4 *7 (-1155 *6))
+ (-5 *2 (-2 (|:| |answer| (-545 (-388 *7))) (|:| |a0| *6)))
+ (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-545 *3) *3 (-1098)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1098)))
+ (-4 *3 (-266)) (-4 *3 (-584)) (-4 *3 (-975 *4)) (-4 *3 (-402 *7))
+ (-5 *4 (-1098)) (-4 *7 (-572 (-831 (-516)))) (-4 *7 (-432))
+ (-4 *7 (-827 (-516))) (-4 *7 (-795)) (-5 *2 (-545 *3))
+ (-5 *1 (-539 *7 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1098)) (-4 *4 (-432)) (-4 *4 (-795)) (-5 *1 (-539 *4 *2))
+ (-4 *2 (-266)) (-4 *2 (-402 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1098)) (-4 *4 (-523)) (-4 *4 (-795)) (-5 *1 (-539 *4 *2))
+ (-4 *2 (-402 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 *6)) (-5 *4 (-1098)) (-4 *6 (-402 *5)) (-4 *5 (-795))
+ (-5 *2 (-594 (-569 *6))) (-5 *1 (-539 *5 *6)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-569 *6))) (-5 *4 (-1098)) (-5 *2 (-569 *6))
+ (-4 *6 (-402 *5)) (-4 *5 (-795)) (-5 *1 (-539 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1091 (-528))) (-5 *1 (-881)) (-5 *3 (-528))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-288)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3))
- (-5 *1 (-1046 *3 *4 *5 *2)) (-4 *2 (-633 *3 *4 *5)))))
-(((*1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))))
+ (-12 (-5 *3 (-594 (-569 *5))) (-4 *4 (-795)) (-5 *2 (-569 *5))
+ (-5 *1 (-539 *4 *5)) (-4 *5 (-402 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-594 (-569 *5))) (-5 *3 (-1098)) (-4 *5 (-402 *4))
+ (-4 *4 (-795)) (-5 *1 (-539 *4 *5)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1098)) (-4 *5 (-13 (-523) (-975 (-516)) (-140)))
+ (-5 *2 (-2 (|:| -2189 (-388 (-887 *5))) (|:| |coeff| (-388 (-887 *5)))))
+ (-5 *1 (-536 *5)) (-5 *3 (-388 (-887 *5))))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1098)) (-5 *5 (-594 (-388 (-887 *6))))
+ (-5 *3 (-388 (-887 *6))) (-4 *6 (-13 (-523) (-975 (-516)) (-140)))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-536 *6)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-388 (-887 *4))) (-5 *3 (-1098))
+ (-4 *4 (-13 (-523) (-975 (-516)) (-140))) (-5 *1 (-536 *4)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-520))
- (-4 *3 (-888 *7 *5 *6))
+ (-12 (-5 *4 (-1098))
+ (-4 *5 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516))))
+ (-5 *2 (-545 *3)) (-5 *1 (-409 *5 *3)) (-4 *3 (-13 (-1120) (-29 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1098)) (-4 *5 (-13 (-523) (-975 (-516)) (-140)))
+ (-5 *2 (-545 (-388 (-887 *5)))) (-5 *1 (-536 *5)) (-5 *3 (-388 (-887 *5))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-516)) (-5 *1 (-535 *3)) (-4 *3 (-975 *2)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-594 (-388 *6))) (-5 *3 (-388 *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-344) (-140) (-975 (-516))))
(-5 *2
- (-2 (|:| -2564 (-717)) (|:| -1641 *3) (|:| |radicand| (-595 *3))))
- (-5 *1 (-892 *5 *6 *7 *3 *8)) (-5 *4 (-717))
- (-4 *8
- (-13 (-343)
- (-10 -8 (-15 -3031 (*3 $)) (-15 -3042 (*3 $)) (-15 -2222 ($ *3))))))))
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-534 *5 *6)))))
(((*1 *2 *3 *3)
- (-12 (-4 *3 (-288)) (-4 *3 (-162)) (-4 *4 (-353 *3))
- (-4 *5 (-353 *3)) (-5 *2 (-2 (|:| -3490 *3) (|:| -2537 *3)))
- (-5 *1 (-634 *3 *4 *5 *6)) (-4 *6 (-633 *3 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -3490 *3) (|:| -2537 *3))) (-5 *1 (-646 *3))
- (-4 *3 (-288)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-717)) (-5 *1 (-799 *2)) (-4 *2 (-162))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1091 (-528))) (-5 *1 (-881)) (-5 *3 (-528)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1127 *3)) (-4 *3 (-911)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-528)) (-4 *3 (-162)) (-4 *5 (-353 *3))
- (-4 *6 (-353 *3)) (-5 *1 (-634 *3 *5 *6 *2))
- (-4 *2 (-633 *3 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-882 *2)) (-5 *1 (-919 *2)) (-4 *2 (-981)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-595 *1)) (-4 *1 (-994 *4 *5 *6)) (-4 *4 (-981))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *5 (-793)) (-5 *2 (-110))))
- ((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *1 (-1125 *5 *6 *7 *3))
- (-4 *5 (-520)) (-4 *6 (-739)) (-4 *7 (-793)) (-4 *3 (-994 *5 *6 *7))
- (-5 *2 (-110)))))
-(((*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-288)) (-5 *1 (-646 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981))
- (-5 *2 (-765 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-789)) (-5 *1 (-1198 *3 *2)) (-4 *3 (-981)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-913 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520))
- (-5 *2 (-110)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1016 (-786 *3))) (-4 *3 (-13 (-1117) (-897) (-29 *5)))
- (-4 *5 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528))))
+ (|partial| -12 (-4 *4 (-13 (-344) (-140) (-975 (-516)))) (-4 *5 (-1155 *4))
+ (-5 *2 (-2 (|:| -2189 (-388 *5)) (|:| |coeff| (-388 *5))))
+ (-5 *1 (-534 *4 *5)) (-5 *3 (-388 *5)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-388 *4)) (-4 *4 (-1155 *3))
+ (-4 *3 (-13 (-344) (-140) (-975 (-516)))) (-5 *1 (-534 *3 *4)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1098)) (-4 *5 (-572 (-831 (-516))))
+ (-4 *5 (-827 (-516)))
+ (-4 *5 (-13 (-795) (-975 (-516)) (-432) (-593 (-516))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-533 *5 *3))
+ (-4 *3 (-584)) (-4 *3 (-13 (-27) (-1120) (-402 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1098)) (-5 *4 (-787 *2)) (-4 *2 (-1062))
+ (-4 *2 (-13 (-27) (-1120) (-402 *5))) (-4 *5 (-572 (-831 (-516))))
+ (-4 *5 (-827 (-516)))
+ (-4 *5 (-13 (-795) (-975 (-516)) (-432) (-593 (-516))))
+ (-5 *1 (-533 *5 *2)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1098)) (-4 *5 (-572 (-831 (-516))))
+ (-4 *5 (-827 (-516)))
+ (-4 *5 (-13 (-795) (-975 (-516)) (-432) (-593 (-516))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-533 *5 *3))
+ (-4 *3 (-584)) (-4 *3 (-13 (-27) (-1120) (-402 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1098)) (-4 *5 (-13 (-795) (-975 (-516)) (-432) (-593 (-516))))
+ (-5 *2 (-2 (|:| -2353 *3) (|:| |nconst| *3))) (-5 *1 (-533 *5 *3))
+ (-4 *3 (-13 (-27) (-1120) (-402 *5))))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-569 *4)) (-5 *6 (-1098)) (-4 *4 (-13 (-402 *7) (-27) (-1120)))
+ (-4 *7 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2071 (-594 *4))))
+ (-5 *1 (-532 *7 *4 *3)) (-4 *3 (-609 *4)) (-4 *3 (-1027)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-569 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1098)))
+ (-4 *2 (-13 (-402 *5) (-27) (-1120)))
+ (-4 *5 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516))))
+ (-5 *1 (-532 *5 *2 *6)) (-4 *6 (-1027)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-569 *3)) (-5 *5 (-594 *3))
+ (-4 *3 (-13 (-402 *6) (-27) (-1120)))
+ (-4 *6 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516))))
(-5 *2
- (-3 (|:| |f1| (-786 *3)) (|:| |f2| (-595 (-786 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-201 *5 *3))))
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-532 *6 *3 *7)) (-4 *7 (-1027)))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-569 *3)) (-4 *3 (-13 (-402 *5) (-27) (-1120)))
+ (-4 *5 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516))))
+ (-5 *2 (-2 (|:| -2189 *3) (|:| |coeff| *3))) (-5 *1 (-532 *5 *3 *6))
+ (-4 *6 (-1027)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-569 *3)) (-4 *3 (-13 (-402 *5) (-27) (-1120)))
+ (-4 *5 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516))))
+ (-5 *2 (-545 *3)) (-5 *1 (-532 *5 *3 *6)) (-4 *6 (-1027)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-344))
+ (-4 *7 (-1155 (-388 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2188 *3)))
+ (-5 *1 (-529 *5 *6 *7 *3)) (-4 *3 (-323 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-344))
+ (-5 *2
+ (-2 (|:| |answer| (-388 *6)) (|:| -2188 (-388 *6))
+ (|:| |specpart| (-388 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-530 *5 *6)) (-5 *3 (-388 *6)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-719)) (-5 *1 (-528)))))
+(((*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-528)))))
+(((*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-528)))))
+(((*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-528)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-528)))))
+(((*1 *2 *3) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-528)) (-5 *3 (-516)))))
+(((*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-528)))))
+(((*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-528)))))
+(((*1 *2 *3) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-528)) (-5 *3 (-516)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-594 *2)) (-5 *1 (-168 *2)) (-4 *2 (-289))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-594 (-594 *4))) (-5 *2 (-594 *4)) (-4 *4 (-289))
+ (-5 *1 (-168 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1016 (-786 *3))) (-5 *5 (-1078))
- (-4 *3 (-13 (-1117) (-897) (-29 *6)))
- (-4 *6 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528))))
+ (-12 (-5 *3 (-594 *8))
+ (-5 *4
+ (-594
+ (-2 (|:| -2071 (-637 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-637 *7)))))
+ (-5 *5 (-719)) (-4 *8 (-1155 *7)) (-4 *7 (-1155 *6)) (-4 *6 (-331))
+ (-5 *2
+ (-2 (|:| -2071 (-637 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-637 *7))))
+ (-5 *1 (-476 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-528)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-569 *4)) (-5 *6 (-1092 *4))
+ (-4 *4 (-13 (-402 *7) (-27) (-1120)))
+ (-4 *7 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2071 (-594 *4))))
+ (-5 *1 (-527 *7 *4 *3)) (-4 *3 (-609 *4)) (-4 *3 (-1027))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-569 *4)) (-5 *6 (-388 (-1092 *4)))
+ (-4 *4 (-13 (-402 *7) (-27) (-1120)))
+ (-4 *7 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2071 (-594 *4))))
+ (-5 *1 (-527 *7 *4 *3)) (-4 *3 (-609 *4)) (-4 *3 (-1027)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-569 *2))
+ (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1098))) (-5 *5 (-1092 *2))
+ (-4 *2 (-13 (-402 *6) (-27) (-1120)))
+ (-4 *6 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516))))
+ (-5 *1 (-527 *6 *2 *7)) (-4 *7 (-1027))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-569 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1098)))
+ (-5 *5 (-388 (-1092 *2))) (-4 *2 (-13 (-402 *6) (-27) (-1120)))
+ (-4 *6 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516))))
+ (-5 *1 (-527 *6 *2 *7)) (-4 *7 (-1027)))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-569 *3)) (-5 *5 (-594 *3)) (-5 *6 (-1092 *3))
+ (-4 *3 (-13 (-402 *7) (-27) (-1120)))
+ (-4 *7 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516))))
(-5 *2
- (-3 (|:| |f1| (-786 *3)) (|:| |f2| (-595 (-786 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-201 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-387 (-891 *5))) (-5 *4 (-1016 (-786 (-296 *5))))
- (-4 *5 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528))))
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-527 *7 *3 *8)) (-4 *8 (-1027))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-569 *3)) (-5 *5 (-594 *3)) (-5 *6 (-388 (-1092 *3)))
+ (-4 *3 (-13 (-402 *7) (-27) (-1120)))
+ (-4 *7 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516))))
(-5 *2
- (-3 (|:| |f1| (-786 (-296 *5))) (|:| |f2| (-595 (-786 (-296 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-202 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-387 (-891 *6))) (-5 *4 (-1016 (-786 (-296 *6))))
- (-5 *5 (-1078))
- (-4 *6 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528))))
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-527 *7 *3 *8)) (-4 *8 (-1027)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-569 *3)) (-5 *5 (-1092 *3))
+ (-4 *3 (-13 (-402 *6) (-27) (-1120)))
+ (-4 *6 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516))))
+ (-5 *2 (-2 (|:| -2189 *3) (|:| |coeff| *3))) (-5 *1 (-527 *6 *3 *7))
+ (-4 *7 (-1027))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-569 *3)) (-5 *5 (-388 (-1092 *3)))
+ (-4 *3 (-13 (-402 *6) (-27) (-1120)))
+ (-4 *6 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516))))
+ (-5 *2 (-2 (|:| -2189 *3) (|:| |coeff| *3))) (-5 *1 (-527 *6 *3 *7))
+ (-4 *7 (-1027)))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-569 *3)) (-5 *5 (-1092 *3))
+ (-4 *3 (-13 (-402 *6) (-27) (-1120)))
+ (-4 *6 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516))))
+ (-5 *2 (-545 *3)) (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1027))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-569 *3)) (-5 *5 (-388 (-1092 *3)))
+ (-4 *3 (-13 (-402 *6) (-27) (-1120)))
+ (-4 *6 (-13 (-432) (-975 (-516)) (-795) (-140) (-593 (-516))))
+ (-5 *2 (-545 *3)) (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1027)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208)))
+ (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
(-5 *2
- (-3 (|:| |f1| (-786 (-296 *6))) (|:| |f2| (-595 (-786 (-296 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-202 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1016 (-786 (-387 (-891 *5))))) (-5 *3 (-387 (-891 *5)))
- (-4 *5 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528))))
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1076 (-208)))
+ (|:| |notEvaluated| "Internal singularities not yet evaluated")))
+ (|:| -1511
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *1 (-526)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208)))
+ (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
(-5 *2
- (-3 (|:| |f1| (-786 (-296 *5))) (|:| |f2| (-595 (-786 (-296 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-202 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1016 (-786 (-387 (-891 *6))))) (-5 *5 (-1078))
- (-5 *3 (-387 (-891 *6)))
- (-4 *6 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528))))
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1076 (-208)))
+ (|:| |notEvaluated| "Internal singularities not yet evaluated")))
+ (|:| -1511
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *1 (-526)))))
+(((*1 *1 *2)
+ (-12
(-5 *2
- (-3 (|:| |f1| (-786 (-296 *6))) (|:| |f2| (-595 (-786 (-296 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-202 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1095))
- (-4 *5 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-3 *3 (-595 *3))) (-5 *1 (-408 *5 *3))
- (-4 *3 (-13 (-1117) (-897) (-29 *5)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-453 *3 *4 *5))
- (-4 *3 (-37 (-387 (-528)))) (-4 *3 (-981)) (-14 *5 *3)))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-296 (-359))) (-5 *4 (-1018 (-786 (-359))))
- (-5 *5 (-359)) (-5 *6 (-992)) (-5 *2 (-970)) (-5 *1 (-529))))
- ((*1 *2 *3) (-12 (-5 *3 (-715)) (-5 *2 (-970)) (-5 *1 (-529))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-296 (-359))) (-5 *4 (-1018 (-786 (-359))))
- (-5 *5 (-359)) (-5 *2 (-970)) (-5 *1 (-529))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-296 (-359))) (-5 *4 (-1018 (-786 (-359))))
- (-5 *5 (-359)) (-5 *2 (-970)) (-5 *1 (-529))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-296 (-359))) (-5 *4 (-1018 (-786 (-359))))
- (-5 *2 (-970)) (-5 *1 (-529))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-296 (-359))) (-5 *4 (-595 (-1018 (-786 (-359)))))
- (-5 *2 (-970)) (-5 *1 (-529))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-296 (-359))) (-5 *4 (-595 (-1018 (-786 (-359)))))
- (-5 *5 (-359)) (-5 *2 (-970)) (-5 *1 (-529))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-296 (-359))) (-5 *4 (-595 (-1018 (-786 (-359)))))
- (-5 *5 (-359)) (-5 *2 (-970)) (-5 *1 (-529))))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-296 (-359))) (-5 *4 (-595 (-1018 (-786 (-359)))))
- (-5 *5 (-359)) (-5 *6 (-992)) (-5 *2 (-970)) (-5 *1 (-529))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-296 (-359))) (-5 *4 (-1016 (-786 (-359))))
- (-5 *5 (-1078)) (-5 *2 (-970)) (-5 *1 (-529))))
+ (-594
+ (-2
+ (|:| -4139
+ (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208)))
+ (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (|:| -2131
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1076 (-208)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1511
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-526)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-526)))))
+(((*1 *1) (-5 *1 (-526))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-525 *2)) (-4 *2 (-515)))))
+(((*1 *2 *3) (-12 (-5 *2 (-386 *3)) (-5 *1 (-525 *3)) (-4 *3 (-515)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1098)) (-5 *6 (-594 (-569 *3))) (-5 *5 (-569 *3))
+ (-4 *3 (-13 (-27) (-1120) (-402 *7)))
+ (-4 *7 (-13 (-432) (-795) (-140) (-975 (-516)) (-593 (-516))))
+ (-5 *2 (-2 (|:| -2189 *3) (|:| |coeff| *3))) (-5 *1 (-524 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1098))
+ (-4 *5 (-13 (-432) (-795) (-140) (-975 (-516)) (-593 (-516))))
+ (-5 *2 (-545 *3)) (-5 *1 (-524 *5 *3))
+ (-4 *3 (-13 (-27) (-1120) (-402 *5))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1098))
+ (-4 *4 (-13 (-432) (-795) (-140) (-975 (-516)) (-593 (-516))))
+ (-5 *1 (-524 *4 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *4))))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1098)) (-5 *5 (-594 *3))
+ (-4 *3 (-13 (-27) (-1120) (-402 *6)))
+ (-4 *6 (-13 (-432) (-795) (-140) (-975 (-516)) (-593 (-516))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs| (-594 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-524 *6 *3)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1098))
+ (-4 *5 (-13 (-432) (-795) (-140) (-975 (-516)) (-593 (-516))))
+ (-5 *2 (-2 (|:| -2189 *3) (|:| |coeff| *3))) (-5 *1 (-524 *5 *3))
+ (-4 *3 (-13 (-27) (-1120) (-402 *5))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -1842 *1) (|:| -4256 *1) (|:| |associate| *1)))
+ (-4 *1 (-523)))))
+(((*1 *1 *1) (-4 *1 (-523))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-523)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-523)) (-5 *2 (-110)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-388 (-516))) (-4 *1 (-521 *3)) (-4 *3 (-13 (-385) (-1120)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1120)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1120))))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1120))))))
+(((*1 *2 *1) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1120))))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-521 *3)) (-4 *3 (-13 (-385) (-1120))) (-5 *2 (-110)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-516)) (-5 *2 (-110)) (-5 *1 (-520)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-520)))))
+(((*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-520)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-27) (-402 *4))) (-4 *4 (-13 (-795) (-523) (-975 (-516))))
+ (-4 *7 (-1155 (-388 *6))) (-5 *1 (-519 *4 *5 *6 *7 *2))
+ (-4 *2 (-323 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1155 *6)) (-4 *6 (-13 (-27) (-402 *5)))
+ (-4 *5 (-13 (-795) (-523) (-975 (-516)))) (-4 *8 (-1155 (-388 *7)))
+ (-5 *2 (-545 *3)) (-5 *1 (-519 *5 *6 *7 *8 *3)) (-4 *3 (-323 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1155 *6)) (-4 *6 (-13 (-27) (-402 *5)))
+ (-4 *5 (-13 (-795) (-523) (-975 (-516)))) (-4 *8 (-1155 (-388 *7)))
+ (-5 *2 (-545 *3)) (-5 *1 (-519 *5 *6 *7 *8 *3)) (-4 *3 (-323 *6 *7 *8)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-569 *3)) (-5 *5 (-1 (-1092 *3) (-1092 *3)))
+ (-4 *3 (-13 (-27) (-402 *6))) (-4 *6 (-13 (-795) (-523))) (-5 *2 (-545 *3))
+ (-5 *1 (-518 *6 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110)))))
+(((*1 *1 *1 *1) (-4 *1 (-515))))
+(((*1 *1 *1 *1) (-4 *1 (-515))))
+(((*1 *1 *1) (-4 *1 (-515))))
+(((*1 *1 *1) (-4 *1 (-515))))
+(((*1 *1 *1) (-4 *1 (-515))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-515))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-515))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-515))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-515))))
+(((*1 *1 *1 *1) (-4 *1 (-515))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-516) #1="failed") *5)) (-4 *5 (-984))
+ (-5 *2 (-516)) (-5 *1 (-513 *5 *3)) (-4 *3 (-1155 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-516) #1#) *4)) (-4 *4 (-984)) (-5 *2 (-516))
+ (-5 *1 (-513 *4 *3)) (-4 *3 (-1155 *4))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-296 (-359))) (-5 *4 (-1016 (-786 (-359))))
- (-5 *5 (-1095)) (-5 *2 (-970)) (-5 *1 (-529))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-343) (-140) (-972 (-528)))) (-4 *5 (-1153 *4))
- (-5 *2 (-545 (-387 *5))) (-5 *1 (-532 *4 *5)) (-5 *3 (-387 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-387 (-891 *5))) (-5 *4 (-1095)) (-4 *5 (-140))
- (-4 *5 (-13 (-431) (-972 (-528)) (-793) (-591 (-528))))
- (-5 *2 (-3 (-296 *5) (-595 (-296 *5)))) (-5 *1 (-548 *5))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-687 *3 *2)) (-4 *3 (-981)) (-4 *2 (-793))
- (-4 *3 (-37 (-387 (-528))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1095)) (-5 *1 (-891 *3)) (-4 *3 (-37 (-387 (-528))))
- (-4 *3 (-981))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-37 (-387 (-528)))) (-4 *3 (-981)) (-4 *2 (-793))
- (-5 *1 (-1048 *3 *2 *4)) (-4 *4 (-888 *3 (-500 *2) *2))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-37 (-387 (-528)))) (-4 *3 (-981))
- (-5 *1 (-1080 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1086 *3 *4 *5))
- (-4 *3 (-37 (-387 (-528)))) (-4 *3 (-981)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1092 *3 *4 *5))
- (-4 *3 (-37 (-387 (-528)))) (-4 *3 (-981)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1093 *3 *4 *5))
- (-4 *3 (-37 (-387 (-528)))) (-4 *3 (-981)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *1 (-1126 *3)) (-4 *3 (-37 (-387 (-528))))
- (-4 *3 (-981))))
- ((*1 *1 *1 *2)
- (-1463
- (-12 (-5 *2 (-1095)) (-4 *1 (-1137 *3)) (-4 *3 (-981))
- (-12 (-4 *3 (-29 (-528))) (-4 *3 (-897)) (-4 *3 (-1117))
- (-4 *3 (-37 (-387 (-528))))))
- (-12 (-5 *2 (-1095)) (-4 *1 (-1137 *3)) (-4 *3 (-981))
- (-12 (|has| *3 (-15 -2565 ((-595 *2) *3)))
- (|has| *3 (-15 -1923 (*3 *3 *2))) (-4 *3 (-37 (-387 (-528))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1137 *2)) (-4 *2 (-981)) (-4 *2 (-37 (-387 (-528))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1141 *3 *4 *5))
- (-4 *3 (-37 (-387 (-528)))) (-4 *3 (-981)) (-14 *5 *3)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1153 *2)) (-4 *2 (-981)) (-4 *2 (-37 (-387 (-528))))))
- ((*1 *1 *1 *2)
- (-1463
- (-12 (-5 *2 (-1095)) (-4 *1 (-1158 *3)) (-4 *3 (-981))
- (-12 (-4 *3 (-29 (-528))) (-4 *3 (-897)) (-4 *3 (-1117))
- (-4 *3 (-37 (-387 (-528))))))
- (-12 (-5 *2 (-1095)) (-4 *1 (-1158 *3)) (-4 *3 (-981))
- (-12 (|has| *3 (-15 -2565 ((-595 *2) *3)))
- (|has| *3 (-15 -1923 (*3 *3 *2))) (-4 *3 (-37 (-387 (-528))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1158 *2)) (-4 *2 (-981)) (-4 *2 (-37 (-387 (-528))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1162 *3 *4 *5))
- (-4 *3 (-37 (-387 (-528)))) (-4 *3 (-981)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-1463
- (-12 (-5 *2 (-1095)) (-4 *1 (-1168 *3)) (-4 *3 (-981))
- (-12 (-4 *3 (-29 (-528))) (-4 *3 (-897)) (-4 *3 (-1117))
- (-4 *3 (-37 (-387 (-528))))))
- (-12 (-5 *2 (-1095)) (-4 *1 (-1168 *3)) (-4 *3 (-981))
- (-12 (|has| *3 (-15 -2565 ((-595 *2) *3)))
- (|has| *3 (-15 -1923 (*3 *3 *2))) (-4 *3 (-37 (-387 (-528))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1168 *2)) (-4 *2 (-981)) (-4 *2 (-37 (-387 (-528))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1173 *4)) (-14 *4 (-1095)) (-5 *1 (-1169 *3 *4 *5))
- (-4 *3 (-37 (-387 (-528)))) (-4 *3 (-981)) (-14 *5 *3))))
+ (|partial| -12 (-5 *5 (-1 (-3 (-516) #1#) *4)) (-4 *4 (-984)) (-5 *2 (-516))
+ (-5 *1 (-513 *4 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1155 *3))))
+ ((*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-5 *1 (-440 *3 *2)) (-4 *2 (-1155 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-289)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-719)))
+ (-5 *1 (-509 *3 *2 *4 *5)) (-4 *2 (-1155 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-594 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-509 *4 *2 *5 *6))
+ (-4 *4 (-289)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-719))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-594 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-509 *4 *2 *5 *6))
+ (-4 *4 (-289)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-719))))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-595 (-244))) (-5 *4 (-1095))
- (-5 *1 (-243 *2)) (-4 *2 (-1131))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-595 (-244))) (-5 *4 (-1095)) (-5 *2 (-51))
- (-5 *1 (-244)))))
-(((*1 *2 *1)
- (-12
+ (-12 (-5 *3 (-594 *6)) (-5 *4 (-594 (-1098))) (-4 *6 (-344))
+ (-5 *2 (-594 (-275 (-887 *6)))) (-5 *1 (-508 *5 *6 *7)) (-4 *5 (-432))
+ (-4 *7 (-13 (-344) (-793))))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-594 (-887 *6))) (-5 *4 (-594 (-1098))) (-4 *6 (-432))
+ (-5 *2 (-594 (-594 *7))) (-5 *1 (-508 *6 *7 *5)) (-4 *7 (-344))
+ (-4 *5 (-13 (-344) (-793))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1092 *5)) (-4 *5 (-432)) (-5 *2 (-594 *6))
+ (-5 *1 (-508 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-793)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-887 *5)) (-4 *5 (-432)) (-5 *2 (-594 *6))
+ (-5 *1 (-508 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-793))))))
+(((*1 *2 *1) (-12 (-5 *2 (-50)) (-5 *1 (-505))))
+ ((*1 *2 *3) (-12 (-5 *3 (-505)) (-5 *1 (-506 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1098)) (-5 *2 (-505)) (-5 *1 (-506 *4)) (-4 *4 (-1134)))))
+(((*1 *1 *2) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-105))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-594 (-505))) (-5 *1 (-505)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-594 (-1098))) (-5 *1 (-505)))))
+(((*1 *1 *1) (-5 *1 (-505))))
+(((*1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-505)))))
+(((*1 *2 *3) (-12 (-5 *3 (-594 (-505))) (-5 *2 (-1098)) (-5 *1 (-505)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-594 (-505))) (-5 *1 (-505)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-637 *6)) (-5 *5 (-1 (-386 (-1092 *6)) (-1092 *6)))
+ (-4 *6 (-344))
(-5 *2
- (-1177
- (-2 (|:| |scaleX| (-207)) (|:| |scaleY| (-207))
- (|:| |deltaX| (-207)) (|:| |deltaY| (-207)) (|:| -3795 (-528))
- (|:| -3850 (-528)) (|:| |spline| (-528)) (|:| -1320 (-528))
- (|:| |axesColor| (-813)) (|:| -1756 (-528))
- (|:| |unitsColor| (-813)) (|:| |showing| (-528)))))
- (-5 *1 (-1178)))))
+ (-594
+ (-2 (|:| |outval| *7) (|:| |outmult| (-516))
+ (|:| |outvect| (-594 (-637 *7))))))
+ (-5 *1 (-503 *6 *7 *4)) (-4 *7 (-344)) (-4 *4 (-13 (-344) (-793))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1092 *5)) (-4 *5 (-344)) (-5 *2 (-594 *6))
+ (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-793))))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207)))
- (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207))
- (|:| |relerr| (-207))))
- (-5 *2
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1076 (-207)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2931
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-523)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-1153 *3)) (-4 *3 (-981)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1150 *4 *5)) (-5 *3 (-595 *5)) (-14 *4 (-1095))
- (-4 *5 (-343)) (-5 *1 (-862 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-595 *5)) (-4 *5 (-343)) (-5 *2 (-1091 *5))
- (-5 *1 (-862 *4 *5)) (-14 *4 (-1095)))))
+ (-12 (-5 *3 (-637 *4)) (-4 *4 (-344)) (-5 *2 (-1092 *4))
+ (-5 *1 (-503 *4 *5 *6)) (-4 *5 (-344)) (-4 *6 (-13 (-344) (-793))))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-520) (-793) (-972 (-528))))
- (-4 *5 (-410 *4)) (-5 *2 (-398 (-1091 (-387 (-528)))))
- (-5 *1 (-415 *4 *5 *3)) (-4 *3 (-1153 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-310)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1078)) (-5 *4 (-528)) (-5 *5 (-635 (-207)))
- (-5 *2 (-970)) (-5 *1 (-701)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-343) (-791)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -2783 (-398 *3))))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1153 (-159 *4))))))
-(((*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-383 *3)) (-4 *3 (-384))))
- ((*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-383 *3)) (-4 *3 (-384))))
- ((*1 *2 *2) (-12 (-5 *2 (-860)) (|has| *1 (-6 -4255)) (-4 *1 (-384))))
- ((*1 *2) (-12 (-4 *1 (-384)) (-5 *2 (-860))))
- ((*1 *2 *1) (-12 (-4 *1 (-808 *3)) (-5 *2 (-1076 (-528))))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-970)) (-5 *3 (-1095)) (-5 *1 (-176)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-717)) (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-414)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-501 *3)) (-4 *3 (-13 (-675) (-25))))))
(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4))
- (-4 *3 (-347 *4))))
- ((*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-501 *3)) (-4 *3 (-13 (-675) (-25))))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-595 *1)) (-4 *1 (-994 *4 *5 *6)) (-4 *4 (-981))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *5 (-793)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-520)) (-4 *5 (-739))
- (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-110)))))
-(((*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-865)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1095)) (-5 *5 (-595 *3))
- (-4 *3 (-13 (-27) (-1117) (-410 *6)))
- (-4 *6 (-13 (-431) (-793) (-140) (-972 (-528)) (-591 (-528))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-595 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-521 *6 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-230)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-398 (-1091 (-528)))) (-5 *1 (-175)) (-5 *3 (-528)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-595 (-528))) (-5 *1 (-940 *3)) (-14 *3 (-528)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-554 *3)) (-4 *3 (-981))))
+ (-12 (-5 *3 (-860)) (-4 *4 (-349)) (-4 *4 (-344)) (-5 *2 (-1092 *1))
+ (-4 *1 (-310 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1092 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-910 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-738))
- (-4 *5 (-793)) (-5 *2 (-110)))))
-(((*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-446))))
- ((*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-446))))
- ((*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-866)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1095)) (-5 *1 (-261)))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-717))
- (-4 *3 (-13 (-673) (-348) (-10 -7 (-15 ** (*3 *3 (-528))))))
- (-5 *1 (-228 *3)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-347 *2)) (-4 *2 (-162)) (-4 *2 (-520))))
- ((*1 *1 *1) (|partial| -4 *1 (-669))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-528)) (-5 *2 (-110)) (-5 *1 (-517)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-542)))))
-(((*1 *1) (-5 *1 (-137)))
+ (-12 (-4 *1 (-351 *3 *2)) (-4 *3 (-162)) (-4 *3 (-344)) (-4 *2 (-1155 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-595 (-244))) (-5 *2 (-1055 (-207))) (-5 *1 (-242))))
- ((*1 *1 *2) (-12 (-5 *2 (-1055 (-207))) (-5 *1 (-244)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-595 *6)) (-4 *1 (-913 *3 *4 *5 *6)) (-4 *3 (-981))
- (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5))
- (-4 *3 (-520)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-602 (-387 *6))) (-5 *4 (-1 (-595 *5) *6))
- (-4 *5 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528)))))
- (-4 *6 (-1153 *5)) (-5 *2 (-595 (-387 *6))) (-5 *1 (-758 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-602 (-387 *7))) (-5 *4 (-1 (-595 *6) *7))
- (-5 *5 (-1 (-398 *7) *7))
- (-4 *6 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528)))))
- (-4 *7 (-1153 *6)) (-5 *2 (-595 (-387 *7))) (-5 *1 (-758 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-603 *6 (-387 *6))) (-5 *4 (-1 (-595 *5) *6))
- (-4 *5 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528)))))
- (-4 *6 (-1153 *5)) (-5 *2 (-595 (-387 *6))) (-5 *1 (-758 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-603 *7 (-387 *7))) (-5 *4 (-1 (-595 *6) *7))
- (-5 *5 (-1 (-398 *7) *7))
- (-4 *6 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528)))))
- (-4 *7 (-1153 *6)) (-5 *2 (-595 (-387 *7))) (-5 *1 (-758 *6 *7))))
+ (-12 (-5 *3 (-1179 *4)) (-4 *4 (-331)) (-5 *2 (-1092 *4)) (-5 *1 (-500 *4)))))
+(((*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344))))
((*1 *2 *3)
- (-12 (-5 *3 (-602 (-387 *5))) (-4 *5 (-1153 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528)))))
- (-5 *2 (-595 (-387 *5))) (-5 *1 (-758 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-602 (-387 *6))) (-5 *4 (-1 (-398 *6) *6))
- (-4 *6 (-1153 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528)))))
- (-5 *2 (-595 (-387 *6))) (-5 *1 (-758 *5 *6))))
+ (-12 (-5 *3 (-860)) (-5 *2 (-1179 *4)) (-5 *1 (-500 *4)) (-4 *4 (-331)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1179 *4)) (-4 *4 (-399 *3)) (-4 *3 (-289)) (-4 *3 (-523))
+ (-5 *1 (-42 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-603 *5 (-387 *5))) (-4 *5 (-1153 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528)))))
- (-5 *2 (-595 (-387 *5))) (-5 *1 (-758 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-603 *6 (-387 *6))) (-5 *4 (-1 (-398 *6) *6))
- (-4 *6 (-1153 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-343) (-140) (-972 (-528)) (-972 (-387 (-528)))))
- (-5 *2 (-595 (-387 *6))) (-5 *1 (-758 *5 *6)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7))
- (-5 *2 (-595 (-2 (|:| |val| *3) (|:| -2316 *4))))
- (-5 *1 (-1000 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207)))
- (-5 *5 (-3 (|:| |fn| (-368)) (|:| |fp| (-77 LSFUN1))))
- (-5 *2 (-970)) (-5 *1 (-700)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-717)) (-4 *1 (-1153 *3)) (-4 *3 (-981)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1078)) (-5 *3 (-528)) (-5 *1 (-223))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-595 (-1078))) (-5 *3 (-528)) (-5 *4 (-1078))
- (-5 *1 (-223))))
- ((*1 *1 *1) (-5 *1 (-802)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-802))))
- ((*1 *2 *1) (-12 (-4 *1 (-1155 *2 *3)) (-4 *3 (-738)) (-4 *2 (-981)))))
-(((*1 *1 *1 *1) (-5 *1 (-127))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1025 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1023))))
+ (-12 (-5 *3 (-860)) (-4 *4 (-344)) (-5 *2 (-1179 *1)) (-4 *1 (-310 *4))))
+ ((*1 *2) (-12 (-4 *3 (-344)) (-5 *2 (-1179 *1)) (-4 *1 (-310 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-162)) (-4 *4 (-1155 *3)) (-5 *2 (-1179 *1))
+ (-4 *1 (-391 *3 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-1025 *3)) (-5 *1 (-844 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *2) (-12 (-5 *1 (-899 *2)) (-4 *2 (-513)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
- *7 *3 *8)
- (-12 (-5 *5 (-635 (-207))) (-5 *6 (-110)) (-5 *7 (-635 (-528)))
- (-5 *8 (-3 (|:| |fn| (-368)) (|:| |fp| (-63 QPHESS))))
- (-5 *3 (-528)) (-5 *4 (-207)) (-5 *2 (-970)) (-5 *1 (-700)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1078)) (-4 *1 (-344 *3 *4)) (-4 *3 (-1023))
- (-4 *4 (-1023)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-595 *6) "failed") (-528) *6 *6)) (-4 *6 (-343))
- (-4 *7 (-1153 *6))
- (-5 *2 (-2 (|:| |answer| (-545 (-387 *7))) (|:| |a0| *6)))
- (-5 *1 (-538 *6 *7)) (-5 *3 (-387 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-343)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4))
- (-5 *2 (-717)) (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-633 *4 *5 *6))))
+ (-12 (-4 *3 (-289)) (-4 *4 (-931 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *6))
+ (-5 *1 (-394 *3 *4 *5 *6)) (-4 *6 (-13 (-391 *4 *5) (-975 *4)))))
((*1 *2 *1)
- (-12 (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3))
- (-4 *5 (-353 *3)) (-4 *3 (-520)) (-5 *2 (-717))))
+ (-12 (-4 *3 (-289)) (-4 *4 (-931 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *6))
+ (-5 *1 (-396 *3 *4 *5 *6 *7)) (-4 *6 (-391 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1179 *1)) (-4 *1 (-399 *3))))
((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-4 *4 (-162)) (-4 *5 (-353 *4))
- (-4 *6 (-353 *4)) (-5 *2 (-717)) (-5 *1 (-634 *4 *5 *6 *3))
- (-4 *3 (-633 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981))
- (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-4 *5 (-520))
- (-5 *2 (-717)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-699)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *5 (-793)) (-5 *2 (-110)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-981)) (-14 *3 (-1095))
- (-14 *4 *2))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-717)) (-4 *1 (-687 *4 *5)) (-4 *4 (-981))
- (-4 *5 (-793)) (-5 *2 (-891 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-717)) (-4 *1 (-687 *4 *5)) (-4 *4 (-981))
- (-4 *5 (-793)) (-5 *2 (-891 *4))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-717)) (-4 *1 (-1168 *4)) (-4 *4 (-981))
- (-5 *2 (-891 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-717)) (-4 *1 (-1168 *4)) (-4 *4 (-981))
- (-5 *2 (-891 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-127))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4))
- (-4 *3 (-347 *4))))
- ((*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-595 (-2 (|:| |gen| *3) (|:| -2656 *4))))
- (-4 *3 (-1023)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-598 *3 *4 *5)))))
+ (-12 (-5 *3 (-860)) (-5 *2 (-1179 (-1179 *4))) (-5 *1 (-500 *4))
+ (-4 *4 (-331)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-362 *3 *4)) (-4 *3 (-981)) (-4 *4 (-1023))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1064)) (-5 *3 (-137)) (-5 *2 (-110)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-110))
- (-5 *1 (-914 *4 *5 *6 *3)) (-4 *3 (-994 *4 *5 *6)))))
-(((*1 *1) (-5 *1 (-1178))))
-(((*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1023)))))
-(((*1 *1 *1) (-5 *1 (-207)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095)))
- (-14 *3 (-595 (-1095))) (-4 *4 (-367))))
- ((*1 *1 *1) (-5 *1 (-359))) ((*1 *1) (-5 *1 (-359))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-635 (-207))) (-5 *4 (-528)) (-5 *2 (-970))
- (-5 *1 (-703)))))
+ (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-110))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1092 *4)) (-4 *4 (-331)) (-5 *2 (-110)) (-5 *1 (-337 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1179 *4)) (-4 *4 (-331)) (-5 *2 (-110)) (-5 *1 (-500 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-860))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1179 *4)) (-4 *4 (-331)) (-5 *2 (-860)) (-5 *1 (-500 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1179 *4)) (-5 *3 (-516)) (-4 *4 (-331)) (-5 *1 (-500 *4)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1045)) (-4 *4 (-331)) (-5 *1 (-500 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1179 *4)) (-5 *3 (-719)) (-4 *4 (-331)) (-5 *1 (-500 *4)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1179 *5)) (-5 *3 (-719)) (-5 *4 (-1045)) (-4 *5 (-331))
+ (-5 *1 (-500 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1091 *7)) (-4 *7 (-888 *6 *4 *5)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *6 (-981)) (-5 *2 (-1091 *6))
- (-5 *1 (-301 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
+ (-12 (-5 *3 (-719)) (-5 *2 (-1092 *4)) (-5 *1 (-500 *4)) (-4 *4 (-331)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-860)) (-5 *2 (-1091 *4)) (-5 *1 (-337 *4))
- (-4 *4 (-329)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1023)) (-5 *1 (-89 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *5 (-1078))
- (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-80 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-970))
- (-5 *1 (-697)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-717)) (-5 *1 (-728 *3)) (-4 *3 (-981))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-901 *3 *2)) (-4 *2 (-128)) (-4 *3 (-520))
- (-4 *3 (-981)) (-4 *2 (-738))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-717)) (-5 *1 (-1091 *3)) (-4 *3 (-981))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-908)) (-4 *2 (-128)) (-5 *1 (-1097 *3)) (-4 *3 (-520))
- (-4 *3 (-981))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-717)) (-5 *1 (-1150 *4 *3)) (-14 *4 (-1095))
- (-4 *3 (-981)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-717)) (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-981))
- (-4 *4 (-739)) (-4 *5 (-793)) (-4 *3 (-520)))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-343)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 (-387 *3)))
- (-4 *1 (-315 *4 *3 *5 *2)) (-4 *2 (-322 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-528)) (-4 *2 (-343)) (-4 *4 (-1153 *2))
- (-4 *5 (-1153 (-387 *4))) (-4 *1 (-315 *2 *4 *5 *6))
- (-4 *6 (-322 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-343)) (-4 *3 (-1153 *2)) (-4 *4 (-1153 (-387 *3)))
- (-4 *1 (-315 *2 *3 *4 *5)) (-4 *5 (-322 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-343)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4)))
- (-4 *1 (-315 *3 *4 *5 *2)) (-4 *2 (-322 *3 *4 *5))))
+ (-12 (-5 *3 (-1179 *4)) (-4 *4 (-331)) (-5 *2 (-1092 *4)) (-5 *1 (-500 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1179 (-594 (-2 (|:| -3681 *4) (|:| -2426 (-1045))))))
+ (-4 *4 (-331)) (-5 *2 (-1185)) (-5 *1 (-500 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-344)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3))
+ (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-634 *3 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1134)) (-5 *1 (-308 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-393 *4 (-387 *4) *5 *6)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-387 *4))) (-4 *6 (-322 *3 *4 *5)) (-4 *3 (-343))
- (-4 *1 (-315 *3 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-238)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528)))))))
- (-5 *2 (-595 *4)) (-5 *1 (-1050 *3 *4)) (-4 *3 (-1153 *4))))
- ((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528)))))))
- (-5 *2 (-595 *3)) (-5 *1 (-1050 *4 *3)) (-4 *4 (-1153 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-717)) (-5 *5 (-595 *3)) (-4 *3 (-288)) (-4 *6 (-793))
- (-4 *7 (-739)) (-5 *2 (-110)) (-5 *1 (-578 *6 *7 *3 *8))
- (-4 *8 (-888 *3 *7 *6)))))
-(((*1 *1 *1) (-12 (-4 *1 (-226 *2)) (-4 *2 (-1131)))))
+ (-12 (-5 *2 (-594 *3)) (-4 *3 (-1134)) (-5 *1 (-493 *3 *4)) (-14 *4 (-516)))))
+(((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-308 *3)) (-4 *3 (-1134))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-719)) (-5 *1 (-493 *3 *4)) (-4 *3 (-1134)) (-14 *4 (-516)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-308 *3)) (-4 *3 (-1134))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-516)) (-5 *1 (-493 *3 *4)) (-4 *3 (-1134)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-308 *3)) (-4 *3 (-1134))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-493 *3 *4)) (-4 *3 (-1134)) (-14 *4 (-516)))))
+(((*1 *2 *1) (-12 (-4 *1 (-486 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-795)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-516)) (-5 *1 (-131 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-719))
+ (-4 *5 (-162))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-516)) (-5 *1 (-131 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-719))
+ (-4 *5 (-162))))
+ ((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-482 (-388 (-516)) (-222 *5 (-719)) (-806 *4) (-230 *4 (-388 (-516)))))
+ (-5 *3 (-594 (-806 *4))) (-14 *4 (-594 (-1098))) (-14 *5 (-719))
+ (-5 *1 (-483 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-981)) (-4 *3 (-1153 *4)) (-4 *2 (-1168 *4))
- (-5 *1 (-1171 *4 *3 *5 *2)) (-4 *5 (-605 *3)))))
+ (-12 (-14 *4 (-594 (-1098))) (-14 *5 (-719))
+ (-5 *2
+ (-594
+ (-482 (-388 (-516)) (-222 *5 (-719)) (-806 *4) (-230 *4 (-388 (-516))))))
+ (-5 *1 (-483 *4 *5))
+ (-5 *3
+ (-482 (-388 (-516)) (-222 *5 (-719)) (-806 *4) (-230 *4 (-388 (-516))))))))
(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-343) (-791))) (-5 *1 (-169 *2 *3))
- (-4 *3 (-1153 (-159 *2))))))
-(((*1 *1 *1) (-12 (-4 *1 (-605 *2)) (-4 *2 (-981)) (-4 *2 (-343)))))
+ (-12
+ (-5 *2
+ (-482 (-388 (-516)) (-222 *4 (-719)) (-806 *3) (-230 *3 (-388 (-516)))))
+ (-14 *3 (-594 (-1098))) (-14 *4 (-719)) (-5 *1 (-483 *3 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-595 (-882 (-207)))))
- (-5 *2 (-595 (-1018 (-207)))) (-5 *1 (-867)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1078)) (-5 *4 (-528)) (-5 *5 (-635 (-207)))
- (-5 *2 (-970)) (-5 *1 (-701)))))
-(((*1 *1 *1 *1) (-4 *1 (-513))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1023)) (-5 *1 (-936 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-207)) (-5 *1 (-768)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-520) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1095))
- (-4 *4 (-13 (-520) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *1 (-258 *4 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *4)))))
- ((*1 *1 *1) (-5 *1 (-359)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7))
- (-5 *2 (-595 (-2 (|:| |val| *3) (|:| -2316 *4))))
- (-5 *1 (-722 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4264)) (-4 *1 (-217 *3))
- (-4 *3 (-1023))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-263 *3)) (-4 *3 (-1131)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-803))))
- ((*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1182)) (-5 *1 (-803))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1078)) (-5 *4 (-802)) (-5 *2 (-1182)) (-5 *1 (-803))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-528)) (-5 *2 (-1182)) (-5 *1 (-1076 *4))
- (-4 *4 (-1023)) (-4 *4 (-1131)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-948)) (-5 *2 (-802)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2))
- (-4 *2 (-410 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-525)))))
+ (-12
+ (-5 *3
+ (-482 (-388 (-516)) (-222 *5 (-719)) (-806 *4) (-230 *4 (-388 (-516)))))
+ (-14 *4 (-594 (-1098))) (-14 *5 (-719)) (-5 *2 (-110))
+ (-5 *1 (-483 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-229 *4 *5)) (-14 *4 (-595 (-1095))) (-4 *5 (-431))
- (-5 *2 (-459 *4 *5)) (-5 *1 (-583 *4 *5)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4265)) (-4 *1 (-226 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-767)))))
+ (-12
+ (-5 *3
+ (-482 (-388 (-516)) (-222 *5 (-719)) (-806 *4) (-230 *4 (-388 (-516)))))
+ (-14 *4 (-594 (-1098))) (-14 *5 (-719)) (-5 *2 (-110))
+ (-5 *1 (-483 *4 *5)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-913 *4 *5 *6 *3)) (-4 *4 (-981)) (-4 *5 (-739))
- (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-4 *4 (-520))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-595 (-1095))) (-4 *2 (-162))
- (-4 *4 (-220 (-2138 *5) (-717)))
- (-14 *6
- (-1 (-110) (-2 (|:| -3108 *3) (|:| -2564 *4))
- (-2 (|:| -3108 *3) (|:| -2564 *4))))
- (-5 *1 (-440 *5 *2 *3 *4 *6 *7)) (-4 *3 (-793))
- (-4 *7 (-888 *2 *4 (-804 *5))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1139 *3 *2)) (-4 *3 (-981)) (-4 *2 (-1168 *3)))))
-(((*1 *2)
- (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-387 *4))) (-5 *2 (-110)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-717)) (-4 *4 (-13 (-520) (-140)))
- (-5 *1 (-1147 *4 *2)) (-4 *2 (-1153 *4)))))
+ (-12 (-4 *4 (-344)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
+ (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-891 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-568 *5)) (-4 *5 (-410 *4)) (-4 *4 (-972 (-528)))
- (-4 *4 (-13 (-793) (-520))) (-5 *2 (-1091 *5)) (-5 *1 (-31 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-568 *1)) (-4 *1 (-981)) (-4 *1 (-283))
- (-5 *2 (-1091 *1)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-595 *2)) (-4 *2 (-888 *4 *5 *6)) (-4 *4 (-288))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *1 (-426 *4 *5 *6 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-882 (-207)) (-207) (-207)))
- (-5 *3 (-1 (-207) (-207) (-207) (-207))) (-5 *1 (-236)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-595 *8)) (-5 *4 (-595 (-831 *6)))
- (-5 *5 (-1 (-828 *6 *8) *8 (-831 *6) (-828 *6 *8))) (-4 *6 (-1023))
- (-4 *8 (-13 (-981) (-570 (-831 *6)) (-972 *7))) (-5 *2 (-828 *6 *8))
- (-4 *7 (-13 (-981) (-793))) (-5 *1 (-880 *6 *7 *8)))))
+ (-12 (-5 *3 (-208)) (-5 *2 (-110)) (-5 *1 (-284 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1017 (-787 (-208)))) (-5 *3 (-208)) (-5 *2 (-110))
+ (-5 *1 (-285))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-891 *3 *4 *5)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4264)) (-4 *1 (-467 *4))
- (-4 *4 (-1131)) (-5 *2 (-110)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1175 *2)) (-4 *2 (-1131)) (-4 *2 (-938))
- (-4 *2 (-981)))))
+ (-12 (-4 *4 (-344)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
+ (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-891 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1078)) (|:| -3814 (-1078))))
- (-5 *1 (-768)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-343)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-568 *3)) (-5 *5 (-1091 *3))
- (-4 *3 (-13 (-410 *6) (-27) (-1117)))
- (-4 *6 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528))))
- (-5 *2 (-2 (|:| -1497 *3) (|:| |coeff| *3)))
- (-5 *1 (-524 *6 *3 *7)) (-4 *7 (-1023))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-568 *3)) (-5 *5 (-387 (-1091 *3)))
- (-4 *3 (-13 (-410 *6) (-27) (-1117)))
- (-4 *6 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528))))
- (-5 *2 (-2 (|:| -1497 *3) (|:| |coeff| *3)))
- (-5 *1 (-524 *6 *3 *7)) (-4 *7 (-1023)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-528)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-398 *4)) (-4 *4 (-520)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-913 *3 *4 *2 *5)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *2 (-793)) (-4 *5 (-994 *3 *4 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-520)) (-5 *2 (-110)))))
-(((*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-1009 *3)) (-4 *3 (-129)))))
-(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4265)) (-4 *4 (-343)) (-4 *5 (-353 *4))
- (-4 *6 (-353 *4)) (-5 *2 (-595 *6)) (-5 *1 (-495 *4 *5 *6 *3))
- (-4 *3 (-633 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (|has| *9 (-6 -4265)) (-4 *4 (-520)) (-4 *5 (-353 *4))
- (-4 *6 (-353 *4)) (-4 *7 (-929 *4)) (-4 *8 (-353 *7))
- (-4 *9 (-353 *7)) (-5 *2 (-595 *6))
- (-5 *1 (-496 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-633 *4 *5 *6))
- (-4 *10 (-633 *7 *8 *9))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3))
- (-4 *5 (-353 *3)) (-4 *3 (-520)) (-5 *2 (-595 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-4 *4 (-162)) (-4 *5 (-353 *4))
- (-4 *6 (-353 *4)) (-5 *2 (-595 *6)) (-5 *1 (-634 *4 *5 *6 *3))
- (-4 *3 (-633 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981))
- (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-4 *5 (-520))
- (-5 *2 (-595 *7)))))
+ (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-891 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-594 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741))
+ (-5 *2 (-110)) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-891 *4 *5 *6)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-595 (-528))) (-5 *1 (-229 *3 *4))
- (-14 *3 (-595 (-1095))) (-4 *4 (-981))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-595 (-528))) (-14 *3 (-595 (-1095)))
- (-5 *1 (-433 *3 *4 *5)) (-4 *4 (-981))
- (-4 *5 (-220 (-2138 *3) (-717)))))
+ (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *2))
+ (-4 *2 (-891 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5))
+ (-4 *5 (-891 *2 *3 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-594 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741))
+ (-5 *2
+ (-2 (|:| |mval| (-637 *4)) (|:| |invmval| (-637 *4))
+ (|:| |genIdeal| (-482 *4 *5 *6 *7))))
+ (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-891 *4 *5 *6)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |mval| (-637 *3)) (|:| |invmval| (-637 *3))
+ (|:| |genIdeal| (-482 *3 *4 *5 *6))))
+ (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6))
+ (-4 *6 (-891 *3 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5))
+ (-4 *5 (-891 *2 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4))) (-4 *6 (-323 *3 *4 *5))
+ (-5 *2 (-394 *4 (-388 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1179 *6)) (-4 *6 (-13 (-391 *4 *5) (-975 *4)))
+ (-4 *4 (-931 *3)) (-4 *5 (-1155 *4)) (-4 *3 (-289))
+ (-5 *1 (-394 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-594 *6)) (-4 *6 (-891 *3 *4 *5)) (-4 *3 (-344)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-594 *6)) (-4 *6 (-891 *3 *4 *5)) (-4 *3 (-344)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-891 *3 *4 *5)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-594 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741))
+ (-5 *1 (-482 *4 *5 *6 *2)) (-4 *2 (-891 *4 *5 *6))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-595 (-528))) (-5 *1 (-459 *3 *4))
- (-14 *3 (-595 (-1095))) (-4 *4 (-981)))))
+ (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *2))
+ (-4 *2 (-891 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1153 (-528))))))
+ (-12 (-5 *3 (-594 *7)) (-4 *7 (-891 *4 *5 *6)) (-4 *6 (-572 (-1098)))
+ (-4 *4 (-344)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-5 *2 (-1088 (-594 (-887 *4)) (-594 (-275 (-887 *4)))))
+ (-5 *1 (-482 *4 *5 *6 *7)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-860)) (-5 *2 (-1185)) (-5 *1 (-198 *4))
+ (-4 *4
+ (-13 (-795)
+ (-10 -8 (-15 -4078 ((-1081) $ (-1098))) (-15 -3899 (*2 $))
+ (-15 -2037 (*2 $)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1185)) (-5 *1 (-198 *3))
+ (-4 *3
+ (-13 (-795)
+ (-10 -8 (-15 -4078 ((-1081) $ (-1098))) (-15 -3899 (*2 $))
+ (-15 -2037 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-480)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-984)) (-4 *7 (-984)) (-4 *6 (-1155 *5))
+ (-5 *2 (-1092 (-1092 *7))) (-5 *1 (-479 *5 *6 *4 *7)) (-4 *4 (-1155 *6)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-637 (-1092 *8)))
+ (-4 *5 (-984)) (-4 *8 (-984)) (-4 *6 (-1155 *5)) (-5 *2 (-637 *6))
+ (-5 *1 (-479 *5 *6 *7 *8)) (-4 *7 (-1155 *6)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1092 *7))
+ (-4 *5 (-984)) (-4 *7 (-984)) (-4 *2 (-1155 *5)) (-5 *1 (-479 *5 *2 *6 *7))
+ (-4 *6 (-1155 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1092 *7)) (-4 *5 (-984)) (-4 *7 (-984))
+ (-4 *2 (-1155 *5)) (-5 *1 (-479 *5 *2 *6 *7)) (-4 *6 (-1155 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-984)) (-4 *7 (-984)) (-4 *4 (-1155 *5))
+ (-5 *2 (-1092 *7)) (-5 *1 (-479 *5 *4 *6 *7)) (-4 *6 (-1155 *4)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -2071 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3))))
+ (-4 *3 (-13 (-289) (-10 -8 (-15 -4245 ((-386 $) $))))) (-4 *4 (-1155 *3))
+ (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-391 *3 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-637 *3)) (-4 *3 (-13 (-289) (-10 -8 (-15 -4245 ((-386 $) $)))))
+ (-4 *4 (-1155 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-391 *3 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-637 *3)) (-4 *3 (-13 (-289) (-10 -8 (-15 -4245 ((-386 $) $)))))
+ (-4 *4 (-1155 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-391 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-637 *3)) (-4 *3 (-13 (-289) (-10 -8 (-15 -4245 ((-386 $) $)))))
+ (-4 *4 (-1155 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-391 *3 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-719)) (-4 *3 (-13 (-289) (-10 -8 (-15 -4245 ((-386 $) $)))))
+ (-4 *4 (-1155 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-391 *3 *4)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-637 *2)) (-5 *4 (-516))
+ (-4 *2 (-13 (-289) (-10 -8 (-15 -4245 ((-386 $) $))))) (-4 *5 (-1155 *2))
+ (-5 *1 (-477 *2 *5 *6)) (-4 *6 (-391 *2 *5)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-637 *2)) (-5 *4 (-719))
+ (-4 *2 (-13 (-289) (-10 -8 (-15 -4245 ((-386 $) $))))) (-4 *5 (-1155 *2))
+ (-5 *1 (-477 *2 *5 *6)) (-4 *6 (-391 *2 *5)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-719)) (-4 *5 (-331)) (-4 *6 (-1155 *5))
+ (-5 *2
+ (-594
+ (-2 (|:| -2071 (-637 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-637 *6)))))
+ (-5 *1 (-476 *5 *6 *7))
+ (-5 *3
+ (-2 (|:| -2071 (-637 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-637 *6))))
+ (-4 *7 (-1155 *6)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-3 (|:| |nullBranch| "null")
- (|:| |assignmentBranch|
- (-2 (|:| |var| (-1095))
- (|:| |arrayIndex| (-595 (-891 (-528))))
- (|:| |rand|
- (-2 (|:| |ints2Floats?| (-110)) (|:| -2036 (-802))))))
- (|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1095)) (|:| |rand| (-802))
- (|:| |ints2Floats?| (-110))))
- (|:| |conditionalBranch|
- (-2 (|:| |switch| (-1094)) (|:| |thenClause| (-310))
- (|:| |elseClause| (-310))))
- (|:| |returnBranch|
- (-2 (|:| -1972 (-110))
- (|:| -3327
- (-2 (|:| |ints2Floats?| (-110)) (|:| -2036 (-802))))))
- (|:| |blockBranch| (-595 (-310)))
- (|:| |commentBranch| (-595 (-1078))) (|:| |callBranch| (-1078))
- (|:| |forBranch|
- (-2 (|:| -2931 (-1016 (-891 (-528))))
- (|:| |span| (-891 (-528))) (|:| -3822 (-310))))
- (|:| |labelBranch| (-1042))
- (|:| |loopBranch| (-2 (|:| |switch| (-1094)) (|:| -3822 (-310))))
- (|:| |commonBranch|
- (-2 (|:| -3814 (-1095)) (|:| |contents| (-595 (-1095)))))
- (|:| |printBranch| (-595 (-802)))))
- (-5 *1 (-310)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-595 (-1091 (-528)))) (-5 *1 (-175)) (-5 *3 (-528)))))
+ (-594
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-516)))))
+ (-5 *1 (-386 *3)) (-4 *3 (-523))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-719)) (-4 *3 (-331)) (-4 *5 (-1155 *3))
+ (-5 *2 (-594 (-1092 *3))) (-5 *1 (-476 *3 *5 *6)) (-4 *6 (-1155 *5)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-473)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-469)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1134))
+ (-4 *4 (-353 *3)) (-4 *5 (-353 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4270)) (-4 *1 (-468 *3))
+ (-4 *3 (-1134)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4269)) (-4 *1 (-468 *4))
+ (-4 *4 (-1134)) (-5 *2 (-110)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4269)) (-4 *1 (-468 *4))
+ (-4 *4 (-1134)) (-5 *2 (-110)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4269)) (-4 *1 (-468 *3)) (-4 *3 (-1134)) (-4 *3 (-1027))
+ (-5 *2 (-719))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4269)) (-4 *1 (-468 *4))
+ (-4 *4 (-1134)) (-5 *2 (-719)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-353 *3))
+ (-4 *5 (-353 *3)) (-5 *2 (-594 *3))))
+ ((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4269)) (-4 *1 (-468 *3)) (-4 *3 (-1134))
+ (-5 *2 (-594 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-466)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-516))) (-5 *2 (-516)) (-5 *1 (-465 *4))
+ (-4 *4 (-1155 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1155 (-516))) (-5 *1 (-465 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1155 (-516))) (-5 *1 (-465 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-594 *2)) (-5 *1 (-465 *2)) (-4 *2 (-1155 (-516))))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-795)) (-5 *1 (-463 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 (-1098))) (-5 *1 (-462)))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-1098))) (-5 *1 (-48))))
+ ((*1 *2 *1) (-12 (-5 *2 (-594 (-1098))) (-5 *1 (-462)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-594 (-516))) (-5 *1 (-230 *3 *4)) (-14 *3 (-594 (-1098)))
+ (-4 *4 (-984))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-594 (-516))) (-14 *3 (-594 (-1098))) (-5 *1 (-434 *3 *4 *5))
+ (-4 *4 (-984)) (-4 *5 (-221 (-4232 *3) (-719)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-594 (-516))) (-5 *1 (-460 *3 *4)) (-14 *3 (-594 (-1098)))
+ (-4 *4 (-984)))))
+(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-516)) (-5 *2 (-110)) (-5 *1 (-459)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-459)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-594 (-806 *5))) (-14 *5 (-594 (-1098))) (-4 *6 (-432))
+ (-5 *2 (-2 (|:| |dpolys| (-594 (-230 *5 *6))) (|:| |coords| (-594 (-516)))))
+ (-5 *1 (-451 *5 *6 *7)) (-5 *3 (-594 (-230 *5 *6))) (-4 *7 (-432)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-594 (-460 *4 *5))) (-5 *3 (-594 (-806 *4)))
+ (-14 *4 (-594 (-1098))) (-4 *5 (-432)) (-5 *1 (-451 *4 *5 *6))
+ (-4 *6 (-432)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-594 (-806 *5))) (-14 *5 (-594 (-1098))) (-4 *6 (-432))
+ (-5 *2 (-594 (-594 (-230 *5 *6)))) (-5 *1 (-451 *5 *6 *7))
+ (-5 *3 (-594 (-230 *5 *6))) (-4 *7 (-432)))))
+(((*1 *1) (-5 *1 (-448))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-594 (-594 (-884 (-208))))) (-5 *3 (-594 (-815)))
+ (-5 *4 (-594 (-860))) (-5 *5 (-594 (-243))) (-5 *1 (-448))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-594 (-594 (-884 (-208))))) (-5 *3 (-594 (-815)))
+ (-5 *4 (-594 (-860))) (-5 *1 (-448))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 (-594 (-884 (-208))))) (-5 *1 (-448))))
+ ((*1 *1 *1) (-5 *1 (-448))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-594 (-884 (-208))))) (-5 *1 (-448)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 (-1017 (-359)))) (-5 *1 (-243))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-594 (-1017 (-359)))) (-5 *3 (-594 (-243))) (-5 *1 (-244))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-594 (-1017 (-359)))) (-5 *1 (-448))))
+ ((*1 *2 *1) (-12 (-5 *2 (-594 (-1017 (-359)))) (-5 *1 (-448)))))
+(((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-884 (-208))) (-5 *4 (-815)) (-5 *5 (-860)) (-5 *2 (-1185))
+ (-5 *1 (-448))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-884 (-208))) (-5 *2 (-1185)) (-5 *1 (-448))))
+ ((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-594 (-884 (-208)))) (-5 *4 (-815)) (-5 *5 (-860))
+ (-5 *2 (-1185)) (-5 *1 (-448)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-884 (-208))) (-5 *2 (-1185)) (-5 *1 (-448)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-594 (-594 (-884 (-208))))) (-5 *3 (-594 (-815)))
+ (-5 *1 (-448)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-594 (-884 (-208))))) (-5 *2 (-594 (-208)))
+ (-5 *1 (-448)))))
+(((*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-243))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *3 (-594 (-243))) (-5 *1 (-244))))
+ ((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447))))
+ ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))))
+(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447))))
+ ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))))
+(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447))))
+ ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-860)) (-5 *2 (-1179 (-1179 (-516)))) (-5 *1 (-446)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1179 (-1179 (-516)))) (-5 *3 (-860)) (-5 *1 (-446)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-795)) (-4 *5 (-741)) (-4 *6 (-523))
+ (-4 *7 (-891 *6 *5 *3)) (-5 *1 (-442 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-975 (-388 (-516))) (-344)
+ (-10 -8 (-15 -4233 ($ *7)) (-15 -3262 (*7 $)) (-15 -3261 (*7 $))))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023)) (-4 *4 (-1023))
- (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-110)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1095)) (-5 *2 (-359)) (-5 *1 (-992)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-110))
- (-5 *2 (-970)) (-5 *1 (-700)))))
+ (-12 (-14 *3 (-594 (-1098))) (-4 *4 (-162))
+ (-14 *6
+ (-1 (-110) (-2 (|:| -2426 *5) (|:| -2427 *2))
+ (-2 (|:| -2426 *5) (|:| -2427 *2))))
+ (-4 *2 (-221 (-4232 *3) (-719))) (-5 *1 (-441 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-795)) (-4 *7 (-891 *4 *2 (-806 *3))))))
(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-791) (-343))) (-5 *1 (-990 *2 *3))
- (-4 *3 (-1153 *2)))))
-(((*1 *1 *1) (-4 *1 (-581)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-582 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938) (-1117))))))
+ (-12 (-14 *3 (-594 (-1098))) (-4 *4 (-162)) (-4 *5 (-221 (-4232 *3) (-719)))
+ (-14 *6
+ (-1 (-110) (-2 (|:| -2426 *2) (|:| -2427 *5))
+ (-2 (|:| -2426 *2) (|:| -2427 *5))))
+ (-4 *2 (-795)) (-5 *1 (-441 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-891 *4 *5 (-806 *3))))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-594 (-1098))) (-4 *2 (-162)) (-4 *4 (-221 (-4232 *5) (-719)))
+ (-14 *6
+ (-1 (-110) (-2 (|:| -2426 *3) (|:| -2427 *4))
+ (-2 (|:| -2426 *3) (|:| -2427 *4))))
+ (-5 *1 (-441 *5 *2 *3 *4 *6 *7)) (-4 *3 (-795))
+ (-4 *7 (-891 *2 *4 (-806 *5))))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-594 (-1098))) (-4 *2 (-162)) (-4 *3 (-221 (-4232 *4) (-719)))
+ (-14 *6
+ (-1 (-110) (-2 (|:| -2426 *5) (|:| -2427 *3))
+ (-2 (|:| -2426 *5) (|:| -2427 *3))))
+ (-5 *1 (-441 *4 *2 *5 *3 *6 *7)) (-4 *5 (-795))
+ (-4 *7 (-891 *2 *3 (-806 *4))))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-594 *3)) (-5 *5 (-860)) (-4 *3 (-1155 *4)) (-4 *4 (-289))
+ (-5 *1 (-440 *4 *3)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-860)) (-4 *5 (-289)) (-4 *3 (-1155 *5))
+ (-5 *2 (-2 (|:| |plist| (-594 *3)) (|:| |modulo| *5))) (-5 *1 (-440 *5 *3))
+ (-5 *4 (-594 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1091 *7)) (-4 *5 (-981))
- (-4 *7 (-981)) (-4 *2 (-1153 *5)) (-5 *1 (-477 *5 *2 *6 *7))
- (-4 *6 (-1153 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-981)) (-4 *7 (-981))
- (-4 *4 (-1153 *5)) (-5 *2 (-1091 *7)) (-5 *1 (-477 *5 *4 *6 *7))
- (-4 *6 (-1153 *4)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-528))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-717)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-739)) (-4 *4 (-888 *5 *6 *7)) (-4 *5 (-431)) (-4 *7 (-793))
- (-5 *1 (-428 *5 *6 *7 *4)))))
+ (-12 (-5 *4 (-594 *5)) (-4 *5 (-1155 *3)) (-4 *3 (-289)) (-5 *2 (-110))
+ (-5 *1 (-435 *3 *5)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1179 (-594 *3))) (-4 *4 (-289)) (-5 *2 (-594 *3))
+ (-5 *1 (-435 *4 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-719)) (-4 *4 (-289)) (-4 *6 (-1155 *4))
+ (-5 *2 (-1179 (-594 *6))) (-5 *1 (-435 *4 *6)) (-5 *5 (-594 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-594 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-289)) (-5 *2 (-719))
+ (-5 *1 (-435 *5 *3)))))
(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -2398 (-595 *3)) (|:| -1482 (-595 *3))))
- (-5 *1 (-1132 *3)) (-4 *3 (-1023)))))
+ (|partial| -12 (-4 *3 (-523)) (-4 *3 (-162))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2071 (-594 *1)))) (-4 *1 (-348 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-433 *3 *4 *5 *6))
+ (|:| -2071 (-594 (-433 *3 *4 *5 *6)))))
+ (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-860))
+ (-14 *5 (-594 (-1098))) (-14 *6 (-1179 (-637 *3))))))
(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4))
- (-4 *3 (-347 *4))))
- ((*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-793)))))
+ (|partial| -12 (-4 *3 (-523)) (-4 *3 (-162))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2071 (-594 *1)))) (-4 *1 (-348 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-433 *3 *4 *5 *6))
+ (|:| -2071 (-594 (-433 *3 *4 *5 *6)))))
+ (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-860))
+ (-14 *5 (-594 (-1098))) (-14 *6 (-1179 (-637 *3))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179 (-1098))) (-5 *3 (-1179 (-433 *4 *5 *6 *7)))
+ (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-860))
+ (-14 *6 (-594 (-1098))) (-14 *7 (-1179 (-637 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-1179 (-433 *4 *5 *6 *7)))
+ (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-860)) (-14 *6 (-594 *2))
+ (-14 *7 (-1179 (-637 *4)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1179 (-433 *3 *4 *5 *6))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1179 (-637 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1179 (-1098))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162))
+ (-14 *4 (-860)) (-14 *5 (-594 (-1098))) (-14 *6 (-1179 (-637 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1098)) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162))
+ (-14 *4 (-860)) (-14 *5 (-594 *2)) (-14 *6 (-1179 (-637 *3)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-433 *2 *3 *4 *5)) (-4 *2 (-162)) (-14 *3 (-860))
+ (-14 *4 (-594 (-1098))) (-14 *5 (-1179 (-637 *2))))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-1092 (-887 *4))) (-5 *1 (-398 *3 *4))
+ (-4 *3 (-399 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-399 *3)) (-4 *3 (-162)) (-4 *3 (-344))
+ (-5 *2 (-1092 (-887 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1092 (-388 (-887 *3)))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1179 (-637 *3))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-513))
- (-5 *2 (-387 (-528)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-387 (-528))) (-5 *1 (-398 *3)) (-4 *3 (-513))
- (-4 *3 (-520))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-513)) (-5 *2 (-387 (-528)))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-743 *3)) (-4 *3 (-162)) (-4 *3 (-513))
- (-5 *2 (-387 (-528)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-387 (-528))) (-5 *1 (-779 *3)) (-4 *3 (-513))
- (-4 *3 (-1023))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-387 (-528))) (-5 *1 (-786 *3)) (-4 *3 (-513))
- (-4 *3 (-1023))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-933 *3)) (-4 *3 (-162)) (-4 *3 (-513))
- (-5 *2 (-387 (-528)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-387 (-528))) (-5 *1 (-944 *3))
- (-4 *3 (-972 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1177 *4)) (-4 *4 (-981)) (-4 *2 (-1153 *4))
- (-5 *1 (-423 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-387 (-1091 (-296 *5)))) (-5 *3 (-1177 (-296 *5)))
- (-5 *4 (-528)) (-4 *5 (-13 (-520) (-793))) (-5 *1 (-1052 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1179))))
- ((*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-1179)))))
+ (-12 (-5 *2 (-1092 (-388 (-887 *3)))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1179 (-637 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-388 (-887 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523))
+ (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1179 (-637 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-388 (-887 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523))
+ (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1179 (-637 *3))))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-1092 (-887 *4))) (-5 *1 (-398 *3 *4))
+ (-4 *3 (-399 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-399 *3)) (-4 *3 (-162)) (-4 *3 (-344))
+ (-5 *2 (-1092 (-887 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1092 (-388 (-887 *3)))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1179 (-637 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1092 (-388 (-887 *3)))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1179 (-637 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-388 (-887 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523))
+ (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1179 (-637 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-388 (-887 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523))
+ (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1179 (-637 *3))))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1606 *3) (|:| |coef1| (-728 *3))))
- (-5 *1 (-728 *3)) (-4 *3 (-520)) (-4 *3 (-981)))))
-(((*1 *2) (-12 (-5 *2 (-813)) (-5 *1 (-1180))))
- ((*1 *2 *2) (-12 (-5 *2 (-813)) (-5 *1 (-1180)))))
-(((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1131)))))
+ (-12 (-5 *2 (-388 (-887 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523))
+ (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1179 (-637 *3))))))
+(((*1 *2)
+ (-12 (-5 *2 (-388 (-887 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523))
+ (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1179 (-637 *3))))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2088 (-728 *3)) (|:| |coef1| (-728 *3))))
- (-5 *1 (-728 *3)) (-4 *3 (-520)) (-4 *3 (-981))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-520)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *2 (-2 (|:| -2088 *1) (|:| |coef1| *1)))
- (-4 *1 (-994 *3 *4 *5)))))
+ (-12 (-5 *2 (-388 (-887 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523))
+ (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1179 (-637 *3))))))
+(((*1 *2)
+ (-12 (-5 *2 (-388 (-887 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523))
+ (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1179 (-637 *3))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-288) (-140))) (-4 *5 (-13 (-793) (-570 (-1095))))
- (-4 *6 (-739)) (-5 *2 (-595 *3)) (-5 *1 (-863 *4 *5 *6 *3))
- (-4 *3 (-888 *4 *6 *5)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1016 (-891 (-528)))) (-5 *3 (-891 (-528)))
- (-5 *1 (-310))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1016 (-891 (-528)))) (-5 *1 (-310)))))
-(((*1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-974)))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
+ (-5 *2 (-594 (-887 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-594 (-887 *4))) (-5 *1 (-398 *3 *4))
+ (-4 *3 (-399 *4))))
+ ((*1 *2) (-12 (-4 *1 (-399 *3)) (-4 *3 (-162)) (-5 *2 (-594 (-887 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-594 (-887 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523))
+ (-4 *3 (-162)) (-14 *4 (-860)) (-14 *5 (-594 (-1098)))
+ (-14 *6 (-1179 (-637 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1179 (-433 *4 *5 *6 *7))) (-5 *2 (-594 (-887 *4)))
+ (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-523)) (-4 *4 (-162)) (-14 *5 (-860))
+ (-14 *6 (-594 (-1098))) (-14 *7 (-1179 (-637 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 *1)) (-4 *1 (-432))))
+ ((*1 *1 *1 *1) (-4 *1 (-432))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-719))
+ (-5 *1 (-430 *4 *5 *6 *3)) (-4 *3 (-891 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-719)) (|:| -2063 *4))) (-5 *5 (-719))
+ (-4 *4 (-891 *6 *7 *8)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
+ (-5 *2
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4)))
+ (-5 *1 (-430 *6 *7 *8 *4)))))
+(((*1 *2 *3 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-741)) (-4 *7 (-891 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-795))
+ (-5 *2 (-110)) (-5 *1 (-430 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-516)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-5 *2 (-1185)) (-5 *1 (-430 *4 *5 *6 *7)) (-4 *7 (-891 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-594 *7)) (-4 *7 (-891 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *2 (-1185)) (-5 *1 (-430 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-516))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-719)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-741)) (-4 *4 (-891 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-795))
+ (-5 *1 (-430 *5 *6 *7 *4)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-516))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-719)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-741)) (-4 *4 (-891 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-795))
+ (-5 *1 (-430 *5 *6 *7 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1185))
+ (-5 *1 (-430 *4 *5 *6 *3)) (-4 *3 (-891 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-516))
+ (-5 *1 (-430 *4 *5 *6 *3)) (-4 *3 (-891 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-594 *6)) (-4 *6 (-891 *3 *4 *5)) (-4 *3 (-432)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *1 (-430 *3 *4 *5 *6)))))
(((*1 *2 *2 *2)
- (-12 (-4 *3 (-739)) (-4 *4 (-793)) (-4 *5 (-288))
- (-5 *1 (-855 *3 *4 *5 *2)) (-4 *2 (-888 *5 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1091 *6)) (-4 *6 (-888 *5 *3 *4)) (-4 *3 (-739))
- (-4 *4 (-793)) (-4 *5 (-288)) (-5 *1 (-855 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 *2)) (-4 *2 (-888 *6 *4 *5))
- (-5 *1 (-855 *4 *5 *6 *2)) (-4 *4 (-739)) (-4 *5 (-793))
- (-4 *6 (-288)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-310)))))
-(((*1 *1 *1) (-4 *1 (-989)))
- ((*1 *1 *1 *2 *2)
- (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-981)) (-4 *2 (-738))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-981)) (-4 *2 (-738)))))
+ (-12
+ (-5 *2
+ (-594
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-719)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-741)) (-4 *6 (-891 *3 *4 *5)) (-4 *3 (-432)) (-4 *5 (-795))
+ (-5 *1 (-430 *3 *4 *5 *6)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207)))
- (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207))
- (|:| |relerr| (-207))))
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-741)) (-4 *2 (-891 *4 *5 *6)) (-5 *1 (-430 *4 *5 *6 *2))
+ (-4 *4 (-432)) (-4 *6 (-795)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-594 (-2 (|:| |totdeg| (-719)) (|:| -2063 *3)))) (-5 *4 (-719))
+ (-4 *3 (-891 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *1 (-430 *5 *6 *7 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-430 *3 *4 *5 *2))
+ (-4 *2 (-891 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-594 *3)) (-4 *3 (-891 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741))
+ (-4 *7 (-795)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-430 *5 *6 *7 *3)))))
+(((*1 *2 *3 *2)
+ (-12
(-5 *2
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1076 (-207)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2931
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-523)))))
+ (-594
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-719)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-741)) (-4 *6 (-891 *4 *3 *5)) (-4 *4 (-432)) (-4 *5 (-795))
+ (-5 *1 (-430 *4 *3 *5 *6)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-594
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-719)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-741)) (-4 *6 (-891 *3 *4 *5)) (-4 *3 (-432)) (-4 *5 (-795))
+ (-5 *1 (-430 *3 *4 *5 *6)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-594
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-741)) (-4 *3 (-891 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-795))
+ (-5 *1 (-430 *4 *5 *6 *3)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *3 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
+ (-5 *1 (-430 *4 *3 *5 *6)) (-4 *6 (-891 *4 *3 *5)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-520))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1606 *4)))
- (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-359)) (-5 *3 (-1078)) (-5 *1 (-94))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-359)) (-5 *3 (-1078)) (-5 *1 (-94)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1095)) (-5 *3 (-595 (-903))) (-5 *1 (-272)))))
-(((*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-989))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095)))
- (-14 *3 (-595 (-1095))) (-4 *4 (-367))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2))
- (-4 *2 (-410 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162)) (-4 *2 (-989))))
- ((*1 *1 *1) (-4 *1 (-791)))
- ((*1 *2 *1) (-12 (-4 *1 (-933 *2)) (-4 *2 (-162)) (-4 *2 (-989))))
- ((*1 *1 *1) (-4 *1 (-989))) ((*1 *1 *1) (-4 *1 (-1059))))
+ (-12 (-4 *4 (-432)) (-4 *3 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
+ (-5 *1 (-430 *4 *3 *5 *6)) (-4 *6 (-891 *4 *3 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-741)) (-4 *7 (-891 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-795))
+ (-5 *2 (-110)) (-5 *1 (-430 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-594 *7)) (-5 *3 (-516)) (-4 *7 (-891 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-430 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-594 *2)) (-4 *2 (-891 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *1 (-430 *4 *5 *6 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-594 *2)) (-4 *2 (-891 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *1 (-430 *4 *5 *6 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-891 *4 *5 *6)) (-5 *2 (-594 (-594 *7))) (-5 *1 (-429 *4 *5 *6 *7))
+ (-5 *3 (-594 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *8 (-891 *5 *6 *7)) (-5 *2 (-594 (-594 *8))) (-5 *1 (-429 *5 *6 *7 *8))
+ (-5 *3 (-594 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-891 *4 *5 *6)) (-5 *2 (-594 (-594 *7))) (-5 *1 (-429 *4 *5 *6 *7))
+ (-5 *3 (-594 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *8 (-891 *5 *6 *7)) (-5 *2 (-594 (-594 *8))) (-5 *1 (-429 *5 *6 *7 *8))
+ (-5 *3 (-594 *8)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-891 *4 *5 *6)) (-5 *2 (-594 (-594 *7))) (-5 *1 (-429 *4 *5 *6 *7))
+ (-5 *3 (-594 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *8 (-891 *5 *6 *7)) (-5 *2 (-594 (-594 *8))) (-5 *1 (-429 *5 *6 *7 *8))
+ (-5 *3 (-594 *8)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-594 *6)) (-4 *6 (-891 *3 *4 *5)) (-4 *3 (-289)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *1 (-428 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-594 *7)) (-5 *3 (-1081)) (-4 *7 (-891 *4 *5 *6)) (-4 *4 (-289))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-428 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-594 *7)) (-5 *3 (-1081)) (-4 *7 (-891 *4 *5 *6)) (-4 *4 (-289))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-428 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-594 *2)) (-4 *2 (-891 *4 *5 *6)) (-4 *4 (-289)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *1 (-428 *4 *5 *6 *2)))))
+(((*1 *2 *3) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-426)) (-5 *3 (-516)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984))))
+ ((*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-516)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-516)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-425 *3)) (-4 *3 (-984)))))
+(((*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-984)))))
+(((*1 *2 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-984))))
+ ((*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-984)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-719)) (-5 *4 (-516)) (-5 *1 (-425 *2)) (-4 *2 (-984)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
+ (-12 (-5 *3 (-860)) (-5 *4 (-386 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-984))
+ (-5 *2 (-594 *6)) (-5 *1 (-424 *5 *6)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *3 (-860)) (-5 *1 (-422 *2)) (-4 *2 (-1155 (-516)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-860)) (-5 *4 (-719)) (-5 *1 (-422 *2))
+ (-4 *2 (-1155 (-516)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-860)) (-5 *4 (-594 (-719))) (-5 *1 (-422 *2))
+ (-4 *2 (-1155 (-516)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-860)) (-5 *4 (-594 (-719))) (-5 *5 (-719))
+ (-5 *1 (-422 *2)) (-4 *2 (-1155 (-516)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-860)) (-5 *4 (-594 (-719))) (-5 *5 (-719))
+ (-5 *6 (-110)) (-5 *1 (-422 *2)) (-4 *2 (-1155 (-516)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-860)) (-5 *4 (-386 *2)) (-4 *2 (-1155 *5)) (-5 *1 (-424 *5 *2))
+ (-4 *5 (-984)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-793)) (-5 *2 (-595 (-595 *4))) (-5 *1 (-1103 *4))
- (-5 *3 (-595 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-1153 *3)) (-4 *3 (-981))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-860)) (-4 *1 (-1155 *3 *4)) (-4 *3 (-981))
- (-4 *4 (-738))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-387 (-528))) (-4 *1 (-1158 *3)) (-4 *3 (-981)))))
+ (-12 (-5 *3 (-594 (-2 (|:| -4011 *4) (|:| -4223 (-516)))))
+ (-4 *4 (-1155 (-516))) (-5 *2 (-685 (-719))) (-5 *1 (-422 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-386 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-984))
+ (-5 *2 (-685 (-719))) (-5 *1 (-424 *4 *5)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-984)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1155 *3)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-984)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1155 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1120) (-266)))
+ (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1120) (-266)))
+ (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-387 (-891 *5))) (-5 *4 (-1095))
- (-4 *5 (-13 (-288) (-793) (-140))) (-5 *2 (-595 (-296 *5)))
- (-5 *1 (-1051 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-387 (-891 *5)))) (-5 *4 (-595 (-1095)))
- (-4 *5 (-13 (-288) (-793) (-140))) (-5 *2 (-595 (-595 (-296 *5))))
- (-5 *1 (-1051 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-520)) (-4 *2 (-513))))
- ((*1 *1 *1) (-4 *1 (-989))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)) (-4 *2 (-431)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-520)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2088 *3)))
- (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-525)))))
+ (-12 (-5 *4 (-719)) (-4 *5 (-984)) (-5 *2 (-516)) (-5 *1 (-423 *5 *3 *6))
+ (-4 *3 (-1155 *5)) (-4 *6 (-13 (-385) (-975 *5) (-344) (-1120) (-266)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-984)) (-5 *2 (-516)) (-5 *1 (-423 *4 *3 *5)) (-4 *3 (-1155 *4))
+ (-4 *5 (-13 (-385) (-975 *4) (-344) (-1120) (-266))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))))
-(((*1 *2 *1)
+ (-12 (-4 *4 (-984)) (-5 *2 (-516)) (-5 *1 (-423 *4 *3 *5)) (-4 *3 (-1155 *4))
+ (-4 *5 (-13 (-385) (-975 *4) (-344) (-1120) (-266))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1120) (-266)))
+ (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1155 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-860)) (-4 *5 (-984))
+ (-4 *2 (-13 (-385) (-975 *5) (-344) (-1120) (-266))) (-5 *1 (-423 *5 *3 *2))
+ (-4 *3 (-1155 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-984)) (-5 *2 (-516)) (-5 *1 (-423 *4 *3 *5)) (-4 *3 (-1155 *4))
+ (-4 *5 (-13 (-385) (-975 *4) (-344) (-1120) (-266))))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-110)) (-5 *5 (-1023 (-719))) (-5 *6 (-719))
+ (-5 *2
+ (-2 (|:| |contp| (-516))
+ (|:| -2701 (-594 (-2 (|:| |irr| *3) (|:| -2421 (-516)))))))
+ (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))))
+(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))))
+(((*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))))
+(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))))
+(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -2838 (-516)) (|:| -2701 (-594 *3)))) (-5 *1 (-422 *3))
+ (-4 *3 (-1155 (-516))))))
+(((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-386 *3)) (-4 *3 (-523))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-2 (|:| -4011 *4) (|:| -4223 (-516)))))
+ (-4 *4 (-1155 (-516))) (-5 *2 (-719)) (-5 *1 (-422 *4)))))
+(((*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))))
+(((*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-422 *3)) (-4 *3 (-1155 (-516))))))
+(((*1 *1 *2 *3)
(-12
+ (-5 *3
+ (-594
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-516)))))
+ (-4 *2 (-523)) (-5 *1 (-386 *2))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-516))
+ (|:| -2701 (-594 (-2 (|:| |irr| *4) (|:| -2421 (-516)))))))
+ (-4 *4 (-1155 (-516))) (-5 *2 (-386 *4)) (-5 *1 (-422 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-369)) (-5 *1 (-418))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-369)) (-5 *1 (-418)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-418)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-418)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-418)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -4189 "void"))) (-5 *1 (-417)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-417)))))
+(((*1 *1) (-5 *1 (-417))))
+(((*1 *1) (-5 *1 (-417))))
+(((*1 *1) (-5 *1 (-417))))
+(((*1 *1) (-5 *1 (-417))))
+(((*1 *1) (-5 *1 (-417))))
+(((*1 *1) (-5 *1 (-417))))
+(((*1 *1) (-5 *1 (-417))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *5 (-975 (-47))) (-4 *4 (-13 (-523) (-795) (-975 (-516))))
+ (-4 *5 (-402 *4)) (-5 *2 (-386 (-1092 (-47)))) (-5 *1 (-416 *4 *5 *3))
+ (-4 *3 (-1155 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-523) (-795) (-975 (-516)))) (-4 *5 (-402 *4))
(-5 *2
- (-595
- (-595
- (-3 (|:| -3814 (-1095))
- (|:| |bounds| (-595 (-3 (|:| S (-1095)) (|:| P (-891 (-528))))))))))
- (-5 *1 (-1099)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-979)))))
+ (-3 (|:| |overq| (-1092 (-388 (-516)))) (|:| |overan| (-1092 (-47)))
+ (|:| -2899 (-110))))
+ (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1155 *5)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-523) (-795) (-975 (-516)))) (-4 *5 (-402 *4))
+ (-5 *2 (-386 (-1092 (-388 (-516))))) (-5 *1 (-416 *4 *5 *3))
+ (-4 *3 (-1155 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-523) (-795) (-975 (-516)))) (-4 *5 (-402 *4))
+ (-5 *2 (-386 *3)) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1155 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
+(((*1 *2)
+ (-12 (-4 *3 (-13 (-795) (-523) (-975 (-516)))) (-5 *2 (-1185))
+ (-5 *1 (-414 *3 *4)) (-4 *4 (-402 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-795) (-523) (-975 (-516)))) (-5 *2 (-388 (-516)))
+ (-5 *1 (-414 *4 *3)) (-4 *3 (-402 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-569 *3)) (-4 *3 (-402 *5))
+ (-4 *5 (-13 (-795) (-523) (-975 (-516)))) (-5 *2 (-1092 (-388 (-516))))
+ (-5 *1 (-414 *5 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-913 *3 *4 *2 *5)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *5 (-994 *3 *4 *2)) (-4 *2 (-793))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-994 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *2 (-793)))))
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-402 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-410 *3 *2)) (-4 *3 (-13 (-162) (-37 (-388 (-516)))))
+ (-4 *2 (-13 (-795) (-21))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-410 *3 *2)) (-4 *3 (-13 (-162) (-37 (-388 (-516)))))
+ (-4 *2 (-13 (-795) (-21))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1098))
+ (-4 *5 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516))))
+ (-5 *2 (-545 *3)) (-5 *1 (-409 *5 *3)) (-4 *3 (-13 (-1120) (-29 *5))))))
+(((*1 *2 *1) (-12 (-4 *1 (-407 *3)) (-4 *3 (-1027)) (-5 *2 (-719)))))
+(((*1 *1 *1) (-12 (-4 *1 (-407 *2)) (-4 *2 (-1027)) (-4 *2 (-349)))))
+(((*1 *1) (-12 (-4 *1 (-407 *2)) (-4 *2 (-349)) (-4 *2 (-1027)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-432) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *1 (-404 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1120) (-402 *3)))
+ (-14 *4 (-1098)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-432) (-795) (-975 (-516)) (-593 (-516))))
+ (-4 *2 (-13 (-27) (-1120) (-402 *3) (-10 -8 (-15 -4233 ($ *4)))))
+ (-4 *4 (-793))
+ (-4 *5
+ (-13 (-1158 *2 *4) (-344) (-1120)
+ (-10 -8 (-15 -4089 ($ $)) (-15 -4091 ($ $)))))
+ (-5 *1 (-405 *3 *2 *4 *5 *6 *7)) (-4 *6 (-923 *5)) (-14 *7 (-1098)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-110)) (-4 *6 (-13 (-432) (-795) (-975 (-516)) (-593 (-516))))
+ (-4 *3 (-13 (-27) (-1120) (-402 *6) (-10 -8 (-15 -4233 ($ *7)))))
+ (-4 *7 (-793))
+ (-4 *8
+ (-13 (-1158 *3 *7) (-344) (-1120)
+ (-10 -8 (-15 -4089 ($ $)) (-15 -4091 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1081)) (|:| |prob| (-1081))))))
+ (-5 *1 (-405 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1081)) (-4 *9 (-923 *8))
+ (-14 *10 (-1098)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-110)) (-4 *6 (-13 (-432) (-795) (-975 (-516)) (-593 (-516))))
+ (-4 *3 (-13 (-27) (-1120) (-402 *6) (-10 -8 (-15 -4233 ($ *7)))))
+ (-4 *7 (-793))
+ (-4 *8
+ (-13 (-1158 *3 *7) (-344) (-1120)
+ (-10 -8 (-15 -4089 ($ $)) (-15 -4091 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1081)) (|:| |prob| (-1081))))))
+ (-5 *1 (-405 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1081)) (-4 *9 (-923 *8))
+ (-14 *10 (-1098)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-717)) (-5 *4 (-1177 *2)) (-4 *5 (-288))
- (-4 *6 (-929 *5)) (-4 *2 (-13 (-389 *6 *7) (-972 *6)))
- (-5 *1 (-393 *5 *6 *7 *2)) (-4 *7 (-1153 *6)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-802))))
- ((*1 *1 *1) (-5 *1 (-802))))
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-432) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *2
+ (-3 (|:| |%expansion| (-294 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1081)) (|:| |prob| (-1081))))))
+ (-5 *1 (-404 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1120) (-402 *5)))
+ (-14 *6 (-1098)) (-14 *7 *3))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-4 *1 (-402 *3)) (-4 *3 (-795)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984))))
+ ((*1 *2 *1) (-12 (-4 *1 (-402 *2)) (-4 *2 (-795)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1098)) (-5 *3 (-594 *1)) (-4 *1 (-402 *4)) (-4 *4 (-795))))
+ ((*1 *1 *2 *1 *1 *1 *1)
+ (-12 (-5 *2 (-1098)) (-4 *1 (-402 *3)) (-4 *3 (-795))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1098)) (-4 *1 (-402 *3)) (-4 *3 (-795))))
+ ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1098)) (-4 *1 (-402 *3)) (-4 *3 (-795))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1098)) (-4 *1 (-402 *3)) (-4 *3 (-795)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-795))
+ (-5 *2 (-2 (|:| -4229 (-516)) (|:| |var| (-569 *1)))) (-4 *1 (-402 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-386 *3)) (-4 *3 (-523)) (-5 *1 (-400 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-344)) (-4 *1 (-310 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1155 *4)) (-4 *4 (-1138))
+ (-4 *1 (-323 *4 *3 *5)) (-4 *5 (-1155 (-388 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1179 *1)) (-4 *4 (-162)) (-4 *1 (-348 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1179 *1)) (-4 *4 (-162))
+ (-4 *1 (-351 *4 *5)) (-4 *5 (-1155 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1179 *3)) (-4 *3 (-162)) (-4 *1 (-391 *3 *4))
+ (-4 *4 (-1155 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-162)) (-4 *1 (-399 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-348 *2)) (-4 *2 (-162))))
+ ((*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-398 *3 *2)) (-4 *3 (-399 *2))))
+ ((*1 *2) (-12 (-4 *1 (-399 *2)) (-4 *2 (-162)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-348 *2)) (-4 *2 (-162))))
+ ((*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-398 *3 *2)) (-4 *3 (-399 *2))))
+ ((*1 *2) (-12 (-4 *1 (-399 *2)) (-4 *2 (-162)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-637 *4)) (-5 *1 (-398 *3 *4))
+ (-4 *3 (-399 *4))))
+ ((*1 *2) (-12 (-4 *1 (-399 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-637 *4)) (-5 *1 (-398 *3 *4))
+ (-4 *3 (-399 *4))))
+ ((*1 *2) (-12 (-4 *1 (-399 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-394 *3 *4 *5 *6)) (-4 *6 (-975 *4)) (-4 *3 (-289))
+ (-4 *4 (-931 *3)) (-4 *5 (-1155 *4)) (-4 *6 (-391 *4 *5))
+ (-14 *7 (-1179 *6)) (-5 *1 (-396 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1179 *6)) (-4 *6 (-391 *4 *5)) (-4 *4 (-931 *3))
+ (-4 *5 (-1155 *4)) (-4 *3 (-289)) (-5 *1 (-396 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-289)) (-4 *3 (-931 *2)) (-4 *4 (-1155 *3))
+ (-5 *1 (-394 *2 *3 *4 *5)) (-4 *5 (-13 (-391 *3 *4) (-975 *3))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
+ (-12 (-5 *3 (-719)) (-5 *4 (-1179 *2)) (-4 *5 (-289)) (-4 *6 (-931 *5))
+ (-4 *2 (-13 (-391 *6 *7) (-975 *6))) (-5 *1 (-394 *5 *6 *7 *2))
+ (-4 *7 (-1155 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162))
+ (-4 *5 (-1155 *4)) (-5 *2 (-637 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-162)) (-4 *5 (-1155 *4)) (-5 *2 (-637 *4))
+ (-5 *1 (-390 *3 *4 *5)) (-4 *3 (-391 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1155 *3))
+ (-5 *2 (-637 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162))
+ (-4 *5 (-1155 *4)) (-5 *2 (-637 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1155 *3))
+ (-5 *2 (-637 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-516)) (-5 *1 (-386 *2)) (-4 *2 (-523)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-516)) (-5 *1 (-386 *2)) (-4 *2 (-523)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-386 *3)) (-4 *3 (-523)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-516)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-386 *4)) (-4 *4 (-523)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-516)) (-5 *1 (-386 *2)) (-4 *2 (-523)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-516)) (-5 *1 (-386 *2)) (-4 *2 (-523)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-516)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-386 *2)) (-4 *2 (-523)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 (-359))) (-5 *1 (-243))))
+ ((*1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-523)) (-4 *2 (-162))))
+ ((*1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-523)))))
+(((*1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-523)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *3 (-110)) (-5 *1 (-108))))
+ ((*1 *2 *2) (-12 (-5 *2 (-860)) (|has| *1 (-6 -4260)) (-4 *1 (-385))))
+ ((*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-860)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-516)) (|has| *1 (-6 -4260)) (-4 *1 (-385)) (-5 *2 (-860)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-516)) (|has| *1 (-6 -4260)) (-4 *1 (-385)) (-5 *2 (-860)))))
+(((*1 *2 *1) (-12 (-4 *1 (-331)) (-5 *2 (-719))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-383)) (-5 *2 (-719)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-383)) (-5 *2 (-719))))
+ ((*1 *1 *1) (-4 *1 (-383))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-388 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-13 (-344) (-140)))
+ (-5 *1 (-380 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1155 *3)) (-5 *1 (-380 *3 *2)) (-4 *3 (-13 (-344) (-140))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-344 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1023)))))
+ (-12 (-4 *3 (-13 (-344) (-140)))
+ (-5 *2 (-594 (-2 (|:| -2427 (-719)) (|:| -4051 *4) (|:| |num| *4))))
+ (-5 *1 (-380 *3 *4)) (-4 *4 (-1155 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-376)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-594 (-594 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-594 (-3 (|:| |array| (-594 *3)) (|:| |scalar| (-1098)))))
+ (-5 *6 (-594 (-1098))) (-5 *3 (-1098)) (-5 *2 (-1029)) (-5 *1 (-376))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-594 (-594 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-594 (-3 (|:| |array| (-594 *3)) (|:| |scalar| (-1098)))))
+ (-5 *6 (-594 (-1098))) (-5 *3 (-1098)) (-5 *2 (-1029)) (-5 *1 (-376))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-594 (-1098))) (-5 *5 (-1101)) (-5 *3 (-1098)) (-5 *2 (-1029))
+ (-5 *1 (-376)))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-374)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-374)))))
+(((*1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-372)))))
+(((*1 *2 *3) (-12 (-5 *3 (-369)) (-5 *2 (-1185)) (-5 *1 (-372))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-372)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-372)))))
+(((*1 *2) (-12 (-5 *2 (-1070 (-1081))) (-5 *1 (-372)))))
+(((*1 *2) (-12 (-5 *2 (-1070 (-1081))) (-5 *1 (-372)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-805)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 (-719)) (-14 *4 (-719))
+ (-4 *5 (-162)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-805)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 (-719)) (-14 *4 (-719))
+ (-4 *5 (-162)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1081)) (-4 *1 (-370)))))
+(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1081)))))
+(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1081)))))
+(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-594 (-388 (-887 (-516))))) (-5 *4 (-594 (-1098)))
+ (-5 *2 (-594 (-594 *5))) (-5 *1 (-361 *5)) (-4 *5 (-13 (-793) (-344)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-887 (-516)))) (-5 *2 (-594 *4)) (-5 *1 (-361 *4))
+ (-4 *4 (-13 (-793) (-344))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-887 (-158 (-516))))) (-5 *2 (-594 (-158 *4)))
+ (-5 *1 (-360 *4)) (-4 *4 (-13 (-344) (-793)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-594 (-388 (-887 (-158 (-516)))))) (-5 *4 (-594 (-1098)))
+ (-5 *2 (-594 (-594 (-158 *5)))) (-5 *1 (-360 *5))
+ (-4 *5 (-13 (-344) (-793))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-388 (-887 (-158 (-516))))))
+ (-5 *2 (-594 (-594 (-275 (-887 (-158 *4)))))) (-5 *1 (-360 *4))
+ (-4 *4 (-13 (-344) (-793)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-275 (-388 (-887 (-158 (-516)))))))
+ (-5 *2 (-594 (-594 (-275 (-887 (-158 *4)))))) (-5 *1 (-360 *4))
+ (-4 *4 (-13 (-344) (-793)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-887 (-158 (-516)))))
+ (-5 *2 (-594 (-275 (-887 (-158 *4))))) (-5 *1 (-360 *4))
+ (-4 *4 (-13 (-344) (-793)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-275 (-388 (-887 (-158 (-516))))))
+ (-5 *2 (-594 (-275 (-887 (-158 *4))))) (-5 *1 (-360 *4))
+ (-4 *4 (-13 (-344) (-793))))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-516)) (-5 *1 (-359)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-388 (-516))) (-5 *1 (-208))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-388 (-516))) (-5 *1 (-208))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-388 (-516))) (-5 *1 (-359))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-388 (-516))) (-5 *1 (-359)))))
+(((*1 *1 *1) (-5 *1 (-208))) ((*1 *1 *1) (-5 *1 (-359)))
+ ((*1 *1) (-5 *1 (-359))))
+(((*1 *1 *1) (-5 *1 (-208)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-594 (-1098))) (-14 *3 (-594 (-1098)))
+ (-4 *4 (-368))))
+ ((*1 *1 *1) (-5 *1 (-359))) ((*1 *1) (-5 *1 (-359))))
+(((*1 *1) (-5 *1 (-208))) ((*1 *1) (-5 *1 (-359))))
+(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1185)) (-5 *1 (-359))))
+ ((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-359)))))
+(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1185)) (-5 *1 (-359))))
+ ((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-359)))))
+(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1185)) (-5 *1 (-359))))
+ ((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-359)))))
+(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1185)) (-5 *1 (-359)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-595 (-359))) (-5 *3 (-595 (-244))) (-5 *1 (-242))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-595 (-359))) (-5 *1 (-447))))
- ((*1 *2 *1) (-12 (-5 *2 (-595 (-359))) (-5 *1 (-447))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-860)) (-5 *4 (-813)) (-5 *2 (-1182)) (-5 *1 (-1178))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-860)) (-5 *4 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1178)))))
+ (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1134)) (-5 *1 (-356 *4 *2))
+ (-4 *2 (-13 (-353 *4) (-10 -7 (-6 -4270)))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1134)) (-5 *1 (-356 *4 *2))
+ (-4 *2 (-13 (-353 *4) (-10 -7 (-6 -4270)))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1134)) (-5 *1 (-356 *4 *2))
+ (-4 *2 (-13 (-353 *4) (-10 -7 (-6 -4270)))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-4 *1 (-355 *3 *4)) (-4 *4 (-162)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-353 *3)) (-4 *3 (-1134)) (-4 *3 (-795)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *1 (-353 *4)) (-4 *4 (-1134))
+ (-5 *2 (-110)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-516)) (|has| *1 (-6 -4270)) (-4 *1 (-353 *3)) (-4 *3 (-1134)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4270)) (-4 *1 (-353 *2)) (-4 *2 (-1134)) (-4 *2 (-795))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3 *3)) (|has| *1 (-6 -4270)) (-4 *1 (-353 *3))
+ (-4 *3 (-1134)))))
+(((*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1179 *1)) (-4 *1 (-348 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))))
+(((*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))))
+(((*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))))
+(((*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))))
+(((*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-1092 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-1092 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
(((*1 *2)
- (-12 (-4 *4 (-1135)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-387 *5)))
- (-5 *2 (-717)) (-5 *1 (-321 *3 *4 *5 *6)) (-4 *3 (-322 *4 *5 *6))))
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-594 (-1179 *4))) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
((*1 *2)
- (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-387 *4))) (-5 *2 (-717)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(((*1 *1 *1 *1) (-4 *1 (-136)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-149 *3 *2))
- (-4 *2 (-410 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-513)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-275 *2)) (-4 *2 (-673)) (-4 *2 (-1131)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-770)))))
+ (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-523))
+ (-5 *2 (-594 (-1179 *3))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-387 *4)))
- (-5 *2 (-2 (|:| |num| (-1177 *4)) (|:| |den| *4))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1084 3 *3)) (-4 *3 (-981)) (-4 *1 (-1056 *3))))
- ((*1 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-981)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-595 (-110))) (-5 *7 (-635 (-207)))
- (-5 *8 (-635 (-528))) (-5 *3 (-528)) (-5 *4 (-207)) (-5 *5 (-110))
- (-5 *2 (-970)) (-5 *1 (-701)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
+ (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-523)) (-5 *2 (-1092 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-523)) (-5 *2 (-1092 *3)))))
+(((*1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-523)) (-4 *2 (-162)))))
+(((*1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-523)) (-4 *2 (-162)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1081)) (-4 *1 (-346 *2 *4)) (-4 *2 (-1027)) (-4 *4 (-1027))))
+ ((*1 *1 *2) (-12 (-4 *1 (-346 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1144 (-528))) (-4 *1 (-600 *3)) (-4 *3 (-1131))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-4 *1 (-600 *3)) (-4 *3 (-1131)))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-595 (-595 (-882 (-207))))) (-5 *3 (-595 (-813)))
- (-5 *4 (-595 (-860))) (-5 *5 (-595 (-244))) (-5 *1 (-447))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-595 (-595 (-882 (-207))))) (-5 *3 (-595 (-813)))
- (-5 *4 (-595 (-860))) (-5 *1 (-447))))
- ((*1 *1 *2) (-12 (-5 *2 (-595 (-595 (-882 (-207))))) (-5 *1 (-447))))
- ((*1 *1 *1) (-5 *1 (-447))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-159 (-207)) (-159 (-207)))) (-5 *4 (-1018 (-207)))
- (-5 *2 (-1179)) (-5 *1 (-238)))))
+ (-12 (-5 *2 (-1081)) (-4 *1 (-346 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))))
+(((*1 *1 *1) (-12 (-4 *1 (-346 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-5 *2 (-1081)))))
+(((*1 *2 *1) (-12 (-4 *1 (-346 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))))
+(((*1 *2 *1 *2) (-12 (-4 *1 (-346 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-591 (-528)))
- (-5 *2 (-1177 (-528))) (-5 *1 (-1202 *4)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-207)) (-5 *3 (-717)) (-5 *1 (-208))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-159 (-207))) (-5 *3 (-717)) (-5 *1 (-208))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2))
- (-4 *2 (-410 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1059))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-528)) (-4 *5 (-329)) (-5 *2 (-398 (-1091 (-1091 *5))))
- (-5 *1 (-1130 *5)) (-5 *3 (-1091 (-1091 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-622 *3)) (-4 *3 (-1131)) (-5 *2 (-717)))))
-(((*1 *1 *1) (-4 *1 (-520))))
+ (-12 (-5 *3 (-1092 *4)) (-4 *4 (-331))
+ (-4 *2
+ (-13 (-383)
+ (-10 -7 (-15 -4233 (*2 *4)) (-15 -2069 ((-860) *2))
+ (-15 -2071 ((-1179 *2) (-860))) (-15 -4204 (*2 *2)))))
+ (-5 *1 (-338 *2 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528)))))))
- (-5 *2 (-595 *4)) (-5 *1 (-1050 *3 *4)) (-4 *3 (-1153 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528)))))))
- (-5 *2 (-595 *3)) (-5 *1 (-1050 *4 *3)) (-4 *4 (-1153 *3)))))
-(((*1 *1)
- (-12 (-4 *1 (-384)) (-3617 (|has| *1 (-6 -4255)))
- (-3617 (|has| *1 (-6 -4247)))))
- ((*1 *2 *1) (-12 (-4 *1 (-405 *2)) (-4 *2 (-1023)) (-4 *2 (-793))))
- ((*1 *1 *1 *1) (-4 *1 (-793)))
- ((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-793))))
- ((*1 *1) (-5 *1 (-1042))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-812 (-904 *3) (-904 *3))) (-5 *1 (-904 *3))
- (-4 *3 (-905)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-110) *2)) (-4 *1 (-144 *2))
- (-4 *2 (-1131)))))
-(((*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162))))
- ((*1 *2 *1) (-12 (-4 *1 (-933 *2)) (-4 *2 (-162)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-844 *4)) (-4 *4 (-1023)) (-5 *2 (-595 (-717)))
- (-5 *1 (-843 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-110) "failed")) (-4 *3 (-431)) (-4 *4 (-793))
- (-4 *5 (-739)) (-5 *1 (-924 *3 *4 *5 *6)) (-4 *6 (-888 *3 *5 *4)))))
+ (-12 (-4 *4 (-331)) (-5 *2 (-899 (-1092 *4))) (-5 *1 (-337 *4))
+ (-5 *3 (-1092 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1092 *3)) (-4 *3 (-331)) (-5 *1 (-337 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1092 *3)) (-4 *3 (-331)) (-5 *1 (-337 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1092 *3)) (-4 *3 (-331)) (-5 *1 (-337 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1092 *3)) (-4 *3 (-331)) (-5 *1 (-337 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1092 *3)) (-4 *3 (-331)) (-5 *1 (-337 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1092 *3)) (-4 *3 (-331)) (-5 *1 (-337 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-860)) (-5 *2 (-1092 *4)) (-5 *1 (-337 *4)) (-4 *4 (-331)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-860)) (-5 *2 (-1092 *4)) (-5 *1 (-337 *4)) (-4 *4 (-331)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-860)) (-5 *2 (-1092 *4)) (-5 *1 (-337 *4)) (-4 *4 (-331)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-860)) (-5 *2 (-1092 *4)) (-5 *1 (-337 *4)) (-4 *4 (-331)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-860)) (-5 *2 (-1092 *4)) (-5 *1 (-337 *4)) (-4 *4 (-331)))))
+(((*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-337 *3)) (-4 *3 (-331)))))
+(((*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-337 *3)) (-4 *3 (-331)))))
+(((*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-337 *3)) (-4 *3 (-331)))))
+(((*1 *2 *1) (-12 (-4 *1 (-331)) (-5 *2 (-110))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1092 *4)) (-4 *4 (-331)) (-5 *2 (-110)) (-5 *1 (-337 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1179 (-594 (-2 (|:| -3681 (-847 *3)) (|:| -2426 (-1045))))))
+ (-5 *1 (-333 *3 *4)) (-14 *3 (-860)) (-14 *4 (-860))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1179 (-594 (-2 (|:| -3681 *3) (|:| -2426 (-1045))))))
+ (-5 *1 (-334 *3 *4)) (-4 *3 (-331)) (-14 *4 (-3 (-1092 *3) *2))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1179 (-594 (-2 (|:| -3681 *3) (|:| -2426 (-1045))))))
+ (-5 *1 (-335 *3 *4)) (-4 *3 (-331)) (-14 *4 (-860)))))
+(((*1 *2)
+ (-12 (-5 *2 (-637 (-847 *3))) (-5 *1 (-333 *3 *4)) (-14 *3 (-860))
+ (-14 *4 (-860))))
+ ((*1 *2)
+ (-12 (-5 *2 (-637 *3)) (-5 *1 (-334 *3 *4)) (-4 *3 (-331))
+ (-14 *4
+ (-3 (-1092 *3) (-1179 (-594 (-2 (|:| -3681 *3) (|:| -2426 (-1045)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-637 *3)) (-5 *1 (-335 *3 *4)) (-4 *3 (-331)) (-14 *4 (-860)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1179 (-594 (-2 (|:| -3681 *4) (|:| -2426 (-1045))))))
+ (-4 *4 (-331)) (-5 *2 (-719)) (-5 *1 (-328 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-719)) (-5 *1 (-333 *3 *4)) (-14 *3 (-860)) (-14 *4 (-860))))
+ ((*1 *2)
+ (-12 (-5 *2 (-719)) (-5 *1 (-334 *3 *4)) (-4 *3 (-331))
+ (-14 *4
+ (-3 (-1092 *3) (-1179 (-594 (-2 (|:| -3681 *3) (|:| -2426 (-1045)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-719)) (-5 *1 (-335 *3 *4)) (-4 *3 (-331)) (-14 *4 (-860)))))
+(((*1 *2)
+ (-12 (-4 *1 (-331))
+ (-5 *2 (-594 (-2 (|:| -4011 (-516)) (|:| -2427 (-516))))))))
+(((*1 *2 *3) (-12 (-4 *1 (-331)) (-5 *3 (-516)) (-5 *2 (-1107 (-860) (-719))))))
+(((*1 *1) (-4 *1 (-331))))
+(((*1 *2)
+ (-12 (-4 *1 (-331)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-860))
+ (-5 *2
+ (-3 (-1092 *4) (-1179 (-594 (-2 (|:| -3681 *4) (|:| -2426 (-1045)))))))
+ (-5 *1 (-328 *4)) (-4 *4 (-331)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-860))
+ (-5 *2 (-1179 (-594 (-2 (|:| -3681 *4) (|:| -2426 (-1045))))))
+ (-5 *1 (-328 *4)) (-4 *4 (-331)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-347 *4)) (-4 *4 (-162))
- (-5 *2 (-595 (-891 *4)))))
+ (-12 (-5 *3 (-1179 (-594 (-2 (|:| -3681 *4) (|:| -2426 (-1045))))))
+ (-4 *4 (-331)) (-5 *2 (-637 *4)) (-5 *1 (-328 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1092 *4)) (-4 *4 (-331))
+ (-5 *2 (-1179 (-594 (-2 (|:| -3681 *4) (|:| -2426 (-1045))))))
+ (-5 *1 (-328 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1092 *4)) (-4 *4 (-331)) (-5 *2 (-899 (-1045)))
+ (-5 *1 (-328 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-899 (-1045))) (-5 *1 (-325 *3 *4)) (-14 *3 (-860))
+ (-14 *4 (-860))))
((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-595 (-891 *4))) (-5 *1 (-396 *3 *4))
- (-4 *3 (-397 *4))))
+ (-12 (-5 *2 (-899 (-1045))) (-5 *1 (-326 *3 *4)) (-4 *3 (-331))
+ (-14 *4 (-1092 *3))))
((*1 *2)
- (-12 (-4 *1 (-397 *3)) (-4 *3 (-162)) (-5 *2 (-595 (-891 *3)))))
+ (-12 (-5 *2 (-899 (-1045))) (-5 *1 (-327 *3 *4)) (-4 *3 (-331))
+ (-14 *4 (-860)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1138)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-388 *5)))
+ (-5 *2 (-719)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4))) (-5 *2 (-719)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1138)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-388 *5)))
+ (-5 *2 (-110)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6))))
((*1 *2)
- (-12 (-5 *2 (-595 (-891 *3))) (-5 *1 (-432 *3 *4 *5 *6))
- (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3)))))
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1138)) (-4 *5 (-1155 *3)) (-4 *6 (-1155 (-388 *5)))
+ (-5 *2 (-110)) (-5 *1 (-322 *4 *3 *5 *6)) (-4 *4 (-323 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1138)) (-4 *3 (-1155 *4))
+ (-4 *5 (-1155 (-388 *3))) (-5 *2 (-110))))
((*1 *2 *3)
- (-12 (-5 *3 (-1177 (-432 *4 *5 *6 *7))) (-5 *2 (-595 (-891 *4)))
- (-5 *1 (-432 *4 *5 *6 *7)) (-4 *4 (-520)) (-4 *4 (-162))
- (-14 *5 (-860)) (-14 *6 (-595 (-1095))) (-14 *7 (-1177 (-635 *4))))))
-(((*1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-706)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-520)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *2 (-994 *3 *4 *5)))))
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1138)) (-4 *3 (-1155 *4))
+ (-4 *5 (-1155 (-388 *3))) (-5 *2 (-110))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1138)) (-4 *3 (-1155 *4))
+ (-4 *5 (-1155 (-388 *3))) (-5 *2 (-110))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1138)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4)))
+ (-5 *2 (-1179 *1)) (-4 *1 (-323 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1138)) (-4 *3 (-1155 *4))
+ (-4 *5 (-1155 (-388 *3))) (-5 *2 (-110))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4))) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1179 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138))
+ (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1179 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138))
+ (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1179 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138))
+ (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4))))))
+(((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4))) (-5 *2 (-637 (-388 *4))))))
+(((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4))) (-5 *2 (-637 (-388 *4))))))
+(((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4))) (-5 *2 (-637 (-388 *4))))))
(((*1 *2)
- (-12 (-4 *4 (-1135)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-387 *5)))
- (-5 *2 (-595 (-595 *4))) (-5 *1 (-321 *3 *4 *5 *6))
- (-4 *3 (-322 *4 *5 *6))))
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4))) (-5 *2 (-637 (-388 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4)))
+ (-5 *2 (-2 (|:| |num| (-1179 *4)) (|:| |den| *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4)))
+ (-5 *2 (-2 (|:| |num| (-1179 *4)) (|:| |den| *4))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1155 *4)) (-4 *4 (-1138))
+ (-4 *1 (-323 *4 *3 *5)) (-4 *5 (-1155 (-388 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-323 *4 *5 *6)) (-4 *4 (-1138))
+ (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-388 *5)))
+ (-5 *2 (-2 (|:| |num| (-637 *5)) (|:| |den| *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
+ (-4 *3 (-13 (-344) (-1120) (-941)))))
((*1 *2)
- (-12 (-4 *1 (-322 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-387 *4))) (-4 *3 (-348)) (-5 *2 (-595 (-595 *3))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-520)) (-4 *3 (-981))
- (-5 *2 (-2 (|:| -3490 *1) (|:| -2537 *1))) (-4 *1 (-795 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-96 *5)) (-4 *5 (-520)) (-4 *5 (-981))
- (-5 *2 (-2 (|:| -3490 *3) (|:| -2537 *3))) (-5 *1 (-796 *5 *3))
- (-4 *3 (-795 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1606 *3) (|:| |coef2| (-728 *3))))
- (-5 *1 (-728 *3)) (-4 *3 (-520)) (-4 *3 (-981)))))
-(((*1 *2 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-377)))))
+ (|partial| -12 (-4 *4 (-1138)) (-4 *5 (-1155 (-388 *2))) (-4 *2 (-1155 *4))
+ (-5 *1 (-322 *3 *4 *2 *5)) (-4 *3 (-323 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-323 *3 *2 *4)) (-4 *3 (-1138))
+ (-4 *4 (-1155 (-388 *2))) (-4 *2 (-1155 *3)))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1138)) (-4 *5 (-1155 (-388 *2))) (-4 *2 (-1155 *4))
+ (-5 *1 (-322 *3 *4 *2 *5)) (-4 *3 (-323 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-323 *3 *2 *4)) (-4 *3 (-1138))
+ (-4 *4 (-1155 (-388 *2))) (-4 *2 (-1155 *3)))))
(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1078)) (-5 *2 (-720)) (-5 *1 (-112))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-1027)) (-5 *1 (-903)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-595 (-891 *5))) (-5 *4 (-110))
- (-4 *5 (-13 (-791) (-288) (-140) (-957)))
- (-5 *2 (-595 (-978 *5 *6))) (-5 *1 (-1201 *5 *6 *7))
- (-14 *6 (-595 (-1095))) (-14 *7 (-595 (-1095)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-891 *5))) (-5 *4 (-110))
- (-4 *5 (-13 (-791) (-288) (-140) (-957)))
- (-5 *2 (-595 (-978 *5 *6))) (-5 *1 (-1201 *5 *6 *7))
- (-14 *6 (-595 (-1095))) (-14 *7 (-595 (-1095)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 (-891 *4)))
- (-4 *4 (-13 (-791) (-288) (-140) (-957)))
- (-5 *2 (-595 (-978 *4 *5))) (-5 *1 (-1201 *4 *5 *6))
- (-14 *5 (-595 (-1095))) (-14 *6 (-595 (-1095))))))
-(((*1 *1 *2)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-1138))
+ (-4 *6 (-1155 (-388 *5)))
+ (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5)))
+ (-4 *1 (-323 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1098)) (-4 *5 (-1138)) (-4 *6 (-1155 *5))
+ (-4 *7 (-1155 (-388 *6))) (-5 *2 (-594 (-887 *5)))
+ (-5 *1 (-322 *4 *5 *6 *7)) (-4 *4 (-323 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1098)) (-4 *1 (-323 *4 *5 *6)) (-4 *4 (-1138))
+ (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-388 *5))) (-4 *4 (-344))
+ (-5 *2 (-594 (-887 *4))))))
+(((*1 *2)
+ (-12 (-4 *4 (-1138)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-388 *5)))
+ (-5 *2 (-594 (-594 *4))) (-5 *1 (-322 *3 *4 *5 *6))
+ (-4 *3 (-323 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4))) (-4 *3 (-349)) (-5 *2 (-594 (-594 *3))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-594 (-1098)))
+ (-14 *4 (-594 (-1098))) (-4 *5 (-368))))
+ ((*1 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-594 (-1098)))
+ (-14 *4 (-594 (-1098))) (-4 *5 (-368)))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-344)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 (-388 *3)))
+ (-4 *1 (-317 *4 *3 *5 *2)) (-4 *2 (-323 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-516)) (-4 *2 (-344)) (-4 *4 (-1155 *2))
+ (-4 *5 (-1155 (-388 *4))) (-4 *1 (-317 *2 *4 *5 *6))
+ (-4 *6 (-323 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-344)) (-4 *3 (-1155 *2)) (-4 *4 (-1155 (-388 *3)))
+ (-4 *1 (-317 *2 *3 *4 *5)) (-4 *5 (-323 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-344)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4)))
+ (-4 *1 (-317 *3 *4 *5 *2)) (-4 *2 (-323 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-394 *4 (-388 *4) *5 *6)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-4 *3 (-344))
+ (-4 *1 (-317 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-317 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-344)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4)))
+ (-5 *2 (-1179 *6)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *6 (-323 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-344)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-388 *4)))
+ (-5 *2 (-1179 *6)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *6 (-323 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1098)) (-5 *4 (-887 (-516))) (-5 *2 (-311)) (-5 *1 (-313)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1098)) (-5 *4 (-887 (-516))) (-5 *2 (-311)) (-5 *1 (-313)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1098)) (-5 *4 (-887 (-516))) (-5 *2 (-311)) (-5 *1 (-313)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-312 *3)) (-4 *3 (-795)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1019 (-887 (-516)))) (-5 *3 (-887 (-516))) (-5 *1 (-311))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1019 (-887 (-516)))) (-5 *1 (-311)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-311)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-311)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1045)) (-5 *1 (-311)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1045)) (-5 *1 (-311)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 (-1081))) (-5 *1 (-311))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-311)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-311)))))
+(((*1 *1 *2) (-12 (-5 *2 (-295 (-158 (-359)))) (-5 *1 (-311))))
+ ((*1 *1 *2) (-12 (-5 *2 (-295 (-516))) (-5 *1 (-311))))
+ ((*1 *1 *2) (-12 (-5 *2 (-295 (-359))) (-5 *1 (-311))))
+ ((*1 *1 *2) (-12 (-5 *2 (-295 (-642))) (-5 *1 (-311))))
+ ((*1 *1 *2) (-12 (-5 *2 (-295 (-649))) (-5 *1 (-311))))
+ ((*1 *1 *2) (-12 (-5 *2 (-295 (-647))) (-5 *1 (-311))))
+ ((*1 *1) (-5 *1 (-311))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-311))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-311)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 (-311))) (-5 *1 (-311)))))
+(((*1 *1) (-5 *1 (-311))))
+(((*1 *1) (-5 *1 (-311))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 (-805))) (-5 *1 (-311)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-594 (-1098))) (-5 *2 (-1098)) (-5 *1 (-311)))))
+(((*1 *2 *1)
(-12
(-5 *2
- (-595
- (-2
- (|:| -2927
- (-2 (|:| |xinit| (-207)) (|:| |xend| (-207))
- (|:| |fn| (-1177 (-296 (-207))))
- (|:| |yinit| (-595 (-207))) (|:| |intvals| (-595 (-207)))
- (|:| |g| (-296 (-207))) (|:| |abserr| (-207))
- (|:| |relerr| (-207))))
- (|:| -1780
- (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359))
- (|:| |expense| (-359)) (|:| |accuracy| (-359))
- (|:| |intermediateResults| (-359)))))))
- (-5 *1 (-749)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-292)) (-5 *1 (-775)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1177 *4)) (-5 *3 (-528)) (-4 *4 (-329))
- (-5 *1 (-498 *4)))))
+ (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
+ (|:| |Conditional| "conditional") (|:| |Return| "return")
+ (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call")
+ (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat")
+ (|:| |Goto| "goto") (|:| |Continue| "continue")
+ (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
+ (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
+ (-5 *1 (-311)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-595 *1))
- (-4 *1 (-994 *3 *4 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-717)) (-4 *5 (-520))
+ (-12
(-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-907 *5 *3)) (-4 *3 (-1153 *5)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-970)) (-5 *3 (-1095)) (-5 *1 (-248)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-595 (-595 *3))) (-4 *3 (-793)) (-5 *1 (-1103 *3)))))
+ (-3 (|:| |nullBranch| "null")
+ (|:| |assignmentBranch|
+ (-2 (|:| |var| (-1098)) (|:| |arrayIndex| (-594 (-887 (-516))))
+ (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3524 (-805))))))
+ (|:| |arrayAssignmentBranch|
+ (-2 (|:| |var| (-1098)) (|:| |rand| (-805))
+ (|:| |ints2Floats?| (-110))))
+ (|:| |conditionalBranch|
+ (-2 (|:| |switch| (-1097)) (|:| |thenClause| (-311))
+ (|:| |elseClause| (-311))))
+ (|:| |returnBranch|
+ (-2 (|:| -3682 (-110))
+ (|:| -3681 (-2 (|:| |ints2Floats?| (-110)) (|:| -3524 (-805))))))
+ (|:| |blockBranch| (-594 (-311))) (|:| |commentBranch| (-594 (-1081)))
+ (|:| |callBranch| (-1081))
+ (|:| |forBranch|
+ (-2 (|:| -1511 (-1019 (-887 (-516)))) (|:| |span| (-887 (-516)))
+ (|:| -1246 (-311))))
+ (|:| |labelBranch| (-1045))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1097)) (|:| -1246 (-311))))
+ (|:| |commonBranch|
+ (-2 (|:| -3824 (-1098)) (|:| |contents| (-594 (-1098)))))
+ (|:| |printBranch| (-594 (-805)))))
+ (-5 *1 (-311)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-311)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-311)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1045)) (-5 *1 (-311)))))
+(((*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1092 *3)) (-4 *3 (-349)) (-4 *1 (-310 *3)) (-4 *3 (-344)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-595 (-595 (-161)))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1179)))))
+ (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-1092 *3)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349))
+ (-5 *2 (-1092 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-1092 *3)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)))))
+(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-719)) (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740))
+ (-4 *3 (-162)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-516)) (-4 *1 (-304 *4 *2)) (-4 *4 (-1027)) (-4 *2 (-128)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-304 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-128)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-128)) (-4 *3 (-740)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1078)) (-5 *2 (-528)) (-5 *1 (-1114 *4))
- (-4 *4 (-981)))))
+ (-12 (-5 *3 (-516)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-984))
+ (-5 *1 (-302 *4 *5 *2 *6)) (-4 *6 (-891 *2 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1092 *7)) (-5 *3 (-516)) (-4 *7 (-891 *6 *4 *5)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *6 (-984)) (-5 *1 (-302 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -1759 (-528)) (|:| -2783 (-595 *3))))
- (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-595 *4))
- (-5 *1 (-1031 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-561 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1023))
- (-4 *2 (-793)))))
+ (-12 (-5 *3 (-1092 *6)) (-4 *6 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-1092 *7)) (-5 *1 (-302 *4 *5 *6 *7)) (-4 *7 (-891 *6 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-595 *7)) (-4 *7 (-888 *4 *5 *6)) (-4 *4 (-431))
- (-4 *5 (-739)) (-4 *6 (-793)) (-5 *2 (-1182))
- (-5 *1 (-428 *4 *5 *6 *7)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-828 *4 *5)) (-5 *3 (-828 *4 *6)) (-4 *4 (-1023))
- (-4 *5 (-1023)) (-4 *6 (-615 *5)) (-5 *1 (-824 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1076 (-595 (-528)))) (-5 *1 (-822)) (-5 *3 (-528))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1076 (-595 (-528)))) (-5 *1 (-822)) (-5 *3 (-528))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1076 (-595 (-528)))) (-5 *1 (-822)) (-5 *3 (-528)))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-635 (-207))) (-5 *4 (-528)) (-5 *2 (-970))
- (-5 *1 (-695)))))
+ (-12 (-5 *3 (-1092 *7)) (-4 *7 (-891 *6 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-984)) (-5 *2 (-1092 *6)) (-5 *1 (-302 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1092 *9)) (-5 *4 (-594 *7)) (-5 *5 (-594 *8)) (-4 *7 (-795))
+ (-4 *8 (-984)) (-4 *9 (-891 *8 *6 *7)) (-4 *6 (-741)) (-5 *2 (-1092 *8))
+ (-5 *1 (-302 *6 *7 *8 *9)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-388 (-516))) (-5 *1 (-300 *3 *4 *5))
+ (-4 *3 (-13 (-344) (-795))) (-14 *4 (-1098)) (-14 *5 *3))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-295 (-516))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1017 (-208)))
+ (-5 *6 (-516)) (-5 *2 (-1130 (-868))) (-5 *1 (-299))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-295 (-516))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1017 (-208)))
+ (-5 *6 (-516)) (-5 *7 (-1081)) (-5 *2 (-1130 (-868))) (-5 *1 (-299))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-295 (-516))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1017 (-208)))
+ (-5 *6 (-208)) (-5 *7 (-516)) (-5 *2 (-1130 (-868))) (-5 *1 (-299))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-295 (-516))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1017 (-208)))
+ (-5 *6 (-208)) (-5 *7 (-516)) (-5 *8 (-1081)) (-5 *2 (-1130 (-868)))
+ (-5 *1 (-299)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-299)) (-5 *3 (-208)))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-275 *6)) (-5 *4 (-111)) (-4 *6 (-402 *5))
+ (-4 *5 (-13 (-795) (-523) (-572 (-505)))) (-5 *2 (-50))
+ (-5 *1 (-298 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-275 *7)) (-5 *4 (-111)) (-5 *5 (-594 *7)) (-4 *7 (-402 *6))
+ (-4 *6 (-13 (-795) (-523) (-572 (-505)))) (-5 *2 (-50))
+ (-5 *1 (-298 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-594 (-275 *7))) (-5 *4 (-594 (-111))) (-5 *5 (-275 *7))
+ (-4 *7 (-402 *6)) (-4 *6 (-13 (-795) (-523) (-572 (-505)))) (-5 *2 (-50))
+ (-5 *1 (-298 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-594 (-275 *8))) (-5 *4 (-594 (-111))) (-5 *5 (-275 *8))
+ (-5 *6 (-594 *8)) (-4 *8 (-402 *7))
+ (-4 *7 (-13 (-795) (-523) (-572 (-505)))) (-5 *2 (-50))
+ (-5 *1 (-298 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-594 *7)) (-5 *4 (-594 (-111))) (-5 *5 (-275 *7))
+ (-4 *7 (-402 *6)) (-4 *6 (-13 (-795) (-523) (-572 (-505)))) (-5 *2 (-50))
+ (-5 *1 (-298 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-594 *8)) (-5 *4 (-594 (-111))) (-5 *6 (-594 (-275 *8)))
+ (-4 *8 (-402 *7)) (-5 *5 (-275 *8))
+ (-4 *7 (-13 (-795) (-523) (-572 (-505)))) (-5 *2 (-50))
+ (-5 *1 (-298 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-275 *5)) (-5 *4 (-111)) (-4 *5 (-402 *6))
+ (-4 *6 (-13 (-795) (-523) (-572 (-505)))) (-5 *2 (-50))
+ (-5 *1 (-298 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-111)) (-5 *5 (-275 *3)) (-4 *3 (-402 *6))
+ (-4 *6 (-13 (-795) (-523) (-572 (-505)))) (-5 *2 (-50))
+ (-5 *1 (-298 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-111)) (-5 *5 (-275 *3)) (-4 *3 (-402 *6))
+ (-4 *6 (-13 (-795) (-523) (-572 (-505)))) (-5 *2 (-50))
+ (-5 *1 (-298 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-111)) (-5 *5 (-275 *3)) (-5 *6 (-594 *3)) (-4 *3 (-402 *7))
+ (-4 *7 (-13 (-795) (-523) (-572 (-505)))) (-5 *2 (-50))
+ (-5 *1 (-298 *7 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-295 *3)) (-4 *3 (-523)) (-4 *3 (-795)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1144 (-528))) (-4 *1 (-263 *3)) (-4 *3 (-1131))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-4 *1 (-263 *3)) (-4 *3 (-1131)))))
-(((*1 *2 *1) (-12 (-4 *1 (-931 *2)) (-4 *2 (-1131)))))
-(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-706)))))
+ (-12 (-5 *2 (-516)) (-5 *1 (-295 *3)) (-4 *3 (-523)) (-4 *3 (-795)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-289)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-289)) (-5 *2 (-719)))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-289))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2435 *1)))
+ (-4 *1 (-289)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-594 *1)) (-4 *1 (-289)))))
+(((*1 *2 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-793)) (-5 *1 (-286 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-208))) (-5 *4 (-719)) (-5 *2 (-637 (-208)))
+ (-5 *1 (-285)))))
+(((*1 *2 *3) (-12 (-5 *3 (-388 (-516))) (-5 *2 (-208)) (-5 *1 (-285)))))
+(((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-295 (-359))) (-5 *1 (-285)))))
+(((*1 *2 *3) (-12 (-5 *3 (-887 (-208))) (-5 *2 (-208)) (-5 *1 (-285)))))
+(((*1 *2 *3) (-12 (-5 *3 (-887 (-208))) (-5 *2 (-295 (-359))) (-5 *1 (-285)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-1153 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-922 *4 *2 *3 *5))
- (-4 *4 (-329)) (-4 *5 (-671 *2 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-595 (-51))) (-5 *1 (-831 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *1) (-12 (-4 *3 (-981)) (-5 *2 (-595 *1)) (-4 *1 (-1056 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *7 (-431)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-520))
- (-4 *8 (-888 *7 *5 *6))
- (-5 *2 (-2 (|:| -2564 (-717)) (|:| -1641 *3) (|:| |radicand| *3)))
- (-5 *1 (-892 *5 *6 *7 *8 *3)) (-5 *4 (-717))
- (-4 *3
- (-13 (-343)
- (-10 -8 (-15 -3031 (*8 $)) (-15 -3042 (*8 $)) (-15 -2222 ($ *8))))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-387 (-891 (-159 (-528))))) (-5 *2 (-595 (-159 *4)))
- (-5 *1 (-358 *4)) (-4 *4 (-13 (-343) (-791)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-595 (-387 (-891 (-159 (-528))))))
- (-5 *4 (-595 (-1095))) (-5 *2 (-595 (-595 (-159 *5))))
- (-5 *1 (-358 *5)) (-4 *5 (-13 (-343) (-791))))))
-(((*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-1 (-359))) (-5 *1 (-974)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-355 *4 *2))
- (-4 *2 (-13 (-353 *4) (-10 -7 (-6 -4265)))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1078)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-1182))
- (-5 *1 (-925 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1078)) (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-1182))
- (-5 *1 (-1030 *4 *5 *6 *7 *8)) (-4 *8 (-999 *4 *5 *6 *7)))))
-(((*1 *1 *2 *2 *3 *1)
- (-12 (-5 *2 (-1095)) (-5 *3 (-1027)) (-5 *1 (-272)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7))
- (-5 *2 (-595 (-2 (|:| |val| (-595 *3)) (|:| -2316 *4))))
- (-5 *1 (-1031 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))))
-(((*1 *1 *1) (-4 *1 (-513))))
-(((*1 *2 *1) (-12 (-4 *3 (-1131)) (-5 *2 (-595 *1)) (-4 *1 (-946 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-913 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520))
- (-5 *2 (-110)))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-717)) (-4 *3 (-520)) (-5 *1 (-907 *3 *2))
- (-4 *2 (-1153 *3)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-802)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802)))))
-(((*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1040)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |stiffness| (-359)) (|:| |stability| (-359))
+ (|:| |expense| (-359)) (|:| |accuracy| (-359))
+ (|:| |intermediateResults| (-359))))
+ (-5 *2 (-973)) (-5 *1 (-285)))))
(((*1 *2 *3)
(-12
(-5 *3
@@ -14622,3547 +14198,2159 @@
"There is a singularity at the lower end point")
(|:| |upperSingular|
"There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1076 (-207)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2931
+ (-3 (|:| |str| (-1076 (-208)))
+ (|:| |notEvaluated| "Internal singularities not yet evaluated")))
+ (|:| -1511
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-970)) (-5 *1 (-286)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-981)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-1153 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-908)) (-5 *1 (-844 *3)) (-4 *3 (-1023)))))
-(((*1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1023))
- (-4 *4 (-1023)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-223)) (-5 *3 (-1078))))
- ((*1 *2 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-223))))
- ((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-813)))))
+ (-5 *2 (-973)) (-5 *1 (-285)))))
(((*1 *2 *3)
(-12
- (-5 *2
- (-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))))
- (-5 *1 (-955 *3)) (-4 *3 (-1153 (-528)))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))))
- (-5 *1 (-955 *3)) (-4 *3 (-1153 (-528)))
- (-5 *4 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))))
- (-5 *1 (-955 *3)) (-4 *3 (-1153 (-528))) (-5 *4 (-387 (-528)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-387 (-528)))
- (-5 *2 (-595 (-2 (|:| -3562 *5) (|:| -3572 *5)))) (-5 *1 (-955 *3))
- (-4 *3 (-1153 (-528))) (-5 *4 (-2 (|:| -3562 *5) (|:| -3572 *5)))))
+ (-5 *3
+ (-2 (|:| -2931 (-359)) (|:| -3824 (-1081))
+ (|:| |explanations| (-594 (-1081)))))
+ (-5 *2 (-973)) (-5 *1 (-285))))
((*1 *2 *3)
(-12
- (-5 *2
- (-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))))
- (-5 *1 (-956 *3)) (-4 *3 (-1153 (-387 (-528))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))))
- (-5 *1 (-956 *3)) (-4 *3 (-1153 (-387 (-528))))
- (-5 *4 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-387 (-528)))
- (-5 *2 (-595 (-2 (|:| -3562 *4) (|:| -3572 *4)))) (-5 *1 (-956 *3))
- (-4 *3 (-1153 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-387 (-528)))
- (-5 *2 (-595 (-2 (|:| -3562 *5) (|:| -3572 *5)))) (-5 *1 (-956 *3))
- (-4 *3 (-1153 *5)) (-5 *4 (-2 (|:| -3562 *5) (|:| -3572 *5))))))
+ (-5 *3
+ (-2 (|:| -2931 (-359)) (|:| -3824 (-1081))
+ (|:| |explanations| (-594 (-1081))) (|:| |extra| (-973))))
+ (-5 *2 (-973)) (-5 *1 (-285)))))
+(((*1 *2 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1081)) (-5 *1 (-285)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1017 (-787 (-208)))) (-5 *2 (-208)) (-5 *1 (-176))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1017 (-787 (-208)))) (-5 *2 (-208)) (-5 *1 (-283))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1017 (-787 (-208)))) (-5 *2 (-208)) (-5 *1 (-285)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1017 (-787 (-208)))) (-5 *2 (-208)) (-5 *1 (-176))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1017 (-787 (-208)))) (-5 *2 (-208)) (-5 *1 (-283))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1017 (-787 (-208)))) (-5 *2 (-208)) (-5 *1 (-285)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1076 (-208))) (-5 *2 (-594 (-1081))) (-5 *1 (-176))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1076 (-208))) (-5 *2 (-594 (-1081))) (-5 *1 (-283))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1076 (-208))) (-5 *2 (-594 (-1081))) (-5 *1 (-285)))))
+(((*1 *2 *3) (-12 (-5 *3 (-594 (-208))) (-5 *2 (-594 (-1081))) (-5 *1 (-176))))
+ ((*1 *2 *3) (-12 (-5 *3 (-594 (-208))) (-5 *2 (-594 (-1081))) (-5 *1 (-283))))
+ ((*1 *2 *3) (-12 (-5 *3 (-594 (-208))) (-5 *2 (-594 (-1081))) (-5 *1 (-285)))))
+(((*1 *2 *3) (-12 (-5 *3 (-359)) (-5 *2 (-1081)) (-5 *1 (-285)))))
+(((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1081)) (-5 *1 (-176))))
+ ((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1081)) (-5 *1 (-283))))
+ ((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1081)) (-5 *1 (-285)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1179 (-295 (-208)))) (-5 *2 (-1179 (-295 (-359))))
+ (-5 *1 (-285)))))
+(((*1 *2 *3) (-12 (-5 *3 (-295 (-208))) (-5 *2 (-295 (-359))) (-5 *1 (-285)))))
+(((*1 *2 *3) (-12 (-5 *3 (-594 (-208))) (-5 *2 (-1179 (-647))) (-5 *1 (-285)))))
+(((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-647)) (-5 *1 (-285)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-2 (|:| -3397 (-388 (-516))) (|:| -3396 (-388 (-516))))))
+ (-5 *2 (-594 (-208))) (-5 *1 (-285)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1017 (-787 (-208)))) (-5 *1 (-285)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-295 (-208))) (-5 *2 (-295 (-388 (-516)))) (-5 *1 (-285)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1179 (-295 (-208))))
+ (-5 *2
+ (-2 (|:| |additions| (-516)) (|:| |multiplications| (-516))
+ (|:| |exponentiations| (-516)) (|:| |functionCalls| (-516))))
+ (-5 *1 (-285)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208)))))
+ (-5 *2 (-359)) (-5 *1 (-249))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1179 (-295 (-208)))) (-5 *2 (-359)) (-5 *1 (-285)))))
+(((*1 *2 *3) (-12 (-5 *3 (-295 (-208))) (-5 *2 (-208)) (-5 *1 (-285)))))
+(((*1 *2 *3) (-12 (-5 *3 (-295 (-208))) (-5 *2 (-388 (-516))) (-5 *1 (-285)))))
+(((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-388 (-516))) (-5 *1 (-285)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1017 (-787 (-359)))) (-5 *2 (-1017 (-787 (-208))))
+ (-5 *1 (-285)))))
+(((*1 *2 *3) (-12 (-5 *3 (-787 (-359))) (-5 *2 (-787 (-208))) (-5 *1 (-285)))))
+(((*1 *2 *3) (-12 (-5 *3 (-295 (-359))) (-5 *2 (-295 (-208))) (-5 *1 (-285)))))
+(((*1 *2 *3) (-12 (-5 *3 (-359)) (-5 *2 (-208)) (-5 *1 (-285)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-595 (-387 *7)))
- (-4 *7 (-1153 *6)) (-5 *3 (-387 *7)) (-4 *6 (-343))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-595 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-538 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-520)) (-5 *1 (-576 *2 *3)) (-4 *3 (-1153 *2)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-520)) (-4 *3 (-162)) (-4 *4 (-353 *3))
- (-4 *5 (-353 *3)) (-5 *1 (-634 *3 *4 *5 *2))
- (-4 *2 (-633 *3 *4 *5)))))
-(((*1 *1) (-5 *1 (-148))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-595 (-161))))))
+ (-12 (-5 *3 (-887 (-388 (-516)))) (-5 *4 (-1098))
+ (-5 *5 (-1017 (-787 (-208)))) (-5 *2 (-594 (-208))) (-5 *1 (-283)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-207)) (-5 *2 (-110)) (-5 *1 (-280 *4 *5)) (-14 *4 *3)
- (-14 *5 *3)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1018 (-786 (-207)))) (-5 *3 (-207)) (-5 *2 (-110))
- (-5 *1 (-286))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-110))
- (-5 *1 (-480 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-595 (-903))) (-5 *1 (-106)))))
-(((*1 *2 *1) (-12 (-4 *3 (-981)) (-5 *2 (-595 *1)) (-4 *1 (-1056 *3)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208)))
+ (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2 (-1076 (-208))) (-5 *1 (-176))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-295 (-208))) (-5 *4 (-594 (-1098)))
+ (-5 *5 (-1017 (-787 (-208)))) (-5 *2 (-1076 (-208))) (-5 *1 (-283))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1179 (-295 (-208)))) (-5 *4 (-594 (-1098)))
+ (-5 *5 (-1017 (-787 (-208)))) (-5 *2 (-1076 (-208))) (-5 *1 (-283)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-717)) (-5 *2 (-110)) (-5 *1 (-546 *3)) (-4 *3 (-513)))))
-(((*1 *2 *3) (-12 (-5 *3 (-387 (-528))) (-5 *2 (-207)) (-5 *1 (-286)))))
+ (-12 (-5 *3 (-1092 *1)) (-5 *4 (-1098)) (-4 *1 (-27)) (-5 *2 (-594 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1092 *1)) (-4 *1 (-27)) (-5 *2 (-594 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-887 *1)) (-4 *1 (-27)) (-5 *2 (-594 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-795) (-523))) (-5 *2 (-594 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *2 (-594 *1)) (-4 *1 (-29 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-295 (-208))) (-5 *4 (-594 (-1098)))
+ (-5 *5 (-1017 (-787 (-208)))) (-5 *2 (-1076 (-208))) (-5 *1 (-283)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-295 (-208))) (-5 *4 (-1098)) (-5 *5 (-1017 (-787 (-208))))
+ (-5 *2 (-594 (-208))) (-5 *1 (-176))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-295 (-208))) (-5 *4 (-1098)) (-5 *5 (-1017 (-787 (-208))))
+ (-5 *2 (-594 (-208))) (-5 *1 (-283)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-329)) (-5 *2 (-398 *3)) (-5 *1 (-199 *4 *3))
- (-4 *3 (-1153 *4))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-398 *3)) (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-717)) (-5 *2 (-398 *3)) (-5 *1 (-421 *3))
- (-4 *3 (-1153 (-528)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208)))
+ (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2 (-110)) (-5 *1 (-283)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-280)) (-4 *2 (-1134))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-594 (-569 *1))) (-5 *3 (-594 *1)) (-4 *1 (-280))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-594 (-275 *1))) (-4 *1 (-280))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-275 *1)) (-4 *1 (-280)))))
+(((*1 *1 *1 *1) (-4 *1 (-280))) ((*1 *1 *1) (-4 *1 (-280))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-569 *1)) (-4 *1 (-280)))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-569 *1))) (-4 *1 (-280)))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-569 *1))) (-4 *1 (-280)))))
+(((*1 *2 *1) (-12 (-4 *1 (-280)) (-5 *2 (-594 (-111))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-280)) (-5 *3 (-1098)) (-5 *2 (-110))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-280)) (-5 *2 (-110)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-569 *5)) (-4 *5 (-402 *4)) (-4 *4 (-975 (-516)))
+ (-4 *4 (-13 (-795) (-523))) (-5 *2 (-1092 *5)) (-5 *1 (-31 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-569 *1)) (-4 *1 (-984)) (-4 *1 (-280)) (-5 *2 (-1092 *1)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-293)) (-5 *1 (-278))))
+ ((*1 *2 *3) (-12 (-5 *3 (-594 (-1081))) (-5 *2 (-293)) (-5 *1 (-278))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-293)) (-5 *1 (-278))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-594 (-1081))) (-5 *3 (-1081)) (-5 *2 (-293)) (-5 *1 (-278)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-984)) (-4 *4 (-1155 *3)) (-5 *1 (-154 *3 *4 *2))
+ (-4 *2 (-1155 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1134)))))
+(((*1 *1 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-21)) (-4 *2 (-1134)))))
+(((*1 *1 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-21)) (-4 *2 (-1134)))))
+(((*1 *1 *1) (|partial| -12 (-5 *1 (-275 *2)) (-4 *2 (-675)) (-4 *2 (-1134)))))
+(((*1 *1 *1) (|partial| -12 (-5 *1 (-275 *2)) (-4 *2 (-675)) (-4 *2 (-1134)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-594 (-275 *3))) (-5 *1 (-275 *3)) (-4 *3 (-523))
+ (-4 *3 (-1134)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-432))
+ (-5 *2
+ (-594
+ (-2 (|:| |eigval| (-3 (-388 (-887 *4)) (-1088 (-1098) (-887 *4))))
+ (|:| |eigmult| (-719)) (|:| |eigvec| (-594 (-637 (-388 (-887 *4))))))))
+ (-5 *1 (-274 *4)) (-5 *3 (-637 (-388 (-887 *4)))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-432))
+ (-5 *2
+ (-594
+ (-2 (|:| |eigval| (-3 (-388 (-887 *4)) (-1088 (-1098) (-887 *4))))
+ (|:| |geneigvec| (-594 (-637 (-388 (-887 *4))))))))
+ (-5 *1 (-274 *4)) (-5 *3 (-637 (-388 (-887 *4)))))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-388 (-887 *6)) (-1088 (-1098) (-887 *6)))) (-5 *5 (-719))
+ (-4 *6 (-432)) (-5 *2 (-594 (-637 (-388 (-887 *6))))) (-5 *1 (-274 *6))
+ (-5 *4 (-637 (-388 (-887 *6))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 (-717))) (-5 *2 (-398 *3)) (-5 *1 (-421 *3))
- (-4 *3 (-1153 (-528)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-595 (-717))) (-5 *5 (-717)) (-5 *2 (-398 *3))
- (-5 *1 (-421 *3)) (-4 *3 (-1153 (-528)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-717)) (-5 *2 (-398 *3)) (-5 *1 (-421 *3))
- (-4 *3 (-1153 (-528)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-398 *3)) (-5 *1 (-943 *3))
- (-4 *3 (-1153 (-387 (-528))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-398 *3)) (-5 *1 (-1142 *3)) (-4 *3 (-1153 (-528))))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1023)) (-5 *1 (-204 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1131)) (-4 *1 (-235 *3))))
- ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-343)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3))
- (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-633 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-520)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4))
- (-4 *7 (-929 *4)) (-4 *2 (-633 *7 *8 *9))
- (-5 *1 (-496 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-633 *4 *5 *6))
- (-4 *8 (-353 *7)) (-4 *9 (-353 *7))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981))
- (-4 *3 (-353 *2)) (-4 *4 (-353 *2)) (-4 *2 (-343))))
- ((*1 *2 *2)
- (|partial| -12 (-4 *3 (-343)) (-4 *3 (-162)) (-4 *4 (-353 *3))
- (-4 *5 (-353 *3)) (-5 *1 (-634 *3 *4 *5 *2))
- (-4 *2 (-633 *3 *4 *5))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-635 *2)) (-4 *2 (-343)) (-4 *2 (-981))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1045 *2 *3 *4 *5)) (-4 *3 (-981))
- (-4 *4 (-220 *2 *3)) (-4 *5 (-220 *2 *3)) (-4 *3 (-343))))
- ((*1 *2 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-793)) (-5 *1 (-1103 *3)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |eigval| (-3 (-388 (-887 *5)) (-1088 (-1098) (-887 *5))))
+ (|:| |eigmult| (-719)) (|:| |eigvec| (-594 *4))))
+ (-4 *5 (-432)) (-5 *2 (-594 (-637 (-388 (-887 *5))))) (-5 *1 (-274 *5))
+ (-5 *4 (-637 (-388 (-887 *5)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-3 (-388 (-887 *5)) (-1088 (-1098) (-887 *5)))) (-4 *5 (-432))
+ (-5 *2 (-594 (-637 (-388 (-887 *5))))) (-5 *1 (-274 *5))
+ (-5 *4 (-637 (-388 (-887 *5)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-388 (-887 *4)))) (-4 *4 (-432))
+ (-5 *2 (-594 (-3 (-388 (-887 *4)) (-1088 (-1098) (-887 *4)))))
+ (-5 *1 (-274 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-1013))) (-5 *1 (-273)))))
+(((*1 *2 *3 *3 *1)
+ (|partial| -12 (-5 *3 (-1098)) (-5 *2 (-1029)) (-5 *1 (-273)))))
+(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1098)) (-5 *3 (-1029)) (-5 *1 (-273)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1098)) (-5 *2 (-594 (-906))) (-5 *1 (-273)))))
+(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-1098)) (-5 *3 (-594 (-906))) (-5 *1 (-273)))))
+(((*1 *1) (-5 *1 (-273))))
+(((*1 *1) (-5 *1 (-273))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-516)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1134)) (-4 *4 (-353 *2))
+ (-4 *5 (-353 *2))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4270)) (-4 *1 (-270 *3 *2)) (-4 *3 (-1027))
+ (-4 *2 (-1134)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *4 (-344)) (-5 *2 (-594 (-1076 *4))) (-5 *1 (-267 *4 *5))
+ (-5 *3 (-1076 *4)) (-4 *5 (-1172 *4)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1172 *3)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1172 *3)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1172 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1146 (-516))) (-4 *1 (-264 *3)) (-4 *3 (-1134))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-4 *1 (-264 *3)) (-4 *3 (-1134)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4269)) (-4 *1 (-218 *3))
+ (-4 *3 (-1027))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-264 *3)) (-4 *3 (-1134)))))
+(((*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-262)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1029)) (-5 *1 (-262)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1098)) (-5 *1 (-262)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-717)) (-5 *1 (-729 *2)) (-4 *2 (-37 (-387 (-528))))
- (-4 *2 (-162)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-904 *3)) (-4 *3 (-905)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1179)))))
-(((*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-359)) (-5 *1 (-974)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1095)) (-5 *2 (-1099)) (-5 *1 (-1098)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-620 *3)) (-4 *3 (-793)) (-4 *1 (-354 *3 *4))
- (-4 *4 (-162)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-1084 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1084 *2 *3)) (-14 *2 (-860)) (-4 *3 (-981))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1055 (-207))) (-5 *1 (-1179))))
- ((*1 *2 *1) (-12 (-5 *2 (-1055 (-207))) (-5 *1 (-1179)))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-595 *8)) (-5 *3 (-1 *8 *8 *8))
- (-5 *4 (-1 (-110) *8 *8)) (-4 *1 (-1125 *5 *6 *7 *8)) (-4 *5 (-520))
- (-4 *6 (-739)) (-4 *7 (-793)) (-4 *8 (-994 *5 *6 *7)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1060 *3 *2)) (-4 *3 (-13 (-1023) (-33)))
- (-4 *2 (-13 (-1023) (-33))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-717)) (-4 *5 (-520))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-907 *5 *3)) (-4 *3 (-1153 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(((*1 *1) (-5 *1 (-992))))
-(((*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1177 *1)) (-4 *1 (-347 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-296 (-207))) (-5 *2 (-110)) (-5 *1 (-248)))))
+ (-12 (-5 *3 (-388 (-516)))
+ (-4 *4 (-13 (-523) (-795) (-975 (-516)) (-593 (-516)))) (-5 *1 (-259 *4 *2))
+ (-4 *2 (-13 (-27) (-1120) (-402 *4))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-569 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *4)))
+ (-4 *4 (-13 (-523) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *1 (-259 *4 *2)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-594 (-569 *2))) (-5 *4 (-1098))
+ (-4 *2 (-13 (-27) (-1120) (-402 *5)))
+ (-4 *5 (-13 (-523) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *1 (-259 *5 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-523) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *1 (-259 *3 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-523) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1120) (-402 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-387 (-891 (-528)))))
- (-5 *2 (-595 (-595 (-275 (-891 *4))))) (-5 *1 (-360 *4))
- (-4 *4 (-13 (-791) (-343)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-275 (-387 (-891 (-528))))))
- (-5 *2 (-595 (-595 (-275 (-891 *4))))) (-5 *1 (-360 *4))
- (-4 *4 (-13 (-791) (-343)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-387 (-891 (-528)))) (-5 *2 (-595 (-275 (-891 *4))))
- (-5 *1 (-360 *4)) (-4 *4 (-13 (-791) (-343)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-275 (-387 (-891 (-528)))))
- (-5 *2 (-595 (-275 (-891 *4)))) (-5 *1 (-360 *4))
- (-4 *4 (-13 (-791) (-343)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1095))
- (-4 *6 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)))
- (-4 *4 (-13 (-29 *6) (-1117) (-897)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -1400 (-595 *4))))
- (-5 *1 (-601 *6 *4 *3)) (-4 *3 (-605 *4))))
- ((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1095)) (-5 *5 (-595 *2))
- (-4 *2 (-13 (-29 *6) (-1117) (-897)))
- (-4 *6 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)))
- (-5 *1 (-601 *6 *2 *3)) (-4 *3 (-605 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *5)) (-4 *5 (-343))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1177 *5) "failed"))
- (|:| -1400 (-595 (-1177 *5)))))
- (-5 *1 (-616 *5)) (-5 *4 (-1177 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-595 *5))) (-4 *5 (-343))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1177 *5) "failed"))
- (|:| -1400 (-595 (-1177 *5)))))
- (-5 *1 (-616 *5)) (-5 *4 (-1177 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *5)) (-4 *5 (-343))
- (-5 *2
- (-595
- (-2 (|:| |particular| (-3 (-1177 *5) "failed"))
- (|:| -1400 (-595 (-1177 *5))))))
- (-5 *1 (-616 *5)) (-5 *4 (-595 (-1177 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-595 *5))) (-4 *5 (-343))
- (-5 *2
- (-595
- (-2 (|:| |particular| (-3 (-1177 *5) "failed"))
- (|:| -1400 (-595 (-1177 *5))))))
- (-5 *1 (-616 *5)) (-5 *4 (-595 (-1177 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-343)) (-4 *6 (-13 (-353 *5) (-10 -7 (-6 -4265))))
- (-4 *4 (-13 (-353 *5) (-10 -7 (-6 -4265))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1400 (-595 *4))))
- (-5 *1 (-617 *5 *6 *4 *3)) (-4 *3 (-633 *5 *6 *4))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-343)) (-4 *6 (-13 (-353 *5) (-10 -7 (-6 -4265))))
- (-4 *7 (-13 (-353 *5) (-10 -7 (-6 -4265))))
+ (-12 (-5 *4 (-1098)) (-4 *5 (-13 (-523) (-795) (-975 (-516)) (-593 (-516))))
(-5 *2
- (-595
- (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1400 (-595 *7)))))
- (-5 *1 (-617 *5 *6 *7 *3)) (-5 *4 (-595 *7))
- (-4 *3 (-633 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-891 *5))) (-5 *4 (-595 (-1095))) (-4 *5 (-520))
- (-5 *2 (-595 (-595 (-275 (-387 (-891 *5)))))) (-5 *1 (-716 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 (-891 *4))) (-4 *4 (-520))
- (-5 *2 (-595 (-595 (-275 (-387 (-891 *4)))))) (-5 *1 (-716 *4))))
- ((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-112)) (-5 *4 (-1095))
- (-4 *5 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)))
- (-5 *1 (-718 *5 *2)) (-4 *2 (-13 (-29 *5) (-1117) (-897)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-635 *7)) (-5 *5 (-1095))
- (-4 *7 (-13 (-29 *6) (-1117) (-897)))
- (-4 *6 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)))
- (-5 *2
- (-2 (|:| |particular| (-1177 *7)) (|:| -1400 (-595 (-1177 *7)))))
- (-5 *1 (-748 *6 *7)) (-5 *4 (-1177 *7))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-635 *6)) (-5 *4 (-1095))
- (-4 *6 (-13 (-29 *5) (-1117) (-897)))
- (-4 *5 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)))
- (-5 *2 (-595 (-1177 *6))) (-5 *1 (-748 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-595 (-275 *7))) (-5 *4 (-595 (-112)))
- (-5 *5 (-1095)) (-4 *7 (-13 (-29 *6) (-1117) (-897)))
- (-4 *6 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)))
- (-5 *2
- (-2 (|:| |particular| (-1177 *7)) (|:| -1400 (-595 (-1177 *7)))))
- (-5 *1 (-748 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-595 *7)) (-5 *4 (-595 (-112)))
- (-5 *5 (-1095)) (-4 *7 (-13 (-29 *6) (-1117) (-897)))
- (-4 *6 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)))
- (-5 *2
- (-2 (|:| |particular| (-1177 *7)) (|:| -1400 (-595 (-1177 *7)))))
- (-5 *1 (-748 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-275 *7)) (-5 *4 (-112)) (-5 *5 (-1095))
- (-4 *7 (-13 (-29 *6) (-1117) (-897)))
- (-4 *6 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)))
- (-5 *2
- (-3 (-2 (|:| |particular| *7) (|:| -1400 (-595 *7))) *7 "failed"))
- (-5 *1 (-748 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112)) (-5 *5 (-1095))
- (-4 *6 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)))
- (-5 *2
- (-3 (-2 (|:| |particular| *3) (|:| -1400 (-595 *3))) *3 "failed"))
- (-5 *1 (-748 *6 *3)) (-4 *3 (-13 (-29 *6) (-1117) (-897)))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-275 *2)) (-5 *4 (-112)) (-5 *5 (-595 *2))
- (-4 *2 (-13 (-29 *6) (-1117) (-897))) (-5 *1 (-748 *6 *2))
- (-4 *6 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)))))
- ((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-112)) (-5 *4 (-275 *2)) (-5 *5 (-595 *2))
- (-4 *2 (-13 (-29 *6) (-1117) (-897)))
- (-4 *6 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)))
- (-5 *1 (-748 *6 *2))))
- ((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-970)) (-5 *1 (-751))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-754)) (-5 *4 (-992)) (-5 *2 (-970)) (-5 *1 (-751))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1177 (-296 (-359)))) (-5 *4 (-359)) (-5 *5 (-595 *4))
- (-5 *2 (-970)) (-5 *1 (-751))))
- ((*1 *2 *3 *4 *4 *5 *4)
- (-12 (-5 *3 (-1177 (-296 (-359)))) (-5 *4 (-359)) (-5 *5 (-595 *4))
- (-5 *2 (-970)) (-5 *1 (-751))))
- ((*1 *2 *3 *4 *4 *5 *6 *4)
- (-12 (-5 *3 (-1177 (-296 *4))) (-5 *5 (-595 (-359)))
- (-5 *6 (-296 (-359))) (-5 *4 (-359)) (-5 *2 (-970)) (-5 *1 (-751))))
- ((*1 *2 *3 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1177 (-296 (-359)))) (-5 *4 (-359)) (-5 *5 (-595 *4))
- (-5 *2 (-970)) (-5 *1 (-751))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
- (-12 (-5 *3 (-1177 (-296 *4))) (-5 *5 (-595 (-359)))
- (-5 *6 (-296 (-359))) (-5 *4 (-359)) (-5 *2 (-970)) (-5 *1 (-751))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
- (-12 (-5 *3 (-1177 (-296 *4))) (-5 *5 (-595 (-359)))
- (-5 *6 (-296 (-359))) (-5 *4 (-359)) (-5 *2 (-970)) (-5 *1 (-751))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12
- (-5 *5
- (-1
- (-3 (-2 (|:| |particular| *6) (|:| -1400 (-595 *6))) "failed")
- *7 *6))
- (-4 *6 (-343)) (-4 *7 (-605 *6))
- (-5 *2 (-2 (|:| |particular| (-1177 *6)) (|:| -1400 (-635 *6))))
- (-5 *1 (-759 *6 *7)) (-5 *3 (-635 *6)) (-5 *4 (-1177 *6))))
- ((*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-970)) (-5 *1 (-836))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-837)) (-5 *4 (-992)) (-5 *2 (-970)) (-5 *1 (-836))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
- (-12 (-5 *4 (-717)) (-5 *6 (-595 (-595 (-296 *3)))) (-5 *7 (-1078))
- (-5 *8 (-207)) (-5 *5 (-595 (-296 (-359)))) (-5 *3 (-359))
- (-5 *2 (-970)) (-5 *1 (-836))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *4 (-717)) (-5 *6 (-595 (-595 (-296 *3)))) (-5 *7 (-1078))
- (-5 *5 (-595 (-296 (-359)))) (-5 *3 (-359)) (-5 *2 (-970))
- (-5 *1 (-836))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-891 (-387 (-528)))) (-5 *2 (-595 (-359)))
- (-5 *1 (-958)) (-5 *4 (-359))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-891 (-528))) (-5 *2 (-595 (-359))) (-5 *1 (-958))
- (-5 *4 (-359))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528)))))))
- (-5 *2 (-595 *4)) (-5 *1 (-1050 *3 *4)) (-4 *3 (-1153 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)))
- (-5 *2 (-595 (-275 (-296 *4)))) (-5 *1 (-1053 *4))
- (-5 *3 (-296 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)))
- (-5 *2 (-595 (-275 (-296 *4)))) (-5 *1 (-1053 *4))
- (-5 *3 (-275 (-296 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1095))
- (-4 *5 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)))
- (-5 *2 (-595 (-275 (-296 *5)))) (-5 *1 (-1053 *5))
- (-5 *3 (-275 (-296 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1095))
- (-4 *5 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)))
- (-5 *2 (-595 (-275 (-296 *5)))) (-5 *1 (-1053 *5))
- (-5 *3 (-296 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 (-1095)))
- (-4 *5 (-13 (-793) (-288) (-972 (-528)) (-591 (-528)) (-140)))
- (-5 *2 (-595 (-595 (-275 (-296 *5))))) (-5 *1 (-1053 *5))
- (-5 *3 (-595 (-275 (-296 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-387 (-891 *5)))) (-5 *4 (-595 (-1095)))
- (-4 *5 (-520)) (-5 *2 (-595 (-595 (-275 (-387 (-891 *5))))))
- (-5 *1 (-1101 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 (-1095))) (-4 *5 (-520))
- (-5 *2 (-595 (-595 (-275 (-387 (-891 *5)))))) (-5 *1 (-1101 *5))
- (-5 *3 (-595 (-275 (-387 (-891 *5)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 (-387 (-891 *4)))) (-4 *4 (-520))
- (-5 *2 (-595 (-595 (-275 (-387 (-891 *4)))))) (-5 *1 (-1101 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-5 *2 (-595 (-595 (-275 (-387 (-891 *4))))))
- (-5 *1 (-1101 *4)) (-5 *3 (-595 (-275 (-387 (-891 *4)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1095)) (-4 *5 (-520))
- (-5 *2 (-595 (-275 (-387 (-891 *5))))) (-5 *1 (-1101 *5))
- (-5 *3 (-387 (-891 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1095)) (-4 *5 (-520))
- (-5 *2 (-595 (-275 (-387 (-891 *5))))) (-5 *1 (-1101 *5))
- (-5 *3 (-275 (-387 (-891 *5))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-5 *2 (-595 (-275 (-387 (-891 *4)))))
- (-5 *1 (-1101 *4)) (-5 *3 (-387 (-891 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-5 *2 (-595 (-275 (-387 (-891 *4)))))
- (-5 *1 (-1101 *4)) (-5 *3 (-275 (-387 (-891 *4)))))))
+ (-2 (|:| |func| *3) (|:| |kers| (-594 (-569 *3))) (|:| |vals| (-594 *3))))
+ (-5 *1 (-259 *5 *3)) (-4 *3 (-13 (-27) (-1120) (-402 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-795) (-523))) (-5 *2 (-110)) (-5 *1 (-258 *4 *3))
+ (-4 *3 (-13 (-402 *4) (-941))))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-568 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *4)))
- (-4 *4 (-13 (-520) (-793) (-972 (-528)) (-591 (-528))))
+ (|partial| -12 (-5 *3 (-594 (-2 (|:| |func| *2) (|:| |pole| (-110)))))
+ (-4 *2 (-13 (-402 *4) (-941))) (-4 *4 (-13 (-795) (-523)))
(-5 *1 (-258 *4 *2)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-528)) (-5 *5 (-635 (-207)))
- (-5 *6 (-3 (|:| |fn| (-368)) (|:| |fp| (-73 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-74 G JACOBG JACGEP))))
- (-5 *4 (-207)) (-5 *2 (-970)) (-5 *1 (-696)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-546 *2)) (-4 *2 (-513)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
- (-5 *1 (-652 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-402 *3) (-941))))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-402 *3) (-941))) (-5 *1 (-258 *3 *2))
+ (-4 *3 (-13 (-795) (-523))))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-402 *3) (-941))) (-5 *1 (-258 *3 *2))
+ (-4 *3 (-13 (-795) (-523))))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-516))) (-5 *1 (-257)))))
+(((*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-257)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-343)) (-5 *2 (-595 *3)) (-5 *1 (-884 *4 *3))
- (-4 *3 (-1153 *4)))))
+ (-12
+ (-5 *3
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208)))
+ (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208))))
+ (|:| |ub| (-594 (-787 (-208))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-594 (-295 (-208)))) (|:| -3724 (-594 (-208)))))))
+ (-5 *2 (-594 (-1081))) (-5 *1 (-249)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-973)) (-5 *3 (-1098)) (-5 *1 (-249)))))
+(((*1 *2 *3) (-12 (-5 *3 (-295 (-208))) (-5 *2 (-110)) (-5 *1 (-249)))))
+(((*1 *2 *2) (-12 (-5 *2 (-594 (-295 (-208)))) (-5 *1 (-249)))))
+(((*1 *2 *2) (-12 (-5 *2 (-594 (-295 (-208)))) (-5 *1 (-249)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-295 (-208)))) (-5 *4 (-719)) (-5 *2 (-637 (-208)))
+ (-5 *1 (-249)))))
+(((*1 *2 *3) (-12 (-5 *3 (-594 (-295 (-208)))) (-5 *2 (-110)) (-5 *1 (-249)))))
+(((*1 *2 *2) (-12 (-5 *2 (-295 (-208))) (-5 *1 (-249)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-295 (-208))) (-5 *1 (-249)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-295 (-208))) (|:| -3724 (-594 (-208)))
+ (|:| |lb| (-594 (-787 (-208)))) (|:| |cf| (-594 (-295 (-208))))
+ (|:| |ub| (-594 (-787 (-208))))))
+ (-5 *1 (-249)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-787 (-208)))) (-5 *4 (-208)) (-5 *2 (-594 *4))
+ (-5 *1 (-249)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-343)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4)))
- (-5 *2 (-1177 *6)) (-5 *1 (-316 *3 *4 *5 *6))
- (-4 *6 (-322 *3 *4 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-341 (-112))) (-4 *2 (-981)) (-5 *1 (-661 *2 *4))
- (-4 *4 (-597 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-341 (-112))) (-5 *1 (-780 *2)) (-4 *2 (-981)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1177 *5)) (-5 *3 (-717)) (-5 *4 (-1042)) (-4 *5 (-329))
- (-5 *1 (-498 *5)))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-595 (-459 *4 *5))) (-5 *3 (-804 *4))
- (-14 *4 (-595 (-1095))) (-4 *5 (-431)) (-5 *1 (-583 *4 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1199 *4 *2)) (-4 *1 (-354 *4 *2)) (-4 *4 (-793))
- (-4 *2 (-162))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1192 *3 *2)) (-4 *3 (-793)) (-4 *2 (-981))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-765 *4)) (-4 *1 (-1192 *4 *2)) (-4 *4 (-793))
- (-4 *2 (-981))))
+ (-12 (-4 *3 (-216)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4))
+ (-4 *6 (-741)) (-5 *2 (-1 *1 (-719))) (-4 *1 (-235 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-984)) (-4 *3 (-795)) (-4 *5 (-248 *3)) (-4 *6 (-741))
+ (-5 *2 (-1 *1 (-719))) (-4 *1 (-235 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-248 *2)) (-4 *2 (-795)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-111))))
+ ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-111))))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-981)) (-5 *1 (-1198 *2 *3)) (-4 *3 (-789)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-999 *4 *5 *6 *3)) (-4 *4 (-431)) (-4 *5 (-739))
- (-4 *6 (-793)) (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-110)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-528)) (-5 *5 (-1078)) (-5 *6 (-635 (-207)))
- (-5 *7 (-3 (|:| |fn| (-368)) (|:| |fp| (-87 G))))
- (-5 *8 (-3 (|:| |fn| (-368)) (|:| |fp| (-84 FCN))))
- (-5 *9 (-3 (|:| |fn| (-368)) (|:| |fp| (-86 OUTPUT))))
- (-5 *3 (-207)) (-5 *2 (-970)) (-5 *1 (-696)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1048 *4 *3 *5))) (-4 *4 (-37 (-387 (-528))))
- (-4 *4 (-981)) (-4 *3 (-793)) (-5 *1 (-1048 *4 *3 *5))
- (-4 *5 (-888 *4 (-500 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1126 *4))) (-5 *3 (-1095)) (-5 *1 (-1126 *4))
- (-4 *4 (-37 (-387 (-528)))) (-4 *4 (-981)))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5))
- (-4 *5 (-13 (-343) (-140) (-972 (-528))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-387 *6)) (|:| |h| *6)
- (|:| |c1| (-387 *6)) (|:| |c2| (-387 *6)) (|:| -3956 *6)))
- (-5 *1 (-952 *5 *6)) (-5 *3 (-387 *6)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-595 *5)) (-5 *4 (-528)) (-4 *5 (-791)) (-4 *5 (-343))
- (-5 *2 (-717)) (-5 *1 (-884 *5 *6)) (-4 *6 (-1153 *5)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1078)) (-5 *4 (-528)) (-5 *5 (-635 (-159 (-207))))
- (-5 *2 (-970)) (-5 *1 (-701)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1095)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-648 *3 *5 *6 *7))
- (-4 *3 (-570 (-504))) (-4 *5 (-1131)) (-4 *6 (-1131))
- (-4 *7 (-1131))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1095)) (-5 *2 (-1 *6 *5)) (-5 *1 (-653 *3 *5 *6))
- (-4 *3 (-570 (-504))) (-4 *5 (-1131)) (-4 *6 (-1131)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-343) (-791))) (-5 *1 (-169 *2 *3))
- (-4 *3 (-1153 (-159 *2)))))
+ (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795))
+ (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-719))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795))
+ (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-795)) (-5 *2 (-719)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-594 (-243))) (-5 *4 (-1098)) (-5 *2 (-50))
+ (-5 *1 (-243))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-594 (-243))) (-5 *4 (-1098)) (-5 *1 (-245 *2))
+ (-4 *2 (-1134)))))
+(((*1 *1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-243))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-359)) (-5 *3 (-594 (-243))) (-5 *1 (-244)))))
+(((*1 *1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-243))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-860)) (-5 *3 (-594 (-243))) (-5 *1 (-244)))))
+(((*1 *1) (-5 *1 (-137)))
+ ((*1 *1 *2) (-12 (-5 *2 (-1058 (-208))) (-5 *1 (-243))))
+ ((*1 *2 *3) (-12 (-5 *3 (-594 (-243))) (-5 *2 (-1058 (-208))) (-5 *1 (-244)))))
+(((*1 *1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-243))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-860)) (-5 *3 (-594 (-243))) (-5 *1 (-244)))))
+(((*1 *1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-243))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-860)) (-5 *3 (-594 (-243))) (-5 *1 (-244)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-815)) (-5 *3 (-594 (-243))) (-5 *1 (-244)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-815)) (-5 *3 (-594 (-243))) (-5 *1 (-244)))))
+(((*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-243))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *3 (-594 (-243))) (-5 *1 (-244)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-243))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1081)) (-5 *3 (-594 (-243))) (-5 *1 (-244)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *3 (-594 (-243))) (-5 *1 (-244)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-866))
+ (-5 *2
+ (-2 (|:| |brans| (-594 (-594 (-884 (-208)))))
+ (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))))
+ (-5 *1 (-146))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-866)) (-5 *4 (-388 (-516)))
+ (-5 *2
+ (-2 (|:| |brans| (-594 (-594 (-884 (-208)))))
+ (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))))
+ (-5 *1 (-146))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-343) (-791))) (-5 *1 (-169 *2 *3))
- (-4 *3 (-1153 (-159 *2))))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-595 (-891 *6))) (-5 *4 (-595 (-1095))) (-4 *6 (-431))
- (-5 *2 (-595 (-595 *7))) (-5 *1 (-506 *6 *7 *5)) (-4 *7 (-343))
- (-4 *5 (-13 (-343) (-791))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 (-804 *5))) (-14 *5 (-595 (-1095))) (-4 *6 (-431))
- (-5 *2 (-595 (-595 (-229 *5 *6)))) (-5 *1 (-450 *5 *6 *7))
- (-5 *3 (-595 (-229 *5 *6))) (-4 *7 (-431)))))
-(((*1 *2 *1) (-12 (-5 *2 (-595 (-171))) (-5 *1 (-1040)))))
-(((*1 *1) (-5 *1 (-137))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *1 *1 *1) (-4 *1 (-513))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-717)) (-4 *3 (-981)) (-4 *1 (-633 *3 *4 *5))
- (-4 *4 (-353 *3)) (-4 *5 (-353 *3))))
- ((*1 *1 *2)
- (-12 (-4 *2 (-981)) (-4 *1 (-1045 *3 *2 *4 *5)) (-4 *4 (-220 *3 *2))
- (-4 *5 (-220 *3 *2)))))
-(((*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-942)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1076 (-2 (|:| |k| (-528)) (|:| |c| *3))))
- (-5 *1 (-553 *3)) (-4 *3 (-981)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1095))
- (-4 *5 (-13 (-431) (-793) (-140) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-2 (|:| -1497 *3) (|:| |coeff| *3))) (-5 *1 (-521 *5 *3))
- (-4 *3 (-13 (-27) (-1117) (-410 *5))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-110) *7 (-595 *7))) (-4 *1 (-1125 *4 *5 *6 *7))
- (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793)) (-4 *7 (-994 *4 *5 *6))
- (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-4 *1 (-622 *3)) (-4 *3 (-1131)) (-5 *2 (-110)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-343) (-10 -8 (-15 ** ($ $ (-387 (-528)))))))
+ (-12
(-5 *2
- (-2 (|:| |solns| (-595 *5))
- (|:| |maps| (-595 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1050 *3 *5)) (-4 *3 (-1153 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-635 *4)) (-5 *3 (-860)) (|has| *4 (-6 (-4266 "*")))
- (-4 *4 (-981)) (-5 *1 (-963 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-595 (-635 *4))) (-5 *3 (-860))
- (|has| *4 (-6 (-4266 "*"))) (-4 *4 (-981)) (-5 *1 (-963 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-306 *2 *3)) (-4 *3 (-738)) (-4 *2 (-981))
- (-4 *2 (-431))))
+ (-2 (|:| |brans| (-594 (-594 (-884 (-208)))))
+ (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))))
+ (-5 *1 (-146)) (-5 *3 (-594 (-884 (-208))))))
((*1 *2 *3)
- (-12 (-5 *3 (-595 *4)) (-4 *4 (-1153 (-528))) (-5 *2 (-595 (-528)))
- (-5 *1 (-464 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-431))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *2 (-793)) (-4 *3 (-431)))))
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-594 (-594 (-884 (-208)))))
+ (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))))
+ (-5 *1 (-146)) (-5 *3 (-594 (-594 (-884 (-208)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 (-1017 (-359)))) (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-243)))))
+(((*1 *1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-243)))))
+(((*1 *1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-359)) (-5 *1 (-243)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208) (-208) (-208))) (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208) (-208))) (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-243)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 (-1017 (-388 (-516))))) (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 (-1017 (-359)))) (-5 *1 (-243)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-243))) (-5 *4 (-1098)) (-5 *2 (-110)) (-5 *1 (-243)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-818 (-1 (-207) (-207)))) (-5 *4 (-1018 (-359)))
- (-5 *5 (-595 (-244))) (-5 *2 (-1055 (-207))) (-5 *1 (-236))))
+ (-12 (-5 *4 (-1019 (-359))) (-5 *5 (-594 (-243))) (-5 *2 (-1182))
+ (-5 *1 (-237 *3)) (-4 *3 (-13 (-572 (-505)) (-1027)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-818 (-1 (-207) (-207)))) (-5 *4 (-1018 (-359)))
- (-5 *2 (-1055 (-207))) (-5 *1 (-236))))
+ (-12 (-5 *4 (-1019 (-359))) (-5 *2 (-1182)) (-5 *1 (-237 *3))
+ (-4 *3 (-13 (-572 (-505)) (-1027)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-882 (-207)) (-207))) (-5 *4 (-1018 (-359)))
- (-5 *5 (-595 (-244))) (-5 *2 (-1055 (-207))) (-5 *1 (-236))))
+ (-12 (-5 *3 (-818 *6)) (-5 *4 (-1019 (-359))) (-5 *5 (-594 (-243)))
+ (-4 *6 (-13 (-572 (-505)) (-1027))) (-5 *2 (-1182)) (-5 *1 (-237 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-882 (-207)) (-207))) (-5 *4 (-1018 (-359)))
- (-5 *2 (-1055 (-207))) (-5 *1 (-236))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-207) (-207) (-207))) (-5 *4 (-1018 (-359)))
- (-5 *5 (-595 (-244))) (-5 *2 (-1055 (-207))) (-5 *1 (-236))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-207) (-207) (-207))) (-5 *4 (-1018 (-359)))
- (-5 *2 (-1055 (-207))) (-5 *1 (-236))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-882 (-207)) (-207) (-207))) (-5 *4 (-1018 (-359)))
- (-5 *5 (-595 (-244))) (-5 *2 (-1055 (-207))) (-5 *1 (-236))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-882 (-207)) (-207) (-207))) (-5 *4 (-1018 (-359)))
- (-5 *2 (-1055 (-207))) (-5 *1 (-236))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-821 (-1 (-207) (-207) (-207)))) (-5 *4 (-1018 (-359)))
- (-5 *5 (-595 (-244))) (-5 *2 (-1055 (-207))) (-5 *1 (-236))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-821 (-1 (-207) (-207) (-207)))) (-5 *4 (-1018 (-359)))
- (-5 *2 (-1055 (-207))) (-5 *1 (-236))))
+ (-12 (-5 *3 (-818 *5)) (-5 *4 (-1019 (-359)))
+ (-4 *5 (-13 (-572 (-505)) (-1027))) (-5 *2 (-1182)) (-5 *1 (-237 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-818 *6)) (-5 *4 (-1016 (-359))) (-5 *5 (-595 (-244)))
- (-4 *6 (-13 (-570 (-504)) (-1023))) (-5 *2 (-1055 (-207)))
- (-5 *1 (-240 *6))))
+ (-12 (-5 *3 (-820 *6)) (-5 *4 (-1019 (-359))) (-5 *5 (-594 (-243)))
+ (-4 *6 (-13 (-572 (-505)) (-1027))) (-5 *2 (-1183)) (-5 *1 (-237 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-818 *5)) (-5 *4 (-1016 (-359)))
- (-4 *5 (-13 (-570 (-504)) (-1023))) (-5 *2 (-1055 (-207)))
- (-5 *1 (-240 *5))))
+ (-12 (-5 *3 (-820 *5)) (-5 *4 (-1019 (-359)))
+ (-4 *5 (-13 (-572 (-505)) (-1027))) (-5 *2 (-1183)) (-5 *1 (-237 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1016 (-359))) (-5 *5 (-595 (-244)))
- (-5 *2 (-1055 (-207))) (-5 *1 (-240 *3))
- (-4 *3 (-13 (-570 (-504)) (-1023)))))
+ (-12 (-5 *4 (-1019 (-359))) (-5 *5 (-594 (-243))) (-5 *2 (-1183))
+ (-5 *1 (-237 *3)) (-4 *3 (-13 (-572 (-505)) (-1027)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1016 (-359))) (-5 *2 (-1055 (-207))) (-5 *1 (-240 *3))
- (-4 *3 (-13 (-570 (-504)) (-1023)))))
+ (-12 (-5 *4 (-1019 (-359))) (-5 *2 (-1183)) (-5 *1 (-237 *3))
+ (-4 *3 (-13 (-572 (-505)) (-1027)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-821 *6)) (-5 *4 (-1016 (-359))) (-5 *5 (-595 (-244)))
- (-4 *6 (-13 (-570 (-504)) (-1023))) (-5 *2 (-1055 (-207)))
- (-5 *1 (-240 *6))))
+ (-12 (-5 *3 (-823 *6)) (-5 *4 (-1019 (-359))) (-5 *5 (-594 (-243)))
+ (-4 *6 (-13 (-572 (-505)) (-1027))) (-5 *2 (-1183)) (-5 *1 (-237 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-821 *5)) (-5 *4 (-1016 (-359)))
- (-4 *5 (-13 (-570 (-504)) (-1023))) (-5 *2 (-1055 (-207)))
- (-5 *1 (-240 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-343))
- (-5 *2 (-2 (|:| -4099 (-398 *3)) (|:| |special| (-398 *3))))
- (-5 *1 (-674 *5 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-1095))) (-4 *4 (-13 (-288) (-140)))
- (-4 *5 (-13 (-793) (-570 (-1095)))) (-4 *6 (-739))
- (-5 *2 (-595 (-387 (-891 *4)))) (-5 *1 (-863 *4 *5 *6 *7))
- (-4 *7 (-888 *4 *6 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-230)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-112)) (-5 *4 (-595 *2)) (-5 *1 (-111 *2))
- (-4 *2 (-1023))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 (-595 *4))) (-4 *4 (-1023))
- (-5 *1 (-111 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1023))
- (-5 *1 (-111 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-112)) (-5 *2 (-1 *4 (-595 *4)))
- (-5 *1 (-111 *4)) (-4 *4 (-1023))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-597 *3)) (-4 *3 (-981))
- (-5 *1 (-661 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-981)) (-5 *1 (-780 *3)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *3 (-528)) (-5 *2 (-110)) (-5 *1 (-458)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-595 *7)) (|:| |badPols| (-595 *7))))
- (-5 *1 (-914 *4 *5 *6 *7)) (-5 *3 (-595 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-2 (|:| |den| (-528)) (|:| |gcdnum| (-528)))))
- (-4 *4 (-1153 (-387 *2))) (-5 *2 (-528)) (-5 *1 (-852 *4 *5))
- (-4 *5 (-1153 (-387 *4))))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-595 (-831 *3))) (-5 *1 (-831 *3))
- (-4 *3 (-1023)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-698)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *2 (-793)) (-4 *3 (-162))))
- ((*1 *2 *3 *3)
- (-12 (-4 *2 (-520)) (-5 *1 (-907 *2 *3)) (-4 *3 (-1153 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)) (-4 *2 (-520))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-981)) (-4 *2 (-162)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-793) (-520) (-972 (-528)))) (-5 *2 (-387 (-528)))
- (-5 *1 (-413 *4 *3)) (-4 *3 (-410 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-568 *3)) (-4 *3 (-410 *5))
- (-4 *5 (-13 (-793) (-520) (-972 (-528))))
- (-5 *2 (-1091 (-387 (-528)))) (-5 *1 (-413 *5 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981))
- (-5 *2 (-2 (|:| |k| (-765 *3)) (|:| |c| *4))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-520))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-159 (-207))) (-5 *5 (-528)) (-5 *6 (-1078))
- (-5 *3 (-207)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-981)) (-5 *1 (-636 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-207)) (-5 *1 (-208))))
- ((*1 *2 *2) (-12 (-5 *2 (-159 (-207))) (-5 *1 (-208))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-411 *3 *2))
- (-4 *2 (-410 *3))))
- ((*1 *1 *1) (-4 *1 (-1059))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-793) (-520))) (-5 *2 (-110)) (-5 *1 (-257 *4 *3))
- (-4 *3 (-13 (-410 *4) (-938))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| -3324 (-595 (-802))) (|:| -3622 (-595 (-802)))
- (|:| |presup| (-595 (-802))) (|:| -3884 (-595 (-802)))
- (|:| |args| (-595 (-802)))))
- (-5 *1 (-1095)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1131))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1095)) (-5 *3 (-1078)) (-5 *1 (-926))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095)) (-5 *3 (-1018 *4)) (-4 *4 (-1131))
- (-5 *1 (-1016 *4)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1095)) (-5 *6 (-110))
- (-4 *7 (-13 (-288) (-793) (-140) (-972 (-528)) (-591 (-528))))
- (-4 *3 (-13 (-1117) (-897) (-29 *7)))
- (-5 *2
- (-3 (|:| |f1| (-786 *3)) (|:| |f2| (-595 (-786 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-201 *7 *3)) (-5 *5 (-786 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-296 (-207))) (-5 *1 (-194)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207)))
- (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207))
- (|:| |relerr| (-207))))
- (-5 *2 (-359)) (-5 *1 (-176)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-520)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *2 (-994 *3 *4 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
- *4 *6 *4)
- (-12 (-5 *4 (-528)) (-5 *5 (-635 (-207))) (-5 *6 (-623 (-207)))
- (-5 *3 (-207)) (-5 *2 (-970)) (-5 *1 (-697)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1153 (-387 *2))) (-5 *2 (-528)) (-5 *1 (-852 *4 *3))
- (-4 *3 (-1153 (-387 *4))))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-528))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-717))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-860))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-528)) (-14 *3 (-717))
- (-4 *4 (-162))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-207)) (-5 *1 (-148))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-148))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-882 *3)) (-4 *3 (-13 (-343) (-1117)))
- (-5 *1 (-209 *3))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-220 *3 *2)) (-4 *2 (-1131)) (-4 *2 (-673))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-220 *3 *2)) (-4 *2 (-1131)) (-4 *2 (-673))))
- ((*1 *1 *2 *1)
- (-12 (-5 *1 (-275 *2)) (-4 *2 (-1035)) (-4 *2 (-1131))))
- ((*1 *1 *1 *2)
- (-12 (-5 *1 (-275 *2)) (-4 *2 (-1035)) (-4 *2 (-1131))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-303 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-128))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-1023))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-1023))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-361 *3 *2)) (-4 *3 (-981)) (-4 *2 (-793))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-362 *2 *3)) (-4 *2 (-981)) (-4 *3 (-1023))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-366 *2)) (-4 *2 (-1023))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-366 *2)) (-4 *2 (-1023))))
- ((*1 *1 *2 *1)
- (-12 (-14 *3 (-595 (-1095))) (-4 *4 (-162))
- (-4 *6 (-220 (-2138 *3) (-717)))
- (-14 *7
- (-1 (-110) (-2 (|:| -3108 *5) (|:| -2564 *6))
- (-2 (|:| -3108 *5) (|:| -2564 *6))))
- (-5 *1 (-440 *3 *4 *5 *6 *7 *2)) (-4 *5 (-793))
- (-4 *2 (-888 *4 *6 (-804 *3)))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-343)) (-4 *3 (-739)) (-4 *4 (-793))
- (-5 *1 (-480 *2 *3 *4 *5)) (-4 *5 (-888 *2 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1177 *3)) (-4 *3 (-329)) (-5 *1 (-498 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-504)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-554 *3)) (-4 *3 (-981))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-554 *2)) (-4 *2 (-981))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-554 *2)) (-4 *2 (-981))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-987))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-624 *2)) (-4 *2 (-793))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1023))
- (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-1 *7 *5))
- (-5 *1 (-630 *5 *6 *7))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-633 *3 *2 *4)) (-4 *3 (-981)) (-4 *2 (-353 *3))
- (-4 *4 (-353 *3))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-633 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-353 *3))
- (-4 *2 (-353 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-528)) (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981))
- (-4 *4 (-353 *3)) (-4 *5 (-353 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2))
- (-4 *4 (-353 *2))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2))
- (-4 *4 (-353 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-633 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-353 *2))
- (-4 *4 (-353 *2))))
- ((*1 *1 *1 *1) (-4 *1 (-667)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-765 *2)) (-4 *2 (-793))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-793))))
- ((*1 *1 *1 *1) (-5 *1 (-802)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-1023))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-520))
- (-5 *1 (-907 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-986 *2)) (-4 *2 (-987))))
- ((*1 *1 *1 *1) (-4 *1 (-1035)))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1045 *3 *4 *2 *5)) (-4 *4 (-981)) (-4 *2 (-220 *3 *4))
- (-4 *5 (-220 *3 *4))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1045 *3 *4 *5 *2)) (-4 *4 (-981)) (-4 *5 (-220 *3 *4))
- (-4 *2 (-220 *3 *4))))
- ((*1 *1 *2 *1)
- (-12 (-4 *3 (-981)) (-4 *4 (-793)) (-5 *1 (-1048 *3 *4 *2))
- (-4 *2 (-888 *3 (-500 *4) *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-882 (-207))) (-5 *3 (-207)) (-5 *1 (-1128))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1175 *2)) (-4 *2 (-1131)) (-4 *2 (-673))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1175 *2)) (-4 *2 (-1131)) (-4 *2 (-673))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-528)) (-4 *1 (-1175 *3)) (-4 *3 (-1131)) (-4 *3 (-21))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1192 *2 *3)) (-4 *2 (-793)) (-4 *3 (-981))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1192 *3 *2)) (-4 *3 (-793)) (-4 *2 (-981))))
- ((*1 *1 *1 *2)
- (-12 (-5 *1 (-1198 *2 *3)) (-4 *2 (-981)) (-4 *3 (-789)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-981)) (-5 *2 (-110)) (-5 *1 (-423 *4 *3))
- (-4 *3 (-1153 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *5 (-793)) (-5 *2 (-110)))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1078)) (-5 *3 (-528)) (-5 *1 (-992)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-981))
- (-4 *2 (-13 (-384) (-972 *4) (-343) (-1117) (-265)))
- (-5 *1 (-422 *4 *3 *2)) (-4 *3 (-1153 *4))))
- ((*1 *1 *1) (-4 *1 (-513)))
- ((*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-620 *3)) (-4 *3 (-793))))
- ((*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-624 *3)) (-4 *3 (-793))))
- ((*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-765 *3)) (-4 *3 (-793))))
- ((*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-832 *3)) (-4 *3 (-793))))
- ((*1 *2 *1) (-12 (-4 *1 (-931 *3)) (-4 *3 (-1131)) (-5 *2 (-717))))
- ((*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-1129 *3)) (-4 *3 (-1131))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1175 *2)) (-4 *2 (-1131)) (-4 *2 (-938))
- (-4 *2 (-981)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-595 (-2 (|:| |val| *3) (|:| -2316 *4))))
- (-5 *1 (-1061 *3 *4)) (-4 *3 (-13 (-1023) (-33)))
- (-4 *4 (-13 (-1023) (-33))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1076 (-595 (-528)))) (-5 *1 (-822))
- (-5 *3 (-595 (-528)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1076 (-595 (-528)))) (-5 *1 (-822))
- (-5 *3 (-595 (-528))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-595 *4))
- (-5 *1 (-1000 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-717)) (-4 *4 (-520)) (-5 *1 (-907 *4 *2))
- (-4 *2 (-1153 *4)))))
-(((*1 *2) (-12 (-5 *2 (-595 (-717))) (-5 *1 (-1180))))
- ((*1 *2 *2) (-12 (-5 *2 (-595 (-717))) (-5 *1 (-1180)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-513)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3 *4 *2 *5)) (-4 *4 (-981)) (-4 *5 (-220 *3 *4))
- (-4 *2 (-220 *3 *4)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-595 (-568 *2))) (-5 *4 (-1095))
- (-4 *2 (-13 (-27) (-1117) (-410 *5)))
- (-4 *5 (-13 (-520) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *1 (-258 *5 *2)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-513))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4264)) (-4 *1 (-144 *3))
- (-4 *3 (-1131))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1131)) (-5 *1 (-558 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-622 *3)) (-4 *3 (-1131))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1125 *4 *5 *3 *2)) (-4 *4 (-520))
- (-4 *5 (-739)) (-4 *3 (-793)) (-4 *2 (-994 *4 *5 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-717)) (-5 *1 (-1129 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1199 *3 *4)) (-4 *1 (-354 *3 *4)) (-4 *3 (-793))
- (-4 *4 (-162))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-366 *2)) (-4 *2 (-1023))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-765 *2)) (-4 *2 (-793))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-765 *2)) (-4 *2 (-793))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1192 *2 *3)) (-4 *2 (-793)) (-4 *3 (-981))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-765 *3)) (-4 *1 (-1192 *3 *4)) (-4 *3 (-793))
- (-4 *4 (-981))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1192 *2 *3)) (-4 *2 (-793)) (-4 *3 (-981)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-520) (-793)))
- (-4 *2 (-13 (-410 (-159 *4)) (-938) (-1117)))
- (-5 *1 (-557 *4 *3 *2)) (-4 *3 (-13 (-410 *4) (-938) (-1117))))))
-(((*1 *2 *2) (-12 (-5 *2 (-1076 (-595 (-528)))) (-5 *1 (-822)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-159 (-207))) (-5 *4 (-528)) (-5 *2 (-970))
- (-5 *1 (-705)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-717)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860))
- (-4 *4 (-981)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-207) (-207))) (-5 *4 (-1018 (-359)))
- (-5 *5 (-595 (-244))) (-5 *2 (-1178)) (-5 *1 (-236))))
+ (-12 (-5 *3 (-823 *5)) (-5 *4 (-1019 (-359)))
+ (-4 *5 (-13 (-572 (-505)) (-1027))) (-5 *2 (-1183)) (-5 *1 (-237 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-208) (-208))) (-5 *4 (-1017 (-359))) (-5 *5 (-594 (-243)))
+ (-5 *2 (-1182)) (-5 *1 (-238))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-207) (-207))) (-5 *4 (-1018 (-359)))
- (-5 *2 (-1178)) (-5 *1 (-236))))
+ (-12 (-5 *3 (-1 (-208) (-208))) (-5 *4 (-1017 (-359))) (-5 *2 (-1182))
+ (-5 *1 (-238))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-816 (-1 (-207) (-207)))) (-5 *4 (-1018 (-359)))
- (-5 *5 (-595 (-244))) (-5 *2 (-1178)) (-5 *1 (-236))))
+ (-12 (-5 *3 (-818 (-1 (-208) (-208)))) (-5 *4 (-1017 (-359)))
+ (-5 *5 (-594 (-243))) (-5 *2 (-1182)) (-5 *1 (-238))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-816 (-1 (-207) (-207)))) (-5 *4 (-1018 (-359)))
- (-5 *2 (-1178)) (-5 *1 (-236))))
+ (-12 (-5 *3 (-818 (-1 (-208) (-208)))) (-5 *4 (-1017 (-359))) (-5 *2 (-1182))
+ (-5 *1 (-238))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-818 (-1 (-207) (-207)))) (-5 *4 (-1018 (-359)))
- (-5 *5 (-595 (-244))) (-5 *2 (-1179)) (-5 *1 (-236))))
+ (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1017 (-359)))
+ (-5 *5 (-594 (-243))) (-5 *2 (-1183)) (-5 *1 (-238))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-818 (-1 (-207) (-207)))) (-5 *4 (-1018 (-359)))
- (-5 *2 (-1179)) (-5 *1 (-236))))
+ (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1017 (-359))) (-5 *2 (-1183))
+ (-5 *1 (-238))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-882 (-207)) (-207))) (-5 *4 (-1018 (-359)))
- (-5 *5 (-595 (-244))) (-5 *2 (-1179)) (-5 *1 (-236))))
+ (-12 (-5 *3 (-1 (-884 (-208)) (-208))) (-5 *4 (-1017 (-359)))
+ (-5 *5 (-594 (-243))) (-5 *2 (-1183)) (-5 *1 (-238))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-882 (-207)) (-207))) (-5 *4 (-1018 (-359)))
- (-5 *2 (-1179)) (-5 *1 (-236))))
+ (-12 (-5 *3 (-1 (-884 (-208)) (-208))) (-5 *4 (-1017 (-359))) (-5 *2 (-1183))
+ (-5 *1 (-238))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-207) (-207) (-207))) (-5 *4 (-1018 (-359)))
- (-5 *5 (-595 (-244))) (-5 *2 (-1179)) (-5 *1 (-236))))
+ (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1017 (-359)))
+ (-5 *5 (-594 (-243))) (-5 *2 (-1183)) (-5 *1 (-238))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-207) (-207) (-207))) (-5 *4 (-1018 (-359)))
- (-5 *2 (-1179)) (-5 *1 (-236))))
+ (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1017 (-359))) (-5 *2 (-1183))
+ (-5 *1 (-238))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-882 (-207)) (-207) (-207))) (-5 *4 (-1018 (-359)))
- (-5 *5 (-595 (-244))) (-5 *2 (-1179)) (-5 *1 (-236))))
+ (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1017 (-359)))
+ (-5 *5 (-594 (-243))) (-5 *2 (-1183)) (-5 *1 (-238))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-882 (-207)) (-207) (-207))) (-5 *4 (-1018 (-359)))
- (-5 *2 (-1179)) (-5 *1 (-236))))
+ (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1017 (-359)))
+ (-5 *2 (-1183)) (-5 *1 (-238))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-821 (-1 (-207) (-207) (-207)))) (-5 *4 (-1018 (-359)))
- (-5 *5 (-595 (-244))) (-5 *2 (-1179)) (-5 *1 (-236))))
+ (-12 (-5 *3 (-823 (-1 (-208) (-208) (-208)))) (-5 *4 (-1017 (-359)))
+ (-5 *5 (-594 (-243))) (-5 *2 (-1183)) (-5 *1 (-238))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-821 (-1 (-207) (-207) (-207)))) (-5 *4 (-1018 (-359)))
- (-5 *2 (-1179)) (-5 *1 (-236))))
+ (-12 (-5 *3 (-823 (-1 (-208) (-208) (-208)))) (-5 *4 (-1017 (-359)))
+ (-5 *2 (-1183)) (-5 *1 (-238))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-275 *7)) (-5 *4 (-1095)) (-5 *5 (-595 (-244)))
- (-4 *7 (-410 *6)) (-4 *6 (-13 (-520) (-793) (-972 (-528))))
- (-5 *2 (-1178)) (-5 *1 (-237 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1016 (-359))) (-5 *5 (-595 (-244))) (-5 *2 (-1178))
- (-5 *1 (-240 *3)) (-4 *3 (-13 (-570 (-504)) (-1023)))))
+ (-12 (-5 *3 (-275 *7)) (-5 *4 (-1098)) (-5 *5 (-594 (-243)))
+ (-4 *7 (-402 *6)) (-4 *6 (-13 (-523) (-795) (-975 (-516)))) (-5 *2 (-1182))
+ (-5 *1 (-239 *6 *7))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-594 (-208))) (-5 *2 (-1182)) (-5 *1 (-242))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-594 (-208))) (-5 *4 (-594 (-243))) (-5 *2 (-1182))
+ (-5 *1 (-242))))
+ ((*1 *2 *3) (-12 (-5 *3 (-594 (-884 (-208)))) (-5 *2 (-1182)) (-5 *1 (-242))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1016 (-359))) (-5 *2 (-1178)) (-5 *1 (-240 *3))
- (-4 *3 (-13 (-570 (-504)) (-1023)))))
+ (-12 (-5 *3 (-594 (-884 (-208)))) (-5 *4 (-594 (-243))) (-5 *2 (-1182))
+ (-5 *1 (-242))))
+ ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-594 (-208))) (-5 *2 (-1183)) (-5 *1 (-242))))
+ ((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-594 (-208))) (-5 *4 (-594 (-243))) (-5 *2 (-1183))
+ (-5 *1 (-242)))))
+(((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-240)))))
+(((*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-240)))))
+(((*1 *2 *2) (-12 (-5 *2 (-516)) (-5 *1 (-240)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-158 (-208)) (-158 (-208)))) (-5 *4 (-1017 (-208)))
+ (-5 *2 (-1183)) (-5 *1 (-240)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-158 (-208)) (-158 (-208)))) (-5 *4 (-1017 (-208)))
+ (-5 *5 (-110)) (-5 *2 (-1183)) (-5 *1 (-240)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-884 (-208)) (-208) (-208)))
+ (-5 *3 (-1 (-208) (-208) (-208) (-208))) (-5 *1 (-238)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-820 *6)) (-5 *4 (-1019 (-359))) (-5 *5 (-594 (-243)))
+ (-4 *6 (-13 (-572 (-505)) (-1027))) (-5 *2 (-1058 (-208)))
+ (-5 *1 (-237 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-820 *5)) (-5 *4 (-1019 (-359)))
+ (-4 *5 (-13 (-572 (-505)) (-1027))) (-5 *2 (-1058 (-208)))
+ (-5 *1 (-237 *5))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-1019 (-359))) (-5 *5 (-594 (-243))) (-5 *2 (-1058 (-208)))
+ (-5 *1 (-237 *3)) (-4 *3 (-13 (-572 (-505)) (-1027)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1019 (-359))) (-5 *2 (-1058 (-208))) (-5 *1 (-237 *3))
+ (-4 *3 (-13 (-572 (-505)) (-1027)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-823 *6)) (-5 *4 (-1019 (-359))) (-5 *5 (-594 (-243)))
+ (-4 *6 (-13 (-572 (-505)) (-1027))) (-5 *2 (-1058 (-208)))
+ (-5 *1 (-237 *6))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-823 *5)) (-5 *4 (-1019 (-359)))
+ (-4 *5 (-13 (-572 (-505)) (-1027))) (-5 *2 (-1058 (-208)))
+ (-5 *1 (-237 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-816 *6)) (-5 *4 (-1016 (-359))) (-5 *5 (-595 (-244)))
- (-4 *6 (-13 (-570 (-504)) (-1023))) (-5 *2 (-1178))
- (-5 *1 (-240 *6))))
+ (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1017 (-359)))
+ (-5 *5 (-594 (-243))) (-5 *2 (-1058 (-208))) (-5 *1 (-238))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-816 *5)) (-5 *4 (-1016 (-359)))
- (-4 *5 (-13 (-570 (-504)) (-1023))) (-5 *2 (-1178))
- (-5 *1 (-240 *5))))
+ (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1017 (-359)))
+ (-5 *2 (-1058 (-208))) (-5 *1 (-238))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-818 *6)) (-5 *4 (-1016 (-359))) (-5 *5 (-595 (-244)))
- (-4 *6 (-13 (-570 (-504)) (-1023))) (-5 *2 (-1179))
- (-5 *1 (-240 *6))))
+ (-12 (-5 *3 (-1 (-884 (-208)) (-208))) (-5 *4 (-1017 (-359)))
+ (-5 *5 (-594 (-243))) (-5 *2 (-1058 (-208))) (-5 *1 (-238))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-818 *5)) (-5 *4 (-1016 (-359)))
- (-4 *5 (-13 (-570 (-504)) (-1023))) (-5 *2 (-1179))
- (-5 *1 (-240 *5))))
+ (-12 (-5 *3 (-1 (-884 (-208)) (-208))) (-5 *4 (-1017 (-359)))
+ (-5 *2 (-1058 (-208))) (-5 *1 (-238))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1016 (-359))) (-5 *5 (-595 (-244))) (-5 *2 (-1179))
- (-5 *1 (-240 *3)) (-4 *3 (-13 (-570 (-504)) (-1023)))))
+ (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1017 (-359)))
+ (-5 *5 (-594 (-243))) (-5 *2 (-1058 (-208))) (-5 *1 (-238))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1016 (-359))) (-5 *2 (-1179)) (-5 *1 (-240 *3))
- (-4 *3 (-13 (-570 (-504)) (-1023)))))
+ (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1017 (-359)))
+ (-5 *2 (-1058 (-208))) (-5 *1 (-238))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-821 *6)) (-5 *4 (-1016 (-359))) (-5 *5 (-595 (-244)))
- (-4 *6 (-13 (-570 (-504)) (-1023))) (-5 *2 (-1179))
- (-5 *1 (-240 *6))))
+ (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1017 (-359)))
+ (-5 *5 (-594 (-243))) (-5 *2 (-1058 (-208))) (-5 *1 (-238))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-821 *5)) (-5 *4 (-1016 (-359)))
- (-4 *5 (-13 (-570 (-504)) (-1023))) (-5 *2 (-1179))
- (-5 *1 (-240 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-595 (-207))) (-5 *2 (-1178)) (-5 *1 (-241))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-595 (-207))) (-5 *4 (-595 (-244))) (-5 *2 (-1178))
- (-5 *1 (-241))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 (-882 (-207)))) (-5 *2 (-1178)) (-5 *1 (-241))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-882 (-207)))) (-5 *4 (-595 (-244)))
- (-5 *2 (-1178)) (-5 *1 (-241))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-595 (-207))) (-5 *2 (-1179)) (-5 *1 (-241))))
- ((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-595 (-207))) (-5 *4 (-595 (-244))) (-5 *2 (-1179))
- (-5 *1 (-241)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-207))
- (-5 *2 (-970)) (-5 *1 (-698)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7))
- (-5 *2 (-595 (-2 (|:| |val| *3) (|:| -2316 *4))))
- (-5 *1 (-1031 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-159 (-207))) (-5 *5 (-528)) (-5 *6 (-1078))
- (-5 *3 (-207)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1091 *5)) (-4 *5 (-431)) (-5 *2 (-595 *6))
- (-5 *1 (-506 *5 *6 *4)) (-4 *6 (-343)) (-4 *4 (-13 (-343) (-791)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-891 *5)) (-4 *5 (-431)) (-5 *2 (-595 *6))
- (-5 *1 (-506 *5 *6 *4)) (-4 *6 (-343)) (-4 *4 (-13 (-343) (-791))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1131)) (-5 *1 (-558 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1131)) (-5 *1 (-1076 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-343))
- (-5 *2
- (-2 (|:| |ir| (-545 (-387 *6))) (|:| |specpart| (-387 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-538 *5 *6)) (-5 *3 (-387 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(((*1 *2 *3) (-12 (-5 *3 (-359)) (-5 *2 (-207)) (-5 *1 (-286)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1131))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1076 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-520)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1606 *4)))
- (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-595 (-595 *3))) (-4 *3 (-981)) (-4 *1 (-633 *3 *4 *5))
- (-4 *4 (-353 *3)) (-4 *5 (-353 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-595 (-595 (-802)))) (-5 *1 (-802))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1062 *3 *4)) (-5 *1 (-930 *3 *4)) (-14 *3 (-860))
- (-4 *4 (-343))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 (-595 *5))) (-4 *5 (-981))
- (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *6 (-220 *4 *5))
- (-4 *7 (-220 *3 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-595 *1)) (-4 *1 (-283))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112))))
- ((*1 *1 *2) (-12 (-5 *2 (-1095)) (-5 *1 (-568 *3)) (-4 *3 (-793))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-112)) (-5 *3 (-595 *5)) (-5 *4 (-717)) (-4 *5 (-793))
- (-5 *1 (-568 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-306 *2 *3)) (-4 *2 (-981)) (-4 *3 (-738))
- (-4 *2 (-431))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-322 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-1153 *2))
- (-4 *4 (-1153 (-387 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-431))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *2 (-793)) (-4 *3 (-431))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)) (-4 *2 (-431))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-288)) (-4 *3 (-520)) (-5 *1 (-1083 *3 *2))
- (-4 *2 (-1153 *3)))))
-(((*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-865)))))
-(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-51)) (-5 *1 (-777)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1042)) (-5 *1 (-310)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-568 *1)) (-4 *1 (-283)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1131)) (-5 *1 (-558 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1131)) (-5 *1 (-1076 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-520)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *2 (-595 *1)) (-4 *1 (-994 *3 *4 *5)))))
-(((*1 *1 *1) (-5 *1 (-992))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-343)) (-4 *3 (-981))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1261 *1)))
- (-4 *1 (-795 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *1 (-733)) (-5 *2 (-970))
- (-5 *3
- (-2 (|:| |fn| (-296 (-207)))
- (|:| -2931 (-595 (-1018 (-786 (-207))))) (|:| |abserr| (-207))
- (|:| |relerr| (-207))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-733)) (-5 *2 (-970))
- (-5 *3
- (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207)))
- (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207))
- (|:| |relerr| (-207)))))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-207)) (-5 *4 (-528))
- (-5 *5 (-3 (|:| |fn| (-368)) (|:| |fp| (-62 G)))) (-5 *2 (-970))
- (-5 *1 (-695)))))
-(((*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-865)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-717)) (-4 *4 (-343)) (-5 *1 (-835 *2 *4))
- (-4 *2 (-1153 *4)))))
-(((*1 *1 *1) (-4 *1 (-1064))))
-(((*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-860)) (-5 *1 (-732)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-595 *4)) (-4 *4 (-343)) (-5 *2 (-1177 *4))
- (-5 *1 (-760 *4 *3)) (-4 *3 (-605 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-860)) (-4 *6 (-13 (-520) (-793)))
- (-5 *2 (-595 (-296 *6))) (-5 *1 (-203 *5 *6)) (-5 *3 (-296 *6))
- (-4 *5 (-981))))
- ((*1 *2 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-520))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-545 *5)) (-4 *5 (-13 (-29 *4) (-1117)))
- (-4 *4 (-13 (-431) (-972 (-528)) (-793) (-591 (-528))))
- (-5 *2 (-595 *5)) (-5 *1 (-543 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-545 (-387 (-891 *4))))
- (-4 *4 (-13 (-431) (-972 (-528)) (-793) (-591 (-528))))
- (-5 *2 (-595 (-296 *4))) (-5 *1 (-548 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1019 *3 *2)) (-4 *3 (-791)) (-4 *2 (-1069 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 *1)) (-4 *1 (-1019 *4 *2)) (-4 *4 (-791))
- (-4 *2 (-1069 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1190 (-1095) *3)) (-5 *1 (-1197 *3)) (-4 *3 (-981))))
+ (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1017 (-359)))
+ (-5 *2 (-1058 (-208))) (-5 *1 (-238))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-823 (-1 (-208) (-208) (-208)))) (-5 *4 (-1017 (-359)))
+ (-5 *5 (-594 (-243))) (-5 *2 (-1058 (-208))) (-5 *1 (-238))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-823 (-1 (-208) (-208) (-208)))) (-5 *4 (-1017 (-359)))
+ (-5 *2 (-1058 (-208))) (-5 *1 (-238)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1027)) (-5 *1 (-205 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1134)) (-4 *1 (-236 *3))))
+ ((*1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795))
+ (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-594 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795))
+ (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-594 (-719)))))
((*1 *2 *1)
- (-12 (-5 *2 (-1190 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-793))
- (-4 *4 (-981)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1131)) (-5 *2 (-717)) (-5 *1 (-170 *4 *3))
- (-4 *3 (-622 *4)))))
-(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1132 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-159 (-207))) (-5 *5 (-528)) (-5 *6 (-1078))
- (-5 *3 (-207)) (-5 *2 (-970)) (-5 *1 (-705)))))
+ (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795))
+ (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-594 (-719))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795))
+ (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-235 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-741))
+ (-4 *2 (-248 *4)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-981)) (-5 *1 (-636 *3)))))
+ (-12 (-4 *1 (-235 *2 *3 *4 *5)) (-4 *2 (-984)) (-4 *3 (-795))
+ (-4 *4 (-248 *3)) (-4 *5 (-741)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-520)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1606 *4)))
- (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-605 *2)) (-4 *2 (-981)) (-4 *2 (-343))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-343)) (-5 *1 (-608 *4 *2))
- (-4 *2 (-605 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1042)) (-5 *1 (-310)))))
+ (-12 (-4 *1 (-235 *2 *3 *4 *5)) (-4 *2 (-984)) (-4 *3 (-795))
+ (-4 *4 (-248 *3)) (-4 *5 (-741)))))
+(((*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-231)))))
+(((*1 *1 *2) (-12 (-5 *2 (-171)) (-5 *1 (-231)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-231)))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-719))
+ (-4 *3 (-13 (-675) (-349) (-10 -7 (-15 ** (*3 *3 (-516))))))
+ (-5 *1 (-229 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-795)) (-5 *1 (-228 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1134)))))
+(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1134)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-227 *2)) (-4 *2 (-1134)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-227 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-516)) (-5 *1 (-224))))
+ ((*1 *2 *3) (-12 (-5 *3 (-594 (-1081))) (-5 *2 (-516)) (-5 *1 (-224)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-1185)) (-5 *1 (-224))))
+ ((*1 *2 *3) (-12 (-5 *3 (-594 (-1081))) (-5 *2 (-1185)) (-5 *1 (-224)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1081)) (-5 *3 (-516)) (-5 *1 (-224)))))
+(((*1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-224)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1134)) (-4 *1 (-221 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-275 (-887 (-516))))
+ (-5 *2
+ (-2 (|:| |varOrder| (-594 (-1098)))
+ (|:| |inhom| (-3 (-594 (-1179 (-719))) "failed"))
+ (|:| |hom| (-594 (-1179 (-719))))))
+ (-5 *1 (-219)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1027)) (-4 *1 (-218 *3))))
+ ((*1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1027)))))
+(((*1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1120))))))
+(((*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1120))))))
+(((*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1120))))))
+(((*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1120))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-209)))))
+(((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-209)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-208)))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-110)) (-5 *3 (-887 *6)) (-5 *4 (-1098))
+ (-5 *5 (-787 *7)) (-4 *6 (-13 (-432) (-795) (-975 (-516)) (-593 (-516))))
+ (-4 *7 (-13 (-1120) (-29 *6))) (-5 *1 (-207 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-110)) (-5 *3 (-1092 *6)) (-5 *4 (-787 *6))
+ (-4 *6 (-13 (-1120) (-29 *5)))
+ (-4 *5 (-13 (-432) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *1 (-207 *5 *6)))))
(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-786 *4)) (-5 *3 (-568 *4)) (-5 *5 (-110))
- (-4 *4 (-13 (-1117) (-29 *6)))
- (-4 *6 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *1 (-206 *6 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-499 *3)) (-4 *3 (-13 (-673) (-25))))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
- (-5 *4 (-635 (-1091 *8))) (-4 *5 (-981)) (-4 *8 (-981))
- (-4 *6 (-1153 *5)) (-5 *2 (-635 *6)) (-5 *1 (-477 *5 *6 *7 *8))
- (-4 *7 (-1153 *6)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-595 (-1095))) (-4 *2 (-162))
- (-4 *3 (-220 (-2138 *4) (-717)))
- (-14 *6
- (-1 (-110) (-2 (|:| -3108 *5) (|:| -2564 *3))
- (-2 (|:| -3108 *5) (|:| -2564 *3))))
- (-5 *1 (-440 *4 *2 *5 *3 *6 *7)) (-4 *5 (-793))
- (-4 *7 (-888 *2 *3 (-804 *4))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-860)) (-5 *2 (-1182)) (-5 *1 (-1178))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-860)) (-5 *2 (-1182)) (-5 *1 (-1179)))))
-(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4266 "*"))) (-4 *5 (-353 *2)) (-4 *6 (-353 *2))
- (-4 *2 (-981)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1153 *2))
- (-4 *4 (-633 *2 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-843 (-528))) (-5 *1 (-856))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 (-528))) (-5 *2 (-843 (-528))) (-5 *1 (-856)))))
-(((*1 *2) (-12 (-5 *2 (-779 (-528))) (-5 *1 (-502))))
- ((*1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1023)))))
-(((*1 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-1180)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-471)))))
+ (|partial| -12 (-5 *2 (-787 *4)) (-5 *3 (-569 *4)) (-5 *5 (-110))
+ (-4 *4 (-13 (-1120) (-29 *6)))
+ (-4 *6 (-13 (-432) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *1 (-207 *6 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1081)) (-4 *4 (-13 (-432) (-795) (-975 (-516)) (-593 (-516))))
+ (-5 *2 (-110)) (-5 *1 (-207 *4 *5)) (-4 *5 (-13 (-1120) (-29 *4))))))
+(((*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-984)) (-14 *3 (-594 (-1098)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-984) (-795)))
+ (-14 *3 (-594 (-1098))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-303 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-128))
- (-5 *2 (-595 (-2 (|:| |gen| *3) (|:| -2656 *4))))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984))
+ (-14 *4 (-594 (-1098)))))
((*1 *2 *1)
- (-12 (-5 *2 (-595 (-2 (|:| -1641 *3) (|:| -3841 *4))))
- (-5 *1 (-682 *3 *4)) (-4 *3 (-981)) (-4 *4 (-673))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1155 *3 *4)) (-4 *3 (-981)) (-4 *4 (-738))
- (-5 *2 (-1076 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3490 *1) (|:| -2537 *1))) (-4 *1 (-288))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-366 *3)) (|:| |rm| (-366 *3))))
- (-5 *1 (-366 *3)) (-4 *3 (-1023))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3490 (-717)) (|:| -2537 (-717))))
- (-5 *1 (-717))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-520)) (-5 *2 (-2 (|:| -3490 *3) (|:| -2537 *3)))
- (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-882 *3)) (-4 *3 (-13 (-343) (-1117) (-938)))
- (-5 *1 (-165 *3)))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1060 *5 *6)) (-5 *4 (-1 (-110) *6 *6))
- (-4 *5 (-13 (-1023) (-33))) (-4 *6 (-13 (-1023) (-33)))
- (-5 *2 (-110)) (-5 *1 (-1061 *5 *6)))))
-(((*1 *1 *1) (-5 *1 (-992))))
-(((*1 *1 *1 *1) (-5 *1 (-802))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-159 *5)) (-4 *5 (-13 (-410 *4) (-938) (-1117)))
- (-4 *4 (-13 (-520) (-793)))
- (-4 *2 (-13 (-410 (-159 *4)) (-938) (-1117)))
- (-5 *1 (-557 *4 *5 *2)))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795)))
+ (-14 *4 (-594 (-1098))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-295 *3)) (-4 *3 (-13 (-984) (-795))) (-5 *1 (-206 *3 *4))
+ (-14 *4 (-594 (-1098))))))
(((*1 *1 *1)
- (-12 (-4 *2 (-140)) (-4 *2 (-288)) (-4 *2 (-431)) (-4 *3 (-793))
- (-4 *4 (-739)) (-5 *1 (-924 *2 *3 *4 *5)) (-4 *5 (-888 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-296 (-528))) (-5 *1 (-1041))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-410 *3) (-938))) (-5 *1 (-257 *3 *2))
- (-4 *3 (-13 (-793) (-520)))))
- ((*1 *1)
- (-12 (-5 *1 (-319 *2 *3 *4)) (-14 *2 (-595 (-1095)))
- (-14 *3 (-595 (-1095))) (-4 *4 (-367))))
- ((*1 *1) (-5 *1 (-456))) ((*1 *1) (-4 *1 (-1117))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
- (-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-595 (-528)))
- (|:| |cols| (-595 (-528)))))
- (-5 *4 (-635 *12)) (-5 *5 (-595 (-387 (-891 *9))))
- (-5 *6 (-595 (-595 *12))) (-5 *7 (-717)) (-5 *8 (-528))
- (-4 *9 (-13 (-288) (-140))) (-4 *12 (-888 *9 *11 *10))
- (-4 *10 (-13 (-793) (-570 (-1095)))) (-4 *11 (-739))
+ (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-984) (-795)))
+ (-14 *3 (-594 (-1098))))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1098)) (-5 *6 (-110))
+ (-4 *7 (-13 (-289) (-795) (-140) (-975 (-516)) (-593 (-516))))
+ (-4 *3 (-13 (-1120) (-901) (-29 *7)))
(-5 *2
- (-2 (|:| |eqzro| (-595 *12)) (|:| |neqzro| (-595 *12))
- (|:| |wcond| (-595 (-891 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1177 (-387 (-891 *9))))
- (|:| -1400 (-595 (-1177 (-387 (-891 *9)))))))))
- (-5 *1 (-863 *9 *10 *11 *12)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1023)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-261)))))
-(((*1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-127)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-717)) (-5 *2 (-1177 (-595 (-528)))) (-5 *1 (-458))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-558 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-1076 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1131)) (-5 *1 (-1076 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *2 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-343)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-595 (-882 *4))) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860))
- (-4 *4 (-981)))))
+ (-3 (|:| |f1| (-787 *3)) (|:| |f2| (-594 (-787 *3))) (|:| |fail| "failed")
+ (|:| |pole| "potentialPole")))
+ (-5 *1 (-202 *7 *3)) (-5 *5 (-787 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-388 (-516))) (-5 *1 (-201)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-635 *1)) (-4 *1 (-329)) (-5 *2 (-1177 *1))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-635 *1)) (-4 *1 (-138)) (-4 *1 (-848))
- (-5 *2 (-1177 *1)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-110)) (-4 *6 (-431)) (-4 *7 (-739)) (-4 *8 (-793))
- (-4 *3 (-994 *6 *7 *8))
- (-5 *2 (-595 (-2 (|:| |val| *3) (|:| -2316 *4))))
- (-5 *1 (-1000 *6 *7 *8 *3 *4)) (-4 *4 (-999 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-595 (-2 (|:| |val| (-595 *8)) (|:| -2316 *9))))
- (-5 *5 (-110)) (-4 *8 (-994 *6 *7 *4)) (-4 *9 (-999 *6 *7 *4 *8))
- (-4 *6 (-431)) (-4 *7 (-739)) (-4 *4 (-793))
- (-5 *2 (-595 (-2 (|:| |val| *8) (|:| -2316 *9))))
- (-5 *1 (-1000 *6 *7 *4 *8 *9)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *8)) (-5 *4 (-595 *9)) (-4 *8 (-994 *5 *6 *7))
- (-4 *9 (-999 *5 *6 *7 *8)) (-4 *5 (-431)) (-4 *6 (-739))
- (-4 *7 (-793)) (-5 *2 (-717)) (-5 *1 (-997 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *8)) (-5 *4 (-595 *9)) (-4 *8 (-994 *5 *6 *7))
- (-4 *9 (-1032 *5 *6 *7 *8)) (-4 *5 (-431)) (-4 *6 (-739))
- (-4 *7 (-793)) (-5 *2 (-717)) (-5 *1 (-1065 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1060 *4 *5)) (-4 *4 (-13 (-1023) (-33)))
- (-4 *5 (-13 (-1023) (-33))) (-5 *2 (-110)) (-5 *1 (-1061 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 *1)) (-4 *1 (-283))))
- ((*1 *1 *1) (-4 *1 (-283))) ((*1 *1 *1) (-5 *1 (-802))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-520)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5)) (-5 *2 (-595 *5)))))
+ (-12 (-4 *4 (-331)) (-5 *2 (-110)) (-5 *1 (-200 *4 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-719)) (-4 *4 (-331)) (-5 *1 (-200 *4 *2)) (-4 *2 (-1155 *4)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-719)) (-4 *4 (-331)) (-5 *1 (-200 *4 *2)) (-4 *2 (-1155 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-331)) (-5 *2 (-594 (-2 (|:| |deg| (-719)) (|:| -2835 *3))))
+ (-5 *1 (-200 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-207)) (-5 *4 (-528)) (-5 *2 (-970)) (-5 *1 (-705)))))
-(((*1 *2)
- (-12 (-5 *2 (-387 (-891 *3))) (-5 *1 (-432 *3 *4 *5 *6))
- (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1095)) (-5 *2 (-417)) (-5 *1 (-1099)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1060 *2 *3)) (-4 *2 (-13 (-1023) (-33)))
- (-4 *3 (-13 (-1023) (-33))))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-414))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-533 *3)) (-4 *3 (-972 (-528)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *3 (-1023)) (-4 *4 (-1023))
- (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-1023)) (-5 *2 (-110)))))
+ (-12 (-5 *4 (-110)) (-4 *5 (-331))
+ (-5 *2
+ (-2 (|:| |cont| *5)
+ (|:| -2701 (-594 (-2 (|:| |irr| *3) (|:| -2421 (-516)))))))
+ (-5 *1 (-200 *5 *3)) (-4 *3 (-1155 *5)))))
(((*1 *2 *3 *4)
- (-12 (-4 *4 (-343)) (-5 *2 (-595 (-1076 *4))) (-5 *1 (-266 *4 *5))
- (-5 *3 (-1076 *4)) (-4 *5 (-1168 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-595 (-595 *3))) (-4 *3 (-1023)) (-5 *1 (-844 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1131)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-407 *3 *2)) (-4 *3 (-13 (-162) (-37 (-387 (-528)))))
- (-4 *2 (-13 (-793) (-21))))))
-(((*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-261)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-234 *4 *3 *5 *6)) (-4 *4 (-981)) (-4 *3 (-793))
- (-4 *5 (-247 *3)) (-4 *6 (-739)) (-5 *2 (-717))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-234 *3 *4 *5 *6)) (-4 *3 (-981)) (-4 *4 (-793))
- (-4 *5 (-247 *4)) (-4 *6 (-739)) (-5 *2 (-717))))
- ((*1 *2 *1) (-12 (-4 *1 (-247 *3)) (-4 *3 (-793)) (-5 *2 (-717)))))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-344)) (-4 *6 (-1155 (-388 *2)))
+ (-4 *2 (-1155 *5)) (-5 *1 (-199 *5 *2 *6 *3)) (-4 *3 (-323 *5 *2 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1177 (-296 (-207)))) (-5 *2 (-1177 (-296 (-359))))
- (-5 *1 (-286)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1078) (-720))) (-5 *1 (-112)))))
-(((*1 *1 *2 *2)
(-12
- (-5 *2
- (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359)))
- (|:| CF (-296 (-159 (-359)))) (|:| |switch| (-1094))))
- (-5 *1 (-1094)))))
-(((*1 *1 *1) (-12 (-5 *1 (-476 *2)) (-14 *2 (-528))))
- ((*1 *1 *1) (-5 *1 (-1042))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-739)) (-4 *6 (-793)) (-4 *3 (-520))
- (-4 *7 (-888 *3 *5 *6))
- (-5 *2 (-2 (|:| -2564 (-717)) (|:| -1641 *8) (|:| |radicand| *8)))
- (-5 *1 (-892 *5 *6 *3 *7 *8)) (-5 *4 (-717))
- (-4 *8
- (-13 (-343)
- (-10 -8 (-15 -3031 (*7 $)) (-15 -3042 (*7 $)) (-15 -2222 ($ *7))))))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-1023)) (-4 *1 (-842 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-518 *2)) (-4 *2 (-13 (-384) (-1117))))))
-(((*1 *2 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *2)
+ (-5 *3
+ (-2 (|:| |pde| (-594 (-295 (-208))))
+ (|:| |constraints|
+ (-594
+ (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719))
+ (|:| |boundaryType| (-516)) (|:| |dStart| (-637 (-208)))
+ (|:| |dFinish| (-637 (-208))))))
+ (|:| |f| (-594 (-594 (-295 (-208))))) (|:| |st| (-1081))
+ (|:| |tol| (-208))))
+ (-5 *2 (-110)) (-5 *1 (-194)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-594 (-295 (-208)))) (-5 *3 (-208)) (-5 *2 (-110))
+ (-5 *1 (-194)))))
+(((*1 *2 *2) (-12 (-5 *2 (-295 (-208))) (-5 *1 (-194)))))
+(((*1 *2 *3)
(-12
- (-5 *2
- (-480 (-387 (-528)) (-222 *4 (-717)) (-804 *3)
- (-229 *3 (-387 (-528)))))
- (-14 *3 (-595 (-1095))) (-14 *4 (-717)) (-5 *1 (-481 *3 *4)))))
-(((*1 *1) (-12 (-4 *1 (-309 *2)) (-4 *2 (-348)) (-4 *2 (-343)))))
-(((*1 *2) (-12 (-5 *2 (-595 (-860))) (-5 *1 (-1180))))
- ((*1 *2 *2) (-12 (-5 *2 (-595 (-860))) (-5 *1 (-1180)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-598 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-23))
- (-14 *4 *3))))
+ (-5 *3
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208)))
+ (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2 (-359)) (-5 *1 (-189)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1076 (-528))) (-5 *1 (-1080 *4)) (-4 *4 (-981))
- (-5 *3 (-528)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208)))
+ (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2 (-359)) (-5 *1 (-189)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-387 (-891 *4)))) (-4 *4 (-431))
- (-5 *2 (-595 (-3 (-387 (-891 *4)) (-1085 (-1095) (-891 *4)))))
- (-5 *1 (-273 *4)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208)))
+ (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2 (-359)) (-5 *1 (-189)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-595 *7)) (|:| |badPols| (-595 *7))))
- (-5 *1 (-914 *4 *5 *6 *7)) (-5 *3 (-595 *7)))))
-(((*1 *1 *2 *2)
(-12
- (-5 *2
- (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359)))
- (|:| CF (-296 (-159 (-359)))) (|:| |switch| (-1094))))
- (-5 *1 (-1094)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-476 *2)) (-14 *2 (-528))))
- ((*1 *1 *1 *1) (-5 *1 (-1042))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4))
- (-4 *3 (-347 *4))))
- ((*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1180))))
- ((*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1180)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-387 (-528))) (-5 *1 (-959 *3))
- (-4 *3 (-13 (-791) (-343) (-957)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-791) (-343))) (-5 *1 (-990 *2 *3))
- (-4 *3 (-1153 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-996 *2 *3)) (-4 *2 (-13 (-791) (-343)))
- (-4 *3 (-1153 *2)))))
-(((*1 *2 *3) (-12 (-5 *2 (-359)) (-5 *1 (-731 *3)) (-4 *3 (-570 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-860)) (-5 *2 (-359)) (-5 *1 (-731 *3))
- (-4 *3 (-570 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-891 *4)) (-4 *4 (-981)) (-4 *4 (-570 *2))
- (-5 *2 (-359)) (-5 *1 (-731 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-891 *5)) (-5 *4 (-860)) (-4 *5 (-981))
- (-4 *5 (-570 *2)) (-5 *2 (-359)) (-5 *1 (-731 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-387 (-891 *4))) (-4 *4 (-520)) (-4 *4 (-570 *2))
- (-5 *2 (-359)) (-5 *1 (-731 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-387 (-891 *5))) (-5 *4 (-860)) (-4 *5 (-520))
- (-4 *5 (-570 *2)) (-5 *2 (-359)) (-5 *1 (-731 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-296 *4)) (-4 *4 (-520)) (-4 *4 (-793))
- (-4 *4 (-570 *2)) (-5 *2 (-359)) (-5 *1 (-731 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-296 *5)) (-5 *4 (-860)) (-4 *5 (-520)) (-4 *5 (-793))
- (-4 *5 (-570 *2)) (-5 *2 (-359)) (-5 *1 (-731 *5)))))
-(((*1 *2 *2)
+ (-5 *3
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208)))
+ (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2 (-359)) (-5 *1 (-189)))))
+(((*1 *2 *3)
(-12
- (-5 *2
- (-595
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-717)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-739)) (-4 *6 (-888 *3 *4 *5)) (-4 *3 (-431)) (-4 *5 (-793))
- (-5 *1 (-428 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
-(((*1 *1) (-12 (-5 *1 (-209 *2)) (-4 *2 (-13 (-343) (-1117))))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-123 *2)) (-4 *2 (-1023)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-207)) (-5 *2 (-1182)) (-5 *1 (-768)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-635 *2)) (-5 *4 (-717))
- (-4 *2 (-13 (-288) (-10 -8 (-15 -2705 ((-398 $) $)))))
- (-4 *5 (-1153 *2)) (-5 *1 (-475 *2 *5 *6)) (-4 *6 (-389 *2 *5)))))
-(((*1 *2 *3) (-12 (-5 *2 (-595 (-528))) (-5 *1 (-425)) (-5 *3 (-528)))))
-(((*1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-256)))))
-(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-307 *3)) (-4 *3 (-1131))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-491 *3 *4)) (-4 *3 (-1131))
- (-14 *4 (-528)))))
-(((*1 *1 *1) (-5 *1 (-1094)))
- ((*1 *1 *2)
+ (-5 *3
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1179 (-295 (-208)))) (|:| |yinit| (-594 (-208)))
+ (|:| |intvals| (-594 (-208))) (|:| |g| (-295 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2 (-2 (|:| |stiffnessFactor| (-359)) (|:| |stabilityFactor| (-359))))
+ (-5 *1 (-189)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-295 (-208))))
+ (-5 *2 (-2 (|:| |stiffnessFactor| (-359)) (|:| |stabilityFactor| (-359))))
+ (-5 *1 (-189)))))
+(((*1 *2 *3) (-12 (-5 *3 (-637 (-295 (-208)))) (-5 *2 (-359)) (-5 *1 (-189)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-189))))
+ ((*1 *2 *2 *3) (-12 (-5 *3 (-594 (-359))) (-5 *2 (-359)) (-5 *1 (-189)))))
+(((*1 *2 *3)
(-12
+ (-5 *3
+ (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208)))
+ (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2 (-516)) (-5 *1 (-188)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208)))
+ (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2 (-594 (-208))) (-5 *1 (-188)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208)))
+ (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2 (-2 (|:| -2770 (-111)) (|:| |w| (-208)))) (-5 *1 (-188)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-973)) (-5 *3 (-1098)) (-5 *1 (-176)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208)))
+ (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2 (-359)) (-5 *1 (-176)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208)))
+ (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
(-5 *2
- (-3 (|:| I (-296 (-528))) (|:| -1305 (-296 (-359)))
- (|:| CF (-296 (-159 (-359)))) (|:| |switch| (-1094))))
- (-5 *1 (-1094)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-717)) (-4 *4 (-13 (-520) (-140)))
- (-5 *1 (-1147 *4 *2)) (-4 *2 (-1153 *4)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-476 *2)) (-14 *2 (-528))))
- ((*1 *1 *1 *1) (-5 *1 (-1042))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-717)) (-5 *1 (-816 *2)) (-4 *2 (-1131))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-717)) (-5 *1 (-818 *2)) (-4 *2 (-1131))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-717)) (-5 *1 (-821 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4265)) (-4 *1 (-561 *3 *4)) (-4 *3 (-1023))
- (-4 *4 (-1131)) (-5 *2 (-1182)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-288)) (-4 *6 (-353 *5)) (-4 *4 (-353 *5))
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular| "There is a singularity at the lower end point")
+ (|:| |upperSingular| "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (-5 *1 (-176)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1098)) (|:| |fn| (-295 (-208)))
+ (|:| -1511 (-1017 (-787 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1400 (-595 *4))))
- (-5 *1 (-1046 *5 *6 *4 *3)) (-4 *3 (-633 *5 *6 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-595 (-1095))) (-4 *4 (-1023))
- (-4 *5 (-13 (-981) (-825 *4) (-793) (-570 (-831 *4))))
- (-5 *1 (-53 *4 *5 *2))
- (-4 *2 (-13 (-410 *5) (-825 *4) (-570 (-831 *4)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1069 *3)) (-4 *3 (-1131)) (-5 *2 (-110)))))
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-176)))))
+(((*1 *2 *3) (-12 (-5 *2 (-386 (-1092 (-516)))) (-5 *1 (-175)) (-5 *3 (-516)))))
+(((*1 *2 *3) (-12 (-5 *2 (-594 (-1092 (-516)))) (-5 *1 (-175)) (-5 *3 (-516)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-766)) (-14 *5 (-1095)) (-5 *2 (-595 (-1150 *5 *4)))
- (-5 *1 (-1037 *4 *5)) (-5 *3 (-1150 *5 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-343)) (-5 *1 (-266 *3 *2)) (-4 *2 (-1168 *3)))))
-(((*1 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-775)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-207))
- (-5 *2 (-970)) (-5 *1 (-699)))))
-(((*1 *1)
- (-12 (-4 *1 (-384)) (-3617 (|has| *1 (-6 -4255)))
- (-3617 (|has| *1 (-6 -4247)))))
- ((*1 *2 *1) (-12 (-4 *1 (-405 *2)) (-4 *2 (-1023)) (-4 *2 (-793))))
- ((*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-793))))
- ((*1 *1 *1 *1) (-4 *1 (-793))) ((*1 *1) (-5 *1 (-1042))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-853 *3)) (-4 *3 (-288)))))
+ (-12 (-5 *3 (-594 (-516))) (-5 *2 (-1100 (-388 (-516)))) (-5 *1 (-174)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-516))) (-5 *2 (-1100 (-388 (-516)))) (-5 *1 (-174)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1100 (-388 (-516)))) (-5 *1 (-174)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1100 (-388 (-516)))) (-5 *1 (-174)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-520)) (-5 *2 (-595 (-717))) (-5 *1 (-907 *4 *3))
- (-4 *3 (-1153 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-793)) (-5 *1 (-868 *3 *2)) (-4 *2 (-410 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1095)) (-5 *2 (-296 (-528))) (-5 *1 (-869)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-414)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-310)))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-595 *11)) (-5 *5 (-595 (-1091 *9)))
- (-5 *6 (-595 *9)) (-5 *7 (-595 *12)) (-5 *8 (-595 (-717)))
- (-4 *11 (-793)) (-4 *9 (-288)) (-4 *12 (-888 *9 *10 *11))
- (-4 *10 (-739)) (-5 *2 (-595 (-1091 *12)))
- (-5 *1 (-654 *10 *11 *9 *12)) (-5 *3 (-1091 *12)))))
-(((*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-523)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-633 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-353 *3))
- (-4 *5 (-353 *3)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981))
- (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-5 *2 (-110)))))
+ (-12 (-5 *3 (-1100 (-388 (-516)))) (-5 *2 (-388 (-516))) (-5 *1 (-174)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1100 (-388 (-516)))) (-5 *1 (-174)) (-5 *3 (-516)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1100 (-388 (-516)))) (-5 *1 (-174)) (-5 *3 (-516)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1100 (-388 (-516)))) (-5 *1 (-174)) (-5 *3 (-516)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1100 (-388 (-516)))) (-5 *1 (-174)) (-5 *3 (-516)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1100 (-388 (-516)))) (-5 *1 (-174)) (-5 *3 (-516)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1179 (-637 *4))) (-4 *4 (-162))
+ (-5 *2 (-1179 (-637 (-887 *4)))) (-5 *1 (-173 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-171)))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-1103))) (-5 *1 (-171)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-1134)) (-5 *1 (-170 *3 *2)) (-4 *2 (-624 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1134)) (-5 *2 (-719)) (-5 *1 (-170 *4 *3)) (-4 *3 (-624 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-520))) (-5 *1 (-257 *3 *2))
- (-4 *2 (-13 (-410 *3) (-938))))))
+ (|partial| -12 (-4 *3 (-1134)) (-5 *1 (-170 *3 *2)) (-4 *2 (-624 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-387 (-891 *4))) (-4 *4 (-288))
- (-5 *2 (-387 (-398 (-891 *4)))) (-5 *1 (-976 *4)))))
+ (-12 (-4 *4 (-13 (-344) (-793)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -2701 (-386 *3)))) (-5 *1 (-169 *4 *3))
+ (-4 *3 (-1155 (-158 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3))
+ (-4 *3 (-1155 (-158 *2))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-520))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1372 *4)))
- (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1131)) (-5 *1 (-1054 *4 *2))
- (-4 *2 (-13 (-561 (-528) *4) (-10 -7 (-6 -4264) (-6 -4265))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-793)) (-4 *3 (-1131)) (-5 *1 (-1054 *3 *2))
- (-4 *2 (-13 (-561 (-528) *3) (-10 -7 (-6 -4264) (-6 -4265)))))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-704)))))
-(((*1 *1 *1) (-5 *1 (-47)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1131))
- (-4 *2 (-1131)) (-5 *1 (-56 *5 *2))))
- ((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1023)) (|has| *1 (-6 -4264))
- (-4 *1 (-144 *2)) (-4 *2 (-1131))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4264)) (-4 *1 (-144 *2))
- (-4 *2 (-1131))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4264)) (-4 *1 (-144 *2))
- (-4 *2 (-1131))))
+ (-12 (-5 *2 (-158 *4)) (-5 *1 (-169 *4 *3)) (-4 *4 (-13 (-344) (-793)))
+ (-4 *3 (-1155 *2)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3))
+ (-4 *3 (-1155 (-158 *2)))))
((*1 *2 *3)
- (-12 (-4 *4 (-981))
- (-5 *2 (-2 (|:| -3292 (-1091 *4)) (|:| |deg| (-860))))
- (-5 *1 (-203 *4 *5)) (-5 *3 (-1091 *4)) (-4 *5 (-13 (-520) (-793)))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-222 *5 *6)) (-14 *5 (-717))
- (-4 *6 (-1131)) (-4 *2 (-1131)) (-5 *1 (-221 *5 *6 *2))))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-162)) (-5 *1 (-270 *4 *2 *3 *5 *6 *7))
- (-4 *2 (-1153 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-296 *2)) (-4 *2 (-520)) (-4 *2 (-793))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-315 *2 *3 *4 *5)) (-4 *2 (-343)) (-4 *3 (-1153 *2))
- (-4 *4 (-1153 (-387 *3))) (-4 *5 (-322 *2 *3 *4))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1131)) (-4 *2 (-1131))
- (-5 *1 (-351 *5 *4 *2 *6)) (-4 *4 (-353 *5)) (-4 *6 (-353 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1023)) (-4 *2 (-1023))
- (-5 *1 (-403 *5 *4 *2 *6)) (-4 *4 (-405 *5)) (-4 *6 (-405 *2))))
- ((*1 *1 *1) (-5 *1 (-471)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-595 *5)) (-4 *5 (-1131))
- (-4 *2 (-1131)) (-5 *1 (-593 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-981)) (-4 *2 (-981))
- (-4 *6 (-353 *5)) (-4 *7 (-353 *5)) (-4 *8 (-353 *2))
- (-4 *9 (-353 *2)) (-5 *1 (-631 *5 *6 *7 *4 *2 *8 *9 *10))
- (-4 *4 (-633 *5 *6 *7)) (-4 *10 (-633 *2 *8 *9))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-981)) (-5 *1 (-659 *3 *2)) (-4 *2 (-1153 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-662 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-387 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-343))
- (-4 *3 (-162)) (-4 *1 (-671 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-162)) (-4 *1 (-671 *3 *2)) (-4 *2 (-1153 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-896 *5)) (-4 *5 (-1131))
- (-4 *2 (-1131)) (-5 *1 (-895 *5 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *1 (-969 *3 *4 *5 *2 *6)) (-4 *2 (-888 *3 *4 *5))
- (-14 *6 (-595 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-981)) (-4 *2 (-981))
- (-14 *5 (-717)) (-14 *6 (-717)) (-4 *8 (-220 *6 *7))
- (-4 *9 (-220 *5 *7)) (-4 *10 (-220 *6 *2)) (-4 *11 (-220 *5 *2))
- (-5 *1 (-985 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-983 *5 *6 *7 *8 *9)) (-4 *12 (-983 *5 *6 *2 *10 *11))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1076 *5)) (-4 *5 (-1131))
- (-4 *2 (-1131)) (-5 *1 (-1074 *5 *2))))
- ((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-110) *2 *2))
- (-4 *1 (-1125 *5 *6 *7 *2)) (-4 *5 (-520)) (-4 *6 (-739))
- (-4 *7 (-793)) (-4 *2 (-994 *5 *6 *7))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1177 *5)) (-4 *5 (-1131))
- (-4 *2 (-1131)) (-5 *1 (-1176 *5 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-51)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-595 (-844 *3))) (-4 *3 (-1023)) (-5 *1 (-843 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-520) (-793) (-972 (-528)))) (-4 *5 (-410 *4))
- (-5 *2 (-398 *3)) (-5 *1 (-415 *4 *5 *3)) (-4 *3 (-1153 *5)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *5 (-793)) (-5 *2 (-110)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-528)) (-5 *6 (-1 (-1182) (-1177 *5) (-1177 *5) (-359)))
- (-5 *3 (-1177 (-359))) (-5 *5 (-359)) (-5 *2 (-1182))
- (-5 *1 (-734))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-528)) (-5 *6 (-1 (-1182) (-1177 *5) (-1177 *5) (-359)))
- (-5 *3 (-1177 (-359))) (-5 *5 (-359)) (-5 *2 (-1182))
- (-5 *1 (-734)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1023)) (-4 *5 (-1023))
- (-4 *6 (-1023)) (-5 *2 (-1 *6 *5)) (-5 *1 (-630 *4 *5 *6)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-528)) (-14 *3 (-717))
- (-4 *4 (-162))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-793) (-520))) (-5 *1 (-149 *4 *2))
- (-4 *2 (-410 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1016 *2)) (-4 *2 (-410 *4)) (-4 *4 (-13 (-793) (-520)))
- (-5 *1 (-149 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1016 *1)) (-4 *1 (-151))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1095))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-717)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-793))
- (-4 *4 (-162)))))
+ (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3))
+ (-4 *3 (-1155 (-158 *2))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-343)) (-4 *4 (-353 *3)) (-4 *5 (-353 *3))
- (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-633 *3 *4 *5)))))
+ (-12 (-4 *3 (-13 (-344) (-793))) (-5 *1 (-169 *3 *2))
+ (-4 *2 (-1155 (-158 *3))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-296 (-207))) (-5 *4 (-1095))
- (-5 *5 (-1018 (-786 (-207)))) (-5 *2 (-595 (-207))) (-5 *1 (-176))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-296 (-207))) (-5 *4 (-1095))
- (-5 *5 (-1018 (-786 (-207)))) (-5 *2 (-595 (-207))) (-5 *1 (-281)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-568 *6)) (-4 *6 (-13 (-410 *5) (-27) (-1117)))
- (-4 *5 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528))))
- (-5 *2 (-1091 (-387 (-1091 *6)))) (-5 *1 (-524 *5 *6 *7))
- (-5 *3 (-1091 *6)) (-4 *7 (-1023))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1153 *3)) (-5 *1 (-659 *3 *2)) (-4 *3 (-981))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-671 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1153 *3))))
- ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1091 *11)) (-5 *6 (-595 *10))
- (-5 *7 (-595 (-717))) (-5 *8 (-595 *11)) (-4 *10 (-793))
- (-4 *11 (-288)) (-4 *9 (-739)) (-4 *5 (-888 *11 *9 *10))
- (-5 *2 (-595 (-1091 *5))) (-5 *1 (-689 *9 *10 *11 *5))
- (-5 *3 (-1091 *5))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-888 *3 *4 *5)) (-5 *1 (-969 *3 *4 *5 *2 *6))
- (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-14 *6 (-595 *2)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-110) *9)) (-5 *5 (-1 (-110) *9 *9))
- (-4 *9 (-994 *6 *7 *8)) (-4 *6 (-520)) (-4 *7 (-739))
- (-4 *8 (-793)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1513 (-595 *9))))
- (-5 *3 (-595 *9)) (-4 *1 (-1125 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-110) *8 *8)) (-4 *8 (-994 *5 *6 *7))
- (-4 *5 (-520)) (-4 *6 (-739)) (-4 *7 (-793))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -1513 (-595 *8))))
- (-5 *3 (-595 *8)) (-4 *1 (-1125 *5 *6 *7 *8)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1084 *2 *3)) (-14 *2 (-860)) (-4 *3 (-981)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-431) (-140))) (-5 *2 (-398 *3))
- (-5 *1 (-97 *4 *3)) (-4 *3 (-1153 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-13 (-431) (-140)))
- (-5 *2 (-398 *3)) (-5 *1 (-97 *5 *3)))))
-(((*1 *2 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1131))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1023))
- (-4 *2 (-13 (-410 *4) (-825 *3) (-570 (-831 *3))))
- (-5 *1 (-1002 *3 *4 *2))
- (-4 *4 (-13 (-981) (-825 *3) (-793) (-570 (-831 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1023)) (-5 *1 (-1085 *3 *2)) (-4 *3 (-1023)))))
-(((*1 *2) (-12 (-5 *2 (-786 (-528))) (-5 *1 (-502))))
- ((*1 *1) (-12 (-5 *1 (-786 *2)) (-4 *2 (-1023)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-161)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-860))
- (-4 *4 (-981)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-275 (-786 *3))) (-4 *3 (-13 (-27) (-1117) (-410 *5)))
- (-4 *5 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2
- (-3 (-786 *3)
- (-2 (|:| |leftHandLimit| (-3 (-786 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-786 *3) "failed")))
- "failed"))
- (-5 *1 (-588 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-275 *3)) (-5 *5 (-1078))
- (-4 *3 (-13 (-27) (-1117) (-410 *6)))
- (-4 *6 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-786 *3)) (-5 *1 (-588 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-275 (-786 (-891 *5)))) (-4 *5 (-431))
- (-5 *2
- (-3 (-786 (-387 (-891 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-786 (-387 (-891 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-786 (-387 (-891 *5))) "failed")))
- "failed"))
- (-5 *1 (-589 *5)) (-5 *3 (-387 (-891 *5)))))
+ (-12 (-5 *5 (-110)) (-4 *4 (-13 (-344) (-793))) (-5 *2 (-386 *3))
+ (-5 *1 (-169 *4 *3)) (-4 *3 (-1155 (-158 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-275 (-387 (-891 *5)))) (-5 *3 (-387 (-891 *5)))
- (-4 *5 (-431))
- (-5 *2
- (-3 (-786 *3)
- (-2 (|:| |leftHandLimit| (-3 (-786 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-786 *3) "failed")))
- "failed"))
- (-5 *1 (-589 *5))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-275 (-387 (-891 *6)))) (-5 *5 (-1078))
- (-5 *3 (-387 (-891 *6))) (-4 *6 (-431)) (-5 *2 (-786 *3))
- (-5 *1 (-589 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-726 *5 (-804 *6)))) (-5 *4 (-110)) (-4 *5 (-431))
- (-14 *6 (-595 (-1095)))
- (-5 *2
- (-595 (-1066 *5 (-500 (-804 *6)) (-804 *6) (-726 *5 (-804 *6)))))
- (-5 *1 (-580 *5 *6)))))
-(((*1 *2)
- (-12 (-5 *2 (-635 (-849 *3))) (-5 *1 (-331 *3 *4)) (-14 *3 (-860))
- (-14 *4 (-860))))
- ((*1 *2)
- (-12 (-5 *2 (-635 *3)) (-5 *1 (-332 *3 *4)) (-4 *3 (-329))
- (-14 *4
- (-3 (-1091 *3)
- (-1177 (-595 (-2 (|:| -3327 *3) (|:| -3108 (-1042)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-635 *3)) (-5 *1 (-333 *3 *4)) (-4 *3 (-329))
- (-14 *4 (-860)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-770)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-717)) (|:| -3292 *4))) (-5 *5 (-717))
- (-4 *4 (-888 *6 *7 *8)) (-4 *6 (-431)) (-4 *7 (-739)) (-4 *8 (-793))
- (-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-5 *1 (-428 *6 *7 *8 *4)))))
+ (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-386 *3)) (-5 *1 (-169 *4 *3))
+ (-4 *3 (-1155 (-158 *4))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1177 *4)) (-4 *4 (-397 *3)) (-4 *3 (-288))
- (-4 *3 (-520)) (-5 *1 (-42 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-860)) (-4 *4 (-343)) (-5 *2 (-1177 *1))
- (-4 *1 (-309 *4))))
- ((*1 *2) (-12 (-4 *3 (-343)) (-5 *2 (-1177 *1)) (-4 *1 (-309 *3))))
- ((*1 *2)
- (-12 (-4 *3 (-162)) (-4 *4 (-1153 *3)) (-5 *2 (-1177 *1))
- (-4 *1 (-389 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-288)) (-4 *4 (-929 *3)) (-4 *5 (-1153 *4))
- (-5 *2 (-1177 *6)) (-5 *1 (-393 *3 *4 *5 *6))
- (-4 *6 (-13 (-389 *4 *5) (-972 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-288)) (-4 *4 (-929 *3)) (-4 *5 (-1153 *4))
- (-5 *2 (-1177 *6)) (-5 *1 (-394 *3 *4 *5 *6 *7))
- (-4 *6 (-389 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1177 *1)) (-4 *1 (-397 *3))))
+ (-12 (-4 *3 (-13 (-344) (-793))) (-5 *1 (-169 *3 *2))
+ (-4 *2 (-1155 (-158 *3))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-344) (-793)))
+ (-5 *2 (-594 (-2 (|:| -2701 (-594 *3)) (|:| -1606 *5))))
+ (-5 *1 (-169 *5 *3)) (-4 *3 (-1155 (-158 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-344) (-793)))
+ (-5 *2 (-594 (-2 (|:| -2701 (-594 *3)) (|:| -1606 *4))))
+ (-5 *1 (-169 *4 *3)) (-4 *3 (-1155 (-158 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-594 (-158 *4))) (-5 *1 (-147 *3 *4))
+ (-4 *3 (-1155 (-158 (-516)))) (-4 *4 (-13 (-344) (-793)))))
((*1 *2 *3)
- (-12 (-5 *3 (-860)) (-5 *2 (-1177 (-1177 *4))) (-5 *1 (-498 *4))
- (-4 *4 (-329)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-595 (-2 (|:| |k| (-1095)) (|:| |c| (-1197 *3)))))
- (-5 *1 (-1197 *3)) (-4 *3 (-981))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-595 (-2 (|:| |k| *3) (|:| |c| (-1199 *3 *4)))))
- (-5 *1 (-1199 *3 *4)) (-4 *3 (-793)) (-4 *4 (-981)))))
-(((*1 *2 *1) (-12 (-5 *1 (-275 *2)) (-4 *2 (-1131))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1023))
- (-4 *2 (-13 (-410 *4) (-825 *3) (-570 (-831 *3))))
- (-5 *1 (-1002 *3 *4 *2))
- (-4 *4 (-13 (-981) (-825 *3) (-793) (-570 (-831 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1023)) (-5 *1 (-1085 *2 *3)) (-4 *3 (-1023)))))
+ (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-594 (-158 *4)))
+ (-5 *1 (-169 *4 *3)) (-4 *3 (-1155 (-158 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-594 (-158 *4)))
+ (-5 *1 (-169 *4 *3)) (-4 *3 (-1155 (-158 *4))))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-594 *3)) (-4 *3 (-289)) (-5 *1 (-168 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-289)) (-5 *1 (-168 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
+ (-4 *3 (-13 (-344) (-1120) (-941))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1095))
- (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-295 *4 *5))
- (-4 *5 (-13 (-27) (-1117) (-410 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-295 *4 *3))
- (-4 *3 (-13 (-27) (-1117) (-410 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-387 (-528)))
- (-4 *5 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-295 *5 *3))
- (-4 *3 (-13 (-27) (-1117) (-410 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-275 *3)) (-4 *3 (-13 (-27) (-1117) (-410 *5)))
- (-4 *5 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-295 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-275 *3)) (-5 *5 (-387 (-528)))
- (-4 *3 (-13 (-27) (-1117) (-410 *6)))
- (-4 *6 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-295 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-528))) (-5 *4 (-275 *6))
- (-4 *6 (-13 (-27) (-1117) (-410 *5)))
- (-4 *5 (-13 (-520) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-438 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1095)) (-5 *5 (-275 *3))
- (-4 *3 (-13 (-27) (-1117) (-410 *6)))
- (-4 *6 (-13 (-520) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-438 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-528))) (-5 *4 (-275 *7)) (-5 *5 (-1144 (-528)))
- (-4 *7 (-13 (-27) (-1117) (-410 *6)))
- (-4 *6 (-13 (-520) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-438 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1095)) (-5 *5 (-275 *3)) (-5 *6 (-1144 (-528)))
- (-4 *3 (-13 (-27) (-1117) (-410 *7)))
- (-4 *7 (-13 (-520) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-438 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-387 (-528)))) (-5 *4 (-275 *8))
- (-5 *5 (-1144 (-387 (-528)))) (-5 *6 (-387 (-528)))
- (-4 *8 (-13 (-27) (-1117) (-410 *7)))
- (-4 *7 (-13 (-520) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-438 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1095)) (-5 *5 (-275 *3)) (-5 *6 (-1144 (-387 (-528))))
- (-5 *7 (-387 (-528))) (-4 *3 (-13 (-27) (-1117) (-410 *8)))
- (-4 *8 (-13 (-520) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *2 (-51)) (-5 *1 (-438 *8 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1076 (-2 (|:| |k| (-528)) (|:| |c| *3))))
- (-4 *3 (-981)) (-5 *1 (-553 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-554 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1076 (-2 (|:| |k| (-528)) (|:| |c| *3))))
- (-4 *3 (-981)) (-4 *1 (-1137 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-717))
- (-5 *3 (-1076 (-2 (|:| |k| (-387 (-528))) (|:| |c| *4))))
- (-4 *4 (-981)) (-4 *1 (-1158 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-4 *1 (-1168 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1076 (-2 (|:| |k| (-717)) (|:| |c| *3))))
- (-4 *3 (-981)) (-4 *1 (-1168 *3)))))
-(((*1 *2) (-12 (-5 *2 (-786 (-528))) (-5 *1 (-502))))
- ((*1 *1) (-12 (-5 *1 (-786 *2)) (-4 *2 (-1023)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-981)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(((*1 *2 *1) (-12 (-5 *2 (-717)) (-5 *1 (-398 *3)) (-4 *3 (-520))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 (-2 (|:| -2437 *4) (|:| -2935 (-528)))))
- (-4 *4 (-1153 (-528))) (-5 *2 (-717)) (-5 *1 (-421 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-802))))
+ (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
+ (-4 *3 (-13 (-344) (-1120) (-941))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-528)) (-5 *1 (-424 *3)) (-4 *3 (-384)) (-4 *3 (-981)))))
-(((*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-920 *2)) (-4 *2 (-1117)))))
-(((*1 *1 *2) (-12 (-5 *1 (-209 *2)) (-4 *2 (-13 (-343) (-1117))))))
+ (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
+ (-4 *3 (-13 (-344) (-1120) (-941))))))
(((*1 *2 *3)
- (-12 (-4 *2 (-343)) (-4 *2 (-791)) (-5 *1 (-884 *2 *3))
- (-4 *3 (-1153 *2)))))
-(((*1 *2)
- (-12 (-4 *3 (-981)) (-5 *2 (-896 (-659 *3 *4))) (-5 *1 (-659 *3 *4))
- (-4 *4 (-1153 *3)))))
+ (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
+ (-4 *3 (-13 (-344) (-1120) (-941))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1104 (-595 *4))) (-4 *4 (-793))
- (-5 *2 (-595 (-595 *4))) (-5 *1 (-1103 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-831 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-595 (-595 (-882 (-207))))) (-5 *3 (-595 (-813)))
- (-5 *1 (-447)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-595 *3)) (-4 *3 (-1023)) (-5 *1 (-100 *3)))))
+ (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
+ (-4 *3 (-13 (-344) (-1120) (-941))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-387 (-891 (-528))))) (-5 *2 (-595 (-296 (-528))))
- (-5 *1 (-966)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-981)) (-4 *2 (-1137 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-343))
- (-4 *7 (-1153 (-387 *6)))
- (-5 *2 (-2 (|:| |answer| *3) (|:| -3231 *3)))
- (-5 *1 (-526 *5 *6 *7 *3)) (-4 *3 (-322 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-343))
- (-5 *2
- (-2 (|:| |answer| (-387 *6)) (|:| -3231 (-387 *6))
- (|:| |specpart| (-387 *6)) (|:| |polypart| *6)))
- (-5 *1 (-527 *5 *6)) (-5 *3 (-387 *6)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1091 *3)) (-4 *3 (-981)) (-4 *1 (-1153 *3)))))
+ (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
+ (-4 *3 (-13 (-344) (-1120) (-941))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-882 *3) (-882 *3))) (-5 *1 (-165 *3))
- (-4 *3 (-13 (-343) (-1117) (-938))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-528))) (-5 *5 (-1 (-1076 *4))) (-4 *4 (-343))
- (-4 *4 (-981)) (-5 *2 (-1076 *4)) (-5 *1 (-1080 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1095)) (-5 *1 (-545 *2)) (-4 *2 (-972 *3))
- (-4 *2 (-343))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-545 *2)) (-4 *2 (-343))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1095)) (-4 *4 (-13 (-793) (-520))) (-5 *1 (-582 *4 *2))
- (-4 *2 (-13 (-410 *4) (-938) (-1117)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1016 *2)) (-4 *2 (-13 (-410 *4) (-938) (-1117)))
- (-4 *4 (-13 (-793) (-520))) (-5 *1 (-582 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-897)) (-5 *2 (-1095))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1016 *1)) (-4 *1 (-897)))))
-(((*1 *2 *1) (-12 (-4 *1 (-518 *2)) (-4 *2 (-13 (-384) (-1117)))))
- ((*1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-802))))
- ((*1 *2 *1) (-12 (-5 *2 (-528)) (-5 *1 (-802)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *2 (-970))
- (-5 *1 (-694)))))
-(((*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-155 *3 *2)) (-4 *3 (-156 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-350 *2 *4)) (-4 *4 (-1153 *2))
- (-4 *2 (-162))))
- ((*1 *2)
- (-12 (-4 *4 (-1153 *2)) (-4 *2 (-162)) (-5 *1 (-388 *3 *2 *4))
- (-4 *3 (-389 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-389 *2 *3)) (-4 *3 (-1153 *2)) (-4 *2 (-162))))
- ((*1 *2)
- (-12 (-4 *3 (-1153 *2)) (-5 *2 (-528)) (-5 *1 (-714 *3 *4))
- (-4 *4 (-389 *2 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-888 *3 *4 *2)) (-4 *3 (-981)) (-4 *4 (-739))
- (-4 *2 (-793)) (-4 *3 (-162))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-520)) (-5 *1 (-907 *2 *3)) (-4 *3 (-1153 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-981)) (-4 *2 (-162)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-353 *3))
- (-4 *5 (-353 *3)) (-5 *2 (-717))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981))
- (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-5 *2 (-717)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
- (|:| |Conditional| "conditional") (|:| |Return| "return")
- (|:| |Block| "block") (|:| |Comment| "comment")
- (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
- (|:| |Repeat| "repeat") (|:| |Goto| "goto")
- (|:| |Continue| "continue")
- (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
- (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
- (-5 *1 (-310)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-553 *2)) (-4 *2 (-37 (-387 (-528)))) (-4 *2 (-981)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-387 (-891 *3))) (-5 *1 (-432 *3 *4 *5 *6))
- (-4 *3 (-520)) (-4 *3 (-162)) (-14 *4 (-860))
- (-14 *5 (-595 (-1095))) (-14 *6 (-1177 (-635 *3))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1027)) (-5 *3 (-720)) (-5 *1 (-51)))))
+ (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
+ (-4 *3 (-13 (-344) (-1120) (-941))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-520) (-793) (-972 (-528)))) (-5 *1 (-172 *3 *2))
- (-4 *2 (-13 (-27) (-1117) (-410 (-159 *3))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-431) (-793) (-972 (-528)) (-591 (-528))))
- (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-27) (-1117) (-410 *3))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-112) (-112))) (-5 *1 (-112)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-882 (-207))) (-5 *4 (-813)) (-5 *2 (-1182))
- (-5 *1 (-447))))
- ((*1 *1 *2) (-12 (-5 *2 (-595 *3)) (-4 *3 (-981)) (-4 *1 (-917 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-981)) (-5 *2 (-882 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-882 *3)) (-4 *3 (-981)) (-4 *1 (-1056 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-717)) (-4 *1 (-1056 *3)) (-4 *3 (-981))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-595 *3)) (-4 *1 (-1056 *3)) (-4 *3 (-981))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-882 *3)) (-4 *1 (-1056 *3)) (-4 *3 (-981))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-882 (-207))) (-5 *1 (-1128)) (-5 *3 (-207)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1177 *5)) (-4 *5 (-738)) (-5 *2 (-110))
- (-5 *1 (-788 *4 *5)) (-14 *4 (-717)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-595 *6)) (-5 *4 (-595 (-229 *5 *6))) (-4 *6 (-431))
- (-5 *2 (-229 *5 *6)) (-14 *5 (-595 (-1095))) (-5 *1 (-583 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-110))
- (-5 *1 (-480 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-996 *4 *3)) (-4 *4 (-13 (-791) (-343)))
- (-4 *3 (-1153 *4)) (-5 *2 (-110)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-353 *3))
- (-4 *5 (-353 *3)) (-5 *2 (-717))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981))
- (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-5 *2 (-717)))))
+ (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1120) (-941)))
+ (-5 *1 (-165 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-353 *2)) (-4 *2 (-1131)) (-4 *2 (-793))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-353 *3)) (-4 *3 (-1131))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-793))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-981))))
- ((*1 *1 *2) (-12 (-5 *2 (-595 *1)) (-4 *1 (-1056 *3)) (-4 *3 (-981))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-595 (-1084 *3 *4))) (-5 *1 (-1084 *3 *4))
- (-14 *3 (-860)) (-4 *4 (-981))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-1084 *2 *3)) (-14 *2 (-860)) (-4 *3 (-981)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-520)) (-5 *1 (-907 *3 *2)) (-4 *2 (-1153 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)) (-4 *2 (-520))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-981)) (-4 *2 (-520)))))
+ (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1120) (-941)))
+ (-5 *1 (-165 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-793) (-431))) (-5 *1 (-1123 *3 *2))
- (-4 *2 (-13 (-410 *3) (-1117))))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-207)) (-5 *4 (-528))
- (-5 *5 (-3 (|:| |fn| (-368)) (|:| |fp| (-62 -1305)))) (-5 *2 (-970))
- (-5 *1 (-695)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-343) (-140) (-972 (-387 (-528)))))
- (-4 *5 (-1153 *4)) (-5 *2 (-595 (-2 (|:| -1884 *5) (|:| -1596 *5))))
- (-5 *1 (-753 *4 *5 *3 *6)) (-4 *3 (-605 *5))
- (-4 *6 (-605 (-387 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-343) (-140) (-972 (-387 (-528)))))
- (-4 *4 (-1153 *5)) (-5 *2 (-595 (-2 (|:| -1884 *4) (|:| -1596 *4))))
- (-5 *1 (-753 *5 *4 *3 *6)) (-4 *3 (-605 *4))
- (-4 *6 (-605 (-387 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-343) (-140) (-972 (-387 (-528)))))
- (-4 *5 (-1153 *4)) (-5 *2 (-595 (-2 (|:| -1884 *5) (|:| -1596 *5))))
- (-5 *1 (-753 *4 *5 *6 *3)) (-4 *6 (-605 *5))
- (-4 *3 (-605 (-387 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-343) (-140) (-972 (-387 (-528)))))
- (-4 *4 (-1153 *5)) (-5 *2 (-595 (-2 (|:| -1884 *4) (|:| -1596 *4))))
- (-5 *1 (-753 *5 *4 *6 *3)) (-4 *6 (-605 *4))
- (-4 *3 (-605 (-387 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1017 *3)) (-4 *3 (-1131)) (-5 *2 (-528)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-635 (-207))) (-5 *6 (-635 (-528))) (-5 *3 (-528))
- (-5 *4 (-207)) (-5 *2 (-970)) (-5 *1 (-699)))))
-(((*1 *2)
- (-12 (-5 *2 (-717)) (-5 *1 (-118 *3)) (-4 *3 (-1153 (-528)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-717)) (-5 *1 (-118 *3)) (-4 *3 (-1153 (-528))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 (-595 *8))) (-5 *3 (-595 *8))
- (-4 *8 (-888 *5 *7 *6)) (-4 *5 (-13 (-288) (-140)))
- (-4 *6 (-13 (-793) (-570 (-1095)))) (-4 *7 (-739)) (-5 *2 (-110))
- (-5 *1 (-863 *5 *6 *7 *8)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-528)) (-5 *1 (-533 *3)) (-4 *3 (-972 *2)))))
-(((*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-416)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-595 (-528))) (-5 *1 (-940 *3)) (-14 *3 (-528)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-595 *6)) (-4 *6 (-793)) (-4 *4 (-343)) (-4 *5 (-739))
- (-5 *1 (-480 *4 *5 *6 *2)) (-4 *2 (-888 *4 *5 *6))))
- ((*1 *1 *1 *2)
- (-12 (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-888 *3 *4 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-343)) (-5 *1 (-713 *2 *3)) (-4 *2 (-655 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-343)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1131)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-398 *2)) (-4 *2 (-520)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-595 (-595 (-595 *4)))) (-5 *2 (-595 (-595 *4)))
- (-4 *4 (-793)) (-5 *1 (-1103 *4)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-793)) (-4 *5 (-739))
- (-4 *6 (-520)) (-4 *7 (-888 *6 *5 *3))
- (-5 *1 (-441 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-972 (-387 (-528))) (-343)
- (-10 -8 (-15 -2222 ($ *7)) (-15 -3031 (*7 $))
- (-15 -3042 (*7 $))))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-860)) (-5 *2 (-1091 *4)) (-5 *1 (-337 *4))
- (-4 *4 (-329))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-860)) (-5 *2 (-1091 *4)) (-5 *1 (-337 *4))
- (-4 *4 (-329))))
- ((*1 *1) (-4 *1 (-348)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-860)) (-5 *2 (-1177 *4)) (-5 *1 (-498 *4))
- (-4 *4 (-329))))
- ((*1 *1 *1) (-4 *1 (-513))) ((*1 *1) (-4 *1 (-513)))
- ((*1 *1 *1) (-5 *1 (-528))) ((*1 *1 *1) (-5 *1 (-717)))
- ((*1 *2 *1) (-12 (-5 *2 (-844 *3)) (-5 *1 (-843 *3)) (-4 *3 (-1023))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-528)) (-5 *2 (-844 *4)) (-5 *1 (-843 *4))
- (-4 *4 (-1023))))
- ((*1 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-513)) (-4 *2 (-520)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-528)) (-5 *3 (-717)) (-5 *1 (-525)))))
-(((*1 *1) (-5 *1 (-769))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-414)))))
-(((*1 *2)
- (-12 (-5 *2 (-1182)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1023))
- (-4 *4 (-1023)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-303 *3 *4)) (-4 *3 (-1023))
- (-4 *4 (-128))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-341 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-366 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-598 *3 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-353 *2))
- (-4 *4 (-353 *2))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4265)) (-4 *1 (-561 *3 *2)) (-4 *3 (-1023))
- (-4 *2 (-1131)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-343)) (-5 *1 (-266 *3 *2)) (-4 *2 (-1168 *3)))))
-(((*1 *1) (-5 *1 (-134))) ((*1 *1 *1) (-5 *1 (-137)))
- ((*1 *1 *1) (-4 *1 (-1064))))
-(((*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-905)))))
-(((*1 *1) (-5 *1 (-134))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-374)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-322 *4 *5 *6)) (-4 *4 (-1135))
- (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-387 *5)))
- (-5 *2 (-2 (|:| |num| (-635 *5)) (|:| |den| *5))))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-5 *2 (-595 (-962 *5 *6 *7 *3))) (-5 *1 (-962 *5 *6 *7 *3))
- (-4 *3 (-994 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-595 *6)) (-4 *1 (-999 *3 *4 *5 *6)) (-4 *3 (-431))
- (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-999 *3 *4 *5 *2)) (-4 *3 (-431)) (-4 *4 (-739))
- (-4 *5 (-793)) (-4 *2 (-994 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-5 *2 (-595 (-1066 *5 *6 *7 *3))) (-5 *1 (-1066 *5 *6 *7 *3))
- (-4 *3 (-994 *5 *6 *7)))))
+ (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1120) (-941)))
+ (-5 *1 (-165 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-431))
- (-4 *3 (-520)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *1 (-914 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-595 *7)) (-5 *3 (-110)) (-4 *7 (-994 *4 *5 *6))
- (-4 *4 (-431)) (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793))
- (-5 *1 (-914 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-860)) (-4 *1 (-309 *3)) (-4 *3 (-343)) (-4 *3 (-348))))
- ((*1 *2 *1) (-12 (-4 *1 (-309 *2)) (-4 *2 (-343))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-350 *2 *3)) (-4 *3 (-1153 *2)) (-4 *2 (-162))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1177 *4)) (-5 *3 (-860)) (-4 *4 (-329))
- (-5 *1 (-498 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3 *2 *4 *5)) (-4 *4 (-220 *3 *2))
- (-4 *5 (-220 *3 *2)) (-4 *2 (-981)))))
-(((*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-162)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-595 (-1091 *4))) (-5 *3 (-1091 *4))
- (-4 *4 (-848)) (-5 *1 (-612 *4)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-860)) (-5 *4 (-813)) (-5 *2 (-1182)) (-5 *1 (-1178))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-860)) (-5 *4 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1178))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1179)))))
-(((*1 *2 *1) (-12 (-5 *2 (-595 (-1078))) (-5 *1 (-374)))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-595 *9)) (-5 *3 (-1 (-110) *9))
- (-5 *4 (-1 (-110) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-994 *6 *7 *8)) (-4 *6 (-520)) (-4 *7 (-739)) (-4 *8 (-793))
- (-5 *1 (-914 *6 *7 *8 *9)))))
-(((*1 *2 *1) (-12 (-4 *1 (-369)) (-5 *2 (-110)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1023)) (-5 *2 (-110)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-831 *4)) (-4 *4 (-1023)) (-5 *1 (-828 *4 *3))
- (-4 *3 (-1023)))))
-(((*1 *2 *1) (-12 (-5 *1 (-961 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-946 *3)) (-4 *3 (-1131)) (-4 *3 (-1023))
- (-5 *2 (-110)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-145 *2 *3 *4)) (-14 *2 (-860)) (-4 *3 (-343))
- (-14 *4 (-930 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-162)) (-5 *1 (-270 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1153 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-347 *2)) (-4 *2 (-162)) (-4 *2 (-520))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-662 *2 *3 *4 *5 *6)) (-4 *2 (-162))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-343))))
- ((*1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-343))))
- ((*1 *1 *1) (|partial| -4 *1 (-669)))
- ((*1 *1 *1) (|partial| -4 *1 (-673)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-431)) (-4 *6 (-739)) (-4 *7 (-793))
- (-4 *3 (-994 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
- (-5 *1 (-722 *5 *6 *7 *3 *4)) (-4 *4 (-999 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-996 *3 *2)) (-4 *3 (-13 (-791) (-343)))
- (-4 *2 (-1153 *3))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1076 *3)) (-4 *3 (-981)) (-5 *1 (-1080 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-520)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1606 *4)))
- (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-110))
- (-5 *1 (-480 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-595 *6)) (-4 *6 (-793)) (-4 *4 (-343)) (-4 *5 (-739))
- (-5 *2 (-110)) (-5 *1 (-480 *4 *5 *6 *7)) (-4 *7 (-888 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-528))) (-5 *1 (-979)))))
-(((*1 *1) (-5 *1 (-769))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *3 (-994 *4 *5 *6)) (-5 *2 (-3 (-110) (-595 *1)))
- (-4 *1 (-999 *4 *5 *6 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-802))))
- ((*1 *1 *1 *1) (-5 *1 (-802))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-717)) (-5 *2 (-1 (-359))) (-5 *1 (-974)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1023)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-860)) (-5 *4 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1178)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-346 *3 *4))
- (-4 *3 (-347 *4))))
- ((*1 *2) (-12 (-4 *1 (-347 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-528)) (-5 *1 (-458)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-207)) (-5 *1 (-208))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-207))) (-5 *1 (-208)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-717)) (-4 *2 (-520)) (-5 *1 (-907 *2 *4))
- (-4 *4 (-1153 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1078)) (-5 *1 (-1113))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-1113)))))
+ (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1120) (-941)))
+ (-5 *1 (-165 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1120) (-941)))
+ (-5 *1 (-165 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1120) (-941)))
+ (-5 *1 (-165 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1120) (-941)))
+ (-5 *1 (-165 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-106))) (-5 *1 (-164)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-164)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-1076 *2)) (-4 *2 (-289)) (-5 *1 (-163 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
+(((*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1076 (-388 *3))) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1076 (-388 *3))) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161)))))
+(((*1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-343)) (-4 *4 (-739)) (-4 *5 (-793)) (-5 *2 (-110))
- (-5 *1 (-480 *3 *4 *5 *6)) (-4 *6 (-888 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-669)) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-4 *1 (-673)) (-5 *2 (-110)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-595 (-802))) (-5 *1 (-1095)))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-110)) (-4 *6 (-431)) (-4 *7 (-739))
- (-4 *8 (-793)) (-4 *9 (-994 *6 *7 *8))
- (-5 *2
- (-2 (|:| -2589 (-595 *9)) (|:| -2316 *4) (|:| |ineq| (-595 *9))))
- (-5 *1 (-925 *6 *7 *8 *9 *4)) (-5 *3 (-595 *9))
- (-4 *4 (-999 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-110)) (-4 *6 (-431)) (-4 *7 (-739))
- (-4 *8 (-793)) (-4 *9 (-994 *6 *7 *8))
- (-5 *2
- (-2 (|:| -2589 (-595 *9)) (|:| -2316 *4) (|:| |ineq| (-595 *9))))
- (-5 *1 (-1030 *6 *7 *8 *9 *4)) (-5 *3 (-595 *9))
- (-4 *4 (-999 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1095)) (-4 *5 (-570 (-831 (-528))))
- (-4 *5 (-825 (-528)))
- (-4 *5 (-13 (-793) (-972 (-528)) (-431) (-591 (-528))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-531 *5 *3)) (-4 *3 (-581))
- (-4 *3 (-13 (-27) (-1117) (-410 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1095)) (-5 *4 (-786 *2)) (-4 *2 (-1059))
- (-4 *2 (-13 (-27) (-1117) (-410 *5)))
- (-4 *5 (-570 (-831 (-528)))) (-4 *5 (-825 (-528)))
- (-4 *5 (-13 (-793) (-972 (-528)) (-431) (-591 (-528))))
- (-5 *1 (-531 *5 *2)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))))
- (-5 *2 (-595 (-387 (-528)))) (-5 *1 (-955 *4))
- (-4 *4 (-1153 (-528))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-595 *6)) (-4 *6 (-994 *3 *4 *5)) (-4 *3 (-520))
- (-4 *4 (-739)) (-4 *5 (-793)) (-5 *1 (-914 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-595 *7)) (-5 *3 (-110)) (-4 *7 (-994 *4 *5 *6))
- (-4 *4 (-520)) (-4 *5 (-739)) (-4 *6 (-793))
- (-5 *1 (-914 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-528)) (-5 *1 (-296 *3)) (-4 *3 (-520)) (-4 *3 (-793)))))
+ (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-992)) (-4 *3 (-1120))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
(((*1 *1 *1 *1) (-5 *1 (-152)))
- ((*1 *1 *2) (-12 (-5 *2 (-528)) (-5 *1 (-152)))))
-(((*1 *1 *1) (-12 (-4 *1 (-353 *2)) (-4 *2 (-1131)) (-4 *2 (-793))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-353 *3)) (-4 *3 (-1131))))
+ ((*1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-152)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-149 *3 *2)) (-4 *2 (-402 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-795) (-523))) (-5 *1 (-149 *4 *2))
+ (-4 *2 (-402 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1098))))
+ ((*1 *1 *1) (-4 *1 (-151))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-795) (-523))) (-5 *1 (-149 *4 *2))
+ (-4 *2 (-402 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1019 *2)) (-4 *2 (-402 *4)) (-4 *4 (-13 (-795) (-523)))
+ (-5 *1 (-149 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1019 *1)) (-4 *1 (-151))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1098)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))))
+(((*1 *1 *1 *1) (-4 *1 (-136)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-149 *3 *2)) (-4 *2 (-402 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-594 *2)) (-4 *2 (-515)) (-5 *1 (-150 *2)))))
+(((*1 *1 *1) (-4 *1 (-136)))
((*1 *2 *2)
- (-12 (-5 *2 (-595 (-844 *3))) (-5 *1 (-844 *3)) (-4 *3 (-1023))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-981)) (-4 *5 (-739)) (-4 *3 (-793))
- (-4 *6 (-994 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -2925 *1) (|:| |upper| *1)))
- (-4 *1 (-913 *4 *5 *3 *6)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1178))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1179)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-860)) (-5 *1 (-732)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-528)) (-5 *3 (-860)) (-5 *1 (-645))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-635 *5)) (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5))
- (-4 *5 (-343)) (-5 *1 (-915 *5)))))
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-149 *3 *2)) (-4 *2 (-402 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1018 (-786 (-207)))) (-5 *2 (-207)) (-5 *1 (-176))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1018 (-786 (-207)))) (-5 *2 (-207)) (-5 *1 (-281))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1018 (-786 (-207)))) (-5 *2 (-207)) (-5 *1 (-286)))))
+ (-12 (-5 *3 (-594 *2)) (-4 *2 (-402 *4)) (-5 *1 (-149 *4 *2))
+ (-4 *4 (-13 (-795) (-523))))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1095)) (|:| |fn| (-296 (-207)))
- (|:| -2931 (-1018 (-786 (-207)))) (|:| |abserr| (-207))
- (|:| |relerr| (-207))))
- (-5 *2 (-110)) (-5 *1 (-281)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-739)) (-4 *4 (-793)) (-4 *6 (-288)) (-5 *2 (-398 *3))
- (-5 *1 (-689 *5 *4 *6 *3)) (-4 *3 (-888 *6 *5 *4)))))
+ (-12 (-5 *3 (-594 *2)) (-4 *2 (-402 *4)) (-5 *1 (-149 *4 *2))
+ (-4 *4 (-13 (-795) (-523))))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-595 (-296 (-207)))) (|:| -4197 (-595 (-207)))))
- (-5 *2 (-359)) (-5 *1 (-248))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1177 (-296 (-207)))) (-5 *2 (-359)) (-5 *1 (-286)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-793)) (-5 *2 (-595 *1))
- (-4 *1 (-410 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-595 (-831 *3))) (-5 *1 (-831 *3))
- (-4 *3 (-1023))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *2 (-595 *1)) (-4 *1 (-888 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-981))
- (-4 *7 (-888 *6 *4 *5)) (-5 *2 (-595 *3))
- (-5 *1 (-889 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-343)
- (-10 -8 (-15 -2222 ($ *7)) (-15 -3031 (*7 $))
- (-15 -3042 (*7 $))))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-795 *2)) (-4 *2 (-981)) (-4 *2 (-343)))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-568 *3)) (-5 *5 (-595 *3))
- (-4 *3 (-13 (-410 *6) (-27) (-1117)))
- (-4 *6 (-13 (-431) (-972 (-528)) (-793) (-140) (-591 (-528))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-595 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-530 *6 *3 *7)) (-4 *7 (-1023)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-595 *4)) (-4 *4 (-791)) (-4 *4 (-343)) (-5 *2 (-717))
- (-5 *1 (-884 *4 *5)) (-4 *5 (-1153 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-528)) (-4 *1 (-303 *4 *2)) (-4 *4 (-1023))
- (-4 *2 (-128)))))
+ (-12 (-5 *3 (-594 *2)) (-4 *2 (-402 *4)) (-5 *1 (-149 *4 *2))
+ (-4 *4 (-13 (-795) (-523))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1076 (-528))) (-5 *1 (-1080 *4)) (-4 *4 (-981))
- (-5 *3 (-528)))))
+ (-12 (-5 *3 (-594 *2)) (-4 *2 (-402 *4)) (-5 *1 (-149 *4 *2))
+ (-4 *4 (-13 (-795) (-523))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-296 (-207)))) (-5 *2 (-359)) (-5 *1 (-189)))))
+ (-12 (-5 *3 (-594 *2)) (-4 *2 (-402 *4)) (-5 *1 (-149 *4 *2))
+ (-4 *4 (-13 (-795) (-523))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-595 (-891 *4))) (-4 *4 (-431)) (-5 *2 (-110))
- (-5 *1 (-340 *4 *5)) (-14 *5 (-595 (-1095)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 (-726 *4 (-804 *5)))) (-4 *4 (-431))
- (-14 *5 (-595 (-1095))) (-5 *2 (-110)) (-5 *1 (-580 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1177 *5)) (-4 *5 (-738)) (-5 *2 (-110))
- (-5 *1 (-788 *4 *5)) (-14 *4 (-717)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1042)) (-5 *1 (-310)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-595 *1)) (-4 *1 (-288)))))
-(((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1131)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-343) (-972 (-387 *2)))) (-5 *2 (-528))
- (-5 *1 (-113 *4 *3)) (-4 *3 (-1153 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-353 *3))
- (-4 *5 (-353 *3)) (-5 *2 (-528))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-983 *3 *4 *5 *6 *7)) (-4 *5 (-981))
- (-4 *6 (-220 *4 *5)) (-4 *7 (-220 *3 *5)) (-5 *2 (-528)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1023)) (-4 *6 (-825 *5)) (-5 *2 (-824 *5 *6 (-595 *6)))
- (-5 *1 (-826 *5 *6 *4)) (-5 *3 (-595 *6)) (-4 *4 (-570 (-831 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1023)) (-5 *2 (-595 (-275 *3))) (-5 *1 (-826 *5 *3 *4))
- (-4 *3 (-972 (-1095))) (-4 *3 (-825 *5)) (-4 *4 (-570 (-831 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1023)) (-5 *2 (-595 (-275 (-891 *3))))
- (-5 *1 (-826 *5 *3 *4)) (-4 *3 (-981))
- (-3617 (-4 *3 (-972 (-1095)))) (-4 *3 (-825 *5))
- (-4 *4 (-570 (-831 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1023)) (-5 *2 (-828 *5 *3)) (-5 *1 (-826 *5 *3 *4))
- (-3617 (-4 *3 (-972 (-1095)))) (-3617 (-4 *3 (-981)))
- (-4 *3 (-825 *5)) (-4 *4 (-570 (-831 *5))))))
+ (-12 (-5 *3 (-594 *2)) (-4 *2 (-402 *4)) (-5 *1 (-149 *4 *2))
+ (-4 *4 (-13 (-795) (-523))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *1 (-149 *3 *2)) (-4 *2 (-402 *3)))))
+(((*1 *1) (-5 *1 (-148))))
+(((*1 *1) (-5 *1 (-148))))
+(((*1 *1) (-5 *1 (-148))))
+(((*1 *1) (-5 *1 (-148))))
+(((*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-148)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-208))
+ (-5 *2
+ (-2 (|:| |brans| (-594 (-594 (-884 *4)))) (|:| |xValues| (-1017 *4))
+ (|:| |yValues| (-1017 *4))))
+ (-5 *1 (-146)) (-5 *3 (-594 (-594 (-884 *4)))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-793))
+ (-12 (-5 *3 (-866))
(-5 *2
- (-2 (|:| |f1| (-595 *4)) (|:| |f2| (-595 (-595 (-595 *4))))
- (|:| |f3| (-595 (-595 *4))) (|:| |f4| (-595 (-595 (-595 *4))))))
- (-5 *1 (-1103 *4)) (-5 *3 (-595 (-595 (-595 *4)))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-882 (-207))) (-5 *2 (-1182)) (-5 *1 (-447)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-306 *3 *4)) (-4 *3 (-981))
- (-4 *4 (-738)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-802)) (-5 *1 (-1076 *3)) (-4 *3 (-1023))
- (-4 *3 (-1131)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1076 *4)) (-5 *3 (-1 *4 (-528))) (-4 *4 (-981))
- (-5 *1 (-1080 *4)))))
+ (-2 (|:| |brans| (-594 (-594 (-884 (-208)))))
+ (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))))
+ (-5 *1 (-146))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-866)) (-5 *4 (-388 (-516)))
+ (-5 *2
+ (-2 (|:| |brans| (-594 (-594 (-884 (-208)))))
+ (|:| |xValues| (-1017 (-208))) (|:| |yValues| (-1017 (-208)))))
+ (-5 *1 (-146)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-717)) (-5 *1 (-49 *3 *4)) (-4 *3 (-981))
- (-14 *4 (-595 (-1095)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-717)) (-5 *1 (-205 *3 *4)) (-4 *3 (-13 (-981) (-793)))
- (-14 *4 (-595 (-1095)))))
- ((*1 *1) (-12 (-4 *1 (-309 *2)) (-4 *2 (-348)) (-4 *2 (-343))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-315 *3 *4 *5 *2)) (-4 *3 (-343))
- (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-387 *4)))
- (-4 *2 (-322 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-717)) (-5 *1 (-370 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-162))))
- ((*1 *1) (-12 (-4 *2 (-162)) (-4 *1 (-671 *2 *3)) (-4 *3 (-1153 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-595 (-528))) (-5 *2 (-635 (-528))) (-5 *1 (-1033)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1153 *2)) (-4 *2 (-1135)) (-5 *1 (-141 *2 *4 *3))
- (-4 *3 (-1153 (-387 *4))))))
+ (-12 (-5 *2 (-860)) (-5 *1 (-145 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-344))
+ (-14 *5 (-933 *3 *4)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-110) *2)) (-4 *1 (-144 *2)) (-4 *2 (-1134)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4269)) (-4 *1 (-144 *2)) (-4 *2 (-1134))
+ (-4 *2 (-1027)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1135)) (-4 *5 (-1153 *4))
+ (-12 (-4 *4 (-1138)) (-4 *5 (-1155 *4))
(-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-387 *5))
- (|:| |c2| (-387 *5)) (|:| |deg| (-717))))
- (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1153 (-387 *5))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1177 *6)) (-5 *4 (-1177 (-528))) (-5 *5 (-528))
- (-4 *6 (-1023)) (-5 *2 (-1 *6)) (-5 *1 (-953 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-296 *4)) (-4 *4 (-13 (-774) (-793) (-981)))
- (-5 *2 (-1078)) (-5 *1 (-772 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-296 *5)) (-5 *4 (-110))
- (-4 *5 (-13 (-774) (-793) (-981))) (-5 *2 (-1078))
- (-5 *1 (-772 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-768)) (-5 *4 (-296 *5))
- (-4 *5 (-13 (-774) (-793) (-981))) (-5 *2 (-1182))
- (-5 *1 (-772 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-768)) (-5 *4 (-296 *6)) (-5 *5 (-110))
- (-4 *6 (-13 (-774) (-793) (-981))) (-5 *2 (-1182))
- (-5 *1 (-772 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-774)) (-5 *2 (-1078))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-774)) (-5 *3 (-110)) (-5 *2 (-1078))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-774)) (-5 *3 (-768)) (-5 *2 (-1182))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-774)) (-5 *3 (-768)) (-5 *4 (-110)) (-5 *2 (-1182)))))
-(((*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1180))))
- ((*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-1180)))))
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-388 *5))
+ (|:| |c2| (-388 *5)) (|:| |deg| (-719))))
+ (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1155 (-388 *5))))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-925 *4 *5 *6 *7 *3))
- (-4 *3 (-999 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *7 (-994 *4 *5 *6)) (-5 *2 (-110))
- (-5 *1 (-1030 *4 *5 *6 *7 *3)) (-4 *3 (-999 *4 *5 *6 *7)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-595 *1)) (-4 *1 (-859)))))
-(((*1 *2 *1 *1)
- (-12
+ (-12 (-4 *4 (-1155 *2)) (-4 *2 (-1138)) (-5 *1 (-141 *2 *4 *3))
+ (-4 *3 (-1155 (-388 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 *6)) (-4 *5 (-1138)) (-4 *6 (-1155 *5))
+ (-5 *2 (-2 (|:| -2427 (-719)) (|:| -4229 *3) (|:| |radicand| *6)))
+ (-5 *1 (-141 *5 *6 *7)) (-5 *4 (-719)) (-4 *7 (-1155 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-1138)) (-4 *5 (-1155 *4))
+ (-5 *2 (-2 (|:| |radicand| (-388 *5)) (|:| |deg| (-719))))
+ (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1155 (-388 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1138)) (-4 *5 (-1155 *4))
+ (-5 *2 (-2 (|:| -4229 (-388 *5)) (|:| |poly| *3))) (-5 *1 (-141 *4 *5 *3))
+ (-4 *3 (-1155 (-388 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-137)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-137))))
+ ((*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-137)))))
+(((*1 *1) (-5 *1 (-137))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 (-137))) (-5 *1 (-134))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-134)))))
+(((*1 *1) (-5 *1 (-134))))
+(((*1 *1) (-5 *1 (-134))))
+(((*1 *1) (-5 *1 (-134))))
+(((*1 *1) (-5 *1 (-134))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-594 (-516))) (-5 *1 (-131 *3 *4 *5)) (-14 *3 (-516))
+ (-14 *4 (-719)) (-4 *5 (-162)))))
+(((*1 *1)
+ (-12 (-5 *1 (-131 *2 *3 *4)) (-14 *2 (-516)) (-14 *3 (-719)) (-4 *4 (-162)))))
+(((*1 *1)
+ (-12 (-5 *1 (-131 *2 *3 *4)) (-14 *2 (-516)) (-14 *3 (-719)) (-4 *4 (-162)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-594 *5)) (-5 *1 (-131 *3 *4 *5)) (-14 *3 (-516))
+ (-14 *4 (-719)) (-4 *5 (-162)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-594 *5)) (-4 *5 (-162)) (-5 *1 (-131 *3 *4 *5)) (-14 *3 (-516))
+ (-14 *4 (-719)))))
+(((*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-130)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130)))))
+(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-129)) (-5 *3 (-719)) (-5 *2 (-1185)))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-128))))
+(((*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-126)))))
+(((*1 *1 *1 *1) (-5 *1 (-126))))
+(((*1 *1 *1 *1) (-5 *1 (-126))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *2) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1027)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-795)) (-5 *1 (-124 *3)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-123 *2)) (-4 *2 (-1027)))))
+(((*1 *1 *1 *1) (-5 *1 (-110))) ((*1 *1 *1 *1) (-4 *1 (-121))))
+(((*1 *1 *1 *1) (-5 *1 (-110))) ((*1 *1 *1 *1) (-4 *1 (-121))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-795)) (-5 *1 (-119 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-795)))))
+(((*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1155 (-516))))))
+(((*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-118 *3)) (-4 *3 (-1155 (-516)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-719)) (-5 *1 (-118 *3)) (-4 *3 (-1155 (-516))))))
+(((*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1155 (-516)))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1155 (-516))))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-117 *2)) (-4 *2 (-1134)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-117 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-975 (-388 *2)))) (-5 *2 (-516))
+ (-5 *1 (-113 *4 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-111)) (-4 *2 (-1027)) (-4 *2 (-795))
+ (-5 *1 (-112 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-111)) (-5 *1 (-112 *3)) (-4 *3 (-795)) (-4 *3 (-1027)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-111)) (-5 *3 (-594 (-1 *4 (-594 *4)))) (-4 *4 (-1027))
+ (-5 *1 (-112 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-111)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1027)) (-5 *1 (-112 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-111)) (-5 *2 (-594 (-1 *4 (-594 *4))))
+ (-5 *1 (-112 *4)) (-4 *4 (-1027)))))
+(((*1 *2 *1) (-12 (-5 *2 (-594 (-906))) (-5 *1 (-106))))
+ ((*1 *2 *1) (-12 (-5 *2 (-44 (-1081) (-721))) (-5 *1 (-111)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-719)) (-5 *1 (-111)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-111)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-111)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-111)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-111) (-111))) (-5 *1 (-111)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-111) (-111))) (-5 *1 (-111)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-505) (-594 (-505)))) (-5 *1 (-111))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-505) (-594 (-505)))) (-5 *1 (-111)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-110)) (-5 *1 (-111)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1081)) (-5 *1 (-111)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1081)) (-5 *3 (-721)) (-5 *1 (-111)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1081) (-721))) (-5 *1 (-111)))))
+(((*1 *1) (-5 *1 (-110))))
+(((*1 *1) (-5 *1 (-110))))
+(((*1 *1 *1) (-5 *1 (-110))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1045)) (-5 *1 (-107)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-594 (-906))) (-5 *1 (-106)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1134)) (-4 *1 (-104 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1134)))))
+(((*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1134)))))
+(((*1 *2) (-12 (-5 *2 (-594 (-1098))) (-5 *1 (-102)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1098))
(-5 *2
- (-2 (|:| -2088 (-728 *3)) (|:| |coef1| (-728 *3))
- (|:| |coef2| (-728 *3))))
- (-5 *1 (-728 *3)) (-4 *3 (-520)) (-4 *3 (-981))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-520)) (-4 *3 (-981)) (-4 *4 (-739)) (-4 *5 (-793))
- (-5 *2 (-2 (|:| -2088 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-994 *3 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-288) (-140))) (-4 *4 (-13 (-793) (-570 (-1095))))
- (-4 *5 (-739)) (-5 *1 (-863 *3 *4 *5 *2)) (-4 *2 (-888 *3 *5 *4)))))
+ (-2 (|:| |zeros| (-1076 (-208))) (|:| |ones| (-1076 (-208)))
+ (|:| |singularities| (-1076 (-208)))))
+ (-5 *1 (-102)))))
+(((*1 *2 *3)
+ (-12 (|has| *2 (-6 (-4271 "*"))) (-4 *5 (-353 *2)) (-4 *6 (-353 *2))
+ (-4 *2 (-984)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1155 *2))
+ (-4 *4 (-634 *2 *5 *6)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-981)) (-4 *2 (-633 *4 *5 *6))
- (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1153 *4)) (-4 *5 (-353 *4))
- (-4 *6 (-353 *4)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-595 (-1091 *11))) (-5 *3 (-1091 *11))
- (-5 *4 (-595 *10)) (-5 *5 (-595 *8)) (-5 *6 (-595 (-717)))
- (-5 *7 (-1177 (-595 (-1091 *8)))) (-4 *10 (-793))
- (-4 *8 (-288)) (-4 *11 (-888 *8 *9 *10)) (-4 *9 (-739))
- (-5 *1 (-654 *9 *10 *8 *11)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-310)))))
+ (-12 (|has| *2 (-6 (-4271 "*"))) (-4 *5 (-353 *2)) (-4 *6 (-353 *2))
+ (-4 *2 (-984)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1155 *2))
+ (-4 *4 (-634 *2 *5 *6)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-595 *4)) (-4 *4 (-343)) (-4 *2 (-1153 *4))
- (-5 *1 (-861 *4 *2)))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-528)) (-5 *4 (-635 (-207))) (-5 *5 (-207))
- (-5 *2 (-970)) (-5 *1 (-698)))))
+ (-12 (-4 *4 (-984)) (-4 *2 (-634 *4 *5 *6)) (-5 *1 (-101 *4 *3 *2 *5 *6))
+ (-4 *3 (-1155 *4)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-766)) (-14 *5 (-1095))
- (-5 *2 (-595 *4)) (-5 *1 (-1037 *4 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-860)) (-5 *1 (-145 *3 *4 *5)) (-14 *3 *2)
- (-4 *4 (-343)) (-14 *5 (-930 *3 *4)))))
-(((*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-148)))))
-(((*1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-371)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-717)) (-5 *1 (-100 *3)) (-4 *3 (-1023)))))
+ (-12 (-4 *4 (-984)) (-4 *2 (-634 *4 *5 *6)) (-5 *1 (-101 *4 *3 *2 *5 *6))
+ (-4 *3 (-1155 *4)) (-4 *5 (-353 *4)) (-4 *6 (-353 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *1 (-100 *3)) (-4 *3 (-1027)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1027)) (-5 *1 (-100 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-100 *3))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-100 *2)) (-4 *2 (-1027)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-594 *2) *2 *2 *2)) (-4 *2 (-1027)) (-5 *1 (-100 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1027)) (-5 *1 (-100 *2)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1150 *5 *4)) (-4 *4 (-431)) (-4 *4 (-766))
- (-14 *5 (-1095)) (-5 *2 (-528)) (-5 *1 (-1037 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-860)) (|has| *1 (-6 -4255)) (-4 *1 (-384))))
- ((*1 *2) (-12 (-4 *1 (-384)) (-5 *2 (-860))))
- ((*1 *2 *2) (-12 (-5 *2 (-860)) (-5 *1 (-645))))
- ((*1 *2) (-12 (-5 *2 (-860)) (-5 *1 (-645)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-844 (-528))) (-5 *4 (-528)) (-5 *2 (-635 *4))
- (-5 *1 (-963 *5)) (-4 *5 (-981))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 (-528))) (-5 *2 (-635 (-528))) (-5 *1 (-963 *4))
- (-4 *4 (-981))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 (-844 (-528)))) (-5 *4 (-528))
- (-5 *2 (-595 (-635 *4))) (-5 *1 (-963 *5)) (-4 *5 (-981))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 (-595 (-528)))) (-5 *2 (-595 (-635 (-528))))
- (-5 *1 (-963 *4)) (-4 *4 (-981)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-765 *3)) (-4 *3 (-793)) (-5 *1 (-620 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-329)) (-5 *2 (-896 (-1091 *4))) (-5 *1 (-337 *4))
- (-5 *3 (-1091 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-595 (-595 *8))) (-5 *3 (-595 *8))
- (-4 *8 (-994 *5 *6 *7)) (-4 *5 (-520)) (-4 *6 (-739)) (-4 *7 (-793))
- (-5 *2 (-110)) (-5 *1 (-914 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-596 *3)) (-4 *3 (-1023)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-791) (-343))) (-5 *2 (-110)) (-5 *1 (-990 *4 *3))
- (-4 *3 (-1153 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-981)) (-4 *3 (-739))
- (-4 *4 (-793)) (-4 *2 (-431))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-431)) (-4 *5 (-739)) (-4 *6 (-793))
- (-4 *3 (-994 *4 *5 *6))
- (-5 *2 (-595 (-2 (|:| |val| *3) (|:| -2316 *1))))
- (-4 *1 (-999 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1135)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-520)) (-5 *1 (-1156 *3 *2))
- (-4 *2 (-13 (-1153 *3) (-520) (-10 -8 (-15 -2088 ($ $ $))))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-1060 *3 *4)) (-4 *3 (-13 (-1023) (-33)))
- (-4 *4 (-13 (-1023) (-33))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1091 *1)) (-5 *3 (-1095)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-891 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1095)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-793) (-520)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-793) (-520)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1091 *2)) (-5 *4 (-1095)) (-4 *2 (-410 *5))
- (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-793) (-520)))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1091 *1)) (-5 *3 (-860)) (-4 *1 (-948))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1091 *1)) (-5 *3 (-860)) (-5 *4 (-802))
- (-4 *1 (-948))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-860)) (-4 *4 (-13 (-791) (-343)))
- (-4 *1 (-996 *4 *2)) (-4 *2 (-1153 *4)))))
+ (-12 (-4 *4 (-13 (-432) (-140))) (-5 *2 (-386 *3)) (-5 *1 (-97 *4 *3))
+ (-4 *3 (-1155 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-594 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-13 (-432) (-140)))
+ (-5 *2 (-386 *3)) (-5 *1 (-97 *5 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-516))) (-4 *3 (-984)) (-5 *1 (-96 *3))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-96 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-96 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-359)) (-5 *1 (-94))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-359)) (-5 *1 (-94)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-359)) (-5 *1 (-94))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-359)) (-5 *1 (-94)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1081)) (-5 *2 (-359)) (-5 *1 (-94)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-94)))))
+(((*1 *2 *2) (-12 (-5 *2 (-359)) (-5 *1 (-94)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-359)) (-5 *3 (-1081)) (-5 *1 (-94))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-359)) (-5 *3 (-1081)) (-5 *1 (-94)))))
+(((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1027)) (-5 *1 (-89 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-343)) (-4 *5 (-520))
+ (-12 (-4 *5 (-344)) (-4 *5 (-523))
(-5 *2
- (-2 (|:| |minor| (-595 (-860))) (|:| -2589 *3)
- (|:| |minors| (-595 (-595 (-860)))) (|:| |ops| (-595 *3))))
- (-5 *1 (-88 *5 *3)) (-5 *4 (-860)) (-4 *3 (-605 *5)))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-595 (-1095))) (-4 *4 (-1023))
- (-4 *5 (-13 (-981) (-825 *4) (-793) (-570 (-831 *4))))
- (-5 *1 (-1002 *4 *5 *2))
- (-4 *2 (-13 (-410 *5) (-825 *4) (-570 (-831 *4))))))
- ((*1 *1 *2 *2)
- (-12 (-4 *3 (-1023))
- (-4 *4 (-13 (-981) (-825 *3) (-793) (-570 (-831 *3))))
- (-5 *1 (-1002 *3 *4 *2))
- (-4 *2 (-13 (-410 *4) (-825 *3) (-570 (-831 *3)))))))
+ (-2 (|:| |minor| (-594 (-860))) (|:| -3537 *3)
+ (|:| |minors| (-594 (-594 (-860)))) (|:| |ops| (-594 *3))))
+ (-5 *1 (-88 *5 *3)) (-5 *4 (-860)) (-4 *3 (-609 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-207) (-207))) (-5 *1 (-298)) (-5 *3 (-207)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1153 *3)) (-5 *1 (-379 *3 *2))
- (-4 *3 (-13 (-343) (-140))))))
-(((*1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-306 *3 *4)) (-4 *3 (-981)) (-4 *4 (-738))
- (-5 *2 (-717))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-362 *3 *4)) (-4 *3 (-981)) (-4 *4 (-1023))
- (-5 *2 (-717))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-717)) (-5 *1 (-682 *3 *4)) (-4 *3 (-981))
- (-4 *4 (-673)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1177 (-1177 (-528)))) (-5 *3 (-860)) (-5 *1 (-445)))))
+ (-12 (-4 *4 (-523)) (-5 *2 (-1179 (-637 *4))) (-5 *1 (-88 *4 *5))
+ (-5 *3 (-637 *4)) (-4 *5 (-609 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-387 (-528))) (-5 *4 (-528)) (-5 *2 (-51))
- (-5 *1 (-941)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-595 (-595 (-595 *5)))) (-5 *3 (-1 (-110) *5 *5))
- (-5 *4 (-595 *5)) (-4 *5 (-793)) (-5 *1 (-1103 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095)) (-4 *5 (-343)) (-5 *2 (-595 (-1126 *5)))
- (-5 *1 (-1185 *5)) (-5 *4 (-1126 *5)))))
-(((*1 *1) (-5 *1 (-417))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1023)) (-5 *2 (-828 *3 *4)) (-5 *1 (-824 *3 *4 *5))
- (-4 *3 (-1023)) (-4 *5 (-615 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-431)) (-4 *4 (-520))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2021 *4)))
- (-5 *1 (-907 *4 *3)) (-4 *3 (-1153 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-520)))))
+ (-12 (-4 *5 (-523))
+ (-5 *2 (-2 (|:| -1650 (-637 *5)) (|:| |vec| (-1179 (-594 (-860))))))
+ (-5 *1 (-88 *5 *3)) (-5 *4 (-860)) (-4 *3 (-609 *5)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *1 (-56 *3)) (-4 *3 (-1134))))
+ ((*1 *1 *2) (-12 (-5 *2 (-594 *3)) (-4 *3 (-1134)) (-5 *1 (-56 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-516)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-353 *4))
+ (-4 *5 (-353 *4)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-516)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1134)) (-4 *5 (-353 *4))
+ (-4 *3 (-353 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-594 (-1098))) (-4 *4 (-1027))
+ (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-831 *4))))
+ (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-402 *5) (-827 *4) (-572 (-831 *4)))))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1078)) (-5 *3 (-595 (-244))) (-5 *1 (-242))))
- ((*1 *1 *2) (-12 (-5 *2 (-1078)) (-5 *1 (-244))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1178))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1078)) (-5 *2 (-1182)) (-5 *1 (-1179)))))
+ (-12 (-5 *3 (-594 (-1004 *4 *5 *2))) (-4 *4 (-1027))
+ (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-831 *4))))
+ (-4 *2 (-13 (-402 *5) (-827 *4) (-572 (-831 *4)))) (-5 *1 (-53 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-594 (-1004 *5 *6 *2))) (-5 *4 (-860)) (-4 *5 (-1027))
+ (-4 *6 (-13 (-984) (-827 *5) (-795) (-572 (-831 *5))))
+ (-4 *2 (-13 (-402 *6) (-827 *5) (-572 (-831 *5)))) (-5 *1 (-53 *5 *6 *2)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1029)) (-5 *3 (-721)) (-5 *1 (-50)))))
+(((*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-50)))))
+(((*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-50)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-50)))))
+(((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-50)))))
+(((*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-1081)) (-5 *1 (-50)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-48)))))
+(((*1 *2)
+ (-12 (-4 *3 (-523)) (-5 *2 (-594 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-399 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-523)) (-5 *2 (-594 (-637 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-399 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-523)) (-5 *2 (-594 (-637 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-399 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-523)) (-5 *2 (-594 (-637 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-399 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-523)) (-5 *2 (-594 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-399 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-523)) (-5 *2 (-594 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-399 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-523)) (-5 *2 (-594 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-399 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-523)) (-5 *2 (-594 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-399 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-523)) (-5 *2 (-594 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-399 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-595 (-2 (|:| -3562 (-387 (-528))) (|:| -3572 (-387 (-528))))))
- (-5 *2 (-595 (-207))) (-5 *1 (-286)))))
+ (-12 (-4 *4 (-523)) (-5 *2 (-594 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-399 *4)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-595 (-1095))) (-4 *5 (-431))
- (-5 *2
- (-2 (|:| |glbase| (-595 (-229 *4 *5))) (|:| |glval| (-595 (-528)))))
- (-5 *1 (-583 *4 *5)) (-5 *3 (-595 (-229 *4 *5))))))
+ (-12 (-4 *4 (-523)) (-5 *2 (-594 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-399 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-523)) (-5 *2 (-594 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-399 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-296 (-207))) (-5 *2 (-387 (-528))) (-5 *1 (-286)))))
-(((*1 *2) (-12 (-5 *2 (-1182)) (-5 *1 (-1133)))))
+ (-12 (-4 *4 (-523)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-399 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-329)) (-5 *2 (-398 (-1091 (-1091 *4))))
- (-5 *1 (-1130 *4)) (-5 *3 (-1091 (-1091 *4))))))
+ (-12 (-4 *4 (-523)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-399 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-399 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-399 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-399 *4)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-111)) (-5 *4 (-719)) (-4 *5 (-432)) (-4 *5 (-795))
+ (-4 *5 (-975 (-516))) (-4 *5 (-523)) (-5 *1 (-40 *5 *2)) (-4 *2 (-402 *5))
+ (-4 *2
+ (-13 (-344) (-280)
+ (-10 -8 (-15 -3262 ((-1050 *5 (-569 $)) $))
+ (-15 -3261 ((-1050 *5 (-569 $)) $))
+ (-15 -4233 ($ (-1050 *5 (-569 $))))))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-595 *7)) (-4 *7 (-999 *3 *4 *5 *6)) (-4 *3 (-431))
- (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5))
- (-5 *1 (-925 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-595 *7)) (-4 *7 (-999 *3 *4 *5 *6)) (-4 *3 (-431))
- (-4 *4 (-739)) (-4 *5 (-793)) (-4 *6 (-994 *3 *4 *5))
- (-5 *1 (-1030 *3 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-315 *3 *4 *5 *6)) (-4 *3 (-343)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-387 *4))) (-4 *6 (-322 *3 *4 *5))
- (-5 *2
- (-2 (|:| -3431 (-393 *4 (-387 *4) *5 *6)) (|:| |principalPart| *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-343))
- (-5 *2
- (-2 (|:| |poly| *6) (|:| -4099 (-387 *6))
- (|:| |special| (-387 *6))))
- (-5 *1 (-674 *5 *6)) (-5 *3 (-387 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-343)) (-5 *2 (-595 *3)) (-5 *1 (-835 *3 *4))
- (-4 *3 (-1153 *4))))
- ((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-717)) (-4 *5 (-343))
- (-5 *2 (-2 (|:| -3562 *3) (|:| -3572 *3))) (-5 *1 (-835 *3 *5))
- (-4 *3 (-1153 *5))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-595 *9)) (-5 *3 (-595 *8)) (-5 *4 (-110))
- (-4 *8 (-994 *5 *6 *7)) (-4 *9 (-999 *5 *6 *7 *8)) (-4 *5 (-431))
- (-4 *6 (-739)) (-4 *7 (-793)) (-5 *1 (-997 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-595 *9)) (-5 *3 (-595 *8)) (-5 *4 (-110))
- (-4 *8 (-994 *5 *6 *7)) (-4 *9 (-999 *5 *6 *7 *8)) (-4 *5 (-431))
- (-4 *6 (-739)) (-4 *7 (-793)) (-5 *1 (-997 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-595 *9)) (-5 *3 (-595 *8)) (-5 *4 (-110))
- (-4 *8 (-994 *5 *6 *7)) (-4 *9 (-1032 *5 *6 *7 *8)) (-4 *5 (-431))
- (-4 *6 (-739)) (-4 *7 (-793)) (-5 *1 (-1065 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-595 *9)) (-5 *3 (-595 *8)) (-5 *4 (-110))
- (-4 *8 (-994 *5 *6 *7)) (-4 *9 (-1032 *5 *6 *7 *8)) (-4 *5 (-431))
- (-4 *6 (-739)) (-4 *7 (-793)) (-5 *1 (-1065 *5 *6 *7 *8 *9)))))
-((-1208 . 725445) (-1209 . 725098) (-1210 . 724976) (-1211 . 724925)
- (-1212 . 724842) (-1213 . 724644) (-1214 . 724501) (-1215 . 724228)
- (-1216 . 724173) (-1217 . 724008) (-1218 . 723886) (-1219 . 723858)
- (-1220 . 723733) (-1221 . 723590) (-1222 . 723494) (-1223 . 723406)
- (-1224 . 723130) (-1225 . 723078) (-1226 . 722983) (-1227 . 722902)
- (-1228 . 722512) (-1229 . 722273) (-1230 . 721498) (-1231 . 721375)
- (-1232 . 720931) (-1233 . 720818) (-1234 . 720747) (-1235 . 720560)
- (-1236 . 720455) (-1237 . 720370) (-1238 . 719904) (-1239 . 719686)
- (-1240 . 719550) (-1241 . 719476) (-1242 . 719426) (-1243 . 719377)
- (-1244 . 719262) (-1245 . 719138) (-1246 . 719011) (-1247 . 718908)
- (-1248 . 718852) (-1249 . 718507) (-1250 . 718350) (-1251 . 718193)
- (-1252 . 717843) (-1253 . 717775) (-1254 . 717428) (-1255 . 717327)
- (-1256 . 716518) (-1257 . 716378) (-1258 . 716145) (-1259 . 716030)
- (-1260 . 715943) (-1261 . 715334) (-1262 . 715228) (-1263 . 715135)
- (-1264 . 715035) (-1265 . 714955) (-1266 . 714718) (-1267 . 714013)
- (-1268 . 713769) (-1269 . 713649) (-1270 . 713593) (-1271 . 713525)
- (-1272 . 713472) (-1273 . 713356) (-1274 . 713094) (-1275 . 713011)
- (-1276 . 712912) (-1277 . 712815) (-1278 . 712685) (-1279 . 712313)
- (-1280 . 712240) (-1281 . 711635) (-1282 . 711417) (-1283 . 711273)
- (-1284 . 711063) (-1285 . 710815) (-1286 . 710621) (-1287 . 710553)
- (-1288 . 710409) (-1289 . 709980) (-1290 . 709896) (-1291 . 709806)
- (-1292 . 709499) (-1293 . 709320) (-1294 . 708722) (-1295 . 708087)
- (-1296 . 708024) (-1297 . 707786) (-1298 . 707677) (-1299 . 707574)
- (-1300 . 707459) (-1301 . 707404) (-1302 . 707246) (-1303 . 707153)
- (-1304 . 707076) (-1305 . 706999) (-1306 . 706908) (-1307 . 706749)
- (-1308 . 706721) (-1309 . 706637) (-1310 . 706342) (-1311 . 706212)
- (-1312 . 705000) (-1313 . 704905) (-1314 . 704849) (-1315 . 704745)
- (-1316 . 704668) (-1317 . 704616) (-1318 . 704389) (-1319 . 704329)
- (-1320 . 704075) (-1321 . 703954) (-1322 . 703899) (-1323 . 703474)
- (-1324 . 703140) (-1325 . 702488) (-1326 . 702304) (-1327 . 702241)
- (-1328 . 702213) (-1329 . 702158) (-1330 . 702072) (-1331 . 701990)
- (-1332 . 701782) (-1333 . 701412) (-1334 . 701318) (-1335 . 701266)
- (-1336 . 701238) (-1337 . 701168) (-1338 . 700518) (-1339 . 700213)
- (-1340 . 700092) (-1341 . 700019) (-1342 . 699962) (-1343 . 699810)
- (-1344 . 699539) (-1345 . 699459) (-1346 . 699409) (-1347 . 699324)
- (-1348 . 699100) (-1349 . 698945) (-1350 . 698769) (-1351 . 698697)
- (-1352 . 697813) (-1353 . 697648) (-1354 . 697539) (-1355 . 697273)
- (-1356 . 696741) (-1357 . 696632) (-1358 . 696388) (-1359 . 696090)
- (-1360 . 695930) (-1361 . 695873) (-1362 . 695757) (-1363 . 695131)
- (-1364 . 695057) (-1365 . 694781) (-1366 . 694711) (-1367 . 694529)
- (-1368 . 694444) (-1369 . 693929) (-1370 . 693685) (-1371 . 693600)
- (-1372 . 692899) (-1373 . 692799) (-1374 . 692633) (-1375 . 692102)
- (-1376 . 691954) (-1377 . 691840) (-1378 . 691763) (-1379 . 691312)
- (-1380 . 691232) (-1381 . 691125) (-1382 . 691046) (-1383 . 690943)
- (-1384 . 690872) (-1385 . 690760) (-1386 . 690653) (-1387 . 690556)
- (-1388 . 690487) (-1389 . 690421) (-1390 . 690365) (-1391 . 690278)
- (-1392 . 690244) (-1393 . 690039) (-1394 . 689954) (-1395 . 689898)
- (-1396 . 689791) (-1397 . 686883) (-1398 . 686573) (-1399 . 686319)
- (-1400 . 685454) (-1401 . 685164) (-1402 . 685112) (-1403 . 684753)
- (-1404 . 684530) (-1405 . 683220) (-1406 . 683125) (-1407 . 683018)
- (-1408 . 682708) (-1409 . 682462) (-1410 . 682385) (-1411 . 681869)
- (-1412 . 681023) (-1413 . 680749) (-1414 . 680620) (-1415 . 680010)
- (-1416 . 679867) (-1417 . 679505) (-1418 . 679378) (-1419 . 679230)
- (-1420 . 679147) (-1421 . 679096) (-1422 . 675486) (-1423 . 675383)
- (-1424 . 675087) (-1425 . 674940) (-1426 . 674823) (-1427 . 674716)
- (-1428 . 674472) (-1429 . 674422) (-1430 . 674091) (-1431 . 674038)
- (-1432 . 673986) (-1433 . 673833) (-1434 . 673726) (-1435 . 673653)
- (-1436 . 673374) (-1437 . 673250) (-1438 . 673193) (-1439 . 673111)
- (-1440 . 672976) (-1441 . 672904) (-1442 . 672700) (-1443 . 672489)
- (-1444 . 672365) (-1445 . 672147) (-1446 . 672055) (-1447 . 671925)
- (-1448 . 671726) (-1449 . 671562) (-1450 . 671510) (-1451 . 671436)
- (-1452 . 671248) (-1453 . 671177) (-1454 . 671115) (-1455 . 671049)
- (-1456 . 670942) (-1457 . 670706) (-1458 . 669787) (-1459 . 669484)
- (-1460 . 669383) (-1461 . 669225) (-1462 . 669133) (-1463 . 668961)
- (-1464 . 668748) (-1465 . 668590) (-1466 . 668491) (-1467 . 668395)
- (-1468 . 668280) (-1469 . 668213) (-1470 . 668033) (-1471 . 667977)
- (-1472 . 667908) (-1473 . 667834) (-1474 . 667518) (-1475 . 667432)
- (-12 . 667260) (-1477 . 667191) (-1478 . 667089) (-1479 . 666653)
- (-1480 . 666601) (-1481 . 666482) (-1482 . 666425) (-1483 . 666342)
- (-1484 . 666212) (-1485 . 665932) (-1486 . 665827) (-1487 . 665755)
- (-1488 . 665579) (-1489 . 665492) (-1490 . 665350) (-1491 . 665238)
- (-1492 . 665093) (-1493 . 664673) (-1494 . 664147) (-1495 . 663956)
- (-1496 . 663851) (-1497 . 663796) (-1498 . 663709) (-1499 . 663394)
- (-1500 . 663342) (-1501 . 663290) (-1502 . 663205) (-1503 . 663134)
- (-1504 . 662500) (-1505 . 662235) (-1506 . 661903) (-1507 . 661715)
- (-1508 . 661681) (-1509 . 661650) (-1510 . 661473) (-1511 . 661374)
- (-1512 . 660939) (-1513 . 660882) (-1514 . 660503) (-1515 . 660448)
- (-1516 . 660390) (-1517 . 660283) (-1518 . 660128) (-1519 . 659946)
- (-1520 . 659794) (-1521 . 659501) (-1522 . 659274) (-1523 . 659186)
- (-1524 . 658963) (-1525 . 658910) (-1526 . 658733) (-1527 . 658603)
- (-1528 . 658518) (-1529 . 658437) (-1530 . 658352) (-1531 . 658215)
- (-1532 . 658146) (-1533 . 658049) (-1534 . 657983) (-1535 . 656978)
- (-1536 . 656841) (-1537 . 656773) (-1538 . 656741) (-1539 . 656641)
- (-1540 . 656592) (-1541 . 656428) (-1542 . 656023) (-1543 . 655880)
- (-1544 . 655849) (-1545 . 655717) (-1546 . 655550) (-1547 . 655485)
- (-1548 . 655432) (-1549 . 655366) (-1550 . 655317) (-1551 . 654726)
- (-1552 . 654419) (-1553 . 653989) (-1554 . 653859) (-1555 . 653742)
- (-1556 . 653675) (-1557 . 653590) (-1558 . 653483) (-1559 . 653261)
- (-1560 . 653094) (-1561 . 652799) (-1562 . 652662) (-1563 . 652449)
- (-1564 . 652316) (-1565 . 652254) (-1566 . 648192) (-1567 . 648097)
- (-1568 . 648031) (-1569 . 647934) (-1570 . 647867) (-1571 . 647700)
- (-1572 . 647146) (-1573 . 646660) (-1574 . 646608) (-1575 . 646571)
- (-1576 . 646357) (-1577 . 646245) (-1578 . 646187) (-1579 . 646072)
- (-1580 . 645969) (-1581 . 645791) (-1582 . 645602) (-1583 . 645444)
- (-1584 . 644773) (-1585 . 644687) (-1586 . 644481) (* . 639958)
- (-1588 . 639843) (-1589 . 639637) (-1590 . 639584) (-1591 . 639518)
- (-1592 . 639391) (-1593 . 639181) (-1594 . 639122) (-1595 . 638781)
- (-1596 . 638554) (-1597 . 638287) (-1598 . 638165) (-1599 . 637934)
- (-1600 . 637853) (-1601 . 637716) (-1602 . 637553) (-1603 . 637428)
- (-1604 . 637138) (-1605 . 637051) (-1606 . 636670) (-1607 . 636558)
- (-1608 . 636459) (-1609 . 636280) (-1610 . 636067) (-1611 . 635989)
- (-1612 . 635389) (-1613 . 635337) (-1614 . 635119) (-1615 . 634951)
- (-1616 . 634842) (-1617 . 632497) (-1618 . 632118) (-1619 . 631865)
- (-1620 . 631609) (-1621 . 631538) (-1622 . 631360) (-1623 . 631119)
- (-1624 . 631008) (-1625 . 630959) (-1626 . 630729) (-1627 . 630695)
- (-1628 . 630586) (-1629 . 630558) (-1630 . 630498) (-1631 . 630299)
- (-1632 . 630105) (-1633 . 629900) (-1634 . 629588) (-1635 . 629441)
- (-1636 . 629290) (-1637 . 628979) (-1638 . 628666) (-1639 . 628345)
- (-1640 . 628204) (-1641 . 627849) (-1642 . 627710) (-1643 . 627594)
- (-1644 . 627408) (-1645 . 627248) (-1646 . 627148) (-1647 . 627018)
- (-1648 . 626953) (-1649 . 626660) (-1650 . 626494) (-1651 . 616964)
- (-1652 . 616890) (-1653 . 616819) (-1654 . 616791) (-1655 . 616706)
- (-1656 . 616546) (-1657 . 616438) (-1658 . 616236) (-1659 . 615966)
- (-1660 . 615870) (-1661 . 615797) (-1662 . 615730) (-1663 . 615657)
- (-1664 . 615587) (-1665 . 615481) (-1666 . 614518) (-1667 . 614321)
- (-1668 . 613524) (-1669 . 613450) (-1670 . 613360) (-1671 . 613286)
- (-1672 . 613206) (-1673 . 612862) (-1674 . 612782) (-1675 . 612754)
- (-1676 . 612607) (-1677 . 612522) (-1678 . 612443) (-1679 . 612140)
- (-1680 . 610716) (-1681 . 610530) (-1682 . 610437) (-1683 . 610366)
- (-1684 . 610283) (-1685 . 609219) (-1686 . 609166) (-1687 . 609069)
- (-1688 . 608963) (-1689 . 608807) (-1690 . 608733) (-1691 . 608702)
- (-1692 . 608479) (-1693 . 608399) (-1694 . 608012) (-1695 . 607875)
- (-1696 . 607803) (-1697 . 607488) (-1698 . 607157) (-1699 . 607083)
- (-1700 . 607001) (-1701 . 606873) (-1702 . 606824) (-1703 . 606768)
- (-1704 . 606612) (-1705 . 606509) (-1706 . 606252) (-1707 . 606106)
- (-1708 . 605946) (-1709 . 605851) (-1710 . 605673) (-1711 . 605551)
- (-1712 . 605459) (-1713 . 605386) (-1714 . 605299) (-1715 . 605216)
- (-1716 . 605145) (-1717 . 604964) (-1718 . 604850) (-1719 . 604753)
- (-1720 . 604682) (-1721 . 604136) (-1722 . 603498) (-1723 . 603345)
- (-1724 . 603285) (-1725 . 603155) (-1726 . 602871) (-1727 . 602560)
- (-1728 . 602433) (-1729 . 602383) (-1730 . 601715) (-1731 . 601560)
- (-1732 . 601456) (-1733 . 601348) (-1734 . 601248) (-1735 . 601153)
- (-1736 . 600873) (-1737 . 600573) (-1738 . 600542) (-1739 . 600471)
- (-1740 . 600331) (-1741 . 600056) (-1742 . 599933) (-1743 . 599805)
- (-1744 . 599420) (-1745 . 599264) (-1746 . 599198) (-1747 . 598994)
- (-1748 . 598864) (-1749 . 598698) (-1750 . 598646) (-1751 . 598563)
- (-1752 . 598378) (-1753 . 598290) (-1754 . 598183) (-1755 . 597910)
- (-1756 . 597526) (-1757 . 597449) (-1758 . 597362) (-1759 . 597278)
- (-1760 . 597095) (-1761 . 596878) (-1762 . 596769) (-1763 . 596708)
- (-1764 . 596528) (-1765 . 596448) (-1766 . 596396) (-1767 . 596266)
- (-1768 . 596155) (-1769 . 596056) (-1770 . 595731) (-1771 . 595481)
- (-1772 . 595429) (-1773 . 595325) (-1774 . 595238) (-1775 . 594741)
- (-1776 . 594658) (-1777 . 594573) (-1778 . 594432) (-1779 . 594282)
- (-1780 . 593080) (-1781 . 592892) (-1782 . 592836) (-1783 . 592425)
- (-1784 . 592376) (-1785 . 592208) (-1786 . 592030) (-1787 . 591733)
- (-1788 . 591677) (-1789 . 591576) (-1790 . 591446) (-1791 . 591345)
- (-1792 . 591092) (-1793 . 590277) (-1794 . 590219) (-1795 . 590061)
- (-1796 . 589945) (-1797 . 589692) (-1798 . 589362) (-1799 . 589218)
- (-1800 . 589123) (-1801 . 588972) (-1802 . 588901) (-1803 . 588814)
- (-1804 . 588661) (-1805 . 588577) (-1806 . 587396) (-1807 . 587316)
- (-1808 . 586945) (-1809 . 586061) (-1810 . 585992) (-1811 . 585940)
- (-1812 . 585814) (-1813 . 585694) (-1814 . 585094) (-1815 . 585021)
- (-1816 . 584927) (-1817 . 584835) (-1818 . 584711) (-1819 . 584437)
- (-1820 . 584310) (-1821 . 584166) (-1822 . 583922) (-1823 . 583795)
- (-1824 . 583671) (-1825 . 583591) (-1826 . 583298) (-1827 . 583111)
- (-1828 . 583059) (-1829 . 582976) (-1830 . 582847) (-1831 . 582795)
- (-1832 . 582708) (-1833 . 582614) (-1834 . 582552) (-1835 . 582220)
- (-1836 . 582029) (-1837 . 581486) (-1838 . 581420) (-1839 . 581368)
- (-1840 . 581294) (-1841 . 581260) (-1842 . 581129) (-1843 . 581076)
- (-1844 . 580968) (-1845 . 580898) (-1846 . 580796) (-1847 . 580670)
- (-1848 . 580614) (-1849 . 580434) (-1850 . 580381) (-1851 . 580090)
- (-1852 . 580038) (-1853 . 579280) (-1854 . 579148) (-1855 . 578656)
- (-1856 . 578411) (-1857 . 578338) (-1858 . 578244) (-1859 . 578151)
- (-1860 . 577987) (-1861 . 577878) (-1862 . 577681) (-1863 . 577610)
- (-1864 . 577539) (-1865 . 577510) (-1866 . 577372) (-1867 . 577298)
- (-1868 . 577180) (-1869 . 577037) (-1870 . 576879) (-1871 . 576845)
- (-1872 . 576423) (-1873 . 576252) (-1874 . 576167) (-1875 . 576053)
- (-1876 . 575950) (-1877 . 575371) (-1878 . 575128) (-1879 . 575029)
- (-1880 . 574750) (-1881 . 574695) (-1882 . 574543) (-1883 . 574509)
- (-1884 . 574181) (-1885 . 574115) (-1886 . 574029) (-1887 . 573859)
- (-1888 . 573643) (-1889 . 571881) (-1890 . 571794) (-1891 . 571632)
- (-1892 . 571464) (-1893 . 571395) (-1894 . 571325) (-1895 . 571204)
- (-1896 . 571111) (-1897 . 570965) (-1898 . 570902) (-1899 . 570756)
- (-1900 . 570577) (-1901 . 570494) (-1902 . 570410) (-1903 . 570357)
- (-1904 . 570009) (-1905 . 569957) (-1906 . 569436) (-1907 . 569278)
- (-1908 . 569191) (-1909 . 569139) (-1910 . 569086) (-1911 . 569000)
- (-1912 . 568926) (-1913 . 568611) (-1914 . 568454) (-1915 . 568314)
- (-1916 . 568255) (-1917 . 568069) (-1918 . 567825) (-1919 . 567751)
- (-1920 . 566455) (-1921 . 566095) (-1922 . 565872) (-1923 . 558918)
- (-1924 . 558762) (-1925 . 558593) (-1926 . 558520) (-1927 . 558104)
- (-1928 . 558031) (-1929 . 557875) (-1930 . 557822) (-1931 . 557701)
- (-1932 . 557553) (-1933 . 557256) (-1934 . 556929) (-1935 . 556852)
- (-1936 . 556647) (-1937 . 556580) (-1938 . 556437) (-1939 . 556316)
- (-1940 . 556168) (-1941 . 556137) (-1942 . 555912) (-1943 . 555289)
- (-1944 . 554925) (-1945 . 554328) (-1946 . 553454) (-1947 . 553345)
- (-1948 . 553290) (-1949 . 553032) (-1950 . 550617) (-1951 . 550565)
- (-1952 . 550463) (-1953 . 550401) (-1954 . 550287) (-1955 . 550153)
- (-1956 . 549570) (-1957 . 549399) (-1958 . 549314) (-1959 . 549252)
- (-1960 . 548922) (-1961 . 548856) (-1962 . 548779) (-1963 . 548677)
- (-1964 . 548646) (-1965 . 548572) (-1966 . 548508) (-1967 . 548289)
- (-1968 . 548195) (-1969 . 548092) (-1970 . 547733) (-1971 . 547611)
- (-1972 . 547306) (-1973 . 547169) (-1974 . 546873) (-1975 . 546824)
- (-1976 . 546772) (-1977 . 546524) (-1978 . 546281) (-1979 . 545907)
- (-1980 . 545814) (-1981 . 545560) (-1982 . 545446) (-1983 . 545375)
- (-1984 . 545347) (-1985 . 543395) (-1986 . 543196) (-1987 . 542952)
- (-1988 . 542729) (-1989 . 542646) (-1990 . 542465) (-1991 . 542270)
- (-1992 . 542215) (-1993 . 542078) (-1994 . 542001) (-1995 . 541888)
- (-1996 . 541646) (-1997 . 541532) (-1998 . 541480) (-1999 . 541397)
- (-2000 . 541338) (-2001 . 541114) (-2002 . 541062) (-2003 . 541009)
- (-2004 . 540688) (-2005 . 540454) (-2006 . 540420) (-2007 . 540350)
- (-2008 . 540295) (-2009 . 540168) (-2010 . 540113) (-2011 . 540002)
- (-2012 . 539831) (-2013 . 539724) (-2014 . 539641) (-2015 . 539530)
- (-2016 . 539423) (-2017 . 539370) (-2018 . 539197) (-2019 . 539118)
- (-2020 . 538972) (-2021 . 538872) (-2022 . 538703) (-2023 . 538498)
- (-2024 . 538445) (-2025 . 538316) (-2026 . 538181) (-2027 . 538112)
- (-2028 . 536258) (-2029 . 536096) (-2030 . 535987) (-2031 . 535860)
- (-2032 . 535679) (-2033 . 535596) (-2034 . 535441) (-2035 . 534772)
- (-2036 . 534634) (-2037 . 534536) (-2038 . 534484) (-2039 . 533964)
- (-2040 . 533879) (-2041 . 533637) (-2042 . 532733) (-2043 . 532635)
- (-2044 . 532477) (-2045 . 532422) (-2046 . 532318) (-2047 . 532216)
- (-2048 . 532143) (-2049 . 531998) (-2050 . 531589) (-2051 . 531518)
- (-2052 . 531409) (-2053 . 531063) (-2054 . 530950) (-2055 . 530881)
- (-2056 . 530760) (-2057 . 530673) (-2058 . 530558) (-2059 . 530478)
- (-2060 . 530102) (-2061 . 530047) (-2062 . 529701) (-2063 . 529385)
- (-2064 . 529184) (-2065 . 528859) (-2066 . 528780) (-2067 . 528718)
- (-2068 . 528597) (-2069 . 528541) (-2070 . 528488) (-2071 . 528414)
- (-2072 . 528074) (-2073 . 528046) (-2074 . 527963) (-2075 . 527856)
- (-2076 . 527825) (-2077 . 527766) (-2078 . 527619) (-2079 . 527491)
- (-2080 . 527377) (-2081 . 527086) (-2082 . 527034) (-2083 . 526889)
- (-2084 . 526791) (-2085 . 526650) (-2086 . 526459) (-2087 . 526336)
- (-2088 . 525236) (-2089 . 525135) (-2090 . 524919) (-2091 . 524546)
- (-2092 . 524475) (-2093 . 524294) (-2094 . 524195) (-2095 . 524167)
- (-2096 . 524071) (-2097 . 522834) (-2098 . 522775) (-2099 . 522478)
- (-2100 . 522379) (-2101 . 522324) (-2102 . 521942) (-2103 . 521789)
- (-2104 . 521679) (-2105 . 521623) (-2106 . 521549) (-2107 . 521493)
- (-2108 . 521413) (-2109 . 521314) (-2110 . 521024) (-2111 . 520888)
- (-2112 . 520811) (-2113 . 520783) (-2114 . 520699) (-2115 . 520568)
- (-2116 . 520442) (-2117 . 520304) (-2118 . 520270) (-2119 . 520083)
- (-2120 . 519828) (-2121 . 519764) (-2122 . 519641) (-2123 . 519512)
- (-2124 . 519123) (-2125 . 519029) (-2126 . 518952) (-2127 . 518431)
- (-2128 . 518043) (-2129 . 516940) (-2130 . 516767) (-2131 . 516659)
- (-2132 . 516007) (-2133 . 515930) (-2134 . 515813) (-2135 . 515606)
- (-2136 . 515387) (-2137 . 515323) (-2138 . 515007) (-2139 . 514878)
- (-2140 . 514600) (-2141 . 514546) (-2142 . 514440) (-2143 . 514238)
- (-2144 . 514170) (-2145 . 513787) (-2146 . 513750) (-2147 . 513374)
- (-2148 . 513255) (-2149 . 513196) (-2150 . 513123) (-2151 . 513046)
- (-2152 . 512829) (-2153 . 512745) (-2154 . 512372) (-2155 . 512226)
- (-2156 . 511847) (-2157 . 511766) (-2158 . 511424) (-2159 . 511317)
- (-2160 . 511236) (-2161 . 510984) (-2162 . 510146) (-2163 . 510042)
- (-2164 . 509968) (-2165 . 509581) (-2166 . 509487) (-2167 . 509328)
- (-2168 . 509157) (-2169 . 509087) (-2170 . 508871) (-2171 . 508632)
- (-2172 . 508539) (-2173 . 508363) (-2174 . 508334) (-2175 . 507517)
- (-2176 . 507317) (-2177 . 507240) (-2178 . 507075) (-2179 . 506980)
- (-2180 . 506894) (-2181 . 506821) (-2182 . 506738) (-2183 . 506620)
- (-2184 . 506490) (-2185 . 506433) (-2186 . 506165) (-2187 . 506010)
- (-2188 . 505718) (-2189 . 505527) (-2190 . 505316) (-2191 . 505130)
- (-2192 . 505031) (-2193 . 504959) (-2194 . 504588) (-2195 . 504058)
- (-2196 . 504030) (-2197 . 503957) (-2198 . 503845) (-2199 . 503606)
- (-2200 . 503453) (-2201 . 503350) (-2202 . 502942) (-2203 . 502574)
- (-2204 . 502476) (-2205 . 502382) (-2206 . 502303) (-2207 . 502217)
- (-2208 . 501986) (-2209 . 501655) (-2210 . 501433) (-2211 . 501338)
- (-2212 . 501307) (-2213 . 501252) (-2214 . 501149) (-2215 . 501118)
- (-2216 . 501015) (-2217 . 500920) (-2218 . 500776) (-2219 . 500645)
- (-2220 . 500558) (-2221 . 500395) (-2222 . 477240) (-2223 . 477147)
- (-2224 . 477119) (-2225 . 477012) (-2226 . 476793) (-2227 . 476581)
- (-2228 . 476479) (-2229 . 476285) (-2230 . 476225) (-2231 . 476055)
- (-2232 . 475896) (-2233 . 473144) (-2234 . 472787) (-2235 . 472132)
- (-2236 . 471908) (-2237 . 471791) (-2238 . 471708) (-2239 . 471652)
- (-2240 . 471579) (-2241 . 471529) (-2242 . 471359) (-2243 . 471126)
- (-2244 . 471039) (-2245 . 470813) (-2246 . 470739) (-2247 . 470673)
- (-2248 . 470603) (-2249 . 470390) (-2250 . 470260) (-2251 . 470029)
- (-2252 . 469766) (-2253 . 469671) (-2254 . 469512) (-2255 . 469235)
- (-2256 . 469046) (-2257 . 468919) (-2258 . 468819) (-2259 . 468739)
- (-2260 . 468358) (-2261 . 468200) (-2262 . 468129) (-2263 . 468023)
- (-2264 . 467986) (-2265 . 467403) (-2266 . 467334) (-2267 . 467021)
- (-2268 . 466937) (-2269 . 466730) (-2270 . 466612) (-2271 . 466513)
- (-2272 . 466065) (-2273 . 465311) (-2274 . 465208) (-2275 . 464024)
- (-2276 . 463941) (-2277 . 463814) (-2278 . 463540) (-2279 . 463374)
- (-2280 . 462775) (-2281 . 462744) (-2282 . 462635) (-2283 . 462490)
- (-2284 . 462435) (-2285 . 462287) (-2286 . 461109) (-2287 . 460584)
- (-2288 . 460292) (-2289 . 460241) (-2290 . 460186) (-2291 . 460112)
- (-2292 . 460059) (-2293 . 460000) (-2294 . 459826) (-2295 . 459777)
- (-2296 . 457579) (-2297 . 457509) (-2298 . 457374) (-2299 . 457261)
- (-2300 . 457017) (-2301 . 456696) (-2302 . 456412) (-2303 . 455997)
- (-2304 . 455903) (-2305 . 455820) (-2306 . 455585) (-2307 . 455238)
- (-2308 . 455183) (-2309 . 455044) (-2310 . 454906) (-2311 . 454833)
- (-2312 . 454738) (-2313 . 454633) (-2314 . 454520) (-2315 . 454389)
- (-2316 . 454327) (-2317 . 454256) (-2318 . 454095) (-2319 . 453980)
- (-2320 . 453597) (-2321 . 453454) (-2322 . 453401) (-2323 . 453307)
- (-2324 . 453047) (-2325 . 452988) (-2326 . 452833) (-2327 . 452709)
- (-2328 . 452624) (-2329 . 452572) (-2330 . 452519) (-2331 . 452382)
- (-2332 . 452191) (-2333 . 452047) (-2334 . 451879) (-2335 . 451828)
- (-2336 . 451776) (-2337 . 451665) (-2338 . 451581) (-2339 . 451422)
- (-2340 . 451228) (-2341 . 450573) (-2342 . 450423) (-2343 . 450311)
- (-2344 . 450155) (-2345 . 450022) (-2346 . 449935) (-2347 . 449756)
- (-2348 . 449597) (-2349 . 449287) (-2350 . 449221) (-2351 . 449028)
- (-2352 . 448968) (-2353 . 448749) (-2354 . 448402) (-2355 . 448342)
- (-2356 . 447833) (-2357 . 447748) (-2358 . 447586) (-2359 . 447468)
- (-2360 . 447415) (-2361 . 447084) (-2362 . 446929) (-2363 . 446835)
- (-2364 . 446758) (-2365 . 446694) (-2366 . 444564) (-2367 . 444239)
- (-2368 . 444121) (-2369 . 444093) (-2370 . 443665) (-2371 . 443591)
- (-2372 . 443446) (-2373 . 443029) (-2374 . 442944) (-2375 . 442731)
- (-2376 . 442617) (-2377 . 442437) (-2378 . 442263) (-2379 . 442116)
- (-2380 . 442017) (-2381 . 440716) (-2382 . 440604) (-2383 . 440395)
- (-2384 . 440343) (-2385 . 440241) (-2386 . 440186) (-2387 . 440015)
- (-2388 . 438892) (-2389 . 438743) (-2390 . 438681) (-2391 . 438214)
- (-2392 . 438163) (-2393 . 437981) (-2394 . 437764) (-2395 . 437691)
- (-2396 . 437562) (-2397 . 437482) (-2398 . 437425) (-2399 . 437076)
- (-2400 . 436958) (-2401 . 436745) (-2402 . 435344) (-2403 . 435234)
- (-2404 . 435135) (-2405 . 435070) (-2406 . 434744) (-2407 . 434673)
- (-2408 . 434357) (-2409 . 429040) (-2410 . 428969) (-2411 . 428862)
- (-2412 . 428753) (-2413 . 428662) (-2414 . 428506) (-2415 . 428407)
- (-2416 . 428287) (-2417 . 428094) (-2418 . 428021) (-2419 . 427859)
- (-2420 . 427764) (-2421 . 427697) (-2422 . 427620) (-2423 . 427446)
- (-2424 . 427310) (-2425 . 427244) (-2426 . 427114) (-2427 . 426742)
- (-2428 . 426646) (-2429 . 426580) (-2430 . 426425) (-2431 . 426196)
- (-2432 . 425962) (-2433 . 425884) (-2434 . 425783) (-2435 . 425590)
- (-2436 . 425524) (-2437 . 420016) (-2438 . 419793) (-2439 . 419664)
- (-2440 . 419396) (-2441 . 419212) (-2442 . 419005) (-2443 . 418414)
- (-2444 . 418358) (-2445 . 418169) (-2446 . 418117) (-2447 . 418011)
- (-2448 . 417914) (-2449 . 417755) (-2450 . 417367) (-2451 . 417294)
- (-2452 . 417224) (-2453 . 417115) (-2454 . 417049) (-2455 . 416916)
- (-2456 . 416760) (-2457 . 416534) (-2458 . 416381) (-2459 . 416224)
- (-2460 . 416090) (-2461 . 415637) (-2462 . 415530) (-2463 . 415310)
- (-2464 . 414927) (-2465 . 414367) (-2466 . 414273) (-2467 . 413732)
- (-2468 . 413627) (-2469 . 413233) (-2470 . 412921) (-2471 . 412830)
- (-2472 . 412605) (-2473 . 412258) (-2474 . 412161) (-2475 . 412076)
- (-2476 . 411969) (-2477 . 411941) (-2478 . 411834) (-2479 . 411805)
- (-2480 . 411777) (-2481 . 411369) (-2482 . 411226) (-2483 . 411131)
- (-2484 . 411051) (-2485 . 410918) (-2486 . 410585) (-2487 . 410499)
- (-2488 . 410416) (-2489 . 410312) (-2490 . 409726) (-2491 . 409640)
- (-2492 . 409148) (-2493 . 408982) (-2494 . 408951) (-2495 . 408753)
- (-2496 . 408582) (-2497 . 408533) (-2498 . 407569) (-2499 . 407425)
- (-2500 . 407293) (-2501 . 406965) (-2502 . 406853) (-2503 . 406700)
- (-2504 . 406612) (-2505 . 406161) (-2506 . 406013) (-2507 . 405774)
- (-2508 . 405485) (-2509 . 405374) (-2510 . 405218) (-2511 . 405165)
- (-2512 . 404859) (-2513 . 404802) (-2514 . 404749) (-2515 . 404089)
- (-2516 . 403004) (-2517 . 402892) (-2518 . 402797) (-2519 . 402357)
- (-2520 . 402251) (-2521 . 401735) (-2522 . 401609) (-2523 . 401444)
- (-2524 . 401061) (-2525 . 401009) (-2526 . 400806) (-2527 . 400691)
- (-2528 . 400529) (-2529 . 400415) (-2530 . 400286) (-2531 . 399944)
- (-2532 . 399668) (-2533 . 399605) (-2534 . 399490) (-2535 . 399357)
- (-2536 . 399209) (-2537 . 399003) (-2538 . 398674) (-2539 . 398528)
- (-2540 . 398395) (-2541 . 398361) (-2542 . 398238) (-2543 . 398158)
- (-2544 . 398018) (-2545 . 397904) (-2546 . 397514) (-2547 . 397380)
- (-2548 . 395761) (-2549 . 395687) (-2550 . 395551) (-2551 . 395479)
- (-2552 . 395421) (-2553 . 395298) (-2554 . 395197) (-2555 . 394979)
- (-2556 . 394805) (-2557 . 393944) (-2558 . 393803) (-2559 . 393673)
- (-2560 . 392909) (-2561 . 392508) (-2562 . 392071) (-2563 . 391976)
- (-2564 . 391495) (-2565 . 390128) (-2566 . 390062) (-2567 . 389818)
- (-2568 . 389681) (-2569 . 389599) (-2570 . 389492) (-2571 . 389288)
- (-2572 . 389035) (-2573 . 388763) (-2574 . 388697) (-2575 . 388574)
- (-2576 . 388310) (-2577 . 388195) (-2578 . 388031) (-2579 . 387867)
- (-2580 . 387674) (-2581 . 387403) (-2582 . 387313) (-2583 . 387261)
- (-2584 . 387102) (-2585 . 386923) (-2586 . 386849) (-2587 . 386666)
- (-2588 . 386607) (-2589 . 386451) (-2590 . 386284) (-2591 . 385902)
- (-2592 . 385632) (-2593 . 385332) (-2594 . 385228) (-2595 . 385178)
- (-2596 . 385126) (-2597 . 385025) (-2598 . 384880) (-2599 . 384793)
- (-2600 . 384571) (-2601 . 384484) (-2602 . 384064) (-2603 . 384011)
- (-2604 . 383838) (-2605 . 383786) (-2606 . 383720) (-2607 . 383633)
- (-2608 . 383578) (-2609 . 383526) (-2610 . 383457) (-2611 . 383370)
- (-2612 . 381542) (-2613 . 381389) (-2614 . 380574) (-2615 . 380495)
- (-2616 . 380380) (-2617 . 380245) (-2618 . 380158) (-2619 . 380061)
- (-2620 . 379998) (-2621 . 379711) (-2622 . 379590) (-2623 . 378089)
- (-2624 . 378005) (-2625 . 377851) (-2626 . 377754) (-2627 . 377340)
- (-2628 . 377269) (-2629 . 377167) (-2630 . 377093) (-2631 . 376924)
- (-2632 . 375384) (-2633 . 375356) (-2634 . 375164) (-2635 . 375005)
- (-2636 . 374595) (-2637 . 374543) (-2638 . 374458) (-2639 . 374293)
- (-2640 . 374074) (-2641 . 373973) (-2642 . 373875) (-2643 . 373717)
- (-2644 . 373588) (-2645 . 373428) (-2646 . 373354) (-2647 . 373213)
- (-2648 . 373161) (-2649 . 373035) (-2650 . 372481) (-2651 . 371936)
- (-2652 . 371200) (-2653 . 370983) (-2654 . 370897) (-2655 . 370661)
- (-2656 . 369451) (-2657 . 369253) (-2658 . 369044) (-2659 . 368904)
- (-2660 . 368852) (-2661 . 368747) (-2662 . 368586) (-2663 . 368490)
- (-2664 . 367044) (-2665 . 366663) (-2666 . 366519) (-2667 . 366242)
- (-2668 . 366103) (-2669 . 365973) (-2670 . 365921) (-2671 . 365811)
- (-2672 . 365513) (-2673 . 365439) (-2674 . 365387) (-2675 . 365261)
- (-2676 . 364988) (-2677 . 364806) (-2678 . 364604) (-2679 . 364533)
- (-2680 . 364426) (-2681 . 364327) (-2682 . 364217) (-2683 . 364059)
- (-2684 . 363864) (-2685 . 363790) (-2686 . 363152) (-2687 . 363099)
- (-2688 . 363004) (-2689 . 362927) (-2690 . 362655) (-2691 . 362558)
- (-2692 . 362335) (-2693 . 361794) (-2694 . 361519) (-2695 . 361115)
- (-2696 . 360917) (-2697 . 359757) (-2698 . 359455) (-2699 . 359385)
- (-2700 . 359241) (-2701 . 359154) (-2702 . 355869) (-2703 . 355746)
- (-2704 . 355573) (-2705 . 354303) (-2706 . 353995) (-2707 . 351214)
- (-2708 . 351129) (-2709 . 351059) (-2710 . 350637) (-2711 . 350515)
- (-2712 . 349774) (-2713 . 349599) (-2714 . 349319) (-2715 . 349254)
- (-2716 . 349151) (-2717 . 349016) (-2718 . 348916) (-2719 . 348860)
- (-2720 . 348751) (-2721 . 348406) (-2722 . 348280) (-2723 . 348202)
- (-2724 . 347461) (-2725 . 347338) (-2726 . 347255) (-2727 . 347037)
- (-2728 . 346984) (-2729 . 346822) (-2730 . 346603) (-2731 . 346542)
- (-2732 . 346468) (-2733 . 346336) (-2734 . 345962) (-2735 . 345274)
- (-2736 . 344680) (-2737 . 344567) (-2738 . 344489) (-2739 . 344385)
- (-2740 . 344279) (-2741 . 344034) (-2742 . 343700) (-2743 . 343615)
- (-2744 . 343437) (-2745 . 343320) (-2746 . 343150) (-2747 . 343097)
- (-2748 . 343004) (-2749 . 342428) (-2750 . 342327) (-2751 . 342114)
- (-2752 . 342031) (-2753 . 341964) (-2754 . 341877) (-2755 . 341776)
- (-2756 . 341589) (-2757 . 341434) (-2758 . 341279) (-2759 . 341164)
- (-2760 . 340099) (-2761 . 339523) (-2762 . 339317) (-2763 . 339192)
- (-2764 . 338012) (-2765 . 337894) (-2766 . 337636) (-2767 . 337569)
- (-2768 . 337268) (-2769 . 337149) (-2770 . 336832) (-2771 . 336694)
- (-2772 . 336585) (-2773 . 336009) (-2774 . 335580) (-2775 . 335528)
- (-2776 . 335161) (-2777 . 335043) (-2778 . 334931) (-2779 . 334820)
- (-2780 . 334711) (-2781 . 334645) (-2782 . 334507) (-2783 . 334055)
- (-2784 . 333369) (-2785 . 333164) (-2786 . 333011) (-2787 . 332937)
- (-2788 . 332681) (-2789 . 332621) (-2790 . 332537) (-2791 . 332481)
- (-2792 . 332410) (-2793 . 332261) (-2794 . 332184) (-2795 . 331933)
- (-2796 . 331703) (-2797 . 331017) (-2798 . 330914) (-2799 . 330831)
- (-2800 . 330604) (-2801 . 330422) (-2802 . 330287) (-2803 . 330044)
- (-2804 . 328193) (-2805 . 328125) (-2806 . 328073) (-2807 . 327627)
- (-2808 . 327436) (-2809 . 327359) (-2810 . 327306) (-2811 . 326557)
- (-2812 . 326325) (-2813 . 326200) (-2814 . 326006) (-2815 . 325775)
- (-2816 . 325579) (-2817 . 325292) (-2818 . 325237) (-2819 . 324958)
- (-2820 . 324837) (-2821 . 324785) (-2822 . 324708) (-2823 . 324502)
- (-2824 . 324152) (-2825 . 323578) (-2826 . 323482) (-2827 . 323368)
- (-2828 . 323181) (-2829 . 323107) (-2830 . 323008) (-2831 . 322913)
- (-2832 . 322779) (-2833 . 322653) (-2834 . 322265) (-2835 . 322019)
- (-2836 . 321445) (-2837 . 321128) (-2838 . 321062) (-2839 . 321007)
- (-2840 . 320780) (-2841 . 320631) (-2842 . 320524) (-2843 . 320066)
- (-2844 . 319411) (-2845 . 319229) (-2846 . 318655) (-2847 . 318560)
- (-2848 . 318446) (-2849 . 318184) (-2850 . 318067) (-2851 . 317823)
- (-2852 . 317623) (-2853 . 317594) (-2854 . 317436) (-2855 . 317368)
- (-2856 . 316366) (-2857 . 316214) (-2858 . 316036) (-2859 . 315349)
- (-2860 . 315051) (-2861 . 313509) (-2862 . 313443) (-2863 . 313390)
- (-2864 . 313311) (-2865 . 312986) (-2866 . 312912) (-2867 . 312861)
- (-2868 . 312787) (-2869 . 312100) (-2870 . 312030) (-2871 . 311937)
- (-2872 . 311619) (-2873 . 311523) (-2874 . 310813) (-2875 . 310743)
- (-2876 . 310463) (-2877 . 309973) (-2878 . 309918) (-2879 . 309865)
- (-2880 . 309178) (-2881 . 309104) (-2882 . 309009) (-2883 . 308873)
- (-2884 . 308790) (-2885 . 308738) (-2886 . 308401) (-2887 . 308343)
- (-2888 . 308201) (-2889 . 308101) (-2890 . 307489) (-2891 . 307299)
- (-2892 . 306724) (-2893 . 306562) (-2894 . 306211) (-2895 . 305411)
- (-2896 . 305131) (-2897 . 304969) (-2898 . 304795) (-2899 . 304671)
- (-2900 . 304565) (-2901 . 304528) (-2902 . 304102) (-2903 . 303858)
- (-2904 . 303283) (-2905 . 303227) (-2906 . 302968) (-2907 . 302432)
- (-2908 . 301957) (-2909 . 301854) (-2910 . 301743) (-2911 . 301500)
- (-2912 . 301438) (-2913 . 301351) (-2914 . 301194) (-2915 . 301162)
- (-2916 . 299997) (-2917 . 299422) (-2918 . 299368) (-2919 . 298795)
- (-2920 . 298692) (-2921 . 298289) (-2922 . 298134) (-2923 . 298035)
- (-2924 . 297880) (-2925 . 297781) (-2926 . 297729) (-2927 . 297575)
- (-2928 . 297001) (-2929 . 296892) (-2930 . 296836) (-2931 . 296697)
- (-2932 . 296579) (-2933 . 296454) (-2934 . 296395) (-2935 . 294295)
- (-2936 . 294177) (-2937 . 294021) (-2938 . 293778) (-2939 . 293636)
- (-2940 . 293062) (-2941 . 292991) (-2942 . 292675) (-2943 . 292602)
- (-2944 . 291492) (-2945 . 291320) (-2946 . 291225) (-2947 . 290887)
- (-2948 . 290788) (-2949 . 290455) (-2950 . 290206) (-2951 . 290147)
- (-2952 . 290001) (-2953 . 289427) (-2954 . 288548) (-2955 . 288003)
- (-2956 . 287885) (-2957 . 287766) (-2958 . 287606) (-2959 . 287434)
- (-2960 . 287361) (-2961 . 287290) (-2962 . 286997) (-2963 . 286820)
- (-2964 . 286750) (-2965 . 286619) (-2966 . 286480) (-2967 . 285906)
- (-2968 . 285769) (-2969 . 285598) (-2970 . 285564) (-2971 . 285392)
- (-2972 . 285240) (-2973 . 284862) (-2974 . 284834) (-2975 . 284768)
- (-2976 . 284717) (-2977 . 284619) (-2978 . 284533) (-2979 . 284454)
- (-2980 . 283928) (-2981 . 283354) (-2982 . 283107) (-2983 . 283055)
- (-2984 . 282923) (-2985 . 282715) (-2986 . 282543) (-2987 . 282434)
- (-2988 . 282238) (-2989 . 282150) (-2990 . 282049) (-2991 . 281954)
- (-2992 . 281883) (-2993 . 281785) (-2994 . 281632) (-2995 . 281495)
- (-2996 . 281345) (-2997 . 281285) (-2998 . 281205) (-2999 . 281122)
- (-3000 . 281088) (-3001 . 276567) (-3002 . 276082) (-3003 . 276031)
- (-3004 . 275915) (-3005 . 275762) (-3006 . 275646) (-3007 . 275594)
- (-3008 . 275309) (-3009 . 275085) (-3010 . 274988) (-3011 . 274540)
- (-3012 . 274475) (-3013 . 274419) (-3014 . 274358) (-3015 . 274259)
- (-3016 . 273850) (-3017 . 273116) (-3018 . 271866) (-3019 . 271835)
- (-3020 . 271621) (-3021 . 271522) (-3022 . 271413) (-3023 . 271014)
- (-3024 . 270407) (-3025 . 270208) (-3026 . 270040) (-3027 . 269925)
- (-3028 . 269774) (-3029 . 269608) (-3030 . 269420) (-3031 . 268721)
- (-3032 . 268185) (-3033 . 268100) (-3034 . 268046) (-3035 . 267613)
- (-3036 . 267512) (-3037 . 267389) (-3038 . 267270) (-3039 . 267198)
- (-3040 . 267053) (-3041 . 266663) (-3042 . 265986) (-3043 . 260885)
- (-3044 . 260830) (-3045 . 260686) (-3046 . 260209) (-3047 . 260051)
- (-3048 . 259857) (-3049 . 259768) (-3050 . 259715) (-3051 . 259499)
- (-3052 . 259287) (-3053 . 259234) (-3054 . 259139) (-3055 . 259021)
- (-3056 . 258730) (-3057 . 258491) (-3058 . 258354) (-3059 . 258252)
- (-3060 . 258100) (-3061 . 257598) (-3062 . 257491) (-3063 . 257350)
- (-3064 . 257160) (-3065 . 256916) (-3066 . 256797) (-3067 . 256639)
- (-3068 . 256553) (-3069 . 256525) (-3070 . 256272) (-3071 . 255276)
- (-3072 . 254917) (-3073 . 254781) (-3074 . 254623) (-3075 . 254505)
- (-3076 . 254455) (-3077 . 254363) (-3078 . 254276) (-3079 . 254157)
- (-3080 . 254022) (-3081 . 253970) (-3082 . 252814) (-3083 . 252718)
- (-3084 . 252616) (-3085 . 252445) (-3086 . 252338) (-3087 . 252237)
- (-3088 . 252164) (-3089 . 252002) (-3090 . 250755) (-3091 . 250368)
- (-3092 . 249847) (-3093 . 249797) (-3094 . 249283) (-3095 . 249181)
- (-3096 . 249028) (-3097 . 248975) (-3098 . 248890) (-3099 . 248179)
- (-3100 . 248106) (-3101 . 248053) (-3102 . 247973) (-3103 . 247907)
- (-3104 . 247454) (-3105 . 246903) (-3106 . 232840) (-3107 . 232581)
- (-3108 . 232254) (-3109 . 231946) (-3110 . 231849) (-3111 . 231783)
- (-3112 . 231710) (-3113 . 231208) (-3114 . 231064) (-3115 . 230987)
- (-3116 . 230900) (-3117 . 230848) (-3118 . 230735) (-3119 . 230679)
- (-3120 . 230572) (-3121 . 230469) (-3122 . 230231) (-3123 . 230137)
- (-3124 . 230053) (-3125 . 229934) (-3126 . 229823) (-3127 . 229628)
- (-3128 . 229575) (-3129 . 229096) (-3130 . 228703) (-3131 . 228456)
- (-3132 . 228292) (-3133 . 228202) (-3134 . 228114) (-3135 . 228034)
- (-3136 . 227966) (-3137 . 227607) (-3138 . 227425) (-3139 . 227291)
- (-3140 . 226770) (-3141 . 226672) (-3142 . 226572) (-3143 . 226435)
- (-3144 . 226341) (-3145 . 226186) (-3146 . 225885) (-3147 . 225822)
- (-3148 . 225751) (-3149 . 225364) (-3150 . 225286) (-3151 . 225164)
- (-3152 . 225015) (-3153 . 224963) (-3154 . 224384) (-3155 . 219681)
- (-3156 . 219610) (-3157 . 219272) (-3158 . 219139) (-3159 . 219084)
- (-3160 . 218638) (-3161 . 218589) (-3162 . 218517) (-3163 . 218372)
- (-3164 . 218266) (-3165 . 217845) (-3166 . 217323) (-3167 . 216973)
- (-3168 . 216814) (-3169 . 216719) (-3170 . 216664) (-3171 . 216417)
- (-3172 . 216346) (-3173 . 216226) (-3174 . 216041) (-3175 . 215929)
- (-3176 . 215771) (-3177 . 215630) (-3178 . 215522) (-3179 . 215451)
- (-3180 . 215284) (-3181 . 215240) (-3182 . 215023) (-3183 . 214939)
- (-3184 . 214793) (-3185 . 214633) (-3186 . 214536) (-3187 . 214453)
- (-3188 . 213962) (-3189 . 213857) (-3190 . 213738) (-3191 . 213624)
- (-3192 . 213376) (-3193 . 213303) (-3194 . 213106) (-3195 . 212878)
- (-3196 . 212788) (-3197 . 212460) (-3198 . 212262) (-3199 . 212182)
- (-3200 . 211943) (-3201 . 211799) (-3202 . 211692) (-3203 . 211474)
- (-3204 . 211390) (-3205 . 211112) (-3206 . 210865) (-3207 . 210724)
- (-3208 . 210651) (-3209 . 210577) (-3210 . 210459) (-3211 . 210386)
- (-3212 . 210308) (-3213 . 210153) (-3214 . 209966) (-3215 . 209796)
- (-3216 . 208221) (-3217 . 207959) (-3218 . 207848) (-3219 . 207740)
- (-3220 . 207663) (-3221 . 207460) (-3222 . 207408) (-3223 . 207326)
- (-3224 . 207082) (-3225 . 206487) (-3226 . 205996) (-3227 . 205811)
- (-3228 . 205751) (-3229 . 205628) (-3230 . 205389) (-3231 . 205211)
- (-3232 . 205126) (-3233 . 204832) (-3234 . 204780) (-3235 . 202628)
- (-3236 . 202561) (-3237 . 201941) (-3238 . 201548) (-3239 . 201487)
- (-3240 . 201327) (-3241 . 201253) (-3242 . 201140) (-3243 . 201106)
- (-3244 . 201053) (-3245 . 200224) (-3246 . 200157) (-3247 . 199814)
- (-3248 . 199731) (-3249 . 199603) (-3250 . 199526) (-3251 . 199492)
- (-3252 . 198949) (-3253 . 198829) (-3254 . 198719) (-3255 . 198247)
- (-3256 . 198153) (-3257 . 198052) (-3258 . 198000) (-3259 . 197808)
- (-3260 . 197667) (-3261 . 197583) (-3262 . 197412) (-3263 . 197311)
- (-3264 . 197224) (-3265 . 197055) (-3266 . 196723) (-3267 . 196630)
- (-3268 . 196563) (-3269 . 196486) (-3270 . 196138) (-3271 . 196060)
- (-3272 . 195986) (-3273 . 195648) (-3274 . 195620) (-3275 . 195370)
- (-3276 . 195272) (-3277 . 195216) (-3278 . 195097) (-3279 . 194997)
- (-3280 . 194888) (-3281 . 194717) (-3282 . 194647) (-3283 . 194309)
- (-3284 . 194119) (-3285 . 194036) (-3286 . 193856) (-3287 . 193759)
- (-3288 . 193284) (-3289 . 193069) (-3290 . 192784) (-3291 . 192360)
- (-3292 . 192262) (-3293 . 192110) (-3294 . 191688) (-3295 . 191557)
- (-3296 . 191515) (-3297 . 189736) (-3298 . 189662) (-3299 . 189589)
- (-3300 . 189384) (-3301 . 189085) (-3302 . 188960) (-3303 . 188870)
- (-3304 . 188802) (-3305 . 188693) (-3306 . 188541) (-3307 . 188379)
- (-3308 . 188313) (-3309 . 187017) (-3310 . 186983) (-3311 . 186859)
- (-3312 . 186754) (-3313 . 186669) (-3314 . 186413) (-3315 . 186384)
- (-3316 . 186350) (-3317 . 186267) (-3318 . 186190) (-3319 . 185810)
- (-3320 . 185714) (-3321 . 185658) (-3322 . 185585) (-3323 . 185271)
- (-3324 . 185237) (-3325 . 185185) (-3326 . 184990) (-3327 . 184679)
- (-3328 . 184570) (-3329 . 184542) (-3330 . 184384) (-3331 . 184331)
- (-3332 . 184212) (-3333 . 184069) (-3334 . 182784) (-3335 . 182674)
- (-3336 . 181946) (-3337 . 181650) (-3338 . 181541) (-3339 . 181303)
- (-3340 . 181104) (-3341 . 180915) (-3342 . 180696) (-3343 . 180582)
- (-3344 . 180530) (-3345 . 180403) (-3346 . 180078) (-3347 . 179867)
- (-3348 . 179364) (-3349 . 178987) (-3350 . 178407) (-3351 . 177921)
- (-3352 . 176850) (-3353 . 176549) (-3354 . 176347) (-3355 . 176226)
- (-3356 . 176067) (-3357 . 175988) (-3358 . 175727) (-3359 . 175544)
- (-3360 . 175461) (-3361 . 175393) (-3362 . 175269) (-3363 . 175199)
- (-3364 . 175133) (-3365 . 175006) (-3366 . 174925) (-3367 . 174804)
- (-3368 . 174586) (-3369 . 174492) (-3370 . 174333) (-3371 . 174284)
- (-3372 . 174197) (-3373 . 174094) (-3374 . 173645) (-3375 . 173471)
- (-3376 . 173316) (-3377 . 173232) (-3378 . 173174) (-3379 . 173090)
- (-3380 . 172925) (-3381 . 172843) (-3382 . 172664) (-3383 . 172519)
- (-3384 . 172321) (-3385 . 172063) (-3386 . 171817) (-3387 . 171719)
- (-3388 . 171638) (-3389 . 171527) (-3390 . 171377) (-3391 . 171309)
- (-3392 . 171135) (-3393 . 171048) (-3394 . 170954) (-3395 . 170875)
- (-3396 . 170805) (-3397 . 169853) (-3398 . 169746) (-3399 . 169688)
- (-3400 . 169064) (-3401 . 168979) (-3402 . 168921) (-3403 . 168842)
- (-3404 . 168363) (-3405 . 168205) (-3406 . 168117) (-3407 . 168051)
- (-3408 . 167135) (-3409 . 167031) (-3410 . 166229) (-3411 . 166124)
- (-3412 . 165874) (-3413 . 165383) (-3414 . 165355) (-3415 . 165271)
- (-3416 . 165128) (-3417 . 165019) (-3418 . 164967) (-3419 . 164880)
- (-3420 . 164785) (-3421 . 164682) (-3422 . 164502) (-3423 . 164468)
- (-3424 . 164415) (-3425 . 164362) (-3426 . 164248) (-3427 . 164175)
- (-3428 . 163959) (-3429 . 163931) (-3430 . 163779) (-3431 . 163723)
- (-3432 . 163613) (-3433 . 163490) (-3434 . 163099) (-3435 . 163009)
- (-3436 . 162785) (-3437 . 162700) (-3438 . 162617) (-3439 . 162480)
- (-3440 . 162408) (-3441 . 162302) (-3442 . 161942) (-3443 . 161864)
- (-3444 . 161707) (-3445 . 161604) (-3446 . 161538) (-3447 . 161110)
- (-3448 . 161016) (-3449 . 160802) (-3450 . 160600) (-3451 . 160476)
- (-3452 . 160369) (-3453 . 160255) (-3454 . 160097) (-3455 . 160026)
- (-3456 . 159814) (-3457 . 159601) (-3458 . 159477) (-3459 . 159368)
- (-3460 . 159162) (-3461 . 159038) (-3462 . 158415) (-3463 . 158280)
- (-3464 . 158164) (-3465 . 158059) (-3466 . 157952) (-3467 . 157899)
- (-3468 . 157787) (-3469 . 157669) (-3470 . 157545) (-3471 . 157392)
- (-3472 . 157251) (-3473 . 156599) (-3474 . 156455) (-3475 . 156317)
- (-3476 . 156128) (-3477 . 155273) (-3478 . 155172) (-3479 . 154926)
- (-3480 . 154704) (-3481 . 154514) (-3482 . 154324) (-3483 . 154296)
- (-3484 . 154215) (-3485 . 154106) (-3486 . 153943) (-3487 . 153787)
- (-3488 . 153738) (-3489 . 153686) (-3490 . 153436) (-3491 . 153365)
- (-3492 . 153272) (-3493 . 153150) (-3494 . 152977) (-3495 . 152787)
- (-3496 . 152756) (-3497 . 152674) (-3498 . 152577) (-3499 . 152119)
- (-3500 . 152004) (-3501 . 151518) (-3502 . 151364) (-3503 . 151235)
- (-3504 . 151128) (-3505 . 151016) (-3506 . 150870) (-3507 . 150726)
- (-3508 . 150636) (-3509 . 150029) (-3510 . 149913) (-3511 . 149653)
- (-3512 . 149436) (-3513 . 149385) (-3514 . 149250) (-3515 . 148898)
- (-3516 . 148832) (-3517 . 148411) (-3518 . 148241) (-3519 . 148144)
- (-3520 . 147124) (-3521 . 147075) (-3522 . 146932) (-3523 . 146739)
- (-3524 . 146686) (-3525 . 146633) (-3526 . 146550) (-3527 . 146298)
- (-3528 . 146243) (-3529 . 146100) (-3530 . 146005) (-3531 . 145954)
- (-3532 . 145835) (-3533 . 145508) (-3534 . 145191) (-3535 . 145122)
- (-3536 . 145052) (-3537 . 144677) (-3538 . 144513) (-3539 . 144456)
- (-3540 . 144257) (-3541 . 144137) (-3542 . 143891) (-3543 . 143768)
- (-3544 . 143282) (-3545 . 142922) (-3546 . 142752) (-3547 . 142648)
- (-3548 . 142510) (-3549 . 142416) (-3550 . 142157) (-3551 . 141972)
- (-3552 . 141851) (-3553 . 141716) (-3554 . 141617) (-3555 . 141444)
- (-3556 . 141347) (-3557 . 141273) (-3558 . 141132) (-3559 . 141079)
- (-3560 . 141010) (-3561 . 140923) (-3562 . 140586) (-3563 . 140514)
- (-3564 . 140396) (-3565 . 140198) (-3566 . 139914) (-3567 . 139880)
- (-3568 . 139795) (-3569 . 139743) (-3570 . 139502) (-3571 . 139384)
- (-3572 . 139047) (-3573 . 138992) (-3574 . 138939) (-3575 . 138911)
- (-3576 . 138852) (-3577 . 138781) (-3578 . 138588) (-3579 . 138227)
- (-3580 . 138126) (-3581 . 138064) (-3582 . 137955) (-3583 . 137843)
- (-3584 . 137732) (-3585 . 137533) (-3586 . 137333) (-3587 . 137260)
- (-3588 . 136969) (-3589 . 136916) (-3590 . 136831) (-3591 . 136670)
- (-3592 . 136096) (-3593 . 136044) (-3594 . 135925) (-3595 . 135857)
- (-3596 . 135606) (-3597 . 135480) (-3598 . 135254) (-3599 . 135167)
- (-3600 . 134298) (-3601 . 134232) (-3602 . 134019) (-3603 . 133844)
- (-3604 . 133714) (-3605 . 132349) (-3606 . 132226) (-3607 . 132192)
- (-3608 . 132001) (-3609 . 131857) (-3610 . 131787) (-3611 . 131704)
- (-3612 . 131563) (-3613 . 131438) (-3614 . 131223) (-3615 . 131157)
- (-3616 . 131061) (-3617 . 130944) (-3618 . 130889) (-3619 . 130670)
- (-3620 . 130272) (-3621 . 130219) (-3622 . 130118) (-3623 . 129977)
- (-3624 . 129924) (-3625 . 129729) (-3626 . 129388) (-3627 . 129300)
- (-3628 . 129109) (-3629 . 129029) (-3630 . 128915) (-3631 . 128778)
- (-3632 . 128634) (-3633 . 128504) (-3634 . 128448) (-3635 . 128238)
- (-3636 . 128186) (-3637 . 128114) (-3638 . 128017) (-3639 . 127670)
- (-3640 . 127573) (-3641 . 127464) (-3642 . 126649) (-3643 . 126437)
- (-3644 . 126307) (-3645 . 125941) (-3646 . 125786) (-3647 . 124988)
- (-3648 . 124911) (-3649 . 124465) (-3650 . 123817) (-3651 . 123705)
- (-3652 . 123574) (-3653 . 122824) (-3654 . 122683) (-3655 . 122633)
- (-3656 . 122605) (-3657 . 122358) (-3658 . 122259) (-3659 . 122200)
- (-3660 . 122060) (-3661 . 121987) (-3662 . 121846) (-3663 . 121793)
- (-3664 . 121158) (-3665 . 120906) (-3666 . 120854) (-3667 . 120795)
- (-3668 . 120623) (-3669 . 120373) (-3670 . 120251) (-3671 . 120060)
- (-3672 . 119986) (-3673 . 119467) (-3674 . 119389) (-3675 . 119075)
- (-3676 . 119002) (-3677 . 118715) (-3678 . 118659) (-3679 . 118492)
- (-3680 . 118339) (-3681 . 118287) (-3682 . 118149) (-3683 . 117770)
- (-3684 . 117613) (-3685 . 117467) (-3686 . 117377) (-3687 . 117294)
- (-3688 . 117245) (-3689 . 114998) (-3690 . 114917) (-3691 . 114845)
- (-3692 . 114743) (-3693 . 114635) (-3694 . 114507) (-3695 . 114409)
- (-3696 . 114117) (-3697 . 113734) (-3698 . 113442) (-3699 . 113305)
- (-3700 . 112892) (-3701 . 112683) (-3702 . 112610) (-3703 . 112554)
- (-3704 . 112480) (-3705 . 112313) (-3706 . 112208) (-3707 . 112066)
- (-3708 . 111953) (-3709 . 111633) (-3710 . 111386) (-3711 . 111243)
- (-3712 . 111183) (-3713 . 111112) (-3714 . 110936) (-3715 . 110905)
- (-3716 . 110823) (-3717 . 110750) (-3718 . 109569) (-3719 . 109406)
- (-3720 . 109217) (-3721 . 108938) (-3722 . 108752) (-3723 . 108502)
- (-3724 . 108432) (-3725 . 108274) (-3726 . 107816) (-3727 . 107672)
- (-3728 . 107612) (-3729 . 107503) (-3730 . 107418) (-3731 . 107187)
- (-3732 . 106613) (-3733 . 106546) (-3734 . 106423) (-3735 . 106352)
- (-3736 . 106192) (-3737 . 105879) (-3738 . 105767) (-3739 . 105696)
- (-3740 . 104510) (-3741 . 104418) (-3742 . 103562) (-3743 . 103287)
- (-3744 . 103233) (-3745 . 102485) (-3746 . 102390) (-3747 . 102248)
- (-3748 . 101212) (-3749 . 101083) (-3750 . 100635) (-3751 . 100197)
- (-3752 . 100099) (-3753 . 99826) (-3754 . 99744) (-3755 . 99628)
- (-3756 . 99490) (-3757 . 99305) (-3758 . 98896) (-3759 . 98617)
- (-3760 . 98448) (-3761 . 98344) (-3762 . 98238) (-3763 . 97973)
- (-3764 . 97832) (-3765 . 97725) (-3766 . 97499) (-3767 . 97393)
- (-3768 . 97209) (** . 94132) (-3770 . 94076) (-3771 . 93956)
- (-3772 . 93568) (-3773 . 93450) (-3774 . 93363) (-3775 . 93254)
- (-3776 . 93152) (-3777 . 93067) (-3778 . 92924) (-3779 . 92778)
- (-3780 . 92601) (-3781 . 92473) (-3782 . 92383) (-3783 . 92042)
- (-3784 . 91989) (-3785 . 91837) (-3786 . 91766) (-3787 . 91706)
- (-3788 . 91467) (-3789 . 91341) (-3790 . 91169) (-3791 . 91138)
- (-3792 . 91031) (-3793 . 90972) (-3794 . 90810) (-3795 . 90717)
- (-3796 . 90640) (-3797 . 90454) (-3798 . 90405) (-3799 . 90192)
- (-3800 . 89976) (-3801 . 89850) (-3802 . 89650) (-3803 . 89513)
- (-3804 . 89412) (-3805 . 89188) (-3806 . 89088) (-3807 . 88981)
- (-3808 . 88902) (-3809 . 88822) (-3810 . 88690) (-3811 . 88634)
- (-3812 . 88496) (-3813 . 88315) (-3814 . 87751) (-3815 . 86888)
- (-3816 . 86798) (-3817 . 86489) (-3818 . 86102) (-3819 . 86034)
- (-3820 . 85968) (-3821 . 85887) (-3822 . 85835) (-3823 . 85616)
- (-3824 . 85446) (-3825 . 85387) (-3826 . 85328) (-3827 . 85165)
- (-3828 . 84914) (-3829 . 84792) (-3830 . 84670) (-3831 . 84554)
- (-3832 . 84294) (-3833 . 83622) (-3834 . 83448) (-3835 . 83350)
- (-3836 . 83232) (-3837 . 83127) (-3838 . 83044) (-3839 . 82970)
- (-3840 . 82829) (-3841 . 82556) (-3842 . 82328) (-3843 . 82044)
- (-3844 . 81973) (-3845 . 81899) (-3846 . 81812) (-3847 . 81592)
- (-3848 . 81497) (-3849 . 81357) (-3850 . 81264) (-3851 . 80968)
- (-3852 . 80916) (-3853 . 80772) (-3854 . 80457) (-3855 . 80305)
- (-3856 . 79865) (-3857 . 79686) (-3858 . 79351) (-3859 . 79125)
- (-3860 . 79073) (-3861 . 79002) (-3862 . 78877) (-3863 . 78669)
- (-3864 . 78540) (-3865 . 78426) (-3866 . 78346) (-3867 . 78175)
- (-3868 . 77971) (-3869 . 77505) (-3870 . 77208) (-3871 . 77101)
- (-3872 . 77020) (-3873 . 76855) (-3874 . 76739) (-3875 . 76616)
- (-3876 . 76385) (-3877 . 76232) (-3878 . 76149) (-3879 . 76069)
- (-3880 . 75862) (-3881 . 75755) (-3882 . 74757) (-3883 . 74508)
- (-3884 . 74474) (-3885 . 73883) (-3886 . 73781) (-3887 . 73709)
- (-3888 . 73571) (-3889 . 73427) (-3890 . 73374) (-3891 . 73277)
- (-3892 . 73098) (-3893 . 73029) (-3894 . 72976) (-3895 . 72646)
- (-3896 . 72594) (-3897 . 71991) (-3898 . 71868) (-3899 . 71426)
- (-3900 . 71301) (-3901 . 71204) (-3902 . 70648) (-3903 . 70593)
- (-3904 . 70470) (-3905 . 70387) (-3906 . 70289) (-3907 . 68825)
- (-3908 . 68759) (-3909 . 68449) (-3910 . 68364) (-3911 . 67965)
- (-3912 . 67825) (-3913 . 67770) (-3914 . 67693) (-3915 . 67205)
- (-3916 . 67096) (-3917 . 66223) (-3918 . 66047) (-3919 . 65974)
- (-3920 . 65781) (-3921 . 65449) (-3922 . 65375) (-3923 . 65233)
- (-3924 . 65132) (-3925 . 65049) (-3926 . 64957) (-3927 . 64848)
- (-3928 . 64774) (-3929 . 64723) (-3930 . 64664) (-3931 . 64548)
- (-3932 . 64520) (-3933 . 64298) (-3934 . 64242) (-3935 . 64131)
- (-3936 . 63941) (-3937 . 63425) (-3938 . 62821) (-3939 . 62665)
- (-3940 . 62580) (-3941 . 62479) (-3942 . 62394) (-3943 . 62264)
- (-3944 . 62149) (-3945 . 62042) (-3946 . 61792) (-3947 . 61668)
- (-3948 . 61167) (-3949 . 61136) (-3950 . 60893) (-3951 . 60809)
- (-3952 . 60725) (-3953 . 60295) (-3954 . 60027) (-3955 . 59737)
- (-3956 . 59665) (-3957 . 59456) (-3958 . 59360) (-3959 . 59193)
- (-3960 . 59051) (-3961 . 58624) (-3962 . 58077) (-3963 . 57969)
- (-3964 . 57861) (-3965 . 57832) (-3966 . 57734) (-3967 . 57676)
- (-3968 . 57540) (-3969 . 57408) (-3970 . 57255) (-3971 . 57153)
- (-3972 . 57012) (-3973 . 56960) (-3974 . 56520) (-3975 . 56361)
- (-3976 . 56180) (-3977 . 56054) (-3978 . 55958) (-3979 . 55618)
- (-3980 . 55520) (-3981 . 55382) (-3982 . 55090) (-3983 . 55024)
- (-3984 . 54954) (-3985 . 54828) (-3986 . 54748) (-3987 . 54580)
- (-3988 . 54513) (-3989 . 54433) (-3990 . 54331) (-3991 . 53588)
- (-3992 . 53487) (-3993 . 53334) (-3994 . 53256) (-3995 . 53093)
- (-3996 . 52899) (-3997 . 52504) (-3998 . 52240) (-3999 . 52143)
- (-4000 . 52088) (-4001 . 52001) (-4002 . 51876) (-4003 . 51848)
- (-4004 . 51749) (-4005 . 51525) (-4006 . 51424) (-4007 . 51354)
- (-4008 . 51260) (-4009 . 51156) (-4010 . 50951) (-4011 . 50656)
- (-4012 . 50552) (-4013 . 50313) (-4014 . 46325) (-4015 . 45571)
- (-4016 . 45516) (-4017 . 45312) (-4018 . 45195) (-4019 . 45117)
- (-4020 . 45023) (-4021 . 44955) (-4022 . 44903) (-4023 . 44202)
- (-4024 . 44104) (-4025 . 43997) (-4026 . 43831) (-4027 . 43714)
- (-4028 . 43656) (-4029 . 43445) (-4030 . 43275) (-4031 . 43207)
- (-4032 . 43031) (-4033 . 42974) (-4034 . 42892) (-4035 . 42769)
- (-4036 . 42664) (-4037 . 42611) (-4038 . 42365) (-4039 . 42243)
- (-4040 . 42150) (-4041 . 42049) (-4042 . 41808) (-4043 . 41756)
- (-4044 . 41331) (-4045 . 41062) (-4046 . 41034) (-4047 . 40950)
- (-4048 . 40852) (-4049 . 40668) (-4050 . 40615) (-4051 . 40563)
- (-4052 . 40422) (-4053 . 39807) (-4054 . 39712) (-4055 . 39433)
- (-4056 . 39356) (-4057 . 39278) (-4058 . 39126) (-4059 . 39098)
- (-4060 . 39002) (-4061 . 38904) (-4062 . 38830) (-4063 . 38761)
- (-4064 . 38682) (-4065 . 38573) (-4066 . 38460) (-4067 . 38407)
- (-4068 . 38294) (-4069 . 38215) (-4070 . 38074) (-4071 . 37942)
- (-4072 . 37757) (-4073 . 37332) (-4074 . 37260) (-4075 . 37034)
- (-4076 . 36812) (-4077 . 36756) (-4078 . 36647) (-4079 . 36524)
- (-4080 . 36471) (-4081 . 36159) (-4082 . 35713) (-4083 . 35040)
- (-4084 . 34969) (-4085 . 34700) (-4086 . 34556) (-4087 . 34445)
- (-4088 . 34126) (-4089 . 33983) (-4090 . 33489) (-4091 . 32149)
- (-4092 . 31972) (-4093 . 31885) (-4094 . 31812) (-4095 . 31754)
- (-4096 . 31591) (-4097 . 31312) (-4098 . 31240) (-4099 . 31163)
- (-4100 . 30592) (-4101 . 30092) (-4102 . 29889) (-4103 . 29852)
- (-4104 . 29797) (-4105 . 29691) (-4106 . 29425) (-4107 . 29241)
- (-4108 . 29173) (-4109 . 28996) (-4110 . 28725) (-4111 . 28672)
- (-4112 . 28580) (-4113 . 28523) (-4114 . 28423) (-4115 . 28094)
- (-4116 . 27999) (-4117 . 27859) (-4118 . 27736) (-4119 . 27596)
- (-4120 . 27489) (-4121 . 27436) (-4122 . 27368) (-4123 . 27007)
- (-4124 . 26941) (-4125 . 26811) (-4126 . 26731) (-4127 . 26585)
- (-4128 . 26408) (-4129 . 26351) (-4130 . 26181) (-4131 . 25982)
- (-4132 . 25912) (-4133 . 25803) (-4134 . 25670) (-4135 . 25605)
- (-4136 . 25373) (-4137 . 21213) (-4138 . 20966) (-4139 . 20768)
- (-4140 . 20564) (-4141 . 20476) (-4142 . 20448) (-4143 . 20251)
- (-4144 . 20111) (-4145 . 20026) (-4146 . 19922) (-4147 . 19788)
- (-4148 . 19446) (-4149 . 19236) (-4150 . 19159) (-4151 . 19088)
- (-4152 . 19016) (-4153 . 18837) (-4154 . 18658) (-4155 . 18563)
- (-4156 . 18259) (-4157 . 18019) (-4158 . 17803) (-4159 . 17315)
- (-4160 . 16987) (-4161 . 16623) (-4162 . 16571) (-4163 . 16455)
- (-4164 . 16382) (-4165 . 16254) (-4166 . 16145) (-4167 . 16041)
- (-4168 . 15877) (-4169 . 15826) (-4170 . 15723) (-4171 . 15637)
- (-4172 . 15276) (-4173 . 15247) (-4174 . 15195) (-4175 . 15100)
- (-4176 . 15022) (-4177 . 14875) (-4178 . 14807) (-4179 . 14596)
- (-4180 . 14493) (-4181 . 12241) (-4182 . 11866) (-4183 . 11615)
- (-4184 . 11474) (-4185 . 11334) (-4186 . 11306) (-4187 . 11228)
- (-4188 . 10989) (-4189 . 10874) (-4190 . 10815) (-4191 . 10364)
- (-4192 . 10206) (-4193 . 9936) (-4194 . 9778) (-4195 . 9653)
- (-4196 . 9549) (-4197 . 9426) (-4198 . 9293) (-4199 . 9241)
- (-4200 . 9131) (-4201 . 9079) (-4202 . 9023) (-4203 . 8773)
- (-4204 . 8608) (-4205 . 8467) (-4206 . 7863) (-4207 . 7778)
- (-4208 . 7676) (-4209 . 7555) (-4210 . 5837) (-4211 . 5774)
- (-4212 . 5607) (-4213 . 5491) (-4214 . 5197) (-4215 . 5042)
- (-4216 . 4912) (-4217 . 4607) (-4218 . 4390) (-4219 . 4255)
- (-4220 . 4160) (-4221 . 3980) (-4222 . 3873) (-4223 . 3793)
- (-4224 . 3739) (-4225 . 3636) (-4226 . 3527) (-4227 . 3349)
- (-4228 . 3210) (-4229 . 3151) (-4230 . 3099) (-4231 . 2940)
- (-4232 . 2867) (-4233 . 2793) (-4234 . 2677) (-4235 . 2461)
- (-4236 . 2299) (-4237 . 2170) (-4238 . 1967) (-4239 . 1679)
- (-4240 . 1509) (-4241 . 1443) (-4242 . 1366) (-4243 . 174)
- (-4244 . 30)) \ No newline at end of file
+ (-12 (-4 *3 (-432)) (-4 *3 (-795)) (-4 *3 (-975 (-516))) (-4 *3 (-523))
+ (-5 *1 (-40 *3 *2)) (-4 *2 (-402 *3))
+ (-4 *2
+ (-13 (-344) (-280)
+ (-10 -8 (-15 -3262 ((-1050 *3 (-569 $)) $))
+ (-15 -3261 ((-1050 *3 (-569 $)) $))
+ (-15 -4233 ($ (-1050 *3 (-569 $))))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-432)) (-4 *3 (-795)) (-4 *3 (-975 (-516))) (-4 *3 (-523))
+ (-5 *1 (-40 *3 *2)) (-4 *2 (-402 *3))
+ (-4 *2
+ (-13 (-344) (-280)
+ (-10 -8 (-15 -3262 ((-1050 *3 (-569 $)) $))
+ (-15 -3261 ((-1050 *3 (-569 $)) $))
+ (-15 -4233 ($ (-1050 *3 (-569 $))))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-432)) (-4 *3 (-795)) (-4 *3 (-975 (-516))) (-4 *3 (-523))
+ (-5 *1 (-40 *3 *2)) (-4 *2 (-402 *3))
+ (-4 *2
+ (-13 (-344) (-280)
+ (-10 -8 (-15 -3262 ((-1050 *3 (-569 $)) $))
+ (-15 -3261 ((-1050 *3 (-569 $)) $))
+ (-15 -4233 ($ (-1050 *3 (-569 $))))))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-1092 *3)) (-5 *1 (-40 *4 *3))
+ (-4 *3
+ (-13 (-344) (-280)
+ (-10 -8 (-15 -3262 ((-1050 *4 (-569 $)) $))
+ (-15 -3261 ((-1050 *4 (-569 $)) $))
+ (-15 -4233 ($ (-1050 *4 (-569 $))))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-523)) (-5 *1 (-40 *3 *2))
+ (-4 *2
+ (-13 (-344) (-280)
+ (-10 -8 (-15 -3262 ((-1050 *3 (-569 $)) $))
+ (-15 -3261 ((-1050 *3 (-569 $)) $))
+ (-15 -4233 ($ (-1050 *3 (-569 $)))))))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-523)) (-5 *1 (-40 *3 *2))
+ (-4 *2
+ (-13 (-344) (-280)
+ (-10 -8 (-15 -3262 ((-1050 *3 (-569 $)) $))
+ (-15 -3261 ((-1050 *3 (-569 $)) $))
+ (-15 -4233 ($ (-1050 *3 (-569 $)))))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-594 *2))
+ (-4 *2
+ (-13 (-344) (-280)
+ (-10 -8 (-15 -3262 ((-1050 *4 (-569 $)) $))
+ (-15 -3261 ((-1050 *4 (-569 $)) $))
+ (-15 -4233 ($ (-1050 *4 (-569 $)))))))
+ (-4 *4 (-523)) (-5 *1 (-40 *4 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-594 (-569 *2)))
+ (-4 *2
+ (-13 (-344) (-280)
+ (-10 -8 (-15 -3262 ((-1050 *4 (-569 $)) $))
+ (-15 -3261 ((-1050 *4 (-569 $)) $))
+ (-15 -4233 ($ (-1050 *4 (-569 $)))))))
+ (-4 *4 (-523)) (-5 *1 (-40 *4 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-523)) (-5 *1 (-40 *3 *2))
+ (-4 *2
+ (-13 (-344) (-280)
+ (-10 -8 (-15 -3262 ((-1050 *3 (-569 $)) $))
+ (-15 -3261 ((-1050 *3 (-569 $)) $))
+ (-15 -4233 ($ (-1050 *3 (-569 $))))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-719)) (-4 *4 (-344)) (-4 *5 (-1155 *4)) (-5 *2 (-1185))
+ (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1155 (-388 *5))) (-14 *7 *6))))
+(((*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-38 *3)) (-4 *3 (-1155 (-47))))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-5 *2 (-2 (|:| -4139 *3) (|:| -2131 *4))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-719)) (-5 *2 (-110)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-516)) (-4 *2 (-402 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-975 *4))
+ (-4 *3 (-13 (-795) (-523))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-594 *5)) (-4 *5 (-402 *4)) (-4 *4 (-13 (-795) (-523)))
+ (-5 *2 (-805)) (-5 *1 (-31 *4 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1092 *2)) (-4 *2 (-402 *4)) (-4 *4 (-13 (-795) (-523)))
+ (-5 *1 (-31 *4 *2)))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-887 (-516))) (-5 *3 (-1098)) (-5 *4 (-1017 (-388 (-516))))
+ (-5 *1 (-30)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1092 *1)) (-5 *4 (-1098)) (-4 *1 (-27)) (-5 *2 (-594 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1092 *1)) (-4 *1 (-27)) (-5 *2 (-594 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-887 *1)) (-4 *1 (-27)) (-5 *2 (-594 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1098)) (-4 *4 (-13 (-795) (-523))) (-5 *2 (-594 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-795) (-523))) (-5 *2 (-594 *1)) (-4 *1 (-29 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1092 *1)) (-5 *3 (-1098)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1092 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-887 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1098)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-795) (-523)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-795) (-523))))))
+((-1211 . 719241) (-1212 . 718814) (-1213 . 718693) (-1214 . 718578)
+ (-1215 . 718452) (-1216 . 718323) (-1217 . 718254) (-1218 . 718200)
+ (-1219 . 718065) (-1220 . 717989) (-1221 . 717833) (-1222 . 717605)
+ (-1223 . 716641) (-1224 . 716394) (-1225 . 716093) (-1226 . 715792)
+ (-1227 . 715491) (-1228 . 715154) (-1229 . 715062) (-1230 . 714970)
+ (-1231 . 714878) (-1232 . 714786) (-1233 . 714694) (-1234 . 714602)
+ (-1235 . 714507) (-1236 . 714412) (-1237 . 714320) (-1238 . 714228)
+ (-1239 . 714136) (-1240 . 714044) (-1241 . 713952) (-1242 . 713850)
+ (-1243 . 713748) (-1244 . 713646) (-1245 . 713554) (-1246 . 713502)
+ (-1247 . 713435) (-1248 . 713384) (-1249 . 713332) (-1250 . 713281)
+ (-1251 . 713230) (-1252 . 713160) (-1253 . 712724) (-1254 . 712523)
+ (-1255 . 712400) (-1256 . 712277) (-1257 . 712133) (-1258 . 711963)
+ (-1259 . 711839) (-1260 . 711600) (-1261 . 711527) (-1262 . 711386)
+ (-1263 . 711335) (-1264 . 711286) (-1265 . 711216) (-1266 . 711081)
+ (-1267 . 710946) (-1268 . 710721) (-1269 . 710475) (-1270 . 710295)
+ (-1271 . 710124) (-1272 . 710047) (-1273 . 709973) (-1274 . 709819)
+ (-1275 . 709665) (-1276 . 709480) (-1277 . 709298) (-1278 . 709121)
+ (-1279 . 709064) (-1280 . 709008) (-1281 . 708952) (-1282 . 708878)
+ (-1283 . 708800) (-1284 . 708744) (-1285 . 708713) (-1286 . 708685)
+ (-1287 . 708657) (-1288 . 708588) (-1289 . 708514) (-1290 . 708458)
+ (-1291 . 708387) (-1292 . 708234) (-1293 . 708160) (-1294 . 708086)
+ (-1295 . 708034) (-1296 . 707982) (-1297 . 707930) (-1298 . 707868)
+ (-1299 . 707745) (-1300 . 707423) (-1301 . 707335) (-1302 . 707234)
+ (-1303 . 707114) (-1304 . 707033) (-1305 . 706952) (-1306 . 706795)
+ (-1307 . 706644) (-1308 . 706566) (-1309 . 706508) (-1310 . 706435)
+ (-1311 . 706370) (-1312 . 706305) (-1313 . 706243) (-1314 . 706170)
+ (-1315 . 706054) (-1316 . 706020) (-1317 . 705986) (-1318 . 705934)
+ (-1319 . 705890) (-1320 . 705819) (-1321 . 705767) (-1322 . 705718)
+ (-1323 . 705666) (-1324 . 705614) (-1325 . 705498) (-1326 . 705382)
+ (-1327 . 705290) (-1328 . 705198) (-1329 . 705075) (-1330 . 705047)
+ (-1331 . 705019) (-1332 . 704991) (-1333 . 704963) (-1334 . 704853)
+ (-1335 . 704801) (-1336 . 704749) (-1337 . 704697) (-1338 . 704645)
+ (-1339 . 704593) (-1340 . 704541) (-1341 . 704513) (-1342 . 704410)
+ (-1343 . 704358) (-1344 . 704192) (-1345 . 704008) (-1346 . 703797)
+ (-1347 . 703682) (-1348 . 703449) (-1349 . 703350) (-1350 . 703256)
+ (-1351 . 703141) (-1352 . 702743) (-1353 . 702525) (-1354 . 702476)
+ (-1355 . 702448) (-1356 . 702420) (-1357 . 702392) (-1358 . 702364)
+ (-1359 . 702273) (-1360 . 702161) (-1361 . 702049) (-1362 . 701937)
+ (-1363 . 701825) (-1364 . 701713) (-1365 . 701601) (-1366 . 701428)
+ (-1367 . 701352) (-1368 . 701170) (-1369 . 701112) (-1370 . 701054)
+ (-1371 . 700716) (-1372 . 700431) (-1373 . 700347) (-1374 . 700215)
+ (-1375 . 700157) (-1376 . 700105) (-1377 . 700050) (-1378 . 699998)
+ (-1379 . 699924) (-1380 . 699850) (-1381 . 699769) (-1382 . 699688)
+ (-1383 . 699633) (-1384 . 699559) (-1385 . 699485) (-1386 . 699411)
+ (-1387 . 699334) (-1388 . 699279) (-1389 . 699220) (-1390 . 699121)
+ (-1391 . 699022) (-1392 . 698923) (-1393 . 698824) (-1394 . 698725)
+ (-1395 . 698626) (-1396 . 698527) (-1397 . 698413) (-1398 . 698299)
+ (-1399 . 698185) (-1400 . 698071) (-1401 . 697957) (-1402 . 697843)
+ (-1403 . 697726) (-1404 . 697650) (-1405 . 697574) (-1406 . 697187)
+ (-1407 . 696841) (-1408 . 696739) (-1409 . 696477) (-1410 . 696375)
+ (-1411 . 696170) (-1412 . 696057) (-1413 . 695955) (-1414 . 695798)
+ (-1415 . 695709) (-1416 . 695615) (-1417 . 695535) (-1418 . 695475)
+ (-1419 . 695422) (-1420 . 695303) (-1421 . 695221) (-1422 . 695139)
+ (-1423 . 695057) (-1424 . 694975) (-1425 . 694893) (-1426 . 694799)
+ (-1427 . 694729) (-1428 . 694659) (-1429 . 694568) (-1430 . 694474)
+ (-1431 . 694392) (-1432 . 694310) (-1433 . 693819) (-1434 . 693266)
+ (-1435 . 693056) (-1436 . 692982) (-1437 . 692728) (-1438 . 692501)
+ (-1439 . 692291) (-1440 . 692161) (-1441 . 692080) (-1442 . 691931)
+ (-1443 . 691576) (-1444 . 691284) (-1445 . 690992) (-1446 . 690700)
+ (-1447 . 690408) (-1448 . 690349) (-1449 . 690242) (-1450 . 689814)
+ (-1451 . 689654) (-1452 . 689455) (-1453 . 689319) (-1454 . 689219)
+ (-1455 . 689119) (-1456 . 689025) (-1457 . 688966) (-1458 . 688625)
+ (-1459 . 688525) (-1460 . 688407) (-1461 . 688193) (-1462 . 688014)
+ (-1463 . 687848) (-1464 . 687634) (-1465 . 687197) (-1466 . 687144)
+ (-1467 . 687035) (-1468 . 686920) (-1469 . 686851) (-1470 . 686782)
+ (-1471 . 686713) (-1472 . 686647) (-1473 . 686522) (-1474 . 686305)
+ (-1475 . 686227) (-1476 . 686177) (-1477 . 686106) (-1478 . 685963)
+ (-1479 . 685822) (-1480 . 685741) (-1481 . 685660) (-1482 . 685604)
+ (-1483 . 685548) (-1484 . 685475) (-1485 . 685335) (-1486 . 685282)
+ (-1487 . 685230) (-1488 . 685178) (-1489 . 685061) (-1490 . 684944)
+ (-1491 . 684827) (-1492 . 684695) (-1493 . 684416) (-1494 . 684281)
+ (-1495 . 684225) (-1496 . 684169) (-1497 . 684110) (-1498 . 684051)
+ (-1499 . 683995) (-1500 . 683939) (-1501 . 683742) (-1502 . 681400)
+ (-1503 . 681273) (-1504 . 681127) (-1505 . 680999) (-1506 . 680947)
+ (-1507 . 680895) (-1508 . 680843) (-1509 . 676805) (-1510 . 676710)
+ (-1511 . 676571) (-1512 . 676362) (-1513 . 676260) (-1514 . 676158)
+ (-1515 . 675242) (-1516 . 675165) (-1517 . 675036) (-1518 . 674909)
+ (-1519 . 674832) (-1520 . 674755) (-1521 . 674628) (-1522 . 674501)
+ (-1523 . 674335) (-1524 . 674208) (-1525 . 674081) (-1526 . 673864)
+ (-1527 . 673428) (-1528 . 673064) (-1529 . 672957) (-1530 . 672738)
+ (-1531 . 672669) (-1532 . 672610) (-1533 . 672529) (-1534 . 672418)
+ (-1535 . 672352) (-1536 . 672286) (-1537 . 672212) (-1538 . 672141)
+ (-1539 . 671764) (-1540 . 671712) (-1541 . 671653) (-1542 . 671549)
+ (-1543 . 671445) (-1544 . 671338) (-1545 . 671231) (-1546 . 671124)
+ (-1547 . 671017) (-1548 . 670910) (-1549 . 670803) (-1550 . 670696)
+ (-1551 . 670589) (-1552 . 670482) (-1553 . 670375) (-1554 . 670268)
+ (-1555 . 670161) (-1556 . 670054) (-1557 . 669947) (-1558 . 669840)
+ (-1559 . 669733) (-1560 . 669626) (-1561 . 669519) (-1562 . 669412)
+ (-1563 . 669305) (-1564 . 669198) (-1565 . 669091) (-1566 . 668984)
+ (-1567 . 668877) (-1568 . 668770) (-1569 . 668663) (-1570 . 668484)
+ (-1571 . 668362) (-1572 . 668112) (-1573 . 667811) (-1574 . 667606)
+ (-1575 . 667440) (-1576 . 667270) (-1577 . 667218) (-1578 . 667155)
+ (-1579 . 667092) (-1580 . 667040) (-1581 . 666851) (-1582 . 666697)
+ (-1583 . 666617) (-1584 . 666537) (-1585 . 666457) (-1586 . 666327)
+ (-1587 . 666095) (-1588 . 666067) (-1589 . 666039) (-1590 . 665958)
+ (-1591 . 665868) (-1592 . 665790) (-1593 . 665703) (-1594 . 665643)
+ (-1595 . 665485) (-1596 . 665292) (-1597 . 664807) (-1598 . 664565)
+ (-1599 . 664303) (-1600 . 664202) (-1601 . 664121) (-1602 . 664040)
+ (-1603 . 663970) (-1604 . 663900) (-1605 . 663742) (-1606 . 663438)
+ (-1607 . 663197) (-1608 . 663073) (-1609 . 663014) (-1610 . 662952)
+ (-1611 . 662890) (-1612 . 662825) (-1613 . 662763) (-1614 . 662484)
+ (-1615 . 662274) (-1616 . 662000) (-1617 . 661429) (-1618 . 660915)
+ (-1619 . 660770) (-1620 . 660703) (-1621 . 660622) (-1622 . 660541)
+ (-1623 . 660439) (-1624 . 660365) (-1625 . 660284) (-1626 . 660210)
+ (-1627 . 660001) (-1628 . 659788) (-1629 . 659698) (-1630 . 659631)
+ (-1631 . 659495) (-1632 . 659428) (-1633 . 659346) (-1634 . 659265)
+ (-1635 . 659163) (-1636 . 658963) (-1637 . 658895) (-1638 . 658653)
+ (-1639 . 658402) (-1640 . 658160) (-1641 . 657918) (-1642 . 657850)
+ (-1643 . 657517) (-1644 . 656517) (-1645 . 656298) (-1646 . 656217)
+ (-1647 . 656143) (-1648 . 656069) (-1649 . 655995) (-1650 . 655891)
+ (-1651 . 655818) (-1652 . 655750) (-1653 . 655540) (-1654 . 655488)
+ (-1655 . 655433) (-1656 . 655343) (-1657 . 655256) (-1658 . 653405)
+ (-1659 . 653326) (-1660 . 652581) (-1661 . 652451) (-1662 . 652245)
+ (-1663 . 652084) (-1664 . 651923) (-1665 . 651763) (-1666 . 651625)
+ (-1667 . 651531) (-1668 . 651433) (-1669 . 651339) (-1670 . 651225)
+ (-1671 . 651143) (-1672 . 651046) (-1673 . 650850) (-1674 . 650759)
+ (-1675 . 650665) (-1676 . 650598) (-1677 . 650545) (-1678 . 650492)
+ (-1679 . 650439) (-1680 . 649301) (-1681 . 648791) (-1682 . 648712)
+ (-1683 . 648653) (-1684 . 648625) (-1685 . 648597) (-1686 . 648538)
+ (-1687 . 648425) (-1688 . 648048) (-1689 . 647995) (-1690 . 647884)
+ (-1691 . 647831) (-1692 . 647778) (-1693 . 647722) (-1694 . 647666)
+ (-1695 . 647501) (-1696 . 647431) (-1697 . 647336) (-1698 . 647241)
+ (-1699 . 647146) (-1700 . 646989) (-1701 . 646832) (-1702 . 646679)
+ (-1703 . 645921) (-1704 . 645668) (-1705 . 645357) (-1706 . 645005)
+ (-1707 . 644788) (-1708 . 644525) (-1709 . 644150) (-1710 . 643966)
+ (-1711 . 643832) (-1712 . 643666) (-1713 . 643500) (-1714 . 643366)
+ (-1715 . 643232) (-1716 . 643098) (-1717 . 642964) (-1718 . 642833)
+ (-1719 . 642702) (-1720 . 642571) (-1721 . 642188) (-1722 . 642061)
+ (-1723 . 641933) (-1724 . 641681) (-1725 . 641557) (-1726 . 641305)
+ (-1727 . 641181) (-1728 . 640929) (-1729 . 640805) (-1730 . 640520)
+ (-1731 . 640247) (-1732 . 639974) (-1733 . 639676) (-1734 . 639574)
+ (-1735 . 639429) (-1736 . 639288) (-1737 . 639137) (-1738 . 638976)
+ (-1739 . 638888) (-1740 . 638860) (-1741 . 638778) (-1742 . 638681)
+ (-1743 . 638213) (-1744 . 637862) (-1745 . 637429) (-1746 . 637288)
+ (-1747 . 637218) (-1748 . 637148) (-1749 . 637078) (-1750 . 636987)
+ (-1751 . 636896) (-1752 . 636805) (-1753 . 636714) (-1754 . 636623)
+ (-1755 . 636537) (-1756 . 636451) (-1757 . 636365) (-1758 . 636279)
+ (-1759 . 636193) (-1760 . 636119) (-1761 . 636014) (-1762 . 635788)
+ (-1763 . 635710) (-1764 . 635635) (-1765 . 635542) (-1766 . 635467)
+ (-1767 . 635371) (-1768 . 635202) (-1769 . 635125) (-1770 . 635048)
+ (-1771 . 634957) (-1772 . 634866) (-1773 . 634666) (-1774 . 634511)
+ (-1775 . 634356) (-1776 . 634201) (-1777 . 634046) (-1778 . 633891)
+ (-1779 . 633736) (-1780 . 633669) (-1781 . 633514) (-1782 . 633359)
+ (-1783 . 633204) (-1784 . 633049) (-1785 . 632894) (-1786 . 632739)
+ (-1787 . 632584) (-1788 . 632429) (-1789 . 632355) (-1790 . 632281)
+ (-1791 . 632226) (-1792 . 632171) (-1793 . 632116) (-1794 . 632061)
+ (-1795 . 631990) (-1796 . 631785) (-1797 . 631684) (-1798 . 631493)
+ (-1799 . 631400) (-1800 . 631263) (-1801 . 631126) (-1802 . 630989)
+ (-1803 . 630921) (-1804 . 630805) (-1805 . 630689) (-1806 . 630573)
+ (-1807 . 630520) (-1808 . 630323) (-1809 . 630238) (-1810 . 629930)
+ (-1811 . 629875) (-1812 . 629223) (-1813 . 628908) (-1814 . 628624)
+ (-1815 . 628506) (-1816 . 628454) (-1817 . 628402) (-1818 . 628350)
+ (-1819 . 628297) (-1820 . 628244) (-1821 . 628185) (-1822 . 628072)
+ (-1823 . 627959) (-1824 . 627901) (-1825 . 627843) (-1826 . 627793)
+ (-1827 . 627658) (-1828 . 627608) (-1829 . 627545) (-1830 . 627485)
+ (-1831 . 626888) (-1832 . 626828) (-1833 . 626661) (-1834 . 626569)
+ (-1835 . 626456) (-1836 . 626372) (-1837 . 626257) (-1838 . 626166)
+ (-1839 . 626075) (-1840 . 625886) (-1841 . 625831) (-1842 . 625644)
+ (-1843 . 625521) (-1844 . 625448) (-1845 . 625375) (-1846 . 625255)
+ (-1847 . 625182) (-1848 . 625109) (-1849 . 625036) (-1850 . 624816)
+ (-1851 . 624483) (-1852 . 624300) (-1853 . 624157) (-1854 . 623797)
+ (-1855 . 623629) (-1856 . 623461) (-1857 . 623205) (-1858 . 622949)
+ (-1859 . 622754) (-1860 . 622559) (-1861 . 621965) (-1862 . 621889)
+ (-1863 . 621751) (-1864 . 621349) (-1865 . 621223) (-1866 . 621065)
+ (-1867 . 620740) (-1868 . 620252) (-1869 . 619764) (-1870 . 619248)
+ (-1871 . 619180) (-1872 . 619109) (-1873 . 619038) (-1874 . 618856)
+ (-1875 . 618737) (-1876 . 618618) (-1877 . 618527) (-1878 . 618436)
+ (-1879 . 618146) (-1880 . 618025) (-1881 . 617973) (-1882 . 617921)
+ (-1883 . 617869) (-1884 . 617817) (-1885 . 617765) (-1886 . 617617)
+ (-1887 . 617437) (-1888 . 617198) (-1889 . 617005) (-1890 . 616977)
+ (-1891 . 616949) (-1892 . 616921) (-1893 . 616893) (-1894 . 616865)
+ (-1895 . 616837) (-1896 . 616809) (-1897 . 616757) (-1898 . 616667)
+ (-1899 . 616617) (-1900 . 616548) (-1901 . 616479) (-1902 . 616374)
+ (-1903 . 616003) (-1904 . 615852) (-1905 . 615701) (-1906 . 615496)
+ (-1907 . 615374) (-1908 . 615299) (-1909 . 615221) (-1910 . 615146)
+ (-1911 . 615068) (-1912 . 614990) (-1913 . 614915) (-1914 . 614837)
+ (-1915 . 614603) (-1916 . 614450) (-1917 . 614155) (-1918 . 614002)
+ (-1919 . 613680) (-1920 . 613542) (-1921 . 613404) (-1922 . 613324)
+ (-1923 . 613244) (-1924 . 612980) (-1925 . 612248) (-1926 . 612112)
+ (-1927 . 612022) (-1928 . 611887) (-1929 . 611820) (-1930 . 611752)
+ (-1931 . 611665) (-1932 . 611578) (-1933 . 611411) (-1934 . 611337)
+ (-1935 . 611193) (-1936 . 610733) (-1937 . 610353) (-1938 . 609589)
+ (-1939 . 609445) (-1940 . 609301) (-1941 . 609139) (-1942 . 608901)
+ (-1943 . 608760) (-1944 . 608613) (-1945 . 608374) (-1946 . 608138)
+ (-1947 . 607899) (-1948 . 607707) (-1949 . 607584) (-1950 . 607380)
+ (-1951 . 607157) (-1952 . 606918) (-1953 . 606777) (-1954 . 606639)
+ (-1955 . 606500) (-1956 . 606247) (-1957 . 605991) (-1958 . 605834)
+ (-1959 . 605680) (-1960 . 605439) (-1961 . 605154) (-1962 . 605016)
+ (-1963 . 604929) (-1964 . 604263) (-1965 . 604087) (-1966 . 603905)
+ (-1967 . 603729) (-1968 . 603547) (-1969 . 603368) (-1970 . 603189)
+ (-1971 . 603002) (-1972 . 602620) (-1973 . 602441) (-1974 . 602262)
+ (-1975 . 602075) (-1976 . 601693) (-1977 . 600700) (-1978 . 600316)
+ (-1979 . 599932) (-1980 . 599814) (-1981 . 599657) (-1982 . 599515)
+ (-1983 . 599397) (-1984 . 599215) (-1985 . 599091) (-1986 . 598801)
+ (-1987 . 598511) (-1988 . 598227) (-1989 . 597943) (-1990 . 597665)
+ (-1991 . 597577) (-1992 . 597492) (-1993 . 597393) (-1994 . 597294)
+ (-1995 . 597070) (-1996 . 596970) (-1997 . 596867) (-1998 . 596789)
+ (-1999 . 596464) (-2000 . 596172) (-2001 . 596099) (-2002 . 595714)
+ (-2003 . 595686) (-2004 . 595487) (-2005 . 595313) (-2006 . 595072)
+ (-2007 . 595017) (-2008 . 594941) (-2009 . 594573) (-2010 . 594456)
+ (-2011 . 594396) (-2012 . 594323) (-2013 . 594242) (-2014 . 594161)
+ (-2015 . 594080) (-2016 . 593979) (-2017 . 593920) (-2018 . 593701)
+ (-2019 . 593462) (-2020 . 593338) (-2021 . 593214) (-2022 . 592987)
+ (-2023 . 592934) (-2024 . 592879) (-2025 . 592547) (-2026 . 592223)
+ (-2027 . 592035) (-2028 . 591844) (-2029 . 591680) (-2030 . 591345)
+ (-2031 . 591178) (-2032 . 590937) (-2033 . 590613) (-2034 . 590423)
+ (-2035 . 590208) (-2036 . 590037) (-2037 . 589615) (-2038 . 589388)
+ (-2039 . 589117) (-2040 . 588979) (-2041 . 588838) (-2042 . 588361)
+ (-2043 . 588238) (-2044 . 588002) (-2045 . 587748) (-2046 . 587498)
+ (-2047 . 587203) (-2048 . 587062) (-2049 . 586718) (-2050 . 586577)
+ (-2051 . 586384) (-2052 . 586191) (-2053 . 586016) (-2054 . 585742)
+ (-2055 . 585307) (-2056 . 585233) (-2057 . 585072) (-2058 . 584909)
+ (-2059 . 584748) (-2060 . 584581) (-2061 . 584452) (-2062 . 584310)
+ (-2063 . 584215) (-2064 . 584124) (-2065 . 584008) (-2066 . 583914)
+ (-2067 . 583816) (-2068 . 583722) (-2069 . 583581) (-2070 . 583316)
+ (-2071 . 582460) (-2072 . 582304) (-2073 . 581935) (-2074 . 581850)
+ (-2075 . 581762) (-2076 . 581616) (-2077 . 581467) (-2078 . 581177)
+ (-2079 . 581099) (-2080 . 581024) (-2081 . 580971) (-2082 . 580940)
+ (-2083 . 580877) (-2084 . 580758) (-2085 . 580669) (-2086 . 580549)
+ (-2087 . 580254) (-2088 . 580060) (-2089 . 579872) (-2090 . 579727)
+ (-2091 . 579582) (-2092 . 579296) (-2093 . 578854) (-2094 . 578820)
+ (-2095 . 578783) (-2096 . 578746) (-2097 . 578709) (-2098 . 578672)
+ (-2099 . 578641) (-2100 . 578610) (-2101 . 578579) (-2102 . 578545)
+ (-2103 . 578511) (-2104 . 578456) (-2105 . 578267) (-2106 . 578026)
+ (-2107 . 577785) (-2108 . 577549) (-2109 . 577497) (-2110 . 577442)
+ (-2111 . 577372) (-2112 . 577283) (-2113 . 577214) (-2114 . 577142)
+ (-2115 . 576912) (-2116 . 576860) (-2117 . 576805) (-2118 . 576774)
+ (-2119 . 576668) (-2120 . 576436) (-2121 . 576119) (-2122 . 575938)
+ (-2123 . 575746) (-2124 . 575468) (-2125 . 575395) (-2126 . 575330)
+ (-2127 . 575302) (-2128 . 575252) (-2129 . 573829) (-2130 . 572681)
+ (-2131 . 571543) (-2132 . 571053) (-2133 . 570477) (-2134 . 569737)
+ (-2135 . 569162) (-2136 . 568520) (-2137 . 567941) (-2138 . 567867)
+ (-2139 . 567815) (-2140 . 567763) (-2141 . 567689) (-2142 . 567634)
+ (-2143 . 567582) (-2144 . 567530) (-2145 . 567478) (-2146 . 567408)
+ (-2147 . 566960) (-2148 . 566747) (-2149 . 566491) (-2150 . 566150)
+ (-2151 . 565889) (-2152 . 565580) (-2153 . 565370) (-2154 . 565071)
+ (-2155 . 564503) (-2156 . 564366) (-2157 . 564164) (-2158 . 563884)
+ (-2159 . 563799) (-2160 . 563456) (-2161 . 563315) (-2162 . 563024)
+ (-2163 . 562804) (-2164 . 562679) (-2165 . 562555) (-2166 . 562409)
+ (-2167 . 562266) (-2168 . 562151) (-2169 . 562021) (-2170 . 561650)
+ (-2171 . 561390) (-2172 . 561115) (-2173 . 560875) (-2174 . 560545)
+ (-2175 . 560200) (-2176 . 559792) (-2177 . 559369) (-2178 . 559172)
+ (-2179 . 558897) (-2180 . 558729) (-2181 . 558528) (-2182 . 558306)
+ (-2183 . 558151) (-2184 . 557959) (-2185 . 557890) (-2186 . 557820)
+ (-2187 . 557701) (-2188 . 557523) (-2189 . 557468) (-2190 . 557222)
+ (-2191 . 557132) (-2192 . 556942) (-2193 . 556869) (-2194 . 556799)
+ (-2195 . 556734) (-2196 . 556679) (-2197 . 556588) (-2198 . 556283)
+ (-2199 . 555940) (-2200 . 555866) (-2201 . 555544) (-2202 . 555338)
+ (-2203 . 555253) (-2204 . 555168) (-2205 . 555083) (-2206 . 554998)
+ (-2207 . 554913) (-2208 . 554828) (-2209 . 554743) (-2210 . 554658)
+ (-2211 . 554573) (-2212 . 554488) (-2213 . 554403) (-2214 . 554318)
+ (-2215 . 554233) (-2216 . 554148) (-2217 . 554063) (-2218 . 553978)
+ (-2219 . 553893) (-2220 . 553808) (-2221 . 553723) (-2222 . 553638)
+ (-2223 . 553553) (-2224 . 553468) (-2225 . 553383) (-2226 . 553298)
+ (-2227 . 553213) (-2228 . 553128) (-2229 . 553026) (-2230 . 552938)
+ (-2231 . 552730) (-2232 . 552672) (-2233 . 552617) (-2234 . 552529)
+ (-2235 . 552418) (-2236 . 552332) (-2237 . 552186) (-2238 . 552001)
+ (-2239 . 551837) (-2240 . 551670) (-2241 . 551485) (-2242 . 551264)
+ (-2243 . 551140) (-2244 . 550932) (-2245 . 550840) (-2246 . 550748)
+ (-2247 . 550612) (-2248 . 550517) (-2249 . 550422) (-2250 . 548906)
+ (-2251 . 548816) (-2252 . 548721) (-2253 . 548640) (-2254 . 548333)
+ (-2255 . 548138) (-2256 . 548045) (-2257 . 547939) (-2258 . 547528)
+ (-2259 . 547354) (-2260 . 547277) (-2261 . 547089) (-2262 . 546909)
+ (-2263 . 546485) (-2264 . 546333) (-2265 . 546153) (-2266 . 545980)
+ (-2267 . 545718) (-2268 . 545466) (-2269 . 544655) (-2270 . 544487)
+ (-2271 . 544268) (-2272 . 543364) (-2273 . 542331) (-2274 . 542187)
+ (-2275 . 542043) (-2276 . 541899) (-2277 . 541755) (-2278 . 541611)
+ (-2279 . 541467) (-2280 . 541272) (-2281 . 541078) (-2282 . 540935)
+ (-2283 . 540620) (-2284 . 540505) (-2285 . 540165) (-2286 . 540005)
+ (-2287 . 539866) (-2288 . 539727) (-2289 . 539598) (-2290 . 539513)
+ (-2291 . 539461) (-2292 . 538974) (-2293 . 537698) (-2294 . 537583)
+ (-2295 . 537454) (-2296 . 537147) (-2297 . 536898) (-2298 . 536823)
+ (-2299 . 536748) (-2300 . 536673) (-2301 . 536614) (-2302 . 536543)
+ (-2303 . 536490) (-2304 . 536428) (-2305 . 536357) (-2306 . 535994)
+ (-2307 . 535707) (-2308 . 535596) (-2309 . 535503) (-2310 . 535410)
+ (-2311 . 535323) (-2312 . 535103) (-2313 . 534884) (-2314 . 534741)
+ (-2315 . 534648) (-2316 . 534505) (-2317 . 534353) (-2318 . 534199)
+ (-2319 . 534129) (-2320 . 533922) (-2321 . 533745) (-2322 . 533536)
+ (-2323 . 533359) (-2324 . 533241) (-2325 . 532926) (-2326 . 532648)
+ (-2327 . 532527) (-2328 . 532400) (-2329 . 532315) (-2330 . 532242)
+ (-2331 . 532152) (-2332 . 532081) (-2333 . 532025) (-2334 . 531969)
+ (-2335 . 531913) (-2336 . 531842) (-2337 . 531771) (-2338 . 531700)
+ (-2339 . 531621) (-2340 . 531543) (-2341 . 531458) (-2342 . 531199)
+ (-2343 . 531111) (-2344 . 530814) (-2345 . 530716) (-2346 . 530638)
+ (-2347 . 530560) (-2348 . 530417) (-2349 . 530345) (-2350 . 530142)
+ (-2351 . 530086) (-2352 . 529898) (-2353 . 529799) (-2354 . 529681)
+ (-2355 . 529560) (-2356 . 529417) (-2357 . 529274) (-2358 . 529134)
+ (-2359 . 528994) (-2360 . 528851) (-2361 . 528725) (-2362 . 528596)
+ (-2363 . 528473) (-2364 . 528350) (-2365 . 528245) (-2366 . 528140)
+ (-2367 . 528038) (-2368 . 527888) (-2369 . 527735) (-2370 . 527582)
+ (-2371 . 527438) (-2372 . 527284) (-2373 . 527208) (-2374 . 527129)
+ (-2375 . 526976) (-2376 . 526897) (-2377 . 526818) (-2378 . 526739)
+ (-2379 . 526637) (-2380 . 526578) (-2381 . 526403) (-2382 . 526250)
+ (-2383 . 526097) (-2384 . 525923) (-2385 . 525731) (-2386 . 525432)
+ (-2387 . 525237) (-2388 . 525122) (-2389 . 524996) (-2390 . 524919)
+ (-2391 . 524787) (-2392 . 524481) (-2393 . 524298) (-2394 . 523753)
+ (-2395 . 523533) (-2396 . 523359) (-2397 . 523189) (-2398 . 523090)
+ (-2399 . 522991) (-2400 . 522773) (-2401 . 522671) (-2402 . 522598)
+ (-2403 . 522522) (-2404 . 522443) (-2405 . 522146) (-2406 . 522047)
+ (-2407 . 521885) (-2408 . 521651) (-2409 . 521209) (-2410 . 521079)
+ (-2411 . 520939) (-2412 . 520630) (-2413 . 520328) (-2414 . 520012)
+ (-2415 . 519606) (-2416 . 519538) (-2417 . 519470) (-2418 . 519402)
+ (-2419 . 519308) (-2420 . 519201) (-2421 . 519094) (-2422 . 518993)
+ (-2423 . 518892) (-2424 . 518791) (-2425 . 518714) (-2426 . 518390)
+ (-2427 . 517909) (-2428 . 517282) (-2429 . 517218) (-2430 . 517099)
+ (-2431 . 516980) (-2432 . 516872) (-2433 . 516764) (-2434 . 516608)
+ (-2435 . 516008) (-2436 . 515770) (-2437 . 515602) (-2438 . 515480)
+ (-2439 . 515084) (-2440 . 514848) (-2441 . 514647) (-2442 . 514439)
+ (-2443 . 514246) (-2444 . 513979) (-2445 . 513806) (-2446 . 513627)
+ (-2447 . 513558) (-2448 . 513482) (-2449 . 513341) (-2450 . 513138)
+ (-2451 . 512994) (-2452 . 512744) (-2453 . 512436) (-2454 . 512080)
+ (-2455 . 511921) (-2456 . 511715) (-2457 . 511555) (-2458 . 511482)
+ (-2459 . 511364) (-2460 . 511246) (-2461 . 511087) (-2462 . 510908)
+ (-2463 . 510726) (-2464 . 510629) (-2465 . 510532) (-2466 . 510432)
+ (-2467 . 510329) (-2468 . 510204) (-2469 . 510079) (-2470 . 509951)
+ (-2471 . 509820) (-2472 . 509723) (-2473 . 509626) (-2474 . 509526)
+ (-2475 . 509426) (-2476 . 509261) (-2477 . 509096) (-2478 . 508903)
+ (-2479 . 508738) (-2480 . 508571) (-2481 . 508401) (-2482 . 508237)
+ (-2483 . 508073) (-2484 . 507974) (-2485 . 507783) (-2486 . 507683)
+ (-2487 . 507489) (-2488 . 507240) (-2489 . 506996) (-2490 . 506675)
+ (-2491 . 506288) (-2492 . 506088) (-2493 . 505825) (-2494 . 505284)
+ (-2495 . 504991) (-2496 . 504855) (-2497 . 504610) (-2498 . 504407)
+ (-2499 . 504301) (-2500 . 504201) (-2501 . 504092) (-2502 . 503983)
+ (-2503 . 503856) (-2504 . 503750) (-2505 . 503647) (-2506 . 503492)
+ (-2507 . 503359) (-2508 . 503226) (-2509 . 503117) (-2510 . 502999)
+ (-2511 . 502823) (-2512 . 502690) (-2513 . 502554) (-2514 . 502424)
+ (-2515 . 502315) (-2516 . 502194) (-2517 . 502070) (-2518 . 501970)
+ (-2519 . 501787) (-2520 . 501614) (-2521 . 501416) (-2522 . 501243)
+ (-2523 . 501128) (-2524 . 501004) (-2525 . 500877) (-2526 . 500759)
+ (-2527 . 500535) (-2528 . 500365) (-2529 . 500195) (-2530 . 500019)
+ (-2531 . 499868) (-2532 . 499592) (-2533 . 499201) (-2534 . 499071)
+ (-2535 . 498870) (-2536 . 498688) (-2537 . 498505) (-2538 . 498377)
+ (-2539 . 498274) (-2540 . 498134) (-2541 . 498003) (-2542 . 497890)
+ (-2543 . 497743) (-2544 . 497605) (-2545 . 497505) (-2546 . 497402)
+ (-2547 . 497296) (-2548 . 497187) (-2549 . 497087) (-2550 . 496981)
+ (-2551 . 496875) (-2552 . 496763) (-2553 . 496657) (-2554 . 496545)
+ (-2555 . 496415) (-2556 . 496267) (-2557 . 495731) (-2558 . 495589)
+ (-2559 . 495440) (-2560 . 495318) (-2561 . 495215) (-2562 . 495112)
+ (-2563 . 495006) (-2564 . 494869) (-2565 . 494763) (-2566 . 494633)
+ (-2567 . 494478) (-2568 . 494206) (-2569 . 494060) (-2570 . 493858)
+ (-2571 . 493758) (-2572 . 493605) (-2573 . 493486) (-2574 . 493358)
+ (-2575 . 493264) (-2576 . 493177) (-2577 . 493090) (-2578 . 493003)
+ (-2579 . 492916) (-2580 . 492829) (-2581 . 492736) (-2582 . 492649)
+ (-2583 . 492562) (-2584 . 492475) (-2585 . 492388) (-2586 . 492301)
+ (-2587 . 492214) (-2588 . 492127) (-2589 . 492040) (-2590 . 491953)
+ (-2591 . 491866) (-2592 . 491729) (-2593 . 491592) (-2594 . 491473)
+ (-2595 . 491354) (-2596 . 491214) (-2597 . 491127) (-2598 . 491040)
+ (-2599 . 490953) (-2600 . 490866) (-2601 . 490729) (-2602 . 490592)
+ (-2603 . 490505) (-2604 . 490418) (-2605 . 490331) (-2606 . 490244)
+ (-2607 . 490157) (-2608 . 490070) (-2609 . 489980) (-2610 . 489887)
+ (-2611 . 489794) (-2612 . 489698) (-2613 . 489648) (-2614 . 489598)
+ (-2615 . 489545) (-2616 . 489291) (-2617 . 489242) (-2618 . 489192)
+ (-2619 . 489158) (-2620 . 489093) (-2621 . 489056) (-2622 . 488919)
+ (-2623 . 488681) (-2624 . 488432) (-2625 . 488275) (-2626 . 487737)
+ (-2627 . 487539) (-2628 . 487325) (-2629 . 487163) (-2630 . 486764)
+ (-2631 . 486597) (-2632 . 485522) (-2633 . 485399) (-2634 . 485182)
+ (-2635 . 485052) (-2636 . 484922) (-2637 . 484765) (-2638 . 484662)
+ (-2639 . 484604) (-2640 . 484546) (-2641 . 484440) (-2642 . 484334)
+ (-2643 . 483418) (-2644 . 481291) (-2645 . 480477) (-2646 . 478674)
+ (-2647 . 478606) (-2648 . 478538) (-2649 . 478470) (-2650 . 478402)
+ (-2651 . 478334) (-2652 . 478256) (-2653 . 477856) (-2654 . 477500)
+ (-2655 . 477318) (-2656 . 476789) (-2657 . 476613) (-2658 . 476391)
+ (-2659 . 476169) (-2660 . 475947) (-2661 . 475728) (-2662 . 475509)
+ (-2663 . 475290) (-2664 . 475071) (-2665 . 474852) (-2666 . 474633)
+ (-2667 . 474532) (-2668 . 473799) (-2669 . 473744) (-2670 . 473689)
+ (-2671 . 473634) (-2672 . 473579) (-2673 . 473429) (-2674 . 473137)
+ (-2675 . 472879) (-2676 . 472851) (-2677 . 472801) (-2678 . 472209)
+ (-2679 . 471675) (-2680 . 471226) (-2681 . 471055) (-2682 . 470865)
+ (-2683 . 470578) (-2684 . 470192) (-2685 . 469320) (-2686 . 468980)
+ (-2687 . 468812) (-2688 . 468590) (-2689 . 468340) (-2690 . 467992)
+ (-2691 . 466982) (-2692 . 466671) (-2693 . 466459) (-2694 . 465895)
+ (-2695 . 465382) (-2696 . 463626) (-2697 . 463154) (-2698 . 462555)
+ (-2699 . 462305) (-2700 . 462171) (-2701 . 461719) (-2702 . 461230)
+ (-2703 . 460870) (-2704 . 460587) (-2705 . 460472) (-2706 . 460357)
+ (-2707 . 460142) (-2708 . 460089) (-2709 . 460036) (-2710 . 459984)
+ (-2711 . 459932) (-2712 . 459840) (-2713 . 459769) (-2714 . 459695)
+ (-2715 . 459624) (-2716 . 459571) (-2717 . 459500) (-2718 . 459447)
+ (-2719 . 459394) (-2720 . 459341) (-2721 . 459288) (-2722 . 459235)
+ (-2723 . 459182) (-2724 . 459129) (-2725 . 459076) (-2726 . 459023)
+ (-2727 . 458970) (-2728 . 458917) (-2729 . 458864) (-2730 . 458811)
+ (-2731 . 458758) (-2732 . 458687) (-2733 . 458616) (-2734 . 458544)
+ (-2735 . 458472) (-2736 . 458397) (-2737 . 458344) (-2738 . 458291)
+ (-2739 . 458238) (-2740 . 458185) (-2741 . 458132) (-2742 . 458079)
+ (-2743 . 458026) (-2744 . 457973) (-2745 . 457920) (-2746 . 457867)
+ (-2747 . 457814) (-2748 . 457761) (-2749 . 457708) (-2750 . 457655)
+ (-2751 . 457603) (-2752 . 457551) (-2753 . 457498) (-2754 . 457445)
+ (-2755 . 457354) (-2756 . 457301) (-2757 . 457273) (-2758 . 457245)
+ (-2759 . 457217) (-2760 . 457189) (-2761 . 457111) (-2762 . 457051)
+ (-2763 . 456999) (-2764 . 456947) (-2765 . 456895) (-2766 . 456843)
+ (-2767 . 456791) (-2768 . 455991) (-2769 . 455915) (-2770 . 455839)
+ (-2771 . 455773) (-2772 . 455706) (-2773 . 455639) (-2774 . 455582)
+ (-2775 . 455506) (-2776 . 455438) (-2777 . 455367) (-2778 . 455296)
+ (-2779 . 455230) (-2780 . 455143) (-2781 . 455071) (-2782 . 454964)
+ (-2783 . 454780) (-2784 . 454613) (-2785 . 454435) (-2786 . 453846)
+ (-2787 . 453685) (-2788 . 453112) (-2789 . 453037) (-2790 . 452673)
+ (-2791 . 452001) (-2792 . 451825) (-2793 . 451753) (-2794 . 451613)
+ (-2795 . 451423) (-2796 . 451316) (-2797 . 451209) (-2798 . 451093)
+ (-2799 . 450977) (-2800 . 450861) (-2801 . 450711) (-2802 . 450568)
+ (-2803 . 450495) (-2804 . 450410) (-2805 . 450337) (-2806 . 450264)
+ (-2807 . 450191) (-2808 . 450048) (-2809 . 449898) (-2810 . 449724)
+ (-2811 . 449574) (-2812 . 449424) (-2813 . 449298) (-2814 . 448912)
+ (-2815 . 448628) (-2816 . 448344) (-2817 . 447935) (-2818 . 447651)
+ (-2819 . 447578) (-2820 . 447431) (-2821 . 447325) (-2822 . 447251)
+ (-2823 . 447154) (-2824 . 447057) (-2825 . 446897) (-2826 . 446810)
+ (-2827 . 446723) (-2828 . 446637) (-2829 . 446578) (-2830 . 446519)
+ (-2831 . 446386) (-2832 . 446327) (-2833 . 446157) (-2834 . 446069)
+ (-2835 . 445972) (-2836 . 445938) (-2837 . 445907) (-2838 . 445823)
+ (-2839 . 445767) (-2840 . 445705) (-2841 . 445671) (-2842 . 445637)
+ (-2843 . 445603) (-2844 . 445569) (-2845 . 445535) (-2846 . 442782)
+ (-2847 . 442748) (-2848 . 442714) (-2849 . 442680) (-2850 . 442568)
+ (-2851 . 442534) (-2852 . 442482) (-2853 . 442448) (-2854 . 442351)
+ (-2855 . 442289) (-2856 . 442198) (-2857 . 442107) (-2858 . 442052)
+ (-2859 . 442000) (-2860 . 441948) (-2861 . 441896) (-2862 . 441844)
+ (-2863 . 441422) (-2864 . 441256) (-2865 . 441187) (-2866 . 441134)
+ (-2867 . 440978) (-2868 . 440457) (-2869 . 440316) (-2870 . 440282)
+ (-2871 . 440227) (-2872 . 439517) (-2873 . 439202) (-2874 . 438697)
+ (-2875 . 438619) (-2876 . 438567) (-2877 . 438515) (-2878 . 438331)
+ (-2879 . 438279) (-2880 . 438227) (-2881 . 438151) (-2882 . 438089)
+ (-2883 . 437871) (-2884 . 437616) (-2885 . 437549) (-2886 . 437455)
+ (-2887 . 437361) (-2888 . 437178) (-2889 . 437096) (-2890 . 436974)
+ (-2891 . 436852) (-2892 . 436706) (-2893 . 436051) (-2894 . 435349)
+ (-2895 . 435245) (-2896 . 435144) (-2897 . 435043) (-2898 . 434932)
+ (-2899 . 434764) (-2900 . 434558) (-2901 . 434465) (-2902 . 434388)
+ (-2903 . 434332) (-2904 . 434261) (-2905 . 434141) (-2906 . 434040)
+ (-2907 . 433942) (-2908 . 433862) (-2909 . 433782) (-2910 . 433705)
+ (-2911 . 433634) (-2912 . 433563) (-2913 . 433492) (-2914 . 433421)
+ (-2915 . 433350) (-2916 . 433279) (-2917 . 433186) (-2918 . 432991)
+ (-2919 . 432747) (-2920 . 432577) (-2921 . 432456) (-2922 . 432084)
+ (-2923 . 431915) (-2924 . 431799) (-2925 . 431297) (-2926 . 430916)
+ (-2927 . 430670) (-2928 . 430242) (-2929 . 430150) (-2930 . 430053)
+ (-2931 . 426777) (-2932 . 425960) (-2933 . 425847) (-2934 . 425773)
+ (-2935 . 425681) (-2936 . 425488) (-2937 . 425295) (-2938 . 425224)
+ (-2939 . 425153) (-2940 . 425072) (-2941 . 424991) (-2942 . 424866)
+ (-2943 . 424733) (-2944 . 424652) (-2945 . 424578) (-2946 . 424413)
+ (-2947 . 424254) (-2948 . 424023) (-2949 . 423875) (-2950 . 423771)
+ (-2951 . 423667) (-2952 . 423582) (-2953 . 423214) (-2954 . 423133)
+ (-2955 . 423046) (-2956 . 422965) (-2957 . 422722) (-2958 . 422502)
+ (-2959 . 422315) (-2960 . 421993) (-2961 . 421700) (-2962 . 421407)
+ (-2963 . 421097) (-2964 . 420780) (-2965 . 420651) (-2966 . 420463)
+ (-2967 . 419990) (-2968 . 419908) (-2969 . 419693) (-2970 . 419478)
+ (-2971 . 419219) (-2972 . 418789) (-2973 . 418269) (-2974 . 418139)
+ (-2975 . 417865) (-2976 . 417686) (-2977 . 417571) (-2978 . 417467)
+ (-2979 . 417412) (-2980 . 417335) (-2981 . 417265) (-2982 . 417192)
+ (-2983 . 417137) (-2984 . 417064) (-2985 . 417009) (-2986 . 416654)
+ (-2987 . 416246) (-2988 . 416093) (-2989 . 415940) (-2990 . 415859)
+ (-2991 . 415706) (-2992 . 415553) (-2993 . 415418) (-2994 . 415283)
+ (-2995 . 415148) (-2996 . 415013) (-2997 . 414878) (-2998 . 414743)
+ (-2999 . 414687) (-3000 . 414534) (-3001 . 414423) (-3002 . 414312)
+ (-3003 . 414244) (-3004 . 414134) (-3005 . 413890) (-3006 . 413787)
+ (-3007 . 409636) (-3008 . 409188) (-3009 . 408761) (-3010 . 408144)
+ (-3011 . 407543) (-3012 . 407325) (-3013 . 407147) (-3014 . 406887)
+ (-3015 . 406476) (-3016 . 406182) (-3017 . 405739) (-3018 . 405561)
+ (-3019 . 405168) (-3020 . 404775) (-3021 . 404590) (-3022 . 404383)
+ (-3023 . 404162) (-3024 . 403856) (-3025 . 403657) (-3026 . 403028)
+ (-3027 . 402871) (-3028 . 402480) (-3029 . 402428) (-3030 . 402379)
+ (-3031 . 402327) (-3032 . 402278) (-3033 . 402226) (-3034 . 402080)
+ (-3035 . 402028) (-3036 . 401882) (-3037 . 401830) (-3038 . 401684)
+ (-3039 . 401632) (-3040 . 401257) (-3041 . 401205) (-3042 . 401156)
+ (-3043 . 401104) (-3044 . 401055) (-3045 . 401003) (-3046 . 400954)
+ (-3047 . 400902) (-3048 . 400853) (-3049 . 400801) (-3050 . 400752)
+ (-3051 . 400686) (-3052 . 400568) (-3053 . 399406) (-3054 . 398989)
+ (-3055 . 398881) (-3056 . 398636) (-3057 . 398487) (-3058 . 398338)
+ (-3059 . 398175) (-3060 . 395932) (-3061 . 395658) (-3062 . 395504)
+ (-3063 . 395358) (-3064 . 395212) (-3065 . 394993) (-3066 . 394861)
+ (-3067 . 394786) (-3068 . 394711) (-3069 . 394576) (-3070 . 394447)
+ (-3071 . 394318) (-3072 . 394192) (-3073 . 394066) (-3074 . 393940)
+ (-3075 . 393814) (-3076 . 393711) (-3077 . 393611) (-3078 . 393517)
+ (-3079 . 393387) (-3080 . 393236) (-3081 . 392860) (-3082 . 392746)
+ (-3083 . 392505) (-3084 . 392047) (-3085 . 391737) (-3086 . 391171)
+ (-3087 . 390603) (-3088 . 389595) (-3089 . 389054) (-3090 . 388741)
+ (-3091 . 388403) (-3092 . 388072) (-3093 . 387752) (-3094 . 387699)
+ (-3095 . 387572) (-3096 . 387044) (-3097 . 385887) (-3098 . 385832)
+ (-3099 . 385777) (-3100 . 385701) (-3101 . 385582) (-3102 . 385507)
+ (-3103 . 385432) (-3104 . 385354) (-3105 . 385203) (-3106 . 385111)
+ (-3107 . 385041) (-3108 . 384949) (-3109 . 384879) (-3110 . 384787)
+ (-3111 . 384717) (-3112 . 384625) (-3113 . 384555) (-3114 . 384500)
+ (-3115 . 384430) (-3116 . 384310) (-3117 . 384255) (-3118 . 384185)
+ (-3119 . 384088) (-3120 . 383991) (-3121 . 383957) (-3122 . 383923)
+ (-3123 . 383705) (-3124 . 383555) (-3125 . 383425) (-3126 . 383295)
+ (-3127 . 383195) (-3128 . 383018) (-3129 . 382858) (-3130 . 382758)
+ (-3131 . 382581) (-3132 . 382421) (-3133 . 382262) (-3134 . 382123)
+ (-3135 . 381973) (-3136 . 381843) (-3137 . 381713) (-3138 . 381566)
+ (-3139 . 381439) (-3140 . 381336) (-3141 . 381229) (-3142 . 381132)
+ (-3143 . 380967) (-3144 . 380819) (-3145 . 380390) (-3146 . 380290)
+ (-3147 . 380187) (-3148 . 380099) (-3149 . 380019) (-3150 . 379869)
+ (-3151 . 379739) (-3152 . 379687) (-3153 . 379597) (-3154 . 379485)
+ (-3155 . 379173) (-3156 . 378994) (-3157 . 377393) (-3158 . 376764)
+ (-3159 . 376704) (-3160 . 376586) (-3161 . 376468) (-3162 . 376324)
+ (-3163 . 376171) (-3164 . 376012) (-3165 . 375853) (-3166 . 375647)
+ (-3167 . 375460) (-3168 . 375307) (-3169 . 375151) (-3170 . 374995)
+ (-3171 . 374842) (-3172 . 374704) (-3173 . 374280) (-3174 . 374154)
+ (-3175 . 374028) (-3176 . 373902) (-3177 . 373761) (-3178 . 373620)
+ (-3179 . 373479) (-3180 . 373335) (-3181 . 372587) (-3182 . 372428)
+ (-3183 . 372241) (-3184 . 372085) (-3185 . 371846) (-3186 . 371600)
+ (-3187 . 371354) (-3188 . 371144) (-3189 . 371006) (-3190 . 370796)
+ (-3191 . 370507) (-3192 . 370297) (-3193 . 370159) (-3194 . 369949)
+ (-3195 . 369645) (-3196 . 369501) (-3197 . 369360) (-3198 . 369137)
+ (-3199 . 368996) (-3200 . 368772) (-3201 . 368574) (-3202 . 368418)
+ (-3203 . 368090) (-3204 . 367931) (-3205 . 367772) (-3206 . 367613)
+ (-3207 . 367442) (-3208 . 367271) (-3209 . 367097) (-3210 . 366745)
+ (-3211 . 366551) (-3212 . 366389) (-3213 . 366316) (-3214 . 366243)
+ (-3215 . 366170) (-3216 . 366097) (-3217 . 366024) (-3218 . 365951)
+ (-3219 . 365828) (-3220 . 365655) (-3221 . 365532) (-3222 . 365446)
+ (-3223 . 365380) (-3224 . 365314) (-3225 . 365248) (-3226 . 365182)
+ (-3227 . 365116) (-3228 . 365050) (-3229 . 364984) (-3230 . 364918)
+ (-3231 . 364852) (-3232 . 364786) (-3233 . 364720) (-3234 . 364654)
+ (-3235 . 364588) (-3236 . 364522) (-3237 . 364456) (-3238 . 364390)
+ (-3239 . 364324) (-3240 . 364258) (-3241 . 364192) (-3242 . 364126)
+ (-3243 . 364060) (-3244 . 363994) (-3245 . 363928) (-3246 . 363862)
+ (-3247 . 363796) (-3248 . 363730) (-3249 . 363083) (-3250 . 362436)
+ (-3251 . 362308) (-3252 . 362185) (-3253 . 362062) (-3254 . 361921)
+ (-3255 . 361766) (-3256 . 361622) (-3257 . 361447) (-3258 . 360809)
+ (-3259 . 360686) (-3260 . 360563) (-3261 . 359886) (-3262 . 359190)
+ (-3263 . 359089) (-3264 . 359033) (-3265 . 358977) (-3266 . 358921)
+ (-3267 . 358865) (-3268 . 358806) (-3269 . 358742) (-3270 . 358634)
+ (-3271 . 358526) (-3272 . 358418) (-3273 . 358139) (-3274 . 358065)
+ (-3275 . 357839) (-3276 . 357758) (-3277 . 357680) (-3278 . 357602)
+ (-3279 . 357524) (-3280 . 357445) (-3281 . 357367) (-3282 . 357274)
+ (-3283 . 357175) (-3284 . 357107) (-3285 . 357058) (-3286 . 356367)
+ (-3287 . 355719) (-3288 . 354928) (-3289 . 354847) (-3290 . 354743)
+ (-3291 . 354651) (-3292 . 354559) (-3293 . 354485) (-3294 . 354411)
+ (-3295 . 354337) (-3296 . 354282) (-3297 . 354227) (-3298 . 354161)
+ (-3299 . 354095) (-3300 . 354033) (-3301 . 353646) (-3302 . 353146)
+ (-3303 . 352681) (-3304 . 352428) (-3305 . 352239) (-3306 . 351897)
+ (-3307 . 351601) (-3308 . 351433) (-3309 . 351302) (-3310 . 351162)
+ (-3311 . 351007) (-3312 . 350838) (-3313 . 349452) (-3314 . 349319)
+ (-3315 . 349178) (-3316 . 348949) (-3317 . 348681) (-3318 . 348622)
+ (-3319 . 348566) (-3320 . 348510) (-3321 . 348298) (-3322 . 348159)
+ (-3323 . 348052) (-3324 . 347935) (-3325 . 347869) (-3326 . 347796)
+ (-3327 . 347682) (-3328 . 347429) (-3329 . 347329) (-3330 . 347135)
+ (-3331 . 346827) (-3332 . 346361) (-3333 . 346256) (-3334 . 346150)
+ (-3335 . 346001) (-3336 . 345861) (-3337 . 345448) (-3338 . 345202)
+ (-3339 . 344542) (-3340 . 344389) (-3341 . 344275) (-3342 . 344165)
+ (-3343 . 343338) (-3344 . 343286) (-3345 . 343234) (-3346 . 343040)
+ (-3347 . 341692) (-3348 . 341244) (-3349 . 339849) (-3350 . 338991)
+ (-3351 . 338942) (-3352 . 338893) (-3353 . 338844) (-3354 . 338777)
+ (-3355 . 338702) (-3356 . 338499) (-3357 . 338427) (-3358 . 338352)
+ (-3359 . 338280) (-3360 . 338163) (-3361 . 337919) (-3362 . 337602)
+ (-3363 . 337520) (-3364 . 337438) (-3365 . 337377) (-3366 . 336505)
+ (-3367 . 335932) (-3368 . 334697) (-3369 . 333890) (-3370 . 333640)
+ (-3371 . 333390) (-3372 . 333058) (-3373 . 332814) (-3374 . 332570)
+ (-3375 . 332326) (-3376 . 332082) (-3377 . 331838) (-3378 . 331594)
+ (-3379 . 331350) (-3380 . 331106) (-3381 . 330862) (-3382 . 330618)
+ (-3383 . 330191) (-3384 . 330075) (-3385 . 329234) (-3386 . 329203)
+ (-3387 . 328857) (-3388 . 328631) (-3389 . 328532) (-3390 . 328433)
+ (-3391 . 326667) (-3392 . 326554) (-3393 . 325504) (-3394 . 325412)
+ (-3395 . 324422) (-3396 . 324088) (-3397 . 323754) (-3398 . 323651)
+ (-3399 . 323565) (-3400 . 323537) (-3401 . 323481) (-3402 . 323402)
+ (-3403 . 323331) (-3404 . 323257) (-3405 . 323183) (-3406 . 323152)
+ (-3407 . 323121) (-3408 . 323090) (-3409 . 323059) (-3410 . 323028)
+ (-3411 . 322997) (-3412 . 322966) (-3413 . 322935) (-3414 . 322907)
+ (-3415 . 322796) (-3416 . 322685) (-3417 . 322574) (-3418 . 322463)
+ (-3419 . 321376) (-3420 . 321256) (-3421 . 321121) (-3422 . 320989)
+ (-3423 . 320857) (-3424 . 320563) (-3425 . 320269) (-3426 . 319924)
+ (-3427 . 319698) (-3428 . 319472) (-3429 . 319361) (-3430 . 319250)
+ (-3431 . 313990) (-3432 . 309638) (-3433 . 309329) (-3434 . 309177)
+ (-3435 . 308654) (-3436 . 308325) (-3437 . 308132) (-3438 . 307939)
+ (-3439 . 307746) (-3440 . 307553) (-3441 . 307439) (-3442 . 307315)
+ (-3443 . 307201) (-3444 . 307087) (-3445 . 306994) (-3446 . 306901)
+ (-3447 . 306790) (-3448 . 306587) (-3449 . 305440) (-3450 . 305347)
+ (-3451 . 305233) (-3452 . 305140) (-3453 . 304993) (-3454 . 304882)
+ (-3455 . 304668) (-3456 . 304371) (-3457 . 303602) (-3458 . 303026)
+ (-3459 . 302535) (-3460 . 302288) (-3461 . 302041) (-3462 . 301743)
+ (-3463 . 301133) (-3464 . 300689) (-3465 . 300533) (-3466 . 300388)
+ (-3467 . 300064) (-3468 . 299907) (-3469 . 299765) (-3470 . 299623)
+ (-3471 . 299481) (-3472 . 299202) (-3473 . 298981) (-3474 . 298456)
+ (-3475 . 298242) (-3476 . 298028) (-3477 . 297642) (-3478 . 297463)
+ (-3479 . 297252) (-3480 . 297052) (-3481 . 296871) (-3482 . 295718)
+ (-3483 . 295331) (-3484 . 295122) (-3485 . 294910) (-3486 . 294068)
+ (-3487 . 294039) (-3488 . 293970) (-3489 . 293899) (-3490 . 293732)
+ (-3491 . 293703) (-3492 . 293674) (-3493 . 293618) (-3494 . 293457)
+ (-3495 . 293397) (-3496 . 292701) (-3497 . 291523) (-3498 . 291299)
+ (-3499 . 291227) (-3500 . 291170) (-3501 . 291113) (-3502 . 291056)
+ (-3503 . 290999) (-3504 . 290924) (-3505 . 290565) (-3506 . 290490)
+ (-3507 . 290430) (-3508 . 290312) (-3509 . 289365) (-3510 . 289238)
+ (-3511 . 289025) (-3512 . 288950) (-3513 . 288896) (-3514 . 288699)
+ (-3515 . 288590) (-3516 . 288277) (-3517 . 288169) (-3518 . 288066)
+ (-3519 . 287963) (-3520 . 287862) (-3521 . 287764) (-3522 . 287626)
+ (-3523 . 287488) (-3524 . 287350) (-3525 . 287088) (-3526 . 286879)
+ (-3527 . 286741) (-3528 . 286452) (-3529 . 286299) (-3530 . 286021)
+ (-3531 . 285799) (-3532 . 285646) (-3533 . 285493) (-3534 . 285340)
+ (-3535 . 285187) (-3536 . 285034) (-3537 . 284878) (-3538 . 284759)
+ (-3539 . 284370) (-3540 . 284037) (-3541 . 283694) (-3542 . 283345)
+ (-3543 . 283002) (-3544 . 282659) (-3545 . 282274) (-3546 . 281889)
+ (-3547 . 281504) (-3548 . 281135) (-3549 . 280409) (-3550 . 280060)
+ (-3551 . 279608) (-3552 . 279181) (-3553 . 278566) (-3554 . 277967)
+ (-3555 . 277577) (-3556 . 277243) (-3557 . 276853) (-3558 . 276519)
+ (-3559 . 276298) (-3560 . 275773) (-3561 . 275559) (-3562 . 275345)
+ (-3563 . 275130) (-3564 . 274951) (-3565 . 274736) (-3566 . 274557)
+ (-3567 . 274171) (-3568 . 273992) (-3569 . 273781) (-3570 . 273691)
+ (-3571 . 273601) (-3572 . 273510) (-3573 . 273423) (-3574 . 273333)
+ (-3575 . 273252) (-3576 . 273063) (-3577 . 273007) (-3578 . 272926)
+ (-3579 . 272845) (-3580 . 272764) (-3581 . 272492) (-3582 . 272357)
+ (-3583 . 272222) (-3584 . 272098) (-3585 . 271977) (-3586 . 271859)
+ (-3587 . 271723) (-3588 . 271590) (-3589 . 271530) (-3590 . 271477)
+ (-3591 . 271385) (-3592 . 271293) (-3593 . 271207) (-3594 . 271109)
+ (-3595 . 270992) (-3596 . 270713) (-3597 . 270434) (-3598 . 270374)
+ (-3599 . 270308) (-3600 . 270242) (-3601 . 270101) (-3602 . 270044)
+ (-3603 . 269987) (-3604 . 269927) (-3605 . 269532) (-3606 . 269010)
+ (-3607 . 268733) (-3608 . 268313) (-3609 . 268201) (-3610 . 267763)
+ (-3611 . 267533) (-3612 . 267330) (-3613 . 267148) (-3614 . 267018)
+ (-3615 . 266812) (-3616 . 266605) (-3617 . 266415) (-3618 . 265850)
+ (-3619 . 265594) (-3620 . 265303) (-3621 . 265009) (-3622 . 264712)
+ (-3623 . 264412) (-3624 . 264282) (-3625 . 264149) (-3626 . 264013)
+ (-3627 . 263874) (-3628 . 262595) (-3629 . 262270) (-3630 . 261889)
+ (-3631 . 261776) (-3632 . 261523) (-3633 . 261227) (-3634 . 260931)
+ (-3635 . 260671) (-3636 . 260497) (-3637 . 260419) (-3638 . 260332)
+ (-3639 . 260232) (-3640 . 260138) (-3641 . 260057) (-3642 . 259986)
+ (-3643 . 259192) (-3644 . 259121) (-3645 . 258793) (-3646 . 258722)
+ (-3647 . 258394) (-3648 . 258323) (-3649 . 257878) (-3650 . 257807)
+ (-3651 . 257703) (-3652 . 257629) (-3653 . 257555) (-3654 . 257484)
+ (-3655 . 257142) (-3656 . 257014) (-3657 . 256937) (-3658 . 256388)
+ (-3659 . 256245) (-3660 . 256102) (-3661 . 255608) (-3662 . 255263)
+ (-3663 . 255035) (-3664 . 254765) (-3665 . 254385) (-3666 . 254145)
+ (-3667 . 253905) (-3668 . 253665) (-3669 . 253425) (-3670 . 253197)
+ (-3671 . 252969) (-3672 . 252817) (-3673 . 252633) (-3674 . 252528)
+ (-3675 . 252405) (-3676 . 252297) (-3677 . 252189) (-3678 . 251863)
+ (-3679 . 251597) (-3680 . 251492) (-3681 . 251181) (-3682 . 250876)
+ (-3683 . 250566) (-3684 . 249831) (-3685 . 249236) (-3686 . 249059)
+ (-3687 . 248914) (-3688 . 248759) (-3689 . 248636) (-3690 . 248531)
+ (-3691 . 248416) (-3692 . 248321) (-3693 . 247840) (-3694 . 247730)
+ (-3695 . 247620) (-3696 . 247510) (-3697 . 246418) (-3698 . 245903)
+ (-3699 . 245836) (-3700 . 245762) (-3701 . 244889) (-3702 . 244815)
+ (-3703 . 244759) (-3704 . 244703) (-3705 . 244671) (-3706 . 244585)
+ (-3707 . 244553) (-3708 . 244467) (-3709 . 244045) (-3710 . 243623)
+ (-3711 . 243068) (-3712 . 241960) (-3713 . 240242) (-3714 . 238684)
+ (-3715 . 237890) (-3716 . 237388) (-3717 . 236900) (-3718 . 236496)
+ (-3719 . 235842) (-3720 . 235767) (-3721 . 235695) (-3722 . 235623)
+ (-3723 . 235581) (-3724 . 235461) (-3725 . 235021) (-3726 . 234581)
+ (-3727 . 234141) (-3728 . 233619) (-3729 . 233454) (-3730 . 233289)
+ (-3731 . 232978) (-3732 . 232891) (-3733 . 232801) (-3734 . 232469)
+ (-3735 . 232352) (-3736 . 232271) (-3737 . 232112) (-3738 . 231998)
+ (-3739 . 231923) (-3740 . 231077) (-3741 . 229894) (-3742 . 229795)
+ (-3743 . 229696) (-3744 . 229357) (-3745 . 229279) (-3746 . 229204)
+ (-3747 . 229098) (-3748 . 228942) (-3749 . 228835) (-3750 . 228700)
+ (-3751 . 228565) (-3752 . 228443) (-3753 . 228348) (-3754 . 228200)
+ (-3755 . 228105) (-3756 . 227950) (-3757 . 227795) (-3758 . 227115)
+ (-3759 . 226435) (-3760 . 225692) (-3761 . 225124) (-3762 . 224556)
+ (-3763 . 223988) (-3764 . 223307) (-3765 . 222626) (-3766 . 221945)
+ (-3767 . 221376) (-3768 . 220807) (-3769 . 220238) (-3770 . 219670)
+ (-3771 . 219102) (-3772 . 218534) (-3773 . 217966) (-3774 . 217398)
+ (-3775 . 216830) (-3776 . 216726) (-3777 . 216141) (-3778 . 216036)
+ (-3779 . 215961) (-3780 . 215869) (-3781 . 215777) (-3782 . 215685)
+ (-3783 . 215593) (-3784 . 215498) (-3785 . 215393) (-3786 . 215270)
+ (-3787 . 215147) (-3788 . 214783) (-3789 . 214661) (-3790 . 214563)
+ (-3791 . 214202) (-3792 . 213672) (-3793 . 213597) (-3794 . 213522)
+ (-3795 . 213430) (-3796 . 213249) (-3797 . 213154) (-3798 . 213079)
+ (-3799 . 212987) (-3800 . 212895) (-3801 . 212734) (-3802 . 212429)
+ (-3803 . 212124) (-3804 . 209396) (-3805 . 207938) (-3806 . 207378)
+ (-3807 . 207179) (-12 . 207007) (-3809 . 206835) (-3810 . 206663)
+ (-3811 . 206491) (-3812 . 206319) (-3813 . 206147) (-3814 . 205975)
+ (-3815 . 205782) (-3816 . 205667) (-3817 . 205397) (-3818 . 205334)
+ (-3819 . 205271) (-3820 . 205208) (-3821 . 204930) (-3822 . 204663)
+ (-3823 . 204610) (-3824 . 204048) (-3825 . 203997) (-3826 . 203809)
+ (-3827 . 203736) (-3828 . 203656) (-3829 . 203543) (-3830 . 203353)
+ (-3831 . 202989) (-3832 . 202717) (-3833 . 202666) (-3834 . 202615)
+ (-3835 . 202545) (-3836 . 202426) (-3837 . 202397) (-3838 . 202295)
+ (-3839 . 202173) (-3840 . 202119) (-3841 . 201939) (-3842 . 201878)
+ (-3843 . 201694) (-3844 . 201633) (-3845 . 201561) (-3846 . 201086)
+ (-3847 . 200711) (-3848 . 200170) (-3849 . 200117) (-3850 . 199989)
+ (-3851 . 199837) (-3852 . 199784) (-3853 . 199642) (-3854 . 199374)
+ (-3855 . 190049) (-3856 . 189898) (-3857 . 189847) (-3858 . 189796)
+ (-3859 . 189745) (-3860 . 189675) (-3861 . 189477) (-3862 . 189334)
+ (-3863 . 189220) (-3864 . 189099) (-3865 . 188981) (-3866 . 188869)
+ (-3867 . 188751) (-3868 . 188646) (-3869 . 188565) (-3870 . 188461)
+ (-3871 . 187527) (-3872 . 187307) (-3873 . 187070) (-3874 . 186988)
+ (-3875 . 186644) (-3876 . 186570) (-3877 . 186475) (-3878 . 186401)
+ (-3879 . 186199) (-3880 . 186108) (-3881 . 185992) (-3882 . 185879)
+ (-3883 . 185788) (-3884 . 185697) (-3885 . 185607) (-3886 . 185517)
+ (-3887 . 185427) (-3888 . 185339) (-3889 . 182977) (-3890 . 182909)
+ (-3891 . 182855) (-3892 . 182730) (-3893 . 182666) (-3894 . 182541)
+ (-3895 . 182422) (-3896 . 181729) (-3897 . 181668) (-3898 . 181549)
+ (-3899 . 180797) (-3900 . 180744) (-3901 . 180555) (-3902 . 180491)
+ (-3903 . 180437) (-3904 . 180328) (-3905 . 179010) (-3906 . 178929)
+ (-3907 . 178840) (-3908 . 178782) (-3909 . 178517) (-3910 . 178432)
+ (-3911 . 178357) (-3912 . 178272) (-3913 . 178215) (-3914 . 177999)
+ (-3915 . 177858) (-3916 . 177123) (-3917 . 176553) (-3918 . 175983)
+ (-3919 . 175413) (-3920 . 174678) (-3921 . 173996) (-3922 . 173408)
+ (-3923 . 172820) (-3924 . 172544) (-3925 . 172091) (-3926 . 171744)
+ (-3927 . 171388) (-3928 . 171066) (-3929 . 170933) (-3930 . 170800)
+ (-3931 . 170468) (-3932 . 170359) (-3933 . 170250) (-3934 . 170141)
+ (-3935 . 170032) (-3936 . 169923) (-3937 . 169814) (-3938 . 169705)
+ (-3939 . 169596) (-3940 . 169487) (-3941 . 169378) (-3942 . 169269)
+ (-3943 . 169160) (-3944 . 169051) (-3945 . 168942) (-3946 . 168833)
+ (-3947 . 168724) (-3948 . 168615) (-3949 . 168506) (-3950 . 168397)
+ (-3951 . 168288) (-3952 . 168179) (-3953 . 168070) (-3954 . 167961)
+ (-3955 . 167852) (-3956 . 167743) (-3957 . 167545) (-3958 . 167235)
+ (-3959 . 165677) (-3960 . 165523) (-3961 . 165386) (-3962 . 165244)
+ (-3963 . 165042) (-3964 . 163101) (-3965 . 162974) (-3966 . 162850)
+ (-3967 . 162723) (-3968 . 162502) (-3969 . 162281) (-3970 . 162154)
+ (-3971 . 161952) (-3972 . 161774) (-3973 . 161253) (-3974 . 160732)
+ (-3975 . 160453) (-3976 . 160040) (-3977 . 159519) (-3978 . 159335)
+ (-3979 . 159193) (-3980 . 158695) (-3981 . 158058) (-3982 . 158002)
+ (-3983 . 157908) (-3984 . 157787) (-3985 . 157716) (-3986 . 157642)
+ (-3987 . 157411) (-3988 . 156792) (-3989 . 156361) (-3990 . 156279)
+ (-3991 . 156137) (-3992 . 155660) (-3993 . 155538) (-3994 . 155416)
+ (-3995 . 155276) (-3996 . 155089) (-3997 . 154973) (-3998 . 154712)
+ (-3999 . 154643) (-4000 . 154444) (-4001 . 154285) (-4002 . 154130)
+ (-4003 . 154023) (-4004 . 153972) (-4005 . 153588) (-4006 . 153349)
+ (-4007 . 153259) (-4008 . 151454) (-4009 . 150870) (-4010 . 150792)
+ (-4011 . 145329) (-4012 . 144539) (-4013 . 144160) (-4014 . 144088)
+ (-4015 . 143899) (-4016 . 143724) (-4017 . 143239) (-4018 . 142817)
+ (-4019 . 142377) (-4020 . 141514) (-4021 . 141390) (-4022 . 141263)
+ (-4023 . 141154) (-4024 . 141002) (-4025 . 140888) (-4026 . 140749)
+ (-4027 . 140668) (-4028 . 140587) (-4029 . 140483) (-4030 . 140065)
+ (-4031 . 139644) (-4032 . 139570) (-4033 . 139307) (-4034 . 139043)
+ (-4035 . 138664) (-4036 . 137965) (-4037 . 137906) (-4038 . 137832)
+ (-4039 . 137758) (-4040 . 137636) (-4041 . 137386) (-4042 . 137300)
+ (-4043 . 137225) (-4044 . 137150) (-4045 . 137055) (-4046 . 133101)
+ (-4047 . 131927) (-4048 . 131266) (-4049 . 131082) (-4050 . 128870)
+ (-4051 . 128545) (-4052 . 128166) (-4053 . 127724) (-4054 . 127489)
+ (-4055 . 127244) (-4056 . 127154) (-4057 . 125670) (-4058 . 125592)
+ (-4059 . 125487) (-4060 . 123959) (-4061 . 123547) (-4062 . 123132)
+ (-4063 . 123030) (-4064 . 122948) (-4065 . 122790) (-4066 . 121398)
+ (-4067 . 121316) (-4068 . 121237) (-4069 . 120882) (-4070 . 120825)
+ (-4071 . 120753) (-4072 . 120696) (-4073 . 120639) (-4074 . 120509)
+ (-4075 . 120307) (-4076 . 119991) (-4077 . 119570) (-4078 . 114416)
+ (-4079 . 113814) (-4080 . 113190) (-4081 . 112977) (-4082 . 112764)
+ (-4083 . 112598) (-4084 . 112385) (-4085 . 112219) (-4086 . 112053)
+ (-4087 . 111887) (-4088 . 111721) (-4089 . 109588) (-4090 . 109318)
+ (-4091 . 102426) (** . 99373) (-4093 . 98957) (-4094 . 98716) (-4095 . 98660)
+ (-4096 . 98168) (-4097 . 95280) (-4098 . 95130) (-4099 . 94966)
+ (-4100 . 94802) (-4101 . 94706) (-4102 . 94588) (-4103 . 94464)
+ (-4104 . 94321) (-4105 . 94150) (-4106 . 94024) (-4107 . 93880)
+ (-4108 . 93728) (-4109 . 93569) (-4110 . 93084) (-4111 . 92995)
+ (-4112 . 92330) (-4113 . 92138) (-4114 . 92043) (-4115 . 91735)
+ (-4116 . 90563) (-4117 . 90357) (-4118 . 89182) (-4119 . 89107)
+ (-4120 . 87926) (-4121 . 84332) (-4122 . 83968) (-4123 . 83691)
+ (-4124 . 83599) (-4125 . 83506) (-4126 . 83229) (-4127 . 83136)
+ (-4128 . 83043) (-4129 . 82950) (-4130 . 82566) (-4131 . 82495)
+ (-4132 . 82403) (-4133 . 82245) (-4134 . 81891) (-4135 . 81733)
+ (-4136 . 81625) (-4137 . 81596) (-4138 . 81529) (-4139 . 81375)
+ (-4140 . 81216) (-4141 . 80822) (-4142 . 80747) (-4143 . 80641)
+ (-4144 . 80569) (-4145 . 80491) (-4146 . 80418) (-4147 . 80345)
+ (-4148 . 80272) (-4149 . 80200) (-4150 . 80128) (-4151 . 80055)
+ (-4152 . 79814) (-4153 . 79474) (-4154 . 79326) (-4155 . 79253)
+ (-4156 . 79180) (-4157 . 79107) (-4158 . 78853) (-4159 . 78709)
+ (-4160 . 77373) (-4161 . 77179) (-4162 . 76908) (-4163 . 76760)
+ (-4164 . 76612) (-4165 . 76372) (-4166 . 76178) (-4167 . 75910)
+ (-4168 . 75714) (-4169 . 75685) (-4170 . 75584) (-4171 . 75483)
+ (-4172 . 75382) (-4173 . 75281) (-4174 . 75180) (-4175 . 75079)
+ (-4176 . 74978) (-4177 . 74877) (-4178 . 74776) (-4179 . 74675)
+ (-4180 . 74560) (-4181 . 74445) (-4182 . 74394) (-4183 . 74277)
+ (-4184 . 74219) (-4185 . 74118) (-4186 . 74017) (-4187 . 73916)
+ (-4188 . 73800) (-4189 . 73771) (-4190 . 73040) (-4191 . 72915)
+ (-4192 . 72790) (-4193 . 72650) (-4194 . 72532) (-4195 . 72407)
+ (-4196 . 72252) (-4197 . 71269) (-4198 . 70410) (-4199 . 70038)
+ (-4200 . 69626) (-4201 . 69267) (-4202 . 68908) (-4203 . 68756)
+ (-4204 . 68454) (-4205 . 68298) (-4206 . 67972) (-4207 . 67901)
+ (-4208 . 67830) (-4209 . 67619) (-4210 . 66813) (-4211 . 66609)
+ (-4212 . 66236) (-4213 . 65721) (-4214 . 65456) (-4215 . 64909)
+ (-4216 . 64362) (-4217 . 64237) (-4218 . 63009) (-4219 . 61805)
+ (-4220 . 61203) (-4221 . 60985) (-4222 . 60800) (-4223 . 58717)
+ (-4224 . 56550) (-4225 . 56404) (-4226 . 56224) (-4227 . 55818)
+ (-4228 . 55519) (-4229 . 55171) (-4230 . 55005) (-4231 . 54839)
+ (-4232 . 54526) (-4233 . 31548) (-4234 . 17647) (-4235 . 16537) (* . 12064)
+ (-4237 . 11810) (-4238 . 11626) (-4239 . 10626) (-4240 . 10357) (-4241 . 9728)
+ (-4242 . 8452) (-4243 . 7205) (-4244 . 6334) (-4245 . 5071) (-4246 . 382)
+ (-4247 . 280) (-4248 . 160) (-4249 . 30)) \ No newline at end of file